
Finite Fields

Emin Karayel

March 17, 2025

Abstract

This entry formalizes the classification of the finite fields (also called
Galois fields): For each prime power pn there exists exactly one (up to
isomorphisms) finite field of that size and there are no other finite fields.
The derivation includes a formalization of the characteristic of rings,
the Frobenius endomorphism, formal differentiation for polynomials in
HOL-Algebra, Rabin’s test for the irreducibility of polynomials and
Gauss’ formula for the number of monic irreducible polynomials over
finite fields:

1

n

∑
d|n

µ(d)pn/d.

The proofs are based on the books and publications from Ireland and
Rosen [3], Rabin [5] as well as, Lidl and Niederreiter [4].
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1 Introduction

The following section starts with preliminary results. Section 3
introduces the characteristic of rings with the Frobenius endo-
morphism. Whenever it makes sense, the definitions and facts
do not assume the finiteness of the fields or rings. For example
the characteristic is defined over arbitrary rings (and also fields).
While formal derivatives do exist for type-class based structures
in HOL-Computational_Algebra, as far as I can tell, they do not
exist for the structure based polynomials in HOL-Algebra. These
are introduced in Section 4.
A cornerstone of the proof is the derivation of Gauss’ formula for
the number of monic irreducible polynomials over a finite field R
in Section 6.2. The proof follows the derivation by Ireland and
Rosen [3, §7] closely, with the caveat that it does not assume
that R is a simple prime field, but that it is just a finite field.
This works by adjusting a proof step with the information that
the order of a finite field must be of the form pn, where p is the
characteristic of the field, derived in Section 3. The final step
relies on the Möbius inversion theorem formalized by Eberl [2].1

With Gauss’ formula it is possible to show the existence of the
finite fields of order pn where p is a prime and n > 0. During

1Thanks to Katharina Kreuzer for discovering that formalization.
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the proof the fact that the polynomial Xn −X splits in a field
of order n is also derived, which is necessary for the uniqueness
result as well.
The uniqueness proof is inspired by the derivation of the same
result in Lidl and Niederreiter [4], but because of the already de-
rived existence proof for irreducible polynomials, it was possible
to reduce its complexity.
The classification consists of three theorems:

• Existence: For each prime power pn there exists a finite field
of that size. This is shown at the conclusion of Section 6.2.

• Uniqueness: Any two finite fields of the same size are iso-
morphic. This is shown at the conclusion of Section 7.

• Completeness: Any finite fields’ size must be a prime power.
This is shown at the conclusion of Section 3.

2 Preliminary Results
theory Finite-Fields-Preliminary-Results

imports HOL−Algebra.Polynomial-Divisibility
begin

2.1 Summation in the discrete topology

The following lemmas transfer the corresponding result from the
summation over finite sets to summation over functions which
vanish outside of a finite set.
lemma sum ′-subtractf-nat:

fixes f :: ′a ⇒ nat
assumes finite {i ∈ A. f i 6= 0}
assumes

∧
i. i ∈ A =⇒ g i ≤ f i

shows sum ′ (λi. f i − g i) A = sum ′ f A − sum ′ g A
(is ?lhs = ?rhs)

proof −
have c:finite {i ∈ A. g i 6= 0}

using assms(2 )
by (intro finite-subset[OF - assms(1 )] subsetI , force)

let ?B = {i ∈ A. f i 6= 0 ∨ g i 6= 0}

have b:?B = {i ∈ A. f i 6= 0} ∪ {i ∈ A. g i 6= 0}
by (auto simp add:set-eq-iff )

have a:finite ?B
using assms(1 ) c by (subst b, simp)

have ?lhs = sum ′ (λi. f i − g i) ?B
by (intro sum.mono-neutral-cong-right ′, simp-all)
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also have ... = sum (λi. f i − g i) ?B
by (intro sum.eq-sum a)

also have ... = sum f ?B − sum g ?B
using assms(2 ) by (subst sum-subtractf-nat, auto)

also have ... = sum ′ f ?B − sum ′ g ?B
by (intro arg-cong2 [where f=(−)] sum.eq-sum[symmetric] a)

also have ... = ?rhs
by (intro arg-cong2 [where f=(−)] sum.mono-neutral-cong-left ′)

simp-all
finally show ?thesis

by simp
qed

lemma sum ′-nat-eq-0-iff :
fixes f :: ′a ⇒ nat
assumes finite {i ∈ A. f i 6= 0}
assumes sum ′ f A = 0
shows

∧
i. i ∈ A =⇒ f i = 0

proof −
let ?B = {i ∈ A. f i 6= 0}

have sum f ?B = sum ′ f ?B
by (intro sum.eq-sum[symmetric] assms(1 ))

also have ... = sum ′ f A
by (intro sum.non-neutral ′)

also have ... = 0 using assms(2 ) by simp
finally have a:sum f ?B = 0 by simp
have

∧
i. i ∈ ?B =⇒ f i = 0

using sum-nonneg-0 [OF assms(1 ) - a] by blast
thus

∧
i. i ∈ A =⇒ f i = 0

by blast
qed

lemma sum ′-eq-iff :
fixes f :: ′a ⇒ nat
assumes finite {i ∈ A. f i 6= 0}
assumes

∧
i. i ∈ A =⇒ f i ≥ g i

assumes sum ′ f A ≤ sum ′ g A
shows ∀ i ∈ A. f i = g i

proof −
have {i ∈ A. g i 6= 0} ⊆ {i ∈ A. f i 6= 0}

using assms(2 ) order-less-le-trans
by (intro subsetI , auto)

hence a:finite {i ∈ A. g i 6= 0}
by (rule finite-subset, intro assms(1 ))

have {i ∈ A. f i − g i 6= 0} ⊆ {i ∈ A. f i 6= 0}
by (intro subsetI , simp-all)

hence b: finite {i ∈ A. f i − g i 6= 0}
by (rule finite-subset, intro assms(1 ))
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have sum ′ (λi. f i − g i) A = sum ′ f A − sum ′ g A
using assms(1 ,2 ) a by (subst sum ′-subtractf-nat, auto)

also have ... = 0
using assms(3 ) by simp

finally have sum ′ (λi. f i − g i) A = 0 by simp
hence

∧
i. i ∈ A =⇒ f i − g i = 0

using sum ′-nat-eq-0-iff [OF b] by simp
thus ?thesis

using assms(2 ) diff-is-0-eq ′ diffs0-imp-equal by blast
qed

2.2 Polynomials

The embedding of the constant polynomials into the polynomials
is injective:
lemma (in ring) poly-of-const-inj:

inj poly-of-const
proof −

have coeff (poly-of-const x) 0 = x for x
unfolding poly-of-const-def normalize-coeff [symmetric]
by simp

thus ?thesis by (metis injI )
qed

lemma (in domain) embed-hom:
assumes subring K R
shows ring-hom-ring (K [X ]) (poly-ring R) id

proof (rule ring-hom-ringI )
show ring (K [X ])

using univ-poly-is-ring[OF assms(1 )] by simp
show ring (poly-ring R)

using univ-poly-is-ring[OF carrier-is-subring] by simp
have K ⊆ carrier R

using subringE(1 )[OF assms(1 )] by simp
thus

∧
x. x ∈ carrier (K [X ]) =⇒ id x ∈ carrier (poly-ring R)

unfolding univ-poly-carrier [symmetric] polynomial-def by auto
show id (x ⊗K [X ] y) = id x ⊗poly-ring R id y

if x ∈ carrier (K [X ]) y ∈ carrier (K [X ]) for x y
unfolding univ-poly-mult by simp

show id (x ⊕K [X ] y) = id x ⊕poly-ring R id y
if x ∈ carrier (K [X ]) y ∈ carrier (K [X ]) for x y
unfolding univ-poly-add by simp

show id 1K [X ] = 1poly-ring R
unfolding univ-poly-one by simp

qed

The following are versions of the properties of the degrees of poly-
nomials, that abstract over the definition of the polynomial ring
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structure. In the theories HOL−Algebra.Polynomials and also
HOL−Algebra.Polynomial-Divisibility these abstract version are
usually indicated with the suffix “shell”, consider for example:
domain.pdivides-iff-shell.
lemma (in ring) degree-add-distinct:

assumes subring K R
assumes f ∈ carrier (K [X ]) − {0K [X ]}
assumes g ∈ carrier (K [X ]) − {0K [X ]}
assumes degree f 6= degree g
shows degree (f ⊕K [X ] g) = max (degree f ) (degree g)
unfolding univ-poly-add using assms(2 ,3 ,4 )
by (subst poly-add-degree-eq[OF assms(1 )])
(auto simp:univ-poly-carrier univ-poly-zero)

lemma (in ring) degree-add:
degree (f ⊕K [X ] g) ≤ max (degree f ) (degree g)
unfolding univ-poly-add by (intro poly-add-degree)

lemma (in domain) degree-mult:
assumes subring K R
assumes f ∈ carrier (K [X ]) − {0K [X ]}
assumes g ∈ carrier (K [X ]) − {0K [X ]}
shows degree (f ⊗K [X ] g) = degree f + degree g
unfolding univ-poly-mult using assms(2 ,3 )
by (subst poly-mult-degree-eq[OF assms(1 )])
(auto simp:univ-poly-carrier univ-poly-zero)

lemma (in ring) degree-one:
degree (1K [X ]) = 0
unfolding univ-poly-one by simp

lemma (in domain) pow-non-zero:
x ∈ carrier R =⇒ x 6= 0 =⇒ x [^] (n :: nat) 6= 0
using integral by (induction n, auto)

lemma (in domain) degree-pow:
assumes subring K R
assumes f ∈ carrier (K [X ]) − {0K [X ]}
shows degree (f [^]K [X ] n) = degree f ∗ n

proof −
interpret p:domain K [X ]

using univ-poly-is-domain[OF assms(1 )] by simp

show ?thesis
proof (induction n)

case 0
then show ?case by (simp add:univ-poly-one)
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next
case (Suc n)
have degree (f [^]K [X ] Suc n) = degree (f [^]K [X ] n ⊗K [X ] f )

by simp
also have ... = degree (f [^]K [X ] n) + degree f

using p.pow-non-zero assms(2 )
by (subst degree-mult[OF assms(1 )], auto)

also have ... = degree f ∗ Suc n
by (subst Suc, simp)

finally show ?case by simp
qed

qed

lemma (in ring) degree-var :
degree (XR) = 1
unfolding var-def by simp

lemma (in domain) var-carr :
fixes n :: nat
assumes subring K R
shows XR ∈ carrier (K [X ]) − {0K [X ]}

proof −
have XR ∈ carrier (K [X ])

using var-closed[OF assms(1 )] by simp
moreover have X 6= 0K [X ]

unfolding var-def univ-poly-zero by simp
ultimately show ?thesis by simp

qed

lemma (in domain) var-pow-carr :
fixes n :: nat
assumes subring K R
shows XR [^]K [X ] n ∈ carrier (K [X ]) − {0K [X ]}

proof −
interpret p:domain K [X ]

using univ-poly-is-domain[OF assms(1 )] by simp

have XR [^]K [X ] n ∈ carrier (K [X ])

using var-pow-closed[OF assms(1 )] by simp
moreover have X 6= 0K [X ]

unfolding var-def univ-poly-zero by simp
hence XR [^]K [X ] n 6= 0K [X ]

using var-closed(1 )[OF assms(1 )]
by (intro p.pow-non-zero, auto)

ultimately show ?thesis by simp
qed

lemma (in domain) var-pow-degree:

7



fixes n :: nat
assumes subring K R
shows degree (XR [^]K [X ] n) = n
using var-carr [OF assms(1 )] degree-var
by (subst degree-pow[OF assms(1 )], auto)

lemma (in domain) finprod-non-zero:
assumes finite A
assumes f ∈ A → carrier R − {0}
shows (

⊗
i ∈ A. f i) ∈ carrier R − {0}

using assms
proof (induction A rule:finite-induct)

case empty
then show ?case by simp

next
case (insert x F)
have finprod R f (insert x F) = f x ⊗ finprod R f F

using insert by (subst finprod-insert, simp-all add:Pi-def )
also have ... ∈ carrier R−{0}

using integral insert by auto
finally show ?case by simp

qed

lemma (in domain) degree-prod:
assumes finite A
assumes subring K R
assumes f ∈ A → carrier (K [X ]) − {0K [X ]}
shows degree (

⊗
K [X ]i ∈ A. f i) = (

∑
i ∈ A. degree (f i))

using assms
proof −

interpret p:domain K [X ]
using univ-poly-is-domain[OF assms(2 )] by simp

show ?thesis
using assms(1 ,3 )

proof (induction A rule: finite-induct)
case empty
then show ?case by (simp add:univ-poly-one)

next
case (insert x F)
have degree (finprod (K [X ]) f (insert x F)) =

degree (f x ⊗K [X ] finprod (K [X ]) f F)

using insert by (subst p.finprod-insert, auto)
also have ... = degree (f x) + degree (finprod (K [X ]) f F)

using insert p.finprod-non-zero[OF insert(1 )]
by (subst degree-mult[OF assms(2 )], simp-all)

also have ... = degree (f x) + (
∑

i ∈ F . degree (f i))
using insert by (subst insert(3 ), auto)

also have ... = (
∑

i ∈ insert x F . degree (f i))
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using insert by simp
finally show ?case by simp

qed
qed

lemma (in ring) coeff-add:
assumes subring K R
assumes f ∈ carrier (K [X ]) g ∈ carrier (K [X ])
shows coeff (f ⊕K [X ] g) i = coeff f i ⊕R coeff g i

proof −
have a:set f ⊆ carrier R

using assms(1 ,2 ) univ-poly-carrier
using subringE(1 )[OF assms(1 )] polynomial-incl
by blast

have b:set g ⊆ carrier R
using assms(1 ,3 ) univ-poly-carrier
using subringE(1 )[OF assms(1 )] polynomial-incl
by blast

show ?thesis
unfolding univ-poly-add poly-add-coeff [OF a b] by simp

qed

lemma (in domain) coeff-a-inv:
assumes subring K R
assumes f ∈ carrier (K [X ])
shows coeff (	K [X ] f ) i = 	 (coeff f i) (is ?L = ?R)

proof −
have ?L = coeff (map (a-inv R) f ) i

unfolding univ-poly-a-inv-def ′[OF assms(1 ,2 )] by simp
also have ... = ?R by (induction f ) auto
finally show ?thesis by simp

qed

This is a version of geometric sums for commutative rings:
lemma (in cring) geom:

fixes q:: nat
assumes [simp]: a ∈ carrier R
shows (a 	 1) ⊗ (

⊕
i∈{..<q}. a [^] i) = (a [^] q 	 1)

(is ?lhs = ?rhs)
proof −

have [simp]: a [^] i ∈ carrier R for i :: nat
by (intro nat-pow-closed assms)

have [simp]: 	 1 ⊗ x = 	 x if x ∈ carrier R for x
using l-minus l-one one-closed that by presburger

let ?cterm = (
⊕

i∈{1 ..<q}. a [^] i)

have ?lhs = a ⊗ (
⊕

i∈{..<q}. a [^] i) 	 (
⊕

i∈{..<q}. a [^] i)
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unfolding a-minus-def by (subst l-distr , simp-all add:Pi-def )
also have ... = (

⊕
i∈{..<q}. a ⊗ a [^] i) 	 (

⊕
i∈{..<q}. a [^] i)

by (subst finsum-rdistr , simp-all add:Pi-def )
also have ... = (

⊕
i∈{..<q}. a [^] (Suc i)) 	 (

⊕
i∈{..<q}. a [^] i)

by (subst nat-pow-Suc, simp-all add:m-comm)
also have ... = (

⊕
i∈Suc ‘ {..<q}. a [^] i) 	 (

⊕
i∈{..<q}. a [^] i)

by (subst finsum-reindex, simp-all)
also have ... =
(
⊕

i∈ insert q {1 ..<q}. a [^] i) 	
(
⊕

i∈ insert 0 {1 ..<q}. a [^] i)
proof (cases q > 0 )

case True
moreover have Suc ‘ {..<q} = insert q {Suc 0 ..<q}

using True lessThan-atLeast0 by fastforce
moreover have {..<q} = insert 0 {Suc 0 ..<q}

using True by (auto simp add:set-eq-iff )
ultimately show ?thesis

by (intro arg-cong2 [where f=λx y. x 	 y] finsum-cong)
simp-all

next
case False
then show ?thesis by (simp, algebra)

qed
also have ... = (a [^] q ⊕ ?cterm) 	 (1 ⊕ ?cterm)

by simp
also have ... = a [^] q ⊕ ?cterm ⊕ (	 1 ⊕ 	 ?cterm)

unfolding a-minus-def by (subst minus-add, simp-all)
also have ... = a [^] q ⊕ (?cterm ⊕ (	 1 ⊕ 	 ?cterm))

by (subst a-assoc, simp-all)
also have ... = a [^] q ⊕ (?cterm ⊕ (	 ?cterm ⊕ 	 1))

by (subst a-comm[where x=	 1], simp-all)
also have ... = a [^] q ⊕ ((?cterm ⊕ (	 ?cterm)) ⊕ 	 1)

by (subst a-assoc, simp-all)
also have ... = a [^] q ⊕ (0 ⊕ 	 1)

by (subst r-neg, simp-all)
also have ... = a [^] q 	 1

unfolding a-minus-def by simp
finally show ?thesis by simp

qed

lemma (in domain) rupture-eq-0-iff :
assumes subfield K R p ∈ carrier (K [X ]) q ∈ carrier (K [X ])
shows rupture-surj K p q = 0Rupt K p ←→ p pdivides q
(is ?lhs ←→ ?rhs)

proof −
interpret h:ring-hom-ring K [X ] (Rupt K p) (rupture-surj K p)

using assms subfieldE by (intro rupture-surj-hom) auto

have a: q pmod p ∈ (λq. q pmod p) ‘ carrier (K [X ])
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using assms(3 ) by simp
have 0K [X ] = 0K [X ] pmod p

using assms(1 ,2 ) long-division-zero(2 )
by (simp add:univ-poly-zero)

hence b: 0K [X ] ∈ (λq. q pmod p) ‘ carrier (K [X ])

by (simp add:image-iff ) auto

have ?lhs ←→ rupture-surj K p (q pmod p) =
rupture-surj K p (0K [X ])

by (subst rupture-surj-composed-with-pmod[OF assms]) simp
also have ... ←→ q pmod p = 0K [X ]

using assms(3 )
by (intro inj-on-eq-iff [OF rupture-surj-inj-on[OF assms(1 ,2 )]] a b)

also have ... ←→ ?rhs
unfolding univ-poly-zero
by (intro pmod-zero-iff-pdivides[OF assms(1 )] assms(2 ,3 ))

finally show ?thesis by simp
qed

2.3 Ring Isomorphisms

The following lemma shows that an isomorphism between do-
mains also induces an isomorphism between the corresponding
polynomial rings.
lemma lift-iso-to-poly-ring:

assumes h ∈ ring-iso R S domain R domain S
shows map h ∈ ring-iso (poly-ring R) (poly-ring S)

proof (rule ring-iso-memI )
interpret dr : domain R using assms(2 ) by blast
interpret ds: domain S using assms(3 ) by blast
interpret pdr : domain poly-ring R

using dr .univ-poly-is-domain[OF dr .carrier-is-subring] by simp
interpret pds: domain poly-ring S

using ds.univ-poly-is-domain[OF ds.carrier-is-subring] by simp
interpret h: ring-hom-ring R S h

using dr .ring-axioms ds.ring-axioms assms(1 )
by (intro ring-hom-ringI2 , simp-all add:ring-iso-def )

let ?R = poly-ring R
let ?S = poly-ring S

have h-img: h ‘ (carrier R) = carrier S
using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

have h-inj: inj-on h (carrier R)
using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

hence h-non-zero-iff : h x 6= 0S
if x 6= 0R x ∈ carrier R for x
using h.hom-zero dr .zero-closed inj-onD that by metis
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have norm-elim: ds.normalize (map h x) = map h x
if x ∈ carrier (poly-ring R) for x

proof (cases x)
case Nil then show ?thesis by simp

next
case (Cons xh xt)
have xh ∈ carrier R xh 6= 0R

using that unfolding Cons univ-poly-carrier [symmetric]
unfolding polynomial-def by auto

hence h xh 6= 0S using h-non-zero-iff by simp
then show ?thesis unfolding Cons by simp

qed

show t-1 : map h x ∈ carrier ?S
if x ∈ carrier ?R for x
using that hd-in-set h-non-zero-iff hd-map
unfolding univ-poly-carrier [symmetric] polynomial-def
by (cases x, auto)

show map h (x ⊗?R y) = map h x ⊗?S map h y
if x ∈ carrier ?R y ∈ carrier ?R for x y

proof −
have map h (x ⊗?R y) = ds.normalize (map h (x ⊗?R y))

using that by (intro norm-elim[symmetric],simp)
also have ... = map h x ⊗?S map h y
using that unfolding univ-poly-mult univ-poly-carrier [symmetric]
unfolding polynomial-def
by (intro h.poly-mult-hom ′[of x y] , auto)

finally show ?thesis by simp
qed

show map h (x ⊕?R y) = map h x ⊕?S map h y
if x ∈ carrier ?R y ∈ carrier ?R for x y

proof −
have map h (x ⊕?R y) = ds.normalize (map h (x ⊕?R y))

using that by (intro norm-elim[symmetric],simp)
also have ... = map h x ⊕?S map h y

using that
unfolding univ-poly-add univ-poly-carrier [symmetric]
unfolding polynomial-def
by (intro h.poly-add-hom ′[of x y], auto)

finally show ?thesis by simp
qed

show map h 1?R = 1?S
unfolding univ-poly-one by simp

let ?hinv = map (the-inv-into (carrier R) h)
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have map h ∈ carrier ?R → carrier ?S
using t-1 by simp

moreover have ?hinv x ∈ carrier ?R
if x ∈ carrier ?S for x

proof (cases x = [])
case True
then show ?thesis

by (simp add:univ-poly-carrier [symmetric] polynomial-def )
next

case False
have set-x: set x ⊆ h ‘ carrier R

using that h-img unfolding univ-poly-carrier [symmetric]
unfolding polynomial-def by auto

have lead-coeff x 6= 0S lead-coeff x ∈ carrier S
using that False unfolding univ-poly-carrier [symmetric]
unfolding polynomial-def by auto

hence the-inv-into (carrier R) h (lead-coeff x) 6=
the-inv-into (carrier R) h 0S
using inj-on-the-inv-into[OF h-inj] inj-onD
using ds.zero-closed h-img by metis

hence the-inv-into (carrier R) h (lead-coeff x) 6= 0R
unfolding h.hom-zero[symmetric]
unfolding the-inv-into-f-f [OF h-inj dr .zero-closed] by simp

hence lead-coeff (?hinv x) 6= 0R
using False by (simp add:hd-map)

moreover have the-inv-into (carrier R) h ‘ set x ⊆ carrier R
using the-inv-into-into[OF h-inj] set-x
by (intro image-subsetI ) auto

hence set (?hinv x) ⊆ carrier R by simp
ultimately show ?thesis

by (simp add:univ-poly-carrier [symmetric] polynomial-def )
qed
moreover have ?hinv (map h x) = x if x ∈ carrier ?R for x
proof −

have set-x: set x ⊆ carrier R
using that unfolding univ-poly-carrier [symmetric]
unfolding polynomial-def by auto

have ?hinv (map h x) =
map (λy. the-inv-into (carrier R) h (h y)) x
by simp

also have ... = map id x
using set-x by (intro map-cong)
(auto simp add:the-inv-into-f-f [OF h-inj])

also have ... = x by simp
finally show ?thesis by simp

qed
moreover have map h (?hinv x) = x

if x ∈ carrier ?S for x
proof −

13



have set-x: set x ⊆ h ‘ carrier R
using that h-img unfolding univ-poly-carrier [symmetric]
unfolding polynomial-def by auto

have map h (?hinv x) =
map (λy. h (the-inv-into (carrier R) h y)) x
by simp

also have ... = map id x
using set-x by (intro map-cong)
(auto simp add:f-the-inv-into-f [OF h-inj])

also have ... = x by simp
finally show ?thesis by simp

qed
ultimately show bij-betw (map h) (carrier ?R) (carrier ?S)

by (intro bij-betwI [where g=?hinv], auto)
qed

lemma carrier-hom:
assumes f ∈ carrier (poly-ring R)
assumes h ∈ ring-iso R S domain R domain S
shows map h f ∈ carrier (poly-ring S)

proof −
note poly-iso = lift-iso-to-poly-ring[OF assms(2 ,3 ,4 )]
show ?thesis

using ring-iso-memE(1 )[OF poly-iso assms(1 )] by simp
qed

lemma carrier-hom ′:
assumes f ∈ carrier (poly-ring R)
assumes h ∈ ring-hom R S
assumes domain R domain S
assumes inj-on h (carrier R)
shows map h f ∈ carrier (poly-ring S)

proof −
let ?S = S (| carrier := h ‘ carrier R |)

interpret dr : domain R using assms(3 ) by blast
interpret ds: domain S using assms(4 ) by blast
interpret h1 : ring-hom-ring R S h

using assms(2 ) ring-hom-ringI2 dr .ring-axioms
using ds.ring-axioms by blast

have subr : subring (h ‘ carrier R) S
using h1 .img-is-subring[OF dr .carrier-is-subring] by blast

interpret h: ring-hom-ring ((h ‘ carrier R)[X ]S) poly-ring S id
using ds.embed-hom[OF subr ] by simp

let ?S = S (| carrier := h ‘ carrier R |)
have h ∈ ring-hom R ?S

using assms(2 ) unfolding ring-hom-def by simp
moreover have bij-betw h (carrier R) (carrier ?S)
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using assms(5 ) bij-betw-def by auto
ultimately have h-iso: h ∈ ring-iso R ?S

unfolding ring-iso-def by simp

have dom-S : domain ?S
using ds.subring-is-domain[OF subr ] by simp

note poly-iso = lift-iso-to-poly-ring[OF h-iso assms(3 ) dom-S ]
have map h f ∈ carrier (poly-ring ?S)

using ring-iso-memE(1 )[OF poly-iso assms(1 )] by simp
also have carrier (poly-ring ?S) =

carrier (univ-poly S (h ‘ carrier R))
using ds.univ-poly-consistent[OF subr ] by simp

also have ... ⊆ carrier (poly-ring S)
using h.hom-closed by auto

finally show ?thesis by simp
qed

The following lemmas transfer properties like divisibility, irre-
ducibility etc. between ring isomorphisms.
lemma divides-hom:

assumes h ∈ ring-iso R S
assumes domain R domain S
assumes x ∈ carrier R y ∈ carrier R
shows x dividesR y ←→ (h x) dividesS (h y) (is ?lhs ←→ ?rhs)

proof −
interpret dr : domain R using assms(2 ) by blast
interpret ds: domain S using assms(3 ) by blast
interpret pdr : domain poly-ring R

using dr .univ-poly-is-domain[OF dr .carrier-is-subring] by simp
interpret pds: domain poly-ring S

using ds.univ-poly-is-domain[OF ds.carrier-is-subring] by simp
interpret h: ring-hom-ring R S h

using dr .ring-axioms ds.ring-axioms assms(1 )
by (intro ring-hom-ringI2 , simp-all add:ring-iso-def )

have h-inj-on: inj-on h (carrier R)
using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

have h-img: h ‘ (carrier R) = carrier S
using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

have ?lhs ←→ (∃ c ∈ carrier R. y = x ⊗R c)
unfolding factor-def by simp

also have ... ←→ (∃ c ∈ carrier R. h y = h x ⊗S h c)
using assms(4 ,5 ) inj-onD[OF h-inj-on]
by (intro bex-cong, auto simp flip:h.hom-mult)

also have ... ←→ (∃ c ∈ carrier S . h y = h x ⊗S c)
unfolding h-img[symmetric] by simp

also have ... ←→ ?rhs
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unfolding factor-def by simp
finally show ?thesis by simp

qed

lemma properfactor-hom:
assumes h ∈ ring-iso R S
assumes domain R domain S
assumes x ∈ carrier R b ∈ carrier R
shows properfactor R b x ←→ properfactor S (h b) (h x)
using divides-hom[OF assms(1 ,2 ,3 )] assms(4 ,5 )
unfolding properfactor-def by simp

lemma Units-hom:
assumes h ∈ ring-iso R S
assumes domain R domain S
assumes x ∈ carrier R
shows x ∈ Units R ←→ h x ∈ Units S

proof −

interpret dr : domain R using assms(2 ) by blast
interpret ds: domain S using assms(3 ) by blast
interpret pdr : domain poly-ring R

using dr .univ-poly-is-domain[OF dr .carrier-is-subring] by simp
interpret pds: domain poly-ring S

using ds.univ-poly-is-domain[OF ds.carrier-is-subring] by simp
interpret h: ring-hom-ring R S h

using dr .ring-axioms ds.ring-axioms assms(1 )
by (intro ring-hom-ringI2 , simp-all add:ring-iso-def )

have h-img: h ‘ (carrier R) = carrier S
using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

have h-inj-on: inj-on h (carrier R)
using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

hence h-one-iff : h x = 1S ←→ x = 1R if x ∈ carrier R for x
using h.hom-one that by (metis dr .one-closed inj-onD)

have x ∈ Units R ←→
(∃ y∈carrier R. x ⊗R y = 1R ∧ y ⊗R x = 1R)
using assms unfolding Units-def by auto

also have ... ←→
(∃ y∈carrier R. h x ⊗S h y = h 1R ∧ h y ⊗S h x = h 1R)
using h-one-iff assms by (intro bex-cong, simp-all flip:h.hom-mult)

also have ... ←→
(∃ y∈carrier S . h x ⊗S y = h 1R ∧ y ⊗S h x = 1S)
unfolding h-img[symmetric] by simp

also have ... ←→ h x ∈ Units S
using assms h.hom-closed unfolding Units-def by auto
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finally show ?thesis by simp
qed

lemma irreducible-hom:
assumes h ∈ ring-iso R S
assumes domain R domain S
assumes x ∈ carrier R
shows irreducible R x = irreducible S (h x)

proof −
have h-img: h ‘ (carrier R) = carrier S

using assms(1 ) unfolding ring-iso-def bij-betw-def by auto

have irreducible R x ←→ (x /∈ Units R ∧
(∀ b∈carrier R. properfactor R b x −→ b ∈ Units R))
unfolding Divisibility.irreducible-def by simp

also have ... ←→ (x /∈ Units R ∧
(∀ b∈carrier R. properfactor S (h b) (h x) −→ b ∈ Units R))
using properfactor-hom[OF assms(1 ,2 ,3 )] assms(4 ) by simp

also have ... ←→ (h x /∈ Units S ∧
(∀ b∈carrier R. properfactor S (h b) (h x) −→ h b ∈ Units S))
using assms(4 ) Units-hom[OF assms(1 ,2 ,3 )] by simp

also have ...←→ (h x /∈ Units S ∧
(∀ b∈h ‘ carrier R. properfactor S b (h x) −→ b ∈ Units S))
by simp

also have ... ←→ irreducible S (h x)
unfolding h-img Divisibility.irreducible-def by simp

finally show ?thesis by simp
qed

lemma pirreducible-hom:
assumes h ∈ ring-iso R S
assumes domain R domain S
assumes f ∈ carrier (poly-ring R)
shows pirreducibleR (carrier R) f =

pirreducibleS (carrier S) (map h f )
(is ?lhs = ?rhs)

proof −
note lift-iso = lift-iso-to-poly-ring[OF assms(1 ,2 ,3 )]
interpret dr : domain R using assms(2 ) by blast
interpret ds: domain S using assms(3 ) by blast
interpret pdr : domain poly-ring R

using dr .univ-poly-is-domain[OF dr .carrier-is-subring] by simp
interpret pds: domain poly-ring S

using ds.univ-poly-is-domain[OF ds.carrier-is-subring] by simp

have mh-inj-on: inj-on (map h) (carrier (poly-ring R))
using lift-iso unfolding ring-iso-def bij-betw-def by auto

moreover have map h 0poly-ring R = 0poly-ring S
by (simp add:univ-poly-zero)
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ultimately have mh-zero-iff :
map h f = 0poly-ring S ←→ f = 0poly-ring R
using assms(4 ) by (metis pdr .zero-closed inj-onD)

have ?lhs ←→ (f 6= 0poly-ring R ∧ irreducible (poly-ring R) f )
unfolding ring-irreducible-def by simp

also have ... ←→
(f 6= 0poly-ring R ∧ irreducible (poly-ring S) (map h f ))
using irreducible-hom[OF lift-iso] pdr .domain-axioms
using assms(4 ) pds.domain-axioms by simp

also have ... ←→
(map h f 6= 0poly-ring S ∧ irreducible (poly-ring S) (map h f ))
using mh-zero-iff by simp

also have ... ←→ ?rhs
unfolding ring-irreducible-def by simp

finally show ?thesis by simp
qed

lemma ring-hom-cong:
assumes

∧
x. x ∈ carrier R =⇒ f ′ x = f x

assumes ring R
assumes f ∈ ring-hom R S
shows f ′ ∈ ring-hom R S

proof −
interpret ring R using assms(2 ) by simp
show ?thesis

using assms(1 ) ring-hom-memE [OF assms(3 )]
by (intro ring-hom-memI , auto)

qed

The natural homomorphism between factor rings, where one
ideal is a subset of the other.
lemma (in ring) quot-quot-hom:

assumes ideal I R
assumes ideal J R
assumes I ⊆ J
shows (λx. (J <+>R x)) ∈ ring-hom (R Quot I ) (R Quot J )

proof (rule ring-hom-memI )
interpret ji: ideal J R

using assms(2 ) by simp
interpret ii: ideal I R

using assms(1 ) by simp

have a:J <+>R I = J
using assms(3 ) unfolding set-add-def set-mult-def by auto

show J <+>R x ∈ carrier (R Quot J )
if x ∈ carrier (R Quot I ) for x

proof −
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have ∃ y∈carrier R. x = I +> y
using that unfolding FactRing-def A-RCOSETS-def ′ by simp

then obtain y where y-def : y ∈ carrier R x = I +> y
by auto

have J <+>R (I +> y) = (J <+>R I ) +> y
using y-def (1 ) by (subst a-setmult-rcos-assoc) auto

also have ... = J +> y using a by simp
finally have J <+>R (I +> y) = J +> y by simp
thus ?thesis

using y-def unfolding FactRing-def A-RCOSETS-def ′ by auto
qed

show J <+>R x ⊗R Quot I y =

(J <+>R x) ⊗R Quot J (J <+>R y)
if x ∈ carrier (R Quot I ) y ∈ carrier (R Quot I )
for x y

proof −
have ∃ x1∈carrier R. x = I +> x1 ∃ y1∈carrier R. y = I +> y1

using that unfolding FactRing-def A-RCOSETS-def ′ by auto
then obtain x1 y1

where x1-def : x1 ∈ carrier R x = I +> x1
and y1-def : y1 ∈ carrier R y = I +> y1

by auto
have J <+>R x ⊗R Quot I y = J <+>R (I +> x1 ⊗ y1 )

using x1-def y1-def
by (simp add: FactRing-def ii.rcoset-mult-add)

also have ... = (J <+>R I ) +> x1 ⊗ y1
using x1-def (1 ) y1-def (1 )
by (subst a-setmult-rcos-assoc) auto

also have ... = J +> x1 ⊗ y1
using a by simp

also have ... = [mod J :] (J +> x1 )
⊗

(J +> y1 )
using x1-def (1 ) y1-def (1 ) by (subst ji.rcoset-mult-add, auto)

also have ... =
[mod J :] ((J <+>R I ) +> x1 )

⊗
((J <+>R I ) +> y1 )

using a by simp
also have ... =
[mod J :] (J <+>R (I +> x1 ))

⊗
(J <+>R (I +> y1 ))

using x1-def (1 ) y1-def (1 )
by (subst (1 2 ) a-setmult-rcos-assoc) auto

also have ... = (J <+>R x) ⊗R Quot J (J <+>R y)
using x1-def y1-def by (simp add: FactRing-def )

finally show ?thesis by simp
qed

show J <+>R x ⊕R Quot I y =

(J <+>R x) ⊕R Quot J (J <+>R y)
if x ∈ carrier (R Quot I ) y ∈ carrier (R Quot I )
for x y
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proof −
have ∃ x1∈carrier R. x = I +> x1 ∃ y1∈carrier R. y = I +> y1

using that unfolding FactRing-def A-RCOSETS-def ′ by auto
then obtain x1 y1

where x1-def : x1 ∈ carrier R x = I +> x1
and y1-def : y1 ∈ carrier R y = I +> y1

by auto
have J <+>R x ⊕R Quot I y =

J <+>R ((I +> x1 ) <+>R (I +> y1 ))
using x1-def y1-def by (simp add:FactRing-def )

also have ... = J <+>R (I +> (x1 ⊕ y1 ))
using x1-def y1-def ii.a-rcos-sum by simp

also have ... = (J <+>R I ) +> (x1 ⊕ y1 )
using x1-def y1-def by (subst a-setmult-rcos-assoc) auto

also have ... = J +> (x1 ⊕ y1 )
using a by simp

also have ... =
((J <+>R I ) +> x1 ) <+>R ((J <+>R I ) +> y1 )
using x1-def y1-def ji.a-rcos-sum a by simp

also have ... =
J <+>R (I +> x1 ) <+>R (J <+>R (I +> y1 ))
using x1-def y1-def by (subst (1 2 ) a-setmult-rcos-assoc) auto

also have ... = (J <+>R x) ⊕R Quot J (J <+>R y)
using x1-def y1-def by (simp add:FactRing-def )

finally show ?thesis by simp
qed

have J <+>R 1R Quot I = J <+>R (I +> 1)
unfolding FactRing-def by simp

also have ... = (J <+>R I ) +> 1
by (subst a-setmult-rcos-assoc) auto

also have ... = J +> 1 using a by simp
also have ... = 1R Quot J

unfolding FactRing-def by simp
finally show J <+>R 1R Quot I = 1R Quot J

by simp
qed

lemma (in ring) quot-carr :
assumes ideal I R
assumes y ∈ carrier (R Quot I )
shows y ⊆ carrier R

proof −
interpret ideal I R using assms(1 ) by simp
have y ∈ a-rcosets I

using assms(2 ) unfolding FactRing-def by simp
then obtain v where y-def : y = I +> v v ∈ carrier R

unfolding A-RCOSETS-def ′ by auto
have I +> v ⊆ carrier R

20



using y-def (2 ) a-r-coset-subset-G a-subset by presburger
thus y ⊆ carrier R unfolding y-def by simp

qed

lemma (in ring) set-add-zero:
assumes A ⊆ carrier R
shows {0} <+>R A = A

proof −
have {0} <+>R A = (

⋃
x∈A. {0 ⊕ x})

using assms unfolding set-add-def set-mult-def by simp
also have ... = (

⋃
x∈A. {x})

using assms by (intro arg-cong[where f=Union] image-cong, auto)
also have ... = A by simp
finally show ?thesis by simp

qed

Adapted from the proof of domain.polynomial-rupture
lemma (in domain) rupture-surj-as-eval:

assumes subring K R
assumes p ∈ carrier (K [X ]) q ∈ carrier (K [X ])
shows rupture-surj K p q =

ring.eval (Rupt K p) (map ((rupture-surj K p) ◦ poly-of-const) q)
(rupture-surj K p X)

proof −
let ?surj = rupture-surj K p

interpret UP: domain K [X ]
using univ-poly-is-domain[OF assms(1 )] .

interpret h: ring-hom-ring K [X ] Rupt K p ?surj
using rupture-surj-hom(2 )[OF assms(1 ,2 )] .

have (h.S .eval) (map (?surj ◦ poly-of-const) q) (?surj X) =
?surj ((UP.eval) (map poly-of-const q) X)

using h.eval-hom[OF UP.carrier-is-subring var-closed(1 )[OF assms(1 )]
map-norm-in-poly-ring-carrier [OF assms(1 ,3 )]] by simp

also have ... = ?surj q
unfolding sym[OF eval-rewrite[OF assms(1 ,3 )]] ..

finally show ?thesis by simp
qed

2.4 Divisibility
lemma (in field) f-comm-group-1 :

assumes x ∈ carrier R y ∈ carrier R
assumes x 6= 0 y 6= 0
assumes x ⊗ y = 0
shows False
using integral assms by auto
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lemma (in field) f-comm-group-2 :
assumes x ∈ carrier R
assumes x 6= 0
shows ∃ y∈carrier R − {0}. y ⊗ x = 1

proof −
have x-unit: x ∈ Units R using field-Units assms by simp
thus ?thesis unfolding Units-def by auto

qed

sublocale field < mult-of : comm-group mult-of R
rewrites mult (mult-of R) = mult R

and one (mult-of R) = one R
using f-comm-group-1 f-comm-group-2
by (auto intro!:comm-groupI m-assoc m-comm)

lemma (in domain) div-neg:
assumes a ∈ carrier R b ∈ carrier R
assumes a divides b
shows a divides (	 b)

proof −
obtain r1 where r1-def : r1 ∈ carrier R a ⊗ r1 = b

using assms by (auto simp:factor-def )

have a ⊗ (	 r1 ) = 	 (a ⊗ r1 )
using assms(1 ) r1-def (1 ) by algebra

also have ... = 	 b
using r1-def (2 ) by simp

finally have 	b = a ⊗ (	 r1 ) by simp
moreover have 	r1 ∈ carrier R

using r1-def (1 ) by simp
ultimately show ?thesis

by (auto simp:factor-def )
qed

lemma (in domain) div-sum:
assumes a ∈ carrier R b ∈ carrier R c ∈ carrier R
assumes a divides b
assumes a divides c
shows a divides (b ⊕ c)

proof −
obtain r1 where r1-def : r1 ∈ carrier R a ⊗ r1 = b

using assms by (auto simp:factor-def )

obtain r2 where r2-def : r2 ∈ carrier R a ⊗ r2 = c
using assms by (auto simp:factor-def )

have a ⊗ (r1 ⊕ r2 ) = (a ⊗ r1 ) ⊕ (a ⊗ r2 )
using assms(1 ) r1-def (1 ) r2-def (1 ) by algebra

also have ... = b ⊕ c
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using r1-def (2 ) r2-def (2 ) by simp
finally have b ⊕ c = a ⊗ (r1 ⊕ r2 ) by simp
moreover have r1 ⊕ r2 ∈ carrier R

using r1-def (1 ) r2-def (1 ) by simp
ultimately show ?thesis

by (auto simp:factor-def )
qed

lemma (in domain) div-sum-iff :
assumes a ∈ carrier R b ∈ carrier R c ∈ carrier R
assumes a divides b
shows a divides (b ⊕ c) ←→ a divides c

proof
assume a divides (b ⊕ c)
moreover have a divides (	 b)

using div-neg assms(1 ,2 ,4 ) by simp
ultimately have a divides ((b ⊕ c) ⊕ (	 b))

using div-sum assms by simp
also have ... = c using assms(1 ,2 ,3 ) by algebra
finally show a divides c by simp

next
assume a divides c
thus a divides (b ⊕ c)

using assms by (intro div-sum) auto
qed

lemma (in comm-monoid) irreducible-prod-unit:
assumes f ∈ carrier G x ∈ Units G
shows irreducible G f = irreducible G (x ⊗ f ) (is ?L = ?R)

proof
assume ?L
thus ?R using irreducible-prod-lI assms by auto

next
have inv x ⊗ (x ⊗ f ) = (inv x ⊗ x) ⊗ f

using assms by (intro m-assoc[symmetric]) auto
also have ... = f using assms by simp
finally have 0 : inv x ⊗ (x ⊗ f ) = f by simp
assume ?R
hence irreducible G (inv x ⊗ (x ⊗ f ) ) using irreducible-prod-lI

assms by blast
thus ?L using 0 by simp

qed

end

2.5 Factorization
theory Finite-Fields-Factorization-Ext

imports Finite-Fields-Preliminary-Results
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begin

This section contains additional results building on top of the
development in HOL−Algebra.Divisibility about factorization in
a factorial-monoid.
definition factor-mset where factor-mset G x =
(THE f . (∃ as. f = fmset G as ∧ wfactors G as x ∧ set as ⊆ carrier

G))

In HOL−Algebra.Divisibility it is already verified that the mul-
tiset representing the factorization of an element of a factorial
monoid into irreducible factors is well-defined. With these results
it is then possible to define factor-mset and show its properties,
without referring to a factorization in list form first.
definition multiplicity where

multiplicity G d g = Max {(n::nat). (d [^]G n) dividesG g}

definition canonical-irreducibles where
canonical-irreducibles G A = (

A ⊆ {a. a ∈ carrier G ∧ irreducible G a} ∧
(∀ x y. x ∈ A −→ y ∈ A −→ x ∼G y −→ x = y) ∧
(∀ x ∈ carrier G. irreducible G x −→ (∃ y ∈ A. x ∼G y)))

A set of irreducible elements that contains exactly one element
from each equivalence class of an irreducible element formed by
association, is called a set of canonical-irreducibles. An example
is the set of monic irreducible polynomials as representatives of
all irreducible polynomials.
context factorial-monoid
begin

lemma assoc-as-fmset-eq:
assumes wfactors G as a

and wfactors G bs b
and a ∈ carrier G
and b ∈ carrier G
and set as ⊆ carrier G
and set bs ⊆ carrier G

shows a ∼ b ←→ (fmset G as = fmset G bs)
proof −

have a ∼ b ←→ (a divides b ∧ b divides a)
by (simp add:associated-def )

also have ... ←→
(fmset G as ⊆# fmset G bs ∧ fmset G bs ⊆# fmset G as)
using divides-as-fmsubset assms by blast

also have ... ←→ (fmset G as = fmset G bs) by auto
finally show ?thesis by simp
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qed

lemma factor-mset-aux-1 :
assumes a ∈ carrier G set as ⊆ carrier G wfactors G as a
shows factor-mset G a = fmset G as

proof −
define H where H = {as. wfactors G as a ∧ set as ⊆ carrier G}
have b:as ∈ H

using H-def assms by simp

have c: x ∈ H =⇒ y ∈ H =⇒ fmset G x = fmset G y for x y
unfolding H-def using assoc-as-fmset-eq
using associated-refl assms by blast

have factor-mset G a = (THE f . ∃ as ∈ H . f= fmset G as)
by (simp add:factor-mset-def H-def , metis)

also have ... = fmset G as
using b c
by (intro the1-equality) blast+

finally have factor-mset G a = fmset G as by simp

thus ?thesis
using b unfolding H-def by auto

qed

lemma factor-mset-aux:
assumes a ∈ carrier G
shows ∃ as. factor-mset G a = fmset G as ∧ wfactors G as a ∧

set as ⊆ carrier G
proof −

obtain as where as-def : wfactors G as a set as ⊆ carrier G
using wfactors-exist assms by blast

thus ?thesis using factor-mset-aux-1 assms by blast
qed

lemma factor-mset-set:
assumes a ∈ carrier G
assumes x ∈# factor-mset G a
obtains y where

y ∈ carrier G
irreducible G y
assocs G y = x

proof −
obtain as where as-def :

factor-mset G a = fmset G as
wfactors G as a set as ⊆ carrier G
using factor-mset-aux assms by blast

hence x ∈# fmset G as
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using assms by simp
hence x ∈ assocs G ‘ set as

using assms as-def by (simp add:fmset-def )
hence ∃ y. y ∈ set as ∧ x = assocs G y

by auto
moreover have y ∈ carrier G ∧ irreducible G y

if y ∈ set as for y
using as-def that wfactors-def
by (simp add: wfactors-def ) auto

ultimately show ?thesis
using that by blast

qed

lemma factor-mset-mult:
assumes a ∈ carrier G b ∈ carrier G
shows factor-mset G (a ⊗ b) = factor-mset G a + factor-mset G b

proof −
obtain as where as-def :

factor-mset G a = fmset G as
wfactors G as a set as ⊆ carrier G
using factor-mset-aux assms by blast

obtain bs where bs-def :
factor-mset G b = fmset G bs
wfactors G bs b set bs ⊆ carrier G
using factor-mset-aux assms(2 ) by blast

have a ⊗ b ∈ carrier G using assms by auto
then obtain cs where cs-def :

factor-mset G (a ⊗ b) = fmset G cs
wfactors G cs (a ⊗ b)
set cs ⊆ carrier G
using factor-mset-aux assms by blast

have fmset G cs = fmset G as + fmset G bs
using as-def bs-def cs-def assms
by (intro mult-wfactors-fmset[where a=a and b=b]) auto

thus ?thesis
using as-def bs-def cs-def by auto

qed

lemma factor-mset-unit: factor-mset G 1 = {#}
proof −

have factor-mset G 1 = factor-mset G (1 ⊗ 1)
by simp

also have ... = factor-mset G 1 + factor-mset G 1
by (intro factor-mset-mult, auto)

finally show factor-mset G 1 = {#}
by simp

qed

lemma factor-mset-irred:
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assumes x ∈ carrier G irreducible G x
shows factor-mset G x = image-mset (assocs G) {#x#}

proof −
have wfactors G [x] x

using assms by (simp add:wfactors-def )
hence factor-mset G x = fmset G [x]

using factor-mset-aux-1 assms by simp
also have ... = image-mset (assocs G) {#x#}

by (simp add:fmset-def )
finally show ?thesis by simp

qed

lemma factor-mset-divides:
assumes a ∈ carrier G b ∈ carrier G
shows a divides b ←→ factor-mset G a ⊆# factor-mset G b

proof −
obtain as where as-def :

factor-mset G a = fmset G as
wfactors G as a set as ⊆ carrier G
using factor-mset-aux assms by blast

obtain bs where bs-def :
factor-mset G b = fmset G bs
wfactors G bs b set bs ⊆ carrier G
using factor-mset-aux assms(2 ) by blast

hence a divides b ←→ fmset G as ⊆# fmset G bs
using as-def bs-def assms
by (intro divides-as-fmsubset) auto

also have ... ←→ factor-mset G a ⊆# factor-mset G b
using as-def bs-def by simp

finally show ?thesis by simp
qed

lemma factor-mset-sim:
assumes a ∈ carrier G b ∈ carrier G
shows a ∼ b ←→ factor-mset G a = factor-mset G b
using factor-mset-divides assms
by (simp add:associated-def ) auto

lemma factor-mset-prod:
assumes finite A
assumes f ‘ A ⊆ carrier G
shows factor-mset G (

⊗
a ∈ A. f a) =

(
∑

a ∈ A. factor-mset G (f a))
using assms

proof (induction A rule:finite-induct)
case empty
then show ?case by (simp add:factor-mset-unit)

next
case (insert x F)
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have factor-mset G (finprod G f (insert x F)) =
factor-mset G (f x ⊗ finprod G f F)
using insert by (subst finprod-insert) auto

also have ... = factor-mset G (f x) + factor-mset G (finprod G f F)
using insert by (intro factor-mset-mult finprod-closed) auto

also have
... = factor-mset G (f x) + (

∑
a ∈ F . factor-mset G (f a))

using insert by simp
also have ... = (

∑
a∈insert x F . factor-mset G (f a))

using insert by simp
finally show ?case by simp

qed

lemma factor-mset-pow:
assumes a ∈ carrier G
shows factor-mset G (a [^] n) = repeat-mset n (factor-mset G a)

proof (induction n)
case 0
then show ?case by (simp add:factor-mset-unit)

next
case (Suc n)
have factor-mset G (a [^] Suc n) = factor-mset G (a [^] n ⊗ a)

by simp
also have ... = factor-mset G (a [^] n) + factor-mset G a

using assms by (intro factor-mset-mult) auto
also have ... = repeat-mset n (factor-mset G a) + factor-mset G a

using Suc by simp
also have ... = repeat-mset (Suc n) (factor-mset G a)

by simp
finally show ?case by simp

qed

lemma image-mset-sum:
assumes finite F
shows

image-mset h (
∑

x ∈ F . f x) = (
∑

x ∈ F . image-mset h (f x))
using assms
by (induction F rule:finite-induct, simp, simp)

lemma decomp-mset:
(
∑

x∈set-mset R. replicate-mset (count R x) x) = R
by (rule multiset-eqI , simp add:count-sum count-eq-zero-iff )

lemma factor-mset-count:
assumes a ∈ carrier G d ∈ carrier G irreducible G d
shows count (factor-mset G a) (assocs G d) = multiplicity G d a

proof −
have a:

count (factor-mset G a) (assocs G d) ≥ m ←→ d [^] m divides a

28



(is ?lhs ←→ ?rhs) for m
proof −

have ?lhs ←→ replicate-mset m (assocs G d) ⊆# factor-mset G a
by (simp add:count-le-replicate-mset-subset-eq)

also have ... ←→ factor-mset G (d [^] m) ⊆# factor-mset G a
using assms(2 ,3 ) by (simp add:factor-mset-pow factor-mset-irred)
also have ... ←→ ?rhs

using assms(1 ,2 ) by (subst factor-mset-divides) auto
finally show ?thesis by simp

qed

define M where M = {(m::nat). d [^] m divides a}

have M-alt: M = {m. m ≤ count (factor-mset G a) (assocs G d)}
using a by (simp add:M-def )

hence Max M = count (factor-mset G a) (assocs G d)
by (intro Max-eqI , auto)

thus ?thesis
unfolding multiplicity-def M-def by auto

qed

lemma multiplicity-ge-iff :
assumes d ∈ carrier G irreducible G d a ∈ carrier G
shows multiplicity G d a ≥ k ←→ d [^] k divides a
(is ?lhs ←→ ?rhs)

proof −
have ?lhs ←→ count (factor-mset G a) (assocs G d) ≥ k

using factor-mset-count[OF assms(3 ,1 ,2 )] by simp
also have ... ←→ replicate-mset k (assocs G d) ⊆# factor-mset G a

by (subst count-le-replicate-mset-subset-eq, simp)
also have ... ←→

repeat-mset k (factor-mset G d) ⊆# factor-mset G a
by (subst factor-mset-irred[OF assms(1 ,2 )], simp)

also have ... ←→ factor-mset G (d [^]G k) ⊆# factor-mset G a
by (subst factor-mset-pow[OF assms(1 )], simp)

also have ... ←→ (d [^] k) dividesG a
using assms(1 ) factor-mset-divides[OF - assms(3 )] by simp

finally show ?thesis by simp
qed

lemma multiplicity-gt-0-iff :
assumes d ∈ carrier G irreducible G d a ∈ carrier G
shows multiplicity G d a > 0 ←→ d divides a
using multiplicity-ge-iff [OF assms(1 ,2 ,3 ), where k=1 ] assms
by auto

lemma factor-mset-count-2 :
assumes a ∈ carrier G
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assumes
∧

z. z ∈ carrier G =⇒ irreducible G z =⇒ y 6= assocs G z
shows count (factor-mset G a) y = 0
using factor-mset-set [OF assms(1 )] assms(2 ) by (metis count-inI )

lemma factor-mset-choose:
assumes a ∈ carrier G set-mset R ⊆ carrier G
assumes image-mset (assocs G) R = factor-mset G a
shows a ∼ (

⊗
x∈set-mset R. x [^] count R x) (is a ∼ ?rhs)

proof −
have b:irreducible G x if a:x ∈# R for x
proof −

have x-carr : x ∈ carrier G
using a assms(2 ) by auto

have assocs G x ∈ assocs G ‘ set-mset R
using a by simp

hence assocs G x ∈# factor-mset G a
using assms(3 ) a in-image-mset by metis

then obtain z where z-def :
z ∈ carrier G irreducible G z assocs G x = assocs G z
using factor-mset-set assms(1 ) by metis

have z ∼ x using z-def (1 ,3 ) assocs-eqD x-carr by simp
thus ?thesis using z-def (1 ,2 ) x-carr irreducible-cong by simp

qed

have factor-mset G ?rhs =
(
∑

x∈set-mset R. factor-mset G (x [^] count R x))
using assms(2 ) by (subst factor-mset-prod, auto)

also have ... =
(
∑

x∈set-mset R. repeat-mset (count R x) (factor-mset G x))
using assms(2 ) by (intro sum.cong, auto simp add:factor-mset-pow)

also have ... = (
∑

x∈set-mset R.
repeat-mset (count R x) (image-mset (assocs G) {#x#}))

using assms(2 ) b by (intro sum.cong, auto simp add:factor-mset-irred)
also have ... = (

∑
x∈set-mset R.

image-mset (assocs G) (replicate-mset (count R x) x))
by simp

also have ... = image-mset (assocs G)
(
∑

x∈set-mset R. (replicate-mset (count R x) x))
by (simp add: image-mset-sum)

also have ... = image-mset (assocs G) R
by (simp add:decomp-mset)

also have ... = factor-mset G a
using assms by simp

finally have factor-mset G ?rhs = factor-mset G a by simp
moreover have (

⊗
x∈set-mset R. x [^] count R x) ∈ carrier G

using assms(2 ) by (intro finprod-closed, auto)
ultimately show ?thesis

using assms(1 ) by (subst factor-mset-sim) auto
qed
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lemma divides-iff-mult-mono:
assumes a ∈ carrier G b ∈ carrier G
assumes canonical-irreducibles G R
assumes

∧
d. d ∈ R =⇒ multiplicity G d a ≤ multiplicity G d b

shows a divides b
proof −

have count (factor-mset G a) d ≤ count (factor-mset G b) d for d
proof (cases ∃ y ∈ carrier G. irreducible G y ∧ d = assocs G y)

case True
then obtain y where y-def :

irreducible G y y ∈ carrier G d = assocs G y
by blast

then obtain z where z-def : z ∈ R y ∼ z
using assms(3 ) unfolding canonical-irreducibles-def by metis

have z-more: irreducible G z z ∈ carrier G
using z-def (1 ) assms(3 )
unfolding canonical-irreducibles-def by auto

have y ∈ assocs G z using z-def (2 ) z-more(2 ) y-def (2 )
by (simp add: closure-ofI2 )

hence d-def : d = assocs G z
using y-def (2 ,3 ) z-more(2 ) assocs-repr-independence
by blast

have count (factor-mset G a) d = multiplicity G z a
unfolding d-def
by (intro factor-mset-count[OF assms(1 ) z-more(2 ,1 )])

also have ... ≤ multiplicity G z b
using assms(4 ) z-def (1 ) by simp

also have ... = count (factor-mset G b) d
unfolding d-def

by (intro factor-mset-count[symmetric, OF assms(2 ) z-more(2 ,1 )])
finally show ?thesis by simp

next
case False
have count (factor-mset G a) d = 0 using False

by (intro factor-mset-count-2 [OF assms(1 )], simp)
moreover have count (factor-mset G b) d = 0 using False

by (intro factor-mset-count-2 [OF assms(2 )], simp)
ultimately show ?thesis by simp

qed

hence factor-mset G a ⊆# factor-mset G b
unfolding subseteq-mset-def by simp

thus ?thesis using factor-mset-divides assms(1 ,2 ) by simp
qed

lemma count-image-mset-inj:
assumes inj-on f R x ∈ R set-mset A ⊆ R
shows count (image-mset f A) (f x) = count A x
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proof (cases x ∈# A)
case True
hence (f y = f x ∧ y ∈# A) = (y = x) for y

by (meson assms(1 ) assms(3 ) inj-onD subsetD)
hence (f −‘ {f x} ∩ set-mset A) = {x}

by (simp add:set-eq-iff )
thus ?thesis

by (subst count-image-mset, simp)
next

case False
hence x /∈ set-mset A by simp
hence f x /∈ f ‘ set-mset A using assms

by (simp add: inj-on-image-mem-iff )
hence count (image-mset f A) (f x) = 0

by (simp add:count-eq-zero-iff )
thus ?thesis by (metis count-inI False)

qed

Factorization of an element from a factorial-monoid using a se-
lection of representatives from each equivalence class formed by
(∼).
lemma split-factors:

assumes canonical-irreducibles G R
assumes a ∈ carrier G
shows

finite {d. d ∈ R ∧ multiplicity G d a > 0}
a ∼ (

⊗
d∈{d. d ∈ R ∧ multiplicity G d a > 0}.

d [^] multiplicity G d a) (is a ∼ ?rhs)
proof −

have r-1 : R ⊆ {x. x ∈ carrier G ∧ irreducible G x}
using assms(1 ) unfolding canonical-irreducibles-def by simp

have r-2 :
∧

x y. x ∈ R =⇒ y ∈ R =⇒ x ∼ y =⇒ x = y
using assms(1 ) unfolding canonical-irreducibles-def by simp

have assocs-inj: inj-on (assocs G) R
using r-1 r-2 assocs-eqD by (intro inj-onI , blast)

define R ′ where
R ′ = (

∑
d∈ {d. d ∈ R ∧ multiplicity G d a > 0}.

replicate-mset (multiplicity G d a) d)

have count (factor-mset G a) (assocs G x) > 0
if x ∈ R 0 < multiplicity G x a for x
using assms r-1 r-2 that
by (subst factor-mset-count[OF assms(2 )]) auto

hence assocs G ‘ {d ∈ R. 0 < multiplicity G d a}
⊆ set-mset (factor-mset G a)
by (intro image-subsetI , simp)

hence a:finite (assocs G ‘ {d ∈ R. 0 < multiplicity G d a})
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using finite-subset by auto

show finite {d ∈ R. 0 < multiplicity G d a}
using assocs-inj inj-on-subset[OF assocs-inj]
by (intro finite-imageD[OF a], simp)

hence count-R ′:
count R ′ d = (if d ∈ R then multiplicity G d a else 0 )
for d
by (auto simp add:R ′-def count-sum)

have set-R ′: set-mset R ′ = {d ∈ R. 0 < multiplicity G d a}
unfolding set-mset-def using count-R ′ by auto

have count (image-mset (assocs G) R ′) x =
count (factor-mset G a) x for x

proof (cases ∃ x ′. x ′ ∈ R ∧ x = assocs G x ′)
case True
then obtain x ′ where x ′-def : x ′ ∈ R x = assocs G x ′

by blast
have count (image-mset (assocs G) R ′) x = count R ′ x ′

using assocs-inj inj-on-subset[OF assocs-inj] x ′-def
by (subst x ′-def (2 ), subst count-image-mset-inj[OF assocs-inj])
(auto simp:set-R ′)

also have ... = multiplicity G x ′ a
using count-R ′ x ′-def by simp

also have ... = count (factor-mset G a) (assocs G x ′)
using x ′-def (1 ) r-1
by (subst factor-mset-count[OF assms(2 )]) auto

also have ... = count (factor-mset G a) x
using x ′-def (2 ) by simp

finally show ?thesis by simp
next

case False
have a:x 6= assocs G z

if a1 : z ∈ carrier G and a2 : irreducible G z for z
proof −

obtain v where v-def : v ∈ R z ∼ v
using a1 a2 assms(1 )
unfolding canonical-irreducibles-def by auto

hence z ∈ assocs G v
using a1 r-1 v-def (1 ) by (simp add: closure-ofI2 )

hence assocs G z = assocs G v
using a1 r-1 v-def (1 ) assocs-repr-independence
by auto

moreover have x 6= assocs G v
using False v-def (1 ) by simp

ultimately show ?thesis by simp
qed
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have count (image-mset (assocs G) R ′) x = 0
using False count-R ′ by (simp add: count-image-mset) auto

also have ... = count (factor-mset G a) x
using a
by (intro factor-mset-count-2 [OF assms(2 ), symmetric]) auto

finally show ?thesis by simp
qed

hence image-mset (assocs G) R ′ = factor-mset G a
by (rule multiset-eqI )

moreover have set-mset R ′ ⊆ carrier G
using r-1 by (auto simp add:set-R ′)

ultimately have a ∼ (
⊗

x∈set-mset R ′. x [^] count R ′ x)
using assms(2 ) by (intro factor-mset-choose, auto)

also have ... = ?rhs
using set-R ′ assms r-1 r-2
by (intro finprod-cong ′, auto simp add:count-R ′)

finally show a ∼ ?rhs by simp
qed

end

end

3 Characteristic of Rings
theory Ring-Characteristic

imports
Finite-Fields-Factorization-Ext
HOL−Algebra.IntRing
HOL−Algebra.Embedded-Algebras

begin

locale finite-field = field +
assumes finite-carrier : finite (carrier R)

begin

lemma finite-field-min-order :
order R > 1

proof (rule ccontr)
assume a:¬(1 < order R)
have {0R,1R} ⊆ carrier R by auto
hence card {0R,1R} ≤ card (carrier R)

using card-mono finite-carrier by blast
also have ... ≤ 1 using a by (simp add:order-def )
finally have card {0R,1R} ≤ 1 by blast
thus False by simp
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qed

lemma (in finite-field) order-pow-eq-self :
assumes x ∈ carrier R
shows x [^] (order R) = x

proof (cases x = 0)
case True
have order R > 0

using assms(1 ) order-gt-0-iff-finite finite-carrier by simp
then obtain n where n-def :order R = Suc n

using lessE by blast
have x [^] (order R) = 0

unfolding n-def using True by (subst nat-pow-Suc, simp)
thus ?thesis using True by simp

next
case False
have x-carr :x ∈ carrier (mult-of R)

using False assms by simp

have carr-non-empty: card (carrier R) > 0
using order-gt-0-iff-finite finite-carrier
unfolding order-def by simp

have x [^] (order R) = x [^]mult-of R (order R)

by (simp add:nat-pow-mult-of )
also have ... = x [^]mult-of R (order (mult-of R)+1 )

using carr-non-empty unfolding order-def
by (intro arg-cong[where f=λt. x [^]mult-of R t]) (simp)

also have ... = x
using x-carr
by (simp add:mult-of .pow-order-eq-1 )

finally show x [^] (order R) = x
by simp

qed

lemma (in finite-field) order-pow-eq-self ′:
assumes x ∈ carrier R
shows x [^] (order R ^ d) = x

proof (induction d)
case 0
then show ?case using assms by simp

next
case (Suc d)
have x [^] order R ^ (Suc d) = x [^] (order R ^ d ∗ order R)

by (simp add:mult.commute)
also have ... = (x [^] (order R ^ d)) [^] order R

using assms by (simp add: nat-pow-pow)
also have ... = (x [^] (order R ^ d))

using order-pow-eq-self assms by simp
also have ... = x
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using Suc by simp
finally show ?case by simp

qed

end

lemma finite-fieldI :
assumes field R
assumes finite (carrier R)
shows finite-field R
using assms
unfolding finite-field-def finite-field-axioms-def
by auto

lemma (in domain) finite-domain-units:
assumes finite (carrier R)
shows Units R = carrier R − {0} (is ?lhs = ?rhs)

proof
have Units R ⊆ carrier R by (simp add:Units-def )
moreover have 0 /∈ Units R

by (meson zero-is-prime(1 ) primeE)
ultimately show Units R ⊆ carrier R − {0} by blast

next
have x ∈ Units R if a: x ∈ carrier R − {0} for x
proof −

have x-carr : x ∈ carrier R using a by blast
define f where f = (λy. y ⊗R x)
have inj-on f (carrier R) unfolding f-def

by (rule inj-onI , metis DiffD1 DiffD2 a m-rcancel insertI1 )
hence card (carrier R) = card (f ‘ carrier R)

by (metis card-image)
moreover have f ‘ carrier R ⊆ carrier R unfolding f-def

by (rule image-subsetI , simp add: ring.ring-simprules x-carr)
ultimately have f ‘ carrier R = carrier R

using card-subset-eq assms by metis
moreover have 1R ∈ carrier R by simp
ultimately have ∃ y ∈ carrier R. f y = 1R

by (metis image-iff )
then obtain y

where y-carrier : y ∈ carrier R
and y-left-inv: y ⊗R x = 1R

using f-def by blast
hence y-right-inv: x ⊗R y = 1R

by (metis DiffD1 a cring-simprules(14 ))
show x ∈ Units R

using y-carrier y-left-inv y-right-inv
by (metis DiffD1 a divides-one factor-def )

qed
thus ?rhs ⊆ ?lhs by auto
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qed

The following theorem can be found in Lidl and Niederreiter [4,
Theorem 1.31].
theorem finite-domains-are-fields:

assumes domain R
assumes finite (carrier R)
shows finite-field R

proof −
interpret domain R using assms by auto
have Units R = carrier R − {0R}

using finite-domain-units[OF assms(2 )] by simp
then have field R

by (simp add: assms(1 ) field.intro field-axioms.intro)
thus ?thesis

using assms(2 ) finite-fieldI by auto
qed

definition zfact-iso :: nat ⇒ nat ⇒ int set where
zfact-iso p k = IdlZ {int p} +>Z (int k)

context
fixes n :: nat
assumes n-gt-0 : n > 0

begin

private abbreviation I where I ≡ IdlZ {int n}

private lemma ideal-I : ideal I Z
by (simp add: int.genideal-ideal)

lemma int-cosetI :
assumes u mod (int n) = v mod (int n)
shows IdlZ {int n} +>Z u = IdlZ {int n} +>Z v

proof −
have u − v ∈ I
by (metis Idl-subset-eq-dvd assms int-Idl-subset-ideal mod-eq-dvd-iff )

thus ?thesis
using ideal-I int.quotient-eq-iff-same-a-r-cos by simp

qed

lemma zfact-iso-inj:
inj-on (zfact-iso n) {..<n}

proof (rule inj-onI )
fix x y
assume a:x ∈ {..<n} y ∈ {..<n}
assume zfact-iso n x = zfact-iso n y
hence I +>Z (int x) = I +>Z (int y)

by (simp add:zfact-iso-def )
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hence int x − int y ∈ I
by (subst int.quotient-eq-iff-same-a-r-cos[OF ideal-I ], auto)

hence int x mod int n = int y mod int n
by (meson Idl-subset-eq-dvd int-Idl-subset-ideal mod-eq-dvd-iff )

thus x = y
using a by simp

qed

lemma zfact-iso-ran:
zfact-iso n ‘ {..<n} = carrier (ZFact (int n))

proof −
have zfact-iso n ‘ {..<n} ⊆ carrier (ZFact (int n))

unfolding zfact-iso-def ZFact-def FactRing-simps
using int.a-rcosetsI by auto

moreover have x ∈ zfact-iso n ‘ {..<n}
if a:x ∈ carrier (ZFact (int n)) for x

proof −
obtain y where y-def : x = I +>Z y

using a unfolding ZFact-def FactRing-simps by auto
define z where ‹z = nat (y mod int n)›
with n-gt-0 have z-def : ‹int z mod int n = y mod int n› ‹z < n›

by (simp-all add: z-def nat-less-iff )
have x = I +>Z y

by (simp add:y-def )
also have ... = I +>Z (int z)

by (intro int-cosetI , simp add:z-def )
also have ... = zfact-iso n z

by (simp add:zfact-iso-def )
finally have x = zfact-iso n z

by simp
thus x ∈ zfact-iso n ‘ {..<n}

using z-def (2 ) by blast
qed
ultimately show ?thesis by auto

qed

lemma zfact-iso-bij:
bij-betw (zfact-iso n) {..<n} (carrier (ZFact (int n)))
using bij-betw-def zfact-iso-inj zfact-iso-ran by blast

lemma card-zfact-carr : card (carrier (ZFact (int n))) = n
using bij-betw-same-card[OF zfact-iso-bij] by simp

lemma fin-zfact: finite (carrier (ZFact (int n)))
using card-zfact-carr n-gt-0 card-ge-0-finite by force

end

lemma zfact-prime-is-finite-field:
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assumes Factorial-Ring.prime p
shows finite-field (ZFact (int p))

proof −
have p-gt-0 : p > 0 using assms(1 ) prime-gt-0-nat by simp
have Factorial-Ring.prime (int p)

using assms by simp
moreover have finite (carrier (ZFact (int p)))

using fin-zfact[OF p-gt-0 ] by simp
ultimately show ?thesis

by (intro finite-domains-are-fields ZFact-prime-is-domain, auto)
qed

definition int-embed :: - ⇒ int ⇒ - where
int-embed R k = add-pow R k 1R

lemma (in ring) add-pow-consistent:
fixes i :: int
assumes subring K R
assumes k ∈ K
shows add-pow R i k = add-pow (R (| carrier := K |)) i k
(is ?lhs = ?rhs)

proof −
have a:subgroup K (add-monoid R)

using assms(1 ) subring.axioms by auto
have add-pow R i k = k [^]add-monoid R(|carrier := K |) i

using add.int-pow-consistent[OF a assms(2 )] by simp
also have ... = ?rhs

unfolding add-pow-def by simp
finally show ?thesis by simp

qed

lemma (in ring) int-embed-consistent:
assumes subring K R
shows int-embed R i = int-embed (R (| carrier := K |)) i

proof −
have a:1 = 1R (| carrier := K |) by simp
have b:1R(|carrier := K |) ∈ K

using assms subringE(3 ) by auto
show ?thesis
unfolding int-embed-def a using b add-pow-consistent[OF assms(1 )]

by simp
qed

lemma (in ring) int-embed-closed:
int-embed R k ∈ carrier R
unfolding int-embed-def using add.int-pow-closed by simp

lemma (in ring) int-embed-range:
assumes subring K R
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shows int-embed R k ∈ K
proof −

let ?R ′ = R (| carrier := K |)
interpret x:ring ?R ′

using subring-is-ring[OF assms] by simp
have int-embed R k = int-embed ?R ′ k

using int-embed-consistent[OF assms] by simp
also have ... ∈ K

using x.int-embed-closed by simp
finally show ?thesis by simp

qed

lemma (in ring) int-embed-zero:
int-embed R 0 = 0R
by (simp add:int-embed-def add-pow-def )

lemma (in ring) int-embed-one:
int-embed R 1 = 1R
by (simp add:int-embed-def )

lemma (in ring) int-embed-add:
int-embed R (x+y) = int-embed R x ⊕R int-embed R y
by (simp add:int-embed-def add.int-pow-mult)

lemma (in ring) int-embed-inv:
int-embed R (−x) = 	R int-embed R x (is ?lhs = ?rhs)

proof −
have ?lhs = int-embed R (−x) ⊕ (int-embed R x 	 int-embed R x)

using int-embed-closed by simp
also have
... = int-embed R (−x) ⊕ int-embed R x ⊕ (	 int-embed R x)
using int-embed-closed by (subst a-minus-def , subst a-assoc, auto)

also have ... = int-embed R (−x +x) ⊕ (	 int-embed R x)
by (subst int-embed-add, simp)

also have ... = ?rhs
using int-embed-closed
by (simp add:int-embed-zero)

finally show ?thesis by simp
qed

lemma (in ring) int-embed-diff :
int-embed R (x−y) = int-embed R x 	R int-embed R y
(is ?lhs = ?rhs)

proof −
have ?lhs = int-embed R (x + (−y)) by simp
also have ... = ?rhs

by (subst int-embed-add, simp add:a-minus-def int-embed-inv)
finally show ?thesis by simp

qed
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lemma (in ring) int-embed-mult-aux:
int-embed R (x∗int y) = int-embed R x ⊗ int-embed R y

proof (induction y)
case 0
then show ?case by (simp add:int-embed-closed int-embed-zero)

next
case (Suc y)
have int-embed R (x ∗ int (Suc y)) = int-embed R (x + x ∗ int y)

by (simp add:algebra-simps)
also have ... = int-embed R x ⊕ int-embed R (x ∗ int y)

by (subst int-embed-add, simp)
also have
... = int-embed R x ⊗ 1 ⊕ int-embed R x ⊗ int-embed R y
using int-embed-closed
by (subst Suc, simp)

also have ... = int-embed R x ⊗ (int-embed R 1 ⊕ int-embed R y)
using int-embed-closed by (subst r-distr , simp-all add:int-embed-one)

also have ... = int-embed R x ⊗ int-embed R (1+int y)
by (subst int-embed-add, simp)

also have ... = int-embed R x ⊗ int-embed R (Suc y)
by simp

finally show ?case by simp
qed

lemma (in ring) int-embed-mult:
int-embed R (x∗y) = int-embed R x ⊗R int-embed R y

proof (cases y ≥ 0 )
case True
then obtain y ′ where y-def : y = int y ′

using nonneg-int-cases by auto
have int-embed R (x ∗ y) = int-embed R (x ∗ int y ′)

unfolding y-def by simp
also have ... = int-embed R x ⊗ int-embed R y ′

by (subst int-embed-mult-aux, simp)
also have ... = int-embed R x ⊗ int-embed R y

unfolding y-def by simp
finally show ?thesis by simp

next
case False
then obtain y ′ where y-def : y = − int y ′

by (meson nle-le nonpos-int-cases)
have int-embed R (x ∗ y) = int-embed R (−(x ∗ int y ′))

unfolding y-def by simp
also have ... = 	 (int-embed R (x ∗ int y ′))

by (subst int-embed-inv, simp)
also have ... = 	 (int-embed R x ⊗ int-embed R y ′)

by (subst int-embed-mult-aux, simp)
also have ... = int-embed R x ⊗ 	 int-embed R y ′
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using int-embed-closed by algebra
also have ... = int-embed R x ⊗ int-embed R (−y ′)

by (subst int-embed-inv, simp)
also have ... = int-embed R x ⊗ int-embed R y

unfolding y-def by simp
finally show ?thesis by simp

qed

lemma (in ring) int-embed-ring-hom:
ring-hom-ring int-ring R (int-embed R)

proof (rule ring-hom-ringI )
show ring int-ring using int.ring-axioms by simp
show ring R using ring-axioms by simp
show int-embed R x ∈ carrier R if x ∈ carrier Z for x

using int-embed-closed by simp
show int-embed R (x⊗Zy) = int-embed R x ⊗ int-embed R y

if x ∈ carrier Z y ∈ carrier Z for x y
using int-embed-mult by simp

show int-embed R (x⊕Zy) = int-embed R x ⊕ int-embed R y
if x ∈ carrier Z y ∈ carrier Z for x y
using int-embed-add by simp

show int-embed R 1Z = 1
by (simp add:int-embed-one)

qed

abbreviation char-subring where
char-subring R ≡ int-embed R ‘ UNIV

definition char where
char R = card (char-subring R)

This is a non-standard definition for the characteristic of a ring.
Commonly [4, Definition 1.43] it is defined to be the smallest
natural number n such that n-times repeated addition of any
number is zero. If no such number exists then it is defined to be
0. In the case of rings with unit elements — not that the locale
Ring.ring requires unit elements — the above definition can be
simplified to the number of times the unit elements needs to be
repeatedly added to reach 0.
The following three lemmas imply that the definition of the char-
acteristic here coincides with the latter definition.
lemma (in ring) char-bound:

assumes x > 0
assumes int-embed R (int x) = 0
shows char R ≤ x char R > 0

proof −
have char-subring R ⊆ int-embed R ‘ ({0 ..<int x})
proof (rule image-subsetI )
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fix y :: int
assume y ∈ UNIV
define u where u = y div (int x)
define v where v = y mod (int x)
have int x > 0 using assms by simp
hence y-exp: y = u ∗ int x + v v ≥ 0 v < int x

unfolding u-def v-def by simp-all
have int-embed R y = int-embed R v

using int-embed-closed unfolding y-exp
by (simp add:int-embed-mult int-embed-add assms(2 ))

also have ... ∈ int-embed R ‘ ({0 ..<int x})
using y-exp(2 ,3 ) by simp

finally show int-embed R y ∈ int-embed R ‘ {0 ..<int x}
by simp

qed
hence a:char-subring R = int-embed R ‘ {0 ..<int x}

by auto
hence char R = card (int-embed R ‘ ({0 ..<int x}))

unfolding char-def a by simp
also have ... ≤ card {0 ..<int x}

by (intro card-image-le, simp)
also have ... = x by simp
finally show char R ≤ x by simp
have 1 = card {int-embed R 0} by simp
also have ... ≤ card (int-embed R ‘ {0 ..<int x})

using assms(1 ) by (intro card-mono finite-imageI , simp-all)
also have ... = char R

unfolding char-def a by simp
finally show char R > 0 by simp

qed

lemma (in ring) embed-char-eq-0 :
int-embed R (int (char R)) = 0

proof (cases finite (char-subring R))
case True
interpret h: ring-hom-ring int-ring R (int-embed R)

using int-embed-ring-hom by simp

define A where A = {0 ..int (char R)}
have card (int-embed R ‘ A) ≤ card (char-subring R)

by (intro card-mono[OF True] image-subsetI , simp)
also have ... = char R

unfolding char-def by simp
also have ... < card A

unfolding A-def by simp
finally have card (int-embed R ‘ A) < card A by simp
hence ¬inj-on (int-embed R) A

using pigeonhole by simp
then obtain x y where xy:
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x ∈ A y ∈ A x 6= y int-embed R x = int-embed R y
unfolding inj-on-def by auto

define v where v = nat (max x y − min x y)
have a:int-embed R v = 0

using xy int-embed-closed
by (cases x < y, simp-all add:int-embed-diff v-def )

moreover have v > 0
using xy by (cases x < y, simp-all add:v-def )

ultimately have char R ≤ v using char-bound by simp
moreover have v ≤ char R

using xy v-def A-def by (cases x < y, simp-all)
ultimately have char R = v by simp
then show ?thesis using a by simp

next
case False
hence char R = 0

unfolding char-def by simp
then show ?thesis by (simp add:int-embed-zero)

qed

lemma (in ring) embed-char-eq-0-iff :
fixes n :: int
shows int-embed R n = 0 ←→ char R dvd n

proof (cases char R > 0 )
case True
define r where r = n mod char R
define s where s = n div char R
have rs: r < char R r ≥ 0 n = r + s ∗ char R

using True by (simp-all add:r-def s-def )

have int-embed R n = int-embed R r
using int-embed-closed unfolding rs(3 )
by (simp add: int-embed-add int-embed-mult embed-char-eq-0 )

moreover have nat r < char R using rs by simp
hence int-embed R (nat r) 6= 0 ∨ nat r = 0

using True char-bound not-less by blast
hence int-embed R r 6= 0 ∨ r = 0

using rs by simp

ultimately have int-embed R n = 0 ←→ r = 0
using int-embed-zero by auto

also have r = 0 ←→ char R dvd n
using r-def by auto

finally show ?thesis by simp
next

case False
hence char R = 0 by simp
hence a:x > 0 =⇒ int-embed R (int x) 6= 0 for x
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using char-bound by auto

have c:int-embed R (abs x) 6= 0 ←→ int-embed R x 6= 0 for x
using int-embed-closed
by (cases x > 0 , simp, simp add:int-embed-inv)

have int-embed R x 6= 0 if b:x 6= 0 for x
proof −

have nat (abs x) > 0 using b by simp
hence int-embed R (nat (abs x)) 6= 0

using a by blast
hence int-embed R (abs x) 6= 0 by simp
thus ?thesis using c by simp

qed
hence int-embed R n = 0 ←→ n = 0

using int-embed-zero by auto
also have n = 0 ←→ char R dvd n using False by simp
finally show ?thesis by simp

qed

This result can be found in [4, Theorem 1.44].
lemma (in domain) characteristic-is-prime:

assumes char R > 0
shows prime (char R)

proof (rule ccontr)
have ¬(char R = 1 )

using embed-char-eq-0 int-embed-one by auto
hence ¬(char R dvd 1 ) using assms(1 ) by simp
moreover assume ¬(prime (char R))
hence ¬(irreducible (char R))

using irreducible-imp-prime-elem-gcd prime-elem-nat-iff by blast
ultimately obtain p q where pq-def : p ∗ q = char R p > 1 q > 1

using assms
unfolding Factorial-Ring.irreducible-def by auto

have int-embed R p ⊗ int-embed R q = 0
using embed-char-eq-0 pq-def
by (subst int-embed-mult[symmetric]) (metis of-nat-mult)

hence int-embed R p = 0 ∨ int-embed R q = 0
using integral int-embed-closed by simp

hence p∗q ≤ p ∨ p∗q ≤ q
using char-bound pq-def by auto

thus False
using pq-def (2 ,3 ) by simp

qed

lemma (in ring) char-ring-is-subring:
subring (char-subring R) R

proof −
have subring (int-embed R ‘ carrier int-ring) R
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by (intro ring.carrier-is-subring int.ring-axioms
ring-hom-ring.img-is-subring[OF int-embed-ring-hom])

thus ?thesis by simp
qed

lemma (in cring) char-ring-is-subcring:
subcring (char-subring R) R
using subcringI ′[OF char-ring-is-subring] by auto

lemma (in domain) char-ring-is-subdomain:
subdomain (char-subring R) R
using subdomainI ′[OF char-ring-is-subring] by auto

lemma image-set-eqI :
assumes

∧
x. x ∈ A =⇒ f x ∈ B

assumes
∧

x. x ∈ B =⇒ g x ∈ A ∧ f (g x) = x
shows f ‘ A = B
using assms by force

This is the binomial expansion theorem for commutative rings.
lemma (in cring) binomial-expansion:

fixes n :: nat
assumes [simp]: x ∈ carrier R y ∈ carrier R
shows (x ⊕ y) [^] n =
(
⊕

k ∈ {..n}. int-embed R (n choose k) ⊗ x [^] k ⊗ y [^] (n−k))
proof −

define A where A = (λk. {A. A ⊆ {..<n} ∧ card A = k})

have fin-A: finite (A i) for i
unfolding A-def by simp

have disj-A: pairwise (λi j. disjnt (A i) (A j)) {..n}
unfolding pairwise-def disjnt-def A-def by auto

have card-A: B ∈ A i =⇒ card B = i if i ∈ {..n} for i B
unfolding A-def by simp

have card-A2 : card (A i) = (n choose i) if i ∈ {..n} for i
unfolding A-def using n-subsets[where A={..<n}] by simp

have card-bound: card A ≤ n
if A ⊆ {..<n} for n A
by (metis card-lessThan finite-lessThan card-mono that)

have card-insert: card (insert n A) = card A + 1
if A ⊆ {..<(n::nat)} for n A
using finite-subset that by (subst card-insert-disjoint, auto)

have embed-distr : [m] · y = int-embed R (int m) ⊗ y
if y ∈ carrier R for m y
unfolding int-embed-def add-pow-def using that
by (simp add:add-pow-def [symmetric] int-pow-int add-pow-ldistr)
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have (x ⊕ y) [^] n =
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A))
proof (induction n)

case 0
then show ?case by simp

next
case (Suc n)
have s1 :

insert n ‘ Pow {..<n} = {A. A ⊆ {..<n+1} ∧ n ∈ A}
by (intro image-set-eqI [where g=λx. x ∩ {..<n}], auto)

have s2 :
Pow {..<n} = {A. A ⊆ {..<n+1} ∧ n /∈ A}
using lessThan-Suc by auto

have (x ⊕ y) [^] Suc n = (x ⊕ y) [^] n ⊗ (x ⊕ y) by simp
also have ... =
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A)) ⊗
(x ⊕ y)
by (subst Suc, simp)

also have ... =
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A)) ⊗ x ⊕
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A)) ⊗ y
by (subst r-distr , auto)

also have ... =
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A) ⊗ x) ⊕
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A) ⊗ y)
by (simp add:finsum-ldistr)

also have ... =
(
⊕

A ∈ Pow {..<n}. x [^] (card A+1 ) ⊗ y [^] (n−card A)) ⊕
(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n−card A+1 ))
using m-assoc m-comm
by (intro arg-cong2 [where f=(⊕)] finsum-cong ′, auto)

also have ... =
(
⊕

A ∈ Pow {..<n}. x [^] (card (insert n A))
⊗ y [^] (n+1−card (insert n A))) ⊕

(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n+1−card A))
using finite-subset card-bound card-insert Suc-diff-le
by (intro arg-cong2 [where f=(⊕)] finsum-cong ′, simp-all)

also have ... =
(
⊕

A ∈ insert n ‘ Pow {..<n}. x [^] (card A)
⊗ y [^] (n+1−card A)) ⊕

(
⊕

A ∈ Pow {..<n}. x [^] (card A) ⊗ y [^] (n+1−card A))
by (subst finsum-reindex, auto simp add:inj-on-def )

also have ... =
(
⊕

A ∈ {A. A ⊆ {..<n+1} ∧ n ∈ A}.
x [^] (card A) ⊗ y [^] (n+1−card A)) ⊕

(
⊕

A ∈ {A. A ⊆ {..<n+1} ∧ n /∈ A}.
x [^] (card A) ⊗ y [^] (n+1−card A))

by (intro arg-cong2 [where f=(⊕)] finsum-cong ′ s1 s2 , simp-all)
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also have ... = (
⊕

A ∈
{A. A ⊆ {..<n+1} ∧ n ∈ A} ∪ {A. A ⊆ {..<n+1} ∧ n /∈ A}.

x [^] (card A) ⊗ y [^] (n+1−card A))
by (subst finsum-Un-disjoint, auto)

also have ... =
(
⊕

A ∈ Pow {..<n+1}. x [^] (card A) ⊗ y [^] (n+1−card A))
by (intro finsum-cong ′, auto)

finally show ?case by simp
qed
also have ... =
(
⊕

A ∈ (
⋃

(A ‘ {..n})). x [^] (card A) ⊗ y [^] (n−card A))
using card-bound by (intro finsum-cong ′, auto simp add:A-def )

also have ... =
(
⊕

k ∈ {..n}. (
⊕

A ∈ A k. x [^] (card A) ⊗ y [^] (n−card A)))
using fin-A disj-A by (subst add.finprod-UN-disjoint, auto)

also have ... = (
⊕

k ∈ {..n}. (
⊕

A ∈ A k. x [^] k ⊗ y [^] (n−k)))
using card-A by (intro finsum-cong ′, auto)

also have ... =
(
⊕

k ∈ {..n}. int-embed R (card (A k)) ⊗ x [^] k ⊗ y [^] (n−k))
using int-embed-closed
by (subst add.finprod-const, simp-all add:embed-distr m-assoc)

also have ... =
(
⊕

k ∈ {..n}. int-embed R (n choose k) ⊗ x [^] k ⊗ y [^] (n−k))
using int-embed-closed card-A2 by (intro finsum-cong ′, simp-all)

finally show ?thesis by simp
qed

lemma bin-prime-factor :
assumes prime p
assumes k > 0 k < p
shows p dvd (p choose k)

proof −
have p dvd fact p

using assms(1 ) prime-dvd-fact-iff by auto
hence p dvd fact k ∗ fact (p − k) ∗ (p choose k)

using binomial-fact-lemma assms by simp
hence p dvd fact k ∨ p dvd fact (p−k) ∨ p dvd (p choose k)

by (simp add: assms(1 ) prime-dvd-mult-eq-nat)
thus p dvd (p choose k)

using assms(1 ,2 ,3 ) prime-dvd-fact-iff by auto
qed

theorem (in domain) freshmans-dream:
assumes char R > 0
assumes [simp]: x ∈ carrier R y ∈ carrier R
shows (x ⊕ y) [^] (char R) = x [^] char R ⊕ y [^] char R
(is ?lhs = ?rhs)

proof −
have c:prime (char R)
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using assms(1 ) characteristic-is-prime by auto
have a:int-embed R (char R choose i) = 0

if i ∈ {..char R} − {0 , char R} for i
proof −

have i > 0 i < char R using that by auto
hence char R dvd char R choose i

using c bin-prime-factor by simp
thus ?thesis using embed-char-eq-0-iff by simp

qed

have ?lhs = (
⊕

k ∈ {..char R}. int-embed R (char R choose k)
⊗ x [^] k ⊗ y [^] (char R−k))
using binomial-expansion[OF assms(2 ,3 )] by simp

also have ... = (
⊕

k ∈ {0 ,char R}.int-embed R (char R choose k)
⊗ x [^] k ⊗ y [^] (char R−k))
using a int-embed-closed
by (intro add.finprod-mono-neutral-cong-right, simp, simp-all)

also have ... = ?rhs
using int-embed-closed assms(1 ) by (simp add:int-embed-one a-comm)

finally show ?thesis by simp
qed

The following theorem is somtimes called Freshman’s dream for
obvious reasons, it can be found in Lidl and Niederreiter [4, The-
orem 1.46].
lemma (in domain) freshmans-dream-ext:

fixes m
assumes char R > 0
assumes [simp]: x ∈ carrier R y ∈ carrier R
defines n ≡ char R^m
shows (x ⊕ y) [^] n = x [^] n ⊕ y [^] n
(is ?lhs = ?rhs)

unfolding n-def
proof (induction m)

case 0
then show ?case by simp

next
case (Suc m)
have (x ⊕ y) [^] (char R^(m+1 )) =
(x ⊕ y) [^] (char R^m ∗ char R)
by (simp add:mult.commute)

also have ... = ((x ⊕ y) [^] (char R^m)) [^] char R
using nat-pow-pow by simp

also have ... = (x [^] (char R^m) ⊕ y [^] (char R^m)) [^] char R
by (subst Suc, simp)

also have ... =
(x [^] (char R^m)) [^] char R ⊕ (y [^] (char R^m)) [^] char R
by (subst freshmans-dream[OF assms(1 ), symmetric], simp-all)

also have ... =
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x [^] (char R^m ∗ char R) ⊕ y [^] (char R^m ∗ char R)
by (simp add:nat-pow-pow)

also have ... = x [^] (char R^Suc m) ⊕ y [^] (char R^Suc m)
by (simp add:mult.commute)

finally show ?case by simp
qed

The following is a generalized version of the Frobenius homo-
morphism. The classic version of the theorem is the case where
k = 1.
theorem (in domain) frobenius-hom:

assumes char R > 0
assumes m = char R ^ k
shows ring-hom-cring R R (λx. x [^] m)

proof −
have a:(x ⊗ y) [^] m = x [^] m ⊗ y [^] m

if b:x ∈ carrier R y ∈ carrier R for x y
using b nat-pow-distrib by simp

have b:(x ⊕ y) [^] m = x [^] m ⊕ y [^] m
if b:x ∈ carrier R y ∈ carrier R for x y
unfolding assms(2 ) freshmans-dream-ext[OF assms(1 ) b]
by simp

have ring-hom-ring R R (λx. x [^] m)
by (intro ring-hom-ringI a b ring-axioms, simp-all)

thus ?thesis
using RingHom.ring-hom-cringI is-cring by blast

qed

lemma (in domain) char-ring-is-subfield:
assumes char R > 0
shows subfield (char-subring R) R

proof −
interpret d:domain R (| carrier := char-subring R |)

using char-ring-is-subdomain subdomain-is-domain by simp

have finite (char-subring R)
using char-def assms by (metis card-ge-0-finite)

hence Units (R (| carrier := char-subring R |))
= char-subring R − {0}
using d.finite-domain-units by simp

thus ?thesis
using subfieldI [OF char-ring-is-subcring] by simp

qed

lemma card-lists-length-eq ′:
fixes A :: ′a set
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shows card {xs. set xs ⊆ A ∧ length xs = n} = card A ^ n
proof (cases finite A)

case True
then show ?thesis using card-lists-length-eq by auto

next
case False
hence inf-A: infinite A by simp
show ?thesis
proof (cases n = 0 )

case True
hence card {xs. set xs ⊆ A ∧ length xs = n} = card {([] :: ′a list)}

by (intro arg-cong[where f=card], auto simp add:set-eq-iff )
also have ... = 1 by simp
also have ... = card A^n using True inf-A by simp
finally show ?thesis by simp

next
case False
hence inj (replicate n)

by (meson inj-onI replicate-eq-replicate)
hence inj-on (replicate n) A using inj-on-subset

by (metis subset-UNIV )
hence infinite (replicate n ‘ A)

using inf-A finite-image-iff by auto
moreover have

replicate n ‘ A ⊆ {xs. set xs ⊆ A ∧ length xs = n}
by (intro image-subsetI , auto)

ultimately have infinite {xs. set xs ⊆ A ∧ length xs = n}
using infinite-super by auto

hence card {xs. set xs ⊆ A ∧ length xs = n} = 0 by simp
then show ?thesis using inf-A False by simp

qed
qed

lemma (in ring) card-span:
assumes subfield K R
assumes independent K w
assumes set w ⊆ carrier R
shows card (Span K w) = card K^(length w)

proof −
define A where A = {x. set x ⊆ K ∧ length x = length w}
define f where f = (λx. combine x w)

have x ∈ f ‘ A if a:x ∈ Span K w for x
proof −

obtain y where y ∈ A x = f y
unfolding A-def f-def
using unique-decomposition[OF assms(1 ,2 ) a] by auto

thus ?thesis by simp
qed
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moreover have f x ∈ Span K w if a: x ∈ A for x
using Span-eq-combine-set[OF assms(1 ,3 )] a
unfolding A-def f-def by auto

ultimately have b:Span K w = f ‘ A by auto

have False if a: x ∈ A y ∈ A f x = f y x 6= y for x y
proof −

have f x ∈ Span K w using b a by simp
thus False

using a unique-decomposition[OF assms(1 ,2 )]
unfolding f-def A-def by blast

qed
hence f-inj: inj-on f A

unfolding inj-on-def by auto

have card (Span K w) = card (f ‘ A) using b by simp
also have ... = card A by (intro card-image f-inj)
also have ... = card K^length w

unfolding A-def by (intro card-lists-length-eq ′)
finally show ?thesis by simp

qed

lemma (in ring) finite-carr-imp-char-ge-0 :
assumes finite (carrier R)
shows char R > 0

proof −
have char-subring R ⊆ carrier R

using int-embed-closed by auto
hence finite (char-subring R)

using finite-subset assms by auto
hence card (char-subring R) > 0

using card-range-greater-zero by simp
thus char R > 0

unfolding char-def by simp
qed

lemma (in ring) char-consistent:
assumes subring H R
shows char (R (| carrier := H |)) = char R

proof −
show ?thesis

using int-embed-consistent[OF assms(1 )]
unfolding char-def by simp

qed

lemma (in ring-hom-ring) char-consistent:
assumes inj-on h (carrier R)
shows char R = char S

proof −
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have a:h (int-embed R (int n)) = int-embed S (int n) for n
using R.int-embed-range[OF R.carrier-is-subring]
using R.int-embed-range[OF R.carrier-is-subring]
using S .int-embed-one R.int-embed-one
using S .int-embed-zero R.int-embed-zero
using S .int-embed-add R.int-embed-add
by (induction n, simp-all)

have b:h (int-embed R (−(int n))) = int-embed S (−(int n)) for n
using R.int-embed-range[OF R.carrier-is-subring]
using S .int-embed-range[OF S .carrier-is-subring] a
by (simp add:R.int-embed-inv S .int-embed-inv)

have c:h (int-embed R n) = int-embed S n for n
proof (cases n ≥ 0 )

case True
then obtain m where n = int m

using nonneg-int-cases by auto
then show ?thesis

by (simp add:a)
next

case False
hence n ≤ 0 by simp
then obtain m where n = −int m

using nonpos-int-cases by auto
then show ?thesis by (simp add:b)

qed

have char S = card (h ‘ char-subring R)
unfolding char-def image-image c by simp

also have ... = card (char-subring R)
using R.int-embed-range[OF R.carrier-is-subring]
by (intro card-image inj-on-subset[OF assms(1 )]) auto

also have ... = char R unfolding char-def by simp
finally show ?thesis

by simp
qed

definition char-iso :: - ⇒ int set ⇒ ′a
where char-iso R x = the-elem (int-embed R ‘ x)

The function char-iso R denotes the isomorphism between ZFact
(int (char R)) and the characteristic subring.
lemma (in ring) char-iso: char-iso R ∈

ring-iso (ZFact (char R)) (R(|carrier := char-subring R|))
proof −

interpret h: ring-hom-ring int-ring R int-embed R
using int-embed-ring-hom by simp
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have a-kernel Z R (int-embed R) = {x. int-embed R x = 0}
unfolding a-kernel-def kernel-def by simp

also have ... = {x. char R dvd x}
using embed-char-eq-0-iff by simp

also have ... = PIdlZ (int (char R))
unfolding cgenideal-def by auto

also have ... = IdlZ {int (char R)}
using int.cgenideal-eq-genideal by simp

finally have a:a-kernel Z R (int-embed R) = IdlZ {int (char R)}
by simp

show ?thesis
unfolding char-iso-def ZFact-def a[symmetric]
by (intro h.FactRing-iso-set-aux)

qed

The size of a finite field must be a prime power. This can be
found in Ireland and Rosen [3, Proposition 7.1.3].
theorem (in finite-field) finite-field-order :
∃n. order R = char R ^ n ∧ n > 0

proof −
have a:char R > 0

using finite-carr-imp-char-ge-0 [OF finite-carrier ]
by simp

let ?CR = char-subring R

obtain v where v-def : set v = carrier R
using finite-carrier finite-list by auto

hence b:set v ⊆ carrier R by auto

have carrier R = set v using v-def by simp
also have ... ⊆ Span ?CR v

using Span-base-incl[OF char-ring-is-subfield[OF a] b] by simp
finally have carrier R ⊆ Span ?CR v by simp
moreover have Span ?CR v ⊆ carrier R

using int-embed-closed v-def by (intro Span-in-carrier , auto)
ultimately have Span-v: Span ?CR v = carrier R by simp

obtain w where w-def :
set w ⊆ carrier R
independent ?CR w
Span ?CR v = Span ?CR w
using b filter-base[OF char-ring-is-subfield[OF a]]
by metis

have Span-w: Span ?CR w = carrier R
using w-def (3 ) Span-v by simp

hence order R = card (Span ?CR w) by (simp add:order-def )
also have ... = card ?CR^length w
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by (intro card-span char-ring-is-subfield[OF a] w-def (1 ,2 ))
finally have c:

order R = char R^(length w)
by (simp add:char-def )

have length w > 0
using finite-field-min-order c by auto

thus ?thesis using c by auto
qed

end

4 Formal Derivatives
theory Formal-Polynomial-Derivatives

imports HOL−Algebra.Polynomial-Divisibility Ring-Characteristic
begin

definition pderiv (‹pderivı›) where
pderivR x = ring.normalize R (

map (λi. int-embed R i ⊗R ring.coeff R x i) (rev [1 ..<length x]))

context domain
begin

lemma coeff-range:
assumes subring K R
assumes f ∈ carrier (K [X ])
shows coeff f i ∈ K

proof −
have coeff f i ∈ set f ∪ {0}

using coeff-img(3 ) by auto
also have ... ⊆ K ∪ {0}

using assms(2 ) univ-poly-carrier polynomial-incl by blast
also have ... ⊆ K

using subringE [OF assms(1 )] by simp
finally show ?thesis by simp

qed

lemma pderiv-carr :
assumes subring K R
assumes f ∈ carrier (K [X ])
shows pderiv f ∈ carrier (K [X ])

proof −
have int-embed R i ⊗ coeff f i ∈ K for i

using coeff-range[OF assms] int-embed-range[OF assms(1 )]
using subringE [OF assms(1 )] by simp

hence polynomial K (pderiv f )
unfolding pderiv-def by (intro normalize-gives-polynomial, auto)

thus ?thesis
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using univ-poly-carrier by auto
qed

lemma pderiv-coeff :
assumes subring K R
assumes f ∈ carrier (K [X ])
shows coeff (pderiv f ) k = int-embed R (Suc k) ⊗ coeff f (Suc k)
(is ?lhs = ?rhs)

proof (cases k + 1 < length f )
case True
define j where j = length f − k − 2
define d where

d = map (λi. int-embed R i ⊗ coeff f i) (rev [1 ..<length f ])

have a: j+1 < length f
using True unfolding j-def by simp

hence b: j < length [1 ..<length f ]
by simp

have c: k < length d
unfolding d-def using True by simp

have d: degree d − k = j
unfolding d-def j-def by simp

have e: rev [Suc 0 ..<length f ] ! j = length f − 1 − j
using b by (subst rev-nth, auto)

have f : length f − j − 1 = k+1
unfolding j-def using True by simp

have coeff (pderiv f ) k = coeff (normalize d) k
unfolding pderiv-def d-def by simp

also have ... = coeff d k
using normalize-coeff by simp

also have ... = d ! j
using c d by (subst coeff-nth, auto)

also have
... = int-embed R (length f − j − 1 ) ⊗ coeff f (length f − j − 1 )
using b e unfolding d-def by simp

also have ... = ?rhs
using f by simp

finally show ?thesis by simp
next

case False
hence Suc k ≥ length f

by simp
hence a:coeff f (Suc k) = 0

using coeff-img by blast
have b:coeff (pderiv f ) k = 0

unfolding pderiv-def normalize-coeff [symmetric] using False
by (intro coeff-length, simp)

show ?thesis
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using int-embed-range[OF carrier-is-subring] by (simp add:a b)
qed

lemma pderiv-const:
assumes degree x = 0
shows pderiv x = 0K [X ]

proof (cases length x = 0 )
case True
then show ?thesis by (simp add:univ-poly-zero pderiv-def )

next
case False
hence length x = 1 using assms by linarith
then obtain y where x = [y] by (cases x, auto)
then show ?thesis by (simp add:univ-poly-zero pderiv-def )

qed

lemma pderiv-var :
shows pderiv X = 1K [X ]
unfolding var-def pderiv-def
by (simp add:univ-poly-one int-embed-def )

lemma pderiv-zero:
shows pderiv 0K [X ] = 0K [X ]
unfolding pderiv-def univ-poly-zero by simp

lemma pderiv-add:
assumes subring K R
assumes [simp]: f ∈ carrier (K [X ]) g ∈ carrier (K [X ])
shows pderiv (f ⊕K [X ] g) = pderiv f ⊕K [X ] pderiv g
(is ?lhs = ?rhs)

proof −
interpret p: ring (K [X ])

using univ-poly-is-ring[OF assms(1 )] by simp

let ?n = (λi. int-embed R i)

have a[simp]:?n k ∈ carrier R for k
using int-embed-range[OF carrier-is-subring] by auto

have b[simp]:coeff f k ∈ carrier R if f ∈ carrier (K [X ]) for k f
using coeff-range[OF assms(1 )] that
using subringE(1 )[OF assms(1 )] by auto

have coeff ?lhs i = coeff ?rhs i for i
proof −

have coeff ?lhs i = ?n (i+1 ) ⊗ coeff (f ⊕K [X ] g) (i+1 )
by (simp add: pderiv-coeff [OF assms(1 )])

also have ... = ?n (i+1 ) ⊗ (coeff f (i+1 ) ⊕ coeff g (i+1 ))
by (subst coeff-add[OF assms], simp)
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also have ... = ?n (i+1 ) ⊗ coeff f (i+1 )
⊕ int-embed R (i+1 ) ⊗ coeff g (i+1 )
by (subst r-distr , simp-all)

also have ... = coeff (pderiv f ) i ⊕ coeff (pderiv g) i
by (simp add: pderiv-coeff [OF assms(1 )])

also have ... = coeff (pderiv f ⊕K [X ] pderiv g) i
using pderiv-carr [OF assms(1 )]
by (subst coeff-add[OF assms(1 )], auto)

finally show ?thesis by simp
qed
hence coeff ?lhs = coeff ?rhs by auto
thus ?lhs = ?rhs

using pderiv-carr [OF assms(1 )]
by (subst coeff-iff-polynomial-cond[where K=K ])
(simp-all add:univ-poly-carrier)+

qed

lemma pderiv-inv:
assumes subring K R
assumes [simp]: f ∈ carrier (K [X ])
shows pderiv (	K [X ] f ) = 	K [X ] pderiv f (is ?lhs = ?rhs)

proof −
interpret p: cring (K [X ])

using univ-poly-is-cring[OF assms(1 )] by simp

have pderiv (	K [X ] f ) = pderiv (	K [X ] f ) ⊕K [X ] 0K [X ]
using pderiv-carr [OF assms(1 )]
by (subst p.r-zero, simp-all)

also have ... = pderiv (	K [X ] f ) ⊕K [X ] (pderiv f 	K [X ] pderiv f )
using pderiv-carr [OF assms(1 )] by simp

also have ... = pderiv (	K [X ] f ) ⊕K [X ] pderiv f 	K [X ] pderiv f
using pderiv-carr [OF assms(1 )]
unfolding a-minus-def by (simp add:p.a-assoc)

also have ... = pderiv (	K [X ] f ⊕K [X ] f ) 	K [X ] pderiv f
by (subst pderiv-add[OF assms(1 )], simp-all)

also have ... = pderiv 0K [X ] 	K [X ] pderiv f
by (subst p.l-neg, simp-all)

also have ... = 0K [X ] 	K [X ] pderiv f
by (subst pderiv-zero, simp)

also have ... = 	K [X ] pderiv f
unfolding a-minus-def using pderiv-carr [OF assms(1 )]
by (subst p.l-zero, simp-all)

finally show pderiv (	K [X ] f ) = 	K [X ] pderiv f
by simp

qed

lemma coeff-mult:
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assumes subring K R
assumes f ∈ carrier (K [X ]) g ∈ carrier (K [X ])
shows coeff (f ⊗K [X ] g) i =

(
⊕

k ∈ {..i}. (coeff f ) k ⊗ (coeff g) (i − k))
proof −

have a:set f ⊆ carrier R
using assms(1 ,2 ) univ-poly-carrier
using subringE(1 )[OF assms(1 )] polynomial-incl by blast

have b:set g ⊆ carrier R
using assms(1 ,3 ) univ-poly-carrier
using subringE(1 )[OF assms(1 )] polynomial-incl by blast

show ?thesis
unfolding univ-poly-mult poly-mult-coeff [OF a b] by simp

qed

lemma pderiv-mult:
assumes subring K R
assumes [simp]: f ∈ carrier (K [X ]) g ∈ carrier (K [X ])
shows pderiv (f ⊗K [X ] g) =

pderiv f ⊗K [X ] g ⊕K [X ] f ⊗K [X ] pderiv g
(is ?lhs = ?rhs)

proof −
interpret p: cring (K [X ])

using univ-poly-is-cring[OF assms(1 )] by simp

let ?n = (λi. int-embed R i)

have a[simp]:?n k ∈ carrier R for k
using int-embed-range[OF carrier-is-subring] by auto

have b[simp]:coeff f k ∈ carrier R if f ∈ carrier (K [X ]) for k f
using coeff-range[OF assms(1 )]
using subringE(1 )[OF assms(1 )] that by auto

have coeff ?lhs i = coeff ?rhs i for i
proof −

have coeff ?lhs i = ?n (i+1 ) ⊗ coeff (f ⊗K [X ] g) (i+1 )
using assms(2 ,3 ) by (simp add: pderiv-coeff [OF assms(1 )])

also have ... = ?n (i+1 ) ⊗
(
⊕

k ∈ {..i+1}. coeff f k ⊗ (coeff g (i + 1 − k)))
by (subst coeff-mult[OF assms], simp)

also have ... =
(
⊕

k ∈ {..i+1}. ?n (i+1 ) ⊗ (coeff f k ⊗ coeff g (i + 1 − k)))
by (intro finsum-rdistr , simp-all add:Pi-def )

also have ... =
(
⊕

k ∈ {..i+1}. ?n k ⊗ (coeff f k ⊗ coeff g (i + 1 − k)) ⊕
?n (i+1−k) ⊗ (coeff f k ⊗ coeff g (i + 1 − k)))
using int-embed-add[symmetric] of-nat-diff
by (intro finsum-cong ′)
(simp-all add:l-distr [symmetric] of-nat-diff )

59



also have ... =
(
⊕

k ∈ {..i+1}. ?n k ⊗ coeff f k ⊗ coeff g (i + 1 − k) ⊕
coeff f k ⊗ (?n (i+1−k) ⊗ coeff g (i + 1 − k)))
using Pi-def a b m-assoc m-comm
by (intro finsum-cong ′ arg-cong2 [where f=(⊕)], simp-all)

also have ... =
(
⊕

k ∈ {..i+1}. ?n k ⊗ coeff f k ⊗ coeff g (i+1−k)) ⊕
(
⊕

k ∈ {..i+1}. coeff f k ⊗ (?n (i+1−k) ⊗ coeff g (i+1−k)))
by (subst finsum-addf [symmetric], simp-all add:Pi-def )

also have ... =
(
⊕

k∈insert 0 {1 ..i+1}. ?n k ⊗ coeff f k ⊗ coeff g (i+1−k)) ⊕
(
⊕

k∈insert (i+1 ) {..i}. coeff f k ⊗ (?n (i+1−k) ⊗ coeff g
(i+1−k)))

using subringE(1 )[OF assms(1 )]
by (intro arg-cong2 [where f=(⊕)] finsum-cong ′)
(auto simp:set-eq-iff )

also have ... =
(
⊕

k ∈ {1 ..i+1}. ?n k ⊗ coeff f k ⊗ coeff g (i+1−k)) ⊕
(
⊕

k ∈ {..i}. coeff f k ⊗ (?n (i+1−k) ⊗ coeff g (i+1−k)))
by (subst (1 2 ) finsum-insert, auto simp add:int-embed-zero)

also have ... =
(
⊕

k ∈ Suc ‘ {..i}. ?n k ⊗ coeff f (k) ⊗ coeff g (i+1−k)) ⊕
(
⊕

k ∈ {..i}. coeff f k ⊗ (?n (i+1−k) ⊗ coeff g (i+1−k)))
by (intro arg-cong2 [where f=(⊕)] finsum-cong ′)
(simp-all add:Pi-def atMost-atLeast0 )

also have ... =
(
⊕

k ∈ {..i}. ?n (k+1 ) ⊗ coeff f (k+1 ) ⊗ coeff g (i−k)) ⊕
(
⊕

k ∈ {..i}. coeff f k ⊗ (?n (i+1−k) ⊗ coeff g (i+1−k)))
by (subst finsum-reindex, auto)

also have ... =
(
⊕

k ∈ {..i}. coeff (pderiv f ) k ⊗ coeff g (i−k)) ⊕
(
⊕

k ∈ {..i}. coeff f k ⊗ coeff (pderiv g) (i−k))
using Suc-diff-le
by (subst (1 2 ) pderiv-coeff [OF assms(1 )])
(auto intro!: finsum-cong ′)

also have ... =
coeff (pderiv f ⊗K [X ] g) i ⊕ coeff (f ⊗K [X ] pderiv g) i
using pderiv-carr [OF assms(1 )]
by (subst (1 2 ) coeff-mult[OF assms(1 )], auto)

also have ... = coeff ?rhs i
using pderiv-carr [OF assms(1 )]
by (subst coeff-add[OF assms(1 )], auto)

finally show ?thesis by simp
qed

hence coeff ?lhs = coeff ?rhs by auto
thus ?lhs = ?rhs

using pderiv-carr [OF assms(1 )]
by (subst coeff-iff-polynomial-cond[where K=K ])
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(simp-all add:univ-poly-carrier)
qed

lemma pderiv-pow:
assumes n > (0 :: nat)
assumes subring K R
assumes [simp]: f ∈ carrier (K [X ])
shows pderiv (f [^]K [X ] n) =

int-embed (K [X ]) n ⊗K [X ] f [^]K [X ] (n−1 ) ⊗K [X ] pderiv f
(is ?lhs = ?rhs)

proof −
interpret p: cring (K [X ])

using univ-poly-is-cring[OF assms(2 )] by simp

let ?n = λn. int-embed (K [X ]) n

have [simp]: ?n i ∈ carrier (K [X ]) for i
using p.int-embed-range[OF p.carrier-is-subring] by simp

obtain m where n-def : n = Suc m using assms(1 ) lessE by blast
have pderiv (f [^]K [X ] (m+1 )) =

?n (m+1 ) ⊗K [X ] f [^]K [X ] m ⊗K [X ] pderiv f
proof (induction m)

case 0
then show ?case

using pderiv-carr [OF assms(2 )] assms(3 )
using p.int-embed-one by simp

next
case (Suc m)
have pderiv (f [^]K [X ] (Suc m + 1 )) =

pderiv (f [^]K [X ] (m+1 ) ⊗K [X ] f )
by simp

also have ... =
pderiv (f [^]K [X ] (m+1 )) ⊗K [X ] f ⊕K [X ]
f [^]K [X ] (m+1 ) ⊗K [X ] pderiv f
using assms(3 ) by (subst pderiv-mult[OF assms(2 )], auto)

also have ... =
(?n (m+1 ) ⊗K [X ] f [^]K [X ] m ⊗K [X ] pderiv f ) ⊗K [X ] f
⊕K [X ] f [^]K [X ] (m+1 ) ⊗K [X ] pderiv f
by (subst Suc(1 ), simp)

also have
... = ?n (m+1 ) ⊗K [X ] (f [^]K [X ] (m+1 ) ⊗K [X ] pderiv f )
⊕K [X ] 1K [X ] ⊗K [X ] (f [^]K [X ] (m+1 ) ⊗K [X ] pderiv f )
using assms(3 ) pderiv-carr [OF assms(2 )]
apply (intro arg-cong2 [where f=(⊕K [X ])])

apply (simp add:p.m-assoc)
apply (simp add:p.m-comm)
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by simp
also have
... = (?n (m+1 ) ⊕K [X ] 1K [X ]) ⊗K [X ]
(f [^]K [X ] (m+1 ) ⊗K [X ] pderiv f )
using assms(3 ) pderiv-carr [OF assms(2 )]
by (subst p.l-distr [symmetric], simp-all)

also have ... =
(1K [X ] ⊕K [X ] ?n (m+1 )) ⊗K [X ]
(f [^]K [X ] (m+1 ) ⊗K [X ] pderiv f )
using assms(3 ) pderiv-carr [OF assms(2 )]
by (subst p.a-comm, simp-all)

also have ... = ?n (1+ Suc m)
⊗K [X ] f [^]K [X ] (Suc m) ⊗K [X ] pderiv f
using assms(3 ) pderiv-carr [OF assms(2 )] of-nat-add
apply (subst (2 ) of-nat-add, subst p.int-embed-add)
by (simp add:p.m-assoc p.int-embed-one)

finally show ?case by simp
qed
thus ?thesis using n-def by auto

qed

lemma pderiv-var-pow:
assumes n > (0 ::nat)
assumes subring K R
shows pderiv (X [^]K [X ] n) =

int-embed (K [X ]) n ⊗K [X ] X [^]K [X ] (n−1 )
proof −

interpret p: cring (K [X ])
using univ-poly-is-cring[OF assms(2 )] by simp

have [simp]: int-embed (K [X ]) i ∈ carrier (K [X ]) for i
using p.int-embed-range[OF p.carrier-is-subring] by simp

show ?thesis
using var-closed[OF assms(2 )]
using pderiv-var [where K=K ] pderiv-carr [OF assms(2 )]
by (subst pderiv-pow[OF assms(1 ,2 )], simp-all)

qed

lemma int-embed-consistent-with-poly-of-const:
assumes subring K R
shows int-embed (K [X ]) m = poly-of-const (int-embed R m)

proof −
define K ′ where K ′ = R (| carrier := K |)
interpret p: cring (K [X ])

using univ-poly-is-cring[OF assms] by simp
interpret d: domain K ′

unfolding K ′-def
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using assms(1 ) subdomainI ′ subdomain-is-domain by simp
interpret h: ring-hom-ring K ′ K [X ] poly-of-const

unfolding K ′-def
using canonical-embedding-ring-hom[OF assms(1 )] by simp

define n where n=nat (abs m)

have a1 : int-embed (K [X ]) (int n) = poly-of-const (int-embed K ′ n)
proof (induction n)

case 0
then show ?case by (simp add:d.int-embed-zero p.int-embed-zero)

next
case (Suc n)
then show ?case

using d.int-embed-closed d.int-embed-add d.int-embed-one
by (simp add:p.int-embed-add p.int-embed-one)

qed
also have ... = poly-of-const (int-embed R n)

unfolding K ′-def using int-embed-consistent[OF assms] by simp
finally have a:

int-embed (K [X ]) (int n) = poly-of-const (int-embed R (int n))
by simp

have int-embed (K [X ]) (−(int n)) =
poly-of-const (int-embed K ′ (− (int n)))

using d.int-embed-closed a1 by (simp add: p.int-embed-inv d.int-embed-inv)
also have ... = poly-of-const (int-embed R (− (int n)))

unfolding K ′-def using int-embed-consistent[OF assms] by simp
finally have b:

int-embed (K [X ]) (−int n) = poly-of-const (int-embed R (−int n))
by simp

show ?thesis
using a b n-def by (cases m ≥ 0 , simp, simp)

qed

end

end

5 Factorization into Monic Polynomials
theory Monic-Polynomial-Factorization
imports

Finite-Fields-Factorization-Ext
Formal-Polynomial-Derivatives

begin

hide-const Factorial-Ring.multiplicity
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hide-const Factorial-Ring.irreducible

lemma (in domain) finprod-mult-of :
assumes finite A
assumes

∧
x. x ∈ A =⇒ f x ∈ carrier (mult-of R)

shows finprod R f A = finprod (mult-of R) f A
using assms by (induction A rule:finite-induct, auto)

lemma (in ring) finite-poly:
assumes subring K R
assumes finite K
shows

finite {f . f ∈ carrier (K [X ]) ∧ degree f = n} (is finite ?A)
finite {f . f ∈ carrier (K [X ]) ∧ degree f ≤ n} (is finite ?B)

proof −
have finite {f . set f ⊆ K ∧ length f ≤ n + 1} (is finite ?C )

using assms(2 ) finite-lists-length-le by auto
moreover have ?B ⊆ ?C

by (intro subsetI )
(auto simp:univ-poly-carrier [symmetric] polynomial-def )

ultimately show a: finite ?B
using finite-subset by auto

moreover have ?A ⊆ ?B
by (intro subsetI , simp)

ultimately show finite ?A
using finite-subset by auto

qed

definition pmult :: - ⇒ ′a list ⇒ ′a list ⇒ nat (‹pmultı›)
where pmultR d p = multiplicity (mult-of (poly-ring R)) d p

definition monic-poly :: - ⇒ ′a list ⇒ bool
where monic-poly R f =
(f 6= [] ∧ lead-coeff f = 1R ∧ f ∈ carrier (poly-ring R))

definition monic-irreducible-poly where
monic-irreducible-poly R f =
(monic-poly R f ∧ pirreducibleR (carrier R) f )

abbreviation m-i-p ≡ monic-irreducible-poly

locale polynomial-ring = field +
fixes K
assumes polynomial-ring-assms: subfield K R

begin

lemma K-subring: subring K R
using polynomial-ring-assms subfieldE(1 ) by auto
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abbreviation P where P ≡ K [X ]

This locale is used to specialize the following lemmas for a fixed
coefficient ring. It can be introduced in a context as an intepreta-
tion to be able to use the following specialized lemmas. Because
it is not (and should not) introduced as a sublocale it has no
lasting effect for the field locale itself.
lemmas

poly-mult-lead-coeff = poly-mult-lead-coeff [OF K-subring]
and degree-add-distinct = degree-add-distinct[OF K-subring]
and coeff-add = coeff-add[OF K-subring]
and var-closed = var-closed[OF K-subring]
and degree-prod = degree-prod[OF - K-subring]
and degree-pow = degree-pow[OF K-subring]
and pirreducible-degree = pirreducible-degree[OF polynomial-ring-assms]
and degree-one-imp-pirreducible =

degree-one-imp-pirreducible[OF polynomial-ring-assms]
and var-pow-closed = var-pow-closed[OF K-subring]
and var-pow-carr = var-pow-carr [OF K-subring]
and univ-poly-a-inv-degree = univ-poly-a-inv-degree[OF K-subring]
and var-pow-degree = var-pow-degree[OF K-subring]
and pdivides-zero = pdivides-zero[OF K-subring]
and pdivides-imp-degree-le = pdivides-imp-degree-le[OF K-subring]
and var-carr = var-carr [OF K-subring]
and rupture-eq-0-iff = rupture-eq-0-iff [OF polynomial-ring-assms]
and rupture-is-field-iff-pirreducible =

rupture-is-field-iff-pirreducible[OF polynomial-ring-assms]
and rupture-surj-hom = rupture-surj-hom[OF K-subring]
and canonical-embedding-ring-hom =

canonical-embedding-ring-hom[OF K-subring]
and rupture-surj-norm-is-hom = rupture-surj-norm-is-hom[OF K-subring]
and rupture-surj-as-eval = rupture-surj-as-eval[OF K-subring]
and eval-cring-hom = eval-cring-hom[OF K-subring]
and coeff-range = coeff-range[OF K-subring]
and finite-poly = finite-poly[OF K-subring]
and int-embed-consistent-with-poly-of-const =

int-embed-consistent-with-poly-of-const[OF K-subring]
and pderiv-var-pow = pderiv-var-pow[OF - K-subring]
and pderiv-add = pderiv-add[OF K-subring]
and pderiv-inv = pderiv-inv[OF K-subring]
and pderiv-mult = pderiv-mult[OF K-subring]
and pderiv-pow = pderiv-pow[OF - K-subring]
and pderiv-carr = pderiv-carr [OF K-subring]

sublocale p:principal-domain poly-ring R
by (simp add: carrier-is-subfield univ-poly-is-principal)

end

65



context field
begin

interpretation polynomial-ring R carrier R
using carrier-is-subfield field-axioms
by (simp add:polynomial-ring-def polynomial-ring-axioms-def )

lemma pdivides-mult-r :
assumes a ∈ carrier (mult-of P)
assumes b ∈ carrier (mult-of P)
assumes c ∈ carrier (mult-of P)
shows a ⊗P c pdivides b ⊗P c ←→ a pdivides b
(is ?lhs ←→ ?rhs)

proof −
have a:b ⊗P c ∈ carrier P − {0P}

using assms p.mult-of .m-closed by force
have b:a ⊗P c ∈ carrier P

using assms by simp
have c:b ∈ carrier P − {0P}

using assms p.mult-of .m-closed by force
have d:a ∈ carrier P using assms by simp
have ?lhs ←→ a ⊗P c dividesmult-of P b ⊗P c

unfolding pdivides-def using p.divides-imp-divides-mult a b
by (meson divides-mult-imp-divides)

also have ... ←→ a dividesmult-of P b
using p.mult-of .divides-mult-r [OF assms] by simp

also have ... ←→ ?rhs
unfolding pdivides-def using p.divides-imp-divides-mult c d
by (meson divides-mult-imp-divides)

finally show ?thesis by simp
qed

lemma lead-coeff-carr :
assumes x ∈ carrier (mult-of P)
shows lead-coeff x ∈ carrier R − {0}

proof (cases x)
case Nil
then show ?thesis using assms by (simp add:univ-poly-zero)

next
case (Cons a list)
hence a: polynomial (carrier R) (a # list)

using assms univ-poly-carrier by auto
have lead-coeff x = a

using Cons by simp
also have a ∈ carrier R − {0}

using lead-coeff-not-zero a by simp
finally show ?thesis by simp

qed
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lemma lead-coeff-poly-of-const:
assumes r 6= 0
shows lead-coeff (poly-of-const r) = r
using assms
by (simp add:poly-of-const-def )

lemma lead-coeff-mult:
assumes f ∈ carrier (mult-of P)
assumes g ∈ carrier (mult-of P)
shows lead-coeff (f ⊗P g) = lead-coeff f ⊗ lead-coeff g
unfolding univ-poly-mult using assms
using univ-poly-carrier [where R=R and K=carrier R]
by (subst poly-mult-lead-coeff ) (simp-all add:univ-poly-zero)

lemma monic-poly-carr :
assumes monic-poly R f
shows f ∈ carrier P
using assms unfolding monic-poly-def by simp

lemma monic-poly-add-distinct:
assumes monic-poly R f
assumes g ∈ carrier P degree g < degree f
shows monic-poly R (f ⊕P g)

proof (cases g 6= 0P)
case True
define n where n = degree f
have f ∈ carrier P − {0P}

using assms(1 ) univ-poly-zero
unfolding monic-poly-def by auto

hence degree (f ⊕P g) = max (degree f ) (degree g)
using assms(2 ,3 ) True
by (subst degree-add-distinct, simp-all)

also have ... = degree f
using assms(3 ) by simp

finally have b: degree (f ⊕P g) = n
unfolding n-def by simp

moreover have n > 0
using assms(3 ) unfolding n-def by simp

ultimately have degree (f ⊕P g) 6= degree ([])
by simp

hence a:f ⊕P g 6= [] by auto

have degree [] = 0 by simp
also have ... < degree f

using assms(3 ) by simp
finally have degree f 6= degree [] by simp
hence c: f 6= [] by auto

have d: length g ≤ n
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using assms(3 ) unfolding n-def by simp

have lead-coeff (f ⊕P g) = coeff (f ⊕P g) n
using a b by (cases f ⊕P g, auto)

also have ... = coeff f n ⊕ coeff g n
using monic-poly-carr assms
by (subst coeff-add, auto)

also have ... = lead-coeff f ⊕ coeff g n
using c unfolding n-def by (cases f , auto)

also have ... = 1 ⊕ 0
using assms(1 ) unfolding monic-poly-def
unfolding subst coeff-length[OF d] by simp

also have ... = 1
by simp

finally have lead-coeff (f ⊕P g) = 1 by simp
moreover have f ⊕P g ∈ carrier P

using monic-poly-carr assms by simp
ultimately show ?thesis

using a unfolding monic-poly-def by auto
next

case False
then show ?thesis using assms monic-poly-carr by simp

qed

lemma monic-poly-one: monic-poly R 1P
proof −

have 1P ∈ carrier P
by simp

thus ?thesis
by (simp add:univ-poly-one monic-poly-def )

qed

lemma monic-poly-var : monic-poly R X
proof −

have X ∈ carrier P
using var-closed by simp

thus ?thesis
by (simp add:var-def monic-poly-def )

qed

lemma monic-poly-carr-2 :
assumes monic-poly R f
shows f ∈ carrier (mult-of P)
using assms unfolding monic-poly-def
by (simp add:univ-poly-zero)

lemma monic-poly-mult:
assumes monic-poly R f
assumes monic-poly R g
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shows monic-poly R (f ⊗P g)
proof −

have lead-coeff (f ⊗P g) = lead-coeff f ⊗R lead-coeff g
using assms monic-poly-carr-2
by (subst lead-coeff-mult) auto

also have ... = 1
using assms unfolding monic-poly-def by simp

finally have lead-coeff (f ⊗P g) = 1R by simp
moreover have (f ⊗P g) ∈ carrier (mult-of P)

using monic-poly-carr-2 assms by blast
ultimately show ?thesis

by (simp add:monic-poly-def univ-poly-zero)
qed

lemma monic-poly-pow:
assumes monic-poly R f
shows monic-poly R (f [^]P (n::nat))
using assms monic-poly-one monic-poly-mult
by (induction n, auto)

lemma monic-poly-prod:
assumes finite A
assumes

∧
x. x ∈ A =⇒ monic-poly R (f x)

shows monic-poly R (finprod P f A)
using assms

proof (induction A rule:finite-induct)
case empty
then show ?case by (simp add:monic-poly-one)

next
case (insert x F)
have a: f ∈ F → carrier P

using insert monic-poly-carr by simp
have b: f x ∈ carrier P

using insert monic-poly-carr by simp
have monic-poly R (f x ⊗P finprod P f F)

using insert by (intro monic-poly-mult) auto
thus ?case

using insert a b by (subst p.finprod-insert, auto)
qed

lemma monic-poly-not-assoc:
assumes monic-poly R f
assumes monic-poly R g
assumes f ∼(mult-of P) g
shows f = g

proof −
obtain u where u-def : f = g ⊗P u u ∈ Units (mult-of P)

using p.mult-of .associatedD2 assms monic-poly-carr-2
by blast
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hence u ∈ Units P by simp
then obtain v where v-def : u = [v] v 6= 0R v ∈ carrier R

using univ-poly-carrier-units by auto

have 1 = lead-coeff f
using assms(1 ) by (simp add:monic-poly-def )

also have ... = lead-coeff (g ⊗P u)
by (simp add:u-def )

also have ... = lead-coeff g ⊗ lead-coeff u
using assms(2 ) monic-poly-carr-2 v-def u-def (2 )
by (subst lead-coeff-mult, auto simp add:univ-poly-zero)

also have ... = lead-coeff g ⊗ v
using v-def by simp

also have ... = v
using assms(2 ) v-def (3 ) by (simp add:monic-poly-def )

finally have 1 = v by simp
hence u = 1P

using v-def by (simp add:univ-poly-one)
thus f = g

using u-def assms monic-poly-carr by simp
qed

lemma monic-poly-span:
assumes x ∈ carrier (mult-of P) irreducible (mult-of P) x
shows ∃ y. monic-irreducible-poly R y ∧ x ∼(mult-of P) y

proof −
define z where z = poly-of-const (inv (lead-coeff x))
define y where y = x ⊗P z

have x-carr : x ∈ carrier (mult-of P) using assms by simp

hence lx-ne-0 : lead-coeff x 6= 0
and lx-unit: lead-coeff x ∈ Units R
using lead-coeff-carr [OF x-carr ] by (auto simp add:field-Units)

have lx-inv-ne-0 : inv (lead-coeff x) 6= 0
using lx-unit
by (metis Units-closed Units-r-inv r-null zero-not-one)

have lx-inv-carr : inv (lead-coeff x) ∈ carrier R
using lx-unit by simp

have z ∈ carrier P
using lx-inv-carr poly-of-const-over-carrier
unfolding z-def by auto

moreover have z 6= 0P
using lx-inv-ne-0
by (simp add:z-def poly-of-const-def univ-poly-zero)

ultimately have z-carr : z ∈ carrier (mult-of P) by simp
have z-unit: z ∈ Units (mult-of P)
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using lx-inv-ne-0 lx-inv-carr
by (simp add:univ-poly-carrier-units z-def poly-of-const-def )

have y-exp: y = x ⊗(mult-of P) z
by (simp add:y-def )

hence y-carr : y ∈ carrier (mult-of P)
using x-carr z-carr p.mult-of .m-closed by simp

have irreducible (mult-of P) y
unfolding y-def using assms z-unit z-carr
by (intro p.mult-of .irreducible-prod-rI , auto)

moreover have lead-coeff y = 1R
unfolding y-def using x-carr z-carr lx-inv-ne-0 lx-unit
by (simp add: lead-coeff-mult z-def lead-coeff-poly-of-const)

hence monic-poly R y
using y-carr unfolding monic-poly-def
by (simp add:univ-poly-zero)

ultimately have monic-irreducible-poly R y
using p.irreducible-mult-imp-irreducible y-carr
by (simp add:monic-irreducible-poly-def ring-irreducible-def )

moreover have y ∼(mult-of P) x
by (intro p.mult-of .associatedI2 [OF z-unit] y-def x-carr)

hence x ∼(mult-of P) y
using x-carr y-carr by (simp add:p.mult-of .associated-sym)

ultimately show ?thesis by auto
qed

lemma monic-polys-are-canonical-irreducibles:
canonical-irreducibles (mult-of P) {d. monic-irreducible-poly R d}
(is canonical-irreducibles (mult-of P) ?S)

proof −
have sp-1 :

?S ⊆ {x ∈ carrier (mult-of P). irreducible (mult-of P) x}
unfolding monic-irreducible-poly-def ring-irreducible-def
using monic-poly-carr
by (intro subsetI , simp add: p.irreducible-imp-irreducible-mult)

have sp-2 : x = y
if x ∈ ?S y ∈ ?S x ∼(mult-of P) y for x y

using that monic-poly-not-assoc
by (simp add:monic-irreducible-poly-def )

have sp-3 : ∃ y ∈ ?S . x ∼(mult-of P) y
if x ∈ carrier (mult-of P) irreducible (mult-of P) x for x
using that monic-poly-span by simp

thus ?thesis using sp-1 sp-2 sp-3
unfolding canonical-irreducibles-def by simp

qed
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lemma
assumes monic-poly R a
shows factor-monic-poly:

a = (
⊗

Pd∈{d. monic-irreducible-poly R d ∧ pmult d a > 0}.
d [^]P pmult d a) (is ?lhs = ?rhs)

and factor-monic-poly-fin:
finite {d. monic-irreducible-poly R d ∧ pmult d a > 0}

proof −
let ?S = {d. monic-irreducible-poly R d}
let ?T = {d. monic-irreducible-poly R d ∧ pmult d a > 0}
let ?mip = monic-irreducible-poly R

have sp-4 : a ∈ carrier (mult-of P)
using assms monic-poly-carr-2
unfolding monic-irreducible-poly-def by simp

have b-1 : x ∈ carrier (mult-of P) if ?mip x for x
using that monic-poly-carr-2
unfolding monic-irreducible-poly-def by simp

have b-2 :irreducible (mult-of P) x if ?mip x for x
using that
unfolding monic-irreducible-poly-def ring-irreducible-def
by (simp add: monic-poly-carr p.irreducible-imp-irreducible-mult)

have b-3 :x ∈ carrier P if ?mip x for x
using that monic-poly-carr
unfolding monic-irreducible-poly-def
by simp

have a-carr : a ∈ carrier P − {0P}
using sp-4 by simp

have ?T = {d. ?mip d ∧ multiplicity (mult-of P) d a > 0}
by (simp add:pmult-def )

also have ... = {d ∈ ?S . multiplicity (mult-of P) d a > 0}
using p.mult-of .multiplicity-gt-0-iff [OF b-1 b-2 sp-4 ]
by (intro order-antisym subsetI , auto)

finally have t:?T = {d ∈ ?S . multiplicity (mult-of P) d a > 0}
by simp

show fin-T : finite ?T
unfolding t
using p.mult-of .split-factors(1 )
[OF monic-polys-are-canonical-irreducibles]

using sp-4 by auto

have a:x [^]P (n::nat) ∈ carrier (mult-of P) if ?mip x for x n
proof −

have monic-poly R (x [^]P n)
using that monic-poly-pow
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unfolding monic-irreducible-poly-def by auto
thus ?thesis

using monic-poly-carr-2 by simp
qed

have ?lhs ∼(mult-of P)
finprod (mult-of P)
(λd. d [^](mult-of P) (multiplicity (mult-of P) d a)) ?T

unfolding t
by (intro p.mult-of .split-factors(2 )

[OF monic-polys-are-canonical-irreducibles sp-4 ])
also have ... =

finprod (mult-of P) (λd. d [^]P (multiplicity (mult-of P) d a)) ?T
by (simp add:nat-pow-mult-of )

also have ... = ?rhs
using fin-T a
by (subst p.finprod-mult-of , simp-all add:pmult-def )

finally have ?lhs ∼(mult-of P) ?rhs by simp
moreover have monic-poly R ?rhs

using fin-T
by (intro monic-poly-prod monic-poly-pow)
(auto simp:monic-irreducible-poly-def )

ultimately show ?lhs = ?rhs
using monic-poly-not-assoc assms monic-irreducible-poly-def
by blast

qed

lemma degree-monic-poly ′:
assumes monic-poly R f
shows

sum ′ (λd. pmult d f ∗ degree d) {d. monic-irreducible-poly R d} =
degree f

proof −
let ?mip = monic-irreducible-poly R

have b: d ∈ carrier P − {0P} if ?mip d for d
using that monic-poly-carr-2
unfolding monic-irreducible-poly-def by simp

have a: d [^]P n ∈ carrier P − {0P} if ?mip d for d and n :: nat
using b that monic-poly-pow
unfolding monic-irreducible-poly-def
by (simp add: p.pow-non-zero)

have degree f =
degree (

⊗
Pd∈{d. ?mip d ∧ pmult d f > 0}. d [^]P pmult d f )

using factor-monic-poly[OF assms(1 )] by simp
also have ... =
(
∑

i∈{d. ?mip d ∧ 0 < pmult d f }. degree (i [^]P pmult i f ))
using a assms(1 )
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by (subst degree-prod[OF factor-monic-poly-fin])
(simp-all add:Pi-def )

also have ... =
(
∑

i∈{d. ?mip d ∧ 0 < pmult d f }. degree i ∗ pmult i f )
using b degree-pow by (intro sum.cong, auto)

also have ... =
(
∑

d∈{d. ?mip d ∧ 0 < pmult d f }. pmult d f ∗ degree d)
by (simp add:mult.commute)

also have ... =
sum ′ (λd. pmult d f ∗ degree d) {d. ?mip d ∧ 0 < pmult d f }
using sum.eq-sum factor-monic-poly-fin[OF assms(1 )] by simp

also have ... = sum ′ (λd. pmult d f ∗ degree d) {d. ?mip d}
by (intro sum.mono-neutral-cong-left ′ subsetI , auto)

finally show ?thesis by simp
qed

lemma monic-poly-min-degree:
assumes monic-irreducible-poly R f
shows degree f ≥ 1
using assms unfolding monic-irreducible-poly-def monic-poly-def
by (intro pirreducible-degree) auto

lemma degree-one-monic-poly:
monic-irreducible-poly R f ∧ degree f = 1 ←→
(∃ x ∈ carrier R. f = [1, 	x])

proof
assume monic-irreducible-poly R f ∧ degree f = 1
hence a:monic-poly R f length f = 2

unfolding monic-irreducible-poly-def by auto
then obtain u v where f-def : f = [u,v]

by (cases f , simp, cases tl f , auto)

have u = 1 using a unfolding monic-poly-def f-def by simp
moreover have v ∈ carrier R

using a unfolding monic-poly-def univ-poly-carrier [symmetric]
unfolding polynomial-def f-def by simp

ultimately have f = [1, 	(	v)] (	v) ∈ carrier R
using a-inv-closed f-def by auto

thus (∃ x ∈ carrier R. f = [1R, 	Rx]) by auto
next

assume (∃ x ∈ carrier R. f = [1, 	x])
then obtain x where f-def : f = [1,	x] x ∈ carrier R by auto
have a:degree f = 1 using f-def (2 ) unfolding f-def by simp
have b:f ∈ carrier P

using f-def (2 ) unfolding univ-poly-carrier [symmetric]
unfolding f-def polynomial-def by simp

have c: pirreducible (carrier R) f
by (intro degree-one-imp-pirreducible a b)

have d: lead-coeff f = 1 unfolding f-def by simp
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show monic-irreducible-poly R f ∧ degree f = 1
using a b c d
unfolding monic-irreducible-poly-def monic-poly-def
by auto

qed

lemma multiplicity-ge-iff :
assumes monic-irreducible-poly R d
assumes f ∈ carrier P − {0P}
shows pmult d f ≥ k ←→ d [^]P k pdivides f

proof −
have a:f ∈ carrier (mult-of P)

using assms(2 ) by simp
have b: d ∈ carrier (mult-of P)

using assms(1 ) monic-poly-carr-2
unfolding monic-irreducible-poly-def by simp

have c: irreducible (mult-of P) d
using assms(1 ) monic-poly-carr-2
using p.irreducible-imp-irreducible-mult
unfolding monic-irreducible-poly-def
unfolding ring-irreducible-def monic-poly-def
by simp

have d: d [^]P k ∈ carrier P using b by simp

have pmult d f ≥ k ←→ d [^](mult-of P) k divides(mult-of P) f
unfolding pmult-def
by (intro p.mult-of .multiplicity-ge-iff a b c)

also have ... ←→ d [^]P k pdividesR f
using p.divides-imp-divides-mult[OF d assms(2 )]
using divides-mult-imp-divides
unfolding pdivides-def nat-pow-mult-of
by auto

finally show ?thesis by simp
qed

lemma multiplicity-ge-1-iff-pdivides:
assumes monic-irreducible-poly R d f ∈ carrier P − {0P}
shows pmult d f ≥ 1 ←→ d pdivides f

proof −
have d ∈ carrier P

using assms(1 ) monic-poly-carr
unfolding monic-irreducible-poly-def
by simp

thus ?thesis
using multiplicity-ge-iff [OF assms, where k=1 ]
by simp

qed

lemma divides-monic-poly:
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assumes monic-poly R f monic-poly R g
assumes

∧
d. monic-irreducible-poly R d

=⇒ pmult d f ≤ pmult d g
shows f pdivides g

proof −
have a:f ∈ carrier (mult-of P) g ∈ carrier (mult-of P)

using monic-poly-carr-2 assms(1 ,2 ) by auto

have f divides(mult-of P) g
using assms(3 ) unfolding pmult-def
by (intro p.mult-of .divides-iff-mult-mono

[OF a monic-polys-are-canonical-irreducibles]) simp
thus ?thesis

unfolding pdivides-def using divides-mult-imp-divides by simp
qed

end

lemma monic-poly-hom:
assumes monic-poly R f
assumes h ∈ ring-iso R S domain R domain S
shows monic-poly S (map h f )

proof −
have c: h ∈ ring-hom R S

using assms(2 ) ring-iso-def by auto
have e: f ∈ carrier (poly-ring R)

using assms(1 ) unfolding monic-poly-def by simp

have a:f 6= []
using assms(1 ) unfolding monic-poly-def by simp

hence map h f 6= [] by simp
moreover have lead-coeff f = 1R

using assms(1 ) unfolding monic-poly-def by simp
hence lead-coeff (map h f ) = 1S

using ring-hom-one[OF c] by (simp add: hd-map[OF a])
ultimately show ?thesis

using carrier-hom[OF e assms(2−4 )]
unfolding monic-poly-def by simp

qed

lemma monic-irreducible-poly-hom:
assumes monic-irreducible-poly R f
assumes h ∈ ring-iso R S domain R domain S
shows monic-irreducible-poly S (map h f )

proof −
have a:

pirreducibleR (carrier R) f
f ∈ carrier (poly-ring R)
monic-poly R f

76



using assms(1 )
unfolding monic-poly-def monic-irreducible-poly-def
by auto

have pirreducibleS (carrier S) (map h f )
using a pirreducible-hom assms by auto

moreover have monic-poly S (map h f )
using a monic-poly-hom[OF - assms(2 ,3 ,4 )] by simp

ultimately show ?thesis
unfolding monic-irreducible-poly-def by simp

qed

end

6 Counting Irreducible Polynomials
6.1 The polynomial Xn −X

theory Card-Irreducible-Polynomials-Aux
imports

HOL−Algebra.Multiplicative-Group
Formal-Polynomial-Derivatives
Monic-Polynomial-Factorization

begin

lemma (in domain)
assumes subfield K R
assumes f ∈ carrier (K [X ]) degree f > 0
shows embed-inj: inj-on (rupture-surj K f ◦ poly-of-const) K

and rupture-order : order (Rupt K f ) = card K^degree f
and rupture-char : char (Rupt K f ) = char R

proof −
interpret p: principal-domain K [X ]

using univ-poly-is-principal[OF assms(1 )] by simp

interpret I : ideal PIdlK [X ] f K [X ]

using p.cgenideal-ideal[OF assms(2 )] by simp

interpret d: ring Rupt K f
unfolding rupture-def using I .quotient-is-ring by simp

have e: subring K R
using assms(1 ) subfieldE(1 ) by auto

interpret h:
ring-hom-ring R (| carrier := K |)

Rupt K f rupture-surj K f ◦ poly-of-const
using rupture-surj-norm-is-hom[OF e assms(2 )]
using ring-hom-ringI2 subring-is-ring d.ring-axioms e
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by blast

have field (R (|carrier := K |))
using assms(1 ) subfield-iff (2 ) by simp

hence subfield K (R(|carrier := K |))
using ring.subfield-iff [OF subring-is-ring[OF e]] by simp

hence b: subfield (rupture-surj K f ‘ poly-of-const ‘ K ) (Rupt K f )
unfolding image-image comp-def [symmetric]
by (intro h.img-is-subfield rupture-one-not-zero assms, simp)

have inj-on poly-of-const K
using poly-of-const-inj inj-on-subset by auto

moreover have
poly-of-const ‘ K ⊆ ((λq. q pmod f ) ‘ carrier (K [X ]))

proof (rule image-subsetI )
fix x assume x ∈ K
hence f :

poly-of-const x ∈ carrier (K [X ])
degree (poly-of-const x) = 0
using poly-of-const-over-subfield[OF assms(1 )] by auto

moreover
have degree (poly-of-const x) < degree f

using f (2 ) assms by simp
hence poly-of-const x pmod f = poly-of-const x

by (intro pmod-const(2 )[OF assms(1 )] f assms(2 ), simp)
ultimately show

poly-of-const x ∈ ((λq. q pmod f ) ‘ carrier (K [X ]))
by force

qed
hence inj-on (rupture-surj K f ) (poly-of-const ‘ K )

using rupture-surj-inj-on[OF assms(1 ,2 )] inj-on-subset by blast
ultimately show d: inj-on (rupture-surj K f ◦ poly-of-const) K

using comp-inj-on by auto

have a: d.dimension (degree f ) (rupture-surj K f ‘ poly-of-const ‘ K )
(carrier (Rupt K f ))
using rupture-dimension[OF assms(1−3 )] by auto

then obtain base where base-def :
set base ⊆ carrier (Rupt K f )
d.independent (rupture-surj K f ‘ poly-of-const ‘ K ) base
length base = degree f
d.Span (rupture-surj K f ‘ poly-of-const ‘ K ) base =

carrier (Rupt K f )
using d.exists-base[OF b a] by auto

have order (Rupt K f ) =
card (d.Span (rupture-surj K f ‘ poly-of-const ‘ K ) base)
unfolding order-def base-def (4 ) by simp

also have ... =
card (rupture-surj K f ‘ poly-of-const ‘ K ) ^ length base
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using d.card-span[OF b base-def (2 ,1 )] by simp
also have ...
= card ((rupture-surj K f ◦ poly-of-const) ‘ K ) ^ degree f
using base-def (3 ) image-image unfolding comp-def by metis

also have ... = card K^degree f
by (subst card-image[OF d], simp)

finally show order (Rupt K f ) = card K^degree f by simp

have char (Rupt K f ) = char (R (| carrier := K |))
using h.char-consistent d by simp

also have ... = char R
using char-consistent[OF subfieldE(1 )[OF assms(1 )]] by simp

finally show char (Rupt K f ) = char R by simp
qed

definition gauss-poly where
gauss-poly K n = XK [^]poly-ring K (n::nat) 	poly-ring K XK

context field
begin

interpretation polynomial-ring R carrier R
unfolding polynomial-ring-def polynomial-ring-axioms-def
using field-axioms carrier-is-subfield by simp

The following lemma can be found in Ireland and Rosen [3, §7.1,
Lemma 2].
lemma gauss-poly-div-gauss-poly-iff-1 :

fixes l m :: nat
assumes l > 0
shows (X [^]P l 	P 1P) pdivides (X [^]P m 	P 1P) ←→ l dvd m
(is ?lhs ←→ ?rhs)

proof −
define q where q = m div l
define r where r = m mod l
have m-def : m = q ∗ l + r and r-range: r < l

using assms by (auto simp add:q-def r-def )

have pow-sum-carr :(
⊕

Pi∈{..<q}. (X [^]P l)[^]P i) ∈ carrier P
using var-pow-closed
by (intro p.finsum-closed, simp)

have (X [^]P (q∗l) 	P 1P) = ((X [^]P l)[^]P q) 	P 1P
using var-closed
by (subst p.nat-pow-pow, simp-all add:algebra-simps)

also have ... =
(X [^]P l 	P 1P) ⊗P (

⊕
Pi∈{..<q}. (X [^]P l) [^]P i)

using var-pow-closed
by (subst p.geom[symmetric], simp-all)
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finally have pow-sum-fact: (X [^]P (q∗l) 	P 1P) =
(X [^]P l 	P 1P) ⊗P (

⊕
Pi∈{..<q}. (XR [^]P l) [^]P i)

by simp

have (X [^]P l 	P 1P) dividesP (X [^]P (q∗l) 	P 1P)
by (rule dividesI [OF pow-sum-carr pow-sum-fact])

hence c:(X [^]P l 	P 1P) dividesP X [^]P r ⊗P (X [^]P (q ∗ l)
	P 1P)

using var-pow-closed
by (intro p.divides-prod-l, auto)

have (X [^]P m 	P 1P) = X [^]P (r + q ∗ l) 	P 1P
unfolding m-def using add.commute by metis

also have ... = (X [^]P r) ⊗P (X [^]P (q∗l)) ⊕P (	P 1P)
using var-closed
by (subst p.nat-pow-mult, auto simp add:a-minus-def )

also have ... = ((X [^]P r) ⊗P (X [^]P (q∗l) ⊕P (	P 1P))
⊕P (X [^]P r)) 	P 1P
using var-pow-closed
by algebra

also have ... = (X [^]P r) ⊗P (X [^]P (q∗l) 	P 1P)
⊕P (X [^]P r) 	P 1P
by algebra

also have ... = (X [^]P r) ⊗P (X [^]P (q∗l) 	P 1P)
⊕P ((X [^]P r) 	P 1P)
unfolding a-minus-def using var-pow-closed
by (subst p.a-assoc, auto)

finally have a:(X [^]P m 	P 1P) =
(X [^]P r) ⊗P (X [^]P (q∗l) 	P 1P) ⊕P (X [^]P r 	P 1P)
(is - = ?x)
by simp

have xn-m-1-deg ′: degree (X [^]P n 	P 1P) = n
if n > 0 for n :: nat

proof −
have degree (X [^]P n 	P 1P) = degree (X [^]P n ⊕P 	P 1P)

by (simp add:a-minus-def )
also have ... = max (degree (X [^]P n)) (degree (	P 1P))

using var-pow-closed var-pow-carr var-pow-degree
using univ-poly-a-inv-degree degree-one that
by (subst degree-add-distinct, auto)

also have ... = n
using var-pow-degree degree-one univ-poly-a-inv-degree
by simp

finally show ?thesis by simp
qed

have xn-m-1-deg: degree (X [^]P n 	P 1P) = n for n :: nat
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proof (cases n > 0 )
case True
then show ?thesis using xn-m-1-deg ′ by auto

next
case False
hence n = 0 by simp
hence degree (X [^]P n 	P 1P) = degree (0P)

by (intro arg-cong[where f=degree], simp)
then show ?thesis using False by (simp add:univ-poly-zero)

qed

have b: degree (X [^]P l 	P 1P) > degree (XR [^]P r 	P 1P)
using r-range unfolding xn-m-1-deg by simp

have xn-m-1-carr : X [^]P n 	P 1P ∈ carrier P for n :: nat
unfolding a-minus-def
by (intro p.a-closed var-pow-closed, simp)

have ?lhs ←→ (X [^]P l 	P 1P) pdivides ?x
by (subst a, simp)

also have ... ←→ (X [^]P l 	P 1P) pdivides (X [^]P r 	P 1P)
unfolding pdivides-def
by (intro p.div-sum-iff c var-pow-closed

xn-m-1-carr p.a-closed p.m-closed)
also have ... ←→ r = 0
proof (cases r = 0 )

case True
have (X [^]P l 	P 1P) pdivides 0P

unfolding univ-poly-zero
by (intro pdivides-zero xn-m-1-carr)

also have ... = (X [^]P r 	P 1P)
by (simp add:a-minus-def True) algebra

finally show ?thesis using True by simp
next

case False
hence degree (X [^]P r 	P 1P) > 0 using xn-m-1-deg by simp
hence X [^]P r 	P 1P 6= [] by auto
hence ¬(X [^]P l 	P 1P) pdivides (X [^]P r 	P 1P)

using pdivides-imp-degree-le b xn-m-1-carr
by (metis le-antisym less-or-eq-imp-le nat-neq-iff )

thus ?thesis using False by simp
qed
also have ... ←→ l dvd m

unfolding m-def using r-range assms by auto
finally show ?thesis

by simp
qed

lemma gauss-poly-factor :
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assumes n > 0
shows gauss-poly R n = (X [^]P (n−1 ) 	P 1P) ⊗P X (is - = ?rhs)

proof −
have a:1 + (n − 1 ) = n

using assms by simp
have gauss-poly R n = X [^]P (1+(n−1 )) 	P X

unfolding gauss-poly-def by (subst a, simp)
also have ... = (X [^]P (n−1 )) ⊗P X 	P 1P ⊗P X

using var-closed by simp
also have ... = ?rhs

unfolding a-minus-def using var-closed l-one
by (subst p.l-distr , auto, algebra)

finally show ?thesis by simp
qed

lemma var-neq-zero: X 6= 0P
by (simp add:var-def univ-poly-zero)

lemma var-pow-eq-one-iff : X [^]P k = 1P ←→ k = (0 ::nat)
proof (cases k=0 )

case True
then show ?thesis using var-closed(1 ) by simp

next
case False
have degree (XR [^]P k) = k

using var-pow-degree by simp
also have ... 6= degree (1P) using False degree-one by simp
finally have degree (XR [^]P k) 6= degree 1P by simp
then show ?thesis by auto

qed

lemma gauss-poly-carr : gauss-poly R n ∈ carrier P
using var-closed(1 )
unfolding gauss-poly-def by simp

lemma gauss-poly-degree:
assumes n > 1
shows degree (gauss-poly R n) = n

proof −
have degree (gauss-poly R n) = max n 1

unfolding gauss-poly-def a-minus-def
using var-pow-carr var-carr degree-var
using var-pow-degree univ-poly-a-inv-degree
using assms by (subst degree-add-distinct, auto)

also have ... = n using assms by simp
finally show ?thesis by simp

qed

lemma gauss-poly-not-zero:
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assumes n > 1
shows gauss-poly R n 6= 0P

proof −
have degree (gauss-poly R n) 6= degree ( 0P)
using assms by (subst gauss-poly-degree, simp-all add:univ-poly-zero)

thus ?thesis by auto
qed

lemma gauss-poly-monic:
assumes n > 1
shows monic-poly R (gauss-poly R n)

proof −
have monic-poly R (X [^]P n)

by (intro monic-poly-pow monic-poly-var)
moreover have 	P X ∈ carrier P

using var-closed by simp
moreover have degree (	P X) < degree (X [^]P n)

using assms univ-poly-a-inv-degree var-closed
using degree-var
unfolding var-pow-degree by (simp)

ultimately show ?thesis
unfolding gauss-poly-def a-minus-def
by (intro monic-poly-add-distinct, auto)

qed

lemma geom-nat:
fixes q :: nat
fixes x :: - :: {comm-ring,monoid-mult}
shows (x−1 ) ∗ (

∑
i ∈ {..<q}. x^i) = x^q−1

by (induction q, auto simp:algebra-simps)

The following lemma can be found in Ireland and Rosen [3, §7.1,
Lemma 3].
lemma gauss-poly-div-gauss-poly-iff-2 :

fixes a :: int
fixes l m :: nat
assumes l > 0 a > 1
shows (a ^ l − 1 ) dvd (a ^ m − 1 ) ←→ l dvd m
(is ?lhs ←→ ?rhs)

proof −
define q where q = m div l
define r where r = m mod l
have m-def : m = q ∗ l + r and r-range: r < l r ≥ 0

using assms by (auto simp add:q-def r-def )

have a ^ (l ∗ q) − 1 = (a ^ l) ^ q − 1
by (simp add: power-mult)

also have ... = (a^l − 1 ) ∗ (
∑

i ∈ {..<q}. (a^l)^i)
by (subst geom-nat[symmetric], simp)
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finally have a ^ (l ∗ q) − 1 = (a^l − 1 ) ∗ (
∑

i ∈ {..<q}. (a^l)^i)
by simp

hence c:a ^ l − 1 dvd a^ r ∗ (a ^ (q ∗ l) − 1 ) by (simp add:mult.commute)

have a ^ m − 1 = a ^ (r + q ∗ l) − 1
unfolding m-def using add.commute by metis

also have ... = (a ^ r) ∗ (a ^ (q∗l)) −1
by (simp add: power-add)

also have ... = ((a ^ r) ∗ (a ^ (q∗l) −1 )) + (a ^ r) − 1
by (simp add: right-diff-distrib)

also have ... = (a ^ r) ∗ (a ^ (q∗l) − 1 ) + ((a ^ r) − 1 )
by simp

finally have a:
a ^ m − 1 = (a ^ r) ∗ (a ^ (q∗l) − 1 ) + ((a ^ r) − 1 )
(is - = ?x)
by simp

have ?lhs ←→ (a^l −1 ) dvd ?x
by (subst a, simp)

also have ... ←→ (a^l −1 ) dvd (a^r −1 )
using c dvd-add-right-iff by auto

also have ... ←→ r = 0
proof

assume a ^ l − 1 dvd a ^ r − 1
hence a ^ l − 1 ≤ a ^ r −1 ∨ r = 0

using assms r-range zdvd-not-zless by force
moreover have a ^ r < a^l using assms r-range by simp
ultimately show r= 0by simp

next
assume r = 0
thus a ^ l − 1 dvd a ^ r − 1 by simp

qed
also have ... ←→ l dvd m

using r-def by auto
finally show ?thesis by simp

qed

lemma gauss-poly-div-gauss-poly-iff :
assumes m > 0 n > 0 a > 1
shows gauss-poly R (a^n) pdividesR gauss-poly R (a^m)
←→ n dvd m (is ?lhs=?rhs)

proof −
have a:a^m > 1 using assms one-less-power by blast
hence a1 : a^m > 0 by linarith
have b:a^n > 1 using assms one-less-power by blast
hence b1 :a^n > 0 by linarith

have ?lhs ←→
(X [^]P (a^n−1 ) 	P 1P) ⊗P X pdivides
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(X [^]P (a^m−1 ) 	P 1P) ⊗P X
using gauss-poly-factor a1 b1 by simp

also have ... ←→
(X [^]P (a^n−1 ) 	P 1P) pdivides
(X [^]P (a^m−1 ) 	P 1P)
using var-closed a b var-neq-zero
by (subst pdivides-mult-r , simp-all add:var-pow-eq-one-iff )

also have ... ←→ a^n−1 dvd a^m−1
using b
by (subst gauss-poly-div-gauss-poly-iff-1 ) simp-all

also have ... ←→ int (a^n−1 ) dvd int (a^m−1 )
by (subst of-nat-dvd-iff , simp)

also have ... ←→ int a^n−1 dvd int a^m−1
using a b by (simp add:of-nat-diff )

also have ... ←→ n dvd m
using assms
by (subst gauss-poly-div-gauss-poly-iff-2 ) simp-all

finally show ?thesis by simp
qed

end

context finite-field
begin

interpretation polynomial-ring R carrier R
unfolding polynomial-ring-def polynomial-ring-axioms-def
using field-axioms carrier-is-subfield by simp

lemma div-gauss-poly-iff :
assumes n > 0
assumes monic-irreducible-poly R f
shows f pdividesR gauss-poly R (order R^n) ←→ degree f dvd n

proof −
have f-carr : f ∈ carrier P

using assms(2 ) unfolding monic-irreducible-poly-def
unfolding monic-poly-def by simp

have f-deg: degree f > 0
using assms(2 ) monic-poly-min-degree by fastforce

define K where K = RuptR (carrier R) f
have field-K : field K

using assms(2 ) unfolding K-def monic-irreducible-poly-def
unfolding monic-poly-def
by (subst rupture-is-field-iff-pirreducible) auto

have a: order K = order R^degree f
using rupture-order [OF carrier-is-subfield] f-carr f-deg
unfolding K-def order-def by simp

have char-K : char K = char R
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using rupture-char [OF carrier-is-subfield] f-carr f-deg
unfolding K-def by simp

have card (carrier K ) > 0
using a f-deg finite-field-min-order unfolding order-def by simp

hence d: finite (carrier K ) using card-ge-0-finite by auto
interpret f : finite-field K

using field-K d by (intro finite-fieldI , simp-all)
interpret fp: polynomial-ring K (carrier K )

unfolding polynomial-ring-def polynomial-ring-axioms-def
using f .field-axioms f .carrier-is-subfield by simp

define ϕ where ϕ = rupture-surj (carrier R) f
interpret h:ring-hom-ring P K ϕ

unfolding K-def ϕ-def using f-carr rupture-surj-hom by simp

have embed-inj: inj-on (ϕ ◦ poly-of-const) (carrier R)
unfolding ϕ-def
using embed-inj[OF carrier-is-subfield f-carr f-deg] by simp

interpret r :ring-hom-ring R P poly-of-const
using canonical-embedding-ring-hom by simp

obtain rn where order R = char K^rn rn > 0
unfolding char-K using finite-field-order by auto

hence ord-rn: order R ^n = char K^(rn ∗ n) using assms(1 )
by (simp add: power-mult)

interpret q:ring-hom-cring K K λx. x [^]K order R^n
using ord-rn
by (intro f .frobenius-hom f .finite-carr-imp-char-ge-0 d, simp)

have o1 : order R^degree f > 1
using f-deg finite-field-min-order one-less-power
by blast

hence o11 : order R^degree f > 0 by linarith
have o2 : order R^n > 1

using assms(1 ) finite-field-min-order one-less-power
by blast

hence o21 : order R^n > 0 by linarith
let ?g1 = gauss-poly K (order R^degree f )
let ?g2 = gauss-poly K (order R^n)

have g1-monic: monic-poly K ?g1
using f .gauss-poly-monic[OF o1 ] by simp

have c:x [^]K (order R^degree f ) = x if b:x ∈ carrier K for x
using b d order-pow-eq-self
unfolding a[symmetric]
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by (intro f .order-pow-eq-self , auto)

have k-cycle:
ϕ (poly-of-const x) [^]K (order R^n) = ϕ(poly-of-const x)
if k-cycle-1 : x ∈ carrier R for x

proof −
have ϕ (poly-of-const x) [^]K (order R^n) =
ϕ (poly-of-const (x [^]R (order R^n)))
using k-cycle-1 by (simp add: h.hom-nat-pow r .hom-nat-pow)

also have ... = ϕ (poly-of-const x)
using order-pow-eq-self ′ k-cycle-1 by simp

finally show ?thesis by simp
qed

have roots-g1 : pmultK d ?g1 ≥ 1
if roots-g1-assms: degree d = 1 monic-irreducible-poly K d for d

proof −
obtain x where x-def : x ∈ carrier K d = [1K, 	K x]

using f .degree-one-monic-poly roots-g1-assms by auto
interpret x:ring-hom-cring poly-ring K K (λp. f .eval p x)

by (intro fp.eval-cring-hom x-def )
have ring.eval K ?g1 x = 0K

unfolding gauss-poly-def a-minus-def
using fp.var-closed f .eval-var x-def c
by (simp, algebra)

hence f .is-root ?g1 x
using x-def f .gauss-poly-not-zero[OF o1 ]
unfolding f .is-root-def univ-poly-zero by simp

hence [1K, 	K x] pdividesK ?g1
using f .is-root-imp-pdivides f .gauss-poly-carr by simp

hence d pdividesK ?g1 by (simp add:x-def )
thus pmultK d ?g1 ≥ 1

using that f .gauss-poly-not-zero f .gauss-poly-carr o1
by (subst f .multiplicity-ge-1-iff-pdivides, simp-all)

qed

show ?thesis
proof

assume f :f pdividesR gauss-poly R (order R^n)
have (ϕ X) [^]K (order R^n) 	K (ϕ XR) =
ϕ (gauss-poly R (order R^n))
unfolding gauss-poly-def a-minus-def using var-closed
by (simp add: h.hom-nat-pow)

also have ... = 0K
unfolding K-def ϕ-def using f-carr gauss-poly-carr f
by (subst rupture-eq-0-iff , simp-all)

finally have (ϕ XR) [^]K (order R^n) 	K (ϕ XR) = 0K
by simp

hence g:(ϕ X) [^]K (order R^n) = (ϕ X)
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using var-closed by simp

have roots-g2 : pmultK d ?g2 ≥ 1
if roots-g2-assms: degree d = 1 monic-irreducible-poly K d for d

proof −
obtain y where y-def : y ∈ carrier K d = [1K, 	K y]

using f .degree-one-monic-poly roots-g2-assms by auto

interpret x:ring-hom-cring poly-ring K K (λp. f .eval p y)
by (intro fp.eval-cring-hom y-def )

obtain x where x-def : x ∈ carrier P y = ϕ x
using y-def unfolding ϕ-def K-def rupture-def
unfolding FactRing-def A-RCOSETS-def ′

by auto
let ?τ = λi. poly-of-const (coeff x i)
have test: ?τ i ∈ carrier P for i

by (intro r .hom-closed coeff-range x-def )
have test-2 : coeff x i ∈ carrier R for i

by (intro coeff-range x-def )

have x-coeff-carr : i ∈ set x =⇒ i ∈ carrier R for i
using x-def (1 )

by (auto simp add:univ-poly-carrier [symmetric] polynomial-def )

have a:map (ϕ ◦ poly-of-const) x ∈ carrier (poly-ring K )
using rupture-surj-norm-is-hom[OF f-carr ]
using domain-axioms f .domain-axioms embed-inj
by (intro carrier-hom ′[OF x-def (1 )])
(simp-all add:ϕ-def K-def )

have (ϕ x) [^]K (order R^n) =
f .eval (map (ϕ ◦ poly-of-const) x) (ϕ X) [^]K (order R^n)
unfolding ϕ-def K-def
by (subst rupture-surj-as-eval[OF f-carr x-def (1 )], simp)

also have ... =
f .eval (map (λx. ϕ (poly-of-const x) [^]K order R ^ n) x) (ϕ X)
using a h.hom-closed var-closed(1 )
by (subst q.ring.eval-hom[OF f .carrier-is-subring])
(simp-all add:comp-def g)

also have ... = f .eval (map (λx. ϕ (poly-of-const x)) x) (ϕ X)
using k-cycle x-coeff-carr
by (intro arg-cong2 [where f=f .eval] map-cong, simp-all)

also have ... = (ϕ x)
unfolding ϕ-def K-def

by (subst rupture-surj-as-eval[OF f-carr x-def (1 )], simp add:comp-def )
finally have ϕ x [^]K order R ^ n = ϕ x by simp

hence y [^]K (order R^n) = y using x-def by simp
hence ring.eval K ?g2 y = 0K
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unfolding gauss-poly-def a-minus-def
using fp.var-closed f .eval-var y-def
by (simp, algebra)

hence f .is-root ?g2 y
using y-def f .gauss-poly-not-zero[OF o2 ]
unfolding f .is-root-def univ-poly-zero by simp

hence d pdividesK ?g2
unfolding y-def
by (intro f .is-root-imp-pdivides f .gauss-poly-carr , simp)

thus pmultK d ?g2 ≥ 1
using that f .gauss-poly-carr f .gauss-poly-not-zero o2
by (subst f .multiplicity-ge-1-iff-pdivides, auto)

qed

have inv-k-inj: inj-on (λx. 	K x) (carrier K )
by (intro inj-onI , metis f .minus-minus)

let ?mip = monic-irreducible-poly K

have sum ′ (λd. pmultK d ?g1 ∗ degree d) {d. ?mip d} = degree
?g1

using f .gauss-poly-monic o1
by (subst f .degree-monic-poly ′, simp-all)

also have ... = order K
using f .gauss-poly-degree o1 a by simp

also have ... = card ((λk. [1K, 	K k]) ‘ carrier K )
unfolding order-def using inj-onD[OF inv-k-inj]
by (intro card-image[symmetric] inj-onI ) (simp-all)

also have ... = card {d. ?mip d ∧ degree d = 1}
using f .degree-one-monic-poly
by (intro arg-cong[where f=card], simp add:set-eq-iff image-iff )

also have ... = sum (λd. 1 ) {d. ?mip d ∧ degree d = 1}
by simp

also have ... = sum ′ (λd. 1 ) {d. ?mip d ∧ degree d = 1}
by (intro sum.eq-sum[symmetric]

finite-subset[OF - fp.finite-poly(1 )[OF d]])
(auto simp:monic-irreducible-poly-def monic-poly-def )

also have ... = sum ′ (λd. of-bool (degree d = 1 )) {d. ?mip d}
by (intro sum.mono-neutral-cong-left ′ subsetI , simp-all)

also have ... ≤ sum ′ (λd. of-bool (degree d = 1 )) {d. ?mip d}
by simp

finally have sum ′ (λd. pmultK d ?g1 ∗ degree d) {d. ?mip d}
≤ sum ′ (λd. of-bool (degree d = 1 )) {d. ?mip d}
by simp

moreover have
pmultK d ?g1 ∗ degree d ≥ of-bool (degree d = 1 )
if v:monic-irreducible-poly K d for d

proof (cases degree d = 1 )
case True
then obtain x where x ∈ carrier K d = [1K, 	K x]
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using f .degree-one-monic-poly v by auto
hence pmultK d ?g1 ≥ 1

using roots-g1 v by simp
then show ?thesis using True by simp

next
case False
then show ?thesis by simp

qed
moreover have

finite {d. ?mip d ∧ pmultK d ?g1 ∗ degree d > 0}
by (intro finite-subset[OF - f .factor-monic-poly-fin[OF g1-monic]]

subsetI ) simp
ultimately have v2 :
∀ d ∈ {d. ?mip d}. pmultK d ?g1 ∗ degree d =
of-bool (degree d = 1 )
by (intro sum ′-eq-iff , simp-all add:not-le)

have pmultK d ?g1 ≤ pmultK d ?g2 if ?mip d for d
proof (cases degree d = 1 )

case True
hence pmultK d ?g1 = 1 using v2 that by auto
also have ... ≤ pmultK d ?g2

by (intro roots-g2 True that)
finally show ?thesis by simp

next
case False
hence degree d > 1

using f .monic-poly-min-degree[OF that] by simp
hence pmultK d ?g1 = 0 using v2 that by force
then show ?thesis by simp

qed
hence ?g1 pdividesK ?g2

using o1 o2 f .divides-monic-poly f .gauss-poly-monic by simp
thus degree f dvd n

by (subst (asm) f .gauss-poly-div-gauss-poly-iff
[OF assms(1 ) f-deg finite-field-min-order ], simp)

next
have d:ϕ XR ∈ carrier K

by (intro h.hom-closed var-closed)

have ϕ (gauss-poly R (order R^degree f )) =
(ϕ XR) [^]K (order R^degree f ) 	K (ϕ XR)
unfolding gauss-poly-def a-minus-def using var-closed
by (simp add: h.hom-nat-pow)

also have ... = 0K
using c d by simp

finally have ϕ (gauss-poly R (order R^degree f )) = 0K by simp
hence f pdividesR gauss-poly R (order R^degree f )

unfolding K-def ϕ-def using f-carr gauss-poly-carr
by (subst (asm) rupture-eq-0-iff , simp-all)
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moreover assume degree f dvd n

hence gauss-poly R (order R^degree f ) pdivides
(gauss-poly R (order R^n))
using gauss-poly-div-gauss-poly-iff
[OF assms(1 ) f-deg finite-field-min-order ]

by simp
ultimately show f pdividesR gauss-poly R (order R^n)

using f-carr a p.divides-trans unfolding pdivides-def by blast
qed

qed

lemma gauss-poly-splitted:
splitted (gauss-poly R (order R))

proof −
have degree q ≤ 1 if

q ∈ carrier P
pirreducible (carrier R) q
q pdivides gauss-poly R (order R) for q

proof −
have q-carr : q ∈ carrier (mult-of P)

using that unfolding ring-irreducible-def by simp
moreover have irreducible (mult-of P) q

using that unfolding ring-irreducible-def
by (intro p.irreducible-imp-irreducible-mult that, simp-all)

ultimately obtain p where p-def :
monic-irreducible-poly R p q ∼mult-of P p
using monic-poly-span by auto

have p-carr : p ∈ carrier P p 6= []
using p-def (1 )
unfolding monic-irreducible-poly-def monic-poly-def
by auto

moreover have p dividesmult-of P q
using associatedE [OF p-def (2 )] by auto

hence p pdivides q
unfolding pdivides-def using divides-mult-imp-divides by simp

moreover have q pdivides gauss-poly R (order R^1 )
using that by simp

ultimately have p pdivides gauss-poly R (order R^1 )
unfolding pdivides-def using p.divides-trans by blast

hence degree p dvd 1
using div-gauss-poly-iff [where n=1 ] p-def (1 ) by simp

hence degree p = 1 by simp
moreover have q dividesmult-of P p

using associatedE [OF p-def (2 )] by auto
hence q pdivides p

unfolding pdivides-def using divides-mult-imp-divides by simp
hence degree q ≤ degree p

using that p-carr
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by (intro pdivides-imp-degree-le) auto
ultimately show ?thesis by simp

qed

thus ?thesis
using gauss-poly-carr
by (intro trivial-factors-imp-splitted, auto)

qed

The following lemma, for the case when R is a simple prime field,
can be found in Ireland and Rosen [3, §7.1, Theorem 2]. Here
the result is verified even for arbitrary finite fields.
lemma multiplicity-of-factor-of-gauss-poly:

assumes n > 0
assumes monic-irreducible-poly R f
shows

pmultR f (gauss-poly R (order R^n)) = of-bool (degree f dvd n)
proof (cases degree f dvd n)

case True
let ?g = gauss-poly R (order R^n)
have f-carr : f ∈ carrier P f 6= []

using assms(2 )
unfolding monic-irreducible-poly-def monic-poly-def
by auto

have o2 : order R^n > 1
using finite-field-min-order assms(1 ) one-less-power by blast

hence o21 : order R^n > 0 by linarith

obtain d :: nat where order-dim: order R = char R ^ d d > 0
using finite-field-order by blast

have d ∗ n > 0 using order-dim assms by simp
hence char-dvd-order : int (char R) dvd int (order R ^ n)

unfolding order-dim
using finite-carr-imp-char-ge-0 [OF finite-carrier ]
by (simp add:power-mult[symmetric])

interpret h: ring-hom-ring R P poly-of-const
using canonical-embedding-ring-hom by simp

have f pdividesR ?g
using True div-gauss-poly-iff [OF assms] by simp

hence pmultR f ?g ≥ 1
using multiplicity-ge-1-iff-pdivides[OF assms(2 )]
using gauss-poly-carr gauss-poly-not-zero[OF o2 ]
by auto

moreover have pmultR f ?g < 2
proof (rule ccontr)

assume ¬ pmultR f ?g < 2
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hence pmultR f ?g ≥ 2 by simp
hence (f [^]P (2 ::nat)) pdividesR ?g

using gauss-poly-carr gauss-poly-not-zero[OF o2 ]
by (subst (asm) multiplicity-ge-iff [OF assms(2 )]) simp-all

hence (f [^]P (2 ::nat)) dividesmult-of P ?g
unfolding pdivides-def
using f-carr gauss-poly-not-zero o2 gauss-poly-carr
by (intro p.divides-imp-divides-mult) simp-all

then obtain h where h-def :
h ∈ carrier (mult-of P)
?g = f [^]P (2 ::nat) ⊗P h
using dividesD by auto

have 	P 1P = int-embed P (order R ^ n)
⊗P (XR [^]P (order R ^ n−1 )) 	P 1P
using var-closed
apply (subst int-embed-consistent-with-poly-of-const)
apply (subst iffD2 [OF embed-char-eq-0-iff char-dvd-order ])
by (simp add:a-minus-def )

also have ... = pderivR (XR [^]P order R ^ n) 	P pderivR XR
using pderiv-var
by (subst pderiv-var-pow[OF o21 ], simp)

also have ... = pderivR ?g
unfolding gauss-poly-def a-minus-def using var-closed
by (subst pderiv-add, simp-all add:pderiv-inv)

also have ... = pderivR (f [^]P (2 ::nat) ⊗P h)
using h-def (2 ) by simp

also have ... = pderivR (f [^]P (2 ::nat)) ⊗P h
⊕P (f [^]P (2 ::nat)) ⊗P pderivR h
using f-carr h-def
by (intro pderiv-mult, simp-all)

also have ... = int-embed P 2 ⊗P f ⊗P pderivR f ⊗P h
⊕P f ⊗P f ⊗P pderivR h
using f-carr
by (subst pderiv-pow, simp-all add:numeral-eq-Suc)

also have ... = f ⊗P (int-embed P 2 ⊗P pderivR f ⊗P h)
⊕P f ⊗P (f ⊗P pderivR h)
using f-carr pderiv-carr h-def p.int-embed-closed
apply (intro arg-cong2 [where f=(⊕P)])
by (subst p.m-comm, simp-all add:p.m-assoc)

also have ... = f ⊗P
(int-embed P 2 ⊗P pderivR f ⊗P h ⊕P f ⊗P pderivR h)
using f-carr pderiv-carr h-def p.int-embed-closed
by (subst p.r-distr , simp-all)

finally have 	P 1P = f ⊗P
(int-embed P 2 ⊗P pderivR f ⊗P h ⊕P f ⊗P pderivR h)
(is - = f ⊗P ?q)
by simp

hence f pdividesR 	P 1P
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unfolding factor-def pdivides-def
using f-carr pderiv-carr h-def p.int-embed-closed
by auto

moreover have 	P 1P 6= 0P by simp
ultimately have degree f ≤ degree (	P 1P)

using f-carr
by (intro pdivides-imp-degree-le, simp-all add:univ-poly-zero)

also have ... = 0
by (subst univ-poly-a-inv-degree, simp)
(simp add:univ-poly-one)

finally have degree f = 0 by simp

then show False
using pirreducible-degree assms(2 )
unfolding monic-irreducible-poly-def monic-poly-def
by fastforce

qed
ultimately have pmultR f ?g = 1 by simp
then show ?thesis using True by simp

next
case False
have o2 : order R^n > 1

using finite-field-min-order assms(1 ) one-less-power by blast

have ¬(f pdividesR gauss-poly R (order R^n))
using div-gauss-poly-iff [OF assms] False by simp

hence pmultR f (gauss-poly R (order R^n)) = 0
using multiplicity-ge-1-iff-pdivides[OF assms(2 )]
using gauss-poly-carr gauss-poly-not-zero[OF o2 ] leI less-one
by blast

then show ?thesis using False by simp
qed

The following lemma, for the case when R is a simple prime field,
can be found in Ireland and Rosen [3, §7.1, Corollary 1]. Here
the result is verified even for arbitrary finite fields.
lemma card-irred-aux:

assumes n > 0
shows order R^n = (

∑
d | d dvd n. d ∗

card {f . monic-irreducible-poly R f ∧ degree f = d})
(is ?lhs = ?rhs)

proof −
let ?G = {f . monic-irreducible-poly R f ∧ degree f dvd n}

let ?D = {f . monic-irreducible-poly R f }
have a: finite {d. d dvd n} using finite-divisors-nat assms by simp
have b: finite {f . monic-irreducible-poly R f ∧ degree f = k} for k
proof −

have {f . monic-irreducible-poly R f ∧ degree f = k} ⊆
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{f . f ∈ carrier P ∧ degree f ≤ k}
unfolding monic-irreducible-poly-def monic-poly-def by auto

moreover have finite {f . f ∈ carrier P ∧ degree f ≤ k}
using finite-poly[OF finite-carrier ] by simp

ultimately show ?thesis using finite-subset by simp
qed

have G-split: ?G =⋃
{{f . monic-irreducible-poly R f ∧ degree f = d} | d. d dvd n}

by auto
have c: finite ?G

using a b by (subst G-split, auto)
have d: order R^n > 1

using assms finite-field-min-order one-less-power by blast

have ?lhs = degree (gauss-poly R (order R^n))
using d
by (subst gauss-poly-degree, simp-all)

also have ... =
sum ′ (λd. pmultR d (gauss-poly R (order R^n)) ∗ degree d) ?D
using d
by (intro degree-monic-poly ′[symmetric] gauss-poly-monic)

also have ... = sum ′ (λd. of-bool (degree d dvd n) ∗ degree d) ?D
using multiplicity-of-factor-of-gauss-poly[OF assms]
by (intro sum.cong ′, auto)

also have ... = sum ′ (λd. degree d) ?G
by (intro sum.mono-neutral-cong-right ′ subsetI , auto)

also have ... = (
∑

d ∈ ?G. degree d)
using c by (intro sum.eq-sum, simp)

also have ... =
(
∑

f ∈ (
⋃

d ∈ {d. d dvd n}.
{f . monic-irreducible-poly R f ∧ degree f = d}). degree f )
by (intro sum.cong, auto simp add:set-eq-iff )

also have ... = (
∑

d | d dvd n. sum degree
{f . monic-irreducible-poly R f ∧ degree f = d})
using a b by (subst sum.UNION-disjoint, auto simp add:set-eq-iff )

also have ... = (
∑

d | d dvd n. sum (λ-. d)
{f . monic-irreducible-poly R f ∧ degree f = d})
by (intro sum.cong, simp-all)

also have ... = ?rhs
by (simp add:mult.commute)

finally show ?thesis
by simp

qed

end

end
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6.2 Gauss Formula
theory Card-Irreducible-Polynomials

imports
Dirichlet-Series.Moebius-Mu
Card-Irreducible-Polynomials-Aux

begin

hide-const Polynomial.order

The following theorem is a slightly generalized form of the for-
mula discovered by Gauss for the number of monic irreducible
polynomials over a finite field. He originally verified the result
for the case when R is a simple prime field. The version of the
formula here for the case where R may be an arbitrary finite field
can be found in Chebolu and Mináč [1].
theorem (in finite-field) card-irred:

assumes n > 0
shows n ∗ card {f . monic-irreducible-poly R f ∧ degree f = n} =
(
∑

d | d dvd n. moebius-mu d ∗ (order R^(n div d)))
(is ?lhs = ?rhs)

proof −
have ?lhs = dirichlet-prod moebius-mu (λx. int (order R) ^ x) n

using card-irred-aux
by (intro moebius-inversion assms) (simp flip:of-nat-power)

also have ... = ?rhs
by (simp add:dirichlet-prod-def )

finally show ?thesis by simp
qed

In the following an explicit analytic lower bound for the car-
dinality of monic irreducible polynomials is shown, with which
existence follows. This part deviates from the classic approach,
where existence is verified using a divisibility argument. The
reason for the deviation is that an analytic bound can also be
used to estimate the runtime of a randomized algorithm selecting
an irreducible polynomial, by randomly sampling monic polyno-
mials.
lemma (in finite-field) card-irred-1 :

card {f . monic-irreducible-poly R f ∧ degree f = 1} = order R
proof −

have int (1 ∗ card {f . monic-irreducible-poly R f ∧ degree f = 1})
= int (order R)
by (subst card-irred, auto)

thus ?thesis by simp
qed

lemma (in finite-field) card-irred-2 :
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real (card {f . monic-irreducible-poly R f ∧ degree f = 2}) =
(real (order R)^2 − order R) / 2

proof −
have x dvd 2 =⇒ x = 1 ∨ x = 2 for x :: nat

using nat-dvd-not-less[where m=2 ]
by (metis One-nat-def even-zero gcd-nat.strict-trans2

less-2-cases nat-neq-iff pos2 )
hence a: {d. d dvd 2} = {1 ,2 ::nat}

by (auto simp add:set-eq-iff )

have 2∗real (card {f . monic-irreducible-poly R f ∧ degree f = 2})
= of-int (2∗ card {f . monic-irreducible-poly R f ∧ degree f = 2})
by simp

also have ... =
of-int (

∑
d | d dvd 2 . moebius-mu d ∗ int (order R) ^ (2 div d))

by (subst card-irred, auto)
also have ... = order R^2 − int (order R)

by (subst a, simp)
also have ... = real (order R)^2 − order R

by simp
finally have

2 ∗ real (card {f . monic-irreducible-poly R f ∧ degree f = 2}) =
real (order R)^2 − order R
by simp

thus ?thesis by simp
qed

lemma (in finite-field) card-irred-gt-2 :
assumes n > 2
shows real (order R)^n / (2∗real n) ≤

card {f . monic-irreducible-poly R f ∧ degree f = n}
(is ?lhs ≤ ?rhs)

proof −
let ?m = real (order R)
have a:?m ≥ 2

using finite-field-min-order by simp

have b:moebius-mu n ≥ −(1 ::real) for n :: nat
using abs-moebius-mu-le[where n=n]
unfolding abs-le-iff by auto

have c: n > 0 using assms by simp
have d: x < n − 1 if d-assms: x dvd n x 6= n for x :: nat
proof −

have x < n
using d-assms dvd-nat-bounds c by auto

moreover have ¬(n−1 dvd n) using assms
by (metis One-nat-def Suc-diff-Suc c diff-zero

dvd-add-triv-right-iff nat-dvd-1-iff-1
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nat-neq-iff numeral-2-eq-2 plus-1-eq-Suc)
hence x 6= n−1 using d-assms by auto
ultimately show x < n−1 by simp

qed

have ?m^n / 2 = ?m^n − ?m^n/2 by simp
also have ... ≤ ?m^n − ?m^n/?m^1

using a by (intro diff-mono divide-left-mono, simp-all)
also have ... ≤ ?m^n − ?m^(n−1 )

using a c by (subst power-diff , simp-all)
also have ... ≤ ?m^n − (?m^(n−1 ) − 1 )/1 by simp
also have ... ≤ ?m^n − (?m^(n−1 )−1 )/(?m−1 )

using a by (intro diff-left-mono divide-left-mono, simp-all)
also have ... = ?m^n − (

∑
i ∈ {..<n−1}. ?m^i)

using a by (subst geometric-sum, simp-all)
also have ... ≤ ?m^n − (

∑
i ∈ {k. k dvd n ∧ k 6= n}. ?m^i)

using d
by (intro diff-mono sum-mono2 subsetI , auto simp add:not-less)

also have ... = ?m^n + (
∑

i ∈ {k. k dvd n ∧ k 6= n}. (−1 ) ∗ ?m^i)
by (subst sum-distrib-left[symmetric], simp)

also have ... ≤ moebius-mu 1 ∗ ?m^n +
(
∑

i ∈ {k. k dvd n ∧ k 6= n}. moebius-mu (n div i) ∗ ?m^i)
using b
by (intro add-mono sum-mono mult-right-mono)
(simp-all add:not-less)

also have ... = (
∑

i ∈ insert n {k. k dvd n ∧ k 6= n}.
moebius-mu (n div i) ∗ ?m^i)
using c by (subst sum.insert, auto)

also have ... = (
∑

i ∈ {k. k dvd n}. moebius-mu (n div i) ∗ ?m^i)
by (intro sum.cong, auto simp add:set-eq-iff )

also have ... = dirichlet-prod (λi. ?m^i) moebius-mu n
unfolding dirichlet-prod-def by (intro sum.cong, auto)

also have ... = dirichlet-prod moebius-mu (λi. ?m^i) n
using dirichlet-prod-commutes by metis

also have ... =
of-int (

∑
d | d dvd n. moebius-mu d ∗ order R^(n div d))

unfolding dirichlet-prod-def by simp
also have ... = of-int (n ∗

card {f . monic-irreducible-poly R f ∧ length f − 1 = n})
using card-irred[OF c] by simp

also have ... = n ∗ ?rhs by simp
finally have ?m^n / 2 ≤ n ∗ ?rhs by simp
hence ?m ^ n ≤ 2 ∗ n ∗ ?rhs by simp
hence ?m^n/(2∗real n) ≤ ?rhs

using c by (subst pos-divide-le-eq, simp-all add:algebra-simps)
thus ?thesis by simp

qed

lemma (in finite-field) card-irred-gt-0 :

98



assumes d > 0
shows real(order R)^d / (2∗real d) ≤ real (card {f . monic-irreducible-poly

R f ∧ degree f = d})
(is ?L ≤ ?R)

proof −
consider (a) d = 1 | (b) d = 2 | (c) d > 2 using assms by linarith
thus ?thesis
proof (cases)

case a
hence ?L = real (order R)/2 by simp
also have ... ≤ real (order R) using finite-field-min-order by simp
also have ... = ?R unfolding a card-irred-1 by simp
finally show ?thesis by simp

next
case b
hence ?L = real (order R^2 )/4 + 0 by simp
also have ... ≤ real (order R^2 )/4 + real (order R)/2 ∗ (real

(order R)/2 − 1 )
using finite-field-min-order by (intro add-mono mult-nonneg-nonneg)

auto
also have ... = (real (order R^2 ) − real (order R))/2

by (simp add:algebra-simps power2-eq-square)
also have ... = ?R unfolding b card-irred-2 by simp
finally show ?thesis by simp

next
case c thus ?thesis by (rule card-irred-gt-2 )

qed
qed

lemma (in finite-field) exist-irred:
assumes n > 0
obtains f where monic-irreducible-poly R f degree f = n

proof −
have 0 < real(order R)^n / (2∗real n)

using finite-field-min-order assms
by (intro divide-pos-pos mult-pos-pos zero-less-power) auto

also have ... ≤ real (card {f . monic-irreducible-poly R f ∧ degree f
= n})

(is - ≤ real(card ?A))
by (intro card-irred-gt-0 assms)

finally have 0 < card {f . monic-irreducible-poly R f ∧ degree f =
n}

by auto
hence ?A 6= {}

by (metis card.empty nless-le)
then obtain f where monic-irreducible-poly R f degree f = n

by auto
thus ?thesis using that by simp

qed
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theorem existence:
assumes n > 0
assumes Factorial-Ring.prime p
shows ∃ (F :: int set list set ring). finite-field F ∧ order F = p^n

proof −
interpret zf : finite-field ZFact (int p)

using zfact-prime-is-finite-field assms by simp

interpret zfp: polynomial-ring ZFact p carrier (ZFact p)
unfolding polynomial-ring-def polynomial-ring-axioms-def
using zf .field-axioms zf .carrier-is-subfield by simp

have p-gt-0 : p > 0 using prime-gt-0-nat assms(2 ) by simp

obtain f where f-def :
monic-irreducible-poly (ZFact (int p)) f
degree f = n
using zf .exist-irred assms by auto

let ?F = Rupt(ZFact p) (carrier (ZFact p)) f
have f ∈ carrier (poly-ring (ZFact (int p)))

using f-def (1 ) zf .monic-poly-carr
unfolding monic-irreducible-poly-def
by simp

moreover have degree f > 0
using assms(1 ) f-def by simp

ultimately have order ?F = card (carrier (ZFact p))^degree f
by (intro zf .rupture-order [OF zf .carrier-is-subfield]) auto

hence a:order ?F = p^n
unfolding f-def (2 ) card-zfact-carr [OF p-gt-0 ] by simp

have field ?F
using f-def (1 ) zf .monic-poly-carr monic-irreducible-poly-def
by (subst zfp.rupture-is-field-iff-pirreducible) auto

moreover have order ?F > 0
unfolding a using assms(1 ,2 ) p-gt-0 by simp

ultimately have b:finite-field ?F
using card-ge-0-finite
by (intro finite-fieldI , auto simp add:Coset.order-def )

show ?thesis
using a b
by (intro exI [where x=?F ], simp)

qed

end
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7 Isomorphism between Finite Fields
theory Finite-Fields-Isomorphic

imports
Card-Irreducible-Polynomials

begin

lemma (in finite-field) eval-on-root-is-iso:
defines p ≡ char R
assumes f ∈ carrier (poly-ring (ZFact p))
assumes pirreducible(ZFact p) (carrier (ZFact p)) f
assumes order R = p^degree f
assumes x ∈ carrier R
assumes eval (map (char-iso R) f ) x = 0
shows ring-hom-ring (Rupt(ZFact p) (carrier (ZFact p)) f ) R
(λg. the-elem ((λg ′. eval (map (char-iso R) g ′) x) ‘ g))

proof −
let ?P = poly-ring (ZFact p)

have char-pos: char R > 0
using finite-carr-imp-char-ge-0 [OF finite-carrier ] by simp

have p-prime: Factorial-Ring.prime p
unfolding p-def
using characteristic-is-prime[OF char-pos] by simp

interpret zf : finite-field ZFact p
using zfact-prime-is-finite-field p-prime by simp

interpret pzf : principal-domain poly-ring (ZFact p)
using zf .univ-poly-is-principal[OF zf .carrier-is-subfield] by simp

interpret i: ideal (PIdl?P f ) ?P
by (intro pzf .cgenideal-ideal assms(2 ))

have rupt-carr : y ⊆ carrier (poly-ring (ZFact p))
if y ∈ carrier (RuptZFact p (carrier (ZFact p)) f ) for y
using that pzf .quot-carr i.ideal-axioms by (simp add:rupture-def )

have rupt-is-ring: ring (RuptZFact p (carrier (ZFact p)) f )
unfolding rupture-def by (intro i.quotient-is-ring)

have map (char-iso R) ∈
ring-iso ?P (poly-ring (R(|carrier := char-subring R|)))
using lift-iso-to-poly-ring[OF char-iso] zf .domain-axioms
using char-ring-is-subdomain subdomain-is-domain
by (simp add:p-def )

moreover have (char-subring R)[X ] =
poly-ring (R (|carrier := char-subring R|))
using univ-poly-consistent[OF char-ring-is-subring] by simp

ultimately have
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map (char-iso R) ∈ ring-hom ?P ((char-subring R)[X ])
by (simp add:ring-iso-def )

moreover have (λp. eval p x) ∈ ring-hom ((char-subring R)[X ]) R
using eval-is-hom char-ring-is-subring assms(5 ) by simp

ultimately have
(λp. eval p x) ◦ map (char-iso R) ∈ ring-hom ?P R
using ring-hom-trans by blast

hence a:(λp. eval (map (char-iso R) p) x) ∈ ring-hom ?P R
by (simp add:comp-def )

interpret h:ring-hom-ring ?P R (λp. eval (map (char-iso R) p) x)
by (intro ring-hom-ringI2 pzf .ring-axioms a ring-axioms)

let ?h = (λp. eval (map (char-iso R) p) x)
let ?J = a-kernel (poly-ring (ZFact (int p))) R ?h

have ?h ‘ a-kernel (poly-ring (ZFact (int p))) R ?h ⊆ {0}
by auto

moreover have
0?P ∈ a-kernel (poly-ring (ZFact (int p))) R ?h
?h 0?P = 0
unfolding a-kernel-def ′ by simp-all

hence {0} ⊆ ?h ‘ a-kernel (poly-ring (ZFact (int p))) R ?h
by simp

ultimately have c:
?h ‘ a-kernel (poly-ring (ZFact (int p))) R ?h = {0}
by auto

have d: PIdl?P f ⊆ a-kernel ?P R ?h
proof (rule subsetI )

fix y assume y ∈ PIdl?P f
then obtain y ′ where y ′-def : y ′ ∈ carrier ?P y = y ′ ⊗?P f

unfolding cgenideal-def by auto
have ?h y = ?h (y ′ ⊗?P f ) by (simp add:y ′-def )
also have ... = ?h y ′ ⊗ ?h f

using y ′-def assms(2 ) by simp
also have ... = ?h y ′ ⊗ 0

using assms(6 ) by simp
also have ... = 0

using y ′-def by simp
finally have ?h y = 0 by simp
moreover have y ∈ carrier ?P using y ′-def assms(2 ) by simp
ultimately show y ∈ a-kernel ?P R ?h

unfolding a-kernel-def kernel-def by simp
qed

have (λy. the-elem ((λp. eval (map (char-iso R) p) x) ‘ y))
∈ ring-hom (?P Quot ?J ) R
using h.the-elem-hom by simp

moreover have (λy. ?J <+>?P y)
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∈ ring-hom (Rupt(ZFact p) (carrier (ZFact p)) f ) (?P Quot ?J )
unfolding rupture-def using h.kernel-is-ideal d assms(2 )
by (intro pzf .quot-quot-hom pzf .cgenideal-ideal) auto

ultimately have (λy. the-elem (?h ‘ y)) ◦ (λy. ?J <+>?P y)
∈ ring-hom (Rupt(ZFact p) (carrier (ZFact p)) f ) R
using ring-hom-trans by blast

hence b: (λy. the-elem (?h ‘ (?J <+>?P y))) ∈
ring-hom (Rupt(ZFact p) (carrier (ZFact p)) f ) R
by (simp add:comp-def )

have ?h ‘ y = ?h ‘ (?J <+>?P y)
if y ∈ carrier (RuptZFact p (carrier (ZFact p)) f )
for y

proof −
have y-range: y ⊆ carrier ?P

using rupt-carr that by simp
have ?h ‘ y = {0} <+>R ?h ‘ y

using y-range h.hom-closed by (subst set-add-zero, auto)
also have ... = ?h ‘ ?J <+>R ?h ‘ y

by (subst c, simp)
also have ... = ?h ‘ (?J <+>?P y)

by (subst set-add-hom[OF a - y-range], subst a-kernel-def ′) auto
finally show ?thesis by simp

qed
hence (λy. the-elem (?h ‘ y)) ∈

ring-hom (Rupt(ZFact p) (carrier (ZFact p)) f ) R
by (intro ring-hom-cong[OF - rupt-is-ring b]) simp

thus ?thesis
by (intro ring-hom-ringI2 rupt-is-ring ring-axioms, simp)

qed

lemma (in domain) pdivides-consistent:
assumes subfield K R f ∈ carrier (K [X ]) g ∈ carrier (K [X ])
shows f pdivides g ←→ f pdividesR (| carrier := K |) g

proof −
have a:subring K R

using assms(1 ) subfieldE(1 ) by auto
let ?S = R (| carrier := K |)
have f pdivides g ←→ f dividesK [X ] g

using pdivides-iff-shell[OF assms] by simp
also have ... ←→ (∃ x ∈ carrier (K [X ]). f ⊗K [X ] x = g)

unfolding pdivides-def factor-def by auto
also have ... ←→
(∃ x ∈ carrier (poly-ring ?S). f ⊗poly-ring ?S x = g)
using univ-poly-consistent[OF a] by simp

also have ... ←→ f dividespoly-ring ?S g
unfolding pdivides-def factor-def by auto

also have ... ←→ f pdivides?S g
unfolding pdivides-def by simp
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finally show ?thesis by simp
qed

lemma (in finite-field) find-root:
assumes subfield K R
assumes monic-irreducible-poly (R (| carrier := K |)) f
assumes order R = card K^degree f
obtains x where eval f x = 0 x ∈ carrier R

proof −
define τ :: ′a list ⇒ ′a list where τ = id
let ?K = R (| carrier := K |)
have finite K

using assms(1 ) by (intro finite-subset[OF - finite-carrier ], simp)
hence fin-K : finite (carrier (?K ))

by simp
interpret f : finite-field ?K

using assms(1 ) subfield-iff fin-K finite-fieldI by blast
have b:subring K R

using assms(1 ) subfieldE(1 ) by blast
interpret e: ring-hom-ring (K [X ]) (poly-ring R) τ

using embed-hom[OF b] by (simp add:τ -def )

have a: card K^degree f > 1
using assms(3 ) finite-field-min-order by simp

have f ∈ carrier (poly-ring ?K )
using f .monic-poly-carr assms(2 )
unfolding monic-irreducible-poly-def by simp

hence f-carr-2 : f ∈ carrier (K [X ])
using univ-poly-consistent[OF b] by simp

have f-carr : f ∈ carrier (poly-ring R)
using e.hom-closed[OF f-carr-2 ] unfolding τ -def by simp

have gp-carr : gauss-poly ?K (order ?K^degree f ) ∈ carrier (K [X ])
using f .gauss-poly-carr univ-poly-consistent[OF b] by simp

have gauss-poly ?K (order ?K^degree f ) =
gauss-poly ?K (card K^degree f )
by (simp add:Coset.order-def )

also have ... =
X?K [^]poly-ring ?K card K ^ degree f 	poly-ring ?K X?K
unfolding gauss-poly-def by simp

also have ... = XR [^]K [X ] card K ^ degree f 	K [X ] XR
unfolding var-def using univ-poly-consistent[OF b] by simp

also have ... = τ (XR [^]K [X ] card K ^ degree f 	K [X ] XR)

unfolding τ -def by simp
also have ... = gauss-poly R (card K^degree f )

unfolding gauss-poly-def a-minus-def using var-closed[OF b]
by (simp add:e.hom-nat-pow, simp add:τ -def )

finally have gp-consistent: gauss-poly ?K (order ?K^degree f ) =
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gauss-poly R (card K^degree f )
by simp

have deg-f : degree f > 0
using f .monic-poly-min-degree[OF assms(2 )] by simp

have splitted f
proof (cases degree f > 1 )

case True

have f pdivides?K gauss-poly ?K (order ?K^degree f )
using f .div-gauss-poly-iff [OF deg-f assms(2 )] by simp

hence f pdivides gauss-poly ?K (order ?K^degree f )
using pdivides-consistent[OF assms(1 )] f-carr-2 gp-carr by simp

hence f pdivides gauss-poly R (card K^degree f )
using gp-consistent by simp

moreover have splitted (gauss-poly R (card K^degree f ))
unfolding assms(3 )[symmetric] using gauss-poly-splitted by simp
moreover have gauss-poly R (card K^degree f ) 6= []

using gauss-poly-not-zero a by (simp add: univ-poly-zero)
ultimately show splitted f

using pdivides-imp-splitted f-carr gauss-poly-carr by auto
next

case False
hence degree f = 1 using deg-f by simp
thus ?thesis using f-carr degree-one-imp-splitted by auto

qed
hence size (roots f ) > 0

using deg-f unfolding splitted-def by simp
then obtain x where x-def : x ∈ carrier R is-root f x

using roots-mem-iff-is-root[OF f-carr ]
by (metis f-carr nonempty-has-size not-empty-rootsE)

have eval f x = 0
using x-def is-root-def by blast

thus ?thesis using x-def using that by simp
qed

lemma (in finite-field) find-iso-from-zfact:
defines p ≡ int (char R)
assumes monic-irreducible-poly (ZFact p) f
assumes order R = char R^degree f
shows ∃ϕ. ϕ ∈ ring-iso (Rupt(ZFact p) (carrier (ZFact p)) f ) R

proof −
have char-pos: char R > 0

using finite-carr-imp-char-ge-0 [OF finite-carrier ] by simp

interpret zf : finite-field ZFact p
unfolding p-def using zfact-prime-is-finite-field
using characteristic-is-prime[OF char-pos] by simp
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interpret zfp: polynomial-ring ZFact p carrier (ZFact p)
unfolding polynomial-ring-def polynomial-ring-axioms-def
using zf .field-axioms zf .carrier-is-subfield by simp

let ?f ′ = map (char-iso R) f
let ?F = Rupt(ZFact p) (carrier (ZFact p)) f

have domain (R(|carrier := char-subring R|))
using char-ring-is-subdomain subdomain-is-domain by simp

hence monic-irreducible-poly (R (| carrier := char-subring R |)) ?f ′

using char-iso p-def zf .domain-axioms
by (intro monic-irreducible-poly-hom[OF assms(2 )]) auto

moreover have order R = card (char-subring R)^degree ?f ′

using assms(3 ) unfolding char-def by simp
ultimately obtain x where x-def : eval ?f ′ x = 0 x ∈ carrier R

using find-root[OF char-ring-is-subfield[OF char-pos]] by blast
let ?ϕ = (λg. the-elem ((λg ′. eval (map (char-iso R) g ′) x) ‘ g))
interpret r : ring-hom-ring ?F R ?ϕ

using assms(2 ,3 )
unfolding monic-irreducible-poly-def monic-poly-def p-def
by (intro eval-on-root-is-iso x-def , auto)

have a:?ϕ ∈ ring-hom ?F R
using r .homh by auto

have field (RuptZFact p (carrier (ZFact p)) f )
using assms(2 )
unfolding monic-irreducible-poly-def monic-poly-def
by (subst zfp.rupture-is-field-iff-pirreducible, simp-all)

hence b:inj-on ?ϕ (carrier ?F)
using non-trivial-field-hom-is-inj[OF a - field-axioms] by simp

have card (?ϕ ‘ carrier ?F) = order ?F
using card-image[OF b] unfolding Coset.order-def by simp

also have ... = card (carrier (ZFact p))^degree f
using assms(2 ) zf .monic-poly-min-degree[OF assms(2 )]
unfolding monic-irreducible-poly-def monic-poly-def
by (intro zf .rupture-order [OF zf .carrier-is-subfield]) auto

also have ... = char R ^degree f
unfolding p-def by (subst card-zfact-carr [OF char-pos], simp)

also have ... = card (carrier R)
using assms(3 ) unfolding Coset.order-def by simp

finally have card (?ϕ ‘ carrier ?F) = card (carrier R) by simp
moreover have ?ϕ ‘ carrier ?F ⊆ carrier R

by (intro image-subsetI , simp)
ultimately have ?ϕ ‘ carrier ?F = carrier R

by (intro card-seteq finite-carrier , auto)
hence bij-betw ?ϕ (carrier ?F) (carrier R)
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using b bij-betw-imageI by auto

thus ?thesis
unfolding ring-iso-def using a b by auto

qed

theorem uniqueness:
assumes finite-field F1

assumes finite-field F2

assumes order F1 = order F2

shows F1 ' F2

proof −
obtain n where o1 : order F1 = char F1^n n > 0

using finite-field.finite-field-order [OF assms(1 )] by auto
obtain m where o2 : order F2 = char F2^m m > 0

using finite-field.finite-field-order [OF assms(2 )] by auto

interpret f1 : finite-field F1 using assms(1 ) by simp
interpret f2 : finite-field F2 using assms(2 ) by simp

have char-pos: char F1 > 0 char F2 > 0
using f1 .finite-carrier f1 .finite-carr-imp-char-ge-0
using f2 .finite-carrier f2 .finite-carr-imp-char-ge-0 by auto

hence char-prime:
Factorial-Ring.prime (char F1)
Factorial-Ring.prime (char F2)
using f1 .characteristic-is-prime f2 .characteristic-is-prime
by auto

have char F1^n = char F2^m
using o1 o2 assms(3 ) by simp

hence eq: n = m char F1 = char F2

using char-prime char-pos o1 (2 ) o2 (2 ) prime-power-inj ′ by auto

obtain p where p-def : p = char F1 p = char F2

using eq by simp

have p-prime: Factorial-Ring.prime p
unfolding p-def (1 )
using f1 .characteristic-is-prime char-pos by simp

interpret zf : finite-field ZFact (int p)
using zfact-prime-is-finite-field p-prime o1 (2 )
using prime-nat-int-transfer by blast

interpret zfp: polynomial-ring ZFact p carrier (ZFact p)
unfolding polynomial-ring-def polynomial-ring-axioms-def
using zf .field-axioms zf .carrier-is-subfield by simp
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obtain f where f-def :
monic-irreducible-poly (ZFact (int p)) f degree f = n
using zf .exist-irred o1 (2 ) by auto

let ?F0 = Rupt(ZFact p) (carrier (ZFact p)) f

obtain ϕ1 where ϕ1-def : ϕ1 ∈ ring-iso ?F0 F1

using f1 .find-iso-from-zfact f-def o1
unfolding p-def by auto

obtain ϕ2 where ϕ2-def : ϕ2 ∈ ring-iso ?F0 F2

using f2 .find-iso-from-zfact f-def o2
unfolding p-def (2 ) eq(1 ) by auto

have ?F0 ' F1 using ϕ1-def is-ring-iso-def by auto
moreover have ?F0 ' F2 using ϕ2-def is-ring-iso-def by auto
moreover have field ?F0

using f-def (1 ) zf .monic-poly-carr monic-irreducible-poly-def
by (subst zfp.rupture-is-field-iff-pirreducible) auto

hence ring ?F0 using field.is-ring by auto
ultimately show ?thesis

using ring-iso-trans ring-iso-sym by blast
qed

end

8 Rabin’s test for irreducible polynomials
theory Rabin-Irreducibility-Test

imports Card-Irreducible-Polynomials-Aux
begin

This section introduces an effective test for irreducibility of poly-
nomials (in finite fields) based on Rabin [5].
definition pcoprime :: - ⇒ ′a list ⇒ ′a list ⇒ bool (‹pcoprimeı›)

where pcoprimeR p q =
(∀ r ∈ carrier (poly-ring R). r pdividesR p ∧ r pdividesR q −→

degree r = 0 )

lemma pcoprimeI :
assumes

∧
r . r ∈ carrier (poly-ring R) =⇒ r pdivides R p =⇒ r

pdividesR q =⇒ degree r = 0
shows pcoprimeR p q
using assms unfolding pcoprime-def by auto

context field
begin

interpretation r :polynomial-ring R (carrier R)
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unfolding polynomial-ring-def polynomial-ring-axioms-def
using carrier-is-subfield field-axioms by force

lemma pcoprime-one: pcoprimeR p 1poly-ring R
proof (rule pcoprimeI )

fix r
assume r-carr : r ∈ carrier (poly-ring R)
moreover assume r pdivides R 1poly-ring R
moreover have 1poly-ring R 6= [] by (simp add:univ-poly-one)
ultimately have degree r ≤ degree 1poly-ring R
by (intro pdivides-imp-degree-le[OF carrier-is-subring] r-carr) auto

also have ... = 0 by (simp add:univ-poly-one)
finally show degree r = 0 by auto

qed

lemma pcoprime-left-factor :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
assumes z ∈ carrier (poly-ring R)
assumes pcoprimeR (x ⊗poly-ring R y) z
shows pcoprimeR x z

proof (rule pcoprimeI )
fix r
assume r-carr : r ∈ carrier (poly-ring R)
assume r pdivides R x
hence r pdivides R (x ⊗poly-ring R y)

using assms(1 ,2 ) r-carr r .p.divides-prod-r unfolding pdivides-def
by simp

moreover assume r pdivides R z
ultimately show degree r = 0 using assms(4 ) r-carr unfolding

pcoprime-def by simp
qed

lemma pcoprime-sym:
shows pcoprime x y = pcoprime y x
unfolding pcoprime-def by auto

lemma pcoprime-left-assoc-cong-aux:
assumes x1 ∈ carrier (poly-ring R) x2 ∈ carrier (poly-ring R)
assumes x2 ∼poly-ring R x1
assumes y ∈ carrier (poly-ring R)
assumes pcoprime x1 y
shows pcoprime x2 y
using assms r .p.divides-cong-r [OF - assms(3 )] unfolding pcoprime-def

pdivides-def by simp

lemma pcoprime-left-assoc-cong:
assumes x1 ∈ carrier (poly-ring R) x2 ∈ carrier (poly-ring R)
assumes x1 ∼poly-ring R x2
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assumes y ∈ carrier (poly-ring R)
shows pcoprime x1 y = pcoprime x2 y
using assms pcoprime-left-assoc-cong-aux r .p.associated-sym by metis

lemma pcoprime-right-assoc-cong:
assumes x1 ∈ carrier (poly-ring R) x2 ∈ carrier (poly-ring R)
assumes x1 ∼poly-ring R x2
assumes y ∈ carrier (poly-ring R)
shows pcoprime y x1 = pcoprime y x2
using assms pcoprime-sym pcoprime-left-assoc-cong by metis

lemma pcoprime-step:
assumes f ∈ carrier (poly-ring R)
assumes g ∈ carrier (poly-ring R)
shows pcoprime f g ←→ pcoprime g (f pmod g)

proof −
have d pdivides f ←→ d pdivides (f pmod g) if d ∈ carrier (poly-ring

R) d pdivides g for d
proof −

have d pdivides f ←→ d pdivides (g ⊗r .P (f pdiv g) ⊕r .P (f pmod
g))

using pdiv-pmod[OF carrier-is-subfield assms] by simp
also have ... ←→ d pdivides ((f pmod g))
using that assms long-division-closed[OF carrier-is-subfield] r .p.divides-prod-r

unfolding pdivides-def by (intro r .p.div-sum-iff ) simp-all
finally show ?thesis by simp

qed
hence d pdivides f ∧ d pdivides g ←→ d pdivides g ∧ d pdivides (f

pmod g)
if d ∈ carrier (poly-ring R) for d
using that by auto

thus ?thesis
unfolding pcoprime-def by auto

qed

lemma pcoprime-zero-iff :
assumes f ∈ carrier (poly-ring R)
shows pcoprime f [] ←→ length f = 1

proof −
consider (i) length f = 0 | (ii) length f = 1 | (iii) length f > 1

by linarith
thus ?thesis
proof (cases)

case i
hence f = [] by simp
moreover have X pdivides [] using r .pdivides-zero r .var-closed(1 )

by blast
moreover have degree X = 1 using degree-var by simp
ultimately have ¬pcoprime f [] using r .var-closed(1 ) unfolding
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pcoprime-def by auto
then show ?thesis using i by auto

next
case ii
hence f 6= [] degree f = 0 by auto
hence degree d = 0 if d pdivides f d ∈ carrier (poly-ring R) for d
using that(1 ) pdivides-imp-degree-le[OF carrier-is-subring that(2 )

assms] by simp
hence pcoprime f [] unfolding pcoprime-def by auto
then show ?thesis using ii by simp

next
case iii
have f pdivides f using assms unfolding pdivides-def by simp
moreover have f pdivides [] using assms r .pdivides-zero by blast
moreover have degree f > 0 using iii by simp
ultimately have ¬pcoprime f [] using assms unfolding pco-

prime-def by auto
then show ?thesis using iii by auto

qed
qed

end

context finite-field
begin

interpretation r :polynomial-ring R (carrier R)
unfolding polynomial-ring-def polynomial-ring-axioms-def
using carrier-is-subfield field-axioms by force

lemma exists-irreducible-proper-factor :
assumes monic-poly R f degree f > 0 ¬monic-irreducible-poly R f
shows ∃ g. monic-irreducible-poly R g ∧ g pdividesR f ∧ degree g <

degree f
proof −

define S where S = {d. monic-irreducible-poly R d ∧ 0 < pmult d
f }

have f-carr : f ∈ carrier (poly-ring R) f 6= 0poly-ring R
using assms(1 ) unfolding monic-poly-def univ-poly-zero by auto

have S 6= {}
proof (rule ccontr)

assume S-empty: ¬(S 6= {})
have f = (

⊗
poly-ring Rd∈S . d [^]poly-ring R pmult d f )

unfolding S-def by (intro factor-monic-poly assms(1 ))
also have ... = 1poly-ring R using S-empty by simp
finally have f = 1poly-ring R by simp
hence degree f = 0 using degree-one by simp
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thus False using assms(2 ) by simp
qed
then obtain g where g-irred: monic-irreducible-poly R g and 0 <

pmult g f
unfolding S-def by auto

hence 1 ≤ pmult g f by simp

hence g-div: g pdivides f using multiplicity-ge-1-iff-pdivides f-carr
g-irred by blast

then obtain h where f-def : f = g ⊗poly-ring R h and h-carr :h ∈
carrier (poly-ring R)

unfolding pdivides-def by auto

have g-nz: g 6= 0poly-ring R and h-nz: h 6= 0poly-ring R
and g-carr : g ∈ carrier (poly-ring R)

using f-carr(2 ) h-carr g-irred unfolding f-def monic-irreducible-poly-def
monic-poly-def

by auto

have degree f = degree g + degree h
using g-nz h-nz g-carr h-carr unfolding f-def by (intro de-

gree-mult[OF r .K-subring]) auto
moreover have degree h > 0
proof (rule ccontr)

assume ¬(degree h > 0 )
hence degree h = 0 by simp
hence h ∈ Units (poly-ring R)
using h-carr h-nz by (simp add: carrier-is-subfield univ-poly-units ′

univ-poly-zero)
hence f ∼poly-ring R g

unfolding f-def using g-carr r .p.associatedI2 ′ by force
hence f ∼mult-of (poly-ring R) g

using f-carr g-nz g-carr by (simp add: r .p.assoc-iff-assoc-mult)
hence f = g
using monic-poly-not-assoc assms(1 ) g-irred unfolding monic-irreducible-poly-def

by simp
hence monic-irreducible-poly R f

using g-irred by simp
thus False

using assms(3 ) by auto
qed
ultimately have degree g < degree f by simp
thus ?thesis using g-irred g-div by auto

qed

theorem rabin-irreducibility-condition:
assumes monic-poly R f degree f > 0
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defines N ≡ {degree f div p | p . Factorial-Ring.prime p ∧ p dvd
degree f }

shows monic-irreducible-poly R f ←→
(f pdivides gauss-poly R (order R^degree f ) ∧ (∀n ∈ N . pcoprime

(gauss-poly R (order R^n)) f ))
(is ?L ←→ ?R1 ∧ ?R2 )

proof −
have f-carr : f ∈ carrier (poly-ring R)

using assms(1 ) unfolding monic-poly-def by blast

have ?R1 if ?L
using div-gauss-poly-iff [where n=degree f ] that assms(2 ) by simp

moreover have False if cthat:¬pcoprime (gauss-poly R (order R^n))
f ?L n ∈ N for n

proof −
obtain d where d-def :

d pdivides f
d pdivides (gauss-poly R (order R^n)) degree d > 0 d ∈ carrier

(poly-ring R)
using cthat(1 ) unfolding pcoprime-def by auto

obtain p where p-def :
n = degree f div p Factorial-Ring.prime p p dvd degree f
using cthat(3 ) unfolding N-def by auto

have n-gt-0 : n > 0
using p-def assms(2 ) by (metis dvd-div-eq-0-iff gr0I )

have d /∈ Units (poly-ring R)
using d-def (3 ,4 ) univ-poly-units ′[OF carrier-is-subfield] by simp

hence f pdivides d
using cthat(2 ) d-def (1 ,4 ) unfolding monic-irreducible-poly-def

ring-irreducible-def
Divisibility.irreducible-def properfactor-def pdivides-def f-carr by

auto
hence f pdivides (gauss-poly R (order R^n))

using d-def (2 ,4 ) f-carr r .p.divides-trans unfolding pdivides-def
by metis

hence degree f dvd n
using n-gt-0 div-gauss-poly-iff [OF - cthat(2 )] by auto

thus False
using p-def by (metis assms(2 ) div-less-dividend n-gt-0 nat-dvd-not-less

prime-gt-1-nat)
qed
moreover have False if not-l:¬?L and r1 :?R1 and r2 : ?R2
proof −
obtain g where g-def : g pdivides f degree g < degree f monic-irreducible-poly

R g
using r1 not-l exists-irreducible-proper-factor assms(1 ,2 ) by auto
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have g-carr : g ∈ carrier (poly-ring R) and g-nz: g 6= 0poly-ring R
using g-def (3 ) unfolding monic-irreducible-poly-def monic-poly-def

by (auto simp:univ-poly-zero)

have g pdivides gauss-poly R (order R^degree f )
using g-carr r1 g-def (1 ) unfolding pdivides-def using r .p.divides-trans

by blast

hence degree g dvd degree f
using div-gauss-poly-iff [OF assms(2 ) g-def (3 )] by auto

then obtain t where deg-f-def :degree f = t ∗ degree g
by fastforce

hence t > 1 using g-def (2 ) by simp
then obtain p where p-prime: Factorial-Ring.prime p p dvd t

by (metis order-less-irrefl prime-factor-nat)
hence p-div-deg-f : p dvd degree f

unfolding deg-f-def by simp
define n where n = degree f div p
have n-in-N : n ∈ N

unfolding N-def n-def using p-prime(1 ) p-div-deg-f by auto

have deg-g-dvd-n: degree g dvd n
using p-prime(2 ) unfolding n-def deg-f-def by auto

have n-gt-0 : n > 0
using p-div-deg-f assms(2 ) p-prime(1 ) unfolding n-def
by (metis dvd-div-eq-0-iff gr0I )

have deg-g-gt-0 : degree g > 0
using monic-poly-min-degree[OF g-def (3 )] by simp

have 0 :g pdivides gauss-poly R (order R^n)
using deg-g-dvd-n div-gauss-poly-iff [OF n-gt-0 g-def (3 )] by simp

have pcoprime (gauss-poly R (order R^n)) f
using n-in-N r2 by simp

thus False
using 0 g-def (1 ) g-carr deg-g-gt-0 unfolding pcoprime-def by

simp
qed
ultimately show ?thesis

by auto
qed

A more general variant of the previous theorem for non-monic
polynomials. The result is from Lemma 1 [5].
theorem rabin-irreducibility-condition-2 :
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assumes f ∈ carrier (poly-ring R) degree f > 0
defines N ≡ {degree f div p | p . Factorial-Ring.prime p ∧ p dvd

degree f }
shows pirreducible (carrier R) f ←→
(f pdivides gauss-poly R (order R^degree f ) ∧ (∀n ∈ N . pcoprime

(gauss-poly R (order R^n)) f ))
(is ?L ←→ ?R1 ∧ ?R2 )

proof −
define α where α = [inv (hd f )]
let ?g = (λx. gauss-poly R (order R^x))
let ?h = α ⊗poly-ring R f

have f-nz: f 6= 0poly-ring R unfolding univ-poly-zero using assms(2 )
by auto

hence hd f ∈ carrier R − {0} using assms(1 ) lead-coeff-carr by
simp

hence inv (hd f ) ∈ carrier R − {0} using field-Units by auto
hence α-unit: α ∈ Units (poly-ring R)

unfolding α-def using univ-poly-carrier-units by simp

have α-nz: α 6= 0poly-ring R unfolding univ-poly-zero α-def by
simp

have hd ?h = hd α ⊗ hd f
using α-nz f-nz assms(1 ) α-unit by (intro lead-coeff-mult) auto

also have ... = inv (hd f ) ⊗ hd f unfolding α-def by simp
also have ... = 1 using lead-coeff-carr f-nz assms(1 ) by (simp add:

field-Units)
finally have hd ?h = 1 by simp
moreover have ?h 6= []
using α-nz f-nz univ-poly-zero by (metis α-unit assms(1 ) r .p.Units-closed

r .p.integral)
ultimately have h-monic: monic-poly R ?h
using r .p.Units-closed[OF α-unit] assms(1 ) unfolding monic-poly-def

by auto

have degree ?h = degree α + degree f
using assms(1 ) f-nz α-unit α-nz by (intro degree-mult[OF car-

rier-is-subring]) auto
also have ... = degree f unfolding α-def by simp
finally have deg-f : degree f = degree ?h by simp

have hf-cong:?h ∼r .P f
using assms(1 ) α-unit by (simp add: r .p.Units-closed r .p.associatedI2

r .p.m-comm)
hence 0 : f pdivides ?g (degree f ) ←→ ?h pdivides ?g (degree f )
unfolding pdivides-def using r .p.divides-cong-l r .p.associated-sym

using r .p.Units-closed[OF α-unit] assms(1 ) gauss-poly-carr by
blast
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have 1 : pcoprime (?g n) f ←→ pcoprime (?g n) ?h for n
using hf-cong r .p.associated-sym r .p.Units-closed[OF α-unit] assms(1 )
by (intro pcoprime-right-assoc-cong gauss-poly-carr) auto

have ?L ←→ pirreducible (carrier R) (α ⊗poly-ring R f )
using α-unit α-nz assms(1 ) f-nz r .p.integral unfolding ring-irreducible-def
by (intro arg-cong2 [where f=(∧)] r .p.irreducible-prod-unit assms)

auto
also have ... ←→ monic-irreducible-poly R (α ⊗poly-ring R f )

using h-monic unfolding monic-irreducible-poly-def by auto
also have ... ←→ ?h pdivides ?g (degree f ) ∧ (∀n ∈ N . pcoprime

(?g n) ?h)
using assms(2 ) unfolding N-def deg-f by (intro rabin-irreducibility-condition

h-monic) auto
also have ... ←→ f pdivides ?g (degree f ) ∧ (∀n ∈ N . pcoprime (?g

n) f )
using 0 1 by simp

finally show ?thesis by simp
qed

end

end

9 Executable Structures
theory Finite-Fields-Indexed-Algebra-Code

imports HOL−Algebra.Ring HOL−Algebra.Coset
begin

In the following, we introduce records for executable operations
for algebraic structures, which can be used for code-generation
and evaluation. These are then shown to be equivalent to the
(not-necessarily constructive) definitions using HOL-Algebra. A
more direct approach, i.e., instantiating the structures in the
framework with effective operations fails. For example the struc-
ture records represent the domain of the algebraic structure as
a set, which implies the evaluation of (⊕residue-ring (10 :: ′c)100)

requires the construction of {0 ..(10 :: ′a)100 − 1}. This is tech-
nically constructive but very impractical. Moreover, the ad-
ditive/multiplicative inverse is defined non-constructively using
the description operator THE in HOL-Algebra.
The above could be avoided, if it were possible to introduce code
equations conditionally, e.g., for example for (	residue-ring n x) y
(if x y are in the carrier of the structure, but this does not seem
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to be possible.
Note that, the algebraic structures defined in HOL-Computational_Algebra
are type-based, which prevents using them in some algorithmic
settings. For example, choosing an irreducible polynomial dy-
namically and performing operations in the factoring ring with
respect to it is not possible in the type-based approach.
record ′a idx-ring =

idx-pred :: ′a ⇒ bool
idx-uminus :: ′a ⇒ ′a
idx-plus :: ′a ⇒ ′a ⇒ ′a
idx-udivide :: ′a ⇒ ′a
idx-mult :: ′a ⇒ ′a ⇒ ′a
idx-zero :: ′a
idx-one :: ′a

record ′a idx-ring-enum = ′a idx-ring +
idx-size :: nat
idx-enum :: nat ⇒ ′a
idx-enum-inv :: ′a ⇒ nat

fun idx-pow :: ( ′a, ′b) idx-ring-scheme ⇒ ′a ⇒ nat ⇒ ′a where
idx-pow E x 0 = idx-one E |
idx-pow E x (Suc n) = idx-mult E (idx-pow E x n) x

open-bundle index-algebra-syntax
begin
notation idx-zero (‹0C ı›)
notation idx-one (‹1C ı›)
notation idx-plus (infixl ‹+C ı› 65 )
notation idx-mult (infixl ‹∗C ı› 70 )
notation idx-uminus (‹−C ı -› [81 ] 80 )
notation idx-udivide (‹- −1

C ı› [81 ] 80 )
notation idx-pow (infixr ‹^C ı› 75 )
end

definition ring-of :: ( ′a, ′b) idx-ring-scheme ⇒ ′a ring
where ring-of A = (|

carrier = {x. idx-pred A x},
mult = (λ x y. x ∗CA y),
one = 1CA,
zero = 0CA,
add = (λ x y. x +CA y) |)

definition ringC where
ringC A = (ring (ring-of A) ∧ (∀ x. idx-pred A x −→ −CA x =
	ring-of A x) ∧

(∀ x. x ∈ Units (ring-of A) −→ x −1
CA = invring-of A x))
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lemma ring-cD-aux:
x ^CA n = x [^]ring-of A n
by (induction n) (auto simp:ring-of-def )

lemma ring-cD:
assumes ringC A
shows

0CA = 0ring-of A
1CA = 1ring-of A∧

x y. x ∗CA y = x ⊗ring-of A y∧
x y. x +CA y = x ⊕ring-of A y∧
x. x ∈ carrier (ring-of A) =⇒ −CA x = 	ring-of A x∧
x. x ∈ Units (ring-of A) =⇒ x −1

CA = invring-of A x∧
x. x ^CA n = x [^]ring-of A n

using assms ring-cD-aux unfolding ringC-def ring-of-def by auto

lemma ring-cI :
assumes ring (ring-of A)
assumes

∧
x. x ∈ carrier (ring-of A) =⇒ −CA x = 	ring-of A x

assumes
∧

x. x ∈ Units (ring-of A) =⇒ x−1
CA = invring-of A x

shows ringC A
proof −

have x ∈ carrier (ring-of A) ←→ idx-pred A x for x unfolding
ring-of-def by auto

thus ?thesis using assms unfolding ringC-def by auto
qed

definition cringC where cringC A = (ringC A ∧ cring (ring-of A))

lemma cring-cI :
assumes cring (ring-of A)
assumes

∧
x. x ∈ carrier (ring-of A) =⇒ −CA x = 	ring-of A x

assumes
∧

x. x ∈ Units (ring-of A) =⇒ x−1
CA = invring-of A x

shows cringC A
unfolding cringC-def by (intro ring-cI conjI assms cring.axioms(1 ))

lemma cring-c-imp-ring: cringC A =⇒ ringC A
unfolding cringC-def by simp

lemmas cring-cD = ring-cD[OF cring-c-imp-ring]

definition domainC where domainC A = (cringC A ∧ domain (ring-of
A))

lemma domain-cI :
assumes domain (ring-of A)
assumes

∧
x. x ∈ carrier (ring-of A) =⇒ −CA x = 	ring-of A x

assumes
∧

x. x ∈ Units (ring-of A) =⇒ x−1
CA = invring-of A x
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shows domainC A
unfolding domainC-def by (intro conjI cring-cI assms domain.axioms(1 ))

lemma domain-c-imp-ring: domainC A =⇒ ringC A
unfolding cringC-def domainC-def by simp

lemmas domain-cD = ring-cD[OF domain-c-imp-ring]

definition fieldC where fieldC A = (domainC A ∧ field (ring-of A))

lemma field-cI :
assumes field (ring-of A)
assumes

∧
x. x ∈ carrier (ring-of A) =⇒ −CA x = 	ring-of A x

assumes
∧

x. x ∈ Units (ring-of A) =⇒ x−1
CA = invring-of A x

shows fieldC A
unfolding fieldC-def by (intro conjI domain-cI assms field.axioms(1 ))

lemma field-c-imp-ring: fieldC A =⇒ ringC A
unfolding fieldC-def cringC-def domainC-def by simp

lemmas field-cD = ring-cD[OF field-c-imp-ring]

definition enumC where enumC A = (
finite (carrier (ring-of A)) ∧
idx-size A = order (ring-of A) ∧
bij-betw (idx-enum A) {..<order (ring-of A)} (carrier (ring-of A)) ∧
(∀ x < order (ring-of A). idx-enum-inv A (idx-enum A x) = x))

lemma enum-cI :
assumes finite (carrier (ring-of A))
assumes idx-size A = order (ring-of A)
assumes bij-betw (idx-enum A) {..<order (ring-of A)} (carrier (ring-of

A))
assumes

∧
x. x < order (ring-of A) =⇒ idx-enum-inv A (idx-enum

A x) = x
shows enumC A
using assms unfolding enumC-def by auto

lemma enum-cD:
assumes enumC R
shows finite (carrier (ring-of R))

and idx-size R = order (ring-of R)
and bij-betw (idx-enum R) {..<order (ring-of R)} (carrier (ring-of

R))
and bij-betw (idx-enum-inv R) (carrier (ring-of R)) {..<order

(ring-of R)}
and

∧
x. x < order (ring-of R) =⇒ idx-enum-inv R (idx-enum R

x) = x
and

∧
x. x ∈ carrier (ring-of R) =⇒ idx-enum R (idx-enum-inv R
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x) = x
using assms

proof −
let ?n = order (ring-of R)
have a:idx-enum-inv R x = the-inv-into {..<?n} (idx-enum R) x

if x-carr : x ∈ carrier (ring-of R) for x
proof −

have idx-enum R ‘ {..<order (ring-of R)} = carrier (ring-of R)
using assms unfolding bij-betw-def enumC-def by simp

then obtain y where y-carr : y ∈ {..< order (ring-of R)} and
x-def : x = idx-enum R y

using x-carr by auto
have idx-enum-inv R x = y using assms y-carr unfolding x-def

enumC-def by simp
also have ... = the-inv-into {..<?n} (idx-enum R) x
using assms unfolding bij-betw-def enumC-def unfolding x-def
by (intro the-inv-into-f-f [symmetric] y-carr) auto

finally show ?thesis by simp
qed

have bij-betw (the-inv-into {..<?n} (idx-enum R)) (carrier (ring-of
R)) {..<?n}

using assms unfolding enumC-def by (intro bij-betw-the-inv-into)
auto
thus bij-betw (idx-enum-inv R) (carrier (ring-of R)) {..<order (ring-of

R)}
by (subst bij-betw-cong[OF a]) auto

show idx-enum R (idx-enum-inv R x) = x if x ∈ carrier (ring-of R)
for x

using that assms unfolding a[OF that] enumC-def bij-betw-def by
(intro f-the-inv-into-f ) auto
qed (use assms enumC-def in auto)

end

10 Executable Polynomial Rings
theory Finite-Fields-Poly-Ring-Code

imports
Finite-Fields-Indexed-Algebra-Code
HOL−Algebra.Polynomials
Finite-Fields.Card-Irreducible-Polynomials-Aux

begin

fun o-normalize :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list
where

o-normalize E [] = []
| o-normalize E p = (if lead-coeff p 6= 0CE then p else o-normalize

E (tl p))
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fun o-poly-add :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list ⇒ ′a list
where

o-poly-add E p1 p2 = (
if length p1 ≥ length p2

then o-normalize E (map2 (idx-plus E) p1 ((replicate (length p1
− length p2 ) 0CE ) @ p2 ))

else o-poly-add E p2 p1 )

fun o-poly-mult :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list ⇒ ′a list
where

o-poly-mult E [] p2 = []
| o-poly-mult E p1 p2 =

o-poly-add E ((map (idx-mult E (hd p1 )) p2 ) @
(replicate (degree p1 ) 0CE )) (o-poly-mult E (tl p1 ) p2 )

definition poly :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list idx-ring
where poly E = (|

idx-pred = (λx. (x = [] ∨ hd x 6= 0CE) ∧ list-all (idx-pred E) x),
idx-uminus = (λx. map (idx-uminus E) x),
idx-plus = o-poly-add E ,
idx-udivide = (λx. [idx-udivide E (hd x)]),
idx-mult = o-poly-mult E ,
idx-zero = [],
idx-one = [idx-one E ] |)

definition poly-var :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list (‹XC ı›)
where poly-var E = [idx-one E , idx-zero E ]

lemma poly-var : poly-var R = Xring-of R
unfolding var-def poly-var-def by (simp add:ring-of-def )

fun poly-eval :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a ⇒ ′a
where poly-eval R fs x = fold (λa b. b ∗CR x +CR a) fs 0CR

lemma ring-of-poly:
assumes ringC A
shows ring-of (poly A) = poly-ring (ring-of A)

proof (intro ring.equality)
interpret ring ring-of A using assms unfolding ringC-def by auto

have b: 0ring-of A = 0CA unfolding ring-of-def by simp
have c: (⊗ring-of A) = (∗CA) unfolding ring-of-def by simp
have d: (⊕ring-of A) = (+CA) unfolding ring-of-def by simp

have o-normalize A x = normalize x for x
using b by (induction x) simp-all
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hence o-poly-add A x y = poly-add x y if length y ≤ length x for x
y

using that by (subst o-poly-add.simps, subst poly-add.simps) (simp
add: b d)

hence a:o-poly-add A x y = poly-add x y for x y
by (subst o-poly-add.simps, subst poly-add.simps) simp

hence x ⊕ring-of (poly A) y = x ⊕poly-ring (ring-of A) y for x y
by (simp add:univ-poly-def poly-def ring-of-def )

thus (⊕ring-of (poly A)) = (⊕poly-ring (ring-of A)) by (intro ext)

show carrier (ring-of (poly A)) = carrier (poly-ring (ring-of A))
by (auto simp add: ring-of-def poly-def univ-poly-def polynomial-def

list-all-iff )

have o-poly-mult A x y = poly-mult x y for x y
proof (induction x)

case Nil then show ?case by simp
next

case (Cons a x) then show ?case
by (subst o-poly-mult.simps,subst poly-mult.simps)
(simp add:a b c del:poly-add.simps o-poly-add.simps)

qed
hence x ⊗ring-of (poly A) y = x ⊗poly-ring (ring-of A) y for x y

by (simp add: univ-poly-def poly-def ring-of-def )
thus (⊗ring-of (poly A)) = (⊗poly-ring (ring-of A)) by (intro ext)

qed (simp-all add:ring-of-def poly-def univ-poly-def )

lemma poly-eval:
assumes ringC R
assumes fsc:fs ∈ carrier (ring-of (poly R)) and xc:x ∈ carrier

(ring-of R)
shows poly-eval R fs x = ring.eval (ring-of R) fs x

proof −
interpret ring ring-of R using assms unfolding ringC-def by auto

have fs-carr :fs ∈ carrier (poly-ring (ring-of R)) using ring-of-poly[OF
assms(1 )] fsc by auto

hence set fs ⊆ carrier (ring-of R) by (simp add: polynomial-incl
univ-poly-carrier)

thus ?thesis
proof (induction rule:rev-induct)

case Nil thus ?case by simp (simp add:ring-of-def )
next

case (snoc ft fh)
have poly-eval R (fh @ [ft]) x = poly-eval R fh x ∗CR x +CR ft
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by simp
also have ... = eval fh x ∗CR x +CR ft using snoc by (subst snoc)

auto
also have ... = eval fh x ⊗ring-of R x ⊕ring-of R ft by (simp

add:ring-of-def )
also have ... = eval (fh@[ft]) x using snoc by (intro eval-append-aux[symmetric]

xc) auto
finally show ?case by auto

qed
qed

lemma poly-domain:
assumes domainC A
shows domainC (poly A)

proof −
interpret domain ring-of A using assms unfolding domainC-def

by auto

have a:	ring-of A x = −CA x if x ∈ carrier (ring-of A) for x
using that by (intro domain-cD[symmetric] assms)

have ringC A
using assms unfolding domainC-def cringC-def by auto

hence b:ring-of (poly A) = poly-ring (ring-of A)
by (subst ring-of-poly) auto

have c:domain (ring-of (poly A))
unfolding b by (rule univ-poly-is-domain[OF carrier-is-subring])

interpret d: domain poly-ring (ring-of A)
using c unfolding b by simp

have −Cpoly A x = 	ring-of (poly A) x if x ∈ carrier (ring-of (poly
A)) for x

proof −
have 	ring-of (poly A) x = map (a-inv (ring-of A)) x

using that unfolding b by (subst univ-poly-a-inv-def ′[OF car-
rier-is-subring]) auto

also have ... = map (λr . −CA r) x
using that unfolding b univ-poly-carrier [symmetric] polyno-

mial-def
by (intro map-cong refl a) auto

also have ... = −Cpoly A x
unfolding poly-def by simp

finally show ?thesis by simp
qed
moreover have x −1

Cpoly A = invring-of (poly A) x if x ∈ Units
(ring-of (poly A)) for x

proof −
have x ∈ {[k] |k. k ∈ carrier (ring-of A) − {0ring-of A}}
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using that univ-poly-carrier-units-incl unfolding b by auto
then obtain k where x-eq: k ∈ carrier (ring-of A) − {0ring-of A}

x = [k] by auto
have invring-of (poly A) x ∈ Units (poly-ring (ring-of A))

using that unfolding b by simp
hence invring-of (poly A) x ∈ {[k] |k. k ∈ carrier (ring-of A) −

{0ring-of A}}
using that univ-poly-carrier-units-incl unfolding b by auto

then obtain v where x-inv-eq: v∈ carrier (ring-of A) − {0ring-of A}
invring-of (poly A) x = [v] by auto

have poly-mult [k] [v] = [k] ⊗ring-of (poly A) [v] unfolding b
univ-poly-mult by simp

also have ... = x ⊗ring-of (poly A) invring-of (poly A) x using
x-inv-eq x-eq by auto

also have ... = 1ring-of (poly A) using that unfolding b by simp
also have ... = [1ring-of A] unfolding b univ-poly-one by (simp

add:ring-of-def )
finally have poly-mult [k] [v] = [1ring-of A] by simp
hence k ⊗ring-of A v ⊕ring-of A 0ring-of A = 1ring-of A

by (simp add:if-distribR if-distrib) (simp cong:if-cong, metis)
hence e: k ⊗ring-of A v = 1ring-of A using x-eq(1 ) x-inv-eq(1 )

by simp
hence f : v ⊗ring-of A k = 1ring-of A using x-eq(1 ) x-inv-eq(1 )

m-comm by simp
have g: v = invring-of A k
using e x-eq(1 ) x-inv-eq(1 ) by (intro comm-inv-char [symmetric])

auto
hence h: k ∈ Units (ring-of A) unfolding Units-def using e f

x-eq(1 ) x-inv-eq(1 ) by blast

have x −1
Cpoly A = [k] −1

Cpoly A unfolding x-eq by simp
also have ... = [k −1

CA] unfolding poly-def by simp
also have ... = [v]
unfolding g by (intro domain-cD[OF assms(1 )] arg-cong2 [where

f=(#)] h refl)
also have ... = invring-of (poly A) x unfolding x-inv-eq by simp
finally show ?thesis by simp

qed
ultimately show ?thesis using c by (intro domain-cI )

qed

function long-divisionC :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list
⇒ ′a list × ′a list

where long-divisionC F f g = (
if (length g = 0 ∨ length f < length g)

then ([], f )
else (
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let k = length f − length g;
α = −CF (hd f ∗CF (hd g) −1

CF);
h = [α] ∗Cpoly F XCF ^Cpoly F k;
f ′ = f +Cpoly F (h ∗Cpoly F g);
f ′′ = take (length f − 1 ) f ′

in apfst (λx. x +Cpoly F −Cpoly F h) (long-divisionC F f ′′ g)))
by pat-completeness auto

lemma pmod-termination-helper :
g 6= [] =⇒ ¬length f < length g =⇒ min x (length f − 1 ) < length f
by (metis diff-less length-greater-0-conv list.size(3 ) min.strict-coboundedI2

zero-less-one)

termination by (relation measure (λ(-, f , -). length f )) (use pmod-termination-helper
in auto)

declare long-divisionC .simps[simp del]

lemma long-division-c-length:
assumes length g > 0
shows length (snd (long-divisionC R f g)) < length g

proof (induction length f arbitrary:f rule:nat-less-induct)
case 1
have 0 :length (snd (long-divisionC R x g)) < length g

if length x < length f for x using 1 that by blast

show length (snd (long-divisionC R f g)) < length g
proof (cases length f < length g)
case True then show ?thesis by (subst long-divisionC .simps) simp

next
case False
hence length f > 0 using assms by auto
thus ?thesis using assms by (subst long-divisionC .simps)
(auto intro!:0 simp: min.commute min.strict-coboundedI1 Let-def )

qed
qed

context field
begin

interpretation r :polynomial-ring R (carrier R)
unfolding polynomial-ring-def polynomial-ring-axioms-def
using carrier-is-subfield field-axioms by force

lemma poly-length-from-coeff :
assumes p ∈ carrier (poly-ring R)
assumes

∧
i. i ≥ k =⇒ coeff p i = 0

shows length p ≤ k
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proof (rule ccontr)
assume a:¬length p ≤ k
hence p-nz: p 6= [] by auto
have k < length p using a by simp
hence k ≤ length p − 1 by simp
hence 0 = coeff p (degree p) by (intro assms(2 )[symmetric])
also have ... = lead-coeff p by (intro lead-coeff-simp[OF p-nz])
finally have 0 = lead-coeff p by simp
thus False

using p-nz assms(1 ) unfolding univ-poly-def polynomial-def by
simp
qed

lemma poly-add-cancel-len:
assumes f ∈ carrier (poly-ring R) − {0poly-ring R}
assumes g ∈ carrier (poly-ring R) − {0poly-ring R}
assumes hd f = 	 hd g degree f = degree g
shows length (f ⊕poly-ring R g) < length f

proof −
have f-ne: f 6= [] using assms(1 ) unfolding univ-poly-zero by simp
have g-ne: g 6= [] using assms(2 ) unfolding univ-poly-zero by simp

have coeff f i = 	coeff g i if i ≥ degree f for i
proof (cases i = degree f )

case True
have coeff f i = hd f unfolding True by (subst lead-coeff-simp[OF

f-ne]) simp
also have ... = 	hd g using assms(3 ) by simp
also have ... = 	coeff g i unfolding True assms(4 ) by (subst

lead-coeff-simp[OF g-ne]) simp
finally show ?thesis by simp

next
case False
hence i > degree f i > degree g using assms(4 ) that by auto
thus coeff f i = 	 coeff g i using coeff-degree by simp

qed
hence coeff (f ⊕poly-ring R g) i = 0 if i ≥ degree f for i
using assms(1 ,2 ) that by (subst r .coeff-add) (auto intro:l-neg simp:

r .coeff-range)

hence length (f ⊕poly-ring R g) ≤ length f − 1
using assms(1 ,2 ) by (intro poly-length-from-coeff ) auto

also have ... < length f using f-ne by simp
finally show ?thesis by simp

qed

lemma pmod-mult-left:
assumes f ∈ carrier (poly-ring R)
assumes g ∈ carrier (poly-ring R)
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assumes h ∈ carrier (poly-ring R)
shows (f ⊗poly-ring R g) pmod h = ((f pmod h) ⊗poly-ring R g) pmod

h (is ?L = ?R)
proof −

have h pdivides (h ⊗poly-ring R (f pdiv h)) ⊗poly-ring R g
using assms long-division-closed[OF carrier-is-subfield]
by (simp add: dividesI ′ pdivides-def r .p.m-assoc)

hence 0 :(h ⊗poly-ring R (f pdiv h)) ⊗poly-ring R g pmod h = 0poly-ring R
using pmod-zero-iff-pdivides[OF carrier-is-subfield] assms

long-division-closed[OF carrier-is-subfield] univ-poly-zero
by (metis (no-types, opaque-lifting) r .p.m-closed)

have ?L = (h ⊗poly-ring R (f pdiv h) ⊕poly-ring R (f pmod h))
⊗poly-ring R g pmod h

using assms by (intro arg-cong2 [where f=(⊗poly-ring R)] arg-cong2 [where
f=(pmod)]

pdiv-pmod[OF carrier-is-subfield]) auto
also have ... = ((h ⊗poly-ring R (f pdiv h)) ⊗poly-ring R g ⊕poly-ring R
(f pmod h) ⊗poly-ring R g) pmod h
using assms long-division-closed[OF carrier-is-subfield]
by (intro r .p.l-distr arg-cong2 [where f=(pmod)]) auto

also have ... = ((h ⊗poly-ring R (f pdiv h)) ⊗poly-ring R g) pmod h
⊕poly-ring R

((f pmod h) ⊗poly-ring R g pmod h)
using assms long-division-closed[OF carrier-is-subfield]
by (intro long-division-add[OF carrier-is-subfield]) auto

also have ... = ?R
using assms long-division-closed[OF carrier-is-subfield] unfolding

0 by auto
finally show ?thesis

by simp
qed

lemma pmod-mult-right:
assumes f ∈ carrier (poly-ring R)
assumes g ∈ carrier (poly-ring R)
assumes h ∈ carrier (poly-ring R)
shows (f ⊗poly-ring R g) pmod h = (f ⊗poly-ring R (g pmod h))

pmod h (is ?L = ?R)
proof −

have ?L = (g ⊗poly-ring R f ) pmod h using assms by algebra
also have ... = ((g pmod h) ⊗poly-ring R f ) pmod h by (intro

pmod-mult-left assms)
also have ... = ?R using assms long-division-closed[OF carrier-is-subfield]

by algebra
finally show ?thesis by simp

qed
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lemma pmod-mult-both:
assumes f ∈ carrier (poly-ring R)
assumes g ∈ carrier (poly-ring R)
assumes h ∈ carrier (poly-ring R)
shows (f ⊗poly-ring R g) pmod h = ((f pmod h) ⊗poly-ring R (g pmod

h)) pmod h
(is ?L = ?R)

proof −
have (f ⊗poly-ring R g) pmod h = ((f pmod h) ⊗poly-ring R g) pmod

h
by (intro pmod-mult-left assms)

also have ... = ?R
using assms long-division-closed[OF carrier-is-subfield] by (intro

pmod-mult-right) auto
finally show ?thesis by simp

qed

lemma field-Unit-minus-closed:
assumes x ∈ Units R
shows 	 x ∈ Units R
using assms mult-of .Units-eq by auto

end

lemma long-division-c:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
assumes g ∈ carrier (poly-ring (ring-of R))
shows long-divisionC R f g = (ring.pdiv (ring-of R) f g, ring.pmod

(ring-of R) f g)
proof −

let ?P = poly-ring (ring-of R)
let ?result = (λf r . f = snd r ⊕poly-ring (ring-of R) (fst r ⊗poly-ring (ring-of R)

g))

define r where r = long-divisionC R f g

interpret field ring-of R using assms(1 ) unfolding fieldC-def by
auto

interpret d-poly-ring: domain poly-ring (ring-of R)
by (rule univ-poly-is-domain[OF carrier-is-subring])

have ring-c: ringC R using assms(1 ) unfolding fieldC-def do-
mainC-def cringC-def by auto
have d-poly: domainC (poly R) using assms (1 ) unfolding fieldC-def

by (intro poly-domain) auto

have r = long-divisionC R f g =⇒ ?result f r ∧ {fst r , snd r} ⊆
carrier (poly-ring (ring-of R))
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using assms(2 )
proof (induction length f arbitrary: f r rule:nat-less-induct)

case 1

have ind: x = snd q ⊕?P fst q ⊗?P g {fst q, snd q} ⊆ carrier
(poly-ring (ring-of R))

if length x < length f q = long-divisionC R x g x ∈ carrier
(poly-ring (ring-of R))

for x q using 1 (1 ) that by auto

show ?case
proof (cases length g = 0 ∨ length f < length g)

case True
hence r = (0poly-ring (ring-of R), f )

unfolding 1 (2 ) univ-poly-zero by (subst long-divisionC .simps)
simp

then show ?thesis using assms(3 ) 1 (3 ) by simp
next

case False
hence length g > 0 length f ≥ length g by auto
hence f 6= [] g 6= [] by auto
hence f-carr : f ∈ carrier ?P − {0?P} and g-carr : g ∈ carrier

?P − {0?P}
using 1 (3 ) assms(3 ) univ-poly-zero by auto

define k where k = length f − length g
define α where α = −CR (hd f ∗CR (hd g) −1

CR)
define h where h = [α] ∗Cpoly R XCR ^Cpoly R k
define f ′ where f ′ = f +Cpoly R (h ∗Cpoly R g)
define f ′′ where f ′′ = take (length f − 1 ) f ′

obtain s t where st-def : (s,t) = long-divisionC R f ′′ g by (metis
surj-pair)

have r = apfst (λx. x +Cpoly R −Cpoly R h) (long-divisionC R
f ′′ g)

using False unfolding 1 (2 )
by (subst long-divisionC .simps) (simp add:Let-def f ′′-def f ′-def

h-def α-def k-def )

hence r-def : r = (s +Cpoly R −Cpoly R h, t)
unfolding st-def [symmetric] by simp

have monic-poly (ring-of R) (Xring-of R [^]poly-ring (ring-of R)
k)

by (intro monic-poly-pow monic-poly-var)
hence [simp]: lead-coeff (Xring-of R [^]poly-ring (ring-of R) k) =

1ring-of R
unfolding monic-poly-def by simp
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have hd-f-unit: hd f ∈ Units (ring-of R) and hd-g-unit: hd g ∈
Units (ring-of R)

using f-carr g-carr lead-coeff-carr field-Units by auto
hence hd-f-carr : hd f ∈ carrier (ring-of R) and hd-g-carr : hd g

∈ carrier (ring-of R)
by auto

have k-def ′: k = degree f − degree g using False unfolding k-def
by auto

have α-def ′: α = 	ring-of R (hd f ⊗ring-of R invring-of R hd g)
unfolding α-def using hd-g-unit hd-f-carr field-cD[OF assms(1 )]

by simp

have α-unit: α ∈ Units (ring-of R) unfolding α-def ′ using
hd-f-unit hd-g-unit

by (intro field-Unit-minus-closed) simp
hence α-carr : α ∈ carrier (ring-of R) − {0ring-of R} unfolding

field-Units by simp
hence α-poly-carr : [α] ∈ carrier (poly-ring (ring-of R)) −

{0poly-ring (ring-of R)}
by (simp add: univ-poly-carrier [symmetric] univ-poly-zero poly-

nomial-def )

have h-def ′: h = [α] ⊗?P Xring-of R [^]?P k
unfolding h-def poly-var domain-cD[OF d-poly] by (simp

add:ring-of-poly[OF ring-c])
have f ′-def ′: f ′ = f ⊕?P (h ⊗?P g)
unfolding f ′-def domain-cD[OF d-poly] by (simp add:ring-of-poly[OF

ring-c])

have h-carr : h ∈ carrier (poly-ring (ring-of R)) − {0poly-ring (ring-of R)}
using d-poly-ring.mult-of .m-closed α-poly-carr var-pow-carr [OF

carrier-is-subring]
unfolding h-def ′ by auto

have degree f = k + degree g using False unfolding k-def by
linarith

also have ... = degree [α] + degree (Xring-of R [^]?P k) + degree
g

unfolding var-pow-degree[OF carrier-is-subring] by simp
also have ... = degree h + degree g unfolding h-def ′

by (intro arg-cong2 [where f=(+)] degree-mult[symmetric]
carrier-is-subring α-poly-carr var-pow-carr refl)

also have ... = degree (h ⊗poly-ring (ring-of R) g)
by (intro degree-mult[symmetric] carrier-is-subring h-carr g-carr)
finally have deg-f : degree f = degree (h ⊗poly-ring (ring-of R) g)

by simp
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have f ′-carr : f ′ ∈ carrier (poly-ring (ring-of R))
using f-carr h-carr g-carr unfolding f ′-def ′ by auto

have hd f = 	ring-of R (α ⊗ring-of R lead-coeff g)
using hd-g-unit hd-f-carr hd-g-carr α-unit α-carr unfolding

α-def ′

by (simp add: m-assoc l-minus)
also have ... = 	ring-of R (hd h ⊗ring-of R hd g)
using hd-f-carr α-carr α-poly-carr var-pow-carr [OF carrier-is-subring]

unfolding h-def ′

by (subst lead-coeff-mult) (simp-all add:algebra-simps)
also have ... = 	ring-of R hd (h ⊗poly-ring (ring-of R) g)

using h-carr g-carr by (subst lead-coeff-mult) auto
finally have hd f = 	ring-of R hd (h ⊗poly-ring (ring-of R) g)

by simp
hence len-f ′: length f ′ < length f using deg-f h-carr g-carr

d-poly-ring.integral
unfolding f ′-def ′ by (intro poly-add-cancel-len f-carr) auto

hence f ′′-def ′: f ′′ = f ′ unfolding f ′′-def by simp

have {fst (s,t),snd (s,t)} ⊆ carrier (poly-ring (ring-of R))
using len-f ′ f ′′-def ′ f ′-carr by (intro ind(2 )[where x=f ′′]

st-def ) auto
hence s-carr : s ∈ carrier ?P and t-carr : t ∈ carrier ?P by auto

have r-def ′: r = (s 	poly-ring (ring-of R) h, t)
using h-carr domain-cD[OF d-poly] unfolding r-def a-minus-def

using ring-of-poly[OF ring-c,symmetric] by simp

have r-carr : {fst r , snd r} ⊆ carrier (poly-ring (ring-of R))
using s-carr t-carr h-carr unfolding r-def ′ by auto

have f = f ′′ 	?P h ⊗?P g
using h-carr g-carr f-carr unfolding f ′′-def ′ f ′-def ′ by simp

algebra
also have ... = (snd (s,t) ⊕?P fst (s,t) ⊗?P g) 	?P h ⊗?P g

using f ′-carr f ′′-def ′ len-f ′

by (intro arg-cong2 [where f=λx y. x 	?P y] ind(1 ) st-def )
auto

also have ... = t ⊕?P (s 	?P h) ⊗?P g
using s-carr t-carr h-carr g-carr by simp algebra

also have ... = snd r ⊕poly-ring (ring-of R) fst r ⊗poly-ring (ring-of R)
g

unfolding r-def ′ by simp
finally have f = snd r ⊕poly-ring (ring-of R) fst r ⊗poly-ring (ring-of R)

g by simp
thus ?thesis using r-carr by auto

qed
qed
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hence result: ?result f r {fst r , snd r} ⊆ carrier (poly-ring (ring-of
R))

using r-def by auto
show ?thesis
proof (cases g = [])

case True then show ?thesis by (simp add:long-divisionC .simps
pmod-def pdiv-def )

next
case False
hence snd r = [] ∨ degree (snd r) < degree g

using long-division-c-length unfolding r-def
by (metis One-nat-def Suc-pred length-greater-0-conv not-less-eq)

moreover have f = g ⊗?P (fst r) ⊕poly-ring (ring-of R) (snd r)
using result(1 ,2 ) assms(2 ,3 ) by simp algebra

ultimately have long-divides f g (fst r , snd r)
using result(2 ) unfolding long-divides-def by (auto simp:mem-Times-iff )
hence (fst r , snd r) = (pdiv f g, pmod f g)

by (intro long-divisionI [OF carrier-is-subfield] False assms)
then show ?thesis unfolding r-def by simp

qed
qed

definition pdivC :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list ⇒ ′a
list where

pdivC R f g = fst (long-divisionC R f g)

lemma pdiv-c:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
assumes g ∈ carrier (poly-ring (ring-of R))
shows pdivC R f g = ring.pdiv (ring-of R) f g
unfolding pdivC-def long-division-c[OF assms] by simp

definition pmodC :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list ⇒ ′a
list where

pmodC R f g = snd (long-divisionC R f g)

lemma pmod-c:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
assumes g ∈ carrier (poly-ring (ring-of R))
shows pmodC R f g = ring.pmod (ring-of R) f g
unfolding pmodC-def long-division-c[OF assms] by simp

function ext-euclidean ::
( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list ⇒ ( ′a list × ′a list) × ′a

list
where ext-euclidean F f g = (

if f = [] ∨ g = [] then
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((1Cpoly F, 1Cpoly F),f +Cpoly F g)
else (

let (p,q) = long-divisionC F f g;
((u,v),r) = ext-euclidean F g q

in ((v,u +Cpoly F (−Cpoly F (p ∗Cpoly F v))),r)))
by pat-completeness auto

termination
apply (relation measure (λ(-, -, f ). length f ))
subgoal by simp
by (metis case-prod-conv in-measure length-greater-0-conv long-division-c-length

prod.sel(2 ))

lemma (in domain) pdivides-self :
assumes x ∈ carrier (poly-ring R)
shows x pdivides x

proof −
interpret d:domain poly-ring R by (rule univ-poly-is-domain[OF

carrier-is-subring])
show ?thesis

using assms unfolding pdivides-def
by (intro dividesI [where c=1poly-ring R]) simp-all

qed

declare ext-euclidean.simps[simp del]

lemma ext-euclidean:
assumes fieldC R
defines P ≡ poly-ring (ring-of R)
assumes f ∈ carrier (poly-ring (ring-of R))
assumes g ∈ carrier (poly-ring (ring-of R))
defines r ≡ ext-euclidean R f g
shows snd r = f ⊗P (fst (fst r)) ⊕P g ⊗P (snd (fst r)) (is ?T1 )

and snd r pdividesring-of R f (is ?T2 ) snd r pdividesring-of R g (is
?T3 )

and {snd r , fst (fst r), snd (fst r)} ⊆ carrier P (is ?T4 )
and snd r = [] −→ f = [] ∧ g = [] (is ?T5 )

proof −
let ?P= poly-ring (ring-of R)

interpret field ring-of R using assms(1 ) unfolding fieldC-def by
auto

interpret d-poly-ring: domain poly-ring (ring-of R)
by (rule univ-poly-is-domain[OF carrier-is-subring])

have ring-c: ringC R using assms(1 ) unfolding fieldC-def do-
mainC-def cringC-def by auto
have d-poly: domainC (poly R) using assms (1 ) unfolding fieldC-def
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by (intro poly-domain) auto

have pdiv-zero: x pdividesring-of R 0?P if x ∈ carrier ?P for x
using that unfolding univ-poly-zero by (intro pdivides-zero[OF

carrier-is-subring])

have snd r = f ⊗?P (fst (fst r)) ⊕?P g ⊗?P (snd (fst r)) ∧
snd r pdividesring-of R f ∧ snd r pdividesring-of R g ∧
{snd r , fst (fst r), snd (fst r)} ⊆ carrier ?P ∧
(snd r = [] −→ f = [] ∧ g = [])
if r = ext-euclidean R f g {f ,g} ⊆ carrier ?P
using that

proof (induction length g arbitrary: f g r rule:nat-less-induct)
case 1
have ind:

snd s = x ⊗?P fst (fst s) ⊕?P y ⊗?P snd (fst s)
snd s pdividesring-of R x snd s pdividesring-of R y
{snd s, fst (fst s), snd (fst s)} ⊆ carrier ?P
(snd s = [] −→ x = [] ∧ y = [])
if length y < length g s = ext-euclidean R x y {x, y} ⊆ carrier

?P
for x y s using that 1 (1 ) by metis+

show ?case
proof (cases f = [] ∨ g = [])

case True
hence r-def : r = ((1?P, 1?P), f ⊕?P g) unfolding 1 (2 )
by (simp add:ext-euclidean.simps domain-cD[OF d-poly] ring-of-poly[OF

ring-c])

consider f = 0?P | g = 0?P
using True unfolding univ-poly-zero by auto

hence snd r pdividesring-of R f ∧ snd r pdividesring-of R g
using 1 (3 ) pdiv-zero pdivides-self unfolding r-def by cases

auto
moreover have snd r = f ⊗?P fst (fst r) ⊕?P g ⊗?P snd (fst

r)
using 1 (3 ) unfolding r-def by simp

moreover have {snd r , fst (fst r), snd (fst r)} ⊆ carrier ?P
using 1 (3 ) unfolding r-def by auto

moreover have snd r = [] −→ f = [] ∧ g = []
using 1 (3 ) True unfolding r-def by (auto simp:univ-poly-zero)
ultimately show ?thesis by (intro conjI ) metis+

next
case False
obtain p q where pq-def : (p,q) = long-divisionC R f g

by (metis surj-pair)
obtain u v s where uvs-def : ((u,v),s) = ext-euclidean R g q

by (metis surj-pair)
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have (p,q) = (pdiv f g, pmod f g)
using 1 (3 ) unfolding pq-def by (intro long-division-c[OF

assms(1 )]) auto
hence p-def : p = pdiv f g and q-def : q = pmod f g by auto
have p-carr : p ∈ carrier ?P and q-carr : q ∈ carrier ?P

using 1 (3 ) long-division-closed[OF carrier-is-subfield] unfold-
ing p-def q-def by auto

have length g > 0 using False by auto
hence len-q: length q < length g using long-division-c-length

pq-def by (metis snd-conv)
have s-eq: s = g ⊗?P u ⊕?P q ⊗?P v

and s-div-g: s pdividesring-of R g
and s-div-q: s pdividesring-of R q
and suv-carr : {s,u,v} ⊆ carrier ?P
and s-zero-iff : s = [] −→ g = [] ∧ q = []
using ind[OF len-q uvs-def -] q-carr 1 (3 ) by auto

have r = ((v,u +Cpoly R (−Cpoly R (p ∗Cpoly R v))),s) unfolding
1 (2 ) using False

by (subst ext-euclidean.simps) (simp add: pq-def [symmetric]
uvs-def [symmetric])

also have ... = ((v, u 	?P (p ⊗?P v)), s) using p-carr suv-carr
domain-cD[OF d-poly]

unfolding a-minus-def ring-of-poly[OF ring-c] by (intro arg-cong2 [where
f=Pair ] refl) simp

finally have r-def : r = ((v, u 	?P (p ⊗?P v)), s) by simp

have snd r = g ⊗?P u ⊕?P q ⊗?P v unfolding r-def s-eq by
simp

also have ... = g ⊗?P u ⊕?P (f 	?P g ⊗?P p) ⊗?P v
using 1 (3 ) p-carr q-carr suv-carr
by (subst pdiv-pmod[OF carrier-is-subfield, of f g])
(simp-all add:p-def [symmetric] q-def [symmetric], algebra)

also have ... = f ⊗?P v ⊕?P g ⊗?P (u 	?P ((p ⊗?P v)))
using 1 (3 ) p-carr q-carr suv-carr by simp algebra

finally have r1 : snd r = f ⊗?P fst (fst r) ⊕?P g ⊗?P snd (fst
r)

unfolding r-def by simp
have pmod f s = pmod (g ⊗?P p ⊕?P q) s using 1 (3 )

by (subst pdiv-pmod[OF carrier-is-subfield, of f g])
(simp-all add:p-def [symmetric] q-def [symmetric])

also have ... = pmod (g ⊗?P p) s ⊕?P pmod q s
using 1 (3 ) p-carr q-carr suv-carr
by (subst long-division-add[OF carrier-is-subfield]) simp-all

also have ... = pmod (pmod g s ⊗?P p) s ⊕?P []
using 1 (3 ) p-carr q-carr suv-carr s-div-q
by (intro arg-cong2 [where f=(⊕?P)] pmod-mult-left)
(simp-all add: pmod-zero-iff-pdivides[OF carrier-is-subfield])
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also have ... = pmod (0?P ⊗?P p) s ⊕?P 0?P unfolding
univ-poly-zero

using 1 (3 ) p-carr q-carr suv-carr s-div-g by (intro arg-cong2 [where
f=(⊕?P)]

arg-cong2 [where f=(⊗?P)] arg-cong2 [where f=pmod])
(simp-all add: pmod-zero-iff-pdivides[OF carrier-is-subfield])

also have ... = pmod 0?P s
using p-carr suv-carr long-division-closed[OF carrier-is-subfield]

by simp
also have ... = [] unfolding univ-poly-zero

using suv-carr long-division-zero(2 )[OF carrier-is-subfield] by
simp

finally have pmod f s = [] by simp
hence r2 : snd r pdividesring-of R f using suv-carr 1 (3 ) unfold-

ing r-def
by (subst pmod-zero-iff-pdivides[OF carrier-is-subfield,symmetric])

simp-all
have r3 : snd r pdividesring-of R g unfolding r-def using s-div-g

by auto
have r4 : {snd r , fst (fst r), snd (fst r)} ⊆ carrier ?P

using suv-carr p-carr unfolding r-def by simp-all
have r5 : f = [] ∧ g = [] if snd r = []
proof −
have r5-a: g = [] ∧ q = [] using that s-zero-iff unfolding r-def

by simp
hence pmod f [] = [] unfolding q-def by auto
hence f = [] using pmod-def by simp
thus ?thesis using r5-a by auto

qed

show ?thesis using r1 r2 r3 r4 r5 by (intro conjI ) metis+
qed

qed
thus ?T1 ?T2 ?T3 ?T4 ?T5 using assms by auto

qed

end

11 Executable Factor Rings
theory Finite-Fields-Mod-Ring-Code

imports Finite-Fields-Indexed-Algebra-Code Ring-Characteristic
begin

definition mod-ring :: nat ⇒ nat idx-ring-enum
where mod-ring n = (|

idx-pred = (λx. x < n),
idx-uminus = (λx. (n−x) mod n),
idx-plus = (λx y. (x+y) mod n),
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idx-udivide = (λx. nat (fst (bezout-coefficients (int x) (int n)) mod
(int n))),

idx-mult = (λx y. (x∗y) mod n),
idx-zero = 0 ,
idx-one = 1 ,
idx-size = n,
idx-enum = id,
idx-enum-inv = id
|)

lemma zfact-iso-0 :
assumes n > 0
shows zfact-iso n 0 = 0ZFact (int n)

proof −
let ?I = IdlZ {int n}
have ideal-I : ideal ?I Z

by (simp add: int.genideal-ideal)

interpret i:ideal ?I Z using ideal-I by simp
interpret s:ring-hom-ring Z ZFact (int n) (+>Z ) ?I
using i.rcos-ring-hom-ring ZFact-def by auto

show ?thesis
by (simp add:zfact-iso-def ZFact-def )

qed

lemma zfact-prime-is-field:
assumes Factorial-Ring.prime (p :: nat)
shows field (ZFact (int p))
using zfact-prime-is-finite-field[OF assms] finite-field-def by auto

definition zfact-iso-inv :: nat ⇒ int set ⇒ nat where
zfact-iso-inv p = the-inv-into {..<p} (zfact-iso p)

lemma zfact-iso-inv-0 :
assumes n-ge-0 : n > 0
shows zfact-iso-inv n 0ZFact (int n) = 0
unfolding zfact-iso-inv-def zfact-iso-0 [OF n-ge-0 , symmetric] using

n-ge-0
by (rule the-inv-into-f-f [OF zfact-iso-inj], simp add:mod-ring-def )

lemma zfact-coset:
assumes n-ge-0 : n > 0
assumes x ∈ carrier (ZFact (int n))
defines I ≡ IdlZ {int n}
shows x = I +>Z (int (zfact-iso-inv n x))

proof −
have x ∈ zfact-iso n ‘ {..<n}

using assms zfact-iso-ran by simp
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hence zfact-iso n (zfact-iso-inv n x) = x
unfolding zfact-iso-inv-def by (intro f-the-inv-into-f zfact-iso-inj)

auto
thus ?thesis unfolding zfact-iso-def I-def by blast

qed

lemma zfact-iso-inv-bij:
assumes n > 0
shows bij-betw (zfact-iso-inv n) (carrier (ZFact (int n))) (carrier

(ring-of (mod-ring n)))
proof −

have bij-betw (the-inv-into {..<n} (zfact-iso n)) (carrier (ZFact (int
n))) {..<n}

by (intro bij-betw-the-inv-into zfact-iso-bij[OF assms])
thus ?thesis

unfolding zfact-iso-inv-def mod-ring-def ring-of-def lessThan-def
by simp
qed

lemma zfact-iso-inv-is-ring-iso:
fixes n :: nat
assumes n-ge-1 : n > 1
shows zfact-iso-inv n ∈ ring-iso (ZFact (int n)) (ring-of (mod-ring

n)) (is ?f ∈ -)
proof (rule ring-iso-memI )

interpret r :cring (ZFact (int n))
using ZFact-is-cring by simp

define I where I = IdlZ {int n}

have n-ge-0 : n > 0 using n-ge-1 by simp

interpret i:ideal I Z
unfolding I-def using int.genideal-ideal by simp

interpret s:ring-hom-ring Z ZFact (int n) (+>Z ) I
using i.rcos-ring-hom-ring ZFact-def I-def by auto

show zfact-iso-inv n x ∈ carrier (ring-of (mod-ring n)) if x ∈ carrier
(ZFact (int n)) for x

proof −
have zfact-iso-inv n x ∈ {..<n}

unfolding zfact-iso-inv-def using that zfact-iso-ran[OF n-ge-0 ]
by (intro the-inv-into-into zfact-iso-inj n-ge-0 ) auto

thus zfact-iso-inv n x ∈ carrier (ring-of (mod-ring n))
by (simp add:ring-of-def mod-ring-def )

qed

show ?f (x ⊗ZFact (int n) y) = ?f x ⊗ring-of (mod-ring n) ?f y
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if x-carr : x ∈ carrier (ZFact (int n)) and y-carr : y ∈ carrier (ZFact
(int n)) for x y

proof −
define x ′ where x ′ = zfact-iso-inv n x
define y ′ where y ′ = zfact-iso-inv n y
have x ⊗ZFact (int n) y = (I +>Z (int x ′)) ⊗ZFact (int n) (I

+>Z (int y ′))
unfolding x ′-def y ′-def
using x-carr y-carr zfact-coset[OF n-ge-0 ] I-def by simp

also have ... = (I +>Z (int x ′ ∗ int y ′))
by simp

also have ... = (I +>Z (int ((x ′ ∗ y ′) mod n)))
unfolding I-def zmod-int by (rule int-cosetI [OF n-ge-0 ],simp)

also have ... = (I +>Z (x ′ ⊗ring-of (mod-ring n) y ′))

unfolding ring-of-def mod-ring-def by simp
also have ... = zfact-iso n (x ′ ⊗ring-of (mod-ring n) y ′)

unfolding zfact-iso-def I-def by simp
finally have a:x ⊗ZFact (int n) y = zfact-iso n (x ′⊗ring-of (mod-ring n)

y ′)
by simp

have b:x ′ ⊗ring-of (mod-ring n) y ′ ∈ {..<n}
using mod-ring-def n-ge-0 by (auto simp:ring-of-def )

have ?f (zfact-iso n (x ′⊗ring-of (mod-ring n) y ′)) = x ′⊗ring-of (mod-ring n)
y ′

unfolding zfact-iso-inv-def
by (rule the-inv-into-f-f [OF zfact-iso-inj[OF n-ge-0 ] b])

thus
zfact-iso-inv n (x ⊗ZFact (int n) y) =
zfact-iso-inv n x ⊗ring-of (mod-ring n) zfact-iso-inv n y
using a x ′-def y ′-def by simp

qed

show zfact-iso-inv n (x ⊕ZFact (int n) y) =
zfact-iso-inv n x ⊕ring-of (mod-ring n) zfact-iso-inv n y

if x-carr : x ∈ carrier (ZFact (int n)) and y-carr : y ∈ carrier (ZFact
(int n)) for x y

proof −
define x ′ where x ′ = zfact-iso-inv n x
define y ′ where y ′ = zfact-iso-inv n y
have x ⊕ZFact (int n) y = (I +>Z (int x ′)) ⊕ZFact (int n) (I

+>Z (int y ′))
unfolding x ′-def y ′-def
using x-carr y-carr zfact-coset[OF n-ge-0 ] I-def by simp

also have ... = (I +>Z (int x ′ + int y ′))
by simp

also have ... = (I +>Z (int ((x ′ + y ′) mod n)))
unfolding I-def zmod-int by (rule int-cosetI [OF n-ge-0 ],simp)

also have ... = (I +>Z (x ′ ⊕ring-of (mod-ring n) y ′))
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unfolding mod-ring-def ring-of-def by simp
also have ... = zfact-iso n (x ′ ⊕ring-of (mod-ring n) y ′)

unfolding zfact-iso-def I-def by simp
finally have a:x ⊕ZFact (int n) y = zfact-iso n (x ′⊕ring-of (mod-ring n)

y ′)
by simp

have b:x ′ ⊕ring-of (mod-ring n) y ′ ∈ {..<n}
using mod-ring-def n-ge-0 by (auto simp:ring-of-def )

have ?f (zfact-iso n (x ′⊕ring-of (mod-ring n) y ′)) = x ′⊕ring-of (mod-ring n)
y ′

unfolding zfact-iso-inv-def
by (rule the-inv-into-f-f [OF zfact-iso-inj[OF n-ge-0 ] b])

thus ?f (x ⊕ZFact (int n) y) = ?f x ⊕ring-of (mod-ring n) ?f y
using a x ′-def y ′-def by simp

qed

have 1ZFact (int n) = zfact-iso n (1ring-of (mod-ring n))
by (simp add:zfact-iso-def ZFact-def I-def [symmetric] ring-of-def

mod-ring-def )

thus zfact-iso-inv n 1ZFact (int n) = 1ring-of (mod-ring n)
unfolding zfact-iso-inv-def mod-ring-def ring-of-def
using the-inv-into-f-f [OF zfact-iso-inj] n-ge-1 by simp

show bij-betw (zfact-iso-inv n) (carrier (ZFact (int n))) (carrier
(ring-of (mod-ring n)))

by (intro zfact-iso-inv-bij n-ge-0 )
qed

lemma mod-ring-finite:
finite (carrier (ring-of (mod-ring n)))
by (simp add:mod-ring-def ring-of-def )

lemma mod-ring-carr :
x ∈ carrier (ring-of (mod-ring n)) ←→ x < n
by (simp add:mod-ring-def ring-of-def )

lemma mod-ring-is-cring:
assumes n-ge-1 : n > 1
shows cring (ring-of (mod-ring n))

proof −
have n-ge-0 : n > 0 using n-ge-1 by simp

interpret cring ZFact (int n)
using ZFact-is-cring by simp

have cring ((ring-of (mod-ring n)) (| zero := zfact-iso-inv n 0ZFact (int n)
|))
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by (rule ring-iso-imp-img-cring[OF zfact-iso-inv-is-ring-iso[OF n-ge-1 ]])
moreover have

ring-of (mod-ring n) (| zero := zfact-iso-inv n 0ZFact (int n) |) =

ring-of (mod-ring n)
using zfact-iso-inv-0 [OF n-ge-0 ] by (simp add:mod-ring-def ring-of-def )

ultimately show ?thesis by simp
qed

lemma zfact-iso-is-ring-iso:
assumes n-ge-1 : n > 1
shows zfact-iso n ∈ ring-iso (ring-of (mod-ring n)) (ZFact (int n))

proof −
have r :ring (ZFact (int n))

using ZFact-is-cring cring.axioms(1 ) by blast

interpret s: ring (ring-of (mod-ring n))
using mod-ring-is-cring cring.axioms(1 ) n-ge-1 by blast

have n-ge-0 : n > 0 using n-ge-1 by linarith

have inv-into (carrier (ZFact (int n))) (zfact-iso-inv n)
∈ ring-iso (ring-of (mod-ring n)) (ZFact (int n))

using ring-iso-set-sym[OF r zfact-iso-inv-is-ring-iso[OF n-ge-1 ]]
by simp

moreover have inv-into (carrier (ZFact (int n))) (zfact-iso-inv n)
x = zfact-iso n x

if x ∈ carrier (ring-of (mod-ring n)) for x
proof −
have x ∈ {..<n} using that by (simp add:mod-ring-def ring-of-def )
thus inv-into (carrier (ZFact (int n))) (zfact-iso-inv n) x = zfact-iso

n x
using zfact-iso-inv-bij[OF n-ge-0 ] zfact-iso-bij[OF n-ge-0 ] un-

folding zfact-iso-inv-def
by (intro inv-into-f-eq bij-betw-apply[OF zfact-iso-inv-bij[OF

n-ge-0 ]] the-inv-into-f-f )
(auto intro:bij-betw-imp-inj-on simp:bij-betwE)

qed

ultimately show ?thesis using s.ring-iso-restrict by blast
qed

If p is a prime than mod-ring p is a field:
lemma mod-ring-is-field:

assumesFactorial-Ring.prime p
shows field (ring-of (mod-ring p))

proof −
have p-ge-0 : p > 0 using assms prime-gt-0-nat by blast
have p-ge-1 : p > 1 using assms prime-gt-1-nat by blast

interpret field ZFact (int p)

141



using zfact-prime-is-field[OF assms] by simp

have field ((ring-of (mod-ring p)) (| zero := zfact-iso-inv p 0ZFact (int p)
|))

by (rule ring-iso-imp-img-field[OF zfact-iso-inv-is-ring-iso[OF p-ge-1 ]])

moreover have
(ring-of (mod-ring p)) (| zero := zfact-iso-inv p 0ZFact (int p) |) =

ring-of (mod-ring p)
using zfact-iso-inv-0 [OF p-ge-0 ] by (simp add:mod-ring-def ring-of-def )

ultimately show ?thesis by simp
qed

lemma mod-ring-is-ring-c:
assumes n > 1
shows cringC (mod-ring n)

proof (intro cring-cI mod-ring-is-cring assms)
fix x
assume a:x ∈ carrier (ring-of (mod-ring n))
hence x-le-n: x < n unfolding mod-ring-def ring-of-def by simp

interpret cring (ring-of (mod-ring n)) by (intro mod-ring-is-cring
assms)

show −Cmod-ring n x = 	ring-of (mod-ring n) x using x-le-n
by (intro minus-equality[symmetric] a) (simp-all add:ring-of-def

mod-ring-def mod-simps)
next

fix x
assume a:x ∈ Units (ring-of (mod-ring n))

let ?l = fst (bezout-coefficients (int x) (int n))
let ?r = snd (bezout-coefficients (int x) (int n))

interpret cring ring-of (mod-ring n) by (intro mod-ring-is-cring
assms)

obtain y where x ⊗ring-of (mod-ring n) y = 1ring-of (mod-ring n)
using a by (meson Units-r-inv-ex)

hence x ∗ y mod n = 1 by (simp-all add:mod-ring-def ring-of-def )
hence gcd x n = 1 by (metis dvd-triv-left gcd.assoc gcd-1-nat gcd-nat.absorb-iff1

gcd-red-nat)
hence 0 :gcd (int x) (int n) = 1 unfolding gcd-int-int-eq by simp

have int x ∗ ?l mod int n = (?l ∗ int x + ?r ∗ int n) mod int n
using assms by (simp add:mod-simps algebra-simps)

also have ... = (gcd (int x) (int n)) mod int n
by (intro arg-cong2 [where f=(mod)] refl bezout-coefficients) simp

also have ... = 1 unfolding 0 using assms by simp
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finally have int x ∗ ?l mod int n = 1 by simp
hence int x ∗ nat (fst (bezout-coefficients (int x) (int n)) mod int

n) mod n = 1
using assms by (simp add:mod-simps)

hence x ∗ nat (fst (bezout-coefficients (int x) (int n)) mod int n)
mod n = 1

by (metis nat-mod-as-int nat-one-as-int of-nat-mult)
hence x ⊗ring-of (mod-ring n) x −1

Cmod-ring n = 1ring-of (mod-ring n)
using assms unfolding mod-ring-def ring-of-def by simp

moreover have nat (fst (bezout-coefficients (int x) (int n)) mod int
n) < n

using assms by (subst nat-less-iff ) auto
hence x −1

Cmod-ring n ∈ carrier (ring-of (mod-ring n))
using assms unfolding mod-ring-def ring-of-def by simp

moreover have x ∈ carrier (ring-of (mod-ring n)) using a by auto
ultimately show x −1

Cmod-ring n = invring-of (mod-ring n) x
by (intro comm-inv-char [symmetric])

qed

lemma mod-ring-is-field-c:
assumesFactorial-Ring.prime p
shows fieldC (mod-ring p)
unfolding fieldC-def domainC-def
by (intro conjI mod-ring-is-ring-c mod-ring-is-field assms prime-gt-1-nat

domain.axioms(1 ) field.axioms(1 ))

lemma mod-ring-is-enum-c:
shows enumC (mod-ring n)
by (intro enum-cI ) (simp-all add:mod-ring-def ring-of-def Coset.order-def

lessThan-def )

end

12 Executable Code for Rabin’s Irreducibil-
ity Test
theory Rabin-Irreducibility-Test-Code

imports
Finite-Fields-Poly-Ring-Code
Finite-Fields-Mod-Ring-Code
Rabin-Irreducibility-Test

begin

fun pcoprimeC :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ ′a list ⇒ bool
where pcoprimeC R f g = (length (snd (ext-euclidean R f g)) = 1 )

declare pcoprimeC .simps[simp del]
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lemma pcoprime-c:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
assumes g ∈ carrier (poly-ring (ring-of R))
shows pcoprimeC R f g ←→ pcoprimering-of R f g (is ?L = ?R)

proof (cases f = [] ∧ g = [])
case True
interpret field ring-of R

using assms(1 ) unfolding fieldC-def by simp
interpret d-poly-ring: domain poly-ring (ring-of R)

by (rule univ-poly-is-domain[OF carrier-is-subring])

have ?L = False using True by (simp add: pcoprimeC .simps ext-euclidean.simps
poly-def )

also have ... ←→ (length 0poly-ring (ring-of R) = 1 ) by (simp
add:univ-poly-zero)

also have ... ←→ pcoprimering-of R 0poly-ring (ring-of R) []

by (subst pcoprime-zero-iff ) (simp-all)
also have ... ←→ ?R using True by (simp add: univ-poly-zero)
finally show ?thesis by simp

next
case False

let ?P = poly-ring (ring-of R)
interpret field ring-of R

using assms(1 ) unfolding fieldC-def by simp
interpret d-poly-ring: domain poly-ring (ring-of R)

by (rule univ-poly-is-domain[OF carrier-is-subring])

obtain s u v where suv-def : ((u,v),s) = ext-euclidean R f g by
(metis surj-pair)

have s-eq:s = f ⊗?P u ⊕?P g ⊗?P v (is ?T1 )
and s-div-f : s pdividesring-of R f and s-div-g: s pdividesring-of R g

(is ?T3 )
and suv-carr : {s, u, v} ⊆ carrier ?P
and s-nz: s 6= []
using False suv-def [symmetric] ext-euclidean[OF assms(1 ,2 ,3 )] by

auto

have ?L ←→ length s = 1 using suv-def [symmetric] by (simp
add:pcoprimeC .simps)

also have ... ←→ ?R
unfolding pcoprime-def

proof (intro iffI impI ballI )
fix r assume len-s: length s = 1
assume r-carr :r ∈ carrier ?P

and r pdividesring-of R f ∧ r pdividesring-of R g
hence r-div: pmod f r = 0?P pmod g r = 0?P unfolding
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univ-poly-zero
using assms(2 ,3 ) pmod-zero-iff-pdivides[OF carrier-is-subfield]

by auto

have pmod s r = pmod (f ⊗?P u) r ⊕?P pmod (g ⊗?P v) r
using r-carr suv-carr assms unfolding s-eq
by (intro long-division-add[OF carrier-is-subfield]) auto

also have ... = pmod (pmod f r ⊗?P u) r ⊕?P pmod (pmod g r
⊗?P v) r

using r-carr suv-carr assms by (intro arg-cong2 [where f=(⊕?P)]
pmod-mult-left) auto

also have ... = pmod 0?P r ⊕?P pmod 0?P r
using suv-carr unfolding r-div by simp

also have ... = [] using r-carr unfolding univ-poly-zero
by (simp add: long-division-zero[OF carrier-is-subfield] univ-poly-add)
finally have pmod s r = [] by simp
hence r pdividesring-of R s
using r-carr suv-carr pmod-zero-iff-pdivides[OF carrier-is-subfield]

by auto
hence degree r ≤ degree s

using s-nz r-carr suv-carr by (intro pdivides-imp-degree-le[OF
carrier-is-subring]) auto

thus degree r = 0 using len-s by simp
next

assume ∀ r∈carrier ?P. r pdividesring-of R f ∧ r pdividesring-of R
g −→ degree r = 0

hence degree s = 0 using s-div-f s-div-g suv-carr by simp
thus length s =1 using s-nz

by (metis diff-is-0-eq diffs0-imp-equal length-0-conv less-one
linorder-le-less-linear)

qed
finally show ?thesis by simp

qed

The following is a fast version of pmod for polynomials (to a high
power) that need to be reduced, this is used for the higher order
term of the Gauss polynomial.
fun pmod-powC :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒ nat ⇒ ′a list
⇒ ′a list

where pmod-powC F f n g = (
let r = (if n ≥ 2 then pmod-powC F f (n div 2 ) g ^Cpoly F 2 else

1Cpoly F)
in pmodC F (r ∗Cpoly F (f ^Cpoly F (n mod 2 ))) g)

declare pmod-powC .simps[simp del]

lemma pmod-pow-c:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
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assumes g ∈ carrier (poly-ring (ring-of R))
shows pmod-powC R f n g = ring.pmod (ring-of R) (f [^]poly-ring (ring-of R)

n) g
proof (induction n rule:nat-less-induct)

case (1 n)

let ?P = poly-ring (ring-of R)
interpret field ring-of R

using assms(1 ) unfolding fieldC-def by simp
interpret d-poly-ring: domain poly-ring (ring-of R)

by (rule univ-poly-is-domain[OF carrier-is-subring])

have ring-c: ringC R using assms(1 ) unfolding fieldC-def do-
mainC-def cringC-def by auto
have d-poly: domainC (poly R) using assms (1 ) unfolding fieldC-def

by (intro poly-domain) auto

have ind: pmod-powC R f m g = pmod (f [^]?P m) g if m < n for
m

using 1 that by auto

define r where r = (if n ≥ 2 then pmod-powC R f (n div 2 ) g
^Cpoly R 2 else 1Cpoly R)

have pmod r g = pmod (f [^]?P (n − (n mod 2 ))) g ∧ r ∈ carrier
?P

proof (cases n ≥ 2 )
case True
hence r = pmod-powC R f (n div 2 ) g [^]?P (2 :: nat)
unfolding r-def domain-cD[OF d-poly] by (simp add:ring-of-poly[OF

ring-c])
also have ... = pmod (f [^]?P (n div 2 )) g [^]?P (2 :: nat)

using True by (intro arg-cong2 [where f=([^]?P)] refl ind) auto
finally have r-alt: r = pmod (f [^]?P (n div 2 )) g [^]?P (2 :: nat)

by simp

have pmod r g = pmod (pmod (f [^]?P (n div 2 )) g ⊗?P pmod (f
[^]?P (n div 2 )) g) g

unfolding r-alt using assms(2 ,3 ) long-division-closed[OF car-
rier-is-subfield]

by (simp add:numeral-eq-Suc) algebra
also have ... = pmod (f [^]?P (n div 2 ) ⊗?P f [^]?P (n div 2 )) g

using assms(2 ,3 ) by (intro pmod-mult-both[symmetric]) auto
also have ... = pmod (f [^]?P ((n div 2 )+(n div 2 ))) g

using assms(2 ,3 ) by (subst d-poly-ring.nat-pow-mult) auto
also have ... = pmod (f [^]?P (n − (n mod 2 ))) g
by (intro arg-cong2 [where f=pmod] refl arg-cong2 [where f=([^]?P)])

presburger
finally have pmod r g = pmod (f [^]?P (n − (n mod 2 ))) g
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by simp
moreover have r ∈ carrier ?P
using assms(2 ,3 ) long-division-closed[OF carrier-is-subfield] un-

folding r-alt by auto
ultimately show ?thesis by auto

next
case False
hence r = 1?P

unfolding r-def using domain-cD[OF d-poly] ring-of-poly[OF
ring-c] by simp

also have ... = f [^]?P (0 :: nat) by simp
also have ... = f [^]?P (n − (n mod 2 ))

using False by (intro arg-cong2 [where f=([^]?P)] refl) auto
finally have r = f [^]?P (n − (n mod 2 )) by simp
then show ?thesis using assms(2 ) by simp

qed

hence r-exp: pmod r g = pmod (f [^]?P (n − (n mod 2 ))) g and
r-carr : r ∈ carrier ?P

by auto

have pmod-powC R f n g = pmodC R (r ∗Cpoly R (f ^Cpoly R (n
mod 2 ))) g

by (subst pmod-powC .simps) (simp add:r-def [symmetric])
also have ... = pmodC R (r ⊗?P (f [^]?P (n mod 2 ))) g

unfolding domain-cD[OF d-poly] by (simp add:ring-of-poly[OF
ring-c])

also have ... = pmod (r ⊗?P (f [^]?P (n mod 2 ))) g
using r-carr assms(2 ,3 ) by (intro pmod-c[OF assms(1 )]) auto

also have ... = pmod (pmod r g ⊗?P (f [^]?P (n mod 2 ))) g
using r-carr assms(2 ,3 ) by (intro pmod-mult-left) auto

also have ... = pmod (f [^]?P (n − (n mod 2 )) ⊗?P (f [^]?P (n
mod 2 ))) g

using assms(2 ,3 ) unfolding r-exp by (intro pmod-mult-left[symmetric])
auto

also have ... = pmod (f [^]?P ((n − (n mod 2 )) + (n mod 2 ))) g
using assms(2 ,3 ) by (intro arg-cong2 [where f=pmod] refl d-poly-ring.nat-pow-mult)

auto
also have ... = pmod (f [^]?P n) g by simp
finally show pmod-powC R f n g = pmod (f [^]?P n) g by simp

qed

The following function checks whether a given polynomial is co-
prime with the Gauss polynomial Xn −X.
definition pcoprime-with-gauss-poly :: ( ′a, ′b) idx-ring-scheme ⇒ ′a
list ⇒ nat ⇒ bool

where pcoprime-with-gauss-poly F p n =
(pcoprimeC F p (pmod-powC F XCF n p +Cpoly F (−Cpoly F

pmodC F XCF p)))
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definition divides-gauss-poly :: ( ′a, ′b) idx-ring-scheme ⇒ ′a list ⇒
nat ⇒ bool

where divides-gauss-poly F p n =
(pmod-powC F XCF n p +Cpoly F (−Cpoly F pmodC F XCF p) =

[])

lemma mod-gauss-poly:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
shows pmod-powC R XCR n f +Cpoly R (−Cpoly R pmodC R XCR

f ) =
ring.pmod (ring-of R) (gauss-poly (ring-of R) n) f (is ?L = ?R)

proof −
interpret field ring-of R

using assms(1 ) unfolding fieldC-def by simp
interpret d-poly-ring: domain poly-ring (ring-of R)

by (rule univ-poly-is-domain[OF carrier-is-subring])

have ring-c: ringC R using assms(1 ) unfolding fieldC-def do-
mainC-def cringC-def by auto
have d-poly: domainC (poly R) using assms (1 ) unfolding fieldC-def

by (intro poly-domain) auto
let ?P = poly-ring (ring-of R)

have ?L = pmod-powC R Xring-of R n f ⊕?P −Cpoly R pmodC R
Xring-of R f

by (simp add: poly-var domain-cD[OF d-poly] ring-of-poly[OF
ring-c])

also have ...= pmod (Xring-of R[^]?P n) f⊕?P −Cpoly R pmod
Xring-of R f

using assms var-carr [OF carrier-is-subring] by (intro refl arg-cong2 [where
f=(⊕?P)]

pmod-pow-c arg-cong[where f=λx. (−Cpoly R x)] pmod-c) auto
also have ... =pmod (Xring-of R[^]?P n) f	?P pmod Xring-of R f
unfolding a-minus-def using assms(1 ,2 ) var-carr [OF carrier-is-subring]

ring-of-poly[OF ring-c] long-division-closed[OF carrier-is-subfield]
by (subst domain-cD[OF d-poly]) auto

also have ... = pmod (Xring-of R[^]?P n) f ⊕?P pmod (	?P Xring-of R)
f

using assms(2 ) var-carr [OF carrier-is-subring]
unfolding a-minus-def by (subst long-division-a-inv[OF carrier-is-subfield])

auto
also have ... = pmod (gauss-poly (ring-of R) n) f

using assms(2 ) var-carr [OF carrier-is-subring] var-pow-carr [OF
carrier-is-subring]

unfolding gauss-poly-def a-minus-def by (subst long-division-add[OF
carrier-is-subfield]) auto
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finally show ?thesis by simp
qed

lemma pcoprime-with-gauss-poly:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
shows pcoprime-with-gauss-poly R f n ←→ pcoprimering-of R (gauss-poly

(ring-of R) n) f
(is ?L = ?R)

proof −
interpret field ring-of R

using assms(1 ) unfolding fieldC-def by simp

have ?L ←→ pcoprimeC R f (pmod (gauss-poly (ring-of R) n) f )
unfolding pcoprime-with-gauss-poly-def using assms by (subst

mod-gauss-poly) auto
also have ... = pcoprimering-of R f (pmod (gauss-poly (ring-of R)

n) f )
using assms gauss-poly-carr long-division-closed[OF carrier-is-subfield]
by (intro pcoprime-c) auto

also have ... = pcoprimering-of R (gauss-poly (ring-of R) n) f
by (intro pcoprime-step[symmetric] gauss-poly-carr assms)

finally show ?thesis by simp
qed

lemma divides-gauss-poly:
assumes fieldC R
assumes f ∈ carrier (poly-ring (ring-of R))
shows divides-gauss-poly R f n ←→ f pdividesring-of R (gauss-poly

(ring-of R) n)
(is ?L = ?R)

proof −
interpret field ring-of R

using assms(1 ) unfolding fieldC-def by simp
have ?L ←→ (pmod (gauss-poly (ring-of R) n) f = [])
unfolding divides-gauss-poly-def using assms by (subst mod-gauss-poly)

auto
also have ... ←→ ?R

using assms gauss-poly-carr by (intro pmod-zero-iff-pdivides[OF
carrier-is-subfield]) auto

finally show ?thesis
by simp

qed

fun rabin-test-powers :: ( ′a, ′b) idx-ring-enum-scheme ⇒ nat ⇒ nat
list

where rabin-test-powers F n =
map (λp. idx-size F^(n div p)) (filter (λp. prime p ∧ p dvd n)
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[2 ..<(n+1 )] )

Given a monic polynomial with coefficients over a finite field
returns true, if it is irreducible
fun rabin-test :: ( ′a, ′b) idx-ring-enum-scheme ⇒ ′a list ⇒ bool

where rabin-test F f = (
if degree f = 0 then

False
else (if ¬divides-gauss-poly F f (idx-size F^degree f ) then

False
else (list-all (pcoprime-with-gauss-poly F f ) (rabin-test-powers F

(degree f )))))

declare rabin-test.simps[simp del]

context
fixes R
assumes field-R: fieldC R
assumes enum-R: enumC R

begin

interpretation finite-field (ring-of R)
using field-R enum-cD[OF enum-R] unfolding fieldC-def
by (simp add:finite-field-def finite-field-axioms-def )

lemma rabin-test-powers:
assumes n > 0
shows set (rabin-test-powers R n) =
{order (ring-of R)^ (n div p) | p . Factorial-Ring.prime p ∧ p dvd

n}
(is ?L = ?R)

proof −
let ?f = (λx. order (ring-of R) ^ (n div x))

have 0 :p ∈ {2 ..n} if Factorial-Ring.prime p p dvd n for p
using assms that by (simp add: dvd-imp-le prime-ge-2-nat)

have ?L = ?f ‘ {p ∈ {2 ..n}. Factorial-Ring.prime p ∧ p dvd n}
using enum-cD[OF enum-R] by auto

also have ... = ?f ‘ {p. Factorial-Ring.prime p ∧ p dvd n}
using 0 by (intro image-cong Collect-cong) auto

also have ... = ?R
by auto

finally show ?thesis by simp
qed

lemma rabin-test:
assumes monic-poly (ring-of R) f
shows rabin-test R f ←→ monic-irreducible-poly (ring-of R) f (is
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?L = ?R)
proof (cases degree f = 0 )

case True
thus ?thesis unfolding rabin-test.simps using monic-poly-min-degree

by fastforce
next

case False
define N where N = {degree f div p | p . Factorial-Ring.prime p ∧

p dvd degree f }

have f-carr : f ∈ carrier (poly-ring (ring-of R))
using assms(1 ) unfolding monic-poly-def by auto

have deg-f-gt-0 : degree f > 0
using False by auto

have rt-powers: set (rabin-test-powers R (degree f )) = (λx. order
(ring-of R)^x) ‘ N

unfolding rabin-test-powers[OF deg-f-gt-0 ] N-def by auto

have ?L ←→ divides-gauss-poly R f (idx-size R ^ degree f ) ∧
(∀n ∈ set (rabin-test-powers R (degree f )). (pcoprime-with-gauss-poly

R f n))
using False by (simp add: list-all-def rabin-test.simps del:rabin-test-powers.simps)
also have ... ←→ f pdividesring-of R (gauss-poly (ring-of R) (order

(ring-of R) ^ degree f ))
∧ (∀n ∈ N . pcoprimering-of R (gauss-poly (ring-of R) (order (ring-of

R) ^n)) f )
unfolding divides-gauss-poly[OF field-R f-carr ] pcoprime-with-gauss-poly[OF

field-R f-carr ]
rt-powers enum-cD[OF enum-R] by simp

also have ... ←→ ?R
using False unfolding N-def by (intro rabin-irreducibility-condition[symmetric]

assms(1 )) auto
finally show ?thesis by simp

qed

end

end

13 Additional results about Bijections and
Digit Representations
theory Finite-Fields-More-Bijections

imports HOL−Library.FuncSet Digit-Expansions.Bits-Digits
begin

lemma nth-digit-0 :
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assumes x < b^k
shows nth-digit x k b = 0
using assms unfolding nth-digit-def by auto

lemma nth-digit-bounded ′:
assumes b > 0
shows nth-digit v x b < b
using assms by (simp add: nth-digit-def )

lemma digit-gen-sum-repr ′:
assumes n < b^c
shows n = (

∑
k<c. nth-digit n k b ∗ b ^ k)

proof −
consider (a) b = 0 c = 0 | (b) b = 0 c > 0 | (c) b = 1 | (d) b>1

by linarith
thus ?thesis
proof (cases)

case a thus ?thesis using assms by simp
next

case b thus ?thesis using assms by (simp add: zero-power)
next

case c thus ?thesis using assms by (simp add:nth-digit-def )
next

case d thus ?thesis by (intro digit-gen-sum-repr assms d)
qed

qed

lemma
assumes

∧
x. x ∈ A =⇒ f (g x) = x

shows
∧

y. y ∈ g ‘ A =⇒ g (f y) = y
proof −

show g (f y) = y if 0 :y∈ g‘A for y
proof −

obtain x where x-dom: x ∈ A and y-def : y = g x using 0 by
auto

hence g (f y) = g (f (g x)) by simp
also have ... = g x by (intro arg-cong[where f=g] assms(1 )

x-dom)
also have ... = y unfolding y-def by simp
finally show ?thesis by simp

qed
qed

lemma nth-digit-bij:
bij-betw (λv. (λx∈{..<n}. nth-digit v x b)) {..<b^n} ({..<n} →E

{..<b})
(is bij-betw ?f ?A ?B)

proof −
have inj-f : inj-on ?f ?A
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using digit-gen-sum-repr ′ by (intro inj-on-inverseI [where g=(λx.
(
∑

k<n. x k ∗ b^k))]) auto

consider (a) b = 0 n= 0 | (b) b = 0 n>0 | (c) b > 0 by linarith
hence nth-digit x i b ∈ {..<b} if i < n x < b^n for i x
proof (cases)

case a then show ?thesis using that by auto
next

case b thus ?thesis using that by (simp add:zero-power)
next

case c thus ?thesis using that by (simp add:nth-digit-def )
qed
hence ?f x ∈ ?B if x ∈ ?A for x using that unfolding restrict-PiE-iff

by auto
hence ?f ‘ ?A = ?B

using card-image[OF inj-f ] by (intro card-seteq finite-PiE im-
age-subsetI ) (auto simp:card-PiE)

thus ?thesis using inj-f unfolding bij-betw-def by auto
qed

lemma nth-digit-sum:
assumes

∧
i. i < l =⇒ f i < b

shows
∧

k. k < l =⇒ nth-digit (
∑

i< l. f i ∗ b^i) k b = f k
and (

∑
i<l. f i ∗ b^i) < b^l

proof −
define n where n = (

∑
i< l. f i ∗ b^i)

have restrict f {..<l} ∈ {..<l} →E {..<b} using assms(1 ) by auto
then obtain m where a:(λx∈{..<l}. nth-digit m x b) = restrict f
{..<l} and b:m ∈ {..<b^l}

using bij-betw-imp-surj-on[OF nth-digit-bij[where n=l and b=b]]
by (metis (no-types, lifting) image-iff )

have m = (
∑

i< l. nth-digit m i b ∗ b^i)
using b by (intro digit-gen-sum-repr ′) auto

also have ... = (
∑

i< l. f i ∗ b^i)
using a by (intro sum.cong arg-cong2 [where f=(∗)] refl) (metis

restrict-apply ′)
also have ... = n unfolding n-def by simp
finally have c:n = m by simp
show (

∑
i<l. f i ∗ b^i) < b^l unfolding n-def [symmetric] c using

b by auto
show nth-digit (

∑
i< l. f i ∗ b^i) k b = f k if k < l for k

proof −
have nth-digit (

∑
i< l. f i ∗ b^i) k b = nth-digit m k b unfolding

n-def [symmetric] c by simp
also have ... = f k using a that by (metis lessThan-iff re-

strict-apply ′)
finally show ?thesis by simp
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qed
qed

lemma bij-betw-reindex:
assumes bij-betw f I J
shows bij-betw (λx. λi∈I . x (f i)) (J →E S) (I →E S)

proof (rule bij-betwI [where g=(λx. λi∈J . x (the-inv-into I f i))])
have 0 :bij-betw (the-inv-into I f ) J I

using assms bij-betw-the-inv-into by auto

show (λx. λi∈I . x (f i)) ∈ (J →E S) → I →E S
using bij-betw-apply[OF assms] by auto

show (λx. λi∈J . x (the-inv-into I f i)) ∈ (I →E S) → J →E S
using bij-betw-apply[OF 0 ] by auto

show (λj∈J . (λi∈I . x (f i)) (the-inv-into I f j)) = x if x ∈ J →E S
for x

proof −
have (λi∈I . x (f i)) (the-inv-into I f j) = x j if j ∈ J for j

using 0 assms f-the-inv-into-f-bij-betw bij-betw-apply that by
fastforce

thus ?thesis using PiE-arb[OF that] by auto
qed
show (λi∈I . (λj∈J . y (the-inv-into I f j)) (f i)) = y if y ∈ I →E

S for y
proof −

have (λj∈J . y (the-inv-into I f j)) (f i) = y i if i ∈ I for i
using assms 0 that the-inv-into-f-f [OF bij-betw-imp-inj-on[OF

assms]] bij-betw-apply by force
thus ?thesis using PiE-arb[OF that] by auto

qed
qed

lemma lift-bij-betw:
assumes bij-betw f S T
shows bij-betw (λx. λi∈I . f (x i)) (I →E S) (I →E T )

proof −
let ?g = the-inv-into S f

have bij-g: bij-betw ?g T S using bij-betw-the-inv-into[OF assms]
by simp

have 0 :?g(f x)=x if x ∈ S for x by (intro the-inv-into-f-f that
bij-betw-imp-inj-on[OF assms])
have 1 :f (?g x)=x if x ∈ T for x by (intro f-the-inv-into-f-bij-betw[OF

assms] that)

have (λi∈I . f (x i)) ∈ I →E T if x ∈ (I →E S) for x
using bij-betw-apply[OF assms] that by (auto simp: Pi-def )

moreover have (λi∈I . ?g (x i)) ∈ I →E S if x ∈ (I →E T ) for x
using bij-betw-apply[OF bij-g] that by (auto simp: Pi-def )

154



moreover have (λi∈I . ?g ((λi∈I . f (x i)) i)) = x if x ∈ (I →E S)
for x

proof −
have (λi∈I . ?g ((λi∈I . f (x i)) i)) i = x i for i

using PiE-mem[OF that] using PiE-arb[OF that] by (cases i ∈
I ) (simp add:0 )+

thus ?thesis by auto
qed
moreover have (λi∈I . f ((λi∈I . ?g (x i)) i)) = x if x ∈ (I →E T )

for x
proof −

have (λi∈I . f ((λi∈I . ?g (x i)) i)) i = x i for i
using PiE-mem[OF that] using PiE-arb[OF that] by (cases i ∈

I ) (simp add:1 )+
thus ?thesis by auto

qed
ultimately show ?thesis

by (intro bij-betwI [where g=(λx. λi∈I . ?g (x i))]) simp-all
qed

lemma lists-bij:
bij-betw (λx. map x [ 0 ..<d] ) ({..<d} →E S) {x. set x ⊆ S ∧

length x = d}
proof (intro bij-betwI [where g=(λx. λi∈{..<d}. x ! i)] funcsetI Col-
lectI , goal-cases)

case (1 x)
hence x ‘ {0 ..<d} ⊆ S by (intro image-subsetI ) auto
thus ?case by simp

next
case (2 x) thus ?case by auto

next
case (3 x)
have restrict ((!) (map x [ 0 ..<d] )) {..<d} j = x j for j

using PiE-arb[OF 3 ] by (cases j ∈ {..<d}) auto
thus ?case by auto

next
case (4 y)
have map (restrict ((!) y) {..<d}) [ 0 ..<d ] = map (((!) y)) [ 0 ..<d]

by (intro map-cong) auto
also have ... = y using 4 map-nth by blast
finally show ?case by auto

qed

lemma bij-betw-prod: bij-betw (λx. (x mod s, x div s)) {..<s ∗ t}
({..<(s::nat)} × {..<t})
proof −

have bij-betw-aux: x + s ∗ y < s ∗ t if x < s y < t for x y :: nat
proof −

have x + s ∗ y < s + s ∗ y using that by simp
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also have ... = s ∗ (y+1 ) by simp
also have ... ≤ s ∗ t using that by (intro mult-left-mono) auto
finally show ?thesis by simp

qed

show ?thesis
proof (cases s > 0 ∧ t > 0 )

case True
then show ?thesis using less-mult-imp-div-less bij-betw-aux

by (intro bij-betwI [where g=(λx. fst x + s ∗ snd x)]) (auto
simp:mult.commute)

next
case False then show ?thesis by (auto simp:bij-betw-def )

qed
qed

end

14 Additional results about PMFs
theory Finite-Fields-More-PMF

imports HOL−Probability.Probability-Mass-Function
begin

lemma powr-mono-rev:
fixes x :: real
assumes a ≤ b and x > 0 x ≤ 1
shows x powr b ≤ x powr a

proof −
have x powr b = (1/x) powr (−b) using assms by (simp add:

powr-divide powr-minus-divide)
also have ... ≤ (1/x) powr (−a) using assms by (intro powr-mono)

auto
also have ... = x powr a using assms by (simp add: powr-divide

powr-minus-divide)
finally show ?thesis by simp

qed

lemma integral-bind-pmf :
fixes f :: - ⇒ real
assumes bounded (f ‘ set-pmf (bind-pmf p q))
shows (

∫
x. f x ∂bind-pmf p q) = (

∫
x.

∫
y. f y ∂q x ∂p) (is ?L =

?R)
proof −

obtain M where a:|f x| ≤ M if x ∈ set-pmf (bind-pmf p q) for x
using assms(1 ) unfolding bounded-iff by auto

define clamp where clamp x = (if |x| > M then 0 else x) for x

obtain x where x ∈ set-pmf (bind-pmf p q) using set-pmf-not-empty
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by fast
hence M-ge-0 : M ≥ 0 using a by fastforce

have a:
∧

x y. x ∈ set-pmf p =⇒ y ∈ set-pmf (q x) =⇒ ¬|f y| > M
using a by fastforce

hence (
∫

x. f x ∂bind-pmf p q) = (
∫

x. clamp (f x) ∂bind-pmf p q)
unfolding clamp-def by (intro integral-cong-AE AE-pmfI ) auto

also have ... = (
∫

x.
∫

y. clamp (f y) ∂q x ∂p) unfolding mea-
sure-pmf-bind

by (subst integral-bind[where K=count-space UNIV and B ′=1
and B=M ])

(simp-all add:measure-subprob clamp-def M-ge-0 )
also have ... = ?R unfolding clamp-def using a by (intro inte-

gral-cong-AE AE-pmfI ) simp-all
finally show ?thesis by simp

qed

lemma measure-bind-pmf :
measure (bind-pmf m f ) s = (

∫
x. measure (f x) s ∂m) (is ?L = ?R)

proof −
have ?L = (

∫
x. indicator s x ∂bind-pmf m f ) by simp

also have ... = (
∫

x. (
∫

y. indicator s y ∂f x) ∂m)
by (intro integral-bind-pmf ) (auto intro!:boundedI )

also have ... = ?R by simp
finally show ?thesis by simp

qed

end

15 Executable Polynomial Factor Rings
theory Finite-Fields-Poly-Factor-Ring-Code

imports
Finite-Fields-Poly-Ring-Code
Rabin-Irreducibility-Test-Code
Finite-Fields-More-Bijections

begin

Enumeration of the polynomials with a given degree:
definition poly-enum :: ( ′a, ′b) idx-ring-enum-scheme ⇒ nat ⇒ nat
⇒ ′a list

where poly-enum R l n =
dropWhile ((=) 0CR) (map (λp. idx-enum R (nth-digit n (l−1−p)

(idx-size R))) [0 ..<l])

lemma replicate-drop-while-cancel:
assumes k = length (takeWhile ((=) x) y)
shows replicate k x @ dropWhile ((=) x) y = y (is ?L = ?R)

proof −
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have replicate k x = takeWhile ((=) x) y
using assms by (metis (full-types) replicate-length-same set-takeWhileD)

thus ?thesis by simp
qed

lemma arg-cong3 :
assumes x = u y = v z = w
shows f x y z = f u v w
using assms by simp

lemma list-all-dropwhile: list-all p xs =⇒ list-all p (dropWhile q xs)
by (induction xs) auto

lemma bij-betw-poly-enum:
assumes enumC R ringC R
shows bij-betw (poly-enum R l) {..<idx-size R^l}
{xs. xs ∈ carrier (poly-ring (ring-of R)) ∧ length xs ≤ l}

proof −
let ?b = idx-size R
let ?S0 = {..<l} →E {..<order (ring-of R)}
let ?S1 = {..<l} →E {x. idx-pred R x}
let ?S2 = {xs. list-all (idx-pred R) xs ∧ length xs = l}
let ?S3 = {xs. (xs = [] ∨ hd xs 6= 0CR) ∧ list-all (idx-pred R) xs ∧

length xs ≤ l}
let ?S4 = {xs. xs ∈ carrier (poly-ring (ring-of R)) ∧ length xs ≤ l}

interpret ring ring-of R using assms(2 ) unfolding ringC-def by
simp

have 0 < order (ring-of R) using enum-cD(1 )[OF assms(1 )] or-
der-gt-0-iff-finite by metis

also have ... = ?b using enum-cD[OF assms(1 )] by auto
finally have b-gt-0 : ?b > 0 by simp

note bij0 = lift-bij-betw[OF enum-cD(3 )[OF assms(1 )], where I={..<l}]
note bij1 = lists-bij[where d=l and S={x. idx-pred R x}]

have bij-betw (dropWhile ((=) 0CR)) ?S2 ?S3
proof (rule bij-betwI [where g=λxs. replicate (l − length xs) 0CR

@ xs])
have dropWhile ((=) 0CR) xs ∈ ?S3 if xs ∈ ?S2 for xs
proof −

have dropWhile ((=) 0CR) xs = [] ∨ hd (dropWhile ((=) 0CR)
xs) 6= 0CR

using hd-dropWhile by (metis (full-types))
moreover have length (dropWhile ((=) 0CR) xs) ≤ l
by (metis (mono-tags, lifting) mem-Collect-eq length-dropWhile-le

that)
ultimately show ?thesis using that by (auto simp:list-all-dropwhile)
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qed
thus dropWhile ((=) 0CR) ∈ ?S2 → ?S3 by auto
have replicate (l − length xs) 0CR @ xs ∈ ?S2 if xs ∈ ?S3 for xs
proof −
have idx-pred R 0CR using add.one-closed by (simp add:ring-of-def )

moreover have length (replicate (l − length xs) 0CR @ xs) = l
using that by auto

ultimately show ?thesis using that by (auto simp:list-all-iff )
qed
thus (λxs. replicate (l − length xs) 0CR @ xs) ∈ ?S3 → ?S2 by

auto

show replicate (l − length (dropWhile ((=) 0CR) x)) 0CR @
dropWhile ((=) 0CR) x = x

if x ∈ ?S2 for x
proof −

have length (takeWhile ((=) 0CR) x) + length (dropWhile ((=)
0CR) x) = length x

unfolding length-append[symmetric] by simp
thus ?thesis using that by (intro replicate-drop-while-cancel)

auto
qed
show dropWhile ((=) 0CR) (replicate (l − length y) 0CR @ y) =

y
if y ∈ ?S3 for y

proof −
have dropWhile ((=) 0CR) (replicate (l − length y) 0CR @ y)

= dropWhile ((=) 0CR) y
by (intro dropWhile-append2 ) simp

also have ... = y using that by (intro iffD2 [OF dropWhile-eq-self-iff ])
auto

finally show ?thesis by simp
qed

qed
moreover have ?S3 = ?S4
unfolding ring-of-poly[OF assms(2 ),symmetric] by (simp add:ring-of-def

poly-def )
ultimately have bij2 : bij-betw (dropWhile ((=) 0CR)) ?S2 ?S4 by

simp

have bij3 : bij-betw (λx. l−1−x) {..<l} {..<l}
by (intro bij-betwI [where g=λx. l−1−x]) auto

note bij4 = bij-betw-reindex[OF bij3 , where S={..<order (ring-of
R)}]

have bij5 : bij-betw (λn. (λp∈{..<l}. nth-digit n p ?b)) {..<?b^l} ?S0
using nth-digit-bij[where n=l] enum-cD[OF assms(1 )] by simp

have bij6 : bij-betw (λn. (λp∈{..<l}. nth-digit n (l−1−p) ?b)) {..<?b^l}
?S0

by (intro iffD2 [OF arg-cong3 [where f=bij-betw] bij-betw-trans[OF

159



bij5 bij4 ]]) force+

have carrier (ring-of R) = {x. idx-pred R x} unfolding ring-of-def
by auto
hence bij7 : bij-betw (λn. (λp∈{..<l}. idx-enum R (nth-digit n (l−1−p)

?b))) {..<?b^l} ?S1
by (intro iffD2 [OF arg-cong3 [where f=bij-betw] bij-betw-trans[OF

bij6 bij0 ]]) fastforce+

have bij8 : bij-betw (λn. map (λp. idx-enum R (nth-digit n (l−1−p)
?b)) [0 ..<l]) {..<?b^l} ?S2

by (intro iffD2 [OF arg-cong3 [where f=bij-betw] bij-betw-trans[OF
bij7 bij1 ]])

(auto simp:comp-def list-all-iff atLeast0LessThan[symmetric])

thus bij-betw (poly-enum R l) {..<idx-size R ^ l} ?S4
using bij-betw-trans[OF bij8 bij2 ] unfolding poly-enum-def comp-def

by simp
qed

definition poly-enum-inv :: ( ′a, ′b) idx-ring-enum-scheme ⇒ nat ⇒ ′a
list ⇒ nat

where poly-enum-inv R l f =
(let f ′ = replicate (l − length f ) 0CR @ f in
(
∑

i<l. idx-enum-inv R (f ′ ! (l − 1 − i)) ∗ idx-size R ^i ))

find-theorems (
∑

i<?l. ?f i ∗ ?x^i) < ?x^?l

lemma poly-enum-inv:
assumes enumC R ringC R
assumes x ∈ {xs. xs ∈ carrier (poly-ring (ring-of R)) ∧ length xs
≤ l}
shows the-inv-into {..<idx-size R^l} (poly-enum R l) x = poly-enum-inv

R l x
proof −

define f where f = replicate (l− length x) 0CR @ x
let ?b = idx-size R
let ?d = dropWhile ((=) 0CR)

have len-f : length f = l using assms(3 ) unfolding f-def by auto
note enum-c = enum-cD[OF assms(1 )]

interpret ring ring-of R using assms(2 ) unfolding ringC-def by
simp

have 0 : idx-enum-inv R y < ?b if y ∈ carrier (ring-of R) for y
using bij-betw-imp-surj-on[OF enum-c(4 )] enum-c(2 ) that by auto

have 1 : (x = [] ∨ lead-coeff x 6= 0CR) ∧ list-all (idx-pred R) x ∧
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length x ≤ l
using assms(3 ) unfolding ring-of-poly[OF assms(2 ),symmetric]

by (simp add:ring-of-def poly-def )
moreover have 0ring-of R ∈ carrier (ring-of R) by simp
hence idx-pred R 0CR unfolding ring-of-def by simp
ultimately have 2 : set f ⊆ carrier (ring-of R)

unfolding f-def by (auto simp add:ring-of-def list-all-iff )

have poly-enum R l(poly-enum-inv R l x)= poly-enum R l (
∑

i<l.
idx-enum-inv R (f ! (l−1−i))∗?b^i)

unfolding poly-enum-inv-def f-def [symmetric] by simp
also have ... = ?d (map (λp. idx-enum R (idx-enum-inv R (f ! (l −

1 − (l − 1 − p))))) [0 ..<l])
unfolding poly-enum-def using 2 len-f by (intro arg-cong[where

f=?d]
arg-cong[where f=idx-enum R] map-cong refl nth-digit-sum 0 )

auto
also have ... =?d (map (λp. (f ! (l−1 − (l−1−p)))) [0 ..<l])

using 2 len-f by (intro arg-cong[where f=?d] map-cong refl
enum-c) auto

also have ... =?d (map (λp. (f ! p)) [0 ..<l])
by (intro arg-cong[where f=?d] map-cong) auto

also have ... = ?d f using len-f map-nth by (intro arg-cong[where
f=?d]) auto

also have ... = ?d x unfolding f-def by (intro dropWhile-append2 )
auto

also have ... = x using 1 by (intro iffD2 [OF dropWhile-eq-self-iff ])
auto

finally have poly-enum R l (poly-enum-inv R l x) = x by simp
moreover have poly-enum-inv R l x < idx-size R^l

unfolding poly-enum-inv-def Let-def f-def [symmetric] using len-f
2

by (intro nth-digit-sum(2 ) 0 ) auto
ultimately show ?thesis
by (intro the-inv-into-f-eq bij-betw-imp-inj-on[OF bij-betw-poly-enum[OF

assms(1 ,2 )]]) auto
qed

definition poly-mod-ring :: ( ′a, ′b) idx-ring-enum-scheme ⇒ ′a list =>
′a list idx-ring-enum

where poly-mod-ring R f = (|
idx-pred = (λxs. idx-pred (poly R) xs ∧ length xs ≤ degree f ),
idx-uminus = idx-uminus (poly R),
idx-plus = (λx y. pmodC R (x +Cpoly R y) f ),
idx-udivide = (λx. let ((u,v),r) = ext-euclidean R x f in pmodC R

(r−1
Cpoly R ∗Cpoly R u) f ),

idx-mult = (λx y. pmodC R (x ∗Cpoly R y) f ),
idx-zero = 0Cpoly R,
idx-one = 1Cpoly R,
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idx-size = idx-size R ^ degree f ,
idx-enum = poly-enum R (degree f ),
idx-enum-inv = poly-enum-inv R (degree f ) |)

definition poly-mod-ring-iso :: ( ′a, ′b) idx-ring-enum-scheme ⇒ ′a list
⇒ ′a list ⇒ ′a list set
where poly-mod-ring-iso R f x = PIdlpoly-ring (ring-of R) f +>poly-ring (ring-of R)

x

definition poly-mod-ring-iso-inv :: ( ′a, ′b) idx-ring-enum-scheme ⇒ ′a
list ⇒ ′a list set ⇒ ′a list

where poly-mod-ring-iso-inv R f =
the-inv-into (carrier (ring-of (poly-mod-ring R f ))) (poly-mod-ring-iso

R f )

context
fixes f
fixes R :: ( ′a, ′b) idx-ring-enum-scheme
assumes field-R: fieldC R
assumes f-carr : f ∈ carrier (poly-ring (ring-of R))
assumes deg-f : degree f > 0

begin

private abbreviation P where P ≡ poly-ring (ring-of R)
private abbreviation I where I ≡ PIdlpoly-ring (ring-of R) f

interpretation field ring-of R
using field-R unfolding fieldC-def by auto

interpretation d: domain P
by (intro univ-poly-is-domain carrier-is-subring)

interpretation i: ideal I P
using f-carr by (intro d.cgenideal-ideal) auto

interpretation s: ring-hom-ring P P Quot I (+>P) I
using i.rcos-ring-hom-ring by auto

interpretation cr : cring P Quot I
by (intro i.quotient-is-cring d.cring-axioms)

lemma ring-c: ringC R
using field-R unfolding fieldC-def domainC-def cringC-def by auto

lemma d-poly: domainC (poly R) using field-R unfolding fieldC-def
by (intro poly-domain) auto

lemma ideal-mod:
assumes y ∈ carrier P
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shows I +>P (pmod y f ) = I +>P y
proof −

have f ∈ I by (intro d.cgenideal-self f-carr)
hence (f ⊗P (pdiv y f )) ∈ I

using long-division-closed[OF carrier-is-subfield] assms f-carr
by (intro i.I-r-closed) (simp-all)

hence y ∈ I +>P (pmod y f )
using assms f-carr unfolding a-r-coset-def ′

by (subst pdiv-pmod[OF carrier-is-subfield, where q=f ]) auto
thus ?thesis
by (intro i.a-repr-independence ′ assms long-division-closed[OF car-

rier-is-subfield] f-carr)
qed

lemma poly-mod-ring-carr-1 :
carrier (ring-of (poly-mod-ring R f )) = {xs. xs ∈ carrier P ∧ degree

xs < degree f }
(is ?L = ?R)

proof −
have ?L = {xs. xs ∈ carrier (ring-of (poly R)) ∧ degree xs < degree

f }
using deg-f unfolding poly-mod-ring-def ring-of-def by auto

also have ... = ?R unfolding ring-of-poly[OF ring-c] by simp
finally show ?thesis by simp

qed

lemma poly-mod-ring-carr :
assumes y ∈ carrier P
shows pmod y f ∈ carrier (ring-of (poly-mod-ring R f ))

proof −
have f 6= [] using deg-f by auto
hence pmod y f = [] ∨ degree (pmod y f ) < degree f

by (intro pmod-degree[OF carrier-is-subfield] assms f-carr)
hence degree (pmod y f ) < degree f using deg-f by auto
moreover have pmod y f ∈ carrier P

using f-carr assms long-division-closed[OF carrier-is-subfield] by
auto

ultimately show ?thesis unfolding poly-mod-ring-carr-1 by auto
qed

lemma poly-mod-ring-iso-ran:
poly-mod-ring-iso R f ‘ carrier (ring-of (poly-mod-ring R f )) = car-

rier (P Quot I )
proof −

have poly-mod-ring-iso R f x ∈ carrier (P Quot I )
if x ∈ carrier (ring-of (poly-mod-ring R f )) for x

proof −
have I ⊆ carrier P by auto

moreover have x ∈ carrier P using that unfolding poly-mod-ring-carr-1
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by auto
ultimately have poly-mod-ring-iso R f x ∈ a-rcosetsP I

using that f-carr unfolding poly-mod-ring-iso-def by (intro
d.a-rcosetsI ) auto

thus ?thesis unfolding FactRing-def by simp
qed
moreover have x ∈ poly-mod-ring-iso R f ‘ carrier (ring-of (poly-mod-ring

R f ))
if x ∈ carrier (P Quot I ) for x

proof −
have x ∈ a-rcosetsP I using that unfolding FactRing-def by auto
then obtain y where y-def : x = I +>P y y ∈ carrier P

using that unfolding A-RCOSETS-def ′ by auto
define z where z = pmod y f
have I +>P z = I +>P y unfolding z-def by (intro ideal-mod

y-def )
hence poly-mod-ring-iso R f z = x unfolding poly-mod-ring-iso-def

y-def by simp
moreover have z ∈ carrier (ring-of (poly-mod-ring R f ))

unfolding z-def by (intro poly-mod-ring-carr y-def )
ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto

qed

lemma poly-mod-ring-iso-inj:
inj-on (poly-mod-ring-iso R f ) (carrier (ring-of (poly-mod-ring R

f )))
proof (rule inj-onI )

fix x y
assume x ∈ carrier (ring-of (poly-mod-ring R f ))
hence x:x ∈ carrier P degree x < degree f unfolding poly-mod-ring-carr-1

by auto
assume y ∈ carrier (ring-of (poly-mod-ring R f ))
hence y:y ∈ carrier P degree y < degree f unfolding poly-mod-ring-carr-1

by auto

have degree (x 	P y) ≤ max (degree x) (degree (	Py))
unfolding a-minus-def by (intro degree-add)

also have ... = max (degree x) (degree y)
unfolding univ-poly-a-inv-degree[OF carrier-is-subring y(1 )] by

simp
also have ... < degree f using x(2 ) y(2 ) by simp
finally have d:degree (x 	P y) < degree f by simp

assume poly-mod-ring-iso R f x = poly-mod-ring-iso R f y
hence I +>P x = I +>P y unfolding poly-mod-ring-iso-def by

simp
hence x 	P y ∈ I using x y by (subst d.quotient-eq-iff-same-a-r-cos[OF
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i.ideal-axioms]) auto
hence f pdividesring-of R (x 	P y)
using f-carr x(1 ) y d.m-comm unfolding cgenideal-def pdivides-def

factor-def by auto
hence (x 	P y) = [] ∨ degree (x 	P y) ≥ degree f
using x(1 ) y(1 ) f-carr pdivides-imp-degree-le[OF carrier-is-subring]

by (meson d.minus-closed)
hence (x 	P y) = 0P unfolding univ-poly-zero using d by simp
thus x = y using x(1 ) y(1 ) by simp

qed

lemma poly-mod-iso-ring-bij:
bij-betw (poly-mod-ring-iso R f ) (carrier (ring-of (poly-mod-ring R

f ))) (carrier (P Quot I ))
using poly-mod-ring-iso-ran poly-mod-ring-iso-inj unfolding bij-betw-def

by simp

lemma poly-mod-iso-ring-bij-2 :
bij-betw (poly-mod-ring-iso-inv R f ) (carrier (P Quot I )) (carrier

(ring-of (poly-mod-ring R f )))
unfolding poly-mod-ring-iso-inv-def using poly-mod-iso-ring-bij bij-betw-the-inv-into

by blast

lemma poly-mod-ring-iso-inv-1 :
assumes x ∈ carrier (P Quot I )
shows poly-mod-ring-iso R f (poly-mod-ring-iso-inv R f x) = x
unfolding poly-mod-ring-iso-inv-def using assms poly-mod-iso-ring-bij
by (intro f-the-inv-into-f-bij-betw) auto

lemma poly-mod-ring-iso-inv-2 :
assumes x ∈ carrier (ring-of (poly-mod-ring R f ))
shows poly-mod-ring-iso-inv R f (poly-mod-ring-iso R f x) = x
unfolding poly-mod-ring-iso-inv-def using assms
by (intro the-inv-into-f-f poly-mod-ring-iso-inj)

lemma poly-mod-ring-add:
assumes x ∈ carrier P
assumes y ∈ carrier P
shows x ⊕ring-of (poly-mod-ring R f ) y = pmod (x ⊕P y) f (is ?L

= ?R)
proof −

have ?L = pmodC R (x ⊕ring-of (poly R) y) f
unfolding poly-mod-ring-def ring-of-def using domain-cD[OF

d-poly] by simp
also have ... = ?R
using assms unfolding ring-of-poly[OF ring-c] by (intro pmod-c[OF

field-R] f-carr) auto
finally show ?thesis

by simp
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qed

lemma poly-mod-ring-zero: 0ring-of (poly-mod-ring R f ) = 0P
proof−

have 0ring-of (poly-mod-ring R f ) = 0ring-of (poly R)
using domain-cD[OF d-poly] unfolding ring-of-def poly-mod-ring-def

by simp
also have ... = 0P unfolding ring-of-poly[OF ring-c] by simp
finally show ?thesis by simp

qed

lemma poly-mod-ring-one: 1ring-of (poly-mod-ring R f ) = 1P
proof−

have 1ring-of (poly-mod-ring R f ) = 1ring-of (poly R)
using domain-cD[OF d-poly] unfolding ring-of-def poly-mod-ring-def

by simp
also have ... = 1P unfolding ring-of-poly[OF ring-c] by simp
finally show 1ring-of (poly-mod-ring R f ) = 1P by simp

qed

lemma poly-mod-ring-mult:
assumes x ∈ carrier P
assumes y ∈ carrier P
shows x ⊗ring-of (poly-mod-ring R f ) y = pmod (x ⊗P y) f (is ?L

= ?R)
proof −

have ?L = pmodC R (x ⊗ring-of (poly R) y) f
unfolding poly-mod-ring-def ring-of-def using domain-cD[OF

d-poly] by simp
also have ... = ?R
using assms unfolding poly-mod-ring-carr-1 ring-of-poly[OF ring-c]
by (intro pmod-c[OF field-R] f-carr) auto

finally show ?thesis
by simp

qed

lemma poly-mod-ring-iso-inv:
poly-mod-ring-iso-inv R f ∈ ring-iso (P Quot I ) (ring-of (poly-mod-ring

R f ))
(is ?f ∈ ring-iso ?S ?T )

proof (rule ring-iso-memI )
fix x assume x ∈ carrier ?S
thus ?f x ∈ carrier ?T using bij-betw-apply[OF poly-mod-iso-ring-bij-2 ]

by auto
next

fix x y assume x:x ∈ carrier ?S and y: y ∈ carrier ?S
have ?f x ∈ carrier (ring-of (poly-mod-ring R f ))

by (rule bij-betw-apply[OF poly-mod-iso-ring-bij-2 x])
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hence x ′:?f x ∈ carrier P unfolding poly-mod-ring-carr-1 by simp
have ?f y ∈ carrier (ring-of (poly-mod-ring R f ))

by (rule bij-betw-apply[OF poly-mod-iso-ring-bij-2 y])
hence y ′:?f y ∈ carrier P unfolding poly-mod-ring-carr-1 by simp

have 0 :?f x ⊗?T ?f y = pmod (?f x ⊗P ?f y) f
by (intro poly-mod-ring-mult x ′ y ′)

also have ... ∈ carrier (ring-of (poly-mod-ring R f ))
using x ′ y ′ by (intro poly-mod-ring-carr) auto

finally have xy: ?f x ⊗?T ?f y ∈ carrier (ring-of (poly-mod-ring R
f )) by simp

have ?f (x ⊗?S y) = ?f (poly-mod-ring-iso R f (?f x) ⊗?S poly-mod-ring-iso
R f (?f y))

using x y by (simp add:poly-mod-ring-iso-inv-1 )
also have ... = ?f ((I +>P (?f x)) ⊗?S (I +>P (?f y)))

unfolding poly-mod-ring-iso-def by simp
also have ... = ?f (I +>P (?f x ⊗P ?f y))

using x ′ y ′ by simp
also have ... = ?f (I +>P (pmod (?f x ⊗P ?f y) f ))

using x ′ y ′ by (subst ideal-mod) auto
also have ... = ?f (I +>P (?f x ⊗?T ?f y))

unfolding 0 by simp
also have ... = ?f (poly-mod-ring-iso R f (?f x ⊗?T ?f y))

unfolding poly-mod-ring-iso-def by simp
also have ... = ?f x ⊗?T ?f y

using xy by (intro poly-mod-ring-iso-inv-2 )
finally show ?f (x ⊗?S y) = ?f x ⊗?T ?f y by simp

next
fix x y assume x:x ∈ carrier ?S and y: y ∈ carrier ?S
have ?f x ∈ carrier (ring-of (poly-mod-ring R f ))

by (rule bij-betw-apply[OF poly-mod-iso-ring-bij-2 x])
hence x ′:?f x ∈ carrier P unfolding poly-mod-ring-carr-1 by simp
have ?f y ∈ carrier (ring-of (poly-mod-ring R f ))

by (rule bij-betw-apply[OF poly-mod-iso-ring-bij-2 y])
hence y ′:?f y ∈ carrier P unfolding poly-mod-ring-carr-1 by simp

have 0 :?f x ⊕?T ?f y = pmod (?f x ⊕P ?f y) f by (intro poly-mod-ring-add
x ′ y ′)

also have ... ∈ carrier (ring-of (poly-mod-ring R f ))
using x ′ y ′ by (intro poly-mod-ring-carr) auto

finally have xy: ?f x ⊕?T ?f y ∈ carrier (ring-of (poly-mod-ring R
f )) by simp

have ?f (x ⊕?S y) = ?f (poly-mod-ring-iso R f (?f x) ⊕?S poly-mod-ring-iso
R f (?f y))

using x y by (simp add:poly-mod-ring-iso-inv-1 )
also have ... = ?f ((I +>P (?f x)) ⊕?S (I +>P (?f y)))

unfolding poly-mod-ring-iso-def by simp
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also have ... = ?f (I +>P (?f x ⊕P ?f y))
using x ′ y ′ by simp

also have ... = ?f (I +>P (pmod (?f x ⊕P ?f y) f ))
using x ′ y ′ by (subst ideal-mod) auto

also have ... = ?f (I +>P (?f x ⊕?T ?f y))
unfolding 0 by simp

also have ... = ?f (poly-mod-ring-iso R f (?f x ⊕?T ?f y))
unfolding poly-mod-ring-iso-def by simp

also have ... = ?f x ⊕?T ?f y
using xy by (intro poly-mod-ring-iso-inv-2 )

finally show ?f (x ⊕?S y) = ?f x ⊕?T ?f y by simp
next

have poly-mod-ring-iso R f 1ring-of (poly-mod-ring R f ) = (I +>P
1P)

unfolding poly-mod-ring-one poly-mod-ring-iso-def by simp
also have ... = 1P Quot I using s.hom-one by simp
finally have poly-mod-ring-iso R f 1ring-of (poly-mod-ring R f ) =

1P Quot I by simp
moreover have degree 1P < degree f

using deg-f unfolding univ-poly-one by simp
hence 1ring-of (poly-mod-ring R f ) ∈ carrier (ring-of (poly-mod-ring

R f ))
unfolding poly-mod-ring-one poly-mod-ring-carr-1 by simp

ultimately show ?f (1?S) = 1?T
unfolding poly-mod-ring-iso-inv-def by (intro the-inv-into-f-eq

poly-mod-ring-iso-inj)
next
show bij-betw ?f (carrier ?S) (carrier ?T ) by (rule poly-mod-iso-ring-bij-2 )

qed

lemma cring-poly-mod-ring-1 :
shows ring-of (poly-mod-ring R f )(|zero := poly-mod-ring-iso-inv R

f 0P Quot I|) =
ring-of (poly-mod-ring R f )
and cring (ring-of (poly-mod-ring R f ))

proof −
let ?f = poly-mod-ring-iso-inv R f

have poly-mod-ring-iso R f 0P = 0P Quot PIdlP f
unfolding poly-mod-ring-iso-def by simp

moreover have [] ∈ carrier P using univ-poly-zero[where K=carrier
(ring-of R)] by auto

ultimately have ?f 0P Quot I = 0P
unfolding univ-poly-zero poly-mod-ring-iso-inv-def using deg-f

by (intro the-inv-into-f-eq bij-betw-imp-inj-on[OF poly-mod-iso-ring-bij])
(simp-all add:add:poly-mod-ring-carr-1 )

also have ... = 0Cpoly R using ring-of-poly[OF ring-c] domain-cD[OF
d-poly] by auto
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finally have ?f 0P Quot I = 0Cpoly R by simp
thus ring-of (poly-mod-ring R f )(|zero := ?f 0P Quot I|) = ring-of

(poly-mod-ring R f )
unfolding ring-of-def poly-mod-ring-def by auto

thus cring (ring-of (poly-mod-ring R f ))
using cr .ring-iso-imp-img-cring[OF poly-mod-ring-iso-inv] by simp

qed

interpretation cr-p: cring (ring-of (poly-mod-ring R f ))
by (rule cring-poly-mod-ring-1 )

lemma cring-c-poly-mod-ring: cringC (poly-mod-ring R f )
proof −

let ?P = ring-of (poly-mod-ring R f )
have −Cpoly-mod-ring R f x = 	ring-of (poly-mod-ring R f ) x (is ?L

= ?R)
if x ∈ carrier (ring-of (poly-mod-ring R f )) for x

proof (rule cr-p.minus-equality[symmetric, OF - that])
have −Cpoly-mod-ring R f x = −Cpoly R x unfolding poly-mod-ring-def

by simp
also have ... = 	P x using that unfolding poly-mod-ring-carr-1

by (subst domain-cD[OF d-poly]) (simp-all add:ring-of-poly[OF
ring-c])

finally have 0 :−Cpoly-mod-ring R f x = 	P x by simp

have 1 :	P x ∈ carrier (ring-of (poly-mod-ring R f ))
using that univ-poly-a-inv-degree[OF carrier-is-subring] unfold-

ing poly-mod-ring-carr-1
by auto

have −Cpoly-mod-ring R f x ⊕?P x = pmod (	P x ⊕P x) f
using that 1 unfolding 0 poly-mod-ring-carr-1 by (intro poly-mod-ring-add)

auto
also have ... = pmod 0P f

using that unfolding poly-mod-ring-carr-1 by simp algebra
also have ... = []
unfolding univ-poly-zero using carrier-is-subfield f-carr long-division-zero(2 )

by presburger
also have ... = 0?P by (simp add:poly-mod-ring-def ring-of-def

poly-def )
finally show −Cpoly-mod-ring R f x ⊕?P x = 0?P by simp

show −Cpoly-mod-ring R f x ∈ carrier (ring-of (poly-mod-ring R
f ))

unfolding 0 by (rule 1 )
qed
moreover have x −1

Cpoly-mod-ring R f = invring-of (poly-mod-ring R f )
x

if x-unit: x ∈ Units (ring-of (poly-mod-ring R f )) for x
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proof (rule cr-p.comm-inv-char [symmetric])
show x-carr : x ∈ carrier (ring-of (poly-mod-ring R f ))

using that unfolding Units-def by auto

obtain y where y:x ⊗ring-of (poly-mod-ring R f ) y = 1ring-of (poly-mod-ring R f )
and y-carr : y ∈ carrier (ring-of (poly-mod-ring R f ))

using x-unit unfolding Units-def by auto

have pmod (x ⊗P y) f =x ⊗ring-of (poly-mod-ring R f ) y
using x-carr y-carr by (intro poly-mod-ring-mult[symmetric])

(auto simp:poly-mod-ring-carr-1 )
also have ... = 1P

unfolding y poly-mod-ring-one by simp
finally have 1 :pmod (x ⊗P y) f = 1P by simp

have pcoprimering-of R (x ⊗P y) f = pcoprimering-of R f (pmod
(x ⊗P y) f )

using x-carr y-carr f-carr unfolding poly-mod-ring-carr-1 by
(intro pcoprime-step) auto

also have ... = pcoprime ring-of R f 1P unfolding 1 by simp
also have ... = True using pcoprime-one by simp
finally have pcoprimering-of R (x ⊗P y) f by simp
hence pcoprimering-of R x f
using x-carr y-carr f-carr pcoprime-left-factor unfolding poly-mod-ring-carr-1

by blast
hence 2 :length (snd ( ext-euclidean R x f )) = 1
using f-carr x-carr pcoprime-c[OF field-R] unfolding poly-mod-ring-carr-1

pcoprimeC .simps
by auto

obtain u v r where uvr-def : ((u,v),r) = ext-euclidean R x f by
(metis surj-pair)

have x-carr ′: x ∈ carrier P using x-carr unfolding poly-mod-ring-carr-1
by auto

have r-eq:r = x ⊗P u ⊕P f ⊗P v and ruv-carr : {r , u, v} ⊆ carrier
P

using uvr-def [symmetric] ext-euclidean[OF field-R x-carr ′ f-carr ]
by auto

have length r = 1 using 2 uvr-def [symmetric] by simp
hence 3 :r = [hd r ] by (cases r) auto
hence r 6= 0P unfolding univ-poly-zero by auto
hence hd r ∈ carrier (ring-of R) − {0ring-of R}

using ruv-carr by (intro lead-coeff-carr) auto
hence r-unit: r ∈ Units P using 3 univ-poly-units[OF carrier-is-subfield]

by auto
hence inv-r-carr : invP r ∈ carrier P by simp
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have 0 : x −1
Cpoly-mod-ring R f = pmodC R (r −1

Cpoly R ∗Cpoly R
u) f

by (simp add:poly-mod-ring-def uvr-def [symmetric])
also have ... = pmodC R (invP r ⊗P u) f

using r-unit unfolding domain-cD[OF d-poly]
by (subst domain-cD[OF d-poly]) (simp-all add:ring-of-poly[OF

ring-c])
also have ... = pmod (invP r ⊗P u) f

using ruv-carr inv-r-carr by (intro pmod-c[OF field-R] f-carr)
simp

finally have 0 : x −1
Cpoly-mod-ring R f = pmod (invP r ⊗P u) f

by simp

show x −1
Cpoly-mod-ring R f ∈ carrier (ring-of (poly-mod-ring R

f ))
using ruv-carr r-unit unfolding 0 by (intro poly-mod-ring-carr)

simp

have 4 : degree 1P < degree f unfolding univ-poly-one using deg-f
by auto

have f dividesP invP r ⊗P f ⊗P v
using inv-r-carr ruv-carr f-carr
by (intro dividesI [where c=invP r ⊗P v]) (simp-all, algebra)

hence 5 : pmod (invP r ⊗P f ⊗P v) f = []
using f-carr ruv-carr inv-r-carr

by (intro iffD2 [OF pmod-zero-iff-pdivides[OF carrier-is-subfield]])
(auto simp:pdivides-def )

have x ⊗?P x −1
Cpoly-mod-ring R f = pmod (x ⊗P pmod (invP r

⊗P u) f ) f
using ruv-carr inv-r-carr f-carr unfolding 0
by (intro poly-mod-ring-mult x-carr ′ long-division-closed[OF car-

rier-is-subfield]) simp-all
also have ... = pmod (x ⊗P (invP r ⊗P u)) f
using ruv-carr inv-r-carr f-carr by (intro pmod-mult-right[symmetric]

x-carr ′) auto
also have ... = pmod (invP r ⊗P (x ⊗P u)) f

using x-carr ′ ruv-carr inv-r-carr by (intro arg-cong2 [where
f=pmod] refl) (simp, algebra)

also have ... = pmod (invP r ⊗P (r 	P f ⊗P v)) f using ruv-carr
f-carr x-carr ′

by (intro arg-cong2 [where f=pmod] arg-cong2 [where f=(⊗P)]
refl) (simp add:r-eq, algebra)

also have ... = pmod (invP r ⊗P r 	P invP r ⊗P f ⊗P v) f
using ruv-carr inv-r-carr f-carr by (intro arg-cong2 [where

f=pmod] refl) (simp, algebra)
also have ... = pmod 1P f ⊕P pmod (	P (invP r ⊗P f ⊗P v)) f

using ruv-carr inv-r-carr f-carr unfolding d.Units-l-inv[OF
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r-unit] a-minus-def
by (intro long-division-add[OF carrier-is-subfield]) simp-all

also have ... = 1P 	P pmod (invP r ⊗P f ⊗P v) f
using ruv-carr f-carr inv-r-carr unfolding a-minus-def

by (intro arg-cong2 [where f=(⊕P)] pmod-const[OF carrier-is-subfield]
long-division-a-inv[OF carrier-is-subfield] 4 ) simp-all

also have ... = 1P 	P 0P unfolding 5 univ-poly-zero by simp
also have ... = 1ring-of (poly-mod-ring R f ) unfolding poly-mod-ring-one

by algebra
finally show x ⊗ring-of (poly-mod-ring R f ) x −1

Cpoly-mod-ring R f
= 1?P by simp

qed
ultimately show ?thesis using cring-poly-mod-ring-1 by (intro

cring-cI )
qed

end

lemma field-c-poly-mod-ring:
assumes field-R: fieldC R
assumes monic-irreducible-poly (ring-of R) f
shows fieldC (poly-mod-ring R f )

proof −
interpret field ring-of R using field-R unfolding fieldC-def by

auto

have f-carr : f ∈ carrier (poly-ring (ring-of R))
using assms(2 ) monic-poly-carr unfolding monic-irreducible-poly-def

by auto

have deg-f : degree f > 0 using monic-poly-min-degree assms(2 ) by
fastforce

have f-irred: pirreduciblering-of R (carrier (ring-of R)) f
using assms(2 ) unfolding monic-irreducible-poly-def by auto

interpret r :field poly-ring (ring-of R) Quot (PIdlpoly-ring (ring-of R)
f )

using f-irred f-carr iffD2 [OF rupture-is-field-iff-pirreducible[OF
carrier-is-subfield]]

unfolding rupture-def by blast

have field (ring-of (poly-mod-ring R f ))
using r .ring-iso-imp-img-field[OF poly-mod-ring-iso-inv[OF field-R

f-carr deg-f ]]
using cring-poly-mod-ring-1 (1 )[OF field-R f-carr deg-f ] by simp

moreover have cringC (poly-mod-ring R f )
by (rule cring-c-poly-mod-ring[OF field-R f-carr deg-f ])
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ultimately show ?thesis unfolding fieldC-def domainC-def using
field.axioms(1 ) by blast
qed

lemma enum-c-poly-mod-ring:
assumes enumC R ringC R
shows enumC (poly-mod-ring R f )

proof (rule enum-cI )
let ?l = degree f
let ?b = idx-size R
let ?S = carrier (ring-of (poly-mod-ring R f ))

note bij-0 = bij-betw-poly-enum[where l=degree f , OF assms(1 ,2 )]
have ?S = {xs ∈ carrier (poly-ring (ring-of R)). length xs ≤ ?l}

unfolding ring-of-poly[OF assms(2 ),symmetric] poly-mod-ring-def
by (simp add:ring-of-def )

hence bij-1 :bij-betw (poly-enum R (degree f )) {..<idx-size R ^ degree
f } ?S

using bij-0 by simp
hence bij-2 :bij-betw (idx-enum (poly-mod-ring R f )) {..<idx-size

R^degree f } ?S
unfolding poly-mod-ring-def by simp

have order (ring-of (poly-mod-ring R f )) = card ?S
unfolding Coset.order-def by simp

also have ... = card {..<idx-size R ^ degree f } using bij-2 by (metis
bij-betw-same-card)

finally have ord-poly-mod-ring: order (ring-of (poly-mod-ring R f ))
= idx-size R^degree f

by simp

show finite ?S using bij-2 bij-betw-finite by blast
show idx-size (poly-mod-ring R f ) = order (ring-of (poly-mod-ring

R f ))
unfolding ord-poly-mod-ring by (simp add:poly-mod-ring-def )

show bij-betw (idx-enum (poly-mod-ring R f )) {..<order (ring-of
(poly-mod-ring R f ))} ?S

using bij-2 ord-poly-mod-ring by auto
show idx-enum-inv (poly-mod-ring R f ) (idx-enum (poly-mod-ring R

f ) x) = x (is ?L = - )
if x < order (ring-of (poly-mod-ring R f )) for x

proof −
have ?L = poly-enum-inv R (degree f ) (poly-enum R (degree f ) x)

unfolding poly-mod-ring-def by simp
also have ... = the-inv-into {..<?b ^ ?l} (poly-enum R ?l) (poly-enum

R ?l x)
using that ord-poly-mod-ring

by (intro poly-enum-inv[OF assms(1 ,2 ),symmetric] bij-betw-apply[OF
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bij-0 ]) auto
also have ... = x
using that ord-poly-mod-ring by (intro the-inv-into-f-f bij-betw-imp-inj-on[OF

bij-0 ]) auto
finally show ?thesis by simp

qed
qed

end

16 Algorithms for finding irreducible poly-
nomials
theory Find-Irreducible-Poly

imports
Finite-Fields-More-PMF
Finite-Fields-Poly-Factor-Ring-Code
Rabin-Irreducibility-Test-Code
Probabilistic-While.While-SPMF
Card-Irreducible-Polynomials
Executable-Randomized-Algorithms.Randomized-Algorithm
HOL−Library.Log-Nat

begin

hide-const (open) Divisibility.prime
hide-const (open) Finite-Fields-Factorization-Ext.multiplicity
hide-const (open) Numeral-Type.mod-ring
hide-const (open) Polynomial.degree
hide-const (open) Polynomial.order

Enumeration of the monic polynomials in lexicographic order.
definition enum-monic-poly :: ( ′a, ′b) idx-ring-enum-scheme ⇒ nat ⇒
nat ⇒ ′a list

where enum-monic-poly A d i = 1CA#[ idx-enum A (nth-digit i j
(idx-size A)). j ← rev [0 ..<d]]

lemma enum-monic-poly:
assumes fieldC R enumC R
shows bij-betw (enum-monic-poly R d) {..<order (ring-of R)^d}
{f . monic-poly (ring-of R) f ∧ degree f = d}

proof −
let ?f = (λx. 1CR # map (λj. idx-enum R (x j)) (rev [ 0 ..<d ] ))
let ?R = ring-of R

note select-bij = enum-cD(3 )[OF assms(2 )]
note fin-carr = enum-cD(1 )[OF assms(2 )]
note fo = field-cD[OF assms(1 )]
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interpret finite-field ring-of R
using fin-carr assms(1 ) unfolding finite-field-def finite-field-axioms-def

fieldC-def by auto

have 1 :enum-monic-poly R d = ?f ◦ (λv. λx∈{..<d}. nth-digit v x
(order (ring-of R)))

unfolding enum-monic-poly-def comp-def enum-cD[OF assms(2 )]
by (intro ext arg-cong2 [where f=(#)] refl map-cong) auto

have 2 :?f = (λx. 1CR # map x (rev [ 0 ..<d ] )) ◦ (λx. λi∈{..<d}.
idx-enum R ( x i))

unfolding comp-def by auto

have 3 : (λx. 1ring-of R#map x (rev [0 ..<d])) = (λx. 1ring-of R#x)
◦rev◦ (λx. map x [0 ..<d])

unfolding comp-def by (intro ext) (simp add:rev-map)

have ap-bij: bij-betw ((#) 1?R) {x. set x⊆carrier ?R∧length x=d}
{f . monic-poly ?R f ∧ degree f=d}

using list.collapse unfolding monic-poly-def univ-poly-carrier [symmetric]
polynomial-def

by (intro bij-betwI [where g=tl]) (fastforce intro:in-set-tlD)+

have rev-bij:
bij-betw rev {x. set x ⊆ carrier ?R ∧ length x = d} {x. set x ⊆

carrier ?R ∧ length x = d}
by (intro bij-betwI [where g=rev]) auto

have bij-betw (λx. 1?R#map x (rev [ 0 ..<d] )) ({..<d} →E carrier
?R) {f . monic-poly ?R f∧degree f=d}

unfolding 3 by (intro bij-betw-trans[OF lists-bij] bij-betw-trans[OF
rev-bij] ap-bij)

hence bij-betw ?f ({..<d} →E {..<order ?R}) {f . monic-poly ?R f
∧ degree f = d}

unfolding 2 by (intro bij-betw-trans[OF lift-bij-betw[OF select-bij]])
(simp add:fo)

thus ?thesis
unfolding 1 by (intro bij-betw-trans[OF nth-digit-bij])

qed

abbreviation tick-spmf :: ( ′a × nat) spmf ⇒ ( ′a × nat) spmf
where tick-spmf ≡ map-spmf (λ(x,c). (x,c+1 ))

Finds an irreducible polynomial in the finite field mod-ring p
with given degree n:
partial-function (spmf ) sample-irreducible-poly :: nat ⇒ nat ⇒ (nat
list × nat) spmf

where
sample-irreducible-poly p n =
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do {
k ← spmf-of-set {..<p^n};
let poly = enum-monic-poly (mod-ring p) n k;
if rabin-test (mod-ring p) poly

then return-spmf (poly,1 )
else tick-spmf (sample-irreducible-poly p n)

}

The following is a deterministic version. It returns the lexico-
graphically minimal monic irreducible polynomial. Note that
contrary to the randomized algorithm, the run time of the de-
terministic algorithm may be exponential (w.r.t. to the size of
the field and degree of the polynomial).
fun find-irreducible-poly :: nat ⇒ nat ⇒ nat list
where find-irreducible-poly p n = (let f = enum-monic-poly (mod-ring

p) n in
f (while ((λk. ¬rabin-test (mod-ring p) (f k))) (λx. x + 1 ) 0 ))

definition cost :: ( ′a × nat) option ⇒ enat
where cost x = (case x of None ⇒ ∞ | Some (-,r) ⇒ enat r)

lemma cost-tick: cost (map-option (λ(x, c). (x, Suc c)) c) = eSuc
(cost c)

by (cases c) (auto simp:cost-def eSuc-enat)

context
fixes n p :: nat
assumes p-prime: Factorial-Ring.prime p
assumes n-gt-0 : n > 0

begin

private definition S where S = {f . monic-poly (ring-of (mod-ring
p)) f ∧ degree f = n }
private definition T where T = {f . monic-irreducible-poly (ring-of
(mod-ring p)) f ∧ degree f = n}

lemmas field-c = mod-ring-is-field-c[OF p-prime]
lemmas enum-c = mod-ring-is-enum-c[where n=p]

interpretation finite-field ring-of (mod-ring p)
unfolding finite-field-def finite-field-axioms-def
by (intro mod-ring-is-field conjI mod-ring-finite p-prime)

private lemmas field-ops = field-cD[OF field-c]

private lemma S-fin: finite S
unfolding S-def
using enum-monic-poly[OF field-c enum-c, where d=n]

bij-betw-finite by auto
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private lemma T-sub-S : T ⊆ S
unfolding S-def T-def monic-irreducible-poly-def by auto

private lemma T-card-gt-0 : real (card T ) > 0
proof −

have 0 < real (order (ring-of (mod-ring p))) ^ n / (2 ∗ real n)
using n-gt-0 finite-field-min-order by (intro divide-pos-pos) (simp-all)

also have ... ≤ real (card T ) unfolding T-def by (intro card-irred-gt-0
n-gt-0 )

finally show real (card T ) > 0 by auto
qed

private lemma S-card-gt-0 : real (card S) > 0
proof −

have 0 < card T using T-card-gt-0 by simp
also have ... ≤ card S by (intro card-mono T-sub-S S-fin)
finally have 0 < card S by simp
thus ?thesis by simp

qed

private lemma S-ne: S 6= {} using S-card-gt-0 by auto

private lemma sample-irreducible-poly-step-aux:
do {

k ← spmf-of-set {..<p^n};
let poly = enum-monic-poly (mod-ring p) n k;
if rabin-test (mod-ring p) poly then return-spmf (poly,c) else x
} =
do {

poly ← spmf-of-set S ;
if monic-irreducible-poly (ring-of (mod-ring p)) poly

then return-spmf (poly,c)
else x

}
(is ?L = ?R)

proof −
have order (ring-of (mod-ring p)) = p
unfolding Finite-Fields-Mod-Ring-Code.mod-ring-def Coset.order-def

ring-of-def by simp
hence 0 :spmf-of-set S = map-spmf (enum-monic-poly (mod-ring p)

n) (spmf-of-set {..<p^n})
using enum-monic-poly[OF field-c enum-c, where d=n] unfolding

bij-betw-def S-def
by (subst map-spmf-of-set-inj-on) auto

have ?L =do {f ← spmf-of-set S ; if rabin-test (mod-ring p) f then
return-spmf (f ,c) else x}

unfolding 0 bind-map-spmf by (simp add:Let-def comp-def )
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also have ... = ?R
using set-spmf-of-set-finite[OF S-fin]

by (intro bind-spmf-cong refl if-cong rabin-test field-c enum-c) (simp
add:S-def )

finally show ?thesis by simp
qed

private lemma sample-irreducible-poly-step:
sample-irreducible-poly p n =

do {
poly ← spmf-of-set S ;
if monic-irreducible-poly (ring-of (mod-ring p)) poly

then return-spmf (poly,1 )
else tick-spmf (sample-irreducible-poly p n)

}
by (subst sample-irreducible-poly.simps) (simp add:sample-irreducible-poly-step-aux)

private lemma sample-irreducible-poly-aux-1 :
ord-spmf (=) (map-spmf fst (sample-irreducible-poly p n)) (spmf-of-set

T )
proof (induction rule:sample-irreducible-poly.fixp-induct)

case 1 thus ?case by simp
next

case 2 thus ?case by simp
next

case (3 rec)
let ?f = monic-irreducible-poly (ring-of (mod-ring p))

have real (card (S∩−{x. ?f x})) = real (card (S − T ))
unfolding S-def T-def by (intro arg-cong[where f=card] arg-cong[where

f=of-nat]) (auto)
also have ... = real (card S − card T )

by (intro arg-cong[where f=of-nat] card-Diff-subset T-sub-S fi-
nite-subset[OF T-sub-S S-fin])

also have ... = real (card S) − card T
by (intro of-nat-diff card-mono S-fin T-sub-S)

finally have 0 :real (card (S∩−{x. ?f x})) = real (card S) − card T
by simp

have S-card-gt-0 : real (card S) > 0 using S-ne S-fin by auto

have do {f ← spmf-of-set S ;if ?f f then return-spmf f else spmf-of-set
T} = spmf-of-set T

(is ?L = ?R)
proof (rule spmf-eqI )

fix i
have spmf ?L i = spmf (pmf-of-set S >>=(λx. if ?f x then re-

turn-spmf x else spmf-of-set T )) i
unfolding spmf-of-pmf-pmf-of-set[OF S-fin S-ne, symmetric]
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spmf-of-pmf-def
by (simp add:bind-spmf-def bind-map-pmf )

also have ... = (
∫

x. (if ?f x then of-bool (x=i) else spmf (spmf-of-set
T ) i) ∂pmf-of-set S)

unfolding pmf-bind if-distrib if-distribR pmf-return-spmf indica-
tor-def by (simp cong:if-cong)

also have ... = (
∑

x ∈ S . (if ?f x then of-bool (x = i) else spmf
(spmf-of-set T ) i))/card S

by (subst integral-pmf-of-set[OF S-ne S-fin]) simp
also have ... = (of-bool (i ∈ T ) + spmf (spmf-of-set T ) i∗real

(card (S∩−{x. ?f x})))/card S
using S-fin S-ne

by (subst sum.If-cases[OF S-fin]) (simp add:of-bool-def T-def
monic-irreducible-poly-def S-def )

also have ... = (of-bool (i ∈ T )∗(1 + real (card (S∩−{x. ?f
x}))/real (card T )))/card S

unfolding spmf-of-set indicator-def by (simp add:algebra-simps)
also have ... = (of-bool (i ∈ T )∗(real (card S)/real (card T )))/card

S
using T-card-gt-0 unfolding 0 by (simp add:field-simps)

also have ... = of-bool (i ∈ T )/real (card T )
using S-card-gt-0 by (simp add:field-simps)

also have ... = spmf ?R i
unfolding spmf-of-set by simp

finally show spmf ?L i = spmf ?R i
by simp

qed
hence ord-spmf (=)
(spmf-of-set S >>= (λx. if ?f x then return-spmf x else spmf-of-set

T )) (spmf-of-set T )
by simp

moreover have ord-spmf (=)
(do { poly ← spmf-of-set S ; if ?f poly then return-spmf poly else

map-spmf fst (rec p n)})
(do { poly ← spmf-of-set S ; if ?f poly then return-spmf poly else

spmf-of-set T})
using 3 by (intro bind-spmf-mono ′) simp-all

ultimately have ord-spmf (=) (spmf-of-set S >>=
(λx. if ?f x then return-spmf x else map-spmf fst (rec p n)))

(spmf-of-set T )
using spmf .leq-trans by force

thus ?case unfolding sample-irreducible-poly-step-aux map-spmf-bind-spmf
by (simp add:comp-def if-distribR if-distrib spmf .map-comp case-prod-beta

cong:if-cong)
qed

lemma cost-sample-irreducible-poly:
(
∫

+x. cost x ∂sample-irreducible-poly p n) ≤ 2∗real n (is ?L ≤ ?R)
proof −
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let ?f = monic-irreducible-poly (ring-of (mod-ring p))
let ?a = (λt. measure (sample-irreducible-poly p n) {ω. enat t < cost

ω})
let ?b = (λt. measure (sample-irreducible-poly p n) {ω. enat t ≥ cost

ω})

define α where α = measure (pmf-of-set S) {x. ?f x}
have α-le-1 : α ≤ 1 unfolding α-def by simp

have 1 / (2∗ real n) = (card S / (2 ∗ real n)) / card S
using S-card-gt-0 by (simp add:algebra-simps)

also have ... = (real (order (ring-of (mod-ring p)))^n / (2 ∗ real
n)) / card S

unfolding S-def bij-betw-same-card[OF enum-monic-poly[OF field-c
enum-c, where d=n],symmetric]

by simp
also have ... ≤ card T / card S
unfolding T-def by (intro divide-right-mono card-irred-gt-0 n-gt-0 )

auto
also have ... = α

unfolding α-def measure-pmf-of-set[OF S-ne S-fin]
by (intro arg-cong2 [where f=(/)] refl arg-cong[where f=of-nat]

arg-cong[where f=card])
(auto simp: S-def T-def monic-irreducible-poly-def )

finally have α-lb: 1/ (2∗real n) ≤ α
by simp

have 0 < 1/ (2∗real n) using n-gt-0 by simp
also have ... ≤ α using α-lb by simp
finally have α-gt-0 : α > 0 by simp

have a-step-aux: norm (a ∗ b) ≤ 1 if norm a ≤ 1 norm b ≤ 1 for
a b :: real

using that by (simp add:abs-mult mult-le-one)

have b-eval: ?b t = (
∫

x. (if ?f x then of-bool(t ≥ 1 ) else
measure (sample-irreducible-poly p n) {ω. enat t ≥ eSuc (cost ω)})

∂pmf-of-set S)
(is ?L1 = ?R1 ) for t

proof −
have ?b t = measure (bind-spmf (spmf-of-set S) (λx. if ?f x then

return-spmf (x,1 ) else
tick-spmf (sample-irreducible-poly p n))) {ω. enat t ≥ cost ω}

by (subst sample-irreducible-poly-step) simp
also have ... = measure (bind-pmf (pmf-of-set S) (λx. if ?f x then

return-spmf (x,1 ) else
tick-spmf (sample-irreducible-poly p n))) {ω. enat t ≥ cost ω}

unfolding spmf-of-pmf-pmf-of-set[OF S-fin S-ne, symmetric]
by (simp add:spmf-of-pmf-def bind-map-pmf bind-spmf-def )

also have ... = (
∫

x. (if ?f x then of-bool(t ≥ 1 ) else
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measure (tick-spmf (sample-irreducible-poly p n)) {ω. enat t ≥
cost ω}) ∂pmf-of-set S)

unfolding measure-bind-pmf if-distrib if-distribR emeasure-return-pmf
by (simp add:indicator-def cost-def comp-def cong:if-cong)

also have ... = ?R1
unfolding measure-map-pmf vimage-def

by (intro arg-cong2 [where f=integralL] refl ext if-cong arg-cong2 [where
f=measure])

(auto simp add:vimage-def cost-tick eSuc-enat[symmetric])
finally show ?thesis by simp

qed

have b-eval-2 : ?b t = 1 − (1−α)^t for t
proof (induction t)

case 0
have ?b 0 = 0 unfolding b-eval by (simp add:enat-0 cong:if-cong

)
thus ?case by simp

next
case (Suc t)
have ?b (Suc t) = (

∫
x. (if ?f x then 1 else ?b t) ∂pmf-of-set S)

unfolding b-eval[of Suc t]
by (intro arg-cong2 [where f=integralL] if-cong arg-cong2 [where

f=measure])
(auto simp add: eSuc-enat[symmetric])

also have ... = (
∫

x. indicator {x. ?f x} x + ?b t ∗ indicator {x.
¬?f x} x ∂pmf-of-set S)

by (intro Bochner-Integration.integral-cong) (auto simp:algebra-simps)
also have ... = (

∫
x. indicator {x. ?f x} x ∂pmf-of-set S) +

(
∫

x. ?b t ∗ indicator {x. ¬?f x} x ∂pmf-of-set S)
by (intro Bochner-Integration.integral-add measure-pmf .integrable-const-bound[where

B=1 ]
AE-pmfI a-step-aux) auto

also have ... = α + ?b t ∗ measure (pmf-of-set S) {x. ¬?f x}
unfolding α-def by simp

also have ... = α + (1−α) ∗ ?b t
unfolding α-def

by (subst measure-pmf .prob-compl[symmetric]) (auto simp:Compl-eq-Diff-UNIV
Collect-neg-eq)

also have ... = 1 − (1−α)^Suc t
unfolding Suc by (simp add:algebra-simps)

finally show ?case by simp
qed

hence a-eval: ?a t = (1−α)^t for t
proof −

have ?a t = 1 − ?b t
by (simp add: measure-pmf .prob-compl[symmetric] Compl-eq-Diff-UNIV [symmetric]

Collect-neg-eq[symmetric] not-le)
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also have ... = (1−α)^t
unfolding b-eval-2 by simp

finally show ?thesis by simp
qed

have ?L = (
∑

t. emeasure (sample-irreducible-poly p n) {ω. enat t
< cost ω})

by (subst nn-integral-enat-function) simp-all
also have ... = (

∑
t. ennreal (?a t))

unfolding measure-pmf .emeasure-eq-measure by simp
also have ... = (

∑
t. ennreal ((1−α)^t))

unfolding a-eval by (intro arg-cong[where f=suminf ] ext) (simp
add: α-def ennreal-mult ′)

also have ... = ennreal (1 / (1−(1−α)))
using α-le-1 α-gt-0
by (intro arg-cong2 [where f=(∗)] refl suminf-ennreal-eq geomet-

ric-sums) auto
also have ... = ennreal (1 / α) using α-le-1 α-gt-0 by auto
also have ... ≤ ?R
using α-lb n-gt-0 α-gt-0 by (intro ennreal-leI ) (simp add:field-simps)

finally show ?thesis by simp
qed

private lemma weight-sample-irreducible-poly:
weight-spmf (sample-irreducible-poly p n) = 1 (is ?L = ?R)

proof (rule ccontr)
assume ?L 6= 1
hence ?L < 1 using less-eq-real-def weight-spmf-le-1 by blast
hence (∞::ennreal) = ∞ ∗ ennreal (1−?L) by simp
also have ... = ∞ ∗ ennreal (pmf (sample-irreducible-poly p n)

None)
unfolding pmf-None-eq-weight-spmf [symmetric] by simp

also have ... = (
∫

+x.∞ ∗ indicator {None} x ∂sample-irreducible-poly
p n)

by (simp add:emeasure-pmf-single)
also have ... ≤ (

∫
+x. cost x ∂sample-irreducible-poly p n)

unfolding cost-def by (intro nn-integral-mono) (auto simp:indicator-def )
also have ... ≤ 2∗real n by (intro cost-sample-irreducible-poly)
finally have (∞::ennreal) ≤ 2 ∗ real n by simp
thus False using linorder-not-le by fastforce

qed

lemma sample-irreducible-poly-result:
map-spmf fst (sample-irreducible-poly p n) =

spmf-of-set {f . monic-irreducible-poly (ring-of (mod-ring p)) f ∧
degree f = n} (is ?L = ?R)
proof −

have ?L = spmf-of-set T using weight-sample-irreducible-poly
by (intro eq-iff-ord-spmf sample-irreducible-poly-aux-1 ) (auto in-
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tro:weight-spmf-le-1 )
thus ?thesis unfolding T-def by simp

qed

lemma find-irreducible-poly-result:
defines res ≡ find-irreducible-poly p n
shows monic-irreducible-poly (ring-of (mod-ring p)) res degree res

= n
proof −

let ?f = enum-monic-poly (mod-ring p) n

have ex:∃ k. ?f k ∈ T ∧ k < order (ring-of (mod-ring p))^n
proof (rule ccontr)

assume @ k. ?f k ∈ T ∧ k < order (ring-of (mod-ring p)) ^ n
hence ?f ‘ {..<order (ring-of (mod-ring p)) ^ n} ∩ T = {} by

auto
hence S ∩ T = {}
unfolding S-def using bij-betw-imp-surj-on[OF enum-monic-poly[OF

field-c enum-c]] by auto
hence T = {} using T-sub-S by auto
thus False using T-card-gt-0 by simp

qed

then obtain k :: nat where k-def : ?f k ∈ T ∀ j<k. ?f j /∈ T
using exists-least-iff [where P=λx. ?f x ∈ T ] by auto

have k-ub: k < order (ring-of (mod-ring p))^n
using ex k-def (2 ) by (meson dual-order .strict-trans1 not-less)

have a: monic-irreducible-poly (ring-of (mod-ring p)) (?f k)
using k-def (1 ) unfolding T-def by simp

have b: monic-poly (ring-of (mod-ring p)) (?f j) degree (?f j) = n if
j ≤ k for j

proof −
have j < order (ring-of (mod-ring p)) ^n using k-ub that by simp
hence ?f j ∈ S unfolding S-def using bij-betw-apply[OF enum-monic-poly[OF

field-c enum-c]] by auto
thus monic-poly (ring-of (mod-ring p)) (?f j) degree (?f j) = n

unfolding S-def by auto
qed

have c: ¬monic-irreducible-poly (ring-of (mod-ring p)) (?f j) if j
< k for j

using b[of j] that k-def (2 ) unfolding T-def by auto

have 2 : while ((λk. ¬rabin-test (mod-ring p) (?f k))) (λx. x + 1 )
(k−j) = k if j ≤ k for j

using that proof (induction j)
case 0
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have rabin-test (mod-ring p) (?f k) by (intro iffD2 [OF rabin-test]
a b field-c enum-c) auto

thus ?case by (subst while-unfold) simp
next

case (Suc j)
hence ¬rabin-test (mod-ring p) (?f (k−Suc j))

using b c by (subst rabin-test[OF field-c enum-c]) auto
moreover have Suc (Suc (k − Suc j)) = Suc (k−j) using Suc

by simp
ultimately show ?case using Suc(1 ) by (subst while-unfold) simp

qed

have 3 :while ((λk. ¬rabin-test (mod-ring p) (?f k))) (λx. x + 1 ) 0
= k

using 2 [of k] by simp

have ?f k ∈ T using a b unfolding T-def by auto
hence res ∈ T unfolding res-def find-irreducible-poly.simps Let-def

3 by simp
thus monic-irreducible-poly (ring-of (mod-ring p)) res degree res =

n unfolding T-def by auto
qed

lemma monic-irred-poly-set-nonempty-finite:
{f . monic-irreducible-poly (ring-of (mod-ring p)) f ∧ degree f = n}
6= {} (is ?R1 )

finite {f . monic-irreducible-poly (ring-of (mod-ring p)) f ∧ degree f
= n} (is ?R2 )
proof −

have card T > 0 using T-card-gt-0 by auto
hence T 6= {} finite T using card-ge-0-finite by auto
thus ?R1 ?R2 unfolding T-def by auto

qed

end

Returns m e such that n = me, where e is maximal.
definition split-power :: nat ⇒ nat × nat

where split-power n = (
let e = last (filter (λx. is-nth-power-nat x n) (1#[2 ..<floorlog 2

n]))
in (nth-root-nat e n, e))

lemma split-power-result:
assumes (x,e) = split-power n
shows n = x^e

∧
k. n > 1 =⇒ k>e =⇒ ¬is-nth-power k n

proof −
define es where es = filter (λx. is-nth-power-nat x n) (1#[2 ..<floorlog

2 n])
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define m where m = max 2 (floorlog 2 n)

have 0 : x < m if that0 : is-nth-power-nat x n n > 1 for x
proof (rule ccontr)

assume a:¬(x < m)
obtain y where n-def :n = y^x using that0 is-nth-power-def

is-nth-power-nat-def by auto
have y 6= 0 using that(2 ) unfolding n-def
by (metis (mono-tags) nat-power-eq-Suc-0-iff not-less0 power-0-left

power-inject-exp)
moreover have y 6= 1 using that(2 ) unfolding n-def by auto
ultimately have y-ge-2 : y ≥ 2 by simp
have n < 2^floorlog 2 n using that floorlog-bounds by simp

also have ... ≤ 2^x using a unfolding m-def by (intro power-increasing)
auto

also have ... ≤ y^x using y-ge-2 by (intro power-mono) auto
also have ... = n using n-def by auto
finally show False by simp

qed

have 1 : m = 2 if ¬(n > 1 )
proof −

have floorlog 2 n ≤ 2 using that by (intro floorlog-leI ) auto
thus ?thesis unfolding m-def by auto

qed

have 2 : n = 1 if is-nth-power-nat 0 n using that by (simp add:
is-nth-power-nat-code)

have set es = {x ∈ insert 1 {2 ..<floorlog 2 n}. is-nth-power-nat x
n} unfolding es-def by auto

also have ... = {x. x 6= 0 ∧ x < m ∧ is-nth-power-nat x n} unfold-
ing m-def by auto

also have ... = {x. is-nth-power-nat x n ∧ (n > 1 ∨ x = 1 )}
using 0 1 2 zero-neq-one by (intro Collect-cong iffI conjI ) fast-

force+
finally have set-es: set es = {x. is-nth-power-nat x n ∧ (n > 1 ∨ x

= 1 )} by simp

have is-nth-power-nat 1 n unfolding is-nth-power-nat-def by simp
hence es-ne: es 6= [] unfolding es-def by auto

have sorted: sorted es unfolding es-def by (intro sorted-wrt-filter)
simp

have e-def : e = last es and x-def : x = nth-root-nat e n
using assms unfolding es-def split-power-def by (simp-all add:Let-def )

hence e-in-set-es: e ∈ set es unfolding e-def using es-ne by (intro
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last-in-set) auto

have e-max: x ≤ e if that1 :x ∈ set es for x
proof −

obtain k where k < length es x = es ! k using that1 by (metis
in-set-conv-nth)

moreover have e = es ! (length es −1 ) unfolding e-def using
es-ne last-conv-nth by auto

ultimately show ?thesis using sorted-nth-mono[OF sorted] es-ne
by simp

qed
have 3 :is-nth-power-nat e n ∧ (1 < n ∨ e = 1 ) using e-in-set-es

unfolding set-es by simp
hence e > 0 using 2 zero-neq-one by fast
thus n = x^e using 3 unfolding x-def using nth-root-nat-nth-power
by (metis is-nth-power-nat-code nth-root-nat-naive-code power-eq-0-iff )

show ¬is-nth-power k n if n > 1 k > e for k
proof (rule ccontr)

assume ¬(¬is-nth-power k n)
hence k ∈ set es using that unfolding set-es is-nth-power-nat-def

by auto
hence k ≤ e using e-max by auto
thus False using that(2 ) by auto

qed
qed

definition not-perfect-power :: nat ⇒ bool
where not-perfect-power n = (n > 1 ∧ (∀ x k. n = x ^ k −→ k =

1 ))

lemma is-nth-power-from-multiplicities:
assumes n > (0 ::nat)
assumes

∧
p. Factorial-Ring.prime p =⇒ k dvd (multiplicity p n)

shows is-nth-power k n
proof −
have n = (

∏
p ∈ prime-factors n. p^multiplicity p n) using assms(1 )

by (simp add: prod-prime-factors)
also have ... = (

∏
p ∈ prime-factors n. p^((multiplicity p n div

k)∗k))
by (intro prod.cong arg-cong2 [where f=power ] dvd-div-mult-self [symmetric]

refl assms(2 )) auto
also have ... = (

∏
p ∈ prime-factors n. p^(multiplicity p n div k))^k

unfolding power-mult prod-power-distrib[symmetric] by simp
finally have n = (

∏
p ∈ prime-factors n. p^(multiplicity p n div

k))^k by simp
thus ?thesis by (intro is-nth-powerI ) simp

qed

lemma power-inj-aux:
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assumes not-perfect-power a not-perfect-power b
assumes n > 0 m > n
assumes a ^ n = b ^ m
shows False

proof −
define s where s = gcd n m
define u where u = n div gcd n m
define t where t = m div gcd n m

have a-nz: a 6= 0 and b-nz: b 6= 0 using assms(1 ,2 ) unfolding
not-perfect-power-def by auto

have gcd n m 6= 0 using assms (3 ,4 ) by simp

then obtain t u where n-def : n = t ∗ s and m-def : m = u ∗ s
and cp: coprime t u

using gcd-coprime-exists unfolding s-def t-def u-def by blast

have s-gt-0 : s > 0 and t-gt-0 : t > 0 and u-gt-t: u > t
using assms(3 ,4 ) unfolding n-def m-def by auto

have (a ^ t) ^ s = (b ^ u) ^ s using assms(5 ) unfolding n-def
m-def power-mult by simp

hence 0 : a^t = b^u using s-gt-0 by (metis nth-root-nat-nth-power)

have u dvd multiplicity p a if Factorial-Ring.prime p for p
proof −

have prime-elem p using that by simp
hence t ∗ multiplicity p a = u ∗ multiplicity p b
using 0 a-nz b-nz by (subst (1 2 ) prime-elem-multiplicity-power-distrib[symmetric])

auto
hence u dvd t ∗ multiplicity p a by simp
thus ?thesis using cp coprime-commute coprime-dvd-mult-right-iff

by blast
qed

hence is-nth-power u a using a-nz by (intro is-nth-power-from-multiplicities)
auto

moreover have u > 1 using u-gt-t t-gt-0 by auto
ultimately show False using assms(1 ) unfolding not-perfect-power-def

is-nth-power-def by auto
qed

Generalization of prime-power-inj ′

lemma power-inj:
assumes not-perfect-power a not-perfect-power b
assumes n > 0 m > 0
assumes a ^ n = b ^ m
shows a = b ∧ n = m
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proof −
consider (a) n < m | (b) m < n | (c) n = m by linarith
thus ?thesis
proof (cases)

case a thus ?thesis using assms power-inj-aux by auto
next

case b thus ?thesis using assms power-inj-aux[OF assms(2 ,1 ,4 )
b] by auto

next
case c thus ?thesis using assms by (simp add: power-eq-iff-eq-base)

qed
qed

lemma split-power-base-not-perfect:
assumes n > 1
shows not-perfect-power (fst (split-power n))

proof (rule ccontr)
obtain b e where be-def : (b,e) = split-power n by (metis surj-pair)
have n-def :n = b ^ e and e-max:

∧
k. e < k =⇒ ¬ is-nth-power k n

using assms split-power-result[OF be-def ] by auto

have e-gt-0 : e > 0 using assms unfolding n-def by (cases e) auto

assume ¬not-perfect-power (fst (split-power n))
hence ¬not-perfect-power b unfolding be-def [symmetric] by simp
moreover have b-gt-1 : b > 1 using assms unfolding n-def

by (metis less-one nat-neq-iff nat-power-eq-Suc-0-iff power-0-left)
ultimately obtain k b ′ where k 6= 1 and b-def : b = b ′̂ k

unfolding not-perfect-power-def by auto
hence k-gt-1 : k > 1 using b-gt-1 nat-neq-iff by force
have n = b ′̂ (k∗e) unfolding power-mult n-def b-def by auto
moreover have k∗e > e using k-gt-1 e-gt-0 by simp
hence ¬is-nth-power (k∗e) n using e-max by auto
ultimately show False unfolding is-nth-power-def by auto

qed

lemma prime-not-perfect:
assumes Factorial-Ring.prime p
shows not-perfect-power p

proof −
have k=1 if p = x^k for x k using assms unfolding that by (simp

add:prime-power-iff )
thus ?thesis using prime-gt-1-nat[OF assms] unfolding not-perfect-power-def

by auto
qed

lemma split-power-prime:
assumes Factorial-Ring.prime p n > 0
shows split-power (p^n) = (p,n)
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proof −
obtain x e where xe:(x,e) = split-power (p^n) by (metis surj-pair)

have 1 < p^1 using prime-gt-1-nat[OF assms(1 )] by simp
also have ... ≤ p^n using assms(2 ) prime-gt-0-nat[OF assms(1 )]

by (intro power-increasing) auto
finally have 0 :p^n > 1 by simp

have not-perfect-power x
using split-power-base-not-perfect[OF 0 ] unfolding xe[symmetric]

by simp
moreover have not-perfect-power p by (rule prime-not-perfect[OF

assms(1 )])
moreover have 1 :p^n = x^e using split-power-result[OF xe] by

simp
moreover have e > 0 using 0 1 by (cases e) auto
ultimately have p=x ∧ n = e by (intro power-inj assms(2 ))
thus ?thesis using xe by simp

qed

definition is-prime-power n = (∃ p k. Factorial-Ring.prime p ∧ k >
0 ∧ n = p^k)

lemma is-prime-powerI :
assumes prime p k > 0
shows is-prime-power (p ^ k)
unfolding is-prime-power-def using assms by auto

definition GF where
GF n = (

let (p,k) = split-power n;
f = find-irreducible-poly p k

in poly-mod-ring (mod-ring p) f )

definition GFR where
GFR n =

do {
let (p,k) = split-power n;
f ← sample-irreducible-poly p k;
return-spmf (poly-mod-ring (mod-ring p) (fst f ))
}

lemma GF-in-GF-R:
assumes is-prime-power n
shows GF n ∈ set-spmf (GFR n)

proof−
obtain p k where n-def : n = p^k and p-prime: prime p and k-gt-0 :

k > 0
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using assms unfolding is-prime-power-def by blast
have pk-def : (p,k) = split-power n

unfolding n-def using split-power-prime[OF p-prime k-gt-0 ] by
auto

let ?S = {f . monic-irreducible-poly (ring-of (mod-ring p)) f ∧ degree
f = k}

have S-fin: finite ?S by (intro monic-irred-poly-set-nonempty-finite
p-prime k-gt-0 )

have find-irreducible-poly p k ∈ ?S
using find-irreducible-poly-result[OF p-prime k-gt-0 ] by auto

also have ... = set-spmf (map-spmf fst (sample-irreducible-poly p
k))

unfolding sample-irreducible-poly-result[OF p-prime k-gt-0 ] set-spmf-of-set-finite[OF
S-fin]

by simp
finally have 0 : find-irreducible-poly p k ∈ set-spmf (map-spmf fst

(sample-irreducible-poly p k))
by simp

have GF n = poly-mod-ring (mod-ring p) (find-irreducible-poly p k)
unfolding GF-def pk-def [symmetric] by (simp del:find-irreducible-poly.simps)
also have ... ∈ set-spmf (map-spmf fst (sample-irreducible-poly p

k)) >>= (λx. {poly-mod-ring (mod-ring p) x})
using 0 by force

also have ... = set-spmf (GFR n)
unfolding GFR-def pk-def [symmetric] by (simp add:set-bind-spmf

comp-def bind-image)
finally show ?thesis by simp

qed

lemma galois-field-random-1 :
assumes is-prime-power n
shows

∧
ω. ω ∈ set-spmf (GFR n) =⇒ enumC ω ∧ fieldC ω ∧ order

(ring-of ω) = n
and lossless-spmf (GFR n)

proof −
let ?pred = λω. enumC ω ∧ fieldC ω ∧ order (ring-of ω) = n

obtain p k where n-def : n = p^k and p-prime: prime p and k-gt-0 :
k > 0

using assms unfolding is-prime-power-def by blast
let ?r = (λf . poly-mod-ring (mod-ring p) f )
let ?S = {f . monic-irreducible-poly (ring-of (mod-ring p)) f ∧ degree

f = k}

have fc: fieldC (mod-ring p) by (intro mod-ring-is-field-c p-prime)
have ec: enumC (mod-ring p) by (intro mod-ring-is-enum-c)
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have S-fin: finite ?S by (intro monic-irred-poly-set-nonempty-finite
p-prime k-gt-0 )

have S-ne: ?S 6= {} by (intro monic-irred-poly-set-nonempty-finite
p-prime k-gt-0 )

have pk-def : (p,k) = split-power n
unfolding n-def using split-power-prime[OF p-prime k-gt-0 ] by

auto

have cond: ?pred (?r x) if x ∈ ?S for x
proof −

have order (ring-of (poly-mod-ring (mod-ring p) x)) = idx-size
(poly-mod-ring (mod-ring p) x)

using enum-cD[OF enum-c-poly-mod-ring[OF ec field-c-imp-ring[OF
fc]]] by simp

also have ... = p^(degree x)
by (simp add:poly-mod-ring-def Finite-Fields-Mod-Ring-Code.mod-ring-def )
also have ... = n unfolding n-def using that by simp
finally have order (ring-of (poly-mod-ring (mod-ring p) x)) = n

by simp

thus ?thesis using that
by (intro conjI enum-c-poly-mod-ring field-c-poly-mod-ring ec

field-c-imp-ring fc) auto
qed

have GFR n = bind-spmf (map-spmf fst (sample-irreducible-poly p
k)) (λx. return-spmf (?r x))

unfolding GFR-def pk-def [symmetric] map-spmf-conv-bind-spmf
by simp

also have ... = spmf-of-set ?S >>= (λf . return-spmf ((?r f )))
unfolding sample-irreducible-poly-result[OF p-prime k-gt-0 ] by

(simp)
also have ... = pmf-of-set ?S >>= (λf . return-spmf (?r f ))
unfolding spmf-of-pmf-pmf-of-set[OF S-fin S-ne, symmetric] spmf-of-pmf-def
by (simp add:bind-spmf-def bind-map-pmf )

finally have 0 :GFR n = map-pmf (Some ◦ ?r) (pmf-of-set ?S) by
(simp add:comp-def map-pmf-def )

show enumC ω ∧ fieldC ω ∧ order (ring-of ω) = n if ω ∈ set-spmf
(GFR n) for ω

proof −
have Some ω ∈ set-pmf (GFR n) unfolding in-set-spmf [symmetric]

by (rule that)
also have ... = (Some ◦ ?r) ‘ ?S unfolding 0 set-map-pmf

set-pmf-of-set[OF S-ne S-fin] by simp
finally have Some ω ∈ (Some ◦ ?r) ‘ ?S by simp
hence ω ∈ ?r ‘ ?S by auto

191



then obtain x where x:x ∈ ?S and ω-def :ω = ?r x by auto
show ?thesis unfolding ω-def by (intro cond x)

qed

have None /∈ set-pmf (GFR n) unfolding 0 set-map-pmf set-pmf-of-set[OF
S-ne S-fin] by auto

thus lossless-spmf (GFR n) using lossless-iff-set-pmf-None by blast
qed

lemma galois-field:
assumes is-prime-power n
shows enumC (GF n) fieldC (GF n) order (ring-of (GF n)) = n
using galois-field-random-1 (1 )[OF assms(1 ) GF-in-GF-R[OF assms(1 )]]

by auto

lemma lossless-imp-spmf-of-pmf :
assumes lossless-spmf M
shows spmf-of-pmf (map-pmf the M ) = M

proof −
have spmf-of-pmf (map-pmf the M ) = map-pmf (Some ◦ the) M

unfolding spmf-of-pmf-def by (simp add: pmf .map-comp)
also have ... = map-pmf id M

using assms unfolding lossless-iff-set-pmf-None
by (intro map-pmf-cong refl) (metis id-apply o-apply option.collapse)

also have ... = M by simp
finally show ?thesis by simp

qed

lemma galois-field-random-2 :
assumes is-prime-power n
shows map-spmf (λω. enumC ω ∧ fieldC ω ∧ order (ring-of ω) =

n) (GFR n) = return-spmf True
(is ?L = -)

proof −
have ?L = map-spmf (λω. True) (GFR n)

using galois-field-random-1 [OF assms] by (intro map-spmf-cong
refl) auto

also have ... = map-pmf (λω. Some True) (GFR n)
by (subst lossless-imp-spmf-of-pmf [OF galois-field-random-1 (2 )[OF

assms],symmetric]) simp
also have ... = return-spmf True unfolding map-pmf-def by simp
finally show ?thesis by simp

qed

lemma bind-galois-field-cong:
assumes is-prime-power n
assumes

∧
ω. enumC ω =⇒ fieldC ω =⇒ order (ring-of ω) = n =⇒

f ω = g ω
shows bind-spmf (GFR n) f = bind-spmf (GFR n) g
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using galois-field-random-1 (1 )[OF assms(1 )]
by (intro bind-spmf-cong refl assms(2 )) auto

end
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