Exponents 3 and 4 of Fermat's Last Theorem and the Parametrisation of Pythagorean Triples

Roelof Oosterhuis
University of Groningen

September 13, 2023

Abstract

This document gives a formal proof of the cases $n=3$ and $n=4$ (and all their multiples) of Fermat's Last Theorem: if $n>2$ then for all integers x, y, z : $$
x^{n}+y^{n}=z^{n} \Longrightarrow x y z=0 .
$$

Both proofs only use facts about the integers and are developed along the lines of the standard proofs (see, for example, sections 1 and 2 of the book by Edwards [Edw77]).

First, the framework of 'infinite descent' is being formalised and in both proofs there is a central role for the lemma $$
\text { coprimeab } \wedge a b=c^{n} \Longrightarrow \exists k:|a|=k^{n} .
$$

Furthermore, the proof of the case $n=4$ uses a parametrisation of the Pythagorean triples. The proof of the case $n=3$ contains a study of the quadratic form $x^{2}+3 y^{2}$. This study is completed with a result on which prime numbers can be written as $x^{2}+3 y^{2}$.

The case $n=4$ of FLT, in contrast to the case $n=3$, has already been formalised (in the proof assistant Coq) [DM05]. The parametrisation of the Pythagorean Triples can be found as number 23 on the list of 'top 100 mathematical theorems' [Wie].

This research is part of an M.Sc. thesis under supervision of Jaap Top and Wim H. Hesselink (RU Groningen). The author wants to thank Clemens Ballarin (TU München) and Freek Wiedijk (RU Nijmegen) for their support. For more information see [Oos07].

Contents

1 Pythagorean triples and Fermat's last theorem, case $n=4$ 3
1.1 Parametrisation of Pythagorean triples (over \mathbb{N} and \mathbb{Z}) 4
1.2 Fermat's last theorem, case $n=4$ 9
2 The quadratic form $x^{2}+N y^{2}$ 15
2.1 Definitions and auxiliary results 15
2.2 Basic facts if $N \geq 1$ 16
2.3 Multiplication and division 17
2.4 Uniqueness $(N>1)$ 28
2.5 The case $N=3$ 31
2.6 Existence $(N=3)$ 42
3 Fermat's last theorem, case $n=3$ 45

1 Pythagorean triples and Fermat's last theorem, case $n=4$

theory Fermat4
imports HOL-Computational-Algebra.Primes
begin
context
begin

private lemma nat-relprime-power-divisors:
assumes n0: $0<n$ and $a b c:(a:: n a t) * b=\widehat{ }$ n and relprime: coprime $a b$
shows $\exists k$. $a=k \widehat{n}$
using assms proof (induct c arbitrary: a b rule: nat-less-induct)
case (1 c)
show ? case
proof (cases $a>1$)
case False
hence $a=0 \vee a=1$ by linarith
thus ?thesis using n0 power-one zero-power by (simp only: eq-sym-conv) blast
next
case True
then obtain p where p : prime $p p d v d$ a using prime-factor-nat $[o f a]$ by blast
hence $h 1$: p dvd (c n n) using 1 (3) dvd-mult2[of $p a b]$ by presburger
hence $\left(p^{\wedge} n\right) d v d(c \widehat{ })$
using $p(1)$ prime-dvd-power-nat $[$ of p c $n]$ dvd-power-same $[o f ~ p r c n]$ by blast
moreover have $h 2: \neg p d v d b$
using p 〈coprime $a b\rangle$ coprime-common-divisor-nat $\left[\begin{array}{ll}o f & a\end{array} b\right]$ by auto
hence $\neg\left(p^{\wedge} n\right) d v d b$ using $n 0 p(1)$
by (auto intro: dvd-trans dvd-power[of $n p]$)
ultimately have ($p^{\widehat{\sim} n) d v d a}$
using 1.prems p (1) prime-elem-divprod-pow $\left[\begin{array}{llll}o f & p & a & b\end{array}\right]$ by simp
then obtain $a^{\prime} c^{\prime}$ where $a c: a=p \widehat{n} * a^{\prime} c=p * c^{\prime}$
using $h 1$ dvdE[of $\left.p^{\wedge} n a\right] d v d E[o f p c]$ prime-dvd-power-nat $[$ of p c n] $p(1)$ by meson
hence $p^{\wedge} n *\left(a^{\prime} * b\right)=p^{\wedge} n * c^{\prime} n$ using 1(3)
by (simp add: power-mult-distrib semiring-normalization-rules(18))
hence $a^{\prime} * b=c^{\prime \wedge} n$ using $p(1)$ by auto
moreover have coprime $a^{\prime} b$ using 1 (4) ac(1)
by (simp add: ac-simps)
moreover have $0<b 0<a$ using h2 dvd-0-right gr0I True by fastforce+
then have $0<c 1<p$
using $\left.p<a * b=c{ }^{\wedge} n\right\rangle$ n0 nat-0-less-mult-iff [of a b] n0
by (auto simp add: prime-gt-Suc-0-nat)
hence $c^{\prime}<c$ using ac(2) by simp
ultimately obtain k where $a^{\prime}=k \uparrow$ using 1 (1) n0 by presburger
hence $a=(p * k)$ ^ n using ac(1) by (simp add: power-mult-distrib)
thus ?thesis by blast
qed
qed
private lemma int-relprime-power-divisors:
assumes $0<n$ and $0 \leq a$ and $0 \leq b$ and $(a::$ int $) * b=c \wedge n$ and coprime $a b$
shows $\exists k$. $a=k \uparrow n$
proof (cases $a=0$)
case False
from $\langle 0 \leq a\rangle\langle 0 \leq b\rangle\left\langle a * b=c{ }^{\wedge} n\right\rangle[$ symmetric $]$ have $0 \leq c^{\wedge} n$ by simp
hence $c \widehat{n}=|c| \widehat{ } n$ using power-even-abs $[$ of $n c]$ zero-le-power-eq $[$ of $c n]$ by linarith
hence $a * b=|c| \wedge n$ using $\operatorname{assms}(4)$ by presburger
hence nat $a *$ nat $b=($ nat $|c|) \wedge n$ using nat-mult-distrib[of a b] assms(2)
by (simp add: nat-power-eq)
moreover have $0 \leq b$ using assms mult-less- 0 -iff $[$ of a b] False by auto
with $\langle 0 \leq a\rangle\langle c o p r i m e ~ a b\rangle$ have coprime (nat a) (nat b) using coprime-nat-abs-left-iff [of a nat b] by simp
ultimately have $\exists k$. nat $a=k \widehat{n}$
using nat-relprime-power-divisors[of n nat a nat b nat $|c|]$ assms(1) by blast
thus ?thesis using assms(2) int-nat-eq[of a] by fastforce
qed (simp add: zero-power [of n] assms(1))
Proof of Fermat's last theorem for the case $n=4$:

$$
\forall x, y, z: x^{4}+y^{4}=z^{4} \Longrightarrow x y z=0
$$

```
private lemma nat-power2-diff: \(a \geq(b:: n a t) \Longrightarrow(a-b)^{\wedge} 2=a^{\wedge} 2+b^{\wedge} 2-2 * a * b\)
proof -
    assume \(a\)-ge- \(b: a \geq b\)
    hence a2-ge-b2: \(a{ }^{-2} 2 b^{\wedge} 2\) by (simp only: power-mono)
    from \(a\)-ge- \(b\) have \(a b-g e-b 2: a * b \geq b\) へ2 by (simp add: power2-eq-square)
    have \(b *(a-b)+(a-b) \wedge 2=a *(a-b)\) by (simp add: power2-eq-square diff-mult-distrib)
    also have \(\ldots=a * b+a^{\wedge} 2+(b \wedge 2-b\) ^2 \()-2 * a * b\)
        by (simp add: diff-mult-distrib2 power2-eq-square)
    also with \(a 2-g e-b 2\) have \(\ldots=a * b+\left(a^{\wedge} 2-b^{\wedge} 2\right)+b^{\wedge} 2-2 * a * b\)
        by (simp add: power2-eq-square)
    also with \(a b-g e-b 2\) have \(\ldots=\left(a * b-b^{\wedge} 2\right)+a^{\wedge} 2+b^{\wedge} 2-2 * a * b\) by auto
    also have \(\ldots=b *(a-b)+a^{\wedge} 2+b \wedge 2-2 * a * b\)
        by (simp only: diff-mult-distrib2 power2-eq-square mult.commute)
    finally show ?thesis by arith
qed
```

private lemma nat-power-le-imp-le-base: $\llbracket n \neq 0 ; a \widehat{a} \leq b \widehat{n} \Longrightarrow(a:: n a t) \leq b$
by simp
private lemma nat-power-inject-base: $\llbracket n \neq 0 ; a \widehat{n}=b \wedge n \rrbracket \Longrightarrow(a:: n a t)=b$
proof -
assume $n \neq 0$ and $a b: \widehat{a n n}=b \widehat{n}$
then obtain m where $n=$ Suc m by (frule-tac $n=n$ in not0-implies-Suc, auto)
with $a b$ have $a \wedge$ Suc $m=b^{\wedge}$ Suc m and $a \geq 0$ and $b \geq 0$ by auto
thus ?thesis by (rule power-inject-base)
qed

1.1 Parametrisation of Pythagorean triples (over \mathbb{N} and \mathbb{Z})

private theorem nat-euclid-pyth-triples:
assumes $a b c:(a:: n a t) \wedge 2+b \wedge 2=c \wedge 2$ and $a b$-relprime: coprime $a b$ and aodd: odd a

proof -
have two $0:(2::$ nat $) \neq 0$ by simp
from $a b c$ have $a 2 c b: a^{\wedge} 2=c^{\wedge} 2-b^{\wedge} 2$ by arith

- factor a^{2} in coprime factors $(c-b)$ and $(c+b)$; hence both are squares
have a2factor: $a^{\wedge} 2=(c-b) *(c+b)$
proof -
have $c * b-c * b=0$ by simp
with $a 2 c b$ have $a^{\wedge} 2=c * c+c * b-c * b-b * b$ by (simp add: power2-eq-square)
also have $\ldots=c *(c+b)-b *(c+b)$
by (simp add: add-mult-distrib2 add-mult-distrib mult.commute)
finally show ?thesis by (simp only: diff-mult-distrib)
qed
have a-nonzero: $a \neq 0$
proof (rule ccontr)
assume $\neg a \neq 0$ hence $a=0$ by simp
with aodd have odd ($0::$ nat) by simp
thus False by simp
qed
have b-less-c: $b<c$
proof -
from $a b c$ have $b^{\wedge} 2 \leq c \wedge^{\wedge} 2$ by linarith
with two0 have $b \leq c$ by (rule-tac n=2 in nat-power-le-imp-le-base)
moreover have $b \neq c$
proof
assume $b=c$ with $a 2 c b$ have $a \wedge 2=0$ by simp
with a-nonzero show False by (simp add: power2-eq-square)
qed
ultimately show ?thesis by auto
qed
hence b2-le-c2: b^2 $\leq c^{\wedge} 2$ by (simp add: power-mono)
have bc-relprime: coprime b c
proof -
from $b 2-l e-c 2$ have cancelb2: $c^{\wedge} 2-b^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2$ by auto
let $? g=g c d b c$
have ? $g^{\wedge} 2=g c d(b$ ~2) $(c$ ^2) by simp

by (simp add: algebra-simps del: gcd-add1)
with $a 2 c b$ have ? g ^2 dvd $a \wedge 2$ by (simp only: $g c d-d v d 2$)
hence ? $g d v d a \wedge$? $g d v d b$ by simp
hence ?g dvd gcd a by (simp only: gcd-greatest)
with ab-relprime show ?thesis
by (simp add: ac-simps gcd-eq-1-imp-coprime)
qed
have p 2: prime (2::nat) by simp
have factors-odd: odd $(c-b) \wedge$ odd $(c+b)$
proof (auto simp only: ccontr)
assume even $(c-b)$
with a2factor have 2 dvd $a^{\wedge} 2$ by (simp only: dvd-mult2)
with $p 2$ have $2 d v d a$ by auto
with aodd show False by simp
next
assume even $(c+b)$
with a2factor have 2 dvd a ^2 by (simp only: dvd-mult)
with $p 2$ have 2 dvd a by auto
with aodd show False by simp
qed
have $c b 1: c-b+(c+b)=2 * c$
proof -
have $c-b+(c+b)=((c-b)+b)+c$ by simp
also with b-less-c have $\ldots=(c+b-b)+c$ by (simp only: diff-add-assoc2)
also have $\ldots=c+c$ by simp
finally show ?thesis by simp
qed
have $c b 2: 2 * b+(c-b)=c+b$
proof -
have $2 * b+(c-b)=b+b+(c-b)$ by auto
also have $\ldots=b+((c-b)+b)$ by simp
also with b-less- c have $\ldots=b+(c+b-b)$ by (simp only: diff-add-assoc2)
finally show ?thesis by simp
qed
have factors-relprime: coprime $(c-b)(c+b)$
proof -
let $? g=g c d(c-b)(c+b)$
have $c b 1: c-b+(c+b)=2 * c$
proof -
have $c-b+(c+b)=((c-b)+b)+c$ by simp
also with b-less-c have $\ldots=(c+b-b)+c$ by (simp only: diff-add-assoc2)
also have $\ldots=c+c$ by simp
finally show ?thesis by simp
qed
have $? g=g c d(c-b+(c+b))(c+b)$ by simp
with $c b 1$ have ? $g=g c d(2 * c)(c+b)$ by (rule-tac $a=c-b+(c+b)$ in back-subst)
hence $g 2 c$: ? $g ~ d v d 2 * c$ by (simp only: gcd-dvd1)
have $g c d(c-b)(2 * b+(c-b))=g c d(c-b)(2 * b)$
using gcd-add2[of $c-b 2 * b+(c-b)]$ by (simp add: algebra-simps)
with $c b 2$ have $? g=g c d(c-b)(2 * b)$ by (rule-tac $a=2 * b+(c-b)$ in back-subst)
hence $g 2 b$: ? g dvd $2 * b$ by (simp only: gcd-dvd2)
with $g 2 c$ have ? g dvd $2 * g c d b c$ by (simp only: gcd-greatest gcd-mult-distrib-nat)
with bc-relprime have ?g dvd 2 by simp
moreover have ? $g \neq 0$
using b-less- c by auto
ultimately have $1 \leq ? g ? g \leq 2$
by (simp-all add: dvd-imp-le)
then have g1or2: ? $g=2 \vee ? g=1$
by arith
moreover have $? g \neq 2$
proof
assume $? g=2$
moreover have ? $g d v d c-b$
by simp
ultimately show False
using factors－odd by simp

qed

ultimately show ？thesis
by（auto intro：gcd－eq－1－imp－coprime）
qed
from a2factor have $(c-b) *(c+b)=a^{\wedge} 2$ and（2：：nat）>1 by auto
with factors－relprime have $\exists k . c-b=k^{\wedge}$ 2
by（simp only：nat－relprime－power－divisors）
then obtain r where $r: c-b=r^{\wedge} 2$ by auto
from a2factor have $(c+b) *(c-b)=a^{\wedge} 2$ and（2：：nat）>1 by auto
with factors－relprime have $\exists k . c+b=k \wedge 2$
by（simp only：nat－relprime－power－divisors ac－simps）
then obtain s where $s: c+b=s^{\wedge} 2$ by auto
－now $p:=(s+r) / 2$ and $q:=(s-r) / 2$ is our solution
have rs－odd：odd $r \wedge$ odd s
proof（auto dest：ccontr）
assume even r hence 2 dvd r by presburger
with r have 2 dvd $(c-b)$ by（simp only：power2－eq－square dvd－mult）
with factors－odd show False by auto
next
assume even s hence 2 dvd s by presburger
with s have 2 dvd $(c+b)$ by（simp only：power2－eq－square dvd－mult）
with factors－odd show False by auto
qed
obtain m where $m: m=s-r$ by simp
from $r s$ have $r^{\wedge} 2 \leq s \wedge 2$ by arith
with two0 have $r \leq s$ by（rule－tac $n=2$ in nat－power－le－imp－le－base）
with m have $m 2: s=r+m$ by simp
have even m
proof（rule ccontr）
assume odd m with rs－odd and $m 2$ show False by presburger
qed
then obtain q where $m=2 * q$ ．．
with $m 2$ have $q: s=r+2 * q$ by simp
obtain p where $p: p=r+q$ by simp
have $c: c=p^{\wedge} 2+q^{\wedge} 2$
proof－
from $c b 1$ and r and s have $2 * c=r^{\wedge} 2+s^{\wedge} 2$ by simp
also with q have $\ldots=2 * r^{\wedge} 2+(2 * q)^{\wedge} 2+2 * r *(2 * q)$ by algebra
also have $\ldots=2 * r \wedge 2+2 \wedge 2 * q \wedge 2+2 * 2 * q * r$ by（simp add：power－mult－distrib）
also have $\ldots=2 *(r$ へ2 $+2 * q * r+q$ へ2 $)+2 * q$ へ2 by（simp add：power2－eq－square）
also with p have $\ldots=2 * p^{\wedge} 2+2 * q^{\wedge} 2$ by algebra
finally show ？thesis by auto
qed
moreover have $b: b=2 * p * q$
proof－
from $c b 2$ and r and s have $2 * b=s^{\wedge} 2-r \wedge 2$ by arith
also with q have $\ldots=(2 * q)^{\wedge} 2+2 * r *(2 * q)$ by（simp add：power2－sum）
also with p have $\ldots=4 * q * p$ by（simp add：power2－eq－square add－mult－distrib2）
finally show ？thesis by auto
qed
moreover have $a: a=p$ へ2 $-q$ へ2

```
proof -
    from p have p\geqq by simp
    hence p2-ge-q2: p^2 \geq q^2 by (simp only: power-mono)
    from a2cb and b and c have a^2 = ( ^^2 + q^2)^2 - (2*p*q)^2 by simp
    also have ... = (p^2)^2 + (q^2)^2 - 2*(p^2)*(q^2)
        by (auto simp add: power2-sum power-mult-distrib ac-simps)
    also with p2-ge-q2 have ... = ( p`2 - q^2)^2 by (simp only: nat-power2-diff)
    finally have a^2 = ( p^2 - q^2 )^2 by simp
    with two0 show ?thesis by (rule-tac n=2 in nat-power-inject-base)
qed
moreover have coprime p q
proof -
    let ?k = gcd pq
    have ?k dvd p ^?k dvd q by simp
    with b}\mathrm{ and }a\mathrm{ have ? }kdvd a\wedge?k dvd 
        by (simp add: power2-eq-square)
    hence ?k dvd gcd a b by (simp only: gcd-greatest)
    with ab-relprime show ?thesis
        by (auto intro: gcd-eq-1-imp-coprime)
qed
ultimately show ?thesis by auto
qed
Now for the case of integers．Based on nat－euclid－pyth－triples．
private corollary int－euclid－pyth－triples： \(\mathbb{C}\) coprime（ \(a::\) int ）\(b\) ；odd \(a ; a^{\wedge}\)＾2 \(+b^{\wedge} 2=c^{\wedge} 2\)】
\(\Longrightarrow \exists p q \cdot a=p \wedge 2-q \wedge 2 \wedge b=2 * p * q \wedge|c|=p \wedge 2+q \wedge 2 \wedge\) coprime \(p q\)
proof－
assume \(a b\)－rel：coprime \(a b\) and \(a o d d\) ：odd \(a\) and \(a b c: ~ a \wedge 2+b \wedge 2=c^{\wedge} 2\)
let \(? a=n a t|a|\)
let ？\(b=n a t|b|\)
let ？\(c=n a t|c|\)
have ab2－pos：\(a\)＾2 \(\geq 0 \wedge b^{\wedge} 2 \geq 0\) by \(\operatorname{simp}\)
```



```
hence \(n a t(|a|\) へ2 \()+\operatorname{nat}\left(|b|^{\wedge} 2\right)=\operatorname{nat}(|c|\)～2 \()\) by \(\operatorname{simp}\)
hence new－abc：？\(a^{\wedge} 2+? b^{\wedge} 2=? c^{\wedge} 2\)
by（simp only：nat－mult－distrib power2－eq－square nat－add－distrib）
moreover from ab－rel have new－ab－rel：coprime ？a ？b
by（simp add：gcd－int－def）
moreover have new－a－odd：odd ？a using aodd
by \(\operatorname{simp}\)
ultimately have
\(\exists p q . ? a=p\) へ2－q＾2 \(\wedge ? b=2 * p * q \wedge ? c=p^{\wedge} 2+q^{\wedge} 2 \wedge\) coprime \(p q\)
by（rule－tac \(a=? a\) and \(b=? b\) and \(c=? c\) in nat－euclid－pyth－triples）
then obtain \(m\) and \(n\) where \(m n\) ：
\(? a=m\)＾2 \(-n^{\wedge} 2 \wedge ? b=2 * m * n \wedge ? c=m^{\wedge} 2+n^{\wedge} 2 \wedge\) coprime \(m n\) by auto
have \(n\)＾2 \(\leq m\) 2
proof（rule ccontr）
assume \(\neg\) n＾2 \(\leq m^{\text {＾2 } 2 ~}\)
with \(m n\) have \(? a=0\) by auto
with new－a－odd show False by simp
```

```
    qed
    moreover from \(m n\) have int \(? a=\operatorname{int}\left(m^{\wedge} 2-n^{\wedge} 2\right)\) and \(i n t ? b=\operatorname{int}(2 * m * n)\)
        and int \(? c=\operatorname{int}\left(m^{\wedge} 2+n^{\wedge} 2\right)\) by auto
    ultimately have \(|a|=\operatorname{int}\left(m^{\wedge} 2\right)-\operatorname{int}\left(n^{\wedge} 2\right)\) and \(|b|=\operatorname{int}(2 * m * n)\)
    and \(|c|=\operatorname{int}\left(m^{\text {^2 } 2) ~}+\operatorname{int(n\wedge 2)~by~(simp~add:~of-nat-diff~}\right)+\)
    hence \(a b s a b c:|a|=(\text { int } m)^{\wedge}\) ~ \(-(\text { int } n)^{\wedge} \sim 2 \wedge|b|=2 *(\) int m)*int \(n\)
    \(\wedge|c|=\left(\right.\) int m) ^2 \(+(\text { int } n)^{\wedge}\) ^2 by (simp add: power2-eq-square)
    from \(m n\) have \(m n\)-rel: coprime (int \(m\) ) (int \(n\) )
        by (simp add: gcd-int-def)
    show \(\exists p q . a=p\) ^2 \(-q\) ^2 \(\wedge b=2 * p * q \wedge|c|=p^{\wedge} 2+q^{\wedge} 2 \wedge\) coprime \(p q\)
        (is \(\exists p q\).? \(Q p q\) )
    proof (cases)
        assume apos: \(a \geq 0\) then obtain \(p\) where \(p: p=\) int \(m\) by simp
        hence \(\exists q\). ?Q \(p q\)
        proof (cases)
            assume bpos: \(b \geq 0\) then obtain \(q\) where \(q=\) int \(n\) by simp
            with \(p\) apos bpos absabc mn-rel have ?Q \(p q\) by simp
            thus ?thesis by (rule exI)
    next
            assume \(\neg b \geq 0\) hence bneg: \(b<0\) by simp
            then obtain \(q\) where \(q=-\) int \(n\) by simp
            with \(p\) apos bneg absabc mn-rel have ?Q \(p q\) by simp
            thus ?thesis by (rule exI)
    qed
    thus ?thesis by (simp only: exI)
    next
        assume \(\neg a \geq 0\) hence aneg: \(a<0\) by simp
        then obtain \(p\) where \(p: p=\) int \(n\) by simp
        hence \(\exists q\). ?Q \(p q\)
        proof (cases)
            assume bpos: \(b \geq 0\) then obtain \(q\) where \(q=\operatorname{int} m\) by simp
            with \(p\) aneg bpos absabc mn-rel have ? \(Q \quad p q\)
                by (simp add: ac-simps)
            thus ?thesis by (rule exI)
    next
            assume \(\neg b \geq 0\) hence bneg: \(b<0\) by simp
            then obtain \(q\) where \(q=-\) int \(m\) by simp
            with \(p\) aneg bneg absabc mn-rel have ?Q \(p q\)
                by (simp add: ac-simps)
            thus ?thesis by (rule exI)
    qed
    thus ?thesis by (simp only: exI)
    qed
qed
```


1.2 Fermat's last theorem, case $n=4$

Core of the proof. Constructs a smaller solution over \mathbb{Z} of

$$
a^{4}+b^{4}=c^{2} \wedge \text { coprime } a b \wedge a b c \neq 0 \wedge a \text { odd }
$$

private lemma smaller-fermat4:
assumes $a b c:(a::$ int $)$＾4 $+b^{\wedge} 4=c$ へ2 and $a b c 0: a * b * c \neq 0$ and oodd：odd a and ab－relprime：coprime $a b$
shows
$\exists p q r .\left(p^{\wedge} 4+q^{\wedge} 4=r \wedge 2 \wedge p * q * r \neq 0 \wedge\right.$ odd $p \wedge$ coprime $\left.p q \wedge r \wedge 2<c \wedge 2\right)$
proof－
－put equation in shape of a pythagorean triple and obtain u and v
from ab－relprime have a2b2relprime：coprime（ a^{\wedge} 2）（ b へ2）
by simp
moreover from aodd have odd（ $a^{\wedge} 2$ ）by presburger
moreover from $a b c$ have $\left(a^{\wedge} 2\right) \wedge_{2}+\left(b^{\wedge} 2\right){ }^{-2}=c{ }^{\wedge} 2$ by simp
ultimately obtain u and v where $u v a b c$ ：
$a^{\wedge} 2=u^{\wedge} 2-v^{\wedge} 2 \wedge b^{\wedge} 2=2 * u * v \wedge|c|=u^{\wedge} 2+v^{\wedge} 2 \wedge$ coprime $u v$
by（frule－tac $a=a^{\wedge} 2$ in int－euclid－pyth－triples，auto）
with $a b c 0$ have $u v 0: u \neq 0 \wedge v \neq 0$ by auto
have av－relprime：coprime a v
proof－
have $g c d$ a $v d v d g c d$（ a＾2）v by（simp add：power2－eq－square）
moreover from uvabc have $\operatorname{gcd} v\left(a^{\wedge} 2\right) d v d g c d(b \wedge 2)(a \wedge 2)$ by simp
with a2b2relprime have $g c d\left(a^{\wedge} 2\right) v d v d(1::$ int $)$ by（simp add：ac－simps）
ultimately have $g c d a v d v d 1$ by（rule dvd－trans）
then show ？thesis
by（simp add：gcd－eq－1－imp－coprime）
qed
－make again a pythagorean triple and obtain k and l
from uvabc have $a^{\wedge} 2+v^{\wedge} 2=u^{\wedge} 2$ by simp
with av－relprime and aodd obtain $k l$ where

by（frule－tac $a=a$ in int－euclid－pyth－triples，auto）
－prove $b=2 m$ and $k l\left(k^{2}+l^{2}\right)=m^{2}$ ，for coprime k, l and $k^{2}+l^{2}$
from uvabc have even（ $b^{\text {～2）by }}$ simp
hence even b by simp
then obtain m where $b m: b=2 * m$ using evenE by blast
have $|k| *|l| * \mid k \wedge 2+l$＾2 $\mid=m$ へ 2
proof－
from $b m$ have $4 * m^{\wedge} 2=b^{\wedge} 2$ by（simp only：power2－eq－square ac－simps）
also have $\ldots=\left|b^{\wedge} 2\right|$ by simp
also with $u v a b c$ have $\ldots=2 *|v| *| | u \|$ by（simp add：abs－mult）
also with klavu have $\ldots=2 *|2 * k * l| *\left|k \wedge 2+l^{\wedge} 2\right|$ by simp
also have $\ldots=4 *|k| *|l| *|k \curvearrowright 2+l \wedge 2|$ by（auto simp add：abs－mult）
finally show ？thesis by simp
qed
moreover have（2：：nat）＞ 1 by auto
moreover from $k l$－rel have coprime $|k||l|$ by simp
moreover have coprime $|l|(|k \wedge 2+l \wedge 2|)$
proof－
from $k l$－rel have coprime $(k * k) l$
by simp
hence coprime $(k * k+l * l) l$ using gcd－add－mult［of $l l k * k$ ］
by（simp add：ac－simps gcd－eq－1－imp－coprime）

```
    hence coprime l ( \(k\) ^2 \(+l\)-2)
    by (simp add: power2-eq-square ac-simps)
    thus ?thesis by simp
qed
moreover have coprime \(\mid k^{\wedge}\) 2 \(+l^{\wedge} 2| | k \mid\)
proof -
    from \(k l\)-rel have coprime \(l k\)
        by (simp add: ac-simps)
    hence coprime ( \(l * l\) ) \(k\)
        by \(\operatorname{simp}\)
    hence coprime \((l * l+k * k) k\) using gcd-add-mult[of \(k k l * l]\)
        by (simp add: ac-simps gcd-eq-1-imp-coprime)
    hence coprime ( \(k \wedge^{\wedge} 2+l^{\wedge}\) 2) \(k\)
        by (simp add: power2-eq-square ac-simps)
    thus ?thesis by simp
qed
```



```
    using int-relprime-power-divisors[of 2 \(\left.|k||l| *\left|k^{2}+l^{2}\right| m\right]\)
        int-relprime-power-divisors[of 2 \(\left.|l||k| *\left|k^{2}+l^{2}\right| m\right]\)
        int-relprime-power-divisors[of \(\left.2\left|k^{2}+l^{2}\right||k| *|l| m\right]\)
    by (simp-all add: ac-simps)
then obtain \(\alpha \beta \gamma\) where albega:
    \(|k|=\alpha^{\wedge} 2 \wedge|l|=\beta^{\wedge} 2 \wedge \mid k\) ^2 \(+l\) ^2 \(\mid=\gamma^{\wedge} 2\)
    by auto
- show this is a new solution
have \(k^{\wedge} 2=\alpha^{\wedge} 4\)
proof -
    from albega have \(|k|^{\wedge}\) 2 \(=\left(\alpha^{\text {^2 }}\right)^{\wedge}\) ^2 by \(\operatorname{simp}\)
    thus ?thesis by simp
qed
moreover have \(l \wedge 2=\beta^{\wedge} 4\)
proof -
    from albega have \(\left.|l|\right|^{\wedge} 2=\left(\beta^{\wedge} \text { 2 }\right)^{\wedge} 2\) by simp
    thus ?thesis by simp
qed
moreover have gamma2: \(k\) ^2 \(+l^{\wedge} 2=\gamma^{\wedge} 2\)
proof -
    have \(k \wedge 2 \geq 0 \wedge l \wedge 2 \geq 0\) by \(\operatorname{simp}\)
    with albega show ?thesis by auto
qed
ultimately have newabc: \(\alpha \wedge 4+\beta \wedge_{4}=\gamma \wedge 2\) by auto
from uv0 klavu albega have albega0: \(\alpha * \beta * \gamma \neq 0\) by auto
- show the coprimality
have alphabeta-relprime: coprime \(\alpha \beta\)
proof (rule classical)
    let ? \(g=\operatorname{gcd} \alpha \beta\)
    assume \(\neg\) coprime \(\alpha \beta\)
    then have gnot1: ? \(g \neq 1\)
        by (auto intro: gcd-eq-1-imp-coprime)
    have ? \(g>1\)
    proof -
        have ? \(g \neq 0\)
```

```
    proof
        assume ?g=0
        hence nat }|\alpha|=0 by sim
        hence }\alpha=0\mathrm{ by arith
        with albega0 show False by simp
    qed
    hence ? g>0 by auto
    with gnot1 show ?thesis by linarith
qed
    moreover have ?g dvd gcd kl
    proof -
    have ?g dvd \alpha}\wedge?g dvd \beta by aut
    with albega have ?g dvd |k| ^?g dvd |l|
        by (simp add: power2-eq-square mult.commute)
    hence ?g dvd k ^ ?g dvd l by simp
    thus?thesis by simp
qed
ultimately have gcd kl\not=1 by fastforce
    with kl-rel show ?thesis by auto
qed
- choose p and q in the right way
have \exists pq. p^4 + q^4 = 人^2 \ ^ p*q*\gamma F= 0^ odd p ^ coprime p q
proof -
    have odd \alpha \vee odd \beta
    proof (rule ccontr)
        assume }\neg(\mathrm{ odd }\alpha\vee\mathrm{ odd }\beta
        hence even \alpha}\wedge even \beta by sim
        then have 2 dvd \alpha ^2 dvd \beta by simp
        then have 2 dvd gcd \alpha \beta by simp
        with alphabeta-relprime show False by auto
    qed
    moreover
    { assume odd \alpha
        with newabc albega0 alphabeta-relprime obtain pq where
                p=\alpha\wedgeq=\beta^ p^4}+q^4=\gamma^2\wedge p*q*\gamma \not=0^ odd p^ coprime p q
                by auto
    hence ?thesis by auto }
    moreover
    { assume odd \beta
        with newabc albega0 alphabeta-relprime obtain pq where
            q=\alpha^p=\beta^ p^4 + q^4= = ^2 ^ p*q*\gamma \not= 0^ odd p^ coprime p q
            by (auto simp add: ac-simps)
        hence ?thesis by auto }
    ultimately show ?thesis by auto
qed
- show the solution is smaller
moreover have < ^2 < c^2
proof -
    from gamma2 klavu have }\mp@subsup{\gamma}{}{\wedge2
```



```
    also have h2:\ldots\leq u^2 by simp
    also have h3: .. < < \2 + v^2
```

```
    proof -
        from uv0 have v2non0:0 f v^2
            by simp
    have 0\leq v^2 by (rule zero-le-power2)
    with v2non0 have 0<v`2 by (auto simp add: less-le)
    thus ?thesis by auto
    qed
```



```
    also have ...\leq |c| ^2 using self-le-power[of |c| 2] h1 h2 h3 uvabc by linarith
    also have ... \leq c^2 by simp
    finally show ?thesis by simp
    qed
    ultimately show ?thesis by auto
qed
```

Show that no solution exists, by infinite descent of c^{2}.
private lemma no-rewritten-fermat4:

```
    \(\neg\left(\exists(a::\right.\) int \() b .\left(a^{\wedge} 4+b^{\wedge} 4=c \wedge 2 \wedge a * b * c \neq 0 \wedge\right.\) odd \(a \wedge\) coprime \(\left.\left.a b\right)\right)\)
```

proof (induct c rule: infinite-descent0-measure[where $V=\lambda c$. nat ($c \wedge$ 2)])
case ($0 x$)
have x ~2 ≥ 0 by (rule zero-le-power2)
with 0 have $\operatorname{int}\left(\operatorname{nat}\left(x^{\wedge}\right.\right.$ 2 $\left.)\right)=0$ by auto
hence $x=0$ by auto
thus ?case by auto
next
case (smaller x)
then obtain $a b$ where $a \wedge 4+b \wedge 4=x \wedge 2$ and $a * b * x \neq 0$
and odd a and coprime $a b$ by auto
hence \exists pqr. $\left(p^{\wedge} 4+q^{\wedge} 4=r \wedge 2 \wedge p * q * r \neq 0 \wedge\right.$ odd p
\wedge coprime $\left.p q \wedge r^{\wedge} 2<x^{\wedge} 2\right)$ by (rule smaller-fermat4)
then obtain $p q r$ where $p q r: p \wedge 4+q \wedge 4=r \wedge 2 \wedge p * q * r \neq 0 \wedge$ odd p
\wedge coprime $p q \wedge r^{\wedge} 2<x \wedge 2$ by auto
have $\begin{array}{r} \\ \wedge \\ 2\end{array} 2$ and $x \wedge^{2} \geq 0$ by (auto simp only:zero-le-power2)
hence $\operatorname{int}\left(\operatorname{nat}\left(r^{\wedge} 2\right)\right)=r^{\wedge} 2 \wedge \operatorname{int}\left(\operatorname{nat}\left(x^{\wedge}\right.\right.$ 2 $\left.)\right)=x$ © 2 by auto
with pqr have $\operatorname{int}\left(\operatorname{nat}\left(r^{\wedge} 2\right)\right)<\operatorname{int}(\operatorname{nat}(x$ 2 $))$ by auto
hence $\operatorname{nat}\left(r^{\wedge} 2\right)<\operatorname{nat}\left(x^{\wedge}\right.$ 2) by presburger
with $p q r$ show ?case by auto
qed

The theorem. Puts equation in requested shape.
theorem fermat-4:
assumes ass: $(x::$ int $)$ ^4 $+y^{\wedge} 4=z^{\wedge} 4$
shows $x * y * z=0$
proof (rule ccontr)
let $? g=g c d x y$
let $? c=(z \operatorname{div} ? g)^{\wedge} 2$
assume $x y z 0: x * y * z \neq 0$

- divide out the g.c.d.
hence $x \neq 0 \vee y \neq 0$ by simp
then obtain $a b$ where $a b: x=? g * a \wedge y=? g * b \wedge$ coprime $a b$
using gcd-coprime-exists[of $x y]$ by (auto simp: mult.commute)
moreover have $a b c: a \wedge 4+b \wedge 4=? c \wedge 2 \wedge a * b * ? c \neq 0$

```
proof -
    have \(z g a b: z^{\wedge} 4=? g\) ^4 \(*(a \wedge 4+b\) 4 \()\)
    proof -
        from \(a b\) ass have \(z \wedge 4=(? g * a) \wedge 4+(? g * b) \wedge 4\) by simp
        thus ?thesis by (simp only: power-mult-distrib distrib-left)
    qed
    have \(c g z: z^{\wedge} 2=? c * ? g\) ^2
    proof -
        from \(z g a b\) have \(? g^{\wedge} 4\) dvd \(z^{\wedge} 4\) by \(\operatorname{simp}\)
        hence ? \(g ~ d v d z\) by simp
        hence ( \(z\) div ? \() *\) ? \(g=z\) by (simp only: ac-simps dvd-mult-div-cancel)
        with \(a b\) show ?thesis by (auto simp only: power2-eq-square ac-simps)
    qed
    with \(x y z 0\) have \(c 0: ? c \neq 0\) by (auto simp add: power2-eq-square)
    from \(x y z 0\) have \(g 0: ? g \neq 0\) by simp
    have \(a \wedge 4+b^{\wedge} 4=\) ? \(c\) へ2
    proof -
        have ? \(c\) ^2 \(* ? g^{\wedge} 4=\left(a^{\wedge} 4+b \wedge 4\right) * ? g^{\wedge} 4\)
        proof -
            have \(?^{\wedge} c^{\wedge} 2 * ? g^{\wedge} 4=\left(? c * ? g^{\wedge} 2\right)\) ^2 by algebra
            also with \(c g z\) have \(\ldots=\left(z^{\wedge} 2\right)^{\wedge} 2\) by \(\operatorname{simp}\)
            also have \(\ldots=z^{\wedge} 4\) by algebra
            also with \(z g a b\) have \(\ldots=? g^{\wedge} 4 *\left(a \wedge 4+b^{\wedge} 4\right)\) by \(\operatorname{simp}\)
            finally show? ?thesis by simp
        qed
        with g0 show ?thesis by auto
    qed
    moreover from \(a b x y z 0 c 0\) have \(a * b * ? c \neq 0\) by auto
    ultimately show ?thesis by simp
qed
- choose the parity right
have \(\exists p q \cdot p^{\wedge} 4+q^{\wedge} 4=? c \wedge 2 \wedge p * q * ? c \neq 0 \wedge\) odd \(p \wedge\) coprime \(p q\)
proof -
    have odd \(a \vee\) odd \(b\)
    proof (rule ccontr)
        assume \(\neg\) (odd \(a \vee\) odd \(b\) )
        hence \(2 d v d a \wedge 2 d v d b\) by \(\operatorname{simp}\)
        hence 2 dvd gcd a by simp
        with \(a b\) show False by auto
    qed
    moreover
    \{ assume odd a
        then obtain \(p q\) where \(p=a\) and \(q=b\) and odd \(p\) by simp
        with \(a b a b c\) have ?thesis by auto \}
    moreover
    \{ assume odd \(b\)
        then obtain \(p q\) where \(p=b\) and \(q=a\) and odd \(p\) by simp
        with \(a b a b c\) have
            \(p^{\wedge} 4+q^{\wedge}=? c \wedge 2 \wedge p * q * ? c \neq 0 \wedge\) odd \(p \wedge\) coprime \(p q\)
            by (simp add: ac-simps)
        hence ?thesis by auto \}
    ultimately show ?thesis by auto
```

```
    qed
    - show contradiction using the earlier result
    thus False by (auto simp only: no-rewritten-fermat4)
qed
corollary fermat-mult4:
    assumes xyz:(x::int)^n + \^n = z` n and n:4 dvd n
    shows }x*y*z=
proof -
    from n obtain m}\mathrm{ where }n=m*4 by (auto simp only: ac-simps dvd-def
    with xyz have (x`m)^4 +(y`m)^4 = (z`m)^4 by (simp only: power-mult)
    hence (x^m)*(y`m)*(z`m)=0 by (rule fermat-4)
    thus ?thesis by auto
qed
end
```

end

2 The quadratic form $x^{2}+N y^{2}$

```
theory Quad-Form
imports
    HOL-Number-Theory.Number-Theory
begin
context
begin
```

Shows some properties of the quadratic form $x^{2}+N y^{2}$, such as how to multiply and divide them. The second part focuses on the case $N=3$ and is used in the proof of the case $n=3$ of Fermat's last theorem. The last part - not used for FLT3 - shows which primes can be written as $x^{2}+3 y^{2}$.

2.1 Definitions and auxiliary results

```
private lemma best-division-abs: (n::int) >0\Longrightarrow\existsk.2* |a-k*n|\leqn
proof -
    assume a:n>0
    define k where k=a div n
    have h:a-k*n=a mod n by (simp add: div-mult-mod-eq algebra-simps k-def)
    thus ?thesis
    proof (cases 2 * (a mod n)\leqn)
        case True
        hence 2* |a-k*n| \leqn using h pos-mod-sign a by auto
        thus ?thesis by blast
    next
        case False
        hence 2* ( }n-a\operatorname{mod}n)\leqn\mathrm{ by auto
    have }a-(k+1)*n=a mod n - n using h by (simp add: algebra-simps
    hence 2* |a-(k+1)*n|\leqn using h pos-mod-bound[of n a] a False by fastforce
```

thus ?thesis by blast
qed
qed
lemma prime-power-dvd-cancel-right:
$p^{\wedge} n$ dvd a if prime $\left(p::^{\prime} a:: s e m i r i n g-g c d\right) ~ \neg p d v d b p^{\wedge} n d v d a * b$
proof -
from that have coprime $p b$
by (auto intro: prime-imp-coprime)
with that show ?thesis
by (simp add: coprime-dvd-mult-left-iff)
qed

definition

$$
\begin{aligned}
& \text { is-qfN }:: \text { int } \Rightarrow \text { int } \Rightarrow \text { bool } \text { where } \\
& i s-q f N A ~ \\
& \longleftrightarrow(\exists x y . A=x \wedge 2+N * y \wedge 2)
\end{aligned}
$$

definition

is-cube-form $::$ int \Rightarrow int \Rightarrow bool where
is-cube-form $a b \longleftrightarrow\left(\exists p q . a=p^{\wedge} 3-9 * p * q \wedge 2 \wedge b=3 * p \wedge 2 * q-3 * q^{\wedge} 3\right)$

```
private lemma abs-eq-impl-unitfactor: \(|a:: i n t|=|b| \Longrightarrow \exists u . a=u * b \wedge|u|=1\)
proof -
    assume \(|a|=|b|\)
    hence \(a=1 * b \vee a=(-1) * b\) by arith
    then obtain \(u\) where \(a=u * b \wedge(u=1 \vee u=-1)\) by blast
    thus ?thesis by auto
qed
private lemma prime-3-nat: prime (3::nat) by auto
```


2.2 Basic facts if $N \geq 1$

lemma $q f N$-pos: $\llbracket N \geq 1$; is-qfN $A N \rrbracket \Longrightarrow A \geq 0$
proof -
assume $N: N \geq 1$ and $\operatorname{is-qfN} A N$
then obtain $a b$ where $a b: A=a^{\wedge} 2+N * b$ ค 2 by (auto simp add: is-qfN-def)
have $N * b^{\wedge} 2 \geq 0$
proof (cases)
assume $b=0$ thus ?thesis by auto
next
assume $\neg b=0$ hence $b \wedge 2>0$ by simp
moreover from N have $N>0$ by simp
ultimately have $N * b^{\wedge} 2>N * 0$ by (auto simp only:zmult-zless-mono2)
thus ?thesis by auto
qed
with $a b$ have $A \geq a^{\wedge} 2$ by auto
moreover have $\begin{aligned} & \wedge \\ & 2 \\ & 2\end{aligned} 0$ by (rule zero-le-power2)
ultimately show ?thesis by arith
qed
lemma qfN-zero: $\llbracket(N::$ int $) \geq 1 ; a$ へ2 $+N * b$ へ2 $=0 \rrbracket \Longrightarrow(a=0 \wedge b=0)$

```
proof -
    assume N:N\geq1 and abN:a^2 + N*b^2 = 0
    show ?thesis
    proof (rule ccontr, auto)
        assume }a\not=0\mathrm{ hence a`2 > 0 by simp
        moreover have N*b`2 \geq0
        proof (cases)
            assume b=0 thus ?thesis by auto
        next
            assume }\negb=0\mathrm{ hence }\mp@subsup{b}{}{\wedge}2>0 by sim
            moreover from N have N>0 by simp
            ultimately have N*b`2 > N*0 by (auto simp only:zmult-zless-mono2)
            thus ?thesis by auto
        qed
        ultimately have a^2 + N*b^2 > 0 by arith
        with abN show False by auto
    next
        assume b\not=0 hence b`2>0 by simp
        moreover from N have N>0 by simp
        ultimately have N*b^2}>N*0\mathrm{ by (auto simp only:zmult-zless-mono2)
        hence N*b^2>0 by simp
        moreover have a^2 \geq0 by (rule zero-le-power2)
        ultimately have a^2 +N*b^2> >0 by arith
        with abN show False by auto
    qed
qed
```


2.3 Multiplication and division

```
lemma qfN-mult1: \(\left((a::\right.\) int \(\left.) \wedge_{2} 2+N * b^{\wedge} 2\right) *\left(c \wedge 2+N * d^{\wedge} 2\right)\)
```

 \(=(a * c+N * b * d) \wedge_{2}^{2}+N *(a * d-b * c) \wedge_{2}\)
 by (simp add: eval-nat-numeral field-simps)
 lemma qfN-mult2: ((a::int) ^2 $\left.+N * b^{\wedge} 2\right) *\left(c\right.$ へ2 $\left.+N * d^{\wedge} 2\right)$
$=(a * c-N * b * d)^{\wedge} 2+N *(a * d+b * c)^{\wedge} 2$
by (simp add: eval-nat-numeral field-simps)
corollary is-qfN-mult: is-qfN $A N \Longrightarrow i s-q f N B N \Longrightarrow i s-q f N(A * B) N$
by (unfold is-qfN-def, auto, auto simp only: qf N-mult1)
corollary is-qfN-power: $(n:: n a t)>0 \Longrightarrow i s-q f N A N \Longrightarrow i s-q f N(A \uparrow n) N$
by (induct n, auto, case-tac $n=0$, auto simp add: is-qfN-mult)
lemma qfN-div-prime:
fixes $p::$ int
assumes ass: prime $\left(p^{\wedge}\right.$ 2 $+N * q^{\wedge}$ 2) $) \wedge\left(p^{\wedge}\right.$ 2 $+N * q$ へ2 $) d v d\left(a^{\wedge} 2+N * b^{\wedge}\right.$ 2 $)$
shows $\exists u v . a^{\wedge} 2+N * b^{\wedge} 2=\left(u^{\wedge} 2+N * v^{\wedge} 2\right) *\left(p^{\wedge} 2+N * q^{\wedge} 2\right)$
$\wedge(\exists e . a=p * u+e * N * q * v \wedge b=p * v-e * q * u \wedge|e|=1)$
proof -
let $? P=p^{\wedge} 2+N * q^{\wedge} 2$
let $? A=a^{\wedge} 2+N * b^{\wedge} 2$
from ass obtain U where $U: ? A=? P * U$ by (auto simp only: dvd-def)

```
have \(\exists e\). ?P \(d v d b * p+e * a * q \wedge|e|=1\)
proof -
    have ?P \(d v d(b * p+a * q) *(b * p-a * q)\)
    proof -
        have \((b * p+a * q) *(b * p-a * q)=b \wedge 2 * ? P-q \wedge 2 * ? A\)
            by (simp add: eval-nat-numeral field-simps)
    also from \(U\) have \(\ldots=(b \sim 2-q \wedge 2 * U) * ? P\) by \((\) simp add: field-simps \()\)
    finally show ?thesis by simp
    qed
    with ass have ?P dvd \((b * p+a * q) \vee ? P d v d(b * p-a * q)\)
        by (simp add: nat-abs-mult-distrib prime-int-iff prime-dvd-mult-iff)
    moreover
    \{ assume ? \(P\) dvd \(b * p+a * q\)
        hence ? \(P\) dvd \(b * p+1 * a * q \wedge|1|=(1::\) int \()\) by simp \(\}\)
    moreover
    \{ assume ?P dvd \(b * p-a * q\)
        hence ?P dvd \(b * p+(-1) * a * q \wedge|-1|=(1::\) int \()\) by simp \(\}\)
    ultimately show ?thesis by blast
qed
then obtain \(v e\) where \(v: b * p+e * a * q=? P * v\) and \(e:|e|=1\)
    by (auto simp only: dvd-def)
have ?P dvd \(a * p-e * N * b * q\)
proof (cases)
    assume \(e 1: e=1\)
    from \(U\) have \(U * ? P \wedge^{\sim} 2=? A * ? P\) by (simp add: power2-eq-square)
    also with \(e 1\) have \(\ldots=(a * p-e * N * b * q)^{\wedge} 2+N *(b * p+e * a * q)^{\wedge} 2\)
        by (simp only: qfN-mult2 add.commute mult-1-left)
    also with \(v\) have \(\ldots=(a * p-e * N * b * q)^{\wedge 2}+N * v^{\wedge} 2 * ? P P^{\wedge 2}\)
        by (simp only: power-mult-distrib ac-simps)
    finally have \((a * p-e * N * b * q) \wedge 2=? P \wedge 2 *(U-N * v \wedge 2)\)
        by (simp add: ac-simps left-diff-distrib)
    hence ? P \({ }^{\wedge} 2 d v d(a * p-e * N * b * q)\) ^2 by (rule \(\left.d v d I\right)\)
    thus ?thesis by simp
next
    assume \(\neg e=1\) with \(e\) have \(e 1: e=-1\) by auto
    from \(U\) have \(U * ? P^{\wedge} 2=? A * ? P\) by (simp add: power2-eq-square)
    also with \(e 1\) have \(\ldots=(a * p-e * N * b * q)^{\wedge} 2+N *(-(b * p+e * a * q))^{\wedge} 2\)
        by (simp add: qfN-mult1)
    also have \(\ldots=(a * p-e * N * b * q)^{\wedge} 2+N *(b * p+e * a * q)^{\wedge} 2\)
        by (simp only: power2-minus)
    also with \(v\) have \(\ldots=(a * p-e * N * b * q)^{\wedge} 2+N * v\) ^2 \(*\) ? \(P^{\wedge} 2\)
    by (simp only: power-mult-distrib ac-simps)
    finally have \((a * p-e * N * b * q)^{\wedge} 2=? P \wedge 2 *\left(U-N * v^{\wedge} 2\right)\)
    by (simp add: ac-simps left-diff-distrib)
    hence ? P \(\wedge^{\wedge} 2 d v d(a * p-e * N * b * q) \wedge 2\) by (rule dvdI)
    thus ?thesis by simp
qed
then obtain \(u\) where \(u: a * p-e * N * b * q=? P * u\) by (auto simp only: dvd-def)
from \(e\) have \(e 2-1: e * e=1\)
    using abs-mult-self-eq [of e] by simp
have \(a\) : \(a=p * u+e * N * q * v\)
proof -
```

```
    have \((p * u+e * N * q * v) * ? P=p *(? P * u)+(e * N * q) *(? P * v)\)
    by (simp only: distrib-right ac-simps)
    also with \(v u\) have \(\ldots=p *(a * p-e * N * b * q)+(e * N * q) *(b * p+e * a * q)\)
    by \(\operatorname{simp}\)
    also have \(\ldots=a *\left(p^{\wedge} 2+e * e * N * q^{\wedge} 2\right)\)
    by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
    also with \(e 2-1\) have \(\ldots=a *\) ? \(P\) by simp
    finally have \((a-(p * u+e * N * q * v)) * ? P=0\) by auto
    moreover from ass have ? \(P \neq 0\) by auto
    ultimately show ?thesis by simp
qed
moreover have \(b: b=p * v-e * q * u\)
proof -
    have \((p * v-e * q * u) * ? P=p *(? P * v)-(e * q) *(? P * u)\)
        by (simp only: left-diff-distrib ac-simps)
    also with \(v u\) have \(\ldots=p *(b * p+e * a * q)-e * q *(a * p-e * N * b * q)\) by simp
    also have \(\ldots=b *\left(p^{\wedge} 2+e * e * N * q\right.\) へ2 \()\)
        by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
    also with \(e 2-1\) have \(\ldots=b *\) ? \(P\) by simp
    finally have \((b-(p * v-e * q * u)) * ? P=0\) by auto
    moreover from ass have ? \(P \neq 0\) by auto
    ultimately show ?thesis by simp
qed
moreover have ? \(A=\left(u^{\wedge} 2+N * v^{\wedge} 2\right) * ? P\)
proof (cases)
    assume \(e=1\)
    with \(a\) and \(b\) show ?thesis by (simp add: qfN-mult1 \(a c\)-simps)
next
    assume \(\neg e=1\) with \(e\) have \(e=-1\) by simp
    with \(a\) and \(b\) show ?thesis by (simp add: qfN-mult2 ac-simps)
qed
moreover from \(e\) have \(|e|=1\).
ultimately show ?thesis by blast
qed
corollary qfN-div-prime-weak:
    【 prime ( \(p^{\wedge} 2+N * q^{\wedge} 2::\) int \() ;\left(p^{\wedge} 2+N * q^{\wedge} 2\right) d v d\left(a^{\wedge} 2+N * b^{\wedge} 2\right) \rrbracket\)
    \(\Longrightarrow \exists\) uv. \(a^{\wedge} 2+N * b^{\wedge} 2=\left(u^{\wedge} 2+N * v^{\wedge} 2\right) *\left(p^{\wedge} 2+N * q^{\wedge 2}\right)\)
    apply (subgoal-tac \(\exists u v . a^{\wedge} 2+N * b^{\wedge} 2=\left(u \wedge 2+N * v^{\wedge 2}\right) *\left(p^{\wedge} 2+N * q\right.\) 2)
    \(\wedge(\exists e . a=p * u+e * N * q * v \wedge b=p * v-e * q * u \wedge|e|=1)\), blast \()\)
    apply (rule qfN-div-prime, auto)
done
corollary qfN-div-prime-general: 【 prime \(P ; P\) dvd \(A ; i s-q f N A N ; i s-q f N P N \rrbracket\)
    \(\Longrightarrow \exists Q . A=Q * P \wedge i s-q f N Q N\)
    apply (subgoal-tac \(\left.\exists u v . A=\left(u^{\wedge} 2+N * v \curvearrowright 2\right) * P\right)\)
    apply (unfold is-qfN-def, auto)
    apply (simp only: qfN-div-prime-weak)
done
lemma qfN－power－div－prime：
fixes \(P\) ：：int
```

assumes ass: prime $P \wedge$ odd $P \wedge P d v d A \wedge P \wedge n=p^{\wedge} 2+N * q^{\wedge} 2$
$\wedge A \wedge n=a$ へ2 $+N * b^{\wedge} 2 \wedge$ coprime a $b \wedge$ coprime $p(N * q) \wedge n>0$
shows $\exists u v$. $a^{\wedge 2}+N * b^{\wedge 2}=\left(u^{\wedge 2}+N * v^{\wedge 2}\right) *\left(p^{\wedge} 2+N * q\right.$ ^2 $) \wedge$ coprime $u v$

$$
\wedge(\exists e . a=p * u+e * N * q * v \wedge b=p * v-e * q * u \wedge|e|=1)
$$

proof -
from ass have $P d v d A \wedge n>0$ by simp
hence $P{ }^{\wedge} n d v d A \wedge$ by simp
then obtain U where $U: A \widehat{n}=U * P$ (auto simp only: dvd-def ac-simps)
from ass have coprime a b
by blast
have $\exists e . P{ }^{\wedge} n d v d b * p+e * a * q \wedge|e|=1$
proof -
have Pn-dvd-prod: $P{ }^{\wedge} n d v d(b * p+a * q) *(b * p-a * q)$
proof -
have $(b * p+a * q) *(b * p-a * q)=(b * p)^{\wedge} 2-(a * q)^{\wedge} 2$
by (simp add: power2-eq-square algebra-simps)

by (simp add: power-mult-distrib)
also with ass have $\ldots=b^{\wedge} 2 * P^{\wedge} n-q^{\wedge} 2 * A \widehat{n}$
by (simp only: ac-simps distrib-right distrib-left) also with U have $\ldots=\left(b^{\wedge} 2-q\right.$ ^2 $\left.2 * U\right) * P$ ^ n by (simp only: left-diff-distrib)
finally show ?thesis by (simp add: ac-simps)
qed
have $P \widehat{n} d v d(b * p+a * q) \vee P \curlywedge n d v d(b * p-a * q)$ proof -
have $P d v d P n: P d v d P{ }^{\wedge} n$
proof -
from ass have $\exists m . n=$ Suc m by (simp add: not0-implies-Suc)
then obtain m where $n=S u c m$ by auto
hence $P \wedge n=P *(P \wedge m)$ by auto
thus ?thesis by auto
qed
have $\neg P$ dvd $b * p+a * q \vee \neg P d v d b * p-a * q$
proof (rule ccontr, simp)
assume $P d v d b * p+a * q \wedge P d v d b * p-a * q$
hence $P d v d(b * p+a * q)+(b * p-a * q) \wedge P d v d(b * p+a * q)-(b * p-a * q)$
by (simp only: dvd-add, simp only: dvd-diff)
hence $P d v d 2 *(b * p) \wedge P$ dvd $2 *(a * q)$ by (simp only: mult-2, auto)
with ass have $(P d v d 2 \vee P d v d b * p) \wedge(P d v d \operatorname{2} \vee P d v d a * q)$
using prime-dvd-multD by blast
hence $P d v d 2 \vee(P d v d b * p \wedge P d v d a * q)$ by auto
moreover have $\neg P$ dvd 2
proof (rule ccontr, simp)
assume pdvd2: P dvd 2
have $P \leq 2$
proof (rule ccontr)
assume $\neg P \leq 2$ hence $P l 2: P>2$ by simp
with pdvd2 show False by (simp add: zdvd-not-zless)
qed
moreover from ass have $P>1$ by (simp add: prime-int-iff)
ultimately have $P=2$ by auto
with ass have odd 2 by simp

```
        thus False by simp
    qed
    ultimately have P dvd b*p ^Pdvd a*q by auto
    with ass have (P dvd b\vee P dvd p)^(Pdvd a\veePdvd q)
        using prime-dvd-multD by blast
    moreover have }\negP\mathrm{ dvd p}\wedge\negPdvd 
    proof (auto dest: ccontr)
        assume Pdvdp: P dvd p
        hence P dvd p`2 by (simp only:dvd-mult power2-eq-square)
        with PdvdPn have P dvd P`n-p^2 by (simp only:dvd-diff)
    with ass have P dvd N*(q*q) by (simp add: power2-eq-square)
    with ass have h1: P dvd N \vee P dvd (q*q) using prime-dvd-multD by blast
    moreover
    {
        assume Pdvd (q*q)
        hence P dvd q using prime-dvd-multD ass by blast
    }
    ultimately have P dvd N*q by fastforce
    with Pdvdp have P dvd gcd p (N*q) by simp
    with ass show False by (simp add: prime-int-iff)
    next
    assume P dvd q
    hence PdvdNq: P dvd N*q by simp
    hence P dvd N*q*q by simp
    hence P dvd N*q^2 by (simp add: power2-eq-square ac-simps)
    with PdvdPn have P dvd P`n-N*q^2 by (simp only: dvd-diff)
    with ass have P dvd p*p by (simp add: power2-eq-square)
    with ass have P dvd p by (auto dest: prime-dvd-multD)
    with PdvdNq have P dvd gcd p (N*q) by auto
    with ass show False by (auto simp add: prime-int-iff)
qed
    ultimately have P dvd a}\wedgeP\mathrm{ dvd b by auto
    hence P dvd gcd a b by simp
    with ass show False by (auto simp add: prime-int-iff)
qed
moreover
{ assume }\negP\mathrm{ dvd b*p+a*q
with Pn-dvd-prod and ass have P`n dvd b*p-a*q
                by (rule-tac b=b*p+a*q in prime-power-dvd-cancel-right, auto simp add:
mult.commute) }
    moreover
    { assume }\negP\mathrm{ dvd b*p-a*q
        with Pn-dvd-prod and ass have P`n dvd b*p+a*q
            by (rule-tac a=b*p+a*q in prime-power-dvd-cancel-right, simp) }
    ultimately show ?thesis by auto
    moreover
    { assume P`n dvd b*p +a*q
    hence P`n dvd b*p+1*a*q\wedge | | = (1::int) by simp }
    moreover
    { assume P`n dvd b*p-a*q
        hence P`n dvd b*p+(-1)*a*q\wedge - -1| =(1::int) by simp }
```

 qed
 ultimately show ?thesis by blast
qed
then obtain $v e$ where $v: b * p+e * a * q=P \widehat{ } n * v$ and $e:|e|=1$
by (auto simp only: dvd-def)
have P ^n dvd $a * p-e * N * b * q$
proof (cases)
assume $e 1: e=1$
from U have $\left(P^{\wedge} n\right)^{\wedge} 2 * U=A \wedge n * P{ }^{\wedge} n$ by (simp add: power2-eq-square ac-simps)
also with e1 ass have $\ldots=(a * p-e * N * b * q)^{\wedge} 2+N *(b * p+e * a * q)^{\wedge} 2$
by (simp only: qfN-mult2 add.commute mult-1-left)
also with v have $\ldots=(a * p-e * N * b * q)^{\wedge} 2+\left(P{ }^{-} n\right)^{\wedge} 2 *\left(N * v{ }^{\wedge} 2\right)$
by (simp only: power-mult-distrib ac-simps)
finally have $(a * p-e * N * b * q)^{\wedge} 2=\left(P^{\wedge} n\right)^{\wedge} 2 * U-\left(P^{\wedge} n\right)^{\wedge} 2 * N * v^{\wedge} 2$ by simp
also have $\ldots=\left(P^{\wedge} n\right)^{\wedge} 2 *\left(U-N * v^{\wedge} 2\right)$ by (simp only: right-diff-distrib)
finally have $(P \wedge n) \wedge 2 d v d(a * p-e * N * b * q) \wedge 2$ by (rule $d v d I)$
thus ?thesis by simp
next
assume $\neg e=1$ with e have $e 1: e=-1$ by auto
from U have $(P \wedge n) \wedge 2 * U=A \widehat{n} * P{ }^{\wedge} n$ by (simp add: power2-eq-square)
also with e1 ass have $\ldots=(a * p-e * N * b * q)^{\wedge} 2+N *(-(b * p+e * a * q))^{\wedge} 2$
by (simp add: qfN-mult1)
also have $\ldots=(a * p-e * N * b * q)^{\wedge} 2+N *(b * p+e * a * q)^{\wedge} 2$
by (simp only: power2-minus)
also with v and ass have $\ldots=(a * p-e * N * b * q) \wedge_{2}+N * v \wedge^{2} *\left(P \wedge^{\prime}\right)^{\wedge} 2$
by (simp only: power-mult-distrib ac-simps)
finally have $(a * p-e * N * b * q)$ ^2 $=(P \wedge n)$ ^2 $2 * U-(P \wedge n)^{\wedge} 2 * N * v$ ^2 by simp
also have $\ldots=\left(P{ }^{\wedge} n\right)^{\wedge} 2 *(U-N * v$ 乞2) by (simp only: right-diff-distrib)
finally have $(P ` n) \wedge 2 d v d(a * p-e * N * b * q) \wedge 2$ by (rule $d v d I)$
thus ?thesis by simp
qed
then obtain u where $u: a * p-e * N * b * q=P^{\wedge} n * u$ by (auto simp only: dvd-def)
from e have $e 2-1$: $e * e=1$
using abs-mult-self-eq [of e] by simp
have $a: a=p * u+e * N * q * v$
proof -
from ass have $(p * u+e * N * q * v) * P \widehat{n}=p *(P \widehat{n} * u)+(e * N * q) *(P \widehat{n} * v)$
by (simp only: distrib-right ac-simps)
also with v and u have $\ldots=p *(a * p-e * N * b * q)+(e * N * q) *(b * p+e * a * q)$
by simp
also have $\ldots=a *\left(p^{\wedge} 2+e * e * N * q^{\wedge} 2\right)$
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
also with $e 2-1$ and ass have $\ldots=a * P ` n$ by simp
finally have $(a-(p * u+e * N * q * v)) * P{ }^{\wedge} n=0$ by auto
moreover from ass have P ^ $n \neq 0$
by (unfold prime-int-iff, auto)
ultimately show ?thesis by auto
qed
moreover have $b: b=p * v-e * q * u$
proof -
from ass have $(p * v-e * q * u) * P \widehat{ } n=p *(P \widehat{n} * v)-(e * q) *(P \widehat{ } n * u)$
by (simp only: left-diff-distrib ac-simps)
also with $v u$ have $\ldots=p *(b * p+e * a * q)-e * q *(a * p-e * N * b * q)$ by simp

```
    also have \(\ldots=b *\left(p^{\wedge} 2+e * e * N * q\right.\) へ2 \()\)
    by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
    also with \(e 2-1\) and ass have \(\ldots=b * P \wedge n\) by simp
    finally have \((b-(p * v-e * q * u)) * P{ }^{\curlywedge} n=0\) by auto
    moreover from ass have \(P{ }^{\wedge} n \neq 0\)
    by (unfold prime-int-iff, auto)
    ultimately show ?thesis by auto
qed
moreover have \(A \widehat{n}=\left(u^{\wedge} 2+N * v^{\wedge} 2\right) * P\) \(n\)
proof (cases)
    assume \(e=1\)
    with \(a\) and \(b\) and ass show ?thesis by (simp add: qfN-mult1 ac-simps)
next
    assume \(\neg e=1\) with \(e\) have \(e=-1\) by \(\operatorname{simp}\)
    with \(a\) and \(b\) and ass show ?thesis by (simp add: qfN-mult2 ac-simps)
qed
moreover have coprime uv
    using 〈coprime a b〉
proof (rule coprime-imp-coprime)
    fix \(w\)
    assume \(w d v d u w d v d v\)
    then have \(w d v d u * p+v *(e * N * q) \wedge w d v d v * p-u *(e * q)\)
        by \(\operatorname{simp}\)
    with \(a b\) show \(w d v d a w d v d b\)
        by (auto simp only: ac-simps)
    qed
    moreover from \(e\) and ass have
```



```
    ultimately show ?thesis by auto
qed
lemma qfN-primedivisor-not:
    assumes ass: prime \(P \wedge Q>0 \wedge i s-q f N(P * Q) N \wedge \neg i s-q f N P N\)
    shows \(\exists R\). (prime \(R \wedge R\) dvd \(Q \wedge \neg i s-q f N R N)\)
proof (rule ccontr, auto)
    assume ass2: \(\forall R . R\) dvd \(Q \longrightarrow\) prime \(R \longrightarrow i s-q f N R N\)
    define \(p s\) where \(p s=\) prime-factorization (nat \(Q\) )
    from ass have ps: \((\forall p \in\) set-mset ps. prime \(p) \wedge Q=\operatorname{int}\left(\prod i \in \# p s . i\right)\)
        by (auto simp: ps-def prod-mset-prime-factorization-int)
    have \(p\) s-lemma: \(\left((\forall p \in\right.\) set-mset ps. prime \(p) \wedge i s-q f N\left(P * i n t\left(\prod i \in \# p s . i\right)\right) N\)
        \(\wedge\left(\forall R .\left(\right.\right.\) prime \(\left.\left.\left.R \wedge R \operatorname{dvd} \operatorname{int}\left(\prod i \in \# p s . i\right)\right) \longrightarrow i s-q f N R N\right)\right) \Longrightarrow\) False
        (is ? \(B\) ps \(\Longrightarrow\) False)
    proof (induct ps)
    case empty hence \(i s-q f N P N\) by simp
    with ass show False by simp
    next
    case ( \(a d d p p s\) )
    hence ass3: ?B ps \(\Longrightarrow\) False
        and \(I H: ? B(p s+\{\# p \#\})\) by simp-all
    hence \(p\) : prime \((\) int \(p)\) and int \(p\) dvd \(\operatorname{int}\left(\prod i \in \# p s+\{\# p \#\} . i\right)\) by auto
    moreover with \(I H\) have \(p q f N\) : is-qfN (int p) N
        and int \(p\) dvd \(P * \operatorname{int}\left(\prod i \in \# p s+\{\# p \#\} . i\right)\) and \(i s-q f N\left(P * i n t\left(\prod i \in \# p s+\{\# p \#\}\right.\right.\).
```

i））N
by auto
ultimately obtain S where $S: P * i n t\left(\prod i \in \# p s+\{\# p \#\} . i\right)=S *($ int $p) \wedge i s-q f N$ $S N$
using qfN－div－prime－general by blast
hence $($ int $p) *\left(P * \operatorname{int}\left(\prod i \in \# p s . i\right)-S\right)=0$ by auto
with $p S$ have $i s-q f N\left(P * i n t\left(\prod i \in \# p s . i\right)\right) N$ by（auto simp add：prime－int－iff）
moreover from $I H$ have（ $\forall p \in$ set－mset ps．prime p ）by simp
moreover from $I H$ have $\forall R$ ．prime $R \wedge R d v d \operatorname{int}\left(\prod i \in \# p s . i\right) \longrightarrow \operatorname{is-qfN} R N$
by auto
ultimately have ？B ps by simp
with ass3 show False by simp
qed
with ps ass2 ass show False by auto
qed
lemma prime－factor－int：
fixes $k::$ int
assumes $|k| \neq 1$
obtains p where prime p pdvd k
proof（cases $k=0$ ）
case True
then have prime（2：：int）and 2 dvd k
by simp－all
with that show thesis
by blast
next
case False
with assms prime－divisor－exists［of k ］obtain p where prime p pdvd k
by auto
with that show thesis
by blast
qed
lemma qf N－oddprime－cube：
【prime $\left(p^{\wedge} 2+N * q\right.$＾2 $::$ int $) ;$ odd（ p^{\wedge} 2 $+N * q$ へ2 $) ; p \neq 0 ; N \geq 1$ 】
$\Longrightarrow \exists a b,\left(p^{\wedge} 2+N * q^{\wedge} 2\right) \wedge 3=a^{\wedge} 2+N * b^{\wedge} 2 \wedge$ coprime $a(N * b)$
proof－
let $? P=p^{\wedge} 2+N * q$ へ2
assume P ：prime ？P and Podd：odd ？P and $p 0: p \neq 0$ and $N 1: N \geq 1$
have suc23： $3=$ Suc 2 by simp
let ？$a=p *\left(p^{\wedge} 2-3 * N * q^{\wedge}\right.$ 2 $)$
let $? b=q *\left(3 * p\right.$＾2 $-N * q^{\wedge}$ 2 $)$
have $a b P: ? P \wedge 3=? a \wedge 2+N * ? b \wedge 2$ by（simp add：eval－nat－numeral field－simps）
have ？P $d v d p$ if $h 1: g c d ? b ? a \neq 1$
proof－
let $? h=$ gcd $? b ? a$
have $h 2$ ：？$h \geq 0$ by simp
hence $? h=0 \vee ? h=1 \vee ? h>1$ by arith
with $h 1$ have $? h=0 \vee ? h>1$ by auto
moreover
\｛ assume $? h=0$

```
    hence ?a = 0 ^ ?b = 0
        by auto
    with abP have ? P` 3 = 0
        by auto
    with P have False
        by (unfold prime-int-iff, auto)
    hence ?thesis by simp }
moreover
{ assume ?h > 1
    then have }\existsg\mathrm{ . prime g}\wedgegdvd?
        using prime-factor-int [of ?h] by auto
    then obtain g}\mathrm{ where g: prime g g dvd ?h
        by blast
    then have gdvd?b}\wedgegdvd?a by sim
    with g have g1:g dvd q\vee g dvd 3*p^2-N*q^2
        and g2: g dvd p\veeg dvd p^2 - 3*N*q`2
        by (auto dest: prime-dvd-multD)
    from g have gpos: g\geq0 by (auto simp only: prime-int-iff)
    have g dvd?P
    proof (cases)
        assume gdvd q
        hence gNq:g dvd N*q^2 by (auto simp add: dvd-def power2-eq-square)
        show ?thesis
        proof (cases)
        assume gp: g dvd p
        hence g dvd p^2 by (auto simp add:dvd-def power2-eq-square)
        with }gNq\mathrm{ show ?thesis by auto
    next
        assume }\negg\mathrm{ dvd p with g2 have g dvd p`2 - 3*N*q^2 by auto
        moreover from gNq have g dvd 4*(N*q^2) by (rule dvd-mult)
        ultimately have g dvd p`2 - 3*(N*q^2) + 4*(N*q^2)
            by (simp only: ac-simps dvd-add)
        moreover have p`2 - 3*(N*q`2)+4*(N*q`2) = p`2 + N* \^2 by arith
        ultimately show ?thesis by simp
        qed
next
    assume }\neggdvd q with g1 have gpq: g dvd 3* ^^2 - N*q^2 by sim
    show ?thesis
    proof (cases)
        assume g dvd p
        hence g dvd 4*p`2 by (auto simp add: dvd-def power2-eq-square)
        with gpq have g dvd 4*p`2 - (3*p`2 -N*q^2) by (simp only:dvd-diff)
        moreover have 4*p`2 - (3*p^2 - N*q^2) = p^2 + N*q^2 by arith
        ultimately show ?thesis by simp
    next
        assume \neggdvd p with g2 have gdvd p^2 - 3*N*q^2 by auto
        with gpq have gdvd 3* ^^2-N*q^2 - (p^2 - 3*N*q^2)
            by (simp only: dvd-diff)
        moreover have 3* ^^2-N*q^2 - ( p^2 - 3*N*q^2) = 2*?P by auto
        ultimately have g dvd 2*?P by simp
        with g have g dvd 2 \vee g dvd ?P by (simp only: prime-dvd-multD)
        moreover have }\neggdvd 2
```

```
    proof (rule ccontr, simp)
        assume gdvd2: g dvd 2
        have g\leq2
        proof (rule ccontr)
        assume }\negg\leq2 hence g>2 by sim
        moreover have (0::int)<2 by auto
        ultimately have }\neggdvd 2 by (auto simp only:zdvd-not-zless
        with gdvd2 show False by simp
    qed
    moreover from g have g\geq2 by (simp add: prime-int-iff)
    ultimately have g=2 by auto
    with g have 2 dvd ?a ^ 2 dvd ?b by auto
    hence 2 dvd ?a^2 \ ^2 dvd N*?b^2
            by (simp add: power2-eq-square)
    with abP have 2 dvd ?P^3 by (simp only: dvd-add)
    hence even (?P`3) by auto
    moreover have odd (?P`3) using Podd by simp
    ultimately show False by auto
    qed
    ultimately show ?thesis by simp
    qed
qed
with P gpos have g=1\vee g=?P
    by (simp add: prime-int-iff)
with g have g=?P by (simp add: prime-int-iff)
with g have Pab: ?P dvd ?a \ ?P dvd ?b by auto
have ?thesis
proof -
    from Pab P have ?P dvd p\vee ?P dvd p^2- 3*N*q`2
    by (auto dest: prime-dvd-multD)
moreover
    { assume ?P dvd p^2 - 3*N*q`2
    moreover have ?P dvd 3*(p`2 +N*q`2)
        by (auto simp only: dvd-refl dvd-mult)
    ultimately have ?P dvd p^2-3*N*q^2 + 3*(p^2+N*q^2)
        by (simp only: dvd-add)
    hence ?P dvd 4*p^2 by auto
    with P have ?P dvd & V ?P dvd p^2
        by (simp only: prime-dvd-multD)
    moreover have ᄀ?P dvd 4
    proof (rule ccontr, simp)
        assume Pdvd4: ?P dvd 4
        have ?P }\leq
        proof (rule ccontr)
            assume \neg?P}\leq4\mathrm{ hence ?P>4 by simp
            moreover have (0::int)<4 by auto
            ultimately have }\neg\mathrm{ ?P dvd 4 by (auto simp only:zdvd-not-zless)
            with Pdvd4 show False by simp
            qed
            moreover from P have ?P \geq2 by (auto simp add: prime-int-iff)
            moreover have ?P}\not=2\wedge?P\not=
            proof (rule ccontr, simp)
```

```
                    assume ?P = 2 \vee ?P = 4 hence even ?P by fastforce
                    with Podd show False by blast
                    qed
                ultimately have ? P = 3 by auto
                with Pdvd4 have (3::int) dvd 4 by simp
                thus False by arith
            qed
            ultimately have ?P dvd p*p by (simp add: power2-eq-square)
            with P have ?thesis by (auto dest: prime-dvd-multD) }
        ultimately show ?thesis by auto
        qed }
    ultimately show ?thesis by blast
qed
moreover have ?P dvd p if h1:gcd N ?a\not=1
proof -
    let ?h = gcd N ?a
    have h2: ? }h\geq0\mathrm{ by simp
    hence ?h=0 \ ?h=1 \ ?h>1 by arith
    with h1 have ?h=0 \vee ?h>1 by auto
    moreover
    { assume ?h = 0 hence N=0^?a=0
            by auto
        hence N=0 by arith
        with N1 have False by auto
        hence ?thesis by simp }
    moreover
    { assume ?h > 1
        then have }\existsg\mathrm{ . prime g}\wedgegdvd?
            using prime-factor-int [of ?h] by auto
    then obtain g}\mathrm{ where g: prime g g dvd?h
            by blast
    hence gN:gdvd N and g dvd ?a by auto
    hence g dvd p*p^2 - N*(3*p*q^2)
            by (auto simp only: right-diff-distrib ac-simps)
    with gN have g dvd p*p`2 - N*(3*p*q^2) + N*(3*p*q^2)
            by (simp only: dvd-add dvd-mult2)
    hence g dvd p*p^2 by simp
    with g have g dvd p\veegdvd p*p
            by (simp add: prime-dvd-multD power2-eq-square)
    with g}\mathrm{ have gp: g dvd p by (auto dest: prime-dvd-multD)
    hence g dvd p`2 by (simp add: power2-eq-square)
    with gN have gP: g dvd ?P by auto
    from g}\mathrm{ have g 又0 by (simp add: prime-int-iff)
    with gPPg}\mathrm{ have g=1 
            by (auto dest: primes-dvd-imp-eq)
    with g}\mathrm{ have g=?P by (auto simp only: prime-int-iff)
    with gp have ?thesis by simp }
    ultimately show ?thesis by auto
qed
moreover have }\neg?P\mathrm{ P dvd p
proof (rule ccontr, clarsimp)
    assume Pdvdp: ?P dvd p
```

have $p^{\wedge} 2 \geq$? $P^{\wedge} 2$
proof (rule ccontr)
assume $\neg p \wedge 2 \geq$? $P \wedge^{\wedge} 2$ hence $p P: p \wedge^{2}<? P \wedge^{2} 2$ by simp
moreover with $p 0$ have $p^{\wedge} 2>0$ by simp
ultimately have \neg ? P^{\wedge} 2 $d v d p^{\wedge} 2$ by (simp add: zdvd-not-zless)
with Pdvdp show False by simp
qed
moreover with P have ? $P * 1<? P * ? P$
unfolding prime-int-iff by (auto simp only: zmult-zless-mono2)
ultimately have p^{\wedge} 2 $>$? P by (auto simp add: power2-eq-square)
hence neg: $N * q^{\wedge} 2<0$ by auto
show False
proof -
have is-qf $N\left(0^{\wedge} 2+N * q^{\wedge}\right.$ 2) N by (auto simp only: is-qf N-def)
with $N 1$ have 0 ^2 $+N * q$ ^2 ≥ 0 by (rule qf N-pos)
with neg show False by simp
qed
qed
ultimately have $g c d ? a ? b=1 \operatorname{gcd} ? a N=1$
by (auto simp add: ac-simps)
then have coprime ?a ?b coprime ?a N
by (auto simp only: gcd-eq-1-imp-coprime)
then have coprime ?a $(N * ? b)$
by simp
with $a b P$ show ?thesis
by blast
qed

2.4 Uniqueness ($N>1$)

lemma qfN-prime-unique:
【prime $\left(a^{\wedge} 2+N * b^{\wedge} 2::\right.$ int $) ; N>1 ; a^{\wedge 2}+N * b^{\wedge} 2=c \wedge 2+N * d^{\wedge} 2 \rrbracket$
$\Longrightarrow(|a|=|c| \wedge|b|=|d|)$
proof -
let $? P=a^{\wedge} 2+N * b^{\wedge} 2$
assume P : prime ? P and $N: N>1$ and $a b c d N: ? P=c^{\wedge} 2+N * d^{\wedge} 2$
have mult: $(a * d+b * c) *(a * d-b * c)=? P *(d \wedge 2-b \wedge 2)$
proof -

by (simp add: eval-nat-numeral field-simps)
with abcdN show ?thesis by (simp add: field-simps)
qed
have ? $P d v d a * d+b * c \vee$? P dvd $a * d-b * c$
proof -
from mult have ?P $d v d(a * d+b * c) *(a * d-b * c)$ by simp
with P show ?thesis by (auto dest: prime-dvd-multD)
qed
moreover
\{ assume ? P dvd $a * d+b * c$
then obtain Q where $Q: a * d+b * c=? P * Q$ by (auto simp add:dvd-def)
from $a b c d N$ have ? $P^{\wedge} 2=\left(a^{\wedge} 2+N * b^{\wedge} 2\right) *\left(c\right.$ へ2 $\left.+N * d^{\wedge} 2\right)$
by (simp add: power2-eq-square)

```
    also have \(\ldots=(a * c-N * b * d)^{\wedge}\) 乞 \(+N *(a * d+b * c){ }^{\wedge} 2\) by (rule qfN-mult2)
    also with \(Q\) have \(\ldots=(a * c-N * b * d) \wedge 2+N * Q \wedge 2 * ? P \wedge_{2}\)
    by (simp add: ac-simps power-mult-distrib)
    also have \(\ldots \geq N * Q^{\wedge} 2 *\) ? \(P^{\wedge} 2\) by simp
    finally have pos: ? \(P^{\wedge} 2 \geq\) ? \(P\) ^2 \(2 *(Q \wedge 2 * N)\) by (simp add: ac-simps)
    have \(b^{\wedge} 2=d^{\wedge}\) 2
    proof (rule ccontr)
        assume \(b\) ^2 \(\neq d\) ^2
        with \(P\) mult \(Q\) have \(Q \neq 0\) by (unfold prime-int-iff, auto)
        hence \(Q^{\wedge} 2>0\) by simp
        moreover with \(N\) have \(Q^{\wedge} 2 * N>Q^{\wedge} 2 * 1\) by (simp only: zmult-zless-mono2)
        ultimately have \(Q^{\wedge} 2 * N>1\) by arith
        moreover with \(P\) have ? \(P \wedge^{\wedge} \mathcal{Z}>0\) by (simp add: prime-int-iff)
        ultimately have ? P \({ }^{\wedge} 2 * 1<? P \wedge 2 *\left(Q^{\wedge} 2 * N\right)\) by (simp only: zmult-zless-mono2)
        with pos show False by simp
    qed \}
    moreover
    \{ assume ?P \(d v d a * d-b * c\)
        then obtain \(Q\) where \(Q: a * d-b * c=? P * Q\) by (auto simp add: dvd-def)
        from \(a b c d N\) have ? \(P^{\wedge} 2=\left(a^{\wedge} 2+N * b^{\wedge} 2\right) *\left(c^{\wedge} 2+N * d^{\wedge} 2\right)\)
    by (simp add: power2-eq-square)
    also have \(\ldots=(a * c+N * b * d)^{\wedge} \bumpeq 2+N *(a * d-b * c) \wedge_{2}^{2}\) by (rule qfN-mult1)
    also with \(Q\) have \(\ldots=(a * c+N * b * d)^{\wedge} 2+N * Q^{\wedge} 2 * ? P^{\wedge} 2\)
        by (simp add: ac-simps power-mult-distrib)
    also have \(\ldots \geq N * Q^{\wedge} 2 *\) ? ? \(P^{\wedge} 2\) by simp
    finally have pos: ? P ^2 \(\geq\) ? P \(P^{\wedge} 2 *(Q \wedge 2 * N)\) by (simp add: ac-simps)
    have \(b^{\wedge} 2=d^{\wedge}\) 2
    proof (rule ccontr)
        assume \(b^{\wedge} 2 \neq d^{\wedge} 2\)
        with \(P\) mult \(Q\) have \(Q \neq 0\) by (unfold prime-int-iff, auto)
        hence \(Q^{\wedge} 2>0\) by simp
        moreover with \(N\) have \(Q \wedge 2 * N>Q^{\wedge} 2 * 1\) by (simp only: zmult-zless-mono2)
        ultimately have \(Q^{\wedge} 2 * N>1\) by arith
        moreover with \(P\) have ? \(P^{\wedge} \mathcal{Z}^{2}>0\) by (simp add: prime-int-iff)
        ultimately have ? \(P^{\wedge} 2 * 1<? P^{\wedge} 2 *\left(Q^{\wedge} 2 * N\right)\) by (simp only: zmult-zless-mono2)
        with pos show False by simp
    qed \(\}\)
    ultimately have \(b d: b^{\wedge} 2=d^{\wedge} 2\) by blast
    moreover with \(a b c d N\) have \(a \wedge 2=c \uparrow 2\) by auto
    ultimately show ?thesis by (auto simp only: power2-eq-iff)
qed
lemma qf \(N\)-square-prime:
    assumes ass:
```



```
    shows \(|r|=\left|p^{\wedge} 2-N * q^{\wedge} 2\right| \wedge|s|=|2 * p * q|\)
proof -
    let \(? P=p^{\wedge} 2+N * q^{\wedge} 2\)
    let \(? A=r^{\wedge} 2+N * s^{\wedge} 2\)
    from ass have P1: ? P > 1 by (simp add: prime-int-iff)
    from ass have \(A P P: ? A=? P * ? P\) by (simp only: power2-eq-square)
    with ass have prime ?P \(\wedge ? P\) dvd ?A by (simp add: dvdI)
```

then obtain $u v e$ where uve：

$$
? A=\left(u^{\wedge} 2+N * v \wedge 2\right) * ? P \wedge r=p * u+e * N * q * v \wedge s=p * v-e * q * u \wedge|e|=1
$$

$$
\text { by (frule-tac } p=p \text { in } q f N \text {-div-prime, auto) }
$$

with APP P1 ass have prime $\left(u^{\wedge} 2+N * v\right.$ 2 $) \wedge N>1 \wedge u^{\wedge} 2+N * v^{\wedge} 2=? P$ by auto
hence $|u|=|p| \wedge|v|=|q|$ by（auto dest：qfN－prime－unique）
then obtain $f g$ where $f: u=f * p \wedge|f|=1$ and $g: v=g * q \wedge|g|=1$
by（blast dest：abs－eq－impl－unitfactor）
with uve have $r=f * p * p+(e * g) * N * q * q \wedge s=g * p * q-(e * f) * p * q$ by simp
hence $r s: r=f * p$＾2 $+(e * g) * N * q$ へ2 $\wedge s=(g-e * f) * p * q$
by（auto simp only：power2－eq－square left－diff－distrib）
moreover have $s \neq 0$
proof（rule ccontr，simp）
assume $s 0: s=0$
hence $g c d$ r $s=|r|$ by simp
with ass have $|r|=1$ by simp
hence $r \wedge 2=1$ by（auto simp add：power2－eq－1－iff）
with $s 0$ have ？$A=1$ by simp
moreover have ？$P^{\wedge} 2>1$
proof－
from $P 1$ have $1<? P \wedge(0::$ int $) \leq 1 \wedge(0::$ nat $)<2$ by auto
hence ？P ${ }^{\wedge} 2>1$ 1 2 by（simp only：power－strict－mono）
thus ？thesis by auto
qed
moreover from ass have ？$A=? P^{\wedge} 2$ by simp
ultimately show False by auto
qed
ultimately have $g \neq e * f$ by auto
moreover from $f g$ uve have $|g|=|e * f|$ unfolding abs－mult by presburger
ultimately have $g e f: g=-(e * f)$ by arith
from uve have $e *-(e * f)=-f$
using abs－mult－self－eq［of e］by simp
hence $r=f *\left(p^{\wedge 2}-N * q\right.$ へ2 $) \wedge s=(-e * f) * 2 * p * q$ using rs gef unfolding right－diff－distrib
by auto
hence $|r|=|f| * \mid p^{\wedge}$ 2 $-N * q$ へ2 \mid
$\wedge|s|=|e| *|f| *|2 * p * q|$
by（auto simp add：abs－mult）
with uve $f g$ show ？thesis by（auto simp only：mult－1－left）
qed
lemma qfN－cube－prime：
assumes ass：prime（ $p^{\wedge} 2 \sim N * q$ へ2：：int）$) \wedge N>1$
$\wedge\left(p^{\wedge} 2+N * q^{\wedge} 2\right)$ 〇3 $=a^{\wedge} 2+N * b^{\wedge} 2 \wedge$ coprime $a b$
shows $|a|=\left|p^{\wedge} 3-3 * N * p * q^{\wedge} 2\right| \wedge|b|=\left|3 * p^{\wedge} 2 * q-N * q^{\wedge} 3\right|$
proof－
let $? P=p^{\wedge} 2+N * q^{\wedge} 2$
let $? A=a^{\wedge} 2+N * b^{\wedge} 2$
from ass have coprime $a b$ by blast
from ass have P1：？$P>1$ by（simp add：prime－int－iff）
with ass have $A P P: ? A=? P * ? P \wedge 2$ by（simp add：power2－eq－square power3－eq－cube）
with ass have prime ？P $\wedge ? P$ dvd ？A by（simp add：dvdI）
then obtain $u v e$ where uve：

```
    ?A = (u^2 + N*v^2 ) *? P ^ a = p*u+e*N*q*v ^ b = p*v-e*q*u ^ |e|=1
    by (frule-tac p=p in qfN-div-prime, auto)
have coprime uv
proof (rule coprimeI)
    fix c
    assume c dvd u c dvd v
    with uve have c dvd a c dvd b
        by simp-all
    with <coprime a b〉 show is-unit c
        by (rule coprime-common-divisor)
    qed
    with P1 uve APP ass have prime ?P ^N>1 ^?P`2 = u^2 +N*v^2
    coprime u v by (auto simp add: ac-simps)
hence }|u|=|\mp@subsup{p}{}{\wedge}2-N*q^2 | ^ |v| = |2*p*q| by (rule qfN-square-prime)
then obtain fg}\mathrm{ where f:u=f*(p^2-N*q^2) ^ |f|=1
    and g:v=g*(2*p*q)^ |g|=1 by (blast dest:abs-eq-impl-unitfactor)
    with uve have a=p*f*(p`2-N*q`2) +e*N*q*g*2*p*q
        ^ b = p*g*2*p*q-e*q*f*(p^2-N*q^2) by auto
    hence ab: a=f*p*p^2+ -f*N*p*q^2 + 2*e*g*N*p*q^2
        ^b=2*g*p^2*q-e*f*p^2*q+e*f*N*q*q^2
        by (auto simp add: ac-simps right-diff-distrib power2-eq-square)
    from f have f2: f2}=
        using abs-mult-self-eq [of f] by (simp add: power2-eq-square)
    from g}\mathrm{ have g2: g}\mp@subsup{g}{}{2}=
        using abs-mult-self-eq [of g] by (simp add: power2-eq-square)
    have e\not=f*g
    proof (rule ccontr, simp)
        assume efg: e=f*g
        with ab g2 have a=f*p*p^2+f*N*p*q^2 by (auto simp add: power2-eq-square)
    hence }a=(f*p)*?P\mathrm{ by (auto simp add: distrib-left ac-simps)
    hence Pa: ?P dvd a by auto
    have e *f=g using f2 power2-eq-square[of f] efg by simp
    with ab have b=g*p`2*q+g*N*q*q`2 by auto
    hence b=(g*q)*?P by (auto simp add: distrib-left ac-simps)
    hence ?P dvd b by auto
    with Pa have ?P dvd gcd a b by simp
    with ass have ?P dvd 1 by auto
    with P1 show False by auto
    qed
    moreover from f g uve have |e| = |f*g| unfolding abs-mult by auto
    ultimately have e=-(f*g) by arith
    hence e *g= -fe*f=-g using f2 g2 unfolding power2-eq-square by auto
    with ab have }a=f*p*p^2-3*f*N*p*q^2 ^ b = 3*g*p^2*q-g*N*q*q^2 by (simp
add: mult.assoc)
    hence }a=f*(\mp@subsup{p}{}{\wedge}3-3*N*p*q`2) ^ \ b = g*( 3*p`2*q-N*q`3 )
    by (auto simp only: right-diff-distrib ac-simps power2-eq-square power3-eq-cube)
    with fg show ?thesis by (auto simp add: abs-mult)
qed
```


2.5 The case $N=3$

lemma qf3-even: even $\left(a^{\wedge} 2+3 * b^{\wedge} 2\right) \Longrightarrow \exists B \cdot a^{\wedge} 2+3 * b^{\wedge} 2=4 * B \wedge$ is-qfN $B 3$

```
proof -
    let \(? A=a^{\wedge} 2+3 * b^{\wedge} 2\)
    assume even: even ? A
    have \((\) odd \(a \wedge\) odd \(b) \vee(\) even \(a \wedge\) even \(b)\)
    proof (rule ccontr, auto)
        assume even \(a\) and odd \(b\)
        hence even \(\left(a^{\wedge}\right.\) 2 \() \wedge\) odd \((b \wedge 2)\)
            by (auto simp add: power2-eq-square)
        moreover have odd 3 by simp
        ultimately have odd ? A by simp
        with even show False by simp
    next
        assume odd \(a\) and even \(b\)
        hence odd \((a \wedge 2) \wedge\) even \((b \wedge 2)\)
            by (auto simp add: power2-eq-square)
        moreover hence even \(\left(b^{\wedge} 2 * 3\right)\) by simp
        ultimately have odd ( \(\left.b^{\wedge} 2 * 3+a^{\wedge} 2\right)\) by \(\operatorname{simp}\)
        hence odd ? A by (simp add: ac-simps)
        with even show False by simp
    qed
    moreover
    \{ assume even \(a \wedge\) even \(b\)
        then obtain \(c d\) where \(a b c d: a=2 * c \wedge b=2 * d\) using evenE[of a] evenE[of b] by
meson
    hence \(? A=4 *\left(c \wedge 2+3 * d^{\wedge} 2\right)\) by (simp add: power-mult-distrib)
    moreover have is-qfN ( \(\left.c^{\wedge} 2+3 * d^{\wedge} 2\right) 3\) by (unfold is-qfN-def, auto)
    ultimately have ?thesis by blast \}
    moreover
    \(\{\) assume odd \(a \wedge\) odd \(b\)
        then obtain \(c d\) where \(a b c d: a=2 * c+1 \wedge b=2 * d+1\) using oddE[of \(a]\) odd \(E[\) of
b] by meson
    have odd \((c-d) \vee\) even \((c-d)\) by blast
    moreover
    \{ assume even ( \(c-d\) )
        then obtain \(e\) where \(c-d=2 * e\) using evenE by blast
        with \(a b c d\) have \(e 1: a-b=4 * e\) by arith
        hence \(e 2\) : \(a+3 * b=4 *(e+b)\) by auto
        have \(4 * ? A=(a+3 * b)^{\wedge} 2+3 *(a-b)^{\wedge} 2\)
            by (simp add: eval-nat-numeral field-simps)
        also with e1 \(e 2\) have \(\ldots=(4 *(e+b))^{\wedge} 2+3 *(4 * e)^{\wedge} 2\) by \((\operatorname{simp}(\) no-asm-simp \())\)
    finally have ? \(A=4 *\left((e+b) \wedge 2+3 * e \wedge^{\wedge}\right)\) by (simp add: eval-nat-numeral field-simps)
        moreover have is-qfN \(\left((e+b)^{\wedge} 2+3 * e-2\right) 3\) by (unfold is-qfN-def, auto)
        ultimately have ?thesis by blast \}
    moreover
    \{ assume odd \((c-d)\)
        then obtain \(e\) where \(c-d=2 * e+1\) using oddE by blast
        with abcd have e1: a+b=4*(e+d+1) by auto
        hence \(e 2\) : \(a-3 * b=4 *(e+d-b+1)\) by auto
        have \(4 * ? A=(a-3 * b)^{\wedge} 2+3 *(a+b)^{\wedge} 2\)
            by (simp add: eval-nat-numeral field-simps)
        also with \(e 1 e 2\) have \(\ldots=(4 *(e+d-b+1))^{\wedge} 2+3 *(4 *(e+d+1))^{\wedge}{ }^{2}\)
            by \((\operatorname{simp}(\) no-asm-simp \())\)
```

```
        finally have ? \(A=4 *((e+d-b+1) \wedge 2+3 *(e+d+1) \wedge 2)\)
            by (simp add: eval-nat-numeral field-simps)
            moreover have is-qfN \(((e+d-b+1) \wedge 2+3 *(e+d+1) \wedge 2) 3\)
            by (unfold is-qfN-def, auto)
            ultimately have ?thesis by blast \}
            ultimately have ?thesis by auto \}
                            ultimately show ?thesis by auto
qed
lemma qf3-even-general: 【is-qfN A 3; even A】
    \(\Longrightarrow \exists B . A=4 * B \wedge i s-q f N B 3\)
proof -
    assume even \(A\) and is-qfN A 3
    then obtain \(a b\) where \(A=a \wedge 2+3 * b\) ^2
        and even ( \(\left.a^{\wedge} 2+3 * b^{\wedge} 2\right)\) by (unfold is-qfN-def, auto)
    thus ?thesis by (auto simp add: qf3-even)
qed
lemma qf3-oddprimedivisor-not:
    assumes ass: prime \(P \wedge\) odd \(P \wedge Q>0 \wedge\) is-qfN \((P * Q) 3 \wedge \neg i s-q f N P 3\)
    shows \(\exists R\). prime \(R \wedge\) odd \(R \wedge R\) dvd \(Q \wedge \neg i s-q f N R 3\)
proof (rule ccontr, simp)
    assume ass2: \(\forall R . R\) dvd \(Q \longrightarrow\) prime \(R \longrightarrow\) even \(R \vee i s-q f N R 3\)
    (is ? \(A Q\) )
    obtain \(n::\) nat where \(n=\) nat \(Q\) by auto
    with ass have \(n: Q=\) int \(n\) by auto
    have \((n>0 \wedge\) is-qfN \((P *\) int \(n) 3 \wedge ? A(\) int \(n)) \Longrightarrow\) False \((\) is ? \(B n \Longrightarrow\) False \()\)
    proof (induct \(n\) rule: less-induct)
        case (less \(n\) )
        hence \(I H:!!m . m<n \wedge ? B m \Longrightarrow\) False
        and \(B n\) : ? \(B n\) by auto
    show False
    proof (cases)
        assume odd: odd (int n)
        from Bn ass have prime \(P \wedge\) int \(n>0 \wedge\) is-qfN \((P * i n t n) 3 \wedge \neg i s-q f N P 3\)
            by simp
        hence \(\exists R\). prime \(R \wedge R\) dvd int \(n \wedge \neg i s-q f N R 3\)
            by (rule qf \(N\)-primedivisor-not)
        then obtain \(R\) where \(R\) : prime \(R \wedge R\) dvd int \(n \wedge \neg i s-q f N R 3\) by auto
        moreover with odd have odd \(R\)
        proof -
            from \(R\) obtain \(U\) where int \(n=R * U\) by (auto simp add: dvd-def)
            with odd show ?thesis by auto
        qed
        moreover from \(B n\) have ?A (int \(n\) ) by simp
        ultimately show False by auto
    next
        assume even: \(\neg\) odd (int \(n\) )
        hence even \(((\) int \(n) * P)\) by simp
        with \(B n\) have even \((P * i n t n) \wedge i s\)-qfN ( \(P * i n t n\) ) 3 by (simp add: ac-simps)
        hence \(\exists B . P *(\) int \(n)=4 * B \wedge i s-q f N B 3\) by (simp only: qf3-even-general)
        then obtain \(B\) where \(B: P *(\) int \(n)=4 * B \wedge\) is-qfN \(B 3\) by auto
```

hence 2~2 dvd (int n)*P by (simp add: ac-simps)
moreover have $\neg 2 d v d P$
proof (rule ccontr, simp)
assume $2 d v d P$
with ass have odd $P \wedge$ even P by simp
thus False by simp
qed
moreover have prime (2::int) by simp
ultimately have $\mathbb{Z}^{\sim} 2$ dvd int n
by (rule-tac $p=2$ in prime-power-dvd-cancel-right)
then obtain im::int where int $n=4 * i m$ by (auto simp add: dvd-def)
moreover obtain $m:: n a t$ where $m=n a t ~ i m$ by auto
ultimately have $m: n=4 * m$ by arith
with B have is-qfN ($P *$ int m) 3 by auto
moreover from $m B n$ have $m>0$ by auto
moreover from $m B n$ have ?A (int m) by auto
ultimately have $B m$: ? $B m$ by simp
from $B n m$ have $m<n$ by arith
with $I H$ Bm show False by auto
qed
qed
with ass ass2 n show False by auto
qed
lemma qf3-oddprimedivisor:
【 prime ($P::$ int $)$; odd P; coprime a $b ; P d v d\left(a^{\wedge} 2+3 * b^{\wedge} 2\right) \rrbracket$
$\Longrightarrow i s-q f N P 3$
proof(induct P arbitrary:a b rule:infinite-descent0-measure $[$ where $V=\lambda P$.nat $|P|]$)
case ($0 x$)
moreover hence $x=0$ by arith
ultimately show ? case by (simp add: prime-int-iff)
next
case (smaller x)
then obtain $a b$ where $a b x$: prime $x \wedge$ odd $x \wedge$ coprime a b
$\wedge x d v d\left(a^{\wedge} 2+3 * b^{\wedge 2}\right) \wedge \neg i s-q f N x 3$ by auto
then obtain M where $M: a^{\wedge} 2+3 * b^{\wedge} 2=x * M$ by (auto simp add: dvd-def)
let ? $A=a^{\wedge} 2+3 * b^{\text {^2 }}$
from $a b x$ have $x 0: x>0$ by (simp add: prime-int-iff)
then obtain m where $2 *|a-m * x| \leq x$ by (auto dest: best-division-abs)
with $a b x$ have $2 *|a-m * x|<x$ using odd-two-times-div-two-succ[of $x]$ by presburger
then obtain c where $c m: c=a-m * x \wedge 2 *|c|<x$ by auto
from $x 0$ obtain n where $2 *|b-n * x| \leq x$ by (auto dest: best-division-abs)
with $a b x$ have $2 *|b-n * x|<x$ using odd-two-times-div-two-succ $[$ of $x]$ by presburger
then obtain d where $d n$: $d=b-n * x \wedge 2 *|d|<x$ by auto
let ? $C=c^{\wedge} 2+3 * d^{\wedge}$ 2
have $C 3$: is-qfN ? $C 3$ by (unfold is-qfN-def, auto)
have $C 0$: ? $C>0$
proof -
have $h l p:(3::$ int $) \geq 1$ by simp
have ? $C \geq 0$ by simp
hence ? $C=0 \vee ? C>0$ by arith
moreover

```
    \{ assume ? \(C=0\)
        with \(h l p\) have \(c=0 \wedge d=0\) by (rule qfN-zero)
        with \(c m d n\) have \(a=m * x \wedge b=n * x\) by simp
        hence \(x d v d a \wedge x d v d b\) by simp
        hence \(x d v d g c d a b\) by simp
        with abx have False by (auto simp add: prime-int-iff) \}
    ultimately show ?thesis by blast
qed
have \(x d v d\) ?C
proof
    have ? \(C=|c|^{\wedge} 2+3 *|d|^{\wedge} 2\) by (simp only: power2-abs)
    also with \(c m d n\) have \(\ldots=(a-m * x)^{\wedge} 2+3 *(b-n * x)^{\wedge} 2\) by simp
    also have ... =
        \(a^{\wedge 2}-2 * a *(m * x)+(m * x){ }^{\wedge} 2+3 *\left(b\right.\) へ2 \(\left.-2 * b *(n * x)+(n * x)^{\wedge} 2\right)\)
        by (simp add: algebra-simps power2-eq-square)
    also with \(a b x M\) have \(\ldots=\)
        \(x * M-x *(2 * a * m+3 * 2 * b * n)+x \wedge 2 *(m \wedge 2+3 * n へ 2)\)
        by (simp only: power-mult-distrib distrib-left ac-simps, auto)
    finally show ? \(C=x *\left(M-(2 * a * m+3 * 2 * b * n)+x *\left(m^{\wedge} 2+3 * n \wedge 2\right)\right)\)
        by (simp add: power2-eq-square distrib-left right-diff-distrib)
qed
then obtain \(y\) where \(y: ? C=x * y\) by (auto simp add: dvd-def)
have \(y x: y<x\)
proof (rule ccontr)
    assume \(\neg y<x\) hence \(x y: x-y \leq 0\) by simp
    have \(h l p: 2 *|c| \geq 0 \wedge 2 *|d| \geq 0 \wedge(3::\) nat \()>0\) by \(\operatorname{simp}\)
    from \(y\) have \(4 * x * y=2 へ 2 * c\) ^2 \(+3 * 2\) 2^2 \(2 d^{\wedge} 2\) by \(\operatorname{simp}\)
    hence \(4 * x * y=(2 *|c|)^{\wedge} 2+3 *(2 *|d|)^{\wedge} 2\)
        by (auto simp add: power-mult-distrib)
    with \(\mathrm{cm} d n h l p\) have \(4 * x * y<x^{\wedge} 2+3 *(2 *|d|)^{\wedge} 2\)
        and \((3::\) int \()>0 \wedge(2 *|d|)^{\wedge} 2<x^{\wedge} 2\)
            using power-strict-mono \([\) of \(2 *|b| x 2\) for \(b]\)
        by auto
    hence \(x * 4 * y<x\) ^2 \(+3 * x\) ^2 by (auto)
    also have \(\ldots=x * 4 * x\) by (simp add: power2-eq-square)
    finally have contr: \((x-y) *(4 * x)>0\) by (auto simp add: right-diff-distrib)
    show False
    proof (cases)
        assume \(x-y=0\) with contr show False by auto
    next
        assume \(\neg x-y=0\) with \(x y\) have \(x-y<0\) by simp
        moreover from \(x 0\) have \(4 * x>0\) by simp
        ultimately have \(4 * x *(x-y)<4 * x * 0\) by (simp only: zmult-zless-mono2)
        with contr show False by auto
    qed
qed
have \(y 0: y>0\)
proof (rule ccontr)
    assume \(\neg y>0\)
    hence \(y \leq 0\) by simp
    moreover have \(y \neq 0\)
    proof (rule ccontr)
```

```
    assume }\negy\not=0\mathrm{ hence }y=0\mathrm{ by simp
    with y and C0 show False by auto
    qed
    ultimately have }y<0\mathrm{ by simp
    with x0 have }x*y<x*0\mathrm{ by (simp only:zmult-zless-mono2)
    with C0 y show False by simp
qed
let ?g=gcd cd
have c\not=0\veed\not=0
proof (rule ccontr)
    assume }\neg(c\not=0\veed\not=0)\mathrm{ hence }c=0\wedged=0\mathrm{ by simp
    with C0 show False by simp
qed
then obtain ef where ef:c=?g*e^d=?g*f^ coprime ef
    using gcd-coprime-exists[of c d d] gcd-pos-int[of c d] by (auto simp: mult.commute)
have g2nonzero: ?g^2 }\not=
proof (rule ccontr, simp)
    assume c=0^d=0
    with C0 show False by simp
qed
let ?E = e`2 + 3*f`2
have E3: is-qfN ?E 3 by (unfold is-qfN-def, auto)
have CgE: ?C = ?g^2 * ?E
proof -
    have ?g^2 * ?E = (?g*e)^2 + 3*(?g*f)^2
        by (simp add: distrib-left power-mult-distrib)
    with ef show ?thesis by simp
qed
hence ?g^2 dvd ?C by (simp add: dvd-def)
with y have g2dvdxy: ?g^2 dvd }y*x\mathrm{ by (simp add: ac-simps)
moreover have coprime x (?g`2)
proof -
    let ?h = gcd ?g }
    have ?h dvd ?g and ?g dvd c by blast+
    hence ?h dvd c by (rule dvd-trans)
    have ?h dvd?g and ?g dvd d by blast+
    hence ?h dvd d by (rule dvd-trans)
    have ?h dvd x by simp
    hence ?h dvd m*x by (rule dvd-mult)
    with «?h dvd c> have ?h dvd c+m*x by (rule dvd-add)
    with cm have ?h dvd a by simp
    from <?h dvd x> have ?h dvd n*x by (rule dvd-mult)
    with «?h dvd d> have ?h dvd d+n*x by (rule dvd-add)
    with dn have ?h dvd b by simp
    with <?h dvd a〉 have ?h dvd gcd a b by simp
    with abx have ?h dvd 1 by simp
    hence ?h=1 by simp
    hence coprime (?g^2) x by (auto intro: gcd-eq-1-imp-coprime)
    thus ?thesis by (simp only: ac-simps)
qed
ultimately have ? g`2 dvd y
    by (auto simp add: ac-simps coprime-dvd-mult-right-iff)
```

```
then obtain \(w\) where \(w: y=? g \wedge 2 * w\) by (auto simp add: dvd-def)
with \(C g E y\) g2nonzero have Ewx: ? \(E=x * w\) by auto
have \(w>0\)
proof (rule ccontr)
    assume \(\neg w>0\) hence \(w \leq 0\) by auto
    hence \(w=0 \vee w<0\) by auto
    moreover
    \{ assume \(w=0\) with \(w y 0\) have False by auto \}
    moreover
    \{ assume wneg: \(w<0\)
        have ? \(g\) ^2 \(\geq 0\) by (rule zero-le-power2)
        with g2nonzero have ? \(g^{\wedge} 2>0\) by arith
        with wneg have ? \(g \wedge 2 * w<? g \wedge 2 * 0\) by (simp only: zmult-zless-mono2)
        with \(w y 0\) have False by auto \(\}\)
    ultimately show False by blast
qed
have \(w\)-le- \(y: w \leq y\)
proof (rule ccontr)
    assume \(\neg w \leq y\)
    hence \(w y: w>y\) by \(\operatorname{simp}\)
    have ? \(g\) ^2 \(=1 \vee ? g^{\wedge} 2>1\)
    proof -
        have ? \(g \wedge 2 \geq 0\) by (rule zero-le-power2)
        hence \(? g \wedge 2=0 \vee ? g \wedge 2>0\) by auto
        with g2nonzero show ?thesis by arith
    qed
    moreover
    \(\left\{\right.\) assume ? \(g^{\wedge} 2=1\) with \(w\) wy have False by simp \}
    moreover
    \{ assume \(g 1\) : ? \(g^{\wedge} 2>1\)
        with \(\langle w>0\rangle\) have \(w * 1<w *\) ? \(g^{\wedge} 2\) by (auto dest: zmult-zless-mono2)
        with \(w\) have \(w<y\) by (simp add: ac-simps)
        with wy have False by auto \}
    ultimately show False by blast
qed
from Ewx E3 \(a b x\langle w>0\rangle\) have
    prime \(x \wedge\) odd \(x \wedge w>0 \wedge i s-q f N(x * w) 3 \wedge \neg i s-q f N x 3\) by simp
then obtain \(z\) where \(z\) : prime \(z \wedge\) odd \(z \wedge z\) dvd \(w \wedge \neg i s-q f N z 3\)
    by (frule-tac \(P=x\) in qf3-oddprimedivisor-not, auto)
from Ewx have w dvd ? E by simp
with \(z\) have \(z d v d ? E\) by (auto dest: dvd-trans)
with \(z\) ef have prime \(z \wedge\) odd \(z \wedge\) coprime ef \(\wedge z d v d ? E \wedge \neg i s-q f N z 3\)
    by auto
moreover have nat \(|z|<n a t|x|\)
proof -
    have \(z \leq w\)
    proof (rule ccontr)
        assume \(\neg z \leq w\) hence \(w<z\) by auto
        with \(\langle w\rangle 0\rangle\) have \(\neg z\) dvd \(w\) by (rule zdvd-not-zless)
        with \(z\) show False by simp
    qed
    with \(w\)-le- \(y\) y have \(z<x\) by simp
```

with z have $|z|<|x|$ by (simp add: prime-int-iff)
thus ?thesis by auto
qed
ultimately show ?case by auto
qed
lemma qf3-cube-prime-impl-cube-form:
assumes $a b$-relprime: coprime $a b$ and $a b P: P^{\wedge} 3=a^{\wedge} 2+3 * b^{\wedge} 2$
and P : prime $P \wedge$ odd P
shows is-cube-form ab
proof -
from $a b P$ have $q f P 3$: is-qfN ($P^{\wedge} 3$) 3 by (auto simp only: is-qfN-def)
have PvdP3: P dvd $P \wedge$ § by (simp add: eval-nat-numeral)
with $a b P$ ab-relprime P have $q f P$: is-qfN P 3 by (simp add: qf3-oddprimedivisor)
then obtain $p q$ where $p q: P=p^{\wedge} 2+3 * q^{\wedge} 2$ by (auto simp only: is-qfN-def)
with P abP ab-relprime have prime $\left(p^{\wedge} 2+3 * q\right.$ へ 2$) \wedge(3::$ int $)>1$
$\wedge\left(p^{\wedge} 2+3 * q^{\wedge} 2\right) \wedge 3=a^{\wedge} 2+3 * b^{\wedge}$ 2 \wedge coprime $a b$ by auto
hence $a b:|a|=\left|p^{\wedge} 3-3 * 3 * p * q^{\wedge} 2\right| \wedge|b|=\left|3 * p^{\wedge} 2 * q-3 * q^{\wedge} 3\right|$
by (rule qf N-cube-prime)
hence $a: a=p^{\wedge} 3-9 * p * q \wedge 2 \vee a=-\left(p^{\wedge} 3\right)+9 * p * q$ ^2 by arith
from $a b$ have $b: b=3 * p^{\wedge} 2 * q-3 * q^{\wedge} 3 \vee b=-\left(3 * p^{\wedge} 2 * q\right)+3 * q^{\wedge} 3$ by arith
obtain $r s$ where $r: r=-p$ and $s: s=-q$ by simp
show ?thesis
proof (cases)
assume a1: $a=p^{\wedge} 3-9 * p * q$ ^2
show ?thesis
proof (cases)
assume $b 1: b=3 * p^{\wedge} 2 * q-3 * q^{\wedge} 3$
with a1 show ?thesis by (unfold is-cube-form-def, auto)
next
assume $\neg b=3 * p^{\wedge} 2 * q-3 * q^{\wedge} 3$
with b have $b=-3 * p$ ^ $2 * q+3 * q$ ^ 3 by simp
with s have $b=3 * p \wedge 2 * s-3 * s^{\wedge} 3$ by simp
moreover from $a 1 s$ have $a=p^{\wedge} 3-9 * p * s \wedge 2$ by simp
ultimately show ?thesis by (unfold is-cube-form-def, auto)
qed
next
assume $\neg a=p^{\wedge} 3-9 * p * q^{\wedge} 2$
with a have $a=-(p$ ^3 $)+9 * p * q$ へ 2 by simp
with r have $a r: a=r \wedge 3-9 * r * q$ ^2 by simp
show ?thesis
proof (cases)
assume $b 1: b=3 * p \wedge 2 * q-3 * q^{\wedge} 3$
with r have $b=3 * r^{\wedge} 2 * q-3 * q^{\wedge} 3$ by simp
with ar show ?thesis by (unfold is-cube-form-def, auto)

next

assume $\neg b=3 * p^{\wedge} 2 * q-3 * q$ ^3
with b have $b=-3 * p^{\wedge} 2 * q+3 * q$ ^ 3 by simp
with $r s$ have $b=3 * r \wedge 2 * s-3 * s \wedge 3$ by simp
moreover from ar s have $a=r \wedge 3-9 * r * s^{\wedge} 2$ by simp
ultimately show ?thesis by (unfold is-cube-form-def, auto)
qed

qed
 qed

lemma cube-form-mult: 【is-cube-form a b; is-cube-form c $d ;|e|=1 \rrbracket$
\Longrightarrow is-cube-form $(a * c+e * 3 * b * d)(a * d-e * b * c)$
proof -
assume $a b$: is-cube-form $a b$ and c-d: is-cube-form c d and $e:|e|=1$
from $a b$ obtain $p q$ where $p q: a=p^{\wedge} 3-9 * p * q \wedge 2 \wedge b=3 * p^{\wedge} 2 * q-3 * q$ ^3
by (auto simp only: is-cube-form-def)
from $c-d$ obtain $r s$ where $r s: c=r \wedge 3-9 * r * s^{\wedge} 2 \wedge d=3 * r \wedge 2 * s-3 * s^{\wedge} 3$
by (auto simp only: is-cube-form-def)
let ? $t=p * r+e * 3 * q * s$
let ? $u=p * s-e * r * q$
have $e 2$: $e^{\wedge} 2=1$
proof -
from e have $e=1 \vee e=-1$ by linarith
moreover
\{ assume $e=1$ hence ?thesis by auto \}
moreover
\{ assume $e=-1$ hence ?thesis by simp \}
ultimately show ?thesis by blast
qed
hence $e * e^{\wedge} 2=e$ by simp
hence $e 3: e * 1=e^{\wedge} 3$ by (simp only: power2-eq-square power3-eq-cube)
have $a * c+e * 3 * b * d=$? t^3 $-9 * ? t *$? u^{\wedge} 2
proof -

by (simp add: eval-nat-numeral field-simps)
also with $e 2 e 3$ have $\ldots=$
$p^{\wedge} 3 * r^{\wedge}$ 3 $+e * 27 * p^{\wedge} 2 * q * r^{\wedge} 2 * s+81 * p * q^{\wedge} 2 * r * s^{\wedge} 2+e * 27 * q$ - $3 * s^{\wedge} 3$

by (simp add: power2-eq-square power3-eq-cube)
also with $p q$ rs have $\ldots=a * c+e * 3 * b * d$
by (simp only: left-diff-distrib right-diff-distrib ac-simps)
finally show ?thesis by auto
qed
moreover have $a * d-e * b * c=3 * ? t \wedge 2 * ? u-3 * ? u^{\wedge} 3$
proof -
have $3 * ? t^{\wedge} 2 * ? u-3 * ? u^{\wedge} 3=$
$3 *\left(p * p^{\wedge} 2\right) * r^{\wedge} 2 * s-e * 3 * p \wedge 2 * q *\left(r * r^{\wedge} 2\right)+e * 18 * p{ }^{\wedge} 2 * q * r * s^{\wedge} 2$

by (simp add: eval-nat-numeral field-simps)
also with $e 2 e 3$ have $\ldots=3 * p^{\wedge} 3 * r^{\wedge} 2 * s-e * 3 * p^{\text {^2 } 2 * q * r \wedge 3+e * 18 * p \wedge 2 * q * r * s \wedge 2 ~}$

$+e * 9 * p^{\wedge} 2 * q * r * s^{\wedge} 2-9 * p * q \wedge 2 * r^{\wedge} 2 * s+e * 3 * r \wedge 3 * q^{\wedge} 3$
by (simp add: power2-eq-square power3-eq-cube)
also with $p q$ rs have $\ldots=a * d-e * b * c$
by (simp only: left-diff-distrib right-diff-distrib ac-simps)
finally show ?thesis by auto

qed

ultimately show ?thesis by (auto simp only: is-cube-form-def)
qed
lemma qf3-cube-primelist-impl-cube-form: $\llbracket\left(\forall p \in\right.$ set-mset ps. prime p); odd (int $\left(\prod i \in \# p s\right.$.
i)) 』 \Longrightarrow
$\left(!!\right.$ a b. coprime $a b \Longrightarrow a^{\wedge} 2+3 * b^{\wedge} 2=\left(\operatorname{int}\left(\prod i \in \# p s . i\right)\right)^{\wedge} 3 \Longrightarrow i s$-cube-form ab)
proof (induct ps)
case empty hence $a b 1: a^{\wedge} 2+3 * b^{\wedge} 2=1$ by simp
have $b 0: b=0$
proof (rule ccontr)
assume $b \neq 0$
hence $b^{\wedge} 2>0$ by simp
hence $3 * b^{\wedge} 2>1$ by arith
with ab1 have $a^{\wedge} 2<0$ by arith
moreover have $a^{\wedge} 2 \geq 0$ by (rule zero-le-power2)
ultimately show False by auto
qed
with ab1 have $a 1$: $(a=1 \vee a=-1)$ by (auto simp add: power2-eq-square zmult-eq-1-iff)
then obtain p and q where $p=a$ and $q=(0::$ int $)$ by simp
with $a 1$ and $b 0$ have $a=p^{\wedge} 3-9 * p * q \wedge 2 \wedge b=3 * p^{\wedge} 2 * q-3 * q^{\wedge} 3$ by auto
thus is-cube-form a by (auto simp only: is-cube-form-def)
next
case (add pps) hence ass: coprime $a b \wedge$ odd $\left(\operatorname{int}\left(\prod i \in \# p s+\{\# p \#\} . i\right)\right)$
$\wedge a^{\wedge} 2+3 * b^{\wedge} 2=\operatorname{int}\left(\prod i \in \# p s+\{\# p \#\} . i\right)^{\wedge} 3 \wedge(\forall a \in$ set-mset ps. prime $a) \wedge$ prime
(int p)
and $I H$: !! u v. coprime $u v \wedge u^{\wedge} 2+3 * v^{\wedge} 2=\operatorname{int}\left(\prod i \in \# p s . i\right)^{\wedge} 3$
\wedge odd $\left(\operatorname{int}\left(\prod i \in \# p s . i\right)\right) \Longrightarrow i s$-cube-form u v
by auto
then have coprime $a b$
by simp
let $? w=\operatorname{int}\left(\prod i \in \# p s+\{\# p \#\} . i\right)$
let ? $X=$ int $\left(\prod i \in \# p s . i\right)$
let $? p=$ int p
have ge3-1: $(3::$ int $) \geq 1$ by auto
have $p w: ? w=? p * ? X \wedge$ odd $? p \wedge$ odd ? X
proof (safe)
have $\left(\prod i \in \# p s+\{\# p \#\} . i\right)=p *\left(\prod i \in \# p s . i\right)$ by simp
thus wpx: ? $w=? p * ? X$ by (auto simp only: of-nat-mult [symmetric])
with ass show even ?p \Longrightarrow False by auto
from $w p x$ have ? $w=? X * ? p$ by simp
with ass show even ? $X \Longrightarrow$ False by simp
qed
have $i s-q f N$?p 3
proof -
from ass have $a^{\wedge} 2+3 * b \wedge 2=(? p * ? X) \wedge 3$ by (simp add: mult.commute)
hence ?p dvd $a^{\wedge} 2+3 * b^{\wedge} 2$ by (simp add: eval-nat-numeral field-simps)
moreover from ass have prime? p and coprime $a b$ by simp-all
moreover from $p w$ have odd?p by simp
ultimately show ?thesis by (simp add: qf3-oddprimedivisor)
qed
then obtain $\alpha \beta$ where alphabeta: ? $p=\alpha \wedge 2+3 * \beta$ ^2

```
    by (auto simp add: is-qfN-def)
have \(\alpha \neq 0\)
proof (rule ccontr, simp)
    assume \(\alpha=0\) with alphabeta have \(3 d v d ? p\) by auto
    with \(p w\) have \(w 3\) : 3 dvd ? \(w\) by (simp only: dvd-mult2)
    then obtain \(v\) where \(? w=3 * v\) by (auto simp add: dvd-def)
    with ass have vab: \(27 * v^{\wedge} 3=a^{\wedge} 2+3 * b^{\wedge} 2\) by simp
    hence \(a^{\wedge} 2=3 *\left(9 * v^{\wedge} 3-b^{\wedge} 2\right)\) by auto
    hence 3 dvd \(a^{\wedge} 2\) by (unfold dvd-def, blast)
    moreover have prime ( \(3::\) int ) by simp
    ultimately have \(a 3: 3\) dvd a using prime-dvd-power-int[of \(3::\) int a 2] by fastforce
    then obtain \(c\) where \(c: a=3 * c\) by (auto simp add: dvd-def)
    with vab have \(27 * v^{\wedge} 3=9 * c \wedge 2+3 * b^{\wedge} 2\) by (simp add: power-mult-distrib)
    hence \(b \wedge 2=3 *\left(3 * v\right.\) ^ \(\left.3-c^{\wedge} 2\right)\) by auto
    hence 3 dvd \(b^{\wedge} 2\) by (unfold dvd-def, blast)
    moreover have prime ( \(3::\) int) by simp
    ultimately have 3 dvd \(b\) using prime-dvd-power-int[of 3::int b 2] by fastforce
    with \(a 3\) have 3 dvd gcd \(a b\) by simp
    with ass show False by simp
qed
moreover from alphabeta pw ass have
    prime \(\left(\alpha^{\wedge} 2+3 * \beta\right.\) ~2 \() \wedge\) odd \(\left(\alpha^{\wedge} 2+3 * \beta\right.\) ~2 \() \wedge(3::\) int \() \geq 1\) by auto
ultimately obtain \(c d\) where \(c d p\) :
    \(\left(\alpha^{\wedge} 2+3 * \beta^{\wedge} 2\right) \wedge 3=c^{\wedge} 2+3 * d^{\wedge} 2 \wedge\) coprime \(c(3 * d)\)
    by (blast dest: qfN-oddprime-cube)
```



```
    \(\wedge\) coprime \(u v \wedge(\exists e . a=c * u+e * 3 * d * v \wedge b=c * v-e * d * u \wedge|e|=1)\)
    by (rule-tac \(A=? w\) and \(n=3\) in qfN-power-div-prime, auto)
then obtain \(u v e\) where uve: \(a^{\wedge} 2+3 * b^{\wedge} 2=\left(u^{\wedge} 2+3 * v^{\wedge} 2\right) *\left(c^{\wedge} 2+3 * d^{\wedge} 2\right)\)
    \(\wedge\) coprime \(u v \wedge a=c * u+e * 3 * d * v \wedge b=c * v-e * d * u \wedge|e|=1\) by blast
moreover have is-cube-form \(u v\)
proof -
    have \(u v X: u^{\wedge} 2+3 * v\) ^2 \(=? X^{\wedge} 3\)
    proof -
        from ass have \(p 0: ? p \neq 0\) by (simp add: prime-int-iff)
        from \(p w\) have ? \(p^{\wedge} 3 * ? X^{\wedge} 3=? w^{\wedge} 3\) by (simp add: power-mult-distrib)
        also with ass have \(\ldots=a^{\wedge} 2+3 * b^{\wedge} 2\) by simp
        also with uve have \(\ldots=\left(u^{\wedge} 2+3 * v^{\wedge} 2\right) *\left(c^{\wedge} 2+3 * d^{\wedge} 2\right)\) by auto
    also with \(c d p\) alphabeta have \(\ldots=? p^{\wedge} 3 *\left(u^{\wedge} 2+3 * v^{\wedge} 2\right)\) by (simp only: ac-simps)
    finally have ? \(p \wedge 3 *\left(u^{\wedge} 2+3 * v^{\wedge} 2-? X^{\wedge} 3\right)=0\) by auto
        with \(p 0\) show ?thesis by auto
    qed
    with \(p w\) IH uve show ?thesis by simp
qed
moreover have is-cube-form \(c d\)
proof -
    have coprime \(c d\)
    proof (rule coprimeI)
        fix \(f\)
        assume \(f d v d c\) and \(f d v d d\)
        then have \(f d v d c * u+d *(e * 3 * v) \wedge f d v d c * v-d *(e * u)\)
            by \(\operatorname{simp}\)
```

```
        with uve have fdvd a and fdvd b
            by (auto simp only: ac-simps)
        with <coprime a b\rangle show is-unit f
        by (rule coprime-common-divisor)
    qed
    with pw cdp ass alphabeta show ?thesis
    by (rule-tac P=?p in qf3-cube-prime-impl-cube-form, auto)
    qed
    ultimately show is-cube-form a b by (simp only: cube-form-mult)
qed
lemma qf3-cube-impl-cube-form:
    assumes ass: coprime a b ^ a^2 + 3*b^2 = w^3 ^ odd w
    shows is-cube-form a b
proof -
    have 0\leqw^3 using ass not-sum-power2-lt-zero[of a b] zero-le-power2[of b] by linarith
    hence 0<w using ass by auto arith
    define M where M = prime-factorization (nat w)
    from }\langlew>0\rangle\mathrm{ have ( }\forallp\in\mathrm{ set-mset M. prime p)^w=int (\iє#M.i)
        by (auto simp: M-def prod-mset-prime-factorization-int)
    with ass show ?thesis by (auto dest: qf3-cube-primelist-impl-cube-form)
qed
```


2.6 Existence ($N=3$)

This part contains the proof that all prime numbers $\equiv 1 \bmod 6$ can be written as $x^{2}+3 y^{2}$.

First show $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$, where p is an odd prime.
lemma Legendre-zmult: $\llbracket p>2 ;$ prime $p \rrbracket$
$\Longrightarrow($ Legendre $(a * b) p)=($ Legendre a $p) *($ Legendre b $p)$
proof -
assume $p 2: p>2$ and prp: prime p
from prp have $p r p^{\prime}$: prime (nat p)
by simp
let ? $p 12=\operatorname{nat}(((p)-1) \operatorname{div} 2)$
let ? Labp $=$ Legendre $(a * b) p$
let $?$ Lap $=$ Legendre a p
let ? Lbp $=$ Legendre $b p$
have $h 1$: (n nat $p-1$) div 2) $=$ nat $((p-1)$ div 2) using $p 2$ by auto
hence [?Labp $=(a * b)$ ^? $p 12](\bmod p)$ using prp p2 euler-criterion[of nat $p a * b]$
by auto
hence $\left[a^{\wedge} ? p 12 * b^{\wedge} ? p 12=? L a b p\right](\bmod p)$
by (simp only: power-mult-distrib cong-sym)
moreover have [?Lap $*$? $L b p=a^{\wedge} ? p 12 * b$? p 12] $(\bmod p)$
using euler-criterion[of nat p] p2 prp' h1 by (simp add: cong-mult)
ultimately have $[? L a p * ? L b p=? L a b p](\bmod p)$
using cong-trans by blast
then obtain k where k : ? Labp $=(? L a p * ? L b p)+p * k$
by (auto simp add: cong-iff-lin)
have $k=0$
proof (rule ccontr)

```
    assume \(k \neq 0\) hence \(|k|=1 \vee|k|>1\) by arith
    moreover
    \{ assume \(|k|=1\)
        with \(p 2\) have \(|k| * p>2\) by auto \}
    moreover
    \{ assume \(k 1:|k|>1\)
        with \(p 2\) have \(|k| * 2<|k| * p\)
        by (simp only: zmult-zless-mono2)
    with \(k 1\) have \(|k| * p>2\) by arith \}
    ultimately have \(|k| * p>2\) by auto
    moreover from \(p 2\) have \(|p|=p\) by auto
    ultimately have \(|k * p|>2\) by (auto simp only: abs-mult)
    moreover from \(k\) have ? Labp - ? \(L a p *\) ? \(L b p=k * p\) by auto
    ultimately have |? Labp - ? \(L a p * ? L b p \mid>2\) by auto
    moreover have ? \(L a b p=1 \vee\) ? Labp \(=0 \vee\) ? Labp \(=-1\)
        by (simp add: Legendre-def)
    moreover have ? Lap*? \(L b p=1 \vee\) ?Lap*?Lbp \(=0 \vee\) ? \(L a p * ? L b p=-1\)
    by (auto simp add: Legendre-def)
    ultimately show False by auto
qed
with \(k\) show ?thesis by auto
qed
Now show \(\left(\frac{-3}{p}\right)=+1\) for primes \(p \equiv 1 \bmod 6\).
lemma Legendre-1mod6: prime \((6 * m+1) \Longrightarrow\) Legendre \((-3)(6 * m+1)=1\)
proof -
    let ? \(p=6 * m+1\)
    let ? \(L=\) Legendre ( -3 ) ?p
    let ? L1 = Legendre ( -1 ) ?p
    let ?L3 \(=\) Legendre 3 ?p
    assume p: prime ?p
    from \(p\) have \(p^{\prime}:\) prime (nat ? \(p\) ) by simp
    have neg1cube: \((-1:: \text { int })^{\wedge} 3=-1\) by \(\operatorname{simp}\)
    have \(m 1\) : \(m \geq 1\)
    proof (rule ccontr)
        assume \(\neg m \geq 1\) hence \(m \leq 0\) by simp
        with \(p\) show False by (auto simp add: prime-int-iff)
    qed
    hence \(p n 3: ? p \neq 3\) and \(p 2: ? p>2\) by auto
    with \(p\) have ? \(L=(\) Legendre \((-1) ? p) *(\) Legendre 3 ? \(p)\)
    by (frule-tac \(a=-1\) and \(b=3\) in Legendre-zmult, auto)
    moreover have [Legendre ( -1 ) ? \(p=(-1)^{\text {^nat } m]}\) ( mod ? \(p\) )
    proof -
    have \(\operatorname{nat}((? p-1)\) div 2 \()=(\) nat \(? p-1)\) div 2 by auto
    hence \([? L 1=(-1) \uparrow(\operatorname{nat}(((? p)-1)\) div 2) \()](\bmod ? p)\)
            using euler-criterion [of nat ?p -1] p' p2 by fastforce
    moreover have nat \(((? p-1)\) div 2\()=3 *\) nat \(m\)
    proof -
        have \((? p-1)\) div \(2=3 * m\) by auto
        hence \(\operatorname{nat}((? p-1)\) div 2\()=\operatorname{nat}(3 * m)\) by simp
        moreover have \((3:: i n t) \geq 0\) by \(\operatorname{simp}\)
        ultimately show ?thesis by (simp add: nat-mult-distrib)
```

```
    qed
    moreover with neg1cube have \((-1::\) int \() \uparrow(3 *\) nat \(m)=(-1)\) nat \(m\)
        by (simp only: power-mult)
    ultimately show ?thesis by auto
    qed
    moreover have ? \(L 3=(-1)^{\text {^nat } m}\)
    proof -
    have ?L3 \(*\) (Legendre ?p 3) \(=(-1)^{\text {^nat } m}\)
    proof -
        have nat \(((3-1)\) div \(2 *((6 * m+1-1)\) div 2 \())=3 *\) nat \(m\) by auto
        hence ?L3 \(*(\) Legendre ?p 3) \(=(-1::\) int \() ~ へ(3 *\) nat \(m)\)
            using Quadratic-Reciprocity-int[of 3 ? p] p' pn3 p2 by fastforce
        with neg1cube show ?thesis by (simp add: power-mult)
    qed
    moreover have Legendre ?p \(3=1\)
    proof -
        have \(\left[1^{\wedge} 2=? p\right](\bmod 3)\) by (unfold cong-iff-dvd-diff dvd-def, auto)
        hence QuadRes 3 ? \(p\) by (unfold QuadRes-def, blast)
        moreover have \(\neg[? p=0](\bmod 3)\)
        proof (rule ccontr, simp)
            assume \([? p=0](\bmod 3)\)
            hence 3 dvd ?p by (simp add: cong-iff-dvd-diff)
            moreover have 3 dvd \(6 * m\) by (auto simp add: dvd-def)
            ultimately have 3 dvd ? \(p-6 * m\) by (simp only: dvd-diff)
            hence ( \(3::\) int) dvd 1 by simp
            thus False by auto
        qed
        ultimately show ?thesis by (unfold Legendre-def, auto)
    qed
    ultimately show ?thesis by auto
    qed
    ultimately have \([? L=(-1) \uparrow(\) nat \(m) *(-1) \uparrow(\) nat \(m)](\bmod ? p)\)
    by (metis cong-scalar-right)
    hence \([? L=(-1) \mathcal{}((\) nat \(m)+(\) nat \(m))](\bmod ? p)\) by (simp only: power-add)
    moreover have (nat \(m)+(\) nat \(m)=2 *(\) nat \(m\) ) by auto
    ultimately have \([? L=(-1) \uparrow(2 *(\) nat \(m))](\bmod ? p)\) by simp
    hence \(\left[? L=\left((-1)^{\wedge} 2\right) \wedge(\right.\) nat \(\left.m)\right](\) mod ? \(p\) ) by (simp only: power-mult)
    hence \([1=? L]\) (mod ?p) by (auto simp add: cong-sym)
    hence ?p dvd 1 - ?L by (simp only: cong-iff-dvd-diff)
    moreover have ? \(L=-1 \vee ? L=0 \vee ? L=1\) by (simp add: Legendre-def)
    ultimately have ?p dvd \(2 \vee\) ?p dvd \(1 \vee\) ? \(L=1\) by auto
    moreover
    \{ assume ?p dvd \(2 \vee\) ?p dvd 1
    with p2 have False by (auto simp add: zdvd-not-zless) \}
    ultimately show ?thesis by auto
qed
```

Use this to prove that such primes can be written as $x^{2}+3 y^{2}$.

```
lemma qf3-prime-exists: prime \((6 * m+1::\) int \() \Longrightarrow \exists x y \cdot 6 * m+1=x\) ^2 \(+3 * y\) ^2
proof -
    let \(? p=6 * m+1\)
    assume p: prime ?p
```

```
    hence Legendre (-3) ?p = 1 by (rule Legendre-1mod6)
    moreover
    { assume \neg QuadRes ?p (-3)
        hence Legendre (-3) ?p \not=1 by (unfold Legendre-def, auto) }
    ultimately have QuadRes ?p (-3) by auto
    then obtain s}\mathrm{ where s:[s`2 = -3] (mod ?p) by (auto simp add: QuadRes-def)
    hence ?p dvd s^2 - (-3::int) by (unfold cong-iff-dvd-diff, simp)
    moreover have s^2 - (-3::int) = s^2 + 3 by arith
    ultimately have ? p dvd s`2 + 3*1^2 by auto
    moreover have coprime s 1 by auto
    moreover have odd ?p
    proof -
        have ?p = 2*(3*m)+1 by simp
        thus ?thesis by simp
    qed
    moreover from p have prime ?p by simp
    ultimately have is-qfN ?p 3 using qf3-oddprimedivisor by blast
    thus ?thesis by (unfold is-qfN-def, auto)
qed
end
end
```


3 Fermat's last theorem, case $n=3$

theory Fermat3
imports Quad-Form
begin
context
begin
Proof of Fermat's last theorem for the case $n=3$:

$$
\forall x, y, z: x^{3}+y^{3}=z^{3} \Longrightarrow x y z=0
$$

private lemma nat-relprime-power-divisors:
assumes n0: $0<n$ and $a b c:(a:: n a t) * b=c \widehat{n}$ and relprime: coprime $a b$
shows $\exists k . a=k \wedge n$
using assms proof (induct c arbitrary: a b rule: nat-less-induct)
case (1 c)
show ? case
proof (cases $a>1$)
case False
hence $a=0 \vee a=1$ by linarith
thus ?thesis using n0 power-one zero-power by (simp only: eq-sym-conv) blast next
case True
then obtain p where p : prime p p dvd a using prime-factor-nat $[o f a]$ by blast hence h1: p dvd ($c^{\wedge} n$) using 1 (3) dvd-mult2[of p a $\left.b\right]$ by presburger

```
    hence (p`n) dvd (c^n)
    using p(1) prime-dvd-power-nat[of p c n] dvd-power-same[of p c n] by blast
    moreover have h2: \neg pdvd b
    using p<coprime a b>coprime-common-divisor-nat [of a b p] by auto
    hence }\neg(\mp@subsup{p}{}{`}n) dvd b using n0 p(1) dvd-power[of n p] gcd-nat.trans by blas
    ultimately have ( }\mp@subsup{p}{}{`}n)dvd 
    using 1.prems p(1) prime-elem-divprod-pow [of p a b n] by simp
    then obtain a' c' where ac:a=p`n* a'c=p * c'
    using h1 dvdE[of p^n a] dvdE[of p c] prime-dvd-power-nat[of p c n] p(1) by meson
    hence }\mp@subsup{p}{}{\wedge}n*(\mp@subsup{a}{}{\prime}*b)=\widehat{p\n*\mp@subsup{c}{}{\prime`}n}\mathrm{ using 1(3)
        by (simp add: power-mult-distrib semiring-normalization-rules(18))
    hence }\mp@subsup{a}{}{\prime}*b=\mp@subsup{c}{}{\prime^}n\mathrm{ using }p(1)\mathrm{ by auto
    moreover have coprime a'b using 1(4)ac(1)
        by simp
    moreover have 0<b 0<a using h2 dvd-0-right gr0I True by fastforce+
    then have 0<c 1<pusing p(1)1(3) nat-0-less-mult-iff [of a b] n0 prime-gt-Suc-0-nat
    by simp-all
    hence }\mp@subsup{c}{}{\prime}<c\mathrm{ using ac(2) by simp
    ultimately obtain k where a'= k`n using 1(1) n0 by presburger
    hence }a=(p*k)`n using ac(1) by (simp add: power-mult-distrib
    thus ?thesis by blast
    qed
qed
private lemma int-relprime-odd-power-divisors:
    assumes odd n and (a::int)*b=c^n and coprime a b
    shows \existsk.a= k`n
proof -
    from assms have }|a|*|b|=|c|^
        by (simp add: abs-mult [symmetric] power-abs)
    then have nat |a|* nat |b|= nat |c| ^n
        by (simp add: nat-mult-distrib [of |a| |b|, symmetric] nat-power-eq)
    moreover have coprime (nat |a|) (nat |b|) using assms(3) gcd-int-def by fastforce
    ultimately have }\existsk\mathrm{ . nat |a| = k`n
        using nat-relprime-power-divisors[of n nat |a| nat |b| nat |c|] assms(1) by blast
    then obtain }\mp@subsup{k}{}{\prime}\mathrm{ where }\mp@subsup{k}{}{\prime}:nat |a|=\mp@subsup{k}{}{\prime}nn\mathrm{ by blast
    moreover define k where k= int k'
    ultimately have k: |a| = k`n using int-nat-eq[of |a|] of-nat-power[of k'n] by force
    { assume a\not=k`n
        with }k\mathrm{ have }a=-(k`n) by arith
        hence }a=(-k)`n\mp@code{using assms(1) power-minus-odd by simp }
    thus ?thesis by blast
qed
private lemma factor-sum-cubes: (x::int)^3 + y^3 = (x+y)*(x^2 - x*y + y^2)
    by (simp add: eval-nat-numeral field-simps)
private lemma two-not-abs-cube: }|\mp@subsup{x}{}{\wedge}3|=(2::\mathrm{ int })\Longrightarrow\mathrm{ False
proof -
    assume }|\mp@subsup{x}{}{`}3|=
    hence x32: }|x\mp@subsup{|}{}{`}3=2 by (simp add: power-abs
    have }|x|\geq0\mathrm{ by simp
```

```
moreover
    \(\{\) assume \(|x|=0 \vee|x|=1 \vee|x|=2\)
        with x32 have False by (auto simp add: power-0-left) \}
    moreover
    \{ assume \(|x|>2\)
        moreover have \((0::\) int \() \leq 2\) and \((0::\) nat \()<3\) by auto
        ultimately have \(|x|\) ^3 > 2^3 by (simp only: power-strict-mono)
        with \(x 32\) have False by simp \}
    ultimately show False by arith
qed
```

Shows there exists no solution $v^{3}+w^{3}=x^{3}$ with $v w x \neq 0$ and coprimevw and x even, by constructing a solution with a smaller $\left|x^{3}\right|$.
private lemma no-rewritten-fermat3:
$\neg\left(\exists v w \cdot v^{\wedge} 3+w^{\wedge} 3=x^{\wedge} 3 \wedge v * w * x \neq 0 \wedge\right.$ even $(x::$ int $) \wedge$ coprime $\left.v w\right)$
proof (induct x rule: infinite-descent0-measure[where $V=\lambda x$. nat $\left.\left|x^{\wedge} 3\right|\right]$)
case $(0 x)$ hence $x^{\wedge} 3=0$ by arith
hence $x=0$ by auto
thus ?case by auto
next
case (smaller x)
then obtain $v w$ where $v w x$:
$v \wedge 3+w \bumpeq 3=x$ ^3 $\wedge v * w * x \neq 0 \wedge$ even $x \wedge$ coprime $v w($ is ?P $v w x)$
by auto
then have coprime $v w$
by simp
have $\exists \alpha \beta \gamma$. ?P $\alpha \beta \gamma \wedge$ nat $\left|\gamma^{\wedge} 3\right|<n a t\left|x^{\wedge} 3\right|$
proof -
- obtain coprime p and q such that $v=p+q$ and $w=p-q$
have $v w O d d$: odd $v \wedge$ odd w
proof (rule ccontr, case-tac odd v, simp-all)
assume ve: even v
hence even ($v^{\wedge} 3$) by simp
moreover from vwx have even ($x^{\wedge} 3$) by simp
ultimately have even $\left(x^{\wedge} 3-v^{\wedge} 3\right)$ by simp
moreover from $v w x$ have $x^{\wedge} 3-v^{\wedge} 3=w \wedge 3$ by simp
ultimately have even ($w^{\wedge} 3$) by simp
hence even w by simp
with $v e$ have $2 d v d v \wedge 2 d v d w$ by auto
hence 2 dvd gcd $v w$ by simp
with $v w x$ show False by simp
next
assume odd v and even w
hence odd ($v^{\wedge} 3$) and even ($w^{\wedge} 3$)
by auto
hence odd ($w^{\wedge} 3+v^{\wedge} 3$) by simp
with $v w x$ have odd ($x^{\wedge} 3$) by (simp add: add.commute)
hence odd x by simp
with $v w x$ show False by auto
qed
hence even $(v+w) \wedge$ even $(v-w)$ by simp
then obtain $p q$ where $p q: v+w=2 * p \wedge v-w=2 * q$
using evenE $[$ of $v+w]$ even $E[$ of $v-w]$ by meson
hence $v w: v=p+q \wedge w=p-q$ by auto
－show that $x^{3}=(2 p)\left(p^{2}+3 q^{2}\right)$ and that these factors are
－either coprime（first case），or have 3 as g．c．d．（second case）
have $v w p q: v^{\wedge} 3+w^{\wedge} 3=(2 * p) *\left(p^{\wedge} 2+3 * q^{\wedge} 2\right)$
proof－
have $2 *\left(v^{\wedge} 3+w^{\wedge} 3\right)=2 *(v+w) *\left(v\right.$ 乞2 $\left.-v * w+w^{\wedge} 2\right)$
by（simp only：factor－sum－cubes）
also from $p q$ have $\ldots=4 * p *\left(v^{\wedge} 2-v * w+w^{\wedge} 2\right)$ by auto
also have $\ldots=p *\left((v+w)^{\wedge} 2+3 *(v-w)^{\wedge} 2\right)$
by（simp add：eval－nat－numeral field－simps）
also with $p q$ have $\ldots=p *\left((2 * p)^{\wedge} 2+3 *(2 * q)^{\wedge} 2\right)$ by simp
also have $\ldots=2 *(2 * p) *\left(p^{\wedge} 2+3 * q^{\wedge} 2\right)$ by（simp add：power－mult－distrib）
finally show？thesis by simp
qed
let $? g=\operatorname{gcd}(2 * p)\left(p^{2}+3 * q^{2}\right)$
have $g 1:$ ？$g \geq 1$
proof（rule ccontr）
assume \neg ？$g \geq 1$
then have $? g<0 \vee ? g=0$ unfolding not－le by arith
moreover have ？$g \geq 0$ by simp
ultimately have $? g=0$ by arith
hence $p=0$ by simp
with $v w p q$ vwx $\langle 0<n a t| x \wedge 3 \mid>$ show False by auto
qed
have gOdd：odd ？g
proof（rule ccontr）
assume \neg odd ？g
hence 2 dvd $p^{\wedge} 2+3 * q \wedge 2$ by simp
then obtain k where k ：p^{\wedge} Д2 $+3 * q$＾2 $=2 * k$ by（auto simp add：dvd－def）
hence $2 *\left(k-2 * q^{\wedge} 2\right)=p^{\wedge} 2-q^{\wedge} 2$ by auto
also have $\ldots=(p+q) *(p-q)$ by（simp add：power2－eq－square algebra－simps）
finally have $v * w=2 *(k-2 * q$ へ2 $)$ using $v w$ by presburger
hence even $(v * w)$ by auto
hence even $(v) \vee$ even (w) by simp
with $v w O d d$ show False by simp
qed
then have even－odd－p－q ：even $p \wedge$ odd $q \vee$ odd $p \wedge$ even q
by auto
－first case：p is not a multiple of 3 ；hence $2 p$ and $p^{2}+3 q^{2}$
－are coprime；hence both are cubes
\｛ assume $p 3: \neg 3 d v d p$
have $g 3: \neg 3$ dvd ？g
proof（rule ccontr）
assume $\neg \neg 3 d v d$ ？g hence $3 d v d 2 * p$ by simp
hence（ $3::$ int）dvd $2 \vee 3$ dvd p
using prime－dvd－multD［of 3］by（fastforce simp add：prime－dvd－mult－iff）
with $p 3$ show False by arith
qed
from 〈coprime v w 〉 have pq－relprime：coprime $p q$
proof（rule coprime－imp－coprime）
fix c

```
    assume \(c d v d p\) and \(c d v d q\)
    then have \(c d v d p+q\) and \(c d v d p-q\)
        by simp-all
    with \(v w\) show \(c d v d v\) and \(c d v d w\)
        by simp-all
qed
from 〈coprime \(p q\rangle\) have coprime \(p\left(q^{2}\right)\)
    by \(\operatorname{simp}\)
then have factors-relprime: coprime \((2 * p)\left(p^{2}+3 * q^{2}\right)\)
proof (rule coprime-imp-coprime)
    fix \(c\)
    assume \(g 2 p\) : \(c d v d 2 * p\) and \(g p q: c d v d p^{2}+3 * q^{2}\)
    have coprime \(2 c\)
        using \(g 2 p\) gpq even-odd- \(p-q\) dvd-trans \(\left[\right.\) of \(\left.2 c p^{2}+3 * q^{2}\right]\)
        by auto
    with \(g 2 p\) show \(c d v d p\)
        by (simp add: coprime-dvd-mult-left-iff ac-simps)
    then have \(c d v d p^{2}\)
        by (simp add: power2-eq-square)
    with \(g p q\) have \(c\) dvd \(3 * q^{2}\)
        by (simp add: dvd-add-right-iff)
    moreover have coprime 3 c
        using 〈c dvd p〉p3 dvd-trans [of 3 c p]
        by (auto intro: prime-imp-coprime)
    ultimately show \(c\) dvd \(q^{2}\)
        by (simp add: coprime-dvd-mult-right-iff ac-simps)
qed
moreover from \(v w x v w p q\) have \(p q x:(2 * p) *\left(p^{\wedge} 2+3 * q^{\wedge} 2\right)=x^{\wedge} 3\) by auto
ultimately have \(\exists c .2 * p=c \wedge 3\) by (simp add: int-relprime-odd-power-divisors)
then obtain \(c\) where \(c: c \wedge 3=2 * p\) by auto
from pqx factors-relprime have coprime ( \(p^{\wedge 2}+3 * q\) へ2) ( \(2 * p\) )
    and \(\left(p^{\wedge} 2+3 * q^{\wedge} 2\right) *(2 * p)=x^{\wedge} 3\) by (auto simp add: ac-simps)
hence \(\exists d\). \(p^{\wedge} 2+3 * q\) ^2 \(=d^{\wedge} 3\) by (simp add: int-relprime-odd-power-divisors)
then obtain \(d\) where \(d: p^{\wedge} 2+3 * q^{\wedge} 2=d^{\wedge} 3\) by auto
have odd d
proof (rule ccontr)
    assume \(\neg\) odd \(d\)
    hence even ( \(d^{\wedge} 3\) ) by simp
    hence 2 dvd \(d \wedge 3\) by \(\operatorname{simp}\)
    moreover have \(2 d v d 2 * p\) by (rule dvd-triv-left)
    ultimately have 2 dvd \(g c d(2 * p)\left(d^{\wedge} 3\right)\) by simp
    with \(d\) factors-relprime show False by simp
qed
with \(d\) pq-relprime have coprime \(p q \wedge p^{\wedge} 2+3 * q^{\wedge} 2=d^{\wedge} 3 \wedge\) odd \(d\)
    by \(\operatorname{simp}\)
hence is-cube-form pq by (rule qf3-cube-impl-cube-form)
then obtain \(a b\) where \(p=a \wedge 3-9 * a * b \wedge 2 \wedge q=3 * a \wedge 2 * b-3 * b \wedge 3\)
    by (unfold is-cube-form-def, auto)
hence \(a b\) : \(p=a *(a+3 * b) *(a-3 * b) \wedge q=b *(a+b) *(a-b) * 3\)
    by (simp add: eval-nat-numeral field-simps)
with \(c\) have \(a b c:(2 * a) *(a+3 * b) *(a-3 * b)=c \wedge 3\) by auto
from \(p q\)-relprime \(a b\) have \(a b\)-relprime: coprime \(a b\)
```

```
    by (auto intro: coprime-imp-coprime)
then have ab1: coprime \((2 * a)(a+3 * b)\)
proof (rule coprime-imp-coprime)
    fix \(h\)
    assume \(h 2 a: h d v d 2 * a\) and \(h a b: h d v d a+3 * b\)
    have coprime \(2 h\)
        using ab even-odd-p-q hab dvd-trans [of \(2 h a+3 * b]\)
    by auto
    with \(h 2 a\) show \(h d v d a\)
        by (simp add: coprime-dvd-mult-left-iff ac-simps)
    with \(h a b\) have \(h\) dvd \(3 * b\) and \(\neg 3\) dvd \(h\)
        using dvd-trans [of \(3 h a] a b\langle\neg 3 d v d p\rangle\)
        by (auto simp add: dvd-add-right-iff)
    moreover have coprime \(3 h\)
    using \(\langle\neg 3\) dvd \(h\rangle\) by (auto intro: prime-imp-coprime)
    ultimately show \(h d v d b\)
        by (simp add: coprime-dvd-mult-left-iff ac-simps)
qed
then have [simp]: even \(b \longleftrightarrow\) odd \(a\)
    and ab3: coprime \(a(a+3 * b)\)
    by simp-all
from 〈coprime \(a b\) have \(a b 4\) : coprime \(a(a-3 * b)\)
proof (rule coprime-imp-coprime)
    fix \(h\)
    assume \(h 2 a: h d v d a\) and \(h a b: h d v d a-3 * b\)
    then show \(h d v d a\)
    by \(\operatorname{simp}\)
    with \(h a b\) have \(h\) dvd \(3 * b\) and \(\neg 3\) dvd \(h\)
    using dvd-trans [of \(3 h a] a b\langle\neg 3\) dvd \(p\rangle d v d\)-add-right-iff \([o f h a-3 * b\) ]
    by auto
    moreover have coprime 3 h
    using \(\neg \neg 3\) dvd \(h\rangle\) by (auto intro: prime-imp-coprime)
    ultimately show \(h d v d b\)
    by (simp add: coprime-dvd-mult-left-iff ac-simps)
qed
from ab1 have ab2: coprime \((a+3 * b)(a-3 * b)\)
    by (rule coprime-imp-coprime)
    (use dvd-add \([o f-a+3 * b a-3 * b]\) in simp-all)
have \(\exists k l m\). 2 \(* a=k\) ^ \(3 \wedge a+3 * b=l\) ^3 \(\wedge a-3 * b=m\) ^ 3
    using ab2 ab3 ab4 abc
        int-relprime-odd-power-divisors \([\) of \(32 * a(a+3 * b) *(a-3 * b) c]\)
        int-relprime-odd-power-divisors \([\) of \(3(a+3 * b) 2 * a *(a-3 * b) c]\)
        int-relprime-odd-power-divisors [of \(3(a-3 * b) 2 * a *(a+3 * b) c]\)
    by auto (auto simp add: ac-simps)
then obtain \(\alpha \beta \gamma\) where albega:
    \(2 * a=\gamma^{\wedge} 3 \wedge a-3 * b=\alpha^{\wedge} 3 \wedge a+3 * b=\beta^{\wedge} 3\) by auto
- show this is a (smaller) solution
hence \(\alpha \wedge 3+\beta^{\wedge} 3=\gamma^{\wedge} 3\) by auto
moreover have \(\alpha * \beta * \gamma \neq 0\)
proof (rule ccontr, safe)
    assume \(\alpha * \beta * \gamma=0\)
    with albega ab have \(p=0\) by (auto simp add: power- 0 -left)
```

with vwpq vwx show False by auto
qed
moreover have even γ
proof -
have even $(2 * a)$ by simp
with albega have even $\left(\gamma^{\wedge} 3\right)$ by simp
thus ?thesis by simp
qed
moreover have coprime $\alpha \beta$
using ab2 proof (rule coprime-imp-coprime)
fix h
assume $h a: h d v d \alpha$ and $h b: h d v d \beta$
then have h dvd $\alpha * \alpha^{\wedge} 2 \wedge h d v d \beta * \beta^{\wedge} 2$ by simp
then have h dvd α ^Suc $2 \wedge h d v d \beta$ Suc 2 by (auto simp only: power-Suc)
with albega show h dvd $a-3 * b h$ dvd $a+3 * b$ by auto
qed
moreover have nat $\left|\gamma^{\wedge} 3\right|<n a t|x \wedge 3|$
proof -
let $? A=p^{\wedge} 2+3 * q^{\wedge} 2$
from $v w x$ vwpq have $x^{\wedge} 3=2 * p *$? A by auto
also with $a b$ have $\ldots=2 * a *((a+3 * b) *(a-3 * b) * ? A)$ by auto
also with albega have $\ldots=\gamma^{\wedge} 3 *((a+3 * b) *(a-3 * b) *$? A $)$ by auto
finally have $e q:\left|x^{\wedge} 3\right|=\left|\gamma^{\wedge} 3\right| *|(a+3 * b) *(a-3 * b) * ? A|$
by (auto simp add: abs-mult)
with $\langle 0<n a t| x$ 人 $3 \mid>$ have $|(a+3 * b) *(a-3 * b) * ? A|>0$ by auto
hence eqpos: $|(a+3 * b) *(a-3 * b)|>0$ by auto
moreover have Ag1: \mid ? $A \mid>1$
proof -
have Aqf3: is-qfN ?A 3 by (auto simp add: is-qfN-def)
moreover have triv3b: $(3::$ int $) \geq 1$ by simp
ultimately have ? $A \geq 0$ by (simp only: qfN-pos)
hence ? $A>1 \vee$? $A=0 \vee$? $A=1$ by arith
moreover
\{ assume ? $A=0$ with triv $3 b$ have $p=0 \wedge q=0$ by (rule qfN-zero)
with $v w p q v w x$ have False by auto \}
moreover
\{ assume A1: ? $A=1$
have $q=0$
proof (rule ccontr)
assume $q \neq 0$
hence q ~2 >0 by simp
hence $3 * q^{\wedge} 2>1$ by arith
moreover have $p^{\wedge} 2 \geq 0$ by (rule zero-le-power2)
ultimately have ? $A>1$ by arith
with $A 1$ show False by simp
qed
with $p q$-relprime have $|p|=1$ by simp
with vwpq vwx A1 have $\left|x^{\wedge} 3\right|=2$ by auto
hence False by (rule two-not-abs-cube) \}
ultimately show ?thesis by auto
qed
ultimately have

```
        |(a+3*b)*(a-3*b)|*1< |(a+3*b)*(a-3*b)|*|?A|
        by (simp only: zmult-zless-mono2)
    with eqpos have }|(a+3*b)*(a-3*b)|*|?A|>1 by arith
    hence }|(a+3*b)*(a-3*b)*?A|>1 by (auto simp add: abs-mult
    moreover have }|\mp@subsup{\gamma}{}{\wedge}3|>
    proof -
        from eq have }|\mp@subsup{\gamma}{}{\wedge}3|=0\Longrightarrow|\mp@subsup{x}{}{\wedge}3|=0 by aut
        with <0< nat| x 3|> show ?thesis by auto
    qed
    ultimately have }|\mp@subsup{\gamma}{}{\wedge}3|*1<|\mp@subsup{\gamma}{}{\wedge}3|*||(a+3*b)*(a-3*b)*?A
        by (rule zmult-zless-mono2)
    with eq have }|\mp@subsup{x}{}{\wedge}3|>|\mp@subsup{\gamma}{}{\wedge}3|\mathrm{ by auto
    thus ?thesis by arith
qed
ultimately have ?thesis by auto }
moreover
- second case: p=3r and hence }\mp@subsup{x}{}{3}=(18r)(\mp@subsup{q}{}{2}+3\mp@subsup{r}{}{2})\mathrm{ and these
- factors are coprime; hence both are cubes
{ assume p3: 3 dvd p
    then obtain r where r:p=3*r by (auto simp add:dvd-def)
    moreover have 3 dvd 3*(3*r^2 + q^2) by (rule dvd-triv-left)
    ultimately have pq3: 3 dvd p^2+3*q^2 by (simp add: power-mult-distrib)
    moreover from p3 have 3 dvd 2*p by (rule dvd-mult)
    ultimately have g3: 3 dvd ?g by simp
    from <coprime v w\rangle have qr-relprime: coprime qr
    proof (rule coprime-imp-coprime)
    fix }
    assume hq: h dvd q h dvd r
    with r have h dvd p by simp
    with hq have h dvd p+qh dvd p-q
        by simp-all
    with vw show h dvd vh dvd w
        by simp-all
    qed
    have factors-relprime: coprime (18*r) (q^2 + 3*r^2)
    proof -
        from g3 obtain k where k:?g=3*k by (auto simp add:dvd-def)
        have k=1
        proof (rule ccontr)
            assume k\not=1
            with g1 k have k>1 by auto
            then obtain h}\mathrm{ where h: prime h}\wedgehdvd 
            using prime-divisor-exists[of k] by auto
            with k have hg: 3*h dvd ?g by (auto simp add: mult-dvd-mono)
            hence 3*h dvd p^2 + 3*q^2 and hp: 3*h dvd 2*p by auto
            then obtain s where s: p^2 + + 3*q^2 = (3*h)*s
                by (auto simp add: dvd-def)
            with r have rqh: 3*r^2+q^2 = h*s by (simp add: power-mult-distrib)
            from hpr have 3*h dvd 3*(2*r) by simp
            moreover have (3::int) \not=0 by simp
            ultimately have h dvd 2*r by (rule zdvd-mult-cancel)
            with h have h dvd 2 \vee h dvdr
```

```
        by (auto dest: prime-dvd-multD)
moreover have \neg hdvd 2
proof (rule ccontr, simp)
    assume h dvd 2
    with h have h=2 using zdvd-not-zless[of 2 h] by (auto simp: prime-int-iff)
    with hg have 2*3 dvd ?g by auto
    hence 2 dvd ?g by (rule dvd-mult-left)
    with gOdd show False by simp
qed
    ultimately have hr: h dvd r by simp
    then obtain t where r=h*t by (auto simp add:dvd-def)
    hence t: r^2 = h*(h*t^2) by (auto simp add: power2-eq-square)
    with rqh have h*s =h*(3*h*t^2) + q^2 by simp
    hence q^2 =h*(s-3*h*t^2) by (simp add: right-diff-distrib)
    hence h dvd q^2 by simp
    with h have h dvd q using prime-dvd-multD[of h q q]
    by (simp add: power2-eq-square)
    with hr have h dvd gcd q r by simp
    with h qr-relprime show False by (unfold prime-def, auto)
qed
with kr have 3 = gcd (2*(3*r)) ((3*r)^2 + 3*q^2) by auto
also have ... = gcd (3*(2*r)) (3*(3*r^2 + q^2))
    by (simp add: power-mult-distrib)
also have \ldots. = 3*gcd (2*r) (3*r^2 + q^2) using gcd-mult-distrib-int[of 3] by
auto
finally have coprime (2*r) (3*r`2 + q^2)
    by (auto dest: gcd-eq-1-imp-coprime)
moreover have coprime 9 (3*r^2 + q^2)
using 〈coprime v w` proof (rule coprime-imp-coprime)
    fix }h::\mathrm{ int
    assume }\neg\mathrm{ is-unit }
    assume h9: h dvd 9 and hrq: hdvd 3* r}\mp@subsup{r}{}{2}+\mp@subsup{q}{}{2
    have prime (3::int)
        by simp
    moreover from <h dvd 9` have h dvd 3'2
        by simp
    ultimately obtain k where normalize h = 3^ k
        by (rule divides-primepow)
    with «\neg is-unit h> have 0<k
        by simp
        with «normalize h=3^`}k>\mathrm{ have }|h|=3*3^^(k-1
        by (cases k) simp-all
    then have 3 dvd |h| ..
    then have 3 dvd h
        by simp
    then have 3 dvd 3* r}\mp@subsup{r}{}{2}+\mp@subsup{q}{}{2
        using hrq by (rule dvd-trans)
    then have 3 dvd q}\mp@subsup{q}{}{2
        by presburger
    then have 3 dvd q
        using prime-dvd-power-int [of 3 q 2] by auto
        with p3 have 3 dvd p+q and 3 dvd p-q
```

```
        by simp-all
    with vw have 3 dvd v and 3 dvd w
        by simp-all
    with <coprime v w` have is-unit (3::int)
    by (rule coprime-common-divisor)
    then show h dvd v and h dvd w
        by simp-all
    qed
    ultimately have coprime (2*r*9) (3* r}\mp@subsup{}{2}{+}+\mp@subsup{q}{}{2}
    by (simp only: coprime-mult-left-iff)
then show ?thesis
    by (simp add: ac-simps)
qed
moreover have rqx: (18*r)*(q^2 + 3*r^2) = \^3
proof -
    from vwx vwpq have x^3 =2*p*( ( ^2 + 3*q^2) by auto
    also with r have ... =2*(3*r)*(9*r`2 + 3*q`2)
        by (auto simp add: power2-eq-square)
    finally show ?thesis by auto
qed
ultimately have }\exists\textrm{c}.18*r=c^
    by (simp add: int-relprime-odd-power-divisors)
then obtain c1 where c1:c1^3=3*(6*r) by auto
hence 3 dvd c1^3 and prime ( }3::\mathrm{ int) by auto
hence 3 dvd c1 using prime-dvd-power[of 3] by fastforce
with c1 obtain c where c: 3*c^3 = 2*r
    by (auto simp add: power-mult-distrib dvd-def)
from rqx factors-relprime have coprime (q`2 + 3*r`2) (18*r)
    and (q^2 + 3*r^2)*(18*r)= x^3 by (auto simp add: ac-simps)
hence }\existsd.q^2+3*r^2= \^3
    by (simp add: int-relprime-odd-power-divisors)
then obtain d where d: q^2 + 3*r^2 = d^3 by auto
have odd d
proof (rule ccontr)
    assume }\neg\mathrm{ odd d
    hence 2 dvd d^3 by simp
    moreover have 2 dvd 2*(9*r) by (rule dvd-triv-left)
    ultimately have 2 dvd gcd (2*(9*r)) (d^3) by simp
    with d factors-relprime show False by auto
qed
with d qr-relprime have coprime qr ^ q^2 + 3*r^2 = d^3 ^ odd d
    by simp
hence is-cube-form q r by (rule qf3-cube-impl-cube-form)
then obtain }ab\mathrm{ where q=a^3 - 9*a*b^2^^r=3*a^2*b-3*b^3
    by (unfold is-cube-form-def, auto)
hence ab: q=a*(a+3*b)*(a-3*b)^r=b*(a+b)*(a-b)*3
    by (simp add: eval-nat-numeral field-simps)
with c have abc: }(2*b)*(a+b)*(a-b)=c^3 by aut
from qr-relprime ab have ab-relprime: coprime a b
    by (auto intro: coprime-imp-coprime)
then have ab1: coprime (2*b) (a+b)
proof (rule coprime-imp-coprime)
```

fix h
assume $h 2 b: h d v d 2 * b$ and $h a b: h d v d a+b$
have odd h
proof
assume even h
then have even $(a+b)$
using hab by (rule dvd-trans)
then have even $(a+3 * b)$
by simp
with $a b$ have even q even r
by auto
then show False
using coprime-common-divisor-int qr-relprime by fastforce
qed
with $h 2 b$ show $h d v d b$
using coprime-dvd-mult-right-iff [of h 2 b] by simp
with hab show h dvd a
using dvd-diff [of $h a+b b]$ by simp
qed
from $a b 1$ have $a b 2$: coprime $(a+b)(a-b)$
proof (rule coprime-imp-coprime)
fix h
assume hab1: $h d v d a+b$ and hab2: h dvd $a-b$
then show h dvd $2 * b$ using dvd-diff $[$ of $h a+b a-b]$ by fastforce
qed
from $a b 1$ have ab3: coprime $(a-b)(2 * b)$
proof (rule coprime-imp-coprime)
fix h
assume $h a b: h d v d a-b$ and $h 2 b: h d v d 2 * b$
have $a-b+2 * b=a+b$ by simp
then show $h d v d a+b$ using hab h2b dvd-add [of $h a-b 2 * b]$ by presburger
qed
then have [simp]: even $b \longleftrightarrow$ odd a
by simp
have $\exists k l m .2 * b=k \wedge 3 \wedge a+b=l \wedge 3 \wedge a-b=m \wedge 3$
using abc ab1 ab2 ab3
int-relprime-odd-power-divisors [of $32 * b(a+b) *(a-b) c]$
int-relprime-odd-power-divisors $[$ of $3 a+b(2 * b) *(a-b) c]$
int-relprime-odd-power-divisors $[$ of $3 a-b(2 * b) *(a+b) c]$
by simp (simp add: ac-simps, simp add: algebra-simps)
then obtain $\alpha 1 \beta \gamma$ where $a 1: 2 * b=\gamma \wedge 3 \wedge a-b=\alpha 1 \wedge 3 \wedge a+b=\beta \wedge 3$
by auto
then obtain α where $\alpha=-\alpha 1$ by auto

- show this is a (smaller) solution
with a1 have $a 2: \alpha^{\wedge} 3=b-a$ by auto
with a1 have $\alpha^{\wedge} 3+\beta^{\wedge} 3=\gamma^{\wedge} 3$ by auto
moreover have $\alpha * \beta * \gamma \neq 0$
proof (rule ccontr, safe)
assume $\alpha * \beta * \gamma=0$
with a1 a2 ab have $r=0$ by (auto simp add: power- 0 -left)
with r vwpq vwx show False by auto
qed

```
        moreover have even }
        proof -
            have even (2*b) by simp
            with a1 have even ( }\mp@subsup{\gamma}{}{`}3\mathrm{ ) by simp
            thus ?thesis by simp
        qed
        moreover have coprime \alpha \beta
        using ab2 proof (rule coprime-imp-coprime)
            fix }
            assume ha: h dvd \alpha and hb: h dvd \beta
            then have h dvd \alpha*\alpha^2 and h dvd \beta* \beta^2 by simp-all
            then have h dvd \alpha^Suc 2 and h dvd \beta^Suc 2 by (auto simp only: power-Suc)
            with a1 a2 have h dvd b-a and h dvd a + b by auto
            then show hdvd a + b and h dvd a - b
                by (simp-all add: dvd-diff-commute)
            qed
            moreover have nat |\gamma^3| < nat | x`3|
            proof -
            let ?A = p^2 + 3*q^2
            from vwx vwpq have }\mp@subsup{x}{}{\wedge}3=2*p*?A by aut
            also with r have \ldots= 6*r*?A by auto
            also with ab have \ldots=2*b*(9*(a+b)*(a-b)*?A) by auto
            also with a1 have ... = र^3 *(9*(a+b)*(a-b)*?A) by auto
            finally have eq: |x^3| = |\mp@subsup{\gamma}{}{\wedge}3|* |9*(a+b)*(a-b)*?A|
            by (auto simp add: abs-mult)
            with <0<nat | < }3|>> have | |*(a+b)*(a-b)*?A|>>0 by aut
            hence }|(a+b)*(a-b)*?A|\geq1 by arith
            hence }|9*(a+b)*(a-b)*?A|>1 by arith
            moreover have |\gamma^3|>0
            proof -
            from eq have }|\mp@subsup{\gamma}{}{\wedge}3|=0\Longrightarrow|\mp@subsup{x}{}{\wedge}3|=0 by aut
            with <0 < nat |x`3|> show ?thesis by auto
            qed
            ultimately have }|\mp@subsup{\gamma}{}{`}3|*1<|\mp@subsup{\gamma}{}{`}3|*| (a+b)*(a-b)*?A
                by (rule zmult-zless-mono2)
            with eq have }|\mp@subsup{x}{}{\wedge}3||>|^3| by aut
            thus ?thesis by arith
        qed
        ultimately have ?thesis by auto }
    ultimately show ?thesis by auto
    qed
    thus ?case by auto
qed
```

The theorem. Puts equation in requested shape.

```
theorem fermat-3:
    assumes ass: \((x::\) int \() \wedge 3+y^{\wedge} 3=z^{\wedge} 3\)
    shows \(x * y * z=0\)
proof (rule ccontr)
    let ? \(g=g c d x y\)
    let \(? c=z d i v ? g\)
    assume \(x y z 0: x * y * z \neq 0\)
```

- divide out the g.c.d.
hence $x \neq 0 \vee y \neq 0$ by simp
then obtain $a b$ where $a b: x=? g * a \wedge y=? g * b \wedge$ coprime $a b$
using gcd-coprime-exists[of $x y]$ by (auto simp: mult.commute)
moreover have $a b c: ? c * ? g=z \wedge a^{\wedge} 3+b^{\wedge} 3=? c \wedge 3 \wedge a * b * ? c \neq 0$
proof -
from $x y z 0$ have $g 0: ? g \neq 0$ by simp
have $z g a b: z^{\wedge} 3=? g \wedge 3 *\left(a^{\wedge} 3+b\right.$ З 3$)$
proof -
from $a b$ and ass have $z^{\wedge} 3=(? g * a)^{\wedge} 3+(? g * b)^{\wedge} 3$ by simp
thus ?thesis by (simp only: power-mult-distrib distrib-left)
qed
have $c g z: ? c * ? g=z$
proof -
from $z g a b$ have ? $g^{\wedge} 3$ dvd $z^{\wedge} 3$ by simp
hence ? $g ~ d v d z$ by simp
thus ?thesis by (simp only: ac-simps dvd-mult-div-cancel)
qed
moreover have $a \wedge 3+b \wedge 3=? c \wedge 3$
proof -
have ? c ^3 $3 * ? g^{\wedge} 3=\left(a^{\wedge} 3+b^{\wedge} 3\right) * ? g$ ^3
proof -
have ? $c^{\wedge} 3 * ? g^{\wedge} 3=(? c * ? g)^{\wedge} 3$ by (simp only: power-mult-distrib)
also with $c g z$ have $\ldots=z^{\wedge} 3$ by simp
also with $z g a b$ have $\ldots=? g^{\wedge} 3 *\left(a^{\wedge} 3+b^{\wedge} 3\right)$ by simp
finally show? ?thesis by simp
qed
with g0 show ?thesis by auto
qed
moreover from $a b$ and $x y z 0$ and $c g z$ have $a * b * ? c \neq 0$ by auto
ultimately show? ?hesis by simp
qed
- make both sides even
from $a b$ have coprime $\left(a^{\wedge} 3\right)(b \wedge 3)$
by simp
have $\exists u v w \cdot u \wedge 3+v \wedge 3=w^{\wedge} 3 \wedge u * v * w \neq(0::$ int $) \wedge$ even $w \wedge$ coprime $u v$
proof -
let ? $Q u v w=u^{\wedge} 3+v^{\wedge} 3=w^{\wedge} 3 \wedge u * v * w \neq(0::$ int $) \wedge$ even $w \wedge$ coprime $u v$
have even $a \vee$ even $b \vee$ even ?c
proof (rule ccontr)
assume $\neg($ even $a \vee$ even $b \vee$ even ? $c)$
hence aodd: odd a and odd $b \wedge$ odd ?c by auto
hence even (?c^3 - b^3) by simp
moreover from $a b c$ have ? $c^{\wedge} 3-b^{\wedge} 3=a^{\wedge} 3$ by simp
ultimately have even ($a^{\wedge} 3$) by auto
hence even (a) by simp
with aodd show False by simp
qed
moreover
\{ assume even (a)
then obtain $u v w$ where uvwabc: $u=-b \wedge v=$? $c \wedge w=a \wedge$ even w by auto
moreover with $a b c$ have $u * v * w \neq 0$ by auto
moreover have $u v w: u^{\wedge} 3+v^{\wedge} 3=w^{\wedge} 3$
proof－
from uvwabc have u＾3 $+v^{\wedge} 3=(-1 * b)^{\wedge} 3+? c \wedge 3$ by simp
also have $\ldots=(-1)^{\wedge} 3 * b^{\wedge} 3+? c^{\wedge} 3$ by（simp only：power－mult－distrib）
also have $\ldots=-\left(b^{\wedge} 3\right)+? c \wedge 3$ by auto
also with $a b c$ and uvwabc have $\ldots=w^{\wedge} 3$ by auto
finally show？thesis by simp
qed
moreover have coprime $u v$
using 〈coprime $\left(a^{\wedge} 3\right)\left(b^{\wedge} 3\right)$ 〉proof（rule coprime－imp－coprime）
fix h
assume $h u: h d v d u$ and $h d v d v$
with uvwabc have h dvd ？c＊？？$_2$ by（simp only：dvd－mult2）
with $a b c$ have $h d v d a^{\wedge} 3+b^{\wedge} 3$ using power－Suc［of ？c 2］by simp
moreover from hu uvwabc have $h b 3: h d v d b * b^{\wedge} 2$ by simp
ultimately have h dvd $a^{\wedge} 3+b^{\wedge} 3-b^{\wedge} 3$
using power－Suc［of b 2］dvd－diff［of $h a \wedge 3+b \wedge 3 b \wedge 3]$ by simp
with $h b 3$ show h dvd a^{\wedge} 3 h dvd b＾3 using power－Suc［of b 2］by auto
qed
ultimately have ？$Q u v w$ using «even $a 〉$ by simp
hence ？thesis by auto \}
moreover
\｛ assume even b
then obtain $u v w$ where uvwabc：$u=-a \wedge v=? c \wedge w=b \wedge$ even w by auto
moreover with $a b c$ have $u * v * w \neq 0$ by auto
moreover have $u v w: u^{\wedge} 3+v^{\wedge} 3=w^{\wedge} 3$
proof－
from uvwabc have $u \wedge 3+v^{\wedge} 3=(-1 * a) \wedge 3+$ ？$c^{\wedge} 3$ by simp
also have $\ldots=(-1) \wedge 3 * a^{\wedge} 3+$ ？$c^{\wedge} 3$ by（simp only：power－mult－distrib）
also have $\ldots=-\left(a^{\wedge} 3\right)+? c^{\wedge} 3$ by auto
also with $a b c$ and uvwabc have $\ldots=w^{\wedge} 3$ by auto
finally show ？thesis by simp
qed
moreover have coprime $u v$
using 〈coprime $\left(a^{\wedge} 3\right)\left(b^{\wedge} 3\right)$ 〉proof（rule coprime－imp－coprime）
fix h
assume $h u: h d v d u$ and $h d v d v$
with uvwabc have h dvd ？$c * ?{ }^{2} c^{\wedge} 2$ by（simp only：dvd－mult2）
with $a b c$ have $h d v d a^{\wedge} 3+b^{\wedge} 3$ using power－Suc［of ？c 2］by simp
moreover from hu uvwabc have $h b 3: h$ dvd $a * a \wedge 2$ by simp
ultimately have $h d v d a \wedge 3+b^{\wedge} 3-a \wedge 3$
using power－Suc［of a 2］dvd－diff［of $h a \wedge 3+b へ 3 a \wedge$ 3］by simp
with $h b 3$ show h dvd $a^{\wedge} 3$ and h dvd $b^{\wedge} 3$ using power－Suc［of a 2］by auto
qed
ultimately have？Q $u v w$ using «even b〉 by simp
hence ？thesis by auto \}
moreover
\｛ assume even ？c
then obtain $u v w$ where uvwabc：$u=a \wedge v=b \wedge w=$ ？c \wedge even w by auto

```
        with abc ab have ?thesis by auto }
        ultimately show ?thesis by auto
    qed
    hence \exists w. \exists uv.u^3+ v^3= w^3 ^ u*v*w\not=(0::int)^ even w^ coprime uv
        by auto
    - show contradiction using the earlier result
    thus False by (auto simp only: no-rewritten-fermat3)
qed
corollary fermat-mult3:
    assumes xyz:(x::int)^n}+\\widehat{\}n=z`n\mp@code{and n: 3 dvd n
    shows }x*y*z=
proof -
    from n obtain m}\mathrm{ where n=m*3 by (auto simp only: ac-simps dvd-def)
    with xyz have (x`m)^3 + (y`m)^3 = (z`m)^3 by (simp only: power-mult)
    hence (x`m)*(y`m)*(z`m)=0 by (rule fermat-3)
    thus ?thesis by auto
qed
end
end
```


References

[DM05] David Delahaye and Micaela Mayero. Diophantus' 20th problem and fermat's last theorem for $\mathrm{n}=4$: Formalization of fermat's proofs in the coq proof assistant. http://hal.archives-ouvertes.fr/hal-00009425/en/, 2005.
[Edw77] Harold M. Edwards. Fermat's Last Theorem. A Genetic Introduction to Algebraic Number Theory. Springer Verlag, 1977.
[Oos07] Roelof Oosterhuis. Mechanised theorem proving: Exponents 3 and 4 of Fermat's Last Theorem in Isabelle. Master's thesis, University of Groningen, 2007. http://www.roelofoosterhuis.nl/MScthesis.pdf.
[Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/ 100/.

