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Abstract

This document gives a formal proof of the cases n = 3 and n = 4 (and
all their multiples) of Fermat’s Last Theorem: if n > 2 then for all integers
x,Y, 2

" +y" =2" = zyz = 0.

Both proofs only use facts about the integers and are developed along the
lines of the standard proofs (see, for example, sections 1 and 2 of the book
by Edwards [Edw77]).

First, the framework of ‘infinite descent’ is being formalised and in both
proofs there is a central role for the lemma

coprimeab A ab=c" = 3 k:|a] = k"

Furthermore, the proof of the case n = 4 uses a parametrisation of the
Pythagorean triples. The proof of the case n = 3 contains a study of the
quadratic form z2 + 3y2. This study is completed with a result on which
prime numbers can be written as z2 + 3y2.

The case n = 4 of FLT, in contrast to the case n = 3, has already
been formalised (in the proof assistant Coq) [DMO05]. The parametrisation of
the Pythagorean Triples can be found as number 23 on the list of ‘top 100
mathematical theorems’ [Wie].

This research is part of an M.Sc. thesis under supervision of Jaap Top
and Wim H. Hesselink (RU Groningen). The author wants to thank Clemens
Ballarin (TU Miinchen) and Freek Wiedijk (RU Nijmegen) for their support.
For more information see [O0s07].
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1 Pythagorean triples and Fermat’s last theorem, case
n =4

theory Fermat/
imports HOL— Computational-Algebra. Primes
begin

context
begin

private lemma nat-relprime-power-divisors:
assumes n0: 0 < n and abc: (a::nat)xb = ¢"n and relprime: coprime a b
shows 3 k. a = k™n
using assms proof (induct ¢ arbitrary: a b rule: nat-less-induct)
case (1 ¢)
show ?Zcase
proof (cases a > 1)
case Fulse
hence a = 0 V a = 1 by linarith
thus ?thesis using n0 power-one zero-power by (simp only: eq-sym-conv) blast
next
case True
then obtain p where p: prime p p dvd a using prime-factor-nat|of a] by blast
hence h1: p dvd (¢™n) using 1(8) dvd-mult2[of p a b] by presburger
hence (p™n) dvd (¢"n)
using p(1) prime-dvd-power-nat[of p ¢ n] dvd-power-same[of p ¢ n] by blast
moreover have h2: - p dvd b
using p <coprime a b> coprime-common-divisor-nat [of a b p] by auto
hence - (p™n) dvd b using n0 p(1)
by (auto intro: dvd-trans dvd-power|of n p))
ultimately have (p™n) dvd a
using [.prems p(1) prime-elem-divprod-pow [of p a b n] by simp
then obtain a’ ¢/ where ac: a=p™n*a’ c=p * ¢’
using h1 dvdE[of p~n a] dvdE[of p c| prime-dvd-power-nat[of p ¢ n] p(1) by meson
hence p™n * (a’ * b) = p™n * ¢'"n using 1(3)
by (simp add: power-mult-distrib semiring-normalization-rules(18))
hence a’ x b = ¢'"n using p(1) by auto
moreover have coprime o’ b using 1(4) ac(1)
by (simp add: ac-simps)
moreover have 0 < b 0 < a using h2 dvd-0-right grOI True by fastforce+
then have 0 < c1 < p
using p <a * b = ¢ ~ > n0 nat-0-less-mult-iff [of a b] n0
by (auto simp add: prime-gt-Suc-0-nat)
hence ¢’ < ¢ using ac(2) by simp
ultimately obtain & where a’ = k™n using 1(1) n0 by presburger
hence a = (p*xk) "n using ac(1) by (simp add: power-mult-distrib)
thus ?thesis by blast
qed
qed
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private lemma int-relprime-power-divisors:
assumes ( < nand 0 < aand 0 < b and (a:int) * b = ¢ ~ n and coprime a b
shows k. a = k™n
proof (cases a = 0)
case Fulse
from <0 < a>» <0 < by <a * b= c ~ w[symmetric] have 0 < ¢ " n
by simp
hence ¢™n = |c¢| ™n using power-even-abs[of n c] zero-le-power-eq|of ¢ n] by linarith
hence a * b = |¢|"n using assms(4) by presburger
hence nat a * nat b = (nat |c|) "n using nat-mult-distrib[of a b] assms(2)
by (simp add: nat-power-eq)
moreover have 0 < b using assms mult-less-0-iff [of a b] False by auto
with <0 < a» <coprime a by have coprime (nat a) (nat b)
using coprime-nat-abs-left-iff [of a nat b] by simp
ultimately have 3 k. nat a = k™n
using nat-relprime-power-divisors[of n nat a nat b nat |c|| assms(1) by blast
thus ?thesis using assms(2) int-nat-eq[of a] by fastforce
qed (simp add: zero-power|[of n] assms(1))

Proof of Fermat’s last theorem for the case n = 4:

Va,y,z: at 4yt =2t = zyz = 0.

private lemma nat-power2-diff: a > (b:nat) = (a—b) "2 = a 2 + b72 — 2xaxb
proof —
assume a-ge-b: a > b
hence a2-ge-b2: a™2 > b72 by (simp only: power-mono)
from a-ge-b have ab-ge-b2: axb > b72 by (simp add: power2-eq-square)
have bx(a—b) + (a—b) "2 = ax(a—"b) by (simp add: power2-eq-square diff-mult-distrib)
also have ... = axb + a™2 + (b72 — b72) — 2xaxb
by (simp add: diff-mult-distrib2 power2-eq-square)
also with a2-ge-b2 have ... = axb + (a2 — b72) + b2 — 2%axb
by (simp add: power2-eq-square)
also with ab-ge-b2 have ... = (axb — b72) + a 2 + b2 — 2xaxb by auto
also have ... = bx(a—b) + a™2 + b72 — 2xaxb
by (simp only: diff-mult-distrib2 power2-eq-square mult.commute)
finally show ?thesis by arith
qed

private lemma nat-power-le-imp-le-base: [ n # 0; a™n < b"n ] = (a:nat) < b
by simp

private lemma nat-power-inject-base: [ n # 0; a™n = b™n | = (a:nat) = b
proof —
assume n # 0 and ab: a n=b"n
then obtain m where n = Suc m by (frule-tac n=n in not0-implies-Suc, auto)
with ab have o Suc m = b"Suc m and a > 0 and b > 0 by auto
thus ?thesis by (rule power-inject-base)
qed

1.1 Parametrisation of Pythagorean triples (over N and Z)

private theorem nat-euclid-pyth-triples:
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assumes abe: (a:nat) "2 + b2 = ¢ 2 and ab-relprime: coprime a b and aodd: odd a
shows 3 pg.a=p 2 — ¢ 2ANb=2«pxq N c=p 2+ q 2 A coprime p q
proof —
have two0: (2::nat) # 0 by simp
from abc have a2ch: a”2 = ¢"2 — b"2 by arith
— factor a? in coprime factors (¢ — b) and (c + b); hence both are squares
have a2factor: a2 = (c—b)*(c+b)
proof —
have cxb — cxb = 0 by simp
with a2cb have a™2 = cxc + cxb — cxb — bxb by (simp add: power2-eq-square)
also have ... = cx(c+b) — bx(c+b)
by (simp add: add-mult-distrib2 add-mult-distrib mult.commute)
finally show %thesis by (simp only: diff-mult-distrib)
qed
have a-nonzero: a # 0
proof (rule ccontr)
assume — a # 0 hence a = 0 by simp
with aodd have odd (0::nat) by simp
thus Fulse by simp
qed
have b-less-c: b < ¢
proof —
from abc have b™2 < ¢”2 by linarith
with two0 have b < ¢ by (rule-tac n=2 in nat-power-le-imp-le-base)
moreover haveb # ¢
proof
assume b=c with a2cb have a2 = 0 by simp
with a-nonzero show Fulse by (simp add: power2-eq-square)
qed
ultimately show ?thesis by auto
qged
hence b2-le-c2: 72 < ¢"2 by (simp add: power-mono)
have bc-relprime: coprime b ¢
proof —
from b2-le-c2 have cancelb2: ¢ 2—b"2+b"2 = ¢ 2 by auto
let 29 = ged b ¢
have 2972 = ged (b72) (¢72) by simp
with cancelb2 have ?¢72 = ged (b72) (¢ 2—b"2+b72) by simp
hence ?¢72 = ged (b72) (¢2—b"2) using gcd-add2[of b2 ¢ 2 — b7 2]
by (simp add: algebra-simps del: gcd-addl)
with a2¢b have 2972 dvd a”2 by (simp only: ged-dvd?2)
hence ?g dvd a A ?g dvd b by simp
hence ?g dvd ged a b by (simp only: ged-greatest)
with ab-relprime show ?thesis
by (simp add: ac-simps ged-eq-1-imp-coprime)
qed
have p2: prime (2::nat) by simp
have factors-odd: odd (c—b) A odd (c+b)
proof (auto simp only: ccontr)
assume even (c—b)
with a2factor have 2 dvd a~2 by (simp only: dvd-mult2)
with p2 have 2 dvd a by auto
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with aodd show Fulse by simp
next
assume even (c+b)
with a2factor have 2 dvd a2 by (simp only: dvd-mult)
with p2 have 2 dvd a by auto
with aodd show Fulse by simp

qed
have cbl: c—b + (c+b) = 2xc
proof —
have c—b + (¢+b) = ((¢=b)+b)+c by simp
also with b-less-c have ... = (¢c+b—b)+c by (simp only: diff-add-assoc2)
also have ... = c+c by simp
finally show ?thesis by simp
qed
have ¢b2: 2xb + (¢c—b) = c+b
proof —
have 2xb + (¢c—b) = b+b + (¢ — b) by auto
also have ... = b + ((c—b)+b) by simp
also with b-less-c have ... = b + (c+b—0b) by (simp only: diff-add-assoc?2)
finally show ?thesis by simp
qed
have factors-relprime: coprime (c—b) (c+b)
proof —

let %9 = ged (¢c—b) (c+b)
have cb1: c—b + (c+b) = 2xc

proof —
have c—b + (¢+b) = ((¢—b)+b)+c by simp
also with b-less-c have ... = (¢c+b—b)+c by (simp only: diff-add-assoc2)
also have ... = c+c by simp
finally show ?thesis by simp
qed

have %9 = ged (¢—b + (c¢+0b)) (¢+b) by simp
with ¢b! have %9 = ged (2xc) (c+b) by (rule-tac a=c—b + (c+b) in back-subst)
hence g2c: ?g dvd 2xc by (simp only: ged-dvdl)
have gcd (c—b) (2%b + (c—b)) = ged (c—b) (2xb)

using ged-add2[of ¢ — b 2xb + (¢ — b)] by (simp add: algebra-simps)
with ¢b2 have ?g = ged (¢c—b) (2xb) by (rule-tac a=2xb + (c¢—b) in back-subst)
hence ¢2b: ?g dvd 2xb by (simp only: ged-dvd2)
with g2c have ?g dvd 2 * gcd b ¢ by (simp only: ged-greatest ged-mult-distrib-nat)
with be-relprime have ?g dvd 2 by simp
moreover have ?g £ ()

using b-less-c by auto
ultimately have 1 < %g %9 < 2

by (simp-all add: dvd-imp-le)
then have glor2: g =2V %9=1

by arith
moreover have ?g £ 2
proof

assume g = 2

moreover have ?g dvd ¢ — b

by simp
ultimately show False
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using factors-odd by simp
qed
ultimately show ?thesis
by (auto intro: ged-eq-1-imp-coprime)
qed
from a2factor have (¢c—b)x(c+b) = "2 and (2::nat) >1 by auto
with factors-relprime have 3 k. ¢c—b = k™2
by (simp only: nat-relprime-power-divisors)
then obtain r» where r: ¢c—b = "2 by auto
from a2factor have (c+b)x(c—b) = a"2 and (2::nat) >1 by auto
with factors-relprime have 3 k. c+b = k™2
by (simp only: nat-relprime-power-divisors ac-simps)
then obtain s where s: ¢+b = s72 by auto
—now p:= (s+1)/2 and ¢ := (s — r)/2 is our solution
have rs-odd: odd r A odd s
proof (auto dest: ccontr)
assume even r hence 2 dvd rby presburger
with r have 2 dvd (c—b) by (simp only: power2-eq-square dvd-mult)
with factors-odd show Fualse by auto
next
assume cven s hence 2 dvd s by presburger
with s have 2 dvd (c¢+0b) by (simp only: power2-eg-square dvd-mult)
with factors-odd show Fualse by auto
qed
obtain m where m: m = s—r by simp
from r s have r"2 < 572 by arith
with two0 have r < s by (rule-tac n=2 in nat-power-le-imp-le-base)
with m have m2: s = r + m by simp
have even m
proof (rule ccontr)
assume odd m with rs-odd and m2 show Fualse by presburger
qed
then obtain ¢ where m = 2xq ..
with m2 have ¢: s = r + 2xq by simp
obtain p where p: p = r+q by simp
have c: c = p 2 + ¢72

proof —
from cbl and r and s have 2«xc = r"2 + 572 by simp
also with ¢ have ... = 2xr 2+4(2xq) "2+ 2xr%(2xq) by algebra
also have ... = 2xr 2+ 272xq 24 2%2xq+r by (simp add: power-mult-distrib)
also have ... = 2x(r 24 2xqxr+q 2)+2xq 2 by (simp add: power2-eq-square)
also with p have ... = 2xp " 2+2xq 2 by algebra
finally show ?thesis by auto

qed

moreover have b: b = 2xpxq

proof —
from cb2 and r and s have 2xb = s°2 — r~2 by arith
also with ¢ have ... = (2xq) "2 + 2xr*(2xq) by (simp add: power2-sum)
also with p have ... = /xgxp by (simp add: power2-eq-square add-mult-distrib2)
finally show ?thesis by auto

qed

moreover have a: a = p™2 — ¢ 2
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proof —
from p have p>q by simp
hence p2-ge-¢2: p™2 > ¢"2 by (simp only: power-mono)
from a2cb and b and c have a2 = (p72 + ¢ 2) 72 — (2xpxq) "2 by simp

also have ... = (p72) 72 + (¢2) 72 — 2x(p " 2)x(¢"2)
by (auto simp add: power2-sum power-mult-distrib ac-simps)
also with p2-ge-g2 have ... = (p72 — ¢ 2) 72 by (simp only: nat-power2-diff)

finally have a2 = (p7™2 — ¢"2) "2 by simp
with two0 show ?thesis by (rule-tac n=2 in nat-power-inject-base)
qged
moreover have coprime p ¢
proof —
let 2k = ged p q
have %k dvd p N %k dvd q by simp
with b and a have %k dvd a A 2k dvd b
by (simp add: power2-eq-square)
hence %k dvd ged a b by (simp only: ged-greatest)
with ab-relprime show ?thesis
by (auto intro: ged-eq-1-imp-coprime)
qed
ultimately show ?thesis by auto
qged

Now for the case of integers. Based on nat-euclid-pyth-triples.

private corollary int-euclid-pyth-triples: [ coprime (a::int) b; odd a; a2 + 572 = ¢ 2
]
= 3 pqga=p 2 —qg2ANb=2«pxqAlcl=p 2+ ¢ 2 A coprime p q
proof —
assume ab-rel: coprime a b and aodd: odd a and abc: a”2 + b2 = ¢ 2
let ?a = nat|al
let ?b = nat|b|
let ?c = nat|c|
have ab2-pos: a”2 > 0 A b"2 > 0 by simp
hence nat(a™2) + nat(b™2) = nat(a™2 + b72) by (simp only: nat-add-distrib)
with abc have nat(a™2) + nat(b™2) = nat(c"2) by presburger
hence nat(|a] 72) + nat(]b|"2) = nat(|c| 2) by simp
hence new-abc: 2072 + 2072 = 2¢72
by (simp only: nat-mult-distrib power2-eq-square nat-add-distrib)
moreover from ab-rel have new-ab-rel: coprime ?a 2b
by (simp add: gcd-int-def)
moreover have new-a-odd: odd ?a using aodd
by simp
ultimately have
I pg 2a=p 2—q 2N %% =2xpxq N\ c=p 2+ ¢ 2 A coprime p q
by (rule-tac a=%a and b = ?b and c=?c in nat-euclid-pyth-triples)
then obtain m and n where mn:
2a=m"2-n"2 N % = 2xmxn A %c=m 2 + n 2 A coprime m n by auto
have n72 < m™2
proof (rule ccontr)
assume - n 2 < m 2
with mn have %a = 0 by auto
with new-a-odd show Fualse by simp
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qed
moreover from mn have int ?a = int(m™2 — n"2) and int ?b = int(2xm=n)
and int ?c = int(m"2 + n"2) by auto
ultimately have |a| = int(m™2) — int(n"2) and |b| = int(2xm=*n)
and |c| = int(m™2) + int(n"2) by (simp add: of-nat-diff )+
hence absabc: |a] = (int m) "2 — (int n) "2 A |b] = 2x(int m)*int n
A le| = (int m) 72 + (int n) "2 by (simp add: power2-eg-square)
from mn have mn-rel: coprime (int m) (int n)
by (simp add: gcd-int-def)
showd pga=p"2 — ¢ 2ANb=2xpxqA|c| =p 2+ q 2 A coprime p q
(is3pg 7Qpa)
proof (cases)
assume apos: a > 0 then obtain p where p: p = int m by simp
hence 3 ¢q. ?Q p ¢
proof (cases)
assume bpos: b > (0 then obtain ¢ where ¢ = int n by simp
with p apos bpos absabc mn-rel have ?Q p q by simp
thus %thesis by (rule exl)

next
assume — b>(0 hence bneg: b<0 by simp
then obtain ¢ where ¢ = — int n by simp

with p apos bneg absabc mn-rel have ?Q p g by simp
thus ?thesis by (rule exl)
qed
thus %thesis by (simp only: exl)
next
assume — ¢>0 hence aneg: a<0 by simp
then obtain p where p: p = int n by simp
hence 3 ¢. ?Q p ¢
proof (cases)
assume bpos: b > 0 then obtain ¢ where ¢ = int m by simp
with p aneg bpos absabc mn-rel have ?2Q p g
by (simp add: ac-simps)
thus ?thesis by (rule exl)

next
assume — b>(0 hence bneg: b<0 by simp
then obtain ¢ where ¢ = — int m by simp

with p aneg bneg absabc mn-rel have ?Q p q
by (simp add: ac-simps)
thus %thesis by (rule exl)
qed
thus ?thesis by (simp only: exl)
qed
qed

1.2 Fermat’s last theorem, case n =4

Core of the proof. Constructs a smaller solution over Z of

at 4+ bt = A coprimeab A abc # 0 A a odd.

private lemma smaller-fermat:
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assumes abe: (a:int) 4+b 4 =c"2 and abcO: axbxc # 0 and aodd: odd a
and ab-relprime: coprime a b
shows
Fpgr. (D 4+q4=r"2 N pxgxr £ 0 A odd p A coprime p g A 172 < ¢ 2)
proof —
— put equation in shape of a pythagorean triple and obtain v and v
from ab-relprime have a2b2relprime: coprime (a"2) (b72)
by simp
moreover from aodd have odd (a"2) by presburger
moreover from abc have (¢72)72 4+ (b72)72 = ¢ "2 by simp
ultimately obtain v and v where uvabc:
a2 =u2-v 2 ANDb2 = 2xuxv A |c| = u"2 + v 2 A coprime u v
by (frule-tac a=a™2 in int-euclid-pyth-triples, auto)
with abcO have wv0: u#0 A v#0 by auto
have av-relprime: coprime a v
proof —
have ged a v dvd ged (a72) v by (simp add: power2-eq-square)
moreover from wvabec have ged v (a72) dvd ged (b72) (a™2)
by simp
with a2b2relprime have ged (a™2) v dvd (1::int)
by (simp add: ac-simps)
ultimately have gcd a v dvd 1
by (rule dvd-trans)
then show ?thesis
by (simp add: gcd-eq-1-imp-coprime)
qed
— make again a pythagorean triple and obtain k and [
from wvabc have a™2 + v™2 = u 2 by simp
with av-relprime and aodd obtain k [ where
klavu: a = k72—172 N v = 2%kl A |u| = k724172 and ki-rel: coprime k|
by (frule-tac a=a in int-euclid-pyth-triples, auto)
— prove b = 2m and kl(k? + [?) = m?, for coprime k, [ and k2 + [2
from uvabc have even (b72) by simp
hence even b by simp
then obtain m where bm: b = 2xm using evenFE by blast
have |k|x|l|x|k™24+172] = m™2
proof —
from bm have /+xm™2 = b2 by (simp only: power2-eg-square ac-simps)
also have ... = |b72| by simp
also with wvabc have ... = 2x|v|||u|| by (simp add: abs-mult)
also with klavu have ... = 2x|2xkxl|x|k"2+172| by simp
also have ... = /x|k||l|x|k"2+172| by (auto simp add: abs-mult)
finally show ?thesis by simp
qed
moreover have (2::nat) > 1 by auto
moreover from kl-rel have coprime |k| |I| by simp
moreover have coprime || (|k"2+172|)
proof —
from kl-rel have coprime (kxk) 1
by simp
hence coprime (kxk+Ixl) | using gcd-add-mult [of 1] kxk]
by (simp add: ac-simps gcd-eg-1-imp-coprime)
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hence coprime | (k™2+172)
by (simp add: power2-eq-square ac-simps)
thus ?thesis by simp
qed
moreover have coprime |k™2-+172] |k|
proof —
from kl-rel have coprime | k
by (simp add: ac-simps)
hence coprime (Ixl) k
by simp
hence coprime (Ixl+kxk) k using gcd-add-mult[of k k 1xl]
by (simp add: ac-simps ged-eq-1-imp-coprime)
hence coprime (k™2+172) k
by (simp add: power2-eq-square ac-simps)
thus ?thesis by simp
qed
ultimately have 3 zy z. [k| = 2 2 A|l| = y 2 A k24172 = 272
using int-relprime-power-divisors[of 2 |k| |I| * |k* + 2| m]
int-relprime-power-divisors[of 2 |l| |k| * [k* + 12| m]
int-relprime-power-divisors[of 2 |k* + 12| |k|*|l| m]
by (simp-all add: ac-simps)
then obtain o g v where albega:
[kl =a 2 Al =872 A|E24+172]=~"2
by auto
— show this is a new solution
have k2 = a4
proof —
from albega have |k| 72 = (a”2) 2 by simp
thus ?thesis by simp
qed
moreover have [72 = 874
proof —
from albega have |l|72 = (872) 2 by simp
thus ?thesis by simp
qed
moreover have gamma2: k™2 + 172 =72
proof —
have k72 > 0 AN 172 > 0 by simp
with albega show ?thesis by auto
qed
ultimately have newabc: a4 + 874 = v 2 by auto
from uv0 klavu albega have albega0: o x § * v # 0 by auto
— show the coprimality
have alphabeta-relprime: coprime o 3
proof (rule classical)
let %9 = ged o B
assume — coprime o f3
then have gnot1: %9 # 1
by (auto intro: gcd-eg-1-imp-coprime)
have 79 > 1
proof —
have ?g # 0
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proof
assume ?g=0
hence nat |a|=0 by simp
hence a=0 by arith
with albega0 show False by simp
qed
hence ?¢g>0 by auto
with gnotl show ?thesis by linarith
qed
moreover have ?g dvd gcd k|
proof —
have ?g dvd a A ?g dvd 8 by auto
with albega have ?g dvd |k| A ?g dvd |l|
by (simp add: power2-eq-square mult.commute)
hence ?g dvd k N\ ?g dvd | by simp
thus ?thesis by simp
qed
ultimately have gcd k | # 1 by fastforce
with kl-rel show ?thesis by auto
qed
— choose p and ¢ in the right way
have 3 pq. p ™4 + ¢4 =72 A pxgxy # 0 A odd p N\ coprime p q
proof —
have odd « V odd
proof (rule ccontr)
assume — (odd a V odd )
hence even a A even B by simp
then have 2 dvd a A 2 dvd 8 by simp
then have 2 dvd ged o 8 by simp
with alphabeta-relprime show False by auto
qed
moreover
{ assume odd «
with newabc albega0 alphabeta-relprime obtain p ¢ where
p=a A q=BAD 4 + q 4 =72 Apxqgxy # 0 A oddp A coprime p q
by auto
hence ?thesis by auto }
moreover
{ assume odd
with newabc albega0 alphabeta-relprime obtain p ¢ where
g=a ANp=B Np 4+ ¢4 =79"2Npkgxy # 0 A oddp N coprime p q
by (auto simp add: ac-simps)
hence ?thesis by auto }
ultimately show ?thesis by auto
qed
— show the solution is smaller
moreover have 772 < ¢ 2

proof —
from gamma?2 klavu have v 72 < |u| by simp
also have h1: ... < |u| "2 using self-le-power|of |u| 2] uwv0 by auto

also have h2: ... < 4”2 by simp
also have h3: ... < u 2 + v 2
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proof —
from ww0 have v2non0: 0 # v 2
by simp
have 0 < v™2 by (rule zero-le-power2)
with v2non0 have 0 < v"2 by (auto simp add: less-le)
thus ?thesis by auto
qed
also with wvabc have ... < |¢| by auto
also have ... < |¢|72 using self-le-power[of |c| 2] h1 h2 h3 wvabe by linarith
also have ... < ¢72 by simp
finally show ?thesis by simp
qed
ultimately show #¢thesis by auto
qed

Show that no solution exists, by infinite descent of ¢2.

private lemma no-rewritten-fermat4:
= (3 (auint) b. (a™4 + b4 = ¢72 A axbxc £ 0 A odd a A coprime a b))
proof (induct ¢ rule: infinite-descentO-measure[where V=XAc. nat(c"2)])
case (0 x)
have 272 > 0 by (rule zero-le-power2)
with 0 have int(nat(z72)) = 0 by auto
hence z = 0 by auto
thus ?case by auto
next
case (smaller x)
then obtain a b where a4/ + b4 = 22 and axbxx # 0
and odd a and coprime a b by auto
hence 3 p qr. (p74+q4=r"2 A pxgxr # 0 A odd p
A coprime p g N\ 172 < x72) by (rule smaller-fermats )
then obtain p ¢ r where pgr: p ™4 + ¢ 4 = 172 A pxgxr # 0 A odd p
A coprime p ¢ A r"2 < z72 by auto
have "2 > 0 and 272 > 0 by (auto simp only: zero-le-power2)
hence int(nat(r"2)) = r"2 A int(nat(z"2)) = 2”2 by auto
with pgr have int(nat(r"2)) < int(nat(z"2)) by auto
hence nat(r™2) < nat(z"2) by presburger
with pgr show ?case by auto
qed

The theorem. Puts equation in requested shape.

theorem fermat-4:
assumes ass: (z:int) 4 + y 4 = 274
shows zxyxz=0
proof (rule ccontr)
let 29 = ged z gy
let 7c = (z div 29) 72
assume zyz0: rxyxz # 0
— divide out the g.c.d.
hence z # 0 V y # 0 by simp
then obtain a b where ab: z = gxa A y = ?gxb A\ coprime a b
using gcd-coprime-exists[of x y] by (auto simp: mult.commute)
moreover have abc: a4 + b4 = 2¢72 A axbx?c # 0
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proof —
have zgab: 274 = %97/ * (a"4+b"4)
proof —
from ab ass have 27/ = (?gxa) 4 +(2gxb) "4 by simp
thus ?thesis by (simp only: power-mult-distrib distrib-left)
qed
have cgz: 272 = ¢ x %972
proof —
from zgab have 974 dvd 2z~ by simp
hence ?g dvd z by simp
hence (z div ?9)x?g = z by (simp only: ac-simps dvd-mult-div-cancel)
with ab show ?thesis by (auto simp only: power2-eq-square ac-simps)
qed
with 2yz0 have c0: ?c¢#0 by (auto simp add: power2-eq-square)
from zyz0 have g0: ?g#0 by simp
have a ™) + b7} = %¢2

proof —
have %¢72 * 2974 = (a™4+b"4)x%9"4
proof —
have ?¢72 % 2974 = (%cx?972)"2 by algebra
also with cgz have ... = (272) 72 by simp
also have ... = 274 by algebra
also with zgab have ... = 297/ x(a"4+b"4) by simp
finally show ?thesis by simp
qed
with g0 show ?thesis by auto
qed

moreover from ab zyz0 c0 have axbx?c£0 by auto
ultimately show ¢thesis by simp
qed
— choose the parity right
have 3 pq. p ™4 + ¢4 = 2¢72 A pxqx?c#0 N odd p N coprime p q
proof —
have odd a V odd b
proof (rule ccontr)
assume —(odd a V odd b)
hence 2 dvd a A 2 dvd b by simp
hence 2 dvd gecd a b by simp
with ab show Fulse by auto
qed
moreover
{ assume odd a
then obtain p ¢ where p = a¢ and ¢ = b and odd p by simp
with ab abc have ?thesis by auto }
moreover
{ assume odd b
then obtain p ¢ where p = b and ¢ = a and odd p by simp
with ab abc have
D4+ ¢4 = 2¢T2 N pxgxPc£0 N odd p N coprime p q
by (simp add: ac-simps)
hence ?thesis by auto }
ultimately show ?thesis by auto
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qed

— show contradiction using the earlier result

thus False by (auto simp only: no-rewritten-fermats )
qed

corollary fermat-mult/:
assumes zyz: (z:int) n + y n =z nand n: 4 dvd n
shows zxy+xz=0

proof —
from n obtain m where n = mxj by (auto simp only: ac-simps dvd-def)
with zyz have (z7m) ™4 + (y"m) 4 = (z"m) 4 by (simp only: power-mult)
hence (z7m)*x(y m)*(z"m) = 0 by (rule fermat-4)
thus ?thesis by auto

qed

end

end

2 The quadratic form 22 + Ny?

theory Quad-Form
imports

HOL— Number-Theory. Number-Theory
begin

context
begin

Shows some properties of the quadratic form 2?4+ Ny?, such as how to multiply
and divide them. The second part focuses on the case N = 3 and is used in the
proof of the case n = 3 of Fermat’s last theorem. The last part — not used for
FLT3 — shows which primes can be written as 22 + 3y2.

2.1 Definitions and auxiliary results

private lemma best-division-abs: (n::int) > 0 = 3 k. 2 x |a — kxn| < n
proof —
assume a: n > 0
define k£ where k£ = a div n
have h: a — k x n = a mod n by (simp add: div-mult-mod-eq algebra-simps k-def)
thus ?thesis
proof (cases 2 * (a mod n) < n)
case True
hence 2 x |a — kxn| < n using h pos-mod-sign a by auto
thus ?thesis by blast
next
case Fulse
hence 2 x (n — a mod n) < n by auto
have a — (k+1)*n = a mod n — n using h by (simp add: algebra-simps)
hence 2 x |a — (k+1)*n| < n using h pos-mod-bound|of n a] a False by fastforce
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thus ?thesis by blast
qed
qed

lemma prime-power-dvd-cancel-right:
p ~n dvd a if prime (p::'a::semiring-ged) = p dvd bp " n dvd a x b
proof —
from that have coprime p b
by (auto intro: prime-imp-coprime)
with that show ?thesis
by (simp add: coprime-dvd-mult-left-iff)
qed

definition
is-qfN :: int = int = bool where
is-gfNAN<+— (Jzy A=2z"2+ Nxy 2)

definition
is-cube-form :: int = int = bool where
is-cube-form a b +— (3 p q. a = p~8 — 9xpxqg 2 N b = 3xp 2xq — 8%q 3)

private lemma abs-eg-impl-unitfactor: |a::int] = |b] = 3 w. a = uxb A |u|=1
proof —
assume |a| = ||

hence a = 1%b V a = (—1)*b by arith
then obtain u where a = uxb A (u=1 V u=—1) by blast
thus ?thesis by auto

qed

private lemma prime-3-nat: prime (3::nat) by auto

2.2 Basic facts if N > 1

lemma ¢fN-pos: [ N > 1;is-¢fNAN] = A >0
proof —
assume N: N > [ and is-gfN A N
then obtain a b where ab: A = a72 + Nxb"2 by (auto simp add: is-qfN-def)
have Nxb72 > 0
proof (cases)
assume b = ( thus %thesis by auto
next
assume - b = ( hence 072 > 0 by simp
moreover from N have N>0 by simp
ultimately have Nxb"2 > Nx0 by (auto simp only: zmult-zless-monoZ2)
thus ?thesis by auto
qed
with ab have A > o~ 2 by auto
moreover have a2 > 0 by (rule zero-le-power2)
ultimately show ?thesis by arith
qged

lemma gfN-zero: [ (N::int) > 1; 672+ Nxb 2 =0] = (a=0 A b= 0)
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proof —
assume N: N > 1 and abN: a”2 + Nxb"2 = 0
show ?thesis
proof (rule ccontr, auto)
assume a # 0 hence a2 > 0 by simp
moreover have Nxb~2 > 0
proof (cases)
assume b = ( thus %thesis by auto
next
assume — b = 0 hence b2 > 0 by simp
moreover from N have N>0 by simp
ultimately have Nxb"2 > Nx0 by (auto simp only: zmult-zless-mono2)
thus ?thesis by auto
qed
ultimately have ¢”2 + Nxb™2 > 0 by arith
with abN show Fualse by auto
next
assume b # 0 hence b"2>0 by simp
moreover from N have N>0 by simp
ultimately have Nxb"2>Nx0 by (auto simp only: zmult-zless-mono2)
hence Nxb™2 > 0 by simp
moreover have a2 > 0 by (rule zero-le-power2)
ultimately have a2 + Nxb"2 > 0 by arith
with abN show Fualse by auto
qed
qged

2.3 Multiplication and division

lemma g¢fN-multl: ((a::int) "2 + N*b 2)x(c 2 + Nxd 2)
= (axc+Nxbxd) "2 + Nx(axd—bxc) 2
by (simp add: eval-nat-numeral field-simps)

lemma g¢fN-mult2: ((a::int) "2 + Nxb 2)x(c"2 + Nxd 2)
= (axc—Nxbxd) "2 + Nx(axd+bxc) 2
by (simp add: eval-nat-numeral field-simps)

corollary is-gfN-mult: is-gfN A N = is-¢fN B N = is-qfN (A*B) N
by (unfold is-qfN-def, auto, auto simp only: qfN-multl)

corollary is-gfN-power: (n:nat) > 0 = is-¢fN A N = is-gfN (A"n) N
by (induct n, auto, case-tac n=0, auto simp add: is-qfN-mult)

lemma ¢fN-div-prime:

fixes p :: int

assumes ass: prime (p 2+Nxq 2) A (p 2+Nxq 2) dvd (a"2+N*b"2)

shows 3 w v. a 24+ N*xb"2 = (u" 2+ N*xv"2)x(p 2+ Nxq"2)

A (3 e a = prutexNxgxv A b = pxv — exgru A |e|=1)

proof —

let 2P = p"2+Nxq 2

let A = a 24+ Nxb"2

from ass obtain U where U: ?4 = ?P+xU by (auto simp only: dvd-def)
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have 3 e. 2P dvd bxp + exaxq A |e| = 1
proof —
have 7P dvd (bxp + axq)*(bxp — axq)
proof —
have (bxp + axq)*(bxp — axq)= b 2%x?P — q 2x%A
by (simp add: eval-nat-numeral field-simps)

also from U have ... = (b72 — ¢ 2xU)«?P by (simp add: field-simps)
finally show ?thesis by simp
qed

with ass have 2P dvd (bxp + axq) V 2P dvd (bxp — axq)
by (simp add: nat-abs-mult-distrib prime-int-iff prime-dvd-mult-iff)
moreover
{ assume ?P duvd bxp + axq
hence 7P dvd bxp + 1xaxq A |1| = (1::int) by simp }
moreover
{ assume ?P dvd bxp — axq
hence ?P dvd bxp + (—1)*xaxq A |—1| = (1::int) by simp }
ultimately show ¢thesis by blast
qed
then obtain v e where v: bxp + exaxq = ?Pxv and e: |e| = 1
by (auto simp only: dvd-def)
have ?P dvd axp — exNxbxq
proof (cases)
assume el: e = 1
from U have U x ?P72 = ?A x ?P by (simp add: power2-eg-square)

also with e/ have ... = (axp—exNxbkxq) "2 + Nx(bxp+exaxq) 2
by (simp only: ¢fN-mult2 add.commute mult-1-left)
also with v have ... = (axp—exNxbxq) 2 + Nxv 2% 2P "2

by (simp only: power-mult-distrib ac-simps)
finally have (axp—exNxbxq) 2 = 2P 2x(U—Nx*xv"2)
by (simp add: ac-simps left-diff-distrib)
hence ?P72 dvd (a*xp — exNxbxq) "2 by (rule dvdl)
thus ?thesis by simp
next
assume — e=] with e have el: e=—1 by auto
from U have U x ?P72 = ?A x ?P by (simp add: power2-eg-square)
also with el have ... = (axp—exNxbxq) "2 + Nx( —(bxp+exaxq)) 2
by (simp add: ¢fN-mult1)
also have ... = (axp—exNxbxq) 2 + Nx(bxpt+exaxq) 2
by (simp only: power2-minus)
also with v have ... = (axp—exNxbxq) "2 + Nxv 2x?P"2
by (simp only: power-mult-distrib ac-simps)
finally have (axp—exNxbkq) 2 = ?P " 2x(U—Nx*v"2)
by (simp add: ac-simps left-diff-distrib)
hence ?P72 dvd (axp—exNxbxq) "2 by (rule dvdI)
thus ?thesis by simp
qed
then obtain u where u: axp — exNxbxq = ?Pxu by (auto simp only: dvd-def)
from e have e2-1: e x e = |
using abs-mult-self-eq [of €] by simp
have a: a = pxu + exNxgxv
proof —

2 The quadratic form z? + Ny?



2.3 Multiplication and division 19

have (p+xu + exNxqxv)x?P = px(?Pxu) + (exNxq)*(2Pxv)
by (simp only: distrib-right ac-simps)
also with v u have ... = px(axp — exNxbxq) + (exNxq)x(bxp + exaxq)
by simp
also have ... = ax(p™2 + exexNxq 2)
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
also with e2-1 have ... = ax?P by simp
finally have (a—(pxu+exNxgxv))*?P = 0 by auto
moreover from ass have ?P # 0 by auto
ultimately show ¢thesis by simp
qed
moreover have b: b = pxv—exqxu
proof —
have (pxv—exqxu)* 2P = px(?Pxv) — (exq)*(?Pxu)
by (simp only: left-diff-distrib ac-simps)

also with v u have ... = px(bxptexaxq) — exqx(axp—exNxbxq) by simp
also have ... = bx(p™"2 + exexNxq 2)

by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
also with e2-1 have ... = b x 7P by simp

finally have (b—(pxv—exq+u))x?P = 0 by auto
moreover from ass have ?P # 0 by auto
ultimately show ¢thesis by simp
qed
moreover have YA = (u"2 + Nxv 2)*?P
proof (cases)
assume e=1
with a and b show ?thesis by (simp add: gfN-multl ac-simps)
next
assume — e=] with e have e=—1 by simp
with o and b show ?thesis by (simp add: gfN-mult2 ac-simps)
qged
moreover from e have |e| = 1 .
ultimately show ?thesis by blast
qed

corollary ¢fN-div-prime-weak:
[ prime (p"2+4Nxq 2:int); (p 2+ Nxq 2) dvd (a"2+Nxb"2) ]
= J uv. a 24Nxb"2 = (u 2+ N*xv"2)x(p 2+ Nxq 2)
apply (subgoal-tac 3 u v. a 24+ Nxb"2 = (u 24+ Nx*xv 2)*(p 2+ Nxq 2)
A (3 e a = prutexNxgxv A b = pxv — exqxu A |e|=1), blast)
apply (rule ¢fN-div-prime, auto)
done

corollary ¢fN-div-prime-general: | prime P; P dvd A; is-gfN A N; is-gfN P N |
= 3 Q. A= Q«xP Nis-gfN QN
apply (subgoal-tac 3 uv. A = (u"2+Nxv"2)*P)
apply (unfold is-qfN-def, auto)
apply (simp only: ¢fN-div-prime-weak)
done

lemma ¢fN-power-div-prime:
fixes P :: int



20 2 The quadratic form z? + Ny?

assumes ass: prime P A odd P N P dvd AN Pn=p 2+Nxq 2
ANA"n=a"24+Nxb"2 A coprime a b A coprime p (Nxq) A n>0
shows 3 wv. a2+ N*xb"2 = (u2 + Nxv " 2)x(p 24+ Nxq 2) A coprime u v
A (3 e a = prutexNxgxv A b = pxv—exqxu A |e|] = 1)
proof —
from ass have P dvd A A n>0 by simp
hence P™n dvd A™n by simp
then obtain U where U: A™n = UxP ™n by (auto simp only: dvd-def ac-simps)
from ass have coprime a b

by blast

have 3 e. Pn dvd bxp + exaxq A |e| = 1

proof —
have Pn-dvd-prod: P™n dvd (bxp + axq)x(bxp — axq)
proof —

have (bxp + axq)x(bxp — axq) = (bxp) 2 — (axq) 2
by (simp add: power2-eq-square algebra-simps)

alsohave ... = 072 * p72 + b 2xNxq 2 — b 2xNxq 2 — a 2xq 2
by (simp add: power-mult-distrib)
also with ass have ... = b7 2xP™n — ¢ 2xA™n
by (simp only: ac-simps distrib-right distrib-left)
also with U have ... = (b72—¢ 2xU)xP n by (simp only: left-diff-distrib)
finally show ?thesis by (simp add: ac-simps)
qed
have P™n dvd (bxp + axq) V P™n dvd (bxp — axq)
proof —
have PdvdPn: P dvd P™n
proof —

from ass have 3 m. n = Suc m by (simp add: not0-implies-Suc)
then obtain m where n = Suc m by auto
hence P™n = Px(P"m) by auto
thus “thesis by auto
qed
have — P dvd bxp+axq V — P dvd bxp—axq
proof (rule ccontr, simp)
assume P dvd bkp+axq A P dvd bxp—axq
hence P dvd (bxp+axq)+(bxp—axq) A P dvd (bxp+a*xq)—(bxp—axq)
by (simp only: dvd-add, simp only: dvd-diff)
hence P dvd 2+(bxp) A P dvd 2x(axq) by (simp only: mult-2, auto)
with ass have (P dvd 2 V P dvd bxp) A (P dvd 2 V P dvd axq)
using prime-dvd-multD by blast
hence P dvd 2 V (P dvd bxp A P dvd axq) by auto
moreover have - P dvd 2
proof (rule ccontr, simp)
assume pdvd2: P dvd 2
have P < 2
proof (rule ccontr)
assume - P < 2 hence PI2: P > 2 by simp
with pdvd2 show False by (simp add: zdvd-not-zless)
qed
moreover from ass have P > 1 by (simp add: prime-int-iff)
ultimately have P=2 by auto
with ass have odd 2 by simp
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thus False by simp

qed

ultimately have P dvd bxp A P dvd axq by auto

with ass have (P dvd b vV P dvd p) A (P dvd a V P dvd q)
using prime-dvd-multD by blast

moreover have = P dvd p A = P dvd q

proof (auto dest: ccontr)
assume Pdvdp: P dvd p
hence P dvd p~2 by (simp only: dvd-mult power2-eq-square)
with PdvdPn have P dvd P n—p 2 by (simp only: dvd-diff)
with ass have P dvd Nx(qxq) by (simp add: power2-eq-square)
with ass have hi: P dvd N V P dvd (gxq) using prime-dvd-multD by blast
moreover

assume P dvd (gxq)
hence P dvd q using prime-dvd-multD ass by blast
}
ultimately have P dvd Nxq by fastforce
with Pduvdp have P dvd ged p (N*q) by simp
with ass show False by (simp add: prime-int-iff)
next
assume P dvd q
hence PdvdNg: P dvd Nxq by simp
hence P dvd Nxqxq by simp
hence P dvd Nxq~2 by (simp add: power2-eq-square ac-simps)
with PdvdPn have P dvd P n—Nxq 2 by (simp only: dvd-diff)
with ass have P dvd pxp by (simp add: power2-eq-square)
with ass have P dvd p by (auto dest: prime-dvd-multD)
with PdvdNq have P dvd gcd p (Nxq) by auto
with ass show False by (auto simp add: prime-int-iff)
qed
ultimately have P dvd a A P dvd b by auto
hence P dvd gcd a b by simp
with ass show False by (auto simp add: prime-int-iff)
qed
moreover
{ assume — P dvd bxp+axq
with Pn-dvd-prod and ass have P™n dvd bxp—axq
by (rule-tac b=bxp+axq in prime-power-dvd-cancel-right, auto simp add:
mult.commute) }
moreover
{ assume — P dvd bxp—axq
with Pn-dvd-prod and ass have P™n dvd bxp+axq
by (rule-tac a=bxp+axq in prime-power-dvd-cancel-right, simp) }
ultimately show ?thesis by auto
qed
moreover
{ assume P™n dvd bxp + axq
hence P™n dvd bxp + 1xaxq A |1| = (1::int) by simp }
moreover
{ assume P™n dud bxp — axq
hence P™n dvd bxp + (—1)*axq A |—1| = (1::int) by simp }
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ultimately show ¢thesis by blast
qed
then obtain v e where v: bxp + exaxq = P nxv and e: |e| = 1
by (auto simp only: dvd-def)
have P™n dvd axp — exNx*bxq
proof (cases)
assume el: e = 1
from U have (P™n) 2xU = A nxP™n by (simp add: power2-eq-square ac-simps)

also with el ass have ... = (axp—exNxbxq) "2 + Nx(bxp+exaxq) 2
by (simp only: ¢fN-mult2 add.commute mult-1-left)
also with v have ... = (axp—exNxbxq) "2 + (P™n) 2x(N*v"2)

by (simp only: power-mult-distrib ac-simps)
finally have (axp—exNxbxq) 2 = (P™n) 2xU — (P™n) 2«Nxv"2 by simp
also have ... = (P™n)"2 % (U — Nxv"2) by (simp only: right-diff-distrib)
finally have (P™n) "2 dvd (axp — exNxbxq) 2 by (rule dvdI)
thus ?thesis by simp
next
assume — e=1 with e have el: e=—1 by auto
from U have (P™n)"2 « U = A™n x P n by (simp add: power2-eq-square)
also with el ass have ... = (axp—exNxbxq) "2 + Nx( —(bxp+exaxq)) 2
by (simp add: gfN-mult1)
also have ... = (axp—exNxbxq) 2 + Nx(bxpt+exaxq) 2
by (simp only: power2-minus)
also with v and ass have ... = (axp—exNxbxq) "2 + Nxv 2x(P™n) 2
by (simp only: power-mult-distrib ac-simps)
finally have (axp—exNxbxq) 2 = (P™n) 2xU—(P™n) 2«Nxv 2 by simp
also have ... = (P™n) 2 % (U — Nxv"2) by (simp only: right-diff-distrib)
finally have (P™n) "2 dvd (axp—exNxbxq) 2 by (rule dvdI)
thus ?thesis by simp
qed
then obtain u where u: axp — exNxbxq = P nxu by (auto simp only: dvd-def)
from e have e2-1: e x e = 1
using abs-mult-self-eq [of €] by simp
have a: a = pxu + exNxgxv
proof —
from ass have (pxu + exNxqxv)*P " n = px(P nxu) + (exNxq)x(P nxv)
by (simp only: distrib-right ac-simps)
also with v and u have ... = px(axp — exNxbxq) + (exNxq)*(bxp + exaxq)
by simp
also have ... = ax(p 2 + exexNxq 2)
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
also with e2-1 and ass have ... = axP™n by simp
finally have (a—(pxu+texNxgxv))xP n = 0 by auto
moreover from ass have P™n # 0
by (unfold prime-int-iff, auto)
ultimately show ?thesis by auto
qed
moreover have b: b = pxv—ekxgxu
proof —
from ass have (prv—exg+xu)x P n = px(P n*xv) — (exq)*(P nxu)
by (simp only: left-diff-distrib ac-simps)
also with v u have ... = px(bxptexaxq) — exgx(axp—exNxbxq) by simp
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also have ... = bx(p"2 + exexNxq 2)
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
also with e2-1 and ass have ... = b x P™n by simp
finally have (b—(pxv—exgxu))*P n = 0 by auto
moreover from ass have P™n # 0
by (unfold prime-int-iff, auto)
ultimately show ?thesis by auto
qed
moreover have A™n = (u™2 + Nxv 2)xP™n
proof (cases)
assume e=1
with ¢ and b and ass show ?thesis by (simp add: qfN-multl ac-simps)
next
assume — e=] with e have e=—1 by simp
with o and b and ass show ?thesis by (simp add: gfN-mult2 ac-simps)
qed
moreover have coprime u v
using <coprime a b
proof (rule coprime-imp-coprime)
fix w
assume w dvd v w dvd v
then have w dvd uxp + vk(exNxq) A w dvd vkp — ux(exq)
by simp
with a b show w dvd a w dvd b
by (auto simp only: ac-simps)
qed
moreover from e and ass have
lel =1 ANA"n=a24+Nxb"2 AN P"n=p 24+Nxq 2 by simp
ultimately show ¢thesis by auto
qed

lemma ¢fN-primedivisor-not:
assumes ass: prime P A Q > 0 A is-gfN (PxQ) N A = is-gfN P N
shows 3 R. (prime R A R dvd Q N — is-¢fN R N)
proof (rule ccontr, auto)
assume ass2:V R. R dvd Q — prime R — is-¢fN R N
define ps where ps = prime-factorization (nat Q)
from ass have ps: (V peset-mset ps. prime p) A Q = int ([[ i€#ps. 1)
by (auto simp: ps-def prod-mset-prime-factorization-int)
have ps-lemma: ((V pEset-mset ps. prime p) A is-gfN (Pxint([] i€#ps. ©)) N
A (VR. (prime R A R dvd int(]] i€#ps. i)) — is-gfN R N)) = Fulse
(is B ps = Fulse)
proof (induct ps)
case empty hence is-¢fN P N by simp
with ass show Fulse by simp
next
case (add p ps)
hence ass3: ?B ps = Fulse
and IH: ?B (ps + {#p#}) by simp-all
hence p: prime (int p) and int p dvd int(]] i€#ps + {#p#}. i) by auto
moreover with IH have pgfN: is-gfN (int p) N
and int p dvd Pxint(]] i€#ps + {#p#}. i) and is-¢fN (Pxint(][ i€#ps + {#p#}.
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i) N
by auto
ultimately obtain S where S: Pxint([[ i€#ps + {#p#}. i) = Sx(int p) A is-¢fN
SN
using ¢fN-div-prime-general by blast
hence (int p)x(Px int([[i€#ps. i) — S) = 0 by auto
with p S have is-gfN (Pxint(]] i€#ps. ©)) N by (auto simp add: prime-int-iff)
moreover from IH have (V p€set-mset ps. prime p) by simp
moreover from [H have V R. prime R A R dvd int([] i€#ps. i) — is-¢fN R N
by auto
ultimately have ?B ps by simp
with ass3 show Fualse by simp
qed
with ps ass2 ass show Fualse by auto
qged

lemma prime-factor-int:
fixes k :: int
assumes |k| # 1
obtains p where prime p p dvd k
proof (cases k = 0)
case True
then have prime (2::int) and 2 dvd k
by simp-all
with that show thesis
by blast
next
case Fulse
with assms prime-divisor-ezxists [of k] obtain p where prime p p dvd k
by auto
with that show thesis
by blast
qed

lemma ¢fN-oddprime-cube:
[ prime (p"2+4Nxq 2::int); odd (p 24+ Nxq 2); p#£ 0; N > 1]
= 3 ab (p72+Nxq2)"8 =a 2 + Nxb"2 A coprime a (Nxb)
proof —
let 2P = p"2+Nxq 2
assume P: prime ?P and Podd: odd ?P and p0: p # 0 and Ni1: N > 1
have suc23: 3 = Suc 2 by simp
let %a = px(p™2 — 8xNxq 2)
let b = gx(3%p~2 — Nx*q 2)
have abP: ?P73 = 202 + Nx2b"2 by (simp add: eval-nat-numeral field-simps)
have ?P dvd p if h1: ged ?b %a # 1
proof —
let ?h = ged 7b %a
have h2: ?h > 0 by simp
hence ?h =0V ?h =1V ?h > 1 by arith
with h1 have ?h =0 V ?h >1 by auto
moreover
{ assume ?h = 0
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hence 2a =0 N b =0
by auto
with abP have ?P73 = 0
by auto
with P have Fulse
by (unfold prime-int-iff, auto)
hence ?thesis by simp }
moreover
{ assume ?h > 1
then have 3g. prime g A g dvd ?h
using prime-factor-int [of ?h] by auto
then obtain ¢ where g: prime g g dvd ?h
by blast
then have g dvd ?b A\ g dvd ?a by simp
with ¢ have g1: g dvd q V g dvd 8xp~2—Nxq 2
and g2: gdvd p V g dvd p~2 — 3xNxq 2
by (auto dest: prime-dvd-multD)
from g have gpos: ¢ > 0 by (auto simp only: prime-int-iff)
have g dvd ?P
proof (cases)
assume g dvd q
hence gNg: g dvd Nxq~2 by (auto simp add: dvd-def power2-eq-square)
show ?thesis
proof (cases)
assume gp: g dvd p
hence g dvd p™2 by (auto simp add: dvd-def power2-eq-square)
with gNg show ?thesis by auto
next
assume — g dvd p with g2 have g dvd p™2 — 8xNxq 2 by auto
moreover from gNg have g dvd /x(Nxq~2) by (rule dvd-mult)
ultimately have g dvd p™2 — 3%x(Nxq 2) + 4%(Nxq 2)
by (simp only: ac-simps dvd-add)
moreover have p™2 — x(Nxq 2)+4*(Nxq~2) = p~2 + Nxq 2 by arith
ultimately show ?thesis by simp
qed
next
assume — ¢ dvd q with g1 have gpq: g dvd 3xp~2—Nxq 2 by simp
show ?thesis
proof (cases)
assume g dvd p
hence g dvd 4xp~2 by (auto simp add: dvd-def power2-eq-square)
with gpq have g dvd Jxp™2 — (3xp~2 — Nxq 2) by (simp only: dvd-diff)
moreover have 4xp 2 — (8xp 2 — Nxq 2) = p 2 + Nxq 2 by arith
ultimately show ?thesis by simp
next
assume — g dvd p with g2 have g dvd p~2 — 3xNxq 2 by auto
with gpq have g dvd 3xp 2—Nxq™2 — (p72 — 3%Nxq 2)
by (simp only: dvd-diff)
moreover have 3xp 2—Nxq 2 — (p72 — 3xNxq 2) = 2x?P by auto
ultimately have g dvd 2x?P by simp
with g have g dvd 2 V g dvd ?P by (simp only: prime-dvd-multD)
moreover have — g dvd 2
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proof (rule ccontr, simp)
assume gdvd2: g dvd 2
have ¢ < 2
proof (rule ccontr)
assume - g < 2 hence g > 2 by simp
moreover have (0::int) < 2 by auto
ultimately have — g dvd 2 by (auto simp only: zdvd-not-zless)
with gdvd2 show Fualse by simp
qed
moreover from g have g > 2 by (simp add: prime-int-iff)
ultimately have g = 2 by auto
with ¢ have 2 dvd %a A 2 dvd ?b by auto
hence 2 dvd ?a”2 A 2 dvd N+2b"2
by (simp add: power2-eg-square)
with abP have 2 dvd ?P"3 by (simp only: dvd-add)
hence even (?P73) by auto
moreover have odd (?P"3) using Podd by simp
ultimately show Fulse by auto
qed
ultimately show ?thesis by simp

qged
qed
with P gpos have g =1V g = 9P

by (simp add: prime-int-iff)
with ¢ have g = 7P by (simp add: prime-int-iff)
with ¢ have Pab: 7P dvd ?a A ?P dvd ?b by auto
have ?thesis

proof —
from Pab P have ?P dvd p V ?P dvd p"2— 3xNxq 2

by (auto dest: prime-dvd-multD)
moreover
{ assume ?P dvd p”2 — 3xNxq 2
moreover have ?P dvd 3%(p”2 + Nxq 2)
by (auto simp only: dvd-refl dvd-mult)
ultimately have ¢P dvd p™2— 3xNxq 2 + 3*(p 2+ Nxq 2)
by (simp only: dvd-add)
hence ?P dvd /*p~2 by auto
with P have ?P dvd / vV ?P dvd p™2
by (simp only: prime-dvd-multD)
moreover have — ?P dvd 4
proof (rule ccontr, simp)
assume Pdvd/: ?P dvd 4
have 7P < 4
proof (rule ccontr)
assume — ?P < J hence ?P > J by simp
moreover have (0::int) < 4 by auto
ultimately have - ?P dvd 4 by (auto simp only: zdvd-not-zless)
with Pdvd/ show Fulse by simp
qed
moreover from P have ¢P > 2 by (auto simp add: prime-int-iff)
moreover have ?P # 2 N\ 9P # 4
proof (rule ccontr, simp)
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assume ?P = 2 V ?P = J hence even ?P by fastforce
with Podd show Fualse by blast
qed
ultimately have ?P = 3 by auto
with Pdvdj have (3::int) dvd 4 by simp
thus False by arith
qed
ultimately have ?P dvd pxp by (simp add: power2-eg-square)
with P have ?thesis by (auto dest: prime-dvd-multD) }
ultimately show ?thesis by auto

qed }
ultimately show ¢thesis by blast
qed
moreover have ?P dvd p if h1: ged N %a # 1
proof —

let ?h = ged N %a
have h2: ?h > 0 by simp
hence ?h =0V ?h =1V ?h > 1 by arith
with hi have ?h =0 V ?h >1 by auto
moreover
{ assume ?h = 0 hence N = 0 A %a = 0
by auto
hence N = 0 by arith
with N1 have Fulse by auto
hence ?thesis by simp }
moreover
{ assume ?h > 1
then have 3g. prime g A g dvd ?h
using prime-factor-int [of ?h] by auto
then obtain g where g: prime g g dvd ?h
by blast
hence gN: g dvd N and g dvd ?a by auto
hence g dvd pxp~2 — Nx(3*pxq 2)
by (auto simp only: right-diff-distrib ac-simps)
with gN have g dvd pxp ™2 — Nx(3xpxq 2) + Nx(3*pxq 2)
by (simp only: dvd-add dvd-mult2)
hence ¢ dvd pxp~2 by simp
with ¢ have ¢ dvd p V g dvd pxp
by (simp add: prime-dvd-multD power2-eq-square)
with g have gp: g dvd p by (auto dest: prime-dvd-multD)
hence g dvd p™2 by (simp add: power2-eq-square)
with gN have gP: g dvd ?P by auto
from g have g > 0 by (simp add: prime-int-iff)
with ¢P P g have g =1 V g = ?P
by (auto dest: primes-dvd-imp-eq)
with g have g = ?P by (auto simp only: prime-int-iff)
with gp have ?thesis by simp }
ultimately show #thesis by auto
qed
moreover have = 2P dvd p
proof (rule ccontr, clarsimp)
assume Pdvdp: ?P dvd p
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have p™2 > P72
proof (rule ccontr)
assume - p 2 > ?P72 hence pP: p 2 < ?P"2 by simp
moreover with p0 have p~2 > 0 by simp
ultimately have - ?P72 dvd p~2 by (simp add: zdvd-not-zless)
with Pdvdp show Fulse by simp
qed
moreover with P have ?Px1 < ?Px?P
unfolding prime-int-iff by (auto simp only: zmult-zless-mono2)
ultimately have p~2 > ?P by (auto simp add: power2-eq-square)
hence neg: Nxq 2 < 0 by auto
show Fulse
proof —
have is-gfN (072 + Nxq~2) N by (auto simp only: is-qfN-def)
with N1 have 072 +Nxq 2 > 0 by (rule ¢fN-pos)
with neg show Fulse by simp
qed
qed
ultimately have gcd ?a ?b = 1 ged ?a N = 1
by (auto simp add: ac-simps)
then have coprime ?a ?b coprime ?a N
by (auto simp only: gcd-eq-1-imp-coprime)
then have coprime %a (N x ?b)
by simp
with abP show ?thesis
by blast
qged

2.4 Uniqueness (N > 1)

lemma ¢fN-prime-unique:
[ prime (a”24Nxb"2:int); N > 1; a 24 Nxb"2 = ¢ 24 Nxd 2 |
— (ol = lel A [b] = |d])
proof —
let 2P = a 2+ Nxb "2
assume P: prime 7P and N: N > 1 and abedN: 7P = ¢ 2 + Nxd 2
have mult: (axd+bxc)x(axd—bxc) = ZPx(d"2—0"2)
proof —
have (axd+bxc)*(axd—bxc) = (a2 + Nxb"2)xd"2 — b 2x(c™2 + Nxd 2)
by (simp add: eval-nat-numeral field-simps)
with abedN show ?thesis by (simp add: field-simps)
qed
have ?P dvd axd+bxc vV ?P dvd axd—bxc
proof —
from mult have ?P dvd (axd+bxc)x(axd—bxc) by simp
with P show %thesis by (auto dest: prime-dvd-multD)
qed
moreover
{ assume ?P dvd axd+bxc
then obtain ) where Q: axd+bxc = ?PxQ by (auto simp add: dvd-def)
from abcdN have ?P72 = (a™2 + Nxb"2) * (¢"2 + Nxd"2)
by (simp add: power2-eq-square)
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also have ... = (axc—Nxbxd) 2 + Nx(axd+bxc) "2 by (rule ¢fN-mult2)
also with @Q have ... = (axc—Nxbxd) "2 + NxQ 2x?P"2
by (simp add: ac-simps power-mult-distrib)
also have ... > NxQ 2x?P 2 by simp
finally have pos: ?P72 > ?P72x(Q 2xN) by (simp add: ac-simps)
have b2 = d"2
proof (rule ccontr)
assume b 2 # d"2
with P mult Q have Q # 0 by (unfold prime-int-iff, auto)
hence Q72 > 0 by simp
moreover with N have Q7 2xN > Q2«1 by (simp only: zmult-zless-mono2)
ultimately have Q" 2«xN > 1 by arith
moreover with P have P72 > 0 by (simp add: prime-int-iff)
ultimately have ?P72x1 < ?P 2x(Q 2«N) by (simp only: zmult-zless-mono2)
with pos show Fualse by simp
qed }
moreover
{ assume ?P dvd axd—bxc
then obtain @) where Q: axd—bxc = ?PxQ by (auto simp add: dvd-def)
from abcdN have ?P72 = (a2 + Nxb72) % (¢ 2 + Nxd"2)
by (simp add: power2-eq-square)
also have ... = (axc+Nxbxd) 2 + Nx(axd—bxc) 2 by (rule ¢fN-mult1)
also with @Q have ... = (axc+Nxbxd) "2 + NxQ 2x?P"2
by (simp add: ac-simps power-mult-distrib)
also have ... > NxQ 2x?P"2 by simp
finally have pos: P72 > ?P72x(Q"2xN) by (simp add: ac-simps)
have b2 = d"2
proof (rule ccontr)
assume b 2 # d2
with P mult Q have Q # 0 by (unfold prime-int-iff, auto)
hence Q72 > 0 by simp
moreover with N have Q7 2xN > Q 2«1 by (simp only: zmult-zless-mono2)
ultimately have Q" 2«xN > 1 by arith
moreover with P have P72 > 0 by (simp add: prime-int-iff)
ultimately have 7P 2«1 < P72 % (Q 2xN) by (simp only: zmult-zless-mono2)
with pos show Fualse by simp
qed }
ultimately have bd: b™2 = d™2 by blast
moreover with abcdN have a™2 = ¢"2 by auto
ultimately show ?thesis by (auto simp only: power2-eq-iff)
qed

lemma ¢fN-square-prime:
assumes ass:
prime (p 24+ Nxq 2::int) A N>1 N (p"24Nxq 2)"2 = r 24+ Nxs"2 A coprime r s
shows |r| = [p72—Nxq 2| A |s| = |2xpxq]
proof —
let P = p™2 + Nxq 2
let A = r"2 + Nxs 2
from ass have P1: ?P > 1 by (simp add: prime-int-iff)
from ass have APP: ?A = ?P+?P by (simp only: power2-eq-square)
with ass have prime ?P A ?P dvd ?A by (simp add: dvdl)
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then obtain u v e where uve:
7A = (U 24+ Nxv"2)x?P A r = prutexNxgxv A s = pxv — exqxu N |e|=1
by (frule-tac p=p in gfN-div-prime, auto)
with APP P1 ass have prime (v 24+Nxv"2) A N>1 AN u"2 + Nxv 2 = 2P
by auto
hence |u| = [p| A |v] = |q| by (auto dest: ¢fN-prime-unique)
then obtain f g where f: u = fxp A |f| = 1 and ¢: v = gxq A |g| = 1
by (blast dest: abs-eg-impl-unitfactor)
with wve have r = fxpxp + (exg)xNxgxq N s = gxpxq — (exf)xpxq by simp
hence rs: 7 = fxp72 + (exg)*Nxq 2 A s = (g — exf)*p*q
by (auto simp only: power2-eq-square left-diff-distrib)
moreover have s # 0
proof (rule ccontr, simp)
assume s0: s=0
hence ged r s = |r| by simp
with ass have |r| = 1 by simp
hence "2 = 1 by (auto simp add: power2-eq-1-iff)
with s0 have ?A = 1 by simp
moreover have P72 > |
proof —
from P17 have 1 < 2P A (0::int) < 1 A (0::nat) < 2 by auto
hence P72 > 172 by (simp only: power-strict-mono)
thus ?thesis by auto
qed
moreover from ass have ?A = ¢P~2 by simp
ultimately show Fulse by auto
qed
ultimately have g # exf by auto
moreover from f g uve have |g| = |exf| unfolding abs-mult by presburger
ultimately have gef: ¢ = —(exf) by arith
from uve have e ¥ — (e x f) = — f
using abs-mult-self-eq [of €] by simp
hence r = fx(p™2 — Nxq 2) A s = (—exf)*2+pxq using rs gef unfolding right-diff-distrib
by auto
hence |r| = |f| * |[p72—Nx*q 2|
A [s| = [elx|f|x[2xpxq]
by (auto simp add: abs-mult)
with wve f g show ?Zthesis by (auto simp only: mult-1-left)
qged

lemma ¢fN-cube-prime:
assumes ass: prime (p~2 + Nxq 2:int) A N > 1
A(p72 4+ Nxqg 2)"3 =a"2 4+ Nxb"2 A coprime a b
shows |a| = [p78— 3xNxpxq 2| A |b] = |3%p 2xq—Nxq 3|
proof —
let P = p~2 + Nxq 2
let A =a"2 + Nxb™2
from ass have coprime a b by blast
from ass have P1: ?P > 1 by (simp add: prime-int-iff)
with ass have APP: ?A = ?Px?P 2 by (simp add: power2-eq-square power3-eq-cube)
with ass have prime ?P N ?P dvd ?A by (simp add: dvdl)
then obtain u v e where uve:
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A = (U 24+Nxv"2)x?P A a = pxutexNxgxv A b = prv—exgxu A |e|=1
by (frule-tac p=p in qfN-div-prime, auto)
have coprime u v
proof (rule coprimel)
fix ¢
assume c dvd u ¢ dvd v
with wve have ¢ dvd a ¢ dvd b
by simp-all
with <coprime a b> show is-unit c
by (rule coprime-common-divisor)
qed
with P! uve APP ass have prime P AN N > 1 AN P72 = u 24+ Nx*v"2
A coprime u v by (auto simp add: ac-simps)
hence |u| = [p72—Nxq 2| A |v] = |2%p*q| by (rule ¢fN-square-prime)
then obtain f g where f: u = fx(p"2—Nxq™2) A |f| = 1
and g: v = gx(2xpxq) A |g| = 1 by (blast dest: abs-eg-impl-unitfactor)
with wve have a = pxf*(p 2—Nxq 2) + exNxqxgx2xp*q
A b = pxgx2xprq —exqxfx(p 2—Nxq 2) by auto
hence ab: a = fxpxp 2 + —fxNx*xpxq 2 + 2xexgxNxpxq 2
AN b= 2xgxp 2xq — exfxp 2%q + exfxNx*xqxq 2
by (auto simp add: ac-simps right-diff-distrib power2-eg-square)
from f have f2: f2 = 1
using abs-mult-self-eq [of f] by (simp add: power2-eq-square)
from ¢ have g2: ¢°> = 1
using abs-mult-self-eq [of g] by (simp add: power2-eq-square)
have e # fxg
proof (rule ccontr, simp)
assume efg: e = fxg
with ab g2 have a = fxpxp 2+f+N*pxq 2 by (auto simp add: power2-eq-square)
hence a = (f*p)x?P by (auto simp add: distrib-left ac-simps)
hence Pa: ?P dvd a by auto
have ¢ x f = g using f2 power2-eg-squarelof f] efg by simp
with ab have b = gxp 2xq+gxNxqxq 2 by auto
hence b = (gxq)*?P by (auto simp add: distrib-left ac-simps)
hence ?P dvd b by auto
with Pa have ?P dvd gcd a b by simp
with ass have ?P dvd 1 by auto
with PI1 show False by auto
qed
moreover from f g uve have |e| = |fxg| unfolding abs-mult by auto
ultimately have e = —(fxg) by arith
hence e x g = —f e x f = —g using f2 g2 unfolding power2-eq-square by auto
with ab have a = fxpxp 2 — 3xfxNxpxq 2 A b= F*xgxp 2xq — gxNxqxq 2 by (simp
add: mult.assoc)
hence a = f+(p™3 — S« Nxpxq 2) A b = gx( 8xp 2%xq — Nxq~3 )
by (auto simp only: right-diff-distrib ac-simps power2-eq-square power3-eq-cube)
with f g show Zthesis by (auto simp add: abs-mult)
qged

2.5 The case N =3
lemma gf3-even: even (a 2+3%b"2) = 3 B. a 2+3%b"2 = /«B A is-¢fN B 3
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proof —
let A = a 24+3%xb72
assume even: even ?A
have (odd a N odd b) V (even a A even b)
proof (rule ccontr, auto)
assume even a and odd b
hence even (a”2) A odd (b72)
by (auto simp add: power2-eq-square)
moreover have odd 3 by simp
ultimately have odd A by simp
with even show Fulse by simp
next
assume odd o and even b
hence odd (a™2) A even (b72)
by (auto simp add: power2-eq-square)
moreover hence even (b 2+3) by simp
ultimately have odd (b"2x3+a"2) by simp
hence odd ?A by (simp add: ac-simps)
with even show Fulse by simp
qed
moreover
{ assume even a A even b
then obtain ¢ d where abcd: a = 2%c A b = 2xd using evenE|of a] evenE|of b] by
meson
hence ?A = /x(c¢"2 + 8xd"2) by (simp add: power-mult-distrib)
moreover have is-gfN (¢ 2+3xd"2) 3 by (unfold is-gfN-def, auto)
ultimately have ?thesis by blast }
moreover
{ assume odd a A odd b
then obtain ¢ d where abcd: a = 2xc+1 A b = 2xd+1 using oddE[of a] oddE|of
b] by meson
have odd (¢c—d) V even (¢c—d) by blast
moreover
{ assume cven (c—d)
then obtain e where c—d = 2xe using evenE by blast
with abcd have el: a—b = jx*e by arith
hence €2: a+3+b = 4x(e+b) by auto
have /*?A = (a+38%b) "2 + 3*(a—b) 2
by (simp add: eval-nat-numeral field-simps)
also with el e2 have ... = (4*(e+b)) 2+3%(4xe) 2 by (simp(no-asm-simp))
finally have ?4 = 4x((e+b) "2 + 3xe”2) by (simp add: eval-nat-numeral field-simps)
moreover have is-gfN ((e+b) 2 4+ 3xe”2) 8 by (unfold is-gfN-def, auto)
ultimately have ?thesis by blast }
moreover
{ assume odd (c—d)
then obtain e where c—d = 2xe+1 using oddF by blast
with abed have el: a+b = /x(e+d+1) by auto
hence e¢2: a— 3xb = /x(e+d—b+1) by auto
have /*x?4 = (a— 3xb) "2 + 3x(a+b) "2
by (simp add: eval-nat-numeral field-simps)
also with el e2 have ... = (4*(e+d—b+1)) "2 +3x(4*(e+d+1))72
by (simp (no-asm-simp))
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finally have %4 = /*((e+d—b+1)"2+3x(e+d+1)72)
by (simp add: eval-nat-numeral field-simps)

moreover have is-gfN ((e+d—b+1)72 + 3x(e+d+1)72) 3
by (unfold is-qfN-def, auto)

ultimately have ?thesis by blast }

ultimately have ?thesis by auto }
ultimately show ¢thesis by auto
qed

lemma ¢f3-even-general: | is-gfN A 3; even A ]
= 31 B. A= 4*B A is-¢fN B3
proof —
assume cven A and is-gfN A 3
then obtain a b where A = a2 + 3xb™2
and even (a2 + 3%xb72) by (unfold is-gfN-def, auto)
thus ?thesis by (auto simp add: gf3-even)
qed

lemma ¢f3-oddprimedivisor-not:
assumes ass: prime P A odd P A Q>0 A is-gfN (PxQ) 3 A\ = is-gfN P 8
shows 3 R. prime R A odd R N R dvd @ A — is-¢fN R 3
proof (rule ccontr, simp)
assume ass2: V R. R dvd ) — prime R — even R V is-¢fN R 3
(is ?A Q)
obtain n::nat where n = nat Q by auto
with ass have n: Q = int n by auto
have (n > 0 A is-gfN (Pxint n) 3 A ?A(int n)) = Fulse (is B n = Fulse)
proof (induct n rule: less-induct)
case (less n)
hence /H: !!m. m<n A ?B m = Fulse
and Bn: B n by auto
show Fulse
proof (cases)
assume odd: odd (int n)
from Bn ass have prime P A int n > 0 A is-¢fN (Pxint n) 8 A — is-¢fN P 3
by simp
hence 3 R. prime R N R dvd int n A\ = is-gfN R 8
by (rule gfN-primedivisor-not)
then obtain R where R: prime R A R dvd int n A = is-qgfN R 3 by auto
moreover with odd have odd R
proof —
from R obtain U where int n = R+xU by (auto simp add: dvd-def)
with odd show ?thesis by auto
qed
moreover from Bn have ?4 (int n) by simp
ultimately show Fulse by auto
next
assume even: — odd (int n)
hence even ((int n)*P) by simp
with Bn have even (Pxint n) A is-¢fN (Pxint n) 3 by (simp add: ac-simps)
hence 3 B. Px(int n) = 4*B A is-¢fN B 8 by (simp only: qf3-even-general)
then obtain B where B: Px(int n) = 4+xB A is-¢fN B 3 by auto
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hence 272 dvd (int n)xP by (simp add: ac-simps)
moreover have = 2 dvd P
proof (rule ccontr, simp)
assume 2 dvd P
with ass have odd P N even P by simp
thus Fualse by simp
qed
moreover have prime (2::int) by simp
ultimately have 272 dvd int n
by (rule-tac p=2 in prime-power-dvd-cancel-right)
then obtain im::int where int n = /xim by (auto simp add: dvd-def)
moreover obtain m::nat where m = nat im by auto
ultimately have m: n = /*m by arith
with B have is-gfN (Pxint m) 8 by auto
moreover from m Bn have m > 0 by auto
moreover from m Bn have ?A (int m) by auto
ultimately have Bm: ?B m by simp
from Bn m have m < n by arith
with [H Bm show Fulse by auto
qed
qed
with ass ass2 n show Fulse by auto
qed

lemma ¢f3-oddprimedivisor:
[ prime (P::int); odd P; coprime a b; P dvd (a"2+3xb72) ]
— is-gfN P 3
proof (induct P arbitrary:a b rule:infinite-descentO-measure[where V=AP. nat|P|))
case (0 z)
moreover hence z = 0 by arith
ultimately show ?case by (simp add: prime-int-iff)
next
case (smaller )
then obtain a b where abz: prime z A odd © A coprime a b
Az dvd (a"2483%b72) A = is-gfN x 3 by auto
then obtain M where M: o 2+3xb"2 = xxM by (auto simp add: dvd-def)
let A =a"2 + 3xb72
from abz have z0: x > 0 by (simp add: prime-int-iff)
then obtain m where 2x|a—mxz|<z by (auto dest: best-division-abs)
with abz have 2x|a—mx*z|<z using odd-two-times-div-two-succlof x] by presburger
then obtain ¢ where cm: ¢ = a—mxz A 2x%|c| < z by auto
from z0 obtain n where 2x|b—nxz|<z by (auto dest: best-division-abs)
with abz have 2x|b—nx*z|<z using odd-two-times-div-two-succ[of z] by presburger
then obtain d where dn: d = b—nxz A 2x|d| < z by auto
let ?2C = ¢ 24+3%d™2
have C3: is-gfN ?C 3 by (unfold is-qfN-def, auto)
have C0: ?2C > 0
proof —
have hlp: (3::int) > 1 by simp
have ?C > 0 by simp
hence ?C = 0 v ?C' > 0 by arith
moreover
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{ assume ?C = 0

with hip have ¢c=0 A d=0 by (rule gfN-zero)

with c¢m dn have a = mxz A b = nxx by simp

hence z dvd a A = dvd b by simp

hence z dvd gcd a b by simp

with abz have Fualse by (auto simp add: prime-int-iff) }
ultimately show ¢thesis by blast

qed

have z dvd ?C

proof
have ?C = |c¢| 72 4 3x|d| "2 by (simp only: power2-abs)
also with ¢m dn have ... = (a—mx*z) "2 + 3x(b—nxz) 2 by simp
also have ... =

a2 — 2xax(mxx) + (mxz) "2 + 3x(b72 — 2xbx(nxz) + (nxzx) 2)
by (simp add: algebra-simps power2-eq-square)
also with abz M have ... =
zxM — zx(2%axm + 3x2xbxn) + 7 2%(m 2 + 3xn”2)
by (simp only: power-mult-distrib distrib-left ac-simps, auto)
finally show 7C = zx(M — (2xaxm + 3%2xbxn) + zx(m 2 + 3xn~2))
by (simp add: power2-eq-square distrib-left right-diff-distrib)
qed
then obtain y where y: ?C = zxy by (auto simp add: dvd-def)
have yz: y <
proof (rule ccontr)
assume — y < z hence zy: z—y < 0 by simp
have hlp: 2x|c| > 0 A 2x|d] > 0 A (3:nat) > 0 by simp
from y have Jxzxy = 272xc 2 + 3%2 2xd”2 by simp
hence 4xzxy = (2x|c|) 72 + 3x(2x|d|) "2
by (auto simp add: power-mult-distrib)
with em dn hip have Jxzxy < 272 + 3%(2x|d|) "2
and (3:int) > 0 A (2%]d|) 72 < 272
using power-strict-mono [of 2x|b| = 2 for b]

by auto
hence zx/xy < 272 4+ 3*z~2 by (auto)
also have ... = ax4xz by (simp add: power2-eq-square)

finally have contr: (z—y)*(4*x) > 0 by (auto simp add: right-diff-distrib)
show Fulse
proof (cases)
assume z—y = 0 with contr show False by auto
next
assume — z—y =0 with zy have z—y < 0 by simp
moreover from z0 have /xz > 0 by simp
ultimately have /xzx(z—y) < 4*zx0 by (simp only: zmult-zless-mono2)
with contr show Fualse by auto
qed
qed
have y0: y > 0
proof (rule ccontr)
assume — y > ()
hence y < 0 by simp
moreover have y # 0
proof (rule ccontr)



36 2 The quadratic form z? + Ny?

assume — y#0 hence y=0 by simp
with y and C0 show Fulse by auto
qed
ultimately have y < 0 by simp
with z0 have zxy < zx0 by (simp only: zmult-zless-mono?2)
with C0 y show Fualse by simp
qed
let 29 = ged ¢ d
have c# 0V d # 0
proof (rule ccontr)
assume — (¢£0 V d#0) hence ¢c=0 A d=0 by simp
with C0 show Fulse by simp
qed
then obtain e f where ef: ¢ = ?gxe A d = 29 x f N coprime e [
using ged-coprime-ezists|of ¢ d] ged-pos-int[of ¢ d] by (auto simp: mult.commute)
have g2nonzero: 7972 # 0
proof (rule ccontr, simp)
assume c = 0 Ad =0
with C0 show Fulse by simp
qed
let 26 = ¢72 + 3xf2
have E3: is-qfN ?E 3 by (unfold is-qfN-def, auto)
have CgE: ?C = %972 % ?F
proof —
have 2972 x ?E = (%gxe) 2 + 3x(%gxf) "2
by (simp add: distrib-left power-mult-distrib)
with ef show ?thesis by simp
qed
hence %972 dvd ?C by (simp add: dvd-def)
with y have g2dvdzy: 2972 dvd yxz by (simp add: ac-simps)
moreover have coprime z (%972)
proof —
let ?h = gcd %9 x
have ?h dvd ?g and ?g dvd ¢ by blast+
hence ?h dvd c by (rule dvd-trans)
have ?h dvd ?g and ?g dvd d by blast+
hence ?h dvd d by (rule dvd-trans)
have ?h dvd z by simp
hence ?h dvd mxz by (rule dvd-mult)
with <%h dvd ¢» have ?h dvd c+mxz by (rule dvd-add)
with c¢m have ?h dvd a by simp
from «?h dvd x> have ?h dvd nxz by (rule dvd-mult)
with <?h dvd dy have ?h dvd d+n*z by (rule dvd-add)
with dn have ?h dvd b by simp
with <?h dvd o> have ?h dvd ged a b by simp
with abzx have ?h dvd 1 by simp
hence ?h = 1 by simp
hence coprime (?972) z by (auto intro: gcd-eg-1-imp-coprime)
thus %thesis by (simp only: ac-simps)
qed
ultimately have ?¢72 dvd y
by (auto simp add: ac-simps coprime-dvd-mult-right-iff)
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then obtain w where w: y = 9972 * w by (auto simp add: dvd-def)
with CgE y g2nonzero have Fwz: ?FE = z+xw by auto
have w>0
proof (rule ccontr)
assume — w>(0 hence w < 0 by auto
hence w=0 VvV w<0 by auto
moreover
{ assume w=0 with w y0 have Fulse by auto }
moreover
{ assume wneg: w<0
have 9¢72 > 0 by (rule zero-le-power?2)
with g2nonzero have 2972 > 0 by arith
with wneg have 29 2xw < 9972x0 by (simp only: zmult-zless-mono2)
with w y0 have False by auto }
ultimately show Fulse by blast
qed
have w-le-y: w < y
proof (rule ccontr)
assume - w < y
hence wy: w > y by simp
have 9972 =1V %972 > 1
proof —
have %¢72 > 0 by (rule zero-le-power?2)
hence 772 =0 V %972 > 0 by auto
with g2nonzero show ?thesis by arith
qed
moreover
{ assume ?¢"2 =1 with w wy have Fualse by simp }
moreover
{ assume g1: %672 >1
with <w>0> have wx! < wx?9"2 by (auto dest: zmult-zless-mono2)
with w have w < y by (simp add: ac-simps)
with wy have False by auto }
ultimately show Fulse by blast
qed
from Fwz E3 abz «<w>0> have
prime z A odd x N w > 0 A is-gfN (zxw) 3 A = is-gfN z 3 by simp
then obtain z where z: prime z A odd z A z dvd w AN = is-¢fN z 3
by (frule-tac P=xz in ¢f3-oddprimedivisor-not, auto)
from Fwz have w dvd ?E by simp
with z have z dvd ?F by (auto dest: dvd-trans)
with z ef have prime z A odd z N\ coprime e f A z dvd ?E N — is-gfN z 8
by auto
moreover have nat|z| < nat|z|
proof —
have z < w
proof (rule ccontr)
assume - z < w hence w < z by auto
with (w>0» have = z dvd w by (rule zdvd-not-zless)
with z show Fualse by simp
qed
with w-le-y yxr have z < x by simp
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with z have |z| < |z| by (simp add: prime-int-iff)
thus ?thesis by auto
qed
ultimately show ?case by auto
qged

lemma ¢f3-cube-prime-impl-cube-form:
assumes ab-relprime: coprime a b and abP: P73 = a"2 + 3*b"2
and P: prime P A odd P
shows is-cube-form a b
proof —

from abP have ¢fP3: is-gfN (P"3) 8 by (auto simp only: is-qfN-def)
have PvdP3: P dvd P33 by (simp add: eval-nat-numeral)
with abP ab-relprime P have ¢fP: is-¢fN P 8 by (simp add: qf3-oddprimedivisor)
then obtain p ¢ where pg: P = p™2 + 3xq 2 by (auto simp only: is-qfN-def)
with P abP ab-relprime have prime (p™2 + 3xq¢ 2) N (8::int) > 1

A (p7243%xq 2)"3 = a 2+43%b"2 A coprime a b by auto
hence ab: |a] = |p73 — Sx3*xpxq 2| A |b] = |3*xp " 2%xq — 3xq 3|

by (rule gfN-cube-prime)
hence a: a = p73 — 9*xpxq 2 V a = —(p~3) + 9xpxq 2 by arith
from ab have b: b = 3xp 2xq — 3x¢ 3 V b = —(8*xp 2xq) + 3xq 3 by arith
obtain r s where r: r = —p and s: s = —q by simp
show ?thesis
proof (cases)

assume al: a = p 33— 9xpxq 2

show ?thesis

proof (cases)

assume bl: b = 3*p 2xq — 3*q 3
with al show ?thesis by (unfold is-cube-form-def, auto)

next
assume — b = 3xp 2xq — 3xq 3
with b have b = — 3%p 2xq + 3%q¢ 3 by simp

with s have b = 3xp 2xs — 3xs~3 by simp
moreover from al s have a = p~3 — 9*pxs” 2 by simp
ultimately show ?thesis by (unfold is-cube-form-def, auto)
qed
next
assume - a = p 3 — 9xpxq 2
with a have a = —(p~8) + 9*pxq~2 by simp
with r have ar: a = r78 — 9xrxq"2 by simp
show ?thesis
proof (cases)
assume bl: b = 3*p 2xq — 3%q 3
with r have b = 3xr"2xq — 3%q¢ 3 by simp
with ar show ?Zthesis by (unfold is-cube-form-def, auto)

next
assume — b = 3xp 2xq — 3xq 3
with b have b = — 3%p 2xq + 3%q 3 by simp

with r s have b = 3xr 2xs — 3*s 3 by simp

moreover from ar s have a = 13 — 9%rxs” 2 by simp

ultimately show ?thesis by (unfold is-cube-form-def, auto)
qed



2.5 The case N =3 39

qed
qed

lemma cube-form-mult: [ is-cube-form a b; is-cube-form c d; |e| = 1]
= is-cube-form (axc+ex3xbxd) (axd—exbxc)
proof —
assume ab: is-cube-form a b and c-d: is-cube-form ¢ d and e: |e| = 1
from ab obtain p ¢ where pg: a = p™8 — 9xpxq 2 A b = 3xp 2xq — 8¢ 3
by (auto simp only: is-cube-form-def)
from c-d obtain r s where rs: ¢ = 178 — 9xrxs 2 A d = 3xr 2%s — 3x8~3
by (auto simp only: is-cube-form-def)
let 2t = pxr + ex3xqxs
let 2u = pxs — exrxq
have e2: e 2=1

proof —
from e have e=1 V e=—1 by linarith
moreover
{ assume e=1 hence ?thesis by auto }
moreover

{ assume e=—1 hence ?thesis by simp }
ultimately show ?thesis by blast
qed
hence exe™2 = ¢ by simp
hence e3: ex1 = e”3 by (simp only: power2-eq-square power3-eq-cube)
have axct+ex8xbxd = 778 — 9% 2tx7u"2
proof —
have 2678 — 9% 2tx2u"2 = p 3%r 3 + ex9xp 2xqx1 2xs + € 2%27xpxq 2xT%s 2
+ €7 3x2Txq 3x87 8 — Jxpxp 2xrks 2 + ex18xp 2xqxr 2xs — e 2x9xpxq 2x(rkr 2)
— ex27Txp 2xqx(sxs 2) + e 2x54xpxq 2xrxs 2 — exe 2x27x(qxq 2)xr 2xs
by (simp add: eval-nat-numeral field-simps)
also with e2 e? have ... =
P IkT78 + ex27xp 2xqxr 2%s + S81xpxq 2%rxs 2 + ex27xq 3xs 3
— 9xp " 3xrxs"2 — 9xprq 24173 — ex27xp 2xqks 3 — ex2Txq 3kr 2ks
by (simp add: power2-eq-square power3-eq-cube)
also with pq rs have ... = axc + ex3xbxd
by (simp only: left-diff-distrib right-diff-distrib ac-simps)
finally show ?thesis by auto
qed
moreover have axd—exbxc = 3% 2 2% %u — 3%x%u”3
proof —
have %2t 2% %y — 3% %u"3 =
3k(pxp 2)x1r"2%s — ex3*p 2kqx(rxr 2) + ex18xp 2k qxrrs 2
— e 2% 18xpkq 2x1 2xs + € 2x27xpxq 2x(sxs"2) — exe 2x27x(qrq 2)xrxs 2
— 34D 3%873 + ex9xp 2xqrrxs 2 — e 2x9xpxq 2xr 2%xs + e Ix3x1r Ixq 3
by (simp add: eval-nat-numeral field-simps)
also with e2 e8 have ... = 3xp 31 2xs — ex3*p 2xqx1r 3 + ex18xp 2k q*rxs 2
— 18xpxq 2x1 2%s + 27*xpkq 2%s 8 — ex27xq 3xrxs 2 — 3xp 3%s~ 3
+ ex9xp 2xqrrxs 2 — 9xpxq 2% 2%5 + ex3*xr 3xq 3
by (simp add: power2-eq-square power3-eq-cube)
also with pg rs have ... = axd—exbxc
by (simp only: left-diff-distrib right-diff-distrib ac-simps)
finally show ?thesis by auto
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qed
ultimately show ?thesis by (auto simp only: is-cube-form-def)
qed

lemma qf3-cube-primelist-impl-cube-form: [ (V p€set-mset ps. prime p); odd (int (] i€#ps.
)] —
(M ab. coprime a b = a2 + 3xb72 = (int([] i€#ps. i) "3 = is-cube-form a b)
proof (induct ps)
case empty hence abl: o~ 2 + 3xb"2 = 1 by simp
have b0: b=0
proof (rule ccontr)
assume b#(0
hence b72>0 by simp
hence 3xb™2 > 1 by arith
with ab! have a2 < 0 by arith
moreover have a"2 > 0 by (rule zero-le-power2)
ultimately show Fulse by auto
qed
with abl have al: (a=1 V a=—1) by (auto simp add: power2-eq-square zmult-eq-1-iff)
then obtain p and ¢ where p=a and ¢=(0::int) by simp
with al and b0 have a = p~3 — 9*pxq 2 A b= 3xp 2xq — 3xq 3 by auto
thus is-cube-form a b by (auto simp only: is-cube-form-def)
next
case (add p ps) hence ass: coprime a b A odd (int([[i€#ps + {#p#}. ©))
A a"243xb72 = int([] i€#ps + {#p#}. i) "3 N (Y aEset-mset ps. prime a) N prime
(int p)
and IH: ! w v. coprime u v A u” 2+3%v"2 = int([[ i€#ps. i) "3
A odd (int(]] i€#ps. ©)) = is-cube-form u v
by auto
then have coprime a b
by simp
let ?w = int ([]i€#ps + {#p#}. 1)
let ?X = int (] i€#ps. ©)
let ?2p = int p
have ge3-1: (3::int) > 1 by auto
have pw: 2w = %p x 2X A odd ?p A odd ?X
proof (safe)
have ([[i€#ps + {#p#}. i) = p = ([[ i€#ps. i) by simp
thus wpz: 2w = %p x X by (auto simp only: of-nat-mult [symmetric])
with ass show even ¢p = Fulse by auto
from wpzr have 2w = ?Xx%p by simp
with ass show even ?X = Fulse by simp
qed
have is-qfN %p 3
proof —
from ass have o 2+3%b"2 = (?px?X) "3 by (simp add: mult.commute)
hence ?p dvd a " 2+3%b72 by (simp add: eval-nat-numeral field-simps)
moreover from ass have prime ?p and coprime a b by simp-all
moreover from pw have odd ?p by simp
ultimately show ?thesis by (simp add: gf3-oddprimedivisor)
qed
then obtain o 8 where alphabeta: 7p = a™2 + 3%572
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by (auto simp add: is-qfN-def)
have a # 0
proof (rule ccontr, simp)
assume o = 0 with alphabeta have 3 dvd ?p by auto
with pw have w3: 3 dvd ?w by (simp only: dvd-mult2)
then obtain v where ?w = 3xv by (auto simp add: dvd-def)
with ass have vab: 27«08 = a2 + 3xb"2 by simp
hence a2 = 3%(9xv"3 — b"2) by auto
hence 3 dvd a”2 by (unfold dvd-def, blast)
moreover have prime (3::int) by simp
ultimately have a3: 3 dvd a using prime-dvd-power-int[of 3::int a 2] by fastforce
then obtain ¢ where c¢: a« = 8xc by (auto simp add: dvd-def)
with vab have 27xv™8 = 9xc2 + 3xb"2 by (simp add: power-mult-distrib)
hence b72 = 3%(3xv"8 — ¢~2) by auto
hence 3 dvd b2 by (unfold dvd-def, blast)
moreover have prime (3::int) by simp
ultimately have 3 dvd b using prime-dvd-power-int[of 3::int b 2] by fastforce
with a3 have 3 dvd gcd a b by simp
with ass show Fulse by simp
qed
moreover from alphabeta pw ass have
prime (a2 + 8%872) A odd (a " 2+3%572) A (3int) > 1 by auto
ultimately obtain ¢ d where cdp:
(a™2+48%B72)73 = ¢ 2+3%d"2 A coprime c (3*d)
by (blast dest: qfN-oddprime-cube)
with ass pw alphabeta have 3 u v. a”2+3*%b"2 = ("2 + 3xv 2)x(c 2+ 3%d"2)
A coprime w v A (3 e. a = ckutex3xdxv A b = cxv—exdsxu A |e] = 1)
by (rule-tac A=%w and n=3 in q¢fN-power-div-prime, auto)
then obtain u v e where uve: a 2+8%b™2 = (u 2+8%v 2)x(c 2+3*xd 2)
A coprime u v A a = cxutex3xdxv A b = cxv—exdxu A |e| = 1 by blast
moreover have is-cube-form u v
proof —
have wvX: v 24+ 3xv"2 = ?X°3
proof —
from ass have p0: ?p # 0 by (simp add: prime-int-iff)
from pw have ?p 3x?2X "3 = %w”3 by (simp add: power-mult-distrib)

also with ass have ... = a"2+3xb"2 by simp
also with wve have ... = (u"2+3%v"2)x(c " 2+3%d"2) by auto
also with cdp alphabeta have ... = ?p78 x (u"2+3*v"2) by (simp only: ac-simps)

finally have ?p " 8x(u " 2+4+3%v 2—%X"8) = 0 by auto
with p0 show ?thesis by auto
qed
with pw IH uve show ?thesis by simp
qed
moreover have is-cube-form c d
proof —
have coprime ¢ d
proof (rule coprimel)
fix f
assume [ dvd ¢ and [ dvd d
then have f dvd cxu + dx(ex3xv) A f dvd cxv—dx(exu)
by simp
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with uve have f dvd a and f dvd b
by (auto simp only: ac-simps)
with <coprime a by show is-unit f
by (rule coprime-common-divisor)
qed
with pw cdp ass alphabeta show ?thesis
by (rule-tac P="%p in ¢f3-cube-prime-impl-cube-form, auto)
qed
ultimately show is-cube-form a b by (simp only: cube-form-mult)
qged

lemma ¢f3-cube-impl-cube-form:
assumes ass: coprime a b A a2 + 3xb"2 = w8 A odd w
shows is-cube-form a b
proof —
have 0 < w™3 using ass not-sum-power2-lt-zero[of a b] zero-le-power2|[of b] by linarith
hence 0 < w using ass by auto arith
define M where M = prime-factorization (nat w)
from «w > 0> have (V pEset-mset M. prime p) A w = int ([[i€#M. 7)
by (auto simp: M-def prod-mset-prime-factorization-int)
with ass show ?thesis by (auto dest: qf3-cube-primelist-impl-cube-form,)
qged

2.6 Existence (N = 3)

This part contains the proof that all prime numbers = 1 mod 6 can be written as
2 4 392
First show (%)(%) = (%), where p is an odd prime.
lemma Legendre-zmult: [ p > 2; prime p |
= (Legendre (axb) p) = (Legendre a p)x(Legendre b p)
proof —
assume p2: p > 2 and prp: prime p
from prp have prp”: prime (nat p)
by simp
let ?p12 = nat(((p) — 1) div 2)
let ?Labp = Legendre (axb) p
let ?Lap = Legendre a p
let ?Lbp = Legendre b p
have hi: ((nat p — 1) div 2) = nat ((p — 1) div 2) using p2 by auto
hence [?Labp = (axb) "?p12] (mod p) using prp p2 euler-criterion|of nat p axb]
by auto
hence [a"%p12 x b"%p12 = ?Labp] (mod p)
by (simp only: power-mult-distrib cong-sym,)
moreover have [?Lap x ?Lbp = a” ?p12xb"?p12] (mod p)
using euler-criterion|[of nat p| p2 prp’ h1 by (simp add: cong-mult)
ultimately have [?Lap *x ?Lbp = ?Labp| (mod p)
using cong-trans by blast
then obtain k where k: ?Labp = (?Lapx?Lbp) + p x k
by (auto simp add: cong-iff-lin)
have k=0
proof (rule ccontr)
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assume k # 0 hence |k| = 1 V |k| > 1 by arith
moreover
{ assume |k|= 1
with p2 have |k|xp > 2 by auto }
moreover
{ assume kI: |k| > 1
with p2 have |k|x2 < |k|*p
by (simp only: zmult-zless-mono2)
with k7 have |k|xp > 2 by arith }
ultimately have |k|xp > 2 by auto
moreover from p2 have |p| = p by auto
ultimately have |kxp| > 2 by (auto simp only: abs-mult)
moreover from &k have ?Labp — ?Lapx?Lbp = kxp by auto
ultimately have |?Labp — ?Lapx?Lbp| > 2 by auto
moreover have ?Labp = 1 V ?Labp = 0 V ?Labp = —1
by (simp add: Legendre-def)
moreover have ?Lapx?Lbp = 1 V ?Lapx?Lbp = 0 V ?Lapx?Lbp = —1
by (auto simp add: Legendre-def)
ultimately show Fulse by auto
qed
with k& show ?thesis by auto
qged

Now show (7?3) = +1 for primes p = 1 mod 6.

lemma Legendre-1mod6: prime (6xm~+1) = Legendre (—3) (6xm+1) = 1
proof —
let %p = 6xm+1
let 2L = Legendre (—3) %p
let ?L1 = Legendre (—1) %p
let ?L3 = Legendre 3 ?p
assume p: prime ?p
from p have p”: prime (nat ?p) by simp
have neglcube: (—1::int) "3 = —1 by simp
have m1: m > 1
proof (rule ccontr)
assume — m > 1 hence m < 0 by simp
with p show False by (auto simp add: prime-int-iff)
qed
hence pn3: ?p # 3 and p2: ?p > 2 by auto
with p have ?L = (Legendre (—1) ?p) x (Legendre 3 ?p)
by (frule-tac a=—1 and b=3 in Legendre-zmult, auto)
moreover have [Legendre (—1) ?p = (—1) nat m| (mod ?p)
proof —
have nat((?p — 1) div 2) = (nat ?p — 1) div 2 by auto
hence [?L1 = (—1) (nat(((?p) — 1) div 2))] (mod ?p)
using euler-criterion|[of nat ?p —1] p’ p2 by fastforce
moreover have nat ((?p — 1) div 2) = 3% nat m
proof —
have (?p — 1) div 2 = 3xm by auto
hence nat((?p — 1) div 2) = nat (3xm) by simp
moreover have (3::int) > 0 by simp
ultimately show ?thesis by (simp add: nat-mult-distrib)
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qed

moreover with neglcube have (—1::int) (3xnat m) = (—1) nat m
by (simp only: power-mult)

ultimately show ?thesis by auto

qed

moreover have ?L3 = (—1) nat m

proof —
have ?L3 * (Legendre ?p 3) = (—1) nat m
proof —

have nat ((8 — 1) div2 % ((6 * m + 1 — 1) div 2)) = 3*nat m by auto
hence ?L3 * (Legendre ?p 3) = (—1::int) ~ (3*nat m)
using Quadratic-Reciprocity-int[of 3 ?p] p’ pn3 p2 by fastforce
with neglcube show ?thesis by (simp add: power-mult)
qed
moreover have Legendre ?p 8 = 1
proof —
have [172 = ?p] (mod 8) by (unfold cong-iff-dvd-diff dvd-def, auto)
hence QuadRes 3 ?p by (unfold QuadRes-def, blast)
moreover have - [?p = 0] (mod 3)
proof (rule ccontr, simp)
assume [?p = 0] (mod 3)
hence 3 dvd ?p by (simp add: cong-iff-dvd-diff)
moreover have 3 dvd 6xm by (auto simp add: dvd-def)
ultimately have 3 dvd ?p— 6xm by (simp only: dvd-diff)
hence (3::int) dvd 1 by simp
thus Fulse by auto
qed
ultimately show ?thesis by (unfold Legendre-def, auto)
qed
ultimately show ?thesis by auto
qged
ultimately have [?L = (—1) (nat m)x(—1) (nat m)] (mod ?p)
by (metis cong-scalar-right)
hence [?L = (—1) ((nat m)+(nat m))] (mod ?p) by (simp only: power-add)
moreover have (nat m)+(nat m) = 2x(nat m) by auto
ultimately have [?L = (—1)(2x(nat m))] (mod ?p) by simp
hence [?L = ((—1)72) (nat m)] (mod ?p) by (simp only: power-mult)
hence [1 = ?L] (mod ?p) by (auto simp add: cong-sym)
hence %p dvd 1 — ?L by (simp only: cong-iff-dvd-diff)
moreover have 7L = —1 V ?L =0V ?L = 1 by (simp add: Legendre-def)
ultimately have ?p dvd 2 V ?p dvd 1 vV ?L = 1 by auto
moreover
{ assume ?p dvd 2 V ?p dvd 1
with p2 have False by (auto simp add: zdvd-not-zless) }
ultimately show #¢thesis by auto
qed

Use this to prove that such primes can be written as z2 + 3y2.

lemma ¢f3-prime-exists: prime (6xm+1:int) = 3 zy. 6xm+1 = 272 + 3xy 2
proof —

let p = 6xm+1

assume p: prime ?p
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hence Legendre (—3) ?p = 1 by (rule Legendre-1mod6)
moreover
{ assume — QuadRes ?p (—3)

hence Legendre (—3) ?p # 1 by (unfold Legendre-def, auto) }
ultimately have QuadRes ?p (—3) by auto
then obtain s where s: [s72 = —3] (mod ?p) by (auto simp add: QuadRes-def)
hence %p dvd s72 — (—3::int) by (unfold cong-iff-dvd-diff, simp)
moreover have s 2 —(—3:int) = s72 + 3 by arith
ultimately have ?p dvd s72 + 3x1"2 by auto
moreover have coprime s 1 by auto
moreover have odd ?p
proof —

have %p = 2x(3xm)+1 by simp

thus ?thesis by simp
qged
moreover from p have prime ?p by simp
ultimately have is-¢fN ?p 3 using qf3-oddprimedivisor by blast
thus ?thesis by (unfold is-qfN-def, auto)

qed

end

end

3 Fermat’s last theorem, case n =3

theory Fermat3
imports Quad-Form
begin

context
begin

Proof of Fermat’s last theorem for the case n = 3:

Va,y,z: 22 +9° =23 = zyz = 0.

private lemma nat-relprime-power-divisors:
assumes n0: 0 < n and abc: (a::nat)xb = ¢"n and relprime: coprime a b
shows 3 k. a = k™n
using assms proof (induct ¢ arbitrary: a b rule: nat-less-induct)
case (1 ¢)
show ?Zcase
proof (cases a > 1)
case Fulse
hence a = 0 V a = 1 by linarith
thus ?thesis using n0 power-one zero-power by (simp only: eg-sym-conv) blast
next
case True
then obtain p where p: prime p p dvd a using prime-factor-nat[of a] by blast
hence h1: p dvd (¢"™n) using 1(3) dvd-mult2[of p a b] by presburger
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hence (p™n) dvd (¢™n)
using p(1) prime-dvd-power-nat[of p ¢ n| dvd-power-same|of p ¢ n] by blast
moreover have h2: = p dvd b
using p <coprime a by coprime-common-divisor-nat [of a b p] by auto
hence — (p™n) dvd b using n0 p(1) dvd-power|of n p] gcd-nat.trans by blast
ultimately have (p™n) dvd a
using [.prems p(1) prime-elem-divprod-pow [of p a b n] by simp
then obtain a’ ¢/ where ac: a=p™m*a’ c=p* ¢’
using h1 dvdE[of p~n a] dvdE[of p c| prime-dvd-power-nat[of p ¢ n] p(1) by meson
hence p™n * (a’ * b) = p™n * ¢/"n using 1(3)
by (simp add: power-mult-distrib semiring-normalization-rules(18))
hence a’ * b = ¢'"n using p(1) by auto
moreover have coprime o’ b using 1(4) ac(1)
by simp
moreover have 0 < b 0 < a using h2 dvd-0-right grOI True by fastforce+
then have 0 < ¢ I < p using p(1) 1(3) nat-0-less-mult-iff [of a b] n0 prime-gt-Suc-0-nat
by simp-all
hence ¢’ < ¢ using ac(2) by simp
ultimately obtain & where a’ = k™n using 1(1) n0 by presburger
hence a = (p*xk) "n using ac(1) by (simp add: power-mult-distrib)
thus ?thesis by blast
qed
qed

private lemma int-relprime-odd-power-divisors:
assumes odd n and (a::int) * b = ¢ ~n and coprime a b
shows 3k. a = k™n
proof —
from assms have |a| * |b] = |c| " n
by (simp add: abs-mult [symmetric] power-abs)
then have nat |a| * nat |b] = nat |c] " n
by (simp add: nat-mult-distrid [of |a| |b], symmetric] nat-power-eq)
moreover have coprime (nat |a|) (nat |b|) using assms(3) gcd-int-def by fastforce
ultimately have 3 k. nat |a] = k™n
using nat-relprime-power-divisors[of n nat |a| nat |b| nat |c|] assms(1) by blast
then obtain k' where &’ nat |a| = k'"n by blast
moreover define t where k = int k'
ultimately have k: |a| = k™n using int-nat-eqlof |a|] of-nat-power|of k' n] by force
{ assume a # k'™
with k have a = —(k™n) by arith
hence a = (—k) "n using assms(1) power-minus-odd by simp }
thus “thesis by blast
qed

private lemma factor-sum-cubes: (z::int) "3 + y 3 = (z+y)x(z72 — zxy + y 2)
by (simp add: eval-nat-numeral field-simps)

private lemma two-not-abs-cube: |x~3| = (2::int) = Fulse
proof —

assume |z 3| = 2

hence z32: |z| 73 = 2 by (simp add: power-abs)

have |z| > 0 by simp
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moreover
{assume |[z| =0 V |z| =1V |z| = 2
with 232 have Fulse by (auto simp add: power-0-left) }
moreover
{ assume |z| > 2
moreover have (0::int) < 2 and (0::nat) < 3 by auto
ultimately have |z| "3 > 278 by (simp only: power-strict-mono)
with 232 have Fualse by simp }
ultimately show Fulse by arith
qged

Shows there exists no solution v3 +w? = z3 with vwz # 0 and coprimevw and
x even, by constructing a solution with a smaller |23|.

private lemma no-rewritten-fermat3:
= (3 vw v34+w 8 =273 A vkwxx #£ 0 A even (z::int) A coprime v w)
proof (induct z rule: infinite-descentO-measure[where V=>Az. nat|z”3|])
case (0 z) hence 73 = 0 by arith
hence =0 by auto
thus ?case by auto
next
case (smaller z)
then obtain v w where vwz:
v 3+w 8=1"3 A vkwxz # 0 A even x A coprime v w (is ?P v w x)
by auto
then have coprime v w
by simp
have 3 a 8 v. ?P a v A nat|y"3| < nat|z"3|
proof —
— obtain coprime p and ¢ such that v =p+qgand w=p—¢q
have vwOdd: odd v A odd w
proof (rule ccontr, case-tac odd v, simp-all)
assume ve: even v
hence even (v"3) by simp
moreover from vwz have even (z73) by simp
ultimately have even (z"3—v"3) by simp
moreover from vwz have £78—v"8 = w™3 by simp
ultimately have even (w™3) by simp
hence even w by simp
with ve have 2 dvd v A 2 dvd w by auto
hence 2 dvd ged v w by simp
with vwz show Fualse by simp
next
assume odd v and even w
hence odd (v™3) and even (w™3)
by auto
hence odd (w™3 + v73) by simp
with vwz have odd (z73) by (simp add: add.commute)
hence odd x by simp
with vwz show Fulse by auto
qed
hence even (v+w) A even (v—w) by simp
then obtain p ¢ where pg: v+w = 2xp A v—w = 2x¢q
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using evenE[of v+w)] evenE[of v—w] by meson
hence vw: v = p+q A w = p—q by auto
— show that 2% = (2p)(p? + 3¢?) and that these factors are
— either coprime (first case), or have 3 as g.c.d. (second case)
have vwpg: v78 + w3 = (2%p)x(p~2 + 3xq¢ 2)
proof —
have 2x(v"3 + w™3) = 2x(v+w)*(v"2 — vxw + W 2)
by (simp only: factor-sum-cubes)
also from pq have ... = Jxpx(v"2 — vxw + w™2) by auto
also have ... = px((v+w) "2 + 3x(v—w)"2)
by (simp add: eval-nat-numeral field-simps)
also with pq have ... = px((2xp) "2 4+ 3%(2xq) "2) by simp
also have ... = 2x(2xp)x(p 2+3%q 2) by (simp add: power-mult-distrib)
finally show ?thesis by simp
qed
let ?7g = ged (2 % p) (p? + 3 * ¢?)
have g1: %9 > 1
proof (rule ccontr)
assume — %9 > 1
then have 79 < 0 V ?g = 0 unfolding not-le by arith
moreover have ?g > 0 by simp
ultimately have ?g = 0 by arith
hence p = 0 by simp
with vwpg vwz <0 < nat|z”3|» show False by auto
qed
have gOdd: odd ?g
proof (rule ccontr)
assume — odd ?q
hence?2 dvd p~2+3+q~2 by simp
then obtain k where k: p™2 + 3xq¢" 2 = 2xk by (auto simp add: dvd-def)
hence 2«(k — 2xq"2) = p " 2—q 2 by auto
also have ... = (p+q)x(p—q) by (simp add: power2-eg-square algebra-simps)
finally have vxw = 2«(k — 2xq~2) using vw by presburger
hence even (vxw) by auto
hence even (v) V even (w) by simp
with vwOdd show Fualse by simp
qed
then have even-odd-p-q: even p A odd q V odd p N even q
by auto
— first case: p is not a multiple of 3; hence 2p and p? + 3¢>
— are coprime; hence both are cubes
{ assume p3: = 3 dvd p
have ¢3: = 8 dvd ?g
proof (rule ccontr)
assume — = & dvd ?g hence 3 dvd 2xp by simp
hence (3::int) dvd 2 V 3 dvd p
using prime-dvd-multD[of 3] by (fastforce simp add: prime-dvd-mult-iff)
with p3 show Fulse by arith
qed
from <coprime v w> have pq-relprime: coprime p q
proof (rule coprime-imp-coprime)
fix ¢
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assume c dvd p and ¢ dvd q
then have ¢ dvd p + g and ¢ dvd p — ¢
by simp-all
with vw show ¢ dvd v and ¢ dvd w
by simp-all
qed
from <coprime p ¢ have coprime p (q?)
by simp
then have factors-relprime: coprime (2 * p) (p*> + 3 * ¢°)
proof (rule coprime-imp-coprime)
fix ¢
assume ¢2p: ¢ dvd 2 * p and gpg: ¢ dvd p®> + 3 * ¢>
have coprime 2 c
using ¢2p gpq even-odd-p-q dvd-trans [of 2 ¢ p*> + 3 * ¢
by auto
with ¢2p show ¢ dvd p
by (simp add: coprime-dvd-mult-left-iff ac-simps)
then have ¢ dvd p?
by (simp add: power2-eg-square)
with gpg have ¢ dvd 3 * ¢?
by (simp add: dvd-add-right-iff)
moreover have coprime 3 c
using <c dvd p> p3 dvd-trans [of 3 ¢ p]
by (auto intro: prime-imp-coprime)
ultimately show c dvd ¢>
by (simp add: coprime-dvd-mult-right-iff ac-simps)
qed
moreover from vwz vwpg have pgr: (2xp)x(p~2 + 8%q¢ 2) = 2”38 by auto
ultimately have 3 ¢. 2xp = ¢~ 3 by (simp add: int-relprime-odd-power-divisors)
then obtain ¢ where ¢: ¢”8 = 2xp by auto
from pgx factors-relprime have coprime (p™2 + 3%q 2) (2xp)
and (p72 + 3xq 2)x(2xp) = 2”3 by (auto simp add: ac-simps)
hence 3 d. p™2 + 3xq 2 = d”3 by (simp add: int-relprime-odd-power-divisors)
then obtain d where d: p™2 + 3¢ 2 = d~3 by auto
have odd d
proof (rule ccontr)
assume - odd d
hence even (d”3) by simp
hence 2 dvd d”3 by simp
moreover have 2 dvd 2xp by (rule dvd-triv-left)
ultimately have 2 dvd gcd (2xp) (d”8) by simp
with d factors-relprime show Fulse by simp
qed
with d pg-relprime have coprime p g A p™2 + 3%q 2 = d 3 A odd d
by simp
hence is-cube-form p g by (rule g¢f3-cube-impl-cube-form)
then obtain a b where p = ™3 — 9*%axb"2 A q = 3%xa 2xb — 3xb™3
by (unfold is-cube-form-def, auto)
hence ab: p = ax(a+3+b)x(a— 3%b) A ¢ = bx(a+b)*(a—b)*3
by (simp add: eval-nat-numeral field-simps)
with ¢ have abc: (2xa)x(a+3%b)x(a— 3%b) = ¢~ 3 by auto
from pg-relprime ab have ab-relprime: coprime a b
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by (auto intro: coprime-imp-coprime)
then have abl: coprime (2 % a) (a + 3 * b)
proof (rule coprime-imp-coprime)
fix h
assume h2a: h dvd 2 * a and hab: h dvd a + 3 * b
have coprime 2 h
using ab even-odd-p-q hab dvd-trans [of 2 h a + 8 * b]
by auto
with h2a show h dvd a
by (simp add: coprime-dvd-mult-left-iff ac-simps)
with hab have h dvd 3 * b and — 3 dvd h
using dvd-trans [of 8 h a] ab <— & dvd p»
by (auto simp add: dvd-add-right-iff)
moreover have coprime 3 h
using - & dvd h» by (auto intro: prime-imp-coprime)
ultimately show h dvd b
by (simp add: coprime-dvd-mult-left-iff ac-simps)
qed
then have [simp]: even b «— odd a
and ab3: coprime a (a + 3 * b)
by simp-all
from <coprime a b> have ab/: coprime a (a — 3 x b)
proof (rule coprime-imp-coprime)
fix h
assume h2a: h dvd a and hab: h dvd a — 3 * b
then show h dvd a
by simp
with hab have h dvd 3 * b and — 3 dvd h
using dvd-trans [of 3 h a] ab <= 8 dvd p> dvd-add-right-iff [of h a — & * b)
by auto
moreover have coprime 3 h
using «— & dvd hy by (auto intro: prime-imp-coprime)
ultimately show h dvd b
by (simp add: coprime-dvd-mult-left-iff ac-simps)
qed
from abl have ab2: coprime (a + 3 * b) (a — 3 * b)
by (rule coprime-imp-coprime)
(use dvd-add [of - a + 8 * b a — 3 * b] in simp-all)
have 3kim. 2xa=k "3 ANa+3+xb=1"3Na—3xb=m "3
using ab2 ab3 ab4 abe
int-relprime-odd-power-divisors
int-relprime-odd-power-divisors
int-relprime-odd-power-divisors

of 82 xa(a+ 8xb)x(a— 3x1b) |
of $(a+ 3xb)2*xax(a—38x*b)(
3 (

of 3 (a—3xb)2x*xax(a+ 3x*Db)(
by auto (auto simp add: ac-simps)
then obtain a 8 v where albega:
2xa =73 ANa— 8xb=a"3 A at+3xb = 573 by auto
— show this is a (smaller) solution
hence a™3 + 78 = v~ 3 by auto
moreover have axfxy # 0
proof (rule ccontr, safe)
assume « x § x v = 0
with albega ab have p=0 by (auto simp add: power-0-left)

D ————
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with vwpq vwr show False by auto
qed
moreover have even ~y
proof —
have even (2xa) by simp
with albega have even (y73) by simp
thus ?thesis by simp
qed
moreover have coprime «
using ab2 proof (rule coprime-imp-coprime)
fix h
assume ha: h dvd o and hb: h dvd S
then have h dvd a x a2 A h dvd B % 372 by simp
then have h dvd o Suc 2 A h dvd B7Suc 2 by (auto simp only: power-Suc)
with albega show h dvd a — 8 * b h dvd a + 8 * b by auto
qed
moreover have nat|y"3| < nat|z73)|
proof —
let 2A =p ™2 4+ 8%q¢ 2
from vwzx vwpg have 73 = 2xpx?A by auto
also with ab have ... = 2xax((a+3*b)x(a— 3xb)x?A) by auto
also with albega have ... = 773 x((a+3xb)x(a— 3xb)x?A) by auto
finally have eq: [£73]| = |y73| * |(a+3%b)x(a— 3xb)x?A|
by (auto simp add: abs-mult)
with «0 < nat|z”3|> have |(a+3xb)x(a— 3xb)x?A| > 0 by auto
hence eqpos: |(a+3%b)x(a— 3xb)| > 0 by auto
moreover have Agl: [?A] > 1
proof —
have Agf3: is-qfN ?A 8 by (auto simp add: is-qfN-def)
moreover have triv3b: (3::int) > 1 by simp
ultimately have A > 0 by (simp only: qfN-pos)
hence ?4 > 1V ?A =0V ?A =1 by arith
moreover
{ assume ?4 = (0 with triv3b have p = 0 A ¢ = 0 by (rule ¢fN-zero)
with vwpg vwz have False by auto }
moreover
{ assume A1: 74 = 1
have ¢=0
proof (rule ccontr)
assume ¢q # 0
hence ¢"2 > 0 by simp
hence 3xq~2 > 1 by arith
moreover have p~2 > 0 by (rule zero-le-power2)
ultimately have ?4 > 1 by arith
with A1 show Fulse by simp
qed
with pg-relprime have |p| = 1 by simp
with vwpg vwz A1 have |z73| = 2 by auto
hence Fulse by (rule two-not-abs-cube) }
ultimately show ¢thesis by auto
qed
ultimately have
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[(a+3%b)*(a— 3*b)|x1 < |(a+3*b)*x(a— 3xb)|x| 74|
by (simp only: zmult-zless-mono2)
with egpos have |(a+3xb)x(a— 3xb)|x|?A| > 1 by arith
hence |(a+3xb)x(a— 3xb)x?A| > 1 by (auto simp add: abs-mult)
moreover have [y73| > 0
proof —
from eq have |y73| = 0 = |273|=0 by auto
with <0 < nat|z”3|> show ?Zthesis by auto
qed
ultimately have |y73| x 1 < |[773| * |(a+3xb)x(a— 3xb)x?A|
by (rule zmult-zless-mono2)
with eq have |z73| > |y 73| by auto
thus ?thesis by arith
qed
ultimately have ?thesis by auto }
moreover

— second case: p = 3r and hence 2% = (18r)(¢* + 3r?) and these
— factors are coprime; hence both are cubes
{ assume p3: & dvd p
then obtain r where r: p = 3xr by (auto simp add: dvd-def)
moreover have 3 dvd 3x(3+r"2 + ¢ 2) by (rule dvd-triv-left)
ultimately have pg3: 8 dvd p~2+3*q 2 by (simp add: power-mult-distrib)
moreover from p3 have 3 dvd 2xp by (rule dvd-mult)
ultimately have ¢3: & dvd ?g by simp
from <coprime v w» have qr-relprime: coprime q r
proof (rule coprime-imp-coprime)
fix h
assume hq: h dvd q h dvd r
with r have h dvd p by simp
with hq have h dvd p + q h dvd p — q
by simp-all
with vw show h dvd v h dvd w
by simp-all
qed
have factors-relprime: coprime (18xr) (¢ 2 + 3*r"2)
proof —
from ¢3 obtain k where k: ?g = 3xk by (auto simp add: dvd-def)
have k = 1
proof (rule ccontr)
assume k # 1
with ¢! k have k£ > 1 by auto
then obtain h where h: prime h A h dvd k
using prime-divisor-ezists[of k] by auto
with k have hg: 3xh dvd ?g by (auto simp add: mult-dvd-mono)
hence 3xh dvd p~2 + 3xq~2 and hp: 8xh dvd 2xp by auto
then obtain s where s: p™2 + 3x¢ 2 = (3xh)x*s
by (auto simp add: dvd-def)
with r have rgh: 3xr"24¢"2 = hxs by (simp add: power-mult-distrib)
from hp r have 3xh dvd 3x(2xr) by simp
moreover have (3::int) # 0 by simp
ultimately have h dvd 2xr by (rule zdvd-mult-cancel)
with h have h dvd 2 V h dvd r
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by (auto dest: prime-dvd-multD)
moreover have = h dvd 2
proof (rule ccontr, simp)
assume h dvd 2
with h have h=2 using zdvd-not-zless[of 2 h] by (auto simp: prime-int-iff)
with hg have 2x3 dvd ?g by auto
hence 2 dvd ?g by (rule dvd-mult-left)
with ¢gOdd show Fulse by simp
qed
ultimately have hr: h dvd r by simp
then obtain ¢t where r = hxt by (auto simp add: dvd-def)
hence t: 72 = hx(h+t"2) by (auto simp add: power2-eq-square)
with rgh have hxs = hx(3*xhxt"2) + ¢~ 2 by simp
hence ¢72 = hx(s — 3xhxt"2) by (simp add: right-diff-distrib)
hence h dvd ¢”2 by simp
with h have h dvd g using prime-dvd-multD[of h q q]
by (simp add: power2-eg-square)
with hr have h dvd gcd q r by simp
with h gr-relprime show False by (unfold prime-def, auto)
qed
with k r have 3 = ged (2%(3%r)) ((3%1) 72 + 8%q 2) by auto
also have ... = ged (3%(2xr)) (3%(3xr"2 + ¢ 2))
by (simp add: power-mult-distrib)
also have ... = 3 x ged (2xr) (3%r 2 + ¢ 2) using ged-mult-distrib-int[of 3] by
auto
finally have coprime (2xr) (3xr"2 + ¢"2)
by (auto dest: ged-eq-1-imp-coprime)
moreover have coprime 9 (3xr"2 + ¢ 2)
using <coprime v wy proof (rule coprime-imp-coprime)
fix h ::int
assume - is-unit h
assume h9: h dvd 9 and hrg: h dvd 3 * r? + ¢>
have prime (3::int)
by simp
moreover from (h dvd 9> have h dvd 32
by simp
ultimately obtain & where normalize h = 8 ~ k
by (rule divides-primepow)
with <= is-unit h» have 0 < k
by simp
with «normalize h = 3 " k> have |[h| =8 % 3 ~(k— 1)
by (cases k) simp-all
then have 3 dvd |h] ..
then have 3 dvd h
by simp
then have 3 dvd 3 * r? + ¢?
using hrq by (rule dvd-trans)
then have 3 dvd ¢>
by presburger
then have 3 dvd q
using prime-dvd-power-int [of 8 q 2] by auto
with p3 have 3 dvd p + g and 3 dvd p — ¢
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by simp-all
with vw have & dvd v and 3 dvd w
by simp-all
with <coprime v w» have is-unit (3::int)
by (rule coprime-common-divisor)
then show h dvd v and h dvd w
by simp-all
qed
ultimately have coprime (2 * 7 * 9) (3 * r2 + ¢?)
by (simp only: coprime-mult-left-iff)
then show ?thesis
by (simp add: ac-simps)
qed
moreover have rgz: (18*r)x(q¢"2 + 3xr"2) = 273
proof —
from vwz vwpg have 173 = 2xpx(p~2 + 3*%¢ 2) by auto
also with r have ... = 2x(3*r)x(9xr 2 + 3*q 2)

by (auto simp add: power2-eq-square)
finally show ?thesis by auto
qed
ultimately have 3 c¢. 18xr = ¢~3
by (simp add: int-relprime-odd-power-divisors)
then obtain ¢! where c1: ¢173 = 3%(6xr) by auto
hence 3 dvd ¢173 and prime (3::int) by auto
hence & dvd c1 using prime-dvd-power|of 3] by fastforce
with c! obtain ¢ where c¢: 3x¢™8 = 2xr
by (auto simp add: power-mult-distrib dvd-def)
from rqx factors-relprime have coprime (¢”2 + 3xr"2) (18xr)
and (¢72 + 3%r 2)x(18+r) = 73 by (auto simp add: ac-simps)
hence 3 d. ¢72 + 3xr"2 = d73
by (simp add: int-relprime-odd-power-divisors)
then obtain d where d: 472 + 3xr 2 = d"3 by auto
have odd d
proof (rule ccontr)
assume - odd d
hence 2 dvd d”8 by simp
moreover have 2 dvd 2x(9xr) by (rule dvd-triv-left)
ultimately have 2 dvd ged (2%(9xr1)) (d73) by simp
with d factors-relprime show Fualse by auto
qed
with d gr-relprime have coprime qr A ¢ 2 + 8xr"2 = d"3 A odd d
by simp
hence is-cube-form q r by (rule gf3-cube-impl-cube-form,)
then obtain a b where ¢ = a~3 — 9%axb™2 A r = 3xa 2xb — 3%b™3
by (unfold is-cube-form-def, auto)
hence ab: ¢ = ax(a+3%b)x(a— Ixb) A r = bx(a+b)x(a—b)*3
by (simp add: eval-nat-numeral field-simps)
with ¢ have abc: (2xb)*(a+b)x(a—b) = ¢33 by auto
from gr-relprime ab have ab-relprime: coprime a b
by (auto intro: coprime-imp-coprime)
then have abl: coprime (2xb) (a+b)
proof (rule coprime-imp-coprime)
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fix h
assume h2b: h dvd 2xb and hab: h dvd a+b
have odd h
proof
assume even h
then have even (a + b)
using hab by (rule dvd-trans)
then have even (a+3xb)
by simp
with ab have even ¢ even r
by auto
then show Fulse
using coprime-common-divisor-int qr-relprime by fastforce
qed
with h2b show h dvd b
using coprime-dvd-mult-right-iff [of h 2 b] by simp
with hab show h dvd a
using dvd-diff [of h a + b b] by simp
qed
from ab! have ab2: coprime (a+b) (a—b)
proof (rule coprime-imp-coprime)
fix h
assume habl: h dvd a+b and hab2: h dvd a—b
then show h dvd 2xb using dvd-diff [of h a+b a—b] by fastforce
qed
from ab! have ab3: coprime (a—b) (2xb)
proof (rule coprime-imp-coprime)
fix h
assume hab: h dvd a—b and h2b: h dvd 2xb
have a—b+2+b = a+b by simp
then show h dvd a+b using hab h2b dvd-add [of h a—b 2xb] by presburger
qed
then have [simp]: even b +— odd a
by simp
have 3 kim. 2xb=k"83 ANatb=1"3 ANa—b=m"3
using abc abl ab2 ab3
int-relprime-odd-power-divisors [of 3 2 x b (a + b) * (a — b)
int-relprime-odd-power-divisors [of 8 a + b (2 % b) x (a — b) ¢
int-relprime-odd-power-divisors [of 8 a — b (2 * b) x (a + b) ¢
by simp (simp add: ac-simps, simp add: algebra-simps)
then obtain «f 8 v where al: 2xb =7 3 Na—b=al 3 A a+tb=L"3
by auto
then obtain o where a = —a1 by auto
— show this is a (smaller) solution
with a1 have a2: a”3 = b—a by auto
with af have ™3 + 873 = v~ 3 by auto
moreover have axfxy # 0
proof (rule ccontr, safe)
assume o * § x v = 0
with al a2 ab have r=0 by (auto simp add: power-0-left)
with r vwpq vwr show Fualse by auto
qed
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moreover have even v
proof —
have even (2xb) by simp
with a! have even (y73) by simp
thus ?thesis by simp
qed
moreover have coprime «
using ab2 proof (rule coprime-imp-coprime)
fix h
assume ha: h dvd o and hb: h dvd
then have h dvd a x a”2 and h dvd 8 * 572 by simp-all
then have h dvd o Suc 2 and h dvd 87 Suc 2 by (auto simp only: power-Suc)
with a! a2 have h dvd b — a and h dvd a + b by auto
then show h dvd a + band h dvd a — b
by (simp-all add: dvd-diff-commute)
qed
moreover have nat|y"3| < nat|z73)|
proof —
let 2A =p ™2 4+ 8%q¢ 2
from vwzx vwpg have 73 = 2xpx?A by auto

also with r have ... = 6xr+x?A4 by auto
also with ab have ... = 2xbx(9*(a+b)x(a—b)x?A) by auto
also with al have ... = 73 *(9x(a+b)x(a—b)x?A) by auto

finally have eq: [£73] = |y73| * |9*(a+b)x(a—Db)x ?A|
by (auto simp add: abs-mult)

with «0 < nat|z”3|> have |9x(a+b)x(a—b)*?4| > 0 by auto

hence |(a+b)*(a—b)x?A| > 1 by arith

hence |9x(a+b)x(a—b)x?A| > 1 by arith

moreover have |[y73| > 0

proof —
from eq have |y73| = 0 = |278|=0 by auto
with <0 < nat|z”3|> show ?thesis by auto

qed

ultimately have |y73| * 1 < |[773| * |9x(a+b)x(a—b)x7A|
by (rule zmult-zless-mono2)

with eq have |73| > |y73| by auto

thus ?thesis by arith

qed
ultimately have ?thesis by auto }
ultimately show ?thesis by auto
qed
thus ?case by auto
qed

The theorem. Puts equation in requested shape.

theorem fermat-3:
assumes ass: (z:int) "3 + y 3 = 273
shows zxy+xz=0
proof (rule ccontr)
let 2g = ged z y
let ?c = z div ?g
assume zyz0: rxyxz#£0
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— divide out the g.c.d.
hence z # 0 V y # 0 by simp
then obtain a b where ab: © = %gxa A y = ?gxb A coprime a b
using ged-coprime-ezists|of © y] by (auto simp: mult.commute)
moreover have abc: 7cx%g =2z A a”8 + b3 = %¢73 A axbxfc # 0
proof —
from zyz0 have g0: ?g#0 by simp
have zgab: 273 = %973 % (a"3+b073)
proof —
from ab and ass have 273 = (%gxa) "3+ (%gxb) "3 by simp
thus ?thesis by (simp only: power-mult-distrib distrib-left)
qed
have cgz: 7c x %9 = 2
proof —
from zgab have 2973 dvd 273 by simp
hence ?g dvd z by simp
thus ?thesis by (simp only: ac-simps dvd-mult-div-cancel)

qed
moreover have "3 + 073 = %¢73
proof —
have 2¢73 % 278 = (a”34+b73)x %973
proof —
have 7¢73 * 2973 = (%cx%g) "3 by (simp only: power-mult-distrib)
also with cgz have ... = 278 by simp
also with zgab have ... = 2g73x(a"3+b"3) by simp
finally show ?thesis by simp
qed
with g0 show ?thesis by auto
qed

moreover from ab and zyz0 and cgz have axbx?c#0 by auto
ultimately show ?thesis by simp
qed
— make both sides even
from ab have coprime (a ~ 3) (b ~ 3)
by simp
have 3 v v w. u”3 + v78 = w™3 A uxvkw#(0::int) A even w A coprime u v
proof —
let 2Quovw=u"3+ 03 =w"3 A ukvxw#(0::int) A even w A coprime u v
have even a V even b V even %c
proof (rule ccontr)
assume —(even a V even b \V even ?c)
hence aodd: odd a and odd b N\ odd ?c by auto
hence even (9¢”8 — b738) by simp
moreover from abc have 2¢"3—b"3 = a~3 by simp
ultimately have even (a”3) by auto
hence even (a) by simp
with aodd show Fulse by simp
qed
moreover
{ assume even (a)
then obtain u v w where wvwabc: w = —b A v =% AN w=aA even w
by auto
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moreover with abc have uxvxw##0 by auto
moreover have wvw: v 3+v 3=w"3

proof —
from uvwabc have v™3 + v™8 = (—1xb)"3 + ?¢”3 by simp
also have ... = (—1)73%b"3 + 2¢”3 by (simp only: power-mult-distrib)
also have ... = — (b73) + ?¢”3 by auto
also with abc and wvwabc have ... = w™3 by auto
finally show ?thesis by simp
qed

moreover have coprime u v
using <coprime (a ~ 3) (b ~ &8)» proof (rule coprime-imp-coprime)
fix h
assume hu: h dvd v and h dvd v
with wowabc have h dvd ?cx2¢72 by (simp only: dvd-mult2)
with abc have h dvd a”3+b"3 using power-Suc|of ?c 2] by simp
moreover from hu uwvwabc have hb3: h dvd bxb™2 by simp
ultimately have h dvd a”3+b"3—0"3
using power-Suc [of b 2] dvd-diff [ofha ~8 + b~ 3b " 3] by simp
with hb3 show h dvd a”3 h dvd b3 using power-Suclof b 2] by auto
qed
ultimately have ?Q) u v w using (even a> by simp
hence ?thesis by auto }
moreover
{ assume even b
then obtain u v w where wvwabc: u = —a A v = %c AN w=">bA even w
by auto
moreover with abc have uxvxw#0 by auto
moreover have uwvw: v 3+v 3=w"3

proof —
from uwvwabc have v™3 + v™3 = (—1xa)”"8 + 2”3 by simp
also have ... = (—1)78%a"3 + 2¢73 by (simp only: power-mult-distrib)
also have ... = — (a¢73) + 2¢73 by auto
also with abc and wvwabc have ... = w™3 by auto
finally show ?thesis by simp
qed

moreover have coprime u v
using <coprime (a ~ 3) (b ~ 8)» proof (rule coprime-imp-coprime)
fix h
assume hu: h dvd v and h dvd v
with wvwabc have h dvd ?cx?¢”2 by (simp only: dvd-mult2)
with abc have h dvd a”3+b"3 using power-Suc|of ?c 2] by simp
moreover from hu uvwabc have hb3: h dvd axa™2 by simp
ultimately have h dvd a"3+b"3—a"38
using power-Suc [of a 2] dvd-diff [of ha ~3 + b "8 a ~ 8] by simp
with hb3 show h dvd a”3 and h dvd b™3 using power-Suc[of a 2] by auto
qed
ultimately have ?Q) u v w using <even b> by simp
hence ?thesis by auto }
moreover
{ assume cven ?c
then obtain u v w where wvwabc: ©w =a N v=>bAw= %c A\ even w
by auto
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with abc ab have ?thesis by auto }
ultimately show ?thesis by auto
qed
hence 3 w. 3 wv. u™3 + v™8 = w3 A uxvkw # (0::int) A\ even w A coprime u v
by auto
— show contradiction using the earlier result
thus False by (auto simp only: no-rewritten-fermat3)
qed

corollary fermat-mult3:
assumes zyz: (z:int) n + y n = z"nand n: 3 dvd n
shows zxy+xz=0

proof —
from n obtain m where n = mx3 by (auto simp only: ac-simps dvd-def)
with zyz have (z7m)"8 + (y"m) "3 = (2"m) "3 by (simp only: power-mult)
hence (z7m)*(y " m)*(z"m) = 0 by (rule fermat-3)
thus ?thesis by auto

qed

end

end
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