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Abstract

This document gives a formal proof of the cases n = 3 and n = 4 (and
all their multiples) of Fermat’s Last Theorem: if n > 2 then for all integers
x, y, z:

xn + yn = zn =⇒ xyz = 0.

Both proofs only use facts about the integers and are developed along the
lines of the standard proofs (see, for example, sections 1 and 2 of the book
by Edwards [Edw77]).

First, the framework of ‘infinite descent’ is being formalised and in both
proofs there is a central role for the lemma

coprimeab ∧ ab = cn =⇒ ∃ k : |a| = kn.

Furthermore, the proof of the case n = 4 uses a parametrisation of the
Pythagorean triples. The proof of the case n = 3 contains a study of the
quadratic form x2 + 3y2. This study is completed with a result on which
prime numbers can be written as x2 + 3y2.

The case n = 4 of FLT, in contrast to the case n = 3, has already
been formalised (in the proof assistant Coq) [DM05]. The parametrisation of
the Pythagorean Triples can be found as number 23 on the list of ‘top 100
mathematical theorems’ [Wie].

This research is part of an M.Sc. thesis under supervision of Jaap Top
and Wim H. Hesselink (RU Groningen). The author wants to thank Clemens
Ballarin (TU München) and Freek Wiedijk (RU Nijmegen) for their support.
For more information see [Oos07].
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1 Pythagorean triples and Fermat’s last theorem, case
n = 4

theory Fermat4
imports HOL−Computational-Algebra.Primes
begin

context
begin

private lemma nat-relprime-power-divisors:
assumes n0 : 0 < n and abc: (a::nat)∗b = c^n and relprime: coprime a b
shows ∃ k. a = k^n

using assms proof (induct c arbitrary: a b rule: nat-less-induct)
case (1 c)

show ?case
proof (cases a > 1 )
case False

hence a = 0 ∨ a = 1 by linarith
thus ?thesis using n0 power-one zero-power by (simp only: eq-sym-conv) blast

next
case True

then obtain p where p: prime p p dvd a using prime-factor-nat[of a] by blast
hence h1 : p dvd (c^n) using 1 (3 ) dvd-mult2 [of p a b] by presburger
hence (p^n) dvd (c^n)

using p(1 ) prime-dvd-power-nat[of p c n] dvd-power-same[of p c n] by blast
moreover have h2 : ¬ p dvd b

using p ‹coprime a b› coprime-common-divisor-nat [of a b p] by auto
hence ¬ (p^n) dvd b using n0 p(1 )

by (auto intro: dvd-trans dvd-power [of n p])
ultimately have (p^n) dvd a

using 1 .prems p(1 ) prime-elem-divprod-pow [of p a b n] by simp
then obtain a ′ c ′ where ac: a = p^n ∗ a ′ c = p ∗ c ′

using h1 dvdE [of p^n a] dvdE [of p c] prime-dvd-power-nat[of p c n] p(1 ) by meson
hence p^n ∗ (a ′ ∗ b) = p^n ∗ c ′̂ n using 1 (3 )

by (simp add: power-mult-distrib semiring-normalization-rules(18 ))
hence a ′ ∗ b = c ′̂ n using p(1 ) by auto
moreover have coprime a ′ b using 1 (4 ) ac(1 )

by (simp add: ac-simps)
moreover have 0 < b 0 < a using h2 dvd-0-right gr0I True by fastforce+
then have 0 < c 1 < p

using p ‹a ∗ b = c ^ n› n0 nat-0-less-mult-iff [of a b] n0
by (auto simp add: prime-gt-Suc-0-nat)

hence c ′ < c using ac(2 ) by simp
ultimately obtain k where a ′ = k^n using 1 (1 ) n0 by presburger
hence a = (p∗k)^n using ac(1 ) by (simp add: power-mult-distrib)
thus ?thesis by blast

qed
qed
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private lemma int-relprime-power-divisors:
assumes 0 < n and 0 ≤ a and 0 ≤ b and (a::int) ∗ b = c ^ n and coprime a b
shows ∃ k. a = k^n

proof (cases a = 0 )
case False
from ‹0 ≤ a› ‹0 ≤ b› ‹a ∗ b = c ^ n›[symmetric] have 0 ≤ c ^ n

by simp
hence c^n = |c|^n using power-even-abs[of n c] zero-le-power-eq[of c n] by linarith
hence a ∗ b = |c|^n using assms(4 ) by presburger
hence nat a ∗ nat b = (nat |c|)^n using nat-mult-distrib[of a b] assms(2 )

by (simp add: nat-power-eq)
moreover have 0 ≤ b using assms mult-less-0-iff [of a b] False by auto
with ‹0 ≤ a› ‹coprime a b› have coprime (nat a) (nat b)

using coprime-nat-abs-left-iff [of a nat b] by simp
ultimately have ∃ k. nat a = k^n

using nat-relprime-power-divisors[of n nat a nat b nat |c|] assms(1 ) by blast
thus ?thesis using assms(2 ) int-nat-eq[of a] by fastforce

qed (simp add: zero-power [of n] assms(1 ))

Proof of Fermat’s last theorem for the case n = 4:

∀x, y, z : x4 + y4 = z4 =⇒ xyz = 0.

private lemma nat-power2-diff : a ≥ (b::nat) =⇒ (a−b)^2 = a^2 + b^2 − 2∗a∗b
proof −

assume a-ge-b: a ≥ b
hence a2-ge-b2 : a^2 ≥ b^2 by (simp only: power-mono)
from a-ge-b have ab-ge-b2 : a∗b ≥ b^2 by (simp add: power2-eq-square)
have b∗(a−b) + (a−b)^2 = a∗(a−b) by (simp add: power2-eq-square diff-mult-distrib)
also have . . . = a∗b + a^2 + (b^2 − b^2 ) − 2∗a∗b

by (simp add: diff-mult-distrib2 power2-eq-square)
also with a2-ge-b2 have . . . = a∗b + (a^2 − b^2 ) + b^2 − 2∗a∗b

by (simp add: power2-eq-square)
also with ab-ge-b2 have . . . = (a∗b − b^2 ) + a^2 + b^2 − 2∗a∗b by auto
also have . . . = b∗(a−b) + a^2 + b^2 − 2∗a∗b

by (simp only: diff-mult-distrib2 power2-eq-square mult.commute)
finally show ?thesis by arith

qed

private lemma nat-power-le-imp-le-base: [[ n 6= 0 ; a^n ≤ b^n ]] =⇒ (a::nat) ≤ b
by simp

private lemma nat-power-inject-base: [[ n 6= 0 ; a^n = b^n ]] =⇒ (a::nat) = b
proof −

assume n 6= 0 and ab: a^n = b^n
then obtain m where n = Suc m by (frule-tac n=n in not0-implies-Suc, auto)
with ab have a^Suc m = b^Suc m and a ≥ 0 and b ≥ 0 by auto
thus ?thesis by (rule power-inject-base)

qed

1.1 Parametrisation of Pythagorean triples (over N and Z)
private theorem nat-euclid-pyth-triples:
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assumes abc: (a::nat)^2 + b^2 = c^2 and ab-relprime: coprime a b and aodd: odd a
shows ∃ p q. a = p^2 − q^2 ∧ b = 2∗p∗q ∧ c = p^2 + q^2 ∧ coprime p q

proof −
have two0 : (2 ::nat) 6= 0 by simp
from abc have a2cb: a^2 = c^2 − b^2 by arith
— factor a2 in coprime factors (c− b) and (c+ b); hence both are squares
have a2factor : a^2 = (c−b)∗(c+b)
proof −

have c∗b − c∗b = 0 by simp
with a2cb have a^2 = c∗c + c∗b − c∗b − b∗b by (simp add: power2-eq-square)
also have . . . = c∗(c+b) − b∗(c+b)

by (simp add: add-mult-distrib2 add-mult-distrib mult.commute)
finally show ?thesis by (simp only: diff-mult-distrib)

qed
have a-nonzero: a 6= 0
proof (rule ccontr)

assume ¬ a 6= 0 hence a = 0 by simp
with aodd have odd (0 ::nat) by simp
thus False by simp

qed
have b-less-c: b < c
proof −

from abc have b^2 ≤ c^2 by linarith
with two0 have b ≤ c by (rule-tac n=2 in nat-power-le-imp-le-base)
moreover haveb 6= c
proof

assume b=c with a2cb have a^2 = 0 by simp
with a-nonzero show False by (simp add: power2-eq-square)

qed
ultimately show ?thesis by auto

qed
hence b2-le-c2 : b^2 ≤ c^2 by (simp add: power-mono)
have bc-relprime: coprime b c
proof −

from b2-le-c2 have cancelb2 : c^2−b^2+b^2 = c^2 by auto
let ?g = gcd b c
have ?g^2 = gcd (b^2 ) (c^2 ) by simp
with cancelb2 have ?g^2 = gcd (b^2 ) (c^2−b^2+b^2 ) by simp
hence ?g^2 = gcd (b^2 ) (c^2−b^2 ) using gcd-add2 [of b^2 c^2 − b^2 ]

by (simp add: algebra-simps del: gcd-add1 )
with a2cb have ?g^2 dvd a^2 by (simp only: gcd-dvd2 )
hence ?g dvd a ∧ ?g dvd b by simp
hence ?g dvd gcd a b by (simp only: gcd-greatest)
with ab-relprime show ?thesis

by (simp add: ac-simps gcd-eq-1-imp-coprime)
qed
have p2 : prime (2 ::nat) by simp
have factors-odd: odd (c−b) ∧ odd (c+b)
proof (auto simp only: ccontr)

assume even (c−b)
with a2factor have 2 dvd a^2 by (simp only: dvd-mult2 )
with p2 have 2 dvd a by auto



6 1 Pythagorean triples and Fermat’s last theorem, case n = 4

with aodd show False by simp
next

assume even (c+b)
with a2factor have 2 dvd a^2 by (simp only: dvd-mult)
with p2 have 2 dvd a by auto
with aodd show False by simp

qed
have cb1 : c−b + (c+b) = 2∗c
proof −

have c−b + (c+b) = ((c−b)+b)+c by simp
also with b-less-c have . . . = (c+b−b)+c by (simp only: diff-add-assoc2 )
also have . . . = c+c by simp
finally show ?thesis by simp

qed
have cb2 : 2∗b + (c−b) = c+b
proof −

have 2∗b + (c−b) = b+b + (c − b) by auto
also have . . . = b + ((c−b)+b) by simp
also with b-less-c have . . . = b + (c+b−b) by (simp only: diff-add-assoc2 )
finally show ?thesis by simp

qed
have factors-relprime: coprime (c−b) (c+b)
proof −

let ?g = gcd (c−b) (c+b)
have cb1 : c−b + (c+b) = 2∗c
proof −

have c−b + (c+b) = ((c−b)+b)+c by simp
also with b-less-c have . . . = (c+b−b)+c by (simp only: diff-add-assoc2 )
also have . . . = c+c by simp
finally show ?thesis by simp

qed
have ?g = gcd (c−b + (c+b)) (c+b) by simp
with cb1 have ?g = gcd (2∗c) (c+b) by (rule-tac a=c−b + (c+b) in back-subst)
hence g2c: ?g dvd 2∗c by (simp only: gcd-dvd1 )
have gcd (c−b) (2∗b + (c−b)) = gcd (c−b) (2∗b)

using gcd-add2 [of c − b 2∗b + (c − b)] by (simp add: algebra-simps)
with cb2 have ?g = gcd (c−b) (2∗b) by (rule-tac a=2∗b + (c−b) in back-subst)
hence g2b: ?g dvd 2∗b by (simp only: gcd-dvd2 )
with g2c have ?g dvd 2 ∗ gcd b c by (simp only: gcd-greatest gcd-mult-distrib-nat)
with bc-relprime have ?g dvd 2 by simp
moreover have ?g 6= 0

using b-less-c by auto
ultimately have 1 ≤ ?g ?g ≤ 2

by (simp-all add: dvd-imp-le)
then have g1or2 : ?g = 2 ∨ ?g = 1

by arith
moreover have ?g 6= 2
proof

assume ?g = 2
moreover have ?g dvd c − b

by simp
ultimately show False
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using factors-odd by simp
qed
ultimately show ?thesis

by (auto intro: gcd-eq-1-imp-coprime)
qed
from a2factor have (c−b)∗(c+b) = a^2 and (2 ::nat) >1 by auto
with factors-relprime have ∃ k. c−b = k^2

by (simp only: nat-relprime-power-divisors)
then obtain r where r : c−b = r^2 by auto
from a2factor have (c+b)∗(c−b) = a^2 and (2 ::nat) >1 by auto
with factors-relprime have ∃ k. c+b = k^2

by (simp only: nat-relprime-power-divisors ac-simps)
then obtain s where s: c+b = s^2 by auto
— now p := (s+ r)/2 and q := (s− r)/2 is our solution
have rs-odd: odd r ∧ odd s
proof (auto dest: ccontr)

assume even r hence 2 dvd rby presburger
with r have 2 dvd (c−b) by (simp only: power2-eq-square dvd-mult)
with factors-odd show False by auto

next
assume even s hence 2 dvd s by presburger
with s have 2 dvd (c+b) by (simp only: power2-eq-square dvd-mult)
with factors-odd show False by auto

qed
obtain m where m: m = s−r by simp
from r s have r^2 ≤ s^2 by arith
with two0 have r ≤ s by (rule-tac n=2 in nat-power-le-imp-le-base)
with m have m2 : s = r + m by simp
have even m
proof (rule ccontr)

assume odd m with rs-odd and m2 show False by presburger
qed
then obtain q where m = 2∗q ..
with m2 have q: s = r + 2∗q by simp
obtain p where p: p = r+q by simp
have c: c = p^2 + q^2
proof −

from cb1 and r and s have 2∗c = r^2 + s^2 by simp
also with q have . . . = 2∗r^2+(2∗q)^2+2∗r∗(2∗q) by algebra
also have . . . = 2∗r^2+2^2∗q^2+2∗2∗q∗r by (simp add: power-mult-distrib)
also have . . . = 2∗(r^2+2∗q∗r+q^2 )+2∗q^2 by (simp add: power2-eq-square)
also with p have . . . = 2∗p^2+2∗q^2 by algebra
finally show ?thesis by auto

qed
moreover have b: b = 2∗p∗q
proof −

from cb2 and r and s have 2∗b = s^2 − r^2 by arith
also with q have . . . = (2∗q)^2 + 2∗r∗(2∗q) by (simp add: power2-sum)
also with p have . . . = 4∗q∗p by (simp add: power2-eq-square add-mult-distrib2 )
finally show ?thesis by auto

qed
moreover have a: a = p^2 − q^2
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proof −
from p have p≥q by simp
hence p2-ge-q2 : p^2 ≥ q^2 by (simp only: power-mono)
from a2cb and b and c have a^2 = (p^2 + q^2 )^2 − (2∗p∗q)^2 by simp
also have . . . = (p^2 )^2 + (q^2 )^2 − 2∗(p^2 )∗(q^2 )

by (auto simp add: power2-sum power-mult-distrib ac-simps)
also with p2-ge-q2 have . . . = (p^2 − q^2 )^2 by (simp only: nat-power2-diff )
finally have a^2 = (p^2 − q^2 )^2 by simp
with two0 show ?thesis by (rule-tac n=2 in nat-power-inject-base)

qed
moreover have coprime p q
proof −

let ?k = gcd p q
have ?k dvd p ∧ ?k dvd q by simp
with b and a have ?k dvd a ∧ ?k dvd b

by (simp add: power2-eq-square)
hence ?k dvd gcd a b by (simp only: gcd-greatest)
with ab-relprime show ?thesis

by (auto intro: gcd-eq-1-imp-coprime)
qed
ultimately show ?thesis by auto

qed

Now for the case of integers. Based on nat-euclid-pyth-triples.
private corollary int-euclid-pyth-triples: [[ coprime (a::int) b; odd a; a^2 + b^2 = c^2
]]
=⇒ ∃ p q. a = p^2 − q^2 ∧ b = 2∗p∗q ∧ |c| = p^2 + q^2 ∧ coprime p q

proof −
assume ab-rel: coprime a b and aodd: odd a and abc: a^2 + b^2 = c^2
let ?a = nat|a|
let ?b = nat|b|
let ?c = nat|c|
have ab2-pos: a^2 ≥ 0 ∧ b^2 ≥ 0 by simp
hence nat(a^2 ) + nat(b^2 ) = nat(a^2 + b^2 ) by (simp only: nat-add-distrib)
with abc have nat(a^2 ) + nat(b^2 ) = nat(c^2 ) by presburger
hence nat(|a|^2 ) + nat(|b|^2 ) = nat(|c|^2 ) by simp
hence new-abc: ?a^2 + ?b^2 = ?c^2

by (simp only: nat-mult-distrib power2-eq-square nat-add-distrib)
moreover from ab-rel have new-ab-rel: coprime ?a ?b

by (simp add: gcd-int-def )
moreover have new-a-odd: odd ?a using aodd

by simp
ultimately have
∃ p q. ?a = p^2−q^2 ∧ ?b = 2∗p∗q ∧ ?c = p^2 + q^2 ∧ coprime p q
by (rule-tac a=?a and b = ?b and c=?c in nat-euclid-pyth-triples)

then obtain m and n where mn:
?a = m^2−n^2 ∧ ?b = 2∗m∗n ∧ ?c = m^2 + n^2 ∧ coprime m n by auto

have n^2 ≤ m^2
proof (rule ccontr)

assume ¬ n^2 ≤ m^2
with mn have ?a = 0 by auto
with new-a-odd show False by simp
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qed
moreover from mn have int ?a = int(m^2 − n^2 ) and int ?b = int(2∗m∗n)

and int ?c = int(m^2 + n^2 ) by auto
ultimately have |a| = int(m^2 ) − int(n^2 ) and |b| = int(2∗m∗n)

and |c| = int(m^2 ) + int(n^2 ) by (simp add: of-nat-diff )+
hence absabc: |a| = (int m)^2 − (int n)^2 ∧ |b| = 2∗(int m)∗int n
∧ |c| = (int m)^2 + (int n)^2 by (simp add: power2-eq-square)

from mn have mn-rel: coprime (int m) (int n)
by (simp add: gcd-int-def )

show ∃ p q. a = p^2 − q^2 ∧ b = 2∗p∗q ∧ |c| = p^2 + q^2 ∧ coprime p q
(is ∃ p q. ?Q p q)

proof (cases)
assume apos: a ≥ 0 then obtain p where p: p = int m by simp
hence ∃ q. ?Q p q
proof (cases)

assume bpos: b ≥ 0 then obtain q where q = int n by simp
with p apos bpos absabc mn-rel have ?Q p q by simp
thus ?thesis by (rule exI )

next
assume ¬ b≥0 hence bneg: b<0 by simp
then obtain q where q = − int n by simp
with p apos bneg absabc mn-rel have ?Q p q by simp
thus ?thesis by (rule exI )

qed
thus ?thesis by (simp only: exI )

next
assume ¬ a≥0 hence aneg: a<0 by simp
then obtain p where p: p = int n by simp
hence ∃ q. ?Q p q
proof (cases)

assume bpos: b ≥ 0 then obtain q where q = int m by simp
with p aneg bpos absabc mn-rel have ?Q p q

by (simp add: ac-simps)
thus ?thesis by (rule exI )

next
assume ¬ b≥0 hence bneg: b<0 by simp
then obtain q where q = − int m by simp
with p aneg bneg absabc mn-rel have ?Q p q

by (simp add: ac-simps)
thus ?thesis by (rule exI )

qed
thus ?thesis by (simp only: exI )

qed
qed

1.2 Fermat’s last theorem, case n = 4

Core of the proof. Constructs a smaller solution over Z of

a4 + b4 = c2 ∧ coprime a b ∧ abc 6= 0 ∧ a odd.

private lemma smaller-fermat4 :
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assumes abc: (a::int)^4+b^4=c^2 and abc0 : a∗b∗c 6= 0 and aodd: odd a
and ab-relprime: coprime a b

shows
∃ p q r . (p^4+q^4=r^2 ∧ p∗q∗r 6= 0 ∧ odd p ∧ coprime p q ∧ r^2 < c^2 )

proof −
— put equation in shape of a pythagorean triple and obtain u and v
from ab-relprime have a2b2relprime: coprime (a^2 ) (b^2 )

by simp
moreover from aodd have odd (a^2 ) by presburger
moreover from abc have (a^2 )^2 + (b^2 )^2 = c^2 by simp
ultimately obtain u and v where uvabc:

a^2 = u^2−v^2 ∧ b^2 = 2∗u∗v ∧ |c| = u^2 + v^2 ∧ coprime u v
by (frule-tac a=a^2 in int-euclid-pyth-triples, auto)

with abc0 have uv0 : u 6=0 ∧ v 6=0 by auto
have av-relprime: coprime a v
proof −

have gcd a v dvd gcd (a^2 ) v by (simp add: power2-eq-square)
moreover from uvabc have gcd v (a^2 ) dvd gcd (b^2 ) (a^2 )

by simp
with a2b2relprime have gcd (a^2 ) v dvd (1 ::int)

by (simp add: ac-simps)
ultimately have gcd a v dvd 1

by (rule dvd-trans)
then show ?thesis

by (simp add: gcd-eq-1-imp-coprime)
qed
— make again a pythagorean triple and obtain k and l
from uvabc have a^2 + v^2 = u^2 by simp
with av-relprime and aodd obtain k l where

klavu: a = k^2−l^2 ∧ v = 2∗k∗l ∧ |u| = k^2+l^2 and kl-rel: coprime k l
by (frule-tac a=a in int-euclid-pyth-triples, auto)

— prove b = 2m and kl(k2 + l2) = m2, for coprime k, l and k2 + l2

from uvabc have even (b^2 ) by simp
hence even b by simp
then obtain m where bm: b = 2∗m using evenE by blast
have |k|∗|l|∗|k^2+l^2 | = m^2
proof −

from bm have 4∗m^2 = b^2 by (simp only: power2-eq-square ac-simps)
also have . . . = |b^2 | by simp
also with uvabc have . . . = 2∗|v|∗||u|| by (simp add: abs-mult)
also with klavu have . . . = 2∗|2∗k∗l|∗|k^2+l^2 | by simp
also have . . . = 4∗|k|∗|l|∗|k^2+l^2 | by (auto simp add: abs-mult)
finally show ?thesis by simp

qed
moreover have (2 ::nat) > 1 by auto
moreover from kl-rel have coprime |k| |l| by simp
moreover have coprime |l| (|k^2+l^2 |)
proof −

from kl-rel have coprime (k∗k) l
by simp

hence coprime (k∗k+l∗l) l using gcd-add-mult [of l l k∗k]
by (simp add: ac-simps gcd-eq-1-imp-coprime)
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hence coprime l (k^2+l^2 )
by (simp add: power2-eq-square ac-simps)

thus ?thesis by simp
qed
moreover have coprime |k^2+l^2 | |k|
proof −

from kl-rel have coprime l k
by (simp add: ac-simps)

hence coprime (l∗l) k
by simp

hence coprime (l∗l+k∗k) k using gcd-add-mult[of k k l∗l]
by (simp add: ac-simps gcd-eq-1-imp-coprime)

hence coprime (k^2+l^2 ) k
by (simp add: power2-eq-square ac-simps)

thus ?thesis by simp
qed
ultimately have ∃ x y z. |k| = x^2 ∧ |l| = y^2 ∧ |k^2+l^2 | = z^2

using int-relprime-power-divisors[of 2 |k| |l| ∗ |k2 + l2| m]
int-relprime-power-divisors[of 2 |l| |k| ∗ |k2 + l2| m]
int-relprime-power-divisors[of 2 |k2 + l2| |k|∗|l| m]

by (simp-all add: ac-simps)
then obtain α β γ where albega:
|k| = α^2 ∧ |l| = β^2 ∧ |k^2+l^2 | = γ^2
by auto

— show this is a new solution
have k^2 = α^4
proof −

from albega have |k|^2 = (α^2 )^2 by simp
thus ?thesis by simp

qed
moreover have l^2 = β^4
proof −

from albega have |l|^2 = (β^2 )^2 by simp
thus ?thesis by simp

qed
moreover have gamma2 : k^2 + l^2 = γ^2
proof −

have k^2 ≥ 0 ∧ l^2 ≥ 0 by simp
with albega show ?thesis by auto

qed
ultimately have newabc: α^4 + β^4 = γ^2 by auto
from uv0 klavu albega have albega0 : α ∗ β ∗ γ 6= 0 by auto
— show the coprimality
have alphabeta-relprime: coprime α β
proof (rule classical)

let ?g = gcd α β
assume ¬ coprime α β
then have gnot1 : ?g 6= 1

by (auto intro: gcd-eq-1-imp-coprime)
have ?g > 1
proof −

have ?g 6= 0
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proof
assume ?g=0
hence nat |α|=0 by simp
hence α=0 by arith
with albega0 show False by simp

qed
hence ?g>0 by auto
with gnot1 show ?thesis by linarith

qed
moreover have ?g dvd gcd k l
proof −

have ?g dvd α ∧ ?g dvd β by auto
with albega have ?g dvd |k| ∧ ?g dvd |l|

by (simp add: power2-eq-square mult.commute)
hence ?g dvd k ∧ ?g dvd l by simp
thus ?thesis by simp

qed
ultimately have gcd k l 6= 1 by fastforce
with kl-rel show ?thesis by auto

qed
— choose p and q in the right way
have ∃ p q. p^4 + q^4 = γ^2 ∧ p∗q∗γ 6= 0 ∧ odd p ∧ coprime p q
proof −

have odd α ∨ odd β
proof (rule ccontr)

assume ¬ (odd α ∨ odd β)
hence even α ∧ even β by simp
then have 2 dvd α ∧ 2 dvd β by simp
then have 2 dvd gcd α β by simp
with alphabeta-relprime show False by auto

qed
moreover
{ assume odd α

with newabc albega0 alphabeta-relprime obtain p q where
p=α ∧ q=β ∧ p^4 + q^4 = γ^2 ∧ p∗q∗γ 6= 0 ∧ odd p ∧ coprime p q
by auto

hence ?thesis by auto }
moreover
{ assume odd β

with newabc albega0 alphabeta-relprime obtain p q where
q=α ∧ p=β ∧ p^4 + q^4 = γ^2 ∧ p∗q∗γ 6= 0 ∧ odd p ∧ coprime p q
by (auto simp add: ac-simps)

hence ?thesis by auto }
ultimately show ?thesis by auto

qed
— show the solution is smaller
moreover have γ^2 < c^2
proof −

from gamma2 klavu have γ^2 ≤ |u| by simp
also have h1 : . . . ≤ |u|^2 using self-le-power [of |u| 2 ] uv0 by auto
also have h2 : . . . ≤ u^2 by simp
also have h3 : . . . < u^2 + v^2
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proof −
from uv0 have v2non0 : 0 6= v^2

by simp
have 0 ≤ v^2 by (rule zero-le-power2 )
with v2non0 have 0 < v^2 by (auto simp add: less-le)
thus ?thesis by auto

qed
also with uvabc have . . . ≤ |c| by auto
also have . . . ≤ |c|^2 using self-le-power [of |c| 2 ] h1 h2 h3 uvabc by linarith
also have . . . ≤ c^2 by simp
finally show ?thesis by simp

qed
ultimately show ?thesis by auto

qed

Show that no solution exists, by infinite descent of c2.
private lemma no-rewritten-fermat4 :
¬ (∃ (a::int) b. (a^4 + b^4 = c^2 ∧ a∗b∗c 6= 0 ∧ odd a ∧ coprime a b))

proof (induct c rule: infinite-descent0-measure[where V=λc. nat(c^2 )])
case (0 x)
have x^2 ≥ 0 by (rule zero-le-power2 )
with 0 have int(nat(x^2 )) = 0 by auto
hence x = 0 by auto
thus ?case by auto

next
case (smaller x)
then obtain a b where a^4 + b^4 = x^2 and a∗b∗x 6= 0

and odd a and coprime a b by auto
hence ∃ p q r . (p^4+q^4=r^2 ∧ p∗q∗r 6= 0 ∧ odd p
∧ coprime p q ∧ r^2 < x^2 ) by (rule smaller-fermat4 )

then obtain p q r where pqr : p^4 + q^4 = r^2 ∧ p∗q∗r 6= 0 ∧ odd p
∧ coprime p q ∧ r^2 < x^2 by auto

have r^2 ≥ 0 and x^2 ≥ 0 by (auto simp only: zero-le-power2 )
hence int(nat(r^2 )) = r^2 ∧ int(nat(x^2 )) = x^2 by auto
with pqr have int(nat(r^2 )) < int(nat(x^2 )) by auto
hence nat(r^2 ) < nat(x^2 ) by presburger
with pqr show ?case by auto

qed

The theorem. Puts equation in requested shape.
theorem fermat-4 :

assumes ass: (x::int)^4 + y^4 = z^4
shows x∗y∗z=0

proof (rule ccontr)
let ?g = gcd x y
let ?c = (z div ?g)^2
assume xyz0 : x∗y∗z 6= 0
— divide out the g.c.d.
hence x 6= 0 ∨ y 6= 0 by simp
then obtain a b where ab: x = ?g∗a ∧ y = ?g∗b ∧ coprime a b

using gcd-coprime-exists[of x y] by (auto simp: mult.commute)
moreover have abc: a^4 + b^4 = ?c^2 ∧ a∗b∗?c 6= 0
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proof −
have zgab: z^4 = ?g^4 ∗ (a^4+b^4 )
proof −

from ab ass have z^4 = (?g∗a)^4+(?g∗b)^4 by simp
thus ?thesis by (simp only: power-mult-distrib distrib-left)

qed
have cgz: z^2 = ?c ∗ ?g^2
proof −

from zgab have ?g^4 dvd z^4 by simp
hence ?g dvd z by simp
hence (z div ?g)∗?g = z by (simp only: ac-simps dvd-mult-div-cancel)
with ab show ?thesis by (auto simp only: power2-eq-square ac-simps)

qed
with xyz0 have c0 : ?c 6=0 by (auto simp add: power2-eq-square)
from xyz0 have g0 : ?g 6=0 by simp
have a^4 + b^4 = ?c^2
proof −

have ?c^2 ∗ ?g^4 = (a^4+b^4 )∗?g^4
proof −

have ?c^2 ∗ ?g^4 = (?c∗?g^2 )^2 by algebra
also with cgz have . . . = (z^2 )^2 by simp
also have . . . = z^4 by algebra
also with zgab have . . . = ?g^4∗(a^4+b^4 ) by simp
finally show ?thesis by simp

qed
with g0 show ?thesis by auto

qed
moreover from ab xyz0 c0 have a∗b∗?c 6=0 by auto
ultimately show ?thesis by simp

qed
— choose the parity right
have ∃ p q. p^4 + q^4 = ?c^2 ∧ p∗q∗?c 6=0 ∧ odd p ∧ coprime p q
proof −

have odd a ∨ odd b
proof (rule ccontr)

assume ¬(odd a ∨ odd b)
hence 2 dvd a ∧ 2 dvd b by simp
hence 2 dvd gcd a b by simp
with ab show False by auto

qed
moreover
{ assume odd a

then obtain p q where p = a and q = b and odd p by simp
with ab abc have ?thesis by auto }

moreover
{ assume odd b

then obtain p q where p = b and q = a and odd p by simp
with ab abc have

p^4 + q^4 = ?c^2 ∧ p∗q∗?c 6=0 ∧ odd p ∧ coprime p q
by (simp add: ac-simps)

hence ?thesis by auto }
ultimately show ?thesis by auto
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qed
— show contradiction using the earlier result
thus False by (auto simp only: no-rewritten-fermat4 )

qed

corollary fermat-mult4 :
assumes xyz: (x::int)^n + y^n = z^n and n: 4 dvd n
shows x∗y∗z=0

proof −
from n obtain m where n = m∗4 by (auto simp only: ac-simps dvd-def )
with xyz have (x^m)^4 + (y^m)^4 = (z^m)^4 by (simp only: power-mult)
hence (x^m)∗(y^m)∗(z^m) = 0 by (rule fermat-4 )
thus ?thesis by auto

qed

end

end

2 The quadratic form x2 +Ny2

theory Quad-Form
imports

HOL−Number-Theory.Number-Theory
begin

context
begin

Shows some properties of the quadratic form x2+Ny2, such as how to multiply
and divide them. The second part focuses on the case N = 3 and is used in the
proof of the case n = 3 of Fermat’s last theorem. The last part – not used for
FLT3 – shows which primes can be written as x2 + 3y2.

2.1 Definitions and auxiliary results
private lemma best-division-abs: (n::int) > 0 =⇒ ∃ k. 2 ∗ |a − k∗n| ≤ n
proof −

assume a: n > 0
define k where k = a div n
have h: a − k ∗ n = a mod n by (simp add: div-mult-mod-eq algebra-simps k-def )
thus ?thesis
proof (cases 2 ∗ (a mod n) ≤ n)

case True
hence 2 ∗ |a − k∗n| ≤ n using h pos-mod-sign a by auto
thus ?thesis by blast

next
case False
hence 2 ∗ (n − a mod n) ≤ n by auto
have a − (k+1 )∗n = a mod n − n using h by (simp add: algebra-simps)
hence 2 ∗ |a − (k+1 )∗n| ≤ n using h pos-mod-bound[of n a] a False by fastforce
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thus ?thesis by blast
qed

qed

lemma prime-power-dvd-cancel-right:
p ^ n dvd a if prime (p:: ′a::semiring-gcd) ¬ p dvd b p ^ n dvd a ∗ b

proof −
from that have coprime p b

by (auto intro: prime-imp-coprime)
with that show ?thesis

by (simp add: coprime-dvd-mult-left-iff )
qed

definition
is-qfN :: int ⇒ int ⇒ bool where
is-qfN A N ←→ (∃ x y. A = x^2 + N∗y^2 )

definition
is-cube-form :: int ⇒ int ⇒ bool where
is-cube-form a b ←→ (∃ p q. a = p^3 − 9∗p∗q^2 ∧ b = 3∗p^2∗q − 3∗q^3 )

private lemma abs-eq-impl-unitfactor : |a::int| = |b| =⇒ ∃ u. a = u∗b ∧ |u|=1
proof −

assume |a| = |b|
hence a = 1∗b ∨ a = (−1 )∗b by arith
then obtain u where a = u∗b ∧ (u=1 ∨ u=−1 ) by blast
thus ?thesis by auto

qed

private lemma prime-3-nat: prime (3 ::nat) by auto

2.2 Basic facts if N ≥ 1

lemma qfN-pos: [[ N ≥ 1 ; is-qfN A N ]] =⇒ A ≥ 0
proof −

assume N : N ≥ 1 and is-qfN A N
then obtain a b where ab: A = a^2 + N∗b^2 by (auto simp add: is-qfN-def )
have N∗b^2 ≥ 0
proof (cases)

assume b = 0 thus ?thesis by auto
next

assume ¬ b = 0 hence b^2 > 0 by simp
moreover from N have N>0 by simp
ultimately have N∗b^2 > N∗0 by (auto simp only: zmult-zless-mono2 )
thus ?thesis by auto

qed
with ab have A ≥ a^2 by auto
moreover have a^2 ≥ 0 by (rule zero-le-power2 )
ultimately show ?thesis by arith

qed

lemma qfN-zero: [[ (N ::int) ≥ 1 ; a^2 + N∗b^2 = 0 ]] =⇒ (a = 0 ∧ b = 0 )
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proof −
assume N : N ≥ 1 and abN : a^2 + N∗b^2 = 0
show ?thesis
proof (rule ccontr , auto)

assume a 6= 0 hence a^2 > 0 by simp
moreover have N∗b^2 ≥ 0
proof (cases)

assume b = 0 thus ?thesis by auto
next

assume ¬ b = 0 hence b^2 > 0 by simp
moreover from N have N>0 by simp
ultimately have N∗b^2 > N∗0 by (auto simp only: zmult-zless-mono2 )
thus ?thesis by auto

qed
ultimately have a^2 + N∗b^2 > 0 by arith
with abN show False by auto

next
assume b 6= 0 hence b^2>0 by simp
moreover from N have N>0 by simp
ultimately have N∗b^2>N∗0 by (auto simp only: zmult-zless-mono2 )
hence N∗b^2 > 0 by simp
moreover have a^2 ≥ 0 by (rule zero-le-power2 )
ultimately have a^2 + N∗b^2 > 0 by arith
with abN show False by auto

qed
qed

2.3 Multiplication and division
lemma qfN-mult1 : ((a::int)^2 + N∗b^2 )∗(c^2 + N∗d^2 )
= (a∗c+N∗b∗d)^2 + N∗(a∗d−b∗c)^2
by (simp add: eval-nat-numeral field-simps)

lemma qfN-mult2 : ((a::int)^2 + N∗b^2 )∗(c^2 + N∗d^2 )
= (a∗c−N∗b∗d)^2 + N∗(a∗d+b∗c)^2
by (simp add: eval-nat-numeral field-simps)

corollary is-qfN-mult: is-qfN A N =⇒ is-qfN B N =⇒ is-qfN (A∗B) N
by (unfold is-qfN-def , auto, auto simp only: qfN-mult1 )

corollary is-qfN-power : (n::nat) > 0 =⇒ is-qfN A N =⇒ is-qfN (A^n) N
by (induct n, auto, case-tac n=0 , auto simp add: is-qfN-mult)

lemma qfN-div-prime:
fixes p :: int
assumes ass: prime (p^2+N∗q^2 ) ∧ (p^2+N∗q^2 ) dvd (a^2+N∗b^2 )
shows ∃ u v. a^2+N∗b^2 = (u^2+N∗v^2 )∗(p^2+N∗q^2 )

∧ (∃ e. a = p∗u+e∗N∗q∗v ∧ b = p∗v − e∗q∗u ∧ |e|=1 )
proof −

let ?P = p^2+N∗q^2
let ?A = a^2+N∗b^2
from ass obtain U where U : ?A = ?P∗U by (auto simp only: dvd-def )
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have ∃ e. ?P dvd b∗p + e∗a∗q ∧ |e| = 1
proof −

have ?P dvd (b∗p + a∗q)∗(b∗p − a∗q)
proof −

have (b∗p + a∗q)∗(b∗p − a∗q)= b^2∗?P − q^2∗?A
by (simp add: eval-nat-numeral field-simps)

also from U have . . . = (b^2 − q^2∗U )∗?P by (simp add: field-simps)
finally show ?thesis by simp

qed
with ass have ?P dvd (b∗p + a∗q) ∨ ?P dvd (b∗p − a∗q)

by (simp add: nat-abs-mult-distrib prime-int-iff prime-dvd-mult-iff )
moreover
{ assume ?P dvd b∗p + a∗q

hence ?P dvd b∗p + 1∗a∗q ∧ |1 | = (1 ::int) by simp }
moreover
{ assume ?P dvd b∗p − a∗q

hence ?P dvd b∗p + (−1 )∗a∗q ∧ |−1 | = (1 ::int) by simp }
ultimately show ?thesis by blast

qed
then obtain v e where v: b∗p + e∗a∗q = ?P∗v and e: |e| = 1

by (auto simp only: dvd-def )
have ?P dvd a∗p − e∗N∗b∗q
proof (cases)

assume e1 : e = 1
from U have U ∗ ?P^2 = ?A ∗ ?P by (simp add: power2-eq-square)
also with e1 have . . . = (a∗p−e∗N∗b∗q)^2 + N∗(b∗p+e∗a∗q)^2

by (simp only: qfN-mult2 add.commute mult-1-left)
also with v have . . . = (a∗p−e∗N∗b∗q)^2 + N∗v^2∗?P^2

by (simp only: power-mult-distrib ac-simps)
finally have (a∗p−e∗N∗b∗q)^2 = ?P^2∗(U−N∗v^2 )

by (simp add: ac-simps left-diff-distrib)
hence ?P^2 dvd (a∗p − e∗N∗b∗q)^2 by (rule dvdI )
thus ?thesis by simp

next
assume ¬ e=1 with e have e1 : e=−1 by auto
from U have U ∗ ?P^2 = ?A ∗ ?P by (simp add: power2-eq-square)
also with e1 have . . . = (a∗p−e∗N∗b∗q)^2 + N∗( −(b∗p+e∗a∗q))^2

by (simp add: qfN-mult1 )
also have . . . = (a∗p−e∗N∗b∗q)^2 + N∗(b∗p+e∗a∗q)^2

by (simp only: power2-minus)
also with v have . . . = (a∗p−e∗N∗b∗q)^2 + N∗v^2∗?P^2

by (simp only: power-mult-distrib ac-simps)
finally have (a∗p−e∗N∗b∗q)^2 = ?P^2∗(U−N∗v^2 )

by (simp add: ac-simps left-diff-distrib)
hence ?P^2 dvd (a∗p−e∗N∗b∗q)^2 by (rule dvdI )
thus ?thesis by simp

qed
then obtain u where u: a∗p − e∗N∗b∗q = ?P∗u by (auto simp only: dvd-def )
from e have e2-1 : e ∗ e = 1

using abs-mult-self-eq [of e] by simp
have a: a = p∗u + e∗N∗q∗v
proof −
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have (p∗u + e∗N∗q∗v)∗?P = p∗(?P∗u) + (e∗N∗q)∗(?P∗v)
by (simp only: distrib-right ac-simps)

also with v u have . . . = p∗(a∗p − e∗N∗b∗q) + (e∗N∗q)∗(b∗p + e∗a∗q)
by simp

also have . . . = a∗(p^2 + e∗e∗N∗q^2 )
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)

also with e2-1 have . . . = a∗?P by simp
finally have (a−(p∗u+e∗N∗q∗v))∗?P = 0 by auto
moreover from ass have ?P 6= 0 by auto
ultimately show ?thesis by simp

qed
moreover have b: b = p∗v−e∗q∗u
proof −

have (p∗v−e∗q∗u)∗?P = p∗(?P∗v) − (e∗q)∗(?P∗u)
by (simp only: left-diff-distrib ac-simps)

also with v u have . . . = p∗(b∗p+e∗a∗q) − e∗q∗(a∗p−e∗N∗b∗q) by simp
also have . . . = b∗(p^2 + e∗e∗N∗q^2 )

by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)
also with e2-1 have . . . = b ∗ ?P by simp
finally have (b−(p∗v−e∗q∗u))∗?P = 0 by auto
moreover from ass have ?P 6= 0 by auto
ultimately show ?thesis by simp

qed
moreover have ?A = (u^2 + N∗v^2 )∗?P
proof (cases)

assume e=1
with a and b show ?thesis by (simp add: qfN-mult1 ac-simps)

next
assume ¬ e=1 with e have e=−1 by simp
with a and b show ?thesis by (simp add: qfN-mult2 ac-simps)

qed
moreover from e have |e| = 1 .
ultimately show ?thesis by blast

qed

corollary qfN-div-prime-weak:
[[ prime (p^2+N∗q^2 ::int); (p^2+N∗q^2 ) dvd (a^2+N∗b^2 ) ]]
=⇒ ∃ u v. a^2+N∗b^2 = (u^2+N∗v^2 )∗(p^2+N∗q^2 )
apply (subgoal-tac ∃ u v. a^2+N∗b^2 = (u^2+N∗v^2 )∗(p^2+N∗q^2 )
∧ (∃ e. a = p∗u+e∗N∗q∗v ∧ b = p∗v − e∗q∗u ∧ |e|=1 ), blast)

apply (rule qfN-div-prime, auto)
done

corollary qfN-div-prime-general: [[ prime P; P dvd A; is-qfN A N ; is-qfN P N ]]
=⇒ ∃ Q. A = Q∗P ∧ is-qfN Q N
apply (subgoal-tac ∃ u v. A = (u^2+N∗v^2 )∗P)
apply (unfold is-qfN-def , auto)
apply (simp only: qfN-div-prime-weak)

done

lemma qfN-power-div-prime:
fixes P :: int
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assumes ass: prime P ∧ odd P ∧ P dvd A ∧ P^n = p^2+N∗q^2
∧ A^n = a^2+N∗b^2 ∧ coprime a b ∧ coprime p (N∗q) ∧ n>0
shows ∃ u v. a^2+N∗b^2 = (u^2 + N∗v^2 )∗(p^2+N∗q^2 ) ∧ coprime u v

∧ (∃ e. a = p∗u+e∗N∗q∗v ∧ b = p∗v−e∗q∗u ∧ |e| = 1 )
proof −

from ass have P dvd A ∧ n>0 by simp
hence P^n dvd A^n by simp
then obtain U where U : A^n = U∗P^n by (auto simp only: dvd-def ac-simps)
from ass have coprime a b

by blast
have ∃ e. P^n dvd b∗p + e∗a∗q ∧ |e| = 1
proof −

have Pn-dvd-prod: P^n dvd (b∗p + a∗q)∗(b∗p − a∗q)
proof −

have (b∗p + a∗q)∗(b∗p − a∗q) = (b∗p)^2 − (a∗q)^2
by (simp add: power2-eq-square algebra-simps)

also have . . . = b^2 ∗ p^2 + b^2∗N∗q^2 − b^2∗N∗q^2 − a^2∗q^2
by (simp add: power-mult-distrib)

also with ass have . . . = b^2∗P^n − q^2∗A^n
by (simp only: ac-simps distrib-right distrib-left)

also with U have . . . = (b^2−q^2∗U )∗P^n by (simp only: left-diff-distrib)
finally show ?thesis by (simp add: ac-simps)

qed
have P^n dvd (b∗p + a∗q) ∨ P^n dvd (b∗p − a∗q)
proof −

have PdvdPn: P dvd P^n
proof −

from ass have ∃ m. n = Suc m by (simp add: not0-implies-Suc)
then obtain m where n = Suc m by auto
hence P^n = P∗(P^m) by auto
thus ?thesis by auto

qed
have ¬ P dvd b∗p+a∗q ∨ ¬ P dvd b∗p−a∗q
proof (rule ccontr , simp)

assume P dvd b∗p+a∗q ∧ P dvd b∗p−a∗q
hence P dvd (b∗p+a∗q)+(b∗p−a∗q) ∧ P dvd (b∗p+a∗q)−(b∗p−a∗q)

by (simp only: dvd-add, simp only: dvd-diff )
hence P dvd 2∗(b∗p) ∧ P dvd 2∗(a∗q) by (simp only: mult-2 , auto)
with ass have (P dvd 2 ∨ P dvd b∗p) ∧ (P dvd 2 ∨ P dvd a∗q)

using prime-dvd-multD by blast
hence P dvd 2 ∨ (P dvd b∗p ∧ P dvd a∗q) by auto
moreover have ¬ P dvd 2
proof (rule ccontr , simp)

assume pdvd2 : P dvd 2
have P ≤ 2
proof (rule ccontr)

assume ¬ P ≤ 2 hence Pl2 : P > 2 by simp
with pdvd2 show False by (simp add: zdvd-not-zless)

qed
moreover from ass have P > 1 by (simp add: prime-int-iff )
ultimately have P=2 by auto
with ass have odd 2 by simp
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thus False by simp
qed
ultimately have P dvd b∗p ∧ P dvd a∗q by auto
with ass have (P dvd b ∨ P dvd p) ∧ (P dvd a ∨ P dvd q)

using prime-dvd-multD by blast
moreover have ¬ P dvd p ∧ ¬ P dvd q
proof (auto dest: ccontr)

assume Pdvdp: P dvd p
hence P dvd p^2 by (simp only: dvd-mult power2-eq-square)
with PdvdPn have P dvd P^n−p^2 by (simp only: dvd-diff )
with ass have P dvd N∗(q∗q) by (simp add: power2-eq-square)
with ass have h1 : P dvd N ∨ P dvd (q∗q) using prime-dvd-multD by blast
moreover
{

assume P dvd (q∗q)
hence P dvd q using prime-dvd-multD ass by blast

}
ultimately have P dvd N∗q by fastforce
with Pdvdp have P dvd gcd p (N∗q) by simp
with ass show False by (simp add: prime-int-iff )

next
assume P dvd q
hence PdvdNq: P dvd N∗q by simp
hence P dvd N∗q∗q by simp
hence P dvd N∗q^2 by (simp add: power2-eq-square ac-simps)
with PdvdPn have P dvd P^n−N∗q^2 by (simp only: dvd-diff )
with ass have P dvd p∗p by (simp add: power2-eq-square)
with ass have P dvd p by (auto dest: prime-dvd-multD)
with PdvdNq have P dvd gcd p (N∗q) by auto
with ass show False by (auto simp add: prime-int-iff )

qed
ultimately have P dvd a ∧ P dvd b by auto
hence P dvd gcd a b by simp
with ass show False by (auto simp add: prime-int-iff )

qed
moreover
{ assume ¬ P dvd b∗p+a∗q

with Pn-dvd-prod and ass have P^n dvd b∗p−a∗q
by (rule-tac b=b∗p+a∗q in prime-power-dvd-cancel-right, auto simp add:

mult.commute) }
moreover
{ assume ¬ P dvd b∗p−a∗q

with Pn-dvd-prod and ass have P^n dvd b∗p+a∗q
by (rule-tac a=b∗p+a∗q in prime-power-dvd-cancel-right, simp) }

ultimately show ?thesis by auto
qed
moreover
{ assume P^n dvd b∗p + a∗q

hence P^n dvd b∗p + 1∗a∗q ∧ |1 | = (1 ::int) by simp }
moreover
{ assume P^n dvd b∗p − a∗q

hence P^n dvd b∗p + (−1 )∗a∗q ∧ |−1 | = (1 ::int) by simp }
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ultimately show ?thesis by blast
qed
then obtain v e where v: b∗p + e∗a∗q = P^n∗v and e: |e| = 1

by (auto simp only: dvd-def )
have P^n dvd a∗p − e∗N∗b∗q
proof (cases)

assume e1 : e = 1
from U have (P^n)^2∗U = A^n∗P^n by (simp add: power2-eq-square ac-simps)
also with e1 ass have . . . = (a∗p−e∗N∗b∗q)^2 + N∗(b∗p+e∗a∗q)^2

by (simp only: qfN-mult2 add.commute mult-1-left)
also with v have . . . = (a∗p−e∗N∗b∗q)^2 + (P^n)^2∗(N∗v^2 )

by (simp only: power-mult-distrib ac-simps)
finally have (a∗p−e∗N∗b∗q)^2 = (P^n)^2∗U − (P^n)^2∗N∗v^2 by simp
also have . . . = (P^n)^2 ∗ (U − N∗v^2 ) by (simp only: right-diff-distrib)
finally have (P^n)^2 dvd (a∗p − e∗N∗b∗q)^2 by (rule dvdI )
thus ?thesis by simp

next
assume ¬ e=1 with e have e1 : e=−1 by auto
from U have (P^n)^2 ∗ U = A^n ∗ P^n by (simp add: power2-eq-square)
also with e1 ass have . . . = (a∗p−e∗N∗b∗q)^2 + N∗( −(b∗p+e∗a∗q))^2

by (simp add: qfN-mult1 )
also have . . . = (a∗p−e∗N∗b∗q)^2 + N∗(b∗p+e∗a∗q)^2

by (simp only: power2-minus)
also with v and ass have . . . = (a∗p−e∗N∗b∗q)^2 + N∗v^2∗(P^n)^2

by (simp only: power-mult-distrib ac-simps)
finally have (a∗p−e∗N∗b∗q)^2 = (P^n)^2∗U−(P^n)^2∗N∗v^2 by simp
also have . . . = (P^n)^2 ∗ (U − N∗v^2 ) by (simp only: right-diff-distrib)
finally have (P^n)^2 dvd (a∗p−e∗N∗b∗q)^2 by (rule dvdI )
thus ?thesis by simp

qed
then obtain u where u: a∗p − e∗N∗b∗q = P^n∗u by (auto simp only: dvd-def )
from e have e2-1 : e ∗ e = 1

using abs-mult-self-eq [of e] by simp
have a: a = p∗u + e∗N∗q∗v
proof −

from ass have (p∗u + e∗N∗q∗v)∗P^n = p∗(P^n∗u) + (e∗N∗q)∗(P^n∗v)
by (simp only: distrib-right ac-simps)

also with v and u have . . . = p∗(a∗p − e∗N∗b∗q) + (e∗N∗q)∗(b∗p + e∗a∗q)
by simp

also have . . . = a∗(p^2 + e∗e∗N∗q^2 )
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)

also with e2-1 and ass have . . . = a∗P^n by simp
finally have (a−(p∗u+e∗N∗q∗v))∗P^n = 0 by auto
moreover from ass have P^n 6= 0

by (unfold prime-int-iff , auto)
ultimately show ?thesis by auto

qed
moreover have b: b = p∗v−e∗q∗u
proof −

from ass have (p∗v−e∗q∗u)∗P^n = p∗(P^n∗v) − (e∗q)∗(P^n∗u)
by (simp only: left-diff-distrib ac-simps)

also with v u have . . . = p∗(b∗p+e∗a∗q) − e∗q∗(a∗p−e∗N∗b∗q) by simp
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also have . . . = b∗(p^2 + e∗e∗N∗q^2 )
by (simp add: power2-eq-square distrib-left ac-simps right-diff-distrib)

also with e2-1 and ass have . . . = b ∗ P^n by simp
finally have (b−(p∗v−e∗q∗u))∗P^n = 0 by auto
moreover from ass have P^n 6= 0

by (unfold prime-int-iff , auto)
ultimately show ?thesis by auto

qed
moreover have A^n = (u^2 + N∗v^2 )∗P^n
proof (cases)

assume e=1
with a and b and ass show ?thesis by (simp add: qfN-mult1 ac-simps)

next
assume ¬ e=1 with e have e=−1 by simp
with a and b and ass show ?thesis by (simp add: qfN-mult2 ac-simps)

qed
moreover have coprime u v

using ‹coprime a b›
proof (rule coprime-imp-coprime)

fix w
assume w dvd u w dvd v
then have w dvd u∗p + v∗(e∗N∗q) ∧ w dvd v∗p − u∗(e∗q)

by simp
with a b show w dvd a w dvd b

by (auto simp only: ac-simps)
qed
moreover from e and ass have
|e| = 1 ∧ A^n = a^2+N∗b^2 ∧ P^n = p^2+N∗q^2 by simp

ultimately show ?thesis by auto
qed

lemma qfN-primedivisor-not:
assumes ass: prime P ∧ Q > 0 ∧ is-qfN (P∗Q) N ∧ ¬ is-qfN P N
shows ∃ R. (prime R ∧ R dvd Q ∧ ¬ is-qfN R N )

proof (rule ccontr , auto)
assume ass2 : ∀ R. R dvd Q −→ prime R −→ is-qfN R N
define ps where ps = prime-factorization (nat Q)
from ass have ps: (∀ p∈set-mset ps. prime p) ∧ Q = int (

∏
i∈#ps. i)

by (auto simp: ps-def prod-mset-prime-factorization-int)
have ps-lemma: ((∀ p∈set-mset ps. prime p) ∧ is-qfN (P∗int(

∏
i∈#ps. i)) N

∧ (∀R. (prime R ∧ R dvd int(
∏

i∈#ps. i)) −→ is-qfN R N )) =⇒ False
(is ?B ps =⇒ False)

proof (induct ps)
case empty hence is-qfN P N by simp
with ass show False by simp

next
case (add p ps)
hence ass3 : ?B ps =⇒ False

and IH : ?B (ps + {#p#}) by simp-all
hence p: prime (int p) and int p dvd int(

∏
i∈#ps + {#p#}. i) by auto

moreover with IH have pqfN : is-qfN (int p) N
and int p dvd P∗int(

∏
i∈#ps + {#p#}. i) and is-qfN (P∗int(

∏
i∈#ps + {#p#}.
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i)) N
by auto

ultimately obtain S where S : P∗int(
∏

i∈#ps + {#p#}. i) = S∗(int p) ∧ is-qfN
S N

using qfN-div-prime-general by blast
hence (int p)∗(P∗ int(

∏
i∈#ps. i) − S) = 0 by auto

with p S have is-qfN (P∗int(
∏

i∈#ps. i)) N by (auto simp add: prime-int-iff )
moreover from IH have (∀ p∈set-mset ps. prime p) by simp
moreover from IH have ∀ R. prime R ∧ R dvd int(

∏
i∈#ps. i) −→ is-qfN R N

by auto
ultimately have ?B ps by simp
with ass3 show False by simp

qed
with ps ass2 ass show False by auto

qed

lemma prime-factor-int:
fixes k :: int
assumes |k| 6= 1
obtains p where prime p p dvd k

proof (cases k = 0 )
case True
then have prime (2 ::int) and 2 dvd k

by simp-all
with that show thesis

by blast
next

case False
with assms prime-divisor-exists [of k] obtain p where prime p p dvd k

by auto
with that show thesis

by blast
qed

lemma qfN-oddprime-cube:
[[ prime (p^2+N∗q^2 ::int); odd (p^2+N∗q^2 ); p 6= 0 ; N ≥ 1 ]]
=⇒ ∃ a b. (p^2+N∗q^2 )^3 = a^2 + N∗b^2 ∧ coprime a (N∗b)

proof −
let ?P = p^2+N∗q^2
assume P: prime ?P and Podd: odd ?P and p0 : p 6= 0 and N1 : N ≥ 1
have suc23 : 3 = Suc 2 by simp
let ?a = p∗(p^2 − 3∗N∗q^2 )
let ?b = q∗(3∗p^2 − N∗q^2 )
have abP: ?P^3 = ?a^2 + N∗?b^2 by (simp add: eval-nat-numeral field-simps)
have ?P dvd p if h1 : gcd ?b ?a 6= 1
proof −

let ?h = gcd ?b ?a
have h2 : ?h ≥ 0 by simp
hence ?h = 0 ∨ ?h = 1 ∨ ?h > 1 by arith
with h1 have ?h =0 ∨ ?h >1 by auto
moreover
{ assume ?h = 0
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hence ?a = 0 ∧ ?b = 0
by auto

with abP have ?P^3 = 0
by auto

with P have False
by (unfold prime-int-iff , auto)

hence ?thesis by simp }
moreover
{ assume ?h > 1

then have ∃ g. prime g ∧ g dvd ?h
using prime-factor-int [of ?h] by auto

then obtain g where g: prime g g dvd ?h
by blast

then have g dvd ?b ∧ g dvd ?a by simp
with g have g1 : g dvd q ∨ g dvd 3∗p^2−N∗q^2

and g2 : g dvd p ∨ g dvd p^2 − 3∗N∗q^2
by (auto dest: prime-dvd-multD)

from g have gpos: g ≥ 0 by (auto simp only: prime-int-iff )
have g dvd ?P
proof (cases)

assume g dvd q
hence gNq: g dvd N∗q^2 by (auto simp add: dvd-def power2-eq-square)
show ?thesis
proof (cases)

assume gp: g dvd p
hence g dvd p^2 by (auto simp add: dvd-def power2-eq-square)
with gNq show ?thesis by auto

next
assume ¬ g dvd p with g2 have g dvd p^2 − 3∗N∗q^2 by auto
moreover from gNq have g dvd 4∗(N∗q^2 ) by (rule dvd-mult)
ultimately have g dvd p^2 − 3∗(N∗q^2 ) + 4∗(N∗q^2 )

by (simp only: ac-simps dvd-add)
moreover have p^2 − 3∗(N∗q^2 )+4∗(N∗q^2 ) = p^2 + N∗q^2 by arith
ultimately show ?thesis by simp

qed
next

assume ¬ g dvd q with g1 have gpq: g dvd 3∗p^2−N∗q^2 by simp
show ?thesis
proof (cases)

assume g dvd p
hence g dvd 4∗p^2 by (auto simp add: dvd-def power2-eq-square)
with gpq have g dvd 4∗p^2 − (3∗p^2 − N∗q^2 ) by (simp only: dvd-diff )
moreover have 4∗p^2 − (3∗p^2 − N∗q^2 ) = p^2 + N∗q^2 by arith
ultimately show ?thesis by simp

next
assume ¬ g dvd p with g2 have g dvd p^2 − 3∗N∗q^2 by auto
with gpq have g dvd 3∗p^2−N∗q^2 − (p^2 − 3∗N∗q^2 )

by (simp only: dvd-diff )
moreover have 3∗p^2−N∗q^2 − (p^2 − 3∗N∗q^2 ) = 2∗?P by auto
ultimately have g dvd 2∗?P by simp
with g have g dvd 2 ∨ g dvd ?P by (simp only: prime-dvd-multD)
moreover have ¬ g dvd 2
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proof (rule ccontr , simp)
assume gdvd2 : g dvd 2
have g ≤ 2
proof (rule ccontr)

assume ¬ g ≤ 2 hence g > 2 by simp
moreover have (0 ::int) < 2 by auto
ultimately have ¬ g dvd 2 by (auto simp only: zdvd-not-zless)
with gdvd2 show False by simp

qed
moreover from g have g ≥ 2 by (simp add: prime-int-iff )
ultimately have g = 2 by auto
with g have 2 dvd ?a ∧ 2 dvd ?b by auto
hence 2 dvd ?a^2 ∧ 2 dvd N∗?b^2

by (simp add: power2-eq-square)
with abP have 2 dvd ?P^3 by (simp only: dvd-add)
hence even (?P^3 ) by auto
moreover have odd (?P^3 ) using Podd by simp
ultimately show False by auto

qed
ultimately show ?thesis by simp

qed
qed
with P gpos have g = 1 ∨ g = ?P

by (simp add: prime-int-iff )
with g have g = ?P by (simp add: prime-int-iff )
with g have Pab: ?P dvd ?a ∧ ?P dvd ?b by auto
have ?thesis
proof −

from Pab P have ?P dvd p ∨ ?P dvd p^2− 3∗N∗q^2
by (auto dest: prime-dvd-multD)

moreover
{ assume ?P dvd p^2 − 3∗N∗q^2

moreover have ?P dvd 3∗(p^2 + N∗q^2 )
by (auto simp only: dvd-refl dvd-mult)

ultimately have ?P dvd p^2− 3∗N∗q^2 + 3∗(p^2+N∗q^2 )
by (simp only: dvd-add)

hence ?P dvd 4∗p^2 by auto
with P have ?P dvd 4 ∨ ?P dvd p^2

by (simp only: prime-dvd-multD)
moreover have ¬ ?P dvd 4
proof (rule ccontr , simp)

assume Pdvd4 : ?P dvd 4
have ?P ≤ 4
proof (rule ccontr)

assume ¬ ?P ≤ 4 hence ?P > 4 by simp
moreover have (0 ::int) < 4 by auto
ultimately have ¬ ?P dvd 4 by (auto simp only: zdvd-not-zless)
with Pdvd4 show False by simp

qed
moreover from P have ?P ≥ 2 by (auto simp add: prime-int-iff )
moreover have ?P 6= 2 ∧ ?P 6= 4
proof (rule ccontr , simp)
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assume ?P = 2 ∨ ?P = 4 hence even ?P by fastforce
with Podd show False by blast

qed
ultimately have ?P = 3 by auto
with Pdvd4 have (3 ::int) dvd 4 by simp
thus False by arith

qed
ultimately have ?P dvd p∗p by (simp add: power2-eq-square)
with P have ?thesis by (auto dest: prime-dvd-multD) }

ultimately show ?thesis by auto
qed }

ultimately show ?thesis by blast
qed
moreover have ?P dvd p if h1 : gcd N ?a 6= 1
proof −

let ?h = gcd N ?a
have h2 : ?h ≥ 0 by simp
hence ?h = 0 ∨ ?h = 1 ∨ ?h > 1 by arith
with h1 have ?h =0 ∨ ?h >1 by auto
moreover
{ assume ?h = 0 hence N = 0 ∧ ?a = 0

by auto
hence N = 0 by arith
with N1 have False by auto
hence ?thesis by simp }

moreover
{ assume ?h > 1

then have ∃ g. prime g ∧ g dvd ?h
using prime-factor-int [of ?h] by auto

then obtain g where g: prime g g dvd ?h
by blast

hence gN : g dvd N and g dvd ?a by auto
hence g dvd p∗p^2 − N∗(3∗p∗q^2 )

by (auto simp only: right-diff-distrib ac-simps)
with gN have g dvd p∗p^2 − N∗(3∗p∗q^2 ) + N∗(3∗p∗q^2 )

by (simp only: dvd-add dvd-mult2 )
hence g dvd p∗p^2 by simp
with g have g dvd p ∨ g dvd p∗p

by (simp add: prime-dvd-multD power2-eq-square)
with g have gp: g dvd p by (auto dest: prime-dvd-multD)
hence g dvd p^2 by (simp add: power2-eq-square)
with gN have gP: g dvd ?P by auto
from g have g ≥ 0 by (simp add: prime-int-iff )
with gP P g have g = 1 ∨ g = ?P

by (auto dest: primes-dvd-imp-eq)
with g have g = ?P by (auto simp only: prime-int-iff )
with gp have ?thesis by simp }

ultimately show ?thesis by auto
qed
moreover have ¬ ?P dvd p
proof (rule ccontr , clarsimp)

assume Pdvdp: ?P dvd p
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have p^2 ≥ ?P^2
proof (rule ccontr)

assume ¬ p^2 ≥ ?P^2 hence pP: p^2 < ?P^2 by simp
moreover with p0 have p^2 > 0 by simp
ultimately have ¬ ?P^2 dvd p^2 by (simp add: zdvd-not-zless)
with Pdvdp show False by simp

qed
moreover with P have ?P∗1 < ?P∗?P

unfolding prime-int-iff by (auto simp only: zmult-zless-mono2 )
ultimately have p^2 > ?P by (auto simp add: power2-eq-square)
hence neg: N∗q^2 < 0 by auto
show False
proof −

have is-qfN (0^2 + N∗q^2 ) N by (auto simp only: is-qfN-def )
with N1 have 0^2 +N∗q^2 ≥ 0 by (rule qfN-pos)
with neg show False by simp

qed
qed
ultimately have gcd ?a ?b = 1 gcd ?a N = 1

by (auto simp add: ac-simps)
then have coprime ?a ?b coprime ?a N

by (auto simp only: gcd-eq-1-imp-coprime)
then have coprime ?a (N ∗ ?b)

by simp
with abP show ?thesis

by blast
qed

2.4 Uniqueness (N > 1)
lemma qfN-prime-unique:
[[ prime (a^2+N∗b^2 ::int); N > 1 ; a^2+N∗b^2 = c^2+N∗d^2 ]]
=⇒ (|a| = |c| ∧ |b| = |d|)

proof −
let ?P = a^2+N∗b^2
assume P: prime ?P and N : N > 1 and abcdN : ?P = c^2 + N∗d^2
have mult: (a∗d+b∗c)∗(a∗d−b∗c) = ?P∗(d^2−b^2 )
proof −

have (a∗d+b∗c)∗(a∗d−b∗c) = (a^2 + N∗b^2 )∗d^2 − b^2∗(c^2 + N∗d^2 )
by (simp add: eval-nat-numeral field-simps)

with abcdN show ?thesis by (simp add: field-simps)
qed
have ?P dvd a∗d+b∗c ∨ ?P dvd a∗d−b∗c
proof −

from mult have ?P dvd (a∗d+b∗c)∗(a∗d−b∗c) by simp
with P show ?thesis by (auto dest: prime-dvd-multD)

qed
moreover
{ assume ?P dvd a∗d+b∗c

then obtain Q where Q: a∗d+b∗c = ?P∗Q by (auto simp add: dvd-def )
from abcdN have ?P^2 = (a^2 + N∗b^2 ) ∗ (c^2 + N∗d^2 )

by (simp add: power2-eq-square)
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also have . . . = (a∗c−N∗b∗d)^2 + N∗(a∗d+b∗c)^2 by (rule qfN-mult2 )
also with Q have . . . = (a∗c−N∗b∗d)^2 + N∗Q^2∗?P^2

by (simp add: ac-simps power-mult-distrib)
also have . . . ≥ N∗Q^2∗?P^2 by simp
finally have pos: ?P^2 ≥ ?P^2∗(Q^2∗N ) by (simp add: ac-simps)
have b^2 = d^2
proof (rule ccontr)

assume b^2 6= d^2
with P mult Q have Q 6= 0 by (unfold prime-int-iff , auto)
hence Q^2 > 0 by simp
moreover with N have Q^2∗N > Q^2∗1 by (simp only: zmult-zless-mono2 )
ultimately have Q^2∗N > 1 by arith
moreover with P have ?P^2 > 0 by (simp add: prime-int-iff )
ultimately have ?P^2∗1 < ?P^2∗(Q^2∗N ) by (simp only: zmult-zless-mono2 )
with pos show False by simp

qed }
moreover
{ assume ?P dvd a∗d−b∗c

then obtain Q where Q: a∗d−b∗c = ?P∗Q by (auto simp add: dvd-def )
from abcdN have ?P^2 = (a^2 + N∗b^2 ) ∗ (c^2 + N∗d^2 )

by (simp add: power2-eq-square)
also have . . . = (a∗c+N∗b∗d)^2 + N∗(a∗d−b∗c)^2 by (rule qfN-mult1 )
also with Q have . . . = (a∗c+N∗b∗d)^2 + N∗Q^2∗?P^2

by (simp add: ac-simps power-mult-distrib)
also have . . . ≥ N∗Q^2∗?P^2 by simp
finally have pos: ?P^2 ≥ ?P^2∗(Q^2∗N ) by (simp add: ac-simps)
have b^2 = d^2
proof (rule ccontr)

assume b^2 6= d^2
with P mult Q have Q 6= 0 by (unfold prime-int-iff , auto)
hence Q^2 > 0 by simp
moreover with N have Q^2∗N > Q^2∗1 by (simp only: zmult-zless-mono2 )
ultimately have Q^2∗N > 1 by arith
moreover with P have ?P^2 > 0 by (simp add: prime-int-iff )
ultimately have ?P^2∗1 < ?P^2 ∗ (Q^2∗N ) by (simp only: zmult-zless-mono2 )
with pos show False by simp

qed }
ultimately have bd: b^2 = d^2 by blast
moreover with abcdN have a^2 = c^2 by auto
ultimately show ?thesis by (auto simp only: power2-eq-iff )

qed

lemma qfN-square-prime:
assumes ass:
prime (p^2+N∗q^2 ::int) ∧ N>1 ∧ (p^2+N∗q^2 )^2 = r^2+N∗s^2 ∧ coprime r s
shows |r | = |p^2−N∗q^2 | ∧ |s| = |2∗p∗q|

proof −
let ?P = p^2 + N∗q^2
let ?A = r^2 + N∗s^2
from ass have P1 : ?P > 1 by (simp add: prime-int-iff )
from ass have APP: ?A = ?P∗?P by (simp only: power2-eq-square)
with ass have prime ?P ∧ ?P dvd ?A by (simp add: dvdI )
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then obtain u v e where uve:
?A = (u^2+N∗v^2 )∗?P ∧ r = p∗u+e∗N∗q∗v ∧ s = p∗v − e∗q∗u ∧ |e|=1
by (frule-tac p=p in qfN-div-prime, auto)

with APP P1 ass have prime (u^2+N∗v^2 ) ∧ N>1 ∧ u^2 + N∗v^2 = ?P
by auto

hence |u| = |p| ∧ |v| = |q| by (auto dest: qfN-prime-unique)
then obtain f g where f : u = f ∗p ∧ |f | = 1 and g: v = g∗q ∧ |g| = 1

by (blast dest: abs-eq-impl-unitfactor)
with uve have r = f ∗p∗p + (e∗g)∗N∗q∗q ∧ s = g∗p∗q − (e∗f )∗p∗q by simp
hence rs: r = f ∗p^2 + (e∗g)∗N∗q^2 ∧ s = (g − e∗f )∗p∗q

by (auto simp only: power2-eq-square left-diff-distrib)
moreover have s 6= 0
proof (rule ccontr , simp)

assume s0 : s=0
hence gcd r s = |r | by simp
with ass have |r | = 1 by simp
hence r^2 = 1 by (auto simp add: power2-eq-1-iff )
with s0 have ?A = 1 by simp
moreover have ?P^2 > 1
proof −

from P1 have 1 < ?P ∧ (0 ::int) ≤ 1 ∧ (0 ::nat) < 2 by auto
hence ?P^2 > 1^2 by (simp only: power-strict-mono)
thus ?thesis by auto

qed
moreover from ass have ?A = ?P^2 by simp
ultimately show False by auto

qed
ultimately have g 6= e∗f by auto
moreover from f g uve have |g| = |e∗f | unfolding abs-mult by presburger
ultimately have gef : g = −(e∗f ) by arith
from uve have e ∗ − (e ∗ f ) = − f

using abs-mult-self-eq [of e] by simp
hence r = f ∗(p^2 − N∗q^2 ) ∧ s = (−e∗f )∗2∗p∗q using rs gef unfolding right-diff-distrib

by auto
hence |r | = |f | ∗ |p^2−N∗q^2 |
∧ |s| = |e|∗|f |∗|2∗p∗q|
by (auto simp add: abs-mult)

with uve f g show ?thesis by (auto simp only: mult-1-left)
qed

lemma qfN-cube-prime:
assumes ass: prime (p^2 + N∗q^2 ::int) ∧ N > 1
∧ (p^2 + N∗q^2 )^3 = a^2 + N∗b^2 ∧ coprime a b
shows |a| = |p^3− 3∗N∗p∗q^2 | ∧ |b| = |3∗p^2∗q−N∗q^3 |

proof −
let ?P = p^2 + N∗q^2
let ?A = a^2 + N∗b^2
from ass have coprime a b by blast
from ass have P1 : ?P > 1 by (simp add: prime-int-iff )
with ass have APP: ?A = ?P∗?P^2 by (simp add: power2-eq-square power3-eq-cube)
with ass have prime ?P ∧ ?P dvd ?A by (simp add: dvdI )
then obtain u v e where uve:
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?A = (u^2+N∗v^2 )∗?P ∧ a = p∗u+e∗N∗q∗v ∧ b = p∗v−e∗q∗u ∧ |e|=1
by (frule-tac p=p in qfN-div-prime, auto)

have coprime u v
proof (rule coprimeI )

fix c
assume c dvd u c dvd v
with uve have c dvd a c dvd b

by simp-all
with ‹coprime a b› show is-unit c

by (rule coprime-common-divisor)
qed
with P1 uve APP ass have prime ?P ∧ N > 1 ∧ ?P^2 = u^2+N∗v^2
∧ coprime u v by (auto simp add: ac-simps)

hence |u| = |p^2−N∗q^2 | ∧ |v| = |2∗p∗q| by (rule qfN-square-prime)
then obtain f g where f : u = f ∗(p^2−N∗q^2 ) ∧ |f | = 1

and g: v = g∗(2∗p∗q) ∧ |g| = 1 by (blast dest: abs-eq-impl-unitfactor)
with uve have a = p∗f ∗(p^2−N∗q^2 ) + e∗N∗q∗g∗2∗p∗q
∧ b = p∗g∗2∗p∗q −e∗q∗f ∗(p^2−N∗q^2 ) by auto

hence ab: a = f ∗p∗p^2 + −f ∗N∗p∗q^2 + 2∗e∗g∗N∗p∗q^2
∧ b = 2∗g∗p^2∗q − e∗f ∗p^2∗q + e∗f ∗N∗q∗q^2
by (auto simp add: ac-simps right-diff-distrib power2-eq-square)

from f have f2 : f 2 = 1
using abs-mult-self-eq [of f ] by (simp add: power2-eq-square)

from g have g2 : g2 = 1
using abs-mult-self-eq [of g] by (simp add: power2-eq-square)

have e 6= f ∗g
proof (rule ccontr , simp)

assume efg: e = f ∗g
with ab g2 have a = f ∗p∗p^2+f ∗N∗p∗q^2 by (auto simp add: power2-eq-square)
hence a = (f ∗p)∗?P by (auto simp add: distrib-left ac-simps)
hence Pa: ?P dvd a by auto
have e ∗ f = g using f2 power2-eq-square[of f ] efg by simp
with ab have b = g∗p^2∗q+g∗N∗q∗q^2 by auto
hence b = (g∗q)∗?P by (auto simp add: distrib-left ac-simps)
hence ?P dvd b by auto
with Pa have ?P dvd gcd a b by simp
with ass have ?P dvd 1 by auto
with P1 show False by auto

qed
moreover from f g uve have |e| = |f ∗g| unfolding abs-mult by auto
ultimately have e = −(f ∗g) by arith
hence e ∗ g = −f e ∗ f = −g using f2 g2 unfolding power2-eq-square by auto
with ab have a = f ∗p∗p^2 − 3∗f ∗N∗p∗q^2 ∧ b = 3∗g∗p^2∗q − g∗N∗q∗q^2 by (simp

add: mult.assoc)
hence a = f ∗(p^3 − 3∗N∗p∗q^2 ) ∧ b = g∗( 3∗p^2∗q − N∗q^3 )

by (auto simp only: right-diff-distrib ac-simps power2-eq-square power3-eq-cube)
with f g show ?thesis by (auto simp add: abs-mult)

qed

2.5 The case N = 3

lemma qf3-even: even (a^2+3∗b^2 ) =⇒ ∃ B. a^2+3∗b^2 = 4∗B ∧ is-qfN B 3
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proof −
let ?A = a^2+3∗b^2
assume even: even ?A
have (odd a ∧ odd b) ∨ (even a ∧ even b)
proof (rule ccontr , auto)

assume even a and odd b
hence even (a^2 ) ∧ odd (b^2 )

by (auto simp add: power2-eq-square)
moreover have odd 3 by simp
ultimately have odd ?A by simp
with even show False by simp

next
assume odd a and even b
hence odd (a^2 ) ∧ even (b^2 )

by (auto simp add: power2-eq-square)
moreover hence even (b^2∗3 ) by simp
ultimately have odd (b^2∗3+a^2 ) by simp
hence odd ?A by (simp add: ac-simps)
with even show False by simp

qed
moreover
{ assume even a ∧ even b

then obtain c d where abcd: a = 2∗c ∧ b = 2∗d using evenE [of a] evenE [of b] by
meson

hence ?A = 4∗(c^2 + 3∗d^2 ) by (simp add: power-mult-distrib)
moreover have is-qfN (c^2+3∗d^2 ) 3 by (unfold is-qfN-def , auto)
ultimately have ?thesis by blast }

moreover
{ assume odd a ∧ odd b

then obtain c d where abcd: a = 2∗c+1 ∧ b = 2∗d+1 using oddE [of a] oddE [of
b] by meson

have odd (c−d) ∨ even (c−d) by blast
moreover
{ assume even (c−d)

then obtain e where c−d = 2∗e using evenE by blast
with abcd have e1 : a−b = 4∗e by arith
hence e2 : a+3∗b = 4∗(e+b) by auto
have 4∗?A = (a+3∗b)^2 + 3∗(a−b)^2

by (simp add: eval-nat-numeral field-simps)
also with e1 e2 have . . . = (4∗(e+b))^2+3∗(4∗e)^2 by (simp(no-asm-simp))

finally have ?A = 4∗((e+b)^2 + 3∗e^2 ) by (simp add: eval-nat-numeral field-simps)
moreover have is-qfN ((e+b)^2 + 3∗e^2 ) 3 by (unfold is-qfN-def , auto)
ultimately have ?thesis by blast }

moreover
{ assume odd (c−d)

then obtain e where c−d = 2∗e+1 using oddE by blast
with abcd have e1 : a+b = 4∗(e+d+1 ) by auto
hence e2 : a− 3∗b = 4∗(e+d−b+1 ) by auto
have 4∗?A = (a− 3∗b)^2 + 3∗(a+b)^2

by (simp add: eval-nat-numeral field-simps)
also with e1 e2 have . . . = (4∗(e+d−b+1 ))^2 +3∗(4∗(e+d+1 ))^2

by (simp (no-asm-simp))
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finally have ?A = 4∗((e+d−b+1 )^2+3∗(e+d+1 )^2 )
by (simp add: eval-nat-numeral field-simps)

moreover have is-qfN ((e+d−b+1 )^2 + 3∗(e+d+1 )^2 ) 3
by (unfold is-qfN-def , auto)

ultimately have ?thesis by blast }
ultimately have ?thesis by auto }

ultimately show ?thesis by auto
qed

lemma qf3-even-general: [[ is-qfN A 3 ; even A ]]
=⇒ ∃ B. A = 4∗B ∧ is-qfN B 3

proof −
assume even A and is-qfN A 3
then obtain a b where A = a^2 + 3∗b^2

and even (a^2 + 3∗b^2 ) by (unfold is-qfN-def , auto)
thus ?thesis by (auto simp add: qf3-even)

qed

lemma qf3-oddprimedivisor-not:
assumes ass: prime P ∧ odd P ∧ Q>0 ∧ is-qfN (P∗Q) 3 ∧ ¬ is-qfN P 3
shows ∃ R. prime R ∧ odd R ∧ R dvd Q ∧ ¬ is-qfN R 3

proof (rule ccontr , simp)
assume ass2 : ∀ R. R dvd Q −→ prime R −→ even R ∨ is-qfN R 3
(is ?A Q)
obtain n::nat where n = nat Q by auto
with ass have n: Q = int n by auto
have (n > 0 ∧ is-qfN (P∗int n) 3 ∧ ?A(int n)) =⇒ False (is ?B n =⇒ False)
proof (induct n rule: less-induct)

case (less n)
hence IH : !!m. m<n ∧ ?B m =⇒ False

and Bn: ?B n by auto
show False
proof (cases)

assume odd: odd (int n)
from Bn ass have prime P ∧ int n > 0 ∧ is-qfN (P∗int n) 3 ∧ ¬ is-qfN P 3

by simp
hence ∃ R. prime R ∧ R dvd int n ∧ ¬ is-qfN R 3

by (rule qfN-primedivisor-not)
then obtain R where R: prime R ∧ R dvd int n ∧ ¬ is-qfN R 3 by auto
moreover with odd have odd R
proof −

from R obtain U where int n = R∗U by (auto simp add: dvd-def )
with odd show ?thesis by auto

qed
moreover from Bn have ?A (int n) by simp
ultimately show False by auto

next
assume even: ¬ odd (int n)
hence even ((int n)∗P) by simp
with Bn have even (P∗int n) ∧ is-qfN (P∗int n) 3 by (simp add: ac-simps)
hence ∃ B. P∗(int n) = 4∗B ∧ is-qfN B 3 by (simp only: qf3-even-general)
then obtain B where B: P∗(int n) = 4∗B ∧ is-qfN B 3 by auto



34 2 The quadratic form x2 +Ny2

hence 2^2 dvd (int n)∗P by (simp add: ac-simps)
moreover have ¬ 2 dvd P
proof (rule ccontr , simp)

assume 2 dvd P
with ass have odd P ∧ even P by simp
thus False by simp

qed
moreover have prime (2 ::int) by simp
ultimately have 2^2 dvd int n

by (rule-tac p=2 in prime-power-dvd-cancel-right)
then obtain im::int where int n = 4∗im by (auto simp add: dvd-def )
moreover obtain m::nat where m = nat im by auto
ultimately have m: n = 4∗m by arith
with B have is-qfN (P∗int m) 3 by auto
moreover from m Bn have m > 0 by auto
moreover from m Bn have ?A (int m) by auto
ultimately have Bm: ?B m by simp
from Bn m have m < n by arith
with IH Bm show False by auto

qed
qed
with ass ass2 n show False by auto

qed

lemma qf3-oddprimedivisor :
[[ prime (P::int); odd P; coprime a b; P dvd (a^2+3∗b^2 ) ]]
=⇒ is-qfN P 3

proof(induct P arbitrary:a b rule:infinite-descent0-measure[where V=λP. nat|P|])
case (0 x)
moreover hence x = 0 by arith
ultimately show ?case by (simp add: prime-int-iff )

next
case (smaller x)
then obtain a b where abx: prime x ∧ odd x ∧ coprime a b
∧ x dvd (a^2+3∗b^2 ) ∧ ¬ is-qfN x 3 by auto

then obtain M where M : a^2+3∗b^2 = x∗M by (auto simp add: dvd-def )
let ?A = a^2 + 3∗b^2
from abx have x0 : x > 0 by (simp add: prime-int-iff )
then obtain m where 2∗|a−m∗x|≤x by (auto dest: best-division-abs)
with abx have 2∗|a−m∗x|<x using odd-two-times-div-two-succ[of x] by presburger
then obtain c where cm: c = a−m∗x ∧ 2∗|c| < x by auto
from x0 obtain n where 2∗|b−n∗x|≤x by (auto dest: best-division-abs)
with abx have 2∗|b−n∗x|<x using odd-two-times-div-two-succ[of x] by presburger
then obtain d where dn: d = b−n∗x ∧ 2∗|d| < x by auto
let ?C = c^2+3∗d^2
have C3 : is-qfN ?C 3 by (unfold is-qfN-def , auto)
have C0 : ?C > 0
proof −

have hlp: (3 ::int) ≥ 1 by simp
have ?C ≥ 0 by simp
hence ?C = 0 ∨ ?C > 0 by arith
moreover
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{ assume ?C = 0
with hlp have c=0 ∧ d=0 by (rule qfN-zero)
with cm dn have a = m∗x ∧ b = n∗x by simp
hence x dvd a ∧ x dvd b by simp
hence x dvd gcd a b by simp
with abx have False by (auto simp add: prime-int-iff ) }

ultimately show ?thesis by blast
qed
have x dvd ?C
proof

have ?C = |c|^2 + 3∗|d|^2 by (simp only: power2-abs)
also with cm dn have . . . = (a−m∗x)^2 + 3∗(b−n∗x)^2 by simp
also have . . . =

a^2 − 2∗a∗(m∗x) + (m∗x)^2 + 3∗(b^2 − 2∗b∗(n∗x) + (n∗x)^2 )
by (simp add: algebra-simps power2-eq-square)

also with abx M have . . . =
x∗M − x∗(2∗a∗m + 3∗2∗b∗n) + x^2∗(m^2 + 3∗n^2 )
by (simp only: power-mult-distrib distrib-left ac-simps, auto)

finally show ?C = x∗(M − (2∗a∗m + 3∗2∗b∗n) + x∗(m^2 + 3∗n^2 ))
by (simp add: power2-eq-square distrib-left right-diff-distrib)

qed
then obtain y where y: ?C = x∗y by (auto simp add: dvd-def )
have yx: y < x
proof (rule ccontr)

assume ¬ y < x hence xy: x−y ≤ 0 by simp
have hlp: 2∗|c| ≥ 0 ∧ 2∗|d| ≥ 0 ∧ (3 ::nat) > 0 by simp
from y have 4∗x∗y = 2^2∗c^2 + 3∗2^2∗d^2 by simp
hence 4∗x∗y = (2∗|c|)^2 + 3∗(2∗|d|)^2

by (auto simp add: power-mult-distrib)
with cm dn hlp have 4∗x∗y < x^2 + 3∗(2∗|d|)^2

and (3 ::int) > 0 ∧ (2∗|d|)^2 < x^2
using power-strict-mono [of 2∗|b| x 2 for b]

by auto
hence x∗4∗y < x^2 + 3∗x^2 by (auto)
also have . . . = x∗4∗x by (simp add: power2-eq-square)
finally have contr : (x−y)∗(4∗x) > 0 by (auto simp add: right-diff-distrib)
show False
proof (cases)

assume x−y = 0 with contr show False by auto
next

assume ¬ x−y =0 with xy have x−y < 0 by simp
moreover from x0 have 4∗x > 0 by simp
ultimately have 4∗x∗(x−y) < 4∗x∗0 by (simp only: zmult-zless-mono2 )
with contr show False by auto

qed
qed
have y0 : y > 0
proof (rule ccontr)

assume ¬ y > 0
hence y ≤ 0 by simp
moreover have y 6= 0
proof (rule ccontr)
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assume ¬ y 6=0 hence y=0 by simp
with y and C0 show False by auto

qed
ultimately have y < 0 by simp
with x0 have x∗y < x∗0 by (simp only: zmult-zless-mono2 )
with C0 y show False by simp

qed
let ?g = gcd c d
have c 6= 0 ∨ d 6= 0
proof (rule ccontr)

assume ¬ (c 6=0 ∨ d 6=0 ) hence c=0 ∧ d=0 by simp
with C0 show False by simp

qed
then obtain e f where ef : c = ?g∗e ∧ d = ?g ∗ f ∧ coprime e f

using gcd-coprime-exists[of c d] gcd-pos-int[of c d] by (auto simp: mult.commute)
have g2nonzero: ?g^2 6= 0
proof (rule ccontr , simp)

assume c = 0 ∧ d = 0
with C0 show False by simp

qed
let ?E = e^2 + 3∗f^2
have E3 : is-qfN ?E 3 by (unfold is-qfN-def , auto)
have CgE : ?C = ?g^2 ∗ ?E
proof −

have ?g^2 ∗ ?E = (?g∗e)^2 + 3∗(?g∗f )^2
by (simp add: distrib-left power-mult-distrib)

with ef show ?thesis by simp
qed
hence ?g^2 dvd ?C by (simp add: dvd-def )
with y have g2dvdxy: ?g^2 dvd y∗x by (simp add: ac-simps)
moreover have coprime x (?g^2 )
proof −

let ?h = gcd ?g x
have ?h dvd ?g and ?g dvd c by blast+
hence ?h dvd c by (rule dvd-trans)
have ?h dvd ?g and ?g dvd d by blast+
hence ?h dvd d by (rule dvd-trans)
have ?h dvd x by simp
hence ?h dvd m∗x by (rule dvd-mult)
with ‹?h dvd c› have ?h dvd c+m∗x by (rule dvd-add)
with cm have ?h dvd a by simp
from ‹?h dvd x› have ?h dvd n∗x by (rule dvd-mult)
with ‹?h dvd d› have ?h dvd d+n∗x by (rule dvd-add)
with dn have ?h dvd b by simp
with ‹?h dvd a› have ?h dvd gcd a b by simp
with abx have ?h dvd 1 by simp
hence ?h = 1 by simp
hence coprime (?g^2 ) x by (auto intro: gcd-eq-1-imp-coprime)
thus ?thesis by (simp only: ac-simps)

qed
ultimately have ?g^2 dvd y

by (auto simp add: ac-simps coprime-dvd-mult-right-iff )
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then obtain w where w: y = ?g^2 ∗ w by (auto simp add: dvd-def )
with CgE y g2nonzero have Ewx: ?E = x∗w by auto
have w>0
proof (rule ccontr)

assume ¬ w>0 hence w ≤ 0 by auto
hence w=0 ∨ w<0 by auto
moreover
{ assume w=0 with w y0 have False by auto }
moreover
{ assume wneg: w<0

have ?g^2 ≥ 0 by (rule zero-le-power2 )
with g2nonzero have ?g^2 > 0 by arith
with wneg have ?g^2∗w < ?g^2∗0 by (simp only: zmult-zless-mono2 )
with w y0 have False by auto }

ultimately show False by blast
qed
have w-le-y: w ≤ y
proof (rule ccontr)

assume ¬ w ≤ y
hence wy: w > y by simp
have ?g^2 = 1 ∨ ?g^2 > 1
proof −

have ?g^2 ≥ 0 by (rule zero-le-power2 )
hence ?g^2 =0 ∨ ?g^2 > 0 by auto
with g2nonzero show ?thesis by arith

qed
moreover
{ assume ?g^2 =1 with w wy have False by simp }
moreover
{ assume g1 : ?g^2 >1

with ‹w>0 › have w∗1 < w∗?g^2 by (auto dest: zmult-zless-mono2 )
with w have w < y by (simp add: ac-simps)
with wy have False by auto }

ultimately show False by blast
qed
from Ewx E3 abx ‹w>0 › have

prime x ∧ odd x ∧ w > 0 ∧ is-qfN (x∗w) 3 ∧ ¬ is-qfN x 3 by simp
then obtain z where z: prime z ∧ odd z ∧ z dvd w ∧ ¬ is-qfN z 3

by (frule-tac P=x in qf3-oddprimedivisor-not, auto)
from Ewx have w dvd ?E by simp
with z have z dvd ?E by (auto dest: dvd-trans)
with z ef have prime z ∧ odd z ∧ coprime e f ∧ z dvd ?E ∧ ¬ is-qfN z 3

by auto
moreover have nat|z| < nat|x|
proof −

have z ≤ w
proof (rule ccontr)

assume ¬ z ≤ w hence w < z by auto
with ‹w>0 › have ¬ z dvd w by (rule zdvd-not-zless)
with z show False by simp

qed
with w-le-y yx have z < x by simp
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with z have |z| < |x| by (simp add: prime-int-iff )
thus ?thesis by auto

qed
ultimately show ?case by auto

qed

lemma qf3-cube-prime-impl-cube-form:
assumes ab-relprime: coprime a b and abP: P^3 = a^2 + 3∗b^2
and P: prime P ∧ odd P
shows is-cube-form a b

proof −
from abP have qfP3 : is-qfN (P^3 ) 3 by (auto simp only: is-qfN-def )
have PvdP3 : P dvd P^3 by (simp add: eval-nat-numeral)
with abP ab-relprime P have qfP: is-qfN P 3 by (simp add: qf3-oddprimedivisor)
then obtain p q where pq: P = p^2 + 3∗q^2 by (auto simp only: is-qfN-def )
with P abP ab-relprime have prime (p^2 + 3∗q^2 ) ∧ (3 ::int) > 1
∧ (p^2+3∗q^2 )^3 = a^2+3∗b^2 ∧ coprime a b by auto

hence ab: |a| = |p^3 − 3∗3∗p∗q^2 | ∧ |b| = |3∗p^2∗q − 3∗q^3 |
by (rule qfN-cube-prime)

hence a: a = p^3 − 9∗p∗q^2 ∨ a = −(p^3 ) + 9∗p∗q^2 by arith
from ab have b: b = 3∗p^2∗q − 3∗q^3 ∨ b = −(3∗p^2∗q) + 3∗q^3 by arith
obtain r s where r : r = −p and s: s = −q by simp
show ?thesis
proof (cases)

assume a1 : a = p^3− 9∗p∗q^2
show ?thesis
proof (cases)

assume b1 : b = 3∗p^2∗q − 3∗q^3
with a1 show ?thesis by (unfold is-cube-form-def , auto)

next
assume ¬ b = 3∗p^2∗q − 3∗q^3
with b have b = − 3∗p^2∗q + 3∗q^3 by simp
with s have b = 3∗p^2∗s − 3∗s^3 by simp
moreover from a1 s have a = p^3 − 9∗p∗s^2 by simp
ultimately show ?thesis by (unfold is-cube-form-def , auto)

qed
next

assume ¬ a = p^3 − 9∗p∗q^2
with a have a = −(p^3 ) + 9∗p∗q^2 by simp
with r have ar : a = r^3 − 9∗r∗q^2 by simp
show ?thesis
proof (cases)

assume b1 : b = 3∗p^2∗q − 3∗q^3
with r have b = 3∗r^2∗q − 3∗q^3 by simp
with ar show ?thesis by (unfold is-cube-form-def , auto)

next
assume ¬ b = 3∗p^2∗q − 3∗q^3
with b have b = − 3∗p^2∗q + 3∗q^3 by simp
with r s have b = 3∗r^2∗s − 3∗s^3 by simp
moreover from ar s have a = r^3 − 9∗r∗s^2 by simp
ultimately show ?thesis by (unfold is-cube-form-def , auto)

qed
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qed
qed

lemma cube-form-mult: [[ is-cube-form a b; is-cube-form c d; |e| = 1 ]]
=⇒ is-cube-form (a∗c+e∗3∗b∗d) (a∗d−e∗b∗c)

proof −
assume ab: is-cube-form a b and c-d: is-cube-form c d and e: |e| = 1
from ab obtain p q where pq: a = p^3 − 9∗p∗q^2 ∧ b = 3∗p^2∗q − 3∗q^3

by (auto simp only: is-cube-form-def )
from c-d obtain r s where rs: c = r^3 − 9∗r∗s^2 ∧ d = 3∗r^2∗s − 3∗s^3

by (auto simp only: is-cube-form-def )
let ?t = p∗r + e∗3∗q∗s
let ?u = p∗s − e∗r∗q
have e2 : e^2=1
proof −

from e have e=1 ∨ e=−1 by linarith
moreover
{ assume e=1 hence ?thesis by auto }
moreover
{ assume e=−1 hence ?thesis by simp }
ultimately show ?thesis by blast

qed
hence e∗e^2 = e by simp
hence e3 : e∗1 = e^3 by (simp only: power2-eq-square power3-eq-cube)
have a∗c+e∗3∗b∗d = ?t^3 − 9∗?t∗?u^2
proof −

have ?t^3 − 9∗?t∗?u^2 = p^3∗r^3 + e∗9∗p^2∗q∗r^2∗s + e^2∗27∗p∗q^2∗r∗s^2
+ e^3∗27∗q^3∗s^3 − 9∗p∗p^2∗r∗s^2 + e∗18∗p^2∗q∗r^2∗s − e^2∗9∗p∗q^2∗(r∗r^2 )
− e∗27∗p^2∗q∗(s∗s^2 ) + e^2∗54∗p∗q^2∗r∗s^2 − e∗e^2∗27∗(q∗q^2 )∗r^2∗s
by (simp add: eval-nat-numeral field-simps)

also with e2 e3 have . . . =
p^3∗r^3 + e∗27∗p^2∗q∗r^2∗s + 81∗p∗q^2∗r∗s^2 + e∗27∗q^3∗s^3
− 9∗p^3∗r∗s^2 − 9∗p∗q^2∗r^3 − e∗27∗p^2∗q∗s^3 − e∗27∗q^3∗r^2∗s
by (simp add: power2-eq-square power3-eq-cube)

also with pq rs have . . . = a∗c + e∗3∗b∗d
by (simp only: left-diff-distrib right-diff-distrib ac-simps)

finally show ?thesis by auto
qed
moreover have a∗d−e∗b∗c = 3∗?t^2∗?u − 3∗?u^3
proof −

have 3∗?t^2∗?u − 3∗?u^3 =
3∗(p∗p^2 )∗r^2∗s − e∗3∗p^2∗q∗(r∗r^2 ) + e∗18∗p^2∗q∗r∗s^2
− e^2∗18∗p∗q^2∗r^2∗s + e^2∗27∗p∗q^2∗(s∗s^2 ) − e∗e^2∗27∗(q∗q^2 )∗r∗s^2
− 3∗p^3∗s^3 + e∗9∗p^2∗q∗r∗s^2 − e^2∗9∗p∗q^2∗r^2∗s + e^3∗3∗r^3∗q^3
by (simp add: eval-nat-numeral field-simps)

also with e2 e3 have . . . = 3∗p^3∗r^2∗s − e∗3∗p^2∗q∗r^3 + e∗18∗p^2∗q∗r∗s^2
− 18∗p∗q^2∗r^2∗s + 27∗p∗q^2∗s^3 − e∗27∗q^3∗r∗s^2 − 3∗p^3∗s^3
+ e∗9∗p^2∗q∗r∗s^2 − 9∗p∗q^2∗r^2∗s + e∗3∗r^3∗q^3
by (simp add: power2-eq-square power3-eq-cube)

also with pq rs have . . . = a∗d−e∗b∗c
by (simp only: left-diff-distrib right-diff-distrib ac-simps)

finally show ?thesis by auto
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qed
ultimately show ?thesis by (auto simp only: is-cube-form-def )

qed

lemma qf3-cube-primelist-impl-cube-form: [[ (∀ p∈set-mset ps. prime p); odd (int (
∏

i∈#ps.
i)) ]] =⇒
(!! a b. coprime a b =⇒ a^2 + 3∗b^2 = (int(

∏
i∈#ps. i))^3 =⇒ is-cube-form a b)

proof (induct ps)
case empty hence ab1 : a^2 + 3∗b^2 = 1 by simp
have b0 : b=0
proof (rule ccontr)

assume b 6=0
hence b^2>0 by simp
hence 3∗b^2 > 1 by arith
with ab1 have a^2 < 0 by arith
moreover have a^2 ≥ 0 by (rule zero-le-power2 )
ultimately show False by auto

qed
with ab1 have a1 : (a=1 ∨ a=−1 ) by (auto simp add: power2-eq-square zmult-eq-1-iff )
then obtain p and q where p=a and q=(0 ::int) by simp
with a1 and b0 have a = p^3 − 9∗p∗q^2 ∧ b = 3∗p^2∗q − 3∗q^3 by auto
thus is-cube-form a b by (auto simp only: is-cube-form-def )

next
case (add p ps) hence ass: coprime a b ∧ odd (int(

∏
i∈#ps + {#p#}. i))

∧ a^2+3∗b^2 = int(
∏

i∈#ps + {#p#}. i)^3 ∧ (∀ a∈set-mset ps. prime a) ∧ prime
(int p)

and IH : !! u v. coprime u v ∧ u^2+3∗v^2 = int(
∏

i∈#ps. i)^3
∧ odd (int(

∏
i∈#ps. i)) =⇒ is-cube-form u v

by auto
then have coprime a b

by simp
let ?w = int (

∏
i∈#ps + {#p#}. i)

let ?X = int (
∏

i∈#ps. i)
let ?p = int p
have ge3-1 : (3 ::int) ≥ 1 by auto
have pw: ?w = ?p ∗ ?X ∧ odd ?p ∧ odd ?X
proof (safe)

have (
∏

i∈#ps + {#p#}. i) = p ∗ (
∏

i∈#ps. i) by simp
thus wpx: ?w = ?p ∗ ?X by (auto simp only: of-nat-mult [symmetric])
with ass show even ?p =⇒ False by auto
from wpx have ?w = ?X∗?p by simp
with ass show even ?X =⇒ False by simp

qed
have is-qfN ?p 3
proof −

from ass have a^2+3∗b^2 = (?p∗?X)^3 by (simp add: mult.commute)
hence ?p dvd a^2+3∗b^2 by (simp add: eval-nat-numeral field-simps)
moreover from ass have prime ?p and coprime a b by simp-all
moreover from pw have odd ?p by simp
ultimately show ?thesis by (simp add: qf3-oddprimedivisor)

qed
then obtain α β where alphabeta: ?p = α^2 + 3∗β^2
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by (auto simp add: is-qfN-def )
have α 6= 0
proof (rule ccontr , simp)

assume α = 0 with alphabeta have 3 dvd ?p by auto
with pw have w3 : 3 dvd ?w by (simp only: dvd-mult2 )
then obtain v where ?w = 3∗v by (auto simp add: dvd-def )
with ass have vab: 27∗v^3 = a^2 + 3∗b^2 by simp
hence a^2 = 3∗(9∗v^3 − b^2 ) by auto
hence 3 dvd a^2 by (unfold dvd-def , blast)
moreover have prime (3 ::int) by simp
ultimately have a3 : 3 dvd a using prime-dvd-power-int[of 3 ::int a 2 ] by fastforce
then obtain c where c: a = 3∗c by (auto simp add: dvd-def )
with vab have 27∗v^3 = 9∗c^2 + 3∗b^2 by (simp add: power-mult-distrib)
hence b^2 = 3∗(3∗v^3 − c^2 ) by auto
hence 3 dvd b^2 by (unfold dvd-def , blast)
moreover have prime (3 ::int) by simp
ultimately have 3 dvd b using prime-dvd-power-int[of 3 ::int b 2 ] by fastforce
with a3 have 3 dvd gcd a b by simp
with ass show False by simp

qed
moreover from alphabeta pw ass have

prime (α^2 + 3∗β^2 ) ∧ odd (α^2+3∗β^2 ) ∧ (3 ::int) ≥ 1 by auto
ultimately obtain c d where cdp:
(α^2+3∗β^2 )^3 = c^2+3∗d^2 ∧ coprime c (3∗d)
by (blast dest: qfN-oddprime-cube)

with ass pw alphabeta have ∃ u v. a^2+3∗b^2 = (u^2 + 3∗v^2 )∗(c^2+3∗d^2 )
∧ coprime u v ∧ (∃ e. a = c∗u+e∗3∗d∗v ∧ b = c∗v−e∗d∗u ∧ |e| = 1 )
by (rule-tac A=?w and n=3 in qfN-power-div-prime, auto)

then obtain u v e where uve: a^2+3∗b^2 = (u^2+3∗v^2 )∗(c^2+3∗d^2 )
∧ coprime u v ∧ a = c∗u+e∗3∗d∗v ∧ b = c∗v−e∗d∗u ∧ |e| = 1 by blast

moreover have is-cube-form u v
proof −

have uvX : u^2+3∗v^2 = ?X^3
proof −

from ass have p0 : ?p 6= 0 by (simp add: prime-int-iff )
from pw have ?p^3∗?X^3 = ?w^3 by (simp add: power-mult-distrib)
also with ass have . . . = a^2+3∗b^2 by simp
also with uve have . . . = (u^2+3∗v^2 )∗(c^2+3∗d^2 ) by auto
also with cdp alphabeta have . . . = ?p^3 ∗ (u^2+3∗v^2 ) by (simp only: ac-simps)
finally have ?p^3∗(u^2+3∗v^2−?X^3 ) = 0 by auto
with p0 show ?thesis by auto

qed
with pw IH uve show ?thesis by simp

qed
moreover have is-cube-form c d
proof −

have coprime c d
proof (rule coprimeI )

fix f
assume f dvd c and f dvd d
then have f dvd c∗u + d∗(e∗3∗v) ∧ f dvd c∗v−d∗(e∗u)

by simp
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with uve have f dvd a and f dvd b
by (auto simp only: ac-simps)

with ‹coprime a b› show is-unit f
by (rule coprime-common-divisor)

qed
with pw cdp ass alphabeta show ?thesis

by (rule-tac P=?p in qf3-cube-prime-impl-cube-form, auto)
qed
ultimately show is-cube-form a b by (simp only: cube-form-mult)

qed

lemma qf3-cube-impl-cube-form:
assumes ass: coprime a b ∧ a^2 + 3∗b^2 = w^3 ∧ odd w
shows is-cube-form a b

proof −
have 0 ≤ w^3 using ass not-sum-power2-lt-zero[of a b] zero-le-power2 [of b] by linarith
hence 0 < w using ass by auto arith
define M where M = prime-factorization (nat w)
from ‹w > 0 › have (∀ p∈set-mset M . prime p) ∧ w = int (

∏
i∈#M . i)

by (auto simp: M-def prod-mset-prime-factorization-int)
with ass show ?thesis by (auto dest: qf3-cube-primelist-impl-cube-form)

qed

2.6 Existence (N = 3)
This part contains the proof that all prime numbers ≡ 1 mod 6 can be written as
x2 + 3y2.

First show (ap )(
b
p) = (abp ), where p is an odd prime.

lemma Legendre-zmult: [[ p > 2 ; prime p ]]
=⇒ (Legendre (a∗b) p) = (Legendre a p)∗(Legendre b p)

proof −
assume p2 : p > 2 and prp: prime p
from prp have prp ′: prime (nat p)

by simp
let ?p12 = nat(((p) − 1 ) div 2 )
let ?Labp = Legendre (a∗b) p
let ?Lap = Legendre a p
let ?Lbp = Legendre b p
have h1 : ((nat p − 1 ) div 2 ) = nat ((p − 1 ) div 2 ) using p2 by auto
hence [?Labp = (a∗b)^?p12 ] (mod p) using prp p2 euler-criterion[of nat p a∗b]

by auto
hence [a^?p12 ∗ b^?p12 = ?Labp] (mod p)

by (simp only: power-mult-distrib cong-sym)
moreover have [?Lap ∗ ?Lbp = a^?p12∗b^?p12 ] (mod p)

using euler-criterion[of nat p] p2 prp ′ h1 by (simp add: cong-mult)
ultimately have [?Lap ∗ ?Lbp = ?Labp] (mod p)

using cong-trans by blast
then obtain k where k: ?Labp = (?Lap∗?Lbp) + p ∗ k

by (auto simp add: cong-iff-lin)
have k=0
proof (rule ccontr)
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assume k 6= 0 hence |k| = 1 ∨ |k| > 1 by arith
moreover
{ assume |k|= 1

with p2 have |k|∗p > 2 by auto }
moreover
{ assume k1 : |k| > 1

with p2 have |k|∗2 < |k|∗p
by (simp only: zmult-zless-mono2 )

with k1 have |k|∗p > 2 by arith }
ultimately have |k|∗p > 2 by auto
moreover from p2 have |p| = p by auto
ultimately have |k∗p| > 2 by (auto simp only: abs-mult)
moreover from k have ?Labp − ?Lap∗?Lbp = k∗p by auto
ultimately have |?Labp − ?Lap∗?Lbp| > 2 by auto
moreover have ?Labp = 1 ∨ ?Labp = 0 ∨ ?Labp = −1

by (simp add: Legendre-def )
moreover have ?Lap∗?Lbp = 1 ∨ ?Lap∗?Lbp = 0 ∨ ?Lap∗?Lbp = −1

by (auto simp add: Legendre-def )
ultimately show False by auto

qed
with k show ?thesis by auto

qed

Now show (−3
p ) = +1 for primes p ≡ 1 mod 6.

lemma Legendre-1mod6 : prime (6∗m+1 ) =⇒ Legendre (−3 ) (6∗m+1 ) = 1
proof −

let ?p = 6∗m+1
let ?L = Legendre (−3 ) ?p
let ?L1 = Legendre (−1 ) ?p
let ?L3 = Legendre 3 ?p
assume p: prime ?p
from p have p ′: prime (nat ?p) by simp
have neg1cube: (−1 ::int)^3 = −1 by simp
have m1 : m ≥ 1
proof (rule ccontr)

assume ¬ m ≥ 1 hence m ≤ 0 by simp
with p show False by (auto simp add: prime-int-iff )

qed
hence pn3 : ?p 6= 3 and p2 : ?p > 2 by auto
with p have ?L = (Legendre (−1 ) ?p) ∗ (Legendre 3 ?p)

by (frule-tac a=−1 and b=3 in Legendre-zmult, auto)
moreover have [Legendre (−1 ) ?p = (−1 )^nat m] (mod ?p)
proof −

have nat((?p − 1 ) div 2 ) = (nat ?p − 1 ) div 2 by auto
hence [?L1 = (−1 )^(nat(((?p) − 1 ) div 2 ))] (mod ?p)

using euler-criterion[of nat ?p −1 ] p ′ p2 by fastforce
moreover have nat ((?p − 1 ) div 2 ) = 3∗ nat m
proof −

have (?p − 1 ) div 2 = 3∗m by auto
hence nat((?p − 1 ) div 2 ) = nat (3∗m) by simp
moreover have (3 ::int) ≥ 0 by simp
ultimately show ?thesis by (simp add: nat-mult-distrib)
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qed
moreover with neg1cube have (−1 ::int)^(3∗nat m) = (−1 )^nat m

by (simp only: power-mult)
ultimately show ?thesis by auto

qed
moreover have ?L3 = (−1 )^nat m
proof −

have ?L3 ∗ (Legendre ?p 3 ) = (−1 )^nat m
proof −

have nat ((3 − 1 ) div 2 ∗ ((6 ∗ m + 1 − 1 ) div 2 )) = 3∗nat m by auto
hence ?L3 ∗ (Legendre ?p 3 ) = (−1 ::int) ^ (3∗nat m)

using Quadratic-Reciprocity-int[of 3 ?p] p ′ pn3 p2 by fastforce
with neg1cube show ?thesis by (simp add: power-mult)

qed
moreover have Legendre ?p 3 = 1
proof −

have [1^2 = ?p] (mod 3 ) by (unfold cong-iff-dvd-diff dvd-def , auto)
hence QuadRes 3 ?p by (unfold QuadRes-def , blast)
moreover have ¬ [?p = 0 ] (mod 3 )
proof (rule ccontr , simp)

assume [?p = 0 ] (mod 3 )
hence 3 dvd ?p by (simp add: cong-iff-dvd-diff )
moreover have 3 dvd 6∗m by (auto simp add: dvd-def )
ultimately have 3 dvd ?p− 6∗m by (simp only: dvd-diff )
hence (3 ::int) dvd 1 by simp
thus False by auto

qed
ultimately show ?thesis by (unfold Legendre-def , auto)

qed
ultimately show ?thesis by auto

qed
ultimately have [?L = (−1 )^(nat m)∗(−1 )^(nat m)] (mod ?p)

by (metis cong-scalar-right)
hence [?L = (−1 )^((nat m)+(nat m))] (mod ?p) by (simp only: power-add)
moreover have (nat m)+(nat m) = 2∗(nat m) by auto
ultimately have [?L = (−1 )^(2∗(nat m))] (mod ?p) by simp
hence [?L = ((−1 )^2 )^(nat m)] (mod ?p) by (simp only: power-mult)
hence [1 = ?L] (mod ?p) by (auto simp add: cong-sym)
hence ?p dvd 1 − ?L by (simp only: cong-iff-dvd-diff )
moreover have ?L = −1 ∨ ?L = 0 ∨ ?L = 1 by (simp add: Legendre-def )
ultimately have ?p dvd 2 ∨ ?p dvd 1 ∨ ?L = 1 by auto
moreover
{ assume ?p dvd 2 ∨ ?p dvd 1

with p2 have False by (auto simp add: zdvd-not-zless) }
ultimately show ?thesis by auto

qed

Use this to prove that such primes can be written as x2 + 3y2.
lemma qf3-prime-exists: prime (6∗m+1 ::int) =⇒ ∃ x y. 6∗m+1 = x^2 + 3∗y^2
proof −

let ?p = 6∗m+1
assume p: prime ?p
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hence Legendre (−3 ) ?p = 1 by (rule Legendre-1mod6 )
moreover
{ assume ¬ QuadRes ?p (−3 )

hence Legendre (−3 ) ?p 6= 1 by (unfold Legendre-def , auto) }
ultimately have QuadRes ?p (−3 ) by auto
then obtain s where s: [s^2 = −3 ] (mod ?p) by (auto simp add: QuadRes-def )
hence ?p dvd s^2 − (−3 ::int) by (unfold cong-iff-dvd-diff , simp)
moreover have s^2 −(−3 ::int) = s^2 + 3 by arith
ultimately have ?p dvd s^2 + 3∗1^2 by auto
moreover have coprime s 1 by auto
moreover have odd ?p
proof −

have ?p = 2∗(3∗m)+1 by simp
thus ?thesis by simp

qed
moreover from p have prime ?p by simp
ultimately have is-qfN ?p 3 using qf3-oddprimedivisor by blast
thus ?thesis by (unfold is-qfN-def , auto)

qed

end

end

3 Fermat’s last theorem, case n = 3

theory Fermat3
imports Quad-Form
begin

context
begin

Proof of Fermat’s last theorem for the case n = 3:

∀x, y, z : x3 + y3 = z3 =⇒ xyz = 0.

private lemma nat-relprime-power-divisors:
assumes n0 : 0 < n and abc: (a::nat)∗b = c^n and relprime: coprime a b
shows ∃ k. a = k^n

using assms proof (induct c arbitrary: a b rule: nat-less-induct)
case (1 c)

show ?case
proof (cases a > 1 )
case False

hence a = 0 ∨ a = 1 by linarith
thus ?thesis using n0 power-one zero-power by (simp only: eq-sym-conv) blast

next
case True

then obtain p where p: prime p p dvd a using prime-factor-nat[of a] by blast
hence h1 : p dvd (c^n) using 1 (3 ) dvd-mult2 [of p a b] by presburger
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hence (p^n) dvd (c^n)
using p(1 ) prime-dvd-power-nat[of p c n] dvd-power-same[of p c n] by blast

moreover have h2 : ¬ p dvd b
using p ‹coprime a b› coprime-common-divisor-nat [of a b p] by auto

hence ¬ (p^n) dvd b using n0 p(1 ) dvd-power [of n p] gcd-nat.trans by blast
ultimately have (p^n) dvd a

using 1 .prems p(1 ) prime-elem-divprod-pow [of p a b n] by simp
then obtain a ′ c ′ where ac: a = p^n ∗ a ′ c = p ∗ c ′

using h1 dvdE [of p^n a] dvdE [of p c] prime-dvd-power-nat[of p c n] p(1 ) by meson
hence p^n ∗ (a ′ ∗ b) = p^n ∗ c ′̂ n using 1 (3 )

by (simp add: power-mult-distrib semiring-normalization-rules(18 ))
hence a ′ ∗ b = c ′̂ n using p(1 ) by auto
moreover have coprime a ′ b using 1 (4 ) ac(1 )

by simp
moreover have 0 < b 0 < a using h2 dvd-0-right gr0I True by fastforce+

then have 0 < c 1 < p using p(1 ) 1 (3 ) nat-0-less-mult-iff [of a b] n0 prime-gt-Suc-0-nat
by simp-all

hence c ′ < c using ac(2 ) by simp
ultimately obtain k where a ′ = k^n using 1 (1 ) n0 by presburger
hence a = (p∗k)^n using ac(1 ) by (simp add: power-mult-distrib)
thus ?thesis by blast

qed
qed

private lemma int-relprime-odd-power-divisors:
assumes odd n and (a::int) ∗ b = c ^ n and coprime a b
shows ∃ k. a = k^n

proof −
from assms have |a| ∗ |b| = |c| ^ n

by (simp add: abs-mult [symmetric] power-abs)
then have nat |a| ∗ nat |b| = nat |c| ^ n

by (simp add: nat-mult-distrib [of |a| |b|, symmetric] nat-power-eq)
moreover have coprime (nat |a|) (nat |b|) using assms(3 ) gcd-int-def by fastforce
ultimately have ∃ k. nat |a| = k^n

using nat-relprime-power-divisors[of n nat |a| nat |b| nat |c|] assms(1 ) by blast
then obtain k ′ where k ′: nat |a| = k ′̂ n by blast
moreover define k where k = int k ′

ultimately have k: |a| = k^n using int-nat-eq[of |a|] of-nat-power [of k ′ n] by force
{ assume a 6= k^n

with k have a = −(k^n) by arith
hence a = (−k)^n using assms(1 ) power-minus-odd by simp }

thus ?thesis by blast
qed

private lemma factor-sum-cubes: (x::int)^3 + y^3 = (x+y)∗(x^2 − x∗y + y^2 )
by (simp add: eval-nat-numeral field-simps)

private lemma two-not-abs-cube: |x^3 | = (2 ::int) =⇒ False
proof −

assume |x^3 | = 2
hence x32 : |x|^3 = 2 by (simp add: power-abs)
have |x| ≥ 0 by simp
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moreover
{ assume |x| = 0 ∨ |x| = 1 ∨ |x| = 2

with x32 have False by (auto simp add: power-0-left) }
moreover
{ assume |x| > 2

moreover have (0 ::int) ≤ 2 and (0 ::nat) < 3 by auto
ultimately have |x|^3 > 2^3 by (simp only: power-strict-mono)
with x32 have False by simp }

ultimately show False by arith
qed

Shows there exists no solution v3+w3 = x3 with vwx 6= 0 and coprimevw and
x even, by constructing a solution with a smaller |x3|.
private lemma no-rewritten-fermat3 :
¬ (∃ v w. v^3+w^3 = x^3 ∧ v∗w∗x 6= 0 ∧ even (x::int) ∧ coprime v w)

proof (induct x rule: infinite-descent0-measure[where V=λx. nat|x^3 |])
case (0 x) hence x^3 = 0 by arith
hence x=0 by auto
thus ?case by auto

next
case (smaller x)
then obtain v w where vwx:

v^3+w^3=x^3 ∧ v∗w∗x 6= 0 ∧ even x ∧ coprime v w (is ?P v w x)
by auto

then have coprime v w
by simp

have ∃ α β γ. ?P α β γ ∧ nat|γ^3 | < nat|x^3 |
proof −

— obtain coprime p and q such that v = p+ q and w = p− q
have vwOdd: odd v ∧ odd w
proof (rule ccontr , case-tac odd v, simp-all)

assume ve: even v
hence even (v^3 ) by simp
moreover from vwx have even (x^3 ) by simp
ultimately have even (x^3−v^3 ) by simp
moreover from vwx have x^3−v^3 = w^3 by simp
ultimately have even (w^3 ) by simp
hence even w by simp
with ve have 2 dvd v ∧ 2 dvd w by auto
hence 2 dvd gcd v w by simp
with vwx show False by simp

next
assume odd v and even w
hence odd (v^3 ) and even (w^3 )

by auto
hence odd (w^3 + v^3 ) by simp
with vwx have odd (x^3 ) by (simp add: add.commute)
hence odd x by simp
with vwx show False by auto

qed
hence even (v+w) ∧ even (v−w) by simp
then obtain p q where pq: v+w = 2∗p ∧ v−w = 2∗q
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using evenE [of v+w] evenE [of v−w] by meson
hence vw: v = p+q ∧ w = p−q by auto
— show that x3 = (2p)(p2 + 3q2) and that these factors are
— either coprime (first case), or have 3 as g.c.d. (second case)
have vwpq: v^3 + w^3 = (2∗p)∗(p^2 + 3∗q^2 )
proof −

have 2∗(v^3 + w^3 ) = 2∗(v+w)∗(v^2 − v∗w + w^2 )
by (simp only: factor-sum-cubes)

also from pq have . . . = 4∗p∗(v^2 − v∗w + w^2 ) by auto
also have . . . = p∗((v+w)^2 + 3∗(v−w)^2 )

by (simp add: eval-nat-numeral field-simps)
also with pq have . . . = p∗((2∗p)^2 + 3∗(2∗q)^2 ) by simp
also have . . . = 2∗(2∗p)∗(p^2+3∗q^2 ) by (simp add: power-mult-distrib)
finally show ?thesis by simp

qed
let ?g = gcd (2 ∗ p) (p2 + 3 ∗ q2)
have g1 : ?g ≥ 1
proof (rule ccontr)

assume ¬ ?g ≥ 1
then have ?g < 0 ∨ ?g = 0 unfolding not-le by arith
moreover have ?g ≥ 0 by simp
ultimately have ?g = 0 by arith
hence p = 0 by simp
with vwpq vwx ‹0 < nat|x^3 |› show False by auto

qed
have gOdd: odd ?g
proof (rule ccontr)

assume ¬ odd ?g
hence2 dvd p^2+3∗q^2 by simp
then obtain k where k: p^2 + 3∗q^2 = 2∗k by (auto simp add: dvd-def )
hence 2∗(k − 2∗q^2 ) = p^2−q^2 by auto
also have . . . = (p+q)∗(p−q) by (simp add: power2-eq-square algebra-simps)
finally have v∗w = 2∗(k − 2∗q^2 ) using vw by presburger
hence even (v∗w) by auto
hence even (v) ∨ even (w) by simp
with vwOdd show False by simp

qed
then have even-odd-p-q: even p ∧ odd q ∨ odd p ∧ even q

by auto
— first case: p is not a multiple of 3; hence 2p and p2 + 3q2

— are coprime; hence both are cubes
{ assume p3 : ¬ 3 dvd p

have g3 : ¬ 3 dvd ?g
proof (rule ccontr)

assume ¬ ¬ 3 dvd ?g hence 3 dvd 2∗p by simp
hence (3 ::int) dvd 2 ∨ 3 dvd p

using prime-dvd-multD[of 3 ] by (fastforce simp add: prime-dvd-mult-iff )
with p3 show False by arith

qed
from ‹coprime v w› have pq-relprime: coprime p q
proof (rule coprime-imp-coprime)

fix c
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assume c dvd p and c dvd q
then have c dvd p + q and c dvd p − q

by simp-all
with vw show c dvd v and c dvd w

by simp-all
qed
from ‹coprime p q› have coprime p (q2)

by simp
then have factors-relprime: coprime (2 ∗ p) (p2 + 3 ∗ q2)
proof (rule coprime-imp-coprime)

fix c
assume g2p: c dvd 2 ∗ p and gpq: c dvd p2 + 3 ∗ q2

have coprime 2 c
using g2p gpq even-odd-p-q dvd-trans [of 2 c p2 + 3 ∗ q2]
by auto

with g2p show c dvd p
by (simp add: coprime-dvd-mult-left-iff ac-simps)

then have c dvd p2

by (simp add: power2-eq-square)
with gpq have c dvd 3 ∗ q2

by (simp add: dvd-add-right-iff )
moreover have coprime 3 c

using ‹c dvd p› p3 dvd-trans [of 3 c p]
by (auto intro: prime-imp-coprime)

ultimately show c dvd q2

by (simp add: coprime-dvd-mult-right-iff ac-simps)
qed
moreover from vwx vwpq have pqx: (2∗p)∗(p^2 + 3∗q^2 ) = x^3 by auto
ultimately have ∃ c. 2∗p = c^3 by (simp add: int-relprime-odd-power-divisors)
then obtain c where c: c^3 = 2∗p by auto
from pqx factors-relprime have coprime (p^2 + 3∗q^2 ) (2∗p)

and (p^2 + 3∗q^2 )∗(2∗p) = x^3 by (auto simp add: ac-simps)
hence ∃ d. p^2 + 3∗q^2 = d^3 by (simp add: int-relprime-odd-power-divisors)
then obtain d where d: p^2 + 3∗q^2 = d^3 by auto
have odd d
proof (rule ccontr)

assume ¬ odd d
hence even (d^3 ) by simp
hence 2 dvd d^3 by simp
moreover have 2 dvd 2∗p by (rule dvd-triv-left)
ultimately have 2 dvd gcd (2∗p) (d^3 ) by simp
with d factors-relprime show False by simp

qed
with d pq-relprime have coprime p q ∧ p^2 + 3∗q^2 = d^3 ∧ odd d

by simp
hence is-cube-form p q by (rule qf3-cube-impl-cube-form)
then obtain a b where p = a^3 − 9∗a∗b^2 ∧ q = 3∗a^2∗b − 3∗b^3

by (unfold is-cube-form-def , auto)
hence ab: p = a∗(a+3∗b)∗(a− 3∗b) ∧ q = b∗(a+b)∗(a−b)∗3

by (simp add: eval-nat-numeral field-simps)
with c have abc: (2∗a)∗(a+3∗b)∗(a− 3∗b) = c^3 by auto
from pq-relprime ab have ab-relprime: coprime a b



50 3 Fermat’s last theorem, case n = 3

by (auto intro: coprime-imp-coprime)
then have ab1 : coprime (2 ∗ a) (a + 3 ∗ b)
proof (rule coprime-imp-coprime)

fix h
assume h2a: h dvd 2 ∗ a and hab: h dvd a + 3 ∗ b
have coprime 2 h

using ab even-odd-p-q hab dvd-trans [of 2 h a + 3 ∗ b]
by auto

with h2a show h dvd a
by (simp add: coprime-dvd-mult-left-iff ac-simps)

with hab have h dvd 3 ∗ b and ¬ 3 dvd h
using dvd-trans [of 3 h a] ab ‹¬ 3 dvd p›
by (auto simp add: dvd-add-right-iff )

moreover have coprime 3 h
using ‹¬ 3 dvd h› by (auto intro: prime-imp-coprime)

ultimately show h dvd b
by (simp add: coprime-dvd-mult-left-iff ac-simps)

qed
then have [simp]: even b ←→ odd a

and ab3 : coprime a (a + 3 ∗ b)
by simp-all

from ‹coprime a b› have ab4 : coprime a (a − 3 ∗ b)
proof (rule coprime-imp-coprime)

fix h
assume h2a: h dvd a and hab: h dvd a − 3 ∗ b
then show h dvd a

by simp
with hab have h dvd 3 ∗ b and ¬ 3 dvd h

using dvd-trans [of 3 h a] ab ‹¬ 3 dvd p› dvd-add-right-iff [of h a − 3 ∗ b]
by auto

moreover have coprime 3 h
using ‹¬ 3 dvd h› by (auto intro: prime-imp-coprime)

ultimately show h dvd b
by (simp add: coprime-dvd-mult-left-iff ac-simps)

qed
from ab1 have ab2 : coprime (a + 3 ∗ b) (a − 3 ∗ b)

by (rule coprime-imp-coprime)
(use dvd-add [of - a + 3 ∗ b a − 3 ∗ b] in simp-all)

have ∃ k l m. 2 ∗ a = k ^ 3 ∧ a + 3 ∗ b = l ^ 3 ∧ a − 3 ∗ b = m ^ 3
using ab2 ab3 ab4 abc

int-relprime-odd-power-divisors [of 3 2 ∗ a (a + 3 ∗ b) ∗ (a − 3 ∗ b) c]
int-relprime-odd-power-divisors [of 3 (a + 3 ∗ b) 2 ∗ a ∗ (a − 3 ∗ b) c]
int-relprime-odd-power-divisors [of 3 (a − 3 ∗ b) 2 ∗ a ∗ (a + 3 ∗ b) c]

by auto (auto simp add: ac-simps)
then obtain α β γ where albega:

2∗a = γ^3 ∧ a − 3∗b = α^3 ∧ a+3∗b = β^3 by auto
— show this is a (smaller) solution
hence α^3 + β^3 = γ^3 by auto
moreover have α∗β∗γ 6= 0
proof (rule ccontr , safe)

assume α ∗ β ∗ γ = 0
with albega ab have p=0 by (auto simp add: power-0-left)
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with vwpq vwx show False by auto
qed
moreover have even γ
proof −

have even (2∗a) by simp
with albega have even (γ^3 ) by simp
thus ?thesis by simp

qed
moreover have coprime α β
using ab2 proof (rule coprime-imp-coprime)

fix h
assume ha: h dvd α and hb: h dvd β
then have h dvd α ∗ α^2 ∧ h dvd β ∗ β^2 by simp
then have h dvd α^Suc 2 ∧ h dvd β^Suc 2 by (auto simp only: power-Suc)
with albega show h dvd a − 3 ∗ b h dvd a + 3 ∗ b by auto

qed
moreover have nat|γ^3 | < nat|x^3 |
proof −

let ?A = p^2 + 3∗q^2
from vwx vwpq have x^3 = 2∗p∗?A by auto
also with ab have . . . = 2∗a∗((a+3∗b)∗(a− 3∗b)∗?A) by auto
also with albega have . . . = γ^3 ∗((a+3∗b)∗(a− 3∗b)∗?A) by auto
finally have eq: |x^3 | = |γ^3 | ∗ |(a+3∗b)∗(a− 3∗b)∗?A|

by (auto simp add: abs-mult)
with ‹0 < nat|x^3 |› have |(a+3∗b)∗(a− 3∗b)∗?A| > 0 by auto
hence eqpos: |(a+3∗b)∗(a− 3∗b)| > 0 by auto
moreover have Ag1 : |?A| > 1
proof −

have Aqf3 : is-qfN ?A 3 by (auto simp add: is-qfN-def )
moreover have triv3b: (3 ::int) ≥ 1 by simp
ultimately have ?A ≥ 0 by (simp only: qfN-pos)
hence ?A > 1 ∨ ?A = 0 ∨ ?A =1 by arith
moreover
{ assume ?A = 0 with triv3b have p = 0 ∧ q = 0 by (rule qfN-zero)

with vwpq vwx have False by auto }
moreover
{ assume A1 : ?A = 1

have q=0
proof (rule ccontr)

assume q 6= 0
hence q^2 > 0 by simp
hence 3∗q^2 > 1 by arith
moreover have p^2 ≥ 0 by (rule zero-le-power2 )
ultimately have ?A > 1 by arith
with A1 show False by simp

qed
with pq-relprime have |p| = 1 by simp
with vwpq vwx A1 have |x^3 | = 2 by auto
hence False by (rule two-not-abs-cube) }

ultimately show ?thesis by auto
qed
ultimately have
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|(a+3∗b)∗(a− 3∗b)|∗1 < |(a+3∗b)∗(a− 3∗b)|∗|?A|
by (simp only: zmult-zless-mono2 )

with eqpos have |(a+3∗b)∗(a− 3∗b)|∗|?A| > 1 by arith
hence |(a+3∗b)∗(a− 3∗b)∗?A| > 1 by (auto simp add: abs-mult)
moreover have |γ^3 | > 0
proof −

from eq have |γ^3 | = 0 =⇒ |x^3 |=0 by auto
with ‹0 < nat|x^3 |› show ?thesis by auto

qed
ultimately have |γ^3 | ∗ 1 < |γ^3 | ∗ |(a+3∗b)∗(a− 3∗b)∗?A|

by (rule zmult-zless-mono2 )
with eq have |x^3 | > |γ^3 | by auto
thus ?thesis by arith

qed
ultimately have ?thesis by auto }

moreover
— second case: p = 3r and hence x3 = (18r)(q2 + 3r2) and these
— factors are coprime; hence both are cubes
{ assume p3 : 3 dvd p

then obtain r where r : p = 3∗r by (auto simp add: dvd-def )
moreover have 3 dvd 3∗(3∗r^2 + q^2 ) by (rule dvd-triv-left)
ultimately have pq3 : 3 dvd p^2+3∗q^2 by (simp add: power-mult-distrib)
moreover from p3 have 3 dvd 2∗p by (rule dvd-mult)
ultimately have g3 : 3 dvd ?g by simp
from ‹coprime v w› have qr-relprime: coprime q r
proof (rule coprime-imp-coprime)

fix h
assume hq: h dvd q h dvd r
with r have h dvd p by simp
with hq have h dvd p + q h dvd p − q

by simp-all
with vw show h dvd v h dvd w

by simp-all
qed
have factors-relprime: coprime (18∗r) (q^2 + 3∗r^2 )
proof −

from g3 obtain k where k: ?g = 3∗k by (auto simp add: dvd-def )
have k = 1
proof (rule ccontr)

assume k 6= 1
with g1 k have k > 1 by auto
then obtain h where h: prime h ∧ h dvd k

using prime-divisor-exists[of k] by auto
with k have hg: 3∗h dvd ?g by (auto simp add: mult-dvd-mono)
hence 3∗h dvd p^2 + 3∗q^2 and hp: 3∗h dvd 2∗p by auto
then obtain s where s: p^2 + 3∗q^2 = (3∗h)∗s

by (auto simp add: dvd-def )
with r have rqh: 3∗r^2+q^2 = h∗s by (simp add: power-mult-distrib)
from hp r have 3∗h dvd 3∗(2∗r) by simp
moreover have (3 ::int) 6= 0 by simp
ultimately have h dvd 2∗r by (rule zdvd-mult-cancel)
with h have h dvd 2 ∨ h dvd r
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by (auto dest: prime-dvd-multD)
moreover have ¬ h dvd 2
proof (rule ccontr , simp)

assume h dvd 2
with h have h=2 using zdvd-not-zless[of 2 h] by (auto simp: prime-int-iff )
with hg have 2∗3 dvd ?g by auto
hence 2 dvd ?g by (rule dvd-mult-left)
with gOdd show False by simp

qed
ultimately have hr : h dvd r by simp
then obtain t where r = h∗t by (auto simp add: dvd-def )
hence t: r^2 = h∗(h∗t^2 ) by (auto simp add: power2-eq-square)
with rqh have h∗s = h∗(3∗h∗t^2 ) + q^2 by simp
hence q^2 = h∗(s − 3∗h∗t^2 ) by (simp add: right-diff-distrib)
hence h dvd q^2 by simp
with h have h dvd q using prime-dvd-multD[of h q q]

by (simp add: power2-eq-square)
with hr have h dvd gcd q r by simp
with h qr-relprime show False by (unfold prime-def , auto)

qed
with k r have 3 = gcd (2∗(3∗r)) ((3∗r)^2 + 3∗q^2 ) by auto
also have . . . = gcd (3∗(2∗r)) (3∗(3∗r^2 + q^2 ))

by (simp add: power-mult-distrib)
also have . . . = 3 ∗ gcd (2∗r) (3∗r^2 + q^2 ) using gcd-mult-distrib-int[of 3 ] by

auto
finally have coprime (2∗r) (3∗r^2 + q^2 )

by (auto dest: gcd-eq-1-imp-coprime)
moreover have coprime 9 (3∗r^2 + q^2 )
using ‹coprime v w› proof (rule coprime-imp-coprime)

fix h :: int
assume ¬ is-unit h
assume h9 : h dvd 9 and hrq: h dvd 3 ∗ r2 + q2

have prime (3 ::int)
by simp

moreover from ‹h dvd 9 › have h dvd 3 2

by simp
ultimately obtain k where normalize h = 3 ^ k

by (rule divides-primepow)
with ‹¬ is-unit h› have 0 < k

by simp
with ‹normalize h = 3 ^ k› have |h| = 3 ∗ 3 ^ (k − 1 )

by (cases k) simp-all
then have 3 dvd |h| ..
then have 3 dvd h

by simp
then have 3 dvd 3 ∗ r2 + q2

using hrq by (rule dvd-trans)
then have 3 dvd q2

by presburger
then have 3 dvd q

using prime-dvd-power-int [of 3 q 2 ] by auto
with p3 have 3 dvd p + q and 3 dvd p − q
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by simp-all
with vw have 3 dvd v and 3 dvd w

by simp-all
with ‹coprime v w› have is-unit (3 ::int)

by (rule coprime-common-divisor)
then show h dvd v and h dvd w

by simp-all
qed
ultimately have coprime (2 ∗ r ∗ 9 ) (3 ∗ r2 + q2)

by (simp only: coprime-mult-left-iff )
then show ?thesis

by (simp add: ac-simps)
qed
moreover have rqx: (18∗r)∗(q^2 + 3∗r^2 ) = x^3
proof −

from vwx vwpq have x^3 = 2∗p∗(p^2 + 3∗q^2 ) by auto
also with r have . . . = 2∗(3∗r)∗(9∗r^2 + 3∗q^2 )

by (auto simp add: power2-eq-square)
finally show ?thesis by auto

qed
ultimately have ∃ c. 18∗r = c^3

by (simp add: int-relprime-odd-power-divisors)
then obtain c1 where c1 : c1^3 = 3∗(6∗r) by auto
hence 3 dvd c1^3 and prime (3 ::int) by auto
hence 3 dvd c1 using prime-dvd-power [of 3 ] by fastforce
with c1 obtain c where c: 3∗c^3 = 2∗r

by (auto simp add: power-mult-distrib dvd-def )
from rqx factors-relprime have coprime (q^2 + 3∗r^2 ) (18∗r)

and (q^2 + 3∗r^2 )∗(18∗r) = x^3 by (auto simp add: ac-simps)
hence ∃ d. q^2 + 3∗r^2 = d^3

by (simp add: int-relprime-odd-power-divisors)
then obtain d where d: q^2 + 3∗r^2 = d^3 by auto
have odd d
proof (rule ccontr)

assume ¬ odd d
hence 2 dvd d^3 by simp
moreover have 2 dvd 2∗(9∗r) by (rule dvd-triv-left)
ultimately have 2 dvd gcd (2∗(9∗r)) (d^3 ) by simp
with d factors-relprime show False by auto

qed
with d qr-relprime have coprime q r ∧ q^2 + 3∗r^2 = d^3 ∧ odd d

by simp
hence is-cube-form q r by (rule qf3-cube-impl-cube-form)
then obtain a b where q = a^3 − 9∗a∗b^2 ∧ r = 3∗a^2∗b − 3∗b^3

by (unfold is-cube-form-def , auto)
hence ab: q = a∗(a+3∗b)∗(a− 3∗b) ∧ r = b∗(a+b)∗(a−b)∗3

by (simp add: eval-nat-numeral field-simps)
with c have abc: (2∗b)∗(a+b)∗(a−b) = c^3 by auto
from qr-relprime ab have ab-relprime: coprime a b

by (auto intro: coprime-imp-coprime)
then have ab1 : coprime (2∗b) (a+b)
proof (rule coprime-imp-coprime)
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fix h
assume h2b: h dvd 2∗b and hab: h dvd a+b
have odd h
proof

assume even h
then have even (a + b)

using hab by (rule dvd-trans)
then have even (a+3∗b)

by simp
with ab have even q even r

by auto
then show False

using coprime-common-divisor-int qr-relprime by fastforce
qed
with h2b show h dvd b

using coprime-dvd-mult-right-iff [of h 2 b] by simp
with hab show h dvd a

using dvd-diff [of h a + b b] by simp
qed
from ab1 have ab2 : coprime (a+b) (a−b)
proof (rule coprime-imp-coprime)

fix h
assume hab1 : h dvd a+b and hab2 : h dvd a−b
then show h dvd 2∗b using dvd-diff [of h a+b a−b] by fastforce

qed
from ab1 have ab3 : coprime (a−b) (2∗b)
proof (rule coprime-imp-coprime)

fix h
assume hab: h dvd a−b and h2b: h dvd 2∗b
have a−b+2∗b = a+b by simp
then show h dvd a+b using hab h2b dvd-add [of h a−b 2∗b] by presburger

qed
then have [simp]: even b ←→ odd a

by simp
have ∃ k l m. 2∗b = k^3 ∧ a+b = l^3 ∧ a−b = m^3

using abc ab1 ab2 ab3
int-relprime-odd-power-divisors [of 3 2 ∗ b (a + b) ∗ (a − b) c]
int-relprime-odd-power-divisors [of 3 a + b (2 ∗ b) ∗ (a − b) c]
int-relprime-odd-power-divisors [of 3 a − b (2 ∗ b) ∗ (a + b) c]

by simp (simp add: ac-simps, simp add: algebra-simps)
then obtain α1 β γ where a1 : 2∗b = γ^3 ∧ a−b = α1^3 ∧ a+b = β^3

by auto
then obtain α where α = −α1 by auto
— show this is a (smaller) solution
with a1 have a2 : α^3 = b−a by auto
with a1 have α^3 + β^3 = γ^3 by auto
moreover have α∗β∗γ 6= 0
proof (rule ccontr , safe)

assume α ∗ β ∗ γ = 0
with a1 a2 ab have r=0 by (auto simp add: power-0-left)
with r vwpq vwx show False by auto

qed
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moreover have even γ
proof −

have even (2∗b) by simp
with a1 have even (γ^3 ) by simp
thus ?thesis by simp

qed
moreover have coprime α β
using ab2 proof (rule coprime-imp-coprime)

fix h
assume ha: h dvd α and hb: h dvd β
then have h dvd α ∗ α^2 and h dvd β ∗ β^2 by simp-all
then have h dvd α^Suc 2 and h dvd β^Suc 2 by (auto simp only: power-Suc)
with a1 a2 have h dvd b − a and h dvd a + b by auto
then show h dvd a + b and h dvd a − b

by (simp-all add: dvd-diff-commute)
qed
moreover have nat|γ^3 | < nat|x^3 |
proof −

let ?A = p^2 + 3∗q^2
from vwx vwpq have x^3 = 2∗p∗?A by auto
also with r have . . . = 6∗r∗?A by auto
also with ab have . . . = 2∗b∗(9∗(a+b)∗(a−b)∗?A) by auto
also with a1 have . . . = γ^3 ∗(9∗(a+b)∗(a−b)∗?A) by auto
finally have eq: |x^3 | = |γ^3 | ∗ |9∗(a+b)∗(a−b)∗?A|

by (auto simp add: abs-mult)
with ‹0 < nat|x^3 |› have |9∗(a+b)∗(a−b)∗?A| > 0 by auto
hence |(a+b)∗(a−b)∗?A| ≥ 1 by arith
hence |9∗(a+b)∗(a−b)∗?A| > 1 by arith
moreover have |γ^3 | > 0
proof −

from eq have |γ^3 | = 0 =⇒ |x^3 |=0 by auto
with ‹0 < nat|x^3 |› show ?thesis by auto

qed
ultimately have |γ^3 | ∗ 1 < |γ^3 | ∗ |9∗(a+b)∗(a−b)∗?A|

by (rule zmult-zless-mono2 )
with eq have |x^3 | > |γ^3 | by auto
thus ?thesis by arith

qed
ultimately have ?thesis by auto }

ultimately show ?thesis by auto
qed
thus ?case by auto

qed

The theorem. Puts equation in requested shape.
theorem fermat-3 :

assumes ass: (x::int)^3 + y^3 = z^3
shows x∗y∗z=0

proof (rule ccontr)
let ?g = gcd x y
let ?c = z div ?g
assume xyz0 : x∗y∗z 6=0



3 Fermat’s last theorem, case n = 3 57

— divide out the g.c.d.
hence x 6= 0 ∨ y 6= 0 by simp
then obtain a b where ab: x = ?g∗a ∧ y = ?g∗b ∧ coprime a b

using gcd-coprime-exists[of x y] by (auto simp: mult.commute)
moreover have abc: ?c∗?g = z ∧ a^3 + b^3 = ?c^3 ∧ a∗b∗?c 6= 0
proof −

from xyz0 have g0 : ?g 6=0 by simp
have zgab: z^3 = ?g^3 ∗ (a^3+b^3 )
proof −

from ab and ass have z^3 = (?g∗a)^3+(?g∗b)^3 by simp
thus ?thesis by (simp only: power-mult-distrib distrib-left)

qed
have cgz: ?c ∗ ?g = z
proof −

from zgab have ?g^3 dvd z^3 by simp
hence ?g dvd z by simp
thus ?thesis by (simp only: ac-simps dvd-mult-div-cancel)

qed
moreover have a^3 + b^3 = ?c^3
proof −

have ?c^3 ∗ ?g^3 = (a^3+b^3 )∗?g^3
proof −

have ?c^3 ∗ ?g^3 = (?c∗?g)^3 by (simp only: power-mult-distrib)
also with cgz have . . . = z^3 by simp
also with zgab have . . . = ?g^3∗(a^3+b^3 ) by simp
finally show ?thesis by simp

qed
with g0 show ?thesis by auto

qed
moreover from ab and xyz0 and cgz have a∗b∗?c 6=0 by auto
ultimately show ?thesis by simp

qed
— make both sides even
from ab have coprime (a ^ 3 ) (b ^ 3 )

by simp
have ∃ u v w. u^3 + v^3 = w^3 ∧ u∗v∗w 6=(0 ::int) ∧ even w ∧ coprime u v
proof −

let ?Q u v w = u^3 + v^3 = w^3 ∧ u∗v∗w 6=(0 ::int) ∧ even w ∧ coprime u v
have even a ∨ even b ∨ even ?c
proof (rule ccontr)

assume ¬(even a ∨ even b ∨ even ?c)
hence aodd: odd a and odd b ∧ odd ?c by auto
hence even (?c^3 − b^3 ) by simp
moreover from abc have ?c^3−b^3 = a^3 by simp
ultimately have even (a^3 ) by auto
hence even (a) by simp
with aodd show False by simp

qed
moreover
{ assume even (a)

then obtain u v w where uvwabc: u = −b ∧ v = ?c ∧ w = a ∧ even w
by auto
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moreover with abc have u∗v∗w 6=0 by auto
moreover have uvw: u^3+v^3=w^3
proof −

from uvwabc have u^3 + v^3 = (−1∗b)^3 + ?c^3 by simp
also have . . . = (−1 )^3∗b^3 + ?c^3 by (simp only: power-mult-distrib)
also have . . . = − (b^3 ) + ?c^3 by auto
also with abc and uvwabc have . . . = w^3 by auto
finally show ?thesis by simp

qed
moreover have coprime u v
using ‹coprime (a ^ 3 ) (b ^ 3 )› proof (rule coprime-imp-coprime)

fix h
assume hu: h dvd u and h dvd v
with uvwabc have h dvd ?c∗?c^2 by (simp only: dvd-mult2 )
with abc have h dvd a^3+b^3 using power-Suc[of ?c 2 ] by simp
moreover from hu uvwabc have hb3 : h dvd b∗b^2 by simp
ultimately have h dvd a^3+b^3−b^3

using power-Suc [of b 2 ] dvd-diff [of h a ^ 3 + b ^ 3 b ^ 3 ] by simp
with hb3 show h dvd a^3 h dvd b^3 using power-Suc[of b 2 ] by auto

qed
ultimately have ?Q u v w using ‹even a› by simp
hence ?thesis by auto }

moreover
{ assume even b

then obtain u v w where uvwabc: u = −a ∧ v = ?c ∧ w = b ∧ even w
by auto

moreover with abc have u∗v∗w 6=0 by auto
moreover have uvw: u^3+v^3=w^3
proof −

from uvwabc have u^3 + v^3 = (−1∗a)^3 + ?c^3 by simp
also have . . . = (−1 )^3∗a^3 + ?c^3 by (simp only: power-mult-distrib)
also have . . . = − (a^3 ) + ?c^3 by auto
also with abc and uvwabc have . . . = w^3 by auto
finally show ?thesis by simp

qed
moreover have coprime u v
using ‹coprime (a ^ 3 ) (b ^ 3 )› proof (rule coprime-imp-coprime)

fix h
assume hu: h dvd u and h dvd v
with uvwabc have h dvd ?c∗?c^2 by (simp only: dvd-mult2 )
with abc have h dvd a^3+b^3 using power-Suc[of ?c 2 ] by simp
moreover from hu uvwabc have hb3 : h dvd a∗a^2 by simp
ultimately have h dvd a^3+b^3−a^3

using power-Suc [of a 2 ] dvd-diff [of h a ^ 3 + b ^ 3 a ^ 3 ] by simp
with hb3 show h dvd a^3 and h dvd b^3 using power-Suc[of a 2 ] by auto

qed
ultimately have ?Q u v w using ‹even b› by simp
hence ?thesis by auto }

moreover
{ assume even ?c

then obtain u v w where uvwabc: u = a ∧ v = b ∧ w = ?c ∧ even w
by auto
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with abc ab have ?thesis by auto }
ultimately show ?thesis by auto

qed
hence ∃ w. ∃ u v. u^3 + v^3 = w^3 ∧ u∗v∗w 6= (0 ::int) ∧ even w ∧ coprime u v

by auto
— show contradiction using the earlier result
thus False by (auto simp only: no-rewritten-fermat3 )

qed

corollary fermat-mult3 :
assumes xyz: (x::int)^n + y^n = z^n and n: 3 dvd n
shows x∗y∗z=0

proof −
from n obtain m where n = m∗3 by (auto simp only: ac-simps dvd-def )
with xyz have (x^m)^3 + (y^m)^3 = (z^m)^3 by (simp only: power-mult)
hence (x^m)∗(y^m)∗(z^m) = 0 by (rule fermat-3 )
thus ?thesis by auto

qed

end

end
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