
Farkas’ Lemma and Motzkin’s Transposition
Theorem∗

Ralph Bottesch Max W. Haslbeck René Thiemann

March 17, 2025

Abstract
We formalize a proof of Motzkin’s transposition theorem and Farkas’

lemma in Isabelle/HOL. Our proof is based on the formalization of
the simplex algorithm which, given a set of linear constraints, either
returns a satisfying assignment to the problem or detects unsatisfiabil-
ity. By reusing facts about the simplex algorithm we show that a set
of linear constraints is unsatisfiable if and only if there is a linear com-
bination of the constraints which evaluates to a trivially unsatisfiable
inequality.

Contents
1 Introduction 2

2 Farkas Coefficients via the Simplex Algorithm of Duterte
and de Moura 3
2.1 Linear Inequalities . 3
2.2 Farkas’ Lemma on Layer 4 . 5
2.3 Farkas’ Lemma on Layer 3 . 7
2.4 Farkas’ Lemma on Layer 2 . 8
2.5 Farkas’ Lemma on Layer 1 . 10

3 Corollaries from the Literature 12
3.1 Farkas’ Lemma on Delta-Rationals 12
3.2 Motzkin’s Transposition Theorem or the Kuhn-Fourier The-

orem . 13
3.3 Farkas’ Lemma . 13
3.4 Farkas Lemma for Matrices 14

4 Unsatisfiability over the Reals 16
∗Supported by FWF (Austrian Science Fund) project Y757. The authors are listed in

alphabetical order regardless of individual contributions or seniority.

1

1 Introduction
This formalization augments the existing formalization of the simplex al-
gorithm [3, 5, 7]. Given a system of linear constraints, the simplex imple-
mentation in [3] produces either a satisfying assignment or a subset of the
given constraints that is itself unsatisfiable. Here we prove some variants of
Farkas’ Lemma. In essence, it states that if a set of constraints is unsatisfi-
able, then there is a linear combination of these constraints that evaluates
to an unsatisfiable inequality of the form 0 ≤ c, for some negative c.

Our proof of Farkas’ Lemma [4, Cor. 7.1e] relies on the formalized sim-
plex algorithm: Under the assumption that the algorithm has detected un-
satisfiability, we show that there exist coefficients for the above-mentioned
linear combination of the input constraints.

Since the formalized algorithm follows the structure of the simplex-
algorithm by Dutertre and de Moura [2], it first goes through a number
of preprocessing phases, before starting the simplex procedure in earnest.
These are relevant for proving Farkas’ Lemma. We distinguish four layers
of the algorithm; at each layer, it operates on data that is a refinement of
the data available at the previous layer.

• Layer 1. Data: the input – a set of linear constraints with rational
coefficients. These can be equalities or strict/non-strict inequalities.
Preprocessing: Each equality is split into two non-strict inequalities,
strict inequalities are replaced by non-strict inequalities involving δ-
rationals.

• Layer 2. Data: a set of linear constraints that are non-strict inequali-
ties with δ-rationals. Preprocessing: Linear constraints are simplified
so that each constraint involves a single variable, by introducing so-
called slack variables where necessary. The equations defining the slack
variables are collected in a tableau. The constraints are normalized so
that they are of the form y ≤ c or y ≥ c (these are called atoms).

• Layer 3. Data: A tableau and a set of atoms. Here the algorithm
initializes the simplex algorithm.

• Layer 4. Data: A tableau, a set of atoms and an assignment of the
variables. The simplex procedure is run.

At the point in the execution where the simplex algorithm detects un-
satisfiability, we can directly obtain coefficients for the desired linear com-
bination. However, these coefficients must then be propagated backwards
through the different layers, where the constraints themselves have been
modified, in order to obtain coefficients for a linear combination of input
constraints. These propagation steps make up a large part of the formalized

2

proof, since we must show, at each of the layers 1–3, that the existence of co-
efficients at the layer below translates into the existence of such coefficients
for the current layer. This means, in particular, that we formulate and prove
a version of Farkas’ Lemma for each of the four layers, in terms of the data
available at the respective level. The theorem we obtain at Layer 1 is actu-
ally a more general version of Farkas’ lemma, in the sense that it allows for
strict as well as non-strict inequalities, known as Motzkin’s Transposition
Theorem [4, Cor. 7.1k] or the Kuhn–Fourier Theorem [6, Thm. 1.1.9].

Since the implementation of the simplex algorithm in [3], which our
work relies on, is restricted to systems of constraints over the rationals, this
formalization is also subject to the same restriction.

2 Farkas Coefficients via the Simplex Algorithm
of Duterte and de Moura

Let c1, . . . , cn be a finite list of linear inequalities. Let C be a list of pairs
(ri, ci) where ri is a rational number. We say that C is a list of Farkas
coefficients if the sum of all products ri · ci results in an inequality that is
trivially unsatisfiable.

Farkas’ Lemma states that a finite set of non-strict linear inequalities
is unsatisfiable if and only if Farkas coefficients exist. We will prove this
lemma with the help of the simplex algorithm of Dutertre and de Moura’s.

Note that the simplex implementation works on four layers, and we will
formulate and prove a variant of Farkas’ Lemma for each of these layers.
theory Farkas

imports Simplex.Simplex
begin

2.1 Linear Inequalities
Both Farkas’ Lemma and Motzkin’s Transposition Theorem require linear
combinations of inequalities. To this end we define one type that permits
strict and non-strict inequalities which are always of the form “polynomial
R constant” where R is either ≤ or <. On this type we can then define a
commutative monoid.

A type for the two relations: less-or-equal and less-than.
datatype le-rel = Leq-Rel | Lt-Rel

primrec rel-of :: le-rel ⇒ ′a :: lrv ⇒ ′a ⇒ bool where
rel-of Leq-Rel = (≤)
| rel-of Lt-Rel = (<)

instantiation le-rel :: comm-monoid-add begin
definition zero-le-rel = Leq-Rel

3

fun plus-le-rel where
plus-le-rel Leq-Rel Leq-Rel = Leq-Rel
| plus-le-rel - - = Lt-Rel
instance
〈proof 〉
end

lemma Leq-Rel-0 : Leq-Rel = 0 〈proof 〉

datatype ′a le-constraint = Le-Constraint (lec-rel: le-rel) (lec-poly: linear-poly)
(lec-const: ′a)

abbreviation (input) Leqc ≡ Le-Constraint Leq-Rel

instantiation le-constraint :: (lrv) comm-monoid-add begin
fun plus-le-constraint :: ′a le-constraint ⇒ ′a le-constraint ⇒ ′a le-constraint where

plus-le-constraint (Le-Constraint r1 p1 c1) (Le-Constraint r2 p2 c2) =
(Le-Constraint (r1 + r2) (p1 + p2) (c1 + c2))

definition zero-le-constraint :: ′a le-constraint where
zero-le-constraint = Leqc 0 0

instance 〈proof 〉
end

primrec satisfiable-le-constraint :: ′a::lrv valuation ⇒ ′a le-constraint ⇒ bool (infixl
‹|=le› 100) where
(v |=le (Le-Constraint rel l r)) ←→ (rel-of rel (l{|v|}) r)

lemma satisfies-zero-le-constraint: v |=le 0
〈proof 〉

lemma satisfies-sum-le-constraints:
assumes v |=le c v |=le d
shows v |=le (c + d)
〈proof 〉

lemma satisfies-sumlist-le-constraints:
assumes

∧
c. c ∈ set (cs :: ′a :: lrv le-constraint list) =⇒ v |=le c

shows v |=le sum-list cs
〈proof 〉

lemma sum-list-lec:
sum-list ls = Le-Constraint
(sum-list (map lec-rel ls))
(sum-list (map lec-poly ls))
(sum-list (map lec-const ls))

〈proof 〉

4

lemma sum-list-Leq-Rel: ((
∑

x←C . lec-rel (f x)) = Leq-Rel) ←→ (∀ x ∈ set C .
lec-rel (f x) = Leq-Rel)
〈proof 〉

2.2 Farkas’ Lemma on Layer 4
On layer 4 the algorithm works on a state containing a tableau, atoms (or
bounds), an assignment and a satisfiability flag. Only non-strict inequalities
appear at this level. In order to even state a variant of Farkas’ Lemma on
layer 4, we need conversions from atoms to non-strict constraints and then
further to linear inequalities of type le-constraint. The latter conversion is
a partial operation, since non-strict constraints of type ns-constraint permit
greater-or-equal constraints, whereas le-constraint allows only less-or-equal.

The advantage of first going via ns-constraint is that this type permits a
multiplication with arbitrary rational numbers (the direction of the inequal-
ity must be flipped when multiplying by a negative number, which is not
possible with le-constraint).
instantiation ns-constraint :: (scaleRat) scaleRat
begin
fun scaleRat-ns-constraint :: rat ⇒ ′a ns-constraint ⇒ ′a ns-constraint where

scaleRat-ns-constraint r (LEQ-ns p c) =
(if (r < 0) then GEQ-ns (r ∗R p) (r ∗R c) else LEQ-ns (r ∗R p) (r ∗R c))

| scaleRat-ns-constraint r (GEQ-ns p c) =
(if (r > 0) then GEQ-ns (r ∗R p) (r ∗R c) else LEQ-ns (r ∗R p) (r ∗R c))

instance 〈proof 〉
end

lemma sat-scale-rat-ns: assumes v |=ns ns
shows v |=ns (f ∗R ns)
〈proof 〉

lemma scaleRat-scaleRat-ns-constraint: assumes a 6= 0 =⇒ b 6= 0
shows a ∗R (b ∗R (c :: ′a :: lrv ns-constraint)) = (a ∗ b) ∗R c
〈proof 〉

fun lec-of-nsc where
lec-of-nsc (LEQ-ns p c) = (Leqc p c)

fun is-leq-ns where
is-leq-ns (LEQ-ns p c) = True
| is-leq-ns (GEQ-ns p c) = False

lemma lec-of-nsc:
assumes is-leq-ns c
shows (v |=le lec-of-nsc c) ←→ (v |=ns c)
〈proof 〉

5

fun nsc-of-atom where
nsc-of-atom (Leq var b) = LEQ-ns (lp-monom 1 var) b
| nsc-of-atom (Geq var b) = GEQ-ns (lp-monom 1 var) b

lemma nsc-of-atom: v |=ns nsc-of-atom a ←→ v |=a a
〈proof 〉

We say that C is a list of Farkas coefficients for a given tableau t and
atom set as, if it is a list of pairs (r, a) such that a ∈ as, r is non-zero, r ·a is
a ‘less-than-or-equal’-constraint, and the linear combination of inequalities
must result in an inequality of the form p ≤ c, where c < 0 and t |= p = 0.
definition farkas-coefficients-atoms-tableau where

farkas-coefficients-atoms-tableau (as :: ′a :: lrv atom set) t C = (∃ p c.
(∀ (r ,a) ∈ set C . a ∈ as ∧ is-leq-ns (r ∗R nsc-of-atom a) ∧ r 6= 0) ∧
(
∑

(r ,a) ← C . lec-of-nsc (r ∗R nsc-of-atom a)) = Leqc p c ∧
c < 0 ∧
(∀ v :: ′a valuation. v |=t t −→(p{|v|} = 0)))

We first prove that if the check-function detects a conflict, then Farkas
coefficients do exist for the tableau and atom set for which the conflict is
detected.
definition bound-atoms :: (′i, ′a) state ⇒ ′a atom set (‹BA›) where

bound-atoms s = (λ(v,x). Geq v x) ‘ (set-of-map (Bl s)) ∪
(λ(v,x). Leq v x) ‘ (set-of-map (Bu s))

context PivotUpdateMinVars
begin

lemma farkas-check:
assumes check: check s ′ = s and U : U s ¬ U s ′

and inv: ∇ s ′ 4 (T s ′) |=nolhs s ′ ♦ s ′

and index: index-valid as s ′

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ as) (T s ′) C
〈proof 〉

end

Next, we show that a conflict found by the assert-bound function also
gives rise to Farkas coefficients.
context Update
begin

lemma farkas-assert-bound: assumes inv: ¬ U s |=nolhs s 4 (T s) ∇ s ♦ s
and index: index-valid as s
and U : U (assert-bound ia s)

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ (insert ia as)) (T s) C
〈proof 〉
end

6

Moreover, we prove that all other steps of the simplex algorithm on
layer 4, such as pivoting, asserting bounds without conflict, etc., preserve
Farkas coefficients.
lemma farkas-coefficients-atoms-tableau-mono: assumes as ⊆ bs
shows farkas-coefficients-atoms-tableau as t C =⇒ farkas-coefficients-atoms-tableau

bs t C
〈proof 〉

locale AssertAllState ′′′ = AssertAllState ′′ init ass-bnd chk + Update update +
PivotUpdateMinVars eq-idx-for-lvar min-lvar-not-in-bounds min-rvar-incdec-eq

pivot-and-update
for init and ass-bnd :: ′i × ′a :: lrv atom ⇒ - and chk :: (′i, ′a) state ⇒ (′i, ′a)

state and update :: nat ⇒ ′a :: lrv ⇒ (′i, ′a) state ⇒ (′i, ′a) state
and eq-idx-for-lvar :: tableau ⇒ var ⇒ nat and
min-lvar-not-in-bounds :: (′i, ′a::lrv) state ⇒ var option and
min-rvar-incdec-eq :: (′i, ′a) Direction ⇒ (′i, ′a) state ⇒ eq ⇒ ′i list + var and
pivot-and-update :: var ⇒ var ⇒ ′a ⇒ (′i, ′a) state ⇒ (′i, ′a) state
+ assumes ass-bnd: ass-bnd = Update.assert-bound update and
chk: chk = PivotUpdateMinVars.check eq-idx-for-lvar min-lvar-not-in-bounds

min-rvar-incdec-eq pivot-and-update

context AssertAllState ′′′

begin

lemma farkas-assert-bound-loop: assumes U (assert-bound-loop as (init t))
and norm: 4 t

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ set as) t C
〈proof 〉

Now we get to the main result for layer 4: If the main algorithm returns
unsat, then there are Farkas coefficients for the tableau and atom set that
were given as input for this layer.
lemma farkas-assert-all-state: assumes U : U (assert-all-state t as)

and norm: 4 t
shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ set as) t C
〈proof 〉

2.3 Farkas’ Lemma on Layer 3
There is only a small difference between layers 3 and 4, namely that there
is no simplex algorithm (assert-all-state) on layer 3, but just a tableau and
atoms.

Hence, one task is to link the unsatisfiability flag on layer 4 with unsat-
isfiability of the original tableau and atoms (layer 3). This can be done via
the existing soundness results of the simplex algorithm. Moreover, we give
an easy proof that the existence of Farkas coefficients for a tableau and set
of atoms implies unsatisfiability.

7

end

lemma farkas-coefficients-atoms-tableau-unsat:
assumes farkas-coefficients-atoms-tableau as t C
shows @ v. v |=t t ∧ v |=as as
〈proof 〉

Next is the main result for layer 3: a tableau and a finite set of atoms
are unsatisfiable if and only if there is a list of Farkas coefficients for the set
of atoms and the tableau.
lemma farkas-coefficients-atoms-tableau: assumes norm: 4 t

and fin: finite as
shows (∃ C . farkas-coefficients-atoms-tableau as t C) ←→ (@ v. v |=t t ∧ v |=as

as)
〈proof 〉

2.4 Farkas’ Lemma on Layer 2
The main difference between layers 2 and 3 is the introduction of slack-
variables in layer 3 via the preprocess-function. Our task here is to show
that Farkas coefficients at layer 3 (where slack-variables are used) can be
converted into Farkas coefficients for layer 2 (before the preprocessing).

We also need to adapt the previos notion of Farkas coefficients, which
was used in farkas-coefficients-atoms-tableau, for layer 2. At layer 3, Farkas
coefficients are the coefficients in a linear combination of atoms that eval-
uates to an inequality of the form p ≤ c, where p is a linear polynomial,
c < 0, and t |= p = 0 holds. At layer 2, the atoms are replaced by non-strict
constraints where the left-hand side is a polynomial in the original vari-
ables, but the corresponding linear combination (with Farkas coefficients)
evaluates directly to the inequality 0 ≤ c, with c < 0. The implication
t |= p = 0 is no longer possible in this layer, since there is no tableau t, nor
is it needed, since p is 0. Thus, the statement defining Farkas coefficients
must be changed accordingly.
definition farkas-coefficients-ns where

farkas-coefficients-ns ns C = (∃ c.
(∀ (r , n) ∈ set C . n ∈ ns ∧ is-leq-ns (r ∗R n) ∧ r 6= 0) ∧
(
∑

(r , n) ← C . lec-of-nsc (r ∗R n)) = Leqc 0 c ∧
c < 0)

The easy part is to prove that Farkas coefficients imply unsatisfiability.
lemma farkas-coefficients-ns-unsat:

assumes farkas-coefficients-ns ns C
shows @ v. v |=nss ns
〈proof 〉

In order to eliminate the need for a tableau, we require the notion of an
arbitrary substitution on polynomials, where all variables can be replaced at

8

once. The existing simplex formalization provides only a function to replace
one variable at a time.
definition subst-poly :: (var ⇒ linear-poly) ⇒ linear-poly ⇒ linear-poly where

subst-poly σ p = (
∑

x ∈ vars p. coeff p x ∗R σ x)

lemma subst-poly-0 [simp]: subst-poly σ 0 = 0 〈proof 〉

lemma valuate-subst-poly: (subst-poly σ p) {| v |} = (p {| (λ x. ((σ x) {| v |})) |})
〈proof 〉

lemma subst-poly-add: subst-poly σ (p + q) = subst-poly σ p + subst-poly σ q
〈proof 〉

fun subst-poly-lec :: (var ⇒ linear-poly) ⇒ ′a le-constraint ⇒ ′a le-constraint
where

subst-poly-lec σ (Le-Constraint rel p c) = Le-Constraint rel (subst-poly σ p) c

lemma subst-poly-lec-0 [simp]: subst-poly-lec σ 0 = 0 〈proof 〉

lemma subst-poly-lec-add: subst-poly-lec σ (c1 + c2) = subst-poly-lec σ c1 +
subst-poly-lec σ c2
〈proof 〉

lemma subst-poly-lec-sum-list: subst-poly-lec σ (sum-list ps) = sum-list (map (subst-poly-lec
σ) ps)
〈proof 〉

lemma subst-poly-lp-monom[simp]: subst-poly σ (lp-monom r x) = r ∗R σ x
〈proof 〉

lemma subst-poly-scaleRat: subst-poly σ (r ∗R p) = r ∗R (subst-poly σ p)
〈proof 〉

We need several auxiliary properties of the preprocess-function which
are not present in the simplex formalization.
lemma Tableau-is-monom-preprocess ′:

assumes (x, p) ∈ set (Tableau (preprocess ′ cs start))
shows ¬ is-monom p
〈proof 〉

lemma preprocess ′-atoms-to-constraints ′: assumes preprocess ′ cs start = S
shows set (Atoms S) ⊆ {(i,qdelta-constraint-to-atom c v) | i c v. (i,c) ∈ set cs
∧

(¬ is-monom (poly c) −→ Poly-Mapping S (poly c) = Some v)}
〈proof 〉

lemma monom-of-atom-coeff :
assumes is-monom (poly ns) a = qdelta-constraint-to-atom ns v
shows (monom-coeff (poly ns)) ∗R nsc-of-atom a = ns

9

〈proof 〉

The next lemma provides the functionality that is required to convert
an atom back to a non-strict constraint, i.e., it is a kind of inverse of the
preprocess-function.
lemma preprocess ′-atoms-to-constraints: assumes S : preprocess ′ cs start = S

and start: start = start-fresh-variable cs
and ns: ns = (case a of Leq v c ⇒ LEQ-ns q c | Geq v c ⇒ GEQ-ns q c)
and a ∈ snd ‘ set (Atoms S)

shows (atom-var a /∈ fst ‘ set (Tableau S) −→ (∃ r . r 6= 0 ∧ r ∗R nsc-of-atom a
∈ snd ‘ set cs))
∧ ((atom-var a, q) ∈ set (Tableau S) −→ ns ∈ snd ‘ set cs)

〈proof 〉

Next follows the major technical lemma of this part, namely that Farkas
coefficients on layer 3 for preprocessed constraints can be converted into
Farkas coefficients on layer 2.
lemma farkas-coefficients-preprocess ′:

assumes pp: preprocess ′ cs (start-fresh-variable cs) = S and
ft: farkas-coefficients-atoms-tableau (snd ‘ set (Atoms S)) (Tableau S) C

shows ∃ C . farkas-coefficients-ns (snd ‘ set cs) C
〈proof 〉

lemma preprocess ′-unsat-indexD: i ∈ set (UnsatIndices (preprocess ′ ns j)) =⇒
∃ c. poly c = 0 ∧ ¬ zero-satisfies c ∧ (i,c) ∈ set ns
〈proof 〉

lemma preprocess ′-unsat-index-farkas-coefficients-ns:
assumes i ∈ set (UnsatIndices (preprocess ′ ns j))
shows ∃ C . farkas-coefficients-ns (snd ‘ set ns) C
〈proof 〉

The combination of the previous results easily provides the main result
of this section: a finite set of non-strict constraints on layer 2 is unsatisfiable
if and only if there are Farkas coefficients. Again, here we use results from
the simplex formalization, namely soundness of the preprocess-function.
lemma farkas-coefficients-ns: assumes finite (ns :: QDelta ns-constraint set)

shows (∃ C . farkas-coefficients-ns ns C) ←→ (@ v. v |=nss ns)
〈proof 〉

2.5 Farkas’ Lemma on Layer 1
The main difference of layers 1 and 2 is the restriction to non-strict con-
straints via delta-rationals. Since we now work with another constraint
type, constraint, we again need translations into linear inequalities of type
le-constraint. Moreover, we also need to define scaling of constraints where
flipping the comparison sign may be required.
fun is-le :: constraint ⇒ bool where

10

is-le (LT - -) = True
| is-le (LEQ - -) = True
| is-le - = False

fun lec-of-constraint where
lec-of-constraint (LEQ p c) = (Le-Constraint Leq-Rel p c)
| lec-of-constraint (LT p c) = (Le-Constraint Lt-Rel p c)

lemma lec-of-constraint:
assumes is-le c
shows (v |=le (lec-of-constraint c)) ←→ (v |=c c)
〈proof 〉

instantiation constraint :: scaleRat
begin
fun scaleRat-constraint :: rat ⇒ constraint ⇒ constraint where

scaleRat-constraint r cc = (if r = 0 then LEQ 0 0 else
(case cc of

LEQ p c ⇒
(if (r < 0) then GEQ (r ∗R p) (r ∗R c) else LEQ (r ∗R p) (r ∗R c))

| LT p c ⇒
(if (r < 0) then GT (r ∗R p) (r ∗R c) else LT (r ∗R p) (r ∗R c))

| GEQ p c ⇒
(if (r > 0) then GEQ (r ∗R p) (r ∗R c) else LEQ (r ∗R p) (r ∗R c))
| GT p c ⇒
(if (r > 0) then GT (r ∗R p) (r ∗R c) else LT (r ∗R p) (r ∗R c))
| EQ p c ⇒ LEQ (r ∗R p) (r ∗R c) — We do not keep equality, since the aim is

to convert the scaled constraints into inequalities, which will then be summed up.
))

instance 〈proof 〉
end

lemma sat-scale-rat: assumes (v :: rat valuation) |=c c
shows v |=c (r ∗R c)
〈proof 〉

In the following definition of Farkas coefficients (for layer 1), the main
difference to farkas-coefficients-ns is that the linear combination evaluates
either to a strict inequality where the constant must be non-positive, or to
a non-strict inequality where the constant must be negative.
definition farkas-coefficients where

farkas-coefficients cs C = (∃ d rel.
(∀ (r ,c) ∈ set C . c ∈ cs ∧ is-le (r ∗R c) ∧ r 6= 0) ∧
(
∑

(r ,c) ← C . lec-of-constraint (r ∗R c)) = Le-Constraint rel 0 d ∧
(rel = Leq-Rel ∧ d < 0 ∨ rel = Lt-Rel ∧ d ≤ 0))

Again, the existence Farkas coefficients immediately implies unsatisfia-
bility.

11

lemma farkas-coefficients-unsat:
assumes farkas-coefficients cs C
shows @ v. v |=cs cs
〈proof 〉

Now follows the difficult implication. The major part is proving that the
translation constraint-to-qdelta-constraint preserves the existence of Farkas
coefficients via pointwise compatibility of the sum. Here, compatibility links
a strict or non-strict inequality from the input constraint to a translated
non-strict inequality over delta-rationals.
fun compatible-cs where

compatible-cs (Le-Constraint Leq-Rel p c) (Le-Constraint Leq-Rel q d) = (q = p
∧ d = QDelta c 0)
| compatible-cs (Le-Constraint Lt-Rel p c) (Le-Constraint Leq-Rel q d) = (q = p ∧
qdfst d = c)
| compatible-cs - - = False

lemma compatible-cs-0-0 : compatible-cs 0 0 〈proof 〉

lemma compatible-cs-plus: compatible-cs c1 d1 =⇒ compatible-cs c2 d2 =⇒ com-
patible-cs (c1 + c2) (d1 + d2)
〈proof 〉

lemma unsat-farkas-coefficients: assumes @ v. v |=cs cs
and fin: finite cs

shows ∃ C . farkas-coefficients cs C
〈proof 〉

Finally we can prove on layer 1 that a finite set of constraints is unsat-
isfiable if and only if there are Farkas coefficients.
lemma farkas-coefficients: assumes finite cs

shows (∃ C . farkas-coefficients cs C) ←→ (@ v. v |=cs cs)
〈proof 〉

3 Corollaries from the Literature
In this section, we convert the previous variations of Farkas’ Lemma into
more well-known forms of this result. Moreover, instead of referring to the
various constraint types of the simplex formalization, we now speak solely
about constraints of type le-constraint.

3.1 Farkas’ Lemma on Delta-Rationals
We start with Lemma 2 of [1], a variant of Farkas’ Lemma for delta-rationals.
To be more precise, it states that a set of non-strict inequalities over delta-
rationals is unsatisfiable if and only if there is a linear combination of the in-
equalities that results in a trivial unsatisfiable constraint 0 < const for some

12

negative constant const. We can easily prove this statement via the lemma
farkas-coefficients-ns and some conversions between the different constraint
types.
lemma Farkas ′-Lemma-Delta-Rationals: fixes cs :: QDelta le-constraint set

assumes only-non-strict: lec-rel ‘ cs ⊆ {Leq-Rel}
and fin: finite cs

shows (@ v. ∀ c ∈ cs. v |=le c) ←→
(∃ C const. (∀ (r , c) ∈ set C . r > 0 ∧ c ∈ cs)
∧ (

∑
(r ,c) ← C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) = Leqc 0 const

∧ const < 0)
(is ?lhs = ?rhs)

〈proof 〉

3.2 Motzkin’s Transposition Theorem or the Kuhn-Fourier
Theorem

Next, we prove a generalization of Farkas’ Lemma that permits arbitrary
combinations of strict and non-strict inequalities: Motzkin’s Transposition
Theorem which is also known as the Kuhn–Fourier Theorem.

The proof is mainly based on the lemma farkas-coefficients, again requir-
ing conversions between constraint types.
theorem Motzkin ′s-transposition-theorem: fixes cs :: rat le-constraint set

assumes fin: finite cs
shows (@ v. ∀ c ∈ cs. v |=le c) ←→

(∃ C const rel. (∀ (r , c) ∈ set C . r > 0 ∧ c ∈ cs)
∧ (

∑
(r ,c) ← C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const

c))
= Le-Constraint rel 0 const

∧ (rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0))
(is ?lhs = ?rhs)

〈proof 〉

3.3 Farkas’ Lemma
Finally we derive the commonly used form of Farkas’ Lemma, which eas-
ily follows from Motzkin ′s-transposition-theorem. It only permits non-strict
inequalities and, as a result, the sum of inequalities will always be non-strict.
lemma Farkas ′-Lemma: fixes cs :: rat le-constraint set

assumes only-non-strict: lec-rel ‘ cs ⊆ {Leq-Rel}
and fin: finite cs

shows (@ v. ∀ c ∈ cs. v |=le c) ←→
(∃ C const. (∀ (r , c) ∈ set C . r > 0 ∧ c ∈ cs)
∧ (

∑
(r ,c) ← C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) = Leqc 0 const

∧ const < 0)
(is - = ?rhs)

〈proof 〉

13

We also present slightly modified versions
lemma sum-list-map-filter-sum: fixes f :: ′a ⇒ ′b :: comm-monoid-add

shows sum-list (map f (filter g xs)) + sum-list (map f (filter (Not o g) xs)) =
sum-list (map f xs)
〈proof 〉

A version where every constraint obtains exactly one coefficient and
where 0 coefficients are allowed.
lemma Farkas ′-Lemma-set-sum: fixes cs :: rat le-constraint set

assumes only-non-strict: lec-rel ‘ cs ⊆ {Leq-Rel}
and fin: finite cs

shows (@ v. ∀ c ∈ cs. v |=le c) ←→
(∃ C const. (∀ c ∈ cs. C c ≥ 0)
∧ (

∑
c ∈ cs. Leqc ((C c) ∗R lec-poly c) ((C c) ∗R lec-const c)) = Leqc 0

const
∧ const < 0)

〈proof 〉

A version with indexed constraints, i.e., in particular where constraints
may occur several times.
lemma Farkas ′-Lemma-indexed: fixes c :: nat ⇒ rat le-constraint

assumes only-non-strict: lec-rel ‘ c ‘ Is ⊆ {Leq-Rel}
and fin: finite Is
shows (@ v. ∀ i ∈ Is. v |=le c i) ←→

(∃ C const. (∀ i ∈ Is. C i ≥ 0)
∧ (

∑
i ∈ Is. Leqc ((C i) ∗R lec-poly (c i)) ((C i) ∗R lec-const (c i))) =

Leqc 0 const
∧ const < 0)

〈proof 〉

end

3.4 Farkas Lemma for Matrices
In this part we convert the simplex-structures like linear polynomials, etc.,
into equivalent formulations using matrices and vectors. As a result we
present Farkas’ Lemma via matrices and vectors.
theory Matrix-Farkas

imports Farkas
Jordan-Normal-Form.Matrix

begin

lift-definition poly-of-vec :: rat vec ⇒ linear-poly is
λ v x. if (x < dim-vec v) then v $ x else 0
〈proof 〉

definition val-of-vec :: rat vec ⇒ rat valuation where

14

val-of-vec v x = v $ x

lemma valuate-poly-of-vec: assumes w ∈ carrier-vec n
and v ∈ carrier-vec n

shows valuate (poly-of-vec v) (val-of-vec w) = v · w
〈proof 〉

definition constraints-of-mat-vec :: rat mat ⇒ rat vec ⇒ rat le-constraint set
where

constraints-of-mat-vec A b = (λ i . Leqc (poly-of-vec (row A i)) (b $ i)) ‘ {0 ..<
dim-row A}

lemma constraints-of-mat-vec-solution-main: assumes A: A ∈ carrier-mat nr nc
and x: x ∈ carrier-vec nc
and b: b ∈ carrier-vec nr
and sol: A ∗v x ≤ b
and c: c ∈ constraints-of-mat-vec A b

shows val-of-vec x |=le c
〈proof 〉

lemma vars-poly-of-vec: vars (poly-of-vec v) ⊆ { 0 ..< dim-vec v}
〈proof 〉

lemma finite-constraints-of-mat-vec: finite (constraints-of-mat-vec A b)
〈proof 〉

lemma lec-rec-constraints-of-mat-vec: lec-rel ‘ constraints-of-mat-vec A b ⊆ {Leq-Rel}

〈proof 〉

lemma constraints-of-mat-vec-solution-1 :
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and sol: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b

shows ∃ v. ∀ c ∈ constraints-of-mat-vec A b. v |=le c
〈proof 〉

lemma constraints-of-mat-vec-solution-2 :
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and sol: ∃ v. ∀ c ∈ constraints-of-mat-vec A b. v |=le c

shows ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
〈proof 〉

lemma constraints-of-mat-vec-solution:
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
shows (∃ x ∈ carrier-vec nc. A ∗v x ≤ b) =
(∃ v. ∀ c ∈ constraints-of-mat-vec A b. v |=le c)

15

〈proof 〉

lemma farkas-lemma-matrix: fixes A :: rat mat
assumes A: A ∈ carrier-mat nr nc
and b: b ∈ carrier-vec nr

shows (∃ x ∈ carrier-vec nc. A ∗v x ≤ b) ←→
(∀ y. y ≥ 0 v nr −→ mat-of-row y ∗ A = 0m 1 nc −→ y · b ≥ 0)
〈proof 〉

lemma farkas-lemma-matrix ′: fixes A :: rat mat
assumes A: A ∈ carrier-mat nr nc
and b: b ∈ carrier-vec nr

shows (∃ x ≥ 0 v nc. A ∗v x = b) ←→
(∀ y ∈ carrier-vec nr . mat-of-row y ∗ A ≥ 0m 1 nc −→ y · b ≥ 0)
〈proof 〉

end

4 Unsatisfiability over the Reals
By using Farkas’ Lemma we prove that a finite set of linear rational inequal-
ities is satisfiable over the rational numbers if and only if it is satisfiable over
the real numbers. Hence, the simplex algorithm either gives a rational so-
lution or shows unsatisfiability over the real numbers.
theory Simplex-for-Reals

imports
Farkas
Simplex.Simplex-Incremental

begin

instantiation real :: lrv
begin
definition scaleRat-real :: rat ⇒ real ⇒ real where
[simp]: x ∗R y = real-of-rat x ∗ y

instance 〈proof 〉
end

abbreviation real-satisfies-constraints :: real valuation ⇒ constraint set ⇒ bool
(infixl ‹|=rcs› 100) where

v |=rcs cs ≡ ∀ c ∈ cs. v |=c c

definition of-rat-val :: rat valuation ⇒ real valuation where
of-rat-val v x = of-rat (v x)

lemma of-rat-val-eval: p {|of-rat-val v|} = of-rat (p {|v|})
〈proof 〉

16

lemma of-rat-val-constraint: of-rat-val v |=c c ←→ v |=c c
〈proof 〉

lemma of-rat-val-constraints: of-rat-val v |=rcs cs ←→ v |=cs cs
〈proof 〉

lemma sat-scale-rat-real: assumes (v :: real valuation) |=c c
shows v |=c (r ∗R c)
〈proof 〉

fun of-rat-lec :: rat le-constraint ⇒ real le-constraint where
of-rat-lec (Le-Constraint r p c) = Le-Constraint r p (of-rat c)

lemma lec-of-constraint-real:
assumes is-le c
shows (v |=le of-rat-lec (lec-of-constraint c)) ←→ (v |=c c)
〈proof 〉

lemma of-rat-lec-add: of-rat-lec (c + d) = of-rat-lec c + of-rat-lec d
〈proof 〉

lemma of-rat-lec-zero: of-rat-lec 0 = 0
〈proof 〉

lemma of-rat-lec-sum: of-rat-lec (sum-list c) = sum-list (map of-rat-lec c)
〈proof 〉

This is the main lemma: a finite set of linear constraints is satisfiable
over Q if and only if it is satisfiable over R.
lemma rat-real-conversion: assumes finite cs

shows (∃ v :: rat valuation. v |=cs cs) ←→ (∃ v :: real valuation. v |=rcs cs)
〈proof 〉

The main result of simplex, now using unsatisfiability over the reals.
fun i-satisfies-cs-real (infixl ‹|=rics› 100) where
(I ,v) |=rics cs ←→ v |=rcs Simplex.restrict-to I cs

lemma simplex-index-real:
simplex-index cs = Unsat I =⇒ set I ⊆ fst ‘ set cs ∧ ¬ (∃ v. (set I , v) |=rics

set cs) ∧
(distinct-indices cs −→ (∀ J ⊂ set I . (∃ v. (J , v) |=ics set cs))) — minimal

unsat core over the reals
simplex-index cs = Sat v =⇒ 〈v〉 |=cs (snd ‘ set cs) — satisfying assingment
〈proof 〉

lemma simplex-real:
simplex cs = Unsat I =⇒ ¬ (∃ v. v |=rcs set cs) — unsat of original constraints

over the reals

17

simplex cs = Unsat I =⇒ set I ⊆ {0 ..<length cs} ∧ ¬ (∃ v. v |=rcs {cs ! i | i. i
∈ set I})
∧ (∀ J⊂set I . ∃ v. v |=cs {cs ! i |i. i ∈ J}) — minimal unsat core over reals

simplex cs = Sat v =⇒ 〈v〉 |=cs set cs — satisfying assignment over the rationals
〈proof 〉

Define notion of minimal unsat core over the reals: the subset has to be
unsat over the reals, and every proper subset has to be satisfiable over the
rational numbers.
definition minimal-unsat-core-real :: ′i set ⇒ ′i i-constraint list ⇒ bool where

minimal-unsat-core-real I ics = ((I ⊆ fst ‘ set ics) ∧ (¬ (∃ v. (I ,v) |=rics set
ics))
∧ (distinct-indices ics −→ (∀ J . J ⊂ I −→ (∃ v. (J ,v) |=ics set ics))))

Because of equi-satisfiability the two notions of minimal unsat cores co-
incide.
lemma minimal-unsat-core-real-conv: minimal-unsat-core-real I ics = minimal-unsat-core
I ics
〈proof 〉

Easy consequence: The incremental simplex algorithm is also sound wrt.
minimal-unsat-cores over the reals.
lemmas incremental-simplex-real =

init-simplex
assert-simplex-ok
assert-simplex-unsat[folded minimal-unsat-core-real-conv]
assert-all-simplex-ok
assert-all-simplex-unsat[folded minimal-unsat-core-real-conv]
check-simplex-ok
check-simplex-unsat[folded minimal-unsat-core-real-conv]
solution-simplex
backtrack-simplex
checked-invariant-simplex

end

References
[1] M. Bromberger and C. Weidenbach. New techniques for linear arith-

metic: cubes and equalities. Formal Methods in System Design,
51(3):433–461, Dec 2017.

[2] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for
DPLL(T). In T. Ball and R. B. Jones, editors, CAV’06, volume 4144 of
LNCS, pages 81–94, 2006.

[3] F. Marić, M. Spasić, and R. Thiemann. An incremental simplex al-
gorithm with unsatisfiable core generation. Archive of Formal Proofs,

18

Aug. 2018. http://isa-afp.org/entries/Simplex.html, Formal proof de-
velopment.

[4] A. Schrijver. Theory of linear and integer programming. Wiley, 1999.

[5] M. Spasić and F. Marić. Formalization of incremental simplex algorithm
by stepwise refinement. In D. Giannakopoulou and D. Méry, editors,
FM’12, volume 7436 of LNCS, pages 434–449, 2012.

[6] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Di-
mensions I. Die Grundlehren der mathematischen Wissenschaften 163.
Springer-Verlag Berlin Heidelberg, 1 edition, 1970.

[7] R. Thiemann. Extending a verified simplex algorithm. In G. Barthe,
K. Korovin, S. Schulz, M. Suda, G. Sutcliffe, and M. Veanes, editors,
LPAR-22 Workshop and Short Paper Proceedings, volume 9 of Kalpa
Publications in Computing, pages 37–48. EasyChair, 2018.

19

http://isa-afp.org/entries/Simplex.html

	Introduction
	Farkas Coefficients via the Simplex Algorithm of Duterte and de Moura
	Linear Inequalities
	Farkas' Lemma on Layer 4
	Farkas' Lemma on Layer 3
	Farkas' Lemma on Layer 2
	Farkas' Lemma on Layer 1

	Corollaries from the Literature
	Farkas' Lemma on Delta-Rationals
	Motzkin's Transposition Theorem or the Kuhn-Fourier Theorem
	Farkas' Lemma
	Farkas Lemma for Matrices

	Unsatisfiability over the Reals

