
Farkas’ Lemma and Motzkin’s Transposition
Theorem∗

Ralph Bottesch Max W. Haslbeck René Thiemann

March 17, 2025

Abstract
We formalize a proof of Motzkin’s transposition theorem and Farkas’

lemma in Isabelle/HOL. Our proof is based on the formalization of
the simplex algorithm which, given a set of linear constraints, either
returns a satisfying assignment to the problem or detects unsatisfiabil-
ity. By reusing facts about the simplex algorithm we show that a set
of linear constraints is unsatisfiable if and only if there is a linear com-
bination of the constraints which evaluates to a trivially unsatisfiable
inequality.

Contents
1 Introduction 2

2 Farkas Coefficients via the Simplex Algorithm of Duterte
and de Moura 3
2.1 Linear Inequalities . 3
2.2 Farkas’ Lemma on Layer 4 . 5
2.3 Farkas’ Lemma on Layer 3 . 16
2.4 Farkas’ Lemma on Layer 2 . 17
2.5 Farkas’ Lemma on Layer 1 . 26

3 Corollaries from the Literature 30
3.1 Farkas’ Lemma on Delta-Rationals 30
3.2 Motzkin’s Transposition Theorem or the Kuhn-Fourier The-

orem . 32
3.3 Farkas’ Lemma . 34
3.4 Farkas Lemma for Matrices 38

4 Unsatisfiability over the Reals 45
∗Supported by FWF (Austrian Science Fund) project Y757. The authors are listed in

alphabetical order regardless of individual contributions or seniority.

1

1 Introduction
This formalization augments the existing formalization of the simplex al-
gorithm [3, 5, 7]. Given a system of linear constraints, the simplex imple-
mentation in [3] produces either a satisfying assignment or a subset of the
given constraints that is itself unsatisfiable. Here we prove some variants of
Farkas’ Lemma. In essence, it states that if a set of constraints is unsatisfi-
able, then there is a linear combination of these constraints that evaluates
to an unsatisfiable inequality of the form 0 ≤ c, for some negative c.

Our proof of Farkas’ Lemma [4, Cor. 7.1e] relies on the formalized sim-
plex algorithm: Under the assumption that the algorithm has detected un-
satisfiability, we show that there exist coefficients for the above-mentioned
linear combination of the input constraints.

Since the formalized algorithm follows the structure of the simplex-
algorithm by Dutertre and de Moura [2], it first goes through a number
of preprocessing phases, before starting the simplex procedure in earnest.
These are relevant for proving Farkas’ Lemma. We distinguish four layers
of the algorithm; at each layer, it operates on data that is a refinement of
the data available at the previous layer.

• Layer 1. Data: the input – a set of linear constraints with rational
coefficients. These can be equalities or strict/non-strict inequalities.
Preprocessing: Each equality is split into two non-strict inequalities,
strict inequalities are replaced by non-strict inequalities involving δ-
rationals.

• Layer 2. Data: a set of linear constraints that are non-strict inequali-
ties with δ-rationals. Preprocessing: Linear constraints are simplified
so that each constraint involves a single variable, by introducing so-
called slack variables where necessary. The equations defining the slack
variables are collected in a tableau. The constraints are normalized so
that they are of the form y ≤ c or y ≥ c (these are called atoms).

• Layer 3. Data: A tableau and a set of atoms. Here the algorithm
initializes the simplex algorithm.

• Layer 4. Data: A tableau, a set of atoms and an assignment of the
variables. The simplex procedure is run.

At the point in the execution where the simplex algorithm detects un-
satisfiability, we can directly obtain coefficients for the desired linear com-
bination. However, these coefficients must then be propagated backwards
through the different layers, where the constraints themselves have been
modified, in order to obtain coefficients for a linear combination of input
constraints. These propagation steps make up a large part of the formalized

2

proof, since we must show, at each of the layers 1–3, that the existence of co-
efficients at the layer below translates into the existence of such coefficients
for the current layer. This means, in particular, that we formulate and prove
a version of Farkas’ Lemma for each of the four layers, in terms of the data
available at the respective level. The theorem we obtain at Layer 1 is actu-
ally a more general version of Farkas’ lemma, in the sense that it allows for
strict as well as non-strict inequalities, known as Motzkin’s Transposition
Theorem [4, Cor. 7.1k] or the Kuhn–Fourier Theorem [6, Thm. 1.1.9].

Since the implementation of the simplex algorithm in [3], which our
work relies on, is restricted to systems of constraints over the rationals, this
formalization is also subject to the same restriction.

2 Farkas Coefficients via the Simplex Algorithm
of Duterte and de Moura

Let c1, . . . , cn be a finite list of linear inequalities. Let C be a list of pairs
(ri, ci) where ri is a rational number. We say that C is a list of Farkas
coefficients if the sum of all products ri · ci results in an inequality that is
trivially unsatisfiable.

Farkas’ Lemma states that a finite set of non-strict linear inequalities
is unsatisfiable if and only if Farkas coefficients exist. We will prove this
lemma with the help of the simplex algorithm of Dutertre and de Moura’s.

Note that the simplex implementation works on four layers, and we will
formulate and prove a variant of Farkas’ Lemma for each of these layers.
theory Farkas

imports Simplex.Simplex
begin

2.1 Linear Inequalities
Both Farkas’ Lemma and Motzkin’s Transposition Theorem require linear
combinations of inequalities. To this end we define one type that permits
strict and non-strict inequalities which are always of the form “polynomial
R constant” where R is either ≤ or <. On this type we can then define a
commutative monoid.

A type for the two relations: less-or-equal and less-than.
datatype le-rel = Leq-Rel | Lt-Rel

primrec rel-of :: le-rel ⇒ ′a :: lrv ⇒ ′a ⇒ bool where
rel-of Leq-Rel = (≤)
| rel-of Lt-Rel = (<)

instantiation le-rel :: comm-monoid-add begin
definition zero-le-rel = Leq-Rel

3

fun plus-le-rel where
plus-le-rel Leq-Rel Leq-Rel = Leq-Rel
| plus-le-rel - - = Lt-Rel
instance
proof

fix a b c :: le-rel
show a + b + c = a + (b + c) by (cases a; cases b; cases c, auto)
show a + b = b + a by (cases a; cases b, auto)
show 0 + a = a unfolding zero-le-rel-def by (cases a, auto)

qed
end

lemma Leq-Rel-0 : Leq-Rel = 0 unfolding zero-le-rel-def by simp

datatype ′a le-constraint = Le-Constraint (lec-rel: le-rel) (lec-poly: linear-poly)
(lec-const: ′a)

abbreviation (input) Leqc ≡ Le-Constraint Leq-Rel

instantiation le-constraint :: (lrv) comm-monoid-add begin
fun plus-le-constraint :: ′a le-constraint ⇒ ′a le-constraint ⇒ ′a le-constraint where

plus-le-constraint (Le-Constraint r1 p1 c1) (Le-Constraint r2 p2 c2) =
(Le-Constraint (r1 + r2) (p1 + p2) (c1 + c2))

definition zero-le-constraint :: ′a le-constraint where
zero-le-constraint = Leqc 0 0

instance proof
fix a b c :: ′a le-constraint
show 0 + a = a

by (cases a, auto simp: zero-le-constraint-def Leq-Rel-0)
show a + b = b + a by (cases a; cases b, auto simp: ac-simps)
show a + b + c = a + (b + c) by (cases a; cases b; cases c, auto simp: ac-simps)

qed
end

primrec satisfiable-le-constraint :: ′a::lrv valuation ⇒ ′a le-constraint ⇒ bool (infixl
‹|=le› 100) where
(v |=le (Le-Constraint rel l r)) ←→ (rel-of rel (l{|v|}) r)

lemma satisfies-zero-le-constraint: v |=le 0
by (simp add: valuate-zero zero-le-constraint-def)

lemma satisfies-sum-le-constraints:
assumes v |=le c v |=le d
shows v |=le (c + d)

proof −
obtain lc rc ld rd rel1 rel2 where cd: c = Le-Constraint rel1 lc rc d = Le-Constraint

rel2 ld rd

4

by (cases c; cases d, auto)
have 1 : rel-of rel1 (lc{|v|}) rc using assms cd by auto
have 2 : rel-of rel2 (ld{|v|}) rd using assms cd by auto
from 1 have le1 : lc{|v|} ≤ rc by (cases rel1 , auto)
from 2 have le2 : ld{|v|} ≤ rd by (cases rel2 , auto)
from 1 2 le1 le2 have rel-of (rel1 + rel2) ((lc{|v|}) + (ld{|v|})) (rc + rd)

apply (cases rel1 ; cases rel2 ; simp add: add-mono)
by (metis add.commute le-less-trans order .strict-iff-order plus-less)+

thus ?thesis by (auto simp: cd valuate-add)
qed

lemma satisfies-sumlist-le-constraints:
assumes

∧
c. c ∈ set (cs :: ′a :: lrv le-constraint list) =⇒ v |=le c

shows v |=le sum-list cs
using assms
by (induct cs, auto intro: satisfies-zero-le-constraint satisfies-sum-le-constraints)

lemma sum-list-lec:
sum-list ls = Le-Constraint
(sum-list (map lec-rel ls))
(sum-list (map lec-poly ls))
(sum-list (map lec-const ls))

proof (induct ls)
case Nil
show ?case by (auto simp: zero-le-constraint-def Leq-Rel-0)

next
case (Cons l ls)
show ?case by (cases l, auto simp: Cons)

qed

lemma sum-list-Leq-Rel: ((
∑

x←C . lec-rel (f x)) = Leq-Rel) ←→ (∀ x ∈ set C .
lec-rel (f x) = Leq-Rel)
proof (induct C)

case (Cons c C)
show ?case
proof (cases lec-rel (f c))

case Leq-Rel
show ?thesis using Cons by (simp add: Leq-Rel Leq-Rel-0)

qed simp
qed (simp add: Leq-Rel-0)

2.2 Farkas’ Lemma on Layer 4
On layer 4 the algorithm works on a state containing a tableau, atoms (or
bounds), an assignment and a satisfiability flag. Only non-strict inequalities
appear at this level. In order to even state a variant of Farkas’ Lemma on
layer 4, we need conversions from atoms to non-strict constraints and then
further to linear inequalities of type le-constraint. The latter conversion is
a partial operation, since non-strict constraints of type ns-constraint permit

5

greater-or-equal constraints, whereas le-constraint allows only less-or-equal.

The advantage of first going via ns-constraint is that this type permits a
multiplication with arbitrary rational numbers (the direction of the inequal-
ity must be flipped when multiplying by a negative number, which is not
possible with le-constraint).
instantiation ns-constraint :: (scaleRat) scaleRat
begin
fun scaleRat-ns-constraint :: rat ⇒ ′a ns-constraint ⇒ ′a ns-constraint where

scaleRat-ns-constraint r (LEQ-ns p c) =
(if (r < 0) then GEQ-ns (r ∗R p) (r ∗R c) else LEQ-ns (r ∗R p) (r ∗R c))

| scaleRat-ns-constraint r (GEQ-ns p c) =
(if (r > 0) then GEQ-ns (r ∗R p) (r ∗R c) else LEQ-ns (r ∗R p) (r ∗R c))

instance ..
end

lemma sat-scale-rat-ns: assumes v |=ns ns
shows v |=ns (f ∗R ns)

proof −
have f < 0 | f = 0 | f > 0 by auto
then show ?thesis using assms by (cases ns, auto simp: valuate-scaleRat scaleRat-leq1

scaleRat-leq2)
qed

lemma scaleRat-scaleRat-ns-constraint: assumes a 6= 0 =⇒ b 6= 0
shows a ∗R (b ∗R (c :: ′a :: lrv ns-constraint)) = (a ∗ b) ∗R c

proof −
have b > 0 ∨ b < 0 ∨ b = 0 by linarith
moreover have a > 0 ∨ a < 0 ∨ a = 0 by linarith
ultimately show ?thesis using assms

by (elim disjE ; cases c, auto simp add: not-le not-less
mult-neg-pos mult-neg-neg mult-nonpos-nonneg mult-nonpos-nonpos mult-nonneg-nonpos

mult-pos-neg)
qed

fun lec-of-nsc where
lec-of-nsc (LEQ-ns p c) = (Leqc p c)

fun is-leq-ns where
is-leq-ns (LEQ-ns p c) = True
| is-leq-ns (GEQ-ns p c) = False

lemma lec-of-nsc:
assumes is-leq-ns c
shows (v |=le lec-of-nsc c) ←→ (v |=ns c)
using assms by (cases c, auto)

fun nsc-of-atom where

6

nsc-of-atom (Leq var b) = LEQ-ns (lp-monom 1 var) b
| nsc-of-atom (Geq var b) = GEQ-ns (lp-monom 1 var) b

lemma nsc-of-atom: v |=ns nsc-of-atom a ←→ v |=a a
by (cases a, auto)

We say that C is a list of Farkas coefficients for a given tableau t and
atom set as, if it is a list of pairs (r, a) such that a ∈ as, r is non-zero, r ·a is
a ‘less-than-or-equal’-constraint, and the linear combination of inequalities
must result in an inequality of the form p ≤ c, where c < 0 and t |= p = 0.
definition farkas-coefficients-atoms-tableau where

farkas-coefficients-atoms-tableau (as :: ′a :: lrv atom set) t C = (∃ p c.
(∀ (r ,a) ∈ set C . a ∈ as ∧ is-leq-ns (r ∗R nsc-of-atom a) ∧ r 6= 0) ∧
(
∑

(r ,a) ← C . lec-of-nsc (r ∗R nsc-of-atom a)) = Leqc p c ∧
c < 0 ∧
(∀ v :: ′a valuation. v |=t t −→(p{|v|} = 0)))

We first prove that if the check-function detects a conflict, then Farkas
coefficients do exist for the tableau and atom set for which the conflict is
detected.
definition bound-atoms :: (′i, ′a) state ⇒ ′a atom set (‹BA›) where

bound-atoms s = (λ(v,x). Geq v x) ‘ (set-of-map (Bl s)) ∪
(λ(v,x). Leq v x) ‘ (set-of-map (Bu s))

context PivotUpdateMinVars
begin

lemma farkas-check:
assumes check: check s ′ = s and U : U s ¬ U s ′

and inv: ∇ s ′ 4 (T s ′) |=nolhs s ′ ♦ s ′

and index: index-valid as s ′

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ as) (T s ′) C
proof −

let ?Q = λ s f p c C . set C ⊆ BA s ∧
distinct C ∧
(∀ a ∈ set C . is-leq-ns (f (atom-var a) ∗R nsc-of-atom a) ∧ f (atom-var a) 6=

0) ∧
(
∑

a ← C . lec-of-nsc (f (atom-var a) ∗R nsc-of-atom a)) = Leqc p c ∧
c < 0 ∧
(∀ v :: ′a valuation. v |=t T s −→(p{|v|} = 0))

let ?P = λ s. U s −→ (∃ f p c C . ?Q s f p c C)
have ?P (check s ′)
proof (induct rule: check-induct ′′[OF inv, of ?P])

case (3 s xi dir I)
have dir : dir = Positive ∨ dir = Negative by fact
let ?eq = (eq-for-lvar (T s) xi)
define X j where X j = rvars-eq ?eq
define XLj where XLj = Abstract-Linear-Poly.vars-list (rhs ?eq)
have [simp]: set XLj = X j unfolding XLj-def X j-def

7

using set-vars-list by blast
have XLj-distinct: distinct XLj

unfolding XLj-def using distinct-vars-list by simp
define A where A = coeff (rhs ?eq)
have bounds-id: BA (set-unsat I s) = BA s Bu (set-unsat I s) = Bu s Bl

(set-unsat I s) = Bl s
by (auto simp: boundsl-def boundsu-def bound-atoms-def)

have t-id: T (set-unsat I s) = T s by simp
have u-id: U (set-unsat I s) = True by simp
let ?p = rhs ?eq − lp-monom 1 xi

have p-eval-zero: ?p {| v |} = 0 if v |=t T s for v :: ′a valuation
proof −

have eqT : ?eq ∈ set (T s)
by (simp add: 3 (7) eq-for-lvar local.min-lvar-not-in-bounds-lvars)

have v |=e ?eq using that eqT satisfies-tableau-def by blast
also have ?eq = (lhs ?eq, rhs ?eq) by (cases ?eq, auto)

also have lhs ?eq = xi by (simp add: 3 (7) eq-for-lvar local.min-lvar-not-in-bounds-lvars)
finally have v |=e (xi, rhs ?eq) .
then show ?thesis by (auto simp: satisfies-eq-iff valuate-minus)

qed
have Xj-rvars: X j ⊆ rvars (T s) unfolding X j-def

using 3 min-lvar-not-in-bounds-lvars rvars-of-lvar-rvars by blast
have xi-lvars: xi ∈ lvars (T s)

using 3 min-lvar-not-in-bounds-lvars rvars-of-lvar-rvars by blast
have lvars (T s) ∩ rvars (T s) = {}

using 3 normalized-tableau-def by auto
with xi-lvars Xj-rvars have xi-Xj: xi /∈ X j

by blast
have rhs-eval-xi: (rhs (eq-for-lvar (T s) xi)) {|〈V s〉|} = 〈V s〉 xi

proof −
have ∗: (rhs eq) {| v |} = v (lhs eq) if v |=e eq for v :: ′a valuation and eq

using satisfies-eq-def that by metis
moreover have 〈V s〉 |=e eq-for-lvar (T s) xi

using 3 satisfies-tableau-def eq-for-lvar curr-val-satisfies-no-lhs-def xi-lvars
by blast

ultimately show ?thesis
using eq-for-lvar xi-lvars by simp

qed
let ?Bl = Direction.LB dir
let ?Bu = Direction.UB dir
let ?lt = Direction.lt dir
let ?le = Simplex.le ?lt
let ?Geq = Direction.GE dir
let ?Leq = Direction.LE dir

have 0 : (if A x < 0 then ?Bl s x = Some (〈V s〉 x) else ?Bu s x = Some (〈V
s〉 x)) ∧ A x 6= 0

if x: x ∈ X j for x
proof −

8

have Some (〈V s〉 x) = (?Bl s x) if A x < 0
proof −

have cmp: ¬ Blb ?lt (〈V s〉 x) (?Bl s x)
using x that dir min-rvar-incdec-eq-None[OF 3 (9)] unfolding X j-def

A-def by auto
then obtain c where c: ?Bl s x = Some c

by (cases ?Bl s x, auto simp: bound-compare-defs)
also have c = 〈V s〉 x
proof −

have x ∈ rvars (T s) using that x Xj-rvars by blast
then have x ∈ (− lvars (T s))

using 3 unfolding normalized-tableau-def by auto
moreover have ∀ x∈(− lvars (T s)). in-bounds x 〈V s〉 (Bl s, Bu s)

using 3 unfolding curr-val-satisfies-no-lhs-def
by (simp add: satisfies-bounds-set.simps)

ultimately have in-bounds x 〈V s〉 (Bl s, Bu s)
by blast

moreover have ?le (〈V s〉 x) c
using cmp c dir unfolding bound-compare-defs by auto

ultimately show ?thesis
using c dir by (auto simp del: Simplex.bounds-lg)

qed
then show ?thesis

using c by simp
qed
moreover have Some (〈V s〉 x) = (?Bu s x) if 0 < A x
proof −

have cmp: ¬ Cub ?lt (〈V s〉 x) (?Bu s x)
using x that min-rvar-incdec-eq-None[OF 3 (9)] unfolding X j-def A-def

by auto
then obtain c where c: ?Bu s x = Some c

by (cases ?Bu s x, auto simp: bound-compare-defs)
also have c = 〈V s〉 x
proof −

have x ∈ rvars (T s) using that x Xj-rvars by blast
then have x ∈ (− lvars (T s))

using 3 unfolding normalized-tableau-def by auto
moreover have ∀ x∈(− lvars (T s)). in-bounds x 〈V s〉 (Bl s, Bu s)

using 3 unfolding curr-val-satisfies-no-lhs-def
by (simp add: satisfies-bounds-set.simps)

ultimately have in-bounds x 〈V s〉 (Bl s, Bu s)
by blast

moreover have ?le c (〈V s〉 x)
using cmp c dir unfolding bound-compare-defs by auto

ultimately show ?thesis
using c dir by (auto simp del: Simplex.bounds-lg)

qed
then show ?thesis

using c by simp

9

qed
moreover have A x 6= 0

using that coeff-zero unfolding A-def X j-def by auto
ultimately show ?thesis

using that by auto
qed

have l-Ba: l ∈ BA s if l ∈ {?Geq xi (the (?Bl s xi))} for l
proof −

from that have l: l = ?Geq xi (the (?Bl s xi)) by simp
from 3 (8) obtain c where bl ′: ?Bl s xi = Some c

by (cases ?Bl s xi, auto simp: bound-compare-defs)
hence bl: (xi, c) ∈ set-of-map (?Bl s) unfolding set-of-map-def by auto
show l ∈ BA s unfolding l bound-atoms-def using bl bl ′ dir by auto

qed

let ?negA = filter (λ x. A x < 0) XLj

let ?posA = filter (λ x. ¬ A x < 0) XLj

define neg where neg = (if dir = Positive then (λ x :: rat. x) else uminus)
define negP where negP = (if dir = Positive then (λ x :: linear-poly. x) else

uminus)
define nega where nega = (if dir = Positive then (λ x :: ′a. x) else uminus)
from dir have dirn: dir = Positive ∧ neg = (λ x. x) ∧ negP = (λ x. x) ∧ nega

= (λ x. x)
∨ dir = Negative ∧ neg = uminus ∧ negP = uminus ∧ nega = uminus
unfolding neg-def negP-def nega-def by auto

define C where C = map (λx. ?Geq x (the (?Bl s x))) ?negA
@ map (λ x. ?Leq x (the (?Bu s x))) ?posA
@ [?Geq xi (the (?Bl s xi))]

define f where f = (λx. if x = xi then neg (−1) else neg (A x))
define c where c = (

∑
x←C . lec-const (lec-of-nsc (f (atom-var x) ∗R nsc-of-atom

x)))
let ?q = negP ?p

show ?case unfolding bounds-id t-id u-id
proof (intro exI impI conjI allI)
show v |=t T s =⇒ ?q {| v |} = 0 for v :: ′a valuation using dirn p-eval-zero[of

v]
by (auto simp: valuate-minus)

show set C ⊆ BA s
unfolding C-def set-append set-map set-filter list.simps using 0 l-Ba dir
by (intro Un-least subsetI) (force simp: bound-atoms-def set-of-map-def)+

show is-leq: ∀ a∈set C . is-leq-ns (f (atom-var a) ∗R nsc-of-atom a) ∧ f
(atom-var a) 6= 0

using dirn xi-Xj 0 unfolding C-def f-def

10

by (elim disjE , auto)

show (
∑

a ← C . lec-of-nsc (f (atom-var a) ∗R nsc-of-atom a)) = Leqc ?q c
unfolding sum-list-lec le-constraint.simps map-map o-def

proof (intro conjI)
define scale-poly :: ′a atom ⇒ linear-poly where

scale-poly = (λx. lec-poly (lec-of-nsc (f (atom-var x) ∗R nsc-of-atom x)))
have (

∑
x←C . scale-poly x) =

(
∑

x←?negA. scale-poly (?Geq x (the (?Bl s x))))
+ (

∑
x←?posA. scale-poly (?Leq x (the (?Bu s x))))

− negP (lp-monom 1 xi)
unfolding C-def using dirn by (auto simp add: comp-def scale-poly-def

f-def)
also have (

∑
x←?negA. scale-poly (?Geq x (the (?Bl s x))))

= (
∑

x← ?negA. negP (A x ∗R lp-monom 1 x))
unfolding scale-poly-def f-def using dirn xi-Xj by (subst map-cong) auto

also have (
∑

x←?posA. scale-poly (?Leq x (the (?Bu s x))))
= (

∑
x← ?posA. negP (A x ∗R lp-monom 1 x))

unfolding scale-poly-def f-def using dirn xi-Xj by (subst map-cong) auto
also have (

∑
x← ?negA. negP (A x ∗R lp-monom 1 x)) +

(
∑

x← ?posA. negP (A x ∗R lp-monom 1 x))
= negP (rhs (eq-for-lvar (T s) xi))

using dirn XLj-distinct coeff-zero
by (elim disjE ; intro poly-eqI , auto intro!: poly-eqI simp add: coeff-sum-list

A-def X j-def
uminus-sum-list-map[unfolded o-def , symmetric])

finally show (
∑

x←C . lec-poly (lec-of-nsc (f (atom-var x) ∗R nsc-of-atom
x))) = ?q

unfolding scale-poly-def using dirn by auto
show (

∑
x←C . lec-rel (lec-of-nsc (f (atom-var x) ∗R nsc-of-atom x))) =

Leq-Rel
unfolding sum-list-Leq-Rel

proof
fix c
assume c: c ∈ set C
show lec-rel (lec-of-nsc (f (atom-var c) ∗R nsc-of-atom c)) = Leq-Rel
using is-leq[rule-format, OF c] by (cases f (atom-var c) ∗R nsc-of-atom

c, auto)
qed

qed (simp add: c-def)

show c < 0
proof −

define scale-const-f :: ′a atom ⇒ ′a where
scale-const-f x = lec-const (lec-of-nsc (f (atom-var x) ∗R nsc-of-atom x))

for x
obtain d where bl ′: ?Bl s xi = Some d

using 3 by (cases ?Bl s xi, auto simp: bound-compare-defs)
have c = (

∑
x←map (λx. ?Geq x (the (?Bl s x))) ?negA. scale-const-f x)

11

+ (
∑

x← map (λx. ?Leq x (the (?Bu s x))) ?posA. scale-const-f
x)

− nega d
unfolding c-def C-def f-def scale-const-f-def using dirn rhs-eval-xi bl ′ by

auto
also have (

∑
x←map (λx. ?Geq x (the (?Bl s x))) ?negA. scale-const-f x)

=
(
∑

x← ?negA. nega (A x ∗R the (?Bl s x)))
using xi-Xj dirn by (subst map-cong) (auto simp add: f-def scale-const-f-def)
also have . . . = (

∑
x←?negA. nega (A x ∗R 〈V s〉 x))

using 0 by (subst map-cong) auto
also have (

∑
x←map (λx. ?Leq x (the (?Bu s x))) ?posA. scale-const-f x)

=
(
∑

x← ?posA. nega (A x ∗R the (?Bu s x)))
using xi-Xj dirn by (subst map-cong) (auto simp add: f-def scale-const-f-def)
also have . . . = (

∑
x← ?posA. nega (A x ∗R 〈V s〉 x))

using 0 by (subst map-cong) auto
also have (

∑
x←?negA. nega (A x ∗R 〈V s〉 x)) + (

∑
x←?posA. nega (A

x ∗R 〈V s〉 x))
= (

∑
x←?negA @ ?posA. nega (A x ∗R 〈V s〉 x))

by auto
also have . . . = (

∑
x∈ X j . nega (A x ∗R 〈V s〉 x))

using XLj-distinct by (subst sum-list-distinct-conv-sum-set) (auto intro!:
sum.cong)

also have . . . = nega (
∑

x∈ X j . (A x ∗R 〈V s〉 x)) using dirn by (auto
simp: sum-negf)

also have (
∑

x∈ X j . (A x ∗R 〈V s〉 x)) = ((rhs ?eq) {|〈V s〉|})
unfolding A-def X j-def by (subst linear-poly-sum) (auto simp add:

sum-negf)
also have . . . = 〈V s〉 xi

using rhs-eval-xi by blast
also have nega (〈V s〉 xi) − nega d < 0
proof −

have ?lt (〈V s〉 xi) d
using dirn 3 (2−) bl ′ by (elim disjE , auto simp: bound-compare-defs)

thus ?thesis using dirn unfolding minus-lt[symmetric] by auto
qed
finally show ?thesis .

qed

show distinct C
unfolding C-def using XLj-distinct xi-Xj dirn by (auto simp add: inj-on-def

distinct-map)
qed

qed (insert U , blast+)
then obtain f p c C where Qs: ?Q s f p c C using U unfolding check by

blast
from index[folded check-tableau-index-valid[OF U (2) inv(3 ,4 ,2 ,1)]] check
have index: index-valid as s by auto

12

from check-tableau-equiv[OF U (2) inv(3 ,4 ,2 ,1), unfolded check]
have id: v |=t T s = v |=t T s ′ for v :: ′a valuation by auto
let ?C = map (λ a. (f (atom-var a), a)) C
have set C ⊆ BA s using Qs by blast
also have . . . ⊆ snd ‘ as using index
unfolding bound-atoms-def index-valid-def set-of-map-def boundsl-def boundsu-def

o-def by force
finally have sub: snd ‘ set ?C ⊆ snd ‘ as by force
show ?thesis unfolding farkas-coefficients-atoms-tableau-def

by (intro exI [of - p] exI [of - c] exI [of - ?C] conjI ,
insert Qs[unfolded id] sub, (force simp: o-def)+)

qed

end

Next, we show that a conflict found by the assert-bound function also
gives rise to Farkas coefficients.
context Update
begin

lemma farkas-assert-bound: assumes inv: ¬ U s |=nolhs s 4 (T s) ∇ s ♦ s
and index: index-valid as s
and U : U (assert-bound ia s)

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ (insert ia as)) (T s) C
proof −

obtain i a where ia[simp]: ia = (i,a) by force
let ?A = snd ‘ insert ia as
have ∃ x c d. Leq x c ∈ ?A ∧ Geq x d ∈ ?A ∧ c < d
proof (cases a)

case (Geq x d)
let ?s = updateBI (Direction.UBI-upd (Direction (λx y. y < x) Biu Bil Bu Bl

Iu Il Bil-update Geq Leq (≤)))
i x d s

have id: U ?s = U s by auto
have norm: 4 (T ?s) using inv by auto
have val: ∇ ?s using inv(4) unfolding tableau-valuated-def by simp
have idd: x /∈ lvars (T ?s) =⇒ U (update x d ?s) = U ?s

by (rule update-unsat-id[OF norm val])
from U [unfolded ia Geq] inv(1) id idd
have Clb (λx y. y < x) d (Bu s x) by (auto split: if-splits simp: Let-def)
then obtain c where Bu: Bu s x = Some c and lt: c < d

by (cases Bu s x, auto simp: bound-compare-defs)
from Bu obtain j where Mapping.lookup (Biu s) x = Some (j,c)

unfolding boundsu-def by auto
with index[unfolded index-valid-def] have (j, Leq x c) ∈ as by auto
hence xc: Leq x c ∈ ?A by force
have xd: Geq x d ∈ ?A unfolding ia Geq by force
from xc xd lt show ?thesis by auto

next

13

case (Leq x c)
let ?s = updateBI (Direction.UBI-upd (Direction (<) Bil Biu Bl Bu Il Iu

Biu-update Leq Geq (≥))) i x c s
have id: U ?s = U s by auto
have norm: 4 (T ?s) using inv by auto
have val: ∇ ?s using inv(4) unfolding tableau-valuated-def by simp
have idd: x /∈ lvars (T ?s) =⇒ U (update x c ?s) = U ?s

by (rule update-unsat-id[OF norm val])
from U [unfolded ia Leq] inv(1) id idd
have Clb (<) c (Bl s x) by (auto split: if-splits simp: Let-def)
then obtain d where Bl: Bl s x = Some d and lt: c < d

by (cases Bl s x, auto simp: bound-compare-defs)
from Bl obtain j where Mapping.lookup (Bil s) x = Some (j,d)

unfolding boundsl-def by auto
with index[unfolded index-valid-def] have (j, Geq x d) ∈ as by auto
hence xd: Geq x d ∈ ?A by force
have xc: Leq x c ∈ ?A unfolding ia Leq by force
from xc xd lt show ?thesis by auto

qed
then obtain x c d where c: Leq x c ∈ ?A and d: Geq x d ∈ ?A and cd: c < d

by blast
show ?thesis unfolding farkas-coefficients-atoms-tableau-def
proof (intro exI conjI allI)

let ?C = [(−1 , Geq x d), (1 ,Leq x c)]
show ∀ (r ,a)∈set ?C . a ∈ ?A ∧ is-leq-ns (r ∗R nsc-of-atom a) ∧ r 6= 0 using

c d by auto
show c − d < 0 using cd using minus-lt by auto

qed (auto simp: valuate-zero)
qed
end

Moreover, we prove that all other steps of the simplex algorithm on
layer 4, such as pivoting, asserting bounds without conflict, etc., preserve
Farkas coefficients.
lemma farkas-coefficients-atoms-tableau-mono: assumes as ⊆ bs
shows farkas-coefficients-atoms-tableau as t C =⇒ farkas-coefficients-atoms-tableau

bs t C
using assms unfolding farkas-coefficients-atoms-tableau-def by force

locale AssertAllState ′′′ = AssertAllState ′′ init ass-bnd chk + Update update +
PivotUpdateMinVars eq-idx-for-lvar min-lvar-not-in-bounds min-rvar-incdec-eq

pivot-and-update
for init and ass-bnd :: ′i × ′a :: lrv atom ⇒ - and chk :: (′i, ′a) state ⇒ (′i, ′a)

state and update :: nat ⇒ ′a :: lrv ⇒ (′i, ′a) state ⇒ (′i, ′a) state
and eq-idx-for-lvar :: tableau ⇒ var ⇒ nat and
min-lvar-not-in-bounds :: (′i, ′a::lrv) state ⇒ var option and
min-rvar-incdec-eq :: (′i, ′a) Direction ⇒ (′i, ′a) state ⇒ eq ⇒ ′i list + var and
pivot-and-update :: var ⇒ var ⇒ ′a ⇒ (′i, ′a) state ⇒ (′i, ′a) state
+ assumes ass-bnd: ass-bnd = Update.assert-bound update and

14

chk: chk = PivotUpdateMinVars.check eq-idx-for-lvar min-lvar-not-in-bounds
min-rvar-incdec-eq pivot-and-update

context AssertAllState ′′′

begin

lemma farkas-assert-bound-loop: assumes U (assert-bound-loop as (init t))
and norm: 4 t

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ set as) t C
proof −

let ?P = λ as s. U s −→ (∃ C . farkas-coefficients-atoms-tableau (snd ‘ as) (T
s) C)

let ?s = assert-bound-loop as (init t)
have ¬ U (init t) by (rule init-unsat-flag)
have T (assert-bound-loop as (init t)) = t ∧
(U (assert-bound-loop as (init t)) −→ (∃ C . farkas-coefficients-atoms-tableau

(snd ‘ set as) (T (init t)) C))
proof (rule AssertAllState ′′Induct[OF norm], unfold ass-bnd, goal-cases)

case 1
have ¬ U (init t) by (rule init-unsat-flag)
moreover have T (init t) = t by (rule init-tableau-id)
ultimately show ?case by auto

next
case (2 as bs s)
hence snd ‘ as ⊆ snd ‘ bs by auto
from farkas-coefficients-atoms-tableau-mono[OF this] 2 (2) show ?case by auto

next
case (3 s a ats)
let ?s = assert-bound a s

have tab: T ?s = T s unfolding ass-bnd by (rule assert-bound-nolhs-tableau-id,
insert 3 , auto)

have t: t = T s using 3 by simp
show ?case unfolding t tab
proof (intro conjI impI refl)

assume U ?s
from farkas-assert-bound[OF 3 (1 ,3−6 ,8) this]
show ∃ C . farkas-coefficients-atoms-tableau (snd ‘ insert a (set ats)) (T (init

(T s))) C
unfolding t[symmetric] init-tableau-id .

qed
qed
thus ?thesis unfolding init-tableau-id using assms by blast

qed

Now we get to the main result for layer 4: If the main algorithm returns
unsat, then there are Farkas coefficients for the tableau and atom set that
were given as input for this layer.
lemma farkas-assert-all-state: assumes U : U (assert-all-state t as)

and norm: 4 t

15

shows ∃ C . farkas-coefficients-atoms-tableau (snd ‘ set as) t C
proof −

let ?s = assert-bound-loop as (init t)
show ?thesis
proof (cases U (assert-bound-loop as (init t)))

case True
from farkas-assert-bound-loop[OF this norm]
show ?thesis by auto

next
case False
from AssertAllState ′′-tableau-id[OF norm]
have T : T ?s = t unfolding init-tableau-id .
from U have U : U (check ?s) unfolding chk[symmetric] by simp
show ?thesis
proof (rule farkas-check[OF refl U False, unfolded T , OF - norm])

from AssertAllState ′′-precond[OF norm, unfolded Let-def] False
show |=nolhs ?s ♦ ?s ∇ ?s by blast+
from AssertAllState ′′-index-valid[OF norm]
show index-valid (set as) ?s .

qed
qed

qed

2.3 Farkas’ Lemma on Layer 3
There is only a small difference between layers 3 and 4, namely that there
is no simplex algorithm (assert-all-state) on layer 3, but just a tableau and
atoms.

Hence, one task is to link the unsatisfiability flag on layer 4 with unsat-
isfiability of the original tableau and atoms (layer 3). This can be done via
the existing soundness results of the simplex algorithm. Moreover, we give
an easy proof that the existence of Farkas coefficients for a tableau and set
of atoms implies unsatisfiability.
end

lemma farkas-coefficients-atoms-tableau-unsat:
assumes farkas-coefficients-atoms-tableau as t C
shows @ v. v |=t t ∧ v |=as as

proof
assume ∃ v. v |=t t ∧ v |=as as
then obtain v where ∗: v |=t t ∧ v |=as as by auto
then obtain p c where isleq: (∀ (r ,a) ∈ set C . a ∈ as ∧ is-leq-ns (r ∗R

nsc-of-atom a) ∧ r 6= 0)
and leq: (

∑
(r ,a) ← C . lec-of-nsc (r ∗R nsc-of-atom a)) = Leqc p c

and cltz: c < 0
and p0 : p{|v|} = 0
using assms farkas-coefficients-atoms-tableau-def by blast

have fa: ∀ (r ,a) ∈ set C . v |=a a using ∗ isleq leq

16

satisfies-atom-set-def by force
{

fix r a
assume a: (r ,a) ∈ set C
from a fa have va: v |=a a unfolding satisfies-atom-set-def by auto

hence v: v |=ns (r ∗R nsc-of-atom a) by (auto simp: nsc-of-atom sat-scale-rat-ns)
from a isleq have is-leq-ns (r ∗R nsc-of-atom a) by auto
from lec-of-nsc[OF this] v have v |=le lec-of-nsc (r ∗R nsc-of-atom a) by blast

} note v = this
have v |=le Leqc p c unfolding leq[symmetric]

by (rule satisfies-sumlist-le-constraints, insert v, auto)
then have 0 ≤ c using p0 by auto
then show False using cltz by auto

qed

Next is the main result for layer 3: a tableau and a finite set of atoms
are unsatisfiable if and only if there is a list of Farkas coefficients for the set
of atoms and the tableau.
lemma farkas-coefficients-atoms-tableau: assumes norm: 4 t

and fin: finite as
shows (∃ C . farkas-coefficients-atoms-tableau as t C) ←→ (@ v. v |=t t ∧ v |=as

as)
proof

from finite-list[OF fin] obtain bs where as: as = set bs by auto
assume unsat: @ v. v |=t t ∧ v |=as as
let ?as = map (λ x. ((),x)) bs
interpret AssertAllState ′′′ init-state assert-bound-code check-code update-code

eq-idx-for-lvar min-lvar-not-in-bounds min-rvar-incdec-eq pivot-and-update-code
by (unfold-locales, auto simp: assert-bound-code-def check-code-def)

let ?call = assert-all t ?as
have id: snd ‘ set ?as = as unfolding as by force
from assert-all-sat[OF norm, of ?as, unfolded id] unsat
obtain I where ?call = Inl I by (cases ?call, auto)
from this[unfolded assert-all-def Let-def]
have U (assert-all-state-code t ?as)

by (auto split: if-splits simp: assert-all-state-code-def)
from farkas-assert-all-state[OF this[unfolded assert-all-state-code-def] norm, un-

folded id]
show ∃ C . farkas-coefficients-atoms-tableau as t C .

qed (insert farkas-coefficients-atoms-tableau-unsat, auto)

2.4 Farkas’ Lemma on Layer 2
The main difference between layers 2 and 3 is the introduction of slack-
variables in layer 3 via the preprocess-function. Our task here is to show
that Farkas coefficients at layer 3 (where slack-variables are used) can be
converted into Farkas coefficients for layer 2 (before the preprocessing).

We also need to adapt the previos notion of Farkas coefficients, which

17

was used in farkas-coefficients-atoms-tableau, for layer 2. At layer 3, Farkas
coefficients are the coefficients in a linear combination of atoms that eval-
uates to an inequality of the form p ≤ c, where p is a linear polynomial,
c < 0, and t |= p = 0 holds. At layer 2, the atoms are replaced by non-strict
constraints where the left-hand side is a polynomial in the original vari-
ables, but the corresponding linear combination (with Farkas coefficients)
evaluates directly to the inequality 0 ≤ c, with c < 0. The implication
t |= p = 0 is no longer possible in this layer, since there is no tableau t, nor
is it needed, since p is 0. Thus, the statement defining Farkas coefficients
must be changed accordingly.
definition farkas-coefficients-ns where

farkas-coefficients-ns ns C = (∃ c.
(∀ (r , n) ∈ set C . n ∈ ns ∧ is-leq-ns (r ∗R n) ∧ r 6= 0) ∧
(
∑

(r , n) ← C . lec-of-nsc (r ∗R n)) = Leqc 0 c ∧
c < 0)

The easy part is to prove that Farkas coefficients imply unsatisfiability.
lemma farkas-coefficients-ns-unsat:

assumes farkas-coefficients-ns ns C
shows @ v. v |=nss ns

proof
assume ∃ v. v |=nss ns
then obtain v where ∗: v |=nss ns by auto
obtain c where

isleq: (∀ (a,n) ∈ set C . n ∈ ns ∧ is-leq-ns (a ∗R n) ∧ a 6= 0) and
leq: (

∑
(a,n) ← C . lec-of-nsc (a ∗R n)) = Leqc 0 c and

cltz: c < 0 using assms farkas-coefficients-ns-def by blast
{

fix a n
assume n: (a,n) ∈ set C
from n ∗ isleq have v |=ns n by auto
hence v: v |=ns (a ∗R n) by (rule sat-scale-rat-ns)
from n isleq have is-leq-ns (a ∗R n) by auto
from lec-of-nsc[OF this] v
have v |=le lec-of-nsc (a ∗R n) by blast

} note v = this
have v |=le Leqc 0 c unfolding leq[symmetric]

by (rule satisfies-sumlist-le-constraints, insert v, auto)
then show False using cltz

by (metis leD satisfiable-le-constraint.simps valuate-zero rel-of .simps(1))
qed

In order to eliminate the need for a tableau, we require the notion of an
arbitrary substitution on polynomials, where all variables can be replaced at
once. The existing simplex formalization provides only a function to replace
one variable at a time.
definition subst-poly :: (var ⇒ linear-poly) ⇒ linear-poly ⇒ linear-poly where

18

subst-poly σ p = (
∑

x ∈ vars p. coeff p x ∗R σ x)

lemma subst-poly-0 [simp]: subst-poly σ 0 = 0 unfolding subst-poly-def by simp

lemma valuate-subst-poly: (subst-poly σ p) {| v |} = (p {| (λ x. ((σ x) {| v |})) |})
by (subst (2) linear-poly-sum, unfold subst-poly-def valuate-sum valuate-scaleRat,

simp)

lemma subst-poly-add: subst-poly σ (p + q) = subst-poly σ p + subst-poly σ q
by (rule linear-poly-eqI , unfold valuate-add valuate-subst-poly, simp)

fun subst-poly-lec :: (var ⇒ linear-poly) ⇒ ′a le-constraint ⇒ ′a le-constraint
where

subst-poly-lec σ (Le-Constraint rel p c) = Le-Constraint rel (subst-poly σ p) c

lemma subst-poly-lec-0 [simp]: subst-poly-lec σ 0 = 0 unfolding zero-le-constraint-def
by simp

lemma subst-poly-lec-add: subst-poly-lec σ (c1 + c2) = subst-poly-lec σ c1 +
subst-poly-lec σ c2

by (cases c1 ; cases c2 , auto simp: subst-poly-add)

lemma subst-poly-lec-sum-list: subst-poly-lec σ (sum-list ps) = sum-list (map (subst-poly-lec
σ) ps)

by (induct ps, auto simp: subst-poly-lec-add)

lemma subst-poly-lp-monom[simp]: subst-poly σ (lp-monom r x) = r ∗R σ x
unfolding subst-poly-def by (simp add: vars-lp-monom)

lemma subst-poly-scaleRat: subst-poly σ (r ∗R p) = r ∗R (subst-poly σ p)
by (rule linear-poly-eqI , unfold valuate-scaleRat valuate-subst-poly, simp)

We need several auxiliary properties of the preprocess-function which
are not present in the simplex formalization.
lemma Tableau-is-monom-preprocess ′:

assumes (x, p) ∈ set (Tableau (preprocess ′ cs start))
shows ¬ is-monom p
using assms
by(induction cs start rule: preprocess ′.induct)
(auto simp add: Let-def split: if-splits option.splits)

lemma preprocess ′-atoms-to-constraints ′: assumes preprocess ′ cs start = S
shows set (Atoms S) ⊆ {(i,qdelta-constraint-to-atom c v) | i c v. (i,c) ∈ set cs
∧

(¬ is-monom (poly c) −→ Poly-Mapping S (poly c) = Some v)}
unfolding assms(1)[symmetric]
by (induct cs start rule: preprocess ′.induct, auto simp: Let-def split: option.splits,

force+)

19

lemma monom-of-atom-coeff :
assumes is-monom (poly ns) a = qdelta-constraint-to-atom ns v
shows (monom-coeff (poly ns)) ∗R nsc-of-atom a = ns
using assms is-monom-monom-coeff-not-zero
by(cases a; cases ns)
(auto split: atom.split ns-constraint.split simp add: monom-poly-assemble field-simps)

The next lemma provides the functionality that is required to convert
an atom back to a non-strict constraint, i.e., it is a kind of inverse of the
preprocess-function.
lemma preprocess ′-atoms-to-constraints: assumes S : preprocess ′ cs start = S

and start: start = start-fresh-variable cs
and ns: ns = (case a of Leq v c ⇒ LEQ-ns q c | Geq v c ⇒ GEQ-ns q c)
and a ∈ snd ‘ set (Atoms S)

shows (atom-var a /∈ fst ‘ set (Tableau S) −→ (∃ r . r 6= 0 ∧ r ∗R nsc-of-atom a
∈ snd ‘ set cs))
∧ ((atom-var a, q) ∈ set (Tableau S) −→ ns ∈ snd ‘ set cs)

proof −
let ?S = preprocess ′ cs start
from assms(4) obtain i where ia: (i,a) ∈ set (Atoms S) by auto
with preprocess ′-atoms-to-constraints ′[OF assms(1)] obtain c v

where a: a = qdelta-constraint-to-atom c v and c: (i,c) ∈ set cs
and nmonom: ¬ is-monom (poly c) =⇒ Poly-Mapping S (poly c) = Some v

by blast
hence c ′: c ∈ snd ‘ set cs by force
let ?p = poly c
show ?thesis
proof (cases is-monom ?p)

case True
hence av: atom-var a = monom-var ?p unfolding a by (cases c, auto)
from Tableau-is-monom-preprocess ′[of - ?p cs start] True
have (x, ?p) /∈ set (Tableau ?S) for x by blast
{

assume (atom-var a, q) ∈ set (Tableau S)
hence (monom-var ?p, q) ∈ set (Tableau S) unfolding av by simp
hence monom-var ?p ∈ lvars (Tableau S) unfolding lvars-def by force
from lvars-tableau-ge-start[rule-format, OF this[folded S]]
have monom-var ?p ≥ start unfolding S .
moreover have monom-var ?p ∈ vars-constraints (map snd cs) using True

c
by (auto intro!: bexI [of - (i,c)] simp: monom-var-in-vars)

ultimately have False using start-fresh-variable-fresh[of cs, folded start] by
force

}
moreover
from monom-of-atom-coeff [OF True a] True
have ∃ r . r 6= 0 ∧ r ∗R nsc-of-atom a = c

by (intro exI [of - monom-coeff ?p], auto, cases a, auto)
ultimately show ?thesis using c ′ by auto

20

next
case False
hence av: atom-var a = v unfolding a by (cases c, auto)
from nmonom[OF False] have Poly-Mapping S ?p = Some v .
from preprocess ′-Tableau-Poly-Mapping-Some[OF this[folded S]]
have tab: (atom-var a, ?p) ∈ set (Tableau (preprocess ′ cs start)) unfolding av

by simp
hence atom-var a ∈ fst ‘ set (Tableau S) unfolding S by force
moreover
{

assume (atom-var a, q) ∈ set (Tableau S)
from tab this have qp: q = ?p unfolding S using lvars-distinct[of cs start,

unfolded S lhs-def]
by (simp add: case-prod-beta ′ eq-key-imp-eq-value)

have ns = c unfolding ns qp using av a False by (cases c, auto)
hence ns ∈ snd ‘ set cs using c ′ by blast

}
ultimately show ?thesis by blast

qed
qed

Next follows the major technical lemma of this part, namely that Farkas
coefficients on layer 3 for preprocessed constraints can be converted into
Farkas coefficients on layer 2.
lemma farkas-coefficients-preprocess ′:

assumes pp: preprocess ′ cs (start-fresh-variable cs) = S and
ft: farkas-coefficients-atoms-tableau (snd ‘ set (Atoms S)) (Tableau S) C

shows ∃ C . farkas-coefficients-ns (snd ‘ set cs) C
proof −

note ft[unfolded farkas-coefficients-atoms-tableau-def]
obtain p c where 0 : ∀ (r ,a) ∈ set C . a ∈ snd ‘ set (Atoms S) ∧ is-leq-ns (r ∗R

nsc-of-atom a) ∧ r 6= 0
(
∑

(r ,a)←C . lec-of-nsc (r ∗R nsc-of-atom a)) = Leqc p c
c < 0∧

v :: QDelta valuation. v |=t Tableau S =⇒ p {| v |} = 0
using ft unfolding farkas-coefficients-atoms-tableau-def by blast

note 0 = 0 (1)[rule-format, of (a, b) for a b, unfolded split] 0 (2−)
let ?T = Tableau S
define σ :: var ⇒ linear-poly where σ = (λ x. case map-of ?T x of Some p ⇒

p | None ⇒ lp-monom 1 x)
let ?P = (λr a s ns. ns ∈ (snd ‘ set cs) ∧ is-leq-ns (s ∗R ns) ∧ s 6= 0 ∧

subst-poly-lec σ (lec-of-nsc (r ∗R nsc-of-atom a)) = lec-of-nsc (s ∗R ns))
have ∃ s ns. ?P r a s ns if ra: (r ,a) ∈ set C for r a
proof −

have a: a ∈ snd ‘ set (Atoms S)
using ra 0 by force

from 0 ra have is-leq: is-leq-ns (r ∗R nsc-of-atom a) and r0 : r 6= 0 by auto
let ?x = atom-var a
show ?thesis

21

proof (cases map-of ?T ?x)
case (Some q)
hence σ: σ ?x = q unfolding σ-def by auto
from Some have xqT : (?x, q) ∈ set ?T by (rule map-of-SomeD)
define ns where ns = (case a of Leq v c ⇒ LEQ-ns q c

| Geq v c ⇒ GEQ-ns q c)
from preprocess ′-atoms-to-constraints[OF pp refl ns-def a] xqT
have ns-mem: ns ∈ snd ‘ set cs by blast
have id: subst-poly-lec σ (lec-of-nsc (r ∗R nsc-of-atom a))

= lec-of-nsc (r ∗R ns) using is-leq σ
by (cases a, auto simp: ns-def subst-poly-scaleRat)
from id is-leq σ have is-leq: is-leq-ns (r ∗R ns) by (cases a, auto simp:

ns-def)
show ?thesis by (intro exI [of - r] exI [of - ns] conjI ns-mem id is-leq conjI r0)

next
case None
hence ?x /∈ fst ‘ set ?T by (meson map-of-eq-None-iff)
from preprocess ′-atoms-to-constraints[OF pp refl refl a] this
obtain rr where rr : rr ∗R nsc-of-atom a ∈ (snd ‘ set cs) and rr0 : rr 6= 0

by blast
from None have σ: σ ?x = lp-monom 1 ?x unfolding σ-def by simp
define ns where ns = rr ∗R nsc-of-atom a
define s where s = r / rr
from rr0 r0 have s0 : s 6= 0 unfolding s-def by auto
from is-leq σ
have subst-poly-lec σ (lec-of-nsc (r ∗R nsc-of-atom a))
= lec-of-nsc (r ∗R nsc-of-atom a)
by (cases a, auto simp: subst-poly-scaleRat)

moreover have r ∗R nsc-of-atom a = s ∗R ns unfolding ns-def s-def
scaleRat-scaleRat-ns-constraint[OF rr0] using rr0 by simp

ultimately have subst-poly-lec σ (lec-of-nsc (r ∗R nsc-of-atom a))
= lec-of-nsc (s ∗R ns) is-leq-ns (s ∗R ns) using is-leq by auto

then show ?thesis
unfolding ns-def using rr s0 by blast

qed
qed
hence ∀ ra. ∃ s ns. (fst ra, snd ra) ∈ set C −→ ?P (fst ra) (snd ra) s ns by

blast
from choice[OF this] obtain s where s: ∀ ra. ∃ ns. (fst ra, snd ra) ∈ set C −→

?P (fst ra) (snd ra) (s ra) ns by blast
from choice[OF this] obtain ns where ns:

∧
r a. (r ,a) ∈ set C =⇒ ?P r a (s

(r ,a)) (ns (r ,a)) by force
define NC where NC = map (λ(r ,a). (s (r ,a), ns (r ,a))) C
have (

∑
(s, ns)←map (λ(r ,a). (s (r ,a), ns (r ,a))) C ′. lec-of-nsc (s ∗R ns)) =

(
∑

(r , a)←C ′. subst-poly-lec σ (lec-of-nsc (r ∗R nsc-of-atom a)))
if set C ′ ⊆ set C for C ′

using that proof (induction C ′)
case Nil
then show ?case by simp

22

next
case (Cons a C ′)
have (

∑
x←a # C ′. lec-of-nsc (s x ∗R ns x)) =

lec-of-nsc (s a ∗R ns a) + (
∑

x←C ′. lec-of-nsc (s x ∗R ns x))
by simp

also have (
∑

x←C ′. lec-of-nsc (s x ∗R ns x)) = (
∑

(r , a)←C ′. subst-poly-lec
σ (lec-of-nsc (r ∗R nsc-of-atom a)))

using Cons by (auto simp add: case-prod-beta ′ comp-def)
also have lec-of-nsc (s a ∗R ns a) = subst-poly-lec σ (lec-of-nsc (fst a ∗R

nsc-of-atom (snd a)))
proof −

have a ∈ set C
using Cons by simp

then show ?thesis
using ns by auto

qed
finally show ?case

by (auto simp add: case-prod-beta ′ comp-def)
qed
also have (

∑
(r , a)←C . subst-poly-lec σ (lec-of-nsc (r ∗R nsc-of-atom a)))

= subst-poly-lec σ (
∑

(r , a)←C . (lec-of-nsc (r ∗R nsc-of-atom a)))
by (auto simp add: subst-poly-lec-sum-list case-prod-beta ′ comp-def)

also have (
∑

(r , a)←C . (lec-of-nsc (r ∗R nsc-of-atom a))) = Leqc p c
using 0 by blast

also have subst-poly-lec σ (Leqc p c) = Leqc (subst-poly σ p) c by simp
also have subst-poly σ p = 0
proof (rule all-valuate-zero)

fix v :: QDelta valuation
have (subst-poly σ p) {| v |} = (p {| λx. ((σ x) {| v |}) |}) by (rule valu-

ate-subst-poly)
also have . . . = 0
proof (rule 0 (4))

have (σ a) {| v |} = (q {| λx. ((σ x) {| v |}) |}) if (a, q) ∈ set (Tableau S) for
a q

proof −
have distinct (map fst ?T)

using normalized-tableau-preprocess ′ assms unfolding normalized-tableau-def
lhs-def

by (auto simp add: case-prod-beta ′)
then have 0 : σ a = q

unfolding σ-def using that by auto
have q {| v |} = (q {| λx. ((σ x) {| v |}) |})
proof −

have vars q ⊆ rvars ?T
unfolding rvars-def using that by force

moreover have (σ x) {| v |} = v x if x ∈ rvars ?T for x
proof −

have x /∈ lvars (Tableau S)
using that normalized-tableau-preprocess ′ assms

23

unfolding normalized-tableau-def by blast
then have x /∈ fst ‘ set (Tableau S)

unfolding lvars-def by force
then have map-of ?T x = None

using map-of-eq-None-iff by metis
then have σ x = lp-monom 1 x

unfolding σ-def by auto
also have (lp-monom 1 x) {| v |} = v x

by auto
finally show ?thesis .

qed
ultimately show ?thesis

by (auto intro!: valuate-depend)
qed
then show ?thesis

using 0 by blast
qed
then show (λx. ((σ x) {| v |})) |=t ?T

using 0 by (auto simp add: satisfies-tableau-def satisfies-eq-def)
qed
finally show (subst-poly σ p) {| v |} = 0 .

qed
finally have (

∑
(s, n)←NC . lec-of-nsc (s ∗R n)) = Le-Constraint Leq-Rel 0 c

unfolding NC-def by blast
moreover have ns (r ,a) ∈ snd ‘ set cs is-leq-ns (s (r , a) ∗R ns (r , a)) s (r , a)
6= 0 if (r , a) ∈ set C for r a

using ns that by force+
ultimately have farkas-coefficients-ns (snd ‘ set cs) NC

unfolding farkas-coefficients-ns-def NC-def using 0 by force
then show ?thesis

by blast
qed

lemma preprocess ′-unsat-indexD: i ∈ set (UnsatIndices (preprocess ′ ns j)) =⇒
∃ c. poly c = 0 ∧ ¬ zero-satisfies c ∧ (i,c) ∈ set ns
by (induct ns j rule: preprocess ′.induct, auto simp: Let-def split: if-splits op-

tion.splits)

lemma preprocess ′-unsat-index-farkas-coefficients-ns:
assumes i ∈ set (UnsatIndices (preprocess ′ ns j))
shows ∃ C . farkas-coefficients-ns (snd ‘ set ns) C

proof −
from preprocess ′-unsat-indexD[OF assms]
obtain c where contr : poly c = 0 ¬ zero-satisfies c and mem: (i,c) ∈ set ns by

auto
from mem have mem: c ∈ snd ‘ set ns by force
let ?c = ns-constraint-const c
define r where r = (case c of LEQ-ns - - ⇒ 1 | - ⇒ (−1 :: rat))
define d where d = (case c of LEQ-ns - - ⇒ ?c | - ⇒ − ?c)

24

have [simp]: (− x < 0) = (0 < x) for x :: QDelta using uminus-less-lrv[of - 0]
by simp

show ?thesis unfolding farkas-coefficients-ns-def
by (intro exI [of - [(r ,c)]] exI [of - d], insert mem contr , cases c,

auto simp: r-def d-def)
qed

The combination of the previous results easily provides the main result
of this section: a finite set of non-strict constraints on layer 2 is unsatisfiable
if and only if there are Farkas coefficients. Again, here we use results from
the simplex formalization, namely soundness of the preprocess-function.
lemma farkas-coefficients-ns: assumes finite (ns :: QDelta ns-constraint set)

shows (∃ C . farkas-coefficients-ns ns C) ←→ (@ v. v |=nss ns)
proof

assume ∃ C . farkas-coefficients-ns ns C
from farkas-coefficients-ns-unsat this show @ v. v |=nss ns by blast

next
assume unsat: @ v. v |=nss ns
from finite-list[OF assms] obtain nsl where ns: ns = set nsl by auto
let ?cs = map (Pair ()) nsl
obtain I t ias where part1 : preprocess-part-1 ?cs = (t,ias,I) by (cases prepro-

cess-part-1 ?cs, auto)
let ?as = snd ‘ set ias
let ?s = start-fresh-variable ?cs
have fin: finite ?as by auto
have id: ias = Atoms (preprocess ′ ?cs ?s) t = Tableau (preprocess ′ ?cs ?s)

I = UnsatIndices (preprocess ′ ?cs ?s)
using part1 unfolding preprocess-part-1-def Let-def by auto

have norm: 4 t using normalized-tableau-preprocess ′[of ?cs] unfolding id .
{

fix v
assume v |=as ?as v |=t t
from preprocess ′-sat[OF this[unfolded id], folded id] unsat[unfolded ns]
have set I 6= {} by auto
then obtain i where i ∈ set I using all-not-in-conv by blast
from preprocess ′-unsat-index-farkas-coefficients-ns[OF this[unfolded id]]
have ∃C . farkas-coefficients-ns (snd ‘ set ?cs) C by simp

}
with farkas-coefficients-atoms-tableau[OF norm fin]
obtain C where farkas-coefficients-atoms-tableau ?as t C
∨ (∃C . farkas-coefficients-ns (snd ‘ set ?cs) C) by blast

from farkas-coefficients-preprocess ′[of ?cs, OF refl] this
have ∃ C . farkas-coefficients-ns (snd ‘ set ?cs) C

using part1 unfolding preprocess-part-1-def Let-def by auto
also have snd ‘ set ?cs = ns unfolding ns by force
finally show ∃ C . farkas-coefficients-ns ns C .

qed

25

2.5 Farkas’ Lemma on Layer 1
The main difference of layers 1 and 2 is the restriction to non-strict con-
straints via delta-rationals. Since we now work with another constraint
type, constraint, we again need translations into linear inequalities of type
le-constraint. Moreover, we also need to define scaling of constraints where
flipping the comparison sign may be required.
fun is-le :: constraint ⇒ bool where

is-le (LT - -) = True
| is-le (LEQ - -) = True
| is-le - = False

fun lec-of-constraint where
lec-of-constraint (LEQ p c) = (Le-Constraint Leq-Rel p c)
| lec-of-constraint (LT p c) = (Le-Constraint Lt-Rel p c)

lemma lec-of-constraint:
assumes is-le c
shows (v |=le (lec-of-constraint c)) ←→ (v |=c c)
using assms by (cases c, auto)

instantiation constraint :: scaleRat
begin
fun scaleRat-constraint :: rat ⇒ constraint ⇒ constraint where

scaleRat-constraint r cc = (if r = 0 then LEQ 0 0 else
(case cc of

LEQ p c ⇒
(if (r < 0) then GEQ (r ∗R p) (r ∗R c) else LEQ (r ∗R p) (r ∗R c))

| LT p c ⇒
(if (r < 0) then GT (r ∗R p) (r ∗R c) else LT (r ∗R p) (r ∗R c))

| GEQ p c ⇒
(if (r > 0) then GEQ (r ∗R p) (r ∗R c) else LEQ (r ∗R p) (r ∗R c))
| GT p c ⇒
(if (r > 0) then GT (r ∗R p) (r ∗R c) else LT (r ∗R p) (r ∗R c))
| EQ p c ⇒ LEQ (r ∗R p) (r ∗R c) — We do not keep equality, since the aim is

to convert the scaled constraints into inequalities, which will then be summed up.
))

instance ..
end

lemma sat-scale-rat: assumes (v :: rat valuation) |=c c
shows v |=c (r ∗R c)

proof −
have r < 0 ∨ r = 0 ∨ r > 0 by auto
then show ?thesis using assms by (cases c, auto simp: right-diff-distrib

valuate-minus valuate-scaleRat scaleRat-leq1 scaleRat-leq2 valuate-zero)
qed

26

In the following definition of Farkas coefficients (for layer 1), the main
difference to farkas-coefficients-ns is that the linear combination evaluates
either to a strict inequality where the constant must be non-positive, or to
a non-strict inequality where the constant must be negative.
definition farkas-coefficients where

farkas-coefficients cs C = (∃ d rel.
(∀ (r ,c) ∈ set C . c ∈ cs ∧ is-le (r ∗R c) ∧ r 6= 0) ∧
(
∑

(r ,c) ← C . lec-of-constraint (r ∗R c)) = Le-Constraint rel 0 d ∧
(rel = Leq-Rel ∧ d < 0 ∨ rel = Lt-Rel ∧ d ≤ 0))

Again, the existence Farkas coefficients immediately implies unsatisfia-
bility.
lemma farkas-coefficients-unsat:

assumes farkas-coefficients cs C
shows @ v. v |=cs cs

proof
assume ∃ v. v |=cs cs
then obtain v where ∗: v |=cs cs by auto
obtain d rel where

isleq: (∀ (r ,c) ∈ set C . c ∈ cs ∧ is-le (r ∗R c) ∧ r 6= 0) and
leq: (

∑
(r ,c) ← C . lec-of-constraint (r ∗R c)) = Le-Constraint rel 0 d and

choice: rel = Lt-Rel ∧ d ≤ 0 ∨ rel = Leq-Rel ∧ d < 0 using assms farkas-coefficients-def
by blast

{
fix r c
assume c: (r ,c) ∈ set C
from c ∗ isleq have v |=c c by auto
hence v: v |=c (r ∗R c) by (rule sat-scale-rat)
from c isleq have is-le (r ∗R c) by auto
from lec-of-constraint[OF this] v
have v |=le lec-of-constraint (r ∗R c) by blast

} note v = this
have v |=le Le-Constraint rel 0 d unfolding leq[symmetric]

by (rule satisfies-sumlist-le-constraints, insert v, auto)
then show False using choice

by (cases rel, auto simp: valuate-zero)
qed

Now follows the difficult implication. The major part is proving that the
translation constraint-to-qdelta-constraint preserves the existence of Farkas
coefficients via pointwise compatibility of the sum. Here, compatibility links
a strict or non-strict inequality from the input constraint to a translated
non-strict inequality over delta-rationals.
fun compatible-cs where

compatible-cs (Le-Constraint Leq-Rel p c) (Le-Constraint Leq-Rel q d) = (q = p
∧ d = QDelta c 0)
| compatible-cs (Le-Constraint Lt-Rel p c) (Le-Constraint Leq-Rel q d) = (q = p ∧
qdfst d = c)

27

| compatible-cs - - = False

lemma compatible-cs-0-0 : compatible-cs 0 0 by code-simp

lemma compatible-cs-plus: compatible-cs c1 d1 =⇒ compatible-cs c2 d2 =⇒ com-
patible-cs (c1 + c2) (d1 + d2)

by (cases c1 ; cases d1 ; cases c2 ; cases d2 ; cases lec-rel c1 ; cases lec-rel d1 ; cases
lec-rel c2 ;

cases lec-rel d2 ; auto simp: plus-QDelta-def)

lemma unsat-farkas-coefficients: assumes @ v. v |=cs cs
and fin: finite cs

shows ∃ C . farkas-coefficients cs C
proof −

from finite-list[OF fin] obtain csl where cs: cs = set csl by blast
let ?csl = map (Pair ()) csl
let ?ns = (snd ‘ set (to-ns ?csl))
let ?nsl = concat (map constraint-to-qdelta-constraint csl)
have id: snd ‘ set ?csl = cs unfolding cs by force
have id2 : ?ns = set ?nsl unfolding to-ns-def set-concat by force
from SolveExec ′Default.to-ns-sat[of ?csl, unfolded id] assms
have unsat: @ v. 〈v〉 |=nss ?ns by metis
have fin: finite ?ns by auto
have @ v. v |=nss ?ns
proof

assume ∃ v. v |=nss ?ns
then obtain v where model: v |=nss ?ns by blast
let ?v = Mapping.Mapping (λ x. Some (v x))
have v = 〈?v〉 by (intro ext, auto simp: map2fun-def Mapping.lookup.abs-eq)
from model this unsat show False by metis

qed
from farkas-coefficients-ns[OF fin] this id2 obtain N where

farkas: farkas-coefficients-ns (set ?nsl) N by metis
from this[unfolded farkas-coefficients-ns-def]
obtain d where

is-leq:
∧

a n. (a,n) ∈ set N =⇒ n ∈ set ?nsl ∧ is-leq-ns (a ∗R n) ∧ a 6= 0 and

sum: (
∑

(a,n)←N . lec-of-nsc (a ∗R n)) = Le-Constraint Leq-Rel 0 d and
d0 : d < 0 by blast

let ?prop = λ NN C . (∀ (a,c) ∈ set C . c ∈ cs ∧ is-le (a ∗R c) ∧ a 6= 0)
∧ compatible-cs (

∑
(a,c) ← C . lec-of-constraint (a ∗R c))

(
∑

(a,n)←NN . lec-of-nsc (a ∗R n))
have set NN ⊆ set N =⇒ ∃ C . ?prop NN C for NN
proof (induct NN)

case Nil
have ?prop Nil Nil by (simp add: compatible-cs-0-0)
thus ?case by blast

next
case (Cons an NN)

28

obtain a n where an: an = (a,n) by force
from Cons an obtain C where IH : ?prop NN C and n: (a,n) ∈ set N by

auto
have compat-CN : compatible-cs (

∑
(f , c)←C . lec-of-constraint (f ∗R c))

(
∑

(a,n)←NN . lec-of-nsc (a ∗R n))
using IH by blast

from n is-leq obtain c where c: c ∈ cs and nc: n ∈ set (constraint-to-qdelta-constraint
c)

unfolding cs by force
from is-leq[OF n] have is-leq: is-leq-ns (a ∗R n) ∧ a 6= 0 by blast
have is-less: is-le (a ∗R c) and

a0 : a 6= 0 and
compat-cn: compatible-cs (lec-of-constraint (a ∗R c)) (lec-of-nsc (a ∗R n))

by (atomize(full), cases c, insert is-leq nc, auto simp: QDelta-0-0 scaleRat-QDelta-def
qdsnd-0 qdfst-0)

let ?C = Cons (a, c) C
let ?N = Cons (a, n) NN
have ?prop ?N ?C unfolding an
proof (intro conjI)

show ∀ (a,c) ∈ set ?C . c ∈ cs ∧ is-le (a ∗R c) ∧ a 6= 0 using IH is-less a0
c by auto

show compatible-cs (
∑

(a, c)←?C . lec-of-constraint (a ∗R c)) (
∑

(a,n)←?N .
lec-of-nsc (a ∗R n))

using compatible-cs-plus[OF compat-cn compat-CN] by simp
qed
thus ?case unfolding an by blast

qed
from this[OF subset-refl, unfolded sum]
obtain C where

is-less: (∀ (a, c)∈set C . c ∈ cs ∧ is-le (a ∗R c) ∧ a 6= 0) and
compat: compatible-cs (

∑
(f , c)←C . lec-of-constraint (f ∗R c)) (Le-Constraint

Leq-Rel 0 d)
(is compatible-cs ?sum -)
by blast

obtain rel p e where ?sum = Le-Constraint rel p e by (cases ?sum)
with compat have sum: ?sum = Le-Constraint rel 0 e by (cases rel, auto)
have e: (rel = Leq-Rel ∧ e < 0 ∨ rel = Lt-Rel ∧ e ≤ 0) using compat[unfolded

sum] d0
by (cases rel, auto simp: less-QDelta-def qdfst-0 qdsnd-0)

show ?thesis unfolding farkas-coefficients-def
by (intro exI conjI , rule is-less, rule sum, insert e, auto)

qed

Finally we can prove on layer 1 that a finite set of constraints is unsat-
isfiable if and only if there are Farkas coefficients.
lemma farkas-coefficients: assumes finite cs

shows (∃ C . farkas-coefficients cs C) ←→ (@ v. v |=cs cs)
using farkas-coefficients-unsat unsat-farkas-coefficients[OF - assms] by blast

29

3 Corollaries from the Literature
In this section, we convert the previous variations of Farkas’ Lemma into
more well-known forms of this result. Moreover, instead of referring to the
various constraint types of the simplex formalization, we now speak solely
about constraints of type le-constraint.

3.1 Farkas’ Lemma on Delta-Rationals
We start with Lemma 2 of [1], a variant of Farkas’ Lemma for delta-rationals.
To be more precise, it states that a set of non-strict inequalities over delta-
rationals is unsatisfiable if and only if there is a linear combination of the in-
equalities that results in a trivial unsatisfiable constraint 0 < const for some
negative constant const. We can easily prove this statement via the lemma
farkas-coefficients-ns and some conversions between the different constraint
types.
lemma Farkas ′-Lemma-Delta-Rationals: fixes cs :: QDelta le-constraint set

assumes only-non-strict: lec-rel ‘ cs ⊆ {Leq-Rel}
and fin: finite cs

shows (@ v. ∀ c ∈ cs. v |=le c) ←→
(∃ C const. (∀ (r , c) ∈ set C . r > 0 ∧ c ∈ cs)
∧ (

∑
(r ,c) ← C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) = Leqc 0 const

∧ const < 0)
(is ?lhs = ?rhs)

proof −
{

fix c
assume c ∈ cs
with only-non-strict have lec-rel c = Leq-Rel by auto
then have ∃ p const. c = Leqc p const by (cases c, auto)

} note leqc = this
let ?to-ns = λ c. LEQ-ns (lec-poly c) (lec-const c)
let ?ns = ?to-ns ‘ cs
from fin have fin: finite ?ns by auto
have v |=nss ?ns ←→ (∀ c ∈ cs. v |=le c) for v using leqc by fastforce
hence ?lhs = (@ v. v |=nss ?ns) by simp
also have . . . = (∃C . farkas-coefficients-ns ?ns C) unfolding farkas-coefficients-ns[OF

fin] ..
also have . . . = ?rhs
proof

assume ∃ C . farkas-coefficients-ns ?ns C
then obtain C const where is-leq: ∀ (s, n) ∈ set C . n ∈ ?ns ∧ is-leq-ns (s

∗R n) ∧ s 6= 0
and sum: (

∑
(s, n)←C . lec-of-nsc (s ∗R n)) = Leqc 0 const

and c0 : const < 0 unfolding farkas-coefficients-ns-def by blast
let ?C = map (λ (s,n). (s,lec-of-nsc n)) C
show ?rhs

30

proof (intro exI [of - ?C] exI [of - const] conjI c0 , unfold sum[symmetric]
map-map o-def set-map,

intro ballI , clarify)
{

fix s n
assume sn: (s, n) ∈ set C
with is-leq
have n-ns: n ∈ ?ns and is-leq: is-leq-ns (s ∗R n) s 6= 0 by force+

from n-ns obtain c where c: c ∈ cs and n: n = LEQ-ns (lec-poly c)
(lec-const c) by auto

with leqc[OF c] obtain p d where cs: Leqc p d ∈ cs and n: n = LEQ-ns
p d by auto

from is-leq[unfolded n] have s0 : s > 0 by (auto split: if-splits)
let ?n = lec-of-nsc n
from cs n have mem: ?n ∈ cs by auto
show 0 < s ∧ ?n ∈ cs using s0 mem by blast
have Leqc (s ∗R lec-poly ?n) (s ∗R lec-const ?n) = lec-of-nsc (s ∗R n)

unfolding n using s0 by simp
} note id = this
show (

∑
x←C . case case x of (s, n) ⇒ (s, lec-of-nsc n) of

(r , c) ⇒ Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) =
(
∑

(s, n)←C . lec-of-nsc (s ∗R n)) (is sum-list (map ?f C) = sum-list
(map ?g C))

proof (rule arg-cong[of - - sum-list], rule map-cong[OF refl])
fix pair
assume mem: pair ∈ set C
then obtain s n where pair : pair = (s,n) by force
show ?f pair = ?g pair unfolding pair split using id[OF mem[unfolded

pair]] .
qed

qed
next

assume ?rhs
then obtain C const

where C :
∧

r c. (r ,c) ∈ set C =⇒ 0 < r ∧ c ∈ cs
and sum: (

∑
(r , c)←C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) = Leqc

0 const
and const: const < 0

by blast
let ?C = map (λ (r ,c). (r , ?to-ns c)) C
show ∃ C . farkas-coefficients-ns ?ns C unfolding farkas-coefficients-ns-def
proof (intro exI [of - ?C] exI [of - const] conjI const, unfold sum[symmetric])

show ∀ (s, n)∈set ?C . n ∈ ?ns ∧ is-leq-ns (s ∗R n) ∧ s 6= 0 using C by
fastforce

show (
∑

(s, n)←?C . lec-of-nsc (s ∗R n))
= (

∑
(r , c)←C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c))

unfolding map-map o-def
by (rule arg-cong[of - - sum-list], rule map-cong[OF refl], insert C , force)

qed

31

qed
finally show ?thesis .

qed

3.2 Motzkin’s Transposition Theorem or the Kuhn-Fourier
Theorem

Next, we prove a generalization of Farkas’ Lemma that permits arbitrary
combinations of strict and non-strict inequalities: Motzkin’s Transposition
Theorem which is also known as the Kuhn–Fourier Theorem.

The proof is mainly based on the lemma farkas-coefficients, again requir-
ing conversions between constraint types.
theorem Motzkin ′s-transposition-theorem: fixes cs :: rat le-constraint set

assumes fin: finite cs
shows (@ v. ∀ c ∈ cs. v |=le c) ←→

(∃ C const rel. (∀ (r , c) ∈ set C . r > 0 ∧ c ∈ cs)
∧ (

∑
(r ,c) ← C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const

c))
= Le-Constraint rel 0 const

∧ (rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0))
(is ?lhs = ?rhs)

proof −
let ?to-cs = λ c. (case lec-rel c of Leq-Rel ⇒ LEQ | -⇒ LT) (lec-poly c) (lec-const

c)
have to-cs: v |=c ?to-cs c ←→ v |=le c for v c by (cases c, cases lec-rel c, auto)
let ?cs = ?to-cs ‘ cs
from fin have fin: finite ?cs by auto
have v |=cs ?cs ←→ (∀ c ∈ cs. v |=le c) for v using to-cs by auto
hence ?lhs = (@ v. v |=cs ?cs) by simp
also have . . . = (∃C . farkas-coefficients ?cs C) unfolding farkas-coefficients[OF

fin] ..
also have . . . = ?rhs
proof

assume ∃ C . farkas-coefficients ?cs C
then obtain C const rel where is-leq: ∀ (s, n) ∈ set C . n ∈ ?cs ∧ is-le (s ∗R

n) ∧ s 6= 0
and sum: (

∑
(s, n)←C . lec-of-constraint (s ∗R n)) = Le-Constraint rel 0

const
and c0 : (rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0)
unfolding farkas-coefficients-def by blast

let ?C = map (λ (s,n). (s,lec-of-constraint n)) C
show ?rhs
proof (intro exI [of - ?C] exI [of - const] exI [of - rel] conjI c0 , unfold map-map

o-def set-map sum[symmetric],
intro ballI , clarify)

{
fix s n
assume sn: (s, n) ∈ set C

32

with is-leq
have n-ns: n ∈ ?cs and is-leq: is-le (s ∗R n) and s0 : s 6= 0 by force+
from n-ns obtain c where c: c ∈ cs and n: n = ?to-cs c by auto
from is-leq[unfolded n] have s ≥ 0 by (cases lec-rel c, auto split: if-splits)
with s0 have s0 : s > 0 by auto
let ?c = lec-of-constraint n
from c n have mem: ?c ∈ cs by (cases c, cases lec-rel c, auto)
show 0 < s ∧ ?c ∈ cs using s0 mem by blast
have lec-of-constraint (s ∗R n) = Le-Constraint (lec-rel ?c) (s ∗R lec-poly

?c) (s ∗R lec-const ?c)
unfolding n using s0 by (cases c, cases lec-rel c, auto)

} note id = this
show (

∑
x←C . case case x of (s, n) ⇒ (s, lec-of-constraint n) of

(r , c) ⇒ Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const c)) =
(
∑

(s, n)←C . lec-of-constraint (s ∗R n))
(is sum-list (map ?f C) = sum-list (map ?g C))

proof (rule arg-cong[of - - sum-list], rule map-cong[OF refl])
fix pair
assume mem: pair ∈ set C
obtain r c where pair : pair = (r ,c) by force
show ?f pair = ?g pair unfolding pair split id[OF mem[unfolded pair]] ..

qed
qed

next
assume ?rhs
then obtain C const rel

where C :
∧

r c. (r ,c) ∈ set C =⇒ 0 < r ∧ c ∈ cs
and sum: (

∑
(r , c)←C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R

lec-const c))
= Le-Constraint rel 0 const

and const: rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0
by blast

let ?C = map (λ (r ,c). (r , ?to-cs c)) C
show ∃ C . farkas-coefficients ?cs C unfolding farkas-coefficients-def

proof (intro exI [of - ?C] exI [of - const] exI [of - rel] conjI const, unfold
sum[symmetric])

show ∀ (s, n)∈set ?C . n ∈ ?cs ∧ is-le (s ∗R n) ∧ s 6= 0 using C by (fastforce
split: le-rel.splits)

show (
∑

(s, n)←?C . lec-of-constraint (s ∗R n))
= (

∑
(r , c)←C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const

c))
unfolding map-map o-def
by (rule arg-cong[of - - sum-list], rule map-cong[OF refl], insert C , fastforce

split: le-rel.splits)
qed

qed
finally show ?thesis .

qed

33

3.3 Farkas’ Lemma
Finally we derive the commonly used form of Farkas’ Lemma, which eas-
ily follows from Motzkin ′s-transposition-theorem. It only permits non-strict
inequalities and, as a result, the sum of inequalities will always be non-strict.
lemma Farkas ′-Lemma: fixes cs :: rat le-constraint set

assumes only-non-strict: lec-rel ‘ cs ⊆ {Leq-Rel}
and fin: finite cs

shows (@ v. ∀ c ∈ cs. v |=le c) ←→
(∃ C const. (∀ (r , c) ∈ set C . r > 0 ∧ c ∈ cs)
∧ (

∑
(r ,c) ← C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) = Leqc 0 const

∧ const < 0)
(is - = ?rhs)

proof −
{

fix c
assume c ∈ cs
with only-non-strict have lec-rel c = Leq-Rel by auto
then have ∃ p const. c = Leqc p const by (cases c, auto)

} note leqc = this
let ?lhs = ∃C const rel.

(∀ (r , c)∈set C . 0 < r ∧ c ∈ cs) ∧
(
∑

(r , c)←C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const c))
= Le-Constraint rel 0 const ∧

(rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0)
show ?thesis unfolding Motzkin ′s-transposition-theorem[OF fin]
proof

assume ?rhs
then obtain C const where C :

∧
r c. (r , c)∈set C =⇒ 0 < r ∧ c ∈ cs and

sum: (
∑

(r , c)←C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) = Leqc 0 const
and

const: const < 0 by blast
show ?lhs
proof (intro exI [of - C] exI [of - const] exI [of - Leq-Rel] conjI)

show ∀ (r ,c) ∈ set C . 0 < r ∧ c ∈ cs using C by force
show (

∑
(r , c)← C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const

c)) =
Leqc 0 const unfolding sum[symmetric]
by (rule arg-cong[of - - sum-list], rule map-cong[OF refl], insert C , force

dest!: leqc)
qed (insert const, auto)

next
assume ?lhs
then obtain C const rel where C :

∧
r c. (r , c)∈set C =⇒ 0 < r ∧ c ∈ cs

and
sum: (

∑
(r , c)←C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const

c))
= Le-Constraint rel 0 const and

const: rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0 by blast

34

have id: (
∑

(r , c)←C . Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const
c)) =

(
∑

(r , c)←C . Leqc (r ∗R lec-poly c) (r ∗R lec-const c)) (is - = ?sum)
by (rule arg-cong[of - - sum-list], rule map-cong, auto dest!: C leqc)
have lec-rel ?sum = Leq-Rel unfolding sum-list-lec by (auto simp add:

sum-list-Leq-Rel o-def)
with sum[unfolded id] have rel: rel = Leq-Rel by auto
with const have const: const < 0 by auto
show ?rhs

by (intro exI [of - C] exI [of - const] conjI const, insert sum id C rel, force+)
qed

qed

We also present slightly modified versions
lemma sum-list-map-filter-sum: fixes f :: ′a ⇒ ′b :: comm-monoid-add

shows sum-list (map f (filter g xs)) + sum-list (map f (filter (Not o g) xs)) =
sum-list (map f xs)

by (induct xs, auto simp: ac-simps)

A version where every constraint obtains exactly one coefficient and
where 0 coefficients are allowed.
lemma Farkas ′-Lemma-set-sum: fixes cs :: rat le-constraint set

assumes only-non-strict: lec-rel ‘ cs ⊆ {Leq-Rel}
and fin: finite cs

shows (@ v. ∀ c ∈ cs. v |=le c) ←→
(∃ C const. (∀ c ∈ cs. C c ≥ 0)
∧ (

∑
c ∈ cs. Leqc ((C c) ∗R lec-poly c) ((C c) ∗R lec-const c)) = Leqc 0

const
∧ const < 0)

unfolding Farkas ′-Lemma[OF only-non-strict fin]
proof ((standard; elim exE conjE), goal-cases)

case (2 C const)
from finite-distinct-list[OF fin] obtain csl where csl: set csl = cs and dist:

distinct csl
by auto

let ?list = filter (λ c. C c 6= 0) csl
let ?C = map (λ c. (C c, c)) ?list
show ?case
proof (intro exI [of - ?C] exI [of - const] conjI)

have (
∑

(r , c)←?C . Le-Constraint Leq-Rel (r ∗R lec-poly c) (r ∗R lec-const
c))

= (
∑

(r , c)←map (λc. (C c, c)) csl. Le-Constraint Leq-Rel (r ∗R lec-poly c)
(r ∗R lec-const c))

unfolding map-map
by (rule sum-list-map-filter , auto simp: zero-le-constraint-def)

also have . . . = Le-Constraint Leq-Rel 0 const unfolding 2 (2)[symmetric]
csl[symmetric]

unfolding sum.distinct-set-conv-list[OF dist] map-map o-def split ..
finally

35

show (
∑

(r , c)←?C . Le-Constraint Leq-Rel (r ∗R lec-poly c) (r ∗R lec-const
c)) = Le-Constraint Leq-Rel 0 const

by auto
show const < 0 by fact
show ∀ (r , c)∈set ?C . 0 < r ∧ c ∈ cs using 2 (1) unfolding set-map set-filter

csl by auto
qed

next
case (1 C const)
define CC where CC = (λ c. sum-list (map fst (filter (λ rc. snd rc = c) C)))
show (∃ C const. (∀ c ∈ cs. C c ≥ 0)

∧ (
∑

c ∈ cs. Leqc ((C c) ∗R lec-poly c) ((C c) ∗R lec-const c)) = Leqc 0
const

∧ const < 0)
proof (intro exI [of - CC] exI [of - const] conjI)

show ∀ c∈cs. 0 ≤ CC c unfolding CC-def using 1 (1)
by (force intro!: sum-list-nonneg)

show const < 0 by fact
from 1 have snd: snd ‘ set C ⊆ cs by auto
show (

∑
c∈cs. Le-Constraint Leq-Rel (CC c ∗R lec-poly c) (CC c ∗R lec-const

c)) = Le-Constraint Leq-Rel 0 const
unfolding 1 (2)[symmetric] using fin snd unfolding CC-def

proof (induct cs arbitrary: C rule: finite-induct)
case empty
hence C : C = [] by auto
thus ?case by simp

next
case ∗: (insert c cs C)
let ?D = filter (Not ◦ (λrc. snd rc = c)) C
from ∗ have snd ‘ set ?D ⊆ cs by auto
note IH = ∗(3)[OF this]
have id: (

∑
a← ?D. case a of (r , c) ⇒ Le-Constraint Leq-Rel (r ∗R lec-poly

c) (r ∗R lec-const c)) =
(
∑

(r , c)←?D. Le-Constraint Leq-Rel (r ∗R lec-poly c) (r ∗R lec-const c))
by (induct C , force+)

show ?case
unfolding sum.insert[OF ∗(1 ,2)]
unfolding sum-list-map-filter-sum[of - λ rc. snd rc = c C , symmetric]

proof (rule arg-cong2 [of - - - - (+)], goal-cases)
case 2
show ?case unfolding IH [symmetric]
by (rule sum.cong, insert ∗(2 ,1), auto intro!: arg-cong[of - - λ xs. sum-list

(map - xs)], (induct C , auto)+)
next

case 1
show ?case
proof (rule sym, induct C)

case (Cons rc C)
thus ?case by (cases rc, cases snd rc = c, auto simp: field-simps

36

scaleRat-left-distrib)
qed (auto simp: zero-le-constraint-def)

qed
qed

qed
qed

A version with indexed constraints, i.e., in particular where constraints
may occur several times.
lemma Farkas ′-Lemma-indexed: fixes c :: nat ⇒ rat le-constraint

assumes only-non-strict: lec-rel ‘ c ‘ Is ⊆ {Leq-Rel}
and fin: finite Is
shows (@ v. ∀ i ∈ Is. v |=le c i) ←→

(∃ C const. (∀ i ∈ Is. C i ≥ 0)
∧ (

∑
i ∈ Is. Leqc ((C i) ∗R lec-poly (c i)) ((C i) ∗R lec-const (c i))) =

Leqc 0 const
∧ const < 0)

proof −
let ?C = c ‘ Is
have fin: finite ?C using fin by auto
have (@ v. ∀ i ∈ Is. v |=le c i) = (@ v. ∀ cc ∈ ?C . v |=le cc) by force
also have . . . = (∃ C const. (∀ i ∈ Is. C i ≥ 0)

∧ (
∑

i ∈ Is. Leqc ((C i) ∗R lec-poly (c i)) ((C i) ∗R lec-const (c i))) =
Leqc 0 const

∧ const < 0) (is ?l = ?r)
proof

assume ?r
then obtain C const where r : (∀ i ∈ Is. C i ≥ 0)

and eq: (
∑

i ∈ Is. Leqc ((C i) ∗R lec-poly (c i)) ((C i) ∗R lec-const (c
i))) = Leqc 0 const

and const < 0 by auto
from finite-distinct-list[OF ‹finite Is›]

obtain Isl where isl: set Isl = Is and dist: distinct Isl by auto
let ?CC = filter (λ rc. fst rc 6= 0) (map (λ i. (C i, c i)) Isl)
show ?l unfolding Farkas ′-Lemma[OF only-non-strict fin]
proof (intro exI [of - ?CC] exI [of - const] conjI)

show const < 0 by fact
show ∀ (r , ca) ∈ set ?CC . 0 < r ∧ ca ∈ ?C using r(1) isl by auto

show (
∑

(r , c)←?CC . Le-Constraint Leq-Rel (r ∗R lec-poly c) (r ∗R lec-const
c)) =

Le-Constraint Leq-Rel 0 const unfolding eq[symmetric]
by (subst sum-list-map-filter , force simp: zero-le-constraint-def ,

unfold map-map o-def , subst sum-list-distinct-conv-sum-set[OF dist], rule
sum.cong, auto simp: isl)

qed
next

assume ?l
from this[unfolded Farkas ′-Lemma-set-sum[OF only-non-strict fin]]
obtain C const where nonneg: (∀ c∈ ?C . 0 ≤ C c)

37

and sum: (
∑

c∈ ?C . Le-Constraint Leq-Rel (C c ∗R lec-poly c) (C c ∗R
lec-const c)) =

Le-Constraint Leq-Rel 0 const
and const: const < 0
by blast

define I where I = (λ i. (C (c i) / rat-of-nat (card (Is ∩ { j. c i = c j}))))
show ?r
proof (intro exI [of - I] exI [of - const] conjI const)

show ∀ i ∈ Is. 0 ≤ I i using nonneg unfolding I-def by auto
show (

∑
i ∈ Is. Le-Constraint Leq-Rel (I i ∗R lec-poly (c i)) (I i ∗R lec-const

(c i))) =
Le-Constraint Leq-Rel 0 const unfolding sum[symmetric]
unfolding sum.image-gen[OF ‹finite Is›, of - c]

proof (rule sum.cong[OF refl], goal-cases)
case (1 cc)
define II where II = (Is ∩ {j. cc = c j})
from 1 have II 6= {} unfolding II-def by auto
moreover have finII : finite II using ‹finite Is› unfolding II-def by auto
ultimately have card: card II 6= 0 by auto
let ?C = λ II . rat-of-nat (card II)
define ii where ii = C cc / rat-of-nat (card II)
have (

∑
i∈{x ∈ Is. c x = cc}. Le-Constraint Leq-Rel (I i ∗R lec-poly (c i))

(I i ∗R lec-const (c i)))
= (

∑
i∈ II . Le-Constraint Leq-Rel (ii ∗R lec-poly cc) (ii ∗R lec-const cc))

unfolding I-def ii-def II-def by (rule sum.cong, auto)
also have . . . = Le-Constraint Leq-Rel ((?C II ∗ ii) ∗R lec-poly cc) ((?C II

∗ ii) ∗R lec-const cc)
using finII by (induct II rule: finite-induct, auto simp: zero-le-constraint-def

field-simps
scaleRat-left-distrib)

also have ?C II ∗ ii = C cc unfolding ii-def using card by auto
finally show ?case .

qed
qed

qed
finally show ?thesis .

qed

end

3.4 Farkas Lemma for Matrices
In this part we convert the simplex-structures like linear polynomials, etc.,
into equivalent formulations using matrices and vectors. As a result we
present Farkas’ Lemma via matrices and vectors.
theory Matrix-Farkas

imports Farkas
Jordan-Normal-Form.Matrix

38

begin

lift-definition poly-of-vec :: rat vec ⇒ linear-poly is
λ v x. if (x < dim-vec v) then v $ x else 0
by auto

definition val-of-vec :: rat vec ⇒ rat valuation where
val-of-vec v x = v $ x

lemma valuate-poly-of-vec: assumes w ∈ carrier-vec n
and v ∈ carrier-vec n

shows valuate (poly-of-vec v) (val-of-vec w) = v · w
using assms by (transfer , auto simp: val-of-vec-def scalar-prod-def intro: sum.mono-neutral-left)

definition constraints-of-mat-vec :: rat mat ⇒ rat vec ⇒ rat le-constraint set
where

constraints-of-mat-vec A b = (λ i . Leqc (poly-of-vec (row A i)) (b $ i)) ‘ {0 ..<
dim-row A}

lemma constraints-of-mat-vec-solution-main: assumes A: A ∈ carrier-mat nr nc
and x: x ∈ carrier-vec nc
and b: b ∈ carrier-vec nr
and sol: A ∗v x ≤ b
and c: c ∈ constraints-of-mat-vec A b

shows val-of-vec x |=le c
proof −

from c[unfolded constraints-of-mat-vec-def] A obtain i where
i: i < nr and c: c = Leqc (poly-of-vec (row A i)) (b $ i) by auto

from i A have ri: row A i ∈ carrier-vec nc by auto
from sol i A x b have sol: (A ∗v x) $ i ≤ b $ i unfolding less-eq-vec-def by

auto
thus val-of-vec x |=le c unfolding c satisfiable-le-constraint.simps rel-of .simps

valuate-poly-of-vec[OF x ri] using A x i by auto
qed

lemma vars-poly-of-vec: vars (poly-of-vec v) ⊆ { 0 ..< dim-vec v}
by (transfer ′, auto)

lemma finite-constraints-of-mat-vec: finite (constraints-of-mat-vec A b)
unfolding constraints-of-mat-vec-def by auto

lemma lec-rec-constraints-of-mat-vec: lec-rel ‘ constraints-of-mat-vec A b ⊆ {Leq-Rel}

unfolding constraints-of-mat-vec-def by auto

lemma constraints-of-mat-vec-solution-1 :
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and sol: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b

39

shows ∃ v. ∀ c ∈ constraints-of-mat-vec A b. v |=le c
using constraints-of-mat-vec-solution-main[OF A - b -] sol by blast

lemma constraints-of-mat-vec-solution-2 :
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and sol: ∃ v. ∀ c ∈ constraints-of-mat-vec A b. v |=le c

shows ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
proof −

from sol obtain v where sol: v |=le c if c ∈ constraints-of-mat-vec A b for c
by auto

define x where x = vec nc (λ i. v i)
show ?thesis
proof (intro bexI [of - x])

show x: x ∈ carrier-vec nc unfolding x-def by auto
have row A i · x ≤ b $ i if i < nr for i
proof −

from that have Leqc (poly-of-vec (row A i)) (b $ i) ∈ constraints-of-mat-vec
A b

unfolding constraints-of-mat-vec-def using A by auto
from sol[OF this, simplified] have valuate (poly-of-vec (row A i)) v ≤ b $ i

by simp
also have valuate (poly-of-vec (row A i)) v = valuate (poly-of-vec (row A i))

(val-of-vec x)
by (rule valuate-depend, insert A that,

auto simp: x-def val-of-vec-def dest!: set-mp[OF vars-poly-of-vec])
also have . . . = row A i · x

by (subst valuate-poly-of-vec[OF x], insert that A x, auto)
finally show ?thesis .

qed
thus A ∗v x ≤ b unfolding less-eq-vec-def using x A b by auto

qed
qed

lemma constraints-of-mat-vec-solution:
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
shows (∃ x ∈ carrier-vec nc. A ∗v x ≤ b) =
(∃ v. ∀ c ∈ constraints-of-mat-vec A b. v |=le c)

using constraints-of-mat-vec-solution-1 [OF assms] constraints-of-mat-vec-solution-2 [OF
assms]

by blast

lemma farkas-lemma-matrix: fixes A :: rat mat
assumes A: A ∈ carrier-mat nr nc
and b: b ∈ carrier-vec nr

shows (∃ x ∈ carrier-vec nc. A ∗v x ≤ b) ←→
(∀ y. y ≥ 0 v nr −→ mat-of-row y ∗ A = 0m 1 nc −→ y · b ≥ 0)

proof −

40

define cs where cs = constraints-of-mat-vec A b
have fin: finite {0 ..< nr} by auto
have dim: dim-row A = nr using A by simp
have sum-id: (

∑
i = 0 ..<nr . f i) = sum-list (map f [0 ..<nr]) for f

by (subst sum-list-distinct-conv-sum-set, auto)
have (∃ x ∈ carrier-vec nc. A ∗v x ≤ b) =
(¬ (@ v. ∀ c ∈ cs. v |=le c))
unfolding constraints-of-mat-vec-solution[OF assms] cs-def by simp

also have . . . = (¬ (@ v. ∀ i∈{0 ..<nr}. v |=le Le-Constraint Leq-Rel (poly-of-vec
(row A i)) (b $ i)))

unfolding cs-def constraints-of-mat-vec-def dim by auto
also have . . . = (@C .

(∀ i∈{0 ..<nr}. 0 ≤ C i) ∧
(
∑

i = 0 ..<nr . (C i ∗R poly-of-vec (row A i))) = 0 ∧
(
∑

i = 0 ..<nr . (C i ∗ b $ i)) < 0)
unfolding Farkas ′-Lemma-indexed[OF

lec-rec-constraints-of-mat-vec[unfolded constraints-of-mat-vec-def], of A b,
unfolded dim, OF fin] sum-id sum-list-lec le-constraint.simps
sum-list-Leq-Rel map-map o-def unfolding sum-id[symmetric] by simp

also have . . . = (∀ C . (∀ i∈ {0 ..<nr}. 0 ≤ C i) −→
(
∑

i = 0 ..<nr . (C i ∗R poly-of-vec (row A i))) = 0 −→
(
∑

i = 0 ..<nr . (C i ∗ b $ i)) ≥ 0)
using not-less by blast

also have . . . = (∀ y. y ≥ 0 v nr −→ mat-of-row y ∗ A = 0m 1 nc −→ y · b ≥
0)

proof ((standard; intro allI impI), goal-cases)
case ∗: (1 y)
define C where C = (λ i. y $ i)
note main = ∗(1)[rule-format, of C]
from ∗(2) have y: y ∈ carrier-vec nr and nonneg:

∧
i. i ∈ {0 ..<nr} =⇒ 0 ≤

C i
unfolding less-eq-vec-def C-def by auto

have sum-0 : (
∑

i = 0 ..<nr . C i ∗R poly-of-vec (row A i)) = 0 unfolding
C-def

unfolding zero-coeff-zero coeff-sum
proof

fix v
have (

∑
i = 0 ..<nr . coeff (y $ i ∗R poly-of-vec (row A i)) v) =

(
∑

i < nr . y $ i ∗ coeff (poly-of-vec (row A i)) v) by (rule sum.cong,
auto)

also have . . . = 0
proof (cases v < nc)

case False
have (

∑
i < nr . y $ i ∗ coeff (poly-of-vec (row A i)) v) =

(
∑

i < nr . y $ i ∗ 0)
by (rule sum.cong[OF refl], rule arg-cong[of - - λ x. - ∗ x], insert A False,

transfer , auto)
also have . . . = 0 by simp
finally show ?thesis by simp

41

next
case True
have (

∑
i<nr . y $ i ∗ coeff (poly-of-vec (row A i)) v) =

(
∑

i<nr . y $ i ∗ row A i $ v)
by (rule sum.cong[OF refl], rule arg-cong[of - - λ x. - ∗ x], insert A True,

transfer , auto)
also have . . . = (mat-of-row y ∗ A) $$ (0 ,v)

unfolding times-mat-def scalar-prod-def
using A y True by (auto intro: sum.cong)

also have . . . = 0 unfolding ∗(3) using True by simp
finally show ?thesis .

qed
finally show (

∑
i = 0 ..<nr . coeff (y $ i ∗R poly-of-vec (row A i)) v) = 0 .

qed
from main[OF nonneg sum-0] have le: 0 ≤ (

∑
i = 0 ..<nr . C i ∗ b $ i) .

thus ?case using y b unfolding scalar-prod-def C-def by auto
next

case ∗: (2 C)
define y where y = vec nr C
have y: y ∈ carrier-vec nr unfolding y-def by auto
note main = ∗(1)[rule-format, of y]
from ∗(2) have y0 : y ≥ 0 v nr unfolding less-eq-vec-def y-def by auto
have prod0 : mat-of-row y ∗ A = 0m 1 nc
proof −

{
fix j
assume j: j < nc
from arg-cong[OF ∗(3), of λ x. coeff x j, unfolded coeff-sum]
have 0 = (

∑
i = 0 ..<nr . C i ∗ coeff (poly-of-vec (row A i)) j) by simp

also have . . . = (
∑

i = 0 ..<nr . C i ∗ row A i $ j)
by (rule sum.cong[OF refl], rule arg-cong[of - - λ x. - ∗ x], insert A j,

transfer , auto)
also have . . . = y · col A j unfolding scalar-prod-def y-def using A j

by (intro sum.cong, auto)
finally have y · col A j = 0 by simp

}
thus ?thesis by (intro eq-matI , insert A y, auto)

qed
from main[OF y0 prod0] have 0 ≤ y · b .
thus ?case unfolding scalar-prod-def y-def using b by auto

qed
finally show ?thesis .

qed

lemma farkas-lemma-matrix ′: fixes A :: rat mat
assumes A: A ∈ carrier-mat nr nc
and b: b ∈ carrier-vec nr

shows (∃ x ≥ 0 v nc. A ∗v x = b) ←→
(∀ y ∈ carrier-vec nr . mat-of-row y ∗ A ≥ 0m 1 nc −→ y · b ≥ 0)

42

proof −
define B where B = (− 1m nc) @r (A @r −A)
define b ′ where b ′ = 0 v nc @v (b @v −b)
define n where n = nc + (nr + nr)
have id0 : 0 v (nc + (nr + nr)) = 0 v nc @v (0 v nr @v 0 v nr) by (intro eq-vecI ,

auto)
have B: B ∈ carrier-mat n nc unfolding B-def n-def using A by auto
have b ′: b ′ ∈ carrier-vec n unfolding b ′-def n-def using b by auto
have (∃ x ≥ 0 v nc. A ∗v x = b) = (∃ x. x ∈ carrier-vec nc ∧ x ≥ 0 v nc ∧ A
∗v x = b)

by (rule arg-cong[of - - Ex], intro ext, insert A b, auto simp: less-eq-vec-def)
also have . . . = (∃ x ∈ carrier-vec nc. x ≥ 0 v nc ∧ A ∗v x = b) by blast
also have . . . = (∃ x ∈ carrier-vec nc. 1m nc ∗v x ≥ 0 v nc ∧ A ∗v x ≤ b ∧ A
∗v x ≥ b)

by (rule bex-cong[OF refl], insert A b, auto)
also have . . . = (∃ x ∈ carrier-vec nc. (− 1m nc) ∗v x ≤ 0 v nc ∧ A ∗v x ≤ b
∧ (− A) ∗v x ≤ −b)

by (rule bex-cong[OF refl], insert A b, auto simp: less-eq-vec-def)
also have . . . = (∃ x ∈ carrier-vec nc. B ∗v x ≤ b ′)

by (rule bex-cong[OF refl], insert A b, unfold B-def b ′-def ,
subst append-rows-le[of -], (auto)[4], intro conj-cong[OF refl], subst ap-

pend-rows-le, auto)
also have . . . = (∀ y≥0 v n. mat-of-row y ∗ B = 0m 1 nc −→ y · b ′ ≥ 0)

by (rule farkas-lemma-matrix[OF B b ′])
also have . . . = (∀ y. y ∈ carrier-vec n −→ y≥0 v n −→ mat-of-row y ∗ B =

0m 1 nc −→ y · b ′ ≥ 0)
by (intro arg-cong[of - - All], intro ext, auto simp: less-eq-vec-def)

also have . . . = (∀ y ∈ carrier-vec n. y≥0 v n −→ mat-of-row y ∗ B = 0m 1 nc
−→ y · b ′ ≥ 0)

by blast
also have . . . = (∀ y1 ∈carrier-vec nc. ∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec

nr .
0 v nc @v (0 v nr @v 0 v nr) ≤ y1 @v y2 @v y3 −→
mat-of-row (y1 @v y2 @v y3) ∗ ((− 1m nc) @r (A @r −A)) = 0m 1

nc
−→ 0 ≤ (y1 @v y2 @v y3) · (0 v nc @v (b @v −b)))

unfolding n-def all-vec-append id0 b ′-def B-def by auto
also have . . . = (∀ y1 ∈carrier-vec nc. ∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec

nr .
0 v nc ≤ y1 −→ 0 v nr ≤ y2 −→ 0 v nr ≤ y3 −→
(− mat-of-row y1) +
(mat-of-row y2 ∗ A − (mat-of-row y3 ∗ A)) = 0m 1 nc
−→ y2 · b − y3 · b ≥ 0)

by (intro ball-cong[OF refl], subst append-vec-le, (auto)[2], subst append-vec-le,
(auto)[2], insert A b,

subst scalar-prod-append, (auto)[4], subst scalar-prod-append, (auto)[4],
subst mat-of-row-mult-append-rows, (auto)[4],
subst mat-of-row-mult-append-rows, (auto)[4],
subst add-uminus-minus-mat[symmetric], auto)

43

also have . . . = (∀ y1 ∈carrier-vec nc. ∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec
nr .

0 v nc ≤ y1 −→ 0 v nr ≤ y2 −→ 0 v nr ≤ y3 −→
mat-of-row y1 = mat-of-row y2 ∗ A − mat-of-row y3 ∗ A
−→ y2 · b − y3 · b ≥ 0)

proof ((intro ball-cong[OF refl] arg-cong2 [of - - - - (−→)] refl, standard), goal-cases)
case (1 y1 y2 y3)
from arg-cong[OF 1 (4), of λ x. mat-of-row y1 + x] show ?case using 1 (1−3)

A
by (subst (asm) assoc-add-mat[symmetric], (auto)[3],

subst (asm) add-uminus-minus-mat, (auto)[1],
subst (asm) minus-r-inv-mat, force,
subst (asm) right-add-zero-mat, force,
subst (asm) left-add-zero-mat, force, auto)

next
case (2 y1 y2 y3)
show ?case unfolding 2 (4) using 2 (1−3) A

by (intro eq-matI , auto)
qed
also have . . . = (∀ y1 ∈carrier-vec nc. ∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec

nr .
0 v nc ≤ y1 −→ 0 v nr ≤ y2 −→ 0 v nr ≤ y3 −→
mat-of-row y1 = mat-of-row (y2 − y3) ∗ A
−→ (y2 − y3) · b ≥ 0)

by (intro ball-cong[OF refl] imp-cong refl
arg-cong2 [of - - - - (≤)] arg-cong2 [of - - - - (=)],
subst minus-mult-distrib-mat[symmetric], insert A b, auto
simp: minus-scalar-prod-distrib mat-of-rows-def
intro!: arg-cong[of - - λ x. x ∗ -])

also have . . . = (∀ y1 ∈carrier-vec nc. ∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec
nr .

0 v nc ≤ y1 −→ 0 v nr ≤ y2 −→ 0 v nr ≤ y3 −→
y1 = row (mat-of-row (y2 − y3) ∗ A) 0
−→ (y2 − y3) · b ≥ 0)

proof (intro ball-cong[OF refl] arg-cong2 [of - - - - (−→)] refl, standard, goal-cases)
case (1 y1 y2 y3)
from arg-cong[OF 1 (4), of λ x. row x 0] 1 (1−3) A
show ?case by auto

qed (insert A, auto)
also have . . . = (∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec nr .

0 v nc ≤ row (mat-of-row (y2 − y3) ∗ A) 0 −→ 0 v nr ≤ y2 −→ 0 v

nr ≤ y3 −→
row (mat-of-row (y2 − y3) ∗ A) 0 ∈ carrier-vec nc
−→ (y2 − y3) · b ≥ 0) by blast

also have . . . = (∀ y2 ∈carrier-vec nr . ∀ y3 ∈carrier-vec nr .
0 v nc ≤ row (mat-of-row (y2 − y3) ∗ A) 0 −→ 0 v nr ≤ y2 −→ 0 v

nr ≤ y3
−→ (y2 − y3) · b ≥ 0)

by (intro ball-cong[OF refl] arg-cong2 [of - - - - (−→)] refl, insert A,

44

auto simp: row-def)
also have . . . = (∀ y ∈ carrier-vec nr . row (mat-of-row y ∗ A) 0 ≥ 0 v nc −→

y · b ≥ 0)
proof ((standard; intro ballI impI), goal-cases)

case (1 y)
define y2 where y2 = vec nr (λ i. if y $ i ≥ 0 then y $ i else 0)
define y3 where y3 = vec nr (λ i. if y $ i ≥ 0 then 0 else − y $ i)
have y: y = y2 − y3 unfolding y2-def y3-def using 1 (2)

by (intro eq-vecI , auto)
show ?case by (rule 1 (1)[rule-format, of y2 y3 , folded y, OF - - 1 (3)],

auto simp: y2-def y3-def less-eq-vec-def)
qed auto
also have . . . = (∀ y ∈ carrier-vec nr . mat-of-row y ∗ A ≥ 0m 1 nc −→ y · b
≥ 0)

by (intro ball-cong arg-cong2 [of - - - - (−→)] refl,
insert A, auto simp: less-eq-vec-def less-eq-mat-def)

finally show ?thesis .
qed

end

4 Unsatisfiability over the Reals
By using Farkas’ Lemma we prove that a finite set of linear rational inequal-
ities is satisfiable over the rational numbers if and only if it is satisfiable over
the real numbers. Hence, the simplex algorithm either gives a rational so-
lution or shows unsatisfiability over the real numbers.
theory Simplex-for-Reals

imports
Farkas
Simplex.Simplex-Incremental

begin

instantiation real :: lrv
begin
definition scaleRat-real :: rat ⇒ real ⇒ real where
[simp]: x ∗R y = real-of-rat x ∗ y

instance by standard (auto simp add: field-simps of-rat-mult of-rat-add)
end

abbreviation real-satisfies-constraints :: real valuation ⇒ constraint set ⇒ bool
(infixl ‹|=rcs› 100) where

v |=rcs cs ≡ ∀ c ∈ cs. v |=c c

definition of-rat-val :: rat valuation ⇒ real valuation where
of-rat-val v x = of-rat (v x)

45

lemma of-rat-val-eval: p {|of-rat-val v|} = of-rat (p {|v|})
unfolding of-rat-val-def linear-poly-sum of-rat-sum
by (rule sum.cong, auto simp: of-rat-mult)

lemma of-rat-val-constraint: of-rat-val v |=c c ←→ v |=c c
by (cases c, auto simp: of-rat-val-eval of-rat-less of-rat-less-eq)

lemma of-rat-val-constraints: of-rat-val v |=rcs cs ←→ v |=cs cs
using of-rat-val-constraint by auto

lemma sat-scale-rat-real: assumes (v :: real valuation) |=c c
shows v |=c (r ∗R c)

proof −
have r < 0 ∨ r = 0 ∨ r > 0 by auto
then show ?thesis using assms by (cases c, simp-all add: right-diff-distrib

valuate-minus valuate-scaleRat scaleRat-leq1 scaleRat-leq2 valuate-zero
of-rat-less of-rat-mult)

qed

fun of-rat-lec :: rat le-constraint ⇒ real le-constraint where
of-rat-lec (Le-Constraint r p c) = Le-Constraint r p (of-rat c)

lemma lec-of-constraint-real:
assumes is-le c
shows (v |=le of-rat-lec (lec-of-constraint c)) ←→ (v |=c c)
using assms by (cases c, auto)

lemma of-rat-lec-add: of-rat-lec (c + d) = of-rat-lec c + of-rat-lec d
by (cases c; cases d, auto simp: of-rat-add)

lemma of-rat-lec-zero: of-rat-lec 0 = 0
unfolding zero-le-constraint-def by simp

lemma of-rat-lec-sum: of-rat-lec (sum-list c) = sum-list (map of-rat-lec c)
by (induct c, auto simp: of-rat-lec-zero of-rat-lec-add)

This is the main lemma: a finite set of linear constraints is satisfiable
over Q if and only if it is satisfiable over R.
lemma rat-real-conversion: assumes finite cs

shows (∃ v :: rat valuation. v |=cs cs) ←→ (∃ v :: real valuation. v |=rcs cs)
proof

show ∃ v. v |=cs cs =⇒ ∃ v. v |=rcs cs using of-rat-val-constraint by auto
assume ∃ v. v |=rcs cs
then obtain v where ∗: v |=rcs cs by auto
show ∃ v. v |=cs cs
proof (rule ccontr)

assume @ v. v |=cs cs
from farkas-coefficients[OF assms] this
obtain C where farkas-coefficients cs C by auto

46

from this[unfolded farkas-coefficients-def]
obtain d rel where

isleq: (∀ (r ,c) ∈ set C . c ∈ cs ∧ is-le (r ∗R c) ∧ r 6= 0) and
leq: (

∑
(r ,c) ← C . lec-of-constraint (r ∗R c)) = Le-Constraint rel 0 d and

choice: rel = Lt-Rel ∧ d ≤ 0 ∨ rel = Leq-Rel ∧ d < 0 by blast
{

fix r c
assume c: (r ,c) ∈ set C
from c ∗ isleq have v |=c c by auto
hence v: v |=c (r ∗R c) by (rule sat-scale-rat-real)
from c isleq have is-le (r ∗R c) by auto
from lec-of-constraint-real[OF this] v
have v |=le of-rat-lec (lec-of-constraint (r ∗R c)) by blast

} note v = this
have Le-Constraint rel 0 (of-rat d) = of-rat-lec (

∑
(r ,c)← C . lec-of-constraint

(r ∗R c))
unfolding leq by simp

also have . . . = (
∑

(r ,c) ← C . of-rat-lec (lec-of-constraint (r ∗R c))) (is - =
?sum)

unfolding of-rat-lec-sum map-map o-def by (rule arg-cong[of - - sum-list],
auto)

finally have leq: Le-Constraint rel 0 (of-rat d) = ?sum by simp
have v |=le Le-Constraint rel 0 (of-rat d) unfolding leq

by (rule satisfies-sumlist-le-constraints, insert v, auto)
with choice show False by (auto simp: linear-poly-sum)

qed
qed

The main result of simplex, now using unsatisfiability over the reals.
fun i-satisfies-cs-real (infixl ‹|=rics› 100) where
(I ,v) |=rics cs ←→ v |=rcs Simplex.restrict-to I cs

lemma simplex-index-real:
simplex-index cs = Unsat I =⇒ set I ⊆ fst ‘ set cs ∧ ¬ (∃ v. (set I , v) |=rics

set cs) ∧
(distinct-indices cs −→ (∀ J ⊂ set I . (∃ v. (J , v) |=ics set cs))) — minimal

unsat core over the reals
simplex-index cs = Sat v =⇒ 〈v〉 |=cs (snd ‘ set cs) — satisfying assingment
using simplex-index(1)[of cs I] simplex-index(2)[of cs v]

rat-real-conversion[of Simplex.restrict-to (set I) (set cs)]
by auto

lemma simplex-real:
simplex cs = Unsat I =⇒ ¬ (∃ v. v |=rcs set cs) — unsat of original constraints

over the reals
simplex cs = Unsat I =⇒ set I ⊆ {0 ..<length cs} ∧ ¬ (∃ v. v |=rcs {cs ! i | i. i
∈ set I})
∧ (∀ J⊂set I . ∃ v. v |=cs {cs ! i |i. i ∈ J}) — minimal unsat core over reals

47

simplex cs = Sat v =⇒ 〈v〉 |=cs set cs — satisfying assignment over the rationals
proof (intro simplex(1)[unfolded rat-real-conversion[OF finite-set]])

assume unsat: simplex cs = Inl I
have finite {cs ! i |i. i ∈ set I} by auto
from simplex(2)[OF unsat, unfolded rat-real-conversion[OF this]]
show set I ⊆ {0 ..<length cs} ∧ ¬ (∃ v. v |=rcs {cs ! i | i. i ∈ set I})
∧ (∀ J⊂set I . ∃ v. v |=cs {cs ! i |i. i ∈ J}) by auto

qed (insert simplex(3), auto)

Define notion of minimal unsat core over the reals: the subset has to be
unsat over the reals, and every proper subset has to be satisfiable over the
rational numbers.
definition minimal-unsat-core-real :: ′i set ⇒ ′i i-constraint list ⇒ bool where

minimal-unsat-core-real I ics = ((I ⊆ fst ‘ set ics) ∧ (¬ (∃ v. (I ,v) |=rics set
ics))
∧ (distinct-indices ics −→ (∀ J . J ⊂ I −→ (∃ v. (J ,v) |=ics set ics))))

Because of equi-satisfiability the two notions of minimal unsat cores co-
incide.
lemma minimal-unsat-core-real-conv: minimal-unsat-core-real I ics = minimal-unsat-core
I ics
proof

show minimal-unsat-core-real I ics =⇒ minimal-unsat-core I ics
unfolding minimal-unsat-core-real-def minimal-unsat-core-def
using of-rat-val-constraint by simp metis

next
assume minimal-unsat-core I ics
thus minimal-unsat-core-real I ics

unfolding minimal-unsat-core-real-def minimal-unsat-core-def
using rat-real-conversion[of Simplex.restrict-to I (set ics)]
by auto

qed

Easy consequence: The incremental simplex algorithm is also sound wrt.
minimal-unsat-cores over the reals.
lemmas incremental-simplex-real =

init-simplex
assert-simplex-ok
assert-simplex-unsat[folded minimal-unsat-core-real-conv]
assert-all-simplex-ok
assert-all-simplex-unsat[folded minimal-unsat-core-real-conv]
check-simplex-ok
check-simplex-unsat[folded minimal-unsat-core-real-conv]
solution-simplex
backtrack-simplex
checked-invariant-simplex

end

48

References
[1] M. Bromberger and C. Weidenbach. New techniques for linear arith-

metic: cubes and equalities. Formal Methods in System Design,
51(3):433–461, Dec 2017.

[2] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for
DPLL(T). In T. Ball and R. B. Jones, editors, CAV’06, volume 4144 of
LNCS, pages 81–94, 2006.

[3] F. Marić, M. Spasić, and R. Thiemann. An incremental simplex al-
gorithm with unsatisfiable core generation. Archive of Formal Proofs,
Aug. 2018. http://isa-afp.org/entries/Simplex.html, Formal proof de-
velopment.

[4] A. Schrijver. Theory of linear and integer programming. Wiley, 1999.

[5] M. Spasić and F. Marić. Formalization of incremental simplex algorithm
by stepwise refinement. In D. Giannakopoulou and D. Méry, editors,
FM’12, volume 7436 of LNCS, pages 434–449, 2012.

[6] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Di-
mensions I. Die Grundlehren der mathematischen Wissenschaften 163.
Springer-Verlag Berlin Heidelberg, 1 edition, 1970.

[7] R. Thiemann. Extending a verified simplex algorithm. In G. Barthe,
K. Korovin, S. Schulz, M. Suda, G. Sutcliffe, and M. Veanes, editors,
LPAR-22 Workshop and Short Paper Proceedings, volume 9 of Kalpa
Publications in Computing, pages 37–48. EasyChair, 2018.

49

http://isa-afp.org/entries/Simplex.html

	Introduction
	Farkas Coefficients via the Simplex Algorithm of Duterte and de Moura
	Linear Inequalities
	Farkas' Lemma on Layer 4
	Farkas' Lemma on Layer 3
	Farkas' Lemma on Layer 2
	Farkas' Lemma on Layer 1

	Corollaries from the Literature
	Farkas' Lemma on Delta-Rationals
	Motzkin's Transposition Theorem or the Kuhn-Fourier Theorem
	Farkas' Lemma
	Farkas Lemma for Matrices

	Unsatisfiability over the Reals

