The Falling Factorial of a Sum

Lukas Bulwahn

September 13, 2023

Abstract

This entry shows that the falling factorial of a sum can be computed with an expression using binomial coefficients and the falling factorial of its summands. The entry provides three different proofs: a combinatorial proof, an induction proof and an algebraic proof using the Vandermonde identity.

The three formalizations try to follow their informal presentations from a Mathematics Stack Exchange page [1, 2, 3, 4] as close as possible. The induction and algebraic formalization end up to be very close to their informal presentation, whereas the combinatorial proof first requires the introduction of list interleavings, and significant more detail than its informal presentation.

Contents

1 Proving Falling Factorial of a Sum with Combinatorics 1
1.1 Preliminaries 2
1.1.1 Addition to Factorials Theory 2
1.2 Interleavings of Two Lists 2
1.3 Cardinality of Distinct Fixed-Length Lists from a Union of Two Sets 4
2 Proving Falling Factorial of a Sum with Induction 4
3 Proving Falling Factorial of a Sum with Vandermonde Iden- tity 5
4 Note on Copyright Licensing 5
1 Proving Falling Factorial of a Sum with Combi- natorics
theory Falling-Factorial-Sum-Combinatorics
imports

Discrete-Summation.Factorials
Card-Partitions.Injectivity-Solver
begin

1.1 Preliminaries

1.1.1 Addition to Factorials Theory

lemma card-lists-distinct-length-eq: assumes finite A
shows card $\{x s$. length $x s=n \wedge$ distinct $x s \wedge$ set $x s \subseteq A\}=$ ffact $n(\operatorname{card} A)$
$\langle p r o o f\rangle$

1.2 Interleavings of Two Lists

inductive interleavings $::$ 'a list $\Rightarrow{ }^{\prime}$ 'a list $\Rightarrow{ }^{\prime}$ 'a list \Rightarrow bool
where
interleavings [] ys ys
| interleavings xs [] xs
| interleavings xs ys zs \Longrightarrow interleavings $(x \# x s)$ ys $(x \# z s)$
| interleavings $x s$ ys $z s \Longrightarrow$ interleavings $x s(y \# y s)(y \# z s)$
lemma interleaving-Nil-implies-eq1:
assumes interleavings xs ys zs
assumes $x s=[]$
shows $y s=z s$
$\langle p r o o f\rangle$
lemma interleaving-Nil-iff1:
interleavings [] ys zs $\longleftrightarrow(y s=z s)$
$\langle p r o o f\rangle$
lemma interleaving-Nil-implies-eq2:
assumes interleavings xs ys zs
assumes $y s=[]$
shows $x s=z s$
$\langle p r o o f\rangle$
lemma interleaving-Nil-iff2:
interleavings $x s[] z s \longleftrightarrow(x s=z s)$
\langle proof \rangle
lemma interleavings-Cons:
$\{z s$. interleavings $(x \# x s)(y \# y s) z s\}=$
$\{x \# z s \mid z s$. interleavings $x s(y \# y s) z s\} \cup\{y \# z s \mid z s$. interleavings $(x \# x s) y s z s\}$ (is ? $S=$? expr $)$
〈proof〉
lemma interleavings-filter:
assumes $X \cap Y=\{ \}$ set $z s \subseteq X \cup Y$

```
    shows interleavings [z\leftarrowzs.z\inX][z\leftarrowzs.z\inY]zs
<proof\rangle
lemma interleavings-filter-eq1:
    assumes interleavings xs ys zs
    assumes ( }\forallx\in\mathrm{ set xs. P x)}\wedge(\forally\in\mathrm{ set ys. ᄀP y)
    shows filter P zs = xs
<proof>
lemma interleavings-filter-eq2:
    assumes interleavings xs ys zs
    assumes ( }\forallx\in\mathrm{ set xs. ᄀ P x)^( }\forally\in\mathrm{ set ys. P y)
    shows filter P zs = ys
<proof>
lemma interleavings-length:
    assumes interleavings xs ys zs
    shows length xs + length ys = length zs
<proof>
lemma interleavings-set:
    assumes interleavings xs ys zs
    shows set xs U set ys = set zs
<proof\rangle
lemma interleavings-distinct:
    assumes interleavings xs ys zs
    shows distinct xs ^ distinct ys }\wedge\mathrm{ set xs }\cap\mathrm{ set ys = {} }\longleftrightarrow\mathrm{ distinct zs
<proof>
lemma two-mutual-lists-induction:
    assumes \ys. P [] ys
    assumes \xs. P xs []
    assumes \x xs y ys.P xs (y#ys)\LongrightarrowP(x#xs) ys \LongrightarrowP(x#xs)(y#ys)
    shows P xs ys
<proof\rangle
lemma finite-interleavings:
    finite {zs. interleavings xs ys zs}
<proof>
lemma card-interleavings:
    assumes set xs \cap set ys = {}
    shows card {zs. interleavings xs ys zs} = (length xs + length ys choose (length
xs))
<proof\rangle
```


1.3 Cardinality of Distinct Fixed-Length Lists from a Union of Two Sets

```
lemma lists-distinct-union-by-interleavings:
    assumes \(X \cap Y=\{ \}\)
    shows \(\{z s\). length \(z s=n \wedge\) distinct zs \(\wedge\) set \(z s \subseteq X \cup Y\}=d o\{\)
        \(k \leftarrow\{0 . . n\} ;\)
        \(x s \leftarrow\{x s\). length \(x s=k \wedge\) distinct \(x s \wedge\) set \(x s \subseteq X\}\);
        \(y s \leftarrow\{\) ys. length ys \(=n-k \wedge\) distinct \(y s \wedge\) set \(y s \subseteq Y\} ;\)
        \(\{z s\). interleavings xs ys \(z s\}\)
    \(\}(\) is ? \(S=\) ? \(\operatorname{expr})\)
〈proof〉
lemma interleavings-inject:
    assumes \(\left(\right.\) set \(x s \cup\) set \(\left.x s^{\prime}\right) \cap\left(\right.\) set ys \(\cup\) set \(\left.y s^{\prime}\right)=\{ \}\)
    assumes interleavings \(x s\) ys zs interleavings \(x s^{\prime} y s^{\prime} z s^{\prime}\)
    assumes \(z s=z s^{\prime}\)
    shows \(x s=x s^{\prime}\) and \(y s=y s^{\prime}\)
\(\langle p r o o f\rangle\)
```

lemma injectivity:
assumes $X \cap Y=\{ \}$
assumes $k \in\{0 . . n\} \wedge k^{\prime} \in\{0 . . n\}$
assumes (length $x s=k \wedge$ distinct $x s \wedge$ set $x s \subseteq X) \wedge\left(\right.$ length $x s^{\prime}=k^{\prime} \wedge$ distinct
$x s^{\prime} \wedge$ set $\left.x s^{\prime} \subseteq X\right)$
assumes (length ys $=n-k \wedge$ distinct ys \wedge set ys $\subseteq Y) \wedge\left(\right.$ length $y^{\prime}=n-k^{\prime}$
\wedge distinct $y s^{\prime} \wedge$ set $\left.y s^{\prime} \subseteq Y\right)$
assumes interleavings xs ys zs \wedge interleavings $x s^{\prime} y s^{\prime} z s^{\prime}$
assumes $z s=z s^{\prime}$
shows $k=k^{\prime}$ and $x s=x s^{\prime}$ and $y s=y s^{\prime}$
$\langle p r o o f\rangle$
lemma card-lists-distinct-length-eq-union:
assumes finite X finite $Y X \cap Y=\{ \}$
shows card $\{z s$. length $z s=n \wedge$ distinct $z s \wedge$ set $z s \subseteq X \cup Y\}=$
$\left(\sum k=0 . . n .(n\right.$ choose $k) *$ ffact $k($ card $X) *$ ffact $(n-k)($ card $\left.Y)\right)$
(is card ? $S=-$)
$\langle p r o o f\rangle$
lemma
ffact $n(x+y)=\left(\sum k=0 . . n .(n\right.$ choose $k) *$ ffact $k x *$ ffact $\left.(n-k) y\right)$
\langle proof \rangle
end

2 Proving Falling Factorial of a Sum with Induction

theory Falling-Factorial-Sum-Induction

imports
 Discrete-Summation.Factorials
 begin

Note the potentially special copyright license condition of the following proof.
lemma ffact-add-nat:
ffact $n(x+y)=\left(\sum k=0 . . n .(n\right.$ choose $k) *$ ffact $k x *$ ffact $\left.(n-k) y\right)$〈proof〉
lemma ffact-add:
fixes $x y$:: 'a::\{ab-group-add, comm-semiring-1-cancel, ring-1\}
shows ffact $n(x+y)=\left(\sum k=0 . . n\right.$. of-nat $(n$ choose $k) *$ ffact $k x * f f a c t(n-$ k) y)
$\langle p r o o f\rangle$
end

3 Proving Falling Factorial of a Sum with Vandermonde Identity

theory Falling-Factorial-Sum-Vandermonde imports
Discrete-Summation.Factorials
begin

Note the potentially special copyright license condition of the following proof.
lemma ffact-add-nat:
shows ffact $k(n+m)=\left(\sum i \leq k .(k\right.$ choose $i) *$ ffact $i n *$ ffact $\left.(k-i) m\right)$
$\langle p r o o f\rangle$
end

4 Note on Copyright Licensing

The initial material of the informal proof for this formalisation is provided on Mathematics Stack Exchange under the Creative Commons AttributionShareAlike 3.0 Unported license (CC BY-SA 3.0; https://creativecommons. org/licenses/by-sa/3.0/), which is pointed out on the the Mathematics Stack Exchange terms of use at https://stackexchange.com/legal/terms-of-service. The two main proofs, the induction and the algebraic proof in this AFP entry are (even textually) very close to the initial material from Mathematics Stack Exchange.

In case the two Isabelle proofs are judged to build upon the main proofs from Mathematics Stack Exchange, the CC BY-SA 3.0 license requires that these proofs must be available under the same license, and hence, these proofs are consequently licensed under CC BY-SA 3.0. In case the two Isabelle proofs are not judged to build upon the material from Mathematics Stack Exchange, I as an author provide them under the 3-Clause BSD License (https://opensource.org/licenses/BSD-3-Clause) to allow their seemless integration into the Isabelle repository at any point in time.
All other content that does not build upon the material from Mathematics Stack Exchange is licensed under the 3-clause BSD License, and can be copied, moved or integrated in other work licensed under the 3 -clause BSD License without further consideration of the different obligations of the existing copyright licensing.

References

[1] ajotatxe. Combinatorial proof of falling factorial and binomial theorem. Mathematics Stack Exchange. https://math.stackexchange. com/q/1271700 (version: 2015-05-07), author profile: https://math. stackexchange.com/users/132456/ajotatxe.
[2] grapher. Combinatorial proof of falling factorial and binomial theorem. Mathematics Stack Exchange. https://math.stackexchange. com/q/1271688 (version: 2016-08-27), author profile: https://math. stackexchange.com/users/199155/grapher.
[3] F. John. Combinatorial proof of falling factorial and binomial theorem. Mathematics Stack Exchange. https://math.stackexchange. com/q/2161558 (version: 2017-11-14), author profile: https://math. stackexchange.com/users/302692/foobaz-john.
[4] B. M. Scott. Combinatorial proof of falling factorial and binomial theorem. Mathematics Stack Exchange. https://math.stackexchange. com/q/1271983 (version: 2015-05-07), author profile: https://math. stackexchange.com/users/12042/brian-m-scott.

