
The Falling Factorial of a Sum

Lukas Bulwahn

March 17, 2025

Abstract

This entry shows that the falling factorial of a sum can be com-
puted with an expression using binomial coefficients and the falling
factorial of its summands. The entry provides three different proofs: a
combinatorial proof, an induction proof and an algebraic proof using
the Vandermonde identity.

The three formalizations try to follow their informal presentations
from a Mathematics Stack Exchange page [1, 2, 3, 4] as close as pos-
sible. The induction and algebraic formalization end up to be very
close to their informal presentation, whereas the combinatorial proof
first requires the introduction of list interleavings, and significant more
detail than its informal presentation.
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1 Proving Falling Factorial of a Sum with Combi-
natorics

theory Falling-Factorial-Sum-Combinatorics
imports
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Discrete-Summation.Factorials
Card-Partitions.Injectivity-Solver

begin

1.1 Preliminaries
1.1.1 Addition to Factorials Theory
lemma card-lists-distinct-length-eq:

assumes finite A
shows card {xs. length xs = n ∧ distinct xs ∧ set xs ⊆ A} = ffact n (card A)

proof cases
assume n ≤ card A
have card {xs. length xs = n ∧ distinct xs ∧ set xs ⊆ A} =

∏
{card A − n +

1 ..card A}
using ‹finite A› ‹n ≤ card A› by (rule card-lists-distinct-length-eq)

also have . . . = ffact n (card A)
using ‹n ≤ card A› by (simp add: prod-rev-ffact-nat ′[symmetric])

finally show ?thesis .
next

assume ¬ n ≤ card A
from this ‹finite A› have ∀ xs. length xs = n ∧ distinct xs ∧ set xs ⊆ A −→

False
by (metis card-mono distinct-card)

from this have eq-empty: {xs. length xs = n ∧ distinct xs ∧ set xs ⊆ A} = {}
using ‹finite A› by auto

from ‹¬ n ≤ card A› show ?thesis
by (simp add: ffact-nat-triv eq-empty)

qed

1.2 Interleavings of Two Lists
inductive interleavings :: ′a list ⇒ ′a list ⇒ ′a list ⇒ bool
where

interleavings [] ys ys
| interleavings xs [] xs
| interleavings xs ys zs =⇒ interleavings (x#xs) ys (x#zs)
| interleavings xs ys zs =⇒ interleavings xs (y#ys) (y#zs)

lemma interleaving-Nil-implies-eq1 :
assumes interleavings xs ys zs
assumes xs = []
shows ys = zs

using assms by (induct rule: interleavings.induct) auto

lemma interleaving-Nil-iff1 :
interleavings [] ys zs ←→ (ys = zs)

using interleaving-Nil-implies-eq1
by (auto simp add: interleavings.intros(1 ))
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lemma interleaving-Nil-implies-eq2 :
assumes interleavings xs ys zs
assumes ys = []
shows xs = zs

using assms by (induct rule: interleavings.induct) auto

lemma interleaving-Nil-iff2 :
interleavings xs [] zs ←→ (xs = zs)

using interleaving-Nil-implies-eq2
by (auto simp add: interleavings.intros(2 ))

lemma interleavings-Cons:
{zs. interleavings (x#xs) (y#ys) zs} =
{x#zs|zs. interleavings xs (y#ys) zs} ∪ {y#zs|zs. interleavings (x#xs) ys zs}

(is ?S = ?expr)
proof

show ?S ⊆ ?expr
by (auto elim: interleavings.cases)

next
show ?expr ⊆ ?S

by (auto intro: interleavings.intros)
qed

lemma interleavings-filter :
assumes X ∩ Y = {} set zs ⊆ X ∪ Y
shows interleavings [z←zs . z ∈ X ] [z←zs . z ∈ Y ] zs

using assms by (induct zs) (auto intro: interleavings.intros)

lemma interleavings-filter-eq1 :
assumes interleavings xs ys zs
assumes (∀ x∈set xs. P x) ∧ (∀ y∈set ys. ¬ P y)
shows filter P zs = xs

using assms by (induct rule: interleavings.induct) auto

lemma interleavings-filter-eq2 :
assumes interleavings xs ys zs
assumes (∀ x∈set xs. ¬ P x) ∧ (∀ y∈set ys. P y)
shows filter P zs = ys

using assms by (induct rule: interleavings.induct) auto

lemma interleavings-length:
assumes interleavings xs ys zs
shows length xs + length ys = length zs

using assms by (induct xs ys zs rule: interleavings.induct) auto

lemma interleavings-set:
assumes interleavings xs ys zs
shows set xs ∪ set ys = set zs

using assms by (induct xs ys zs rule: interleavings.induct) auto
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lemma interleavings-distinct:
assumes interleavings xs ys zs
shows distinct xs ∧ distinct ys ∧ set xs ∩ set ys = {} ←→ distinct zs

using assms interleavings-set by (induct xs ys zs rule: interleavings.induct) fast-
force+

lemma two-mutual-lists-induction:
assumes

∧
ys. P [] ys

assumes
∧

xs. P xs []
assumes

∧
x xs y ys. P xs (y#ys) =⇒ P (x#xs) ys =⇒ P (x#xs) (y#ys)

shows P xs ys
using assms by (induction-schema) (pat-completeness, lexicographic-order)

lemma finite-interleavings:
finite {zs. interleavings xs ys zs}

proof (induct xs ys rule: two-mutual-lists-induction)
case (1 ys)
show ?case by (simp add: interleaving-Nil-iff1 )

next
case (2 xs)
then show ?case by (simp add: interleaving-Nil-iff2 )

next
case (3 x xs y ys)
then show ?case by (simp add: interleavings-Cons)

qed

lemma card-interleavings:
assumes set xs ∩ set ys = {}
shows card {zs. interleavings xs ys zs} = (length xs + length ys choose (length

xs))
using assms
proof (induct xs ys rule: two-mutual-lists-induction)

case (1 ys)
have card {zs. interleavings [] ys zs} = card {ys}

by (simp add: interleaving-Nil-iff1 )
also have . . . = (length [] + length ys choose (length [])) by simp
finally show ?case .

next
case (2 xs)
have card {zs. interleavings xs [] zs} = card {xs}

by (simp add: interleaving-Nil-iff2 )
also have . . . = (length xs + length [] choose (length xs)) by simp
finally show ?case .

next
case (3 x xs y ys)
have card {zs. interleavings (x # xs) (y # ys) zs} =

card ({x#zs|zs. interleavings xs (y#ys) zs} ∪ {y#zs|zs. interleavings (x#xs) ys
zs})
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by (simp add: interleavings-Cons)
also have . . . = card {x#zs|zs. interleavings xs (y#ys) zs} + card {y#zs|zs.

interleavings (x#xs) ys zs}
proof −

have finite {x # zs |zs. interleavings xs (y # ys) zs}
by (simp add: finite-interleavings)

moreover have finite {y # zs |zs. interleavings (x # xs) ys zs}
by (simp add: finite-interleavings)

moreover have {x # zs |zs. interleavings xs (y # ys) zs} ∩ {y # zs |zs.
interleavings (x # xs) ys zs} = {}

using ‹set (x # xs) ∩ set (y # ys) = {}› by auto
ultimately show ?thesis by (simp add: card-Un-disjoint)

qed
also have . . . = card ((λzs. x # zs) ‘ {zs. interleavings xs (y # ys) zs}) +

card ((λzs. y # zs) ‘ {zs. interleavings (x#xs) ys zs})
by (simp add: setcompr-eq-image)

also have . . . = card {zs. interleavings xs (y # ys) zs} + card {zs. interleavings
(x#xs) ys zs}

by (simp add: card-image)
also have . . . = (length xs + length (y # ys) choose length xs) + (length (x #

xs) + length ys choose length (x # xs))
using 3 by simp

also have . . . = length (x # xs) + length (y # ys) choose length (x # xs) by
simp

finally show ?case .
qed

1.3 Cardinality of Distinct Fixed-Length Lists from a Union
of Two Sets

lemma lists-distinct-union-by-interleavings:
assumes X ∩ Y = {}
shows {zs. length zs = n ∧ distinct zs ∧ set zs ⊆ X ∪ Y } = do {

k ← {0 ..n};
xs ← {xs. length xs = k ∧ distinct xs ∧ set xs ⊆ X};
ys ← {ys. length ys = n − k ∧ distinct ys ∧ set ys ⊆ Y };
{zs. interleavings xs ys zs}
} (is ?S = ?expr)

proof
show ?S ⊆ ?expr
proof

fix zs
assume zs ∈ ?S
from this have length zs = n and distinct zs and set zs ⊆ X ∪ Y by auto
define xs where xs = filter (λz. z ∈ X) zs
define ys where ys = filter (λz. z ∈ Y ) zs
have eq: [z←zs . z ∈ Y ] = [z←zs . z /∈ X ]

using ‹set zs ⊆ X ∪ Y › ‹X ∩ Y = {}›
by (auto intro: filter-cong)
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have length xs ≤ n ∧ distinct xs ∧ set xs ⊆ X
using ‹length zs = n› ‹distinct zs› unfolding xs-def by auto

moreover have length ys = n − length xs
using ‹set zs ⊆ X ∪ Y › ‹length zs = n›
unfolding xs-def ys-def eq
by (metis diff-add-inverse sum-length-filter-compl)

moreover have distinct ys ∧ set ys ⊆ Y
using ‹distinct zs› unfolding ys-def by auto

moreover have interleavings xs ys zs
using xs-def ys-def ‹X ∩ Y = {}› ‹set zs ⊆ X ∪ Y ›
by (simp add: interleavings-filter)

ultimately show zs ∈ ?expr by force
qed

next
show ?expr ⊆ ?S
proof

fix zs
assume zs ∈ ?expr
from this obtain xs ys where length xs ≤ n distinct xs set xs ⊆ X
and length ys = n − length xs distinct ys set ys ⊆ Y interleavings xs ys zs by

auto
have length zs = n

using ‹length xs ≤ n› ‹length ys = n − length xs› ‹interleavings xs ys zs›
using interleavings-length by force

moreover have distinct zs
using ‹distinct xs› ‹distinct ys› ‹interleavings xs ys zs› ‹set xs ⊆ X› ‹set ys

⊆ Y ›
using ‹X ∩ Y = {}› interleavings-distinct by fastforce

moreover have set zs ⊆ X ∪ Y
using ‹interleavings xs ys zs› ‹set xs ⊆ X› ‹set ys ⊆ Y › interleavings-set by

blast
ultimately show zs ∈ ?S by blast

qed
qed

lemma interleavings-inject:
assumes (set xs ∪ set xs ′) ∩ (set ys ∪ set ys ′) = {}
assumes interleavings xs ys zs interleavings xs ′ ys ′ zs ′

assumes zs = zs ′

shows xs = xs ′ and ys = ys ′

proof −
have xs = filter (λz. z ∈ set xs ∪ set xs ′) zs

using ‹(set xs ∪ set xs ′) ∩ (set ys ∪ set ys ′) = {}› ‹interleavings xs ys zs›
by (auto intro: interleavings-filter-eq1 [symmetric])

also have . . . = filter (λz. z ∈ set xs ∪ set xs ′) zs ′

using ‹zs = zs ′› by simp
also have . . . = xs ′

using ‹(set xs ∪ set xs ′) ∩ (set ys ∪ set ys ′) = {}› ‹interleavings xs ′ ys ′ zs ′›
by (auto intro: interleavings-filter-eq1 )
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finally show xs = xs ′ by simp
have ys = filter (λz. z ∈ set ys ∪ set ys ′) zs

using ‹(set xs ∪ set xs ′) ∩ (set ys ∪ set ys ′) = {}› ‹interleavings xs ys zs›
by (auto intro: interleavings-filter-eq2 [symmetric])

also have . . . = filter (λz. z ∈ set ys ∪ set ys ′) zs ′

using ‹zs = zs ′› by simp
also have . . . = ys ′

using ‹(set xs ∪ set xs ′) ∩ (set ys ∪ set ys ′) = {}› ‹interleavings xs ′ ys ′ zs ′›
by (auto intro: interleavings-filter-eq2 )

finally show ys = ys ′ .
qed

lemma injectivity:
assumes X ∩ Y = {}
assumes k ∈ {0 ..n} ∧ k ′ ∈ {0 ..n}
assumes (length xs = k ∧ distinct xs ∧ set xs ⊆ X) ∧ (length xs ′ = k ′ ∧ distinct

xs ′ ∧ set xs ′ ⊆ X)
assumes (length ys = n − k ∧ distinct ys ∧ set ys ⊆ Y ) ∧ (length ys ′ = n − k ′

∧ distinct ys ′ ∧ set ys ′ ⊆ Y )
assumes interleavings xs ys zs ∧ interleavings xs ′ ys ′ zs ′

assumes zs = zs ′

shows k = k ′ and xs = xs ′ and ys = ys ′

proof −
from assms(1 ,3 ,4 ) have (set xs ∪ set xs ′) ∩ (set ys ∪ set ys ′) = {} by blast
from this assms(5 ) ‹zs = zs ′› show xs = xs ′ and ys = ys ′

using interleavings-inject by fastforce+
from this assms(3 ) show k = k ′ by auto

qed

lemma finite-length-distinct: finite X =⇒ finite {xs. length xs = k ∧ distinct xs
∧ set xs ⊆ X}
by(fast elim: rev-finite-subset[OF finite-subset-distinct])

lemma card-lists-distinct-length-eq-union:
assumes finite X finite Y X ∩ Y = {}
shows card {zs. length zs = n ∧ distinct zs ∧ set zs ⊆ X ∪ Y } =
(
∑

k=0 ..n. (n choose k) ∗ ffact k (card X) ∗ ffact (n − k) (card Y ))
(is card ?S = -)

proof −
let ?expr = do {

k ← {0 ..n};
xs ← {xs. length xs = k ∧ distinct xs ∧ set xs ⊆ X};
ys ← {ys. length ys = n − k ∧ distinct ys ∧ set ys ⊆ Y };
{zs. interleavings xs ys zs}
}
from ‹X ∩ Y = {}› have card ?S = card ?expr

by (simp add: lists-distinct-union-by-interleavings)
let ?S >>= ?comp = ?expr
{
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fix k
assume k ∈ ?S
let ?expr = ?comp k
let ?S >>= ?comp = ?expr
from ‹finite X› have finite ?S by(rule finite-length-distinct)
moreover {

fix xs
assume xs: xs ∈ ?S
let ?expr = ?comp xs
let ?S >>= ?comp = ?expr
from ‹finite Y › have finite ?S by(rule finite-length-distinct)
moreover {

fix ys
assume ys: ys ∈ ?S
let ?expr = ?comp ys
have finite ?expr

by (simp add: finite-interleavings)
moreover have card ?expr = (n choose k)

using xs ys ‹X ∩ Y = {}› ‹k ∈ -›
by (subst card-interleavings) auto

ultimately have finite ?expr ∧ card ?expr = (n choose k) ..
}
moreover have disjoint-family-on ?comp ?S

using ‹k ∈ {0 ..n}› ‹xs ∈ {xs. length xs = k ∧ distinct xs ∧ set xs ⊆ X}›
by (injectivity-solver rule: injectivity(3 )[OF ‹X ∩ Y = {}›])

moreover have card ?S = ffact (n − k) (card Y )
using ‹finite Y › by (simp add: card-lists-distinct-length-eq)

ultimately have card ?expr = (n choose k) ∗ ffact (n − k) (card Y )
by (subst card-bind-constant) auto

moreover have finite ?expr
using ‹finite ?S› by (auto intro!: finite-bind finite-interleavings)

ultimately have finite ?expr ∧ card ?expr = (n choose k) ∗ ffact (n − k)
(card Y )

by blast
}
moreover have disjoint-family-on ?comp ?S

using ‹k ∈ {0 ..n}›
by (injectivity-solver rule: injectivity(2 )[OF ‹X ∩ Y = {}›])

moreover have card ?S = ffact k (card X)
using ‹finite X› by (simp add: card-lists-distinct-length-eq)

ultimately have card ?expr = (n choose k) ∗ ffact k (card X) ∗ ffact (n − k)
(card Y )

by (subst card-bind-constant) auto
moreover have finite ?expr

using ‹finite ?S› ‹finite Y › by (auto intro!: finite-bind finite-interleavings
finite-length-distinct)

ultimately have finite ?expr ∧ card ?expr = (n choose k) ∗ ffact k (card X)
∗ ffact (n − k) (card Y )

by blast
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}
moreover have disjoint-family-on ?comp ?S

by (injectivity-solver rule: injectivity(1 )[OF ‹X ∩ Y = {}›])
ultimately have card ?expr = (

∑
k=0 ..n. (n choose k) ∗ ffact k (card X) ∗

ffact (n − k) (card Y ))
by (auto simp add: card-bind)

from ‹card - = card ?expr› this show ?thesis by simp
qed

lemma
ffact n (x + y) = (

∑
k=0 ..n. (n choose k) ∗ ffact k x ∗ ffact (n − k) y)

proof −
define X where X = {..<x}
define Y where Y = {x..<x+y}
have finite X and card X = x unfolding X-def by auto
have finite Y and card Y = y unfolding Y-def by auto
have X ∩ Y = {} unfolding X-def Y-def by auto
have ffact n (x + y) = ffact n (card X + card Y )

using ‹card X = x› ‹card Y = y› by simp
also have . . . = ffact n (card (X ∪ Y ))

using ‹X ∩ Y = {}› ‹finite X› ‹finite Y › by (simp add: card-Un-disjoint)
also have . . . = card {xs. length xs = n ∧ distinct xs ∧ set xs ⊆ X ∪ Y }
using ‹finite X› ‹finite Y › by (simp add: card-lists-distinct-length-eq)

also have . . . = (
∑

k=0 ..n. (n choose k) ∗ ffact k (card X) ∗ ffact (n − k) (card
Y ))

using ‹X ∩ Y = {}› ‹finite X› ‹finite Y › by (simp add: card-lists-distinct-length-eq-union)
also have . . . = (

∑
k=0 ..n. (n choose k) ∗ ffact k x ∗ ffact (n − k) y)

using ‹card X = x› ‹card Y = y› by simp
finally show ?thesis .

qed

end

2 Proving Falling Factorial of a Sum with Induc-
tion

theory Falling-Factorial-Sum-Induction
imports

Discrete-Summation.Factorials
begin

Note the potentially special copyright license condition of the following
proof.
lemma ffact-add-nat:

ffact n (x + y) = (
∑

k=0 ..n. (n choose k) ∗ ffact k x ∗ ffact (n − k) y)
proof (induct n)

case 0
show ?case by simp
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next
case (Suc n)
let ?s = λk. (n choose k) ∗ ffact k x ∗ ffact (n − k) y
let ?t = λk. ffact k x ∗ ffact (Suc n − k) y
let ?u = λk. ffact (Suc k) x ∗ ffact (n − k) y
have ffact (Suc n) (x + y) = (x + y − n) ∗ ffact n (x + y)

by (simp add: ffact-Suc-rev-nat)
also have . . . = (x + y − n) ∗ (

∑
k = 0 ..n. (n choose k) ∗ ffact k x ∗ ffact (n

− k) y)
using Suc.hyps by simp

also have . . . = (
∑

k = 0 ..n. ?s k ∗ (x + y − n))
by (simp add: mult.commute sum-distrib-left)

also have . . . = (
∑

k = 0 ..n. ?s k ∗ ((y + k − n) + (x − k)))
proof −

have ?s k ∗ (x + y − n) = ?s k ∗ ((y + k − n) + (x − k)) for k
by (cases k ≤ x ∨ n − k ≤ y) (auto simp add: ffact-nat-triv)

from this show ?thesis
by (auto intro: sum.cong simp only: refl)

qed
also have . . . = (

∑
k = 0 ..n. (n choose k) ∗ (?t k + ?u k))

by (auto intro!: sum.cong simp add: Suc-diff-le ffact-Suc-rev-nat) algebra
also have . . . = (

∑
k = 0 ..n. (n choose k) ∗ ?t k) + (

∑
k = 0 ..n. (n choose k)

∗ ?u k)
by (simp add: sum.distrib add-mult-distrib2 mult.commute mult.left-commute)

also have . . . = ?t 0 + (
∑

k = 0 ..n. ((n choose k) + (n choose Suc k)) ∗ ?u k)
proof −

have . . . = (?t 0 + (
∑

k = 0 ..n. (n choose Suc k) ∗ ?u k)) + (
∑

k = 0 ..n. (n
choose k) ∗ ?u k)

proof −
have (

∑
k = Suc 0 ..n. (n choose k) ∗ ?t k) = (

∑
k = 0 ..n. (n choose Suc k)

∗ ?u k)
proof −

have (
∑

k = Suc 0 ..n. (n choose k) ∗ ?t k) = (
∑

k = Suc 0 ..Suc n. (n
choose k) ∗ ?t k)

by simp
also have . . . = (sum ((λk. (n choose k) ∗ ?t k) o Suc) {0 ..n})

by (simp only: sum.reindex[symmetric, of Suc] inj-Suc image-Suc-atLeastAtMost)
also have . . . = (

∑
k = 0 ..n. (n choose Suc k) ∗ ?u k)

by simp
finally show ?thesis .

qed
from this show ?thesis

by (simp add: sum.atLeast-Suc-atMost[of - - λk. (n choose k) ∗ ?t k])
qed
also have . . . = ?t 0 + (

∑
k = 0 ..n. ((n choose k) + (n choose Suc k)) ∗ ?u

k)
by (simp add: distrib-right sum.distrib)

finally show ?thesis .
qed
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also have . . . = (
∑

k = 0 ..Suc n. (Suc n choose k) ∗ ffact k x ∗ ffact (Suc n −
k) y)

proof −
let ?v = λk. (Suc n choose k) ∗ ffact k x ∗ ffact (Suc n − k) y
have . . . = ?v 0 + (

∑
k = 0 ..n. (Suc n choose (Suc k)) ∗ ?u k)

by simp
also have . . . = ?v 0 + (

∑
k = Suc 0 ..Suc n. ?v k)

by (simp only: sum.shift-bounds-cl-Suc-ivl diff-Suc-Suc mult.assoc)
also have . . . = (

∑
k = 0 ..Suc n. (Suc n choose k) ∗ ffact k x ∗ ffact (Suc n

− k) y)
by (simp add: sum.atLeast-Suc-atMost)

finally show ?thesis .
qed
finally show ?case .

qed

lemma ffact-add:
fixes x y :: ′a::{ab-group-add, comm-semiring-1-cancel, ring-1}
shows ffact n (x + y) = (

∑
k=0 ..n. of-nat (n choose k) ∗ ffact k x ∗ ffact (n −

k) y)
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)
let ?s = λk. of-nat (n choose k) ∗ ffact k x ∗ ffact (n − k) y
let ?t = λk. ffact k x ∗ ffact (Suc n − k) y
let ?u = λk. ffact (Suc k) x ∗ ffact (n − k) y
have ffact (Suc n) (x + y) = (x + y − of-nat n) ∗ ffact n (x + y)

by (simp add: ffact-Suc-rev)
also have . . . = (x + y − of-nat n) ∗ (

∑
k = 0 ..n. of-nat (n choose k) ∗ ffact k

x ∗ ffact (n − k) y)
using Suc.hyps by simp

also have . . . = (
∑

k = 0 ..n. ?s k ∗ (x + y − of-nat n))
by (simp add: mult.commute sum-distrib-left)

also have . . . = (
∑

k = 0 ..n. ?s k ∗ ((y + of-nat k − of-nat n) + (x − of-nat
k)))

by (auto intro: sum.cong simp add: diff-add-eq add-diff-eq add.commute)
also have . . . = (

∑
k = 0 ..n. of-nat (n choose k) ∗ (?t k + ?u k))

proof −
{

fix k
assume k ≤ n
have ?u k = ffact k x ∗ ffact (n − k) y ∗ (x − of-nat k)
by (simp add: ffact-Suc-rev Suc-diff-le of-nat-diff mult.commute mult.left-commute)
moreover from ‹k ≤ n› have ?t k = ffact k x ∗ ffact (n − k) y ∗ (y +

of-nat k − of-nat n)
by (simp add: ffact-Suc-rev Suc-diff-le of-nat-diff diff-diff-eq2 mult.commute
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mult.left-commute)
ultimately have

?s k ∗ ((y + of-nat k − of-nat n) + (x − of-nat k)) = of-nat (n choose k)
∗ (?t k + ?u k)

by (metis (no-types, lifting) distrib-left mult.assoc)
}
from this show ?thesis by (auto intro: sum.cong)

qed
also have . . . = (

∑
k = 0 ..n. of-nat (n choose k) ∗ ?t k) + (

∑
k = 0 ..n. of-nat

(n choose k) ∗ ?u k)
by (simp add: sum.distrib distrib-left mult.commute mult.left-commute)

also have . . . = ?t 0 + (
∑

k = 0 ..n. of-nat ((n choose k) + (n choose Suc k))
∗ ?u k)

proof −
have . . . = (?t 0 + (

∑
k = 0 ..n. of-nat (n choose Suc k) ∗ ?u k)) + (

∑
k =

0 ..n. of-nat (n choose k) ∗ ?u k)
proof −

have (
∑

k = Suc 0 ..n. of-nat (n choose k) ∗ ?t k) = (
∑

k = 0 ..n. of-nat (n
choose Suc k) ∗ ?u k)

proof −
have (

∑
k = Suc 0 ..n. of-nat (n choose k) ∗ ?t k) = (

∑
k = Suc 0 ..Suc n.

of-nat (n choose k) ∗ ?t k)
by (simp add: binomial-eq-0 )

also have . . . = (sum ((λk. of-nat (n choose k) ∗ ?t k) o Suc) {0 ..n})
by (simp only: sum.reindex[symmetric, of Suc] inj-Suc image-Suc-atLeastAtMost)
also have . . . = (

∑
k = 0 ..n. of-nat (n choose Suc k) ∗ ?u k)

by simp
finally show ?thesis .

qed
from this show ?thesis
by (simp add: sum.atLeast-Suc-atMost[of - - λk. of-nat (n choose k) ∗ ?t k])

qed
also have . . . = ?t 0 + (

∑
k = 0 ..n. of-nat ((n choose k) + (n choose Suc k))

∗ ?u k)
by (simp add: distrib-right sum.distrib)

finally show ?thesis .
qed
also have . . . = (

∑
k = 0 ..Suc n. of-nat (Suc n choose k) ∗ ffact k x ∗ ffact (Suc

n − k) y)
proof −

let ?v = λk. of-nat (Suc n choose k) ∗ ffact k x ∗ ffact (Suc n − k) y
have . . . = ?v 0 + (

∑
k = 0 ..n. of-nat (Suc n choose (Suc k)) ∗ ?u k)

by simp
also have . . . = ?v 0 + (

∑
k = Suc 0 ..Suc n. ?v k)

by (simp only: sum.shift-bounds-cl-Suc-ivl diff-Suc-Suc mult.assoc)
also have . . . = (

∑
k = 0 ..Suc n. of-nat (Suc n choose k) ∗ ffact k x ∗ ffact

(Suc n − k) y)
by (simp add: sum.atLeast-Suc-atMost)

finally show ?thesis .
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qed
finally show ?case .

qed

end

3 Proving Falling Factorial of a Sum with Vander-
monde Identity

theory Falling-Factorial-Sum-Vandermonde
imports

Discrete-Summation.Factorials
begin

Note the potentially special copyright license condition of the following
proof.
lemma ffact-add-nat:

shows ffact k (n + m) = (
∑

i≤k. (k choose i) ∗ ffact i n ∗ ffact (k − i) m)
proof −

have ffact k (n + m) = fact k ∗ ((n + m) choose k)
by (simp only: ffact-eq-fact-mult-binomial)

also have . . . = fact k ∗ (
∑

i≤k. (n choose i) ∗ (m choose (k − i)))
by (simp only: vandermonde)

also have . . . = (
∑

i≤k. fact k ∗ (n choose i) ∗ (m choose (k − i)))
by (simp add: sum-distrib-left field-simps)

also have . . . = (
∑

i≤k. (fact i ∗ fact (k − i) ∗ (k choose i)) ∗ (n choose i) ∗
(m choose (k − i)))

by (simp add: binomial-fact-lemma)
also have . . . = (

∑
i≤k. (k choose i) ∗ (fact i ∗ (n choose i)) ∗ (fact (k − i) ∗

(m choose (k − i))))
by (auto intro: sum.cong)

also have . . . = (
∑

i≤k. (k choose i) ∗ ffact i n ∗ ffact (k − i) m)
by (simp only: ffact-eq-fact-mult-binomial)

finally show ?thesis .
qed

end

4 Note on Copyright Licensing

The initial material of the informal proof for this formalisation is provided
on Mathematics Stack Exchange under the Creative Commons Attribution-
ShareAlike 3.0 Unported license (CC BY-SA 3.0; https://creativecommons.
org/licenses/by-sa/3.0/), which is pointed out on the the Mathematics Stack
Exchange terms of use at https://stackexchange.com/legal/terms-of-service.
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The two main proofs, the induction and the algebraic proof in this AFP
entry are (even textually) very close to the initial material from Mathematics
Stack Exchange.
In case the two Isabelle proofs are judged to build upon the main proofs
from Mathematics Stack Exchange, the CC BY-SA 3.0 license requires that
these proofs must be available under the same license, and hence, these
proofs are consequently licensed under CC BY-SA 3.0. In case the two Is-
abelle proofs are not judged to build upon the material from Mathematics
Stack Exchange, I as an author provide them under the 3-Clause BSD Li-
cense (https://opensource.org/licenses/BSD-3-Clause) to allow their seem-
less integration into the Isabelle repository at any point in time.
All other content that does not build upon the material from Mathemat-
ics Stack Exchange is licensed under the 3-clause BSD License, and can
be copied, moved or integrated in other work licensed under the 3-clause
BSD License without further consideration of the different obligations of
the existing copyright licensing.
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