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Abstract

A completeness threshold is required to guarantee the completeness
of planning as satisfiability, and bounded model checking of safety
properties. One valid completeness threshold is the diameter of the
underlying transition system. The diameter is the maximum element
in the set of lengths of all shortest paths between pairs of states. The
diameter is not calculated exactly in our setting, where the transition
system is succinctly described using a (propositionally) factored rep-
resentation. Rather, an upper bound on the diameter is calculated
compositionally, by bounding the diameters of small abstract subsys-
tems, and then composing those.

We port a HOL4 formalisation of a compositional algorithm for
computing a relatively tight upper bound on the system diameter.
This compositional algorithm exploits acyclicity in the state space to
achieve compositionality, and it was introduced by Abdulaziz et. al [1]
(in particular Algorithm 1). The formalisation that we port is de-
scribed as a part of another paper by Abdulaziz et. al [2], in particular
in section 6. As a part of this porting we developed a libray about tran-
sition systems, which shall be of use in future related mechanisation
efforts.
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theory FactoredSystemLib
imports Main HOL−Library.Finite-Map

begin

1 Factored Systems Library
This section contains definitions used in the factored system theory (Fac-
toredSystem.thy) and in other theories.
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1.1 Semantics of Map Addition
Most importantly, we are redefining the map addition operator (‘++‘) to
reflect HOL4 semantics which are left to right (ltr), rather than right-to-left
as in Isabelle/HOL.

This means that given a finite map (‘M = M1 ++ M2‘) and a variable ‘v‘
which is in the domain of both ‘M1‘ and ‘M2‘, the lookup ‘M v‘ will yield ‘M1
v‘ in HOL4 but ‘M2 v‘ in Isabelle/HOL. This behavior can be confirmed by
looking at the definition of ‘fmap_add‘ (‘++f‘, Finite_Map.thy:460)—which
is lifted from ‘map_add‘ (Map.thy:24)

(++) (infixl "++" 100) where m1 ++ m2 = (λx. case m2 x of None ⇒
m1 x | Some y ⇒ Some y)

to finite sets—and the HOL4 definition of "FUNION‘ (finite_mapScript.sml:770)
which recurs on ‘union_lemma‘ (finite_mapScript.sml:756)

!̂fmap g. ?union. (FDOM union = FDOM f Union (g ‘ FDOM)) / (!x.
FAPPLY union x = if x IN FDOM f then FAPPLY f x else FAPPLY g x)

The ltr semantics are also reflected in [Abdulaziz et al., Definition 2,
p.9].
hide-const (open) Map.map-add
no-notation Map.map-add (infixl ‹++› 100 )
definition fmap-add-ltr :: ( ′a, ′b) fmap ⇒ ( ′a, ′b) fmap ⇒ ( ′a, ′b) fmap (infixl
‹++› 100 ) where

m1 ++ m2 ≡ m2 ++f m1

1.2 States, Actions and Problems.
Planning problems are typically formalized by considering possible states
and the effect of actions upon these states.

In this case we consider a world model in propositional logic: i.e. states
are finite maps of variables (with arbitrary type ’a) to boolean values and
actions are pairs of states where the first component specifies preconditions
and the second component specifies effects (postconditions) of applying the
action to a given state. [Abdulaziz et al., Definition 2, p.9]
type-synonym ( ′a) state = ( ′a, bool) fmap
type-synonym ( ′a) action = ( ′a state × ′a state)
type-synonym ( ′a) problem = ( ′a state × ′a state) set

For a given action π = (p, e) the action domain D π is the set of variables
‘v‘ where a value is assigned to ‘v‘ in either ‘p‘ or ‘e‘, i.e. ‘p v‘ or ‘e v‘ are
defined. [Abdulaziz et al., Definition 2, p.9]
definition action-dom where

action-dom s1 s2 ≡ (fmdom ′ s1 ∪ fmdom ′ s2 )

— NOTE lemma ‘action_dom_pair‘
action_dom a = FDOM (FST a) Union ((SND a) ‘ FDOM)
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was removed because the curried definition of ‘action_dom‘ in the translation makes
it redundant.

Now, for a given problem (i.e. action set) δ, the problem domain D δ is
given by the union of the action domains of all actions in δ. [Abdulaziz et
al., Definition 3, p.9]

Moreover, the set of valid states U δ is given by the union over all states
whose domain is equal to the problem domain and the set of valid action
sequences (or, valid plans) is given by the Kleene closure of δ, i.e. δ-star =
{π. set π ⊆ δ}. [Abdulaziz et al., Definition 3, p.9]

Ultimately, the effect of executing an action ‘a‘ on a state ‘s‘ is given by
calculating the succeding state. In general, the succeding state is either the
preceding state—if the action does not apply to the state, i.e. if the precon-
ditions are not met—; or, the union of the effects of the action application
and the state. [Abdulaziz et al., Definition 3, p.9]
definition prob-dom where

prob-dom prob ≡
⋃

((λ (s1 , s2 ). action-dom s1 s2 ) ‘ prob)

definition valid-states where
valid-states prob ≡ {s. fmdom ′ s = prob-dom prob}

definition valid-plans where
valid-plans prob ≡ {as. set as ⊆ prob}

definition state-succ where
state-succ s a ≡ (if fst a ⊆f s then (snd a ++ s) else s)

end
theory ListUtils

imports Main HOL−Library.Sublist
begin

— TODO assure translations * ’sublist’ –> ’subseq’ * list_frag l l’ –> sublist l’ l
(switch operands!)

lemma len-ge-0 :
fixes l
shows length l ≥ 0
by simp

lemma len-gt-pref-is-pref :
fixes l l1 l2
assumes (length l2 > length l1 ) (prefix l1 l) (prefix l2 l)
shows (prefix l1 l2 )
using assms proof (induction l2 arbitrary: l1 l)
case Nil
then have ¬(length [] > length l1 )

by simp
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then show ?case
using Nil
by blast

next
case (Cons a l2 )
then show ?case proof(induction l1 arbitrary: l)

case Nil
then show ?case

using Nil-prefix
by blast

next
case (Cons b l1 )
then show ?case proof(cases l)

case Nil
then have ¬(prefix (a # l2 ) l)

by simp
then show ?thesis using Cons.prems(4 )

by simp
next

case (Cons c l)
then have 1 : length l2 > length l1

using Cons.prems(2 )
by fastforce

then show ?thesis using Cons proof(cases l)
case Nil
then have l1 = [c] l2 = [c]

using Cons.prems(3 , 4 ) local.Cons 1
by fastforce+

then show ?thesis
using 1
by auto

next
case (Cons d l ′)
{

thm len-ge-0
have length l1 ≥ 0

by simp
then have length l2 > 0

using 1
by force

then have l2 6= [] using 1
by blast

}
then have length (a # l1 ) ≤ length (b # l2 )

using 1 le-eq-less-or-eq
by simp

then show ?thesis
using Cons.prems(3 , 4 ) prefix-length-prefix
by fastforce
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qed
qed

qed
qed

lemma nempty-list-append-length-add:
fixes l1 l2 l3
assumes l2 6= []
shows length (l1 @ l3 ) < length (l1 @ l2 @l3 )
using assms
by (induction l2 ) auto

lemma append-filter :
fixes f1 :: ′a ⇒ bool and f2 as1 as2 and p :: ′a list
assumes (as1 @ as2 = filter f1 (map f2 p))
shows (∃ p-1 p-2 .
(p-1 @ p-2 = p)
∧ (as1 = filter f1 (map f2 p-1 ))
∧ (as2 = filter f1 (map f2 p-2 ))

)
using assms

proof (induction p arbitrary: f1 f2 as1 as2 )
case Nil
from Nil have 1 : as1 @ as2 = []

by force
then have 2 : as1 = [] as2 = []

by blast+
let ?p1=[]
let ?p2=[]
from 1 2
have ?p1 @ ?p2 = [] as1 = (filter f1 (map f2 ?p1 )) as2 = (filter f1 (map f2

?p2 ))
subgoal by blast
subgoal using 2 (1 ) by simp
subgoal using 2 (2 ) by simp
done

then show ?case
by fast

next
case cons: (Cons a p)
then show ?case
proof (cases as1 )

case Nil
from cons.prems Nil
have 1 : as2 = filter f1 (map f2 (a # p))

by simp
let ?p1=[]
let ?p2=a # p
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have ?p1 @ ?p2 = a # p as1 = filter f1 (map f2 ?p1 ) as2 = filter f1 (map f2
?p2 )

subgoal by simp
subgoal using Nil by simp
subgoal using 1 by auto
done

then show ?thesis
by blast

next
case (Cons a ′ p ′)
then show ?thesis
proof (cases ¬f1 (f2 a))

case True
hence filter f1 (map f2 (a # p)) = filter f1 (map f2 p)

by fastforce
hence as1 @ as2 = filter f1 (map f2 p)

using cons.prems
by argo

then obtain p1 p2 where a:
p1 @ p2 = p as1 = filter f1 (map f2 p1 ) as2 = filter f1 (map f2 p2 )
using cons.IH
by meson

let ?p1=a # p1
let ?p2=p2
have ?p1 @ ?p2 = a # p as1 = filter f1 (map f2 ?p1 ) as2 = filter f1 (map

f2 ?p2 )
subgoal using a(1 ) by fastforce
subgoal using True a(2 ) by auto
subgoal using a(3 ) by blast
done

then show ?thesis
by blast

next
case False
hence filter f1 (map f2 (a # p)) = f2 a # filter f1 (map f2 p)

by fastforce
then have 1 : a ′ = f2 a p ′ @ as2 = filter f1 (map f2 p) as1 = a ′ # p ′

using cons.prems Cons
by fastforce+

then obtain p1 p2 where 2 :
p1 @ p2 = p p ′ = filter f1 (map f2 p1 ) as2 = filter f1 (map f2 p2 )
using cons.IH
by meson

let ?p1=a # p1
let ?p2=p2
have ?p1 @ ?p2 = a # p as1 = filter f1 (map f2 ?p1 ) as2 = filter f1 (map

f2 ?p2 )
subgoal using 2 (1 ) by simp
subgoal using False 1 (1 , 3 ) 2 (2 ) by force
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subgoal using 2 (3 ) by blast
done

then show ?thesis
by blast

qed
qed

qed

— NOTE types of ‘f1‘ and ‘p‘ had to be fixed for ‘append_eq_as_proj_1‘.
lemma append-eq-as-proj-1 :

fixes f1 :: ′a ⇒ bool and f2 as1 as2 as3 and p :: ′a list
assumes (as1 @ as2 @ as3 = filter f1 (map f2 p))
shows (∃ p-1 p-2 p-3 .
(p-1 @ p-2 @ p-3 = p)
∧ (as1 = filter f1 (map f2 p-1 ))
∧ (as2 = filter f1 (map f2 p-2 ))
∧ (as3 = filter f1 (map f2 p-3 ))

)
proof −

from assms
obtain p-1 p-2 where 1 : (p-1 @ p-2 = p) (as1 = filter f1 (map f2 p-1 ))
(as2 @ as3 = filter f1 (map f2 p-2 ))
using append-filter [of as1 (as2 @ as3 )]
by meson

moreover from 1
obtain p-a p-b where (p-a @ p-b = p-2 ) (as2 = filter f1 (map f2 p-a))
(as3 = filter f1 (map f2 p-b))
using append-filter [where p=p-2 ]
by meson

ultimately show ?thesis
by blast

qed

lemma filter-empty-every-not:
∧

P l. (filter (λx. P x) l = []) = list-all (λx. ¬P x)
l
proof −

fix P l
show (filter (λx. P x) l = []) = list-all (λx. ¬P x) l

apply(induction l)
apply(auto)

done
qed

— NOTE added lemma (listScript.sml:810).
lemma MEM-SPLIT :

fixes x l
assumes ¬ListMem x l
shows ∀ l1 l2 . l 6= l1 @ [x] @ l2

proof −
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{
assume C : ¬(∀ l1 l2 . l 6= l1 @ [x] @ l2 )
then have ∃ l1 l2 . l = l1 @ [x] @ l2

by blast
then obtain l1 l2 where 1 : l = l1 @ [x] @ l2

by blast
from assms
have 2 : (∀ xs. l 6= x # xs) ∧ (∀ xs. (∀ y. l 6= y # xs) ∨ ¬ ListMem x xs)

using ListMem-iff
by fastforce

then have False
proof (cases l1 )

case Nil
let ?xs=l2
from 1 Nil have l = [x] @ ?xs

by blast
then show ?thesis

using 2
by simp

next
case (Cons a list)
{

let ?y=a
let ?xs=list @ [x] @ l2
from 1 Cons have l = ?y # ?xs

by simp
moreover have ListMem x ?xs

by (simp add: ListMem-iff )
ultimately have ∃ xs. ∃ y. l = y # xs ∧ ListMem x xs

by blast
then have ¬(∀ xs. (∀ y. l 6= y # xs) ∨ ¬ ListMem x xs)

by presburger
}
then show ?thesis

using 2
by auto

qed
}
then show ?thesis

by blast
qed

— NOTE added lemma (listScript.sml:2784)
lemma APPEND-EQ-APPEND-MID:

fixes l1 l2 m1 m2 e
shows
(l1 @ [e] @ l2 = m1 @ m2 )
←→
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(∃ l. (m1 = l1 @ [e] @ l) ∧ (l2 = l @ m2 )) ∨
(∃ l. (l1 = m1 @ l) ∧ (m2 = l @ [e] @ l2 ))

proof (induction l1 arbitrary: m1 )
case Nil
then show ?case

by (simp; metis Cons-eq-append-conv)+
next

case (Cons a l1 )
then show ?case

by (cases m1 ; simp; blast)
qed

— NOTE variable ‘P‘ was removed (redundant).
lemma LIST-FRAG-DICHOTOMY :

fixes l la x lb
assumes sublist l (la @ [x] @ lb) ¬ListMem x l
shows sublist l la ∨ sublist l lb

proof −
{

from assms(1 )
obtain pfx sfx where 1 : pfx @ l @ sfx = la @ [x] @ lb

unfolding sublist-def
by force

from assms(2 )
have 2 : ∀ l1 l2 . l 6= l1 @ [x] @ l2

using MEM-SPLIT [OF assms(2 )]
by blast

from 1
consider (a) (∃ lc. pfx = la @ [x] @ lc ∧ lb = lc @ l @ sfx)
| (b) (∃ lc. la = pfx @ lc ∧ l @ sfx = lc @ [x] @ lb)
using APPEND-EQ-APPEND-MID[of la x lb pfx l @ sfx]
by presburger

then have ∃ pfx ′ sfx. (pfx ′ @ l @ sfx = la) ∨ (pfx ′@ l @ sfx = lb)
proof (cases)

case a
— NOTE ‘lc‘ is ‘l’‘ in original proof.

then obtain lc where a: pfx = la @ [x] @ lc lb = lc @ l @ sfx
by blast

then show ?thesis
by blast

next
case b
then obtain lc where i: la = pfx @ lc l @ sfx = lc @ [x] @ lb

by blast
then show ?thesis

using 2
by (metis APPEND-EQ-APPEND-MID)

qed
}
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then show ?thesis
unfolding sublist-def
by blast

qed

lemma LIST-FRAG-DICHOTOMY-2 :
fixes l la x lb P
assumes sublist l (la @ [x] @ lb) ¬P x list-all P l
shows sublist l la ∨ sublist l lb

proof −
{

assume ¬P x list-all P l
then have ¬ListMem x l
proof (induction l arbitrary: x P)

case Nil
then show ?case

using ListMem-iff
by force

next
case (Cons a l)
{

have list-all P l
using Cons.prems(2 )
by simp

then have ¬ListMem x l
using Cons.prems(1 ) Cons.IH
by blast

}
moreover {

have P a
using Cons.prems(2 )
by simp

then have a 6= x
using Cons.prems(1 )
by meson

}
ultimately show ?case

using Cons.prems(1 , 2 ) ListMem-iff list.pred-set
by metis

qed
}
then have ¬ListMem x l

using assms(2 , 3 )
by fast

then show ?thesis
using assms(1 ) LIST-FRAG-DICHOTOMY
by metis

qed
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lemma frag-len-filter-le:
fixes P l ′ l
assumes sublist l ′ l
shows length (filter P l ′) ≤ length (filter P l)

proof −
obtain ps ss where l = ps @ l ′ @ ss

using assms sublist-def
by blast

then have 1 :
length (filter P l) = length (filter P ps) + length (filter P l ′) + length (filter P

ss)
by force

then have length (filter P ps) ≥ 0 length (filter P ss) ≥ 0
by blast+

then show ?thesis
using 1
by linarith

qed

end

theory FSSublist
imports Main HOL−Library.Sublist ListUtils

begin

This file is a port of the original HOL4 source file sublistScript.sml.

2 Factored System Sublist
2.1 Sublist Characterization
We take a look at the characterization of sublists. As a precursor, we are
replacing the original definition of ‘sublist‘ in HOL4 (sublistScript.sml:10)
with the semantically equivalent ‘subseq‘ of Isabelle/HOL’s to be able to
use the associated theorems and automation.

In HOL4 ‘sublist‘ is defined as
(sublist [] l1 = T) / (sublist (h::t) [] = F) / (sublist (x::l1) (y::l2) = (x

= y) / sublist l1 l2 sublist (x::l1) l2)
[Abdulaziz et al., HOL4 Definition 10, p.19]. Whereas ‘subseq‘ (Sub-

list.tyh:927) is defined as an abbrevation of ‘list_emb‘ with the predicate
(=), i.e.

subseq xs ys ≡ subseq xs ys
‘list_emb‘ itself is defined as an inductive predicate. However, an equiv-

alent function definition is provided in ‘list_emb_code‘ (Sublist.thy:784)
which is very close to ‘sublist‘ in HOL4.

The correctness of the equivalence claim is shown below by the tech-
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nical lemma ‘sublist_HOL4_equiv_subseq‘ (where the HOL4 definition of
‘sublist‘ is renamed to ‘sublist_HOL4‘).
fun sublist-HOL4 where

sublist-HOL4 [] l1 = True
| (sublist-HOL4 (h # t) [] = False)
| (sublist-HOL4 (x # l1 ) (y # l2 ) = ((x = y) ∧ sublist-HOL4 l1 l2 ∨ sublist-HOL4
(x # l1 ) l2 ))

— NOTE added lemma
lemma sublist-HOL4-equiv-subseq:

fixes l1 l2
shows sublist-HOL4 l1 l2 ←→ subseq l1 l2

proof −
have subseq l1 l2 = list-emb (λx y. x = y) l1 l2

by blast
moreover {

have sublist-HOL4 l1 l2 ←→ list-emb (λx y. x = y) l1 l2
proof (induction rule: sublist-HOL4 .induct)

case (3 x l1 y l2 )
then show sublist-HOL4 (x # l1 ) (y # l2 ) ←→ list-emb (λx y. x = y) (x #

l1 ) (y # l2 )
proof (cases x = y)

case True
then show ?thesis

using 3 .IH (1 , 2 )
by (metis sublist-HOL4 .simps(3 ) subseq-Cons ′ subseq-Cons2-iff )

next
case False
then show ?thesis

using 3 .IH (2 )
by force

qed
qed simp+

}
ultimately show ?thesis

by blast
qed

Likewise as with ‘sublist‘ and ‘subseq‘, the HOL4 definition of ‘list_frag‘
(list_utilsScript.sml:207) has a an Isabelle/HOL counterpart in ‘sublist‘
(Sublist.thy:1124).

The equivalence claim is proven in the technical lemma ‘list_frag_HOL4_equiv_sub-
list‘. Note that ‘sublist‘ reverses the argument order of ‘list_frag‘. Other
than that, both definitions are syntactically identical.
definition list-frag-HOL4 where

list-frag-HOL4 l frag ≡ ∃ pfx sfx. pfx @ frag @ sfx = l
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lemma list-frag-HOL4-equiv-sublist:
shows list-frag-HOL4 l l ′←→ sublist l ′ l
unfolding list-frag-HOL4-def sublist-def
by blast

Given these equivalences, occurences of ‘sublist‘ and ‘list_frag‘ in the
original HOL4 source are now always translated directly to ‘subseq‘ and
‘sublist‘ respectively.

The remainer of this subsection is concerned with characterizations of
‘sublist‘/ ‘subseq‘.
lemma sublist-EQNS :

subseq [] l = True
subseq (h # t) [] = False
by auto

lemma sublist-refl: subseq l l
by auto

lemma sublist-cons:
assumes subseq l1 l2
shows subseq l1 (h # l2 )
using assms
by blast

lemma sublist-NIL: subseq l1 [] = (l1 = [])
by fastforce

lemma sublist-trans:
fixes l1 l2
assumes subseq l1 l2 subseq l2 l3
shows subseq l1 l3
using assms
by force

— NOTE can be solved directly with ’list_emb_length’.
lemma sublist-length:

fixes l l ′
assumes subseq l l ′
shows length l ≤ length l ′
using assms list-emb-length
by blast

— NOTE can be solved directly with subseq_Cons’.
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lemma sublist-CONS1-E :
fixes l1 l2
assumes subseq (h # l1 ) l2
shows subseq l1 l2
using assms subseq-Cons ′

by metis

lemma sublist-equal-lengths:
fixes l1 l2
assumes subseq l1 l2 (length l1 = length l2 )
shows (l1 = l2 )
using assms subseq-same-length
by blast

— NOTE can be solved directly with ’subseq_order.antisym’.
lemma sublist-antisym:

assumes subseq l1 l2 subseq l2 l1
shows (l1 = l2 )
using assms subseq-order .antisym
by blast

lemma sublist-append-back:
fixes l1 l2
shows subseq l1 (l2 @ l1 )
by blast

— NOTE can be solved directly with ’subseq_rev_drop_many’.
lemma sublist-snoc:

fixes l1 l2
assumes subseq l1 l2
shows subseq l1 (l2 @ [h])
using assms subseq-rev-drop-many
by blast

lemma sublist-append-front:
fixes l1 l2
shows subseq l1 (l1 @ l2 )
by fast

lemma append-sublist-1 :
assumes subseq (l1 @ l2 ) l
shows subseq l1 l ∧ subseq l2 l
using assms sublist-append-back sublist-append-front sublist-trans
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by blast

— NOTE added lemma (eventually wasn’t needed in the remaining proofs).
lemma sublist-prefix:

shows subseq (h # l1 ) l2 =⇒ ∃ l2a l2b. l2 = l2a @ [h] @ l2b ∧ ¬ListMem h l2a
proof (induction l2 arbitrary: h l1 )

— NOTE l2 cannot be empty when h # l1 isn’t.
case Nil
have ¬(subseq (h # l1 ) [])

by simp
then show ?case

using Nil.prems
by blast

next
case (Cons a l2 )
then show ?case proof (cases a = h)

— NOTE If a = h then a trivial solution exists in l2a = [] and l2b = l2.
case True
then show ∃ l2a l2b. (Cons a l2 ) = l2a @ [h] @ l2b ∧ ¬ListMem h l2a

using ListMem-iff
by force

next
case False
have subseq (h # l1 ) l2

using Cons.prems False subseq-Cons2-neq
by force

then obtain l2a l2b where l2 = l2a @ [h] @ l2b ¬ListMem h l2a
using Cons.IH Cons.prems
by meson

moreover have a # l2 = (a # l2a) @ [h] @ l2b
using calculation(1 )
by simp

moreover have ¬(ListMem h (a # l2a))
using False calculation(2 ) ListMem.simps
by fastforce

ultimately show ?thesis
by blast

qed
qed

— NOTE added lemma (eventually wasn’t needed in the remaining proofs).
lemma sublist-skip:

fixes l1 l2 h l1 ′

assumes l1 = (h # l1 ′) l2 = l2a @ [h] @ l2b subseq l1 l2 ¬(ListMem h l2a)
shows subseq l1 (h # l2b)
using assms

proof (induction l2a arbitrary: l1 l2 h l1 ′)
case Nil
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then have l2 = h # l2b
by fastforce

then show ?case using Nil.prems(3 )
by blast

next
case (Cons a l2a)
have a 6= h

using Cons.prems(4 ) ListMem.simps
by fast

then have subseq l1 (l2a @ [h] @ l2b)
using Cons.prems(1 , 2 , 3 ) subseq-Cons2-neq
by force

moreover have ¬ListMem h l2a
using Cons.prems(4 ) insert
by metis

ultimately have subseq l1 (h # l2b)
using Cons.IH Cons.prems
by meson

then show ?case
by simp

qed

— NOTE added lemma (eventually wasn’t needed in the remaining proofs).
lemma sublist-split-trans:

fixes l1 l2 h l1 ′

assumes l1 = (h # l1 ′) l2 = l2a @ [h] @ l2b subseq l1 l2 ¬(ListMem h l2a)
shows subseq l1 ′ l2b

proof −
have subseq (h # l1 ′) (h # l2b)

using assms sublist-skip
by metis

then show ?thesis
using subseq-Cons2 ′

by metis
qed

lemma sublist-cons-exists:
shows

subseq (h # l1 ) l2
←→ (∃ l2a l2b. (l2 = l2a @ [h] @ l2b) ∧ ¬ListMem h l2a ∧ subseq l1 l2b)

proof −
— NOTE show both directions of the equivalence in pure proof blocks.
{

have
subseq (h # l1 ) l2 =⇒ (∃ l2a l2b. (l2 = l2a @ [h] @ l2b) ∧ ¬ListMem h l2a

∧ subseq l1 l2b)
proof (induction l2 arbitrary: h l1 )

case (Cons a l2 )
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show ?case
proof (cases a = h)

case True
— NOTE This case has a trivial solution in ’?l2a = []’, ’?l2b = l2’.

let ?l2a=[]
have (a # l2 ) = ?l2a @ [h] @ l2

using True
by auto

moreover have ¬(ListMem h ?l2a)
using ListMem-iff
by force

moreover have subseq l1 l2
using Cons.prems True
by simp

ultimately show ?thesis
by blast

next
case False
have 1 : subseq (h # l1 ) l2

using Cons.prems False subseq-Cons2-neq
by metis

then obtain l2a l2b where l2 = l2a @ [h] @ l2b ¬ListMem h l2a
using Cons.IH Cons.prems
by meson

moreover have a # l2 = (a # l2a) @ [h] @ l2b
using calculation(1 )
by simp

moreover have ¬(ListMem h (a # l2a))
using False calculation(2 ) ListMem.simps
by fastforce

ultimately show ?thesis
using 1 sublist-split-trans
by metis

qed
qed simp

}
moreover
{

assume ∃ l2a l2b. (l2 = l2a @ [h] @ l2b) ∧ ¬ListMem h l2a ∧ subseq l1 l2b
then have subseq (h # l1 ) l2

by auto
}
ultimately show ?thesis

by argo
qed

lemma sublist-append-exists:
fixes l1 l2
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shows subseq (l1 @ l2 ) l3 =⇒ ∃ l3a l3b. (l3 = l3a @ l3b) ∧ subseq l1 l3a ∧ subseq
l2 l3b

using list-emb-appendD
by fast

— NOTE can be solved directly with ’list_emb_append_mono’.
lemma sublist-append-both-I :

assumes subseq a b subseq c d
shows subseq (a @ c) (b @ d)
using assms list-emb-append-mono
by blast

lemma sublist-append:
assumes subseq l1 l1 ′ subseq l2 l2 ′

shows subseq (l1 @ l2 ) (l1 ′ @ l2 ′)
using assms sublist-append-both-I
by blast

lemma sublist-append2 :
assumes subseq l1 l2
shows subseq l1 (l2 @ l3 )
using assms sublist-append[of l1 l2 [] l3 ]
by fast

lemma append-sublist:
shows subseq (l1 @ l2 @ l3 ) l =⇒ subseq (l1 @ l3 ) l

proof (induction l)
case Nil
then show ?case

using sublist-NIL
by fastforce

next
case (Cons a l)
then show ?case
proof (cases l1 )

case Nil
then show ?thesis

using Cons.prems append-sublist-1
by auto

next
case (Cons a list)
then show ?thesis

using Cons.prems subseq-append ′ subseq-order .dual-order .trans
by blast

qed
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qed

lemma sublist-subset:
assumes subseq l1 l2
shows set l1 ⊆ set l2
using assms set-nths-subset subseq-conv-nths
by metis

lemma sublist-filter :
fixes P l
shows subseq (filter P l) l
using subseq-filter-left
by blast

lemma sublist-cons-2 :
fixes l1 l2 h
shows (subseq (h # l1 ) (h # l2 ) ←→ (subseq l1 l2 ))
by fastforce

lemma sublist-every:
fixes l1 l2 P
assumes (subseq l1 l2 ∧ list-all P l2 )
shows list-all P l1
by (metis (full-types) Ball-set assms list-emb-set)

lemma sublist-SING-MEM : subseq [h] l ←→ ListMem h l
using ListMem-iff subseq-singleton-left
by metis

— NOTE renamed due to previous declaration of ‘sublist_append_exists_2.
lemma sublist-append-exists-2 :

fixes l1 l2 l3
assumes subseq (h # l1 ) l2
shows (∃ l3 l4 . (l2 = l3 @ [h] @ l4 ) ∧ (subseq l1 l4 ))
using assms sublist-cons-exists
by metis

lemma sublist-append-4 :
fixes l l1 l2 h
assumes (subseq (h # l) (l1 @ [h] @ l2 )) (list-all (λx. ¬(h = x)) l1 )
shows subseq l l2
using assms

20



proof (induction l1 )
qed auto

lemma sublist-append-5 :
fixes l l1 l2 h
assumes (subseq (h # l) (l1 @ l2 )) (list-all (λx. ¬(h = x)) l1 )
shows subseq (h # l) l2
using assms

proof (induction l1 )
qed auto

lemma sublist-append-6 :
fixes l l1 l2 h
assumes (subseq (h # l) (l1 @ l2 )) (¬(ListMem h l1 ))
shows subseq (h # l) l2
using assms

proof (induction l1 )
case (Cons a l1 )
then show ?case

by (simp add: ListMem-iff )
qed simp

lemma sublist-MEM :
fixes h l1 l2
shows subseq (h # l1 ) l2 =⇒ ListMem h l2

proof (induction l2 )
next

case (Cons a l2 )
then show ?case

using elem insert subseq-Cons2-neq
by metis

qed simp

lemma sublist-cons-4 :
fixes l h l ′
shows subseq l l ′ =⇒ subseq l (h # l ′)
using sublist-cons
by blast

2.2 Main Theorems
theorem sublist-imp-len-filter-le:

fixes P l l ′
assumes subseq l ′ l
shows length (filter P l ′) ≤ length (filter P l)
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using assms
by (simp add: sublist-length)

— TODO showcase (non-trivial proof translation/ obscurity).
theorem list-with-three-types-shorten-type2 :

fixes P1 P2 P3 k1 f PProbs PProbl s l
assumes (PProbs s) (PProbl l)
(∀ l s.
(PProbs s)
∧ (PProbl l)
∧ (list-all P1 l)
−→ (∃ l ′.

(f s l ′ = f s l)
∧ (length (filter P2 l ′) ≤ k1 )
∧ (length (filter P3 l ′) ≤ length (filter P3 l))
∧ (list-all P1 l ′)
∧ (subseq l ′ l)

)
)
(∀ s l1 l2 . f (f s l1 ) l2 = f s (l1 @ l2 ))
(∀ s l. (PProbs s) ∧ (PProbl l) −→ (PProbs (f s l)))
(∀ l1 l2 . (subseq l1 l2 ) ∧ (PProbl l2 ) −→ (PProbl l1 ))
(∀ l1 l2 . PProbl (l1 @ l2 ) ←→ (PProbl l1 ∧ PProbl l2 ))

shows (∃ l ′.
(f s l ′ = f s l)
∧ (length (filter P3 l ′) ≤ length (filter P3 l))
∧ (∀ l ′′.
(sublist l ′′ l ′) ∧ (list-all P1 l ′′)
−→ (length (filter P2 l ′′) ≤ k1 )

)
∧ (subseq l ′ l)

)
using assms

proof (induction filter (λx. ¬P1 x) l arbitrary: P1 P2 P3 k1 f PProbs PProbl s l)
case Nil
then have list-all (λx. P1 x) l

using Nil(1 ) filter-empty-every-not[of λx. ¬P1 x l]
by presburger

then obtain l ′ where 1 :
(f s l ′ = f s l) length (filter P2 l ′) ≤ k1 length (filter P3 l ′) ≤ length (filter P3

l)
list-all P1 l ′ subseq l ′ l
using Nil.prems(1 , 2 , 3 )
by blast

moreover {
fix l ′′
assume sublist l ′′ l ′ list-all P1 l ′′
then have subseq l ′′ l ′
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by blast
— NOTE original proof uses ‘frag_len_filter_le‘ which however requires the

fact ‘sublist l’ ?l‘. Unfortunately, this could not be derived in Isabelle/HOL.
then have length (filter P2 l ′′) ≤ length (filter P2 l ′)

using sublist-imp-len-filter-le
by blast

then have length (filter P2 l ′′) ≤ k1
using 1
by linarith

}
ultimately show ?case

by blast
next

case (Cons a x)
— NOTE The proof of the induction step basically consists of construction a list

‘?l’=l” @ [a] @ l”’‘ where ‘l”‘ and ‘l”’‘ are lists obtained from certain specifications
of the induction hypothesis.

then obtain l1 l2 where 2 :
l = l1 @ a # l2 (∀ u∈set l1 . P1 u) ¬ P1 a ∧ x = [x←l2 . ¬ P1 x]
using Cons(2 ) filter-eq-Cons-iff [of λx. ¬P1 x]
by metis

then have 3 : PProbl l2
using Cons.prems(2 , 6 ) 2 (1 ) sublist-append-back
by blast

— NOTE Use the induction hypothesis to obtain a specific ‘l”’‘.
{

have x = filter (λx. ¬P1 x) l2
using 2 (3 )
by blast

moreover have PProbs (f (f s l1 ) [a])
using Cons.prems(1 , 2 , 5 , 6 , 7 ) 2 (1 ) elem sublist-SING-MEM
by metis

moreover have ∀ l s. PProbs s ∧ PProbl l ∧ list-all P1 l −→ (∃ l ′.
f s l ′ = f s l ∧ length (filter P2 l ′) ≤ k1 ∧ length (filter P3 l ′) ≤ length (filter

P3 l)
∧ list-all P1 l ′ ∧ subseq l ′ l)
using Cons.prems(3 )
by blast

moreover have ∀ s l1 l2 . f (f s l1 ) l2 = f s (l1 @ l2 )
∀ s l. PProbs s ∧ PProbl l −→ PProbs (f s l)
∀ l1 l2 . subseq l1 l2 ∧ PProbl l2 −→ PProbl l1
∀ l1 l2 . PProbl (l1 @ l2 ) = (PProbl l1 ∧ PProbl l2 )
using Cons.prems(4 , 5 , 6 , 7 )
by blast+

ultimately have ∃ l ′.
f (f (f s l1 ) [a]) l ′ = f (f (f s l1 ) [a]) l2 ∧ length (filter P3 l ′) ≤ length (filter

P3 l2 )
∧ (∀ l ′′. sublist l ′′ l ′ ∧ list-all P1 l ′′ −→ length (filter P2 l ′′) ≤ k1 ) ∧ subseq

l ′ l2
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using 3 Cons(1 )[of P1 l2 , where s=(f (f s l1 ) [a])]
by blast

}
then obtain l ′′′ where 4 :

f (f (f s l1 ) [a]) l ′′′ = f (f (f s l1 ) [a]) l2
length (filter P3 l ′′′) ≤ length (filter P3 l2 )
(∀ l ′′. sublist l ′′ l ′′′ ∧ list-all P1 l ′′ −→ length (filter P2 l ′′) ≤ k1 ) ∧ subseq l ′′′

l2
by blast

then have f s (l1 @ [a] @ l ′′′) = f s (l1 @ [a] @ l2 )
using Cons.prems(4 )
by auto

then have subseq l ′′′ l2
using 4 (3 )
by blast

— NOTE Use the induction hypothesis to obtain a specific ‘l”‘.
{

have ∀ l s.
PProbs s ∧ PProbl l1 ∧ list-all P1 l1
−→ (∃ l ′′.

f s l ′′ = f s l1 ∧ length (filter P2 l ′′) ≤ k1 ∧ length (filter P3 l ′′) ≤ length
(filter P3 l1 )

∧ list-all P1 l ′′ ∧ subseq l ′′ l1 )
using Cons.prems(3 )
by blast

then have ∃ l ′′.
f s l ′′ = f s l1 ∧ length (filter P2 l ′′) ≤ k1 ∧ length (filter P3 l ′′) ≤ length

(filter P3 l1 )
∧ list-all P1 l ′′ ∧ subseq l ′′ l1

using Cons.prems(1 , 2 , 7 ) 2 (1 , 2 )
by (metis Ball-set)

}

then obtain l ′′ where 5 :
f s l ′′ = f s l1 length (filter P2 l ′′) ≤ k1
length (filter P3 l ′′) ≤ length (filter P3 l1 ) list-all P1 l ′′ ∧ subseq l ′′ l1
by blast

Proof the proposition by providing the witness l ′ = l ′′ @ [a] @ l ′′′.
let ?l ′=(l ′′ @ [a] @ l ′′′)
{

have ∀ s l1 l2 . f (f s l1 ) l2 = f s (l1 @ l2 )
by (simp add: Cons.prems(4 ))

Rewrite and show the goal.
have f s ?l ′ = f s (l1 @ [a] @ l2 ) ←→ f s (l ′′ @ (a # l ′′′)) = f s (l1 @ (a #

l2 ))
by simp

also have . . . ←→ f (f (f s l1 ) [a]) l ′′′ = f (f (f s l1 ) [a]) l2
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by (metis Cons.prems(4 ) ‹f s l ′′ = f s l1 › calculation)
finally have f s ?l ′ = f s (l1 @ [a] @ l2 )

using 4 (1 )
by blast

}
moreover
{

have
length (filter P3 ?l ′) ≤ length (filter P3 (l1 @ [a] @ l2 ))
←→
(length (filter P3 l ′′) + 1 + length (filter P3 l ′′′)
≤ length (filter P3 l1 ) + 1 + length (filter P3 l2 ))

by force
then have

length (filter P3 ?l ′) ≤ length (filter P3 (l1 @ [a] @ l2 ))
←→

length (filter P3 l ′′) + length (filter P3 l ′′′)
≤ length (filter P3 l1 ) + length (filter P3 l2 )

by linarith
then have length (filter P3 ?l ′) ≤ length (filter P3 (l1 @ [a] @ l2 ))

using 4 (2 ) ‹length (filter P3 l ′′) ≤ length (filter P3 l1 )›
add-mono-thms-linordered-semiring(1 )

by blast
}
moreover
{

fix l ′′′′
assume P: sublist l ′′′′ ?l ′ list-all P1 l ′′′′
have list-all P1 l1

using 2 (2 ) Ball-set
by blast

consider (i) sublist l ′′′′ l ′′ | (ii) sublist l ′′′′ l ′′′
using P(1 , 2 ) 2 (3 ) LIST-FRAG-DICHOTOMY-2
by metis

then have length (filter P2 l ′′′′) ≤ k1
proof (cases)

case i
then have length (filter P2 l ′′′′) ≤ length (filter P2 l ′′)

using frag-len-filter-le
by blast

then show ?thesis
using 5 (2 ) order-trans
by blast

next
case ii
then show ?thesis

using 4 (3 ) P(2 )
by blast

qed
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}
— NOTE the following two steps seem to be necessary to convince Isabelle that

the split l = l1 @ a # l2 matches the split ‘(l1 @ [a] @ l2‘ and the previous proof
steps therefore is prove the goal.

moreover {
have subseq ?l ′ (l1 @ [a] @ l2 )

by (simp add: FSSublist.sublist-append ‹list-all P1 l ′′ ∧ subseq l ′′ l1 › ‹subseq
l ′′′ l2 ›)

}
moreover have l = l1 @ [a] @ l2

using 2
by force

ultimately show ?case
by blast

qed

lemma isPREFIX-sublist:
fixes x y
assumes prefix x y
shows subseq x y
using assms prefix-order .dual-order .antisym
by blast

end
theory HoArithUtils

imports Main
begin

lemma general-theorem:
fixes P f and l :: nat
assumes (∀ p. P p ∧ f p > l −→ (∃ p ′. P p ′ ∧ f p ′ < f p))
shows (∀ p. P p −→ (∃ p ′. P p ′ ∧ f p ′ ≤ l))

proof−
have ∀ p. (n = f p) ∧ P p −→ (∃ p ′. P p ′ ∧ f p ′ ≤ l) for n
apply(rule Nat.nat-less-induct[where ?P = %n. ∀ p. (n = f p) ∧ P p −→ (∃ p ′.

P p ′ ∧ f p ′ ≤ l)])
by (metis assms not-less)

then show ?thesis by auto
qed

end
theory FmapUtils

imports HOL−Library.Finite-Map FactoredSystemLib
begin

— TODO A lemma ’fmrestrict_set_twice_eq’ ’fmrestrict_set ?vs (fmrestrict_set
?vs ?f) = fmrestrict_set ?vs ?f’ to replace the recurring proofs steps using ’by (simp
add: fmfilter_alt_defs(4))’ would make sense.
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— NOTE hide the ’++’ operator from ’Map’ to prevent warnings.
hide-const (open) Map.map-add
no-notation Map.map-add (infixl ‹++› 100 )

— TODO more explicit proof.
lemma IN-FDOM-DRESTRICT-DIFF :

fixes vs v f
assumes ¬(v ∈ vs) fmdom ′ f ⊆ fdom v ∈ fmdom ′ f
shows v ∈ fmdom ′ (fmrestrict-set (fdom − vs) f )
using assms
by (metis DiffI Int-def Int-iff Set.filter-def fmdom ′-filter fmfilter-alt-defs(4 ) inf .order-iff )

lemma disj-dom-drest-fupdate-eq:
disjnt (fmdom ′ x) vs =⇒ (fmrestrict-set vs s = fmrestrict-set vs (x ++ s))

proof −
fix vs s x
assume P: disjnt (fmdom ′ x) vs
moreover have 1 : ∀ x ′′. (x ′′ ∈ vs) −→ (fmlookup (x ++ s) x ′′ = fmlookup s

x ′′)
by (metis calculation disjnt-iff fmap-add-ltr-def fmdom ′-notD fmdom-notI fm-

lookup-add)
moreover
{

fix x ′′

have fmlookup (fmrestrict-set vs s) x ′′ = fmlookup (fmrestrict-set vs (x ++ s))
x ′′

apply(cases x ′′ /∈ fmdom ′ x)
apply(cases x ′′ /∈ vs)
apply(auto simp add: 1 )

done
}
ultimately show (fmrestrict-set vs s = fmrestrict-set vs (x ++ s))

using fmap-ext by blast
qed

— TODO refactor into ’FmapUtils.thy’.
lemma graph-plan-card-state-set:

fixes PROB vs
assumes finite vs
shows card (fmdom ′ (fmrestrict-set vs s)) ≤ card vs

proof −
let ?vs ′ = fmdom ′ (fmrestrict-set vs s)
have ?vs ′ ⊆ vs

using fmdom ′-restrict-set
by metis

moreover have card ?vs ′ ≤ card vs
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using assms calculation card-mono
by blast

ultimately show ?thesis by blast
qed

lemma exec-drest-5 :
fixes x vs
assumes fmdom ′ x ⊆ vs
shows (fmrestrict-set vs x = x)

proof −
— TODO refactor and make into ISAR proof.
{

fix v
have fmlookup (fmrestrict-set vs x) v = fmlookup x v

apply(cases v ∈ fmdom ′ x)
subgoal using assms by auto
subgoal by (simp add: fmdom ′-notD)
done

then have fmlookup (fmrestrict-set vs x) v = fmlookup x v
by fast

}
moreover have fmlookup (fmrestrict-set vs x) = fmlookup x

using calculation fmap-ext
by auto

ultimately show ?thesis
using fmlookup-inject
by blast

qed

lemma graph-plan-lemma-5 :
fixes s s ′ vs
assumes (fmrestrict-set (fmdom ′ s − vs) s = fmrestrict-set (fmdom ′ s ′ − vs) s ′)
(fmrestrict-set vs s = fmrestrict-set vs s ′)

shows (s = s ′)
proof −

have ∀ x. fmlookup s x = fmlookup s ′ x
using assms(1 , 2 ) fmdom ′-notD fminusI fmlookup-restrict-set Diff-iff
by metis

then show ?thesis using fmap-ext
by blast

qed

lemma drest-smap-drest-smap-drest:
fixes x s vs
shows fmrestrict-set vs x ⊆f s ←→ fmrestrict-set vs x ⊆f fmrestrict-set vs s

proof −
— TODO this could be refactored into standalone lemma since it’s very common

in proofs.
have 1 : fmlookup (fmrestrict-set vs s) ⊆m fmlookup s
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by (metis fmdom ′.rep-eq fmdom ′-notI fmlookup-restrict-set map-le-def )
moreover
{

assume P1 : fmrestrict-set vs x ⊆f s
moreover have 2 : fmlookup (fmrestrict-set vs x) ⊆m fmlookup s

using P1 fmsubset.rep-eq by blast
{

fix v
assume v ∈ fmdom ′ (fmrestrict-set vs x)
then have fmlookup (fmrestrict-set vs x) v = fmlookup (fmrestrict-set vs s) v
by (metis (full-types) 2 domIff fmdom ′-notI fmlookup-restrict-set map-le-def )

}
ultimately have fmrestrict-set vs x ⊆f fmrestrict-set vs s

unfolding fmsubset.rep-eq
by (simp add: map-le-def )

}
moreover
{

assume P2 : fmrestrict-set vs x ⊆f fmrestrict-set vs s
moreover have fmrestrict-set vs s ⊆f s

using 1 fmsubset.rep-eq
by blast

ultimately have fmrestrict-set vs x ⊆f s
using fmsubset.rep-eq map-le-trans
by blast

}
ultimately show ?thesis by blast

qed

lemma sat-precond-as-proj-1 :
fixes s s ′ vs x
assumes fmrestrict-set vs s = fmrestrict-set vs s ′

shows fmrestrict-set vs x ⊆f s ←→ fmrestrict-set vs x ⊆f s ′

using assms drest-smap-drest-smap-drest
by metis

lemma sat-precond-as-proj-4 :
fixes fm1 fm2 vs
assumes fm2 ⊆f fm1
shows (fmrestrict-set vs fm2 ⊆f fm1 )
using assms fmpred-restrict-set fmsubset-alt-def
by metis

lemma sublist-as-proj-eq-as-1 :
fixes x s vs
assumes (x ⊆f fmrestrict-set vs s)
shows (x ⊆f s)
using assms
by (meson fmsubset.rep-eq fmsubset-alt-def fmsubset-pred drest-smap-drest-smap-drest
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map-le-refl)

lemma limited-dom-neq-restricted-neq:
assumes fmdom ′ f1 ⊆ vs f1 ++ f2 6= f2
shows fmrestrict-set vs (f1 ++ f2 ) 6= fmrestrict-set vs f2

proof −
{

assume C : fmrestrict-set vs (f1 ++ f2 ) = fmrestrict-set vs f2
then have ∀ x ∈ fmdom ′ (fmrestrict-set vs (f1 ++ f2 )).

fmlookup (fmrestrict-set vs (f1 ++ f2 )) x
= fmlookup (fmrestrict-set vs f2 ) x
by simp

obtain v where a: v ∈ fmdom ′ f1 fmlookup (f1 ++ f2 ) v 6= fmlookup f2 v
using assms(2 )
by (metis fmap-add-ltr-def fmap-ext fmdom ′-notD fmdom-notI fmlookup-add)

then have b: v ∈ vs
using assms(1 )
by blast

moreover {
have fmdom ′ (fmrestrict-set vs (f1 ++ f2 )) = vs ∩ fmdom ′ (f1 ++ f2 )

by (simp add: fmdom ′-alt-def fmfilter-alt-defs(4 ))
then have v ∈ fmdom ′ (fmrestrict-set vs (f1 ++ f2 ))

using C a b
by fastforce

}
then have False

by (metis C a(2 ) calculation fmlookup-restrict-set)
}
then show ?thesis

by auto
qed

lemma fmlookup-fmrestrict-set-dom:
∧

vs s. dom (fmlookup (fmrestrict-set vs s))
= vs ∩ (fmdom ′ s)
by (auto simp add: fmdom ′-restrict-set-precise)

end
theory FactoredSystem

imports Main HOL−Library.Finite-Map HOL−Library.Sublist FSSublist
FactoredSystemLib ListUtils HoArithUtils FmapUtils

begin

3 Factored System
hide-const (open) Map.map-add
no-notation Map.map-add (infixl ‹++› 100 )
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3.1 Semantics of Plan Execution
This section aims at characterizing the semantics of executing plans—i.e.
sequences of actions—on a given initial state.

The semantics of action execution were previously introduced via the no-
tion of succeding state (‘state_succ‘). Plan execution (‘exec_plan‘) extends
this notion to sequences of actions by calculating the succeding state from
the given state and action pair and then recursively executing the remaining
actions on the succeding state. [Abdulaziz et al., HOL4 Definition 3, p.9]
lemma state-succ-pair : state-succ s (p, e) = (if (p ⊆f s) then (e ++ s) else s)

by (simp add: state-succ-def )

— NOTE shortened to ’exec_plan’
— NOTE using ’fun’ because of multiple definining equations.
— NOTE first argument was curried.
fun exec-plan where

exec-plan s [] = s
| exec-plan s (a # as) = exec-plan (state-succ s a) as

lemma exec-plan-Append:
fixes as-a as-b s
shows exec-plan s (as-a @ as-b) = exec-plan (exec-plan s as-a) as-b
by (induction as-a arbitrary: s as-b) auto

Plan execution effectively eliminates cycles: i.e., if a given plan ‘as‘ may
be partitioned into plans ‘as1‘, ‘as2‘ and ‘as3‘, s.t. the sequential execution
of ‘as1‘ and ‘as2‘ yields the same state, ‘as2‘ may be skipped during plan
execution.
lemma cycle-removal-lemma:

fixes as1 as2 as3
assumes (exec-plan s (as1 @ as2 ) = exec-plan s as1 )
shows (exec-plan s (as1 @ as2 @ as3 ) = exec-plan s (as1 @ as3 ))
using assms exec-plan-Append
by metis

3.1.1 Characterization of the Set of Possible States

To show the construction principle of the set of possible states—in lemma
‘construction_of_all_possible_states_lemma‘—the following ancillary proves
of finite map properties are required.

Most importantly, in lemma ‘fmupd_fmrestrict_subset‘ we show how
finite mappings ‘s‘ with domain {v} ∪ X and ‘s v = (Some x)‘ are constructed
from their restrictions to ‘X‘ via update, i.e.

s = fmupd v x (fmrestrict_set X s)
This is used in lemma ‘construction_of_all_possible_states_lemma‘ to
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show that the set of possible states for variables {v} ∪ X is constructed
inductively from the set of all possible states for variables ‘X‘ via update on
point v /∈ X.
lemma empty-domain-fmap-set: {s. fmdom ′ s = {}} = {fmempty}
proof −

let ?A = {s. fmdom ′ s = {}}
let ?B = {fmempty}
fix s
show ?thesis proof(rule ccontr)

assume C : ?A 6= ?B
then show False proof −

{
assume C1 : ?A ⊂ ?B
have ?A = {} using C1 by force
then have False using fmdom ′-empty by blast

}
moreover
{

assume C2 : ¬(?A ⊂ ?B)
then have fmdom ′ fmempty = {}

by auto
moreover have fmempty ∈ ?A

by auto
moreover have ?A 6= {}

using calculation(2 ) by blast
moreover have ∀ a∈?A.a /∈?B

by (metis (mono-tags, lifting)
C Collect-cong calculation(1 ) fmrestrict-set-dom fmrestrict-set-null

singleton-conv)
moreover have fmempty ∈ ?B by auto
moreover have ∃ a∈?A.a∈?B

by simp
moreover have ¬(∀ a∈?A.a /∈?B)

by simp
ultimately have False

by blast
}
ultimately show False

by fastforce
qed

qed
qed

— NOTE added lemma.
lemma possible-states-set-ii-a:

fixes s x v
assumes (v ∈ fmdom ′ s)
shows (fmdom ′ ((λs. fmupd v x s) s) = fmdom ′ s)
using assms insert-absorb
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by auto

— NOTE added lemma.
lemma possible-states-set-ii-b:

fixes s x v
assumes (v /∈ fmdom ′ s)
shows (fmdom ′ ((λs. fmupd v x s) s) = fmdom ′ s ∪ {v})
by auto

— NOTE added lemma.
lemma fmap-neq:

fixes s :: ( ′a, bool) fmap and s ′ :: ( ′a, bool) fmap
assumes (fmdom ′ s = fmdom ′ s ′)
shows ((s 6= s ′) ←→ (∃ v∈(fmdom ′ s). fmlookup s v 6= fmlookup s ′ v))
using assms fmap-ext fmdom ′-notD
by metis

— NOTE added lemma.
lemma fmdom ′-fmsubset-restrict-set:

fixes X1 X2 and s :: ( ′a, bool) fmap
assumes X1 ⊆ X2 fmdom ′ s = X2
shows fmdom ′ (fmrestrict-set X1 s) = X1
using assms
by (metis (no-types, lifting)

antisym-conv fmdom ′-notD fmdom ′-notI fmlookup-restrict-set rev-subsetD sub-
setI )

— NOTE added lemma.
lemma fmsubset-restrict-set:

fixes X1 X2 and s :: ′a state
assumes X1 ⊆ X2 s ∈ {s. fmdom ′ s = X2}
shows fmrestrict-set X1 s ∈ {s. fmdom ′ s = X1}
using assms fmdom ′-fmsubset-restrict-set
by blast

— NOTE added lemma.
lemma fmupd-fmsubset-restrict-set:

fixes X v x and s :: ′a state
assumes s ∈ {s. fmdom ′ s = insert v X} fmlookup s v = Some x
shows s = fmupd v x (fmrestrict-set X s)

proof −
— Show that domains of ’s’ and ’fmupd v x (fmrestrict_set X s)’ are identical.
have 1 : fmdom ′ s = insert v X

using assms(1 )
by simp

{
have X ⊆ insert v X

by auto
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then have fmdom ′ (fmrestrict-set X s) = X
using 1 fmdom ′-fmsubset-restrict-set
by metis

then have fmdom ′ (fmupd v x (fmrestrict-set X s)) = insert v X
using assms(1 ) fmdom ′-fmupd
by auto

}
note 2 = this
moreover
{

fix w
— Show case for undefined variables (where lookup yields ’None’).

{
assume w /∈ insert v X
then have w /∈ fmdom ′ s w /∈ fmdom ′ (fmupd v x (fmrestrict-set X s))

using 1 2
by argo+

then have fmlookup s w = fmlookup (fmupd v x (fmrestrict-set X s)) w
using fmdom ′-notD
by metis

}
— Show case for defined variables (where lookup yields ’Some y’).

moreover {
assume w ∈ insert v X
then have w ∈ fmdom ′ s w ∈ fmdom ′ (fmupd v x (fmrestrict-set X s))

using 1 2
by argo+

then have fmlookup s w = fmlookup (fmupd v x (fmrestrict-set X s)) w
by (cases w = v)
(auto simp add: assms calculation)

}
ultimately have fmlookup s w = fmlookup (fmupd v x (fmrestrict-set X s)) w

by blast
}
then show ?thesis

using fmap-ext
by blast

qed

lemma construction-of-all-possible-states-lemma:
fixes v X
assumes (v /∈ X)
shows ({s. fmdom ′ s = insert v X}
= ((λs. fmupd v True s) ‘ {s. fmdom ′ s = X})
∪ ((λs. fmupd v False s) ‘ {s. fmdom ′ s = X})

)
proof −

fix v X
let ?A = {s :: ′a state. fmdom ′ s = insert v X}
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let ?B =
((λs. fmupd v True s) ‘ {s :: ′a state. fmdom ′ s = X})
∪ ((λs. fmupd v False s) ‘ {s :: ′a state. fmdom ′ s = X})

Show the goal by mutual inclusion. The inclusion fmupd v True ‘ {s.
fmdom ′ s = X} ∪ fmupd v False ‘ {s. fmdom ′ s = X} ⊆ {s. fmdom ′ s =
insert v X} is trivial and can be solved by automation. For the complimen-
tary proof {s. fmdom ′ s = insert v X} ⊆ fmupd v True ‘ {s. fmdom ′ s =
X} ∪ fmupd v False ‘ {s. fmdom ′ s = X} however we need to do more work.
In our case we choose a proof by contradiction and show that an s ∈ {s.
fmdom ′ s = insert v X} which is not also in ’?B’ cannot exist.

{
have ?A ⊆ ?B proof(rule ccontr)

assume C : ¬(?A ⊆ ?B)
moreover have ∃ s∈?A. s/∈?B

using C
by auto

moreover obtain s where obtain-s: s∈?A ∧ s/∈?B
using calculation
by auto

moreover have s/∈?B
using obtain-s
by auto

moreover have fmdom ′ s = X ∪ {v}
using obtain-s
by auto

moreover have ∀ s ′∈?B. fmdom ′ s ′ = X ∪ {v}
by auto

moreover have
(s /∈ ((λs. fmupd v True s) ‘ {s. fmdom ′ s = X}))
(s /∈ ((λs. fmupd v False s) ‘ {s. fmdom ′ s = X}))
using obtain-s
by blast+

Show that every state s ∈ {s. fmdom ′ s = insert v X} has been con-
structed from another state with domain ’X’.

moreover
{

fix s :: ′a state
assume 1 : s ∈ {s :: ′a state. fmdom ′ s = insert v X}
then have fmrestrict-set X s ∈ {s :: ′a state. fmdom ′ s = X}

using subset-insertI fmsubset-restrict-set
by metis

moreover
{

assume fmlookup s v = Some True
then have s = fmupd v True (fmrestrict-set X s)

using 1 fmupd-fmsubset-restrict-set
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by metis
}
moreover {

assume fmlookup s v = Some False
then have s = fmupd v False (fmrestrict-set X s)

using 1 fmupd-fmsubset-restrict-set
by fastforce

}
moreover have fmlookup s v 6= None

using 1 fmdom ′-notI
by fastforce

ultimately have
(s ∈ ((λs. fmupd v True s) ‘ {s. fmdom ′ s = X}))
∨ (s ∈ ((λs. fmupd v False s) ‘ {s. fmdom ′ s = X}))

by force
}
ultimately show False

by meson
qed

}
moreover have ?B ⊆ ?A

by force
ultimately show ?A = ?B by blast

qed

Another important property of the state set is cardinality, i.e. the num-
ber of distinct states which can be modelled using a given finite variable
set.

As lemma ‘card_of_set_of_all_possible_states‘ shows, for a finite vari-
able set ‘X‘, the number of possible states is ‘2 ĉard X‘, i.e. the number of
assigning two discrete values to ‘card X‘ slots as known from combinatorics.

Again, some additional properties of finite maps had to be proven. Piv-
otally, in lemma ‘updates_disjoint‘, it is shown that the image of updating
a set of states with domain ‘X‘ on a point x /∈ X with either ‘True‘ or ‘False‘
yields two distinct sets of states with domain {x} ∪ X.
lemma FINITE-states:

fixes X :: ′a set
shows finite X =⇒ finite {(s :: ′a state). fmdom ′ s = X}

proof (induction rule: finite.induct)
case emptyI
then have {s. fmdom ′ s = {}} = {fmempty}

by (simp add: empty-domain-fmap-set)
then show ?case

by (simp add: ‹{s. fmdom ′ s = {}} = {fmempty}›)
next

case (insertI A a)
assume P1 : finite A
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and P2 : finite {s. fmdom ′ s = A}
then show ?case
proof (cases a ∈ A)

case True
then show ?thesis

using insertI .IH insert-Diff
by fastforce

next
case False
then show ?thesis
proof −

have finite (
((λs. fmupd a True s) ‘ {s. fmdom ′ s = A})
∪ ((λs. fmupd a False s) ‘ {s. fmdom ′ s = A}))

using False construction-of-all-possible-states-lemma insertI .IH
by blast

then show ?thesis
using False construction-of-all-possible-states-lemma
by fastforce

qed
qed

qed

— NOTE added lemma.
lemma bool-update-effect:

fixes s X x v b
assumes finite X s ∈ {s :: ′a state. fmdom ′ s = X} x ∈ X x 6= v
shows fmlookup ((λs :: ′a state. fmupd v b s) s) x = fmlookup s x
using assms fmupd-lookup
by auto

— NOTE added lemma.
lemma bool-update-inj:

fixes X :: ′a set and v b
assumes finite X v /∈ X
shows inj-on (λs. fmupd v b s) {s :: ′a state. fmdom ′ s = X}

proof −
let ?f = λs :: ′a state. fmupd v b s
{

fix s1 s2 :: ′a state
assume s1 ∈ {s :: ′a state. fmdom ′ s = X} s2 ∈ {s :: ′a state. fmdom ′ s = X}

?f s1 = ?f s2
moreover
{

have
∀ x∈X . x 6= v −→ fmlookup (?f s1 ) x = fmlookup s1 x
∀ x∈X . x 6= v −→ fmlookup (?f s2 ) x = fmlookup s2 x
by simp+

then have
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∀ x∈X . x 6= v −→ fmlookup s1 x = fmlookup s2 x
using calculation(3 )
by auto

}
moreover have fmlookup s1 v = fmlookup s2 v

using calculation ‹v /∈ X›
by force

ultimately have s1 = s2
using fmap-neq
by fastforce

}
then show inj-on (λs. fmupd v b s) {s :: ′a state. fmdom ′ s = X}

using inj-onI
by blast

qed

— NOTE added lemma.
lemma card-update:

fixes X v b
assumes finite (X :: ′a set) v /∈ X
shows

card ((λs. fmupd v b s) ‘ {s :: ′a state. fmdom ′ s = X})
= card {s :: ′a state. fmdom ′ s = X}

proof −
have inj-on (λs. fmupd v b s) {s :: ′a state. fmdom ′ s = X}

using assms bool-update-inj
by fast

then show
card ((λs. fmupd v b s) ‘ {s :: ′a state. fmdom ′ s = X}) = card {s :: ′a state.

fmdom ′ s = X}
using card-image by blast

qed

— NOTE added lemma.
lemma updates-disjoint:

fixes X x
assumes finite X x /∈ X
shows
((λs. fmupd x True s) ‘ {s. fmdom ′ s = X})
∩ ((λs. fmupd x False s) ‘ {s. fmdom ′ s = X}) = {}

proof −
let ?A = ((λs. fmupd x True s) ‘ {s. fmdom ′ s = X})
let ?B = ((λs. fmupd x False s) ‘ {s. fmdom ′ s = X})
{

assume C : ¬(∀ a∈?A. ∀ b∈?B. a 6= b)
then have
∀ a∈?A. ∀ b∈?B. fmlookup a x 6= fmlookup b x
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by simp
then have ∀ a∈?A. ∀ b∈?B. a 6= b

by blast
then have False

using C
by blast

}
then show ?A ∩ ?B = {}

using disjoint-iff-not-equal
by blast

qed

lemma card-of-set-of-all-possible-states:
fixes X :: ′a set
assumes finite X
shows card {(s :: ′a state). fmdom ′ s = X} = 2 ^ (card X)
using assms

proof (induction X)
case empty
then have 1 : {s :: ′a state. fmdom ′ s = {}} = {fmempty}

using empty-domain-fmap-set
by simp

then have card {fmempty} = 1
using is-singleton-altdef
by blast

then have 2^(card {}) = 1
by auto

then show ?case
using 1
by auto

next
case (insert x F)
then show ?case

— TODO refactor and simplify proof further.
proof (cases x ∈ F)

case True
then show ?thesis

using insert.hyps(2 )
by blast

next
case False
then have
{s :: ′a state. fmdom ′ s = insert x F}
= (λs. fmupd x True s) ‘ {s. fmdom ′ s = F} ∪ (λs. fmupd x False s) ‘ {s.

fmdom ′ s = F}

using False construction-of-all-possible-states-lemma
by metis
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then have 2 :
card ({s :: ′a state. fmdom ′ s = insert x F})
= card ((λs. fmupd x True s) ‘ {s. fmdom ′ s = F} ∪ (λs. fmupd x False s)

‘ {s. fmdom ′ s = F})

by argo
then have 3 : 2^(card (insert x F)) = 2 ∗ 2^(card F)

using False insert.hyps(1 )
by simp

then have
card ((λs. fmupd x True s) ‘ {s. fmdom ′ s = F}) = 2^(card F)
card ((λs. fmupd x False s) ‘ {s. fmdom ′ s = F}) = 2^(card F)
using False card-update insert.IH insert.hyps(1 )
by metis+

moreover have
((λs. fmupd x True s) ‘ {s. fmdom ′ s = F})
∩ ((λs. fmupd x False s) ‘ {s. fmdom ′ s = F})

= {}

using False insert.hyps(1 ) updates-disjoint
by metis

moreover have card (
((λs. fmupd x True s) ‘ {s. fmdom ′ s = F})
∪ ((λs. fmupd x False s) ‘ {s. fmdom ′ s = F})

)
= card (((λs. fmupd x True s) ‘ {s. fmdom ′ s = F}))
+ card ((λs. fmupd x False s) ‘ {s. fmdom ′ s = F})

using calculation card-Un-disjoint card.infinite
power-eq-0-iff rel-simps(76 )

by metis
then have card (

((λs. fmupd x True s) ‘ {s. fmdom ′ s = F})
∪ ((λs. fmupd x False s) ‘ {s. fmdom ′ s = F})

)
= 2 ∗ (2^(card F))

using calculation(1 , 2 )
by presburger

then have card (
((λs. fmupd x True s) ‘ {s. fmdom ′ s = F})
∪ ((λs. fmupd x False s) ‘ {s. fmdom ′ s = F})

)
= 2^(card (insert x F))

using insert.IH 3
by metis

then show ?thesis
using 2
by argo

qed
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qed

3.1.2 State Lists and State Sets
fun state-list where

state-list s [] = [s]
| state-list s (a # as) = s # state-list (state-succ s a) as

lemma empty-state-list-lemma:
fixes as s
shows ¬([] = state-list s as)

proof (induction as)
qed auto

lemma state-list-length-non-zero:
fixes as s
shows ¬(0 = length (state-list s as))

proof (induction as)
qed auto

lemma state-list-length-lemma:
fixes as s
shows length as = length (state-list s as) − 1

proof (induction as arbitrary: s)
next case (Cons a as)

have length (state-list s (Cons a as)) − 1 = length (state-list (state-succ s a)
as)

by auto
— TODO unwrap metis proof.

then show length (Cons a as) = length (state-list s (Cons a as)) − 1
by (metis Cons.IH Suc-diff-1 empty-state-list-lemma length-Cons length-greater-0-conv)

qed simp

lemma state-list-length-lemma-2 :
fixes as s
shows (length (state-list s as)) = (length as + 1 )

proof (induction as arbitrary: s)
qed auto

— NOTE using fun because of multiple defining equations.
— NOTE name shortened to ’state_def’
fun state-set where

state-set [] = {}
| state-set (s # ss) = insert [s] (Cons s ‘ (state-set ss))

41



lemma state-set-thm:
fixes s1
shows s1 ∈ state-set s2 ←→ prefix s1 s2 ∧ s1 6= []

proof −
— NOTE Show equivalence by proving both directions. Left-to-right is trivial.

Right-to-Left primarily involves exploiting the prefix premise, induction hypothesis
and ‘state_set‘ definition.

have s1 ∈ state-set s2 =⇒ prefix s1 s2 ∧ s1 6= []
by (induction s2 arbitrary: s1 ) auto

moreover {
assume P: prefix s1 s2 s1 6= []
then have s1 ∈ state-set s2
proof (induction s2 arbitrary: s1 )

case (Cons a s2 )
obtain s1 ′ where 1 : s1 = a # s1 ′ prefix s1 ′ s2

using Cons.prems(1 , 2 ) prefix-Cons
by metis

then show ?case proof (cases s1 ′ = [])
case True
then show ?thesis

using 1
by force

next
case False
then have s1 ′ ∈ state-set s2

using 1 False Cons.IH
by blast

then show ?thesis
using 1
by fastforce

qed
qed simp

}
ultimately show s1 ∈ state-set s2 ←→ prefix s1 s2 ∧ s1 6= []

by blast
qed

lemma state-set-finite:
fixes X
shows finite (state-set X)
by (induction X) auto

lemma LENGTH-state-set:
fixes X e
assumes e ∈ state-set X
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shows length e ≤ length X
using assms
by (induction X arbitrary: e) auto

lemma lemma-temp:
fixes x s as h
assumes x ∈ state-set (state-list s as)
shows length (h # state-list s as) > length x
using assms LENGTH-state-set le-imp-less-Suc
by force

lemma NIL-NOTIN-stateset:
fixes X
shows [] /∈ state-set X
by (induction X) auto

— NOTE added lemma.
lemma state-set-card-i:

fixes X a
shows [a] /∈ (Cons a ‘ state-set X)
by (induction X) auto

— NOTE added lemma.
lemma state-set-card-ii:

fixes X a
shows card (Cons a ‘ state-set X) = card (state-set X)

proof −
have inj-on (Cons a) (state-set X)

by simp
then show ?thesis

using card-image
by blast

qed

— NOTE added lemma.
lemma state-set-card-iii:

fixes X a
shows card (state-set (a # X)) = 1 + card (state-set X)

proof −
have card (state-set (a # X)) = card (insert [a] (Cons a ‘ state-set X))

by auto
— TODO unwrap this metis step.

also have . . . = 1 + card (Cons a ‘ state-set X)
using state-set-card-i
by (metis Suc-eq-plus1-left card-insert-disjoint finite-imageI state-set-finite)

also have. . . = 1 + card (state-set X)
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using state-set-card-ii
by metis

finally show card (state-set (a # X)) = 1 + card (state-set X)
by blast

qed

lemma state-set-card:
fixes X
shows card (state-set X) = length X

proof (induction X)
case (Cons a X)
then have card (state-set (a # X)) = 1 + card (state-set X)

using state-set-card-iii
by fast

then show ?case
using Cons
by fastforce

qed auto

3.1.3 Properties of Domain Changes During Plan Execution
lemma FDOM-state-succ:

assumes fmdom ′ (snd a) ⊆ fmdom ′ s
shows (fmdom ′ (state-succ s a) = fmdom ′ s)
unfolding state-succ-def fmap-add-ltr-def
using assms
by force

lemma FDOM-state-succ-subset:
fmdom ′ (state-succ s a) ⊆ (fmdom ′ s ∪ fmdom ′ (snd a))
unfolding state-succ-def fmap-add-ltr-def
by simp

— NOTE definition ‘qispl_then‘ removed (was not being used).

lemma FDOM-eff-subset-FDOM-valid-states:
fixes p e s
assumes (p, e) ∈ PROB (s ∈ valid-states PROB)
shows (fmdom ′ e ⊆ fmdom ′ s)

proof −
{

have fmdom ′ e ⊆ action-dom p e
unfolding action-dom-def
by blast

also have . . . ⊆ prob-dom PROB
unfolding action-dom-def prob-dom-def
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using assms(1 )
by blast

finally have fmdom ′ e ⊆ fmdom ′ s
using assms
by (auto simp: valid-states-def )

}
then show fmdom ′ e ⊆ fmdom ′ s

by simp
qed

lemma FDOM-eff-subset-FDOM-valid-states-pair :
fixes a s
assumes a ∈ PROB s ∈ valid-states PROB
shows fmdom ′ (snd a) ⊆ fmdom ′ s

proof −
{

have fmdom ′ (snd a) ⊆ (λ(s1 , s2 ). action-dom s1 s2 ) a
unfolding action-dom-def
using case-prod-beta
by fastforce

also have . . . ⊆ prob-dom PROB
using assms(1 ) prob-dom-def Sup-upper
by fast

finally have fmdom ′ (snd a) ⊆ fmdom ′ s
using assms(2 ) valid-states-def
by fast

}
then show ?thesis

by simp
qed

lemma FDOM-pre-subset-FDOM-valid-states:
fixes p e s
assumes (p, e) ∈ PROB s ∈ valid-states PROB
shows fmdom ′ p ⊆ fmdom ′ s

proof −
{

have fmdom ′ p ⊆ (λ(s1 , s2 ). action-dom s1 s2 ) (p, e)
using action-dom-def
by fast

also have . . . ⊆ prob-dom PROB
using assms(1 )
by (simp add: Sup-upper pair-imageI prob-dom-def )

finally have fmdom ′ p ⊆ fmdom ′ s
using assms(2 ) valid-states-def
by fast

}
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then show ?thesis
by simp

qed

lemma FDOM-pre-subset-FDOM-valid-states-pair :
fixes a s
assumes a ∈ PROB s ∈ valid-states PROB
shows fmdom ′ (fst a) ⊆ fmdom ′ s

proof −
{

have fmdom ′ (fst a) ⊆ (λ(s1 , s2 ). action-dom s1 s2 ) a
using action-dom-def
by force

also have . . . ⊆ prob-dom PROB
using assms(1 )
by (simp add: Sup-upper pair-imageI prob-dom-def )

finally have fmdom ′ (fst a) ⊆ fmdom ′ s
using assms(2 ) valid-states-def
by fast

}
then show ?thesis

by simp
qed

— TODO unwrap the simp proof.
lemma action-dom-subset-valid-states-FDOM :

fixes p e s
assumes (p, e) ∈ PROB s ∈ valid-states PROB
shows action-dom p e ⊆ fmdom ′ s
using assms
by (simp add: Sup-upper pair-imageI prob-dom-def valid-states-def )

— TODO unwrap the metis proof.
lemma FDOM-eff-subset-prob-dom:

fixes p e
assumes (p, e) ∈ PROB
shows fmdom ′ e ⊆ prob-dom PROB
using assms
by (metis Sup-upper Un-subset-iff action-dom-def pair-imageI prob-dom-def )

lemma FDOM-eff-subset-prob-dom-pair :
fixes a
assumes a ∈ PROB
shows fmdom ′ (snd a) ⊆ prob-dom PROB
using assms(1 ) FDOM-eff-subset-prob-dom surjective-pairing
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by metis

— TODO unwrap metis proof.
lemma FDOM-pre-subset-prob-dom:

fixes p e
assumes (p, e) ∈ PROB
shows fmdom ′ p ⊆ prob-dom PROB
using assms
by (metis (no-types) Sup-upper Un-subset-iff action-dom-def pair-imageI prob-dom-def )

lemma FDOM-pre-subset-prob-dom-pair :
fixes a
assumes a ∈ PROB
shows fmdom ′ (fst a) ⊆ prob-dom PROB
using assms FDOM-pre-subset-prob-dom surjective-pairing
by metis

3.1.4 Properties of Valid Plans
lemma valid-plan-valid-head:

assumes (h # as ∈ valid-plans PROB)
shows h ∈ PROB
using assms valid-plans-def
by force

lemma valid-plan-valid-tail:
assumes (h # as ∈ valid-plans PROB)
shows (as ∈ valid-plans PROB)
using assms
by (simp add: valid-plans-def )

— TODO unwrap simp proof.
lemma valid-plan-pre-subset-prob-dom-pair :

assumes as ∈ valid-plans PROB
shows (∀ a. ListMem a as −→ fmdom ′ (fst a) ⊆ (prob-dom PROB))
unfolding valid-plans-def
using assms
by (simp add: FDOM-pre-subset-prob-dom-pair ListMem-iff rev-subsetD valid-plans-def )

lemma valid-append-valid-suff :
assumes as1 @ as2 ∈ (valid-plans PROB)
shows as2 ∈ (valid-plans PROB)
using assms
by (simp add: valid-plans-def )
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lemma valid-append-valid-pref :
assumes as1 @ as2 ∈ (valid-plans PROB)
shows as1 ∈ (valid-plans PROB)
using assms
by (simp add: valid-plans-def )

lemma valid-pref-suff-valid-append:
assumes as1 ∈ (valid-plans PROB) as2 ∈ (valid-plans PROB)
shows (as1 @ as2 ) ∈ (valid-plans PROB)
using assms
by (simp add: valid-plans-def )

— NOTE showcase (case split seems necessary for MP of IH but the original proof
does not need it).
lemma MEM-statelist-FDOM :

fixes PROB h as s0
assumes s0 ∈ (valid-states PROB) as ∈ (valid-plans PROB) ListMem h (state-list

s0 as)
shows (fmdom ′ h = fmdom ′ s0 )
using assms

proof (induction as arbitrary: PROB h s0 )
case Nil
have h = s0

using Nil.prems(3 ) ListMem-iff
by force

then show ?case
by simp

next
case (Cons a as)
then show ?case

— NOTE This case split seems necessary to be able to infer
’ListMem h (state_list (state_succ s0 a) as)’
which is required in order to apply MP to the induction hypothesis.

proof (cases h = s0 )
case False

— TODO proof steps could be refactored into auxillary lemmas.
{

have a ∈ PROB
using Cons.prems(2 ) valid-plan-valid-head
by fast

then have fmdom ′ (snd a) ⊆ fmdom ′ s0
using Cons.prems(1 ) FDOM-eff-subset-FDOM-valid-states-pair
by blast

then have fmdom ′ (state-succ s0 a) = fmdom ′ s0
using FDOM-state-succ[of - s0 ] Cons.prems(1 ) valid-states-def
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by presburger
}
note 1 = this
{

have fmdom ′ s0 = prob-dom PROB
using Cons.prems(1 ) valid-states-def
by fast

then have state-succ s0 a ∈ valid-states PROB
unfolding valid-states-def
using 1
by force

}
note 2 = this
{

have ListMem h (state-list (state-succ s0 a) as)
using Cons.prems(3 ) False
by (simp add: ListMem-iff )

}
note 3 = this
{

have as ∈ valid-plans PROB
using Cons.prems(2 ) valid-plan-valid-tail
by fast

then have fmdom ′ h = fmdom ′ (state-succ s0 a)
using 1 2 3 Cons.IH [of state-succ s0 a]
by blast

}
then show ?thesis

using 1
by argo

qed simp
qed

— TODO unwrap metis proof.
lemma MEM-statelist-valid-state:

fixes PROB h as s0
assumes s0 ∈ valid-states PROB as ∈ valid-plans PROB ListMem h (state-list

s0 as)
shows (h ∈ valid-states PROB)
using assms
by (metis MEM-statelist-FDOM mem-Collect-eq valid-states-def )

— TODO refactor (characterization lemma for ’state_succ’).
— TODO unwrap metis proof.
— NOTE added lemma.
lemma lemma-1-i:

fixes s a PROB
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assumes s ∈ valid-states PROB a ∈ PROB
shows state-succ s a ∈ valid-states PROB
using assms
by (metis FDOM-eff-subset-FDOM-valid-states-pair FDOM-state-succ mem-Collect-eq

valid-states-def )

— TODO unwrap smt proof.
— NOTE added lemma.
lemma lemma-1-ii:

last ‘ ((#) s ‘ state-set (state-list (state-succ s a) as))
= last ‘ state-set (state-list (state-succ s a) as)
by (smt NIL-NOTIN-stateset image-cong image-image last-ConsR)

lemma lemma-1 :
fixes as :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) list and PPROB
assumes (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows ((last ‘ (state-set (state-list s as))) ⊆ valid-states PROB)
using assms

proof (induction as arbitrary: s PROB)
— NOTE Base case simplifies to {s} ⊆ valid-states PROB which itself follows

directly from 1st assumption.
case (Cons a as)

Split the ’insert’ term produced by state-set (state-list s (a # as)) and
proof inclusion in ’valid_states PROB’ for both parts.

{
— NOTE Inclusion of the first subset follows from the induction premise by sim-

plification. The inclusion of the second subset is shown by applying the induction
hypothesis to ‘state_succ s a‘ and some elementary set simplifications.

have last [s] ∈ valid-states PROB
using Cons.prems(1 )
by simp

moreover {
{

have a ∈ PROB
using Cons.prems(2 ) valid-plan-valid-head
by fast

then have state-succ s a ∈ valid-states PROB
using Cons.prems(1 ) lemma-1-i
by blast

}
moreover have as ∈ valid-plans PROB

using Cons.prems(2 ) valid-plan-valid-tail
by fast

then have (last ‘ state-set (state-list (state-succ s a) as)) ⊆ valid-states PROB
using calculation Cons.IH [of state-succ s a]
by presburger
then have (last ‘ ((#) s ‘ state-set (state-list (state-succ s a) as))) ⊆

valid-states PROB
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using lemma-1-ii
by metis

}
ultimately have
(last ‘ insert [s] ((#) s ‘ state-set (state-list (state-succ s a) as))) ⊆ valid-states

PROB
by simp

}
then show ?case

by fastforce
qed auto

— TODO unwrap metis proof.
lemma len-in-state-set-le-max-len:

fixes as x PROB
assumes (s ∈ valid-states PROB) (as ∈ valid-plans PROB) ¬(as = [])
(x ∈ state-set (state-list s as))

shows (length x ≤ (Suc (length as)))
using assms
by (metis LENGTH-state-set Suc-eq-plus1-left add.commute state-list-length-lemma-2 )

lemma card-state-set-cons:
fixes as s h
shows
(card (state-set (state-list s (h # as)))
= Suc (card (state-set (state-list (state-succ s h) as))))

by (metis length-Cons state-list.simps(2 ) state-set-card)

lemma card-state-set:
fixes as s
shows (Suc (length as)) = card (state-set (state-list s as))
by (simp add: state-list-length-lemma-2 state-set-card)

lemma neq-mems-state-set-neq-len:
fixes as x y s
assumes x ∈ state-set (state-list s as) (y ∈ state-set (state-list s as)) ¬(x = y)
shows ¬(length x = length y)

proof −
have x 6= [] prefix x (state-list s as)

using assms(1 ) state-set-thm
by blast+

moreover have y 6= [] prefix y (state-list s as)
using assms(2 ) state-set-thm
by blast+
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ultimately show ?thesis
using assms(3 ) append-eq-append-conv prefixE
by metis

qed

— NOTE added definition (imported from pred_setScript.sml:1562).
definition inj :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b set ⇒ bool where

inj f A B ≡ (∀ x ∈ A. f x ∈ B) ∧ inj-on f A

— NOTE added lemma; refactored from ‘not_eq_last_diff_paths‘.
lemma not-eq-last-diff-paths-i:

fixes s as PROB
assumes s ∈ valid-states PROB as ∈ valid-plans PROB x ∈ state-set (state-list

s as)
shows last x ∈ valid-states PROB

proof −
have last x ∈ last ‘ (state-set (state-list s as))

using assms(3 )
by simp

then show ?thesis
using assms(1 , 2 ) lemma-1
by blast

qed

lemma not-eq-last-diff-paths-ii:
assumes (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
¬(inj (last) (state-set (state-list s as)) (valid-states PROB))

shows ∃ l1 . ∃ l2 .
l1 ∈ state-set (state-list s as)
∧ l2 ∈ state-set (state-list s as)
∧ last l1 = last l2
∧ l1 6= l2

proof −
let ?S=state-set (state-list s as)
have 1 : ¬(∀ x∈?S . last x ∈ valid-states PROB) = False

using assms(1 , 2 ) not-eq-last-diff-paths-i
by blast

{
have
(¬(inj (last) ?S (valid-states PROB))) = (¬((∀ x∈?S . ∀ y∈?S . last x = last y

−→ x = y)))
unfolding inj-def inj-on-def
using 1
by blast

then have
(¬(inj (last) ?S (valid-states PROB)))
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= (∃ x. ∃ y. x∈?S ∧ y∈?S ∧ last x = last y ∧ x 6= y)

using assms(3 )
by blast

}
then show ?thesis

using assms(3 ) by blast
qed

lemma not-eq-last-diff-paths:
fixes as PROB s
assumes (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
¬(inj (last) (state-set (state-list s as)) (valid-states PROB))

shows (∃ slist-1 slist-2 .
(slist-1 ∈ state-set (state-list s as))
∧ (slist-2 ∈ state-set (state-list s as))
∧ ((last slist-1 ) = (last slist-2 ))
∧ ¬(length slist-1 = length slist-2 ))

proof −
obtain l1 l2 where

l1 ∈ state-set (state-list s as)
∧ l2 ∈ state-set (state-list s as)
∧ last l1 = last l2
∧ l1 6= l2

using assms(1 , 2 , 3 ) not-eq-last-diff-paths-ii
by blast

then show ?thesis
using neq-mems-state-set-neq-len
by blast

qed

— NOTE this lemma was removed due to being redundant and being shadowed
later on:
lemma empty_list_nin_state_set

lemma nempty-sl-in-state-set:
fixes sl
assumes sl 6= []
shows sl ∈ state-set sl
using assms state-set-thm
by auto

lemma empty-list-nin-state-set:
fixes h slist as
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assumes (h # slist) ∈ state-set (state-list s as)
shows (h = s)
using assms
by (induction as) auto

lemma cons-in-state-set-2 :
fixes s slist h t
assumes (slist 6= []) ((s # slist) ∈ state-set (state-list s (h # t)))
shows (slist ∈ state-set (state-list (state-succ s h) t))
using assms
by (induction slist) auto

— TODO move up and replace ’FactoredSystem.lemma_1_i’?
lemma valid-action-valid-succ:

assumes h ∈ PROB s ∈ valid-states PROB
shows (state-succ s h) ∈ valid-states PROB
using assms lemma-1-i
by blast

lemma in-state-set-imp-eq-exec-prefix:
fixes slist as PROB s
assumes (as 6= []) (slist 6= []) (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
(slist ∈ state-set (state-list s as))

shows
(∃ as ′. (prefix as ′ as) ∧ (exec-plan s as ′ = last slist) ∧ (length slist = Suc (length

as ′)))
using assms

proof (induction slist arbitrary: as s PROB)
case cons-1 : (Cons a slist)
have 1 : s # slist ∈ state-set (state-list s as)

using cons-1 .prems(5 ) empty-list-nin-state-set
by auto

then show ?case
using cons-1

proof (cases as)
case cons-2 : (Cons a ′ Ras)
then have a: state-succ s a ′ ∈ valid-states PROB

using cons-1 .prems(3 , 4 ) valid-action-valid-succ valid-plan-valid-head
by metis

then have b: Ras ∈ valid-plans PROB
using cons-1 .prems(4 ) cons-2 valid-plan-valid-tail
by fast

then show ?thesis
proof (cases slist)

case Nil
then show ?thesis

54



using cons-1 .prems(5 ) empty-list-nin-state-set
by auto

next
case cons-3 : (Cons a ′′ Rslist)
then have i: a ′′ # Rslist ∈ state-set (state-list (state-succ s a ′) Ras)

using 1 cons-2 cons-in-state-set-2
by blast

then show ?thesis
proof (cases Ras)

case Nil
then show ?thesis

using i cons-2 cons-3
by auto

next
case (Cons a ′′′ Ras

′)
then obtain as ′ where

prefix as ′ (a ′′′ # Ras
′) exec-plan (state-succ s a ′) as ′ = last slist

length slist = Suc (length as ′)
using cons-1 .IH [of a ′′′ # Ras

′ state-succ s a ′ PROB]
using i a b cons-3
by blast

then show ?thesis
using Cons-prefix-Cons cons-2 cons-3 exec-plan.simps(2 ) last.simps

length-Cons
list.distinct(1 ) local.Cons

by metis
qed

qed
qed auto

qed auto

lemma eq-last-state-imp-append-nempty-as:
fixes as PROB slist-1 slist-2
assumes (as 6= []) (s ∈ valid-states PROB) (as ∈ valid-plans PROB) (slist-1 6=

[])
(slist-2 6= []) (slist-1 ∈ state-set (state-list s as))
(slist-2 ∈ state-set (state-list s as)) ¬(length slist-1 = length slist-2 )
(last slist-1 = last slist-2 )

shows (∃ as1 as2 as3 .
(as1 @ as2 @ as3 = as)
∧ (exec-plan s (as1 @ as2 ) = exec-plan s as1 )
∧ ¬(as2 = [])

)
proof −

obtain as-1 where 1 : (prefix as-1 as) (exec-plan s as-1 = last slist-1 )
length slist-1 = Suc (length as-1 )
using assms(1 , 2 , 3 , 4 , 6 ) in-state-set-imp-eq-exec-prefix
by blast
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obtain as-2 where 2 : (prefix as-2 as) (exec-plan s as-2 = last slist-2 )
(length slist-2 ) = Suc (length as-2 )
using assms(1 , 2 , 3 , 5 , 7 ) in-state-set-imp-eq-exec-prefix
by blast

then have length as-1 6= length as-2
using assms(8 ) 1 (3 ) 2 (3 )
by fastforce

then consider (i) length as-1 < length as-2 | (ii) length as-1 > length as-2
by force

then show ?thesis
proof (cases)

case i
then have prefix as-1 as-2

using 1 (1 ) 2 (1 ) len-gt-pref-is-pref
by blast

then obtain a where a1 : as-2 = as-1 @ a
using prefixE
by blast

then obtain b where b1 : as = as-2 @ b
using prefixE 2 (1 )
by blast

let ?as1=as-1
let ?as2=a
let ?as3=b
have as = ?as1 @ ?as2 @ ?as3

using a1 b1
by simp

moreover have exec-plan s (?as1 @ ?as2 ) = exec-plan s ?as1
using 1 (2 ) 2 (2 ) a1 assms(9 )
by auto

moreover have ?as2 6= []
using i a1
by simp

ultimately show ?thesis
by blast

next
case ii
then have prefix as-2 as-1

using 1 (1 ) 2 (1 ) len-gt-pref-is-pref
by blast

then obtain a where a2 : as-1 = as-2 @ a
using prefixE
by blast

then obtain b where b2 : as = as-1 @ b
using prefixE 1 (1 )
by blast

let ?as1=as-2
let ?as2=a
let ?as3=b
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have as = ?as1 @ ?as2 @ ?as3
using a2 b2
by simp

moreover have exec-plan s (?as1 @ ?as2 ) = exec-plan s ?as1
using 1 (2 ) 2 (2 ) a2 assms(9 )
by auto

moreover have ?as2 6= []
using ii a2
by simp

ultimately show ?thesis
by blast

qed
qed

lemma FINITE-prob-dom:
assumes finite PROB
shows finite (prob-dom PROB)

proof −
{

fix x
assume P2 : x ∈ PROB
then have 1 : (λ(s1 , s2 ). action-dom s1 s2 ) x = fmdom ′ (fst x) ∪ fmdom ′ (snd

x)
by (simp add: action-dom-def case-prod-beta ′)

then have 2 : finite (fset (fmdom (fst x))) finite (fset (fmdom (snd x)))
by auto

then have 3 : fset (fmdom (fst x)) = fmdom ′ (fst x) fset (fmdom (snd x)) =
fmdom ′ (snd x)

by (auto simp add: fmdom ′-alt-def )
then have finite (fmdom ′ (fst x))

using 2 by auto
then have finite (fmdom ′ (snd x))

using 2 3 by auto
then have finite ((λ(s1 , s2 ). action-dom s1 s2 ) x)

using 1 2 3
by simp

}
then show finite (prob-dom PROB)

unfolding prob-dom-def
using assms
by blast

qed

lemma CARD-valid-states:
assumes finite (PROB :: ′a problem)
shows (card (valid-states PROB :: ′a state set) = 2 ^ card (prob-dom PROB))

proof −
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have 1 : finite (prob-dom PROB)
using assms FINITE-prob-dom
by blast

have(card (valid-states PROB :: ′a state set)) = card {s :: ′a state. fmdom ′ s =
prob-dom PROB}

unfolding valid-states-def
by simp

also have ... = 2 ^ (card (prob-dom PROB))
using 1 card-of-set-of-all-possible-states
by blast

finally show ?thesis
by blast

qed

— NOTE type of ’valid_states PROB’ has to be asserted to match ’FINITE_states’
in the proof.
lemma FINITE-valid-states:

fixes PROB :: ′a problem
shows finite PROB =⇒ finite ((valid-states PROB) :: ′a state set)

proof (induction PROB rule: finite.induct)
case emptyI
then have valid-states {} = {fmempty}

unfolding valid-states-def prob-dom-def
using empty-domain-fmap-set
by force

then show ?case
by(subst ‹valid-states {} = {fmempty}›) auto

next
case (insertI A a)
{

then have finite (insert a A)
by blast

then have finite (prob-dom (insert a A))
using FINITE-prob-dom
by blast

then have finite {s :: ′a state. fmdom ′ s = prob-dom (insert a A)}
using FINITE-states
by blast

}
then show ?case

unfolding valid-states-def
by simp

qed

— NOTE type of ’PROB’ had to be fixed for use of ’FINITE_valid_states’.
lemma lemma-2 :

fixes PROB :: ′a problem and as :: ( ′a action) list and s :: ′a state
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assumes finite PROB s ∈ (valid-states PROB) (as ∈ valid-plans PROB)
((length as) > (2 ^ (card (fmdom ′ s)) − 1 ))

shows (∃ as1 as2 as3 .
(as1 @ as2 @ as3 = as)
∧ (exec-plan s (as1 @ as2 ) = exec-plan s as1 )
∧ ¬(as2 = [])

)
proof −

have Suc (length as) > 2^(card (fmdom ′ s))
using assms(4 )
by linarith

then have 1 : card (state-set (state-list s as)) > 2^card (fmdom ′ s)
using card-state-set[symmetric]
by metis

{
— NOTE type of ’valid_states PROB’ had to be asserted to match ’FI-

NITE_valid_states’.
have 2 : finite (prob-dom PROB) finite ((valid-states PROB) :: ′a state set)

using assms(1 ) FINITE-prob-dom FINITE-valid-states
by blast+

have 3 : fmdom ′ s = prob-dom PROB
using assms(2 ) valid-states-def
by fast

then have card ((valid-states PROB) :: ′a state set) = 2^card (fmdom ′ s)
using assms(1 ) CARD-valid-states
by auto

then have 4 : card (state-set (state-list (s :: ′a state) as)) > card ((valid-states
PROB) :: ′a state set)

unfolding valid-states-def
using 1 2 (1 ) 3 card-of-set-of-all-possible-states[of prob-dom PROB]
by argo

— TODO refactor into lemma.
{

let ?S=state-set (state-list (s :: ′a state) as)
let ?T=valid-states PROB :: ′a state set
assume C2 : inj-on last ?S

— TODO unwrap the metis step or refactor into lemma.
have a: ?T ⊆ last ‘ ?S

using C2
by (metis 2 (2 ) 4 assms(2 ) assms(3 ) card-image card-mono lemma-1 not-less)
have finite (state-set (state-list s as))

using state-set-finite
by auto

then have card (last ‘ ?S) = card ?S
using C2 inj-on-iff-eq-card
by blast

also have . . . > card ?T
using 4
by blast
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then have ∃ x. x ∈ (last ‘ ?S) ∧ x /∈ ?T
using C2 a assms(2 ) assms(3 ) calculation lemma-1
by fastforce

}
note 5 = this
moreover
{
assume C : inj last (state-set (state-list (s :: ′a state) as)) (valid-states PROB)
then have inj-on last (state-set (state-list (s :: ′a state) as))

using C inj-def
by blast

then obtain x where x ∈ last ‘ (state-set (state-list s as)) ∧ x /∈ valid-states
PROB

using 5
by presburger

then have ¬(∀ x∈state-set (state-list s as). last x ∈ valid-states PROB)
by blast
then have ¬inj last (state-set (state-list (s :: ′a state) as)) (valid-states

PROB)
using inj-def
by metis

then have False
using C
by simp

}
ultimately have ¬inj last (state-set (state-list (s :: ′a state) as)) (valid-states

PROB)
unfolding inj-def
by blast

}
then obtain slist-1 slist-2 where 6 :

slist-1 ∈ state-set (state-list s as)
slist-2 ∈ state-set (state-list s as)
(last slist-1 = last slist-2 )
length slist-1 6= length slist-2
using assms(2 , 3 ) not-eq-last-diff-paths
by blast

then show ?thesis
proof (cases as)

case Nil

4th assumption is violated in the ’Nil’ case.
then have ¬(2 ^ card (fmdom ′ s) − 1 < length as)

using Nil
by simp

then show ?thesis
using assms(4 )
by blast

next
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case (Cons a list)
then have as 6= []

by simp
moreover have slist-1 6= [] slist-2 6= []

using 6 (1 , 2 ) NIL-NOTIN-stateset
by blast+

ultimately show ?thesis
using assms(2 , 3 ) 6 (1 , 2 , 3 , 4 ) eq-last-state-imp-append-nempty-as
by fastforce

qed
qed

lemma lemma-2-prob-dom:
fixes PROB and as :: ( ′a action) list and s :: ′a state
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
(length as > (2 ^ (card (prob-dom PROB))) − 1 )

shows (∃ as1 as2 as3 .
(as1 @ as2 @ as3 = as)
∧ (exec-plan s (as1 @ as2 ) = exec-plan s as1 )
∧ ¬(as2 = [])

)
proof −

have prob-dom PROB = fmdom ′ s
using assms(2 ) valid-states-def
by fast

then have 2 ^ card (fmdom ′ s) − 1 < length as
using assms(4 )
by argo

then show ?thesis
using assms(1 , 2 , 3 ) lemma-2
by blast

qed

— NOTE type for ‘s‘ had to be fixed (type mismatch in obtain statement).
— NOTE type for ‘as1‘, ‘as2‘ and ‘as3‘ had to be fixed (due type mismatch on ‘as1‘
in ‘cycle_removal_lemma‘)
lemma lemma-3 :

fixes PROB :: ′a problem and s :: ′a state
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
(length as > (2 ^ (card (prob-dom PROB)) − 1 ))

shows (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (length as ′ < length as)
∧ (subseq as ′ as)

)
proof −

have prob-dom PROB = fmdom ′ s
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using assms(2 ) valid-states-def
by fast

then have 2 ^ card (fmdom ′ s) − 1 < length as
using assms(4 )
by argo

then obtain as1 as2 as3 :: ′a action list where 1 :
as1 @ as2 @ as3 = as exec-plan s (as1 @ as2 ) = exec-plan s as1 as2 6= []
using assms(1 , 2 , 3 ) lemma-2
by metis

have 2 : exec-plan s (as1 @ as3 ) = exec-plan s (as1 @ as2 @ as3 )
using 1 cycle-removal-lemma
by fastforce

let ?as ′ = as1 @ as3
have exec-plan s as = exec-plan s ?as ′

using 1 2
by auto

moreover have length ?as ′ < length as
using 1 nempty-list-append-length-add
by blast

moreover have subseq ?as ′ as
using 1 subseq-append ′

by blast
ultimately show (∃ as ′.

(exec-plan s as = exec-plan s as ′) ∧ (length as ′ < length as) ∧ (subseq as ′ as))
by blast

qed

— TODO unwrap meson step.
lemma sublist-valid-is-valid:

fixes as ′ as PROB
assumes (as ∈ valid-plans PROB) (subseq as ′ as)
shows as ′ ∈ valid-plans PROB
using assms
by (simp add: valid-plans-def ) (meson dual-order .trans fset-of-list-subset sub-

list-subset)

— NOTE type of ’s’ had to be fixed (type mismatch in goal).
theorem main-lemma:

fixes PROB :: ′a problem and as s
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ ≤ (2 ^ (card (prob-dom PROB))) − 1 )

)
proof (cases length as ≤ (2 ^ (card (prob-dom PROB))) − 1 )

case True
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then have exec-plan s as = exec-plan s as
by simp

then have subseq as as
by auto

then have length as ≤ (2^(card (prob-dom PROB)) − 1 )
using True
by auto

then show ?thesis
by blast

next
case False
then have length as > (2 ^ (card (prob-dom PROB))) − 1

using False
by auto

then obtain as ′ where 1 :
exec-plan s as = exec-plan s as ′ length as ′ < length as subseq as ′ as
using assms lemma-3
by blast

{
fix p
assume exec-plan s as = exec-plan s p subseq p as

2 ^ card (prob-dom PROB) − 1 < length p
then have (∃ p ′. (exec-plan s as = exec-plan s p ′ ∧ subseq p ′ as) ∧ length p ′ <

length p)
using assms(1 , 2 , 3 ) lemma-3 sublist-valid-is-valid
by fastforce

}
then have ∀ p. exec-plan s as = exec-plan s p ∧ subseq p as −→

(∃ p ′. (exec-plan s as = exec-plan s p ′ ∧ subseq p ′ as)
∧ length p ′ ≤ 2 ^ card (prob-dom PROB) − 1 )

using general-theorem[where
P = λ(as ′′ :: ′a action list). (exec-plan s as = exec-plan s as ′′) ∧ subseq as ′′

as
and l = (2 ^ (card (prob-dom (PROB :: ′a problem)))) − 1 and f = length]

by blast
then obtain p ′ where

exec-plan s as = exec-plan s p ′ subseq p ′ as length p ′ ≤ 2 ^ card (prob-dom
PROB) − 1

by blast
then show ?thesis

using sublist-refl
by blast

qed

3.2 Reachable States
definition reachable-s where

reachable-s PROB s ≡ {exec-plan s as | as. as ∈ valid-plans PROB}
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— NOTE types for ‘s‘ and ‘PROB‘ had to be fixed (type mismatch in goal).
lemma valid-as-valid-exec:

fixes as and s :: ′a state and PROB :: ′a problem
assumes (as ∈ valid-plans PROB) (s ∈ valid-states PROB)
shows (exec-plan s as ∈ valid-states PROB)
using assms

proof (induction as arbitrary: s PROB)
case (Cons a as)
then have a ∈ PROB

using valid-plan-valid-head
by metis

then have state-succ s a ∈ valid-states PROB
using Cons.prems(2 ) valid-action-valid-succ
by blast

moreover have as ∈ valid-plans PROB
using Cons.prems(1 ) valid-plan-valid-tail
by fast

ultimately show ?case
using Cons.IH
by force

qed simp

lemma exec-plan-fdom-subset:
fixes as s PROB
assumes (as ∈ valid-plans PROB)
shows (fmdom ′ (exec-plan s as) ⊆ (fmdom ′ s ∪ prob-dom PROB))
using assms

proof (induction as arbitrary: s PROB)
case (Cons a as)
have as ∈ valid-plans PROB

using Cons.prems valid-plan-valid-tail
by fast

then have fmdom ′ (exec-plan (state-succ s a) as) ⊆ fmdom ′ (state-succ s a) ∪
prob-dom PROB

using Cons.IH [of - state-succ s a]
by simp

— TODO unwrap metis proofs.
moreover have fmdom ′ s ∪ fmdom ′ (snd a) ∪ prob-dom PROB = fmdom ′ s ∪

prob-dom PROB
by (metis

Cons.prems FDOM-eff-subset-prob-dom-pair sup-absorb2 sup-assoc valid-plan-valid-head)
ultimately show ?case

by (metis (no-types, lifting)
FDOM-state-succ-subset exec-plan.simps(2 ) order-refl subset-trans sup.mono)

qed simp
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— NOTE added lemma.
lemma reachable-s-finite-thm-1-a:

fixes s and PROB :: ′a problem
assumes (s :: ′a state) ∈ valid-states PROB
shows (∀ l∈reachable-s PROB s. l∈valid-states PROB)

proof −
have 1 : ∀ l∈reachable-s PROB s. ∃ as. l = exec-plan s as ∧ as ∈ valid-plans

PROB
using reachable-s-def
by fastforce

{
fix l
assume P1 : l ∈ reachable-s PROB s

— NOTE type for ’s’ and ’as’ had to be fixed due to type mismatch in obtain
statement.

then obtain as :: ′a action list where a: l = exec-plan s as ∧ as ∈ valid-plans
PROB

using 1
by blast

then have exec-plan s as ∈ valid-states PROB
using assms a valid-as-valid-exec
by blast

then have l ∈ valid-states PROB
using a
by simp

}
then show ∀ l ∈ reachable-s PROB s. l ∈ valid-states PROB

by blast
qed

lemma reachable-s-finite-thm-1 :
assumes ((s :: ′a state) ∈ valid-states PROB)
shows (reachable-s PROB s ⊆ valid-states PROB)
using assms reachable-s-finite-thm-1-a
by blast

— NOTE second declaration skipped (this is declared twice in the source; see above)
— NOTE type for ‘s‘ had to be fixed (type mismatch in goal).
lemma reachable-s-finite-thm:

fixes s :: ′a state
assumes finite (PROB :: ′a problem) (s ∈ valid-states PROB)
shows finite (reachable-s PROB s)
using assms
by (meson FINITE-valid-states reachable-s-finite-thm-1 rev-finite-subset)

lemma empty-plan-is-valid: [] ∈ (valid-plans PROB)
by (simp add: valid-plans-def )
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lemma valid-head-and-tail-valid-plan:
assumes (h ∈ PROB) (as ∈ valid-plans PROB)
shows ((h # as) ∈ valid-plans PROB)
using assms
by (auto simp: valid-plans-def )

— TODO refactor
— NOTE added lemma
lemma lemma-1-reachability-s-i:

fixes PROB s
assumes s ∈ valid-states PROB
shows s ∈ reachable-s PROB s

proof −
have [] ∈ valid-plans PROB

using empty-plan-is-valid
by blast

then show ?thesis
unfolding reachable-s-def
by force

qed

— NOTE types for ’PROB’ and ’s’ had to be fixed (type mismatch in goal).
lemma lemma-1-reachability-s:

fixes PROB :: ′a problem and s :: ′a state and as
assumes (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows ((last ‘ state-set (state-list s as)) ⊆ (reachable-s PROB s))
using assms

proof(induction as arbitrary: PROB s)
case Nil
then have (last ‘ state-set (state-list s [])) = {s}

by force
then show ?case

unfolding reachable-s-def
using empty-plan-is-valid
by force

next
case cons: (Cons a as)
let ?S=last ‘ state-set (state-list s (a # as))
{

let ?as=[]
have last [s] = exec-plan s ?as

by simp
moreover have ?as ∈ valid-plans PROB

using empty-plan-is-valid
by auto

ultimately have ∃ as. (last [s] = exec-plan s as) ∧ as ∈ valid-plans PROB
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by blast
}
note 1 = this
{

fix x
assume P: x ∈ ?S
then consider
(a) x = last [s]
| (b) x ∈ last ‘ ((#) s ‘ state-set (state-list (state-succ s a) as))
by auto

then have x ∈ reachable-s PROB s
proof (cases)

case a
then have x = s

by simp
then show ?thesis

using cons.prems(1 ) P lemma-1-reachability-s-i
by blast

next
case b
then obtain x ′′ where i:

x ′′ ∈ state-set (state-list (state-succ s a) as)
x = last (s # x ′′)
by blast

then show ?thesis
proof (cases x ′′)

case Nil
then have x = s

using i
by fastforce

then show ?thesis
using cons.prems(1 ) lemma-1-reachability-s-i
by blast

next
case (Cons a ′ list)
then obtain x ′ where a:

last (a ′ # list) = last x ′ x ′ ∈ state-set (state-list (state-succ s a) as)
using i(1 )
by blast

{
have state-succ s a ∈ valid-states PROB

using cons.prems(1 , 2 ) valid-action-valid-succ valid-plan-valid-head
by metis

moreover have as ∈ valid-plans PROB
using cons.prems(2 ) valid-plan-valid-tail
by fast

ultimately have
last ‘ state-set (state-list (state-succ s a) as) ⊆ reachable-s PROB

(state-succ s a)
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using cons.IH [of state-succ s a]
by auto

then have ∃ as ′.
last (a ′ # list) = exec-plan (state-succ s a) as ′ ∧ (as ′ ∈ (valid-plans

PROB))
unfolding state-set.simps state-list.simps reachable-s-def
using i(1 ) Cons
by blast

}
then obtain as ′ where b:
last (a ′ # list) = exec-plan (state-succ s a) as ′ (as ′ ∈ (valid-plans PROB))
by blast

then have x = exec-plan (state-succ s a) as ′

using i(2 ) Cons a(1 )
by auto

then show ?thesis unfolding reachable-s-def
using cons.prems(2 ) b(2 )
by (metis (mono-tags, lifting) exec-plan.simps(2 ) mem-Collect-eq

valid-head-and-tail-valid-plan valid-plan-valid-head)
qed

qed
}
then show ?case

by blast
qed

— NOTE types for ‘PROB‘ and ‘s‘ had to be fixed for use of ‘lemma_1_reacha-
bility_s‘.
lemma not-eq-last-diff-paths-reachability-s:

fixes PROB :: ′a problem and s :: ′a state and as
assumes s ∈ valid-states PROB as ∈ valid-plans PROB
¬(inj last (state-set (state-list s as)) (reachable-s PROB s))

shows (∃ slist-1 slist-2 .
slist-1 ∈ state-set (state-list s as)
∧ slist-2 ∈ state-set (state-list s as)
∧ (last slist-1 = last slist-2 )
∧ ¬(length slist-1 = length slist-2 )

)
proof −

{
fix x
assume P1 : x ∈ state-set (state-list s as)
have a: last ‘ state-set (state-list s as) ⊆ reachable-s PROB s

using assms(1 , 2 ) lemma-1-reachability-s
by fast

then have ∀ as PROB. s ∈ (valid-states PROB) ∧ as ∈ (valid-plans PROB)
−→ (last ‘ (state-set (state-list s as)) ⊆ reachable-s PROB s)

using lemma-1-reachability-s
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by fast
then have last x ∈ valid-states PROB

using assms(1 , 2 ) P1 lemma-1
by fast

then have last x ∈ reachable-s PROB s
using P1 a
by fast

}
note 1 = this

Show the goal by disproving the contradiction.
{

assume C : (∀ slist-1 slist-2 . (slist-1 ∈ state-set (state-list s as)
∧ slist-2 ∈ state-set (state-list s as)
∧ (last slist-1 = last slist-2 )) −→ (length slist-1 = length slist-2 ))

moreover {
fix slist-1 slist-2
assume C1 : slist-1 ∈ state-set (state-list s as) slist-2 ∈ state-set (state-list s

as)
(last slist-1 = last slist-2 )

moreover have i: (length slist-1 = length slist-2 )
using C1 C
by blast

moreover have slist-1 = slist-2
using C1 (1 , 2 ) i neq-mems-state-set-neq-len
by auto

ultimately have inj-on last (state-set (state-list s as))
unfolding inj-on-def
using C neq-mems-state-set-neq-len
by blast

then have False
using 1 inj-def assms(3 )
by blast

}
ultimately have False

by (metis empty-state-list-lemma nempty-sl-in-state-set)
}
then show ?thesis

by blast
qed

— NOTE added lemma ( translation of ‘PHP‘ in pred_setScript.sml:3155).
lemma lemma-2-reachability-s-i:

fixes f :: ′a ⇒ ′b and s t
assumes finite t card t < card s
shows ¬(inj f s t)

proof −
{
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assume C : inj f s t
then have 1 : (∀ x∈s. f x ∈ t) inj-on f s

unfolding inj-def
by blast+

moreover {
have f ‘ s ⊆ t

using 1
by fast

then have card (f ‘ s) ≤ card t
using assms(1 ) card-mono
by auto

}
moreover have card (f ‘ s) = card s

using 1 card-image
by fast

ultimately have False
using assms(2 )
by linarith

}
then show ?thesis

by blast
qed

lemma lemma-2-reachability-s:
fixes PROB :: ′a problem and as s
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
(length as > card (reachable-s PROB s) − 1 )

shows (∃ as1 as2 as3 .
(as1 @ as2 @ as3 = as) ∧ (exec-plan s (as1 @ as2 ) = exec-plan s as1 ) ∧ ¬(as2

= []))
proof −

{
have Suc (length as) > card (reachable-s PROB s)

using assms(4 )
by fastforce

then have card (state-set (state-list s as)) > card (reachable-s PROB s)
using card-state-set
by metis

}
note 1 = this
{

have finite (reachable-s PROB s)
using assms(1 , 2 ) reachable-s-finite-thm
by blast

then have ¬(inj last (state-set (state-list s as)) (reachable-s PROB s))
using assms(4 ) 1 lemma-2-reachability-s-i
by blast

}
note 2 = this
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obtain slist-1 slist-2 where 3 :
slist-1 ∈ state-set (state-list s as) slist-2 ∈ state-set (state-list s as)
(last slist-1 = last slist-2 ) length slist-1 6= length slist-2
using assms(2 , 3 ) 2 not-eq-last-diff-paths-reachability-s
by blast

then show ?thesis using assms
proof(cases as)

case (Cons a list)
then show ?thesis
using assms(2 , 3 ) 3 eq-last-state-imp-append-nempty-as state-set-thm list.distinct(1 )

by metis
qed force

qed

lemma lemma-3-reachability-s:
fixes as and PROB :: ′a problem and s
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
(length as > (card (reachable-s PROB s) − 1 ))

shows (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (length as ′ < length as)
∧ (subseq as ′ as)

)
proof −

obtain as1 as2 as3 :: ′a action list where 1 :
(as1 @ as2 @ as3 = as) (exec-plan s (as1 @ as2 ) = exec-plan s as1 ) ∼(as2=[])
using assms lemma-2-reachability-s
by metis

then have (exec-plan s (as1 @ as2 ) = exec-plan s as1 )
using 1
by blast

then have 2 : exec-plan s (as1 @ as3 ) = exec-plan s (as1 @ as2 @ as3 )
using 1 cycle-removal-lemma
by fastforce

let ?as ′ = as1 @ as3
have 3 : exec-plan s as = exec-plan s ?as ′

using 1 2
by argo

then have as2 6= []
using 1
by blast

then have 4 : length ?as ′ < length as
using nempty-list-append-length-add 1
by blast

then have subseq ?as ′ as
using 1 subseq-append ′

by blast
then show ?thesis
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using 3 4
by blast

qed

— NOTE type for ‘as‘ had to be fixed (type mismatch in goal).
lemma main-lemma-reachability-s:

fixes PROB :: ′a problem and as and s :: ′a state
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows (∃ as ′.

(exec-plan s as = exec-plan s as ′) ∧ subseq as ′ as
∧ (length as ′ ≤ (card (reachable-s PROB s) − 1 )))

proof (cases length as ≤ card (reachable-s PROB s) − 1 )
case False
let ?as ′ = as
have length as > card (reachable-s PROB s) − 1

using False
by simp

{
fix p
assume P: exec-plan s as = exec-plan s p subseq p as

card (reachable-s PROB s) − 1 < length p
moreover have p ∈ valid-plans PROB

using assms(3 ) P(2 ) sublist-valid-is-valid
by blast

ultimately obtain as ′ where 1 :
exec-plan s p = exec-plan s as ′ length as ′ < length p subseq as ′ p
using assms lemma-3-reachability-s
by blast

then have exec-plan s as = exec-plan s as ′

using P
by presburger

moreover have subseq as ′ as
using P 1 sublist-trans
by blast

ultimately have (∃ p ′. (exec-plan s as = exec-plan s p ′ ∧ subseq p ′ as) ∧ length
p ′ < length p)

using 1
by blast

}
then have ∀ p.

exec-plan s as = exec-plan s p ∧ subseq p as
−→ (∃ p ′.
(exec-plan s as = exec-plan s p ′ ∧ subseq p ′ as)
∧ length p ′ ≤ card (reachable-s PROB s) − 1 )

using general-theorem[of λas ′′. (exec-plan s as = exec-plan s as ′′) ∧ subseq as ′′

as
(card (reachable-s (PROB :: ′a problem) (s :: ′a state)) − 1 ) length]

by blast
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then show ?thesis
by blast

qed blast

lemma reachable-s-non-empty: ¬(reachable-s PROB s = {})
using empty-plan-is-valid reachable-s-def
by blast

lemma card-reachable-s-non-zero:
fixes s
assumes finite (PROB :: ′a problem) (s ∈ valid-states PROB)
shows (0 < card (reachable-s PROB s))
using assms
by (simp add: card-gt-0-iff reachable-s-finite-thm reachable-s-non-empty)

lemma exec-fdom-empty-prob:
fixes s
assumes (prob-dom PROB = {}) (s ∈ valid-states PROB) (as ∈ valid-plans

PROB)
shows (exec-plan s as = fmempty)

proof −
have fmdom ′ s = {}

using assms(1 , 2 )
by (simp add: valid-states-def )

then show exec-plan s as = fmempty
using assms(1 , 3 )
by (metis

exec-plan-fdom-subset fmrestrict-set-dom fmrestrict-set-null subset-empty
sup-bot.left-neutral)

qed

— NOTE types for ‘PROB‘ and ‘s‘ had to be fixed (type mismatch in goal).
lemma reachable-s-empty-prob:

fixes PROB :: ′a problem and s :: ′a state
assumes (prob-dom PROB = {}) (s ∈ valid-states PROB)
shows ((reachable-s PROB s) ⊆ {fmempty})

proof −
{

fix x
assume P1 : x ∈ reachable-s PROB s
then obtain as :: ′a action list where a:

as ∈ valid-plans PROB x = exec-plan s as
using reachable-s-def
by blast

then have as ∈ valid-plans PROB x = exec-plan s as
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using a
by auto

then have x = fmempty using assms(1 , 2 ) exec-fdom-empty-prob
by blast

}
then show ((reachable-s PROB s) ⊆ {fmempty})

by blast
qed

— NOTE this is semantically equivalent to ‘sublist_valid_is_valid‘.
— NOTE Renamed to ’sublist_valid_plan_alt’ because another lemma by the
same name is declared later.
lemma sublist-valid-plan--alt:

assumes (as1 ∈ valid-plans PROB) (subseq as2 as1 )
shows (as2 ∈ valid-plans PROB)
using assms
by (auto simp add: sublist-valid-is-valid)

lemma fmsubset-eq:
assumes s1 ⊆f s2
shows (∀ a. a |∈| fmdom s1 −→ fmlookup s1 a = fmlookup s2 a)
using assms
by (metis (mono-tags, lifting) domIff fmdom-notI fmsubset.rep-eq map-le-def )

— NOTE added lemma.
— TODO refactor/move into ’FmapUtils.thy’.
lemma submap-imp-state-succ-submap-a:

assumes s1 ⊆f s2 s2 ⊆f s3
shows s1 ⊆f s3
using assms fmsubset.rep-eq map-le-trans
by blast

— NOTE added lemma.
— TODO refactor into FmapUtils?
lemma submap-imp-state-succ-submap-b:

assumes s1 ⊆f s2
shows (s0 ++ s1 ) ⊆f (s0 ++ s2 )

proof −
{

assume C : ¬((s0 ++ s1 ) ⊆f (s0 ++ s2 ))
then have 1 : (s0 ++ s1 ) = (s1 ++f s0 )

using fmap-add-ltr-def
by blast

then have 2 : (s0 ++ s2 ) = (s2 ++f s0 )
using fmap-add-ltr-def
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by auto
then obtain a where 3 :

a |∈| fmdom (s1 ++f s0 ) ∧ fmlookup (s1 ++f s0 ) 6= fmlookup (s2 ++f s0 )
using C 1 2 fmsubset.rep-eq domIff fmdom-notD map-le-def
by (metis (no-types, lifting))

then have False
using assms(1 ) C proof (cases a |∈| fmdom s1 )
case True
moreover have fmlookup s1 a = fmlookup s2 a

by (meson assms(1 ) calculation fmsubset-eq)
moreover have fmlookup (s0 ++f s1 ) a = fmlookup s1 a

by (simp add: True)
moreover have a |∈| fmdom s2

using True calculation(2 ) fmdom-notD by fastforce
moreover have fmlookup (s0 ++f s2 ) a = fmlookup s2 a

by (simp add: calculation(4 ))
moreover have fmlookup (s0 ++f s1 ) a = fmlookup (s0 ++f s2 ) a

using calculation(2 , 3 , 5 )
by auto

ultimately show ?thesis
by (smt 1 2 C assms domIff fmlookup-add fmsubset.rep-eq map-le-def )

next
case False
moreover have fmlookup (s0 ++f s1 ) a = fmlookup s0 a

by (auto simp add: False)
ultimately show ?thesis proof (cases a |∈| fmdom s0 )

case True
have a |/∈| fmdom (s1 ++f s0 )

by (smt 1 2 C UnE assms dom-map-add fmadd.rep-eq fmsubset.rep-eq
map-add-def

map-add-dom-app-simps(1 ) map-le-def )
then show ?thesis

using 3 by blast
next

case False
then have a |/∈| fmdom (s1 ++f s0 )

using ‹fmlookup (s0 ++f s1 ) a = fmlookup s0 a›
by force

then show ?thesis
using 3
by blast

qed
qed

}
then show ?thesis

by blast
qed

— NOTE type for ‘a‘ had to be fixed (type mismatch in goal).
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lemma submap-imp-state-succ-submap:
fixes a :: ′a action and s1 s2
assumes (fst a ⊆f s1 ) (s1 ⊆f s2 )
shows (state-succ s1 a ⊆f state-succ s2 a)

proof −
have 1 : state-succ s1 a = (snd a ++ s1 )

using assms(1 )
by (simp add: state-succ-def )

then have fst a ⊆f s2
using assms(1 , 2 ) submap-imp-state-succ-submap-a
by auto

then have 2 : state-succ s2 a = (snd a ++ s2 )
using 1 state-succ-def
by metis

then have snd a ++ s1 ⊆f snd a ++ s2
using assms(2 ) submap-imp-state-succ-submap-b
by fast

then show ?thesis
using 1 2
by argo

qed

— NOTE types for ‘a‘, ‘s1‘ and ‘s2‘ had to be fixed (type mismatch in goal).
lemma pred-dom-subset-succ-submap:

fixes a :: ′a action and s1 s2 :: ′a state
assumes (fmdom ′ (fst a) ⊆ fmdom ′ s1 ) (s1 ⊆f s2 )
shows (state-succ s1 a ⊆f state-succ s2 a)
using assms
unfolding state-succ-def

proof (auto)
assume P1 : fmdom ′ (fst a) ⊆ fmdom ′ s1 s1 ⊆f s2 fst a ⊆f s1 fst a ⊆f s2
then show snd a ++ s1 ⊆f snd a ++ s2

using submap-imp-state-succ-submap-b
by fast

next
assume P2 : fmdom ′ (fst a) ⊆ fmdom ′ s1 s1 ⊆f s2 fst a ⊆f s1 ¬ fst a ⊆f s2
then show snd a ++ s1 ⊆f s2

using submap-imp-state-succ-submap-a
by blast

next
assume P3 : fmdom ′ (fst a) ⊆ fmdom ′ s1 s1 ⊆f s2 ¬ fst a ⊆f s1 fst a ⊆f s2
{

have a: fmlookup s1 ⊆m fmlookup s2
using P3 (2 ) fmsubset.rep-eq
by blast

{
have ¬(fmlookup (fst a) ⊆m fmlookup s1 )

using P3 (3 ) fmsubset.rep-eq
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by blast
then have ∃ v ∈ dom (fmlookup (fst a)). fmlookup (fst a) v 6= fmlookup s1 v

using map-le-def
by fast

}
then obtain v where b: v ∈ dom (fmlookup (fst a)) fmlookup (fst a) v 6=

fmlookup s1 v
by blast

then have fmlookup (fst a) v 6= fmlookup s2 v
using assms(1 ) a contra-subsetD fmdom ′.rep-eq map-le-def
by metis

then have ¬(fst a ⊆f s2 )
using b fmsubset.rep-eq map-le-def
by metis

}
then show s1 ⊆f snd a ++ s2

using P3 (4 )
by simp

qed

— NOTE added lemma.
— TODO refactor.
lemma valid-as-submap-init-submap-exec-i:

fixes s a
shows fmdom ′ s ⊆ fmdom ′ (state-succ s a)

proof (cases fst a ⊆f s)
case True
then have state-succ s a = s ++f (snd a)

unfolding state-succ-def
using fmap-add-ltr-def
by auto

then have fmdom ′ (state-succ s a) = fmdom ′ s ∪ fmdom ′ (snd a)
using fmdom ′-add
by simp

then show ?thesis
by simp

next
case False
then show ?thesis

unfolding state-succ-def
by simp

qed

— NOTE types for ‘s1‘ and ‘s2‘ had to be fixed in order to apply ‘pred_dom_sub-
set_succ_submap‘.
lemma valid-as-submap-init-submap-exec:

fixes s1 s2 :: ′a state
assumes (s1 ⊆f s2 ) (∀ a. ListMem a as −→ (fmdom ′ (fst a) ⊆ fmdom ′ s1 ))
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shows (exec-plan s1 as ⊆f exec-plan s2 as)
using assms

proof (induction as arbitrary: s1 s2 )
case (Cons a as)
{

have ListMem a (a # as)
using elem
by fast

then have fmdom ′ (fst a) ⊆ fmdom ′ s1
using Cons.prems(2 )
by blast

then have state-succ s1 a ⊆f state-succ s2 a
using Cons.prems(1 ) pred-dom-subset-succ-submap
by fast

}
note 1 = this
{

fix b
assume ListMem b as
then have ListMem b (a # as)

using insert
by fast

then have a: fmdom ′ (fst b) ⊆ fmdom ′ s1
using Cons.prems(2 )
by blast

then have fmdom ′ s1 ⊆ fmdom ′ (state-succ s1 a)
using valid-as-submap-init-submap-exec-i
by metis

then have fmdom ′ (fst b) ⊆ fmdom ′ (state-succ s1 a)
using a
by simp

}
then show ?case

using 1 Cons.IH [of (state-succ s1 a) (state-succ s2 a)]
by fastforce

qed auto

lemma valid-plan-mems:
assumes (as ∈ valid-plans PROB) (ListMem a as)
shows a ∈ PROB
using assms ListMem-iff in-set-conv-decomp valid-append-valid-suff valid-plan-valid-head
by (metis)

— NOTE typing moved into ’fixes’ due to type mismatches when using lemma.
— NOTE showcase (this can’t be used due to type problems when the type is
specified within proposition.
lemma valid-states-nempty:
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fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set
assumes finite PROB
shows ∃ s. s ∈ (valid-states PROB)
unfolding valid-states-def
using fmchoice ′[OF FINITE-prob-dom[OF assms], where Q = λ- -. True]
by auto

lemma empty-prob-dom-single-val-state:
assumes (prob-dom PROB = {})
shows (∃ s. valid-states PROB = {s})

proof −
{

assume C : ¬(∃ s. valid-states PROB = {s})
then have valid-states PROB = {s. fmdom ′ s = {}}

using assms
by (simp add: valid-states-def )

then have ∃ s. valid-states PROB = {s}
using empty-domain-fmap-set
by blast

then have False
using C
by blast

}
then show ?thesis

by blast
qed

lemma empty-prob-dom-imp-empty-plan-always-good:
fixes PROB s
assumes (prob-dom PROB = {}) (s ∈ valid-states PROB) (as ∈ valid-plans

PROB)
shows (exec-plan s [] = exec-plan s as)
using assms empty-plan-is-valid exec-fdom-empty-prob
by fastforce

lemma empty-prob-dom:
fixes PROB
assumes (prob-dom PROB = {})
shows (PROB = {(fmempty, fmempty)} ∨ PROB = {})
using assms

proof (cases PROB = {})
case False
have

⋃
((λ(s1 , s2 ). fmdom ′ s1 ∪ fmdom ′ s2 ) ‘ PROB) = {}

using assms
by (simp add: prob-dom-def action-dom-def )

then have 1 :∀ a∈PROB. (λ(s1 , s2 ). fmdom ′ s1 ∪ fmdom ′ s2 ) a = {}
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using Union-empty-conv
by auto

{
fix a
assume P1 : a∈PROB
then have (λ(s1 , s2 ). fmdom ′ s1 ∪ fmdom ′ s2 ) a = {}

using 1
by simp

then have a: fmdom ′ (fst a) = {} fmdom ′ (snd a) = {}
by auto+

then have b: fst a = fmempty
using fmrestrict-set-dom fmrestrict-set-null
by metis

then have snd a = fmempty
using a(2 ) fmrestrict-set-dom fmrestrict-set-null
by metis

then have a = (fmempty, fmempty)
using b surjective-pairing
by metis

}
then have PROB = {(fmempty, fmempty)}

using False
by blast

then show ?thesis
by blast

qed simp

lemma empty-prob-dom-finite:
fixes PROB :: ′a problem
assumes prob-dom PROB = {}
shows finite PROB

proof −
consider (i) PROB = {(fmempty, fmempty)} | (ii) PROB = {}

using assms empty-prob-dom
by auto

then show ?thesis by (cases) auto
qed

— NOTE type for ‘a‘ had to be fixed (type mismatch in goal).
lemma disj-imp-eq-proj-exec:

fixes a :: ( ′a, ′b) fmap × ( ′a, ′b) fmap and vs s
assumes (fmdom ′ (snd a) ∩ vs) = {}
shows (fmrestrict-set vs s = fmrestrict-set vs (state-succ s a))

proof −
have disjnt (fmdom ′ (snd a)) vs

using assms disjnt-def
by fast
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then show ?thesis
using disj-dom-drest-fupdate-eq state-succ-pair surjective-pairing
by metis

qed

lemma no-change-vs-eff-submap:
fixes a vs s
assumes (fmrestrict-set vs s = fmrestrict-set vs (state-succ s a)) (fst a ⊆f s)
shows (fmrestrict-set vs (snd a) ⊆f (fmrestrict-set vs s))

proof −
{

fix x
assume P3 : x ∈ dom (fmlookup (fmrestrict-set vs (snd a)))
then have (fmlookup (fmrestrict-set vs (snd a))) x = (fmlookup (fmrestrict-set

vs s)) x
proof (cases fmlookup (fmrestrict-set vs (snd a)) x)

case None
then show ?thesis using P3 by blast

next
case (Some y)
then have fmrestrict-set vs s = fmrestrict-set vs (s ++f snd a)

using assms
by (simp add: state-succ-def fmap-add-ltr-def )

then have fmlookup (fmrestrict-set vs s) = fmlookup (fmrestrict-set vs (s ++f

snd a))
by auto

then have 1 :
fmlookup (fmrestrict-set vs s) x
= (if x ∈ vs then fmlookup (s ++f snd a) x else None)

using fmlookup-restrict-set
by metis

then show ?thesis
proof (cases x ∈ vs)

case True
then have fmlookup (fmrestrict-set vs s) x = fmlookup (s ++f snd a) x

using True 1
by auto

then show ?thesis
using Some fmadd.rep-eq fmlookup-restrict-set map-add-Some-iff
by (metis (mono-tags, lifting))

next
case False
then have 1 : fmlookup (fmrestrict-set vs s) x = None

using False 1
by auto

then show ?thesis
using 1 False
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by auto
qed

qed
}
then have (fmlookup (fmrestrict-set vs (snd a)) ⊆m fmlookup (fmrestrict-set vs

s))
using map-le-def
by blast

then show ?thesis
using fmsubset.rep-eq
by blast

qed

— NOTE type of ‘a‘ had to be fixed.
lemma sat-precond-as-proj-3 :

fixes s and a :: ( ′a, ′b) fmap × ( ′a, ′b) fmap and vs
assumes (fmdom ′ (fmrestrict-set vs (snd a)) = {})
shows ((fmrestrict-set vs (state-succ s a)) = (fmrestrict-set vs s))

proof −
have fmdom ′ (fmrestrict-set vs (fmrestrict-set vs (snd a))) = {}

using assms fmrestrict-set-dom fmrestrict-set-empty fmrestrict-set-null
by metis

{
fix x
assume C : x ∈ fmdom ′ (snd a) ∧ x ∈ vs
then have a: x ∈ fmdom ′ (snd a) x ∈ vs

using C
by blast+

then have fmlookup (snd a) x 6= None
using fmdom ′-notI
by metis

then have fmlookup (fmrestrict-set vs (snd a)) x 6= None
using a(2 )
by force

then have x ∈ fmdom ′ (fmrestrict-set vs (snd a))
using fmdom ′-notD
by metis

then have fmdom ′ (fmrestrict-set vs (snd a)) 6= {}
by blast

then have False
using assms
by blast

}
then have ∀ x. ¬(x ∈ fmdom ′ (snd a) ∧ x ∈ vs)

by blast
then have 1 : fmdom ′ (snd a) ∩ vs = {}

by blast
have disjnt (fmdom ′ (snd a)) vs
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using 1 disjnt-def
by blast

then show ?thesis
using 1 disj-imp-eq-proj-exec
by metis

qed

— NOTE type for ‘a‘ had to be fixed (type mismatch in goal).
— TODO showcase (quick win with simp).
lemma proj-eq-proj-exec-eq:

fixes s s ′ vs and a :: ( ′a, ′b) fmap × ( ′a, ′b) fmap and a ′

assumes ((fmrestrict-set vs s) = (fmrestrict-set vs s ′)) ((fst a ⊆f s) = (fst a ′ ⊆f

s ′))
(fmrestrict-set vs (snd a) = fmrestrict-set vs (snd a ′))

shows (fmrestrict-set vs (state-succ s a) = fmrestrict-set vs (state-succ s ′ a ′))
using assms
by (simp add: fmap-add-ltr-def state-succ-def )

lemma empty-eff-exec-eq:
fixes s a
assumes (fmdom ′ (snd a) = {})
shows (state-succ s a = s)
using assms
unfolding state-succ-def fmap-add-ltr-def
by (metis fmadd-empty(2 ) fmrestrict-set-dom fmrestrict-set-null)

lemma exec-as-proj-valid-2 :
fixes a
assumes a ∈ PROB
shows (action-dom (fst a) (snd a) ⊆ prob-dom PROB)
using assms
by (simp add: FDOM-eff-subset-prob-dom-pair FDOM-pre-subset-prob-dom-pair

action-dom-def )

lemma valid-filter-valid-as:
assumes (as ∈ valid-plans PROB)
shows (filter P as ∈ valid-plans PROB)
using assms
by(auto simp: valid-plans-def )

lemma sublist-valid-plan:
assumes (subseq as ′ as) (as ∈ valid-plans PROB)
shows (as ′ ∈ valid-plans PROB)
using assms
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by (auto simp: valid-plans-def ) (meson fset-mp fset-of-list-elem sublist-subset
subsetCE)

lemma prob-subset-dom-subset:
assumes PROB1 ⊆ PROB2
shows (prob-dom PROB1 ⊆ prob-dom PROB2 )
using assms
by (auto simp add: prob-dom-def )

lemma state-succ-valid-act-disjoint:
assumes (a ∈ PROB) (vs ∩ (prob-dom PROB) = {})
shows (fmrestrict-set vs (state-succ s a) = fmrestrict-set vs s)
using assms
by (smt

FDOM-eff-subset-prob-dom-pair disj-imp-eq-proj-exec inf .absorb1
inf-bot-right inf-commute inf-left-commute
)

lemma exec-valid-as-disjoint:
fixes s
assumes (vs ∩ (prob-dom PROB) = {}) (as ∈ valid-plans PROB)
shows (fmrestrict-set vs (exec-plan s as) = fmrestrict-set vs s)
using assms

proof (induction as arbitrary: s vs PROB)
case (Cons a as)
then show ?case

by (metis exec-plan.simps(2 ) state-succ-valid-act-disjoint valid-plan-valid-head
valid-plan-valid-tail)

qed simp

definition state-successors where
state-successors PROB s ≡ ((state-succ s ‘ PROB) − {s})

3.3 State Spaces
definition stateSpace where

stateSpace ss vs ≡ (∀ s. s ∈ ss −→ (fmdom ′ s = vs))

lemma EQ-SS-DOM :
assumes ¬(ss = {}) (stateSpace ss vs1 ) (stateSpace ss vs2 )
shows (vs1 = vs2 )
using assms
by (auto simp: stateSpace-def )
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— NOTE Name ’dom’ changed to ’domain’ because of name clash with ’Map.dom’.
lemma FINITE-SS :

fixes ss :: ( ′a, bool) fmap set
assumes ¬(ss = {}) (stateSpace ss domain)
shows finite ss

proof −
have 1 : stateSpace ss domain = (∀ s. s ∈ ss −→ (fmdom ′ s = domain))

by (simp add: stateSpace-def )
{

fix s
assume P1 : s ∈ ss
have fmdom ′ s = domain

using assms 1 P1
by blast

then have s ∈ {s. fmdom ′ s = domain}
by auto

}
then have 2 : ss ⊆ {s. fmdom ′ s = domain}

by blast
— TODO add lemma (finite (fmdom’ s))

then have finite domain
using 1 assms
by fastforce

then have finite {s :: ′a state. fmdom ′ s = domain}
using FINITE-states
by blast

then show ?thesis
using 2 finite-subset
by auto

qed

lemma disjoint-effects-no-effects:
fixes s
assumes (∀ a. ListMem a as −→ (fmdom ′ (fmrestrict-set vs (snd a)) = {}))
shows (fmrestrict-set vs (exec-plan s as) = (fmrestrict-set vs s))
using assms

proof (induction as arbitrary: s vs)
case (Cons a as)
then have ListMem a (a # as)

using elem
by fast

then have fmdom ′ (fmrestrict-set vs (snd a)) = {}
using Cons.prems(1 )
by blast

then have fmrestrict-set vs (state-succ s a) = fmrestrict-set vs s
using sat-precond-as-proj-3
by blast
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then show ?case
by (simp add: Cons.IH Cons.prems insert)

qed auto

3.4 Needed Asses
definition action-needed-vars where

action-needed-vars a s ≡ {v. (v ∈ fmdom ′ s) ∧ (v ∈ fmdom ′ (fst a))
∧ (fmlookup (fst a) v = fmlookup s v)}

— NOTE name shortened to ’action_needed_asses’.
definition action-needed-asses where

action-needed-asses a s ≡ fmrestrict-set (action-needed-vars a s) s

— NOTE type for ’a’ had to be fixed (type mismatch in goal).
lemma act-needed-asses-submap-succ-submap:

fixes a s1 s2
assumes (action-needed-asses a s2 ⊆f action-needed-asses a s1 ) (s1 ⊆f s2 )
shows (state-succ s1 a ⊆f state-succ s2 a)
using assms
unfolding state-succ-def

proof (auto)
assume P1 : action-needed-asses a s2 ⊆f action-needed-asses a s1 s1 ⊆f s2 fst

a ⊆f s1
fst a ⊆f s2

then show snd a ++ s1 ⊆f snd a ++ s2
using submap-imp-state-succ-submap-b
by blast

next
assume P2 : action-needed-asses a s2 ⊆f action-needed-asses a s1 s1 ⊆f s2 fst

a ⊆f s1
¬ fst a ⊆f s2

then show snd a ++ s1 ⊆f s2
using submap-imp-state-succ-submap-a
by blast

next
assume P3 : action-needed-asses a s2 ⊆f action-needed-asses a s1 s1 ⊆f s2 ¬

fst a ⊆f s1
fst a ⊆f s2

let ?vs1={v ∈ fmdom ′ s1 . v ∈ fmdom ′ (fst a) ∧ fmlookup (fst a) v = fmlookup
s1 v}

let ?vs2={v ∈ fmdom ′ s2 . v ∈ fmdom ′ (fst a) ∧ fmlookup (fst a) v = fmlookup
s2 v}

let ?f=fmrestrict-set ?vs1 s1
let ?g=fmrestrict-set ?vs2 s2
have 1 : fmdom ′ ?f = ?vs1 fmdom ′ ?g = ?vs2
unfolding action-needed-asses-def action-needed-vars-def fmdom ′-restrict-set-precise
by blast+

have 2 : fmlookup ?g ⊆m fmlookup ?f
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using P3 (1 )
unfolding action-needed-asses-def action-needed-vars-def
using fmsubset.rep-eq
by blast

{
{

fix v
assume P3-1 : v ∈ fmdom ′ ?g
then have v ∈ fmdom ′ s2 v ∈ fmdom ′ (fst a) fmlookup (fst a) v = fmlookup

s2 v
using 1
by simp+

then have fmlookup (fst a) v = fmlookup ?g v
by simp

then have fmlookup (fst a) v = fmlookup ?f v
using 2
by (metis (mono-tags, lifting) P3-1 domIff fmdom ′-notI map-le-def )

}
then have i: fmlookup (fst a) ⊆m fmlookup ?f

using P3 (4 ) 1 (2 )
by (smt domIff fmdom ′-notD fmsubset.rep-eq map-le-def mem-Collect-eq)

{
fix v
assume P3-2 : v ∈ dom (fmlookup (fst a))
then have fmlookup (fst a) v = fmlookup ?f v

using i
by (meson domIff fmdom ′-notI map-le-def )

then have v ∈ ?vs1
using P3-2 1 (1 )
by (metis (no-types, lifting) domIff fmdom ′-notD)

then have fmlookup (fst a) v = fmlookup s1 v
by blast

}
then have fst a ⊆f s1

by (simp add: map-le-def fmsubset.rep-eq)
}
then show s1 ⊆f snd a ++ s2

using P3 (3 )
by simp

qed

— NOTE added lemma.
— TODO refactor.
lemma as-needed-asses-submap-exec-i:

fixes a s
assumes v ∈ fmdom ′ (action-needed-asses a s)
shows

fmlookup (action-needed-asses a s) v = fmlookup s v
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∧ fmlookup (action-needed-asses a s) v = fmlookup (fst a) v
using assms
unfolding action-needed-asses-def action-needed-vars-def
using fmdom ′-notI fmlookup-restrict-set
by (smt mem-Collect-eq)

— NOTE added lemma.
— TODO refactor.
lemma as-needed-asses-submap-exec-ii:

fixes f g v
assumes v ∈ fmdom ′ f f ⊆f g
shows fmlookup f v = fmlookup g v
using assms
by (meson fmdom ′-notI fmdom-notD fmsubset-eq)

— NOTE added lemma.
— TODO refactor.
lemma as-needed-asses-submap-exec-iii:

fixes f g v
shows

fmdom ′ (action-needed-asses a s)
= {v ∈ fmdom ′ s. v ∈ fmdom ′ (fst a) ∧ fmlookup (fst a) v = fmlookup s v}

unfolding action-needed-asses-def action-needed-vars-def
by (simp add: Set.filter-def fmfilter-alt-defs(4 ))

— NOTE added lemma.
lemma as-needed-asses-submap-exec-iv:

fixes f a v
assumes v ∈ fmdom ′ (action-needed-asses a s)
shows

fmlookup (action-needed-asses a s) v = fmlookup s v
∧ fmlookup (action-needed-asses a s) v = fmlookup (fst a) v
∧ fmlookup (fst a) v = fmlookup s v

using assms
proof −

have 1 : v ∈ {v ∈ fmdom ′ s. v ∈ fmdom ′ (fst a) ∧ fmlookup (fst a) v = fmlookup
s v}

using assms as-needed-asses-submap-exec-iii
by metis

then have 2 : fmlookup (action-needed-asses a s) v = fmlookup s v
unfolding action-needed-asses-def action-needed-vars-def
by force

moreover have 3 : fmlookup (action-needed-asses a s) v = fmlookup (fst a) v
using 1 2
by simp

moreover have fmlookup (fst a) v = fmlookup s v
using 2 3
by argo

ultimately show ?thesis
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by blast
qed

— NOTE added lemma.
— TODO refactor (into Fmap_Utils.thy).
lemma as-needed-asses-submap-exec-v:

fixes f g v
assumes v ∈ fmdom ′ f f ⊆f g
shows v ∈ fmdom ′ g

proof −
obtain b where 1 : fmlookup f v = b b 6= None

using assms(1 )
by (meson fmdom ′-notI )

then have fmlookup g v = b
using as-needed-asses-submap-exec-ii[OF assms]
by argo

then show ?thesis
using 1 fmdom ′-notD
by fastforce

qed

— NOTE added lemma.
— TODO refactor.
lemma as-needed-asses-submap-exec-vi:

fixes a s1 s2 v
assumes v ∈ fmdom ′ (action-needed-asses a s1 )
(action-needed-asses a s1 ) ⊆f (action-needed-asses a s2 )

shows
(fmlookup (action-needed-asses a s1 ) v) = fmlookup (fst a) v
∧ (fmlookup (action-needed-asses a s2 ) v) = fmlookup (fst a) v ∧
fmlookup s1 v = fmlookup (fst a) v ∧ fmlookup s2 v = fmlookup (fst a) v

using assms
proof −

have 1 :
fmlookup (action-needed-asses a s1 ) v = fmlookup s1 v
fmlookup (action-needed-asses a s1 ) v = fmlookup (fst a) v
fmlookup (fst a) v = fmlookup s1 v
using as-needed-asses-submap-exec-iv[OF assms(1 )]
by blast+

moreover {
have fmlookup (action-needed-asses a s1 ) v = fmlookup (action-needed-asses a

s2 ) v
using as-needed-asses-submap-exec-ii[OF assms]
by simp

then have fmlookup (action-needed-asses a s2 ) v = fmlookup (fst a) v
using 1 (2 )
by argo

}
note 2 = this
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moreover {
have v ∈ fmdom ′ (action-needed-asses a s2 )

using as-needed-asses-submap-exec-v[OF assms]
by simp

then have fmlookup s2 v = fmlookup (action-needed-asses a s2 ) v
using as-needed-asses-submap-exec-i
by metis

also have . . . = fmlookup (fst a) v
using 2
by simp

finally have fmlookup s2 v = fmlookup (fst a) v
by simp

}
ultimately show ?thesis

by argo
qed

— TODO refactor.
— NOTE added lemma.
lemma as-needed-asses-submap-exec-vii:

fixes f g v
assumes ∀ v ∈ fmdom ′ f . fmlookup f v = fmlookup g v
shows f ⊆f g

proof −
{

fix v
assume a: v ∈ fmdom ′ f
then have v ∈ dom (fmlookup f )

by simp
moreover have fmlookup f v = fmlookup g v

using assms a
by blast

ultimately have v ∈ dom (fmlookup f ) −→ fmlookup f v = fmlookup g v
by blast

}
then have fmlookup f ⊆m fmlookup g

by (simp add: map-le-def )
then show ?thesis

by (simp add: fmsubset.rep-eq)
qed

— TODO refactor.
— NOTE added lemma.
lemma as-needed-asses-submap-exec-viii:

fixes f g v
assumes f ⊆f g
shows ∀ v ∈ fmdom ′ f . fmlookup f v = fmlookup g v

proof −
have 1 : fmlookup f ⊆m fmlookup g
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using assms
by (simp add: fmsubset.rep-eq)

{
fix v
assume v ∈ fmdom ′ f
then have v ∈ dom (fmlookup f )

by simp
then have fmlookup f v = fmlookup g v

using 1 map-le-def
by metis

}
then show ?thesis

by blast
qed

— NOTE added lemma.
lemma as-needed-asses-submap-exec-viii ′:

fixes f g v
assumes f ⊆f g
shows fmdom ′ f ⊆ fmdom ′ g
using assms as-needed-asses-submap-exec-v subsetI
by metis

— NOTE added lemma.
— TODO refactor.
lemma as-needed-asses-submap-exec-ix:

fixes f g
shows f ⊆f g = (∀ v ∈ fmdom ′ f . fmlookup f v = fmlookup g v)
using as-needed-asses-submap-exec-vii as-needed-asses-submap-exec-viii
by metis

— NOTE added lemma.
lemma as-needed-asses-submap-exec-x:

fixes f a v
assumes v ∈ fmdom ′ (action-needed-asses a f )
shows v ∈ fmdom ′ (fst a) ∧ v ∈ fmdom ′ f ∧ fmlookup (fst a) v = fmlookup f v
using assms
unfolding action-needed-asses-def action-needed-vars-def
using as-needed-asses-submap-exec-i assms
by (metis fmdom ′-notD fmdom ′-notI )

— NOTE added lemma.
— TODO refactor.
lemma as-needed-asses-submap-exec-xi:

fixes v a f g
assumes v ∈ fmdom ′ (action-needed-asses a (f ++ g)) v ∈ fmdom ′ f
shows

fmlookup (action-needed-asses a (f ++ g)) v = fmlookup f v
∧ fmlookup (action-needed-asses a (f ++ g)) v = fmlookup (fst a) v
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proof −
have 1 : v ∈ {v ∈ fmdom ′ (f ++ g). v ∈ fmdom ′ (fst a) ∧ fmlookup (fst a) v =

fmlookup (f ++ g) v}
using as-needed-asses-submap-exec-x[OF assms(1 )]
by blast

{
have v |∈| fmdom f

using assms(2 )
by (meson fmdom ′-notI fmdom-notD)

then have fmlookup (f ++ g) v = fmlookup f v
unfolding fmap-add-ltr-def fmlookup-add
by simp

}
note 2 = this
{

have fmlookup (action-needed-asses a (f ++ g)) v = fmlookup (f ++ g) v
unfolding action-needed-asses-def action-needed-vars-def
using 1
by force

then have fmlookup (action-needed-asses a (f ++ g)) v = fmlookup f v
using 2
by simp

}
note 3 = this
moreover {

have fmlookup (fst a) v = fmlookup (f ++ g) v
using 1
by simp

also have . . . = fmlookup f v
using 2
by simp

also have . . . = fmlookup (action-needed-asses a (f ++ g)) v
using 3
by simp

finally have fmlookup (action-needed-asses a (f ++ g)) v = fmlookup (fst a) v
by simp

}
ultimately show ?thesis

by blast
qed

— NOTE added lemma.
— TODO refactor (into Fmap_Utils.thy).
lemma as-needed-asses-submap-exec-xii:

fixes f g v
assumes v ∈ fmdom ′ f
shows fmlookup (f ++ g) v = fmlookup f v

proof −
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have v |∈| fmdom f
using assms(1 ) fmdom ′-notI fmdom-notD
by metis

then show ?thesis
unfolding fmap-add-ltr-def
using fmlookup-add
by force

qed

— NOTE added lemma.
lemma as-needed-asses-submap-exec-xii ′:

fixes f g v
assumes v /∈ fmdom ′ f v ∈ fmdom ′ g
shows fmlookup (f ++ g) v = fmlookup g v

proof −
have ¬(v |∈| fmdom f )

using assms(1 ) fmdom ′-notI fmdom-notD
by fastforce

moreover have v |∈| fmdom g
using assms(2 ) fmdom ′-notI fmdom-notD
by metis

ultimately show ?thesis
unfolding fmap-add-ltr-def
using fmlookup-add
by simp

qed

— NOTE showcase.
lemma as-needed-asses-submap-exec:

fixes s1 s2
assumes (s1 ⊆f s2 )
(∀ a. ListMem a as −→ (action-needed-asses a s2 ⊆f action-needed-asses a s1 ))

shows (exec-plan s1 as ⊆f exec-plan s2 as)
using assms

proof (induction as arbitrary: s1 s2 )
case (Cons a as)

— Proof the premises of the induction hypothesis for ’state_succ s1 a’ and
’state_succ s2 a’.

{
then have action-needed-asses a s2 ⊆f action-needed-asses a s1

using Cons.prems(2 ) elem
by metis

then have state-succ s1 a ⊆f state-succ s2 a
using Cons.prems(1 ) act-needed-asses-submap-succ-submap
by blast

}
note 1 = this
moreover {
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fix a ′

assume P: ListMem a ′ as
— Show the goal by rule ’as_needed_asses_submap_exec_ix’.

let ?f=action-needed-asses a ′ (state-succ s2 a)
let ?g=action-needed-asses a ′ (state-succ s1 a)
{

fix v
assume P-1 : v ∈ fmdom ′ ?f
then have fmlookup ?f v = fmlookup ?g v

unfolding state-succ-def

Split cases on the if-then branches introduced by the definition of ’state_succ’.
proof (auto)

assume P-1-1 : v ∈ fmdom ′ (action-needed-asses a ′ (snd a ++ s2 )) fst a
⊆f s2

fst a ⊆f s1
have i: action-needed-asses a ′ s2 ⊆f action-needed-asses a ′ s1

using Cons.prems(2 ) P insert
by fast

then show
fmlookup (action-needed-asses a ′ (snd a ++ s2 )) v
= fmlookup (action-needed-asses a ′ (snd a ++ s1 )) v

proof (cases v ∈ fmdom ′ ?g)
case true: True
then have A:

v ∈ fmdom ′ (fst a ′) ∧ v ∈ fmdom ′ (snd a ++ s1 )
∧ fmlookup (fst a ′) v = fmlookup (snd a ++ s1 ) v

using as-needed-asses-submap-exec-x[OF true]
unfolding state-succ-def
using P-1-1 (3 )
by simp

then have B:
v ∈ fmdom ′ (fst a ′) ∧ v ∈ fmdom ′ (snd a ++ s2 )
∧ fmlookup (fst a ′) v = fmlookup (snd a ++ s2 ) v

using as-needed-asses-submap-exec-x[OF P-1 ]
unfolding state-succ-def
using P-1-1 (2 )
by simp

then show ?thesis
proof (cases v ∈ fmdom ′ (snd a))

case True
then have I :

fmlookup (snd a ++ s2 ) v = fmlookup (snd a) v
fmlookup (snd a ++ s1 ) v = fmlookup (snd a) v
using as-needed-asses-submap-exec-xii
by fast+

moreover {
have fmlookup ?f v = fmlookup (snd a ++ s2 ) v

using as-needed-asses-submap-exec-iv[OF P-1 ]
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unfolding state-succ-def
using P-1-1 (2 )
by presburger

then have fmlookup ?f v = fmlookup (snd a) v
using I (1 )
by argo

}
moreover {

have fmlookup ?g v = fmlookup (snd a ++ s1 ) v
using as-needed-asses-submap-exec-iv[OF true]
unfolding state-succ-def
using P-1-1 (3 )
by presburger

then have fmlookup ?g v = fmlookup (snd a) v
using I (2 )
by argo

}
ultimately show ?thesis

unfolding state-succ-def
using P-1-1 (2 , 3 )
by presburger

next
case False
then have I : v ∈ fmdom ′ s1 v ∈ fmdom ′ s2

using A B
unfolding fmap-add-ltr-def fmdom ′-add
by blast+

{
have fmlookup ?g v = fmlookup (snd a ++ s1 ) v

using as-needed-asses-submap-exec-iv[OF true]
unfolding state-succ-def
using P-1-1 (3 )
by presburger

then have fmlookup ?g v = fmlookup s1 v
using as-needed-asses-submap-exec-xii ′[OF False I (1 )]
by simp

moreover {
have fmlookup (snd a ++ s1 ) v = fmlookup s1 v

using as-needed-asses-submap-exec-xii ′[OF False I (1 )]
by simp

moreover from ‹fmlookup (snd a ++ s1 ) v = fmlookup s1 v›
have fmlookup (fst a ′) v = fmlookup s1 v

using A(1 )
by argo

ultimately have fmlookup (action-needed-asses a ′ s1 ) v = fmlookup
s1 v

using A(1 ) I (1 )
unfolding action-needed-asses-def action-needed-vars-def

fmlookup-restrict-set
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by simp
}

ultimately have fmlookup ?g v = fmlookup (action-needed-asses a ′ s1 )
v

by argo
}
note II = this
{

have fmlookup ?f v = fmlookup (snd a ++ s2 ) v
using as-needed-asses-submap-exec-iv[OF P-1 ]
unfolding state-succ-def
using P-1-1 (2 )
by presburger

moreover from ‹fmlookup ?f v = fmlookup (snd a ++ s2 ) v›
have α: fmlookup ?f v = fmlookup s2 v

using as-needed-asses-submap-exec-xii ′[OF False I (2 )]
by argo

ultimately have fmlookup (snd a ++ s2 ) v = fmlookup s2 v
by argo

moreover {
from ‹fmlookup (snd a ++ s2 ) v = fmlookup s2 v›
have fmlookup (fst a ′) v = fmlookup s2 v

using B(1 )
by argo

then have fmlookup (action-needed-asses a ′ s2 ) v = fmlookup s2 v
using B(1 ) I (2 )
unfolding action-needed-asses-def action-needed-vars-def

fmlookup-restrict-set
by simp

}
ultimately have fmlookup ?f v = fmlookup (action-needed-asses a ′ s2 )

v
using α
by argo

}
note III = this
{

have v ∈ fmdom ′ (action-needed-asses a ′ s2 )
proof −

have fmlookup (fst a ′) v = fmlookup s1 v
by (simp add: A False I (1 ) as-needed-asses-submap-exec-xii ′)

then show ?thesis
by (simp add: A Cons.prems(1 ) I (1 , 2 )

as-needed-asses-submap-exec-ii as-needed-asses-submap-exec-iii)
qed
then have

fmlookup (action-needed-asses a ′ s2 ) v
= fmlookup (action-needed-asses a ′ s1 ) v

using i as-needed-asses-submap-exec-ix[of action-needed-asses a ′ s2
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action-needed-asses a ′ s1 ]
by blast

}
note IV = this
{

have fmlookup ?f v = fmlookup (action-needed-asses a ′ s2 ) v
using III
by simp

also have . . . = fmlookup (action-needed-asses a ′ s1 ) v
using IV
by simp

finally have . . . = fmlookup ?g v
using II
by simp

}
then show ?thesis
unfolding action-needed-asses-def action-needed-vars-def state-succ-def
using P-1-1 A B
by simp

qed
next

case false: False
have A:

v ∈ fmdom ′ (fst a ′) ∧ v ∈ fmdom ′ (snd a ++ s2 )
∧ fmlookup (fst a ′) v = fmlookup (snd a ++ s2 ) v

using as-needed-asses-submap-exec-x[OF P-1 ]
unfolding state-succ-def
using P-1-1 (2 )
by simp

from false have B:
¬(v ∈ fmdom ′ (snd a ++ s1 )) ∨ ¬(fmlookup (fst a ′) v = fmlookup (snd

a ++ s1 ) v)
by (simp add: A P-1-1 (3 ) as-needed-asses-submap-exec-iii state-succ-def )
then show ?thesis
proof (cases v ∈ fmdom ′ (snd a))

case True
then have I : v ∈ fmdom ′ (snd a ++ s1 )

unfolding fmap-add-ltr-def fmdom ′-add
by simp

{
from True have

fmlookup (snd a ++ s2 ) v = fmlookup (snd a) v
fmlookup (snd a ++ s1 ) v = fmlookup (snd a) v
using as-needed-asses-submap-exec-xii
by fast+

then have fmlookup (snd a ++ s1 ) v = fmlookup (snd a ++ s2 ) v
by auto

also have . . . = fmlookup (fst a ′) v
using A
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by simp
finally have fmlookup (snd a ++ s1 ) v = fmlookup (fst a ′) v

by simp
}
then show ?thesis using B I

by presburger
next

case False
then have I : v ∈ fmdom ′ s2

using A unfolding fmap-add-ltr-def fmdom ′-add
by blast

{
from P-1 have fmlookup ?f v 6= None

by (meson fmdom ′-notI )
moreover from false
have fmlookup ?g v = None

by (simp add: fmdom ′-notD)
ultimately have fmlookup ?f v 6= fmlookup ?g v

by simp
}
moreover
{

{
from P-1-1 (2 ) have state-succ s2 a = snd a ++ s2

unfolding state-succ-def
by simp

moreover from ‹state-succ s2 a = snd a ++ s2 › have
fmlookup (state-succ s2 a) v = fmlookup s2 v
using as-needed-asses-submap-exec-xii ′[OF False I ]
by simp

ultimately have fmlookup ?f v = fmlookup (action-needed-asses a ′

s2 ) v
unfolding action-needed-asses-def action-needed-vars-def
by (simp add: A I )

}
note I = this
moreover {

from P-1-1 (3 ) have state-succ s1 a = snd a ++ s1
unfolding state-succ-def
by simp

moreover from ‹state-succ s1 a = snd a ++ s1 › False
have fmlookup (state-succ s1 a) v = fmlookup s1 v

unfolding fmap-add-ltr-def
using fmlookup-add
by (simp add: fmdom ′-alt-def )

ultimately have fmlookup ?g v = fmlookup (action-needed-asses a ′

s1 ) v
unfolding action-needed-asses-def action-needed-vars-def
using FDOM-state-succ-subset
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by auto
}
moreover {

have v ∈ fmdom ′ (action-needed-asses a ′ s2 )
proof −

have v ∈ fmdom ′ s2 ∪ fmdom ′ (snd a)
by (metis (no-types) A FDOM-state-succ-subset P-1-1 (2 )

state-succ-def subsetCE)
then show ?thesis

by (simp add: A False as-needed-asses-submap-exec-iii as-needed-asses-submap-exec-xii ′)
qed
then have

fmlookup (action-needed-asses a ′ s2 ) v
= fmlookup (action-needed-asses a ′ s1 ) v

using i as-needed-asses-submap-exec-ix[of action-needed-asses a ′ s2
action-needed-asses a ′ s1 ]

by blast
}
ultimately have fmlookup ?f v = fmlookup ?g v

by simp
}
ultimately show ?thesis

by simp
qed

qed
next

assume P2 : v ∈ fmdom ′ (action-needed-asses a ′ (snd a ++ s2 )) fst a ⊆f

s2
¬ fst a ⊆f s1

then show
fmlookup (action-needed-asses a ′ (snd a ++ s2 )) v
= fmlookup (action-needed-asses a ′ s1 ) v

proof −
obtain aa :: ( ′a, ′b) fmap ⇒ ( ′a, ′b) fmap ⇒ ′a where
∀ x0 x1 . (∃ v2 . v2 ∈ fmdom ′ x1
∧ fmlookup x1 v2 6= fmlookup x0 v2 ) = (aa x0 x1 ∈ fmdom ′ x1
∧ fmlookup x1 (aa x0 x1 ) 6= fmlookup x0 (aa x0 x1 ))

by moura
then have f1 : ∀ f fa. aa fa f ∈ fmdom ′ f
∧ fmlookup f (aa fa f ) 6= fmlookup fa (aa fa f ) ∨ f ⊆f fa

by (meson as-needed-asses-submap-exec-vii)
then have f2 : aa s1 (fst a) ∈ fmdom ′ (fst a)
∧ fmlookup (fst a) (aa s1 (fst a)) 6= fmlookup s1 (aa s1 (fst a))

using P2 (3 ) by blast
then have aa s1 (fst a) ∈ fmdom ′ s2

by (metis (full-types) P2 (2 ) as-needed-asses-submap-exec-v)
then have aa s1 (fst a) ∈ fmdom ′ (action-needed-asses a s2 )

using f2 by (simp add: P2 (2 ) as-needed-asses-submap-exec-iii
as-needed-asses-submap-exec-viii)
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then show ?thesis
using f1 by (metis (no-types) Cons.prems(2 ) P2 (3 ) as-needed-asses-submap-exec-vi

elem)
qed

next
assume P3 : v ∈ fmdom ′ (action-needed-asses a ′ s2 ) ¬ fst a ⊆f s2 fst a ⊆f

s1
then show

fmlookup (action-needed-asses a ′ s2 ) v
= fmlookup (action-needed-asses a ′ (snd a ++ s1 )) v

using Cons.prems(1 ) submap-imp-state-succ-submap-a
by blast

next
assume P4 : v ∈ fmdom ′ (action-needed-asses a ′ s2 ) ¬ fst a ⊆f s2 ¬ fst a

⊆f s1
then show

fmlookup (action-needed-asses a ′ s2 ) v
= fmlookup (action-needed-asses a ′ s1 ) v

by (simp add: Cons.prems(2 ) P as-needed-asses-submap-exec-ii insert)
qed

}
then have a: ?f ⊆f ?g

using as-needed-asses-submap-exec-ix
by blast

}
note 2 = this
then show ?case

unfolding exec-plan.simps
using Cons.IH [of state-succ s1 a state-succ s2 a, OF 1 ]
by blast

qed simp

— NOTE name shortened.
definition system-needed-vars where

system-needed-vars PROB s ≡ (
⋃
{action-needed-vars a s | a. a ∈ PROB})

— NOTE name shortened.
definition system-needed-asses where

system-needed-asses PROB s ≡ (fmrestrict-set (system-needed-vars PROB s) s)

lemma action-needed-vars-subset-sys-needed-vars-subset:
assumes (a ∈ PROB)
shows (action-needed-vars a s ⊆ system-needed-vars PROB s)
using assms
by (auto simp: system-needed-vars-def ) (metis surjective-pairing)
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lemma action-needed-asses-submap-sys-needed-asses:
assumes (a ∈ PROB)
shows (action-needed-asses a s ⊆f system-needed-asses PROB s)

proof −
have action-needed-asses a s = fmrestrict-set (action-needed-vars a s) s

unfolding action-needed-asses-def
by simp

then have system-needed-asses PROB s = (fmrestrict-set (system-needed-vars
PROB s) s)

unfolding system-needed-asses-def
by simp

then have 1 : action-needed-vars a s ⊆ system-needed-vars PROB s
unfolding action-needed-vars-subset-sys-needed-vars-subset
using assms action-needed-vars-subset-sys-needed-vars-subset
by fast

{
fix x
assume P1 : x ∈ dom (fmlookup (fmrestrict-set (action-needed-vars a s) s))
then have a: fmlookup (fmrestrict-set (action-needed-vars a s) s) x = fmlookup

s x
by (auto simp: fmdom ′-restrict-set-precise)

then have fmlookup (fmrestrict-set (system-needed-vars PROB s) s) x = fm-
lookup s x

using 1 contra-subsetD
by fastforce

then have
fmlookup (fmrestrict-set (action-needed-vars a s) s) x
= fmlookup (fmrestrict-set (system-needed-vars PROB s) s) x

using a
by argo

}
then have

fmlookup (fmrestrict-set (action-needed-vars a s) s)
⊆m fmlookup (fmrestrict-set (system-needed-vars PROB s) s)

using map-le-def
by blast

then show (action-needed-asses a s ⊆f system-needed-asses PROB s)
by (simp add: fmsubset.rep-eq action-needed-asses-def system-needed-asses-def )

qed

lemma system-needed-asses-include-action-needed-asses-1 :
assumes (a ∈ PROB)
shows (action-needed-vars a (fmrestrict-set (system-needed-vars PROB s) s) =

action-needed-vars a s)
proof −

let ?A={v ∈ fmdom ′ (fmrestrict-set (system-needed-vars PROB s) s).
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v ∈ fmdom ′ (fst a)
∧ fmlookup (fst a) v = fmlookup (fmrestrict-set (system-needed-vars PROB s)

s) v}
let ?B={v ∈ fmdom ′ s. v ∈ fmdom ′ (fst a) ∧ fmlookup (fst a) v = fmlookup s v}
{

fix v
assume v ∈ ?A
then have i: v ∈ fmdom ′ (fmrestrict-set (system-needed-vars PROB s) s) v ∈

fmdom ′ (fst a)
fmlookup (fst a) v = fmlookup (fmrestrict-set (system-needed-vars PROB s)

s) v
by blast+

then have v ∈ fmdom ′ s
by (simp add: fmdom ′-restrict-set-precise)

moreover have fmlookup (fst a) v = fmlookup s v
using i(2 , 3 ) fmdom ′-notI
by force

ultimately have v ∈ ?B
using i
by blast

}
then have 1 : ?A ⊆ ?B

by blast
{

fix v
assume P: v ∈ ?B
then have ii: v ∈ fmdom ′ s v ∈ fmdom ′ (fst a) fmlookup (fst a) v = fmlookup

s v
by blast+

moreover {
have ∃ s ′. v ∈ s ′ ∧ (∃ a. (s ′ = action-needed-vars a s) ∧ a ∈ PROB)

unfolding action-needed-vars-def
using assms P action-needed-vars-def
by metis

then obtain s ′ where α: v ∈ s ′ (∃ a. (s ′ = action-needed-vars a s) ∧ a ∈
PROB)

by blast
moreover obtain a ′ where s ′ = action-needed-vars a ′ s a ′ ∈ PROB

using α
by blast

ultimately have v ∈ fmdom ′ (fmrestrict-set (system-needed-vars PROB s)
s)

unfolding fmdom ′-restrict-set-precise
using action-needed-vars-subset-sys-needed-vars-subset ii(1 ) by blast

}
note iii = this

moreover have fmlookup (fst a) v = fmlookup (fmrestrict-set (system-needed-vars
PROB s) s) v

using ii(3 ) iii fmdom ′-notI
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by force
ultimately have v ∈ ?A

by blast
}
then have ?B ⊆ ?A

by blast
then show ?thesis

unfolding action-needed-vars-def
using 1
by blast

qed

— NOTE added lemma.
— TODO refactor (proven elsewhere?).
lemma system-needed-asses-include-action-needed-asses-i:

fixes A B f
assumes A ⊆ B
shows fmrestrict-set A (fmrestrict-set B f ) = fmrestrict-set A f

proof −
{

let ?f ′=fmrestrict-set A f
let ?f ′′=fmrestrict-set A (fmrestrict-set B f )
assume C : ?f ′′ 6= ?f ′

then obtain v where 1 : fmlookup ?f ′′ v 6= fmlookup ?f ′ v
by (meson fmap-ext)

then have False
proof (cases v ∈ A)

case True
have fmlookup ?f ′′ v = fmlookup (fmrestrict-set B f ) v

using True fmlookup-restrict-set
by simp

moreover have fmlookup (fmrestrict-set B f ) v = fmlookup ?f ′ v
using True assms(1 )
by auto

ultimately show ?thesis
using 1
by argo

next
case False
then have fmlookup ?f ′ v = None fmlookup ?f ′′ v = None

using fmlookup-restrict-set
by auto+

then show ?thesis
using 1
by argo

qed
}
then show ?thesis

by blast
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qed

lemma system-needed-asses-include-action-needed-asses:
assumes (a ∈ PROB)
shows (action-needed-asses a (system-needed-asses PROB s) = action-needed-asses

a s)
proof −

{
have action-needed-vars a s ⊆ system-needed-vars PROB s

using action-needed-vars-subset-sys-needed-vars-subset[OF assms]
by simp

then have
fmrestrict-set (action-needed-vars a s) (fmrestrict-set (system-needed-vars

PROB s) s) =
fmrestrict-set (action-needed-vars a s) s

using system-needed-asses-include-action-needed-asses-i
by fast

}
moreover
{

have
action-needed-vars a (fmrestrict-set (system-needed-vars PROB s) s) = ac-

tion-needed-vars a s
using system-needed-asses-include-action-needed-asses-1 [OF assms]
by simp

then have fmrestrict-set (action-needed-vars a (fmrestrict-set (system-needed-vars
PROB s) s))

(fmrestrict-set (system-needed-vars PROB s) s) =
fmrestrict-set (action-needed-vars a s) s
←→ fmrestrict-set (action-needed-vars a s) (fmrestrict-set (system-needed-vars

PROB s) s) =
fmrestrict-set (action-needed-vars a s) s

by simp
}
ultimately show ?thesis

unfolding action-needed-asses-def system-needed-asses-def
by simp

qed

lemma system-needed-asses-submap:
system-needed-asses PROB s ⊆f s

proof −
{

fix x
assume P: x∈ dom (fmlookup (system-needed-asses PROB s))
then have system-needed-asses PROB s = (fmrestrict-set (system-needed-vars

PROB s) s)
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by (simp add: system-needed-asses-def )
then have fmlookup (system-needed-asses PROB s) x = fmlookup s x

using P
by (auto simp: fmdom ′-restrict-set-precise)

}
then have fmlookup (system-needed-asses PROB s) ⊆m fmlookup s

using map-le-def
by blast

then show ?thesis
using fmsubset.rep-eq
by fast

qed

lemma as-works-from-system-needed-asses:
assumes (as ∈ valid-plans PROB)
shows (exec-plan (system-needed-asses PROB s) as ⊆f exec-plan s as)
using assms
by (metis

action-needed-asses-def
as-needed-asses-submap-exec
fmsubset-restrict-set-mono system-needed-asses-def
system-needed-asses-include-action-needed-asses
system-needed-asses-include-action-needed-asses-1
system-needed-asses-submap
valid-plan-mems
)

end
theory ActionSeqProcess

imports Main HOL−Library.Sublist FactoredSystemLib FactoredSystem FSSub-
list
begin

4 Action Sequence Process
This section defines the preconditions satisfied predicate for action sequences
and shows relations between the execution of action sequnences and their
projections some. The preconditions satisfied predicate (‘sat_precond_as‘)
states that in each recursion step, the given state and the next action are
compatible, i.e. the actions preconditions are met by the state. This is used
as premise to propositions on projections of action sequences to avoid that an
invalid unprojected sequence is suddenly valid after projection. [Abdulaziz
et al., p.13]
fun sat-precond-as where

sat-precond-as s [] = True
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| sat-precond-as s (a # as) = (fst a ⊆f s ∧ sat-precond-as (state-succ s a) as)

— NOTE added lemma.
lemma sat-precond-as-pair :

sat-precond-as s ((p, e) # as) = (p ⊆f s ∧ sat-precond-as (state-succ s (p, e))
as)

by simp

— NOTE ’fun’ because of multiple defining equations.
fun rem-effectless-act where

rem-effectless-act [] = []
| rem-effectless-act (a # as) = (if fmdom ′ (snd a) 6= {}

then (a # rem-effectless-act as)
else rem-effectless-act as

)

— NOTE ’fun’ because of multiple defining equations.
fun no-effectless-act where

no-effectless-act [] = True
| no-effectless-act (a # as) = ((fmdom ′ (snd a) 6= {}) ∧ no-effectless-act as)

lemma graph-plan-lemma-4 :
fixes s s ′ as vs P
assumes (∀ a. (ListMem a as ∧ P a) −→ ((fmdom ′ (snd a) ∩ vs) = {}))

sat-precond-as s as
sat-precond-as s ′ (filter (λa. ¬(P a)) as) (fmrestrict-set vs s = fmrestrict-set vs

s ′)
shows
(fmrestrict-set vs (exec-plan s as)
= fmrestrict-set vs (exec-plan s ′ (filter (λ a. ¬(P a)) as)))

using assms
unfolding exec-plan.simps

proof(induction as arbitrary: s s ′ vs P)
case (Cons a as)
then have 1 : fst a ⊆f s sat-precond-as (state-succ s a) as

by auto
then have 2 : ∀ a ′. ListMem a ′ as ∧ P a ′ −→ fmdom ′ (snd a ′) ∩ vs = {}

by (simp add: Cons.prems(1 ) insert)
then show ?case
proof (cases P a)

case True
{

then have filter (λa. ¬(P a)) (a # as) = filter (λa. ¬(P a)) as
by simp
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then have sat-precond-as s ′ (filter (λa. ¬(P a)) as)
using Cons.prems(3 ) True
by argo

}
note a = this
{

then have ListMem a (a # as)
using elem
by fast

then have (fmdom ′ (snd a) ∩ vs) = {}
using Cons.prems(1 ) True
by blast

then have fmrestrict-set vs (state-succ s a) = fmrestrict-set vs s
using disj-imp-eq-proj-exec[symmetric]
by fast

}
then show ?thesis

unfolding exec-plan.simps
using Cons.prems(4 ) 1 (2 ) 2 True a Cons.IH [where s=state-succ s a and

s ′=s ′]
by fastforce

next
case False
{

have filter (λa. ¬(P a)) (a # as) = a # filter (λa. ¬(P a)) as
using False
by auto

then have fst a ⊆f s ′ sat-precond-as (state-succ s ′ a) (filter (λa. ¬(P a)) as)
using Cons.prems(3 ) False
by force+

}
note b = this
then have fmrestrict-set vs (state-succ s a) = fmrestrict-set vs (state-succ s ′ a)

using proj-eq-proj-exec-eq
using Cons.prems(4 ) 1 (1 )
by blast

then show ?thesis
unfolding exec-plan.simps
using 1 (2 ) 2 False b Cons.IH [where s=state-succ s a and s ′=state-succ s ′

a]
by force

qed
qed simp

— NOTE curried instead of triples.
— NOTE ’fun’ because of multiple defining equations.
fun rem-condless-act where

rem-condless-act s pfx-a [] = pfx-a
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| rem-condless-act s pfx-a (a # as) = (if fst a ⊆f exec-plan s pfx-a
then rem-condless-act s (pfx-a @ [a]) as
else rem-condless-act s pfx-a as

)

lemma rem-condless-act-pair :
rem-condless-act s pfx-a ((p, e) # as) = (if p ⊆f exec-plan s pfx-a

then rem-condless-act s (pfx-a @ [(p,e)]) as
else rem-condless-act s pfx-a as

)

(rem-condless-act s pfx-a [] = pfx-a)
by simp+

lemma exec-remcondless-cons:
fixes s h as pfx
shows

exec-plan s (rem-condless-act s (h # pfx) as)
= exec-plan (state-succ s h) (rem-condless-act (state-succ s h) pfx as)

by (induction as arbitrary: s h pfx) auto

lemma rem-condless-valid-1 :
fixes as s
shows (exec-plan s as = exec-plan s (rem-condless-act s [] as))
by (induction as arbitrary: s)
(auto simp add: exec-remcondless-cons FDOM-state-succ state-succ-def )

lemma rem-condless-act-cons:
fixes h ′ pfx as s
shows (rem-condless-act s (h ′ # pfx) as) = (h ′ # rem-condless-act (state-succ s

h ′) pfx as)
by (induction as arbitrary: h ′ pfx s) auto

lemma rem-condless-act-cons-prefix:
fixes h h ′ as as ′ s
assumes prefix (h ′ # as ′) (rem-condless-act s [h] as)
shows (
(prefix as ′ (rem-condless-act (state-succ s h) [] as))
∧ h ′ = h

)
using assms

proof (induction as arbitrary: h h ′ as ′ s)
case Nil
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then have rem-condless-act s [h] [] = [h]
by simp

then have 1 : as ′ = []
using Nil.prems
by simp

then have rem-condless-act (state-succ s h) [] [] = []
by simp

then have 2 : prefix as ′ (rem-condless-act (state-succ s h) [] [])
using 1
by simp

then have h = h ′

using Nil.prems
by force

then show ?case
using 2
by blast

next
case (Cons a as)
{

have rem-condless-act s [h] (a # as) = h # rem-condless-act (state-succ s h)
[] (a # as)

using rem-condless-act-cons
by fast

then have h = h ′

using Cons.prems
by simp

}
moreover {

obtain l where (h ′ # as ′) @ l = (h # rem-condless-act (state-succ s h) [] (a
# as))

using Cons.prems rem-condless-act-cons prefixE
by metis

then have prefix (as ′ @ l) (rem-condless-act (state-succ s h) [] (a # as))
by simp

then have prefix as ′ (rem-condless-act (state-succ s h) [] (a # as))
using append-prefixD
by blast

}
ultimately show ?case

by fastforce
qed

lemma rem-condless-valid-2 :
fixes as s
shows sat-precond-as s (rem-condless-act s [] as)
by (induction as arbitrary: s) (auto simp: rem-condless-act-cons)
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lemma rem-condless-valid-3 :
fixes as s
shows length (rem-condless-act s [] as) ≤ length as
by (induction as arbitrary: s)
(auto simp: rem-condless-act-cons le-SucI )

lemma rem-condless-valid-4 :
fixes as A s
assumes (set as ⊆ A)
shows (set (rem-condless-act s [] as) ⊆ A)
using assms
by (induction as arbitrary: A s) (auto simp: rem-condless-act-cons)

lemma rem-condless-valid-6 :
fixes as s P
shows length (filter P (rem-condless-act s [] as)) ≤ length (filter P as)

proof (induction as arbitrary: P s)
case (Cons a as)
then show ?case

by (simp add: rem-condless-act-cons le-SucI )
qed simp

lemma rem-condless-valid-7 :
fixes s P as as2
assumes (list-all P as ∧ list-all P as2 )
shows list-all P (rem-condless-act s as2 as)
using assms
by (induction as arbitrary: P s as2 ) auto

lemma rem-condless-valid-8 :
fixes s as
shows subseq (rem-condless-act s [] as) as
by (induction as arbitrary: s) (auto simp: sublist-cons-4 rem-condless-act-cons)

lemma rem-condless-valid-10 :
fixes PROB as
assumes as ∈ (valid-plans PROB)
shows (rem-condless-act s [] as ∈ valid-plans PROB)
using assms valid-plans-def rem-condless-valid-1 rem-condless-valid-4
by blast

lemma rem-condless-valid:
fixes as A s
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assumes (exec-plan s as = exec-plan s (rem-condless-act s [] as))
(sat-precond-as s (rem-condless-act s [] as))
(length (rem-condless-act s [] as) ≤ length as)
((set as ⊆ A) −→ (set (rem-condless-act s [] as) ⊆ A))

shows (∀P. (length (filter P (rem-condless-act s [] as)) ≤ length (filter P as)))
using rem-condless-valid-1 rem-condless-valid-2 rem-condless-valid-3 rem-condless-valid-6

rem-condless-valid-4
by fast

— NOTE type of ‘as‘ had to be fixed for lemma submap_imp_state_succ_submap.
lemma submap-sat-precond-submap:

fixes as :: ′a action list
assumes (s1 ⊆f s2 ) (sat-precond-as s1 as)
shows (sat-precond-as s2 as)
using assms

proof (induction as arbitrary: s1 s2 )
case (Cons a as)
{

have fst a ⊆f s1
using Cons.prems(2 )
by simp

then have fst a ⊆f s2
using Cons.prems(1 ) submap-imp-state-succ-submap-a
by blast

}
note 1 = this
{

have 2 : fst a ⊆f s1 sat-precond-as (state-succ s1 a) as
using Cons.prems(2 )
by simp+

then have state-succ s1 a ⊆f state-succ s2 a
using Cons.prems(1 ) submap-imp-state-succ-submap
by blast

then have 3 : sat-precond-as (state-succ s2 a) as
using 2 (2 ) Cons.IH
by blast

}
then show ?case

using 1
by auto

qed auto

— NOTE added lemma.
lemma submap-init-submap-exec-i:

fixes s1 s2
assumes (s1 ⊆f s2 ) (sat-precond-as s1 (a # as))
shows state-succ s1 a ⊆f state-succ s2 a
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using assms
proof (cases fst a ⊆f s1 )

case true: True
then show ?thesis
proof (cases fst a ⊆f s2 )

case True
then show ?thesis

unfolding state-succ-def
using assms submap-imp-state-succ-submap-b state-succ-def true
by auto

next
case False
then show ?thesis

using assms submap-imp-state-succ-submap-a true
by blast

qed
next

case false: False
then show ?thesis
proof (cases fst a ⊆f s2 )

case True
then show ?thesis

using assms false
by auto

next
case False
then show ?thesis

unfolding state-succ-def
using false assms
by simp

qed
qed

lemma submap-init-submap-exec:
fixes s1 s2
assumes (s1 ⊆f s2 ) (sat-precond-as s1 as)
shows (exec-plan s1 as ⊆f exec-plan s2 as)
using assms

proof (induction as arbitrary: s1 s2 )
case (Cons a as)
have state-succ s1 a ⊆f state-succ s2 a

using Cons.prems submap-init-submap-exec-i
by blast

moreover have sat-precond-as (state-succ s1 a) as
using Cons.prems(2 )
by simp

ultimately have exec-plan (state-succ s1 a) as ⊆f exec-plan (state-succ s2 a)
as

using Cons.IH
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by blast
then show ?case

by simp
qed simp

— NOTE type of ‘as‘ had to be fixed for ‘submap_sat_precond_submap‘.
lemma sat-precond-drest-sat-precond:

fixes vs s and as :: ′a action list
assumes sat-precond-as (fmrestrict-set vs s) as
shows (sat-precond-as s as)

proof −
have fmrestrict-set vs s ⊆f s

by simp
then show (sat-precond-as s as)

using assms submap-sat-precond-submap
by blast

qed

— NOTE name shortened to ’varset_action’.
definition varset-action where

varset-action a varset ≡ (fmdom ′ (snd a) ⊆ varset)
for a :: ′a action

lemma varset-action-pair : (varset-action (p, e) vs) = (fmdom ′ e ⊆ vs)
unfolding varset-action-def
by auto

lemma eq-effect-eq-vset:
fixes x y
assumes (snd x = snd y)
shows ((λa. varset-action a vs) x = (λa. varset-action a vs) y)
unfolding varset-action-def
using assms
by presburger

lemma rem-effectless-works-1 :
fixes s as
shows (exec-plan s as = exec-plan s (rem-effectless-act as))
by (induction as arbitrary: s) (auto simp: empty-eff-exec-eq)

lemma rem-effectless-works-2 :
fixes as s
assumes (sat-precond-as s as)
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shows (sat-precond-as s (rem-effectless-act as))
using assms
by (induction as arbitrary: s) (auto simp: empty-eff-exec-eq)

lemma rem-effectless-works-3 :
fixes as
shows length (rem-effectless-act as) ≤ length as
by (induction as) auto

lemma rem-effectless-works-4 :
fixes A as
assumes (set as ⊆ A)
shows (set (rem-effectless-act as) ⊆ A)
using assms
by (induction as arbitrary: A) auto

lemma rem-effectless-works-4 ′:
fixes A as
assumes (as ∈ valid-plans A)
shows (rem-effectless-act as ∈ valid-plans A)
using assms
by (induction as arbitrary: A) (auto simp: valid-plans-def )

— NOTE added lemma.
lemma rem-effectless-works-5-i:

shows subseq (rem-effectless-act as) as
by (induction as) auto

lemma rem-effectless-works-5 :
fixes P as
shows length (filter P (rem-effectless-act as)) ≤ length (filter P as)
using rem-effectless-works-5-i sublist-imp-len-filter-le
by blast

lemma rem-effectless-works-6 :
fixes as
shows no-effectless-act (rem-effectless-act as)
by (induction as) auto

lemma rem-effectless-works-7 :
fixes as
shows no-effectless-act as = list-all (λa. fmdom ′ (snd a) 6= {}) as
by (induction as) auto
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lemma rem-effectless-works-8 :
fixes P as
assumes (list-all P as)
shows list-all P (rem-effectless-act as)
using assms
by (induction as arbitrary: P) auto

— TODO move and replace ‘rem_effectless_works_5_i‘.
lemma rem-effectless-works-9 :

fixes as
shows subseq (rem-effectless-act as) as
by (induction as) auto

lemma rem-effectless-works-10 :
fixes as P
assumes (no-effectless-act as)
shows (no-effectless-act (filter P as))
using assms
by (auto simp: rem-effectless-works-7 ) (metis Ball-set filter-set member-filter)

lemma rem-effectless-works-11 :
fixes as1 as2
assumes subseq as1 (rem-effectless-act as2 )
shows (subseq as1 as2 )
using assms rem-effectless-works-9 sublist-trans
by blast

lemma rem-effectless-works-12 :
fixes as1 as2
shows (no-effectless-act (as1 @ as2 )) = (no-effectless-act as1 ∧ no-effectless-act(as2 ))
by (induction as1 ) auto

— TODO refactor into ’List_Utils.thy’.
lemma rem-effectless-works-13-i:

fixes x l
assumes ListMem x l list-all P l
shows P x
using assms proof (induction l)
case (insert x xs y)
have 1 : P y

using insert.prems list.pred-inject
by simp
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then have 2 : list-all P l
using assms(2 ) list.pred-inject
by force

then show ?case
using 1

proof (cases y = x)
case False
then show ?thesis

using insert 2
by fastforce

qed simp
qed simp

lemma rem-effectless-works-13 :
fixes as1 as2
assumes (subseq as1 as2 ) (no-effectless-act as2 )
shows (no-effectless-act as1 )
using assms

proof (induction as1 arbitrary: as2 )
case (Cons a as1 )
{

have subseq as1 as2
using Cons.prems(1 ) sublist-CONS1-E
by metis

then have no-effectless-act as1
using Cons.prems(2 ) Cons.IH
by blast

}
moreover
{

have list-all (λa. fmdom ′ (snd a) 6= {}) as2
using Cons.prems(2 ) rem-effectless-works-7
by blast

moreover have ListMem a as2
using Cons.prems(1 ) sublist-MEM
by fast

ultimately have fmdom ′ (snd a) 6= {}
using rem-effectless-works-13-i
by fastforce

}
ultimately show ?case

by simp
qed simp

lemma rem-effectless-works-14 :
fixes PROB as
shows exec-plan s as = exec-plan s (rem-effectless-act as)
using rem-effectless-works-1
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by blast

lemma rem-effectless-works:
fixes s A as
assumes (exec-plan s as = exec-plan s (rem-effectless-act as))
(sat-precond-as s as −→ sat-precond-as s (rem-effectless-act as))
(length (rem-effectless-act as) ≤ length as)
((set as ⊆ A) −→ (set (rem-effectless-act as) ⊆ A))
(no-effectless-act (rem-effectless-act as))

shows (∀P. length (filter P (rem-effectless-act as)) ≤ length (filter P as))
using assms rem-effectless-works-5
by blast

— NOTE name shortened.
definition rem-effectless-act-set where

rem-effectless-act-set A ≡ {a ∈ A. fmdom ′ (snd a) 6= {}}

lemma rem-effectless-act-subset-rem-effectless-act-set-thm:
fixes as A
assumes (set as ⊆ A)
shows (set (rem-effectless-act as) ⊆ rem-effectless-act-set A)
unfolding rem-effectless-act-set-def
using assms
by (induction as) auto

lemma rem-effectless-act-set-no-empty-actions-thm:
fixes A
shows rem-effectless-act-set A ⊆ {a. fmdom ′ (snd a) 6= {}}
unfolding rem-effectless-act-set-def
by blast

— NOTE proof required additional lemmas ’rem_effectless_works_7’ and ’rem_cond-
less_valid_7’.
lemma rem-condless-valid-9 :

fixes s as
assumes no-effectless-act as
shows no-effectless-act (rem-condless-act s [] as)
using assms

proof (induction as arbitrary: s)
case (Cons a as)
then show ?case

using Cons
proof (cases fst a ⊆f exec-plan s [])

case True
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then have rem-condless-act s [] (a # as) = a # rem-condless-act (state-succ
s a) [] as

using rem-condless-act-cons
by fastforce

moreover
{

have fmdom ′ (snd a) 6= {} no-effectless-act as
using Cons.prems
by simp+

then have no-effectless-act (rem-condless-act (state-succ s a) [] as)
using Cons.IH
by blast

}
moreover have no-effectless-act [a]

using Cons.prems
by simp

ultimately show ?thesis
using rem-effectless-works-12
by force

qed simp
qed simp

lemma graph-plan-lemma-17 :
fixes as-1 as-2 as s
assumes (as-1 @ as-2 = as) (sat-precond-as s as)
shows ((sat-precond-as s as-1 ) ∧ sat-precond-as (exec-plan s as-1 ) as-2 )
using assms

proof (induction as arbitrary: as-1 as-2 s)
case (Cons a as)
then show ?case proof(cases as-1 )

case Nil
then show ?thesis

using Cons.prems(1 , 2 )
by auto

next
case (Cons a list)
then show ?thesis

using Cons.prems(1 , 2 ) Cons.IH hd-append2 list.distinct(1 ) list.sel(1 , 3 )
tl-append2

by auto
qed

qed auto

lemma nempty-eff-every-nempty-act:
fixes as
assumes (no-effectless-act as) (∀ x. ¬(fmdom ′ (snd (f x)) = {}))
shows (list-all (λa. ¬(f a = (fmempty, fmempty))) as)
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using assms
proof (induction as arbitrary: f )

case (Cons a as)
then show ?case using fmdom ′-empty snd-conv

by (metis (mono-tags, lifting) Ball-set)
qed simp

lemma empty-replace-proj-dual7 :
fixes s as as ′

assumes sat-precond-as s (as @ as ′)
shows sat-precond-as (exec-plan s as) as ′

using assms
by (induction as arbitrary: as ′ s) auto

lemma not-vset-not-disj-eff-prod-dom-diff :
fixes PROB a vs
assumes (a ∈ PROB) (¬varset-action a vs)
shows ¬((fmdom ′ (snd a) ∩ ((prob-dom PROB) − vs)) = {})

proof −
have 1 : fmdom ′ (snd a) 6= {}

using assms(2 ) varset-action-def
by blast

{
have fmdom ′ (snd a) ⊆ prob-dom PROB

using assms(1 ) FDOM-eff-subset-prob-dom-pair
by metis

then have
fmdom ′ (snd a) ∩ (prob-dom PROB − vs)
= (fmdom ′ (snd a)) − (fmdom ′ (snd a) ∩ vs)
using Diff-Int-distrib
by blast

}
note 2 = this
then show ?thesis

using 1 2
proof (cases fmdom ′ (snd a) ∩ vs = {})

case False
{

have ¬(fmdom ′ (snd a) ⊆ vs)
using assms(2 ) varset-action-def
by fast

then have (fmdom ′ (snd a) ∩ vs 6= fmdom ′ (snd a))
by auto

then have (fmdom ′ (snd a) ∩ vs) ⊂ fmdom ′ (snd a)
by blast

}
then show ?thesis using 2
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by auto
qed force

qed

lemma vset-disj-dom-eff-diff :
fixes PROB a vs
assumes (varset-action a vs)
shows (((fmdom ′ (snd a)) ∩ (prob-dom PROB − vs)) = {})
using assms
unfolding varset-action-def
by auto

lemma vset-diff-disj-eff-vs:
fixes PROB a vs
assumes (varset-action a (prob-dom PROB − vs))
shows (((fmdom ′ (snd a)) ∩ vs) = {})
using assms
unfolding varset-action-def
by blast

lemma vset-nempty-efff-not-disj-eff-vs:
fixes PROB a vs
assumes (varset-action a vs) (fmdom ′ (snd a) 6= {})
shows ¬((fmdom ′ (snd a) ∩ vs)) = {}
using assms
unfolding varset-action-def
by auto

lemma vset-disj-eff-diff :
fixes s a vs
assumes (varset-action a vs)
shows ((fmdom ′ (snd a) ∩ (s − vs)) = {})

proof −
have 1 : fmdom ′ (snd a) ⊆ vs

using assms
by (simp add: varset-action-def )

moreover {
have fmdom ′ (snd a) ∩ (s − vs) = (fmdom ′ (snd a) ∩ s) − (fmdom ′ (snd a)

∩ vs)
using Diff-Int-distrib
by fast

also have . . . = (fmdom ′ (snd a) ∩ s) − (fmdom ′ (snd a))
using 1
by auto

finally have fmdom ′ (snd a) ∩ (s − vs) = {}
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by simp
}
ultimately show ?thesis

by blast
qed

— NOTE added lemma.
lemma list-all-list-mem:

fixes P and l :: ′a list
shows list-all P l ←→ (∀ e. ListMem e l −→ P e)

proof −
{

assume P1 : list-all P l
{

fix e
assume P11 : ListMem e l
then have P e

using P1 P11
proof (induction l arbitrary: P)

case (insert x xs y)
then show ?case proof (cases y = x)

case False
then have list-all P xs ListMem x xs

using insert.prems(1 ) insert.hyps
by fastforce+

then show ?thesis
using insert.IH
by blast

qed simp
qed simp

}
}
moreover
{

assume P2 : (∀ e. ListMem e l −→ P e)
then have list-all P l
proof(induction l arbitrary: P)

case (Cons a l)
{

have ∀ e. ListMem e l −→ P e
using Cons.prems insert
by fast

then have list-all P l
using Cons.IH
by blast

}
moreover have P a

using Cons.prems elem
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by fast
ultimately show ?case

by simp
qed simp

}
ultimately show ?thesis

by blast
qed

lemma every-vset-imp-drestrict-exec-eq:
fixes PROB vs as s
assumes (list-all (λa. varset-action a ((prob-dom PROB) − vs)) as)
shows (fmrestrict-set vs s = fmrestrict-set vs (exec-plan s as))

proof −
have 1 : ∀ e. ListMem e as −→ varset-action e ((prob-dom PROB) − vs)

using assms list-all-list-mem
by metis

{
fix a
assume ListMem a as
then have varset-action a (prob-dom PROB − vs)

using 1
by blast

then have disjnt (fmdom ′ (snd a)) vs
unfolding disjnt-def
using vset-diff-disj-eff-vs
by blast

}
then have list-all (λa. disjnt (fmdom ′ (snd a)) vs) as

using list-all-list-mem
by blast

then have list-all (λa. disjnt (fmdom ′ (snd a)) vs) (rem-condless-act s [] as)
by (simp add: rem-condless-valid-7 )

then have exec-plan s as = exec-plan s (rem-condless-act s [] as)
using rem-condless-valid-1
by blast

then havesat-precond-as s (rem-condless-act s [] as)
using rem-condless-valid-2
by blast

then have sat-precond-as s [a←as . ¬ varset-action a (prob-dom PROB − vs)]
by (simp add: 1 ListMem-iff )

then have fmrestrict-set vs s = fmrestrict-set vs s by simp
then have

fmrestrict-set vs (exec-plan s as) =
fmrestrict-set vs (exec-plan s [a←as . ¬ varset-action a (prob-dom PROB −

vs)])

using 1 graph-plan-lemma-4 [where
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s = s and s ′ = s and as = rem-condless-act s [] as and vs = vs and
P = λa. varset-action a (prob-dom PROB − vs)
] filter-empty-every-not vset-diff-disj-eff-vs 1disjoint-effects-no-effects

exec-plan.simps(1 ) fmdom ′-restrict-set-precise list-all-list-mem
by smt

then have list-all (λa. varset-action a (prob-dom PROB − vs)) (rem-condless-act
s [] as)

using assms(1 ) rem-condless-valid-7 list.pred-inject(1 )
by blast

then have filter (λa. ¬(varset-action a (prob-dom PROB − vs))) (rem-condless-act
s [] as) = []

using filter-empty-every-not
by fastforce

then have
sat-precond-as s (filter (λa. ¬(varset-action a (prob-dom PROB − vs)))
(rem-condless-act s []as))

by fastforce
then show ?thesis
using 1 vset-diff-disj-eff-vs disjoint-effects-no-effects fmdom ′-restrict-set-precise
by metis

qed

lemma no-effectless-act-works:
fixes as
assumes (no-effectless-act as)
shows (filter (λa. ¬(fmdom ′ (snd a) = {})) as = as)
using assms
by (simp add: Ball-set rem-effectless-works-7 )

lemma varset-act-diff-un-imp-varset-diff :
fixes a vs vs ′ vs ′′

assumes (varset-action a (vs ′′ − (vs ′ ∪ vs)))
shows (varset-action a (vs ′′ − vs))
using assms
unfolding varset-action-def
by blast

lemma vset-diff-union-vset-diff :
fixes s vs vs ′ a
assumes (varset-action a (s − (vs ∪ vs ′)))
shows (varset-action a (s − vs ′))
using assms
unfolding varset-action-def
by blast
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lemma valid-filter-vset-dom-idempot:
fixes PROB as
assumes (as ∈ valid-plans PROB)
shows (filter (λa. varset-action a (prob-dom PROB)) as = as)
using assms

proof (induction as)
case (Cons a as)
{

have as ∈ valid-plans PROB
using Cons.prems valid-plan-valid-tail
by fast

then have (filter (λa. varset-action a (prob-dom PROB)) as = as)
using Cons.IH
by blast

}
moreover {

have a ∈ PROB
using Cons.prems valid-plan-valid-head
by fast

then have varset-action a (prob-dom PROB)
unfolding varset-action-def
using FDOM-eff-subset-prob-dom-pair
by metis

}
ultimately show ?case

by simp
qed fastforce

lemma n-replace-proj-le-n-as-1 :
fixes a vs vs ′

assumes (vs ⊆ vs ′) (varset-action a vs)
shows (varset-action a vs ′)
using assms
unfolding varset-action-def
by simp

lemma sat-precond-as-pfx:
fixes s
assumes (sat-precond-as s (as @ as ′))
shows (sat-precond-as s as)
using assms

proof (induction as arbitrary: s as ′)
case (Cons a as)
have fst a ⊆f s

using Cons.prems
by fastforce
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moreover have sat-precond-as (state-succ s a) (as @ as ′)
using Cons.prems
by simp

ultimately show ?case
using Cons.IH sat-precond-as.simps(2 )
by blast

qed simp

end
theory RelUtils

imports Main HOL.Transitive-Closure
begin

— NOTE added definition.
definition reflexive where

reflexive R ≡ ∀ x. R x x

— NOTE translation of ’TC’ in relationScript.sml:69.
— TODO can we replace this with something from ’HOL.Transitive_Closure’?
definition TC where

TC R a b ≡ (∀P. (∀ x y. R x y −→ P x y) ∧ (∀ x y z. P x y ∧ P y z −→ P x z)
−→ P a b)

— NOTE adapts transitive closure definitions of Isabelle and HOL4.
lemma TC-equiv-tranclp: TC R a b ←→ (R++ a b)
proof −

{
have TC R a b =⇒ (R++ a b)

unfolding TC-def
using tranclp.r-into-trancl tranclp-trans
by metis

}
moreover
{

have (R++ a b) =⇒ TC R a b proof(induction rule: tranclp.induct)
case (r-into-trancl a b)
then show ?case by(subst TC-def ; auto)

next
case (trancl-into-trancl a b c)
then show ?case unfolding TC-def by blast

qed
}
ultimately show ?thesis

by fast
qed

lemma TC-IMP-NOT-TC-CONJ-1 :
fixes R P and x y
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assumes ¬(R++ x y)
shows ¬((λx y. R x y ∧ P x y)++ x y)

proof −
from assms(1 ) have 1 : ¬TC R x y

using TC-equiv-tranclp
by fast

{
assume P: ¬TC R x y
then obtain P where a: (∀ x y. R x y −→ P x y) ∧ (∀ x y z. P x y ∧ P y z

−→ P x z) −→ ¬P x y
unfolding TC-def
by blast

{
assume P-1 : (∀ x y. R x y −→ P x y) (∀ x y z. P x y ∧ P y z −→ P x z)
then have (∀ x y. R x y ∧ P x y −→ P x y) (∀ x y z. P x y ∧ P y z −→ P x

z)
by blast+

moreover from a and P-1 have ¬P x y
by blast

then have ∃P. (∀ x y. R x y ∧ P x y −→ P x y) ∧ (∀ x y z . P x y ∧ P y z
−→ P x z) −→ ¬P x y

by blast
}
then have ∃P.
(∀ x y. R x y ∧ P x y −→ P x y) ∧ (∀ x y z. P x y ∧ P y z −→ P x z) −→ ¬P

x y
by blast

}
note 2 = this
{

from 1 2 have ∃P.
(∀ x y. R x y ∧ P x y −→ P x y) ∧ (∀ x y z. P x y ∧ P y z −→ P x z) −→ ¬P

x y
by blast

then have ¬TC (λx y. R x y ∧ P x y) x y
unfolding TC-def
by (metis assms tranclp.r-into-trancl tranclp-trans)

then have ¬(λx y. R x y ∧ P x y)++ x y
using TC-equiv-tranclp
by fast

}
then show ?thesis

by blast
qed

lemma TC-IMP-NOT-TC-CONJ :
fixes R R ′ P x y
assumes ∀ x y. P x y −→ R ′ x y −→ R x y ¬R++ x y
shows ¬(λx y. R ′ x y ∧ P x y)++ x y
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proof −
from assms(2 )
have 1 : ¬(λx y. R x y ∧ P x y)++ x y

using TC-IMP-NOT-TC-CONJ-1 [where P=λx y. P x y]
by blast

{
{

from 1 have ¬TC (λx y. R x y ∧ P x y) x y
using TC-equiv-tranclp
by fast

then have ∃Pa.
(∀ x y. R x y ∧ P x y −→ Pa x y) ∧ (∀ x y z. Pa x y ∧ Pa y z −→ Pa x z)
−→ ¬Pa x y

unfolding TC-def
by blast

}
then obtain Pa where a:
(∀ x y. R x y ∧ P x y −→ Pa x y) ∧ (∀ x y z. Pa x y ∧ Pa y z −→ Pa x z)

−→ ¬Pa x y
by blast

then have ¬(∀Pa. (∀ x y. R ′ x y ∧ P x y −→ Pa x y) ∧ (∀ x y z . Pa x y ∧ Pa
y z −→ Pa x z) −→ Pa x y)

by (metis assms(1 ) assms(2 ) tranclp.r-into-trancl tranclp-trans)
then have ¬TC (λx y. R ′ x y ∧ P x y) x y

unfolding TC-def
by blast

}
then show ?thesis

using TC-equiv-tranclp
by fast

qed

— NOTE added lemma (relationScript.sml:314)
lemma TC-INDUCT :

fixes R :: ′a ⇒ ′a ⇒ bool and P
assumes (∀ x y. R x y −→ P x y) (∀ x y z. P x y ∧ P y z −→ P x z)
shows ∀ u v. (TC R) u v −→ P u v
using assms
unfolding TC-def
by metis

lemma REFL-IMP-3-CONJ-1 :
fixes R P x y
assumes ((λx y. R x y ∧ P x y)++ x y)
shows R++ x y
using assms

proof −
show ?thesis

using assms TC-IMP-NOT-TC-CONJ-1
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by fast
qed

lemma REFL-IMP-3-CONJ :
fixes R ′

assumes reflexive R ′

shows (∀P x y.
(R ′++ x y) −→ ( ((λx y. R ′ x y ∧ P x ∧ P y)++ x y) ∨ (∃ z. ¬P z ∧ R ′++ x z

∧ R ′++ z y)))
proof −

{
fix P
{

have ∀ x y. R ′ x y −→ (λx y. R ′ x y ∧ P x ∧ P y)++ x y ∨ (∃ z. ¬ P z ∧
R ′++ x z ∧ R ′++ z y)

proof (auto)
fix x y
assume P: R ′ x y ∀ z. R ′++ x z −→ P z ∨ ¬ R ′++ z y
then show (λx y. R ′ x y ∧ P x ∧ P y)++ x y
proof −

have a:
∧

a. ¬ R ′ x a ∨ ¬ R ′ a y ∨ P a
using P(2 )
by blast

have reflexive R ′

by (meson assms)
then show ?thesis

using a P(1 )
by (simp add: reflexive-def tranclp.r-into-trancl)

qed
qed

}
moreover {

have ∀ x y z. ((λx y. R ′ x y ∧ P x ∧ P y)++ x y ∨ (∃ z. ¬ P z ∧ R ′++ x z ∧
R ′++ z y)) ∧

((λx y. R ′ x y ∧ P x ∧ P y)++ y z ∨ (∃ za. ¬ P za ∧ R ′++ y za ∧ R ′++

za z)) −→
(λx y. R ′ x y ∧ P x ∧ P y)++ x z ∨ (∃ za. ¬ P za ∧ R ′++ x za ∧ R ′++ za

z)
proof (auto)

fix x y z za
assume P: ∀ za. R ′++ x za −→ P za ∨ ¬ R ′++ za z (λx y. R ′ x y ∧ P x ∧

P y)++ x y
¬ P za R ′++ y za R ′++ za z

then show (λx y. R ′ x y ∧ P x ∧ P y)++ x z
using P
by (meson P rtranclp-tranclp-tranclp TC-IMP-NOT-TC-CONJ-1 tran-

clp-into-rtranclp)
next

fix x y z za
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assume P: ∀ za. R ′++ x za −→ P za ∨ ¬ R ′++ za z ¬ P za R ′++ x za R ′++

za y
(λx y. R ′ x y ∧ P x ∧ P y)++ y z

then show (λx y. R ′ x y ∧ P x ∧ P y)++ x z
by (meson P TC-IMP-NOT-TC-CONJ-1 tranclp-trans)

qed
}
ultimately have ∀ u v.

TC R ′ u v
−→ (λx y. R ′ x y ∧ P x ∧ P y)++ u v ∨ (∃ z. ¬ P z ∧ R ′++ u z ∧ R ′++ z v)
using TC-INDUCT [where R=R ′ and

P=λx y. ( ((λx y. R ′ x y ∧ P x ∧ P y)++ x y) ∨ (∃ z. ¬P z ∧ R ′++ x z ∧
R ′++ z y))]

by fast
}
then show ?thesis

by (simp add: TC-equiv-tranclp)
qed

lemma REFL-TC-CONJ :
fixes R R ′ :: ′a ⇒ ′a ⇒ bool and P x y
assumes reflexive R ′ ∀ x y. P x ∧ P y −→ (R ′ x y −→ R x y) ¬(R++ x y)
shows (¬(R ′++ x y) ∨ (∃ z. ¬P z ∧ (R ′)++ x z ∧ (R ′)++ z y))
using assms

proof (cases ¬R ′++ x y)
next

case False
then show ?thesis using assms

TC-IMP-NOT-TC-CONJ [where P=λx y. P x ∧ P y]
REFL-IMP-3-CONJ [of R ′]

by blast
qed blast

— NOTE This is not a trivial translation: ’TC_INDUCT’ in relationScript.sml:314
differs significantly from ’trancl_induct’ and ’trancl_trans_induct’ in Transitive_Clo-
sure:375, 391
lemma TC-CASES1-NEQ:

fixes R x z
assumes R++ x z
shows R x z ∨ (∃ y :: ′a. ¬(x = y) ∧ ¬(y = z) ∧ R x y ∧ R++ y z)

proof −
{

fix u v
have ∀ x y. R x y −→ R x y ∨ (∃ ya. x 6= ya ∧ ya 6= y ∧ R x ya ∧ R++ ya y)

by meson
moreover have ∀ x y z.
(R x y ∨ (∃ ya. x 6= ya ∧ ya 6= y ∧ R x ya ∧ R++ ya y))
∧ (R y z ∨ (∃ ya. y 6= ya ∧ ya 6= z ∧ R y ya ∧ R++ ya z))
−→ R x z ∨ (∃ y. x 6= y ∧ y 6= z ∧ R x y ∧ R++ y z)
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by (metis tranclp.r-into-trancl tranclp-trans)
ultimately have TC R u v −→ R u v ∨ (∃ y. u 6= y ∧ y 6= v ∧ R u y ∧ R++

y v)
using TC-INDUCT [where P=λx z. R x z ∨ (∃ y :: ′a. ¬(x = y) ∧ ¬(y = z)

∧ R x y ∧ R++ y z)]
by blast

}
then show ?thesis

using assms TC-equiv-tranclp
by (simp add: TC-equiv-tranclp)

qed
end
theory Dependency

imports Main HOL−Library.Finite-Map FactoredSystem ActionSeqProcess Re-
lUtils
begin

5 Dependency
State variable dependency analysis may be used to find structure in a fac-
tored system and find useful projections, for example on variable sets which
are closed under mutual dependency. [Abdulaziz et al., p.13]

In the following the dependency predicate (‘dep‘) is formalized and some
dependency related propositions are proven. Dependency between variables
‘v1‘, ‘v2‘ w.r.t to an action set δ is given if one of the following holds: (1)
‘v1‘ and ‘v2‘ are equal (2) an action (p, e) ∈ δ exists where v1 ∈ D p and
v2 ∈ D e (meaning that it is a necessary condition that ‘p v1‘ is given if
the action has effect ‘e v2‘). (3) or, an action (p, e) ∈ δ exists s.t. v1 v2 ∈
D e This notion is extended to sets of variables ‘vs1‘, ‘vs2‘ (‘dep_var_set‘):
‘vs1‘ and ‘vs2‘ are dependent iff ‘vs1‘ and ‘vs2‘ are disjoint and if dependent
‘v1‘, ‘v2‘ exist where v1 ∈ vs1, v2 ∈ vs2. [Abdulaziz et al., Definition 7,
p.13][Abdulaziz et al., HOL4 Definition 5, p.14]

5.1 Dependent Variables and Variable Sets
definition dep where

dep PROB v1 v2 ≡ (∃ a.
a ∈ PROB
∧ (
((v1 ∈ fmdom ′ (fst a)) ∧ (v2 ∈ fmdom ′ (snd a)))
∨ ((v1 ∈ fmdom ′ (snd a) ∧ v2 ∈ fmdom ′ (snd a)))

)
)
∨ (v1 = v2 )

— NOTE name shortened to ’dep_var_set’.
definition dep-var-set where
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dep-var-set PROB vs1 vs2 ≡ (disjnt vs1 vs2 ) ∧
(∃ v1 v2 . (v1 ∈ vs1 ) ∧ (v2 ∈ vs2 ) ∧ (dep PROB v1 v2 )

)

lemma dep-var-set-self-empty:
fixes PROB vs
assumes dep-var-set PROB vs vs
shows (vs = {})
using assms
unfolding dep-var-set-def

proof −
obtain v1 v2 where

v1 ∈ vs v2 ∈ vs disjnt vs vs dep PROB v1 v2
using assms
unfolding dep-var-set-def
by blast

then show ?thesis
by force

qed

lemma DEP-REFL:
fixes PROB
shows reflexive (λv v ′. dep PROB v v ′)
unfolding dep-def reflexive-def
by presburger

— NOTE added lemma.
lemma NEQ-DEP-IMP-IN-DOM-i:

fixes a v
assumes a ∈ PROB v ∈ fmdom ′ (fst a)
shows v ∈ prob-dom PROB

proof −
have v ∈ fmdom ′ (fst a)

using assms(2 )
by simp

moreover have fmdom ′ (fst a) ⊆ prob-dom PROB
using assms(1 )
unfolding prob-dom-def action-dom-def
using case-prod-beta ′

by auto
ultimately show ?thesis

by blast
qed

— NOTE added lemma.
lemma NEQ-DEP-IMP-IN-DOM-ii:
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fixes a v
assumes a ∈ PROB v ∈ fmdom ′ (snd a)
shows v ∈ prob-dom PROB

proof −
have v ∈ fmdom ′ (snd a)

using assms(2 )
by simp

moreover have fmdom ′ (snd a) ⊆ prob-dom PROB
using assms(1 )
unfolding prob-dom-def action-dom-def
using case-prod-beta ′

by auto
ultimately show ?thesis

by blast
qed

lemma NEQ-DEP-IMP-IN-DOM :
fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set and v v ′

assumes ¬(v = v ′) (dep PROB v v ′)
shows (v ∈ (prob-dom PROB) ∧ v ′ ∈ (prob-dom PROB))
using assms
unfolding dep-def
using FDOM-pre-subset-prob-dom-pair FDOM-eff-subset-prob-dom-pair

proof −
obtain a where 1 :

a ∈ PROB
(v ∈ fmdom ′ (fst a) ∧ v ′ ∈ fmdom ′ (snd a) ∨ v ∈ fmdom ′ (snd a) ∧ v ′ ∈ fmdom ′

(snd a))
using assms
unfolding dep-def
by blast

then consider
(i) v ∈ fmdom ′ (fst a) ∧ v ′ ∈ fmdom ′ (snd a)
| (ii) v ∈ fmdom ′ (snd a) ∧ v ′ ∈ fmdom ′ (snd a)
by blast

then show ?thesis
proof (cases)

case i
then have v ∈ fmdom ′ (fst a) v ′ ∈ fmdom ′ (snd a)

by simp+
then have v ∈ prob-dom PROB v ′ ∈ prob-dom PROB

using 1 NEQ-DEP-IMP-IN-DOM-i NEQ-DEP-IMP-IN-DOM-ii
by metis+

then show ?thesis
by simp

next
case ii
then have v ∈ fmdom ′ (snd a) v ′ ∈ fmdom ′ (snd a)

by simp+
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then have v ∈ prob-dom PROB v ′ ∈ prob-dom PROB
using 1 NEQ-DEP-IMP-IN-DOM-ii
by metis+

then show ?thesis
by simp

qed
qed

lemma dep-sos-imp-mem-dep:
fixes PROB S vs
assumes (dep-var-set PROB (

⋃
S) vs)

shows (∃ vs ′. vs ′ ∈ S ∧ dep-var-set PROB vs ′ vs)
proof −

obtain v1 v2 where obtain-v1-v2 : v1 ∈
⋃

S v2 ∈ vs disjnt (
⋃

S) vs dep PROB
v1 v2

using assms dep-var-set-def [of PROB
⋃

S vs]
by blast

moreover
{

fix vs ′

assume vs ′ ∈ S
moreover have vs ′ ⊆ (

⋃
S)

using calculation Union-upper
by blast

ultimately have disjnt vs ′ vs
using obtain-v1-v2 (3 ) disjnt-subset1
by blast

}
ultimately show ?thesis

unfolding dep-var-set-def
by blast

qed

lemma dep-union-imp-or-dep:
fixes PROB vs vs ′ vs ′′

assumes (dep-var-set PROB vs (vs ′ ∪ vs ′′))
shows (dep-var-set PROB vs vs ′ ∨ dep-var-set PROB vs vs ′′)

proof −
obtain v1 v2 where

obtain-v1-v2 : v1 ∈ vs v2 ∈ vs ′ ∪ vs ′′ disjnt vs (vs ′ ∪ vs ′′) dep PROB v1 v2
using assms dep-var-set-def [of PROB vs (vs ′ ∪ vs ′′)]
by blast

— NOTE The proofs for the cases introduced here yield the goal’s left and
right side respectively.

consider (i) v2 ∈ vs ′ | (ii) v2 ∈ vs ′′

using obtain-v1-v2 (2 )
by blast
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then show ?thesis
proof (cases)

case i
have vs ′ ⊆ vs ′ ∪ vs ′′

by auto
moreover have disjnt (vs ′ ∪ vs ′′) vs

using obtain-v1-v2 (3 ) disjnt-sym
by blast

ultimately have disjnt vs vs ′

using disjnt-subset1 disjnt-sym
by blast

then have dep-var-set PROB vs vs ′

unfolding dep-var-set-def
using obtain-v1-v2 (1 , 4 ) i
by blast

then show ?thesis
by simp

next
case ii
then have vs ′′ ⊆ vs ′ ∪ vs ′′

by simp
moreover have disjnt (vs ′ ∪ vs ′′) vs

using obtain-v1-v2 (3 ) disjnt-sym
by fast

ultimately have disjnt vs vs ′′

using disjnt-subset1 disjnt-sym
by metis

then have dep-var-set PROB vs vs ′′

unfolding dep-var-set-def
using obtain-v1-v2 (1 , 4 ) ii
by blast

then show ?thesis
by simp

qed
qed

— NOTE This is symmetrical to ‘dep_sos_imp_mem_dep‘ w.r.t to ‘vs‘ and
⋃

S.
lemma dep-biunion-imp-or-dep:

fixes PROB vs S
assumes (dep-var-set PROB vs (

⋃
S))

shows (∃ vs ′. vs ′ ∈ S ∧ dep-var-set PROB vs vs ′)
proof −

obtain v1 v2 where obtain-v1-v2 : v1 ∈ vs v2 ∈ (
⋃

S) disjnt vs (
⋃

S) dep PROB
v1 v2

using assms dep-var-set-def [of PROB vs
⋃

S ]
by blast

moreover
{
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fix vs ′

assume vs ′ ∈ S
then have vs ′ ⊆ (

⋃
S)

using calculation Union-upper
by blast

moreover have disjnt (
⋃

S) vs
using obtain-v1-v2 (3 ) disjnt-sym
by blast

ultimately have disjnt vs vs ′

using obtain-v1-v2 (3 ) disjnt-subset1 disjnt-sym
by metis

}
ultimately show ?thesis

unfolding dep-var-set-def
by blast

qed

5.2 Transitive Closure of Dependent Variables and Variable
Sets

definition dep-tc where
dep-tc PROB = TC (λv1 ′ v2 ′. dep PROB v1 ′ v2 ′)

— NOTE type of ‘PROB‘ had to be fixed for MP on ‘NEQ_DEP_IMP_IN_DOM‘.
lemma dep-tc-imp-in-dom:

fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set and v1 v2
assumes ¬(v1 = v2 ) (dep-tc PROB v1 v2 )
shows (v1 ∈ prob-dom PROB)

proof −
have TC (dep PROB) v1 v2

using assms(2 )
unfolding dep-tc-def
by simp

then have dep PROB v1 v2 ∨ (∃ y. v1 6= y ∧ y 6= v2 ∧ dep PROB v1 y ∧ TC
(dep PROB) y v2 )

using TC-CASES1-NEQ[where R = (λv1 ′ v2 ′. dep PROB v1 ′ v2 ′) and x =
v1 and z = v2 ]

by (simp add: TC-equiv-tranclp)
— NOTE Split on the disjunction yielded by the previous step.

then consider
(i) dep PROB v1 v2
| (ii) (∃ y. v1 6= y ∧ y 6= v2 ∧ dep PROB v1 y ∧ TC (dep PROB) y v2 )
by fast

then show ?thesis
proof (cases)

case i
{

consider

135



(II ) (∃ a.
a ∈ PROB ∧
(

v1 ∈ fmdom ′ (fst a) ∧ v2 ∈ fmdom ′ (snd a)
∨ v1 ∈ fmdom ′ (snd a) ∧ v2 ∈ fmdom ′ (snd a)))

| (III ) v1 = v2
using i
unfolding dep-def
by blast

then have ?thesis
proof (cases)

case II
then obtain a where 1 :

a ∈ PROB (v1 ∈ fmdom ′ (fst a) ∧ v2 ∈ fmdom ′ (snd a)
∨ v1 ∈ fmdom ′ (snd a) ∧ v2 ∈ fmdom ′ (snd a))

by blast
then have v1 ∈ fmdom ′ (fst a) ∪ fmdom ′ (snd a)

by blast
then have 2 : v1 ∈ action-dom (fst a) (snd a)

unfolding action-dom-def
by blast

then have action-dom (fst a) (snd a) ⊆ prob-dom PROB
using 1 (1 ) exec-as-proj-valid-2
by fast

then have v1 ∈ prob-dom PROB
using 1 2
by fast

then show ?thesis
by simp

next
case III
then show ?thesis

using assms(1 )
by simp

qed
}
then show ?thesis

by simp
next

case ii
then obtain y where v1 6= y y 6= v2 dep PROB v1 y TC (dep PROB) y v2

using ii
by blast

then show ?thesis
using NEQ-DEP-IMP-IN-DOM
by metis

qed
qed
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lemma not-dep-disj-imp-not-dep:
fixes PROB vs-1 vs-2 vs-3
assumes ((vs-1 ∩ vs-2 ) = {}) (vs-3 ⊆ vs-2 ) ¬(dep-var-set PROB vs-1 vs-2 )
shows ¬(dep-var-set PROB vs-1 vs-3 )
using assms subset-eq
unfolding dep-var-set-def disjnt-def
by blast

lemma dep-slist-imp-mem-dep:
fixes PROB vs lvs
assumes (dep-var-set PROB (

⋃
(set lvs)) vs)

shows (∃ vs ′. ListMem vs ′ lvs ∧ dep-var-set PROB vs ′ vs)
proof −

obtain v1 v2 where
obtain-v1-v2 : v1 ∈

⋃
(set lvs) v2 ∈ vs disjnt (

⋃
(set lvs)) vs dep PROB v1 v2

using assms dep-var-set-def [of PROB
⋃

(set lvs) vs]
by blast

then obtain vs ′ where obtain-vs ′: vs ′ ∈ set lvs v1 ∈ vs ′

by blast
then have ListMem vs ′ lvs

using ListMem-iff
by fast

moreover {
have disjnt vs ′ vs

using obtain-v1-v2 (3 ) obtain-vs ′(1 ) by auto
then have dep-var-set PROB vs ′ vs

unfolding dep-var-set-def
using obtain-v1-v2 (1 , 2 , 4 ) obtain-vs ′(2 )
by blast

}
ultimately show ?thesis

by blast
qed

lemma n-bigunion-le-sum-3 :
fixes PROB vs svs
assumes (∀ vs ′. vs ′ ∈ svs −→ ¬(dep-var-set PROB vs ′ vs))
shows ¬(dep-var-set PROB (

⋃
svs) vs)

proof −
{

assume (dep-var-set PROB (
⋃

svs) vs)
then obtain v1 v2 where obtain-vs: v1 ∈

⋃
svs v2 ∈ vs disjnt (

⋃
svs) vs dep

PROB v1 v2
unfolding dep-var-set-def
by blast

then obtain vs ′ where obtain-vs ′: v1 ∈ vs ′ vs ′ ∈ svs
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by blast
then have a: disjnt vs ′ vs

using obtain-vs(3 ) obtain-vs ′(2 ) disjnt-subset1
by blast

then have ∀ v1 v2 . ¬(v1 ∈ vs ′) ∨ ¬(v2 ∈ vs) ∨ ¬disjnt vs ′ vs ∨ ¬dep PROB
v1 v2

using assms obtain-vs ′(2 ) dep-var-set-def
by fast

then have False
using a obtain-vs ′(1 ) obtain-vs(2 , 4 )
by blast

}
then show ?thesis

by blast
qed

lemma disj-not-dep-vset-union-imp-or :
fixes PROB a vs vs ′

assumes (a ∈ PROB) (disjnt vs vs ′)
(¬(dep-var-set PROB vs ′ vs) ∨ ¬(dep-var-set PROB vs vs ′))
(varset-action a (vs ∪ vs ′))

shows (varset-action a vs ∨ varset-action a vs ′)
using assms
unfolding varset-action-def dep-var-set-def dep-def

proof −
assume a1 : fmdom ′ (snd a) ⊆ vs ∪ vs ′

assume disjnt vs vs ′

assume ¬ (disjnt vs ′ vs ∧
(∃ v1 v2 . v1 ∈ vs ′ ∧ v2 ∈ vs ∧ ((∃ a. a ∈ PROB ∧ (v1 ∈ fmdom ′ (fst a)

∧ v2 ∈ fmdom ′ (snd a) ∨ v1 ∈ fmdom ′ (snd a) ∧ v2 ∈ fmdom ′ (snd a))) ∨ v1 =
v2 ))) ∨

¬ (disjnt vs vs ′ ∧
(∃ v1 v2 . v1 ∈ vs ∧ v2 ∈ vs ′ ∧ ((∃ a. a ∈ PROB ∧ (v1 ∈ fmdom ′ (fst a)

∧ v2 ∈ fmdom ′ (snd a) ∨ v1 ∈ fmdom ′ (snd a) ∧ v2 ∈ fmdom ′ (snd a))) ∨ v1 =
v2 )))

then have f2 :
∧

aa ab. aa /∈ vs ∨ ab /∈ vs ′ ∨ aa /∈ fmdom ′ (snd a) ∨ ab /∈ fmdom ′

(snd a)
using ‹a ∈ PROB› ‹disjnt vs vs ′› disjnt-sym by blast

obtain aa :: ′a set ⇒ ′a set ⇒ ′a where
f3 :

∧
A Aa a Ab Ac. (A ⊆ Aa ∨ aa A Aa ∈ A) ∧ (aa A Aa /∈ Aa ∨ A ⊆ Aa)

∧ ((a:: ′a) /∈ Ab ∨ ¬ Ab ⊆ Ac ∨ a ∈ Ac)
by (atomize-elim, (subst choice-iff [symmetric])+, blast)

then have
∧

A. fmdom ′ (snd a) ⊆ A ∨ aa (fmdom ′ (snd a)) A ∈ vs ∨ aa (fmdom ′

(snd a)) A ∈ vs ′

using a1 by (meson Un-iff )
then show fmdom ′ (snd a) ⊆ vs ∨ fmdom ′ (snd a) ⊆ vs ′

using f3 f2 by meson
qed
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end
theory Invariants

imports Main FactoredSystem
begin

definition fdom :: ( ′a ⇒ ′b) ⇒ ′a set where
fdom f ≡ {x. ∃ y. f x = y}

— TODO function domain for total function in Isabelle/HOL?
— TODO why is fm total? Shouldn’t it be partial and thus needing the the premise
‘fm x = Some True‘ instead of just ‘fm x‘?
definition invariant :: ( ′a ⇒ bool) ⇒ bool where

invariant fm ≡ (∀ x. (x ∈ fdom fm ∧ fm x) −→ False) ∧ (∃ x. x ∈ fdom fm ∧ fm
x)

end
theory SetUtils

imports Main
begin

— TODO use Inf instead of Min where necessary.

— TODO can be replaced by card-Un-disjoint ([[finite A; finite B; A ∩ B = {}]]
=⇒ card (A ∪ B) = card A + card B) ?
lemma card-union ′: (finite s) ∧ (finite t) ∧ (disjnt s t) =⇒ (card (s ∪ t) = card
s + card t)

by (simp add: card-Un-disjoint disjnt-def )

lemma CARD-INJ-IMAGE-2 :
fixes f s
assumes finite s (∀ x y. ((x ∈ s) ∧ (y ∈ s)) −→ ((f x = f y) ←→ (x = y)))
shows (card (f ‘ s) = card s)

proof −
{

fix x y
assume x ∈ s y ∈ s
then have f x = f y −→ x = y

using assms(2 )
by blast

}
then have inj-on f s

by (simp add: inj-onI )
then show ?thesis

using assms(1 ) inj-on-iff-eq-card
by blast

qed
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lemma scc-main-lemma-x:
∧

s t x. (x ∈ s) ∧ ¬(x ∈ t) =⇒ ¬(s = t)
by blast

lemma neq-funs-neq-images:
fixes s
assumes ∀ x. x ∈ s −→ (∀ y. y ∈ s −→ f1 x 6= f2 y) ∃ x. x ∈ s
shows f1 ‘ s 6= f2 ‘ s
using assms
by blast

5.3 Sets of Numbers
lemma mems-le-finite-i:

fixes s :: nat set and k :: nat
shows (∀ x. x ∈ s −→ x ≤ k) =⇒ finite s

proof −
assume P: (∀ x. x ∈ s −→ x ≤ k)
let ?f = id :: nat ⇒ nat
let ?S = {i. i ≤ k}
have s ⊆ ?S using P by blast
moreover have ?f ‘ ?S = ?S by auto
moreover have finite ?S using nat-seg-image-imp-finite by auto
moreover have finite s using calculation finite-subset by auto
ultimately show ?thesis by auto

qed
lemma mems-le-finite:

fixes s :: nat set and k :: nat
shows

∧
(s :: nat set) k. (∀ x. x ∈ s −→ x ≤ k) =⇒ finite s

using mems-le-finite-i by auto

— NOTE translated ‘s‘ to ‘nat set‘ (more generality wasn’t required.).
lemma mem-le-imp-MIN-le:

fixes s :: nat set and k :: nat
assumes ∃ x. (x ∈ s) ∧ (x ≤ k)
shows (Inf s ≤ k)

proof −
from assms obtain x where 1 : x ∈ s x ≤ k

by blast
{

assume C : Inf s > k
then have Inf s > x using 1 (2 )

by fastforce
then have False

using 1 (1 ) cInf-lower leD
by fast

}
then show ?thesis

by fastforce
qed
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— NOTE nat –> bool is the type of a HOL4 set and was translated to ’nat set’.
— NOTE We cannot use ’Min’ instead of ’Inf’ because there is no indication that
’n. s n’ will be finite. Without that Min {n. s n} ∈ {n. s n} is not necessarily true.
lemma mem-lt-imp-MIN-lt:

fixes s :: nat set and k :: nat
assumes (∃ x. x ∈ s ∧ x < k)
shows (Inf s) < k

proof −
obtain x where 1 : x ∈ s x < k

using assms
by blast

then have 2 : s 6= {}
by blast

then have Inf s ∈ s
using Inf-nat-def LeastI
by force

moreover have ∀ x∈s. Inf s ≤ x
by (simp add: cInf-lower)

ultimately show (Inf s) < k
using assms leD
by force

qed

— NOTE type for ’k’ had to be fixed (type unordered error; also not true for e.g.
real sets).
lemma bound-child-parent-neq-mems-state-set-neq-len:

fixes s and k :: nat
assumes (∀ x. x ∈ s −→ x < k)
shows finite s
using assms bounded-nat-set-is-finite
by blast

lemma bound-main-lemma-2 :
∧
(s :: nat set) k. (s 6= {}) ∧ (∀ x. x ∈ s −→ x ≤

k) =⇒ Sup s ≤ k
proof −

fix s :: nat set and k
{

assume P1 : s 6= {}
assume P2 : (∀ x. x ∈ s −→ x ≤ k)
have finite s using P2 mems-le-finite by auto
moreover have Max s ∈ s using P1 calculation Max-in by auto
moreover have Max s ≤ k using P2 calculation by auto

}
then show (s 6= {}) ∧ (∀ x. x ∈ s −→ x ≤ k) =⇒ Sup s ≤ k

by (simp add: Sup-nat-def )
qed

— NOTE type of ’k’ fixed to nat to be able to use ’bound_child_parent_neq_mems_state_set_neq_len’.
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lemma bound-child-parent-not-eq-last-diff-paths:
∧

s (k :: nat).
(s 6= {})
=⇒ (∀ x. x ∈ s −→ x < k)
=⇒ Sup s < k

by (simp add: Sup-nat-def bound-child-parent-neq-mems-state-set-neq-len)

lemma FINITE-ALL-DISTINCT-LISTS-i:
fixes P
assumes finite P
shows
{p. distinct p ∧ set p ⊆ P}
= {[]} ∪ (

⋃
((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})}) ‘ P))

proof −
let ?A={p. distinct p ∧ set p ⊆ P }
let ?B={[]} ∪ (

⋃
((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})}) ‘ P))

{
{

fix a
assume P: a ∈ ?A
then have a ∈ ?B
proof (cases a)

The empty list is distinct and its corresponding set is the empty set
which is a trivial subset of ‘?B‘. The ‘Nil‘ case can therefore be derived by
automation.

case (Cons h list)
{

let ?b ′=h
{

from P have set a ⊆ P
by simp

then have set list ⊆ (P − {h})
using P dual-order .trans local.Cons
by auto

}
moreover from P Cons
have distinct list

by force
ultimately have a ∈ ((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P −

{e})}) ?b ′)
using Cons
by blast

moreover {
from P Cons have ?b ′ ∈ set a

by simp
moreover from P have set a ⊆ P

by simp
ultimately have ?b ′ ∈ P
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by auto
}
ultimately have
∃ b ′ ∈ P. a ∈ ((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})}) b ′)
by meson

}
then obtain b ′ where

b ′ ∈ P a ∈ ((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})}) b ′)
by blast

then show ?thesis
by blast

qed blast
}
then have ?A ⊆ ?B

by auto
}
moreover {

{
fix b
assume P: b ∈ ?B
have b ∈ ?A

The empty list is in ‘?B‘ by construction. The ‘Nil‘ case can therefore
be derived straightforwardly.

proof (cases b)
case (Cons a list)
from P Cons obtain b ′ where a:

b ′ ∈ P b ∈ {b ′ # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {b ′})}
by fast

then obtain p0 where b: b = b ′ # p0 distinct p0 set p0 ⊆ (P − {b ′})
by blast

then have distinct (b ′ # p0 )
by (simp add: subset-Diff-insert)

moreover have set (b ′ # p0 ) ⊆ P
using a(1 ) b(3 )
by auto

ultimately show ?thesis
using b(1 )
by fast

qed simp
}
then have ?B ⊆ ?A

by blast
}
ultimately show ?thesis

using set-eq-subset
by blast

qed
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lemma FINITE-ALL-DISTINCT-LISTS :
fixes P
assumes finite P
shows finite {p. distinct p ∧ set p ⊆ P}
using assms

proof (induction card P arbitrary: P)
case 0
then have P = {}

by force
then show ?case

using 0
by simp

next
case (Suc x)
{

Proof the finiteness of the union by proving both sets of the union are
finite. The singleton set ‘[]‘ is trivially finite.

{
{

fix e
assume P: e ∈ P
have
{e # p0 | p0 . distinct p0 ∧ set p0 ⊆ P − {e}}
= (λp. e # p) ‘ { p. distinct p ∧ set p ⊆ P − {e}}
by blast

moreover {
let ?P ′=P − {e}
from Suc.prems
have finite ?P ′

by blast

The finiteness can now be shown using the induction hypothesis. How-
ever ‘e‘ might already be contained in ‘?P‘, so we have to split cases first.

have finite ((λp. e # p) ‘ {p. distinct p ∧ set p ⊆ ?P ′})
proof (cases e ∈ P)

case True
then have x = card ?P ′ using Suc.prems Suc(2 )

by fastforce
moreover from Suc.prems
have finite ?P ′

by blast
ultimately show ?thesis

using Suc(1 )
by blast

next
case False
then have ?P ′ = P

by simp
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then have finite {p. distinct p ∧ set p ⊆ ?P ′}
using False P by linarith

then show ?thesis
using finite-imageI
by blast

qed
}
ultimately have finite {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})}

by argo
}
then have finite (

⋃
((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})})

‘ P))
using Suc.prems
by blast

}
then have

finite ({[]} ∪ (
⋃

((λe. {e # p0 | p0 . distinct p0 ∧ set p0 ⊆ (P − {e})}) ‘
P)))

using finite-Un
by blast

}
then show ?case

using FINITE-ALL-DISTINCT-LISTS-i[OF Suc.prems]
by force

qed

lemma subset-inter-diff-empty:
assumes s ⊆ t
shows (s ∩ (u − t) = {})
using assms
by auto

end
theory TopologicalProps

imports Main FactoredSystem ActionSeqProcess SetUtils
begin

6 Topological Properties
6.1 Basic Definitions and Properties
definition PLS-charles where

PLS-charles s as PROB ≡ {length as ′ | as ′.
(as ′ ∈ valid-plans PROB) ∧ (exec-plan s as ′ = exec-plan s as)}

definition MPLS-charles where
MPLS-charles PROB ≡ {Inf (PLS-charles (fst p) (snd p) PROB) | p.
((fst p) ∈ valid-states PROB)
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∧ ((snd p) ∈ valid-plans PROB)
}

— NOTE name shortened to ’problem_plan_bound_charles’.
definition problem-plan-bound-charles where

problem-plan-bound-charles PROB ≡ Sup (MPLS-charles PROB)

— NOTE name shortened to ’PLS_state’.
definition PLS-state-1 where

PLS-state-1 s as ≡ length ‘ {as ′. (exec-plan s as ′ = exec-plan s as)}

— NOTE name shortened to ’MPLS_stage_1’.
definition MPLS-stage-1 where

MPLS-stage-1 PROB ≡
(λ (s, as). Inf (PLS-state-1 s as))
‘ {(s, as). (s ∈ valid-states PROB) ∧ (as ∈ valid-plans PROB)}

— NOTE name shortened to ’problem_plan_bound_stage_1’.
definition problem-plan-bound-stage-1 where

problem-plan-bound-stage-1 PROB ≡ Sup (MPLS-stage-1 PROB)
for PROB :: ′a problem

— NOTE name shortened.
definition PLS where

PLS s as ≡ length ‘ {as ′. (exec-plan s as ′ = exec-plan s as) ∧ (subseq as ′ as)}

— NOTE added lemma.
— NOTE proof finite PLS for use in ’proof in_MPLS_leq_2_pow_n_i’
lemma finite-PLS : finite (PLS s as)
proof −

let ?S = {as ′. (exec-plan s as ′ = exec-plan s as) ∧ (subseq as ′ as)}
let ?S1 = length ‘ {as ′. (exec-plan s as ′ = exec-plan s as) }
let ?S2 = length ‘ {as ′. (subseq as ′ as)}
let ?n = length as + 1
have finite ?S2

using bounded-nat-set-is-finite[where n = ?n and N = ?S2 ]
by fastforce

moreover have length ‘ ?S ⊆ (?S1 ∩ ?S2 )
by blast

ultimately have finite (length ‘ ?S)
using infinite-super
by auto
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then show ?thesis
unfolding PLS-def
by blast

qed

— NOTE name shortened.
definition MPLS where

MPLS PROB ≡
(λ (s, as). Inf (PLS s as))
‘ {(s, as). (s ∈ valid-states PROB) ∧ (as ∈ valid-plans PROB)}

— NOTE name shortened.
definition problem-plan-bound where

problem-plan-bound PROB ≡ Sup (MPLS PROB)

lemma expanded-problem-plan-bound-thm-1 :
fixes PROB
shows
(problem-plan-bound PROB) = Sup (
(λ(s,as). Inf (PLS s as)) ‘
{(s, as). (s ∈ (valid-states PROB)) ∧ (as ∈ valid-plans PROB)}

)

unfolding problem-plan-bound-def MPLS-def
by blast

lemma expanded-problem-plan-bound-thm:
fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set
shows

problem-plan-bound PROB = Sup ({Inf (PLS s as) | s as.
(s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
})

proof −
{

have (
{Inf (PLS s as) | s as. (s ∈ valid-states PROB) ∧ (as ∈ valid-plans PROB)}
) = ((λ(s, as). Inf (PLS s as)) ‘ {(s, as).
(s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
})

by fast
also have . . . =
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(λ(s, as). Inf (PLS s as)) ‘
({s. fmdom ′ s = prob-dom PROB} × {as. set as ⊆ PROB})

unfolding valid-states-def valid-plans-def
by simp

finally have
Sup ({Inf (PLS s as) | s as. (s ∈ valid-states PROB) ∧ (as ∈ valid-plans

PROB)})
= Sup (
(λ(s, as). Inf (PLS s as)) ‘
({s. fmdom ′ s = prob-dom PROB} × {as. set as ⊆ PROB})

)

by argo
}
moreover have

problem-plan-bound PROB
=

Sup ((λ(s, as). Inf (PLS s as)) ‘
({s. fmdom ′ s = prob-dom PROB} × {as. set as ⊆ PROB}))

unfolding problem-plan-bound-def MPLS-def valid-states-def valid-plans-def
by fastforce

ultimately show
problem-plan-bound PROB
= Sup ({Inf (PLS s as) | s as.
(s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
})

by argo
qed

6.2 Recurrence Diameter
The recurrence diameter—defined as the longest simple path in the digraph
modelling the state space—provides a loose upper bound on the system
diameter. [Abdulaziz et al., Definition 9, p.15]
fun valid-path where

valid-path Pi [] = True
| valid-path Pi [s] = (s ∈ valid-states Pi)
| valid-path Pi (s1 # s2 # rest) = (
(s1 ∈ valid-states Pi)
∧ (∃ a. (a ∈ Pi) ∧ (exec-plan s1 [a] = s2 ))
∧ (valid-path Pi (s2 # rest))

)

lemma valid-path-ITP2015 :
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(valid-path Pi [] ←→ True)
∧ (valid-path Pi [s] ←→ (s ∈ valid-states Pi))
∧ (valid-path Pi (s1 # s2 # rest) ←→

(s1 ∈ valid-states Pi)
∧ (∃ a.
(a ∈ Pi)
∧ (exec-plan s1 [a] = s2 )

)
∧ (valid-path Pi (s2 # rest))

)

using valid-states-def
by simp

— NOTE name shortened.
— NOTE second declaration skipped (declared twice in source).
definition RD where

RD Pi ≡ (Sup {length p − 1 | p. valid-path Pi p ∧ distinct p})
for Pi :: ′a problem

lemma in-PLS-leq-2-pow-n:
fixes PROB :: ′a problem and s :: ′a state and as
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows (∃ x.
(x ∈ PLS s as)
∧ (x ≤ (2 ^ card (prob-dom PROB)) − 1 )

)
proof −

obtain as ′ where 1 :
exec-plan s as = exec-plan s as ′ subseq as ′ as length as ′ ≤ 2 ^ card (prob-dom

PROB) − 1
using assms main-lemma
by blast

let ?x=length as ′

have ?x ∈ PLS s as
unfolding PLS-def
using 1
by simp

moreover have ?x ≤ 2 ^ card (prob-dom PROB) − 1
using 1 (3 )
by blast

ultimately show (∃ x.
(x ∈ PLS s as)
∧ (x ≤ (2 ^ card (prob-dom PROB)) − 1 )

)
unfolding PLS-def
by blast
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qed

lemma in-MPLS-leq-2-pow-n:
fixes PROB :: ′a problem and x
assumes finite PROB (x ∈ MPLS PROB)
shows (x ≤ 2 ^ card (prob-dom PROB) − 1 )

proof −
let ?mpls = MPLS PROB

— NOTE obtain p = (s, as) where ’x = Inf (PLS s as)’ from premise.
have ?mpls =
(λ (s, as). Inf (PLS s as)) ‘
{(s, as). (s ∈ valid-states PROB) ∧ (as ∈ valid-plans PROB)}

using MPLS-def
by blast

then obtain s :: ( ′a, bool) fmap and as :: (( ′a, bool) fmap × ( ′a, bool) fmap)
list

where obtain-s-as: x ∈
((λ (s, as). Inf (PLS s as)) ‘
{(s, as). (s ∈ valid-states PROB) ∧ (as ∈ valid-plans PROB)})

using assms(2 )
by blast

then have
x ∈ {Inf (PLS (fst p) (snd p)) | p. (fst p ∈ valid-states PROB) ∧ (snd p ∈

valid-plans PROB)}
using assms(1 ) obtain-s-as
by auto

then have
∃ p. x = Inf (PLS (fst p) (snd p)) ∧ (fst p ∈ valid-states PROB) ∧ (snd p ∈

valid-plans PROB)
by blast

then obtain p :: ( ′a, bool) fmap × (( ′a, bool) fmap × ( ′a, bool) fmap) list where
obtain-p:

x = Inf (PLS (fst p) (snd p)) (fst p ∈ valid-states PROB) (snd p ∈ valid-plans
PROB)

by blast
then have fst p ∈ valid-states PROB snd p ∈ valid-plans PROB

using obtain-p
by blast+

then obtain x ′ :: nat where obtain-x ′:
x ′ ∈ PLS (fst p) (snd p) ∧ x ′ ≤ 2 ^ card (prob-dom PROB) − 1
using assms(1 ) in-PLS-leq-2-pow-n[where s = fst p and as = snd p]
by blast

then have 1 : x ′ ≤ 2 ^ card (prob-dom PROB) − 1 x ′ ∈ PLS (fst p) (snd p)
x = Inf (PLS (fst p) (snd p)) finite (PLS (fst p) (snd p))
using obtain-x ′ obtain-p finite-PLS
by blast+
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moreover have x ≤ x ′

using 1 (2 , 4 ) obtain-p(1 ) cInf-le-finite
by blast

ultimately show (x ≤ 2 ^ card (prob-dom PROB) − 1 )
by linarith

qed

lemma FINITE-MPLS :
assumes finite (Pi :: ′a problem)
shows finite (MPLS Pi)

proof −
have ∀ x ∈ MPLS Pi. x ≤ 2 ^ card (prob-dom Pi) − 1

using assms in-MPLS-leq-2-pow-n
by blast

then show finite (MPLS Pi)
using mems-le-finite[of MPLS Pi 2 ^ card (prob-dom Pi) − 1 ]
by blast

qed

— NOTE ’fun’ because of multiple defining equations.
fun statelist ′ where

statelist ′ s [] = [s]
| statelist ′ s (a # as) = (s # statelist ′ (state-succ s a) as)

lemma LENGTH-statelist ′:
fixes as s
shows length (statelist ′ s as) = (length as + 1 )
by (induction as arbitrary: s) auto

lemma valid-path-statelist ′:
fixes as and s :: ( ′a, ′b) fmap
assumes (as ∈ valid-plans Pi) (s ∈ valid-states Pi)
shows (valid-path Pi (statelist ′ s as))
using assms

proof (induction as arbitrary: s Pi)
case cons: (Cons a as)
then have 1 : a ∈ Pi as ∈ valid-plans Pi

using valid-plan-valid-head valid-plan-valid-tail
by metis+

then show ?case
proof (cases as)

case Nil
{

have state-succ s a ∈ valid-states Pi
using 1 cons.prems(2 ) valid-action-valid-succ
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by blast
then have valid-path Pi [state-succ s a]

using 1 cons.prems(2 ) cons.IH
by force

moreover have (∃ aa. aa ∈ Pi ∧ exec-plan s [aa] = state-succ s a)
using 1 (1 )
by fastforce

ultimately have valid-path Pi (statelist ′ s [a])
using cons.prems(2 )
by simp

}
then show ?thesis

using Nil
by blast

next
case (Cons b list)
{

have s ∈ valid-states Pi
using cons.prems(2 )
by simp

— TODO this step is inefficient ( 5s).
then have

valid-path Pi (state-succ s a # statelist ′ (state-succ (state-succ s a) b) list)
using 1 cons.IH cons.prems(2 ) Cons lemma-1-i
by fastforce

moreover have
(∃ aa b. (aa, b) ∈ Pi ∧ state-succ s (aa, b) = state-succ s a)
using 1 (1 ) surjective-pairing
by metis

ultimately have valid-path Pi (statelist ′ s (a # b # list))
using cons.prems(2 )
by auto

}
then show ?thesis

using Cons
by blast

qed
qed simp

— TODO explicit proof.
lemma statelist ′-exec-plan:

fixes a s p
assumes (statelist ′ s as = p)
shows (exec-plan s as = last p)
using assms
apply(induction as arbitrary: s p)
apply(auto)

apply(cases as)
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by
(metis LENGTH-statelist ′ One-nat-def add-Suc-right list.size(3 ) nat.simps(3 ))
(metis (no-types) LENGTH-statelist ′ One-nat-def add-Suc-right list.size(3 )

nat.simps(3 ))

lemma statelist ′-EQ-NIL: statelist ′ s as 6= []
by (cases as) auto

— NOTE added lemma.
lemma statelist ′-TAKE-i:

assumes Suc m ≤ length (a # as)
shows m ≤ length as
using assms
by (induction as arbitrary: a m) auto

lemma statelist ′-TAKE :
fixes as s p
assumes (statelist ′ s as = p)
shows (∀n. n ≤ length as −→ (exec-plan s (take n as)) = (p ! n))
using assms

proof (induction as arbitrary: s p)
case Nil
{

fix n
assume P1 : n ≤ length []
then have exec-plan s (take n []) = s

by simp
moreover have p ! 0 = s

using Nil.prems
by force

ultimately have exec-plan s (take n []) = p ! n
using P1
by simp

}
then show ?case by blast

next
case (Cons a as)
{

fix n
assume P2 : n ≤ length (a # as)
then have exec-plan s (take n (a # as)) = p ! n

using Cons.prems
proof (cases n = 0 )

case False
then obtain m where a: n = Suc m

using not0-implies-Suc
by presburger
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moreover have b: statelist ′ s (a # as) ! n = statelist ′ (state-succ s a) as ! m
using a nth-Cons-Suc
by simp

moreover have c: exec-plan s (take n (a # as)) = exec-plan (state-succ s a)
(take m as)

using a
by force

moreover have m ≤ length as
using a P2 statelist ′-TAKE-i
by simp

moreover have
exec-plan (state-succ s a) (take m as) = statelist ′ (state-succ s a) as ! m
using calculation(2 , 3 , 4 ) Cons.IH
by blast

ultimately show ?thesis
using Cons.prems
by argo

qed fastforce
}
then show ?case by blast

qed

lemma MPLS-nempty:
fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set
assumes finite PROB
shows MPLS PROB 6= {}

proof −
let ?S={(s, as). s ∈ valid-states PROB ∧ as ∈ valid-plans PROB}

— NOTE type of ’s’ had to be fixed for ’valid_states_nempty’.
obtain s :: ( ′a, ′b) fmap where s ∈ valid-states PROB

using assms valid-states-nempty
by blast

moreover have [] ∈ valid-plans PROB
using empty-plan-is-valid
by auto

ultimately have (s, []) ∈ ?S
by blast

then show ?thesis
unfolding MPLS-def
by blast

qed

theorem bound-main-lemma:
fixes PROB :: ′a problem
assumes finite PROB
shows (problem-plan-bound PROB ≤ (2 ^ (card (prob-dom PROB))) − 1 )

proof −
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have MPLS PROB 6= {}
using assms MPLS-nempty
by auto

moreover have (∀ x. x ∈ MPLS PROB −→ x ≤ 2 ^ card (prob-dom PROB) −
1 )

using assms in-MPLS-leq-2-pow-n
by blast

ultimately show ?thesis
unfolding problem-plan-bound-def
using cSup-least
by blast

qed

— NOTE types in premise had to be fixed to be able to match ‘valid_as_valid_exec‘.
lemma bound-child-parent-card-state-set-cons:

fixes P f
assumes (∀ (PROB :: ′a problem) as (s :: ′a state).
(P PROB)
∧ (as ∈ valid-plans PROB)
∧ (s ∈ valid-states PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
)
shows (∀PROB s as.
(P PROB)
∧ (as ∈ valid-plans PROB)
∧ (s ∈ (valid-states PROB))
−→ (∃ x.
(x ∈ PLS s as)
∧ (x < f PROB)

)
)

proof −
{

fix PROB :: ′a problem and as and s :: ′a state
assume P1 : (P PROB)
(as ∈ valid-plans PROB)
(s ∈ valid-states PROB)
(∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
have (exec-plan s as ∈ valid-states PROB)

using assms P1 valid-as-valid-exec

155



by blast
then have (P PROB)
∧ (as ∈ valid-plans PROB)
∧ (s ∈ (valid-states PROB))
−→ (∃ x.
(x ∈ PLS s as)
∧ (x < f PROB)

)

unfolding PLS-def
using P1
by force

}
then show (∀PROB s as.
(P PROB)
∧ (as ∈ valid-plans PROB)
∧ (s ∈ (valid-states PROB))
−→ (∃ x.
(x ∈ PLS s as)
∧ (x < f PROB)

)
)

using assms
by simp

qed

— NOTE types of premise had to be fixed to be able to use lemma ‘bound_child_par-
ent_card_state_set_cons‘.
lemma bound-on-all-plans-bounds-MPLS :

fixes P f
assumes (∀ (PROB :: ′a problem) as (s :: ′a state).
(P PROB)
∧ (s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
)
shows (∀PROB x. P PROB
−→ (x ∈ MPLS(PROB))
−→ (x < f PROB)

)
proof −

{
fix PROB :: ′a problem and as and s :: ′a state
assume (P PROB)
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(s ∈ valid-states PROB)
(as ∈ valid-plans PROB)
(∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
then have (∃ x. x ∈ PLS s as ∧ x < f PROB)

using assms(1 ) bound-child-parent-card-state-set-cons[where P = P and f
= f ]

by presburger
}
note 1 = this
{

fix PROB x
assume P1 : P PROB x ∈ MPLS PROB

— TODO refactor ’x_in_MPLS_if’ and use here.
then obtain s as where a:

x = Inf (PLS s as) s ∈ valid-states PROB as ∈ valid-plans PROB
unfolding MPLS-def
by auto

moreover have (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
using P1 (1 ) assms calculation(2 , 3 )
by blast

ultimately obtain x ′ where x ′ ∈ PLS s as x ′ < f PROB
using P1 1
by blast

then have x < f PROB
using a(1 ) mem-lt-imp-MIN-lt
by fastforce

}
then show ?thesis

by blast
qed

lemma bound-child-parent-card-state-set-cons-finite:
fixes P f
assumes (∀PROB as s.
P PROB ∧ finite PROB ∧ as ∈ (valid-plans PROB) ∧ s ∈ (valid-states PROB)

−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ subseq as ′ as
∧ length as ′ < f (PROB)
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)
)
shows (∀PROB s as.
P PROB ∧ finite PROB ∧ as ∈ (valid-plans PROB) ∧ (s ∈ (valid-states PROB))
−→ (∃ x. (x ∈ PLS s as) ∧ x < f PROB)

)
proof −

{
fix PROB s as

assume P PROB finite PROB as ∈ (valid-plans PROB) s ∈ (valid-states
PROB)

(∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ subseq as ′ as
∧ length as ′ < f PROB

)

then obtain as ′ where
(exec-plan s as = exec-plan s as ′) subseq as ′ as length as ′ < f PROB
by blast

moreover have length as ′ ∈ PLS s as
unfolding PLS-def
using calculation
by fastforce

ultimately have (∃ x. (x ∈ PLS s as) ∧ x < f PROB)
by blast

}
then show (∀PROB s as.

P PROB
∧ finite PROB
∧ as ∈ (valid-plans PROB)
∧ (s ∈ (valid-states PROB))
−→ (∃ x. (x ∈ PLS s as) ∧ x < f PROB)

)
using assms
by auto

qed

lemma bound-on-all-plans-bounds-MPLS-finite:
fixes P f
assumes (∀PROB as s.
P PROB ∧ finite PROB ∧ s ∈ (valid-states PROB) ∧ as ∈ (valid-plans PROB)

−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ subseq as ′ as
∧ length as ′ < f (PROB)

)
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)
shows (∀PROB x.

P PROB ∧ finite PROB
−→ (x ∈ MPLS PROB)
−→ x < f PROB

)
proof −

{
fix PROB x
assume P1 : P PROB finite PROB x ∈ MPLS PROB

— TODO refactor ’x_in_MPLS_if’ and use here.
then obtain s as where a:

x = Inf (PLS s as) s ∈ valid-states PROB as ∈ valid-plans PROB
unfolding MPLS-def
by auto

moreover have (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
using P1 (1 , 2 ) assms calculation(2 , 3 )
by blast

moreover obtain x ′ where x ′ ∈ PLS s as x ′ < f PROB
using PLS-def calculation(4 )
by fastforce

then have x < f PROB
using a(1 ) mem-lt-imp-MIN-lt
by fastforce

}
then show ?thesis

using assms
by blast

qed

lemma bound-on-all-plans-bounds-problem-plan-bound:
fixes P f
assumes (∀PROB as s.
(P PROB)
∧ finite PROB
∧ (s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
)
shows (∀PROB.
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(P PROB)
∧ finite PROB
−→ (problem-plan-bound PROB < f PROB)

)
proof −

have 1 : ∀PROB x.
P PROB
∧ finite PROB
−→ x ∈ MPLS PROB
−→ x < f PROB

using assms bound-on-all-plans-bounds-MPLS-finite
by blast

{
fix PROB x
assume P PROB ∧ finite PROB
−→ x ∈ MPLS PROB
−→ x < f PROB

then have ∀PROB.
P PROB ∧ finite PROB
−→ problem-plan-bound PROB < f PROB

unfolding problem-plan-bound-def
using 1 bound-child-parent-not-eq-last-diff-paths 1 MPLS-nempty
by metis

then have ∀PROB.
P PROB ∧ finite PROB
−→ problem-plan-bound PROB < f PROB

using MPLS-nempty
by blast

}
then show (∀PROB.
(P PROB)
∧ finite PROB
−→ (problem-plan-bound PROB < f PROB)

)
using 1
by blast

qed

lemma bound-child-parent-card-state-set-cons-thesis:
assumes finite PROB (∀ as s.

as ∈ (valid-plans PROB)
∧ s ∈ (valid-states PROB)
−→ (∃ as ′.
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(exec-plan s as = exec-plan s as ′)
∧ subseq as ′ as
∧ length as ′ < k

)
) as ∈ (valid-plans PROB) (s ∈ (valid-states PROB))
shows (∃ x. (x ∈ PLS s as) ∧ x < k)
unfolding PLS-def
using assms
by fastforce

— NOTE added lemma.
— TODO refactor/move up.
lemma x-in-MPLS-if :

fixes x PROB
assumes x ∈ MPLS PROB
shows ∃ s as. s ∈ valid-states PROB ∧ as ∈ valid-plans PROB ∧ x = Inf (PLS

s as)
using assms
unfolding MPLS-def
by fast

lemma bound-on-all-plans-bounds-MPLS-thesis:
assumes finite PROB (∀ as s.
(s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < k)

)
) (x ∈ MPLS PROB)
shows (x < k)

proof −
obtain s as where 1 : s ∈ valid-states PROB as ∈ valid-plans PROB x = Inf

(PLS s as)
using assms(3 ) x-in-MPLS-if
by blast

then obtain x ′ :: nat where x ′ ∈ PLS s as x ′ < k
using assms(1 , 2 ) bound-child-parent-card-state-set-cons-thesis
by blast

then have Inf (PLS s as) < k
using mem-lt-imp-MIN-lt
by blast

then show x < k
using 1
by simp

qed
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— NOTE added lemma.
lemma bounded-MPLS-contains-supremum:

fixes PROB
assumes finite PROB (∃ k. ∀ x ∈ MPLS PROB. x < k)
shows Sup (MPLS PROB) ∈ MPLS PROB

proof −
obtain k where ∀ x ∈ MPLS PROB. x < k

using assms(2 )
by blast

moreover have finite (MPLS PROB)
using assms(2 ) finite-nat-set-iff-bounded
by presburger

moreover have MPLS PROB 6= {}
using assms(1 ) MPLS-nempty
by auto

ultimately show Sup (MPLS PROB) ∈ MPLS PROB
unfolding Sup-nat-def
by simp

qed

lemma bound-on-all-plans-bounds-problem-plan-bound-thesis ′:
assumes finite PROB (∀ as s.

s ∈ (valid-states PROB)
∧ as ∈ (valid-plans PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ subseq as ′ as
∧ length as ′ < k

)
)

shows problem-plan-bound PROB < k
proof −

have 1 : ∀ x ∈ MPLS PROB. x < k
using assms(1 , 2 ) bound-on-all-plans-bounds-MPLS-thesis
by blast

then have Sup (MPLS PROB) ∈ MPLS PROB
using assms(1 ) bounded-MPLS-contains-supremum
by auto

then have Sup (MPLS PROB) < k
using 1
by blast

then show ?thesis
unfolding problem-plan-bound-def
by simp

qed

lemma bound-on-all-plans-bounds-problem-plan-bound-thesis:
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assumes finite PROB (∀ as s.
(s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ ≤ k)

)
)

shows (problem-plan-bound PROB ≤ k)
proof −

have 1 : ∀ x∈MPLS PROB. x < k + 1
using assms(1 , 2 ) bound-on-all-plans-bounds-MPLS-thesis[where k = k + 1 ]

Suc-eq-plus1
less-Suc-eq-le

by metis
then have Sup (MPLS PROB) ∈ MPLS PROB

using assms(1 ) bounded-MPLS-contains-supremum
by fast

then show (problem-plan-bound PROB ≤ k)
unfolding problem-plan-bound-def
using 1
by fastforce

qed

lemma bound-on-all-plans-bounds-problem-plan-bound-:
fixes P f PROB
assumes (∀PROB ′ as s.

finite PROB ∧ (P PROB ′) ∧ (s ∈ valid-states PROB ′) ∧ (as ∈ valid-plans
PROB ′)

−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB ′)

)
) (P PROB) finite PROB

shows (problem-plan-bound PROB < f PROB)
unfolding problem-plan-bound-def MPLS-def
using assms bound-on-all-plans-bounds-problem-plan-bound-thesis ′ expanded-problem-plan-bound-thm-1
by metis

lemma S-VALID-AS-VALID-IMP-MIN-IN-PLS :
fixes PROB s as
assumes (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows (Inf (PLS s as) ∈ (MPLS PROB))
unfolding MPLS-def
using assms
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by fast

— NOTE type of ‘s‘ had to be fixed (type mismatch in goal).
— NOTE premises rewritten to implications for proof set up.
lemma problem-plan-bound-ge-min-pls:

fixes PROB :: ′a problem and s :: ′a state and as k
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
(problem-plan-bound PROB ≤ k)

shows (Inf (PLS s as) ≤ problem-plan-bound PROB)
proof −

have Inf (PLS s as) ∈ MPLS PROB
using assms(2 , 3 ) S-VALID-AS-VALID-IMP-MIN-IN-PLS
by blast

moreover have finite (MPLS PROB)
using assms(1 ) FINITE-MPLS
by blast

ultimately have Inf (PLS s as) ≤ Sup (MPLS PROB)
using le-cSup-finite
by blast

then show ?thesis
unfolding problem-plan-bound-def
by simp

qed

lemma PLS-NEMPTY :
fixes s as
shows PLS s as 6= {}
unfolding PLS-def
by blast

lemma PLS-nempty-and-has-min:
fixes s as
shows (∃ x. (x ∈ PLS s as) ∧ (x = Inf (PLS s as)))

proof −
have PLS s as 6= {}

using PLS-NEMPTY
by blast

then have Inf (PLS s as) ∈ PLS s as
unfolding Inf-nat-def
using LeastI-ex Max-in finite-PLS
by metis

then show ?thesis
by blast

qed
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lemma PLS-works:
fixes x s as
assumes (x ∈ PLS s as)
shows(∃ as ′.

(exec-plan s as = exec-plan s as ′)
∧ (length as ′ = x)
∧ (subseq as ′ as)

)
using assms
unfolding PLS-def
by (smt imageE mem-Collect-eq)

— NOTE type of ‘s‘ had to be fixed (type mismatch in goal).
lemma problem-plan-bound-works:

fixes PROB :: ′a problem and as and s :: ′a state
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows (∃ as ′.

(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound PROB)

)
proof −

have problem-plan-bound PROB ≤ 2 ^ card (prob-dom PROB) − 1
using assms(1 ) bound-main-lemma
by blast

then have 1 : Inf (PLS s as) ≤ problem-plan-bound PROB
using

assms(1 , 2 , 3 )
problem-plan-bound-ge-min-pls

by blast
then have ∃ x. x ∈ PLS s as ∧ x = Inf (PLS s as)

using PLS-nempty-and-has-min
by blast

then have Inf (PLS s as) ∈ (PLS s as)
by blast

then obtain as ′ where 2 :
exec-plan s as = exec-plan s as ′ length as ′ = Inf (PLS s as) subseq as ′ as
using PLS-works
by blast

then have length as ′ ≤ problem-plan-bound PROB
using 1
by argo

then show (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound PROB)

)
using 2 (1 ) 2 (3 )
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by blast
qed

— NOTE name shortened.
definition MPLS-s where

MPLS-s PROB s ≡ (λ (s, as). Inf (PLS s as)) ‘ {(s, as) | as. as ∈ valid-plans
PROB}

— NOTE type of ‘PROB‘ had to be fixed (type mismatch in goal).
lemma bound-main-lemma-s-3 :

fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set and s
shows MPLS-s PROB s 6= {}

proof −
— TODO (s, []) ∈ {} could be refactored (this is used in ’MPLS_nempty’ too).
have [] ∈ valid-plans PROB

using empty-plan-is-valid
by blast

then have (s, []) ∈ {(s, as). as ∈ valid-plans PROB}
by simp

then show MPLS-s PROB s 6= {}
unfolding MPLS-s-def
by blast

qed

— NOTE name shortened.
definition problem-plan-bound-s where

problem-plan-bound-s PROB s = Sup (MPLS-s PROB s)

— NOTE removed typing from assumption due to matching problems in later
proofs.
lemma bound-on-all-plans-bounds-PLS-s:

fixes P f
assumes (∀PROB as s.

finite PROB ∧ (P PROB) ∧ (as ∈ valid-plans PROB) ∧ (s ∈ valid-states
PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB s)

)
)
shows (∀PROB s as.

finite PROB ∧ (P PROB) ∧ (as ∈ valid-plans PROB) ∧ (s ∈ valid-states
PROB)
−→ (∃ x.
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(x ∈ PLS s as)
∧ (x < f PROB s)

)
)

using assms
unfolding PLS-def
by fastforce

— NOTE added lemma.
lemma bound-on-all-plans-bounds-MPLS-s-i:

fixes PROB s x
assumes s ∈ valid-states PROB x ∈ MPLS-s PROB s
shows ∃ as. x = Inf (PLS s as) ∧ as ∈ valid-plans PROB

proof −
let ?S={(s, as) | as. as ∈ valid-plans PROB}
obtain x ′ where 1 :

x ′ ∈ ?S
x = (λ (s, as). Inf (PLS s as)) x ′

using assms
unfolding MPLS-s-def
by blast

let ?as=snd x ′

let ?s=fst x ′

have ?as ∈ valid-plans PROB
using 1 (1 )
by auto

moreover have ?s = s
using 1 (1 )
by fastforce

moreover have x = Inf (PLS ?s ?as)
using 1 (2 )
by (simp add: case-prod-unfold)

ultimately show ?thesis
by blast

qed

lemma bound-on-all-plans-bounds-MPLS-s:
fixes P f
assumes (∀PROB as s.

finite PROB ∧ (P PROB) ∧ (as ∈ valid-plans PROB) ∧ (s ∈ valid-states
PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB s)

)
)
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shows (∀PROB x s.
finite PROB ∧ (P PROB) ∧ (s ∈ valid-states PROB) −→ (x ∈ MPLS-s PROB

s)
−→ (x < f PROB s)

)
using assms
unfolding MPLS-def

proof −
have 1 : ∀PROB s as.

finite PROB ∧ P PROB ∧ as ∈ valid-plans PROB ∧ s ∈ valid-states PROB
−→

(∃ x. x ∈ PLS s as ∧ x < f PROB s)
using bound-on-all-plans-bounds-PLS-s[OF assms] .

{
fix PROB x and s :: ( ′a, ′b) fmap
assume P1 : finite PROB (P PROB) (s ∈ valid-states PROB)
{

assume (x ∈ MPLS-s PROB s)
then obtain as where i: x = Inf (PLS s as) as ∈ valid-plans PROB

using P1 bound-on-all-plans-bounds-MPLS-s-i
by blast

then obtain x ′ where x ′ ∈ PLS s as x ′ < f PROB s
using P1 i 1
by blast

then have x < f PROB s
using mem-lt-imp-MIN-lt i(1 )
by blast

}
then have (x ∈ MPLS-s PROB s) −→ (x < f PROB s)

by blast
}
then show ?thesis

by blast
qed

— NOTE added lemma.
lemma Sup-MPLS-s-lt-if :

fixes PROB s k
assumes (∀ x∈MPLS-s PROB s. x < k)
shows Sup (MPLS-s PROB s) < k

proof −
have MPLS-s PROB s 6= {}

using bound-main-lemma-s-3
by fast

then have Sup (MPLS-s PROB s) ∈ MPLS-s PROB s
using assms Sup-nat-def bounded-nat-set-is-finite
by force
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then show Sup (MPLS-s PROB s) < k
using assms
by blast

qed

— NOTE type of ‘P‘ had to be fixed (type mismatch in goal).
lemma bound-child-parent-lemma-s-2 :

fixes PROB :: ′a problem and P :: ′a problem ⇒ bool and s f
assumes (∀ (PROB :: ′a problem) as s.

finite PROB ∧ (P PROB) ∧ (s ∈ valid-states PROB) ∧ (as ∈ valid-plans
PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB s)

)
)
shows (

finite PROB ∧ (P PROB) ∧ (s ∈ valid-states PROB)
−→ problem-plan-bound-s PROB s < f PROB s

)
proof −

— NOTE manual instantiation is required (automation fails otherwise).
have ∀ (PROB :: ′a problem) x s.

finite PROB ∧ P PROB ∧ s ∈ valid-states PROB
−→ x ∈ MPLS-s PROB s
−→ x < f PROB s

using assms bound-on-all-plans-bounds-MPLS-s[of P f ]
by simp

then show
finite PROB ∧ (P PROB) ∧ (s ∈ valid-states PROB) −→ (problem-plan-bound-s

PROB s < f PROB s)
unfolding problem-plan-bound-s-def
using Sup-MPLS-s-lt-if problem-plan-bound-s-def
by metis

qed

theorem bound-main-lemma-reachability-s:
fixes PROB :: ′a problem and s
assumes finite PROB s ∈ valid-states PROB
shows (problem-plan-bound-s PROB s < card (reachable-s PROB s))

proof −
— NOTE derive premise for MP of ’bound_child_parent_lemma_s_2’.
— NOTE type of ‘s‘ had to be fixed (warning in assumption declaration).
{

fix PROB :: ′a problem and s :: ′a state and as
assume P1 : finite PROB s ∈ valid-states PROB as ∈ valid-plans PROB
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then obtain as ′ where a: exec-plan s as = exec-plan s as ′ subseq as ′ as
length as ′ ≤ card (reachable-s PROB s) − 1
using P1 main-lemma-reachability-s
by blast

then have length as ′ < card (reachable-s PROB s)
using P1 (1 , 2 ) card-reachable-s-non-zero
by fastforce

then have (∃ as ′.
exec-plan s as = exec-plan s as ′ ∧ subseq as ′ as ∧ length as ′ < card (reachable-s

PROB s))

using a
by blast

}
then have

finite PROB ∧ True ∧ s ∈ valid-states PROB
−→ problem-plan-bound-s PROB s < card (reachable-s PROB s)

using bound-child-parent-lemma-s-2 [where PROB = PROB and P = λ-. True
and s = s

and f = λPROB s. card (reachable-s PROB s)]
by blast

then show ?thesis
using assms(1 , 2 )
by blast

qed

lemma problem-plan-bound-s-LESS-EQ-problem-plan-bound-thm:
fixes PROB :: ′a problem and s :: ′a state
assumes finite PROB (s ∈ valid-states PROB)
shows (problem-plan-bound-s PROB s < problem-plan-bound PROB + 1 )

proof −
{

fix PROB :: ′a problem and s :: ′a state and as
assume finite PROB s ∈ valid-states PROB as ∈ valid-plans PROB
then obtain as ′ where a: exec-plan s as = exec-plan s as ′ subseq as ′ as

length as ′ ≤ problem-plan-bound PROB
using problem-plan-bound-works
by blast

then have length as ′ < problem-plan-bound PROB + 1
by linarith

then have ∃ as ′.
exec-plan s as = exec-plan s as ′ ∧ subseq as ′ as ∧ length as ′ ≤ prob-

lem-plan-bound PROB + 1

using a
by fastforce

}
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— TODO unsure why a proof is needed at all here.
then have ∀ (PROB :: ′a problem) as s.
finite PROB ∧ True ∧ s ∈ valid-states PROB ∧ as ∈ valid-plans PROB
−→ (∃ as ′.
exec-plan s as = exec-plan s as ′∧ subseq as ′ as ∧ length as ′< problem-plan-bound

PROB + 1 )

by (metis Suc-eq-plus1 problem-plan-bound-works le-imp-less-Suc)
then show (problem-plan-bound-s PROB s < problem-plan-bound PROB + 1 )

using assms bound-child-parent-lemma-s-2 [where PROB = PROB and s = s
and P = λ-. True

and f = λPROB s. problem-plan-bound PROB + 1 ]
by fast

qed

— NOTE lemma ‘bound_main_lemma_s_1‘ skipped (this is being equivalently
redeclared later).

lemma AS-VALID-MPLS-VALID:
fixes PROB as
assumes (as ∈ valid-plans PROB)
shows (Inf (PLS s as) ∈ MPLS-s PROB s)
using assms
unfolding MPLS-s-def
by fast

— NOTE moved up because it’s used in the following lemma.
— NOTE type of ‘s‘ had to be fixed for ’in_PLS_leq_2_pow_n’.
lemma bound-main-lemma-s-1 :

fixes PROB :: ′a problem and s :: ′a state and x
assumes finite PROB s ∈ (valid-states PROB) x ∈ MPLS-s PROB s
shows (x ≤ (2 ^ card (prob-dom PROB)) − 1 )

proof −
obtain as :: (( ′a, bool) fmap × ( ′a, bool) fmap) list where as ∈ valid-plans

PROB
using empty-plan-is-valid
by blast

then obtain x where 1 : x ∈ PLS s as x ≤ 2 ^ card (prob-dom PROB) − 1
using assms in-PLS-leq-2-pow-n
by blast

then have Inf (PLS s as) ≤ 2 ^ card (prob-dom PROB) − 1
using mem-le-imp-MIN-le[where s = PLS s as and k = 2 ^ card (prob-dom

PROB) − 1 ]
by blast

then have x ≤ 2 ^ card (prob-dom PROB) − 1
using assms(3 ) 1
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by blast
— TODO unsure why a proof is needed here (typing problem?).

then show ?thesis
using assms(1 , 2 , 3 ) S-VALID-AS-VALID-IMP-MIN-IN-PLS bound-on-all-plans-bounds-MPLS-s-i

in-MPLS-leq-2-pow-n
by metis

qed

lemma problem-plan-bound-s-ge-min-pls:
fixes PROB :: ′a problem and as k s
assumes finite PROB s ∈ (valid-states PROB) as ∈ (valid-plans PROB)

problem-plan-bound-s PROB s ≤ k
shows (Inf (PLS s as) ≤ problem-plan-bound-s PROB s)

proof −
have ∀ x∈MPLS-s PROB s. x ≤ 2 ^ card (prob-dom PROB) − 1

using assms(1 , 2 ) bound-main-lemma-s-1 by blast
then have 1 : finite (MPLS-s PROB s)
using mems-le-finite[where s = MPLS-s PROB s and k = 2 ^ card (prob-dom

PROB) − 1 ]
by blast

then have MPLS-s PROB s 6= {}
using bound-main-lemma-s-3
by fast

then have Inf (PLS s as) ∈ MPLS-s PROB s
using assms AS-VALID-MPLS-VALID
by blast

then show (Inf (PLS s as) ≤ problem-plan-bound-s PROB s)
unfolding problem-plan-bound-s-def
using 1 le-cSup-finite
by blast

qed

theorem bound-main-lemma-s:
fixes PROB :: ′a problem and s
assumes finite PROB (s ∈ valid-states PROB)
shows (problem-plan-bound-s PROB s ≤ 2 ^ (card (prob-dom PROB)) − 1 )

proof −
have 1 : ∀ x∈MPLS-s PROB s. x ≤ 2 ^ card (prob-dom PROB) − 1

using assms bound-main-lemma-s-1
by metis

then have MPLS-s PROB s 6= {}
using bound-main-lemma-s-3
by fast

then have Sup (MPLS-s PROB s) ≤ 2 ^ card (prob-dom PROB) − 1
using 1 bound-main-lemma-2 [where s = MPLS-s PROB s and k = 2 ^ card

(prob-dom PROB) − 1 ]
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by blast
then show problem-plan-bound-s PROB s ≤ 2 ^ card (prob-dom PROB) − 1

unfolding problem-plan-bound-s-def
by blast

qed

lemma problem-plan-bound-s-works:
fixes PROB :: ′a problem and as s
assumes finite PROB (as ∈ valid-plans PROB) (s ∈ valid-states PROB)
shows (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound-s PROB s)

)
proof −

have problem-plan-bound-s PROB s ≤ 2 ^ card (prob-dom PROB) − 1
using assms(1 , 3 ) bound-main-lemma-s
by blast

then have 1 : Inf (PLS s as) ≤ problem-plan-bound-s PROB s
using assms problem-plan-bound-s-ge-min-pls[of PROB s as 2 ^ card (prob-dom

PROB) − 1 ]
by blast

then obtain x where obtain-x: x ∈ PLS s as ∧ x = Inf (PLS s as)
using PLS-nempty-and-has-min
by blast

then have ∃ as ′. exec-plan s as = exec-plan s as ′ ∧ length as ′ = Inf (PLS s as)
∧ subseq as ′ as

using PLS-works[where s = s and as = as and x = Inf (PLS s as)]
obtain-x

by fastforce
then show (∃ as ′.
(exec-plan s as = exec-plan s as ′) ∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound-s PROB s)

)
using 1
by metis

qed

— NOTE skipped second declaration (declared twice in source).
lemma PLS-def-ITP2015 :

fixes s as
shows PLS s as = {length as ′ | as ′. (exec-plan s as ′ = exec-plan s as) ∧ (subseq

as ′ as)}
using PLS-def
by blast

173



— NOTE Set comprehension had to be rewritten to image (there is no pattern
matching in the part left of the pipe symbol).
lemma expanded-problem-plan-bound-charles-thm:

fixes PROB :: ′a problem
shows

problem-plan-bound-charles PROB
= Sup (
{

Inf (PLS-charles (fst p) (snd p) PROB)
| p. (fst p ∈ valid-states PROB) ∧ (snd p ∈ valid-plans PROB)})

unfolding problem-plan-bound-charles-def MPLS-charles-def
by blast

lemma bound-main-lemma-charles-3 :
fixes PROB :: ′a problem
assumes finite PROB
shows MPLS-charles PROB 6= {}

proof −
have 1 : [] ∈ valid-plans PROB

using empty-plan-is-valid
by auto

then obtain s :: ′a state where obtain-s: s ∈ valid-states PROB
using assms valid-states-nempty
by auto

then have Inf (PLS-charles s [] PROB) ∈ MPLS-charles PROB
unfolding MPLS-charles-def
using 1
by auto

then show MPLS-charles PROB 6= {}
by blast

qed

lemma in-PLS-charles-leq-2-pow-n:
fixes PROB :: ′a problem and s as
assumes finite PROB s ∈ valid-states PROB as ∈ valid-plans PROB
shows (∃ x.
(x ∈ PLS-charles s as PROB)
∧ (x ≤ 2 ^ card (prob-dom PROB) − 1 ))

proof −
obtain as ′ where 1 :

exec-plan s as = exec-plan s as ′ subseq as ′ as length as ′ ≤ 2 ^ card (prob-dom
PROB) − 1

using assms main-lemma
by blast

then have as ′ ∈ valid-plans PROB
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using assms(3 ) sublist-valid-plan
by blast

then have length as ′ ∈ PLS-charles s as PROB
unfolding PLS-charles-def
using 1
by auto

then show ?thesis
using 1 (3 )
by fast

qed

— NOTE added lemma.
— NOTE this lemma retrieves ‘s‘, ‘as‘ for a given x ∈ MPLS-charles PROB and
characterizes it as the minimum of ’PLS_charles s as PROB’.
lemma x-in-MPLS-charles-then:

fixes PROB s as
assumes x ∈ MPLS-charles PROB
shows ∃ s as.

s ∈ valid-states PROB ∧ as ∈ valid-plans PROB ∧ x = Inf (PLS-charles s as
PROB)

proof −
have ∃ p ∈ {p. (fst p) ∈ valid-states PROB ∧ (snd p) ∈ valid-plans PROB}. x

= Inf (PLS-charles (fst p) (snd p) PROB)
using MPLS-charles-def assms
by fast

then obtain p where 1 :
p ∈ {p. (fst p) ∈ valid-states PROB ∧ (snd p) ∈ valid-plans PROB}
x = Inf (PLS-charles (fst p) (snd p) PROB)
by blast

then have fst p ∈ valid-states PROB snd p ∈ valid-plans PROB
by blast+

then show ?thesis
using 1
by fast

qed

lemma in-MPLS-charles-leq-2-pow-n:
fixes PROB :: ′a problem and x
assumes finite PROB x ∈ MPLS-charles PROB
shows x ≤ 2 ^ card (prob-dom PROB) − 1

proof −
obtain s as where 1 :
s ∈ valid-states PROB as ∈ valid-plans PROB x = Inf (PLS-charles s as PROB)
using assms(2 ) x-in-MPLS-charles-then
by blast

then obtain x ′ where 2 : x ′ ∈ PLS-charles s as PROBx ′ ≤ 2 ^ card (prob-dom
PROB) − 1
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using assms(1 ) in-PLS-charles-leq-2-pow-n
by blast

then have x ≤ x ′

using 1 (3 ) mem-le-imp-MIN-le
by blast

then show ?thesis
using 1 2
by linarith

qed

lemma bound-main-lemma-charles:
fixes PROB :: ′a problem
assumes finite PROB
shows problem-plan-bound-charles PROB ≤ 2 ^ (card (prob-dom PROB)) − 1

proof −
have 1 : ∀ x∈MPLS-charles PROB. x ≤ 2 ^ (card (prob-dom PROB)) − 1

using assms in-MPLS-charles-leq-2-pow-n
by blast

then have MPLS-charles PROB 6= {}
using assms bound-main-lemma-charles-3
by blast

then have Sup (MPLS-charles PROB) ≤ 2 ^ (card (prob-dom PROB)) − 1
using 1 bound-main-lemma-2
by meson

then show ?thesis
using problem-plan-bound-charles-def
by metis

qed

lemma bound-on-all-plans-bounds-PLS-charles:
fixes P and f
assumes ∀ (PROB :: ′a problem) as s.

(P PROB) ∧ finite PROB ∧ (as ∈ valid-plans PROB) ∧ (s ∈ valid-states
PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′) ∧ (subseq as ′ as)∧ (length as ′ < f PROB))

shows (∀PROB s as.
(P PROB) ∧ finite PROB ∧ (as ∈ valid-plans PROB) ∧ (s ∈ valid-states

PROB)
−→ (∃ x.
(x ∈ PLS-charles s as PROB)
∧ (x < f PROB)))

proof −
{

— NOTE type for ’s’ had to be fixed (type mismatch in first proof step.
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fix PROB :: ′a problem and as and s :: ′a state
assume P:

P PROB finite PROB as ∈ valid-plans PROB s ∈ valid-states PROB
(∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
then obtain as ′ where 1 :
(exec-plan s as = exec-plan s as ′) (subseq as ′ as) (length as ′ < f PROB)
using P(5 )
by blast

then have 2 : as ′ ∈ valid-plans PROB
using P(3 ) sublist-valid-plan
by blast

let ?x = length as ′

have ?x ∈ PLS-charles s as PROB
unfolding PLS-charles-def
using 1 2
by auto

then have ∃ x. x ∈ PLS-charles s as PROB ∧ x < f PROB
using 1 2
by blast

}
then show ?thesis

using assms
by auto

qed

— NOTE added lemma (refactored from ‘bound_on_all_plans_bounds_MPLS_charles‘).
lemma bound-on-all-plans-bounds-MPLS-charles-i:

assumes ∀ (PROB :: ′a problem) s as.
(P PROB) ∧ finite PROB ∧ (as ∈ valid-plans PROB) ∧ (s ∈ valid-states

PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′) ∧ (subseq as ′ as) ∧ (length as ′ < f PROB))

shows ∀ (PROB :: ′a problem) s as.
P PROB ∧ finite PROB ∧ as ∈ valid-plans PROB ∧ s ∈ valid-states PROB
−→ Inf {n. n ∈ PLS-charles s as PROB} < f PROB

proof −
{

fix PROB :: ′a problem and s as
have P PROB ∧ finite PROB ∧ as ∈ valid-plans PROB ∧ s ∈ valid-states

PROB
−→ (∃ x. x ∈ PLS-charles s as PROB ∧ x < f PROB)
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using assms bound-on-all-plans-bounds-PLS-charles[of P f ]
by blast

then have
P PROB ∧ finite PROB ∧ as ∈ valid-plans PROB ∧ s ∈ valid-states PROB
−→ Inf {n. n ∈ PLS-charles s as PROB} < f PROB

using mem-lt-imp-MIN-lt CollectI
by metis

}
then show ?thesis

by blast
qed

lemma bound-on-all-plans-bounds-MPLS-charles:
fixes P f
assumes (∀ (PROB :: ′a problem) as s.

(P PROB) ∧ finite PROB ∧ (s ∈ valid-states PROB) ∧ (as ∈ valid-plans
PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)

)
)
shows (∀PROB x.
(P PROB) ∧ finite PROB
−→ (x ∈ MPLS-charles PROB)
−→ (x < f PROB)

)
proof −

have 1 : ∀ (PROB :: ′a problem) s as.
P PROB ∧ finite PROB ∧ as ∈ valid-plans PROB ∧ s ∈ valid-states PROB
−→ Inf {n. n ∈ PLS-charles s as PROB} < f PROB

using assms bound-on-all-plans-bounds-MPLS-charles-i
by blast

moreover
{

fix PROB :: ′a problem and x
assume P1 : (P PROB) finite PROB x ∈ MPLS-charles PROB
then obtain s as where a:

as ∈ valid-plans PROB s ∈ valid-states PROB x = Inf (PLS-charles s as
PROB)

using x-in-MPLS-charles-then
by blast

then have Inf {n. n ∈ PLS-charles s as PROB} < f PROB
using 1 P1
by blast

then have x < f PROB
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using a
by simp

}
ultimately show ?thesis

by blast
qed

— NOTE added lemma (refactored from ’bound_on_all_plans_bounds_prob-
lem_plan_bound_charles’).
lemma bound-on-all-plans-bounds-problem-plan-bound-charles-i:

fixes PROB :: ′a problem
assumes finite PROB ∀ x ∈ MPLS-charles PROB. x < k
shows Sup (MPLS-charles PROB) ∈ MPLS-charles PROB

proof −
have 1 : MPLS-charles PROB 6= {}

using assms(1 ) bound-main-lemma-charles-3
by auto

then have finite (MPLS-charles PROB)
using assms(2 ) finite-nat-set-iff-bounded
by blast

then show ?thesis
unfolding Sup-nat-def
using 1
by simp

qed

lemma bound-on-all-plans-bounds-problem-plan-bound-charles:
fixes P f
assumes (∀ (PROB :: ′a problem) as s.

(P PROB) ∧ finite PROB ∧ (s ∈ valid-states PROB) ∧ (as ∈ valid-plans
PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ < f PROB)))

shows (∀PROB.
(P PROB) ∧ finite PROB −→ (problem-plan-bound-charles PROB < f PROB))

proof −
have 1 : ∀PROB x. P PROB ∧ finite PROB −→ x ∈ MPLS-charles PROB −→

x < f PROB
using assms bound-on-all-plans-bounds-MPLS-charles
by blast

moreover
{

fix PROB
assume P: P PROB finite PROB
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moreover have 2 : ∀ x. x ∈ MPLS-charles PROB −→ x < f PROB
using 1 P
by blast

moreover
{

fix x
assume P1 : x ∈ MPLS-charles PROB
moreover have x < f PROB

using P(1 , 2 ) P1 1
by presburger

moreover have MPLS-charles PROB 6= {}
using P1
by blast

moreover have Sup (MPLS-charles PROB) < f PROB
using calculation(3 ) 2 bound-child-parent-not-eq-last-diff-paths[of MPLS-charles

PROB f PROB]
by blast

ultimately have (problem-plan-bound-charles PROB < f PROB)
unfolding problem-plan-bound-charles-def
by blast

}
moreover have Sup (MPLS-charles PROB) ∈ MPLS-charles PROB

using P(2 ) 2 bound-on-all-plans-bounds-problem-plan-bound-charles-i
by blast

ultimately have problem-plan-bound-charles PROB < f PROB
unfolding problem-plan-bound-charles-def
by blast

}
ultimately show ?thesis

by blast
qed

6.3 The Relation between Diameter, Sublist Diameter and
Recurrence Diameter Bounds.

The goal of this subsection is to verify the relation between diameter, sublist
diameter and recurrence diameter bounds given by HOL4 Theorem 1, i.e.

d δ ≤ l δ ∧ l δ ≤ rd δ
where d δ, l δ and rd δ denote the diameter, sublist diameter and recur-

rence diameter bounds. [Abdualaziz et al., p.20]
The relevant lemmas are ‘sublistD_bounds_D‘ and ‘RD_bounds_sub-

listD‘ which culminate in theorem ‘sublistD_bounds_D_and_RD_bounds_sub-
listD‘.
lemma sublistD-bounds-D:

fixes PROB :: ′a problem
assumes finite PROB
shows problem-plan-bound-charles PROB ≤ problem-plan-bound PROB

proof −
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— NOTE obtain the premise needed for MP of ’bound_on_all_plans_bounds_prob-
lem_plan_bound_charles’.

{
fix PROB :: ′a problem and s :: ′a state and as
assume P: finite PROB s ∈ valid-states PROB as ∈ valid-plans PROB
then have ∃ as ′.

exec-plan s as = exec-plan s as ′ ∧ subseq as ′ as ∧ length as ′ ≤ prob-
lem-plan-bound PROB

using problem-plan-bound-works
by blast

then have ∃ as ′.
exec-plan s as = exec-plan s as ′ ∧ subseq as ′ as ∧ length as ′ < prob-

lem-plan-bound PROB + 1

by force
}
then have problem-plan-bound-charles PROB < problem-plan-bound PROB + 1

using assms bound-on-all-plans-bounds-problem-plan-bound-charles[where f =
λPROB. problem-plan-bound PROB + 1

and P = λ-. True]
by blast

then show ?thesis
by simp

qed

— NOTE added lemma (this was adapted from pred_setScript.sml:4887 with exlu-
sion of the premise for the empty set since ‘Max ‘ is undefined in Isabelle/HOL.)
lemma MAX-SET-ELIM ′:

fixes P Q
assumes finite P P 6= {} (∀ x. (∀ y. y ∈ P −→ y ≤ x) ∧ x ∈ P −→ R x)
shows R (Max P)
using assms
by force

— NOTE added lemma.
— NOTE adapted from pred_setScript.sml:4895 (premise ‘finite P‘ was added).
lemma MIN-SET-ELIM ′:

fixes P Q
assumes finite P P 6= {} ∀ x. (∀ y. y ∈ P −→ x ≤ y) ∧ x ∈ P −→ Q x
shows Q (Min P)

proof −
let ?x=Min P
have Min P ∈ P

using Min-in[OF assms(1 ) assms(2 )]
by simp

moreover {
fix y
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assume P: y ∈ P
then have ?x ≤ y

using Min.coboundedI [OF assms(1 )]
by blast

then have Q ?x using P assms
by auto

}
ultimately show ?thesis

by blast
qed

— NOTE added lemma (refactored from ‘RD_bounds_sublistD‘).
lemma RD-bounds-sublistD-i-a:

fixes Pi :: ′a problem
assumes finite Pi
shows finite {length p − 1 |p. valid-path Pi p ∧ distinct p}

proof −
{

let ?ss={length p − 1 |p. valid-path Pi p ∧ distinct p}
let ?ss ′={p. valid-path Pi p ∧ distinct p}
have 1 : ?ss = (λx. length x − 1 ) ‘ ?ss ′

by blast
{
— NOTE type of ‘valid_states Pi‘ had to be asserted to match ‘FINITE_valid_states‘.

let ?S={p. distinct p ∧ set p ⊆ (valid-states Pi :: ′a state set)}
{

from assms have finite (valid-states Pi :: ′a state set)
using FINITE-valid-states[of Pi]
by simp

then have finite ?S
using FINITE-ALL-DISTINCT-LISTS
by blast

}
moreover {

{
fix x
assume x ∈ ?ss ′

then have x ∈ ?S
proof (induction x)

case (Cons a x)
then have a: valid-path Pi (a # x) distinct (a # x)

by blast+
moreover {

fix x ′

assume P: x ′ ∈ set (a # x)
then have x ′ ∈ valid-states Pi
proof (cases x)

case Nil
from a(1 ) Nil
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have a ∈ valid-states Pi
by simp

moreover from P Nil
have x ′ = a

by force
ultimately show ?thesis

by simp
next

case (Cons a ′ list)
{

{
from Cons.prems have valid-path Pi (a # x)

by simp
then have a ∈ valid-states Pi valid-path Pi (a ′ # list)

using Cons
by fastforce+

}
note a = this
moreover {

from Cons.prems have distinct (a # x)
by blast

then have distinct (a ′ # list)
using Cons
by simp

}
ultimately
have (a ′ # list) ∈ ?ss ′

by blast
then have (a ′ # list) ∈ ?S

using Cons Cons.IH
by argo

}
then show ?thesis

using P a(1 ) local.Cons set-ConsD
by fastforce

qed
}
ultimately show ?case

by blast
qed simp

}
then have ?ss ′ ⊆ ?S

by blast
}
ultimately have finite ?ss ′

using rev-finite-subset
by auto

}
note 2 = this
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from 1 2 have finite ?ss
using finite-imageI
by auto

}
then show ?thesis

by blast
qed

— NOTE added lemma (refactored from ‘RD_bounds_sublistD‘).
lemma RD-bounds-sublistD-i-b:

fixes Pi :: ′a problem
shows {length p − 1 |p. valid-path Pi p ∧ distinct p} 6= {}

proof −
let ?Q={length p − 1 |p. valid-path Pi p ∧ distinct p}
let ?Q ′={p. valid-path Pi p ∧ distinct p}
{

have valid-path Pi []
by simp

moreover have distinct []
by simp

ultimately have [] ∈ ?Q ′

by simp
}
note 1 = this
have ?Q = (λp. length p − 1 ) ‘ ?Q ′

by blast
then have length [] − 1 ∈ ?Q

using 1
by (metis (mono-tags, lifting) image-iff list.size(3 ))

then show ?thesis
by blast

qed

— NOTE added lemma (refactored from ‘RD_bounds_sublistD‘).
lemma RD-bounds-sublistD-i-c:

fixes Pi :: ′a problem and as :: (( ′a, bool) fmap × ( ′a, bool) fmap) list and x
and s :: ( ′a, bool) fmap

assumes s ∈ valid-states Pi as ∈ valid-plans Pi
(∀ y. y ∈ {length p − 1 |p. valid-path Pi p ∧ distinct p} −→ y ≤ x)
x ∈ {length p − 1 |p. valid-path Pi p ∧ distinct p}

shows Min (PLS s as) ≤ Max {length p − 1 |p. valid-path Pi p ∧ distinct p}
proof −

let ?P=(PLS s as)
let ?Q={length p − 1 |p. valid-path Pi p ∧ distinct p}
from assms(4 ) obtain p where 1 :

x = length p − 1 valid-path Pi p distinct p
by blast

{
fix p ′
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assume valid-path Pi p ′ distinct p ′

then obtain y where y ∈ ?Q y = length p ′ − 1
by blast

— NOTE we cannot infer length p ′ − 1 ≤ length p − 1 since ‘length p’ =
0‘ might be true.

then have a: length p ′ − 1 ≤ length p − 1
using assms(3 ) 1 (1 )
by meson

}
note 2 = this
{

from finite-PLS PLS-NEMPTY
have finite (PLS s as) PLS s as 6= {}

by blast+
moreover {

fix n
assume P: (∀ y. y ∈ PLS s as −→ n ≤ y) n ∈ PLS s as
from P(2 ) obtain as ′ where i:

n = length as ′ exec-plan s as ′ = exec-plan s as subseq as ′ as
unfolding PLS-def
by blast

let ?p ′=statelist ′ s as ′

{
have length as ′ = length ?p ′ − 1

by (simp add: LENGTH-statelist ′)
— MARKER (topologicalPropsScript.sml:195)

have 1 + (length p − 1 ) = length p − 1 + 1
by presburger

— MARKER (topologicalPropsScript.sml:200)
{

from assms(2 ) i(3 ) sublist-valid-plan
have as ′ ∈ valid-plans Pi

by blast
then have valid-path Pi ?p ′

using assms(1 ) valid-path-statelist ′

by auto
}
moreover {

{
assume C : ¬distinct ?p ′

— NOTE renamed variable ‘drop‘ to ‘drop’‘ to avoid shadowing of the
function by the same name in Isabelle/HOL.

then obtain rs pfx drop ′ tail where C-1 : ?p ′ = pfx @ [rs] @ drop ′ @
[rs] @ tail

using not-distinct-decomp[OF C ]
by fast

let ?pfxn=length pfx
have C-2 : ?p ′ ! ?pfxn = rs

by (simp add: C-1 )
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from LENGTH-statelist ′

have C-3 : length as ′ + 1 = length ?p ′

by metis
then have ?pfxn ≤ length as ′

using C-1
by fastforce

then have C-4 : exec-plan s (take ?pfxn as ′) = rs
using C-2 statelist ′-TAKE
by blast

let ?prsd = length (pfx @ [rs] @ drop ′)
let ?ap1 = take ?pfxn as ′

— MARKER (topologicalPropsScript.sml:215)
from C-1
have C-5 : ?p ′ ! ?prsd = rs

by (metis append-Cons length-append nth-append-length nth-append-length-plus)
from C-1 C-3
have C-6 : ?prsd ≤ length as ′

by simp
then have C-7 : exec-plan s (take ?prsd as ′) = rs

using C-5 statelist ′-TAKE
by auto

let ?ap2=take ?prsd as ′

let ?asfx=drop ?prsd as ′

have C-8 : as ′ = ?ap2 @ ?asfx
by force

then have exec-plan s as ′ = exec-plan (exec-plan s ?ap2 ) ?asfx
using exec-plan-Append
by metis

then have C-9 : exec-plan s as ′ = exec-plan s (?ap1 @ ?asfx)
using C-4 C-7 exec-plan-Append
by metis

from C-6
have C-10 : (length ?ap1 = ?pfxn) ∧ (length ?ap2 = ?prsd)

by fastforce
then have C-11 : length (?ap1 @ ?asfx) < length (?ap2 @ ?asfx)

by auto
{

from C-10
have ?pfxn + length ?asfx = length (?ap1 @ ?asfx)

by simp
from C-9 i(2 )
have C-12 : exec-plan s (?ap1 @ ?asfx) = exec-plan s as

by argo
{

{
{

have prefix ?ap1 ?ap2
by (metis (no-types) length-append prefix-def take-add)

then have subseq ?ap1 ?ap2
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using isPREFIX-sublist
by blast

}
moreover have sublist ?asfx ?asfx

using sublist-refl
by blast

ultimately have subseq (?ap1 @ ?asfx) as ′

using C-8 subseq-append
by metis

}
moreover from i(3 )
have subseq as ′ as

by simp
ultimately have subseq (?ap1 @ ?asfx) as

using sublist-trans
by blast

}
then have length (?ap1 @ ?asfx) ∈ PLS s as

unfolding PLS-def
using C-12
by blast

}
then have False

using P(1 ) i(1 ) C-10
by auto

}
hence distinct ?p ′

by auto
}
ultimately have length ?p ′ − 1 ≤ length p − 1

using 2
by blast

}
note ii = this
{

from i(1 ) have n + 1 = length ?p ′

using LENGTH-statelist ′[symmetric]
by blast

also have . . . ≤ 1 + (length p − 1 )
using ii
by linarith

finally have n ≤ length p − 1
by fastforce

}
then have n ≤ length p − 1

by blast
}
ultimately have Min ?P ≤ length p − 1

using MIN-SET-ELIM ′[where P=?P and Q=λx. x ≤ length p − 1 ]
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by blast
}
note 3 = this
{

have length p − 1 ≤ Max {length p − 1 |p. valid-path Pi p ∧ distinct p}
using assms(3 , 4 ) 1 (1 )
by (smt Max .coboundedI bdd-aboveI bdd-above-nat)

moreover
have Min (PLS s as) ≤ length p − 1

using 3
by blast

ultimately
have Min (PLS s as) ≤ Max {length p − 1 |p. valid-path Pi p ∧ distinct p}

by linarith
}
then show ?thesis

by blast
qed

— NOTE added lemma (refactored from ‘RD_bounds_sublistD‘).
lemma RD-bounds-sublistD-i:

fixes Pi :: ′a problem and x
assumes finite Pi (∀ y. y ∈ MPLS Pi −→ y ≤ x) x ∈ MPLS Pi
shows x ≤ Max {length p − 1 |p. valid-path Pi p ∧ distinct p}

proof −
{

let ?P=MPLS Pi
let ?Q={length p − 1 |p. valid-path Pi p ∧ distinct p}
from assms(3 )
obtain s as where 1 :

s ∈ valid-states Pi as ∈ valid-plans Pi x = Inf (PLS s as)
unfolding MPLS-def
by fast

have x ≤ Max ?Q proof −

Show that ‘x‘ is not only the infimum but also the minimum of ‘PLS s
as‘.

{
have finite (PLS s as)

using finite-PLS
by auto

moreover
have PLS s as 6= {}

using PLS-NEMPTY
by auto

ultimately
have a: Inf (PLS s as) = Min (PLS s as)

using cInf-eq-Min[of PLS s as]
by blast
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from 1 (3 ) a have x = Min (PLS s as)
by blast

}
note a = this
{

let ?limit=Min (PLS s as)
from assms(1 )
have a: finite ?Q

using RD-bounds-sublistD-i-a
by blast

have b: ?Q 6= {}
using RD-bounds-sublistD-i-b
by fast

from 1 (1 , 2 )
have c: ∀ x. (∀ y. y ∈ ?Q −→ y ≤ x) ∧ x ∈ ?Q −→ ?limit ≤ Max ?Q

using RD-bounds-sublistD-i-c
by blast

have ?limit ≤ Max ?Q
using MAX-SET-ELIM ′[where P=?Q and R=λx. ?limit ≤ Max ?Q, OF

a b c]
by blast

}
note b = this
from a b show x ≤ Max ?Q

by blast
qed

}
then show ?thesis

using assms
unfolding MPLS-def
by blast

qed

— NOTE type of ‘Pi‘ had to be fixed for use of ‘FINITE_valid_states‘.
lemma RD-bounds-sublistD:

fixes Pi :: ′a problem
assumes finite Pi
shows problem-plan-bound Pi ≤ RD Pi

proof −
let ?P=MPLS Pi
let ?Q={length p − 1 |p. valid-path Pi p ∧ distinct p}
{

from assms
have 1 : finite ?P

using FINITE-MPLS
by blast

from assms
have 2 : ?P 6= {}

using MPLS-nempty
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by blast
from assms
have 3 : ∀ x. (∀ y. y ∈ ?P −→ y ≤ x) ∧ x ∈ ?P −→ x ≤ Max ?Q

using RD-bounds-sublistD-i
by blast

have Max ?P ≤ Max ?Q
using MAX-SET-ELIM ′[OF 1 2 3 ]
by blast

}
then show ?thesis

unfolding problem-plan-bound-def RD-def Sup-nat-def
using RD-bounds-sublistD-i-b by auto

qed

— NOTE type for ‘PROB‘ had to be fixed in order to be able to match ‘sub-
listD_bounds_D‘.
theorem sublistD-bounds-D-and-RD-bounds-sublistD:

fixes PROB :: ′a problem
assumes finite PROB
shows

problem-plan-bound-charles PROB ≤ problem-plan-bound PROB
∧ problem-plan-bound PROB ≤ RD PROB

using assms sublistD-bounds-D RD-bounds-sublistD
by auto

— NOTE type of ‘PROB‘ had to be fixed for MP of lemmas.
lemma empty-problem-bound:

fixes PROB :: ′a problem
assumes (prob-dom PROB = {})
shows (problem-plan-bound PROB = 0 )

proof −
{

fix PROB ′ and as :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) list and s :: ( ′a, ′b) fmap
assume

finite PROB prob-dom PROB ′ = {} s ∈ valid-states PROB ′ as ∈ valid-plans
PROB ′

then have exec-plan s [] = exec-plan s as
using empty-prob-dom-imp-empty-plan-always-good
by blast

then have (∃ as ′. exec-plan s as = exec-plan s as ′ ∧ subseq as ′ as ∧ length as ′

< 1 )
by force

}
then show ?thesis

using bound-on-all-plans-bounds-problem-plan-bound-[where P=λP. prob-dom
P = {} and f=λP. 1 , of PROB]
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using assms empty-prob-dom-finite
by blast

qed

lemma problem-plan-bound-works ′:
fixes PROB :: ′a problem and as s
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
shows (∃ as ′.
(exec-plan s as ′ = exec-plan s as)
∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound PROB)
∧ (sat-precond-as s as ′)

)
proof −

obtain as ′ where 1 :
exec-plan s as = exec-plan s as ′ subseq as ′ as length as ′ ≤ problem-plan-bound

PROB
using assms problem-plan-bound-works
by blast

— NOTE this step seems to be handled implicitely in original proof.
moreover have rem-condless-act s [] as ′ ∈ valid-plans PROB

using assms(3 ) 1 (2 ) rem-condless-valid-10 sublist-valid-plan
by blast

moreover have subseq (rem-condless-act s [] as ′) as ′

using rem-condless-valid-8
by blast

moreover have length (rem-condless-act s [] as ′) ≤ length as ′

using rem-condless-valid-3
by blast

moreover have sat-precond-as s (rem-condless-act s [] as ′)
using rem-condless-valid-2
by blast

moreover have exec-plan s as ′ = exec-plan s (rem-condless-act s [] as ′)
using rem-condless-valid-1
by blast

ultimately show ?thesis
by fastforce

qed

— TODO remove? Can be solved directly with ’TopologicalProps.bound_on_all_plans_bounds_prob-
lem_plan_bound_thesis’.
lemma problem-plan-bound-UBound:

assumes (∀ as s.
(s ∈ valid-states PROB)
∧ (as ∈ valid-plans PROB)
−→ (∃ as ′.
(exec-plan s as = exec-plan s as ′)
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∧ subseq as ′ as
∧ (length as ′ < f PROB)

)
) finite PROB
shows (problem-plan-bound PROB < f PROB)

proof −
let ?P = λPr . PROB = Pr
have ?P PROB by simp
then show ?thesis

using assms bound-on-all-plans-bounds-problem-plan-bound-[where P = ?P]
by force

qed

6.4 Traversal Diameter
definition traversed-states where

traversed-states s as ≡ set (state-list s as)

lemma finite-traversed-states: finite (traversed-states s as)
unfolding traversed-states-def
by simp

lemma traversed-states-nempty: traversed-states s as 6= {}
unfolding traversed-states-def
by (induction as) auto

lemma traversed-states-geq-1 :
fixes s
shows 1 ≤ card (traversed-states s as)

proof −
have card (traversed-states s as) 6= 0

using traversed-states-nempty finite-traversed-states card-0-eq
by blast

then show 1 ≤ card (traversed-states s as)
by linarith

qed

lemma init-is-traversed: s ∈ traversed-states s as
unfolding traversed-states-def
by (induction as) auto

— NOTE name shortened.
definition td where

td PROB ≡ Sup {
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(card (traversed-states (fst p) (snd p))) − 1
| p. (fst p ∈ valid-states PROB) ∧ (snd p ∈ valid-plans PROB)}

lemma traversed-states-rem-condless-act:
∧

s.
traversed-states s (rem-condless-act s [] as) = traversed-states s as

apply(induction as)
apply(auto simp add: traversed-states-def rem-condless-act-cons)
subgoal by (simp add: state-succ-pair)
subgoal using init-is-traversed traversed-states-def by blast
subgoal by (simp add: state-succ-pair)
done

— NOTE added lemma.
lemma td-UBound-i:

fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set
assumes finite PROB
shows
{
(card (traversed-states (fst p) (snd p))) − 1
| p. (fst p ∈ valid-states PROB) ∧ (snd p ∈ valid-plans PROB)}
6= {}

proof −
let ?S={p. (fst p ∈ valid-states PROB) ∧ (snd p ∈ valid-plans PROB)}
obtain s :: ′a state where s ∈ valid-states PROB

using assms valid-states-nempty
by blast

moreover have [] ∈ valid-plans PROB
using empty-plan-is-valid
by auto

ultimately have ?S 6= {}
using assms valid-states-nempty
by auto

then show ?thesis
by blast

qed

lemma td-UBound:
fixes PROB :: (( ′a, ′b) fmap × ( ′a, ′b) fmap) set
assumes finite PROB (∀ s as.
(sat-precond-as s as) ∧ (s ∈ valid-states PROB) ∧ (as ∈ valid-plans PROB)
−→ (card (traversed-states s as) ≤ k)

)
shows (td PROB ≤ k − 1 )

proof −
let ?S={
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(card (traversed-states (fst p) (snd p))) − 1
| p. (fst p ∈ valid-states PROB) ∧ (snd p ∈ valid-plans PROB)}

{
fix x
assume x ∈ ?S
then obtain p where 1 :

x = card (traversed-states (fst p) (snd p)) − 1 fst p ∈ valid-states PROB
snd p ∈ valid-plans PROB
by blast

let ?s=fst p
let ?as=snd p
{

let ?as ′=(rem-condless-act ?s [] ?as)
have 2 : traversed-states ?s ?as = traversed-states ?s ?as ′

using traversed-states-rem-condless-act
by blast

moreover have sat-precond-as ?s ?as ′

using rem-condless-valid-2
by blast

moreover have ?as ′ ∈ valid-plans PROB
using 1 (3 ) rem-condless-valid-10
by blast

ultimately have card (traversed-states ?s ?as ′) ≤ k
using assms(2 ) 1 (2 )
by blast

then have card (traversed-states ?s ?as) ≤ k
using 2
by argo

}
then have x ≤ k − 1

using 1
by linarith

}
moreover have ?S 6= {}

using assms td-UBound-i
by fast

ultimately show ?thesis
unfolding td-def
using td-UBound-i bound-main-lemma-2 [of ?S k − 1 ]
by presburger

qed

end
theory SystemAbstraction

imports
Main
HOL−Library.Sublist
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HOL−Library.Finite-Map
FactoredSystem
FactoredSystemLib
ActionSeqProcess
Dependency
TopologicalProps
FmapUtils
ListUtils

begin

— NOTE hide ’Map.map_add’ because of conflicting notation with ’FactoredSys-
temLib.map_add_ltr’.
hide-const (open) Map.map-add
no-notation Map.map-add (infixl ‹++› 100 )

7 System Abstraction
Projection of an object (state, action, sequence of action or factored rep-
resentation) to a variable set ‘vs‘ restricts the domain of the object or its
components—in case of composite objects—to ‘vs‘. [Abdulaziz et al., p.12]

This section presents the relevant definitions (‘action_proj‘, ‘as_proj‘,
‘prob_proj‘ and ‘ss_proj‘) as well as their characterization.

7.1 Projection of Actions, Sequences of Actions and Factored
Representations.

definition action-proj where
action-proj a vs ≡ (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a))

lemma action-proj-pair : action-proj (p, e) vs = (fmrestrict-set vs p, fmrestrict-set
vs e)

unfolding action-proj-def
by simp

definition prob-proj where
prob-proj PROB vs ≡ (λa. action-proj a vs) ‘ PROB

— NOTE using ’fun’ due to multiple defining equations.
— NOTE name shortened.
fun as-proj where

as-proj [] - = []
| as-proj (a # as) vs = (if fmdom ′ (fmrestrict-set vs (snd a)) 6= {}

then action-proj a vs # as-proj as vs
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else as-proj as vs
)

— TODO the lemma might be superfluous (follows directly from ’as_proj.simps’).
lemma as-proj-pair :

as-proj ((p, e) # as) vs = (if (fmdom ′ (fmrestrict-set vs e) 6= {})
then action-proj (p, e) vs # as-proj as vs
else as-proj as vs

)
as-proj [] vs = []
by (simp)+

lemma proj-state-succ:
fixes s a vs
assumes (fst a ⊆f s)
shows (state-succ (fmrestrict-set vs s) (action-proj a vs) = fmrestrict-set vs

(state-succ s a))
proof −

have
fmrestrict-set vs (if fst a ⊆f s then snd a ++ s else s)
= fmrestrict-set vs (snd a ++ s)

using assms
by simp

moreover
{

assume fst (action-proj a vs) ⊆f fmrestrict-set vs s
then have
(state-succ (fmrestrict-set vs s) (action-proj a vs)
= fmrestrict-set vs (snd a ++ s))

unfolding state-succ-def action-proj-def fmap-add-ltr-def
by force

}
moreover {

assume ¬(fst (action-proj a vs) ⊆f fmrestrict-set vs s)
then have
(state-succ (fmrestrict-set vs s) (action-proj a vs)
= fmrestrict-set vs (snd a ++ s))

unfolding state-succ-def action-proj-def
using assms fmsubset-restrict-set-mono
by auto

}
ultimately show ?thesis

unfolding state-succ-def
by argo
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qed

lemma graph-plan-lemma-1 :
fixes s vs as
assumes sat-precond-as s as
shows (exec-plan (fmrestrict-set vs s) (as-proj as vs) = (fmrestrict-set vs (exec-plan

s as)))
using assms

proof (induction as arbitrary: s vs)
case (Cons a as)
then show ?case
proof (cases fmdom ′ (fmrestrict-set vs (snd a)) 6= {})

case True
then have
state-succ (fmrestrict-set vs s) (action-proj a vs) = fmrestrict-set vs (state-succ

s a)
using Cons.prems proj-state-succ
by fastforce

then show ?thesis
unfolding exec-plan.simps sat-precond-as.simps as-proj.simps
using Cons.IH Cons.prems True
by simp

next
case False
then have (fmdom ′ (snd a) ∩ vs = {})

using False fmdom ′-restrict-set-precise[of vs snd a]
by argo

then have fmrestrict-set vs s = fmrestrict-set vs (state-succ s a)
using disj-imp-eq-proj-exec
by blast

then show ?thesis
unfolding exec-plan.simps sat-precond-as.simps as-proj.simps
using Cons.IH Cons.prems False
by simp

qed
qed simp

— TODO the proofs are inefficient (detailed proofs?).
lemma proj-action-dom-eq-inter :

shows
action-dom (fst (action-proj a vs)) (snd (action-proj a vs))
= (action-dom (fst a) (snd a) ∩ vs)

unfolding action-dom-def action-proj-def
by (auto simp: fmdom ′-restrict-set-precise)
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lemma graph-plan-neq-mems-state-set-neq-len:
shows prob-dom (prob-proj PROB vs) = (prob-dom PROB ∩ vs)

proof −
have

prob-dom (prob-proj PROB vs)
= (⋃

(s1 , s2 )∈(λa. (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a)))
‘ PROB. action-dom s1 s2

)

unfolding prob-dom-def prob-proj-def action-proj-def
by blast

moreover
{

have
(prob-dom PROB ∩ vs)
= (

⋃
a∈PROB. action-dom (fst a) (snd a) ∩ vs)

unfolding prob-dom-def prob-proj-def
using SUP-cong
by auto

also have . . . = (
⋃

a∈PROB. action-dom (fst (action-proj a vs)) (snd (action-proj
a vs)))

using proj-action-dom-eq-inter [symmetric]
by fast

finally have
(prob-dom PROB ∩ vs)
= (

⋃
a∈PROB. fmdom ′ (fmrestrict-set vs (fst a)) ∪ fmdom ′ (fmrestrict-set vs

(snd a)))

unfolding action-dom-def action-proj-def
by simp

}
ultimately show ?thesis
by (metis (mono-tags, lifting) SUP-cong UN-simps(10 ) action-dom-def case-prod-beta ′

prod.sel(1 )
snd-conv)

qed

— TODO more detailed proof.
lemma graph-plan-not-eq-last-diff-paths:

fixes PROB vs
assumes (s ∈ valid-states PROB)
shows ((fmrestrict-set vs s) ∈ valid-states (prob-proj PROB vs))

unfolding valid-states-def
using graph-plan-neq-mems-state-set-neq-len
by (metis (mono-tags, lifting)
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assms fmdom ′.rep-eq fmlookup-fmrestrict-set-dom inf-commute mem-Collect-eq
valid-states-def )

lemma dom-eff-subset-imp-dom-succ-eq-proj:
fixes h s vs
assumes (fmdom ′ (snd h) ⊆ fmdom ′ s)
shows (fmdom ′ (state-succ s (action-proj h vs)) = fmdom ′ (state-succ s h))

proof (cases fst (fmrestrict-set vs (fst h), fmrestrict-set vs (snd h)) ⊆f s)
case true: True
then show ?thesis
proof (cases fst h ⊆f s)

case True
then show ?thesis

unfolding state-succ-def action-proj-def
using true True

by simp (smt assms fmap-add-ltr-def fmdom ′.rep-eq fmdom ′-add fmlookup-fmrestrict-set-dom
inf .absorb-iff2 inf .left-commute sup.absorb-iff1 )

next
case False
then show ?thesis

unfolding state-succ-def action-proj-def
using true False

by simp (metis (no-types) assms dual-order .trans fmap-add-ltr-def fmdom ′.rep-eq
fmdom ′-add

fmlookup-fmrestrict-set-dom inf-le2 sup.absorb-iff1 )
qed

next
case False
then have fmdom ′ s = fmdom ′ (if fst h ⊆f s then snd h ++ s else s)

using sat-precond-as-proj-4
by auto

then show ?thesis
unfolding state-succ-def action-proj-def
using False
by presburger

qed

lemma drest-proj-succ-eq-drest-succ:
fixes h s vs
assumes fst h ⊆f s (fmdom ′ (snd h) ⊆ fmdom ′ s)
shows (fmrestrict-set vs (state-succ s (action-proj h vs)) = fmrestrict-set vs

(state-succ s h))
proof −

{
have 1 : fmrestrict-set vs (fst h) ⊆f s

using assms(1 ) submap-imp-state-succ-submap-a
by (simp add: sat-precond-as-proj-4 )
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then have
fmrestrict-set vs (state-succ s (action-proj h vs))
= fmrestrict-set vs (fmrestrict-set vs (snd h) ++ s)

unfolding state-succ-def action-proj-def
by simp

also have . . . = fmrestrict-set vs s ++f fmrestrict-set vs (fmrestrict-set vs (snd
h))

unfolding fmap-add-ltr-def
by simp

— TODO refactor the step ’fmrestrict_set ?X (fmrestrict_set ?X ?f) =
fmrestrict_set ?X ?f’ into own lemma in ’FmapUtils.thy’.

also have . . . = fmrestrict-set vs s ++f fmrestrict-set vs (snd h)
using fmfilter-alt-defs(4 ) fmfilter-cong fmlookup-filter fmrestrict-set-dom op-

tion.simps(3 )
by metis

finally have
fmrestrict-set vs (state-succ s (action-proj h vs))
= fmrestrict-set vs (snd h ++ s)

unfolding fmap-add-ltr-def
by simp

}
moreover have fmrestrict-set vs (state-succ s h) = fmrestrict-set vs ((snd h)

++ s)
unfolding state-succ-def
using assms(1 )
by simp

ultimately show ?thesis
by simp

qed

— TODO remove? This is equivalent to ’proj_state_succ’.
lemma drest-succ-proj-eq-drest-succ:

fixes s vs as
assumes (fst a ⊆f s)
shows (state-succ (fmrestrict-set vs s) (action-proj a vs) = fmrestrict-set vs

(state-succ s a))
using assms proj-state-succ
by blast

lemma exec-drest-cons-proj-eq-succ:
fixes as PROB vs a
assumes fst a ⊆f s
shows (

exec-plan (fmrestrict-set vs s) (action-proj a vs # as)
= exec-plan (fmrestrict-set vs (state-succ s a)) as
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)
proof −

have exec-plan (state-succ (fmrestrict-set vs s) (action-proj a vs)) as =
exec-plan (fmrestrict-set vs (state-succ s a)) as

using assms drest-succ-proj-eq-drest-succ
by metis

then show ?thesis
unfolding prob-proj-def
by simp

qed

lemma exec-drest:
fixes as a vs
assumes (fst a ⊆f s)
shows (

exec-plan (fmrestrict-set vs (state-succ s a)) as
= exec-plan (fmrestrict-set vs s) (action-proj a vs # as)

)
using assms proj-state-succ
by fastforce

lemma not-empty-eff-in-as-proj:
fixes as a vs
assumes fmdom ′ (fmrestrict-set vs (snd a)) 6= {}
shows (as-proj (a # as) vs = (action-proj a vs # as-proj as vs))
unfolding action-proj-def as-proj.simps
using assms
by argo

lemma empty-eff-not-in-as-proj:
fixes as a vs
assumes (fmdom ′ (fmrestrict-set vs (snd a)) = {})
shows (as-proj (a # as) vs = as-proj as vs)
unfolding action-proj-def
using assms
by simp

lemma empty-eff-drest-no-eff :
fixes s and a and vs
assumes (fmdom ′ (fmrestrict-set vs (snd a)) = {})
shows (fmrestrict-set vs (state-succ s (action-proj a vs)) = fmrestrict-set vs s)

proof −
have fmdom ′ (snd (action-proj a vs)) = {}

unfolding action-proj-def
using assms
by simp
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then have state-succ s (action-proj a vs) = s
using empty-eff-exec-eq
by fast

then show ?thesis
by simp

qed

lemma sat-precond-exec-as-proj-eq-proj-exec:
fixes as vs s
assumes (sat-precond-as s as)
shows (exec-plan (fmrestrict-set vs s) (as-proj as vs) = fmrestrict-set vs (exec-plan

s as))
using assms

proof (induction as)
case (Cons a as)
then show ?case

using Cons.prems graph-plan-lemma-1
by blast

qed auto

lemma action-proj-in-prob-proj:
assumes (a ∈ PROB)
shows (action-proj a vs ∈ prob-proj PROB vs)
unfolding action-proj-def prob-proj-def
using assms
by simp

lemma valid-as-valid-as-proj:
fixes PROB vs
assumes (as ∈ valid-plans PROB)
shows (as-proj as vs ∈ valid-plans (prob-proj PROB vs))
using assms

proof (induction as arbitrary: PROB vs)
case (Cons a as)
then show ?case

using assms Cons
proof(cases fmdom ′ (fmrestrict-set vs (snd a)) 6= {})

case True
then have 1 : as-proj (a # as) vs = action-proj a vs # as-proj as vs

using True
by simp

then have as ∈ valid-plans PROB
using Cons.prems valid-plan-valid-tail
by fast

then have as-proj as vs ∈ valid-plans (prob-proj PROB vs)
using Cons.IH 1
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by simp
then have action-proj a vs # as-proj as vs ∈ valid-plans (prob-proj PROB vs)
using Cons.prems action-proj-in-prob-proj valid-head-and-tail-valid-plan valid-plan-valid-head

by metis
then show ?thesis

using 1
by argo

next
case False
then have as-proj (a # as) vs = as-proj as vs

using False
by auto

then have as-proj (a # as) vs ∈ valid-plans (prob-proj PROB vs)
using assms Cons valid-plan-valid-tail
by metis

then show ?thesis
using assms Cons.IH (1 )
by blast

qed
qed (simp add: valid-plans-def )

lemma finite-imp-finite-prob-proj:
fixes PROB
assumes finite PROB
shows (finite (prob-proj PROB vs))
unfolding prob-proj-def
using assms
by simp

— NOTE Base 2 in 5th assumption had to be explicitely fixed to ’nat’ type to be
able to use the linearity lemma for powers of natural numbers.
lemma

fixes PROB vs as and s :: ′a state
assumes finite PROB s ∈ valid-states PROB as ∈ (valid-plans PROB) finite vs

length (as-proj as vs) > ((2 :: nat) ^ card vs) − 1 sat-precond-as s as
shows (∃ as1 as2 as3 .
(as1 @ as2 @ as3 = as-proj as vs)
∧ (exec-plan (fmrestrict-set vs s) (as1 @ as2 ) = exec-plan (fmrestrict-set vs s)

as1 )
∧ (as2 6= [])

)
proof −

{
have card (fmdom ′ (fmrestrict-set vs s)) ≤ card vs

using assms(4 ) graph-plan-card-state-set
by fast

then have (2 :: nat) ^ (card (fmdom ′ (fmrestrict-set vs s))) − 1 ≤ 2 ^ (card
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vs) − 1
using power-increasing diff-le-mono
by force

also have ... < length (as-proj as vs)
using assms(5 )
by blast

finally have 2 ^ card (fmdom ′ (fmrestrict-set vs s)) − 1 < length (as-proj as
vs)

by blast
}
note 1 = this
moreover have fmrestrict-set vs s ∈ valid-states (prob-proj PROB vs)

using assms(2 ) graph-plan-not-eq-last-diff-paths
by blast

moreover have as-proj as vs ∈ valid-plans (prob-proj PROB vs)
using assms(3 ) valid-as-valid-as-proj
by blast

moreover have finite (prob-proj PROB vs)
using assms(1 ) finite-imp-finite-prob-proj
by blast

ultimately show ?thesis
using lemma-2 [where PROB=prob-proj PROB vs and as=as-proj as vs and

s=fmrestrict-set vs s]
by blast

qed

lemma as-proj-eq-filter-action-proj:
fixes as vs
shows as-proj as vs = filter (λa. fmdom ′ (snd a) 6= {}) (map (λa. action-proj a

vs) as)
by (induction as) (auto simp add: action-proj-def )

lemma append-eq-as-proj:
fixes as1 as2 as3 p vs
assumes (as1 @ as2 @ as3 = as-proj p vs)
shows (∃ p-1 p-2 p-3 .
(p-1 @ p-2 @ p-3 = p)
∧ (as2 = as-proj p-2 vs)
∧ (as1 = as-proj p-1 vs)

)
using assms append-eq-as-proj-1 as-proj-eq-filter-action-proj
by (metis (no-types, lifting))

lemma succ-drest-eq-drest-succ:
fixes a s vs
shows
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state-succ (fmrestrict-set vs s) (action-proj a vs)
= fmrestrict-set vs (state-succ s (action-proj a vs))

proof −
let ?lhs = state-succ (fmrestrict-set vs s) (action-proj a vs)
let ?rhs = fmrestrict-set vs (state-succ s (action-proj a vs))

— NOTE Show lhs and rhs equality by splitting on the cases introduced by the
if-then branching of ’state_succ’.

{
assume P1 : fst (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a)) ⊆f fmre-

strict-set vs s
then have a: fst (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a)) ⊆f s

using drest-smap-drest-smap-drest
by auto

then have ?lhs = fmrestrict-set vs (snd a) ++ fmrestrict-set vs s
unfolding state-succ-def action-proj-def
using P1
by simp

moreover {
have rhs: ?rhs = fmrestrict-set vs (fmrestrict-set vs (snd a) ++ s)

unfolding state-succ-def action-proj-def
using a
by auto

also have . . . = (fmrestrict-set vs (fmrestrict-set vs (snd a)) ++ fmrestrict-set
vs s)

unfolding fmap-add-ltr-def
by simp

finally have ?rhs = (fmrestrict-set vs (snd a) ++ fmrestrict-set vs s)
unfolding fmfilter-alt-defs(4 )
by fastforce

}
ultimately have ?lhs = ?rhs

by argo
}
moreover {

assume P2 : ¬(fst (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a)) ⊆f fmre-
strict-set vs s)

then have a: ¬(fst (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a)) ⊆f s)
using drest-smap-drest-smap-drest
by auto

then have ?lhs = fmrestrict-set vs s
unfolding state-succ-def action-proj-def
using P2
by argo

moreover have ?rhs = fmrestrict-set vs s
unfolding state-succ-def action-proj-def
using a
by presburger

ultimately have ?lhs = ?rhs
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by simp
}
ultimately show ?lhs = ?rhs

by blast
qed

lemma proj-exec-proj-eq-exec-proj:
fixes s as vs
shows

fmrestrict-set vs (exec-plan (fmrestrict-set vs s) (as-proj as vs))
= exec-plan (fmrestrict-set vs s) (as-proj as vs)

proof (induction as arbitrary: s vs)
case (Cons a as)
then show ?case

by (simp add: succ-drest-eq-drest-succ)
qed (simp add: fmfilter-alt-defs(4 ))

lemma proj-exec-proj-eq-exec-proj ′:
fixes s as vs
shows

fmrestrict-set vs (exec-plan (fmrestrict-set vs s) (as-proj as vs))
= fmrestrict-set vs (exec-plan s (as-proj as vs))

proof (induction as arbitrary: s vs)
case (Cons a as)
then show ?case

by (simp add: succ-drest-eq-drest-succ)
qed (simp add: fmfilter-alt-defs(4 ))

lemma graph-plan-lemma-9 :
fixes s as vs
shows

fmrestrict-set vs (exec-plan s (as-proj as vs))
= exec-plan (fmrestrict-set vs s) (as-proj as vs)

by (metis proj-exec-proj-eq-exec-proj ′ proj-exec-proj-eq-exec-proj)

lemma act-dom-proj-eff-subset-act-dom-eff :
fixes a vs
shows fmdom ′ (snd (action-proj a vs)) ⊆ fmdom ′ (snd a)

proof −
have snd (action-proj a vs) = fmrestrict-set vs (snd a)

unfolding action-proj-def
by simp
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then have fmlookup (fmrestrict-set vs (snd a)) ⊆m fmlookup (snd a)
by (simp add: map-le-def fmdom ′-restrict-set-precise)

then have dom (fmlookup (fmrestrict-set vs (snd a))) ⊆ dom (fmlookup (snd a))
using map-le-implies-dom-le
by blast

then have fmdom ′ (fmrestrict-set vs (snd a)) ⊆ fmdom ′ (snd a)
using fmdom ′.rep-eq
by metis

then show ?thesis
unfolding action-proj-def
by simp

qed

lemma exec-as-proj-valid:
fixes as s PROB vs
assumes s ∈ valid-states PROB (as ∈ valid-plans PROB)
shows (exec-plan s (as-proj as vs) ∈ valid-states PROB)
using assms

proof (induction as arbitrary: s PROB vs)
case (Cons a as)
then have 1 : as ∈ valid-plans PROB

using Cons.prems(2 ) valid-plan-valid-tail
by fast

then have 2 : exec-plan s (as-proj as vs) ∈ valid-states PROB
using Cons.prems(1 ) Cons.IH (1 )
by blast

— NOTE split on the if-then branch introduced by ’as_proj’.
moreover {

assume P: fmdom ′ (fmrestrict-set vs (snd a)) 6= {}
then have

exec-plan s (as-proj (a # as) vs)
= exec-plan (state-succ s (action-proj a vs)) (as-proj as vs)

by simp
— NOTE split on the if-then branch introduced by ’state_succ’

moreover
{

assume fst (action-proj a vs) ⊆f s
then have 3 :

exec-plan (state-succ s (action-proj a vs)) (as-proj as vs)
= exec-plan (snd (action-proj a vs) ++ s) (as-proj as vs)

unfolding state-succ-def
using calculation
by simp

{
— TODO Unsure why this proof step is necessary at all, but it should be

refactored into a dedicated lemma s ∈ valid-states PROB =⇒ fmdom ′ s = prob-dom
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PROB.
{

have s ∈ valid-states PROB
using Cons.prems
by simp

then have s ∈ {s ′. fmdom ′ s ′ = prob-dom PROB}
unfolding valid-states-def
by simp

then obtain s ′ where s ′ = s fmdom ′ s ′ = prob-dom PROB
by auto

then have fmdom ′ s = prob-dom PROB
by simp

}
— TODO Refactor this step (’also ...’ for subset chain; replace fact ‘fmdom’

s = prob_dom PROB‘ in last step with MP step from lemma refactored above.
moreover {

have (snd (action-proj a vs) ++ s) = (s ++f fmrestrict-set vs (snd a))
unfolding action-proj-def fmap-add-ltr-def
by simp

then have a: a ∈ PROB
using Cons.prems(2 ) valid-plan-valid-head
by fast

then have action-dom (fst a) (snd a) ⊆ prob-dom PROB
using exec-as-proj-valid-2
by blast

then have fmdom ′ (snd a) ⊆ action-dom (fst a) (snd a)
unfolding action-dom-def
by simp

then have fmdom ′ (fmrestrict-set vs (snd a)) ⊆ fmdom ′ (snd a)
using action-proj-def act-dom-proj-eff-subset-act-dom-eff snd-conv
by metis

then have fmdom ′ (fmrestrict-set vs (snd a)) ⊆ prob-dom PROB
using FDOM-eff-subset-prob-dom-pair a
by blast

then have fmdom ′ (s ++f fmrestrict-set vs (snd a)) = fmdom ′ s
by (simp add: calculation sup.absorb-iff1 )

}
ultimately have (snd (action-proj a vs) ++ s) ∈ valid-states PROB

unfolding action-proj-def fmap-add-ltr-def valid-states-def
by simp

}
then have exec-plan s (as-proj (a # as) vs) ∈ valid-states PROB

using 1 3 calculation(1 ) Cons.IH [where s = snd (action-proj a vs) ++ s]
by presburger

}
moreover {

assume ¬(fst (action-proj a vs) ⊆f s)
then have

exec-plan (state-succ s (action-proj a vs)) (as-proj as vs)
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= exec-plan s (as-proj as vs)

unfolding state-succ-def
by simp

then have exec-plan s (as-proj (a # as) vs) ∈ valid-states PROB
using 2
by force

}
ultimately have exec-plan s (as-proj (a # as) vs) ∈ valid-states PROB

by blast
}
moreover
{

assume fmdom ′ (fmrestrict-set vs (snd a)) = {}
then have

exec-plan s (as-proj (a # as) vs) =
exec-plan s (as-proj as vs)

by simp
then have exec-plan s (as-proj (a # as) vs) ∈ valid-states PROB

using 2
by argo

}
ultimately show ?case

by blast
qed simp

lemma drest-exec-as-proj-eq-drest-exec:
fixes s as vs
assumes sat-precond-as s as
shows (fmrestrict-set vs (exec-plan s (as-proj as vs)) = fmrestrict-set vs (exec-plan

s as))
proof −

have 1 :
(fmrestrict-set vs (exec-plan s (as-proj as vs))
= exec-plan (fmrestrict-set vs s) (as-proj as vs))

using graph-plan-lemma-9 by auto
then obtain s ′ where 2 : exec-plan (fmrestrict-set vs s) (as-proj as vs) = fmre-

strict-set vs s ′

using 1
by metis

then have fmrestrict-set vs s ′ = fmrestrict-set vs (exec-plan s as)
using assms sat-precond-exec-as-proj-eq-proj-exec
by metis

then show
fmrestrict-set vs (exec-plan s (as-proj as vs)) = fmrestrict-set vs (exec-plan s

as)
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using 1 2
by argo

qed

lemma action-proj-idempot:
fixes a vs
shows action-proj (action-proj a vs) vs = (action-proj a vs)
unfolding action-proj-def
by (simp add: fmfilter-alt-defs(4 ))

lemma action-proj-idempot ′:
fixes a vs
assumes (action-dom (fst a) (snd a) ⊆ vs)
shows (action-proj a vs = a)
using assms

proof −
have 1 : action-proj a vs = (fmrestrict-set vs (fst a), fmrestrict-set vs (snd a))

by (simp add: action-proj-def )
then have 2 : (fmdom ′ (fst a) ∪ fmdom ′ (snd a)) ⊆ vs

unfolding action-dom-def
using assms
by (auto simp add: action-dom-def )

— NOTE Show that both components of ’a’ remain unchanged.
{

then have fmdom ′ (fst a) ⊆ vs
by blast

then have fmrestrict-set vs (fst a) = (fst a)
using exec-drest-5
by auto

}
moreover {

have fmdom ′ (snd a) ⊆ vs
using 2
by auto

then have fmrestrict-set vs (snd a) = (snd a)
using exec-drest-5
by blast

}
ultimately show ?thesis

using 1
by simp

qed

lemma action-proj-idempot ′′:
fixes P vs
assumes prob-dom P ⊆ vs
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shows prob-proj P vs = P
using assms

proof −
— TODO refactor.
{

fix a
assume a ∈ P
then have action-dom (fst a) (snd a) ⊆ vs

using assms exec-as-proj-valid-2
by fast

then have action-proj a vs = a
using action-proj-idempot ′

by fast
}
then have prob-proj P vs = P

unfolding prob-proj-def
by force

then show ?thesis
unfolding prob-proj-def
by simp

qed

lemma sat-precond-as-proj:
fixes as s s ′ vs
assumes (sat-precond-as s as) (fmrestrict-set vs s = fmrestrict-set vs s ′)
shows (sat-precond-as s ′ (as-proj as vs))
using assms

proof (induction as arbitrary: s s ′ vs)
case (Cons a as)
then have 1 :

fst a ⊆f s sat-precond-as (state-succ s a) as
using Cons.prems(1 )
by simp+

then have 2 : fmrestrict-set vs (fst a) ⊆f s
using assms(1 ) sat-precond-as-proj-4
by blast

moreover
{

assume fmdom ′ (fmrestrict-set vs (snd a)) 6= {}
then have

sat-precond-as s ′ (as-proj (a # as) vs)
= (

fst (action-proj a vs) ⊆f s ′

∧ sat-precond-as (state-succ s ′ (action-proj a vs)) (as-proj as vs)
)

using calculation
by simp
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moreover
{

have fst (action-proj a vs) ⊆f s ′ = (fmrestrict-set vs (fst a) ⊆f s ′)
unfolding action-proj-def
by simp

moreover have (fmrestrict-set vs (fst a) ⊆f s) = (fmrestrict-set vs (fst a)
⊆f s ′)

using Cons.prems(2 ) sat-precond-as-proj-1
by blast

ultimately have fst (action-proj a vs) ⊆f s ′

using 2
by blast

}
— TODO detailled proof for this sledgehammered step.

moreover have sat-precond-as (state-succ s ′ (action-proj a vs)) (as-proj as vs)
using 1 Cons.IH Cons.prems(2 ) drest-succ-proj-eq-drest-succ succ-drest-eq-drest-succ

by metis
ultimately have (sat-precond-as s ′ (as-proj (a # as) vs))

by blast
}
moreover
{

assume P1 : ¬(fmdom ′ (fmrestrict-set vs (snd a)) 6= {})
then have sat-precond-as s ′ (as-proj (a # as) vs)
proof (cases as-proj (a # as) vs)

case Cons2 : (Cons a ′ list)
— TODO unfold the sledgehammered metis steps.

then have a:
sat-precond-as s ′ (as-proj (a # as) vs)
= (fst a ′ ⊆f s ′) ∧ sat-precond-as (state-succ s ′ a ′) list

using P1 Cons.IH Cons.prems(1 , 2 ) Cons2
by (metis sat-precond-as-proj-3 empty-eff-not-in-as-proj sat-precond-as.simps(2 ))
then have b: fst a ′ ⊆f s ′

unfolding sat-precond-as.simps(2 )
using P1 Cons.IH Cons.prems(1 , 2 ) sat-precond-as-proj-3 empty-eff-not-in-as-proj

by (metis sat-precond-as.simps(2 ))
then have sat-precond-as (state-succ s ′ a ′) list

using a
by blast

then show ?thesis
using a b
by blast

qed fastforce
}
ultimately show ?case

by blast
qed simp
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lemma sat-precond-drest-as-proj:
fixes as s s ′ vs
assumes (sat-precond-as s as) (fmrestrict-set vs s = fmrestrict-set vs s ′)
shows (sat-precond-as (fmrestrict-set vs s ′) (as-proj as vs))
using assms

proof (induction as arbitrary: s s ′ vs)
case (Cons a as)
then have 1 : fst a ⊆f s sat-precond-as (state-succ s a) as

using Cons.prems
by auto+

then have fmrestrict-set vs (fst a) ⊆f fmrestrict-set vs s
using fmsubset-restrict-set-mono
by blast

then have fst (action-proj a vs) ⊆f fmrestrict-set vs s ′

unfolding action-proj-def
using Cons.prems(2 ) sat-precond-as-proj-1
by simp

then have fmrestrict-set vs (snd a) = fmrestrict-set vs (snd (action-proj a vs))
unfolding action-proj-def
by (simp add: fmfilter-alt-defs(4 ))

then have fst (action-proj a vs) ⊆f s
unfolding action-proj-def
using 1 (1 ) fst-conv sat-precond-as-proj-4
by auto

— TODO unfold these sledgehammered steps.
then have

fmrestrict-set vs (state-succ s a)
= fmrestrict-set vs (state-succ (fmrestrict-set vs s ′) (action-proj a vs))

using 1 (1 ) Cons.prems(2 )
by (metis fmfilter-alt-defs(4 ) fmfilter-true fmlookup-restrict-set

drest-succ-proj-eq-drest-succ option.simps(3 ))
then show ?case

using Cons.prems(1 , 2 )
by (metis fmfilter-alt-defs(4 ) fmfilter-true fmlookup-restrict-set sat-precond-as-proj

option.simps(3 ))
qed simp

lemma as-proj-eq-as:
assumes (no-effectless-act as) (as ∈ valid-plans PROB) (prob-dom PROB ⊆ vs)
shows (as-proj as vs = as)
using assms

proof (induction as arbitrary: PROB vs)
case (Cons a as)

— NOTE We only need to look at the first branch of ’as_proj’.
— TODO step should be refactored and proven explicitely because it’s so pivotal.

then have fmdom ′ (fmrestrict-set vs (snd a)) 6= {}

213



unfolding fmdom ′-restrict-set-precise
by (metis

FDOM-eff-subset-prob-dom-pair dual-order .trans inf .orderE
no-effectless-act.simps(2 ) valid-plan-valid-head)

— NOTE Proof ’action_proj a vs = a’ for the first branch of ’as_proj’.
moreover {

assume fmdom ′ (fmrestrict-set vs (snd a)) 6= {}
— NOTE show ’action_proj a vs = a’.

moreover {
have as-proj (a # as) vs = action-proj a vs # as-proj as vs

using calculation
by force

then have a ∈ PROB
using Cons.prems(2 ) valid-plan-valid-head
by fast

then have action-dom (fst a) (snd a) ⊆ prob-dom PROB
using exec-as-proj-valid-2
by fast

then have action-dom (fst a) (snd a) ⊆ vs
using Cons.prems(3 )
by fast

then have action-proj a vs = a
using action-proj-idempot ′

by fast
}

— NOTE show that ’as_proj as vs = as’.
moreover {

have 1 : no-effectless-act as
using Cons.prems(1 )
by simp

then have as ∈ valid-plans PROB
using Cons.prems(2 ) valid-plan-valid-tail
by fast

then have as-proj as vs = as
using Cons.prems(3 ) Cons.IH 1
by blast

}
ultimately have as-proj (a # as) vs = a # as

by simp
}
ultimately show ?case

by fast
qed simp

lemma exec-rem-effless-as-proj-eq-exec-as-proj:
fixes s
shows exec-plan s (as-proj (rem-effectless-act as) vs) = exec-plan s (as-proj as

vs)
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proof (induction as arbitrary: s vs)
case (Cons a as)

— Split cases on the branching introduced by ‘remove_effectless_act‘ and
‘as_proj‘.

then show ?case
proof (cases fmdom ′ (snd a) 6= {})

case true1 : True
then show ?thesis
proof (cases fmdom ′ (fmrestrict-set vs (snd a)) 6= {})

case False
then show ?thesis by (simp add: Cons true1 )

qed (simp add: Cons true1 )
next

case False
then show ?thesis
proof (cases fmdom ′ (fmrestrict-set vs (snd a)) 6= {})

case true2 : True
then have 1 : fmdom ′ (snd a) ∩ vs = {}

using False Int-empty-left
by force

— NOTE This step shows that the case for fmdom ′ (fmrestrict-set vs (snd
a)) 6= {} is impossible.

— TODO could be refactored into a (simp) lemma (‘as_proj_eq_as‘ also
uses this?).

then have fmdom ′ (fmrestrict-set vs (snd a)) = {}
by (simp add: fmdom ′-restrict-set-precise)

then show ?thesis
using true2
by blast

qed (simp add: Cons)
qed

qed simp

lemma exec-as-proj-eq-exec-as:
fixes PROB as vs s
assumes (as ∈ valid-plans PROB) (prob-dom PROB ⊆ vs)
shows (exec-plan s (as-proj as vs) = exec-plan s as)
using assms as-proj-eq-as exec-rem-effless-as-proj-eq-exec-as-proj rem-effectless-works-1

rem-effectless-works-6
rem-effectless-works-9 sublist-valid-plan

by metis

lemma dom-prob-proj: prob-dom (prob-proj PROB vs) ⊆ vs
using graph-plan-neq-mems-state-set-neq-len
by fast
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— NOTE added lemma.
— TODO refactor into ‘FmapUtils.thy‘.
lemma subset-proj-absorb-1-a:

fixes f vs1 vs2
assumes (vs1 ⊆ vs2 )
shows fmrestrict-set vs1 (fmrestrict-set vs2 f ) = fmrestrict-set vs1 f
using assms

proof −
{

fix v
have fmlookup (fmrestrict-set vs1 (fmrestrict-set vs2 f )) v = fmlookup (fmrestrict-set

vs1 f ) v
using assms

proof (cases v ∈ vs1 )
case False
then show ?thesis
proof (cases v ∈ vs2 )

case False
then have v /∈ vs1

using False assms
by blast

then have
fmlookup (fmrestrict-set vs1 (fmrestrict-set vs2 f )) v = None
fmlookup (fmrestrict-set vs1 f ) v = None
by simp+

then show ?thesis
by argo

qed simp
qed auto

}
then show ?thesis

using fmap-ext
by blast

qed

lemma subset-proj-absorb-1 :
assumes (vs1 ⊆ vs2 )
shows (action-proj (action-proj a vs2 ) vs1 = action-proj a vs1 )
using assms

proof −
have

fmrestrict-set vs1 (fmrestrict-set vs2 (fst a)) = fmrestrict-set vs1 (fst a)
fmrestrict-set vs1 (fmrestrict-set vs2 (snd a)) = fmrestrict-set vs1 (snd a)
using assms subset-proj-absorb-1-a
by blast+

then show ?thesis
unfolding action-proj-def
by simp

qed
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lemma subset-proj-absorb:
fixes PROB vs1 vs2
assumes vs1 ⊆ vs2
shows prob-proj (prob-proj PROB vs2 ) vs1 = prob-proj PROB vs1

proof −
{

have
prob-proj (prob-proj PROB vs2 ) vs1
= ((λa. action-proj a vs1 ) ◦ (λa. action-proj a vs2 )) ‘ PROB

unfolding prob-proj-def
by fastforce

also have . . . = (λa. action-proj (action-proj a vs2 ) vs1 ) ‘ PROB
by fastforce

also have . . . = (λa. action-proj a vs1 ) ‘ PROB
using assms subset-proj-absorb-1
by metis

also have . . . = prob-proj PROB vs1
unfolding prob-proj-def
by simp

finally have prob-proj (prob-proj PROB vs2 ) vs1 = prob-proj PROB vs1
by simp

}
then show ?thesis

by simp
qed

lemma union-proj-absorb:
fixes PROB vs vs ′

shows prob-proj (prob-proj PROB (vs ∪ vs ′)) vs = prob-proj PROB vs
by (simp add: subset-proj-absorb)

lemma NOT-VS-IN-DOM-PROJ-PRE-EFF :
fixes ROB vs v a
assumes ¬(v ∈ vs) (a ∈ PROB)
shows (
((v ∈ fmdom ′ (fst a)) −→ (v ∈ fmdom ′ (fst (action-proj a (prob-dom PROB −

vs)))))
∧ ((v ∈ fmdom ′ (snd a)) −→ (v ∈ fmdom ′ (snd (action-proj a (prob-dom PROB

− vs)))))
)
unfolding action-proj-def
using assms
by (simp add: IN-FDOM-DRESTRICT-DIFF FDOM-pre-subset-prob-dom-pair

FDOM-eff-subset-prob-dom-pair)
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lemma IN-DISJ-DEP-IMP-DEP-DIFF :
fixes PROB vs vs ′ v v ′

assumes (v ∈ vs ′) (v ′ ∈ vs ′) (disjnt vs vs ′)
shows (dep PROB v v ′ −→ dep (prob-proj PROB (prob-dom PROB − vs)) v v ′)
using assms

proof (cases v = v ′)
case False
{

assume P: dep PROB v v ′

then obtain a where a:
(v ∈ fmdom ′ (fst a) ∧ v ′ ∈ fmdom ′ (snd a) ∨ v ∈ fmdom ′ (snd a) ∧ v ′ ∈

fmdom ′ (snd a))
a ∈ PROB
unfolding dep-def
using False
by blast

{
have v /∈ vs

using assms(1 , 3 )
unfolding disjnt-def
by blast

then have (v ∈ fmdom ′ (fst a) −→ v ∈ fmdom ′ (fst (action-proj a (prob-dom
PROB − vs))))

(v ∈ fmdom ′ (snd a) −→ v ∈ fmdom ′ (snd (action-proj a (prob-dom PROB
− vs))))

using a NOT-VS-IN-DOM-PROJ-PRE-EFF
by metis+

}
note b = this
then consider (i) v ∈ fmdom ′ (fst a) ∧ v ′ ∈ fmdom ′ (snd a)
| (ii) v ∈ fmdom ′ (snd a) ∧ v ′ ∈ fmdom ′ (snd a)
using a
by blast

then have dep (prob-proj PROB (prob-dom PROB − vs)) v v ′

proof (cases)
case i
then show ?thesis

using assms(2 , 3 ) a(2 ) b(1 )
by (meson dep-def disjnt-iff action-proj-in-prob-proj NOT-VS-IN-DOM-PROJ-PRE-EFF)

next
case ii
then show ?thesis

using assms(2 , 3 ) a(2 ) b(2 )
by (meson dep-def disjnt-iff action-proj-in-prob-proj NOT-VS-IN-DOM-PROJ-PRE-EFF)

qed
}
then show ?thesis
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by blast
qed (auto simp: dep-def prob-proj-def disjnt-def )

lemma PROB-DOM-PROJ-DIFF :
fixes P vs
shows prob-dom (prob-proj PROB (prob-dom PROB − vs)) = (prob-dom PROB)
− vs

using graph-plan-neq-mems-state-set-neq-len
by fastforce

lemma two-children-parent-mems-le-finite:
fixes PROB vs
assumes (vs ⊆ prob-dom PROB)
shows (prob-dom (prob-proj PROB vs) = vs)
using assms graph-plan-neq-mems-state-set-neq-len
by fast

— TODO showcase (non-trivial proof).
— TODO find explicit proof.
lemma PROJ-DOM-PRE-EFF-SUBSET-DOM :

fixes a vs
shows
(fmdom ′ (fst (action-proj a vs)) ⊆ fmdom ′ (fst a))
∧ (fmdom ′ (snd (action-proj a vs)) ⊆ fmdom ′ (snd a))

unfolding action-proj-def
by (auto simp: fmdom ′-restrict-set-precise)

lemma NOT-IN-PRE-EFF-NOT-IN-PRE-EFF-PROJ :
fixes a v vs
shows
(¬(v ∈ fmdom ′ (fst a)) −→ ¬(v ∈ fmdom ′ (fst (action-proj a vs))))
∧ (¬(v ∈ fmdom ′ (snd a)) −→ ¬(v ∈ fmdom ′ (snd (action-proj a vs))))

using PROJ-DOM-PRE-EFF-SUBSET-DOM rev-subsetD
by metis

lemma dep-proj-dep:
assumes dep (prob-proj PROB vs) v v ′

shows dep PROB v v ′

using assms
unfolding dep-def prob-proj-def action-proj-def image-def
apply (auto simp: fmdom ′-restrict-set-precise)
by auto
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lemma NDEP-PROJ-NDEP:
fixes PROB vs vs ′ vs ′′

assumes (¬dep-var-set PROB vs vs ′)
shows (¬dep-var-set (prob-proj PROB vs ′′) vs vs ′)
using assms dep-proj-dep
unfolding dep-var-set-def
by metis

lemma SUBSET-PROJ-DOM-DISJ :
fixes PROB vs vs ′

assumes (vs ⊆ (prob-dom (prob-proj PROB (prob-dom PROB − vs ′))))
shows disjnt vs vs ′

using assms
by (auto simp add: PROB-DOM-PROJ-DIFF subset-iff disjnt-iff )

— TODO showcase (lemma which is solved effortlessly by automation).
lemma NOT-VS-DEP-IMP-DEP-PROJ :

fixes PROB vs v v ′

assumes ¬(v ∈ vs) ¬(v ′ ∈ vs) (dep PROB v v ′)
shows (dep (prob-proj PROB (prob-dom PROB − vs)) v v ′)
using assms
by (metis Diff-disjoint Diff-iff disjnt-def insertCI IN-DISJ-DEP-IMP-DEP-DIFF)

lemma DISJ-PROJ-NDEP-IMP-NDEP:
fixes PROB vs vs ′ vs ′′

assumes
(disjnt vs vs ′′) disjnt vs vs ′

¬(dep-var-set (prob-proj PROB (prob-dom PROB − vs)) vs ′ vs ′′)
shows ¬(dep-var-set PROB vs ′ vs ′′)

proof −
{

assume C : dep-var-set PROB vs ′ vs ′′

then obtain v1 v2 where v1 ∈ vs ′ v2 ∈ vs ′′ disjnt vs ′ vs ′′ dep PROB v1 v2
unfolding dep-var-set-def
by blast

then have ∃ v1 v2 .
v1 ∈ vs ′ ∧ v2 ∈ vs ′′ ∧ disjnt vs ′ vs ′′ ∧ dep (prob-proj PROB (prob-dom PROB

− vs)) v1 v2

using assms(1 , 2 ) IntI disjnt-def empty-iff NOT-VS-DEP-IMP-DEP-PROJ
by metis

then have False
using assms
unfolding dep-var-set-def
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by blast
}
then show ?thesis

using assms
unfolding dep-var-set-def
by argo

qed

lemma PROJ-DOM-IDEMPOT :
fixes PROB
shows prob-proj PROB (prob-dom PROB) = PROB
using action-proj-idempot ′′

by blast

lemma prob-proj-idempot:
fixes vs vs ′

assumes (vs ⊆ vs ′)
shows (prob-proj PROB vs = prob-proj (prob-proj PROB vs ′) vs)
using assms subset-proj-absorb
by blast

lemma prob-proj-dom-diff-eq-prob-proj-prob-proj-dom-diff :
fixes vs vs ′

shows
prob-proj PROB (prob-dom PROB − (vs ∪ vs ′))
= prob-proj
(prob-proj PROB (prob-dom PROB − vs))
(prob-dom (prob-proj PROB (prob-dom PROB − vs)) − vs ′)

using PROB-DOM-PROJ-DIFF subset-proj-absorb
by (metis Compl-Diff-eq Diff-subset compl-eq-compl-iff sup-assoc)

lemma PROJ-DEP-IMP-DEP:
fixes PROB vs v v ′

assumes dep (prob-proj PROB (prob-dom PROB − vs)) v v ′

shows dep PROB v v ′

using assms
unfolding dep-def prob-proj-def

proof (cases v = v ′)
case False
then show (∃ a.

a ∈ PROB
∧ (v ∈ fmdom ′ (fst a) ∧ v ′ ∈ fmdom ′ (snd a) ∨ v ∈ fmdom ′ (snd a) ∧ v ′ ∈

fmdom ′ (snd a)))
∨ v = v ′
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using assms
unfolding dep-def prob-proj-def
by (smt image-iff NOT-IN-PRE-EFF-NOT-IN-PRE-EFF-PROJ )

qed blast

lemma PROJ-NDEP-TC-IMP-NDEP-TC-OR:
fixes PROB vs v v ′

assumes ¬((λv1 ′ v2 ′. dep (prob-proj PROB (prob-dom PROB − vs)) v1 ′ v2 ′)++

v v ′)
shows (
(¬((λv1 ′ v2 ′. dep PROB v1 ′ v2 ′)++ v v ′))
∨ (∃ v ′′.

v ′′ ∈ vs
∧ ((λv1 ′ v2 ′. dep PROB v1 ′ v2 ′)++ v v ′′)
∧ ((λv1 ′ v2 ′. dep PROB v1 ′ v2 ′)++ v ′′ v ′)

)
)
using assms NOT-VS-DEP-IMP-DEP-PROJ DEP-REFL REFL-TC-CONJ [of

λv v ′. dep PROB v v ′ λv. ¬(v ∈ vs) λv v ′. dep (prob-proj PROB (prob-dom
PROB− vs)) v v ′

v v ′]
by fastforce

lemma every-action-proj-eq-as-proj:
fixes as vs
shows list-all (λ a. action-proj a vs = a) (as-proj as vs)
by (induction as) (auto simp add: action-proj-idempot)

lemma empty-eff-not-in-as-proj-2 :
fixes a as vs
assumes fmdom ′ (snd (action-proj a vs)) = {}
shows (as-proj as vs = as-proj (a # as) vs)
using assms
by (auto simp add: action-proj-def )

declare[[smt-timeout=100 ]]

lemma sublist-as-proj-eq-as:
fixes as ′ as vs
assumes subseq as ′ (as-proj as vs)
shows (as-proj as ′ vs = as ′)
using assms

proof (induction as arbitrary: as ′ vs)
case Nil
moreover have as ′ = []

using Nil.prems sublist-NIL
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by force
then show ?case

by simp
next

case cons: (Cons a as)
then show ?case
proof (cases as ′)

case (Cons aa list)
then show ?thesis
proof (cases fmdom ′ (fmrestrict-set vs (snd aa)) 6= {})

case True
then have as-proj as ′ vs = action-proj aa vs # as-proj list vs

using Cons True
by auto

then show ?thesis
by (metis as-proj.simps(2 ) cons.IH cons.prems action-proj-idempot local.Cons

subseq-Cons2-iff )
next

case False
then have as-proj as ′ vs = as-proj list vs

using Cons False
by simp

then show ?thesis using cons False
unfolding Cons

by (smt action-proj-def action-proj-idempot as-proj.simps(2 ) prod.inject
subseq-Cons2-neq)

qed
qed simp

qed

lemma DISJ-EFF-DISJ-PROJ-EFF :
fixes a s vs
assumes fmdom ′ (snd a) ∩ s = {}
shows (fmdom ′ (snd (action-proj a vs)) ∩ s = {})

proof −
have 1 : snd (action-proj a vs) = fmrestrict-set vs (snd a)

unfolding action-proj-def
by simp

then have fmdom ′ (fmrestrict-set vs (snd a)) ⊆ fmdom ′ (snd a)
using act-dom-proj-eff-subset-act-dom-eff
by metis

then show ?thesis
using assms 1
by auto

qed
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— NOTE showcase (the step using ‘graph_plan_lemma_5‘— labelled by ’[1]’— is
non-trivial proof due to missing premises and the last six proof steps are redundant).
lemma state-succ-proj-eq-state-succ:

fixes a s vs
assumes (varset-action a vs) (fst a ⊆f s) (fmdom ′ (snd a) ⊆ fmdom ′ s)
shows (state-succ s (action-proj a vs) = state-succ s a)

proof −
have 1 : fmdom ′ (snd a) ∩ (fmdom ′ s − vs) = {}

using assms(1 ) vset-disj-eff-diff
by blast

then have 2 :
fmrestrict-set (fmdom ′ s − vs) s = fmrestrict-set (fmdom ′ s − vs) (state-succ

s a)
using disj-imp-eq-proj-exec[where vs = fmdom ′ s − vs]
by blast

then have fmdom ′ (snd (action-proj a vs)) ∩ (fmdom ′ s − vs) = {}
using 1 DISJ-EFF-DISJ-PROJ-EFF [where s = (fmdom ′ s − vs)]
by blast

then have
fmrestrict-set (fmdom ′ s − vs) s
= fmrestrict-set (fmdom ′ s − vs) (state-succ s (action-proj a vs))

using disj-imp-eq-proj-exec[where a = (action-proj a vs) and vs = fmdom ′ s
− vs]

by blast
then have fmdom ′ (snd (action-proj a vs)) ∩ (fmdom ′ s − vs) = {}

using 1 DISJ-EFF-DISJ-PROJ-EFF [where s = (fmdom ′ s − vs)]
by blast

then have
fmrestrict-set (fmdom ′ s − vs) s =
fmrestrict-set (fmdom ′ s − vs) (state-succ s (action-proj a vs))

using disj-imp-eq-proj-exec[of action-proj a vs fmdom ′ s − vs]
by fast

— [1]
— TODO unwrap this step.

then show ?thesis
using 2 FDOM-state-succ graph-plan-lemma-5 [where s = state-succ s (action-proj

a vs)
and s ′= state-succ s a and vs = vs] assms(2 , 3 ) dom-eff-subset-imp-dom-succ-eq-proj
drest-proj-succ-eq-drest-succ

by metis
qed

— NOTE duplicate declaration of lemma ‘state_succ_proj_eq_state_succ‘ re-
moved.
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lemma no-effectless-proj:
fixes vs as
shows no-effectless-act (as-proj as vs)
by (induction as arbitrary: vs) (auto simp add: action-proj-def )

— NOTE duplicate (this is identical to ‘valid_as_valid_as_proj‘).
lemma as-proj-valid-in-prob-proj:

fixes PROB vs as
assumes (as ∈ valid-plans PROB)
shows (as-proj as vs ∈ valid-plans (prob-proj PROB vs))
using assms valid-as-valid-as-proj
by blast

— TODO Unwrap the smt proof.
lemma prob-proj-comm:

fixes PROB vs vs ′

shows prob-proj (prob-proj PROB vs) vs ′ = prob-proj (prob-proj PROB vs ′) vs
by (smt graph-plan-neq-mems-state-set-neq-len inf-commute inf-le2 PROJ-DOM-IDEMPOT

prob-proj-idempot)

— TODO Unwrap the metis proof.
lemma vset-proj-imp-vset:

fixes vs vs ′ a
assumes (varset-action a vs ′) (varset-action (action-proj a vs ′) vs)
shows (varset-action a vs)
unfolding varset-action-def action-proj-def
using assms
by (metis action-proj-def exec-drest-5 snd-conv varset-action-def )

lemma vset-imp-vset-act-proj-diff :
fixes PROB vs vs ′ a
assumes (varset-action a vs)
shows (varset-action (action-proj a (prob-dom PROB − vs ′)) vs)

proof −
have 1 : (fmdom ′ (snd a) ⊆ vs)

using assms varset-action-def
by metis

moreover
{

— TODO refactor and put into ‘Fmap_Utils‘.
have

fmdom ′ (snd (
fmrestrict-set (prob-dom PROB − vs ′) (fst a)
, fmrestrict-set (prob-dom PROB − vs ′) (snd a)

))
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= (fmdom ′ (snd a) ∩ (prob-dom PROB − vs ′))

by (simp add: Int-def Set.filter-def fmfilter-alt-defs(4 ))
also have . . . ⊆ fmdom ′ (snd a)

by simp
finally have fmdom ′ (snd (

fmrestrict-set (prob-dom PROB − vs ′) (fst a)
, fmrestrict-set (prob-dom PROB − vs ′) (snd a)

))
⊆ vs

using 1 by simp
}
ultimately show ?thesis

unfolding varset-action-def dep-var-set-def dep-def action-proj-def
by blast

qed

lemma action-proj-disj-diff :
assumes (action-dom (fst a) (snd a) ⊆ vs1 ) (vs2 ∩ vs3 = {})
shows (action-proj (action-proj a (vs1 − vs2 )) vs3 = action-proj a vs3 )

proof −
have ∀ f fa fb p.

action-proj (action-proj (action-proj p f ) fb) fa = action-proj (action-proj p f )
fb
∨ ¬ action-dom (fst p::( ′a, ′b) fmap) (snd p::(-, ′c) fmap) ∩ (f ∩ fb) ⊆ fa

by (metis (no-types) action-proj-idempot ′ proj-action-dom-eq-inter inf-assoc)
then have ∀ f fa p.

action-proj (action-proj (p::( ′a, ′b) fmap × (-, ′c) fmap) f ) fa
= action-proj p (f ∩ fa)

by (metis (no-types) inf .cobounded2 inf-commute subset-proj-absorb-1 )
then show ?thesis

using assms
by (metis Diff-Int-distrib2 Diff-empty action-proj-idempot ′)

qed

lemma disj-proj-proj-eq-proj:
fixes PROB vs vs ′

assumes (vs ∩ vs ′ = {})
shows prob-proj (prob-proj PROB (prob-dom PROB − vs ′)) vs = prob-proj PROB

vs
proof −

{
fix a
assume P: a ∈ PROB
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moreover have action-dom (fst a) (snd a) ⊆ prob-dom PROB
using P exec-as-proj-valid-2
by blast

ultimately have action-proj (action-proj a (prob-dom PROB − vs ′)) vs =
action-proj a vs

using assms action-proj-disj-diff [of a prob-dom PROB vs ′ vs]
by blast

}
then show ?thesis

unfolding prob-proj-def
by (smt image-cong image-image)

qed

lemma n-replace-proj-le-n-as-2 :
fixes a vs vs ′

assumes (vs ⊆ vs ′) (varset-action a vs ′)
shows (varset-action (action-proj a vs ′) vs ←→ varset-action a vs)
unfolding varset-action-def action-proj-def
using assms
by (simp add: exec-drest-5 varset-action-def )

— NOTE type of ‘PROB‘ had to be fixed for use of ‘empty_problem_bound‘.
lemma empty-problem-proj-bound:

fixes PROB :: ′a problem
shows problem-plan-bound (prob-proj PROB {}) = 0

proof −
— TODO refactor?
{

have prob-proj {} {} = {}
unfolding prob-proj-def action-proj-def
using image-empty
by simp

moreover {
assume P: PROB 6= {}
have ∀ a. (fmrestrict-set {} (fst a), fmrestrict-set {} (snd a)) = (fmempty,

fmempty)
using fmrestrict-set-null
by simp

then have prob-proj PROB {} = {(fmempty, fmempty)}
unfolding prob-proj-def action-proj-def
using P
by auto

}
ultimately consider
(i) prob-proj PROB {} = {}
| (ii) prob-proj PROB {} = {(fmempty, fmempty)}
by (cases PROB = {}) force+
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then have prob-dom (prob-proj PROB {}) = {}
unfolding prob-dom-def action-dom-def using fmdom ′-empty
by (cases) force+

}
then show ?thesis

using empty-problem-bound[where PROB=prob-proj PROB {}]
by blast

qed

lemma problem-plan-bound-works-proj:
fixes PROB :: ′a problem and s as vs
assumes finite PROB (s ∈ valid-states PROB) (as ∈ valid-plans PROB) (sat-precond-as

s as)
shows (∃ as ′.
(exec-plan (fmrestrict-set vs s) as ′ = exec-plan (fmrestrict-set vs s) (as-proj as

vs))
∧ (length as ′ ≤ problem-plan-bound (prob-proj PROB vs))
∧ (subseq as ′ (as-proj as vs))
∧ (sat-precond-as s as ′)
∧ (no-effectless-act as ′)

)
proof −

{
have exec-plan (fmrestrict-set vs s) (as-proj as vs) = fmrestrict-set vs (exec-plan

s as)
using assms(4 ) sat-precond-exec-as-proj-eq-proj-exec
by blast

moreover have fmrestrict-set vs s ∈ valid-states (prob-proj PROB vs)
using assms(2 ) graph-plan-not-eq-last-diff-paths
by auto

moreover have as-proj as vs ∈ valid-plans (prob-proj PROB vs)
using assms(3 ) valid-as-valid-as-proj
by blast

moreover have finite (prob-proj PROB vs)
unfolding prob-proj-def
using assms(1 )
by simp

ultimately have ∃ as ′.
exec-plan (fmrestrict-set vs s) (as-proj as vs) = exec-plan (fmrestrict-set vs s)

as ′

∧ subseq as ′ (as-proj as vs) ∧ length as ′ ≤ problem-plan-bound (prob-proj
PROB vs)

using problem-plan-bound-works[of prob-proj PROB vs
fmrestrict-set vs s as-proj as vs]

by blast
}
then obtain as ′ where

228



exec-plan (fmrestrict-set vs s) (as-proj as vs) = exec-plan (fmrestrict-set vs s)
as ′

subseq as ′ (as-proj as vs) ∧ length as ′ ≤ problem-plan-bound (prob-proj PROB
vs)

by fast
moreover {

have
exec-plan (fmrestrict-set vs s) as
= exec-plan (fmrestrict-set vs s) (rem-condless-act (fmrestrict-set vs s) [] as)

using rem-condless-valid-1 [of fmrestrict-set vs s as]
by blast

then have subseq (rem-condless-act (fmrestrict-set vs s) [] as ′) as ′

using rem-condless-valid-8 [of fmrestrict-set vs s as ′]
by blast

}
moreover have length (rem-condless-act (fmrestrict-set vs s) [] as ′) ≤ length as ′

using rem-condless-valid-3 [of fmrestrict-set vs s]
by fast

moreover have 4 :
sat-precond-as (fmrestrict-set vs s) (rem-condless-act (fmrestrict-set vs s) [] as ′)
using rem-condless-valid-2 [of fmrestrict-set vs s as ′]
by blast

moreover have
exec-plan (fmrestrict-set vs s) (rem-condless-act (fmrestrict-set vs s) [] as ′)
= exec-plan (fmrestrict-set vs s)
(rem-effectless-act (rem-condless-act (fmrestrict-set vs s) [] as ′))

using rem-effectless-works-1 [of fmrestrict-set vs s
rem-condless-act (fmrestrict-set vs s) [] as ′]

by blast
moreover {

have
subseq (rem-effectless-act (rem-condless-act (fmrestrict-set vs s) [] as))
(rem-condless-act (fmrestrict-set vs s) [] as)

using rem-effectless-works-9 [of
(rem-condless-act (fmrestrict-set vs s) [] (as :: ′a action list))]

by blast
then have

length (rem-effectless-act (rem-condless-act (fmrestrict-set vs s) [] as ′))
≤ length (rem-condless-act (fmrestrict-set vs s) [] as ′)

using rem-effectless-works-3 [of
(rem-condless-act (fmrestrict-set vs s) [] (as ′ :: ′a action list))]

by simp
then have

sat-precond-as (fmrestrict-set vs s)
(rem-effectless-act (rem-condless-act (fmrestrict-set vs s) [] as ′))
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using 4 rem-effectless-works-2 [of fmrestrict-set vs s
(rem-condless-act (fmrestrict-set vs s) [] as ′)]

by blast
then have

no-effectless-act (rem-effectless-act (rem-condless-act (fmrestrict-set vs s) []
as ′))

using rem-effectless-works-6 [of (rem-condless-act (fmrestrict-set vs s) [] (as ′

:: ′a action list))]
by simp

}
ultimately show ?thesis

using rem-effectless-works-13 rem-condless-valid-1 order-trans
no-effectless-proj sat-precond-drest-sat-precond subseq-order .order-trans

by (metis (no-types, lifting))
qed

— NOTE added lemma.
— TODO refactor into ‘Fmap_Utils‘.
lemma action-proj-inter-i: fmrestrict-set V (fmrestrict-set W f ) = fmrestrict-set
(V ∩ W ) f

unfolding fmfilter-alt-defs(4 )
by simp

lemma action-proj-inter : action-proj (action-proj a vs1 ) vs2 = action-proj a (vs1
∩ vs2 )
proof −

have
fmrestrict-set vs2 (fmrestrict-set vs1 (fst a)) = fmrestrict-set (vs1 ∩ vs2 ) (fst

a)
fmrestrict-set vs2 (fmrestrict-set vs1 (snd a)) = fmrestrict-set (vs1 ∩ vs2 ) (snd

a)
using inf-commute action-proj-inter-i
by metis+

then show ?thesis
unfolding action-proj-def
by simp

qed

lemma prob-proj-inter : prob-proj (prob-proj PROB vs1 ) vs2 = prob-proj PROB
(vs1 ∩ vs2 )

unfolding prob-proj-def
using set-eq-iff image-iff action-proj-inter
supply[[smt-timeout=100 ]]
by (smt image-cong image-image)
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7.2 Snapshotting
A snapshot is an abstraction concept of the system in which the assignment
of a set of variables is fixed and actions whose preconditions or effects violate
the fixed assignments are eliminated. [Abdulaziz et al., p.28]

Formally this notion is build on the definition of agreement of states
(‘agree‘), which states that variables ‘v‘, ‘v’‘in the shared domain of two
states must be assigned to the same value. A snapshot w.r.t to a state ‘s‘ is
then defined as the set of actions of a problem where the precondition and
the effect agree. [Abdulaziz et al., Definition 16, HOL4 Definition 16, p.28]
definition agree where

agree s1 s2 ≡ (∀ v. (v ∈ fmdom ′ s1 ) ∧ (v ∈ fmdom ′ s2 ) −→ (fmlookup s1 v =
fmlookup s2 v))

— NOTE added lemma.
lemma state-succ-fixpoint-if :

fixes a s PROB
assumes a ∈ PROB (s ∈ valid-states PROB) fst a ⊆f s agree (snd a) s
shows state-succ s a = s

proof −
{

have fmdom ′ (snd a) ⊆ fmdom ′ s
using assms(1 , 2 ) FDOM-eff-subset-FDOM-valid-states-pair
by blast

moreover have ∀ x. x ∈ fmdom ′ (snd a) −→ fmlookup (snd a) x = fmlookup
s x

using assms(4 ) calculation(1 ) agree-def subsetCE
by metis

moreover have s ++f snd a = s
using calculation(2 )
by (metis fmap-ext fmdom ′-notD fmdom-notI fmlookup-add)

}
then show ?thesis

using fmap-add-ltr-def state-succ-def
by metis

qed

lemma agree-state-succ-idempot:
assumes (a ∈ PROB) (s ∈ valid-states PROB) (agree (snd a) s)
shows (state-succ s a = s)

proof (cases fst a ⊆f s)
case True
then show ?thesis

using assms state-succ-fixpoint-if
by blast

next
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case False
then show ?thesis

unfolding state-succ-def fmap-add-ltr-def
by simp

qed

— NOTE added lemma.
— TODO refactor into ‘Fmap_Utils‘.
lemma fmdom ′-fmrestrict-set:

fixes X f
shows fmdom ′ (fmrestrict-set X f ) = X ∩ (fmdom ′ f )
unfolding fmdom ′-alt-def fmfilter-alt-defs(4 )
by auto

— NOTE added lemma.
— TODO refactor into ’Fmap_Utils’.
lemma fmdom ′-fmrestrict-set-fmadd:

fixes X f g
shows fmdom ′ (fmrestrict-set X (f ++f g)) = X ∩ (fmdom ′ f ∪ fmdom ′ g)

proof −
have fmrestrict-set X (f ++f g) = fmrestrict-set X f ++f fmrestrict-set X g

using fmrestrict-set-add-distrib
by fast

then show ?thesis
using fmdom ′-fmrestrict-set fmdom ′-add
by metis

qed

— NOTE added lemma.
— TODO refactor into ’Fmap_Utils’.
lemma fmrestrict-agree:

fixes X x f g
assumes agree (fmrestrict-set X f ) (fmrestrict-set X g) x ∈ X ∩ fmdom ′ f ∩

fmdom ′ g
shows fmlookup (fmrestrict-set X f ) x = fmlookup (fmrestrict-set X g) x

proof −
{

fix v
assume v ∈ X ∩ fmdom ′ f ∩ fmdom ′ g
then have v ∈ fmdom ′ (fmrestrict-set X f ) ∧ v ∈ fmdom ′ (fmrestrict-set X g)

using fmdom ′-fmrestrict-set
by force

then have fmlookup (fmrestrict-set X f ) v = fmlookup (fmrestrict-set X g) v
using assms(1 )
unfolding agree-def
by blast

}
then show ?thesis
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using assms
by blast

qed

lemma agree-restrict-state-succ-idempot:
assumes (a ∈ PROB) (s ∈ valid-states PROB)
(agree (fmrestrict-set vs (snd a)) (fmrestrict-set vs s))

shows (fmrestrict-set vs (state-succ s a) = fmrestrict-set vs s)
proof (cases fst a ⊆f s)

case True
then have state-succ s a = s ++f snd a

unfolding state-succ-def fmap-add-ltr-def
by simp

{
fix v
have fmlookup (fmrestrict-set vs (s ++f snd a)) v = fmlookup (fmrestrict-set

vs s) v
proof (cases v ∈ fmdom ′ (snd a))

case True
then have 1 : fmdom ′ (fmrestrict-set vs (s ++f snd a)) = vs ∩ (fmdom ′ s ∪

fmdom ′ (snd a))
unfolding fmap-add-ltr-def
using fmdom ′-fmrestrict-set-fmadd
by metis

then have 2 : fmdom ′ (fmrestrict-set vs (snd a)) = vs ∩ fmdom ′ (snd a)
using fmdom ′-fmrestrict-set
by metis

then show ?thesis
using 1 2

proof (cases v ∈ vs)
case true: True
then show ?thesis
proof (cases v ∈ (fmdom ′ s ∩ fmdom ′ (snd a)))

case True
then have v ∈ vs ∩ fmdom ′ s ∩ fmdom ′ (snd a)

using true
by blast

then have fmlookup (fmrestrict-set vs (snd a)) v = fmlookup (fmrestrict-set
vs s) v

using assms(3 ) fmrestrict-agree
by fast

then show ?thesis
by fastforce

next
case False
then have fmdom ′ (snd a) ⊆ fmdom ′ s

using assms(1 , 2 ) FDOM-eff-subset-FDOM-valid-states-pair
by metis

then have v /∈ fmdom ′ (snd a)

233



using true False
by blast

then show ?thesis
by fastforce

qed
qed auto

qed fastforce
}
then show ?thesis

unfolding state-succ-def fmap-add-ltr-def
using fmap-ext
by metis

next
case False
then show ?thesis

unfolding state-succ-def
by simp

qed

lemma agree-exec-idempot:
assumes (as ∈ valid-plans PROB) (s ∈ valid-states PROB)
(∀ a. ListMem a as −→ agree (snd a) s)

shows (exec-plan s as = s)
using assms

proof (induction as arbitrary: PROB s)
case (Cons a as)
then have 1 : a ∈ PROB

using Cons.prems(1 ) valid-plan-valid-head
by fast

then have 2 : as ∈ valid-plans PROB
using Cons.prems(1 ) valid-plan-valid-tail
by fast

then have 3 : ∀ a. ListMem a as −→ agree (snd a) s
using Cons.prems(3 ) ListMem.simps
by metis

then have ListMem a (a # as)
using elem
by fast

then have agree (snd a) s
using Cons.prems(3 )
by blast

then have 4 : state-succ s a = s
using Cons.prems(1 , 2 ) 1 agree-state-succ-idempot
by blast

then have exec-plan s as = s
using Cons.IH Cons.prems(2 ) 2 3
by blast

then show ?case
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using 4
by simp

qed simp

lemma agree-restrict-exec-idempot:
fixes s s ′

assumes (as ∈ valid-plans PROB) (s ′ ∈ valid-states PROB) (s ∈ valid-states
PROB)

(∀ a. ListMem a as −→ agree (fmrestrict-set vs (snd a)) (fmrestrict-set vs s))
(fmrestrict-set vs s ′ = fmrestrict-set vs s)

shows (fmrestrict-set vs (exec-plan s ′ as) = fmrestrict-set vs s)
using assms

proof (induction as arbitrary: PROB s s ′ vs)
case (Cons a as)
have 1 : as ∈ valid-plans PROB

using Cons.prems(1 ) valid-plan-valid-tail
by fast

then have 2 : ∀ a. ListMem a as −→ agree (fmrestrict-set vs (snd a)) (fmrestrict-set
vs s)

using Cons.prems(4 ) ListMem.simps
by metis

then have 3 : a ∈ PROB
using Cons.prems(1 ) valid-plan-valid-head
by metis

moreover
{

have ListMem a (a # as)
using elem
by fast

then have agree (fmrestrict-set vs (snd a)) (fmrestrict-set vs s)
using Cons.prems(4 ) calculation(1 )
by blast

then have agree (fmrestrict-set vs (snd a)) (fmrestrict-set vs s ′)
using Cons.prems(5 )
by simp

}
ultimately show ?case

using assms
proof (cases fst a ⊆f s ′)

case True
{

have a: s ′ ∈ valid-states PROB
using Cons.prems(2 )
by simp

moreover have state-succ s ′ a ∈ valid-states PROB
using 3 a lemma-1-i
by blast

moreover have
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∀ a. ListMem a as −→ agree (fmrestrict-set vs (snd a)) (fmrestrict-set vs s)
using 2
by blast

moreover {
have ListMem a (a # as)

using elem
by fast

then have agree (fmrestrict-set vs (snd a)) (fmrestrict-set vs s)
using Cons.prems(4 ) calculation(1 )
by blast

then have fmrestrict-set vs (state-succ s ′ a) = fmrestrict-set vs s
using Cons.prems(5 ) 3 a agree-restrict-state-succ-idempot
by metis

}
ultimately have fmrestrict-set vs (exec-plan (state-succ s ′ a) as) = fmre-

strict-set vs s
using assms(3 ) 1 Cons.IH [where s ′=state-succ s ′ a]
by auto

}
then show ?thesis

by simp
next case False

moreover have exec-plan s ′ (a # as) = exec-plan s ′ as
using False
by (simp add: state-succ-def )

ultimately show ?thesis
using Cons.IH Cons.prems(2 , 3 , 5 ) 1 2
by presburger

qed
qed simp

lemma agree-restrict-exec-idempot-pair :
fixes s s ′

assumes (as ∈ valid-plans PROB) (s ′ ∈ valid-states PROB) (s ∈ valid-states
PROB)

(∀ p e. ListMem (p, e) as −→ agree (fmrestrict-set vs e) (fmrestrict-set vs s))
(fmrestrict-set vs s ′ = fmrestrict-set vs s)

shows (fmrestrict-set vs (exec-plan s ′ as) = fmrestrict-set vs s)
using assms agree-restrict-exec-idempot
by fastforce

lemma agree-comm: agree x x ′ = agree x ′ x
unfolding agree-def
by fastforce

lemma restricted-agree-imp-agree:
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assumes (fmdom ′ s2 ⊆ vs) (agree (fmrestrict-set vs s1 ) s2 )
shows (agree s1 s2 )
using assms contra-subsetD fmlookup-restrict-set Int-iff fmdom ′-fmrestrict-set
unfolding agree-def
by metis

lemma agree-imp-submap:
assumes f1 ⊆f f2
shows agree f1 f2
using assms
unfolding agree-def
by (simp add: as-needed-asses-submap-exec-ii)

lemma agree-FUNION :
assumes (agree fm fm1 ) (agree fm fm2 )
shows (agree fm (fm1 ++ fm2 ))
unfolding agree-def fmap-add-ltr-def
using assms
by (metis agree-def fmlookup-add fmlookup-dom ′-iff )

lemma agree-fm-list-union:
fixes fm
assumes (∀ fm ′. ListMem fm ′ fmList −→ agree fm fm ′)
shows (agree fm (foldr fmap-add-ltr fmList fmempty))
using assms proof (induction fmList arbitrary: fm)
case Nil
then have foldr fmap-add-ltr [] fmempty = fmempty

using Nil
by simp

then show ?case
unfolding agree-def
by auto

next
case (Cons a fmList)
then have ∀ fm ′. ListMem fm ′ fmList −→ agree fm fm ′

using Cons.prems insert
by fast

then have 1 : agree fm (foldr fmap-add-ltr fmList fmempty)
using Cons.IH
by blast

then have agree fm a
using Cons.prems elem
by fast

then have agree fm (a ++ foldr fmap-add-ltr fmList fmempty)
using 1 agree-FUNION
by blast
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then show ?case
by simp

qed

lemma DRESTRICT-EQ-AGREE :
assumes (fmdom ′ s2 ⊆ vs2 ) (fmdom ′ s1 ⊆ vs1 )
shows ((fmrestrict-set vs2 s1 = fmrestrict-set vs1 s2 ) −→ agree s1 s2 )
using assms fmdom ′-restrict-set restricted-agree-imp-agree
by (metis agree-def )

lemma SUBMAPS-AGREE : (s1 ⊆f s) ∧ (s2 ⊆f s) =⇒ (agree s1 s2 )
unfolding agree-def
by (metis as-needed-asses-submap-exec-ii)

— NOTE name shortened.
definition snapshot where

snapshot PROB s = {a | a. a ∈ PROB ∧ agree (fst a) s ∧ agree (snd a) s}

lemma snapshot-pair : snapshot PROB s = {(p, e). (p, e) ∈ PROB ∧ agree p s ∧
agree e s}

unfolding snapshot-def
by fastforce

lemma action-agree-valid-in-snapshot:
assumes (a ∈ PROB) (agree (fst a) s) (agree (snd a) s)
shows (a ∈ snapshot PROB s)
unfolding snapshot-def
using assms
by blast

lemma as-mem-agree-valid-in-snapshot:
assumes (∀ a. ListMem a as −→ agree (fst a) s ∧ agree (snd a) s) (as ∈

valid-plans PROB)
shows (as ∈ valid-plans (snapshot PROB s))
using assms

proof (induction as)
case Nil
then show ?case

using empty-plan-is-valid
by blast

next
case (Cons a as)
{

have ∀ a. ListMem a as −→ agree (fst a) s ∧ agree (snd a) s
using Cons.prems(1 ) insert
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by fast
moreover have (as ∈ valid-plans PROB)

using Cons.prems(2 ) valid-plan-valid-tail
by fast

ultimately have set as ⊆ snapshot PROB s
using Cons.IH valid-plans-def
by fast

}
note 1 = this
{

have a: a ∈ PROB
using Cons.prems(2 ) valid-plan-valid-head
by metis

then have ListMem a (a # as)
using elem
by fast

then have agree (fst a) s ∧ agree (snd a) s
using Cons.prems(1 )
by blast

then have a ∈ snapshot PROB s
using a snapshot-def
by auto

}
then have set (a # as) ⊆ snapshot PROB s

using 1 set-simps(2 )
by simp

then show ?case using valid-plans-def
by blast

qed

lemma fmrestrict-agree-monotonous:
fixes f g X
assumes agree f g
shows agree (fmrestrict-set X f ) (fmrestrict-set X g)

proof −
let ?F=fmdom ′ (fmrestrict-set X f )
let ?G=fmdom ′ (fmrestrict-set X g)
have 1 : ?F = X ∩ fmdom ′ f ?G = X ∩ fmdom ′ g

using fmdom ′-fmrestrict-set
by metis+

{
fix v
assume v ∈ ?F v ∈ ?G
then have v ∈ fmdom ′ f v ∈ fmdom ′ g

using 1
by blast+

then have fmlookup f v = fmlookup g v
using assms
unfolding agree-def
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by blast
then have fmlookup (fmrestrict-set X f ) v = fmlookup (fmrestrict-set X g) v

unfolding fmlookup-restrict-set
by argo

}
then show ?thesis

using assms
unfolding agree-def
by blast

qed

— TODO remove if not used.
lemma SUBMAP-FUNION-DRESTRICT-i:

fixes v vsa vsb f g
assumes v ∈ vsa
shows

fmlookup (fmrestrict-set ((vsa ∪ vsb) ∩ vs) f ) v
= fmlookup (fmrestrict-set (vsa ∩ vs) f ) v

unfolding fmlookup-restrict-set
using assms
by auto

lemma SUBMAP-FUNION-DRESTRICT ′:
assumes (agree fma fmb) (vsa ⊆ fmdom ′ fma) (vsb ⊆ fmdom ′ fmb)
(fmrestrict-set vsa fm = fmrestrict-set (vsa ∩ vs) fma)
(fmrestrict-set vsb fm = fmrestrict-set (vsb ∩ vs) fmb)

shows (fmrestrict-set (vsa ∪ vsb) fm = fmrestrict-set ((vsa ∪ vsb) ∩ vs) (fma
++ fmb))
proof −

let ?f=fmrestrict-set (vsa ∪ vsb) fm
let ?g=fmrestrict-set ((vsa ∪ vsb) ∩ vs) (fma ++ fmb)
have 1 : ?g = fmrestrict-set ((vsa ∪ vsb) ∩ vs) fmb ++f fmrestrict-set ((vsa ∪

vsb) ∩ vs) fma
unfolding fmap-add-ltr-def fmrestrict-set-add-distrib
by simp

have 2 : agree (fmrestrict-set ((vsa ∪ vsb) ∩ vs) fma) (fmrestrict-set ((vsa ∪ vsb)
∩ vs) fmb)

using assms(1 ) fmrestrict-agree-monotonous
by blast

have 3 :
fmdom ′ (fmrestrict-set ((vsa ∪ vsb) ∩ vs) fma) = ((vsa ∪ vsb) ∩ vs) ∩ fmdom ′

fma
fmdom ′ (fmrestrict-set ((vsa ∪ vsb) ∩ vs) fmb) = ((vsa ∪ vsb) ∩ vs) ∩ fmdom ′

fmb
using fmdom ′-fmrestrict-set
by metis+

{
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fix v
have fmlookup ?f v = fmlookup ?g v
proof (cases v ∈ ((vsa ∪ vsb) ∩ vs))

case True
— TODO unwrap smt proof.

then show ?thesis
using assms(1 , 2 , 3 , 4 , 5 ) 1
by (smt (verit) IntD1 SUBMAP-FUNION-DRESTRICT-i UnE agree-def

domIff fmdom ′.rep-eq fmdom ′-alt-def
fmdom ′-fmrestrict-set fmlookup-add fmlookup-restrict-set inf-sup-distrib2
subset-iff sup-commute)

next
case False
then show ?thesis
proof −

have v /∈ vsa ∪ vsb ∨ v /∈ vs
using False
by blast

then have fmlookup (fmrestrict-set (vsa ∪ vsb) fm) v = None
using assms(4 , 5 )
by (metis Int-iff Un-iff fmlookup-restrict-set)

then show ?thesis
using False
by auto

qed
qed

}
then show ?thesis

using 1 fmap-ext
by blast

qed

lemma UNION-FUNION-DRESTRICT-SUBMAP:
assumes (vs1 ⊆ fmdom ′ fma) (vs2 ⊆ fmdom ′ fmb) (agree fma fmb)
(fmrestrict-set vs1 fma ⊆f s) (fmrestrict-set vs2 fmb ⊆f s)

shows (fmrestrict-set (vs1 ∪ vs2 ) (fma ++ fmb) ⊆f s)
proof −

{
let ?f=fmrestrict-set (vs1 ∪ vs2 ) (fma ++ fmb)
fix v
assume P: v ∈ fmdom ′ ?f
{

have v ∈ (vs1 ∪ vs2 ) ∩ (fmdom ′ fma ∪ fmdom ′ fmb)
using P
unfolding fmap-add-ltr-def fmdom ′-fmrestrict-set fmdom ′-add
by force

then have v ∈ vs1 ∪ vs2 v ∈ fmdom ′ fma ∪ fmdom ′ fmb
by fast+

}
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note 1 = this
then have 2 : fmlookup ?f v = fmlookup (fmb ++f fma) v

unfolding fmlookup-restrict-set fmap-add-ltr-def
by argo

then consider
(i) v ∈ vs1
| (ii) v ∈ vs2
| (iii) ¬v∈ vs1 ∧ ¬v∈vs2
by blast

then have fmlookup ?f v = fmlookup s v
proof (cases)

case i
then have v ∈ fmdom ′ fma

using assms(1 )
by blast

then have fmlookup ?f v = fmlookup fma v
unfolding 2 fmlookup-add
by (simp add: fmdom ′-alt-def )

also have . . . = fmlookup (fmrestrict-set vs1 fma) v
unfolding fmlookup-restrict-set
using i
by simp

finally show ?thesis
using assms(4 )

by (metis (mono-tags, lifting) P domIff fmdom ′-notI fmsubset.rep-eq map-le-def )
next

— TODO unwrap smt proof.
case ii
then show ?thesis

using assms(2 , 3 , 5 ) 2 P
by (smt SUBMAP-FUNION-DRESTRICT-i agree-def

fmdom ′.rep-eq fmdom ′-fmrestrict-set fmdom ′-notD fmdom ′-notI fm-
lookup-add

fmrestrict-set-dom fmsubset.rep-eq inf .orderE map-le-def subset-Un-eq)
next

case iii
then show ?thesis

using 1
by blast

qed
}
then show ?thesis

by (simp add: as-needed-asses-submap-exec-vii)
qed

— TODO unwrap sledgehammered metis proof.

lemma agree-DRESTRICT :
assumes agree s1 s2
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shows agree (fmrestrict-set vs s1 ) (fmrestrict-set vs s2 )
using assms by (fact fmrestrict-agree-monotonous)

lemma agree-DRESTRICT-2 :
assumes (fmdom ′ s1 ⊆ vs1 ) (fmdom ′ s2 ⊆ vs2 ) (agree s1 s2 )
shows (agree (fmrestrict-set vs2 s1 ) (fmrestrict-set vs1 s2 ))
using assms
unfolding agree-def fmdom ′-restrict-set-precise
by auto

— NOTE added lemma.
lemma snapshot-eq-filter :

shows snapshot PROB s = Set.filter (λa. agree (fst a) s ∧ agree (snd a) s) PROB
unfolding snapshot-def Set.filter-def
by presburger

— NOTE moved up.
corollary snapshot-subset:

shows snapshot PROB s ⊆ PROB
unfolding snapshot-def
using snapshot-eq-filter
by blast

lemma FINITE-snapshot:
assumes finite PROB
shows finite (snapshot PROB s)

proof −
have snapshot PROB s ⊆ PROB

using snapshot-subset
by blast

then show ?thesis
using assms finite-subset[of snapshot PROB s PROB]
by blast

qed

— NOTE moved up (declared above the previous lemma). lemma snapshot_subset

— TODO unwrap metis proof.
lemma dom-proj-snapshot:
prob-dom (prob-proj PROB (prob-dom (snapshot PROB s))) = prob-dom (snapshot

PROB s)
by (metis snapshot-subset two-children-parent-mems-le-finite prob-subset-dom-subset)

lemma valid-states-snapshot:
valid-states (prob-proj PROB (prob-dom (snapshot PROB s))) = valid-states

(snapshot PROB s)
by (metis dom-proj-snapshot valid-states-def )

lemma valid-proj-neq-succ-restricted-neq-succ:
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assumes (x ′ ∈ prob-proj PROB vs) (state-succ s x ′ 6= s)
shows (fmrestrict-set vs (state-succ s x ′) 6= fmrestrict-set vs s)
unfolding state-succ-def
using FDOM-eff-subset-prob-dom-pair dom-prob-proj limited-dom-neq-restricted-neq
using assms(1 , 2 )
by (smt dual-order .trans state-succ-def )

lemma proj-successors:
((λs. fmrestrict-set vs s) ‘ (state-successors (prob-proj PROB vs) s))
⊆ (state-successors (prob-proj PROB vs) (fmrestrict-set vs s))

proof −
let ?A=((λs. fmrestrict-set vs s) ‘ (state-successors (prob-proj PROB vs) s))
let ?B=(state-successors (prob-proj PROB vs) (fmrestrict-set vs s))
{

fix x
assume P: x ∈ ?A
then obtain x ′ x ′′ where a:

x ′′ ∈ prob-proj PROB vs x ′ = state-succ s x ′′ x ′ 6= s x = fmrestrict-set vs x ′

unfolding state-successors-def subset-iff
by blast

moreover {
have (∃ x ′′.

x ′′ ∈ prob-proj PROB vs ∧ x = state-succ (fmrestrict-set vs s) x ′′

∧ x 6= fmrestrict-set vs s)
proof (cases fst x ′′ ⊆f s)

case true: True
then show ?thesis
proof (cases fst x ′′ ⊆f fmrestrict-set vs s)

case True
{

have fmdom ′ (snd x ′′) ⊆ vs
using a(1 ) FDOM-eff-subset-prob-dom-pair dom-prob-proj dual-order .trans

by metis
then have fmrestrict-set vs (snd x ′′) = snd x ′′

using exec-drest-5
by fast

}
note i = this
{

have x = fmrestrict-set vs (snd x ′′ ++ s)
using a(2 , 4 ) true
unfolding state-succ-def
by simp

then have x = fmrestrict-set vs (snd x ′′) ++ fmrestrict-set vs s
unfolding fmap-add-ltr-def
using fmrestrict-set-add-distrib
by simp

then have x = snd x ′′ ++ fmrestrict-set vs s
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using i
by simp

then have x = state-succ (fmrestrict-set vs s) x ′′

unfolding state-succ-def
using True
by argo

}
moreover have x 6= fmrestrict-set vs s

using a valid-proj-neq-succ-restricted-neq-succ
by fast

ultimately show ?thesis
using a(1 )
by blast

next
case False
then show ?thesis
proof −

have x ′′ ∈ (λp. action-proj p vs) ‘ PROB
using calculation(1 ) prob-proj-def
by auto

then have action-proj x ′′ vs = x ′′

using action-proj-idempot
by blast

then show ?thesis
by (metis (no-types) False action-proj-pair fmsubset-restrict-set-mono

fstI
surjective-pairing true)

qed
qed

next
case False
then show ?thesis
proof (cases fst x ′′ ⊆f fmrestrict-set vs s)

case True
then have fmdom ′ (snd x ′′) ⊆ vs

using FDOM-eff-subset-prob-dom-pair dom-prob-proj
using a(1 ) dual-order .trans
by metis

then have fmrestrict-set vs (snd x ′′) = snd x ′′

using exec-drest-5
by fast

then show ?thesis
unfolding state-succ-def fmap-add-ltr-def
using False True sublist-as-proj-eq-as-1
by fast

next
case False
then have fmdom ′ (fst x ′′) ⊆ vs

using FDOM-pre-subset-prob-dom-pair dom-prob-proj
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using a(1 ) dual-order .trans
by metis

then have fmrestrict-set vs (fst x ′′) = fst x ′′

by (simp add: exec-drest-5 )
then show ?thesis

unfolding state-succ-def fmap-add-ltr-def
using a False fmsubset-restrict-set-mono
by (metis state-succ-def )

qed
qed

}
then obtain x ′′ where x ′′ ∈ prob-proj PROB vs x = state-succ (fmrestrict-set

vs s) x ′′

x 6= fmrestrict-set vs s
by blast

then have x ∈ ?B unfolding state-successors-def
by blast

}
then show ?thesis

by blast
qed

lemma state-in-successor-proj-in-state-in-successor :
(s ′ ∈ state-successors (prob-proj PROB vs) s)
=⇒ (fmrestrict-set vs s ′ ∈ state-successors (prob-proj PROB vs) (fmrestrict-set

vs s))
using proj-successors
by force

lemma proj-FDOM-eff-subset-FDOM-valid-states:
fixes p e s
assumes ((p, e) ∈ prob-proj PROB vs) (s ∈ valid-states PROB)
shows (fmdom ′ e ⊆ fmdom ′ s)
using assms

proof −
{

obtain p ′ e ′ where (p ′, e ′) ∈ PROB (p, e) = action-proj (p ′, e ′) vs
using assms(1 )
unfolding prob-proj-def
by fast

then have fmdom ′ e ⊆ prob-dom (prob-proj PROB vs)
using assms FDOM-eff-subset-prob-dom
by blast

also have . . . = prob-dom PROB ∩ vs
using graph-plan-neq-mems-state-set-neq-len
by fast

finally have fmdom ′ e ⊆ prob-dom PROB
by simp

}
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moreover have fmdom ′ s = prob-dom PROB
using assms(2 )
unfolding valid-states-def
by simp

ultimately show ?thesis
by simp

qed

lemma valid-proj-action-valid-succ:
assumes (h ∈ prob-proj PROB vs) (s ∈ valid-states PROB)
shows (state-succ s h ∈ valid-states PROB)

proof −
have fmdom ′ (snd h) ⊆ fmdom ′ s

using assms proj-FDOM-eff-subset-FDOM-valid-states surjective-pairing
by metis

moreover have fmdom ′ (state-succ s h) = fmdom ′ s
using calculation(1 ) FDOM-state-succ
by metis

ultimately show ?thesis
using assms(2 ) valid-states-def
by blast

qed

lemma proj-successors-of-valid-are-valid:
assumes (s ∈ valid-states PROB)
shows (state-successors (prob-proj PROB vs) s ⊆ (valid-states PROB))
unfolding state-successors-def
using assms valid-proj-action-valid-succ
by blast

7.3 State Space Projection
definition ss-proj where

ss-proj ss vs ≡ (λs. fmrestrict-set vs s) ‘ ss

— NOTE added lemma.
— TODO refactor into ’Fmap_Utils’.
lemma fmrestrict-set-inter-img:

fixes A X Y
shows fmrestrict-set (X ∩ Y ) ‘ A = (fmrestrict-set X ◦ fmrestrict-set Y ) ‘ A

proof −
— NOTE Proof by mutual inclusion.
let ?lhs = fmrestrict-set (X ∩ Y ) ‘ A
let ?rhs = (fmrestrict-set X ◦ fmrestrict-set Y ) ‘ A
{

fix a
assume a ∈ A
have (fmrestrict-set X ◦ fmrestrict-set Y ) a = fmrestrict-set X (fmrestrict-set

Y a)
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by auto
also have . . . = fmrestrict-set (X ∩ Y ) a

using action-proj-inter-i
by fast

finally have (fmrestrict-set X ◦ fmrestrict-set Y ) a = fmrestrict-set (X ∩ Y )
a

by auto
}
note 1 = this
{

fix a
assume P: a ∈ A
then have fmrestrict-set (X ∩ Y ) a ∈ ?lhs

by simp
moreover have (fmrestrict-set X ◦ fmrestrict-set Y ) a ∈ ?rhs

using P
by blast

ultimately have
fmrestrict-set (X ∩ Y ) a ∈ ?rhs (fmrestrict-set X ◦ fmrestrict-set Y ) a ∈ ?lhs
using P 1
by metis+

}
then show ?thesis

by blast
qed

lemma invariantStateSpace-thm-9 :
fixes ss vs1 vs2
shows ss-proj ss (vs1 ∩ vs2 ) = ss-proj (ss-proj ss vs2 ) vs1

proof −
{

have
ss-proj ss (vs1 ∩ vs2 )
= fmrestrict-set (vs1 ∩ vs2 ) ‘ ss

unfolding ss-proj-def
by simp

also have . . . = (fmrestrict-set vs1 ◦ fmrestrict-set vs2 ) ‘ ss
using fmrestrict-set-inter-img
by metis

finally have ss-proj ss (vs1 ∩ vs2 ) = ss-proj (ss-proj ss vs2 ) vs1
unfolding ss-proj-def
by force

}
then show ?thesis

by simp
qed

lemma FINITE-ss-proj:
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fixes ss vs
assumes finite ss
shows finite (ss-proj ss vs)
unfolding ss-proj-def
using assms
by simp

lemma nempty-stateSpace-nempty-ss-proj:
assumes (ss 6= {})
shows (ss-proj ss vs 6= {})
unfolding ss-proj-def
using assms
by simp

lemma invariantStateSpace-thm-5 :
fixes ss vs domain
assumes (stateSpace ss domain)
shows (stateSpace (ss-proj ss vs) (domain ∩ vs))
using assms
unfolding stateSpace-def ss-proj-def
by (metis (no-types, lifting) fmdom ′-fmrestrict-set imageE inf-commute)

lemma dom-subset-ssproj-eq-ss:
fixes ss domain vs
assumes (stateSpace ss domain) (domain ⊆ vs)
shows (ss-proj ss vs = ss)
unfolding ss-proj-def stateSpace-def
using assms exec-drest-5
by (metis (mono-tags, lifting) image-cong image-ident stateSpace-def )

— TODO refactor duplicate proof steps in case split.
lemma neq-vs-neq-ss-proj:

fixes vs
assumes (ss 6= {}) (stateSpace ss vs) (vs1 ⊆ vs) (vs2 ⊆ vs) (vs1 6= vs2 )
shows (ss-proj ss vs1 6= ss-proj ss vs2 )

proof −
{

have 1 : ∃ f . f ∈ ss
using assms(1 )
by blast

then obtain x where (x ∈ vs1 ∧ x /∈ vs2 ) ∨ (x ∈ vs2 ∧ x /∈ vs1 )
using assms(5 )
by blast

then consider (i) x ∈ vs1 ∧ x /∈ vs2 | (ii) x ∈ vs2 ∧ x /∈ vs1
by blast

then have fmrestrict-set vs1 ‘ ss 6= fmrestrict-set vs2 ‘ ss proof (cases)
case i
{

fix s ′ t ′

249



assume s ′ ∈ fmrestrict-set vs1 ‘ ss t ′ ∈ fmrestrict-set vs2 ‘ ss
then obtain s t where a:

s ∈ ss s ′ = fmrestrict-set vs1 s t ∈ ss t ′ = fmrestrict-set vs2 t
by blast

then have fmdom ′ s = vs
using assms(2 )
by (simp add: stateSpace-def )

then have b: fmdom ′ s ′ = vs1
using assms(3 ) a fmdom ′-fmrestrict-set inf .order-iff
by metis

then have fmdom ′ t = vs
using assms(2 ) a(3 )
by (simp add: stateSpace-def )

then have fmdom ′ t ′ = vs2
using assms(4 ) a(4 ) fmdom ′-fmrestrict-set inf .order-iff
by metis

then have fmlookup s ′ x 6= None fmlookup t ′ x = None
using i b domIff fmdom ′-alt-def fmdom.rep-eq
by metis+

then have s ′ 6= t ′

by blast
}
then show ?thesis

using 1 neq-funs-neq-images
by blast

next
case ii
{

fix s ′ t ′

assume s ′ ∈ fmrestrict-set vs1 ‘ ss t ′ ∈ fmrestrict-set vs2 ‘ ss
then obtain s t where c:

s ∈ ss s ′ = fmrestrict-set vs1 s t ∈ ss t ′ = fmrestrict-set vs2 t
by blast

then have fmdom ′ s = vs
using assms(2 )
by (simp add: stateSpace-def )

then have d: fmdom ′ s ′ = vs1
using assms(3 ) c(2 ) fmdom ′-fmrestrict-set inf .order-iff
by metis

then have fmdom ′ t = vs
using assms(2 ) c(3 )
by (simp add: stateSpace-def )

then have fmdom ′ t ′ = vs2
using assms(4 ) c(4 ) fmdom ′-fmrestrict-set inf .order-iff
by metis

then have fmlookup s ′ x = None fmlookup t ′ x 6= None
using ii d domIff fmdom ′-alt-def fmdom.rep-eq
by metis+

then have s ′ 6= t ′
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by blast
}
then show ?thesis

using 1 neq-funs-neq-images
by blast

qed
}
then show ?thesis

unfolding ss-proj-def
by blast

qed

lemma subset-dom-stateSpace-ss-proj:
fixes vs1 vs2
assumes (vs1 ⊆ vs2 ) (stateSpace ss vs2 )
shows (stateSpace (ss-proj ss vs1 ) vs1 )
using assms
by (metis inf .absorb-iff2 invariantStateSpace-thm-5 )

lemma card-proj-leq:
assumes finite PROB
shows card (prob-proj PROB vs) ≤ card PROB
unfolding prob-proj-def
using assms card-image-le
by blast

end
theory Acyclicity

imports Main
begin

8 Acyclicity
Two of the discussed bounding algorithms ("top-down" and "bottom-up")
exploit acyclicity of the system under projection on sets of state variables
closed under mutual variable dependency. [Abdulaziz et al., p.11]

This specific notion of acyclicity is formalised using topologically sorted
dependency graphs induced by the variable dependency relation. [Abdulaziz
et al., p.14]

8.1 Topological Sorting of Dependency Graphs
fun top-sorted-abs where

top-sorted-abs R [] = True
| top-sorted-abs R (h # l) = (list-all (λx. ¬R x h) l ∧ top-sorted-abs R l)

lemma top-sorted-abs-mem:
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assumes (top-sorted-abs R (h # l)) (ListMem x l)
shows (¬ R x h)
using assms
by (auto simp add: ListMem-iff list.pred-set)

lemma top-sorted-cons:
assumes top-sorted-abs R (h # l)
shows (top-sorted-abs R l)
using assms
by simp

8.2 The Weightiest Path Function (wlp)
The weightiest path function is a generalization of an algorithm which com-
putes the longest path in a DAG starting at a given vertex ‘v‘. Its arguments
are the relation ‘R‘ which induces the graph, a weighing function ‘w‘ assign-
ing weights to vertices, an accumulating functions ‘f‘ and ‘g‘ which aggregate
vertex weights into a path weight and the weights of different paths respec-
tively, the considered vertex and the graph represented as a topological
sorted list. [Abdulaziz et al., p.18]

Typical weight combining functions have the properties defined by ‘geq_arg‘
and ‘increasing‘. [Abdulaziz et al., p.18]
fun wlp where

wlp R w g f x [] = w x
| wlp R w g f x (h # l) = (if R x h

then g (f (w x) (wlp R w g f h l)) (wlp R w g f x l)
else wlp R w g f x l

)

— NOTE name shortened.
definition geq-arg where

geq-arg f ≡ (∀ x y. (x ≤ f x y) ∧ (y ≤ f x y))

lemma individual-weight-less-eq-lp:
fixes w :: ′a ⇒ nat
assumes geq-arg g
shows (w x ≤ wlp R w g f x l)
using assms
unfolding geq-arg-def

proof (induction l arbitrary: R w g f x)
case (Cons a l)
then show ?case

using Cons.IH Cons.prems
proof (cases R x a)

case True
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then show ?thesis
using Cons le-trans wlp.simps(2 )
by smt

next
case False
then show ?thesis

using Cons
by simp

qed
qed simp

— NOTE Types of ’f’ and ’g’ had to be fixed to be able to use transitivity rule of
the less-equal relation.
lemma lp-geq-lp-from-successor :

fixes vtx1 and f g :: nat ⇒ nat ⇒ nat
assumes geq-arg f geq-arg g (∀ vtx. ListMem vtx G −→ ¬R vtx vtx) R vtx2 vtx1

ListMem vtx1 G top-sorted-abs R G
shows (f (w vtx2 ) (wlp R w g f vtx1 G) ≤ (wlp R w g f vtx2 G))
using assms
unfolding geq-arg-def

proof (induction G arbitrary: vtx1 f g R vtx2 )
case Nil
then show ?case

using ListMem-iff
by fastforce

next
case (Cons a G)
show ?case
proof (auto)

assume P1 : R vtx1 a R vtx2 a
then show

f (w vtx2 ) (g (f (w vtx1 ) (wlp R w g f a G)) (wlp R w g f vtx1 G))
≤ g (f (w vtx2 ) (wlp R w g f a G)) (wlp R w g f vtx2 G)

using Cons.prems(3 , 5 , 6 )
by (metis ListMem-iff set-ConsD top-sorted-abs-mem)

next
assume P2 : R vtx1 a ¬ R vtx2 a
then show

f (w vtx2 ) (g (f (w vtx1 ) (wlp R w g f a G)) (wlp R w g f vtx1 G))
≤ wlp R w g f vtx2 G

using Cons.prems(4 , 5 , 6 )
by (metis ListMem-iff set-ConsD top-sorted-abs-mem)

next
assume P3 : ¬ R vtx1 a R vtx2 a
then show

f (w vtx2 ) (wlp R w g f vtx1 G)
≤ g (f (w vtx2 ) (wlp R w g f a G)) (wlp R w g f vtx2 G)

proof −
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have f1 : ∀n na. n ≤ g n na ∧ na ≤ g n na
using Cons.prems(2 ) by blast

have f2 : vtx1 = a ∨ vtx1 ∈ set G
by (meson Cons.prems(5 ) ListMem-iff set-ConsD)

obtain aa :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a where
∀ x2 . (∃ v5 . ListMem v5 G ∧ x2 v5 v5 ) = (ListMem (aa x2 ) G ∧ x2 (aa

x2 ) (aa x2 ))
by moura

then have
ListMem (aa R) G ∧ R (aa R) (aa R)
∨ ¬ ListMem vtx1 G ∨ f (w vtx2 ) (wlp R w g f vtx1 G) ≤ wlp R w g f

vtx2 G
using f1 by (metis (no-types) Cons.IH Cons.prems(1 , 4 , 6 ) top-sorted-cons)
then show ?thesis

using f2 f1 by (meson Cons.prems(3 ) ListMem-iff insert le-trans)
qed

next
assume P4 : ¬ R vtx1 a ¬ R vtx2 a
then show f (w vtx2 ) (wlp R w g f vtx1 G) ≤ wlp R w g f vtx2 G
proof −

have f1 : top-sorted-abs R G
using Cons.prems(6 ) by fastforce

have ListMem vtx1 G
by (metis Cons.prems(4 ) Cons.prems(5 ) ListMem-iff P4 (2 ) set-ConsD)

then show ?thesis
using f1 by (simp add: Cons.IH Cons.prems(1 , 2 , 3 , 4 ) insert)

qed
qed

qed

definition increasing where
increasing f ≡ (∀ e b c d. (e ≤ c) ∧ (b ≤ d) −→ (f e b ≤ f c d))

lemma weight-fun-leq-imp-lp-leq:
∧

x.
(increasing f )
=⇒ (increasing g)
=⇒ (∀ y. ListMem y l −→ w1 y ≤ w2 y)
=⇒ (w1 x ≤ w2 x)
=⇒ (wlp R w1 g f x l ≤ wlp R w2 g f x l)

unfolding increasing-def
by (induction l) (auto simp add: elem insert)

— NOTE generalizing ‘f2‘, ‘x1‘, ‘x2‘ seems to break the prover.
lemma wlp-congruence-rule:

fixes l1 l2 R1 R2 w1 w2 g1 g2 f1 f2 x1 x2
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assumes (l1 = l2 ) (∀ y. ListMem y l2 −→ (R1 x1 y = R2 x2 y))
(∀ y. ListMem y l2 −→ (R1 y x1 = R2 y x2 )) (w1 x1 = w2 x2 )
(∀ y1 y2 . (y1 = y2 ) −→ (f1 (w1 x1 ) y1 = f2 (w2 x2 ) y2 ))
(∀ y1 y2 z1 z2 . (y1 = y2 ) ∧ (z1 = z2 ) −→ ((g1 (f1 (w1 x1 ) y1 ) z1 ) = (g2 (f2

(w2 x2 ) y2 ) z2 )))
(∀ x y. ListMem x l2 ∧ ListMem y l2 −→ (R1 x y = R2 x y))
(∀ x. ListMem x l2 −→ (w1 x = w2 x))
(∀ x y z. ListMem x l2 −→ (g1 (f1 (w1 x) y) z = g2 (f2 (w2 x) y) z))
(∀ x y. ListMem x l2 −→ (f1 (w1 x) y = f2 (w1 x) y))

shows ((wlp R1 w1 g1 f1 x1 l1 ) = (wlp R2 w2 g2 f2 x2 l2 ))
using assms

proof (induction l2 arbitrary: l1 x1 x2 )
case (Cons a l2 )
then have (wlp R1 w1 g1 f1 x1 l2 ) = (wlp R2 w2 g2 f2 x2 l2 )

using Cons
by (simp add: insert)

moreover have (wlp R1 w1 g1 f1 a l2 ) = (wlp R2 w2 g2 f2 a l2 )
using Cons
by (simp add: elem insert)

ultimately show ?case
by (simp add: Cons.prems(1 ,2 , 6 ) elem)

qed auto

lemma wlp-ite-weights:
fixes x
assumes ∀ y. ListMem y l1 −→ P y P x
shows ((wlp R (λy. if P y then w1 y else w2 y) g f x l1 ) = (wlp R w1 g f x l1 ))
using assms

proof (induction l1 arbitrary: R P w1 w2 f g)
case (Cons a l1 )
let ?w1=(λy. if P y then w1 y else w2 y)
let ?w2=w1
{

have ∀ y. ListMem y l1 −→ P y
using Cons.prems(1 ) insert
by fast

then have ((wlp R (λy. if P y then w1 y else w2 y) g f x l1 ) = (wlp R w1 g f
x l1 ))

using Cons.prems(2 ) Cons.IH
by blast

}
note 1 = this
{

have (if P x then w1 x else w2 x) = w1 x
∀ y1 y2 . y1 = y2 −→ f (if P x then w1 x else w2 x) y1 = f (w1 x) y2
∀ y1 y2 z1 z2 .

y1 = y2 ∧ z1 = z2
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−→ g (f (if P x then w1 x else w2 x) y1 ) z1 = g (f (w1 x) y2 ) z2
∀ x. ListMem x (a # l1 ) −→ (if P x then w1 x else w2 x) = w1 x
∀ x y z.

ListMem x (a # l1 )
−→ g (f (if P x then w1 x else w2 x) y) z = g (f (w1 x) y) z
∀ x y.

ListMem x (a # l1 ) −→ f (if P x then w1 x else w2 x) y = f (if P x then
w1 x else w2 x) y

using Cons.prems(1 , 2 )
by simp+

then have wlp R (λy. if P y then w1 y else w2 y) g f x (a # l1 ) = wlp R w1
g f x (a # l1 )

using Cons wlp-congruence-rule[of a # l1 a # l1 R x R x ?w1 ?w2 f f g g]
by blast

}
then show ?case

by blast
qed auto

lemma map-wlp-ite-weights:
(∀ x. ListMem x l1 −→ P x)
=⇒ (∀ x. ListMem x l2 −→ P x)
=⇒ (

map (λx. wlp R (λy. if P y then w1 y else w2 y) g f x l1 ) l2
= map (λx. wlp R w1 g f x l1 ) l2

)

apply(induction l2 )
apply(auto)

subgoal by (simp add: elem wlp-congruence-rule)
subgoal by (simp add: insert)
done

lemma wlp-weight-lamda-exp:
∧

x. wlp R w g f x l = wlp R (λy. w y) g f x l
proof −

fix x
show wlp R w g f x l = wlp R (λy. w y) g f x l

by(induction l) auto
qed

lemma img-wlp-ite-weights:
(∀ x. ListMem x l −→ P x)
=⇒ (∀ x. x ∈ s −→ P x)
=⇒ (
(λx. wlp R (λy. if P y then w1 y else w2 y) g f x l) ‘ s
= (λx. wlp R w1 g f x l) ‘ s
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)

proof −
assume P1 : ∀ x. ListMem x l −→ P x
assume P2 : ∀ x. x ∈ s −→ P x
show (
(λx. wlp R (λy. if P y then w1 y else w2 y) g f x l) ‘ s
= (λx. wlp R w1 g f x l) ‘ s

)
by (auto simp add: P1 P2 image-iff wlp-ite-weights)

qed

end
theory AcycSspace

imports
FactoredSystem
ActionSeqProcess
SystemAbstraction
Acyclicity
FmapUtils

begin

9 Acyclic State Spaces
value (state-successors (prob-proj PROB vs))
definition S

where S vs lss PROB s ≡ wlp
(λx y. y ∈ (state-successors (prob-proj PROB vs) x))
(λs. problem-plan-bound (snapshot PROB s))
(max :: nat ⇒ nat ⇒ nat) (λx y. x + y + 1 ) s lss

— NOTE name shortened.
— NOTE using ‘fun‘ because of multiple defining equations.
fun vars-change where

vars-change [] vs s = []
| vars-change (a # as) vs s = (if fmrestrict-set vs (state-succ s a) 6= fmrestrict-set
vs s

then state-succ s a # vars-change as vs (state-succ s a)
else vars-change as vs (state-succ s a)

)

lemma vars-change-cat:
fixes s
shows

vars-change (as1 @ as2 ) vs s
= (vars-change as1 vs s @ vars-change as2 vs (exec-plan s as1 ))
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by (induction as1 arbitrary: s as2 vs) auto

lemma empty-change-no-change:
fixes s
assumes (vars-change as vs s = [])
shows (fmrestrict-set vs (exec-plan s as) = fmrestrict-set vs s)
using assms

proof (induction as arbitrary: s vs)
case (Cons a as)
then show ?case
proof (cases fmrestrict-set vs (state-succ s a) 6= fmrestrict-set vs s)

case True
— NOTE This case violates the induction premise vars-change (a # as) vs s

= [] since the empty list is impossible.
then have state-succ s a # vars-change as vs (state-succ s a) = []

using Cons.prems True
by simp

then show fmrestrict-set vs (exec-plan s (a # as)) = fmrestrict-set vs s
by blast

next
case False
then have vars-change as vs (state-succ s a) = []

using Cons.prems False
by force

then have
fmrestrict-set vs (exec-plan (state-succ s a) as) = fmrestrict-set vs (state-succ

s a)
using Cons.IH [of vs (state-succ s a)]
by blast

then show fmrestrict-set vs (exec-plan s (a # as)) = fmrestrict-set vs s
using False
by simp

qed
qed auto

— NOTE renamed variable ‘a‘ to ‘b‘ to not conflict with naming for list head in
induction step.
lemma zero-change-imp-all-effects-submap:

fixes s s ′

assumes (vars-change as vs s = []) (sat-precond-as s as) (ListMem b as)
(fmrestrict-set vs s = fmrestrict-set vs s ′)

shows (fmrestrict-set vs (snd b) ⊆f fmrestrict-set vs s ′)
using assms

proof (induction as arbitrary: s s ′ vs b)
case (Cons a as)

— NOTE Having either fmrestrict-set vs (state-succ s a) 6= fmrestrict-set vs s
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or ¬ ListMem b as leads to simpler propositions so we split here.
then show (fmrestrict-set vs (snd b) ⊆f fmrestrict-set vs s ′)

using Cons.prems(1 )
proof (cases fmrestrict-set vs (state-succ s a) = fmrestrict-set vs s ∧ ListMem b

as)
case True
let ?s=state-succ s a
have vars-change as vs ?s = []

using True Cons.prems(1 )
by auto

moreover have sat-precond-as ?s as
using Cons.prems(2 ) sat-precond-as.simps(2 )
by blast

ultimately show ?thesis
using True Cons.prems(4 ) Cons.IH
by auto

next
case False
then consider
(i) fmrestrict-set vs (state-succ s a) 6= fmrestrict-set vs s
| (ii) ¬ListMem b as
by blast

then show ?thesis
using Cons.prems(1 )

proof (cases)
case ii
then have a = b

using Cons.prems(3 ) ListMem-iff set-ConsD
by metis
— NOTE Mysteriously sledgehammer finds a proof here while the premises

of ‘no_change_vs_eff_submap‘ cannot be proven individually.
then show ?thesis

using Cons.prems(1 , 2 , 4 ) no-change-vs-eff-submap
by (metis list.distinct(1 ) sat-precond-as.simps(2 ) vars-change.simps(2 ))

qed simp
qed

qed (simp add: ListMem-iff )

lemma zero-change-imp-all-preconds-submap:
fixes s s ′

assumes (vars-change as vs s = []) (sat-precond-as s as) (ListMem b as)
(fmrestrict-set vs s = fmrestrict-set vs s ′)

shows (fmrestrict-set vs (fst b) ⊆f fmrestrict-set vs s ′)
using assms

proof (induction as arbitrary: vs s s ′)
case (Cons a as)

— NOTE Having either fmrestrict-set vs (state-succ s a) 6= fmrestrict-set vs s
or ¬ ListMem b as leads to simpler propositions so we split here.
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then show (fmrestrict-set vs (fst b) ⊆f fmrestrict-set vs s ′)
using Cons.prems(1 )

proof (cases fmrestrict-set vs (state-succ s a) = fmrestrict-set vs s ∧ ListMem b
as)

case True
let ?s=state-succ s a
have vars-change as vs ?s = []

using True Cons.prems(1 )
by auto

moreover have sat-precond-as ?s as
using Cons.prems(2 ) sat-precond-as.simps(2 )
by blast

ultimately show ?thesis
using True Cons.prems(4 ) Cons.IH
by auto

next
case False
then consider
(i) fmrestrict-set vs (state-succ s a) 6= fmrestrict-set vs s
| (ii) ¬ListMem b as
by blast

then show ?thesis
using Cons.prems(1 )

proof (cases)
case ii
then have a = b

using Cons.prems(3 ) ListMem-iff set-ConsD
by metis

then show ?thesis
using Cons.prems(2 , 4 ) fmsubset-restrict-set-mono
by (metis sat-precond-as.simps(2 ))

qed simp
qed

qed (simp add: ListMem-iff )

lemma no-vs-change-valid-in-snapshot:
assumes (as ∈ valid-plans PROB) (sat-precond-as s as) (vars-change as vs s =

[])
shows (as ∈ valid-plans (snapshot PROB (fmrestrict-set vs s)))

proof −
{

fix a
assume P: ListMem a as
then have agree (fst a) (fmrestrict-set vs s)

by (metis agree-imp-submap assms(2 ) assms(3 ) fmdom ′-restrict-set
restricted-agree-imp-agree zero-change-imp-all-preconds-submap)

moreover have agree (snd a) (fmrestrict-set vs s)
by (metis (no-types) P agree-imp-submap assms(2 ) assms(3 ) fmdom ′-restrict-set
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restricted-agree-imp-agree zero-change-imp-all-effects-submap)
ultimately have agree (fst a) (fmrestrict-set vs s) agree (snd a) (fmrestrict-set

vs s)
by simp+

}
then show ?thesis

using assms(1 ) as-mem-agree-valid-in-snapshot
by blast

qed

— NOTE type of ‘PROB‘ had to be fixed for ‘problem_plan_bound_works‘.
lemma no-vs-change-obtain-snapshot-bound-1st-step:

fixes PROB :: ′a problem
assumes finite PROB (vars-change as vs s = []) (sat-precond-as s as)
(s ∈ valid-states PROB) (as ∈ valid-plans PROB)

shows (∃ as ′.
(

exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s)
as

= exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s)))
s) as ′

)
∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s)))

)
proof −

let ?s=(fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s)
let ?PROB=(snapshot PROB (fmrestrict-set vs s))
{

have finite (snapshot PROB (fmrestrict-set vs s))
using assms(1 ) FINITE-snapshot
by blast

}
moreover {

have
fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s
∈ valid-states (snapshot PROB (fmrestrict-set vs s))
using assms(4 ) graph-plan-not-eq-last-diff-paths valid-states-snapshot
by blast

}
moreover {

have as ∈ valid-plans (snapshot PROB (fmrestrict-set vs s))
using assms(2 , 3 , 5 ) no-vs-change-valid-in-snapshot
by blast

}
ultimately show ?thesis

using problem-plan-bound-works[of ?PROB ?s as]
by blast
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qed

— NOTE type of ‘PROB‘ had to be fixed for ‘no_vs_change_obtain_snapshot_bound_1st_step‘.
lemma no-vs-change-obtain-snapshot-bound-2nd-step:

fixes PROB :: ′a problem
assumes finite PROB (vars-change as vs s = []) (sat-precond-as s as)
(s ∈ valid-states PROB) (as ∈ valid-plans PROB)

shows (∃ as ′.
(
exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s)

as
= exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s)))

s) as ′

)
∧ (subseq as ′ as)
∧ (sat-precond-as s as ′)
∧ (length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s)))

)
proof −

obtain as ′′ where 1 :

exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s)
as

= exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s)))
s) as ′′

subseq as ′′ as length as ′′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set
vs s))

using assms no-vs-change-obtain-snapshot-bound-1st-step
by blast

let ?s ′=(fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s)
let ?as ′=rem-condless-act ?s ′ [] as ′′

have exec-plan ?s ′ as = exec-plan ?s ′ as ′′

using 1 (1 ) rem-condless-valid-1
by blast

moreover have subseq ?as ′ as
using 1 (2 ) rem-condless-valid-8 sublist-trans
by blast

moreover have sat-precond-as s ?as ′

using sat-precond-drest-sat-precond rem-condless-valid-2
by fast

moreover have (length ?as ′≤ problem-plan-bound (snapshot PROB (fmrestrict-set
vs s)))

using 1 rem-condless-valid-3 le-trans
by blast

ultimately show ?thesis
using 1 rem-condless-valid-1
by auto

qed
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lemma no-vs-change-obtain-snapshot-bound-3rd-step:
assumes finite (PROB :: ′a problem) (vars-change as vs s = []) (no-effectless-act

as)
(sat-precond-as s as) (s ∈ valid-states PROB) (as ∈ valid-plans PROB)

shows (∃ as ′.
(

fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) (exec-plan s
as)

= fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) (exec-plan
s as ′)

)
∧ (subseq as ′ as)
∧ (length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s)))

)
proof −

obtain as ′ :: (( ′a, bool) fmap × ( ′a, bool) fmap) list where
(

exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) s)
as

= exec-plan (fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s)))
s) as ′

) subseq as ′ as sat-precond-as s as ′

length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
using assms(1 , 2 , 4 , 5 , 6 ) no-vs-change-obtain-snapshot-bound-2nd-step
by blast

moreover have
exec-plan (fmrestrict-set vs s) (as-proj as vs) = fmrestrict-set vs (exec-plan s

as)
using assms(4 ) sat-precond-exec-as-proj-eq-proj-exec
by blast

moreover have as-proj as (prob-dom (snapshot PROB (fmrestrict-set vs s))) =
as

using assms(2 , 3 , 4 , 6 ) as-proj-eq-as no-vs-change-valid-in-snapshot
by blast

ultimately show ?thesis
using sublist-as-proj-eq-as proj-exec-proj-eq-exec-proj ′
by metis

qed

— NOTE added lemma.
— TODO remove unused assumptions.
lemma no-vs-change-snapshot-s-vs-is-valid-bound-i:

fixes PROB :: ′a problem
assumes finite PROB (vars-change as vs s = []) (no-effectless-act as)
(sat-precond-as s as) (s ∈ valid-states PROB) (as ∈ valid-plans PROB)
fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) (exec-plan s

as) =
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fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) (exec-plan
s as ′)

subseq as ′ as length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set
vs s))

shows
fmrestrict-set (fmdom ′ (exec-plan s as) − prob-dom (snapshot PROB (fmrestrict-set

vs s)))
(exec-plan s as)
= fmrestrict-set (fmdom ′ (exec-plan s as) − prob-dom (snapshot PROB

(fmrestrict-set vs s)))
s

∧ fmrestrict-set (fmdom ′ (exec-plan s as ′) − prob-dom (snapshot PROB (fmrestrict-set
vs s)))

(exec-plan s as ′)
= fmrestrict-set (fmdom ′ (exec-plan s as ′) − prob-dom (snapshot PROB

(fmrestrict-set vs s)))
s

proof −
let ?vs=(prob-dom (snapshot PROB (fmrestrict-set vs s)))
let ?vs ′=(fmdom ′ (exec-plan s as) − prob-dom (snapshot PROB (fmrestrict-set

vs s)))
let ?vs ′′=(fmdom ′ (exec-plan s as ′) − prob-dom (snapshot PROB (fmrestrict-set

vs s)))
let ?s=(exec-plan s as)
let ?s ′=(exec-plan s as ′)
have 1 : as ∈ valid-plans (snapshot PROB (fmrestrict-set vs s))

using assms(2 , 4 , 6 ) no-vs-change-valid-in-snapshot
by blast

{
{

fix a
assume ListMem a as
then have fmdom ′ (snd a) ⊆ prob-dom (snapshot PROB (fmrestrict-set vs

s))
using 1 FDOM-eff-subset-prob-dom-pair valid-plan-mems
by metis

then have fmdom ′ (fmrestrict-set (fmdom ′ (exec-plan s as)
− prob-dom (snapshot PROB (fmrestrict-set vs s))) (snd a))

= {}
using subset-inter-diff-empty[of fmdom ′ (snd a)
prob-dom (snapshot PROB (fmrestrict-set vs s))] fmdom ′-restrict-set-precise

by metis
}
then have

fmrestrict-set ?vs ′ (exec-plan s as) = fmrestrict-set ?vs ′ s
using disjoint-effects-no-effects[of as ?vs ′ s]
by blast

}
moreover {
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{
fix a
assume P: ListMem a as ′

moreover have α: as ′ ∈ valid-plans (snapshot PROB (fmrestrict-set vs s))
using assms(8 ) 1 sublist-valid-plan
by blast

moreover have a ∈ PROB
using P α snapshot-subset subsetCE valid-plan-mems
by fast

ultimately have fmdom ′ (snd a) ⊆ prob-dom (snapshot PROB (fmrestrict-set
vs s))

using FDOM-eff-subset-prob-dom-pair valid-plan-mems
by metis

then have fmdom ′ (fmrestrict-set (fmdom ′ (exec-plan s as ′)
− prob-dom (snapshot PROB (fmrestrict-set vs s))) (snd a))

= {}
using subset-inter-diff-empty[of fmdom ′ (snd a)
prob-dom (snapshot PROB (fmrestrict-set vs s))] fmdom ′-restrict-set-precise

by metis
}
then have

fmrestrict-set ?vs ′′ (exec-plan s as ′) = fmrestrict-set ?vs ′′ s
using disjoint-effects-no-effects[of as ′ ?vs ′′ s]
by blast

}
ultimately show ?thesis

by blast
qed

— NOTE type for ‘PROB‘ had to be fixed.
lemma no-vs-change-snapshot-s-vs-is-valid-bound:

fixes PROB :: ′a problem
assumes finite PROB (vars-change as vs s = []) (no-effectless-act as)
(sat-precond-as s as) (s ∈ valid-states PROB) (as ∈ valid-plans PROB)

shows (∃ as ′.
(exec-plan s as = exec-plan s as ′)
∧ (subseq as ′ as)
∧ (length as ′ <= problem-plan-bound (snapshot PROB (fmrestrict-set vs s)))

)
proof −

obtain as ′ where 1 :
fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) (exec-plan s

as) =
fmrestrict-set (prob-dom (snapshot PROB (fmrestrict-set vs s))) (exec-plan s

as ′)
subseq as ′ as length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set

vs s))
using assms no-vs-change-obtain-snapshot-bound-3rd-step
by blast
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{

have a: fmrestrict-set (fmdom ′ (exec-plan s as) − prob-dom (snapshot PROB
(fmrestrict-set vs s)))

(exec-plan s as)
= fmrestrict-set (fmdom ′ (exec-plan s as) − prob-dom (snapshot PROB

(fmrestrict-set vs s)))
s

fmrestrict-set (fmdom ′ (exec-plan s as ′) − prob-dom (snapshot PROB (fmrestrict-set
vs s)))

(exec-plan s as ′)
= fmrestrict-set (fmdom ′ (exec-plan s as ′) − prob-dom (snapshot PROB

(fmrestrict-set vs s)))
s

using assms 1 no-vs-change-snapshot-s-vs-is-valid-bound-i
by blast+

moreover have as ′ ∈ valid-plans (snapshot PROB (fmrestrict-set vs s))
using 1 (2 ) assms(2 ) assms(4 ) assms(6 ) no-vs-change-valid-in-snapshot sub-

list-valid-plan
by blast

moreover have (exec-plan s as) ∈ valid-states PROB
using assms(5 , 6 ) valid-as-valid-exec
by blast

moreover have (exec-plan s as ′) ∈ valid-states PROB
using assms(5 , 6 ) 1 valid-as-valid-exec sublist-valid-plan
by blast

ultimately have exec-plan s as = exec-plan s as ′

using assms
unfolding valid-states-def

using graph-plan-lemma-5 [where vs=prob-dom (snapshot PROB (fmrestrict-set
vs s)), OF - 1 (1 )]

by force
}
then show ?thesis

using 1
by blast

qed

— TODO showcase (problems with stronger typing: Isabelle requires strict typing
for ‘max‘; whereas in HOL4 this is not required, possible because ’MAX’ is natural
number specific.
lemma snapshot-bound-leq-S :

shows
problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
≤ S vs lss PROB (fmrestrict-set vs s)

proof −
have geq-arg (max :: nat ⇒ nat ⇒ nat)
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unfolding geq-arg-def
using max.cobounded1
by simp

then show ?thesis
unfolding S-def
using individual-weight-less-eq-lp[where

g=max :: nat ⇒ nat ⇒ nat
and x=(fmrestrict-set vs s) and R=(λx y. y ∈ state-successors (prob-proj

PROB vs) x)
and w=(λs. problem-plan-bound (snapshot PROB s)) and f=(λx y. x + y

+ 1 ) and l=lss]
by blast

qed

— NOTE first argument of ‘top_sorted_abs‘ had to be wrapped into lambda.
— NOTE the type of ‘1‘ had to be restricted to ‘nat‘ to ensure the proofs for
‘geq_arg‘ work.
lemma S-geq-S-succ-plus-ell:

assumes (s ∈ valid-states PROB)
(top-sorted-abs (λx y. y ∈ state-successors (prob-proj PROB vs) x) lss)
(s ′ ∈ state-successors (prob-proj PROB vs) s) (set lss = valid-states (prob-proj

PROB vs))
shows (

problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
+ S vs lss PROB (fmrestrict-set vs s ′)
+ (1 :: nat)
≤ S vs lss PROB (fmrestrict-set vs s)

)
proof −

let ?f=λx y. x + y + (1 :: nat)
let ?R=(λx y. y ∈ state-successors (prob-proj PROB vs) x)
let ?w=(λs. problem-plan-bound (snapshot PROB s))
let ?g=max :: nat ⇒ nat ⇒ nat
let ?vtx1=(fmrestrict-set vs s ′)
let ?G=lss
let ?vtx2=(fmrestrict-set vs s)
have geq-arg ?f

unfolding geq-arg-def
by simp

moreover have geq-arg ?g
unfolding geq-arg-def
by simp

moreover have ∀ x. ListMem x lss −→ ¬?R x x
unfolding state-successors-def
by blast

moreover have ?R ?vtx2 ?vtx1
unfolding state-successors-def
using assms(3 ) state-in-successor-proj-in-state-in-successor state-successors-def
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by blast
moreover have

ListMem ?vtx1 ?G
using assms(1 , 3 , 4 )

by (metis ListMem-iff contra-subsetD graph-plan-not-eq-last-diff-paths proj-successors-of-valid-are-valid)
moreover have top-sorted-abs ?R ?G

using assms(2 )
by simp

ultimately show ?thesis
unfolding S-def
using lp-geq-lp-from-successor [of ?f ?g ?G ?R ?vtx2 ?vtx1 ?w]
by blast

qed

lemma vars-change-cons:
fixes s s ′

assumes (vars-change as vs s = (s ′ # ss))
shows (∃ as1 act as2 .
(as = as1 @ (act # as2 ))
∧ (vars-change as1 vs s = [])
∧ (state-succ (exec-plan s as1 ) act = s ′)
∧ (vars-change as2 vs (state-succ (exec-plan s as1 ) act) = ss)

)
using assms

proof (induction as arbitrary: s s ′ vs ss)
case (Cons a as)
then show ?case
proof (cases fmrestrict-set vs (state-succ s a) 6= fmrestrict-set vs s)

case True
then have state-succ s a = s ′ vars-change as vs (state-succ s a) = ss

using Cons.prems
by simp+

then show ?thesis
by fastforce

next
case False
then have vars-change as vs (state-succ s a) = s ′ # ss

using Cons.prems
by simp

then obtain as1 act as2 where
as = as1 @ act # as2 vars-change as1 vs (state-succ s a) = []
state-succ (exec-plan (state-succ s a) as1 ) act = s ′

vars-change as2 vs (state-succ (exec-plan (state-succ s a) as1 ) act) = ss
using Cons.IH
by blast

then show ?thesis
by (metis False append-Cons exec-plan.simps(2 ) vars-change.simps(2 ))

qed
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qed simp

lemma vars-change-cons-2 :
fixes s s ′

assumes (vars-change as vs s = (s ′ # ss))
shows (fmrestrict-set vs s ′ 6= fmrestrict-set vs s)
using assms
apply(induction as arbitrary: s s ′ vs ss)
apply(auto)
by (metis list.inject)

— NOTE first argument of ‘top_sorted_abs had to be wrapped into lambda.
lemma problem-plan-bound-S-bound-1st-step:

fixes PROB :: ′a problem
assumes finite PROB (top-sorted-abs (λx y. y ∈ state-successors (prob-proj

PROB vs) x) lss)
(set lss = valid-states (prob-proj PROB vs)) (s ∈ valid-states PROB)
(as ∈ valid-plans PROB) (no-effectless-act as) (sat-precond-as s as)

shows (∃ as ′.
(exec-plan s as ′ = exec-plan s as)
∧ (subseq as ′ as)
∧ (length as ′ <= S vs lss PROB (fmrestrict-set vs s))

)
using assms

proof (induction vars-change as vs s arbitrary: PROB as vs s lss)
case Nil
then obtain as ′ where

exec-plan s as = exec-plan s as ′ subseq as ′ as
length as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
using Nil(1 ) Nil.prems(1 ,4 ,5 ,6 ,7 ) no-vs-change-snapshot-s-vs-is-valid-bound
by metis

moreover have
problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
≤ S vs lss PROB (fmrestrict-set vs s)

using snapshot-bound-leq-S le-trans
by fast

ultimately show ?case
using le-trans
by fastforce

next
case (Cons s ′ ss)
then obtain as1 act as2 where 1 :

as = as1 @ act # as2 vars-change as1 vs s = [] state-succ (exec-plan s as1 )
act = s ′

vars-change as2 vs (state-succ (exec-plan s as1 ) act) = ss
using vars-change-cons
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by smt

Obtain conclusion of induction hypothesis for ’as2’ and ’(state_succ
(exec_plan s as1) act)’.

{
{

have as1 ∈ valid-plans PROB
using Cons.prems(5 ) 1 (1 ) valid-append-valid-pref
by blast

moreover have act ∈ PROB
using Cons.prems(5 ) 1 valid-append-valid-suff valid-plan-valid-head
by fast

ultimately have state-succ (exec-plan s as1 ) act ∈ valid-states PROB
using Cons.prems(4 ) valid-as-valid-exec lemma-1-i
by blast

}
moreover have as2 ∈ valid-plans PROB

using Cons.prems(5 ) 1 (1 ) valid-append-valid-suff valid-plan-valid-tail
by fast

moreover have no-effectless-act as2
using Cons.prems(6 ) 1 (1 ) rem-effectless-works-13 sublist-append-back
by blast

moreover have sat-precond-as (state-succ (exec-plan s as1 ) act) as2
using Cons.prems(7 ) 1 (1 ) graph-plan-lemma-17 sat-precond-as.simps(2 )
by blast

ultimately have ∃ as ′.
exec-plan (state-succ (exec-plan s as1 ) act) as ′

= exec-plan (state-succ (exec-plan s as1 ) act) as2
∧ subseq as ′ as2
∧ length as ′ ≤ S vs lss PROB (fmrestrict-set vs (state-succ (exec-plan s as1 )

act))
using Cons.prems(1 , 2 , 3 ) 1 (4 )

Cons(1 )[where as=as2 and s=(state-succ (exec-plan s as1 ) act)]
by blast

}
note a=this
{

have no-effectless-act as1
using Cons.prems(6 ) 1 (1 ) rem-effectless-works-12
by blast

moreover have sat-precond-as s as1
using Cons.prems(7 ) 1 (1 ) sat-precond-as-pfx
by blast

moreover have as1 ∈ valid-plans PROB
using Cons.prems(5 ) 1 (1 ) valid-append-valid-pref
by blast

ultimately have ∃ as ′. exec-plan s as1 = exec-plan s as ′ ∧
subseq as ′ as1 ∧ length as ′≤ problem-plan-bound (snapshot PROB (fmrestrict-set

vs s))
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using no-vs-change-snapshot-s-vs-is-valid-bound[of - as1 ]
using Cons.prems(1 , 4 ) 1 (2 )
by blast

}
then obtain as ′′ where b:

exec-plan s as1 = exec-plan s as ′′ subseq as ′′ as1
length as ′′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
by blast

{
obtain as ′ where i:

exec-plan (state-succ (exec-plan s as1 ) act) as ′

= exec-plan (state-succ (exec-plan s as1 ) act) as2
subseq as ′ as2
length as ′ ≤ S vs lss PROB (fmrestrict-set vs (state-succ (exec-plan s as1 )

act))
using a
by blast

let ?as ′=as ′′ @ act # as ′

have exec-plan s ?as ′ = exec-plan s as
using 1 (1 ) b(1 ) i(1 ) exec-plan-Append exec-plan.simps(2 )
by metis

moreover have subseq ?as ′ as
using 1 (1 ) b(2 ) i(2 ) subseq-append-iff
by blast

moreover
{

{
— NOTE this is proved earlier in the original proof script. Moved here to

improve transparency.
have sat-precond-as (exec-plan s as1 ) (act # as2 )

using empty-replace-proj-dual7
using 1 (1 ) Cons.prems(7 )
by blast

then have fst act ⊆f (exec-plan s as1 )
by simp

}
note A = this
{

have
fmrestrict-set vs (state-succ (exec-plan s as1 ) act)

= (state-succ (fmrestrict-set vs (exec-plan s as ′′)) (action-proj act vs))
using b(1 ) A drest-succ-proj-eq-drest-succ[where s=exec-plan s as1 ,

symmetric]
by simp

also have . . . = (state-succ (fmrestrict-set vs s) (action-proj act vs))
using 1 (2 ) b(1 ) empty-change-no-change
by fastforce

finally have . . . = fmrestrict-set vs (state-succ s (action-proj act vs))
using succ-drest-eq-drest-succ
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by blast
}
note B = this
have C : fmrestrict-set vs (exec-plan s as ′′) = fmrestrict-set vs s

using 1 (2 ) b(1 ) empty-change-no-change
by fastforce

{
have act ∈ PROB

using Cons.prems(5 ) 1 valid-append-valid-suff valid-plan-valid-head
by fast

then have ℵ: action-proj act vs ∈ prob-proj PROB vs
using action-proj-in-prob-proj
by blast

then have (state-succ s (action-proj act vs)) ∈ (state-successors (prob-proj
PROB vs) s)

proof (cases fst (action-proj act vs) ⊆f s)
case True
then show ?thesis

unfolding state-successors-def
using Cons.hyps(2 ) 1 (3 ) b(1 ) A B C ℵ DiffI imageI singletonD

vars-change-cons-2
drest-succ-proj-eq-drest-succ

by metis
next

case False
then show ?thesis

unfolding state-successors-def
using Cons.hyps(2 ) 1 (3 ) b(1 ) A B C ℵ DiffI imageI singletonD

drest-succ-proj-eq-drest-succ vars-change-cons-2
by metis

qed
}
then have D:

problem-plan-bound (snapshot PROB (fmrestrict-set vs s))
+ S vs lss PROB (fmrestrict-set vs (state-succ s (action-proj act vs)))
+ 1
≤ S vs lss PROB (fmrestrict-set vs s)

using Cons.prems(2 , 3 , 4 ) S-geq-S-succ-plus-ell[where s ′=state-succ s
(action-proj act vs)]

by blast
{

have
length ?as ′ ≤ problem-plan-bound (snapshot PROB (fmrestrict-set vs s))

+ 1 + S vs lss PROB (fmrestrict-set vs (state-succ (exec-plan s as1 )
act))

using b i
by fastforce

then have length ?as ′ ≤ S vs lss PROB (fmrestrict-set vs s)
using b(1 ) A B C D drest-succ-proj-eq-drest-succ
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by (smt Suc-eq-plus1 add-Suc dual-order .trans)
}

}
ultimately have ?case

by blast
}
then show ?case

by blast
qed

— NOTE first argument of ‘top_sorted_abs‘ had to be wrapped into lambda.
lemma problem-plan-bound-S-bound-2nd-step:

assumes finite (PROB :: ′a problem)
(top-sorted-abs (λx y. y ∈ state-successors (prob-proj PROB vs) x) lss)
(set lss = valid-states (prob-proj PROB vs)) (s ∈ valid-states PROB)
(as ∈ valid-plans PROB)

shows (∃ as ′.
(exec-plan s as ′ = exec-plan s as)
∧ (subseq as ′ as)
∧ (length as ′ ≤ S vs lss PROB (fmrestrict-set vs s))

)
proof −
— NOTE Proof premises and obtain conclusion of ‘problem_plan_bound_S_bound_1st_step‘.
{

have a: rem-condless-act s [] (rem-effectless-act as) ∈ valid-plans PROB
using assms(5 ) rem-effectless-works-4 ′ rem-condless-valid-10
by blast

then have b: no-effectless-act (rem-condless-act s [] (rem-effectless-act as))
using assms rem-effectless-works-6 rem-condless-valid-9
by fast

then have sat-precond-as s (rem-condless-act s [] (rem-effectless-act as))
using assms rem-condless-valid-2
by blast

then have ∃ as ′.
exec-plan s as ′ = exec-plan s (rem-condless-act s [] (rem-effectless-act as))
∧ subseq as ′ (rem-condless-act s [] (rem-effectless-act as))
∧ length as ′ ≤ S vs lss PROB (fmrestrict-set vs s)

using assms a b problem-plan-bound-S-bound-1st-step
by blast

}
then obtain as ′ where 1 :

exec-plan s as ′ = exec-plan s (rem-condless-act s [] (rem-effectless-act as))
subseq as ′ (rem-condless-act s [] (rem-effectless-act as))
length as ′ ≤ S vs lss PROB (fmrestrict-set vs s)
by blast

then have 2 : exec-plan s as ′ = exec-plan s as
using rem-condless-valid-1 rem-effectless-works-14
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by metis
then have subseq as ′ as

using 1 (2 ) rem-condless-valid-8 rem-effectless-works-9 sublist-trans
by metis

then show ?thesis
using 1 (3 ) 2
by blast

qed

— NOTE first argument of ‘top_sorted_abs‘ had to be wrapped into lambda.
lemma S-in-MPLS-leq-2-pow-n:

assumes finite (PROB :: ′a problem)
(top-sorted-abs (λ x y. y ∈ state-successors (prob-proj PROB vs) x) lss)
(set lss = valid-states (prob-proj PROB vs)) (s ∈ valid-states PROB)
(as ∈ valid-plans PROB)

shows (∃ as ′.
(exec-plan s as ′ = exec-plan s as)
∧ (subseq as ′ as)
∧ (length as ′ ≤ Sup {S vs lss PROB s ′ | s ′. s ′ ∈ valid-states (prob-proj PROB

vs)})
)

proof −
obtain as ′ where

exec-plan s as ′ = exec-plan s as subseq as ′ as
length as ′ ≤ S vs lss PROB (fmrestrict-set vs s)
using assms problem-plan-bound-S-bound-2nd-step
by blast

moreover {
— NOTE Derive sufficient conditions for inferring that ‘S vs lss PROB‘ is

smaller or equal to the supremum of the set {S vs lss PROB s ′ |s ′. s ′ ∈ valid-states
(prob-proj PROB vs)}: i.e. being contained and that the supremum is contained as
well.

let ?S={S vs lss PROB s ′ | s ′. s ′ ∈ valid-states (prob-proj PROB vs)}
{

have fmrestrict-set vs s ∈ valid-states (prob-proj PROB vs)
using assms(4 ) graph-plan-not-eq-last-diff-paths
by blast

then have S vs lss PROB (fmrestrict-set vs s) ∈ ?S
using calculation(1 )
by blast

}
moreover
{

have finite (prob-proj PROB vs)
by (simp add: assms(1 ) prob-proj-def )

then have finite ?S
using Setcompr-eq-image assms(3 )
by (metis List.finite-set finite-imageI )
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}
ultimately have S vs lss PROB (fmrestrict-set vs s) ≤ Sup ?S

using le-cSup-finite by blast
}
ultimately show ?thesis

using le-trans
by blast

qed

— NOTE first argument of ‘top_sorted_abs‘ had to be wrapped into lambda.
lemma problem-plan-bound-S-bound:

fixes PROB :: ′a problem
assumes finite PROB (top-sorted-abs (λx y. y ∈ state-successors (prob-proj

PROB vs) x) lss)
(set lss = valid-states (prob-proj PROB vs))

shows
problem-plan-bound PROB
≤ Sup {S vs lss PROB (s ′ :: ′a state) | s ′. s ′ ∈ valid-states (prob-proj PROB

vs)}

proof −
let ?f=λPROB.

Sup {S vs lss PROB (s ′ :: ′a state) | s ′. s ′ ∈ valid-states (prob-proj PROB vs)}
+ 1

{
fix as and s :: ′a state
assume s ∈ valid-states PROB as ∈ valid-plans PROB
then obtain as ′ where a:

exec-plan s as ′ = exec-plan s as subseq as ′ as
length as ′ ≤ Sup {S vs lss PROB s ′ |s ′. s ′ ∈ valid-states (prob-proj PROB vs)}
using assms S-in-MPLS-leq-2-pow-n
by blast

then have length as ′ < ?f PROB
by linarith

moreover have exec-plan s as = exec-plan s as ′

using a(1 )
by simp

ultimately have
∃ as ′. exec-plan s as = exec-plan s as ′ ∧ subseq as ′ as ∧ length as ′ < ?f PROB
using a(2 )
by blast

}
then show ?thesis

using assms(1 ) problem-plan-bound-UBound[where f=?f ]
by fastforce

qed
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9.1 State Space Acyclicity
State space acyclicity is again formalized using graphs to model the state
space. However the relation inducing the graph is the successor relation on
states. [Abdulaziz et al., Definition 15, HOL4 Definition 15, p.27]

With this, the acyclic system compositional bound ‘S‘ can be shown to be
an upper bound on the sublist diameter (lemma ‘problem_plan_bound_S_bound_the-
sis‘). [Abdulaziz et al., p.29]
definition sspace-DAG where

sspace-DAG PROB lss ≡ (
(set lss = valid-states PROB)
∧ (top-sorted-abs (λx y. y ∈ state-successors PROB x) lss)

)

lemma problem-plan-bound-S-bound-2nd-step-thesis:
assumes finite (PROB :: ′a problem) (sspace-DAG (prob-proj PROB vs) lss)
(s ∈ valid-states PROB) (as ∈ valid-plans PROB)

shows (∃ as ′. (exec-plan s as ′ = exec-plan s as)
∧ (subseq as ′ as)
∧ (length as ′ ≤ S vs lss PROB (fmrestrict-set vs s))

)
using assms problem-plan-bound-S-bound-2nd-step sspace-DAG-def
by fast

And finally, this is the main lemma about the upper bounding algorithm.
theorem problem-plan-bound-S-bound-thesis:

assumes finite (PROB :: ′a problem) (sspace-DAG (prob-proj PROB vs) lss)
shows (

problem-plan-bound PROB
≤ Sup {S vs lss PROB s ′ | s ′. s ′ ∈ valid-states (prob-proj PROB vs)}

)
using assms problem-plan-bound-S-bound sspace-DAG-def
by fast

end
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