
Factorization of Polynomials with Algebraic
Coefficients∗

Manuel Eberl René Thiemann

March 17, 2025

Abstract
The AFP already contains a verified implementation of algebraic

numbers. However, it is has a severe limitation in its factorization
algorithm of real and complex polynomials: the factorization is only
guaranteed to succeed if the coefficients of the polynomial are rational
numbers. In this work, we verify an algorithm to factor all real and
complex polynomials whose coefficients are algebraic. The existence of
such an algorithm proves in a constructive way that the set of complex
algebraic numbers is algebraically closed. Internally, the algorithm is
based on resultants of multivariate polynomials and an approximation
algorithm using interval arithmetic.

Contents
1 Introduction 2

2 Resultants and Multivariate Polynomials 2
2.1 Connecting Univariate and Multivariate Polynomials 2
2.2 Exact Division of Multivariate Polynomials 18
2.3 Implementation of Division on Multivariate Polynomials . . . 24
2.4 Class Instances for Multivariate Polynomials and Containers . 28
2.5 Resultants of Multivariate Polynomials 28

3 Testing for Integrality and Conversion to Integers 31

4 Representing Roots of Polynomials with Algebraic Coeffi-
cients 32
4.1 Preliminaries . 32
4.2 More Facts about Resultants 35
4.3 Systems of Polynomials . 37
4.4 Elimination of Auxiliary Variables 40

∗Supported by FWF (Austrian Science Fund) project Y757.

1

4.5 A Representing Polynomial for the Roots of a Polynomial
with Algebraic Coefficients 42

4.6 Soundness Proof for Complex Algebraic Polynomials 43
4.7 Soundness Proof for Real Algebraic Polynomials 51
4.8 Algebraic Closedness of Complex Algebraic Numbers 53
4.9 Executable Version to Compute Representative Polynomials . 53

5 Root Filter via Interval Arithmetic 54
5.1 Generic Framework . 54

6 Roots of Real and Complex Algebraic Polynomials 60

7 Factorization of Polynomials with Algebraic Coefficients 66
7.1 Complex Algebraic Coefficients 66
7.2 Real Algebraic Coefficients 69

1 Introduction
The formalization of algebraic numbers [4, 6] includes an algorithm that
given a univariate polynomial f over Z or Q, it computes all roots of f
within R or C. In this AFP entry we verify a generalized algorithm that also
allows polynomials as input whose coefficients are complex or real algebraic
numbers, following [5, Section 3].

The verified algorithm internally computes resultants of multivariate
polynomials, where we utilize Braun and Traub’s subresultant algorithm
in our verified implementation [1, 2, 3]. In this way we achieve an efficient
implementation with minimal effort: only a division algorithm for multi-
variate polynomials is required, but no algorithm for computing greatest
common divisors of these polynomials.

Acknowledgments We thank Dmitriy Traytel for help with code gener-
ation for functions defined via lift-definition.

2 Resultants and Multivariate Polynomials
2.1 Connecting Univariate and Multivariate Polynomials

We define a conversion of multivariate polynomials into univariate polyno-
mials w.r.t. a fixed variable x and multivariate polynomials as coefficients.
theory Poly-Connection

imports
Polynomials.MPoly-Type-Univariate
Jordan-Normal-Form.Missing-Misc
Polynomial-Interpolation.Ring-Hom-Poly

2

Hermite-Lindemann.More-Multivariate-Polynomial-HLW
Polynomials.MPoly-Type-Class

begin

lemma mpoly-is-unitE :
fixes p :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors} mpoly
assumes p dvd 1
obtains c where p = Const c c dvd 1

proof −
obtain r where r : p ∗ r = 1

using assms by auto
from r have [simp]: p 6= 0 r 6= 0

by auto
have 0 = lead-monom (1 :: ′a mpoly)

by simp
also have 1 = p ∗ r

using r by simp
also have lead-monom (p ∗ r) = lead-monom p + lead-monom r

by (intro lead-monom-mult) auto
finally have lead-monom p = 0

by simp
hence vars p = {}

by (simp add: lead-monom-eq-0-iff)
hence ∗: p = Const (lead-coeff p)

by (auto simp: vars-empty-iff)

have 1 = lead-coeff (1 :: ′a mpoly)
by simp

also have 1 = p ∗ r
using r by simp

also have lead-coeff (p ∗ r) = lead-coeff p ∗ lead-coeff r
by (intro lead-coeff-mult) auto

finally have lead-coeff p dvd 1
using dvdI by blast

with ∗ show ?thesis using that
by blast

qed

lemma Const-eq-Const-iff [simp]:
Const c = Const c ′←→ c = c ′

by (metis lead-coeff-Const)

lemma is-unit-ConstI [intro]: c dvd 1 =⇒ Const c dvd 1
by (metis dvd-def mpoly-Const-1 mpoly-Const-mult)

lemma is-unit-Const-iff :
fixes c :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors}
shows Const c dvd 1 ←→ c dvd 1

proof

3

assume Const c dvd 1
thus c dvd 1

by (auto elim!: mpoly-is-unitE)
qed auto

lemma vars-emptyE : vars p = {} =⇒ (
∧

c. p = Const c =⇒ P) =⇒ P
by (auto simp: vars-empty-iff)

lemma degree-geI :
assumes MPoly-Type.coeff p m 6= 0
shows MPoly-Type.degree p i ≥ Poly-Mapping.lookup m i

proof −
have lookup m i ≤ Max (insert 0 ((λm. lookup m i) ‘ keys (mapping-of p)))
proof (rule Max.coboundedI)

show lookup m i ∈ insert 0 ((λm. lookup m i) ‘ keys (mapping-of p))
using assms by (auto simp: coeff-keys)

qed auto
thus ?thesis unfolding MPoly-Type.degree-def by auto

qed

lemma monom-of-degree-exists:
assumes p 6= 0
obtains m where MPoly-Type.coeff p m 6= 0 Poly-Mapping.lookup m i = MPoly-Type.degree

p i
proof (cases MPoly-Type.degree p i = 0)

case False
have MPoly-Type.degree p i = Max (insert 0 ((λm. lookup m i) ‘ keys (mapping-of

p)))
by (simp add: MPoly-Type.degree-def)

also have . . . ∈ insert 0 ((λm. lookup m i) ‘ keys (mapping-of p))
by (rule Max-in) auto

finally show ?thesis
using False that by (auto simp: coeff-keys)

next
case [simp]: True
from assms obtain m where m: MPoly-Type.coeff p m 6= 0

using coeff-all-0 by blast
show ?thesis using degree-geI [of p m i] m

by (intro that[of m]) auto
qed

lemma degree-leI :
assumes

∧
m. Poly-Mapping.lookup m i > n =⇒ MPoly-Type.coeff p m = 0

shows MPoly-Type.degree p i ≤ n
proof (cases p = 0)

case False
obtain m where m: MPoly-Type.coeff p m 6= 0 Poly-Mapping.lookup m i =

MPoly-Type.degree p i
using monom-of-degree-exists False by blast

4

with assms show ?thesis
by force

qed auto

lemma coeff-gt-degree-eq-0 :
assumes Poly-Mapping.lookup m i > MPoly-Type.degree p i
shows MPoly-Type.coeff p m = 0
using assms degree-geI leD by blast

lemma vars-altdef : vars p = (
⋃

m∈{m. MPoly-Type.coeff p m 6= 0}. keys m)
unfolding vars-def
by (intro arg-cong[where f =

⋃
] image-cong refl) (simp flip: coeff-keys)

lemma degree-pos-iff : MPoly-Type.degree p x > 0 ←→ x ∈ vars p
proof

assume MPoly-Type.degree p x > 0
hence p 6= 0 by auto
then obtain m where m: lookup m x = MPoly-Type.degree p x MPoly-Type.coeff

p m 6= 0
using monom-of-degree-exists[of p x] by metis

from m and ‹MPoly-Type.degree p x > 0 › have x ∈ keys m
by (simp add: in-keys-iff)

with m show x ∈ vars p
by (auto simp: vars-altdef)

next
assume x ∈ vars p
then obtain m where m: x ∈ keys m MPoly-Type.coeff p m 6= 0

by (auto simp: vars-altdef)
have 0 < lookup m x

using m by (auto simp: in-keys-iff)
also from m have . . . ≤ MPoly-Type.degree p x

by (intro degree-geI) auto
finally show MPoly-Type.degree p x > 0 .

qed

lemma degree-eq-0-iff : MPoly-Type.degree p x = 0 ←→ x /∈ vars p
using degree-pos-iff [of p x] by auto

lemma MPoly-Type-monom-zero[simp]: MPoly-Type.monom m 0 = 0
by (simp add: More-MPoly-Type.coeff-monom coeff-all-0)

lemma vars-monom-keys ′: vars (MPoly-Type.monom m c) = (if c = 0 then {}
else keys m)

by (cases c = 0) (auto simp: vars-monom-keys)

lemma Const-eq-0-iff [simp]: Const c = 0 ←→ c = 0
by (metis lead-coeff-Const mpoly-Const-0)

lemma monom-remove-key: MPoly-Type.monom m (a :: ′a :: semiring-1) =

5

MPoly-Type.monom (remove-key x m) a ∗MPoly-Type.monom (Poly-Mapping.single
x (lookup m x)) 1

unfolding MPoly-Type.mult-monom
by (rule arg-cong2 [of - - - - MPoly-Type.monom], auto simp: remove-key-sum)

lemma MPoly-Type-monom-0-iff [simp]: MPoly-Type.monom m x = 0 ←→ x = 0
by (metis (full-types) MPoly-Type-monom-zero More-MPoly-Type.coeff-monom

when-def)

lemma vars-signof [simp]: vars (signof x) = {}
by (simp add: sign-def)

lemma prod-mset-Const: prod-mset (image-mset Const A) = Const (prod-mset A)
by (induction A) (auto simp: mpoly-Const-mult)

lemma Const-eq-product-iff :
fixes c :: ′a :: idom
assumes c 6= 0
shows Const c = a ∗ b ←→ (∃ a ′ b ′. a = Const a ′ ∧ b = Const b ′ ∧ c = a ′ ∗

b ′)
proof

assume ∗: Const c = a ∗ b
have lead-monom (a ∗ b) = 0

by (auto simp flip: ∗)
hence lead-monom a = 0 ∧ lead-monom b = 0

by (subst (asm) lead-monom-mult) (use assms ∗ in auto)
hence vars a = {} vars b = {}

by (auto simp: lead-monom-eq-0-iff)
then obtain a ′ b ′ where a = Const a ′ b = Const b ′

by (auto simp: vars-empty-iff)
with ∗ show (∃ a ′ b ′. a = Const a ′ ∧ b = Const b ′ ∧ c = a ′ ∗ b ′)

by (auto simp flip: mpoly-Const-mult)
qed (auto simp: mpoly-Const-mult)

lemma irreducible-Const-iff [simp]:
irreducible (Const (c :: ′a :: idom)) ←→ irreducible c

proof
assume ∗: irreducible (Const c)
show irreducible c
proof (rule irreducibleI)

fix a b assume c = a ∗ b
hence Const c = Const a ∗ Const b

by (simp add: mpoly-Const-mult)
with ∗ have Const a dvd 1 ∨ Const b dvd 1

by blast
thus a dvd 1 ∨ b dvd 1

by (meson is-unit-Const-iff)
qed (use ∗ in ‹auto simp: irreducible-def ›)

next

6

assume ∗: irreducible c
have [simp]: c 6= 0

using ∗ by auto
show irreducible (Const c)
proof (rule irreducibleI)

fix a b assume Const c = a ∗ b
then obtain a ′ b ′ where [simp]: a = Const a ′ b = Const b ′ and c = a ′ ∗ b ′

by (auto simp: Const-eq-product-iff)
hence a ′ dvd 1 ∨ b ′ dvd 1

using ∗ by blast
thus a dvd 1 ∨ b dvd 1

by auto
qed (use ∗ in ‹auto simp: irreducible-def is-unit-Const-iff ›)

qed

lemma Const-dvd-Const-iff [simp]: Const a dvd Const b ←→ a dvd b
proof

assume a dvd b
then obtain c where b = a ∗ c

by auto
hence Const b = Const a ∗ Const c

by (auto simp: mpoly-Const-mult)
thus Const a dvd Const b

by simp
next

assume Const a dvd Const b
then obtain p where p: Const b = Const a ∗ p

by auto
have MPoly-Type.coeff (Const b) 0 = MPoly-Type.coeff (Const a ∗ p) 0

using p by simp
also have . . . = MPoly-Type.coeff (Const a) 0 ∗ MPoly-Type.coeff p 0

using mpoly-coeff-times-0 by blast
finally show a dvd b

by (simp add: mpoly-coeff-Const)
qed

The lemmas above should be moved into the right theories. The part below
is on the new connection between multivariate polynomials and univariate
polynomials.

The imported theories only allow a conversion from one-variable mpoly’s
to poly and vice-versa. However, we require a conversion from arbitrary
mpoly’s into poly’s with mpolys as coefficients.
definition mpoly-to-mpoly-poly :: nat ⇒ ′a :: comm-ring-1 mpoly ⇒ ′a mpoly poly
where

mpoly-to-mpoly-poly x p = (
∑

m .
Polynomial.monom (MPoly-Type.monom (remove-key x m) (MPoly-Type.coeff

p m)) (lookup m x))

7

lemma mpoly-to-mpoly-poly-add [simp]:
mpoly-to-mpoly-poly x (p + q) = mpoly-to-mpoly-poly x p + mpoly-to-mpoly-poly

x q
unfolding mpoly-to-mpoly-poly-def More-MPoly-Type.coeff-add[symmetric] MPoly-Type.monom-add

add-monom[symmetric]
by (rule Sum-any.distrib) auto

lemma mpoly-to-mpoly-poly-monom: mpoly-to-mpoly-poly x (MPoly-Type.monom
m a) = Polynomial.monom (MPoly-Type.monom (remove-key x m) a) (lookup m
x)
proof −

have mpoly-to-mpoly-poly x (MPoly-Type.monom m a) =
(
∑

m ′. Polynomial.monom (MPoly-Type.monom (remove-key x m ′) a) (lookup
m ′ x) when m ′ = m)

unfolding mpoly-to-mpoly-poly-def
by (intro Sum-any.cong, auto simp: when-def More-MPoly-Type.coeff-monom)

also have . . . = Polynomial.monom (MPoly-Type.monom (remove-key x m) a)
(lookup m x)

unfolding Sum-any-when-equal ..
finally show ?thesis .

qed

lemma remove-key-transfer [transfer-rule]:
rel-fun (=) (rel-fun (pcr-poly-mapping (=) (=)) (pcr-poly-mapping (=) (=)))

(λk0 f k. f k when k 6= k0) remove-key
unfolding pcr-poly-mapping-def cr-poly-mapping-def OO-def
by (auto simp: rel-fun-def remove-key-lookup)

lemma remove-key-0 [simp]: remove-key x 0 = 0
by transfer auto

lemma remove-key-single ′ [simp]:
x 6= y =⇒ remove-key x (Poly-Mapping.single y n) = Poly-Mapping.single y n
by transfer (auto simp: when-def fun-eq-iff)

lemma poly-coeff-Sum-any:
assumes finite {x. f x 6= 0}
shows poly.coeff (Sum-any f) n = Sum-any (λx. poly.coeff (f x) n)

proof −
have Sum-any f = (

∑
x | f x 6= 0 . f x)

by (rule Sum-any.expand-set)
also have poly.coeff . . . n = (

∑
x | f x 6= 0 . poly.coeff (f x) n)

by (simp add: Polynomial.coeff-sum)
also have . . . = Sum-any (λx. poly.coeff (f x) n)

by (rule Sum-any.expand-superset [symmetric]) (use assms in auto)
finally show ?thesis .

qed

8

lemma coeff-coeff-mpoly-to-mpoly-poly:
MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly x p) n) m =

(MPoly-Type.coeff p (m + Poly-Mapping.single x n) when lookup m x = 0)
proof −

have MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly x p) n) m =
MPoly-Type.coeff (

∑
a. MPoly-Type.monom (remove-key x a) (MPoly-Type.coeff

p a) when lookup a x = n) m
unfolding mpoly-to-mpoly-poly-def by (subst poly-coeff-Sum-any) (auto simp:

when-def)
also have . . . = (

∑
xa. MPoly-Type.coeff (MPoly-Type.monom (remove-key x

xa) (MPoly-Type.coeff p xa)) m when lookup xa x = n)
by (subst coeff-Sum-any, force) (auto simp: when-def intro!: Sum-any.cong)

also have . . . = (
∑

a. MPoly-Type.coeff p a when lookup a x = n ∧ m =
remove-key x a)

by (intro Sum-any.cong) (simp add: More-MPoly-Type.coeff-monom when-def)
also have (λa. lookup a x = n ∧ m = remove-key x a) =

(λa. lookup m x = 0 ∧ a = m + Poly-Mapping.single x n)
by (rule ext, transfer) (auto simp: fun-eq-iff when-def)

also have (
∑

a. MPoly-Type.coeff p a when . . . a) =
(
∑

a. MPoly-Type.coeff p a when lookup m x = 0 when a = m +
Poly-Mapping.single x n)

by (intro Sum-any.cong) (auto simp: when-def)
also have . . . = (MPoly-Type.coeff p (m + Poly-Mapping.single x n) when lookup

m x = 0)
by (rule Sum-any-when-equal)

finally show ?thesis .
qed

lemma mpoly-to-mpoly-poly-Const [simp]:
mpoly-to-mpoly-poly x (Const c) = [:Const c:]

proof −
have mpoly-to-mpoly-poly x (Const c) =

(
∑

m. Polynomial.monom (MPoly-Type.monom (remove-key x m)
(MPoly-Type.coeff (Const c) m)) (lookup m x) when m = 0)

unfolding mpoly-to-mpoly-poly-def
by (intro Sum-any.cong) (auto simp: when-def mpoly-coeff-Const)

also have . . . = [:Const c:]
by (subst Sum-any-when-equal)

(auto simp: mpoly-coeff-Const monom-altdef simp flip: Const-conv-monom)
finally show ?thesis .

qed

lemma mpoly-to-mpoly-poly-Var :
mpoly-to-mpoly-poly x (Var y) = (if x = y then [:0 , 1 :] else [:Var y:])

proof −
have mpoly-to-mpoly-poly x (Var y) =

(
∑

a. Polynomial.monom (MPoly-Type.monom (remove-key x a) 1) (lookup
a x)

when a = Poly-Mapping.single y 1)

9

unfolding mpoly-to-mpoly-poly-def by (intro Sum-any.cong) (auto simp: when-def
coeff-Var)

also have . . . = (if x = y then [:0 , 1 :] else [:Var y:])
by (auto simp: Polynomial.monom-altdef lookup-single Var-altdef)

finally show ?thesis .
qed

lemma mpoly-to-mpoly-poly-Var-this [simp]:
mpoly-to-mpoly-poly x (Var x) = [:0 , 1 :]
x 6= y =⇒ mpoly-to-mpoly-poly x (Var y) = [:Var y:]
by (simp-all add: mpoly-to-mpoly-poly-Var)

lemma mpoly-to-mpoly-poly-uminus [simp]:
mpoly-to-mpoly-poly x (−p) = −mpoly-to-mpoly-poly x p
unfolding mpoly-to-mpoly-poly-def
by (auto simp: monom-uminus Sum-any-uminus simp flip: minus-monom)

lemma mpoly-to-mpoly-poly-diff [simp]:
mpoly-to-mpoly-poly x (p − q) = mpoly-to-mpoly-poly x p − mpoly-to-mpoly-poly

x q
by (subst diff-conv-add-uminus, subst mpoly-to-mpoly-poly-add) auto

lemma mpoly-to-mpoly-poly-0 [simp]:
mpoly-to-mpoly-poly x 0 = 0
unfolding mpoly-Const-0 [symmetric] mpoly-to-mpoly-poly-Const by simp

lemma mpoly-to-mpoly-poly-1 [simp]:
mpoly-to-mpoly-poly x 1 = 1
unfolding mpoly-Const-1 [symmetric] mpoly-to-mpoly-poly-Const by simp

lemma mpoly-to-mpoly-poly-of-nat [simp]:
mpoly-to-mpoly-poly x (of-nat n) = of-nat n
unfolding of-nat-mpoly-eq mpoly-to-mpoly-poly-Const of-nat-poly ..

lemma mpoly-to-mpoly-poly-of-int [simp]:
mpoly-to-mpoly-poly x (of-int n) = of-int n
unfolding of-nat-mpoly-eq mpoly-to-mpoly-poly-Const of-nat-poly by (cases n)

auto

lemma mpoly-to-mpoly-poly-numeral [simp]:
mpoly-to-mpoly-poly x (numeral n) = numeral n
using mpoly-to-mpoly-poly-of-nat[of x numeral n] by (simp del: mpoly-to-mpoly-poly-of-nat)

lemma coeff-monom-mult ′:
MPoly-Type.coeff (MPoly-Type.monom m a ∗ q) m ′ =
(a ∗ MPoly-Type.coeff q (m ′ − m) when lookup m ′ ≥ lookup m)

proof (cases lookup m ′ ≥ lookup m)
case True
have a ∗ MPoly-Type.coeff q (m ′− m) = MPoly-Type.coeff (MPoly-Type.monom

10

m a ∗ q) (m + (m ′ − m))
by (rule More-MPoly-Type.coeff-monom-mult [symmetric])

also have m + (m ′ − m) = m ′

using True by transfer (auto simp: le-fun-def)
finally show ?thesis

using True by (simp add: when-def)
next

case False
have MPoly-Type.coeff (MPoly-Type.monom m a ∗ q) m ′ =

(
∑

m1 . a ∗ (
∑

m2 . MPoly-Type.coeff q m2 when m ′ = m1 + m2) when
m1 = m)

unfolding coeff-mpoly-times prod-fun-def
by (intro Sum-any.cong) (auto simp: More-MPoly-Type.coeff-monom when-def)

also have . . . = a ∗ (
∑

m2 . MPoly-Type.coeff q m2 when m ′ = m + m2)
by (subst Sum-any-when-equal) auto

also have (λm2 . m ′ = m + m2) = (λm2 . False)
by (rule ext) (use False in ‹transfer , auto simp: le-fun-def ›)

finally show ?thesis
using False by simp

qed

lemma mpoly-to-mpoly-poly-mult-monom:
mpoly-to-mpoly-poly x (MPoly-Type.monom m a ∗ q) =

Polynomial.monom (MPoly-Type.monom (remove-key x m) a) (lookup m x) ∗
mpoly-to-mpoly-poly x q
(is ?lhs = ?rhs)

proof (rule poly-eqI , rule mpoly-eqI)
fix n :: nat and mon :: nat ⇒0 nat
have MPoly-Type.coeff (poly.coeff ?lhs n) mon =

(a ∗ MPoly-Type.coeff q (mon + Poly-Mapping.single x n − m)
when lookup m ≤ lookup (mon + Poly-Mapping.single x n) ∧ lookup mon

x = 0)
by (simp add: coeff-coeff-mpoly-to-mpoly-poly coeff-monom-mult ′ when-def)

have MPoly-Type.coeff (poly.coeff ?rhs n) mon =
(a ∗ MPoly-Type.coeff q (mon − remove-key x m + Poly-Mapping.single x

(n − lookup m x))
when lookup (remove-key x m) ≤ lookup mon ∧ lookup m x ≤ n ∧ lookup

mon x = 0)
by (simp add: coeff-coeff-mpoly-to-mpoly-poly coeff-monom-mult ′ lookup-minus-fun

remove-key-lookup Missing-Polynomial.coeff-monom-mult when-def)
also have lookup (remove-key x m) ≤ lookup mon ∧ lookup m x ≤ n ∧ lookup

mon x = 0 ←→
lookup m ≤ lookup (mon + Poly-Mapping.single x n) ∧ lookup mon x =

0 (is - = ?P)
by transfer (auto simp: when-def le-fun-def)

also have mon − remove-key x m + Poly-Mapping.single x (n − lookup m x) =
mon + Poly-Mapping.single x n − m if ?P

using that by transfer (auto simp: fun-eq-iff when-def)
hence (a ∗ MPoly-Type.coeff q (mon − remove-key x m + Poly-Mapping.single

11

x (n − lookup m x)) when ?P) =
(a ∗ MPoly-Type.coeff q . . . when ?P)

by (intro when-cong) auto
also have . . . = MPoly-Type.coeff (poly.coeff ?lhs n) mon

by (simp add: coeff-coeff-mpoly-to-mpoly-poly coeff-monom-mult ′ when-def)
finally show MPoly-Type.coeff (poly.coeff ?lhs n) mon = MPoly-Type.coeff (poly.coeff

?rhs n) mon ..
qed

lemma mpoly-to-mpoly-poly-mult [simp]:
mpoly-to-mpoly-poly x (p ∗ q) = mpoly-to-mpoly-poly x p ∗ mpoly-to-mpoly-poly x

q
by (induction p arbitrary: q rule: mpoly-induct)

(simp-all add: mpoly-to-mpoly-poly-monom mpoly-to-mpoly-poly-mult-monom
ring-distribs)

lemma coeff-mpoly-to-mpoly-poly:
Polynomial.coeff (mpoly-to-mpoly-poly x p) n =

Sum-any (λm. MPoly-Type.monom (remove-key x m) (MPoly-Type.coeff p m)
when Poly-Mapping.lookup m x = n)

unfolding mpoly-to-mpoly-poly-def by (subst poly-coeff-Sum-any) (auto simp:
when-def)

lemma mpoly-coeff-to-mpoly-poly-coeff :
MPoly-Type.coeff p m = MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly x p)

(lookup m x)) (remove-key x m)
proof −
have MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly x p) (lookup m x)) (remove-key

x m) =
(
∑

xa. MPoly-Type.coeff (MPoly-Type.monom (remove-key x xa) (MPoly-Type.coeff
p xa) when

lookup xa x = lookup m x) (remove-key x m))
by (subst coeff-mpoly-to-mpoly-poly, subst coeff-Sum-any) auto

also have . . . = (
∑

xa. MPoly-Type.coeff (MPoly-Type.monom (remove-key x
xa) (MPoly-Type.coeff p xa)) (remove-key x m)

when lookup xa x = lookup m x)
by (intro Sum-any.cong) (auto simp: when-def)

also have . . . = (
∑

xa. MPoly-Type.coeff p xa when remove-key x m = remove-key
x xa ∧ lookup xa x = lookup m x)

by (intro Sum-any.cong) (auto simp: More-MPoly-Type.coeff-monom when-def)
also have (λxa. remove-key x m = remove-key x xa ∧ lookup xa x = lookup m

x) = (λxa. xa = m)
using remove-key-sum by metis

also have (
∑

xa. MPoly-Type.coeff p xa when xa = m) = MPoly-Type.coeff p m
by simp

finally show ?thesis ..
qed

lemma degree-mpoly-to-mpoly-poly [simp]:

12

Polynomial.degree (mpoly-to-mpoly-poly x p) = MPoly-Type.degree p x
proof (rule antisym)

show Polynomial.degree (mpoly-to-mpoly-poly x p) ≤ MPoly-Type.degree p x
proof (intro Polynomial.degree-le allI impI)

fix i assume i: i > MPoly-Type.degree p x
have poly.coeff (mpoly-to-mpoly-poly x p) i =

(
∑

m. 0 when lookup m x = i)
unfolding coeff-mpoly-to-mpoly-poly using i
by (intro Sum-any.cong when-cong refl) (auto simp: coeff-gt-degree-eq-0)

also have . . . = 0
by simp

finally show poly.coeff (mpoly-to-mpoly-poly x p) i = 0 .
qed

next
show Polynomial.degree (mpoly-to-mpoly-poly x p) ≥ MPoly-Type.degree p x
proof (cases p = 0)

case False
then obtain m where m: MPoly-Type.coeff p m 6= 0 lookup m x = MPoly-Type.degree

p x
using monom-of-degree-exists by blast

show Polynomial.degree (mpoly-to-mpoly-poly x p) ≥ MPoly-Type.degree p x
proof (rule Polynomial.le-degree)

have 0 6= MPoly-Type.coeff p m
using m by auto

also have MPoly-Type.coeff p m = MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly
x p) (lookup m x)) (remove-key x m)

by (rule mpoly-coeff-to-mpoly-poly-coeff)
finally show poly.coeff (mpoly-to-mpoly-poly x p) (MPoly-Type.degree p x) 6=

0
using m by auto

qed
qed auto

qed

The upcoming lemma is similar to reduce-nested-mpoly (extract-var ?p ?v)
= ?p.
lemma poly-mpoly-to-mpoly-poly:

poly (mpoly-to-mpoly-poly x p) (Var x) = p
proof (induct p rule: mpoly-induct)

case (monom m a)
show ?case unfolding mpoly-to-mpoly-poly-monom poly-monom

by (transfer , simp add: Var0-power mult-single remove-key-sum)
next

case (sum p1 p2 m a)
then show ?case by (simp add: mpoly-to-mpoly-poly-add)

qed

lemma mpoly-to-mpoly-poly-eq-iff [simp]:
mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly x q ←→ p = q

13

proof
assume mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly x q
hence poly (mpoly-to-mpoly-poly x p) (Var x) =

poly (mpoly-to-mpoly-poly x q) (Var x)
by simp

thus p = q
by (auto simp: poly-mpoly-to-mpoly-poly)

qed auto

Evaluation, i.e., insertion of concrete values is identical
lemma insertion-mpoly-to-mpoly-poly: assumes

∧
y. y 6= x =⇒ β y = α y

shows poly (map-poly (insertion β) (mpoly-to-mpoly-poly x p)) (α x) = insertion
α p
proof (induct p rule: mpoly-induct)

case (monom m a)
let ?rkm = remove-key x m
have to-alpha: insertion β (MPoly-Type.monom ?rkm a) = insertion α (MPoly-Type.monom

?rkm a)
by (rule insertion-irrelevant-vars, rule assms, insert vars-monom-subset[of ?rkm

a], auto simp: remove-key-keys[symmetric])
have main: insertion α (MPoly-Type.monom ?rkm a) ∗ α x ^ lookup m x =

insertion α (MPoly-Type.monom m a)
unfolding monom-remove-key[of m a x] insertion-mult
by (metis insertion-single mult.left-neutral)

show ?case using main to-alpha
by (simp add: mpoly-to-mpoly-poly-monom map-poly-monom poly-monom)

next
case (sum p1 p2 m a)
then show ?case by (simp add: mpoly-to-mpoly-poly-add insertion-add map-poly-add)

qed

lemma mpoly-to-mpoly-poly-dvd-iff [simp]:
mpoly-to-mpoly-poly x p dvd mpoly-to-mpoly-poly x q ←→ p dvd q

proof
assume mpoly-to-mpoly-poly x p dvd mpoly-to-mpoly-poly x q
hence poly (mpoly-to-mpoly-poly x p) (Var x) dvd poly (mpoly-to-mpoly-poly x q)

(Var x)
by (intro poly-hom.hom-dvd)

thus p dvd q
by (simp add: poly-mpoly-to-mpoly-poly)

qed auto

lemma vars-coeff-mpoly-to-mpoly-poly: vars (poly.coeff (mpoly-to-mpoly-poly x p)
i) ⊆ vars p − {x}
unfolding mpoly-to-mpoly-poly-def Sum-any.expand-set Polynomial.coeff-sum More-MPoly-Type.coeff-monom
apply (rule order .trans[OF vars-setsum], force)
apply (rule UN-least, simp)
apply (intro impI order .trans[OF vars-monom-subset])

14

by (simp add: remove-key-keys[symmetric] Diff-mono SUP-upper2 coeff-keys vars-def)

locale transfer-mpoly-to-mpoly-poly =
fixes x :: nat

begin

definition R :: ′a :: comm-ring-1 mpoly poly ⇒ ′a mpoly ⇒ bool where
R p p ′←→ p = mpoly-to-mpoly-poly x p ′

context
includes lifting-syntax

begin

lemma transfer-0 [transfer-rule]: R 0 0
and transfer-1 [transfer-rule]: R 1 1
and transfer-Const [transfer-rule]: R [:Const c:] (Const c)
and transfer-uminus [transfer-rule]: (R ===> R) uminus uminus
and transfer-of-nat [transfer-rule]: ((=) ===> R) of-nat of-nat
and transfer-of-int [transfer-rule]: ((=) ===> R) of-nat of-nat
and transfer-numeral [transfer-rule]: ((=) ===> R) of-nat of-nat
and transfer-add [transfer-rule]: (R ===> R ===> R) (+) (+)
and transfer-diff [transfer-rule]: (R ===> R ===> R) (+) (+)
and transfer-mult [transfer-rule]: (R ===> R ===> R) (∗) (∗)
and transfer-dvd [transfer-rule]: (R ===> R ===> (=)) (dvd) (dvd)
and transfer-monom [transfer-rule]:

((=) ===> (=) ===> R)
(λm a. Polynomial.monom (MPoly-Type.monom (remove-key x m) a)

(lookup m x))
MPoly-Type.monom

and transfer-coeff [transfer-rule]:
(R ===> (=) ===> (=))

(λp m. MPoly-Type.coeff (poly.coeff p (lookup m x)) (remove-key x m))
MPoly-Type.coeff

and transfer-degree [transfer-rule]:
(R ===> (=)) Polynomial.degree (λp. MPoly-Type.degree p x)

unfolding R-def
by (auto simp: rel-fun-def mpoly-to-mpoly-poly-monom

simp flip: mpoly-coeff-to-mpoly-poly-coeff)

lemma transfer-vars [transfer-rule]:
assumes [transfer-rule]: R p p ′

shows (
⋃

i. vars (poly.coeff p i)) ∪ (if Polynomial.degree p = 0 then {} else
{x}) = vars p ′

(is ?A ∪ ?B = -)
proof (intro equalityI)

have vars p ′ = vars (poly p (Var x))
using assms by (simp add: R-def poly-mpoly-to-mpoly-poly)

15

also have poly p (Var x) = (
∑

i≤Polynomial.degree p. poly.coeff p i ∗ Var x ^
i)

unfolding poly-altdef ..
also have vars . . . ⊆ (

⋃
i. vars (poly.coeff p i) ∪ (if Polynomial.degree p = 0

then {} else {x}))
proof (intro order .trans[OF vars-sum] UN-mono order .trans[OF vars-mult] Un-mono)

fix i :: nat
assume i: i ∈ {..Polynomial.degree p}
show vars (Var x ^ i) ⊆ (if Polynomial.degree p = 0 then {} else {x})
proof (cases Polynomial.degree p = 0)

case False
thus ?thesis

by (intro order .trans[OF vars-power]) (auto simp: vars-Var)
qed (use i in auto)

qed auto
finally show vars p ′ ⊆ ?A ∪ ?B by blast

next
have ?A ⊆ vars p ′

using assms vars-coeff-mpoly-to-mpoly-poly by (auto simp: R-def)
moreover have ?B ⊆ vars p ′

using assms by (auto simp: R-def degree-pos-iff)
ultimately show ?A ∪ ?B ⊆ vars p ′

by blast
qed

lemma right-total [transfer-rule]: right-total R
unfolding right-total-def

proof safe
fix p ′ :: ′a mpoly
show ∃ p. R p p ′

by (rule exI [of - mpoly-to-mpoly-poly x p ′]) (auto simp: R-def)
qed

lemma bi-unique [transfer-rule]: bi-unique R
unfolding bi-unique-def by (auto simp: R-def)

end

end

lemma mpoly-degree-mult-eq:
fixes p q :: ′a :: idom mpoly
assumes p 6= 0 q 6= 0
shows MPoly-Type.degree (p ∗ q) x = MPoly-Type.degree p x + MPoly-Type.degree

q x
proof −

interpret transfer-mpoly-to-mpoly-poly x .
define deg :: ′a mpoly ⇒ nat where deg = (λp. MPoly-Type.degree p x)

16

have [transfer-rule]: rel-fun R (=) Polynomial.degree deg
using transfer-degree unfolding deg-def .

have deg (p ∗ q) = deg p + deg q
using assms unfolding deg-def [symmetric]
by transfer (simp add: degree-mult-eq)

thus ?thesis
by (simp add: deg-def)

qed

Converts a multi-variate polynomial into a univariate polynomial via insert-
ing values for all but one variable
definition partial-insertion :: (nat ⇒ ′a) ⇒ nat ⇒ ′a :: comm-ring-1 mpoly ⇒ ′a
poly where

partial-insertion α x p = map-poly (insertion α) (mpoly-to-mpoly-poly x p)

lemma comm-ring-hom-insertion: comm-ring-hom (insertion α)
by (unfold-locales, auto simp: insertion-add insertion-mult)

lemma partial-insertion-add: partial-insertion α x (p + q) = partial-insertion α
x p + partial-insertion α x q
proof −

interpret i: comm-ring-hom insertion α by (rule comm-ring-hom-insertion)
show ?thesis unfolding partial-insertion-def mpoly-to-mpoly-poly-add hom-distribs

..
qed

lemma partial-insertion-monom: partial-insertion α x (MPoly-Type.monom m a)
= Polynomial.monom (insertion α (MPoly-Type.monom (remove-key x m) a))
(lookup m x)

unfolding partial-insertion-def mpoly-to-mpoly-poly-monom
by (subst map-poly-monom, auto)

Partial insertion + insertion of last value is identical to (full) insertion
lemma insertion-partial-insertion: assumes

∧
y. y 6= x =⇒ β y = α y

shows poly (partial-insertion β x p) (α x) = insertion α p
proof (induct p rule: mpoly-induct)

case (monom m a)
let ?rkm = remove-key x m
have to-alpha: insertion β (MPoly-Type.monom ?rkm a) = insertion α (MPoly-Type.monom

?rkm a)
by (rule insertion-irrelevant-vars, rule assms, insert vars-monom-subset[of ?rkm

a], auto simp: remove-key-keys[symmetric])
have main: insertion α (MPoly-Type.monom ?rkm a) ∗ α x ^ lookup m x =

insertion α (MPoly-Type.monom m a)
unfolding monom-remove-key[of m a x] insertion-mult
by (metis insertion-single mult.left-neutral)

show ?case using main to-alpha by (simp add: partial-insertion-monom poly-monom)

17

next
case (sum p1 p2 m a)
then show ?case by (simp add: partial-insertion-add insertion-add map-poly-add)

qed

lemma insertion-coeff-mpoly-to-mpoly-poly[simp]:
insertion α (coeff (mpoly-to-mpoly-poly x p) k) = coeff (partial-insertion α x p)

k
unfolding partial-insertion-def
by (subst coeff-map-poly, auto)

lemma degree-map-poly-Const: degree (map-poly (Const :: ′a :: semiring-0 ⇒ -)
f) = degree f

by (rule degree-map-poly, auto)

lemma degree-partial-insertion-le-mpoly: degree (partial-insertion α x p) ≤ degree
(mpoly-to-mpoly-poly x p)

unfolding partial-insertion-def by (rule degree-map-poly-le)

end

2.2 Exact Division of Multivariate Polynomials
theory MPoly-Divide

imports
Hermite-Lindemann.More-Multivariate-Polynomial-HLW
Polynomials.MPoly-Type-Class
Poly-Connection

begin

lemma poly-lead-coeff-dvd-lead-coeff :
assumes p dvd (q :: ′a :: idom poly)
shows Polynomial.lead-coeff p dvd Polynomial.lead-coeff q
using assms by (elim dvdE) (auto simp: Polynomial.lead-coeff-mult)

Since there is no particularly sensible algorithm for division with a remainder
on multivariate polynomials, we define the following division operator that
performs an exact division if possible and returns 0 otherwise.
instantiation mpoly :: (comm-semiring-1) divide
begin

definition divide-mpoly :: ′a mpoly ⇒ ′a mpoly ⇒ ′a mpoly where
divide-mpoly x y = (if y 6= 0 ∧ y dvd x then THE z. x = y ∗ z else 0)

instance ..

end

18

instance mpoly :: (idom) idom-divide
by standard (auto simp: divide-mpoly-def)

lemma (in transfer-mpoly-to-mpoly-poly) transfer-div [transfer-rule]:
assumes [transfer-rule]: R p ′ p R q ′ q
assumes q dvd p
shows R (p ′ div q ′) (p div q)
using assms
by (smt (z3) div-by-0 dvd-imp-mult-div-cancel-left mpoly-to-mpoly-poly-0 mpoly-to-mpoly-poly-eq-iff

mpoly-to-mpoly-poly-mult nonzero-mult-div-cancel-left transfer-mpoly-to-mpoly-poly.R-def)

instantiation mpoly :: ({normalization-semidom, idom}) normalization-semidom
begin

definition unit-factor-mpoly :: ′a mpoly ⇒ ′a mpoly where
unit-factor-mpoly p = Const (unit-factor (lead-coeff p))

definition normalize-mpoly :: ′a mpoly ⇒ ′a mpoly where
normalize-mpoly p = Rings.divide p (unit-factor p)

lemma unit-factor-mpoly-Const [simp]:
unit-factor (Const c) = Const (unit-factor c)
unfolding unit-factor-mpoly-def by simp

lemma normalize-mpoly-Const [simp]:
normalize (Const c) = Const (normalize c)

proof (cases c = 0)
case False
have normalize (Const c) = Const c div Const (unit-factor c)

by (simp add: normalize-mpoly-def)
also have . . . = Const (unit-factor c ∗ normalize c) div Const (unit-factor c)

by simp
also have . . . = Const (unit-factor c) ∗ Const (normalize c) div Const (unit-factor

c)
by (subst mpoly-Const-mult) auto

also have . . . = Const (normalize c)
using ‹c 6= 0 ›
by (subst nonzero-mult-div-cancel-left) auto

finally show ?thesis .
qed (auto simp: normalize-mpoly-def)

instance proof
show unit-factor (0 :: ′a mpoly) = 0

by (simp add: unit-factor-mpoly-def)
next

show unit-factor x = x if x dvd 1 for x :: ′a mpoly

19

using that by (auto elim!: mpoly-is-unitE simp: is-unit-unit-factor)
next

fix x :: ′a mpoly
assume x 6= 0
thus unit-factor x dvd 1

by (auto simp: unit-factor-mpoly-def)
next

fix x y :: ′a mpoly
assume x dvd 1
hence x 6= 0

by auto
show unit-factor (x ∗ y) = x ∗ unit-factor y
proof (cases y = 0)

case False
have Const (unit-factor (lead-coeff x ∗ lead-coeff y)) =

x ∗ Const (unit-factor (lead-coeff y)) using ‹x dvd 1 ›
by (subst unit-factor-mult-unit-left)

(auto elim!: mpoly-is-unitE simp: mpoly-Const-mult)
thus ?thesis using ‹x 6= 0 › False

by (simp add: unit-factor-mpoly-def lead-coeff-mult)
qed (auto simp: unit-factor-mpoly-def)

next
fix p :: ′a mpoly
let ?c = Const (unit-factor (lead-coeff p))
show unit-factor p ∗ normalize p = p
proof (cases p = 0)

case False
hence ?c dvd 1

by (intro is-unit-ConstI) auto
also have 1 dvd p

by simp
finally have ?c ∗ (p div ?c) = p

by (rule dvd-imp-mult-div-cancel-left)
thus ?thesis

by (auto simp: unit-factor-mpoly-def normalize-mpoly-def)
qed (auto simp: normalize-mpoly-def)

next
show normalize (0 :: ′a mpoly) = 0

by (simp add: normalize-mpoly-def)
qed

end

The following is an exact division operator that can fail, i.e. if the divisor
does not divide the dividend, it returns None.
definition divide-option :: ′a :: idom-divide ⇒ ′a ⇒ ′a option (infixl ‹div?› 70)
where

divide-option p q = (if q dvd p then Some (p div q) else None)

20

We now show that exact division on the ring R[X1, . . . , Xn] can be reduced
to exact division on the ring R[X1, . . . , Xn][X], i.e. we can go from ′a mpoly
to a ′a mpoly poly where the coefficients have one variable less than the
original multivariate polynomial. We basically simply use the isomorphism
between these two rings.
lemma divide-option-mpoly:

fixes p q :: ′a :: idom-divide mpoly
shows p div? q = (let V = vars p ∪ vars q in

(if V = {} then
let a = MPoly-Type.coeff p 0 ; b = MPoly-Type.coeff q 0 ; c = a div b
in if b ∗ c = a then Some (Const c) else None

else
let x = Max V ;

p ′ = mpoly-to-mpoly-poly x p; q ′ = mpoly-to-mpoly-poly x q
in case p ′ div? q ′ of

None ⇒ None
| Some r ⇒ Some (poly r (Var x)))) (is - = ?rhs)

proof −
define x where x = Max (vars p ∪ vars q)
define p ′ where p ′ = mpoly-to-mpoly-poly x p
define q ′ where q ′ = mpoly-to-mpoly-poly x q
interpret transfer-mpoly-to-mpoly-poly x .
have [transfer-rule]: R p ′ p R q ′ q

by (auto simp: p ′-def q ′-def R-def)

show ?thesis
proof (cases vars p ∪ vars q = {})

case True
define a where a = MPoly-Type.coeff p 0
define b where b = MPoly-Type.coeff q 0
have [simp]: p = Const a q = Const b

using True by (auto elim!: vars-emptyE simp: a-def b-def mpoly-coeff-Const)
show ?thesis

apply (cases b = 0)
apply (auto simp: Let-def mpoly-coeff-Const mpoly-Const-mult divide-option-def

elim!: dvdE)
by (metis dvd-triv-left)

next
case False
have ?rhs =

(case p ′ div? q ′ of None ⇒ None
| Some r ⇒ Some (poly r (Var x)))

using False
unfolding Let-def
apply (simp only:)
apply (subst if-False)
apply (simp flip: x-def p ′-def q ′-def cong: option.case-cong)
done

21

also have . . . = (if q ′ dvd p ′ then Some (poly (p ′ div q ′) (Var x)) else None)
using False by (auto simp: divide-option-def)

also have . . . = p div? q
unfolding divide-option-def

proof (intro if-cong refl arg-cong[where f = Some])
show (q ′ dvd p ′) = (q dvd p)

by transfer-prover
next

assume [transfer-rule]: q dvd p
have R (p ′ div q ′) (p div q)

by transfer-prover
thus poly (p ′ div q ′) (Var x) = p div q

by (simp add: R-def poly-mpoly-to-mpoly-poly)
qed
finally show ?thesis ..

qed
qed

Next, we show that exact division on the ring R[X1, . . . , Xn][Y] can be
reduced to exact division on the ring R[X1, . . . , Xn]. This is essentially just
polynomial division.
lemma divide-option-mpoly-poly:

fixes p q :: ′a :: idom-divide mpoly poly
shows p div? q =

(if p = 0 then Some 0
else if q = 0 then None
else let dp = Polynomial.degree p; dq = Polynomial.degree q

in if dp < dq then None
else case Polynomial.lead-coeff p div? Polynomial.lead-coeff q of

None ⇒ None
| Some c ⇒ (

case (p − Polynomial.monom c (dp − dq) ∗ q) div? q of
None ⇒ None

| Some r ⇒ Some (Polynomial.monom c (dp − dq) + r)))
(is - = ?rhs)

proof (cases p = 0 ; cases q = 0)
assume [simp]: p 6= 0 q 6= 0
define dp where dp = Polynomial.degree p
define dq where dq = Polynomial.degree q
define cp where cp = Polynomial.lead-coeff p
define cq where cq = Polynomial.lead-coeff q
define mon where mon = Polynomial.monom (cp div cq) (dp − dq)
show ?thesis
proof (cases dp < dq)

case True
hence ¬q dvd p

unfolding dp-def dq-def
by (meson ‹p 6= 0 › divides-degree leD)

thus ?thesis

22

using True by (simp add: divide-option-def dp-def dq-def)
next

case deg: False
show ?thesis
proof (cases cq dvd cp)

case False
hence ¬q dvd p

unfolding cq-def cp-def using poly-lead-coeff-dvd-lead-coeff by blast
thus ?thesis
using deg False by (simp add: dp-def dq-def Let-def divide-option-def cp-def

cq-def)
next

case dvd1 : True
show ?thesis
proof (cases q dvd (p − mon ∗ q))

case False
hence ¬q dvd p

by (meson dvd-diff dvd-triv-right)
thus ?thesis

using deg dvd1 False
by (simp add: dp-def dq-def Let-def divide-option-def cp-def cq-def mon-def)

next
case dvd2 : True
hence q dvd p

by (metis diff-eq-eq dvd-add dvd-triv-right)
have ?rhs = Some (mon + (p − mon ∗ q) div q)

using deg dvd1 dvd2
by (simp add: dp-def dq-def Let-def divide-option-def cp-def cq-def mon-def)
also have mon + (p − mon ∗ q) div q = p div q

using dvd2 by (elim dvdE) (auto simp: algebra-simps)
also have Some . . . = p div? q

using ‹q dvd p› by (simp add: divide-option-def)
finally show ?thesis ..

qed
qed

qed
qed (auto simp: divide-option-def)

These two equations now serve as two mutually recursive code equations
that allow us to reduce exact division of multivariate polynomials to exact
division of their coefficients. Termination of these code equations is not
shown explicitly, but is obvious since one variable is eliminated in every
step.
definition divide-option-mpoly :: ′a :: idom-divide mpoly ⇒ -

where divide-option-mpoly = divide-option

definition divide-option-mpoly-poly :: ′a :: idom-divide mpoly poly ⇒ -
where divide-option-mpoly-poly = divide-option

23

lemmas divide-option-mpoly-code [code] =
divide-option-mpoly [folded divide-option-mpoly-def divide-option-mpoly-poly-def]

lemmas divide-option-mpoly-poly-code [code] =
divide-option-mpoly-poly [folded divide-option-mpoly-def divide-option-mpoly-poly-def]

lemma divide-mpoly-code [code]:
fixes p q :: ′a :: idom-divide mpoly
shows p div q = (case divide-option-mpoly p q of None ⇒ 0 | Some r ⇒ r)
by (auto simp: divide-option-mpoly-def divide-option-def divide-mpoly-def)

end

2.3 Implementation of Division on Multivariate Polynomials
theory MPoly-Divide-Code

imports
MPoly-Divide
Polynomials.MPoly-Type-Class-FMap
Polynomials.MPoly-Type-Univariate

begin

We now set up code equations for some of the operations that we will need,
such as division, mpoly-to-poly, and mpoly-to-mpoly-poly.
lemma mapping-of-MPoly[code]: mapping-of (MPoly p) = p

by (simp add: MPoly-inverse)

lift-definition filter-pm :: (′a ⇒ bool) ⇒ (′a ⇒0
′b :: zero) ⇒ (′a ⇒0

′b) is
λP f x. if P x then f x else 0
by (erule finite-subset[rotated]) auto

lemma lookup-filter-pm: lookup (filter-pm P f) x = (if P x then lookup f x else 0)
by transfer auto

lemma filter-pm-code [code]: filter-pm P (Pm-fmap m) = Pm-fmap (fmfilter P m)
by (auto intro!: poly-mapping-eqI simp: fmlookup-default-def lookup-filter-pm)

lemma remove-key-conv-filter-pm [code]: remove-key x m = filter-pm (λy. y 6= x)
m

by transfer auto

lemma finite-poly-coeff-nonzero: finite {n. poly.coeff p n 6= 0}
by (metis MOST-coeff-eq-0 eventually-cofinite)

lemma poly-degree-conv-Max:
assumes p 6= 0
shows Polynomial.degree p = Max {n. poly.coeff p n 6= 0}
using assms

24

proof (intro antisym degree-le Max .boundedI)
fix n assume n ∈ {n. poly.coeff p n 6= 0}
thus n ≤ Polynomial.degree p

by (simp add: le-degree)
qed (auto simp: poly-eq-iff finite-poly-coeff-nonzero)

lemma mpoly-to-poly-code-aux:
fixes p :: ′a :: comm-monoid-add mpoly and x :: nat
defines I ≡ (λm. lookup m x) ‘ Set.filter (λm. ∀ y∈keys m. y = x) (keys

(mapping-of p))
shows I = {n. poly.coeff (mpoly-to-poly x p) n 6= 0}

and mpoly-to-poly x p = 0 ←→ I = {}
and I 6= {} =⇒ Polynomial.degree (mpoly-to-poly x p) = Max I

proof −
have n ∈ I ←→ poly.coeff (mpoly-to-poly x p) n 6= 0 for n
proof −

have I = (λm. lookup m x) ‘ (keys (mapping-of p) ∩ {m. ∀ y∈keys m. y = x})
by (auto simp: I-def Set.filter-def)

also have {m. ∀ y∈keys m. y = x} = range (λn. monomial n x) (is ?lhs =
?rhs)

proof (intro equalityI subsetI)
fix m assume m ∈ ?lhs
hence m = monomial (lookup m x) x

by transfer (auto simp: fun-eq-iff when-def)
thus m ∈ ?rhs by auto

qed (auto split: if-splits)
also have n ∈ (λm. lookup m x) ‘ (keys (mapping-of p) ∩ . . .) ←→

monomial n x ∈ keys (mapping-of p) by force
also have . . . ←→ poly.coeff (mpoly-to-poly x p) n 6= 0

by (simp add: coeff-def in-keys-iff)
finally show ?thesis .

qed
thus I : I = {n. poly.coeff (mpoly-to-poly x p) n 6= 0}

by blast
show eq-0-iff : mpoly-to-poly x p = 0 ←→ I = {}

unfolding I by (auto simp: poly-eq-iff)
show I 6= {} =⇒ Polynomial.degree (mpoly-to-poly x p) = Max I

by (subst poly-degree-conv-Max) (use eq-0-iff I in auto)
qed

lemma mpoly-to-poly-code [code]:
Polynomial.coeffs (mpoly-to-poly x p) =
(let I = (λm. lookup m x) ‘ Set.filter (λm. ∀ y∈keys m. y = x) (keys (mapping-of

p))
in if I = {} then [] else map (λn. MPoly-Type.coeff p (Poly-Mapping.single

x n)) [0 ..<Max I + 1])
(is ?lhs = ?rhs)

proof −

25

define I where I = (λm. lookup m x) ‘ Set.filter (λm. ∀ y∈keys m. y = x) (keys
(mapping-of p))

show ?thesis
proof (cases I = {})

case True
thus ?thesis using mpoly-to-poly-code-aux(2)[of x p]

by (simp add: I-def)
next

case False
have [simp]: mpoly-to-poly x p 6= 0

using mpoly-to-poly-code-aux(2)[of x p] False by (simp add: I-def)
from False have ?rhs = map (λn. MPoly-Type.coeff p (Poly-Mapping.single x

n)) [0 ..<Max I + 1]
(is - = ?rhs ′)
by (simp add: I-def Let-def)

also have . . . = ?lhs
proof (rule nth-equalityI)

show length ?rhs ′ = length ?lhs
using mpoly-to-poly-code-aux(3)[of x p] False
by (simp add: I-def length-coeffs-degree)

thus ?rhs ′ ! n = ?lhs ! n if n < length ?rhs ′ for n using that
by (auto simp del: upt-Suc simp: nth-coeffs-coeff)

qed
finally show ?thesis ..

qed
qed

fun mpoly-to-mpoly-poly-impl-aux1 :: nat ⇒ ((nat ⇒0 nat) × ′a) list ⇒ nat ⇒
((nat ⇒0 nat) × ′a) list where

mpoly-to-mpoly-poly-impl-aux1 i [] j = []
| mpoly-to-mpoly-poly-impl-aux1 i ((mon ′, c) # xs) j =

(if lookup mon ′ i = j then [(remove-key i mon ′, c)] else []) @ mpoly-to-mpoly-poly-impl-aux1
i xs j

lemma mpoly-to-mpoly-poly-impl-aux1-altdef :
mpoly-to-mpoly-poly-impl-aux1 i xs j =

map (λ(mon, c). (remove-key i mon, c)) (filter (λ(mon, c). lookup mon i = j)
xs)

by (induction xs) auto

lemma map-of-mpoly-to-mpoly-poly-impl-aux1 :
map-of (mpoly-to-mpoly-poly-impl-aux1 i xs j) = (λmon.

(if lookup mon i > 0 then None
else map-of xs (mon + Poly-Mapping.single i j)))

apply (rule ext)
apply (induction i xs j rule: mpoly-to-mpoly-poly-impl-aux1 .induct)
apply (auto simp: remove-key-lookup)
apply (meson remove-key-sum)

26

apply (metis add-left-cancel lookup-single-eq remove-key-sum)
apply (metis remove-key-add remove-key-single remove-key-sum single-zero)
done

lemma lookup0-fmap-of-list-mpoly-to-mpoly-poly-impl-aux1 :
lookup0 (fmap-of-list (mpoly-to-mpoly-poly-impl-aux1 i xs j)) = (λmon.

lookup0 (fmap-of-list xs) (mon + Poly-Mapping.single i j) when lookup mon i
= 0)
by (auto simp add: fmlookup-default-def fmlookup-of-list map-of-mpoly-to-mpoly-poly-impl-aux1)

definition mpoly-to-mpoly-poly-impl-aux2 where
mpoly-to-mpoly-poly-impl-aux2 i p j = poly.coeff (mpoly-to-mpoly-poly i p) j

lemma coeff-MPoly: MPoly-Type.coeff (MPoly f) m = lookup f m
by (simp add: coeff-def mpoly.MPoly-inverse)

lemma mpoly-to-mpoly-poly-impl-aux2-code [code]:
mpoly-to-mpoly-poly-impl-aux2 i (MPoly (Pm-fmap (fmap-of-list xs))) j =

MPoly (Pm-fmap (fmap-of-list (mpoly-to-mpoly-poly-impl-aux1 i xs j)))
unfolding mpoly-to-mpoly-poly-impl-aux2-def
by (rule mpoly-eqI)

(simp add: coeff-coeff-mpoly-to-mpoly-poly coeff-MPoly
lookup0-fmap-of-list-mpoly-to-mpoly-poly-impl-aux1)

definition mpoly-to-mpoly-poly-impl :: nat ⇒ ′a :: comm-ring-1 mpoly ⇒ ′a mpoly
list where

mpoly-to-mpoly-poly-impl x p = (if p = 0 then [] else
map (mpoly-to-mpoly-poly-impl-aux2 x p) [0 ..<Suc (MPoly-Type.degree p x)])

lemma mpoly-to-mpoly-poly-eq-0-iff [simp]: mpoly-to-mpoly-poly x p = 0 ←→ p =
0
proof −

interpret transfer-mpoly-to-mpoly-poly x .
define p ′ where p ′ = mpoly-to-mpoly-poly x p
have [transfer-rule]: R p ′ p

by (auto simp: R-def p ′-def)
show ?thesis

unfolding p ′-def [symmetric] by transfer-prover
qed

lemma mpoly-to-mpoly-poly-code [code]:
Polynomial.coeffs (mpoly-to-mpoly-poly x p) = mpoly-to-mpoly-poly-impl x p
by (intro nth-equalityI)

(auto simp: mpoly-to-mpoly-poly-impl-def length-coeffs-degree
mpoly-to-mpoly-poly-impl-aux2-def coeffs-nth simp del: upt-Suc)

value mpoly-to-mpoly-poly 0 (Var 0 ^ 2 + Var 0 ∗ Var 1 + Var 1 ^ 2 :: int mpoly)

value Rings.divide (Var 0 ^ 2 ∗ Var 1 + Var 0 ∗ Var 1 ^ 2 :: int mpoly) (Var 1)

27

end

2.4 Class Instances for Multivariate Polynomials and Con-
tainers

theory MPoly-Container
imports

Polynomials.MPoly-Type-Class
Containers.Set-Impl

begin

Basic setup for using multivariate polynomials in combination with container
framework.
derive (eq) ceq poly-mapping
derive (dlist) set-impl poly-mapping
derive (no) ccompare poly-mapping

end

2.5 Resultants of Multivariate Polynomials

We utilize the conversion of multivariate polynomials into univariate poly-
nomials for the definition of the resultant of multivariate polynomials via the
resultant for univariate polynomials. In this way, we can use the algorithm
to efficiently compute resultants for the multivariate case.
theory Multivariate-Resultant

imports
Poly-Connection
Algebraic-Numbers.Resultant
Subresultants.Subresultant
MPoly-Divide-Code
MPoly-Container

begin

hide-const (open)
MPoly-Type.degree
MPoly-Type.coeff
Symmetric-Polynomials.lead-coeff

lemma det-sylvester-matrix-higher-degree:
det (sylvester-mat-sub (degree f + n) (degree g) f g)
= det (sylvester-mat-sub (degree f) (degree g) f g) ∗ (lead-coeff g ∗ (−1)^(degree

g))^n
proof (induct n)

case (Suc n)
let ?A = sylvester-mat-sub (degree f + Suc n) (degree g) f g
let ?d = degree f + Suc n + degree g

28

define h where h i = ?A $$ (i,0) ∗ cofactor ?A i 0 for i
have mult-left-zero: x = 0 =⇒ x ∗ y = 0 for x y :: ′a by auto
have det ?A = (

∑
i<?d. h i)

unfolding h-def
by (rule laplace-expansion-column[OF sylvester-mat-sub-carrier , of 0], force)

also have . . . = sum h ({degree g} ∪ ({..<?d} − {degree g}))
by (rule sum.cong, auto)

also have . . . = sum h {degree g} + sum h ({..<?d} − {degree g})
by (rule sum.union-disjoint, auto)

also have sum h ({..<?d} − {degree g}) = 0
unfolding h-def
by (intro sum.neutral ballI mult-left-zero, auto simp: sylvester-mat-sub-def co-

eff-eq-0)
also have sum h {degree g} = h (degree g) by simp
also have . . . = lead-coeff g ∗ cofactor ?A (degree g) 0 unfolding h-def

by (rule arg-cong[of - - λ x. x ∗ -], simp add: sylvester-mat-sub-def)
also have cofactor ?A (degree g) 0 = (−1)^(degree g) ∗ det (sylvester-mat-sub

(degree f + n) (degree g) f g)
unfolding cofactor-def

proof (intro arg-cong2 [of - - - - λ x y. (−1)^x ∗ det y], force)
show mat-delete ?A (degree g) 0 = sylvester-mat-sub (degree f + n) (degree g)

f g
unfolding sylvester-mat-sub-def
by (intro eq-matI , auto simp: mat-delete-def coeff-eq-0)

qed
finally show ?case unfolding Suc by simp

qed simp

The conversion of multivariate into univariate polynomials permits us to
define resultants in the multivariate setting. Since in our application one
of the polynomials is already univariate, we use a non-symmetric definition
where only one of the input polynomials is multivariate.
definition resultant-mpoly-poly :: nat ⇒ ′a :: comm-ring-1 mpoly ⇒ ′a poly ⇒ ′a
mpoly where

resultant-mpoly-poly x p q = resultant (mpoly-to-mpoly-poly x p) (map-poly Const
q)

This lemma tells us that there is only a minor difference between computing
the multivariate resultant and then plugging in values, or first inserting
values and then evaluate the univariate resultant.
lemma insertion-resultant-mpoly-poly: insertion α (resultant-mpoly-poly x p q) =
resultant (partial-insertion α x p) q ∗
(lead-coeff q ∗ (−1)^ degree q)^(degree (mpoly-to-mpoly-poly x p) − degree (partial-insertion

α x p))
proof −

let ?pa = partial-insertion α x
let ?a = insertion α
let ?q = map-poly Const q

29

let ?m = mpoly-to-mpoly-poly x
interpret a: comm-ring-hom ?a by (rule comm-ring-hom-insertion)
define m where m = degree (?m p) − degree (?pa p)
from degree-partial-insertion-le-mpoly[of α x p] have deg: degree (?m p) = degree

(?pa p) + m unfolding m-def by simp
define k where k = degree (?pa p) + m
define l where l = degree q
have resultant (?pa p) q = det (sylvester-mat-sub (degree (?pa p)) (degree q) (?pa

p) q)
unfolding resultant-def sylvester-mat-def by simp

have ?a (resultant-mpoly-poly x p q) = ?a (det (sylvester-mat-sub (degree (?pa
p) + m) (degree q) (?m p) ?q))

unfolding resultant-mpoly-poly-def resultant-def sylvester-mat-def degree-map-poly-Const
deg ..

also have . . . =
det (a.mat-hom (sylvester-mat-sub (degree (?pa p) + m) (degree q) (?m p) ?q))

unfolding a.hom-det ..
also have a.mat-hom (sylvester-mat-sub (degree (?pa p) + m) (degree q) (?m p)

?q)
= sylvester-mat-sub (degree (?pa p) + m) (degree q) (?pa p) q
unfolding k-def [symmetric] l-def [symmetric]
by (intro eq-matI , auto simp: sylvester-mat-sub-def coeff-map-poly)

also have det . . . = det (sylvester-mat-sub (degree (?pa p)) (degree q) (?pa p) q)
∗ (lead-coeff q ∗ (− 1) ^ degree q) ^ m

by (subst det-sylvester-matrix-higher-degree, simp)
also have det (sylvester-mat-sub (degree (?pa p)) (degree q) (?pa p) q) = resultant

(?pa p) q
unfolding resultant-def sylvester-mat-def by simp

finally show ?thesis unfolding m-def by auto
qed

lemma insertion-resultant-mpoly-poly-zero: fixes q :: ′a :: idom poly
assumes q: q 6= 0
shows insertion α (resultant-mpoly-poly x p q) = 0 ←→ resultant (partial-insertion

α x p) q = 0
unfolding insertion-resultant-mpoly-poly using q by auto

lemma vars-resultant: vars (resultant p q) ⊆
⋃

(vars ‘ (range (coeff p) ∪ range
(coeff q)))

unfolding resultant-def det-def sylvester-mat-def sylvester-mat-sub-def
apply simp
apply (rule order .trans[OF vars-setsum])
subgoal using finite-permutations by blast
apply (rule UN-least)
apply (rule order .trans[OF vars-mult])
apply simp
apply (rule order .trans[OF vars-prod])
apply (rule UN-least)

30

by auto

By taking the resultant, one variable is deleted.
lemma vars-resultant-mpoly-poly: vars (resultant-mpoly-poly x p q) ⊆ vars p − {x}

proof
fix y
assume y ∈ vars (resultant-mpoly-poly x p q)
from set-mp[OF vars-resultant this[unfolded resultant-mpoly-poly-def]] obtain i

where y ∈ vars (coeff (mpoly-to-mpoly-poly x p) i) ∨ y ∈ vars (coeff (map-poly
Const q) i)

by auto
moreover have vars (coeff (map-poly Const q) i) = {}

by (subst coeff-map-poly, auto)
ultimately have y ∈ vars (coeff (mpoly-to-mpoly-poly x p) i) by auto
thus y ∈ More-MPoly-Type.vars p − {x} using vars-coeff-mpoly-to-mpoly-poly

by blast
qed

For resultants, we manually have to select the implementation that works
on integral domains, because there is no factorial ring instance for int mpoly.
lemma resultant-mpoly-poly-code[code]:
resultant-mpoly-poly x p q = resultant-impl-basic (mpoly-to-mpoly-poly x p) (map-poly

Const q)
unfolding resultant-mpoly-poly-def div-exp-basic.resultant-impl by simp

end

3 Testing for Integrality and Conversion to Inte-
gers

theory Is-Int-To-Int
imports

Polynomial-Interpolation.Is-Rat-To-Rat
begin

lemma inv-of-rat: inv of-rat (of-rat x) = x
by (meson injI inv-f-eq of-rat-eq-iff)

lemma of-rat-Ints-iff : ((of-rat x :: ′a :: field-char-0) ∈ �) = (x ∈ �)
by (metis Ints-cases Ints-of-int inv-of-rat of-rat-of-int-eq)

lemma is-int-code[code-unfold]:
shows (x ∈ �) = (is-rat x ∧ is-int-rat (to-rat x))

proof −
have x ∈ � ←→ x ∈ � ∧ x ∈ �

by (metis Ints-cases Rats-of-int)
also have . . . = (is-rat x ∧ is-int-rat (to-rat x))

31

proof (simp, intro conj-cong[OF refl])
assume x ∈ �
then obtain y where x: x = of-rat y unfolding Rats-def by auto
show (x ∈ �) = (to-rat x ∈ �) unfolding x

by (simp add: of-rat-Ints-iff)
qed
finally show ?thesis .

qed

definition to-int :: ′a :: is-rat ⇒ int where
to-int x = int-of-rat (to-rat x)

lemma of-int-to-int: x ∈ � =⇒ of-int (to-int x) = x
by (metis Ints-cases int-of-rat(1) of-rat-of-int-eq to-int-def to-rat-of-rat)

lemma to-int-of-int: to-int (of-int x) = x
by (metis int-of-rat(1) of-rat-of-int-eq to-int-def to-rat-of-rat)

lemma to-rat-complex-of-real[simp]: to-rat (complex-of-real x) = to-rat x
by (metis Re-complex-of-real complex-of-real-of-rat of-rat-to-rat to-rat to-rat-of-rat)

lemma to-int-complex-of-real[simp]: to-int (complex-of-real x) = to-int x
by (simp add: to-int-def)

end

4 Representing Roots of Polynomials with Alge-
braic Coefficients

We provide an algorithm to compute a non-zero integer polynomial q from
a polynomial p with algebraic coefficients such that all roots of p are also
roots of q.
In this way, we have a constructive proof that the set of complex algebraic
numbers is algebraically closed.
theory Roots-of-Algebraic-Poly

imports
Algebraic-Numbers.Complex-Algebraic-Numbers
Multivariate-Resultant
Is-Int-To-Int

begin

4.1 Preliminaries
hide-const (open) up-ring.monom
hide-const (open) MPoly-Type.monom

lemma map-mpoly-Const: f 0 = 0 =⇒ map-mpoly f (Const i) = Const (f i)

32

by (intro mpoly-eqI , auto simp: coeff-map-mpoly mpoly-coeff-Const)

lemma map-mpoly-Var : f 1 = 1 =⇒ map-mpoly (f :: ′b :: zero-neq-one ⇒ -) (Var
i) = Var i

by (intro mpoly-eqI , auto simp: coeff-map-mpoly coeff-Var when-def)

lemma map-mpoly-monom: f 0 = 0 =⇒ map-mpoly f (MPoly-Type.monom m a)
= (MPoly-Type.monom m (f a))

by (intro mpoly-eqI , unfold coeff-map-mpoly if-distrib coeff-monom, simp add:
when-def)

lemma remove-key-single ′:
remove-key v (Poly-Mapping.single w n) = (if v = w then 0 else Poly-Mapping.single

w n)
by (metis add.right-neutral lookup-single-not-eq remove-key-single remove-key-sum

single-zero)

context comm-monoid-add-hom
begin
lemma hom-Sum-any: assumes fin: finite {x. f x 6= 0}

shows hom (Sum-any f) = Sum-any (λ x. hom (f x))
unfolding Sum-any.expand-set hom-sum
by (rule sum.mono-neutral-right[OF fin], auto)

lemma comm-monoid-add-hom-mpoly-map: comm-monoid-add-hom (map-mpoly hom)

by (unfold-locales; intro mpoly-eqI , auto simp: hom-add)

lemma map-mpoly-hom-Const: map-mpoly hom (Const i) = Const (hom i)
by (rule map-mpoly-Const, simp)

lemma map-mpoly-hom-monom: map-mpoly hom (MPoly-Type.monom m a) =
MPoly-Type.monom m (hom a)

by (rule map-mpoly-monom, simp)
end

context comm-ring-hom
begin
lemma mpoly-to-poly-map-mpoly-hom: mpoly-to-poly x (map-mpoly hom p) = map-poly
hom (mpoly-to-poly x p)
by (rule poly-eqI , unfold coeff-mpoly-to-poly coeff-map-poly-hom, subst coeff-map-mpoly ′,

auto)

lemma comm-ring-hom-mpoly-map: comm-ring-hom (map-mpoly hom)
proof −
interpret mp: comm-monoid-add-hom map-mpoly hom by (rule comm-monoid-add-hom-mpoly-map)
show ?thesis
proof (unfold-locales)

show map-mpoly hom 1 = 1

33

by (intro mpoly-eqI , simp add: MPoly-Type.coeff-def , transfer fixing: hom,
transfer fixing: hom, auto simp: when-def)

fix x y
show map-mpoly hom (x ∗ y) = map-mpoly hom x ∗ map-mpoly hom y

apply (intro mpoly-eqI)
apply (subst coeff-map-mpoly ′, force)
apply (unfold coeff-mpoly-times)
apply (subst prod-fun-unfold-prod, blast, blast)
apply (subst prod-fun-unfold-prod, blast, blast)
apply (subst coeff-map-mpoly ′, force)
apply (subst coeff-map-mpoly ′, force)
apply (subst hom-Sum-any)
subgoal
proof −

let ?X = {a. MPoly-Type.coeff x a 6= 0}
let ?Y = {a. MPoly-Type.coeff y a 6= 0}
have fin: finite (?X × ?Y) by auto
show ?thesis

by (rule finite-subset[OF - fin], auto)
qed
apply (rule Sum-any.cong)
subgoal for mon pair by (cases pair , auto simp: hom-mult when-def)
done

qed
qed

lemma mpoly-to-mpoly-poly-map-mpoly-hom:
mpoly-to-mpoly-poly x (map-mpoly hom p) = map-poly (map-mpoly hom) (mpoly-to-mpoly-poly

x p)
proof −
interpret mp: comm-ring-hom map-mpoly hom by (rule comm-ring-hom-mpoly-map)
interpret mmp: map-poly-comm-monoid-add-hom map-mpoly hom ..
show ?thesis unfolding mpoly-to-mpoly-poly-def

apply (subst mmp.hom-Sum-any, force)
apply (rule Sum-any.cong)
apply (unfold mp.map-poly-hom-monom map-mpoly-hom-monom)
by auto

qed
end

context inj-comm-ring-hom
begin
lemma inj-comm-ring-hom-mpoly-map: inj-comm-ring-hom (map-mpoly hom)
proof −
interpret mp: comm-ring-hom map-mpoly hom by (rule comm-ring-hom-mpoly-map)
show ?thesis
proof (unfold-locales)

fix x
assume 0 : map-mpoly hom x = 0

34

show x = 0
proof (intro mpoly-eqI)

fix m
show MPoly-Type.coeff x m = MPoly-Type.coeff 0 m

using arg-cong[OF 0 , of λ p. MPoly-Type.coeff p m] by simp
qed

qed
qed

lemma resultant-mpoly-poly-hom: resultant-mpoly-poly x (map-mpoly hom p) (map-poly
hom q) = map-mpoly hom (resultant-mpoly-poly x p q)
proof −
interpret mp: inj-comm-ring-hom map-mpoly hom by (rule inj-comm-ring-hom-mpoly-map)
show ?thesis
unfolding resultant-mpoly-poly-def
unfolding mpoly-to-mpoly-poly-map-mpoly-hom
apply (subst mp.resultant-map-poly[symmetric])
subgoal by (subst mp.degree-map-poly-hom, unfold-locales, auto)
subgoal by (subst mp.degree-map-poly-hom, unfold-locales, auto)
subgoal

apply (rule arg-cong[of - - resultant -], intro poly-eqI)
apply (subst coeff-map-poly, force)+
by (simp add: map-mpoly-hom-Const)

done
qed
end

lemma map-insort-key: assumes [simp]:
∧

x y. g1 x ≤ g1 y ←→ g2 (f x) ≤ g2
(f y)

shows map f (insort-key g1 a xs) = insort-key g2 (f a) (map f xs)
by (induct xs, auto)

lemma map-sort-key: assumes [simp]:
∧

x y. g1 x ≤ g1 y ←→ g2 (f x) ≤ g2 (f
y)

shows map f (sort-key g1 xs) = sort-key g2 (map f xs)
by (induct xs, auto simp: map-insort-key)

hide-const (open) MPoly-Type.degree
hide-const (open) MPoly-Type.coeffs
hide-const (open) MPoly-Type.coeff
hide-const (open) Symmetric-Polynomials.lead-coeff

4.2 More Facts about Resultants
lemma resultant-iff-coprime-main:

fixes f g :: ′a :: field poly
assumes deg: degree f > 0 ∨ degree g > 0

shows resultant f g = 0 ←→ ¬ coprime f g
proof (cases resultant f g = 0)

35

case True
from resultant-zero-imp-common-factor [OF deg True] True
show ?thesis by simp

next
case False
from deg have fg: f 6= 0 ∨ g 6= 0 by auto
from resultant-non-zero-imp-coprime[OF False fg] deg False
show ?thesis by auto

qed

lemma resultant-zero-iff-coprime: fixes f g :: ′a :: field poly
assumes f 6= 0 ∨ g 6= 0
shows resultant f g = 0 ←→ ¬ coprime f g

proof (cases degree f > 0 ∨ degree g > 0)
case True
thus ?thesis using resultant-iff-coprime-main[OF True] by simp

next
case False
hence degree f = 0 degree g = 0 by auto
then obtain c d where f : f = [:c:] and g: g = [:d:] using degree0-coeffs by

metis+
from assms have cd: c 6= 0 ∨ d 6= 0 unfolding f g by auto
have res: resultant f g = 1 unfolding f g resultant-const by auto
have coprime f g

by (metis assms one-neq-zero res resultant-non-zero-imp-coprime)
with res show ?thesis by auto

qed

The problem with the upcoming lemma is that "root" and "irreducibility"
refer to the same type. In the actual application we interested in "irre-
ducibility" over the integers, but the roots we are interested in are either
real or complex.
lemma resultant-zero-iff-common-root-irreducible: fixes f g :: ′a :: field poly

assumes irr : irreducible g
and root: poly g a = 0

shows resultant f g = 0 ←→ (∃ x. poly f x = 0 ∧ poly g x = 0)
proof −

from irr root have deg: degree g 6= 0 using degree0-coeffs[of g] by fastforce
show ?thesis
proof

assume ∃ x. poly f x = 0 ∧ poly g x = 0
then obtain x where poly f x = 0 poly g x = 0 by auto
from resultant-zero[OF - this] deg show resultant f g = 0 by auto

next
assume resultant f g = 0
from resultant-zero-imp-common-factor [OF - this] deg
have ¬ coprime f g by auto
from this[unfolded not-coprime-iff-common-factor] obtain r where

rf : r dvd f and rg: r dvd g and r : ¬ is-unit r by auto

36

from rg r irr have g dvd r
by (meson algebraic-semidom-class.irreducible-altdef)

with rf have g dvd f by auto
with root show ∃ x. poly f x = 0 ∧ poly g x = 0

by (intro exI [of - a], auto simp: dvd-def)
qed

qed

lemma resultant-zero-iff-common-root-complex: fixes f g :: complex poly
assumes g: g 6= 0

shows resultant f g = 0 ←→ (∃ x. poly f x = 0 ∧ poly g x = 0)
proof (cases degree g = 0)

case deg: False
show ?thesis
proof

assume ∃ x. poly f x = 0 ∧ poly g x = 0
then obtain x where poly f x = 0 poly g x = 0 by auto
from resultant-zero[OF - this] deg show resultant f g = 0 by auto

next
assume resultant f g = 0
from resultant-zero-imp-common-factor [OF - this] deg
have ¬ coprime f g by auto
from this[unfolded not-coprime-iff-common-factor] obtain r where

rf : r dvd f and rg: r dvd g and r : ¬ is-unit r by auto
from rg g have r0 : r 6= 0 by auto
with r have degr : degree r 6= 0 by simp
hence ¬ constant (poly r)

by (simp add: constant-degree)
from fundamental-theorem-of-algebra[OF this] obtain a where root: poly r a

= 0 by auto
from rf rg root show ∃ x. poly f x = 0 ∧ poly g x = 0

by (intro exI [of - a], auto simp: dvd-def)
qed

next
case deg: True
from degree0-coeffs[OF deg] obtain c where gc: g = [:c:] by auto
from gc g have c: c 6= 0 by auto
hence resultant f g 6= 0 unfolding gc resultant-const by simp
with gc c show ?thesis by auto

qed

4.3 Systems of Polynomials

Definition of solving a system of polynomials, one being multivariate
definition mpoly-polys-solution :: ′a :: field mpoly ⇒ (nat ⇒ ′a poly) ⇒ nat set
⇒ (nat ⇒ ′a) ⇒ bool where

mpoly-polys-solution p qs N α = (
insertion α p = 0 ∧

37

(∀ i ∈ N . poly (qs i) (α (Suc i)) = 0))

The upcoming lemma shows how to eliminate single variables in multi-
variate root-problems. Because of the problem mentioned in resultant-zero-iff-common-root-irreducible,
we here restrict to polynomials over the complex numbers. Since the result
computations are homomorphisms, we are able to lift it to integer polyno-
mials where we are interested in real or complex roots.
lemma resultant-mpoly-polys-solution: fixes p :: complex mpoly

assumes nz: 0 /∈ qs ‘ N
and i: i ∈ N

shows mpoly-polys-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N − {i}) α
←→ (∃ v. mpoly-polys-solution p qs N (α((Suc i) := v)))

proof −
let ?x = Suc i
let ?q = qs i
let ?mres = resultant-mpoly-poly ?x p ?q
from i obtain M where N : N = insert i M and MN : M = N − {i} and iM :

i /∈ M by auto
from nz i have nzq: ?q 6= 0 by auto
hence lc0 : lead-coeff (qs i) 6= 0 by auto
have mpoly-polys-solution ?mres qs (N − {i}) α ←→
insertion α ?mres = 0 ∧ (∀ i ∈ M . poly (qs i) (α (Suc i)) = 0)
unfolding mpoly-polys-solution-def MN ..

also have insertion α ?mres = 0 ←→ resultant (partial-insertion α ?x p) ?q =
0

by (rule insertion-resultant-mpoly-poly-zero[OF nzq])
also have . . . ←→ (∃ v. poly (partial-insertion α ?x p) v = 0 ∧ poly ?q v = 0)

by (rule resultant-zero-iff-common-root-complex[OF nzq])
also have . . . ←→ (∃ v. insertion (α(?x := v)) p = 0 ∧ poly ?q v = 0) (is ?lhs

= ?rhs)
proof (intro iff-exI conj-cong refl arg-cong[of - - λ x. x = 0])

fix v
have poly (partial-insertion α ?x p) v = poly (partial-insertion α ?x p) ((α(?x

:= v)) ?x) by simp
also have . . . = insertion (α(?x := v)) p

by (rule insertion-partial-insertion, auto)
finally show poly (partial-insertion α ?x p) v = insertion (α(?x := v)) p .

qed
also have . . . ∧ (∀ i∈M . poly (qs i) (α (Suc i)) = 0)
←→ (∃ v. insertion (α(?x := v)) p = 0 ∧ poly (qs i) v = 0 ∧ (∀ i∈M . poly (qs

i) ((α(?x := v)) (Suc i)) = 0))
using iM by auto

also have . . . ←→ (∃ v. mpoly-polys-solution p qs N (α((Suc i) := v)))
unfolding mpoly-polys-solution-def N by (intro iff-exI , auto)

finally
show ?thesis .

qed

We now restrict solutions to be evaluated to zero outside the variable range.

38

Then there are only finitely many solutions for our applications.
definition mpoly-polys-zero-solution :: ′a :: field mpoly ⇒ (nat ⇒ ′a poly) ⇒ nat
set ⇒ (nat ⇒ ′a) ⇒ bool where

mpoly-polys-zero-solution p qs N α = (mpoly-polys-solution p qs N α
∧ (∀ i. i /∈ insert 0 (Suc ‘ N) −→ α i = 0))

lemma resultant-mpoly-polys-zero-solution: fixes p :: complex mpoly
assumes nz: 0 /∈ qs ‘ N
and i: i ∈ N

shows
mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N − {i}) α
=⇒ ∃ v. mpoly-polys-zero-solution p qs N (α(Suc i := v))

mpoly-polys-zero-solution p qs N α
=⇒ mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N −

{i}) (α(Suc i := 0))
proof −

assume mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N
− {i}) α

hence 1 : mpoly-polys-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N −
{i}) α and 2 : (∀ i. i /∈ insert 0 (Suc ‘ (N − {i})) −→ α i = 0)

unfolding mpoly-polys-zero-solution-def by auto
from resultant-mpoly-polys-solution[of qs N - p α, OF nz i] 1 obtain v where

mpoly-polys-solution p qs N (α(Suc i := v)) by auto
with 2 have mpoly-polys-zero-solution p qs N (α(Suc i := v)) using i unfolding

mpoly-polys-zero-solution-def by auto
thus ∃ v. mpoly-polys-zero-solution p qs N (α(Suc i := v)) ..

next
assume mpoly-polys-zero-solution p qs N α
from this[unfolded mpoly-polys-zero-solution-def] have 1 : mpoly-polys-solution p

qs N α and 2 : ∀ i. i /∈ insert 0 (Suc ‘ N) −→ α i = 0 by auto
from 1 have mpoly-polys-solution p qs N (α(Suc i := α (Suc i))) by auto
hence ∃ v. mpoly-polys-solution p qs N (α(Suc i := v)) by blast
with resultant-mpoly-polys-solution[of qs N - p α, OF nz i] have mpoly-polys-solution

(resultant-mpoly-poly (Suc i) p (qs i)) qs (N − {i}) α by auto
hence mpoly-polys-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N − {i})

(α (Suc i := 0))
unfolding mpoly-polys-solution-def
apply simp
apply (subst insertion-irrelevant-vars[of - - α])
by (insert vars-resultant-mpoly-poly, auto)

thus mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs (N −
{i}) (α(Suc i := 0))

unfolding mpoly-polys-zero-solution-def using 2 by auto
qed

The following two lemmas show that if we start with a system of polynomials
with finitely many solutions, then the resulting polynomial cannot be the
zero-polynomial.
lemma finite-resultant-mpoly-polys-non-empty: fixes p :: complex mpoly

39

assumes nz: 0 /∈ qs ‘ N
and i: i ∈ N
and fin: finite {α. mpoly-polys-zero-solution p qs N α}

shows finite {α. mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (qs i))
qs (N − {i}) α}
proof −

let ?solN = mpoly-polys-zero-solution p qs N
let ?solN1 = mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (qs i)) qs

(N − {i})
let ?x = Suc i
note defs = mpoly-polys-zero-solution-def
define zero where zero α = α(?x := 0) for α :: nat ⇒ complex
{

fix α
assume sol: ?solN1 α
from sol[unfolded defs] have 0 : α ?x = 0 by auto
from resultant-mpoly-polys-zero-solution(1)[of qs N i p, OF nz i sol] obtain v

where ?solN (α(?x := v)) by auto
hence sol: α(?x := v) ∈ {α. ?solN α} by auto
hence zero (α(?x := v)) ∈ zero ‘ {α. ?solN α} by auto
also have zero (α(?x := v)) = α using 0 by (auto simp: zero-def)
finally have α ∈ zero ‘ {α. ?solN α} .

}
hence {α. ?solN1 α} ⊆ zero ‘ {α. ?solN α} by blast
from finite-subset[OF this finite-imageI [OF fin]]
show ?thesis .

qed

lemma finite-resultant-mpoly-polys-empty: fixes p :: complex mpoly
assumes finite {α. mpoly-polys-zero-solution p qs {} α}
shows p 6= 0

proof
define g where g x = (λ i :: nat. if i = 0 then x else 0) for x :: complex
assume p = 0
hence ∀ x. mpoly-polys-zero-solution p qs {} (g x)

unfolding mpoly-polys-zero-solution-def mpoly-polys-solution-def g-def by auto
hence range g ⊆ {α. mpoly-polys-zero-solution p qs {} α} by auto
from finite-subset[OF this assms] have finite (range g) .
moreover have inj g unfolding g-def inj-on-def by metis
ultimately have finite (UNIV :: complex set) by simp
thus False using infinite-UNIV-char-0 by auto

qed

4.4 Elimination of Auxiliary Variables
fun eliminate-aux-vars :: ′a :: comm-ring-1 mpoly ⇒ (nat ⇒ ′a poly) ⇒ nat list
⇒ ′a poly where

eliminate-aux-vars p qs [] = mpoly-to-poly 0 p
| eliminate-aux-vars p qs (i # is) = eliminate-aux-vars (resultant-mpoly-poly (Suc

40

i) p (qs i)) qs is

lemma eliminate-aux-vars-of-int-poly:
eliminate-aux-vars (map-mpoly (of-int :: - ⇒ ′a :: {comm-ring-1 ,ring-char-0})

mp) (of-int-poly ◦ qs) is
= of-int-poly (eliminate-aux-vars mp qs is)

proof −
let ?h = of-int :: - ⇒ ′a
interpret mp: comm-ring-hom (map-mpoly ?h)

by (rule of-int-hom.comm-ring-hom-mpoly-map)
show ?thesis
proof (induct is arbitrary: mp)

case Nil
show ?case by (simp add: of-int-hom.mpoly-to-poly-map-mpoly-hom)

next
case (Cons i is mp)
show ?case unfolding eliminate-aux-vars.simps Cons[symmetric]

apply (rule arg-cong[of - - λ x. eliminate-aux-vars x - -], unfold o-def)
by (rule of-int-hom.resultant-mpoly-poly-hom)

qed
qed

The polynomial of the elimination process will represent the first value α 0
of any solution to the multi-polynomial problem.
lemma eliminate-aux-vars: fixes p :: complex mpoly

assumes distinct is
and vars p ⊆ insert 0 (Suc ‘ set is)
and finite {α. mpoly-polys-zero-solution p qs (set is) α}
and 0 /∈ qs ‘ set is
and mpoly-polys-solution p qs (set is) α

shows poly (eliminate-aux-vars p qs is) (α 0) = 0 ∧ eliminate-aux-vars p qs is 6=
0

using assms
proof (induct is arbitrary: p)

case (Nil p)
from Nil(3) finite-resultant-mpoly-polys-empty[of p]
have p0 : p 6= 0 by auto
from Nil(2) have vars: vars p ⊆ {0} by auto
note [simp] = poly-eq-insertion[OF this]
from Nil(5)[unfolded mpoly-polys-solution-def]
have insertion α p = 0 by auto
also have insertion α p = insertion (λv. α 0) p

by (rule insertion-irrelevant-vars, insert vars, auto)
finally
show ?case using p0 mpoly-to-poly-inverse[OF vars] by (auto simp: poly-to-mpoly0)

next
case (Cons i is p)
let ?x = Suc i

41

let ?p = resultant-mpoly-poly ?x p (qs i)
have dist: distinct is using Cons(2) by auto
have vars: vars ?p ⊆ insert 0 (Suc ‘ set is) using Cons(3) vars-resultant-mpoly-poly[of

?x p qs i] by auto
have fin: finite {α. mpoly-polys-zero-solution ?p qs (set is) α}
using finite-resultant-mpoly-polys-non-empty[of qs set (i # is) i p, OF Cons(5)]

Cons(2 ,4) by auto
have 0 : 0 /∈ qs ‘ set is using Cons(5) by auto
have (∃ v. mpoly-polys-solution p qs (set (i # is)) (α(?x := v)))

using Cons(6) by (intro exI [of - α ?x], auto)
from this resultant-mpoly-polys-solution[OF Cons(5), of i p α]
have mpoly-polys-solution ?p qs (set (i # is) − {i}) α

by auto
also have set (i # is) − {i} = set is using Cons(2) by auto
finally have mpoly-polys-solution ?p qs (set is) α by auto
note IH = Cons(1)[OF dist vars fin 0 this]
show ?case unfolding eliminate-aux-vars.simps using IH by simp

qed

4.5 A Representing Polynomial for the Roots of a Polyno-
mial with Algebraic Coefficients

First convert an algebraic polynomial into a system of integer polynomials.
definition initial-root-problem :: ′a :: {is-rat,field-gcd} poly ⇒ int mpoly × (nat
× ′a × int poly) list where

initial-root-problem p = (let
n = degree p;
cs = coeffs p;
rcs = remdups (filter (λ c. c /∈ �) cs);
pairs = map (λ c. (c, min-int-poly c)) rcs;
spairs = sort-key (λ (c,f). degree f) pairs; — sort by degree so that easy

computations will be done first
triples = zip [0 ..< length spairs] spairs;
mpoly = (sum (λ i. let c = coeff p i in

MPoly-Type.monom (Poly-Mapping.single 0 i) 1 ∗ — xi
0 ∗ ...

(case find (λ (j,d,f). d = c) triples of
None ⇒ Const (to-int c)
| Some (j,pair) ⇒ Var (Suc j)))
{..n})

in (mpoly, triples))

And then eliminate all auxiliary variables
definition representative-poly :: ′a :: {is-rat,field-char-0 ,field-gcd} poly ⇒ int poly
where

representative-poly p = (case initial-root-problem p of
(mp, triples) ⇒
let is = map fst triples;

qs = (λ j. snd (snd (triples ! j)))
in eliminate-aux-vars mp qs is)

42

4.6 Soundness Proof for Complex Algebraic Polynomials
lemma get-representative-complex: fixes p :: complex poly

assumes p: p 6= 0
and algebraic: Ball (set (coeffs p)) algebraic
and res: initial-root-problem p = (mp, triples)
and is: is = map fst triples
and qs:

∧
j. j < length is =⇒ qs j = snd (snd (triples ! j))

and root: poly p x = 0
shows eliminate-aux-vars mp qs is represents x
proof −

define rcs where rcs = remdups (filter (λc. c /∈ �) (coeffs p))
define spairs where spairs = sort-key (λ(c, f). degree f) (map (λc. (c, min-int-poly

c)) rcs)
let ?find = λ i. find (λ(j, d, f). d = coeff p i) triples
define trans where trans i = (case ?find i of None ⇒ Const (to-int (coeff p i))
| Some (j, pair) ⇒ Var (Suc j)) for i

note res = res[unfolded initial-root-problem-def Let-def , folded rcs-def , folded
spairs-def]

have triples: triples = zip [0 ..<length spairs] spairs using res by auto
note res = res[folded triples, folded trans-def]
have mp: mp = (

∑
i≤degree p. MPoly-Type.monom (Poly-Mapping.single 0 i) 1

∗ trans i) using res by auto
have dist-rcs: distinct rcs unfolding rcs-def by auto
hence distinct (map fst (map (λc. (c, min-int-poly c)) rcs)) by (simp add: o-def)
hence dist-spairs: distinct (map fst spairs) unfolding spairs-def

by (metis (no-types, lifting) distinct-map distinct-sort set-sort)
{

fix c
assume c ∈ set rcs
hence c ∈ set (coeffs p) unfolding rcs-def by auto
with algebraic have algebraic c by auto

} note rcs-alg = this
{

fix c
assume c: c ∈ range (coeff p) c /∈ �
hence c ∈ set (coeffs p) unfolding range-coeff by auto
with c have crcs: c ∈ set rcs unfolding rcs-def by auto
from rcs-alg[OF crcs] have algebraic c .
from min-int-poly-represents[OF this]
have min-int-poly c represents c .
hence ∃ f . (c,f) ∈ set spairs ∧ f represents c using crcs unfolding spairs-def

by auto
}
have dist-is: distinct is unfolding is triples by simp
note eliminate = eliminate-aux-vars[OF dist-is]
let ?mp = map-mpoly of-int mp :: complex mpoly
have vars-mp: vars mp ⊆ insert 0 (Suc ‘ set is)

unfolding mp
apply (rule order .trans[OF vars-setsum], force)

43

apply (rule UN-least, rule order .trans[OF vars-mult], rule Un-least)
apply (intro order .trans[OF vars-monom-single], force)

subgoal for i
proof −

show ?thesis
proof (cases ?find i)

case None
show ?thesis unfolding trans-def None by auto

next
case (Some j-pair)

then obtain j c f where find: ?find i = Some (j,c,f) by (cases j-pair , auto)
from find-Some-D[OF find] have Suc j ∈ Suc ‘ (fst ‘ set triples) by force
thus ?thesis unfolding trans-def find by (simp add: vars-Var is)

qed
qed
done

hence varsMp: vars ?mp ⊆ insert 0 (Suc ‘ set is) using vars-map-mpoly-subset
by auto

note eliminate = eliminate[OF this]
let ?f = λ j. snd (snd (triples ! j))
let ?c = λ j. fst (snd (triples ! j))
{

fix j
assume j ∈ set is
hence (?c j, ?f j) ∈ set spairs unfolding is triples by simp
hence ?f j represents ?c j ?f j = min-int-poly (?c j) unfolding spairs-def

by (auto intro: min-int-poly-represents[OF rcs-alg])
} note is-repr = this
let ?qs = (of-int-poly o qs) :: nat ⇒ complex poly
{

fix j
assume j ∈ set is
hence j < length is unfolding is triples by simp

} note j-len = this
have qs-0 : 0 /∈ qs ‘ set is
proof

assume 0 ∈ qs ‘ set is
then obtain j where j: j ∈ set is and 0 : qs j = 0 by auto
from is-repr [OF j] have ?f j 6= 0 by auto
with 0 show False unfolding qs[OF j-len[OF j]] by auto

qed
hence qs0 : 0 /∈ ?qs ‘ set is by auto
note eliminate = eliminate[OF - this]
define roots where roots p = (SOME xs. set xs = {x . poly p x = 0}) for p ::

complex poly
{

fix p :: complex poly
assume p 6= 0
from someI-ex[OF finite-list[OF poly-roots-finite[OF this]], folded roots-def]

44

have set (roots p) = {x. poly p x = 0} .
} note roots = this
define qs-roots where qs-roots = concat-lists (map (λ i. roots (?qs i)) [0 ..<

length triples])
define evals where evals = concat (map (λ part. let

q = partial-insertion (λ i. part ! (i − 1)) 0 ?mp;
new-roots = roots q
in map (λ r . r # part) new-roots) qs-roots)

define conv where conv roots i = (if i ≤ length triples then roots ! i else 0 ::
complex) for roots i

define alphas where alphas = map conv evals
{

fix n
assume n: n ∈ {..degree p}
let ?cn = coeff p n

from n have mem: ?cn ∈ set (coeffs p) using p unfolding Polynomial.coeffs-def
by force

{
assume ?cn /∈ �
with mem have ?cn ∈ set rcs unfolding rcs-def by auto
hence (?cn, min-int-poly ?cn) ∈ set spairs unfolding spairs-def by auto
hence ∃ i. (i, ?cn, min-int-poly ?cn) ∈ set triples unfolding triples set-zip

set-conv-nth
by force

hence ?find n 6= None unfolding find-None-iff by auto
}

} note non-int-find = this
have fin: finite {α. mpoly-polys-zero-solution ?mp ?qs (set is) α}
proof (rule finite-subset[OF - finite-set[of alphas]], standard, clarify)

fix α
assume sol: mpoly-polys-zero-solution ?mp ?qs (set is) α
define part where part = map (λ i. α (Suc i)) [0 ..< length triples]
{

fix i
assume i > length triples
hence i /∈ insert 0 (Suc ‘ set is) unfolding triples is by auto
hence α i = 0 using sol[unfolded mpoly-polys-zero-solution-def] by auto

} note alpha0 = this
{

fix i
assume i < length triples
hence i: i ∈ set is unfolding triples is by auto
from qs0 i have 0 : ?qs i 6= 0 by auto
from i sol[unfolded mpoly-polys-zero-solution-def mpoly-polys-solution-def]
have poly (?qs i) (α (Suc i)) = 0 by auto
hence α (Suc i) ∈ set (roots (?qs i)) poly (?qs i) (α (Suc i)) = 0 using

roots[OF 0] by auto
} note roots2 = this
hence part: part ∈ set qs-roots

45

unfolding part-def qs-roots-def concat-lists-listset listset by auto
let ?gamma = (λi. part ! (i − 1))
let ?f = partial-insertion ?gamma 0 ?mp
have α 0 ∈ set (roots ?f)
proof −

from sol[unfolded mpoly-polys-zero-solution-def mpoly-polys-solution-def]
have 0 = insertion α ?mp by simp
also have . . . = insertion (λ i. if i ≤ length triples then α i else part ! (i −

1)) ?mp
(is - = insertion ?beta -)

proof (rule insertion-irrelevant-vars)
fix i
assume i ∈ vars ?mp
from set-mp[OF varsMp this] have i ≤ length triples unfolding triples is

by auto
thus α i = ?beta i by auto

qed
also have . . . = poly (partial-insertion (?beta(0 := part ! 0)) 0 ?mp) (?beta

0)
by (subst insertion-partial-insertion, auto)

also have ?beta(0 := part ! 0) = ?gamma unfolding part-def
by (intro ext, auto)

finally have root: poly ?f (α 0) = 0 by auto
have ?f 6= 0
proof

interpret mp: inj-comm-ring-hom map-mpoly complex-of-int
by (rule of-int-hom.inj-comm-ring-hom-mpoly-map)

assume ?f = 0
hence 0 = coeff ?f (degree p) by simp

also have . . . = insertion ?gamma (coeff (mpoly-to-mpoly-poly 0 ?mp)
(degree p))

unfolding insertion-coeff-mpoly-to-mpoly-poly[symmetric] ..
also have coeff (mpoly-to-mpoly-poly 0 ?mp) (degree p) = map-mpoly of-int

(coeff (mpoly-to-mpoly-poly 0 mp) (degree p))
unfolding of-int-hom.mpoly-to-mpoly-poly-map-mpoly-hom
by (subst coeff-map-poly, auto)

also have coeff (mpoly-to-mpoly-poly 0 mp) (degree p) =
(
∑

x. MPoly-Type.monom (remove-key 0 x) (MPoly-Type.coeff mp x) when
lookup x 0 = degree p)

unfolding mpoly-to-mpoly-poly-def when-def
by (subst coeff-hom.hom-Sum-any, force, unfold Polynomial.coeff-monom,

auto)
also have . . . = (

∑
x. MPoly-Type.monom (remove-key 0 x)

(
∑

xa≤degree p. let xx = Poly-Mapping.single 0 xa in∑
(a, b). MPoly-Type.coeff (trans xa) b when x = xx + b when

a = xx) when
lookup x 0 = degree p) unfolding mp coeff-sum More-MPoly-Type.coeff-monom

coeff-mpoly-times Let-def
apply (subst prod-fun-unfold-prod, force, force)

46

apply (unfold when-mult, subst when-commute)
by (auto simp: when-def intro!: Sum-any.cong sum.cong if-cong arg-cong[of

- - MPoly-Type.monom -])
also have . . . = (

∑
x. MPoly-Type.monom (remove-key 0 x)

(
∑

i≤degree p.
∑

m. MPoly-Type.coeff (trans i) m when x = Poly-Mapping.single
0 i + m) when

lookup x 0 = degree p)
unfolding Sum-any-when-dependent-prod-left Let-def by simp

also have . . . = (
∑

x. MPoly-Type.monom (remove-key 0 x)
(
∑

i ∈ {degree p}.
∑

m. MPoly-Type.coeff (trans i) m when x =
Poly-Mapping.single 0 i + m) when

lookup x 0 = degree p)
apply (intro Sum-any.cong when-cong refl arg-cong[of - - MPoly-Type.monom

-] sum.mono-neutral-right, force+)
apply (intro ballI Sum-any-zeroI , auto simp: when-def)
subgoal for i x
proof (goal-cases)

case 1
hence lookup x 0 > 0 by (auto simp: lookup-add)
moreover have 0 /∈ vars (trans i) unfolding trans-def

by (auto split: option.splits simp: vars-Var)
ultimately show ?thesis

by (metis set-mp coeff-notin-vars in-keys-iff neq0-conv)
qed
done

also have . . . = (
∑

x. MPoly-Type.monom (remove-key 0 x)
(
∑

m. MPoly-Type.coeff (trans (degree p)) m when x = Poly-Mapping.single
0 (degree p) + m) when

lookup x 0 = degree p) (is - = ?mid)
by simp

also have insertion ?gamma (map-mpoly of-int . . .) 6= 0
proof (cases ?find (degree p))

case None
from non-int-find[of degree p] None
have lcZ : lead-coeff p ∈ � by auto
have ?mid = (

∑
x. MPoly-Type.monom (remove-key 0 x)

(
∑

m. (to-int (lead-coeff p) when
x = Poly-Mapping.single 0 (degree p) + m when m = 0)) when

lookup x 0 = degree p)
using None unfolding trans-def None option.simps mpoly-coeff-Const

when-def
by (intro Sum-any.cong if-cong refl, intro arg-cong[of - - MPoly-Type.monom

-] Sum-any.cong, auto)
also have . . . = (

∑
x. MPoly-Type.monom (remove-key 0 x)

(to-int (lead-coeff p) when x = Poly-Mapping.single 0 (degree p)) when
lookup x 0 = degree p when x = Poly-Mapping.single 0 (degree p))

unfolding Sum-any-when-equal[of - 0]
by (intro Sum-any.cong, auto simp: when-def)

also have . . . = MPoly-Type.monom (remove-key 0 (Poly-Mapping.single

47

0 (degree p)))
(to-int (lead-coeff p))
unfolding Sum-any-when-equal by simp

also have . . . = Const (to-int (lead-coeff p)) by (simp add: mpoly-monom-0-eq-Const)
also have map-mpoly of-int . . . = Const (lead-coeff p)

unfolding of-int-hom.map-mpoly-hom-Const of-int-to-int[OF lcZ] by
simp

also have insertion ?gamma . . . = lead-coeff p by simp
also have . . . 6= 0 using p by auto
finally show ?thesis .

next
case Some
from find-Some-D[OF this] Some obtain j f where mem: (j,lead-coeff

p,f) ∈ set triples and
Some: ?find (degree p) = Some (j, lead-coeff p, f) by auto

from mem have j: j < length triples unfolding triples set-zip by auto
have ?mid = (

∑
x. if lookup x 0 = degree p

then MPoly-Type.monom (remove-key 0 x)
(
∑

m. 1 when m = Poly-Mapping.single (Suc j) 1 when x =
Poly-Mapping.single 0 (degree p) + m)

else 0)
unfolding trans-def Some option.simps split when-def coeff-Var by auto

also have . . . = (
∑

x. if lookup x 0 = degree p
then MPoly-Type.monom (remove-key 0 x) 1

when x = Poly-Mapping.single 0 (degree p) + Poly-Mapping.single
(Suc j) 1

else 0 when x = Poly-Mapping.single 0 (degree p) + Poly-Mapping.single
(Suc j) 1)

apply (subst when-commute)
apply (unfold Sum-any-when-equal)
by (rule Sum-any.cong, auto simp: when-def)
also have . . . = (

∑
x. (MPoly-Type.monom (remove-key 0 x) 1 when

lookup x 0 = degree p)
when x = Poly-Mapping.single 0 (degree p) + Poly-Mapping.single (Suc

j) 1)
by (rule Sum-any.cong, auto simp: when-def)

also have . . . = MPoly-Type.monom (Poly-Mapping.single (Suc j) 1) 1
unfolding Sum-any-when-equal unfolding when-def
by (simp add: lookup-add remove-key-add[symmetric]

remove-key-single ′ lookup-single)
also have . . . = Var (Suc j)

by (intro mpoly-eqI , simp add: coeff-Var coeff-monom)
also have map-mpoly complex-of-int . . . = Var (Suc j)

by (simp add: map-mpoly-Var)
also have insertion ?gamma . . . = part ! j by simp
also have . . . = α (Suc j) unfolding part-def using j by auto
also have . . . 6= 0
proof

assume α (Suc j) = 0

48

with roots2 (2)[OF j] have root0 : poly (?qs j) 0 = 0 by auto
from j is have ji: j < length is by auto
hence jis: j ∈ set is unfolding is triples set-zip by auto
from mem have tj: triples ! j = (j, lead-coeff p, f) unfolding triples

set-zip by auto
from root0 [unfolded qs[OF ji] o-def tj]
have rootf : poly f 0 = 0 by auto
from is-repr [OF jis, unfolded tj] have rootlc: ipoly f (lead-coeff p) = 0

and f : f = min-int-poly (lead-coeff p) by auto
from f have irr : irreducible f by auto
from rootf have [:0 ,1 :] dvd f using dvd-iff-poly-eq-0 by fastforce
from this[unfolded dvd-def] obtain g where f : f = [:0 , 1 :] ∗ g by auto
from irreducibleD[OF irr f] have is-unit g

by (metis is-unit-poly-iff one-neq-zero one-pCons pCons-eq-iff)
then obtain c where g: g = [:c:] and c: c dvd 1 unfolding is-unit-poly-iff

by auto
from rootlc[unfolded f g] c have lead-coeff p = 0 by auto
with p show False by auto

qed
finally show ?thesis .

qed
finally show False by auto

qed
from roots[OF this] root show ?thesis by auto

qed
hence α 0 # part ∈ set evals

unfolding evals-def set-concat Let-def set-map
by (auto intro!: bexI [OF - part])

hence map α [0 ..< Suc (length triples)] ∈ set evals unfolding part-def
by (metis Utility.map-upt-Suc)

hence conv (map α [0 ..< Suc (length triples)]) ∈ set alphas unfolding al-
phas-def by auto

also have conv (map α [0 ..< Suc (length triples)]) = α
proof

fix i
show conv (map α [0 ..<Suc (length triples)]) i = α i

unfolding conv-def using alpha0
by (cases i < length triples; cases i = length triples; auto simp: nth-append)

qed
finally show α ∈ set alphas .

qed
note eliminate = eliminate[OF this]
define α where α x j = (if j = 0 then x else ?c (j − 1)) for x j
have α: α x (Suc j) = ?c j α x 0 = x for j x unfolding α-def by auto
interpret mp: inj-comm-ring-hom map-mpoly complex-of-int by (rule of-int-hom.inj-comm-ring-hom-mpoly-map)
have ins: insertion (α x) ?mp = poly p x for x
unfolding poly-altdef mp mp.hom-sum insertion-sum insertion-mult mp.hom-mult

proof (rule sum.cong[OF refl], subst mult.commute, rule arg-cong2 [of - - - - (∗)])
fix n

49

assume n: n ∈ {..degree p}
let ?cn = coeff p n

from n have mem: ?cn ∈ set (coeffs p) using p unfolding Polynomial.coeffs-def
by force

have insertion (α x) (map-mpoly complex-of-int (MPoly-Type.monom (Poly-Mapping.single
0 n) 1)) = (

∏
a. α x a ^ (n when a = 0))

unfolding of-int-hom.map-mpoly-hom-monom by (simp add: lookup-single)
also have . . . = (

∏
a. if a = 0 then α x a ^ n else 1)

by (rule Prod-any.cong, auto simp: when-def)
also have . . . = α x 0 ^ n by simp
also have . . . = x ^ n unfolding α ..
finally show insertion (α x) (map-mpoly complex-of-int (MPoly-Type.monom

(Poly-Mapping.single 0 n) 1)) = x ^ n .
show insertion (α x) (map-mpoly complex-of-int (trans n)) = ?cn
proof (cases ?find n)

case None
with non-int-find[OF n] have ints: ?cn ∈ � by auto
from None show ?thesis unfolding trans-def using ints

by (simp add: of-int-hom.map-mpoly-hom-Const of-int-to-int)
next

case (Some triple)
from find-Some-D[OF this] this obtain j f

where mem: (j,?cn,f) ∈ set triples and Some: ?find n = Some (j,?cn,f)
by (cases triple, auto)

from mem have triples ! j = (j,?cn,f) unfolding triples set-zip by auto
thus ?thesis unfolding trans-def Some by (simp add: map-mpoly-Var α-def)

qed
qed
from root have insertion (α x) ?mp = 0 unfolding ins by auto
hence mpoly-polys-solution ?mp ?qs (set is) (α x)

unfolding mpoly-polys-solution-def
proof (standard, intro ballI)

fix j
assume j: j ∈ set is
from is-repr [OF this]
show poly (?qs j) (α x (Suc j)) = 0 unfolding α qs[OF j-len[OF j]] o-def by

auto
qed
note eliminate = eliminate[OF this, unfolded α eliminate-aux-vars-of-int-poly]
thus eliminate-aux-vars mp qs is represents x by auto

qed

lemma representative-poly-complex: fixes x :: complex
assumes p: p 6= 0

and algebraic: Ball (set (coeffs p)) algebraic
and root: poly p x = 0

shows representative-poly p represents x
proof −

obtain mp triples where init: initial-root-problem p = (mp, triples) by force

50

from get-representative-complex[OF p algebraic init refl - root]
show ?thesis unfolding representative-poly-def init Let-def by auto

qed

4.7 Soundness Proof for Real Algebraic Polynomials

We basically use the result for complex algebraic polynomials which are a
superset of real algebraic polynomials.
lemma initial-root-problem-complex-of-real-poly:

initial-root-problem (map-poly complex-of-real p) =
map-prod id (map (map-prod id (map-prod complex-of-real id))) (initial-root-problem

p)
proof −

let ?c = of-real :: real ⇒ complex
let ?cp = map-poly ?c
let ?p = ?cp p :: complex poly
define cn where cn = degree ?p
define n where n = degree p
have n: cn = n unfolding n-def cn-def by simp
note def = initial-root-problem-def [of ?p]
note def = def [folded cn-def , unfolded n]
define ccs where ccs = coeffs ?p
define cs where cs = coeffs p
have cs: ccs = map ?c cs

unfolding ccs-def cs-def by auto
note def = def [folded ccs-def]
define crcs where crcs = remdups (filter (λc. c /∈ �) ccs)
define rcs where rcs = remdups (filter (λc. c /∈ �) cs)
have rcs: crcs = map ?c rcs

unfolding crcs-def rcs-def cs by (induct cs, auto)
define cpairs where cpairs = map (λc. (c, min-int-poly c)) crcs
define pairs where pairs = map (λc. (c, min-int-poly c)) rcs
have pairs: cpairs = map (map-prod ?c id) pairs

unfolding pairs-def cpairs-def rcs by auto
define cspairs where cspairs = sort-key (λ(c, y). degree y) cpairs
define spairs where spairs = sort-key (λ(c, y). degree y) pairs
have spairs: cspairs = map (map-prod ?c id) spairs

unfolding spairs-def cspairs-def pairs
by (rule sym, rule map-sort-key, auto)

define ctriples where ctriples = zip [0 ..<length cspairs] cspairs
define triples where triples = zip [0 ..<length spairs] spairs
have triples: ctriples = map (map-prod id (map-prod ?c id)) triples

unfolding ctriples-def triples-def spairs by (rule nth-equalityI , auto)
note def = def [unfolded Let-def , folded crcs-def , folded cpairs-def , folded cspairs-def ,

folded ctriples-def ,
unfolded of-real-hom.coeff-map-poly-hom]

note def2 = initial-root-problem-def [of p, unfolded Let-def , folded n-def cs-def ,
folded rcs-def , folded pairs-def ,

folded spairs-def , folded triples-def]

51

show initial-root-problem ?p = map-prod id (map (map-prod id (map-prod ?c
id))) (initial-root-problem p)

unfolding def def2 triples to-int-complex-of-real
by (simp, intro sum.cong refl arg-cong[of - - λ x. - ∗ x], induct triples, auto)

qed

lemma representative-poly-real: fixes x :: real
assumes p: p 6= 0
and algebraic: Ball (set (coeffs p)) algebraic
and root: poly p x = 0

shows representative-poly p represents x
proof −

obtain mp triples where init: initial-root-problem p = (mp, triples) by force
define is where is = map fst triples
define qs where qs = (λ j. snd (snd (triples ! j)))
let ?c = of-real :: real ⇒ complex
let ?cp = map-poly ?c
let ?ct = map (map-prod id (map-prod ?c id))
let ?p = ?cp p :: complex poly
have p: ?p 6= 0 using p by auto
have initial-root-problem ?p = map-prod id ?ct (initial-root-problem p)

by (rule initial-root-problem-complex-of-real-poly)
from this[unfolded init]
have res: initial-root-problem ?p = (mp, ?ct triples)

by auto
from root have 0 = ?c (poly p x) by simp
also have . . . = poly ?p (?c x) by simp
finally have root: poly ?p (?c x) = 0 by simp
have qs: j < length is =⇒ qs j = snd (snd (?ct triples ! j)) for j

unfolding is-def qs-def by (auto simp: set-conv-nth)
have is: is = map fst (?ct triples) unfolding is-def by auto
{

fix cc
assume cc ∈ set (coeffs ?p)
then obtain c where c ∈ set (coeffs p) and cc: cc = ?c c by auto
from algebraic this(1) have algebraic cc

unfolding cc algebraic-complex-iff by auto
}
hence algebraic: Ball (set (coeffs ?p)) algebraic ..
from get-representative-complex[OF p this res is qs root]
have eliminate-aux-vars mp qs is represents ?c x .
hence eliminate-aux-vars mp qs is represents x by simp
thus ?thesis unfolding representative-poly-def res init split Let-def qs-def is-def

.
qed

52

4.8 Algebraic Closedness of Complex Algebraic Numbers
lemma complex-algebraic-numbers-are-algebraically-closed:

assumes nc: ¬ constant (poly p)
and alg: Ball (set (coeffs p)) algebraic

shows ∃ z :: complex. algebraic z ∧ poly p z = 0
proof −

from fundamental-theorem-of-algebra[OF nc] obtain z where
root: poly p z = 0 by auto

from algebraic-representsI [OF representative-poly-complex[OF - alg root]] nc root
have algebraic z ∧ poly p z = 0

using constant-degree degree-0 by blast
thus ?thesis ..

qed

end

4.9 Executable Version to Compute Representative Polyno-
mials

theory Roots-of-Algebraic-Poly-Impl
imports

Roots-of-Algebraic-Poly
Polynomials.MPoly-Type-Class-FMap

begin

We need to specialize our code to real and complex polynomials, since alge-
braic and min-int-poly are not executable in their parametric versions.
definition initial-root-problem-real :: real poly ⇒ - where
[simp]: initial-root-problem-real p = initial-root-problem p

definition initial-root-problem-complex :: complex poly ⇒ - where
[simp]: initial-root-problem-complex p = initial-root-problem p

lemmas initial-root-problem-code =
initial-root-problem-real-def [unfolded initial-root-problem-def]
initial-root-problem-complex-def [unfolded initial-root-problem-def]

declare initial-root-problem-code[code]

lemma initial-root-problem-code-unfold[code-unfold]:
initial-root-problem = initial-root-problem-complex
initial-root-problem = initial-root-problem-real
by (intro ext, simp)+

definition representative-poly-real :: real poly ⇒ - where
[simp]: representative-poly-real p = representative-poly p

definition representative-poly-complex :: complex poly ⇒ - where

53

[simp]: representative-poly-complex p = representative-poly p

lemmas representative-poly-code =
representative-poly-real-def [unfolded representative-poly-def]
representative-poly-complex-def [unfolded representative-poly-def]

declare representative-poly-code[code]

lemma representative-poly-code-unfold[code-unfold]:
representative-poly = representative-poly-complex
representative-poly = representative-poly-real
by (intro ext, simp)+

end

5 Root Filter via Interval Arithmetic
5.1 Generic Framework

We provide algorithms for finding all real or complex roots of a polyno-
mial from a superset of the roots via interval arithmetic. These algorithms
are much faster than just evaluating the polynomial via algebraic number
computations.
theory Roots-via-IA

imports
Algebraic-Numbers.Interval-Arithmetic

begin

definition interval-of-real :: nat ⇒ real ⇒ real interval where
interval-of-real prec x =

(if is-rat x then Interval x x
else let n = 2 ^ prec; x ′ = x ∗ of-int n

in Interval (of-rat (Rat.Fract bx ′c n)) (of-rat (Rat.Fract dx ′e n)))

definition interval-of-complex :: nat ⇒ complex ⇒ complex-interval where
interval-of-complex prec z =

Complex-Interval (interval-of-real prec (Re z)) (interval-of-real prec (Im z))

fun poly-interval :: ′a :: {plus,times,zero} list ⇒ ′a ⇒ ′a where
poly-interval [] - = 0
| poly-interval [c] - = c
| poly-interval (c # cs) x = c + x ∗ poly-interval cs x

definition filter-fun-complex :: complex poly ⇒ nat ⇒ complex ⇒ bool where
filter-fun-complex p = (let c = coeffs p in

(λ prec. let cs = map (interval-of-complex prec) c
in (λ x. 0 ∈c poly-interval cs (interval-of-complex prec x))))

54

definition filter-fun-real :: real poly ⇒ nat ⇒ real ⇒ bool where
filter-fun-real p = (let c = coeffs p in

(λ prec. let cs = map (interval-of-real prec) c
in (λ x. 0 ∈i poly-interval cs (interval-of-real prec x))))

definition genuine-roots :: - poly ⇒ - list ⇒ - list where
genuine-roots p xs = filter (λx. poly p x = 0) xs

lemma zero-in-interval-0 [simp, intro]: 0 ∈i 0
unfolding zero-interval-def by auto

lemma zero-in-complex-interval-0 [simp, intro]: 0 ∈c 0
unfolding zero-complex-interval-def by (auto simp: in-complex-interval-def)

lemma length-coeffs-degree ′:
length (coeffs p) = (if p = 0 then 0 else Suc (degree p))
by (cases p = 0) (auto simp: length-coeffs-degree)

lemma poly-in-poly-interval-complex:
assumes list-all2 (λc ivl. c ∈c ivl) (coeffs p) cs x ∈c ivl
shows poly p x ∈c poly-interval cs ivl

proof −
have len-eq: length (coeffs p) = length cs

using assms(1) list-all2-lengthD by blast
have coeffs p = map (λi. coeffs p ! i) [0 ..<length cs]

by (subst len-eq [symmetric], rule map-nth [symmetric])
also have . . . = map (poly.coeff p) [0 ..<length cs]

by (intro map-cong) (auto simp: nth-coeffs-coeff len-eq)
finally have list-all2 (λc ivl. c ∈c ivl) (map (poly.coeff p) [0 ..<length cs]) cs

using assms by simp
moreover have length cs ≥ length (coeffs p)

using len-eq by simp
ultimately show ?thesis using assms(2)
proof (induction cs ivl arbitrary: p x rule: poly-interval.induct)

case (1 ivl p x)
thus ?case by auto

next
case (2 c ivl p x)
have degree p = 0

using 2 by (auto simp: degree-eq-length-coeffs)
then obtain c ′ where [simp]: p = [:c ′:]

by (meson degree-eq-zeroE)
show ?case using 2 by auto

next
case (3 c1 c2 cs ivl p x)
obtain q c where [simp]: p = pCons c q

by (cases p rule: pCons-cases)
have list-all2 in-complex-interval (map (poly.coeff p) [0 ..<length (c1 # c2 #

cs)])

55

(c1 # c2 # cs)
using 3 .prems(1) by simp

also have [0 ..<length (c1 # c2 # cs)] = 0 # map Suc [0 ..<length (c2 # cs)]
by (metis length-Cons map-Suc-upt upt-conv-Cons zero-less-Suc)

also have map (poly.coeff p) . . . = c # map (poly.coeff q) [0 ..<length (c2 #
cs)]

by auto
finally have c ∈c c1 and

list-all2 in-complex-interval (map (poly.coeff q) [0 ..<length (c2 # cs)]) (c2
cs)

using 3 .prems by (simp-all del: upt-Suc)

have IH : poly q x ∈c poly-interval (c2 # cs) ivl
proof (rule 3 .IH)

show length (coeffs q) ≤ length (c2 # cs)
using 3 .prems(2) unfolding length-coeffs-degree ′ by auto

qed fact+

show ?case
using IH 3 .prems ‹c ∈c c1 ›
by (auto intro!: plus-complex-interval times-complex-interval)

qed
qed

lemma poly-in-poly-interval-real: fixes x :: real
assumes list-all2 (λc ivl. c ∈i ivl) (coeffs p) cs x ∈i ivl
shows poly p x ∈i poly-interval cs ivl

proof −
have len-eq: length (coeffs p) = length cs

using assms(1) list-all2-lengthD by blast
have coeffs p = map (λi. coeffs p ! i) [0 ..<length cs]

by (subst len-eq [symmetric], rule map-nth [symmetric])
also have . . . = map (poly.coeff p) [0 ..<length cs]

by (intro map-cong) (auto simp: nth-coeffs-coeff len-eq)
finally have list-all2 (λc ivl. c ∈i ivl) (map (poly.coeff p) [0 ..<length cs]) cs

using assms by simp
moreover have length cs ≥ length (coeffs p)

using len-eq by simp
ultimately show ?thesis using assms(2)
proof (induction cs ivl arbitrary: p x rule: poly-interval.induct)

case (1 ivl p x)
thus ?case by auto

next
case (2 c ivl p x)
have degree p = 0

using 2 by (auto simp: degree-eq-length-coeffs)
then obtain c ′ where [simp]: p = [:c ′:]

by (meson degree-eq-zeroE)
show ?case using 2 by auto

56

next
case (3 c1 c2 cs ivl p x)
obtain q c where [simp]: p = pCons c q

by (cases p rule: pCons-cases)
have list-all2 in-interval (map (poly.coeff p) [0 ..<length (c1 # c2 # cs)])

(c1 # c2 # cs)
using 3 .prems(1) by simp

also have [0 ..<length (c1 # c2 # cs)] = 0 # map Suc [0 ..<length (c2 # cs)]
by (metis length-Cons map-Suc-upt upt-conv-Cons zero-less-Suc)

also have map (poly.coeff p) . . . = c # map (poly.coeff q) [0 ..<length (c2 #
cs)]

by auto
finally have c ∈i c1 and

list-all2 in-interval (map (poly.coeff q) [0 ..<length (c2 # cs)]) (c2 # cs)
using 3 .prems by (simp-all del: upt-Suc)

have IH : poly q x ∈i poly-interval (c2 # cs) ivl
proof (rule 3 .IH)

show length (coeffs q) ≤ length (c2 # cs)
using 3 .prems(2) unfolding length-coeffs-degree ′ by auto

qed fact+

show ?case
using IH 3 .prems ‹c ∈i c1 ›
by (auto intro!: plus-in-interval times-in-interval)

qed
qed

lemma in-interval-of-real [simp, intro]: x ∈i interval-of-real prec x
unfolding interval-of-real-def by (auto simp: Let-def of-rat-rat field-simps)

lemma in-interval-of-complex [simp, intro]: z ∈c interval-of-complex prec z
unfolding interval-of-complex-def in-complex-interval-def by auto

lemma distinct-genuine-roots [simp, intro]:
distinct xs =⇒ distinct (genuine-roots p xs)
by (simp add: genuine-roots-def)

definition filter-fun :: ′a poly ⇒ (nat ⇒ ′a :: comm-ring ⇒ bool) ⇒ bool where
filter-fun p f = (∀ n x. poly p x = 0 −→ f n x)

lemma filter-fun-complex: filter-fun p (filter-fun-complex p)
unfolding filter-fun-def

proof (intro impI allI)
fix prec x
assume root: poly p x = 0
define cs where cs = map (interval-of-complex prec) (coeffs p)
have cs: list-all2 in-complex-interval (coeffs p) cs

57

unfolding cs-def list-all2-map2 by (intro list-all2-refl in-interval-of-complex)
define P where P = (λx. 0 ∈c poly-interval cs (interval-of-complex prec x))
have P x
proof −

have poly p x ∈c poly-interval cs (interval-of-complex prec x)
by (intro poly-in-poly-interval-complex in-interval-of-complex cs)

with root show ?thesis
by (simp add: P-def)

qed
thus filter-fun-complex p prec x unfolding filter-fun-complex-def Let-def P-def

using cs-def by blast
qed

lemma filter-fun-real: filter-fun p (filter-fun-real p)
unfolding filter-fun-def

proof (intro impI allI)
fix prec x
assume root: poly p x = 0
define cs where cs = map (interval-of-real prec) (coeffs p)
have cs: list-all2 in-interval (coeffs p) cs

unfolding cs-def list-all2-map2 by (intro list-all2-refl in-interval-of-real)
define P where P = (λx. 0 ∈i poly-interval cs (interval-of-real prec x))
have P x
proof −

have poly p x ∈i poly-interval cs (interval-of-real prec x)
by (intro poly-in-poly-interval-real in-interval-of-real cs)

with root show ?thesis
by (simp add: P-def)

qed
thus filter-fun-real p prec x unfolding filter-fun-real-def Let-def P-def

using cs-def by blast
qed

context
fixes p :: ′a :: comm-ring poly and f
assumes ff : filter-fun p f

begin

lemma genuine-roots-step:
genuine-roots p xs = genuine-roots p (filter (f prec) xs)
unfolding genuine-roots-def filter-filter
using ff [unfolded filter-fun-def , rule-format, of - prec] by metis

lemma genuine-roots-step-preserve-invar :
assumes {z. poly p z = 0} ⊆ set xs
shows {z. poly p z = 0} ⊆ set (filter (f prec) xs)

proof −
have {z. poly p z = 0} = set (genuine-roots p xs)

using assms by (auto simp: genuine-roots-def)

58

also have . . . = set (genuine-roots p (filter (f prec) xs))
using genuine-roots-step[of - prec] by simp

also have . . . ⊆ set (filter (f prec) xs)
by (auto simp: genuine-roots-def)

finally show ?thesis .
qed
end

lemma genuine-roots-finish:
fixes p :: ′a :: field-char-0 poly
assumes {z. poly p z = 0} ⊆ set xs distinct xs
assumes length xs = card {z. poly p z = 0}
shows genuine-roots p xs = xs

proof −
have [simp]: p 6= 0

using finite-subset[OF assms(1) finite-set] infinite-UNIV-char-0 by auto
have length (genuine-roots p xs) = length xs

unfolding genuine-roots-def using assms
by (simp add: Int-absorb2 distinct-length-filter)

thus ?thesis
unfolding genuine-roots-def
by (metis filter-True length-filter-less linorder-not-less order-eq-iff)

qed

This is type of the initial search problem. It consists of a polynomial p, a
list xs of candidate roots, the cardinality of the set of roots of p and a filter
function to drop non-roots that is parametric in a precision parameter.
typedef (overloaded) ′a genuine-roots-aux =
{(p :: ′a :: field-char-0 poly, xs, n, ff).

distinct xs ∧
{z. poly p z = 0} ⊆ set xs ∧
card {z. poly p z = 0} = n ∧
filter-fun p ff }

by (rule exI [of - (1 , [], 0 , λ - -. False)], auto simp: filter-fun-def)

setup-lifting type-definition-genuine-roots-aux

lift-definition genuine-roots ′ :: nat ⇒ ′a :: field-char-0 genuine-roots-aux ⇒ ′a
list is
λprec (p, xs, n, ff). genuine-roots p xs .

lift-definition genuine-roots-impl-step ′ :: nat ⇒ ′a :: field-char-0 genuine-roots-aux
⇒ ′a genuine-roots-aux is
λprec (p, xs, n, ff). (p, filter (ff prec) xs, n, ff)
by (safe, intro distinct-filter , auto simp: filter-fun-def)

lift-definition gr-poly :: ′a :: field-char-0 genuine-roots-aux ⇒ ′a poly is
λ(p :: ′a poly, -, -, -). p .

59

lift-definition gr-list :: ′a :: field-char-0 genuine-roots-aux ⇒ ′a list is
λ(-, xs :: ′a list, -, -). xs .

lift-definition gr-numroots :: ′a :: field-char-0 genuine-roots-aux ⇒ nat is
λ(-, -, n, -). n .

lemma genuine-roots ′-code [code]:
genuine-roots ′ prec gr =

(if length (gr-list gr) = gr-numroots gr then gr-list gr
else genuine-roots ′ (2 ∗ prec) (genuine-roots-impl-step ′ prec gr))

proof (transfer , clarify)
fix prec :: nat and p :: ′a poly and xs :: ′a list and ff
assume ∗: {z. poly p z = 0} ⊆ set xs distinct xs filter-fun p ff
show genuine-roots p xs =

(if length xs = card {z. poly p z = 0} then xs
else genuine-roots p (filter (ff prec) xs))

using genuine-roots-finish[of p xs] genuine-roots-step[of p] ∗ by auto
qed

definition initial-precision :: nat where initial-precision = 10

definition genuine-roots-impl :: ′a genuine-roots-aux ⇒ ′a :: field-char-0 list where
genuine-roots-impl = genuine-roots ′ initial-precision

lemma genuine-roots-impl: set (genuine-roots-impl p) = {z. poly (gr-poly p) z =
0}

distinct (genuine-roots-impl p)
unfolding genuine-roots-impl-def
by (transfer , auto simp: genuine-roots-def , transfer , auto)

end

6 Roots of Real and Complex Algebraic Polyno-
mials

We are now able to actually compute all roots of polynomials with real and
complex algebraic coefficients. The main addition to calculating the repre-
sentative polynomial for a superset of all roots is to find the genuine roots.
For this we utilize the approximation algorithm via interval arithmetic.
theory Roots-of-Real-Complex-Poly

imports
Roots-of-Algebraic-Poly-Impl
Roots-via-IA
MPoly-Container

begin

hide-const (open) Module.smult

60

typedef (overloaded) ′a rf-poly = { p :: ′a :: idom poly. rsquarefree p}
by (intro exI [of - 1], auto simp: rsquarefree-def)

setup-lifting type-definition-rf-poly

context
begin
lifting-forget poly.lifting

lift-definition poly-rf :: ′a :: idom rf-poly ⇒ ′a poly is λ x. x .

definition roots-of-poly-dummy :: ′a::{comm-ring-1 ,ring-no-zero-divisors} poly ⇒
-

where roots-of-poly-dummy p = (SOME xs. set xs = {r . poly p r = 0} ∧ distinct
xs)

lemma roots-of-poly-dummy-code[code]:
roots-of-poly-dummy p = Code.abort (STR ′′roots−of−poly−dummy ′′) (λ x.

roots-of-poly-dummy p)
by simp

lemma roots-of-poly-dummy: assumes p: p 6= 0
shows set (roots-of-poly-dummy p) = {x. poly p x = 0} distinct (roots-of-poly-dummy

p)
proof −
from someI-ex[OF finite-distinct-list[OF poly-roots-finite[OF p]], folded roots-of-poly-dummy-def]
show set (roots-of-poly-dummy p) = {x. poly p x = 0} distinct (roots-of-poly-dummy

p) by auto
qed

lift-definition roots-of-complex-rf-poly-part1 :: complex rf-poly ⇒ complex gen-
uine-roots-aux is
λ p. if Ball (set (Polynomial.coeffs p)) algebraic then

let q = representative-poly p;
zeros = complex-roots-of-int-poly q
in (p,zeros,Polynomial.degree p, filter-fun-complex p)

else (p,roots-of-poly-dummy p,Polynomial.degree p, filter-fun-complex p)
subgoal for p
proof −

assume rp: rsquarefree p
hence card: card {x. poly p x = 0} = Polynomial.degree p

using rsquarefree-card-degree rsquarefree-def by blast
from rp have p: p 6= 0 unfolding rsquarefree-def by auto
have ff : filter-fun p (filter-fun-complex p) by (rule filter-fun-complex)
show ?thesis
proof (cases Ball (set (Polynomial.coeffs p)) algebraic)

case False
with roots-of-poly-dummy[OF p] ff

61

show ?thesis using rp card by auto
next

case True
from rp card representative-poly-complex[of p]

complex-roots-of-int-poly[of representative-poly p] ff
show ?thesis unfolding Let-def rsquarefree-def using True by auto

qed
qed
done

lift-definition roots-of-real-rf-poly-part1 :: real rf-poly ⇒ real genuine-roots-aux is
λ p. let n = count-roots p in

if Ball (set (Polynomial.coeffs p)) algebraic then
let q = representative-poly p;
zeros = real-roots-of-int-poly q
in (p,zeros,n, filter-fun-real p)

else (p,roots-of-poly-dummy p,n, filter-fun-real p)
subgoal for p
proof −

assume rp: rsquarefree p
from rp have p: p 6= 0 unfolding rsquarefree-def by auto
have ff : filter-fun p (filter-fun-real p) by (rule filter-fun-real)
show ?thesis
proof (cases Ball (set (Polynomial.coeffs p)) algebraic)

case False
with roots-of-poly-dummy[OF p] ff
show ?thesis using rp by (auto simp: Let-def count-roots-correct)

next
case True
from rp representative-poly-real[of p]

real-roots-of-int-poly[of representative-poly p] ff
show ?thesis unfolding Let-def rsquarefree-def using True

by (auto simp: count-roots-correct)
qed

qed
done

definition roots-of-complex-rf-poly :: complex rf-poly ⇒ complex list where
roots-of-complex-rf-poly p = genuine-roots-impl (roots-of-complex-rf-poly-part1 p)

lemma roots-of-complex-rf-poly: set (roots-of-complex-rf-poly p) = {x. poly (poly-rf
p) x = 0}

distinct (roots-of-complex-rf-poly p)
unfolding roots-of-complex-rf-poly-def genuine-roots-impl
by (transfer , auto simp: genuine-roots-impl)

definition roots-of-real-rf-poly :: real rf-poly ⇒ real list where

62

roots-of-real-rf-poly p = genuine-roots-impl (roots-of-real-rf-poly-part1 p)

lemma roots-of-real-rf-poly: set (roots-of-real-rf-poly p) = {x. poly (poly-rf p) x =
0}

distinct (roots-of-real-rf-poly p)
unfolding roots-of-real-rf-poly-def genuine-roots-impl
by (transfer , auto simp: genuine-roots-impl Let-def)

typedef (overloaded) ′a rf-polys = { (a :: ′a :: idom, ps :: (′a poly × nat) list).
Ball (fst ‘ set ps) rsquarefree}

by (intro exI [of - (-,Nil)], auto)

setup-lifting type-definition-rf-polys

lift-definition yun-polys :: ′a :: {euclidean-ring-gcd,field-char-0 ,semiring-gcd-mult-normalize}
poly ⇒ ′a rf-polys

is λ p. yun-factorization gcd p
subgoal for p

apply auto
apply (intro square-free-rsquarefree)
apply (insert yun-factorization[of p, OF refl])
by (cases yun-factorization gcd p, auto dest: square-free-factorizationD)

done

context
notes [[typedef-overloaded]]

begin
lift-definition (code-dt) yun-rf :: ′a :: idom rf-polys ⇒ ′a × (′a rf-poly × nat) list
is λ x. x

by (auto simp: list-all-iff , force)
end
end
definition polys-rf :: ′a :: idom rf-polys ⇒ ′a rf-poly list where

polys-rf = map fst o snd o yun-rf

lemma yun-polys: assumes p 6= 0
shows poly p x = 0 ←→ (∃ q ∈ set (polys-rf (yun-polys p)). poly (poly-rf q) x

= 0)
using assms unfolding polys-rf-def o-def
apply transfer
subgoal for p x
proof −

assume p: p 6= 0
obtain c ps where yun: yun-factorization gcd p = (c,ps) by force
from yun-factorization[OF this] have sff : square-free-factorization p (c, ps) by

auto
from square-free-factorizationD ′(1)[OF sff] p have c0 : c 6= 0 by auto
show ?thesis unfolding yun

unfolding square-free-factorizationD ′(1)[OF sff] poly-smult poly-prod-list

63

snd-conv
mult-eq-0-iff prod-list-zero-iff
using c0 square-free-factorizationD(2)[OF sff] by force

qed
done

definition roots-of-complex-rf-polys :: complex rf-polys ⇒ complex list where
roots-of-complex-rf-polys ps = concat (map roots-of-complex-rf-poly (polys-rf ps))

lemma roots-of-complex-rf-polys:
set (roots-of-complex-rf-polys ps) = {x. ∃ p ∈ set (polys-rf ps). poly (poly-rf p) x

= 0 }
unfolding roots-of-complex-rf-polys-def set-concat set-map image-comp o-def

roots-of-complex-rf-poly by auto

definition roots-of-real-rf-polys :: real rf-polys ⇒ real list where
roots-of-real-rf-polys ps = concat (map roots-of-real-rf-poly (polys-rf ps))

lemma roots-of-real-rf-polys:
set (roots-of-real-rf-polys ps) = {x. ∃ p ∈ set (polys-rf ps). poly (poly-rf p) x = 0
}

unfolding roots-of-real-rf-polys-def set-concat set-map image-comp o-def
roots-of-real-rf-poly by auto

definition roots-of-complex-poly :: complex poly ⇒ complex list where
roots-of-complex-poly p = (if p = 0 then [] else roots-of-complex-rf-polys (yun-polys

p))

lemma roots-of-complex-poly: assumes p: p 6= 0
shows set (roots-of-complex-poly p) = {x. poly p x = 0}
using p unfolding roots-of-complex-poly-def
by (simp add: roots-of-complex-rf-polys yun-polys[OF p])

definition roots-of-real-poly :: real poly ⇒ real list where
roots-of-real-poly p = (if p = 0 then [] else roots-of-real-rf-polys (yun-polys p))

lemma roots-of-real-poly: assumes p: p 6= 0
shows set (roots-of-real-poly p) = {x. poly p x = 0}
using p unfolding roots-of-real-poly-def
by (simp add: roots-of-real-rf-polys yun-polys[OF p])

lemma distinct-concat ′:
[[distinct (list-neq xs []);∧

ys. ys ∈ set xs =⇒ distinct ys;∧
ys zs. [[ys ∈ set xs ; zs ∈ set xs ; ys 6= zs]] =⇒ set ys ∩ set zs = {}

]] =⇒ distinct (concat xs)
by (induct xs, auto split: if-splits)

64

lemma roots-of-rf-yun-polys-distinct: assumes
rt:

∧
p. set (rop p) = {x. poly (poly-rf p) x = 0}

and dist:
∧

p. distinct (rop p)
shows distinct (concat (map rop (polys-rf (yun-polys p))))

using assms unfolding polys-rf-def
proof (transfer , goal-cases)

case (1 rop p)
obtain c fs where yun: yun-factorization gcd p = (c,fs) by force
note sff = yun-factorization(1)[OF yun]
note sff1 = square-free-factorizationD[OF sff]
note sff2 = square-free-factorizationD ′[OF sff]
have rs: (p,i) ∈ set fs =⇒ rsquarefree p for p i

by (intro square-free-rsquarefree, insert sff1 (2), auto)
note 1 = 1 [OF rs]
show ?case unfolding yun snd-conv map-map o-def using 1 sff1 (3 ,5)
proof (induct fs)

case (Cons pi fs)
obtain p i where pi: pi = (p,i) by force
hence (p,i) ∈ set (pi # fs) by auto
note p-i = Cons(2−4)[OF this]
have IH : distinct (concat (map (λx. rop (fst x)) fs))

by (rule Cons(1)[OF Cons(2 ,3 ,4)], insert Cons(5), auto)
{

fix x
assume x: x ∈ set (rop p) x ∈ (

⋃
x∈set fs. set (rop (fst x)))

from x[unfolded p-i] have rtp: poly p x = 0 by auto
from x obtain q j where qj: (q,j) ∈ set fs and x: x ∈ set (rop q) by force
from Cons(2)[of q j] x qj have rtq: poly q x = 0 by auto
from Cons(5)[unfolded pi] qj have (p,i) 6= (q,j) by auto
from p-i(3)[OF - this] qj have cop: algebraic-semidom-class.coprime p q by

auto
from rtp have dvdp: [:−x,1 :] dvd p using poly-eq-0-iff-dvd by blast
from rtq have dvdq: [:−x,1 :] dvd q using poly-eq-0-iff-dvd by blast

from cop dvdp dvdq have is-unit [:−x,1 :] by (metis coprime-common-divisor)
hence False by simp

}
thus ?case unfolding pi by (auto simp: p-i(2) IH)

qed simp
qed

lemma distinct-roots-of-real-poly: distinct (roots-of-real-poly p)
unfolding roots-of-real-poly-def roots-of-real-rf-polys-def
using roots-of-rf-yun-polys-distinct[of roots-of-real-rf-poly p, OF roots-of-real-rf-poly]
by auto

lemma distinct-roots-of-complex-poly: distinct (roots-of-complex-poly p)
unfolding roots-of-complex-poly-def roots-of-complex-rf-polys-def
using roots-of-rf-yun-polys-distinct[of roots-of-complex-rf-poly p, OF roots-of-complex-rf-poly]

65

by auto

end

7 Factorization of Polynomials with Algebraic Co-
efficients

7.1 Complex Algebraic Coefficients
theory Factor-Complex-Poly

imports
Roots-of-Real-Complex-Poly

begin
hide-const (open) MPoly-Type.smult MPoly-Type.degree MPoly-Type.coeff MPoly-Type.coeffs

definition factor-complex-main :: complex poly ⇒ complex × (complex × nat) list
where

factor-complex-main p ≡ let (c,pis) = yun-rf (yun-polys p) in
(c, concat (map (λ (p,i). map (λ r . (r ,i)) (roots-of-complex-rf-poly p)) pis))

lemma roots-of-complex-poly-via-factor-complex-main:
map fst (snd (factor-complex-main p)) = roots-of-complex-poly p

proof (cases p = 0)
case True
have [simp]: yun-rf (yun-polys 0) = (0 ,[])

by (transfer , simp)
show ?thesis

unfolding factor-complex-main-def Let-def roots-of-complex-poly-def True
by simp

next
case False
hence p: (p = 0) = False by simp
obtain c rts where yun: yun-rf (yun-polys p) = (c,rts) by force
show ?thesis

unfolding factor-complex-main-def Let-def roots-of-complex-poly-def p if-False
roots-of-complex-rf-polys-def polys-rf-def o-def yun split snd-conv map-map

by (induct rts, auto simp: o-def)
qed

lemma distinct-factor-complex-main:
distinct (map fst (snd (factor-complex-main p)))
unfolding roots-of-complex-poly-via-factor-complex-main
by (rule distinct-roots-of-complex-poly)

lemma factor-complex-main: assumes rt: factor-complex-main p = (c,xis)
shows p = smult c (

∏
(x, i)←xis. [:− x, 1 :] ^ i)

0 /∈ snd ‘ set xis
proof −

66

obtain d pis where yun: yun-factorization gcd p = (d,pis) by force
obtain d ′ pis ′ where yun-rf : yun-rf (yun-polys p) = (d ′,pis ′) by force
let ?p = poly-rf
let ?map = map (λ (p,i). (?p p, i))
from yun yun-rf have d ′: d ′ = d and pis: pis = ?map pis ′

by (atomize(full), transfer , auto)
from rt[unfolded factor-complex-main-def yun-rf split Let-def d ′]
have xis: xis = concat (map (λ(p, i). map (λr . (r , i)) (roots-of-complex-rf-poly

p)) pis ′)
and d: d = c
by (auto split: if-splits)

note yun = yun-factorization[OF yun[unfolded d]]
note yun = square-free-factorizationD[OF yun(1)] yun(2)[unfolded snd-conv]
let ?exp = λ pis.

∏
(x, i)←concat

(map (λ(p, i). map (λr . (r , i)) (roots-of-complex-rf-poly p)) pis). [:− x, 1 :] ^ i
from yun(1) have p: p = smult c (

∏
(a, i)∈set pis. a ^ i) .

also have (
∏

(a, i)∈set pis. a ^ i) = (
∏

(a, i)←pis. a ^ i)
by (rule prod.distinct-set-conv-list[OF yun(5)])

also have . . . = ?exp pis ′ using yun(2 ,6) unfolding pis
proof (induct pis ′)

case (Cons pi pis)
obtain p i where pi: pi = (p,i) by force
let ?rts = roots-of-complex-rf-poly p
note Cons = Cons[unfolded pi]
have IH : (

∏
(a, i)←?map pis. a ^ i) = (?exp pis)

by (rule Cons(1)[OF Cons(2−3)], auto)
from Cons(2−3)[of ?p p i] have p: square-free (?p p) degree (?p p) 6= 0 ?p p

6= 0 monic (?p p) by auto
have (

∏
(a, i)←?map (pi # pis). a ^ i) = ?p p ^ i ∗ (

∏
(a, i)←?map pis. a

^ i)
unfolding pi by simp

also have (
∏

(a, i)←?map pis. a ^ i) = ?exp pis by (rule IH)
finally have id: (

∏
(a, i)←?map (pi # pis). a ^ i) = ?p p ^ i ∗ ?exp pis by

simp
have ?exp (pi # pis) = ?exp [(p,i)] ∗ ?exp pis unfolding pi by simp
also have ?exp [(p,i)] = (

∏
(x, i)← (map (λr . (r , i)) ?rts). [:− x, 1 :] ^ i)

by simp
also have . . . = (

∏
x ← ?rts. [:− x, 1 :])^ i

unfolding prod-list-power by (rule arg-cong[of - - prod-list], auto)
also have (

∏
x ← ?rts. [:− x, 1 :]) = ?p p

proof −
from fundamental-theorem-algebra-factorized[of ?p p, unfolded ‹monic (?p

p)›]
obtain as where as: ?p p = (

∏
a←as. [:− a, 1 :]) by (metis smult-1-left)

also have . . . = (
∏

a∈set as. [:− a, 1 :])
proof (rule sym, rule prod.distinct-set-conv-list, rule ccontr)

assume ¬ distinct as
from not-distinct-decomp[OF this] obtain as1 as2 as3 a where

a: as = as1 @ [a] @ as2 @ [a] @ as3 by blast

67

define q where q = (
∏

a←as1 @ as2 @ as3 . [:− a, 1 :])
have ?p p = (

∏
a←as. [:− a, 1 :]) by fact

also have . . . = (
∏

a←([a] @ [a]). [:− a, 1 :]) ∗ q
unfolding q-def a map-append prod-list.append by (simp only: ac-simps)

also have . . . = [:−a,1 :] ∗ [:−a,1 :] ∗ q by simp
finally have ?p p = ([:−a,1 :] ∗ [:−a,1 :]) ∗ q by simp
hence [:−a,1 :] ∗ [:−a,1 :] dvd ?p p unfolding dvd-def ..

with ‹square-free (?p p)›[unfolded square-free-def , THEN conjunct2 , rule-format,
of [:−a,1 :]]

show False by auto
qed
also have set as = {x. poly (?p p) x = 0} unfolding as poly-prod-list

by (simp add: o-def , induct as, auto)
also have . . . = set ?rts by (simp add: roots-of-complex-rf-poly(1))
also have (

∏
a∈set ?rts. [:− a, 1 :]) = (

∏
a←?rts. [:− a, 1 :])

by (rule prod.distinct-set-conv-list[OF roots-of-complex-rf-poly(2)])
finally show ?thesis by simp

qed
finally have id2 : ?exp (pi # pis) = ?p p ^ i ∗ ?exp pis by simp
show ?case unfolding id id2 ..

qed simp
also have ?exp pis ′ = (

∏
(x, i)←xis. [:− x, 1 :] ^ i) unfolding xis ..

finally show p = smult c (
∏

(x, i)←xis. [:− x, 1 :] ^ i) unfolding p xis by simp

from yun(2) have 0 /∈ snd ‘ set pis by force
with pis have 0 /∈ snd ‘ set pis ′ by force
thus 0 /∈ snd ‘ set xis unfolding xis by force

qed

definition factor-complex-poly :: complex poly ⇒ complex × (complex poly × nat)
list where

factor-complex-poly p = (case factor-complex-main p of
(c,ris) ⇒ (c, map (λ (r ,i). ([:−r ,1 :],i)) ris))

lemma distinct-factor-complex-poly:
distinct (map fst (snd (factor-complex-poly p)))

proof −
obtain c ris where main: factor-complex-main p = (c,ris) by force
show ?thesis unfolding factor-complex-poly-def main split

using distinct-factor-complex-main[of p, unfolded main]
unfolding snd-conv o-def
unfolding distinct-map by (force simp: inj-on-def)

qed

theorem factor-complex-poly: assumes fp: factor-complex-poly p = (c,qis)
shows
p = smult c (

∏
(q, i)←qis. q ^ i)

(q,i) ∈ set qis =⇒ irreducible q ∧ i 6= 0 ∧ monic q ∧ degree q = 1

68

proof −
from fp[unfolded factor-complex-poly-def]
obtain pis where fp: factor-complex-main p = (c,pis)

and qis: qis = map (λ(r , i). ([:− r , 1 :], i)) pis
by (cases factor-complex-main p, auto)

from factor-complex-main[OF fp] have p: p = smult c (
∏

(x, i)←pis. [:− x, 1 :]
^ i) and 0 : 0 /∈ snd ‘ set pis by auto

show p = smult c (
∏

(q, i)←qis. q ^ i) unfolding p qis
by (rule arg-cong[of - - λ p. smult c (prod-list p)], auto)

show (q,i) ∈ set qis =⇒ irreducible q ∧ i 6= 0 ∧ monic q ∧ degree q = 1
using linear-irreducible-field[of q] using 0 unfolding qis by force

qed

end

7.2 Real Algebraic Coefficients

We basically perform a factorization via complex algebraic numbers, take
all real roots, and then merge each pair of conjugate roots into a quadratic
factor.
theory Factor-Real-Poly

imports
Factor-Complex-Poly

begin

hide-const (open) Coset.order

fun delete-cnj :: complex ⇒ nat ⇒ (complex × nat) list ⇒ (complex × nat) list
where

delete-cnj x i ((y,j) # yjs) = (if x = y then if j = i then yjs else if j > i then
((y,j − i) # yjs) else delete-cnj x (i − j) yjs else (y,j) # delete-cnj x i yjs)

| delete-cnj - - [] = []

lemma delete-cnj-length[termination-simp]: length (delete-cnj x i yjs) ≤ length yjs
by (induct x i yjs rule: delete-cnj.induct, auto)

fun complex-roots-to-real-factorization :: (complex × nat) list ⇒ (real poly × nat)list
where

complex-roots-to-real-factorization [] = []
| complex-roots-to-real-factorization ((x,i) # xs) = (if x ∈ � then

([:−(Re x),1 :],i) # complex-roots-to-real-factorization xs else
let xx = cnj x; ys = delete-cnj xx i xs; p = map-poly Re ([:−x,1 :] ∗ [:−xx,1 :])
in (p,i) # complex-roots-to-real-factorization ys)

definition factor-real-poly :: real poly ⇒ real × (real poly × nat) list where
factor-real-poly p ≡ case factor-complex-main (map-poly of-real p) of
(c,ris) ⇒ (Re c, complex-roots-to-real-factorization ris)

69

lemma monic-imp-nonzero: monic x =⇒ x 6= 0 for x :: ′a :: semiring-1 poly by
auto

lemma delete-cnj-0 : assumes 0 /∈ snd ‘ set xis
shows 0 /∈ snd ‘ set (delete-cnj x si xis)
using assms by (induct x si xis rule: delete-cnj.induct, auto)

lemma delete-cnj: assumes
order x (

∏
(x, i)←xis. [:− x, 1 :] ^ i) ≥ si si 6= 0

shows (
∏

(x, i)←xis. [:− x, 1 :] ^ i) =
[:− x, 1 :] ^ si ∗ (

∏
(x, i)←delete-cnj x si xis. [:− x, 1 :] ^ i)

using assms
proof (induct x si xis rule: delete-cnj.induct)

case (2 x si)
hence order x 1 ≥ 1 by auto
hence [:−x,1 :]^1 dvd 1 unfolding order-divides by simp
from power-le-dvd[OF this, of 1] ‹si 6= 0 › have [:− x, 1 :] dvd 1 by simp
from divides-degree[OF this]
show ?case by auto

next
case (1 x i y j yjs)
note IH = 1 (1−2)
let ?yj = [:−y,1 :]^j
let ?yjs = (

∏
(x,i)←yjs. [:− x, 1 :] ^ i)

let ?x = [: − x, 1 :]
let ?xi = ?x ^ i
have monic (

∏
(x,i)←(y, j) # yjs. [:− x, 1 :] ^ i)

by (intro monic-prod-list, auto intro: monic-power)
then have monic (?yj ∗ ?yjs) by simp
from monic-imp-nonzero[OF this] have yy0 : ?yj ∗ ?yjs 6= 0 by auto
have id: (

∏
(x,i)←(y, j) # yjs. [:− x, 1 :] ^ i) = ?yj ∗ ?yjs by simp

from 1 (3−) have ord: i ≤ order x (?yj ∗ ?yjs) and i: i 6= 0 unfolding id by
auto

from ord[unfolded order-mult[OF yy0]] have ord: i ≤ order x ?yj + order x ?yjs
.

from this[unfolded order-linear-power]
have ord: i ≤ (if y = x then j else 0) + order x ?yjs by simp
show ?case
proof (cases x = y)

case False
from ord False have i ≤ order x ?yjs by simp
note IH = IH (2)[OF False this i]
from False have del: delete-cnj x i ((y, j) # yjs) = (y,j) # delete-cnj x i yjs

by simp
show ?thesis unfolding del id IH

by (simp add: ac-simps)
next

case True note xy = this
note IH = IH (1)[OF True]

70

show ?thesis
proof (cases j ≥ i)

case False
from ord have ord: i − j ≤ order x ?yjs unfolding xy by simp
have ?xi = ?x ^ (j + (i − j)) using False by simp
also have . . . = ?x ^ j ∗ ?x ^ (i − j)

unfolding power-add by simp
finally have xi: ?xi = ?x ^ j ∗ ?x ^ (i − j) .
from False have j 6= i ¬ i < j i − j 6= 0 by auto
note IH = IH [OF this(1 ,2) ord this(3)]
from xy False have del: delete-cnj x i ((y, j) # yjs) = delete-cnj x (i − j)

yjs by auto
show ?thesis unfolding del id unfolding IH xi unfolding xy by simp

next
case True
hence j = i ∨ i < j by auto
thus ?thesis
proof

assume i: j = i
from xy i have del: delete-cnj x i ((y, j) # yjs) = yjs by simp
show ?thesis unfolding id del unfolding xy i by simp

next
assume ij: i < j
with xy i have del: delete-cnj x i ((y, j) # yjs) = (y, j − i) # yjs by simp
from ij have idd: j = i + (j − i) by simp
show ?thesis

apply (unfold id del)
apply (subst idd)
apply (unfold power-add xy)
by simp

qed
qed

qed
qed

theorem factor-real-poly: assumes fp: factor-real-poly p = (c,qis)
shows p = smult c (

∏
(q, i)←qis. q ^ i)

(q,j) ∈ set qis =⇒ irreducible q ∧ j 6= 0 ∧ monic q ∧ degree q ∈ {1 ,2}
proof −

interpret map-poly-inj-idom-hom of-real..
have (p = smult c (

∏
(q, i)←qis. q ^ i)) ∧ ((q,j) ∈ set qis −→ irreducible q ∧ j

6= 0 ∧ monic q ∧ degree q ∈ {1 ,2})
proof (cases p = 0)

case True
have yun: yun-rf (yun-polys (0 :: complex poly)) = (0 ,[])

by (transfer , auto simp: yun-factorization-def)
have factor-real-poly p = (0 ,[]) unfolding True

by (simp add: factor-real-poly-def factor-complex-main-def yun)

71

with fp have id: c = 0 qis = [] by auto
thus ?thesis unfolding True by simp

next
case False note p0 = this
let ?c = complex-of-real
let ?rp = map-poly Re
let ?cp = map-poly ?c
let ?p = ?cp p
from fp[unfolded factor-real-poly-def]

obtain d xis where fp: factor-complex-main ?p = (d,xis)
and c: c = Re d and qis: qis = complex-roots-to-real-factorization xis

by (cases factor-complex-main ?p, auto)
from factor-complex-main[OF fp] have p: ?p = smult d (

∏
(x, i)←xis. [:−

x, 1 :] ^ i)
(is - = smult d ?q) and 0 : 0 /∈ snd ‘ set xis .

from arg-cong[OF this(1), of λ p. coeff p (degree p)]
have coeff ?p (degree ?p) = coeff (smult d ?q) (degree (smult d ?q)) .
also have coeff ?p (degree ?p) = ?c (coeff p (degree p)) by simp
also have coeff (smult d ?q) (degree (smult d ?q)) = d ∗ coeff ?q (degree ?q)

by simp
also have monic ?q by (rule monic-prod-list, auto intro: monic-power)
finally have d: d = ?c (coeff p (degree p)) by auto
from arg-cong[OF this, of Re, folded c] have c: c = coeff p (degree p) by auto
have set (coeffs ?p) ⊆ � by auto
with p have q ′: set (coeffs (smult d ?q)) ⊆ � by auto
from d p0 have d0 : d 6= 0 by auto
have smult d ?q = [:d:] ∗ ?q by auto
from real-poly-factor [OF q ′[unfolded this]] d0 d
have q: set (coeffs ?q) ⊆ � by auto
have p = ?rp ?p

by (rule sym, subst map-poly-map-poly, force, rule map-poly-idI , auto)
also have . . . = ?rp (smult d ?q) unfolding p ..
also have ?q = ?cp (?rp ?q)

by (rule sym, rule map-poly-of-real-Re, insert q, auto)
also have d = ?c c unfolding d c ..
also have smult (?c c) (?cp (?rp ?q)) = ?cp (smult c (?rp ?q)) by (simp add:

hom-distribs)
also have ?rp . . . = smult c (?rp ?q)

by (subst map-poly-map-poly, force, rule map-poly-idI , auto)
finally have p: p = smult c (?rp ?q) .
let ?fact = complex-roots-to-real-factorization
have ?rp ?q = (

∏
(q, i)←qis. q ^ i) ∧

((q, j) ∈ set qis −→ irreducible q ∧ j 6= 0 ∧ monic q ∧ degree q ∈ {1 , 2})
using q 0 unfolding qis

proof (induct xis rule: complex-roots-to-real-factorization.induct)
case 1
show ?case by simp

next
case (2 x i xis)

72

note IH = 2 (1−2)
note prems = 2 (3)
from 2 (4) have i: i 6= 0 and 0 : 0 /∈ snd ‘ set xis by auto
let ?xi = [:− x, 1 :] ^ i
let ?xis = (

∏
(x, i)←xis. [:− x, 1 :] ^ i)

have id: (
∏

(x, i)←((x,i) # xis). [:− x, 1 :] ^ i) = ?xi ∗ ?xis
by simp

show ?case
proof (cases x ∈ �)

case True
have xi: set (coeffs ?xi) ⊆ �

by (rule real-poly-power , insert True, auto)
have xis: set (coeffs ?xis) ⊆ �

by (rule real-poly-factor [OF prems[unfolded id] xi], rule linear-power-nonzero)
note IH = IH (1)[OF True xis 0]
have ?rp (?xi ∗ ?xis) = ?rp ?xi ∗ ?rp ?xis

by (rule map-poly-Re-mult[OF xi xis])
also have ?rp ?xi = (?rp [: −x,1 :])^ i

by (rule map-poly-Re-power , insert True, auto)
also have ?rp [: −x,1 :] = [:−(Re x),1 :] by auto
also have ?rp ?xis = (

∏
(a,b) ← ?fact xis. a ^ b)

using IH by auto
also have [:− Re x, 1 :] ^ i ∗ (

∏
(a,b) ← ?fact xis. a ^ b) =

(
∏

(a,b) ← ?fact ((x,i) # xis). a ^ b) using True by simp
finally have idd: ?rp (?xi ∗ ?xis) = (

∏
(a,b) ← ?fact ((x,i) # xis). a ^ b)

.
show ?thesis unfolding id idd
proof (intro conjI , force, intro impI)

assume (q, j) ∈ set (?fact ((x, i) # xis))
hence (q,j) ∈ set (?fact xis) ∨ (q = [:− Re x, 1 :] ∧ j = i)

using True by auto
thus irreducible q ∧ j 6= 0 ∧ monic q ∧ degree q ∈ {1 , 2}
proof

assume (q,j) ∈ set (?fact xis)
with IH show ?thesis by auto

next
assume q = [:− Re x, 1 :] ∧ j = i
with linear-irreducible-field[of [:− Re x, 1 :]] i show ?thesis by auto

qed
qed

next
case False
define xi where xi = [:Re x ∗ Re x + Im x ∗ Im x, − (2 ∗ Re x), 1 :]
obtain xx where xx: xx = cnj x by auto
have xi: xi = ?rp ([:−x,1 :] ∗ [:−xx,1 :]) unfolding xx xi-def by auto
have cpxi: ?cp xi = [:−x,1 :] ∗ [:−xx,1 :] unfolding xi-def

by (cases x, auto simp: xx legacy-Complex-simps)
obtain yis where yis: yis = delete-cnj xx i xis by auto
from delete-cnj-0 [OF 0] have 0 : 0 /∈ snd ‘ set yis unfolding yis .

73

from False have fact: ?fact ((x,i) # xis) = ((xi,i) # ?fact yis)
unfolding xi-def xx yis by simp

note IH = IH (2)[OF False xx yis xi - 0]
have irreducible xi

apply (fold irreducible-connect-field)
proof (rule irreducibledI)

show degree xi > 0 unfolding xi by auto
fix q p :: real poly
assume degree q > 0 degree q < degree xi and qp: xi = q ∗ p
hence dq: degree q = 1 unfolding xi by auto
have dxi: degree xi = 2 xi 6= 0 unfolding xi by auto
with qp have q 6= 0 p 6= 0 by auto
hence degree xi = degree q + degree p unfolding qp

by (rule degree-mult-eq)
with dq have dp: degree p = 1 unfolding dxi by simp
{

fix c :: complex
assume rt: poly (?cp xi) c = 0
hence poly (?cp q ∗ ?cp p) c = 0 by (simp add: qp hom-distribs)
hence (poly (?cp q) c = 0 ∨ poly (?cp p) c = 0) by auto
hence c = roots1 (?cp q) ∨ c = roots1 (?cp p)

using roots1 [of ?cp q] roots1 [of ?cp p] dp dq by auto
hence c ∈ � unfolding roots1-def by auto
hence c 6= x using False by auto

}
hence poly (?cp xi) x 6= 0 by auto
thus False unfolding cpxi by simp

qed
hence xi ′: irreducible xi monic xi degree xi = 2

unfolding xi by auto
let ?xxi = [:− xx, 1 :] ^ i
let ?yis = (

∏
(x, i)←yis. [:− x, 1 :] ^ i)

let ?yi = (?cp xi)^ i
have yi: set (coeffs ?yi) ⊆ �

by (rule real-poly-power , auto simp: xi)
have mon: monic (

∏
(x, i)←(x, i) # xis. [:− x, 1 :] ^ i)

by (rule monic-prod-list, auto intro: monic-power)
from monic-imp-nonzero[OF this] have xixis: ?xi ∗ ?xis 6= 0 unfolding id

by auto
from False have xxx: xx 6= x unfolding xx by (cases x, auto simp:

legacy-Complex-simps Reals-def)
from prems[unfolded id] have prems: set (coeffs (?xi ∗ ?xis)) ⊆ � .
from id have [:− x, 1 :] ^ i dvd ?xi ∗ ?xis by auto
from xixis this[unfolded order-divides]
have order x (?xi ∗ ?xis) ≥ i by auto
with complex-conjugate-order [OF prems xixis, of x, folded xx]
have order xx (?xi ∗ ?xis) ≥ i by auto
hence order xx ?xi + order xx ?xis ≥ i unfolding order-mult[OF xixis] .
also have order xx ?xi = 0 unfolding order-linear-power using xxx by

74

simp
finally have order xx ?xis ≥ i by simp
hence yis: ?xis = ?xxi ∗ ?yis unfolding yis using i

by (intro delete-cnj, simp)
hence ?xi ∗ ?xis = (?xi ∗ ?xxi) ∗ ?yis by (simp only: ac-simps)
also have ?xi ∗ ?xxi = ([:− x, 1 :] ∗ [:− xx, 1 :])^i

by (metis power-mult-distrib)
also have [:− x, 1 :] ∗ [:− xx, 1 :] = ?cp xi unfolding cpxi ..
finally have idd: ?xi ∗ ?xis = (?cp xi)^i ∗ ?yis by simp
from prems[unfolded idd] have R: set (coeffs ((?cp xi)^i ∗ ?yis)) ⊆ � .
have yis: set (coeffs ?yis) ⊆ �

by (rule real-poly-factor [OF R yi], auto, auto simp: xi-def)
note IH = IH [OF yis]
have ?rp (?xi ∗ ?xis) = ?rp ?yi ∗ ?rp ?yis unfolding idd

by (rule map-poly-Re-mult[OF yi yis])
also have ?rp ?yi = xi^i by (fold hom-distribs, rule map-poly-Re-of-real)
also have ?rp ?yis = (

∏
(a,b) ← ?fact yis. a ^ b)

using IH by auto
also have xi ^ i ∗ (

∏
(a,b) ← ?fact yis. a ^ b) =

(
∏

(a,b) ← ?fact ((x,i) # xis). a ^ b) unfolding fact by simp
finally have idd: ?rp (?xi ∗ ?xis) = (

∏
(a,b) ← ?fact ((x,i) # xis). a ^ b)

.
show ?thesis unfolding id idd fact using IH xi ′ i by auto

qed
qed
thus ?thesis unfolding p by simp

qed
thus p = smult c (

∏
(q, i)←qis. q ^ i)

(q,j) ∈ set qis =⇒ irreducible q ∧ j 6= 0 ∧ monic q ∧ degree q ∈ {1 ,2} by
blast+
qed

end

References

[1] W. S. Brown. The subresultant PRS algorithm. ACM Trans. Math.
Softw., 4(3):237–249, 1978.

[2] W. S. Brown and J. F. Traub. On Euclid’s algorithm and the theory of
subresultants. Journal of the ACM, 18(4):505–514, 1971.

[3] S. Joosten, R. Thiemann, and A. Yamada. Subresultants. Archive of For-
mal Proofs, Apr. 2017. https://isa-afp.org/entries/Subresultants.html,
Formal proof development.

75

https://isa-afp.org/entries/Subresultants.html

[4] S. J. C. Joosten, R. Thiemann, and A. Yamada. A verified imple-
mentation of algebraic numbers in Isabelle/HOL. J. Autom. Reason.,
64(3):363–389, 2020.

[5] A. W. Strzeboński. Computing in the field of complex algebraic numbers.
J. Symbolic Computation, 24:647–656, 1997.

[6] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Is-
abelle/HOL. Archive of Formal Proofs, Dec. 2015. https://isa-afp.org/
entries/Algebraic_Numbers.html, Formal proof development.

76

https://isa-afp.org/entries/Algebraic_Numbers.html
https://isa-afp.org/entries/Algebraic_Numbers.html

	Introduction
	Resultants and Multivariate Polynomials
	Connecting Univariate and Multivariate Polynomials
	Exact Division of Multivariate Polynomials
	Implementation of Division on Multivariate Polynomials
	Class Instances for Multivariate Polynomials and Containers
	Resultants of Multivariate Polynomials

	Testing for Integrality and Conversion to Integers
	Representing Roots of Polynomials with Algebraic Coefficients
	Preliminaries
	More Facts about Resultants
	Systems of Polynomials
	Elimination of Auxiliary Variables
	A Representing Polynomial for the Roots of a Polynomial with Algebraic Coefficients
	Soundness Proof for Complex Algebraic Polynomials
	Soundness Proof for Real Algebraic Polynomials
	Algebraic Closedness of Complex Algebraic Numbers
	Executable Version to Compute Representative Polynomials

	Root Filter via Interval Arithmetic
	Generic Framework

	Roots of Real and Complex Algebraic Polynomials
	Factorization of Polynomials with Algebraic Coefficients
	Complex Algebraic Coefficients
	Real Algebraic Coefficients

