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Abstract

This entry provides executable formalisations of the following test-
ing strategies based on finite state machines (FSM):

1. Strategies for language-equivalence testing on possibly nondeter-
ministic and partial FSMs:

• W-Method [1]
• Wp-Method (based on a generalisation of [4] presented in [5])
• HSI-Method [3]
• H-Method [2]
• SPY-Method [10]
• SPYH-Method [11]

2. Strategies for reduction testing on possibly nondeterministic FSMs:
• Adaptive state counting (as described in [6])

These strategies are implemented using generic frameworks which al-
low combining parts of strategies such as reaching and distinguishing
of states or distributing traces over classes of convergent traces. Fur-
ther details are given in the corresponding PhD thesis [8] and tools
employing the code generated from this entry are available at https://
bitbucket.org/RobertSachtleben/an-approach-for-the-verification-and-
synthesis-of-complete.

In addition to formalising different algorithms, this entry differs
from my previous entry [7] (see [9] for the corresponding paper) in
using a revised representation of finite state machines and by a focus
on executable definitions.
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1 Utility Definitions and Properties

This file contains various definitions and lemmata not closely related to finite
state machines or testing.
theory Util

imports Main HOL−Library.FSet HOL−Library.Sublist HOL−Library.Mapping
begin
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1.1 Converting Sets to Maps

This subsection introduces a function set-as-map that transforms a set of
( ′a × ′b) tuples to a map mapping each first value x of the contained tuples
to all second values y such that (x,y) is contained in the set.
definition set-as-map :: ( ′a × ′c) set ⇒ ( ′a ⇒ ′c set option) where

set-as-map s = (λ x . if (∃ z . (x,z) ∈ s) then Some {z . (x,z) ∈ s} else None)

lemma set-as-map-code[code] :
set-as-map (set xs) = (foldl (λ m (x,z) . case m x of

None ⇒ m (x 7→ {z}) |
Some zs ⇒ m (x 7→ (insert z zs)))

Map.empty
xs)

proof −
let ?f = λ xs . (foldl (λ m (x,z) . case m x of

None ⇒ m (x 7→ {z}) |
Some zs ⇒ m (x 7→ (insert z zs)))

Map.empty
xs)

have (?f xs) = (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None)

proof (induction xs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc xz xs)
then obtain x z where xz = (x,z)

by force

have ∗: (?f (xs@[(x,z)])) = (case (?f xs) x of
None ⇒ (?f xs) (x 7→ {z}) |
Some zs ⇒ (?f xs) (x 7→ (insert z zs)))

by auto

then show ?case proof (cases (?f xs) x)
case None
then have ∗∗: (?f (xs@[(x,z)])) = (?f xs) (x 7→ {z}) using ∗ by auto

have scheme:
∧

m k v . (m(k 7→ v)) = (λk ′ . if k ′ = k then Some v else m k ′)
by auto

have m1 : (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some {z} else (?f xs) x ′)
unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None)
x = None
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using None snoc by auto
then have ¬(∃ z . (x,z) ∈ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z . (x,z) ∈ set (xs@[(x,z)])) and {z ′ . (x,z ′) ∈ set (xs@[(x,z)])}

= {z}
by auto

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)]))
then Some {z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])}
else None)

= (λ x ′ . if x ′ = x
then Some {z} else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs}
else None) x ′)

by force

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

next
case (Some zs)
then have ∗∗: (?f (xs@[(x,z)])) = (?f xs) (x 7→ (insert z zs)) using ∗ by auto
have scheme:

∧
m k v . (m(k 7→ v)) = (λk ′ . if k ′ = k then Some v else m k ′)

by auto

have m1 : (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some (insert z zs) else (?f
xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None)
x = Some zs

using Some snoc by auto
then have (∃ z . (x,z) ∈ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z . (x,z) ∈ set (xs@[(x,z)])) by simp

have {z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = insert z zs
proof −

have Some {z . (x,z) ∈ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else

None) x
= Some zs›

unfolding case-prod-conv using option.distinct(2 ) by metis
then have {z . (x,z) ∈ set xs} = zs by auto
then show ?thesis by auto

qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)]))
then Some {z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])} else None) a

= (λ x ′ . if x ′ = x
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then Some (insert z zs)
else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs} else None) x ′) a
proof −

fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)]))
then Some {z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])} else None) a

= (λ x ′ . if x ′ = x
then Some (insert z zs)
else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = insert z zs› ‹(∃ z . (x,z) ∈ set

(xs@[(x,z)]))›
by (cases a = x; auto)

qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)]))
then Some {z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])} else None)

= (λ x ′ . if x ′ = x
then Some (insert z zs)
else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

qed
qed

then show ?thesis
unfolding set-as-map-def by simp

qed

abbreviation member-option x ms ≡ (case ms of None ⇒ False | Some xs ⇒ x
∈ xs)
notation member-option (‹(-∈o-)› [1000 ] 1000 )

abbreviation(input) lookup-with-default f d ≡ (λ x . case f x of None ⇒ d | Some
xs ⇒ xs)
abbreviation(input) m2f f ≡ lookup-with-default f {}

abbreviation(input) lookup-with-default-by f g d ≡ (λ x . case f x of None ⇒ g d
| Some xs ⇒ g xs)
abbreviation(input) m2f-by g f ≡ lookup-with-default-by f g {}

lemma m2f-by-from-m2f :
(m2f-by g f xs) = g (m2f f xs)
by (simp add: option.case-eq-if )
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lemma set-as-map-containment :
assumes (x,y) ∈ zs
shows y ∈ (m2f (set-as-map zs)) x
using assms unfolding set-as-map-def
by auto

lemma set-as-map-elem :
assumes y ∈ m2f (set-as-map xs) x

shows (x,y) ∈ xs
using assms unfolding set-as-map-def
proof −

assume a1 : y ∈ (case if ∃ z. (x, z) ∈ xs then Some {z. (x, z) ∈ xs} else None
of None ⇒ {} | Some xs ⇒ xs)

then have ∃ a. (x, a) ∈ xs
using all-not-in-conv by fastforce

then show ?thesis
using a1 by simp

qed

1.2 Utility Lemmata for existing functions on lists
1.2.1 Utility Lemmata for find
lemma find-result-props :

assumes find P xs = Some x
shows x ∈ set xs and P x

proof −
show x ∈ set xs using assms by (metis find-Some-iff nth-mem)
show P x using assms by (metis find-Some-iff )

qed

lemma find-set :
assumes find P xs = Some x
shows x ∈ set xs

using assms proof(induction xs)
case Nil
then show ?case by auto

next
case (Cons a xs)
then show ?case

by (metis find.simps(2 ) list.set-intros(1 ) list.set-intros(2 ) option.inject)
qed

lemma find-condition :
assumes find P xs = Some x
shows P x

using assms proof(induction xs)
case Nil
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then show ?case by auto
next

case (Cons a xs)
then show ?case

by (metis find.simps(2 ) option.inject)
qed

lemma find-from :
assumes ∃ x ∈ set xs . P x
shows find P xs 6= None
by (metis assms find-None-iff )

lemma find-sort-containment :
assumes find P (sort xs) = Some x

shows x ∈ set xs
using assms find-set by force

lemma find-sort-index :
assumes find P xs = Some x
shows ∃ i < length xs . xs ! i = x ∧ (∀ j < i . ¬ P (xs ! j))

using assms proof (induction xs arbitrary: x)
case Nil
then show ?case by auto

next
case (Cons a xs)
show ?case proof (cases P a)

case True
then show ?thesis

using Cons.prems unfolding find.simps by auto
next

case False
then have find P (a#xs) = find P xs

unfolding find.simps by auto
then have find P xs = Some x

using Cons.prems by auto
then show ?thesis

using Cons.IH False
by (metis Cons.prems find-Some-iff )

qed
qed

lemma find-sort-least :
assumes find P (sort xs) = Some x
shows ∀ x ′ ∈ set xs . x ≤ x ′ ∨ ¬ P x ′

and x = (LEAST x ′ ∈ set xs . P x ′)
proof −
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obtain i where i < length (sort xs)
and (sort xs) ! i = x
and (∀ j < i . ¬ P ((sort xs) ! j))

using find-sort-index[OF assms] by blast

have
∧

j . j > i =⇒ j < length xs =⇒ (sort xs) ! i ≤ (sort xs) ! j
by (simp add: sorted-nth-mono)

then have
∧

j . j < length xs =⇒ (sort xs) ! i ≤ (sort xs) ! j ∨ ¬ P ((sort xs)
! j)

using ‹(∀ j < i . ¬ P ((sort xs) ! j))›
by (metis not-less-iff-gr-or-eq order-refl)

then show ∀ x ′ ∈ set xs . x ≤ x ′ ∨ ¬ P x ′

by (metis ‹sort xs ! i = x› in-set-conv-nth length-sort set-sort)
then show x = (LEAST x ′ ∈ set xs . P x ′)

using find-set[OF assms] find-condition[OF assms]
by (metis (mono-tags, lifting) Least-equality set-sort)

qed

1.2.2 Utility Lemmata for filter
lemma filter-take-length :

length (filter P (take i xs)) ≤ length (filter P xs)
by (metis append-take-drop-id filter-append le0 le-add-same-cancel1 length-append)

lemma filter-double :
assumes x ∈ set (filter P1 xs)
and P2 x

shows x ∈ set (filter P2 (filter P1 xs))
by (metis (no-types) assms(1 ) assms(2 ) filter-set member-filter)

lemma filter-list-set :
assumes x ∈ set xs
and P x

shows x ∈ set (filter P xs)
by (simp add: assms(1 ) assms(2 ))

lemma filter-list-set-not-contained :
assumes x ∈ set xs
and ¬ P x

shows x /∈ set (filter P xs)
by (simp add: assms(1 ) assms(2 ))

lemma filter-map-elem : t ∈ set (map g (filter f xs)) =⇒ ∃ x ∈ set xs . f x ∧ t =
g x

by auto

1.2.3 Utility Lemmata for concat
lemma concat-map-elem :
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assumes y ∈ set (concat (map f xs))
obtains x where x ∈ set xs

and y ∈ set (f x)
using assms proof (induction xs)

case Nil
then show ?case by auto

next
case (Cons a xs)
then show ?case
proof (cases y ∈ set (f a))

case True
then show ?thesis

using Cons.prems(1 ) by auto
next

case False
then have y ∈ set (concat (map f xs))

using Cons by auto
have ∃ x . x ∈ set xs ∧ y ∈ set (f x)
proof (rule ccontr)

assume ¬(∃ x. x ∈ set xs ∧ y ∈ set (f x))
then have ¬(y ∈ set (concat (map f xs)))

by auto
then show False

using ‹y ∈ set (concat (map f xs))› by auto
qed
then show ?thesis

using Cons.prems(1 ) by auto
qed

qed

lemma set-concat-map-sublist :
assumes x ∈ set (concat (map f xs))
and set xs ⊆ set xs ′

shows x ∈ set (concat (map f xs ′))
using assms by (induction xs) (auto)

lemma set-concat-map-elem :
assumes x ∈ set (concat (map f xs))
shows ∃ x ′ ∈ set xs . x ∈ set (f x ′)

using assms by auto

lemma concat-replicate-length : length (concat (replicate n xs)) = n ∗ (length xs)
by (induction n; simp)

1.3 Enumerating Lists
fun lists-of-length :: ′a list ⇒ nat ⇒ ′a list list where

lists-of-length T 0 = [[]] |
lists-of-length T (Suc n) = concat (map (λ xs . map (λ x . x#xs) T ) (lists-of-length
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T n))

lemma lists-of-length-containment :
assumes set xs ⊆ set T
and length xs = n

shows xs ∈ set (lists-of-length T n)
using assms proof (induction xs arbitrary: n)

case Nil
then show ?case by auto

next
case (Cons a xs)
then obtain k where n = Suc k

by auto
then have xs ∈ set (lists-of-length T k)

using Cons by auto
moreover have a ∈ set T

using Cons by auto
ultimately show ?case

using ‹n = Suc k› by auto
qed

lemma lists-of-length-length :
assumes xs ∈ set (lists-of-length T n)
shows length xs = n

proof −
have ∀ xs ∈ set (lists-of-length T n) . length xs = n

by (induction n; simp)
then show ?thesis using assms by blast

qed

lemma lists-of-length-elems :
assumes xs ∈ set (lists-of-length T n)
shows set xs ⊆ set T

proof −
have ∀ xs ∈ set (lists-of-length T n) . set xs ⊆ set T

by (induction n; simp)
then show ?thesis using assms by blast

qed

lemma lists-of-length-list-set :
set (lists-of-length xs k) = {xs ′ . length xs ′ = k ∧ set xs ′ ⊆ set xs}
using lists-of-length-containment[of - xs k]

lists-of-length-length[of - xs k]
lists-of-length-elems[of - xs k]

by blast
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1.3.1 Enumerating List Subsets
fun generate-selector-lists :: nat ⇒ bool list list where

generate-selector-lists k = lists-of-length [False,True] k

lemma generate-selector-lists-set :
set (generate-selector-lists k) = {(bs :: bool list) . length bs = k}
using lists-of-length-list-set by auto

lemma selector-list-index-set:
assumes length ms = length bs
shows set (map fst (filter snd (zip ms bs))) = { ms ! i | i . i < length bs ∧ bs !

i}
using assms proof (induction bs arbitrary: ms rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc b bs)
let ?ms = butlast ms
let ?m = last ms

have length ?ms = length bs using snoc.prems by auto

have map fst (filter snd (zip ms (bs @ [b])))
= (map fst (filter snd (zip ?ms bs))) @ (map fst (filter snd (zip [?m] [b])))

by (metis ‹length (butlast ms) = length bs› append-eq-conv-conj filter-append
length-0-conv

map-append snoc.prems snoc-eq-iff-butlast zip-append2 )
then have ∗: set (map fst (filter snd (zip ms (bs @ [b]))))

= set (map fst (filter snd (zip ?ms bs))) ∪ set (map fst (filter snd (zip
[?m] [b])))

by simp

have {ms ! i |i. i < length (bs @ [b]) ∧ (bs @ [b]) ! i}
= {ms ! i |i. i ≤ (length bs) ∧ (bs @ [b]) ! i}

by auto
moreover have {ms ! i |i. i ≤ (length bs) ∧ (bs @ [b]) ! i}

= {ms ! i |i. i < length bs ∧ (bs @ [b]) ! i}
∪ {ms ! i |i. i = length bs ∧ (bs @ [b]) ! i}

by fastforce
moreover have {ms ! i |i. i < length bs ∧ (bs @ [b]) ! i} = {?ms ! i |i. i <

length bs ∧ bs ! i}
using ‹length ?ms = length bs› by (metis butlast-snoc nth-butlast)

ultimately have ∗∗: {ms ! i |i. i < length (bs @ [b]) ∧ (bs @ [b]) ! i}
= {?ms ! i |i. i < length bs ∧ bs ! i}
∪ {ms ! i |i. i = length bs ∧ (bs @ [b]) ! i}

by simp
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have set (map fst (filter snd (zip [?m] [b]))) = {ms ! i |i. i = length bs ∧ (bs @
[b]) ! i}

proof (cases b)
case True
then have set (map fst (filter snd (zip [?m] [b]))) = {?m} by fastforce
moreover have {ms ! i |i. i = length bs ∧ (bs @ [b]) ! i} = {?m}
proof −

have (bs @ [b]) ! length bs
by (simp add: True)

moreover have ms ! length bs = ?m
by (metis last-conv-nth length-0-conv length-butlast snoc.prems snoc-eq-iff-butlast)

ultimately show ?thesis by fastforce
qed
ultimately show ?thesis by auto

next
case False
then show ?thesis by auto

qed

then have set (map fst (filter snd (zip (butlast ms) bs)))
∪ set (map fst (filter snd (zip [?m] [b])))

= {butlast ms ! i |i. i < length bs ∧ bs ! i}
∪ {ms ! i |i. i = length bs ∧ (bs @ [b]) ! i}

using snoc.IH [OF ‹length ?ms = length bs›] by blast

then show ?case using ∗ ∗∗
by simp

qed

lemma selector-list-ex :
assumes set xs ⊆ set ms
shows ∃ bs . length bs = length ms ∧ set xs = set (map fst (filter snd (zip ms

bs)))
using assms proof (induction xs rule: rev-induct)

case Nil
let ?bs = replicate (length ms) False
have set [] = set (map fst (filter snd (zip ms ?bs)))

by (metis filter-False in-set-zip length-replicate list.simps(8 ) nth-replicate)
moreover have length ?bs = length ms by auto
ultimately show ?case by blast

next
case (snoc a xs)
then have set xs ⊆ set ms and a ∈ set ms by auto
then obtain bs where length bs = length ms and set xs = set (map fst (filter

snd (zip ms bs)))
using snoc.IH by auto
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from ‹a ∈ set ms› obtain i where i < length ms and ms ! i = a
by (meson in-set-conv-nth)

let ?bs = list-update bs i True
have length ms = length ?bs using ‹length bs = length ms› by auto
have length ?bs = length bs by auto

have set (map fst (filter snd (zip ms ?bs))) = {ms ! i |i. i < length ?bs ∧ ?bs !
i}

using selector-list-index-set[OF ‹length ms = length ?bs›] by assumption

have
∧

j . j < length ?bs =⇒ j 6= i =⇒ ?bs ! j = bs ! j
by auto

then have {ms ! j |j. j < length bs ∧ j 6= i ∧ bs ! j}
= {ms ! j |j. j < length ?bs ∧ j 6= i ∧ ?bs ! j}

using ‹length ?bs = length bs› by fastforce

have {ms ! j |j. j < length ?bs ∧ j = i ∧ ?bs ! j} = {a}
using ‹length bs = length ms› ‹i < length ms› ‹ms ! i = a› by auto

then have {ms ! i |i. i < length ?bs ∧ ?bs ! i}
= insert a {ms ! j |j. j < length ?bs ∧ j 6= i ∧ ?bs ! j}

by fastforce

have {ms ! j |j. j < length bs ∧ j = i ∧ bs ! j} ⊆ {ms ! j |j. j < length ?bs ∧ j
= i ∧ ?bs ! j}

by (simp add: Collect-mono)
then have {ms ! j |j. j < length bs ∧ j = i ∧ bs ! j} ⊆ {a}

using ‹{ms ! j |j. j < length ?bs ∧ j = i ∧ ?bs ! j} = {a}›
by auto

moreover have {ms ! j |j. j < length bs ∧ bs ! j}
= {ms ! j |j. j < length bs ∧ j = i ∧ bs ! j}
∪ {ms ! j |j. j < length bs ∧ j 6= i ∧ bs ! j}

by fastforce

ultimately have {ms ! i |i. i < length ?bs ∧ ?bs ! i}
= insert a {ms ! i |i. i < length bs ∧ bs ! i}

using ‹{ms ! j |j. j < length bs ∧ j 6= i ∧ bs ! j}
= {ms ! j |j. j < length ?bs ∧ j 6= i ∧ ?bs ! j}›

using ‹{ms ! ia |ia. ia < length (bs[i := True])
∧ bs[i := True] ! ia}

= insert a {ms ! j |j. j < length (bs[i := True])
∧ j 6= i ∧ bs[i := True] ! j}›

by auto

moreover have set (map fst (filter snd (zip ms bs))) = {ms ! i |i. i < length bs
∧ bs ! i}
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using selector-list-index-set[of ms bs] ‹length bs = length ms› by auto

ultimately have set (a#xs) = set (map fst (filter snd (zip ms ?bs)))
using ‹set (map fst (filter snd (zip ms ?bs))) = {ms ! i |i. i < length ?bs ∧ ?bs

! i}›
‹set xs = set (map fst (filter snd (zip ms bs)))›

by auto
then show ?case

using ‹length ms = length ?bs›
by (metis Un-commute insert-def list.set(1 ) list.simps(15 ) set-append single-

ton-conv)
qed

1.3.2 Enumerating Choices from Lists of Lists
fun generate-choices :: ( ′a × ( ′b list)) list ⇒ ( ′a × ′b option) list list where

generate-choices [] = [[]] |
generate-choices (xys#xyss) =

concat (map (λ xy ′ . map (λ xys ′ . xy ′ # xys ′) (generate-choices xyss))
((fst xys, None) # (map (λ y . (fst xys, Some y)) (snd xys))))

lemma concat-map-hd-tl-elem:
assumes hd cs ∈ set P1
and tl cs ∈ set P2
and length cs > 0

shows cs ∈ set (concat (map (λ xy ′ . map (λ xys ′ . xy ′ # xys ′) P2 ) P1 ))
proof −

have hd cs # tl cs = cs using assms(3 ) by auto
moreover have hd cs # tl cs ∈ set (concat (map (λ xy ′ . map (λ xys ′ . xy ′ #

xys ′) P2 ) P1 ))
using assms(1 ,2 ) by auto

ultimately show ?thesis
by auto

qed

lemma generate-choices-hd-tl :
cs ∈ set (generate-choices (xys#xyss))
= (length cs = length (xys#xyss)
∧ fst (hd cs) = fst xys
∧ ((snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set

(snd xys))))
∧ (tl cs ∈ set (generate-choices xyss)))

proof (induction xyss arbitrary: cs xys)
case Nil
have (cs ∈ set (generate-choices [xys]))

= (cs ∈ set ([(fst xys, None)] # map (λy. [(fst xys, Some y)]) (snd xys)))
unfolding generate-choices.simps by auto
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moreover have (cs ∈ set ([(fst xys, None)] # map (λy. [(fst xys, Some y)]) (snd
xys)))

=⇒ (length cs = length [xys] ∧
fst (hd cs) = fst xys ∧
(snd (hd cs) = None ∨ snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈

set (snd xys)) ∧
tl cs ∈ set (generate-choices []))

by auto
moreover have (length cs = length [xys] ∧

fst (hd cs) = fst xys ∧
(snd (hd cs) = None ∨ snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈

set (snd xys)) ∧
tl cs ∈ set (generate-choices []))

=⇒ (cs ∈ set ([(fst xys, None)] # map (λy. [(fst xys, Some y)]) (snd
xys)))

unfolding generate-choices.simps(1 )
proof −

assume a1 : length cs = length [xys]
∧ fst (hd cs) = fst xys
∧ (snd (hd cs) = None ∨ snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈

set (snd xys))
∧ tl cs ∈ set [[]]

have f2 : ∀ ps. ps = [] ∨ ps = (hd ps:: ′a × ′b option) # tl ps
by (meson list.exhaust-sel)

have f3 : cs 6= []
using a1 by fastforce

have snd (hd cs) = None −→ (fst xys, None) = hd cs
using a1 by (metis prod.exhaust-sel)

moreover
{ assume hd cs # tl cs 6= [(fst xys, Some (the (snd (hd cs))))]

then have snd (hd cs) = None
using a1 by (metis (no-types) length-0-conv length-tl list.sel(3 )

option.collapse prod.exhaust-sel) }
ultimately have cs ∈ insert [(fst xys, None)] ((λb. [(fst xys, Some b)]) ‘ set

(snd xys))
using f3 f2 a1 by fastforce

then show ?thesis
by simp

qed
ultimately show ?case by blast

next
case (Cons a xyss)

have length cs = length (xys#a#xyss)
=⇒ fst (hd cs) = fst xys
=⇒ (snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set

(snd xys)))
=⇒ (tl cs ∈ set (generate-choices (a#xyss)))
=⇒ cs ∈ set (generate-choices (xys#a#xyss))
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proof −
assume length cs = length (xys#a#xyss)

and fst (hd cs) = fst xys
and (snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set

(snd xys)))
and (tl cs ∈ set (generate-choices (a#xyss)))

then have length cs > 0 by auto

have (hd cs) ∈ set ((fst xys, None) # (map (λ y . (fst xys, Some y)) (snd xys)))
using ‹fst (hd cs) = fst xys›

‹(snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set
(snd xys)))›

by (metis (no-types, lifting) image-eqI list.set-intros(1 ) list.set-intros(2 )
option.collapse prod.collapse set-map)

show cs ∈ set (generate-choices ((xys#(a#xyss))))
using generate-choices.simps(2 )[of xys a#xyss]

concat-map-hd-tl-elem[OF ‹(hd cs) ∈ set ((fst xys, None) # (map (λ y .
(fst xys, Some y)) (snd xys)))›

‹(tl cs ∈ set (generate-choices (a#xyss)))›
‹length cs > 0 ›]

by auto
qed

moreover have cs ∈ set (generate-choices (xys#a#xyss))
=⇒ length cs = length (xys#a#xyss)
∧ fst (hd cs) = fst xys
∧ ((snd (hd cs) = None ∨ (snd (hd cs) 6= None
∧ the (snd (hd cs)) ∈ set (snd xys))))
∧ (tl cs ∈ set (generate-choices (a#xyss)))

proof −
assume cs ∈ set (generate-choices (xys#a#xyss))
then have p3 : tl cs ∈ set (generate-choices (a#xyss))

using generate-choices.simps(2 )[of xys a#xyss] by fastforce
then have length (tl cs) = length (a # xyss) using Cons.IH [of tl cs a] by simp
then have p1 : length cs = length (xys#a#xyss) by auto

have p2 : fst (hd cs) = fst xys ∧ ((snd (hd cs) = None ∨ (snd (hd cs) 6= None
∧ the (snd (hd cs)) ∈ set (snd xys))))

using ‹cs ∈ set (generate-choices (xys#a#xyss))› generate-choices.simps(2 )[of
xys a#xyss]

by fastforce

show ?thesis using p1 p2 p3 by simp
qed

ultimately show ?case by blast
qed
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lemma list-append-idx-prop :
(∀ i . (i < length xs −→ P (xs ! i)))
= (∀ j . ((j < length (ys@xs) ∧ j ≥ length ys) −→ P ((ys@xs) ! j)))

proof −
have

∧
j . ∀ i<length xs. P (xs ! i) =⇒ j < length (ys @ xs)
=⇒ length ys ≤ j −→ P ((ys @ xs) ! j)

by (simp add: nth-append)
moreover have

∧
i . (∀ j . ((j < length (ys@xs) ∧ j ≥ length ys) −→ P ((ys@xs)

! j)))
=⇒ i < length xs =⇒ P (xs ! i)

proof −
fix i assume (∀ j . ((j < length (ys@xs) ∧ j ≥ length ys) −→ P ((ys@xs) !

j)))
and i < length xs

then have P ((ys@xs) ! (length ys + i))
by (metis add-strict-left-mono le-add1 length-append)

moreover have P (xs ! i) = P ((ys@xs) ! (length ys + i))
by simp

ultimately show P (xs ! i) by blast
qed
ultimately show ?thesis by blast

qed

lemma list-append-idx-prop2 :
assumes length xs ′ = length xs

and length ys ′ = length ys
shows (∀ i . (i < length xs −→ P (xs ! i) (xs ′ ! i)))

= (∀ j . ((j < length (ys@xs) ∧ j ≥ length ys) −→ P ((ys@xs) ! j) ((ys ′@xs ′)
! j)))
proof −

have ∀ i<length xs. P (xs ! i) (xs ′ ! i) =⇒
∀ j. j < length (ys @ xs) ∧ length ys ≤ j −→ P ((ys @ xs) ! j) ((ys ′ @ xs ′) ! j)
using assms

proof −
assume a1 : ∀ i<length xs. P (xs ! i) (xs ′ ! i)
{ fix nn :: nat

have ff1 : ∀n na. (na::nat) + n − n = na
by simp

have ff2 : ∀n na. (na::nat) ≤ n + na
by auto

then have ff3 : ∀ as n. (ys ′ @ as) ! n = as ! (n − length ys) ∨ ¬ length ys ≤
n

using ff1 by (metis (no-types) add.commute assms(2 ) eq-diff-iff nth-append-length-plus)
have ff4 : ∀n bs bsa. ((bsa @ bs) ! n:: ′b) = bs ! (n − length bsa) ∨ ¬ length

bsa ≤ n
using ff2 ff1 by (metis (no-types) add.commute eq-diff-iff nth-append-length-plus)
have ∀n na nb. ((n::nat) + nb ≤ na ∨ ¬ n ≤ na − nb) ∨ ¬ nb ≤ na

using ff2 ff1 by (metis le-diff-iff )
then have (¬ nn < length (ys @ xs) ∨ ¬ length ys ≤ nn)
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∨ P ((ys @ xs) ! nn) ((ys ′ @ xs ′) ! nn)
using ff4 ff3 a1 by (metis add.commute length-append not-le) }

then show ?thesis
by blast

qed

moreover have (∀ j. j < length (ys @ xs) ∧ length ys ≤ j −→ P ((ys @ xs) ! j)
((ys ′ @ xs ′) ! j))

=⇒ ∀ i<length xs. P (xs ! i) (xs ′ ! i)
using assms
by (metis le-add1 length-append nat-add-left-cancel-less nth-append-length-plus)

ultimately show ?thesis by blast
qed

lemma generate-choices-idx :
cs ∈ set (generate-choices xyss)
= (length cs = length xyss
∧ (∀ i < length cs . (fst (cs ! i)) = (fst (xyss ! i))
∧ ((snd (cs ! i)) = None
∨ ((snd (cs ! i)) 6= None ∧ the (snd (cs ! i)) ∈ set (snd (xyss ! i))))))

proof (induction xyss arbitrary: cs)
case Nil
then show ?case by auto

next
case (Cons xys xyss)

have cs ∈ set (generate-choices (xys#xyss))
= (length cs = length (xys#xyss)
∧ fst (hd cs) = fst xys
∧ ((snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈

set (snd xys))))
∧ (tl cs ∈ set (generate-choices xyss)))

using generate-choices-hd-tl by metis

then have cs ∈ set (generate-choices (xys#xyss))
= (length cs = length (xys#xyss)
∧ fst (hd cs) = fst xys
∧ ((snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set

(snd xys))))
∧ (length (tl cs) = length xyss ∧
(∀ i<length (tl cs).

fst (tl cs ! i) = fst (xyss ! i) ∧
(snd (tl cs ! i) = None
∨ snd (tl cs ! i) 6= None ∧ the (snd (tl cs ! i)) ∈ set (snd (xyss ! i))))))

using Cons.IH [of tl cs] by blast
then have ∗: cs ∈ set (generate-choices (xys#xyss))
= (length cs = length (xys#xyss)
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∧ fst (hd cs) = fst xys
∧ ((snd (hd cs) = None ∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set

(snd xys))))
∧ (∀ i<length (tl cs).

fst (tl cs ! i) = fst (xyss ! i) ∧
(snd (tl cs ! i) = None
∨ snd (tl cs ! i) 6= None ∧ the (snd (tl cs ! i)) ∈ set (snd (xyss ! i)))))

by auto

have cs ∈ set (generate-choices (xys#xyss)) =⇒ (length cs = length (xys # xyss)
∧

(∀ i<length cs.
fst (cs ! i) = fst ((xys # xyss) ! i) ∧
(snd (cs ! i) = None ∨

snd (cs ! i) 6= None ∧ the (snd (cs ! i)) ∈ set (snd ((xys #
xyss) ! i)))))

proof −
assume cs ∈ set (generate-choices (xys#xyss))
then have p1 : length cs = length (xys#xyss)

and p2 : fst (hd cs) = fst xys
and p3 : ((snd (hd cs) = None

∨ (snd (hd cs) 6= None ∧ the (snd (hd cs)) ∈ set (snd xys))))
and p4 : (∀ i<length (tl cs).

fst (tl cs ! i) = fst (xyss ! i) ∧
(snd (tl cs ! i) = None
∨ snd (tl cs ! i) 6= None ∧ the (snd (tl cs ! i)) ∈ set (snd (xyss !

i))))
using ∗ by blast+

then have length xyss = length (tl cs) and length (xys # xyss) = length ([hd
cs] @ tl cs)

by auto

have [hd cs]@(tl cs) = cs
by (metis (no-types) p1 append.left-neutral append-Cons length-greater-0-conv

list.collapse list.simps(3 ))
then have p4b: (∀ i<length cs. i > 0 −→

(fst (cs ! i) = fst ((xys#xyss) ! i) ∧
(snd (cs ! i) = None
∨ snd (cs ! i) 6= None ∧ the (snd (cs ! i)) ∈ set (snd ((xys#xyss)

! i)))))
using p4 list-append-idx-prop2 [of xyss tl cs xys#xyss [hd cs]@(tl cs)

λ x y . fst x = fst y
∧ (snd x = None
∨ snd x 6= None ∧ the (snd x) ∈ set

(snd y)),
OF ‹length xyss = length (tl cs)›

‹length (xys # xyss) = length ([hd cs] @ tl cs)›]
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by (metis (no-types, lifting) One-nat-def Suc-pred
‹length (xys # xyss) = length ([hd cs] @ tl cs)› ‹length xyss = length (tl

cs)›
length-Cons list.size(3 ) not-less-eq nth-Cons-pos nth-append)

have p4a :(fst (cs ! 0 ) = fst ((xys#xyss) ! 0 ) ∧ (snd (cs ! 0 ) = None
∨ snd (cs ! 0 ) 6= None ∧ the (snd (cs ! 0 )) ∈ set (snd ((xys#xyss) !

0 ))))
using p1 p2 p3 by (metis hd-conv-nth length-greater-0-conv list.simps(3 )

nth-Cons-0 )

show ?thesis using p1 p4a p4b by fastforce
qed

moreover have (length cs = length (xys # xyss) ∧
(∀ i<length cs.

fst (cs ! i) = fst ((xys # xyss) ! i) ∧
(snd (cs ! i) = None ∨

snd (cs ! i) 6= None ∧ the (snd (cs ! i)) ∈ set (snd ((xys #
xyss) ! i)))))

=⇒ cs ∈ set (generate-choices (xys#xyss))
using ∗
by (metis (no-types, lifting) Nitpick.size-list-simp(2 ) Suc-mono hd-conv-nth

length-greater-0-conv length-tl list.sel(3 ) list.simps(3 ) nth-Cons-0 nth-tl)

ultimately show ?case by blast
qed

1.4 Finding the Index of the First Element of a List Satisfy-
ing a Property

fun find-index :: ( ′a ⇒ bool) ⇒ ′a list ⇒ nat option where
find-index f [] = None |
find-index f (x#xs) = (if f x

then Some 0
else (case find-index f xs of Some k ⇒ Some (Suc k) | None ⇒ None))

lemma find-index-index :
assumes find-index f xs = Some k
shows k < length xs and f (xs ! k) and

∧
j . j < k =⇒ ¬ f (xs ! j)

proof −
have (k < length xs) ∧ (f (xs ! k)) ∧ (∀ j < k . ¬ (f (xs ! j)))

using assms proof (induction xs arbitrary: k)
case Nil
then show ?case by auto

next
case (Cons x xs)
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show ?case proof (cases f x)
case True
then show ?thesis using Cons.prems by auto

next
case False
then have find-index f (x#xs)

= (case find-index f xs of Some k ⇒ Some (Suc k) | None ⇒ None)
by auto

then have (case find-index f xs of Some k ⇒ Some (Suc k) | None ⇒ None)
= Some k

using Cons.prems by auto
then obtain k ′ where find-index f xs = Some k ′ and k = Suc k ′

by (metis option.case-eq-if option.collapse option.distinct(1 ) option.sel)

have k < length (x # xs) ∧ f ((x # xs) ! k)
using Cons.IH [OF ‹find-index f xs = Some k ′›] ‹k = Suc k ′›
by auto

moreover have (∀ j<k. ¬ f ((x # xs) ! j))
using Cons.IH [OF ‹find-index f xs = Some k ′›] ‹k = Suc k ′› False

less-Suc-eq-0-disj
by auto

ultimately show ?thesis by presburger
qed

qed
then show k < length xs and f (xs ! k) and

∧
j . j < k =⇒ ¬ f (xs ! j) by

simp+
qed

lemma find-index-exhaustive :
assumes ∃ x ∈ set xs . f x
shows find-index f xs 6= None
using assms proof (induction xs)

case Nil
then show ?case by auto

next
case (Cons x xs)
then show ?case by (cases f x; auto)

qed

1.5 List Distinctness from Sorting
lemma non-distinct-repetition-indices :

assumes ¬ distinct xs
shows ∃ i j . i < j ∧ j < length xs ∧ xs ! i = xs ! j
by (metis assms distinct-conv-nth le-neq-implies-less not-le)

lemma non-distinct-repetition-indices-rev :
assumes i < j and j < length xs and xs ! i = xs ! j
shows ¬ distinct xs
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using assms nth-eq-iff-index-eq by fastforce

lemma ordered-list-distinct :
fixes xs :: ( ′a::preorder) list
assumes

∧
i . Suc i < length xs =⇒ (xs ! i) < (xs ! (Suc i))

shows distinct xs
proof −

have
∧

i j . i < j =⇒ j < length xs =⇒ (xs ! i) < (xs ! j)
proof −

fix i j assume i < j and j < length xs
then show xs ! i < xs ! j

using assms proof (induction xs arbitrary: i j rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc a xs)
show ?case proof (cases j < length xs)

case True
show ?thesis using snoc.IH [OF snoc.prems(1 ) True] snoc.prems(3 )
proof −

have f1 : i < length xs
using True less-trans snoc.prems(1 ) by blast

have f2 : ∀ is isa n. if n < length is then (is @ isa) ! n
= (is ! n::integer) else (is @ isa) ! n = isa ! (n − length is)

by (meson nth-append)
then have f3 : (xs @ [a]) ! i = xs ! i

using f1
by (simp add: nth-append)

have xs ! i < xs ! j
using f2
by (metis Suc-lessD ‹(

∧
i. Suc i < length xs =⇒ xs ! i < xs ! Suc i) =⇒

xs ! i < xs ! j›
butlast-snoc length-append-singleton less-SucI nth-butlast snoc.prems(3 ))

then show ?thesis
using f3 f2 True
by (simp add: nth-append)

qed
next

case False
then have (xs @ [a]) ! j = a

using snoc.prems(2 )
by (metis length-append-singleton less-SucE nth-append-length)

consider j = 1 | j > 1
using ‹i < j›
by linarith

then show ?thesis proof cases
case 1
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then have i = 0 and j = Suc i using ‹i < j› by linarith+
then show ?thesis

using snoc.prems(3 )
using snoc.prems(2 ) by blast

next
case 2
then consider i < j − 1 | i = j − 1 using ‹i < j› by linarith+
then show ?thesis proof cases

case 1

have (
∧

i. Suc i < length xs =⇒ xs ! i < xs ! Suc i) =⇒ xs ! i < xs ! (j
− 1 )

using snoc.IH [OF 1 ] snoc.prems(2 ) 2 by simp
then have le1 : (xs @ [a]) ! i < (xs @ [a]) ! (j −1 )

using snoc.prems(2 )
by (metis 2 False One-nat-def Suc-diff-Suc Suc-lessD diff-zero

snoc.prems(3 )
length-append-singleton less-SucE not-less-eq nth-append

snoc.prems(1 ))
moreover have le2 : (xs @ [a]) ! (j −1 ) < (xs @ [a]) ! j

using snoc.prems(2 ,3 ) 2 less-trans
by (metis (full-types) One-nat-def Suc-diff-Suc diff-zero less-numeral-extra(1 ))

ultimately show ?thesis
using less-trans by blast

next
case 2
then have j = Suc i using ‹1 < j› by linarith
then show ?thesis

using snoc.prems(3 )
using snoc.prems(2 ) by blast

qed
qed

qed
qed

qed

then show ?thesis
by (metis less-asym non-distinct-repetition-indices)

qed

lemma ordered-list-distinct-rev :
fixes xs :: ( ′a::preorder) list
assumes

∧
i . Suc i < length xs =⇒ (xs ! i) > (xs ! (Suc i))

shows distinct xs
proof −

have
∧

i . Suc i < length (rev xs) =⇒ ((rev xs) ! i) < ((rev xs) ! (Suc i))
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using assms
proof −

fix i :: nat
assume a1 : Suc i < length (rev xs)
obtain nn :: nat ⇒ nat ⇒ nat where
∀ x0 x1 . (∃ v2 . x1 = Suc v2 ∧ v2 < x0 ) = (x1 = Suc (nn x0 x1 ) ∧ nn x0 x1

< x0 )
by moura

then have f2 : ∀n na. (¬ n < Suc na ∨ n = 0 ∨ n = Suc (nn na n) ∧ nn na
n < na)

∧ (n < Suc na ∨ n 6= 0 ∧ (∀nb. n 6= Suc nb ∨ ¬ nb < na))
by (meson less-Suc-eq-0-disj)

have f3 : Suc (length xs − Suc (Suc i)) = length (rev xs) − Suc i
using a1 by (simp add: Suc-diff-Suc)

have i < length (rev xs)
using a1 by (meson Suc-lessD)

then have i < length xs
by simp

then show rev xs ! i < rev xs ! Suc i
using f3 f2 a1 by (metis (no-types) assms diff-less length-rev not-less-iff-gr-or-eq

rev-nth)
qed
then have distinct (rev xs)

using ordered-list-distinct[of rev xs] by blast
then show ?thesis by auto

qed

1.6 Calculating Prefixes and Suffixes
fun suffixes :: ′a list ⇒ ′a list list where

suffixes [] = [[]] |
suffixes (x#xs) = (suffixes xs) @ [x#xs]

lemma suffixes-set :
set (suffixes xs) = {zs . ∃ ys . ys@zs = xs}

proof (induction xs)
case Nil
then show ?case by auto

next
case (Cons x xs)
then have ∗: set (suffixes (x#xs)) = {zs . ∃ ys . ys@zs = xs} ∪ {x#xs}

by auto

have {zs . ∃ ys . ys@zs = xs} = {zs . ∃ ys . x#ys@zs = x#xs}
by force

then have {zs . ∃ ys . ys@zs = xs} = {zs . ∃ ys . ys@zs = x#xs ∧ ys 6= []}
by (metis Cons-eq-append-conv list.distinct(1 ))

moreover have {x#xs} = {zs . ∃ ys . ys@zs = x#xs ∧ ys = []}
by force
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ultimately show ?case using ∗ by force
qed

lemma prefixes-set : set (prefixes xs) = {xs ′ . ∃ xs ′′ . xs ′@xs ′′ = xs}
proof (induction xs)

case Nil
then show ?case by auto

next
case (Cons x xs)
moreover have prefixes (x#xs) = [] # map ((#) x) (prefixes xs)

by auto
ultimately have ∗: set (prefixes (x#xs)) = insert [] (((#) x) ‘ {xs ′. ∃ xs ′′. xs ′

@ xs ′′ = xs})
by auto

also have . . . = {xs ′ . ∃ xs ′′ . xs ′@xs ′′ = (x#xs)}
proof

show insert [] ((#) x ‘ {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs}) ⊆ {xs ′. ∃ xs ′′. xs ′ @ xs ′′ =
x # xs}

by auto
show {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs} ⊆ insert [] ((#) x ‘ {xs ′. ∃ xs ′′. xs ′ @

xs ′′ = xs})
proof

fix y assume y ∈ {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs}
then obtain y ′ where y@y ′ = x # xs

by blast
then show y ∈ insert [] ((#) x ‘ {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs})

by (cases y; auto)
qed

qed
finally show ?case .

qed

fun is-prefix :: ′a list ⇒ ′a list ⇒ bool where
is-prefix [] - = True |
is-prefix (x#xs) [] = False |
is-prefix (x#xs) (y#ys) = (x = y ∧ is-prefix xs ys)

lemma is-prefix-prefix : is-prefix xs ys = (∃ xs ′ . ys = xs@xs ′)
proof (induction xs arbitrary: ys)

case Nil
then show ?case by auto

next

32



case (Cons x xs)
show ?case proof (cases is-prefix (x#xs) ys)

case True
then show ?thesis using Cons.IH

by (metis append-Cons is-prefix.simps(2 ) is-prefix.simps(3 ) neq-Nil-conv)
next

case False
then show ?thesis

using Cons.IH by auto
qed

qed

fun add-prefixes :: ′a list list ⇒ ′a list list where
add-prefixes xs = concat (map prefixes xs)

lemma add-prefixes-set : set (add-prefixes xs) = {xs ′ . ∃ xs ′′ . xs ′@xs ′′ ∈ set xs}
proof −

have set (add-prefixes xs) = {xs ′ . ∃ x ∈ set xs . xs ′ ∈ set (prefixes x)}
unfolding add-prefixes.simps by auto

also have . . . = {xs ′ . ∃ xs ′′ . xs ′@xs ′′ ∈ set xs}
proof (induction xs)

case Nil
then show ?case using prefixes-set by auto

next
case (Cons a xs)
then show ?case
proof −

have
∧

xs ′ . xs ′ ∈ {xs ′. ∃ x∈set (a # xs). xs ′ ∈ set (prefixes x)}
←→ xs ′ ∈ {xs ′. ∃ xs ′′. xs ′ @ xs ′′ ∈ set (a # xs)}

proof −
fix xs ′

show xs ′ ∈ {xs ′. ∃ x∈set (a # xs). xs ′ ∈ set (prefixes x)}
←→ xs ′ ∈ {xs ′. ∃ xs ′′. xs ′ @ xs ′′ ∈ set (a # xs)}

unfolding prefixes-set by force
qed
then show ?thesis by blast

qed
qed
finally show ?thesis by blast

qed

lemma prefixes-set-ob :
assumes xs ∈ set (prefixes xss)
obtains xs ′ where xss = xs@xs ′

using assms unfolding prefixes-set
by auto
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lemma prefixes-finite : finite { x ∈ set (prefixes xs) . P x}
by (metis Collect-mem-eq List.finite-set finite-Collect-conjI )

lemma prefixes-set-Cons-insert: set (prefixes (w ′ @ [xy])) = Set.insert (w ′@[xy])
(set (prefixes (w ′)))

unfolding prefixes-set
proof (induction w ′ arbitrary: xy rule: rev-induct)

case Nil
then show ?case

by (auto; simp add: append-eq-Cons-conv)
next

case (snoc x xs)
then show ?case

by (auto; metis (no-types, opaque-lifting) butlast.simps(2 ) butlast-append
butlast-snoc)

qed

lemma prefixes-set-subset:
set (prefixes xs) ⊆ set (prefixes (xs@ys))
unfolding prefixes-set by auto

lemma prefixes-prefix-subset :
assumes xs ∈ set (prefixes ys)
shows set (prefixes xs) ⊆ set (prefixes ys)
using assms unfolding prefixes-set by auto

lemma prefixes-butlast-is-prefix :
butlast xs ∈ set (prefixes xs)
unfolding prefixes-set
by (metis (mono-tags, lifting) append-butlast-last-id butlast.simps(1 ) mem-Collect-eq

self-append-conv2 )

lemma prefixes-take-iff :
xs ∈ set (prefixes ys) ←→ take (length xs) ys = xs

proof
show xs ∈ set (prefixes ys) =⇒ take (length xs) ys = xs

unfolding prefixes-set
by (simp add: append-eq-conv-conj)

show take (length xs) ys = xs =⇒ xs ∈ set (prefixes ys)
unfolding prefixes-set
by (metis (mono-tags, lifting) append-take-drop-id mem-Collect-eq)

qed

lemma prefixes-set-Nil : [] ∈ list.set (prefixes xs)
by (metis append.left-neutral list.set-intros(1 ) prefixes.simps(1 ) prefixes-set-subset

subset-iff )
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lemma prefixes-prefixes :
assumes ys ∈ list.set (prefixes xs)

zs ∈ list.set (prefixes xs)
shows ys ∈ list.set (prefixes zs) ∨ zs ∈ list.set (prefixes ys)

proof (rule ccontr)
let ?ys = take (length ys) zs
let ?zs = take (length zs) ys

assume ¬ (ys ∈ list.set (prefixes zs) ∨ zs ∈ list.set (prefixes ys))
then have ?ys 6= ys and ?zs 6= zs

using prefixes-take-iff by blast+
moreover have ?ys = ys ∨ ?zs = zs

using assms
by (metis linear min.commute prefixes-take-iff take-all-iff take-take)

ultimately show False
by simp

qed

1.6.1 Pairs of Distinct Prefixes
fun prefix-pairs :: ′a list ⇒ ( ′a list × ′a list) list

where prefix-pairs [] = [] |
prefix-pairs xs = prefix-pairs (butlast xs) @ (map (λ ys. (ys,xs)) (butlast

(prefixes xs)))

lemma prefixes-butlast :
set (butlast (prefixes xs)) = {ys . ∃ zs . ys@zs = xs ∧ zs 6= []}

proof (induction length xs arbitrary: xs)
case 0
then show ?case by auto

next
case (Suc k)

then obtain x xs ′ where xs = x#xs ′ and k = length xs ′

by (metis length-Suc-conv)

then have prefixes xs = [] # map ((#) x) (prefixes xs ′)
by auto

then have butlast (prefixes xs) = [] # map ((#) x) (butlast (prefixes xs ′))
by (simp add: map-butlast)

then have set (butlast (prefixes xs)) = insert [] (((#) x) ‘ {ys . ∃ zs . ys@zs =
xs ′ ∧ zs 6= []})

using Suc.hyps(1 )[OF ‹k = length xs ′›]
by auto

also have . . . = {ys . ∃ zs . ys@zs = (x#xs ′) ∧ zs 6= []}
proof

show insert [] ((#) x ‘ {ys. ∃ zs. ys @ zs = xs ′ ∧ zs 6= []}) ⊆ {ys. ∃ zs. ys @ zs
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= x # xs ′ ∧ zs 6= []}
by auto

show {ys. ∃ zs. ys @ zs = x # xs ′ ∧ zs 6= []} ⊆ insert [] ((#) x ‘ {ys. ∃ zs. ys
@ zs = xs ′ ∧ zs 6= []})

proof
fix ys assume ys ∈ {ys. ∃ zs. ys @ zs = x # xs ′ ∧ zs 6= []}
then show ys ∈ insert [] ((#) x ‘ {ys. ∃ zs. ys @ zs = xs ′ ∧ zs 6= []})

by (cases ys; auto)
qed

qed
finally show ?case

unfolding ‹xs = x#xs ′› .
qed

lemma prefix-pairs-set :
set (prefix-pairs xs) = {(zs,ys) | zs ys . ∃ xs1 xs2 . zs@xs1 = ys ∧ ys@xs2 = xs
∧ xs1 6= []}
proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
have prefix-pairs (xs @ [x]) = prefix-pairs (butlast (xs @ [x])) @ (map (λ ys.

(ys,(xs @ [x]))) (butlast (prefixes (xs @ [x]))))
by (cases (xs @ [x]); auto)

then have ∗: prefix-pairs (xs @ [x]) = prefix-pairs xs @ (map (λ ys. (ys,(xs @
[x]))) (butlast (prefixes (xs @ [x]))))

by auto

have set (prefix-pairs xs) = {(zs, ys) |zs ys. ∃ xs1 xs2 . zs @ xs1 = ys ∧ ys @ xs2
= xs ∧ xs1 6= []}

using snoc.IH by assumption
then have set (prefix-pairs xs) = {(zs, ys) |zs ys. ∃ xs1 xs2 . zs @ xs1 = ys ∧ ys

@ xs2 @ [x] = xs@[x] ∧ xs1 6= []}
by auto

also have ... = {(zs, ys) |zs ys. ∃ xs1 xs2 . zs @ xs1 = ys ∧ ys @ xs2 = xs @[x]
∧ xs1 6= [] ∧ xs2 6= []}

proof −
let ?P1 = λ zs ys . (∃ xs1 xs2 . zs @ xs1 = ys ∧ ys @ xs2 @ [x] = xs@[x] ∧ xs1

6= [])
let ?P2 = λ zs ys . (∃ xs1 xs2 . zs @ xs1 = ys ∧ ys @ xs2 = xs @[x] ∧ xs1 6=

[] ∧ xs2 6= [])

have
∧

ys zs . ?P2 zs ys =⇒ ?P1 zs ys
by (metis append-assoc butlast-append butlast-snoc)

then have
∧

ys zs . ?P1 ys zs = ?P2 ys zs
by blast

then show ?thesis by force
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qed
finally have set (prefix-pairs xs) = {(zs, ys) |zs ys. ∃ xs1 xs2 . zs @ xs1 = ys ∧

ys @ xs2 = xs @ [x] ∧ xs1 6= [] ∧ xs2 6= []}
by assumption

moreover have set (map (λ ys. (ys,(xs @ [x]))) (butlast (prefixes (xs @ [x]))))
= {(zs, ys) |zs ys. ∃ xs1 xs2 . zs @ xs1 = ys ∧ ys @ xs2 = xs @ [x] ∧ xs1 6= [] ∧
xs2 = []}

using prefixes-butlast[of xs@[x]] by force

ultimately show ?case using ∗ by force
qed

lemma prefix-pairs-set-alt :
set (prefix-pairs xs) = {(xs1 ,xs1@xs2 ) | xs1 xs2 . xs2 6= [] ∧ (∃ xs3 . xs1@xs2@xs3

= xs)}
unfolding prefix-pairs-set by auto

lemma prefixes-Cons :
assumes (x#xs) ∈ set (prefixes (y#ys))
shows x = y and xs ∈ set (prefixes ys)

proof −
show x = y

by (metis Cons-eq-appendI assms nth-Cons-0 prefixes-set-ob)

show xs ∈ set (prefixes ys)
proof −

obtain xs ′ xs ′′ where (x#xs) = xs ′ and (y#ys) = xs ′@xs ′′

by (meson assms prefixes-set-ob)
then have xs ′ = x#tl xs ′

by auto
then have xs = tl xs ′

using ‹(x#xs) = xs ′› by auto
moreover have ys = (tl xs ′)@xs ′′

using ‹(y#ys) = xs ′@xs ′′› ‹xs ′ = x#tl xs ′›
by (metis append-Cons list.inject)

ultimately show ?thesis
unfolding prefixes-set by blast

qed
qed

lemma prefixes-prepend :
assumes xs ′ ∈ set (prefixes xs)
shows ys@xs ′ ∈ set (prefixes (ys@xs))

proof −
obtain xs ′′ where xs = xs ′@xs ′′

using assms
using prefixes-set-ob by auto

then have (ys@xs) = (ys@xs ′)@xs ′′
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by auto
then show ?thesis

unfolding prefixes-set by auto
qed

lemma prefixes-prefix-suffix-ob :
assumes a ∈ set (prefixes (b@c))
and a /∈ set (prefixes b)

obtains c ′ c ′′ where c = c ′@c ′′

and a = b@c ′

and c ′ 6= []
proof −

have ∃ c ′ c ′′ . c = c ′@c ′′ ∧ a = b@c ′ ∧ c ′ 6= []
using assms

proof (induction b arbitrary: a)
case Nil
then show ?case

unfolding prefixes-set
by fastforce

next
case (Cons x xs)
show ?case proof (cases a)

case Nil
then show ?thesis

by (metis Cons.prems(2 ) list.size(3 ) prefixes-take-iff take-eq-Nil)
next

case (Cons a ′ as)
then have a ′ # as ∈ set (prefixes (x #(xs@c)))

using Cons.prems(1 ) by auto

have a ′ = x and as ∈ set (prefixes (xs@c))
using prefixes-Cons[OF ‹a ′ # as ∈ set (prefixes (x #(xs@c)))›]
by auto

moreover have as /∈ set (prefixes xs)
using ‹a /∈ set (prefixes (x # xs))› unfolding Cons ‹a ′ = x› prefixes-set

by auto

ultimately obtain c ′ c ′′ where c = c ′@c ′′

and as = xs@c ′

and c ′ 6= []
using Cons.IH by blast

then have c = c ′@c ′′ and a = (x#xs)@c ′ and c ′ 6= []
unfolding Cons ‹a ′ = x› by auto

then show ?thesis
using that by blast

qed
qed
then show ?thesis using that by blast
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qed

fun list-ordered-pairs :: ′a list ⇒ ( ′a × ′a) list where
list-ordered-pairs [] = [] |
list-ordered-pairs (x#xs) = (map (Pair x) xs) @ (list-ordered-pairs xs)

lemma list-ordered-pairs-set-containment :
assumes x ∈ list.set xs
and y ∈ list.set xs
and x 6= y

shows (x,y) ∈ list.set (list-ordered-pairs xs) ∨ (y,x) ∈ list.set (list-ordered-pairs
xs)

using assms by (induction xs; auto)

1.7 Calculating Distinct Non-Reflexive Pairs over List Ele-
ments

fun non-sym-dist-pairs ′ :: ′a list ⇒ ( ′a × ′a) list where
non-sym-dist-pairs ′ [] = [] |
non-sym-dist-pairs ′ (x#xs) = (map (λ y. (x,y)) xs) @ non-sym-dist-pairs ′ xs

fun non-sym-dist-pairs :: ′a list ⇒ ( ′a × ′a) list where
non-sym-dist-pairs xs = non-sym-dist-pairs ′ (remdups xs)

lemma non-sym-dist-pairs-subset : set (non-sym-dist-pairs xs) ⊆ (set xs) × (set
xs)

by (induction xs; auto)

lemma non-sym-dist-pairs ′-elems-distinct:
assumes distinct xs
and (x,y) ∈ set (non-sym-dist-pairs ′ xs)

shows x ∈ set xs
and y ∈ set xs
and x 6= y
proof −

show x ∈ set xs and y ∈ set xs
using non-sym-dist-pairs-subset assms(2 ) by (induction xs; auto)+

show x 6= y
using assms by (induction xs; auto)

qed

lemma non-sym-dist-pairs-elems-distinct:
assumes (x,y) ∈ set (non-sym-dist-pairs xs)

shows x ∈ set xs
and y ∈ set xs
and x 6= y

using non-sym-dist-pairs ′-elems-distinct assms
unfolding non-sym-dist-pairs.simps by fastforce+
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lemma non-sym-dist-pairs-elems :
assumes x ∈ set xs
and y ∈ set xs
and x 6= y

shows (x,y) ∈ set (non-sym-dist-pairs xs) ∨ (y,x) ∈ set (non-sym-dist-pairs xs)
using assms by (induction xs; auto)

lemma non-sym-dist-pairs ′-elems-non-refl :
assumes distinct xs
and (x,y) ∈ set (non-sym-dist-pairs ′ xs)

shows (y,x) /∈ set (non-sym-dist-pairs ′ xs)
using assms

proof (induction xs arbitrary: x y)
case Nil
then show ?case by auto

next
case (Cons z zs)
then have distinct zs by auto

have x 6= y
using non-sym-dist-pairs ′-elems-distinct[OF Cons.prems] by simp

consider (a) (x,y) ∈ set (map (Pair z) zs) |
(b) (x,y) ∈ set (non-sym-dist-pairs ′ zs)

using ‹(x,y) ∈ set (non-sym-dist-pairs ′ (z#zs))› unfolding non-sym-dist-pairs ′.simps
by auto

then show ?case proof cases
case a
then have x = z by auto
then have (y,x) /∈ set (map (Pair z) zs)

using ‹x 6= y› by auto
moreover have x /∈ set zs

using ‹x = z› ‹distinct (z#zs)› by auto
ultimately show ?thesis

using ‹distinct zs› non-sym-dist-pairs ′-elems-distinct(2 ) by fastforce
next

case b
then have x 6= z and y 6= z

using Cons.prems unfolding non-sym-dist-pairs ′.simps
by (meson distinct.simps(2 ) non-sym-dist-pairs ′-elems-distinct(1 ,2 ))+

then show ?thesis
using Cons.IH [OF ‹distinct zs› b] by auto

qed
qed
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lemma non-sym-dist-pairs-elems-non-refl :
assumes (x,y) ∈ set (non-sym-dist-pairs xs)
shows (y,x) /∈ set (non-sym-dist-pairs xs)
using assms by (simp add: non-sym-dist-pairs ′-elems-non-refl)

lemma non-sym-dist-pairs-set-iff :
(x,y) ∈ set (non-sym-dist-pairs xs)
←→ (x 6= y ∧ x ∈ set xs ∧ y ∈ set xs ∧ (y,x) /∈ set (non-sym-dist-pairs xs))

using non-sym-dist-pairs-elems-non-refl[of x y xs]
non-sym-dist-pairs-elems[of x xs y]
non-sym-dist-pairs-elems-distinct[of x y xs] by blast

1.8 Finite Linear Order From List Positions
fun linear-order-from-list-position ′ :: ′a list ⇒ ( ′a × ′a) list where

linear-order-from-list-position ′ [] = [] |
linear-order-from-list-position ′ (x#xs)

= (x,x) # (map (λ y . (x,y)) xs) @ (linear-order-from-list-position ′ xs)

fun linear-order-from-list-position :: ′a list ⇒ ( ′a × ′a) list where
linear-order-from-list-position xs = linear-order-from-list-position ′ (remdups xs)

lemma linear-order-from-list-position-set :
set (linear-order-from-list-position xs)
= (set (map (λ x . (x,x)) xs)) ∪ set (non-sym-dist-pairs xs)

by (induction xs; auto)

lemma linear-order-from-list-position-total:
total-on (set xs) (set (linear-order-from-list-position xs))
unfolding linear-order-from-list-position-set
using non-sym-dist-pairs-elems[of - xs]
by (meson UnI2 total-onI )

lemma linear-order-from-list-position-refl:
refl-on (set xs) (set (linear-order-from-list-position xs))

proof
show set (linear-order-from-list-position xs) ⊆ set xs × set xs

unfolding linear-order-from-list-position-set
using non-sym-dist-pairs-subset[of xs] by auto

show
∧

x. x ∈ set xs =⇒ (x, x) ∈ set (linear-order-from-list-position xs)
unfolding linear-order-from-list-position-set
using non-sym-dist-pairs-subset[of xs] by auto

qed
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lemma linear-order-from-list-position-antisym:
antisym (set (linear-order-from-list-position xs))

proof
fix x y assume (x, y) ∈ set (linear-order-from-list-position xs)

and (y, x) ∈ set (linear-order-from-list-position xs)
then have (x, y) ∈ set (map (λx. (x, x)) xs) ∪ set (non-sym-dist-pairs xs)

and (y, x) ∈ set (map (λx. (x, x)) xs) ∪ set (non-sym-dist-pairs xs)
unfolding linear-order-from-list-position-set by blast+

then consider (a) (x, y) ∈ set (map (λx. (x, x)) xs) |
(b) (x, y) ∈ set (non-sym-dist-pairs xs)

by blast
then show x = y
proof cases

case a
then show ?thesis by auto

next
case b
then have x 6= y and (y,x) /∈ set (non-sym-dist-pairs xs)

using non-sym-dist-pairs-set-iff [of x y xs] by simp+
then have (y, x) /∈ set (map (λx. (x, x)) xs) ∪ set (non-sym-dist-pairs xs)

by auto
then show ?thesis

using ‹(y, x) ∈ set (map (λx. (x, x)) xs) ∪ set (non-sym-dist-pairs xs)› by
blast

qed
qed

lemma non-sym-dist-pairs ′-indices :
distinct xs =⇒ (x,y) ∈ set (non-sym-dist-pairs ′ xs)
=⇒ (∃ i j . xs ! i = x ∧ xs ! j = y ∧ i < j ∧ i < length xs ∧ j < length xs)

proof (induction xs)
case Nil
then show ?case by auto

next
case (Cons a xs)
show ?case proof (cases a = x)

case True
then have (a#xs) ! 0 = x and 0 < length (a#xs)

by auto

have y ∈ set xs
using non-sym-dist-pairs ′-elems-distinct(2 ,3 )[OF Cons.prems(1 ,2 )] True by

auto
then obtain j where xs ! j = y and j < length xs

by (meson in-set-conv-nth)
then have (a#xs) ! (Suc j) = y and Suc j < length (a#xs)

by auto
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then show ?thesis
using ‹(a#xs) ! 0 = x› ‹0 < length (a#xs)› by blast

next
case False
then have (x,y) ∈ set (non-sym-dist-pairs ′ xs)

using Cons.prems(2 ) by auto
then show ?thesis

using Cons.IH Cons.prems(1 )
by (metis Suc-mono distinct.simps(2 ) length-Cons nth-Cons-Suc)

qed
qed

lemma non-sym-dist-pairs ′-trans: distinct xs =⇒ trans (set (non-sym-dist-pairs ′

xs))
proof

fix x y z assume distinct xs
and (x, y) ∈ set (non-sym-dist-pairs ′ xs)
and (y, z) ∈ set (non-sym-dist-pairs ′ xs)

obtain nx ny where xs ! nx = x and xs ! ny = y and nx < ny
and nx < length xs and ny < length xs

using non-sym-dist-pairs ′-indices[OF ‹distinct xs› ‹(x, y) ∈ set (non-sym-dist-pairs ′

xs)›]
by blast

obtain ny ′ nz where xs ! ny ′ = y and xs ! nz = z and ny ′< nz
and ny ′ < length xs and nz < length xs

using non-sym-dist-pairs ′-indices[OF ‹distinct xs› ‹(y, z) ∈ set (non-sym-dist-pairs ′

xs)›]
by blast

have ny ′ = ny
using ‹distinct xs› ‹xs ! ny = y› ‹xs ! ny ′ = y› ‹ny < length xs› ‹ny ′ < length

xs›
nth-eq-iff-index-eq

by metis
then have nx < nz

using ‹nx < ny› ‹ny ′ < nz› by auto

then have nx 6= nz by simp
then have x 6= z

using ‹distinct xs› ‹xs ! nx = x› ‹xs ! nz = z› ‹nx < length xs› ‹nz < length
xs›

nth-eq-iff-index-eq
by metis

have remdups xs = xs
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using ‹distinct xs› by auto

have ¬(z, x) ∈ set (non-sym-dist-pairs ′ xs)
proof

assume (z, x) ∈ set (non-sym-dist-pairs ′ xs)
then obtain nz ′ nx ′ where xs ! nx ′ = x and xs ! nz ′ = z and nz ′< nx ′

and nx ′ < length xs and nz ′ < length xs
using non-sym-dist-pairs ′-indices[OF ‹distinct xs›, of z x] by metis

have nx ′ = nx
using ‹distinct xs› ‹xs ! nx = x› ‹xs ! nx ′ = x› ‹nx < length xs› ‹nx ′ < length

xs›
nth-eq-iff-index-eq

by metis
moreover have nz ′ = nz

using ‹distinct xs› ‹xs ! nz = z› ‹xs ! nz ′ = z› ‹nz < length xs› ‹nz ′ < length
xs›

nth-eq-iff-index-eq
by metis

ultimately have nz < nx
using ‹nz ′< nx ′› by auto

then show False
using ‹nx < nz› by simp

qed
then show (x, z) ∈ set (non-sym-dist-pairs ′ xs)

using non-sym-dist-pairs ′-elems-distinct(1 )[OF ‹distinct xs› ‹(x, y) ∈ set
(non-sym-dist-pairs ′ xs)›]

non-sym-dist-pairs ′-elems-distinct(2 )[OF ‹distinct xs› ‹(y, z) ∈ set
(non-sym-dist-pairs ′ xs)›]

‹x 6= z›
non-sym-dist-pairs-elems[of x xs z]

unfolding non-sym-dist-pairs.simps ‹remdups xs = xs›
by blast

qed

lemma non-sym-dist-pairs-trans: trans (set (non-sym-dist-pairs xs))
using non-sym-dist-pairs ′-trans[of remdups xs, OF distinct-remdups]
unfolding non-sym-dist-pairs.simps
by assumption

lemma linear-order-from-list-position-trans: trans (set (linear-order-from-list-position
xs))
proof

fix x y z assume (x, y) ∈ set (linear-order-from-list-position xs)
and (y, z) ∈ set (linear-order-from-list-position xs)

then consider (a) (x, y) ∈ set (map (λx. (x, x)) xs) ∧ (y, z) ∈ set (map (λx.
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(x, x)) xs) |
(b) (x, y) ∈ set (map (λx. (x, x)) xs) ∧ (y, z) ∈ set (non-sym-dist-pairs

xs) |
(c) (x, y) ∈ set (non-sym-dist-pairs xs) ∧ (y, z) ∈ set (map (λx. (x,

x)) xs) |
(d) (x, y) ∈ set (non-sym-dist-pairs xs) ∧ (y, z) ∈ set (non-sym-dist-pairs

xs)
unfolding linear-order-from-list-position-set by blast+

then show (x, z) ∈ set (linear-order-from-list-position xs)
proof cases

case a
then show ?thesis unfolding linear-order-from-list-position-set by auto

next
case b
then show ?thesis unfolding linear-order-from-list-position-set by auto

next
case c
then show ?thesis unfolding linear-order-from-list-position-set by auto

next
case d
then show ?thesis unfolding linear-order-from-list-position-set

using non-sym-dist-pairs-trans
by (metis UnI2 transE)

qed
qed

1.9 Find And Remove in a Single Pass
fun find-remove ′ :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ ( ′a × ′a list) option where

find-remove ′ P [] - = None |
find-remove ′ P (x#xs) prev = (if P x

then Some (x,prev@xs)
else find-remove ′ P xs (prev@[x]))

fun find-remove :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ( ′a × ′a list) option where
find-remove P xs = find-remove ′ P xs []

lemma find-remove ′-set :
assumes find-remove ′ P xs prev = Some (x,xs ′)

shows P x
and x ∈ set xs
and xs ′ = prev@(remove1 x xs)
proof −

have P x ∧ x ∈ set xs ∧ xs ′ = prev@(remove1 x xs)
using assms proof (induction xs arbitrary: prev xs ′)
case Nil
then show ?case by auto

next
case (Cons x xs)
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show ?case proof (cases P x)
case True
then show ?thesis using Cons by auto

next
case False
then show ?thesis using Cons by fastforce

qed
qed
then show P x

and x ∈ set xs
and xs ′ = prev@(remove1 x xs)

by blast+
qed

lemma find-remove ′-set-rev :
assumes x ∈ set xs
and P x

shows find-remove ′ P xs prev 6= None
using assms(1 ) proof(induction xs arbitrary: prev)

case Nil
then show ?case by auto

next
case (Cons x ′ xs)
show ?case proof (cases P x)

case True
then show ?thesis using Cons by auto

next
case False
then show ?thesis using Cons

using assms(2 ) by auto
qed

qed

lemma find-remove-None-iff :
find-remove P xs = None ←→ ¬ (∃ x . x ∈ set xs ∧ P x)
unfolding find-remove.simps
using find-remove ′-set(1 ,2 )

find-remove ′-set-rev
by (metis old.prod.exhaust option.exhaust)

lemma find-remove-set :
assumes find-remove P xs = Some (x,xs ′)

shows P x
and x ∈ set xs
and xs ′ = (remove1 x xs)

using assms find-remove ′-set[of P xs [] x xs ′] by auto
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fun find-remove-2 ′ :: ( ′a⇒ ′b⇒bool) ⇒ ′a list ⇒ ′b list ⇒ ′a list ⇒ ( ′a × ′b × ′a
list) option

where
find-remove-2 ′ P [] - - = None |
find-remove-2 ′ P (x#xs) ys prev = (case find (λy . P x y) ys of

Some y ⇒ Some (x,y,prev@xs) |
None ⇒ find-remove-2 ′ P xs ys (prev@[x]))

fun find-remove-2 :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ ( ′a × ′b × ′a list)
option where

find-remove-2 P xs ys = find-remove-2 ′ P xs ys []

lemma find-remove-2 ′-set :
assumes find-remove-2 ′ P xs ys prev = Some (x,y,xs ′)

shows P x y
and x ∈ set xs
and y ∈ set ys
and distinct (prev@xs) =⇒ set xs ′ = (set prev ∪ set xs) − {x}
and distinct (prev@xs) =⇒ distinct xs ′

and xs ′ = prev@(remove1 x xs)
and find (P x) ys = Some y
proof −

have P x y
∧ x ∈ set xs
∧ y ∈ set ys
∧ (distinct (prev@xs) −→ set xs ′ = (set prev ∪ set xs) − {x})
∧ (distinct (prev@xs) −→ distinct xs ′)
∧ (xs ′ = prev@(remove1 x xs))
∧ find (P x) ys = Some y

using assms
proof (induction xs arbitrary: prev xs ′ x y)

case Nil
then show ?case by auto

next
case (Cons x ′ xs)
then show ?case proof (cases find (λy . P x ′ y) ys)

case None
then have find-remove-2 ′ P (x ′ # xs) ys prev = find-remove-2 ′ P xs ys

(prev@[x ′])
using Cons.prems(1 ) by auto

hence ∗: find-remove-2 ′ P xs ys (prev@[x ′]) = Some (x, y, xs ′)
using Cons.prems(1 ) by simp

have x ′ 6= x
by (metis ∗ Cons.IH None find-from)

moreover have distinct (prev @ x ′ # xs) −→ distinct ((x ′ # prev) @ xs)
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by auto
ultimately show ?thesis using Cons.IH [OF ∗]

by auto
next

case (Some y ′)
then have find-remove-2 ′ P (x ′ # xs) ys prev = Some (x ′,y ′,prev@xs)

by auto
then show ?thesis using Some

using Cons.prems(1 ) find-condition find-set by fastforce
qed

qed
then show P x y

and x ∈ set xs
and y ∈ set ys
and distinct (prev @ xs) =⇒ set xs ′ = (set prev ∪ set xs) − {x}
and distinct (prev@xs) =⇒ distinct xs ′

and xs ′ = prev@(remove1 x xs)
and find (P x) ys = Some y

by blast+
qed

lemma find-remove-2 ′-strengthening :
assumes find-remove-2 ′ P xs ys prev = Some (x,y,xs ′)
and P ′ x y
and

∧
x ′ y ′ . P ′ x ′ y ′ =⇒ P x ′ y ′

shows find-remove-2 ′ P ′ xs ys prev = Some (x,y,xs ′)
using assms proof (induction xs arbitrary: prev)
case Nil
then show ?case by auto

next
case (Cons x ′ xs)
then show ?case proof (cases find (λy . P x ′ y) ys)

case None
then show ?thesis using Cons

by (metis (mono-tags, lifting) find-None-iff find-remove-2 ′.simps(2 ) op-
tion.simps(4 ))

next
case (Some a)
then have x ′ = x and a = y

using Cons.prems(1 ) unfolding find-remove-2 ′.simps by auto
then have find (λy . P x y) ys = Some y

using find-remove-2 ′-set[OF Cons.prems(1 )] by auto
then have find (λy . P ′ x y) ys = Some y

using Cons.prems(3 ) proof (induction ys)
case Nil
then show ?case by auto

next
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case (Cons y ′ ys)
then show ?case

by (metis assms(2 ) find.simps(2 ) option.inject)
qed

then show ?thesis
using find-remove-2 ′-set(6 )[OF Cons.prems(1 )]
unfolding ‹x ′ = x› find-remove-2 ′.simps by auto

qed
qed

lemma find-remove-2-strengthening :
assumes find-remove-2 P xs ys = Some (x,y,xs ′)
and P ′ x y
and

∧
x ′ y ′ . P ′ x ′ y ′ =⇒ P x ′ y ′

shows find-remove-2 P ′ xs ys = Some (x,y,xs ′)
using assms find-remove-2 ′-strengthening
by (metis find-remove-2 .simps)

lemma find-remove-2 ′-prev-independence :
assumes find-remove-2 ′ P xs ys prev = Some (x,y,xs ′)
shows ∃ xs ′′ . find-remove-2 ′ P xs ys prev ′ = Some (x,y,xs ′′)
using assms proof (induction xs arbitrary: prev prev ′ xs ′)
case Nil
then show ?case by auto

next
case (Cons x ′ xs)
show ?case proof (cases find (λy . P x ′ y) ys)

case None
then show ?thesis

using Cons.IH Cons.prems by auto

next
case (Some a)
then show ?thesis using Cons.prems unfolding find-remove-2 ′.simps

by simp
qed

qed

lemma find-remove-2 ′-filter :
assumes find-remove-2 ′ P (filter P ′ xs) ys prev = Some (x,y,xs ′)
and

∧
x y . ¬ P ′ x =⇒ ¬ P x y

shows ∃ xs ′′ . find-remove-2 ′ P xs ys prev = Some (x,y,xs ′′)
using assms(1 ) proof (induction xs arbitrary: prev prev xs ′)
case Nil
then show ?case by auto
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next
case (Cons x ′ xs)
then show ?case proof (cases P ′ x ′)

case True
then have ∗:find-remove-2 ′ P (filter P ′ (x ′ # xs)) ys prev

= find-remove-2 ′ P (x ′ # filter P ′ xs) ys prev
by auto

show ?thesis proof (cases find (λy . P x ′ y) ys)
case None
then show ?thesis
by (metis Cons.IH Cons.prems find-remove-2 ′.simps(2 ) option.simps(4 ) ∗)

next
case (Some a)
then have x ′ = x and a = y

using Cons.prems
unfolding ∗ find-remove-2 ′.simps by auto

show ?thesis
using Some
unfolding ‹x ′ = x› ‹a = y› find-remove-2 ′.simps
by simp

qed
next

case False
then have find-remove-2 ′ P (filter P ′ xs) ys prev = Some (x,y,xs ′)

using Cons.prems by auto

from False assms(2 ) have find (λy . P x ′ y) ys = None
by (simp add: find-None-iff )

then have find-remove-2 ′ P (x ′#xs) ys prev = find-remove-2 ′ P xs ys (prev@[x ′])
by auto

show ?thesis
using Cons.IH [OF ‹find-remove-2 ′ P (filter P ′ xs) ys prev = Some (x,y,xs ′)›]

unfolding ‹find-remove-2 ′ P (x ′#xs) ys prev = find-remove-2 ′ P xs ys
(prev@[x ′])›

using find-remove-2 ′-prev-independence by metis
qed

qed

lemma find-remove-2-filter :
assumes find-remove-2 P (filter P ′ xs) ys = Some (x,y,xs ′)
and

∧
x y . ¬ P ′ x =⇒ ¬ P x y

shows ∃ xs ′′ . find-remove-2 P xs ys = Some (x,y,xs ′′)
using assms by (simp add: find-remove-2 ′-filter)
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lemma find-remove-2 ′-index :
assumes find-remove-2 ′ P xs ys prev = Some (x,y,xs ′)
obtains i i ′ where i < length xs

xs ! i = x∧
j . j < i =⇒ find (λy . P (xs ! j) y) ys = None

i ′ < length ys
ys ! i ′ = y∧

j . j < i ′ =⇒ ¬ P (xs ! i) (ys ! j)
proof −

have ∃ i i ′ . i < length xs
∧ xs ! i = x
∧ (∀ j < i . find (λy . P (xs ! j) y) ys = None)
∧ i ′ < length ys ∧ ys ! i ′ = y
∧ (∀ j < i ′ . ¬ P (xs ! i) (ys ! j))

using assms
proof (induction xs arbitrary: prev xs ′ x y)

case Nil
then show ?case by auto

next
case (Cons x ′ xs)
then show ?case proof (cases find (λy . P x ′ y) ys)

case None
then have find-remove-2 ′ P (x ′ # xs) ys prev = find-remove-2 ′ P xs ys

(prev@[x ′])
using Cons.prems(1 ) by auto

hence ∗: find-remove-2 ′ P xs ys (prev@[x ′]) = Some (x, y, xs ′)
using Cons.prems(1 ) by simp

have x ′ 6= x
using find-remove-2 ′-set(1 ,3 )[OF ∗] None unfolding find-None-iff
by blast

obtain i i ′ where i < length xs and xs ! i = x
and (∀ j < i . find (λy . P (xs ! j) y) ys = None) and i ′ < length

ys
and ys ! i ′ = y and (∀ j < i ′ . ¬ P (xs ! i) (ys ! j))

using Cons.IH [OF ∗] by blast

have Suc i < length (x ′#xs)
using ‹i < length xs› by auto

moreover have (x ′#xs) ! Suc i = x
using ‹xs ! i = x› by auto

moreover have (∀ j < Suc i . find (λy . P ((x ′#xs) ! j) y) ys = None)
proof −
have

∧
j . j > 0 =⇒ j < Suc i =⇒ find (λy . P ((x ′#xs) ! j) y) ys = None

using ‹(∀ j < i . find (λy . P (xs ! j) y) ys = None)› by auto
then show ?thesis using None

by (metis neq0-conv nth-Cons-0 )
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qed
moreover have (∀ j < i ′ . ¬ P ((x ′#xs) ! Suc i) (ys ! j))

using ‹(∀ j < i ′ . ¬ P (xs ! i) (ys ! j))›
by simp

ultimately show ?thesis
using that ‹i ′ < length ys› ‹ys ! i ′ = y› by blast

next
case (Some y ′)
then have x ′ = x and y ′ = y

using Cons.prems by force+

have 0 < length (x ′#xs) ∧ (x ′#xs) ! 0 = x ′

∧ (∀ j < 0 . find (λy . P ((x ′#xs) ! j) y) ys = None)
by auto

moreover obtain i ′ where i ′ < length ys and ys ! i ′ = y ′

and (∀ j < i ′ . ¬ P ((x ′#xs) ! 0 ) (ys ! j))
using find-sort-index[OF Some] by auto

ultimately show ?thesis
unfolding ‹x ′ = x› ‹y ′ = y› by blast

qed
qed
then show ?thesis using that by blast

qed

lemma find-remove-2-index :
assumes find-remove-2 P xs ys = Some (x,y,xs ′)
obtains i i ′ where i < length xs

xs ! i = x∧
j . j < i =⇒ find (λy . P (xs ! j) y) ys = None

i ′ < length ys
ys ! i ′ = y∧

j . j < i ′ =⇒ ¬ P (xs ! i) (ys ! j)
using assms find-remove-2 ′-index[of P xs ys [] x y xs ′] by auto

lemma find-remove-2 ′-set-rev :
assumes x ∈ set xs
and y ∈ set ys
and P x y

shows find-remove-2 ′ P xs ys prev 6= None
using assms(1 ) proof(induction xs arbitrary: prev)

case Nil
then show ?case by auto

next
case (Cons x ′ xs)
then show ?case proof (cases find (λy . P x ′ y) ys)

case None
then have x 6= x ′
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using assms(2 ,3 ) by (metis find-None-iff )
then have x ∈ set xs

using Cons.prems by auto
then show ?thesis

using Cons.IH unfolding find-remove-2 ′.simps None by auto
next

case (Some a)
then show ?thesis by auto

qed
qed

lemma find-remove-2 ′-diff-prev-None :
(find-remove-2 ′ P xs ys prev = None =⇒ find-remove-2 ′ P xs ys prev ′ = None)

proof (induction xs arbitrary: prev prev ′)
case Nil
then show ?case by auto

next
case (Cons x xs)
show ?case proof (cases find (λy . P x y) ys)

case None
then have find-remove-2 ′ P (x#xs) ys prev = find-remove-2 ′ P xs ys (prev@[x])

and find-remove-2 ′ P (x#xs) ys prev ′ = find-remove-2 ′ P xs ys (prev ′@[x])
by auto

then show ?thesis using Cons by auto
next

case (Some a)
then show ?thesis using Cons by auto

qed
qed

lemma find-remove-2 ′-diff-prev-Some :
(find-remove-2 ′ P xs ys prev = Some (x,y,xs ′)
=⇒ ∃ xs ′′ . find-remove-2 ′ P xs ys prev ′ = Some (x,y,xs ′′))

proof (induction xs arbitrary: prev prev ′)
case Nil
then show ?case by auto

next
case (Cons x xs)
show ?case proof (cases find (λy . P x y) ys)

case None
then have find-remove-2 ′ P (x#xs) ys prev = find-remove-2 ′ P xs ys (prev@[x])

and find-remove-2 ′ P (x#xs) ys prev ′ = find-remove-2 ′ P xs ys (prev ′@[x])
by auto

then show ?thesis using Cons by auto
next

case (Some a)
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then show ?thesis using Cons by auto
qed

qed

lemma find-remove-2-None-iff :
find-remove-2 P xs ys = None ←→ ¬ (∃ x y . x ∈ set xs ∧ y ∈ set ys ∧ P x y)
unfolding find-remove-2 .simps
using find-remove-2 ′-set(1−3 ) find-remove-2 ′-set-rev
by (metis old.prod.exhaust option.exhaust)

lemma find-remove-2-set :
assumes find-remove-2 P xs ys = Some (x,y,xs ′)

shows P x y
and x ∈ set xs
and y ∈ set ys
and distinct xs =⇒ set xs ′ = (set xs) − {x}
and distinct xs =⇒ distinct xs ′

and xs ′ = (remove1 x xs)
using assms find-remove-2 ′-set[of P xs ys [] x y xs ′]
unfolding find-remove-2 .simps by auto

lemma find-remove-2-removeAll :
assumes find-remove-2 P xs ys = Some (x,y,xs ′)
and distinct xs

shows xs ′ = removeAll x xs
using find-remove-2-set(6 )[OF assms(1 )]
by (simp add: assms(2 ) distinct-remove1-removeAll)

lemma find-remove-2-length :
assumes find-remove-2 P xs ys = Some (x,y,xs ′)
shows length xs ′ = length xs − 1
using find-remove-2-set(2 ,6 )[OF assms]
by (simp add: length-remove1 )

fun separate-by :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ( ′a list × ′a list) where
separate-by P xs = (filter P xs, filter (λ x . ¬ P x) xs)

lemma separate-by-code[code] :
separate-by P xs = foldr (λx (prevPass,prevFail) . if P x then (x#prevPass,prevFail)

else (prevPass,x#prevFail)) xs ([],[])
proof (induction xs)

case Nil
then show ?case by auto

next
case (Cons a xs)
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let ?f = (λx (prevPass,prevFail) . if P x then (x#prevPass,prevFail) else (prevPass,x#prevFail))

have (filter P xs, filter (λ x . ¬ P x) xs) = foldr ?f xs ([],[])
using Cons.IH by auto

moreover have separate-by P (a#xs) = ?f a (filter P xs, filter (λ x . ¬ P x) xs)
by auto

ultimately show ?case
by (cases P a; auto)

qed

fun find-remove-2-all :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ (( ′a × ′b) list ×
′a list) where

find-remove-2-all P xs ys =
(map (λ x . (x, the (find (λy . P x y) ys))) (filter (λ x . find (λy . P x y) ys 6=

None) xs)
,filter (λ x . find (λy . P x y) ys = None) xs)

fun find-remove-2-all ′ :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ (( ′a × ′b) list ×
′a list) where

find-remove-2-all ′ P xs ys =
(let (successesWithWitnesses,failures) = separate-by (λ(x,y) . y 6= None) (map

(λ x . (x,find (λy . P x y) ys)) xs)
in (map (λ (x,y) . (x, the y)) successesWithWitnesses, map fst failures))

lemma find-remove-2-all-code[code] :
find-remove-2-all P xs ys = find-remove-2-all ′ P xs ys

proof −
let ?s1 = map (λ x . (x, the (find (λy . P x y) ys))) (filter (λ x . find (λy . P x

y) ys 6= None) xs)
let ?f1 = filter (λ x . find (λy . P x y) ys = None) xs

let ?s2 = map (λ (x,y) . (x, the y)) (filter (λ(x,y) . y 6= None) (map (λ x .
(x,find (λy . P x y) ys)) xs))

let ?f2 = map fst (filter (λ(x,y) . y = None) (map (λ x . (x,find (λy . P x y)
ys)) xs))

have find-remove-2-all P xs ys = (?s1 ,?f1 )
by simp

moreover have find-remove-2-all ′ P xs ys = (?s2 ,?f2 )
proof −

have ∀ p. (λpa. ¬ (case pa of (a:: ′a, x:: ′b option) ⇒ p x)) = (λ(a, z). ¬ p z)
by force

then show ?thesis
unfolding find-remove-2-all ′.simps Let-def separate-by.simps
by force

qed
moreover have ?s1 = ?s2

by (induction xs; auto)
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moreover have ?f1 = ?f2
by (induction xs; auto)

ultimately show ?thesis
by simp

qed

1.10 Set-Operations on Lists
fun pow-list :: ′a list ⇒ ′a list list where

pow-list [] = [[]] |
pow-list (x#xs) = (let pxs = pow-list xs in pxs @ map (λ ys . x#ys) pxs)

lemma pow-list-set :
set (map set (pow-list xs)) = Pow (set xs)

proof (induction xs)
case Nil

then show ?case by auto
next

case (Cons x xs)

moreover have Pow (set (x # xs)) = Pow (set xs) ∪ (image (insert x) (Pow
(set xs)))

by (simp add: Pow-insert)

moreover have set (map set (pow-list (x#xs)))
= set (map set (pow-list xs)) ∪ (image (insert x) (set (map set

(pow-list xs))))
proof −

have
∧

ys . ys ∈ set (map set (pow-list (x#xs)))
=⇒ ys ∈ set (map set (pow-list xs)) ∪ (image (insert x) (set (map set

(pow-list xs))))
proof −

fix ys assume ys ∈ set (map set (pow-list (x#xs)))
then consider (a) ys ∈ set (map set (pow-list xs)) |

(b) ys ∈ set (map set (map ((#) x) (pow-list xs)))
unfolding pow-list.simps Let-def by auto

then show ys ∈ set (map set (pow-list xs)) ∪ (image (insert x) (set (map set
(pow-list xs))))

by (cases; auto)
qed
moreover have

∧
ys . ys ∈ set (map set (pow-list xs))
∪ (image (insert x) (set (map set (pow-list xs))))

=⇒ ys ∈ set (map set (pow-list (x#xs)))
proof −

fix ys assume ys ∈ set (map set (pow-list xs))
∪ (image (insert x) (set (map set (pow-list xs))))

then consider (a) ys ∈ set (map set (pow-list xs)) |
(b) ys ∈ (image (insert x) (set (map set (pow-list xs))))
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by blast
then show ys ∈ set (map set (pow-list (x#xs)))

unfolding pow-list.simps Let-def by (cases; auto)
qed
ultimately show ?thesis by blast

qed

ultimately show ?case
by auto

qed

fun inter-list :: ′a list ⇒ ′a list ⇒ ′a list where
inter-list xs ys = filter (λ x . x ∈ set ys) xs

lemma inter-list-set : set (inter-list xs ys) = (set xs) ∩ (set ys)
by auto

fun subset-list :: ′a list ⇒ ′a list ⇒ bool where
subset-list xs ys = list-all (λ x . x ∈ set ys) xs

lemma subset-list-set : subset-list xs ys = ((set xs) ⊆ (set ys))
unfolding subset-list.simps
by (simp add: Ball-set subset-code(1 ))

1.10.1 Removing Subsets in a List of Sets
lemma remove1-length : x ∈ set xs =⇒ length (remove1 x xs) < length xs

by (induction xs; auto)

function remove-subsets :: ′a set list ⇒ ′a set list where
remove-subsets [] = [] |
remove-subsets (x#xs) = (case find-remove (λ y . x ⊂ y) xs of

Some (y ′,xs ′) ⇒ remove-subsets (y ′# (filter (λ y . ¬(y ⊆ x)) xs ′)) |
None ⇒ x # (remove-subsets (filter (λ y . ¬(y ⊆ x)) xs)))

by pat-completeness auto
termination
proof −

have
∧

x xs. find-remove ((⊂) x) xs = None =⇒ (filter (λy. ¬ y ⊆ x) xs, x #
xs) ∈ measure length

by (metis dual-order .trans impossible-Cons in-measure length-filter-le not-le-imp-less)
moreover have (

∧
(x :: ′a set) xs x2 xa y. find-remove ((⊂) x) xs = Some x2

=⇒ (xa, y) = x2 =⇒ (xa # filter (λy. ¬ y ⊆ x) y, x # xs) ∈ measure length)
proof −

fix x :: ′a set
fix xs y ′xs ′ y ′ xs ′

assume find-remove ((⊂) x) xs = Some y ′xs ′ and (y ′, xs ′) = y ′xs ′

then have find-remove ((⊂) x) xs = Some (y ′,xs ′)
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by auto

have length xs ′ = length xs − 1
using find-remove-set(2 ,3 )[OF ‹find-remove ((⊂) x) xs = Some (y ′,xs ′)›]
by (simp add: length-remove1 )

then have length (y ′#xs ′) = length xs
using find-remove-set(2 )[OF ‹find-remove ((⊂) x) xs = Some (y ′,xs ′)›]
using remove1-length by fastforce

have length (filter (λy. ¬ y ⊆ x) xs ′) ≤ length xs ′

by simp
then have length (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ≤ length xs ′ + 1

by simp
then have length (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ≤ length xs

unfolding ‹length (y ′#xs ′) = length xs›[symmetric] by simp
then show (y ′ # filter (λy. ¬ y ⊆ x) xs ′, x # xs) ∈ measure length

by auto
qed
ultimately show ?thesis

by (relation measure length; auto)
qed

lemma remove-subsets-set : set (remove-subsets xss) = {xs . xs ∈ set xss ∧ (@ xs ′

. xs ′ ∈ set xss ∧ xs ⊂ xs ′)}
proof (induction length xss arbitrary: xss rule: less-induct)

case less

show ?case proof (cases xss)

case Nil
then show ?thesis by auto

next
case (Cons x xss ′)

show ?thesis proof (cases find-remove (λ y . x ⊂ y) xss ′)
case None
then have (@ xs ′ . xs ′ ∈ set xss ′ ∧ x ⊂ xs ′)

using find-remove-None-iff by metis

have length (filter (λ y . ¬(y ⊆ x)) xss ′) < length xss
using Cons
by (meson dual-order .trans impossible-Cons leI length-filter-le)

have remove-subsets (x#xss ′) = x # (remove-subsets (filter (λ y . ¬(y ⊆ x))
xss ′))

using None by auto
then have set (remove-subsets (x#xss ′)) = insert x {xs ∈ set (filter (λy. ¬

y ⊆ x) xss ′). @ xs ′. xs ′ ∈ set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′}
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using less[OF ‹length (filter (λ y . ¬(y ⊆ x)) xss ′) < length xss›]
by auto

also have . . . = {xs . xs ∈ set (x#xss ′) ∧ (@ xs ′ . xs ′ ∈ set (x#xss ′) ∧ xs ⊂
xs ′)}

proof −
have

∧
xs . xs ∈ insert x {xs ∈ set (filter (λy. ¬ y ⊆ x) xss ′). @ xs ′. xs ′ ∈

set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′}
=⇒ xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′}

proof −
fix xs assume xs ∈ insert x {xs ∈ set (filter (λy. ¬ y ⊆ x) xss ′). @ xs ′. xs ′

∈ set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′}
then consider xs = x | xs ∈ set (filter (λy. ¬ y ⊆ x) xss ′) ∧ (@ xs ′. xs ′ ∈

set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′)
by blast

then show xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂
xs ′}

using ‹(@ xs ′ . xs ′ ∈ set xss ′ ∧ x ⊂ xs ′)› by (cases; auto)
qed
moreover have

∧
xs . xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′)

∧ xs ⊂ xs ′}
=⇒ xs ∈ insert x {xs ∈ set (filter (λy. ¬ y ⊆ x) xss ′). @ xs ′.

xs ′ ∈ set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′}
proof −

fix xs assume xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs
⊂ xs ′}

then have xs ∈ set (x # xss ′) and @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′

by blast+
then consider xs = x | xs ∈ set xss ′ by auto
then show xs ∈ insert x {xs ∈ set (filter (λy. ¬ y ⊆ x) xss ′). @ xs ′. xs ′ ∈

set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′}
proof cases

case 1
then show ?thesis by auto

next
case 2
show ?thesis proof (cases xs ⊆ x)

case True
then show ?thesis

using ‹@ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′› by auto
next

case False
then have xs ∈ set (filter (λy. ¬ y ⊆ x) xss ′)

using 2 by auto
moreover have @ xs ′. xs ′ ∈ set (filter (λy. ¬ y ⊆ x) xss ′) ∧ xs ⊂ xs ′

using ‹@ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′› by auto
ultimately show ?thesis by auto

qed
qed

qed
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ultimately show ?thesis
by (meson subset-antisym subset-eq)

qed
finally show ?thesis unfolding Cons[symmetric] by assumption

next
case (Some a)
then obtain y ′ xs ′ where ∗: find-remove (λ y . x ⊂ y) xss ′ = Some (y ′,xs ′)

by force

have length xs ′ = length xss ′ − 1
using find-remove-set(2 ,3 )[OF ∗]
by (simp add: length-remove1 )

then have length (y ′#xs ′) = length xss ′

using find-remove-set(2 )[OF ∗]
using remove1-length by fastforce

have length (filter (λy. ¬ y ⊆ x) xs ′) ≤ length xs ′

by simp
then have length (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ≤ length xs ′ + 1

by simp
then have length (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ≤ length xss ′

unfolding ‹length (y ′#xs ′) = length xss ′›[symmetric] by simp
then have length (y ′ # filter (λy. ¬ y ⊆ x) xs ′) < length xss

unfolding Cons by auto

have remove-subsets (x#xss ′) = remove-subsets (y ′# (filter (λ y . ¬(y ⊆ x))
xs ′))

using ∗ by auto
then have set (remove-subsets (x#xss ′)) = {xs ∈ set (y ′ # filter (λy. ¬ y ⊆

x) xs ′). @ xs ′a. xs ′a ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a}
using less[OF ‹length (y ′ # filter (λy. ¬ y ⊆ x) xs ′) < length xss›]
by auto

also have . . . = {xs . xs ∈ set (x#xss ′) ∧ (@ xs ′ . xs ′ ∈ set (x#xss ′) ∧ xs ⊂
xs ′)}

proof −
have

∧
xs . xs ∈ {xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′). @ xs ′a. xs ′a ∈ set

(y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a}
=⇒ xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′}

proof −
fix xs assume xs ∈ {xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′). @ xs ′a. xs ′a

∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a}
then have xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′) and @ xs ′a. xs ′a ∈ set

(y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a
by blast+

have xs ∈ set (x # xss ′)
using ‹xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′)› find-remove-set(2 ,3 )[OF
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∗]
by auto

moreover have @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′

using ‹@ xs ′a. xs ′a ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a›
find-remove-set[OF ∗]

by (metis dual-order .strict-trans filter-list-set in-set-remove1 list.set-intros(1 )
list.set-intros(2 ) psubsetI set-ConsD)

ultimately show xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′) ∧
xs ⊂ xs ′}

by blast
qed
moreover have

∧
xs . xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′)

∧ xs ⊂ xs ′}
=⇒ xs ∈ {xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′). @ xs ′a. xs ′a ∈ set

(y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a}
proof −

fix xs assume xs ∈ {xs ∈ set (x # xss ′). @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs
⊂ xs ′}

then have xs ∈ set (x # xss ′) and @ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′

by blast+

then have xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′)
using find-remove-set[OF ∗]
by (metis filter-list-set in-set-remove1 list.set-intros(1 ) list.set-intros(2 )

psubsetI set-ConsD)
moreover have @ xs ′a. xs ′a ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂

xs ′a
using ‹xs ∈ set (x # xss ′)› ‹@ xs ′. xs ′ ∈ set (x # xss ′) ∧ xs ⊂ xs ′›

find-remove-set[OF ∗]
by (metis filter-is-subset list.set-intros(2 ) notin-set-remove1 set-ConsD

subset-iff )
ultimately show xs ∈ {xs ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′). @ xs ′a.

xs ′a ∈ set (y ′ # filter (λy. ¬ y ⊆ x) xs ′) ∧ xs ⊂ xs ′a}
by blast

qed
ultimately show ?thesis by blast

qed
finally show ?thesis unfolding Cons by assumption

qed
qed

qed

1.11 Linear Order on Sum
instantiation sum :: (ord,ord) ord
begin

fun less-eq-sum :: ′a + ′b ⇒ ′a + ′b ⇒ bool where
less-eq-sum (Inl a) (Inl b) = (a ≤ b) |
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less-eq-sum (Inl a) (Inr b) = True |
less-eq-sum (Inr a) (Inl b) = False |
less-eq-sum (Inr a) (Inr b) = (a ≤ b)

fun less-sum :: ′a + ′b ⇒ ′a + ′b ⇒ bool where
less-sum a b = (a ≤ b ∧ a 6= b)

instance by (intro-classes)
end

instantiation sum :: (linorder ,linorder) linorder
begin

lemma less-le-not-le-sum :
fixes x :: ′a + ′b
and y :: ′a + ′b

shows (x < y) = (x ≤ y ∧ ¬ y ≤ x)
by (cases x; cases y; auto)

lemma order-refl-sum :
fixes x :: ′a + ′b
shows x ≤ x
by (cases x; auto)

lemma order-trans-sum :
fixes x :: ′a + ′b
fixes y :: ′a + ′b
fixes z :: ′a + ′b
shows x ≤ y =⇒ y ≤ z =⇒ x ≤ z
by (cases x; cases y; cases z; auto)

lemma antisym-sum :
fixes x :: ′a + ′b
fixes y :: ′a + ′b
shows x ≤ y =⇒ y ≤ x =⇒ x = y
by (cases x; cases y; auto)

lemma linear-sum :
fixes x :: ′a + ′b
fixes y :: ′a + ′b
shows x ≤ y ∨ y ≤ x
by (cases x; cases y; auto)

instance
using less-le-not-le-sum order-refl-sum order-trans-sum antisym-sum linear-sum
by (intro-classes; metis+)

end
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1.12 Removing Proper Prefixes
definition remove-proper-prefixes :: ′a list set ⇒ ′a list set where

remove-proper-prefixes xs = {x . x ∈ xs ∧ (@ x ′ . x ′ 6= [] ∧ x@x ′ ∈ xs)}

lemma remove-proper-prefixes-code[code] :
remove-proper-prefixes (set xs) = set (filter (λx . (∀ y ∈ set xs . is-prefix x y −→

x = y)) xs)
proof −

have ∗: remove-proper-prefixes (set xs) = Set.filter (λ zs . @ ys . ys 6= [] ∧ zs @
ys ∈ (set xs)) (set xs)

unfolding remove-proper-prefixes-def by force

have
∧

zs . (@ ys . ys 6= [] ∧ zs @ ys ∈ (set xs)) = (∀ ys ∈ set xs . is-prefix zs
ys −→ zs = ys)

unfolding is-prefix-prefix by auto

then show ?thesis
unfolding ∗ filter-set by auto

qed

1.13 Underspecified List Representations of Sets
definition as-list-helper :: ′a set ⇒ ′a list where

as-list-helper X = (SOME xs . set xs = X ∧ distinct xs)

lemma as-list-helper-props :
assumes finite X
shows set (as-list-helper X) = X

and distinct (as-list-helper X)
using finite-distinct-list[OF assms]
using someI [of λ xs . set xs = X ∧ distinct xs]
by (metis as-list-helper-def )+

1.14 Assigning indices to elements of a finite set
fun assign-indices :: ( ′a :: linorder) set ⇒ ( ′a ⇒ nat) where

assign-indices xs = (λ x . the (find-index ((=)x) (sorted-list-of-set xs)))

lemma assign-indices-bij:
assumes finite xs
shows bij-betw (assign-indices xs) xs {..<card xs}

proof −

have ∗:set (sorted-list-of-set xs) = xs
by (simp add: assms)

have
∧

x y . x∈xs =⇒ y∈xs =⇒ assign-indices xs x = assign-indices xs y =⇒ x
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= y
proof −

fix x y assume x∈xs and y∈xs and assign-indices xs x = assign-indices xs y

obtain i where find-index ((=)x) (sorted-list-of-set xs) = Some i
using find-index-exhaustive[of sorted-list-of-set xs ((=) x)]
using ‹x∈xs› unfolding ∗
by blast

then have assign-indices xs x = i
by auto

obtain j where find-index ((=)y) (sorted-list-of-set xs) = Some j
using find-index-exhaustive[of sorted-list-of-set xs ((=) y)]
using ‹y∈xs› unfolding ∗
by blast

then have assign-indices xs y = j
by auto

then have i = j
using ‹assign-indices xs x = assign-indices xs y› ‹assign-indices xs x = i›
by auto

then have find-index ((=)y) (sorted-list-of-set xs) = Some i
using ‹find-index ((=)y) (sorted-list-of-set xs) = Some j›
by auto

show x = y
using find-index-index(2 )[OF ‹find-index ((=)x) (sorted-list-of-set xs) = Some

i›]
using find-index-index(2 )[OF ‹find-index ((=)y) (sorted-list-of-set xs) = Some

i›]
by auto

qed
moreover have (assign-indices xs) ‘ xs = {..<card xs}
proof

show assign-indices xs ‘ xs ⊆ {..<card xs}
proof

fix i assume i ∈ assign-indices xs ‘ xs
then obtain x where x ∈ xs and i = assign-indices xs x

by blast
moreover obtain j where find-index ((=)x) (sorted-list-of-set xs) = Some j

using find-index-exhaustive[of sorted-list-of-set xs ((=) x)]
using ‹x∈xs› unfolding ∗
by blast

ultimately have find-index ((=)x) (sorted-list-of-set xs) = Some i
by auto

show i ∈ {..<card xs}
using find-index-index(1 )[OF ‹find-index ((=)x) (sorted-list-of-set xs) =

Some i›]
by auto

qed
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show {..<card xs} ⊆ assign-indices xs ‘ xs
proof

fix i assume i ∈ {..<card xs}
then have i < length (sorted-list-of-set xs)

by auto
then have sorted-list-of-set xs ! i ∈ xs

using ∗ nth-mem by blast
then obtain j where find-index ((=) (sorted-list-of-set xs ! i)) (sorted-list-of-set

xs) = Some j
using find-index-exhaustive[of sorted-list-of-set xs ((=) (sorted-list-of-set xs

! i))]
unfolding ∗
by blast

have i = j
using find-index-index(1 ,2 )[OF ‹find-index ((=) (sorted-list-of-set xs ! i))

(sorted-list-of-set xs) = Some j›]
using ‹i < length (sorted-list-of-set xs)› distinct-sorted-list-of-set nth-eq-iff-index-eq

by blast
then show i ∈ assign-indices xs ‘ xs

using ‹find-index ((=) (sorted-list-of-set xs ! i)) (sorted-list-of-set xs) =
Some j›

by (metis ‹sorted-list-of-set xs ! i ∈ xs› assign-indices.elims image-iff op-
tion.sel)

qed
qed
ultimately show ?thesis

unfolding bij-betw-def inj-on-def by blast
qed

1.15 Other Lemmata
lemma foldr-elem-check:

assumes list.set xs ⊆ A
shows foldr (λ x y . if x /∈ A then y else f x y) xs v = foldr f xs v
using assms by (induction xs; auto)

lemma foldl-elem-check:
assumes list.set xs ⊆ A
shows foldl (λ y x . if x /∈ A then y else f y x) v xs = foldl f v xs
using assms by (induction xs rule: rev-induct; auto)

lemma foldr-length-helper :
assumes length xs = length ys
shows foldr (λ- x . f x) xs b = foldr (λa x . f x) ys b
using assms by (induction xs ys rule: list-induct2 ; auto)

lemma list-append-subset3 : set xs1 ⊆ set ys1 =⇒ set xs2 ⊆ set ys2 =⇒ set xs3
⊆ set ys3 =⇒ set (xs1@xs2@xs3 ) ⊆ set(ys1@ys2@ys3 ) by auto
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lemma subset-filter : set xs ⊆ set ys =⇒ set xs = set (filter (λ x . x ∈ set xs) ys)
by auto

lemma map-filter-elem :
assumes y ∈ set (List.map-filter f xs)
obtains x where x ∈ set xs

and f x = Some y
using assms unfolding List.map-filter-def
by auto

lemma filter-length-weakening :
assumes

∧
q . f1 q =⇒ f2 q

shows length (filter f1 p) ≤ length (filter f2 p)
proof (induction p)

case Nil
then show ?case by auto

next
case (Cons a p)
then show ?case using assms by (cases f1 a; auto)

qed

lemma max-length-elem :
fixes xs :: ′a list set
assumes finite xs
and xs 6= {}

shows ∃ x ∈ xs . ¬(∃ y ∈ xs . length y > length x)
using assms proof (induction xs)

case empty
then show ?case by auto

next
case (insert x F)
then show ?case proof (cases F = {})

case True
then show ?thesis by blast

next
case False
then obtain y where y ∈ F and ¬(∃ y ′ ∈ F . length y ′ > length y)

using insert.IH by blast
then show ?thesis using dual-order .strict-trans by (cases length x > length y;

auto)
qed

qed

lemma min-length-elem :
fixes xs :: ′a list set
assumes finite xs
and xs 6= {}

shows ∃ x ∈ xs . ¬(∃ y ∈ xs . length y < length x)
using assms proof (induction xs)
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case empty
then show ?case by auto

next
case (insert x F)
then show ?case proof (cases F = {})

case True
then show ?thesis by blast

next
case False
then obtain y where y ∈ F and ¬(∃ y ′ ∈ F . length y ′ < length y)

using insert.IH by blast
then show ?thesis using dual-order .strict-trans by (cases length x < length y;

auto)
qed

qed

lemma list-property-from-index-property :
assumes

∧
i . i < length xs =⇒ P (xs ! i)

shows
∧

x . x ∈ set xs =⇒ P x
by (metis assms in-set-conv-nth)

lemma list-distinct-prefix :
assumes

∧
i . i < length xs =⇒ xs ! i /∈ set (take i xs)

shows distinct xs
proof −

have
∧

j . distinct (take j xs)
proof −

fix j
show distinct (take j xs)
proof (induction j)

case 0
then show ?case by auto

next
case (Suc j)
then show ?case proof (cases Suc j ≤ length xs)

case True
then have take (Suc j) xs = (take j xs) @ [xs ! j]

by (simp add: Suc-le-eq take-Suc-conv-app-nth)
then show ?thesis using Suc.IH assms[of j] True by auto

next
case False
then have take (Suc j) xs = take j xs by auto
then show ?thesis using Suc.IH by auto

qed
qed

qed
then have distinct (take (length xs) xs)

by blast
then show ?thesis by auto
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qed

lemma concat-pair-set :
set (concat (map (λx. map (Pair x) ys) xs)) = {xy . fst xy ∈ set xs ∧ snd xy ∈

set ys}
by auto

lemma list-set-sym :
set (x@y) = set (y@x) by auto

lemma list-contains-last-take :
assumes x ∈ set xs
shows ∃ i . 0 < i ∧ i ≤ length xs ∧ last (take i xs) = x
by (metis Suc-leI assms hd-drop-conv-nth in-set-conv-nth last-snoc take-hd-drop

zero-less-Suc)

lemma take-last-index :
assumes i < length xs
shows last (take (Suc i) xs) = xs ! i
by (simp add: assms take-Suc-conv-app-nth)

lemma integer-singleton-least :
assumes {x . P x} = {a::integer}
shows a = (LEAST x . P x)
by (metis Collect-empty-eq Least-equality assms insert-not-empty mem-Collect-eq

order-refl singletonD)

lemma sort-list-split :
∀ x ∈ set (take i (sort xs)) . ∀ y ∈ set (drop i (sort xs)) . x ≤ y
using sorted-append by fastforce

lemma set-map-subset :
assumes x ∈ set xs
and t ∈ set (map f [x])

shows t ∈ set (map f xs)
using assms by auto

lemma rev-induct2 [consumes 1 , case-names Nil snoc]:
assumes length xs = length ys

and P [] []
and (

∧
x xs y ys. length xs = length ys =⇒ P xs ys =⇒ P (xs@[x]) (ys@[y]))

shows P xs ys
using assms proof (induct xs arbitrary: ys rule: rev-induct)

case Nil
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then show ?case by auto
next

case (snoc x xs)
then show ?case proof (cases ys)

case Nil
then show ?thesis

using snoc.prems(1 ) by auto
next

case (Cons a list)
then show ?thesis
by (metis append-butlast-last-id diff-Suc-1 length-append-singleton list.distinct(1 )

snoc.hyps snoc.prems)
qed

qed

lemma finite-set-min-param-ex :
assumes finite XS
and

∧
x . x ∈ XS =⇒ ∃ k . ∀ k ′ . k ≤ k ′ −→ P x k ′

shows ∃ (k::nat) . ∀ x ∈ XS . P x k
proof −

obtain f where f-def :
∧

x . x ∈ XS =⇒ ∀ k ′ . (f x) ≤ k ′ −→ P x k ′

using assms(2 ) by meson
let ?k = Max (image f XS)
have ∀ x ∈ XS . P x ?k

using f-def by (simp add: assms(1 ))
then show ?thesis by blast

qed

fun list-max :: nat list ⇒ nat where
list-max [] = 0 |
list-max xs = Max (set xs)

lemma list-max-is-max : q ∈ set xs =⇒ q ≤ list-max xs
by (metis List.finite-set Max-ge length-greater-0-conv length-pos-if-in-set list-max.elims)

lemma list-prefix-subset : ∃ ys . ts = xs@ys =⇒ set xs ⊆ set ts by auto
lemma list-map-set-prop : x ∈ set (map f xs) =⇒ ∀ y . P (f y) =⇒ P x by auto
lemma list-concat-non-elem : x /∈ set xs =⇒ x /∈ set ys =⇒ x /∈ set (xs@ys) by
auto
lemma list-prefix-elem : x ∈ set (xs@ys) =⇒ x /∈ set ys =⇒ x ∈ set xs by auto
lemma list-map-source-elem : x ∈ set (map f xs) =⇒ ∃ x ′ ∈ set xs . x = f x ′ by
auto

lemma maximal-set-cover :
fixes X :: ′a set set
assumes finite X
and S ∈ X
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shows ∃ S ′ ∈ X . S ⊆ S ′ ∧ (∀ S ′′ ∈ X . ¬(S ′ ⊂ S ′′))
proof (rule ccontr)

assume ¬ (∃S ′∈X . S ⊆ S ′ ∧ (∀S ′′∈X . ¬ S ′ ⊂ S ′′))
then have ∗:

∧
T . T ∈ X =⇒ S ⊆ T =⇒ ∃ T ′ ∈ X . T ⊂ T ′

by auto

have
∧

k . ∃ ss . (length ss = Suc k) ∧ (hd ss = S) ∧ (∀ i < k . ss ! i ⊂ ss !
(Suc i)) ∧ (set ss ⊆ X)

proof −
fix k show ∃ ss . (length ss = Suc k) ∧ (hd ss = S) ∧ (∀ i < k . ss ! i ⊂ ss !

(Suc i)) ∧ (set ss ⊆ X)
proof (induction k)

case 0
have length [S ] = Suc 0 ∧ hd [S ] = S ∧ (∀ i < 0 . [S ] ! i ⊂ [S ] ! (Suc i)) ∧

(set [S ] ⊆ X) using assms(2 ) by auto
then show ?case by blast

next
case (Suc k)
then obtain ss where length ss = Suc k

and hd ss = S
and (∀ i<k. ss ! i ⊂ ss ! Suc i)
and set ss ⊆ X

by blast
then have ss ! k ∈ X

by auto
moreover have S ⊆ (ss ! k)
proof −

have
∧

i . i < Suc k =⇒ S ⊆ (ss ! i)
proof −

fix i assume i < Suc k
then show S ⊆ (ss ! i)
proof (induction i)

case 0
then show ?case using ‹hd ss = S› ‹length ss = Suc k›

by (metis hd-conv-nth list.size(3 ) nat.distinct(1 ) order-refl)
next

case (Suc i)
then have S ⊆ ss ! i and i < k by auto

then have ss ! i ⊂ ss ! Suc i using ‹(∀ i<k. ss ! i ⊂ ss ! Suc i)› by blast
then show ?case using ‹S ⊆ ss ! i› by auto

qed
qed
then show ?thesis using ‹length ss = Suc k› by auto

qed
ultimately obtain T ′ where T ′ ∈ X and ss ! k ⊂ T ′

using ∗ by meson

let ?ss = ss@[T ′]
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have length ?ss = Suc (Suc k)
using ‹length ss = Suc k› by auto

moreover have hd ?ss = S
using ‹hd ss = S› by (metis ‹length ss = Suc k› hd-append list.size(3 )

nat.distinct(1 ))
moreover have (∀ i < Suc k. ?ss ! i ⊂ ?ss ! Suc i)

using ‹(∀ i<k. ss ! i ⊂ ss ! Suc i)› ‹ss ! k ⊂ T ′›
by (metis Suc-lessI ‹length ss = Suc k› diff-Suc-1 less-SucE nth-append

nth-append-length)
moreover have set ?ss ⊆ X

using ‹set ss ⊆ X› ‹T ′ ∈ X› by auto
ultimately show ?case by blast

qed
qed

then obtain ss where (length ss = Suc (card X))
and (hd ss = S)
and (∀ i < card X . ss ! i ⊂ ss ! (Suc i))
and (set ss ⊆ X)

by blast
then have (∀ i < length ss − 1 . ss ! i ⊂ ss ! (Suc i))

by auto

have ∗∗:
∧

i (ss :: ′a set list) . (∀ i < length ss − 1 . ss ! i ⊂ ss ! (Suc i)) =⇒
i < length ss =⇒ ∀ s ∈ set (take i ss) . s ⊂ ss ! i

proof −
fix i
fix ss :: ′a set list
assume i < length ss and (∀ i < length ss − 1 . ss ! i ⊂ ss ! (Suc i))
then show ∀ s ∈ set (take i ss) . s ⊂ ss ! i
proof (induction i)

case 0
then show ?case by auto

next
case (Suc i)
then have ∀ s∈set (take i ss). s ⊂ ss ! i by auto
then have ∀ s∈set (take i ss). s ⊂ ss ! (Suc i) using Suc.prems
by (metis One-nat-def Suc-diff-Suc Suc-lessE diff-zero dual-order .strict-trans

nat.inject zero-less-Suc)
moreover have ss ! i ⊂ ss ! (Suc i) using Suc.prems by auto
moreover have (take (Suc i) ss) = (take i ss)@[ss ! i] using Suc.prems(1 )

by (simp add: take-Suc-conv-app-nth)
ultimately show ?case by auto

qed
qed

have distinct ss
using ‹(∀ i < length ss − 1 . ss ! i ⊂ ss ! (Suc i))›

proof (induction ss rule: rev-induct)

71



case Nil
then show ?case by auto

next
case (snoc a ss)
from snoc.prems have ∀ i<length ss − 1 . ss ! i ⊂ ss ! Suc i

by (metis Suc-lessD diff-Suc-1 diff-Suc-eq-diff-pred length-append-singleton
nth-append zero-less-diff )

then have distinct ss
using snoc.IH by auto

moreover have a /∈ set ss
using ∗∗[OF snoc.prems, of length (ss @ [a]) − 1 ] by auto

ultimately show ?case by auto
qed

then have card (set ss) = Suc (card X)
using ‹(length ss = Suc (card X))› by (simp add: distinct-card)

then show False
using ‹set ss ⊆ X› ‹finite X› by (metis Suc-n-not-le-n card-mono)

qed

lemma map-set :
assumes x ∈ set xs
shows f x ∈ set (map f xs) using assms by auto

lemma maximal-distinct-prefix :
assumes ¬ distinct xs
obtains n where distinct (take (Suc n) xs)

and ¬ (distinct (take (Suc (Suc n)) xs))
using assms proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)

show ?case proof (cases distinct xs)
case True
then have distinct (take (length xs) (xs@[x])) by auto

moreover have¬ (distinct (take (Suc (length xs)) (xs@[x]))) using snoc.prems(2 )
by auto

ultimately show ?thesis using that by (metis Suc-pred distinct-singleton
length-greater-0-conv self-append-conv2 snoc.prems(1 ) snoc.prems(2 ))

next
case False

then show ?thesis using snoc.IH that
by (metis Suc-mono butlast-snoc length-append-singleton less-SucI linorder-not-le
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snoc.prems(1 ) take-all take-butlast)
qed

qed

lemma distinct-not-in-prefix :
assumes

∧
i . (

∧
x . x ∈ set (take i xs) =⇒ xs ! i 6= x)

shows distinct xs
using assms list-distinct-prefix by blast

lemma list-index-fun-gt :
∧

xs (f :: ′a ⇒ nat) i j .
(
∧

i . Suc i < length xs =⇒ f (xs ! i) > f (xs ! (Suc i)))
=⇒ j < i
=⇒ i < length xs
=⇒ f (xs ! j) > f (xs ! i)

proof −
fix xs:: ′a list
fix f :: ′a ⇒ nat
fix i j
assume (

∧
i . Suc i < length xs =⇒ f (xs ! i) > f (xs ! (Suc i)))

and j < i
and i < length xs

then show f (xs ! j) > f (xs ! i)
proof (induction i − j arbitrary: i j)

case 0
then show ?case by auto

next
case (Suc x)
then show ?case
proof −

have f1 : ∀n. ¬ Suc n < length xs ∨ f (xs ! Suc n) < f (xs ! n)
using Suc.prems(1 ) by presburger

have f2 : ∀n na. ¬ n < na ∨ Suc n ≤ na
using Suc-leI by satx

have x = i − Suc j
by (metis Suc.hyps(2 ) Suc.prems(2 ) Suc-diff-Suc nat.simps(1 ))

then have ¬ Suc j < i ∨ f (xs ! i) < f (xs ! Suc j)
using f1 Suc.hyps(1 ) Suc.prems(3 ) by blast

then show ?thesis
using f2 f1 by (metis Suc.prems(2 ) Suc.prems(3 ) leI le-less-trans not-less-iff-gr-or-eq)

qed
qed

qed

lemma finite-set-elem-maximal-extension-ex :
assumes xs ∈ S
and finite S

shows ∃ ys . xs@ys ∈ S ∧ ¬ (∃ zs . zs 6= [] ∧ xs@ys@zs ∈ S)
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using ‹finite S› ‹xs ∈ S› proof (induction S arbitrary: xs)
case empty
then show ?case by auto

next
case (insert x S)

consider (a) ∃ ys . x = xs@ys ∧ ¬ (∃ zs . zs 6= [] ∧ xs@ys@zs ∈ (insert x S)) |
(b) ¬(∃ ys . x = xs@ys ∧ ¬ (∃ zs . zs 6= [] ∧ xs@ys@zs ∈ (insert x S)))

by blast
then show ?case proof cases

case a
then show ?thesis by auto

next
case b
then show ?thesis proof (cases ∃ vs . vs 6= [] ∧ xs@vs ∈ S)

case True
then obtain vs where vs 6= [] and xs@vs ∈ S

by blast

have ∃ ys. xs @ (vs @ ys) ∈ S ∧ (@ zs. zs 6= [] ∧ xs @ (vs @ ys) @ zs ∈ S)
using insert.IH [OF ‹xs@vs ∈ S›] by auto

then have ∃ ys. xs @ (vs @ ys) ∈ S ∧ (@ zs. zs 6= [] ∧ xs @ (vs @ ys) @ zs ∈
(insert x S))

using b
unfolding append.assoc append-is-Nil-conv append-self-conv insert-iff
by (metis append.assoc append-Nil2 append-is-Nil-conv same-append-eq)

then show ?thesis by blast
next

case False
then show ?thesis using insert.prems

by (metis append-is-Nil-conv append-self-conv insertE same-append-eq)
qed

qed
qed

lemma list-index-split-set:
assumes i < length xs

shows set xs = set ((xs ! i) # ((take i xs) @ (drop (Suc i) xs)))
using assms proof (induction xs arbitrary: i)

case Nil
then show ?case by auto

next
case (Cons x xs)
then show ?case proof (cases i)

case 0
then show ?thesis by auto

next
case (Suc j)
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then have j < length xs using Cons.prems by auto
then have set xs = set ((xs ! j) # ((take j xs) @ (drop (Suc j) xs))) using

Cons.IH [of j] by blast

have ∗: take (Suc j) (x#xs) = x#(take j xs) by auto
have ∗∗: drop (Suc (Suc j)) (x#xs) = (drop (Suc j) xs) by auto
have ∗∗∗: (x # xs) ! Suc j = xs ! j by auto

show ?thesis
using ‹set xs = set ((xs ! j) # ((take j xs) @ (drop (Suc j) xs)))›
unfolding Suc ∗ ∗∗ ∗∗∗ by auto

qed
qed

lemma max-by-foldr :
assumes x ∈ set xs
shows f x < Suc (foldr (λ x ′ m . max (f x ′) m) xs 0 )
using assms by (induction xs; auto)

lemma Max-elem : finite (xs :: ′a set) =⇒ xs 6= {} =⇒ ∃ x ∈ xs . Max (image (f
:: ′a ⇒ nat) xs) = f x

by (metis (mono-tags, opaque-lifting) Max-in empty-is-image finite-imageI im-
ageE)

lemma card-union-of-singletons :
assumes

∧
S . S ∈ SS =⇒ (∃ t . S = {t})

shows card (
⋃

SS) = card SS
proof −

let ?f = λ x . {x}
have bij-betw ?f (

⋃
SS) SS

unfolding bij-betw-def inj-on-def using assms by fastforce
then show ?thesis

using bij-betw-same-card by blast
qed

lemma card-union-of-distinct :
assumes

∧
S1 S2 . S1 ∈ SS =⇒ S2 ∈ SS =⇒ S1 = S2 ∨ f S1 ∩ f S2 = {}

and finite SS
and

∧
S . S ∈ SS =⇒ f S 6= {}

shows card (image f SS) = card SS
proof −

from assms(2 ) have ∀ S1 ∈ SS . ∀ S2 ∈ SS . S1 = S2 ∨ f S1 ∩ f S2 = {}
=⇒ ∀ S ∈ SS . f S 6= {} =⇒ ?thesis

proof (induction SS)
case empty
then show ?case by auto

next
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case (insert x F)
then have ¬ (∃ y ∈ F . f y = f x)

by auto
then have f x /∈ image f F

by auto
then have card (image f (insert x F)) = Suc (card (image f F))

using insert by auto
moreover have card (f ‘ F) = card F

using insert by auto
moreover have card (insert x F) = Suc (card F)

using insert by auto
ultimately show ?case

by simp
qed
then show ?thesis

using assms by simp
qed

lemma take-le :
assumes i ≤ length xs
shows take i (xs@ys) = take i xs
by (simp add: assms less-imp-le-nat)

lemma butlast-take-le :
assumes i ≤ length (butlast xs)
shows take i (butlast xs) = take i xs
using take-le[OF assms, of [last xs]]
by (metis append-butlast-last-id butlast.simps(1 ))

lemma distinct-union-union-card :
assumes finite xs
and

∧
x1 x2 y1 y2 . x1 6= x2 =⇒ x1 ∈ xs =⇒ x2 ∈ xs =⇒ y1 ∈ f x1 =⇒

y2 ∈ f x2 =⇒ g y1 ∩ g y2 = {}
and

∧
x1 y1 y2 . y1 ∈ f x1 =⇒ y2 ∈ f x1 =⇒ y1 6= y2 =⇒ g y1 ∩ g y2 =

{}
and

∧
x1 . finite (f x1 )

and
∧

y1 . finite (g y1 )
and

∧
y1 . g y1 ⊆ zs

and finite zs
shows (

∑
x ∈ xs . card (

⋃
y ∈ f x . g y)) ≤ card zs

proof −
have (

∑
x ∈ xs . card (

⋃
y ∈ f x . g y)) = card (

⋃
x ∈ xs . (

⋃
y ∈ f x . g y))

using assms(1 ,2 ) proof induction
case empty
then show ?case by auto

next
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case (insert x xs)
then have (

∧
x1 x2 . x1 ∈ xs =⇒ x2 ∈ xs =⇒ x1 6= x2 =⇒

⋃
(g ‘ f x1 ) ∩

⋃
(g ‘ f x2 ) = {}) and x ∈ insert x xs by blast+

then have (
∑

x∈xs. card (
⋃

(g ‘ f x))) = card (
⋃

x∈xs.
⋃

(g ‘ f x)) using
insert.IH by blast

moreover have (
∑

x∈(insert x xs). card (
⋃

(g ‘ f x))) = (
∑

x∈xs. card (
⋃

(g ‘ f x))) + card (
⋃

(g ‘ f x))
using insert.hyps by auto

moreover have card (
⋃

x∈(insert x xs).
⋃

(g ‘ f x)) = card (
⋃

x∈xs.
⋃

(g ‘
f x)) + card (

⋃
(g ‘ f x))

proof −
have ((

⋃
x∈xs.

⋃
(g ‘ f x)) ∪

⋃
(g ‘ f x)) = (

⋃
x∈(insert x xs).

⋃
(g ‘ f x))

by blast

have ∗: (
⋃

x∈xs.
⋃

(g ‘ f x)) ∩ (
⋃

(g ‘ f x)) = {}
proof (rule ccontr)

assume (
⋃

x∈xs.
⋃

(g ‘ f x)) ∩
⋃

(g ‘ f x) 6= {}
then obtain z where z ∈

⋃
(g ‘ f x) and z ∈ (

⋃
x∈xs.

⋃
(g ‘ f x)) by

blast
then obtain x ′ where x ′ ∈ xs and z ∈

⋃
(g ‘ f x ′) by blast

then have x ′ 6= x and x ′ ∈ insert x xs using insert.hyps by blast+

have
⋃

(g ‘ f x ′) ∩
⋃

(g ‘ f x) = {}
using insert.prems[OF ‹x ′ 6= x› ‹x ′ ∈ insert x xs› ‹x ∈ insert x xs› ]
by blast

then show False
using ‹z ∈

⋃
(g ‘ f x ′)› ‹z ∈

⋃
(g ‘ f x)› by blast

qed
have ∗∗: finite (

⋃
(g ‘ f x))

using assms(4 ) assms(5 ) by blast
have ∗∗∗: finite (

⋃
x∈xs.

⋃
(g ‘ f x))

by (simp add: assms(4 ) assms(5 ) insert.hyps(1 ))

have card ((
⋃

x∈xs.
⋃

(g ‘ f x)) ∪
⋃

(g ‘ f x)) = card (
⋃

x∈xs.
⋃

(g ‘ f x))
+ card (

⋃
(g ‘ f x))

using card-Un-disjoint[OF ∗∗∗ ∗∗ ∗] by simp

then show ?thesis
unfolding ‹((

⋃
x∈xs.

⋃
(g ‘ f x)) ∪

⋃
(g ‘ f x)) = (

⋃
x∈(insert x xs).

⋃
(g ‘ f x))› by assumption

qed

ultimately show ?case by linarith
qed

moreover have card (
⋃

x ∈ xs . (
⋃

y ∈ f x . g y)) ≤ card zs
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proof −
have (

⋃
x ∈ xs . (

⋃
y ∈ f x . g y)) ⊆ zs

using assms(6 ) by (simp add: UN-least)
moreover have finite (

⋃
x ∈ xs . (

⋃
y ∈ f x . g y))

by (simp add: assms(1 ) assms(4 ) assms(5 ))
ultimately show ?thesis

using assms(7 )
by (simp add: card-mono)

qed

ultimately show ?thesis
by linarith

qed

lemma set-concat-elem :
assumes x ∈ set (concat xss)
obtains xs where xs ∈ set xss and x ∈ set xs
using assms by auto

lemma set-map-elem :
assumes y ∈ set (map f xs)
obtains x where y = f x and x ∈ set xs
using assms by auto

lemma finite-snd-helper :
assumes finite xs
shows finite {z. ((q, p), z) ∈ xs}

proof −
have {z. ((q, p), z) ∈ xs} ⊆ (λ((a,b),c) . c) ‘ xs
proof

fix x assume x ∈ {z. ((q, p), z) ∈ xs}
then have ((q,p),x) ∈ xs by auto
then show x ∈ (λ((a,b),c) . c) ‘ xs by force

qed
then show ?thesis using assms

using finite-surj by blast
qed

lemma fold-dual : fold (λ x (a1 ,a2 ) . (g1 x a1 , g2 x a2 )) xs (a1 ,a2 ) = (fold g1
xs a1 , fold g2 xs a2 )

by (induction xs arbitrary: a1 a2 ; auto)

lemma recursion-renaming-helper :
assumes f1 = (λx . if P x then x else f1 (Suc x))
and f2 = (λx . if P x then x else f2 (Suc x))
and

∧
x . x ≥ k =⇒ P x

shows f1 = f2
proof
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fix x
show f1 x = f2 x
proof (induction k − x arbitrary: x)

case 0
then have x ≥ k

by auto
then show ?case

using assms(3 ) by (simp add: assms(1 ,2 ))
next

case (Suc k ′)
show ?case proof (cases P x)

case True
then show ?thesis by (simp add: assms(1 ,2 ))

next
case False
moreover have f1 (Suc x) = f2 (Suc x)

using Suc.hyps(1 )[of Suc x] Suc.hyps(2 ) by auto
ultimately show ?thesis by (simp add: assms(1 ,2 ))

qed
qed

qed

lemma minimal-fixpoint-helper :
assumes f = (λx . if P x then x else f (Suc x))
and

∧
x . x ≥ k =⇒ P x

shows P (f x)
and

∧
x ′ . x ′ ≥ x =⇒ x ′ < f x =⇒ ¬ P x ′

proof −
have P (f x) ∧ (∀ x ′ . x ′ ≥ x −→ x ′ < f x −→ ¬ P x ′)
proof (induction k−x arbitrary: x)

case 0
then have P x

using assms(2 ) by auto
moreover have f x = x

using calculation by (simp add: assms(1 ))
ultimately show ?case

using assms(1 ) by auto
next

case (Suc k ′)
then have P (f (Suc x)) and

∧
x ′ . x ′ ≥ Suc x =⇒ x ′ < f (Suc x) =⇒ ¬ P x ′

by force+

show ?case proof (cases P x)
case True
then have f x = x

by (simp add: assms(1 ))
show ?thesis

using True unfolding ‹f x = x› by auto
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next
case False
then have f x = f (Suc x)

by (simp add: assms(1 ))
then have P (f x)

using ‹P (f (Suc x))› by simp
moreover have (∀ x ′≥x. x ′ < f x −→ ¬ P x ′)

using ‹
∧

x ′ . x ′ ≥ Suc x =⇒ x ′ < f (Suc x) =⇒ ¬ P x ′› False ‹f x = f
(Suc x)›

by (metis Suc-leI le-neq-implies-less)
ultimately show ?thesis

by blast
qed

qed
then show P (f x) and

∧
x ′ . x ′ ≥ x =⇒ x ′ < f x =⇒ ¬ P x ′

by blast+
qed

lemma map-set-index-helper :
assumes xs 6= []
shows set (map f xs) = (λi . f (xs ! i)) ‘ {.. (length xs − 1 )}

using assms proof (induction xs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc x xs)
show ?case proof (cases xs = [])

case True
show ?thesis

using snoc.prems unfolding True by auto
next

case False

have {..length (xs@[x]) − 1} = insert (length (xs@[x]) − 1 ) {..length xs − 1}
by force

moreover have ((λi. f ((xs@[x]) ! i)) (length (xs@[x]) − 1 )) = f x
by auto

moreover have ((λi. f ((xs@[x]) ! i)) ‘ {..length xs − 1}) = ((λi. f (xs ! i)) ‘
{..length xs − 1})

proof −
have

∧
i . i < length xs =⇒ f ((xs@[x]) ! i) = f (xs ! i)

by (simp add: nth-append)
moreover have

∧
i . i ∈ {..length xs − 1} =⇒ i < length xs

using False
by (metis Suc-pred ′ atMost-iff length-greater-0-conv less-Suc-eq-le)

ultimately show ?thesis
by (meson image-cong)

qed
ultimately have (λi. f ((xs@[x]) ! i)) ‘ {..length (xs@[x]) − 1} = insert (f x)
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((λi. f (xs ! i)) ‘ {..length xs − 1})
by auto

moreover have set (map f (xs@[x])) = insert (f x) (set (map f xs))
by auto

moreover have set (map f xs) = (λi. f (xs ! i)) ‘ {..length xs − 1}
using snoc.IH False by auto

ultimately show ?thesis
by force

qed
qed

lemma partition-helper :
assumes finite X
and X 6= {}
and

∧
x . x ∈ X =⇒ p x ⊆ X

and
∧

x . x ∈ X =⇒ p x 6= {}
and

∧
x y . x ∈ X =⇒ y ∈ X =⇒ p x = p y ∨ p x ∩ p y = {}

and (
⋃

x ∈ X . p x) = X
obtains l::nat and p ′ where

p ′ ‘ {..l} = p ‘ X∧
i j . i ≤ l =⇒ j ≤ l =⇒ i 6= j =⇒ p ′ i ∩ p ′ j = {}

card (p ‘ X) = Suc l
proof −

let ?P = as-list-helper ((λx. as-list-helper (p x)) ‘ X)

have ?P 6= []
using assms(1 ) assms(2 )
by (metis as-list-helper-props(1 ) finite-imageI image-is-empty set-empty)

define l where l: l = length ?P − 1
define p ′ where p ′: p ′ = (λ x . set (?P ! x))

have finite ((λx. as-list-helper (p x)) ‘ X)
using assms(1 )
by simp

have set ‘ ((λx. as-list-helper (p x)) ‘ X) = p ‘ X
proof −

have set ‘ ((λx. as-list-helper (p x)) ‘ X) = ((λx. set (as-list-helper (p x))) ‘
X)

by auto
also have . . . = p ‘ X

by (metis (no-types, lifting) as-list-helper-props(1 ) assms(1 ) assms(6 ) fi-
nite-UN image-cong)

finally show ?thesis .
qed
moreover have set ?P = (λx. as-list-helper (p x)) ‘ X

by (simp add: as-list-helper-props(1 ) assms(1 ))
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ultimately have set ‘ (set ?P) = p ‘ X
by auto

moreover have (p ′ ‘ {..l}) = set (map set ?P)
using map-set-index-helper [OF ‹?P 6= []›]

proof −
have (λn. set (as-list-helper ((λn. as-list-helper (p n)) ‘ X) ! n)) ‘ {..l} = p ′ ‘

{..l}
using p ′ by force

then show ?thesis
by (metis ‹

∧
f . set (map f (as-list-helper ((λx. as-list-helper (p x)) ‘ X))) =

(λi. f (as-list-helper ((λx. as-list-helper (p x)) ‘ X) ! i)) ‘ {..length (as-list-helper
((λx. as-list-helper (p x)) ‘ X)) − 1}› l)

qed
ultimately have p1 : p ′ ‘ {..l} = p ‘ X

by (metis list.set-map)

moreover have p2 :
∧

i j . i ≤ l =⇒ j ≤ l =⇒ i 6= j =⇒ p ′ i ∩ p ′ j = {}
proof −

fix i j assume i ≤ l j ≤ l i 6= j
moreover define PX where PX : PX = ((λx. as-list-helper (p x)) ‘ X)
ultimately have i < length (as-list-helper PX) and j < length (as-list-helper

PX)
unfolding l by auto

then have ?P ! i 6= ?P ! j
using ‹i 6= j› unfolding PX
using as-list-helper-props(2 )[OF ‹finite ((λx. as-list-helper (p x)) ‘ X)›]
using nth-eq-iff-index-eq by blast

moreover obtain xi where xi ∈ X and ∗:?P ! i = as-list-helper (p xi)
by (metis (no-types, lifting) PX ‹i < length (as-list-helper PX)› ‹set (as-list-helper

((λx. as-list-helper (p x)) ‘ X)) = (λx. as-list-helper (p x)) ‘ X› image-iff nth-mem)
moreover obtain xj where xj ∈ X and ∗∗:?P ! j = as-list-helper (p xj)
by (metis (no-types, lifting) PX ‹j < length (as-list-helper PX)› ‹set (as-list-helper

((λx. as-list-helper (p x)) ‘ X)) = (λx. as-list-helper (p x)) ‘ X› image-iff nth-mem)
ultimately have p xi 6= p xj

by metis
then have p ′ i 6= p ′ j

unfolding p ′

by (metis ∗ ∗∗ ‹xi ∈ X› ‹xj ∈ X› as-list-helper-props(1 ) assms(1 ) assms(3 )
infinite-super)

then show p ′ i ∩ p ′ j = {}
using assms(5 )
by (metis ∗ ∗∗ ‹xi ∈ X› ‹xj ∈ X› as-list-helper-props(1 ) assms(1 ) assms(3 )

finite-subset p ′)
qed
moreover have card (p ‘ X) = Suc l
proof −

have
∧

i . i ∈ {..l} =⇒ p ′ i 6= {}
using p1 assms (4 )
by (metis imageE imageI )
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then show ?thesis
unfolding p1 [symmetric]
by (metis atMost-iff card-atMost card-union-of-distinct finite-atMost p2 )

qed
ultimately show ?thesis

using that[of p ′ l]
by blast

qed

lemma take-diff :
assumes i ≤ length xs
and j ≤ length xs
and i 6= j

shows take i xs 6= take j xs
by (metis assms(1 ) assms(2 ) assms(3 ) length-take min.commute min.order-iff )

lemma image-inj-card-helper :
assumes finite X
and

∧
a b . a ∈ X =⇒ b ∈ X =⇒ a 6= b =⇒ f a 6= f b

shows card (f ‘ X) = card X
using assms proof (induction X)

case empty
then show ?case by auto

next
case (insert x X)
then have f x /∈ f ‘ X

by (metis imageE insertCI )
then have card (f ‘ (insert x X)) = Suc (card X)

using insert.IH insert.hyps(1 ) insert.prems by auto
moreover have card (insert x X) = Suc (card X)

by (meson card-insert-if insert.hyps(1 ) insert.hyps(2 ))
ultimately show ?case

by auto
qed

lemma sum-image-inj-card-helper :
fixes l :: nat
assumes

∧
i . i ≤ l =⇒ finite (I i)

and
∧

i j . i ≤ l =⇒ j ≤ l =⇒ i 6= j =⇒ I i ∩ I j = {}
shows (

∑
i ∈ {..l} . (card (I i))) = card (

⋃
i ∈ {..l} . I i)

using assms proof (induction l)
case 0

then show ?case by auto
next

case (Suc l)
then have (

∑
i≤l. card (I i)) = card (

⋃
(I ‘ {..l}))

using le-Suc-eq by presburger
moreover have (

∑
i≤Suc l. card (I i)) = card (I (Suc l)) + (

∑
i≤l. card (I i))
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by auto
moreover have card (

⋃
(I ‘ {..Suc l})) = card (I (Suc l)) + card (

⋃
(I ‘ {..l}))

using Suc.prems(2 )
by (simp add: Suc.prems(1 ) card-UN-disjoint)

ultimately show ?case
by auto

qed

lemma Min-elem : finite (xs :: ′a set) =⇒ xs 6= {} =⇒ ∃ x ∈ xs . Min (image (f
:: ′a ⇒ nat) xs) = f x

by (metis (mono-tags, opaque-lifting) Min-in empty-is-image finite-imageI im-
ageE)

lemma finite-subset-mapping-limit :
fixes f :: nat ⇒ ′a set
assumes finite (f 0 )
and

∧
i j . i ≤ j =⇒ f j ⊆ f i

obtains k where
∧

k ′ . k ≤ k ′ =⇒ f k ′ = f k
proof (cases f 0 = {})

case True
then show ?thesis

using assms(2 ) that by fastforce
next

case False
then have (f ‘ UNIV ) 6= {}

by auto

have ∃ k . ∀ k ′ . k ≤ k ′ −→ f k ′ = f k
proof (rule ccontr)

assume @ k. ∀ k ′≥k. f k ′ = f k
then have

∧
k . ∃ k ′ . k ′ > k ∧ f k ′ ⊂ f k

using assms(2 )
by (metis dual-order .order-iff-strict)

have f ‘ UNIV ⊆ Pow (f 0 )
using assms(2 )
by (simp add: image-subset-iff )

moreover have finite (Pow (f 0 ))
using assms(1 ) by simp

ultimately have finite (f ‘ UNIV )
using finite-subset by auto

obtain x where x ∈ f ‘ UNIV and
∧

x ′ . x ′ ∈ f ‘ UNIV =⇒ card x ≤ card x ′

using Min-elem[OF ‹finite (f ‘ UNIV )› ‹(f ‘ UNIV ) 6= {}›, of card]
by (metis (mono-tags, lifting) Min.boundedE ‹finite (range f )› ‹range f 6= {}›

ball-imageD finite-imageI image-is-empty order-refl)

obtain k where f k = x
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using ‹x ∈ f ‘ UNIV › by blast
then obtain k ′ where f k ′ ⊂ x

using ‹
∧

k . ∃ k ′ . k ′ > k ∧ f k ′ ⊂ f k› by blast
moreover have

∧
k . finite (f k)

by (meson assms(1 ) assms(2 ) infinite-super le0 )
ultimately have card (f k ′) < card x

using ‹f k = x› by (metis psubset-card-mono)
then show False

using ‹
∧

x ′ . x ′ ∈ f ‘ UNIV =⇒ card x ≤ card x ′›
by (simp add: less-le-not-le)

qed
then show ?thesis

using that by blast
qed

lemma finite-card-less-witnesses :
assumes finite A
and card (g ‘ A) < card (f ‘ A)

obtains a b where a ∈ A and b ∈ A and f a 6= f b and g a = g b
proof −

have ∃ a b . a ∈ A ∧ b ∈ A ∧ f a 6= f b ∧ g a = g b
using assms proof (induction A)
case empty
then show ?case by auto

next
case (insert x F)
show ?case proof (cases card (g ‘ F) < card (f ‘ F))

case True
then show ?thesis using insert.IH by blast

next
case False

have finite (g ‘ F) and finite (f ‘ F)
using insert.hyps(1 ) by auto

have card (g ‘ insert x F) = (if g x ∈ g ‘ F then card (g ‘ F) else Suc (card
(g ‘ F)))

using card-insert-if [OF ‹finite (g ‘ F)›]
by simp

moreover have card (f ‘ insert x F) = (if f x ∈ f ‘ F then card (f ‘ F) else
Suc (card (f ‘ F)))

using card-insert-if [OF ‹finite (f ‘ F)›]
by simp

ultimately have card (g ‘ F) = card (f ‘ F)
using insert.prems False
by (metis Suc-lessD not-less-less-Suc-eq)

then have card (g ‘ insert x F) = card (g ‘ F)
using insert.prems
by (metis Suc-lessD ‹card (f ‘ insert x F) = (if f x ∈ f ‘ F then card (f ‘ F)

else Suc (card (f ‘ F)))› ‹card (g ‘ insert x F) = (if g x ∈ g ‘ F then card (g ‘ F)
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else Suc (card (g ‘ F)))› less-not-refl3 )

then obtain y where y ∈ F and g x = g y
using ‹finite F›
by (metis ‹card (g ‘ insert x F) = (if g x ∈ g ‘ F then card (g ‘ F) else Suc

(card (g ‘ F)))› imageE lessI less-irrefl-nat)

have card (f ‘ insert x F) > card (f ‘ F)
using ‹card (g ‘ F) = card (f ‘ F)› ‹card (g ‘ insert x F) = card (g ‘ F)›

insert.prems by presburger
then have f x 6= f y

using ‹y ∈ F›
by (metis ‹card (f ‘ insert x F) = (if f x ∈ f ‘ F then card (f ‘ F) else Suc

(card (f ‘ F)))› image-eqI less-irrefl-nat)

then show ?thesis
using ‹y ∈ F› ‹g x = g y› by blast

qed
qed
then show ?thesis

using that by blast
qed

lemma monotone-function-with-limit-witness-helper :
fixes f :: nat ⇒ nat
assumes

∧
i j . i ≤ j =⇒ f i ≤ f j

and
∧

i j m . i < j =⇒ f i = f j =⇒ j ≤ m =⇒ f i = f m
and

∧
i . f i ≤ k

obtains x where f (Suc x) = f x and x ≤ k − f 0
proof −

have
∧

i . f (Suc i) ≥ f 0 + Suc i ∨ (f (Suc i) < f 0 + Suc i ∧ f i = f (Suc i))
proof −

fix i
show f (Suc i) ≥ f 0 + Suc i ∨ (f (Suc i) < f 0 + Suc i ∧ f i = f (Suc i))
proof (induction i)

case 0
then show ?case using assms(1 )

by (metis add.commute add.left-neutral add-Suc-shift le0 le-antisym lessI
not-less-eq-eq)

next
case (Suc i)
then show ?case
proof −

have ∀n. n ≤ Suc n
by simp

then show ?thesis
by (metis Suc add-Suc-right assms(1 ) assms(2 ) le-antisym not-less

not-less-eq-eq order-trans-rules(23 ))
qed
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qed
qed

have ∃ x . f (Suc x) = f x ∧ x ≤ k − f 0
using assms(3 ) proof (induction k)

case 0
then show ?case by auto

next
case (Suc k)

consider f 0 + Suc k ≤ f (Suc k) | f (Suc k) < f 0 + Suc k ∧ f k = f (Suc k)
using ‹

∧
i . f (Suc i) ≥ f 0 + Suc i ∨ (f (Suc i) < f 0 + Suc i ∧ f i = f

(Suc i))›[of k]
by blast

then show ?case proof cases
case 1
then have f (Suc (Suc k)) = f (Suc k)

using Suc.prems[of Suc (Suc k)] assms(1 )[of Suc k Suc (Suc k)]
by auto

then show ?thesis
by (metis 1 Suc.prems add.commute add-diff-cancel-left ′ add-increasing2

le-add2 le-add-same-cancel2 le-antisym)
next

case 2
then have f (Suc k) < f 0 + Suc k and f k = f (Suc k)

by auto
then show ?thesis

by (metis Suc.prems ‹
∧

i. f 0 + Suc i ≤ f (Suc i) ∨ f (Suc i) < f 0 + Suc
i ∧ f i = f (Suc i)› add-Suc-right add-diff-cancel-left ′ le0 le-Suc-ex nat-arith.rule0
not-less-eq-eq)

qed
qed

then show ?thesis
using that by blast

qed

lemma different-lists-shared-prefix :
assumes xs 6= xs ′

obtains i where take i xs = take i xs ′

and take (Suc i) xs 6= take (Suc i) xs ′

proof −
have ∃ i . take i xs = take i xs ′ ∧ take (Suc i) xs 6= take (Suc i) xs ′

proof (rule ccontr)
assume @ i. take i xs = take i xs ′ ∧ take (Suc i) xs 6= take (Suc i) xs ′

have
∧

i . take i xs = take i xs ′

proof −
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fix i show take i xs = take i xs ′

proof (induction i)
case 0
then show ?case by auto

next
case (Suc i)
then show ?case

using ‹@ i. take i xs = take i xs ′ ∧ take (Suc i) xs 6= take (Suc i) xs ′› by
blast

qed
qed

have xs = xs ′

by (simp add: ‹
∧

i. take i xs = take i xs ′› take-equalityI )
then show False

using assms by simp
qed
then show ?thesis using that by blast

qed

lemma foldr-funion-fempty : foldr (|∪|) xs fempty = ffUnion (fset-of-list xs)
by (induction xs; auto)

lemma foldr-funion-fsingleton : foldr (|∪|) xs x = ffUnion (fset-of-list (x#xs))
by (induction xs; auto)

lemma foldl-funion-fempty : foldl (|∪|) fempty xs = ffUnion (fset-of-list xs)
by (induction xs rule: rev-induct; auto)

lemma foldl-funion-fsingleton : foldl (|∪|) x xs = ffUnion (fset-of-list (x#xs))
by (induction xs rule: rev-induct; auto)

lemma ffUnion-fmember-ob : x |∈| ffUnion XS =⇒ ∃ X . X |∈| XS ∧ x |∈| X
by (induction XS ; auto)

lemma filter-not-all-length :
filter P xs 6= [] =⇒ length (filter (λ x . ¬ P x) xs) < length xs
by (metis filter-False length-filter-less)

lemma foldr-funion-fmember : B |⊆| (foldr (|∪|) A B)
by (induction A; auto)

lemma prefix-free-set-maximal-list-ob :
assumes finite xs
and x ∈ xs

obtains x ′ where x@x ′ ∈ xs and @ y ′ . y ′ 6= [] ∧ (x@x ′)@y ′ ∈ xs
proof −
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let ?xs = {x ′ . x@x ′ ∈ xs}
let ?x ′ = arg-max length (λ x . x ∈ ?xs)

have
∧

y. y ∈ ?xs =⇒ length y < Suc (Max (length ‘ xs))
proof −

fix y assume y ∈ ?xs
then have x@y ∈ xs

by blast
moreover have

∧
y. y ∈ xs =⇒ length y < Suc (Max (length ‘ xs))

using assms(1 )
by (simp add: le-imp-less-Suc)

ultimately show length y < Suc (Max (length ‘ xs))
by fastforce

qed
moreover have [] ∈ ?xs

using assms(2 ) by auto
ultimately have ?x ′ ∈ ?xs and (∀ x ′ . x ′ ∈ ?xs −→ length x ′ ≤ length ?x ′)

using arg-max-nat-lemma[of (λ x . x ∈ ?xs) [] length Suc (Max (length ‘ xs))]
by blast+

have @ y ′ . y ′ 6= [] ∧ (x@?x ′)@y ′ ∈ xs
proof

assume ∃ y ′ . y ′ 6= [] ∧ (x@?x ′)@y ′ ∈ xs
then obtain y ′ where y ′ 6= [] ∧ x@(?x ′@y ′)∈ xs

by auto
then have (?x ′@y ′) ∈ ?xs and length (?x ′@y ′) > length ?x ′

by auto
then show False

using ‹(∀ x ′ . x ′ ∈ ?xs −→ length x ′ ≤ length ?x ′)›
by auto

qed

then show ?thesis
using that using ‹?x ′ ∈ ?xs› by blast

qed

lemma map-upds-map-set-left :
assumes [map f xs [7→] xs] q = Some x
shows x ∈ set xs and q = f x

proof −
have x ∈ set xs ∧ q = f x
using assms proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x ′ xs)
show ?case proof (cases f x ′ = q)

case True
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then have x = x ′

using snoc.prems by (induction xs; auto)
then show ?thesis

using True by auto
next

case False
then have [map f (xs @ [x ′]) [ 7→] xs @ [x ′]] q = [map f (xs) [ 7→] xs] q

by (induction xs; auto)
then show ?thesis

using snoc by auto
qed

qed
then show x ∈ set xs and q = f x

by auto
qed

lemma map-upds-map-set-right :
assumes x ∈ set xs
shows [xs [7→] map f xs] x = Some (f x)

using assms proof (induction xs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc x ′ xs)
show ?case proof (cases x=x ′)

case True
then show ?thesis

by (induction xs; auto)
next

case False
then have [xs @ [x ′] [ 7→] map f (xs @ [x ′])] x = [xs [7→] map f xs] x

by (induction xs; auto)
then show ?thesis

using snoc False by auto
qed

qed

lemma map-upds-overwrite :
assumes x ∈ set xs

and length xs = length ys
shows (m(xs[7→]ys)) x = [xs[ 7→]ys] x
using assms(2 ,1 ) by (induction xs ys rule: rev-induct2 ; auto)

lemma ran-dom-the-eq : (λk . the (m k)) ‘ dom m = ran m
unfolding ran-def dom-def by force
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lemma map-pair-fst :
map fst (map (λx . (x,f x)) xs) = xs
by (induction xs; auto)

lemma map-of-map-pair-entry: map-of (map (λk. (k, f k)) xs) x = (if x ∈ list.set
xs then Some (f x) else None)

by (induction xs; auto)

lemma map-filter-alt-def :
List.map-filter f1 ′ xs = map the (filter (λx . x 6= None) (map f1 ′ xs))
by (induction xs; unfold map-filter-simps; auto)

lemma map-filter-Nil :
List.map-filter f1 ′ xs = [] ←→ (∀ x ∈ list.set xs . f1 ′ x = None)
unfolding map-filter-alt-def by (induction xs; auto)

lemma sorted-list-of-set-set: set ((sorted-list-of-set ◦ set) xs) = set xs
by auto

fun mapping-of :: ( ′a × ′b) list ⇒ ( ′a, ′b) mapping where
mapping-of kvs = foldl (λm kv . Mapping.update (fst kv) (snd kv) m) Map-

ping.empty kvs

lemma mapping-of-map-of :
assumes distinct (map fst kvs)
shows Mapping.lookup (mapping-of kvs) = map-of kvs

proof
show

∧
x. Mapping.lookup (mapping-of kvs) x = map-of kvs x

using assms
proof (induction kvs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc xy xs)

have ∗:map-of (xs @ [xy]) = map-of (xy#xs)
using snoc.prems map-of-inject-set[of xs @ [xy] xy#xs, OF snoc.prems]
by simp

show ?case
using snoc unfolding ∗
by (cases x = fst xy; auto)

qed
qed

lemma map-pair-fst-helper :
map fst (map (λ (x1 ,x2 ) . ((x1 ,x2 ), f x1 x2 )) xs) = xs
using map-pair-fst[of λ (x1 ,x2 ) . f x1 x2 xs]
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by (metis (no-types, lifting) map-eq-conv prod.collapse split-beta)

end

2 Refinements for Utilities

Introduces program refinement for Util.thy.
theory Util-Refined
imports Util Containers.Containers
begin

2.1 New Code Equations for set-as-map
declare [[code drop: set-as-map]]

lemma set-as-map-refined[code] :
fixes t :: ( ′a :: ccompare × ′c :: ccompare) set-rbt
and xs:: ( ′b :: ceq × ′d :: ceq) set-dlist
shows set-as-map (RBT-set t) = (case ID CCOMPARE(( ′a × ′c)) of

Some -⇒ Mapping.lookup (RBT-Set2 .fold (λ (x,z) m . case Mapping.lookup
m (x) of

None ⇒ Mapping.update (x) {z} m |
Some zs ⇒ Mapping.update (x) (Set.insert z zs) m)

t
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map RBT-set: ccompare = None ′′)
(λ-. set-as-map (RBT-set t)))

(is ?C1 )
and set-as-map (DList-set xs) = (case ID CEQ(( ′b × ′d)) of

Some -⇒ Mapping.lookup (DList-Set.fold (λ (x,z) m . case Mapping.lookup
m (x) of

None ⇒ Mapping.update (x) {z} m |
Some zs ⇒ Mapping.update (x) (Set.insert z zs) m)

xs
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map RBT-set: ccompare = None ′′)
(λ-. set-as-map (DList-set xs)))

(is ?C2 )
proof −

show ?C1
proof (cases ID CCOMPARE(( ′a × ′c)))

case None
then show ?thesis by auto

next
case (Some a)

let ?f ′ = (λ t ′ . (RBT-Set2 .fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |
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Some zs ⇒ Mapping.update x (Set.insert z
zs) m)

t ′

Mapping.empty))

let ?f = λ xs . (fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (Set.insert z
zs) m)

xs Mapping.empty)
have

∧
xs :: ( ′a × ′c) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈

set xs) then Some {z . (x,z) ∈ set xs} else None)
proof −

fix xs :: ( ′a × ′c) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z

. (x,z) ∈ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

have ∗: (?f (xs@[(x,z)])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |

Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))
by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
{z} else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = None

using None snoc by auto
then have ¬(∃ z . (x,z) ∈ set xs)
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by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) and {z ′ . (x,z ′) ∈ set

(xs@[(x,z)])} = {z}
by fastforce+

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈

set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
by force

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) by fastforce

have {z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs}

else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ set xs} = zs by auto
then show ?thesis by auto

qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .
(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
. (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a

proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .
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(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′) ∈

set (xs@[(x,z)]))›
by (cases a = x; auto)

qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

qed
qed

qed
then have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ set (RBT-Set2 .keys

t)) then Some {z . (x,z) ∈ set (RBT-Set2 .keys t)} else None)
unfolding fold-conv-fold-keys by metis

moreover have set (RBT-Set2 .keys t) = (RBT-set t)
using Some by (simp add: RBT-set-conv-keys)

ultimately have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ (RBT-set
t)) then Some {z . (x,z) ∈ (RBT-set t)} else None)

by force

then show ?thesis
using Some unfolding set-as-map-def by simp

qed

show ?C2
proof (cases ID CEQ(( ′b × ′d)))

case None
then show ?thesis by auto

next
case (Some a)

let ?f ′ = (λ t ′ . (DList-Set.fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (Set.insert z
zs) m)

t ′

Mapping.empty))

let ?f = λ xs . (fold (λ (x,z) m . case Mapping.lookup m x of
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None ⇒ Mapping.update x {z} m |
Some zs ⇒ Mapping.update x (Set.insert z

zs) m)
xs Mapping.empty)

have ∗:
∧

xs :: ( ′b × ′d) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z)
∈ set xs) then Some {z . (x,z) ∈ set xs} else None)

proof −
fix xs :: ( ′b × ′d) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z

. (x,z) ∈ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

have ∗: (?f (xs@[(x,z)])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |

Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))
by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
{z} else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = None

using None snoc by auto
then have ¬(∃ z . (x,z) ∈ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) and {z ′ . (x,z ′) ∈ set

(xs@[(x,z)])} = {z}
by fastforce+

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
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= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈
set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)

by force

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) by fastforce

have {z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs}

else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ set xs} = zs by auto
then show ?thesis by auto

qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .
(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
. (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a

proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .

(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′) ∈

set (xs@[(x,z)]))›
by (cases a = x; auto)
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qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

qed
qed

qed

have ID CEQ( ′b × ′d) 6= None
using Some by auto

then have ∗∗:
∧

x . x ∈ set (list-of-dlist xs) = (x ∈ (DList-set xs))
using DList-Set.member .rep-eq[of xs]
using Set-member-code(2 ) ceq-class.ID-ceq in-set-member by fastforce

have Mapping.lookup (?f ′ xs) = (λ x . if (∃ z . (x,z) ∈ (DList-set xs)) then
Some {z . (x,z) ∈ (DList-set xs)} else None)

using ∗[of (list-of-dlist xs)]
unfolding DList-Set.fold.rep-eq ∗∗ by assumption

then show ?thesis unfolding set-as-map-def using Some by simp
qed

qed

end

3 Underlying FSM Representation

This theory contains the underlying datatype for (possibly not well-formed)
finite state machines.
theory FSM-Impl

imports Util Datatype-Order-Generator .Order-Generator HOL−Library.FSet
begin

A finite state machine (FSM) is represented using its classical definition:
datatype ( ′state, ′input, ′output) fsm-impl = FSMI (initial : ′state)

(states : ′state set)
(inputs : ′input set)
(outputs : ′output set)
(transitions : ( ′state × ′input × ′output ×

′state) set)
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3.1 Types for Transitions and Paths
type-synonym ( ′a, ′b, ′c) transition = ( ′a × ′b × ′c × ′a)
type-synonym ( ′a, ′b, ′c) path = ( ′a, ′b, ′c) transition list

abbreviation t-source (a :: ( ′a, ′b, ′c) transition) ≡ fst a
abbreviation t-input (a :: ( ′a, ′b, ′c) transition) ≡ fst (snd a)
abbreviation t-output (a :: ( ′a, ′b, ′c) transition) ≡ fst (snd (snd a))
abbreviation t-target (a :: ( ′a, ′b, ′c) transition) ≡ snd (snd (snd a))

3.2 Basic Algorithms on FSM
3.2.1 Reading FSMs from Lists
fun fsm-impl-from-list :: ′a ⇒

( ′a, ′b, ′c) transition list ⇒
( ′a, ′b, ′c) fsm-impl

where
fsm-impl-from-list q [] = FSMI q {q} {} {} {} |
fsm-impl-from-list q (t#ts) =
(let ts ′ = set (t#ts)
in FSMI (t-source t)

((image t-source ts ′) ∪ (image t-target ts ′))
(image t-input ts ′)
(image t-output ts ′)
(ts ′))

fun fsm-impl-from-list ′ :: ′a ⇒ ( ′a, ′b, ′c) transition list ⇒ ( ′a, ′b, ′c) fsm-impl
where

fsm-impl-from-list ′ q [] = FSMI q {q} {} {} {} |
fsm-impl-from-list ′ q (t#ts) = (let tsr = (remdups (t#ts))

in FSMI (t-source t)
(set (remdups ((map t-source tsr) @ (map t-target

tsr))))
(set (remdups (map t-input tsr)))
(set (remdups (map t-output tsr)))
(set tsr))

lemma fsm-impl-from-list-code[code] :
fsm-impl-from-list q ts = fsm-impl-from-list ′ q ts
by (cases ts; auto)

3.2.2 Changing the initial State
fun from-FSMI :: ( ′a, ′b, ′c) fsm-impl ⇒ ′a ⇒ ( ′a, ′b, ′c) fsm-impl where

from-FSMI M q = (if q ∈ states M then FSMI q (states M ) (inputs M ) (outputs
M ) (transitions M ) else M )
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3.2.3 Product Construction
fun product :: ( ′a, ′b, ′c) fsm-impl ⇒ ( ′d, ′b, ′c) fsm-impl ⇒ ( ′a × ′d, ′b, ′c) fsm-impl
where

product A B = FSMI ((initial A, initial B))
((states A) × (states B))
(inputs A ∪ inputs B)
(outputs A ∪ outputs B)
{((qA,qB),x,y,(qA ′,qB ′)) | qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈

transitions A ∧ (qB,x,y,qB ′) ∈ transitions B}

lemma product-code-naive[code] :
product A B = FSMI ((initial A, initial B))

((states A) × (states B))
(inputs A ∪ inputs B)
(outputs A ∪ outputs B)
(image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))

(Set.filter (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′ ∧ y = y ′) (
⋃
(image (λ tA .

image (λ tB . (tA,tB)) (transitions B)) (transitions A)))))
(is ?P1 = ?P2 )

proof −
have (

⋃
(image (λ tA . image (λ tB . (tA,tB)) (transitions B)) (transitions A)))

= {(tA,tB) | tA tB . tA ∈ transitions A ∧ tB ∈ transitions B}
by auto

then have (Set.filter (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′∧ y = y ′) (
⋃
(image

(λ tA . image (λ tB . (tA,tB)) (transitions B)) (transitions A)))) = {((qA,x,y,qA ′),(qB,x,y,qB ′))
| qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈ transitions A ∧ (qB,x,y,qB ′) ∈ transitions B}

by auto
then have image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′))) (Set.filter

(λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′ ∧ y = y ′) (
⋃

(image (λ tA . image (λ tB
. (tA,tB)) (transitions B)) (transitions A))))

= image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))
{((qA,x,y,qA ′),(qB,x,y,qB ′)) | qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈ transitions A ∧
(qB,x,y,qB ′) ∈ transitions B}

by auto
moreover have image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))
{((qA,x,y,qA ′),(qB,x,y,qB ′)) | qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈ transitions A ∧
(qB,x,y,qB ′) ∈ transitions B} = {((qA,qB),x,y,(qA ′,qB ′)) | qA qB x y qA ′ qB ′ .
(qA,x,y,qA ′) ∈ transitions A ∧ (qB,x,y,qB ′) ∈ transitions B}

by force
ultimately have transitions ?P1 = transitions ?P2

unfolding product.simps by auto
moreover have initial ?P1 = initial ?P2 by auto
moreover have states ?P1 = states ?P2 by auto
moreover have inputs ?P1 = inputs ?P2 by auto
moreover have outputs ?P1 = outputs ?P2 by auto
ultimately show ?thesis by auto

qed
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3.2.4 Filtering Transitions
fun filter-transitions :: ( ′a, ′b, ′c) fsm-impl ⇒ (( ′a, ′b, ′c) transition ⇒ bool)⇒ ( ′a, ′b, ′c)
fsm-impl where

filter-transitions M P = FSMI (initial M )
(states M )
(inputs M )
(outputs M )
(Set.filter P (transitions M ))

3.2.5 Filtering States
fun filter-states :: ( ′a, ′b, ′c) fsm-impl ⇒ ( ′a ⇒ bool) ⇒ ( ′a, ′b, ′c) fsm-impl where

filter-states M P = (if P (initial M ) then FSMI (initial M )
(Set.filter P (states M ))
(inputs M )
(outputs M )

(Set.filter (λ t . P (t-source t) ∧ P (t-target
t)) (transitions M ))

else M )

3.2.6 Initial Singleton FSMI (For Trivial Preamble)
fun initial-singleton :: ( ′a, ′b, ′c) fsm-impl ⇒ ( ′a, ′b, ′c) fsm-impl where

initial-singleton M = FSMI (initial M )
{initial M}
(inputs M )
(outputs M )
{}

3.2.7 Canonical Separator
abbreviation shift-Inl t ≡ (Inl (t-source t),t-input t, t-output t, Inl (t-target t))

definition shifted-transitions :: (( ′a × ′a) × ′b × ′c × ( ′a × ′a)) set ⇒ ((( ′a ×
′a) + ′d) × ′b × ′c × (( ′a × ′a) + ′d)) set where

shifted-transitions ts = image shift-Inl ts

definition distinguishing-transitions :: (( ′a × ′b) ⇒ ′c set) ⇒ ′a ⇒ ′a ⇒ ( ′a ×
′a) set ⇒ ′b set ⇒ ((( ′a × ′a) + ′a) × ′b × ′c × (( ′a × ′a) + ′a)) set where
distinguishing-transitions f q1 q2 stateSet inputSet =

⋃
(Set.image (λ((q1 ′,q2 ′),x)

.
(image (λy . (Inl (q1 ′,q2 ′),x,y,Inr

q1 )) (f (q1 ′,x) − f (q2 ′,x)))
∪ (image (λy . (Inl (q1 ′,q2 ′),x,y,Inr

q2 )) (f (q2 ′,x) − f (q1 ′,x))))
(stateSet × inputSet))
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fun canonical-separator ′ :: ( ′a, ′b, ′c) fsm-impl ⇒ (( ′a × ′a), ′b, ′c) fsm-impl ⇒ ′a
⇒ ′a ⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm-impl where

canonical-separator ′ M P q1 q2 = (if initial P = (q1 ,q2 )
then
(let f ′ = set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions M ));

f = (λqx . (case f ′ qx of Some yqs ⇒ yqs | None ⇒ {}));
shifted-transitions ′ = shifted-transitions (transitions P);
distinguishing-transitions-lr = distinguishing-transitions f q1 q2 (states P)

(inputs P);
ts = shifted-transitions ′ ∪ distinguishing-transitions-lr

in

FSMI (Inl (q1 ,q2 ))
((image Inl (states P)) ∪ {Inr q1 , Inr q2})
(inputs M ∪ inputs P)
(outputs M ∪ outputs P)
(ts))

else FSMI (Inl (q1 ,q2 )) {Inl (q1 ,q2 )} {} {} {})

lemma h-out-impl-helper : (λ (q,x) . {y . ∃ q ′ . (q,x,y,q ′) ∈ A}) = (λqx . (case
(set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) A)) qx of Some yqs ⇒ yqs | None ⇒
{}))
proof

fix qx
show (λ (q,x) . {y . ∃ q ′ . (q,x,y,q ′) ∈ A}) qx = (λqx . (case (set-as-map (image

(λ(q,x,y,q ′) . ((q,x),y)) A)) qx of Some yqs ⇒ yqs | None ⇒ {})) qx
proof −

obtain q x where qx = (q,x) using prod.exhaust by metis
have ∗∗:

∧
z . ((q, x), z) ∈ (λ(q, x, y, q ′). ((q, x), y)) ‘ A = (z ∈ {y . ∃ q ′ .

(q,x,y,q ′) ∈ A})
by force

show ?thesis unfolding ‹qx = (q,x)› case-prod-conv set-as-map-def
unfolding ∗∗ by auto

qed
qed

lemma canonical-separator ′-simps :
initial (canonical-separator ′ M P q1 q2 ) = Inl (q1 ,q2 )

states (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then (image
Inl (states P)) ∪ {Inr q1 , Inr q2} else {Inl (q1 ,q2 )})

inputs (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then inputs
M ∪ inputs P else {})

outputs (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then
outputs M ∪ outputs P else {})

transitions (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then
shifted-transitions (transitions P) ∪ distinguishing-transitions (λ (q,x) . {y . ∃ q ′

. (q,x,y,q ′) ∈ transitions M}) q1 q2 (states P) (inputs P) else {})
unfolding h-out-impl-helper by (simp add: Let-def )+
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3.2.8 Generalised Canonical Separator

A variation on the state separator that uses states L and R instead of Inr
q1 and Inr q2 to indicate targets of transitions in the canonical separator
that are available only for the left or right component of a state pair

Note: this definition of a canonical separator might serve as a way to avoid
recalculation of state separators for different pairs of states, but is currently
not fully implemented
datatype LR = Left | Right
derive linorder LR

definition distinguishing-transitions-LR :: (( ′a × ′b) ⇒ ′c set) ⇒ ( ′a × ′a) set ⇒
′b set ⇒ ((( ′a × ′a) + LR) × ′b × ′c × (( ′a × ′a) + LR)) set where

distinguishing-transitions-LR f stateSet inputSet =
⋃

(Set.image (λ((q1 ′,q2 ′),x)
.

(image (λy . (Inl (q1 ′,q2 ′),x,y,Inr
Left)) (f (q1 ′,x) − f (q2 ′,x)))

∪ (image (λy . (Inl (q1 ′,q2 ′),x,y,Inr
Right)) (f (q2 ′,x) − f (q1 ′,x))))

(stateSet × inputSet))

fun canonical-separator-complete ′ :: ( ′a, ′b, ′c) fsm-impl ⇒ (( ′a × ′a) + LR, ′b, ′c)
fsm-impl where

canonical-separator-complete ′ M =
(let P = product M M ;

f ′ = set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions M ));
f = (λqx . (case f ′ qx of Some yqs ⇒ yqs | None ⇒ {}));
shifted-transitions ′ = shifted-transitions (transitions P);

distinguishing-transitions-lr = distinguishing-transitions-LR f (states P)
(inputs P);

ts = shifted-transitions ′ ∪ distinguishing-transitions-lr
in
FSMI (Inl (initial P))

((image Inl (states P)) ∪ {Inr Left, Inr Right})
(inputs M ∪ inputs P)
(outputs M ∪ outputs P)
ts )

3.2.9 Adding Transitions
fun add-transitions :: ( ′a, ′b, ′c) fsm-impl ⇒ ( ′a, ′b, ′c) transition set ⇒ ( ′a, ′b, ′c)
fsm-impl where

add-transitions M ts = (if (∀ t ∈ ts . t-source t ∈ states M ∧ t-input t ∈ inputs
M ∧ t-output t ∈ outputs M ∧ t-target t ∈ states M )

then FSMI (initial M )
(states M )
(inputs M )
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(outputs M )
((transitions M ) ∪ ts)

else M )

3.2.10 Creating an FSMI without transitions
fun create-unconnected-FSMI :: ′a ⇒ ′a set ⇒ ′b set ⇒ ′c set ⇒ ( ′a, ′b, ′c) fsm-impl
where

create-unconnected-FSMI q ns ins outs = (if (finite ns ∧ finite ins ∧ finite outs)
then FSMI q (insert q ns) ins outs {}
else FSMI q {q} {} {} {})

fun create-unconnected-fsm-from-lists :: ′a ⇒ ′a list ⇒ ′b list ⇒ ′c list ⇒ ( ′a, ′b, ′c)
fsm-impl where

create-unconnected-fsm-from-lists q ns ins outs = FSMI q (insert q (set ns)) (set
ins) (set outs) {}

fun create-unconnected-fsm-from-fsets :: ′a⇒ ′a fset ⇒ ′b fset ⇒ ′c fset ⇒ ( ′a, ′b, ′c)
fsm-impl where

create-unconnected-fsm-from-fsets q ns ins outs = FSMI q (insert q (fset ns))
(fset ins) (fset outs) {}

fun create-fsm-from-sets :: ′a ⇒ ′a set ⇒ ′b set ⇒ ′c set ⇒ ( ′a, ′b, ′c) transition
set ⇒ ( ′a, ′b, ′c) fsm-impl where

create-fsm-from-sets q qs ins outs ts = (if q ∈ qs ∧ finite qs ∧ finite ins ∧ finite
outs

then add-transitions (FSMI q qs ins outs {}) ts
else FSMI q {q} {} {} {})

3.3 Transition Function h

Function h represents the classical view of the transition relation of an FSM
M as a function: given a state q and an input x, (h M ) (q,x) returns all
possibly reactions (y,q ′) of M in state q to x, where y is the produced
output and q ′ the target state of the reaction transition.
fun h :: ( ′state, ′input, ′output) fsm-impl ⇒ ( ′state × ′input) ⇒ ( ′output × ′state)
set where

h M (q,x) = { (y,q ′) . (q,x,y,q ′) ∈ transitions M }

fun h-obs :: ( ′a, ′b, ′c) fsm-impl ⇒ ′a ⇒ ′b ⇒ ′c ⇒ ′a option where
h-obs M q x y = (let

tgts = snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))
in if card tgts = 1

then Some (the-elem tgts)
else None)

lemma h-code[code] :
h M (q,x) = (let m = set-as-map (image (λ(q,x,y,q ′) . ((q,x),y,q ′)) (transitions

M ))
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in (case m (q,x) of Some yqs ⇒ yqs | None ⇒ {}))
unfolding set-as-map-def by force

3.4 Extending FSMs by single elements
fun add-transition :: ( ′a, ′b, ′c) fsm-impl ⇒

( ′a, ′b, ′c) transition ⇒
( ′a, ′b, ′c) fsm-impl

where
add-transition M t =
(if t-source t ∈ states M ∧ t-input t ∈ inputs M ∧

t-output t ∈ outputs M ∧ t-target t ∈ states M
then FSMI (initial M )

(states M )
(inputs M )
(outputs M )
(insert t (transitions M ))

else M )

fun add-state :: ( ′a, ′b, ′c) fsm-impl ⇒ ′a ⇒ ( ′a, ′b, ′c) fsm-impl where
add-state M q = FSMI (initial M ) (insert q (states M )) (inputs M ) (outputs M )

(transitions M )

fun add-input :: ( ′a, ′b, ′c) fsm-impl ⇒ ′b ⇒ ( ′a, ′b, ′c) fsm-impl where
add-input M x = FSMI (initial M ) (states M ) (insert x (inputs M )) (outputs M )

(transitions M )

fun add-output :: ( ′a, ′b, ′c) fsm-impl ⇒ ′c ⇒ ( ′a, ′b, ′c) fsm-impl where
add-output M y = FSMI (initial M ) (states M ) (inputs M ) (insert y (outputs

M )) (transitions M )

fun add-transition-with-components :: ( ′a, ′b, ′c) fsm-impl ⇒ ( ′a, ′b, ′c) transition ⇒
( ′a, ′b, ′c) fsm-impl where
add-transition-with-components M t = add-transition (add-state (add-state (add-input

(add-output M (t-output t)) (t-input t)) (t-source t)) (t-target t)) t

3.5 Renaming elements
fun rename-states :: ( ′a, ′b, ′c) fsm-impl ⇒ ( ′a ⇒ ′d) ⇒ ( ′d, ′b, ′c) fsm-impl where

rename-states M f = FSMI (f (initial M ))
(f ‘ states M )
(inputs M )
(outputs M )
((λt . (f (t-source t), t-input t, t-output t, f (t-target t))) ‘

transitions M )

end
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4 Finite State Machines

This theory defines well-formed finite state machines and introduces var-
ious closely related notions, as well as a selection of basic properties and
definitions.
theory FSM
imports FSM-Impl HOL−Library.Quotient-Type HOL−Library.Product-Lexorder

begin

4.1 Well-formed Finite State Machines

A value of type fsm-impl constitutes a well-formed FSM if its contained sets
are finite and the initial state and the components of each transition are
contained in their respective sets.
abbreviation(input) well-formed-fsm (M :: ( ′state, ′input, ′output) fsm-impl)
≡ (initial M ∈ states M
∧ finite (states M )
∧ finite (inputs M )
∧ finite (outputs M )
∧ finite (transitions M )
∧ (∀ t ∈ transitions M . t-source t ∈ states M ∧

t-input t ∈ inputs M ∧
t-target t ∈ states M ∧
t-output t ∈ outputs M ))

typedef ( ′state, ′input, ′output) fsm =
{ M :: ( ′state, ′input, ′output) fsm-impl . well-formed-fsm M}
morphisms fsm-impl-of-fsm Abs-fsm

proof −
obtain q :: ′state where True by blast
have well-formed-fsm (FSMI q {q} {} {} {}) by auto
then show ?thesis by blast

qed

setup-lifting type-definition-fsm

lift-definition initial :: ( ′state, ′input, ′output) fsm ⇒ ′state is FSM-Impl.initial
done
lift-definition states :: ( ′state, ′input, ′output) fsm ⇒ ′state set is FSM-Impl.states
done
lift-definition inputs :: ( ′state, ′input, ′output) fsm ⇒ ′input set is FSM-Impl.inputs
done
lift-definition outputs :: ( ′state, ′input, ′output) fsm ⇒ ′output set is FSM-Impl.outputs
done
lift-definition transitions ::
( ′state, ′input, ′output) fsm ⇒ ( ′state × ′input × ′output × ′state) set
is FSM-Impl.transitions done
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lift-definition fsm-from-list :: ′a ⇒ ( ′a, ′b, ′c) transition list ⇒ ( ′a, ′b, ′c) fsm
is FSM-Impl.fsm-impl-from-list

proof −
fix q :: ′a
fix ts :: ( ′a, ′b, ′c) transition list
show well-formed-fsm (fsm-impl-from-list q ts)

by (induction ts; auto)
qed

lemma fsm-initial[intro]: initial M ∈ states M
by (transfer ; blast)

lemma fsm-states-finite: finite (states M )
by (transfer ; blast)

lemma fsm-inputs-finite: finite (inputs M )
by (transfer ; blast)

lemma fsm-outputs-finite: finite (outputs M )
by (transfer ; blast)

lemma fsm-transitions-finite: finite (transitions M )
by (transfer ; blast)

lemma fsm-transition-source[intro]:
∧

t . t ∈ (transitions M ) =⇒ t-source t ∈
states M

by (transfer ; blast)
lemma fsm-transition-target[intro]:

∧
t . t ∈ (transitions M ) =⇒ t-target t ∈

states M
by (transfer ; blast)

lemma fsm-transition-input[intro]:
∧

t . t ∈ (transitions M ) =⇒ t-input t ∈ inputs
M

by (transfer ; blast)
lemma fsm-transition-output[intro]:

∧
t . t ∈ (transitions M ) =⇒ t-output t ∈

outputs M
by (transfer ; blast)

instantiation fsm :: (type,type,type) equal
begin
definition equal-fsm :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm ⇒ bool where

equal-fsm x y = (initial x = initial y ∧ states x = states y ∧ inputs x = inputs y
∧ outputs x = outputs y ∧ transitions x = transitions y)

instance
apply (intro-classes)
unfolding equal-fsm-def
apply transfer
using fsm-impl.expand by auto

end
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4.1.1 Example FSMs
definition m-ex-H :: (integer ,integer ,integer) fsm where

m-ex-H = fsm-from-list 1 [ (1 ,0 ,0 ,2 ),
(1 ,0 ,1 ,4 ),
(1 ,1 ,1 ,4 ),
(2 ,0 ,0 ,2 ),
(2 ,1 ,1 ,4 ),
(3 ,0 ,1 ,4 ),
(3 ,1 ,0 ,1 ),
(3 ,1 ,1 ,3 ),
(4 ,0 ,0 ,3 ),
(4 ,1 ,0 ,1 )]

definition m-ex-9 :: (integer ,integer ,integer) fsm where
m-ex-9 = fsm-from-list 0 [ (0 ,0 ,2 ,2 ),

(0 ,0 ,3 ,2 ),
(0 ,1 ,0 ,3 ),
(0 ,1 ,1 ,3 ),
(1 ,0 ,3 ,2 ),
(1 ,1 ,1 ,3 ),
(2 ,0 ,2 ,2 ),
(2 ,1 ,3 ,3 ),
(3 ,0 ,2 ,2 ),
(3 ,1 ,0 ,2 ),
(3 ,1 ,1 ,1 )]

definition m-ex-DR :: (integer ,integer ,integer) fsm where
m-ex-DR = fsm-from-list 0 [(0 ,0 ,0 ,100 ),

(100 ,0 ,0 ,101 ),
(100 ,0 ,1 ,101 ),
(101 ,0 ,0 ,102 ),
(101 ,0 ,1 ,102 ),
(102 ,0 ,0 ,103 ),
(102 ,0 ,1 ,103 ),
(103 ,0 ,0 ,104 ),
(103 ,0 ,1 ,104 ),
(104 ,0 ,0 ,100 ),
(104 ,0 ,1 ,100 ),
(104 ,1 ,0 ,400 ),
(0 ,0 ,2 ,200 ),
(200 ,0 ,2 ,201 ),
(201 ,0 ,2 ,202 ),
(202 ,0 ,2 ,203 ),
(203 ,0 ,2 ,200 ),
(203 ,1 ,0 ,400 ),
(0 ,1 ,0 ,300 ),
(100 ,1 ,0 ,300 ),
(101 ,1 ,0 ,300 ),
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(102 ,1 ,0 ,300 ),
(103 ,1 ,0 ,300 ),
(200 ,1 ,0 ,300 ),
(201 ,1 ,0 ,300 ),
(202 ,1 ,0 ,300 ),
(300 ,0 ,0 ,300 ),
(300 ,1 ,0 ,300 ),
(400 ,0 ,0 ,300 ),
(400 ,1 ,0 ,300 )]

4.2 Transition Function h and related functions
lift-definition h :: ( ′state, ′input, ′output) fsm ⇒ ( ′state × ′input) ⇒ ( ′output ×
′state) set

is FSM-Impl.h .

lemma h-simps[simp]: FSM .h M (q,x) = { (y,q ′) . (q,x,y,q ′) ∈ transitions M }
by (transfer ; auto)

lift-definition h-obs :: ( ′state, ′input, ′output) fsm ⇒ ′state ⇒ ′input ⇒ ′output
⇒ ′state option

is FSM-Impl.h-obs .

lemma h-obs-simps[simp]: FSM .h-obs M q x y = (let
tgts = snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))

in if card tgts = 1
then Some (the-elem tgts)
else None)

by (transfer ; auto)

fun defined-inputs ′ :: (( ′a × ′b) ⇒ ( ′c× ′a) set) ⇒ ′b set ⇒ ′a ⇒ ′b set where
defined-inputs ′ hM iM q = {x ∈ iM . hM (q,x) 6= {}}

fun defined-inputs :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′b set where
defined-inputs M q = defined-inputs ′ (h M ) (inputs M ) q

lemma defined-inputs-set : defined-inputs M q = {x ∈ inputs M . h M (q,x) 6= {}
}

by auto

fun transitions-from ′ :: (( ′a × ′b) ⇒ ( ′c× ′a) set) ⇒ ′b set ⇒ ′a ⇒ ( ′a, ′b, ′c) tran-
sition set where

transitions-from ′ hM iM q =
⋃
(image (λx . image (λ(y,q ′) . (q,x,y,q ′)) (hM

(q,x))) iM )

fun transitions-from :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′a, ′b, ′c) transition set where
transitions-from M q = transitions-from ′ (h M ) (inputs M ) q
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lemma transitions-from-set :
assumes q ∈ states M
shows transitions-from M q = {t ∈ transitions M . t-source t = q}

proof −
have

∧
t . t ∈ transitions-from M q =⇒ t ∈ transitions M ∧ t-source t = q by

auto
moreover have

∧
t . t ∈ transitions M =⇒ t-source t = q =⇒ t ∈ transi-

tions-from M q
proof −

fix t assume t ∈ transitions M and t-source t = q
then have (t-output t, t-target t) ∈ h M (q,t-input t) and t-input t ∈ inputs

M by auto
then have t-input t ∈ defined-inputs ′ (h M ) (inputs M ) q

unfolding defined-inputs ′.simps ‹t-source t = q› by blast

have (q, t-input t, t-output t, t-target t) ∈ transitions M
using ‹t-source t = q› ‹t ∈ transitions M › by auto

then have (q, t-input t, t-output t, t-target t) ∈ (λ(y, q ′). (q, t-input t, y, q ′))
‘ h M (q, t-input t)

using ‹(t-output t, t-target t) ∈ h M (q,t-input t)›
unfolding h.simps
by (metis (no-types, lifting) image-iff prod.case-eq-if surjective-pairing)

then have t ∈ (λ(y, q ′). (q, t-input t, y, q ′)) ‘ h M (q, t-input t)
using ‹t-source t = q› by (metis prod.collapse)

then show t ∈ transitions-from M q

unfolding transitions-from.simps transitions-from ′.simps
using ‹t-input t ∈ defined-inputs ′ (h M ) (inputs M ) q›
using ‹t-input t ∈ FSM .inputs M › by blast

qed
ultimately show ?thesis by blast

qed

fun h-from :: ( ′state, ′input, ′output) fsm ⇒ ′state ⇒ ( ′input × ′output × ′state)
set where

h-from M q = { (x,y,q ′) . (q,x,y,q ′) ∈ transitions M }

lemma h-from[code] : h-from M q = (let m = set-as-map (transitions M )
in (case m q of Some yqs ⇒ yqs | None ⇒ {}))

unfolding set-as-map-def by force

fun h-out :: ( ′a, ′b, ′c) fsm ⇒ ( ′a × ′b) ⇒ ′c set where
h-out M (q,x) = {y . ∃ q ′ . (q,x,y,q ′) ∈ transitions M}

lemma h-out-code[code]:
h-out M = (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions
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M ))) qx of
Some yqs ⇒ yqs |
None ⇒ {}))

proof −

let ?f = (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions
M ))) qx of Some yqs ⇒ yqs | None ⇒ {}))

have
∧

qx . (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions
M ))) qx of Some yqs ⇒ yqs | None ⇒ {})) qx = (λ qx . {z. (qx, z) ∈ (λ(q, x, y,
q ′). ((q, x), y)) ‘ (transitions M )}) qx

unfolding set-as-map-def by auto

moreover have
∧

qx . (λ qx . {z. (qx, z) ∈ (λ(q, x, y, q ′). ((q, x), y)) ‘
(transitions M )}) qx = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx, y, q ′) ∈ (transitions
M )}) qx

by force

ultimately have ?f = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx, y, q ′) ∈ (transitions
M )})

by blast
then have ?f = (λ (q,x) . {y | y . ∃ q ′ . (q, x, y, q ′) ∈ (transitions M )}) by

force

then show ?thesis by force
qed

lemma h-out-alt-def :
h-out M (q,x) = {t-output t | t . t ∈ transitions M ∧ t-source t = q ∧ t-input t

= x}
unfolding h-out.simps
by auto

4.3 Size
instantiation fsm :: (type,type,type) size
begin

definition size where [simp, code]: size (m::( ′a, ′b, ′c) fsm) = card (states m)

instance ..
end

lemma fsm-size-Suc :
size M > 0
unfolding FSM .size-def
using fsm-states-finite[of M ] fsm-initial[of M ]
using card-gt-0-iff by blast
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4.4 Paths
inductive path :: ( ′state, ′input, ′output) fsm ⇒ ′state ⇒ ( ′state, ′input, ′output)
path ⇒ bool

where
nil[intro!] : q ∈ states M =⇒ path M q [] |
cons[intro!] : t ∈ transitions M =⇒ path M (t-target t) ts =⇒ path M (t-source

t) (t#ts)

inductive-cases path-nil-elim[elim!]: path M q []
inductive-cases path-cons-elim[elim!]: path M q (t#ts)

fun visited-states :: ′state ⇒ ( ′state, ′input, ′output) path ⇒ ′state list where
visited-states q p = (q # map t-target p)

fun target :: ′state ⇒ ( ′state, ′input, ′output) path ⇒ ′state where
target q p = last (visited-states q p)

lemma target-nil [simp] : target q [] = q by auto
lemma target-snoc [simp] : target q (p@[t]) = t-target t by auto

lemma path-begin-state :
assumes path M q p
shows q ∈ states M
using assms by (cases; auto)

lemma path-append[intro!] :
assumes path M q p1

and path M (target q p1 ) p2
shows path M q (p1@p2 )
using assms by (induct p1 arbitrary: p2 ; auto)

lemma path-target-is-state :
assumes path M q p
shows target q p ∈ states M

using assms by (induct p; auto)

lemma path-suffix :
assumes path M q (p1@p2 )
shows path M (target q p1 ) p2

using assms by (induction p1 arbitrary: q; auto)

lemma path-prefix :
assumes path M q (p1@p2 )
shows path M q p1

using assms by (induction p1 arbitrary: q; auto; (metis path-begin-state))

lemma path-append-elim[elim!] :
assumes path M q (p1@p2 )
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obtains path M q p1
and path M (target q p1 ) p2

by (meson assms path-prefix path-suffix)

lemma path-append-target:
target q (p1@p2 ) = target (target q p1 ) p2
by (induction p1 ) (simp+)

lemma path-append-target-hd :
assumes length p > 0
shows target q p = target (t-target (hd p)) (tl p)

using assms by (induction p) (simp+)

lemma path-transitions :
assumes path M q p
shows set p ⊆ transitions M
using assms by (induct p arbitrary: q; fastforce)

lemma path-append-transition[intro!] :
assumes path M q p
and t ∈ transitions M
and t-source t = target q p

shows path M q (p@[t])
by (metis assms(1 ) assms(2 ) assms(3 ) cons fsm-transition-target nil path-append)

lemma path-append-transition-elim[elim!] :
assumes path M q (p@[t])

shows path M q p
and t ∈ transitions M
and t-source t = target q p

using assms by auto

lemma path-prepend-t : path M q ′ p =⇒ (q,x,y,q ′) ∈ transitions M =⇒ path M q
((q,x,y,q ′)#p)

by (metis (mono-tags, lifting) fst-conv path.intros(2 ) prod.sel(2 ))

lemma path-target-append : target q1 p1 = q2 =⇒ target q2 p2 = q3 =⇒ target
q1 (p1@p2 ) = q3

by auto

lemma single-transition-path : t ∈ transitions M =⇒ path M (t-source t) [t] by
auto

lemma path-source-target-index :
assumes Suc i < length p
and path M q p

shows t-target (p ! i) = t-source (p ! (Suc i))
using assms proof (induction p rule: rev-induct)
case Nil
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then show ?case by auto
next

case (snoc t ps)
then have path M q ps and t-source t = target q ps and t ∈ transitions M by

auto

show ?case proof (cases Suc i < length ps)
case True
then have t-target (ps ! i) = t-source (ps ! Suc i)

using snoc.IH ‹path M q ps› by auto
then show ?thesis

by (simp add: Suc-lessD True nth-append)
next

case False
then have Suc i = length ps

using snoc.prems(1 ) by auto
then have (ps @ [t]) ! Suc i = t

by auto

show ?thesis proof (cases ps = [])
case True
then show ?thesis using ‹Suc i = length ps› by auto

next
case False
then have target q ps = t-target (last ps)

unfolding target.simps visited-states.simps
by (simp add: last-map)

then have target q ps = t-target (ps ! i)
using ‹Suc i = length ps›
by (metis False diff-Suc-1 last-conv-nth)

then show ?thesis
using ‹t-source t = target q ps›
by (metis ‹(ps @ [t]) ! Suc i = t› ‹Suc i = length ps› lessI nth-append)

qed
qed

qed

lemma paths-finite : finite { p . path M q p ∧ length p ≤ k }
proof −

have { p . path M q p ∧ length p ≤ k } ⊆ {xs . set xs ⊆ transitions M ∧ length
xs ≤ k}

by (metis (no-types, lifting) Collect-mono path-transitions)
then show finite { p . path M q p ∧ length p ≤ k }

using finite-lists-length-le[OF fsm-transitions-finite[of M ], of k]
by (metis (mono-tags) finite-subset)

qed

lemma visited-states-prefix :
assumes q ′ ∈ set (visited-states q p)
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shows ∃ p1 p2 . p = p1@p2 ∧ target q p1 = q ′

using assms proof (induction p arbitrary: q)
case Nil
then show ?case by auto

next
case (Cons a p)
then show ?case
proof (cases q ′ ∈ set (visited-states (t-target a) p))

case True
then obtain p1 p2 where p = p1 @ p2 ∧ target (t-target a) p1 = q ′

using Cons.IH by blast
then have (a#p) = (a#p1 )@p2 ∧ target q (a#p1 ) = q ′

by auto
then show ?thesis by blast

next
case False
then have q ′ = q

using Cons.prems by auto
then show ?thesis

by auto
qed

qed

lemma visited-states-are-states :
assumes path M q1 p
shows set (visited-states q1 p) ⊆ states M
by (metis assms path-prefix path-target-is-state subsetI visited-states-prefix)

lemma transition-subset-path :
assumes transitions A ⊆ transitions B
and path A q p
and q ∈ states B

shows path B q p
using assms(2 ) proof (induction p rule: rev-induct)

case Nil
show ?case using assms(3 ) by auto

next
case (snoc t p)
then show ?case using assms(1 ) path-suffix

by fastforce
qed

4.4.1 Paths of fixed length
fun paths-of-length ′ :: ( ′a, ′b, ′c) path ⇒ ′a ⇒ (( ′a × ′b) ⇒ ( ′c× ′a) set) ⇒ ′b set ⇒
nat ⇒ ( ′a, ′b, ′c) path set

where
paths-of-length ′ prev q hM iM 0 = {prev} |
paths-of-length ′ prev q hM iM (Suc k) =
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(let hF = transitions-from ′ hM iM q
in

⋃
(image (λ t . paths-of-length ′ (prev@[t]) (t-target t) hM iM k) hF))

fun paths-of-length :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ nat ⇒ ( ′a, ′b, ′c) path set where
paths-of-length M q k = paths-of-length ′ [] q (h M ) (inputs M ) k

4.4.2 Paths up to fixed length
fun paths-up-to-length ′ :: ( ′a, ′b, ′c) path ⇒ ′a ⇒ (( ′a × ′b) ⇒ (( ′c× ′a) set)) ⇒ ′b
set ⇒ nat ⇒ ( ′a, ′b, ′c) path set

where
paths-up-to-length ′ prev q hM iM 0 = {prev} |
paths-up-to-length ′ prev q hM iM (Suc k) =
(let hF = transitions-from ′ hM iM q

in insert prev (
⋃

(image (λ t . paths-up-to-length ′ (prev@[t]) (t-target t) hM
iM k) hF)))

fun paths-up-to-length :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ nat ⇒ ( ′a, ′b, ′c) path set where
paths-up-to-length M q k = paths-up-to-length ′ [] q (h M ) (inputs M ) k

lemma paths-up-to-length ′-set :
assumes q ∈ states M
and path M q prev

shows paths-up-to-length ′ prev (target q prev) (h M ) (inputs M ) k
= {(prev@p) | p . path M (target q prev) p ∧ length p ≤ k}

using assms(2 ) proof (induction k arbitrary: prev)
case 0
show ?case unfolding paths-up-to-length ′.simps using path-target-is-state[OF

0 .prems(1 )] by auto
next

case (Suc k)

have
∧

p . p ∈ paths-up-to-length ′ prev (target q prev) (h M ) (inputs M ) (Suc
k)

=⇒ p ∈ {(prev@p) | p . path M (target q prev) p ∧ length p ≤ Suc k}
proof −

fix p assume p ∈ paths-up-to-length ′ prev (target q prev) (h M ) (inputs M )
(Suc k)

then show p ∈ {(prev@p) | p . path M (target q prev) p ∧ length p ≤ Suc k}
proof (cases p = prev)

case True
show ?thesis using path-target-is-state[OF Suc.prems(1 )] unfolding True

by (simp add: nil)
next

case False
then have p ∈ (

⋃
(image (λt. paths-up-to-length ′ (prev@[t]) (t-target t) (h

M ) (inputs M ) k)
(transitions-from ′ (h M ) (inputs M ) (target q prev))))
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using ‹p ∈ paths-up-to-length ′ prev (target q prev) (h M ) (inputs M ) (Suc
k)›

unfolding paths-up-to-length ′.simps Let-def by blast
then obtain t where t ∈

⋃
(image (λx . image (λ(y,q ′) . ((target q

prev),x,y,q ′))
(h M ((target q prev),x))) (inputs M ))

and p ∈ paths-up-to-length ′ (prev@[t]) (t-target t) (h M ) (inputs
M ) k

unfolding transitions-from ′.simps by blast

have t ∈ transitions M and t-source t = (target q prev)
using ‹t ∈

⋃
(image (λx . image (λ(y,q ′) . ((target q prev),x,y,q ′))

(h M ((target q prev),x))) (inputs M ))› by auto
then have path M q (prev@[t])

using Suc.prems(1 ) using path-append-transition by simp

have (target q (prev @ [t])) = t-target t by auto

show ?thesis
using ‹p ∈ paths-up-to-length ′ (prev@[t]) (t-target t) (h M ) (inputs M ) k›
using Suc.IH [OF ‹path M q (prev@[t])›]
unfolding ‹(target q (prev @ [t])) = t-target t›
using ‹path M q (prev @ [t])› by auto

qed
qed

moreover have
∧

p . p ∈ {(prev@p) | p . path M (target q prev) p ∧ length p
≤ Suc k}

=⇒ p ∈ paths-up-to-length ′ prev (target q prev) (h M ) (inputs M )
(Suc k)

proof −
fix p assume p ∈ {(prev@p) | p . path M (target q prev) p ∧ length p ≤ Suc k}
then obtain p ′ where p = prev@p ′

and path M (target q prev) p ′

and length p ′ ≤ Suc k
by blast

have prev@p ′ ∈ paths-up-to-length ′ prev (target q prev) (h M ) (inputs M ) (Suc
k)

proof (cases p ′)
case Nil
then show ?thesis by auto

next
case (Cons t p ′′)

then have t ∈ transitions M and t-source t = (target q prev)
using ‹path M (target q prev) p ′› by auto

then have path M q (prev@[t])
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using Suc.prems(1 ) using path-append-transition by simp

have (target q (prev @ [t])) = t-target t by auto

have length p ′′ ≤ k using ‹length p ′ ≤ Suc k› Cons by auto
moreover have path M (target q (prev@[t])) p ′′

using ‹path M (target q prev) p ′› unfolding Cons
by auto
ultimately have p ∈ paths-up-to-length ′ (prev @ [t]) (t-target t) (h M )

(FSM .inputs M ) k
using Suc.IH [OF ‹path M q (prev@[t])›]

unfolding ‹(target q (prev @ [t])) = t-target t› ‹p = prev@p ′› Cons by simp
then have prev@t#p ′′ ∈ paths-up-to-length ′ (prev @ [t]) (t-target t) (h M )

(FSM .inputs M ) k
unfolding ‹p = prev@p ′› Cons by auto

have t ∈ (λ(y, q ′). (t-source t, t-input t, y, q ′)) ‘
{(y, q ′). (t-source t, t-input t, y, q ′) ∈ FSM .transitions M}

using ‹t ∈ transitions M ›
by (metis (no-types, lifting) case-prodI mem-Collect-eq pair-imageI surjec-

tive-pairing)
then have t ∈ transitions-from ′ (h M ) (inputs M ) (target q prev)

unfolding transitions-from ′.simps
using fsm-transition-input[OF ‹t ∈ transitions M ›]
unfolding ‹t-source t = (target q prev)›[symmetric] h-simps
by blast

then show ?thesis
using ‹prev @ t # p ′′ ∈ paths-up-to-length ′ (prev@[t]) (t-target t) (h M )

(FSM .inputs M ) k›
unfolding ‹p = prev@p ′› Cons paths-up-to-length ′.simps Let-def by blast

qed
then show p ∈ paths-up-to-length ′ prev (target q prev) (h M ) (inputs M ) (Suc

k)
unfolding ‹p = prev@p ′› by assumption

qed

ultimately show ?case by blast
qed

lemma paths-up-to-length-set :
assumes q ∈ states M

shows paths-up-to-length M q k = {p . path M q p ∧ length p ≤ k}
unfolding paths-up-to-length.simps
using paths-up-to-length ′-set[OF assms nil[OF assms], of k] by auto
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4.4.3 Calculating Acyclic Paths
fun acyclic-paths-up-to-length ′ :: ( ′a, ′b, ′c) path ⇒ ′a ⇒ ( ′a ⇒ (( ′b× ′c× ′a) set))
⇒ ′a set ⇒ nat ⇒ ( ′a, ′b, ′c) path set

where
acyclic-paths-up-to-length ′ prev q hF visitedStates 0 = {prev} |
acyclic-paths-up-to-length ′ prev q hF visitedStates (Suc k) =
(let tF = Set.filter (λ (x,y,q ′) . q ′ /∈ visitedStates) (hF q)
in (insert prev (

⋃
(image (λ (x,y,q ′) . acyclic-paths-up-to-length ′ (prev@[(q,x,y,q ′)])

q ′ hF (insert q ′ visitedStates) k) tF))))

fun p-source :: ′a ⇒ ( ′a, ′b, ′c) path ⇒ ′a
where p-source q p = hd (visited-states q p)

lemma acyclic-paths-up-to-length ′-prev :
p ′ ∈ acyclic-paths-up-to-length ′ (prev@prev ′) q hF visitedStates k =⇒ ∃ p ′′ . p ′

= prev@p ′′

by (induction k arbitrary: p ′ q visitedStates prev ′; auto)

lemma acyclic-paths-up-to-length ′-set :
assumes path M (p-source q prev) prev
and

∧
q ′ . hF q ′ = {(x,y,q ′′) | x y q ′′ . (q ′,x,y,q ′′) ∈ transitions M}

and distinct (visited-states (p-source q prev) prev)
and visitedStates = set (visited-states (p-source q prev) prev)

shows acyclic-paths-up-to-length ′ prev (target (p-source q prev) prev) hF visited-
States k

= { prev@p | p . path M (p-source q prev) (prev@p)
∧ length p ≤ k
∧ distinct (visited-states (p-source q prev) (prev@p)) }

using assms proof (induction k arbitrary: q hF prev visitedStates)
case 0
then show ?case by auto

next
case (Suc k)

let ?tgt = (target (p-source q prev) prev)

have
∧

p . (prev@p) ∈ acyclic-paths-up-to-length ′ prev (target (p-source q prev)
prev) hF visitedStates (Suc k)

=⇒ path M (p-source q prev) (prev@p)
∧ length p ≤ Suc k
∧ distinct (visited-states (p-source q prev) (prev@p))

proof −
fix p assume (prev@p) ∈ acyclic-paths-up-to-length ′ prev (target (p-source q

prev) prev) hF visitedStates (Suc k)
then consider (a) (prev@p) = prev |

(b) (prev@p) ∈ (
⋃

(image (λ (x,y,q ′) . acyclic-paths-up-to-length ′

(prev@[(?tgt,x,y,q ′)]) q ′ hF (insert q ′ visitedStates) k)
(Set.filter (λ (x,y,q ′) . q ′ /∈ visitedStates) (hF
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(target (p-source q prev) prev)))))
by auto

then show path M (p-source q prev) (prev@p) ∧ length p ≤ Suc k ∧ distinct
(visited-states (p-source q prev) (prev@p))

proof (cases)
case a
then show ?thesis using Suc.prems(1 ,3 ) by auto

next
case b

then obtain x y q ′ where ∗: (x,y,q ′) ∈ Set.filter (λ (x,y,q ′) . q ′ /∈ visitedStates)
(hF ?tgt)

and ∗∗:(prev@p) ∈ acyclic-paths-up-to-length ′ (prev@[(?tgt,x,y,q ′)])
q ′ hF (insert q ′ visitedStates) k

by auto

let ?t = (?tgt,x,y,q ′)

from ∗ have ?t ∈ transitions M and q ′ /∈ visitedStates
using Suc.prems(2 )[of ?tgt] by simp+

moreover have t-source ?t = target (p-source q prev) prev
by simp

moreover have p-source (p-source q prev) (prev@[?t]) = p-source q prev
by auto

ultimately have p1 : path M (p-source (p-source q prev) (prev@[?t])) (prev@[?t])

using Suc.prems(1 )
by (simp add: path-append-transition)

have q ′ /∈ set (visited-states (p-source q prev) prev)
using ‹q ′ /∈ visitedStates› Suc.prems(4 ) by auto

then have p2 : distinct (visited-states (p-source (p-source q prev) (prev@[?t]))
(prev@[?t]))

using Suc.prems(3 ) by auto

have p3 : (insert q ′ visitedStates)
= set (visited-states (p-source (p-source q prev) (prev@[?t]))

(prev@[?t]))
using Suc.prems(4 ) by auto

have ∗∗∗: (target (p-source (p-source q prev) (prev @ [(target (p-source q prev)
prev, x, y, q ′)]))

(prev @ [(target (p-source q prev) prev, x, y, q ′)]))
= q ′

by auto

show ?thesis
using Suc.IH [OF p1 Suc.prems(2 ) p2 p3 ] ∗∗
unfolding ∗∗∗
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unfolding ‹p-source (p-source q prev) (prev@[?t]) = p-source q prev›
proof −

assume acyclic-paths-up-to-length ′ (prev @ [(target (p-source q prev) prev,
x, y, q ′)]) q ′ hF (insert q ′ visitedStates) k

= {(prev @ [(target (p-source q prev) prev, x, y, q ′)]) @ p |p.
path M (p-source q prev) ((prev @ [(target (p-source q prev)

prev, x, y, q ′)]) @ p)
∧ length p ≤ k
∧ distinct (visited-states (p-source q prev) ((prev @ [(target

(p-source q prev) prev, x, y, q ′)]) @ p))}
then have ∃ ps. prev @ p = (prev @ [(target (p-source q prev) prev, x, y,

q ′)]) @ ps
∧ path M (p-source q prev) ((prev @ [(target (p-source q prev)

prev, x, y, q ′)]) @ ps)
∧ length ps ≤ k
∧ distinct (visited-states (p-source q prev) ((prev @ [(target

(p-source q prev) prev, x, y, q ′)]) @ ps))
using ‹prev @ p ∈ acyclic-paths-up-to-length ′ (prev @ [(target (p-source q

prev) prev, x, y, q ′)]) q ′ hF (insert q ′ visitedStates) k›
by blast

then show ?thesis
by (metis (no-types) Suc-le-mono append.assoc append.right-neutral ap-

pend-Cons length-Cons same-append-eq)
qed

qed
qed
moreover have

∧
p ′ . p ′ ∈ acyclic-paths-up-to-length ′ prev (target (p-source q

prev) prev) hF visitedStates (Suc k)
=⇒ ∃ p ′′ . p ′ = prev@p ′′

using acyclic-paths-up-to-length ′-prev[of - prev [] target (p-source q prev) prev
hF visitedStates Suc k]

by force
ultimately have fwd:

∧
p ′ . p ′∈ acyclic-paths-up-to-length ′ prev (target (p-source

q prev) prev) hF visitedStates (Suc k)
=⇒ p ′ ∈ { prev@p | p . path M (p-source q prev) (prev@p)

∧ length p ≤ Suc k
∧ distinct (visited-states (p-source q prev)

(prev@p)) }
by blast

have
∧

p . path M (p-source q prev) (prev@p)
=⇒ length p ≤ Suc k
=⇒ distinct (visited-states (p-source q prev) (prev@p))
=⇒ (prev@p) ∈ acyclic-paths-up-to-length ′ prev (target (p-source q

prev) prev) hF visitedStates (Suc k)
proof −

fix p assume path M (p-source q prev) (prev@p)
and length p ≤ Suc k
and distinct (visited-states (p-source q prev) (prev@p))
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show (prev@p) ∈ acyclic-paths-up-to-length ′ prev (target (p-source q prev) prev)
hF visitedStates (Suc k)

proof (cases p)
case Nil
then show ?thesis by auto

next
case (Cons t p ′)

then have t-source t = target (p-source q (prev)) (prev) and t ∈ transitions
M

using ‹path M (p-source q prev) (prev@p)› by auto

have path M (p-source q (prev@[t])) ((prev@[t])@p ′)
and path M (p-source q (prev@[t])) ((prev@[t]))

using Cons ‹path M (p-source q prev) (prev@p)› by auto
have length p ′ ≤ k

using Cons ‹length p ≤ Suc k› by auto
have distinct (visited-states (p-source q (prev@[t])) ((prev@[t])@p ′))
and distinct (visited-states (p-source q (prev@[t])) ((prev@[t])))

using Cons ‹distinct (visited-states (p-source q prev) (prev@p))› by auto
then have t-target t /∈ visitedStates

using Suc.prems(4 ) by auto

let ?vN = insert (t-target t) visitedStates
have ?vN = set (visited-states (p-source q (prev @ [t])) (prev @ [t]))

using Suc.prems(4 ) by auto

have prev@p = prev@([t]@p ′)
using Cons by auto

have (prev@[t])@p ′ ∈ acyclic-paths-up-to-length ′ (prev @ [t]) (target (p-source
q (prev @ [t])) (prev @ [t])) hF (insert (t-target t) visitedStates) k

using Suc.IH [of q prev@[t], OF ‹path M (p-source q (prev@[t])) ((prev@[t]))›
Suc.prems(2 )

‹distinct (visited-states (p-source q (prev@[t]))
((prev@[t])))›

‹?vN = set (visited-states (p-source q (prev @
[t])) (prev @ [t]))› ]

using ‹path M (p-source q (prev@[t])) ((prev@[t])@p ′)›
‹length p ′ ≤ k›
‹distinct (visited-states (p-source q (prev@[t])) ((prev@[t])@p ′))›

by force

then have (prev@[t])@p ′ ∈ acyclic-paths-up-to-length ′ (prev@[t]) (t-target t)
hF ?vN k

by auto
moreover have (t-input t,t-output t, t-target t) ∈ Set.filter (λ (x,y,q ′) . q ′ /∈

visitedStates) (hF (t-source t))

122



using Suc.prems(2 )[of t-source t] ‹t ∈ transitions M › ‹t-target t /∈ visited-
States›

proof −
have ∃ b c a. snd t = (b, c, a) ∧ (t-source t, b, c, a) ∈ FSM .transitions M

by (metis (no-types) ‹t ∈ FSM .transitions M › prod.collapse)
then show ?thesis

using ‹hF (t-source t) = {(x, y, q ′′) |x y q ′′. (t-source t, x, y, q ′′) ∈
FSM .transitions M}›

‹t-target t /∈ visitedStates›
by fastforce

qed
ultimately have ∃ (x,y,q ′) ∈ (Set.filter (λ (x,y,q ′) . q ′ /∈ visitedStates) (hF

(target (p-source q prev) prev))) .
(prev@[t])@p ′ ∈ (acyclic-paths-up-to-length ′ (prev@[((target

(p-source q prev) prev),x,y,q ′)]) q ′ hF (insert q ′ visitedStates) k)
unfolding ‹t-source t = target (p-source q (prev)) (prev)›

by (metis (no-types, lifting) ‹t-source t = target (p-source q prev) prev›
case-prodI prod.collapse)

then show ?thesis unfolding ‹prev@p = prev@[t]@p ′›
unfolding acyclic-paths-up-to-length ′.simps Let-def by force

qed
qed
then have rev:

∧
p ′ . p ′ ∈ {prev@p | p . path M (p-source q prev) (prev@p)

∧ length p ≤ Suc k
∧ distinct (visited-states (p-source q prev)

(prev@p))}
=⇒ p ′ ∈ acyclic-paths-up-to-length ′ prev (target (p-source q

prev) prev) hF visitedStates (Suc k)
by blast

show ?case
using fwd rev by blast

qed

fun acyclic-paths-up-to-length :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ nat ⇒ ( ′a, ′b, ′c) path set
where

acyclic-paths-up-to-length M q k = {p. path M q p ∧ length p ≤ k ∧ distinct
(visited-states q p)}

lemma acyclic-paths-up-to-length-code[code] :
acyclic-paths-up-to-length M q k = (if q ∈ states M

then acyclic-paths-up-to-length ′ [] q (m2f (set-as-map (transitions M ))) {q} k
else {})

proof (cases q ∈ states M )
case False
then have acyclic-paths-up-to-length M q k = {}

using path-begin-state by fastforce
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then show ?thesis using False by auto
next

case True
then have ∗: path M (p-source q []) [] by auto
have ∗∗: (

∧
q ′. (m2f (set-as-map (transitions M ))) q ′ = {(x, y, q ′′) |x y q ′′. (q ′,

x, y, q ′′) ∈ FSM .transitions M})
unfolding set-as-map-def by auto

have ∗∗∗: distinct (visited-states (p-source q []) [])
by auto

have ∗∗∗∗: {q} = set (visited-states (p-source q []) [])
by auto

show ?thesis
using acyclic-paths-up-to-length ′-set[OF ∗ ∗∗ ∗∗∗ ∗∗∗∗, of k ]
using True by auto

qed

lemma path-map-target : target (f4 q) (map (λ t . (f1 (t-source t), f2 (t-input t),
f3 (t-output t), f4 (t-target t))) p) = f4 (target q p)

by (induction p; auto)

lemma path-length-sum :
assumes path M q p
shows length p = (

∑
q ∈ states M . length (filter (λt. t-target t = q) p))

using assms
proof (induction p rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
then have length xs = (

∑
q∈states M . length (filter (λt. t-target t = q) xs))

by auto

have ∗: t-target x ∈ states M
using ‹path M q (xs @ [x])› by auto

then have ∗∗: length (filter (λt. t-target t = t-target x) (xs @ [x]))
= Suc (length (filter (λt. t-target t = t-target x) xs))

by auto

have
∧

q . q ∈ states M =⇒ q 6= t-target x
=⇒ length (filter (λt. t-target t = q) (xs @ [x])) = length (filter (λt. t-target

t = q) xs)
by simp

then have ∗∗∗: (
∑

q∈states M − {t-target x}. length (filter (λt. t-target t = q)
(xs @ [x])))

= (
∑

q∈states M − {t-target x}. length (filter (λt. t-target t = q)
xs))
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using fsm-states-finite[of M ]
by (metis (no-types, lifting) DiffE insertCI sum.cong)

have (
∑

q∈states M . length (filter (λt. t-target t = q) (xs @ [x])))
= (

∑
q∈states M − {t-target x}. length (filter (λt. t-target t = q) (xs @

[x])))
+ (length (filter (λt. t-target t = t-target x) (xs @ [x])))

using ∗ fsm-states-finite[of M ]
proof −

have (
∑

a∈insert (t-target x) (states M ). length (filter (λp. t-target p = a) (xs
@ [x])))

= (
∑

a∈states M . length (filter (λp. t-target p = a) (xs @ [x])))
by (simp add: ‹t-target x ∈ states M › insert-absorb)

then show ?thesis
by (simp add: ‹finite (states M )› sum.insert-remove)

qed
moreover have (

∑
q∈states M . length (filter (λt. t-target t = q) xs))

= (
∑

q∈states M − {t-target x}. length (filter (λt. t-target t = q)
xs))

+ (length (filter (λt. t-target t = t-target x) xs))
using ∗ fsm-states-finite[of M ]

proof −
have (

∑
a∈insert (t-target x) (states M ). length (filter (λp. t-target p = a) xs))

= (
∑

a∈states M . length (filter (λp. t-target p = a) xs))
by (simp add: ‹t-target x ∈ states M › insert-absorb)

then show ?thesis
by (simp add: ‹finite (states M )› sum.insert-remove)

qed

ultimately have (
∑

q∈states M . length (filter (λt. t-target t = q) (xs @ [x])))
= Suc (

∑
q∈states M . length (filter (λt. t-target t = q) xs))

using ∗∗ ∗∗∗ by auto

then show ?case
by (simp add: ‹length xs = (

∑
q∈states M . length (filter (λt. t-target t = q)

xs))›)
qed

lemma path-loop-cut :
assumes path M q p
and t-target (p ! i) = t-target (p ! j)
and i < j
and j < length p

shows path M q ((take (Suc i) p) @ (drop (Suc j) p))
and target q ((take (Suc i) p) @ (drop (Suc j) p)) = target q p
and length ((take (Suc i) p) @ (drop (Suc j) p)) < length p
and path M (target q (take (Suc i) p)) (drop (Suc i) (take (Suc j) p))
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and target (target q (take (Suc i) p)) (drop (Suc i) (take (Suc j) p)) = (target q
(take (Suc i) p))
proof −

have p = (take (Suc j) p) @ (drop (Suc j) p)
by auto

also have . . . = ((take (Suc i) (take (Suc j) p)) @ (drop (Suc i) (take (Suc j)
p))) @ (drop (Suc j) p)

by (metis append-take-drop-id)
also have . . . = ((take (Suc i) p) @ (drop (Suc i) (take (Suc j) p))) @ (drop

(Suc j) p)
using ‹i < j› by simp

finally have p = (take (Suc i) p) @ (drop (Suc i) (take (Suc j) p)) @ (drop (Suc
j) p)

by simp

then have path M q ((take (Suc i) p) @ (drop (Suc i) (take (Suc j) p)) @ (drop
(Suc j) p))

and path M q (((take (Suc i) p) @ (drop (Suc i) (take (Suc j) p))) @ (drop
(Suc j) p))

using ‹path M q p› by auto

have path M q (take (Suc i) p) and path M (target q (take (Suc i) p)) (drop
(Suc i) (take (Suc j) p) @ drop (Suc j) p)

using path-append-elim[OF ‹path M q ((take (Suc i) p) @ (drop (Suc i) (take
(Suc j) p)) @ (drop (Suc j) p))›]

by blast+

have ∗: (take (Suc i) p @ drop (Suc i) (take (Suc j) p)) = (take (Suc j) p)
using ‹i < j› append-take-drop-id
by (metis ‹(take (Suc i) (take (Suc j) p) @ drop (Suc i) (take (Suc j) p)) @

drop (Suc j) p = (take (Suc i) p @ drop (Suc i) (take (Suc j) p)) @ drop (Suc j)
p› append-same-eq)

have path M q (take (Suc j) p) and path M (target q (take (Suc j) p)) (drop
(Suc j) p)

using path-append-elim[OF ‹path M q (((take (Suc i) p) @ (drop (Suc i) (take
(Suc j) p))) @ (drop (Suc j) p))›]

unfolding ∗
by blast+

have ∗∗: (target q (take (Suc j) p)) = (target q (take (Suc i) p))
proof −

have p ! i = last (take (Suc i) p)
by (metis Suc-lessD assms(3 ) assms(4 ) less-trans-Suc take-last-index)

moreover have p ! j = last (take (Suc j) p)
by (simp add: assms(4 ) take-last-index)

ultimately show ?thesis
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using assms(2 ) unfolding ∗ target.simps visited-states.simps
by (simp add: last-map)

qed

show path M q ((take (Suc i) p) @ (drop (Suc j) p))
using ‹path M q (take (Suc i) p)› ‹path M (target q (take (Suc j) p)) (drop

(Suc j) p)› unfolding ∗∗ by auto

show target q ((take (Suc i) p) @ (drop (Suc j) p)) = target q p
by (metis ∗∗ append-take-drop-id path-append-target)

show length ((take (Suc i) p) @ (drop (Suc j) p)) < length p
proof −

have ∗∗∗: length p = length ((take (Suc j) p) @ (drop (Suc j) p))
by auto

have length (take (Suc i) p) < length (take (Suc j) p)
using assms(3 ,4 )
by (simp add: min-absorb2 )

have scheme:
∧

a b c . length a < length b =⇒ length (a@c) < length (b@c)
by auto

show ?thesis
unfolding ∗∗∗ using scheme[OF ‹length (take (Suc i) p) < length (take (Suc

j) p)›, of (drop (Suc j) p)]
by assumption

qed

show path M (target q (take (Suc i) p)) (drop (Suc i) (take (Suc j) p))
using ‹path M (target q (take (Suc i) p)) (drop (Suc i) (take (Suc j) p) @ drop

(Suc j) p)› by blast

show target (target q (take (Suc i) p)) (drop (Suc i) (take (Suc j) p)) = (target
q (take (Suc i) p))

by (metis ∗ ∗∗ path-append-target)
qed

lemma path-prefix-take :
assumes path M q p
shows path M q (take i p)

proof −
have p = (take i p)@(drop i p) by auto
then have path M q ((take i p)@(drop i p)) using assms by auto
then show ?thesis

by blast
qed
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4.5 Acyclic Paths
lemma cyclic-path-loop :

assumes path M q p
and ¬ distinct (visited-states q p)

shows ∃ p1 p2 p3 . p = p1@p2@p3 ∧ p2 6= [] ∧ target q p1 = target q (p1@p2 )
using assms proof (induction p arbitrary: q)

case (nil M q)
then show ?case by auto

next
case (cons t M ts)
then show ?case
proof (cases distinct (visited-states (t-target t) ts))

case True
then have q ∈ set (visited-states (t-target t) ts)

using cons.prems by simp
then obtain p2 p3 where ts = p2@p3 and target (t-target t) p2 = q

using visited-states-prefix[of q t-target t ts] by blast
then have (t#ts) = []@(t#p2 )@p3 ∧ (t#p2 ) 6= [] ∧ target q [] = target q

([]@(t#p2 ))
using cons.hyps by auto

then show ?thesis by blast
next

case False
then obtain p1 p2 p3 where ts = p1@p2@p3 and p2 6= []

and target (t-target t) p1 = target (t-target t) (p1@p2 )
using cons.IH by blast

then have t#ts = (t#p1 )@p2@p3 ∧ p2 6= [] ∧ target q (t#p1 ) = target q
((t#p1 )@p2 )

by simp
then show ?thesis by blast

qed
qed

lemma cyclic-path-pumping :
assumes path M (initial M ) p

and ¬ distinct (visited-states (initial M ) p)
shows ∃ p . path M (initial M ) p ∧ length p ≥ n

proof −
from assms obtain p1 p2 p3 where p = p1 @ p2 @ p3 and p2 6= []

and target (initial M ) p1 = target (initial M ) (p1 @ p2 )
using cyclic-path-loop[of M initial M p] by blast

then have path M (target (initial M ) p1 ) p3
using path-suffix[of M initial M p1@p2 p3 ] ‹path M (initial M ) p› by auto

have path M (initial M ) p1
using path-prefix[of M initial M p1 p2@p3 ] ‹path M (initial M ) p› ‹p = p1 @

p2 @ p3 ›
by auto
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have path M (initial M ) ((p1@p2 )@p3 )
using ‹path M (initial M ) p› ‹p = p1 @ p2 @ p3 ›
by auto

have path M (target (initial M ) p1 ) p2
using path-suffix[of M initial M p1 p2 , OF path-prefix[of M initial M p1@p2

p3 , OF ‹path M (initial M ) ((p1@p2 )@p3 )›]]
by assumption

have target (target (initial M ) p1 ) p2 = (target (initial M ) p1 )
using path-append-target ‹target (initial M ) p1 = target (initial M ) (p1 @ p2 )›

by auto

have path M (initial M ) (p1 @ (concat (replicate n p2 )) @ p3 )
proof (induction n)

case 0
then show ?case

using path-append[OF ‹path M (initial M ) p1 › ‹path M (target (initial M )
p1 ) p3 ›]

by auto
next

case (Suc n)
then show ?case

using ‹path M (target (initial M ) p1 ) p2 › ‹target (target (initial M ) p1 ) p2
= target (initial M ) p1 ›

by auto
qed
moreover have length (p1 @ (concat (replicate n p2 )) @ p3 ) ≥ n
proof −

have length (concat (replicate n p2 )) = n ∗ (length p2 )
using concat-replicate-length by metis

moreover have length p2 > 0
using ‹p2 6= []› by auto

ultimately have length (concat (replicate n p2 )) ≥ n
by (simp add: Suc-leI )

then show ?thesis by auto
qed
ultimately show ∃ p . path M (initial M ) p ∧ length p ≥ n by blast

qed

lemma cyclic-path-shortening :
assumes path M q p
and ¬ distinct (visited-states q p)

shows ∃ p ′ . path M q p ′ ∧ target q p ′ = target q p ∧ length p ′ < length p
proof −

obtain p1 p2 p3 where ∗: p = p1@p2@p3 ∧ p2 6= [] ∧ target q p1 = target q
(p1@p2 )

using cyclic-path-loop[OF assms] by blast
then have path M q (p1@p3 )
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using assms(1 ) by force
moreover have target q (p1@p3 ) = target q p

by (metis (full-types) ∗ path-append-target)
moreover have length (p1@p3 ) < length p

using ∗ by auto
ultimately show ?thesis by blast

qed

lemma acyclic-path-from-cyclic-path :
assumes path M q p
and ¬ distinct (visited-states q p)

obtains p ′ where path M q p ′ and target q p = target q p ′ and distinct (visited-states
q p ′)
proof −

let ?paths = {p ′ . (path M q p ′ ∧ target q p ′ = target q p ∧ length p ′ ≤ length
p)}

let ?minPath = arg-min length (λ io . io ∈ ?paths)

have ?paths 6= empty
using assms(1 ) by auto

moreover have finite ?paths
using paths-finite[of M q length p]
by (metis (no-types, lifting) Collect-mono rev-finite-subset)

ultimately have minPath-def : ?minPath ∈ ?paths ∧ (∀ p ′ ∈ ?paths . length
?minPath ≤ length p ′)

by (meson arg-min-nat-lemma equals0I )
then have path M q ?minPath and target q ?minPath = target q p

by auto

moreover have distinct (visited-states q ?minPath)
proof (rule ccontr)

assume ¬ distinct (visited-states q ?minPath)
have ∃ p ′ . path M q p ′ ∧ target q p ′ = target q p ∧ length p ′ < length ?minPath

using cyclic-path-shortening[OF ‹path M q ?minPath› ‹¬ distinct (visited-states
q ?minPath)›] minPath-def

‹target q ?minPath= target q p› by auto
then show False

using minPath-def using arg-min-nat-le dual-order .strict-trans1 by auto
qed

ultimately show ?thesis
by (simp add: that)

qed

lemma acyclic-path-length-limit :
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assumes path M q p
and distinct (visited-states q p)

shows length p < size M
proof (rule ccontr)

assume ∗: ¬ length p < size M
then have length p ≥ card (states M )

using size-def by auto
then have length (visited-states q p) > card (states M )

by auto
moreover have set (visited-states q p) ⊆ states M

by (metis assms(1 ) path-prefix path-target-is-state subsetI visited-states-prefix)
ultimately have ¬ distinct (visited-states q p)

using distinct-card[OF assms(2 )]
using List.finite-set[of visited-states q p]
by (metis card-mono fsm-states-finite leD)

then show False using assms(2 ) by blast
qed

4.6 Reachable States
definition reachable :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ bool where

reachable M q = (∃ p . path M (initial M ) p ∧ target (initial M ) p = q)

definition reachable-states :: ( ′a, ′b, ′c) fsm ⇒ ′a set where
reachable-states M = {target (initial M ) p | p . path M (initial M ) p }

abbreviation size-r M ≡ card (reachable-states M )

lemma acyclic-paths-set :
acyclic-paths-up-to-length M q (size M − 1 ) = {p . path M q p ∧ distinct

(visited-states q p)}
unfolding acyclic-paths-up-to-length.simps using acyclic-path-length-limit[of M

q]
by (metis (no-types, lifting) One-nat-def Suc-pred cyclic-path-shortening leD

list.size(3 )
not-less-eq-eq not-less-zero path.intros(1 ) path-begin-state)

lemma reachable-states-code[code] :
reachable-states M = image (target (initial M )) (acyclic-paths-up-to-length M

(initial M ) (size M − 1 ))
proof −

have
∧

q ′ . q ′ ∈ reachable-states M
=⇒ q ′ ∈ image (target (initial M )) (acyclic-paths-up-to-length M (initial

M ) (size M − 1 ))
proof −

fix q ′ assume q ′ ∈ reachable-states M
then obtain p where path M (initial M ) p and target (initial M ) p = q ′
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unfolding reachable-states-def by blast

obtain p ′ where path M (initial M ) p ′ and target (initial M ) p ′ = q ′

and distinct (visited-states (initial M ) p ′)
proof (cases distinct (visited-states (initial M ) p))

case True
then show ?thesis using ‹path M (initial M ) p› ‹target (initial M ) p = q ′›

that by auto
next

case False
then show ?thesis

using acyclic-path-from-cyclic-path[OF ‹path M (initial M ) p›]
unfolding ‹target (initial M ) p = q ′› using that by blast

qed
then show q ′ ∈ image (target (initial M )) (acyclic-paths-up-to-length M (initial

M ) (size M − 1 ))
unfolding acyclic-paths-set by force

qed
moreover have

∧
q ′ . q ′ ∈ image (target (initial M )) (acyclic-paths-up-to-length

M (initial M ) (size M − 1 ))
=⇒ q ′ ∈ reachable-states M

unfolding reachable-states-def acyclic-paths-set by blast
ultimately show ?thesis by blast

qed

lemma reachable-states-intro[intro!] :
assumes path M (initial M ) p
shows target (initial M ) p ∈ reachable-states M
using assms unfolding reachable-states-def by auto

lemma reachable-states-initial :
initial M ∈ reachable-states M
unfolding reachable-states-def by auto

lemma reachable-states-next :
assumes q ∈ reachable-states M and t ∈ transitions M and t-source t = q
shows t-target t ∈ reachable-states M

proof −
from ‹q ∈ reachable-states M › obtain p where ∗ :path M (initial M ) p

and ∗∗:target (initial M ) p = q
unfolding reachable-states-def by auto

then have path M (initial M ) (p@[t]) using assms(2 ,3 ) path-append-transition
by metis

moreover have target (initial M ) (p@[t]) = t-target t by auto
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ultimately show ?thesis
unfolding reachable-states-def
by (metis (mono-tags, lifting) mem-Collect-eq)

qed

lemma reachable-states-path :
assumes q ∈ reachable-states M
and path M q p
and t ∈ set p

shows t-source t ∈ reachable-states M
using assms unfolding reachable-states-def proof (induction p arbitrary: q)

case Nil
then show ?case by auto

next
case (Cons t ′ p ′)
then show ?case proof (cases t = t ′)

case True
then show ?thesis using Cons.prems(1 ,2 ) by force

next
case False then show ?thesis using Cons

by (metis (mono-tags, lifting) path-cons-elim reachable-states-def reach-
able-states-next

set-ConsD)
qed

qed

lemma reachable-states-initial-or-target :
assumes q ∈ reachable-states M
shows q = initial M ∨ (∃ t ∈ transitions M . t-source t ∈ reachable-states M ∧

t-target t = q)
proof −

obtain p where path M (initial M ) p and target (initial M ) p = q
using assms unfolding reachable-states-def by auto

show ?thesis proof (cases p rule: rev-cases)
case Nil
then show ?thesis using ‹path M (initial M ) p› ‹target (initial M ) p = q› by

auto
next

case (snoc p ′ t)

have t ∈ transitions M
using ‹path M (initial M ) p› unfolding snoc by auto

moreover have t-target t = q
using ‹target (initial M ) p = q› unfolding snoc by auto

moreover have t-source t ∈ reachable-states M
using ‹path M (initial M ) p› unfolding snoc
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by (metis append-is-Nil-conv last-in-set last-snoc not-Cons-self2 reachable-states-initial
reachable-states-path)

ultimately show ?thesis
by blast

qed
qed

lemma reachable-state-is-state :
q ∈ reachable-states M =⇒ q ∈ states M
unfolding reachable-states-def using path-target-is-state by fastforce

lemma reachable-states-finite : finite (reachable-states M )
using fsm-states-finite[of M ] reachable-state-is-state[of - M ]
by (meson finite-subset subset-eq)

4.7 Language
abbreviation p-io (p :: ( ′state, ′input, ′output) path) ≡ map (λ t . (t-input t,
t-output t)) p

fun language-state-for-input :: ( ′state, ′input, ′output) fsm ⇒ ′state ⇒ ′input list ⇒
( ′input × ′output) list set where

language-state-for-input M q xs = {p-io p | p . path M q p ∧ map fst (p-io p) =
xs}

fun LS in :: ( ′state, ′input, ′output) fsm ⇒ ′state ⇒ ′input list set ⇒ ( ′input ×
′output) list set where

LS in M q xss = {p-io p | p . path M q p ∧ map fst (p-io p) ∈ xss}

abbreviation(input) Lin M ≡ LS in M (initial M )

lemma language-state-for-input-inputs :
assumes io ∈ language-state-for-input M q xs
shows map fst io = xs
using assms by auto

lemma language-state-for-inputs-inputs :
assumes io ∈ LS in M q xss
shows map fst io ∈ xss using assms by auto

fun LS :: ( ′state, ′input, ′output) fsm ⇒ ′state ⇒ ( ′input × ′output) list set where
LS M q = { p-io p | p . path M q p }

abbreviation L M ≡ LS M (initial M )

lemma language-state-containment :
assumes path M q p
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and p-io p = io
shows io ∈ LS M q

using assms by auto

lemma language-prefix :
assumes io1@io2 ∈ LS M q
shows io1 ∈ LS M q

proof −
obtain p where path M q p and p-io p = io1@io2

using assms by auto
let ?tp = take (length io1 ) p
have path M q ?tp

by (metis (no-types) ‹path M q p› append-take-drop-id path-prefix)
moreover have p-io ?tp = io1

using ‹p-io p = io1@io2 › by (metis append-eq-conv-conj take-map)
ultimately show ?thesis

by force
qed

lemma language-contains-empty-sequence : [] ∈ L M
by auto

lemma language-state-split :
assumes io1 @ io2 ∈ LS M q1
obtains p1 p2 where path M q1 p1

and path M (target q1 p1 ) p2
and p-io p1 = io1
and p-io p2 = io2

proof −
obtain p12 where path M q1 p12 and p-io p12 = io1 @ io2

using assms unfolding LS .simps by auto

let ?p1 = take (length io1 ) p12
let ?p2 = drop (length io1 ) p12

have p12 = ?p1 @ ?p2
by auto

then have path M q1 (?p1 @ ?p2 )
using ‹path M q1 p12 › by auto

have path M q1 ?p1 and path M (target q1 ?p1 ) ?p2
using path-append-elim[OF ‹path M q1 (?p1 @ ?p2 )›] by blast+

moreover have p-io ?p1 = io1
using ‹p12 = ?p1 @ ?p2 › ‹p-io p12 = io1 @ io2 ›
by (metis append-eq-conv-conj take-map)

moreover have p-io ?p2 = io2
using ‹p12 = ?p1 @ ?p2 › ‹p-io p12 = io1 @ io2 ›
by (metis (no-types) ‹p-io p12 = io1 @ io2 › append-eq-conv-conj drop-map)

135



ultimately show ?thesis using that by blast
qed

lemma language-initial-path-append-transition :
assumes ios @ [io] ∈ L M
obtains p t where path M (initial M ) (p@[t]) and p-io (p@[t]) = ios @ [io]

proof −
obtain pt where path M (initial M ) pt and p-io pt = ios @ [io]

using assms unfolding LS .simps by auto
then have pt 6= []

by auto
then obtain p t where pt = p @ [t]

using rev-exhaust by blast
then have path M (initial M ) (p@[t]) and p-io (p@[t]) = ios @ [io]

using ‹path M (initial M ) pt› ‹p-io pt = ios @ [io]› by auto
then show ?thesis using that by simp

qed

lemma language-path-append-transition :
assumes ios @ [io] ∈ LS M q
obtains p t where path M q (p@[t]) and p-io (p@[t]) = ios @ [io]

proof −
obtain pt where path M q pt and p-io pt = ios @ [io]

using assms unfolding LS .simps by auto
then have pt 6= []

by auto
then obtain p t where pt = p @ [t]

using rev-exhaust by blast
then have path M q (p@[t]) and p-io (p@[t]) = ios @ [io]

using ‹path M q pt› ‹p-io pt = ios @ [io]› by auto
then show ?thesis using that by simp

qed

lemma language-split :
assumes io1@io2 ∈ L M
obtains p1 p2 where path M (initial M ) (p1@p2 ) and p-io p1 = io1 and p-io

p2 = io2
proof −

from assms obtain p where path M (initial M ) p and p-io p = io1 @ io2
by auto

let ?p1 = take (length io1 ) p
let ?p2 = drop (length io1 ) p

have path M (initial M ) (?p1@?p2 )
using ‹path M (initial M ) p› by simp

moreover have p-io ?p1 = io1
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using ‹p-io p = io1 @ io2 ›
by (metis append-eq-conv-conj take-map)

moreover have p-io ?p2 = io2
using ‹p-io p = io1 @ io2 ›
by (metis append-eq-conv-conj drop-map)

ultimately show ?thesis using that by blast
qed

lemma language-io :
assumes io ∈ LS M q
and (x,y) ∈ set io

shows x ∈ (inputs M )
and y ∈ outputs M
proof −

obtain p where path M q p and p-io p = io
using ‹io ∈ LS M q› by auto

then obtain t where t ∈ set p and t-input t = x and t-output t = y
using ‹(x,y) ∈ set io› by auto

have t ∈ transitions M
using ‹path M q p› ‹t ∈ set p›
by (induction p; auto)

show x ∈ (inputs M )
using ‹t ∈ transitions M › ‹t-input t = x› by auto

show y ∈ outputs M
using ‹t ∈ transitions M › ‹t-output t = y› by auto

qed

lemma path-io-split :
assumes path M q p
and p-io p = io1@io2

shows path M q (take (length io1 ) p)
and p-io (take (length io1 ) p) = io1
and path M (target q (take (length io1 ) p)) (drop (length io1 ) p)
and p-io (drop (length io1 ) p) = io2
proof −

have length io1 ≤ length p
using ‹p-io p = io1@io2 ›
unfolding length-map[of (λ t . (t-input t, t-output t)), symmetric]
by auto

have p = (take (length io1 ) p)@(drop (length io1 ) p)
by simp

then have ∗: path M q ((take (length io1 ) p)@(drop (length io1 ) p))
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using ‹path M q p› by auto

show path M q (take (length io1 ) p)
and path M (target q (take (length io1 ) p)) (drop (length io1 ) p)

using path-append-elim[OF ∗] by blast+

show p-io (take (length io1 ) p) = io1
using ‹p = (take (length io1 ) p)@(drop (length io1 ) p)› ‹p-io p = io1@io2 ›
by (metis append-eq-conv-conj take-map)

show p-io (drop (length io1 ) p) = io2
using ‹p = (take (length io1 ) p)@(drop (length io1 ) p)› ‹p-io p = io1@io2 ›
by (metis append-eq-conv-conj drop-map)

qed

lemma language-intro :
assumes path M q p
shows p-io p ∈ LS M q
using assms unfolding LS .simps by auto

lemma language-prefix-append :
assumes io1 @ (p-io p) ∈ L M

shows io1 @ p-io (take i p) ∈ L M
proof −

fix i
have p-io p = (p-io (take i p)) @ (p-io (drop i p))

by (metis append-take-drop-id map-append)
then have (io1 @ (p-io (take i p))) @ (p-io (drop i p)) ∈ L M

using ‹io1 @ p-io p ∈ L M › by auto
show io1 @ p-io (take i p) ∈ L M

using language-prefix[OF ‹(io1 @ (p-io (take i p))) @ (p-io (drop i p)) ∈ L
M ›]

by assumption
qed

lemma language-finite: finite {io . io ∈ L M ∧ length io ≤ k}
proof −

have {io . io ∈ L M ∧ length io ≤ k} ⊆ p-io ‘ {p. path M (FSM .initial M ) p
∧ length p ≤ k}

by auto
then show ?thesis

using paths-finite[of M initial M k]
using finite-surj by auto

qed

lemma LS-prepend-transition :
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assumes t ∈ transitions M
and io ∈ LS M (t-target t)

shows (t-input t, t-output t) # io ∈ LS M (t-source t)
proof −

obtain p where path M (t-target t) p and p-io p = io
using assms(2 ) by auto

then have path M (t-source t) (t#p) and p-io (t#p) = (t-input t, t-output t)
# io

using assms(1 ) by auto
then show ?thesis

unfolding LS .simps
by (metis (mono-tags, lifting) mem-Collect-eq)

qed

lemma language-empty-IO :
assumes inputs M = {} ∨ outputs M = {}
shows L M = {[]}

proof −
consider inputs M = {} | outputs M = {} using assms by blast
then show ?thesis proof cases

case 1

show L M = {[]}
using language-io(1 )[of - M initial M ] unfolding 1

by (metis (no-types, opaque-lifting) ex-in-conv is-singletonI ′ is-singleton-the-elem
language-contains-empty-sequence set-empty2 singleton-iff surj-pair)

next
case 2
show L M = {[]}

using language-io(2 )[of - M initial M ] unfolding 2
by (metis (no-types, opaque-lifting) ex-in-conv is-singletonI ′ is-singleton-the-elem

language-contains-empty-sequence set-empty2 singleton-iff surj-pair)
qed

qed

lemma language-equivalence-from-isomorphism-helper :
assumes bij-betw f (states M1 ) (states M2 )
and f (initial M1 ) = initial M2
and

∧
q x y q ′ . q ∈ states M1 =⇒ q ′ ∈ states M1 =⇒ (q,x,y,q ′) ∈ transitions

M1 ←→ (f q,x,y,f q ′) ∈ transitions M2
and q ∈ states M1

shows LS M1 q ⊆ LS M2 (f q)
proof

fix io assume io ∈ LS M1 q

then obtain p where path M1 q p and p-io p = io
by auto

let ?f = λ(q,x,y,q ′) . (f q,x,y,f q ′)
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let ?p = map ?f p

have f q ∈ states M2
using assms(1 ,4 )
using bij-betwE by auto

have path M2 (f q) ?p
using ‹path M1 q p› proof (induction p rule: rev-induct)

case Nil
show ?case using ‹f q ∈ states M2 › by auto

next
case (snoc a p)
then have path M2 (f q) (map ?f p)

by auto

have target (f q) (map ?f p) = f (target q p)
using ‹f (initial M1 ) = initial M2 › assms(2 )
by (induction p; auto)

then have t-source (?f a) = target (f q) (map ?f p)
by (metis (no-types, lifting) case-prod-beta ′ fst-conv path-append-transition-elim(3 )

snoc.prems)

have a ∈ transitions M1
using snoc.prems by auto

then have ?f a ∈ transitions M2
by (metis (mono-tags, lifting) assms(3 ) case-prod-beta fsm-transition-source

fsm-transition-target surjective-pairing)

have map ?f (p@[a]) = (map ?f p)@[?f a]
by auto

show ?case
unfolding ‹map ?f (p@[a]) = (map ?f p)@[?f a]›

using path-append-transition[OF ‹path M2 (f q) (map ?f p)› ‹?f a ∈ transitions
M2 › ‹t-source (?f a) = target (f q) (map ?f p)›]

by assumption
qed
moreover have p-io ?p = io

using ‹p-io p = io›
by (induction p; auto)

ultimately show io ∈ LS M2 (f q)
using language-state-containment by fastforce

qed

lemma language-equivalence-from-isomorphism :
assumes bij-betw f (states M1 ) (states M2 )
and f (initial M1 ) = initial M2
and

∧
q x y q ′ . q ∈ states M1 =⇒ q ′ ∈ states M1 =⇒ (q,x,y,q ′) ∈ transitions
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M1 ←→ (f q,x,y,f q ′) ∈ transitions M2
and q ∈ states M1

shows LS M1 q = LS M2 (f q)
proof

show LS M1 q ⊆ LS M2 (f q)
using language-equivalence-from-isomorphism-helper [OF assms] .

have f q ∈ states M2
using assms(1 ,4 )
using bij-betwE by auto

have (inv-into (FSM .states M1 ) f (f q)) = q
by (meson assms(1 ) assms(4 ) bij-betw-imp-inj-on inv-into-f-f )

have bij-betw (inv-into (states M1 ) f ) (states M2 ) (states M1 )
using bij-betw-inv-into[OF assms(1 )] .

moreover have (inv-into (states M1 ) f ) (initial M2 ) = (initial M1 )
using assms(1 ,2 )
by (metis bij-betw-inv-into-left fsm-initial)

moreover have
∧

q x y q ′ . q ∈ states M2 =⇒ q ′ ∈ states M2 =⇒ (q,x,y,q ′) ∈
transitions M2 ←→ ((inv-into (states M1 ) f ) q,x,y,(inv-into (states M1 ) f ) q ′) ∈
transitions M1

proof
fix q x y q ′ assume q ∈ states M2 and q ′ ∈ states M2

show (q,x,y,q ′) ∈ transitions M2 =⇒ ((inv-into (states M1 ) f ) q,x,y,(inv-into
(states M1 ) f ) q ′) ∈ transitions M1

proof −
assume a1 : (q, x, y, q ′) ∈ FSM .transitions M2
have f2 : ∀ f B A. ¬ bij-betw f B A ∨ (∀ b. (b:: ′b) /∈ B ∨ (f b:: ′a) ∈ A)

using bij-betwE by blast
then have f3 : inv-into (states M1 ) f q ∈ states M1

using ‹q ∈ states M2 › calculation(1 ) by blast
have inv-into (states M1 ) f q ′ ∈ states M1

using f2 ‹q ′ ∈ states M2 › calculation(1 ) by blast
then show ?thesis
using f3 a1 ‹q ∈ states M2 › ‹q ′∈ states M2 › assms(1 ) assms(3 ) bij-betw-inv-into-right

by fastforce
qed

show ((inv-into (states M1 ) f ) q,x,y,(inv-into (states M1 ) f ) q ′) ∈ transitions
M1 =⇒ (q,x,y,q ′) ∈ transitions M2

proof −
assume a1 : (inv-into (states M1 ) f q, x, y, inv-into (states M1 ) f q ′) ∈

FSM .transitions M1
have f2 : ∀ f B A. ¬ bij-betw f B A ∨ (∀ b. (b:: ′b) /∈ B ∨ (f b:: ′a) ∈ A)

by (metis (full-types) bij-betwE)
then have f3 : inv-into (states M1 ) f q ′ ∈ states M1

using ‹q ′ ∈ states M2 › calculation(1 ) by blast
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have inv-into (states M1 ) f q ∈ states M1
using f2 ‹q ∈ states M2 › calculation(1 ) by blast

then show ?thesis
using f3 a1 ‹q ∈ states M2 › ‹q ′∈ states M2 › assms(1 ) assms(3 ) bij-betw-inv-into-right

by fastforce
qed

qed
ultimately show LS M2 (f q) ⊆ LS M1 q

using language-equivalence-from-isomorphism-helper [of (inv-into (states M1 )
f ) M2 M1 , OF - - - ‹f q ∈ states M2 ›]

unfolding ‹(inv-into (FSM .states M1 ) f (f q)) = q›
by blast

qed

lemma language-equivalence-from-isomorphism-helper-reachable :
assumes bij-betw f (reachable-states M1 ) (reachable-states M2 )
and f (initial M1 ) = initial M2
and

∧
q x y q ′ . q ∈ reachable-states M1 =⇒ q ′ ∈ reachable-states M1 =⇒

(q,x,y,q ′) ∈ transitions M1 ←→ (f q,x,y,f q ′) ∈ transitions M2
shows L M1 ⊆ L M2
proof

fix io assume io ∈ L M1

then obtain p where path M1 (initial M1 ) p and p-io p = io
by auto

let ?f = λ(q,x,y,q ′) . (f q,x,y,f q ′)
let ?p = map ?f p

have path M2 (initial M2 ) ?p
using ‹path M1 (initial M1 ) p› proof (induction p rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc a p)
then have path M2 (initial M2 ) (map ?f p)

by auto

have target (initial M2 ) (map ?f p) = f (target (initial M1 ) p)
using ‹f (initial M1 ) = initial M2 › assms(2 )
by (induction p; auto)

then have t-source (?f a) = target (initial M2 ) (map ?f p)
by (metis (no-types, lifting) case-prod-beta ′ fst-conv path-append-transition-elim(3 )

snoc.prems)

have t-source a ∈ reachable-states M1
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using ‹path M1 (FSM .initial M1 ) (p @ [a])›
by (metis path-append-transition-elim(3 ) path-prefix reachable-states-intro)

have t-target a ∈ reachable-states M1
using ‹path M1 (FSM .initial M1 ) (p @ [a])›
by (meson ‹t-source a ∈ reachable-states M1 › path-append-transition-elim(2 )

reachable-states-next)

have a ∈ transitions M1
using snoc.prems by auto

then have ?f a ∈ transitions M2
using assms(3 )[OF ‹t-source a ∈ reachable-states M1 › ‹t-target a ∈ reach-

able-states M1 ›]
by (metis (mono-tags, lifting) prod.case-eq-if prod.collapse)

have map ?f (p@[a]) = (map ?f p)@[?f a]
by auto

show ?case
unfolding ‹map ?f (p@[a]) = (map ?f p)@[?f a]›
using path-append-transition[OF ‹path M2 (initial M2 ) (map ?f p)› ‹?f a ∈

transitions M2 › ‹t-source (?f a) = target (initial M2 ) (map ?f p)›]
by assumption

qed
moreover have p-io ?p = io

using ‹p-io p = io›
by (induction p; auto)

ultimately show io ∈ L M2
using language-state-containment by fastforce

qed

lemma language-equivalence-from-isomorphism-reachable :
assumes bij-betw f (reachable-states M1 ) (reachable-states M2 )
and f (initial M1 ) = initial M2
and

∧
q x y q ′ . q ∈ reachable-states M1 =⇒ q ′ ∈ reachable-states M1 =⇒

(q,x,y,q ′) ∈ transitions M1 ←→ (f q,x,y,f q ′) ∈ transitions M2
shows L M1 = L M2
proof

show L M1 ⊆ L M2
using language-equivalence-from-isomorphism-helper-reachable[OF assms] .

have bij-betw (inv-into (reachable-states M1 ) f ) (reachable-states M2 ) (reachable-states
M1 )

using bij-betw-inv-into[OF assms(1 )] .
moreover have (inv-into (reachable-states M1 ) f ) (initial M2 ) = (initial M1 )

using assms(1 ,2 ) reachable-states-initial
by (metis bij-betw-inv-into-left)

moreover have
∧

q x y q ′ . q ∈ reachable-states M2 =⇒ q ′ ∈ reachable-states M2
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=⇒ (q,x,y,q ′) ∈ transitions M2 ←→ ((inv-into (reachable-states M1 ) f ) q,x,y,(inv-into
(reachable-states M1 ) f ) q ′) ∈ transitions M1

proof
fix q x y q ′ assume q ∈ reachable-states M2 and q ′ ∈ reachable-states M2

show (q,x,y,q ′) ∈ transitions M2 =⇒ ((inv-into (reachable-states M1 ) f )
q,x,y,(inv-into (reachable-states M1 ) f ) q ′) ∈ transitions M1

proof −
assume a1 : (q, x, y, q ′) ∈ FSM .transitions M2
have f2 : ∀ f B A. ¬ bij-betw f B A ∨ (∀ b. (b:: ′b) /∈ B ∨ (f b:: ′a) ∈ A)

using bij-betwE by blast
then have f3 : inv-into (FSM .reachable-states M1 ) f q ∈ FSM .reachable-states

M1
using ‹q ∈ FSM .reachable-states M2 › calculation(1 ) by blast

have inv-into (FSM .reachable-states M1 ) f q ′ ∈ FSM .reachable-states M1
using f2 ‹q ′ ∈ FSM .reachable-states M2 › calculation(1 ) by blast

then show ?thesis
using f3 a1 ‹q ∈ FSM .reachable-states M2 › ‹q ′ ∈ FSM .reachable-states M2 ›

assms(1 ) assms(3 ) bij-betw-inv-into-right by fastforce
qed

show ((inv-into (reachable-states M1 ) f ) q,x,y,(inv-into (reachable-states M1 )
f ) q ′) ∈ transitions M1 =⇒ (q,x,y,q ′) ∈ transitions M2

proof −
assume a1 : (inv-into (FSM .reachable-states M1 ) f q, x, y, inv-into (FSM .reachable-states

M1 ) f q ′) ∈ FSM .transitions M1
have f2 : ∀ f B A. ¬ bij-betw f B A ∨ (∀ b. (b:: ′b) /∈ B ∨ (f b:: ′a) ∈ A)

by (metis (full-types) bij-betwE)
then have f3 : inv-into (FSM .reachable-states M1 ) f q ′ ∈ FSM .reachable-states

M1
using ‹q ′ ∈ FSM .reachable-states M2 › calculation(1 ) by blast

have inv-into (FSM .reachable-states M1 ) f q ∈ FSM .reachable-states M1
using f2 ‹q ∈ FSM .reachable-states M2 › calculation(1 ) by blast

then show ?thesis
using f3 a1 ‹q ∈ FSM .reachable-states M2 › ‹q ′ ∈ FSM .reachable-states M2 ›

assms(1 ) assms(3 ) bij-betw-inv-into-right by fastforce
qed

qed
ultimately show L M2 ⊆ L M1
using language-equivalence-from-isomorphism-helper-reachable[of (inv-into (reachable-states

M1 ) f ) M2 M1 ]
by blast

qed

lemma language-empty-io :
assumes inputs M = {} ∨ outputs M = {}
shows L M = {[]}

proof −
have transitions M = {}
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using assms fsm-transition-input fsm-transition-output
by auto

then have
∧

p . path M (initial M ) p =⇒ p = []
by (metis empty-iff path.cases)

then show ?thesis
unfolding LS .simps
by blast

qed

4.8 Basic FSM Properties
4.8.1 Completely Specified
fun completely-specified :: ( ′a, ′b, ′c) fsm ⇒ bool where

completely-specified M = (∀ q ∈ states M . ∀ x ∈ inputs M . ∃ t ∈ transitions
M . t-source t = q ∧ t-input t = x)

lemma completely-specified-alt-def :
completely-specified M = (∀ q ∈ states M . ∀ x ∈ inputs M . ∃ q ′ y . (q,x,y,q ′)
∈ transitions M )

by force

lemma completely-specified-alt-def-h :
completely-specified M = (∀ q ∈ states M . ∀ x ∈ inputs M . h M (q,x) 6= {})
by force

fun completely-specified-state :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ bool where
completely-specified-state M q = (∀ x ∈ inputs M . ∃ t ∈ transitions M . t-source

t = q ∧ t-input t = x)

lemma completely-specified-states :
completely-specified M = (∀ q ∈ states M . completely-specified-state M q)
unfolding completely-specified.simps completely-specified-state.simps by force

lemma completely-specified-state-alt-def-h :
completely-specified-state M q = (∀ x ∈ inputs M . h M (q,x) 6= {})
by force

lemma completely-specified-path-extension :
assumes completely-specified M
and q ∈ states M
and path M q p
and x ∈ (inputs M )

obtains t where t ∈ transitions M and t-input t = x and t-source t = target q p
proof −

have target q p ∈ states M
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using path-target-is-state ‹path M q p› by metis
then obtain t where t ∈ transitions M and t-input t = x and t-source t =

target q p
using ‹completely-specified M › ‹x ∈ (inputs M )›
unfolding completely-specified.simps by blast

then show ?thesis using that by blast
qed

lemma completely-specified-language-extension :
assumes completely-specified M
and q ∈ states M
and io ∈ LS M q
and x ∈ (inputs M )

obtains y where io@[(x,y)] ∈ LS M q
proof −

obtain p where path M q p and p-io p = io
using ‹io ∈ LS M q› by auto

moreover obtain t where t ∈ transitions M and t-input t = x and t-source t
= target q p

using completely-specified-path-extension[OF assms(1 ,2 ) ‹path M q p› assms(4 )]
by blast

ultimately have path M q (p@[t]) and p-io (p@[t]) = io@[(x,t-output t)]
by (simp add: path-append-transition)+

then have io@[(x,t-output t)] ∈ LS M q
using language-state-containment[of M q p@[t] io@[(x,t-output t)]] by auto

then show ?thesis using that by blast
qed

lemma path-of-length-ex :
assumes completely-specified M
and q ∈ states M
and inputs M 6= {}

shows ∃ p . path M q p ∧ length p = k
using assms(2 ) proof (induction k arbitrary: q)

case 0
then show ?case by auto

next
case (Suc k)

obtain t where t-source t = q and t ∈ transitions M
by (meson Suc.prems assms(1 ) assms(3 ) completely-specified.simps equals0I )

then have t-target t ∈ states M
using fsm-transition-target by blast

then obtain p where path M (t-target t) p ∧ length p = k
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using Suc.IH by blast
then show ?case

using ‹t-source t = q› ‹t ∈ transitions M ›
by auto

qed

4.8.2 Deterministic
fun deterministic :: ( ′a, ′b, ′c) fsm ⇒ bool where

deterministic M = (∀ t1 ∈ transitions M .
∀ t2 ∈ transitions M .
(t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 )
−→ (t-output t1 = t-output t2 ∧ t-target t1 = t-target t2 ))

lemma deterministic-alt-def :
deterministic M = (∀ q1 x y ′ y ′′ q1 ′ q1 ′′ . (q1 ,x,y ′,q1 ′) ∈ transitions M ∧

(q1 ,x,y ′′,q1 ′′) ∈ transitions M −→ y ′ = y ′′ ∧ q1 ′ = q1 ′′)
by auto

lemma deterministic-alt-def-h :
deterministic M = (∀ q1 x yq yq ′ . (yq ∈ h M (q1 ,x) ∧ yq ′ ∈ h M (q1 ,x)) −→

yq = yq ′)
by auto

4.8.3 Observable
fun observable :: ( ′a, ′b, ′c) fsm ⇒ bool where

observable M = (∀ t1 ∈ transitions M .
∀ t2 ∈ transitions M .

(t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output
t1 = t-output t2 )

−→ t-target t1 = t-target t2 )

lemma observable-alt-def :
observable M = (∀ q1 x y q1 ′ q1 ′′ . (q1 ,x,y,q1 ′) ∈ transitions M ∧ (q1 ,x,y,q1 ′′)
∈ transitions M −→ q1 ′ = q1 ′′)

by auto

lemma observable-alt-def-h :
observable M = (∀ q1 x yq yq ′ . (yq ∈ h M (q1 ,x) ∧ yq ′ ∈ h M (q1 ,x)) −→ fst

yq = fst yq ′ −→ snd yq = snd yq ′)
by auto

lemma language-append-path-ob :
assumes io@[(x,y)] ∈ L M
obtains p t where path M (initial M ) (p@[t]) and p-io p = io and t-input t =

x and t-output t = y
proof −
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obtain p p2 where path M (initial M ) p and path M (target (initial M ) p) p2
and p-io p = io and p-io p2 = [(x,y)]

using language-state-split[OF assms] by blast

obtain t where p2 = [t] and t-input t = x and t-output t = y
using ‹p-io p2 = [(x,y)]› by auto

have path M (initial M ) (p@[t])
using ‹path M (initial M ) p› ‹path M (target (initial M ) p) p2 › unfolding

‹p2 = [t]› by auto
then show ?thesis using that[OF - ‹p-io p = io› ‹t-input t = x› ‹t-output t =

y›]
by simp

qed

4.8.4 Single Input
fun single-input :: ( ′a, ′b, ′c) fsm ⇒ bool where

single-input M = (∀ t1 ∈ transitions M .
∀ t2 ∈ transitions M .

t-source t1 = t-source t2 −→ t-input t1 = t-input t2 )

lemma single-input-alt-def :
single-input M = (∀ q1 x x ′ y y ′ q1 ′ q1 ′′ . (q1 ,x,y,q1 ′) ∈ transitions M ∧

(q1 ,x ′,y ′,q1 ′′) ∈ transitions M −→ x = x ′)
by fastforce

lemma single-input-alt-def-h :
single-input M = (∀ q x x ′ . (h M (q,x) 6= {} ∧ h M (q,x ′) 6= {}) −→ x = x ′)
by force

4.8.5 Output Complete
fun output-complete :: ( ′a, ′b, ′c) fsm ⇒ bool where

output-complete M = (∀ t ∈ transitions M .
∀ y ∈ outputs M .
∃ t ′ ∈ transitions M . t-source t = t-source t ′ ∧

t-input t = t-input t ′ ∧
t-output t ′ = y)

lemma output-complete-alt-def :
output-complete M = (∀ q x . (∃ y q ′ . (q,x,y,q ′) ∈ transitions M ) −→ (∀ y ∈

(outputs M ) . ∃ q ′ . (q,x,y,q ′) ∈ transitions M ))
by force

lemma output-complete-alt-def-h :
output-complete M = (∀ q x . h M (q,x) 6= {} −→ (∀ y ∈ outputs M . ∃ q ′ .

(y,q ′) ∈ h M (q,x)))
by force
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4.8.6 Acyclic
fun acyclic :: ( ′a, ′b, ′c) fsm ⇒ bool where

acyclic M = (∀ p . path M (initial M ) p −→ distinct (visited-states (initial M )
p))

lemma visited-states-length : length (visited-states q p) = Suc (length p) by auto

lemma visited-states-take :
(take (Suc n) (visited-states q p)) = (visited-states q (take n p))

proof (induction p rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case by (cases n ≤ length xs; auto)

qed

lemma acyclic-code[code] :
acyclic M = (¬(∃ p ∈ (acyclic-paths-up-to-length M (initial M ) (size M − 1 )) .

∃ t ∈ transitions M . t-source t = target (initial M ) p ∧
t-target t ∈ set (visited-states (initial M ) p)))

proof −
have (∃ p ∈ (acyclic-paths-up-to-length M (initial M ) (size M − 1 )) .

∃ t ∈ transitions M . t-source t = target (initial M ) p ∧
t-target t ∈ set (visited-states (initial M ) p))

=⇒ ¬ FSM .acyclic M
proof −

assume (∃ p ∈ (acyclic-paths-up-to-length M (initial M ) (size M − 1 )) .
∃ t ∈ transitions M . t-source t = target (initial M ) p ∧

t-target t ∈ set (visited-states (initial M ) p))
then obtain p t where path M (initial M ) p

and distinct (visited-states (initial M ) p)
and t ∈ transitions M
and t-source t = target (initial M ) p
and t-target t ∈ set (visited-states (initial M ) p)

unfolding acyclic-paths-set by blast
then have path M (initial M ) (p@[t])

by (simp add: path-append-transition)
moreover have ¬ (distinct (visited-states (initial M ) (p@[t])))

using ‹t-target t ∈ set (visited-states (initial M ) p)› by auto
ultimately show ¬ FSM .acyclic M

by (meson acyclic.elims(2 ))
qed
moreover have ¬ FSM .acyclic M =⇒

(∃ p ∈ (acyclic-paths-up-to-length M (initial M ) (size M − 1 )) .
∃ t ∈ transitions M . t-source t = target (initial M ) p ∧
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t-target t ∈ set (visited-states (initial M ) p))
proof −

assume ¬ FSM .acyclic M
then obtain p where path M (initial M ) p

and ¬ distinct (visited-states (initial M ) p)
by auto

then obtain n where distinct (take (Suc n) (visited-states (initial M ) p))
and ¬ distinct (take (Suc (Suc n)) (visited-states (initial M ) p))

using maximal-distinct-prefix by blast
then have distinct (visited-states (initial M ) (take n p))

and ¬ distinct (visited-states (initial M )(take (Suc n) p))
unfolding visited-states-take by simp+

then obtain p ′ t ′ where ∗: take n p = p ′

and ∗∗: take (Suc n) p = p ′ @ [t ′]
by (metis Suc-less-eq ‹¬ distinct (visited-states (FSM .initial M ) p)›

le-imp-less-Suc not-less-eq-eq take-all take-hd-drop)

have ∗∗∗: visited-states (FSM .initial M ) (p ′@ [t ′]) = (visited-states (FSM .initial
M ) p ′)@[t-target t ′]

by auto

have path M (initial M ) p ′

using ∗ ‹path M (initial M ) p›
by (metis append-take-drop-id path-prefix)

then have p ′ ∈ (acyclic-paths-up-to-length M (initial M ) (size M − 1 ))
using ‹distinct (visited-states (initial M ) (take n p))›
unfolding ∗ acyclic-paths-set by blast

moreover have t ′ ∈ transitions M ∧ t-source t ′ = target (initial M ) p ′

using ∗ ∗∗ ‹path M (initial M ) p›
by (metis append-take-drop-id path-append-elim path-cons-elim)

moreover have t-target t ′ ∈ set (visited-states (initial M ) p ′)
using ‹distinct (visited-states (initial M ) (take n p))›

‹¬ distinct (visited-states (initial M )(take (Suc n) p))›
unfolding ∗ ∗∗ ∗∗∗ by auto

ultimately show (∃ p ∈ (acyclic-paths-up-to-length M (initial M ) (size M −
1 )) .

∃ t ∈ transitions M . t-source t = target (initial M ) p ∧
t-target t ∈ set (visited-states (initial M ) p))

by blast
qed
ultimately show ?thesis by blast

qed

lemma acyclic-alt-def : acyclic M = finite (L M )
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proof
show acyclic M =⇒ finite (L M )
proof −

assume acyclic M
then have { p . path M (initial M ) p} ⊆ (acyclic-paths-up-to-length M (initial

M ) (size M − 1 ))
unfolding acyclic-paths-set by auto

moreover have finite (acyclic-paths-up-to-length M (initial M ) (size M − 1 ))
unfolding acyclic-paths-up-to-length.simps using paths-finite[of M initial M

size M − 1 ]
by (metis (mono-tags, lifting) Collect-cong ‹FSM .acyclic M › acyclic.elims(2 ))

ultimately have finite { p . path M (initial M ) p}
using finite-subset by blast

then show finite (L M )
unfolding LS .simps by auto

qed

show finite (L M ) =⇒ acyclic M
proof (rule ccontr)

assume finite (L M )
assume ¬ acyclic M

obtain max-io-len where ∀ io ∈ L M . length io < max-io-len
using finite-maxlen[OF ‹finite (L M )›] by blast

then have
∧

p . path M (initial M ) p =⇒ length p < max-io-len
proof −

fix p assume path M (initial M ) p
show length p < max-io-len
proof (rule ccontr)

assume ¬ length p < max-io-len
then have ¬ length (p-io p) < max-io-len by auto
moreover have p-io p ∈ L M

unfolding LS .simps using ‹path M (initial M ) p› by blast
ultimately show False

using ‹∀ io ∈ L M . length io < max-io-len› by blast
qed

qed

obtain p where path M (initial M ) p and ¬ distinct (visited-states (initial M )
p)

using ‹¬ acyclic M › unfolding acyclic.simps by blast
then obtain pL where path M (initial M ) pL and max-io-len ≤ length pL

using cyclic-path-pumping[of M p max-io-len] by blast
then show False

using ‹
∧

p . path M (initial M ) p =⇒ length p < max-io-len›
using not-le by blast

qed
qed
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lemma acyclic-finite-paths-from-reachable-state :
assumes acyclic M
and path M (initial M ) p
and target (initial M ) p = q

shows finite {p . path M q p}
proof −

from assms have { p . path M (initial M ) p} ⊆ (acyclic-paths-up-to-length M
(initial M ) (size M − 1 ))

unfolding acyclic-paths-set by auto
moreover have finite (acyclic-paths-up-to-length M (initial M ) (size M − 1 ))

unfolding acyclic-paths-up-to-length.simps using paths-finite[of M initial M
size M − 1 ]

by (metis (mono-tags, lifting) Collect-cong ‹FSM .acyclic M › acyclic.elims(2 ))
ultimately have finite { p . path M (initial M ) p}

using finite-subset by blast

show finite {p . path M q p}
proof (cases q ∈ states M )

case True

have image (λp ′ . p@p ′) {p ′ . path M q p ′} ⊆ {p ′ . path M (initial M ) p ′}
proof

fix x assume x ∈ image (λp ′ . p@p ′) {p ′ . path M q p ′}
then obtain p ′ where x = p@p ′ and p ′ ∈ {p ′ . path M q p ′}

by blast
then have path M q p ′ by auto
then have path M (initial M ) (p@p ′)

using path-append[OF ‹path M (initial M ) p›] ‹target (initial M ) p = q›
by auto

then show x ∈ {p ′ . path M (initial M ) p ′} using ‹x = p@p ′› by blast
qed

then have finite (image (λp ′ . p@p ′) {p ′ . path M q p ′})
using ‹finite { p . path M (initial M ) p}› finite-subset by auto

show ?thesis using finite-imageD[OF ‹finite (image (λp ′ . p@p ′) {p ′ . path M
q p ′})›]

by (meson inj-onI same-append-eq)
next

case False
then show ?thesis

by (meson not-finite-existsD path-begin-state)
qed

qed

lemma acyclic-paths-from-reachable-states :
assumes acyclic M
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and path M (initial M ) p ′

and target (initial M ) p ′ = q
and path M q p

shows distinct (visited-states q p)
proof −

have path M (initial M ) (p ′@p)
using assms(2 ,3 ,4 ) path-append by metis

then have distinct (visited-states (initial M ) (p ′@p))
using assms(1 ) unfolding acyclic.simps by blast

then have distinct (initial M # (map t-target p ′) @ map t-target p)
by auto

moreover have initial M # (map t-target p ′) @ map t-target p
= (butlast (initial M # map t-target p ′)) @ ((last (initial M # map

t-target p ′)) # map t-target p)
by auto

ultimately have distinct ((last (initial M # map t-target p ′)) # map t-target p)
by auto

then show ?thesis
using ‹target (initial M ) p ′ = q› unfolding visited-states.simps target.simps

by simp
qed

definition LS-acyclic :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list set where
LS-acyclic M q = {p-io p | p . path M q p ∧ distinct (visited-states q p)}

lemma LS-acyclic-code[code] :
LS-acyclic M q = image p-io (acyclic-paths-up-to-length M q (size M − 1 ))
unfolding acyclic-paths-set LS-acyclic-def by blast

lemma LS-from-LS-acyclic :
assumes acyclic M
shows L M = LS-acyclic M (initial M )

proof −
obtain pps :: (( ′b × ′c) list ⇒ bool) ⇒ (( ′b × ′c) list ⇒ bool) ⇒ ( ′b × ′c) list

where
f1 : ∀ p pa. (¬ p (pps pa p)) = pa (pps pa p) ∨ Collect p = Collect pa
by (metis (no-types) Collect-cong)

have ∀ ps. ¬ path M (FSM .initial M ) ps ∨ distinct (visited-states (FSM .initial
M ) ps)

using acyclic.simps assms by blast
then have (@ ps. pps (λps. ∃ psa. ps = p-io psa ∧ path M (FSM .initial M ) psa)

(λps. ∃ psa. ps = p-io psa ∧ path M (FSM .initial M ) psa
∧ distinct (visited-states (FSM .initial M ) psa))

= p-io ps ∧ path M (FSM .initial M ) ps ∧ distinct (visited-states
(FSM .initial M ) ps))

6= (∃ ps. pps (λps. ∃ psa. ps = p-io psa ∧ path M (FSM .initial M ) psa)
(λps. ∃ psa. ps = p-io psa ∧ path M (FSM .initial M ) psa

∧ distinct (visited-states (FSM .initial M ) psa))
= p-io ps ∧ path M (FSM .initial M ) ps)
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by blast
then have {p-io ps |ps. path M (FSM .initial M ) ps ∧ distinct (visited-states

(FSM .initial M ) ps)}
= {p-io ps |ps. path M (FSM .initial M ) ps}

using f1
by (meson ‹∀ ps. ¬ path M (FSM .initial M ) ps ∨ distinct (visited-states

(FSM .initial M ) ps)›)
then show ?thesis

by (simp add: LS-acyclic-def )
qed

lemma cyclic-cycle :
assumes ¬ acyclic M
shows ∃ q p . path M q p ∧ p 6= [] ∧ target q p = q

proof −
from ‹¬ acyclic M › obtain p t where path M (initial M ) (p@[t])

and ¬distinct (visited-states (initial M ) (p@[t]))
by (metis (no-types, opaque-lifting) Nil-is-append-conv acyclic.simps append-take-drop-id

maximal-distinct-prefix rev-exhaust visited-states-take)

show ?thesis
proof (cases initial M ∈ set (map t-target (p@[t])))

case True
then obtain i where last (take i (map t-target (p@[t]))) = initial M

and i ≤ length (map t-target (p@[t])) and 0 < i
using list-contains-last-take by metis

let ?p = take i (p@[t])
have path M (initial M ) (?p@(drop i (p@[t])))

using ‹path M (initial M ) (p@[t])›
by (metis append-take-drop-id)

then have path M (initial M ) ?p by auto
moreover have ?p 6= [] using ‹0 < i› by auto
moreover have target (initial M ) ?p = initial M

using ‹last (take i (map t-target (p@[t]))) = initial M ›
unfolding target.simps visited-states.simps

by (metis (no-types, lifting) calculation(2 ) last-ConsR list.map-disc-iff take-map)

ultimately show ?thesis by blast
next

case False
then have ¬ distinct (map t-target (p@[t]))

using ‹¬distinct (visited-states (initial M ) (p@[t]))›
unfolding visited-states.simps
by auto
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then obtain i j where i < j and j < length (map t-target (p@[t]))
and (map t-target (p@[t])) ! i = (map t-target (p@[t])) ! j

using non-distinct-repetition-indices by blast

let ?pre-i = take (Suc i) (p@[t])
let ?p = take ((Suc j)−(Suc i)) (drop (Suc i) (p@[t]))
let ?post-j = drop ((Suc j)−(Suc i)) (drop (Suc i) (p@[t]))

have p@[t] = ?pre-i @ ?p @ ?post-j
using ‹i < j› ‹j < length (map t-target (p@[t]))›
by (metis append-take-drop-id)

then have path M (target (initial M ) ?pre-i) ?p
using ‹path M (initial M ) (p@[t])›
by (metis path-prefix path-suffix)

have ?p 6= []
using ‹i < j› ‹j < length (map t-target (p@[t]))› by auto

have i < length (map t-target (p@[t]))
using ‹i < j› ‹j < length (map t-target (p@[t]))› by auto

have (target (initial M ) ?pre-i) = (map t-target (p@[t])) ! i
unfolding target.simps visited-states.simps
using take-last-index[OF ‹i < length (map t-target (p@[t]))›]
by (metis (no-types, lifting) ‹i < length (map t-target (p @ [t]))›

last-ConsR snoc-eq-iff-butlast take-Suc-conv-app-nth take-map)

have ?pre-i@?p = take (Suc j) (p@[t])
by (metis (no-types) ‹i < j› add-Suc add-diff-cancel-left ′ less-SucI less-imp-Suc-add

take-add)
moreover have (target (initial M ) (take (Suc j) (p@[t]))) = (map t-target

(p@[t])) ! j
unfolding target.simps visited-states.simps
using take-last-index[OF ‹j < length (map t-target (p@[t]))›]
by (metis (no-types, lifting) ‹j < length (map t-target (p @ [t]))›

last-ConsR snoc-eq-iff-butlast take-Suc-conv-app-nth take-map)
ultimately have (target (initial M ) (?pre-i@?p)) = (map t-target (p@[t])) ! j

by auto
then have (target (initial M ) (?pre-i@?p)) = (map t-target (p@[t])) ! i

using ‹(map t-target (p@[t])) ! i = (map t-target (p@[t])) ! j› by simp
moreover have (target (initial M ) (?pre-i@?p)) = (target (target (initial M )

?pre-i) ?p)
unfolding target.simps visited-states.simps last.simps by auto

ultimately have (target (target (initial M ) ?pre-i) ?p) = (map t-target (p@[t]))
! i

by auto
then have (target (target (initial M ) ?pre-i) ?p) = (target (initial M ) ?pre-i)

using ‹(target (initial M ) ?pre-i) = (map t-target (p@[t])) ! i› by auto

show ?thesis
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using ‹path M (target (initial M ) ?pre-i) ?p› ‹?p 6= []›
‹(target (target (initial M ) ?pre-i) ?p) = (target (initial M ) ?pre-i)›

by blast
qed

qed

lemma cyclic-cycle-rev :
fixes M :: ( ′a, ′b, ′c) fsm
assumes path M (initial M ) p ′

and target (initial M ) p ′ = q
and path M q p
and p 6= []
and target q p = q

shows ¬ acyclic M
using assms unfolding acyclic.simps target.simps visited-states.simps
using distinct.simps(2 ) by fastforce

lemma acyclic-initial :
assumes acyclic M
shows ¬ (∃ t ∈ transitions M . t-target t = initial M ∧

(∃ p . path M (initial M ) p ∧ target (initial M ) p =
t-source t))

by (metis append-Cons assms cyclic-cycle-rev list.distinct(1 ) path.simps
path-append path-append-transition-elim(3 ) single-transition-path)

lemma cyclic-path-shift :
assumes path M q p
and target q p = q

shows path M (target q (take i p)) ((drop i p) @ (take i p))
and target (target q (take i p)) ((drop i p) @ (take i p)) = (target q (take i p))

proof −
show path M (target q (take i p)) ((drop i p) @ (take i p))
by (metis append-take-drop-id assms(1 ) assms(2 ) path-append path-append-elim

path-append-target)
show target (target q (take i p)) ((drop i p) @ (take i p)) = (target q (take i p))

by (metis append-take-drop-id assms(2 ) path-append-target)
qed

lemma cyclic-path-transition-states-property :
assumes ∃ t ∈ set p . P (t-source t)
and ∀ t ∈ set p . P (t-source t) −→ P (t-target t)
and path M q p
and target q p = q

shows ∀ t ∈ set p . P (t-source t)
and ∀ t ∈ set p . P (t-target t)

proof −
obtain t0 where t0 ∈ set p and P (t-source t0 )

156



using assms(1 ) by blast
then obtain i where i < length p and p ! i = t0

by (meson in-set-conv-nth)

let ?p = (drop i p @ take i p)
have path M (target q (take i p)) ?p

using cyclic-path-shift(1 )[OF assms(3 ,4 ), of i] by assumption

have set ?p = set p
proof −

have set ?p = set (take i p @ drop i p)
using list-set-sym by metis

then show ?thesis by auto
qed
then have

∧
t . t ∈ set ?p =⇒ P (t-source t) =⇒ P (t-target t)

using assms(2 ) by blast

have
∧

j . j < length ?p =⇒ P (t-source (?p ! j))
proof −

fix j assume j < length ?p
then show P (t-source (?p ! j))
proof (induction j)

case 0
then show ?case

using ‹p ! i = t0 › ‹P (t-source t0 )›
by (metis ‹i < length p› drop-eq-Nil hd-append2 hd-conv-nth hd-drop-conv-nth

leD
length-greater-0-conv)

next
case (Suc j)
then have P (t-source (?p ! j))

by auto
then have P (t-target (?p ! j))

using Suc.prems ‹
∧

t . t ∈ set ?p =⇒ P (t-source t) =⇒ P (t-target t)›[of
?p ! j]

using Suc-lessD nth-mem by blast
moreover have t-target (?p ! j) = t-source (?p ! (Suc j))

using path-source-target-index[OF Suc.prems ‹path M (target q (take i p))
?p›]

by assumption
ultimately show ?case

using ‹
∧

t . t ∈ set ?p =⇒ P (t-source t) =⇒ P (t-target t)›[of ?p ! j]
by simp

qed
qed
then have ∀ t ∈ set ?p . P (t-source t)

by (metis in-set-conv-nth)
then show ∀ t ∈ set p . P (t-source t)

using ‹set ?p = set p› by blast
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then show ∀ t ∈ set p . P (t-target t)
using assms(2 ) by blast

qed

lemma cycle-incoming-transition-ex :
assumes path M q p
and p 6= []
and target q p = q
and t ∈ set p

shows ∃ tI ∈ set p . t-target tI = t-source t
proof −

obtain i where i < length p and p ! i = t
using assms(4 ) by (meson in-set-conv-nth)

let ?p = (drop i p @ take i p)
have path M (target q (take i p)) ?p
and target (target q (take i p)) ?p = target q (take i p)

using cyclic-path-shift[OF assms(1 ,3 ), of i] by linarith+

have p = (take i p @ drop i p) by auto
then have path M (target q (take i p)) (drop i p)

using path-suffix assms(1 ) by metis
moreover have t = hd (drop i p)

using ‹i < length p› ‹p ! i = t›
by (simp add: hd-drop-conv-nth)

ultimately have path M (target q (take i p)) [t]
by (metis ‹i < length p› append-take-drop-id assms(1 ) path-append-elim take-hd-drop)

then have t-source t = (target q (take i p))
by auto

moreover have t-target (last ?p) = (target q (take i p))
using ‹path M (target q (take i p)) ?p› ‹target (target q (take i p)) ?p = target

q (take i p)›
assms(2 )

unfolding target.simps visited-states.simps last.simps
by (metis (no-types, lifting) ‹p = take i p @ drop i p› append-is-Nil-conv last-map

list.map-disc-iff )

moreover have set ?p = set p
proof −

have set ?p = set (take i p @ drop i p)
using list-set-sym by metis

then show ?thesis by auto
qed

ultimately show ?thesis
by (metis ‹i < length p› append-is-Nil-conv drop-eq-Nil last-in-set leD)
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qed

lemma acyclic-paths-finite :
finite {p . path M q p ∧ distinct (visited-states q p) }

proof −
have

∧
p . path M q p =⇒ distinct (visited-states q p) =⇒ distinct p

proof −
fix p assume path M q p and distinct (visited-states q p)
then have distinct (map t-target p) by auto
then show distinct p by (simp add: distinct-map)

qed

then show ?thesis
using finite-subset-distinct[OF fsm-transitions-finite, of M ] path-transitions[of

M q]
by (metis (no-types, lifting) infinite-super mem-Collect-eq path-transitions sub-

setI )
qed

lemma acyclic-no-self-loop :
assumes acyclic M
and q ∈ reachable-states M

shows ¬ (∃ x y . (q,x,y,q) ∈ transitions M )
proof

assume ∃ x y. (q, x, y, q) ∈ FSM .transitions M
then obtain x y where (q, x, y, q) ∈ FSM .transitions M by blast
moreover obtain p where path M (initial M ) p and target (initial M ) p = q

using assms(2 ) unfolding reachable-states-def by blast
ultimately have path M (initial M ) (p@[(q,x,y,q)])

by (simp add: path-append-transition)
moreover have ¬ (distinct (visited-states (initial M ) (p@[(q,x,y,q)])))

using ‹target (initial M ) p = q› unfolding visited-states.simps target.simps
by (cases p rule: rev-cases; auto)

ultimately show False
using assms(1 ) unfolding acyclic.simps
by meson

qed

4.8.7 Deadlock States
fun deadlock-state :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ bool where

deadlock-state M q = (¬(∃ t ∈ transitions M . t-source t = q))

lemma deadlock-state-alt-def : deadlock-state M q = (LS M q ⊆ {[]})
proof

show deadlock-state M q =⇒ LS M q ⊆ {[]}
proof −
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assume deadlock-state M q
moreover have

∧
p . deadlock-state M q =⇒ path M q p =⇒ p = []

unfolding deadlock-state.simps by (metis path.cases)
ultimately show LS M q ⊆ {[]}

unfolding LS .simps by blast
qed
show LS M q ⊆ {[]} =⇒ deadlock-state M q

unfolding LS .simps deadlock-state.simps using path.cases[of M q] by blast
qed

lemma deadlock-state-alt-def-h : deadlock-state M q = (∀ x ∈ inputs M . h M
(q,x) = {})

unfolding deadlock-state.simps h.simps
using fsm-transition-input by force

lemma acyclic-deadlock-reachable :
assumes acyclic M
shows ∃ q ∈ reachable-states M . deadlock-state M q

proof (rule ccontr)
assume ¬ (∃ q∈reachable-states M . deadlock-state M q)
then have ∗:

∧
q . q ∈ reachable-states M =⇒ (∃ t ∈ transitions M . t-source

t = q)
unfolding deadlock-state.simps by blast

let ?p = arg-max-on length {p. path M (initial M ) p}

have finite {p. path M (initial M ) p}
by (metis Collect-cong acyclic-finite-paths-from-reachable-state assms eq-Nil-appendI

fsm-initial
nil path-append path-append-elim)

moreover have {p. path M (initial M ) p} 6= {}
by auto

ultimately obtain p where path M (initial M ) p
and

∧
p ′ . path M (initial M ) p ′ =⇒ length p ′ ≤ length p

using max-length-elem
by (metis mem-Collect-eq not-le-imp-less)

then obtain t where t ∈ transitions M and t-source t = target (initial M ) p
using ∗[of target (initial M ) p] unfolding reachable-states-def
by blast

then have path M (initial M ) (p@[t])
using ‹path M (initial M ) p›
by (simp add: path-append-transition)

then show False
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using ‹
∧

p ′ . path M (initial M ) p ′ =⇒ length p ′ ≤ length p›
by (metis impossible-Cons length-rotate1 rotate1 .simps(2 ))

qed

lemma deadlock-prefix :
assumes path M q p
and t ∈ set (butlast p)

shows ¬ (deadlock-state M (t-target t))
using assms proof (induction p rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc t ′ p ′)

show ?case proof (cases t ∈ set (butlast p ′))
case True
show ?thesis

using snoc.IH [OF - True] snoc.prems(1 )
by blast

next
case False
then have p ′ = (butlast p ′)@[t]

using snoc.prems(2 ) by (metis append-butlast-last-id append-self-conv2 but-
last-snoc

in-set-butlast-appendI list-prefix-elem set-ConsD)
then have path M q ((butlast p ′@[t])@[t ′])

using snoc.prems(1 )
by auto

have t ′ ∈ transitions M and t-source t ′ = target q (butlast p ′@[t])
using path-suffix[OF ‹path M q ((butlast p ′@[t])@[t ′])›]
by auto

then have t ′ ∈ transitions M ∧ t-source t ′ = t-target t
unfolding target.simps visited-states.simps by auto

then show ?thesis
unfolding deadlock-state.simps using ‹t ′ ∈ transitions M › by blast

qed
qed

lemma states-initial-deadlock :
assumes deadlock-state M (initial M )
shows reachable-states M = {initial M}

proof −
have

∧
q . q ∈ reachable-states M =⇒ q = initial M

proof −
fix q assume q ∈ reachable-states M
then obtain p where path M (initial M ) p and target (initial M ) p = q
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unfolding reachable-states-def by auto

show q = initial M proof (cases p)
case Nil
then show ?thesis using ‹target (initial M ) p = q› by auto

next
case (Cons t p ′)

then have False using assms ‹path M (initial M ) p› unfolding dead-
lock-state.simps

by auto
then show ?thesis by simp

qed
qed
then show ?thesis

using reachable-states-initial[of M ] by blast
qed

4.8.8 Other
fun completed-path :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′a, ′b, ′c) path ⇒ bool where

completed-path M q p = deadlock-state M (target q p)

fun minimal :: ( ′a, ′b, ′c) fsm ⇒ bool where
minimal M = (∀ q ∈ states M . ∀ q ′ ∈ states M . q 6= q ′ −→ LS M q 6= LS M

q ′)

lemma minimal-alt-def : minimal M = (∀ q q ′ . q ∈ states M −→ q ′ ∈ states M
−→ LS M q = LS M q ′ −→ q = q ′)

by auto

definition retains-outputs-for-states-and-inputs :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm
⇒ bool where

retains-outputs-for-states-and-inputs M S
= (∀ tS ∈ transitions S .
∀ tM ∈ transitions M .
(t-source tS = t-source tM ∧ t-input tS = t-input tM ) −→ tM ∈ transitions

S)

4.9 IO Targets and Observability
fun paths-for-io ′ :: (( ′a × ′b) ⇒ ( ′c × ′a) set) ⇒ ( ′b × ′c) list ⇒ ′a ⇒ ( ′a, ′b, ′c)
path ⇒ ( ′a, ′b, ′c) path set where

paths-for-io ′ f [] q prev = {prev} |
paths-for-io ′ f ((x,y)#io) q prev =

⋃
(image (λyq ′ . paths-for-io ′ f io (snd yq ′)

(prev@[(q,x,y,(snd yq ′))])) (Set.filter (λyq ′ . fst yq ′ = y) (f (q,x))))

lemma paths-for-io ′-set :
assumes q ∈ states M
shows paths-for-io ′ (h M ) io q prev = {prev@p | p . path M q p ∧ p-io p = io}

using assms proof (induction io arbitrary: q prev)
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case Nil
then show ?case by auto

next
case (Cons xy io)
obtain x y where xy = (x,y)

by (meson surj-pair)

let ?UN =
⋃
(image (λyq ′ . paths-for-io ′ (h M ) io (snd yq ′) (prev@[(q,x,y,(snd

yq ′))]))
(Set.filter (λyq ′ . fst yq ′ = y) (h M (q,x))))

have ?UN = {prev@p | p . path M q p ∧ p-io p = (x,y)#io}
proof

have
∧

p . p ∈ ?UN =⇒ p ∈ {prev@p | p . path M q p ∧ p-io p = (x,y)#io}
proof −

fix p assume p ∈ ?UN
then obtain q ′ where (y,q ′) ∈ (Set.filter (λyq ′ . fst yq ′ = y) (h M (q,x)))

and p ∈ paths-for-io ′ (h M ) io q ′ (prev@[(q,x,y,q ′)])
by auto

from ‹(y,q ′) ∈ (Set.filter (λyq ′ . fst yq ′ = y) (h M (q,x)))› have q ′ ∈ states
M

and (q,x,y,q ′) ∈ transitions M
using fsm-transition-target unfolding h.simps by auto

have p ∈ {(prev @ [(q, x, y, q ′)]) @ p |p. path M q ′ p ∧ p-io p = io}
using ‹p ∈ paths-for-io ′ (h M ) io q ′ (prev@[(q,x,y,q ′)])›
unfolding Cons.IH [OF ‹q ′ ∈ states M ›] by assumption

moreover have {(prev @ [(q, x, y, q ′)]) @ p |p. path M q ′ p ∧ p-io p = io}
⊆ {prev@p | p . path M q p ∧ p-io p = (x,y)#io}

using ‹(q,x,y,q ′) ∈ transitions M ›
using cons by force

ultimately show p ∈ {prev@p | p . path M q p ∧ p-io p = (x,y)#io}
by blast

qed
then show ?UN ⊆ {prev@p | p . path M q p ∧ p-io p = (x,y)#io}

by blast

have
∧

p . p ∈ {prev@p | p . path M q p ∧ p-io p = (x,y)#io} =⇒ p ∈ ?UN
proof −

fix pp assume pp ∈ {prev@p | p . path M q p ∧ p-io p = (x,y)#io}
then obtain p where pp = prev@p and path M q p and p-io p = (x,y)#io

by fastforce
then obtain t p ′ where p = t#p ′ and path M q (t#p ′) and p-io (t#p ′) =

(x,y)#io
and p-io p ′ = io

by (metis (no-types, lifting) map-eq-Cons-D)
then have path M (t-target t) p ′ and t-source t = q and t-input t = x

and t-output t = y and t-target t ∈ states M
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and t ∈ transitions M
by auto

have (y,t-target t) ∈ Set.filter (λyq ′. fst yq ′ = y) (h M (q, x))
using ‹t ∈ transitions M › ‹t-output t = y› ‹t-input t = x› ‹t-source t = q›
unfolding h.simps
by auto

moreover have (prev@p) ∈ paths-for-io ′ (h M ) io (snd (y,t-target t)) (prev
@ [(q, x, y, snd (y,t-target t))])

using Cons.IH [OF ‹t-target t ∈ states M ›, of prev@[(q, x, y, t-target t)]]
using ‹p = t # p ′› ‹p-io p ′ = io› ‹path M (t-target t) p ′› ‹t-input t = x›

‹t-output t = y› ‹t-source t = q›
by auto

ultimately show pp ∈ ?UN unfolding ‹pp = prev@p›
by blast

qed
then show {prev@p | p . path M q p ∧ p-io p = (x,y)#io} ⊆ ?UN

by (meson subsetI )
qed

then show ?case
by (simp add: ‹xy = (x, y)›)

qed

definition paths-for-io :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list ⇒ ( ′a, ′b, ′c) path set
where

paths-for-io M q io = {p . path M q p ∧ p-io p = io}

lemma paths-for-io-set-code[code] :
paths-for-io M q io = (if q ∈ states M then paths-for-io ′ (h M ) io q [] else {})
using paths-for-io ′-set[of q M io []]
unfolding paths-for-io-def

proof −
have {[] @ ps |ps. path M q ps ∧ p-io ps = io} = (if q ∈ FSM .states M then

paths-for-io ′ (h M ) io q [] else {})
−→ {ps. path M q ps ∧ p-io ps = io} = (if q ∈ FSM .states M then paths-for-io ′

(h M ) io q [] else {})
by auto

moreover
{ assume {[] @ ps |ps. path M q ps ∧ p-io ps = io} 6= (if q ∈ FSM .states M

then paths-for-io ′ (h M ) io q [] else {})
then have q /∈ FSM .states M

using ‹q ∈ FSM .states M =⇒ paths-for-io ′ (h M ) io q [] = {[] @ p |p. path
M q p ∧ p-io p = io}› by force

then have {ps. path M q ps ∧ p-io ps = io} = (if q ∈ FSM .states M then
paths-for-io ′ (h M ) io q [] else {})
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using path-begin-state by force }
ultimately show {ps. path M q ps ∧ p-io ps = io} = (if q ∈ FSM .states M then

paths-for-io ′ (h M ) io q [] else {})
by linarith

qed

fun io-targets :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list ⇒ ′a ⇒ ′a set where
io-targets M io q = {target q p | p . path M q p ∧ p-io p = io}

lemma io-targets-code[code] : io-targets M io q = image (target q) (paths-for-io M
q io)

unfolding io-targets.simps paths-for-io-def by blast

lemma io-targets-states :
io-targets M io q ⊆ states M
using path-target-is-state by fastforce

lemma observable-transition-unique :
assumes observable M

and t ∈ transitions M
shows ∃ ! t ′ ∈ transitions M . t-source t ′ = t-source t ∧

t-input t ′ = t-input t ∧
t-output t ′ = t-output t

by (metis assms observable.elims(2 ) prod.expand)

lemma observable-path-unique :
assumes observable M
and path M q p
and path M q p ′

and p-io p = p-io p ′

shows p = p ′

proof −
have length p = length p ′

using assms(4 ) map-eq-imp-length-eq by blast
then show ?thesis

using ‹p-io p = p-io p ′› ‹path M q p› ‹path M q p ′›
proof (induction p p ′ arbitrary: q rule: list-induct2 )

case Nil
then show ?case by auto

next
case (Cons x xs y ys)
then have ∗: x ∈ transitions M ∧ y ∈ transitions M ∧ t-source x = t-source y

∧ t-input x = t-input y ∧ t-output x = t-output y
by auto

then have t-target x = t-target y
using assms(1 ) observable.elims(2 ) by blast
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then have x = y
by (simp add: ∗ prod.expand)

have p-io xs = p-io ys
using Cons by auto

moreover have path M (t-target x) xs
using Cons by auto

moreover have path M (t-target x) ys
using Cons ‹t-target x = t-target y› by auto

ultimately have xs = ys
using Cons by auto

then show ?case
using ‹x = y› by simp

qed
qed

lemma observable-io-targets :
assumes observable M
and io ∈ LS M q

obtains q ′

where io-targets M io q = {q ′}
proof −

obtain p where path M q p and p-io p = io
using assms(2 ) by auto

then have target q p ∈ io-targets M io q
by auto

have ∃ q ′ . io-targets M io q = {q ′}
proof (rule ccontr)

assume ¬(∃ q ′. io-targets M io q = {q ′})
then have ∃ q ′ . q ′ 6= target q p ∧ q ′ ∈ io-targets M io q
proof −

have ¬ io-targets M io q ⊆ {target q p}
using ‹¬(∃ q ′. io-targets M io q = {q ′})› ‹target q p ∈ io-targets M io q› by

blast
then show ?thesis

by blast
qed
then obtain q ′ where q ′ 6= target q p and q ′ ∈ io-targets M io q

by blast
then obtain p ′ where path M q p ′ and target q p ′ = q ′ and p-io p ′ = io

by auto
then have p-io p = p-io p ′

using ‹p-io p = io› by simp
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then have p = p ′

using observable-path-unique[OF assms(1 ) ‹path M q p› ‹path M q p ′›] by
simp

then show False
using ‹q ′ 6= target q p› ‹target q p ′ = q ′› by auto

qed

then show ?thesis using that by blast
qed

lemma observable-path-io-target :
assumes observable M
and path M q p

shows io-targets M (p-io p) q = {target q p}
using observable-io-targets[OF assms(1 ) language-state-containment[OF assms(2 )],

of p-io p]
singletonD[of target q p]

unfolding io-targets.simps
proof −

assume a1 :
∧

a. target q p ∈ {a} =⇒ target q p = a
assume

∧
thesis. [[p-io p = p-io p;

∧
q ′. {target q pa |pa. path M q pa ∧ p-io pa

= p-io p} = {q ′} =⇒ thesis]] =⇒ thesis
then obtain aa :: ′a where

∧
b. {target q ps |ps. path M q ps ∧ p-io ps = p-io

p} = {aa} ∨ b
by meson

then show {target q ps |ps. path M q ps ∧ p-io ps = p-io p} = {target q p}
using a1 assms(2 ) by blast

qed

lemma completely-specified-io-targets :
assumes completely-specified M
shows ∀ q ∈ io-targets M io (initial M ) . ∀ x ∈ (inputs M ) . ∃ t ∈ transitions

M . t-source t = q ∧ t-input t = x
by (meson assms completely-specified.elims(2 ) io-targets-states subsetD)

lemma observable-path-language-step :
assumes observable M

and path M q p
and ¬ (∃ t∈transitions M .

t-source t = target q p ∧
t-input t = x ∧ t-output t = y)

shows (p-io p)@[(x,y)] /∈ LS M q
using assms proof (induction p rule: rev-induct)

case Nil
show ?case proof
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assume p-io [] @ [(x, y)] ∈ LS M q
then obtain p ′ where path M q p ′ and p-io p ′ = [(x,y)] unfolding LS .simps

by force
then obtain t where p ′ = [t] by blast

have t∈transitions M and t-source t = target q []
using ‹path M q p ′› ‹p ′ = [t]› by auto

moreover have t-input t = x ∧ t-output t = y
using ‹p-io p ′ = [(x,y)]› ‹p ′ = [t]› by auto

ultimately show False
using Nil.prems(3 ) by blast

qed
next

case (snoc t p)

from ‹path M q (p @ [t])› have path M q p and t-source t = target q p
and t ∈ transitions M

by auto

show ?case proof
assume p-io (p @ [t]) @ [(x, y)] ∈ LS M q
then obtain p ′ where path M q p ′ and p-io p ′ = p-io (p @ [t]) @ [(x, y)]

by auto
then obtain p ′′ t ′ t ′′ where p ′ = p ′′@[t ′]@[t ′′]
by (metis (no-types, lifting) append.assoc map-butlast map-is-Nil-conv snoc-eq-iff-butlast)
then have path M q p ′′

using ‹path M q p ′› by blast

have p-io p ′′ = p-io p
using ‹p ′ = p ′′@[t ′]@[t ′′]› ‹p-io p ′ = p-io (p @ [t]) @ [(x, y)]› by auto

then have p ′′ = p
using observable-path-unique[OF assms(1 ) ‹path M q p ′′› ‹path M q p›] by

blast

have t-source t ′ = target q p ′′ and t ′ ∈ transitions M
using ‹path M q p ′› ‹p ′ = p ′′@[t ′]@[t ′′]› by auto

then have t-source t ′ = t-source t
using ‹p ′′ = p› ‹t-source t = target q p› by auto

moreover have t-input t ′ = t-input t ∧ t-output t ′ = t-output t
using ‹p-io p ′ = p-io (p @ [t]) @ [(x, y)]› ‹p ′ = p ′′@[t ′]@[t ′′]› ‹p ′′ = p› by

auto
ultimately have t ′ = t

using ‹t ∈ transitions M › ‹t ′ ∈ transitions M › assms(1 ) unfolding observ-
able.simps

by (meson prod.expand)

have t ′′ ∈ transitions M and t-source t ′′ = target q (p@[t])
using ‹path M q p ′› ‹p ′ = p ′′@[t ′]@[t ′′]› ‹p ′′ = p› ‹t ′ = t› by auto
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moreover have t-input t ′′ = x ∧ t-output t ′′ = y
using ‹p-io p ′ = p-io (p @ [t]) @ [(x, y)]› ‹p ′ = p ′′@[t ′]@[t ′′]› by auto

ultimately show False
using snoc.prems(3 ) by blast

qed
qed

lemma observable-io-targets-language :
assumes io1 @ io2 ∈ LS M q1
and observable M
and q2 ∈ io-targets M io1 q1

shows io2 ∈ LS M q2
proof −

obtain p1 p2 where path M q1 p1 and path M (target q1 p1 ) p2
and p-io p1 = io1 and p-io p2 = io2

using language-state-split[OF assms(1 )] by blast
then have io1 ∈ LS M q1 and io2 ∈ LS M (target q1 p1 )

by auto

have target q1 p1 ∈ io-targets M io1 q1
using ‹path M q1 p1 › ‹p-io p1 = io1 ›
unfolding io-targets.simps by blast

then have target q1 p1 = q2
using observable-io-targets[OF assms(2 ) ‹io1 ∈ LS M q1 ›]
by (metis assms(3 ) singletonD)

then show ?thesis
using ‹io2 ∈ LS M (target q1 p1 )› by auto

qed

lemma io-targets-language-append :
assumes q1 ∈ io-targets M io1 q
and io2 ∈ LS M q1

shows io1@io2 ∈ LS M q
proof −

obtain p1 where path M q p1 and p-io p1 = io1 and target q p1 = q1
using assms(1 ) by auto

moreover obtain p2 where path M q1 p2 and p-io p2 = io2
using assms(2 ) by auto

ultimately have path M q (p1@p2 ) and p-io (p1@p2 ) = io1@io2
by auto

then show ?thesis
using language-state-containment[of M q p1@p2 io1@io2 ] by simp

qed

lemma io-targets-next :
assumes t ∈ transitions M
shows io-targets M io (t-target t) ⊆ io-targets M (p-io [t] @ io) (t-source t)
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unfolding io-targets.simps
proof

fix q assume q ∈ {target (t-target t) p |p. path M (t-target t) p ∧ p-io p = io}
then obtain p where path M (t-target t) p ∧ p-io p = io ∧ target (t-target t)

p = q
by auto

then have path M (t-source t) (t#p) ∧ p-io (t#p) = p-io [t] @ io ∧ target
(t-source t) (t#p) = q

using FSM .path.cons[OF assms] by auto
then show q ∈ {target (t-source t) p |p. path M (t-source t) p ∧ p-io p = p-io

[t] @ io}
by blast

qed

lemma observable-io-targets-next :
assumes observable M
and t ∈ transitions M

shows io-targets M (p-io [t] @ io) (t-source t) = io-targets M io (t-target t)
proof

show io-targets M (p-io [t] @ io) (t-source t) ⊆ io-targets M io (t-target t)
proof

fix q assume q ∈ io-targets M (p-io [t] @ io) (t-source t)
then obtain p where q = target (t-source t) p

and path M (t-source t) p
and p-io p = p-io [t] @ io

unfolding io-targets.simps by blast
then have q = t-target (last p) unfolding target.simps visited-states.simps

using last-map by auto

obtain t ′ p ′ where p = t ′ # p ′

using ‹p-io p = p-io [t] @ io› by auto
then have t ′ ∈ transitions M and t-source t ′ = t-source t

using ‹path M (t-source t) p› by auto
moreover have t-input t ′ = t-input t and t-output t ′ = t-output t

using ‹p = t ′ # p ′› ‹p-io p = p-io [t] @ io› by auto
ultimately have t ′ = t

using ‹t ∈ transitions M › ‹observable M › unfolding observable.simps
by (meson prod.expand)

then have path M (t-target t) p ′

using ‹path M (t-source t) p› ‹p = t ′ # p ′› by auto
moreover have p-io p ′ = io

using ‹p-io p = p-io [t] @ io› ‹p = t ′ # p ′› by auto
moreover have q = target (t-target t) p ′

using ‹q = target (t-source t) p› ‹p = t ′ # p ′› ‹t ′ = t› by auto
ultimately show q ∈ io-targets M io (t-target t)

by auto
qed
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show io-targets M io (t-target t) ⊆ io-targets M (p-io [t] @ io) (t-source t)
using io-targets-next[OF assms(2 )] by assumption

qed

lemma observable-language-target :
assumes observable M
and q ∈ io-targets M io1 (initial M )
and t ∈ io-targets T io1 (initial T )
and L T ⊆ L M

shows LS T t ⊆ LS M q
proof

fix io2 assume io2 ∈ LS T t
then obtain pT2 where path T t pT2 and p-io pT2 = io2

by auto

obtain pT1 where path T (initial T ) pT1 and p-io pT1 = io1 and target
(initial T ) pT1 = t

using ‹t ∈ io-targets T io1 (initial T )› by auto
then have path T (initial T ) (pT1@pT2 )

using ‹path T t pT2 › using path-append by metis
moreover have p-io (pT1@pT2 ) = io1@io2

using ‹p-io pT1 = io1 › ‹p-io pT2 = io2 › by auto
ultimately have io1@io2 ∈ L T

using language-state-containment[of T ] by auto
then have io1@io2 ∈ L M

using ‹L T ⊆ L M › by blast
then obtain pM where path M (initial M ) pM and p-io pM = io1@io2

by auto

let ?pM1 = take (length io1 ) pM
let ?pM2 = drop (length io1 ) pM

have path M (initial M ) (?pM1@?pM2 )
using ‹path M (initial M ) pM › by auto

then have path M (initial M ) ?pM1 and path M (target (initial M ) ?pM1 )
?pM2

by blast+

have p-io ?pM1 = io1
using ‹p-io pM = io1@io2 ›
by (metis append-eq-conv-conj take-map)

have p-io ?pM2 = io2
using ‹p-io pM = io1@io2 ›
by (metis append-eq-conv-conj drop-map)

obtain pM1 where path M (initial M ) pM1 and p-io pM1 = io1 and target
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(initial M ) pM1 = q
using ‹q ∈ io-targets M io1 (initial M )› by auto

have pM1 = ?pM1
using observable-path-unique[OF ‹observable M › ‹path M (initial M ) pM1 ›

‹path M (initial M ) ?pM1 ›]
unfolding ‹p-io pM1 = io1 › ‹p-io ?pM1 = io1 › by simp

then have path M q ?pM2
using ‹path M (target (initial M ) ?pM1 ) ?pM2 › ‹target (initial M ) pM1 = q›

by auto
then show io2 ∈ LS M q

using language-state-containment[OF - ‹p-io ?pM2 = io2 ›, of M ] by auto
qed

lemma observable-language-target-failure :
assumes observable M
and q ∈ io-targets M io1 (initial M )
and t ∈ io-targets T io1 (initial T )
and ¬ LS T t ⊆ LS M q

shows ¬ L T ⊆ L M
using observable-language-target[OF assms(1 ,2 ,3 )] assms(4 ) by blast

lemma language-path-append-transition-observable :
assumes (p-io p) @ [(x,y)] ∈ LS M q
and path M q p
and observable M
obtains t where path M q (p@[t]) and t-input t = x and t-output t = y

proof −
obtain p ′ t where path M q (p ′@[t]) and p-io (p ′@[t]) = (p-io p) @ [(x,y)]

using language-path-append-transition[OF assms(1 )] by blast
then have path M q p ′ and p-io p ′ = p-io p and t-input t = x and t-output t

= y
by auto

have p ′ = p
using observable-path-unique[OF assms(3 ) ‹path M q p ′› ‹path M q p› ‹p-io p ′

= p-io p›] by assumption
then have path M q (p@[t])

using ‹path M q (p ′@[t])› by auto
then show ?thesis using that ‹t-input t = x› ‹t-output t = y› by metis

qed

lemma language-io-target-append :
assumes q ′ ∈ io-targets M io1 q
and io2 ∈ LS M q ′
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shows (io1@io2 ) ∈ LS M q
proof −

obtain p2 where path M q ′ p2 and p-io p2 = io2
using assms(2 ) by auto

moreover obtain p1 where q ′ = target q p1 and path M q p1 and p-io p1 =
io1

using assms(1 ) by auto

ultimately show ?thesis unfolding LS .simps
by (metis (mono-tags, lifting) map-append mem-Collect-eq path-append)

qed

lemma observable-path-suffix :
assumes (p-io p)@io ∈ LS M q
and path M q p
and observable M

obtains p ′ where path M (target q p) p ′ and p-io p ′ = io
proof −

obtain p1 p2 where path M q p1 and path M (target q p1 ) p2 and p-io p1 =
p-io p and p-io p2 = io

using language-state-split[OF assms(1 )] by blast

have p1 = p
using observable-path-unique[OF assms(3 ,2 ) ‹path M q p1 › ‹p-io p1 = p-io

p›[symmetric]]
by simp

show ?thesis using that[of p2 ] ‹path M (target q p1 ) p2 › ‹p-io p2 = io› un-
folding ‹p1 = p›

by blast
qed

lemma io-targets-finite :
finite (io-targets M io q)

proof −
have (io-targets M io q) ⊆ {target q p | p . path M q p ∧ length p ≤ length io}

unfolding io-targets.simps length-map[of (λ t . (t-input t, t-output t)), sym-
metric] by force

moreover have finite {target q p | p . path M q p ∧ length p ≤ length io}
using paths-finite[of M q length io]
by simp

ultimately show ?thesis
using rev-finite-subset by blast

qed

lemma language-next-transition-ob :
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assumes (x,y)#ios ∈ LS M q
obtains t where t-source t = q

and t ∈ transitions M
and t-input t = x
and t-output t = y
and ios ∈ LS M (t-target t)

proof −
obtain p where path M q p and p-io p = (x,y)#ios

using assms unfolding LS .simps mem-Collect-eq
by (metis (no-types, lifting))

then obtain t p ′ where p = t#p ′

by blast

have t-source t = q
and t ∈ transitions M
and path M (t-target t) p ′

using ‹path M q p› unfolding ‹p = t#p ′› by auto
moreover have t-input t = x

and t-output t = y
and p-io p ′ = ios

using ‹p-io p = (x,y)#ios› unfolding ‹p = t#p ′› by auto
ultimately show ?thesis using that[of t] by auto

qed

lemma h-observable-card :
assumes observable M
shows card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) ≤ 1
and finite (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)))

proof −
have snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)) = {q ′ . (q,x,y,q ′) ∈ transitions

M}
unfolding h.simps by force

moreover have {q ′ . (q,x,y,q ′) ∈ transitions M} = {} ∨ (∃ q ′ . {q ′ . (q,x,y,q ′)
∈ transitions M} = {q ′})

using assms unfolding observable-alt-def by blast
ultimately show card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) ≤ 1

and finite (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)))
by auto

qed

lemma h-obs-None :
assumes observable M

shows (h-obs M q x y = None) = (@ q ′ . (q,x,y,q ′) ∈ transitions M )
proof

show (h-obs M q x y = None) =⇒ (@ q ′ . (q,x,y,q ′) ∈ transitions M )
proof −

assume h-obs M q x y = None
then have card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) 6= 1

by auto
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then have card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = 0
using h-observable-card(1 )[OF assms, of y q x] by presburger

then have (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = {}
using h-observable-card(2 )[OF assms, of y q x] card-0-eq[of (snd ‘ Set.filter

(λ(y ′, q ′). y ′ = y) (h M (q, x)))] by blast
then show ?thesis

unfolding h.simps by force
qed
show (@ q ′ . (q,x,y,q ′) ∈ transitions M ) =⇒ (h-obs M q x y = None)
proof −

assume (@ q ′ . (q,x,y,q ′) ∈ transitions M )
then have snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)) = {}

unfolding h.simps by force
then have card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = 0

by simp
then show ?thesis
unfolding h-obs-simps Let-def ‹snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))

= {}›
by auto

qed
qed

lemma h-obs-Some :
assumes observable M
shows (h-obs M q x y = Some q ′) = ({q ′ . (q,x,y,q ′) ∈ transitions M} = {q ′})

proof
have ∗: snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)) = {q ′ . (q,x,y,q ′) ∈

transitions M}
unfolding h.simps by force

show h-obs M q x y = Some q ′ =⇒ ({q ′ . (q,x,y,q ′) ∈ transitions M} = {q ′})
proof −

assume h-obs M q x y = Some q ′

then have (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) 6= {}
by force

then have card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) > 0
unfolding h-simps using fsm-transitions-finite[of M ]
by (metis assms card-0-eq h-observable-card(2 ) h-simps neq0-conv)

moreover have card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) ≤ 1
using assms unfolding observable-alt-def h-simps
by (metis assms h-observable-card(1 ) h-simps)

ultimately have card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = 1
by auto

then have (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = {q ′}
using ‹h-obs M q x y = Some q ′› unfolding h-obs-simps Let-def
by (metis card-1-singletonE option.inject the-elem-eq)

then show ?thesis
using ∗ unfolding h.simps by blast

qed
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show ({q ′ . (q,x,y,q ′) ∈ transitions M} = {q ′}) =⇒ (h-obs M q x y = Some q ′)
proof −

assume ({q ′ . (q,x,y,q ′) ∈ transitions M} = {q ′})
then have snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)) = {q ′}

unfolding h.simps by force
then show ?thesis

unfolding Let-def
by simp

qed
qed

lemma h-obs-state :
assumes h-obs M q x y = Some q ′

shows q ′ ∈ states M
proof (cases card (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = 1 )

case True
then have (snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x))) = {q ′}

using ‹h-obs M q x y = Some q ′› unfolding h-obs-simps Let-def
by (metis card-1-singletonE option.inject the-elem-eq)

then have (q,x,y,q ′) ∈ transitions M
unfolding h-simps by auto

then show ?thesis
by (metis fsm-transition-target snd-conv)

next
case False
then have h-obs M q x y = None

using False unfolding h-obs-simps Let-def by auto
then show ?thesis using assms by auto

qed

fun after :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list ⇒ ′a where
after M q [] = q |
after M q ((x,y)#io) = after M (the (h-obs M q x y)) io

abbreviation after-initial M io ≡ after M (initial M ) io

lemma after-path :
assumes observable M
and path M q p

shows after M q (p-io p) = target q p
using assms(2 ) proof (induction p arbitrary: q rule: list.induct)

case Nil
then show ?case by auto

next
case (Cons t p)
then have t ∈ transitions M and path M (t-target t) p and t-source t = q
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by auto

have
∧

q ′ . (q, t-input t, t-output t, q ′) ∈ FSM .transitions M =⇒ q ′ = t-target t
using observable-transition-unique[OF assms(1 ) ‹t ∈ transitions M ›] ‹t ∈ tran-

sitions M ›
using ‹t-source t = q› assms(1 ) by auto

then have ({q ′. (q, t-input t, t-output t, q ′) ∈ FSM .transitions M} = {t-target
t})

using ‹t ∈ transitions M › ‹t-source t = q› by auto
then have (h-obs M q (t-input t) (t-output t)) = Some (t-target t)

using h-obs-Some[OF assms(1 ), of q t-input t t-output t t-target t]
by blast

then have after M q (p-io (t#p)) = after M (t-target t) (p-io p)
by auto

moreover have target (t-target t) p = target q (t#p)
using ‹t-source t = q› by auto

ultimately show ?case
using Cons.IH [OF ‹path M (t-target t) p›]
by simp

qed

lemma observable-after-path :
assumes observable M
and io ∈ LS M q

obtains p where path M q p
and p-io p = io
and target q p = after M q io

using after-path[OF assms(1 )]
using assms(2 ) by auto

lemma h-obs-from-LS :
assumes observable M
and [(x,y)] ∈ LS M q

obtains q ′ where h-obs M q x y = Some q ′

using assms(2 ) h-obs-None[OF assms(1 ), of q x y] by force

lemma after-h-obs :
assumes observable M
and h-obs M q x y = Some q ′

shows after M q [(x,y)] = q ′

proof −
have path M q [(q,x,y,q ′)]

using assms(2 ) unfolding h-obs-Some[OF assms(1 )]
using single-transition-path by fastforce

then show ?thesis
using assms(2 ) after-path[OF assms(1 ), of q [(q,x,y,q ′)]] by auto

qed

lemma after-h-obs-prepend :
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assumes observable M
and h-obs M q x y = Some q ′

and io ∈ LS M q ′

shows after M q ((x,y)#io) = after M q ′ io
proof −

obtain p where path M q ′ p and p-io p = io
using assms(3 ) by auto

then have after M q ′ io = target q ′ p
using after-path[OF assms(1 )]
by blast

have path M q ((q,x,y,q ′)#p)
using assms(2 ) path-prepend-t[OF ‹path M q ′ p›, of q x y] unfolding h-obs-Some[OF

assms(1 )] by auto
moreover have p-io ((q,x,y,q ′)#p) = (x,y)#io

using ‹p-io p = io› by auto
ultimately have after M q ((x,y)#io) = target q ((q,x,y,q ′)#p)

using after-path[OF assms(1 ), of q (q,x,y,q ′)#p] by simp
moreover have target q ((q,x,y,q ′)#p) = target q ′ p

by auto
ultimately show ?thesis

using ‹after M q ′ io = target q ′ p› by simp
qed

lemma after-split :
assumes observable M
and α@γ ∈ LS M q

shows after M (after M q α) γ = after M q (α @ γ)
proof −

obtain p1 p2 where path M q p1 and path M (target q p1 ) p2 and p-io p1 =
α and p-io p2 = γ

using language-state-split[OF assms(2 )]
by blast

then have path M q (p1@p2 ) and p-io (p1@p2 ) = (α @ γ)
by auto

then have after M q (α @ γ) = target q (p1@p2 )
using assms(1 )
by (metis (mono-tags, lifting) after-path)

moreover have after M q α = target q p1
using ‹path M q p1 › ‹p-io p1 = α› assms(1 )
by (metis (mono-tags, lifting) after-path)

moreover have after M (target q p1 ) γ = target (target q p1 ) p2
using ‹path M (target q p1 ) p2 › ‹p-io p2 = γ› assms(1 )
by (metis (mono-tags, lifting) after-path)

moreover have target (target q p1 ) p2 = target q (p1@p2 )
by auto

ultimately show ?thesis
by auto

qed
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lemma after-io-targets :
assumes observable M
and io ∈ LS M q

shows after M q io = the-elem (io-targets M io q)
proof −

have after M q io ∈ io-targets M io q
using after-path[OF assms(1 )] assms(2 )
unfolding io-targets.simps LS .simps
by blast

then show ?thesis
using observable-io-targets[OF assms]
by (metis singletonD the-elem-eq)

qed

lemma after-language-subset :
assumes observable M
and α@γ ∈ L M
and β ∈ LS M (after-initial M (α@γ))

shows γ@β ∈ LS M (after-initial M α)
by (metis after-io-targets after-split assms(1 ) assms(2 ) assms(3 ) language-io-target-append

language-prefix observable-io-targets observable-io-targets-language singletonI the-elem-eq)

lemma after-language-append-iff :
assumes observable M
and α@γ ∈ L M

shows β ∈ LS M (after-initial M (α@γ)) = (γ@β ∈ LS M (after-initial M α))
by (metis after-io-targets after-language-subset after-split assms(1 ) assms(2 ) lan-

guage-prefix observable-io-targets observable-io-targets-language singletonI the-elem-eq)

lemma h-obs-language-iff :
assumes observable M
shows (x,y)#io ∈ LS M q = (∃ q ′ . h-obs M q x y = Some q ′ ∧ io ∈ LS M q ′)
(is ?P1 = ?P2 )

proof
show ?P1 =⇒ ?P2
proof −

assume ?P1
then obtain t p where t ∈ transitions M

and path M (t-target t) p
and t-input t = x
and t-output t = y
and t-source t = q
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and p-io p = io
by auto

then have (q,x,y,t-target t) ∈ transitions M
by auto

then have h-obs M q x y = Some (t-target t)
unfolding h-obs-Some[OF assms]
using assms by auto

moreover have io ∈ LS M (t-target t)
using ‹path M (t-target t) p› ‹p-io p = io›
by auto

ultimately show ?P2
by blast

qed
show ?P2 =⇒ ?P1

unfolding h-obs-Some[OF assms] using LS-prepend-transition[where io=io
and M=M ]

by (metis fst-conv mem-Collect-eq singletonI snd-conv)
qed

lemma after-language-iff :
assumes observable M
and α ∈ LS M q

shows (γ ∈ LS M (after M q α)) = (α@γ ∈ LS M q)
by (metis after-io-targets assms(1 ) assms(2 ) language-io-target-append observ-

able-io-targets observable-io-targets-language singletonI the-elem-eq)

lemma language-maximal-contained-prefix-ob :
assumes io /∈ LS M q
and q ∈ states M
and observable M

obtains io ′ x y io ′′ where io = io ′@[(x,y)]@io ′′

and io ′ ∈ LS M q
and io ′@[(x,y)] /∈ LS M q

proof −
have ∃ io ′ x y io ′′ . io = io ′@[(x,y)]@io ′′ ∧ io ′ ∈ LS M q ∧ io ′@[(x,y)] /∈ LS M

q
using assms(1 ,2 ) proof (induction io arbitrary: q)
case Nil
then show ?case by auto

next
case (Cons xy io)

obtain x y where xy = (x,y)
by fastforce

show ?case proof (cases h-obs M q x y)
case None
then have []@[(x,y)] /∈ LS M q
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unfolding h-obs-None[OF assms(3 )] by auto
moreover have [] ∈ LS M q

using Cons.prems by auto
moreover have (x,y)#io = []@[(x,y)]@io

using Cons.prems
unfolding ‹xy = (x,y)› by auto

ultimately show ?thesis
unfolding ‹xy = (x,y)› by blast

next
case (Some q ′)
then have io /∈ LS M q ′

using h-obs-language-iff [OF assms(3 ), of x y io q] Cons.prems(1 )
unfolding ‹xy = (x,y)›
by auto

then obtain io ′ x ′ y ′ io ′′ where io = io ′@[(x ′,y ′)]@io ′′

and io ′ ∈ LS M q ′

and io ′@[(x ′,y ′)] /∈ LS M q ′

using Cons.IH [OF - h-obs-state[OF Some]]
by blast

have xy#io = (xy#io ′)@[(x ′,y ′)]@io ′′

using ‹io = io ′@[(x ′,y ′)]@io ′′› by auto
moreover have (xy#io ′) ∈ LS M q

using ‹io ′ ∈ LS M q ′› Some
unfolding ‹xy = (x,y)› h-obs-language-iff [OF assms(3 )]
by blast

moreover have (xy#io ′)@[(x ′,y ′)] /∈ LS M q
using ‹io ′@[(x ′,y ′)] /∈ LS M q ′› Some h-obs-language-iff [OF assms(3 ), of x

y io ′@[(x ′,y ′)] q]
unfolding ‹xy = (x,y)›
by auto

ultimately show ?thesis
by blast

qed
qed
then show ?thesis

using that by blast
qed

lemma after-is-state :
assumes observable M
assumes io ∈ LS M q
shows FSM .after M q io ∈ states M
using assms
by (metis observable-after-path path-target-is-state)

lemma after-reachable-initial :
assumes observable M
and io ∈ L M
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shows after-initial M io ∈ reachable-states M
proof −

obtain p where path M (initial M ) p and p-io p = io
using assms(2 ) by auto

then have after-initial M io = target (initial M ) p
using after-path[OF assms(1 )]
by blast

then show ?thesis
unfolding reachable-states-def using ‹path M (initial M ) p› by blast

qed

lemma after-transition :
assumes observable M
and (q,x,y,q ′) ∈ transitions M

shows after M q [(x,y)] = q ′

using after-path[OF assms(1 ) single-transition-path[OF assms(2 )]]
by auto

lemma after-transition-exhaust :
assumes observable M
and t ∈ transitions M

shows t-target t = after M (t-source t) [(t-input t, t-output t)]
using after-transition[OF assms(1 )] assms(2 )
by (metis surjective-pairing)

lemma after-reachable :
assumes observable M
and io ∈ LS M q
and q ∈ reachable-states M

shows after M q io ∈ reachable-states M
proof −

obtain p where path M q p and p-io p = io
using assms(2 ) by auto

then have after M q io = target q p
using after-path[OF assms(1 )] by force

obtain p ′ where path M (initial M ) p ′ and target (initial M ) p ′ = q
using assms(3 ) unfolding reachable-states-def by blast

then have path M (initial M ) (p ′@p)
using ‹path M q p› by auto

moreover have after M q io = target (initial M ) (p ′@p)
using ‹target (initial M ) p ′ = q›
unfolding ‹after M q io = target q p›
by auto

ultimately show ?thesis
unfolding reachable-states-def by blast

qed
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lemma observable-after-language-append :
assumes observable M
and io1 ∈ LS M q
and io2 ∈ LS M (after M q io1 )

shows io1@io2 ∈ LS M q
using observable-after-path[OF assms(1 ,2 )] assms(3 )

proof −
assume a1 :

∧
thesis. (

∧
p. [[path M q p; p-io p = io1 ; target q p = after M q io1 ]]

=⇒ thesis) =⇒ thesis
have ∃ ps. io2 = p-io ps ∧ path M (after M q io1 ) ps

using ‹io2 ∈ LS M (after M q io1 )› by auto
moreover
{ assume (∃ ps. io2 = p-io ps ∧ path M (after M q io1 ) ps) ∧ (∀ ps. io1 @ io2
6= p-io ps ∨ ¬ path M q ps)

then have io1 @ io2 ∈ {p-io ps |ps. path M q ps}
using a1 by (metis (lifting) map-append path-append) }

ultimately show ?thesis
by auto

qed

lemma observable-after-language-none :
assumes observable M
and io1 ∈ LS M q
and io2 /∈ LS M (after M q io1 )

shows io1@io2 /∈ LS M q
using after-path[OF assms(1 )] language-state-split[of io1 io2 M q]
by (metis (mono-tags, lifting) assms(3 ) language-intro)

lemma observable-after-eq :
assumes observable M
and after M q io1 = after M q io2
and io1 ∈ LS M q
and io2 ∈ LS M q

shows io1@io ∈ LS M q ←→ io2@io ∈ LS M q
using observable-after-language-append[OF assms(1 ,3 ), of io]

observable-after-language-append[OF assms(1 ,4 ), of io]
assms(2 )

by (metis assms(1 ) language-prefix observable-after-language-none)

lemma observable-after-target :
assumes observable M
and io @ io ′ ∈ LS M q
and path M (FSM .after M q io) p
and p-io p = io ′

shows target (FSM .after M q io) p = (FSM .after M q (io @ io ′))
proof −

obtain p ′ where path M q p ′ and p-io p ′ = io @ io ′
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using ‹io @ io ′ ∈ LS M q› by auto

then have path M q (take (length io) p ′)
and p-io (take (length io) p ′) = io
and path M (target q (take (length io) p ′)) (drop (length io) p ′)
and p-io (drop (length io) p ′) = io ′

using path-io-split[of M q p ′ io io ′]
by auto

then have FSM .after M q io = target q (take (length io) p ′)
using after-path assms(1 ) by fastforce

then have p = (drop (length io) p ′)
using ‹path M (target q (take (length io) p ′)) (drop (length io) p ′)› ‹p-io (drop

(length io) p ′) = io ′›
assms(3 ,4 )
observable-path-unique[OF ‹observable M ›]

by force

have (FSM .after M q (io @ io ′)) = target q p ′

using after-path[OF ‹observable M › ‹path M q p ′›] unfolding ‹p-io p ′ = io @
io ′› .

moreover have target (FSM .after M q io) p = target q p ′

using ‹FSM .after M q io = target q (take (length io) p ′)›
by (metis ‹p = drop (length io) p ′› append-take-drop-id path-append-target)

ultimately show ?thesis
by simp

qed

fun is-in-language :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list ⇒ bool where
is-in-language M q [] = True |
is-in-language M q ((x,y)#io) = (case h-obs M q x y of

None ⇒ False |
Some q ′⇒ is-in-language M q ′ io)

lemma is-in-language-iff :
assumes observable M
and q ∈ states M
shows is-in-language M q io ←→ io ∈ LS M q

using assms(2 ) proof (induction io arbitrary: q)
case Nil
then show ?case

by auto
next

case (Cons xy io)

obtain x y where xy = (x,y)
using prod.exhaust by metis

show ?case
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unfolding ‹xy = (x,y)›
unfolding h-obs-language-iff [OF assms(1 ), of x y io q]
unfolding is-in-language.simps
apply (cases h-obs M q x y)
apply auto[1 ]
by (metis Cons.IH h-obs-state option.simps(5 ))

qed

lemma observable-paths-for-io :
assumes observable M
and io ∈ LS M q

obtains p where paths-for-io M q io = {p}
proof −

obtain p where path M q p and p-io p = io
using assms(2 ) by auto

then have p ∈ paths-for-io M q io
unfolding paths-for-io-def
by blast

then show ?thesis
using that[of p]
using observable-path-unique[OF assms(1 ) ‹path M q p›] ‹p-io p = io›
unfolding paths-for-io-def
by force

qed

lemma io-targets-language :
assumes q ′ ∈ io-targets M io q
shows io ∈ LS M q
using assms by auto

lemma observable-after-reachable-surj :
assumes observable M
shows (after-initial M ) ‘ (L M ) = reachable-states M

proof
show after-initial M ‘ L M ⊆ reachable-states M

using after-reachable[OF assms - reachable-states-initial]
by blast

show reachable-states M ⊆ after-initial M ‘ L M
unfolding reachable-states-def
using after-path[OF assms]
using image-iff by fastforce

qed

lemma observable-minimal-size-r-language-distinct :
assumes minimal M1
and minimal M2
and observable M1
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and observable M2
and size-r M1 < size-r M2

shows L M1 6= L M2
proof

assume L M1 = L M2

define V where V = (λ q . SOME io . io ∈ L M1 ∧ after-initial M2 io = q)

have
∧

q . q ∈ reachable-states M2 =⇒ V q ∈ L M1 ∧ after-initial M2 (V q)
= q

proof −
fix q assume q ∈ reachable-states M2
then have ∃ io . io ∈ L M1 ∧ after-initial M2 io = q

unfolding ‹L M1 = L M2 ›
by (metis assms(4 ) imageE observable-after-reachable-surj)

then show V q ∈ L M1 ∧ after-initial M2 (V q) = q
unfolding V-def
using someI-ex[of λ io . io ∈ L M1 ∧ after-initial M2 io = q] by blast

qed
then have (after-initial M1 ) ‘ V ‘ reachable-states M2 ⊆ reachable-states M1

by (metis assms(3 ) image-mono image-subsetI observable-after-reachable-surj)
then have card (after-initial M1 ‘ V ‘ reachable-states M2 ) ≤ size-r M1

using reachable-states-finite[of M1 ]
by (meson card-mono)

have (after-initial M2 ) ‘ V ‘ reachable-states M2 = reachable-states M2
proof

show after-initial M2 ‘ V ‘ reachable-states M2 ⊆ reachable-states M2
using ‹

∧
q . q ∈ reachable-states M2 =⇒ V q ∈ L M1 ∧ after-initial M2 (V

q) = q› by auto
show reachable-states M2 ⊆ after-initial M2 ‘ V ‘ reachable-states M2

using ‹
∧

q . q ∈ reachable-states M2 =⇒ V q ∈ L M1 ∧ after-initial M2 (V
q) = q› observable-after-reachable-surj[OF assms(4 )] unfolding ‹L M1 = L M2 ›

using image-iff by fastforce
qed
then have card ((after-initial M2 ) ‘ V ‘ reachable-states M2 ) = size-r M2

by auto

have ∗: finite (V ‘ reachable-states M2 )
by (simp add: reachable-states-finite)

have ∗∗: card ((after-initial M1 ) ‘ V ‘ reachable-states M2 ) < card ((after-initial
M2 ) ‘ V ‘ reachable-states M2 )

using assms(5 ) ‹card (after-initial M1 ‘ V ‘ reachable-states M2 ) ≤ size-r M1 ›
unfolding ‹card ((after-initial M2 ) ‘ V ‘ reachable-states M2 ) = size-r M2 ›
by linarith

obtain io1 io2 where io1 ∈ V ‘ reachable-states M2
io2 ∈ V ‘ reachable-states M2
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after-initial M2 io1 6= after-initial M2 io2
after-initial M1 io1 = after-initial M1 io2

using finite-card-less-witnesses[OF ∗ ∗∗]
by blast

then have io1 ∈ L M1 and io2 ∈ L M1 and io1 ∈ L M2 and io2 ∈ L M2
using ‹

∧
q . q ∈ reachable-states M2 =⇒ V q ∈ L M1 ∧ after-initial M2 (V

q) = q› unfolding ‹L M1 = L M2 ›
by auto

then have after-initial M1 io1 ∈ reachable-states M1
after-initial M1 io2 ∈ reachable-states M1
after-initial M2 io1 ∈ reachable-states M2
after-initial M2 io2 ∈ reachable-states M2

using after-reachable[OF assms(3 ) - reachable-states-initial] after-reachable[OF
assms(4 ) - reachable-states-initial]

by blast+

obtain io3 where io3 ∈ LS M2 (after-initial M2 io1 ) = (io3 /∈ LS M2 (after-initial
M2 io2 ))

using reachable-state-is-state[OF ‹after-initial M2 io1 ∈ reachable-states M2 ›]

reachable-state-is-state[OF ‹after-initial M2 io2 ∈ reachable-states M2 ›]
‹after-initial M2 io1 6= after-initial M2 io2 › assms(2 )

unfolding minimal.simps by blast
then have io1@io3 ∈ L M2 = (io2@io3 /∈ L M2 )

using observable-after-language-append[OF assms(4 ) ‹io1 ∈ L M2 ›]
observable-after-language-append[OF assms(4 ) ‹io2 ∈ L M2 ›]
observable-after-language-none[OF assms(4 ) ‹io1 ∈ L M2 ›]
observable-after-language-none[OF assms(4 ) ‹io2 ∈ L M2 ›]

by blast
moreover have io1@io3 ∈ L M1 = (io2@io3 ∈ L M1 )

by (meson ‹after-initial M1 io1 = after-initial M1 io2 › ‹io1 ∈ L M1 › ‹io2 ∈
L M1 › assms(3 ) observable-after-eq)

ultimately show False
using ‹L M1 = L M2 › by blast

qed

lemma minimal-equivalence-size-r :
assumes minimal M1
and minimal M2
and observable M1
and observable M2
and L M1 = L M2

shows size-r M1 = size-r M2
using observable-minimal-size-r-language-distinct[OF assms(1−4 )]

observable-minimal-size-r-language-distinct[OF assms(2 ,1 ,4 ,3 )]
assms(5 )

using nat-neq-iff by auto
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4.10 Conformity Relations
fun is-io-reduction-state :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′d, ′b, ′c) fsm ⇒ ′d ⇒ bool where

is-io-reduction-state A a B b = (LS A a ⊆ LS B b)

abbreviation(input) is-io-reduction A B ≡ is-io-reduction-state A (initial A) B
(initial B)
notation

is-io-reduction (‹- � -›)

fun is-io-reduction-state-on-inputs :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′b list set ⇒ ( ′d, ′b, ′c)
fsm ⇒ ′d ⇒ bool where

is-io-reduction-state-on-inputs A a U B b = (LS in A a U ⊆ LS in B b U )

abbreviation(input) is-io-reduction-on-inputs A U B ≡ is-io-reduction-state-on-inputs
A (initial A) U B (initial B)
notation

is-io-reduction-on-inputs (‹- �[[-]] -›)

4.11 A Pass Relation for Reduction and Test Represented
as Sets of Input-Output Sequences

definition pass-io-set :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ bool where
pass-io-set M ios = (∀ io x y . io@[(x,y)] ∈ ios −→ (∀ y ′ . io@[(x,y ′)] ∈ L M
−→ io@[(x,y ′)] ∈ ios))

definition pass-io-set-maximal :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ bool where
pass-io-set-maximal M ios = (∀ io x y io ′ . io@[(x,y)]@io ′ ∈ ios −→ (∀ y ′ .

io@[(x,y ′)] ∈ L M −→ (∃ io ′′. io@[(x,y ′)]@io ′′ ∈ ios)))

lemma pass-io-set-from-pass-io-set-maximal :
pass-io-set-maximal M ios = pass-io-set M {io ′ . ∃ io io ′′ . io = io ′@io ′′ ∧ io ∈

ios}
proof −

have
∧

io x y io ′ . io@[(x,y)]@io ′ ∈ ios =⇒ io@[(x,y)] ∈ {io ′ . ∃ io io ′′ . io =
io ′@io ′′ ∧ io ∈ ios}

by auto
moreover have

∧
io x y . io@[(x,y)] ∈ {io ′ . ∃ io io ′′ . io = io ′@io ′′ ∧ io ∈

ios} =⇒ ∃ io ′ . io@[(x,y)]@io ′ ∈ ios
by auto

ultimately show ?thesis
unfolding pass-io-set-def pass-io-set-maximal-def
by meson

qed

lemma pass-io-set-maximal-from-pass-io-set :
assumes finite ios
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and
∧

io ′ io ′′ . io ′@io ′′ ∈ ios =⇒ io ′ ∈ ios
shows pass-io-set M ios = pass-io-set-maximal M {io ′ ∈ ios . ¬ (∃ io ′′ . io ′′ 6= []
∧ io ′@io ′′ ∈ ios)}
proof −

have
∧

io x y . io@[(x,y)] ∈ ios =⇒ ∃ io ′ . io@[(x,y)]@io ′ ∈ {io ′′ ∈ ios . ¬ (∃
io ′′′ . io ′′′ 6= [] ∧ io ′′@io ′′′ ∈ ios)}

proof −
fix io x y assume io@[(x,y)] ∈ ios
show ∃ io ′ . io@[(x,y)]@io ′ ∈ {io ′′ ∈ ios . ¬ (∃ io ′′′ . io ′′′ 6= [] ∧ io ′′@io ′′′ ∈

ios)}
using finite-set-elem-maximal-extension-ex[OF ‹io@[(x,y)] ∈ ios› assms(1 )]

by force
qed
moreover have

∧
io x y io ′ . io@[(x,y)]@io ′ ∈ {io ′′ ∈ ios . ¬ (∃ io ′′′ . io ′′′ 6=

[] ∧ io ′′@io ′′′ ∈ ios)} =⇒ io@[(x,y)] ∈ ios
using ‹

∧
io ′ io ′′ . io ′@io ′′ ∈ ios =⇒ io ′ ∈ ios› by force

ultimately show ?thesis
unfolding pass-io-set-def pass-io-set-maximal-def
by meson

qed

4.12 Relaxation of IO based test suites to sets of input se-
quences

abbreviation(input) input-portion xs ≡ map fst xs

lemma equivalence-io-relaxation :
assumes (L M1 = L M2 ) ←→ (L M1 ∩ T = L M2 ∩ T )

shows (L M1 = L M2 ) ←→ ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion
io = input-portion io ′)} = {io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io =
input-portion io ′)})
proof

show (L M1 = L M2 ) =⇒ ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion
io = input-portion io ′)} = {io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io =
input-portion io ′)})

by blast
show ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)} =
{io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)}) =⇒ L M1
= L M2

proof −
have ∗:

∧
M . {io . io ∈ L M ∧ (∃ io ′ ∈ T . input-portion io = input-portion

io ′)} = L M ∩ {io . ∃ io ′ ∈ T . input-portion io = input-portion io ′}
by blast

have ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)} =
{io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)}) =⇒ (L M1
∩ T = L M2 ∩ T )

unfolding ∗ by blast
then show ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion io = input-portion
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io ′)} = {io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)}) =⇒
L M1 = L M2

using assms by blast
qed

qed

lemma reduction-io-relaxation :
assumes (L M1 ⊆ L M2 ) ←→ (L M1 ∩ T ⊆ L M2 ∩ T )

shows (L M1 ⊆ L M2 ) ←→ ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion
io = input-portion io ′)} ⊆ {io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io =
input-portion io ′)})
proof

show (L M1 ⊆ L M2 ) =⇒ ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion
io = input-portion io ′)} ⊆ {io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io =
input-portion io ′)})

by blast
show ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)} ⊆
{io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)}) =⇒ L M1
⊆ L M2

proof −
have ∗:

∧
M . {io . io ∈ L M ∧ (∃ io ′ ∈ T . input-portion io = input-portion

io ′)} ⊆ L M ∩ {io . ∃ io ′ ∈ T . input-portion io = input-portion io ′}
by blast

have ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)} ⊆
{io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)}) =⇒ (L M1
∩ T ⊆ L M2 ∩ T )

unfolding ∗ by blast
then show ({io . io ∈ L M1 ∧ (∃ io ′ ∈ T . input-portion io = input-portion

io ′)} ⊆ {io . io ∈ L M2 ∧ (∃ io ′ ∈ T . input-portion io = input-portion io ′)}) =⇒
L M1 ⊆ L M2

using assms by blast
qed

qed

4.13 Submachines
fun is-submachine :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm ⇒ bool where

is-submachine A B = (initial A = initial B ∧ transitions A ⊆ transitions B ∧
inputs A = inputs B ∧ outputs A = outputs B ∧ states A ⊆ states B)

lemma submachine-path-initial :
assumes is-submachine A B
and path A (initial A) p

shows path B (initial B) p
using assms proof (induction p rule: rev-induct)
case Nil
then show ?case by auto
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next
case (snoc a p)
then show ?case

by fastforce
qed

lemma submachine-path :
assumes is-submachine A B
and path A q p

shows path B q p
by (meson assms(1 ) assms(2 ) is-submachine.elims(2 ) path-begin-state subsetD

transition-subset-path)

lemma submachine-reduction :
assumes is-submachine A B
shows is-io-reduction A B
using submachine-path[OF assms] assms by auto

lemma complete-submachine-initial :
assumes is-submachine A B

and completely-specified A
shows completely-specified-state B (initial B)
using assms(1 ) assms(2 ) fsm-initial subset-iff by fastforce

lemma submachine-language :
assumes is-submachine S M
shows L S ⊆ L M
by (meson assms is-io-reduction-state.elims(2 ) submachine-reduction)

lemma submachine-observable :
assumes is-submachine S M
and observable M

shows observable S
using assms unfolding is-submachine.simps observable.simps by blast

lemma submachine-transitive :
assumes is-submachine S M
and is-submachine S ′ S

shows is-submachine S ′ M
using assms unfolding is-submachine.simps by force

lemma transitions-subset-path :
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assumes set p ⊆ transitions M
and p 6= []
and path S q p

shows path M q p
using assms by (induction p arbitrary: q; auto)

lemma transition-subset-paths :
assumes transitions S ⊆ transitions M
and initial S ∈ states M
and inputs S = inputs M
and outputs S = outputs M
and path S (initial S) p

shows path M (initial S) p
using assms(5 ) proof (induction p rule: rev-induct)

case Nil
then show ?case using assms(2 ) by auto

next
case (snoc t p)
then have path S (initial S) p

and t ∈ transitions S
and t-source t = target (initial S) p
and path M (initial S) p

by auto

have t ∈ transitions M
using assms(1 ) ‹t ∈ transitions S› by auto

moreover have t-source t ∈ states M
using ‹t-source t = target (initial S) p› ‹path M (initial S) p›
using path-target-is-state by fastforce

ultimately have t ∈ transitions M
using ‹t ∈ transitions S› assms(3 ,4 ) by auto

then show ?case
using ‹path M (initial S) p›
using snoc.prems by auto

qed

lemma submachine-reachable-subset :
assumes is-submachine A B

shows reachable-states A ⊆ reachable-states B
using assms submachine-path-initial[OF assms]
unfolding is-submachine.simps reachable-states-def by force

lemma submachine-simps :
assumes is-submachine A B

shows initial A = initial B
and states A ⊆ states B
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and inputs A = inputs B
and outputs A = outputs B
and transitions A ⊆ transitions B

using assms unfolding is-submachine.simps by blast+

lemma submachine-deadlock :
assumes is-submachine A B

and deadlock-state B q
shows deadlock-state A q

using assms(1 ) assms(2 ) in-mono by auto

4.14 Changing Initial States
lift-definition from-FSM :: ( ′a, ′b, ′c) fsm ⇒ ′a⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.from-FSMI

by simp

lemma from-FSM-simps[simp]:
assumes q ∈ states M
shows
initial (from-FSM M q) = q
inputs (from-FSM M q) = inputs M
outputs (from-FSM M q) = outputs M
transitions (from-FSM M q) = transitions M
states (from-FSM M q) = states M using assms by (transfer ; simp)+

lemma from-FSM-path-initial :
assumes q ∈ states M
shows path M q p = path (from-FSM M q) (initial (from-FSM M q)) p
by (metis assms from-FSM-simps(1 ) from-FSM-simps(4 ) from-FSM-simps(5 )

order-refl
transition-subset-path)

lemma from-FSM-path :
assumes q ∈ states M

and path (from-FSM M q) q ′ p
shows path M q ′ p

using assms(1 ) assms(2 ) path-transitions transitions-subset-path by fastforce

lemma from-FSM-reachable-states :
assumes q ∈ reachable-states M
shows reachable-states (from-FSM M q) ⊆ reachable-states M

proof
from assms obtain p where path M (initial M ) p and target (initial M ) p = q

unfolding reachable-states-def by blast
then have q ∈ states M
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by (meson path-target-is-state)

fix q ′ assume q ′ ∈ reachable-states (from-FSM M q)
then obtain p ′ where path (from-FSM M q) q p ′ and target q p ′ = q ′

unfolding reachable-states-def from-FSM-simps[OF ‹q ∈ states M ›] by blast
then have path M (initial M ) (p@p ′) and target (initial M ) (p@p ′) = q ′

using from-FSM-path[OF ‹q ∈ states M › ] ‹path M (initial M ) p›
using ‹target (FSM .initial M ) p = q› by auto

then show q ′ ∈ reachable-states M
unfolding reachable-states-def by blast

qed

lemma submachine-from :
assumes is-submachine S M

and q ∈ states S
shows is-submachine (from-FSM S q) (from-FSM M q)

proof −
have path S q []

using assms(2 ) by blast
then have path M q []

by (meson assms(1 ) submachine-path)
then show ?thesis

using assms(1 ) assms(2 ) by force
qed

lemma from-FSM-path-rev-initial :
assumes path M q p
shows path (from-FSM M q) q p
by (metis (no-types) assms from-FSM-path-initial from-FSM-simps(1 ) path-begin-state)

lemma from-from[simp] :
assumes q1 ∈ states M
and q1 ′ ∈ states M

shows from-FSM (from-FSM M q1 ) q1 ′ = from-FSM M q1 ′ (is ?M = ?M ′)
proof −

have ∗: q1 ′ ∈ states (from-FSM M q1 )
using assms(2 ) unfolding from-FSM-simps(5 )[OF assms(1 )] by assumption

have initial ?M = initial ?M ′

and states ?M = states ?M ′

and inputs ?M = inputs ?M ′

and outputs ?M = outputs ?M ′

and transitions ?M = transitions ?M ′

unfolding from-FSM-simps[OF ∗] from-FSM-simps[OF assms(1 )] from-FSM-simps[OF
assms(2 )] by simp+
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then show ?thesis by (transfer ; force)
qed

lemma from-FSM-completely-specified :
assumes completely-specified M

shows completely-specified (from-FSM M q) proof (cases q ∈ states M )
case True
then show ?thesis

using assms by auto
next

case False
then have from-FSM M q = M by (transfer ; auto)
then show ?thesis using assms by auto

qed

lemma from-FSM-single-input :
assumes single-input M

shows single-input (from-FSM M q) proof (cases q ∈ states M )
case True
then show ?thesis

using assms
by (metis from-FSM-simps(4 ) single-input.elims(1 ))

next
case False
then have from-FSM M q = M by (transfer ; auto)
then show ?thesis using assms

by presburger
qed

lemma from-FSM-acyclic :
assumes q ∈ reachable-states M
and acyclic M

shows acyclic (from-FSM M q)
using assms(1 )

acyclic-paths-from-reachable-states[OF assms(2 ), of - q]
from-FSM-path[of q M q]
path-target-is-state
reachable-state-is-state[OF assms(1 )]
from-FSM-simps(1 )

unfolding acyclic.simps
reachable-states-def

by force
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lemma from-FSM-observable :
assumes observable M

shows observable (from-FSM M q)
proof (cases q ∈ states M )

case True
then show ?thesis

using assms
proof −
have f1 : ∀ f . observable f = (∀ a b c aa ab. ((a:: ′a, b:: ′b, c:: ′c, aa) /∈ FSM .transitions

f ∨ (a, b, c, ab) /∈ FSM .transitions f ) ∨ aa = ab)
by force

have ∀ a f . a /∈ FSM .states (f ::( ′a, ′b, ′c) fsm) ∨ FSM .transitions (FSM .from-FSM
f a) = FSM .transitions f

by (meson from-FSM-simps(4 ))
then show ?thesis

using f1 True assms by presburger
qed

next
case False
then have from-FSM M q = M by (transfer ; auto)
then show ?thesis using assms by presburger

qed

lemma observable-language-next :
assumes io#ios ∈ LS M (t-source t)
and observable M
and t ∈ transitions M
and t-input t = fst io
and t-output t = snd io

shows ios ∈ L (from-FSM M (t-target t))
proof −

obtain p where path M (t-source t) p and p-io p = io#ios
using assms(1 )

proof −
assume a1 :

∧
p. [[path M (t-source t) p; p-io p = io # ios]] =⇒ thesis

obtain pps :: ( ′a × ′b) list ⇒ ′c ⇒ ( ′c, ′a, ′b) fsm ⇒ ( ′c × ′a × ′b × ′c) list
where

∀ x0 x1 x2 . (∃ v3 . x0 = p-io v3 ∧ path x2 x1 v3 ) = (x0 = p-io (pps x0 x1 x2 )
∧ path x2 x1 (pps x0 x1 x2 ))

by moura
then have ∃ ps. path M (t-source t) ps ∧ p-io ps = io # ios

using assms(1 ) by auto
then show ?thesis

using a1 by meson
qed
then obtain t ′ p ′ where p = t ′ # p ′

by auto
then have t ′ ∈ transitions M and t-source t ′ = t-source t and t-input t ′ = fst
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io and t-output t ′ = snd io
using ‹path M (t-source t) p› ‹p-io p = io#ios› by auto

then have t = t ′

using assms(2 ,3 ,4 ,5 ) unfolding observable.simps
by (metis (no-types, opaque-lifting) prod.expand)

then have path M (t-target t) p ′ and p-io p ′ = ios
using ‹p = t ′ # p ′› ‹path M (t-source t) p› ‹p-io p = io#ios› by auto

then have path (from-FSM M (t-target t)) (initial (from-FSM M (t-target t)))
p ′

by (meson assms(3 ) from-FSM-path-initial fsm-transition-target)

then show ?thesis using ‹p-io p ′ = ios› by auto
qed

lemma from-FSM-language :
assumes q ∈ states M
shows L (from-FSM M q) = LS M q
using assms unfolding LS .simps by (meson from-FSM-path-initial)

lemma observable-transition-target-language-subset :
assumes LS M (t-source t1 ) ⊆ LS M (t-source t2 )
and t1 ∈ transitions M
and t2 ∈ transitions M
and t-input t1 = t-input t2
and t-output t1 = t-output t2
and observable M

shows LS M (t-target t1 ) ⊆ LS M (t-target t2 )
proof (rule ccontr)

assume ¬ LS M (t-target t1 ) ⊆ LS M (t-target t2 )
then obtain ioF where ioF ∈ LS M (t-target t1 ) and ioF /∈ LS M (t-target

t2 )
by blast

then have (t-input t1 , t-output t1 )#ioF ∈ LS M (t-source t1 )
using LS-prepend-transition assms(2 ) by blast

then have ∗: (t-input t1 , t-output t1 )#ioF ∈ LS M (t-source t2 )
using assms(1 ) by blast

have ioF ∈ LS M (t-target t2 )
using observable-language-next[OF ∗ ‹observable M › ‹t2 ∈ transitions M › ]

unfolding assms(4 ,5 ) fst-conv snd-conv
by (metis assms(3 ) from-FSM-language fsm-transition-target)

then show False
using ‹ioF /∈ LS M (t-target t2 )› by blast

qed

lemma observable-transition-target-language-eq :
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assumes LS M (t-source t1 ) = LS M (t-source t2 )
and t1 ∈ transitions M
and t2 ∈ transitions M
and t-input t1 = t-input t2
and t-output t1 = t-output t2
and observable M

shows LS M (t-target t1 ) = LS M (t-target t2 )
using observable-transition-target-language-subset[OF - assms(2 ,3 ,4 ,5 ,6 )]

observable-transition-target-language-subset[OF - assms(3 ,2 ) assms(4 ,5 )[symmetric]
assms(6 )]

assms(1 )
by blast

lemma language-state-prepend-transition :
assumes io ∈ LS (from-FSM A (t-target t)) (initial (from-FSM A (t-target t)))
and t ∈ transitions A

shows p-io [t] @ io ∈ LS A (t-source t)
proof −

obtain p where path (from-FSM A (t-target t)) (initial (from-FSM A (t-target
t))) p

and p-io p = io
using assms(1 ) unfolding LS .simps by blast

then have path A (t-target t) p
by (meson assms(2 ) from-FSM-path-initial fsm-transition-target)

then have path A (t-source t) (t # p)
using assms(2 ) by auto

then show ?thesis
using ‹p-io p = io› unfolding LS .simps
by force

qed

lemma observable-language-transition-target :
assumes observable M
and t ∈ transitions M
and (t-input t, t-output t) # io ∈ LS M (t-source t)

shows io ∈ LS M (t-target t)
by (metis (no-types) assms(1 ) assms(2 ) assms(3 ) from-FSM-language fsm-transition-target

fst-conv observable-language-next snd-conv)

lemma LS-single-transition :
[(x,y)] ∈ LS M q ←→ (∃ t ∈ transitions M . t-source t = q ∧ t-input t = x ∧

t-output t = y)
proof

show [(x, y)] ∈ LS M q =⇒ ∃ t∈FSM .transitions M . t-source t = q ∧ t-input t
= x ∧ t-output t = y

by auto
show ∃ t∈FSM .transitions M . t-source t = q ∧ t-input t = x ∧ t-output t = y

=⇒ [(x, y)] ∈ LS M q
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by (metis LS-prepend-transition from-FSM-language fsm-transition-target lan-
guage-contains-empty-sequence)
qed

lemma h-obs-language-append :
assumes observable M
and u ∈ L M
and h-obs M (after-initial M u) x y 6= None

shows u@[(x,y)] ∈ L M
using after-language-iff [OF assms(1 ,2 ), of [(x,y)]]
using h-obs-None[OF assms(1 )] assms(3 )
unfolding LS-single-transition
by (metis old.prod.inject prod.collapse)

lemma h-obs-language-single-transition-iff :
assumes observable M
shows [(x,y)] ∈ LS M q ←→ h-obs M q x y 6= None
using h-obs-None[OF assms(1 ), of q x y]
unfolding LS-single-transition
by (metis fst-conv prod.exhaust-sel snd-conv)

lemma minimal-failure-prefix-ob :
assumes observable M
and observable I
and qM ∈ states M
and qI ∈ states I
and io ∈ LS I qI − LS M qM

obtains io ′ xy io ′′ where io = io ′@[xy]@io ′′

and io ′ ∈ LS I qI ∩ LS M qM
and io ′@[xy] ∈ LS I qI − LS M qM

proof −
have ∃ io ′ xy io ′′ . io = io ′@[xy]@io ′′ ∧ io ′ ∈ LS I qI ∩ LS M qM ∧ io ′@[xy] ∈

LS I qI − LS M qM
using assms(3 ,4 ,5 ) proof (induction io arbitrary: qM qI )

case Nil
then show ?case by auto

next
case (Cons xy io)
show ?case proof (cases [xy] ∈ LS I qI − LS M qM )

case True

have xy # io = []@[xy]@io
by auto

moreover have [] ∈ LS I qI ∩ LS M qM
using ‹qM ∈ states M › ‹qI ∈ states I › by auto

moreover have []@[xy] ∈ LS I qI − LS M qM
using True by auto
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ultimately show ?thesis
by blast

next
case False

obtain x y where xy = (x,y)
by (meson surj-pair)

have [(x,y)] ∈ LS M qM
using ‹xy = (x,y)› False ‹xy # io ∈ LS I qI − LS M qM ›
by (metis DiffD1 DiffI append-Cons append-Nil language-prefix)

then obtain qM ′ where (qM ,x,y,qM ′) ∈ transitions M
by auto

then have io /∈ LS M qM ′

using observable-language-transition-target[OF ‹observable M ›]
‹xy = (x,y)› ‹xy # io ∈ LS I qI − LS M qM ›

by (metis DiffD2 LS-prepend-transition fst-conv snd-conv)

have [(x,y)] ∈ LS I qI
using ‹xy = (x,y)› ‹xy # io ∈ LS I qI − LS M qM ›
by (metis DiffD1 append-Cons append-Nil language-prefix)

then obtain qI ′ where (qI ,x,y,qI ′) ∈ transitions I
by auto

then have io ∈ LS I qI ′

using observable-language-next[of xy io I (qI ,x,y,qI ′), OF - ‹observable I ›]
‹xy # io ∈ LS I qI − LS M qM › fsm-transition-target[OF ‹(qI ,x,y,qI ′)

∈ transitions I ›]
unfolding ‹xy = (x,y)› fst-conv snd-conv
by (metis DiffD1 from-FSM-language)

obtain io ′ xy ′ io ′′ where io = io ′@[xy ′]@io ′′ and io ′ ∈ LS I qI ′ ∩ LS M qM ′

and io ′@[xy ′] ∈ LS I qI ′ − LS M qM ′

using ‹io ∈ LS I qI ′› ‹io /∈ LS M qM ′›
Cons.IH [OF fsm-transition-target[OF ‹(qM ,x,y,qM ′) ∈ transitions M ›]

fsm-transition-target[OF ‹(qI ,x,y,qI ′) ∈ transitions I ›] ]
unfolding fst-conv snd-conv
by blast

have xy#io = (xy#io ′)@[xy ′]@io ′′

using ‹io = io ′@[xy ′]@io ′′› ‹xy = (x,y)› by auto
moreover have xy#io ′ ∈ LS I qI ∩ LS M qM

using LS-prepend-transition[OF ‹(qI ,x,y,qI ′) ∈ transitions I ›, of io ′]
using LS-prepend-transition[OF ‹(qM ,x,y,qM ′) ∈ transitions M ›, of io ′]
using ‹io ′ ∈ LS I qI ′ ∩ LS M qM ′›
unfolding ‹xy = (x,y)› fst-conv snd-conv
by auto

moreover have (xy#io ′)@[xy ′] ∈ LS I qI − LS M qM
using LS-prepend-transition[OF ‹(qI ,x,y,qI ′) ∈ transitions I ›, of io ′@[xy ′]]

using observable-language-transition-target[OF ‹observable M › ‹(qM ,x,y,qM ′)
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∈ transitions M ›, of io ′@[xy ′]]
using ‹io ′@[xy ′] ∈ LS I qI ′ − LS M qM ′›
unfolding ‹xy = (x,y)› fst-conv snd-conv
by fastforce

ultimately show ?thesis
by blast

qed
qed
then show ?thesis

using that by blast
qed

4.15 Language and Defined Inputs
lemma defined-inputs-code : defined-inputs M q = t-input ‘ Set.filter (λt . t-source
t = q) (transitions M )

unfolding defined-inputs-set by force

lemma defined-inputs-alt-def : defined-inputs M q = {t-input t | t . t ∈ transitions
M ∧ t-source t = q}

unfolding defined-inputs-code by force

lemma defined-inputs-language-diff :
assumes x ∈ defined-inputs M1 q1

and x /∈ defined-inputs M2 q2
obtains y where [(x,y)] ∈ LS M1 q1 − LS M2 q2

using assms unfolding defined-inputs-alt-def
proof −

assume a1 : x /∈ {t-input t |t. t ∈ FSM .transitions M2 ∧ t-source t = q2}
assume a2 : x ∈ {t-input t |t. t ∈ FSM .transitions M1 ∧ t-source t = q1}
assume a3 :

∧
y. [(x, y)] ∈ LS M1 q1 − LS M2 q2 =⇒ thesis

have f4 : @ p. x = t-input p ∧ p ∈ FSM .transitions M2 ∧ t-source p = q2
using a1 by blast

obtain pp :: ′a ⇒ ′b × ′a × ′c × ′b where
∀ a. ((@ p. a = t-input p ∧ p ∈ FSM .transitions M1 ∧ t-source p = q1 ) ∨ a =

t-input (pp a) ∧ pp a ∈ FSM .transitions M1 ∧ t-source (pp a) = q1 ) ∧ ((∃ p. a =
t-input p ∧ p ∈ FSM .transitions M1 ∧ t-source p = q1 ) ∨ (∀ p. a 6= t-input p ∨ p
/∈ FSM .transitions M1 ∨ t-source p 6= q1 ))

by moura
then have x = t-input (pp x) ∧ pp x ∈ FSM .transitions M1 ∧ t-source (pp x)

= q1
using a2 by blast

then show ?thesis
using f4 a3 by (metis (no-types) DiffI LS-single-transition)

qed

lemma language-path-append :
assumes path M1 q1 p1
and io ∈ LS M1 (target q1 p1 )
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shows (p-io p1 @ io) ∈ LS M1 q1
proof −

obtain p2 where path M1 (target q1 p1 ) p2 and p-io p2 = io
using assms(2 ) by auto

then have path M1 q1 (p1@p2 )
using assms(1 ) by auto

moreover have p-io (p1@p2 ) = (p-io p1 @ io)
using ‹p-io p2 = io› by auto

ultimately show ?thesis
by (metis (mono-tags, lifting) language-intro)

qed

lemma observable-defined-inputs-diff-ob :
assumes observable M1
and observable M2
and path M1 q1 p1
and path M2 q2 p2
and p-io p1 = p-io p2
and x ∈ defined-inputs M1 (target q1 p1 )
and x /∈ defined-inputs M2 (target q2 p2 )

obtains y where (p-io p1 )@[(x,y)] ∈ LS M1 q1 − LS M2 q2
proof −

obtain y where [(x,y)] ∈ LS M1 (target q1 p1 ) − LS M2 (target q2 p2 )
using defined-inputs-language-diff [OF assms(6 ,7 )] by blast

then have (p-io p1 )@[(x,y)] ∈ LS M1 q1
using language-path-append[OF assms(3 )]
by blast

moreover have (p-io p1 )@[(x,y)] /∈ LS M2 q2
by (metis (mono-tags, lifting) DiffD2 ‹[(x, y)] ∈ LS M1 (target q1 p1 ) −

LS M2 (target q2 p2 )› assms(2 ) assms(4 ) assms(5 ) language-state-containment
observable-path-suffix)

ultimately show ?thesis
using that[of y] by blast

qed

lemma observable-defined-inputs-diff-language :
assumes observable M1
and observable M2
and path M1 q1 p1
and path M2 q2 p2
and p-io p1 = p-io p2
and defined-inputs M1 (target q1 p1 ) 6= defined-inputs M2 (target q2 p2 )

shows LS M1 q1 6= LS M2 q2
proof −

obtain x where (x ∈ defined-inputs M1 (target q1 p1 ) − defined-inputs M2
(target q2 p2 ))

∨ (x ∈ defined-inputs M2 (target q2 p2 ) − defined-inputs M1 (target
q1 p1 ))
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using assms by blast
then consider (x ∈ defined-inputs M1 (target q1 p1 ) − defined-inputs M2 (target

q2 p2 )) |
(x ∈ defined-inputs M2 (target q2 p2 ) − defined-inputs M1 (target q1

p1 ))
by blast

then show ?thesis
proof cases

case 1
then show ?thesis

using observable-defined-inputs-diff-ob[OF assms(1−5 ), of x] by blast
next

case 2
then show ?thesis
using observable-defined-inputs-diff-ob[OF assms(2 ,1 ,4 ,3 ) assms(5 )[symmetric],

of x] by blast
qed

qed

fun maximal-prefix-in-language :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list ⇒ ( ′b × ′c)
list where

maximal-prefix-in-language M q [] = [] |
maximal-prefix-in-language M q ((x,y)#io) = (case h-obs M q x y of

None ⇒ [] |
Some q ′⇒ (x,y)#maximal-prefix-in-language M q ′ io)

lemma maximal-prefix-in-language-properties :
assumes observable M
and q ∈ states M

shows maximal-prefix-in-language M q io ∈ LS M q
and maximal-prefix-in-language M q io ∈ list.set (prefixes io)
proof −

have maximal-prefix-in-language M q io ∈ LS M q ∧ maximal-prefix-in-language
M q io ∈ list.set (prefixes io)

using assms(2 ) proof (induction io arbitrary: q)
case Nil
then show ?case by auto

next
case (Cons xy io)

obtain x y where xy = (x,y)
using prod.exhaust by metis

show ?case proof (cases h-obs M q x y)
case None
then have maximal-prefix-in-language M q (xy#io) = []

unfolding ‹xy = (x,y)›
by auto

then show ?thesis
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by (metis (mono-tags, lifting) Cons.prems append-self-conv2 from-FSM-language
language-contains-empty-sequence mem-Collect-eq prefixes-set)

next
case (Some q ′)

then have ∗: maximal-prefix-in-language M q (xy#io) = (x,y)#maximal-prefix-in-language
M q ′ io

unfolding ‹xy = (x,y)›
by auto

have q ′ ∈ states M
using h-obs-state[OF Some] by auto

then have maximal-prefix-in-language M q ′ io ∈ LS M q ′

and maximal-prefix-in-language M q ′ io ∈ list.set (prefixes io)
using Cons.IH by auto

have maximal-prefix-in-language M q (xy # io) ∈ LS M q
unfolding ∗
using Some ‹maximal-prefix-in-language M q ′ io ∈ LS M q ′›
by (meson assms(1 ) h-obs-language-iff )

moreover have maximal-prefix-in-language M q (xy # io) ∈ list.set (prefixes
(xy # io))

unfolding ∗
unfolding ‹xy = (x,y)›

using ‹maximal-prefix-in-language M q ′ io ∈ list.set (prefixes io)› ap-
pend-Cons

unfolding prefixes-set
by auto

ultimately show ?thesis
by blast

qed
qed
then show maximal-prefix-in-language M q io ∈ LS M q

and maximal-prefix-in-language M q io ∈ list.set (prefixes io)
by auto

qed

4.16 Further Reachability Formalisations
fun reachable-k :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ nat ⇒ ′a set where

reachable-k M q n = {target q p | p . path M q p ∧ length p ≤ n}

lemma reachable-k-0-initial : reachable-k M (initial M ) 0 = {initial M}
by auto

lemma reachable-k-states : reachable-states M = reachable-k M (initial M ) ( size
M − 1 )
proof −

have
∧

q. q ∈ reachable-states M =⇒ q ∈ reachable-k M (initial M ) ( size M −
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1 )
proof −

fix q assume q ∈ reachable-states M
then obtain p where path M (initial M ) p and target (initial M ) p = q

unfolding reachable-states-def by blast
then obtain p ′ where path M (initial M ) p ′

and target (initial M ) p ′ = target (initial M ) p
and length p ′ < size M

by (metis acyclic-path-from-cyclic-path acyclic-path-length-limit)
then show q ∈ reachable-k M (initial M ) ( size M − 1 )

using ‹target (FSM .initial M ) p = q› less-trans by auto
qed

moreover have
∧

x. x ∈ reachable-k M (initial M ) ( size M − 1 ) =⇒ x ∈
reachable-states M

unfolding reachable-states-def reachable-k.simps by blast

ultimately show ?thesis by blast
qed

4.16.1 Induction Schemes
lemma acyclic-induction [consumes 1 , case-names reachable-state]:

assumes acyclic M
and

∧
q . q ∈ reachable-states M =⇒ (

∧
t . t ∈ transitions M =⇒ ((t-source

t = q) =⇒ P (t-target t))) =⇒ P q
shows ∀ q ∈ reachable-states M . P q

proof
fix q assume q ∈ reachable-states M

let ?k = Max (image length {p . path M q p})
have finite {p . path M q p} using acyclic-finite-paths-from-reachable-state[OF

assms(1 )]
using ‹q ∈ reachable-states M › unfolding reachable-states-def by force

then have k-prop: (∀ p . path M q p −→ length p ≤ ?k) by auto

moreover have
∧

q k . q ∈ reachable-states M =⇒ (∀ p . path M q p −→ length
p ≤ k) =⇒ P q

proof −
fix q k assume q ∈ reachable-states M and (∀ p . path M q p −→ length p ≤

k)
then show P q
proof (induction k arbitrary: q)

case 0
then have {p . path M q p} = {[]} using reachable-state-is-state[OF ‹q ∈

reachable-states M ›]
by blast

then have LS M q ⊆ {[]} unfolding LS .simps by blast
then have deadlock-state M q using deadlock-state-alt-def by metis
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then show ?case using assms(2 )[OF ‹q ∈ reachable-states M ›] unfolding
deadlock-state.simps by blast

next
case (Suc k)
have

∧
t . t ∈ transitions M =⇒ (t-source t = q) =⇒ P (t-target t)

proof −
fix t assume t ∈ transitions M and t-source t = q
then have t-target t ∈ reachable-states M

using ‹q ∈ reachable-states M › using reachable-states-next by metis
moreover have ∀ p. path M (t-target t) p −→ length p ≤ k

using Suc.prems(2 ) ‹t ∈ transitions M › ‹t-source t = q› by auto
ultimately show P (t-target t)

using Suc.IH unfolding reachable-states-def by blast
qed
then show ?case using assms(2 )[OF Suc.prems(1 )] by blast

qed
qed

ultimately show P q using ‹q ∈ reachable-states M › by blast
qed

lemma reachable-states-induct [consumes 1 , case-names init transition] :
assumes q ∈ reachable-states M
and P (initial M )
and

∧
t . t ∈ transitions M =⇒ t-source t ∈ reachable-states M =⇒ P

(t-source t) =⇒ P (t-target t)
shows P q
proof −

from assms(1 ) obtain p where path M (initial M ) p and target (initial M ) p
= q

unfolding reachable-states-def by auto
then show P q
proof (induction p arbitrary: q rule: rev-induct)

case Nil
then show ?case using assms(2 ) by auto

next
case (snoc t p)

then have target (initial M ) p = t-source t
by auto

then have P (t-source t)
using snoc.IH snoc.prems by auto

moreover have t ∈ transitions M
using snoc.prems by auto

moreover have t-source t ∈ reachable-states M
by (metis ‹target (FSM .initial M ) p = t-source t› path-prefix reachable-states-intro

snoc.prems(1 ))
moreover have t-target t = q

using snoc.prems by auto
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ultimately show ?case
using assms(3 ) by blast

qed
qed

lemma reachable-states-cases [consumes 1 , case-names init transition] :
assumes q ∈ reachable-states M
and P (initial M )
and

∧
t . t ∈ transitions M =⇒ t-source t ∈ reachable-states M =⇒ P

(t-target t)
shows P q

by (metis assms(1 ) assms(2 ) assms(3 ) reachable-states-induct)

4.17 Further Path Enumeration Algorithms
fun paths-for-input ′ :: ( ′a ⇒ ( ′b × ′c × ′a) set) ⇒ ′b list ⇒ ′a ⇒ ( ′a, ′b, ′c) path
⇒ ( ′a, ′b, ′c) path set where

paths-for-input ′ f [] q prev = {prev} |
paths-for-input ′ f (x#xs) q prev =

⋃
(image (λ(x ′,y ′,q ′) . paths-for-input ′ f xs q ′

(prev@[(q,x,y ′,q ′)])) (Set.filter (λ(x ′,y ′,q ′) . x ′ = x) (f q)))

lemma paths-for-input ′-set :
assumes q ∈ states M
shows paths-for-input ′ (h-from M ) xs q prev = {prev@p | p . path M q p ∧ map

fst (p-io p) = xs}
using assms proof (induction xs arbitrary: q prev)

case Nil
then show ?case by auto

next
case (Cons x xs)

let ?UN =
⋃
(image (λ(x ′,y ′,q ′) . paths-for-input ′ (h-from M ) xs q ′ (prev@[(q,x,y ′,q ′)]))

(Set.filter (λ(x ′,y ′,q ′) . x ′ = x) (h-from M q)))

have ?UN = {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs}
proof

have
∧

p . p ∈ ?UN =⇒ p ∈ {prev@p | p . path M q p ∧ map fst (p-io p) =
x#xs}

proof −
fix p assume p ∈ ?UN
then obtain y ′ q ′ where (x,y ′,q ′) ∈ (Set.filter (λ(x ′,y ′,q ′) . x ′ = x) (h-from

M q))
and p ∈ paths-for-input ′ (h-from M ) xs q ′ (prev@[(q,x,y ′,q ′)])

by auto

from ‹(x,y ′,q ′) ∈ (Set.filter (λ(x ′,y ′,q ′) . x ′ = x) (h-from M q))› have q ′ ∈
states M and (q,x,y ′,q ′) ∈ transitions M

using fsm-transition-target unfolding h.simps by auto
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have p ∈ {(prev @ [(q, x, y ′, q ′)]) @ p |p. path M q ′ p ∧ map fst (p-io p) =
xs}

using ‹p ∈ paths-for-input ′ (h-from M ) xs q ′ (prev@[(q,x,y ′,q ′)])›
unfolding Cons.IH [OF ‹q ′ ∈ states M ›] by assumption

moreover have {(prev @ [(q, x, y ′, q ′)]) @ p |p. path M q ′ p ∧ map fst (p-io
p) = xs}

⊆ {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs}
using ‹(q,x,y ′,q ′) ∈ transitions M ›
using cons by force

ultimately show p ∈ {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs}
by blast

qed
then show ?UN ⊆ {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs}

by blast

have
∧

p . p ∈ {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs} =⇒ p ∈
?UN

proof −
fix pp assume pp ∈ {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs}
then obtain p where pp = prev@p and path M q p and map fst (p-io p) =

x#xs
by fastforce

then obtain t p ′ where p = t#p ′ and path M q (t#p ′) and map fst (p-io
(t#p ′)) = x#xs and map fst (p-io p ′) = xs

by (metis (no-types, lifting) map-eq-Cons-D)
then have path M (t-target t) p ′ and t-source t = q and t-input t = x and

t-target t ∈ states M and t ∈ transitions M
by auto

have (x,t-output t,t-target t) ∈ (Set.filter (λ(x ′,y ′,q ′) . x ′ = x) (h-from M q))
using ‹t ∈ transitions M › ‹t-input t = x› ‹t-source t = q›
unfolding h.simps by auto
moreover have (prev@p) ∈ paths-for-input ′ (h-from M ) xs (t-target t)

(prev@[(q,x,t-output t,t-target t)])
using Cons.IH [OF ‹t-target t ∈ states M ›, of prev@[(q, x, t-output t, t-target

t)]]
using ‹

∧
thesis. (

∧
t p ′. [[p = t # p ′; path M q (t # p ′); map fst (p-io (t #

p ′)) = x # xs; map fst (p-io p ′) = xs]] =⇒ thesis) =⇒ thesis›
‹p = t # p ′›
‹paths-for-input ′ (h-from M ) xs (t-target t) (prev @ [(q, x, t-output t,

t-target t)])
= {(prev @ [(q, x, t-output t, t-target t)]) @ p |p. path M (t-target t)

p ∧ map fst (p-io p) = xs}›
‹t-input t = x›
‹t-source t = q›

by fastforce

ultimately show pp ∈ ?UN unfolding ‹pp = prev@p›
by blast
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qed
then show {prev@p | p . path M q p ∧ map fst (p-io p) = x#xs} ⊆ ?UN

by (meson subsetI )
qed

then show ?case
by (metis paths-for-input ′.simps(2 ))

qed

definition paths-for-input :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′b list ⇒ ( ′a, ′b, ′c) path set
where

paths-for-input M q xs = {p . path M q p ∧ map fst (p-io p) = xs}

lemma paths-for-input-set-code[code] :
paths-for-input M q xs = (if q ∈ states M then paths-for-input ′ (h-from M ) xs q

[] else {})
using paths-for-input ′-set[of q M xs []]
unfolding paths-for-input-def
by (cases q ∈ states M ; auto; simp add: path-begin-state)

fun paths-up-to-length-or-condition-with-witness ′ ::
( ′a ⇒ ( ′b × ′c × ′a) set) ⇒ (( ′a, ′b, ′c) path ⇒ ′d option) ⇒ ( ′a, ′b, ′c) path ⇒

nat ⇒ ′a ⇒ (( ′a, ′b, ′c) path × ′d) set
where
paths-up-to-length-or-condition-with-witness ′ f P prev 0 q = (case P prev of Some

w ⇒ {(prev,w)} | None ⇒ {}) |
paths-up-to-length-or-condition-with-witness ′ f P prev (Suc k) q = (case P prev

of
Some w ⇒ {(prev,w)} |
None ⇒ (

⋃
(image (λ(x,y,q ′) . paths-up-to-length-or-condition-with-witness ′ f

P (prev@[(q,x,y,q ′)]) k q ′) (f q))))

lemma paths-up-to-length-or-condition-with-witness ′-set :
assumes q ∈ states M
shows paths-up-to-length-or-condition-with-witness ′ (h-from M ) P prev k q

= {(prev@p,x) | p x . path M q p
∧ length p ≤ k
∧ P (prev@p) = Some x
∧ (∀ p ′ p ′′ . (p = p ′@p ′′ ∧ p ′′ 6= []) −→ P (prev@p ′) =

None)}
using assms proof (induction k arbitrary: q prev)

case 0
then show ?case proof (cases P prev)

case None then show ?thesis by auto
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next
case (Some w)
then show ?thesis by (simp add: 0 .prems nil)

qed
next

case (Suc k)
then show ?case proof (cases P prev)

case (Some w)
then have (prev,w) ∈ {(prev@p,x) | p x . path M q p

∧ length p ≤ Suc k
∧ P (prev@p) = Some x
∧ (∀ p ′ p ′′ . (p = p ′@p ′′ ∧ p ′′ 6= []) −→ P

(prev@p ′) = None)}
by (simp add: Suc.prems nil)

then have {(prev@p,x) | p x . path M q p
∧ length p ≤ Suc k
∧ P (prev@p) = Some x
∧ (∀ p ′ p ′′ . (p = p ′@p ′′ ∧ p ′′ 6= []) −→ P (prev@p ′)

= None)}
= {(prev,w)}

using Some by fastforce

then show ?thesis using Some by auto
next

case None

have (
⋃
(image (λ(x,y,q ′) . paths-up-to-length-or-condition-with-witness ′ (h-from

M ) P (prev@[(q,x,y,q ′)]) k q ′) (h-from M q)))
= {(prev@p,x) | p x . path M q p

∧ length p ≤ Suc k
∧ P (prev@p) = Some x
∧ (∀ p ′ p ′′ . (p = p ′@p ′′ ∧ p ′′ 6= []) −→ P (prev@p ′) =

None)}
(is ?UN = ?PX)

proof −
have ∗:

∧
pp . pp ∈ ?UN =⇒ pp ∈ ?PX

proof −
fix pp assume pp ∈ ?UN
then obtain x y q ′ where (x,y,q ′) ∈ h-from M q

and pp ∈ paths-up-to-length-or-condition-with-witness ′

(h-from M ) P (prev@[(q,x,y,q ′)]) k q ′

by blast
then have (q,x,y,q ′) ∈ transitions M by auto
then have q ′ ∈ states M using fsm-transition-target by auto

obtain p w where pp = ((prev@[(q,x,y,q ′)])@p,w)
and path M q ′ p
and length p ≤ k
and P ((prev @ [(q, x, y, q ′)]) @ p) = Some w
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and
∧

p ′ p ′′. p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ P ((prev @ [(q, x, y,
q ′)]) @ p ′) = None

using ‹pp ∈ paths-up-to-length-or-condition-with-witness ′ (h-from M ) P
(prev@[(q,x,y,q ′)]) k q ′›

unfolding Suc.IH [OF ‹q ′ ∈ states M ›, of prev@[(q,x,y,q ′)]]
by blast

have path M q ((q,x,y,q ′)#p)
using ‹path M q ′ p› ‹(q,x,y,q ′) ∈ transitions M › by (simp add: path-prepend-t)

moreover have length ((q,x,y,q ′)#p) ≤ Suc k
using ‹length p ≤ k› by auto

moreover have P (prev @ ([(q, x, y, q ′)] @ p)) = Some w
using ‹P ((prev @ [(q, x, y, q ′)]) @ p) = Some w› by auto

moreover have
∧

p ′ p ′′. ((q,x,y,q ′)#p) = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ P (prev
@ p ′) = None

using ‹
∧

p ′ p ′′. p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ P ((prev @ [(q, x, y, q ′)])
@ p ′) = None›

using None
by (metis (no-types, opaque-lifting) append.simps(1 ) append-Cons ap-

pend-Nil2 append-assoc
list.inject neq-Nil-conv)

ultimately show pp ∈ ?PX
unfolding ‹pp = ((prev@[(q,x,y,q ′)])@p,w)› by auto

qed

have ∗∗:
∧

pp . pp ∈ ?PX =⇒ pp ∈ ?UN
proof −

fix pp assume pp ∈ ?PX
then obtain p ′ w where pp = (prev @ p ′, w)

and path M q p ′

and length p ′ ≤ Suc k
and P (prev @ p ′) = Some w
and

∧
p ′ p ′′. p ′ = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ P (prev @ p ′) =

None
by blast

moreover obtain t p where p ′ = t#p using ‹P (prev @ p ′) = Some w›
using None

by (metis append-Nil2 list.exhaust option.distinct(1 ))

have pp = ((prev @ [t])@p, w)
using ‹pp = (prev @ p ′, w)› unfolding ‹p ′ = t#p› by auto

have path M q (t#p)
using ‹path M q p ′› unfolding ‹p ′ = t#p› by auto

have p2 : length (t#p) ≤ Suc k
using ‹length p ′ ≤ Suc k› unfolding ‹p ′ = t#p› by auto

have p3 : P ((prev @ [t])@p) = Some w
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using ‹P (prev @ p ′) = Some w› unfolding ‹p ′ = t#p› by auto
have p4 :

∧
p ′ p ′′. p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ P ((prev@[t]) @ p ′) = None

using ‹
∧

p ′ p ′′. p ′ = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ P (prev @ p ′) = None› ‹pp
∈ ?PX›

unfolding ‹pp = ((prev @ [t]) @ p, w)› ‹p ′ = t#p›
by auto

have t ∈ transitions M and p1 : path M (t-target t) p and t-source t = q
using ‹path M q (t#p)› by auto

then have t-target t ∈ states M
and (t-input t, t-output t, t-target t) ∈ h-from M q
and t-source t = q

using fsm-transition-target by auto
then have t = (q,t-input t, t-output t, t-target t)

by auto

have ((prev @ [t])@p, w) ∈ paths-up-to-length-or-condition-with-witness ′

(h-from M ) P (prev@[t]) k (t-target t)
unfolding Suc.IH [OF ‹t-target t ∈ states M ›, of prev@[t]]
using p1 p2 p3 p4 by auto

then show pp ∈ ?UN
unfolding ‹pp = ((prev @ [t])@p, w)›

proof −
have paths-up-to-length-or-condition-with-witness ′ (h-from M ) P (prev @

[t]) k (t-target t)
= paths-up-to-length-or-condition-with-witness ′ (h-from M ) P (prev @

[(q, t-input t, t-output t, t-target t)]) k (t-target t)
using ‹t = (q, t-input t, t-output t, t-target t)› by presburger

then show ((prev @ [t]) @ p, w) ∈ (
⋃
(b, c, a)∈h-from M q. paths-up-to-length-or-condition-with-witness ′

(h-from M ) P (prev @ [(q, b, c, a)]) k a)
using ‹((prev @ [t]) @ p, w) ∈ paths-up-to-length-or-condition-with-witness ′

(h-from M ) P (prev @ [t]) k (t-target t)›
‹(t-input t, t-output t, t-target t) ∈ h-from M q›

by blast
qed

qed

show ?thesis
using subsetI [of ?UN ?PX , OF ∗] subsetI [of ?PX ?UN , OF ∗∗] sub-

set-antisym by blast
qed

then show ?thesis
using None unfolding paths-up-to-length-or-condition-with-witness ′.simps by

simp
qed

qed
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definition paths-up-to-length-or-condition-with-witness ::
( ′a, ′b, ′c) fsm ⇒ (( ′a, ′b, ′c) path ⇒ ′d option) ⇒ nat ⇒ ′a ⇒ (( ′a, ′b, ′c) path ×

′d) set
where
paths-up-to-length-or-condition-with-witness M P k q
= {(p,x) | p x . path M q p

∧ length p ≤ k
∧ P p = Some x
∧ (∀ p ′ p ′′ . (p = p ′@p ′′ ∧ p ′′ 6= []) −→ P p ′ = None)}

lemma paths-up-to-length-or-condition-with-witness-code[code] :
paths-up-to-length-or-condition-with-witness M P k q
= (if q ∈ states M then paths-up-to-length-or-condition-with-witness ′ (h-from

M ) P [] k q
else {})

proof (cases q ∈ states M )
case True
then show ?thesis

unfolding paths-up-to-length-or-condition-with-witness-def
paths-up-to-length-or-condition-with-witness ′-set[OF True]

by auto
next

case False
then show ?thesis

unfolding paths-up-to-length-or-condition-with-witness-def
using path-begin-state by fastforce

qed

lemma paths-up-to-length-or-condition-with-witness-finite :
finite (paths-up-to-length-or-condition-with-witness M P k q)

proof −
have paths-up-to-length-or-condition-with-witness M P k q

⊆ {(p, the (P p)) | p . path M q p ∧ length p ≤ k}
unfolding paths-up-to-length-or-condition-with-witness-def
by auto

moreover have finite {(p, the (P p)) | p . path M q p ∧ length p ≤ k}
using paths-finite[of M q k]
by simp

ultimately show ?thesis
using rev-finite-subset by auto

qed

4.18 More Acyclicity Properties
lemma maximal-path-target-deadlock :
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assumes path M (initial M ) p
and ¬(∃ p ′ . path M (initial M ) p ′ ∧ is-prefix p p ′ ∧ p 6= p ′)

shows deadlock-state M (target (initial M ) p)
proof −

have ¬(∃ t ∈ transitions M . t-source t = target (initial M ) p)
using assms(2 ) unfolding is-prefix-prefix

by (metis append-Nil2 assms(1 ) not-Cons-self2 path-append-transition same-append-eq)
then show ?thesis by auto

qed

lemma path-to-deadlock-is-maximal :
assumes path M (initial M ) p
and deadlock-state M (target (initial M ) p)

shows ¬(∃ p ′ . path M (initial M ) p ′ ∧ is-prefix p p ′ ∧ p 6= p ′)
proof

assume ∃ p ′. path M (initial M ) p ′ ∧ is-prefix p p ′ ∧ p 6= p ′

then obtain p ′ where path M (initial M ) p ′ and is-prefix p p ′ and p 6= p ′ by
blast

then have length p ′ > length p
unfolding is-prefix-prefix by auto

then obtain t p2 where p ′ = p @ [t] @ p2
using ‹is-prefix p p ′› unfolding is-prefix-prefix

by (metis ‹p 6= p ′› append.left-neutral append-Cons append-Nil2 non-sym-dist-pairs ′.cases)

then have path M (initial M ) (p@[t])
using ‹path M (initial M ) p ′› by auto

then have t ∈ transitions M and t-source t = target (initial M ) p
by auto

then show False
using ‹deadlock-state M (target (initial M ) p)› unfolding deadlock-state.simps

by blast
qed

definition maximal-acyclic-paths :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) path set where
maximal-acyclic-paths M = {p . path M (initial M ) p

∧ distinct (visited-states (initial M ) p)
∧ ¬(∃ p ′ . p ′ 6= [] ∧ path M (initial M ) (p@p ′)

∧ distinct (visited-states (initial M ) (p@p ′)))}

lemma maximal-acyclic-paths-code[code] :
maximal-acyclic-paths M = (let ps = acyclic-paths-up-to-length M (initial M )

(size M − 1 )
in Set.filter (λp . ¬ (∃ p ′ ∈ ps . p ′ 6= p ∧ is-prefix p p ′))

ps)
proof −
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have scheme1 :
∧

P p . (∃ p ′ . p ′ 6= [] ∧ P (p@p ′)) = (∃ p ′ ∈ {p . P p} . p ′ 6=
p ∧ is-prefix p p ′)

unfolding is-prefix-prefix by blast

have scheme2 :
∧

p . (path M (FSM .initial M ) p
∧ length p ≤ FSM .size M − 1
∧ distinct (visited-states (FSM .initial M ) p))

= (path M (FSM .initial M ) p ∧ distinct (visited-states (FSM .initial
M ) p))

using acyclic-path-length-limit by fastforce

show ?thesis
unfolding maximal-acyclic-paths-def acyclic-paths-up-to-length.simps Let-def
unfolding scheme1 [of λp . path M (initial M ) p ∧ distinct (visited-states

(initial M ) p)]
unfolding scheme2 by fastforce

qed

lemma maximal-acyclic-path-deadlock :
assumes acyclic M
and path M (initial M ) p

shows ¬(∃ p ′ . p ′ 6= [] ∧ path M (initial M ) (p@p ′) ∧ distinct (visited-states (initial
M ) (p@p ′)))

= deadlock-state M (target (initial M ) p)
proof −

have deadlock-state M (target (initial M ) p) =⇒ ¬(∃ p ′ . p ′ 6= [] ∧ path M
(initial M ) (p@p ′)

∧ distinct (visited-states (initial M ) (p@p ′)))
unfolding deadlock-state.simps
using assms(2 ) by (metis path.cases path-suffix)

then show ?thesis
by (metis acyclic.elims(2 ) assms(1 ) assms(2 ) is-prefix-prefix maximal-path-target-deadlock

self-append-conv)
qed

lemma maximal-acyclic-paths-deadlock-targets :
assumes acyclic M
shows maximal-acyclic-paths M

= { p . path M (initial M ) p ∧ deadlock-state M (target (initial M ) p)}
using maximal-acyclic-path-deadlock[OF assms]
unfolding maximal-acyclic-paths-def
by (metis (no-types, lifting) acyclic.elims(2 ) assms)

lemma cycle-from-cyclic-path :
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assumes path M q p
and ¬ distinct (visited-states q p)

obtains i j where
take j (drop i p) 6= []
target (target q (take i p)) (take j (drop i p)) = (target q (take i p))
path M (target q (take i p)) (take j (drop i p))

proof −
obtain i j where i < j and j < length (visited-states q p)

and (visited-states q p) ! i = (visited-states q p) ! j
using assms(2 ) non-distinct-repetition-indices by blast

have (target q (take i p)) = (visited-states q p) ! i
using ‹i < j› ‹j < length (visited-states q p)›
by (metis less-trans take-last-index target.simps visited-states-take)

then have (target q (take i p)) = (visited-states q p) ! j
using ‹(visited-states q p) ! i = (visited-states q p) ! j› by auto

have p1 : take (j−i) (drop i p) 6= []
using ‹i < j› ‹j < length (visited-states q p)› by auto

have target (target q (take i p)) (take (j−i) (drop i p)) = (target q (take j p))
using ‹i < j› by (metis add-diff-inverse-nat less-asym ′ path-append-target

take-add)
then have p2 : target (target q (take i p)) (take (j−i) (drop i p)) = (target q

(take i p))
using ‹(target q (take i p)) = (visited-states q p) ! i›
using ‹(target q (take i p)) = (visited-states q p) ! j›

by (metis ‹j < length (visited-states q p)› take-last-index target.simps vis-
ited-states-take)

have p3 : path M (target q (take i p)) (take (j−i) (drop i p))
by (metis append-take-drop-id assms(1 ) path-append-elim)

show ?thesis using p1 p2 p3 that by blast
qed

lemma acyclic-single-deadlock-reachable :
assumes acyclic M
and

∧
q ′ . q ′ ∈ reachable-states M =⇒ q ′ = qd ∨ ¬ deadlock-state M q ′

shows qd ∈ reachable-states M
using acyclic-deadlock-reachable[OF assms(1 )]
using assms(2 ) by auto

lemma acyclic-paths-to-single-deadlock :
assumes acyclic M
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and
∧

q ′ . q ′ ∈ reachable-states M =⇒ q ′ = qd ∨ ¬ deadlock-state M q ′

and q ∈ reachable-states M
obtains p where path M q p and target q p = qd
proof −

have q ∈ states M using assms(3 ) reachable-state-is-state by metis
have acyclic (from-FSM M q)

using from-FSM-acyclic[OF assms(3 ,1 )] by assumption

have ∗: (
∧

q ′. q ′ ∈ reachable-states (FSM .from-FSM M q)
=⇒ q ′ = qd ∨ ¬ deadlock-state (FSM .from-FSM M q) q ′)

using assms(2 ) from-FSM-reachable-states[OF assms(3 )]
unfolding deadlock-state.simps from-FSM-simps[OF ‹q ∈ states M ›] by blast

obtain p where path (from-FSM M q) q p and target q p = qd
using acyclic-single-deadlock-reachable[OF ‹acyclic (from-FSM M q)› ∗]
unfolding reachable-states-def from-FSM-simps[OF ‹q ∈ states M ›]
by blast

then show ?thesis
using that by (metis ‹q ∈ FSM .states M › from-FSM-path)

qed

4.19 Elements as Lists
fun states-as-list :: ( ′a :: linorder , ′b, ′c) fsm ⇒ ′a list where

states-as-list M = sorted-list-of-set (states M )

lemma states-as-list-distinct : distinct (states-as-list M ) by auto

lemma states-as-list-set : set (states-as-list M ) = states M
by (simp add: fsm-states-finite)

fun reachable-states-as-list :: ( ′a :: linorder , ′b, ′c) fsm ⇒ ′a list where
reachable-states-as-list M = sorted-list-of-set (reachable-states M )

lemma reachable-states-as-list-distinct : distinct (reachable-states-as-list M ) by
auto

lemma reachable-states-as-list-set : set (reachable-states-as-list M ) = reachable-states
M
by (metis fsm-states-finite infinite-super reachable-state-is-state reachable-states-as-list.simps

set-sorted-list-of-set subsetI )

fun inputs-as-list :: ( ′a, ′b :: linorder , ′c) fsm ⇒ ′b list where
inputs-as-list M = sorted-list-of-set (inputs M )
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lemma inputs-as-list-set : set (inputs-as-list M ) = inputs M
by (simp add: fsm-inputs-finite)

lemma inputs-as-list-distinct : distinct (inputs-as-list M ) by auto

fun transitions-as-list :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ ( ′a, ′b, ′c)
transition list where

transitions-as-list M = sorted-list-of-set (transitions M )

lemma transitions-as-list-set : set (transitions-as-list M ) = transitions M
by (simp add: fsm-transitions-finite)

fun outputs-as-list :: ( ′a, ′b, ′c :: linorder) fsm ⇒ ′c list where
outputs-as-list M = sorted-list-of-set (outputs M )

lemma outputs-as-list-set : set (outputs-as-list M ) = outputs M
by (simp add: fsm-outputs-finite)

fun ftransitions :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ ( ′a, ′b, ′c) tran-
sition fset where

ftransitions M = fset-of-list (transitions-as-list M )

fun fstates :: ( ′a :: linorder , ′b, ′c) fsm ⇒ ′a fset where
fstates M = fset-of-list (states-as-list M )

fun finputs :: ( ′a, ′b :: linorder , ′c) fsm ⇒ ′b fset where
finputs M = fset-of-list (inputs-as-list M )

fun foutputs :: ( ′a, ′b, ′c :: linorder) fsm ⇒ ′c fset where
foutputs M = fset-of-list (outputs-as-list M )

lemma fstates-set : fset (fstates M ) = states M
using fsm-states-finite[of M ] by (simp add: fset-of-list.rep-eq)

lemma finputs-set : fset (finputs M ) = inputs M
using fsm-inputs-finite[of M ] by (simp add: fset-of-list.rep-eq)

lemma foutputs-set : fset (foutputs M ) = outputs M
using fsm-outputs-finite[of M ] by (simp add: fset-of-list.rep-eq)

lemma ftransitions-set: fset (ftransitions M ) = transitions M
by (metis (no-types) fset-of-list.rep-eq ftransitions.simps transitions-as-list-set)

lemma ftransitions-source:
q |∈| (t-source |‘| ftransitions M ) =⇒ q ∈ states M
using ftransitions-set[of M ] fsm-transition-source[of - M ]
by (metis (no-types, opaque-lifting) fimageE)

lemma ftransitions-target:
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q |∈| (t-target |‘| ftransitions M ) =⇒ q ∈ states M
using ftransitions-set[of M ] fsm-transition-target[of - M ]
by (metis (no-types, lifting) fimageE)

4.20 Responses to Input Sequences
fun language-for-input :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ′b list
⇒ ( ′b× ′c) list list where

language-for-input M q [] = [[]] |
language-for-input M q (x#xs) =

(let outs = outputs-as-list M
in concat (map (λy . case h-obs M q x y of None ⇒ [] | Some q ′ ⇒ map

((#) (x,y)) (language-for-input M q ′ xs)) outs))

lemma language-for-input-set :
assumes observable M
and q ∈ states M

shows list.set (language-for-input M q xs) = {io . io ∈ LS M q ∧ map fst io = xs}
using assms(2 ) proof (induction xs arbitrary: q)
case Nil
then show ?case by auto

next
case (Cons x xs)

have list.set (language-for-input M q (x#xs)) ⊆ {io . io ∈ LS M q ∧ map fst io
= (x#xs)}

proof
fix io assume io ∈ list.set (language-for-input M q (x#xs))
then obtain y where y ∈ outputs M

and io ∈ list.set (case h-obs M q x y of None ⇒ [] | Some q ′ ⇒
map ((#) (x,y)) (language-for-input M q ′ xs))

unfolding outputs-as-list-set[symmetric]
by auto

then obtain q ′ where h-obs M q x y = Some q ′ and io ∈ list.set (map ((#)
(x,y)) (language-for-input M q ′ xs))

by (cases h-obs M q x y; auto)

then obtain io ′ where io = (x,y)#io ′

and io ′ ∈ list.set (language-for-input M q ′ xs)
by auto

then have io ′ ∈ LS M q ′ and map fst io ′ = xs
using Cons.IH [OF h-obs-state[OF ‹h-obs M q x y = Some q ′›]]
by blast+

then have (x,y)#io ′ ∈ LS M q
using ‹h-obs M q x y = Some q ′›
unfolding h-obs-language-iff [OF assms(1 ), of x y io ′ q]
by blast

then show io ∈ {io . io ∈ LS M q ∧ map fst io = (x#xs)}
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unfolding ‹io = (x,y)#io ′›
using ‹map fst io ′ = xs›
by auto

qed
moreover have {io . io ∈ LS M q ∧ map fst io = (x#xs)} ⊆ list.set (language-for-input

M q (x#xs))
proof

have scheme :
∧

x y f xs . y ∈ list.set (f x) =⇒ x ∈ list.set xs =⇒ y ∈ list.set
(concat (map f xs))

by auto

fix io assume io ∈ {io . io ∈ LS M q ∧ map fst io = (x#xs)}
then have io ∈ LS M q and map fst io = (x#xs)

by auto
then obtain y io ′ where io = (x,y)#io ′

by fastforce
then have (x,y)#io ′ ∈ LS M q

using ‹io ∈ LS M q›
by auto

then obtain q ′ where h-obs M q x y = Some q ′ and io ′ ∈ LS M q ′

unfolding h-obs-language-iff [OF assms(1 ), of x y io ′ q]
by blast

moreover have io ′ ∈ list.set (language-for-input M q ′ xs)
using Cons.IH [OF h-obs-state[OF ‹h-obs M q x y = Some q ′›]] ‹io ′ ∈ LS M

q ′› ‹map fst io = (x#xs)›
unfolding ‹io = (x,y)#io ′› by auto

ultimately have io ∈ list.set ((λ y .(case h-obs M q x y of None ⇒ [] | Some
q ′⇒ map ((#) (x,y)) (language-for-input M q ′ xs))) y)

unfolding ‹io = (x,y)#io ′›
by force

moreover have y ∈ list.set (outputs-as-list M )
unfolding outputs-as-list-set
using language-io(2 )[OF ‹(x,y)#io ′ ∈ LS M q›] by auto

ultimately show io ∈ list.set (language-for-input M q (x#xs))
unfolding language-for-input.simps Let-def
using scheme[of io (λ y .(case h-obs M q x y of None ⇒ [] | Some q ′⇒ map

((#) (x,y)) (language-for-input M q ′ xs))) y]
by blast

qed
ultimately show ?case

by blast
qed

4.21 Filtering Transitions
lift-definition filter-transitions ::
( ′a, ′b, ′c) fsm ⇒ (( ′a, ′b, ′c) transition ⇒ bool)⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.filter-transitions

proof −
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fix M :: ( ′a, ′b, ′c) fsm-impl
fix P :: ( ′a, ′b, ′c) transition ⇒ bool
assume well-formed-fsm M
then show well-formed-fsm (FSM-Impl.filter-transitions M P)

unfolding FSM-Impl.filter-transitions.simps by force
qed

lemma filter-transitions-simps[simp] :
initial (filter-transitions M P) = initial M
states (filter-transitions M P) = states M
inputs (filter-transitions M P) = inputs M
outputs (filter-transitions M P) = outputs M
transitions (filter-transitions M P) = {t ∈ transitions M . P t}
by (transfer ;auto)+

lemma filter-transitions-submachine :
is-submachine (filter-transitions M P) M
unfolding filter-transitions-simps by fastforce

lemma filter-transitions-path :
assumes path (filter-transitions M P) q p
shows path M q p
using path-begin-state[OF assms]

transition-subset-path[of filter-transitions M P M , OF - assms]
unfolding filter-transitions-simps by blast

lemma filter-transitions-reachable-states :
assumes q ∈ reachable-states (filter-transitions M P)
shows q ∈ reachable-states M
using assms unfolding reachable-states-def filter-transitions-simps
using filter-transitions-path[of M P initial M ]
by blast

4.22 Filtering States
lift-definition filter-states :: ( ′a, ′b, ′c) fsm ⇒ ( ′a ⇒ bool) ⇒ ( ′a, ′b, ′c) fsm

is FSM-Impl.filter-states
proof −

fix M :: ( ′a, ′b, ′c) fsm-impl
fix P :: ′a ⇒ bool
assume ∗: well-formed-fsm M

then show well-formed-fsm (FSM-Impl.filter-states M P)
by (cases P (FSM-Impl.initial M ); auto)

qed
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lemma filter-states-simps[simp] :
assumes P (initial M )

shows initial (filter-states M P) = initial M
states (filter-states M P) = Set.filter P (states M )
inputs (filter-states M P) = inputs M
outputs (filter-states M P) = outputs M

transitions (filter-states M P) = {t ∈ transitions M . P (t-source t) ∧ P
(t-target t)}

using assms by (transfer ;auto)+

lemma filter-states-submachine :
assumes P (initial M )
shows is-submachine (filter-states M P) M
using filter-states-simps[of P M , OF assms] by fastforce

fun restrict-to-reachable-states :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm where
restrict-to-reachable-states M = filter-states M (λ q . q ∈ reachable-states M )

lemma restrict-to-reachable-states-simps[simp] :
shows initial (restrict-to-reachable-states M ) = initial M

states (restrict-to-reachable-states M ) = reachable-states M
inputs (restrict-to-reachable-states M ) = inputs M
outputs (restrict-to-reachable-states M ) = outputs M
transitions (restrict-to-reachable-states M )

= {t ∈ transitions M . (t-source t) ∈ reachable-states M}
proof −

show initial (restrict-to-reachable-states M ) = initial M
states (restrict-to-reachable-states M ) = reachable-states M
inputs (restrict-to-reachable-states M ) = inputs M
outputs (restrict-to-reachable-states M ) = outputs M

using filter-states-simps[of (λ q . q ∈ reachable-states M ), OF reachable-states-initial]

using reachable-state-is-state[of - M ] by auto

have transitions (restrict-to-reachable-states M )
= {t ∈ transitions M . (t-source t) ∈ reachable-states M ∧ (t-target t) ∈

reachable-states M}
using filter-states-simps[of (λ q . q ∈ reachable-states M ), OF reachable-states-initial]

by auto
then show transitions (restrict-to-reachable-states M )

= {t ∈ transitions M . (t-source t) ∈ reachable-states M}
using reachable-states-next[of - M ] by auto

qed
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lemma restrict-to-reachable-states-path :
assumes q ∈ reachable-states M
shows path M q p = path (restrict-to-reachable-states M ) q p

proof
show path M q p =⇒ path (restrict-to-reachable-states M ) q p
proof −

assume path M q p
then show path (restrict-to-reachable-states M ) q p
using assms proof (induction p arbitrary: q rule: list.induct)

case Nil
then show ?case

using restrict-to-reachable-states-simps(2 ) by fastforce
next

case (Cons t ′ p ′)
then have path M (t-target t ′) p ′ by auto
moreover have t-target t ′ ∈ reachable-states M using Cons.prems

by (metis path-cons-elim reachable-states-next)
ultimately show ?case using Cons.IH

by (metis (no-types, lifting) Cons.prems(1 ) Cons.prems(2 ) mem-Collect-eq
path.simps

path-cons-elim restrict-to-reachable-states-simps(5 ))
qed

qed

show path (restrict-to-reachable-states M ) q p =⇒ path M q p
by (metis (no-types, lifting) assms mem-Collect-eq reachable-state-is-state

restrict-to-reachable-states-simps(5 ) subsetI transition-subset-path)
qed

lemma restrict-to-reachable-states-language :
L (restrict-to-reachable-states M ) = L M
unfolding LS .simps
unfolding restrict-to-reachable-states-simps
unfolding restrict-to-reachable-states-path[OF reachable-states-initial, of M ]
by blast

lemma restrict-to-reachable-states-observable :
assumes observable M

shows observable (restrict-to-reachable-states M )
using assms unfolding observable.simps
unfolding restrict-to-reachable-states-simps
by blast

lemma restrict-to-reachable-states-minimal :
assumes minimal M
shows minimal (restrict-to-reachable-states M )

proof −

223



have
∧

q1 q2 . q1 ∈ reachable-states M =⇒
q2 ∈ reachable-states M =⇒
q1 6= q2 =⇒

LS (restrict-to-reachable-states M ) q1 6= LS (restrict-to-reachable-states
M ) q2

proof −
fix q1 q2 assume q1 ∈ reachable-states M and q2 ∈ reachable-states M and

q1 6= q2
then have q1 ∈ states M and q2 ∈ states M

by (simp add: reachable-state-is-state)+
then have LS M q1 6= LS M q2

using ‹q1 6= q2 › assms by auto
then show LS (restrict-to-reachable-states M ) q1 6= LS (restrict-to-reachable-states

M ) q2
unfolding LS .simps
unfolding restrict-to-reachable-states-path[OF ‹q1 ∈ reachable-states M ›]
unfolding restrict-to-reachable-states-path[OF ‹q2 ∈ reachable-states M ›] .

qed
then show ?thesis

unfolding minimal.simps restrict-to-reachable-states-simps
by blast

qed

lemma restrict-to-reachable-states-reachable-states :
reachable-states (restrict-to-reachable-states M ) = states (restrict-to-reachable-states

M )
proof
show reachable-states (restrict-to-reachable-states M ) ⊆ states (restrict-to-reachable-states

M )
by (simp add: reachable-state-is-state subsetI )

show states (restrict-to-reachable-states M ) ⊆ reachable-states (restrict-to-reachable-states
M )

proof
fix q assume q ∈ states (restrict-to-reachable-states M )
then have q ∈ reachable-states M

unfolding restrict-to-reachable-states-simps .
then show q ∈ reachable-states (restrict-to-reachable-states M )

unfolding reachable-states-def
unfolding restrict-to-reachable-states-simps
unfolding restrict-to-reachable-states-path[OF reachable-states-initial, sym-

metric] .
qed

qed

4.23 Adding Transitions
lift-definition create-unconnected-fsm :: ′a ⇒ ′a set ⇒ ′b set ⇒ ′c set ⇒ ( ′a, ′b, ′c)
fsm

is FSM-Impl.create-unconnected-FSMI by (transfer ; simp)
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lemma create-unconnected-fsm-simps :
assumes finite ns and finite ins and finite outs and q ∈ ns
shows initial (create-unconnected-fsm q ns ins outs) = q

states (create-unconnected-fsm q ns ins outs) = ns
inputs (create-unconnected-fsm q ns ins outs) = ins
outputs (create-unconnected-fsm q ns ins outs) = outs
transitions (create-unconnected-fsm q ns ins outs) = {}

using assms by (transfer ; auto)+

lift-definition create-unconnected-fsm-from-lists :: ′a ⇒ ′a list ⇒ ′b list ⇒ ′c list
⇒ ( ′a, ′b, ′c) fsm

is FSM-Impl.create-unconnected-fsm-from-lists by (transfer ; simp)

lemma create-unconnected-fsm-from-lists-simps :
assumes q ∈ set ns
shows initial (create-unconnected-fsm-from-lists q ns ins outs) = q

states (create-unconnected-fsm-from-lists q ns ins outs) = set ns
inputs (create-unconnected-fsm-from-lists q ns ins outs) = set ins
outputs (create-unconnected-fsm-from-lists q ns ins outs) = set outs
transitions (create-unconnected-fsm-from-lists q ns ins outs) = {}

using assms by (transfer ; auto)+

lift-definition create-unconnected-fsm-from-fsets :: ′a ⇒ ′a fset ⇒ ′b fset ⇒ ′c
fset ⇒ ( ′a, ′b, ′c) fsm

is FSM-Impl.create-unconnected-fsm-from-fsets by (transfer ; simp)

lemma create-unconnected-fsm-from-fsets-simps :
assumes q |∈| ns
shows initial (create-unconnected-fsm-from-fsets q ns ins outs) = q

states (create-unconnected-fsm-from-fsets q ns ins outs) = fset ns
inputs (create-unconnected-fsm-from-fsets q ns ins outs) = fset ins
outputs (create-unconnected-fsm-from-fsets q ns ins outs) = fset outs
transitions (create-unconnected-fsm-from-fsets q ns ins outs) = {}

using assms by (transfer ; auto)+

lift-definition add-transitions :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) transition set ⇒ ( ′a, ′b, ′c)
fsm

is FSM-Impl.add-transitions
proof −

fix M :: ( ′a, ′b, ′c) fsm-impl
fix ts :: ( ′a, ′b, ′c) transition set
assume ∗: well-formed-fsm M

then show well-formed-fsm (FSM-Impl.add-transitions M ts)
proof (cases ∀ t ∈ ts . t-source t ∈ FSM-Impl.states M ∧ t-input t ∈ FSM-Impl.inputs

M
∧ t-output t ∈ FSM-Impl.outputs M ∧ t-target t ∈
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FSM-Impl.states M )
case True

then have ts ⊆ FSM-Impl.states M × FSM-Impl.inputs M × FSM-Impl.outputs
M × FSM-Impl.states M

by fastforce
moreover have finite (FSM-Impl.states M × FSM-Impl.inputs M × FSM-Impl.outputs

M × FSM-Impl.states M )
using ∗ by blast

ultimately have finite ts
using rev-finite-subset by auto

then show ?thesis using ∗ by auto
next

case False
then show ?thesis using ∗ by auto

qed
qed

lemma add-transitions-simps :
assumes

∧
t . t ∈ ts =⇒ t-source t ∈ states M ∧ t-input t ∈ inputs M ∧ t-output

t ∈ outputs M ∧ t-target t ∈ states M
shows initial (add-transitions M ts) = initial M

states (add-transitions M ts) = states M
inputs (add-transitions M ts) = inputs M
outputs (add-transitions M ts) = outputs M
transitions (add-transitions M ts) = transitions M ∪ ts

using assms by (transfer ; auto)+

lift-definition create-fsm-from-sets :: ′a ⇒ ′a set ⇒ ′b set ⇒ ′c set ⇒ ( ′a, ′b, ′c)
transition set ⇒ ( ′a, ′b, ′c) fsm

is FSM-Impl.create-fsm-from-sets
proof −

fix q :: ′a
fix qs :: ′a set
fix ins :: ′b set
fix outs :: ′c set
fix ts :: ( ′a, ′b, ′c) transition set

show well-formed-fsm (FSM-Impl.create-fsm-from-sets q qs ins outs ts)
proof (cases q ∈ qs ∧ finite qs ∧ finite ins ∧ finite outs)

case True

let ?M = (FSMI q qs ins outs {})

show ?thesis proof (cases ∀ t ∈ ts . t-source t ∈ FSM-Impl.states ?M ∧ t-input
t ∈ FSM-Impl.inputs ?M

∧ t-output t ∈ FSM-Impl.outputs ?M ∧ t-target t ∈

226



FSM-Impl.states ?M )
case True

then have ts ⊆ FSM-Impl.states ?M × FSM-Impl.inputs ?M × FSM-Impl.outputs
?M × FSM-Impl.states ?M

by fastforce
moreover have finite (FSM-Impl.states ?M × FSM-Impl.inputs ?M ×

FSM-Impl.outputs ?M × FSM-Impl.states ?M )
using ‹q ∈ qs ∧ finite qs ∧ finite ins ∧ finite outs› by force

ultimately have finite ts
using rev-finite-subset by auto

then show ?thesis by auto
next

case False
then show ?thesis by auto

qed
next

case False
then show ?thesis by auto

qed
qed

lemma create-fsm-from-sets-simps :
assumes q ∈ qs and finite qs and finite ins and finite outs
assumes

∧
t . t ∈ ts =⇒ t-source t ∈ qs ∧ t-input t ∈ ins ∧ t-output t ∈ outs

∧ t-target t ∈ qs
shows initial (create-fsm-from-sets q qs ins outs ts) = q

states (create-fsm-from-sets q qs ins outs ts) = qs
inputs (create-fsm-from-sets q qs ins outs ts) = ins
outputs (create-fsm-from-sets q qs ins outs ts) = outs
transitions (create-fsm-from-sets q qs ins outs ts) = ts

using assms by (transfer ; auto)+

lemma create-fsm-from-self :
m = create-fsm-from-sets (initial m) (states m) (inputs m) (outputs m) (transitions

m)
proof −

have ∗:
∧

t . t ∈ transitions m =⇒ t-source t ∈ states m ∧ t-input t ∈ inputs m
∧ t-output t ∈ outputs m ∧ t-target t ∈ states m

by auto
show ?thesis
using create-fsm-from-sets-simps[OF fsm-initial fsm-states-finite fsm-inputs-finite

fsm-outputs-finite ∗, of transitions m]
apply transfer
by force

qed

lemma create-fsm-from-sets-surj :
assumes finite (UNIV :: ′a set)
and finite (UNIV :: ′b set)
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and finite (UNIV :: ′c set)
shows surj (λ(q:: ′a,Q,X :: ′b set,Y :: ′c set,T ) . create-fsm-from-sets q Q X Y T )
proof

show range (λ(q:: ′a,Q,X :: ′b set,Y :: ′c set,T ) . create-fsm-from-sets q Q X Y T )
⊆ UNIV

by simp
show UNIV ⊆ range (λ(q:: ′a,Q,X :: ′b set,Y :: ′c set,T ) . create-fsm-from-sets q Q

X Y T )
proof

fix m assume m ∈ (UNIV :: ( ′a, ′b, ′c) fsm set)
then have m = create-fsm-from-sets (initial m) (states m) (inputs m) (outputs

m) (transitions m)
using create-fsm-from-self by blast

then have m = (λ(q:: ′a,Q,X :: ′b set,Y :: ′c set,T ) . create-fsm-from-sets q Q X
Y T ) (initial m,states m,inputs m,outputs m,transitions m)

by auto
then show m ∈ range (λ(q:: ′a,Q,X :: ′b set,Y :: ′c set,T ) . create-fsm-from-sets

q Q X Y T )
by blast

qed
qed

4.24 Distinguishability
definition distinguishes :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ ( ′b × ′c) list ⇒ bool where

distinguishes M q1 q2 io = (io ∈ LS M q1 ∪ LS M q2 ∧ io /∈ LS M q1 ∩ LS M
q2 )

definition minimally-distinguishes :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ ( ′b × ′c) list ⇒
bool where

minimally-distinguishes M q1 q2 io = (distinguishes M q1 q2 io
∧ (∀ io ′ . distinguishes M q1 q2 io ′ −→ length io

≤ length io ′))

lemma minimally-distinguishes-ex :
assumes q1 ∈ states M

and q2 ∈ states M
and LS M q1 6= LS M q2

obtains v where minimally-distinguishes M q1 q2 v
proof −

let ?vs = {v . distinguishes M q1 q2 v}
define vMin where vMin: vMin = arg-min length (λv . v ∈ ?vs)

obtain v ′ where distinguishes M q1 q2 v ′

using assms unfolding distinguishes-def by blast
then have vMin ∈ ?vs ∧ (∀ v ′′ . distinguishes M q1 q2 v ′′ −→ length vMin ≤

length v ′′)
unfolding vMin using arg-min-nat-lemma[of λv . distinguishes M q1 q2 v v ′

length]
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by simp
then show ?thesis

using that[of vMin] unfolding minimally-distinguishes-def by blast
qed

lemma distinguish-prepend :
assumes observable M

and distinguishes M (FSM .after M q1 io) (FSM .after M q2 io) w
and q1 ∈ states M
and q2 ∈ states M
and io ∈ LS M q1
and io ∈ LS M q2

shows distinguishes M q1 q2 (io@w)
proof −

have (io@w ∈ LS M q1 ) = (w ∈ LS M (after M q1 io))
using assms(1 ,3 ,5 )
by (metis after-language-iff )

moreover have (io@w ∈ LS M q2 ) = (w ∈ LS M (after M q2 io))
using assms(1 ,4 ,6 )
by (metis after-language-iff )

ultimately show ?thesis
using assms(2 ) unfolding distinguishes-def by blast

qed

lemma distinguish-prepend-initial :
assumes observable M

and distinguishes M (after-initial M (io1@io)) (after-initial M (io2@io)) w
and io1@io ∈ L M
and io2@io ∈ L M

shows distinguishes M (after-initial M io1 ) (after-initial M io2 ) (io@w)
proof −
have f1 : ∀ ps psa f a. (ps::( ′b × ′c) list) @ psa /∈ LS f (a:: ′a) ∨ ps ∈ LS f a

by (meson language-prefix)
then have f2 : io1 ∈ L M

by (meson assms(3 ))
have f3 : io2 ∈ L M

using f1 by (metis assms(4 ))
have io1 ∈ L M

using f1 by (metis assms(3 ))
then show ?thesis
by (metis after-is-state after-language-iff after-split assms(1 ) assms(2 ) assms(3 )

assms(4 ) distinguish-prepend f3 )
qed

lemma minimally-distinguishes-no-prefix :
assumes observable M
and u@w ∈ L M
and v@w ∈ L M
and minimally-distinguishes M (after-initial M u) (after-initial M v) (w@w ′@w ′′)

229



and w ′ 6= []
shows ¬distinguishes M (after-initial M (u@w)) (after-initial M (v@w)) w ′′

proof
assume distinguishes M (after-initial M (u @ w)) (after-initial M (v @ w)) w ′′

then have distinguishes M (after-initial M u) (after-initial M v) (w@w ′′)
using assms(1−3 ) distinguish-prepend-initial by blast

moreover have length (w@w ′′) < length (w@w ′@w ′′)
using assms(5 ) by auto

ultimately show False
using assms(4 ) unfolding minimally-distinguishes-def
using leD by blast

qed

lemma minimally-distinguishes-after-append :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and minimally-distinguishes M q1 q2 (w@w ′)
and w ′ 6= []

shows minimally-distinguishes M (after M q1 w) (after M q2 w) w ′

proof −
have ¬ distinguishes M q1 q2 w

using assms(5 ,6 )
by (metis add.right-neutral add-le-cancel-left length-append length-greater-0-conv

linorder-not-le minimally-distinguishes-def )
then have w ∈ LS M q1 = (w ∈ LS M q2 )

unfolding distinguishes-def
by blast

moreover have (w@w ′) ∈ LS M q1 ∪ LS M q2
using assms(5 ) unfolding minimally-distinguishes-def distinguishes-def
by blast

ultimately have w ∈ LS M q1 and w ∈ LS M q2
by (meson Un-iff language-prefix)+

have (w@w ′) ∈ LS M q1 = (w ′ ∈ LS M (after M q1 w))
by (meson ‹w ∈ LS M q1 › after-language-iff assms(1 ))

moreover have (w@w ′) ∈ LS M q2 = (w ′ ∈ LS M (after M q2 w))
by (meson ‹w ∈ LS M q2 › after-language-iff assms(1 ))

ultimately have distinguishes M (after M q1 w) (after M q2 w) w ′

using assms(5 ) unfolding minimally-distinguishes-def distinguishes-def
by blast

moreover have
∧

w ′′ . distinguishes M (after M q1 w) (after M q2 w) w ′′ =⇒
length w ′ ≤ length w ′′

proof −
fix w ′′ assume distinguishes M (after M q1 w) (after M q2 w) w ′′

then have distinguishes M q1 q2 (w@w ′′)
by (metis ‹w ∈ LS M q1 › ‹w ∈ LS M q2 › assms(1 ) assms(3 ) assms(4 )
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distinguish-prepend)
then have length (w@w ′) ≤ length (w@w ′′)

using assms(5 ) unfolding minimally-distinguishes-def distinguishes-def
by blast

then show length w ′ ≤ length w ′′

by auto
qed
ultimately show ?thesis

unfolding minimally-distinguishes-def distinguishes-def
by blast

qed

lemma minimally-distinguishes-after-append-initial :
assumes observable M
and minimal M
and u ∈ L M
and v ∈ L M
and minimally-distinguishes M (after-initial M u) (after-initial M v) (w@w ′)
and w ′ 6= []

shows minimally-distinguishes M (after-initial M (u@w)) (after-initial M (v@w))
w ′

proof −

have ¬ distinguishes M (after-initial M u) (after-initial M v) w
using assms(5 ,6 )

by (metis add.right-neutral add-le-cancel-left length-append length-greater-0-conv
linorder-not-le minimally-distinguishes-def )

then have w ∈ LS M (after-initial M u) = (w ∈ LS M (after-initial M v))
unfolding distinguishes-def
by blast

moreover have (w@w ′) ∈ LS M (after-initial M u) ∪ LS M (after-initial M v)
using assms(5 ) unfolding minimally-distinguishes-def distinguishes-def
by blast

ultimately have w ∈ LS M (after-initial M u) and w ∈ LS M (after-initial M
v)

by (meson Un-iff language-prefix)+

have (w@w ′) ∈ LS M (after-initial M u) = (w ′ ∈ LS M (after-initial M (u@w)))
by (meson ‹w ∈ LS M (after-initial M u)› after-language-append-iff after-language-iff

assms(1 ) assms(3 ))
moreover have (w@w ′) ∈ LS M (after-initial M v) = (w ′ ∈ LS M (after-initial

M (v@w)))
by (meson ‹w ∈ LS M (after-initial M v)› after-language-append-iff after-language-iff

assms(1 ) assms(4 ))
ultimately have distinguishes M (after-initial M (u@w)) (after-initial M (v@w))

w ′

using assms(5 ) unfolding minimally-distinguishes-def distinguishes-def
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by blast
moreover have

∧
w ′′ . distinguishes M (after-initial M (u@w)) (after-initial M

(v@w)) w ′′ =⇒ length w ′ ≤ length w ′′

proof −
fix w ′′ assume distinguishes M (after-initial M (u@w)) (after-initial M (v@w))

w ′′

then have distinguishes M (after-initial M u) (after-initial M v) (w@w ′′)
by (meson ‹w ∈ LS M (after-initial M u)› ‹w ∈ LS M (after-initial M v)›

after-language-iff assms(1 ) assms(3 ) assms(4 ) distinguish-prepend-initial)
then have length (w@w ′) ≤ length (w@w ′′)

using assms(5 ) unfolding minimally-distinguishes-def distinguishes-def
by blast

then show length w ′ ≤ length w ′′

by auto
qed
ultimately show ?thesis

unfolding minimally-distinguishes-def distinguishes-def
by blast

qed

lemma minimally-distinguishes-proper-prefixes-card :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and minimally-distinguishes M q1 q2 w
and S ⊆ states M

shows card {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M q1 w ′ ∈ S ∧ after M
q2 w ′ ∈ S} ≤ card S − 1
(is ?P S)
proof −

define k where k = card S
then show ?thesis

using assms(6 )
proof (induction k arbitrary: S rule: less-induct)

case (less k)

then have finite S
by (metis fsm-states-finite rev-finite-subset)

show ?case proof (cases k)
case 0
then have S = {}

using less.prems ‹finite S› by auto
then show ?thesis

by fastforce
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next
case (Suc k ′)

show ?thesis proof (cases {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M
q1 w ′ ∈ S ∧ after M q2 w ′ ∈ S} = {})

case True
then show ?thesis

by (metis bot.extremum dual-order .eq-iff obtain-subset-with-card-n)
next

case False

define wk where wk: wk = arg-max length (λwk . wk ∈ {w ′ . w ′ ∈ set
(prefixes w) ∧ w ′ 6= w ∧ after M q1 w ′ ∈ S ∧ after M q2 w ′ ∈ S})

obtain wk ′ where ∗:wk ′ ∈ {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M
q1 w ′ ∈ S ∧ after M q2 w ′ ∈ S}

using False by blast
have finite {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M q1 w ′ ∈ S ∧

after M q2 w ′ ∈ S}
by (metis (no-types) Collect-mem-eq List.finite-set finite-Collect-conjI )

then have wk ∈ {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M q1 w ′ ∈ S
∧ after M q2 w ′ ∈ S}

and
∧

wk ′ . wk ′ ∈ {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M q1
w ′ ∈ S ∧ after M q2 w ′ ∈ S} =⇒ length wk ′ ≤ length wk

using False unfolding wk
using arg-max-nat-lemma[of (λwk . wk ∈ {w ′ . w ′ ∈ set (prefixes w) ∧ w ′

6= w ∧ after M q1 w ′ ∈ S ∧ after M q2 w ′ ∈ S}), OF ∗]
by (meson finite-maxlen)+

then have wk ∈ set (prefixes w) and wk 6= w and after M q1 wk ∈ S and
after M q2 wk ∈ S

by blast+

obtain wk-suffix where w = wk@wk-suffix and wk-suffix 6= []
using ‹wk ∈ set (prefixes w)›
using prefixes-set-ob ‹wk 6= w›
by blast

have distinguishes M (after M q1 []) (after M q2 []) w
using ‹minimally-distinguishes M q1 q2 w›
by (metis after .simps(1 ) minimally-distinguishes-def )

have minimally-distinguishes M (after M q1 wk) (after M q2 wk) wk-suffix
using ‹minimally-distinguishes M q1 q2 w› ‹wk-suffix 6= []›
unfolding ‹w = wk@wk-suffix›

using minimally-distinguishes-after-append[OF assms(1 ,2 ,3 ,4 ), of wk
wk-suffix]

by blast
then have distinguishes M (after M q1 wk) (after M q2 wk) wk-suffix
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unfolding minimally-distinguishes-def
by auto

then have wk-suffix ∈ LS M (after M q1 wk) = (wk-suffix /∈ LS M (after
M q2 wk))

unfolding distinguishes-def by blast

define S1 where S1 : S1 = Set.filter (λq . wk-suffix ∈ LS M q) S
define S2 where S2 : S2 = Set.filter (λq . wk-suffix /∈ LS M q) S

have S = S1 ∪ S2
unfolding S1 S2 by auto

moreover have S1 ∩ S2 = {}
unfolding S1 S2 by auto

ultimately have card S = card S1 + card S2
using ‹finite S› card-Un-disjoint by blast

have S1 ⊆ states M and S2 ⊆ states M
using ‹S = S1 ∪ S2 › less.prems(2 ) by blast+

have S1 6= {} and S2 6= {}
using ‹wk-suffix ∈ LS M (after M q1 wk) = (wk-suffix /∈ LS M (after M

q2 wk))› ‹after M q1 wk ∈ S› ‹after M q2 wk ∈ S›
unfolding S1 S2
by (metis empty-iff member-filter)+

then have card S1 > 0 and card S2 > 0
using ‹S = S1 ∪ S2 › ‹finite S›
by (meson card-0-eq finite-Un neq0-conv)+

then have card S1 < k and card S2 < k
using ‹card S = card S1 + card S2 › unfolding less.prems
by auto

define W where W : W = (λ S1 S2 . {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6=
w ∧ after M q1 w ′ ∈ S1 ∧ after M q2 w ′ ∈ S2})

then have
∧

S ′ S ′′ . W S ′ S ′′ ⊆ set (prefixes w)
by auto

then have W-finite:
∧

S ′ S ′′ . finite (W S ′ S ′′)
using List.finite-set[of prefixes w]
by (meson finite-subset)

have
∧

w ′ . w ′ ∈ W S S =⇒ w ′ 6= wk =⇒ after M q1 w ′ ∈ S1 = (after M
q2 w ′ ∈ S1 )

proof −
fix w ′ assume ∗:w ′ ∈ W S S and w ′ 6= wk
then have w ′ ∈ set (prefixes w) and w ′ 6= w and after M q1 w ′ ∈ S and

after M q2 w ′ ∈ S
unfolding W
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by blast+

then have w ′ ∈ LS M q1
by (metis IntE UnCI UnE append-self-conv assms(5 ) distinguishes-def

language-prefix leD length-append length-greater-0-conv less-add-same-cancel1 min-
imally-distinguishes-def prefixes-set-ob)

have w ′ ∈ LS M q2
by (metis IntE UnCI ‹w ′ ∈ LS M q1 › ‹w ′ ∈ set (prefixes w)› ‹w ′ 6=

w› append-Nil2 assms(5 ) distinguishes-def leD length-append length-greater-0-conv
less-add-same-cancel1 minimally-distinguishes-def prefixes-set-ob)

have length w ′ < length wk
using ‹w ′ 6= wk› ∗

‹
∧

wk ′ . wk ′ ∈ {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M q1
w ′ ∈ S ∧ after M q2 w ′ ∈ S} =⇒ length wk ′ ≤ length wk›

unfolding W
by (metis (no-types, lifting) ‹w = wk @ wk-suffix› ‹w ′ ∈ set (prefixes w)›

append-eq-append-conv le-neq-implies-less prefixes-set-ob)

show after M q1 w ′ ∈ S1 = (after M q2 w ′ ∈ S1 )
proof (rule ccontr)

assume (after M q1 w ′ ∈ S1 ) 6= (after M q2 w ′ ∈ S1 )
then have (after M q1 w ′ ∈ S1 ∧ (after M q2 w ′ ∈ S2 )) ∨ (after M q1

w ′ ∈ S2 ∧ (after M q2 w ′ ∈ S1 ))
using ‹after M q1 w ′ ∈ S› ‹after M q2 w ′ ∈ S›
unfolding ‹S = S1 ∪ S2 ›
by blast

then have wk-suffix ∈ LS M (after M q1 w ′) = (wk-suffix /∈ LS M (after
M q2 w ′))

unfolding S1 S2
by (metis member-filter)

then have distinguishes M (after M q1 w ′) (after M q2 w ′) wk-suffix
unfolding distinguishes-def by blast

then have distinguishes M q1 q2 (w ′@wk-suffix)
using distinguish-prepend[OF assms(1 ) - ‹q1 ∈ states M › ‹q2 ∈ states

M › ‹w ′ ∈ LS M q1 › ‹w ′ ∈ LS M q2 ›]
by blast

moreover have length (w ′@wk-suffix) < length (wk@wk-suffix)
using ‹length w ′ < length wk›
by auto

ultimately show False
using ‹minimally-distinguishes M q1 q2 w›
unfolding ‹w = wk@wk-suffix› minimally-distinguishes-def
by auto

qed
qed
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have
∧

x . x ∈ W S1 S2 ∪ W S2 S1 =⇒ x = wk
proof −

fix x assume x ∈ W S1 S2 ∪ W S2 S1
then have x ∈ W S S

unfolding W ‹S = S1 ∪ S2 › by blast
show x = wk

using ‹x ∈ W S1 S2 ∪ W S2 S1 ›
using ‹

∧
w ′ . w ′ ∈ W S S =⇒ w ′ 6= wk =⇒ after M q1 w ′ ∈ S1 = (after

M q2 w ′ ∈ S1 )›[OF ‹x ∈ W S S›]
unfolding W
using ‹S1 ∩ S2 = {}›
by blast

qed
moreover have wk ∈ W S1 S2 ∪ W S2 S1

unfolding W
using ‹wk ∈ {w ′ . w ′ ∈ set (prefixes w) ∧ w ′ 6= w ∧ after M q1 w ′ ∈ S ∧

after M q2 w ′ ∈ S}›
‹wk-suffix ∈ LS M (after M q1 wk) = (wk-suffix /∈ LS M (after M q2

wk))›
by (metis (no-types, lifting) S1 Un-iff ‹S = S1 ∪ S2 › mem-Collect-eq

member-filter)
ultimately have W S1 S2 ∪ W S2 S1 = {wk}

by blast

have W S S = (W S1 S1 ∪ W S2 S2 ∪ (W S1 S2 ∪ W S2 S1 ))
unfolding W ‹S = S1 ∪ S2 › by blast

moreover have W S1 S1 ∩ W S2 S2 = {}
using ‹S1 ∩ S2 = {}› unfolding W
by blast

moreover have W S1 S1 ∩ (W S1 S2 ∪ W S2 S1 ) = {}
unfolding W
using ‹S1 ∩ S2 = {}›
by blast

moreover have W S2 S2 ∩ (W S1 S2 ∪ W S2 S1 ) = {}
unfolding W
using ‹S1 ∩ S2 = {}›
by blast

moreover have finite (W S1 S1 ) and finite (W S2 S2 ) and finite {wk}
using W-finite by auto

ultimately have card (W S S) = card (W S1 S1 ) + card (W S2 S2 ) + 1
unfolding ‹W S1 S2 ∪ W S2 S1 = {wk}›

by (metis card-Un-disjoint finite-UnI inf-sup-distrib2 is-singletonI is-singleton-altdef
sup-idem)

moreover have card (W S1 S1 ) ≤ card S1 − 1
using less.IH [OF ‹card S1 < k› - ‹S1 ⊆ states M ›]
unfolding W by blast

moreover have card (W S2 S2 ) ≤ card S2 − 1
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using less.IH [OF ‹card S2 < k› - ‹S2 ⊆ states M ›]
unfolding W by blast

ultimately have card (W S S) ≤ card S − 1
using ‹card S = card S1 + card S2 ›
using ‹card S1 < k› ‹card S2 < k› less.prems(1 ) by linarith

then show ?thesis
unfolding W .

qed
qed

qed
qed

lemma minimally-distinguishes-proper-prefix-in-language :
assumes minimally-distinguishes M q1 q2 io
and io ′ ∈ set (prefixes io)
and io ′ 6= io

shows io ′ ∈ LS M q1 ∩ LS M q2
proof −

have io ∈ LS M q1 ∨ io ∈ LS M q2
using assms(1 ) unfolding minimally-distinguishes-def distinguishes-def by

blast
then have io ′ ∈ LS M q1 ∨ io ′ ∈ LS M q2

by (metis assms(2 ) prefixes-set-ob language-prefix)

have length io ′ < length io
using assms(2 ,3 ) unfolding prefixes-set by auto

then have io ′ ∈ LS M q1 ←→ io ′ ∈ LS M q2
using assms(1 ) unfolding minimally-distinguishes-def distinguishes-def
by (metis Int-iff Un-Int-eq(1 ) Un-Int-eq(2 ) leD)

then show ?thesis
using ‹io ′ ∈ LS M q1 ∨ io ′ ∈ LS M q2 ›
by blast

qed

lemma distinguishes-not-Nil:
assumes distinguishes M q1 q2 io
and q1 ∈ states M
and q2 ∈ states M

shows io 6= []
using assms unfolding distinguishes-def by auto

fun does-distinguish :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ ( ′b × ′c) list ⇒ bool where
does-distinguish M q1 q2 io = (is-in-language M q1 io 6= is-in-language M q2 io)

lemma does-distinguish-correctness :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M

shows does-distinguish M q1 q2 io = distinguishes M q1 q2 io
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unfolding does-distinguish.simps
is-in-language-iff [OF assms(1 ,2 )]
is-in-language-iff [OF assms(1 ,3 )]
distinguishes-def

by blast

lemma h-obs-distinguishes :
assumes observable M
and h-obs M q1 x y = Some q1 ′

and h-obs M q2 x y = None
shows distinguishes M q1 q2 [(x,y)]

using assms(2 ,3 ) LS-single-transition[of x y M ] unfolding distinguishes-def
h-obs-Some[OF assms(1 )] h-obs-None[OF assms(1 )]

by (metis Int-iff UnI1 ‹
∧

y x q. (h-obs M q x y = None) = (@ q ′. (q, x, y, q ′) ∈
FSM .transitions M )› assms(1 ) assms(2 ) fst-conv h-obs-language-iff option.distinct(1 )
snd-conv)

lemma distinguishes-sym :
assumes distinguishes M q1 q2 io
shows distinguishes M q2 q1 io
using assms unfolding distinguishes-def by blast

lemma distinguishes-after-prepend :
assumes observable M
and h-obs M q1 x y 6= None
and h-obs M q2 x y 6= None
and distinguishes M (FSM .after M q1 [(x,y)]) (FSM .after M q2 [(x,y)]) γ

shows distinguishes M q1 q2 ((x,y)#γ)
proof −

have [(x,y)] ∈ LS M q1
using assms(2 ) h-obs-language-single-transition-iff [OF assms(1 )] by auto

have [(x,y)] ∈ LS M q2
using assms(3 ) h-obs-language-single-transition-iff [OF assms(1 )] by auto

show ?thesis
using after-language-iff [OF assms(1 ) ‹[(x,y)] ∈ LS M q1 ›, of γ]
using after-language-iff [OF assms(1 ) ‹[(x,y)] ∈ LS M q2 ›, of γ]
using assms(4 )
unfolding distinguishes-def
by simp

qed

lemma distinguishes-after-initial-prepend :
assumes observable M
and io1 ∈ L M
and io2 ∈ L M
and h-obs M (after-initial M io1 ) x y 6= None
and h-obs M (after-initial M io2 ) x y 6= None

238



and distinguishes M (after-initial M (io1@[(x,y)])) (after-initial M (io2@[(x,y)]))
γ
shows distinguishes M (after-initial M io1 ) (after-initial M io2 ) ((x,y)#γ)

by (metis after-split assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 )
distinguishes-after-prepend h-obs-language-append)

4.25 Extending FSMs by single elements
lemma fsm-from-list-simps[simp] :

initial (fsm-from-list q ts) = (case ts of [] ⇒ q | (t#ts) ⇒ t-source t)
states (fsm-from-list q ts) = (case ts of [] ⇒ {q} | (t#ts ′) ⇒ ((image t-source

(set ts)) ∪ (image t-target (set ts))))
inputs (fsm-from-list q ts) = image t-input (set ts)
outputs (fsm-from-list q ts) = image t-output (set ts)
transitions (fsm-from-list q ts) = set ts
by (cases ts; transfer ; simp)+

lift-definition add-transition :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) transition ⇒ ( ′a, ′b, ′c)
fsm is FSM-Impl.add-transition

by simp

lemma add-transition-simps[simp]:
assumes t-source t ∈ states M and t-input t ∈ inputs M and t-output t ∈

outputs M and t-target t ∈ states M
shows
initial (add-transition M t) = initial M
inputs (add-transition M t) = inputs M
outputs (add-transition M t) = outputs M
transitions (add-transition M t) = insert t (transitions M )
states (add-transition M t) = states M using assms by (transfer ; simp)+

lift-definition add-state :: ( ′a, ′b, ′c) fsm ⇒ ′a⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.add-state
by simp

lemma add-state-simps[simp]:
initial (add-state M q) = initial M
inputs (add-state M q) = inputs M
outputs (add-state M q) = outputs M
transitions (add-state M q) = transitions M
states (add-state M q) = insert q (states M ) by (transfer ; simp)+

lift-definition add-input :: ( ′a, ′b, ′c) fsm ⇒ ′b⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.add-input
by simp

lemma add-input-simps[simp]:
initial (add-input M x) = initial M
inputs (add-input M x) = insert x (inputs M )
outputs (add-input M x) = outputs M
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transitions (add-input M x) = transitions M
states (add-input M x) = states M by (transfer ; simp)+

lift-definition add-output :: ( ′a, ′b, ′c) fsm ⇒ ′c⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.add-output
by simp

lemma add-output-simps[simp]:
initial (add-output M y) = initial M
inputs (add-output M y) = inputs M
outputs (add-output M y) = insert y (outputs M )
transitions (add-output M y) = transitions M
states (add-output M y) = states M by (transfer ; simp)+

lift-definition add-transition-with-components :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) transi-
tion ⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.add-transition-with-components

by simp

lemma add-transition-with-components-simps[simp]:
initial (add-transition-with-components M t) = initial M
inputs (add-transition-with-components M t) = insert (t-input t) (inputs M )
outputs (add-transition-with-components M t) = insert (t-output t) (outputs M )
transitions (add-transition-with-components M t) = insert t (transitions M )
states (add-transition-with-components M t) = insert (t-target t) (insert (t-source

t) (states M ))
by (transfer ; simp)+

4.26 Renaming Elements
lift-definition rename-states :: ( ′a, ′b, ′c) fsm ⇒ ( ′a ⇒ ′d) ⇒ ( ′d, ′b, ′c) fsm is
FSM-Impl.rename-states

by simp

lemma rename-states-simps[simp]:
initial (rename-states M f ) = f (initial M )
states (rename-states M f ) = f ‘ (states M )
inputs (rename-states M f ) = inputs M
outputs (rename-states M f ) = outputs M
transitions (rename-states M f ) = (λt . (f (t-source t), t-input t, t-output t, f

(t-target t))) ‘ transitions M
by (transfer ; simp)+

lemma rename-states-isomorphism-language-state :
assumes bij-betw f (states M ) (f ‘ states M )
and q ∈ states M

shows LS (rename-states M f ) (f q) = LS M q
proof −

have ∗: bij-betw f (FSM .states M ) (FSM .states (FSM .rename-states M f ))
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using assms rename-states-simps by auto

have ∗∗: f (initial M ) = initial (rename-states M f )
using rename-states-simps by auto

have ∗∗∗: (
∧

q x y q ′.
q ∈ states M =⇒
q ′ ∈ states M =⇒ ((q, x, y, q ′) ∈ transitions M ) = ((f q, x, y, f q ′) ∈ transitions

(rename-states M f )))
proof

fix q x y q ′ assume q ∈ states M and q ′ ∈ states M

show (q, x, y, q ′) ∈ transitions M =⇒ (f q, x, y, f q ′) ∈ transitions (rename-states
M f )

unfolding assms rename-states-simps by force

show (f q, x, y, f q ′) ∈ transitions (rename-states M f ) =⇒ (q, x, y, q ′) ∈
transitions M

proof −
assume (f q, x, y, f q ′) ∈ transitions (rename-states M f )
then obtain t where (f q, x, y, f q ′) = (f (t-source t), t-input t, t-output t,

f (t-target t))
and t ∈ transitions M

unfolding assms rename-states-simps
by blast

then have t-source t ∈ states M and t-target t ∈ states M and f (t-source
t) = f q and f (t-target t) = f q ′ and t-input t = x and t-output t = y

by auto

have f q ∈ states (rename-states M f ) and f q ′ ∈ states (rename-states M f )
using ‹(f q, x, y, f q ′) ∈ transitions (rename-states M f )›
by auto

have t-source t = q
using ‹f (t-source t) = f q› ‹q ∈ states M › ‹t-source t ∈ states M ›
using assms unfolding bij-betw-def inj-on-def
by blast

moreover have t-target t = q ′

using ‹f (t-target t) = f q ′› ‹q ′ ∈ states M › ‹t-target t ∈ states M ›
using assms unfolding bij-betw-def inj-on-def
by blast

ultimately show (q, x, y, q ′) ∈ transitions M
using ‹t-input t = x› ‹t-output t = y› ‹t ∈ transitions M ›
by auto

qed
qed

show ?thesis
using language-equivalence-from-isomorphism[OF ∗ ∗∗ ∗∗∗ assms(2 )]
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by blast
qed

lemma rename-states-isomorphism-language :
assumes bij-betw f (states M ) (f ‘ states M )
shows L (rename-states M f ) = L M
using rename-states-isomorphism-language-state[OF assms fsm-initial]
unfolding rename-states-simps .

lemma rename-states-observable :
assumes bij-betw f (states M ) (f ‘ states M )
and observable M

shows observable (rename-states M f )
proof −

have
∧

q1 x y q1 ′ q1 ′′ . (q1 ,x,y,q1 ′) ∈ transitions (rename-states M f ) =⇒
(q1 ,x,y,q1 ′′) ∈ transitions (rename-states M f ) =⇒ q1 ′ = q1 ′′

proof −
fix q1 x y q1 ′ q1 ′′

assume (q1 ,x,y,q1 ′) ∈ transitions (rename-states M f ) and (q1 ,x,y,q1 ′′) ∈
transitions (rename-states M f )

then obtain t ′ t ′′ where t ′ ∈ transitions M
and t ′′ ∈ transitions M
and (f (t-source t ′), t-input t ′, t-output t ′, f (t-target t ′)) =

(q1 ,x,y,q1 ′)
and (f (t-source t ′′), t-input t ′′, t-output t ′′, f (t-target t ′′)) =

(q1 ,x,y,q1 ′′)
unfolding rename-states-simps
by force

then have f (t-source t ′) = f (t-source t ′′)
by auto

moreover have t-source t ′ ∈ states M and t-source t ′′ ∈ states M
using ‹t ′ ∈ transitions M › ‹t ′′ ∈ transitions M ›
by auto

ultimately have t-source t ′ = t-source t ′′

using assms(1 )
unfolding bij-betw-def inj-on-def by blast

then have t-target t ′ = t-target t ′′

using assms(2 ) unfolding observable.simps
by (metis Pair-inject ‹(f (t-source t ′′), t-input t ′′, t-output t ′′, f (t-target t ′′))

= (q1 , x, y, q1 ′′)› ‹(f (t-source t ′), t-input t ′, t-output t ′, f (t-target t ′)) = (q1 , x,
y, q1 ′)› ‹t ′ ∈ FSM .transitions M › ‹t ′′ ∈ FSM .transitions M ›)

then show q1 ′ = q1 ′′

using ‹(f (t-source t ′′), t-input t ′′, t-output t ′′, f (t-target t ′′)) = (q1 , x, y,
q1 ′′)› ‹(f (t-source t ′), t-input t ′, t-output t ′, f (t-target t ′)) = (q1 , x, y, q1 ′)› by
auto

qed
then show ?thesis

242



unfolding observable-alt-def by blast
qed

lemma rename-states-minimal :
assumes bij-betw f (states M ) (f ‘ states M )
and minimal M

shows minimal (rename-states M f )
proof −

have
∧

q q ′ . q ∈ f ‘ FSM .states M =⇒ q ′ ∈ f ‘ FSM .states M =⇒ q 6= q ′ =⇒
LS (rename-states M f ) q 6= LS (rename-states M f ) q ′

proof −
fix q q ′ assume q ∈ f ‘ FSM .states M and q ′ ∈ f ‘ FSM .states M and q 6= q ′

then obtain fq fq ′ where fq ∈ states M and fq ′ ∈ states M and q = f fq and
q ′ = f fq ′

by auto
then have fq 6= fq ′

using ‹q 6= q ′› by auto
then have LS M fq 6= LS M fq ′

by (meson ‹fq ∈ FSM .states M › ‹fq ′ ∈ FSM .states M › assms(2 ) mini-
mal.elims(2 ))

then show LS (rename-states M f ) q 6= LS (rename-states M f ) q ′

using rename-states-isomorphism-language-state[OF assms(1 )]
by (simp add: ‹fq ∈ FSM .states M › ‹fq ′ ∈ FSM .states M › ‹q = f fq› ‹q ′ = f

fq ′›)
qed
then show ?thesis

by auto
qed

fun index-states :: ( ′a::linorder , ′b, ′c) fsm ⇒ (nat, ′b, ′c) fsm where
index-states M = rename-states M (assign-indices (states M ))

lemma assign-indices-bij-betw: bij-betw (assign-indices (FSM .states M )) (FSM .states
M ) (assign-indices (FSM .states M ) ‘ FSM .states M )

using assign-indices-bij[OF fsm-states-finite[of M ]]
by (simp add: bij-betw-def )

lemma index-states-language :
L (index-states M ) = L M
using rename-states-isomorphism-language[of assign-indices (states M ) M , OF

assign-indices-bij-betw]
by auto

lemma index-states-observable :
assumes observable M
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shows observable (index-states M )
using rename-states-observable[of assign-indices (states M ), OF assign-indices-bij-betw

assms]
unfolding index-states.simps .

lemma index-states-minimal :
assumes minimal M
shows minimal (index-states M )
using rename-states-minimal[of assign-indices (states M ), OF assign-indices-bij-betw

assms]
unfolding index-states.simps .

fun index-states-integer :: ( ′a::linorder , ′b, ′c) fsm ⇒ (integer , ′b, ′c) fsm where
index-states-integer M = rename-states M (integer-of-nat ◦ assign-indices (states

M ))

lemma assign-indices-integer-bij-betw: bij-betw (integer-of-nat ◦ assign-indices (states
M )) (FSM .states M ) ((integer-of-nat ◦ assign-indices (states M )) ‘ FSM .states M )
proof −

have ∗: inj-on (assign-indices (FSM .states M )) (FSM .states M )
using assign-indices-bij[OF fsm-states-finite[of M ]]
unfolding bij-betw-def
by auto

then have inj-on (integer-of-nat ◦ assign-indices (states M )) (FSM .states M )
unfolding inj-on-def
by (metis comp-apply nat-of-integer-integer-of-nat)

then show ?thesis
unfolding bij-betw-def
by auto

qed

lemma index-states-integer-language :
L (index-states-integer M ) = L M
using rename-states-isomorphism-language[of integer-of-nat ◦ assign-indices (states

M ) M , OF assign-indices-integer-bij-betw]
by auto

lemma index-states-integer-observable :
assumes observable M
shows observable (index-states-integer M )
using rename-states-observable[of integer-of-nat ◦ assign-indices (states M ) M ,

OF assign-indices-integer-bij-betw assms]
unfolding index-states-integer .simps .

lemma index-states-integer-minimal :
assumes minimal M
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shows minimal (index-states-integer M )
using rename-states-minimal[of integer-of-nat ◦ assign-indices (states M ) M ,

OF assign-indices-integer-bij-betw assms]
unfolding index-states-integer .simps .

4.27 Canonical Separators
lift-definition canonical-separator ′ :: ( ′a, ′b, ′c) fsm ⇒ (( ′a × ′a), ′b, ′c) fsm ⇒ ′a
⇒ ′a ⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm is FSM-Impl.canonical-separator ′

proof −
fix A :: ( ′a, ′b, ′c) fsm-impl
fix B :: ( ′a × ′a, ′b, ′c) fsm-impl
fix q1 :: ′a
fix q2 :: ′a
assume well-formed-fsm A and well-formed-fsm B

then have p1a: fsm-impl.initial A ∈ fsm-impl.states A
and p2a: finite (fsm-impl.states A)
and p3a: finite (fsm-impl.inputs A)
and p4a: finite (fsm-impl.outputs A)
and p5a: finite (fsm-impl.transitions A)
and p6a: (∀ t∈fsm-impl.transitions A.

t-source t ∈ fsm-impl.states A ∧
t-input t ∈ fsm-impl.inputs A ∧ t-target t ∈ fsm-impl.states A ∧

t-output t ∈ fsm-impl.outputs A)
and p1b: fsm-impl.initial B ∈ fsm-impl.states B
and p2b: finite (fsm-impl.states B)
and p3b: finite (fsm-impl.inputs B)
and p4b: finite (fsm-impl.outputs B)
and p5b: finite (fsm-impl.transitions B)
and p6b: (∀ t∈fsm-impl.transitions B.

t-source t ∈ fsm-impl.states B ∧
t-input t ∈ fsm-impl.inputs B ∧ t-target t ∈ fsm-impl.states B ∧

t-output t ∈ fsm-impl.outputs B)
by simp+

let ?P = FSM-Impl.canonical-separator ′ A B q1 q2

show well-formed-fsm ?P proof (cases fsm-impl.initial B = (q1 ,q2 ))
case False
then show ?thesis by auto

next
case True

let ?f = (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (fsm-impl.transitions
A))) qx of Some yqs ⇒ yqs | None ⇒ {}))

have
∧

qx . (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (fsm-impl.transitions
A))) qx of Some yqs ⇒ yqs | None ⇒ {})) qx = (λ qx . {z. (qx, z) ∈ (λ(q, x, y,
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q ′). ((q, x), y)) ‘ fsm-impl.transitions A}) qx
proof −

fix qx
show

∧
qx . (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (fsm-impl.transitions

A))) qx of Some yqs ⇒ yqs | None ⇒ {})) qx = (λ qx . {z. (qx, z) ∈ (λ(q, x, y,
q ′). ((q, x), y)) ‘ fsm-impl.transitions A}) qx

unfolding set-as-map-def by (cases ∃ z. (qx, z) ∈ (λ(q, x, y, q ′). ((q, x),
y)) ‘ fsm-impl.transitions A; auto)

qed
moreover have

∧
qx . (λ qx . {z. (qx, z) ∈ (λ(q, x, y, q ′). ((q, x), y)) ‘

fsm-impl.transitions A}) qx = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx , y, q ′) ∈
fsm-impl.transitions A}) qx

proof −
fix qx
show (λ qx . {z. (qx, z) ∈ (λ(q, x, y, q ′). ((q, x), y)) ‘ fsm-impl.transitions

A}) qx = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx, y, q ′) ∈ fsm-impl.transitions A})
qx

by force
qed
ultimately have ∗: ?f = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx, y, q ′) ∈

fsm-impl.transitions A})
by blast

let ?shifted-transitions ′ = shifted-transitions (fsm-impl.transitions B)
let ?distinguishing-transitions-lr = distinguishing-transitions ?f q1 q2 (fsm-impl.states

B) (fsm-impl.inputs B)
let ?ts = ?shifted-transitions ′ ∪ ?distinguishing-transitions-lr

have FSM-Impl.states ?P = (image Inl (FSM-Impl.states B)) ∪ {Inr q1 , Inr
q2}

and FSM-Impl.transitions ?P = ?ts
unfolding FSM-Impl.canonical-separator ′.simps Let-def True by simp+

have p2 : finite (fsm-impl.states ?P)
unfolding ‹FSM-Impl.states ?P = (image Inl (FSM-Impl.states B)) ∪ {Inr

q1 , Inr q2}› using p2b by blast

have fsm-impl.initial ?P = Inl (q1 ,q2 ) by auto
then have p1 : fsm-impl.initial ?P ∈ fsm-impl.states ?P

using p1a p1b unfolding canonical-separator ′.simps True by auto
have p3 : finite (fsm-impl.inputs ?P)

using p3a p3b by auto
have p4 : finite (fsm-impl.outputs ?P)

using p4a p4b by auto

have finite (fsm-impl.states B × fsm-impl.inputs B)
using p2b p3b by blast

moreover have ∗∗:
∧

x q1 . finite ({y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′)
∈ fsm-impl.transitions A})
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proof −
fix x q1
have {y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′) ∈ fsm-impl.transitions A} =

{t-output t | t . t ∈ fsm-impl.transitions A ∧ t-source t = q1 ∧ t-input t = x}
by auto

then have {y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′) ∈ fsm-impl.transitions
A} ⊆ image t-output (fsm-impl.transitions A)

unfolding fst-conv snd-conv by blast
moreover have finite (image t-output (fsm-impl.transitions A))

using p5a by auto
ultimately show finite ({y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′) ∈

fsm-impl.transitions A})
by (simp add: finite-subset)

qed
ultimately have finite ?distinguishing-transitions-lr

unfolding ∗ distinguishing-transitions-def by force
moreover have finite ?shifted-transitions ′

unfolding shifted-transitions-def using p5b by auto
ultimately have finite ?ts by blast
then have p5 : finite (fsm-impl.transitions ?P)

by simp

have fsm-impl.inputs ?P = fsm-impl.inputs A ∪ fsm-impl.inputs B
using True by auto

have fsm-impl.outputs ?P = fsm-impl.outputs A ∪ fsm-impl.outputs B
using True by auto

have
∧

t . t ∈ ?shifted-transitions ′ =⇒ t-source t ∈ fsm-impl.states ?P ∧
t-target t ∈ fsm-impl.states ?P

unfolding ‹FSM-Impl.states ?P = (image Inl (FSM-Impl.states B)) ∪ {Inr
q1 , Inr q2}› shifted-transitions-def

using p6b by force
moreover have

∧
t . t ∈ ?distinguishing-transitions-lr =⇒ t-source t ∈

fsm-impl.states ?P ∧ t-target t ∈ fsm-impl.states ?P
unfolding ‹FSM-Impl.states ?P = (image Inl (FSM-Impl.states B)) ∪ {Inr

q1 , Inr q2}› distinguishing-transitions-def ∗ by force
ultimately have

∧
t . t ∈ ?ts =⇒ t-source t ∈ fsm-impl.states ?P ∧ t-target

t ∈ fsm-impl.states ?P
by blast

moreover have
∧

t . t ∈ ?shifted-transitions ′ =⇒ t-input t ∈ fsm-impl.inputs
?P ∧ t-output t ∈ fsm-impl.outputs ?P

proof −
have

∧
t . t ∈ ?shifted-transitions ′ =⇒ t-input t ∈ fsm-impl.inputs B ∧

t-output t ∈ fsm-impl.outputs B
unfolding shifted-transitions-def using p6b by auto

then show
∧

t . t ∈ ?shifted-transitions ′ =⇒ t-input t ∈ fsm-impl.inputs ?P
∧ t-output t ∈ fsm-impl.outputs ?P

unfolding ‹fsm-impl.inputs ?P = fsm-impl.inputs A ∪ fsm-impl.inputs B›
‹fsm-impl.outputs ?P = fsm-impl.outputs A ∪ fsm-impl.outputs B›
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by blast
qed

moreover have
∧

t . t ∈ ?distinguishing-transitions-lr =⇒ t-input t ∈ fsm-impl.inputs
?P ∧ t-output t ∈ fsm-impl.outputs ?P

unfolding ∗ distinguishing-transitions-def using p6a p6b True by auto
ultimately have p6 : (∀ t∈fsm-impl.transitions ?P.

t-source t ∈ fsm-impl.states ?P ∧
t-input t ∈ fsm-impl.inputs ?P ∧ t-target t ∈ fsm-impl.states ?P ∧

t-output t ∈ fsm-impl.outputs ?P)
unfolding ‹FSM-Impl.transitions ?P = ?ts› by blast

show well-formed-fsm ?P
using p1 p2 p3 p4 p5 p6 by linarith

qed
qed

lemma canonical-separator ′-simps :
assumes initial P = (q1 ,q2 )
shows initial (canonical-separator ′ M P q1 q2 ) = Inl (q1 ,q2 )

states (canonical-separator ′ M P q1 q2 ) = (image Inl (states P)) ∪ {Inr q1 ,
Inr q2}

inputs (canonical-separator ′ M P q1 q2 ) = inputs M ∪ inputs P
outputs (canonical-separator ′ M P q1 q2 ) = outputs M ∪ outputs P
transitions (canonical-separator ′ M P q1 q2 )
= shifted-transitions (transitions P)
∪ distinguishing-transitions (h-out M ) q1 q2 (states P) (inputs P)

using assms unfolding h-out-code by (transfer ; auto)+

lemma canonical-separator ′-simps-without-assm :
initial (canonical-separator ′ M P q1 q2 ) = Inl (q1 ,q2 )

states (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then (image
Inl (states P)) ∪ {Inr q1 , Inr q2} else {Inl (q1 ,q2 )})

inputs (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then inputs
M ∪ inputs P else {})

outputs (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 ) then
outputs M ∪ outputs P else {})

transitions (canonical-separator ′ M P q1 q2 ) = (if initial P = (q1 ,q2 )
then shifted-transitions (transitions P) ∪ distinguishing-transitions (h-out M ) q1
q2 (states P) (inputs P) else {})

unfolding h-out-code by (transfer ; simp add: Let-def )+

end

5 Product Machines

This theory defines the construction of product machines. A product ma-
chine of two finite state machines essentially represents all possible parallel
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executions of those two machines.
theory Product-FSM
imports FSM
begin

lift-definition product :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′a × ′d, ′b, ′c) fsm is
FSM-Impl.product
proof −

fix A :: ( ′a, ′b, ′c) fsm-impl
fix B :: ( ′d, ′b, ′c) fsm-impl
assume well-formed-fsm A and well-formed-fsm B

then have p1a: fsm-impl.initial A ∈ fsm-impl.states A
and p2a: finite (fsm-impl.states A)
and p3a: finite (fsm-impl.inputs A)
and p4a: finite (fsm-impl.outputs A)
and p5a: finite (fsm-impl.transitions A)
and p6a: (∀ t∈fsm-impl.transitions A.

t-source t ∈ fsm-impl.states A ∧
t-input t ∈ fsm-impl.inputs A ∧ t-target t ∈ fsm-impl.states A ∧

t-output t ∈ fsm-impl.outputs A)
and p1b: fsm-impl.initial B ∈ fsm-impl.states B
and p2b: finite (fsm-impl.states B)
and p3b: finite (fsm-impl.inputs B)
and p4b: finite (fsm-impl.outputs B)
and p5b: finite (fsm-impl.transitions B)
and p6b: (∀ t∈fsm-impl.transitions B.

t-source t ∈ fsm-impl.states B ∧
t-input t ∈ fsm-impl.inputs B ∧ t-target t ∈ fsm-impl.states B ∧

t-output t ∈ fsm-impl.outputs B)
by simp+

let ?P = FSM-Impl.product A B

have fsm-impl.initial ?P ∈ fsm-impl.states ?P
using p1a p1b by auto

moreover have finite (fsm-impl.states ?P)
using p2a p2b by auto

moreover have finite (fsm-impl.inputs ?P)
using p3a p3b by auto

moreover have finite (fsm-impl.outputs ?P)
using p4a p4b by auto

moreover have finite (fsm-impl.transitions ?P)
using p5a p5b unfolding product-code-naive by auto

moreover have (∀ t∈fsm-impl.transitions ?P.
t-source t ∈ fsm-impl.states ?P ∧
t-input t ∈ fsm-impl.inputs ?P ∧ t-target t ∈ fsm-impl.states ?P ∧
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t-output t ∈ fsm-impl.outputs ?P)
using p6a p6b by auto

ultimately show well-formed-fsm (FSM-Impl.product A B)
by blast

qed

abbreviation left-path p ≡ map (λt. (fst (t-source t), t-input t, t-output t, fst
(t-target t))) p
abbreviation right-path p ≡ map (λt. (snd (t-source t), t-input t, t-output t, snd
(t-target t))) p
abbreviation zip-path p1 p2 ≡ (map (λ t . ((t-source (fst t), t-source (snd t)),
t-input (fst t), t-output (fst t), (t-target (fst t), t-target (snd t))))

(zip p1 p2 ))

lemma product-simps[simp]:
initial (product A B) = (initial A, initial B)
states (product A B) = (states A) × (states B)
inputs (product A B) = inputs A ∪ inputs B
outputs (product A B) = outputs A ∪ outputs B
by (transfer ; simp)+

lemma product-transitions-def :
transitions (product A B) = {((qA,qB),x,y,(qA ′,qB ′)) | qA qB x y qA ′ qB ′ .

(qA,x,y,qA ′) ∈ transitions A ∧ (qB,x,y,qB ′) ∈ transitions B}
by (transfer ; simp)+

lemma product-transitions-alt-def :
transitions (product A B) = {((t-source tA, t-source tB),t-input tA, t-output tA,

(t-target tA, t-target tB)) | tA tB . tA ∈ transitions A ∧ tB ∈ transitions B ∧
t-input tA = t-input tB ∧ t-output tA = t-output tB}
(is ?T1 = ?T2 )

proof −
have

∧
t . t ∈ ?T1 =⇒ t ∈ ?T2

proof −
fix tt assume tt ∈ ?T1
then obtain qA qB x y qA ′ qB ′ where tt = ((qA,qB),x,y,(qA ′,qB ′)) and

(qA,x,y,qA ′) ∈ transitions A and (qB,x,y,qB ′) ∈ transitions B
unfolding product-transitions-def by blast

then have ((t-source (qA,x,y,qA ′), t-source (qB,x,y,qB ′)),t-input (qA,x,y,qA ′),
t-output (qA,x,y,qA ′), (t-target (qA,x,y,qA ′), t-target (qB,x,y,qB ′))) ∈ ?T2

by auto
then show tt ∈ ?T2

unfolding ‹tt = ((qA,qB),x,y,(qA ′,qB ′))› fst-conv snd-conv by assumption
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qed
moreover have

∧
t . t ∈ ?T2 =⇒ t ∈ ?T1

proof −
fix tt assume tt ∈ ?T2
then obtain tA tB where tt = ((t-source tA, t-source tB),t-input tA, t-output

tA, (t-target tA, t-target tB))
and tA ∈ transitions A and tB ∈ transitions B and t-input

tA = t-input tB and t-output tA = t-output tB
by blast

then have (t-source tA, t-input tA, t-output tA, t-target tA) ∈ transitions A
and (t-source tB, t-input tA, t-output tA, t-target tB) ∈ transitions B

by (metis prod.collapse)+
then show tt ∈ ?T1
unfolding product-transitions-def ‹tt = ((t-source tA, t-source tB),t-input tA,

t-output tA, (t-target tA, t-target tB))› by blast
qed
ultimately show ?thesis by blast

qed

lemma zip-path-last : length xs = length ys =⇒ (zip-path (xs @ [x]) (ys @ [y])) =
(zip-path xs ys)@(zip-path [x] [y])

by (induction xs ys rule: list-induct2 ; simp)

lemma product-path-from-paths :
assumes path A (initial A) p1

and path B (initial B) p2
and p-io p1 = p-io p2

shows path (product A B) (initial (product A B)) (zip-path p1 p2 )
and target (initial (product A B)) (zip-path p1 p2 ) = (target (initial A) p1 ,

target (initial B) p2 )
proof −

have initial (product A B) = (initial A, initial B) by auto
then have (initial A, initial B) ∈ states (product A B)

by (metis fsm-initial)

have length p1 = length p2 using assms(3 )
using map-eq-imp-length-eq by blast

then have c: path (product A B) (initial (product A B)) (zip-path p1 p2 )
∧ target (initial (product A B)) (zip-path p1 p2 ) = (target (initial A)

p1 , target (initial B) p2 )
using assms proof (induction p1 p2 rule: rev-induct2 )
case Nil

then have path (product A B) (initial (product A B)) (zip-path [] [])
using ‹initial (product A B) = (initial A, initial B)› ‹(initial A, initial B) ∈

states (product A B)›
by (metis Nil-is-map-conv path.nil zip-Nil)
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moreover have target (initial (product A B)) (zip-path [] []) = (target (initial
A) [], target (initial B) [])

using ‹initial (product A B) = (initial A, initial B)› by auto
ultimately show ?case by fast

next
case (snoc x xs y ys)

have path A (initial A) xs using snoc.prems(1 ) by auto
moreover have path B (initial B) ys using snoc.prems(2 ) by auto
moreover have p-io xs = p-io ys using snoc.prems(3 ) by auto
ultimately have ∗:path (product A B) (initial (product A B)) (zip-path xs ys)

and ∗∗:target (initial (product A B)) (zip-path xs ys) = (target (initial
A) xs, target (initial B) ys)

using snoc.IH by blast+
then have (target (initial A) xs, target (initial B) ys) ∈ states (product A B)

by (metis (no-types, lifting) path-target-is-state)
then have (t-source x, t-source y) ∈ states (product A B)

using snoc.prems(1−2 ) by (metis path-cons-elim path-suffix)

have x ∈ transitions A using snoc.prems(1 ) by auto
moreover have y ∈ transitions B using snoc.prems(2 ) by auto
moreover have t-input x = t-input y using snoc.prems(3 ) by auto
moreover have t-output x = t-output y using snoc.prems(3 ) by auto
ultimately have ((t-source x, t-source y), t-input x , t-output x, (t-target x,

t-target y)) ∈ transitions (product A B)
unfolding product-transitions-alt-def by blast

moreover have t-source x = target (initial A) xs using snoc.prems(1 ) by auto
moreover have t-source y = target (initial B) ys using snoc.prems(2 ) by auto
ultimately have ((target (initial A) xs, target (initial B) ys), t-input x, t-output

x, (t-target x, t-target y)) ∈ transitions (product A B)
using ‹(t-source x, t-source y) ∈ states (product A B)›
by simp
then have ∗∗∗: path (product A B) (initial (product A B)) ((zip-path xs

ys)@[((target (initial A) xs, target (initial B) ys), t-input x, t-output x, (t-target x,
t-target y))])

using ∗ ∗∗
by (metis (no-types, lifting) fst-conv path-append-transition)

have t-target x = target (initial A) (xs@[x]) by auto
moreover have t-target y = target (initial B) (ys@[y]) by auto
ultimately have ∗∗∗∗: target (initial (product A B)) ((zip-path xs ys)@[((target

(initial A) xs, target (initial B) ys), t-input x , t-output x , (t-target x , t-target y))])
= (target (initial A) (xs@[x]), target (initial B) (ys@[y]))

by fastforce

have (zip-path [x] [y]) = [((target (initial A) xs, target (initial B) ys), t-input
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x, t-output x, (t-target x, t-target y))]
using ‹t-source x = target (initial A) xs› ‹t-source y = target (initial B) ys›

by auto
moreover have (zip-path (xs @ [x]) (ys @ [y])) = (zip-path xs ys)@(zip-path

[x] [y])
using zip-path-last[of xs ys x y, OF snoc.hyps] by assumption

ultimately have ∗∗∗∗∗:(zip-path (xs@[x]) (ys@[y]))
= (zip-path xs ys)@[((target (initial A) xs, target (initial B)

ys), t-input x, t-output x, (t-target x, t-target y))]
by auto
then have path (product A B) (initial (product A B)) (zip-path (xs@[x])

(ys@[y]))
using ∗∗∗ by presburger

moreover have target (initial (product A B)) (zip-path (xs@[x]) (ys@[y]))
= (target (initial A) (xs@[x]), target (initial B) (ys@[y]))

using ∗∗∗∗ ∗∗∗∗∗ by auto
ultimately show ?case by linarith

qed

from c show path (product A B) (initial (product A B)) (zip-path p1 p2 )
by auto

from c show target (initial (product A B)) (zip-path p1 p2 )
= (target (initial A) p1 , target (initial B) p2 )

by auto
qed

lemma paths-from-product-path :
assumes path (product A B) (initial (product A B)) p
shows path A (initial A) (left-path p)

and path B (initial B) (right-path p)
and target (initial A) (left-path p) = fst (target (initial (product A B)) p)
and target (initial B) (right-path p) = snd (target (initial (product A B)) p)

proof −
have path A (initial A) (left-path p)

∧ path B (initial B) (right-path p)
∧ target (initial A) (left-path p) = fst (target (initial (product A B)) p)
∧ target (initial B) (right-path p) = snd (target (initial (product A B)) p)

using assms proof (induction p rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc t p)
then have path (product A B) (initial (product A B)) p by fast
then have path A (initial A) (left-path p)

and path B (initial B) (right-path p)
and target (initial A) (left-path p) = fst (target (initial (product A B)) p)
and target (initial B) (right-path p) = snd (target (initial (product A B)) p)
using snoc.IH by fastforce+
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then have t-source t = (target (initial A) (left-path p), target (initial B)
(right-path p))

using snoc.prems by (metis (no-types, lifting) path-cons-elim path-suffix
prod.collapse)

have ∗∗∗: target (initial A) (left-path (p@[t]))= fst (target (initial (product A
B)) (p@[t]))

by fastforce
have ∗∗∗∗: target (initial B) (right-path (p@[t]))= snd (target (initial (product

A B)) (p@[t]))
by fastforce

have t ∈ transitions (product A B) using snoc.prems by auto

then have (fst (t-source t), t-input t, t-output t, fst (t-target t)) ∈ transitions
A

unfolding product-transitions-alt-def by force
moreover have target (initial A) (left-path p) = fst (t-source t)
using ‹t-source t = (target (initial A) (left-path p), target (initial B) (right-path

p))› by auto
ultimately have path A (initial A) ((left-path p)@[(fst (t-source t), t-input t,

t-output t, fst (t-target t))])
by (simp add: ‹path A (initial A) (map (λt. (fst (t-source t), t-input t, t-output

t, fst (t-target t))) p)› path-append-transition)
then have ∗: path A (initial A) (left-path (p@[t])) by auto

have (snd (t-source t), t-input t, t-output t, snd (t-target t)) ∈ transitions B
using ‹t ∈ transitions (product A B)› unfolding product-transitions-alt-def

by auto
moreover have target (initial B) (right-path p) = snd (t-source t)
using ‹t-source t = (target (initial A) (left-path p), target (initial B) (right-path

p))› by auto
ultimately have path B (initial B) ((right-path p)@[(snd (t-source t), t-input

t, t-output t, snd (t-target t))])
by (simp add: ‹path B (initial B) (map (λt. (snd (t-source t), t-input t, t-output

t, snd (t-target t))) p)› path-append-transition)
then have ∗∗: path B (initial B) (right-path (p@[t])) by auto

show ?case using ∗ ∗∗ ∗∗∗ ∗∗∗∗ by blast
qed

then show path A (initial A) (left-path p)
and path B (initial B) (right-path p)
and target (initial A) (left-path p) = fst (target (initial (product A B)) p)
and target (initial B) (right-path p) = snd (target (initial (product A B)) p)

by linarith+
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qed

lemma zip-path-left-right[simp] :
(zip-path (left-path p) (right-path p)) = p by (induction p; auto)

lemma product-reachable-state-paths :
assumes (q1 ,q2 ) ∈ reachable-states (product A B)

obtains p1 p2
where path A (initial A) p1
and path B (initial B) p2
and target (initial A) p1 = q1
and target (initial B) p2 = q2
and p-io p1 = p-io p2
and path (product A B) (initial (product A B)) (zip-path p1 p2 )
and target (initial (product A B)) (zip-path p1 p2 ) = (q1 ,q2 )

proof −
let ?P = product A B
from assms obtain p where path ?P (initial ?P) p and target (initial ?P) p =

(q1 ,q2 )
unfolding reachable-states-def by auto

have path A (initial A) (left-path p)
and path B (initial B) (right-path p)
and target (initial A) (left-path p) = q1
and target (initial B) (right-path p) = q2
using paths-from-product-path[OF ‹path ?P (initial ?P) p›] ‹target (initial ?P)

p = (q1 ,q2 )› by auto

moreover have p-io (left-path p) = p-io (right-path p) by auto
moreover have path (product A B) (initial (product A B)) (zip-path (left-path

p) (right-path p))
using ‹path ?P (initial ?P) p› by auto

moreover have target (initial (product A B)) (zip-path (left-path p) (right-path
p)) = (q1 ,q2 )

using ‹target (initial ?P) p = (q1 ,q2 )› by auto
ultimately show ?thesis using that by blast

qed

lemma product-reachable-states[iff ] :
(q1 ,q2 ) ∈ reachable-states (product A B) ←→ (∃ p1 p2 . path A (initial A) p1
∧ path B (initial B) p2 ∧ target (initial A) p1 = q1 ∧ target (initial B) p2 = q2
∧ p-io p1 = p-io p2 )
proof

show (q1 ,q2 ) ∈ reachable-states (product A B) =⇒ (∃ p1 p2 . path A (initial A)
p1 ∧ path B (initial B) p2 ∧ target (initial A) p1 = q1 ∧ target (initial B) p2 =
q2 ∧ p-io p1 = p-io p2 )
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using product-reachable-state-paths[of q1 q2 A B] by blast
show (∃ p1 p2 . path A (initial A) p1 ∧ path B (initial B) p2 ∧ target (initial

A) p1 = q1 ∧ target (initial B) p2 = q2 ∧ p-io p1 = p-io p2 ) =⇒ (q1 ,q2 ) ∈
reachable-states (product A B)

proof −
assume (∃ p1 p2 . path A (initial A) p1 ∧ path B (initial B) p2 ∧ target

(initial A) p1 = q1 ∧ target (initial B) p2 = q2 ∧ p-io p1 = p-io p2 )
then obtain p1 p2 where path A (initial A) p1 ∧ path B (initial B) p2 ∧

target (initial A) p1 = q1 ∧ target (initial B) p2 = q2 ∧ p-io p1 = p-io p2
by blast

then show ?thesis
using product-path-from-paths[of A p1 B p2 ] unfolding reachable-states-def
by (metis (mono-tags, lifting) mem-Collect-eq)

qed
qed

lemma left-path-zip : length p1 = length p2 =⇒ left-path (zip-path p1 p2 ) = p1
by (induction p1 p2 rule: list-induct2 ; simp)

lemma right-path-zip : length p1 = length p2 =⇒ p-io p1 = p-io p2 =⇒ right-path
(zip-path p1 p2 ) = p2

by (induction p1 p2 rule: list-induct2 ; simp)

lemma zip-path-append-left-right : length p1 = length p2 =⇒ zip-path (p1@(left-path
p)) (p2@(right-path p)) = (zip-path p1 p2 )@p
proof (induction p1 p2 rule: list-induct2 )

case Nil
then show ?case by (induction p; simp)

next
case (Cons x xs y ys)
then show ?case by simp

qed

lemma product-path:
path (product A B) (q1 ,q2 ) p ←→ (path A q1 (left-path p) ∧ path B q2 (right-path

p))
proof (induction p arbitrary: q1 q2 )

case Nil
then show ?case by auto

next
case (Cons t p)

have path (Product-FSM .product A B) (q1 , q2 ) (t # p) =⇒ (path A q1 (left-path
(t # p)) ∧ path B q2 (right-path (t # p)))

proof −
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assume path (Product-FSM .product A B) (q1 , q2 ) (t # p)
then obtain x y qA ′ qB ′ where t = ((q1 ,q2 ),x,y,(qA ′,qB ′)) using prod.collapse

by (metis path-cons-elim)
then have ((q1 ,q2 ),x,y,(qA ′,qB ′)) ∈ transitions (product A B)

using ‹path (Product-FSM .product A B) (q1 , q2 ) (t # p)› by auto
then have (q1 , x, y, qA ′) ∈ FSM .transitions A and (q2 , x, y, qB ′) ∈

FSM .transitions B
unfolding product-transitions-def by blast+

moreover have (path A qA ′ (left-path p) ∧ path B qB ′ (right-path p))
using Cons.IH [of qA ′ qB ′] ‹path (Product-FSM .product A B) (q1 , q2 ) (t #

p)› unfolding ‹t = ((q1 ,q2 ),x,y,(qA ′,qB ′))› by auto
ultimately show ?thesis

unfolding ‹t = ((q1 ,q2 ),x,y,(qA ′,qB ′))›
by (simp add: path-prepend-t)

qed

moreover have path A q1 (left-path (t # p)) =⇒ path B q2 (right-path (t #
p)) =⇒ path (Product-FSM .product A B) (q1 , q2 ) (t # p)

proof −
assume path A q1 (left-path (t # p)) and path B q2 (right-path (t # p))

then obtain x y qA ′ qB ′ where t = ((q1 ,q2 ),x,y,(qA ′,qB ′)) using prod.collapse
by (metis (no-types, lifting) fst-conv list.simps(9 ) path-cons-elim)
then have (q1 , x, y, qA ′) ∈ FSM .transitions A and (q2 , x, y, qB ′) ∈

FSM .transitions B
using ‹path A q1 (left-path (t # p))› ‹path B q2 (right-path (t # p))› by auto

then have ((q1 ,q2 ),x,y,(qA ′,qB ′)) ∈ transitions (product A B)
unfolding product-transitions-def by blast

moreover have path (Product-FSM .product A B) (qA ′, qB ′) p
using Cons.IH [of qA ′ qB ′] ‹path A q1 (left-path (t # p))› ‹path B q2 (right-path

(t # p))› unfolding ‹t = ((q1 ,q2 ),x,y,(qA ′,qB ′))› by auto
ultimately show path (Product-FSM .product A B) (q1 , q2 ) (t # p)

unfolding ‹t = ((q1 ,q2 ),x,y,(qA ′,qB ′))›
by (simp add: path-prepend-t)

qed

ultimately show ?case by force
qed

lemma product-path-rev:
assumes p-io p1 = p-io p2
shows path (product A B) (q1 ,q2 ) (zip-path p1 p2 ) ←→ (path A q1 p1 ∧ path B

q2 p2 )
proof −

have length p1 = length p2 using assms
using map-eq-imp-length-eq by blast

then have (map (λ t . (fst (t-source t), t-input t, t-output t, fst (t-target t)))
(map (λ t . ((t-source (fst t), t-source (snd t)), t-input (fst t), t-output (fst t),
(t-target (fst t), t-target (snd t)))) (zip p1 p2 ))) = p1
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by (induction p1 p2 arbitrary: q1 q2 rule: list-induct2 ; auto)

moreover have (map (λ t . (snd (t-source t), t-input t, t-output t, snd (t-target
t))) (map (λ t . ((t-source (fst t), t-source (snd t)), t-input (fst t), t-output (fst t),
(t-target (fst t), t-target (snd t)))) (zip p1 p2 ))) = p2

using ‹length p1 = length p2 › assms by (induction p1 p2 arbitrary: q1 q2 rule:
list-induct2 ; auto)

ultimately show ?thesis using product-path[of A B q1 q2 (map (λ t . ((t-source
(fst t), t-source (snd t)), t-input (fst t), t-output (fst t), (t-target (fst t), t-target
(snd t)))) (zip p1 p2 ))]

by auto
qed

lemma product-language-state :
shows LS (product A B) (q1 ,q2 ) = LS A q1 ∩ LS B q2

proof
show LS (product A B) (q1 , q2 ) ⊆ LS A q1 ∩ LS B q2
proof

fix io assume io ∈ LS (product A B) (q1 , q2 )
then obtain p where io = p-io p

and path (product A B) (q1 ,q2 ) p
by auto

then obtain p1 p2 where path A q1 p1
and path B q2 p2
and io = p-io p1
and io = p-io p2

using product-path[of A B q1 q2 p] by fastforce
then show io ∈ LS A q1 ∩ LS B q2

unfolding LS .simps by blast
qed

show LS A q1 ∩ LS B q2 ⊆ LS (product A B) (q1 , q2 )
proof

fix io assume io ∈ LS A q1 ∩ LS B q2
then obtain p1 p2 where path A q1 p1

and path B q2 p2
and io = p-io p1
and io = p-io p2
and p-io p1 = p-io p2

by auto

let ?p = zip-path p1 p2

have length p1 = length p2
using ‹p-io p1 = p-io p2 › map-eq-imp-length-eq by blast

moreover have p-io ?p = p-io (map fst (zip p1 p2 )) by auto
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ultimately have p-io ?p = p-io p1 by auto

then have p-io ?p = io
using ‹io = p-io p1 › by auto

moreover have path (product A B) (q1 , q2 ) ?p
using product-path-rev[OF ‹p-io p1 = p-io p2 ›, of A B q1 q2 ] ‹path A q1 p1 ›

‹path B q2 p2 › by auto
ultimately show io ∈ LS (product A B) (q1 , q2 )

unfolding LS .simps by blast
qed

qed

lemma product-language : L (product A B) = L A ∩ L B
unfolding product-simps product-language-state by blast

lemma product-transition-split-ob :
assumes t ∈ transitions (product A B)
obtains t1 t2
where t1 ∈ transitions A ∧ t-source t1 = fst (t-source t) ∧ t-input t1 = t-input

t ∧ t-output t1 = t-output t ∧ t-target t1 = fst (t-target t)
and t2 ∈ transitions B ∧ t-source t2 = snd (t-source t) ∧ t-input t2 = t-input

t ∧ t-output t2 = t-output t ∧ t-target t2 = snd (t-target t)
using assms unfolding product-transitions-alt-def
by auto

lemma product-transition-split :
assumes t ∈ transitions (product A B)
shows (fst (t-source t), t-input t, t-output t, fst (t-target t)) ∈ transitions A

and (snd (t-source t), t-input t, t-output t, snd (t-target t)) ∈ transitions B
using product-transition-split-ob[OF assms] prod.collapse by fastforce+

lemma product-target-split:
assumes target (q1 ,q2 ) p = (q1 ′,q2 ′)
shows target q1 (left-path p) = q1 ′

and target q2 (right-path p) = q2 ′

using assms by (induction p arbitrary: q1 q2 ; force)+

lemma target-single-transition[simp] : target q1 [(q1 , x, y, q1 ′)] = q1 ′

by auto

lemma product-undefined-input :
assumes ¬ (∃ t ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 )).

t-source t = qq ∧ t-input t = x)
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and q1 ∈ states M
and q2 ∈ states M

shows ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈ transitions M .
t-source t1 = fst qq ∧
t-source t2 = snd qq ∧
t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output t2 )

proof
assume ∃ t1 ∈ transitions M . ∃ t2 ∈ transitions M .

t-source t1 = fst qq ∧
t-source t2 = snd qq ∧
t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output t2

then obtain t1 t2 where t1 ∈ transitions M
and t2 ∈ transitions M
and t-source t1 = fst qq
and t-source t2 = snd qq
and t-input t1 = x
and t-input t1 = t-input t2
and t-output t1 = t-output t2

by force

have ((t-source t1 , t-source t2 ), t-input t1 , t-output t1 , t-target t1 , t-target t2 )
∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))

unfolding product-transitions-alt-def
unfolding from-FSM-simps[OF assms(2 )]
unfolding from-FSM-simps[OF assms(3 )]
using ‹t1 ∈ transitions M › ‹t2 ∈ transitions M › ‹t-input t1 = t-input t2 ›

‹t-output t1 = t-output t2 › by blast
then show False

unfolding ‹t-source t1 = fst qq› ‹t-source t2 = snd qq› ‹t-input t1 = x›
prod.collapse

using assms(1 ) by auto
qed

5.1 Product Machines and Changing Initial States
lemma product-from-reachable-next :
assumes ((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions (product (from-FSM M q1 ) (from-FSM

M q2 ))
and q1 ∈ states M
and q2 ∈ states M
shows (from-FSM (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ′, q2 ′))

= (product (from-FSM M q1 ′) (from-FSM M q2 ′))
(is ?P1 = ?P2 )

proof −
have (q1 ,x,y,q1 ′) ∈ transitions (from-FSM M q1 )
and (q2 ,x,y,q2 ′) ∈ transitions (from-FSM M q2 )

using assms(1 ) unfolding product-transitions-def by blast+
then have q1 ′ ∈ states (from-FSM M q1 ) and q2 ′ ∈ states (from-FSM M q2 )

using fsm-transition-target by auto
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have q1 ′ ∈ states (from-FSM M q1 ′) and q1 ′ ∈ states M and q1 ∈ states M
using ‹q1 ′∈ FSM .states (FSM .from-FSM M q1 )› assms(2 ) reachable-state-is-state

by fastforce+
have q2 ′ ∈ states (from-FSM M q2 ′) and q2 ′ ∈ states M and q2 ∈ states M
using ‹q2 ′∈ FSM .states (FSM .from-FSM M q2 )› assms(3 ) reachable-state-is-state

by fastforce+

have initial ?P1 = initial ?P2
and states ?P1 = states ?P2
and inputs ?P1 = inputs ?P2
and outputs ?P1 = outputs ?P2
and transitions ?P1 = transitions ?P2

using from-FSM-simps[OF fsm-transition-target[OF assms(1 )]]
unfolding snd-conv
unfolding product-simps
unfolding product-transitions-def
unfolding from-FSM-simps[OF ‹q1 ′ ∈ states M ›] from-FSM-simps[OF ‹q2 ′ ∈

states M ›]
unfolding from-FSM-simps[OF ‹q1 ∈ states M ›] from-FSM-simps[OF ‹q2 ∈

states M ›]
by auto

then show ?thesis by (transfer ; auto)
qed

lemma from-FSM-product-inputs :
assumes q1 ∈ states M and q2 ∈ states M

shows (inputs (product (from-FSM M q1 ) (from-FSM M q2 ))) = (inputs M )
by (simp add: assms(1 ) assms(2 ))

lemma from-FSM-product-outputs :
assumes q1 ∈ states M and q2 ∈ states M

shows (outputs (product (from-FSM M q1 ) (from-FSM M q2 ))) = (outputs M )
by (simp add: assms(1 ) assms(2 ))

lemma from-FSM-product-initial :
assumes q1 ∈ states M and q2 ∈ states M

shows initial (product (from-FSM M q1 ) (from-FSM M q2 )) = (q1 ,q2 )
by (simp add: assms(1 ) assms(2 ))

lemma product-from-reachable-next ′ :
assumes t ∈ transitions (product (from-FSM M (fst (t-source t))) (from-FSM

M (snd (t-source t))))
and fst (t-source t) ∈ states M
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and snd (t-source t) ∈ states M
shows (from-FSM (product (from-FSM M (fst (t-source t))) (from-FSM M (snd
(t-source t)))) (fst (t-target t),snd (t-target t))) = (product (from-FSM M (fst
(t-target t))) (from-FSM M (snd (t-target t))))
proof −

have ((fst (t-source t), snd (t-source t)), t-input t, t-output t, fst (t-target t), snd
(t-target t)) = t

by simp
then show ?thesis
by (metis (no-types) assms(1 ) assms(2 ) assms(3 ) product-from-reachable-next)

qed

lemma product-from-reachable-next ′-path :
assumes t ∈ transitions (product (from-FSM M (fst (t-source t))) (from-FSM

M (snd (t-source t))))
and fst (t-source t) ∈ states M
and snd (t-source t) ∈ states M
shows path (from-FSM (product (from-FSM M (fst (t-source t))) (from-FSM M

(snd (t-source t)))) (fst (t-target t),snd (t-target t))) (fst (t-target t),snd (t-target
t)) p = path (product (from-FSM M (fst (t-target t))) (from-FSM M (snd (t-target
t)))) (fst (t-target t),snd (t-target t)) p

(is path ?P1 ?q p = path ?P2 ?q p)
proof −

have i1 : initial ?P1 = ?q
using assms(1 ) fsm-transition-target by fastforce

have i2 : initial ?P2 = ?q
proof −

have ((fst (t-source t), snd (t-source t)), t-input t, t-output t, fst (t-target t),
snd (t-target t)) = t

by auto
then show ?thesis
by (metis (no-types) assms(1 ) assms(2 ) assms(3 ) i1 product-from-reachable-next)

qed

have h12 : transitions ?P1 = transitions ?P2 using product-from-reachable-next ′[OF
assms] by simp

show ?thesis proof (induction p rule: rev-induct)
case Nil
then show ?case

by (metis (full-types) i1 i2 fsm-initial path.nil)
next

case (snoc t p)
show ?case
by (metis h12 path-append-transition path-append-transition-elim(1 ) path-append-transition-elim(2 )

path-append-transition-elim(3 ) snoc.IH )
qed

qed
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lemma product-from-transition:
assumes (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows transitions (product (from-FSM M q1 ′) (from-FSM M q2 ′)) = transitions
(product (from-FSM M q1 ) (from-FSM M q2 ))
proof −

have q1 ′ ∈ states M and q2 ′ ∈ states M
using assms(1 ) unfolding product-simps from-FSM-simps[OF assms(2 )] from-FSM-simps[OF

assms(3 )] by auto
show ?thesis
unfolding product-transitions-def from-FSM-simps[OF ‹q1 ∈ states M ›] from-FSM-simps[OF

‹q1 ′ ∈ states M ›] from-FSM-simps[OF ‹q2 ∈ states M ›] from-FSM-simps[OF ‹q2 ′

∈ states M ›] by blast
qed

lemma product-from-path:
assumes (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

and path (product (from-FSM M q1 ′) (from-FSM M q2 ′)) (q1 ′,q2 ′) p
shows path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ′,q2 ′) p

by (metis (no-types, lifting) assms(1 ) assms(2 ) assms(3 ) assms(4 ) from-FSM-path-initial
from-FSM-simps(5 ) from-from mem-Sigma-iff product-path product-simps(2 ))

lemma product-from-path-previous :
assumes path (product (from-FSM M (fst (t-target t)))

(from-FSM M (snd (t-target t))))
(t-target t) p (is path ?Pt (t-target t) p)

and t ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows path (product (from-FSM M q1 ) (from-FSM M q2 )) (t-target t) p (is
path ?P (t-target t) p)
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) fsm-transition-target prod.collapse

product-from-path)

lemma product-from-transition-shared-state :
assumes t ∈ transitions (product (from-FSM M q1 ′) (from-FSM M q2 ′))
and (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows t ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))
by (metis assms product-from-transition)
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lemma product-from-not-completely-specified :
assumes ¬ completely-specified-state (product (from-FSM M q1 ) (from-FSM M

q2 )) (q1 ′,q2 ′)
and (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows ¬ completely-specified-state (product (from-FSM M q1 ′) (from-FSM M
q2 ′)) (q1 ′,q2 ′)
proof −

have q1 ′ ∈ states M and q2 ′ ∈ states M
using assms(2 ) unfolding product-simps from-FSM-simps[OF assms(3 )] from-FSM-simps[OF

assms(4 )] by auto
show ?thesis

using from-FSM-product-inputs[OF assms(3 ) assms(4 )]
using from-FSM-product-inputs[OF ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › ]

proof −
have FSM .transitions (Product-FSM .product (FSM .from-FSM M q1 ′) (FSM .from-FSM

M q2 ′)) = FSM .transitions (Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM
M q2 ))

by (metis (no-types) ‹(q1 ′, q2 ′) ∈ FSM .states (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))› assms(3 ) assms(4 ) product-from-transition)

then show ?thesis
using ‹FSM .inputs (Product-FSM .product (FSM .from-FSM M q1 ′) (FSM .from-FSM

M q2 ′)) = FSM .inputs M › ‹FSM .inputs (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 )) = FSM .inputs M › ‹¬ completely-specified-state
(Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM M q2 )) (q1 ′, q2 ′)›
by fastforce

qed
qed

lemma from-product-initial-paths-ex :
assumes q1 ∈ states M
and q2 ∈ states M

shows (∃ p1 p2 .
path (from-FSM M q1 ) (initial (from-FSM M q1 )) p1 ∧
path (from-FSM M q2 ) (initial (from-FSM M q2 )) p2 ∧
target (initial (from-FSM M q1 )) p1 = q1 ∧
target (initial (from-FSM M q2 )) p2 = q2 ∧ p-io p1 = p-io p2 )

proof −
have path (from-FSM M q1 ) (initial (from-FSM M q1 )) [] by blast
moreover have path (from-FSM M q2 ) (initial (from-FSM M q2 )) [] by blast
moreover have

target (initial (from-FSM M q1 )) [] = q1 ∧
target (initial (from-FSM M q2 )) [] = q2 ∧ p-io [] = p-io []

unfolding from-FSM-simps[OF assms(1 )] from-FSM-simps[OF assms(2 )] by
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auto
ultimately show ?thesis by blast

qed

lemma product-observable :
assumes observable M1
and observable M2

shows observable (product M1 M2 ) (is observable ?P)
proof −

have
∧

t1 t2 . t1 ∈ transitions ?P =⇒ t2 ∈ transitions ?P =⇒ t-source t1 =
t-source t2 =⇒ t-input t1 = t-input t2 =⇒ t-output t1 = t-output t2 =⇒ t-target
t1 = t-target t2

proof −
fix t1 t2 assume t1 ∈ transitions ?P and t2 ∈ transitions ?P and t-source t1

= t-source t2 and t-input t1 = t-input t2 and t-output t1 = t-output t2

let ?t1L = (fst (t-source t1 ), t-input t1 , t-output t1 , fst (t-target t1 ))
let ?t1R = (snd (t-source t1 ), t-input t1 , t-output t1 , snd (t-target t1 ))
let ?t2L = (fst (t-source t2 ), t-input t2 , t-output t2 , fst (t-target t2 ))
let ?t2R = (snd (t-source t2 ), t-input t2 , t-output t2 , snd (t-target t2 ))

have t-target ?t1L = t-target ?t2L
using product-transition-split(1 )[OF ‹t1 ∈ transitions ?P›]

product-transition-split(1 )[OF ‹t2 ∈ transitions ?P›]
‹observable M1 ›
‹t-source t1 = t-source t2 ›
‹t-input t1 = t-input t2 ›
‹t-output t1 = t-output t2 › by auto

moreover have t-target ?t1R = t-target ?t2R
using product-transition-split(2 )[OF ‹t1 ∈ transitions ?P›]

product-transition-split(2 )[OF ‹t2 ∈ transitions ?P›]
‹observable M2 ›
‹t-source t1 = t-source t2 ›
‹t-input t1 = t-input t2 ›
‹t-output t1 = t-output t2 › by auto

ultimately show t-target t1 = t-target t2
by (metis prod.exhaust-sel snd-conv)

qed
then show ?thesis unfolding observable.simps by blast

qed

lemma product-observable-self-transitions :
assumes q ∈ reachable-states (product M M )
and observable M

shows fst q = snd q
proof −

let ?P = product M M
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have
∧

p . path ?P (initial ?P) p =⇒ fst (target (initial ?P) p) = snd (target
(initial ?P) p)

proof −
fix p assume path ?P (initial ?P) p
then show fst (target (initial ?P) p) = snd (target (initial ?P) p)
proof (induction p rule: rev-induct)

case Nil
then show ?case by simp

next
case (snoc t p)

have path ?P (initial ?P) p and path ?P (target (initial ?P) p) [t]
using path-append-elim[of ?P initial ?P p [t], OF ‹path (product M M )

(initial (product M M )) (p @ [t])›] by blast+
then have t ∈ transitions ?P

by blast
have t-source t = target (initial ?P) p

using snoc.prems by fastforce

let ?t1 = (fst (t-source t), t-input t, t-output t, fst (t-target t))
let ?t2 = (snd (t-source t), t-input t, t-output t, snd (t-target t))
have ?t1 ∈ transitions M and ?t2 ∈ transitions M

using product-transition-split[OF ‹t ∈ transitions ?P›] by auto
moreover have t-source ?t1 = t-source ?t2

using ‹t-source t = target (initial ?P) p› snoc.IH [OF ‹path ?P (initial ?P)
p›]

by (metis fst-conv)
moreover have t-input ?t1 = t-input ?t2

by auto
moreover have t-output ?t1 = t-output ?t2

by auto
ultimately have t-target ?t1 = t-target ?t2

using ‹observable M › unfolding observable.simps by blast
then have fst (t-target t) = snd (t-target t)

by auto
then show ?case unfolding target.simps visited-states.simps
proof −
show fst (last (initial (product M M ) # map t-target (p @ [t]))) = snd (last

(initial (product M M ) # map t-target (p @ [t])))
using ‹fst (t-target t) = snd (t-target t)› last-map last-snoc length-append-singleton

length-map by force
qed

qed
qed

then show ?thesis
using assms(1 ) unfolding reachable-states-def
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by blast
qed

lemma zip-path-eq-left :
assumes length xs1 = length xs2
and length xs2 = length ys1
and length ys1 = length ys2
and zip-path xs1 xs2 = zip-path ys1 ys2

shows xs1 = ys1
using assms by (induction xs1 xs2 ys1 ys2 rule: list-induct4 ; auto)

lemma zip-path-eq-right :
assumes length xs1 = length xs2
and length xs2 = length ys1
and length ys1 = length ys2
and p-io xs2 = p-io ys2
and zip-path xs1 xs2 = zip-path ys1 ys2

shows xs2 = ys2
using assms by (induction xs1 xs2 ys1 ys2 rule: list-induct4 ; auto)

lemma zip-path-merge :
(zip-path (left-path p) (right-path p)) = p
by (induction p; auto)

lemma product-from-reachable-path ′ :
assumes path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ′, q2 ′) p
and q1 ∈ reachable-states M
and q2 ∈ reachable-states M

shows path (product (from-FSM M q1 ′) (from-FSM M q2 ′)) (q1 ′, q2 ′) p
by (meson assms(1 ) assms(2 ) assms(3 ) from-FSM-path from-FSM-path-rev-initial

product-path reachable-state-is-state)

lemma product-from :
assumes q1 ∈ states M
and q2 ∈ states M

shows product (from-FSM M q1 ) (from-FSM M q2 ) = from-FSM (product M M )
(q1 ,q2 ) (is ?PF = ?FP)
proof −

have (q1 ,q2 ) ∈ states (product M M )
using assms unfolding product-simps by auto

have initial ?FP = initial ?PF
and inputs ?FP = inputs ?PF
and outputs ?FP = outputs ?PF
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and states ?FP = states ?PF
and transitions ?FP = transitions ?PF

unfolding product-simps
from-FSM-simps[OF assms(1 )]
from-FSM-simps[OF assms(2 )]
from-FSM-simps[OF ‹(q1 ,q2 ) ∈ states (product M M )›]
product-transitions-def

by auto
then show ?thesis by (transfer ; auto)

qed

lemma product-from-from :
assumes (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows (product (from-FSM M q1 ′) (from-FSM M q2 ′)) = (from-FSM (product
(from-FSM M q1 ) (from-FSM M q2 )) (q1 ′,q2 ′))

using product-from
by (metis (no-types, lifting) assms(1 ) assms(2 ) assms(3 ) from-FSM-simps(5 )

from-from mem-Sigma-iff product-simps(2 ))

lemma submachine-transition-product-from :
assumes is-submachine S (product (from-FSM M q1 ) (from-FSM M q2 ))
and ((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions S
and q1 ∈ states M
and q2 ∈ states M

shows is-submachine (from-FSM S (q1 ′,q2 ′)) (product (from-FSM M q1 ′) (from-FSM
M q2 ′))
proof −

have ((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions (product (from-FSM M q1 ) (from-FSM
M q2 ))

using assms(1 ) assms(2 ) by auto
have (q1 ′,q2 ′) ∈ states S using fsm-transition-target assms(2 ) by auto
show ?thesis

using product-from-reachable-next[OF ‹((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions
(product (from-FSM M q1 ) (from-FSM M q2 ))› assms(3 ,4 )]

submachine-from[OF assms(1 ) ‹(q1 ′,q2 ′) ∈ states S›]
by simp

qed

lemma submachine-transition-complete-product-from :
assumes is-submachine S (product (from-FSM M q1 ) (from-FSM M q2 ))

and completely-specified S
and ((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions S

and q1 ∈ states M
and q2 ∈ states M
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shows completely-specified (from-FSM S (q1 ′,q2 ′))
proof −

let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))
let ?P ′ = (product (from-FSM M q1 ′) (from-FSM M q2 ′))
let ?F = (from-FSM S (q1 ′,q2 ′))

have initial ?P = (q1 ,q2 )
by (simp add: assms(4 ) assms(5 ) reachable-state-is-state)

then have initial S = (q1 ,q2 )
using assms(1 ) by (metis is-submachine.simps)

then have (q1 ′,q2 ′) ∈ states S
using assms(3 )
using fsm-transition-target by fastforce

then have states ?F = states S
using from-FSM-simps(5 ) by simp

moreover have inputs ?F = inputs S
using from-FSM-simps(2 ) ‹(q1 ′,q2 ′) ∈ states S› by simp

ultimately show completely-specified ?F
using assms(2 ) unfolding completely-specified.simps

by (meson assms(2 ) completely-specified.elims(2 ) from-FSM-completely-specified)
qed

5.2 Calculating Acyclic Intersection Languages
lemma acyclic-product :

assumes acyclic B
shows acyclic (product A B)

proof −
show acyclic (product A B)
proof (rule ccontr)

assume ¬ FSM .acyclic (Product-FSM .product A B)
then obtain p where path (product A B) (initial (product A B)) p and ¬

distinct (visited-states (initial (product A B)) p)
by auto

have path B (initial B) (right-path p)
using product-path[of A B] ‹path (product A B) (initial (product A B)) p›
unfolding product-simps
by auto

moreover have ¬ distinct (visited-states (initial B) (right-path p))
proof −

obtain i j where i < j and j < length ((initial A, initial B) # map t-target
p) and ((initial A, initial B) # map t-target p) ! i = ((initial A, initial B) # map
t-target p) ! j

using ‹¬ distinct (visited-states (initial (product A B)) p)›
unfolding visited-states.simps product-simps
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using non-distinct-repetition-indices by blast

then have snd (((initial A, initial B) # map t-target p) ! i) = snd (((initial
A, initial B) # map t-target p) ! j)

by simp

have ∗ :i < length ((initial B) # map t-target (right-path p))
and ∗∗:j < length ((initial B) # map t-target (right-path p))

using ‹i < j› ‹j < length ((initial A, initial B) # map t-target p)› by auto

have right-nth:
∧

i . i < length ((initial B) # map t-target (right-path p))
=⇒ ((initial B) # map t-target (right-path p)) ! i = snd (((initial A, initial B) #
map t-target p) ! i)

proof −
have ((initial B) # map t-target (right-path p)) ! 0 = snd (((initial A, initial

B) # map t-target p) ! 0 )
by simp

moreover have
∧

i . Suc i < length ((initial B) # map t-target (right-path
p)) =⇒ ((initial B) # map t-target (right-path p)) ! Suc i = snd (((initial A, initial
B) # map t-target p) ! Suc i)

by auto
ultimately show

∧
i . i < length ((initial B) # map t-target (right-path

p)) =⇒ ((initial B) # map t-target (right-path p)) ! i = snd (((initial A, initial B)
# map t-target p) ! i)

using less-Suc-eq-0-disj by auto
qed

have ((initial B) # map t-target (right-path p)) ! i = ((initial B) # map
t-target (right-path p)) ! j

using ‹snd (((initial A, initial B) # map t-target p) ! i) = snd (((initial A,
initial B) # map t-target p) ! j)›

unfolding right-nth[OF ∗] right-nth[OF ∗∗]
by assumption

then show ?thesis
unfolding visited-states.simps product-simps
using non-distinct-repetition-indices-rev[OF ‹i < j› ∗∗] by blast

qed
ultimately show False

using ‹acyclic B› unfolding acyclic.simps by blast
qed

qed

lemma acyclic-product-path-length :
assumes acyclic B
and path (product A B) (initial (product A B)) p

shows length p < size B
proof −

have ∗:path B (initial B) (right-path p)
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using product-path[of A B] ‹path (product A B) (initial (product A B)) p›
unfolding product-simps
by auto

then have ∗∗: distinct (visited-states (initial B) (right-path p))
using assms unfolding acyclic.simps by blast

have length (right-path p) < size B
using acyclic-path-length-limit[OF ∗ ∗∗] by assumption

then show length p < size B
by auto

qed

lemma acyclic-language-alt-def :
assumes acyclic A
shows image p-io (acyclic-paths-up-to-length A (initial A) (size A − 1 )) = L A

proof −
let ?ps = acyclic-paths-up-to-length A (initial A) (size A − 1 )
have

∧
p . path A (initial A) p =⇒ length p ≤ FSM .size A − 1

using acyclic-path-length-limit assms unfolding acyclic.simps
by fastforce

then have ?ps = {p. path A (initial A) p}
using assms unfolding acyclic-paths-up-to-length.simps acyclic.simps by blast

then show ?thesis unfolding LS .simps by blast
qed

definition acyclic-language-intersection :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′b ×
′c) list set where
acyclic-language-intersection M A = (let P = product M A in image p-io (acyclic-paths-up-to-length

P (initial P) (size A − 1 )))

lemma acyclic-language-intersection-completeness :
assumes acyclic A
shows acyclic-language-intersection M A = L M ∩ L A

proof −
let ?P = product M A
let ?ps = acyclic-paths-up-to-length ?P (initial ?P) (size A − 1 )

have L ?P = L M ∩ L A
using product-language by blast

have
∧

p . path ?P (initial ?P) p =⇒ length p ≤ FSM .size A − 1
using acyclic-product-path-length[OF assms]
by fastforce

then have ?ps = {p. path ?P (initial ?P) p}
using acyclic-product[OF assms] unfolding acyclic-paths-up-to-length.simps

acyclic.simps by blast
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then have image p-io ?ps = L ?P
unfolding LS .simps by blast

then show ?thesis
using product-language unfolding acyclic-language-intersection-def Let-def by

blast
qed

end

6 Minimisation by OFSM Tables

This theory presents the classical algorithm for transforming observable
FSMs into language-equivalent observable and minimal FSMs in analogy
to the minimisation of finite automata.
theory Minimisation
imports FSM
begin

6.1 OFSM Tables

OFSM tables partition the states of an FSM based on an initial partition
and an iteration counter. States are in the same element of the 0th table
iff they are in the same element of the initial partition. States q1, q2 are in
the same element of the (k+1)-th table if they are in the same element of
the k-th table and furthermore for each IO pair (x,y) either (x,y) is not in
the language of both q1 and q2 or it is in the language of both states and
the states q1’, q2’ reached via (x,y) from q1 and q2, respectively, are in the
same element of the k-th table.
fun ofsm-table :: ( ′a, ′b, ′c) fsm ⇒ ( ′a ⇒ ′a set) ⇒ nat ⇒ ′a ⇒ ′a set where

ofsm-table M f 0 q = (if q ∈ states M then f q else {}) |
ofsm-table M f (Suc k) q = (let

prev-table = ofsm-table M f k
in {q ′ ∈ prev-table q . ∀ x ∈ inputs M . ∀ y ∈ outputs M . (case h-obs M q x

y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ prev-table qT = prev-table
qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None) })

lemma ofsm-table-non-state :
assumes q /∈ states M
shows ofsm-table M f k q = {}

using assms by (induction k; auto)

lemma ofsm-table-subset:
assumes i ≤ j
shows ofsm-table M f j q ⊆ ofsm-table M f i q
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proof −
have ∗:

∧
k . ofsm-table M f (Suc k) q ⊆ ofsm-table M f k q

proof −
fix k show ofsm-table M f (Suc k) q ⊆ ofsm-table M f k q
proof (cases k)

case 0
show ?thesis unfolding 0 ofsm-table.simps Let-def by blast

next
case (Suc k ′)

show ?thesis
unfolding Suc ofsm-table.simps Let-def by force

qed
qed

show ?thesis
using assms

proof (induction j)
case 0
then show ?case by auto

next
case (Suc x)
then show ?case using ∗[of x]

using le-SucE by blast
qed

qed

lemma ofsm-table-case-helper :
(case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′⇒ ofsm-table

M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y =
None)

= ((∃ qT qT ′ . h-obs M q x y = Some qT ∧ h-obs M q ′ x y = Some qT ′ ∧
ofsm-table M f k qT = ofsm-table M f k qT ′) ∨ (h-obs M q x y = None ∧ h-obs M
q ′ x y = None))
proof −

have ∗:
∧

a b P . (case a of Some a ′⇒ (case b of Some b ′⇒ P a ′ b ′ | None ⇒
False) | None ⇒ b = None)

= ((∃ a ′ b ′ . a = Some a ′ ∧ b = Some b ′ ∧ P a ′ b ′) ∨ (a = None ∧ b = None))
(is

∧
a b P . ?P1 a b P = ?P2 a b P)

proof
fix a b P
show ?P1 a b P =⇒ ?P2 a b P using case-optionE [of b = None λa ′ . (case b

of Some b ′⇒ P a ′ b ′ | None ⇒ False) a]
by (metis case-optionE)

show ?P2 a b P =⇒ ?P1 a b P by auto
qed

show ?thesis
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using ∗[of h-obs M q ′ x y λqT qT ′ . ofsm-table M f k qT = ofsm-table M f k
qT ′ h-obs M q x y] .
qed

lemma ofsm-table-case-helper-neg :
(¬ (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒

ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M
q ′ x y = None))

= ((∃ qT qT ′ . h-obs M q x y = Some qT ∧ h-obs M q ′ x y = Some qT ′ ∧
ofsm-table M f k qT 6= ofsm-table M f k qT ′) ∨ (h-obs M q x y = None ←→ h-obs
M q ′ x y 6= None))

unfolding ofsm-table-case-helper by force

lemma ofsm-table-fixpoint :
assumes i ≤ j
and

∧
q . q ∈ states M =⇒ ofsm-table M f (Suc i) q = ofsm-table M f i q

and q ∈ states M
shows ofsm-table M f j q = ofsm-table M f i q
proof −

have ∗:
∧

k . k ≥ i =⇒ (
∧

q . q ∈ states M =⇒ ofsm-table M f (Suc k) q =
ofsm-table M f k q)

proof −

fix k :: nat assume k ≥ i
then show

∧
q . q ∈ states M =⇒ ofsm-table M f (Suc k) q = ofsm-table M

f k q
proof (induction k)

case 0
then show ?case using assms(2 ) by auto

next
case (Suc k)

show ofsm-table M f (Suc (Suc k)) q = ofsm-table M f (Suc k) q
proof (cases i = Suc k)

case True
then show ?thesis using assms(2 )[OF ‹q ∈ states M ›] by simp

next
case False
then have i ≤ k

using ‹i ≤ Suc k› by auto

have h-obs-state:
∧

q x y qT . h-obs M q x y = Some qT =⇒ qT ∈ states
M

using h-obs-state by fastforce
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show ?thesis
proof (rule ccontr)

assume ofsm-table M f (Suc (Suc k)) q 6= ofsm-table M f (Suc k) q
moreover have ofsm-table M f (Suc (Suc k)) q ⊆ ofsm-table M f (Suc k)

q
using ofsm-table-subset
by (metis (full-types) Suc-n-not-le-n nat-le-linear)

ultimately obtain q ′ where q ′ /∈ {q ′ ∈ ofsm-table M f (Suc k) q . ∀ x
∈ inputs M . ∀ y ∈ outputs M . (case h-obs M q x y of Some qT ⇒ (case h-obs M
q ′ x y of Some qT ′ ⇒ ofsm-table M f (Suc k) qT = ofsm-table M f (Suc k) qT ′ |
None ⇒ False) | None ⇒ h-obs M q ′ x y = None) }

and q ′ ∈ ofsm-table M f (Suc k) q
using ofsm-table.simps(2 )[of M f Suc k q] unfolding Let-def by blast

then have ¬(∀ x ∈ inputs M . ∀ y ∈ outputs M . (case h-obs M q x y
of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′⇒ ofsm-table M f (Suc k) qT =
ofsm-table M f (Suc k) qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None))

by blast
then obtain x y where x ∈ inputs M and y ∈ outputs M and ¬ (case

h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′⇒ ofsm-table M f
(Suc k) qT = ofsm-table M f (Suc k) qT ′ | None ⇒ False) | None ⇒ h-obs M q ′

x y = None)
by blast

then consider ∃ qT qT ′ . h-obs M q x y = Some qT ∧ h-obs M q ′ x y =
Some qT ′ ∧ ofsm-table M f (Suc k) qT 6= ofsm-table M f (Suc k) qT ′ |

(h-obs M q x y = None ←→ h-obs M q ′ x y 6= None)
unfolding ofsm-table-case-helper-neg by blast

then show False proof cases
case 1
then obtain qT qT ′ where h-obs M q x y = Some qT and h-obs M q ′

x y = Some qT ′ and ofsm-table M f (Suc k) qT 6= ofsm-table M f (Suc k) qT ′

by blast
then have ofsm-table M f k qT 6= ofsm-table M f k qT ′

using Suc.IH [OF h-obs-state[OF ‹h-obs M q x y = Some qT ›] ‹i ≤ k›]
Suc.IH [OF h-obs-state[OF ‹h-obs M q ′ x y = Some qT ′›] ‹i ≤ k›]

by fast
moreover have q ′ ∈ ofsm-table M f k q
using ofsm-table-subset[of k Suc k] ‹q ′ ∈ ofsm-table M f (Suc k) q› by

force
ultimately have ofsm-table M f (Suc k) q 6= ofsm-table M f k q

using ‹x ∈ inputs M › ‹y ∈ outputs M › ‹h-obs M q x y = Some qT ›
‹h-obs M q ′ x y = Some qT ′›

unfolding ofsm-table.simps(2 ) Let-def by force
then show ?thesis

using Suc.IH [OF Suc.prems(1 ) ‹i ≤ k›] by simp
next

case 2
then have ¬ (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of

Some qT ′⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None
⇒ h-obs M q ′ x y = None)
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unfolding ofsm-table-case-helper-neg by blast
moreover have q ′ ∈ ofsm-table M f k q
using ofsm-table-subset[of k Suc k] ‹q ′ ∈ ofsm-table M f (Suc k) q› by

force
ultimately have ofsm-table M f (Suc k) q 6= ofsm-table M f k q

using ‹x ∈ inputs M › ‹y ∈ outputs M ›
unfolding ofsm-table.simps(2 ) Let-def by force

then show ?thesis
using Suc.IH [OF Suc.prems(1 ) ‹i ≤ k›] by simp

qed
qed

qed
qed

qed

show ?thesis
using assms(1 ) proof (induction j)
case 0
then show ?case by auto

next
case (Suc j)

show ?case proof (cases i = Suc j)
case True
then show ?thesis by simp

next
case False
then have i ≤ j

using Suc.prems(1 ) by auto
then have ofsm-table M f j q = ofsm-table M f i q

using Suc.IH by auto
moreover have ofsm-table M f (Suc j) q = ofsm-table M f j q

using ∗[OF ‹i≤j› ‹q∈states M ›] by assumption
ultimately show ?thesis

by blast
qed

qed
qed

function ofsm-table-fix :: ( ′a, ′b, ′c) fsm ⇒ ( ′a ⇒ ′a set) ⇒ nat ⇒ ′a ⇒ ′a set
where

ofsm-table-fix M f k = (let
cur-table = ofsm-table M (λq. f q ∩ states M ) k;
next-table = ofsm-table M (λq. f q ∩ states M ) (Suc k)

in if (∀ q ∈ states M . cur-table q = next-table q)
then cur-table
else ofsm-table-fix M f (Suc k))
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by pat-completeness auto
termination
proof −

{
fix M :: ( ′a, ′b, ′c) fsm
and f :: ( ′a ⇒ ′a set)
and k :: nat

define f ′ where f ′: f ′ = (λq. f q ∩ states M )

assume ∃ q∈FSM .states M . ofsm-table M (λq. f q ∩ states M ) k q 6= ofsm-table
M (λq. f q ∩ states M ) (Suc k) q

then obtain q where q ∈ states M
and ofsm-table M f ′ k q 6= ofsm-table M f ′ (Suc k) q

unfolding f ′ by blast

have ∗:
∧

k . (
∑

q∈FSM .states M . card (ofsm-table M f ′ k q)) = card
(ofsm-table M f ′ k q) + (

∑
q∈FSM .states M − {q}. card (ofsm-table M f ′ k q))

using ‹q ∈ states M › by (meson fsm-states-finite sum.remove)

have
∧

q . ofsm-table M f ′ (Suc k) q ⊆ ofsm-table M f ′ k q
using ofsm-table-subset[of k Suc k M ] by auto

moreover have
∧

q . finite (ofsm-table M f ′ k q)
proof −

fix q
have ofsm-table M (λq. f q ∩ states M ) k q ⊆ ofsm-table M (λq. f q ∩ states

M ) 0 q
using ofsm-table-subset[of 0 k M (λq. f q ∩ FSM .states M ) q] by auto

then have ofsm-table M f ′ k q ⊆ states M
unfolding f ′

using ofsm-table-non-state[of q M (λq. f q ∩ FSM .states M ) k]
by force

then show finite (ofsm-table M f ′ k q)
using fsm-states-finite finite-subset by auto

qed
ultimately have

∧
q . card (ofsm-table M f ′ (Suc k) q) ≤ card (ofsm-table M

f ′ k q)
by (simp add: card-mono)

then have (
∑

q∈FSM .states M − {q}. card (ofsm-table M f ′ (Suc k) q)) ≤
(
∑

q∈FSM .states M − {q}. card (ofsm-table M f ′ k q))
by (simp add: sum-mono)

moreover have card (ofsm-table M f ′ (Suc k) q) < card (ofsm-table M f ′ k q)
using ‹ofsm-table M f ′ k q 6= ofsm-table M f ′ (Suc k) q› ‹ofsm-table M f ′

(Suc k) q ⊆ ofsm-table M f ′ k q› ‹finite (ofsm-table M f ′ k q)›
by (metis psubsetI psubset-card-mono)

ultimately have (
∑

q∈FSM .states M . card (ofsm-table M (λq. f q ∩ states
M ) (Suc k) q)) < (

∑
q∈FSM .states M . card (ofsm-table M (λq. f q ∩ states M )

k q))
unfolding f ′[symmetric] ∗
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by linarith
} note t = this

show ?thesis
apply (relation measure (λ (M , f , k) .

∑
q ∈ states M . card (ofsm-table M

(λq. f q ∩ states M ) k q)))
apply (simp del: h-obs.simps ofsm-table.simps)+
by (erule t)

qed

lemma ofsm-table-restriction-to-states :
assumes

∧
q . q ∈ states M =⇒ f q ⊆ states M

and q ∈ states M
shows ofsm-table M f k q = ofsm-table M (λq . f q ∩ states M ) k q
using assms(2 ) proof (induction k arbitrary: q)

case 0
then show ?case using assms(1 ) by auto

next
case (Suc k)

have
∧

x y q q ′ . (case h-obs M q x y of None ⇒ h-obs M q ′ x y = None | Some
qT ⇒ (case h-obs M q ′ x y of None ⇒ False | Some qT ′ ⇒ ofsm-table M f k qT
= ofsm-table M f k qT ′))

= (case h-obs M q x y of None ⇒ h-obs M q ′ x y = None | Some
qT ⇒ (case h-obs M q ′ x y of None ⇒ False | Some qT ′ ⇒ ofsm-table M (λq . f
q ∩ states M ) k qT = ofsm-table M (λq . f q ∩ states M ) k qT ′))

(is
∧

x y q q ′ . ?C1 x y q q ′ = ?C2 x y q q ′ )
proof −

fix x y q q ′

show ?C1 x y q q ′ = ?C2 x y q q ′

using Suc.IH [OF h-obs-state, of q x y]
using Suc.IH [OF h-obs-state, of q ′ x y]
by (cases h-obs M q x y; cases h-obs M q ′ x y; auto)

qed
then show ?case

unfolding ofsm-table.simps Let-def Suc.IH [OF Suc.prems]
by blast

qed

lemma ofsm-table-fix-length :
assumes

∧
q . q ∈ states M =⇒ f q ⊆ states M

obtains k where
∧

q . q ∈ states M =⇒ ofsm-table-fix M f 0 q = ofsm-table M
f k q and

∧
q k ′ . q ∈ states M =⇒ k ′ ≥ k =⇒ ofsm-table M f k ′ q = ofsm-table

M f k q
proof −

have ∃ k . ∀ q ∈ states M . ∀ k ′ ≥ k . ofsm-table M f k ′ q = ofsm-table M f k q
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proof −

have ∃ fp . ∀ q k ′ . q ∈ states M −→ k ′ ≥ (fp q) −→ ofsm-table M f k ′ q =
ofsm-table M f (fp q) q

proof
fix q
let ?assignK = λ q . SOME k . ∀ k ′ ≥ k . ofsm-table M f k ′ q = ofsm-table

M f k q

have
∧

q k ′ . q ∈ states M =⇒ k ′ ≥ ?assignK q =⇒ ofsm-table M f k ′ q =
ofsm-table M f (?assignK q) q

proof −
fix q k ′ assume q ∈ states M and k ′ ≥ ?assignK q
then have p1 : finite (ofsm-table M f 0 q)

using fsm-states-finite assms(1 )
using infinite-super by fastforce

have ∃ k . ∀ k ′ ≥ k . ofsm-table M f k ′ q = ofsm-table M f k q
using finite-subset-mapping-limit[of λ k . ofsm-table M f k q, OF p1

ofsm-table-subset] by metis
have ∀ k ′ ≥ (?assignK q) . ofsm-table M f k ′ q = ofsm-table M f (?assignK

q) q
using someI-ex[of λ k . ∀ k ′ ≥ k . ofsm-table M f k ′ q = ofsm-table M f k

q, OF ‹∃ k . ∀ k ′ ≥ k . ofsm-table M f k ′ q = ofsm-table M f k q›] by assumption
then show ofsm-table M f k ′ q = ofsm-table M f (?assignK q) q

using ‹k ′ ≥ ?assignK q› by blast
qed
then show ∀ q k ′. q ∈ states M −→ ?assignK q ≤ k ′ −→ ofsm-table M f k ′

q = ofsm-table M f (?assignK q) q
by blast

qed
then obtain assignK where assignK-prop:

∧
q k ′ . q ∈ states M =⇒ k ′ ≥

assignK q =⇒ ofsm-table M f k ′ q = ofsm-table M f (assignK q) q
by blast

have finite (assignK ‘ states M )
by (simp add: fsm-states-finite)

moreover have assignK ‘ FSM .states M 6= {}
using fsm-initial by auto

ultimately obtain k where k ∈ (assignK ‘ states M ) and
∧

k ′ . k ′ ∈ (assignK
‘ states M ) =⇒ k ′ ≤ k

using Max-elem[OF ‹finite (assignK ‘ states M )› ‹assignK ‘ FSM .states M
6= {}›] by (meson eq-Max-iff )

have
∧

q k ′ . q ∈ states M =⇒ k ′ ≥ k =⇒ ofsm-table M f k ′ q = ofsm-table
M f k q

proof −
fix q k ′ assume k ′ ≥ k and q ∈ states M
then have k ′ ≥ assignK q
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using ‹
∧

k ′ . k ′ ∈ (assignK ‘ states M ) =⇒ k ′ ≤ k›
using dual-order .trans by auto

then show ofsm-table M f k ′ q = ofsm-table M f k q
using assignK-prop ‹

∧
k ′. k ′ ∈ assignK ‘ FSM .states M =⇒ k ′ ≤ k› ‹q ∈

FSM .states M › by blast
qed
then show ?thesis

by blast
qed
then obtain k where k-prop:

∧
q k ′ . q ∈ states M =⇒ k ′ ≥ k =⇒ ofsm-table

M f k ′ q = ofsm-table M f k q
by blast

then have
∧

q . q ∈ states M =⇒ ofsm-table M f k q = ofsm-table M f (Suc k)
q

by (metis (full-types) le-SucI order-refl)

let ?ks = (Set.filter (λ k . ∀ q ∈ states M . ofsm-table M f k q = ofsm-table M f
(Suc k) q) {..k})

have f1 : finite ?ks
by simp

moreover have f2 : ?ks 6= {}
using ‹

∧
q . q ∈ states M =⇒ ofsm-table M f k q = ofsm-table M f (Suc k) q›

unfolding Set.filter-def by blast
ultimately obtain kMin where kMin ∈ ?ks and

∧
k ′ . k ′ ∈ ?ks =⇒ k ′ ≥ kMin

using Min-elem[OF f1 f2 ] by (meson eq-Min-iff )

have k1 :
∧

q . q ∈ states M =⇒ ofsm-table M f (Suc kMin) q = ofsm-table M
f kMin q

using ‹kMin ∈ ?ks›
by (metis (mono-tags, lifting) member-filter)

have k2 :
∧

k ′ . (
∧

q . q ∈ states M =⇒ ofsm-table M f k ′ q = ofsm-table M f
(Suc k ′) q) =⇒ k ′ ≥ kMin

proof −
fix k ′ assume

∧
q . q ∈ states M =⇒ ofsm-table M f k ′ q = ofsm-table M f

(Suc k ′) q
show k ′ ≥ kMin proof (cases k ′ ∈ ?ks)

case True
then show ?thesis using ‹

∧
k ′ . k ′ ∈ ?ks =⇒ k ′ ≥ kMin› by blast

next
case False
then have k ′ > k

using ‹
∧

q . q ∈ states M =⇒ ofsm-table M f k ′ q = ofsm-table M f (Suc
k ′) q›

unfolding member-filter atMost-iff
by (meson not-less)

moreover have kMin ≤ k
using ‹kMin ∈ ?ks› by auto
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ultimately show ?thesis
by auto

qed
qed

have
∧

q . q ∈ states M =⇒ ofsm-table-fix M f 0 q = ofsm-table M (λ q . f q ∩
states M ) kMin q

proof −
fix q assume q ∈ states M
show ofsm-table-fix M f 0 q = ofsm-table M (λ q . f q ∩ states M ) kMin q
proof (cases kMin)

case 0

have ∀ q∈FSM .states M . ofsm-table M (λq. f q ∩ FSM .states M ) 0 q =
ofsm-table M (λq. f q ∩ FSM .states M ) (Suc 0 ) q

using k1
using ofsm-table-restriction-to-states[of M f -, OF assms(1 ) - ]
using 0 by blast

then show ?thesis
apply (subst ofsm-table-fix.simps)
unfolding 0 Let-def by force

next
case (Suc kMin ′)

have ∗:
∧

i . i < kMin =⇒ ¬(∀ q ∈ states M . ofsm-table M f i q = ofsm-table
M f (Suc i) q)

using k2
by (meson leD)

have
∧

i . i < kMin =⇒ ofsm-table-fix M f 0 = ofsm-table-fix M f (Suc i)
proof −

fix i assume i < kMin
then show ofsm-table-fix M f 0 = ofsm-table-fix M f (Suc i)
proof (induction i)

case 0
show ?case

using ∗[OF 0 ] ofsm-table-restriction-to-states[of - f , OF assms(1 ) - ]
unfolding ofsm-table-fix.simps[of M f 0 ] Let-def

by (metis (no-types, lifting))
next

case (Suc i)
then have i < kMin by auto

have ofsm-table-fix M f (Suc i) = ofsm-table-fix M f (Suc (Suc i))
using ∗[OF ‹Suc i < kMin›] ofsm-table-restriction-to-states[of - f , OF

assms(1 ) - ] unfolding ofsm-table-fix.simps[of M f Suc i] Let-def by metis
then show ?case using Suc.IH [OF ‹i < kMin›]

by presburger
qed
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qed
then have ofsm-table-fix M f 0 = ofsm-table-fix M f kMin

using Suc by blast
moreover have ofsm-table-fix M f kMin q = ofsm-table M f kMin q
proof −

have ∀ q∈FSM .states M . ofsm-table M (λq. f q ∩ FSM .states M ) kMin q
= ofsm-table M (λq. f q ∩ FSM .states M ) (Suc kMin) q

using ofsm-table-restriction-to-states[of - f , OF assms(1 ) - ]
using k1 by blast

then show ?thesis
using ofsm-table-restriction-to-states[of - f , OF assms(1 ) - ] ‹q ∈ states

M ›
unfolding ofsm-table-fix.simps[of M f kMin] Let-def
by presburger

qed
ultimately show ?thesis

using ofsm-table-restriction-to-states[of - f , OF assms(1 ) ‹q ∈ states M ›]
by presburger

qed
qed
moreover have

∧
q k ′ . q ∈ states M =⇒ k ′ ≥ kMin =⇒ ofsm-table M f k ′ q

= ofsm-table M f kMin q
using ofsm-table-fixpoint[OF - k1 ] by blast

ultimately show ?thesis
using that[of kMin]
using ofsm-table-restriction-to-states[of M f , OF assms(1 ) - ]
by blast

qed

lemma ofsm-table-containment :
assumes q ∈ states M
and

∧
q . q ∈ states M =⇒ q ∈ f q

shows q ∈ ofsm-table M f k q
proof (induction k)

case 0
then show ?case using assms by auto

next
case (Suc k)
then show ?case

unfolding ofsm-table.simps Let-def option.case-eq-if
by auto

qed

lemma ofsm-table-states :
assumes

∧
q . q ∈ states M =⇒ f q ⊆ states M

and q ∈ states M
shows ofsm-table M f k q ⊆ states M
proof −

have ofsm-table M f k q ⊆ ofsm-table M f 0 q
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using ofsm-table-subset[OF le0 ] by metis
moreover have ofsm-table M f 0 q ⊆ states M

using assms
unfolding ofsm-table.simps(1 ) by (metis (full-types))

ultimately show ?thesis
by blast

qed

6.1.1 Properties of Initial Partitions
definition equivalence-relation-on-states :: ( ′a, ′b, ′c) fsm ⇒ ( ′a ⇒ ′a set) ⇒ bool
where

equivalence-relation-on-states M f =
(equiv (states M ) {(q1 ,q2 ) | q1 q2 . q1 ∈ states M ∧ q2 ∈ f q1}
∧ (∀ q ∈ states M . f q ⊆ states M ))

lemma equivalence-relation-on-states-refl :
assumes equivalence-relation-on-states M f
and q ∈ states M

shows q ∈ f q
using assms unfolding equivalence-relation-on-states-def equiv-def refl-on-def

by blast

lemma equivalence-relation-on-states-sym :
assumes equivalence-relation-on-states M f
and q1 ∈ states M
and q2 ∈ f q1

shows q1 ∈ f q2
using assms unfolding equivalence-relation-on-states-def equiv-def sym-def by

blast

lemma equivalence-relation-on-states-trans :
assumes equivalence-relation-on-states M f
and q1 ∈ states M
and q2 ∈ f q1
and q3 ∈ f q2

shows q3 ∈ f q1
proof −

have (q1 ,q2 ) ∈ {(q1 ,q2 ) | q1 q2 . q1 ∈ states M ∧ q2 ∈ f q1}
using assms(2 ,3 ) by blast

then have q2 ∈ states M
using assms(1 ) unfolding equivalence-relation-on-states-def
by auto

then have (q2 ,q3 ) ∈ {(q1 ,q2 ) | q1 q2 . q1 ∈ states M ∧ q2 ∈ f q1}
using assms(4 ) by blast

moreover have trans {(q1 ,q2 ) | q1 q2 . q1 ∈ states M ∧ q2 ∈ f q1}
using assms(1 ) unfolding equivalence-relation-on-states-def equiv-def by auto

ultimately show ?thesis
using ‹(q1 ,q2 ) ∈ {(q1 ,q2 ) | q1 q2 . q1 ∈ states M ∧ q2 ∈ f q1}›
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unfolding trans-def by blast
qed

lemma equivalence-relation-on-states-ran :
assumes equivalence-relation-on-states M f
and q ∈ states M

shows f q ⊆ states M
using assms unfolding equivalence-relation-on-states-def by blast

6.1.2 Properties of OFSM tables for initial partitions based on
equivalence relations

lemma h-obs-io :
assumes h-obs M q x y = Some q ′

shows x ∈ inputs M and y ∈ outputs M
proof −

have snd ‘ Set.filter (λ (y ′,q ′) . y ′ = y) (h M (q,x)) 6= {}
using assms unfolding h-obs-simps Let-def by auto

then show x ∈ inputs M and y ∈ outputs M
unfolding h-simps
using fsm-transition-input fsm-transition-output
by fastforce+

qed

lemma ofsm-table-language :
assumes q ′ ∈ ofsm-table M f k q
and length io ≤ k
and q ∈ states M
and equivalence-relation-on-states M f

shows is-in-language M q io ←→ is-in-language M q ′ io
and is-in-language M q io =⇒ (after M q ′ io) ∈ f (after M q io)
proof −

have (is-in-language M q io ←→ is-in-language M q ′ io) ∧ (is-in-language M q
io −→ (after M q ′ io) ∈ f (after M q io))

using assms(1 ,2 ,3 )
proof (induction k arbitrary: q q ′ io)

case 0
then have io = [] by auto
then show ?case

using 0 .prems(1 ,3 ) by auto
next

case (Suc k)

show ?case proof (cases length io ≤ k)
case True
have ∗: q ′ ∈ ofsm-table M f k q

using ‹q ′ ∈ ofsm-table M f (Suc k) q› ofsm-table-subset
by (metis (full-types) le-SucI order-refl subsetD)
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show ?thesis using Suc.IH [OF ∗ True ‹q ∈ states M ›] by assumption
next

case False
then have length io = Suc k

using ‹length io ≤ Suc k› by auto
then obtain ioT ioP where io = ioT#ioP

by (meson length-Suc-conv)
then have length ioP ≤ k

using ‹length io ≤ Suc k› by auto

obtain x y where io = (x,y)#ioP
using ‹io = ioT#ioP› prod.exhaust-sel
by fastforce

have ofsm-table M f (Suc k) q = {q ′ ∈ ofsm-table M f k q . ∀ x ∈ inputs M
. ∀ y ∈ outputs M . (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of
Some qT ′⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None
⇒ h-obs M q ′ x y = None) }

unfolding ofsm-table.simps Let-def by blast
then have q ′ ∈ ofsm-table M f k q

and ∗:
∧

x y . x ∈ inputs M =⇒ y ∈ outputs M =⇒ (case h-obs M q
x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ ofsm-table M f k qT =
ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None)

using ‹q ′ ∈ ofsm-table M f (Suc k) q› by blast+

show ?thesis
unfolding ‹io = (x,y)#ioP›

proof −
have is-in-language M q ((x,y)#ioP) =⇒ is-in-language M q ′ ((x,y)#ioP)

∧ after M q ′ ((x,y)#ioP) ∈ f (after M q ((x,y)#ioP))
proof −

assume is-in-language M q ((x,y)#ioP)

then obtain qT where h-obs M q x y = Some qT and is-in-language M
qT ioP

by (metis case-optionE is-in-language.simps(2 ))
moreover have (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x

y of Some qT ′ ⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) |
None ⇒ h-obs M q ′ x y = None)

using ∗[of x y, OF h-obs-io[OF ‹h-obs M q x y = Some qT ›]] .
ultimately obtain qT ′ where h-obs M q ′ x y = Some qT ′ and ofsm-table

M f k qT = ofsm-table M f k qT ′

using ofsm-table-case-helper [of M q ′ x y f k q]
unfolding ofsm-table.simps by force

then have qT ′ ∈ ofsm-table M f k qT
using ofsm-table-containment[OF h-obs-state equivalence-relation-on-states-refl[OF

‹equivalence-relation-on-states M f ›]]
by metis
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have (is-in-language M qT ioP) = (is-in-language M qT ′ ioP)
(is-in-language M qT ioP −→ after M qT ′ ioP ∈ f (after M qT ioP))

using Suc.IH [OF ‹qT ′ ∈ ofsm-table M f k qT › ‹length ioP ≤ k›
h-obs-state[OF ‹h-obs M q x y = Some qT ›]]

by blast+

have (is-in-language M qT ′ ioP)
using ‹(is-in-language M qT ioP) = (is-in-language M qT ′ ioP)›

‹is-in-language M qT ioP›
by auto

then have is-in-language M q ′ ((x,y)#ioP)
unfolding is-in-language.simps ‹h-obs M q ′ x y = Some qT ′› by auto

moreover have after M q ′ ((x,y)#ioP) ∈ f (after M q ((x,y)#ioP))
unfolding after .simps ‹h-obs M q ′ x y = Some qT ′› ‹h-obs M q x y =

Some qT ›
using ‹(is-in-language M qT ioP −→ after M qT ′ ioP ∈ f (after M qT

ioP))› ‹is-in-language M qT ioP›
by auto

ultimately show is-in-language M q ′ ((x,y)#ioP) ∧ after M q ′ ((x,y)#ioP)
∈ f (after M q ((x,y)#ioP))

by blast
qed
moreover have is-in-language M q ′ ((x,y)#ioP) =⇒ is-in-language M q

((x,y)#ioP)
proof −

assume is-in-language M q ′ ((x,y)#ioP)

then obtain qT ′ where h-obs M q ′ x y = Some qT ′ and is-in-language
M qT ′ ioP

by (metis case-optionE is-in-language.simps(2 ))
moreover have (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x

y of Some qT ′ ⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) |
None ⇒ h-obs M q ′ x y = None)

using ∗[of x y, OF h-obs-io[OF ‹h-obs M q ′ x y = Some qT ′›]] .
ultimately obtain qT where h-obs M q x y = Some qT and ofsm-table

M f k qT = ofsm-table M f k qT ′

using ofsm-table-case-helper [of M q ′ x y f k q]
unfolding ofsm-table.simps by force

then have qT ∈ ofsm-table M f k qT ′

using ofsm-table-containment[OF h-obs-state equivalence-relation-on-states-refl[OF
‹equivalence-relation-on-states M f ›]]

by metis

have (is-in-language M qT ioP) = (is-in-language M qT ′ ioP)
using Suc.IH [OF ‹qT ∈ ofsm-table M f k qT ′› ‹length ioP ≤ k›

h-obs-state[OF ‹h-obs M q ′ x y = Some qT ′›]]
by blast

then have is-in-language M qT ioP
using ‹is-in-language M qT ′ ioP›

286



by auto
then show is-in-language M q ((x,y)#ioP)

unfolding is-in-language.simps ‹h-obs M q x y = Some qT › by auto
qed
ultimately show is-in-language M q ((x, y) # ioP) = is-in-language M q ′

((x, y) # ioP) ∧ (is-in-language M q ((x, y) # ioP) −→ after M q ′ ((x, y) # ioP)
∈ f (after M q ((x, y) # ioP)))

by blast
qed

qed
qed
then show is-in-language M q io = is-in-language M q ′ io and (is-in-language

M q io =⇒ after M q ′ io ∈ f (after M q io))
by blast+

qed

lemma after-is-state-is-in-language :
assumes q ∈ states M
and is-in-language M q io
shows FSM .after M q io ∈ states M
using assms

proof (induction io arbitrary: q)
case Nil
then show ?case by auto

next
case (Cons a io)
then obtain x y where a = (x,y) using prod.exhaust by metis
show ?case

using ‹is-in-language M q (a # io)› Cons.IH [OF h-obs-state[of M q x y]]
unfolding ‹a = (x,y)›
unfolding after .simps is-in-language.simps
by (metis option.case-eq-if option.exhaust-sel)

qed

lemma ofsm-table-elem :
assumes q ∈ states M
and q ′ ∈ states M
and equivalence-relation-on-states M f
and

∧
io . length io ≤ k =⇒ is-in-language M q io ←→ is-in-language M q ′

io
and

∧
io . length io ≤ k =⇒ is-in-language M q io =⇒ (after M q ′ io) ∈ f

(after M q io)
shows q ′ ∈ ofsm-table M f k q

using assms(1 ,2 ,4 ,5 ) proof (induction k arbitrary: q q ′)
case 0
then show ?case by auto
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next
case (Suc k)

have q ′ ∈ ofsm-table M f k q
using Suc.IH [OF Suc.prems(1 ,2 )] Suc.prems(3 ,4 ) by auto

moreover have
∧

x y . x ∈ inputs M =⇒ y ∈ outputs M =⇒ (case h-obs M
q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ ofsm-table M f k qT =
ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None)

proof −
fix x y assume x ∈ inputs M and y ∈ outputs M
show (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′⇒

ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M
q ′ x y = None)

proof (cases ∃ qT qT ′ . h-obs M q x y = Some qT ∧ h-obs M q ′ x y = Some
qT ′)

case True
then obtain qT qT ′ where h-obs M q x y = Some qT and h-obs M q ′ x y

= Some qT ′

by blast

have ∗:
∧

io . length io ≤ k =⇒ is-in-language M qT io = is-in-language M
qT ′ io

proof −
fix io :: ( ′b × ′c) list
assume length io ≤ k

have is-in-language M qT io = is-in-language M q ([(x,y)]@io)
using ‹h-obs M q x y = Some qT › by auto

moreover have is-in-language M qT ′ io = is-in-language M q ′ ([(x,y)]@io)
using ‹h-obs M q ′ x y = Some qT ′› by auto

ultimately show is-in-language M qT io = is-in-language M qT ′ io
using Suc.prems(3 ) ‹length io ≤ k›
by (metis append.left-neutral append-Cons length-Cons not-less-eq-eq)

qed

have ofsm-table M f k qT = ofsm-table M f k qT ′

proof

have qT ∈ states M
using h-obs-state[OF ‹h-obs M q x y = Some qT ›] .

have qT ′ ∈ states M
using h-obs-state[OF ‹h-obs M q ′ x y = Some qT ′›] .

show ofsm-table M f k qT ⊆ ofsm-table M f k qT ′

proof
fix s assume s ∈ ofsm-table M f k qT
then have s ∈ states M

using ofsm-table-subset[of 0 k M f qT ] equivalence-relation-on-states-ran[OF
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assms(3 ) ‹qT ∈ states M ›] ‹qT ∈ states M › by auto
have ∗∗: (

∧
io. length io ≤ k =⇒ is-in-language M qT ′ io = is-in-language

M s io)
using ofsm-table-language(1 )[OF ‹s ∈ ofsm-table M f k qT › - ‹qT∈ states

M › assms(3 )] ∗ by blast
have ∗∗∗: (

∧
io. length io ≤ k =⇒ is-in-language M qT ′ io =⇒ after M s

io ∈ f (after M qT ′ io))
proof −

fix io assume length io ≤ k and is-in-language M qT ′ io
then have is-in-language M qT io

using ∗ by blast
then have after M s io ∈ f (after M qT io)

using ofsm-table-language(2 )[OF ‹s ∈ ofsm-table M f k qT › ‹length io
≤ k› ‹qT∈ states M › assms(3 )]

by blast

have after M qT io = after M q ((x,y)#io)
using ‹h-obs M q x y = Some qT › by auto

moreover have after M qT ′ io = after M q ′ ((x,y)#io)
using ‹h-obs M q ′ x y = Some qT ′› by auto

moreover have is-in-language M q ((x,y)#io)
using ‹h-obs M q x y = Some qT › ‹is-in-language M qT io› by auto

ultimately have after M qT ′ io ∈ f (after M qT io)
using Suc.prems(4 ) ‹length io ≤ k›
by (metis Suc-le-mono length-Cons)

show after M s io ∈ f (after M qT ′ io)
using equivalence-relation-on-states-trans[OF ‹equivalence-relation-on-states

M f › after-is-state-is-in-language[OF ‹qT ′ ∈ states M › ‹is-in-language M qT ′ io›]
equivalence-relation-on-states-sym[OF

‹equivalence-relation-on-states M f › after-is-state-is-in-language[OF ‹qT ∈ states
M › ‹is-in-language M qT io›]

‹after M qT ′ io ∈ f (after M qT
io)›] ‹after M s io ∈ f (after M qT io)›] .

qed
show s ∈ ofsm-table M f k qT ′

using Suc.IH [OF ‹qT ′ ∈ states M › ‹s ∈ states M › ∗∗ ∗∗∗] by blast

qed

show ofsm-table M f k qT ′ ⊆ ofsm-table M f k qT
proof

fix s assume s ∈ ofsm-table M f k qT ′

then have s ∈ states M
using ofsm-table-subset[of 0 k M f qT ′] equivalence-relation-on-states-ran[OF

assms(3 ) ‹qT ′ ∈ states M ›] ‹qT ′ ∈ states M › by auto
have ∗∗: (

∧
io. length io ≤ k =⇒ is-in-language M qT io = is-in-language

M s io)
using ofsm-table-language(1 )[OF ‹s ∈ ofsm-table M f k qT ′› - ‹qT ′∈
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states M › assms(3 )] ∗ by blast
have ∗∗∗: (

∧
io. length io ≤ k =⇒ is-in-language M qT io =⇒ after M s

io ∈ f (after M qT io))
proof −

fix io assume length io ≤ k and is-in-language M qT io
then have is-in-language M qT ′ io

using ∗ by blast
then have after M s io ∈ f (after M qT ′ io)
using ofsm-table-language(2 )[OF ‹s ∈ ofsm-table M f k qT ′› ‹length io

≤ k› ‹qT ′∈ states M › assms(3 )]
by blast

have after M qT ′ io = after M q ′ ((x,y)#io)
using ‹h-obs M q ′ x y = Some qT ′› by auto

moreover have after M qT io = after M q ((x,y)#io)
using ‹h-obs M q x y = Some qT › by auto

moreover have is-in-language M q ′ ((x,y)#io)
using ‹h-obs M q ′ x y = Some qT ′› ‹is-in-language M qT ′ io› by auto

ultimately have after M qT io ∈ f (after M qT ′ io)
using Suc.prems(4 ) ‹length io ≤ k›
by (metis Suc.prems(3 ) Suc-le-mono ‹is-in-language M qT io› ‹qT ∈

FSM .states M › after-is-state-is-in-language assms(3 ) equivalence-relation-on-states-sym
length-Cons)

show after M s io ∈ f (after M qT io)
using equivalence-relation-on-states-trans[OF ‹equivalence-relation-on-states

M f › after-is-state-is-in-language[OF ‹qT ∈ states M › ‹is-in-language M qT io›]
equivalence-relation-on-states-sym[OF

‹equivalence-relation-on-states M f › after-is-state-is-in-language[OF ‹qT ′ ∈ states
M › ‹is-in-language M qT ′ io›]

‹after M qT io ∈ f (after M qT ′

io)›] ‹after M s io ∈ f (after M qT ′ io)›] .
qed
show s ∈ ofsm-table M f k qT

using Suc.IH [OF ‹qT ∈ states M › ‹s ∈ states M › ∗∗ ∗∗∗] by blast

qed
qed
then show ?thesis

unfolding ‹h-obs M q x y = Some qT › ‹h-obs M q ′ x y = Some qT ′›
by auto

next
case False
have h-obs M q x y = None ∧ h-obs M q ′ x y = None
proof (rule ccontr)

assume ¬ (h-obs M q x y = None ∧ h-obs M q ′ x y = None)
then have is-in-language M q [(x,y)] ∨ is-in-language M q ′ [(x,y)]

unfolding is-in-language.simps
using option.disc-eq-case(2 ) by blast
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moreover have is-in-language M q [(x,y)] 6= is-in-language M q ′ [(x,y)]
using False
by (metis calculation case-optionE is-in-language.simps(2 ))

moreover have length [(x,y)] ≤ Suc k
by auto

ultimately show False
using Suc.prems(3 ) by blast

qed
then show ?thesis

unfolding ofsm-table-case-helper
by blast

qed
qed

ultimately show ?case
unfolding Suc ofsm-table.simps Let-def by force

qed

lemma ofsm-table-set :
assumes q ∈ states M
and equivalence-relation-on-states M f

shows ofsm-table M f k q = {q ′ . q ′ ∈ states M ∧ (∀ io . length io ≤ k −→
(is-in-language M q io ←→ is-in-language M q ′ io) ∧ (is-in-language M q io −→
after M q ′ io ∈ f (after M q io)))}

using ofsm-table-language[OF - - assms(1 ,2 ) ]
ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms(2 )]

assms(1 )]
ofsm-table-elem[OF assms(1 ) - assms(2 )]

by blast

lemma ofsm-table-set-observable :
assumes observable M and q ∈ states M
and equivalence-relation-on-states M f

shows ofsm-table M f k q = {q ′ . q ′ ∈ states M ∧ (∀ io . length io ≤ k −→ (io
∈ LS M q ←→ io ∈ LS M q ′) ∧ (io ∈ LS M q −→ after M q ′ io ∈ f (after M q
io)))}

unfolding ofsm-table-set[OF assms(2 ,3 )]
unfolding is-in-language-iff [OF assms(1 ,2 )]
using is-in-language-iff [OF assms(1 )]
by blast

lemma ofsm-table-eq-if-elem :
assumes q1 ∈ states M and q2 ∈ states M and equivalence-relation-on-states

M f
shows (ofsm-table M f k q1 = ofsm-table M f k q2 ) = (q2 ∈ ofsm-table M f k

q1 )
proof
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show ofsm-table M f k q1 = ofsm-table M f k q2 =⇒ q2 ∈ ofsm-table M f k q1
using ofsm-table-containment[OF assms(2 ) equivalence-relation-on-states-refl[OF

‹equivalence-relation-on-states M f ›]]
by blast

show q2 ∈ ofsm-table M f k q1 =⇒ ofsm-table M f k q1 = ofsm-table M f k q2
proof −

assume ∗: q2 ∈ ofsm-table M f k q1

have ofsm-table M f k q1 = {q ′ ∈ FSM .states M . ∀ io. length io ≤ k −→
(is-in-language M q1 io) = (is-in-language M q ′ io) ∧ (is-in-language M q1 io −→
after M q ′ io ∈ f (after M q1 io))}

using ofsm-table-set[OF assms(1 ,3 )] by auto

moreover have ofsm-table M f k q2 = {q ′ ∈ FSM .states M . ∀ io. length io ≤
k −→ (is-in-language M q1 io) = (is-in-language M q ′ io) ∧ (is-in-language M q1
io −→ after M q ′ io ∈ f (after M q1 io))}

proof −
have ofsm-table M f k q2 = {q ′ ∈ FSM .states M . ∀ io. length io ≤ k −→

(is-in-language M q2 io) = (is-in-language M q ′ io) ∧ (is-in-language M q2 io −→
after M q ′ io ∈ f (after M q2 io))}

using ofsm-table-set[OF assms(2 ,3 )] by auto
moreover have

∧
io . length io ≤ k =⇒ (is-in-language M q1 io) =

(is-in-language M q2 io)
using ofsm-table-language(1 )[OF ∗ - assms(1 ,3 )] by blast

moreover have
∧

io q ′ . q ′ ∈ states M =⇒ length io ≤ k =⇒ (is-in-language
M q2 io −→ after M q ′ io ∈ f (after M q2 io)) = (is-in-language M q1 io −→ after
M q ′ io ∈ f (after M q1 io))

using ofsm-table-language(2 )[OF ∗ - assms(1 ,3 )]
by (meson after-is-state-is-in-language assms(1 ) assms(2 ) assms(3 ) calcu-

lation(2 ) equivalence-relation-on-states-sym equivalence-relation-on-states-trans)
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed

qed

lemma ofsm-table-fix-language :
fixes M :: ( ′a, ′b, ′c) fsm
assumes q ′ ∈ ofsm-table-fix M f 0 q
and q ∈ states M
and observable M
and equivalence-relation-on-states M f

shows LS M q = LS M q ′

and io ∈ LS M q =⇒ after M q ′ io ∈ f (after M q io)
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proof −

obtain k where ∗:
∧

q . q ∈ states M =⇒ ofsm-table-fix M f 0 q = ofsm-table
M f k q

and ∗∗:
∧

q k ′ . q ∈ states M =⇒ k ′ ≥ k =⇒ ofsm-table M f k ′ q =
ofsm-table M f k q

using ofsm-table-fix-length[of M f ,OF equivalence-relation-on-states-ran[OF
assms(4 )]]

by blast

have q ′ ∈ ofsm-table M f k q
using ∗ assms(1 ,2 ) by blast

then have q ′ ∈ states M
by (metis assms(2 ) assms(4 ) equivalence-relation-on-states-ran le0 ofsm-table.simps(1 )

ofsm-table-subset subset-iff )

have
∧

k ′ . q ′ ∈ ofsm-table M f k ′ q
proof −

fix k ′ show q ′ ∈ ofsm-table M f k ′ q
proof (cases k ′ ≤ k)

case True
show ?thesis using ofsm-table-subset[OF True, of M f q] ‹q ′ ∈ ofsm-table M

f k q› by blast
next

case False
then have k ≤ k ′

by auto
show ?thesis

unfolding ∗∗[OF assms(2 ) ‹k ≤ k ′›]
using ‹q ′ ∈ ofsm-table M f k q› by assumption

qed
qed

have
∧

io . io ∈ LS M q ←→ io ∈ LS M q ′

proof −
fix io :: ( ′b × ′c) list
show io ∈ LS M q ←→ io ∈ LS M q ′

using ofsm-table-language(1 )[OF ‹q ′ ∈ ofsm-table M f (length io) q› -
assms(2 ,4 ), of io]

using is-in-language-iff [OF assms(3 ,2 )] is-in-language-iff [OF assms(3 ) ‹q ′ ∈
states M ›]

by blast
qed
then show LS M q = LS M q ′

by blast

show io ∈ LS M q =⇒ after M q ′ io ∈ f (after M q io)
using ofsm-table-language(2 )[OF ‹q ′∈ ofsm-table M f (length io) q› - assms(2 ,4 ),

of io]
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using is-in-language-iff [OF assms(3 ,2 )] is-in-language-iff [OF assms(3 ) ‹q ′ ∈
states M ›]

by blast
qed

lemma ofsm-table-same-language :
assumes LS M q = LS M q ′

and
∧

io . io ∈ LS M q =⇒ after M q ′ io ∈ f (after M q io)
and observable M
and q ′ ∈ states M
and q ∈ states M
and equivalence-relation-on-states M f

shows ofsm-table M f k q = ofsm-table M f k q ′

using assms(1 ,2 ,4 ,5 )
proof (induction k arbitrary: q q ′)

case 0
then show ?case
by (metis after .simps(1 ) assms(6 ) from-FSM-language language-contains-empty-sequence

ofsm-table.simps(1 ) ofsm-table-eq-if-elem)
next

case (Suc k)

have ofsm-table M f (Suc k) q = {q ′′ ∈ ofsm-table M f k q ′ . ∀ x ∈ inputs M
. ∀ y ∈ outputs M . (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′′ x y of
Some qT ′⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None
⇒ h-obs M q ′′ x y = None) }

using Suc.IH [OF Suc.prems] unfolding ofsm-table.simps Suc Let-def Suc by
simp

moreover have ofsm-table M f (Suc k) q ′ = {q ′′ ∈ ofsm-table M f k q ′ . ∀ x
∈ inputs M . ∀ y ∈ outputs M . (case h-obs M q ′ x y of Some qT ⇒ (case h-obs
M q ′′ x y of Some qT ′ ⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒
False) | None ⇒ h-obs M q ′′ x y = None) }

unfolding ofsm-table.simps Suc Let-def
by auto

moreover have {q ′′ ∈ ofsm-table M f k q ′ . ∀ x ∈ inputs M . ∀ y ∈ outputs M .
(case h-obs M q x y of Some qT ⇒ (case h-obs M q ′′ x y of Some qT ′⇒ ofsm-table
M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M q ′′ x y =
None) }

= {q ′′ ∈ ofsm-table M f k q ′ . ∀ x ∈ inputs M . ∀ y ∈ outputs M . (case
h-obs M q ′ x y of Some qT ⇒ (case h-obs M q ′′ x y of Some qT ′⇒ ofsm-table M f
k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs M q ′′ x y = None)
}

proof −
have

∧
q ′′ x y . q ′′ ∈ ofsm-table M f k q ′ =⇒ x ∈ inputs M =⇒ y ∈ outputs
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M =⇒
(case h-obs M q x y of Some qT ⇒ (case h-obs M q ′′ x y of Some

qT ′ ⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒
h-obs M q ′′ x y = None)

= (case h-obs M q ′ x y of Some qT ⇒ (case h-obs M q ′′ x y of
Some qT ′⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None
⇒ h-obs M q ′′ x y = None)

proof −

fix q ′′ x y assume q ′′ ∈ ofsm-table M f k q ′ and x ∈ inputs M and y ∈
outputs M

have ∗:(∃ qT . h-obs M q x y = Some qT ) = (∃ qT ′ . h-obs M q ′ x y = Some
qT ′)

proof −
have ([(x,y)] ∈ LS M q) = ([(x,y)] ∈ LS M q ′)

using ‹LS M q = LS M q ′› by auto
then have (∃ qT . (q, x, y, qT ) ∈ FSM .transitions M ) = (∃ qT ′ . (q ′, x,

y, qT ′) ∈ FSM .transitions M )
unfolding LS-single-transition by force

then show (∃ qT . h-obs M q x y = Some qT ) = (∃ qT ′ . h-obs M q ′ x y
= Some qT ′)

unfolding h-obs-Some[OF ‹observable M ›] using ‹observable M › unfolding
observable-alt-def by blast

qed

have ∗∗: (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′

⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs
M q ′ x y = None)

proof (cases h-obs M q x y)
case None
then show ?thesis using ∗ by auto

next
case (Some qT )
show ?thesis proof (cases h-obs M q ′ x y)

case None
then show ?thesis using ∗ by auto

next
case (Some qT ′)

have (q,x,y,qT ) ∈ transitions M
using ‹h-obs M q x y = Some qT › unfolding h-obs-Some[OF ‹observable

M ›] by blast
have (q ′,x,y,qT ′) ∈ transitions M
using ‹h-obs M q ′ x y = Some qT ′› unfolding h-obs-Some[OF ‹observable

M ›] by blast

have LS M qT = LS M qT ′
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using observable-transition-target-language-eq[OF - ‹(q,x,y,qT ) ∈ tran-
sitions M › ‹(q ′,x,y,qT ′) ∈ transitions M › - - ‹observable M ›]

‹LS M q = LS M q ′›
by auto

moreover have (
∧

io. io ∈ LS M qT =⇒ after M qT ′ io ∈ f (after M qT
io))

proof −
fix io assume io ∈ LS M qT

have io ∈ LS M qT ′

using ‹io ∈ LS M qT › calculation by auto

have after M qT io = after M q ((x,y)#io)
using after-h-obs-prepend[OF ‹observable M › ‹h-obs M q x y = Some

qT › ‹io ∈ LS M qT ›]
by simp

moreover have after M qT ′ io = after M q ′ ((x,y)#io)
using after-h-obs-prepend[OF ‹observable M › ‹h-obs M q ′ x y = Some

qT ′› ‹io ∈ LS M qT ′›]
by simp

moreover have (x,y)#io ∈ LS M q
using ‹h-obs M q x y = Some qT › ‹io ∈ LS M qT › unfolding

h-obs-language-iff [OF ‹observable M ›]
by blast

ultimately show after M qT ′ io ∈ f (after M qT io)
using Suc.prems(2 ) by presburger

qed

ultimately have ofsm-table M f k qT = ofsm-table M f k qT ′

using Suc.IH [OF - - fsm-transition-target[OF ‹(q ′,x,y,qT ′) ∈ transitions
M ›] fsm-transition-target[OF ‹(q,x,y,qT ) ∈ transitions M ›]]

unfolding snd-conv
by blast

then show ?thesis
using ‹h-obs M q x y = Some qT › ‹h-obs M q ′ x y = Some qT ′› by auto

qed
qed

show (case h-obs M q x y of Some qT ⇒ (case h-obs M q ′′ x y of Some qT ′

⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None ⇒ h-obs
M q ′′ x y = None)

= (case h-obs M q ′ x y of Some qT ⇒ (case h-obs M q ′′ x y of
Some qT ′⇒ ofsm-table M f k qT = ofsm-table M f k qT ′ | None ⇒ False) | None
⇒ h-obs M q ′′ x y = None) (is ?P)

proof (cases h-obs M q x y)
case None
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then have h-obs M q ′ x y = None
using ∗ by auto

show ?thesis unfolding None ‹h-obs M q ′ x y = None› by auto
next

case (Some qT )
then obtain qT ′ where h-obs M q ′ x y = Some qT ′

using ‹(∃ qT . h-obs M q x y = Some qT ) = (∃ qT ′ . h-obs M q ′ x y =
Some qT ′)› by auto

show ?thesis
proof (cases h-obs M q ′′ x y)

case None
then show ?thesis using ∗

by (metis Some option.case-eq-if option.simps(5 ))
next

case (Some qT ′′)
show ?thesis

using ∗∗
unfolding Some ‹h-obs M q x y = Some qT › ‹h-obs M q ′ x y = Some

qT ′› by auto
qed

qed
qed

then show ?thesis
by blast

qed

ultimately show ?case by blast
qed

lemma ofsm-table-fix-set :
assumes q ∈ states M
and observable M
and equivalence-relation-on-states M f

shows ofsm-table-fix M f 0 q = {q ′ ∈ states M . LS M q ′ = LS M q ∧ (∀ io ∈ LS
M q . after M q ′ io ∈ f (after M q io))}
proof

have ofsm-table-fix M f 0 q ⊆ ofsm-table M f 0 q
using ofsm-table-fix-length[of M f ]

ofsm-table-subset[OF zero-le, of M f - q]
by (metis assms(1 ) assms(3 ) equivalence-relation-on-states-ran)

then have ofsm-table-fix M f 0 q ⊆ states M
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms(3 )]

assms(1 )] by blast
then show ofsm-table-fix M f 0 q ⊆ {q ′ ∈ states M . LS M q ′ = LS M q ∧ (∀

io ∈ LS M q . after M q ′ io ∈ f (after M q io))}
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using ofsm-table-fix-language[OF - assms] by blast

show {q ′ ∈ states M . LS M q ′ = LS M q ∧ (∀ io ∈ LS M q . after M q ′ io ∈ f
(after M q io))} ⊆ ofsm-table-fix M f 0 q

proof
fix q ′ assume q ′ ∈ {q ′ ∈ states M . LS M q ′ = LS M q ∧ (∀ io ∈ LS M q .

after M q ′ io ∈ f (after M q io))}
then have q ′ ∈ states M and LS M q ′ = LS M q and

∧
io . io ∈ LS M q

=⇒ after M q ′ io ∈ f (after M q io)
by blast+

then have
∧

io . io ∈ LS M q ′ =⇒ after M q io ∈ f (after M q ′ io)
by (metis after-is-state assms(2 ) assms(3 ) equivalence-relation-on-states-sym)

obtain k where
∧

q . q ∈ states M =⇒ ofsm-table-fix M f 0 q = ofsm-table
M f k q

and
∧

q k ′ . q ∈ states M =⇒ k ′ ≥ k =⇒ ofsm-table M f k ′ q =
ofsm-table M f k q

using ofsm-table-fix-length[of M f , OF equivalence-relation-on-states-ran[OF
assms(3 )]] by blast

have ofsm-table M f k q ′ = ofsm-table M f k q
using ofsm-table-same-language[OF ‹LS M q ′ = LS M q› ‹

∧
io . io ∈ LS M

q ′ =⇒ after M q io ∈ f (after M q ′ io)› assms(2 ,1 ) ‹q ′ ∈ states M › assms(3 )]
by blast

then show q ′ ∈ ofsm-table-fix M f 0 q
using ofsm-table-containment[OF ‹q ′ ∈ states M ›, of f k]
using ‹

∧
q . q ∈ states M =⇒ ofsm-table-fix M f 0 q = ofsm-table M f k q›

by (metis assms(1 ) assms(3 ) equivalence-relation-on-states-refl)
qed

qed

lemma ofsm-table-fix-eq-if-elem :
assumes q1 ∈ states M and q2 ∈ states M
and equivalence-relation-on-states M f
shows (ofsm-table-fix M f 0 q1 = ofsm-table-fix M f 0 q2 ) = (q2 ∈ ofsm-table-fix

M f 0 q1 )
proof

have (
∧

q. q ∈ FSM .states M =⇒ q ∈ f q)
using assms(3 )
by (meson equivalence-relation-on-states-refl)

show ofsm-table-fix M f 0 q1 = ofsm-table-fix M f 0 q2 =⇒ q2 ∈ ofsm-table-fix
M f 0 q1

using ofsm-table-containment[of - M f , OF assms(2 ) ‹(
∧

q. q ∈ FSM .states M
=⇒ q ∈ f q)›]

using ofsm-table-fix-length[of M f ]
by (metis assms(2 ) assms(3 ) equivalence-relation-on-states-ran)
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show q2 ∈ ofsm-table-fix M f 0 q1 =⇒ ofsm-table-fix M f 0 q1 = ofsm-table-fix
M f 0 q2

using ofsm-table-eq-if-elem[OF assms(1 ,2 ,3 )]
using ofsm-table-fix-length[of M f ]
by (metis assms(1 ) assms(2 ) assms(3 ) equivalence-relation-on-states-ran)

qed

lemma ofsm-table-refinement-disjoint :
assumes q1 ∈ states M and q2 ∈ states M
and equivalence-relation-on-states M f
and ofsm-table M f k q1 6= ofsm-table M f k q2

shows ofsm-table M f (Suc k) q1 6= ofsm-table M f (Suc k) q2
proof −

have ofsm-table M f (Suc k) q1 ⊆ ofsm-table M f k q1
and ofsm-table M f (Suc k) q2 ⊆ ofsm-table M f k q2

using ofsm-table-subset[of k Suc k M f ]
by fastforce+

moreover have ofsm-table M f k q1 ∩ ofsm-table M f k q2 = {}
proof (rule ccontr)

assume ofsm-table M f k q1 ∩ ofsm-table M f k q2 6= {}
then obtain q where q ∈ ofsm-table M f k q1

and q ∈ ofsm-table M f k q2
by blast

then have q ∈ states M
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF

assms(3 )] assms(1 )]
by blast

have ofsm-table M f k q1 = ofsm-table M f k q2
using ‹q ∈ ofsm-table M f k q1 › ‹q ∈ ofsm-table M f k q2 ›
unfolding ofsm-table-eq-if-elem[OF assms(1 ) ‹q ∈ states M › assms(3 ), sym-

metric]
unfolding ofsm-table-eq-if-elem[OF assms(2 ) ‹q ∈ states M › assms(3 ), sym-

metric]
by blast

then show False
using assms(4 ) by simp

qed
ultimately show ?thesis
by (metis Int-subset-iff all-not-in-conv assms(2 ) assms(3 ) ofsm-table-eq-if-elem

subset-empty)
qed

lemma ofsm-table-partition-finite :
assumes equivalence-relation-on-states M f
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shows finite (ofsm-table M f k ‘ states M )
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms]]

fsm-states-finite[of M ]
unfolding finite-Pow-iff [of states M , symmetric]
by simp

lemma ofsm-table-refinement-card :
assumes equivalence-relation-on-states M f
and A ⊆ states M
and i ≤ j

shows card (ofsm-table M f j ‘ A) ≥ card (ofsm-table M f i ‘ A)
proof −

have
∧

k . card (ofsm-table M f (Suc k) ‘ A) ≥ card (ofsm-table M f k ‘ A)
proof −

fix k show card (ofsm-table M f (Suc k) ‘ A) ≥ card (ofsm-table M f k ‘ A)
proof (rule ccontr)

have finite A
using fsm-states-finite[of M ] assms(2 )
using finite-subset by blast

assume ¬ card (ofsm-table M f k ‘ A) ≤ card (ofsm-table M f (Suc k) ‘ A)
then have card (ofsm-table M f (Suc k) ‘ A) < card (ofsm-table M f k ‘ A)

by simp
then obtain q1 q2 where q1 ∈ A

and q2 ∈ A
and ofsm-table M f k q1 6= ofsm-table M f k q2
and ofsm-table M f (Suc k) q1 = ofsm-table M f (Suc k) q2

using finite-card-less-witnesses[OF ‹finite A›] by blast
then show False

using ofsm-table-refinement-disjoint[OF - - assms(1 ), of q1 q2 k]
using assms(2 )
by blast

qed
qed
then show ?thesis

using lift-Suc-mono-le[OF - assms(3 ), where f=λ k . card (ofsm-table M f k
‘ A)]

by blast
qed

lemma ofsm-table-refinement-card-fix-Suc :
assumes equivalence-relation-on-states M f
and card (ofsm-table M f (Suc k) ‘ states M ) = card (ofsm-table M f k ‘ states

M )
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and q ∈ states M
shows ofsm-table M f (Suc k) q = ofsm-table M f k q
proof (rule ccontr)

assume ofsm-table M f (Suc k) q 6= ofsm-table M f k q
then have ofsm-table M f (Suc k) q ⊂ ofsm-table M f k q

using ofsm-table-subset
by (metis Suc-leD order-refl psubsetI )

then obtain q ′ where q ′ ∈ ofsm-table M f k q
and q ′ /∈ ofsm-table M f (Suc k) q

by blast

then have q ′ ∈ states M
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms(1 )]

assms(3 )] by blast

have card-qq:
∧

k . card (ofsm-table M f k ‘ states M )
= card (ofsm-table M f k ‘ (states M −

⋃
(ofsm-table M f k ‘ {q,q ′}))) +

card (ofsm-table M f k ‘ (
⋃
(ofsm-table M f k ‘ {q,q ′})))

proof −
fix k
have states M = (states M −

⋃
(ofsm-table M f k ‘ {q,q ′})) ∪

⋃
(ofsm-table M

f k ‘ {q,q ′})
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF

assms(1 )] ‹q ∈ states M ›]
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF

assms(1 )] ‹q ′ ∈ states M ›]
by blast

then have finite (states M −
⋃
(ofsm-table M f k ‘ {q,q ′}))

and finite (
⋃
(ofsm-table M f k ‘ {q,q ′}))

using fsm-states-finite[of M ] finite-Un[of (states M −
⋃

(ofsm-table M f k ‘
{q,q ′}))

⋃
(ofsm-table M f k ‘ {q,q ′})]

by force+
then have ∗:finite (ofsm-table M f k ‘ (states M −

⋃
(ofsm-table M f k ‘ {q,q ′})))

and ∗∗:finite (ofsm-table M f k ‘
⋃
(ofsm-table M f k ‘ {q,q ′}))

by blast+
have ∗∗∗:(ofsm-table M f k ‘ (states M −

⋃
(ofsm-table M f k ‘ {q,q ′}))) ∩

(ofsm-table M f k ‘
⋃
(ofsm-table M f k ‘ {q,q ′})) = {}

proof (rule ccontr)
assume ofsm-table M f k ‘ (FSM .states M −

⋃
(ofsm-table M f k ‘ {q, q ′}))

∩ ofsm-table M f k ‘
⋃

(ofsm-table M f k ‘ {q, q ′}) 6= {}
then obtain Q where Q ∈ ofsm-table M f k ‘ (FSM .states M −

⋃
(ofsm-table

M f k ‘ {q, q ′}))
and Q ∈ ofsm-table M f k ‘

⋃
(ofsm-table M f k ‘ {q, q ′})

by blast

obtain q1 where q1 ∈ (FSM .states M −
⋃

(ofsm-table M f k ‘ {q, q ′}))
and Q = ofsm-table M f k q1

using ‹Q ∈ ofsm-table M f k ‘ (FSM .states M −
⋃

(ofsm-table M f k ‘ {q,
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q ′}))› by blast
moreover obtain q2 where q2 ∈

⋃
(ofsm-table M f k ‘ {q, q ′})

and Q = ofsm-table M f k q2
using ‹Q ∈ ofsm-table M f k ‘

⋃
(ofsm-table M f k ‘ {q, q ′})› by blast

ultimately have ofsm-table M f k q1 = ofsm-table M f k q2
by auto

have q1 ∈ states M and q1 /∈
⋃

(ofsm-table M f k ‘ {q, q ′})
using ‹q1 ∈ (FSM .states M −

⋃
(ofsm-table M f k ‘ {q, q ′}))›

by blast+
have q2 ∈ states M

using ‹q2 ∈
⋃

(ofsm-table M f k ‘ {q, q ′})› ‹states M = (states M −⋃
(ofsm-table M f k ‘ {q,q ′})) ∪

⋃
(ofsm-table M f k ‘ {q,q ′})›

by blast

have q1 ∈ ofsm-table M f k q2
using ‹ofsm-table M f k q1 = ofsm-table M f k q2 ›
using ofsm-table-eq-if-elem[OF ‹q2 ∈ states M › ‹q1 ∈ states M › assms(1 )]
by blast

moreover have q2 ∈ ofsm-table M f k q ∨ q2 ∈ ofsm-table M f k q ′

using ‹q2 ∈
⋃

(ofsm-table M f k ‘ {q, q ′})›
by blast

ultimately have q1 ∈
⋃

(ofsm-table M f k ‘ {q, q ′})
unfolding ofsm-table-eq-if-elem[OF ‹q ∈ states M › ‹q2 ∈ states M › assms(1 ),

symmetric]
unfolding ofsm-table-eq-if-elem[OF ‹q ′ ∈ states M › ‹q2 ∈ states M ›

assms(1 ), symmetric]
by blast

then show False
using ‹q1 /∈

⋃
(ofsm-table M f k ‘ {q, q ′})›

by blast
qed

show card (ofsm-table M f k ‘ states M )
= card (ofsm-table M f k ‘ (states M −

⋃
(ofsm-table M f k ‘ {q,q ′}))) +

card (ofsm-table M f k ‘ (
⋃
(ofsm-table M f k ‘ {q,q ′})))

using card-Un-disjoint[OF ∗ ∗∗ ∗∗∗]
using ‹states M = (states M −

⋃
(ofsm-table M f k ‘ {q,q ′})) ∪

⋃
(ofsm-table

M f k ‘ {q,q ′})›
by (metis image-Un)

qed

have s1 :
∧

k . (states M −
⋃

(ofsm-table M f k ‘ {q,q ′})) ⊆ states M
and s2 :

∧
k . (

⋃
(ofsm-table M f k ‘ {q,q ′})) ⊆ states M

using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms(1 )]
‹q ∈ states M ›]

using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms(1 )]
‹q ′ ∈ states M ›]

by blast+
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have card (ofsm-table M f (Suc k) ‘ states M ) > card (ofsm-table M f k ‘ states
M )

proof −
have ∗:

⋃
(ofsm-table M f (Suc k) ‘ {q, q ′}) ⊆

⋃
(ofsm-table M f k ‘ {q, q ′})

using ofsm-table-subset
by (metis SUP-mono ′ lessI less-imp-le-nat)

have card (ofsm-table M f k ‘ (FSM .states M −
⋃

(ofsm-table M f k ‘ {q,
q ′}))) ≤ card (ofsm-table M f (Suc k) ‘ (FSM .states M −

⋃
(ofsm-table M f k ‘

{q, q ′})))
using ofsm-table-refinement-card[OF assms(1 ), where i=k and j=Suc k, OF

s1 ]
using le-SucI by blast

moreover have card (ofsm-table M f (Suc k) ‘ (FSM .states M −
⋃

(ofsm-table
M f k ‘ {q, q ′}))) ≤ card (ofsm-table M f (Suc k) ‘ (FSM .states M −

⋃
(ofsm-table

M f (Suc k) ‘ {q, q ′})))
using ∗
using fsm-states-finite[of M ]
by (meson Diff-mono card-mono finite-Diff finite-imageI image-mono sub-

set-refl)
ultimately have card (ofsm-table M f k ‘ (FSM .states M −

⋃
(ofsm-table M

f k ‘ {q, q ′}))) ≤ card (ofsm-table M f (Suc k) ‘ (FSM .states M −
⋃

(ofsm-table
M f (Suc k) ‘ {q, q ′})))

by presburger
moreover have card (ofsm-table M f k ‘

⋃
(ofsm-table M f k ‘ {q, q ′})) < card

(ofsm-table M f (Suc k) ‘
⋃

(ofsm-table M f (Suc k) ‘ {q, q ′}))
proof −

have ∗:
∧

k . ofsm-table M f k ‘
⋃

(ofsm-table M f k ‘ {q, q ′}) = {ofsm-table
M f k q, ofsm-table M f k q ′}

proof −
fix k show ofsm-table M f k ‘

⋃
(ofsm-table M f k ‘ {q, q ′}) = {ofsm-table

M f k q, ofsm-table M f k q ′}
proof

show ofsm-table M f k ‘
⋃

(ofsm-table M f k ‘ {q, q ′}) ⊆ {ofsm-table M f
k q, ofsm-table M f k q ′}

proof
fix Q assume Q ∈ ofsm-table M f k ‘

⋃
(ofsm-table M f k ‘ {q, q ′})

then obtain qq where Q = ofsm-table M f k qq
and qq ∈

⋃
(ofsm-table M f k ‘ {q, q ′})

by blast

then have qq ∈ ofsm-table M f k q ∨ qq ∈ ofsm-table M f k q ′

by blast
then have qq ∈ states M
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF

assms(1 )]] ‹q ∈ states M › ‹q ′ ∈ states M ›
by blast
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have ofsm-table M f k qq = ofsm-table M f k q ∨ ofsm-table M f k qq =
ofsm-table M f k q ′

using ‹qq ∈ ofsm-table M f k q ∨ qq ∈ ofsm-table M f k q ′›
using ofsm-table-eq-if-elem[OF - ‹qq ∈ states M › assms(1 )] ‹q ∈ states

M › ‹q ′ ∈ states M ›
by blast

then show Q ∈ {ofsm-table M f k q, ofsm-table M f k q ′}
using ‹Q = ofsm-table M f k qq›
by blast

qed
show {ofsm-table M f k q, ofsm-table M f k q ′} ⊆ ofsm-table M f k ‘

⋃
(ofsm-table M f k ‘ {q, q ′})

using ofsm-table-containment[of - M f , OF - equivalence-relation-on-states-refl[OF
assms(1 )]] ‹q ∈ states M › ‹q ′ ∈ states M ›

by blast
qed

qed

have ofsm-table M f k q = ofsm-table M f k q ′

using ‹q ′ ∈ ofsm-table M f k q›
using ofsm-table-eq-if-elem[OF ‹q ∈ states M › ‹q ′ ∈ states M › assms(1 )]
by blast

moreover have ofsm-table M f (Suc k) q 6= ofsm-table M f (Suc k) q ′

using ‹q ′ /∈ ofsm-table M f (Suc k) q›
using ofsm-table-eq-if-elem[OF ‹q ∈ states M › ‹q ′ ∈ states M › assms(1 )]
by blast

ultimately show ?thesis
unfolding ∗

by (metis card-insert-if finite.emptyI finite.insertI insert-absorb insert-absorb2
insert-not-empty lessI singleton-insert-inj-eq)

qed
ultimately show ?thesis

unfolding card-qq by presburger
qed
then show False

using assms(2 ) by linarith
qed

lemma ofsm-table-refinement-card-fix :
assumes equivalence-relation-on-states M f
and card (ofsm-table M f j ‘ states M ) = card (ofsm-table M f i ‘ states M )
and q ∈ states M
and i ≤ j

shows ofsm-table M f j q = ofsm-table M f i q
using assms (2 ,4 ) proof (induction j−i arbitrary: i j)
case 0
then have i = j by auto
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then show ?case by auto
next

case (Suc k)
then have j ≥ Suc i and k = j − Suc i

by auto

have ∗:card (ofsm-table M f j ‘ FSM .states M ) = card (ofsm-table M f (Suc i) ‘
FSM .states M )

and ∗∗:card (ofsm-table M f (Suc i) ‘ FSM .states M ) = card (ofsm-table M f i
‘ FSM .states M )

using ofsm-table-refinement-card[OF assms(1 ), where A=states M ]
by (metis Suc.prems(1 ) ‹Suc i ≤ j› eq-iff le-SucI )+

show ?case
using Suc.hyps(1 )[OF ‹k = j − Suc i› ∗ ‹Suc i ≤ j›]
using ofsm-table-refinement-card-fix-Suc[OF assms(1 ) ∗∗ assms(3 )]
by blast

qed

lemma ofsm-table-partition-fixpoint-Suc :
assumes equivalence-relation-on-states M f
and q ∈ states M

shows ofsm-table M f (size M − card (f ‘ states M )) q = ofsm-table M f (Suc
(size M − card (f ‘ states M ))) q
proof −

have
∧

q . q ∈ states M =⇒ f q = ofsm-table M f 0 q
unfolding ofsm-table.simps by auto

define n where n: n = (λ i . card (ofsm-table M f i ‘ states M ))

have
∧

i j . i ≤ j =⇒ n i ≤ n j
unfolding n
using ofsm-table-refinement-card[OF assms(1 ), where A=states M ]
by blast

moreover have
∧

i j m . i < j =⇒ n i = n j =⇒ j ≤ m =⇒ n i = n m
proof −

fix i j m assume i < j and n i = n j and j ≤ m
then have Suc i ≤ j and i ≤ Suc i and i ≤ m

by auto

have
∧

q . q ∈ states M =⇒ ofsm-table M f j q = ofsm-table M f i q
using ‹i < j› ‹n i = n j› ofsm-table-refinement-card-fix[OF assms(1 ) -]
unfolding n
using less-imp-le-nat by presburger

then have
∧

q . q ∈ states M =⇒ ofsm-table M f (Suc i) q = ofsm-table M f
i q
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using ofsm-table-subset[OF ‹Suc i ≤ j›, of M f ]
using ofsm-table-subset[OF ‹i ≤ Suc i›, of M f ]
by blast

then have
∧

q . q ∈ states M =⇒ ofsm-table M f m q = ofsm-table M f i q
using ofsm-table-fixpoint[OF ‹i ≤ m›]
by metis

then show n i = n m
unfolding n
by auto

qed
moreover have

∧
i . n i ≤ size M

unfolding n
using ofsm-table-states[of M f , OF equivalence-relation-on-states-ran[OF assms(1 )]]
using fsm-states-finite[of M ]
by (simp add: card-image-le)

ultimately obtain k where n (Suc k) = n k
and k ≤ size M − n 0

using monotone-function-with-limit-witness-helper [where f=n and k=size M ]
by blast

then show ?thesis
unfolding n
using ‹

∧
q . q ∈ states M =⇒ f q = ofsm-table M f 0 q›[symmetric]

using ofsm-table-refinement-card-fix-Suc[OF assms(1 ) - ]
using ofsm-table-fixpoint[OF - - assms(2 )]
by (metis (mono-tags, lifting) image-cong nat-le-linear not-less-eq-eq)

qed

lemma ofsm-table-partition-fixpoint :
assumes equivalence-relation-on-states M f
and size M ≤ m
and q ∈ states M

shows ofsm-table M f (m − card (f ‘ states M )) q = ofsm-table M f (Suc (m −
card (f ‘ states M ))) q
proof −

have ∗: size M − card (f ‘ states M ) ≤ m − card (f ‘ states M )
using assms(2 ) by simp

have ∗∗: (size M − card (f ‘ states M )) ≤ Suc (m − card (f ‘ states M ))
using assms(2 ) by simp

have ∗∗∗:
∧

q . q ∈ FSM .states M =⇒ ofsm-table M f (FSM .size M − card (f
‘ FSM .states M )) q = ofsm-table M f (Suc (FSM .size M − card (f ‘ FSM .states
M ))) q

using ofsm-table-partition-fixpoint-Suc[OF assms(1 )] .

have ofsm-table M f (m − card (f ‘ states M )) q = ofsm-table M f (FSM .size M
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− card (f ‘ FSM .states M )) q
using ofsm-table-fixpoint[OF ∗ - assms(3 )] ∗∗∗
by blast

moreover have ofsm-table M f (Suc (m − card (f ‘ states M ))) q = ofsm-table
M f (FSM .size M − card (f ‘ FSM .states M )) q

using ofsm-table-fixpoint[OF ∗∗ - assms(3 ), of f ] ∗∗∗
by blast

ultimately show ?thesis
by simp

qed

lemma ofsm-table-fix-partition-fixpoint :
assumes equivalence-relation-on-states M f
and size M ≤ m
and q ∈ states M

shows ofsm-table M f (m − card (f ‘ states M )) q = ofsm-table-fix M f 0 q
proof −

obtain k where k1 : ofsm-table-fix M f 0 q = ofsm-table M f k q
and k2 :

∧
k ′ . k ′ ≥ k =⇒ ofsm-table M f k ′ q = ofsm-table M f k q

using ofsm-table-fix-length[of M f , OF equivalence-relation-on-states-ran[OF
assms(1 )]]

assms(3 )
by metis

have m1 :
∧

k ′ . k ′≥ m − card (f ‘ states M ) =⇒ ofsm-table M f k ′ q = ofsm-table
M f (m − card (f ‘ states M )) q

using ofsm-table-partition-fixpoint[OF assms(1 ,2 )]
using ofsm-table-fixpoint[OF - - assms(3 )]
by presburger

show ?thesis proof (cases k ≤ m − card (f ‘ states M ))
case True
show ?thesis

using k1 k2 [OF True] by simp
next

case False
then have k ≥ m − card (f ‘ states M )

by auto
then have ofsm-table M f k q = ofsm-table M f (m − card (f ‘ states M )) q

using ofsm-table-partition-fixpoint[OF assms(1 ,2 )]
using ofsm-table-fixpoint[OF - - assms(3 )]
by presburger

then show ?thesis
using k1 by simp

qed
qed
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6.2 A minimisation function based on OFSM-tables
lemma language-equivalence-classes-preserve-observability:

assumes transitions M ′ = (λ t . ({q ∈ states M . LS M q = LS M (t-source t)}
, t-input t, t-output t, {q ∈ states M . LS M q = LS M (t-target t)})) ‘ transitions
M

and observable M
shows observable M ′

proof −
have

∧
t1 t2 . t1 ∈ transitions M ′ =⇒

t2 ∈ transitions M ′ =⇒
t-source t1 = t-source t2 =⇒
t-input t1 = t-input t2 =⇒
t-output t1 = t-output t2 =⇒
t-target t1 = t-target t2

proof −
fix t1 t2 assume t1 ∈ transitions M ′ and t2 ∈ transitions M ′ and t-source t1

= t-source t2 and t-input t1 = t-input t2 and t-output t1 = t-output t2

obtain t1 ′ where t1 ′-def : t1 = ({q ∈ states M . LS M q = LS M (t-source
t1 ′)} , t-input t1 ′, t-output t1 ′, {q ∈ states M . LS M q = LS M (t-target t1 ′)})

and t1 ′ ∈ transitions M
using ‹t1 ∈ transitions M ′› assms(1 ) by auto

obtain t2 ′ where t2 ′-def : t2 = ({q ∈ states M . LS M q = LS M (t-source
t2 ′)} , t-input t2 ′, t-output t2 ′, {q ∈ states M . LS M q = LS M (t-target t2 ′)})

and t2 ′ ∈ transitions M
using ‹t2 ∈ transitions M ′› assms(1 ) ‹t-input t1 = t-input t2 › ‹t-output t1

= t-output t2 › by auto

have {q ∈ FSM .states M . LS M q = LS M (t-source t1 ′)} = {q ∈ FSM .states
M . LS M q = LS M (t-source t2 ′)}

using t1 ′-def t2 ′-def ‹t-source t1 = t-source t2 ›
by (metis (no-types, lifting) fst-eqD)

then have LS M (t-source t1 ′) = LS M (t-source t2 ′)
using fsm-transition-source[OF ‹t1 ′∈ transitions M ›] fsm-transition-source[OF

‹t2 ′ ∈ transitions M ›] by blast
then have LS M (t-target t1 ′) = LS M (t-target t2 ′)
using observable-transition-target-language-eq[OF - ‹t1 ′ ∈ transitions M › ‹t2 ′

∈ transitions M › - - ‹observable M ›]
using ‹t-input t1 = t-input t2 › ‹t-output t1 = t-output t2 ›
unfolding t1 ′-def t2 ′-def fst-conv snd-conv by blast

then show t-target t1 = t-target t2
unfolding t1 ′-def t2 ′-def snd-conv by blast

qed
then show ?thesis

unfolding observable.simps by blast
qed
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lemma language-equivalence-classes-retain-language-and-induce-minimality :
assumes transitions M ′ = (λ t . ({q ∈ states M . LS M q = LS M (t-source t)}

, t-input t, t-output t, {q ∈ states M . LS M q = LS M (t-target t)})) ‘ transitions
M

and states M ′ = (λq . {q ′ ∈ states M . LS M q = LS M q ′}) ‘ states M
and initial M ′ = {q ′ ∈ states M . LS M q ′ = LS M (initial M )}
and observable M

shows L M = L M ′

and minimal M ′

proof −
have observable M ′

using assms(1 ,4 ) language-equivalence-classes-preserve-observability by blast

have ls-prop:
∧

io q . q ∈ states M =⇒ (io ∈ LS M q) ←→ (io ∈ LS M ′ {q ′ ∈
states M . LS M q = LS M q ′})

proof −
fix io q assume q ∈ states M
then show (io ∈ LS M q) ←→ (io ∈ LS M ′ {q ′ ∈ states M . LS M q = LS M

q ′})
proof (induction io arbitrary: q)

case Nil
then show ?case using assms(2 ) by auto

next
case (Cons xy io)

obtain x y where xy = (x,y)
using surjective-pairing by blast

have xy#io ∈ LS M q =⇒ xy#io ∈ LS M ′ {q ′ ∈ states M . LS M q = LS M
q ′}

proof −
assume xy#io ∈ LS M q
then obtain p where path M q p and p-io p = xy#io

unfolding LS .simps mem-Collect-eq by (metis (no-types, lifting))

let ?t = hd p
let ?p = tl p
let ?q ′ = {q ′ ∈ states M . LS M (t-target ?t) = LS M q ′}

have p = ?t # ?p and p-io ?p = io and t-input ?t = x and t-output ?t =
y

using ‹p-io p = xy#io› unfolding ‹xy = (x,y)› by auto
moreover have ?t ∈ transitions M and path M (t-target ?t) ?p and t-source

?t = q
using ‹path M q p› path-cons-elim[of M q ?t ?p] calculation by auto

ultimately have [(x,y)] ∈ LS M q
unfolding LS-single-transition[of x y M q] by auto
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then have io ∈ LS M (t-target ?t)
using observable-language-next[OF - ‹observable M ›, of (x,y) io, OF - ‹?t

∈ transitions M ›]
‹xy#io ∈ LS M q›

unfolding ‹xy = (x,y)› ‹t-source ?t = q› ‹t-input ?t = x› ‹t-output ?t =
y›

by (metis ‹?t ∈ FSM .transitions M › from-FSM-language fsm-transition-target
fst-conv snd-conv)

then have io ∈ LS M ′ ?q ′

using Cons.IH [OF fsm-transition-target[OF ‹?t ∈ transitions M ›]] by
blast

then obtain p ′ where path M ′ ?q ′ p ′ and p-io p ′ = io
by auto

have ∗: ({q ′ ∈ states M . LS M q = LS M q ′},x,y,{q ′ ∈ states M . LS M
(t-target ?t) = LS M q ′}) ∈ transitions M ′

using ‹?t ∈ transitions M › ‹t-source ?t = q› ‹t-input ?t = x› ‹t-output ?t
= y›

unfolding assms(1 ) by auto

show xy#io ∈ LS M ′ {q ′ ∈ states M . LS M q = LS M q ′}
using LS-prepend-transition[OF ∗ ] unfolding snd-conv fst-conv ‹xy =

(x,y)›
using ‹io ∈ LS M ′ ?q ′› by blast

qed
moreover have xy#io ∈ LS M ′ {q ′ ∈ states M . LS M q = LS M q ′} =⇒

xy#io ∈ LS M q
proof −

let ?q = {q ′ ∈ states M . LS M q = LS M q ′}
assume xy#io ∈ LS M ′ ?q
then obtain p where path M ′ ?q p and p-io p = xy#io

unfolding LS .simps mem-Collect-eq by (metis (no-types, lifting))

let ?t = hd p
let ?p = tl p

have p = ?t # ?p and p-io ?p = io and t-input ?t = x and t-output ?t =
y

using ‹p-io p = xy#io› unfolding ‹xy = (x,y)› by auto
then have path M ′ ?q (?t#?p)

using ‹path M ′ ?q p› by auto
then have ?t ∈ transitions M ′ and path M ′ (t-target ?t) ?p and t-source

?t = ?q
by force+

then have io ∈ LS M ′ (t-target ?t)
using ‹p-io ?p = io› by auto
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obtain t0 where t0-def : ?t = (λ t . ({q ∈ states M . LS M q = LS M
(t-source t)} , t-input t, t-output t, {q ∈ states M . LS M q = LS M (t-target t)}))
t0

and t0 ∈ transitions M
using ‹?t ∈ transitions M ′›
unfolding assms(1 )
by auto

then have t-source t0 ∈ ?q
using ‹t-source ?t = ?q›

by (metis (mono-tags, lifting) fsm-transition-source fst-eqD mem-Collect-eq)

then have LS M q = LS M (t-source t0 )
by auto

moreover have [(x,y)] ∈ LS M (t-source t0 )
using t0-def ‹t-input ?t = x› ‹t0 ∈ transitions M › ‹t-output ?t = y›

‹t-source t0 ∈ ?q› unfolding LS-single-transition by auto
ultimately obtain t where t ∈ transitions M and t-source t = q and

t-input t = x and t-output t = y
by (metis LS-single-transition)

have LS M (t-target t) = LS M (t-target t0 )
using observable-transition-target-language-eq[OF -‹t ∈ transitions M › ‹t0

∈ transitions M › - - ‹observable M ›]
using ‹LS M q = LS M (t-source t0 )›
unfolding ‹t-source t = q› ‹t-input t = x› ‹t-output t = y›
using t0-def ‹t-input ?t = x› ‹t-output ?t = y›
by auto

moreover have t-target ?t = {q ′ ∈ FSM .states M . LS M (t-target t) = LS
M q ′}

using calculation t0-def by fastforce
ultimately have io ∈ LS M (t-target t)

using Cons.IH [OF fsm-transition-target[OF ‹t ∈ transitions M ›]]
‹io ∈ LS M ′ (t-target ?t)›

by auto
then show xy#io ∈ LS M q

unfolding ‹t-source t = q›[symmetric] ‹xy = (x,y)›
using ‹t-input t = x› ‹t-output t = y›
using LS-prepend-transition ‹t ∈ FSM .transitions M ›
by blast

qed

ultimately show ?case
by blast

qed
qed

have L M ′ = LS M ′ {q ′ ∈ states M . LS M (initial M ) = LS M q ′}
using assms(3 )
by (metis (mono-tags, lifting) Collect-cong)
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then show L M = L M ′

using ls-prop[OF fsm-initial] by blast

show minimal M ′

proof −
have

∧
q q ′ . q ∈ states M ′ =⇒ q ′ ∈ states M ′ =⇒ LS M ′ q = LS M ′ q ′ =⇒

q = q ′

proof −

fix q q ′ assume q ∈ states M ′ and q ′ ∈ states M ′ and LS M ′ q = LS M ′ q ′

obtain qM where q = {q ∈ states M . LS M qM = LS M q} and qM ∈
states M

using ‹q ∈ states M ′› assms(2 ) by auto
obtain qM ′ where q ′ = {q ∈ states M . LS M qM ′ = LS M q} and qM ′ ∈

states M
using ‹q ′ ∈ states M ′› assms(2 ) by auto

have LS M qM = LS M ′ q
using ls-prop[OF ‹qM ∈ states M ›] unfolding ‹q = {q ∈ states M . LS M

qM = LS M q}› by blast
moreover have LS M qM ′ = LS M ′ q ′

using ls-prop[OF ‹qM ′ ∈ states M ›] unfolding ‹q ′ = {q ∈ states M . LS
M qM ′ = LS M q}› by blast

ultimately have LS M qM = LS M qM ′

using ‹LS M ′ q = LS M ′ q ′› by blast
then show q = q ′

unfolding ‹q = {q ∈ states M . LS M qM = LS M q}› ‹q ′ = {q ∈ states
M . LS M qM ′ = LS M q}› by blast

qed
then show ?thesis

unfolding minimal-alt-def by blast
qed

qed

fun minimise :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ ( ′a set, ′b, ′c) fsm
where

minimise M = (let
eq-class = ofsm-table-fix M (λq . states M ) 0 ;
ts = (λ t . (eq-class (t-source t), t-input t, t-output t, eq-class (t-target t))) ‘

(transitions M );
q0 = eq-class (initial M );
eq-states = eq-class |‘| fstates M ;
M ′ = create-unconnected-fsm-from-fsets q0 eq-states (finputs M ) (foutputs M )

in add-transitions M ′ ts)
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lemma minimise-initial-partition :
equivalence-relation-on-states M (λq . states M )

proof −
let ?r = {(q1 ,q2 ) | q1 q2 . q1 ∈ states M ∧ q2 ∈ (λq . states M ) q1}

have refl-on (FSM .states M ) ?r
unfolding refl-on-def by blast

moreover have sym ?r
unfolding sym-def by blast

moreover have trans ?r
unfolding trans-def by blast

ultimately show ?thesis
unfolding equivalence-relation-on-states-def equiv-def by auto

qed

lemma minimise-props:
assumes observable M

shows initial (minimise M ) = {q ′ ∈ states M . LS M q ′ = LS M (initial M )}
and states (minimise M ) = (λq . {q ′ ∈ states M . LS M q = LS M q ′}) ‘ states
M
and inputs (minimise M ) = inputs M
and outputs (minimise M ) = outputs M
and transitions (minimise M ) = (λ t . ({q ∈ states M . LS M q = LS M
(t-source t)} , t-input t, t-output t, {q ∈ states M . LS M q = LS M (t-target t)}))
‘ transitions M
proof −

let ?f = λq . states M

define eq-class where eq-class = ofsm-table-fix M (λq . states M ) 0
moreover define M ′ where M ′-def : M ′ = create-unconnected-fsm-from-fsets

(eq-class (initial M )) (eq-class |‘| fstates M ) (finputs M ) (foutputs M )
ultimately have ∗: minimise M = add-transitions M ′ ((λ t . (eq-class (t-source

t), t-input t, t-output t, eq-class (t-target t))) ‘ (transitions M ))
by auto

have ∗∗:
∧

q . q ∈ states M =⇒ eq-class q = {q ′ ∈ FSM .states M . LS M q =
LS M q ′}

using ofsm-table-fix-set[OF - assms minimise-initial-partition] ‹eq-class =
ofsm-table-fix M ?f 0 › after-is-state[OF ‹observable M ›] by blast

then have ∗∗∗∗:
∧

q . q ∈ states M =⇒ eq-class q = {q ′ ∈ FSM .states M . LS
M q ′ = LS M q}

using ofsm-table-fix-set[OF - assms] ‹eq-class = ofsm-table-fix M ?f 0 › by blast

have ∗∗∗: (eq-class (initial M )) |∈| (eq-class |‘| fstates M )
using fsm-initial[of M ] fstates-set by fastforce
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have m1 :initial M ′ = {q ′ ∈ states M . LS M q ′ = LS M (initial M )}
by (metis (mono-tags) ∗∗∗ ∗∗∗∗M ′-def create-unconnected-fsm-from-fsets-simps(1 )

fsm-initial)

have m2 : states M ′ = (λq . {q ′ ∈ states M . LS M q = LS M q ′}) ‘ states M
unfolding M ′-def

proof −
have FSM .states (FSM .create-unconnected-fsm-from-fsets (eq-class (FSM .initial

M )) (eq-class |‘| fstates M ) (finputs M ) (foutputs M )) = eq-class ‘ FSM .states M
by (metis (no-types) ∗∗∗ create-unconnected-fsm-from-fsets-simps(2 ) fset.set-map

fstates-set)
then show FSM .states (FSM .create-unconnected-fsm-from-fsets (eq-class (FSM .initial

M )) (eq-class |‘| fstates M ) (finputs M ) (foutputs M )) = (λa. {aa ∈ FSM .states
M . LS M a = LS M aa}) ‘ FSM .states M

using ∗∗ by force
qed

have m3 : inputs M ′ = inputs M
using create-unconnected-fsm-from-fsets-simps(3 )[OF ∗∗∗] finputs-set unfold-

ing M ′-def by metis

have m4 : outputs M ′ = outputs M
using create-unconnected-fsm-from-fsets-simps(4 )[OF ∗∗∗] foutputs-set unfold-

ing M ′-def by metis

have m5 : transitions M ′ = {}
using create-unconnected-fsm-from-fsets-simps(5 )[OF ∗∗∗] unfolding M ′-def

by force

let ?ts = ((λ t . (eq-class (t-source t), t-input t, t-output t, eq-class (t-target t)))
‘ (transitions M ))

have wf :
∧

t . t ∈?ts =⇒ t-source t ∈ states M ′ ∧ t-input t ∈ inputs M ′ ∧
t-output t ∈ outputs M ′ ∧ t-target t ∈ states M ′

proof −
fix t assume t ∈ ?ts
then obtain tM where tM ∈ transitions M

and ∗: t = (λ t . (eq-class (t-source t), t-input t, t-output t,
eq-class (t-target t))) tM

by blast

have t-source t ∈ states M ′

using fsm-transition-source[OF ‹tM ∈ transitions M ›]
unfolding m2 ∗ ∗∗[OF fsm-transition-source[OF ‹tM ∈ transitions M ›]] by

auto
moreover have t-input t ∈ inputs M ′

unfolding m3 ∗ using fsm-transition-input[OF ‹tM ∈ transitions M ›] by
auto

moreover have t-output t ∈ outputs M ′

unfolding m4 ∗ using fsm-transition-output[OF ‹tM ∈ transitions M ›] by
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auto
moreover have t-target t ∈ states M ′

using fsm-transition-target[OF ‹tM ∈ transitions M ›]
unfolding m2 ∗ ∗∗[OF fsm-transition-target[OF ‹tM ∈ transitions M ›]] by

auto
ultimately show t-source t ∈ states M ′ ∧ t-input t ∈ inputs M ′ ∧ t-output t

∈ outputs M ′ ∧ t-target t ∈ states M ′

by simp
qed

show initial (minimise M ) = {q ′ ∈ states M . LS M q ′ = LS M (initial M )}
using add-transitions-simps(1 )[OF wf ] unfolding ∗ m1 .

show states (minimise M ) = (λq . {q ′ ∈ states M . LS M q = LS M q ′}) ‘ states
M

using add-transitions-simps(2 )[OF wf ] unfolding ∗ m2 .

show inputs (minimise M ) = inputs M
using add-transitions-simps(3 )[OF wf ] unfolding ∗ m3 .

show outputs (minimise M ) = outputs M
using add-transitions-simps(4 )[OF wf ] unfolding ∗ m4 .

show transitions (minimise M ) = (λ t . ({q ∈ states M . LS M q = LS M
(t-source t)} , t-input t, t-output t, {q ∈ states M . LS M q = LS M (t-target t)}))
‘ transitions M

using add-transitions-simps(5 )[OF wf ] ∗∗∗∗[OF fsm-transition-source] ∗∗∗∗[OF
fsm-transition-target] unfolding ∗ m5 by auto
qed

lemma minimise-observable:
assumes observable M

shows observable (minimise M )
using language-equivalence-classes-preserve-observability[OF minimise-props(5 )[OF

assms] assms]
by assumption

lemma minimise-minimal:
assumes observable M

shows minimal (minimise M )
using language-equivalence-classes-retain-language-and-induce-minimality(2 )[OF

minimise-props(5 ,2 ,1 )[OF assms] assms]
by assumption

lemma minimise-language:
assumes observable M

shows L (minimise M ) = L M
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using language-equivalence-classes-retain-language-and-induce-minimality(1 )[OF
minimise-props(5 ,2 ,1 )[OF assms] assms]

by blast

lemma minimal-observable-code :
assumes observable M
shows minimal M = (∀ q ∈ states M . ofsm-table-fix M (λq . states M ) 0 q =
{q})
proof

show minimal M =⇒ (∀ q ∈ states M . ofsm-table-fix M (λq . states M ) 0 q =
{q})

proof
fix q assume minimal M and q ∈ states M
then show ofsm-table-fix M (λq . states M ) 0 q = {q}
unfolding ofsm-table-fix-set[OF ‹q ∈ states M › ‹observable M › minimise-initial-partition]

minimal-alt-def
using after-is-state[OF ‹observable M ›]
by blast

qed

show ∀ q∈FSM .states M . ofsm-table-fix M (λq . states M ) 0 q = {q} =⇒ minimal
M

using ofsm-table-fix-set[OF - ‹observable M › minimise-initial-partition] af-
ter-is-state[OF ‹observable M ›]

unfolding minimal-alt-def
by blast

qed

lemma minimise-states-subset :
assumes observable M
and q ∈ states (minimise M )

shows q ⊆ states M
using assms(2 )
unfolding minimise-props[OF assms(1 )]
by auto

lemma minimise-states-finite :
assumes observable M
and q ∈ states (minimise M )
shows finite q
using minimise-states-subset[OF assms] fsm-states-finite[of M ]
using finite-subset by auto

end
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7 Computation of distinguishing traces based on
OFSM tables

This theory implements an algorithm for finding minimal length distinguish-
ing traces for observable minimal FSMs based on OFSM tables.
theory Distinguishability

imports Minimisation HOL.List
begin

7.1 Finding Diverging OFSM Tables
definition ofsm-table-fixpoint-value :: ( ′a, ′b, ′c) fsm ⇒ nat where

ofsm-table-fixpoint-value M = (SOME k . (∀ q . q ∈ states M −→ ofsm-table-fix
M (λq . states M ) 0 q = ofsm-table M (λq . states M ) k q) ∧ (∀ q k ′ . q ∈ states
M −→ k ′ ≥ k −→ ofsm-table M (λq . states M ) k ′ q = ofsm-table M (λq . states
M ) k q))

function find-first-distinct-ofsm-table-gt :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ nat ⇒ nat
where

find-first-distinct-ofsm-table-gt M q1 q2 k =
(if q1 ∈ states M ∧ q2 ∈ states M ∧ ((ofsm-table-fix M (λq . states M ) 0 q1

6= ofsm-table-fix M (λq . states M ) 0 q2 ))
then (if ofsm-table M (λq . states M ) k q1 6= ofsm-table M (λq . states M )

k q2
then k
else find-first-distinct-ofsm-table-gt M q1 q2 (Suc k))

else 0 )
using prod-cases4 by blast+

termination
proof −

{
fix M :: ( ′a, ′b, ′c) fsm
fix q1 q2 k
assume q1 ∈ FSM .states M ∧ q2 ∈ FSM .states M ∧ ofsm-table-fix M (λq .

states M ) 0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2
ofsm-table M (λq . states M ) k q1 = ofsm-table M (λq . states M ) k q2

then have q1 ∈ FSM .states M and q2 ∈ FSM .states M
and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states

M ) 0 q2
by force+

let ?k = ofsm-table-fixpoint-value M
obtain k ′ where

∧
q . q ∈ states M =⇒ ofsm-table-fix M (λq . states M ) 0 q

= ofsm-table M (λq . states M ) k ′ q and
∧

q k ′′ . q ∈ states M =⇒ k ′′ ≥ k ′ =⇒
ofsm-table M (λq . states M ) k ′′ q = ofsm-table M (λq . states M ) k ′ q

using ofsm-table-fix-length[of M (λq . states M )]
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by blast
then have (∀ q . q ∈ states M −→ ofsm-table-fix M (λq . states M ) 0 q =

ofsm-table M (λq . states M ) k ′ q) ∧ (∀ q k ′′ . q ∈ states M −→ k ′′ ≥ k ′ −→
ofsm-table M (λq . states M ) k ′′ q = ofsm-table M (λq . states M ) k ′ q)

by blast
then have ∗:

∧
q . q ∈ states M =⇒ ofsm-table-fix M (λq . states M ) 0 q =

ofsm-table M (λq . states M ) ?k q
and ∗∗:

∧
q k ′′ . q ∈ states M =⇒ k ′′ ≥ ?k =⇒ ofsm-table M (λq . states

M ) k ′′ q = ofsm-table M (λq . states M ) ?k q
using some-eq-imp[of λ k . (∀ q . q ∈ states M −→ ofsm-table-fix M (λq .

states M ) 0 q = ofsm-table M (λq . states M ) k q) ∧ (∀ q k ′ . q ∈ states M −→
k ′ ≥ k −→ ofsm-table M (λq . states M ) k ′ q = ofsm-table M (λq . states M ) k
q) ?k k ′]

unfolding ofsm-table-fixpoint-value-def
by blast+

have ?k > k
using ∗

‹ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states
M ) 0 q2 ›

‹ofsm-table M (λq . states M ) k q1 = ofsm-table M (λq . states M ) k q2 ›
∗∗[OF ‹q1 ∈ states M ›]
∗∗[OF ‹q2 ∈ states M ›]

by (metis ‹q1 ∈ FSM .states M ∧ q2 ∈ FSM .states M ∧ ofsm-table-fix M
(λq. FSM .states M ) 0 q1 6= ofsm-table-fix M (λq. FSM .states M ) 0 q2 › leI )

then have ?k − Suc k < ?k − k
by simp

} note t = this

show ?thesis
apply (relation measure (λ (M , q1 , q2 , k) . ofsm-table-fixpoint-value M − k))

apply auto[1 ]
apply (simp del: observable.simps ofsm-table-fix.simps)
by (erule t)

qed

partial-function (tailrec) find-first-distinct-ofsm-table-no-check :: ( ′a, ′b, ′c) fsm ⇒
′a ⇒ ′a ⇒ nat ⇒ nat where

find-first-distinct-ofsm-table-no-check-def [code]:
find-first-distinct-ofsm-table-no-check M q1 q2 k =
(if ofsm-table M (λq . states M ) k q1 6= ofsm-table M (λq . states M ) k q2

then k
else find-first-distinct-ofsm-table-no-check M q1 q2 (Suc k))

fun find-first-distinct-ofsm-table-gt ′ :: ( ′a, ′b, ′c) fsm ⇒ ′a⇒ ′a⇒ nat ⇒ nat where
find-first-distinct-ofsm-table-gt ′ M q1 q2 k =

(if q1 ∈ states M ∧ q2 ∈ states M ∧ ((q2 /∈ ofsm-table-fix M (λq . states M )
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0 q1 ))
then find-first-distinct-ofsm-table-no-check M q1 q2 k
else 0 )

lemma find-first-distinct-ofsm-table-gt-code[code] :
find-first-distinct-ofsm-table-gt M q1 q2 k = find-first-distinct-ofsm-table-gt ′ M q1

q2 k
proof (cases q1 ∈ states M ∧ q2 ∈ states M ∧ ((ofsm-table-fix M (λq . states M )
0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2 )))

case False
have find-first-distinct-ofsm-table-gt M q1 q2 k = 0

using False
by (metis find-first-distinct-ofsm-table-gt.simps)

moreover have find-first-distinct-ofsm-table-gt ′ M q1 q2 k = 0
proof (cases q1 ∈ states M ∧ q2 ∈ states M )

case True
then have q1 ∈ FSM .states M and q2 ∈ FSM .states M

and ofsm-table-fix M (λq . states M ) 0 q1 = ofsm-table-fix M (λq . states
M ) 0 q2

using False by force+
then have q2 ∈ ofsm-table-fix M (λq . states M ) 0 q1

using ofsm-table-fix-eq-if-elem[of q1 M q2 ]
using minimise-initial-partition
by blast

then show ?thesis
by (metis find-first-distinct-ofsm-table-gt ′.simps)

next
case False
then show ?thesis by (meson find-first-distinct-ofsm-table-gt ′.simps)

qed
ultimately show ?thesis

by simp
next

case True
then have q1 ∈ FSM .states M and q2 ∈ FSM .states M

and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states
M ) 0 q2

by force+
then have q2 /∈ ofsm-table-fix M (λq . states M ) 0 q1

using ofsm-table-fix-eq-if-elem[of q1 M q2 ]
using minimise-initial-partition
by blast

obtain k ′ where
∧

q . q ∈ states M =⇒ ofsm-table-fix M (λq . states M ) 0 q
= ofsm-table M (λq . states M ) k ′ q and

∧
q k ′′ . q ∈ states M =⇒ k ′′ ≥ k ′ =⇒

ofsm-table M (λq . states M ) k ′′ q = ofsm-table M (λq . states M ) k ′ q
using ofsm-table-fix-length[of M (λq . states M ) ]
by blast
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have f1 : find-first-distinct-ofsm-table-gt M q1 q2 =
(λx. if ofsm-table M (λq . states M ) x q1 6= ofsm-table M (λq . states

M ) x q2
then x
else find-first-distinct-ofsm-table-gt M q1 q2 (Suc x))

using find-first-distinct-ofsm-table-gt.simps[of M q1 q2 ]
using True
by meson

have f2 : find-first-distinct-ofsm-table-no-check M q1 q2 =
(λx. if ofsm-table M (λq . states M ) x q1 6= ofsm-table M (λq . states

M ) x q2
then x
else find-first-distinct-ofsm-table-no-check M q1 q2 (Suc x))

using True find-first-distinct-ofsm-table-no-check.simps[of M q1 q2 ]
by meson

have (
∧

x. k ′ ≤ x =⇒ ofsm-table M (λq . states M ) x q1 6= ofsm-table M (λq .
states M ) x q2 )

using ‹
∧

q k ′′ . q ∈ states M =⇒ k ′′ ≥ k ′ =⇒ ofsm-table M (λq . states M ) k ′′

q = ofsm-table M (λq . states M ) k ′ q› ‹q1 ∈ FSM .states M › ‹q2 ∈ FSM .states
M ›

by (metis True ‹
∧

q . q ∈ states M =⇒ ofsm-table-fix M (λq . states M ) 0 q
= ofsm-table M (λq . states M ) k ′ q›)

have find-first-distinct-ofsm-table-gt ′ M q1 q2 k = find-first-distinct-ofsm-table-no-check
M q1 q2 k

using True ‹q2 /∈ ofsm-table-fix M (λq . states M ) 0 q1 › find-first-distinct-ofsm-table-gt ′.simps[of
M ]

by meson
then show ?thesis

using recursion-renaming-helper [OF f1 f2 ‹(
∧

x. k ′ ≤ x =⇒ ofsm-table M (λq
. states M ) x q1 6= ofsm-table M (λq . states M ) x q2 )›, of k ′]

by simp
qed

lemma find-first-distinct-ofsm-table-gt-is-first-gt :
assumes q1 ∈ FSM .states M

and q2 ∈ FSM .states M
and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )

0 q2
shows ofsm-table M (λq . states M ) (find-first-distinct-ofsm-table-gt M q1 q2 k)
q1 6= ofsm-table M (λq . states M ) (find-first-distinct-ofsm-table-gt M q1 q2 k) q2

and k ≤ k ′ =⇒ k ′ < (find-first-distinct-ofsm-table-gt M q1 q2 k) =⇒ ofsm-table
M (λq . states M ) k ′ q1 = ofsm-table M (λq . states M ) k ′ q2
proof −
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have f : find-first-distinct-ofsm-table-gt M q1 q2 =
(λx. if ofsm-table M (λq . states M ) x q1 6= ofsm-table M (λq . states

M ) x q2
then x
else find-first-distinct-ofsm-table-gt M q1 q2 (Suc x))

using assms find-first-distinct-ofsm-table-gt.simps[of M ]
by meson

obtain kx where
∧

q . q ∈ states M =⇒ ofsm-table-fix M (λq . states M ) 0 q
= ofsm-table M (λq . states M ) kx q and

∧
q k ′′ . q ∈ states M =⇒ k ′′ ≥ kx =⇒

ofsm-table M (λq . states M ) k ′′ q = ofsm-table M (λq . states M ) kx q
using ofsm-table-fix-length[of M (λq . states M )]
by blast

have P: (
∧

x. kx ≤ x =⇒ ofsm-table M (λq . states M ) x q1 6= ofsm-table M (λq
. states M ) x q2 )

using ‹
∧

q k ′′ . q ∈ states M =⇒ k ′′ ≥ kx =⇒ ofsm-table M (λq . states M ) k ′′

q = ofsm-table M (λq . states M ) kx q› ‹q1 ∈ FSM .states M › ‹q2 ∈ FSM .states
M ›

by (metis assms ‹
∧

q . q ∈ states M =⇒ ofsm-table-fix M (λq . states M ) 0 q
= ofsm-table M (λq . states M ) kx q›)

show ofsm-table M (λq . states M ) (find-first-distinct-ofsm-table-gt M q1 q2 k)
q1 6= ofsm-table M (λq . states M ) (find-first-distinct-ofsm-table-gt M q1 q2 k) q2

using minimal-fixpoint-helper(1 )[OF f P, of kx k] .

show k ≤ k ′ =⇒ k ′ < (find-first-distinct-ofsm-table-gt M q1 q2 k) =⇒ ofsm-table
M (λq . states M ) k ′ q1 = ofsm-table M (λq . states M ) k ′ q2

using minimal-fixpoint-helper(2 )[OF f P, of kx k k ′]
by auto

qed

abbreviation(input) find-first-distinct-ofsm-table M q1 q2 ≡ find-first-distinct-ofsm-table-gt
M q1 q2 0

lemma find-first-distinct-ofsm-table-is-first :
assumes q1 ∈ FSM .states M

and q2 ∈ FSM .states M
and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )

0 q2
shows ofsm-table M (λq . states M ) (find-first-distinct-ofsm-table M q1 q2 ) q1 6=
ofsm-table M (λq . states M ) (find-first-distinct-ofsm-table M q1 q2 ) q2

and k ′ < (find-first-distinct-ofsm-table M q1 q2 ) =⇒ ofsm-table M (λq . states
M ) k ′ q1 = ofsm-table M (λq . states M ) k ′ q2

using find-first-distinct-ofsm-table-gt-is-first-gt[OF assms, of 0 ] by blast+

fun select-diverging-ofsm-table-io :: ( ′a, ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ′a ⇒
nat ⇒ ( ′b × ′c) × ( ′a option × ′a option) where
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select-diverging-ofsm-table-io M q1 q2 k = (let
ins = inputs-as-list M ;
outs = outputs-as-list M ;
table = ofsm-table M (λq . states M ) (k−1 );
f = (λ (x,y) . case (h-obs M q1 x y, h-obs M q2 x y)

of
(Some q1 ′, Some q2 ′) ⇒ if table q1 ′ 6= table q2 ′

then Some ((x,y),(Some q1 ′, Some q2 ′))
else None |

(None,None) ⇒ None |
(Some q1 ′, None) ⇒ Some ((x,y),(Some q1 ′, None)) |
(None, Some q2 ′) ⇒ Some ((x,y),(None, Some q2 ′)))

in
hd (List.map-filter f (List.product ins outs)))

lemma select-diverging-ofsm-table-io-Some :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M
and ofsm-table M (λq . states M ) (Suc k) q1 6= ofsm-table M (λq . states M )

(Suc k) q2
obtains x y

where select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(h-obs M q1 x y,
h-obs M q2 x y))

and
∧

q1 ′ q2 ′ . h-obs M q1 x y = Some q1 ′ =⇒ h-obs M q2 x y = Some q2 ′

=⇒ ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq . states M ) k q2 ′

and h-obs M q1 x y 6= None ∨ h-obs M q2 x y 6= None
proof −

let ?res = select-diverging-ofsm-table-io M q1 q2 (Suc k)

define f where f : f = (λ (x,y) . case (h-obs M q1 x y, h-obs M q2 x y)
of

(Some q1 ′, Some q2 ′) ⇒ if ofsm-table M (λq . states
M ) k q1 ′ 6= ofsm-table M (λq . states M ) k q2 ′

then Some ((x,y),(Some q1 ′, Some
q2 ′))

else None |
(None,None) ⇒ None |
(Some q1 ′, None) ⇒ Some ((x,y),(Some q1 ′, None)) |
(None, Some q2 ′) ⇒ Some ((x,y),(None, Some q2 ′)))

have f1 :
∧

x y . f (x,y) 6= None =⇒ f (x,y) = Some ((x,y),(h-obs M q1 x y,
h-obs M q2 x y))

proof −
fix x y assume f (x,y) 6= None
then show f (x,y) = Some ((x,y),(h-obs M q1 x y, h-obs M q2 x y))

unfolding f by (cases h-obs M q1 x y; cases h-obs M q2 x y; auto)
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qed

have f2 :
∧

q1 ′ q2 ′ x y . f (x,y) = Some ((x,y),(Some q1 ′, Some q2 ′)) =⇒
ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq . states M ) k q2 ′

proof −
fix q1 ′ q2 ′ x y assume ∗: f (x,y) = Some ((x,y),(Some q1 ′, Some q2 ′))
then have ∗∗: f (x,y) = Some ((x,y),(h-obs M q1 x y, h-obs M q2 x y))

using f1 by auto
show ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq . states M ) k q2 ′

using ∗ ∗∗ unfolding f by (cases h-obs M q1 x y; cases h-obs M q2 x y; auto)
qed

have f3 :
∧

x y . f (x,y) 6= None =⇒ h-obs M q1 x y 6= None ∨ h-obs M q2 x y
6= None

proof −
fix x y assume f (x,y) 6= None
then show h-obs M q1 x y 6= None ∨ h-obs M q2 x y 6= None

unfolding f by (cases h-obs M q1 x y; cases h-obs M q2 x y; auto)
qed

have ∗: select-diverging-ofsm-table-io M q1 q2 (Suc k) = hd (List.map-filter f
(List.product (inputs-as-list M ) (outputs-as-list M )))

unfolding f select-diverging-ofsm-table-io.simps Let-def
using diff-Suc-1 by presburger

let ?P = ∀ x y . x ∈ inputs M −→ y ∈ outputs M −→ (h-obs M q1 x y = None
←→ h-obs M q2 x y = None)

show ?thesis proof (cases ?P)
case False
then obtain x y where x ∈ inputs M and y ∈ outputs M and ¬ (h-obs M q1

x y = None ←→ h-obs M q2 x y = None)
by blast

then consider h-obs M q1 x y = None ∧ (∃ q2 ′ . h-obs M q2 x y = Some q2 ′)
|

h-obs M q2 x y = None ∧ (∃ q1 ′ . h-obs M q1 x y = Some q1 ′)
by fastforce

then show ?thesis proof cases
case 1
then obtain q2 ′ where h-obs M q1 x y = None and h-obs M q2 x y = Some

q2 ′ by blast
then have f (x,y) = Some ((x,y),(None, Some q2 ′))

unfolding f by force
moreover have (x,y) ∈ set (List.product(inputs-as-list M ) (outputs-as-list

M ))
using ‹y ∈ outputs M › outputs-as-list-set[of M ]
using ‹x ∈ inputs M › inputs-as-list-set[of M ]
using image-iff by fastforce
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ultimately have (List.map-filter f (List.product(inputs-as-list M ) (outputs-as-list
M ))) 6= []

unfolding List.map-filter-def
by (metis (mono-tags, lifting) Nil-is-map-conv filter-empty-conv option.discI )
then have ∗∗: ?res ∈ set (List.map-filter f (List.product(inputs-as-list M )

(outputs-as-list M )))
unfolding ∗ using hd-in-set by simp

obtain xR yR where (xR,yR) ∈ set (List.product(inputs-as-list M ) (outputs-as-list
M ))

and res: f (xR,yR) = Some ?res
using map-filter-elem[OF ∗∗]
by (metis prod.exhaust-sel)

have p1 : ?res = ((xR,yR),(h-obs M q1 xR yR, h-obs M q2 xR yR))
using res f1
by (metis option.distinct(1 ) option.sel)

then have p2 :
∧

q1 ′ q2 ′ . h-obs M q1 xR yR = Some q1 ′ =⇒ h-obs M q2
xR yR = Some q2 ′ =⇒ ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq .
states M ) k q2 ′

using res f1 f2 by auto
have p3 : h-obs M q1 xR yR 6= None ∨ h-obs M q2 xR yR 6= None

using res f3 by blast

show ?thesis using that p1 p2 p3 by blast
next

case 2
then obtain q1 ′ where h-obs M q2 x y = None and h-obs M q1 x y = Some

q1 ′ by blast
then have f (x,y) = Some ((x,y),(Some q1 ′, None))

unfolding f by force
moreover have (x,y) ∈ set (List.product(inputs-as-list M ) (outputs-as-list

M ))
using ‹y ∈ outputs M › outputs-as-list-set[of M ]
using ‹x ∈ inputs M › inputs-as-list-set[of M ]
using image-iff by fastforce

ultimately have (List.map-filter f (List.product(inputs-as-list M ) (outputs-as-list
M ))) 6= []

unfolding List.map-filter-def
by (metis (mono-tags, lifting) Nil-is-map-conv filter-empty-conv option.discI )
then have ∗∗: ?res ∈ set (List.map-filter f (List.product(inputs-as-list M )

(outputs-as-list M )))
unfolding ∗ using hd-in-set by simp

obtain xR yR where (xR,yR) ∈ set (List.product(inputs-as-list M ) (outputs-as-list
M ))

and res: f (xR,yR) = Some ?res
using map-filter-elem[OF ∗∗]
by (metis prod.exhaust-sel)
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have p1 : ?res = ((xR,yR),(h-obs M q1 xR yR, h-obs M q2 xR yR))
using res f1
by (metis option.distinct(1 ) option.sel)

then have p2 :
∧

q1 ′ q2 ′ . h-obs M q1 xR yR = Some q1 ′ =⇒ h-obs M q2
xR yR = Some q2 ′ =⇒ ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq .
states M ) k q2 ′

using res f1 f2 by auto
have p3 : h-obs M q1 xR yR 6= None ∨ h-obs M q2 xR yR 6= None

using res f3 by blast

show ?thesis using that p1 p2 p3 by blast
qed

next
case True

obtain io where length io ≤ Suc k and io ∈ LS M q1 ∪ LS M q2 and io /∈
LS M q1 ∩ LS M q2

using ‹ofsm-table M (λq . states M ) (Suc k) q1 6= ofsm-table M (λq . states
M ) (Suc k) q2 ›

unfolding ofsm-table-set[OF assms(2 ) minimise-initial-partition] ofsm-table-set[OF
assms(3 ) minimise-initial-partition]

unfolding is-in-language-iff [OF assms(1 ,2 )] is-in-language-iff [OF assms(1 ,3 )]
by blast

then have io 6= []
using assms(2 ) assms(3 ) by auto

then have io = [hd io] @ tl io
by (metis append.left-neutral append-Cons list.exhaust-sel)

then obtain x y where hd io = (x,y)
by (meson prod.exhaust-sel)

have [(x,y)] ∈ LS M q1 ∩ LS M q2
proof −

have [(x,y)] ∈ LS M q1 ∪ LS M q2
using ‹io ∈ LS M q1 ∪ LS M q2 › language-prefix ‹hd io = (x,y)› ‹io = [hd

io] @ tl io›
by (metis Un-iff )

then have x ∈ inputs M and y ∈ outputs M
by auto

consider [(x,y)] ∈ LS M q1 | [(x,y)] ∈ LS M q2
using ‹[(x,y)] ∈ LS M q1 ∪ LS M q2 › by blast

then show ?thesis
proof cases

case 1
then have h-obs M q1 x y 6= None

using h-obs-None[OF ‹observable M ›] unfolding LS-single-transition by
auto

then have h-obs M q2 x y 6= None
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using True ‹x ∈ inputs M › ‹y ∈ outputs M › by meson
then show ?thesis

using 1 h-obs-None[OF ‹observable M ›]
by (metis IntI LS-single-transition fst-conv snd-conv)

next
case 2
then have h-obs M q2 x y 6= None

using h-obs-None[OF ‹observable M ›] unfolding LS-single-transition by
auto

then have h-obs M q1 x y 6= None
using True ‹x ∈ inputs M › ‹y ∈ outputs M › by meson

then show ?thesis
using 2 h-obs-None[OF ‹observable M ›]
by (metis IntI LS-single-transition fst-conv snd-conv)

qed
qed
then obtain q1 ′ q2 ′ where (q1 ,x,y,q1 ′) ∈ transitions M

and (q2 ,x,y,q2 ′) ∈ transitions M
using LS-single-transition by force

then have q1 ′ ∈ states M and q2 ′ ∈ states M using fsm-transition-target by
auto

have tl io ∈ LS M q1 ′ ∪ LS M q2 ′

using observable-language-transition-target[OF ‹observable M › ‹(q1 ,x,y,q1 ′)
∈ transitions M ›]

observable-language-transition-target[OF ‹observable M › ‹(q2 ,x,y,q2 ′) ∈
transitions M ›]

‹io ∈ LS M q1 ∪ LS M q2 ›
unfolding fst-conv snd-conv

by (metis Un-iff ‹hd io = (x, y)› ‹io = [hd io] @ tl io› append-Cons append-Nil)

moreover have tl io /∈ LS M q1 ′ ∩ LS M q2 ′

using observable-language-transition-target[OF ‹observable M › ‹(q1 ,x,y,q1 ′)
∈ transitions M ›]

observable-language-transition-target[OF ‹observable M › ‹(q2 ,x,y,q2 ′) ∈
transitions M ›]

‹io ∈ LS M q1 ∪ LS M q2 ›
unfolding fst-conv snd-conv
by (metis Int-iff LS-prepend-transition ‹(q1 , x, y, q1 ′) ∈ FSM .transitions M ›

‹(q2 , x, y, q2 ′) ∈ FSM .transitions M › ‹hd io = (x, y)› ‹io 6= []› ‹io /∈ LS M q1 ∩
LS M q2 › fst-conv list.collapse snd-conv)

moreover have length (tl io) ≤ k
using ‹length io ≤ Suc k› by auto

ultimately have ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq .
states M ) k q2 ′

unfolding ofsm-table-set-observable[OF assms(1 ) ‹q1 ′ ∈ states M › min-
imise-initial-partition] ofsm-table-set-observable[OF assms(1 ) ‹q2 ′ ∈ states M ›
minimise-initial-partition]

using ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › after-is-state[OF assms(1 )]
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by blast
moreover have h-obs M q1 x y = Some q1 ′

using ‹(q1 ,x,y,q1 ′) ∈ transitions M › ‹observable M › unfolding h-obs-Some[OF
‹observable M ›] observable-alt-def by auto

moreover have h-obs M q2 x y = Some q2 ′

using ‹(q2 ,x,y,q2 ′) ∈ transitions M › ‹observable M › unfolding h-obs-Some[OF
‹observable M ›] observable-alt-def by auto

ultimately have f (x,y) = Some ((x,y),(Some q1 ′, Some q2 ′))
unfolding f by force

moreover have (x,y) ∈ set (List.product(inputs-as-list M ) (outputs-as-list M ))
using fsm-transition-output[OF ‹(q1 ,x,y,q1 ′) ∈ transitions M ›] outputs-as-list-set[of

M ]
using fsm-transition-input[OF ‹(q1 ,x,y,q1 ′) ∈ transitions M ›] inputs-as-list-set[of

M ]
using image-iff by fastforce

ultimately have (List.map-filter f (List.product(inputs-as-list M ) (outputs-as-list
M ))) 6= []

unfolding List.map-filter-def
by (metis (mono-tags, lifting) Nil-is-map-conv filter-empty-conv option.discI )
then have ∗∗: ?res ∈ set (List.map-filter f (List.product(inputs-as-list M )

(outputs-as-list M )))
unfolding ∗ using hd-in-set by simp

obtain xR yR where (xR,yR) ∈ set (List.product(inputs-as-list M ) (outputs-as-list
M ))

and res: f (xR,yR) = Some ?res
using map-filter-elem[OF ∗∗]
by (metis prod.exhaust-sel)

have p1 : ?res = ((xR,yR),(h-obs M q1 xR yR, h-obs M q2 xR yR))
using res f1
by (metis option.distinct(1 ) option.sel)

then have p2 :
∧

q1 ′ q2 ′ . h-obs M q1 xR yR = Some q1 ′ =⇒ h-obs M q2
xR yR = Some q2 ′ =⇒ ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq .
states M ) k q2 ′

using res f1 f2 by auto
have p3 : h-obs M q1 xR yR 6= None ∨ h-obs M q2 xR yR 6= None

using res f3 by blast
show ?thesis using that p1 p2 p3 by blast

qed
qed

7.2 Assembling Distinguishing Traces
fun assemble-distinguishing-sequence-from-ofsm-table :: ( ′a, ′b::linorder , ′c::linorder)
fsm ⇒ ′a ⇒ ′a ⇒ nat ⇒ ( ′b × ′c) list where

assemble-distinguishing-sequence-from-ofsm-table M q1 q2 0 = [] |
assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc k) = (case
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select-diverging-ofsm-table-io M q1 q2 (Suc k)
of
((x,y),(Some q1 ′,Some q2 ′))⇒ (x,y) # (assemble-distinguishing-sequence-from-ofsm-table

M q1 ′ q2 ′ k) |
((x,y),-) ⇒ [(x,y)])

lemma assemble-distinguishing-sequence-from-ofsm-table-distinguishes :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M
and ofsm-table M (λq . states M ) k q1 6= ofsm-table M (λq . states M ) k q2

shows assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k ∈ LS M q1 ∪
LS M q2
and assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k /∈ LS M q1 ∩
LS M q2
and butlast (assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k) ∈ LS
M q1 ∩ LS M q2
proof −

have assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k ∈ LS M q1 ∪
LS M q2

∧ assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k /∈ LS M q1 ∩
LS M q2

∧ butlast (assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k) ∈ LS
M q1 ∩ LS M q2

using assms(2 ,3 ,4 )
proof (induction k arbitrary: q1 q2 )

case 0
then show ?case by auto

next
case (Suc k)

obtain x y where s1 : select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(h-obs
M q1 x y, h-obs M q2 x y))

and s2 :
∧

q1 ′ q2 ′ . h-obs M q1 x y = Some q1 ′ =⇒ h-obs M q2 x y
= Some q2 ′ =⇒ ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq . states
M ) k q2 ′

and s3 : h-obs M q1 x y 6= None ∨ h-obs M q2 x y 6= None
using select-diverging-ofsm-table-io-Some[OF assms(1 ) Suc.prems]
by blast

consider (a) h-obs M q1 x y = None ∧ h-obs M q2 x y 6= None |
(b) h-obs M q1 x y 6= None ∧ h-obs M q2 x y = None |
(c) h-obs M q1 x y 6= None ∧ h-obs M q2 x y 6= None

using s3 by blast
then show ?case proof cases

case a
then obtain q2 ′ where h-obs M q1 x y = None and h-obs M q2 x y = Some

q2 ′
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by blast
then have select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(None,

Some q2 ′))
using s1 by auto

then have ∗:assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc
k) = [(x,y)]

by auto

have [(x,y)] ∈ LS M q1 ∪ LS M q2
using ‹h-obs M q2 x y = Some q2 ′› LS-single-transition[of x y M ]
by (metis UnI2 h-obs-None[OF ‹observable M ›] a fst-conv snd-conv)

moreover have [(x,y)] /∈ LS M q1 ∩ LS M q2
using ‹h-obs M q1 x y = None› LS-single-transition[of x y M ]
unfolding h-obs-None[OF ‹observable M ›] by force

moreover have butlast [(x,y)] ∈ LS M q1 ∩ LS M q2
using Suc.prems(1 ,2 ) by auto

ultimately show ?thesis
unfolding ∗ by simp

next
case b
then obtain q1 ′ where h-obs M q2 x y = None and h-obs M q1 x y = Some

q1 ′

by blast
then have select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(Some

q1 ′,None))
using s1 by auto

then have ∗:assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc
k) = [(x,y)]

by auto

have [(x,y)] ∈ LS M q1 ∪ LS M q2
using ‹h-obs M q1 x y = Some q1 ′› LS-single-transition[of x y M ]
by (metis UnI1 assms(1 ) b fst-conv h-obs-None snd-conv)

moreover have [(x,y)] /∈ LS M q1 ∩ LS M q2
using ‹h-obs M q2 x y = None› LS-single-transition[of x y M ]
unfolding h-obs-None[OF ‹observable M ›] by force

moreover have butlast [(x,y)] ∈ LS M q1 ∩ LS M q2
using Suc.prems(1 ,2 ) by auto

ultimately show ?thesis
unfolding ∗ by simp

next
case c
then obtain q1 ′ q2 ′ where h-obs M q1 x y = Some q1 ′ and h-obs M q2 x y

= Some q2 ′

by blast
then have select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(Some q1 ′,

Some q2 ′))
using s1 by auto

then have assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc k)
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= (x,y) # (assemble-distinguishing-sequence-from-ofsm-table M q1 ′ q2 ′ k)
by auto

moreover define subseq where subseq: subseq = (assemble-distinguishing-sequence-from-ofsm-table
M q1 ′ q2 ′ k)

ultimately have ∗:assemble-distinguishing-sequence-from-ofsm-table M q1 q2
(Suc k) = (x,y) # subseq

by auto

have (q1 ,x,y,q1 ′) ∈ transitions M
using ‹h-obs M q1 x y = Some q1 ′› h-obs-Some[OF ‹observable M ›] by

blast
then have q1 ′ ∈ states M

using fsm-transition-target by auto
have (q2 ,x,y,q2 ′) ∈ transitions M

using ‹h-obs M q2 x y = Some q2 ′› h-obs-Some[OF ‹observable M ›] by
blast

then have q2 ′ ∈ states M
using fsm-transition-target by auto

have i1 : subseq ∈ LS M q1 ′ ∪ LS M q2 ′

and i2 : subseq /∈ LS M q1 ′ ∩ LS M q2 ′

and i3 : butlast subseq ∈ LS M q1 ′ ∩ LS M q2 ′

using Suc.IH [OF ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › s2 [OF ‹h-obs M q1 x
y = Some q1 ′› ‹h-obs M q2 x y = Some q2 ′›]]

unfolding subseq by blast+

have (x,y) # subseq ∈ LS M q1 ∪ LS M q2
using i1 ‹(q1 ,x,y,q1 ′) ∈ transitions M › ‹(q2 ,x,y,q2 ′) ∈ transitions M ›
by (metis LS-prepend-transition Un-iff fst-conv snd-conv)

moreover have (x,y) # subseq /∈ LS M q1 ∩ LS M q2
using observable-language-transition-target[OF ‹observable M › ‹(q1 ,x,y,q1 ′)

∈ transitions M ›, of subseq]
observable-language-transition-target[OF ‹observable M › ‹(q2 ,x,y,q2 ′)

∈ transitions M ›, of subseq]
i2

unfolding fst-conv snd-conv
by blast

moreover have butlast ((x,y) # subseq) ∈ LS M q1 ∩ LS M q2
using i3 ‹(q1 ,x,y,q1 ′) ∈ transitions M › ‹(q2 ,x,y,q2 ′) ∈ transitions M ›

by (metis Int-iff LS-prepend-transition LS-single-transition append-butlast-last-id
butlast.simps(2 ) fst-conv language-prefix snd-conv)

ultimately show ?thesis
unfolding ∗ by simp

qed
qed

then show assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k ∈ LS M
q1 ∪ LS M q2

and assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k /∈ LS M q1
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∩ LS M q2
and butlast (assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k) ∈

LS M q1 ∩ LS M q2
by blast+

qed

lemma assemble-distinguishing-sequence-from-ofsm-table-length :
length (assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k) ≤ k

proof (induction k arbitrary: q1 q2 )
case 0
then show ?case by auto

next
case (Suc k)
obtain x y A B where ∗:select-diverging-ofsm-table-io M q1 q2 (Suc k) =

((x,y),A,B)
using prod.exhaust by metis

show ?case proof (cases A)
case None
then have assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc k)

= [(x,y)]
unfolding assemble-distinguishing-sequence-from-ofsm-table.simps ∗ case-prod-conv

by auto
then show ?thesis

by (metis Suc-le-length-iff length-Cons list.distinct(1 ) not-less-eq-eq)
next

case (Some q1 ′)
show ?thesis proof (cases B)

case None
then have assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc k)

= [(x,y)]
unfolding assemble-distinguishing-sequence-from-ofsm-table.simps ∗ case-prod-conv

Some by auto
then show ?thesis

by (metis Suc-le-length-iff length-Cons list.distinct(1 ) not-less-eq-eq)
next

case (Some q2 ′)
show ?thesis

unfolding assemble-distinguishing-sequence-from-ofsm-table.simps ∗ ‹A =
Some q1 ′› Some case-prod-conv

using Suc.IH [of q1 ′ q2 ′]
by simp

qed
qed

qed

lemma ofsm-table-fix-partition-fixpoint-trivial-partition :
assumes q ∈ states M
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shows ofsm-table-fix M (λq. FSM .states M ) 0 q = ofsm-table M (λq. FSM .states
M ) (size M − 1 ) q
proof −

have ((λq. FSM .states M ) ‘ FSM .states M ) = {states M}
using fsm-initial[of M ]
by auto

then have ∗:card ((λq. FSM .states M ) ‘ FSM .states M ) = 1
by auto

show ?thesis
using ofsm-table-fix-partition-fixpoint[OF minimise-initial-partition - assms, of

size M ]
unfolding ∗
by blast

qed

fun get-distinguishing-sequence-from-ofsm-tables :: ( ′a, ′b::linorder , ′c::linorder) fsm
⇒ ′a ⇒ ′a ⇒ ( ′b × ′c) list where

get-distinguishing-sequence-from-ofsm-tables M q1 q2 = (let
k = find-first-distinct-ofsm-table M q1 q2

in assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k)

lemma get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ LS M q1 ∪ LS M
q2
and get-distinguishing-sequence-from-ofsm-tables M q1 q2 /∈ LS M q1 ∩ LS M q2
and butlast (get-distinguishing-sequence-from-ofsm-tables M q1 q2 ) ∈ LS M q1
∩ LS M q2
proof −

have ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )
0 q2

using ‹minimal M › unfolding minimal-observable-code[OF assms(1 )]
using assms(3 ,4 ,5 ) by blast

let ?k = find-first-distinct-ofsm-table-gt M q1 q2 0
have ofsm-table M (λq . states M ) ?k q1 6= ofsm-table M (λq . states M ) ?k q2

using find-first-distinct-ofsm-table-is-first(1 )[OF assms(3 ,4 ) ‹ofsm-table-fix M
(λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2 ›] .

have ∗:get-distinguishing-sequence-from-ofsm-tables M q1 q2 = assemble-distinguishing-sequence-from-ofsm-table
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M q1 q2 ?k
by auto

show get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ LS M q1 ∪ LS M
q2

and get-distinguishing-sequence-from-ofsm-tables M q1 q2 /∈ LS M q1 ∩ LS M
q2

and butlast (get-distinguishing-sequence-from-ofsm-tables M q1 q2 ) ∈ LS M q1
∩ LS M q2

using assemble-distinguishing-sequence-from-ofsm-table-distinguishes[OF assms(1 ,3 ,4 )
‹ofsm-table M (λq . states M ) ?k q1 6= ofsm-table M (λq . states M ) ?k q2 ›]

unfolding ∗
by blast+

qed

lemma get-distinguishing-sequence-from-ofsm-tables-distinguishes :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows distinguishes M q1 q2 (get-distinguishing-sequence-from-ofsm-tables M q1
q2 )
using get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace(1 ,2 )[OF

assms]
unfolding distinguishes-def
by blast

7.3 Minimal Distinguishing Traces
lemma get-distinguishing-sequence-from-ofsm-tables-is-minimally-distinguishing :

fixes M :: ( ′a, ′b::linorder , ′c::linorder) fsm
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows minimally-distinguishes M q1 q2 (get-distinguishing-sequence-from-ofsm-tables
M q1 q2 )
proof −

have ∗:ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )
0 q2

using ‹minimal M › unfolding minimal-observable-code[OF assms(1 )]
using assms(3 ,4 ,5 ) by blast

obtain k where k = find-first-distinct-ofsm-table M q1 q2
and get-distinguishing-sequence-from-ofsm-tables M q1 q2 = assem-

ble-distinguishing-sequence-from-ofsm-table M q1 q2 k
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by auto
then have length (get-distinguishing-sequence-from-ofsm-tables M q1 q2 ) ≤ k

using assemble-distinguishing-sequence-from-ofsm-table-length
by metis

moreover have
∧

io . length io < k =⇒ ¬distinguishes M q1 q2 io
proof −

fix io :: ( ′b × ′c) list
assume length io < k
then have ofsm-table M (λq. FSM .states M ) (length io) q1 = ofsm-table M

(λq. FSM .states M ) (length io) q2
using find-first-distinct-ofsm-table-is-first[OF assms(3 ,4 ) ∗]
unfolding ‹k = find-first-distinct-ofsm-table M q1 q2 ›
by blast

then show ¬distinguishes M q1 q2 io
using ofsm-table-set-observable[OF assms(1 ,3 ) minimise-initial-partition]
using ofsm-table-set-observable[OF assms(1 ,4 ) minimise-initial-partition]
unfolding distinguishes-def
by (metis (mono-tags, lifting) Int-iff Un-iff assms(3 ) le-refl mem-Collect-eq

ofsm-table-containment)
qed
ultimately show ?thesis
using get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace(1 ,2 )[OF

assms]
unfolding minimally-distinguishes-def distinguishes-def
using le-neq-implies-less not-le-imp-less
by blast

qed

lemma minimally-distinguishes-length :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2
and minimally-distinguishes M q1 q2 io

shows length io ≤ size M − 1
proof −

have ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )
0 q2

using ‹minimal M › unfolding minimal-observable-code[OF assms(1 )]
using assms(3 ,4 ,5 ) by blast

then have ofsm-table M (λq. FSM .states M ) (FSM .size M − 1 ) q1 6= ofsm-table
M (λq. FSM .states M ) (FSM .size M − 1 ) q2

using ofsm-table-fix-partition-fixpoint-trivial-partition assms(3 ,4 )
by metis

then obtain io ′ where distinguishes M q1 q2 io ′ and length io ′ ≤ size M − 1
unfolding ofsm-table-set-observable[OF assms(1 ,3 ) minimise-initial-partition]
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unfolding ofsm-table-set-observable[OF assms(1 ,4 ) minimise-initial-partition]
unfolding distinguishes-def
by blast

then show ?thesis
using assms(6 ) unfolding minimally-distinguishes-def
using dual-order .trans by blast

qed

end

8 Properties of Sets of IO Sequences

This theory contains various definitions for properties of sets of IO-traces.
theory IO-Sequence-Set
imports FSM
begin

fun output-completion :: ( ′a × ′b) list set ⇒ ′b set ⇒ ( ′a × ′b) list set where
output-completion P Out = P ∪ {io@[(fst xy, y)] | io xy y . y ∈ Out ∧ io@[xy]
∈ P ∧ io@[(fst xy, y)] /∈ P}

fun output-complete-sequences :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ bool where
output-complete-sequences M P = (∀ io ∈ P . io = [] ∨ (∀ y ∈ (outputs M ) .

(butlast io)@[(fst (last io), y)] ∈ P))

fun acyclic-sequences :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list set ⇒ bool where
acyclic-sequences M q P = (∀ p . (path M q p ∧ p-io p ∈ P) −→ distinct

(visited-states q p))

fun acyclic-sequences ′ :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list set ⇒ bool where
acyclic-sequences ′ M q P = (∀ io ∈ P . ∀ p ∈ (paths-for-io M q io) . distinct

(visited-states q p))

lemma acyclic-sequences-alt-def [code] : acyclic-sequences M P = acyclic-sequences ′

M P
unfolding acyclic-sequences ′.simps acyclic-sequences.simps paths-for-io-def
by blast

fun single-input-sequences :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ bool where
single-input-sequences M P = (∀ xys1 xys2 xy1 xy2 . (xys1@[xy1 ] ∈ P ∧ xys2@[xy2 ]
∈ P ∧ io-targets M xys1 (initial M ) = io-targets M xys2 (initial M )) −→ fst xy1
= fst xy2 )

fun single-input-sequences ′ :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ bool where
single-input-sequences ′ M P = (∀ io1 ∈ P . ∀ io2 ∈ P . io1 = [] ∨ io2 = [] ∨
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((io-targets M (butlast io1 ) (initial M ) = io-targets M (butlast io2 ) (initial M ))
−→ fst (last io1 ) = fst (last io2 )))

lemma single-input-sequences-alt-def [code] : single-input-sequences M P = sin-
gle-input-sequences ′ M P

unfolding single-input-sequences.simps single-input-sequences ′.simps
by (metis append-butlast-last-id append-is-Nil-conv butlast-snoc last-snoc not-Cons-self )

fun output-complete-for-FSM-sequences-from-state :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b ×
′c) list set ⇒ bool where

output-complete-for-FSM-sequences-from-state M q P = (∀ io xy t . io@[xy] ∈
P ∧ t ∈ transitions M ∧ t-source t ∈ io-targets M io q ∧ t-input t = fst xy −→
io@[(fst xy, t-output t)] ∈ P)

lemma output-complete-for-FSM-sequences-from-state-alt-def :
shows output-complete-for-FSM-sequences-from-state M q P = (∀ xys xy y .

(xys@[xy] ∈ P ∧ (∃ q ′ ∈ (io-targets M xys q) . [(fst xy,y)] ∈ LS M q ′)) −→
xys@[(fst xy,y)] ∈ P)
proof −

have
∧

xys xy y q ′ . q ′ ∈ (io-targets M xys q) =⇒ [(fst xy,y)] ∈ LS M q ′ =⇒
∃ t . t ∈ transitions M ∧ t-source t ∈ io-targets M xys q ∧ t-input t = fst xy ∧
t-output t = y

unfolding io-targets.simps LS .simps
using path-append path-append-transition-elim(2 ) by fastforce

moreover have
∧

xys xy y t . t ∈ transitions M =⇒ t-source t ∈ io-targets M
xys q =⇒ t-input t = fst xy =⇒ t-output t = y =⇒ ∃ q ′ ∈ (io-targets M xys q) .
[(fst xy,y)] ∈ LS M q ′

unfolding io-targets.simps LS .simps
proof −

fix xys :: ( ′b × ′c) list and xy :: ′b × ′d and y :: ′c and t :: ′a × ′b × ′c × ′a
assume a1 : t-input t = fst xy
assume a2 : t-output t = y
assume a3 : t-source t ∈ {target q p |p. path M q p ∧ p-io p = xys}
assume a4 : t ∈ FSM .transitions M
have ∀ p f . [f (p:: ′a × ′b × ′c × ′a):: ′b × ′c] = map f [p]

by simp
then have ∃ a. (∃ ps. [(t-input t, t-output t)] = p-io ps ∧ path M a ps) ∧ a ∈

{target q ps |ps. path M q ps ∧ p-io ps = xys}
using a4 a3 by (meson single-transition-path)

then have ∃ a. [(t-input t, t-output t)] ∈ {p-io ps |ps. path M a ps} ∧ a ∈
{target q ps |ps. path M q ps ∧ p-io ps = xys}

by auto
then show ∃ a∈{target q ps |ps. path M q ps ∧ p-io ps = xys}. [(fst xy, y)] ∈

{p-io ps |ps. path M a ps}
using a2 a1 by (metis (no-types, lifting))

qed

ultimately show ?thesis
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unfolding output-complete-for-FSM-sequences-from-state.simps by blast
qed

fun output-complete-for-FSM-sequences-from-state ′ :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b ×
′c) list set ⇒ bool where

output-complete-for-FSM-sequences-from-state ′ M q P = (∀ io∈P . ∀ t ∈ transi-
tions M . io = [] ∨ (t-source t ∈ io-targets M (butlast io) q ∧ t-input t = fst (last
io) −→ (butlast io)@[(fst (last io), t-output t)] ∈ P))

lemma output-complete-for-FSM-sequences-alt-def ′[code] : output-complete-for-FSM-sequences-from-state
M q P = output-complete-for-FSM-sequences-from-state ′ M q P
unfolding output-complete-for-FSM-sequences-from-state.simps output-complete-for-FSM-sequences-from-state ′.simps
by (metis last-snoc snoc-eq-iff-butlast)

fun deadlock-states-sequences :: ( ′a, ′b, ′c) fsm ⇒ ′a set ⇒ ( ′b × ′c) list set ⇒ bool
where

deadlock-states-sequences M Q P = (∀ xys ∈ P .
((io-targets M xys (initial M ) ⊆ Q
∧ ¬ (∃ xys ′ ∈ P . length xys < length xys ′ ∧ take

(length xys) xys ′ = xys)))
∨ (¬ io-targets M xys (initial M ) ∩ Q = {}
∧ (∃ xys ′ ∈ P . length xys < length xys ′ ∧ take

(length xys) xys ′ = xys)))

fun reachable-states-sequences :: ( ′a, ′b, ′c) fsm ⇒ ′a set ⇒ ( ′b × ′c) list set ⇒ bool
where

reachable-states-sequences M Q P = (∀ q ∈ Q . ∃ xys ∈ P . q ∈ io-targets M xys
(initial M ))

fun prefix-closed-sequences :: ( ′b × ′c) list set ⇒ bool where
prefix-closed-sequences P = (∀ xys1 xys2 . xys1@xys2 ∈ P −→ xys1 ∈ P)

fun prefix-closed-sequences ′ :: ( ′b × ′c) list set ⇒ bool where
prefix-closed-sequences ′ P = (∀ io ∈ P . io = [] ∨ (butlast io) ∈ P)

lemma prefix-closed-sequences-alt-def [code] : prefix-closed-sequences P = prefix-closed-sequences ′

P
proof

show prefix-closed-sequences P =⇒ prefix-closed-sequences ′ P
unfolding prefix-closed-sequences.simps prefix-closed-sequences ′.simps
by (metis append-butlast-last-id)

have
∧

xys1 xys2 . ∀ io∈P. io = [] ∨ butlast io ∈ P =⇒ xys1 @ xys2 ∈ P =⇒
xys1 ∈ P

proof −
fix xys1 xys2 assume ∀ io∈P. io = [] ∨ butlast io ∈ P and xys1 @ xys2 ∈ P
then show xys1 ∈ P
proof (induction xys2 rule: rev-induct)

case Nil
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then show ?case by auto
next

case (snoc a xys2 )
then show ?case

by (metis append.assoc snoc-eq-iff-butlast)
qed

qed

then show prefix-closed-sequences ′ P =⇒ prefix-closed-sequences P
unfolding prefix-closed-sequences.simps prefix-closed-sequences ′.simps by blast

qed

8.1 Completions
definition prefix-completion :: ′a list set ⇒ ′a list set where

prefix-completion P = {xs . ∃ ys . xs@ys ∈ P}

lemma prefix-completion-closed :
prefix-closed-sequences (prefix-completion P)
unfolding prefix-closed-sequences.simps prefix-completion-def
by auto

lemma prefix-completion-source-subset :
P ⊆ prefix-completion P
unfolding prefix-completion-def
by (metis (no-types, lifting) append-Nil2 mem-Collect-eq subsetI )

definition output-completion-for-FSM :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ ( ′b
× ′c) list set where

output-completion-for-FSM M P = P ∪ { io@[(x,y ′)] | io x y ′ . (y ′ ∈ (outputs
M )) ∧ (∃ y . io@[(x,y)] ∈ P)}

lemma output-completion-for-FSM-complete :
shows output-complete-sequences M (output-completion-for-FSM M P)
unfolding output-completion-for-FSM-def output-complete-sequences.simps

proof
fix io assume ∗: io ∈ P ∪ {io @ [(x, y ′)] |io x y ′. y ′ ∈ (outputs M ) ∧ (∃ y. io @

[(x, y)] ∈ P)}
show io = [] ∨

(∀ y∈(outputs M ).
butlast io @ [(fst (last io), y)]
∈ P ∪ {io @ [(x, y ′)] |io x y ′. y ′ ∈ (outputs M ) ∧ (∃ y. io @ [(x, y)] ∈

P)})
proof (cases io rule: rev-cases)

case Nil
then show ?thesis by blast

next

338



case (snoc ys y)
then show ?thesis proof (cases io ∈ P)

case True
then have butlast io @ [(fst (last io), (snd (last io)))] ∈ P using snoc by

auto
then show ?thesis using snoc by blast

next
case False
then show ?thesis

using ∗ by auto
qed

qed
qed

lemma output-completion-for-FSM-length :
assumes ∀ io ∈ P . length io ≤ k
shows ∀ io ∈ output-completion-for-FSM M P. length io ≤ k
using assms unfolding output-completion-for-FSM-def
by auto

lemma output-completion-for-FSM-code[code] :
output-completion-for-FSM M P = P ∪ (

⋃
(image (λ(y,io) . if length io = 0 then

{} else {((butlast io)@[(fst (last io),y)])}) ((outputs M ) × P)))
proof −

let ?OC = {io @ [(x, y ′)] |io x y ′. y ′ ∈ FSM .outputs M ∧ (∃ y. io @ [(x, y)] ∈
P)}

let ?OC ′ = (
⋃
(y, io)∈FSM .outputs M × P. if length io = 0 then {} else {butlast

io @ [(fst (last io), y)]})

have ?OC = ?OC ′

proof −
have ?OC ⊆ ?OC ′

proof
fix io ′ assume io ′ ∈ ?OC
then obtain io x y y ′ where io ′ = io @ [(x, y ′)]

and y ′ ∈ FSM .outputs M
and io @ [(x, y)] ∈ P

by blast
then have (y ′,io @ [(x, y)]) ∈ FSM .outputs M × P by blast
moreover have length (io @ [(x, y)]) 6= 0 by auto
ultimately show io ′ ∈ ?OC ′

unfolding ‹io ′ = io @ [(x, y ′)]› by force
qed
moreover have ?OC ′ ⊆ ?OC
proof

fix io ′ assume io ′ ∈ ?OC ′

then obtain y io where y ∈ outputs M and io ∈ P
and io ′ ∈ (if length io = 0 then {} else {butlast io @ [(fst (last

io), y)]})
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by auto
then have io ′ = butlast io @ [(fst (last io), y)]

by (meson empty-iff singletonD)
have io 6= []
using ‹io ′ ∈ (if length io = 0 then {} else {butlast io @ [(fst (last io), y)]})›
by auto

then have butlast io @ [(fst (last io), snd (last io))] ∈ P
by (simp add: ‹io ∈ P›)

then show io ′ ∈ ?OC
using ‹y ∈ outputs M › ‹io ∈ P›
unfolding ‹io ′ = butlast io @ [(fst (last io), y)]› by blast

qed
ultimately show ?thesis by blast

qed

then show ?thesis
unfolding output-completion-for-FSM-def
by simp

qed

end

9 Observability

This theory presents the classical algorithm for transforming FSMs into
language-equivalent observable FSMs in analogy to the determinisation of
nondeterministic finite automata.
theory Observability
imports FSM
begin

lemma fPow-Pow : Pow (fset A) = fset (fset |‘| fPow A)
proof (induction A)

case empty
then show ?case by auto

next
case (insert x A)

have Pow (fset (finsert x A)) = Pow (fset A) ∪ (insert x) ‘ Pow (fset A)
by (simp add: Pow-insert)

moreover have fset (fset |‘| fPow (finsert x A)) = fset (fset |‘| fPow A) ∪ (insert
x) ‘ fset (fset |‘| fPow A)

proof −
have fset |‘| ((fPow A) |∪| (finsert x) |‘| (fPow A)) = (fset |‘| fPow A) |∪|

(insert x) |‘| (fset |‘| fPow A)
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unfolding fimage-funion
by fastforce

moreover have (fPow (finsert x A)) = (fPow A) |∪| (finsert x) |‘| (fPow A)
by (simp add: fPow-finsert)

ultimately show ?thesis
by auto

qed
ultimately show ?case

using insert.IH by simp
qed

lemma fcard-fsubset: ¬ fcard (A |−| (B |∪| C )) < fcard (A |−| B) =⇒ C |⊆| A
=⇒ C |⊆| B
proof (induction C )

case empty
then show ?case by auto

next
case (insert x C )
then show ?case

unfolding finsert-fsubset funion-finsert-right not-less
proof −

assume a1 : fcard (A |−| B) ≤ fcard (A |−| finsert x (B |∪| C ))
assume [[fcard (A |−| B) ≤ fcard (A |−| (B |∪| C )); C |⊆| A]] =⇒ C |⊆| B
assume a2 : x |∈| A ∧ C |⊆| A
have A |−| (C |∪| finsert x B) = A |−| B ∨ ¬ A |−| (C |∪| finsert x B) |⊆| A

|−| B
using a1 by (metis (no-types) fcard-seteq funion-commute funion-finsert-right)
then show x |∈| B ∧ C |⊆| B

using a2 by blast
qed

qed

lemma make-observable-transitions-qtrans-helper :
assumes qtrans = ffUnion (fimage (λ q . (let qts = ffilter (λt . t-source t |∈| q)

A;
ios = fimage (λ t . (t-input t, t-output t)) qts

in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .
(t-input t, t-output t) = (x,y)) qts)))) ios)) nexts)
shows

∧
t . t |∈| qtrans ←→ t-source t |∈| nexts ∧ t-target t 6= {||} ∧ fset (t-target

t) = t-target ‘ {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input t ∧
t-output t ′ = t-output t}
proof −

have fset qtrans = { (q,x,y,q ′) | q x y q ′ . q |∈| nexts ∧ q ′ 6= {||} ∧ fset q ′ =
t-target ‘ {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′ = x ∧ t-output t ′ = y}}

proof −
have

∧
q . fset (ffilter (λt . t-source t |∈| q) A) = Set.filter (λt . t-source t |∈|

q) (fset A)
using ffilter .rep-eq assms(1 ) by auto
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then have
∧

q . fset (fimage (λ t . (t-input t, t-output t)) (ffilter (λt . t-source
t |∈| q) A)) = image (λ t . (t-input t, t-output t)) (Set.filter (λt . t-source t |∈| q)
(fset A))

by simp
then have ∗:

∧
q . fset (fimage (λ(x,y) . (q,x,y, (t-target |‘| ((ffilter (λt . (t-input

t, t-output t) = (x,y)) (ffilter (λt . t-source t |∈| q) (A))))))) (fimage (λ t . (t-input
t, t-output t)) (ffilter (λt . t-source t |∈| q) (A))))

= image (λ(x,y) . (q,x,y, (t-target |‘| ((ffilter (λt . (t-input t, t-output
t) = (x,y)) (ffilter (λt . t-source t |∈| q) (A))))))) (image (λ t . (t-input t, t-output
t)) (Set.filter (λt . t-source t |∈| q) (fset A)))

by (metis (no-types, lifting) ffilter .rep-eq fset.set-map)

have ∗∗:
∧

f1 f2 xs ys ys ′ . (
∧

x . fset (f1 x ys) = (f2 x ys ′)) =⇒
fset (ffUnion (fimage (λ x . (f1 x ys)) xs)) = (

⋃
x ∈ fset xs . (f2 x ys ′))

unfolding ffUnion.rep-eq fimage.rep-eq by force

have fset (ffUnion (fimage (λ q . (fimage (λ(x,y) . (q,x,y, (t-target |‘| ((ffilter
(λt . (t-input t, t-output t) = (x,y)) (ffilter (λt . t-source t |∈| q) (A))))))) (fimage
(λ t . (t-input t, t-output t)) (ffilter (λt . t-source t |∈| q) (A))))) nexts))

= (
⋃

q ∈ fset nexts . image (λ(x,y) . (q,x,y, (t-target |‘| ((ffilter (λt .
(t-input t, t-output t) = (x,y)) (ffilter (λt . t-source t |∈| q) (A))))))) (image (λ t
. (t-input t, t-output t)) (Set.filter (λt . t-source t |∈| q) (fset A))))

unfolding ffUnion.rep-eq fimage.rep-eq
using ∗ by force

also have . . . = { (q,x,y,q ′) | q x y q ′ . q |∈| nexts ∧ q ′ 6= {||} ∧ fset q ′ =
t-target ‘ {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′ = x ∧ t-output t ′ = y}}

(is ?A = ?B) proof −
have

∧
t . t ∈ ?A =⇒ t ∈ ?B

proof −
fix t assume t ∈ ?A
then obtain q where q ∈ fset nexts

and t ∈ image (λ(x,y) . (q,x,y, (t-target |‘| ((ffilter (λt . (t-input
t, t-output t) = (x,y)) (ffilter (λt . t-source t |∈| q) (A))))))) (image (λ t . (t-input
t, t-output t)) (Set.filter (λt . t-source t |∈| q) (fset A)))

by blast
then obtain x y q ′ where ∗: (x,y) ∈ (image (λ t . (t-input t, t-output t))

(Set.filter (λt . t-source t |∈| q) (fset A)))
and t = (q,x,y,q ′)

and ∗∗:q ′ = (t-target |‘| ((ffilter (λt . (t-input t, t-output t)
= (x,y)) (ffilter (λt . t-source t |∈| q) (A)))))

by force

have q |∈| nexts
using ‹q ∈ fset nexts›
by simp

moreover have q ′ 6= {||}
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proof −
have ∗∗∗:(Set.filter (λt . t-source t |∈| q) (fset A)) = fset (ffilter (λt .

t-source t |∈| q) (A))
by auto

have ∃ t . t |∈| (ffilter (λt. t-source t |∈| q) A) ∧ (t-input t, t-output t)
= (x,y)

using ∗
by (metis (no-types, lifting) ∗∗∗ image-iff )

then show ?thesis unfolding ∗∗
by force

qed
moreover have fset q ′ = t-target ‘ {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input

t ′ = x ∧ t-output t ′ = y}
proof −

have {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′ = x ∧ t-output t ′ = y}
= ((Set.filter (λt . (t-input t, t-output t) = (x,y)) (fset (ffilter (λt . t-source t |∈|
q) (A)))))

by fastforce
also have . . . = fset ((ffilter (λt . (t-input t, t-output t) = (x,y)) (ffilter

(λt . t-source t |∈| q) (A))))
by fastforce

finally have {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′ = x ∧ t-output
t ′ = y} = fset ((ffilter (λt . (t-input t, t-output t) = (x,y)) (ffilter (λt . t-source t
|∈| q) (A)))) .

then show ?thesis
unfolding ∗∗
by simp

qed
ultimately show t ∈ ?B

unfolding ‹t = (q,x,y,q ′)›
by blast

qed
moreover have

∧
t . t ∈ ?B =⇒ t ∈ ?A

proof −
fix t assume t ∈ ?B
then obtain q x y q ′ where t = (q,x,y,q ′) and (q,x,y,q ′) ∈ ?B by force
then have q |∈| nexts

and q ′ 6= {||}
and ∗: fset q ′ = t-target ‘ {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′

= x ∧ t-output t ′ = y}
by force+

then have fset q ′ 6= {}
by (metis bot-fset.rep-eq fset-inject)

have (x,y) ∈ (image (λ t . (t-input t, t-output t)) (Set.filter (λt . t-source t
|∈| q) (fset A)))

using ‹fset q ′ 6= {}› unfolding ∗ Set.filter-def by blast
moreover have q ′ = t-target |‘| ffilter (λt. (t-input t, t-output t) = (x, y))

(ffilter (λt. t-source t |∈| q) A)
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proof −
have {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′ = x ∧ t-output t ′ = y}

= ((Set.filter (λt . (t-input t, t-output t) = (x,y)) (fset (ffilter (λt . t-source t |∈|
q) (A)))))

by fastforce
also have . . . = fset ((ffilter (λt . (t-input t, t-output t) = (x,y)) (ffilter

(λt . t-source t |∈| q) (A))))
by fastforce

finally have ∗∗∗:{t ′ . t ′ |∈| A ∧ t-source t ′ |∈| q ∧ t-input t ′ = x ∧ t-output
t ′ = y} = fset ((ffilter (λt . (t-input t, t-output t) = (x,y)) (ffilter (λt . t-source t
|∈| q) (A)))) .

show ?thesis
using ∗
unfolding ∗∗∗
by (metis (no-types, lifting) fimage.rep-eq fset-inject)

qed
ultimately show t ∈ ?A

using ‹q |∈| nexts›
unfolding ‹t = (q,x,y,q ′)›
by force

qed
ultimately show ?thesis

by (metis (no-types, lifting) Collect-cong Sup-set-def mem-Collect-eq)
qed
finally show ?thesis

unfolding assms Let-def by blast
qed
then show

∧
t . t |∈| qtrans ←→ t-source t |∈| nexts ∧ t-target t 6= {||} ∧ fset

(t-target t) = t-target ‘ {t ′ . t ′ |∈| A ∧ t-source t ′ |∈| t-source t ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t}

by force
qed

function make-observable-transitions :: ( ′a, ′b, ′c) transition fset ⇒ ′a fset fset ⇒
′a fset fset ⇒ ( ′a fset × ′b × ′c × ′a fset) fset ⇒ ( ′a fset × ′b × ′c × ′a fset) fset
where

make-observable-transitions base-trans nexts dones ts = (let
qtrans = ffUnion (fimage (λ q . (let qts = ffilter (λt . t-source t |∈| q)

base-trans;
ios = fimage (λ t . (t-input t, t-output t)) qts

in fimage (λ(x,y) . (q,x,y, t-target |‘| (ffilter (λt .
(t-input t, t-output t) = (x,y)) qts))) ios)) nexts);

dones ′ = dones |∪| nexts;
ts ′ = ts |∪| qtrans;
nexts ′ = (fimage t-target qtrans) |−| dones ′
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in if nexts ′ = {||}
then ts ′

else make-observable-transitions base-trans nexts ′ dones ′ ts ′)
by auto

termination
proof −

{
fix base-trans :: ( ′a, ′b, ′c) transition fset
fix nexts :: ′a fset fset
fix dones :: ′a fset fset
fix ts :: ( ′a fset × ′b × ′c × ′a fset) fset
fix q x y q ′

assume assm1 : ¬ fcard
(fPow (t-source |‘| base-trans |∪| t-target |‘| base-trans) |−|
(dones |∪| nexts |∪|
t-target |‘|
ffUnion
((λq. let qts = ffilter (λt. t-source t |∈| q) base-trans

in ((λ(x, y). (q, x, y, t-target |‘| ffilter (λt. t-input t = x ∧
t-output t = y) qts)) ◦ (λt. (t-input t, t-output t))) |‘|

qts) |‘|
nexts)))

< fcard (fPow (t-source |‘| base-trans |∪| t-target |‘| base-trans) |−| (dones
|∪| nexts))

and assm2 : (q, x, y, q ′) |∈|
ffUnion
((λq. let qts = ffilter (λt. t-source t |∈| q) base-trans

in ((λ(x, y). (q, x, y, t-target |‘| ffilter (λt. t-input t = x ∧ t-output
t = y) qts)) ◦ (λt. (t-input t, t-output t))) |‘| qts) |‘|

nexts)

and assm3 : q ′ |/∈| nexts

define qtrans where qtrans-def : qtrans = ffUnion (fimage (λ q . (let qts =
ffilter (λt . t-source t |∈| q) base-trans;

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .

(t-input t, t-output t) = (x,y)) qts)))) ios)) nexts)

have qtrans-prop:
∧

t . t |∈| qtrans ←→ t-source t |∈| nexts ∧ t-target t 6= {||}
∧ fset (t-target t) = t-target ‘ {t ′ | t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t
∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using make-observable-transitions-qtrans-helper [OF qtrans-def ]
by presburger
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have
∧

t . t |∈| qtrans =⇒ t-target t |∈| fPow (t-target |‘| base-trans)
proof −

fix t assume t |∈| qtrans
then have ∗: fset (t-target t) = t-target ‘ {t ′ . t ′ |∈| base-trans ∧ t-source t ′

|∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}
using qtrans-prop by blast

then have fset (t-target t) ⊆ t-target ‘ (fset base-trans)
by (metis (mono-tags, lifting) imageI image-Collect-subsetI )

then show t-target t |∈| fPow (t-target |‘| base-trans)
by (simp add: less-eq-fset.rep-eq)

qed
then have t-target |‘| qtrans |⊆| (fPow (t-source |‘| base-trans |∪| t-target |‘|

base-trans))
by fastforce

moreover have ¬ fcard (fPow (t-source |‘| base-trans |∪| t-target |‘| base-trans)
|−| (dones |∪| nexts |∪| t-target |‘| qtrans))

< fcard (fPow (t-source |‘| base-trans |∪| t-target |‘| base-trans) |−|
(dones |∪| nexts))

using assm1 unfolding qtrans-def by force
ultimately have t-target |‘| qtrans |⊆| dones |∪| nexts

using fcard-fsubset by fastforce
moreover have q ′ |∈| t-target |‘| qtrans

using assm2 unfolding qtrans-def by force
ultimately have q ′ |∈| dones

using ‹q ′ |/∈| nexts› by blast
} note t = this

show ?thesis
apply (relation measure (λ (base-trans, nexts, dones, ts) . fcard ((fPow (t-source

|‘| base-trans |∪| t-target |‘| base-trans)) |−| (dones |∪| nexts))))
apply auto
by (erule t)

qed

lemma make-observable-transitions-mono: ts |⊆| (make-observable-transitions base-trans
nexts dones ts)
proof (induction rule: make-observable-transitions.induct[of λ base-trans nexts
dones ts . ts |⊆| (make-observable-transitions base-trans nexts dones ts)])

case (1 base-trans nexts dones ts)

define qtrans where qtrans-def : qtrans = ffUnion (fimage (λ q . (let qts = ffilter
(λt . t-source t |∈| q) base-trans;

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .

(t-input t, t-output t) = (x,y)) qts)))) ios)) nexts)
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have qtrans-prop:
∧

t . t |∈| qtrans ←→ t-source t |∈| nexts ∧ t-target t 6= {||}
∧ fset (t-target t) = t-target ‘ {t ′ | t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t
∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using make-observable-transitions-qtrans-helper [OF qtrans-def ]
by presburger

let ?dones ′ = dones |∪| nexts
let ?ts ′ = ts |∪| qtrans
let ?nexts ′ = (fimage t-target qtrans) |−| ?dones ′

have res-cases: make-observable-transitions base-trans nexts dones ts = (if ?nexts ′

= {||}
then ?ts ′

else make-observable-transitions base-trans ?nexts ′ ?dones ′ ?ts ′)
unfolding make-observable-transitions.simps[of base-trans nexts dones ts] qtrans-def

Let-def by simp

show ?case proof (cases ?nexts ′ = {||})
case True
then show ?thesis using res-cases by simp

next
case False

then have make-observable-transitions base-trans nexts dones ts = make-observable-transitions
base-trans ?nexts ′ ?dones ′ ?ts ′

using res-cases by simp
moreover have ts |∪| qtrans |⊆| make-observable-transitions base-trans ?nexts ′

?dones ′ ?ts ′

using 1 [OF qtrans-def - - - False, of ?dones ′ ?ts ′] by blast
ultimately show ?thesis

by blast
qed

qed

inductive pathlike :: ( ′state, ′input, ′output) transition fset ⇒ ′state ⇒ ( ′state,
′input, ′output) path ⇒ bool

where
nil[intro!] : pathlike ts q [] |
cons[intro!] : t |∈| ts =⇒ pathlike ts (t-target t) p =⇒ pathlike ts (t-source t)

(t#p)

inductive-cases pathlike-nil-elim[elim!]: pathlike ts q []
inductive-cases pathlike-cons-elim[elim!]: pathlike ts q (t#p)

lemma make-observable-transitions-t-source :
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assumes
∧

t . t |∈| ts =⇒ t-source t |∈| dones ∧ t-target t 6= {||} ∧ fset (t-target
t) = t-target ‘ {t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input
t ∧ t-output t ′ = t-output t}

and
∧

q t ′ . q |∈| dones =⇒ t ′ |∈| base-trans =⇒ t-source t ′ |∈| q =⇒ ∃ t .
t |∈| ts ∧ t-source t = q ∧ t-input t = t-input t ′ ∧ t-output t = t-output t ′

and t |∈| make-observable-transitions base-trans ((fimage t-target ts) |−| dones)
dones ts

and t-source t |∈| dones
shows t |∈| ts
using assms proof (induction base-trans (fimage t-target ts) |−| dones dones ts
rule: make-observable-transitions.induct)

case (1 base-trans dones ts)

let ?nexts = (fimage t-target ts) |−| dones

define qtrans where qtrans-def : qtrans = ffUnion (fimage (λ q . (let qts = ffilter
(λt . t-source t |∈| q) base-trans;

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .

(t-input t, t-output t) = (x,y)) qts)))) ios)) ?nexts)

have qtrans-prop:
∧

t . t |∈| qtrans ←→ t-source t |∈| ?nexts ∧ t-target t 6= {||}
∧ fset (t-target t) = t-target ‘ {t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using make-observable-transitions-qtrans-helper [OF qtrans-def ]
by presburger

let ?dones ′ = dones |∪| ?nexts
let ?ts ′ = ts |∪| qtrans
let ?nexts ′ = (fimage t-target qtrans) |−| ?dones ′

have res-cases: make-observable-transitions base-trans ?nexts dones ts = (if ?nexts ′

= {||}
then ?ts ′

else make-observable-transitions base-trans ?nexts ′ ?dones ′ ?ts ′)
unfolding make-observable-transitions.simps[of base-trans ?nexts dones ts]

qtrans-def Let-def by simp

show ?case proof (cases ?nexts ′ = {||})
case True

then have make-observable-transitions base-trans ?nexts dones ts = ?ts ′

using res-cases by auto
then have t |∈| ts |∪| qtrans

using ‹t |∈| make-observable-transitions base-trans ?nexts dones ts› ‹t-source
t |∈| dones› by blast

then show ?thesis
using qtrans-prop 1 .prems(3 ,4 ) by blast

next
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case False
then have make-observable-transitions base-trans ?nexts dones ts = make-observable-transitions

base-trans ?nexts ′ ?dones ′ ?ts ′

using res-cases by simp

have i1 : (
∧

t. t |∈| ts |∪| qtrans =⇒
t-source t |∈| dones |∪| ?nexts ∧
t-target t 6= {||} ∧
fset (t-target t) =
t-target ‘
{t ′ . t ′ |∈| base-trans ∧

t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ =
t-output t})

using 1 .prems(1 ) qtrans-prop by blast

have i3 : t-target |‘| qtrans |−| (dones |∪| ?nexts) = t-target |‘| (ts |∪| qtrans)
|−| (dones |∪| ?nexts)

unfolding 1 .prems(3 ) by blast

have i2 : (
∧

q t ′.
q |∈| dones |∪| ?nexts =⇒
t ′ |∈| base-trans =⇒
t-source t ′ |∈| q =⇒
∃ t. t |∈| ts |∪| qtrans ∧ t-source t = q ∧ t-input t = t-input t ′ ∧

t-output t = t-output t ′)
proof −

fix q t ′ assume q |∈| dones |∪| ?nexts
and ∗:t ′ |∈| base-trans
and ∗∗:t-source t ′ |∈| q

then consider (a) q |∈| dones | (b) q |∈| ?nexts by blast
then show ∃ t. t |∈| ts |∪| qtrans ∧ t-source t = q ∧ t-input t = t-input t ′ ∧

t-output t = t-output t ′

proof cases
case a
then show ?thesis using ∗ ∗∗

using 1 .prems(2 ) by blast
next

case b

let ?tgts = {t ′′ . t ′′ |∈| base-trans ∧ t-source t ′′ |∈| q ∧ t-input t ′′ = t-input
t ′ ∧ t-output t ′′ = t-output t ′}

define tgts where tgts: tgts = Abs-fset (t-target ‘ ?tgts)

have ?tgts ⊆ fset base-trans
by fastforce

then have finite (t-target ‘ ?tgts)
by (meson finite-fset finite-imageI finite-subset)

then have fset tgts = (t-target ‘ ?tgts)
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unfolding tgts
using Abs-fset-inverse
by blast

have ?tgts 6= {}
using ∗ ∗∗ by blast

then have t-target ‘ ?tgts 6= {}
by blast

then have tgts 6= {||}
using ‹fset tgts = (t-target ‘ ?tgts)›
by force

then have (q, t-input t ′, t-output t ′, tgts) |∈| qtrans
using b
unfolding qtrans-prop[of (q,t-input t ′,t-output t ′,tgts)]
unfolding fst-conv snd-conv
unfolding ‹fset tgts = (t-target ‘ ?tgts)›[symmetric]
by blast

then show ?thesis
by auto

qed
qed

have t |∈| make-observable-transitions base-trans ?nexts dones ts =⇒ t-source
t |∈| dones |∪| ?nexts =⇒ t |∈| ts |∪| qtrans

unfolding ‹make-observable-transitions base-trans ?nexts dones ts = make-observable-transitions
base-trans ?nexts ′ ?dones ′ ?ts ′›

using 1 .hyps[OF qtrans-def - - - - i1 i2 ] False i3 by force
then have t |∈| ts |∪| qtrans

using ‹t |∈| make-observable-transitions base-trans ?nexts dones ts› ‹t-source
t |∈| dones› by blast

then show ?thesis
using qtrans-prop 1 .prems(3 ,4 ) by blast

qed
qed

lemma make-observable-transitions-path :
assumes

∧
t . t |∈| ts =⇒ t-source t |∈| dones ∧ t-target t 6= {||} ∧ fset (t-target

t) = t-target ‘ {t ′ ∈ transitions M . t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input
t ∧ t-output t ′ = t-output t}
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and
∧

q t ′ . q |∈| dones =⇒ t ′ ∈ transitions M =⇒ t-source t ′ |∈| q =⇒ ∃ t
. t |∈| ts ∧ t-source t = q ∧ t-input t = t-input t ′ ∧ t-output t = t-output t ′

and
∧

q . q |∈| (fimage t-target ts) |−| dones =⇒ q |∈| fPow (t-source |‘|
ftransitions M |∪| t-target |‘| ftransitions M )

and
∧

q . q |∈| dones =⇒ q |∈| fPow (t-source |‘| ftransitions M |∪| t-target
|‘| ftransitions M |∪| {|initial M |})

and {||} |/∈| dones
and q |∈| dones

shows (∃ q ′ p . q ′ |∈| q ∧ path M q ′ p ∧ p-io p = io) ←→ (∃ p ′. pathlike
(make-observable-transitions (ftransitions M ) ((fimage t-target ts) |−| dones) dones
ts) q p ′ ∧ p-io p ′ = io)

using assms proof (induction ftransitions M (fimage t-target ts) |−| dones dones
ts arbitrary: q io rule: make-observable-transitions.induct)

case (1 dones ts q)

let ?obs = (make-observable-transitions (ftransitions M ) ((fimage t-target ts) |−|
dones) dones ts)

let ?nexts = (fimage t-target ts) |−| dones

show ?case proof (cases io)
case Nil

have scheme:
∧

q q ′ X . q ′ |∈| q =⇒ q |∈| fPow X =⇒ q ′ |∈| X
by (simp add: fsubsetD)

obtain q ′ where q ′ |∈| q
using ‹{||} |/∈| dones› ‹q |∈| dones›
by (metis all-not-in-conv bot-fset.rep-eq fset-cong)

have q ′ |∈| t-source |‘| ftransitions M |∪| t-target |‘| ftransitions M |∪| {|FSM .initial
M |}

using scheme[OF ‹q ′ |∈| q› 1 .prems(4 )[OF ‹q |∈| dones›]] .
then have q ′ ∈ states M

using ftransitions-source[of q ′ M ]
using ftransitions-target[of q ′ M ]
by force

then have ∃ q ′ p . q ′ |∈| q ∧ path M q ′ p ∧ p-io p = io
using ‹q ′ |∈| q› Nil by auto

moreover have (∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = io)
using Nil by auto

ultimately show ?thesis
by simp

next
case (Cons ioT ioP)

define qtrans where qtrans-def : qtrans = ffUnion (fimage (λ q . (let qts =
ffilter (λt . t-source t |∈| q) (ftransitions M );

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .
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(t-input t, t-output t) = (x,y)) qts)))) ios)) ?nexts)

have qtrans-prop:
∧

t . t |∈| qtrans ←→ t-source t |∈| ?nexts ∧ t-target t 6= {||}
∧ fset (t-target t) = t-target ‘ {t ′ . t ′ |∈| (ftransitions M ) ∧ t-source t ′ |∈| t-source
t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using make-observable-transitions-qtrans-helper [OF qtrans-def ]
by presburger

let ?dones ′ = dones |∪| ?nexts
let ?ts ′ = ts |∪| qtrans
let ?nexts ′ = (fimage t-target qtrans) |−| ?dones ′

have res-cases: make-observable-transitions (ftransitions M ) ?nexts dones ts =
(if ?nexts ′ = {||}

then ?ts ′

else make-observable-transitions (ftransitions M ) ?nexts ′ ?dones ′ ?ts ′)
unfolding make-observable-transitions.simps[of ftransitions M ?nexts dones

ts] qtrans-def Let-def by simp

have i1 : (
∧

t. t |∈| ts |∪| qtrans =⇒
t-source t |∈| dones |∪| ?nexts ∧
t-target t 6= {||} ∧
fset (t-target t) =
t-target ‘
{t ′ ∈ FSM .transitions M .

t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ =
t-output t})

using 1 .prems(1 ) qtrans-prop
using ftransitions-set[of M ]
by (metis (mono-tags, lifting) Collect-cong funion-iff )

have i2 : (
∧

q t ′.
q |∈| dones |∪| ?nexts =⇒
t ′ ∈ FSM .transitions M =⇒
t-source t ′ |∈| q =⇒
∃ t. t |∈| ts |∪| qtrans ∧ t-source t = q ∧ t-input t = t-input t ′ ∧

t-output t = t-output t ′)
proof −

fix q t ′ assume q |∈| dones |∪| ?nexts
and ∗:t ′ ∈ FSM .transitions M
and ∗∗:t-source t ′ |∈| q

then consider (a) q |∈| dones | (b) q |∈| ?nexts by blast
then show ∃ t. t |∈| ts |∪| qtrans ∧ t-source t = q ∧ t-input t = t-input t ′ ∧

t-output t = t-output t ′

proof cases
case a
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then show ?thesis using 1 .prems(2 ) ∗ ∗∗ by blast
next

case b

let ?tgts = {t ′′ ∈ FSM .transitions M . t-source t ′′ |∈| q ∧ t-input t ′′ = t-input
t ′ ∧ t-output t ′′ = t-output t ′}

have ?tgts 6= {}
using ∗ ∗∗ by blast

let ?tgts = {t ′′ . t ′′ |∈| ftransitions M ∧ t-source t ′′ |∈| q ∧ t-input t ′′ =
t-input t ′ ∧ t-output t ′′ = t-output t ′}

define tgts where tgts: tgts = Abs-fset (t-target ‘ ?tgts)

have ?tgts ⊆ transitions M
using ftransitions-set[of M ]
by (metis (no-types, lifting) mem-Collect-eq subsetI )

then have finite (t-target ‘ ?tgts)
by (meson finite-imageI finite-subset fsm-transitions-finite)

then have fset tgts = (t-target ‘ ?tgts)
unfolding tgts
using Abs-fset-inverse
by blast

have ?tgts 6= {}
using ∗ ∗∗
by (metis (mono-tags, lifting) empty-iff ftransitions-set mem-Collect-eq)

then have t-target ‘ ?tgts 6= {}
by blast

then have tgts 6= {||}
using ‹fset tgts = (t-target ‘ ?tgts)›
by force

then have (q, t-input t ′, t-output t ′, tgts) |∈| qtrans
using b
unfolding qtrans-prop[of (q,t-input t ′,t-output t ′,tgts)]
unfolding fst-conv snd-conv
unfolding ‹fset tgts = (t-target ‘ ?tgts)›[symmetric]
by blast

then show ?thesis
by auto

qed
qed

have i3 : t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones)) =
t-target |‘| qtrans |−| (dones |∪| (t-target |‘| ts |−| dones))

by blast

have i4 : (
∧

q. q |∈| t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−|
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dones)) =⇒
q |∈| fPow (t-source |‘| ftransitions M |∪| t-target |‘| ftransitions M ))

proof −
fix q assume q |∈| t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−|

dones))
then have q |∈| t-target |‘| qtrans

by auto
then obtain t where t |∈| qtrans and t-target t = q

by auto
then have fset q = t-target ‘ {t ′. t ′ |∈| ftransitions M ∧ t-source t ′ |∈| t-source

t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}
unfolding qtrans-prop by auto

then have fset q ⊆ t-target ‘ transitions M
by (metis (no-types, lifting) ftransitions-set image-Collect-subsetI image-eqI )

then show q |∈| fPow (t-source |‘| ftransitions M |∪| t-target |‘| ftransitions
M )

by (metis (no-types, lifting) fPowI fset.set-map fset-inject ftransitions-set
le-supI2 sup.orderE sup.orderI sup-fset.rep-eq)

qed

have i5 : (
∧

q. q |∈| dones |∪| ?nexts =⇒ q |∈| fPow (t-source |‘| ftransitions
M |∪| t-target |‘| ftransitions M |∪| {|initial M |}))

using 1 .prems(4 ,3 ) qtrans-prop
by auto

have i7 : {||} |/∈| dones |∪| ?nexts
using 1 .prems by fastforce

show ?thesis
proof (cases ?nexts ′ 6= {||})

case False
then have ?obs = ?ts ′

using res-cases by auto

have
∧

q io . q |∈| ?dones ′ =⇒ q 6= {||} =⇒ (∃ q ′ p. q ′ |∈| q ∧ path M q ′ p
∧ p-io p = io) ←→ (∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = io)

proof −
fix q io assume q |∈| ?dones ′ and q 6= {||}
then show (∃ q ′ p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = io) ←→ (∃ p ′. pathlike

?obs q p ′ ∧ p-io p ′ = io)
proof (induction io arbitrary: q)

case Nil

have scheme:
∧

q q ′ X . q ′ |∈| q =⇒ q |∈| fPow X =⇒ q ′ |∈| X
by (simp add: fsubsetD)

obtain q ′ where q ′ |∈| q
using ‹q 6= {||}› by fastforce

354



have q ′ |∈| t-source |‘| ftransitions M |∪| t-target |‘| ftransitions M |∪|
{|FSM .initial M |}

using scheme[OF ‹q ′ |∈| q› i5 [OF ‹q |∈| ?dones ′›]] .
then have q ′ ∈ states M

using ftransitions-source[of q ′ M ]
using ftransitions-target[of q ′ M ]
by force

then have ∃ q ′ p . q ′ |∈| q ∧ path M q ′ p ∧ p-io p = []
using ‹q ′ |∈| q› by auto

moreover have (∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = [])
by auto

ultimately show ?case
by simp

next
case (Cons ioT ioP)

have (∃ q ′ p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = ioT # ioP) =⇒ (∃ p ′.
pathlike ?obs q p ′ ∧ p-io p ′ = ioT # ioP)

proof −
assume ∃ q ′ p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = ioT # ioP
then obtain q ′ p where q ′ |∈| q and path M q ′ p and p-io p = ioT #

ioP
by meson

then obtain tM pM where p = tM # pM
by auto

then have tM ∈ transitions M and t-source tM |∈| q
using ‹path M q ′ p› ‹q ′ |∈| q› by blast+

then obtain tP where tP |∈| ts |∪| qtrans
and t-source tP = q
and t-input tP = t-input tM
and t-output tP = t-output tM

using Cons.prems i2 by blast

have path M (t-target tM ) pM and p-io pM = ioP
using ‹path M q ′ p› ‹p-io p = ioT # ioP› unfolding ‹p = tM # pM ›

by auto
moreover have t-target tM |∈| t-target tP

using i1 [OF ‹tP |∈| ts |∪| qtrans›]
using ‹p = tM # pM › ‹path M q ′ p› ‹q ′ |∈| q›

unfolding ‹t-input tP = t-input tM › ‹t-output tP = t-output tM ›
‹t-source tP = q›

by fastforce
ultimately have ∃ q ′ p. q ′ |∈| t-target tP ∧ path M q ′ p ∧ p-io p = ioP

using ‹p-io pM = ioP› ‹path M (t-target tM ) pM › by blast

have t-target tP |∈| dones |∪| (t-target |‘| ts |−| dones)
using False ‹tP |∈| ts |∪| qtrans› by blast

moreover have t-target tP 6= {||}
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using i1 [OF ‹tP |∈| ts |∪| qtrans›] by blast
ultimately obtain pP where pathlike ?obs (t-target tP) pP and p-io

pP = ioP
using Cons.IH ‹∃ q ′ p. q ′ |∈| t-target tP ∧ path M q ′ p ∧ p-io p = ioP›

by blast
then have pathlike ?obs q (tP#pP)

using ‹t-source tP = q› ‹tP |∈| ts |∪| qtrans› ‹?obs = ?ts ′› by auto
moreover have p-io (tP#pP) = ioT # ioP
using ‹t-input tP = t-input tM › ‹t-output tP = t-output tM › ‹p-io p =

ioT # ioP› ‹p = tM # pM › ‹p-io pP = ioP› by simp
ultimately show ?thesis

by auto
qed

moreover have (∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = ioT # ioP) =⇒ (∃ q ′

p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = ioT # ioP)
proof −

assume ∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = ioT # ioP
then obtain p ′ where pathlike ?ts ′ q p ′ and p-io p ′ = ioT # ioP

unfolding ‹?obs = ?ts ′› by meson
then obtain tP pP where p ′ = tP#pP

by auto

then have t-source tP = q and tP |∈| ?ts ′

using ‹pathlike ?ts ′ q p ′› by auto

have pathlike ?ts ′ (t-target tP) pP and p-io pP = ioP
using ‹pathlike ?ts ′ q p ′› ‹p-io p ′ = ioT # ioP› ‹p ′ = tP#pP› by auto

then have ∃ p ′. pathlike ?ts ′ (t-target tP) p ′ ∧ p-io p ′ = ioP
by auto

moreover have t-target tP |∈| dones |∪| (t-target |‘| ts |−| dones)
using False ‹tP |∈| ts |∪| qtrans› by blast

moreover have t-target tP 6= {||}
using i1 [OF ‹tP |∈| ts |∪| qtrans›] by blast

ultimately obtain q ′′ pM where q ′′ |∈| t-target tP and path M q ′′ pM
and p-io pM = ioP

using Cons.IH unfolding ‹?obs = ?ts ′› by blast

then obtain tM where t-source tM |∈| q and tM ∈ transitions M and
t-input tM = t-input tP and t-output tM = t-output tP and t-target tM = q ′′

using i1 [OF ‹tP |∈| ts |∪| qtrans›]
using ‹q ′′ |∈| t-target tP›
unfolding ‹t-source tP = q› by force

have path M (t-source tM ) (tM#pM )
using ‹tM ∈ transitions M › ‹t-target tM = q ′′› ‹path M q ′′ pM › by

auto
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moreover have p-io (tM#pM ) = ioT # ioP
using ‹p-io pM = ioP› ‹t-input tM = t-input tP› ‹t-output tM =

t-output tP› ‹p-io p ′ = ioT # ioP› ‹p ′ = tP#pP› by auto
ultimately show ?thesis

using ‹t-source tM |∈| q› by meson
qed
ultimately show ?case

by meson
qed

qed

then show ?thesis
using ‹q |∈| dones› ‹{||} |/∈| dones› by blast

next
case True

have make-observable-transitions (ftransitions M ) ?nexts ′ ?dones ′ ?ts ′ =
make-observable-transitions (ftransitions M ) ?nexts dones ts

proof (cases ?nexts ′ = {||})
case True
then have ?obs = ?ts ′

using qtrans-def by auto
moreover have make-observable-transitions (ftransitions M ) ?nexts ′ ?dones ′

?ts ′ = ?ts ′

unfolding make-observable-transitions.simps[of ftransitions M ?nexts ′

?dones ′ ?ts ′]
unfolding True Let-def by auto

ultimately show ?thesis
by blast

next
case False
then show ?thesis
unfolding make-observable-transitions.simps[of ftransitions M ?nexts dones

ts] qtrans-def Let-def by auto
qed

then have IStep:
∧

q io . q |∈| ?dones ′ =⇒
(∃ q ′ p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = io) =
(∃ p ′. pathlike (make-observable-transitions (ftransitions M )

?nexts dones ts) q p ′ ∧ p-io p ′ = io)
using 1 .hyps[OF qtrans-def - - - - i1 i2 i4 i5 i7 ] True
unfolding i3
by presburger

show ?thesis
unfolding ‹io = ioT # ioP›

proof
show ∃ q ′ p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = ioT # ioP =⇒ ∃ p ′. pathlike
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?obs q p ′ ∧ p-io p ′ = ioT # ioP
proof −

assume ∃ q ′ p. q ′ |∈| q ∧ path M q ′ p ∧ p-io p = ioT # ioP
then obtain q ′ p where q ′ |∈| q and path M q ′ p and p-io p = ioT #

ioP
by meson

then obtain tM pM where p = tM # pM
by auto

then have tM ∈ transitions M and t-source tM |∈| q
using ‹path M q ′ p› ‹q ′ |∈| q› by blast+

then obtain tP where tP |∈| ts
and t-source tP = q
and t-input tP = t-input tM
and t-output tP = t-output tM

using 1 .prems(2 ,6 ) by blast

then have i9 : t-target tP |∈| dones |∪| ?nexts
by simp

have path M (t-target tM ) pM and p-io pM = ioP
using ‹path M q ′ p› ‹p-io p = ioT # ioP› unfolding ‹p = tM # pM ›

by auto
moreover have t-target tM |∈| t-target tP

using 1 .prems(1 )[OF ‹tP |∈| ts›] ‹p = tM # pM › ‹path M q ′ p› ‹q ′ |∈|
q›

unfolding ‹t-input tP = t-input tM › ‹t-output tP = t-output tM › ‹t-source
tP = q›

by fastforce
ultimately have ∃ q ′ p. q ′ |∈| t-target tP ∧ path M q ′ p ∧ p-io p = ioP

using ‹p-io pM = ioP› ‹path M (t-target tM ) pM › by blast

obtain pP where pathlike ?obs (t-target tP) pP and p-io pP = ioP
using ‹∃ q ′ p. q ′ |∈| t-target tP ∧ path M q ′ p ∧ p-io p = ioP› unfolding

IStep[OF i9 ]
using that by blast

then have pathlike ?obs q (tP#pP)
using ‹t-source tP = q› ‹tP |∈| ts› make-observable-transitions-mono by

blast
moreover have p-io (tP#pP) = ioT # ioP

using ‹t-input tP = t-input tM › ‹t-output tP = t-output tM › ‹p-io p =
ioT # ioP› ‹p = tM # pM › ‹p-io pP = ioP› by simp

ultimately show ?thesis
by auto

qed
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show ∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = ioT # ioP =⇒ ∃ q ′ p. q ′ |∈| q ∧
path M q ′ p ∧ p-io p = ioT # ioP

proof −
assume ∃ p ′. pathlike ?obs q p ′ ∧ p-io p ′ = ioT # ioP
then obtain p ′ where pathlike ?obs q p ′ and p-io p ′ = ioT # ioP

by meson
then obtain tP pP where p ′ = tP#pP

by auto

have
∧

t ′ . t ′ |∈| ftransitions M = (t ′ ∈ transitions M )
using ftransitions-set
by metis

from ‹p ′ = tP#pP› have t-source tP = q and tP |∈| ?obs
using ‹pathlike ?obs q p ′› by auto

then have tP |∈| ts
using 1 .prems(6 ) make-observable-transitions-t-source[of ts dones ftran-

sitions M ] 1 .prems(1 ,2 )
unfolding ‹

∧
t ′ . t ′ |∈| ftransitions M = (t ′ ∈ transitions M )›

by blast
then have i9 : t-target tP |∈| dones |∪| ?nexts

by simp

have pathlike ?obs (t-target tP) pP and p-io pP = ioP
using ‹pathlike ?obs q p ′› ‹p-io p ′ = ioT # ioP› ‹p ′ = tP#pP› by auto

then have ∃ p ′. pathlike ?obs (t-target tP) p ′ ∧ p-io p ′ = ioP
by auto

then obtain q ′′ pM where q ′′ |∈| t-target tP and path M q ′′ pM and
p-io pM = ioP

using IStep[OF i9 ] by blast

obtain tM where t-source tM |∈| q and tM ∈ transitions M and t-input
tM = t-input tP and t-output tM = t-output tP and t-target tM = q ′′

using 1 .prems(1 )[OF ‹tP |∈| ts›] ‹q ′′ |∈| t-target tP›
unfolding ‹t-source tP = q›
by force

have path M (t-source tM ) (tM#pM )
using ‹tM ∈ transitions M › ‹t-target tM = q ′′› ‹path M q ′′ pM › by auto

moreover have p-io (tM#pM ) = ioT # ioP
using ‹p-io pM = ioP› ‹t-input tM = t-input tP› ‹t-output tM = t-output

tP› ‹p-io p ′ = ioT # ioP› ‹p ′ = tP#pP› by auto
ultimately show ?thesis

using ‹t-source tM |∈| q› by meson
qed

qed
qed
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qed
qed

fun observable-fset :: ( ′a, ′b, ′c) transition fset ⇒ bool where
observable-fset ts = (∀ t1 t2 . t1 |∈| ts −→ t2 |∈| ts −→

t-source t1 = t-source t2 −→ t-input t1 = t-input t2 −→
t-output t1 = t-output t2

−→ t-target t1 = t-target t2 )

lemma make-observable-transitions-observable :
assumes

∧
t . t |∈| ts =⇒ t-source t |∈| dones ∧ t-target t 6= {||} ∧ fset (t-target

t) = t-target ‘ {t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input
t ∧ t-output t ′ = t-output t}

and observable-fset ts
shows observable-fset (make-observable-transitions base-trans ((fimage t-target ts)
|−| dones) dones ts)
using assms proof (induction base-trans (fimage t-target ts) |−| dones dones ts
rule: make-observable-transitions.induct)

case (1 base-trans dones ts)

let ?nexts = (fimage t-target ts) |−| dones

define qtrans where qtrans-def : qtrans = ffUnion (fimage (λ q . (let qts = ffilter
(λt . t-source t |∈| q) base-trans;

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .

(t-input t, t-output t) = (x,y)) qts)))) ios)) ?nexts)

have qtrans-prop:
∧

t . t |∈| qtrans ←→ t-source t |∈| ?nexts ∧ t-target t 6= {||}
∧ fset (t-target t) = t-target ‘ {t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using make-observable-transitions-qtrans-helper [OF qtrans-def ]
by presburger

let ?dones ′ = dones |∪| ?nexts
let ?ts ′ = ts |∪| qtrans
let ?nexts ′ = (fimage t-target qtrans) |−| ?dones ′

have observable-fset qtrans
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using qtrans-prop
unfolding observable-fset.simps
by (metis (mono-tags, lifting) Collect-cong fset-inject)

moreover have t-source |‘| qtrans |∩| t-source |‘| ts = {||}
using 1 .prems(1 ) qtrans-prop by force

ultimately have observable-fset ?ts ′

using 1 .prems(2 ) unfolding observable-fset.simps
by blast

have res-cases: make-observable-transitions base-trans ?nexts dones ts = (if ?nexts ′

= {||}
then ?ts ′

else make-observable-transitions base-trans ?nexts ′ ?dones ′ ?ts ′)
unfolding make-observable-transitions.simps[of base-trans ?nexts dones ts]

qtrans-def Let-def by simp

show ?case proof (cases ?nexts ′ = {||})
case True
then have make-observable-transitions base-trans ?nexts dones ts = ?ts ′

using res-cases by simp
then show ?thesis

using ‹observable-fset ?ts ′› by simp
next

case False
then have ∗: make-observable-transitions base-trans ?nexts dones ts = make-observable-transitions

base-trans ?nexts ′ ?dones ′ ?ts ′

using res-cases by simp

have i1 : (
∧

t. t |∈| ts |∪| qtrans =⇒
t-source t |∈| dones |∪| ?nexts ∧
t-target t 6= {||} ∧
fset (t-target t) =
t-target ‘
{t ′ . t ′ |∈| base-trans ∧

t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ =
t-output t})

using 1 .prems(1 ) qtrans-prop by blast

have i3 : t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones)) =
t-target |‘| qtrans |−| (dones |∪| (t-target |‘| ts |−| dones))

by auto

have i4 : t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones)) 6=
{||}

using False by auto

show ?thesis
using 1 .hyps[OF qtrans-def - - i3 i4 i1 ‹observable-fset ?ts ′›] unfolding ∗ i3
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by metis
qed

qed

lemma make-observable-transitions-transition-props :
assumes

∧
t . t |∈| ts =⇒ t-source t |∈| dones ∧ t-target t |∈| dones |∪| ((fimage

t-target ts) |−| dones) ∧ t-input t |∈| t-input |‘| base-trans ∧ t-output t |∈| t-output
|‘| base-trans

assumes t |∈| make-observable-transitions base-trans ((fimage t-target ts) |−|
dones) dones ts
shows t-source t |∈| dones |∪| (t-target |‘| (make-observable-transitions base-trans
((fimage t-target ts) |−| dones) dones ts))

and t-target t |∈| dones |∪| (t-target |‘| (make-observable-transitions base-trans
((fimage t-target ts) |−| dones) dones ts))

and t-input t |∈| t-input |‘| base-trans
and t-output t |∈| t-output |‘| base-trans

proof −
have t-source t |∈| dones |∪| (t-target |‘| (make-observable-transitions base-trans

((fimage t-target ts) |−| dones) dones ts))
∧ t-target t |∈| dones |∪| (t-target |‘| (make-observable-transitions base-trans

((fimage t-target ts) |−| dones) dones ts))
∧ t-input t |∈| t-input |‘| base-trans
∧ t-output t |∈| t-output |‘| base-trans

using assms(1 ,2 )
proof (induction base-trans ((fimage t-target ts) |−| dones) dones ts rule: make-observable-transitions.induct)

case (1 base-trans dones ts)

let ?nexts = ((fimage t-target ts) |−| dones)

define qtrans where qtrans-def : qtrans = ffUnion (fimage (λ q . (let qts =
ffilter (λt . t-source t |∈| q) base-trans;

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| ((ffilter (λt .

(t-input t, t-output t) = (x,y)) qts)))) ios)) ?nexts)

have qtrans-prop:
∧

t . t |∈| qtrans ←→ t-source t |∈| ?nexts ∧ t-target t 6=
{||} ∧ fset (t-target t) = t-target ‘ {t ′ . t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t
∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using make-observable-transitions-qtrans-helper [OF qtrans-def ]
by presburger

let ?dones ′ = dones |∪| ?nexts
let ?ts ′ = ts |∪| qtrans
let ?nexts ′ = (fimage t-target qtrans) |−| ?dones ′

have res-cases: make-observable-transitions base-trans ?nexts dones ts = (if
?nexts ′ = {||}

then ?ts ′
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else make-observable-transitions base-trans ?nexts ′ ?dones ′ ?ts ′)
unfolding make-observable-transitions.simps[of base-trans ?nexts dones ts]

qtrans-def Let-def by simp

have qtrans-trans-prop: (
∧

t. t |∈| qtrans =⇒
t-source t |∈| dones |∪| (t-target |‘| ts |−| dones) ∧
t-target t |∈| dones |∪| (t-target |‘| ts |−| dones) |∪| (t-target |‘| (ts

|∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones))) ∧
t-input t |∈| t-input |‘| base-trans ∧ t-output t |∈| t-output |‘|

base-trans) (is
∧

t . t |∈| qtrans =⇒ ?P t)
proof −

fix t assume t |∈| qtrans

then have t-source t |∈| dones |∪| (t-target |‘| ts |−| dones)
using ‹t |∈| qtrans› unfolding qtrans-prop[of t] by blast

moreover have t-target t |∈| dones |∪| (t-target |‘| ts |−| dones) |∪| (t-target
|‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones)))

using ‹t |∈| qtrans› 1 .prems(1 ) by blast
moreover have t-input t |∈| t-input |‘| base-trans ∧ t-output t |∈| t-output

|‘| base-trans
proof −

obtain t ′ where t ′ ∈ {t ′. t ′ |∈| base-trans ∧ t-source t ′ |∈| t-source t ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

using ‹t |∈| qtrans› unfolding qtrans-prop[of t]
by (metis (mono-tags, lifting) Collect-empty-eq bot-fset.rep-eq empty-is-image

fset-inject mem-Collect-eq)
then show ?thesis

by force
qed
ultimately show ?P t

by blast
qed

show ?case proof (cases ?nexts ′ = {||})
case True
then have t |∈| ?ts ′

using 1 .prems(2 ) res-cases by force
then show ?thesis

using 1 .prems(1 ) qtrans-trans-prop
by (metis True fimage-funion funion-fminus-cancel funion-iff res-cases)

next
case False

then have ∗: make-observable-transitions base-trans ?nexts dones ts =
make-observable-transitions base-trans ?nexts ′ ?dones ′ ?ts ′

using res-cases by simp

have i1 : t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones))
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= t-target |‘| qtrans |−| (dones |∪| (t-target |‘| ts |−| dones))
by blast

have i2 : t-target |‘| (ts |∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones))
6= {||}

using False by blast

have i3 : (
∧

t. t |∈| ts |∪| qtrans =⇒
t-source t |∈| dones |∪| (t-target |‘| ts |−| dones) ∧
t-target t |∈| dones |∪| (t-target |‘| ts |−| dones) |∪| (t-target |‘| (ts

|∪| qtrans) |−| (dones |∪| (t-target |‘| ts |−| dones))) ∧
t-input t |∈| t-input |‘| base-trans ∧ t-output t |∈| t-output |‘|

base-trans)
using 1 .prems(1 ) qtrans-trans-prop by blast

have i4 : t |∈| make-observable-transitions base-trans (t-target |‘| (ts |∪| qtrans)
|−| (dones |∪| (t-target |‘| ts |−| dones))) (dones |∪| (t-target |‘| ts |−| dones)) (ts
|∪| qtrans)

using 1 .prems(2 ) unfolding ∗ i1 by assumption

show ?thesis
using 1 .hyps[OF qtrans-def - - i1 i2 i3 i4 ] unfolding i1 unfolding

∗[symmetric]
using make-observable-transitions-mono[of ts base-trans ?nexts dones] by

blast
qed

qed
then show t-source t |∈| dones |∪| (t-target |‘| (make-observable-transitions

base-trans ((fimage t-target ts) |−| dones) dones ts))
and t-target t |∈| dones |∪| (t-target |‘| (make-observable-transitions base-trans

((fimage t-target ts) |−| dones) dones ts))
and t-input t |∈| t-input |‘| base-trans
and t-output t |∈| t-output |‘| base-trans

by blast+
qed

fun make-observable :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ ( ′a fset, ′b, ′c)
fsm where

make-observable M = (let
initial-trans = (let qts = ffilter (λt . t-source t = initial M ) (ftransitions M );

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . ({|initial M |},x,y, t-target |‘| ((ffilter (λt .

(t-input t, t-output t) = (x,y)) qts)))) ios);
nexts = fimage t-target initial-trans |−| {|{|initial M |}|};
ptransitions = make-observable-transitions (ftransitions M ) nexts {|{|initial
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M |}|} initial-trans;
pstates = finsert {|initial M |} (t-target |‘| ptransitions);

M ′ = create-unconnected-fsm-from-fsets {|initial M |} pstates (finputs M )
(foutputs M )

in add-transitions M ′ (fset ptransitions))

lemma make-observable-language-observable :
shows L (make-observable M ) = L M

and observable (make-observable M )
and initial (make-observable M ) = {|initial M |}
and inputs (make-observable M ) = inputs M
and outputs (make-observable M ) = outputs M

proof −

define initial-trans where initial-trans = (let qts = ffilter (λt . t-source t =
initial M ) (ftransitions M );

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . ({|initial M |},x,y, t-target |‘| ((ffilter

(λt . (t-input t, t-output t) = (x,y)) qts)))) ios)
moreover define ptransitions where ptransitions = make-observable-transitions

(ftransitions M ) (fimage t-target initial-trans |−| {|{|initial M |}|}) {|{|initial M |}|}
initial-trans

moreover define pstates where pstates = finsert {|initial M |} (t-target |‘|
ptransitions)

moreover define M ′ where M ′ = create-unconnected-fsm-from-fsets {|initial
M |} pstates (finputs M ) (foutputs M )

ultimately have make-observable M = add-transitions M ′ (fset ptransitions)
unfolding make-observable.simps Let-def by blast

have {|initial M |} |∈| pstates
unfolding pstates-def by blast

have inputs M ′ = inputs M
unfolding M ′-def create-unconnected-fsm-from-fsets-simps(3 )[OF ‹{|initial

M |} |∈| pstates›, of finputs M foutputs M ]
using fset-of-list.rep-eq inputs-as-list-set by fastforce

have outputs M ′ = outputs M
unfolding M ′-def create-unconnected-fsm-from-fsets-simps(4 )[OF ‹{|initial

M |} |∈| pstates›, of finputs M foutputs M ]
using fset-of-list.rep-eq outputs-as-list-set by fastforce

have states M ′ = fset pstates and transitions M ′ = {} and initial M ′ = {|initial
M |}

unfolding M ′-def create-unconnected-fsm-from-fsets-simps(1 ,2 ,5 )[OF ‹{|initial
M |} |∈| pstates›] by simp+
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have initial-trans-prop:
∧

t . t |∈| initial-trans ←→ t-source t |∈| {|{|FSM .initial
M |}|} ∧ t-target t 6= {||} ∧ fset (t-target t) = t-target ‘ {t ′ ∈ transitions M . t-source
t ′ |∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

proof −
have ∗:

∧
t ′ . t ′ |∈| ftransitions M = (t ′ ∈ transitions M )

using ftransitions-set
by metis

have ∗∗: initial-trans = ffUnion (fimage (λ q . (let qts = ffilter (λt . t-source t
|∈| q) (ftransitions M );

ios = fimage (λ t . (t-input t, t-output t)) qts
in fimage (λ(x,y) . (q,x,y, t-target |‘| (ffilter (λt .

(t-input t, t-output t) = (x,y)) qts))) ios)) {|{|initial M |}|})
unfolding initial-trans-def by auto

show
∧

t . t |∈| initial-trans ←→ t-source t |∈| {|{|FSM .initial M |}|} ∧ t-target
t 6= {||} ∧ fset (t-target t) = t-target ‘ {t ′ ∈ transitions M . t-source t ′ |∈| t-source
t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}

unfolding make-observable-transitions-qtrans-helper [OF ∗∗] ∗
by presburger

qed

have well-formed-transitions:
∧

t . t ∈ (fset ptransitions) =⇒ t-source t ∈ states
M ′ ∧ t-input t ∈ inputs M ′ ∧ t-output t ∈ outputs M ′ ∧ t-target t ∈ states M ′

(is
∧

t . t ∈ (fset ptransitions) =⇒ ?P1 t ∧ ?P2 t ∧ ?P3 t ∧ ?P4 t)
proof −

fix t assume t ∈ (fset ptransitions)

then have i2 : t |∈| make-observable-transitions (ftransitions M ) (fimage t-target
initial-trans |−| {|{|initial M |}|}) {|{|initial M |}|} initial-trans

using ptransitions-def
by metis

have i1 : (
∧

t. t |∈| initial-trans =⇒
t-source t |∈| {|{|FSM .initial M |}|} ∧

t-target t |∈| {|{|FSM .initial M |}|} |∪| (t-target |‘| initial-trans |−|
{|{|FSM .initial M |}|}) ∧

t-input t |∈| t-input |‘| ftransitions M ∧ t-output t |∈| t-output |‘| ftransitions
M ) (is

∧
t . t |∈| initial-trans =⇒ ?P t)

proof −
fix t assume ∗: t |∈| initial-trans
then have t-source t |∈| {|{|FSM .initial M |}|}

and t-target t 6= {||}
and fset (t-target t) = t-target ‘ {t ′ ∈ FSM .transitions M . t-source t ′ |∈|

t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}
using initial-trans-prop by blast+

have t-target t |∈| {|{|FSM .initial M |}|} |∪| (t-target |‘| initial-trans |−|
{|{|FSM .initial M |}|})
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using ∗ by blast

moreover have t-input t |∈| t-input |‘| ftransitions M ∧ t-output t |∈| t-output
|‘| ftransitions M

proof −
obtain t ′ where t ′ ∈ transitions M and t-input t = t-input t ′ and t-output

t = t-output t ′

using ‹t-target t 6= {||}› ‹fset (t-target t) = t-target ‘ {t ′ ∈ FSM .transitions
M . t-source t ′ |∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t}›

by (metis (mono-tags, lifting) bot-fset.rep-eq empty-Collect-eq fset-inject
image-empty)

have fset (ftransitions M ) = transitions M
by (simp add: fset-of-list.rep-eq fsm-transitions-finite)

then show ?thesis
unfolding ‹t-input t = t-input t ′› ‹t-output t = t-output t ′›
using ‹t ′ ∈ transitions M ›
by auto

qed

ultimately show ?P t
using ‹t-source t |∈| {|{|FSM .initial M |}|}› by blast

qed

have ?P1 t
using make-observable-transitions-transition-props(1 )[OF i1 i2 ] unfolding

pstates-def ptransitions-def ‹states M ′ = fset pstates›
by (metis finsert-is-funion)

moreover have ?P2 t
proof−

have t-input t |∈| t-input |‘| ftransitions M
using make-observable-transitions-transition-props(3 )[OF i1 i2 ] by blast

then have t-input t ∈ t-input ‘ transitions M
using ftransitions-set by (metis (mono-tags, lifting) fset.set-map)

then show ?thesis
using finputs-set fsm-transition-input ‹inputs M ′ = inputs M › by fastforce

qed
moreover have ?P3 t
proof−

have t-output t |∈| t-output |‘| ftransitions M
using make-observable-transitions-transition-props(4 )[OF i1 i2 ] by blast

then have t-output t ∈ t-output ‘ transitions M
using ftransitions-set by (metis (mono-tags, lifting) fset.set-map)

then show ?thesis
using foutputs-set fsm-transition-output ‹outputs M ′ = outputs M › by

fastforce
qed
moreover have ?P4 t
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using make-observable-transitions-transition-props(2 )[OF i1 i2 ] unfolding
pstates-def ptransitions-def ‹states M ′ = fset pstates›

by (metis finsert-is-funion)

ultimately show ?P1 t ∧ ?P2 t ∧ ?P3 t ∧ ?P4 t
by blast

qed

have initial (make-observable M ) = {|initial M |}
and states (make-observable M ) = fset pstates
and inputs (make-observable M ) = inputs M
and outputs (make-observable M ) = outputs M
and transitions (make-observable M ) = fset ptransitions
using add-transitions-simps[OF well-formed-transitions, of fset ptransitions]

unfolding ‹make-observable M = add-transitions M ′ (fset ptransitions)›[symmetric]
‹inputs M ′ = inputs M › ‹outputs M ′ = outputs M › ‹initial M ′ = {|initial

M |}› ‹states M ′ = fset pstates› ‹transitions M ′ = {}›
by blast+

then show initial (make-observable M ) = {|initial M |} and inputs (make-observable
M ) = inputs M and outputs (make-observable M ) = outputs M

by presburger+

have i1 : (
∧

t. t |∈| initial-trans =⇒
t-source t |∈| {|{|FSM .initial M |}|} ∧
t-target t 6= {||} ∧
fset (t-target t) = t-target ‘ {t ′ ∈ FSM .transitions M . t-source t ′

|∈| t-source t ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t})
using initial-trans-prop by blast

have i2 : (
∧

q t ′.
q |∈| {|{|FSM .initial M |}|} =⇒

t ′ ∈ FSM .transitions M =⇒ t-source t ′ |∈| q =⇒ ∃ t. t |∈|
initial-trans ∧ t-source t = q ∧ t-input t = t-input t ′ ∧ t-output t = t-output t ′)

proof −
fix q t ′ assume q |∈| {|{|FSM .initial M |}|} and t ′ ∈ FSM .transitions M and

t-source t ′ |∈| q
then have q = {|FSM .initial M |} and t-source t ′ = initial M

by auto

define tgt where tgt = t-target ‘ {t ′′ ∈ FSM .transitions M . t-source t ′′ |∈|
{|FSM .initial M |} ∧ t-input t ′′ = t-input t ′ ∧ t-output t ′′ = t-output t ′}

have t-target t ′ ∈ tgt
unfolding tgt-def using ‹t ′ ∈ FSM .transitions M › ‹t-source t ′ = initial M ›

by auto
then have tgt 6= {}

by auto
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have finite tgt
using fsm-transitions-finite[of M ] unfolding tgt-def by auto

then have fset (Abs-fset tgt) = tgt
by (simp add: Abs-fset-inverse)

then have Abs-fset tgt 6= {||}
using ‹tgt 6= {}› by auto

let ?t = ({|FSM .initial M |}, t-input t ′, t-output t ′, Abs-fset tgt)
have ?t |∈| initial-trans

unfolding initial-trans-prop fst-conv snd-conv ‹fset (Abs-fset tgt) = tgt›
unfolding ‹tgt = t-target ‘ {t ′′ ∈ FSM .transitions M . t-source t ′′ |∈|

{|FSM .initial M |} ∧ t-input t ′′= t-input t ′∧ t-output t ′′= t-output t ′}›[symmetric]
using ‹Abs-fset tgt 6= {||}›
by blast

then show ∃ t. t |∈| initial-trans ∧ t-source t = q ∧ t-input t = t-input t ′ ∧
t-output t = t-output t ′

using ‹q = {|FSM .initial M |}› by auto
qed

have i3 : (
∧

q. q |∈| t-target |‘| initial-trans |−| {|{|FSM .initial M |}|} =⇒ q |∈|
fPow (t-source |‘| ftransitions M |∪| t-target |‘| ftransitions M ))

proof −
fix q assume q |∈| t-target |‘| initial-trans |−| {|{|FSM .initial M |}|}
then obtain t where t |∈| initial-trans and t-target t = q

by auto

have fset q ⊆ t-target ‘ (transitions M )
using ‹t |∈| initial-trans›
unfolding initial-trans-prop ‹t-target t = q›
by auto

then have q |⊆| (t-target |‘| ftransitions M )
using ftransitions-set[of M ]
by (simp add: less-eq-fset.rep-eq)

then show q |∈| fPow (t-source |‘| ftransitions M |∪| t-target |‘| ftransitions
M )

by auto
qed

have i4 : (
∧

q. q |∈| {|{|FSM .initial M |}|} =⇒ q |∈| fPow (t-source |‘| ftransitions
M |∪| t-target |‘| ftransitions M |∪| {|FSM .initial M |}))

and i5 : {||} |/∈| {|{|FSM .initial M |}|}
and i6 : {|FSM .initial M |} |∈| {|{|FSM .initial M |}|}
by blast+

show L (make-observable M ) = L M
proof −

have ∗:
∧

p . pathlike ptransitions {|initial M |} p = path (make-observable M )
{|initial M |} p
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proof
have

∧
q p . p 6= [] =⇒ pathlike ptransitions q p =⇒ path (make-observable

M ) q p
proof −

fix q p assume p 6= [] and pathlike ptransitions q p
then show path (make-observable M ) q p
proof (induction p arbitrary: q)

case Nil
then show ?case by blast

next
case (Cons t p)
then have t |∈| ptransitions and pathlike ptransitions (t-target t) p and

t-source t = q
by blast+

have t ∈ transitions (make-observable M )
using ‹t |∈| ptransitions› ‹transitions (make-observable M ) = fset

ptransitions›
by metis

moreover have path (make-observable M ) (t-target t) p
using Cons.IH [OF - ‹pathlike ptransitions (t-target t) p›] calculation by

blast
ultimately show ?case

using ‹t-source t = q› by blast
qed

qed
then show

∧
p . pathlike ptransitions {|initial M |} p =⇒ path (make-observable

M ) {|initial M |} p
by (metis ‹FSM .initial (make-observable M ) = {|FSM .initial M |}› fsm-initial

path.nil)

show
∧

q p . path (make-observable M ) q p =⇒ pathlike ptransitions q p
proof −

fix q p assume path (make-observable M ) q p
then show pathlike ptransitions q p
proof (induction p arbitrary: q rule: list.induct)

case Nil
then show ?case by blast

next
case (Cons t p)

then have t ∈ transitions (make-observable M ) and path (make-observable
M ) (t-target t) p and t-source t = q

by blast+

have t |∈| ptransitions
using ‹t ∈ transitions (make-observable M )› ‹transitions (make-observable

M ) = fset ptransitions›
by metis

then show ?case
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using Cons.IH [OF ‹path (make-observable M ) (t-target t) p›] ‹t-source
t = q› by blast

qed
qed

qed

have
∧

io . (∃ q ′ p. q ′ |∈| {|FSM .initial M |} ∧ path M q ′ p ∧ p-io p = io) =
(∃ p ′. pathlike ptransitions {|FSM .initial M |} p ′ ∧ p-io p ′ = io)

using make-observable-transitions-path[OF i1 i2 i3 i4 i5 i6 ] unfolding ptran-
sitions-def [symmetric] by blast

then have
∧

io . (∃ p. path M (FSM .initial M ) p ∧ p-io p = io) = (∃ p ′ . path
(make-observable M ) {|initial M |} p ′ ∧ p-io p ′ = io)

unfolding ∗
by (metis (no-types, lifting) fempty-iff finsert-iff )

then show ?thesis
unfolding LS .simps ‹initial (make-observable M ) = {|initial M |}› by (metis

(no-types, lifting))
qed

show observable (make-observable M )
proof −

have i2 : observable-fset initial-trans
unfolding observable-fset.simps
unfolding initial-trans-prop
using fset-inject
by metis

have
∧

t ′ . t ′ |∈| ftransitions M = (t ′ ∈ transitions M )
using ftransitions-set
by metis

have observable-fset ptransitions
using make-observable-transitions-observable[OF - i2 , of {| {|initial M |} |}

ftransitions M ] i1
unfolding ptransitions-def ‹

∧
t ′ . t ′ |∈| ftransitions M = (t ′ ∈ transitions

M )›
by blast

then show ?thesis
unfolding observable.simps observable-fset.simps ‹transitions (make-observable

M ) = fset ptransitions›
by metis

qed
qed

end
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10 Prefix Tree

This theory introduces a tree to efficiently store prefix-complete sets of lists.
Several functions to lookup or merge subtrees are provided.
theory Prefix-Tree
imports Util HOL−Library.Mapping HOL−Library.List-Lexorder
begin

datatype ′a prefix-tree = PT ′a ⇀ ′a prefix-tree

definition empty :: ′a prefix-tree where
empty = PT Map.empty

fun isin :: ′a prefix-tree ⇒ ′a list ⇒ bool where
isin t [] = True |
isin (PT m) (x # xs) = (case m x of None ⇒ False | Some t ⇒ isin t xs)

lemma isin-prefix :
assumes isin t (xs@xs ′)
shows isin t xs

proof −
obtain m where t = PT m

by (metis prefix-tree.exhaust)

show ?thesis using assms unfolding ‹t = PT m›
proof (induction xs arbitrary: m)

case Nil
then show ?case by auto

next
case (Cons x xs)
then have isin (PT m) (x # (xs @ xs ′))

by auto
then obtain m ′ where m x = Some (PT m ′)

and isin (PT m ′) (xs@xs ′)
unfolding isin.simps
by (metis option.exhaust option.simps(4 ) option.simps(5 ) prefix-tree.exhaust)

then show ?case
using Cons.IH [of m ′] by auto

qed
qed

fun set :: ′a prefix-tree ⇒ ′a list set where
set t = {xs . isin t xs}

lemma set-empty : set empty = ({[]} :: ′a list set)
proof

show set empty ⊆ ({[]} :: ′a list set)
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proof
fix xs :: ′a list
assume xs ∈ set empty
then have isin empty xs

by auto

have xs = []
proof (rule ccontr)

assume xs 6= []
then obtain x xs ′ where xs = x#xs ′

using list.exhaust by auto
then have Map.empty x 6= None

using ‹isin empty xs› unfolding empty-def
by simp

then show False
by auto

qed
then show xs ∈ {[]}

by blast
qed
show ({[]} :: ′a list set) ⊆ set empty

unfolding set.simps empty-def
by simp

qed

lemma set-Nil : [] ∈ set t
by auto

fun insert :: ′a prefix-tree ⇒ ′a list ⇒ ′a prefix-tree where
insert t [] = t |
insert (PT m) (x#xs) = PT (m(x 7→ insert (case m x of None ⇒ empty | Some

t ′⇒ t ′) xs))

lemma insert-isin-prefix : isin (insert t (xs@xs ′)) xs
proof (induction xs arbitrary: t)

case Nil
then show ?case by auto

next
case (Cons x xs)
moreover obtain m where t = PT m

using prefix-tree.exhaust by auto
ultimately obtain t ′ where (m(x 7→ insert (case m x of None ⇒ empty | Some

t ′⇒ t ′) xs)) x = Some t ′

by simp
then have isin (insert t ((x#xs)@xs ′)) (x#xs) = isin (insert (case m x of None
⇒ empty | Some t ′⇒ t ′) (xs@xs ′)) xs

unfolding ‹t = PT m›
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by simp
then show ?case

using Cons.IH by auto
qed

lemma insert-isin-other :
assumes isin t xs

shows isin (insert t xs ′) xs
proof (cases xs = xs ′)

case True
then show ?thesis using insert-isin-prefix[of t xs []] by simp

next
case False

have ∗:
∧

i xs xs ′ . take i xs = take i xs ′ =⇒ take (Suc i) xs 6= take (Suc i) xs ′

=⇒ isin t xs =⇒ isin (insert t xs ′) xs
proof −

fix i xs xs ′ assume take i xs = take i xs ′

and take (Suc i) xs 6= take (Suc i) xs ′

and isin t xs
then show isin (insert t xs ′) xs
proof (induction i arbitrary: xs xs ′ t)

case 0
then consider (a) xs = [] ∧ xs ′ 6= [] |

(b) xs ′ = [] ∧ xs 6= [] |
(c) xs 6= [] ∧ xs ′ 6= [] ∧ hd xs 6= hd xs ′

by (metis take-Suc take-eq-Nil)
then show ?case proof cases

case a
then show ?thesis by auto

next
case b
then show ?thesis

by (simp add: 0 .prems(3 ))
next

case c
then obtain b bs c cs where xs = b#bs and xs ′ = c#cs and b 6= c

using list.exhaust-sel by blast
obtain m where t = PT m

using prefix-tree.exhaust by auto
have isin (Prefix-Tree.insert t xs ′) xs = isin t xs

unfolding ‹t = PT m› ‹xs = b#bs› ‹xs ′ = c#cs› insert.simps isin.simps
using ‹b 6= c›

by simp
then show ?thesis

using ‹isin t xs› by simp
qed
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next
case (Suc i)

define hxs where hxs: hxs = hd xs
define txs where txs: txs = tl xs
define txs ′ where txs ′: txs ′ = tl xs ′

have xs = hxs#txs
unfolding hxs txs
using ‹take (Suc i) xs = take (Suc i) xs ′› ‹take (Suc (Suc i)) xs 6= take

(Suc (Suc i)) xs ′›
by (metis Zero-not-Suc hd-Cons-tl take-eq-Nil)

moreover have xs ′ = hxs#txs ′

unfolding hxs txs txs ′

using ‹take (Suc i) xs = take (Suc i) xs ′› ‹take (Suc (Suc i)) xs 6= take
(Suc (Suc i)) xs ′›

by (metis hd-Cons-tl hd-take take-Nil take-Suc-Cons take-tl zero-less-Suc)
ultimately have take (Suc i) txs 6= take (Suc i) txs ′

using ‹take (Suc (Suc i)) xs 6= take (Suc (Suc i)) xs ′›
by (metis take-Suc-Cons)

moreover have take i txs = take i txs ′

using ‹take (Suc i) xs = take (Suc i) xs ′› unfolding txs txs ′

by (simp add: take-tl)
ultimately have

∧
t . isin t txs =⇒ isin (Prefix-Tree.insert t txs ′) txs

using Suc.IH by blast

obtain m where t = PT m
using prefix-tree.exhaust by auto

obtain t ′ where m hxs = Some t ′

and isin t ′ txs
using case-optionE by (metis Suc.prems(3 ) ‹t = PT m› ‹xs = hxs # txs›

isin.simps(2 ))

have isin (Prefix-Tree.insert t xs ′) xs = isin (Prefix-Tree.insert t ′ txs ′) txs
using ‹m hxs = Some t ′› unfolding ‹t = PT m› ‹xs = hxs#txs› ‹xs ′ =

hxs#txs ′› by auto
then show ?case

using ‹
∧

t . isin t txs =⇒ isin (Prefix-Tree.insert t txs ′) txs› ‹isin t ′ txs›
by simp

qed
qed

show ?thesis
using different-lists-shared-prefix[OF False] ∗[OF - - assms] by blast

qed

lemma insert-isin-rev :
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assumes isin (insert t xs ′) xs
shows isin t xs ∨ (∃ xs ′′ . xs ′ = xs@xs ′′)
proof (cases xs = xs ′)

case True
then show ?thesis using insert-isin-prefix[of t xs []] by simp

next
case False

have ∗:
∧

i xs xs ′ . take i xs = take i xs ′ =⇒ take (Suc i) xs 6= take (Suc i) xs ′

=⇒ isin (insert t xs ′) xs =⇒ isin t xs ∨ (∃ xs ′′ . xs ′ = xs@xs ′′)
proof −

fix i xs xs ′ assume take i xs = take i xs ′

and take (Suc i) xs 6= take (Suc i) xs ′

and isin (insert t xs ′) xs
then show isin t xs ∨ (∃ xs ′′ . xs ′ = xs@xs ′′)
proof (induction i arbitrary: xs xs ′ t)

case 0
then consider (a) xs = [] ∧ xs ′ 6= [] |

(b) xs ′ = [] ∧ xs 6= [] |
(c) xs 6= [] ∧ xs ′ 6= [] ∧ hd xs 6= hd xs ′

by (metis take-Suc take-eq-Nil)
then show ?case proof cases

case a
then show ?thesis

by (metis isin.simps(1 ) )
next

case b
then show ?thesis

using 0 .prems(3 ) by auto
next

case c
then obtain b bs c cs where xs = b#bs and xs ′ = c#cs and b 6= c

using list.exhaust-sel by blast
obtain m where t = PT m

using prefix-tree.exhaust by auto
have isin (Prefix-Tree.insert t xs ′) xs = isin t xs

unfolding ‹t = PT m› ‹xs = b#bs› ‹xs ′ = c#cs› insert.simps isin.simps
using ‹b 6= c›

by simp
then show ?thesis

using ‹isin (insert t xs ′) xs› by simp
qed

next
case (Suc i)

define hxs where hxs: hxs = hd xs
define txs where txs: txs = tl xs
define txs ′ where txs ′: txs ′ = tl xs ′
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have xs = hxs#txs
unfolding hxs txs
using ‹take (Suc i) xs = take (Suc i) xs ′› ‹take (Suc (Suc i)) xs 6= take

(Suc (Suc i)) xs ′›
by (metis Zero-not-Suc hd-Cons-tl take-eq-Nil)

moreover have xs ′ = hxs#txs ′

unfolding hxs txs txs ′

using ‹take (Suc i) xs = take (Suc i) xs ′› ‹take (Suc (Suc i)) xs 6= take
(Suc (Suc i)) xs ′›

by (metis hd-Cons-tl hd-take take-Nil take-Suc-Cons take-tl zero-less-Suc)
ultimately have take (Suc i) txs 6= take (Suc i) txs ′

using ‹take (Suc (Suc i)) xs 6= take (Suc (Suc i)) xs ′›
by (metis take-Suc-Cons)

moreover have take i txs = take i txs ′

using ‹take (Suc i) xs = take (Suc i) xs ′› unfolding txs txs ′

by (simp add: take-tl)
ultimately have

∧
t . isin (Prefix-Tree.insert t txs ′) txs =⇒ isin t txs ∨

(∃ xs ′′. txs ′ = txs @ xs ′′)
using Suc.IH by blast

obtain m where t = PT m
using prefix-tree.exhaust by auto

obtain t ′ where (m(hxs 7→ insert (case m hxs of None ⇒ empty | Some t ′

⇒ t ′) txs ′)) hxs = Some t ′

and isin t ′ txs
using case-optionE ‹isin (Prefix-Tree.insert t xs ′) xs›

unfolding ‹t = PT m› ‹xs = hxs#txs› ‹xs ′ = hxs#txs ′› insert.simps
isin.simps by blast

then have t ′ = insert (case m hxs of None ⇒ empty | Some t ′⇒ t ′) txs ′

by auto
then have ∗: isin (case m hxs of None ⇒ empty | Some t ′⇒ t ′) txs ∨ (∃ xs ′′.

txs ′ = txs @ xs ′′)
using ‹

∧
t . isin (Prefix-Tree.insert t txs ′) txs =⇒ isin t txs ∨ (∃ xs ′′. txs ′

= txs @ xs ′′)›
‹isin t ′ txs›

by auto

show ?case proof (cases m hxs)
case None
then have isin empty txs ∨ (∃ xs ′′. txs ′ = txs @ xs ′′)

using ∗ by auto
then have txs = [] ∨ (∃ xs ′′. txs ′ = txs @ xs ′′)

by (metis Prefix-Tree.empty-def case-optionE isin.elims(2 ) option.discI
prefix-tree.inject)

then have (∃ xs ′′. txs ′ = txs @ xs ′′)
by auto

then show ?thesis
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unfolding ‹xs = hxs#txs› ‹xs ′ = hxs#txs ′› by auto
next

case (Some t ′′)
then consider isin t ′′ txs | (∃ xs ′′. txs ′ = txs @ xs ′′)

using ∗ by auto
then show ?thesis proof cases

case 1
moreover have isin t xs = isin t ′′ txs
unfolding ‹t = PT m› ‹xs = hxs#txs› ‹xs ′ = hxs#txs ′› using Some by

auto
ultimately show ?thesis by simp

next
case 2
then show ?thesis

unfolding ‹xs = hxs#txs› ‹xs ′ = hxs#txs ′› by auto
qed

qed
qed

qed

show ?thesis
using different-lists-shared-prefix[OF False] ∗[OF - - assms] by blast

qed

lemma insert-set : set (insert t xs) = set t ∪ {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′}
proof −

have set t ⊆ set (insert t xs)
using insert-isin-other by auto

moreover have {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′} ⊆ set (insert t xs)
using insert-isin-prefix
by auto

moreover have set (insert t xs) ⊆ set t ∪ {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′}
using insert-isin-rev[of t xs] unfolding set.simps by blast

ultimately show ?thesis
by blast

qed

lemma insert-isin : xs ∈ set (insert t xs)
unfolding insert-set by auto

lemma set-prefix :
assumes xs@ys ∈ set T
shows xs ∈ set T
using assms isin-prefix by auto

fun after :: ′a prefix-tree ⇒ ′a list ⇒ ′a prefix-tree where
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after t [] = t |
after (PT m) (x # xs) = (case m x of None ⇒ empty | Some t ⇒ after t xs)

lemma after-set : set (after t xs) = Set.insert [] {xs ′ . xs@xs ′ ∈ set t}
(is ?A t xs = ?B t xs)

proof
show ?A t xs ⊆ ?B t xs
proof

fix xs ′ assume xs ′ ∈ ?A t xs
then show xs ′ ∈ ?B t xs
proof (induction xs arbitrary: t)

case Nil
then show ?case by auto

next
case (Cons x xs)
obtain m where t = PT m

using prefix-tree.exhaust by auto
show ?case proof (cases m x)

case None
then have after t (x#xs) = empty

unfolding ‹t = PT m› by auto
then have xs ′ = []

using Cons.prems set-empty by auto
then show ?thesis by blast

next
case (Some t ′)
then have after t (x#xs) = after t ′ xs

unfolding ‹t = PT m› by auto
then have xs ′ ∈ set (after t ′ xs)

using Cons.prems by simp
then have xs ′ ∈ ?B t ′ xs

using Cons.IH by auto

show ?thesis proof (cases xs ′ = [])
case True
then show ?thesis by auto

next
case False
then have isin t ′ (xs@xs ′)

using ‹xs ′ ∈ ?B t ′ xs› by auto
then have isin t (x#(xs@xs ′))

unfolding ‹t = PT m› using Some by auto
then show ?thesis by auto

qed
qed

qed
qed

show ?B t xs ⊆ ?A t xs
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proof
fix xs ′ assume xs ′ ∈ ?B t xs
then show xs ′ ∈ ?A t xs
proof (induction xs arbitrary: t)

case Nil
then show ?case by (cases xs ′; auto)

next
case (Cons x xs)
obtain m where t = PT m

using prefix-tree.exhaust by auto

show ?case proof (cases xs ′ = [])
case True
then show ?thesis by (cases xs ′; auto)

next
case False
then have x # (xs @ xs ′) ∈ set t

using Cons.prems by auto
then have isin t (x # (xs @ xs ′))

by auto
then obtain t ′ where m x = Some t ′

and isin t ′ (xs@xs ′)
unfolding ‹t = PT m›
by (metis case-optionE isin.simps(2 ))

then have xs ′ ∈ ?B t ′ xs
by auto

then have xs ′ ∈ ?A t ′ xs
using Cons.IH by blast

moreover have after t (x#xs) = after t ′ xs
using ‹m x = Some t ′› unfolding ‹t = PT m› by auto

ultimately show ?thesis
by simp

qed
qed

qed
qed

lemma after-set-Cons :
assumes γ ∈ set (after T α)
and γ 6= []

shows α ∈ set T
using assms unfolding after-set
by (metis insertE isin-prefix mem-Collect-eq set.simps)

function (domintros) combine :: ′a prefix-tree ⇒ ′a prefix-tree ⇒ ′a prefix-tree
where

combine (PT m1 ) (PT m2 ) = (PT (λ x . case m1 x of
None ⇒ m2 x |
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Some t1 ⇒ (case m2 x of
None ⇒ Some t1 |
Some t2 ⇒ Some (combine t1 t2 ))))

by pat-completeness auto
termination
proof −

{
fix a b :: ′a prefix-tree

have combine-dom (a,b)
proof (induction a arbitrary: b)

case (PT m1 )

obtain m2 where b = PT m2
by (metis prefix-tree.exhaust)

have (
∧

x a ′ b ′. m1 x = Some a ′ =⇒ m2 x = Some b ′ =⇒ combine-dom (a ′,
b ′))

proof −
fix x a ′ b ′ assume m1 x = Some a ′ and m2 x = Some b ′

have Some a ′ ∈ range m1
by (metis ‹m1 x = Some a ′› range-eqI )

show combine-dom (a ′, b ′)
using PT (1 )[OF ‹Some a ′ ∈ range m1 ›, of a ′]
by simp

qed

then show ?case
using combine.domintros unfolding ‹b = PT m2 › by blast

qed
} note t = this

then show ?thesis by auto
qed

lemma combine-alt-def :
combine (PT m1 ) (PT m2 ) = PT (λx . combine-options combine (m1 x) (m2

x))
unfolding combine.simps
by (simp add: combine-options-def )

lemma combine-set :
set (combine t1 t2 ) = set t1 ∪ set t2

proof

show set (combine t1 t2 ) ⊆ set t1 ∪ set t2
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proof
fix xs assume xs ∈ set (combine t1 t2 )
then show xs ∈ set t1 ∪ set t2
proof (induction xs arbitrary: t1 t2 )

case Nil
show ?case

using set-Nil by auto
next

case (Cons x xs)

obtain m1 m2 where t1 = PT m1 and t2 = PT m2
by (meson prefix-tree.exhaust)

obtain t ′ where combine-options combine (m1 x) (m2 x) = Some t ′

and isin t ′ xs
using Cons.prems unfolding ‹t1 = PT m1 › ‹t2 = PT m2 › combine-alt-def

set.simps
by (metis (no-types, lifting) case-optionE isin.simps(2 ) mem-Collect-eq)

show ?case proof (cases m1 x)
case None
show ?thesis proof (cases m2 x)

case None
then have False
using ‹m1 x = None› ‹combine-options combine (m1 x) (m2 x) = Some

t ′›
by simp

then show ?thesis
by simp

next
case (Some t ′′)
then have m2 x = Some t ′

using ‹m1 x = None› ‹combine-options combine (m1 x) (m2 x) = Some
t ′›

by simp
then have isin t2 (x#xs)

using ‹isin t ′ xs› unfolding ‹t2 = PT m2 › by auto
then show ?thesis

by simp
qed

next
case (Some t1 ′)
show ?thesis proof (cases m2 x)

case None
then have m1 x = Some t ′

using ‹m1 x = Some t1 ′› ‹combine-options combine (m1 x) (m2 x) =
Some t ′›

by simp
then have isin t1 (x#xs)
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using ‹isin t ′ xs› unfolding ‹t1 = PT m1 › by auto
then show ?thesis

by simp
next

case (Some t2 ′)
then have t ′ = combine t1 ′ t2 ′

using ‹m1 x = Some t1 ′› ‹combine-options combine (m1 x) (m2 x) =
Some t ′›

by simp
then have xs ∈ Prefix-Tree.set (combine t1 ′ t2 ′)

using ‹isin t ′ xs›
by simp

then have xs ∈ Prefix-Tree.set t1 ′ ∪ Prefix-Tree.set t2 ′

using Cons.IH by blast
then have isin t1 ′ xs ∨ isin t2 ′ xs

by simp
then have isin t1 (x#xs) ∨ isin t2 (x#xs)
using ‹m1 x = Some t1 ′› ‹m2 x = Some t2 ′› unfolding ‹t1 = PT m1 ›

‹t2 = PT m2 › by auto
then show ?thesis

by simp
qed

qed
qed

qed

show (set t1 ∪ set t2 ) ⊆ set (combine t1 t2 )
proof −

have set t1 ⊆ set (combine t1 t2 )
proof

fix xs assume xs ∈ set t1
then have isin t1 xs

by auto
then show xs ∈ set (combine t1 t2 )
proof (induction xs arbitrary: t1 t2 )

case Nil
then show ?case using set-Nil by auto

next
case (Cons x xs)

obtain m1 m2 where t1 = PT m1 and t2 = PT m2
by (meson prefix-tree.exhaust)

obtain t1 ′ where m1 x = Some t1 ′

and isin t1 ′ xs
using Cons.prems unfolding ‹t1 = PT m1 › isin.simps
using case-optionE by blast

show ?case proof (cases m2 x)
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case None
then have combine-options combine (m1 x) (m2 x) = Some t1 ′

by (simp add: ‹m1 x = Some t1 ′›)
then have isin (combine t1 t2 ) (x#xs)

using combine-alt-def
by (metis (no-types, lifting) Cons.prems ‹m1 x = Some t1 ′› ‹t1 = PT

m1 › ‹t2 = PT m2 › isin.simps(2 ))
then show ?thesis

by simp
next

case (Some t2 ′)
then have combine-options combine (m1 x) (m2 x) = Some (combine t1 ′

t2 ′)
by (simp add: ‹m1 x = Some t1 ′›)

moreover have isin (combine t1 ′ t2 ′) xs
using Cons.IH [OF ‹isin t1 ′ xs›]
by simp

ultimately have isin (combine t1 t2 ) (x#xs)
unfolding ‹t1 = PT m1 › ‹t2 = PT m2 › using isin.simps(2 )[of - x xs]
by (metis (no-types, lifting) combine-alt-def option.simps(5 ))

then show ?thesis by simp
qed

qed
qed
moreover have set t2 ⊆ set (combine t1 t2 )
proof

fix xs assume xs ∈ set t2
then have isin t2 xs

by auto
then show xs ∈ set (combine t1 t2 )
proof (induction xs arbitrary: t1 t2 )

case Nil
then show ?case using set-Nil by auto

next
case (Cons x xs)

obtain m1 m2 where t1 = PT m1 and t2 = PT m2
by (meson prefix-tree.exhaust)

obtain t2 ′ where m2 x = Some t2 ′

and isin t2 ′ xs
using Cons.prems unfolding ‹t2 = PT m2 › isin.simps
using case-optionE by blast

show ?case proof (cases m1 x)
case None
then have combine-options combine (m1 x) (m2 x) = Some t2 ′

by (simp add: ‹m2 x = Some t2 ′›)
then have isin (combine t1 t2 ) (x#xs)
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using combine-alt-def
by (metis (no-types, lifting) Cons.prems ‹m2 x = Some t2 ′› ‹t1 = PT

m1 › ‹t2 = PT m2 › isin.simps(2 ))
then show ?thesis

by simp
next

case (Some t1 ′)
then have combine-options combine (m1 x) (m2 x) = Some (combine t1 ′

t2 ′)
by (simp add: ‹m2 x = Some t2 ′›)

moreover have isin (combine t1 ′ t2 ′) xs
using Cons.IH [OF ‹isin t2 ′ xs›]
by simp

ultimately have isin (combine t1 t2 ) (x#xs)
unfolding ‹t1 = PT m1 › ‹t2 = PT m2 › using isin.simps(2 )[of - x xs]
by (metis (no-types, lifting) combine-alt-def option.simps(5 ))

then show ?thesis by simp
qed

qed
qed
ultimately show ?thesis

by blast
qed

qed

fun combine-after :: ′a prefix-tree ⇒ ′a list ⇒ ′a prefix-tree ⇒ ′a prefix-tree where
combine-after t1 [] t2 = combine t1 t2 |
combine-after (PT m) (x#xs) t2 = PT (m(x 7→ combine-after (case m x of None
⇒ empty | Some t ′⇒ t ′) xs t2 ))

lemma combine-after-set : set (combine-after t1 xs t2 ) = set t1 ∪ {xs ′ . ∃ xs ′′ .
xs = xs ′@xs ′′} ∪ {xs@xs ′ | xs ′ . xs ′ ∈ set t2}
proof

show set (combine-after t1 xs t2 ) ⊆ set t1 ∪ {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′} ∪
{xs@xs ′ | xs ′ . xs ′ ∈ set t2}

proof
fix ys assume ys ∈ set (combine-after t1 xs t2 )
then show ys ∈ set t1 ∪ {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′} ∪ {xs@xs ′ | xs ′ . xs ′ ∈

set t2}
proof (induction ys arbitrary: xs t1 )

case Nil
show ?case using set-Nil by auto

next
case (Cons y ys)

obtain m1 where t1 = PT m1
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by (meson prefix-tree.exhaust)

show ?case proof (cases xs)
case Nil
then show ?thesis using combine-set Cons.prems by auto

next
case (Cons x xs ′)

show ?thesis proof (cases x = y)
case True
then have isin (combine-after t1 (x#xs ′) t2 ) (x#ys)

using Cons Cons.prems by auto
then have isin (combine-after (case m1 x of None ⇒ empty | Some t ′⇒

t ′) xs ′ t2 ) ys
unfolding ‹t1 = PT m1 › by auto

then consider ys ∈ set (case m1 x of None ⇒ empty | Some t ′ ⇒ t ′) |
ys ∈ {xs ′′ . ∃ xs ′′′ . xs ′ = xs ′′@xs ′′′} | ys ∈ {xs ′ @ xs ′′ |xs ′′. xs ′′ ∈ set t2}

using Cons.IH by auto
then show ?thesis proof cases

case 1
then show ?thesis proof (cases m1 x)

case None
then have ys = []

using 1 set-empty by auto
then show ?thesis unfolding True Cons by auto

next
case (Some t ′)
then have isin t ′ ys

using 1 by auto
then have y # ys ∈ Prefix-Tree.set (PT m1 )

using Some by (simp add: True)
then show ?thesis unfolding ‹t1 = PT m1 › by auto

qed
next

case 2
then show ?thesis unfolding True ‹t1 = PT m1 › Cons by auto

next
case 3
then show ?thesis unfolding True ‹t1 = PT m1 › Cons by auto

qed
next

case False
then have (m1 (x 7→ combine-after (case m1 x of None ⇒ empty | Some

t ′⇒ t ′) xs ′ t2 )) y = m1 y
by auto

then have isin t1 (y#ys)
using Cons Cons.prems unfolding ‹t1 = PT m1 ›
by simp

then show ?thesis by auto
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qed
qed

qed
qed

show set t1 ∪ {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′} ∪ {xs@xs ′ | xs ′ . xs ′ ∈ set t2} ⊆ set
(combine-after t1 xs t2 )

proof −
have set t1 ⊆ set (combine-after t1 xs t2 )
proof

fix ys assume ys ∈ set t1
then show ys ∈ set (combine-after t1 xs t2 )
proof (induction ys arbitrary: t1 xs)

case Nil
then show ?case using set-Nil by auto

next
case (Cons y ys)
then have isin t1 (y#ys)

by auto

show ?case proof (cases xs)
case Nil
then show ?thesis using Cons.prems combine-set by auto

next
case (Cons x xs ′)

obtain m1 where t1 = PT m1
by (meson prefix-tree.exhaust)

obtain t ′ where m1 y = Some t ′

and isin t ′ ys
using ‹isin t1 (y#ys)› unfolding ‹t1 = PT m1 › isin.simps
using case-optionE by blast

then have ys ∈ set t ′

by auto
then have isin (combine-after t ′ xs ′ t2 ) ys

using Cons.IH by auto

show ?thesis proof (cases x=y)
case True
show ?thesis

using ‹isin (combine-after t ′ xs ′ t2 ) ys› ‹m1 y = Some t ′›
unfolding Cons True ‹t1 = PT m1 › by auto

next
case False
then have isin (combine-after (PT m1 ) (x # xs ′) t2 ) (y#ys) = isin

(PT m1 ) (y#ys)
unfolding combine-after .simps by auto

then show ?thesis
using ‹y # ys ∈ Prefix-Tree.set t1 ›

387



unfolding Cons ‹t1 = PT m1 ›
by auto

qed
qed

qed
qed
moreover have {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′} ∪ {xs@xs ′ | xs ′ . xs ′ ∈ set t2} ⊆

set (combine-after t1 xs t2 )
proof −

have {xs@xs ′ | xs ′ . xs ′ ∈ set t2} ⊆ set (combine-after t1 xs t2 ) =⇒ {xs ′ . ∃
xs ′′ . xs = xs ′@xs ′′} ⊆ set (combine-after t1 xs t2 )

proof
fix ys assume ∗:{xs@xs ′ | xs ′ . xs ′ ∈ set t2} ⊆ set (combine-after t1 xs t2 )

and ys ∈ {xs ′ . ∃ xs ′′ . xs = xs ′@xs ′′}
then obtain xs ′ where xs = ys@xs ′

by blast
then have ∗∗: isin (combine-after t1 xs t2 ) (ys@xs ′)

using ∗ set-Nil[of t2 ] by force
show ys ∈ set (combine-after t1 xs t2 )

using isin-prefix[OF ∗∗] by auto
qed
moreover have {xs@xs ′ | xs ′ . xs ′ ∈ set t2} ⊆ set (combine-after t1 xs t2 )
proof

fix ys assume ys ∈ {xs@xs ′ | xs ′ . xs ′ ∈ set t2}
then obtain xs ′ where ys = xs@xs ′ and xs ′ ∈ set t2

by auto

show ys ∈ set (combine-after t1 xs t2 )
unfolding ‹ys = xs@xs ′›

proof (induction xs arbitrary: t1 )
case Nil
then show ?case using combine-set ‹xs ′ ∈ set t2 › by auto

next
case (Cons x xs)

obtain m1 where t1 = PT m1
by (meson prefix-tree.exhaust)

have isin (combine-after t1 (x # xs) t2 ) ((x # xs) @ xs ′) = isin
(combine-after (case m1 x of None ⇒ empty | Some t ′⇒ t ′) xs t2 ) (xs @ xs ′)

unfolding ‹t1 = PT m1 › by auto
then have ∗:(x # xs) @ xs ′ ∈ Prefix-Tree.set (combine-after t1 (x # xs)

t2 ) = isin (combine-after (case m1 x of None ⇒ empty | Some t ′⇒ t ′) xs t2 ) (xs
@ xs ′)

by auto

show ?case
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using ‹xs ′ ∈ set t2 › Cons
unfolding ∗
by (cases m1 x; simp)

qed
qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed

qed

fun from-list :: ′a list list ⇒ ′a prefix-tree where
from-list xs = foldr (λ x t . insert t x) xs empty

lemma from-list-set : set (from-list xs) = Set.insert [] {xs ′′ . ∃ xs ′ xs ′′′ . xs ′ ∈
list.set xs ∧ xs ′ = xs ′′@xs ′′′}
proof (induction xs)

case Nil
have from-list [] = empty

by auto
then have set (from-list []) = {[]}

using set-empty by auto
moreover have Set.insert [] {xs ′′ . ∃ xs ′ xs ′′′ . xs ′ ∈ list.set [] ∧ xs ′ = xs ′′@xs ′′′}

= {[]}
by auto

ultimately show ?case
by blast

next
case (Cons x xs)

have from-list (x#xs) = insert (from-list xs) x
by auto

then have set (from-list (x#xs)) = set (from-list xs) ∪ {xs ′. ∃ xs ′′. x = xs ′ @
xs ′′}

using insert-set by auto
then show ?case

unfolding Cons by force
qed

lemma from-list-subset : list.set xs ⊆ set (from-list xs)
unfolding from-list-set by auto

lemma from-list-set-elem :
assumes x ∈ list.set xs
shows x ∈ set (from-list xs)
using assms unfolding from-list-set by force
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function (domintros) finite-tree :: ′a prefix-tree ⇒ bool where
finite-tree (PT m) = (finite (dom m) ∧ (∀ t ∈ ran m . finite-tree t))
by pat-completeness auto

termination
proof −

{ fix a :: ′a prefix-tree

have finite-tree-dom a
proof (induction a)

case (PT m)

have (
∧

x. x ∈ ran m =⇒ finite-tree-dom x)
proof −

fix x :: ′a prefix-tree
assume x ∈ ran m
then have ∃ a. m a = Some x

by (simp add: ran-def )
then show finite-tree-dom x

using PT .IH by blast
qed
then show ?case

using finite-tree.domintros
by blast

qed
}
then show ?thesis by auto

qed

lemma combine-after-after-subset :
set T2 ⊆ set (after (combine-after T1 xs T2 ) xs)
unfolding combine-after-set after-set
by auto

lemma subset-after-subset :
set T2 ⊆ set T1 =⇒ set (after T2 xs) ⊆ set (after T1 xs)
unfolding after-set by auto

lemma set-alt-def :
set (PT m) = Set.insert [] (

⋃
x ∈ dom m . (Cons x) ‘ (set (the (m x))))

(is ?A m = ?B m)
proof

show ?A m ⊆ ?B m
proof

fix xs assume xs ∈ ?A m
then have isin (PT m) xs

by auto
then show xs ∈ ?B m
proof (induction xs arbitrary: m)
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case Nil
then show ?case by auto

next
case (Cons x xs)
then obtain t where m x = Some t

and isin t xs
by (metis (no-types, lifting) case-optionE isin.simps(2 ))

obtain m ′ where t = PT m ′

using prefix-tree.exhaust by blast
then have xs ∈ ?B m ′

using ‹isin t xs› Cons.IH by blast
moreover have x ∈ dom m

using ‹m x = Some t›
by auto

ultimately show ?case
using ‹m x = Some t›
using ‹isin t xs› ‹t = PT m ′›
by fastforce

qed
qed

show ?B m ⊆ ?A m
proof

fix xs assume xs ∈ ?B m
then show xs ∈ ?A m
proof (induction xs arbitrary: m)

case Nil
show ?case

by auto
next

case (Cons x xs)
then have x#xs ∈ (

⋃
x ∈ dom m . (Cons x) ‘ (set (the (m x))))

by auto
then have x ∈ dom m

and xs ∈ (set (the (m x)))
by auto

then obtain t where m x = Some t and isin t xs
unfolding keys-is-none-rep
by auto

then show ?case
by auto

qed
qed

qed

lemma finite-tree-iff :
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finite-tree t = finite (set t)
(is ?P1 = ?P2 )

proof
show ?P1 =⇒ ?P2
proof induction

case (PT m)

have set (PT m) = Set.insert [] (
⋃

x∈dom m. (#) x ‘ set (the (m x)))
unfolding set-alt-def by simp

moreover have finite (dom m)
using PT .prems by auto

moreover have
∧

x . x ∈ dom m =⇒ finite ((#) x ‘ set (the (m x)))
proof −

fix x assume x ∈ dom m
then obtain y where m x = Some y

by auto
then have y ∈ ran m

by (meson ranI )
then have finite-tree y

using PT .prems by auto
then have finite (set y)

using PT .IH [of Some y y] ‹m x = Some y›
by (metis option.set-intros rangeI )

moreover have (the (m x)) = y
using ‹m x = Some y› by auto

ultimately show finite ((#) x ‘ set (the (m x)))
by blast

qed
ultimately show ?case

by simp
qed

show ?P2 =⇒ ?P1
proof (induction t)

case (PT m)

have finite (dom m)
proof −

have
∧

x . x ∈ dom m =⇒ [x] ∈ set (PT m)
using image-eqI by auto

then have (λx . [x]) ‘ dom m ⊆ set (PT m)
by auto

have inj (λx . [x])
by (meson inj-onI list.inject)

show ?thesis
by (meson PT .prems UNIV-I ‹(λx. [x]) ‘ dom m ⊆ Prefix-Tree.set (PT m)›

‹inj (λx. [x])› inj-on-finite inj-on-subset subsetI )
qed
moreover have

∧
t . t ∈ ran m =⇒ finite-tree t
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proof −
fix t assume t ∈ ran m
then obtain x where m x = Some t

unfolding ran-def by blast
then have (#) x ‘ set t ⊆ set (PT m)

unfolding set-alt-def
by auto

then have finite ((#) x ‘ set t)
using PT .prems
by (simp add: finite-subset)

moreover have inj ((#) x)
by auto

ultimately have finite (set t)
by (simp add: finite-image-iff )

then show finite-tree t
using PT .IH [of Some t t] ‹m x = Some t›
by (metis option.set-intros rangeI )

qed
ultimately show ?case

by simp
qed

qed

lemma empty-finite-tree :
finite-tree empty
unfolding finite-tree-iff set-empty by auto

lemma insert-finite-tree :
assumes finite-tree t
shows finite-tree (insert t xs)

proof −
have {xs ′. ∃ xs ′′. xs = xs ′ @ xs ′′} = list.set (prefixes xs)

unfolding prefixes-set by blast
then have finite {xs ′. ∃ xs ′′. xs = xs ′ @ xs ′′}

using List.finite-set by simp
then show ?thesis

using assms unfolding finite-tree-iff insert-set
by blast

qed

lemma from-list-finite-tree :
finite-tree (from-list xs)
using insert-finite-tree empty-finite-tree by (induction xs; auto)

lemma combine-after-finite-tree :
assumes finite-tree t1
and finite-tree t2

shows finite-tree (combine-after t1 α t2 )
proof −
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have finite (Prefix-Tree.set t2 ) and finite (Prefix-Tree.set t1 )
using assms unfolding finite-tree-iff by auto

then have finite (Prefix-Tree.set (Prefix-Tree.insert t1 α) ∪ {α @ as |as. as ∈
Prefix-Tree.set t2})

using finite-tree-iff insert-finite-tree by fastforce
then show ?thesis

unfolding finite-tree-iff combine-after-set
by (metis insert-set)

qed

lemma combine-finite-tree :
assumes finite-tree t1
and finite-tree t2

shows finite-tree (combine t1 t2 )
using assms unfolding finite-tree-iff combine-set
by blast

function (domintros) sorted-list-of-maximal-sequences-in-tree :: ( ′a :: linorder) pre-
fix-tree ⇒ ′a list list where

sorted-list-of-maximal-sequences-in-tree (PT m) =
(if dom m = {}

then [[]]
else concat (map (λk . map ((#) k) (sorted-list-of-maximal-sequences-in-tree

(the (m k)))) (sorted-list-of-set (dom m))))
by pat-completeness auto

termination
proof −

{ fix a :: ′a prefix-tree

have sorted-list-of-maximal-sequences-in-tree-dom a
proof (induction a)

case (PT m)
then show ?case
by (metis List.set-empty domIff empty-iff option.set-sel range-eqI set-sorted-list-of-set

sorted-list-of-maximal-sequences-in-tree.domintros sorted-list-of-set.fold-insort-key.infinite)
qed

}
then show ?thesis by auto

qed

lemma sorted-list-of-maximal-sequences-in-tree-Nil :
assumes [] ∈ list.set (sorted-list-of-maximal-sequences-in-tree t)

shows t = empty
proof −

obtain m where t = PT m
using prefix-tree.exhaust by blast
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show ?thesis proof (cases dom m = {})
case True
then have m = Map.empty

using True by blast
then show ?thesis

unfolding ‹t = PT m›
by (simp add: Prefix-Tree.empty-def )

next
case False

then have [] ∈ list.set (concat (map (λk . map ((#) k) (sorted-list-of-maximal-sequences-in-tree
(the (m k)))) (sorted-list-of-set (dom m))))

using assms unfolding ‹t = PT m› by auto
then show ?thesis

by auto
qed

qed

lemma sorted-list-of-maximal-sequences-in-tree-set :
assumes finite-tree t
shows list.set (sorted-list-of-maximal-sequences-in-tree t) = {y. y ∈ set t ∧ ¬(∃

y ′ . y ′ 6= [] ∧ y@y ′ ∈ set t)}
(is ?S1 = ?S2 )

proof
show ?S1 ⊆ ?S2
proof

fix xs assume xs ∈ ?S1
then show xs ∈ ?S2
proof (induction xs arbitrary: t)

case Nil
then have t = empty

using sorted-list-of-maximal-sequences-in-tree-Nil by auto
then show ?case

using set-empty by auto
next

case (Cons x xs)

obtain m where t = PT m
using prefix-tree.exhaust by blast

have x#xs ∈ list.set (concat (map (λk . map ((#) k) (sorted-list-of-maximal-sequences-in-tree
(the (m k)))) (sorted-list-of-set (dom m))))

by (metis (no-types) Cons.prems(1 ) ‹t = PT m› empty-iff list.set(1 )
list.simps(3 ) set-ConsD sorted-list-of-maximal-sequences-in-tree.simps)

then have x ∈ list.set (sorted-list-of-set (dom m))
and xs ∈ list.set (sorted-list-of-maximal-sequences-in-tree (the (m x)))

by auto

have x ∈ dom m
using ‹x ∈ list.set (sorted-list-of-set (dom m))› unfolding ‹t = PT m›

by (metis equals0D list.set(1 ) sorted-list-of-set.fold-insort-key.infinite sorted-list-of-set.set-sorted-key-list-of-set)
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then obtain t ′ where m x = Some t ′

by auto
then have xs ∈ list.set (sorted-list-of-maximal-sequences-in-tree t ′)

using ‹xs ∈ list.set (sorted-list-of-maximal-sequences-in-tree (the (m x)))›
by auto

then have xs ∈ set t ′ and ¬(∃ y ′ . y ′ 6= [] ∧ xs@y ′ ∈ set t ′)
using Cons.IH by blast+

have x#xs ∈ set t
unfolding ‹t = PT m› using ‹xs ∈ set t ′› ‹m x = Some t ′› by auto

moreover have ¬(∃ y ′ . y ′ 6= [] ∧ (x#xs)@y ′ ∈ set t)
proof

assume ∃ y ′. y ′ 6= [] ∧ (x # xs) @ y ′ ∈ Prefix-Tree.set t
then obtain y ′ where y ′ 6= [] and (x # xs) @ y ′ ∈ Prefix-Tree.set t

by blast
then have isin (PT m) (x # (xs @ y ′))

unfolding ‹t = PT m› by auto
then have isin t ′ (xs @ y ′)

using ‹m x = Some t ′› by auto
then have ∃ y ′ . y ′ 6= [] ∧ xs@y ′ ∈ set t ′

using ‹y ′ 6= []› by auto
then show False

using ‹¬(∃ y ′ . y ′ 6= [] ∧ xs@y ′ ∈ set t ′)› by simp
qed
ultimately show ?case by blast

qed
qed

show ?S2 ⊆ ?S1
proof

fix xs assume xs ∈ ?S2
then show xs ∈ ?S1
using assms proof (induction xs arbitrary: t)

case Nil
then have set t = {[]}

by auto
moreover obtain m where t = PT m

using prefix-tree.exhaust by blast
ultimately have

∧
x . ¬ isin (PT m) [x]

by force
moreover have

∧
x . x ∈ dom m =⇒ isin (PT m) [x]

by auto
ultimately have dom m = {}

by blast
then show ?case

unfolding ‹t = PT m› by auto
next

case (Cons x xs)
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obtain m where t = PT m
using prefix-tree.exhaust by blast

then have isin (PT m) (x#xs)
using Cons.prems(1 ) by auto

then obtain t ′ where m x = Some t ′

and isin t ′ xs
by (metis case-optionE isin.simps(2 ))

then have x ∈ dom m
by auto

then have dom m 6= {}
by auto

have finite-tree t ′

using ‹finite-tree t› ‹m x = Some t ′› unfolding ‹t = PT m›
by (meson finite-tree.simps ranI )
moreover have xs ∈ {y ∈ Prefix-Tree.set t ′. @ y ′. y ′ 6= [] ∧ y @ y ′ ∈

Prefix-Tree.set t ′}
proof −

have xs ∈ set t ′

using ‹isin t ′ xs› by auto
moreover have (@ y ′. y ′ 6= [] ∧ xs @ y ′ ∈ Prefix-Tree.set t ′)
proof

assume ∃ y ′. y ′ 6= [] ∧ xs @ y ′ ∈ Prefix-Tree.set t ′

then obtain y ′ where y ′ 6= [] and xs @ y ′ ∈ Prefix-Tree.set t ′

by blast
then have isin t ′ (xs@y ′)

by auto
then have isin (PT m) (x#(xs@y ′))

using ‹m x = Some t ′› by auto
then show False

using Cons.prems(1 ) ‹y ′ 6= []› unfolding ‹t = PT m› by auto
qed
ultimately show ?thesis

by blast
qed
ultimately have xs ∈ list.set (sorted-list-of-maximal-sequences-in-tree t ′)

using Cons.IH by blast
moreover have x ∈ list.set (sorted-list-of-set (dom m))

using ‹x ∈ dom m› ‹finite-tree t› unfolding ‹t = PT m›
by simp

ultimately show ?case
using ‹finite-tree t› ‹dom m 6= {}› ‹m x = Some t ′› unfolding ‹t = PT m›

by force
qed

qed
qed
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lemma sorted-list-of-maximal-sequences-in-tree-ob :
assumes finite-tree T
and xs ∈ set T

obtains xs ′ where xs@xs ′ ∈ list.set (sorted-list-of-maximal-sequences-in-tree T )
proof −

let ?xs = {xs@xs ′ | xs ′ . xs@xs ′ ∈ set T}

let ?xs ′ = arg-max-on length ?xs

have xs ∈ ?xs
using assms(2 ) by auto

then have ?xs 6= {}
by blast

moreover have finite ?xs
using finite-subset[of ?xs set T ]
using assms(1 ) unfolding finite-tree-iff
by blast

ultimately obtain xs ′ where xs ′ ∈ ?xs and
∧

xs ′′ . xs ′′ ∈ ?xs =⇒ length xs ′′

≤ length xs ′

using max-length-elem[of ?xs]
by force

obtain xs ′′ where xs ′ = xs@xs ′′ and xs@xs ′′ ∈ set T
using ‹xs ′ ∈ ?xs› by auto

have
∧

xs ′′′ . xs@xs ′′′ ∈ set T =⇒ length xs ′′′ ≤ length xs ′′

proof −
fix xs ′′′ assume xs@xs ′′′ ∈ set T
then have xs@xs ′′′ ∈ ?xs

by auto
then have length (xs@xs ′′′) ≤ length xs ′

using ‹
∧

xs ′′ . xs ′′ ∈ ?xs =⇒ length xs ′′ ≤ length xs ′›
by blast

then show length xs ′′′ ≤ length xs ′′

unfolding ‹xs ′ = xs@xs ′′› by auto
qed
then have ¬(∃ y ′ . y ′ 6= [] ∧ (xs@xs ′′)@y ′ ∈ set T )

by fastforce
then have xs@xs ′′ ∈ list.set (sorted-list-of-maximal-sequences-in-tree T )

using ‹xs@xs ′′ ∈ set T ›
unfolding sorted-list-of-maximal-sequences-in-tree-set[OF assms(1 )]
by blast

then show ?thesis using that by blast
qed

function (domintros) sorted-list-of-sequences-in-tree :: ( ′a :: linorder) prefix-tree
⇒ ′a list list where

sorted-list-of-sequences-in-tree (PT m) =
(if dom m = {}
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then [[]]
else [] # concat (map (λk . map ((#) k) (sorted-list-of-sequences-in-tree (the

(m k)))) (sorted-list-of-set (dom m))))
by pat-completeness auto

termination
proof −

{
fix a :: ′a prefix-tree

have sorted-list-of-sequences-in-tree-dom a
proof (induction a)

case (PT m)
then show ?case
by (metis List.set-empty domIff emptyE option.set-sel rangeI sorted-list-of-sequences-in-tree.domintros

sorted-list-of-set.fold-insort-key.infinite sorted-list-of-set.set-sorted-key-list-of-set)
qed

}
then show ?thesis by auto

qed

lemma sorted-list-of-sequences-in-tree-set :
assumes finite-tree t
shows list.set (sorted-list-of-sequences-in-tree t) = set t
(is ?S1 = ?S2 )

proof
show ?S1 ⊆ ?S2
proof

fix xs assume xs ∈ ?S1
then show xs ∈ ?S2
proof (induction xs arbitrary: t)

case Nil
then show ?case

using set-empty by auto
next

case (Cons x xs)

obtain m where t = PT m
using prefix-tree.exhaust by blast

have x#xs ∈ list.set (concat (map (λk . map ((#) k) (sorted-list-of-sequences-in-tree
(the (m k)))) (sorted-list-of-set (dom m))))

by (metis (no-types) Cons.prems(1 ) ‹t = PT m› empty-iff list.set(1 )
list.simps(3 ) set-ConsD sorted-list-of-sequences-in-tree.simps)

then have x ∈ list.set (sorted-list-of-set (dom m))
and xs ∈ list.set (sorted-list-of-sequences-in-tree (the (m x)))

by auto

have x ∈ dom m
using ‹x ∈ list.set (sorted-list-of-set (dom m))› unfolding ‹t = PT m›

by (metis emptyE empty-set sorted-list-of-set.fold-insort-key.infinite sorted-list-of-set.set-sorted-key-list-of-set)
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then obtain t ′ where m x = Some t ′

by auto
then have xs ∈ list.set (sorted-list-of-sequences-in-tree t ′)

using ‹xs ∈ list.set (sorted-list-of-sequences-in-tree (the (m x)))›
by auto

then have xs ∈ set t ′

using Cons.IH by blast+

show x#xs ∈ set t
unfolding ‹t = PT m› using ‹xs ∈ set t ′› ‹m x = Some t ′› by auto

qed
qed

show ?S2 ⊆ ?S1
proof

fix xs assume xs ∈ ?S2
then show xs ∈ ?S1
using assms proof (induction xs arbitrary: t)

case Nil
obtain m where t = PT m

using prefix-tree.exhaust by blast
then show ?case

by auto
next

case (Cons x xs)

obtain m where t = PT m
using prefix-tree.exhaust by blast

then have isin (PT m) (x#xs)
using Cons.prems(1 ) by auto

then obtain t ′ where m x = Some t ′

and isin t ′ xs
by (metis case-optionE isin.simps(2 ))

then have x ∈ dom m
by auto

then have dom m 6= {}
by auto

have finite-tree t ′

using ‹finite-tree t› ‹m x = Some t ′› unfolding ‹t = PT m›
by (meson finite-tree.simps ranI )

moreover have xs ∈ set t ′

using ‹isin t ′ xs› by auto
ultimately have xs ∈ list.set (sorted-list-of-sequences-in-tree t ′)

using Cons.IH by blast
moreover have x ∈ list.set (sorted-list-of-set (dom m))

using ‹x ∈ dom m› ‹finite-tree t› unfolding ‹t = PT m›
by simp

ultimately show ?case
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using ‹finite-tree t› ‹dom m 6= {}› ‹m x = Some t ′› unfolding ‹t = PT m›

by force
qed

qed
qed

fun difference-list :: ( ′a::linorder) prefix-tree ⇒ ′a prefix-tree ⇒ ′a list list where
difference-list t1 t2 = filter (λ xs . ¬ isin t2 xs) (sorted-list-of-sequences-in-tree

t1 )

lemma difference-list-set :
assumes finite-tree t1

shows List.set (difference-list t1 t2 ) = (set t1 − set t2 )
unfolding difference-list.simps

filter-set[symmetric]
sorted-list-of-sequences-in-tree-set[OF assms]
set.simps

by fastforce

fun is-leaf :: ′a prefix-tree ⇒ bool where
is-leaf t = (t = empty)

fun is-maximal-in :: ′a prefix-tree ⇒ ′a list ⇒ bool where
is-maximal-in T α = (isin T α ∧ is-leaf (after T α))

function (domintros) height :: ′a prefix-tree ⇒ nat where
height (PT m) = (if (is-leaf (PT m)) then 0 else 1 + Max (height ‘ ran m))
by pat-completeness auto

termination
proof −

{ fix a :: ′a prefix-tree

have height-dom a
proof (induction a)

case (PT m)

have (
∧

x. x ∈ ran m =⇒ height-dom x)
proof −

fix x :: ′a prefix-tree
assume x ∈ ran m
then have ∃ a. m a = Some x

by (simp add: ran-def )
then show height-dom x

using PT .IH by blast
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qed
then show ?case

using height.domintros
by blast

qed
}
then show ?thesis by auto

qed

function (domintros) height-over :: ′a list ⇒ ′a prefix-tree ⇒ nat where
height-over xs (PT m) = 1 + foldr (λ x maxH . case m x of Some t ′ ⇒ max

(height-over xs t ′) maxH | None ⇒ maxH ) xs 0
by pat-completeness auto

termination
proof −

{
fix a :: ′a prefix-tree
fix xs :: ′a list

have height-over-dom (xs, a)
proof (induction a)

case (PT m)

have (
∧

x. x ∈ ran m =⇒ height-over-dom (xs, x))
proof −

fix x :: ′a prefix-tree
assume x ∈ ran m
then have ∃ a. m a = Some x

by (simp add: ran-def )
then show height-over-dom (xs, x)

using PT .IH by blast
qed
then show ?case

using height-over .domintros
by (simp add: height-over .domintros ranI )

qed
}
then show ?thesis by auto

qed

lemma height-over-empty :
height-over xs empty = 1

proof −
define xs ′ where xs ′ = xs
have foldr (λ x maxH . case Map.empty x of Some t ′⇒ max (height-over xs ′ t ′)

maxH | None ⇒ maxH ) xs 0 = 0
by (induction xs; auto)

then show ?thesis
unfolding xs ′-def empty-def
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by auto
qed

lemma height-over-subtree-less :
assumes m x = Some t ′

and x ∈ list.set xs
shows height-over xs t ′ < height-over xs (PT m)
proof −

define xs ′ where xs ′ = xs

have height-over xs ′ t ′ ≤ foldr (λ x maxH . case m x of Some t ′ ⇒ max
(height-over xs ′ t ′) maxH | None ⇒ maxH ) xs 0

using assms(2 ) proof (induction xs)
case Nil
then show ?case by auto

next
case (Cons x ′ xs)

define f where f = foldr (λ x maxH . case m x of Some t ′⇒ max (height-over
xs ′ t ′) maxH | None ⇒ maxH ) xs 0

have ∗: foldr (λ x maxH . case m x of Some t ′⇒ max (height-over xs ′ t ′) maxH
| None ⇒ maxH ) (x ′#xs) 0

= (case m x ′ of Some t ′⇒ max (height-over xs ′ t ′) f | None ⇒ f )
unfolding f-def by auto

show ?case proof (cases x=x ′)
case True
show ?thesis

using ‹m x = Some t ′›
unfolding ∗ True by auto

next
case False
then have x ∈ list.set xs

using Cons.prems(1 ) by auto
show ?thesis

using Cons.IH [OF ‹x ∈ list.set xs›]
unfolding ∗ f-def [symmetric]
by (cases m x ′; auto)

qed
qed
then show ?thesis

unfolding xs ′-def by auto
qed

fun maximum-prefix :: ′a prefix-tree ⇒ ′a list ⇒ ′a list where
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maximum-prefix t [] = [] |
maximum-prefix (PT m) (x # xs) = (case m x of None ⇒ [] | Some t ⇒ x #

maximum-prefix t xs)

lemma maximum-prefix-isin :
isin t (maximum-prefix t xs)

proof (induction xs arbitrary: t)
case Nil
show ?case

by auto
next

case (Cons x xs)

obtain m where ∗:t = PT m
using finite-tree.cases by blast

show ?case proof (cases m x)
case None
then have maximum-prefix t (x#xs) = []

unfolding ∗ by auto
then show ?thesis

by auto
next

case (Some t ′)
then have maximum-prefix t (x#xs) = x # maximum-prefix t ′ xs

unfolding ∗ by auto
moreover have isin t ′ (maximum-prefix t ′ xs)

using Cons.IH by auto
ultimately show ?thesis

by (simp add: ∗ Some)
qed

qed

lemma maximum-prefix-maximal :
maximum-prefix t xs = xs
∨ (∃ x ′ xs ′ . xs = (maximum-prefix t xs)@[x ′]@xs ′ ∧ ¬ isin t ((maximum-prefix

t xs)@[x ′]))
proof (induction xs arbitrary: t)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain m where ∗:t = PT m

using finite-tree.cases by blast

show ?case proof (cases m x)
case None
then have maximum-prefix t (x#xs) = []
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unfolding ∗ by auto
moreover have ¬ isin t ([]@[x]@xs)

using isin-prefix[of t [x] xs]
by (simp add: ∗ None)

ultimately show ?thesis
by (simp add: ∗ None)

next
case (Some t ′)
then have maximum-prefix t (x#xs) = x # maximum-prefix t ′ xs

unfolding ∗ by auto
moreover note Cons.IH [of t ′]
ultimately show ?thesis

by (simp add: ∗ Some)
qed

qed

fun maximum-fst-prefixes :: ( ′a× ′b) prefix-tree ⇒ ′a list ⇒ ′b list ⇒ ( ′a× ′b) list
list where

maximum-fst-prefixes t [] ys = (if is-leaf t then [[]] else []) |
maximum-fst-prefixes (PT m) (x # xs) ys = (if is-leaf (PT m) then [[]] else

concat (map (λ y . map ((#) (x,y)) (maximum-fst-prefixes (the (m (x,y))) xs ys))
(filter (λ y . (m (x,y) 6= None)) ys)))

lemma maximum-fst-prefixes-set :
list.set (maximum-fst-prefixes t xs ys) ⊆ set t

proof (induction xs arbitrary: t)
case Nil
show ?case

by auto
next

case (Cons x xs)

obtain m where ∗:t = PT m
using finite-tree.cases by blast

show list.set (maximum-fst-prefixes t (x # xs) ys) ⊆ set t
proof

fix p assume p ∈ list.set (maximum-fst-prefixes t (x # xs) ys)

show p ∈ set t proof (cases is-leaf (PT m))
case True
then have p = []

using ‹p ∈ list.set (maximum-fst-prefixes t (x # xs) ys)› unfolding ∗
maximum-fst-prefixes.simps by force
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then show ?thesis
using set-Nil[of t]
by blast

next
case False
then obtain y where y ∈ list.set (filter (λ y . (m (x,y) 6= None)) ys)

and p ∈ list.set (map ((#) (x,y)) (maximum-fst-prefixes (the (m
(x,y))) xs ys))

using ‹p ∈ list.set (maximum-fst-prefixes t (x # xs) ys)›
unfolding ∗ by auto

then have m (x,y) 6= None
by auto

then obtain t ′ where m (x,y) = Some t ′

by auto
moreover obtain p ′ where p = (x,y)#p ′ and p ′∈ list.set (maximum-fst-prefixes

(the (m (x,y))) xs ys)
using ‹p ∈ list.set (map ((#) (x,y)) (maximum-fst-prefixes (the (m (x,y)))

xs ys))›
by auto

ultimately have isin t ′ p ′

using Cons.IH
by auto

then have isin t p
unfolding ∗ ‹p = (x,y)#p ′› using ‹m (x,y) = Some t ′› by auto

then show p ∈ set t
by auto

qed
qed

qed

lemma maximum-fst-prefixes-are-prefixes :
assumes xys ∈ list.set (maximum-fst-prefixes t xs ys)
shows map fst xys = take (length xys) xs

using assms proof (induction xys arbitrary: t xs)
case Nil
then show ?case by auto

next
case (Cons xy xys)
then have xs 6= []

by auto
then obtain x xs ′ where xs = x#xs ′

using list.exhaust by auto

obtain m where ∗:t = PT m
using finite-tree.cases by blast

have is-leaf (PT m) = False
using Cons.prems unfolding ∗ ‹xs = x#xs ′›
by auto

406



have (xy#xys) ∈ list.set (concat (map (λ y . map ((#) (x,y)) (maximum-fst-prefixes
(the (m (x,y))) xs ′ ys)) (filter (λ y . (m (x,y) 6= None)) ys)))

using Cons.prems unfolding ∗ ‹xs = x#xs ′› ‹is-leaf (PT m) = False› maxi-
mum-fst-prefixes.simps by auto

then obtain y where y ∈ list.set (filter (λ y . (m (x,y) 6= None)) ys)
and (xy#xys) ∈ list.set (map ((#) (x,y)) (maximum-fst-prefixes

(the (m (x,y))) xs ′ ys))
by auto

then have xy = (x,y) and xys ∈ list.set (maximum-fst-prefixes (the (m (x,y)))
xs ′ ys)

by auto

have ∗∗: take (length ((x, y) # xys)) (x # xs ′) = x # (take (length xys) xs ′)
by auto

show ?case
using Cons.IH [OF ‹xys ∈ list.set (maximum-fst-prefixes (the (m (x,y))) xs ′

ys)›]
unfolding ‹xy = (x,y)› ‹xs = x#xs ′› ∗∗ by auto

qed

lemma finite-tree-set-eq :
assumes set t1 = set t2
and finite-tree t1
shows t1 = t2

using assms proof (induction height t1 arbitrary: t1 t2 rule: less-induct)
case less

obtain m1 m2 where t1 = PT m1 and t2 = PT m2
by (metis finite-tree.cases)

show ?case proof (cases height t1 )
case 0

have t1 = empty
using 0
unfolding ‹t1 = PT m1 › height.simps is-leaf .simps
by (metis add-is-0 zero-neq-one)

then have set t2 = {[]}
using less Prefix-Tree.set-empty by auto

have m2 = Map.empty
proof

show
∧

x. m2 x = None
proof −

fix x show m2 x = None
proof (rule ccontr)

assume m2 x 6= None
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then obtain t ′ where m2 x = Some t ′

by blast
then have [x] ∈ set t2

unfolding ‹t2 = PT m2 › set.simps by auto
then show False

using ‹set t2 = {[]}› by auto
qed

qed
qed
then show ?thesis

unfolding ‹t1 = empty› ‹t2 = PT m2 › empty-def by simp
next

case (Suc k)

show ?thesis proof (rule ccontr)
assume t1 6= t2

then have m1 6= m2
using ‹t1 = PT m1 › ‹t2 = PT m2 › by auto

then obtain x where m1 x 6= m2 x
by (meson ext)

then consider m1 x 6= None ∧ m2 x 6= None | m1 x = None ←→ m2 x 6=
None

by fastforce
then show False proof cases

case 1
then obtain t1 ′ t2 ′ where m1 x = Some t1 ′ and m2 x = Some t2 ′

by auto
then have t1 ′ 6= t2 ′

using ‹m1 x 6= m2 x› by auto
moreover have set t1 ′ = set t2 ′

proof −
have

∧
io . isin t1 ′ io = isin t1 (x#io)

unfolding ‹t1 = PT m1 › using ‹m1 x = Some t1 ′› by auto
moreover have

∧
io . isin t2 ′ io = isin t2 (x#io)

unfolding ‹t2 = PT m2 › using ‹m2 x = Some t2 ′› by auto
ultimately show ?thesis

using less.prems(1 )
by (metis Collect-cong mem-Collect-eq set.simps)

qed
moreover have height t1 ′ < height t1
proof −

have height t1 = 1 + Max (height ‘ ran m1 )
using Suc
unfolding ‹t1 = PT m1 › height.simps
by (meson Zero-not-Suc)

moreover have height t1 ′ ∈ height ‘ ran m1
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using ‹m1 x = Some t1 ′›
by (meson image-eqI ranI )

moreover have finite (ran m1 )
using less.prems(2 )
unfolding ‹t1 = PT m1 › finite-tree.simps
by (simp add: finite-ran)

ultimately have height t1 ≥ 1 + height t1 ′

by simp
then show ?thesis by auto

qed
moreover have finite-tree t1 ′

using less.prems(2 )
unfolding ‹t1 = PT m1 › finite-tree.simps
by (meson ‹m1 x = Some t1 ′› ranI )

ultimately show False
using less.hyps[of t1 ′ t2 ′]
by blast

next
case 2
then have isin t1 [x] 6= isin t2 [x]

unfolding ‹t1 = PT m1 › ‹t2 = PT m2 › by auto
then show False using less.prems(1 ) by auto

qed
qed

qed
qed

fun after-fst :: ( ′a × ′b) prefix-tree ⇒ ′a list ⇒ ′b list ⇒ ( ′a × ′b) prefix-tree where
after-fst t [] ys = t |
after-fst (PT m) (x # xs) ys = foldr (λ y t . case m (x,y) of None ⇒ t | Some

t ′⇒ combine t (after-fst t ′ xs ys)) ys empty

10.1 Alternative characterization for code generation

In order to generate code for the prefix trees, we represent the map inside
each prefix tree by Mapping.
definition MPT :: ( ′a, ′a prefix-tree) mapping ⇒ ′a prefix-tree where

MPT m = PT (Mapping.lookup m)

code-datatype MPT

lemma equals-MPT [code]: equal-class.equal (MPT m1 ) (MPT m2 ) = (m1 = m2 )

proof −
have equal-class.equal (MPT m1 ) (MPT m2 ) = equal-class.equal (PT (Mapping.lookup
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m1 )) (PT (Mapping.lookup m2 ))
unfolding MPT-def by simp

also have . . . = ((Mapping.lookup m1 ) = (Mapping.lookup m2 ))
using prefix-tree.eq.simps by auto

also have . . . = (m1 = m2 )
by (simp add: Mapping.lookup.rep-eq rep-inject)

finally show ?thesis .
qed

lemma empty-MPT [code] :
empty = MPT Mapping.empty
unfolding MPT-def empty-def
by (metis lookup-empty)

lemma insert-MPT [code] :
insert (MPT m) xs = (case xs of
[] ⇒ (MPT m) |
(x#xs) ⇒ MPT (Mapping.update x (insert (case Mapping.lookup m x of None

⇒ empty | Some t ′⇒ t ′) xs) m))
apply (cases xs; simp)
by (simp add: MPT-def lookup.rep-eq update.rep-eq)

lemma isin-MPT [code] :
isin (MPT m) xs = (case xs of
[] ⇒ True |
(x#xs) ⇒ (case Mapping.lookup m x of None ⇒ False | Some t ⇒ isin t xs))

unfolding MPT-def by (cases xs; auto)

lemma after-MPT [code] :
after (MPT m) xs = (case xs of
[] ⇒ MPT m |
(x#xs) ⇒ (case Mapping.lookup m x of None ⇒ empty | Some t ⇒ after t xs))

unfolding MPT-def by (cases xs; auto)

lemma PT-Mapping-ob :
fixes t :: ′a prefix-tree
obtains m where t = MPT m

proof −
obtain m ′ where t = PT m ′

using prefix-tree.exhaust by blast
then have t = MPT (Mapping m ′)

unfolding MPT-def
by (simp add: Mapping-inverse lookup.rep-eq)

then show ?thesis using that by blast
qed

lemma set-MPT [code] :
set (MPT m) = Set.insert [] (

⋃
x ∈ Mapping.keys m . (Cons x) ‘ (set (the
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(Mapping.lookup m x))))
unfolding MPT-def set-alt-def keys-dom-lookup by simp

lemma combine-MPT [code] :
combine (MPT m1 ) (MPT m2 ) = MPT (Mapping.combine combine m1 m2 )

proof −
have combine (MPT m1 ) (MPT m2 ) = combine (PT (Mapping.lookup m1 ))

(PT (Mapping.lookup m2 ))
unfolding MPT-def by simp

also have . . . = PT (λx . combine-options combine ((Mapping.lookup m1 ) x)
((Mapping.lookup m2 ) x))

unfolding combine.simps
by (simp add: combine-options-def )

ultimately show ?thesis
by (metis MPT-def combine.abs-eq lookup.abs-eq rep-inverse)

qed

lemma combine-after-MPT [code] :
combine-after (MPT m) xs t = (case xs of
[] ⇒ combine (MPT m) t |
(x#xs) ⇒ MPT (Mapping.update x (combine-after (case Mapping.lookup m x

of None ⇒ empty | Some t ′⇒ t ′) xs t) m))
apply (cases xs; simp)
by (simp add: MPT-def lookup.rep-eq update.rep-eq)

lemma finite-tree-MPT [code] :
finite-tree (MPT m) = (finite (Mapping.keys m) ∧ (∀ x ∈ Mapping.keys m .

finite-tree (the (Mapping.lookup m x))))
unfolding MPT-def finite-tree.simps keys-dom-lookup ran-dom-the-eq[symmetric]

by blast

lemma sorted-list-of-maximal-sequences-in-tree-MPT [code] :
sorted-list-of-maximal-sequences-in-tree (MPT m) =
(if Mapping.keys m = {}

then [[]]
else concat (map (λk . map ((#) k) (sorted-list-of-maximal-sequences-in-tree

(the (Mapping.lookup m k)))) (sorted-list-of-set (Mapping.keys m))))
unfolding MPT-def sorted-list-of-maximal-sequences-in-tree.simps keys-dom-lookup

by simp

lemma is-leaf-MPT [code]:
is-leaf (MPT m) = (Mapping.is-empty m)
by (simp add: MPT-def Mapping.is-empty-def Prefix-Tree.empty-def keys-dom-lookup)

lemma height-MPT [code] :
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height (MPT m) = (if (is-leaf (MPT m)) then 0 else 1 + Max ((height ◦ the ◦
Mapping.lookup m) ‘ Mapping.keys m))
proof −

have height (MPT m) = (if (is-leaf (MPT m)) then 0 else 1 + Max (height ‘
((λk . the (Mapping.lookup m k)) ‘ Mapping.keys m)))

by (simp add: MPT-def keys-dom-lookup ran-dom-the-eq)
moreover have (height ‘ ((λk . the (Mapping.lookup m k)) ‘ Mapping.keys m))

= ((height ◦ the ◦ Mapping.lookup m) ‘ Mapping.keys m)
by auto

ultimately show ?thesis
by auto

qed

lemma maximum-prefix-MPT [code]:
maximum-prefix (MPT m) xs = (case xs of
[] ⇒ [] |
(x#xs) ⇒ (case Mapping.lookup m x of None ⇒ [] | Some t ⇒ x # maxi-

mum-prefix t xs))
apply (cases xs; simp)
by (simp add: MPT-def lookup.rep-eq)

lemma sorted-list-of-in-tree-MPT [code] :
sorted-list-of-sequences-in-tree (MPT m) =
(if Mapping.keys m = {}

then [[]]
else [] # concat (map (λk . map ((#) k) (sorted-list-of-sequences-in-tree (the

(Mapping.lookup m k)))) (sorted-list-of-set (Mapping.keys m))))
unfolding MPT-def sorted-list-of-sequences-in-tree.simps keys-dom-lookup by

simp

lemma maximum-fst-prefixes-leaf :
fixes xs :: ′a list and ys :: ′b list

shows maximum-fst-prefixes empty xs ys = [[]]
proof −

have is-leaf (empty :: ( ′a× ′b)prefix-tree) by auto

obtain m where (empty :: ( ′a× ′b)prefix-tree) = PT m
using prefix-tree.exhaust by blast

show ?thesis proof (cases xs)
case Nil
then show ?thesis by auto

next
case (Cons x xs)
show ?thesis

using ‹is-leaf (empty :: ( ′a× ′b)prefix-tree) ›
unfolding ‹(empty :: ( ′a× ′b)prefix-tree) = PT m› Cons maximum-fst-prefixes.simps

by force
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qed
qed

lemma maximum-fst-prefixes-MPT [code]:
maximum-fst-prefixes (MPT m) xs ys = (case xs of
[] ⇒ (if is-leaf (MPT m) then [[]] else []) |
(x # xs) ⇒ (if is-leaf (MPT m) then [[]] else concat (map (λ y . map ((#)

(x,y)) (maximum-fst-prefixes (the (Mapping.lookup m (x,y))) xs ys)) (filter (λ y .
(Mapping.lookup m (x,y) 6= None)) ys))))

using maximum-fst-prefixes-leaf
apply (cases xs)

apply auto[1 ]
by (simp add: MPT-def lookup.rep-eq)

end

11 Refined Code Generation for Prefix Trees

This theory provides alternative code equations for selected functions on
prefix trees. Currently only Mapping via RBT is supported.
theory Prefix-Tree-Refined
imports Prefix-Tree Containers.Containers
begin

declare [[code drop: Prefix-Tree.combine]]

lemma combine-refined[code] :
fixes m1 :: ( ′a :: ccompare, ′a prefix-tree) mapping-rbt
shows Prefix-Tree.combine (MPT (RBT-Mapping m1 )) (MPT (RBT-Mapping

m2 ))
= (case ID CCOMPARE( ′a) of

None ⇒ Code.abort (STR ′′combine-MPT-RBT-Mapping: ccompare =
None ′′) (λ-. Prefix-Tree.combine (MPT (RBT-Mapping m1 )) (MPT (RBT-Mapping
m2 )))

| Some - ⇒ MPT (RBT-Mapping (RBT-Mapping2 .join (λ a t1 t2 .
Prefix-Tree.combine t1 t2 ) m1 m2 )))
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(is ?PT1 = ?PT2 )
proof (cases ID CCOMPARE( ′a))

case None
then show ?thesis by simp

next
case (Some a)
then have ∗: ?PT2 = MPT (RBT-Mapping (RBT-Mapping2 .join (λ a t1 t2 .

Prefix-Tree.combine t1 t2 ) m1 m2 ))
by auto

have ID CCOMPARE( ′a) 6= None
using Some by auto

have Mapping.lookup (Mapping.combine Prefix-Tree.combine (RBT-Mapping m1 )
(RBT-Mapping m2 )) = Mapping.lookup (RBT-Mapping (RBT-Mapping2 .join (λ
a b c . Prefix-Tree.combine b c) m1 m2 ))

proof
fix x

show Mapping.lookup (Mapping.combine Prefix-Tree.combine (RBT-Mapping
m1 ) (RBT-Mapping m2 )) x =

Mapping.lookup (RBT-Mapping (RBT-Mapping2 .join (λa. Prefix-Tree.combine)
m1 m2 )) x

(is ?M1 = ?M2 )
proof (cases RBT-Mapping2 .lookup m1 x)

case None
show ?thesis proof (cases RBT-Mapping2 .lookup m2 x)

case None

have ?M1 = None
using ‹RBT-Mapping2 .lookup m1 x = None› None

by (metis combine-options-simps(1 ) lookup-Mapping-code(2 ) lookup-combine)
moreover have ?M2 = None

using ‹RBT-Mapping2 .lookup m1 x = None› None
by (simp add: Mapping.lookup.abs-eq ‹ID ccompare 6= None› lookup-join)

ultimately show ?thesis
by simp

next
case (Some a)
have ?M1 = Some a

using ‹RBT-Mapping2 .lookup m1 x = None› Some
by (metis combine-options-simps(1 ) lookup-Mapping-code(2 ) lookup-combine)
moreover have ?M2 = Some a

using ‹RBT-Mapping2 .lookup m1 x = None› Some
by (simp add: Mapping.lookup.abs-eq ‹ID ccompare 6= None› lookup-join)

ultimately show ?thesis
by simp

qed
next
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case (Some a)
show ?thesis proof (cases RBT-Mapping2 .lookup m2 x)

case None

have ?M1 = Some a
using None Some

by (metis combine-options-simps(2 ) lookup-Mapping-code(2 ) lookup-combine)

moreover have ?M2 = Some a
using None Some
by (simp add: Mapping.lookup.abs-eq ‹ID ccompare 6= None› lookup-join)

ultimately show ?thesis
by simp

next
case (Some b)

have ?M1 = Some (Prefix-Tree.combine a b)
using ‹RBT-Mapping2 .lookup m1 x = Some a› Some

by (metis combine-options-simps(3 ) lookup-Mapping-code(2 ) lookup-combine)

moreover have ?M2 = Some (Prefix-Tree.combine a b)
using ‹RBT-Mapping2 .lookup m1 x = Some a› Some
by (simp add: Mapping.lookup.abs-eq ‹ID ccompare 6= None› lookup-join)

ultimately show ?thesis
by simp

qed
qed

qed
then have (Mapping.combine Prefix-Tree.combine (RBT-Mapping m1 ) (RBT-Mapping

m2 )) = (RBT-Mapping (RBT-Mapping2 .join (λ a b c . Prefix-Tree.combine b c)
m1 m2 ))

by (metis Mapping.lookup.rep-eq rep-inverse)
then show ?thesis

unfolding ∗ unfolding combine-MPT by simp
qed

declare [[code drop: Prefix-Tree.is-leaf ]]

lemma is-leaf-refined[code] :
fixes m :: ( ′a :: ccompare, ′a prefix-tree) mapping-rbt
shows Prefix-Tree.is-leaf (MPT (RBT-Mapping m))

= (case ID CCOMPARE( ′a) of
None ⇒ Code.abort (STR ′′is-leaf-MPT-RBT-Mapping: ccompare =

None ′′) (λ-. Prefix-Tree.is-leaf (MPT (RBT-Mapping m)))
| Some - ⇒ RBT-Mapping2 .is-empty m)

(is ?PT1 = ?PT2 )
proof (cases ID CCOMPARE( ′a))

case None
then show ?thesis by simp
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next
case (Some a)
then have ∗: ?PT2 = RBT-Mapping2 .is-empty m

by auto
show ?thesis

unfolding ∗
by (metis (no-types, opaque-lifting) MPT-def Mapping.is-empty-empty RBT-Mapping2 .is-empty-empty

Some is-leaf .elims(2 ) is-leaf-MPT lookup-Mapping-code(2 ) lookup-empty-empty map-
ping-empty-code(4 ) mapping-empty-def option.distinct(1 ) prefix-tree.inject)
qed

end

12 State Cover

This theory introduces a simple depth-first strategy for computing state
covers.
theory State-Cover
imports FSM
begin

12.1 Basic Definitions
type-synonym ( ′a, ′b) state-cover = ( ′a × ′b) list set
type-synonym ( ′a, ′b, ′c) state-cover-assignment = ′a ⇒ ( ′b × ′c) list

fun is-state-cover :: ( ′a, ′b, ′c) fsm ⇒ ( ′b, ′c) state-cover ⇒ bool where
is-state-cover M SC = ([] ∈ SC ∧ (∀ q ∈ reachable-states M . ∃ io ∈ SC . q ∈

io-targets M io (initial M )))

fun is-state-cover-assignment :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment
⇒ bool where

is-state-cover-assignment M f = (f (initial M ) = [] ∧ (∀ q ∈ reachable-states M
. q ∈ io-targets M (f q) (initial M )))

lemma state-cover-assignment-from-state-cover :
assumes is-state-cover M SC

obtains f where is-state-cover-assignment M f
and

∧
q . q ∈ reachable-states M =⇒ f q ∈ SC

proof −
define f where f : f = (λ q . (if q = initial M then [] else (SOME io . io ∈ SC
∧ q ∈ io-targets M io (initial M ))))

have f (initial M ) = []
using f by auto

moreover have
∧

q . q ∈ reachable-states M =⇒ f q ∈ SC ∧ q ∈ io-targets M
(f q) (initial M )
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proof −
fix q assume q ∈ reachable-states M
show f q ∈ SC ∧ q ∈ io-targets M (f q) (initial M )
proof (cases q = initial M )

case True
have q ∈ io-targets M (f q) (FSM .initial M )

unfolding True ‹f (initial M ) = []› by auto
then show ?thesis

using True assms ‹f (initial M ) = []› by auto
next

case False
then have f q = (SOME io . io ∈ SC ∧ q ∈ io-targets M io (initial M ))

using f by auto
moreover have ∃ io . io ∈ SC ∧ q ∈ io-targets M io (initial M )

using assms ‹q ∈ reachable-states M ›
by (meson is-state-cover .simps)

ultimately show ?thesis
by (metis (no-types, lifting) someI-ex)

qed
qed
ultimately show ?thesis using that[of f ]

by (meson is-state-cover-assignment.elims(3 ))
qed

lemma is-state-cover-assignment-language :
assumes is-state-cover-assignment M V
and q ∈ reachable-states M

shows V q ∈ L M
using assms io-targets-language
by (metis is-state-cover-assignment.simps)

lemma is-state-cover-assignment-observable-after :
assumes observable M
and is-state-cover-assignment M V
and q ∈ reachable-states M

shows after-initial M (V q) = q
proof −

have q ∈ io-targets M (V q) (initial M )
using assms(2 ,3 )
by auto

then have io-targets M (V q) (initial M ) = {q}
using observable-io-targets[OF assms(1 ) io-targets-language[OF ‹q ∈ io-targets

M (V q) (initial M )›]]
by (metis singletonD)

then obtain p where path M (initial M ) p and p-io p = V q and target (initial
M ) p = q

unfolding io-targets.simps
by blast
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then show after-initial M (V q) = q
using after-path[OF assms(1 ), of initial M p]
by simp

qed

lemma non-initialized-state-cover-assignment-from-non-initialized-state-cover :
assumes

∧
q . q ∈ reachable-states M =⇒ ∃ io ∈ L M ∩ SC . q ∈ io-targets M

io (initial M )
obtains f where

∧
q . q ∈ reachable-states M =⇒ q ∈ io-targets M (f q) (initial

M )
and

∧
q . q ∈ reachable-states M =⇒ f q ∈ L M ∩ SC

proof −
define f where f : f = (λ q . (SOME io . io ∈ L M ∩ SC ∧ q ∈ io-targets M io

(initial M )))

have
∧

q . q ∈ reachable-states M =⇒ f q ∈ L M ∩ SC ∧ q ∈ io-targets M (f
q) (initial M )

proof −
fix q assume q ∈ reachable-states M
show f q ∈ L M ∩ SC ∧ q ∈ io-targets M (f q) (initial M )
proof −

have f q = (SOME io . io ∈ L M ∩ SC ∧ q ∈ io-targets M io (initial M ))
using f by auto

moreover have ∃ io . io ∈ L M ∩ SC ∧ q ∈ io-targets M io (initial M )
using assms ‹q ∈ reachable-states M ›
by (meson Int-iff )

ultimately show ?thesis
by (metis (no-types, lifting) someI-ex)

qed
qed
then show ?thesis using that[of f ]

by blast
qed

lemma state-cover-assignment-inj :
assumes is-state-cover-assignment M V
and observable M
and q1 ∈ reachable-states M
and q2 ∈ reachable-states M
and q1 6= q2

shows V q1 6= V q2
proof (rule ccontr)

assume ¬ V q1 6= V q2

then have io-targets M (V q1 ) (initial M ) = io-targets M (V q2 ) (initial M )
by auto

then have q1 = q2
using assms(2 )

proof −
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have f1 : ∀ a f . a /∈ FSM .states (f ::( ′a, ′b, ′c) fsm) ∨ FSM .initial (FSM .from-FSM
f a) = a

by (meson from-FSM-simps(1 ))
obtain ff :: ( ′a ⇒ ( ′b × ′c) list) ⇒ ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm and pps

:: ( ′a ⇒ ( ′b × ′c) list) ⇒ ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c) list where
f2 : M = ff V M ∧ V = pps V M ∧ pps V M (FSM .initial (ff V M )) =

[] ∧ (∀ a. a /∈ reachable-states (ff V M ) ∨ a ∈ io-targets (ff V M ) (pps V M a)
(FSM .initial (ff V M )))

using assms(1 ) by fastforce
then have f3 : q2 ∈ FSM .states (ff V M )

by (simp add: ‹q2 ∈ reachable-states M › reachable-state-is-state)
then have f4 : ∃ ps. FSM .initial (FSM .from-FSM M q2 ) = target (FSM .initial

(ff V M )) ps ∧ path (ff V M ) (FSM .initial (ff V M )) ps ∧ p-io ps = V q2
using f2 ‹q2 ∈ reachable-states M › assms(1 ) by auto

have q1 ∈ {target (FSM .initial M ) ps |ps. path M (FSM .initial M ) ps ∧ p-io
ps = V q2}

by (metis (no-types) ‹io-targets M (V q1 ) (FSM .initial M ) = io-targets
M (V q2 ) (FSM .initial M )› ‹q1 ∈ reachable-states M › assms(1 ) io-targets.simps
is-state-cover-assignment.simps)

then have ∃ ps. FSM .initial (FSM .from-FSM M q1 ) = target (FSM .initial (ff
V M )) ps ∧ path (ff V M ) (FSM .initial (ff V M )) ps ∧ p-io ps = V q2

using f2 by (simp add: ‹q1 ∈ reachable-states M › reachable-state-is-state)
then show ?thesis

using f4 f3 f2 f1 by (metis (no-types) ‹observable M › ‹q1 ∈ reachable-states
M › observable-path-io-target reachable-state-is-state singletonD singletonI )

qed
then show False

using ‹q1 6= q2 › by blast
qed

lemma state-cover-assignment-card :
assumes is-state-cover-assignment M V
and observable M

shows card (V ‘ reachable-states M ) = card (reachable-states M )
proof −

have inj-on V (reachable-states M )
using state-cover-assignment-inj[OF assms] by (meson inj-onI )

then have card (reachable-states M ) ≤ card (V ‘ reachable-states M )
using fsm-states-finite restrict-to-reachable-states-simps(2 )
by (simp add: card-image)

moreover have card (V ‘ reachable-states M ) ≤ card (reachable-states M )
using fsm-states-finite
using card-image-le
by (metis restrict-to-reachable-states-simps(2 ))

ultimately show ?thesis by simp
qed
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lemma state-cover-assignment-language :
assumes is-state-cover-assignment M V
shows V ‘ reachable-states M ⊆ L M
using assms unfolding is-state-cover-assignment.simps
using language-io-target-append by fastforce

fun is-minimal-state-cover :: ( ′a, ′b, ′c) fsm ⇒ ( ′b, ′c) state-cover ⇒ bool where
is-minimal-state-cover M SC = (∃ f . (SC = f ‘ reachable-states M ) ∧ (is-state-cover-assignment

M f ))

lemma minimal-state-cover-is-state-cover :
assumes is-minimal-state-cover M SC
shows is-state-cover M SC

proof −
obtain f where f (initial M ) = [] and (SC = f ‘ reachable-states M ) and (

∧
q . q ∈ reachable-states M =⇒ q ∈ io-targets M (f q) (initial M ))

using assms by auto

show ?thesis unfolding is-state-cover .simps ‹(SC = f ‘ reachable-states M )›
proof −

have f ‘ FSM .reachable-states M ⊆ L M
proof

fix io assume io ∈ f ‘ FSM .reachable-states M
then obtain q where q ∈ reachable-states M and io = f q

by blast
then have q ∈ io-targets M (f q) (initial M )

using ‹(
∧

q . q ∈ reachable-states M =⇒ q ∈ io-targets M (f q) (initial
M ))› by blast

then show io ∈ L M
unfolding ‹io = f q › by force

qed

moreover have ∀ q∈FSM .reachable-states M . ∃ io∈f ‘ FSM .reachable-states
M . q ∈ io-targets M io (FSM .initial M )

using ‹(
∧

q . q ∈ reachable-states M =⇒ q ∈ io-targets M (f q) (initial M ))›
by blast

ultimately show [] ∈ f ‘ FSM .reachable-states M ∧ (∀ q∈FSM .reachable-states
M . ∃ io∈f ‘ FSM .reachable-states M . q ∈ io-targets M io (FSM .initial M ))

using ‹f (initial M ) = []› reachable-states-initial by force
qed

qed

lemma state-cover-assignment-after :
assumes observable M
and is-state-cover-assignment M V
and q ∈ reachable-states M
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shows V q ∈ L M and after-initial M (V q) = q
proof −

have V q ∈ L M ∧ after-initial M (V q) = q
using assms(3 ) proof (induct rule: reachable-states-induct)

case init
have V (FSM .initial M ) = []

using assms(2 )
by auto

then show ?case
by auto

next
case (transition t)
then have t-target t ∈ reachable-states M

using reachable-states-next
by metis

then have t-target t ∈ io-targets M (V (t-target t)) (FSM .initial M )
using assms(2 )
unfolding is-state-cover-assignment.simps
by auto

then obtain p where path M (initial M ) p and target (initial M ) p = t-target
t and p-io p = V (t-target t)

by auto
then have V (t-target t) ∈ L M

by force
then show ?case

using after-path[OF assms(1 ) ‹path M (initial M ) p›]
unfolding ‹p-io p = V (t-target t)› ‹target (initial M ) p = t-target t›
by simp

qed
then show V q ∈ L M and after-initial M (V q) = q

by simp+
qed

definition covered-transitions :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment
⇒ ( ′b × ′c) list ⇒ ( ′a, ′b, ′c) transition set where

covered-transitions M V α = (let
ts = the-elem (paths-for-io M (initial M ) α)

in
List.set (filter (λt . ((V (t-source t)) @ [(t-input t, t-output t)]) = (V (t-target

t))) ts))

12.2 State Cover Computation
fun reaching-paths-up-to-depth :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a set
⇒ ′a set ⇒ ( ′a ⇒ ( ′a, ′b, ′c) path option) ⇒ nat ⇒ ( ′a ⇒ ( ′a, ′b, ′c) path option)
where

reaching-paths-up-to-depth M nexts dones assignment 0 = assignment |
reaching-paths-up-to-depth M nexts dones assignment (Suc k) = (let
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usable-transitions = filter (λ t . t-source t ∈ nexts ∧ t-target t /∈ dones ∧
t-target t /∈ nexts) (transitions-as-list M );

targets = map t-target usable-transitions;
transition-choice = Map.empty(targets [7→] usable-transitions);
assignment ′ = assignment(targets [7→] (map (λq ′ . case transition-choice q ′ of

Some t ⇒ (case assignment (t-source t) of Some p ⇒ p@[t])) targets));
nexts ′ = set targets;
dones ′ = nexts ∪ dones

in reaching-paths-up-to-depth M nexts ′ dones ′ assignment ′ k)

lemma reaching-paths-up-to-depth-set :
assumes nexts = {q . (∃ p . path M (initial M ) p ∧ target (initial M ) p = q ∧

length p = n) ∧ (@ p . path M (initial M ) p ∧ target (initial M ) p = q ∧ length p
< n)}

and dones = {q . ∃ p . path M (initial M ) p ∧ target (initial M ) p = q ∧
length p < n}

and
∧

q . assignment q = None = (@ p . path M (initial M ) p ∧ target (initial
M ) p = q ∧ length p ≤ n)

and
∧

q p . assignment q = Some p =⇒ path M (initial M ) p ∧ target (initial
M ) p = q ∧ length p ≤ n

and dom assignment = nexts ∪ dones
shows ((reaching-paths-up-to-depth M nexts dones assignment k) q = None) =

(@ p . path M (initial M ) p ∧ target (initial M ) p = q ∧ length p ≤ n+k)
and ((reaching-paths-up-to-depth M nexts dones assignment k) q = Some p)

=⇒ path M (initial M ) p ∧ target (initial M ) p = q ∧ length p ≤ n+k
and q ∈ nexts ∪ dones =⇒ (reaching-paths-up-to-depth M nexts dones assign-

ment k) q = assignment q
proof −

have (((reaching-paths-up-to-depth M nexts dones assignment k) q = None) =
(@ p . path M (initial M ) p ∧ target (initial M ) p = q ∧ length p ≤ n+k))

∧ (((reaching-paths-up-to-depth M nexts dones assignment k) q = Some p)
−→ path M (initial M ) p ∧ target (initial M ) p = q ∧ length p ≤ n+k)

∧ (q ∈ nexts ∪ dones −→ (reaching-paths-up-to-depth M nexts dones assign-
ment k) q = assignment q)

using assms proof (induction k arbitrary: n q nexts dones assignment)
case 0

have ∗:((reaching-paths-up-to-depth M nexts dones assignment 0 ) q) = assign-
ment q

by auto
show ?case

unfolding ∗ using 0 .prems(3 ,4 )[of q] by simp
next

case (Suc k)

define usable-transitions where d1 : usable-transitions = filter (λ t . t-source
t ∈ nexts ∧ t-target t /∈ dones ∧ t-target t /∈ nexts) (transitions-as-list M )
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moreover define targets where d2 : targets = map t-target usable-transitions
moreover define transition-choice where d3 : transition-choice = Map.empty(targets

[ 7→] usable-transitions)
moreover define assignment ′ where d4 : assignment ′ = assignment(targets

[ 7→] (map (λq ′ . case transition-choice q ′ of Some t ⇒ (case assignment (t-source
t) of Some p ⇒ p@[t])) targets))

ultimately have d5 : reaching-paths-up-to-depth M nexts dones assignment
(Suc k) = reaching-paths-up-to-depth M (set targets) (nexts ∪ dones) assignment ′

k
unfolding reaching-paths-up-to-depth.simps Let-def by force

let ?nexts ′ = (set targets)
let ?dones ′ = (nexts ∪ dones)

have p1 : ?nexts ′ = {q. (∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial
M ) p = q ∧ length p = Suc n) ∧

(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p
= q ∧ length p < Suc n)} (is ?nexts ′ = ?PS)

proof −
have

∧
q . q ∈ ?nexts ′ =⇒ q ∈ ?PS

proof −
fix q assume q ∈ ?nexts ′

then obtain t where t ∈ transitions M
and t-source t ∈ nexts
and t-target t = q
and t-target t /∈ dones
and t-target t /∈ nexts

unfolding d2 d1 using transitions-as-list-set[of M ] by force

obtain p where path M (initial M ) p and target (initial M ) p = t-source
t and length p = n

using ‹t-source t ∈ nexts› unfolding Suc.prems by blast
then have path M (initial M ) (p@[t]) and target (initial M ) (p@[t]) = q

unfolding ‹t-target t = q›[symmetric] using ‹t ∈ transitions M › by auto
then have (∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p =

q ∧ length p = Suc n)
using ‹length p = n› by (metis length-append-singleton)

moreover have (@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M )
p = q ∧ length p < Suc n)

using ‹t-target t /∈ dones› ‹t-target t /∈ nexts› unfolding ‹t-target t = q›
Suc.prems

using less-antisym by blast
ultimately show q ∈ ?PS

by blast
qed
moreover have

∧
q . q ∈ ?PS =⇒ q ∈ ?nexts ′

proof −
fix q assume q ∈ ?PS
then obtain p where path M (initial M ) p and target (initial M ) p = q
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and length p = Suc n
by auto

let ?p = butlast p
let ?t = last p

have p = ?p@[?t]
using ‹length p = Suc n›
by (metis append-butlast-last-id list.size(3 ) nat.simps(3 ))

then have path M (initial M ) (?p@[?t])
using ‹path M (initial M ) p› by auto

have path M (FSM .initial M ) ?p
?t ∈ FSM .transitions M
t-source ?t = target (FSM .initial M ) ?p

using path-append-transition-elim[OF ‹path M (initial M ) (?p@[?t])›] by
blast+

have t-target ?t = q
using ‹target (initial M ) p = q› ‹p = ?p@[?t]› unfolding target.simps

visited-states.simps
by (metis (no-types, lifting) last-ConsR last-map map-is-Nil-conv snoc-eq-iff-butlast)

moreover have t-source ?t ∈ nexts
proof −

have length ?p = n
using ‹p = ?p@[?t]› ‹length p = Suc n› by auto

then have (∃ p . path M (initial M ) p ∧ target (initial M ) p = t-source
?t ∧ length p = n)

using ‹path M (FSM .initial M ) ?p› ‹t-source ?t = target (FSM .initial
M ) ?p›

by metis
moreover have (@ p . path M (initial M ) p ∧ target (initial M ) p =

t-source ?t ∧ length p < n)
proof

assume ∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p =
t-source ?t ∧ length p < n

then obtain p ′ where path M (FSM .initial M ) p ′ and target (FSM .initial
M ) p ′ = t-source ?t and length p ′ < n

by blast
then have path M (initial M ) (p ′@[?t]) and length (p ′@[?t]) < Suc n

using ‹?t ∈ FSM .transitions M › by auto
moreover have target (initial M ) (p ′@[?t]) = q

using ‹t-target ?t = q› by auto
ultimately show False

using ‹q ∈ ?PS›
by (metis (mono-tags, lifting) mem-Collect-eq)

qed
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ultimately show ?thesis
unfolding Suc.prems by blast

qed
moreover have q /∈ dones and q /∈ nexts

unfolding Suc.prems using ‹q ∈ ?PS›
using less-SucI by blast+

ultimately have t-source ?t ∈ nexts ∧ t-target ?t /∈ dones ∧ t-target ?t /∈
nexts

by simp
then show q ∈ ?nexts ′

unfolding d2 d1 using transitions-as-list-set[of M ] ‹?t ∈ FSM .transitions
M › ‹t-target ?t = q›

by auto
qed
ultimately show ?thesis

by blast
qed

have p2 : ?dones ′ = {q. ∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial
M ) p = q ∧ length p < Suc n} (is ?dones ′ = ?PS)

proof −
have

∧
q . q ∈ ?dones ′ =⇒ q ∈ ?PS

unfolding Suc.prems
using less-SucI by blast

moreover have
∧

q . q ∈ ?PS =⇒ q ∈ ?dones ′

proof −
fix q assume q ∈ ?PS
show q ∈ ?dones ′ proof (cases ∃ p. path M (FSM .initial M ) p ∧ target

(FSM .initial M ) p = q ∧ length p < n)
case True
then show ?thesis unfolding Suc.prems by blast

next
case False

obtain p where ∗: path M (FSM .initial M ) p ∧ target (FSM .initial M )
p = q and length p < Suc n

using ‹q ∈ ?PS› by blast
then have length p = n

using False by force

then show ?thesis
using ∗ False unfolding Suc.prems by blast

qed
qed
ultimately show ?thesis

by blast
qed

have p3 : (
∧

q. (assignment ′ q = None) = (@ p. path M (FSM .initial M ) p ∧
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target (FSM .initial M ) p = q ∧ length p ≤ Suc n))
and p4 : (

∧
q p. assignment ′ q = Some p =⇒ path M (FSM .initial M ) p ∧

target (FSM .initial M ) p = q ∧ length p ≤ Suc n)
and p5 : dom assignment ′ = ?nexts ′ ∪ ?dones ′

proof −

have dom transition-choice = set targets
unfolding d3 d2 by auto

show dom assignment ′ = ?nexts ′ ∪ ?dones ′

by (simp add: ‹dom assignment = nexts ∪ dones› d4 )

have helper :
∧

f P (n::nat) . {x . (∃ y . P x y ∧ f y = n) ∧ (@ y . P x y ∧ f
y < n)} ∪ {x . (∃ y . P x y ∧ f y < n)}= {x . (∃ y . P x y ∧ f y ≤ n)}

by force

have dom ′: dom assignment ′ = {q. ∃ p. path M (FSM .initial M ) p ∧ target
(FSM .initial M ) p = q ∧ length p ≤ Suc n}

unfolding ‹dom assignment ′ = ?nexts ′ ∪ ?dones ′› p1 p2
using helper [of λ q p . path M (FSM .initial M ) p ∧ target (FSM .initial M )

p = q length Suc n] by force

have ∗:
∧

q . q ∈ ?nexts ′ =⇒ ∃ p . assignment ′ q = Some p ∧ path M
(FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p ≤ Suc n

proof −
fix q assume q ∈ ?nexts ′

then obtain t where transition-choice q = Some t
using ‹dom transition-choice = set targets› d2 d3 by blast

then have t ∈ set usable-transitions
and t-target t = q
and q ∈ set targets

unfolding d3 d2 using map-upds-map-set-left[of t-target usable-transitions
q t] by auto

then have t-source t ∈ nexts and t ∈ transitions M
unfolding d1 using transitions-as-list-set[of M ] by auto

then obtain p where assignment (t-source t) = Some p
using Suc.prems(1 ,3 ,4 )
by fastforce

then have path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = t-source
t ∧ length p ≤ n

using Suc.prems(4 ) by blast
then have path M (FSM .initial M ) (p@[t]) ∧ target (FSM .initial M ) (p@[t])

= q ∧ length (p@[t]) ≤ Suc n
using ‹t ∈ transitions M › ‹t-target t = q› by auto

moreover have assignment ′ q = Some (p@[t])
proof −

have assignment ′ q = [targets [7→] (map (λq ′ . case transition-choice q ′ of
Some t ⇒ (case assignment (t-source t) of Some p ⇒ p@[t])) targets)] q
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unfolding d4 using map-upds-overwrite[OF ‹q ∈ set targets›, of map
(λq ′ . case transition-choice q ′ of Some t ⇒ (case assignment (t-source t) of Some
p ⇒ p@[t])) targets assignment]

by auto
also have . . . = Some (case transition-choice q of Some t ⇒ case assignment

(t-source t) of Some p ⇒ p @ [t])
using map-upds-map-set-right[OF ‹q ∈ set targets›] by auto

also have . . . = Some (p@[t])
using ‹transition-choice q = Some t› ‹assignment (t-source t) = Some

p› by simp
finally show ?thesis .

qed
ultimately show ∃ p . assignment ′ q = Some p ∧ path M (FSM .initial

M ) p ∧ target (FSM .initial M ) p = q ∧ length p ≤ Suc n
by simp

qed

show (
∧

q. (assignment ′ q = None) = (@ p. path M (FSM .initial M ) p ∧
target (FSM .initial M ) p = q ∧ length p ≤ Suc n))

using dom ′ by blast

show (
∧

q p. assignment ′ q = Some p =⇒ path M (FSM .initial M ) p ∧ target
(FSM .initial M ) p = q ∧ length p ≤ Suc n)

proof −
fix q p assume assignment ′ q = Some p

show path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length
p ≤ Suc n

proof (cases q ∈ ?nexts ′)
case True
show ?thesis using ∗[OF True] ‹assignment ′ q = Some p›

by simp
next

case False
moreover have

∧
q . assignment q 6= assignment ′ q =⇒ q ∈ ?nexts ′

unfolding d4
by (metis (no-types) map-upds-apply-nontin)

ultimately have assignment ′ q = assignment q
by force

then show ?thesis
using Suc.prems(4 ) ‹assignment ′ q = Some p›
by (simp add: le-SucI )

qed
qed

qed

have
∧

q . (reaching-paths-up-to-depth M (set targets) (nexts ∪ dones) assign-
ment ′ k q = None) =
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(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length
p ≤ n + Suc k) ∧

(reaching-paths-up-to-depth M (set targets) (nexts ∪ dones) assignment ′ k
q = Some p −→

path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p ≤
n + Suc k)

using Suc.IH [OF p1 p2 p3 p4 p5 ] by auto

moreover have (q ∈ nexts ∪ dones −→ reaching-paths-up-to-depth M nexts
dones assignment (Suc k) q = assignment q)

proof −
have

∧
q . (q ∈ set targets ∪ (nexts ∪ dones) =⇒ reaching-paths-up-to-depth

M (set targets) (nexts ∪ dones) assignment ′ k q = assignment ′ q)
using Suc.IH [OF p1 p2 p3 p4 p5 ] by auto

moreover have
∧

q . assignment q 6= assignment ′ q =⇒ q ∈ ?nexts ′

unfolding d4
by (metis (no-types) map-upds-apply-nontin)

ultimately show ?thesis
unfolding d5
by (metis (mono-tags, lifting) Un-iff mem-Collect-eq p1 p2 )

qed
ultimately show ?case

unfolding d5 by blast
qed

then show ((reaching-paths-up-to-depth M nexts dones assignment k) q = None)
= (@ p . path M (initial M ) p ∧ target (initial M ) p = q ∧ length p ≤ n+k)

and ((reaching-paths-up-to-depth M nexts dones assignment k) q = Some p)
=⇒ path M (initial M ) p ∧ target (initial M ) p = q ∧ length p ≤ n+k

and q ∈ nexts ∪ dones =⇒ (reaching-paths-up-to-depth M nexts dones
assignment k) q = assignment q

by blast+
qed

fun get-state-cover-assignment :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′a, ′b, ′c)
state-cover-assignment where

get-state-cover-assignment M = (let
path-assignments = reaching-paths-up-to-depth M {initial M} {} [initial M 7→

[]] (size M −1 )
in (λ q . case path-assignments q of Some p ⇒ p-io p | None ⇒ []))

lemma get-state-cover-assignment-is-state-cover-assignment :
is-state-cover-assignment M (get-state-cover-assignment M )
unfolding is-state-cover-assignment.simps

proof
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define path-assignments where path-assignments = reaching-paths-up-to-depth
M {initial M} {} [initial M 7→ []] (size M −1 )

then have ∗:
∧

q . get-state-cover-assignment M q = (case path-assignments q of
Some p ⇒ p-io p | None ⇒ [])

by auto

have c1 : {FSM .initial M} =
{q. (∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length

p = 0 ) ∧
(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p

< 0 )}
by auto

have c2 : {} = {q. ∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p
= q ∧ length p < 0}

by auto
have c3 : (

∧
q. ([FSM .initial M 7→ []] q = None) =

(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p
≤ 0 )) by auto

have c4 : (
∧

q p. [FSM .initial M 7→ []] q = Some p =⇒
path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p ≤

0 )
by (metis (no-types, lifting) c3 le-zero-eq length-0-conv map-upd-Some-unfold

option.discI )
have c5 : dom [FSM .initial M 7→ []] = {FSM .initial M} ∪ {}

by simp

have p1 :
∧

q . (path-assignments q = None) =
(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧

length p ≤ (FSM .size M − 1 ))
and p2 :

∧
q p . path-assignments q = Some p =⇒

path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧
length p ≤ (FSM .size M − 1 )

and p3 : path-assignments (initial M ) = Some []
unfolding ‹path-assignments = reaching-paths-up-to-depth M {initial M} {}

[initial M 7→ []] (size M −1 )›
using reaching-paths-up-to-depth-set[OF c1 c2 c3 c4 c5 ] by auto

show get-state-cover-assignment M (FSM .initial M ) = []
unfolding ∗ p3 by auto

show ∀ q∈reachable-states M . q ∈ io-targets M (get-state-cover-assignment M q)
(FSM .initial M )

proof
fix q assume q ∈ reachable-states M
then have q ∈ reachable-k M (FSM .initial M ) (FSM .size M − 1 )

using reachable-k-states by metis
then obtain p where target (initial M ) p = q and path M (initial M ) p and
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length p ≤ size M − 1
by auto

then have path-assignments q 6= None
using p1 by fastforce

then obtain p ′ where get-state-cover-assignment M q = p-io p ′

and path M (FSM .initial M ) p ′ and target (FSM .initial M ) p ′

= q
using p2 unfolding ∗ by force

then show q ∈ io-targets M (get-state-cover-assignment M q) (initial M )
unfolding io-targets.simps unfolding ‹get-state-cover-assignment M q = p-io

p ′› by blast
qed

qed

12.3 Computing Reachable States via State Cover Compu-
tation

lemma restrict-to-reachable-states[code]:
restrict-to-reachable-states M = (let

path-assignments = reaching-paths-up-to-depth M {initial M} {} [initial M 7→
[]] (size M −1 )

in filter-states M (λ q . path-assignments q 6= None))
proof −

define path-assignments where path-assignments = reaching-paths-up-to-depth
M {initial M} {} [initial M 7→ []] (size M −1 )

then have ∗: (let
path-assignments = reaching-paths-up-to-depth M {initial M} {} [initial M 7→

[]] (size M −1 )
in filter-states M (λ q . path-assignments q 6= None)) = filter-states M (λ q .

path-assignments q 6= None)
by simp

have c1 : {FSM .initial M} =
{q. (∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length

p = 0 ) ∧
(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p

< 0 )}
by auto

have c2 : {} = {q. ∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p
= q ∧ length p < 0}

by auto
have c3 : (

∧
q. ([FSM .initial M 7→ []] q = None) =

(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p
≤ 0 )) by auto

have c4 : (
∧

q p. [FSM .initial M 7→ []] q = Some p =⇒
path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p ≤

0 )
by (metis (no-types, lifting) c3 le-zero-eq length-0-conv map-upd-Some-unfold

option.discI )
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have c5 : dom [FSM .initial M 7→ []] = {FSM .initial M} ∪ {}
by simp

have p1 :
∧

q . (path-assignments q = None) =
(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧

length p ≤ (FSM .size M − 1 ))
and p2 :

∧
q p . path-assignments q = Some p =⇒

path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧
length p ≤ (FSM .size M − 1 )

and p3 : path-assignments (initial M ) = Some []
unfolding ‹path-assignments = reaching-paths-up-to-depth M {initial M} {}

[initial M 7→ []] (size M −1 )›
using reaching-paths-up-to-depth-set[OF c1 c2 c3 c4 c5 ] by auto

have
∧

q . path-assignments q 6= None ←→ q ∈ reachable-states M
proof

show
∧

q. path-assignments q 6= None =⇒ q ∈ reachable-states M
using p2 unfolding reachable-states-def
by blast

show
∧

q. q ∈ reachable-states M =⇒ path-assignments q 6= None
proof −

fix q assume q ∈ reachable-states M
then have q ∈ reachable-k M (FSM .initial M ) (FSM .size M − 1 )

using reachable-k-states by metis
then obtain p where target (initial M ) p = q and path M (initial M ) p

and length p ≤ size M − 1
by auto

then show path-assignments q 6= None
using p1 by fastforce

qed
qed
then show ?thesis

unfolding restrict-to-reachable-states.simps ∗ by simp
qed

declare [[code drop: reachable-states]]
lemma reachable-states-refined[code] :

reachable-states M = (let
path-assignments = reaching-paths-up-to-depth M {initial M} {} [initial M 7→

[]] (size M −1 )
in Set.filter (λ q . path-assignments q 6= None) (states M ))

proof −
define path-assignments where path-assignments = reaching-paths-up-to-depth

M {initial M} {} [initial M 7→ []] (size M −1 )
then have ∗: (let

path-assignments = reaching-paths-up-to-depth M {initial M} {} [initial M 7→
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[]] (size M −1 )
in Set.filter (λ q . path-assignments q 6= None) (states M )) = Set.filter (λ q .

path-assignments q 6= None) (states M )
by simp

have c1 : {FSM .initial M} =
{q. (∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length

p = 0 ) ∧
(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p

< 0 )}
by auto

have c2 : {} = {q. ∃ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p
= q ∧ length p < 0}

by auto
have c3 : (

∧
q. ([FSM .initial M 7→ []] q = None) =

(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p
≤ 0 )) by auto

have c4 : (
∧

q p. [FSM .initial M 7→ []] q = Some p =⇒
path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧ length p ≤

0 )
by (metis (no-types, lifting) c3 le-zero-eq length-0-conv map-upd-Some-unfold

option.discI )
have c5 : dom [FSM .initial M 7→ []] = {FSM .initial M} ∪ {}

by simp

have p1 :
∧

q . (path-assignments q = None) =
(@ p. path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧

length p ≤ (FSM .size M − 1 ))
and p2 :

∧
q p . path-assignments q = Some p =⇒

path M (FSM .initial M ) p ∧ target (FSM .initial M ) p = q ∧
length p ≤ (FSM .size M − 1 )

and p3 : path-assignments (initial M ) = Some []
unfolding ‹path-assignments = reaching-paths-up-to-depth M {initial M} {}

[initial M 7→ []] (size M −1 )›
using reaching-paths-up-to-depth-set[OF c1 c2 c3 c4 c5 ] by auto

have
∧

q . path-assignments q 6= None ←→ q ∈ reachable-states M
proof

show
∧

q. path-assignments q 6= None =⇒ q ∈ reachable-states M
using p2 unfolding reachable-states-def
by blast

show
∧

q. q ∈ reachable-states M =⇒ path-assignments q 6= None
proof −

fix q assume q ∈ reachable-states M
then have q ∈ reachable-k M (FSM .initial M ) (FSM .size M − 1 )

using reachable-k-states by metis
then obtain p where target (initial M ) p = q and path M (initial M ) p

and length p ≤ size M − 1
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by auto
then show path-assignments q 6= None

using p1 by fastforce
qed

qed
then show ?thesis

unfolding ∗ using reachable-state-is-state by force
qed

lemma minimal-sequence-to-failure-from-state-cover-assignment-ob :
assumes L M 6= L I
and is-state-cover-assignment M V
and (L M ∩ (V ‘ reachable-states M )) = (L I ∩ (V ‘ reachable-states M ))

obtains ioT ioX where ioT ∈ (V ‘ reachable-states M )
and ioT @ ioX ∈ (L M − L I ) ∪ (L I − L M )
and

∧
io q . q ∈ reachable-states M =⇒ (V q)@io ∈ (L M − L I )

∪ (L I − L M ) =⇒ length ioX ≤ length io
proof −

let ?exts = {io . ∃ q ∈ reachable-states M . (V q)@io ∈ (L M − L I ) ∪ (L I −
L M )}

define exMin where exMin: exMin = arg-min length (λ io . io ∈ ?exts)

have V (initial M ) = []
using assms(2 ) by auto

moreover have ∃ io . io ∈ (L M − L I ) ∪ (L I − L M )
using assms(1 ) by blast

ultimately have ?exts 6= {}
using reachable-states-initial by (metis (mono-tags, lifting) append-self-conv2

empty-iff mem-Collect-eq)
then have exMin ∈ ?exts ∧ (∀ io ′ . io ′ ∈ ?exts −→ length exMin ≤ length io ′)

using exMin arg-min-nat-lemma by (metis (no-types, lifting) all-not-in-conv)
then show ?thesis

using that by blast
qed

end

13 Alternative OFSM Table Computation

The approach to computing OFSM tables presented in the imported theories
is easy to use in proofs but inefficient in practice due to repeated recompu-
tation of the same tables. Thus, in the following we present a more efficient
method for computing and storing tables.
theory OFSM-Tables-Refined
imports Minimisation Distinguishability
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begin

13.1 Computing a List of all OFSM Tables
type-synonym ( ′a, ′b, ′c) ofsm-table = ( ′a, ′a set) mapping

fun initial-ofsm-table :: ( ′a::linorder , ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) ofsm-table where
initial-ofsm-table M = Mapping.tabulate (states-as-list M ) (λq . states M )

abbreviation ofsm-lookup ≡ Mapping.lookup-default {}

lemma initial-ofsm-table-lookup-invar : ofsm-lookup (initial-ofsm-table M ) q = ofsm-table
M (λq . states M ) 0 q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by auto
then have Mapping.lookup (initial-ofsm-table M ) q = Some (states M )

unfolding initial-ofsm-table.simps
by (simp add: lookup-tabulate)

then have ofsm-lookup (initial-ofsm-table M ) q = states M
by (simp add: lookup-default-def )

then show ?thesis
using True by auto

next
case False
then have q /∈ list.set (states-as-list M )

using states-as-list-set by auto
then have Mapping.lookup (initial-ofsm-table M ) q = None

unfolding initial-ofsm-table.simps
by (simp add: lookup-tabulate)

then have ofsm-lookup (initial-ofsm-table M ) q = {}
by (simp add: lookup-default-def )

then show ?thesis
using False by auto

qed

lemma initial-ofsm-table-keys-invar : Mapping.keys (initial-ofsm-table M ) = states
M

using states-as-list-set[of M ]
by simp

fun next-ofsm-table :: ( ′a::linorder , ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) ofsm-table ⇒ ( ′a, ′b, ′c)
ofsm-table where

next-ofsm-table M prev-table = Mapping.tabulate (states-as-list M ) (λ q . {q ′ ∈
ofsm-lookup prev-table q . ∀ x ∈ inputs M . ∀ y ∈ outputs M . (case h-obs M q x y
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of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ ofsm-lookup prev-table qT =
ofsm-lookup prev-table qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None) })

lemma h-obs-non-state :
assumes q /∈ states M
shows h-obs M q x y = None

proof −
have ∗:

∧
x . h M (q,x) = {}

using assms fsm-transition-source
unfolding h-simps
by force

show ?thesis
unfolding h-obs-simps Let-def ∗
by (simp add: Set.filter-def )

qed

lemma next-ofsm-table-lookup-invar :
assumes

∧
q . ofsm-lookup prev-table q = ofsm-table M (λq . states M ) k q

shows ofsm-lookup (next-ofsm-table M prev-table) q = ofsm-table M (λq . states
M ) (Suc k) q
proof (cases q ∈ states M )

case True

let ?prev-table = ofsm-table M (λq . states M ) k

from True have q ∈ list.set (states-as-list M )
using states-as-list-set by auto

then have Mapping.lookup (next-ofsm-table M prev-table) q = Some {q ′ ∈
ofsm-lookup prev-table q . ∀ x ∈ inputs M . ∀ y ∈ outputs M . (case h-obs M
q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ ofsm-lookup prev-table
qT = ofsm-lookup prev-table qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y =
None) }

unfolding next-ofsm-table.simps
by (meson lookup-tabulate states-as-list-distinct)

then have ofsm-lookup (next-ofsm-table M prev-table) q = {q ′ ∈ ofsm-lookup
prev-table q . ∀ x ∈ inputs M . ∀ y ∈ outputs M . (case h-obs M q x y of Some qT
⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ ofsm-lookup prev-table qT = ofsm-lookup
prev-table qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None) }

by (simp add: lookup-default-def )
also have . . . = {q ′ ∈ ?prev-table q . ∀ x ∈ inputs M . ∀ y ∈ outputs M . (case

h-obs M q x y of Some qT ⇒ (case h-obs M q ′ x y of Some qT ′ ⇒ ?prev-table qT
= ?prev-table qT ′ | None ⇒ False) | None ⇒ h-obs M q ′ x y = None) }

unfolding assms by presburger
also have . . . = ofsm-table M (λq . states M ) (Suc k) q

unfolding ofsm-table.simps Let-def by presburger
finally show ?thesis .

next
case False
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then have q /∈ list.set (states-as-list M )
using states-as-list-set by auto

then have Mapping.lookup (next-ofsm-table M prev-table) q = None
by (simp add: lookup-tabulate)

then have ofsm-lookup (next-ofsm-table M prev-table) q = {}
by (simp add: lookup-default-def )

then show ?thesis
unfolding ofsm-table-non-state[OF False] .

qed

lemma next-ofsm-table-keys-invar : Mapping.keys (next-ofsm-table M prev-table) =
states M

using states-as-list-set[of M ]
by simp

fun compute-ofsm-table-list :: ( ′a::linorder , ′b, ′c) fsm ⇒ nat ⇒ ( ′a, ′b, ′c) ofsm-table
list where

compute-ofsm-table-list M k = rev (foldr (λ - prev . (next-ofsm-table M (hd prev))
# prev) [0 ..<k] [initial-ofsm-table M ])

lemma compute-ofsm-table-list-props:
length (compute-ofsm-table-list M k) = Suc k∧

i q . i < Suc k =⇒ ofsm-lookup ((compute-ofsm-table-list M k) ! i) q =
ofsm-table M (λq . states M ) i q∧

i . i < Suc k =⇒ Mapping.keys ((compute-ofsm-table-list M k) ! i) = states M
proof −

define t where t = (λ k . (foldr (λ - prev . (next-ofsm-table M (hd prev)) #
prev) (rev [0 ..<k]) [initial-ofsm-table M ]))

have t-props:length (t k) = Suc k
∧ (∀ i q . i < Suc k −→ ofsm-lookup (t k ! (k−i)) q = ofsm-table M (λq

. states M ) i q)
∧ (∀ i . i < Suc k −→ Mapping.keys (t k ! i) = states M )

proof (induction k)
case 0
have t 0 = [initial-ofsm-table M ]

unfolding t-def by auto
show ?case

unfolding ‹t 0 = [initial-ofsm-table M ]›
using initial-ofsm-table-lookup-invar [of M ]
using initial-ofsm-table-keys-invar [of M ]
by auto

next
case (Suc k)

have rev [0 ..<Suc k] = k # (rev [0 ..<k])
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by auto
have ∗: t (Suc k) = (next-ofsm-table M (hd (t k))) # (t k)

unfolding t-def ‹rev [0 ..<Suc k] = k # (rev [0 ..<k])›
by auto

have IH1 : length (t k) = Suc k
and IH2 :

∧
i q . i < Suc k =⇒ ofsm-lookup (t k ! (k−i)) q = ofsm-table M

(λq. FSM .states M ) i q
and IH3 :

∧
i . i < Suc k =⇒ Mapping.keys (t k ! i) = FSM .states M

using Suc.IH by blast+

have length (t (Suc k)) = Suc (Suc k)
using IH1 unfolding ∗ by auto

moreover have
∧

i q . i < Suc (Suc k) =⇒ ofsm-lookup (t (Suc k) ! ((Suc
k)−i)) q = ofsm-table M (λq. FSM .states M ) i q

proof −
fix i q assume i < Suc (Suc k)
then consider i = Suc k | i < Suc k

using less-Suc-eq by blast
then show ofsm-lookup (t (Suc k) ! ((Suc k)−i)) q = ofsm-table M (λq.

FSM .states M ) i q proof cases
case 1
then have (t (Suc k) ! ((Suc k)−i)) = hd (t (Suc k))

by (metis ∗ diff-self-eq-0 list.sel(1 ) nth-Cons-0 )
then have (t (Suc k) ! ((Suc k)−i)) = next-ofsm-table M (hd (t k))

unfolding ∗ by (metis list.sel(1 ))
then have ofsm-lookup (t (Suc k) ! ((Suc k)−i)) q = ofsm-lookup (next-ofsm-table

M (hd (t k))) q
by auto

have (hd (t k)) = (t k ! (k−k))
by (metis IH1 diff-self-eq-0 hd-conv-nth list.size(3 ) nat.simps(3 ))

moreover have k < Suc k by auto
ultimately have ofsm-lookup (next-ofsm-table M (hd (t k))) q = ofsm-table

M (λq. FSM .states M ) i q
by (metis 1 IH2 next-ofsm-table-lookup-invar)

then show ?thesis
unfolding ‹ofsm-lookup (t (Suc k) ! ((Suc k)−i)) q = ofsm-lookup

(next-ofsm-table M (hd (t k))) q› .
next

case 2
then have ((Suc k)−i) > 0

by auto
then have (t (Suc k) ! ((Suc k)−i)) = t k ! (((Suc k)−i) − 1 )

unfolding ∗ by (meson nth-Cons-pos)
then have (t (Suc k) ! ((Suc k)−i)) = t k ! (k−i)

by auto
show ofsm-lookup (t (Suc k) ! ((Suc k)−i)) q = ofsm-table M (λq. FSM .states

M ) i q
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using IH2 [OF 2 ]
unfolding ‹(t (Suc k) ! ((Suc k)−i)) = t k ! (k−i)› by metis

qed
qed
moreover have

∧
i . i < Suc (Suc k) =⇒ Mapping.keys (t (Suc k) ! i) =

FSM .states M
by (metis ∗ IH3 Suc-diff-1 Suc-less-eq less-Suc-eq-0-disj next-ofsm-table-keys-invar

nth-Cons ′)
ultimately show ?case

by blast
qed

have ∗:(compute-ofsm-table-list M k) = rev (t k)
unfolding compute-ofsm-table-list.simps t-def
using foldr-length-helper [of rev [0 ..<k] [0 ..<k] (λ prev . (next-ofsm-table M (hd

prev)) # prev), OF length-rev]
by metis

show length (compute-ofsm-table-list M k) = Suc k
using t-props unfolding ∗ length-rev by blast

have
∧

i . i < Suc k =⇒ (rev (t k) ! i) = t k ! (k − i)
by (simp add: rev-nth t-props)

then show
∧

i q. i < Suc k =⇒
ofsm-lookup (compute-ofsm-table-list M k ! i) q = ofsm-table M (λq.

FSM .states M ) i q
unfolding ∗ using t-props
by presburger

show
∧

i. i < Suc k =⇒ Mapping.keys (compute-ofsm-table-list M k ! i) =
FSM .states M

unfolding ∗ using t-props ‹
∧

i . i < Suc k =⇒ (rev (t k) ! i) = t k ! (k − i)›
by simp

qed

fun compute-ofsm-tables :: ( ′a::linorder , ′b, ′c) fsm ⇒ nat ⇒ (nat, ( ′a, ′b, ′c) ofsm-table)
mapping where

compute-ofsm-tables M k = Mapping.bulkload (compute-ofsm-table-list M k)

lemma compute-ofsm-tables-entries :
assumes i < Suc k
shows (the (Mapping.lookup (compute-ofsm-tables M k) i)) = ((compute-ofsm-table-list

M k) ! i)
using assms
unfolding compute-ofsm-tables.simps bulkload-def
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by (metis bulkload.rep-eq bulkload-def compute-ofsm-table-list-props(1 ) lookup.rep-eq
option.sel)

lemma compute-ofsm-tables-lookup-invar :
assumes i < Suc k
shows ofsm-lookup (the (Mapping.lookup (compute-ofsm-tables M k) i)) q =

ofsm-table M (λq . states M ) i q
using compute-ofsm-table-list-props(2 )[OF assms]
unfolding compute-ofsm-tables-entries[OF assms] by metis

lemma compute-ofsm-tables-keys-invar :
assumes i < Suc k
shows Mapping.keys (the (Mapping.lookup (compute-ofsm-tables M k) i)) =

states M
using compute-ofsm-table-list-props(3 )[OF assms]
unfolding compute-ofsm-tables-entries[OF assms] by metis

13.2 Finding Diverging Tables
lemma ofsm-table-fix-from-compute-ofsm-tables :

assumes q ∈ states M
shows ofsm-lookup (the (Mapping.lookup (compute-ofsm-tables M (size M − 1 ))
(size M − 1 ))) q = ofsm-table-fix M (λq. FSM .states M ) 0 q
proof −

have ((λq. FSM .states M ) ‘ FSM .states M ) = {states M}
using fsm-initial[of M ] by auto

then have card ((λq. FSM .states M ) ‘ FSM .states M ) = 1
by auto

have ofsm-lookup (the (Mapping.lookup (compute-ofsm-tables M (size M − 1 ))
(size M − 1 ))) q = ofsm-table M (λq. FSM .states M ) (FSM .size M − 1 ) q

using compute-ofsm-tables-lookup-invar [of (size M − 1 ) (size M − 1 ) M q]
by linarith

also have . . . = ofsm-table-fix M (λq. FSM .states M ) 0 q
using ofsm-table-fix-partition-fixpoint[OF minimise-initial-partition - assms(1 ),

of size M ]
unfolding ‹card ((λq. FSM .states M ) ‘ FSM .states M ) = 1 ›
by blast

finally show ?thesis .
qed

fun find-first-distinct-ofsm-table ′ :: ( ′a::linorder , ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ nat where
find-first-distinct-ofsm-table ′ M q1 q2 = (let

tables = (compute-ofsm-tables M (size M − 1 ))
in if (q1 ∈ states M

∧ q2 ∈ states M
∧ (ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))) q1
6= ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))) q2 ))

then the (find-index (λ i . ofsm-lookup (the (Mapping.lookup tables i)) q1 6=
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ofsm-lookup (the (Mapping.lookup tables i)) q2 ) [0 ..<size M ])
else 0 )

lemma find-first-distinct-ofsm-table-is-first ′ :
assumes q1 ∈ FSM .states M

and q2 ∈ FSM .states M
and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )

0 q2
shows (find-first-distinct-ofsm-table M q1 q2 ) = Min {k . ofsm-table M (λq .

states M ) k q1 6= ofsm-table M (λq . states M ) k q2
∧ (∀ k ′ . k ′ < k −→ ofsm-table

M (λq . states M ) k ′ q1 = ofsm-table M (λq . states M ) k ′ q2 )}
(is find-first-distinct-ofsm-table M q1 q2 = Min ?ks)
proof −

have find-first-distinct-ofsm-table M q1 q2 ∈ ?ks
using find-first-distinct-ofsm-table-is-first[OF assms]
by blast

moreover have
∧

k . k ∈ ?ks =⇒ k = find-first-distinct-ofsm-table M q1 q2
using calculation linorder-neqE-nat by blast

ultimately have ?ks = {find-first-distinct-ofsm-table M q1 q2}
by blast

then show ?thesis
by fastforce

qed

lemma find-first-distinct-ofsm-table ′-is-first ′ :
assumes q1 ∈ FSM .states M

and q2 ∈ FSM .states M
and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )

0 q2
shows (find-first-distinct-ofsm-table ′ M q1 q2 ) = Min {k . ofsm-table M (λq .

states M ) k q1 6= ofsm-table M (λq . states M ) k q2
∧ (∀ k ′ . k ′ < k −→ ofsm-table

M (λq . states M ) k ′ q1 = ofsm-table M (λq . states M ) k ′ q2 )}
(is find-first-distinct-ofsm-table ′ M q1 q2 = Min ?ks)

and find-first-distinct-ofsm-table ′ M q1 q2 ≤ size M − 1
proof −

define tables where tables = compute-ofsm-tables M (FSM .size M − 1 )

have ofsm-lookup (the (Mapping.lookup tables (FSM .size M − 1 ))) q1 6=
ofsm-lookup (the (Mapping.lookup tables (FSM .size M − 1 ))) q2

unfolding tables-def
unfolding ofsm-table-fix-from-compute-ofsm-tables[OF assms(1 )]
unfolding ofsm-table-fix-from-compute-ofsm-tables[OF assms(2 )]

440



using assms(3 ) .

then have find-first-distinct-ofsm-table ′ M q1 q2 = the (find-index
(λi. ofsm-lookup (the (Mapping.lookup tables i)) q1 6=

ofsm-lookup (the (Mapping.lookup tables i)) q2 )
[0 ..<FSM .size M ])

unfolding find-first-distinct-ofsm-table ′.simps
using assms(1 ,2 ,3 )
unfolding Let-def tables-def [symmetric]
by presburger

have FSM .size M − 1 ∈ set [0 ..<FSM .size M ]
using fsm-size-Suc[of M ] by auto

then have ∗:∃ k ∈ set [0 ..<FSM .size M ] . (λi. ofsm-lookup (the (Mapping.lookup
tables i)) q1 6=

ofsm-lookup (the (Mapping.lookup tables i)) q2 ) k
using ‹ofsm-lookup (the (Mapping.lookup tables (FSM .size M − 1 ))) q1 6=

ofsm-lookup (the (Mapping.lookup tables (FSM .size M − 1 ))) q2 ›
by blast

have find-index
(λi. ofsm-lookup (the (Mapping.lookup tables i)) q1 6=

ofsm-lookup (the (Mapping.lookup tables i)) q2 )
[0 ..<FSM .size M ] 6= None

using find-index-exhaustive[OF ∗] .
then obtain k where ∗:find-index

(λi. ofsm-lookup (the (Mapping.lookup tables i)) q1 6=
ofsm-lookup (the (Mapping.lookup tables i)) q2 )

[0 ..<FSM .size M ] = Some k
by blast

then have find-first-distinct-ofsm-table ′ M q1 q2 = k
unfolding ‹find-first-distinct-ofsm-table ′ M q1 q2 = the (find-index

(λi. ofsm-lookup (the (Mapping.lookup tables i)) q1 6=
ofsm-lookup (the (Mapping.lookup tables i)) q2 )

[0 ..<FSM .size M ])›
by auto

have
∧

k ′ . k ′ ≤ k =⇒ [0 ..<FSM .size M ] ! k ′ = k ′

using find-index-index(1 )[OF ∗]
by (metis add.left-neutral diff-zero dual-order .trans length-upt not-le nth-upt)

then have [0 ..<FSM .size M ] ! k = k and
∧

k ′ . k ′ < k =⇒ [0 ..<FSM .size M ]
! k ′ = k ′

by auto
have k < Suc (size M − 1 )

using find-index-index(1 )[OF ∗]
by auto

have ofsm-lookup (the (Mapping.lookup tables k)) q1 6= ofsm-lookup (the (Mapping.lookup
tables k)) q2

using find-index-index(2 )[OF ∗]
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unfolding ‹[0 ..<FSM .size M ] ! k = k› .
then have p1 : ofsm-table M (λq . states M ) k q1 6= ofsm-table M (λq . states

M ) k q2
unfolding tables-def
unfolding compute-ofsm-tables-lookup-invar [OF ‹k < Suc (size M − 1 )›] .

have
∧

k ′ . k ′ < k =⇒ ofsm-lookup (the (Mapping.lookup tables k ′)) q1 =
ofsm-lookup (the (Mapping.lookup tables k ′)) q2

using ‹
∧

k ′ . k ′ < k =⇒ [0 ..<FSM .size M ] ! k ′ = k ′›
using find-index-index(3 )[OF ∗]
by auto

then have p2 : (∀ k ′ . k ′ < k −→ ofsm-table M (λq . states M ) k ′ q1 = ofsm-table
M (λq . states M ) k ′ q2 )

unfolding tables-def
using compute-ofsm-tables-lookup-invar [of - (size M − 1 ) M ] ‹k < Suc (size

M − 1 )›
using less-trans by blast

have k ∈ ?ks
using p1 p2 by blast

moreover have
∧

k ′ . k ′ ∈ ?ks =⇒ k ′ = k
using calculation linorder-neqE-nat by blast

ultimately have ?ks = {k}
by blast

then show find-first-distinct-ofsm-table ′ M q1 q2 = Min ?ks
unfolding ‹find-first-distinct-ofsm-table ′ M q1 q2 = k›
by fastforce

show find-first-distinct-ofsm-table ′ M q1 q2 ≤ FSM .size M − 1
unfolding ‹find-first-distinct-ofsm-table ′ M q1 q2 = k›
using ‹k < Suc (size M − 1 )›
by auto

qed

lemma find-first-distinct-ofsm-table ′-max :
find-first-distinct-ofsm-table ′ M q1 q2 ≤ size M − 1

proof (cases q1 ∈ states M
∧ q2 ∈ states M
∧ (ofsm-lookup (the (Mapping.lookup (compute-ofsm-tables M (size M − 1 ))

(size M − 1 ))) q1
6= ofsm-lookup (the (Mapping.lookup (compute-ofsm-tables M (size M − 1 ))

(size M − 1 ))) q2 ))
case True
then show ?thesis using find-first-distinct-ofsm-table ′-is-first ′(2 )[of q1 M q2 ]

using ofsm-table-fix-from-compute-ofsm-tables by blast
next

case False
then have find-first-distinct-ofsm-table ′ M q1 q2 = 0
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unfolding find-first-distinct-ofsm-table ′.simps Let-def by meson
then show ?thesis

by linarith
qed

lemma find-first-distinct-ofsm-table-alt-def :
find-first-distinct-ofsm-table M q1 q2 = find-first-distinct-ofsm-table ′ M q1 q2

proof (cases q1 ∈ states M ∧ q2 ∈ states M ∧ ((ofsm-table-fix M (λq . states M )
0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2 )))

case True
then have ∗∗: q1 ∈ states M

and ∗∗∗: q2 ∈ states M
and ∗∗∗∗: (ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq .

states M ) 0 q2 )
by blast+

show ?thesis
unfolding find-first-distinct-ofsm-table ′-is-first ′[OF ∗∗ ∗∗∗ ∗∗∗∗]
unfolding find-first-distinct-ofsm-table-is-first ′[OF ∗∗ ∗∗∗ ∗∗∗∗]
by presburger

next
case False

have find-first-distinct-ofsm-table M q1 q2 = 0
by (meson False find-first-distinct-ofsm-table-gt.simps)

moreover have find-first-distinct-ofsm-table ′ M q1 q2 = 0
proof (cases q1 ∈ states M ∧ q2 ∈ states M )

case True
then have ∗∗: q1 ∈ states M

and ∗∗∗: q2 ∈ states M
by blast+

then have ∗∗∗∗:((ofsm-table-fix M (λq . states M ) 0 q1 = ofsm-table-fix M
(λq . states M ) 0 q2 ))

using False by blast

define tables where tables = compute-ofsm-tables M (FSM .size M − 1 )

have ofsm-lookup (the (Mapping.lookup tables (FSM .size M − 1 ))) q1 =
ofsm-lookup (the (Mapping.lookup tables (FSM .size M − 1 ))) q2

unfolding tables-def
unfolding ofsm-table-fix-from-compute-ofsm-tables[OF ∗∗]
unfolding ofsm-table-fix-from-compute-ofsm-tables[OF ∗∗∗]
using ∗∗∗∗ .

then show ?thesis
unfolding find-first-distinct-ofsm-table ′.simps Let-def tables-def [symmetric]

by auto
next

case False
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then show ?thesis
unfolding find-first-distinct-ofsm-table ′.simps Let-def
by meson

qed
ultimately show ?thesis

by presburger
qed

13.3 Refining the Computation of Distinguishing Traces via
OFSM Tables

fun select-diverging-ofsm-table-io ′ :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a
⇒ ′a ⇒ nat ⇒ ( ′b × ′c) × ( ′a option × ′a option) where

select-diverging-ofsm-table-io ′ M q1 q2 k = (let
tables = (compute-ofsm-tables M (size M − 1 ));
ins = inputs-as-list M ;
outs = outputs-as-list M ;
table = ofsm-lookup (the (Mapping.lookup tables (k−1 )));
f = (λ (x,y) . case (h-obs M q1 x y, h-obs M q2 x y)

of
(Some q1 ′, Some q2 ′) ⇒ if table q1 ′ 6= table q2 ′

then Some ((x,y),(Some q1 ′, Some q2 ′))
else None |

(None,None) ⇒ None |
(Some q1 ′, None) ⇒ Some ((x,y),(Some q1 ′, None)) |
(None, Some q2 ′) ⇒ Some ((x,y),(None, Some q2 ′)))

in
hd (List.map-filter f (List.product ins outs)))

lemma select-diverging-ofsm-table-io-alt-def :
assumes k ≤ size M − 1
shows select-diverging-ofsm-table-io M q1 q2 k = select-diverging-ofsm-table-io ′

M q1 q2 k
proof −

define tables where tables = compute-ofsm-tables M (FSM .size M − 1 )
define table where table = ofsm-lookup (the (Mapping.lookup tables (k−1 )))

have k − 1 < Suc (size M − 1 )
using assms by auto

have ofsm-table M (λq . states M ) (k−1 ) = table
unfolding table-def tables-def
unfolding compute-ofsm-tables-lookup-invar [OF ‹k − 1 < Suc (size M − 1 )›]
by presburger

show ?thesis
unfolding select-diverging-ofsm-table-io ′.simps

select-diverging-ofsm-table-io.simps
Let-def

unfolding tables-def [symmetric] table-def [symmetric]
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unfolding ‹ofsm-table M (λq . states M ) (k−1 ) = table›
by meson

qed

fun assemble-distinguishing-sequence-from-ofsm-table ′ :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ ′a ⇒ ′a ⇒ nat ⇒ ( ′b × ′c) list where

assemble-distinguishing-sequence-from-ofsm-table ′ M q1 q2 0 = [] |
assemble-distinguishing-sequence-from-ofsm-table ′ M q1 q2 (Suc k) = (case

select-diverging-ofsm-table-io ′ M q1 q2 (Suc k)
of
((x,y),(Some q1 ′,Some q2 ′))⇒ (x,y) # (assemble-distinguishing-sequence-from-ofsm-table ′

M q1 ′ q2 ′ k) |
((x,y),-) ⇒ [(x,y)])

lemma assemble-distinguishing-sequence-from-ofsm-table-alt-def :
assumes k ≤ size M − 1
shows assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k = assem-

ble-distinguishing-sequence-from-ofsm-table ′ M q1 q2 k
using assms proof (induction k arbitrary: q1 q2 )

case 0
show ?case

unfolding assemble-distinguishing-sequence-from-ofsm-table.simps
unfolding assemble-distinguishing-sequence-from-ofsm-table ′.simps
by presburger

next
case (Suc k)
then have k ≤ FSM .size M − 1

by auto
show ?case

unfolding assemble-distinguishing-sequence-from-ofsm-table.simps
unfolding assemble-distinguishing-sequence-from-ofsm-table ′.simps
unfolding select-diverging-ofsm-table-io-alt-def [OF ‹Suc k ≤ FSM .size M −

1 ›]
unfolding Suc.IH [OF ‹k ≤ FSM .size M − 1 ›]
by meson

qed

fun get-distinguishing-sequence-from-ofsm-tables-refined :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ ′a ⇒ ′a ⇒ ( ′b × ′c) list where

get-distinguishing-sequence-from-ofsm-tables-refined M q1 q2 = (let
k = find-first-distinct-ofsm-table ′ M q1 q2

in assemble-distinguishing-sequence-from-ofsm-table ′ M q1 q2 k)

lemma get-distinguishing-sequence-from-ofsm-tables-refined-alt-def :
get-distinguishing-sequence-from-ofsm-tables-refined M q1 q2 = get-distinguishing-sequence-from-ofsm-tables

M q1 q2
proof −

define k where k = find-first-distinct-ofsm-table ′ M q1 q2
then have k ≤ size M − 1
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using find-first-distinct-ofsm-table ′-max by metis
have find-first-distinct-ofsm-table M q1 q2 = k

unfolding k-def find-first-distinct-ofsm-table-alt-def
by meson

show ?thesis
unfolding get-distinguishing-sequence-from-ofsm-tables-refined.simps
unfolding get-distinguishing-sequence-from-ofsm-tables.simps
unfolding Let-def
unfolding k-def [symmetric] ‹find-first-distinct-ofsm-table M q1 q2 = k›
unfolding assemble-distinguishing-sequence-from-ofsm-table-alt-def [OF ‹k ≤

size M − 1 ›]
by meson

qed

lemma get-distinguishing-sequence-from-ofsm-tables-refined-distinguishes :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows distinguishes M q1 q2 (get-distinguishing-sequence-from-ofsm-tables-refined
M q1 q2 )

unfolding get-distinguishing-sequence-from-ofsm-tables-refined-alt-def
using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms] .

fun select-diverging-ofsm-table-io-with-provided-tables :: (nat, ( ′a, ′b, ′c) ofsm-table)
mapping ⇒ ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ′a ⇒ nat ⇒ ( ′b ×
′c) × ( ′a option × ′a option) where

select-diverging-ofsm-table-io-with-provided-tables tables M q1 q2 k = (let
ins = inputs-as-list M ;
outs = outputs-as-list M ;
table = ofsm-lookup (the (Mapping.lookup tables (k−1 )));
f = (λ (x,y) . case (h-obs M q1 x y, h-obs M q2 x y)

of
(Some q1 ′, Some q2 ′) ⇒ if table q1 ′ 6= table q2 ′

then Some ((x,y),(Some q1 ′, Some q2 ′))
else None |

(None,None) ⇒ None |
(Some q1 ′, None) ⇒ Some ((x,y),(Some q1 ′, None)) |
(None, Some q2 ′) ⇒ Some ((x,y),(None, Some q2 ′)))

in
hd (List.map-filter f (List.product ins outs)))

lemma select-diverging-ofsm-table-io-with-provided-tables-simp :
select-diverging-ofsm-table-io-with-provided-tables (compute-ofsm-tables M (size

M − 1 )) M = select-diverging-ofsm-table-io ′ M
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unfolding select-diverging-ofsm-table-io-with-provided-tables.simps
select-diverging-ofsm-table-io ′.simps
Let-def

by meson

fun assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables :: (nat,
( ′a, ′b, ′c) ofsm-table) mapping ⇒ ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a
⇒ ′a ⇒ nat ⇒ ( ′b × ′c) list where

assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables tables M q1
q2 0 = [] |

assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables tables M q1
q2 (Suc k) = (case

select-diverging-ofsm-table-io-with-provided-tables tables M q1 q2 (Suc k)
of
((x,y),(Some q1 ′,Some q2 ′))⇒ (x,y) # (assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables

tables M q1 ′ q2 ′ k) |
((x,y),-) ⇒ [(x,y)])

lemma assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables-simp
:
assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables (compute-ofsm-tables

M (size M − 1 )) M q1 q2 k= assemble-distinguishing-sequence-from-ofsm-table ′ M
q1 q2 k
proof (induction k arbitrary: q1 q2 )

case 0
show ?case
unfolding assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables.simps

assemble-distinguishing-sequence-from-ofsm-table ′.simps
Let-def

by meson
next

case (Suc k ′)
show ?case
unfolding assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables.simps
unfolding assemble-distinguishing-sequence-from-ofsm-table ′.simps

unfolding Let-def select-diverging-ofsm-table-io-with-provided-tables-simp Suc.IH
by meson

qed

lemma get-distinguishing-sequence-from-ofsm-tables-refined-code[code] :
get-distinguishing-sequence-from-ofsm-tables-refined M q1 q2 = (let

tables = (compute-ofsm-tables M (size M − 1 ));
k = (if (q1 ∈ states M

∧ q2 ∈ states M
∧ (ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))) q1
6= ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))) q2 ))

then the (find-index (λ i . ofsm-lookup (the (Mapping.lookup tables i)) q1
6= ofsm-lookup (the (Mapping.lookup tables i)) q2 ) [0 ..<size M ])
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else 0 )
in assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables tables M

q1 q2 k)
unfolding get-distinguishing-sequence-from-ofsm-tables-refined.simps

find-first-distinct-ofsm-table ′.simps
Let-def

assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables-simp
by meson

fun get-distinguishing-sequence-from-ofsm-tables-with-provided-tables :: (nat, ( ′a, ′b, ′c)
ofsm-table) mapping ⇒ ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ′a ⇒ ( ′b
× ′c) list where

get-distinguishing-sequence-from-ofsm-tables-with-provided-tables tables M q1 q2
= (let

k = (if (q1 ∈ states M
∧ q2 ∈ states M
∧ (ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))) q1
6= ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))) q2 ))

then the (find-index (λ i . ofsm-lookup (the (Mapping.lookup tables i)) q1
6= ofsm-lookup (the (Mapping.lookup tables i)) q2 ) [0 ..<size M ])

else 0 )
in assemble-distinguishing-sequence-from-ofsm-table-with-provided-tables tables M

q1 q2 k)

lemma get-distinguishing-sequence-from-ofsm-tables-with-provided-tables-simp :
get-distinguishing-sequence-from-ofsm-tables-with-provided-tables (compute-ofsm-tables

M (size M − 1 )) M = get-distinguishing-sequence-from-ofsm-tables-refined M
unfolding get-distinguishing-sequence-from-ofsm-tables-with-provided-tables.simps

get-distinguishing-sequence-from-ofsm-tables-refined-code
Let-def

by meson

lemma get-distinguishing-sequence-from-ofsm-tables-precomputed:
get-distinguishing-sequence-from-ofsm-tables M = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 )

in distHelper)
proof −

define distStates where distStates = (filter (λ qq . fst qq 6= snd qq) (List.product
(states-as-list M ) (states-as-list M )))

define distMap where distMap-orig: distMap = mapping-of (map (λ (q1 ,q2 ) .

448



((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables (compute-ofsm-tables
M (size M − 1 )) M q1 q2 ))

distStates)

have distinct distStates
unfolding distStates-def using states-as-list-distinct
using distinct-filter distinct-product by blast

then have distinct (map fst (map (λ(q1 , q2 ). ((q1 , q2 ), get-distinguishing-sequence-from-ofsm-tables
M q1 q2 )) distStates))

unfolding map-pair-fst-helper .
then have distMap-def : Mapping.lookup distMap = map-of (map (λ (q1 ,q2 ) .

((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables M q1 q2 ))
distStates)

unfolding distMap-orig get-distinguishing-sequence-from-ofsm-tables-with-provided-tables-simp

get-distinguishing-sequence-from-ofsm-tables-refined-alt-def
using mapping-of-map-of
by blast

define distHelper where distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M
∧ q1 6= q2 then the (Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 )

have distHelper = get-distinguishing-sequence-from-ofsm-tables M
proof −
have

∧
q1 q2 . distHelper q1 q2 = get-distinguishing-sequence-from-ofsm-tables

M q1 q2
proof −

fix q1 q2
show distHelper q1 q2 = get-distinguishing-sequence-from-ofsm-tables M q1

q2
proof (cases q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 )

case False
then show ?thesis

unfolding distHelper-def by metis
next

case True
then have ∗:(q1 ,q2 ) ∈ list.set distStates

using states-as-list-set unfolding distStates-def by fastforce

have distinct (map fst (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables
M q1 q2 )) distStates))

proof −
have ∗∗: (map fst (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables

M q1 q2 )) distStates)) = distStates
proof (induction distStates)

case Nil
then show ?case by auto

next
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case (Cons a distStates)
obtain x y where a = (x,y)

using surjective-pairing by blast
show ?case

using Cons unfolding ‹a = (x,y)› by auto
qed

show ?thesis
unfolding ∗∗
unfolding distStates-def
by (simp add: distinct-product)

qed

have ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables M q1 q2 ) ∈
list.set (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables M
q1 q2 )) distStates)

using Util.map-set[OF ∗, of (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables
M q1 q2 ))]

by force
then have the (Mapping.lookup distMap (q1 ,q2 )) = get-distinguishing-sequence-from-ofsm-tables

M q1 q2
unfolding distMap-def

unfolding Map.map-of-eq-Some-iff [OF ‹distinct (map fst (map (λ (q1 ,q2 )
. ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables M q1 q2 )) distStates))›,
symmetric]

by (metis option.sel)
moreover have distHelper q1 q2 = the (Mapping.lookup distMap (q1 ,q2 ))

using True unfolding distHelper-def by metis
ultimately show ?thesis

by presburger
qed

qed
then show ?thesis

by blast
qed

then show ?thesis
unfolding distHelper-def distMap-orig distStates-def Let-def
by presburger

qed

lemma get-distinguishing-sequence-from-ofsm-tables-with-provided-tables-distinguishes
:

assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2
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shows distinguishes M q1 q2 (get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
(compute-ofsm-tables M (size M − 1 )) M q1 q2 )
unfolding get-distinguishing-sequence-from-ofsm-tables-with-provided-tables-simp
using get-distinguishing-sequence-from-ofsm-tables-refined-distinguishes[OF assms]

.

13.4 Refining Minimisation
fun minimise-refined :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ ( ′a set, ′b, ′c)
fsm where

minimise-refined M = (let
tables = (compute-ofsm-tables M (size M − 1 ));
eq-class = (ofsm-lookup (the (Mapping.lookup tables (size M − 1 ))));
ts = (λ t . (eq-class (t-source t), t-input t, t-output t, eq-class (t-target t))) ‘

(transitions M );
q0 = eq-class (initial M );
eq-states = eq-class |‘| fstates M ;
M ′ = create-unconnected-fsm-from-fsets q0 eq-states (finputs M ) (foutputs M )

in add-transitions M ′ ts)

lemma minimise-refined-is-minimise[code] : minimise M = minimise-refined M
proof −

define tables where tables = compute-ofsm-tables M (FSM .size M − 1 )
define eq-class-refined where eq-class-refined = (ofsm-lookup (the (Mapping.lookup

tables (size M − 1 ))))
define eq-class where eq-class = ofsm-table-fix M (λq . states M ) 0

have (size M − 1 ) < Suc (size M − 1 )
by auto

have
∧

q . q ∈ states M =⇒ eq-class q = eq-class-refined q
unfolding eq-class-def eq-class-refined-def tables-def
unfolding compute-ofsm-tables-lookup-invar [OF ‹(size M − 1 ) < Suc (size M

− 1 )›]
by (metis ofsm-table-fix-partition-fixpoint-trivial-partition)

have ts: (λ t . (eq-class (t-source t), t-input t, t-output t, eq-class (t-target t))) ‘
(transitions M )

= (λ t . (eq-class-refined (t-source t), t-input t, t-output t, eq-class-refined
(t-target t))) ‘ (transitions M )

using ‹
∧

q . q ∈ states M =⇒ eq-class q = eq-class-refined q›[OF fsm-transition-source]
using ‹

∧
q . q ∈ states M =⇒ eq-class q = eq-class-refined q›[OF fsm-transition-target]

by auto

have q0 : eq-class (initial M ) = eq-class-refined (initial M )
using ‹

∧
q . q ∈ states M =⇒ eq-class q = eq-class-refined q›[OF fsm-initial] .

have eq-states: eq-class |‘| fstates M = eq-class-refined |‘| fstates M
using fstates-set[of M ]

451



using ‹
∧

q . q ∈ states M =⇒ eq-class q = eq-class-refined q›
by (metis fset.map-cong)

have M ′: create-unconnected-fsm-from-fsets (eq-class (initial M )) (eq-class |‘|
fstates M ) (finputs M ) (foutputs M )

= create-unconnected-fsm-from-fsets (eq-class-refined (initial M ))
(eq-class-refined |‘| fstates M ) (finputs M ) (foutputs M )

unfolding q0 eq-states by meson

have res: add-transitions (create-unconnected-fsm-from-fsets (eq-class (initial
M )) (eq-class |‘| fstates M ) (finputs M ) (foutputs M )) ((λ t . (eq-class (t-source t),
t-input t, t-output t, eq-class (t-target t))) ‘ (transitions M ))

= add-transitions (create-unconnected-fsm-from-fsets (eq-class-refined
(initial M )) (eq-class-refined |‘| fstates M ) (finputs M ) (foutputs M )) ((λ t . (eq-class-refined
(t-source t), t-input t, t-output t, eq-class-refined (t-target t))) ‘ (transitions M ))

unfolding M ′ ts by meson

show ?thesis
unfolding minimise.simps minimise-refined.simps Let-def
unfolding eq-class-def [symmetric]
unfolding tables-def [symmetric] eq-class-refined-def [symmetric]
unfolding res
by meson

qed

end

14 Transformation to Language-Equivalent Prime
FSMs

This theory describes the transformation of FSMs into language-equivalent
FSMs that are prime, that is: observable, minimal and initially connected.
theory Prime-Transformation
imports Minimisation Observability State-Cover OFSM-Tables-Refined HOL−Library.List-Lexorder
Native-Word.Uint64
begin

14.1 Helper Functions

The following functions transform FSMs whose states are Sets or FSets into
language-equivalent fsms whose states are lists. These steps are required in
the chosen implementation of the transformation function, as Sets or FSets
are not instances of linorder.
lemma linorder-fset-list-bij : bij-betw sorted-list-of-fset xs (sorted-list-of-fset ‘ xs)

unfolding bij-betw-def inj-on-def
by (metis sorted-list-of-fset-simps(2 ))
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lemma linorder-set-list-bij :
assumes

∧
x . x ∈ xs =⇒ finite x

shows bij-betw sorted-list-of-set xs (sorted-list-of-set ‘ xs)
proof −

have
∧

x . x ∈ xs =⇒ set (sorted-list-of-set x) = x
by (simp add: assms)

then show ?thesis
unfolding bij-betw-def inj-on-def
by metis

qed

definition fset-states-to-list-states :: (( ′a::linorder) fset, ′b, ′c) fsm ⇒ ( ′a list, ′b, ′c)
fsm where

fset-states-to-list-states M = rename-states M sorted-list-of-fset

definition set-states-to-list-states :: (( ′a::linorder) set, ′b, ′c) fsm ⇒ ( ′a list, ′b, ′c)
fsm where

set-states-to-list-states M = rename-states M sorted-list-of-set

lemma fset-states-to-list-states-language :
L (fset-states-to-list-states M ) = L M
using rename-states-isomorphism-language[OF linorder-fset-list-bij]
unfolding fset-states-to-list-states-def .

lemma set-states-to-list-states-language :
assumes

∧
x . x ∈ states M =⇒ finite x

shows L (set-states-to-list-states M ) = L M
using rename-states-isomorphism-language[OF linorder-set-list-bij[OF assms]]
unfolding set-states-to-list-states-def .

lemma fset-states-to-list-states-observable :
assumes observable M
shows observable (fset-states-to-list-states M )
using rename-states-observable[OF linorder-fset-list-bij assms]
unfolding fset-states-to-list-states-def .

lemma set-states-to-list-states-observable :
assumes

∧
x . x ∈ states M =⇒ finite x

assumes observable M
shows observable (set-states-to-list-states M )
using rename-states-observable[OF linorder-set-list-bij[OF assms(1 )] assms(2 )]
unfolding set-states-to-list-states-def by blast

lemma fset-states-to-list-states-minimal :
assumes minimal M
shows minimal (fset-states-to-list-states M )
using rename-states-minimal[OF linorder-fset-list-bij assms]
unfolding fset-states-to-list-states-def .
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lemma set-states-to-list-states-minimal :
assumes

∧
x . x ∈ states M =⇒ finite x

assumes minimal M
shows minimal (set-states-to-list-states M )
using rename-states-minimal[OF linorder-set-list-bij[OF assms(1 )] assms(2 )]
unfolding set-states-to-list-states-def by blast

14.2 The Transformation Algorithm
definition to-prime :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ (integer , ′b, ′c)
fsm where

to-prime M = restrict-to-reachable-states (
index-states-integer (

set-states-to-list-states (
minimise-refined (

index-states (
fset-states-to-list-states (

make-observable (
restrict-to-reachable-states M )))))))

lemma to-prime-props :
L (to-prime M ) = L M
observable (to-prime M )
minimal (to-prime M )
reachable-states (to-prime M ) = states (to-prime M )
inputs (to-prime M ) = inputs M
outputs (to-prime M ) = outputs M

proof −

define M1 where M1 : M1 = restrict-to-reachable-states M
define M2 where M2 : M2 = make-observable M1
define M3 where M3 : M3 = fset-states-to-list-states M2
define M4 where M4 : M4 = index-states M3
define M5 where M5 : M5 = minimise-refined M4
define M6 where M6 : M6 = set-states-to-list-states M5
define M7 where M7 : M7 = index-states-integer M6
define M8 where M8 : M8 = restrict-to-reachable-states M7

have to-prime M = M8
unfolding M8 M7 M6 M5 M4 M3 M2 M1 to-prime-def by presburger

have observable M2
unfolding M2
using make-observable-language-observable(2 ) by blast

then have observable M3
unfolding M3
using fset-states-to-list-states-observable by blast

then have observable M4

454



unfolding M4
using index-states-observable by blast

then have observable M5
unfolding M5
unfolding minimise-refined-is-minimise[symmetric]
using minimise-observable by blast

then have observable M6
unfolding M6 M5
unfolding minimise-refined-is-minimise[symmetric]
using minimise-states-finite[OF ‹observable M4 ›]
using set-states-to-list-states-observable
by metis

then have observable M7
unfolding M7
using index-states-integer-observable by blast

then show observable (to-prime M )
unfolding ‹to-prime M = M8 › M8
using restrict-to-reachable-states-observable by blast

have L M = L M1
unfolding M1 restrict-to-reachable-states-language by simp

also have . . . = L M2
unfolding M2 make-observable-language-observable(1 ) by simp

also have . . . = L M3
unfolding M3 fset-states-to-list-states-language by simp

also have . . . = L M4
unfolding M4 index-states-language by simp

also have . . . = L M5
unfolding M5 unfolding minimise-refined-is-minimise[symmetric]
using minimise-language[OF ‹observable M4 ›] by blast

also have . . . = L M6
unfolding M6 M5 unfolding minimise-refined-is-minimise[symmetric]

using set-states-to-list-states-language[OF minimise-states-finite[OF ‹observable
M4 ›]] by blast

also have . . . = L M7
unfolding M7 using index-states-integer-language by blast

also have . . . = L M8
unfolding M8 restrict-to-reachable-states-language by simp

finally show L (to-prime M ) = L M
unfolding ‹to-prime M = M8 › by blast

have minimal M5
unfolding M5 unfolding minimise-refined-is-minimise[symmetric]
using minimise-minimal[OF ‹observable M4 ›] .

then have minimal M6
unfolding M6 M5 unfolding minimise-refined-is-minimise[symmetric]

using set-states-to-list-states-minimal[OF minimise-states-finite[OF ‹observable
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M4 ›]] by blast
then have minimal M7

unfolding M7 using index-states-integer-minimal by blast
then show minimal (to-prime M )

unfolding ‹to-prime M = M8 › M8
using restrict-to-reachable-states-minimal by blast

show reachable-states (to-prime M ) = states (to-prime M )
unfolding ‹to-prime M = M8 › M8 restrict-to-reachable-states-reachable-states

by presburger

have inputs M = inputs M1
unfolding M1 restrict-to-reachable-states-simps by simp

also have . . . = inputs M2
unfolding M2 make-observable-language-observable Let-def add-transitions-simps

create-unconnected-fsm-simps by blast
also have . . . = inputs M3

unfolding M3 fset-states-to-list-states-def by simp
also have . . . = inputs M4

unfolding M4 index-states.simps by simp
also have . . . = inputs M5

unfolding M5 unfolding minimise-refined-is-minimise[symmetric]
using minimise-props[OF ‹observable M4 ›] by blast

also have . . . = inputs M6
unfolding M6 M5 set-states-to-list-states-def by simp

also have . . . = inputs M7
unfolding M7 index-states.simps by simp

also have . . . = inputs M8
unfolding M8 restrict-to-reachable-states-simps by simp

finally show inputs (to-prime M ) = inputs M
unfolding ‹to-prime M = M8 › by blast

have outputs M = outputs M1
unfolding M1 restrict-to-reachable-states-simps by simp

also have . . . = outputs M2
unfolding M2 make-observable-language-observable Let-def add-transitions-simps

create-unconnected-fsm-simps by blast
also have . . . = outputs M3

unfolding M3 fset-states-to-list-states-def by simp
also have . . . = outputs M4

unfolding M4 index-states.simps by simp
also have . . . = outputs M5

unfolding M5 unfolding minimise-refined-is-minimise[symmetric]
using minimise-props[OF ‹observable M4 ›] by blast

also have . . . = outputs M6
unfolding M6 M5 set-states-to-list-states-def by simp

also have . . . = outputs M7
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unfolding M7 index-states.simps by simp
also have . . . = outputs M8

unfolding M8 restrict-to-reachable-states-simps by simp
finally show outputs (to-prime M ) = outputs M

unfolding ‹to-prime M = M8 › by blast
qed

14.3 Renaming states to Words
lemma uint64-nat-bij : (x :: nat) < 2^64 =⇒ nat-of-uint64 (uint64-of-nat x) = x

by transfer (simp add: unsigned-of-nat take-bit-nat-eq-self )

fun index-states-uint64 :: ( ′a::linorder , ′b, ′c) fsm ⇒ (uint64 , ′b, ′c) fsm where
index-states-uint64 M = rename-states M (uint64-of-nat ◦ assign-indices (states

M ))

lemma assign-indices-uint64-bij-betw :
assumes size M < 2^64
shows bij-betw (uint64-of-nat ◦ assign-indices (states M )) (FSM .states M ) ((uint64-of-nat
◦ assign-indices (states M )) ‘ FSM .states M )
proof −

have ∗: inj-on (assign-indices (FSM .states M )) (FSM .states M )
using assign-indices-bij[OF fsm-states-finite[of M ]]
unfolding bij-betw-def
by auto

moreover have
∧

q . q ∈ states M =⇒ assign-indices (states M ) q < 2^64
using assms assign-indices-bij[OF fsm-states-finite[of M ]]
unfolding size-def
by (meson bij-betwE lessThan-iff less-imp-le less-le-trans)

ultimately have inj-on (uint64-of-nat ◦ assign-indices (states M )) (FSM .states
M )

unfolding inj-on-def
by (metis comp-apply uint64-nat-bij)

then show ?thesis
unfolding bij-betw-def
by auto

qed

lemma index-states-uint64-language :
assumes size M < 2^64

shows L (index-states-uint64 M ) = L M
using rename-states-isomorphism-language[of uint64-of-nat ◦ assign-indices (states

M ) M , OF assign-indices-uint64-bij-betw[OF assms]]
by auto

lemma index-states-uint64-observable :
assumes size M < 2^64 and observable M
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shows observable (index-states-uint64 M )
using rename-states-observable[of uint64-of-nat ◦ assign-indices (states M ) M ,

OF assign-indices-uint64-bij-betw[OF assms(1 )] assms(2 )]
unfolding index-states-uint64 .simps .

lemma index-states-uint64-minimal :
assumes size M < 2^64 and minimal M
shows minimal (index-states-uint64 M )
using rename-states-minimal[of uint64-of-nat ◦ assign-indices (states M ) M , OF

assign-indices-uint64-bij-betw[OF assms(1 )] assms(2 )]
unfolding index-states-uint64 .simps .

definition to-prime-uint64 :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒
(uint64 , ′b, ′c) fsm where

to-prime-uint64 M = restrict-to-reachable-states (index-states-uint64 (to-prime
M ))

lemma to-prime-uint64-props :
assumes size (to-prime M ) < 2^64

shows
L (to-prime-uint64 M ) = L M
observable (to-prime-uint64 M )
minimal (to-prime-uint64 M )
reachable-states (to-prime-uint64 M ) = states (to-prime-uint64 M )
inputs (to-prime-uint64 M ) = inputs M
outputs (to-prime-uint64 M ) = outputs M
using restrict-to-reachable-states-reachable-states[of index-states-uint64 (to-prime

M )]
unfolding to-prime-uint64-def
using index-states-uint64-language[OF assms]
unfolding restrict-to-reachable-states-language

using restrict-to-reachable-states-observable[OF index-states-uint64-observable[OF
assms to-prime-props(2 )]]

using restrict-to-reachable-states-minimal[OF index-states-uint64-minimal[OF
assms to-prime-props(3 )]]

unfolding index-states-uint64 .simps
unfolding restrict-to-reachable-states-simps
unfolding rename-states-simps(3 ,4 )
unfolding to-prime-props(1 ,5 ,6 )
by blast+

end
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15 Convergence of Traces

This theory defines convergence of traces in observable FSMs and provides
results on sufficient conditions to establish that two traces converge. Fur-
thermore it is shown how convergence can be employed in proving language
equivalence.
theory Convergence
imports ../Minimisation ../Distinguishability ../State-Cover HOL−Library.List-Lexorder
begin

15.1 Basic Definitions
fun converge :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list ⇒ ( ′b × ′c) list ⇒ bool where

converge M π τ = (π ∈ L M ∧ τ ∈ L M ∧ (LS M (after-initial M π) = LS M
(after-initial M τ)))

fun preserves-divergence :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒
bool where

preserves-divergence M1 M2 A = (∀ α ∈ L M1 ∩ A . ∀ β ∈ L M1 ∩ A . ¬
converge M1 α β −→ ¬ converge M2 α β)

fun preserves-convergence :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒
bool where

preserves-convergence M1 M2 A = (∀ α ∈ L M1 ∩ A . ∀ β ∈ L M1 ∩ A .
converge M1 α β −→ converge M2 α β)

lemma converge-refl :
assumes α ∈ L M

shows converge M α α
using assms by auto

lemma convergence-minimal :
assumes minimal M
and observable M
and α ∈ L M
and β ∈ L M

shows converge M α β = ((after-initial M α) = (after-initial M β))
proof

have ∗:(after-initial M α) ∈ states M
using ‹α ∈ L M › by (meson after-is-state assms(2 ))

have ∗∗:(after-initial M β) ∈ states M
using ‹β ∈ L M › by (meson after-is-state assms(2 ))

show converge M α β =⇒ ((after-initial M α) = (after-initial M β))
using ∗ ∗∗ ‹minimal M › unfolding minimal.simps converge.simps
by blast

show ((after-initial M α) = (after-initial M β)) =⇒ converge M α β
unfolding converge.simps using assms(3 ,4 ) by simp
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qed

lemma state-cover-assignment-diverges :
assumes observable M
and minimal M
and is-state-cover-assignment M f
and q1 ∈ reachable-states M
and q2 ∈ reachable-states M
and q1 6= q2

shows ¬ converge M (f q1 ) (f q2 )
proof −

have f q1 ∈ L M
using assms(3 ,4 )

by (metis from-FSM-language is-state-cover-assignment.simps language-contains-empty-sequence
language-io-target-append language-prefix reachable-state-is-state)

moreover have q1 ∈ io-targets M (f q1 ) (initial M )
using assms(3 ,4 ) unfolding is-state-cover-assignment.simps by blast

ultimately have (after-initial M (f q1 )) = q1
using assms(1 )
by (metis (no-types, lifting) observable-after-path observable-path-io-target sin-

gletonD)

have f q2 ∈ L M
using assms(3 ,5 )

by (metis from-FSM-language is-state-cover-assignment.simps language-contains-empty-sequence
language-io-target-append language-prefix reachable-state-is-state)

moreover have q2 ∈ io-targets M (f q2 ) (initial M )
using assms(3 ,5 ) unfolding is-state-cover-assignment.simps by blast

ultimately have (after-initial M (f q2 )) = q2
using assms(1 )
by (metis (no-types, lifting) observable-after-path observable-path-io-target sin-

gletonD)

show ?thesis
using convergence-minimal[OF assms(2 ,1 ) ‹f q1 ∈ L M › ‹f q2 ∈ L M ›] ‹q1 6=

q2 ›
unfolding ‹(after-initial M (f q1 )) = q1 › ‹(after-initial M (f q2 )) = q2 ›
by simp

qed

lemma converge-extend :
assumes observable M
and converge M α β
and α@γ ∈ L M
and β ∈ L M

shows β@γ ∈ L M
by (metis after-io-targets assms(1 ) assms(2 ) assms(3 ) assms(4 ) converge.simps
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language-io-target-append language-prefix observable-io-targets observable-io-targets-language
singletonI the-elem-eq)

lemma converge-append :
assumes observable M
and converge M α β
and α@γ ∈ L M
and β ∈ L M

shows converge M (α@γ) (β@γ)
using after-language-append-iff [OF assms(1 ,3 )]
using after-language-append-iff [OF assms(1 ) converge-extend[OF assms]]
using assms converge-extend
unfolding converge.simps
by blast

lemma non-initialized-state-cover-assignment-diverges :
assumes observable M
and minimal M
and

∧
q . q ∈ reachable-states M =⇒ q ∈ io-targets M (f q) (initial M )

and
∧

q . q ∈ reachable-states M =⇒ f q ∈ L M ∩ SC
and q1 ∈ reachable-states M
and q2 ∈ reachable-states M
and q1 6= q2

shows ¬ converge M (f q1 ) (f q2 )
proof −

have f q1 ∈ L M
using assms(4 ,5 ) by blast

moreover have q1 ∈ io-targets M (f q1 ) (initial M )
using assms(3 ,5 ) by blast

ultimately have (after-initial M (f q1 )) = q1
using assms(1 )
by (metis (no-types, lifting) observable-after-path observable-path-io-target sin-

gletonD)

have f q2 ∈ L M
using assms(4 ,6 ) by blast

moreover have q2 ∈ io-targets M (f q2 ) (initial M )
using assms(3 ,6 ) by blast

ultimately have (after-initial M (f q2 )) = q2
using assms(1 )
by (metis (no-types, lifting) observable-after-path observable-path-io-target sin-

gletonD)

show ?thesis
using convergence-minimal[OF assms(2 ,1 ) ‹f q1 ∈ L M › ‹f q2 ∈ L M ›] ‹q1 6=

q2 ›
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unfolding ‹(after-initial M (f q1 )) = q1 › ‹(after-initial M (f q2 )) = q2 ›
by simp

qed

lemma converge-trans-2 :
assumes observable M and minimal M and converge M u v
shows converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (v@w2 )

converge M (u@w1 ) (u@w2 ) = converge M (u@w1 ) (v@w2 )
converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (u@w2 )

proof −
have converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (v@w2 ) ∧ converge M

(u@w1 ) (u@w2 ) = converge M (u@w1 ) (v@w2 ) ∧ converge M (u@w1 ) (u@w2 )
= converge M (v@w1 ) (u@w2 )

proof (cases u@w1 ∈ L M ∧ u@w2 ∈ L M )
case False
then consider u@w1 /∈ L M | u@w2 /∈ L M

by blast
then have v@w1 /∈ L M ∨ v@w2 /∈ L M

using after-language-iff [OF assms(1 ), of u initial M w1 ]
after-language-iff [OF assms(1 ), of u initial M w2 ]
after-language-iff [OF assms(1 ), of v initial M w1 ]
after-language-iff [OF assms(1 ), of v initial M w2 ]

by (metis assms(3 ) converge.elims(2 ))
then show ?thesis

by (meson assms(1 ) assms(3 ) converge.elims(2 ) converge-extend)
next

case True
then have u@w1 ∈ L M and u@w2 ∈ L M by auto
then have v@w1 ∈ L M and v@w2 ∈ L M

by (meson assms(1 ) assms(3 ) converge.simps converge-extend)+

have u ∈ L M using ‹u@w1 ∈ L M › language-prefix by metis
have v ∈ L M using ‹v@w1 ∈ L M › language-prefix by metis

have after-initial M u = after-initial M v
using ‹u ∈ L M › ‹v ∈ L M › assms(1 ) assms(2 ) assms(3 ) convergence-minimal

by blast
moreover have after-initial M (u @ w1 ) = after-initial M (v @ w1 )

by (metis calculation True ‹v @ w1 ∈ L M › after-split assms(1 ))
ultimately have after-initial M (u @ w2 ) = after-initial M (v @ w2 )

by (metis (no-types) True ‹v @ w2 ∈ L M › after-split assms(1 ))

have converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (v@w2 )
using True ‹after-initial M (u @ w1 ) = after-initial M (v @ w1 )› ‹after-initial

M (u @ w2 ) = after-initial M (v @ w2 )› ‹v @ w1 ∈ L M › ‹v @ w2 ∈ L M ›
by auto

moreover have converge M (u@w1 ) (u@w2 ) = converge M (u@w1 ) (v@w2 )
using True ‹after-initial M (u @ w2 ) = after-initial M (v @ w2 )› ‹v @ w2
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∈ L M › by auto
moreover have converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (u@w2 )

using True ‹after-initial M (u @ w1 ) = after-initial M (v @ w1 )› ‹v @ w1
∈ L M › by auto

ultimately show ?thesis
by blast

qed
then show converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (v@w2 )

converge M (u@w1 ) (u@w2 ) = converge M (u@w1 ) (v@w2 )
converge M (u@w1 ) (u@w2 ) = converge M (v@w1 ) (u@w2 )

by blast+
qed

lemma preserves-divergence-converge-insert :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and converge M1 u v
and converge M2 u v
and preserves-divergence M1 M2 X
and u ∈ X

shows preserves-divergence M1 M2 (Set.insert v X)
proof −

have
∧

w . w ∈ L M1 ∩ X =⇒ ¬converge M1 v w =⇒ ¬converge M2 v w
proof −

fix w
assume w ∈ L M1 ∩ X and ¬converge M1 v w

then have ¬converge M1 u w
using assms(5 )
using converge.simps by blast

then have ¬converge M2 u w
using assms(5−8 )

by (meson IntI ‹w ∈ L M1 ∩ X› converge.elims(2 ) preserves-divergence.simps)

then show ¬converge M2 v w
using assms(6 ) converge.simps by blast

qed
then show ?thesis

using assms(7 )
unfolding preserves-divergence.simps
by (metis (no-types, lifting) Int-insert-right-if1 assms(1 ) assms(2 ) assms(3 )

assms(4 ) assms(5 ) converge.elims(2 ) convergence-minimal insert-iff )
qed

lemma preserves-divergence-converge-replace :
assumes observable M1
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and observable M2
and minimal M1
and minimal M2
and converge M1 u v
and converge M2 u v
and preserves-divergence M1 M2 (Set.insert u X)

shows preserves-divergence M1 M2 (Set.insert v X)
proof −

have u ∈ L M1 and v ∈ L M1
using assms(5 ) by auto

then have after-initial M1 u = after-initial M1 v
using assms(1 ) assms(3 ) assms(5 ) convergence-minimal by blast

have
∧

w . w ∈ L M1 ∩ X =⇒ ¬converge M1 v w =⇒ ¬converge M2 v w
proof −

fix w
assume w ∈ L M1 ∩ X and ¬converge M1 v w

then have ¬converge M1 u w
using assms(5 )
using converge.simps by blast

then have ¬converge M2 u w
using assms(5−7 )
by (meson IntD1 IntD2 IntI ‹w ∈ L M1 ∩ X› converge.elims(2 ) insertCI

preserves-divergence.elims(1 ))
then show ¬converge M2 v w

using assms(6 ) converge.simps by blast
qed

have
∧

α β . α ∈ L M1 =⇒ α ∈ insert v X =⇒ β ∈ L M1 =⇒ β ∈ insert v X
=⇒ ¬ converge M1 α β =⇒ ¬ converge M2 α β

proof −
fix α β assume α ∈ L M1 α ∈ insert v X β ∈ L M1 β ∈ insert v X ¬ converge

M1 α β

then consider α = v ∧ β = v |
α = v ∧ β ∈ X |
α ∈ X ∧ β = v |
α ∈ X ∧ β ∈ X

by blast
then show ¬ converge M2 α β
proof cases

case 1
then show ?thesis

using ‹α ∈ L M1 › ‹β ∈ L M1 › ‹¬ converge M1 α β› by auto
next

case 2
then show ?thesis

by (metis IntI ‹
∧

w. [[w ∈ L M1 ∩ X ; ¬ converge M1 v w]] =⇒ ¬ converge
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M2 v w› ‹β ∈ L M1 › ‹¬ converge M1 α β›)
next

case 3
then show ?thesis

by (metis IntI ‹
∧

w. [[w ∈ L M1 ∩ X ; ¬ converge M1 v w]] =⇒ ¬ converge
M2 v w› ‹α ∈ L M1 › ‹¬ converge M1 α β› converge.simps)

next
case 4
then show ?thesis

using assms(7 ) unfolding preserves-divergence.simps
using ‹α ∈ L M1 › ‹β ∈ L M1 › ‹¬ converge M1 α β› by blast

qed
qed
then show ?thesis

unfolding preserves-divergence.simps by blast
qed

lemma preserves-divergence-converge-replace-iff :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and converge M1 u v
and converge M2 u v

shows preserves-divergence M1 M2 (Set.insert u X) = preserves-divergence M1
M2 (Set.insert v X)
proof −

have ∗: converge M1 v u using assms(5 ) by auto
have ∗∗: converge M2 v u using assms(6 ) by auto

show ?thesis
using preserves-divergence-converge-replace[OF assms]

preserves-divergence-converge-replace[OF assms(1−4 ) ∗ ∗∗]
by blast

qed

lemma preserves-divergence-subset :
assumes preserves-divergence M1 M2 B
and A ⊆ B

shows preserves-divergence M1 M2 A
using assms unfolding preserves-divergence.simps by blast

lemma preserves-divergence-insertI :
assumes preserves-divergence M1 M2 X
and

∧
α . α ∈ L M1 ∩ X =⇒ β ∈ L M1 =⇒ ¬converge M1 α β =⇒

¬converge M2 α β
shows preserves-divergence M1 M2 (Set.insert β X)

using assms unfolding preserves-divergence.simps
by (metis Int-insert-right converge.elims(2 ) converge.elims(3 ) insertE)
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lemma preserves-divergence-insertE :
assumes preserves-divergence M1 M2 (Set.insert β X)

shows preserves-divergence M1 M2 X
and

∧
α . α ∈ L M1 ∩ X =⇒ β ∈ L M1 =⇒ ¬converge M1 α β =⇒ ¬converge

M2 α β
using assms unfolding preserves-divergence.simps

by blast+

lemma distinguishes-diverge-prefix :
assumes observable M
and distinguishes M (after-initial M u) (after-initial M v) w
and u ∈ L M
and v ∈ L M
and w ′ ∈ set (prefixes w)
and w ′ ∈ LS M (after-initial M u)
and w ′ ∈ LS M (after-initial M v)

shows ¬converge M (u@w ′) (v@w ′)
proof

assume converge M (u @ w ′) (v @ w ′)

obtain w ′′ where w = w ′@w ′′

using assms(5 )
using prefixes-set-ob by auto

have u@w ′ ∈ L M
using assms(3 ,6 ) after-language-iff [OF assms(1 )]
by blast

then have ∗:(w ∈ LS M (after-initial M u)) = (w ′′ ∈ LS M (after-initial M
(u@w ′)))

using after-language-append-iff [OF assms(1 )]
unfolding ‹w = w ′@w ′′›
by blast

have v@w ′ ∈ L M
using assms(4 ,7 ) after-language-iff [OF assms(1 )]
by blast

then have ∗∗:(w ∈ LS M (after-initial M v)) = (w ′′ ∈ LS M (after-initial M
(v@w ′)))

using after-language-append-iff [OF assms(1 )]
unfolding ‹w = w ′@w ′′›
by blast

have (w ∈ LS M (after-initial M u)) = (w ∈ LS M (after-initial M v))
unfolding ∗ ∗∗
using ‹converge M (u @ w ′) (v @ w ′)›
by (metis converge.elims(2 ))

then show False
using ‹distinguishes M (after-initial M u) (after-initial M v) w›
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unfolding distinguishes-def
by blast

qed

lemma converge-distinguishable-helper :
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and converge M1 π α
and converge M2 π α
and converge M1 τ β
and converge M2 τ β
and distinguishes M2 (after-initial M2 π) (after-initial M2 τ) v
and L M1 ∩ {α@v,β@v} = L M2 ∩ {α@v,β@v}

shows (after-initial M1 π) 6= (after-initial M1 τ)
proof −

have LS M1 (after-initial M1 π) = LS M1 (after-initial M1 α)
by (meson assms(5 ) converge.elims(2 ))

have LS M1 (after-initial M1 τ) = LS M1 (after-initial M1 β)
by (meson assms(7 ) converge.elims(2 ))

have LS M2 (after-initial M2 π) = LS M2 (after-initial M2 α)
by (meson assms(6 ) converge.elims(2 ))

have LS M2 (after-initial M2 τ) = LS M2 (after-initial M2 β)
by (meson assms(8 ) converge.elims(2 ))

have v ∈ LS M2 (after-initial M2 π) ←→ v /∈ LS M2 (after-initial M2 τ)
using assms(9 ) unfolding distinguishes-def by blast

then have v ∈ LS M2 (after-initial M2 α) ←→ v /∈ LS M2 (after-initial M2 β)
using ‹LS M2 (after-initial M2 π) = LS M2 (after-initial M2 α)› ‹LS M2

(after-initial M2 τ) = LS M2 (after-initial M2 β)› by blast
then have α@v ∈ L M2 ←→ β@v /∈ L M2

by (meson after-language-iff assms(2 ) assms(6 ) assms(8 ) converge.elims(2 ))
then have α@v ∈ L M1 ←→ β@v /∈ L M1

using assms(10 )
by (metis (no-types, lifting) Int-insert-right inf-sup-ord(1 ) insert-subset)

then have v ∈ LS M1 (after-initial M1 α) ←→ v /∈ LS M1 (after-initial M1 β)
by (meson after-language-iff assms(1 ) assms(5 ) assms(7 ) converge.elims(2 ))

then have v ∈ LS M1 (after-initial M1 π) ←→ v /∈ LS M1 (after-initial M1 τ)
using ‹LS M1 (after-initial M1 π) = LS M1 (after-initial M1 α)› ‹LS M1

(after-initial M1 τ) = LS M1 (after-initial M1 β)› by blast
then show ?thesis

by metis
qed

lemma converge-append-language-iff :
assumes observable M
and converge M α β

shows (α@γ ∈ L M ) = (β@γ ∈ L M )
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by (metis (no-types) assms(1 ) assms(2 ) converge.simps converge-extend)

lemma converge-append-iff :
assumes observable M
and converge M α β

shows converge M γ (α@ω) = converge M γ (β@ω)
proof (cases (α@ω) ∈ L M )

case True
then show ?thesis

using converge-append-language-iff [OF assms] language-prefix[of β ω M initial
M ]

using converge-append[OF assms True]
by auto

next
case False
then show ?thesis

using converge-append-language-iff [OF assms]
using converge.simps by blast

qed

lemma after-distinguishes-language :
assumes observable M1
and α ∈ L M1
and β ∈ L M1
and distinguishes M1 (after-initial M1 α) (after-initial M1 β) γ

shows (α@γ ∈ L M1 ) 6= (β@γ ∈ L M1 )
unfolding after-language-iff [OF assms(1 ,2 ),symmetric]

after-language-iff [OF assms(1 ,3 ),symmetric]
using assms(4 )
unfolding distinguishes-def
by blast

lemma distinguish-diverge :
assumes observable M1
and observable M2
and distinguishes M1 (after-initial M1 u) (after-initial M1 v) γ
and u @ γ ∈ T
and v @ γ ∈ T
and u ∈ L M1
and v ∈ L M1
and L M1 ∩ T = L M2 ∩ T

shows ¬ converge M2 u v
proof

assume converge M2 u v
then have u@γ ∈ L M2 ←→ v@γ ∈ L M2

using assms(2 ) converge-append-language-iff by blast
moreover have u@γ ∈ L M1 ←→ v@γ /∈ L M1

using assms(1 ,3 ,6 ,7 )
using after-distinguishes-language

468



by blast
ultimately show False

using assms(4 ,5 ,8 ) by blast
qed

lemma distinguish-converge-diverge :
assumes observable M1
and observable M2
and minimal M1
and u ′ ∈ L M1
and v ′ ∈ L M1
and converge M1 u u ′

and converge M1 v v ′

and converge M2 u u ′

and converge M2 v v ′

and distinguishes M1 (after-initial M1 u) (after-initial M1 v) γ
and u ′ @ γ ∈ T
and v ′ @ γ ∈ T
and L M1 ∩ T = L M2 ∩ T

shows ¬ converge M2 u v
proof −

have ∗:distinguishes M1 (after-initial M1 u ′) (after-initial M1 v ′) γ
by (metis (mono-tags, opaque-lifting) assms(1 ) assms(10 ) assms(3 ) assms(6 )

assms(7 ) converge.simps convergence-minimal)

show ?thesis
using distinguish-diverge[OF assms(1−2 ) ∗]

by (metis (mono-tags, lifting) assms(9 ) assms(11 ) assms(12 ) assms(13 ) assms(4 )
assms(5 ) assms(8 ) converge.simps)
qed

lemma diverge-prefix :
assumes observable M
and α@γ ∈ L M
and β@γ ∈ L M
and ¬ converge M (α@γ) (β@γ)

shows ¬ converge M α β
by (meson assms converge-append language-prefix)

lemma converge-sym: converge M u v = converge M v u
by auto

lemma state-cover-transition-converges :
assumes observable M
and is-state-cover-assignment M V
and t ∈ transitions M
and t-source t ∈ reachable-states M
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shows converge M ((V (t-source t)) @ [(t-input t,t-output t)]) (V (t-target t))
proof −

have t-target t ∈ reachable-states M
using assms(3 ,4 ) reachable-states-next
by metis

have V (t-source t) ∈ L M and after-initial M (V (t-source t)) = (t-source t)
using state-cover-assignment-after [OF assms(1 ,2 ,4 )]
by simp+

have ((V (t-source t)) @ [(t-input t,t-output t)]) ∈ L M
using after-language-iff [OF assms(1 ) ‹V (t-source t) ∈ L M ›, of [(t-input

t,t-output t)]]
assms(3 )

unfolding LS-single-transition ‹after-initial M (V (t-source t)) = (t-source t)›
by force

have FSM .after M (t-source t) [(t-input t, t-output t)] = t-target t
using after-transition[OF assms(1 )] assms(3 )
by auto

then have after-initial M ((V (t-source t)) @ [(t-input t,t-output t)]) = t-target
t

using ‹after-initial M (V (t-source t)) = (t-source t)›
using after-split[OF assms(1 ) ‹((V (t-source t)) @ [(t-input t,t-output t)]) ∈ L

M ›]
by force

then show ?thesis
using ‹((V (t-source t)) @ [(t-input t,t-output t)]) ∈ L M ›
using state-cover-assignment-after [OF assms(1 ,2 ) ‹t-target t ∈ reachable-states

M ›]
by auto

qed

lemma equivalence-preserves-divergence :
assumes observable M
and observable I
and L M = L I

shows preserves-divergence M I A
proof −

have
∧

α β . α ∈ L M ∩ A =⇒ β ∈ L M ∩ A =⇒ ¬ converge M α β =⇒ ¬
converge I α β

proof −
fix α β assume α ∈ L M ∩ A and β ∈ L M ∩ A and ¬ converge M α β
then have after-initial M α ∈ states M and after-initial M β ∈ states M and

LS M (after-initial M α) 6= LS M (after-initial M β)
using after-is-state[OF assms(1 )] unfolding converge.simps
by auto

then obtain γ where (γ ∈ LS M (after-initial M α)) 6= (γ ∈ LS M (after-initial
M β))
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by blast
then have (α@γ ∈ L M ) 6= (β@γ ∈ L M )

using after-language-iff [OF assms(1 )] ‹α ∈ L M ∩ A› ‹β ∈ L M ∩ A› by
blast

then have (α@γ ∈ L I ) 6= (β@γ ∈ L I )
using assms(3 ) by blast

then show ¬ converge I α β
using assms(2 ) converge-append-language-iff by blast

qed
then show ?thesis

unfolding preserves-divergence.simps by blast
qed

15.2 Sufficient Conditions for Convergence

The following lemma provides a condition for convergence that assumes the
existence of a single state cover covering all extensions of length up to (m
- |M1|). This is too restrictive for the SPYH method but could be used in
the SPY method. The proof idea has been developed by Wen-ling Huang
and adapted by the author to avoid requiring the SC to cover traces that
contain a proper prefix already not in the language of FSM M1.
lemma sufficient-condition-for-convergence-in-SPY-method :

fixes M1 :: ( ′a, ′b, ′c) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and L M1 ∩ T = L M2 ∩ T
and π ∈ L M1 ∩ T
and τ ∈ L M1 ∩ T
and converge M1 π τ
and SC ⊆ T
and

∧
q . q ∈ reachable-states M1 =⇒ ∃ io ∈ L M1 ∩ SC . q ∈ io-targets

M1 io (initial M1 )
and preserves-divergence M1 M2 SC
and

∧
γ x y . length γ < m − size-r M1 =⇒

γ ∈ LS M1 (after-initial M1 π) =⇒
x ∈ inputs M1 =⇒
y ∈ outputs M1 =⇒
∃ α β . converge M1 α (π@γ) ∧

converge M2 α (π@γ) ∧
converge M1 β (τ@γ) ∧
converge M2 β (τ@γ) ∧
α ∈ SC ∧
α@[(x,y)] ∈ SC ∧
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β ∈ SC ∧
β@[(x,y)] ∈ SC

and ∃ α β . converge M1 α π ∧
converge M2 α π ∧
converge M1 β τ ∧
converge M2 β τ ∧
α ∈ SC ∧
β ∈ SC

and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows converge M2 π τ
proof −

obtain f where f1 :
∧

q . q ∈ reachable-states M1 =⇒ q ∈ io-targets M1 (f q)
(initial M1 )

and f2 :
∧

q . q ∈ reachable-states M1 =⇒ f q ∈ L M1 ∩ SC
using non-initialized-state-cover-assignment-from-non-initialized-state-cover [OF

‹
∧

q . q ∈ reachable-states M1 =⇒ ∃ io ∈ L M1 ∩ SC . q ∈ io-targets M1 io
(initial M1 )›]

by blast

define A where A: A = (λ q . Set.filter (converge M1 (f q)) (L M1 ∩ SC ))

define Q where Q: Q = (λ q .
⋃

α ∈ A q . io-targets M2 α (initial M2 ))

have
∧

q . q ∈ reachable-states M1 =⇒ Q q 6= {}
proof −

fix q assume q ∈ reachable-states M1
then have f q ∈ A q

using A
using f2 by auto

moreover have f q ∈ L M2
proof −

have f q ∈ L M1 ∩ SC
using ‹q ∈ reachable-states M1 › f2 by blast

then show ?thesis
using ‹SC ⊆ T › ‹L M1 ∩ T = L M2 ∩ T › by blast

qed
ultimately show Q q 6= {}

unfolding Q
by auto

qed

have states M2 = (
⋃

q ∈ reachable-states M1 . Q q) ∪ (states M2 − (
⋃

q ∈
reachable-states M1 . Q q))

proof −
have (

⋃
q ∈ reachable-states M1 . Q q) ⊆ reachable-states M2

proof
fix q assume q ∈ (

⋃
q ∈ reachable-states M1 . Q q)
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then obtain α where q ∈ io-targets M2 α (initial M2 )
unfolding Q by blast

then show q ∈ reachable-states M2
unfolding io-targets.simps reachable-states-def by blast

qed
then show ?thesis

by (metis Diff-partition reachable-state-is-state subset-iff )
qed

have
∧

q1 q2 . q1 ∈ reachable-states M1 =⇒ q2 ∈ reachable-states M1 =⇒ q1
6= q2 =⇒ Q q1 ∩ Q q2 = {}

proof −
fix q1 q2
assume q1 ∈ reachable-states M1 and q2 ∈ reachable-states M1 and q1 6= q2

have
∧

α β . α ∈ A q1 =⇒ β ∈ A q2 =⇒ io-targets M2 α (initial M2 ) ∩
io-targets M2 β (initial M2 ) = {}

proof −
fix α β assume α ∈ A q1 and β ∈ A q2

then have converge M1 (f q1 ) α and converge M1 (f q2 ) β
unfolding A
by (meson member-filter)+

moreover have ¬ converge M1 (f q1 ) (f q2 )
using non-initialized-state-cover-assignment-diverges[OF assms(1 ,3 ) f1 f2

‹q1 ∈ reachable-states M1 › ‹q2 ∈ reachable-states M1 › ‹q1 6= q2 ›] .
ultimately have ¬ converge M1 α β

unfolding converge.simps by blast
moreover have α∈L M1 ∩ SC

using ‹α ∈ A q1 › unfolding A
by (meson member-filter)

moreover have β∈L M1 ∩ SC
using ‹β ∈ A q2 › unfolding A
by (meson member-filter)

ultimately have ¬ converge M2 α β
using ‹preserves-divergence M1 M2 SC ›
unfolding preserves-divergence.simps
by blast

have α ∈ L M2 and β ∈ L M2
using ‹α∈L M1 ∩ SC › ‹β∈L M1 ∩ SC › ‹SC ⊆ T › ‹L M1 ∩ T = L M2 ∩

T › by blast+

have io-targets M2 α (initial M2 ) = {after-initial M2 α}
using observable-io-targets[OF ‹observable M2 › ‹α ∈ L M2 ›]
unfolding after-io-targets[OF ‹observable M2 › ‹α ∈ L M2 ›]
by (metis the-elem-eq)

moreover have io-targets M2 β (initial M2 ) = {after-initial M2 β}
using observable-io-targets[OF ‹observable M2 › ‹β ∈ L M2 ›]
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unfolding after-io-targets[OF ‹observable M2 › ‹β ∈ L M2 ›]
by (metis the-elem-eq)
ultimately show io-targets M2 α (initial M2 ) ∩ io-targets M2 β (initial

M2 ) = {}
using ‹¬ converge M2 α β› unfolding convergence-minimal[OF assms(4 ,2 )

‹α ∈ L M2 › ‹β ∈ L M2 ›]
by (metis Int-insert-right-if0 inf-bot-right singletonD)

qed

then show Q q1 ∩ Q q2 = {}
unfolding Q by blast

qed
then have

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)

unfolding Uniq-def
by blast

define partition where partition: partition = (λ q . if ∃ q ′ ∈ reachable-states
M1 . q ∈ Q q ′

then Q (THE q ′ . q ′ ∈ reachable-states
M1 ∧ q ∈ Q q ′)

else (states M2 − (
⋃

q ∈ reachable-states
M1 . Q q)))

have is-eq: equivalence-relation-on-states M2 partition
proof−

let ?r = {(q1 ,q2 ) | q1 q2 . q1 ∈ states M2 ∧ q2 ∈ partition q1}

have
∧

q .partition q ⊆ states M2
proof −

fix q show partition q ⊆ states M2
proof (cases ∃ q ′ ∈ reachable-states M1 . q ∈ Q q ′)

case True
then have partition q = Q (THE q ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)

unfolding partition by simp
then show ?thesis

using True ‹
∧

q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)›
by (metis (no-types, lifting) Q SUP-least io-targets-states)

next
case False
then show ?thesis unfolding partition

by auto
qed

qed

have
∧

q . q ∈ states M2 =⇒ q ∈ partition q
proof −

fix q assume q ∈ states M2
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show q ∈ partition q
proof (cases ∃ q ′ ∈ reachable-states M1 . q ∈ Q q ′)

case True
then have partition q = Q (THE q ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)

unfolding partition by simp
then show ?thesis

using True ‹
∧

q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)›
using the1-equality ′ by fastforce

next
case False
then show ?thesis unfolding partition

using ‹q ∈ states M2 ›
by simp

qed
qed

have
∧

q q ′ . q ∈ states M2 =⇒ q ′ ∈ partition q =⇒ q ∈ partition q ′

proof −
fix q q ′ assume q ∈ states M2 and q ′ ∈ partition q
show q ∈ partition q ′

proof (cases ∃ q ′ ∈ reachable-states M1 . q ∈ Q q ′)
case True
then have partition q = Q (THE q ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)

unfolding partition by simp
then obtain q1 where partition q = Q q1 and q1 ∈ reachable-states M1

and q ∈ Q q1
using True ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)›

using the1-equality ′ by fastforce
then have q ′ ∈ Q q1

using ‹q ′ ∈ partition q› by auto
then have partition q ′ = Q q1

using ‹q1 ∈ reachable-states M1 ›
using the1-equality ′[OF ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q

∈ Q q ′)›]
unfolding partition
by auto

then show ?thesis
using ‹q ∈ Q q1 › ‹q ′ ∈ partition q› ‹partition q = Q q1 › by blast

next
case False
then show ?thesis

using ‹q ∈ states M2 › ‹q ′ ∈ partition q›
by (simp add: partition)

qed
qed

have
∧

q q ′ q ′′ . q ∈ states M2 =⇒ q ′ ∈ partition q =⇒ q ′′ ∈ partition q ′ =⇒
q ′′ ∈ partition q
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proof −
fix q q ′ q ′′

assume q ∈ states M2 and q ′ ∈ partition q and q ′′ ∈ partition q ′

show q ′′ ∈ partition q
proof (cases ∃ q ′ ∈ reachable-states M1 . q ∈ Q q ′)

case True
then have partition q = Q (THE q ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)

unfolding partition by simp
then obtain q1 where partition q = Q q1 and q1 ∈ reachable-states M1

and q ∈ Q q1
using True ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′)›

using the1-equality ′ by fastforce
then have q ′ ∈ Q q1

using ‹q ′ ∈ partition q› by auto
then have partition q ′ = Q q1

using ‹q1 ∈ reachable-states M1 ›
using the1-equality ′[OF ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q

∈ Q q ′)›]
unfolding partition
by auto

then have q ′′ ∈ Q q1
using ‹q ′′ ∈ partition q ′› by auto

then have partition q ′′ = Q q1
using ‹q1 ∈ reachable-states M1 ›
using the1-equality ′[OF ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q

∈ Q q ′)›]
unfolding partition
by auto

then show ?thesis
unfolding ‹partition q = Q q1 ›
using ‹q ′′ ∈ Q q1 › by blast

next
case False
then show ?thesis

using ‹q ∈ states M2 › ‹q ′ ∈ partition q› ‹q ′′ ∈ partition q ′›
by (simp add: partition)

qed
qed

have refl-on (states M2 ) ?r unfolding refl-on-def
proof

show {(q1 , q2 ) |q1 q2 . q1 ∈ FSM .states M2 ∧ q2 ∈ partition q1} ⊆
FSM .states M2 × FSM .states M2

using ‹
∧

q .partition q ⊆ states M2 › by blast
show ∀ x∈FSM .states M2 . (x, x) ∈ {(q1 , q2 ) |q1 q2 . q1 ∈ FSM .states M2

∧ q2 ∈ partition q1}
proof
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fix q assume q ∈ states M2
then show (q,q) ∈ {(q1 , q2 ) |q1 q2 . q1 ∈ FSM .states M2 ∧ q2 ∈ partition

q1}
using ‹

∧
q . q ∈ states M2 =⇒ q ∈ partition q›

by blast
qed

qed
moreover have sym ?r

unfolding sym-def
using ‹

∧
q q ′ . q ∈ states M2 =⇒ q ′ ∈ partition q =⇒ q ∈ partition q ′› ‹

∧
q .partition q ⊆ states M2 ›

by blast
moreover have trans ?r

unfolding trans-def
using ‹

∧
q q ′ q ′′ . q ∈ states M2 =⇒ q ′ ∈ partition q =⇒ q ′′ ∈ partition q ′

=⇒ q ′′ ∈ partition q›
by blast

ultimately show ?thesis
unfolding equivalence-relation-on-states-def equiv-def
using ‹

∧
q .partition q ⊆ states M2 › by blast

qed

define n0 where n0 : n0 = card (partition ‘ states M2 )
have n0 ≤ Suc (size-r M1 ) and n0 ≥ size-r M1
proof −

have partition ‘ states M2 ⊆ insert (states M2 − (
⋃

q ∈ reachable-states M1
. Q q)) (Q ‘ reachable-states M1 )

proof
fix X assume X ∈ partition ‘ states M2
then obtain q where q ∈ states M2 and X = partition q

by blast

show X ∈ insert (states M2 − (
⋃

q ∈ reachable-states M1 . Q q)) (Q ‘
reachable-states M1 )

proof (cases ∃ q ′∈reachable-states M1 . q ∈ Q q ′)
case True
then show ?thesis

unfolding ‹X = partition q› partition
using the1-equality ′[OF ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q

∈ Q q ′)›]
by auto

next
case False
then show ?thesis

unfolding ‹X = partition q› partition
by auto

qed
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qed
moreover have card (insert (states M2 − (

⋃
q ∈ reachable-states M1 . Q q))

(Q ‘ reachable-states M1 )) ≤ Suc (size-r M1 )
and finite (insert (states M2 − (

⋃
q ∈ reachable-states M1 . Q q)) (Q

‘ reachable-states M1 ))
and card (insert (states M2 − (

⋃
q ∈ reachable-states M1 . Q q)) (Q

‘ reachable-states M1 )) ≥ size-r M1
proof −

have finite (Q ‘ reachable-states M1 )
using fsm-states-finite[of M1 ]

by (metis finite-imageI fsm-states-finite restrict-to-reachable-states-simps(2 ))

moreover have card (Q ‘ reachable-states M1 ) = size-r M1
proof −

have card (Q ‘ reachable-states M1 ) ≤ size-r M1
by (metis card-image-le fsm-states-finite restrict-to-reachable-states-simps(2 ))
moreover have card (Q ‘ reachable-states M1 ) ≥ size-r M1

using ‹finite (Q ‘ reachable-states M1 )›
by (metis (full-types) ‹

∧
q. q ∈ reachable-states M1 =⇒ Q q 6= {}› ‹

∧
q2

q1 . [[q1 ∈ reachable-states M1 ; q2 ∈ reachable-states M1 ; q1 6= q2 ]] =⇒ Q q1 ∩
Q q2 = {}› calculation card-eq-0-iff card-union-of-distinct le-0-eq)

ultimately show ?thesis
by simp

qed
ultimately show card (insert (states M2 − (

⋃
q ∈ reachable-states M1 . Q

q)) (Q ‘ reachable-states M1 )) ≤ Suc (size-r M1 )
and card (insert (states M2 − (

⋃
q ∈ reachable-states M1 . Q q))

(Q ‘ reachable-states M1 )) ≥ size-r M1
by (simp add: card-insert-if )+

show finite (insert (states M2 − (
⋃

q ∈ reachable-states M1 . Q q)) (Q ‘
reachable-states M1 ))

using ‹finite (Q ‘ reachable-states M1 )›
by blast

qed
ultimately show n0 ≤ Suc (size-r M1 ) unfolding n0

by (meson card-mono le-trans)

have (Q ‘ reachable-states M1 ) ⊆ partition ‘ states M2
proof

fix x assume x ∈ (Q ‘ reachable-states M1 )
then obtain q ′ where q ′ ∈ reachable-states M1 and x = Q q ′

by blast
then obtain q where q ∈ Q q ′

using ‹
∧

q . q ∈ reachable-states M1 =⇒ Q q 6= {}› by blast
then obtain α where α ∈ A q ′ and q ∈ io-targets M2 α (initial M2 )

unfolding Q by blast
then have q ∈ states M2

by (meson io-targets-states subset-iff )
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have ∃ q ′∈reachable-states M1 . q ∈ Q q ′

using ‹q ′ ∈ reachable-states M1 › ‹q ∈ Q q ′› by blast
then have partition q = Q q ′

unfolding partition
using the1-equality ′[OF ‹

∧
q . Uniq (λq ′ . q ′ ∈ reachable-states M1 ∧ q ∈

Q q ′)›, of q ′ q] ‹q ∈ Q q ′› ‹q ′ ∈ reachable-states M1 ›
by auto

then show x ∈ partition ‘ states M2
using ‹q ∈ states M2 › ‹x = Q q ′›
by blast

qed
then show n0 ≥ size-r M1

unfolding n0
using ‹finite (insert (states M2 − (

⋃
q ∈ reachable-states M1 . Q q)) (Q ‘

reachable-states M1 ))›
by (metis (full-types) ‹

∧
q. q ∈ reachable-states M1 =⇒ Q q 6= {}› ‹

∧
q2

q1 . [[q1 ∈ reachable-states M1 ; q2 ∈ reachable-states M1 ; q1 6= q2 ]] =⇒ Q q1
∩ Q q2 = {}› ‹partition ‘ FSM .states M2 ⊆ insert (FSM .states M2 −

⋃
(Q ‘

reachable-states M1 )) (Q ‘ reachable-states M1 )› card-mono card-union-of-distinct
finite-subset fsm-states-finite restrict-to-reachable-states-simps(2 ))

qed

moreover have after-initial M2 τ ∈ ofsm-table M2 partition (m − size-r M1 )
(after-initial M2 π)

proof −

define q1 where q1 : q1 = (after-initial M2 π)
define q2 where q2 : q2 = (after-initial M2 τ)

have π ∈ L M2 and τ ∈ L M2
using assms(7 ,8 ,9 ) by blast+

have q1 ∈ states M2
using ‹π ∈ L M2 › after-is-state[OF ‹observable M2 ›] unfolding q1 by blast

have q2 ∈ states M2
using ‹τ ∈ L M2 › after-is-state[OF ‹observable M2 ›] unfolding q2 by blast

moreover have
∧

γ . length γ ≤ m − size-r M1 =⇒ (γ ∈ LS M2 q1 ) = (γ
∈ LS M2 q2 ) ∧ (γ ∈ LS M2 q1 −→ after M2 q2 γ ∈ partition (after M2 q1 γ))

proof −
fix γ :: ( ′b× ′c) list
assume length γ ≤ m − size-r M1

then show ((γ ∈ LS M2 q1 ) = (γ ∈ LS M2 q2 )) ∧ (γ ∈ LS M2 q1 −→ after
M2 q2 γ ∈ partition (after M2 q1 γ))

proof (induction γ rule: rev-induct)
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case Nil

show ?case
proof

have ([] ∈ LS M2 q1 ) and ([] ∈ LS M2 q2 )
using ‹q1 ∈ states M2 › ‹q2 ∈ states M2 ›
by auto

then have after M2 q1 [] = q1 and after M2 q2 [] = q2
unfolding Nil
by auto

obtain α β where converge M1 α π
converge M2 α π
converge M1 β τ
converge M2 β τ
α ∈ SC
β ∈ SC

using assms(15 ) by blast
then have α ∈ L M1 and β ∈ L M1

by auto

have α ∈ L M2
using ‹α ∈ L M1 › ‹α ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by

blast
have β ∈ L M2

using ‹β ∈ L M1 › ‹β ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by
blast

have ([] ∈ LS M2 q1 ) = ([] ∈ LS M2 (after-initial M2 α))
using ‹converge M2 α π› unfolding q1 converge.simps by simp

also have . . . = ([] ∈ LS M1 (after-initial M1 α))
using ‹α ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T ›
unfolding after-language-iff [OF ‹observable M1 › ‹α ∈ L M1 ›]
unfolding after-language-iff [OF ‹observable M2 › ‹α ∈ L M2 ›]
unfolding Nil
by auto

also have . . . = ([] ∈ LS M1 (after-initial M1 β))
using ‹converge M1 π τ› ‹converge M1 α π› ‹converge M1 β τ›
unfolding converge.simps by blast

also have . . . = ([] ∈ LS M2 (after-initial M2 β))
using ‹β ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T ›
unfolding after-language-iff [OF ‹observable M1 › ‹β ∈ L M1 ›]
unfolding after-language-iff [OF ‹observable M2 › ‹β ∈ L M2 ›]
unfolding Nil
by auto

also have . . . = ([] ∈ LS M2 q2 )
using ‹converge M2 β τ› unfolding q2 converge.simps by simp
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finally show ([] ∈ LS M2 q1 ) = ([] ∈ LS M2 q2 ) .

show ([] ∈ LS M2 q1 −→ after M2 q2 [] ∈ partition (after M2 q1 []))
proof

assume [] ∈ LS M2 q1
then have [] ∈ LS M1 (after-initial M1 α)

and [] ∈ LS M1 (after-initial M1 β)
unfolding ‹([] ∈ LS M2 q1 ) = ([] ∈ LS M2 (after-initial M2 α))›

‹([] ∈ LS M2 (after M2 (FSM .initial M2 ) α)) = ([] ∈ LS M1
(after M1 (FSM .initial M1 ) α))›

‹([] ∈ LS M1 (after M1 (FSM .initial M1 ) α)) = ([] ∈ LS M1
(after M1 (FSM .initial M1 ) β))›

by simp+

have α@[] ∈ L M1
using ‹[] ∈ LS M1 (after-initial M1 α)› unfolding after-language-iff [OF

‹observable M1 › ‹α ∈ L M1 ›] .
moreover have β@[] ∈ L M1
using ‹[] ∈ LS M1 (after-initial M1 β)› unfolding after-language-iff [OF

‹observable M1 › ‹β ∈ L M1 ›] .
moreover have converge M1 α β

using ‹converge M1 π τ› ‹converge M1 α π› ‹converge M1 β τ›
unfolding converge.simps by blast

ultimately have converge M1 (α@[]) (β@[])
using converge-append[OF ‹observable M1 ›] language-prefix[of β [] M1

initial M1 ] by blast

have (α @ []) ∈ L M2 and (β @ []) ∈ L M2
using ‹α@[] ∈ L M1 › ‹α ∈ SC › ‹β@[] ∈ L M1 › ‹β ∈ SC ›‹L M1 ∩ T

= L M2 ∩ T › ‹SC ⊆ T › by auto
have after-initial M1 (α@[]) ∈ reachable-states M1

using observable-after-path[OF ‹observable M1 › ]
unfolding reachable-states-def

proof −
have ∃ ps. after M1 (FSM .initial M1 ) α = target (FSM .initial M1 ) ps

∧ path M1 (FSM .initial M1 ) ps
by (metis (no-types) ‹

∧
thesis q io. [[io ∈ LS M1 q;

∧
p. [[path M1 q p;

p-io p = io; target q p = after M1 q io]] =⇒ thesis]] =⇒ thesis› ‹α ∈ L M1 ›)
then show after M1 (FSM .initial M1 ) (α @ []) ∈ {target (FSM .initial

M1 ) ps |ps. path M1 (FSM .initial M1 ) ps}
by auto

qed
have (α@[]) ∈ A (after-initial M1 (α@[]))

unfolding A
using convergence-minimal[OF assms(3 ,1 ) - ‹α@[] ∈ L M1 ›, of f

(after-initial M1 (α@[]))]
using f2 [OF ‹after-initial M1 (α@[]) ∈ reachable-states M1 ›]
using ‹α ∈ SC ›
unfolding Nil
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by (metis (no-types, lifting) Int-iff ‹α ∈ L M1 › ‹after M1 (FSM .initial
M1 ) (α @ []) ∈ reachable-states M1 › append-Nil2 assms(1 ) f1 member-filter ob-
servable-after-path observable-path-io-target singletonD)

then have after M2 (FSM .initial M2 ) (α @ []) ∈ Q (after-initial M1
(α@[]))

unfolding Q
using observable-io-targets[OF ‹observable M2 › ‹(α @ []) ∈ L M2 ›]
unfolding after-io-targets[OF ‹observable M2 › ‹(α @ []) ∈ L M2 ›]
by (metis UN-iff insertCI the-elem-eq)

then have ∃ q ′∈reachable-states M1 . after M2 (FSM .initial M2 ) (α @
[]) ∈ Q q ′

using ‹after-initial M1 (α@[]) ∈ reachable-states M1 › by blast
moreover have (THE q ′. q ′∈ reachable-states M1 ∧ after M2 (FSM .initial

M2 ) (α @ []) ∈ Q q ′) = (after-initial M1 (α@[]))
using ‹after-initial M1 (α@[]) ∈ reachable-states M1 ›

using ‹after M2 (FSM .initial M2 ) (α @ []) ∈ Q (after-initial M1
(α@[]))›

by (simp add: ‹
∧

q. ∃≤1 q ′. q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′›
the1-equality ′)

moreover have after M2 (FSM .initial M2 ) (β @ []) ∈ Q (after-initial
M1 (α@[]))

proof −
have (β@[]) ∈ A (after-initial M1 (α@[]))

using A ‹α @ [] ∈ A (after M1 (FSM .initial M1 ) (α @ []))› ‹β @ []
∈ L M1 › ‹β ∈ SC › ‹converge M1 (α @ []) (β @ [])› unfolding Nil by auto

then show ?thesis
unfolding Q
using observable-io-targets[OF ‹observable M2 › ‹(β @ []) ∈ L M2 ›]
unfolding after-io-targets[OF ‹observable M2 › ‹(β @ []) ∈ L M2 ›]
by (metis UN-iff insertCI the-elem-eq)

qed
ultimately have after-initial M2 (β@[]) ∈ partition (after-initial M2

(α@[]))
unfolding partition
by presburger

moreover have after-initial M2 (α@[]) = after-initial M2 (π@[])
using converge-append[OF assms(2 ) ‹converge M2 α π› ‹(α @ []) ∈ L

M2 › ‹π ∈ L M2 ›]
unfolding convergence-minimal[OF assms(4 ,2 ) ‹(α @ []) ∈ L M2 ›

converge-extend[OF assms(2 ) ‹converge M2 α π› ‹(α @ []) ∈ L M2 › ‹π ∈ L M2 ›]]
.

moreover have after-initial M2 (β@[]) = after-initial M2 (τ@[])
using converge-append[OF assms(2 ) ‹converge M2 β τ› ‹(β @ []) ∈ L

M2 › ‹τ ∈ L M2 ›]
unfolding convergence-minimal[OF assms(4 ,2 ) ‹(β @ []) ∈ L M2 ›

converge-extend[OF assms(2 ) ‹converge M2 β τ› ‹(β @ []) ∈ L M2 › ‹τ ∈ L M2 ›]]
.

ultimately show after M2 q2 [] ∈ partition (after M2 q1 [])
unfolding q1 q2
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unfolding after-split[OF assms(2 ) converge-extend[OF assms(2 )
‹converge M2 α π› ‹(α @ []) ∈ L M2 › ‹π ∈ L M2 ›]]

unfolding after-split[OF assms(2 ) converge-extend[OF assms(2 )
‹converge M2 β τ› ‹(β @ []) ∈ L M2 › ‹τ ∈ L M2 ›]]

by simp
qed

qed
next

case (snoc xy γ)

obtain x y where xy = (x,y)
by fastforce

show ?case proof (cases ∀ x ′ y ′ . (x ′,y ′) ∈ set (γ@[(x,y)]) −→ x ′ ∈ inputs
M1 ∧ y ′ ∈ outputs M1 )

case False

have γ@[(x,y)] /∈ LS M2 q1 and γ@[(x,y)] /∈ LS M2 q2
using language-io[of γ@[(x,y)] M2 - ] False
unfolding ‹inputs M2 = inputs M1 › ‹outputs M2 = outputs M1 ›
by blast+

then show ?thesis
unfolding ‹xy = (x,y)›
by blast

next
case True

define s1 where s1 : s1 = (after-initial M1 π)
define s2 where s2 : s2 = (after-initial M1 τ)

have s1 ∈ states M1
using ‹π ∈ L M1 ∩ T › after-is-state[OF ‹observable M1 ›] unfolding s1

by blast
have s2 ∈ states M1
using ‹τ ∈ L M1 ∩ T › after-is-state[OF ‹observable M1 ›] unfolding s2

by blast

show ?thesis proof (cases γ ∈ LS M1 s1 )
case False

obtain io ′ x ′ y ′ io ′′ where γ = io ′ @ [(x ′, y ′)] @ io ′′

and io ′ ∈ LS M1 s1
and io ′ @ [(x ′, y ′)] /∈ LS M1 s1

using language-maximal-contained-prefix-ob[OF False ‹s1 ∈ states M1 ›
‹observable M1 ›]

by blast

have ∗: length io ′ < m − size-r M1
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using ‹length (γ @ [xy]) ≤ m − size-r M1 ›
unfolding ‹γ = io ′ @ [(x ′, y ′)] @ io ′′›
by auto

have ∗∗: io ′ ∈ LS M1 (after M1 (FSM .initial M1 ) π)
using ‹io ′ ∈ LS M1 s1 › unfolding s1 .

have x ′ ∈ inputs M1 and y ′ ∈ outputs M1
using True
unfolding ‹γ = io ′ @ [(x ′, y ′)] @ io ′′›
by auto

obtain α β where converge M1 α (π @ io ′)
converge M2 α (π @ io ′)
converge M1 β (τ @ io ′)
converge M2 β (τ @ io ′)
α ∈ SC
α @ [(x ′, y ′)] ∈ SC
β ∈ SC
β @ [(x ′, y ′)] ∈ SC

using assms(14 )[OF ∗ ∗∗ ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 ›]
by blast

then have α ∈ L M1 and β ∈ L M1
by auto

have π@io ′ ∈ L M1
using ‹io ′ ∈ LS M1 s1 › ‹π ∈ L M1 ∩ T ›
using after-language-iff [OF ‹observable M1 ›, of π initial M1 io ′]
unfolding s1
by blast

have converge M1 (π @ io ′) (τ @ io ′)
using converge-append[OF ‹observable M1 › ‹converge M1 π τ› ‹π@io ′

∈ L M1 › ]
using ‹τ ∈ L M1 ∩ T ›
by blast

have (π @ io ′) @ [(x ′, y ′)] /∈ L M1
using ‹io ′ @ [(x ′, y ′)] /∈ LS M1 s1 ›
using ‹π ∈ L M1 ∩ T ›

using after-language-iff [OF ‹observable M1 ›, of π initial M1 io ′@[(x ′,y ′)]]
unfolding s1
by auto

then have [(x ′,y ′)] /∈ LS M1 (after-initial M1 α)
using after-language-iff [OF ‹observable M1 › ‹π@io ′ ∈ L M1 ›, of

[(x ′,y ′)]]
using ‹converge M1 α (π @ io ′)›
unfolding converge.simps
by blast

then have [(x ′,y ′)] /∈ LS M1 (after-initial M1 β)
using ‹converge M1 (π @ io ′) (τ @ io ′)› ‹converge M1 α (π @ io ′)›
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‹converge M1 β (τ @ io ′)›
unfolding converge.simps
by blast

have α ∈ L M2
using ‹α ∈ L M1 › ‹α ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by

blast
have β ∈ L M2
using ‹β ∈ L M1 › ‹β ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by

blast

have [(x ′,y ′)] /∈ LS M2 (after-initial M2 α)
using ‹α @ [(x ′, y ′)] ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T ›

‹[(x ′,y ′)] /∈ LS M1 (after-initial M1 α)›
unfolding after-language-iff [OF ‹observable M1 › ‹α ∈ L M1 ›]
unfolding after-language-iff [OF ‹observable M2 › ‹α ∈ L M2 ›]
by blast

then have io ′@[(x ′,y ′)] /∈ LS M2 q1
using ‹converge M2 α (π @ io ′)›
unfolding q1 converge.simps
using after-language-append-iff assms(2 ) by blast

then have γ@[xy] /∈ LS M2 q1
unfolding ‹γ = io ′ @ [(x ′, y ′)] @ io ′′›
using language-prefix
by (metis append-assoc)

have [(x ′,y ′)] /∈ LS M2 (after-initial M2 β)
using ‹β @ [(x ′, y ′)] ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T ›

‹[(x ′,y ′)] /∈ LS M1 (after-initial M1 β)›
unfolding after-language-iff [OF ‹observable M1 › ‹β ∈ L M1 ›]
unfolding after-language-iff [OF ‹observable M2 › ‹β ∈ L M2 ›]
by blast

then have io ′@[(x ′,y ′)] /∈ LS M2 q2
using ‹converge M2 β (τ @ io ′)›
unfolding q2 converge.simps
using after-language-append-iff assms(2 ) by blast

then have γ@[xy] /∈ LS M2 q2
unfolding ‹γ = io ′ @ [(x ′, y ′)] @ io ′′›
using language-prefix
by (metis append-assoc)

then show ?thesis
using ‹γ@[xy] /∈ LS M2 q1 ›
by blast

next
case True
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have ∗: length γ < m − size-r M1
using ‹length (γ @ [xy]) ≤ m − size-r M1 ›
by auto

have ∗∗: γ ∈ LS M1 (after M1 (FSM .initial M1 ) π)
using True unfolding s1 .

have x ∈ inputs M1 and y ∈ outputs M1
using ‹∀ x ′ y ′ . (x ′,y ′) ∈ set (γ@[(x,y)]) −→ x ′ ∈ inputs M1 ∧ y ′ ∈

outputs M1 ›
by auto

obtain α β where converge M1 α (π @ γ)
converge M2 α (π @ γ)
converge M1 β (τ @ γ)
converge M2 β (τ @ γ)
α ∈ SC
α @ [xy] ∈ SC
β ∈ SC
β @ [xy] ∈ SC

using assms(14 )[OF ∗ ∗∗ ‹x ∈ inputs M1 › ‹y ∈ outputs M1 ›]
unfolding ‹xy = (x,y)›
by blast

then have α ∈ L M1 and β ∈ L M1
by auto

have α ∈ L M2
using ‹α ∈ L M1 › ‹α ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by

blast
have β ∈ L M2
using ‹β ∈ L M1 › ‹β ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by

blast

have (π @ γ) ∈ L M2
using ‹converge M2 α (π @ γ)› by auto

have (τ @ γ) ∈ L M2
using ‹converge M2 β (τ @ γ)› by auto

have converge M1 (π @ γ) (τ @ γ)
using converge-append[OF ‹observable M1 › ‹converge M1 π τ›, of γ]
using ‹converge M1 α (π @ γ)› ‹τ ∈ L M1 ∩ T ›
by auto

have (γ@[xy] ∈ LS M2 q1 ) = ([xy] ∈ LS M2 (after-initial M2 (π@γ)))
unfolding q1

using after-language-append-iff [OF ‹observable M2 › ‹(π @ γ) ∈ L M2 ›]
by auto

also have . . . = ([xy] ∈ LS M2 (after-initial M2 α))
using ‹converge M2 α (π @ γ)› unfolding q1 converge.simps
by blast
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also have . . . = ([xy] ∈ LS M1 (after-initial M1 α))
using ‹α@[xy] ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T ›
unfolding after-language-iff [OF ‹observable M1 › ‹α ∈ L M1 ›]
unfolding after-language-iff [OF ‹observable M2 › ‹α ∈ L M2 ›]
by blast

also have . . . = ([xy] ∈ LS M1 (after-initial M1 β))
using ‹converge M1 (π @ γ) (τ @ γ)› ‹converge M1 α (π @ γ)›

‹converge M1 β (τ @ γ)›
unfolding converge.simps
by blast

also have . . . = ([xy] ∈ LS M2 (after-initial M2 β))
using ‹β@[xy] ∈ SC › ‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T ›
unfolding after-language-iff [OF ‹observable M1 › ‹β ∈ L M1 ›]
unfolding after-language-iff [OF ‹observable M2 › ‹β ∈ L M2 ›]
by blast

also have . . . = ([xy] ∈ LS M2 (after-initial M2 (τ@γ)))
using ‹converge M2 β (τ @ γ)› unfolding q1 converge.simps
by blast

also have . . . = (γ@[xy] ∈ LS M2 q2 )
unfolding q2

using after-language-append-iff [OF ‹observable M2 › ‹(τ @ γ) ∈ L M2 ›]
by auto

finally have p1 : (γ@[xy] ∈ LS M2 q1 ) = (γ@[xy] ∈ LS M2 q2 )
.

moreover have (γ@[xy] ∈ LS M2 q1 −→ after M2 q2 (γ@[xy]) ∈
partition (after M2 q1 (γ@[xy])))

proof
assume γ@[xy] ∈ LS M2 q1
then have [xy] ∈ LS M1 (after-initial M1 α)

and [xy] ∈ LS M1 (after-initial M1 β)
unfolding ‹(γ@[xy] ∈ LS M2 q1 ) = ([xy] ∈ LS M2 (after-initial M2

(π@γ)))›
‹([xy] ∈ LS M2 (after-initial M2 (π@γ))) = ([xy] ∈ LS M2

(after-initial M2 α))›
‹([xy] ∈ LS M2 (after M2 (FSM .initial M2 ) α)) = ([xy] ∈

LS M1 (after M1 (FSM .initial M1 ) α))›
‹([xy] ∈ LS M1 (after M1 (FSM .initial M1 ) α)) = ([xy] ∈

LS M1 (after M1 (FSM .initial M1 ) β))›
by simp+

have α@[xy] ∈ L M1
using ‹[xy] ∈ LS M1 (after-initial M1 α)› unfolding after-language-iff [OF

‹observable M1 › ‹α ∈ L M1 ›] .
moreover have β@[xy] ∈ L M1

using ‹[xy] ∈ LS M1 (after-initial M1 β)› unfolding after-language-iff [OF
‹observable M1 › ‹β ∈ L M1 ›] .

moreover have converge M1 α β
using ‹converge M1 (π @ γ) (τ @ γ)› ‹converge M1 α (π @ γ)›
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‹converge M1 β (τ @ γ)›
unfolding converge.simps
by blast

ultimately have converge M1 (α@[xy]) (β@[xy])
using converge-append[OF ‹observable M1 ›] language-prefix[of β [xy]

M1 initial M1 ] by blast

have (α @ [xy]) ∈ L M2 and (β @ [xy]) ∈ L M2
using ‹α@[xy] ∈ L M1 › ‹α@[xy] ∈ SC › ‹β@[xy] ∈ L M1 › ‹β@[xy] ∈

SC ›‹L M1 ∩ T = L M2 ∩ T › ‹SC ⊆ T › by blast+
have after-initial M1 (α@[xy]) ∈ reachable-states M1

using observable-after-path[OF ‹observable M1 › ‹α@[xy] ∈ L M1 ›]
unfolding reachable-states-def
by (metis (mono-tags, lifting) mem-Collect-eq)

have (α@[xy]) ∈ A (after-initial M1 (α@[xy]))
unfolding A
using convergence-minimal[OF assms(3 ,1 ) - ‹α@[xy] ∈ L M1 ›, of f

(after-initial M1 (α@[xy]))]
using f2 [OF ‹after-initial M1 (α@[xy]) ∈ reachable-states M1 ›]
using ‹α@[xy] ∈ SC ›

by (metis (no-types, lifting) Int-iff ‹α @ [xy] ∈ L M1 › ‹after M1
(FSM .initial M1 ) (α @ [xy]) ∈ reachable-states M1 › assms(1 ) f1 member-filter
observable-after-path observable-path-io-target singletonD)

then have after M2 (FSM .initial M2 ) (α @ [xy]) ∈ Q (after-initial
M1 (α@[xy]))

unfolding Q
using observable-io-targets[OF ‹observable M2 › ‹(α @ [xy]) ∈ L M2 ›]
unfolding after-io-targets[OF ‹observable M2 › ‹(α @ [xy]) ∈ L M2 ›]
by (metis UN-iff insertCI the-elem-eq)

then have ∃ q ′∈reachable-states M1 . after M2 (FSM .initial M2 ) (α @
[xy]) ∈ Q q ′

using ‹after-initial M1 (α@[xy]) ∈ reachable-states M1 › by blast
moreover have (THE q ′. q ′ ∈ reachable-states M1 ∧ after M2

(FSM .initial M2 ) (α @ [xy]) ∈ Q q ′) = (after-initial M1 (α@[xy]))
using ‹after-initial M1 (α@[xy]) ∈ reachable-states M1 ›
using ‹after M2 (FSM .initial M2 ) (α @ [xy]) ∈ Q (after-initial M1

(α@[xy]))›
by (simp add: ‹

∧
q. ∃≤1 q ′. q ′ ∈ reachable-states M1 ∧ q ∈ Q q ′›

the1-equality ′)
moreover have after M2 (FSM .initial M2 ) (β @ [xy]) ∈ Q (after-initial

M1 (α@[xy]))
proof −

have (β@[xy]) ∈ A (after-initial M1 (α@[xy]))
using A ‹α @ [xy] ∈ A (after M1 (FSM .initial M1 ) (α @ [xy]))› ‹β

@ [xy] ∈ L M1 › ‹β @ [xy] ∈ SC › ‹converge M1 (α @ [xy]) (β @ [xy])› by auto
then show ?thesis

unfolding Q
using observable-io-targets[OF ‹observable M2 › ‹(β @ [xy]) ∈ L

M2 ›]
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unfolding after-io-targets[OF ‹observable M2 › ‹(β @ [xy]) ∈ L M2 ›]
by (metis UN-iff insertCI the-elem-eq)

qed
ultimately have after-initial M2 (β@[xy]) ∈ partition (after-initial

M2 (α@[xy]))
unfolding partition
by presburger

moreover have after-initial M2 (α@[xy]) = after-initial M2 ((π@γ)@[xy])
using converge-append[OF assms(2 ) ‹converge M2 α (π@γ)› ‹(α @

[xy]) ∈ L M2 › ‹(π@γ) ∈ L M2 ›]
unfolding convergence-minimal[OF assms(4 ,2 ) ‹(α @ [xy]) ∈ L

M2 › converge-extend[OF assms(2 ) ‹converge M2 α (π@γ)› ‹(α @ [xy]) ∈ L M2 ›
‹(π@γ) ∈ L M2 ›]]

.
moreover have after-initial M2 (β@[xy]) = after-initial M2 ((τ@γ)@[xy])

using converge-append[OF assms(2 ) ‹converge M2 β (τ@γ)› ‹(β @
[xy]) ∈ L M2 › ‹(τ@γ) ∈ L M2 ›]

unfolding convergence-minimal[OF assms(4 ,2 ) ‹(β @ [xy]) ∈ L M2 ›
converge-extend[OF assms(2 ) ‹converge M2 β (τ@γ)› ‹(β @ [xy]) ∈ L M2 › ‹(τ@γ)
∈ L M2 ›]]

.
ultimately show after M2 q2 (γ@[xy]) ∈ partition (after M2 q1

(γ@[xy]))
unfolding q1 q2

unfolding after-split[OF assms(2 ) converge-extend[OF assms(2 )
‹converge M2 α (π@γ)› ‹(α @ [xy]) ∈ L M2 › ‹(π@γ) ∈ L M2 ›]]

unfolding after-split[OF assms(2 ) converge-extend[OF assms(2 )
‹converge M2 β (τ@γ)› ‹(β @ [xy]) ∈ L M2 › ‹(τ@γ) ∈ L M2 ›]]

by (metis ‹γ @ [xy] ∈ LS M2 q1 › ‹π @ γ ∈ L M2 › ‹τ @ γ ∈ L M2 ›
‹after M2 (after M2 (FSM .initial M2 ) (π @ γ)) [xy] = after M2 (FSM .initial M2 )
((π @ γ) @ [xy])› ‹after M2 (after M2 (FSM .initial M2 ) (τ @ γ)) [xy] = after M2
(FSM .initial M2 ) ((τ @ γ) @ [xy])› after-split assms(2 ) p1 q1 q2 )

qed

ultimately show ?thesis
by blast

qed
qed

qed
qed

ultimately show ?thesis
using ofsm-table-set-observable[OF ‹observable M2 › ‹q1 ∈ states M2 › is-eq,

of m − size-r M1 ]
unfolding q1 q2
by blast

qed

ultimately have after M2 (FSM .initial M2 ) τ ∈ ofsm-table M2 partition (m −
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n0 ) (after M2 (FSM .initial M2 ) π)
using ofsm-table-subset[OF ‹size-r M1 ≤ n0 ›, of M2 partition initial M2 ]
by (meson diff-le-mono2 in-mono ofsm-table-subset)

moreover have after M2 (FSM .initial M2 ) π ∈ states M2
by (metis IntD1 after-is-state assms(2 ) assms(7 ) assms(8 ))

ultimately have after M2 (FSM .initial M2 ) τ ∈ ofsm-table-fix M2 partition 0
(after M2 (FSM .initial M2 ) π)

using ofsm-table-fix-partition-fixpoint[OF ‹equivalence-relation-on-states M2
partition› ‹size M2 ≤ m›, of after M2 (FSM .initial M2 ) π]

unfolding n0
by blast

then have LS M2 (after-initial M2 τ) = LS M2 (after-initial M2 π)
unfolding ofsm-table-fix-set[OF ‹after M2 (FSM .initial M2 ) π ∈ states M2 ›

‹observable M2 › ‹equivalence-relation-on-states M2 partition›]
by blast

then show ?thesis
unfolding converge.simps
by (metis assms(15 ) converge.elims(2 ))

qed

lemma preserves-divergence-minimally-distinguishing-prefixes-lower-bound :
fixes M1 :: ( ′a, ′b, ′c) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and converge M1 u v
and ¬converge M2 u v
and u ∈ L M2
and v ∈ L M2
and minimally-distinguishes M2 (after-initial M2 u) (after-initial M2 v) w
and wp ∈ list.set (prefixes w)
and wp 6= w
and wp ∈ LS M1 (after-initial M1 u) ∩ LS M1 (after-initial M1 v)
and preserves-divergence M1 M2 {α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set

(prefixes wp)}
and L M1 ∩ {α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set (prefixes wp)} = L M2 ∩
{α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set (prefixes wp)}
shows card (after-initial M2 ‘ {α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set (prefixes
wp)}) ≥ length wp + (card (FSM .after M1 (after-initial M1 u) ‘ (list.set (prefixes
wp)))) + 1
proof −
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define k where k = length wp
then show ?thesis

using assms(10 ,11 ,12 ,13 ,14 )
proof (induction k arbitrary: wp rule: less-induct)

case (less k)

show ?case proof (cases k)
case 0
then have wp = []

using less.prems by auto

have {α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set (prefixes [])} = {u,v}
by auto

moreover have (after-initial M2 u) 6= (after-initial M2 v)
using assms(9 ) assms(2 ) assms(4 ) assms(6 ) assms(7 ) assms(8 ) conver-

gence-minimal by blast
ultimately have card (after-initial M2 ‘ {α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set

(prefixes [])}) = 2
by auto

have FSM .after M1 (after-initial M1 u) ‘ (list.set (prefixes [])) = {after-initial
M1 u}

unfolding prefixes-set by auto
then have length [] + (card (FSM .after M1 (after-initial M1 u) ‘ (list.set

(prefixes [])))) + 1 = 2
by auto

then show ?thesis
unfolding ‹wp = []›

using ‹card (after-initial M2 ‘ {α@γ | α γ . α ∈ {u,v} ∧ γ ∈ list.set (prefixes
[])}) = 2 ›

by simp
next

case (Suc k ′)

have
∧

w ′′. w ′′ ∈ set (prefixes wp) =⇒ u@w ′′ ∈ L M1
by (metis after-language-iff assms(1 ) assms(5 ) converge.elims(2 ) inf-idem

language-prefix less.prems(4 ) prefixes-set-ob)
then have

∧
w ′′. w ′′ ∈ set (prefixes wp) =⇒ v@w ′′ ∈ L M1

by (meson assms(1 ) assms(5 ) converge.elims(2 ) converge-extend)

have
∧

w ′′ . w ′′ ∈ set (prefixes wp) =⇒ converge M1 (u@w ′′) (v@w ′′)
using ‹

∧
w ′′. w ′′ ∈ set (prefixes wp) =⇒ u @ w ′′ ∈ L M1 › assms(1 )

assms(5 ) converge.simps converge-append by blast

have
∧

w ′ . w ′ ∈ set (prefixes wp) =⇒ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set
(prefixes w ′)} ⊆ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes wp)}

using prefixes-prefix-subset[of - wp]
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by blast
have

∧
w ′ . {u @ γ | γ. γ ∈ set (prefixes w ′)} ⊆ {α @ γ |α γ. α ∈ {u, v} ∧

γ ∈ set (prefixes w ′)}
using prefixes-set-subset by blast

have
∧

w ′ . {v @ γ | γ. γ ∈ set (prefixes w ′)} ⊆ {α @ γ |α γ. α ∈ {u, v} ∧
γ ∈ set (prefixes w ′)}

using prefixes-set-subset by blast

have u@wp ∈ L M1
by (metis Int-absorb after-language-iff assms(1 ) assms(5 ) converge.simps

less.prems(4 ))
moreover have u@wp ∈ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes wp)}

unfolding prefixes-set by blast
ultimately have u@wp ∈ L M2

using less.prems(6 ) by blast
then have wp ∈ LS M2 (after-initial M2 u)

by (meson after-language-iff assms(2 ) language-prefix)

have v@wp ∈ L M1
by (meson ‹u @ wp ∈ L M1 › assms(1 ) assms(5 ) converge.simps con-

verge-extend)
moreover have v@wp ∈ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes wp)}

unfolding prefixes-set by blast
ultimately have v@wp ∈ L M2

using less.prems(6 ) by blast
then have wp ∈ LS M2 (after-initial M2 v)

by (meson after-language-iff assms(2 ) language-prefix)

have no-conv-2 :
∧

w ′′ . w ′′ ∈ set (prefixes wp) =⇒ ¬converge M2 (u@w ′′)
(v@w ′′) ∧ u@w ′′ ∈ L M1 ∧ v@w ′′ ∈ L M1 ∧ u@w ′′ ∈ L M2 ∧ v@w ′′ ∈ L M2

proof −
fix w ′′ assume ∗: w ′′ ∈ set (prefixes wp)
then have w ′′ ∈ set (prefixes w)

using less.prems
by (metis (no-types, lifting) insert-subset mk-disjoint-insert prefixes-set-ob

prefixes-set-subset)

have u@w ′′ ∈ L M1
using ‹

∧
w ′′. w ′′ ∈ set (prefixes wp) =⇒ u @ w ′′ ∈ L M1 › ∗ by auto

then have u@w ′′ ∈ L M2
using assms(14 ) less.prems ∗

by (metis (no-types, lifting) ‹wp ∈ LS M2 (after-initial M2 u)› af-
ter-language-iff assms(2 ) assms(7 ) language-prefix prefixes-set-ob)

then have w ′′ ∈ LS M2 (after-initial M2 u)
by (meson after-language-iff assms(2 ) language-prefix)

have v@w ′′ ∈ L M1
using ‹

∧
w ′′. w ′′ ∈ set (prefixes wp) =⇒ v @ w ′′ ∈ L M1 › ∗ by auto
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then have v@w ′′ ∈ L M2
using assms(14 ) less.prems(1 ) ∗

by (metis (no-types, lifting) ‹wp ∈ LS M2 (after-initial M2 v)› af-
ter-language-iff assms(2 ) assms(8 ) language-prefix prefixes-set-ob)

then have w ′′ ∈ LS M2 (after-initial M2 v)
by (meson after-language-iff assms(2 ) language-prefix)

have distinguishes M2 (after-initial M2 u) (after-initial M2 v) w
using assms(9 ) unfolding minimally-distinguishes-def by auto

show ¬converge M2 (u@w ′′) (v@w ′′) ∧ u@w ′′ ∈ L M1 ∧ v@w ′′ ∈ L M1 ∧
u@w ′′ ∈ L M2 ∧ v@w ′′ ∈ L M2

using distinguishes-diverge-prefix[OF assms(2 ) ‹distinguishes M2 (after-initial
M2 u) (after-initial M2 v) w› assms(7 ,8 ) ‹w ′′ ∈ set (prefixes w)› ‹w ′′ ∈ LS M2
(after-initial M2 u)› ‹w ′′ ∈ LS M2 (after-initial M2 v)›]

‹u@w ′′ ∈ L M1 › ‹v@w ′′ ∈ L M1 › ‹u@w ′′ ∈ L M2 › ‹v@w ′′ ∈ L M2 ›
by blast

qed

have div-on-prefixes :
∧

w ′′ . w ′′ ∈ set (prefixes wp) =⇒ after-initial M2
(u@w ′′) 6= after-initial M2 (v@w ′′)

using no-conv-2
using assms(2 ) assms(4 ) convergence-minimal by blast

then have div-on-proper-prefixes :
∧

w ′ w ′′ . w ′ ∈ set (prefixes wp) =⇒ w ′′

∈ set (prefixes w ′) =⇒ after-initial M2 (u@w ′′) 6= after-initial M2 (v@w ′′)
using prefixes-prefix-subset by blast

have wp = (butlast wp)@[last wp]
using Suc less.prems(1 )
by (metis append-butlast-last-id length-greater-0-conv zero-less-Suc)

then have (FSM .after M1 (after-initial M1 u) ‘ (list.set (prefixes wp))) =
Set.insert (FSM .after M1 (after-initial M1 u) wp) (FSM .after M1 (after-initial
M1 u) ‘ (list.set (prefixes (butlast wp))))

using prefixes-set-Cons-insert
by (metis image-insert)

consider (FSM .after M1 (after-initial M1 u) wp) /∈ (FSM .after M1 (after-initial
M1 u) ‘ (list.set (prefixes (butlast wp)))) |

(FSM .after M1 (after-initial M1 u) wp) ∈ (FSM .after M1 (after-initial
M1 u) ‘ (list.set (prefixes (butlast wp))))

by blast

obtain w-suffix where w = (wp)@w-suffix
using less.prems(2 )
using prefixes-set-ob by blast

define wk where wk: wk = (λ i . take i wp)
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define wk ′ where wk ′: wk ′ = (λ i . drop i wp)

have
∧

i . (wk i)@(wk ′ i) = wp
unfolding wk wk ′ by auto

then have
∧

i . wk i ∈ set (prefixes wp)
unfolding prefixes-set
by auto

then have
∧

i . set (prefixes (wk i)) ⊆ set (prefixes wp)
by (simp add: prefixes-prefix-subset)

have
∧

i . i < k =⇒ wk ′ i 6= []
using less.prems(1 )
by (simp add: wk ′)

have wk k = wp
using less.prems(1 )
by (simp add: wk)

have
∧

i . ¬ converge M2 (u @ wk i) (v @ wk i)
using no-conv-2 [OF ‹

∧
i . wk i ∈ set (prefixes wp)›] by blast

have
∧

i . u@wk i ∈ L M1
using no-conv-2 [OF ‹

∧
i . wk i ∈ set (prefixes wp)›] by blast

have
∧

i . u@wk i ∈ L M2
using no-conv-2 [OF ‹

∧
i . wk i ∈ set (prefixes wp)›] by blast

have
∧

i . v@wk i ∈ L M1
using no-conv-2 [OF ‹

∧
i . wk i ∈ set (prefixes wp)›] by blast

have
∧

i . v@wk i ∈ L M2
using no-conv-2 [OF ‹

∧
i . wk i ∈ set (prefixes wp)›] by blast

have
∧

w ′′ . w ′′ ∈ set (prefixes wp) =⇒ w ′′ = wk (length w ′′)
unfolding prefixes-take-iff unfolding wk
by auto

then have
∧

i w ′′ . w ′′ ∈ set (prefixes (wk i)) =⇒ ∃ j . w ′′ = wk j ∧ j ≤ i
by (metis min-def order-refl prefixes-take-iff take-take wk)

have prefixes-same-reaction:
∧

j . j < k =⇒ w-suffix ∈ LS M2 (after-initial
M2 (u@wk j)) = (w-suffix ∈ LS M2 (after-initial M2 (v@wk j)))

proof −
fix j assume j < k

then have wp = (wk j)@(wk ′ j) and (wk ′ j) 6= []
using ‹

∧
i . (wk i)@(wk ′ i) = wp› ‹

∧
i . i < k =⇒ wk ′ i 6= []› by auto

have distinguishes M2 (after-initial M2 u) (after-initial M2 v) ((wk j)@(wk ′

j)@w-suffix)
using assms(9 )
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unfolding ‹w = (wp)@w-suffix› ‹wp = (wk j)@(wk ′ j)› minimally-distinguishes-def
by (metis append.assoc)

have u@wk j ∈ L M2
using ‹

∧
i. u @ wk i ∈ L M2 › by blast

have v@wk j ∈ L M2
using ‹

∧
i. v @ wk i ∈ L M2 › by blast

have ∗: minimally-distinguishes M2 (after-initial M2 (u @ wk j)) (after-initial
M2 (v @ wk j)) ((wk ′ j)@w-suffix)

using assms(9 ) minimally-distinguishes-after-append-initial[OF assms(2 ,4 )
‹u ∈ L M2 › ‹v ∈ L M2 ›, of wk j]

using ‹w = wp @ w-suffix› ‹wk ′ j 6= []› ‹wp = wk j @ wk ′ j› by auto

then have ¬distinguishes M2 (after-initial M2 (u@wk j)) (after-initial M2
(v@wk j)) w-suffix

unfolding minimally-distinguishes-def
by (metis ∗ ‹u @ wk j ∈ L M2 › ‹v @ wk j ∈ L M2 › ‹wk ′ j 6= []› ap-

pend.left-neutral append.right-neutral assms(2 ) minimally-distinguishes-no-prefix)
then show w-suffix ∈ LS M2 (after-initial M2 (u@wk j)) = (w-suffix ∈ LS

M2 (after-initial M2 (v@wk j)))
unfolding distinguishes-def by blast

qed

have
∧

i . u@wk i ∈ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes (wp))}
using ‹

∧
i. wk i ∈ set (prefixes wp)› by blast

have
∧

i . v@wk i ∈ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes (wp))}
using ‹

∧
i. wk i ∈ set (prefixes wp)› by blast

have u@(wp) ∈ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes (wp))}
using prefixes-set by blast

have v@(wp) ∈ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes (wp))}
using prefixes-set by blast

define q where q: q = (λ i . after-initial M1 (u@(wk i)))
define a where a: a = (λ i . after-initial M2 (u@(wk i)))
define b where b: b = (λ i . after-initial M2 (v@(wk i)))
define I ′ where I ′: I ′ = (λ i . {j . j ≤ Suc k ′ ∧ q i = q j})

define l where l: l = card (q ‘ (
⋃

i ∈ {..Suc k ′} . I ′ i))

have q-v:
∧

i . q i = after-initial M1 (v@(wk i))
unfolding q

by (meson ‹
∧

i. wk i ∈ set (prefixes wp)› ‹
∧

w ′′. w ′′ ∈ set (prefixes wp)
=⇒ converge M1 (u @ w ′′) (v @ w ′′)› assms(1 ) assms(3 ) converge.simps conver-
gence-minimal)
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have q-divergence:
∧

i j . q i 6= q j =⇒ a i 6= a j ∧ a i 6= b j ∧ b i 6= a j ∧
b i 6= b j

proof −
fix i j assume q i 6= q j
then have ¬ converge M1 (u@(wk i)) (u@(wk j))

unfolding q
using assms(1 ) assms(3 ) converge.simps convergence-minimal by blast

then have ¬ converge M1 (u@(wk i)) (v@(wk j))
¬ converge M1 (v@(wk i)) (u@(wk j))
¬ converge M1 (v@(wk i)) (v@(wk j))

using assms(1 ) assms(3 ) assms(5 ) converge-trans-2 by blast+

have ¬ converge M2 (u@(wk i)) (u@(wk j))
using ‹¬ converge M1 (u@(wk i)) (u@(wk j))›
using less.prems(5 ) unfolding preserves-divergence.simps
using ‹

∧
i. u @ wk i ∈ L M1 › [of i] ‹

∧
i . u@wk i ∈ {α @ γ |α γ. α ∈

{u, v} ∧ γ ∈ set (prefixes (wp))}›[of i]
using ‹

∧
i. u @ wk i ∈ L M1 › [of j] ‹

∧
i . u@wk i ∈ {α @ γ |α γ. α ∈

{u, v} ∧ γ ∈ set (prefixes (wp))}›[of j]
by blast

then have a i 6= a j
unfolding a
using ‹

∧
i. u @ wk i ∈ L M2 ›

using assms(2 ) assms(4 ) convergence-minimal by blast

have ¬ converge M2 (v@(wk i)) (v@(wk j))
using ‹¬ converge M1 (v@(wk i)) (v@(wk j))›
using less.prems(5 ) unfolding preserves-divergence.simps
using ‹

∧
i. v @ wk i ∈ L M1 › [of i] ‹

∧
i . v@wk i ∈ {α @ γ |α γ. α ∈ {u,

v} ∧ γ ∈ set (prefixes (wp))}›[of i]
using ‹

∧
i. v @ wk i ∈ L M1 › [of j] ‹

∧
i . v@wk i ∈ {α @ γ |α γ. α ∈ {u,

v} ∧ γ ∈ set (prefixes (wp))}›[of j]
by blast

then have b i 6= b j
unfolding b
using ‹

∧
i. v @ wk i ∈ L M2 ›

using assms(2 ) assms(4 ) convergence-minimal by blast

have ¬ converge M2 (u@(wk i)) (v@(wk j))
using ‹¬ converge M1 (u@(wk i)) (v@(wk j))›
using less.prems(5 ) unfolding preserves-divergence.simps
using ‹

∧
i. u @ wk i ∈ L M1 › [of i] ‹

∧
i . u@wk i ∈ {α @ γ |α γ. α ∈

{u, v} ∧ γ ∈ set (prefixes (wp))}›[of i]
using ‹

∧
i. v @ wk i ∈ L M1 › [of j] ‹

∧
i . v@wk i ∈ {α @ γ |α γ. α ∈ {u,

v} ∧ γ ∈ set (prefixes (wp))}›[of j]
by blast

then have a i 6= b j
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unfolding a b
using ‹

∧
i. u @ wk i ∈ L M2 › ‹

∧
i. v @ wk i ∈ L M2 ›

using assms(2 ) assms(4 ) convergence-minimal by blast

have ¬ converge M2 (v@(wk i)) (u@(wk j))
using ‹¬ converge M1 (v@(wk i)) (u@(wk j))›
using less.prems(5 ) unfolding preserves-divergence.simps
using ‹

∧
i. v @ wk i ∈ L M1 › [of i] ‹

∧
i . v@wk i ∈ {α @ γ |α γ. α ∈ {u,

v} ∧ γ ∈ set (prefixes (wp))}›[of i]
using ‹

∧
i. u @ wk i ∈ L M1 › [of j] ‹

∧
i . u@wk i ∈ {α @ γ |α γ. α ∈

{u, v} ∧ γ ∈ set (prefixes (wp))}›[of j]
by blast

then have b i 6= a j
unfolding b a
using ‹

∧
i. v @ wk i ∈ L M2 › ‹

∧
i. u @ wk i ∈ L M2 ›

using assms(2 ) assms(4 ) convergence-minimal by blast

show a i 6= a j ∧ a i 6= b j ∧ b i 6= a j ∧ b i 6= b j
using ‹a i 6= a j› ‹a i 6= b j› ‹b i 6= a j› ‹b i 6= b j› by auto

qed

have
∧

i . a i ∈ states M2
by (metis ‹

∧
i. u @ wk i ∈ L M2 › a after-is-state assms(2 ))

have
∧

i . b i ∈ states M2
by (metis ‹

∧
i. v @ wk i ∈ L M2 › b after-is-state assms(2 ))

have
∧

i j . i ≤ Suc k ′ =⇒ j ≤ Suc k ′ =⇒ q i = q j =⇒ I ′ i = I ′ j
unfolding q I ′ by force

have
∧

i . i ≤ Suc k ′ =⇒ i ∈ I ′ i
unfolding I ′ q by force

moreover have
∧

i . I ′ i ⊆ {..Suc k ′}
unfolding I ′ by force

ultimately have (
⋃

i ∈ {..Suc k ′} . I ′ i) = {..Suc k ′}
by blast

then have card (
⋃

i ∈ {..Suc k ′} . I ′ i) = k ′+2
by auto

have pt1 : finite {..Suc k ′}
by auto

have pt2 : {..Suc k ′} 6= {}
by auto

have pt3 : (
∧

x. x ∈ {..Suc k ′} =⇒ I ′ x ⊆ {..Suc k ′})
using ‹

∧
i. I ′ i ⊆ {..Suc k ′}› atMost-atLeast0 by blast

have pt4 : (
∧

x. x ∈ {..Suc k ′} =⇒ I ′ x 6= {})
using ‹

∧
i. i ≤ Suc k ′ =⇒ i ∈ I ′ i› by auto

have pt5 : (
∧

x y. x ∈ {..Suc k ′} =⇒ y ∈ {..Suc k ′} =⇒ I ′ x = I ′ y ∨ I ′ x ∩
I ′ y = {})
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using I ′ by force
have pt6 :

⋃
(I ′ ‘ {..Suc k ′}) = {..Suc k ′}

using ‹
⋃

(I ′ ‘ {..Suc k ′}) = {..Suc k ′}› by linarith

obtain l I where I ‘ {..l} = I ′ ‘ {..Suc k ′}
and

∧
i j. i ≤ l =⇒ j ≤ l =⇒ i 6= j =⇒ I i ∩ I j = {}

and card (I ′ ‘ {..Suc k ′}) = Suc l
using partition-helper [of {..Suc k ′} I ′, OF pt1 pt2 pt3 pt4 pt5 pt6 ]
by metis

have
∧

i . i ≤ l =⇒ ∃ j . j ≤ Suc k ′ ∧ I i = I ′ j
using ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}›
by blast

define S where S : S = (λ i .
⋃

j ∈ I i . {a j, b j})

have (
⋃

i ∈ {..l} . S i) = (
⋃

i ∈ {..Suc k ′} . {a i, b i})
unfolding S using ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}›
by (metis (no-types, lifting) Sup.SUP-cong UN-UN-flatten ‹

⋃
(I ′ ‘ {..Suc

k ′}) = {..Suc k ′}›)
then have card (

⋃
i ∈ {..l} . S i) = card (

⋃
i ∈ {..Suc k ′} . {a i, b i})

by presburger

moreover have
∧

i j. i ≤ l =⇒ j ≤ l =⇒ i 6= j =⇒ S i ∩ S j = {}
proof (rule ccontr)

fix i j assume i ≤ l and j ≤ l and i 6= j and S i ∩ S j 6= {}
then obtain ii jj where ii ∈ I i and jj ∈ I j and {a ii, b ii} ∩ {a jj, b jj}

6= {}
unfolding S by blast

obtain i ′ j ′ where i ′ ≤ Suc k ′ and j ′ ≤ Suc k ′ and I i = I ′ i ′ and I j =
I ′ j ′

using ‹i ≤ l› ‹j ≤ l› ‹
∧

i . i ≤ l =⇒ ∃ j . j ≤ Suc k ′ ∧ I i = I ′ j›
by meson

moreover have I i ∩ I j = {}
by (meson ‹

∧
j i. [[i ≤ l; j ≤ l; i 6= j]] =⇒ I i ∩ I j = {}› ‹i ≤ l› ‹i 6= j›

‹j ≤ l›)
ultimately have I ′ i ′ ∩ I ′ j ′ = {}

by blast
then have q i ′ 6= q j ′

unfolding I ′

by (metis I ′ ‹I i = I ′ i ′› ‹
∧

i. i ≤ Suc k ′ =⇒ i ∈ I ′ i› ‹
∧

thesis. (
∧

i ′ j ′.
[[i ′ ≤ Suc k ′; j ′ ≤ Suc k ′; I i = I ′ i ′; I j = I ′ j ′]] =⇒ thesis) =⇒ thesis› empty-iff
inf .idem)

then have q ii 6= q jj
using I ′ ‹I i = I ′ i ′› ‹I j = I ′ j ′› ‹ii ∈ I i› ‹jj ∈ I j› by force
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then have a ii 6= a jj a ii 6= b jj b ii 6= a jj b ii 6= b jj
using q-divergence
by blast+

then show False
using ‹{a ii, b ii} ∩ {a jj, b jj} 6= {}›
by blast

qed
moreover have ∀ i ∈ {..l} . finite (S i)

unfolding S
by (metis (no-types, lifting) ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}› ‹

⋃
(I ′ ‘ {..Suc k ′})

= {..Suc k ′}› finite.emptyI finite.insertI finite-UN finite-atMost)
ultimately have card (

⋃
i ∈ {..l} . S i) = (

∑
i ∈ {..l} . card (S i))

using atMost-iff
using card-UN-disjoint[OF finite-atMost[of l], of S ]
by blast

have eq7 : card (
⋃

i ∈ {..Suc k ′} . {a i, b i}) = (
∑

i ∈ {..l} . card (S i))
unfolding ‹card (

⋃
i ∈ {..l} . S i) = card (

⋃
i ∈ {..Suc k ′} . {a i, b

i})›[symmetric]
unfolding ‹card (

⋃
i ∈ {..l} . S i) = (

∑
i ∈ {..l} . card (S i))›

by blast

have eq8 :
∧

i . i ≤ l =⇒ card (S i) ≥ Suc (card (I i))
proof −

fix i assume i ≤ l

have S i ⊆ states M2
unfolding S using ‹

∧
i . a i ∈ states M2 › ‹

∧
i . b i ∈ states M2 ›

by blast

define W where W : W = {w ′ ∈ set (prefixes w).
w ′ 6= w ∧

after M2 (after-initial M2 u) w ′ ∈ S i ∧ after M2 (after-initial
M2 v) w ′ ∈ S i}

have wk ‘ I i ⊆ W
proof

fix x assume x ∈ wk ‘ I i
then obtain i ′ where x = wk i ′ and i ′ ∈ I i

by blast
then have a i ′ ∈ S i and b i ′ ∈ S i

unfolding S by blast+
then have after M2 (after-initial M2 u) (wk i ′) ∈ S i

after M2 (after-initial M2 v) (wk i ′) ∈ S i
unfolding a b
using ‹

∧
i. u @ wk i ∈ L M2 › ‹

∧
i. v @ wk i ∈ L M2 ›

by (metis after-split assms(2 ))+
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moreover have wk i ′ 6= w
by (metis (no-types) ‹

∧
i. wk i ∈ set (prefixes wp)› less.prems(2 )

less.prems(3 ) nat-le-linear prefixes-take-iff take-all-iff )
moreover have wk i ′ ∈ set (prefixes w)

using ‹
∧

i. wk i ∈ set (prefixes wp)› less.prems(2 ) prefixes-prefix-subset
by blast

ultimately show x ∈ W
unfolding ‹x = wk i ′› W
by blast

qed
moreover have finite W
proof −

have W ⊆ (set (prefixes w))
unfolding W by blast

then show ?thesis
by (meson List.finite-set rev-finite-subset)

qed
ultimately have card (wk ‘ I i) ≤ card W

by (meson card-mono)
moreover have card (wk ‘ I i) = card (I i)
proof −

have
∧

x y . x ∈ I i =⇒ y ∈ I i =⇒ x 6= y =⇒ wk x 6= wk y
proof −

fix x y assume x ∈ I i y ∈ I i x 6= y
then have x ≤ Suc k ′ y ≤ Suc k ′

by (metis UN-I ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}› ‹
⋃

(I ′ ‘ {..Suc k ′}) = {..Suc
k ′}› ‹i ≤ l› atMost-iff )+

then show wk x 6= wk y
using ‹x 6= y› ‹k = length wp›
unfolding wk Suc
using take-diff by metis

qed
moreover have finite (I i)

by (metis ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}› ‹i ≤ l› atMost-iff finite-UN
finite-atMost pt6 )

ultimately show ?thesis
using image-inj-card-helper by metis

qed
ultimately have card (I i) ≤ card W

by simp
then have card (I i) ≤ card (S i) − 1

using minimally-distinguishes-proper-prefixes-card[OF assms(2 ,4 ) af-
ter-is-state[OF assms(2 ) ‹u ∈ L M2 ›] after-is-state[OF assms(2 ) ‹v ∈ L M2 ›]
‹minimally-distinguishes M2 (after-initial M2 u) (after-initial M2 v) w› ‹S i ⊆
states M2 ›]

unfolding W [symmetric]
by simp

moreover have card (S i) > 0
proof −
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have card (I i) > 0
by (metis ‹

∧
i. i ≤ l =⇒ ∃ j≤Suc k ′. I i = I ′ j› ‹card (wk ‘ I i) = card

(I i)› ‹finite W › ‹i ≤ l› ‹wk ‘ I i ⊆ W › atMost-iff card-0-eq gr0I image-is-empty
pt4 rev-finite-subset)

then show ?thesis
unfolding S
by (metis S calculation diff-le-self le-0-eq not-gr-zero)

qed
ultimately show card (S i) ≥ Suc (card (I i))

by linarith
qed

have (
∑

i ∈ {..l} . card (S i)) ≥ (
∑

i ∈ {..l} . (Suc (card (I i))))
using eq8
by (meson atMost-iff sum-mono)

moreover have (
∑

i ∈ {..l} . (Suc (card (I i)))) = (Suc l) + k ′ + 2
proof −

have (
∑

i ∈ {..l} . (Suc (card (I i)))) = (Suc l) + (
∑

i ∈ {..l} . (card (I
i)))

by (simp add: sum-Suc)
moreover have (

∑
i ∈ {..l} . (card (I i))) = k ′ + 2

proof −
have card (

⋃
i ∈ {..l} . I i) = k ′ + 2

using ‹card (
⋃

i ∈ {..Suc k ′} . I ′ i) = k ′+2 ›
using ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}› by presburger

moreover have (
∑

i ∈ {..l} . (card (I i))) = card (
⋃

i ∈ {..l} . I i)
using sum-image-inj-card-helper [of l I ]
by (metis ‹I ‘ {..l} = I ′ ‘ {..Suc k ′}› ‹

∧
j i. [[i ≤ l; j ≤ l; i 6= j]] =⇒ I i

∩ I j = {}› ‹
⋃

(I ′ ‘ {..Suc k ′}) = {..Suc k ′}› atMost-iff finite-UN finite-atMost)
ultimately show ?thesis

by auto
qed
ultimately show ?thesis

by linarith
qed
ultimately have (

∑
i ∈ {..l} . card (S i)) ≥ k ′ + l + 3

by auto
moreover have card (after-initial M2 ‘ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set

(prefixes wp)}) = (
∑

i ∈ {..l} . card (S i))
proof −

have after-initial M2 ‘ {α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes wp)} =
(
⋃

i ∈ {..l} . S i)
proof −

have set (prefixes wp) = {wk i | i . i ≤ k}
using less.prems(1 ) unfolding wk prefixes-set

by (metis ‹
∧

i. wk i ∈ set (prefixes wp)› append-eq-conv-conj le-cases
prefixes-set-ob take-all wk)

then have ∗:{α @ γ |α γ. α ∈ {u, v} ∧ γ ∈ set (prefixes wp)} = (
⋃

i ∈
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{..Suc k ′} . {u@wk i, v@wk i})
unfolding Suc by auto

have ∗∗: (
⋃

i ∈ {..Suc k ′} . {a i, b i}) = after-initial M2 ‘ (
⋃

i ∈ {..Suc
k ′} . {u@wk i, v@wk i})

unfolding a b by blast
show ?thesis

unfolding ‹(
⋃

i ∈ {..l} . S i) = (
⋃

i ∈ {..Suc k ′} . {a i, b i})› ∗∗ ∗
by simp

qed
then show ?thesis

by (simp add: ‹card (
⋃

(S ‘ {..l})) = (
∑

i≤l. card (S i))›)
qed
ultimately have bound-l: card (after-initial M2 ‘ {α @ γ |α γ. α ∈ {u, v} ∧

γ ∈ set (prefixes wp)}) ≥ k + l + 2
unfolding Suc by simp

have bound-r : length wp + card (after M1 (after-initial M1 u) ‘ set (prefixes
wp)) + 1 = k + l + 2

proof −
have set (prefixes wp) = {wk i | i . i ≤ k}

using less.prems(1 ) unfolding wk prefixes-set
by (metis ‹

∧
i. wk i ∈ set (prefixes wp)› append-eq-conv-conj le-cases

prefixes-set-ob take-all wk)

let ?witness = λi . SOME j . j ∈ i
have

∧
i . i ∈ (I ′ ‘ {..Suc k ′}) =⇒ ?witness i ∈ i

using ‹
∧

i. i ≤ Suc k ′ =⇒ i ∈ I ′ i› some-in-eq by auto
have ∗∗:

∧
Ii Ij . Ii ∈ (I ′ ‘ {..Suc k ′}) =⇒ Ij ∈ (I ′ ‘ {..Suc k ′}) =⇒ Ii 6= Ij

=⇒ ?witness Ii 6= ?witness Ij
proof −

fix Ii Ij assume Ii ∈ (I ′ ‘ {..Suc k ′}) and Ij ∈ (I ′ ‘ {..Suc k ′}) and Ii 6=
Ij

then have Ii ∩ Ij = {}
using pt5 by auto

moreover have ?witness Ii ∈ Ii
using ‹

∧
i . i ∈ (I ′ ‘ {..Suc k ′}) =⇒ ?witness i ∈ i› ‹Ii ∈ (I ′ ‘ {..Suc

k ′})›
by blast

moreover have ?witness Ij ∈ Ij
using ‹

∧
i . i ∈ (I ′ ‘ {..Suc k ′}) =⇒ ?witness i ∈ i› ‹Ij ∈ (I ′ ‘ {..Suc

k ′})›
by blast

ultimately show ?witness Ii 6= ?witness Ij
by fastforce

qed
have ∗: finite (I ′ ‘ {..Suc k ′})

by auto
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have c1 : card (I ′ ‘ {..Suc k ′}) = card (?witness ‘ (I ′ ‘ {..Suc k ′}))
using image-inj-card-helper [of I ′ ‘ {..Suc k ′} ?witness, OF ∗ ∗∗]
by auto

have ∗: finite (?witness ‘ (I ′ ‘ {..Suc k ′}))
by auto

have ∗∗:
∧

i j . i ∈ (?witness ‘ (I ′ ‘ {..Suc k ′})) =⇒ j ∈ (?witness ‘ (I ′ ‘
{..Suc k ′})) =⇒ i 6= j =⇒ q i 6= q j

proof −
fix i j assume i ∈ (?witness ‘ (I ′ ‘ {..Suc k ′})) and j ∈ (?witness ‘ (I ′ ‘

{..Suc k ′})) and i 6= j

obtain i ′ where i = ?witness (I ′ i ′) and i ∈ I ′ i ′ and i ′ ∈ {..Suc k ′}
using ‹i ∈ (?witness ‘ (I ′ ‘ {..Suc k ′}))›
using ‹

∧
i. i ∈ I ′ ‘ {..Suc k ′} =⇒ (SOME j. j ∈ i) ∈ i› by blast

obtain j ′ where j = ?witness (I ′ j ′) and j ∈ I ′ j ′ and j ′ ∈ {..Suc k ′}
using ‹j ∈ (?witness ‘ (I ′ ‘ {..Suc k ′}))›
using ‹

∧
i. i ∈ I ′ ‘ {..Suc k ′} =⇒ (SOME j. j ∈ i) ∈ i› by blast

have I ′ i ′ 6= I ′ j ′
using ‹i 6= j›
using ‹i = (SOME j. j ∈ I ′ i ′)› ‹j = (SOME j. j ∈ I ′ j ′)› by fastforce

then show q i 6= q j
using ‹i ∈ I ′ i ′› ‹j ∈ I ′ j ′›
unfolding q I ′

by force
qed

have c2 : card (I ′ ‘ {..Suc k ′}) = card (q ‘ (?witness ‘ (I ′ ‘ {..Suc k ′})))
using image-inj-card-helper [of (?witness ‘ (I ′ ‘ {..Suc k ′})) q, OF ∗ ∗∗]

c1
by force

have q ‘ (?witness ‘ (I ′ ‘ {..Suc k ′})) = q ‘ (
⋃

i ∈ {..Suc k ′} . I ′ i)
proof

show q ‘ ?witness ‘ I ′ ‘ {..Suc k ′} ⊆ q ‘
⋃

(I ′ ‘ {..Suc k ′})
proof

fix s assume s ∈ q ‘ ?witness ‘ I ′ ‘ {..Suc k ′}
then obtain Ii where Ii ∈ I ′ ‘ {..Suc k ′} and s = q (?witness Ii)

by blast
then have s ∈ q ‘ Ii

using ‹
∧

i. i ∈ I ′ ‘ {..Suc k ′} =⇒ (SOME j. j ∈ i) ∈ i› by blast
then show s ∈ q ‘

⋃
(I ′ ‘ {..Suc k ′})

using ‹Ii ∈ I ′ ‘ {..Suc k ′}› by blast
qed
show q ‘

⋃
(I ′ ‘ {..Suc k ′}) ⊆ q ‘ ?witness ‘ I ′ ‘ {..Suc k ′}

proof
fix s assume s ∈ q ‘

⋃
(I ′ ‘ {..Suc k ′})

then obtain i where s ∈ q ‘ (I ′ i) and i ∈ {..Suc k ′}
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by blast

have ?witness (I ′ i) ∈ I ′ i
using ‹

∧
i. i ∈ I ′ ‘ {..Suc k ′} =⇒ (SOME j. j ∈ i) ∈ i› ‹i ∈ {..Suc

k ′}› by blast
then have q ‘ (I ′ i) = {q (?witness (I ′ i))}

unfolding q I ′

by fastforce
then have s = q (?witness (I ′ i))

using ‹s ∈ q ‘ (I ′ i)› by blast
then show s ∈ q ‘ ?witness ‘ I ′ ‘ {..Suc k ′}

using ‹i ∈ {..Suc k ′}› by blast
qed

qed
then have c3 : card (I ′ ‘ {..Suc k ′}) = card (q ‘ (

⋃
i ∈ {..Suc k ′} . I ′ i))

using c2 by auto

have q ‘ (
⋃

i ∈ {..Suc k ′} . I ′ i) = after M1 (after-initial M1 u) ‘ set
(prefixes wp)

proof −
have set (prefixes wp) = {wk i | i . i ≤ k}

using less.prems(1 ) unfolding wk prefixes-set
by (metis ‹

∧
i. wk i ∈ set (prefixes wp)› append-eq-conv-conj le-cases

prefixes-set-ob take-all wk)
also have . . . = wk ‘ {..Suc k ′}

unfolding Suc
by (simp add: atMost-def setcompr-eq-image)

finally have ∗:set (prefixes wp) = wk ‘ {..Suc k ′} .

have
∧

i . after-initial M1 (u @ wk i) = after M1 (after-initial M1 u)
(wk i)

by (metis ‹
∧

i. u @ wk i ∈ L M1 › after-split assms(1 ))
then have ∗∗:

∧
X . q ‘ X = after M1 (after-initial M1 u) ‘ wk ‘ X

unfolding q
by fastforce

show ?thesis
unfolding ∗ ∗∗
unfolding ‹(

⋃
i ∈ {..Suc k ′} . I ′ i) = {..Suc k ′}›

by simp
qed

then have card (I ′ ‘ {..Suc k ′}) = card (after M1 (after-initial M1 u) ‘ set
(prefixes wp))

using c3 by auto
then have card (after M1 (after-initial M1 u) ‘ set (prefixes wp)) = Suc l

using ‹card (I ′ ‘ {..Suc k ′}) = Suc l›
by auto
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then show ?thesis
unfolding ‹k = length wp›[symmetric] by auto

qed

show ?thesis
using bound-l
unfolding bound-r .

qed
qed

qed

lemma sufficient-condition-for-convergence :
fixes M1 :: ( ′a, ′b, ′c) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and converge M1 π τ
and L M1 ∩ T = L M2 ∩ T
and

∧
γ x y . length (γ@[(x,y)]) ≤ m − size-r M1 =⇒
γ ∈ LS M1 (after-initial M1 π) =⇒
x ∈ inputs M1 =⇒ y ∈ outputs M1 =⇒
∃ SC α β . SC ⊆ T

∧ is-state-cover M1 SC
∧ {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes

(γ@[(x,y)]))} ⊆ SC
∧ converge M1 π α
∧ converge M2 π α
∧ converge M1 τ β
∧ converge M2 τ β
∧ preserves-divergence M1 M2 SC

and ∃ SC α β . SC ⊆ T
∧ is-state-cover M1 SC
∧ α ∈ SC ∧ β ∈ SC
∧ converge M1 π α
∧ converge M2 π α
∧ converge M1 τ β
∧ converge M2 τ β
∧ preserves-divergence M1 M2 SC

shows converge M2 π τ
proof (cases inputs M1 = {} ∨ outputs M1 = {})

case True
then have L M1 = {[]}
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using language-empty-IO by blast
then have π = [] and τ = []

using assms(9 ) by auto
then show ?thesis

by auto
next

case False

define n where n: n = size-r M1
have n ≤ m

using assms(5 ) n by auto

show ?thesis proof (rule ccontr)
assume ¬ converge M2 π τ
moreover have π ∈ L M2 and τ ∈ L M2

using assms(12 ) by auto
ultimately have after-initial M2 π 6= after-initial M2 τ

using assms(2 ) assms(4 ) convergence-minimal by blast
then obtain v where minimally-distinguishes M2 (after-initial M2 π) (after-initial

M2 τ) v
using minimally-distinguishes-ex

by (metis ‹¬ converge M2 π τ› ‹π ∈ L M2 › ‹τ ∈ L M2 › after-is-state assms(2 )
converge.simps)

then have distinguishes M2 (after-initial M2 π) (after-initial M2 τ) v
unfolding minimally-distinguishes-def by auto

then have v 6= []
by (meson ‹π ∈ L M2 › ‹τ ∈ L M2 › after-is-state assms(2 ) distinguishes-not-Nil)

have length v > m − n
proof (rule ccontr)

assume ¬ m − n < length v

have ‹v ∈ set (prefixes v)›
unfolding prefixes-set by auto

show False proof (cases v ∈ LS M1 (after-initial M1 π))
case True

have v = (butlast v)@[last v]
using ‹v 6= []› by fastforce

then obtain x y where v = (butlast v)@[(x,y)]
using prod.exhaust by metis

then have (x,y) ∈ set v
using in-set-conv-decomp by force

then have x ∈ inputs M1 and y ∈ outputs M1
using language-io[OF True, of x y] by auto

moreover have length (butlast v @ [(x, y)]) ≤ m − size-r M1
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using ‹¬ m − n < length v› ‹v = (butlast v)@[(x,y)]›
unfolding n by auto

moreover have butlast v ∈ LS M1 (after-initial M1 π)
using True language-prefix[of butlast v [(x,y)]]
unfolding ‹v = (butlast v)@[(x,y)]›[symmetric]
by metis

ultimately obtain SC α β where SC ⊆ T
and {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes v)}

⊆ SC
and converge M1 π α
and converge M2 π α
and converge M1 τ β
and converge M2 τ β

using assms(11 )[of (butlast v) x y]
unfolding ‹v = (butlast v)@[(x,y)]›[symmetric]
by meson

then have α@v ∈ T and β@v ∈ T
using ‹SC ⊆ T › ‹{ω@γ | ω γ . ω ∈ {α,β} ∧ γ ∈ list.set (prefixes v)} ⊆

SC › ‹v ∈ set (prefixes v)›
by auto

then have L M1 ∩ {α@v,β@v} = L M2 ∩ {α@v,β@v}
using assms(10 ) by blast

have after-initial M1 π 6= after-initial M1 τ
using converge-distinguishable-helper [OF assms(1−4 ) ‹converge M1

π α› ‹converge M2 π α› ‹converge M1 τ β› ‹converge M2 τ β› ‹distinguishes
M2 (after-initial M2 π) (after-initial M2 τ) v› ‹L M1 ∩ {α@v,β@v} = L M2 ∩
{α@v,β@v}›] .

then show False
using ‹converge M1 π τ›
by (meson assms(1 ) assms(3 ) converge.elims(2 ) convergence-minimal)

next
case False

obtain io ′ x ′ y ′ io ′′ where v = io ′@[(x ′,y ′)]@io ′′

and io ′ ∈ LS M1 (after-initial M1 π)
and io ′@[(x ′,y ′)] /∈ LS M1 (after-initial M1 π)

using language-maximal-contained-prefix-ob[OF False - assms(1 )]
by (metis after-is-state assms(1 ) assms(9 ) converge.simps)

have length io ′ < m − size-r M1
using ‹¬ m − n < length v› unfolding ‹v = io ′@[(x ′,y ′)]@io ′′› n by auto

then have length (io ′@[(x ′,y ′)]) ≤ m − size-r M1
by auto

have x ′ ∈ inputs M1 and y ′ ∈ outputs M1
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proof −
have x ′ ∈ inputs M1 ∧ y ′ ∈ outputs M1
proof −

have (x ′,y ′) ∈ set v
unfolding ‹v = io ′@[(x ′,y ′)]@io ′′› by auto

then have (x ′, y ′) ∈ set (π @ v) and (x ′, y ′) ∈ set (τ @ v)
by auto

have π@v ∈ L M2 ∨ τ@v ∈ L M2
using ‹distinguishes M2 (after-initial M2 π) (after-initial M2 τ) v›
unfolding distinguishes-def

by (metis Un-iff ‹π ∈ L M2 › ‹τ ∈ L M2 › after-language-iff assms(2 ))
then show ?thesis
using language-io[of π@v M2 initial M2 , OF - ‹(x ′, y ′) ∈ set (π @ v)›]

language-io[of τ@v M2 initial M2 , OF - ‹(x ′, y ′) ∈ set (τ @ v)›]
by (metis assms(7 ) assms(8 ))

qed
then show x ′ ∈ inputs M1 and y ′ ∈ outputs M1

by auto
qed

obtain SC α β where SC ⊆ T
and {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes

(io ′@[(x ′,y ′)]))} ⊆ SC
and converge M1 π α
and converge M2 π α
and converge M1 τ β
and converge M2 τ β

using assms(11 )[of io ′ x ′ y ′, OF ‹length (io ′@[(x ′,y ′)]) ≤ m − size-r M1 ›
‹io ′ ∈ LS M1 (after-initial M1 π)› ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 ›]

by meson

show False proof (cases v ∈ set (prefixes (io ′@[(x ′,y ′)])))
case True
then have α@v ∈ T and β@v ∈ T

using ‹SC ⊆ T › ‹{ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes
(io ′@[(x ′,y ′)]))} ⊆ SC ›

by auto

then have L M1 ∩ {α@v,β@v} = L M2 ∩ {α@v,β@v}
using assms(10 ) by blast

have after-initial M1 π 6= after-initial M1 τ
using converge-distinguishable-helper [OF assms(1−4 ) ‹converge M1

π α› ‹converge M2 π α› ‹converge M1 τ β› ‹converge M2 τ β› ‹distinguishes
M2 (after-initial M2 π) (after-initial M2 τ) v› ‹L M1 ∩ {α@v,β@v} = L M2 ∩
{α@v,β@v}›] .

then show False
using ‹converge M1 π τ›
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by (meson assms(1 ) assms(3 ) converge.elims(2 ) convergence-minimal)
next

case False
then obtain io ′′′ io ′′′′ where io ′′ = io ′′′@io ′′′′

and v = io ′@[(x ′,y ′)]@io ′′′

and io ′′′ 6= []
using prefixes-prefix-suffix-ob[of v io ′@[(x ′,y ′)] io ′′]
using ‹v ∈ set (prefixes v)›
unfolding ‹v = io ′@[(x ′,y ′)]@io ′′›
by auto

then have io ′@[(x ′,y ′)] ∈ set (prefixes v) and io ′@[(x ′,y ′)] 6= v
unfolding prefixes-set by auto

then have io ′@[(x ′,y ′)] ∈ LS M2 (after-initial M2 π)
using minimally-distinguishes-proper-prefix-in-language[OF ‹mini-

mally-distinguishes M2 (after-initial M2 π) (after-initial M2 τ) v›, of io ′@[(x ′,y ′)]]
by blast

then have io ′@[(x ′,y ′)] ∈ LS M2 (after-initial M2 α)
using ‹converge M2 π α› converge.simps by blast

then have α@(io ′@[(x ′,y ′)]) ∈ L M2
by (meson ‹converge M2 π α› after-language-iff assms(2 ) converge.elims(2 ))
moreover have α@(io ′@[(x ′,y ′)]) ∈ T
using ‹{ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes (io ′@[(x ′,y ′)]))}

⊆ SC › ‹SC ⊆ T ›
unfolding prefixes-set by force

moreover have α@(io ′@[(x ′,y ′)]) /∈ L M1
by (metis ‹converge M1 π α› ‹io ′ @ [(x ′, y ′)] /∈ LS M1 (after-initial M1

π)› after-language-iff assms(1 ) converge.elims(2 ))
ultimately show False

using assms(10 ) by blast
qed

qed
qed

define vm where vm: vm = take (m−n) v
define v-suffix where v-suffix: v-suffix = drop (m−n) v
have length vm = m−n and vm 6= v

using ‹m − n < length v› unfolding vm by auto
have v = vm@v-suffix

unfolding vm v-suffix by auto
then have vm ∈ set (prefixes v)

unfolding prefixes-set by auto

have vm ∈ LS M2 (after-initial M2 π) and vm ∈ LS M2 (after-initial M2 τ)
using minimally-distinguishes-proper-prefix-in-language[OF ‹minimally-distinguishes

M2 (after-initial M2 π) (after-initial M2 τ) v› ‹vm ∈ set (prefixes v)› ‹vm 6= v›]
by auto
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have vm ∈ LS M1 (after-initial M1 π)
proof (rule ccontr)

assume False: vm /∈ LS M1 (after-initial M1 π)

obtain io ′ x ′ y ′ io ′′ where vm = io ′@[(x ′,y ′)]@io ′′

and io ′ ∈ LS M1 (after-initial M1 π)
and io ′@[(x ′,y ′)] /∈ LS M1 (after-initial M1 π)

using language-maximal-contained-prefix-ob[OF False - assms(1 )]
by (metis after-is-state assms(1 ) assms(9 ) converge.simps)

have length io ′ < m − size-r M1
using ‹length vm = m − n› unfolding ‹vm = io ′@[(x ′,y ′)]@io ′′› n by auto

then have length (io ′@[(x ′,y ′)]) ≤ m − size-r M1
by auto

have x ′ ∈ inputs M1
using ‹vm ∈ LS M2 (after-initial M2 π)›
unfolding ‹vm = io ′@[(x ′,y ′)]@io ′′›
using language-io[of io ′ @ [(x ′, y ′)] @ io ′′ M2 initial M2 x ′ y ′]
by (metis append-Cons assms(7 ) in-set-conv-decomp language-io(1 ))

have y ′ ∈ outputs M1
using ‹vm ∈ LS M2 (after-initial M2 π)›
unfolding ‹vm = io ′@[(x ′,y ′)]@io ′′›
using language-io[of io ′ @ [(x ′, y ′)] @ io ′′ M2 initial M2 x ′ y ′]
by (metis append-Cons assms(8 ) in-set-conv-decomp language-io(2 ))

obtain SC α β where SC ⊆ T
and {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes

(io ′@[(x ′,y ′)]))} ⊆ SC
and converge M1 π α
and converge M2 π α
and converge M1 τ β
and converge M2 τ β

using assms(11 )[of io ′ x ′ y ′, OF ‹length (io ′@[(x ′,y ′)]) ≤ m − size-r M1 ›
‹io ′ ∈ LS M1 (after-initial M1 π)› ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 ›]

by meson

have io ′@[(x ′,y ′)] ∈ LS M2 (after-initial M2 π)
using ‹vm ∈ LS M2 (after-initial M2 π)› language-prefix unfolding ‹vm

= io ′@[(x ′,y ′)]@io ′′›
by (metis append-assoc)

then have α@(io ′@[(x ′,y ′)]) ∈ L M2
by (metis ‹converge M2 π α› after-language-iff assms(2 ) converge.simps)

moreover have α@(io ′@[(x ′,y ′)]) ∈ T
using ‹{ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes (io ′@[(x ′,y ′)]))}

⊆ SC › ‹SC ⊆ T ›
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unfolding prefixes-set by force
moreover have α@(io ′@[(x ′,y ′)]) /∈ L M1
by (metis ‹converge M1 π α› ‹io ′ @ [(x ′, y ′)] /∈ LS M1 (after-initial M1 π)›

after-language-iff assms(1 ) converge.elims(2 ))
ultimately show False

using assms(10 ) by blast
qed

obtain SC α β where SC ⊆ T
and is-state-cover M1 SC
and {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes vm)}

⊆ SC
and converge M1 π α
and converge M2 π α
and converge M1 τ β
and converge M2 τ β
and preserves-divergence M1 M2 SC

proof (cases vm rule: rev-cases)
case Nil
then have list.set (prefixes vm) = {[]}

by auto
then have

∧
α β . {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes vm)}

= {α,β}
by blast

then show ?thesis using assms(12 ) that
by force

next
case (snoc blvm lvm)
then obtain x y where vm = blvm@[(x,y)]

using prod.exhaust by metis

have ∗:length (blvm@[(x,y)]) ≤ m − size-r M1
using ‹length vm = m − n› ‹vm = blvm @ [(x, y)]› n by fastforce

have ∗∗:blvm ∈ LS M1 (after-initial M1 π)
using ‹vm = blvm @ [(x, y)]› language-prefix ‹vm ∈ LS M1 (after-initial

M1 π)›
by metis

have ∗∗∗:x ∈ inputs M1 and ∗∗∗∗:y ∈ outputs M1
using language-io[OF ‹vm ∈ LS M1 (after-initial M1 π)›, of x y]
unfolding ‹vm = blvm @ [(x, y)]› by auto

show ?thesis
using assms(11 )[OF ∗ ∗∗ ∗∗∗ ∗∗∗∗] that
unfolding ‹vm = blvm @ [(x, y)]›[symmetric] by force

qed

have vm ∈ LS M1 (after-initial M1 α) ∩ LS M1 (after-initial M1 β)
using ‹converge M1 π α› ‹converge M1 π τ› ‹converge M1 τ β› ‹vm ∈ LS

M1 (after-initial M1 π)› by auto
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then have vm ∈ LS M1 (after-initial M1 α) by blast
have α ∈ L M2

using ‹converge M2 π α› by auto
have β ∈ L M2

using ‹converge M2 τ β› by auto
have minimally-distinguishes M2 (after-initial M2 α) (after-initial M2 β) v

using ‹minimally-distinguishes M2 (after-initial M2 π) (after-initial M2 τ)
v›

by (metis ‹α ∈ L M2 › ‹β ∈ L M2 › ‹π ∈ L M2 › ‹τ ∈ L M2 › ‹converge M2 π
α› ‹converge M2 τ β› assms(2 ) assms(4 ) convergence-minimal)

have converge M1 α β
using ‹converge M1 π α› ‹converge M1 τ β› assms(9 ) by auto

have ¬converge M2 α β
using ‹converge M2 π α› ‹converge M2 τ β› ‹¬converge M2 π τ› by auto

have preserves-divergence M1 M2 {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set
(prefixes vm)}

using ‹{ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes vm)} ⊆ SC ›
‹preserves-divergence M1 M2 SC ›

unfolding preserves-divergence.simps by blast

have L M1 ∩ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)} = L M2 ∩
{α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)}

using ‹{ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set (prefixes vm)} ⊆ SC › ‹SC
⊆ T › assms(10 )

by blast

have card-geq: card (after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set
(prefixes vm)}) ≥ (m−n) + card (after M1 (after-initial M1 α) ‘ set (prefixes vm))
+ 1

using preserves-divergence-minimally-distinguishing-prefixes-lower-bound[OF
assms(1−4 ) ‹converge M1 α β› ‹¬converge M2 α β› ‹α ∈ L M2 › ‹β ∈ L M2 ›
‹minimally-distinguishes M2 (after-initial M2 α) (after-initial M2 β) v› ‹vm ∈ set
(prefixes v)› ‹vm 6= v› ‹vm ∈ LS M1 (after-initial M1 α) ∩ LS M1 (after-initial
M1 β)› ‹preserves-divergence M1 M2 {ω@ω ′ | ω ω ′ . ω ∈ {α,β} ∧ ω ′ ∈ list.set
(prefixes vm)}› ‹L M1 ∩ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)} = L
M2 ∩ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)}›]

unfolding ‹length vm = m−n› .

have after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)} ⊆
states M2

proof
fix q assume q ∈ after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set

(prefixes vm)}
then obtain w1 w2 where q = after-initial M2 (w1@w2 )

and w1 ∈ {α,β}
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and w2 ∈ set (prefixes vm)
by blast

have w2 ∈ LS M2 (after-initial M2 α)
using ‹w2 ∈ set (prefixes vm)› unfolding prefixes-set
by (metis ‹converge M2 π α› ‹vm ∈ LS M2 (after-initial M2 π)› ‹w2 ∈ set

(prefixes vm)› converge.elims(2 ) language-prefix prefixes-set-ob)
then have after-initial M2 (α@w2 ) ∈ states M2

by (meson ‹α ∈ L M2 › after-is-state after-language-iff assms(2 ))

have w2 ∈ LS M2 (after-initial M2 β)
using ‹w2 ∈ set (prefixes vm)› unfolding prefixes-set
by (metis ‹converge M2 τ β› ‹vm ∈ LS M2 (after-initial M2 τ)› ‹w2 ∈ set

(prefixes vm)› converge.elims(2 ) language-prefix prefixes-set-ob)
then have after-initial M2 (β@w2 ) ∈ states M2

by (meson ‹β ∈ L M2 › after-is-state after-language-iff assms(2 ))

show q ∈ states M2
unfolding ‹q = after-initial M2 (w1@w2 )›
using ‹w1 ∈ {α,β}› ‹after-initial M2 (α@w2 ) ∈ states M2 › ‹after-initial

M2 (β@w2 ) ∈ states M2 ›
by blast

qed
have upper-bound: card (after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈

set (prefixes vm)}) ≤ m
proof −

have card (after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes
vm)}) ≤ size M2

using ‹after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)}
⊆ states M2 ›

using fsm-states-finite[of M2 ] unfolding FSM .size-def
by (simp add: card-mono)

then show ?thesis
using ‹size M2 ≤ m› by linarith

qed

have after M1 (after-initial M1 α) ‘ set (prefixes vm) ⊆ reachable-states M1
proof

fix q assume q ∈ after M1 (after-initial M1 α) ‘ set (prefixes vm)
then obtain vm ′ where q = after M1 (after-initial M1 α) vm ′ and vm ′ ∈

set (prefixes vm)
by auto

have vm ′ ∈ LS M1 (after-initial M1 α)
using ‹vm ′ ∈ set (prefixes vm)› unfolding prefixes-set
by (metis ‹vm ∈ LS M1 (after-initial M1 α)› ‹vm ′ ∈ set (prefixes vm)›

language-prefix prefixes-set-ob)
then have α@vm ′ ∈ L M1

by (meson ‹converge M1 π α› after-language-iff assms(1 ) converge.simps)
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moreover have q = after-initial M1 (α@vm ′)
unfolding ‹q = after M1 (after-initial M1 α) vm ′›
by (meson after-split assms(1 ) calculation)

ultimately show q ∈ reachable-states M1
using after-reachable-initial[OF assms(1 )] by auto

qed
moreover have finite (reachable-states M1 )

using fsm-states-finite[of M1 ] reachable-state-is-state[of - M1 ]
by (metis fsm-states-finite restrict-to-reachable-states-simps(2 ))

ultimately have card (after M1 (after-initial M1 α) ‘ set (prefixes vm)) ≤ n
unfolding n
by (metis card-mono)

have
∧

q . q ∈ reachable-states M1 =⇒ ∃ io ∈ SC . q ∈ io-targets M1 io
(FSM .initial M1 )

using ‹is-state-cover M1 SC ›
by auto

obtain V where is-state-cover-assignment M1 V
and

∧
q. q ∈ reachable-states M1 =⇒ V q ∈ SC

using state-cover-assignment-from-state-cover [OF ‹is-state-cover M1 SC ›]
by blast

define unreached-states where unreached-states: unreached-states = reach-
able-states M1 − (after M1 (after-initial M1 α) ‘ set (prefixes vm))

have size-r M1 = card (after M1 (after-initial M1 α) ‘ set (prefixes vm)) +
card unreached-states

by (metis ‹after M1 (after-initial M1 α) ‘ set (prefixes vm) ⊆ reach-
able-states M1 › ‹card (after M1 (after-initial M1 α) ‘ set (prefixes vm)) ≤ n›
‹finite (reachable-states M1 )› card-Diff-subset le-add-diff-inverse n rev-finite-subset
unreached-states)

have unreached-V :
∧

q . q ∈ unreached-states =⇒ V q ∈ L M1 ∧ V q ∈ L M2
∧ V q ∈ SC

proof −
fix q assume q ∈ unreached-states
then have q ∈ reachable-states M1

unfolding unreached-states by auto
then have after-initial M1 (V q) = q
using is-state-cover-assignment-observable-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by auto

have V q ∈ L M1
using is-state-cover-assignment-language[OF ‹is-state-cover-assignment M1

V ›] ‹q ∈ reachable-states M1 ›
by auto
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moreover have V q ∈ T and V q ∈ SC
using ‹

∧
q. q ∈ reachable-states M1 =⇒ V q ∈ SC › ‹q ∈ reachable-states

M1 › ‹SC ⊆ T ›
by auto

ultimately have V q ∈ L M2
by (metis Int-iff assms(10 ))

show V q ∈ L M1 ∧ V q ∈ L M2 ∧ V q ∈ SC
using ‹V q ∈ L M1 › ‹V q ∈ L M2 › ‹V q ∈ SC › by auto

qed

have
∧

q1 q2 . q1 ∈ unreached-states =⇒ q2 ∈ unreached-states =⇒ q1 6= q2
=⇒ after-initial M2 (V q1 ) 6= after-initial M2 (V q2 )

proof −
fix q1 q2 assume q1 ∈ unreached-states and q2 ∈ unreached-states and q1

6= q2

then have q1 ∈ reachable-states M1 and q2 ∈ reachable-states M1
unfolding unreached-states by auto

then have after-initial M1 (V q1 ) = q1 and after-initial M1 (V q2 ) = q2
using is-state-cover-assignment-observable-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by auto

then have V q1 6= V q2
using ‹q1 6= q2 ›
by metis

have V q1 ∈ L M1 and V q2 ∈ L M1
using is-state-cover-assignment-language[OF ‹is-state-cover-assignment M1

V ›] ‹q1 ∈ reachable-states M1 › ‹q2 ∈ reachable-states M1 ›
by auto

moreover have V q1 ∈ T and V q2 ∈ T and V q1 ∈ SC and V q2 ∈ SC
using ‹

∧
q. q ∈ reachable-states M1 =⇒ V q ∈ SC › ‹q1 ∈ reachable-states

M1 › ‹q2 ∈ reachable-states M1 › ‹SC ⊆ T ›
by auto

ultimately have V q1 ∈ L M2 and V q2 ∈ L M2
by (metis Int-iff assms(10 ))+

have ¬converge M1 (V q1 ) (V q2 )
by (meson ‹is-state-cover-assignment M1 V › ‹q1 ∈ reachable-states M1 › ‹q1

6= q2 › ‹q2 ∈ reachable-states M1 › assms(1 ) assms(3 ) state-cover-assignment-diverges)

then have ¬converge M2 (V q1 ) (V q2 )
using ‹V q1 ∈ L M1 › ‹V q2 ∈ L M1 › ‹V q1 ∈ SC › ‹V q2 ∈ SC ›

‹preserves-divergence M1 M2 SC ›
unfolding preserves-divergence.simps by blast

then have after-initial M2 (V q1 ) 6= after-initial M2 (V q2 )
using ‹V q1 ∈ L M2 › ‹V q2 ∈ L M2 ›
using assms(2 ) assms(4 ) convergence-minimal by blast
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then show after-initial M2 (V q1 ) 6= after-initial M2 (V q2 )
by auto

qed

have lower-bound: size M2 ≥ card (after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α,
β} ∧ γ ∈ set (prefixes vm)}) + card unreached-states

proof −
have finite unreached-states

by (simp add: ‹finite (reachable-states M1 )› unreached-states)
then have finite ((λ q . after-initial M2 (V q)) ‘ unreached-states)

by simp

have card unreached-states = card ((λ q . after-initial M2 (V q)) ‘ un-
reached-states)

using image-inj-card-helper [of unreached-states (λ q . after-initial M2 (V
q)), OF ‹finite unreached-states› ‹

∧
q1 q2 . q1 ∈ unreached-states =⇒ q2 ∈ un-

reached-states =⇒ q1 6= q2 =⇒ after-initial M2 (V q1 ) 6= after-initial M2 (V
q2 )›]

by auto

have card-helper :
∧

A B C . A ∩ B = {} =⇒ A ⊆ C =⇒ B ⊆ C =⇒ finite
C =⇒ card C ≥ card A + card B

by (metis Int-Un-distrib card-Un-disjoint card-mono finite-subset inf .absorb-iff2 )

have
∧

q . q ∈ unreached-states =⇒ after-initial M2 (V q) /∈ (after-initial
M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)})

proof
fix q assume q ∈ unreached-states

and after-initial M2 (V q) ∈ after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈
{α, β} ∧ γ ∈ set (prefixes vm)}

then obtain w1 w2 where after-initial M2 (V q) = after-initial M2
(w1@w2 )

and w1 ∈ {α,β}
and w2 ∈ set (prefixes vm)

by blast
then have (w1@w2 ) ∈ SC

using ‹{ω @ ω ′ |ω ω ′. ω ∈ {α, β} ∧ ω ′ ∈ set (prefixes vm)} ⊆ SC › by
blast

have w2 ∈ LS M2 (after-initial M2 α)
using ‹w2 ∈ set (prefixes vm)› unfolding prefixes-set
by (metis ‹converge M2 π α› ‹vm ∈ LS M2 (after-initial M2 π)› ‹w2 ∈

set (prefixes vm)› converge.elims(2 ) language-prefix prefixes-set-ob)
moreover have w2 ∈ LS M2 (after-initial M2 β)

using ‹w2 ∈ set (prefixes vm)› unfolding prefixes-set
by (metis ‹converge M2 τ β› ‹vm ∈ LS M2 (after-initial M2 τ)› ‹w2 ∈

set (prefixes vm)› converge.elims(2 ) language-prefix prefixes-set-ob)
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ultimately have w1@w2 ∈ L M2
using ‹w1 ∈ {α,β}›

by (metis ‹converge M2 π α› ‹converge M2 τ β› after-language-iff assms(2 )
converge.simps empty-iff insert-iff )

then have converge M2 (V q) (w1@w2 )
using unreached-V [OF ‹q ∈ unreached-states›]
using ‹after-initial M2 (V q) = after-initial M2 (w1 @ w2 )› assms(2 )

assms(4 ) convergence-minimal by blast
moreover have ¬converge M1 (V q) (w1@w2 )
proof −
have after M1 (after-initial M1 α) w2 = after M1 (after-initial M1 β) w2

by (metis ‹converge M1 α β› assms(1 ) assms(3 ) converge.simps conver-
gence-minimal)

then have q 6= (after M1 (after-initial M1 w1 ) w2 )
using ‹q ∈ unreached-states› ‹w1 ∈ {α,β}›
unfolding unreached-states

by (metis DiffD2 ‹w2 ∈ set (prefixes vm)› image-eqI insert-iff singletonD)
moreover have (after M1 (after-initial M1 w1 ) w2 ) = (after-initial M1

(w1@w2 ))
by (metis (no-types, lifting) Int-iff ‹SC ⊆ T › ‹w1 @ w2 ∈ L M2 › ‹w1

@ w2 ∈ SC › after-split assms(1 ) assms(10 ) in-mono)
moreover have q = after-initial M1 (V q)

using is-state-cover-assignment-observable-after [OF assms(1 ) ‹is-state-cover-assignment
M1 V ›] ‹q ∈ unreached-states›

unfolding unreached-states
by (metis Diff-iff )

ultimately show ?thesis
by (metis assms(1 ) assms(3 ) converge.elims(2 ) convergence-minimal)

qed
moreover have V q ∈ L M1 ∩ SC

using unreached-V [OF ‹q ∈ unreached-states›] by auto
moreover have w1@w2 ∈ L M1 ∩ SC
using ‹SC ⊆ T › ‹w1 @ w2 ∈ L M2 › ‹w1 @ w2 ∈ SC › assms(10 ) by auto

ultimately show False
using ‹preserves-divergence M1 M2 SC ›
unfolding preserves-divergence.simps
by blast

qed
then have ∗: ((λ q . after-initial M2 (V q)) ‘ unreached-states) ∩ (after-initial

M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set (prefixes vm)}) = {}
by blast

have ∗∗: ((λ q . after-initial M2 (V q)) ‘ unreached-states) ⊆ states M2
using unreached-V
by (meson after-is-state assms(2 ) image-subset-iff )

moreover note ‹(after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β} ∧ γ ∈ set
(prefixes vm)}) ⊆ states M2 ›

show ?thesis
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unfolding ‹card unreached-states = card ((λ q . after-initial M2 (V q)) ‘
unreached-states)› FSM .size-def

using card-helper [OF ∗ ∗∗ ‹(after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′ ∈ {α, β}
∧ γ ∈ set (prefixes vm)}) ⊆ states M2 › fsm-states-finite[of M2 ] ]

by linarith
qed

moreover have card-geq-unreached: card (after-initial M2 ‘ {α ′ @ γ |α ′ γ. α ′

∈ {α, β} ∧ γ ∈ set (prefixes vm)}) + card unreached-states ≥ m + 1
using card-geq
using ‹size-r M1 ≤ m›
unfolding n
unfolding ‹size-r M1 = card (after M1 (after-initial M1 α) ‘ set (prefixes

vm)) + card unreached-states›
by linarith

ultimately have size M2 ≥ m + 1
by linarith

then show False
using ‹size M2 ≤ m›
by linarith

qed
qed

lemma establish-convergence-from-pass :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and is-state-cover-assignment M1 V
and L M1 ∩ (V ‘ reachable-states M1 ) = L M2 ∩ V ‘ reachable-states M1
and converge M1 u v
and u ∈ L M2
and v ∈ L M2
and prop1 :

∧
γ x y.
length (γ @ [(x, y)]) ≤ (m − size-r M1 ) =⇒
γ ∈ LS M1 (after-initial M1 u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
L M1 ∩ ((V ‘ reachable-states M1 ) ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) =
L M2 ∩ ((V ‘ reachable-states M1 ) ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) ∧
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preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {ω @
ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})

and prop2 : preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {u, v})
shows converge M2 u v
proof −

define language-up-to-depth where language-up-to-depth: language-up-to-depth
= {γ . γ ∈ LS M1 (after-initial M1 u) ∧ length γ < (m − size-r M1 )}

define T1 where T1 : T1 =
⋃
{((V ‘ reachable-states M1 ) ∪ {ω @ ω ′ |ω ω ′. ω

∈ {u, v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) | γ x y . length (γ @ [(x, y)])
≤ (m − size-r M1 ) ∧ γ ∈ LS M1 (after-initial M1 u) ∧ x ∈ inputs M1 ∧ y ∈
outputs M1}

define T2 where T2 : T2 = ((V ‘ reachable-states M1 ) ∪ {u, v})

define T where T : T = T1 ∪ T2

have union-intersection-helper :
∧

A B C . (A ∩
⋃

C = B ∩
⋃

C ) = (∀C ′ ∈ C
. A ∩ C ′ = B ∩ C ′)

by blast

have L M1 ∩ T = L M2 ∩ T
proof −

have (L M1 ∩ T1 = L M2 ∩ T1 )
unfolding T1 union-intersection-helper
using prop1 by blast

moreover have L M1 ∩ T2 = L M2 ∩ T2
proof−

have u ∈ L M1 and v ∈ L M1
using ‹converge M1 u v› by auto

moreover note ‹L M1 ∩ (V ‘ reachable-states M1 ) = L M2 ∩ V ‘ reach-
able-states M1 › ‹u ∈ L M2 › ‹v ∈ L M2 ›

ultimately show ?thesis
unfolding T2 by blast

qed
ultimately show ?thesis

unfolding T by blast
qed

have prop1 ′: (
∧
γ x y.

length (γ @ [(x, y)]) ≤ m − size-r M1 =⇒
γ ∈ LS M1 (after-initial M1 u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
∃SC α β.

SC ⊆ T ∧
is-state-cover M1 SC ∧
{ω @ ω ′ |ω ω ′. ω ∈ {α, β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))} ⊆ SC ∧
converge M1 u α ∧ converge M2 u α ∧ converge M1 v β ∧ converge M2 v β
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∧ preserves-divergence M1 M2 SC )
proof −

fix γ x y

define SC where SC : SC = ((V ‘ reachable-states M1 ) ∪ {ω @ ω ′ |ω ω ′. ω ∈
{u, v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})

assume length (γ @ [(x, y)]) ≤ m − size-r M1
γ ∈ LS M1 (after-initial M1 u)
x ∈ FSM .inputs M1
y ∈ FSM .outputs M1

then have L M1 ∩ SC = L M2 ∩ SC
preserves-divergence M1 M2 SC

using prop1 [of γ x y]
unfolding SC
by blast+

have SC ⊆ T
unfolding T T1 SC
using ‹length (γ @ [(x, y)]) ≤ m − size-r M1 › ‹γ ∈ LS M1 (after-initial M1

u)› ‹x ∈ FSM .inputs M1 › ‹y ∈ FSM .outputs M1 ›
by blast

moreover have is-state-cover M1 SC
proof −

have is-state-cover M1 (V ‘ reachable-states M1 )
using ‹is-state-cover-assignment M1 V ›
by (metis is-minimal-state-cover .simps minimal-state-cover-is-state-cover)

moreover have (V ‘ reachable-states M1 ) ⊆ SC
unfolding SC
by blast

ultimately show ?thesis
unfolding is-state-cover .simps by blast

qed
moreover have {ω @ ω ′ |ω ω ′. ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x,

y)]))} ⊆ SC
unfolding SC by auto

moreover have converge M1 u u
using ‹converge M1 u v› by auto

moreover have converge M1 v v
using ‹converge M1 u v› by auto

moreover have converge M2 u u
using ‹u ∈ L M2 › by auto

moreover have converge M2 v v
using ‹v ∈ L M2 › by auto

moreover note ‹preserves-divergence M1 M2 SC ›
ultimately show ∃SC α β.

SC ⊆ T ∧
is-state-cover M1 SC ∧
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{ω @ ω ′ |ω ω ′. ω ∈ {α, β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))} ⊆ SC ∧
converge M1 u α ∧ converge M2 u α ∧ converge M1 v β ∧ converge M2 v β

∧ preserves-divergence M1 M2 SC
by blast

qed

have prop2 ′: ∃SC α β.
SC ⊆ T ∧
is-state-cover M1 SC ∧
α ∈ SC ∧ β ∈ SC ∧ converge M1 u α ∧ converge M2 u α ∧ converge M1 v β

∧ converge M2 v β ∧ preserves-divergence M1 M2 SC
proof −

define SC where SC : SC = ((V ‘ reachable-states M1 ) ∪ {u, v})
have SC ⊆ T

unfolding T T2 SC by auto
moreover have is-state-cover M1 SC
proof −

have is-state-cover M1 (V ‘ reachable-states M1 )
using ‹is-state-cover-assignment M1 V ›
by (metis is-minimal-state-cover .simps minimal-state-cover-is-state-cover)

moreover have (V ‘ reachable-states M1 ) ⊆ SC
unfolding SC
by blast

ultimately show ?thesis
unfolding is-state-cover .simps by blast

qed
moreover have u ∈ SC and v ∈ SC

unfolding SC by auto
moreover have converge M1 u u

using ‹converge M1 u v› by auto
moreover have converge M1 v v

using ‹converge M1 u v› by auto
moreover have converge M2 u u

using ‹u ∈ L M2 › by auto
moreover have converge M2 v v

using ‹v ∈ L M2 › by auto
moreover have ‹preserves-divergence M1 M2 SC ›

using prop2 unfolding SC .
ultimately show ?thesis

by blast
qed

show converge M2 u v
using sufficient-condition-for-convergence[OF assms(1−8 ,11 ) ‹L M1 ∩ T = L

M2 ∩ T › prop1 ′ prop2 ′]
by blast

qed
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15.3 Proving Language Equivalence by Establishing a Con-
vergence Preserving Initialised Transition Cover

definition transition-cover :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) list set ⇒ bool where
transition-cover M A = (∀ q ∈ reachable-states M . ∀ x ∈ inputs M . ∀ y ∈

outputs M . ∃ α. α ∈ A ∧ α@[(x,y)] ∈ A ∧ α ∈ L M ∧ after-initial M α = q)

lemma initialised-convergence-preserving-transition-cover-is-complete :
fixes M1 :: ( ′a, ′b, ′c) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and L M1 ∩ T = L M2 ∩ T
and A ⊆ T
and transition-cover M1 A
and [] ∈ A
and preserves-convergence M1 M2 A

shows L M1 = L M2
proof −

have convergence-right:
∧

α β . α ∈ A =⇒ converge M1 α β =⇒ converge M2
α β

proof −
fix α β
assume α ∈ A and converge M1 α β

then show converge M2 α β
proof (induction β arbitrary: α rule: rev-induct)

case Nil
then have α ∈ L M1 ∩ A

by auto
moreover have [] ∈ L M1 ∩ A

using ‹[] ∈ A›
by auto

ultimately show ?case
using ‹preserves-convergence M1 M2 A› ‹converge M1 α []›
unfolding preserves-convergence.simps
by blast

next
case (snoc xy β)

obtain x y where xy = (x,y)
by force
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have α ∈ L M1
and β @ [(x,y)] ∈ L M1
and LS M1 (after-initial M1 α) = LS M1 (after-initial M1 (β @ [(x,y)]))

using snoc unfolding ‹xy = (x,y)›
by auto

then have β ∈ L M1
using language-prefix by metis

then have after-initial M1 β ∈ reachable-states M1
using after-reachable[OF ‹observable M1 › - reachable-states-initial]
by metis

moreover have x ∈ inputs M1 and y ∈ outputs M1
using language-io[OF ‹β @ [(x,y)] ∈ L M1 ›] by auto

ultimately obtain γ where γ ∈ A
and γ @ [(x, y)] ∈ A
and γ ∈ L M1
and after-initial M1 γ = after-initial M1 β

using ‹transition-cover M1 A›
unfolding transition-cover-def
by blast

then have converge M1 γ β
using ‹β ∈ L M1 ›
by auto

then have converge M2 γ β
using snoc.IH [OF ‹γ ∈ A›]
by simp

then have β ∈ L M2
by auto

have converge M1 β γ
using ‹converge M1 γ β› by auto

then have converge M1 (β @ [(x, y)]) (γ @ [(x, y)])
using converge-append[OF assms(1 ) - ‹β @ [(x,y)] ∈ L M1 › ‹γ ∈ L M1 ›]
by auto

then have γ @ [(x, y)] ∈ L M1
by auto

then have γ @ [(x, y)] ∈ L M2
using ‹γ @ [(x, y)] ∈ A› assms(7 ,8 )
by blast

then have converge M2 (β @ [(x, y)]) (γ @ [(x, y)])
using converge-append[OF assms(2 ) ‹converge M2 γ β› - ‹β ∈ L M2 ›]
by auto

have converge M1 α (γ @ [(x, y)])
using ‹converge M1 (β @ [(x, y)]) (γ @ [(x, y)])›
using ‹converge M1 α (β @ [xy])›
unfolding ‹xy = (x,y)›
by auto

then have converge M2 α (γ @ [(x, y)])
using ‹α ∈ A› ‹γ @ [(x, y)] ∈ A› ‹preserves-convergence M1 M2 A›
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unfolding preserves-convergence.simps
by auto

then show ?case
using ‹converge M2 (β @ [(x, y)]) (γ @ [(x, y)])›
unfolding ‹xy = (x,y)›
by auto

qed
qed

have reaching-sequence-ex :
∧

q . q ∈ reachable-states M1 =⇒ ∃ α . α ∈ A ∧ α
∈ L M1 ∧ after-initial M1 α = q

proof −
fix q assume q ∈ reachable-states M1
then show ∃ α . α ∈ A ∧ α ∈ L M1 ∧ after-initial M1 α = q
proof (induction rule: reachable-states-cases)

case init
then show ?case

using ‹[] ∈ A›
using language-contains-empty-sequence
by (metis after .simps(1 ))

next
case (transition t)

obtain γ where γ ∈ A and γ@[(t-input t,t-output t)] ∈ A and γ ∈ L M1
and after-initial M1 γ = t-source t

using ‹transition-cover M1 A›
‹t-source t ∈ reachable-states M1 ›
fsm-transition-input[OF ‹t ∈ transitions M1 ›]
fsm-transition-output[OF ‹t ∈ transitions M1 ›]

unfolding transition-cover-def
by blast

have γ@[(t-input t,t-output t)] ∈ L M1
using after-language-iff [OF assms(1 ) ‹γ ∈ L M1 ›, of [(t-input t,t-output

t)]] ‹t ∈ transitions M1 ›
unfolding ‹after-initial M1 γ = t-source t› LS-single-transition
by auto

moreover have after M1 (after-initial M1 γ) [(t-input t,t-output t)] = t-target
t

using after-transition[OF assms(1 )] ‹t ∈ transitions M1 ›
unfolding ‹after-initial M1 γ = t-source t›
by auto

ultimately have after-initial M1 (γ@[(t-input t,t-output t)]) = t-target t
using after-split[OF assms(1 )]
by metis

then show ?case
using ‹γ@[(t-input t,t-output t)] ∈ A› ‹γ@[(t-input t,t-output t)] ∈ L M1 ›
by blast

qed
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qed

have arbitrary-convergence:
∧

α β . converge M1 α β =⇒ converge M2 α β
proof −

fix α β
assume converge M1 α β

then have α ∈ L M1 and β ∈ L M1
by auto

then have after-initial M1 α ∈ reachable-states M1
using after-reachable[OF assms(1 ) - reachable-states-initial]
by auto
then obtain γ where γ ∈ A and γ ∈ L M1 and after-initial M1 γ =

after-initial M1 α
using reaching-sequence-ex by blast

moreover have after-initial M1 α = after-initial M1 β
using convergence-minimal[OF assms(3 ,1 ) ‹α ∈ L M1 › ‹β ∈ L M1 ›] ‹converge

M1 α β›
by blast

ultimately have converge M1 γ α and converge M1 γ β
using ‹α ∈ L M1 › ‹β ∈ L M1 ›
by auto

then have converge M2 γ α and converge M2 γ β
using convergence-right[OF ‹γ ∈ A›]
by auto

then show converge M2 α β
by auto

qed

have L M1 ⊆ L M2
proof

fix α assume α ∈ L M1
then have converge M1 α α

by auto
then have converge M2 α α

using arbitrary-convergence
by blast

then show α ∈ L M2
by auto

qed
moreover have L M2 ⊆ L M1
proof (rule ccontr)

assume ¬ L M2 ⊆ L M1
then obtain α ′ where α ′ ∈ L M2 − L M1

by auto

obtain α xy β where α ′ = α @ [xy] @ β and α ∈ L M2 ∩ L M1 and α @
[xy] ∈ L M2 − L M1
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using minimal-failure-prefix-ob[OF assms(1 ,2 ) fsm-initial fsm-initial ‹α ′ ∈ L
M2 − L M1 ›]

by blast
moreover obtain x y where xy = (x,y)

by force
ultimately have α ∈ L M2 and α ∈ L M1 and α @ [(x,y)] ∈ L M2 and α

@ [(x,y)] /∈ L M1
by auto

have x ∈ inputs M1 and y ∈ outputs M1
using language-io[OF ‹α @ [(x,y)] ∈ L M2 ›]
unfolding ‹inputs M2 = inputs M1 › ‹outputs M2 = outputs M1 ›
by auto

moreover have after-initial M1 α ∈ reachable-states M1
using after-reachable[OF assms(1 ) ‹α ∈ L M1 › reachable-states-initial]
by auto

ultimately obtain γ where γ ∈ A and γ@[(x,y)] ∈ A and γ ∈ L M1 and
after-initial M1 γ = after-initial M1 α

using ‹transition-cover M1 A›
unfolding transition-cover-def
by blast

then have converge M1 α γ
using ‹α ∈ L M1 ›
by auto

then have converge M2 α γ
using arbitrary-convergence
by blast

have γ ∈ L M2
using ‹γ ∈ A› ‹γ ∈ L M1 › assms(7 ,8 )
by blast

have γ @ [(x,y)] ∈ L M2
using ‹α @ [(x,y)] ∈ L M2 › ‹converge M2 α γ›
using after-language-iff [OF assms(2 ) ‹α ∈ L M2 › ]
using after-language-iff [OF assms(2 ) ‹γ ∈ L M2 › ]
unfolding convergence-minimal[OF assms(4 ,2 ) ‹α ∈ L M2 › ‹γ ∈ L M2 ›]
by auto

have γ @ [(x,y)] /∈ L M1
using ‹α @ [(x,y)] /∈ L M1 ›
using after-language-iff [OF assms(1 ) ‹γ ∈ L M1 › ]
using after-language-iff [OF assms(1 ) ‹α ∈ L M1 › ]
unfolding ‹after-initial M1 γ = after-initial M1 α›
by auto

then have γ @ [(x,y)] /∈ L M2
using ‹γ@[(x,y)] ∈ A› assms(7 ,8 )
by auto

then show False
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using ‹γ @ [(x,y)] ∈ L M2 ›
by auto

qed
ultimately show ?thesis

by blast
qed

end

16 Convergence Graphs

This theory introduces the invariants required for the initialisation, inser-
tion, lookup, and merge operations on convergence graphs.
theory Convergence-Graph
imports Convergence ../Prefix-Tree
begin

lemma after-distinguishes-diverge :
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and α ∈ L M1
and β ∈ L M1
and γ ∈ set (after T1 α) ∩ set (after T1 β)
and distinguishes M1 (after-initial M1 α) (after-initial M1 β) γ
and L M1 ∩ set T1 = L M2 ∩ set T1

shows ¬converge M2 α β
proof

have γ 6= []
using assms(5 ,6 ,8 )
by (metis after-distinguishes-language append-Nil2 assms(1 ))

then have α ∈ set T1 and β ∈ set T1
using assms(7 ) after-set-Cons[of γ]
by auto

assume converge M2 α β
moreover have α ∈ L M2

using assms(5 ,9 ) ‹α ∈ set T1 › by blast
moreover have β ∈ L M2

using assms(6 ,9 ) ‹β ∈ set T1 › by blast
ultimately have (after-initial M2 α) = (after-initial M2 β)

using convergence-minimal[OF assms(4 ,2 )]
by blast

then have α@γ ∈ L M2 = (β@γ ∈ L M2 )
using ‹converge M2 α β› assms(2 ) converge-append-language-iff by blast

moreover have (α@γ ∈ L M1 ) 6= (β@γ ∈ L M1 )
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using after-distinguishes-language[OF assms(1 ,5 ,6 ,8 )] .
moreover have α@γ ∈ set T1 and β@γ ∈ set T1

using assms(7 ) unfolding after-set
by (metis IntE append-Nil2 assms(5 ) assms(6 ) calculation(2 ) insertE mem-Collect-eq)+

ultimately show False
using assms(9 )
by blast

qed

16.1 Required Invariants on Convergence Graphs
definition convergence-graph-lookup-invar :: ( ′a, ′b, ′c) fsm ⇒ ( ′e, ′b, ′c) fsm ⇒

( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
′d ⇒
bool

where
convergence-graph-lookup-invar M1 M2 cg-lookup G = (∀ α . α ∈ L M1 −→ α
∈ L M2 −→ α ∈ list.set (cg-lookup G α) ∧ (∀ β . β ∈ list.set (cg-lookup G α) −→
converge M1 α β ∧ converge M2 α β))

lemma convergence-graph-lookup-invar-simp:
assumes convergence-graph-lookup-invar M1 M2 cg-lookup G
and α ∈ L M1 and α ∈ L M2
and β ∈ list.set (cg-lookup G α)

shows converge M1 α β and converge M2 α β
using assms unfolding convergence-graph-lookup-invar-def by blast+

definition convergence-graph-initial-invar :: ( ′a, ′b, ′c) fsm ⇒ ( ′e, ′b, ′c) fsm ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒
bool

where
convergence-graph-initial-invar M1 M2 cg-lookup cg-initial = (∀ T . (L M1 ∩ set

T = (L M2 ∩ set T )) −→ finite-tree T −→ convergence-graph-lookup-invar M1
M2 cg-lookup (cg-initial M1 T ))

definition convergence-graph-insert-invar :: ( ′a, ′b, ′c) fsm ⇒ ( ′e, ′b, ′c) fsm ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
bool

where
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert = (∀ G γ . γ ∈ L

M1 −→ γ ∈ L M2 −→ convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-lookup-invar M1 M2 cg-lookup (cg-insert G γ))

definition convergence-graph-merge-invar :: ( ′a, ′b, ′c) fsm ⇒ ( ′e, ′b, ′c) fsm ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
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bool
where
convergence-graph-merge-invar M1 M2 cg-lookup cg-merge = (∀ G γ γ ′. con-

verge M1 γ γ ′ −→ converge M2 γ γ ′ −→ convergence-graph-lookup-invar M1 M2
cg-lookup G −→ convergence-graph-lookup-invar M1 M2 cg-lookup (cg-merge G γ
γ ′))

end

17 An Always-Empty Convergence Graph

This theory implements a convergence graph that always returns an empty
list for any lookup. By using this graph it is possible to represent methods
via the SPY and H-Frameworks that do not distribute distinguishing traces
over converging traces.
theory Empty-Convergence-Graph
imports Convergence-Graph
begin

type-synonym empty-cg = unit

definition empty-cg-empty :: empty-cg where
empty-cg-empty = ()

definition empty-cg-initial :: (( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ empty-cg)
where

empty-cg-initial M T = empty-cg-empty

definition empty-cg-insert :: (empty-cg ⇒ ( ′b× ′c) list ⇒ empty-cg) where
empty-cg-insert G v = empty-cg-empty

definition empty-cg-lookup :: (empty-cg ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) where
empty-cg-lookup G v = [v]

definition empty-cg-merge :: (empty-cg ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ empty-cg)
where

empty-cg-merge G u v = empty-cg-empty

lemma empty-graph-initial-invar : convergence-graph-initial-invar M1 M2 empty-cg-lookup
empty-cg-initial
unfolding convergence-graph-initial-invar-def convergence-graph-lookup-invar-def

empty-cg-lookup-def empty-cg-initial-def
by auto

lemma empty-graph-insert-invar : convergence-graph-insert-invar M1 M2 empty-cg-lookup
empty-cg-insert

unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
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empty-cg-lookup-def empty-cg-insert-def
by auto

lemma empty-graph-merge-invar : convergence-graph-merge-invar M1 M2 empty-cg-lookup
empty-cg-merge
unfolding convergence-graph-merge-invar-def convergence-graph-lookup-invar-def

empty-cg-lookup-def empty-cg-merge-def
by auto

end

18 H-Framework

This theory defines the H-Framework and provides completeness properties.
theory H-Framework
imports Convergence-Graph ../Prefix-Tree ../State-Cover
begin

18.1 Abstract H-Condition
definition satisfies-abstract-h-condition :: ( ′a, ′b, ′c) fsm ⇒ ( ′e, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c)
state-cover-assignment ⇒ nat ⇒ bool where

satisfies-abstract-h-condition M1 M2 V m = (∀ q γ .
q ∈ reachable-states M1 −→
length γ ≤ Suc (m−size-r M1 ) −→
list.set γ ⊆ inputs M1 × outputs M1 −→
butlast γ ∈ LS M1 q −→
(let traces = (V ‘ reachable-states M1 )

∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}
in (L M1 ∩ traces = L M2 ∩ traces)
∧ preserves-divergence M1 M2 traces))

lemma abstract-h-condition-exhaustiveness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M
and is-state-cover-assignment M V
and satisfies-abstract-h-condition M I V m

shows L M = L I
proof (rule ccontr)

assume L M 6= L I
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define Π where Π: Π = (V ‘ reachable-states M )
define n where n: n = size-r M
define X where X : X = (λ q . {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤

m−n ∧ x ∈ inputs M ∧ y ∈ outputs M})

have pass-prop:
∧

q γ . q ∈ reachable-states M =⇒ length γ ≤ Suc (m−n) =⇒
list.set γ ⊆ inputs M × outputs M =⇒ butlast γ ∈ LS M q =⇒

(L M ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L I ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

and dist-prop:
∧

q γ . q ∈ reachable-states M =⇒ length γ ≤ Suc (m−n) =⇒
list.set γ ⊆ inputs M × outputs M =⇒ butlast γ ∈ LS M q =⇒

preserves-divergence M I (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)})

using ‹satisfies-abstract-h-condition M I V m›
unfolding satisfies-abstract-h-condition-def Let-def Π n by blast+

have pass-prop-X :
∧

q γ . q ∈ reachable-states M =⇒ γ ∈ X q =⇒
(L M ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L I ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

and dist-prop-X :
∧

q γ . q ∈ reachable-states M =⇒ γ ∈ X q =⇒
preserves-divergence M I (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set

(prefixes γ)})
proof −

fix q γ assume ∗: q ∈ reachable-states M and γ ∈ X q
then obtain io x y where γ = io@[(x,y)] and io ∈ LS M q and length io ≤

m−n and x ∈ inputs M and y ∈ outputs M
unfolding X by blast

have ∗∗:length γ ≤ Suc (m−n)
using ‹γ = io@[(x,y)]› ‹length io ≤ m−n› by auto

have ∗∗∗:list.set γ ⊆ inputs M × outputs M
using language-io[OF ‹io ∈ LS M q›] ‹x ∈ inputs M › ‹y ∈ outputs M ›
unfolding ‹γ = io@[(x,y)]› by auto

have ∗∗∗∗:butlast γ ∈ LS M q
unfolding ‹γ = io@[(x,y)]› using ‹io ∈ LS M q› by auto

show (L M ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L I ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

using pass-prop[OF ∗ ∗∗ ∗∗∗ ∗∗∗∗] .
show preserves-divergence M I (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

using dist-prop[OF ∗ ∗∗ ∗∗∗ ∗∗∗∗] .
qed

have (L M ∩ Π) = (L I ∩ Π)

531



using pass-prop[OF reachable-states-initial, of []] language-contains-empty-sequence[of
M ] by auto

moreover have Π ⊆ L M
unfolding Π using state-cover-assignment-after(1 )[OF assms(1 ) ‹is-state-cover-assignment

M V ›]
by blast

ultimately have Π ⊆ L I
using ‹Π = (V ‘ reachable-states M )› by blast

obtain π τ ′ where π ∈ Π
and π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )
and

∧
io q . q ∈ reachable-states M =⇒ (V q)@io ∈ (L M − L I ) ∪

(L I − L M ) =⇒ length τ ′ ≤ length io
using ‹(L M ∩ Π) = (L I ∩ Π)›
using minimal-sequence-to-failure-from-state-cover-assignment-ob[OF ‹L M 6=

L I › ‹is-state-cover-assignment M V ›]
unfolding Π
by blast

obtain q where q ∈ reachable-states M and π = V q
using ‹π ∈ Π› unfolding Π by blast

then have π ∈ L M and after-initial M π = q
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment M

V ›]
by blast+

have τ ′-min:
∧

π ′ io . π ′ ∈ Π =⇒ π ′@io ∈ (L M − L I ) ∪ (L I − L M ) =⇒
length τ ′ ≤ length io

proof −
fix π ′ io
assume π ′ ∈ Π and π ′@io ∈ (L M − L I ) ∪ (L I − L M )
then obtain q where q ∈ reachable-states M and π ′ = V q

unfolding Π by blast
then show length τ ′ ≤ length io

using ‹
∧

io q . q ∈ reachable-states M =⇒ (V q)@io ∈ (L M − L I ) ∪ (L I
− L M ) =⇒ length τ ′ ≤ length io›

‹π ′@io ∈ (L M − L I ) ∪ (L I − L M )› by auto
qed

obtain πτ xy τ ′′ where π @ τ ′ = πτ @ [xy] @ τ ′′

and πτ ∈ L M ∩ L I
and πτ@[xy] ∈ (L I − L M ) ∪ (L M − L I )

using minimal-failure-prefix-ob[OF ‹observable M › ‹observable I › fsm-initial
fsm-initial, of π @ τ ′]

using minimal-failure-prefix-ob[OF ‹observable I › ‹observable M › fsm-initial
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fsm-initial, of π @ τ ′]
using ‹π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )›
by (metis Int-commute Un-iff )

moreover obtain x y where xy = (x,y)
using surjective-pairing by blast

moreover have πτ = π @ butlast τ ′

proof −
have length πτ ≥ length π
proof (rule ccontr)

assume ¬ length π ≤ length πτ
then have length (πτ@[xy]) ≤ length π

by auto
then have take (length (πτ@[xy])) π = πτ@[xy]

using ‹π @ τ ′ = πτ @ [xy] @ τ ′′›
by (metis append-assoc append-eq-append-conv-if )

then have π = (πτ@[xy]) @ (drop (length (πτ@[xy])) π)
by (metis append-take-drop-id)

then have πτ@[xy] ∈ L M ∩ L I
using ‹π ∈ Π› ‹Π ⊆ L I › ‹Π ⊆ L M ›
using language-prefix[of (πτ@[xy]) drop (length (πτ@[xy])) π, of M initial

M ]
using language-prefix[of (πτ@[xy]) drop (length (πτ@[xy])) π, of I initial I ]
by auto

then show False
using ‹πτ@[xy] ∈ (L I − L M ) ∪ (L M − L I )› by blast

qed

then have πτ = π @ (take (length πτ − length π) τ ′)
using ‹π @ τ ′ = πτ @ [xy] @ τ ′′›
by (metis dual-order .refl take-all take-append take-le)

then have π @ ((take (length πτ − length π) τ ′)@[xy]) ∈ (L I − L M ) ∪ (L
M − L I )

using ‹πτ@[xy] ∈ (L I − L M ) ∪ (L M − L I )›
by (metis append-assoc)

then have length τ ′ ≤ Suc (length (take (length πτ − length π) τ ′))
using τ ′-min[OF ‹π ∈ Π›]
by (metis Un-commute length-append-singleton)

moreover have length τ ′ ≥ Suc (length (take (length πτ − length π) τ ′))
using ‹π @ τ ′ = πτ @ [xy] @ τ ′′› ‹πτ = π @ take (length πτ − length π) τ ′›

not-less-eq-eq by fastforce
ultimately have length τ ′ = Suc (length (take (length πτ − length π) τ ′))

by simp
then show ?thesis
proof −

have π @ τ ′ = (π @ take (length πτ − length π) τ ′) @ [xy] @ τ ′′

using ‹π @ τ ′ = πτ @ [xy] @ τ ′′› ‹πτ = π @ take (length πτ − length π)
τ ′› by presburger
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then have take (length πτ − length π) τ ′ = butlast τ ′

by (metis (no-types) ‹length τ ′ = Suc (length (take (length πτ − length π)
τ ′))› append-assoc append-butlast-last-id append-eq-append-conv diff-Suc-1 length-butlast
length-greater-0-conv zero-less-Suc)

then show ?thesis
using ‹πτ = π @ take (length πτ − length π) τ ′› by fastforce

qed
qed

ultimately have π @ (butlast τ ′) ∈ L M ∩ L I
and (π @ (butlast τ ′))@[(x,y)] ∈ (L I − L M ) ∪ (L M − L I )

by auto

have τ ′ = (butlast τ ′)@[(x,y)]
using ‹π @ τ ′ = πτ @ [xy] @ τ ′′› ‹xy = (x,y)›
unfolding ‹πτ = π @ butlast τ ′›
by (metis (no-types, opaque-lifting) append-Cons append-butlast-last-id but-

last.simps(1 ) butlast-append last-appendR list.distinct(1 ) self-append-conv)

have x ∈ inputs M and y ∈ outputs M
proof −

have ∗: (x,y) ∈ list.set ((π @ (butlast τ ′))@[(x,y)])
by auto

show x ∈ inputs M
using ‹(π @ (butlast τ ′))@[(x,y)] ∈ (L I − L M ) ∪ (L M − L I )›

language-io(1 )[OF - ∗, of I ]
language-io(1 )[OF - ∗, of M ]
‹inputs I = inputs M ›

by blast

show y ∈ outputs M
using ‹(π @ (butlast τ ′))@[(x,y)] ∈ (L I − L M ) ∪ (L M − L I )›

language-io(2 )[OF - ∗, of I ]
language-io(2 )[OF - ∗, of M ]
‹outputs I = outputs M ›

by blast
qed

have π @ (butlast τ ′) ∈ L M
using ‹π @ (butlast τ ′) ∈ L M ∩ L I › by auto

have list.set (π @ τ ′) ⊆ inputs M × outputs M
using ‹π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )›
using language-io[of ‹π @ τ ′› M initial M ]
using language-io[of ‹π @ τ ′› I initial I ]
unfolding assms(6 ,7 ) by fast

then have list.set τ ′ ⊆ inputs M × outputs M
by auto
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have list.set (butlast τ ′) ⊆ inputs M × outputs M
using language-io[OF ‹π @ (butlast τ ′) ∈ L M ›] by force

have butlast τ ′ ∈ LS M q
using after-language-iff [OF assms(1 ) ‹π ∈ L M ›] ‹π @ (butlast τ ′) ∈ L M ›
unfolding ‹after-initial M π = q›
by blast

have length τ ′ > m − n + 1
proof (rule ccontr)

assume ¬ m − n + 1 < length τ ′

then have length τ ′ ≤ Suc (m − n)
by auto

have π @ τ ′ ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes τ ′)})
unfolding ‹π = V q› using ‹q ∈ reachable-states M › unfolding prefixes-set

by auto
then have L M ∩ {π @ τ ′} = L I ∩ {π @ τ ′}

using pass-prop[OF ‹q ∈ reachable-states M › ‹length τ ′ ≤ Suc (m − n)›
‹list.set τ ′ ⊆ inputs M × outputs M › ‹butlast τ ′ ∈ LS M q›]

by blast
then show False

using ‹π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )› by blast
qed

define τ where τ -def : τ = (λi . take i (butlast τ ′))

have
∧

i . i > 0 =⇒ i ≤ m − n + 1 =⇒ (τ i) ∈ X q
proof −

fix i assume i > 0 and i ≤ m − n + 1

then have τ i = (butlast (τ i)) @ [last (τ i)]
using τ -def ‹length τ ′ > m − n + 1 ›

by (metis add-less-same-cancel2 append-butlast-last-id length-butlast less-diff-conv
list.size(3 ) not-add-less2 take-eq-Nil)

have length (butlast (τ i)) ≤ m − n
using τ -def ‹length τ ′ > m − n + 1 › ‹i ≤ m − n + 1 › by auto

have q ∈ io-targets M π (initial M )
using ‹is-state-cover-assignment M V › ‹q ∈ reachable-states M › ‹π = V q›
by simp

then have (butlast τ ′) ∈ LS M q
using ‹π @ (butlast τ ′) ∈ L M ∩ L I ›
using observable-io-targets-language[OF - ‹observable M ›]
by force

then have τ i @ (drop i (butlast τ ′)) ∈ LS M q
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using τ -def by auto
then have τ i ∈ LS M q

using language-prefix
by fastforce

then have butlast (τ i) ∈ LS M q
using language-prefix ‹τ i = (butlast (τ i)) @ [last (τ i)]›
by metis

have (fst (last (τ i)), snd (last (τ i))) ∈ list.set ((butlast (τ i)) @ [last (τ i)])
using ‹τ i = (butlast (τ i)) @ [last (τ i)]›
using in-set-conv-decomp by fastforce

then have fst (last (τ i)) ∈ inputs M
and snd (last (τ i)) ∈ outputs M

using ‹τ i ∈ LS M q› ‹τ i = (butlast (τ i)) @ [last (τ i)]› language-io[of
(butlast (τ i)) @ [last (τ i)] M q fst (last (τ i)) snd (last (τ i))]

by auto

then show τ i ∈ X q
unfolding X
using ‹length (butlast (τ i)) ≤ m − n› ‹τ i = (butlast (τ i)) @ [last (τ i)]›

‹butlast (τ i) ∈ LS M q›
by (metis (mono-tags, lifting) mem-Collect-eq surjective-pairing)

qed

have
∧

i . i ≤ m−n+1 =⇒ π @ (τ i) ∈ L M ∩ L I
proof −

fix i assume i ≤ m−n+1

have butlast τ ′ = τ i @ (drop i (butlast τ ′))
unfolding τ -def by auto

then have ‹(π @ τ i) @ (drop i (butlast τ ′)) ∈ L M ∩ L I ›
using ‹π @ (butlast τ ′) ∈ L M ∩ L I ›
by auto

then show π @ (τ i) ∈ L M ∩ L I
using language-prefix[of (π @ τ i) (drop i (butlast τ ′)), of M initial M ]
using language-prefix[of (π @ τ i) (drop i (butlast τ ′)), of I initial I ]
by blast

qed

have B-diff : Π ∩ (λi . π @ (τ i)) ‘ {1 .. m−n+1} = {}
proof −

have
∧

io1 io2 . io1 ∈ Π =⇒ io2 ∈ (λi . π @ (τ i)) ‘ {1 .. m−n+1} =⇒ io1
6= io2

proof (rule ccontr)
fix io1 io2 assume io1 ∈ Π io2 ∈ (λi . π @ (τ i)) ‘ {1 .. m−n+1} ¬ io1 6=

io2

then obtain i where io2 = π @ (τ i) and i ≥ 1 and i ≤ m − n + 1 and
π @ (τ i) ∈ Π
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by auto
then have π @ (τ i) ∈ L M

using ‹
∧

i . i ≤ m−n+1 =⇒ π @ (τ i) ∈ L M ∩ L I › by auto

obtain q where q ∈ reachable-states M and V q = π @ (τ i)
using ‹π @ (τ i) ∈ Π› Π
by auto

moreover have (π @ (τ i))@(drop i τ ′) ∈ (L M − L I ) ∪ (L I − L M )
using τ -def ‹π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )› ‹length τ ′ > m − n

+ 1 › ‹i ≤ m − n + 1 ›
by (metis append-assoc append-take-drop-id le-iff-sup sup.strict-boundedE

take-butlast)
ultimately have length τ ′ ≤ length (drop i τ ′)

using ‹
∧

io q . q ∈ reachable-states M =⇒ (V q)@io ∈ (L M − L I ) ∪ (L
I − L M ) =⇒ length τ ′ ≤ length io›

by presburger
then show False

using ‹length τ ′ > m − n + 1 › ‹i ≥ 1 ›
by (metis One-nat-def ‹i ≤ m − n + 1 › diff-diff-cancel diff-is-0-eq ′ le-trans

length-drop less-Suc-eq nat-less-le)
qed
then show ?thesis

by blast
qed

have same-targets-in-I : ∃ α β .
α ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}
∧ β ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}
∧ α 6= β ∧ (after-initial I α = after-initial I β)

proof −
have after-initial I ‘ (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}) ⊆ states I
proof

fix q assume q ∈ after-initial I ‘ (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1})
then obtain io where io ∈ (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}) and q

= after-initial I io
by blast

then have io ∈ L I
using ‹

∧
i . i ≤ m−n+1 =⇒ π @ (τ i) ∈ L M ∩ L I › ‹Π ⊆ L I › by auto

then show q ∈ states I
unfolding ‹q = after-initial I io›

using observable-after-path[OF ‹observable I ›, of io initial I ] path-target-is-state[of
I initial I ]

by metis
qed
then have card (after-initial I ‘ (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1})) ≤ m

using ‹size I ≤ m› fsm-states-finite[of I ] unfolding FSM .size-def
by (meson card-mono le-trans)

moreover have card (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}) = m+1
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proof −
have ∗: card Π = n

using state-cover-assignment-card[OF ‹is-state-cover-assignment M V ›
‹observable M ›] unfolding Π n .

have ∗∗: card ((λi . π @ (τ i)) ‘ {1 .. m−n+1}) = m−n+1
proof −

have finite ((λi . π @ (τ i)) ‘ {1 .. m−n+1})
by auto

moreover have inj-on (λi . π @ (τ i)) {1 .. m−n+1}
proof

fix x y assume x ∈ {1 ..m − n + 1} y ∈ {1 ..m − n + 1} π @ τ x = π
@ τ y

then have take x τ ′ = take y τ ′

unfolding τ -def ‹length τ ′ > m − n + 1 ›
by (metis (no-types, lifting) ‹m − n + 1 < length τ ′› atLeastAtMost-iff

diff-is-0-eq le-trans nat-less-le same-append-eq take-butlast zero-less-diff )
moreover have x ≤ length τ ′

using ‹x ∈ {1 ..m − n + 1}› ‹length τ ′ > m − n + 1 › by auto
moreover have y ≤ length τ ′

using ‹y ∈ {1 ..m − n + 1}› ‹length τ ′ > m − n + 1 › by auto
ultimately show x=y

by (metis length-take min.absorb2 )
qed
moreover have card {1 ..m − n + 1} = m − n + 1

by auto
ultimately show ?thesis

by (simp add: card-image)
qed

have ∗∗∗: n + (m − n + 1 ) = m+1
unfolding n using ‹m ≥ size-r M › by auto

have finite Π
unfolding Π using fsm-states-finite restrict-to-reachable-states-simps(2 )
by (metis finite-imageI )

have finite ((λi . π @ (τ i)) ‘ {1 .. m−n+1})
by auto

show ?thesis
using card-Un-disjoint[OF ‹finite Π› ‹finite ((λi. π @ τ i) ‘ {1 ..m − n +

1})› ‹Π ∩ (λi . π @ (τ i)) ‘ {1 .. m−n+1} = {}›]
unfolding ∗ ∗∗ ∗∗∗ .

qed
ultimately have ∗: card (after-initial I ‘ (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}))

< card (Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1})
by simp

show ?thesis
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using pigeonhole[OF ∗] unfolding inj-on-def by blast
qed

have same-targets-in-M :
∧

α β .
α ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1} =⇒
β ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1} =⇒
α 6= β =⇒
(after-initial I α = after-initial I β) =⇒
(after-initial M α = after-initial M β)

proof (rule ccontr)
fix α β assume α ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}

and β ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}
and α 6= β
and (after-initial I α = after-initial I β)
and (after-initial M α 6= after-initial M β)

have ∗: (λi . π @ (τ i)) ‘ {1 .. m−n+1} ⊆ { (V q) @ τ | q τ . q ∈ reachable-states
M ∧ τ ∈ X q}

using ‹
∧

i . i > 0 =⇒ i ≤ m − n + 1 =⇒ (τ i) ∈ X q› ‹q ∈ reachable-states
M › ‹π = V q›

by force

have α ∈ L M and β ∈ L M and α ∈ L I and β ∈ L I
using ‹α ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}›

‹β ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}›
‹
∧

i . i ≤ m−n+1 =⇒ π @ (τ i) ∈ L M ∩ L I ›
‹Π ⊆ L M › ‹Π ⊆ L I ›

by auto
then have ¬ converge M α β and converge I α β

using ‹after-initial M α 6= after-initial M β›
using ‹minimal M ›
using after-is-state[OF assms(1 ) ‹α ∈ L M ›]
using after-is-state[OF assms(1 ) ‹β ∈ L M ›]
unfolding converge.simps minimal.simps ‹after-initial I α = after-initial I

β› by auto
then have ¬ converge M β α and converge I β α

using converge-sym by blast+

have split-helper :
∧

(P :: nat ⇒ nat ⇒ bool) . (∃ i j . P i j ∧ i 6= j) = ((∃ i
j . P i j ∧ i < j) ∨ (∃ i j . P i j ∧ i > j))

proof
show

∧
(P :: nat ⇒ nat ⇒ bool) . ∃ i j. P i j ∧ i 6= j =⇒ (∃ i j. P i j ∧ i <

j) ∨ (∃ i j. P i j ∧ j < i)
proof −

fix P :: nat ⇒ nat ⇒ bool
assume ∃ i j. P i j ∧ i 6= j
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then obtain i j where P i j and i 6= j by auto
then have i < j ∨ i > j by auto
then show (∃ i j. P i j ∧ i < j) ∨ (∃ i j. P i j ∧ j < i) using ‹P i j› by

auto
qed
show

∧
(P :: nat ⇒ nat ⇒ bool) . (∃ i j. P i j ∧ i < j) ∨ (∃ i j. P i j ∧ j <

i) =⇒ ∃ i j. P i j ∧ i 6= j by auto
qed
have split-scheme:(∃ i j . i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ α = π

@ (τ i) ∧ β = π @ (τ j))
= ((∃ i j . i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ i < j ∧ α = π @

(τ i) ∧ β = π @ (τ j))
∨ (∃ i j . i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ i > j ∧ α = π @

(τ i) ∧ β = π @ (τ j)))
using ‹α 6= β›
using split-helper [of λ i j . i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ α =

π @ (τ i) ∧ β = π @ (τ j)]
by blast

consider (α ∈ Π ∧ β ∈ Π) |
(∃ i . i ∈ {1 .. m−n+1} ∧ α ∈ Π ∧ β = π @ (τ i)) |
(∃ i . i ∈ {1 .. m−n+1} ∧ β ∈ Π ∧ α = π @ (τ i)) |
(∃ i j . i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ i < j ∧ α = π @ (τ

i) ∧ β = π @ (τ j)) |
(∃ i j . i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ i > j ∧ α = π @ (τ

i) ∧ β = π @ (τ j))
using ‹α ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}›

‹β ∈ Π ∪ (λi . π @ (τ i)) ‘ {1 .. m−n+1}›
using split-scheme
by blast

then have ∃ α ′ β ′ . α ′ ∈ L M ∧ β ′ ∈ L M ∧ ¬converge M α ′ β ′ ∧ converge I
α ′ β ′ ∧

( (α ′ ∈ Π ∧ β ′ ∈ Π)
∨ (∃ i . i ∈ {1 .. m−n+1} ∧ α ′ ∈ Π ∧ β ′ = π @ (τ i))
∨ (∃ i j . i < j ∧ i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ α ′ = π

@ (τ i) ∧ β ′ = π @ (τ j)))
using ‹α ∈ L M › ‹β ∈ L M › ‹¬ converge M α β› ‹converge I α β› ‹¬ converge

M β α› ‹converge I β α›
by metis

then obtain α ′ β ′ where α ′ ∈ L M and β ′ ∈ L M and ¬converge M α ′ β ′

and converge I α ′ β ′

and (α ′ ∈ Π ∧ β ′ ∈ Π)
∨ (∃ i . i ∈ {1 .. m−n+1} ∧ α ′ ∈ Π ∧ β ′ = π @ (τ i))
∨ (∃ i j . i < j ∧ i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1}

∧ α ′ = π @ (τ i) ∧ β ′ = π @ (τ j))
by blast

then consider α ′ ∈ Π ∧ β ′ ∈ Π
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| ∃ i . i ∈ {1 .. m−n+1} ∧ α ′ ∈ Π ∧ β ′ = π @ (τ i)
| ∃ i j . i < j ∧ i ∈ {1 .. m−n+1} ∧ j ∈ {1 .. m−n+1} ∧ α ′ = π @ (τ i)

∧ β ′ = π @ (τ j)
by blast

then show False proof cases
case 1
moreover have preserves-divergence M I Π
using dist-prop[OF reachable-states-initial, of []] language-contains-empty-sequence[of

M ] by auto
ultimately show ?thesis

using ‹¬converge M α ′ β ′› ‹converge I α ′ β ′› ‹α ′ ∈ L M › ‹β ′ ∈ L M ›
unfolding preserves-divergence.simps
by blast

next
case 2
then obtain i where i ∈ {1 .. m−n+1} and α ′ ∈ Π and β ′ = π @ (τ i)

by blast
then have τ i ∈ X q

using ‹
∧

i . i > 0 =⇒ i ≤ m − n + 1 =⇒ (τ i) ∈ X q›
by force

have β ′ ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes (τ i))}
unfolding ‹β ′ = π @ (τ i)› ‹π = V q› prefixes-set by auto

then have ¬converge I α ′ β ′

using ‹α ′ ∈ Π› ‹¬converge M α ′ β ′› ‹α ′ ∈ L M › ‹β ′ ∈ L M ›
using dist-prop-X [OF ‹q ∈ reachable-states M › ‹τ i ∈ X q›]
unfolding preserves-divergence.simps by blast

then show False
using ‹converge I α ′ β ′› by blast

next
case 3
then obtain i j where i ∈ {1 .. m−n+1} and j ∈ {1 .. m−n+1} and α ′

= π @ (τ i) and β ′ = π @ (τ j) and i < j by blast
then have τ j ∈ X q

using ‹
∧

i . i > 0 =⇒ i ≤ m − n + 1 =⇒ (τ i) ∈ X q›
by force

have (τ i) = take i (τ j)
using ‹i < j› unfolding τ -def
by simp

then have (τ i) ∈ list.set (prefixes (τ j))
unfolding prefixes-set
by (metis (mono-tags) append-take-drop-id mem-Collect-eq)

then have α ′ ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes (τ j))}
unfolding ‹α ′ = π @ (τ i)› ‹π = V q›
by simp

moreover have β ′ ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes (τ j))}
unfolding ‹β ′ = π @ (τ j)› ‹π = V q› prefixes-set by auto
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ultimately have ¬converge I α ′ β ′

using ‹¬converge M α ′ β ′› ‹α ′ ∈ L M › ‹β ′ ∈ L M ›
using dist-prop-X [OF ‹q ∈ reachable-states M › ‹τ j ∈ X q›]
unfolding preserves-divergence.simps by blast

then show False
using ‹converge I α ′ β ′› by blast

qed
qed

have case-helper :
∧

A B P . (
∧

x y . P x y = P y x) =⇒
(∃ x y . x ∈ A ∪ B ∧ y ∈ A ∪ B ∧ P x y) =

((∃ x y . x ∈ A ∧ y ∈ A ∧ P x y)
∨ (∃ x y . x ∈ A ∧ y ∈ B ∧ P x y)
∨ (∃ x y . x ∈ B ∧ y ∈ B ∧ P x y))

by auto
have ∗: (

∧
x y. (x 6= y ∧ FSM .after I (FSM .initial I ) x = FSM .after I (FSM .initial

I ) y) =
(y 6= x ∧ FSM .after I (FSM .initial I ) y = FSM .after I (FSM .initial I )

x))
by auto

consider (a) ∃ α β . α ∈ Π ∧ β ∈ Π ∧ α 6= β ∧ (after-initial I α = after-initial
I β) |

(b) ∃ α β . α ∈ Π ∧ β ∈ (λi . π @ (τ i)) ‘ {1 .. m−n+1} ∧ α 6= β ∧
(after-initial I α = after-initial I β) |

(c) ∃ α β . α ∈ (λi . π @ (τ i)) ‘ {1 .. m−n+1} ∧ β ∈ (λi . π @ (τ i))
‘ {1 .. m−n+1} ∧ α 6= β ∧ (after-initial I α = after-initial I β)

using same-targets-in-I
unfolding case-helper [of λ x y . x 6= y ∧ (after-initial I x = after-initial I y)

Π (λi . π @ (τ i)) ‘ {1 .. m−n+1}, OF ∗]
by blast

then show False proof cases
case a
then obtain α β where α ∈ Π and β ∈ Π and α 6= β and (after-initial I α

= after-initial I β) by blast
then have (after-initial M α = after-initial M β)

using same-targets-in-M by blast

obtain q1 q2 where q1 ∈ reachable-states M and α = V q1
and q2 ∈ reachable-states M and β = V q2

using ‹α ∈ Π› ‹β ∈ Π› ‹α 6= β›
unfolding Π by blast

then have q1 6= q2
using ‹α 6= β› by auto

have α ∈ L M
using ‹Π ⊆ L M › ‹α ∈ Π› by blast

have q1 = after-initial M α
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using ‹is-state-cover-assignment M V › ‹q1 ∈ reachable-states M › observ-
able-io-targets[OF ‹observable M › ‹α ∈ L M ›]

unfolding is-state-cover-assignment.simps ‹α = V q1 ›
by (metis ‹is-state-cover-assignment M V › assms(1 ) is-state-cover-assignment-observable-after)

have β ∈ L M
using ‹Π ⊆ L M › ‹β ∈ Π› by blast

have q2 = after-initial M β
using ‹is-state-cover-assignment M V › ‹q2 ∈ reachable-states M › observ-

able-io-targets[OF ‹observable M › ‹β ∈ L M ›]
unfolding is-state-cover-assignment.simps ‹β = V q2 ›

by (metis ‹is-state-cover-assignment M V › assms(1 ) is-state-cover-assignment-observable-after)

show False
using ‹q1 6= q2 › ‹(after-initial M α = after-initial M β)›
unfolding ‹q1 = after-initial M α› ‹q2 = after-initial M β›
by simp

next
case b
then obtain α β where α ∈ Π

and β ∈ (λi. π @ τ i) ‘ {1 ..m − n + 1}
and α 6= β

and FSM .after I (FSM .initial I ) α = FSM .after I (FSM .initial
I ) β

by blast
then have FSM .after M (FSM .initial M ) α = FSM .after M (FSM .initial M )

β
using same-targets-in-M by blast

obtain i where β = π@(τ i) and i ∈ {1 ..m − n + 1}
using ‹β ∈ (λi. π @ τ i) ‘ {1 ..m − n + 1}› by auto

have α ∈ L M and α ∈ L I
using ‹Π ⊆ L M › ‹Π ⊆ L I › ‹α ∈ Π› by blast+

have β ∈ L M and β ∈ L I
using ‹β ∈ (λi. π @ τ i) ‘ {1 ..m − n + 1}› ‹

∧
i . i ≤ m−n+1 =⇒ π @ (τ

i) ∈ L M ∩ L I ›
by auto

let ?io = drop i τ ′

have τ ′ = (τ i) @ ?io
using ‹i ∈ {1 ..m − n + 1}› ‹length τ ′ > m−n+1 ›
unfolding τ -def

by (metis (no-types, lifting) antisym-conv append-take-drop-id atLeastAt-
Most-iff less-or-eq-imp-le linorder-neqE-nat order .trans take-butlast)

then have β@?io ∈ (L M − L I ) ∪ (L I − L M )
using ‹β = π@(τ i)› ‹π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )›
by auto
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then have α@?io ∈ (L M − L I ) ∪ (L I − L M )
using observable-after-eq[OF ‹observable M › ‹FSM .after M (FSM .initial M )

α = FSM .after M (FSM .initial M ) β› ‹α ∈ L M › ‹β ∈ L M ›]
observable-after-eq[OF ‹observable I › ‹FSM .after I (FSM .initial I ) α =

FSM .after I (FSM .initial I ) β› ‹α ∈ L I › ‹β ∈ L I ›]
by blast

then show False
using τ ′-min[OF ‹α ∈ Π›, of ?io] ‹length τ ′ > m − n + 1 › ‹i ∈ {1 ..m − n

+ 1}›
by (metis One-nat-def add-diff-cancel-left ′ atLeastAtMost-iff diff-diff-cancel

diff-is-0-eq ′ length-drop less-Suc-eq nat-le-linear not-add-less2 )
next

case c
then have ∃ i j . i 6= j ∧ i ∈ {1 ..m − n + 1} ∧ j ∈ {1 ..m − n + 1} ∧

(after-initial I (π@(τ i)) = after-initial I (π@(τ j)))
by force

then have ∃ i j . i < j ∧ i ∈ {1 ..m − n + 1} ∧ j ∈ {1 ..m − n + 1} ∧
(after-initial I (π@(τ i)) = after-initial I (π@(τ j)))

by (metis linorder-neqE-nat)
then obtain i j where i ∈ {1 ..m − n + 1}

and j ∈ {1 ..m − n + 1}
and i < j

and FSM .after I (FSM .initial I ) (π@(τ i)) = FSM .after I
(FSM .initial I ) (π@(τ j))

by force

have (π@(τ i)) ∈ (λi. π @ τ i) ‘ {1 ..m − n + 1} and (π@(τ j)) ∈ (λi. π @
τ i) ‘ {1 ..m − n + 1}

using ‹i ∈ {1 ..m − n + 1}› ‹j ∈ {1 ..m − n + 1}›
by auto

moreover have (π@(τ i)) 6= (π@(τ j))
proof −

have j ≤ length (butlast τ ′)
using ‹j ∈ {1 ..m − n + 1}› ‹length τ ′ > m − n + 1 › by auto

moreover have
∧

xs . j ≤ length xs =⇒ i < j =⇒ take j xs 6= take i xs
by (metis dual-order .strict-implies-not-eq length-take min.absorb2 min-less-iff-conj)
ultimately show ?thesis

using ‹i < j› unfolding τ -def
by fastforce

qed
ultimately have FSM .after M (FSM .initial M ) (π@(τ i)) = FSM .after M

(FSM .initial M ) (π@(τ j))
using ‹FSM .after I (FSM .initial I ) (π@(τ i)) = FSM .after I (FSM .initial

I ) (π@(τ j))›
same-targets-in-M

by blast

have (π@(τ i)) ∈ L M and (π@(τ i)) ∈ L I and (π@(τ j)) ∈ L M and (π@(τ
j)) ∈ L I
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using ‹
∧

i . i ≤ m−n+1 =⇒ π @ (τ i) ∈ L M ∩ L I › ‹i ∈ {1 ..m − n +
1}› ‹j ∈ {1 ..m − n + 1}›

by auto

let ?io = drop j τ ′

have τ ′ = (τ j) @ ?io
using ‹j ∈ {1 ..m − n + 1}› ‹length τ ′ > m−n+1 ›
unfolding τ -def

by (metis (no-types, lifting) antisym-conv append-take-drop-id atLeastAt-
Most-iff less-or-eq-imp-le linorder-neqE-nat order .trans take-butlast)

then have (π@(τ j))@?io ∈ (L M − L I ) ∪ (L I − L M )
using ‹π @ τ ′ ∈ (L M − L I ) ∪ (L I − L M )›
by (simp add: τ -def )

then have (π@(τ i))@?io ∈ (L M − L I ) ∪ (L I − L M )
using observable-after-eq[OF ‹observable M › ‹FSM .after M (FSM .initial M )

(π@(τ i)) = FSM .after M (FSM .initial M ) (π@(τ j))› ‹(π@(τ i)) ∈ L M › ‹(π@(τ
j)) ∈ L M ›]

observable-after-eq[OF ‹observable I › ‹FSM .after I (FSM .initial I ) (π@(τ
i)) = FSM .after I (FSM .initial I ) (π@(τ j))› ‹(π@(τ i)) ∈ L I › ‹(π@(τ j)) ∈ L
I ›]

by blast
then have π@(τ i)@?io ∈ (L M − L I ) ∪ (L I − L M )

by auto
moreover have length τ ′ > length (τ i @ drop j τ ′)

using ‹length τ ′ > m − n + 1 › ‹j ∈ {1 ..m − n + 1}› ‹i < j› unfolding
τ -def by force

ultimately show False
using τ ′-min[OF ‹π ∈ Π›, of (τ i) @ ?io]
by simp

qed
qed

lemma abstract-h-condition-soundness :
assumes observable M
and observable I
and is-state-cover-assignment M V
and L M = L I

shows satisfies-abstract-h-condition M I V m
using assms(3 ,4 ) equivalence-preserves-divergence[OF assms(1 ,2 ,4 )]
unfolding satisfies-abstract-h-condition-def Let-def by blast

lemma abstract-h-condition-completeness :
assumes observable M
and observable I
and minimal M

545



and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M
and is-state-cover-assignment M V

shows satisfies-abstract-h-condition M I V m ←→ (L M = L I )
using abstract-h-condition-soundness[OF assms(1 ,2 ,8 )]
using abstract-h-condition-exhaustiveness[OF assms]
by blast

18.2 Definition of the Framework
definition h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒
(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒
( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒ (( ′b× ′c) prefix-tree × ′d)) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒
( ′a, ′b, ′c) transition list ⇒ ( ′a, ′b, ′c) transition list) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′b× ′c)
prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list
list) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ nat ⇒ ( ′a, ′b, ′c) transition ⇒
( ′a, ′b, ′c) transition list ⇒ ( ( ′a, ′b, ′c) transition list × ( ′b× ′c) prefix-tree × ′d)) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′b× ′c)
prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list
list) ⇒ ′a ⇒ ′b ⇒ ′c ⇒ (( ′b× ′c) prefix-tree) × ′d) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
nat ⇒
( ′b× ′c) prefix-tree

where
h-framework M

get-state-cover
handle-state-cover
sort-transitions
handle-unverified-transition
handle-unverified-io-pair
cg-initial
cg-insert
cg-lookup
cg-merge
m

= (let
rstates-set = reachable-states M ;
rstates = reachable-states-as-list M ;
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rstates-io = List.product rstates (List.product (inputs-as-list M ) (outputs-as-list
M ));

undefined-io-pairs = List.filter (λ (q,(x,y)) . h-obs M q x y = None) rstates-io;
V = get-state-cover M ;
TG1 = handle-state-cover M V cg-initial cg-insert cg-lookup;
sc-covered-transitions = (

⋃
q ∈ rstates-set . covered-transitions M V (V q));

unverified-transitions = sort-transitions M V (filter (λt . t-source t ∈ rstates-set
∧ t /∈ sc-covered-transitions) (transitions-as-list M ));

verify-transition = (λ (X ,T ,G) t . handle-unverified-transition M V T G
cg-insert cg-lookup cg-merge m t X);

TG2 = snd (foldl verify-transition (unverified-transitions, TG1 )
unverified-transitions);

verify-undefined-io-pair = (λ T (q,(x,y)) . fst (handle-unverified-io-pair M V
T (snd TG2 ) cg-insert cg-lookup q x y))

in
foldl verify-undefined-io-pair (fst TG2 ) undefined-io-pairs)

18.3 Required Conditions on Procedural Parameters
definition separates-state-cover :: (( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′a, ′b, ′c)
state-cover-assignment ⇒ (( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒ ( ′d ⇒
( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒ (( ′b× ′c) prefix-tree
× ′d)) ⇒

( ′a, ′b, ′c) fsm ⇒
( ′e, ′b, ′c) fsm ⇒
(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
bool

where
separates-state-cover f M1 M2 cg-initial cg-insert cg-lookup =
(∀ V .

(V ‘ reachable-states M1 ⊆ set (fst (f M1 V cg-initial cg-insert cg-lookup)))
∧ finite-tree (fst (f M1 V cg-initial cg-insert cg-lookup))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
convergence-graph-initial-invar M1 M2 cg-lookup cg-initial −→
L M1 ∩ set (fst (f M1 V cg-initial cg-insert cg-lookup)) = L M2 ∩ set

(fst (f M1 V cg-initial cg-insert cg-lookup)) −→
(preserves-divergence M1 M2 (V ‘ reachable-states M1 )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1 V cg-initial

cg-insert cg-lookup)))))
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definition handles-transition :: (( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
nat ⇒
( ′a, ′b, ′c) transition ⇒
( ′a, ′b, ′c) transition list ⇒
(( ′a, ′b, ′c) transition list × ( ′b× ′c) prefix-tree × ′d))

⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′e, ′b, ′c) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
bool

where
handles-transition f M1 M2 V T0 cg-insert cg-lookup cg-merge =
(∀ T G m t X .

(set T ⊆ set (fst (snd (f M1 V T G cg-insert cg-lookup cg-merge m t X))))
∧ (finite-tree T −→ finite-tree (fst (snd (f M1 V T G cg-insert cg-lookup

cg-merge m t X))))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
size-r M1 ≤ m −→
size M2 ≤ m −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) −→
V ‘ reachable-states M1 ⊆ set T −→
t ∈ transitions M1 −→
t-source t ∈ reachable-states M1 −→
((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t)) −→
convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
convergence-graph-merge-invar M1 M2 cg-lookup cg-merge −→
L M1 ∩ set (fst (snd (f M1 V T G cg-insert cg-lookup cg-merge m t X)))

= L M2 ∩ set (fst (snd (f M1 V T G cg-insert cg-lookup cg-merge m t X))) −→
(set T0 ⊆ set T ) −→
(∀ γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs

M1 ∧ butlast γ ∈ LS M1 (t-target t))
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−→ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input
t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {((V
(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})))

∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (f M1 V T
G cg-insert cg-lookup cg-merge m t X)))))

definition handles-io-pair :: (( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
′a ⇒ ′b ⇒ ′c ⇒
(( ′b× ′c) prefix-tree × ′d)) ⇒

( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′e, ′b, ′c) fsm ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒

( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒

bool
where
handles-io-pair f M1 M2 cg-insert cg-lookup =
(∀ V T G q x y .

(set T ⊆ set (fst (f M1 V T G cg-insert cg-lookup q x y)))
∧ (finite-tree T −→ finite-tree (fst (f M1 V T G cg-insert cg-lookup q x y)))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
L M1 ∩ (V ‘ reachable-states M1 ) = L M2 ∩ V ‘ reachable-states M1

−→
q ∈ reachable-states M1 −→
x ∈ inputs M1 −→
y ∈ outputs M1 −→
convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
L M1 ∩ set (fst (f M1 V T G cg-insert cg-lookup q x y)) = L M2 ∩ set

(fst (f M1 V T G cg-insert cg-lookup q x y)) −→
( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1 V T G

cg-insert cg-lookup q x y))))
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18.4 Completeness and Finiteness of the Scheme
lemma unverified-transitions-handle-all-transitions :

assumes observable M1
and is-state-cover-assignment M1 V
and L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
and preserves-divergence M1 M2 (V ‘ reachable-states M1 )
and handles-unverified-transitions:

∧
t γ . t ∈ transitions M1 =⇒

t-source t ∈ reachable-states M1 =⇒
length γ ≤ k =⇒
list.set γ ⊆ inputs M1 × outputs M1 =⇒
butlast γ ∈ LS M1 (t-target t) =⇒
(V (t-target t) 6= (V (t-source t))@[(t-input t,

t-output t)]) =⇒
((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V

(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V

(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))
∧ preserves-divergence M1 M2 (V ‘ reachable-states

M1 ∪ {((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}))

and handles-undefined-io-pairs:
∧

q x y . q ∈ reachable-states M1 =⇒ x ∈
inputs M1 =⇒ y ∈ outputs M1 =⇒ h-obs M1 q x y = None =⇒ L M1 ∩ {V q @
[(x,y)]} = L M2 ∩ {V q @ [(x,y)]}

and t ∈ transitions M1
and t-source t ∈ reachable-states M1
and length γ ≤ k
and list.set γ ⊆ inputs M1 × outputs M1
and butlast γ ∈ LS M1 (t-target t)

shows (L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input t,t-output
t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input t,t-output
t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
proof (cases V (t-target t) 6= V (t-source t) @ [(t-input t, t-output t)])

case True
then show ?thesis

using handles-unverified-transitions[OF assms(7−11 )]
by blast

next
case False
then have V (t-source t) @ [(t-input t, t-output t)] = V (t-target t)

by simp
have

∧
γ . length γ ≤ k =⇒
list.set γ ⊆ inputs M1 × outputs M1 =⇒
butlast γ ∈ LS M1 (t-target t) =⇒

L M1 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) =

L M2 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
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t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) ∧
preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {(V (t-source

t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
proof −

fix γ assume length γ ≤ k and list.set γ ⊆ inputs M1 × outputs M1 and
butlast γ ∈ LS M1 (t-target t)

then show L M1 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) =

L M2 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) ∧

preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {(V (t-source
t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})

using ‹t ∈ transitions M1 › ‹t-source t ∈ reachable-states M1 › ‹V (t-source t)
@ [(t-input t, t-output t)] = V (t-target t)›

proof (induction γ arbitrary: t)
case Nil

have {(V (t-source t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes
[])} = {V (t-target t)}

unfolding Nil by auto
then have ∗: (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,

t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes [])}) = V ‘ reachable-states M1
using reachable-states-next[OF Nil.prems(5 ,4 )] by blast

show ?case
unfolding ∗
using assms(3 ,4 )
by blast

next
case (Cons xy γ)
then obtain x y where xy = (x,y) by auto
then have x ∈ inputs M1 and y ∈ outputs M1

using Cons.prems(2 ) by auto

have t-target t ∈ reachable-states M1
using reachable-states-next[OF Cons.prems(5 ,4 )] by blast

then have after-initial M1 (V (t-target t)) = t-target t
using ‹is-state-cover-assignment M1 V ›
by (metis assms(1 ) is-state-cover-assignment-observable-after)

show ?case proof (cases [xy] ∈ LS M1 (t-target t))
case False
then have h-obs M1 (t-target t) x y = None
using Cons.prems(4 ,5 ) ‹x ∈ inputs M1 › ‹y ∈ outputs M1 › unfolding ‹xy

= (x,y)›
by (meson assms(1 ) h-obs-language-single-transition-iff )

then have L M1 ∩ {V (t-target t) @ [(x, y)]} = L M2 ∩ {V (t-target t)
@ [(x, y)]}

using handles-undefined-io-pairs[OF ‹t-target t ∈ reachable-states M1 › ‹x
∈ inputs M1 › ‹y ∈ outputs M1 ›] by blast
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have V (t-target t) @ [(x, y)] /∈ L M1
using False ‹after-initial M1 (V (t-target t)) = t-target t›
unfolding ‹xy = (x,y)›
by (metis assms(1 ) language-prefix observable-after-language-none)
then have preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {V

(t-target t) @ [(x, y)]})
using assms(4 )
unfolding preserves-divergence.simps
by blast

have γ = []
using False Cons.prems(3 )

by (metis (no-types, lifting) LS-single-transition ‹xy = (x, y)› but-
last.simps(2 ) language-next-transition-ob)

then have list.set (prefixes (xy#γ)) = {[], [(x,y)]}
unfolding ‹xy = (x,y)›
by force

then have {(V (t-source t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set
(prefixes (xy # γ))} = {V (t-target t), V (t-target t) @ [(x, y)]}

unfolding Cons by auto
then have ∗:(V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,

t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes (xy # γ))}) = (V ‘ reachable-states
M1 ∪ {V (t-target t) @ [(x, y)]})

using reachable-states-next[OF Cons.prems(5 ,4 )] by blast

show ?thesis
unfolding ∗
using assms(3 )

‹L M1 ∩ {V (t-target t) @ [(x, y)]} = L M2 ∩ {V (t-target t) @ [(x,
y)]}›

‹preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {V (t-target
t) @ [(x, y)]})›

by blast
next

case True

then obtain t ′ where t-source t ′ = t-target t and t-input t ′ = x and
t-output t ′ = y and t ′ ∈ transitions M1

unfolding ‹xy = (x,y)›
by auto

then have t-target t ′ ∈ reachable-states M1 and t-source t ′ ∈ reachable-states
M1

using reachable-states-next[OF ‹t-target t ∈ reachable-states M1 ›, of t ′]
‹t-target t ∈ reachable-states M1 › by auto

have ∗: length γ ≤ k
using Cons.prems(1 ) by auto
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have ∗∗: list.set γ ⊆ inputs M1 × outputs M1
using Cons.prems(2 ) by auto

have ∗∗∗: butlast γ ∈ LS M1 (t-target t ′)
using Cons.prems(3 )

by (metis True ‹t ′ ∈ FSM .transitions M1 › ‹t-input t ′ = x› ‹t-output t ′ = y›
‹t-source t ′ = t-target t› ‹xy = (x, y)› assms(1 ) butlast.simps(1 ) butlast.simps(2 )
observable-language-transition-target)

have {(V (t-source t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set
(prefixes (xy # γ))} = {((V (t-source t) @ [(t-input t, t-output t)]) @ [xy]) @ ω ′

|ω ′. ω ′ ∈ list.set (prefixes γ)} ∪ {V (t-source t) @ [(t-input t, t-output t)]}
by (induction γ; auto)

moreover have {((V (t-source t) @ [(t-input t, t-output t)]) @ [xy]) @ ω ′

|ω ′. ω ′ ∈ list.set (prefixes γ)} = {(V (t-source t ′) @ [(t-input t ′, t-output t ′)]) @ ω ′

|ω ′. ω ′ ∈ list.set (prefixes γ)}
unfolding ‹t-source t ′ = t-target t› ‹t-input t ′ = x› ‹t-output t ′ = y› ‹xy

= (x,y)›[symmetric] Cons.prems(6 )[symmetric] by simp
ultimately have {(V (t-source t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈

list.set (prefixes (xy # γ))} = {(V (t-source t ′) @ [(t-input t ′, t-output t ′)]) @ ω ′

|ω ′. ω ′ ∈ list.set (prefixes γ)} ∪ {V (t-target t)}
unfolding Cons by force

then have ∗∗∗∗: V ‘ reachable-states M1 ∪ {(V (t-source t ′) @ [(t-input t ′,
t-output t ′)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}

= V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes (xy # γ))}

using ‹t-source t ′ = t-target t› ‹t-source t ′ ∈ reachable-states M1 › by force

show ?thesis proof (cases V (t-source t ′) @ [(t-input t ′, t-output t ′)] = V
(t-target t ′))

case True
show ?thesis

using Cons.IH [OF ∗ ∗∗ ∗∗∗ ‹t ′ ∈ transitions M1 › ‹t-source t ′ ∈
reachable-states M1 › True]

unfolding ∗∗∗∗ .
next

case False
then show ?thesis

using handles-unverified-transitions[OF ‹t ′ ∈ transitions M1 › ‹t-source
t ′ ∈ reachable-states M1 › ∗ ∗∗ ∗∗∗]

unfolding ∗∗∗∗
by presburger

qed
qed

qed
qed
then show ?thesis

using assms(9−11 )
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by blast
qed

lemma abstract-h-condition-by-transition-and-io-pair-coverage :
assumes observable M1
and is-state-cover-assignment M1 V
and L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
and preserves-divergence M1 M2 (V ‘ reachable-states M1 )
and handles-unverified-transitions:

∧
t γ . t ∈ transitions M1 =⇒

t-source t ∈ reachable-states M1 =⇒
length γ ≤ k =⇒
list.set γ ⊆ inputs M1 × outputs M1 =⇒
butlast γ ∈ LS M1 (t-target t) =⇒

((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V
(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V
(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states
M1 ∪ {((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}))

and handles-undefined-io-pairs:
∧

q x y . q ∈ reachable-states M1 =⇒ x ∈
inputs M1 =⇒ y ∈ outputs M1 =⇒ h-obs M1 q x y = None =⇒ L M1 ∩ {V q @
[(x,y)]} = L M2 ∩ {V q @ [(x,y)]}

and q ∈ reachable-states M1
and length γ ≤ Suc k
and list.set γ ⊆ inputs M1 × outputs M1
and butlast γ ∈ LS M1 q

shows (L M1 ∩ (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′.
ω ′ ∈ list.set (prefixes γ)})
proof (cases γ)

case Nil
show ?thesis

using assms(3 ,4 ,7 ) unfolding Nil by auto
next

case (Cons xy γ ′)
then obtain x y where xy = (x,y) using prod.exhaust by metis
then have x ∈ inputs M1 and y ∈ outputs M1

using assms(9 ) Cons by auto

show ?thesis proof (cases [xy] ∈ LS M1 q)
case False
then have h-obs M1 q x y = None

using assms(7 ) ‹x ∈ inputs M1 › ‹y ∈ outputs M1 › unfolding ‹xy = (x,y)›
by (meson assms(1 ) h-obs-language-single-transition-iff )

then have L M1 ∩ {V q @ [(x,y)]} = L M2 ∩ {V q @ [(x,y)]}
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using handles-undefined-io-pairs[OF assms(7 ) ‹x ∈ inputs M1 › ‹y ∈ outputs
M1 ›] by blast

have V q @ [(x, y)] /∈ L M1
using observable-after-language-none[OF assms(1 ), of V q initial M1 [(x,y)]]
using state-cover-assignment-after [OF assms(1 ,2 ,7 )]
by (metis False ‹xy = (x, y)›)

then have preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {V q @
[(x, y)]})

using assms(4 )
unfolding preserves-divergence.simps
by blast

have γ ′ = []
using False assms(10 ) language-prefix[of [xy] γ ′ M1 q]
unfolding Cons

by (metis (no-types, lifting) LS-single-transition ‹xy = (x, y)› butlast.simps(2 )
language-next-transition-ob)

then have γ = [(x,y)]
unfolding Cons ‹xy = (x,y)› by auto

then have ∗: (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}) = V ‘ reachable-states M1 ∪ {V q @ [(x,y)]}

using assms(7 ) by auto

show ?thesis
unfolding ∗

using assms(3 ) ‹L M1 ∩ {V q @ [(x,y)]} = L M2 ∩ {V q @ [(x,y)]}›
‹preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {V q @ [(x, y)]})›

by blast
next

case True
moreover have butlast ((x,y)#γ ′) ∈ LS M1 q

using assms(10 ) unfolding Cons ‹xy = (x,y)› .
ultimately have (x,y) # (butlast γ ′) ∈ LS M1 q

unfolding ‹xy = (x,y)› by (cases γ ′; auto)
then obtain q ′ where h-obs M1 q x y = Some q ′ and butlast γ ′ ∈ LS M1 q ′

using h-obs-language-iff [OF assms(1 ), of x y butlast γ ′ q]
by blast

then have (q,x,y,q ′) ∈ transitions M1
unfolding h-obs-Some[OF assms(1 )] by blast

have length γ ′ ≤ k
using assms(8 ) unfolding Cons by auto

have list.set γ ′ ⊆ inputs M1 × outputs M1
using assms(9 ) unfolding Cons by auto
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have ∗:(L M1 ∩ (V ‘ reachable-states M1 ∪ {(V q @ [(x,y)]) @ ω ′ | ω ′. ω ′ ∈
list.set (prefixes γ ′)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {(V q @ [(x,y)]) @ ω ′ | ω ′. ω ′ ∈
list.set (prefixes γ ′)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {(V q @ [(x,y)])
@ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ ′)})

using handles-unverified-transitions[OF ‹(q,x,y,q ′) ∈ transitions M1 › - ‹length
γ ′ ≤ k› ‹list.set γ ′ ⊆ inputs M1 × outputs M1 ›]

assms(7 ) ‹butlast γ ′ ∈ LS M1 q ′›
unfolding fst-conv snd-conv
by blast

have {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)} = {(V q @ [(x, y)]) @ ω ′ |ω ′. ω ′

∈ list.set (prefixes γ ′)} ∪ {V q}
unfolding Cons ‹xy = (x,y)› by auto

then have ∗∗: V ‘ reachable-states M1 ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes
γ)}

= V ‘ reachable-states M1 ∪ {(V q @ [(x, y)]) @ ω ′ |ω ′. ω ′ ∈
list.set (prefixes γ ′)}

using assms(7 ) by blast

show ?thesis
using ∗ unfolding ∗∗ .

qed
qed

lemma abstract-h-condition-by-unverified-transition-and-io-pair-coverage :
assumes observable M1
and is-state-cover-assignment M1 V
and L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
and preserves-divergence M1 M2 (V ‘ reachable-states M1 )
and handles-unverified-transitions:

∧
t γ . t ∈ transitions M1 =⇒

t-source t ∈ reachable-states M1 =⇒
length γ ≤ k =⇒
list.set γ ⊆ inputs M1 × outputs M1 =⇒
butlast γ ∈ LS M1 (t-target t) =⇒
(V (t-target t) 6= (V (t-source t))@[(t-input t,

t-output t)]) =⇒
((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V

(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V

(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))
∧ preserves-divergence M1 M2 (V ‘ reachable-states

M1 ∪ {((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}))

and handles-undefined-io-pairs:
∧

q x y . q ∈ reachable-states M1 =⇒ x ∈
inputs M1 =⇒ y ∈ outputs M1 =⇒ h-obs M1 q x y = None =⇒ L M1 ∩ {V q @
[(x,y)]} = L M2 ∩ {V q @ [(x,y)]}
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and q ∈ reachable-states M1
and length γ ≤ Suc k
and list.set γ ⊆ inputs M1 × outputs M1
and butlast γ ∈ LS M1 q

shows (L M1 ∩ (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {V q @ ω ′ | ω ′.
ω ′ ∈ list.set (prefixes γ)})

using unverified-transitions-handle-all-transitions[OF assms(1−6 ), of k]
using abstract-h-condition-by-transition-and-io-pair-coverage[OF assms(1−4 ) -

assms(6−10 )]
by presburger

lemma h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
fixes cg-insert :: ( ′d ⇒ ( ′b× ′c) list ⇒ ′d)
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and is-state-cover-assignment M1 (get-state-cover M1 )
and

∧
xs . List.set xs = List.set (sort-transitions M1 (get-state-cover M1 )

xs)
and convergence-graph-initial-invar M1 M2 cg-lookup cg-initial
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and convergence-graph-merge-invar M1 M2 cg-lookup cg-merge
and separates-state-cover handle-state-cover M1 M2 cg-initial cg-insert cg-lookup
and handles-transition handle-unverified-transition M1 M2 (get-state-cover

M1 ) (fst (handle-state-cover M1 (get-state-cover M1 ) cg-initial cg-insert cg-lookup))
cg-insert cg-lookup cg-merge

and handles-io-pair handle-unverified-io-pair M1 M2 cg-insert cg-lookup
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (h-framework M1 get-state-cover han-
dle-state-cover sort-transitions handle-unverified-transition handle-unverified-io-pair
cg-initial cg-insert cg-lookup cg-merge m))

= (L M2 ∩ set (h-framework M1 get-state-cover handle-state-cover
sort-transitions handle-unverified-transition handle-unverified-io-pair cg-initial cg-insert
cg-lookup cg-merge m)))
(is (L M1 = L M2 ) ←→ ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)))

and finite-tree (h-framework M1 get-state-cover handle-state-cover sort-transitions
handle-unverified-transition handle-unverified-io-pair cg-initial cg-insert cg-lookup
cg-merge m)
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proof
show (L M1 = L M2 ) =⇒ ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

by blast

define rstates where rstates: rstates = reachable-states-as-list M1
define rstates-io where rstates-io: rstates-io = List.product rstates (List.product

(inputs-as-list M1 ) (outputs-as-list M1 ))
define undefined-io-pairs where undefined-io-pairs: undefined-io-pairs = List.filter

(λ (q,(x,y)) . h-obs M1 q x y = None) rstates-io
define V where V : V = get-state-cover M1
define n where n: n = size-r M1
define TG1 where TG1 : TG1 = handle-state-cover M1 V cg-initial cg-insert

cg-lookup

define sc-covered-transitions where sc-covered-transitions: sc-covered-transitions
= (

⋃
q ∈ reachable-states M1 . covered-transitions M1 V (V q))

define unverified-transitions where unverified-transitions: unverified-transitions
= sort-transitions M1 V (filter (λt . t-source t ∈ reachable-states M1 ∧ t /∈
sc-covered-transitions) (transitions-as-list M1 ))

define verify-transition where verify-transition: verify-transition = (λ (X ,T ,G)
t . handle-unverified-transition M1 V T G cg-insert cg-lookup cg-merge m t X)
define TG2 where TG2 : TG2 = snd (foldl verify-transition (unverified-transitions,

TG1 ) unverified-transitions)
define verify-undefined-io-pair where verify-undefined-io-pair : verify-undefined-io-pair

= (λ T (q,(x,y)) . fst (handle-unverified-io-pair M1 V T (snd TG2 ) cg-insert
cg-lookup q x y))

define T3 where T3 : T3 = foldl verify-undefined-io-pair (fst TG2 ) unde-
fined-io-pairs

have ?TS = T3
unfolding rstates rstates-io undefined-io-pairs V TG1 sc-covered-transitions

unverified-transitions verify-transition TG2 verify-undefined-io-pair T3
unfolding h-framework-def Let-def
by force

then have ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L
M2 ∩ set T3

by simp

have is-state-cover-assignment M1 V
unfolding V using assms(9 ) .

define T1 where T1 : T1 = fst TG1
moreover define G1 where G1 : G1 = snd TG1
ultimately have TG1 = (T1 ,G1 )

by auto
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have T1-state-cover : V ‘ reachable-states M1 ⊆ set T1
and T1-finite: finite-tree T1
using ‹separates-state-cover handle-state-cover M1 M2 cg-initial cg-insert cg-lookup›
unfolding T1 TG1 separates-state-cover-def
by blast+

have T1-V-div: (L M1 ∩ set T1 = (L M2 ∩ set T1 )) =⇒ preserves-divergence
M1 M2 (V ‘ reachable-states M1 )

and G1-invar : (L M1 ∩ set T1 = (L M2 ∩ set T1 )) =⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup G1

using ‹separates-state-cover handle-state-cover M1 M2 cg-initial cg-insert cg-lookup›
unfolding T1 G1 TG1 separates-state-cover-def
using assms(1−4 ,7 ,8 ) ‹is-state-cover-assignment M1 V › assms(12 ,11 )
by blast+

have sc-covered-transitions-alt-def : sc-covered-transitions = {t . t ∈ transitions
M1 ∧ t-source t ∈ reachable-states M1 ∧ (V (t-target t) = (V (t-source t))@[(t-input
t, t-output t)])}

(is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix t assume t ∈ ?A
then obtain q where t ∈ covered-transitions M1 V (V q) and q ∈ reach-

able-states M1
unfolding sc-covered-transitions
by blast

then have V q ∈ L M1 and after-initial M1 (V q) = q
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by blast+

then obtain p where path M1 (initial M1 ) p and p-io p = V q
by auto

then have ∗: the-elem (paths-for-io M1 (initial M1 ) (V q)) = p
using observable-paths-for-io[OF assms(1 ) ‹V q ∈ L M1 ›]
unfolding paths-for-io-def

by (metis (mono-tags, lifting) assms(1 ) mem-Collect-eq observable-path-unique
singletonI the-elem-eq)

have t ∈ list.set p and V (t-source t) @ [(t-input t, t-output t)] = V (t-target
t)

using ‹t ∈ covered-transitions M1 V (V q)›
unfolding covered-transitions-def Let-def ∗
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by auto

have t ∈ transitions M1
using ‹t ∈ list.set p› ‹path M1 (initial M1 ) p›
by (meson path-transitions subsetD)

moreover have t-source t ∈ reachable-states M1
using reachable-states-path[OF reachable-states-initial ‹path M1 (initial M1 )

p› ‹t ∈ list.set p›] .
ultimately show t ∈ ?B

using ‹V (t-source t) @ [(t-input t, t-output t)] = V (t-target t)›
by auto

qed

show ?B ⊆ ?A
proof

fix t assume t ∈ ?B
then have t ∈ transitions M1

t-source t ∈ reachable-states M1
(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)

by auto
then have t-target t ∈ reachable-states M1

using reachable-states-next[of t-source t M1 t]
by blast

then have V (t-target t) ∈ L M1 and after-initial M1 (V (t-target t)) =
(t-target t)

using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment
M1 V ›]

by blast+
then obtain p where path M1 (initial M1 ) p and p-io p = V (t-target t)

by auto
then have ∗: the-elem (paths-for-io M1 (initial M1 ) (V (t-target t))) = p

using observable-paths-for-io[OF assms(1 ) ‹V (t-target t) ∈ L M1 ›]
unfolding paths-for-io-def

by (metis (mono-tags, lifting) assms(1 ) mem-Collect-eq observable-path-unique
singletonI the-elem-eq)

have V (t-source t) ∈ L M1 and after-initial M1 (V (t-source t)) = (t-source
t)

using ‹t-source t ∈ reachable-states M1 ›
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by blast+

then obtain p ′ where path M1 (initial M1 ) p ′ and p-io p ′ = V (t-source t)
by auto

have path M1 (initial M1 ) (p ′@[t])
using after-path[OF assms(1 ) ‹path M1 (initial M1 ) p ′›] ‹path M1 (initial

M1 ) p ′› ‹t∈transitions M1 ›
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unfolding ‹p-io p ′ = V (t-source t)›
unfolding ‹after-initial M1 (V (t-source t)) = (t-source t)›
by (metis path-append single-transition-path)

moreover have p-io (p ′@[t]) = p-io p
using ‹p-io p ′ = V (t-source t)›
unfolding ‹p-io p = V (t-target t)› ‹(V (t-source t))@[(t-input t, t-output

t)] = V (t-target t)›[symmetric]
by auto

ultimately have p ′@[t] = p
using observable-path-unique[OF assms(1 ) - ‹path M1 (initial M1 ) p›]
by force

then have t ∈ list.set p
by auto

then have t ∈ covered-transitions M1 V (V (t-target t))
using ‹(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)›
unfolding covered-transitions-def Let-def ∗
by auto

then show t ∈ ?A
using ‹t-target t ∈ reachable-states M1 ›
unfolding sc-covered-transitions
by blast

qed
qed

have T1-covered-transitions-conv:
∧

t . (L M1 ∩ set T1 = (L M2 ∩ set T1 ))
=⇒ t ∈ sc-covered-transitions =⇒ converge M2 (V (t-target t)) ((V (t-source
t))@[(t-input t, t-output t)])

proof −
fix t assume (L M1 ∩ set T1 = (L M2 ∩ set T1 ))

t ∈ sc-covered-transitions

then have t ∈ transitions M1
t-source t ∈ reachable-states M1
(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)

unfolding sc-covered-transitions-alt-def
by auto

then have t-target t ∈ reachable-states M1
using reachable-states-next[of t-source t M1 t]
by blast

then have V (t-target t) ∈ L M1
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by blast

moreover have V (t-target t) ∈ set T1
using T1-state-cover ‹t-target t ∈ reachable-states M1 ›
by blast

ultimately have V (t-target t) ∈ L M2
using ‹(L M1 ∩ set T1 = (L M2 ∩ set T1 ))›
by blast
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then show converge M2 (V (t-target t)) ((V (t-source t))@[(t-input t, t-output
t)])

unfolding ‹(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)›
by auto

qed

have unverified-transitions-alt-def : list.set unverified-transitions = {t . t ∈ tran-
sitions M1 ∧ t-source t ∈ reachable-states M1 ∧ (V (t-target t) 6= (V (t-source
t))@[(t-input t, t-output t)])}

unfolding unverified-transitions sc-covered-transitions-alt-def V
unfolding assms(10 )[symmetric]
using transitions-as-list-set[of M1 ]
by auto

have cg-insert-invar :
∧

G γ . γ ∈ L M1 =⇒ γ ∈ L M2 =⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup G =⇒ convergence-graph-lookup-invar M1 M2 cg-lookup (cg-insert
G γ)

using assms(12 )
unfolding convergence-graph-insert-invar-def
by blast

have cg-merge-invar :
∧

G γ γ ′. convergence-graph-lookup-invar M1 M2 cg-lookup
G =⇒ converge M1 γ γ ′ =⇒ converge M2 γ γ ′ =⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup (cg-merge G γ γ ′)

using assms(13 )
unfolding convergence-graph-merge-invar-def
by blast

define T2 where T2 : T2 = fst TG2
define G2 where G2 : G2 = snd TG2

have handles-transition handle-unverified-transition M1 M2 V T1 cg-insert cg-lookup
cg-merge

using assms(15 )
unfolding T1 TG1 V .

then have verify-transition-retains-testsuite:
∧

t T G X . set T ⊆ set (fst (snd
(verify-transition (X ,T ,G) t)))

and verify-transition-retains-finiteness:
∧

t T G X . finite-tree T =⇒
finite-tree (fst (snd (verify-transition (X ,T ,G) t)))

unfolding verify-transition case-prod-conv handles-transition-def
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by presburger+

define handles-unverified-transition
where handles-unverified-transition: handles-unverified-transition = (λt .

(∀ γ . (length γ ≤ (m−size-r M1 ) ∧ list.set
γ ⊆ inputs M1 × outputs M1 ∧ butlast γ ∈ LS M1 (t-target t))

−→ ((L M1 ∩ (V ‘ reachable-states M1
∪ {((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states
M1 ∪ {((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes
γ)}))

∧ preserves-divergence M1 M2 (V
‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈
list.set (prefixes γ)}))))

have verify-transition-cover-prop:
∧

t T G X . (L M1 ∩ (set (fst (snd (verify-transition
(X ,T ,G) t)))) = L M2 ∩ (set (fst (snd (verify-transition (X ,T ,G) t)))))

=⇒ convergence-graph-lookup-invar M1 M2
cg-lookup G

=⇒ t ∈ transitions M1
=⇒ t-source t ∈ reachable-states M1
=⇒ set T1 ⊆ set T

=⇒ ((V (t-source t)) @ [(t-input t,t-output t)]) 6=
(V (t-target t))

=⇒ handles-unverified-transition
t ∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (verify-transition
(X ,T ,G) t)))

proof −
fix t T G X
assume a1 : (L M1 ∩ (set (fst (snd (verify-transition (X ,T ,G) t)))) = L M2

∩ (set (fst (snd (verify-transition (X ,T ,G) t)))))
assume a2 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a3 : t ∈ transitions M1
assume a4 : t-source t ∈ reachable-states M1
assume a5 : set T1 ⊆ set T
assume a6 : ((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t))

obtain X ′ T ′ G ′ where TG ′: (X ′,T ′,G ′) = handle-unverified-transition M1 V
T G cg-insert cg-lookup cg-merge m t X

using prod.exhaust by metis
have T ′: T ′ = fst (snd (handle-unverified-transition M1 V T G cg-insert

cg-lookup cg-merge m t X))
and G ′: G ′ = snd (snd (handle-unverified-transition M1 V T G cg-insert

cg-lookup cg-merge m t X))
unfolding TG ′[symmetric] by auto
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have verify-transition (X ,T ,G) t = (X ′,T ′,G ′)
using TG ′[symmetric]
unfolding verify-transition G ′ Let-def case-prod-conv
by force

then have set T ⊆ set T ′

using verify-transition-retains-testsuite[of T X G t] unfolding T ′

by auto
then have set T1 ⊆ set T ′

using a5 by blast
then have (L M1 ∩ (set T1 ) = L M2 ∩ (set T1 ))

using a1 unfolding ‹verify-transition (X ,T ,G) t = (X ′,T ′,G ′)› fst-conv
snd-conv

by blast
then have ∗: preserves-divergence M1 M2 (V ‘ reachable-states M1 )

using T1-V-div
by auto

have L M1 ∩ set T ′ = L M2 ∩ set T ′

using a1 ‹set T ⊆ set T ′› unfolding T ′ ‹verify-transition (X ,T ,G) t =
(X ′,T ′,G ′)› fst-conv snd-conv

by blast

have ∗∗: V ‘ reachable-states M1 ⊆ set T
using a5 T1-state-cover by blast

show handles-unverified-transition t ∧ convergence-graph-lookup-invar M1 M2
cg-lookup (snd (snd (verify-transition (X ,T ,G) t)))

unfolding ‹verify-transition (X ,T ,G) t = (X ′,T ′,G ′)› snd-conv
unfolding G ′

using ‹handles-transition handle-unverified-transition M1 M2 V T1 cg-insert
cg-lookup cg-merge›

unfolding handles-transition-def

using assms(1−8 ) ‹is-state-cover-assignment M1 V › ∗ ∗∗ a3 a4 a2 a6 ‹conver-
gence-graph-insert-invar M1 M2 cg-lookup cg-insert› ‹convergence-graph-merge-invar
M1 M2 cg-lookup cg-merge› ‹L M1 ∩ set T ′ = L M2 ∩ set T ′› a5

unfolding T ′

unfolding handles-unverified-transition
by blast

qed

have verify-transition-foldl-invar-1 :
∧

X ts . list.set ts ⊆ list.set unverified-transitions
=⇒

set T1 ⊆ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) ∧
finite-tree (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))

proof −
fix X ts assume list.set ts ⊆ list.set unverified-transitions
then show set T1 ⊆ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) ∧
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finite-tree (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))
proof (induction ts rule: rev-induct)

case Nil
then show ?case

using T1-finite by auto
next

case (snoc t ts)
then have t ∈ transitions M1 and t-source t ∈ reachable-states M1

unfolding unverified-transitions-alt-def
by force+

have p1 : list.set ts ⊆ list.set unverified-transitions
using snoc.prems(1 ) by auto

have set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) ⊆ set (fst (snd
(foldl verify-transition (X , T1 , G1 ) (ts@[t]))))

using verify-transition-retains-testsuite
unfolding foldl-append
unfolding foldl.simps
by (metis prod.collapse)

have ∗∗: Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (snd (foldl verify-transition
(X , T1 , G1 ) ts)))

and ∗∗∗: finite-tree (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))
using snoc.IH [OF p1 ]
by auto

have Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (snd (foldl verify-transition (X ,
T1 , G1 ) (ts@[t]))))

using ∗∗ verify-transition-retains-testsuite ‹set (fst (snd (foldl verify-transition
(X , T1 , G1 ) ts))) ⊆ set (fst (snd (foldl verify-transition (X , T1 , G1 ) (ts@[t]))))›

by auto
moreover have finite-tree (fst (snd (foldl verify-transition (X , T1 , G1 )

(ts@[t]))))
using verify-transition-retains-finiteness[OF ∗∗∗, of fst (foldl verify-transition

(X , T1 , G1 ) ts) snd (snd (foldl verify-transition (X , T1 , G1 ) ts))]
by auto

ultimately show ?case
by simp

qed
qed
then have T2-invar-1 : set T1 ⊆ set T2

and T2-finite : finite-tree T2
unfolding TG2 G2 T2 ‹TG1 = (T1 ,G1 )›
by auto

have verify-transition-foldl-invar-2 :
∧

X ts . list.set ts ⊆ list.set unverified-transitions
=⇒
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L M1 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) = L
M2 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) =⇒

convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (foldl
verify-transition (X , T1 , G1 ) ts)))

proof −
fix X ts assume list.set ts ⊆ list.set unverified-transitions

and L M1 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) =
L M2 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))

then show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (foldl
verify-transition (X , T1 , G1 ) ts)))

proof (induction ts rule: rev-induct)
case Nil
then show ?case

using G1-invar by auto
next

case (snoc t ts)
then have t ∈ transitions M1 and t-source t ∈ reachable-states M1

unfolding unverified-transitions-alt-def
by force+

have p1 : list.set ts ⊆ list.set unverified-transitions
using snoc.prems(1 ) by auto

have set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) ⊆ set (fst (snd
(foldl verify-transition (X , T1 , G1 ) (ts@[t]))))

using verify-transition-retains-testsuite unfolding foldl-append foldl.simps
by (metis fst-conv prod-eq-iff snd-conv)

then have p2 : L M1 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))
= L M2 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))

using snoc.prems(2 )
by blast

have ∗:convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (foldl
verify-transition (X , T1 , G1 ) ts)))

using snoc.IH [OF p1 p2 ]
by auto

have ∗∗: Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (snd (foldl verify-transition
(X , T1 , G1 ) ts)))

using verify-transition-foldl-invar-1 [OF p1 ] by blast

have ∗∗∗: ((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t))
using snoc.prems(1 ) unfolding unverified-transitions-alt-def by force

have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (verify-transition
((fst (foldl verify-transition (X , T1 , G1 ) ts)), fst (snd (foldl verify-transition (X ,
T1 , G1 ) ts)), snd (snd (foldl verify-transition (X , T1 , G1 ) ts))) t)))

using verify-transition-cover-prop[OF - ∗ ‹t ∈ transitions M1 › ‹t-source t
∈ reachable-states M1 › ∗∗ ∗∗∗, of (fst (foldl verify-transition (X , T1 , G1 ) ts))]
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snoc.prems(2 )
unfolding prod.collapse
by auto

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (foldl
verify-transition (X , T1 , G1 ) (ts@[t]))))

by auto
moreover have Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (snd (foldl ver-

ify-transition (X , T1 , G1 ) (ts@[t]))))
using ∗∗ verify-transition-retains-testsuite
using snoc.prems(1 ) verify-transition-foldl-invar-1 by blast

ultimately show ?case
by simp

qed
qed
then have T2-invar-2 : L M1 ∩ set T2 = L M2 ∩ set T2 =⇒ convergence-graph-lookup-invar

M1 M2 cg-lookup G2
unfolding TG2 G2 T2 ‹TG1 = (T1 ,G1 )› by auto

have T2-cover :
∧

t . L M1 ∩ set T2 = L M2 ∩ set T2 =⇒ t ∈ list.set unveri-
fied-transitions =⇒ handles-unverified-transition t

proof −
have

∧
X t ts . t ∈ list.set ts =⇒ list.set ts ⊆ list.set unverified-transitions =⇒

L M1 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) = L M2 ∩ set (fst
(snd (foldl verify-transition (X , T1 , G1 ) ts))) =⇒ handles-unverified-transition t

proof −
fix X t ts
assume t ∈ list.set ts and list.set ts ⊆ list.set unverified-transitions and L

M1 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) = L M2 ∩ set (fst
(snd (foldl verify-transition (X , T1 , G1 ) ts)))

then show handles-unverified-transition t
proof (induction ts rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc t ′ ts)

then have t ∈ transitions M1 and t-source t ∈ reachable-states M1
unfolding unverified-transitions-alt-def
by blast+

have t ′ ∈ transitions M1 and t-source t ′ ∈ reachable-states M1
using snoc.prems(2 )
unfolding unverified-transitions-alt-def
by auto

have set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) ⊆ set (fst (snd
(foldl verify-transition (X , T1 , G1 ) (ts@[t ′]))))

using verify-transition-retains-testsuite unfolding foldl-append foldl.simps

567



by (metis fst-conv prod-eq-iff snd-conv)
then have L M1 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))

= L M2 ∩ set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))
using snoc.prems(3 )
by blast

have ∗: L M1 ∩ Prefix-Tree.set (fst (snd (verify-transition (foldl ver-
ify-transition (X , T1 , G1 ) ts) t ′))) = L M2 ∩ Prefix-Tree.set (fst (snd (verify-transition
(foldl verify-transition (X , T1 , G1 ) ts) t ′)))

using snoc.prems(3 ) by auto

have ∗∗: V (t-source t ′) @ [(t-input t ′, t-output t ′)] 6= V (t-target t ′)
using snoc.prems(2 ) unfolding unverified-transitions-alt-def by force

have L M1 ∩ Prefix-Tree.set (fst (snd (foldl verify-transition (X , T1 , G1 )
ts))) = L M2 ∩ Prefix-Tree.set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts)))

using ‹set (fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) ⊆ set (fst
(snd (foldl verify-transition (X , T1 , G1 ) (ts@[t ′]))))› snoc.prems(3 )

by auto
then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (foldl

verify-transition (X , T1 , G1 ) ts))) ∧ Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (snd
(foldl verify-transition (X , T1 , G1 ) ts)))

using snoc.prems(2 ) verify-transition-foldl-invar-1 [of ts] verify-transition-foldl-invar-2 [of
ts]

by auto
then have covers-t ′: handles-unverified-transition t ′

by (metis ∗ ∗∗ ‹t ′ ∈ FSM .transitions M1 › ‹t-source t ′ ∈ reachable-states
M1 › prod.collapse verify-transition-cover-prop)

show ?case proof (cases t = t ′)
case True
then show ?thesis

using covers-t ′ by auto
next

case False
then have t ∈ list.set ts

using snoc.prems(1 ) by auto

show handles-unverified-transition t
using snoc.IH [OF ‹t ∈ list.set ts›] snoc.prems(2 ) ‹L M1 ∩ Prefix-Tree.set

(fst (snd (foldl verify-transition (X , T1 , G1 ) ts))) = L M2 ∩ Prefix-Tree.set (fst
(snd (foldl verify-transition (X , T1 , G1 ) ts)))›

by auto
qed

qed
qed

then show
∧

t . L M1 ∩ set T2 = L M2 ∩ set T2 =⇒ t ∈ list.set unveri-
fied-transitions =⇒ handles-unverified-transition t
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unfolding TG2 T2 G2 ‹TG1 = (T1 ,G1 )›
by simp

qed

have verify-undefined-io-pair-retains-testsuite:
∧

qxy T . set T ⊆ set (verify-undefined-io-pair
T qxy)

proof −
fix qxy :: ( ′a × ′b × ′c)
fix T
obtain q x y where qxy = (q,x,y)

using prod.exhaust by metis
show ‹set T ⊆ set (verify-undefined-io-pair T qxy)›

unfolding ‹qxy = (q,x,y)›
using ‹handles-io-pair handle-unverified-io-pair M1 M2 cg-insert cg-lookup›
unfolding handles-io-pair-def verify-undefined-io-pair case-prod-conv
by blast

qed
have verify-undefined-io-pair-folding-retains-testsuite:

∧
qxys T . set T ⊆ set

(foldl verify-undefined-io-pair T qxys)
proof −

fix qxys T
show set T ⊆ set (foldl verify-undefined-io-pair T qxys)

using verify-undefined-io-pair-retains-testsuite
by (induction qxys rule: rev-induct; force)

qed

have verify-undefined-io-pair-retains-finiteness:
∧

qxy T . finite-tree T =⇒ fi-
nite-tree (verify-undefined-io-pair T qxy)

proof −
fix qxy :: ( ′a × ′b × ′c)
fix T :: ( ′b× ′c) prefix-tree
assume finite-tree T
obtain q x y where qxy = (q,x,y)

using prod.exhaust by metis
show ‹finite-tree (verify-undefined-io-pair T qxy)›

unfolding ‹qxy = (q,x,y)›
using ‹handles-io-pair handle-unverified-io-pair M1 M2 cg-insert cg-lookup›

‹finite-tree T ›
unfolding handles-io-pair-def verify-undefined-io-pair case-prod-conv
by blast

qed
have verify-undefined-io-pair-folding-retains-finiteness:

∧
qxys T . finite-tree T

=⇒ finite-tree (foldl verify-undefined-io-pair T qxys)
proof −

fix qxys
fix T :: ( ′b× ′c) prefix-tree
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assume finite-tree T
then show finite-tree (foldl verify-undefined-io-pair T qxys)

using verify-undefined-io-pair-retains-finiteness
by (induction qxys rule: rev-induct; force)

qed

show finite-tree ?TS
using T2 T2-finite T3 ‹h-framework M1 get-state-cover handle-state-cover

sort-transitions handle-unverified-transition handle-unverified-io-pair cg-initial cg-insert
cg-lookup cg-merge m = T3 › verify-undefined-io-pair-folding-retains-finiteness

by auto

assume ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

have set T2 ⊆ set T3
unfolding T3 T2

proof (induction undefined-io-pairs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case
using verify-undefined-io-pair-retains-testsuite[of (foldl verify-undefined-io-pair

(fst TG2 ) xs) x]
by force

qed
then have passes-T2 : L M1 ∩ set T2 = L M2 ∩ set T2

using ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ (L M1 ∩ set T3 = L
M2 ∩ set T3 )› ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›

by blast

have set T1 ⊆ set T3
and G2-invar : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ convergence-graph-lookup-invar

M1 M2 cg-lookup G2
using T2-invar-1 T2-invar-2 [OF passes-T2 ] ‹set T2 ⊆ set T3 ›
by auto

then have passes-T1 : L M1 ∩ set T1 = L M2 ∩ set T1
using ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L M2

∩ set T3 › ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›
by blast

have T3-preserves-divergence : preserves-divergence M1 M2 (V ‘ reachable-states
M1 )

using T1-V-div[OF passes-T1 ] .

have T3-state-cover : V ‘ reachable-states M1 ⊆ set T3

570



using T1-state-cover ‹set T1 ⊆ set T3 ›
by blast

then have T3-passes-state-cover : L M1 ∩ V ‘ reachable-states M1 = L M2 ∩
V ‘ reachable-states M1

using T1-state-cover passes-T1 by blast

have rstates-io-set : list.set rstates-io = {(q,(x,y)) . q ∈ reachable-states M1 ∧
x ∈ inputs M1 ∧ y ∈ outputs M1}

unfolding rstates-io rstates
using reachable-states-as-list-set[of M1 ] inputs-as-list-set[of M1 ] outputs-as-list-set[of

M1 ]
by force

then have undefined-io-pairs-set : list.set undefined-io-pairs = {(q,(x,y)) . q ∈
reachable-states M1 ∧ x ∈ inputs M1 ∧ y ∈ outputs M1 ∧ h-obs M1 q x y = None}

unfolding undefined-io-pairs
by auto

have verify-undefined-io-pair-prop : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))
=⇒ (

∧
q x y T . L M1 ∩ set (verify-undefined-io-pair T (q,(x,y))) = L M2 ∩ set

(verify-undefined-io-pair T (q,(x,y))) =⇒
q ∈ reachable-states M1 =⇒ x ∈ inputs

M1 =⇒ y ∈ outputs M1 =⇒
V ‘ reachable-states M1 ⊆ set T =⇒
( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩

{(V q)@[(x,y)]} ))
proof −

fix q x y T
assume L M1 ∩ set (verify-undefined-io-pair T (q,(x,y))) = L M2 ∩ set

(verify-undefined-io-pair T (q,(x,y)))
and q ∈ reachable-states M1 and x ∈ inputs M1 and y ∈ outputs M1
and V ‘ reachable-states M1 ⊆ set T
and ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using T3-state-cover ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1

∩ Prefix-Tree.set T3 = L M2 ∩ Prefix-Tree.set T3 › ‹((L M1 ∩ set ?TS) = (L M2
∩ set ?TS))›

by blast

have L M1 ∩ set (fst (handle-unverified-io-pair M1 V T G2 cg-insert cg-lookup
q x y)) = L M2 ∩ set (fst (handle-unverified-io-pair M1 V T G2 cg-insert cg-lookup
q x y))

using ‹L M1 ∩ set (verify-undefined-io-pair T (q,(x,y))) = L M2 ∩ set
(verify-undefined-io-pair T (q,(x,y)))›

unfolding verify-undefined-io-pair case-prod-conv combine-set G2
by blast
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show ( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} )
using assms(16 )
unfolding handles-io-pair-def
using assms(1−4 ,7 ,8 ) ‹is-state-cover-assignment M1 V › ‹L M1 ∩ V ‘ reach-

able-states M1 = L M2 ∩ V ‘ reachable-states M1 ›
‹q ∈ reachable-states M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs M1 ›

G2-invar [OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›] ‹conver-
gence-graph-insert-invar M1 M2 cg-lookup cg-insert›

‹L M1 ∩ set (fst (handle-unverified-io-pair M1 V T G2 cg-insert cg-lookup
q x y)) = L M2 ∩ set (fst (handle-unverified-io-pair M1 V T G2 cg-insert cg-lookup
q x y))›

by blast
qed

have T3-covers-undefined-io-pairs : (
∧

q x y . q ∈ reachable-states M1 =⇒ x ∈
inputs M1 =⇒ y ∈ outputs M1 =⇒ h-obs M1 q x y = None =⇒

( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} ))
proof −

fix q x y assume q ∈ reachable-states M1 and x ∈ inputs M1 and y ∈ outputs
M1 and h-obs M1 q x y = None

have
∧

q x y qxys T . L M1 ∩ set (foldl verify-undefined-io-pair T qxys) =
L M2 ∩ set (foldl verify-undefined-io-pair T qxys) =⇒ (V ‘ reachable-states M1 )
⊆ set T =⇒ (q,(x,y)) ∈ list.set qxys =⇒ list.set qxys ⊆ list.set undefined-io-pairs
=⇒

( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} )
(is

∧
q x y qxys T . ?P1 qxys T =⇒ (V ‘ reachable-states M1 ) ⊆ set T =⇒

(q,(x,y)) ∈ list.set qxys =⇒ list.set qxys ⊆ list.set undefined-io-pairs =⇒ ?P2 q x
y qxys T )

proof −
fix q x y qxys T
assume ?P1 qxys T and (q,(x,y)) ∈ list.set qxys and list.set qxys ⊆ list.set

undefined-io-pairs and (V ‘ reachable-states M1 ) ⊆ set T
then show ?P2 q x y qxys T
proof (induction qxys rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc a qxys)

have set (foldl verify-undefined-io-pair T qxys) ⊆ set (foldl verify-undefined-io-pair
T (qxys@[a]))

using verify-undefined-io-pair-retains-testsuite
by auto

then have ∗:L M1 ∩ Prefix-Tree.set (foldl verify-undefined-io-pair T qxys)
= L M2 ∩ Prefix-Tree.set (foldl verify-undefined-io-pair T qxys)

using snoc.prems(1 )
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by blast

have ∗∗: V ‘ reachable-states M1 ⊆ Prefix-Tree.set (foldl verify-undefined-io-pair
T qxys)

using snoc.prems(4 ) verify-undefined-io-pair-folding-retains-testsuite
by blast

show ?case proof (cases a = (q,(x,y)))
case True
then have ∗∗∗: q ∈ reachable-states M1

using snoc.prems(3 )
unfolding undefined-io-pairs-set
by auto

have x ∈ inputs M1 and y ∈ outputs M1
using snoc.prems(2 ,3 ) unfolding undefined-io-pairs-set by auto

have ∗∗∗∗: L M1 ∩ set (verify-undefined-io-pair (foldl verify-undefined-io-pair
T qxys) (q,(x,y))) = L M2 ∩ set (verify-undefined-io-pair (foldl verify-undefined-io-pair
T qxys) (q,(x,y)))

using snoc.prems(1 ) unfolding True by auto

show ?thesis
using verify-undefined-io-pair-prop[OF ‹((L M1 ∩ set ?TS) = (L M2 ∩

set ?TS))› ∗∗∗∗ ∗∗∗ ‹x ∈ inputs M1 › ‹y ∈ outputs M1 › ∗∗]
unfolding True
by auto

next
case False

then have (q, x, y) ∈ list.set qxys and list.set qxys ⊆ list.set unde-
fined-io-pairs

using snoc.prems(2 ,3 ) by auto
then show ?thesis

using snoc.IH [OF ∗ - - snoc.prems(4 )]
using ‹set (foldl verify-undefined-io-pair T qxys) ⊆ set (foldl ver-

ify-undefined-io-pair T (qxys@[a]))›
by blast

qed
qed

qed
moreover have L M1 ∩ set (foldl verify-undefined-io-pair T2 undefined-io-pairs)

= L M2 ∩ set (foldl verify-undefined-io-pair T2 undefined-io-pairs)
using ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L

M2 ∩ set T3 › ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›
unfolding T3 T2 .

moreover have (V ‘ reachable-states M1 ) ⊆ set T2
using T1-state-cover T2 T2-invar-1 passes-T2 by fastforce

moreover have (q,(x,y)) ∈ list.set undefined-io-pairs
unfolding undefined-io-pairs-set
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using ‹q ∈ reachable-states M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs M1 › ‹h-obs
M1 q x y = None›

by blast
ultimately show ( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} )

unfolding T3 T2
by blast

qed

have handles-unverified-transitions:
(
∧

t γ. t ∈ FSM .transitions M1 =⇒
t-source t ∈ reachable-states M1 =⇒
length γ ≤ m−n =⇒
list.set γ ⊆ FSM .inputs M1 × FSM .outputs M1 =⇒
butlast γ ∈ LS M1 (t-target t) =⇒
V (t-target t) 6= V (t-source t) @ [(t-input t, t-output t)] =⇒

L M1 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) =

L M2 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) ∧

preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {(V (t-source
t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}))

using T2-cover [OF passes-T2 ]
unfolding unverified-transitions-alt-def
unfolding handles-unverified-transition
unfolding ‹?TS = T3 › n by blast

have satisfies-abstract-h-condition M1 M2 V m
unfolding satisfies-abstract-h-condition-def Let-def
using abstract-h-condition-by-unverified-transition-and-io-pair-coverage[where

k=m−n,OF assms(1 ) ‹is-state-cover-assignment M1 V › T3-passes-state-cover T3-preserves-divergence
handles-unverified-transitions T3-covers-undefined-io-pairs]

unfolding ‹?TS = T3 › n by blast

then show L M1 = L M2
using abstract-h-condition-completeness[OF assms(1 ,2 ,3 ,6 ,5 ,7 ,8 ) ‹is-state-cover-assignment

M1 V ›]
by blast

qed

end

19 SPY-Framework

This theory defines the SPY-Framework and provides completeness proper-
ties.
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theory SPY-Framework
imports H-Framework
begin

19.1 Definition of the Framework
definition spy-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒
(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒
( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒ (( ′b× ′c) prefix-tree × ′d)) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒
( ′a, ′b, ′c) transition list ⇒ ( ′a, ′b, ′c) transition list) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′b× ′c)
prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list
list) ⇒ nat ⇒ ( ′a, ′b, ′c) transition ⇒ (( ′b× ′c) prefix-tree × ′d)) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′b× ′c)
prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list
list) ⇒ ′a ⇒ ′b ⇒ ′c ⇒ (( ′b× ′c) prefix-tree) × ′d) ⇒

(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
nat ⇒
( ′b× ′c) prefix-tree

where
spy-framework M

get-state-cover
separate-state-cover
sort-unverified-transitions
establish-convergence
append-io-pair
cg-initial
cg-insert
cg-lookup
cg-merge
m

= (let
rstates-set = reachable-states M ;
rstates = reachable-states-as-list M ;

rstates-io = List.product rstates (List.product (inputs-as-list M ) (outputs-as-list
M ));

undefined-io-pairs = List.filter (λ (q,(x,y)) . h-obs M q x y = None) rstates-io;
V = get-state-cover M ;
n = size-r M ;
TG1 = separate-state-cover M V cg-initial cg-insert cg-lookup;
sc-covered-transitions = (

⋃
q ∈ rstates-set . covered-transitions M V (V q));

unverified-transitions = sort-unverified-transitions M V (filter (λt . t-source t
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∈ rstates-set ∧ t /∈ sc-covered-transitions) (transitions-as-list M ));
verify-transition = (λ (T ,G) t . let TGxy = append-io-pair M V T G cg-insert

cg-lookup (t-source t) (t-input t) (t-output t);
(T ′,G ′) = establish-convergence M V (fst TGxy)

(snd TGxy) cg-insert cg-lookup m t;
G ′′ = cg-merge G ′ ((V (t-source t)) @ [(t-input

t, t-output t)]) (V (t-target t))
in (T ′,G ′′));

TG2 = foldl verify-transition TG1 unverified-transitions;
verify-undefined-io-pair = (λ T (q,(x,y)) . fst (append-io-pair M V T (snd

TG2 ) cg-insert cg-lookup q x y))
in

foldl verify-undefined-io-pair (fst TG2 ) undefined-io-pairs)

19.2 Required Conditions on Procedural Parameters
definition verifies-transition :: (( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒

( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
nat ⇒
( ′a, ′b, ′c) transition ⇒
(( ′b× ′c) prefix-tree × ′d)) ⇒

( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′e, ′b, ′c) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
bool

where
verifies-transition f M1 M2 V T0 cg-insert cg-lookup =
(∀ T G m t .

(set T ⊆ set (fst (f M1 V T G cg-insert cg-lookup m t)))
∧ (finite-tree T −→ finite-tree (fst (f M1 V T G cg-insert cg-lookup m t)))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
size-r M1 ≤ m −→
size M2 ≤ m −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) −→
V ‘ reachable-states M1 ⊆ set T −→
t ∈ transitions M1 −→
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t-source t ∈ reachable-states M1 −→
((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t)) −→
((V (t-source t)) @ [(t-input t,t-output t)]) ∈ L M2 −→
convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
L M1 ∩ set (fst (f M1 V T G cg-insert cg-lookup m t)) = L M2 ∩ set

(fst (f M1 V T G cg-insert cg-lookup m t)) −→
(set T0 ⊆ set T ) −→
(converge M2 ((V (t-source t)) @ [(t-input t,t-output t)]) (V (t-target t)))
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1 V T G

cg-insert cg-lookup m t))))

definition verifies-io-pair :: (( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
′a ⇒ ′b ⇒ ′c ⇒
(( ′b× ′c) prefix-tree × ′d)) ⇒

( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′e, ′b, ′c) fsm ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒

( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒

bool
where
verifies-io-pair f M1 M2 cg-insert cg-lookup =
(∀ V T G q x y .

(set T ⊆ set (fst (f M1 V T G cg-insert cg-lookup q x y)))
∧ (finite-tree T −→ finite-tree (fst (f M1 V T G cg-insert cg-lookup q x y)))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
L M1 ∩ (V ‘ reachable-states M1 ) = L M2 ∩ V ‘ reachable-states M1

−→
q ∈ reachable-states M1 −→
x ∈ inputs M1 −→
y ∈ outputs M1 −→
convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
L M1 ∩ set (fst (f M1 V T G cg-insert cg-lookup q x y)) = L M2 ∩ set

(fst (f M1 V T G cg-insert cg-lookup q x y)) −→
(∃ α .
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converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set (fst (f M1 V T G cg-insert cg-lookup q x y)) ∧
α@[(x,y)] ∈ set (fst (f M1 V T G cg-insert cg-lookup q x y)))

∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1 V T G
cg-insert cg-lookup q x y))))

lemma verifies-io-pair-handled:
assumes verifies-io-pair f M1 M2 cg-insert cg-lookup

shows handles-io-pair f M1 M2 cg-insert cg-lookup
proof −

have ∗:
∧

V T G q x y . set T ⊆ set (fst (f M1 V T G cg-insert cg-lookup q x y))
using assms unfolding verifies-io-pair-def
by metis

have ∗∗∗:
∧

V T G q x y . finite-tree T −→ finite-tree (fst (f M1 V T G cg-insert
cg-lookup q x y))

using assms unfolding verifies-io-pair-def
by metis

have ∗∗:
∧

V T G q x y.
observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1 =⇒
q ∈ reachable-states M1 =⇒
x ∈ inputs M1 =⇒
y ∈ outputs M1 =⇒
convergence-graph-lookup-invar M1 M2 cg-lookup G =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
L M1 ∩ set (fst (f M1 V T G cg-insert cg-lookup q x y)) = L M2 ∩ set (fst

(f M1 V T G cg-insert cg-lookup q x y)) =⇒
( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1 V T G

cg-insert cg-lookup q x y))
proof −

fix V T G q x y
assume a01 : observable M1
moreover assume a02 : observable M2
moreover assume a03 : minimal M1
moreover assume a04 : minimal M2
moreover assume a05 : FSM .inputs M2 = FSM .inputs M1
moreover assume a06 : FSM .outputs M2 = FSM .outputs M1
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moreover assume a07 : is-state-cover-assignment M1 V
moreover assume a09 : L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘

reachable-states M1
moreover assume a10 : q ∈ reachable-states M1
moreover assume a11 : x ∈ inputs M1
moreover assume a12 : y ∈ outputs M1
moreover assume a13 : convergence-graph-lookup-invar M1 M2 cg-lookup G

moreover assume a14 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
moreover assume a15 : L M1 ∩ set (fst (f M1 V T G cg-insert cg-lookup q x

y)) = L M2 ∩ set (fst (f M1 V T G cg-insert cg-lookup q x y))

ultimately have ∗:(∃α. converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ Prefix-Tree.set (fst (f M1 V T G cg-insert cg-lookup q x

y)) ∧ α @ [(x, y)] ∈ Prefix-Tree.set (fst (f M1 V T G cg-insert cg-lookup q x y)))
and ∗∗: convergence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1

V T G cg-insert cg-lookup q x y))
using assms unfolding verifies-io-pair-def
by presburger+

have ( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} )
proof −

obtain α where converge M1 α (V q) and converge M2 α (V q) and α @
[(x, y)] ∈ Prefix-Tree.set (fst (f M1 V T G cg-insert cg-lookup q x y))

using ∗ by blast

have (V q)@[(x,y)] ∈ L M1 = (α@[(x,y)] ∈ L M1 )
using ‹converge M1 α (V q)› using a01 a07
by (meson converge-append-language-iff )

moreover have (V q)@[(x,y)] ∈ L M2 = (α@[(x,y)] ∈ L M2 )
using ‹converge M2 α (V q)› using a02 a07
by (meson converge-append-language-iff )

moreover have α @ [(x, y)] ∈ L M1 = (α @ [(x, y)] ∈ L M2 )
using ‹α @ [(x, y)] ∈ Prefix-Tree.set (fst (f M1 V T G cg-insert cg-lookup q

x y))› a15
by blast

ultimately show ?thesis
by blast

qed
then show ( L M1 ∩ {(V q)@[(x,y)]} = L M2 ∩ {(V q)@[(x,y)]} ) ∧ conver-

gence-graph-lookup-invar M1 M2 cg-lookup (snd (f M1 V T G cg-insert cg-lookup q
x y))

using ∗∗ by blast
qed

show ?thesis
unfolding handles-io-pair-def
using ∗ ∗∗∗ ∗∗ by presburger
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qed

19.3 Completeness and Finiteness of the Framework
lemma spy-framework-completeness-and-finiteness :

fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and is-state-cover-assignment M1 (get-state-cover M1 )
and

∧
xs . List.set xs = List.set (sort-unverified-transitions M1 (get-state-cover

M1 ) xs)
and convergence-graph-initial-invar M1 M2 cg-lookup cg-initial
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and convergence-graph-merge-invar M1 M2 cg-lookup cg-merge
and separates-state-cover separate-state-cover M1 M2 cg-initial cg-insert

cg-lookup
and verifies-transition establish-convergence M1 M2 (get-state-cover M1 )

(fst (separate-state-cover M1 (get-state-cover M1 ) cg-initial cg-insert cg-lookup))
cg-insert cg-lookup

and verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (spy-framework M1 get-state-cover
separate-state-cover sort-unverified-transitions establish-convergence append-io-pair
cg-initial cg-insert cg-lookup cg-merge m))

= (L M2 ∩ set (spy-framework M1 get-state-cover
separate-state-cover sort-unverified-transitions establish-convergence append-io-pair
cg-initial cg-insert cg-lookup cg-merge m)))
(is (L M1 = L M2 ) ←→ ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)))

and finite-tree (spy-framework M1 get-state-cover separate-state-cover sort-unverified-transitions
establish-convergence append-io-pair cg-initial cg-insert cg-lookup cg-merge m)
proof

show (L M1 = L M2 ) =⇒ ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))
by blast

define rstates where rstates: rstates = reachable-states-as-list M1
define rstates-io where rstates-io: rstates-io = List.product rstates (List.product

(inputs-as-list M1 ) (outputs-as-list M1 ))
define undefined-io-pairs where undefined-io-pairs: undefined-io-pairs = List.filter

(λ (q,(x,y)) . h-obs M1 q x y = None) rstates-io
define V where V : V = get-state-cover M1
define n where n: n = size-r M1
define TG1 where TG1 : TG1 = separate-state-cover M1 V cg-initial cg-insert
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cg-lookup

define sc-covered-transitions where sc-covered-transitions: sc-covered-transitions
= (

⋃
q ∈ reachable-states M1 . covered-transitions M1 V (V q))

define unverified-transitions where unverified-transitions: unverified-transitions
= sort-unverified-transitions M1 V (filter (λt . t-source t ∈ reachable-states M1 ∧
t /∈ sc-covered-transitions) (transitions-as-list M1 ))

define verify-transition where verify-transition: verify-transition = (λ (T ,G) t
. let TGxy = append-io-pair M1 V T G cg-insert cg-lookup (t-source t) (t-input t)
(t-output t);

(T ′,G ′) =
establish-convergence M1 V (fst TGxy) (snd TGxy) cg-insert cg-lookup m t;

G ′′ = cg-merge G ′ ((V (t-source t)) @ [(t-input t,
t-output t)]) (V (t-target t))

in (T ′,G ′′))
define TG2 where TG2 : TG2 = (foldl verify-transition TG1 unveri-

fied-transitions)
define verify-undefined-io-pair where verify-undefined-io-pair : verify-undefined-io-pair

= (λ T (q,(x,y)) . fst (append-io-pair M1 V T (snd TG2 ) cg-insert cg-lookup q x
y))

define T3 where T3 : T3 = foldl verify-undefined-io-pair (fst TG2 )
undefined-io-pairs

have ?TS = T3
unfolding rstates rstates-io undefined-io-pairs V n TG1 sc-covered-transitions

unverified-transitions verify-transition TG2 verify-undefined-io-pair T3
unfolding spy-framework-def Let-def
by force

then have ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L
M2 ∩ set T3

by simp

have is-state-cover-assignment M1 V
unfolding V using assms(9 ) .

define T1 where T1 : T1 = fst TG1
moreover define G1 where G1 : G1 = snd TG1
ultimately have TG1 = (T1 ,G1 )

by auto

have T1-state-cover : V ‘ reachable-states M1 ⊆ set T1
and T1-finite: finite-tree T1

using ‹separates-state-cover separate-state-cover M1 M2 cg-initial cg-insert
cg-lookup›

unfolding T1 TG1 separates-state-cover-def
by blast+
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have T1-V-div: (L M1 ∩ set T1 = (L M2 ∩ set T1 )) =⇒ preserves-divergence
M1 M2 (V ‘ reachable-states M1 )

and G1-invar : (L M1 ∩ set T1 = (L M2 ∩ set T1 )) =⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup G1

using ‹separates-state-cover separate-state-cover M1 M2 cg-initial cg-insert
cg-lookup›

unfolding T1 G1 TG1 separates-state-cover-def
using assms(1−4 ,7 ,8 ) ‹is-state-cover-assignment M1 V › assms(12 ,11 )
by blast+

have verifies-transition establish-convergence M1 M2 V T1 cg-insert cg-lookup
using assms(15 )
unfolding T1 TG1 V .

have sc-covered-transitions-alt-def : sc-covered-transitions = {t . t ∈ transitions
M1 ∧ t-source t ∈ reachable-states M1 ∧ (V (t-target t) = (V (t-source t))@[(t-input
t, t-output t)])}

(is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix t assume t ∈ ?A
then obtain q where t ∈ covered-transitions M1 V (V q) and q ∈ reach-

able-states M1
unfolding sc-covered-transitions
by blast

then have V q ∈ L M1 and after-initial M1 (V q) = q
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by blast+

then obtain p where path M1 (initial M1 ) p and p-io p = V q
by auto

then have ∗: the-elem (paths-for-io M1 (initial M1 ) (V q)) = p
using observable-paths-for-io[OF assms(1 ) ‹V q ∈ L M1 ›]
unfolding paths-for-io-def

by (metis (mono-tags, lifting) assms(1 ) mem-Collect-eq observable-path-unique
singletonI the-elem-eq)

have t ∈ list.set p and V (t-source t) @ [(t-input t, t-output t)] = V (t-target
t)

using ‹t ∈ covered-transitions M1 V (V q)›
unfolding covered-transitions-def Let-def ∗
by auto

have t ∈ transitions M1
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using ‹t ∈ list.set p› ‹path M1 (initial M1 ) p›
by (meson path-transitions subsetD)

moreover have t-source t ∈ reachable-states M1
using reachable-states-path[OF reachable-states-initial ‹path M1 (initial M1 )

p› ‹t ∈ list.set p›] .
ultimately show t ∈ ?B

using ‹V (t-source t) @ [(t-input t, t-output t)] = V (t-target t)›
by auto

qed

show ?B ⊆ ?A
proof

fix t assume t ∈ ?B
then have t ∈ transitions M1

t-source t ∈ reachable-states M1
(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)

by auto
then have t-target t ∈ reachable-states M1

using reachable-states-next[of t-source t M1 t]
by blast

then have V (t-target t) ∈ L M1 and after-initial M1 (V (t-target t)) =
(t-target t)

using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment
M1 V ›]

by blast+
then obtain p where path M1 (initial M1 ) p and p-io p = V (t-target t)

by auto
then have ∗: the-elem (paths-for-io M1 (initial M1 ) (V (t-target t))) = p

using observable-paths-for-io[OF assms(1 ) ‹V (t-target t) ∈ L M1 ›]
unfolding paths-for-io-def

by (metis (mono-tags, lifting) assms(1 ) mem-Collect-eq observable-path-unique
singletonI the-elem-eq)

have V (t-source t) ∈ L M1 and after-initial M1 (V (t-source t)) = (t-source
t)

using ‹t-source t ∈ reachable-states M1 ›
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by blast+

then obtain p ′ where path M1 (initial M1 ) p ′ and p-io p ′ = V (t-source t)
by auto

have path M1 (initial M1 ) (p ′@[t])
using after-path[OF assms(1 ) ‹path M1 (initial M1 ) p ′›] ‹path M1 (initial

M1 ) p ′› ‹t∈transitions M1 ›
unfolding ‹p-io p ′ = V (t-source t)›
unfolding ‹after-initial M1 (V (t-source t)) = (t-source t)›
by (metis path-append single-transition-path)
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moreover have p-io (p ′@[t]) = p-io p
using ‹p-io p ′ = V (t-source t)›
unfolding ‹p-io p = V (t-target t)› ‹(V (t-source t))@[(t-input t, t-output

t)] = V (t-target t)›[symmetric]
by auto

ultimately have p ′@[t] = p
using observable-path-unique[OF assms(1 ) - ‹path M1 (initial M1 ) p›]
by force

then have t ∈ list.set p
by auto

then have t ∈ covered-transitions M1 V (V (t-target t))
using ‹(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)›
unfolding covered-transitions-def Let-def ∗
by auto

then show t ∈ ?A
using ‹t-target t ∈ reachable-states M1 ›
unfolding sc-covered-transitions
by blast

qed
qed

have T1-covered-transitions-conv:
∧

t . (L M1 ∩ set T1 = (L M2 ∩ set T1 ))
=⇒ t ∈ sc-covered-transitions =⇒ converge M2 (V (t-target t)) ((V (t-source
t))@[(t-input t, t-output t)])

proof −
fix t assume (L M1 ∩ set T1 = (L M2 ∩ set T1 ))

t ∈ sc-covered-transitions

then have t ∈ transitions M1
t-source t ∈ reachable-states M1
(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)

unfolding sc-covered-transitions-alt-def
by auto

then have t-target t ∈ reachable-states M1
using reachable-states-next[of t-source t M1 t]
by blast

then have V (t-target t) ∈ L M1
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V ›]
by blast

moreover have V (t-target t) ∈ set T1
using T1-state-cover ‹t-target t ∈ reachable-states M1 ›
by blast

ultimately have V (t-target t) ∈ L M2
using ‹(L M1 ∩ set T1 = (L M2 ∩ set T1 ))›
by blast

then show converge M2 (V (t-target t)) ((V (t-source t))@[(t-input t, t-output
t)])

unfolding ‹(V (t-source t))@[(t-input t, t-output t)] = V (t-target t)›
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by auto
qed

have unverified-transitions-alt-def : list.set unverified-transitions = {t . t ∈ tran-
sitions M1 ∧ t-source t ∈ reachable-states M1 ∧ (V (t-target t) 6= (V (t-source
t))@[(t-input t, t-output t)])}

unfolding unverified-transitions sc-covered-transitions-alt-def V
unfolding assms(10 )[symmetric]
using transitions-as-list-set[of M1 ]
by auto

have cg-insert-invar :
∧

G γ . γ ∈ L M1 =⇒ γ ∈ L M2 =⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup G =⇒ convergence-graph-lookup-invar M1 M2 cg-lookup (cg-insert
G γ)

using assms(12 )
unfolding convergence-graph-insert-invar-def
by blast

have cg-merge-invar :
∧

G γ γ ′. convergence-graph-lookup-invar M1 M2 cg-lookup
G =⇒ converge M1 γ γ ′ =⇒ converge M2 γ γ ′ =⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup (cg-merge G γ γ ′)

using assms(13 )
unfolding convergence-graph-merge-invar-def
by blast

define T2 where T2 : T2 = fst TG2
define G2 where G2 : G2 = snd TG2

have verify-transition-retains-testsuite:
∧

t T G . set T ⊆ set (fst (verify-transition
(T ,G) t))

proof −
fix t T G

define TGxy where TGxy: TGxy = append-io-pair M1 V T G cg-insert
cg-lookup (t-source t) (t-input t) (t-output t)

obtain T ′ G ′ where TG ′: (T ′,G ′) = establish-convergence M1 V (fst TGxy)
(snd TGxy) cg-insert cg-lookup m t

using prod.exhaust by metis
define G ′′ where G ′′: G ′′ = cg-merge G ′ ((V (t-source t)) @ [(t-input t,

t-output t)]) (V (t-target t))
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have ∗:verify-transition (T ,G) t = (T ′,G ′′)
using TG ′[symmetric]
unfolding verify-transition G ′′ TGxy Let-def case-prod-conv
by force

have set T ⊆ set (fst TGxy)
using ‹verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup›
unfolding verifies-io-pair-def TGxy
by blast

also have set (fst TGxy) ⊆ set (fst (T ′,G ′))
using ‹verifies-transition establish-convergence M1 M2 V T1 cg-insert cg-lookup›

unfolding TG ′ verifies-transition-def
by blast

finally show set T ⊆ set (fst (verify-transition (T ,G) t))
unfolding ∗ fst-conv .

qed

have verify-transition-retains-finiteness:
∧

t T G . finite-tree T =⇒ finite-tree
(fst (verify-transition (T ,G) t))

proof −
fix T :: ( ′b× ′c) prefix-tree
fix t G assume finite-tree T

define TGxy where TGxy: TGxy = append-io-pair M1 V T G cg-insert
cg-lookup (t-source t) (t-input t) (t-output t)

obtain T ′ G ′ where TG ′: (T ′,G ′) = establish-convergence M1 V (fst TGxy)
(snd TGxy) cg-insert cg-lookup m t

using prod.exhaust by metis
define G ′′ where G ′′: G ′′ = cg-merge G ′ ((V (t-source t)) @ [(t-input t,

t-output t)]) (V (t-target t))

have ∗:verify-transition (T ,G) t = (T ′,G ′′)
using TG ′[symmetric]
unfolding verify-transition G ′′ TGxy Let-def case-prod-conv
by force

have finite-tree (fst TGxy)
using ‹verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup› ‹finite-tree

T ›
unfolding verifies-io-pair-def TGxy
by blast

then have finite-tree (fst (T ′,G ′))
using ‹verifies-transition establish-convergence M1 M2 V T1 cg-insert cg-lookup›

unfolding TG ′ verifies-transition-def
by blast

then show finite-tree (fst (verify-transition (T ,G) t))
unfolding ∗ fst-conv .

qed
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define covers-unverified-transition
where covers-unverified-transition: covers-unverified-transition = (λt (T ′,G ′)

.
((∃ α β . converge M1 α (V (t-source t)) ∧

converge M2 α (V (t-source t)) ∧
converge M1 β (V (t-target t)) ∧
converge M2 β (V (t-target t)) ∧

α@[(t-input t,t-output t)] ∈ (set T ′) ∧
β ∈ (set T ′))

∧ (converge M2 ((V (t-source t)) @ [(t-input
t,t-output t)]) (V (t-target t)))

∧ convergence-graph-lookup-invar M1 M2
cg-lookup G ′))

have verify-transition-cover-prop:
∧

t T G . (L M1 ∩ (set (fst (verify-transition
(T ,G) t))) = L M2 ∩ (set (fst (verify-transition (T ,G) t))))

=⇒ convergence-graph-lookup-invar M1 M2
cg-lookup G

=⇒ t ∈ transitions M1
=⇒ t-source t ∈ reachable-states M1

=⇒ ((V (t-source t)) @ [(t-input t,t-output t)]) 6=
(V (t-target t))

=⇒ set T1 ⊆ set T
=⇒ covers-unverified-transition t (verify-transition

(T ,G) t)
proof −

fix t T G
assume a1 : (L M1 ∩ (set (fst (verify-transition (T ,G) t))) = L M2 ∩ (set (fst

(verify-transition (T ,G) t))))
assume a2 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a3 : t ∈ transitions M1
assume a4 : t-source t ∈ reachable-states M1
assume a5 : set T1 ⊆ set T
assume a6 : ((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t))

define TGxy where TGxy: TGxy = append-io-pair M1 V T G cg-insert
cg-lookup (t-source t) (t-input t) (t-output t)

obtain T ′ G ′ where TG ′: (T ′,G ′) = establish-convergence M1 V (fst TGxy)
(snd TGxy) cg-insert cg-lookup m t

using prod.exhaust by metis
have T ′: T ′ = fst (establish-convergence M1 V (fst TGxy) (snd TGxy)

cg-insert cg-lookup m t)
and G ′: G ′ = snd (establish-convergence M1 V (fst TGxy) (snd TGxy)

cg-insert cg-lookup m t)
unfolding TG ′[symmetric] by auto
define G ′′ where G ′′: G ′′ = cg-merge G ′ ((V (t-source t)) @ [(t-input t,

t-output t)]) (V (t-target t))
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have verify-transition (T ,G) t = (T ′,G ′′)
using TG ′[symmetric]
unfolding verify-transition G ′′ TGxy Let-def case-prod-conv
by force

then have set T ⊆ set T ′

using verify-transition-retains-testsuite[of T G t] unfolding T ′

by auto
then have (L M1 ∩ (set T1 ) = L M2 ∩ (set T1 ))

using a1 a5 unfolding ‹verify-transition (T ,G) t = (T ′,G ′′)› fst-conv
by blast

then have ∗: preserves-divergence M1 M2 (V ‘ reachable-states M1 )
using T1-V-div
by auto

have set (fst TGxy) ⊆ set (fst (T ′,G ′))
using ‹verifies-transition establish-convergence M1 M2 V T1 cg-insert cg-lookup›

unfolding TG ′ verifies-transition-def
by blast

then have set (fst TGxy) ⊆ set (fst (verify-transition (T ,G) t))
unfolding ‹verify-transition (T ,G) t = (T ′,G ′′)› fst-conv .

then have L M1 ∩ set (fst TGxy) = L M2 ∩ set (fst TGxy)
using a1 by blast

have L M1 ∩ set T ′ = L M2 ∩ set T ′ and L M1 ∩ set T = L M2 ∩ set T
using a1 ‹set T ⊆ set T ′› unfolding T ′ ‹verify-transition (T ,G) t = (T ′,G ′′)›

fst-conv
by blast+

have ∗∗: V ‘ reachable-states M1 ⊆ set T
using a5 T1-state-cover by blast

have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using T1-state-cover ‹L M1 ∩ Prefix-Tree.set T1 = L M2 ∩ Prefix-Tree.set

T1 › by blast

have (∃α. converge M1 α (V (t-source t)) ∧
converge M2 α (V (t-source t)) ∧
α ∈ Prefix-Tree.set (fst TGxy) ∧
α @ [((t-input t), (t-output t))] ∈ Prefix-Tree.set (fst TGxy))

and convergence-graph-lookup-invar M1 M2 cg-lookup (snd TGxy)
using ‹verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup›
unfolding verifies-io-pair-def
using assms(1−4 ,7 ,8 ) ‹is-state-cover-assignment M1 V › ‹L M1 ∩ V ‘ reach-

able-states M1 = L M2 ∩ V ‘ reachable-states M1 › a4 fsm-transition-input[OF a3 ]
fsm-transition-output[OF a3 ] a2 ‹convergence-graph-insert-invar M1 M2 cg-lookup
cg-insert› ‹L M1 ∩ set (fst TGxy) = L M2 ∩ set (fst TGxy)›

unfolding TGxy
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by blast+

then obtain w where converge M1 w (V (t-source t))
converge M2 w (V (t-source t))
w ∈ Prefix-Tree.set (fst TGxy)
w @ [((t-input t), (t-output t))] ∈ set (fst TGxy)

by blast
then have w @ [((t-input t), (t-output t))] ∈ L M1 ←→ w @ [((t-input t),

(t-output t))] ∈ L M2
using ‹L M1 ∩ set (fst TGxy) = L M2 ∩ set (fst TGxy)›
by blast

moreover have w @ [((t-input t), (t-output t))] ∈ L M1 ←→ V (t-source t)
@ [(t-input t, t-output t)] ∈ L M1

using ‹converge M1 w (V (t-source t))›
by (meson assms(1 ) converge-append-language-iff )

moreover have V (t-source t) @ [(t-input t, t-output t)] ∈ L M1
using state-cover-transition-converges[OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹t ∈ transitions M1 › ‹t-source t ∈ reachable-states M1 ›]
by auto

ultimately have w @ [(t-input t, t-output t)] ∈ L M2
by blast

then have V (t-source t) @ [(t-input t, t-output t)] ∈ L M2
using ‹converge M2 w (V (t-source t))›
by (meson assms(2 ) converge-append-language-iff )

have V ‘ reachable-states M1 ⊆ set T
using a5 T1-state-cover by blast

have set T ⊆ set (fst TGxy)
using ‹verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup›
unfolding verifies-io-pair-def TGxy by blast

then have set T1 ⊆ set (fst TGxy)
using a5 by blast

then have
∧

io . set (after T1 io) ⊆ set (after (fst TGxy) io)
unfolding after-set by auto

have V ‘ reachable-states M1 ⊆ set (fst TGxy)
using ∗∗ ‹Prefix-Tree.set T ⊆ Prefix-Tree.set (fst TGxy)› by auto

have p2 : converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target
t))

and convergence-graph-lookup-invar M1 M2 cg-lookup G ′

using ‹verifies-transition establish-convergence M1 M2 V T1 cg-insert cg-lookup›
unfolding verifies-transition-def

using assms(1−8 ) ‹is-state-cover-assignment M1 V › ‹preserves-divergence M1
M2 (V ‘ reachable-states M1 )› ‹V ‘ reachable-states M1 ⊆ set (fst TGxy)› a3 a4 a6
‹V (t-source t) @ [(t-input t, t-output t)] ∈ L M2 › ‹convergence-graph-lookup-invar
M1 M2 cg-lookup (snd TGxy)› ‹convergence-graph-insert-invar M1 M2 cg-lookup
cg-insert› ‹L M1 ∩ set T ′ = L M2 ∩ set T ′›

using ‹set T1 ⊆ set (fst TGxy)›
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unfolding T ′ G ′

by blast+

have w @ [((t-input t), (t-output t))] ∈ set T ′

using ‹w @ [((t-input t), (t-output t))] ∈ set (fst TGxy)›
using T ′ ‹Prefix-Tree.set (fst TGxy) ⊆ Prefix-Tree.set (fst (T ′, G ′))› by auto

have p1 : (∃α β.
converge M1 α (V (t-source t)) ∧
converge M2 α (V (t-source t)) ∧
converge M1 β (V (t-target t)) ∧
converge M2 β (V (t-target t)) ∧
α @ [(t-input t, t-output t)] ∈ set T ′ ∧
β ∈ set T ′)

proof −
have V (t-source t) ∈ L M1
using state-cover-assignment-after(1 )[OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹t-source t ∈ reachable-states M1 ›] .
have V (t-target t) ∈ L M1
using state-cover-assignment-after(1 )[OF assms(1 ) ‹is-state-cover-assignment

M1 V › reachable-states-next[OF ‹t-source t ∈ reachable-states M1 › ‹t ∈ transitions
M1 ›]]

by auto

note ‹converge M1 w (V (t-source t))› and ‹converge M2 w (V (t-source t))›
moreover have converge M1 (V (t-target t)) (V (t-target t))

using ‹V (t-target t) ∈ L M1 › by auto
moreover have converge M2 (V (t-target t)) (V (t-target t))

using reachable-states-next[OF ‹t-source t ∈ reachable-states M1 › ‹t ∈
transitions M1 ›] ‹V (t-target t) ∈ L M1 › ‹L M1 ∩ V ‘ reachable-states M1 = L
M2 ∩ V ‘ reachable-states M1 ›

by auto
moreover note ‹w @ [(t-input t, t-output t)] ∈ set T ′›
moreover have V (t-target t) ∈ set T ′

using ‹V ‘ reachable-states M1 ⊆ set T › ‹set T ⊆ set T ′› reachable-states-next[OF
‹t-source t ∈ reachable-states M1 › ‹t ∈ transitions M1 ›]

by auto
ultimately show ?thesis

by blast
qed

have p3 : convergence-graph-lookup-invar M1 M2 cg-lookup G ′′

unfolding G ′′

using cg-merge-invar [OF ‹convergence-graph-lookup-invar M1 M2 cg-lookup
G ′›]

state-cover-transition-converges[OF assms(1 ) ‹is-state-cover-assignment
M1 V › a3 a4 ]
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‹converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t))›
by blast

show covers-unverified-transition t (verify-transition (T ,G) t)
using p1 p2 p3

unfolding ‹verify-transition (T ,G) t = (T ′,G ′′)› fst-conv snd-conv cov-
ers-unverified-transition

by blast
qed

have verify-transition-foldl-invar-1 :
∧

ts . list.set ts ⊆ list.set unverified-transitions
=⇒

set T1 ⊆ set (fst (foldl verify-transition (T1 , G1 ) ts)) ∧ finite-tree
(fst (foldl verify-transition (T1 , G1 ) ts))

proof −
fix ts assume list.set ts ⊆ list.set unverified-transitions
then show set T1 ⊆ set (fst (foldl verify-transition (T1 , G1 ) ts)) ∧ finite-tree

(fst (foldl verify-transition (T1 , G1 ) ts))
proof (induction ts rule: rev-induct)

case Nil
then show ?case

using T1-finite by auto
next

case (snoc t ts)
then have t ∈ transitions M1 and t-source t ∈ reachable-states M1

unfolding unverified-transitions-alt-def
by force+

have p1 : list.set ts ⊆ list.set unverified-transitions
using snoc.prems(1 ) by auto

have set (fst (foldl verify-transition (T1 , G1 ) ts)) ⊆ set (fst (foldl ver-
ify-transition (T1 , G1 ) (ts@[t])))

using verify-transition-retains-testsuite unfolding foldl-append foldl.simps
by (metis eq-fst-iff )

have ∗∗: Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (foldl verify-transition (T1 ,
G1 ) ts))

and ∗∗∗: finite-tree (fst (foldl verify-transition (T1 , G1 ) ts))
using snoc.IH [OF p1 ]
by auto

have Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (foldl verify-transition (T1 ,
G1 ) (ts@[t])))

using ∗∗ verify-transition-retains-testsuite ‹set (fst (foldl verify-transition
(T1 , G1 ) ts)) ⊆ set (fst (foldl verify-transition (T1 , G1 ) (ts@[t])))›

by auto
moreover have finite-tree (fst (foldl verify-transition (T1 , G1 ) (ts@[t])))
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using verify-transition-retains-finiteness[OF ∗∗∗, of snd (foldl verify-transition
(T1 , G1 ) ts)]

by auto
ultimately show ?case

by simp
qed

qed
then have T2-invar-1 : set T1 ⊆ set T2

and T2-finite : finite-tree T2
unfolding TG2 G2 T2 ‹TG1 = (T1 ,G1 )›
by auto

have verify-transition-foldl-invar-2 :
∧

ts . list.set ts ⊆ list.set unverified-transitions
=⇒

L M1 ∩ set (fst (foldl verify-transition (T1 , G1 ) ts)) = L M2 ∩ set
(fst (foldl verify-transition (T1 , G1 ) ts)) =⇒

convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl ver-
ify-transition (T1 , G1 ) ts))

proof −
fix ts assume list.set ts ⊆ list.set unverified-transitions

and L M1 ∩ set (fst (foldl verify-transition (T1 , G1 ) ts)) = L M2 ∩
set (fst (foldl verify-transition (T1 , G1 ) ts))

then show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl ver-
ify-transition (T1 , G1 ) ts))

proof (induction ts rule: rev-induct)
case Nil
then show ?case

using G1-invar by auto
next

case (snoc t ts)
then have t ∈ transitions M1 and t-source t ∈ reachable-states M1 and ((V

(t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t))
unfolding unverified-transitions-alt-def
by force+

have p1 : list.set ts ⊆ list.set unverified-transitions
using snoc.prems(1 ) by auto

have set (fst (foldl verify-transition (T1 , G1 ) ts)) ⊆ set (fst (foldl ver-
ify-transition (T1 , G1 ) (ts@[t])))

using verify-transition-retains-testsuite unfolding foldl-append foldl.simps
by (metis eq-fst-iff )

then have p2 : L M1 ∩ set (fst (foldl verify-transition (T1 , G1 ) ts)) = L M2
∩ set (fst (foldl verify-transition (T1 , G1 ) ts))

using snoc.prems(2 )
by blast

have ∗:convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl ver-
ify-transition (T1 , G1 ) ts))
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using snoc.IH [OF p1 p2 ]
by auto

have ∗∗: Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (foldl verify-transition (T1 ,
G1 ) ts))

using verify-transition-foldl-invar-1 [OF p1 ] by blast

have covers-unverified-transition t (verify-transition (fst (foldl verify-transition
(T1 , G1 ) ts), snd (foldl verify-transition (T1 , G1 ) ts)) t)

using verify-transition-cover-prop[OF - ∗ ‹t ∈ transitions M1 › ‹t-source t
∈ reachable-states M1 › ‹((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target
t))› ∗∗] snoc.prems(2 )

unfolding prod.collapse
by auto

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (verify-transition
(fst (foldl verify-transition (T1 , G1 ) ts), snd (foldl verify-transition (T1 , G1 ) ts))
t))

unfolding covers-unverified-transition
by auto

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl ver-
ify-transition (T1 , G1 ) (ts@[t])))

by auto
moreover have Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (foldl verify-transition

(T1 , G1 ) (ts@[t])))
using ∗∗ verify-transition-retains-testsuite ‹set (fst (foldl verify-transition

(T1 , G1 ) ts)) ⊆ set (fst (foldl verify-transition (T1 , G1 ) (ts@[t])))›
by auto

ultimately show ?case
by simp

qed
qed
then have T2-invar-2 : L M1 ∩ set T2 = L M2 ∩ set T2 =⇒ convergence-graph-lookup-invar

M1 M2 cg-lookup G2
unfolding TG2 G2 T2 ‹TG1 = (T1 ,G1 )› by auto

have T2-cover :
∧

t . L M1 ∩ set T2 = L M2 ∩ set T2 =⇒ t ∈ list.set unveri-
fied-transitions =⇒ covers-unverified-transition t (T2 ,G2 )

proof −
have

∧
t ts . t ∈ list.set ts =⇒ list.set ts ⊆ list.set unverified-transitions

=⇒ L M1 ∩ set (fst (foldl verify-transition (T1 , G1 ) ts)) = L M2 ∩ set (fst
(foldl verify-transition (T1 , G1 ) ts)) =⇒ covers-unverified-transition t (foldl ver-
ify-transition (T1 , G1 ) ts)

proof −
fix t ts
assume t ∈ list.set ts and list.set ts ⊆ list.set unverified-transitions and

L M1 ∩ set (fst (foldl verify-transition (T1 , G1 ) ts)) = L M2 ∩ set (fst (foldl
verify-transition (T1 , G1 ) ts))

then show covers-unverified-transition t (foldl verify-transition (T1 , G1 ) ts)
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proof (induction ts rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc t ′ ts)

then have t ∈ transitions M1 and t-source t ∈ reachable-states M1 and
((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t))

unfolding unverified-transitions-alt-def by force+

have t ′ ∈ transitions M1 and t-source t ′ ∈ reachable-states M1 and ((V
(t-source t ′)) @ [(t-input t ′,t-output t ′)]) 6= (V (t-target t ′))

using snoc.prems(2 )
unfolding unverified-transitions-alt-def
by auto

have set (fst (foldl verify-transition (T1 , G1 ) ts)) ⊆ set (fst (foldl ver-
ify-transition (T1 , G1 ) (ts@[t ′])))

using verify-transition-retains-testsuite unfolding foldl-append foldl.simps
by (metis eq-fst-iff )

then have L M1 ∩ set (fst (foldl verify-transition (T1 , G1 ) ts)) = L M2
∩ set (fst (foldl verify-transition (T1 , G1 ) ts))

using snoc.prems(3 )
by blast

have ∗: L M1 ∩ Prefix-Tree.set (fst (verify-transition (foldl verify-transition
(T1 , G1 ) ts) t ′)) = L M2 ∩ Prefix-Tree.set (fst (verify-transition (foldl verify-transition
(T1 , G1 ) ts) t ′))

using snoc.prems(3 ) by auto

have L M1 ∩ Prefix-Tree.set (fst (foldl verify-transition (T1 , G1 ) ts)) = L
M2 ∩ Prefix-Tree.set (fst (foldl verify-transition (T1 , G1 ) ts))

using ‹set (fst (foldl verify-transition (T1 , G1 ) ts)) ⊆ set (fst (foldl
verify-transition (T1 , G1 ) (ts@[t ′])))› snoc.prems(3 )

by auto
then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl

verify-transition (T1 , G1 ) ts)) ∧ Prefix-Tree.set T1 ⊆ Prefix-Tree.set (fst (foldl
verify-transition (T1 , G1 ) ts))

using snoc.prems(2 ) verify-transition-foldl-invar-1 [of ts] verify-transition-foldl-invar-2 [of
ts]

by auto
then have covers-t ′: covers-unverified-transition t ′ (verify-transition (fst

(foldl verify-transition (T1 , G1 ) ts), snd (foldl verify-transition (T1 , G1 ) ts)) t ′)

using verify-transition-cover-prop[OF - - ‹t ′ ∈ transitions M1 › ‹t-source t ′ ∈
reachable-states M1 › ‹((V (t-source t ′)) @ [(t-input t ′,t-output t ′)]) 6= (V (t-target
t ′))›, of (fst (foldl verify-transition (T1 , G1 ) ts)) (snd (foldl verify-transition (T1 ,
G1 ) ts)) ]

unfolding prod.collapse
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using ∗
by auto

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (verify-transition
(fst (foldl verify-transition (T1 , G1 ) ts), snd (foldl verify-transition (T1 , G1 ) ts))
t ′))

unfolding covers-unverified-transition
by force
then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl

verify-transition (T1 , G1 ) (ts@[t ′])))
by auto

show ?case proof (cases t = t ′)
case True
then show ?thesis

using covers-t ′ by auto
next

case False
then have t ∈ list.set ts

using snoc.prems(1 ) by auto

have list.set ts ⊆ list.set (unverified-transitions)
using snoc.prems(2 ) by auto

have covers-unverified-transition t (foldl verify-transition (T1 , G1 ) ts)
using snoc.IH [OF ‹t ∈ list.set ts›] snoc.prems(2 ) ‹L M1 ∩ Prefix-Tree.set

(fst (foldl verify-transition (T1 , G1 ) ts)) = L M2 ∩ Prefix-Tree.set (fst (foldl
verify-transition (T1 , G1 ) ts))›

by auto
then have covers-unverified-transition t (fst (foldl verify-transition (T1 ,

G1 ) ts), snd (foldl verify-transition (T1 , G1 ) ts))
by auto

then have (∃α β. converge M1 α (V (t-source t)) ∧
converge M2 α (V (t-source t)) ∧
converge M1 β (V (t-target t)) ∧

converge M2 β (V (t-target t)) ∧ α @ [(t-input t, t-output t)]
∈ Prefix-Tree.set (fst (foldl verify-transition (T1 , G1 ) ts)) ∧ β ∈ Prefix-Tree.set
(fst (foldl verify-transition (T1 , G1 ) ts))) ∧

converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V
(t-target t))

unfolding covers-unverified-transition
by blast

moreover have set (fst (foldl verify-transition (T1 , G1 ) ts)) ⊆ set (fst
(foldl verify-transition (T1 , G1 ) (ts@[t ′])))

using verify-transition-retains-testsuite[of (fst (foldl verify-transition
(T1 , G1 ) ts)) (snd (foldl verify-transition (T1 , G1 ) ts))]

unfolding prod.collapse
by auto

ultimately have (∃α β.
converge M1 α (V (t-source t)) ∧

595



converge M2 α (V (t-source t)) ∧
converge M1 β (V (t-target t)) ∧

converge M2 β (V (t-target t)) ∧ α @ [(t-input t,
t-output t)] ∈ Prefix-Tree.set (fst (foldl verify-transition (T1 , G1 ) (ts@[t ′]))) ∧ β
∈ Prefix-Tree.set (fst (foldl verify-transition (T1 , G1 ) (ts@[t ′])))) ∧

converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V
(t-target t))

by blast
then have covers-unverified-transition t (fst (foldl verify-transition (T1 ,

G1 ) (ts@[t ′])), snd (foldl verify-transition (T1 , G1 ) (ts@[t ′])))
unfolding covers-unverified-transition

using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl
verify-transition (T1 , G1 ) (ts@[t ′])))›

by blast
then show ?thesis

by auto
qed

qed
qed

then show
∧

t . L M1 ∩ set T2 = L M2 ∩ set T2 =⇒ t ∈ list.set unveri-
fied-transitions =⇒ covers-unverified-transition t (T2 ,G2 )

unfolding TG2 T2 G2 ‹TG1 = (T1 ,G1 )›
by simp

qed

have verify-undefined-io-pair-retains-testsuite:
∧

qxy T . set T ⊆ set (verify-undefined-io-pair
T qxy)

proof −
fix qxy :: ( ′a × ′b × ′c)
fix T
obtain q x y where qxy = (q,x,y)

using prod.exhaust by metis
show ‹set T ⊆ set (verify-undefined-io-pair T qxy)›

unfolding ‹qxy = (q,x,y)›
using ‹verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup›
unfolding verifies-io-pair-def verify-undefined-io-pair case-prod-conv
by blast

qed
have verify-undefined-io-pair-folding-retains-testsuite:

∧
qxys T . set T ⊆ set

(foldl verify-undefined-io-pair T qxys)
proof −

fix qxys T
show set T ⊆ set (foldl verify-undefined-io-pair T qxys)

using verify-undefined-io-pair-retains-testsuite
by (induction qxys rule: rev-induct; force)
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qed

have verify-undefined-io-pair-retains-finiteness:
∧

qxy T . finite-tree T =⇒ fi-
nite-tree (verify-undefined-io-pair T qxy)

proof −
fix qxy :: ( ′a × ′b × ′c)
fix T :: ( ′b× ′c) prefix-tree
assume finite-tree T
obtain q x y where qxy = (q,x,y)

using prod.exhaust by metis
show ‹finite-tree (verify-undefined-io-pair T qxy)›

unfolding ‹qxy = (q,x,y)›
using ‹verifies-io-pair append-io-pair M1 M2 cg-insert cg-lookup› ‹finite-tree

T ›
unfolding verifies-io-pair-def verify-undefined-io-pair case-prod-conv
by blast

qed
have verify-undefined-io-pair-folding-retains-finiteness:

∧
qxys T . finite-tree T

=⇒ finite-tree (foldl verify-undefined-io-pair T qxys)
proof −

fix qxys
fix T :: ( ′b× ′c) prefix-tree
assume finite-tree T
then show finite-tree (foldl verify-undefined-io-pair T qxys)

using verify-undefined-io-pair-retains-finiteness
by (induction qxys rule: rev-induct; force)

qed

have set T2 ⊆ set T3
unfolding T3 T2

proof (induction undefined-io-pairs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case
using verify-undefined-io-pair-retains-testsuite[of (foldl verify-undefined-io-pair

(fst TG2 ) xs) x]
by force

qed
then have passes-T2 : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩

set T2 = L M2 ∩ set T2
using ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ (L M1 ∩ set T3 = L

M2 ∩ set T3 )›
by blast

have set T1 ⊆ set T3
and G2-invar : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ convergence-graph-lookup-invar

597



M1 M2 cg-lookup G2
using T2-invar-1 T2-invar-2 [OF passes-T2 ] ‹set T2 ⊆ set T3 ›
by auto

then have passes-T1 : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩
set T1 = L M2 ∩ set T1

using ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L M2
∩ set T3 ›

by blast

have T3-preserves-divergence : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒
preserves-divergence M1 M2 (V ‘ reachable-states M1 )

using T1-V-div[OF passes-T1 ] .

have T3-state-cover : V ‘ reachable-states M1 ⊆ set T3
using T1-state-cover ‹set T1 ⊆ set T3 ›
by blast

have T3-covers-transitions : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ (
∧

t . t ∈ transitions M1 =⇒ t-source t ∈ reachable-states M1 =⇒
(∃α β.

converge M1 α (V (t-source t)) ∧
converge M2 α (V (t-source t)) ∧
converge M1 β (V (t-target t)) ∧
converge M2 β (V (t-target t)) ∧
α @ [(t-input t, t-output t)] ∈ set T3 ∧
β ∈ set T3 )
∧ converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t)))

(is ((L M1 ∩ set ?TS ′) = (L M2 ∩ set ?TS ′)) =⇒ (
∧

t . t ∈ transitions M1
=⇒ t-source t ∈ reachable-states M1 =⇒ ?P1 t T3 ∧ ?P2 t))

proof −
fix t assume t ∈ transitions M1 and t-source t ∈ reachable-states M1 and ((L

M1 ∩ set ?TS) = (L M2 ∩ set ?TS))
then consider t ∈ sc-covered-transitions | t ∈ list.set unverified-transitions

unfolding sc-covered-transitions-alt-def unverified-transitions-alt-def
by blast

then show ?P1 t T3 ∧ ?P2 t
proof cases

case 1

have (V (t-source t)) ∈ L M1
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹t-source t ∈ reachable-states M1 ›]
by auto

then have p3 : converge M1 (V (t-source t)) (V (t-source t))
by auto

have (V (t-source t)) ∈ L M2
using passes-T1 [OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›] T1-state-cover

‹t-source t ∈ reachable-states M1 › ‹(V (t-source t)) ∈ L M1 ›
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by (metis IntI image-subset-iff inf .cobounded1 subsetD)
then have p4 : converge M2 (V (t-source t)) (V (t-source t))

by auto

have t-target t ∈ reachable-states M1
using reachable-states-next[OF ‹t-source t ∈ reachable-states M1 › ‹t ∈

transitions M1 ›]
by auto

then have (V (t-target t)) ∈ L M1
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V › ]
by auto

then have p5 : converge M1 (V (t-target t)) (V (t-target t))
by auto

have (V (t-target t)) ∈ L M2
using passes-T1 [OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›] T1-state-cover

‹t-target t ∈ reachable-states M1 › ‹(V (t-target t)) ∈ L M1 ›
by blast

then have p6 : converge M2 (V (t-target t)) (V (t-target t))
by auto

have p8 : (V (t-target t)) ∈ set T3
using T3-state-cover ‹t-target t ∈ reachable-states M1 ›
by auto

then have p7 : (V (t-source t)) @ [(t-input t, t-output t)] ∈ set T3
using 1
unfolding sc-covered-transitions-alt-def
by auto

have ?P2 t
using T1-covered-transitions-conv[OF passes-T1 [OF ‹((L M1 ∩ set ?TS)

= (L M2 ∩ set ?TS))›] 1 ]
by auto

then show ?thesis
using p3 p4 p5 p6 p7 p8
by blast

next
case 2

show ?thesis
using T2-cover [OF passes-T2 [OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set

?TS))›] 2 ] ‹set T2 ⊆ set T3 ›
unfolding covers-unverified-transition
by blast

qed
qed

have T3-covers-defined-io-pairs : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒
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(
∧

q x y q ′ . q ∈ reachable-states M1 =⇒ h-obs M1 q x y = Some q ′ =⇒
(∃α β.

converge M1 α (V q) ∧
converge M2 α (V q) ∧
converge M1 β (V q ′) ∧
converge M2 β (V q ′) ∧
α @ [(x,y)] ∈ set T3 ∧
β ∈ set T3 )
∧ converge M1 (V q @ [(x,y)]) (V q ′) ∧ converge M2 (V q @ [(x,y)]) (V

q ′))
(is ((L M1 ∩ set ?TS ′) = (L M2 ∩ set ?TS ′)) =⇒ (

∧
q x y q ′ . q ∈ reach-

able-states M1 =⇒ h-obs M1 q x y = Some q ′ =⇒ ?P q x y q ′))
proof −

fix q x y q ′ assume q ∈ reachable-states M1 and h-obs M1 q x y = Some q ′

and ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))
then have (q,x,y,q ′) ∈ transitions M1 and t-source (q,x,y,q ′) ∈ reachable-states

M1
using h-obs-Some[OF assms(1 )] by auto

moreover have converge M1 (V q @ [(x,y)]) (V q ′)
using state-cover-transition-converges[OF assms(1 ) ‹is-state-cover-assignment

M1 V › calculation]
by auto

ultimately show ?P q x y q ′

using T3-covers-transitions[of (q,x,y,q ′), OF ‹((L M1 ∩ set ?TS) = (L M2
∩ set ?TS))›]

unfolding fst-conv snd-conv
by blast

qed

have rstates-io-set : list.set rstates-io = {(q,(x,y)) . q ∈ reachable-states M1 ∧
x ∈ inputs M1 ∧ y ∈ outputs M1}

unfolding rstates-io rstates
using reachable-states-as-list-set[of M1 ] inputs-as-list-set[of M1 ] outputs-as-list-set[of

M1 ]
by force

then have undefined-io-pairs-set : list.set undefined-io-pairs = {(q,(x,y)) . q ∈
reachable-states M1 ∧ x ∈ inputs M1 ∧ y ∈ outputs M1 ∧ h-obs M1 q x y = None}

unfolding undefined-io-pairs
by auto

have verify-undefined-io-pair-prop : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))
=⇒ (

∧
q x y T . L M1 ∩ set (verify-undefined-io-pair T (q,(x,y))) = L M2 ∩ set

(verify-undefined-io-pair T (q,(x,y))) =⇒
q ∈ reachable-states M1 =⇒ x ∈ inputs

600



M1 =⇒ y ∈ outputs M1 =⇒
V ‘ reachable-states M1 ⊆ set T =⇒
∃ α. converge M1 α (V q) ∧

converge M2 α (V q) ∧
α ∈ set (verify-undefined-io-pair T

(q,(x,y))) ∧
α@[(x,y)] ∈ set (verify-undefined-io-pair

T (q,(x,y))))
proof −

fix q x y T
assume L M1 ∩ set (verify-undefined-io-pair T (q,(x,y))) = L M2 ∩ set

(verify-undefined-io-pair T (q,(x,y)))
and q ∈ reachable-states M1 and x ∈ inputs M1 and y ∈ outputs M1
and V ‘ reachable-states M1 ⊆ set T
and ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using T3-state-cover ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1

∩ Prefix-Tree.set T3 = L M2 ∩ Prefix-Tree.set T3 › ‹((L M1 ∩ set ?TS) = (L M2
∩ set ?TS))›

by blast

have L M1 ∩ set (fst (append-io-pair M1 V T G2 cg-insert cg-lookup q x y))
= L M2 ∩ set (fst (append-io-pair M1 V T G2 cg-insert cg-lookup q x y))

using ‹L M1 ∩ set (verify-undefined-io-pair T (q,(x,y))) = L M2 ∩ set
(verify-undefined-io-pair T (q,(x,y)))›

unfolding verify-undefined-io-pair case-prod-conv combine-set G2
by blast

have (∃α. converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set (fst (append-io-pair M1 V T G2 cg-insert cg-lookup q x y)) ∧
α @ [(x, y)] ∈ set (fst (append-io-pair M1 V T G2 cg-insert cg-lookup q x

y)))
using assms(16 )
unfolding verifies-io-pair-def
using assms(1−4 ,7 ,8 ) ‹is-state-cover-assignment M1 V › ‹L M1 ∩ V ‘ reach-

able-states M1 = L M2 ∩ V ‘ reachable-states M1 ›
‹q ∈ reachable-states M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs M1 ›

G2-invar [OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›] ‹conver-
gence-graph-insert-invar M1 M2 cg-lookup cg-insert›

‹L M1 ∩ set (fst (append-io-pair M1 V T G2 cg-insert cg-lookup q x y))
= L M2 ∩ set (fst (append-io-pair M1 V T G2 cg-insert cg-lookup q x y))›

by blast
then show ∃ α. converge M1 α (V q) ∧

converge M2 α (V q) ∧
α ∈ set (verify-undefined-io-pair T (q,(x,y))) ∧
α@[(x,y)] ∈ set (verify-undefined-io-pair T (q,(x,y)))
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unfolding verify-undefined-io-pair G2 case-prod-conv combine-set
by blast

qed

have T3-covers-undefined-io-pairs : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))
=⇒ (

∧
q x y . q ∈ reachable-states M1 =⇒ x ∈ inputs M1 =⇒ y ∈ outputs M1

=⇒ h-obs M1 q x y = None =⇒
(∃ α .

converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set T3∧
α@[(x,y)] ∈ set T3 ))

proof −
fix q x y assume q ∈ reachable-states M1 and x ∈ inputs M1 and y ∈ outputs

M1 and h-obs M1 q x y = None and ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

have
∧

q x y qxys T . L M1 ∩ set (foldl verify-undefined-io-pair T qxys) =
L M2 ∩ set (foldl verify-undefined-io-pair T qxys) =⇒ (V ‘ reachable-states M1 )
⊆ set T =⇒ (q,(x,y)) ∈ list.set qxys =⇒ list.set qxys ⊆ list.set undefined-io-pairs
=⇒

(∃ α .
converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set (foldl verify-undefined-io-pair T qxys)∧
α@[(x,y)] ∈ set (foldl verify-undefined-io-pair T qxys))

(is
∧

q x y qxys T . ?P1 qxys T =⇒ (V ‘ reachable-states M1 ) ⊆ set T =⇒
(q,(x,y)) ∈ list.set qxys =⇒ list.set qxys ⊆ list.set undefined-io-pairs =⇒ ?P2 q x
y qxys T )

proof −
fix q x y qxys T
assume ?P1 qxys T and (q,(x,y)) ∈ list.set qxys and list.set qxys ⊆ list.set

undefined-io-pairs and (V ‘ reachable-states M1 ) ⊆ set T
then show ?P2 q x y qxys T
proof (induction qxys rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc a qxys)

have set (foldl verify-undefined-io-pair T qxys) ⊆ set (foldl verify-undefined-io-pair
T (qxys@[a]))

using verify-undefined-io-pair-retains-testsuite
by auto

then have ∗:L M1 ∩ Prefix-Tree.set (foldl verify-undefined-io-pair T qxys)
= L M2 ∩ Prefix-Tree.set (foldl verify-undefined-io-pair T qxys)

using snoc.prems(1 )
by blast

have ∗∗: V ‘ reachable-states M1 ⊆ Prefix-Tree.set (foldl verify-undefined-io-pair
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T qxys)
using snoc.prems(4 ) verify-undefined-io-pair-folding-retains-testsuite
by blast

show ?case proof (cases a = (q,(x,y)))
case True
then have ∗∗∗: q ∈ reachable-states M1

using snoc.prems(3 )
unfolding undefined-io-pairs-set
by auto

have x ∈ inputs M1 and y ∈ outputs M1
using snoc.prems(2 ,3 ) unfolding undefined-io-pairs-set by auto

have ∗∗∗∗: L M1 ∩ set (verify-undefined-io-pair (foldl verify-undefined-io-pair
T qxys) (q,(x,y))) = L M2 ∩ set (verify-undefined-io-pair (foldl verify-undefined-io-pair
T qxys) (q,(x,y)))

using snoc.prems(1 ) unfolding True by auto

show ?thesis
using verify-undefined-io-pair-prop[OF ‹((L M1 ∩ set ?TS) = (L M2 ∩

set ?TS))› ∗∗∗∗ ∗∗∗ ‹x ∈ inputs M1 › ‹y ∈ outputs M1 › ∗∗]
unfolding True
by auto

next
case False

then have (q, x, y) ∈ list.set qxys and list.set qxys ⊆ list.set unde-
fined-io-pairs

using snoc.prems(2 ,3 ) by auto
then show ?thesis

using snoc.IH [OF ∗ - - snoc.prems(4 )]
using ‹set (foldl verify-undefined-io-pair T qxys) ⊆ set (foldl ver-

ify-undefined-io-pair T (qxys@[a]))›
by blast

qed
qed

qed
moreover have L M1 ∩ set (foldl verify-undefined-io-pair T2 undefined-io-pairs)

= L M2 ∩ set (foldl verify-undefined-io-pair T2 undefined-io-pairs)
using ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L

M2 ∩ set T3 › ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›
unfolding T3 T2 .

moreover have (V ‘ reachable-states M1 ) ⊆ set T2
using T1-state-cover T2 T2-invar-1 passes-T2 by fastforce

moreover have (q,(x,y)) ∈ list.set undefined-io-pairs
unfolding undefined-io-pairs-set
using ‹q ∈ reachable-states M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs M1 › ‹h-obs

M1 q x y = None›
by blast
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ultimately show (∃ α .
converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set T3∧
α@[(x,y)] ∈ set T3 )

unfolding T3 T2
by blast

qed

define TCfun where TCfun: TCfun = (λ (q,(x,y)) . case h-obs M1 q x y of
None ⇒ {{α, α@[(x,y)]} | α . converge M1 α (V q) ∧

converge M2 α (V q) ∧ α ∈ set T3 ∧ α@[(x,y)] ∈ set T3} |
Some q ′⇒ {{α,α@[(x,y)], β} | α β . converge M1 α (V

q) ∧ converge M2 α (V q) ∧ converge M1 β (V q ′) ∧ converge M2 β (V q ′) ∧ α
@ [(x,y)] ∈ set T3 ∧ β ∈ set T3 ∧ converge M1 (V q @ [(x,y)]) (V q ′) ∧ converge
M2 (V q @ [(x,y)]) (V q ′)})

define TC where TC : TC = Set.insert [] (
⋃
(
⋃

(TCfun ‘ (reachable-states M1
× (inputs M1 × outputs M1 )))))

have TCfun-nonempty: ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ (
∧

q x
y . q ∈ reachable-states M1 =⇒ x ∈ inputs M1 =⇒ y ∈ outputs M1 =⇒ TCfun
(q,(x,y)) 6= {})

proof −
fix q x y assume ∗:q ∈ reachable-states M1 and ∗∗:x ∈ inputs M1 and ∗∗∗:y

∈ outputs M1 and ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

show TCfun (q,(x,y)) 6= {}
proof (cases h-obs M1 q x y)

case None
then have TCfun (q,(x,y)) = {{α, α @ [(x, y)]} |α. converge M1 α (V q) ∧

converge M2 α (V q) ∧ α ∈ set T3 ∧ α @ [(x, y)] ∈ set T3}
unfolding TCfun by auto

moreover have {{α, α @ [(x, y)]} |α. converge M1 α (V q) ∧ converge M2
α (V q) ∧ α ∈ set T3 ∧ α @ [(x, y)] ∈ set T3} 6= {}

using T3-covers-undefined-io-pairs[OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set
?TS))› ∗ ∗∗ ∗∗∗ None]

by blast
ultimately show ?thesis

by blast
next

case (Some q ′)
then have TCfun (q,(x,y)) = {{α,α@[(x,y)], β} | α β . converge M1 α (V

q) ∧ converge M2 α (V q) ∧ converge M1 β (V q ′) ∧ converge M2 β (V q ′) ∧ α
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@ [(x,y)] ∈ set T3 ∧ β ∈ set T3 ∧ converge M1 (V q @ [(x,y)]) (V q ′) ∧ converge
M2 (V q @ [(x,y)]) (V q ′)}

using TCfun by auto
moreover have {{α,α@[(x,y)], β} | α β . converge M1 α (V q) ∧ converge

M2 α (V q) ∧ converge M1 β (V q ′) ∧ converge M2 β (V q ′) ∧ α @ [(x,y)] ∈ set
T3 ∧ β ∈ set T3 ∧ converge M1 (V q @ [(x,y)]) (V q ′) ∧ converge M2 (V q @
[(x,y)]) (V q ′)} 6= {}

using T3-covers-defined-io-pairs[OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set
?TS))› ∗ Some]

by blast
ultimately show ?thesis

by blast
qed

qed

have TC-in-T3 : TC ⊆ set T3
proof

fix α assume α ∈ TC
show α ∈ set T3
proof (cases α = [])

case True
then show ?thesis
using T3-state-cover ‹is-state-cover-assignment M1 V › reachable-states-initial[of

M1 ]
by auto

next
case False
then obtain q x y where q ∈ reachable-states M1

and x ∈ inputs M1
and y ∈ outputs M1
and α ∈

⋃
(TCfun (q,(x,y)))

using ‹α ∈ TC › unfolding TC
by auto

show α ∈ set T3
using ‹α ∈

⋃
(TCfun (q,(x,y)))› set-prefix[of α [(x,y)] T3 ] unfolding

TCfun
by (cases h-obs M1 q x y;auto)

qed
qed

have TC-is-transition-cover : ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒
transition-cover M1 TC

proof −
assume ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))

have
∧

q x y . q ∈ reachable-states M1 =⇒ x ∈ inputs M1 =⇒ y ∈ outputs
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M1 =⇒ ∃α. α ∈ TC ∧ α @ [(x, y)] ∈ TC ∧ α ∈ L M1 ∧ after-initial M1 α = q
proof −

fix q x y assume q ∈ reachable-states M1
and x ∈ inputs M1
and y ∈ outputs M1

then have (q,(x,y)) ∈ (reachable-states M1 × FSM .inputs M1 × FSM .outputs
M1 )

by blast

show ∃α. α ∈ TC ∧ α @ [(x, y)] ∈ TC ∧ α ∈ L M1 ∧ after-initial M1 α =
q

proof (cases h-obs M1 q x y)
case None
then have TCfun (q,(x,y)) = {{α, α @ [(x, y)]} |α. converge M1 α (V q)

∧ converge M2 α (V q) ∧ α ∈ set T3 ∧ α @ [(x, y)] ∈ set T3}
unfolding TCfun by auto

then obtain α where converge M1 α (V q) and α ∈
⋃

(TCfun (q,(x,y)))
∧ α @ [(x, y)] ∈

⋃
(TCfun (q,(x,y)))

using TCfun-nonempty[OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›
‹q ∈ reachable-states M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs M1 ›]

by auto
then have after-initial M1 α = q
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹q ∈ reachable-states M1 ›]
using convergence-minimal[OF assms(3 ,1 )]
by (metis converge.elims(2 ))
then have ∃α. α ∈

⋃
(TCfun (q,(x,y))) ∧ α @ [(x, y)] ∈

⋃
(TCfun

(q,(x,y))) ∧ α ∈ L M1 ∧ after-initial M1 α = q
using ‹α ∈

⋃
(TCfun (q,(x,y))) ∧ α @ [(x, y)] ∈

⋃
(TCfun (q,(x,y)))›

using ‹converge M1 α (V q)› converge.elims(2 ) by blast
moreover have

⋃
(TCfun (q,(x,y))) ⊆ TC

unfolding TC using ‹(q,(x,y)) ∈ (reachable-states M1 × FSM .inputs M1
× FSM .outputs M1 )›

by blast
ultimately show ?thesis

by blast
next

case (Some q ′)
then have TCfun (q,(x,y)) = {{α,α@[(x,y)], β} | α β . converge M1 α (V

q) ∧ converge M2 α (V q) ∧ converge M1 β (V q ′) ∧ converge M2 β (V q ′) ∧ α
@ [(x,y)] ∈ set T3 ∧ β ∈ set T3 ∧ converge M1 (V q @ [(x,y)]) (V q ′) ∧ converge
M2 (V q @ [(x,y)]) (V q ′)}

using TCfun
by auto

moreover obtain S where S ∈ TCfun (q,(x,y))
using TCfun-nonempty[OF ‹((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS))›

‹q ∈ reachable-states M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs M1 ›]
by blast

ultimately obtain α where converge M1 α (V q) and α ∈ S ∧ α @ [(x,
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y)] ∈ S
by auto

then have after-initial M1 α = q
using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹q ∈ reachable-states M1 ›]
using convergence-minimal[OF assms(3 ,1 )]
by (metis converge.elims(2 ))
moreover have α ∈

⋃
(TCfun (q,(x,y))) ∧ α @ [(x, y)] ∈

⋃
(TCfun

(q,(x,y)))
using ‹α ∈ S ∧ α @ [(x, y)] ∈ S› ‹S ∈ TCfun (q,(x,y))›
by auto

ultimately have ∃α. α ∈
⋃

(TCfun (q,(x,y))) ∧ α @ [(x, y)] ∈
⋃

(TCfun
(q,(x,y))) ∧ α ∈ L M1 ∧ after-initial M1 α = q

using ‹α ∈
⋃

(TCfun (q,(x,y))) ∧ α @ [(x, y)] ∈
⋃

(TCfun (q,(x,y)))›
using ‹converge M1 α (V q)› converge.elims(2 ) by blast

moreover have
⋃

(TCfun (q,(x,y))) ⊆ TC
unfolding TC using ‹(q,(x,y)) ∈ (reachable-states M1 × FSM .inputs M1

× FSM .outputs M1 )›
by blast

ultimately show ?thesis
by blast

qed
qed
then show ?thesis

unfolding transition-cover-def
by blast

qed

have TC-preserves-convergence: preserves-convergence M1 M2 TC
proof −

have
∧

α β . α ∈ L M1 ∩ TC =⇒ β ∈ L M1 ∩ TC =⇒ converge M1 α β
=⇒ converge M2 α β

proof −
fix α β assume α ∈ L M1 ∩ TC

β ∈ L M1 ∩ TC
converge M1 α β

have ∗:
∧

α . α ∈ L M1 =⇒ α ∈ TC =⇒ ∃ q . q ∈ reachable-states M1 ∧
converge M1 α (V q) ∧ converge M2 α (V q)

proof −
fix α assume α ∈ L M1 and α ∈ TC

show ∃ q . q ∈ reachable-states M1 ∧ converge M1 α (V q) ∧ converge M2
α (V q)

proof (cases α = [])
case True

then have V (initial M1 ) = α
using ‹is-state-cover-assignment M1 V › reachable-states-initial[of M1 ]
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by auto
then have converge M1 α (V (initial M1 )) and converge M2 α (V (initial

M1 ))
unfolding True by auto

then show ?thesis
using reachable-states-initial[of M1 ]
by auto

next
case False
then have α ∈ (

⋃
(
⋃

(TCfun ‘ (reachable-states M1 × (inputs M1 ×
outputs M1 )))))

using ‹α ∈ TC ›
unfolding TC
by blast

then obtain q x y where q ∈ reachable-states M1
and x ∈ inputs M1
and y ∈ outputs M1
and α ∈

⋃
(TCfun (q,(x,y)))

unfolding TC by auto

show ∃ q . q ∈ reachable-states M1 ∧ converge M1 α (V q) ∧ converge
M2 α (V q)

proof (cases h-obs M1 q x y)
case None
then have TCfun (q,(x,y)) = {{α, α @ [(x, y)]} |α. converge M1 α (V

q) ∧ converge M2 α (V q) ∧ α ∈ set T3 ∧ α @ [(x, y)] ∈ set T3}
unfolding TCfun by auto

then obtain α ′ where α ∈ {α ′, α ′ @ [(x, y)]}
and converge M1 α ′ (V q)
and converge M2 α ′ (V q)

using ‹α ∈
⋃

(TCfun (q,(x,y)))›
by auto

have [(x,y)] /∈ LS M1 q
using None unfolding h-obs-None[OF assms(1 )] LS-single-transition
by auto

moreover have after-initial M1 α ′ = q
using ‹converge M1 α ′ (V q)›

using state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment
M1 V › ‹q ∈ reachable-states M1 ›]

using convergence-minimal[OF assms(3 ,1 ) - -]
by (metis converge.elims(2 ))

ultimately have α ′ @ [(x, y)] /∈ L M1
using after-language-iff [OF assms(1 ), of α ′ initial M1 [(x,y)]] ‹converge

M1 α ′ (V q)›
by (meson converge.elims(2 ))

then have α ′ = α
using ‹α ∈ {α ′, α ′ @ [(x, y)]}› ‹α ∈ L M1 ›
by blast
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then show ?thesis
using ‹q ∈ reachable-states M1 › ‹converge M1 α ′ (V q)› ‹converge M2

α ′ (V q)›
by blast

next
case (Some q ′)
then have q ′ ∈ reachable-states M1

unfolding h-obs-Some[OF assms(1 )]
using reachable-states-next[OF ‹q ∈ reachable-states M1 ›, of (q,x,y,q ′)]

by auto

have TCfun (q,(x,y)) = {{α,α@[(x,y)], β} | α β . converge M1 α (V q)
∧ converge M2 α (V q) ∧ converge M1 β (V q ′) ∧ converge M2 β (V q ′) ∧ α @
[(x,y)] ∈ set T3 ∧ β ∈ set T3 ∧ converge M1 (V q @ [(x,y)]) (V q ′) ∧ converge
M2 (V q @ [(x,y)]) (V q ′)}

using Some TCfun
by auto

then obtain α ′ β where α ∈ {α ′,α ′@[(x,y)], β}
and converge M1 α ′ (V q)
and converge M2 α ′ (V q)
and converge M1 β (V q ′)
and converge M2 β (V q ′)
and converge M1 (V q @ [(x,y)]) (V q ′)
and converge M2 (V q @ [(x,y)]) (V q ′)

using ‹α ∈
⋃

(TCfun (q,(x,y)))›
by auto

then consider α = α ′ | α = α ′@[(x,y)] | α = β
by blast

then show ?thesis proof cases
case 1
then show ?thesis

using ‹q ∈ reachable-states M1 › ‹converge M1 α ′ (V q)› ‹converge
M2 α ′ (V q)›

by blast
next

case 2

have converge M1 (α ′@[(x,y)]) (V q @ [(x,y)])
using ‹converge M1 α ′ (V q)› ‹converge M1 (V q @ [(x,y)]) (V q ′)›
using converge-append[OF assms(1 ), of V q α ′ [(x,y)]]
by auto

then have converge M1 (α ′@[(x,y)]) (V q ′)
using ‹converge M1 β (V q ′)› ‹converge M1 (V q @ [(x,y)]) (V q ′)›
by auto

have converge M2 (α ′@[(x,y)]) (V q @ [(x,y)])
using ‹converge M2 α ′ (V q)› ‹converge M2 (V q @ [(x,y)]) (V q ′)›
using converge-append[OF assms(2 ), of V q α ′ [(x,y)]]
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by auto
then have converge M2 (α ′@[(x,y)]) (V q ′)

using ‹converge M2 β (V q ′)› ‹converge M2 (V q @ [(x,y)]) (V q ′)›
by auto

show ?thesis
using 2 ‹q ′ ∈ reachable-states M1 › ‹converge M1 (α ′@[(x,y)]) (V q ′)›

‹converge M2 (α ′@[(x,y)]) (V q ′)›
by auto

next
case 3
then show ?thesis

using ‹converge M1 β (V q ′)› ‹converge M2 β (V q ′)› ‹q ′ ∈
reachable-states M1 ›

by blast
qed

qed
qed

qed

obtain q where q ∈ reachable-states M1 and converge M1 α (V q) and
converge M2 α (V q)

using ∗ ‹α ∈ L M1 ∩ TC ›
by blast

obtain q ′ where q ′ ∈ reachable-states M1 and converge M1 β (V q ′) and
converge M2 β (V q ′)

using ∗ ‹β ∈ L M1 ∩ TC ›
by blast

have converge M1 (V q) (V q ′)
using ‹converge M1 α (V q)› ‹converge M1 β (V q ′)› ‹converge M1 α β›
by auto

then have q = q ′

using convergence-minimal[OF assms(3 ,1 ), of V q V q ′]
unfolding state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹q ∈ reachable-states M1 ›]
state-cover-assignment-after [OF assms(1 ) ‹is-state-cover-assignment

M1 V › ‹q ′ ∈ reachable-states M1 ›]
by auto

then have V q = V q ′

by auto
then show converge M2 α β

using ‹converge M2 α (V q)› ‹converge M2 β (V q ′)›
by auto

qed

then show ?thesis
unfolding preserves-convergence.simps
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by blast
qed

have [] ∈ TC
unfolding TC by blast

show ((L M1 ∩ set ?TS) = (L M2 ∩ set ?TS)) =⇒ L M1 = L M2
using initialised-convergence-preserving-transition-cover-is-complete[OF assms(1−4 ,7 ,8 )

‹((L M1 ∩ set ?TS)
= (L M2 ∩ set ?TS)) =⇒ L M1 ∩ set T3 = L M2 ∩ set T3 ›

TC-in-T3
TC-is-transition-cover

‹[] ∈ TC ›
TC-preserves-convergence]

by assumption

show finite-tree ?TS
using T2 T2-finite T3 verify-undefined-io-pair-folding-retains-finiteness
by (simp add: ‹?TS = T3 ›)

qed

end

20 Pair-Framework

This theory defines the Pair-Framework and provides completeness proper-
ties.
theory Pair-Framework

imports H-Framework
begin

20.1 Classical H-Condition
definition satisfies-h-condition :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment
⇒ ( ′b × ′c) list set ⇒ nat ⇒ bool where

satisfies-h-condition M V T m = (let
Π = (V ‘ reachable-states M );
n = card (reachable-states M );
X = λ q . {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−n ∧ x ∈ inputs

M ∧ y ∈ outputs M};
A = Π × Π;
B = Π × { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q};
C = (

⋃
q ∈ reachable-states M .

⋃
τ ∈ X q . { (V q) @ τ ′ | τ ′ . τ ′ ∈ list.set

(prefixes τ)} × {(V q)@τ})
in

is-state-cover-assignment M V
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∧ Π ⊆ T
∧ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ T
∧ (∀ (α,β) ∈ A ∪ B ∪ C . α ∈ L M −→

β ∈ L M −→
after-initial M α 6= after-initial M β −→
(∃ ω . α@ω ∈ T ∧

β@ω ∈ T ∧
distinguishes M (after-initial M α) (after-initial M

β) ω)))

lemma h-condition-satisfies-abstract-h-condition :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M
and satisfies-h-condition M V T m
and (L M ∩ T = L I ∩ T )

shows satisfies-abstract-h-condition M I V m
proof −

define Π where Π: Π = (V ‘ reachable-states M )
define n where n: n = size-r M
define X where X : X = (λ q . {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤

m−n ∧ x ∈ inputs M ∧ y ∈ outputs M})
define A where A: A = Π × Π
define B where B: B = Π × { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈
X q}

define C where C : C = (
⋃

q ∈ reachable-states M .
⋃

τ ∈ X q . { (V q) @
τ ′ | τ ′ . τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ})

have satisfies-h-condition M V T m = (is-state-cover-assignment M V
∧ Π ⊆ T
∧ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ T
∧ (∀ (α,β) ∈ A ∪ B ∪ C . α ∈ L M −→

β ∈ L M −→
after-initial M α 6= after-initial M β −→
(∃ ω . α@ω ∈ T ∧

β@ω ∈ T ∧
distinguishes M (after-initial M α) (after-initial M

β) ω)))
unfolding satisfies-h-condition-def Let-def Π n X A B C
by auto

then have is-state-cover-assignment M V
and Π ⊆ T
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and { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ T
and distinguishing-tests:

∧
α β . (α,β) ∈ A ∪ B ∪ C =⇒

α ∈ L M =⇒
β ∈ L M =⇒
after-initial M α 6= after-initial M β =⇒
(∃ ω . α@ω ∈ T ∧

β@ω ∈ T ∧
distinguishes M (after-initial M α) (after-initial M β)

ω)
using ‹satisfies-h-condition M V T m› by blast+

have Π ⊆ L I and Π ⊆ L M
using ‹Π ⊆ T › ‹Π = (V ‘ reachable-states M )› ‹L M ∩ T = L I ∩ T ›

state-cover-assignment-language[OF ‹is-state-cover-assignment M V ›] by
blast+

have (
∧

q γ . q ∈ reachable-states M =⇒ length γ ≤ Suc (m−size-r M ) =⇒
list.set γ ⊆ inputs M × outputs M =⇒ butlast γ ∈ LS M q =⇒ (L M ∩ (V ‘
reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}) = L I ∩ (V ‘ reach-
able-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})) ∧ (preserves-divergence
M I (V ‘ reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))) =⇒

satisfies-abstract-h-condition M I V m
unfolding satisfies-abstract-h-condition-def Let-def
by blast

moreover have (
∧

q γ . q ∈ reachable-states M =⇒ length γ ≤ Suc (m−size-r
M ) =⇒ list.set γ ⊆ inputs M × outputs M =⇒ butlast γ ∈ LS M q =⇒ (L
M ∩ (V ‘ reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}) =
L I ∩ (V ‘ reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})) ∧
(preserves-divergence M I (V ‘ reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set
(prefixes γ)})))

proof −
fix q γ
assume a1 : q ∈ reachable-states M

and a2 : length γ ≤ Suc (m−size-r M )
and a3 : list.set γ ⊆ inputs M × outputs M
and a4 : butlast γ ∈ LS M q

have {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)} ⊆ {V q} ∪ {V q @ τ | τ . τ ∈
X q}

proof
fix v assume v ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}
then obtain w where v = V q @ w and w ∈ list.set (prefixes γ)

by blast

show v ∈ {V q} ∪ {V q @ τ | τ . τ ∈ X q}
proof (cases w rule: rev-cases)

case Nil
show ?thesis unfolding ‹v = V q @ w› Nil Π using a1 by auto
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next
case (snoc w ′ xy)

obtain w ′′ where γ = w ′@[xy]@w ′′

using ‹w ∈ list.set (prefixes γ)›
unfolding prefixes-set snoc by auto

obtain w ′′′ x y where γ = (w ′@w ′′′)@[(x,y)]
proof (cases w ′′ rule: rev-cases)

case Nil
show ?thesis

using that[of [] fst xy snd xy]
unfolding ‹γ = w ′@[xy]@w ′′› Nil by auto

next
case (snoc w ′′′ xy ′)
show ?thesis

using that[of [xy]@w ′′′ fst xy ′ snd xy ′]
unfolding ‹γ = w ′@[xy]@w ′′› snoc by auto

qed
then have butlast γ = w ′@w ′′′

using butlast-snoc by metis

have w ′ ∈ LS M q
using a4 unfolding ‹v = V q @ w› ‹butlast γ = w ′@w ′′′›
using language-prefix by metis

moreover have length w ′ ≤ m − size-r M
using a2 unfolding ‹v = V q @ w› ‹γ = (w ′@w ′′′)@[(x,y)]› by auto

moreover have fst xy ∈ FSM .inputs M ∧ snd xy ∈ FSM .outputs M
using a3 unfolding ‹v = V q @ w› ‹γ = w ′@[xy]@w ′′› by auto

ultimately have w ′@[(fst xy, snd xy)] ∈ X q
unfolding snoc X n by blast

then have w ∈ X q
unfolding snoc by auto

then show ?thesis
unfolding ‹v = V q @ w› using a1 by blast

qed
qed

have preserves-divergence M I (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
proof −

have
∧

α β . α ∈ L M =⇒ α ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes
γ)}) =⇒ β ∈ L M =⇒ β ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) =⇒

¬ converge M α β =⇒ ¬ converge I α β
proof −

fix α β
assume α ∈ L M

and α ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
and β ∈ L M
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and β ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
and ¬ converge M α β

then have after-initial M α 6= after-initial M β
by auto

then have α 6= β
by auto

obtain v w where {v,w} = {α,β} and ∗:(v ∈ Π ∧ w ∈ Π)
∨ (v ∈ Π ∧ w ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set

(prefixes γ)})
∨ (v ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes

γ)} ∧ w ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
using ‹α ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})›

‹β ∈ (Π ∪ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})›
by blast

from ∗ consider (v ∈ Π ∧ w ∈ Π) |
(v ∈ Π ∧ w ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) |
(v ∈ {V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)} ∧ w ∈ {V q @

ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
by blast

then have (v,w) ∈ A ∪ B ∪ C ∨ (w,v) ∈ A ∪ B ∪ C
proof cases

case 1
then show ?thesis unfolding A by blast

next
case 2
then show ?thesis

using ‹{V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)} ⊆ {V q} ∪ {V q @ τ |
τ . τ ∈ X q}› a1

unfolding A B Π
by blast

next
case 3

then obtain io io ′ where v = V q @ io and io ∈ list.set (prefixes γ)
and w = V q @ io ′ and io ′ ∈ list.set (prefixes γ)

by auto

have v 6= w
using ‹{v,w} = {α,β}› ‹α 6= β› by force

then have length io 6= length io ′

using ‹io ∈ list.set (prefixes γ)› ‹io ′ ∈ list.set (prefixes γ)›
unfolding ‹v = V q @ io› ‹w = V q @ io ′› prefixes-set
by force

have io ∈ list.set (prefixes io ′) ∨ io ′ ∈ list.set (prefixes io)
using prefixes-prefixes[OF ‹io ∈ list.set (prefixes γ)› ‹io ′ ∈ list.set

(prefixes γ)›] .
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then obtain u u ′ where {u,u@u ′} = {io,io ′}
and u ∈ list.set (prefixes (u@u ′))

unfolding prefixes-set by auto

have (u,u@u ′) = (io,io ′) ∨ (u,u@u ′) = (io ′,io)
using ‹{u,u@u ′} = {io,io ′}›
by (metis empty-iff insert-iff )

have u 6= u@u ′

using ‹length io 6= length io ′› ‹{u,u@u ′} = {io,io ′}› by force
then have u@u ′ 6= []

by auto
moreover have

∧
w . w 6= [] =⇒ w ∈ list.set (prefixes γ) =⇒ w ∈ X q

using ‹{V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)} ⊆ {V q} ∪ {V q @ τ |
τ . τ ∈ X q}›

by auto
moreover have u@u ′ ∈ list.set (prefixes γ)

using ‹(u,u@u ′) = (io,io ′) ∨ (u,u@u ′) = (io ′,io)› ‹io ∈ list.set (prefixes
γ)› ‹io ′ ∈ list.set (prefixes γ)› by auto

ultimately have u@u ′ ∈ X q
by blast

then have (V q @ u, V q @ (u@u ′)) ∈ C
unfolding C
using a1 ‹u ∈ list.set (prefixes (u@u ′))› by blast

moreover have (V q @ u, V q @ (u@u ′)) ∈ {(v,w), (w,v)}
unfolding ‹v = V q @ io› ‹w = V q @ io ′›
using ‹(u,u@u ′) = (io,io ′) ∨ (u,u@u ′) = (io ′,io)› by auto

ultimately show ?thesis
by blast

qed
moreover have (α,β) = (v,w) ∨ (α,β) = (w,v)

using ‹{v,w} = {α,β}›
by (metis empty-iff insert-iff )

ultimately consider (α,β) ∈ A ∪ B ∪ C | (β,α) ∈ A ∪ B ∪ C
by blast

then obtain ω where α@ω ∈ T and β@ω ∈ T and distinguishes M
(after-initial M α) (after-initial M β) ω

using distinguishing-tests[OF - ‹α ∈ L M › ‹β ∈ L M › ‹after-initial M α
6= after-initial M β›]

using distinguishing-tests[OF - ‹β ∈ L M › ‹α ∈ L M › ] ‹after-initial M α
6= after-initial M β›

by (metis distinguishes-sym)

show ¬ converge I α β
using distinguish-diverge[OF assms(1 ,2 ) ‹distinguishes M (after-initial M

α) (after-initial M β) ω› ‹α@ω ∈ T › ‹β@ω ∈ T › ‹α ∈ L M › ‹β ∈ L M › assms(9 )]
.

qed
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then show ?thesis
unfolding preserves-divergence.simps by blast

qed

moreover have (L M ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}) = L
I ∩ (Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

proof −
have L M ∩ Π = L I ∩ Π

using ‹Π ⊆ L I › ‹Π ⊆ L M ›
by blast

moreover have L M ∩ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X
q} = L I ∩ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q}

using ‹{ (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ T ›
using assms(9 )
by blast

ultimately have ∗:L M ∩ (Π ∪ { (V q) @ τ | q τ . q ∈ reachable-states M ∧
τ ∈ X q}) = L I ∩ (Π ∪ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q})

by blast
have ∗∗:(Π ∪ {V q @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}) ⊆ Π ∪ { (V q) @ τ

| q τ . q ∈ reachable-states M ∧ τ ∈ X q}
using ‹{V q @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)} ⊆ {V q} ∪ {V q @ τ | τ . τ

∈ X q}›
using a1 unfolding Π by blast

have scheme:
∧

A B C D . A ∩ C = B ∩ C =⇒ D ⊆ C =⇒ A ∩ D = B ∩
D

by (metis (no-types, opaque-lifting) Int-absorb1 inf-assoc)
show ?thesis

using scheme[OF ∗ ∗∗] .
qed

ultimately show (L M ∩ (V ‘ reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈
list.set (prefixes γ)}) = L I ∩ (V ‘ reachable-states M ∪ {V q @ ω ′ | ω ′. ω ′ ∈
list.set (prefixes γ)})) ∧ (preserves-divergence M I (V ‘ reachable-states M ∪ {V q
@ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

unfolding Π by blast
qed
ultimately show ?thesis

by blast
qed

lemma h-condition-completeness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M
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and satisfies-h-condition M V T m
shows (L M = L I ) ←→ (L M ∩ T = L I ∩ T )
proof −
have is-state-cover-assignment M V using assms(8 ) unfolding satisfies-h-condition-def

Let-def by blast
then show ?thesis

using h-condition-satisfies-abstract-h-condition[OF assms]
using abstract-h-condition-completeness[OF assms(1−7 )]
by blast

qed

20.2 Helper Functions
fun language-up-to-length-with-extensions :: ′a ⇒ ( ′a ⇒ ′b ⇒ (( ′c× ′a) list)) ⇒ ′b
list ⇒ ( ′b× ′c) list list ⇒ nat ⇒ ( ′b × ′c) list list

where
language-up-to-length-with-extensions q hM iM ex 0 = ex |
language-up-to-length-with-extensions q hM iM ex (Suc k) =

ex @ concat (map (λx .concat (map (λ(y,q ′) . (map (λp . (x,y) # p)
(language-up-to-length-with-extensions q ′ hM

iM ex k)))
(hM q x)))

iM )

lemma language-up-to-length-with-extensions-set :
assumes q ∈ states M
shows List.set (language-up-to-length-with-extensions q (λ q x . sorted-list-of-set

(h M (q,x))) (inputs-as-list M ) ex k)
= {io@xy | io xy . io ∈ LS M q ∧ length io ≤ k ∧ xy ∈ List.set ex}

(is ?S1 q k = ?S2 q k)
proof

let ?hM = (λ q x . sorted-list-of-set (h M (q,x)))
let ?iM = inputs-as-list M

show ?S1 q k ⊆ ?S2 q k
proof

fix io assume io ∈ ?S1 q k
then show io ∈ ?S2 q k

using assms proof (induction k arbitrary: q io)
case 0
then obtain xy where io = []@xy

and xy ∈ List.set ex
and [] ∈ LS M q

by auto
then show ?case by force

next
case (Suc k)

show ?case proof (cases io ∈ List.set ex)
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case True
then have io = []@io

and io ∈ List.set ex
and [] ∈ LS M q

using Suc.prems(2 ) by auto
then show ?thesis by force

next
case False
then obtain x where x ∈ List.set ?iM

and ∗: io ∈ List.set (concat (map (λ(y,q ′) . map (λp . (x,y) #
p)

(language-up-to-length-with-extensions
q ′ ?hM ?iM ex k))

(?hM q x)))
using Suc.prems(1 )
unfolding language-up-to-length-with-extensions.simps
by fastforce

have x ∈ inputs M
using ‹x ∈ List.set ?iM › inputs-as-list-set by auto

obtain yq ′ where (yq ′) ∈ List.set (?hM q x)
and io ∈ List.set ((λ(y,q ′) . (map (λp . (x,y) # p)

(language-up-to-length-with-extensions
q ′ ?hM ?iM ex k))) yq ′)

using concat-map-elem[OF ∗] by blast
moreover obtain y q ′ where yq ′ = (y,q ′)

using prod.exhaust-sel by blast
ultimately have (y,q ′) ∈ List.set (?hM q x)

and io ∈ List.set ((map (λp . (x,y) # p) (language-up-to-length-with-extensions
q ′ ?hM ?iM ex k)))

by auto

have (y,q ′) ∈ h M (q,x)
using ‹(y,q ′) ∈ List.set (?hM q x)›

by (metis empty-iff empty-set sorted-list-of-set.fold-insort-key.infinite
sorted-list-of-set.set-sorted-key-list-of-set)

then have q ′ ∈ states M
and y ∈ outputs M
and (q,x,y,q ′) ∈ transitions M

unfolding h-simps using fsm-transition-target fsm-transition-output by
auto

obtain p where io = (x,y) # p
and p ∈ List.set (language-up-to-length-with-extensions q ′ ?hM ?iM

ex k)
using ‹io ∈ List.set ((map (λp . (x,y) # p) (language-up-to-length-with-extensions

q ′ ?hM ?iM ex k)))›
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by force
then have p ∈ {io @ xy |io xy. io ∈ LS M q ′ ∧ length io ≤ k ∧ xy ∈ list.set

ex}
using Suc.IH [OF - ‹q ′ ∈ states M ›]
by auto

then obtain ioP xy where p = ioP@xy
and ioP ∈ LS M q ′

and length ioP ≤ k
and xy ∈ list.set ex

by blast

have io = ((x,y)#ioP)@xy
using ‹io = (x,y) # p› ‹p = ioP@xy› by auto

moreover have ((x,y)#ioP) ∈ LS M q
using LS-prepend-transition[OF ‹(q,x,y,q ′) ∈ transitions M ›] ‹ioP ∈ LS

M q ′›
by auto

moreover have length ((x,y)#ioP) ≤ Suc k
using ‹length ioP ≤ k›
by simp

ultimately show ?thesis
using ‹xy ∈ list.set ex› by blast

qed
qed

qed

show ?S2 q k ⊆ ?S1 q k
proof

fix io ′ assume io ′ ∈ ?S2 q k
then show io ′ ∈ ?S1 q k

using assms proof (induction k arbitrary: q io ′)
case 0
then show ?case by auto

next
case (Suc k)

then obtain io xy where io ′ = io@xy
and io ∈ LS M q
and length io ≤ Suc k
and xy ∈ list.set ex

by blast

show ?case proof (cases io)
case Nil
then show ?thesis

using ‹io ∈ LS M q› ‹xy ∈ list.set ex›
unfolding ‹io ′ = io@xy›
by auto

next
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case (Cons a io ′′)

obtain p where path M q p and p-io p = io
using ‹io ∈ LS M q› by auto

then obtain t p ′ where p = t#p ′

using Cons
by blast

then have t ∈ transitions M
and t-source t = q
and path M (t-target t) p ′

using ‹path M q p› by auto

have a = (t-input t, t-output t)
and p-io p ′ = io ′′

using ‹p-io p = io› Cons ‹p = t#p ′›
by auto

have io ′′ ∈ LS M (t-target t)
using ‹p-io p ′ = io ′′› ‹path M (t-target t) p ′› by auto

moreover have length io ′′ ≤ k
using ‹length io ≤ Suc k› Cons by auto

ultimately have io ′′@xy ∈ {io @ xy |io xy. io ∈ LS M (t-target t) ∧ length
io ≤ k ∧ xy ∈ list.set ex}

using ‹xy ∈ list.set ex› by blast

moreover define f where f-def : f = (λ q . (language-up-to-length-with-extensions
q ?hM ?iM ex k))

ultimately have io ′′@xy ∈ list.set (f (t-target t))
using Suc.IH [OF - fsm-transition-target[OF ‹t ∈ transitions M ›]]
by auto

moreover have (t-output t, t-target t) ∈ list.set (?hM q (t-input t))
proof −

have (h M (q,t-input t)) ⊆ image (snd ◦ snd) (transitions M )
unfolding h-simps by force

then have finite (h M (q,t-input t))
using fsm-transitions-finite
using finite-surj by blast

moreover have (t-output t, t-target t) ∈ h M (q,t-input t)
using ‹t ∈ transitions M › ‹t-source t = q›
by auto

ultimately show ?thesis
by simp

qed
ultimately have a#(io ′′@xy) ∈ list.set (concat (map (λ(y,q ′) . (map (λp .

((t-input t),y) # p)
(f q ′)))

(?hM q (t-input t))))
unfolding ‹a = (t-input t, t-output t)›
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by force
moreover have t-input t ∈ list.set ?iM

using fsm-transition-input[OF ‹t ∈ transitions M ›] inputs-as-list-set by
auto

ultimately have a#(io ′′@xy) ∈ list.set (concat (map (λx .concat (map
(λ(y,q ′) . (map (λp . (x,y) # p)

(f q ′)))
(?hM q x)))

?iM ))
by force

then have a#(io ′′@xy) ∈ ?S1 q (Suc k)
unfolding language-up-to-length-with-extensions.simps
unfolding f-def by force

then show ?thesis
unfolding ‹io ′ = io@xy› Cons by simp

qed
qed

qed
qed

fun h-extensions :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ nat ⇒ ( ′b
× ′c) list list where

h-extensions M q k = (let
iM = inputs-as-list M ;
ex = map (λxy . [xy]) (List.product iM (outputs-as-list M ));
hM = (λ q x . sorted-list-of-set (h M (q,x)))

in
language-up-to-length-with-extensions q hM iM ex k)

lemma h-extensions-set :
assumes q ∈ states M

shows List.set (h-extensions M q k) = {io@[(x,y)] | io x y . io ∈ LS M q ∧ length
io ≤ k ∧ x ∈ inputs M ∧ y ∈ outputs M}
proof −

define ex where ex: ex = map (λxy . [xy]) (List.product (inputs-as-list M )
(outputs-as-list M ))

then have List.set ex = {[xy] | xy . xy ∈ list.set (List.product (inputs-as-list M )
(outputs-as-list M ))}

by auto
then have ∗: List.set ex = {[(x,y)] | x y . x ∈ inputs M ∧ y ∈ outputs M}

using inputs-as-list-set[of M ] outputs-as-list-set[of M ]
by auto

have h-extensions M q k = language-up-to-length-with-extensions q (λ q x .
sorted-list-of-set (h M (q,x))) (inputs-as-list M ) ex k
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unfolding ex h-extensions.simps Let-def
by auto

then have List.set (h-extensions M q k) = {io @ xy |io xy. io ∈ LS M q ∧ length
io ≤ k ∧ xy ∈ list.set ex}

using language-up-to-length-with-extensions-set[OF assms]
by auto

then show ?thesis
unfolding ∗ by blast

qed

fun paths-up-to-length-with-targets :: ′a ⇒ ( ′a ⇒ ′b ⇒ (( ′a, ′b, ′c) transition list))
⇒ ′b list ⇒ nat ⇒ (( ′a, ′b, ′c) path × ′a) list

where
paths-up-to-length-with-targets q hM iM 0 = [([],q)] |
paths-up-to-length-with-targets q hM iM (Suc k) =
([],q) # (concat (map (λx .concat (map (λt . (map (λ(p,q). (t # p,q))

(paths-up-to-length-with-targets (t-target t)
hM iM k)))

(hM q x)))
iM ))

lemma paths-up-to-length-with-targets-set :
assumes q ∈ states M
shows List.set (paths-up-to-length-with-targets q (λ q x . map (λ(y,q ′) . (q,x,y,q ′))

(sorted-list-of-set (h M (q,x)))) (inputs-as-list M ) k)
= {(p, target q p) | p . path M q p ∧ length p ≤ k}

(is ?S1 q k = ?S2 q k)
proof

let ?hM = (λ q x . map (λ(y,q ′) . (q,x,y,q ′)) (sorted-list-of-set (h M (q,x))))
let ?iM = inputs-as-list M

have hM :
∧

q x . list.set (?hM q x) = {(q,x,y,q ′) | y q ′ . (q,x,y,q ′) ∈ transitions
M}

proof −
fix q x show list.set (?hM q x) = {(q,x,y,q ′) | y q ′ . (q,x,y,q ′) ∈ transitions M}
proof

show list.set (?hM q x) ⊆ {(q,x,y,q ′) | y q ′ . (q,x,y,q ′) ∈ transitions M}
proof

fix t assume t ∈ list.set (?hM q x)
then obtain y q ′ where t = (q,x,y,q ′) and (y,q ′) ∈ list.set (sorted-list-of-set

(h M (q,x)))
by auto

then have (y,q ′) ∈ h M (q,x)
by (metis empty-iff empty-set sorted-list-of-set.fold-insort-key.infinite

sorted-list-of-set.set-sorted-key-list-of-set)
then show t ∈ {(q,x,y,q ′) | y q ′ . (q,x,y,q ′) ∈ transitions M}

unfolding h-simps ‹t = (q,x,y,q ′)› by blast
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qed

show {(q,x,y,q ′) | y q ′ . (q,x,y,q ′) ∈ transitions M} ⊆ list.set (?hM q x)
proof

fix t assume t ∈ {(q,x,y,q ′) | y q ′ . (q,x,y,q ′) ∈ transitions M}
then obtain y q ′ where t = (q,x,y,q ′) and (q,x,y,q ′) ∈ {(q,x,y,q ′) | y q ′ .

(q,x,y,q ′) ∈ transitions M}
by auto

then have (y,q ′) ∈ h M (q,x)
by auto

have (h M (q,x)) ⊆ image (snd ◦ snd) (transitions M )
unfolding h-simps by force

then have finite (h M (q,x))
using fsm-transitions-finite
using finite-surj by blast

then have (y,q ′) ∈ list.set (sorted-list-of-set (h M (q,x)))
using ‹(y,q ′) ∈ h M (q,x)› by auto

then show t ∈ list.set (?hM q x)
unfolding ‹t = (q,x,y,q ′)› by auto

qed
qed

qed

show ?S1 q k ⊆ ?S2 q k
proof

fix pq assume pq ∈ ?S1 q k
then show pq ∈ ?S2 q k
using assms proof (induction k arbitrary: q pq)

case 0
then show ?case by force

next
case (Suc k)

obtain p q ′ where pq = (p,q ′)
by fastforce

show ?case proof (cases p)
case Nil
have q ′ = q

using Suc.prems(1 )
unfolding ‹pq = (p,q ′)› Nil paths-up-to-length-with-targets.simps
by force

then show ?thesis
unfolding ‹pq = (p,q ′)› Nil using Suc.prems(2 ) by auto

next
case (Cons t p ′)

obtain x where x ∈ list.set ?iM
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and ∗:(t#p ′,q ′) ∈ list.set (concat (map (λt . (map (λ(p,q). (t #
p,q))

(paths-up-to-length-with-targets (t-target
t) ?hM ?iM k)))

(?hM q x)))
using Suc.prems(1 ) unfolding ‹pq = (p,q ′)› Cons paths-up-to-length-with-targets.simps

by fastforce

have x ∈ inputs M
using ‹x ∈ List.set ?iM › inputs-as-list-set by auto

have t ∈ list.set (?hM q x)
and ∗∗:(p ′,q ′) ∈ list.set (paths-up-to-length-with-targets (t-target t) ?hM

?iM k)
using ∗ by auto

have t ∈ transitions M and t-source t = q
using ‹t ∈ list.set (?hM q x)› hM by auto

have q ′ = target (t-target t) p ′

and path M (t-target t) p ′

and length p ′ ≤ k
using Suc.IH [OF ∗∗ fsm-transition-target[OF ‹t ∈ transitions M ›]]
by auto

have q ′ = target q p
unfolding Cons using ‹q ′ = target (t-target t) p ′› by auto

moreover have path M q p
unfolding Cons using ‹path M (t-target t) p ′› ‹t ∈ transitions M › ‹t-source

t = q› by auto
moreover have length p ≤ Suc k

unfolding Cons using ‹length p ′ ≤ k› by auto
ultimately show ?thesis

unfolding ‹pq = (p,q ′)› by blast
qed

qed
qed

show ?S2 q k ⊆ ?S1 q k
proof

fix pq assume pq ∈ ?S2 q k

obtain p q ′ where pq = (p,q ′)
by fastforce

show pq ∈ ?S1 q k
using assms ‹pq ∈ ?S2 q k› unfolding ‹pq = (p,q ′)› proof (induction k

arbitrary: q p q ′)

625



case 0
then show ?case by force

next
case (Suc k)
then have q ′ = target q p

and path M q p
and length p ≤ Suc k

by auto

show ?case proof (cases p)
case Nil
then have q ′ = q

using Suc.prems(2 ) by auto
then show ?thesis unfolding Nil by auto

next
case (Cons t p ′)

then have q ′ = target q (t#p ′)
and path M q (t#p ′)
and length (t#p ′) ≤ Suc k

using Suc.prems(2 )
by auto

have t ∈ transitions M and t-source t = q
using ‹path M q (t#p ′)› by auto

then have t ∈ list.set (?hM q (t-input t))
unfolding hM
by (metis (mono-tags, lifting) mem-Collect-eq prod.exhaust-sel)

have t-input t ∈ list.set ?iM
using fsm-transition-input[OF ‹t ∈ transitions M ›] inputs-as-list-set by

auto

have q ′ = target (t-target t) p ′

using ‹q ′ = target q (t#p ′)› by auto
moreover have path M (t-target t) p ′

using ‹path M q (t#p ′)› by auto
moreover have length p ′ ≤ k

using ‹length (t#p ′) ≤ Suc k› by auto
ultimately have (p ′,q ′) ∈ ?S2 (t-target t) k

by blast
moreover define f where f-def : f = (λq . (paths-up-to-length-with-targets

q ?hM ?iM k))
ultimately have (p ′,q ′) ∈ list.set (f (t-target t))

using Suc.IH [OF fsm-transition-target[OF ‹t ∈ transitions M ›]]
by blast

then have ∗∗: (t#p ′,q ′) ∈ list.set ((map (λ(p,q). (t # p,q)) (f (t-target t))))
by auto
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have scheme:
∧

x y ys f . x ∈ list.set (f y) =⇒ y ∈ list.set ys =⇒ x ∈
list.set (concat (map f ys))

by auto

have (t#p ′,q ′) ∈ list.set (concat (map (λt . (map (λ(p,q). (t # p,q))
(f (t-target t))))

(?hM q (t-input t))))
using scheme[of (t#p ′,q ′) λ t. (map (λ(p,q). (t # p,q)) (f (t-target t))),

OF ∗∗ ‹t ∈ list.set (?hM q (t-input t))›]
.

then have (t#p ′,q ′) ∈ list.set (concat
(map (λx. concat

(map (λt. map (λ(p, y). (t # p, y))
(f (t-target t)))

(map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set (h M (q, x))))))
(inputs-as-list M )))

using ‹t-input t ∈ list.set ?iM › by force

then show ?thesis
unfolding paths-up-to-length-with-targets.simps f-def Cons by auto

qed
qed

qed
qed

fun pairs-to-distinguish :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′a, ′b, ′c)
state-cover-assignment ⇒ ( ′a ⇒ (( ′a, ′b, ′c) path × ′a) list) ⇒ ′a list ⇒ ((( ′b ×
′c) list × ′a) × (( ′b × ′c) list × ′a)) list where

pairs-to-distinguish M V X ′ rstates = (let
Π = map (λq . (V q,q)) rstates;
A = List.product Π Π;
B = List.product Π (concat (map (λq . map (λ (τ ,q ′) . ((V q)@ p-io τ ,q ′)) (X ′

q)) rstates));
C = concat (map (λq . concat (map (λ (τ ′,q ′). map (λτ ′′ . (((V q)@ p-io τ ′′,

target q τ ′′),((V q)@ p-io τ ′,q ′))) (prefixes τ ′)) (X ′ q))) rstates)
in

filter (λ((α,q ′),(β,q ′′)) . q ′ 6= q ′′) (A@B@C ))

lemma pairs-to-distinguish-elems :
assumes observable M
and is-state-cover-assignment M V
and list.set rstates = reachable-states M
and

∧
q p q ′ . q ∈ reachable-states M =⇒ (p,q ′) ∈ list.set (X ′ q) ←→ path

M q p ∧ target q p = q ′ ∧ length p ≤ m−n+1
and ((α,q1 ),(β,q2 )) ∈ list.set (pairs-to-distinguish M V X ′ rstates)
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shows q1 ∈ states M and q2 ∈ states M and q1 6= q2
and α ∈ L M and β ∈ L M and q1 = after-initial M α and q2 = after-initial

M β
proof −

define Π where Π: Π = map (λq . (V q,q)) rstates
moreover define A where A: A = List.product Π Π
moreover define B where B: B = List.product Π (concat (map (λq . map (λ

(τ ,q ′) . ((V q)@ p-io τ ,q ′)) (X ′ q)) rstates))
moreover define C where C : C = concat (map (λq . concat (map (λ (τ ′,q ′).

map (λτ ′′ . (((V q)@ p-io τ ′′, target q τ ′′),((V q)@ p-io τ ′,q ′))) (prefixes τ ′)) (X ′

q))) rstates)
ultimately have pairs-def : pairs-to-distinguish M V X ′ rstates = filter (λ((α,q ′),(β,q ′′))

. q ′ 6= q ′′) (A@B@C )
unfolding pairs-to-distinguish.simps Let-def by force

show q1 6= q2
using assms(5 ) unfolding pairs-def by auto

consider ((α,q1 ),(β,q2 )) ∈ list.set A | ((α,q1 ),(β,q2 )) ∈ list.set B | ((α,q1 ),(β,q2 ))
∈ list.set C

using assms(5 ) unfolding pairs-def by auto
then have q1 ∈ states M ∧ q2 ∈ states M ∧ α ∈ L M ∧ β ∈ L M ∧ q1 =

after-initial M α ∧ q2 = after-initial M β
proof cases

case 1
then have (α,q1 ) ∈ list.set Π and (β,q2 ) ∈ list.set Π

unfolding A by auto
then show ?thesis unfolding Π using assms(3 )

using reachable-state-is-state
using state-cover-assignment-after [OF assms(1 ,2 )]
by force

next
case 2
then have (α,q1 ) ∈ list.set Π and (β,q2 ) ∈ list.set (concat (map (λq . map

(λ (τ ,q ′) . ((V q)@ p-io τ ,q ′)) (X ′ q)) rstates))
unfolding B by auto

then obtain q where q ∈ reachable-states M
and (β,q2 ) ∈ list.set (map (λ (τ ,q ′) . ((V q)@ p-io τ ,q ′)) (X ′ q))

unfolding assms(3 )[symmetric] by (meson concat-map-elem)
then obtain τ where (τ ,q2 ) ∈ list.set (X ′ q) and β = (V q)@ p-io τ

by force
then have path M q τ and target q τ = q2

unfolding assms(4 )[OF ‹q ∈ reachable-states M ›] by auto
moreover obtain p where path M (initial M ) p and p-io p = V q and target

(initial M ) p = q
using state-cover-assignment-after [OF assms(1 ,2 ) ‹q ∈ reachable-states M ›]
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after-path[OF assms(1 )]
by auto

ultimately have path M (initial M ) (p@τ) and target (initial M ) (p@τ) = q2
and p-io (p@τ) = β

unfolding ‹β = (V q)@ p-io τ› by auto
then have q2 = after-initial M β

by (metis (mono-tags, lifting) after-path assms(1 ))
moreover have β ∈ L M

using ‹path M (initial M ) (p@τ)› ‹p-io (p@τ) = β›
by (metis (mono-tags, lifting) language-state-containment)

moreover have q2 ∈ states M
by (metis ‹path M q τ› ‹target q τ = q2 › path-target-is-state)

moreover have q1 ∈ states M
using ‹(α,q1 ) ∈ list.set Π› assms(3 ) reachable-state-is-state unfolding Π by

fastforce
moreover have α ∈ L M and q1 = after-initial M α
using ‹(α,q1 ) ∈ list.set Π› assms(3 ) state-cover-assignment-after [OF assms(1 ,2 )]

unfolding Π by auto
ultimately show ?thesis

by blast
next

case 3
then obtain q where q ∈ reachable-states M

and ((α,q1 ),(β,q2 )) ∈ list.set (concat (map (λ (τ ′,q ′). map (λτ ′′

. (((V q)@ p-io τ ′′, target q τ ′′),((V q)@ p-io τ ′,q ′))) (prefixes τ ′)) (X ′ q)))
unfolding assms(3 )[symmetric] C by force

then obtain τ ′ where (τ ′,q2 ) ∈ list.set (X ′ q) and β = V q @ p-io τ ′

and ((α,q1 ),(β,q2 )) ∈ list.set (map (λτ ′′ . (((V q)@ p-io τ ′′,
target q τ ′′),((V q)@ p-io τ ′,q2 ))) (prefixes τ ′))

by force
then obtain τ ′′ where τ ′′ ∈ list.set (prefixes τ ′) and α = V q @ p-io τ ′′

and ((α,q1 ),(β,q2 )) = (((V q)@ p-io τ ′′, target q τ ′′),((V q)@
p-io τ ′,q2 ))

by auto
then have q1 = target q τ ′′

by auto

have path M q τ ′ and target q τ ′ = q2
using ‹(τ ′,q2 ) ∈ list.set (X ′ q)› unfolding assms(4 )[OF ‹q ∈ reachable-states

M ›] by simp+
then have path M q τ ′′

using ‹τ ′′ ∈ list.set (prefixes τ ′)›
using prefixes-set-ob by force

then have q1 ∈ states M
using path-target-is-state unfolding ‹q1 = target q τ ′′› by force

moreover have α ∈ L M
unfolding ‹α = V q @ p-io τ ′′›
using state-cover-assignment-after [OF assms(1 ,2 )]

by (metis (mono-tags, lifting) ‹path M q τ ′′› ‹q ∈ reachable-states M › assms(1 )
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language-state-containment observable-after-language-append)
moreover have q1 = after-initial M α

unfolding ‹α = V q @ p-io τ ′′›
using state-cover-assignment-after [OF assms(1 ,2 ) ‹q ∈ reachable-states M ›]
by (metis (mono-tags, lifting) ‹α = V q @ p-io τ ′′› ‹path M q τ ′′› ‹q1 =

target q τ ′′› after-path after-split assms(1 ) calculation(2 ))
moreover have q2 ∈ states M

using ‹path M q τ ′› ‹target q τ ′ = q2 › path-target-is-state by force
moreover have β ∈ L M

by (metis (mono-tags, lifting) ‹α = V q @ p-io τ ′′› ‹β = V q @ p-io
τ ′› ‹path M q τ ′› ‹q ∈ reachable-states M › assms(1 ) assms(2 ) calculation(2 )
is-state-cover-assignment-observable-after language-prefix language-state-containment
observable-after-language-append)

moreover have q2 = after-initial M β
unfolding ‹β = V q @ p-io τ ′›
using state-cover-assignment-after [OF assms(1 ,2 ) ‹q ∈ reachable-states M ›]
by (metis (mono-tags, lifting) ‹β = V q @ p-io τ ′› ‹path M q τ ′› ‹target q τ ′

= q2 › after-path after-split assms(1 ) calculation(5 ))
ultimately show ?thesis

by blast
qed
then show q1 ∈ states M and q2 ∈ states M and α ∈ L M and β ∈ L M and

q1 = after-initial M α and q2 = after-initial M β
by auto

qed

lemma pairs-to-distinguish-containment :
assumes observable M
and is-state-cover-assignment M V
and list.set rstates = reachable-states M
and

∧
q p q ′ . q ∈ reachable-states M =⇒ (p,q ′) ∈ list.set (X ′ q) ←→ path

M q p ∧ target q p = q ′ ∧ length p ≤ m−n+1
and (α,β) ∈ (V ‘ reachable-states M ) × (V ‘ reachable-states M )

∪ (V ‘ reachable-states M ) × { (V q) @ τ | q τ . q ∈ reachable-states
M ∧ τ ∈ {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−n ∧ x ∈ inputs M
∧ y ∈ outputs M}}

∪ (
⋃

q ∈ reachable-states M .
⋃

τ ∈ {io@[(x,y)] | io x y . io ∈ LS
M q ∧ length io ≤ m−n ∧ x ∈ inputs M ∧ y ∈ outputs M} . { (V q) @ τ ′ | τ ′ .
τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ})

and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β

shows ((α,after-initial M α),(β,after-initial M β)) ∈ list.set (pairs-to-distinguish
M V X ′ rstates)
proof −

let ?X = λ q . {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−n ∧ x ∈
inputs M ∧ y ∈ outputs M}
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define Π where Π: Π = map (λq . (V q,q)) rstates
moreover define A where A: A = List.product Π Π
moreover define B where B: B =List.product Π (concat (map (λq . map (λ

(τ ,q ′) . ((V q)@ p-io τ ,q ′)) (X ′ q)) rstates))
moreover define C where C : C = concat (map (λq . concat (map (λ (τ ′,q ′).

map (λτ ′′ . (((V q)@ p-io τ ′′, target q τ ′′),((V q)@ p-io τ ′,q ′))) (prefixes τ ′)) (X ′

q))) rstates)
ultimately have pairs-def : pairs-to-distinguish M V X ′ rstates = filter (λ((α,q ′),(β,q ′′))

. q ′ 6= q ′′) (A@B@C )
unfolding pairs-to-distinguish.simps Let-def by force

have V-target:
∧

q . q ∈ reachable-states M =⇒ after-initial M (V q) = q
proof −

fix q assume q ∈ reachable-states M
then have q ∈ io-targets M (V q) (initial M )

using assms(2 ) by auto
then have V q ∈ L M

unfolding io-targets.simps
by force

show after-initial M (V q) = q
by (meson ‹q ∈ reachable-states M › assms(1 ) assms(2 ) is-state-cover-assignment-observable-after)

qed

have V-path:
∧

io q . q ∈ reachable-states M =⇒ io ∈ LS M q =⇒ ∃ p . path
M q p ∧ p-io p = io ∧ target q p = after-initial M ((V q)@io)

proof −
fix io q assume q ∈ reachable-states M and io ∈ LS M q
then have after-initial M (V q) = q

using V-target by auto
then have ((V q)@io) ∈ L M

using ‹io ∈ LS M q›
by (meson ‹q ∈ reachable-states M › assms(2 ) is-state-cover-assignment.simps

language-io-target-append)
then obtain p where path M (initial M ) p and p-io p = ((V q)@io)

by auto
moreover have target (initial M ) p ∈ io-targets M ((V q)@io) (initial M )

using calculation unfolding io-targets.simps by force
ultimately have target (initial M ) p = after-initial M ((V q)@io)

using observable-io-targets[OF ‹observable M › ‹((V q)@io) ∈ L M ›]
unfolding io-targets.simps
by (metis (mono-tags, lifting) after-path assms(1 ))

have path M (FSM .initial M ) (take (length (V q)) p)
and p-io (take (length (V q)) p) = V q
and path M (target (FSM .initial M ) (take (length (V q)) p)) (drop (length (V

q)) p)
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and p-io (drop (length (V q)) p) = io
using path-io-split[OF ‹path M (initial M ) p› ‹p-io p = ((V q)@io)›]
by auto

have target (initial M ) p = target (target (FSM .initial M ) (take (length (V q))
p)) (drop (length (V q)) p)

by (metis append-take-drop-id path-append-target)
moreover have (target (FSM .initial M ) (take (length (V q)) p)) = q

using ‹p-io (take (length (V q)) p) = V q› ‹after-initial M (V q) = q›
using ‹path M (FSM .initial M ) (take (length (V q)) p)› after-path assms(1 )

by fastforce
ultimately have target q (drop (length (V q)) p) = after-initial M ((V q)@io)

using ‹target (initial M ) p = after-initial M ((V q)@io)›
by presburger

then show ∃ p . path M q p ∧ p-io p = io ∧ target q p = after-initial M ((V
q)@io)

using ‹path M (target (FSM .initial M ) (take (length (V q)) p)) (drop (length
(V q)) p)› ‹p-io (drop (length (V q)) p) = io›

unfolding ‹(target (FSM .initial M ) (take (length (V q)) p)) = q›
by blast

qed

consider (α,β) ∈ (V ‘ reachable-states M ) × (V ‘ reachable-states M ) |
(α,β) ∈ (V ‘ reachable-states M ) × { (V q) @ τ | q τ . q ∈ reachable-states

M ∧ τ ∈ {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−n ∧ x ∈ inputs M
∧ y ∈ outputs M}} |

(α,β) ∈ (
⋃

q ∈ reachable-states M .
⋃

τ ∈ {io@[(x,y)] | io x y . io ∈ LS
M q ∧ length io ≤ m−n ∧ x ∈ inputs M ∧ y ∈ outputs M} . { (V q) @ τ ′ | τ ′ .
τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ})

using assms(5 ) by blast
then show ?thesis proof cases

case 1
then have α ∈ V ‘ reachable-states M

and β ∈ V ‘ reachable-states M
by auto

have (α,after-initial M α) ∈ list.set (map (λq . (V q,q)) rstates)
using ‹α ∈ V ‘ reachable-states M › V-target assms(3 ) by force

moreover have (β,after-initial M β) ∈ list.set (map (λq . (V q,q)) rstates)
using ‹β ∈ V ‘ reachable-states M › V-target assms(3 ) by force

ultimately have ((α,after-initial M α),(β,after-initial M β)) ∈ list.set A
unfolding Π A by auto

then show ?thesis
using ‹after-initial M α 6= after-initial M β›
unfolding pairs-def by auto

next
case 2
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then have α ∈ V ‘ reachable-states M
and β ∈ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ {io@[(x,y)] | io

x y . io ∈ LS M q ∧ length io ≤ m−n ∧ x ∈ inputs M ∧ y ∈ outputs M}}
by auto

have (α,after-initial M α) ∈ list.set (map (λq . (V q,q)) rstates)
using ‹α ∈ V ‘ reachable-states M › V-target assms(3 ) by force

obtain q io x y where β = (V q) @ (io@[(x,y)])
and q ∈ reachable-states M
and length io ≤ m−n

using ‹β ∈ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ {io@[(x,y)] | io
x y . io ∈ LS M q ∧ length io ≤ m−n ∧ x ∈ inputs M ∧ y ∈ outputs M}}›

by blast

have (V q) @ (io@[(x,y)]) ∈ L M
using ‹β ∈ L M › unfolding ‹β = (V q) @ (io@[(x,y)])› by simp

have q ∈ io-targets M (V q) (initial M )
using ‹q ∈ reachable-states M › assms(2 ) by auto

then have io@[(x,y)] ∈ LS M q
unfolding ‹β = (V q) @ (io@[(x,y)])›
using observable-io-targets-language[OF ‹(V q) @ (io@[(x,y)]) ∈ L M › ‹ob-

servable M ›]
by auto

then obtain p where path M q p
and p-io p = io@[(x,y)]
and target q p = after-initial M β

using V-path[OF ‹q ∈ reachable-states M ›]
unfolding ‹β = (V q) @ (io@[(x,y)])›
by blast

moreover have length p ≤ m−n+1
using calculation ‹length io ≤ m−n›

by (metis (no-types, lifting) Suc-le-mono add.commute length-append-singleton
length-map plus-1-eq-Suc)

ultimately have (p,after-initial M β) ∈ list.set (X ′ q)
using assms(4 )[OF ‹q ∈ reachable-states M ›]
by auto

then have (β,after-initial M β) ∈ list.set (map (λ (τ ,q ′) . ((V q)@ p-io τ ,q ′))
(X ′ q))

unfolding ‹β = (V q) @ (io@[(x,y)])› using ‹p-io p = io@[(x,y)]› by force
moreover have q ∈ list.set rstates

using ‹q ∈ reachable-states M › assms(3 ) by auto
ultimately have (β,after-initial M β) ∈ list.set (concat (map (λq . map (λ

(τ ,q ′) . ((V q)@ p-io τ ,q ′)) (X ′ q)) rstates))
by force

then have ((α,after-initial M α),(β,after-initial M β)) ∈ list.set B
using ‹(α,after-initial M α) ∈ list.set (map (λq . (V q,q)) rstates)›
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unfolding B Π
by auto

then show ?thesis
using ‹after-initial M α 6= after-initial M β›
unfolding pairs-def by auto

next
case 3
then obtain q τ ′ io x y where q ∈ reachable-states M

and io ∈ LS M q
and length io ≤ m − n
and x ∈ FSM .inputs M
and y ∈ FSM .outputs M
and α = V q @ τ ′

and τ ′ ∈ list.set (prefixes ( io @ [(x, y)]))
and β = V q @ io @ [(x, y)]

by blast

have (V q) @ (io@[(x,y)]) ∈ L M
using ‹β ∈ L M › unfolding ‹β = (V q) @ (io@[(x,y)])› by simp

have q ∈ io-targets M (V q) (initial M )
using ‹q ∈ reachable-states M › assms(2 ) by auto

then have io@[(x,y)] ∈ LS M q
unfolding ‹β = (V q) @ (io@[(x,y)])›
using observable-io-targets-language[OF ‹(V q) @ (io@[(x,y)]) ∈ L M › ‹ob-

servable M ›]
by auto

then obtain p where path M q p
and p-io p = io@[(x,y)]
and target q p = after-initial M β

using V-path[OF ‹q ∈ reachable-states M ›]
unfolding ‹β = (V q) @ (io@[(x,y)])›
by blast

moreover have length p ≤ m−n+1
using calculation ‹length io ≤ m−n›

by (metis (no-types, lifting) Suc-le-mono add.commute length-append-singleton
length-map plus-1-eq-Suc)

ultimately have (p,after-initial M β) ∈ list.set (X ′ q)
using assms(4 )[OF ‹q ∈ reachable-states M ›]
by auto

have q ∈ list.set rstates
using ‹q ∈ reachable-states M › assms(3 ) by auto

let ?τ = take (length τ ′) (io@[(x,y)])
obtain τ ′′ where io @ [(x, y)] = τ ′ @ τ ′′
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using ‹τ ′ ∈ list.set (prefixes ( io @ [(x, y)]))›
using prefixes-set-ob by blast

then have τ ′ = ?τ
by auto

then have io@[(x,y)] = τ ′ @ (drop (length τ ′) (io@[(x,y)]))
by (metis append-take-drop-id)

then have p-io p = τ ′ @ (drop (length τ ′) (io@[(x,y)]))
using ‹p-io p = io@[(x,y)]›
by simp

have path M q (take (length τ ′) p)
and p-io (take (length τ ′) p) = τ ′

using path-io-split(1 ,2 )[OF ‹path M q p› ‹p-io p = τ ′ @ (drop (length τ ′)
(io@[(x,y)]))›]

by auto
then have τ ′ ∈ LS M q

using language-intro by fastforce

have (V q) @ τ ′ ∈ L M
using ‹(V q) @ (io@[(x,y)]) ∈ L M › unfolding ‹io @ [(x, y)] = τ ′ @ τ ′′›
using language-prefix[of V q @ τ ′ τ ′′ M initial M ]
by auto

have (FSM .after M (FSM .initial M ) (V q)) = q
using V-target ‹q ∈ reachable-states M › by blast

have target q (take (length τ ′) p) = after-initial M α
using observable-after-target[OF ‹observable M › ‹(V q) @ τ ′ ∈ L M › - ‹p-io

(take (length τ ′) p) = τ ′›]
using ‹path M q (take (length τ ′) p)›
unfolding ‹(FSM .after M (FSM .initial M ) (V q)) = q› ‹α = V q @ τ ′›
by auto

have p = (take (length τ ′) p)@(drop (length τ ′) p)
by simp

then have (take (length τ ′) p) ∈ list.set (prefixes p)
unfolding prefixes-set
by (metis (mono-tags, lifting) mem-Collect-eq)

have (((V q)@ p-io (take (length τ ′) p), target q (take (length τ ′) p)),((V q)@
p-io p,after-initial M β)) ∈ list.set ( (λ(τ ′, q ′). map (λτ ′′. ((V q @ p-io τ ′′, target
q τ ′′), V q @ p-io τ ′, q ′)) (prefixes τ ′)) (p,after-initial M β))

using ‹(take (length τ ′) p) ∈ list.set (prefixes p)›
by auto

then have ∗: ((α, after-initial M α),(β,after-initial M β)) ∈ list.set ( (λ(τ ′,
q ′). map (λτ ′′. ((V q @ p-io τ ′′, target q τ ′′), V q @ p-io τ ′, q ′)) (prefixes τ ′))
(p,after-initial M β))

unfolding ‹α = V q @ τ ′›
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‹β = V q @ io @ [(x, y)]›
‹target q (take (length τ ′) p) = after-initial M α›
‹p-io (take (length τ ′) p) = τ ′›
‹p-io p = io@[(x,y)]› .

have scheme:
∧

x y ys f . x ∈ list.set (f y) =⇒ y ∈ list.set ys =⇒ x ∈ list.set
(concat (map f ys))

by auto

have ∗∗: ((α, after-initial M α),(β,after-initial M β)) ∈ list.set (concat (map
(λ (τ ′,q ′). map (λτ ′′ . (((V q)@ p-io τ ′′, target q τ ′′),((V q)@ p-io τ ′,q ′))) (prefixes
τ ′)) (X ′ q)))

using scheme[of - (λ(τ ′, q ′). map (λτ ′′. ((V q @ p-io τ ′′, target q τ ′′), V q @
p-io τ ′, q ′)) (prefixes τ ′)), OF ∗ ‹(p,after-initial M β) ∈ list.set (X ′ q)›]

.

have ((α, after-initial M α),(β,after-initial M β)) ∈ list.set C
unfolding C
using scheme[of - (λq . concat (map (λ (τ ′,q ′). map (λτ ′′ . (((V q)@ p-io

τ ′′, target q τ ′′),((V q)@ p-io τ ′,q ′))) (prefixes τ ′)) (X ′ q))), OF ∗∗ ‹q ∈ list.set
rstates›]

.

then show ?thesis
using ‹after-initial M α 6= after-initial M β›
unfolding pairs-def by auto

qed
qed

20.3 Definition of the Pair-Framework
definition pair-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒

nat ⇒
(( ′a, ′b, ′c) fsm ⇒ nat ⇒ ( ′b× ′c) prefix-tree) ⇒
(( ′a, ′b, ′c) fsm ⇒ nat ⇒ ((( ′b × ′c) list × ′a) × (( ′b × ′c)

list × ′a)) list) ⇒
(( ′a, ′b, ′c) fsm ⇒ (( ′b × ′c) list × ′a) × ( ′b × ′c) list × ′a

⇒ ( ′b × ′c) prefix-tree ⇒ ( ′b × ′c) prefix-tree) ⇒
( ′b× ′c) prefix-tree

where
pair-framework M m get-initial-test-suite get-pairs get-separating-traces =
(let

TS = get-initial-test-suite M m;
D = get-pairs M m;

dist-extension = (λ t ((α,q ′),(β,q ′′)) . let tDist = get-separating-traces M
((α,q ′),(β,q ′′)) t

in combine-after (combine-after t α tDist) β
tDist)
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in
foldl dist-extension TS D)

lemma pair-framework-completeness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M
and is-state-cover-assignment M V
and {(V q)@io@[(x,y)] | q io x y . q ∈ reachable-states M ∧ io ∈ LS M q ∧ length

io ≤ m − size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} ⊆ set (get-initial-test-suite
M m)

and
∧

α β . (α,β) ∈ (V ‘ reachable-states M ) × (V ‘ reachable-states M )
∪ (V ‘ reachable-states M ) × { (V q) @ τ | q τ . q ∈ reachable-states

M ∧ τ ∈ {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−size-r M ∧ x ∈
inputs M ∧ y ∈ outputs M}}

∪ (
⋃

q ∈ reachable-states M .
⋃

τ ∈ {io@[(x,y)] | io x y . io
∈ LS M q ∧ length io ≤ m−size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} . { (V q)
@ τ ′ | τ ′ . τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ}) =⇒

α ∈ L M =⇒ β ∈ L M =⇒ after-initial M α 6= after-initial M β
=⇒

((α,after-initial M α),(β,after-initial M β)) ∈ list.set (get-pairs M
m)

and
∧

α β t . α ∈ L M =⇒ β ∈ L M =⇒ after-initial M α 6= after-initial
M β =⇒ ∃ io ∈ set (get-separating-traces M ((α,after-initial M α),(β,after-initial
M β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes M (after-initial M α)
(after-initial M β) io
shows (L M = L I ) ←→ (L M ∩ set (pair-framework M m get-initial-test-suite
get-pairs get-separating-traces) = L I ∩ set (pair-framework M m get-initial-test-suite
get-pairs get-separating-traces))
proof (cases inputs M = {} ∨ outputs M = {})

case True
then consider inputs M = {} | outputs M = {} by blast
then show ?thesis proof cases

case 1
have L M = {[]}

using 1 language-empty-IO by blast
moreover have L I = {[]}

by (metis 1 assms(6 ) language-empty-IO)
ultimately show ?thesis by blast

next
case 2
have L M = {[]}

using language-io(2 )[of - M initial M ] unfolding 2
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by (metis (no-types, opaque-lifting) ex-in-conv is-singletonI ′ is-singleton-the-elem
language-contains-empty-sequence set-empty2 singleton-iff surj-pair)

moreover have L I = {[]}
using language-io(2 )[of - I initial I ] unfolding 2 ‹outputs I = outputs M ›

by (metis (no-types, opaque-lifting) ex-in-conv is-singletonI ′ is-singleton-the-elem
language-contains-empty-sequence set-empty2 singleton-iff surj-pair)

ultimately show ?thesis by blast
qed

next
case False

define T where T : T = get-initial-test-suite M m
moreover define pairs where pairs: pairs = get-pairs M m
moreover define distExtension where distExtension: distExtension = (λ t

((α,q ′),(β,q ′′)) . let tDist = get-separating-traces M ((α,q ′),(β,q ′′)) t
in combine-after

(combine-after t α tDist) β tDist)
ultimately have res-def : pair-framework M m get-initial-test-suite get-pairs

get-separating-traces = foldl distExtension T pairs
unfolding pair-framework-def Let-def by auto

define T ′ where T ′: T ′ = set (foldl distExtension T pairs)
then have T ′r : T ′ = set (foldr (λ x y . distExtension y x) (rev pairs) T )

by (simp add: foldl-conv-foldr)

define Π where Π: Π = (V ‘ reachable-states M )
define n where n: n = size-r M
define X where X : X = (λ q . {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤

m−n ∧ x ∈ inputs M ∧ y ∈ outputs M})
define A where A: A = Π × Π
define B where B: B = Π × { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈
X q}

define C where C : C = (
⋃

q ∈ reachable-states M .
⋃

τ ∈ X q . { (V q) @
τ ′ | τ ′ . τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ})

have satisfaction-conditions: is-state-cover-assignment M V =⇒
Π ⊆ T ′ =⇒
{ (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ T ′ =⇒
(
∧

α β . (α,β) ∈ A ∪ B ∪ C =⇒
α ∈ L M =⇒
β ∈ L M =⇒
after-initial M α 6= after-initial M β =⇒
(∃ ω . α@ω ∈ T ′ ∧

β@ω ∈ T ′ ∧
distinguishes M (after-initial M α) (after-initial M β) ω)) =⇒

satisfies-h-condition M V T ′ m
unfolding satisfies-h-condition-def Let-def Π n X A B C
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by force

have c1 : is-state-cover-assignment M V
using assms(8 ) .

have c2 : Π ⊆ T ′ and c3 : { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X
q} ⊆ T ′

proof −
have set T ⊆ T ′

unfolding T ′

proof (induction pairs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc a pairs)

obtain α q ′ β q ′′ where a = ((α,q ′),(β,q ′′))
by (metis prod.collapse)

have foldl distExtension T (pairs @ [a]) = distExtension (foldl distExtension
T pairs) a

by simp
moreover have

∧
t . set t ⊆ set (distExtension t a)

proof −
fix t

have distExtension t a = combine-after (combine-after t α (get-separating-traces
M ((α,q ′),(β,q ′′)) t)) β (get-separating-traces M ((α,q ′),(β,q ′′)) t)

unfolding distExtension ‹a = ((α,q ′),(β,q ′′))› Let-def by auto
moreover have

∧
t ′ . set t ⊆ set (combine-after (combine-after t α t ′) β

t ′)
unfolding combine-after-set by blast

ultimately show set t ⊆ set (distExtension t a)
by simp

qed
ultimately show ?case

using snoc.IH by auto
qed

have Π ⊆ set T
proof

fix io assume io ∈ Π
then obtain q where io = (V q)

and q ∈ reachable-states M
unfolding Π
by blast

obtain x y where x ∈ inputs M and y ∈ outputs M
using False by blast

moreover have [] ∈ LS M q
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using reachable-state-is-state[OF ‹q ∈ reachable-states M ›] by auto
ultimately have (V q) @ [(x,y)] ∈ set T

using assms(9 ) ‹q ∈ reachable-states M ›
unfolding T [symmetric] by force

then show io ∈ set T
unfolding Π
using ‹io = V q› set-prefix by auto

qed
then show Π ⊆ T ′

using ‹set T ⊆ T ′› by blast

have { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ set T
using assms(9 )
unfolding X T [symmetric] n[symmetric] by force

then show { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ T ′

using ‹set T ⊆ T ′› by blast
qed

have c4 : (
∧

α β . (α,β) ∈ A ∪ B ∪ C =⇒
α ∈ L M =⇒
β ∈ L M =⇒
after-initial M α 6= after-initial M β =⇒
(∃ ω . α@ω ∈ T ′ ∧

β@ω ∈ T ′ ∧
distinguishes M (after-initial M α) (after-initial M β) ω))

proof −
fix α β assume (α,β) ∈ A ∪ B ∪ C

and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β

have ((α, FSM .after M (FSM .initial M ) α), β, FSM .after M (FSM .initial M )
β) ∈ list.set pairs

using ‹(α,β) ∈ A ∪ B ∪ C ›
unfolding A B C Π X pairs

using ‹α ∈ L M › ‹β ∈ L M › ‹after-initial M α 6= after-initial M β› assms(10 )
n by force

moreover note ‹α ∈ L M › ‹β ∈ L M › ‹after-initial M α 6= after-initial M β›
moreover have

∧
α β . ((α,after-initial M α),(β,after-initial M β)) ∈ list.set

pairs =⇒ α ∈ L M =⇒ β ∈ L M =⇒ after-initial M α 6= after-initial M β =⇒
∃ io . io ∈ (LS M (after-initial M α) − LS M (after-initial M β)) ∪ (LS M
(after-initial M β) − LS M (after-initial M α)) ∧ α@io ∈ T ′ ∧ β@io ∈ T ′

unfolding T ′ proof (induction pairs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc a pairs)
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obtain αa q ′a βa q ′′a where a = ((αa,q ′a),(βa,q ′′a))
by (metis prod.collapse)

have foldl distExtension T (pairs @ [a]) = distExtension (foldl distExtension
T pairs) a

by simp
moreover have

∧
t . set t ⊆ set (distExtension t a)

proof −
fix t

have distExtension t a = combine-after (combine-after t αa (get-separating-traces
M ((αa,q ′a),(βa,q ′′a)) t)) βa (get-separating-traces M ((αa,q ′a),(βa,q ′′a)) t)

unfolding distExtension ‹a = ((αa,q ′a),(βa,q ′′a))› Let-def by auto
moreover have

∧
t ′ . set t ⊆ set (combine-after (combine-after t αa t ′)

βa t ′)
unfolding combine-after-set by blast

ultimately show set t ⊆ set (distExtension t a)
by simp

qed
ultimately have set (foldl distExtension T pairs) ⊆ set (foldl distExtension

T (pairs@[a]))
by auto

let ?q ′ = after-initial M α
let ?q ′′ = after-initial M β

show ?case proof (cases a = ((α,?q ′),(β,?q ′′)))
case True

then have foldl distExtension T (pairs @ [a]) = distExtension (foldl
distExtension T pairs) ((α,?q ′),(β,?q ′′))

by auto
also have . . . = combine-after (combine-after (foldl distExtension T pairs)

α (get-separating-traces M ((α, ?q ′), (β, ?q ′′)) (foldl distExtension T pairs))) β
(get-separating-traces M ((α, ?q ′), (β, ?q ′′)) (foldl distExtension T pairs))

using distExtension
by (metis (no-types, lifting) case-prod-conv)

finally have foldl distExtension T (pairs @ [a]) = combine-after (combine-after
(foldl distExtension T pairs) α (get-separating-traces M ((α, ?q ′), (β, ?q ′′)) (foldl
distExtension T pairs))) β (get-separating-traces M ((α, ?q ′), (β, ?q ′′)) (foldl dis-
tExtension T pairs))

.
moreover define dist where dist: dist = (get-separating-traces M ((α,?q ′),(β,?q ′′))

(foldl distExtension T pairs))
ultimately have ∗: foldl distExtension T (pairs @ [a]) = combine-after

(combine-after (foldl distExtension T pairs) α dist) β dist
by auto

define ta where ta = (after (foldl distExtension T pairs) α)
define tb where tb = (after (foldl distExtension T pairs) β)
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obtain io where io ∈ set dist ∪ (set ta ∩ set tb) and io ∈ (LS M ?q ′ − LS
M ?q ′′) ∪ (LS M ?q ′′ − LS M ?q ′)

using assms(11 )[OF snoc.prems(2 ,3 ,4 ), of (foldl distExtension T pairs)]
unfolding dist distinguishes-def ta-def tb-def by blast

then consider io ∈ set dist | io ∈ (set ta ∩ set tb)
by blast

then show ?thesis proof cases
case 1
then have α@io ∈ set (foldl distExtension T (pairs @ [a])) and β@io ∈

set (foldl distExtension T (pairs @ [a]))
unfolding ∗ using combine-after-set by blast+

then show ?thesis
using ‹io ∈ (LS M ?q ′ − LS M ?q ′′) ∪ (LS M ?q ′′ − LS M ?q ′)› by auto

next
case 2
moreover have io 6= []

using ‹io ∈ (LS M ?q ′ − LS M ?q ′′) ∪ (LS M ?q ′′ − LS M ?q ′)›
after-is-state[OF assms(1 ) snoc.prems(2 )]
after-is-state[OF assms(1 ) snoc.prems(3 )]

by auto
ultimately have α@io ∈ set (foldl distExtension T pairs) and β@io ∈

set (foldl distExtension T pairs)
unfolding ta-def tb-def after-set by blast+

then show ?thesis
using ‹io ∈ (LS M ?q ′ − LS M ?q ′′) ∪ (LS M ?q ′′ − LS M ?q ′)›

‹set (foldl distExtension T pairs) ⊆ set (foldl distExtension T (pairs
@ [a]))›

by auto
qed

next
case False
then have ((α,?q ′),(β,?q ′′)) ∈ list.set pairs

using snoc.prems(1 ) by auto

show ?thesis
using snoc.IH [OF ‹((α,?q ′),(β,?q ′′)) ∈ list.set pairs› snoc.prems(2 ,3 ,4 )]

‹set (foldl distExtension T pairs) ⊆ set (foldl distExtension T (pairs
@ [a]))›

by auto
qed

qed
ultimately show (∃ ω . α@ω ∈ T ′ ∧ β@ω ∈ T ′ ∧ distinguishes M (after-initial

M α) (after-initial M β) ω)
unfolding distinguishes-def by blast

qed

have satisfies-h-condition M V T ′ m
using satisfaction-conditions[OF c1 c2 c3 c4 ]
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by blast
then have satisfies-h-condition M V (set (pair-framework M m get-initial-test-suite

get-pairs get-separating-traces)) m
unfolding res-def T ′ .

then show ?thesis
using h-condition-completeness[OF assms(1−7 )]
by blast

qed

lemma pair-framework-finiteness :
assumes

∧
α β t . α ∈ L M =⇒ β ∈ L M =⇒ after-initial M α 6= after-initial

M β =⇒ finite-tree (get-separating-traces M ((α,after-initial M α),(β,after-initial
M β)) t)

and finite-tree (get-initial-test-suite M m)
and

∧
α q ′ β q ′′ . ((α,q ′),(β,q ′′)) ∈ list.set (get-pairs M m) =⇒ α ∈ L M ∧

β ∈ L M ∧ after-initial M α 6= after-initial M β ∧ q ′ = after-initial M α ∧ q ′′ =
after-initial M β
shows finite-tree (pair-framework M m get-initial-test-suite get-pairs get-separating-traces)
proof −

define T where T : T = get-initial-test-suite M m
moreover define pairs where pairs: pairs = get-pairs M m
moreover define distExtension where distExtension: distExtension = (λ t

((α,q ′),(β,q ′′)) . let tDist = get-separating-traces M ((α,q ′),(β,q ′′)) t
in combine-after

(combine-after t α tDist) β tDist)
ultimately have res-def : pair-framework M m get-initial-test-suite get-pairs

get-separating-traces = foldl distExtension T pairs
unfolding pair-framework-def Let-def by auto

have
∧

α q ′ β q ′′ . ((α,q ′),(β,q ′′)) ∈ list.set pairs =⇒ α ∈ L M ∧ β ∈ L M ∧
after-initial M α 6= after-initial M β ∧ q ′ = after-initial M α ∧ q ′′ = after-initial
M β

using assms(3 ) unfolding pairs by auto
then show ?thesis
unfolding res-def proof (induction pairs rule: rev-induct)

case Nil
then show ?case

using from-list-finite-tree assms(2 )
unfolding T
by auto

next
case (snoc a pairs)
then have p1 :

∧
α q ′ β q ′′ . ((α,q ′),(β,q ′′)) ∈ list.set pairs =⇒ α ∈ L M ∧

β ∈ L M ∧ after-initial M α 6= after-initial M β ∧ q ′ = after-initial M α ∧ q ′′ =
after-initial M β

by (metis butlast-snoc in-set-butlastD)
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obtain α q ′ β q ′′ where a = ((α,q ′),(β,q ′′))
by (metis prod.collapse)

then have foldl distExtension T (pairs @ [a]) = distExtension (foldl distEx-
tension T pairs) ((α,q ′),(β,q ′′))

by auto
also have . . . = combine-after (combine-after (foldl distExtension T pairs) α

(get-separating-traces M ((α,q ′),(β,q ′′)) (foldl distExtension T pairs))) β (get-separating-traces
M ((α,q ′),(β,q ′′)) (foldl distExtension T pairs))

using distExtension
by (metis (no-types, lifting) case-prod-conv)

finally have foldl distExtension T (pairs @ [a]) = combine-after (combine-after
(foldl distExtension T pairs) α (get-separating-traces M ((α,q ′),(β,q ′′)) (foldl dis-
tExtension T pairs))) β (get-separating-traces M ((α,q ′),(β,q ′′)) (foldl distExten-
sion T pairs))

.
moreover define ta where ta: ta = (after (foldl distExtension T pairs) α)
moreover define tb where tb: tb = (after (foldl distExtension T pairs) β)

moreover define dist where dist: dist = (get-separating-traces M ((α,q ′),(β,q ′′))
(foldl distExtension T pairs))

ultimately have ∗: foldl distExtension T (pairs @ [a]) = combine-after
(combine-after (foldl distExtension T pairs) α dist) β dist

by auto

have ((α,q ′),(β,q ′′)) ∈ list.set (a#pairs)
unfolding ‹a = ((α,q ′),(β,q ′′))› by auto

then have α ∈ L M ∧ β ∈ L M ∧ after-initial M α 6= after-initial M β ∧ q ′

= after-initial M α ∧ q ′′ = after-initial M β
using snoc.prems
by auto

then have finite-tree dist
using assms(1 ) unfolding dist by auto

moreover have finite-tree (foldl distExtension T pairs)
using snoc.IH [OF p1 ] by auto

ultimately show ?case
unfolding ∗
using combine-after-finite-tree by blast

qed
qed

end

21 Intermediate Implementations

This theory implements various functions to be supplied to the H, SPY, and
Pair-Frameworks.
theory Intermediate-Implementations
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imports H-Framework SPY-Framework Pair-Framework ../Distinguishability Au-
tomatic-Refinement.Misc
begin

21.1 Functions for the Pair Framework
definition get-initial-test-suite-H :: ( ′a, ′b, ′c) state-cover-assignment ⇒

( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒

nat ⇒
( ′b× ′c) prefix-tree

where
get-initial-test-suite-H V M m =
(let

rstates = reachable-states-as-list M ;
n = size-r M ;
iM = inputs-as-list M ;
T = from-list (concat (map (λq . map (λτ. (V q)@τ) (h-extensions

M q (m−n))) rstates))
in T )

lemma get-initial-test-suite-H-set-and-finite :
shows {(V q)@io@[(x,y)] | q io x y . q ∈ reachable-states M ∧ io ∈ LS M q ∧ length
io ≤ m − size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} ⊆ set (get-initial-test-suite-H
V M m)
and finite-tree (get-initial-test-suite-H V M m)
proof −

define rstates where rstates = reachable-states-as-list M
moreover define n where n = size-r M
moreover define iM where iM = inputs-as-list M
moreover define T where T = from-list (concat (map (λq . map (λτ.

(V q)@τ) (h-extensions M q (m−n))) rstates))
ultimately have res: get-initial-test-suite-H V M m = T

unfolding get-initial-test-suite-H-def Let-def by auto

define X where X : X = (λ q . {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤
m−n ∧ x ∈ inputs M ∧ y ∈ outputs M})

have list.set rstates = reachable-states M
unfolding rstates-def reachable-states-as-list-set by simp

have { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} ⊆ set T
proof

fix io assume io ∈ { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q}
then obtain q τ where io = (V q) @ τ

and q ∈ reachable-states M
and τ ∈ X q

by blast
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have τ ∈ list.set (h-extensions M q (m − n))
using ‹τ ∈ X q› unfolding X
using h-extensions-set[OF reachable-state-is-state[OF ‹q ∈ reachable-states

M ›]]
by auto

then have io ∈ list.set (map ((@) (V q)) (h-extensions M q (m − n)))
unfolding ‹io = (V q) @ τ› by auto

moreover have q ∈ list.set rstates
using ‹list.set rstates = reachable-states M › ‹q ∈ reachable-states M › by auto

ultimately have io ∈ list.set (concat (map (λq. map ((@) (V q)) (h-extensions
M q (m − n))) rstates))

by auto
then show io ∈ set T

unfolding T-def from-list-set by blast
qed
moreover have { (V q) @ τ | q τ . q ∈ reachable-states M ∧ τ ∈ X q} = {(V

q)@io@[(x,y)] | q io x y . q ∈ reachable-states M ∧ io ∈ LS M q ∧ length io ≤ m
− size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M}

unfolding X n-def [symmetric] by force
ultimately show {(V q)@io@[(x,y)] | q io x y . q ∈ reachable-states M ∧ io ∈

LS M q ∧ length io ≤ m − size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} ⊆ set
(get-initial-test-suite-H V M m)

unfolding res by simp

show finite-tree (get-initial-test-suite-H V M m)
unfolding res T-def
using from-list-finite-tree by auto

qed

fun complete-inputs-to-tree :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ′c
list ⇒ ′b list ⇒ ( ′b × ′c) prefix-tree where

complete-inputs-to-tree M q ys [] = Prefix-Tree.empty |
complete-inputs-to-tree M q ys (x#xs) = foldl (λ t y . case h-obs M q x y of None
⇒ insert t [(x,y)] |

Some q ′⇒ combine-after
t [(x,y)] (complete-inputs-to-tree M q ′ ys xs)) Prefix-Tree.empty ys

lemma complete-inputs-to-tree-finite-tree :
finite-tree (complete-inputs-to-tree M q ys xs)

proof (induction xs arbitrary: q ys)
case Nil
then show ?case using empty-finite-tree by auto

next
case (Cons x xs)

define ys ′ where ys ′ = ys
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moreover define f where f = (λ t y . case h-obs M q x y of None ⇒ insert t
[(x,y)] | Some q ′⇒ combine-after t [(x,y)] (complete-inputs-to-tree M q ′ ys ′ xs))

ultimately have ∗:complete-inputs-to-tree M q ys (x # xs)
= foldl f Prefix-Tree.empty ys

by auto
moreover have finite-tree (foldl f Prefix-Tree.empty ys)
proof (induction ys rule: rev-induct)

case Nil
then show ?case using empty-finite-tree by auto

next
case (snoc y ys)

define t where t = foldl (λ t y . case h-obs M q x y of None ⇒ insert t
[(x,y)] | Some q ′ ⇒ combine-after t [(x,y)] (complete-inputs-to-tree M q ′ ys ′ xs))
Prefix-Tree.empty ys

then have ∗:foldl f Prefix-Tree.empty (ys@[y])
= (case h-obs M q x y of None ⇒ insert t [(x,y)] | Some q ′ ⇒

combine-after t [(x,y)] (complete-inputs-to-tree M q ′ ys ′ xs))
unfolding f-def by auto

have finite-tree t
using snoc unfolding t-def f-def by force

have finite-tree (insert t [(x,y)])
using ‹finite-tree t› insert-finite-tree by blast

moreover have
∧

q ′ . finite-tree (combine-after t [(x,y)] (complete-inputs-to-tree
M q ′ ys ′ xs))

using ‹finite-tree t› ‹
∧

q ys . finite-tree (complete-inputs-to-tree M q ys xs)›
combine-after-finite-tree by blast

ultimately show ?case
unfolding ∗ by auto

qed
ultimately show ?case by auto

qed

fun complete-inputs-to-tree-initial :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′b
list ⇒ ( ′b × ′c) prefix-tree where
complete-inputs-to-tree-initial M xs = complete-inputs-to-tree M (initial M ) (outputs-as-list

M ) xs

definition get-initial-test-suite-H-2 :: bool ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒

nat ⇒
( ′b× ′c) prefix-tree where

get-initial-test-suite-H-2 c V M m =
(if c then get-initial-test-suite-H V M m

else let TS = get-initial-test-suite-H V M m;

647



xss = map (map fst) (sorted-list-of-maximal-sequences-in-tree TS);
ys = outputs-as-list M

in
foldl (λ t xs . combine t (complete-inputs-to-tree-initial M xs)) TS xss)

lemma get-initial-test-suite-H-2-set-and-finite :
shows {(V q)@io@[(x,y)] | q io x y . q ∈ reachable-states M ∧ io ∈ LS M q ∧ length
io ≤ m − size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} ⊆ set (get-initial-test-suite-H-2
c V M m) (is ?P1 )
and finite-tree (get-initial-test-suite-H-2 c V M m) (is ?P2 )
proof −

have ?P1 ∧ ?P2
proof (cases c)

case True
then have get-initial-test-suite-H-2 c V M m = get-initial-test-suite-H V M m

unfolding get-initial-test-suite-H-2-def by auto
then show ?thesis

using get-initial-test-suite-H-set-and-finite
by fastforce

next
case False

define TS where TS = get-initial-test-suite-H V M m
moreover define xss where xss = map (map fst) (sorted-list-of-maximal-sequences-in-tree

TS)
moreover define ys where ys = outputs-as-list M
ultimately have get-initial-test-suite-H-2 c V M m = foldl (λ t xs . combine

t (complete-inputs-to-tree M (initial M ) ys xs)) TS xss
unfolding get-initial-test-suite-H-2-def Let-def using False by auto

moreover have set TS ⊆ set (foldl (λ t xs . combine t (complete-inputs-to-tree
M (initial M ) ys xs)) TS xss)

using combine-set by (induction xss rule: rev-induct; auto)
moreover have finite-tree (foldl (λ t xs . combine t (complete-inputs-to-tree M

(initial M ) ys xs)) TS xss)
using complete-inputs-to-tree-finite-tree get-initial-test-suite-H-set-and-finite(2 )[of

V M m] combine-finite-tree
unfolding TS-def [symmetric] by (induction xss rule: rev-induct; auto; blast)

ultimately show ?thesis
using get-initial-test-suite-H-set-and-finite(1 )[of V M m] unfolding TS-def [symmetric]

by force
qed
then show ?P1 and ?P2

by blast+
qed

definition get-pairs-H :: ( ′a, ′b, ′c) state-cover-assignment ⇒
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( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
nat ⇒
((( ′b × ′c) list × ′a) × (( ′b × ′c) list × ′a)) list

where
get-pairs-H V M m =
(let

rstates = reachable-states-as-list M ;
n = size-r M ;
iM = inputs-as-list M ;
hMap = mapping-of (map (λ(q,x) . ((q,x), map (λ(y,q ′) . (q,x,y,q ′))

(sorted-list-of-set (h M (q,x))))) (List.product (states-as-list M ) iM ));
hM = (λ q x . case Mapping.lookup hMap (q,x) of Some ts ⇒ ts |

None ⇒ []);
pairs = pairs-to-distinguish M V (λq . paths-up-to-length-with-targets q

hM iM ((m−n)+1 )) rstates
in
pairs)

lemma get-pairs-H-set :
assumes observable M
and is-state-cover-assignment M V

shows∧
α β . (α,β) ∈ (V ‘ reachable-states M ) × (V ‘ reachable-states M )

∪ (V ‘ reachable-states M ) × { (V q) @ τ | q τ . q ∈ reachable-states
M ∧ τ ∈ {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−size-r M ∧ x ∈
inputs M ∧ y ∈ outputs M}}

∪ (
⋃

q ∈ reachable-states M .
⋃

τ ∈ {io@[(x,y)] | io x y . io
∈ LS M q ∧ length io ≤ m−size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} . { (V q)
@ τ ′ | τ ′ . τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ}) =⇒

α ∈ L M =⇒ β ∈ L M =⇒ after-initial M α 6= after-initial M β
=⇒

((α,after-initial M α),(β,after-initial M β)) ∈ list.set (get-pairs-H
V M m)
and

∧
α q ′ β q ′′ . ((α,q ′),(β,q ′′)) ∈ list.set (get-pairs-H V M m) =⇒ α ∈ L M ∧

β ∈ L M ∧ after-initial M α 6= after-initial M β ∧ q ′ = after-initial M α ∧ q ′′ =
after-initial M β
proof −

define rstates where rstates = reachable-states-as-list M
moreover define n where n = size-r M
moreover define iM where iM = inputs-as-list M
moreover define hMap ′ where hMap ′ = mapping-of (map (λ(q,x)

. ((q,x), map (λ(y,q ′) . (q,x,y,q ′)) (sorted-list-of-set (h M (q,x))))) (List.product
(states-as-list M ) iM ))

moreover define hM ′ where hM ′ = (λ q x . case Mapping.lookup
hMap ′ (q,x) of Some ts ⇒ ts | None ⇒ [])
ultimately have get-pairs-H V M m = pairs-to-distinguish M V (λq . paths-up-to-length-with-targets

q hM ′ iM ((m−n)+1 )) rstates
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unfolding get-pairs-H-def Let-def by force

define hMap where hMap = map-of (map (λ(q,x) . ((q,x), map (λ(y,q ′)
. (q,x,y,q ′)) (sorted-list-of-set (h M (q,x))))) (List.product (states-as-list M ) iM ))

define hM where hM = (λ q x . case hMap (q,x) of Some ts ⇒ ts |
None ⇒ [])

have distinct (List.product (states-as-list M ) iM )
using states-as-list-distinct inputs-as-list-distinct distinct-product
unfolding iM-def
by blast

then have Mapping.lookup hMap ′ = hMap
using mapping-of-map-of
unfolding hMap-def hMap ′-def
using map-pair-fst-helper [of λ q x . map (λ(y,q ′) . (q,x,y,q ′)) (sorted-list-of-set

(h M (q,x)))]
by (metis (no-types, lifting))

then have hM ′ = hM
unfolding hM ′-def hM-def
by meson

moreover define pairs where pairs = pairs-to-distinguish M V (λq .
paths-up-to-length-with-targets q hM iM ((m−n)+1 )) rstates

ultimately have res: get-pairs-H V M m = pairs
unfolding ‹get-pairs-H V M m = pairs-to-distinguish M V (λq . paths-up-to-length-with-targets

q hM ′ iM ((m−n)+1 )) rstates›
by force

have ∗:list.set rstates = reachable-states M
unfolding rstates-def reachable-states-as-list-set by simp

define X ′ where X ′: X ′= (λq . paths-up-to-length-with-targets q hM iM ((m−n)+1 ))

have ∗∗:
∧

q p q ′ . q ∈ reachable-states M =⇒ (p,q ′) ∈ list.set (X ′ q) ←→ path
M q p ∧ target q p = q ′ ∧ length p ≤ m−n+1

proof −
fix q p q ′ assume q ∈ reachable-states M

define qxPairs where qxPairs: qxPairs = (List.product (states-as-list M ) iM )
moreover define mapList where mapList: mapList = (map (λ(q,x) . ((q,x),

map (λ(y,q ′) . (q,x,y,q ′)) (sorted-list-of-set (h M (q,x))))) qxPairs)
ultimately have hMap ′: hMap = map-of mapList

unfolding hMap-def by simp

have distinct (states-as-list M ) and distinct iM
unfolding iM-def
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by auto
then have distinct qxPairs

unfolding qxPairs by (simp add: distinct-product)
moreover have (map fst mapList) = qxPairs

unfolding mapList by (induction qxPairs; auto)
ultimately have distinct (map fst mapList)

by auto

have
∧

q x . hM q x = map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set (h M (q,
x)))

proof −
fix q x
show hM q x = map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set (h M (q, x)))
proof (cases q ∈ states M ∧ x ∈ inputs M )

case False
then have (h M (q, x)) = {}

unfolding h-simps using fsm-transition-source fsm-transition-input by
fastforce

then have map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set (h M (q, x))) = []
by auto

have q /∈ list.set (states-as-list M ) ∨ x /∈ list.set iM
using False unfolding states-as-list-set iM-def inputs-as-list-set by simp

then have (q,x) /∈ list.set qxPairs
unfolding qxPairs by auto

then have @ y . ((q,x),y) ∈ list.set mapList
unfolding mapList by auto

then have hMap (q,x) = None
unfolding hMap ′ using map-of-eq-Some-iff [OF ‹distinct (map fst

mapList)›]
by (meson option.exhaust)

then show ?thesis
using ‹map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set (h M (q, x))) = []›
unfolding hM-def by auto

next
case True
then have q ∈ list.set (states-as-list M ) ∧ x ∈ list.set iM

unfolding states-as-list-set iM-def inputs-as-list-set by simp
then have (q,x) ∈ list.set qxPairs

unfolding qxPairs by auto
then have ((q,x),map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set (h M (q,

x)))) ∈ list.set mapList
unfolding mapList by auto

then have hMap (q,x) = Some (map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set
(h M (q, x))))

unfolding hMap ′ using map-of-eq-Some-iff [OF ‹distinct (map fst
mapList)›]

by (meson option.exhaust)
then show ?thesis
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unfolding hM-def by auto
qed

qed
then have hM-alt-def : hM = (λ q x . map (λ(y, q ′). (q, x, y, q ′)) (sorted-list-of-set

(h M (q, x))))
by auto

show (p,q ′) ∈ list.set (X ′ q) ←→ path M q p ∧ target q p = q ′ ∧ length p ≤
m−n+1

unfolding X ′ hM-alt-def iM-def
paths-up-to-length-with-targets-set[OF reachable-state-is-state[OF ‹q

∈ reachable-states M ›]]
by blast

qed

show
∧

α β . (α,β) ∈ (V ‘ reachable-states M ) × (V ‘ reachable-states M )
∪ (V ‘ reachable-states M ) × { (V q) @ τ | q τ . q ∈ reachable-states

M ∧ τ ∈ {io@[(x,y)] | io x y . io ∈ LS M q ∧ length io ≤ m−size-r M ∧ x ∈
inputs M ∧ y ∈ outputs M}}

∪ (
⋃

q ∈ reachable-states M .
⋃

τ ∈ {io@[(x,y)] | io x y . io
∈ LS M q ∧ length io ≤ m−size-r M ∧ x ∈ inputs M ∧ y ∈ outputs M} . { (V q)
@ τ ′ | τ ′ . τ ′ ∈ list.set (prefixes τ)} × {(V q)@τ}) =⇒

α ∈ L M =⇒ β ∈ L M =⇒ after-initial M α 6= after-initial M β
=⇒

((α,after-initial M α),(β,after-initial M β)) ∈ list.set (get-pairs-H
V M m)

using pairs-to-distinguish-containment[OF assms(1 ,2 ) ∗ ∗∗]
unfolding res pairs-def X ′[symmetric] n-def [symmetric]
by presburger

show
∧

α q ′ β q ′′ . ((α,q ′),(β,q ′′)) ∈ list.set (get-pairs-H V M m) =⇒ α ∈ L M
∧ β ∈ L M ∧ after-initial M α 6= after-initial M β ∧ q ′ = after-initial M α ∧ q ′′

= after-initial M β
using pairs-to-distinguish-elems(3 ,4 ,5 ,6 ,7 )[OF assms(1 ,2 ) ∗ ∗∗]
unfolding res pairs-def X ′[symmetric] n-def [symmetric]
by blast

qed

21.2 Functions of the SPYH-Method
21.2.1 Heuristic Functions for Selecting Traces to Extend
fun estimate-growth :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′a ⇒ ′a ⇒ ( ′b
× ′c) list) ⇒ ′a ⇒ ′a ⇒ ′b ⇒ ′c ⇒ nat ⇒ nat where

estimate-growth M dist-fun q1 q2 x y errorValue= (case h-obs M q1 x y of
None ⇒ (case h-obs M q1 x y of
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None ⇒ errorValue |
Some q2 ′⇒ 1 ) |

Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ 1 |
Some q2 ′⇒ if q1 ′ = q2 ′ ∨ {q1 ′,q2 ′} = {q1 ,q2}

then errorValue
else 1 + 2 ∗ (length (dist-fun q1 q2 ))))

lemma estimate-growth-result :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and estimate-growth M dist-fun q1 q2 x y errorValue < errorValue

shows ∃ γ . distinguishes M q1 q2 ([(x,y)]@γ)
proof (cases h-obs M q1 x y)

case None
show ?thesis proof (cases h-obs M q2 x y)

case None
then show ?thesis

using ‹h-obs M q1 x y = None› assms(5 )
by auto

next
case (Some a)
then have distinguishes M q1 q2 [(x,y)]

using h-obs-distinguishes[OF assms(1 ) - None] distinguishes-sym
by metis

then show ?thesis
by auto

qed
next

case (Some q1 ′)
show ?thesis proof (cases h-obs M q2 x y)

case None
then have distinguishes M q1 q2 [(x,y)]

using h-obs-distinguishes[OF assms(1 ) Some]
by metis

then show ?thesis
by auto

next
case (Some q2 ′)
then have q1 ′ 6= q2 ′

using ‹h-obs M q1 x y = Some q1 ′› assms(5 )
by auto

then obtain γ where distinguishes M q1 ′ q2 ′ γ
using h-obs-state[OF ‹h-obs M q1 x y = Some q1 ′›]
using h-obs-state[OF Some]
using ‹minimal M › unfolding minimal.simps distinguishes-def
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by blast
then have distinguishes M q1 q2 ([(x,y)]@γ)

using h-obs-language-iff [OF assms(1 ), of x y γ]
using ‹h-obs M q1 x y = Some q1 ′› Some
unfolding distinguishes-def
by force

then show ?thesis
by blast

qed
qed

fun shortest-list-or-default :: ′a list list ⇒ ′a list ⇒ ′a list where
shortest-list-or-default xs x = foldl (λ a b . if length a < length b then a else b)

x xs

lemma shortest-list-or-default-elem :
shortest-list-or-default xs x ∈ Set.insert x (list.set xs)
by (induction xs rule: rev-induct; auto)

fun shortest-list :: ′a list list ⇒ ′a list where
shortest-list [] = undefined |
shortest-list (x#xs) = shortest-list-or-default xs x

lemma shortest-list-elem :
assumes xs 6= []

shows shortest-list xs ∈ list.set xs
using assms shortest-list-or-default-elem
by (metis list.simps(15 ) shortest-list.elims)

fun shortest-list-in-tree-or-default :: ′a list list ⇒ ′a prefix-tree ⇒ ′a list ⇒ ′a list
where

shortest-list-in-tree-or-default xs T x = foldl (λ a b . if isin T a ∧ length a <
length b then a else b) x xs

lemma shortest-list-in-tree-or-default-elem :
shortest-list-in-tree-or-default xs T x ∈ Set.insert x (list.set xs)
by (induction xs rule: rev-induct; auto)

fun has-leaf :: ( ′b× ′c) prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′b× ′c) list ⇒ bool where

has-leaf T G cg-lookup α =
(find (λ β . is-maximal-in T β) (α # cg-lookup G α) 6= None)

fun has-extension :: ( ′b× ′c) prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list
list) ⇒ ( ′b× ′c) list ⇒ ′b ⇒ ′c ⇒ bool where

has-extension T G cg-lookup α x y =
(find (λ β . isin T (β@[(x,y)])) (α # cg-lookup G α) 6= None)
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fun get-extension :: ( ′b× ′c) prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list
list) ⇒ ( ′b× ′c) list ⇒ ′b ⇒ ′c ⇒ ( ′b× ′c) list option where

get-extension T G cg-lookup α x y =
(find (λ β . isin T (β@[(x,y)])) (α # cg-lookup G α))

fun get-prefix-of-separating-sequence :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′b× ′c) prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒ ( ′a ⇒ ′a ⇒
( ′b× ′c) list) ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ nat ⇒ (nat × ( ′b× ′c) list) where

get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace u v 0
= (1 ,[]) |
get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace u v (Suc

k)= (let
u ′ = shortest-list-or-default (cg-lookup G u) u;
v ′ = shortest-list-or-default (cg-lookup G v) v;
su = after-initial M u;
sv = after-initial M v;
bestPrefix0 = get-distinguishing-trace su sv;
minEst0 = length bestPrefix0 + (if (has-leaf T G cg-lookup u ′) then 0 else length

u ′) + (if (has-leaf T G cg-lookup v ′) then 0 else length v ′);
errorValue = Suc minEst0 ;
XY = List.product (inputs-as-list M ) (outputs-as-list M );
tryIO = (λ (minEst,bestPrefix) (x,y) .

if minEst = 0
then (minEst,bestPrefix)
else (case get-extension T G cg-lookup u ′ x y of

Some u ′′⇒ (case get-extension T G cg-lookup v ′ x y of
Some v ′′ ⇒ if (h-obs M su x y = None) 6= (h-obs M sv x y =

None)
then (0 ,[])
else if h-obs M su x y = h-obs M sv x y

then (minEst,bestPrefix)
else (let (e,w) = get-prefix-of-separating-sequence M T G

cg-lookup get-distinguishing-trace (u ′′@[(x,y)]) (v ′′@[(x,y)]) k
in if e = 0

then (0 ,[])
else if e ≤ minEst

then (e,(x,y)#w)
else (minEst,bestPrefix)) |

None ⇒ (let e = estimate-growth M get-distinguishing-trace su
sv x y errorValue;

e ′ = if e 6= 1
then if has-leaf T G cg-lookup u ′′

then e + 1
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else if ¬(has-leaf T G cg-lookup (u ′′@[(x,y)]))
then e + length u ′ + 1
else e

else e;
e ′′ = e ′ + (if ¬(has-leaf T G cg-lookup v ′) then length

v ′ else 0 )
in if e ′′ ≤ minEst

then (e ′′,[(x,y)])
else (minEst,bestPrefix))) |

None ⇒ (case get-extension T G cg-lookup v ′ x y of
Some v ′′⇒ (let e = estimate-growth M get-distinguishing-trace

su sv x y errorValue;
e ′ = if e 6= 1

then if has-leaf T G cg-lookup v ′′

then e + 1
else if ¬(has-leaf T G cg-lookup (v ′′@[(x,y)]))

then e + length v ′ + 1
else e

else e;
e ′′ = e ′ + (if ¬(has-leaf T G cg-lookup u ′) then length

u ′ else 0 )
in if e ′′ ≤ minEst

then (e ′′,[(x,y)])
else (minEst,bestPrefix)) |

None ⇒ (minEst,bestPrefix))))
in if ¬ isin T u ′ ∨ ¬ isin T v ′

then (errorValue,[])
else foldl tryIO (minEst0 ,[]) XY )

lemma estimate-growth-Suc :
assumes errorValue > 0
shows estimate-growth M get-distinguishing-trace q1 q2 x y errorValue > 0
using assms unfolding estimate-growth.simps
by (cases FSM .h-obs M q1 x y; cases FSM .h-obs M q2 x y; fastforce)

lemma get-extension-result:
assumes u ∈ L M1 and u ∈ L M2
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and get-extension T G cg-lookup u x y = Some u ′

shows converge M1 u u ′ and u ′ ∈ L M2 =⇒ converge M2 u u ′ and u ′@[(x,y)] ∈
set T
proof −

have find (λ β . isin T (β@[(x,y)])) (u # cg-lookup G u) = Some u ′

using assms(4 )
by auto

then have isin T (u ′@[(x,y)])
using find-condition by metis
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then show u ′@[(x,y)] ∈ set T
by auto

have u ′ ∈ Set.insert u (list.set (cg-lookup G u))
using ‹find (λ β . isin T (β@[(x,y)])) (u # cg-lookup G u) = Some u ′›
by (metis find-set list.simps(15 ))

then show converge M1 u u ′ and u ′ ∈ L M2 =⇒ converge M2 u u ′

using assms(1 ,2 ,3 )
by (metis converge.elims(3 ) convergence-graph-lookup-invar-def insert-iff )+

qed

lemma get-prefix-of-separating-sequence-result :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
assumes observable M1
and observable M2
and minimal M1
and u ∈ L M1 and u ∈ L M2
and v ∈ L M1 and v ∈ L M2
and after-initial M1 u 6= after-initial M1 v
and

∧
α β q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒

distinguishes M1 q1 q2 (get-distinguishing-trace q1 q2 )
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and L M1 ∩ set T = L M2 ∩ set T

shows fst (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k) = 0 =⇒ ¬ converge M2 u v
and fst (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k) 6= 0 =⇒ ∃ γ . distinguishes M1 (after-initial M1 u) (after-initial M1 v)
((snd (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k))@γ)
proof −
have (fst (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace

u v k) = 0 −→ ¬ converge M2 u v)
∧ (fst (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace

u v k) 6= 0 −→ (∃ γ . distinguishes M1 (after-initial M1 u) (after-initial M1 v)
((snd (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k))@γ)))

using assms(4 ,5 ,6 ,7 ,8 )
proof (induction k arbitrary: u v)

case 0

then have ∃ γ . distinguishes M1 (after-initial M1 u) (after-initial M1 v) γ
using ‹minimal M1 › unfolding minimal.simps
by (meson after-is-state assms(1 ) assms(9 ))

then show ?case
unfolding get-prefix-of-separating-sequence.simps fst-conv snd-conv
by auto

next
case (Suc k)
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define u ′ where u ′: u ′ = shortest-list-or-default (cg-lookup G u) u
define v ′ where v ′: v ′ = shortest-list-or-default (cg-lookup G v) v
define su where su: su = after-initial M1 u
define sv where sv: sv = after-initial M1 v
define bestPrefix0 where bestPrefix0 : bestPrefix0 = get-distinguishing-trace su

sv
define minEst0 where minEst0 : minEst0 = length bestPrefix0 + (if (has-leaf

T G cg-lookup u ′) then 0 else length u ′) + (if (has-leaf T G cg-lookup v ′) then 0
else length v ′)

define errorValue where errorValue: errorValue = Suc minEst0
define XY where XY : XY = List.product (inputs-as-list M1 ) (outputs-as-list

M1 )
define tryIO where tryIO: tryIO = (λ (minEst,bestPrefix) (x,y) .

if minEst = 0
then (minEst,bestPrefix)
else (case get-extension T G cg-lookup u ′ x y of

Some u ′′⇒ (case get-extension T G cg-lookup v ′ x y of
Some v ′′ ⇒ if (h-obs M1 su x y = None) 6= (h-obs M1 sv x y

= None)
then (0 ,[])
else if h-obs M1 su x y = h-obs M1 sv x y

then (minEst,bestPrefix)
else (let (e,w) = get-prefix-of-separating-sequence M1 T G

cg-lookup get-distinguishing-trace (u ′′@[(x,y)]) (v ′′@[(x,y)]) k
in if e = 0

then (0 ,[])
else if e ≤ minEst

then (e,(x,y)#w)
else (minEst,bestPrefix)) |

None ⇒ (let e = estimate-growth M1 get-distinguishing-trace
su sv x y errorValue;

e ′ = if e 6= 1
then if has-leaf T G cg-lookup u ′′

then e + 1
else if ¬(has-leaf T G cg-lookup (u ′′@[(x,y)]))

then e + length u ′ + 1
else e

else e;
e ′′ = e ′ + (if ¬(has-leaf T G cg-lookup v ′) then length

v ′ else 0 )
in if e ′′ ≤ minEst

then (e ′′,[(x,y)])
else (minEst,bestPrefix))) |

None ⇒ (case get-extension T G cg-lookup v ′ x y of
Some v ′′⇒ (let e = estimate-growth M1 get-distinguishing-trace

su sv x y errorValue;
e ′ = if e 6= 1

then if has-leaf T G cg-lookup v ′′
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then e + 1
else if ¬(has-leaf T G cg-lookup (v ′′@[(x,y)]))

then e + length v ′ + 1
else e

else e;
e ′′ = e ′ + (if ¬(has-leaf T G cg-lookup u ′) then length

u ′ else 0 )
in if e ′′ ≤ minEst

then (e ′′,[(x,y)])
else (minEst,bestPrefix)) |

None ⇒ (minEst,bestPrefix))))

have res ′: (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v (Suc k)) =

(if ¬ isin T u ′ ∨ ¬ isin T v ′ then (errorValue,[]) else foldl tryIO
(minEst0 ,[]) XY )

unfolding tryIO XY errorValue minEst0 bestPrefix0 sv su v ′ u ′

unfolding get-prefix-of-separating-sequence.simps Let-def
by force

show ?case proof (cases ¬ isin T u ′ ∨ ¬ isin T v ′)
case True

then have ∗:(get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v (Suc k)) = (errorValue,[])

using res ′ by auto

show ?thesis
unfolding ∗ fst-conv snd-conv errorValue

by (metis Suc.prems(1 ,3 ,5 ) Zero-not-Suc after-is-state append-Nil assms(1 )
assms(9 ))

next
case False

then have res: (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v (Suc k)) = foldl tryIO (minEst0 ,[]) XY

using res ′ by auto

have converge M1 u u ′ and converge M2 u u ′

unfolding u ′

using shortest-list-or-default-elem[of cg-lookup G u u] assms(10 ) Suc.prems(1 ,2 ,3 )
by (metis converge.elims(3 ) convergence-graph-lookup-invar-def insertE)+

have converge M1 v v ′ and converge M2 v v ′

unfolding v ′

using shortest-list-or-default-elem[of cg-lookup G v v] assms(10 ) Suc.prems
by (metis converge.elims(3 ) convergence-graph-lookup-invar-def insertE)+
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have su ∈ states M1
unfolding su
using after-is-state[OF assms(1 ) Suc.prems(1 )] .

have sv ∈ states M1
unfolding sv
using after-is-state[OF assms(1 ) Suc.prems(3 )] .

define P where P: P = (λ (ew :: (nat × ( ′b × ′c) list)) .
(fst ew = 0 −→ ¬ converge M2 u v)

∧ (fst ew 6= 0 −→ (∃ γ . distinguishes M1
(after-initial M1 u) (after-initial M1 v) ((snd ew)@γ))))

have P (minEst0 ,[])
proof −

have distinguishes M1 (after-initial M1 u) (after-initial M1 v) bestPrefix0
using assms(9 )[of su sv]
using ‹su ∈ states M1 › ‹sv ∈ states M1 ›
using Suc.prems(5 )
unfolding bestPrefix0 su sv
by blast

moreover have minEst0 6= 0
unfolding minEst0

using calculation distinguishes-not-Nil[OF - after-is-state[OF assms(1 )
Suc.prems(1 )] after-is-state[OF assms(1 ) Suc.prems(3 )]]

by auto
ultimately show ?thesis

unfolding P fst-conv snd-conv
by (metis append.left-neutral)

qed

have errorValue > 0
unfolding errorValue by auto

have
∧

x y e w . e < errorValue =⇒ P (e,w) =⇒ P (tryIO (e,w) (x,y)) ∧
fst (tryIO (e,w) (x,y)) ≤ e

proof −
fix x y e w
assume e < errorValue and P (e,w)

have ∗:
∧

x y a b f . (case (x, y) of (x, y) ⇒ (λ(a, b). f x y a b)) (a,b) = f
x y a b

by auto

show P (tryIO (e,w) (x,y)) ∧ fst (tryIO (e,w) (x,y)) ≤ e
proof (cases e = 0 )

660



case True
then have tryIO (e,w) (x,y) = (e,w)

unfolding P tryIO fst-conv snd-conv case-prod-conv
by auto

then show ?thesis
using ‹P (e,w)›
by auto

next
case False
show ?thesis
proof (cases get-extension T G cg-lookup u ′ x y)

case None

show ?thesis
proof (cases get-extension T G cg-lookup v ′ x y)

case None
then have tryIO (e,w) (x,y) = (e,w)

using ‹get-extension T G cg-lookup u ′ x y = None›
unfolding tryIO by auto

then show ?thesis
using ‹P (e,w)›
by auto

next
case (Some v ′′)

define c where c: c = estimate-growth M1 get-distinguishing-trace su
sv x y errorValue

define c ′ where c ′: c ′ = (if c 6= 1 then if has-leaf T G cg-lookup v ′′

then c + 1 else if ¬(has-leaf T G cg-lookup (v ′′@[(x,y)])) then c + length v ′ + 1
else c else c)

define c ′′ where c ′′: c ′′ = c ′ + (if ¬(has-leaf T G cg-lookup u ′) then
length u ′ else 0 )

have tryIO (e,w) (x,y) = (if c ′′ ≤ e then (c ′′,[(x,y)]) else (e,w))
unfolding c c ′ c ′′ tryIO Let-def
using None Some False
by auto

show ?thesis proof (cases c ′′ ≤ e)
case True
then have c ′′ < errorValue

using ‹e < errorValue› by auto
then have c ′ < errorValue

unfolding c ′′ by auto
then have estimate-growth M1 get-distinguishing-trace su sv x y

errorValue < errorValue
unfolding c ′ c
using add-lessD1 by presburger
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have c > 0
using estimate-growth-Suc[OF ‹errorValue > 0 ›] unfolding c
by blast

then have c ′′ > 0
unfolding c ′ c ′′

using add-gr-0 by presburger
then have c ′′ 6= 0

by auto
then have P (c ′′,[(x,y)])
using True estimate-growth-result[OF assms(1 ,3 ) ‹su ∈ states M1 ›

‹sv ∈ states M1 › ‹estimate-growth M1 get-distinguishing-trace su sv x y errorValue
< errorValue›]

unfolding P fst-conv su sv snd-conv
by blast

then show ?thesis
using ‹tryIO (e,w) (x,y) = (if c ′′ ≤ e then (c ′′,[(x,y)]) else (e,w))›

True
by auto

next
case False
then show ?thesis

using ‹tryIO (e,w) (x,y) = (if c ′′ ≤ e then (c ′′,[(x,y)]) else (e,w))›
‹P (e,w)›

by auto
qed

qed
next

case (Some u ′′)

show ?thesis proof (cases get-extension T G cg-lookup v ′ x y)
case None

define c where c: c = estimate-growth M1 get-distinguishing-trace su
sv x y errorValue

define c ′ where c ′: c ′ = (if c 6= 1 then if has-leaf T G cg-lookup u ′′

then c + 1 else if ¬(has-leaf T G cg-lookup (u ′′@[(x,y)])) then c + length u ′ + 1
else c else c)

define c ′′ where c ′′: c ′′ = c ′ + (if ¬(has-leaf T G cg-lookup v ′) then
length v ′ else 0 )

have tryIO (e,w) (x,y) = (if c ′′ ≤ e then (c ′′,[(x,y)]) else (e,w))
unfolding c c ′ c ′′ tryIO Let-def
using None Some False
by auto

show ?thesis proof (cases c ′′ ≤ e)
case True
then have c ′′ < errorValue

using ‹e < errorValue› by auto
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then have c ′ < errorValue
unfolding c ′′ by auto
then have estimate-growth M1 get-distinguishing-trace su sv x y

errorValue < errorValue
unfolding c ′ c
using add-lessD1 by presburger

have c > 0
using estimate-growth-Suc[OF ‹errorValue > 0 ›] unfolding c
by blast

then have c ′′ > 0
unfolding c ′ c ′′

using add-gr-0 by presburger
then have c ′′ 6= 0

by auto
then have P (c ′′,[(x,y)])
using True estimate-growth-result[OF assms(1 ,3 ) ‹su ∈ states M1 ›

‹sv ∈ states M1 › ‹estimate-growth M1 get-distinguishing-trace su sv x y errorValue
< errorValue›]

unfolding P fst-conv su sv snd-conv
by blast

then show ?thesis
using ‹tryIO (e,w) (x,y) = (if c ′′ ≤ e then (c ′′,[(x,y)]) else (e,w))›

True
by auto

next
case False
then show ?thesis

using ‹tryIO (e,w) (x,y) = (if c ′′ ≤ e then (c ′′,[(x,y)]) else (e,w))›
‹P (e,w)›

by auto
qed

next
case (Some v ′′)

have u ′ ∈ L M1
using ‹converge M1 u u ′› converge.simps by blast

have v ′ ∈ L M1
using ‹converge M1 v v ′› converge.simps by blast

have u ′ ∈ L M2
using ‹converge M2 u u ′› converge.simps by blast

have v ′ ∈ L M2
using ‹converge M2 v v ′› converge.simps by blast

have converge M1 u ′ u ′′ and u ′′ @ [(x, y)] ∈ set T
using get-extension-result(1 ,3 )[OF ‹u ′ ∈ L M1 › ‹u ′ ∈ L M2 ›
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assms(10 ) ‹get-extension T G cg-lookup u ′ x y = Some u ′′›]
by blast+

then have converge M1 u u ′′

using ‹converge M1 u u ′› by auto
then have u ′′ ∈ set T ∩ L M1

using set-prefix[OF ‹u ′′ @ [(x, y)] ∈ set T ›] by auto

have converge M1 v ′ v ′′ and v ′′ @ [(x, y)] ∈ set T
using get-extension-result[OF ‹v ′ ∈ L M1 › ‹v ′ ∈ L M2 › assms(10 )

‹get-extension T G cg-lookup v ′ x y = Some v ′′›]
by blast+

then have converge M1 v v ′′

using ‹converge M1 v v ′› by auto
then have v ′′ ∈ set T ∩ L M1

using set-prefix[OF ‹v ′′ @ [(x, y)] ∈ set T ›] by auto

show ?thesis proof (cases (h-obs M1 su x y = None) 6= (h-obs M1 sv
x y = None))

case True

then have tryIO (e,w) (x,y) = (0 ,[])
using Some ‹get-extension T G cg-lookup u ′ x y = Some u ′′› False
unfolding tryIO Let-def by auto

have ¬ converge M2 u v
proof −

note ‹L M1 ∩ set T = L M2 ∩ set T ›

then have u ′ ∈ L M2 and v ′ ∈ L M2
using False ‹u ′ ∈ L M1 › ‹v ′ ∈ L M1 › ‹¬ (¬ isin T u ′ ∨ ¬ isin T

v ′)›
by auto

have u ′′ ∈ L M2
using ‹L M1 ∩ set T = L M2 ∩ set T › ‹u ′′ ∈ set T ∩ L M1 ›
by blast

then have converge M2 u ′ u ′′

using get-extension-result(2 )[OF ‹u ′ ∈ L M1 › ‹u ′ ∈ L M2 ›
assms(10 ) ‹get-extension T G cg-lookup u ′ x y = Some u ′′›]

by blast
moreover note ‹converge M2 u u ′›
ultimately have converge M2 u u ′′

by auto

have v ′′ ∈ L M2
using ‹L M1 ∩ set T = L M2 ∩ set T › ‹v ′′ ∈ set T ∩ L M1 ›
by blast

then have converge M2 v ′ v ′′

using get-extension-result(2 )[OF ‹v ′ ∈ L M1 › ‹v ′ ∈ L M2 ›
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assms(10 ) ‹get-extension T G cg-lookup v ′ x y = Some v ′′›]
by blast

moreover note ‹converge M2 v v ′›
ultimately have converge M2 v v ′′

by auto

have distinguishes M1 su sv ([(x,y)])
using h-obs-distinguishes[OF assms(1 ), of su x y - sv]
using distinguishes-sym[OF h-obs-distinguishes[OF assms(1 ), of

sv x y - su]]
using True
by (cases h-obs M1 su x y; cases h-obs M1 sv x y; metis)

then have distinguishes M1 (after-initial M1 u) (after-initial M1
v) ([(x,y)])

unfolding su sv by auto

show ¬ converge M2 u v
using distinguish-converge-diverge[OF assms(1−3 ) - - ‹converge M1

u u ′′› ‹converge M1 v v ′′› ‹converge M2 u u ′′› ‹converge M2 v v ′′› ‹distinguishes
M1 (after-initial M1 u) (after-initial M1 v) ([(x,y)])› ‹u ′′ @ [(x, y)] ∈ set T › ‹v ′′

@ [(x, y)] ∈ set T › ‹L M1 ∩ set T = L M2 ∩ set T ›]
‹u ′′ ∈ set T ∩ L M1 › ‹v ′′ ∈ set T ∩ L M1 ›

by blast
qed
then show ?thesis

unfolding P ‹tryIO (e,w) (x,y) = (0 ,[])› fst-conv snd-conv su sv
by blast

next
case False

show ?thesis proof (cases h-obs M1 su x y = h-obs M1 sv x y)
case True

then have tryIO (e,w) (x,y) = (e,w)
using ‹get-extension T G cg-lookup u ′ x y = Some u ′′› Some
unfolding tryIO by auto

then show ?thesis
using ‹P (e,w)›
by auto

next
case False

then have h-obs M1 su x y 6= None and h-obs M1 sv x y 6= None
using ‹¬ (h-obs M1 su x y = None) 6= (h-obs M1 sv x y = None)›
by metis+

have u ′′@[(x,y)] ∈ L M1
by (metis ‹converge M1 u u ′′› ‹h-obs M1 su x y 6= None› af-
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ter-language-iff assms(1 ) converge.elims(2 ) h-obs-language-single-transition-iff su)

have v ′′@[(x,y)] ∈ L M1
by (metis ‹converge M1 v v ′′› ‹h-obs M1 sv x y 6= None› af-

ter-language-iff assms(1 ) converge.elims(2 ) h-obs-language-single-transition-iff sv)

have u ′′@[(x,y)] ∈ L M2
using ‹u ′′@[(x,y)] ∈ L M1 › ‹u ′′@[(x,y)] ∈ set T › ‹L M1 ∩ set T

= L M2 ∩ set T ›
by blast

have v ′′@[(x,y)] ∈ L M2
using ‹v ′′@[(x,y)] ∈ L M1 › ‹v ′′@[(x,y)] ∈ set T › ‹L M1 ∩ set T

= L M2 ∩ set T ›
by blast

have FSM .after M1 (FSM .initial M1 ) (u ′′ @ [(x, y)]) 6= FSM .after
M1 (FSM .initial M1 ) (v ′′ @ [(x, y)])

using False ‹converge M1 u u ′′› ‹converge M1 v v ′′› unfolding
su sv

proof −
assume a1 : h-obs M1 (FSM .after M1 (FSM .initial M1 ) u) x y

6= h-obs M1 (FSM .after M1 (FSM .initial M1 ) v) x y
have f2 : ∀ f ps psa. converge (f ::( ′a, ′b, ′c) fsm) ps psa = (ps ∈

L f ∧ psa ∈ L f ∧ LS f (FSM .after f (FSM .initial f ) ps) = LS f (FSM .after f
(FSM .initial f ) psa))

by (meson converge.simps)
then have f3 : u ∈ L M1 ∧ u ′′ ∈ L M1 ∧ LS M1 (FSM .after M1

(FSM .initial M1 ) u) = LS M1 (FSM .after M1 (FSM .initial M1 ) u ′′)
using ‹converge M1 u u ′′› by presburger

have f4 : ∀ f ps psa. ¬ minimal (f ::( ′a, ′b, ′c) fsm) ∨ ¬ observable
f ∨ ps /∈ L f ∨ psa /∈ L f ∨ converge f ps psa = (FSM .after f (FSM .initial f ) ps
= FSM .after f (FSM .initial f ) psa)

using convergence-minimal by blast
have f5 : v ∈ L M1 ∧ v ′′ ∈ L M1 ∧ LS M1 (FSM .after M1

(FSM .initial M1 ) v) = LS M1 (FSM .after M1 (FSM .initial M1 ) v ′′)
using f2 ‹converge M1 v v ′′› by blast

then have f6 : FSM .after M1 (FSM .initial M1 ) v = FSM .after
M1 (FSM .initial M1 ) v ′′

using f4 ‹converge M1 v v ′′› assms(1 ) assms(3 ) by blast
have FSM .after M1 (FSM .initial M1 ) u = FSM .after M1

(FSM .initial M1 ) u ′′

using f4 f3 ‹converge M1 u u ′′› assms(1 ) assms(3 ) by blast
then show ?thesis

using f6 f5 f3 a1 by (metis (no-types) ‹u ′′ @ [(x, y)] ∈ L M1 › ‹v ′′ @
[(x, y)] ∈ L M1 › after-h-obs after-language-iff after-split assms(1 ) h-obs-from-LS)

qed

obtain e ′ w ′ where get-prefix-of-separating-sequence M1 T G
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cg-lookup get-distinguishing-trace (u ′′@[(x,y)]) (v ′′@[(x,y)]) k = (e ′,w ′)
using prod.exhaust by metis

then have tryIO (e,w) (x,y) = (if e ′ = 0 then (0 ,[]) else if e ′ ≤ e
then (e ′,(x,y)#w ′) else (e,w))

using ‹get-extension T G cg-lookup u ′ x y = Some u ′′› Some False
‹¬ (h-obs M1 su x y = None) 6= (h-obs M1 sv x y = None)› ‹e 6= 0 ›

unfolding tryIO Let-def by auto

show ?thesis proof (cases e ′ = 0 )
case True

have ¬ converge M2 u v
proof −

note ‹L M1 ∩ set T = L M2 ∩ set T ›
then have u ′ ∈ L M2 and v ′ ∈ L M2
using ‹¬ (¬ isin T u ′ ∨ ¬ isin T v ′)› ‹u ′ ∈ L M1 › ‹v ′ ∈ L M1 ›

by auto

have u ′′ ∈ L M2
using ‹L M1 ∩ set T = L M2 ∩ set T › ‹u ′′ ∈ set T ∩ L M1 ›
by blast

then have converge M2 u ′ u ′′

using get-extension-result(2 )[OF ‹u ′ ∈ L M1 › ‹u ′ ∈ L M2 ›
assms(10 ) ‹get-extension T G cg-lookup u ′ x y = Some u ′′›]

by blast
moreover note ‹converge M2 u u ′›
ultimately have converge M2 u u ′′

by auto

have v ′′ ∈ L M2
using ‹L M1 ∩ set T = L M2 ∩ set T › ‹v ′′ ∈ set T ∩ L M1 ›
by blast

then have converge M2 v ′ v ′′

using get-extension-result(2 )[OF ‹v ′ ∈ L M1 › ‹v ′ ∈ L M2 ›
assms(10 ) ‹get-extension T G cg-lookup v ′ x y = Some v ′′›]

by blast
moreover note ‹converge M2 v v ′›
ultimately have converge M2 v v ′′

by auto

have fst (get-prefix-of-separating-sequence M1 T G cg-lookup
get-distinguishing-trace (u ′′ @ [(x, y)]) (v ′′ @ [(x, y)]) k) = 0

using True ‹get-prefix-of-separating-sequence M1 T G cg-lookup
get-distinguishing-trace (u ′′@[(x,y)]) (v ′′@[(x,y)]) k = (e ′,w ′)›

by auto
then have ¬ converge M2 (u ′′ @ [(x, y)]) (v ′′ @ [(x, y)])

using Suc.IH [OF ‹u ′′@[(x,y)] ∈ L M1 › ‹u ′′@[(x,y)] ∈ L M2 ›
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‹v ′′@[(x,y)] ∈ L M1 › ‹v ′′@[(x,y)] ∈ L M2 › ‹FSM .after M1 (FSM .initial M1 ) (u ′′

@ [(x, y)]) 6= FSM .after M1 (FSM .initial M1 ) (v ′′ @ [(x, y)])›]
using ‹L M1 ∩ Prefix-Tree.set T = L M2 ∩ Prefix-Tree.set T ›
by blast

then have ¬ converge M2 u ′′ v ′′

using diverge-prefix[OF assms(2 ) ‹u ′′@[(x,y)] ∈ L M2 ›
‹v ′′@[(x,y)] ∈ L M2 ›]

by blast
then show ¬ converge M2 u v

using ‹converge M2 u u ′′› ‹converge M2 v v ′′›
by fastforce

qed
then show ?thesis
unfolding P ‹tryIO (e,w) (x,y) = (if e ′ = 0 then (0 ,[]) else if e ′

≤ e then (e ′,(x,y)#w ′) else (e,w))› True fst-conv snd-conv su sv
by simp

next
case False

show ?thesis proof (cases e ′ ≤ e)
case True

then have fst (get-prefix-of-separating-sequence M1 T G cg-lookup
get-distinguishing-trace (u ′′ @ [(x, y)]) (v ′′ @ [(x, y)]) k) 6= 0

using ‹get-prefix-of-separating-sequence M1 T G cg-lookup
get-distinguishing-trace (u ′′@[(x,y)]) (v ′′@[(x,y)]) k = (e ′,w ′)› False

by auto
then have (∃ γ. distinguishes M1 (FSM .after M1 (FSM .initial

M1 ) (u ′′ @ [(x, y)])) (FSM .after M1 (FSM .initial M1 ) (v ′′ @ [(x, y)]))
(snd (get-prefix-of-separating-sequence M1 T G

cg-lookup get-distinguishing-trace (u ′′ @ [(x, y)]) (v ′′ @ [(x, y)]) k) @ γ))
using Suc.IH [OF ‹u ′′@[(x,y)] ∈ L M1 › ‹u ′′@[(x,y)] ∈ L M2 ›

‹v ′′@[(x,y)] ∈ L M1 › ‹v ′′@[(x,y)] ∈ L M2 › ‹FSM .after M1 (FSM .initial M1 ) (u ′′

@ [(x, y)]) 6= FSM .after M1 (FSM .initial M1 ) (v ′′ @ [(x, y)])›]
by blast

then obtain γ where distinguishes M1 (FSM .after M1
(FSM .initial M1 ) (u ′′ @ [(x, y)])) (FSM .after M1 (FSM .initial M1 ) (v ′′ @ [(x,
y)])) (w ′@γ)

unfolding ‹get-prefix-of-separating-sequence M1 T G cg-lookup
get-distinguishing-trace (u ′′@[(x,y)]) (v ′′@[(x,y)]) k = (e ′,w ′)› snd-conv

by blast
have distinguishes M1 (after-initial M1 u ′′) (after-initial M1 v ′′)

((x,y)#(w ′@γ))
using distinguishes-after-initial-prepend[OF assms(1 ) lan-

guage-prefix[OF ‹u ′′@[(x,y)] ∈ L M1 ›] language-prefix[OF ‹v ′′@[(x,y)] ∈ L M1 ›]]
by (metis Suc.prems(1 ) Suc.prems(3 ) ‹converge M1 u u ′›

‹converge M1 u ′ u ′′› ‹converge M1 v v ′′› ‹distinguishes M1 (after-initial M1 (u ′′

@ [(x, y)])) (after-initial M1 (v ′′ @ [(x, y)])) (w ′ @ γ)› ‹h-obs M1 su x y 6= None›
‹h-obs M1 sv x y 6= None› ‹u ′ ∈ L M1 › ‹u ′′ @ [(x, y)] ∈ L M1 › ‹v ′′ @ [(x, y)] ∈ L
M1 › assms(1 ) assms(3 ) convergence-minimal language-prefix su sv)
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then have distinguishes M1 (after-initial M1 u) (after-initial
M1 v) (((x,y)#w ′)@γ)

by (metis Cons-eq-appendI Suc.prems(1 ) Suc.prems(3 ) ‹converge
M1 u u ′′› ‹converge M1 v v ′′› ‹u ′′ @ [(x, y)] ∈ L M1 › ‹v ′′ @ [(x, y)] ∈ L M1 ›
assms(1 ) assms(3 ) convergence-minimal language-prefix)

have tryIO (e,w) (x,y) = (e ′,(x,y)#w ′)
using ‹tryIO (e,w) (x,y) = (if e ′ = 0 then (0 ,[]) else if e ′ ≤ e

then (e ′,(x,y)#w ′) else (e,w))› True False
by auto

show ?thesis
unfolding P ‹tryIO (e,w) (x,y) = (e ′,(x,y)#w ′)› fst-conv snd-conv

using ‹distinguishes M1 (after-initial M1 u) (after-initial M1
v) (((x,y)#w ′)@γ)›

False True
by blast

next
case False

then have tryIO (e,w) (x,y) = (e,w)
using ‹e ′ 6= 0 › ‹tryIO (e,w) (x,y) = (if e ′ = 0 then (0 ,[]) else

if e ′ ≤ e then (e ′,(x,y)#w ′) else (e,w))›
by auto

then show ?thesis
using ‹P (e,w)›
by auto

qed
qed

qed
qed

qed
qed

qed
qed

have minEst0 < errorValue
unfolding errorValue by auto

have P (foldl tryIO (minEst0 ,[]) XY ) ∧ fst (foldl tryIO (minEst0 ,[]) XY ) ≤
minEst0

proof (induction XY rule: rev-induct)
case Nil
then show ?case

using ‹P (minEst0 ,[])›
by auto

next
case (snoc a XY )
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obtain x y where a = (x,y)
using prod.exhaust by metis

moreover obtain e w where (foldl tryIO (minEst0 ,[]) XY ) = (e,w)
using prod.exhaust by metis

ultimately have (foldl tryIO (minEst0 , []) (XY@[a])) = tryIO (e,w) (x,y)
by auto

have P (e,w) and e ≤ minEst0 and e < errorValue
using snoc.IH ‹minEst0 < errorValue›
unfolding ‹(foldl tryIO (minEst0 ,[]) XY ) = (e,w)›
by auto

then show ?case
unfolding ‹(foldl tryIO (minEst0 , []) (XY@[a])) = tryIO (e,w) (x,y)›
using ‹

∧
x y e w . e < errorValue =⇒ P (e,w) =⇒ P (tryIO (e,w) (x,y))

∧ fst (tryIO (e,w) (x,y)) ≤ e›
using dual-order .trans by blast

qed

then have P (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v (Suc k))

unfolding res by blast
then show ?thesis

unfolding P by blast
qed

qed

then show fst (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k) = 0 =⇒ ¬ converge M2 u v

and fst (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k) 6= 0 =⇒ ∃ γ . distinguishes M1 (after-initial M1 u) (after-initial M1 v)
((snd (get-prefix-of-separating-sequence M1 T G cg-lookup get-distinguishing-trace
u v k))@γ)

by blast+
qed

21.2.2 Distributing Convergent Traces
fun append-heuristic-io :: ( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list × int)
⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list × int) where

append-heuristic-io T w (uBest,lBest) u ′ = (let t ′ = after T u ′;
w ′ = maximum-prefix t ′ w

in if w ′ = w
then (u ′,0 ::int)
else if (is-maximal-in t ′ w ′ ∧ (int (length w ′) >

lBest ∨ (int (length w ′) = lBest ∧ length u ′ < length uBest)))
then (u ′, int (length w ′))
else (uBest,lBest))
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lemma append-heuristic-io-in :
fst (append-heuristic-io T w (uBest,lBest) u ′) ∈ {u ′,uBest}
unfolding append-heuristic-io.simps Let-def by auto

fun append-heuristic-input :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′b× ′c)
prefix-tree ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list × int) ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list ×
int) where
append-heuristic-input M T w (uBest,lBest) u ′ = (let t ′ = after T u ′;

ws = maximum-fst-prefixes t ′ (map fst w)
(outputs-as-list M )

in
foldr (λ w ′ (uBest ′,lBest ′::int) .

if w ′ = w
then (u ′,0 ::int)

else if (int (length w ′) > lBest ′ ∨ (int
(length w ′) = lBest ′ ∧ length u ′ < length uBest ′))

then (u ′,int (length w ′))
else (uBest ′,lBest ′))

ws (uBest,lBest))

lemma append-heuristic-input-in :
fst (append-heuristic-input M T w (uBest,lBest) u ′) ∈ {u ′,uBest}

proof −
define ws where ws: ws = maximum-fst-prefixes (after T u ′) (map fst w)

(outputs-as-list M )
define f where f : f = (λ w ′ (uBest ′,lBest ′::int) .

if w ′ = w
then (u ′,0 ::int)

else if (int (length w ′) > lBest ′ ∨ (int
(length w ′) = lBest ′ ∧ length u ′ < length uBest ′))

then (u ′,int (length w ′))
else (uBest ′,lBest ′))

have
∧

w ′ b ′ . fst b ′ ∈ {u ′,uBest} =⇒ fst (f w ′ b ′) ∈ {u ′,uBest}
unfolding f by auto

then have fst (foldr f ws (uBest,lBest)) ∈ {u ′,uBest}
by (induction ws; auto)

moreover have append-heuristic-input M T w (uBest,lBest) u ′ = foldr f ws
(uBest,lBest)

unfolding append-heuristic-input.simps Let-def ws f by force
ultimately show ?thesis

by simp
qed

fun distribute-extension :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′b× ′c) pre-
fix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒
′d) ⇒( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ bool ⇒ (( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) list ⇒
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(( ′b× ′c) list × int) ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list × int)) ⇒ (( ′b× ′c) prefix-tree
× ′d) where
distribute-extension M T G cg-lookup cg-insert u w completeInputTraces append-heuristic
= (let

cu = cg-lookup G u;
u0 = shortest-list-in-tree-or-default cu T u;
l0 = −1 ::int;
u ′ = fst ((foldl (append-heuristic T w) (u0 ,l0 ) (filter (isin T ) cu)) :: (( ′b× ′c)

list × int));
T ′ = insert T (u ′@w);
G ′ = cg-insert G (maximal-prefix-in-language M (initial M ) (u ′@w))

in if completeInputTraces
then let TC = complete-inputs-to-tree M (initial M ) (outputs-as-list M ) (map

fst (u ′@w));
T ′′ = Prefix-Tree.combine T ′ TC

in (T ′′,G ′)
else (T ′,G ′))

lemma distribute-extension-subset :
set T ⊆ set (fst (distribute-extension M T G cg-lookup cg-insert u w b heuristic))

proof −

define u0 where u0 : u0 = shortest-list-in-tree-or-default (cg-lookup G u) T u
define l0 where l0 : l0 = (−1 ::int)
define u ′ where u ′: u ′ = fst (foldl (heuristic T w) (u0 ,l0 ) (filter (isin T )

(cg-lookup G u)))
define T ′ where T ′: T ′ = insert T (u ′@w)
define G ′ where G ′: G ′ = cg-insert G (maximal-prefix-in-language M (initial

M ) (u ′@w))

have set T ⊆ set T ′

unfolding T ′ insert-set
by blast

show ?thesis proof (cases b)
case True
then show ?thesis

using ‹set T ⊆ set T ′›
unfolding distribute-extension.simps u0 l0 u ′ T ′ G ′ Let-def
using combine-set
by force

next
case False
then have fst (distribute-extension M T G cg-lookup cg-insert u w b heuristic)

= T ′
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unfolding distribute-extension.simps u0 l0 u ′ T ′ G ′ Let-def by force
then show ?thesis

using ‹set T ⊆ set T ′›
by blast

qed
qed

lemma distribute-extension-finite :
assumes finite-tree T
shows finite-tree (fst (distribute-extension M T G cg-lookup cg-insert u w b heuris-

tic))
proof −

define u0 where u0 : u0 = shortest-list-in-tree-or-default (cg-lookup G u) T u
define l0 where l0 : l0 = (−1 ::int)
define u ′ where u ′: u ′ = fst (foldl (heuristic T w) (u0 ,l0 ) (filter (isin T )

(cg-lookup G u)))
define T ′ where T ′: T ′ = insert T (u ′@w)
define G ′ where G ′: G ′ = cg-insert G (maximal-prefix-in-language M (initial

M ) (u ′@w))

have finite-tree T ′

unfolding T ′

using insert-finite-tree[OF assms]
by blast

show ?thesis proof (cases b)
case True
then show ?thesis

using ‹finite-tree T ′›
unfolding distribute-extension.simps u0 l0 u ′ T ′ G ′ Let-def
by (simp add: combine-finite-tree complete-inputs-to-tree-finite-tree)

next
case False
then have fst (distribute-extension M T G cg-lookup cg-insert u w b heuristic)

= T ′

unfolding distribute-extension.simps u0 l0 u ′ T ′ G ′ Let-def by force
then show ?thesis

using ‹finite-tree T ′›
by blast

qed
qed

lemma distribute-extension-adds-sequence :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
assumes observable M1
and minimal M1
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and u ∈ L M1 and u ∈ L M2
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and (L M1 ∩ set (fst (distribute-extension M1 T G cg-lookup cg-insert u w b

heuristic)) = L M2 ∩ set (fst (distribute-extension M1 T G cg-lookup cg-insert u
w b heuristic)))

and
∧

u ′ uBest lBest . fst (heuristic T w (uBest,lBest) u ′) ∈ {u ′,uBest}
shows ∃ u ′ . converge M1 u u ′ ∧ u ′@w ∈ set (fst (distribute-extension M1 T G
cg-lookup cg-insert u w b heuristic)) ∧ converge M2 u u ′

and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distribute-extension
M1 T G cg-lookup cg-insert u w b heuristic))
proof −

define u0 where u0 : u0 = shortest-list-in-tree-or-default (cg-lookup G u) T u
define l0 where l0 : l0 = (−1 ::int)
define u ′ where u ′: u ′ = fst (foldl (heuristic T w) (u0 ,l0 ) (filter (isin T )

(cg-lookup G u)))
define T ′ where T ′: T ′ = insert T (u ′@w)
define G ′ where G ′: G ′ = cg-insert G (maximal-prefix-in-language M1 (initial

M1 ) (u ′@w))

define TC where TC : TC = complete-inputs-to-tree M1 (initial M1 ) (outputs-as-list
M1 ) (map fst (u ′@w))

define T ′′ where T ′′: T ′′ = Prefix-Tree.combine T ′ TC

have distribute-extension M1 T G cg-lookup cg-insert u w b heuristic = (T ′,G ′)
∨

distribute-extension M1 T G cg-lookup cg-insert u w b heuristic = (T ′′,G ′)
unfolding distribute-extension.simps u0 l0 u ′ T ′ G ′ TC T ′′ Let-def by force

moreover have set T ′ ⊆ set T ′′

unfolding T ′′ combine-set by blast
ultimately have set T ′ ⊆ set (fst (distribute-extension M1 T G cg-lookup

cg-insert u w b heuristic))
by force

have
∧

xs . fst (foldl (heuristic T w) (u0 ,l0 ) xs) ∈ Set.insert u0 (list.set xs)
proof −

fix xs

show fst (foldl (heuristic T w) (u0 ,l0 ) xs) ∈ Set.insert u0 (list.set xs)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by auto
next

case (snoc x xs)
have

∧
u ′ uBest lBest . (fst ((heuristic T w) (uBest,lBest) u ′)) = u ′ ∨ (fst

((heuristic T w) (uBest,lBest) u ′)) = uBest
using assms(8 ) by blast
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then have (fst ((heuristic T w) (foldl (heuristic T w) (u0 , l0 ) xs) x)) = x ∨
(fst ((heuristic T w) (foldl (heuristic T w) (u0 , l0 ) xs) x)) = fst (foldl (heuristic
T w) (u0 , l0 ) xs)

by (metis prod.exhaust-sel)
then show ?case

using snoc.IH by auto
qed

qed
then have u ′ ∈ Set.insert u0 (list.set (filter (isin T ) (cg-lookup G u)))

unfolding u ′

by blast
then have u ′ ∈ Set.insert u0 (list.set (cg-lookup G u))

by auto
moreover have converge M1 u u0

unfolding u ′

using shortest-list-in-tree-or-default-elem[of cg-lookup G u T u]
by (metis assms(1−5 ) convergence-graph-lookup-invar-def convergence-minimal

insert-iff u0 )
moreover have

∧
u ′ . u ′ ∈ list.set (cg-lookup G u) =⇒ converge M1 u u ′

using assms(3 ,4 ,5 )
by (metis convergence-graph-lookup-invar-def )

ultimately have converge M1 u u ′

by blast
moreover have u ′@w ∈ set (fst (distribute-extension M1 T G cg-lookup cg-insert

u w b heuristic))
using ‹set T ′ ⊆ set (fst (distribute-extension M1 T G cg-lookup cg-insert u w

b heuristic))›
unfolding T ′ insert-set fst-conv
by blast

moreover have converge M2 u u ′

by (metis ‹u ′ ∈ Set.insert u0 (list.set (cg-lookup G u))› assms(3 ) assms(4 )
assms(5 ) converge.elims(3 ) convergence-graph-lookup-invar-def insertE shortest-list-in-tree-or-default-elem
u0 )

ultimately show ∃ u ′ . converge M1 u u ′ ∧ u ′@w ∈ set (fst (distribute-extension
M1 T G cg-lookup cg-insert u w b heuristic)) ∧ converge M2 u u ′

by blast

have (maximal-prefix-in-language M1 (initial M1 ) (u ′@w)) ∈ L M1
and (maximal-prefix-in-language M1 (initial M1 ) (u ′@w)) ∈ list.set (prefixes

(u ′@w))
using maximal-prefix-in-language-properties[OF assms(1 ) fsm-initial]
by auto

moreover have (maximal-prefix-in-language M1 (initial M1 ) (u ′@w)) ∈ set (fst
(distribute-extension M1 T G cg-lookup cg-insert u w b heuristic))

using ‹u ′@w ∈ set (fst (distribute-extension M1 T G cg-lookup cg-insert u w b
heuristic))› set-prefix

by (metis (no-types, lifting) ‹maximal-prefix-in-language M1 (FSM .initial M1 )
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(u ′ @ w) ∈ list.set (prefixes (u ′ @ w))› prefixes-set-ob)
ultimately have (maximal-prefix-in-language M1 (initial M1 ) (u ′@w)) ∈ L M2

using assms(7 )
by blast

have convergence-graph-lookup-invar M1 M2 cg-lookup G ′

using assms(5 ,6 ) ‹(maximal-prefix-in-language M1 (initial M1 ) (u ′@w)) ∈ L
M1 › ‹(maximal-prefix-in-language M1 (initial M1 ) (u ′@w)) ∈ L M2 ›

unfolding G ′ convergence-graph-insert-invar-def
by blast

show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distribute-extension
M1 T G cg-lookup cg-insert u w b heuristic))

using ‹convergence-graph-lookup-invar M1 M2 cg-lookup G ′›
unfolding distribute-extension.simps u0 l0 u ′ T ′ G ′ Let-def by force

qed

21.2.3 Distinguishing a Trace from Other Traces
fun spyh-distinguish :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′b× ′c) pre-
fix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒
′d) ⇒ ( ′a ⇒ ′a ⇒ ( ′b× ′c) list) ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list ⇒ nat ⇒ bool ⇒
(( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list × int) ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c)
list × int)) ⇒ (( ′b× ′c) prefix-tree × ′d) where

spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace u X k com-
pleteInputTraces append-heuristic = (let

dist-helper = (λ (T ,G) v . if after-initial M u = after-initial M v
then (T ,G)
else (let ew = get-prefix-of-separating-sequence M T G

cg-lookup get-distinguishing-trace u v k
in if fst ew = 0

then (T ,G)
else (let u ′ = (u@(snd ew));

v ′ = (v@(snd ew));
w ′ = if does-distinguish M (after-initial M u)

(after-initial M v) (snd ew) then (snd ew) else (snd ew)@(get-distinguishing-trace
(after-initial M u ′) (after-initial M v ′));

TG ′ = distribute-extension M T G
cg-lookup cg-insert u w ′ completeInputTraces append-heuristic

in distribute-extension M (fst TG ′) (snd
TG ′) cg-lookup cg-insert v w ′ completeInputTraces append-heuristic)))

in foldl dist-helper (T ,G) X)

lemma spyh-distinguish-subset :
set T ⊆ set (fst (spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace

u X k completeInputTraces append-heuristic))
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proof (induction X rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc a X)

have set (fst (spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic))

⊆ set (fst (spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic))

proof −
define dh where dh: dh = (λ (T ,G) v . if after-initial M u = after-initial M v

then (T ,G)
else (let ew = get-prefix-of-separating-sequence M T G

cg-lookup get-distinguishing-trace u v k
in if fst ew = 0

then (T ,G)
else (let u ′ = (u@(snd ew));

v ′ = (v@(snd ew));
w ′ = if does-distinguish M (after-initial M u)

(after-initial M v) (snd ew) then (snd ew) else (snd ew)@(get-distinguishing-trace
(after-initial M u ′) (after-initial M v ′));

TG ′ = distribute-extension M T G
cg-lookup cg-insert u w ′ completeInputTraces append-heuristic

in distribute-extension M (fst TG ′) (snd
TG ′) cg-lookup cg-insert v w ′ completeInputTraces append-heuristic)))

have spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace u
(X@[a]) k completeInputTraces append-heuristic

= dh (spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic) a

unfolding dh spyh-distinguish.simps Let-def
unfolding foldl-append
by auto

moreover have
∧

T G . set T ⊆ set (fst (dh (T ,G) a))
proof −

fix T G
show set T ⊆ set (fst (dh (T ,G) a))
proof (cases after-initial M u = after-initial M a)

case True
then show ?thesis using dh by auto

next
case False
then show ?thesis proof (cases fst (get-prefix-of-separating-sequence M T

G cg-lookup get-distinguishing-trace u a k) = 0 )
case True
then show ?thesis using False dh by auto

next
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case False

define u ′ where u ′: u ′ = (u@(snd (get-prefix-of-separating-sequence M T
G cg-lookup get-distinguishing-trace u a k)))

define v ′ where v ′: v ′ = (a@(snd (get-prefix-of-separating-sequence M T
G cg-lookup get-distinguishing-trace u a k)))

define w where w: w = get-distinguishing-trace (after-initial M u ′)
(after-initial M v ′)

define w ′ where w ′: w ′ = (if does-distinguish M (after-initial M u)
(after-initial M a) (snd (get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace
u a k)) then (snd (get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace
u a k)) else (snd (get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace
u a k))@w)

define TG ′ where TG ′: TG ′ = distribute-extension M T G cg-lookup
cg-insert u w ′ completeInputTraces append-heuristic

have dh (T ,G) a = distribute-extension M (fst (distribute-extension M T G
cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) (snd (distribute-extension
M T G cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) cg-lookup
cg-insert a w ′ completeInputTraces append-heuristic

using False ‹FSM .after M (FSM .initial M ) u 6= FSM .after M (FSM .initial
M ) a›

unfolding dh u ′ v ′ w w ′ TG ′ Let-def case-prod-conv by metis

then show ?thesis
using distribute-extension-subset
by (metis (no-types, lifting) subset-trans)

qed
qed

qed

ultimately show ?thesis
by (metis eq-fst-iff )

qed

then show ?case
using snoc.IH by blast

qed

lemma spyh-distinguish-finite :
fixes T :: ( ′b::linorder× ′c::linorder) prefix-tree
assumes finite-tree T
shows finite-tree (fst (spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace

u X k completeInputTraces append-heuristic))
proof (induction X rule: rev-induct)

case Nil
then show ?case using assms by auto

next
case (snoc a X)
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define dh where dh: dh = (λ (T ,G) v . if after-initial M u = after-initial M v
then (T ,G)

else (let ew = get-prefix-of-separating-sequence M T G
cg-lookup get-distinguishing-trace u v k

in if fst ew = 0
then (T ,G)
else (let u ′ = (u@(snd ew));

v ′ = (v@(snd ew));
w ′ = if does-distinguish M (after-initial M u)

(after-initial M v) (snd ew) then (snd ew) else (snd ew)@(get-distinguishing-trace
(after-initial M u ′) (after-initial M v ′));

TG ′ = distribute-extension M T G
cg-lookup cg-insert u w ′ completeInputTraces append-heuristic

in distribute-extension M (fst TG ′) (snd
TG ′) cg-lookup cg-insert v w ′ completeInputTraces append-heuristic)))

have ∗: spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace u
(X@[a]) k completeInputTraces append-heuristic

= dh (spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic) a

unfolding dh spyh-distinguish.simps Let-def
unfolding foldl-append
by auto

have ∗∗:
∧

T G . finite-tree T =⇒ finite-tree (fst (dh (T ,G) a))
proof −

fix T :: ( ′b× ′c) prefix-tree
fix G
assume finite-tree T
show finite-tree (fst (dh (T ,G) a))
proof (cases after-initial M u = after-initial M a)

case True
then show ?thesis using dh ‹finite-tree T › by auto

next
case False
then show ?thesis proof (cases fst (get-prefix-of-separating-sequence M T G

cg-lookup get-distinguishing-trace u a k) = 0 )
case True
then show ?thesis using False dh ‹finite-tree T › by auto

next
case False

define u ′ where u ′: u ′ = (u@(snd (get-prefix-of-separating-sequence M T
G cg-lookup get-distinguishing-trace u a k)))

define v ′ where v ′: v ′ = (a@(snd (get-prefix-of-separating-sequence M T G
cg-lookup get-distinguishing-trace u a k)))

define w where w: w = get-distinguishing-trace (after-initial M u ′)
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(after-initial M v ′)
define w ′ where w ′: w ′ = (if does-distinguish M (after-initial M u)

(after-initial M a) (snd (get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace
u a k)) then (snd (get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace
u a k)) else (snd (get-prefix-of-separating-sequence M T G cg-lookup get-distinguishing-trace
u a k))@w)

define TG ′ where TG ′: TG ′ = distribute-extension M T G cg-lookup
cg-insert u w ′

have ∗:dh (T ,G) a = distribute-extension M (fst (distribute-extension M T G
cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) (snd (distribute-extension
M T G cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) cg-lookup
cg-insert a w ′ completeInputTraces append-heuristic

using False ‹FSM .after M (FSM .initial M ) u 6= FSM .after M (FSM .initial
M ) a›

unfolding dh u ′ v ′ w w ′ TG ′ Let-def case-prod-conv by metis

show ?thesis
unfolding ∗

using distribute-extension-finite[OF distribute-extension-finite[OF ‹fi-
nite-tree T ›]]

by metis
qed

qed
qed

show ?case
unfolding ∗
using ∗∗[OF snoc]
by (metis eq-fst-iff )

qed

lemma spyh-distinguish-establishes-divergence :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and u ∈ L M1 and u ∈ L M2
and

∧
α β q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒

distinguishes M1 q1 q2 (get-distinguishing-trace q1 q2 )
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and list.set X ⊆ L M1
and list.set X ⊆ L M2
and L M1 ∩ set (fst (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace

u X k completeInputTraces append-heuristic)) = L M2 ∩ set (fst (spyh-distinguish
M1 T G cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces ap-
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pend-heuristic))
and

∧
T w u ′ uBest lBest . fst (append-heuristic T w (uBest,lBest) u ′) ∈

{u ′,uBest}
shows ∀ v . v ∈ list.set X −→ ¬ converge M1 u v −→ ¬ converge M2 u v
(is ?P1 X)
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (spyh-distinguish M1
T G cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces ap-
pend-heuristic))
(is ?P2 X)
proof −

have ?P1 X ∧ ?P2 X
using assms(10 ,11 ,12 )

proof (induction X rule: rev-induct)
case Nil

have ∗: spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace u
[] k completeInputTraces append-heuristic = (T ,G)

by auto

show ?case
using Nil assms(8 )
unfolding ∗ fst-conv snd-conv by auto

next
case (snoc a X)

define dh where dh: dh = (λ (T ,G) v . if after-initial M1 u = after-initial M1
v

then (T ,G)
else (let ew = get-prefix-of-separating-sequence M1 T G

cg-lookup get-distinguishing-trace u v k
in if fst ew = 0

then (T ,G)
else (let u ′ = (u@(snd ew));

v ′ = (v@(snd ew));
w ′= (if does-distinguish M1 (after-initial M1 u)

(after-initial M1 v) (snd ew) then (snd ew) else (snd ew)@(get-distinguishing-trace
(after-initial M1 u ′) (after-initial M1 v ′)));

TG ′ = distribute-extension M1 T G
cg-lookup cg-insert u w ′ completeInputTraces append-heuristic

in distribute-extension M1 (fst TG ′) (snd
TG ′) cg-lookup cg-insert v w ′ completeInputTraces append-heuristic)))

have spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace u
(X@[a]) k completeInputTraces append-heuristic

= dh (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic) a

unfolding dh spyh-distinguish.simps Let-def
unfolding foldl-append
by auto
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have
∧

T G . set T ⊆ set (fst (dh (T ,G) a))
proof −

fix T G
show set T ⊆ set (fst (dh (T ,G) a))
proof (cases after-initial M1 u = after-initial M1 a)

case True
then show ?thesis using dh by auto

next
case False
then show ?thesis proof (cases fst (get-prefix-of-separating-sequence M1 T

G cg-lookup get-distinguishing-trace u a k) = 0 )
case True
then show ?thesis using False dh by auto

next
case False

define u ′ where u ′: u ′ = (u@(snd (get-prefix-of-separating-sequence M1
T G cg-lookup get-distinguishing-trace u a k)))

define v ′ where v ′: v ′ = (a@(snd (get-prefix-of-separating-sequence M1 T
G cg-lookup get-distinguishing-trace u a k)))

define w where w: w = get-distinguishing-trace (after-initial M1 u ′)
(after-initial M1 v ′)

define w ′ where w ′: w ′ = (if does-distinguish M1 (after-initial M1
u) (after-initial M1 a) (snd (get-prefix-of-separating-sequence M1 T G cg-lookup
get-distinguishing-trace u a k)) then (snd (get-prefix-of-separating-sequence M1 T G
cg-lookup get-distinguishing-trace u a k)) else (snd (get-prefix-of-separating-sequence
M1 T G cg-lookup get-distinguishing-trace u a k))@w)

define TG ′ where TG ′: TG ′ = distribute-extension M1 T G cg-lookup
cg-insert u w ′

have dh (T ,G) a = distribute-extension M1 (fst (distribute-extension M1 T
G cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) (snd (distribute-extension
M1 T G cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) cg-lookup
cg-insert a w ′ completeInputTraces append-heuristic

using False ‹FSM .after M1 (FSM .initial M1 ) u 6= FSM .after M1
(FSM .initial M1 ) a›

unfolding dh u ′ v ′ w w ′ TG ′ Let-def case-prod-conv by metis

then show ?thesis
using distribute-extension-subset
by (metis (no-types, lifting) subset-trans)

qed
qed

qed
then have set (fst (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace

u X k completeInputTraces append-heuristic)) ⊆ set (fst (spyh-distinguish M1 T G
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cg-lookup cg-insert get-distinguishing-trace u (X@[a]) k completeInputTraces ap-
pend-heuristic))

unfolding ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic = dh (spyh-distinguish M1 T G
cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)
a›

by (metis prod.exhaust-sel)
then have L M1 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 T G cg-lookup

cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)) = L
M2 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic))

using snoc.prems(3 ) by blast
moreover have list.set X ⊆ L M1

using snoc.prems(1 ) by auto
moreover have list.set X ⊆ L M2

using snoc.prems(2 ) by auto
ultimately have ?P1 X and ?P2 X

using snoc.IH by blast+

obtain T ′ G ′ where (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic) = (T ′,G ′)

using prod.exhaust by metis

then have convergence-graph-lookup-invar M1 M2 cg-lookup G ′

using ‹?P2 X› by auto

have L M1 ∩ set T ′ = L M2 ∩ set T ′

using ‹L M1 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces append-heuristic)) = L M2 ∩
Prefix-Tree.set (fst (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic))›

‹(spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace u
X k completeInputTraces append-heuristic) = (T ′,G ′)›

by auto

have ¬converge M1 u a =⇒ ¬converge M2 u a and ?P2 (X@[a])
proof −

have a ∈ L M1
using snoc.prems(1 ) by auto

then have ¬converge M1 u a =⇒ after-initial M1 u 6= after-initial M1 a
using ‹u ∈ L M1 ›
using assms(1 ) assms(3 ) convergence-minimal by blast

have a ∈ L M2
using snoc.prems(2 ) by auto

define ew where ew: ew = get-prefix-of-separating-sequence M1 T ′ G ′
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cg-lookup get-distinguishing-trace u a k

have (¬converge M1 u a −→ ¬converge M2 u a) ∧ ?P2 (X@[a])
proof (cases fst ew = 0 )

case True
then have ∗: fst (get-prefix-of-separating-sequence M1 T ′ G ′ cg-lookup

get-distinguishing-trace u a k) = 0
unfolding ew by auto

have L M1 ∩ Prefix-Tree.set T ′ = L M2 ∩ Prefix-Tree.set T ′ =⇒ ¬ converge
M1 u a =⇒ ¬ converge M2 u a

using get-prefix-of-separating-sequence-result(1 )[OF assms(1 ,2 ,3 ) ‹u ∈ L
M1 › ‹u ∈ L M2 › ‹a ∈ L M1 › ‹a ∈ L M2 › ‹¬converge M1 u a =⇒ after-initial M1 u
6= after-initial M1 a› assms(7 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup
G ′› - ∗]

by fast
then have (¬converge M1 u a −→ ¬converge M2 u a)

using ‹L M1 ∩ set T ′ = L M2 ∩ set T ′›
by blast

have (snd (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic)) = (snd (spyh-distinguish M1
T G cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces ap-
pend-heuristic))

unfolding ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic = dh (spyh-distinguish M1 T G
cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)
a›

unfolding ‹(spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic) = (T ′,G ′)›

unfolding dh case-prod-conv snd-conv
using True ew
by fastforce

then have ?P2 (X@[a])
using ‹?P2 X›
by auto

then show ?thesis
using ‹(¬converge M1 u a −→ ¬converge M2 u a)›
by auto

next
case False

then have ∗: fst (get-prefix-of-separating-sequence M1 T ′ G ′ cg-lookup
get-distinguishing-trace u a k) 6= 0

unfolding ew by auto

define w where w: w = get-distinguishing-trace (after-initial M1 (u@(snd
ew))) (after-initial M1 (a@(snd ew)))

define w ′ where w ′: w ′ = (if does-distinguish M1 (after-initial M1 u)
(after-initial M1 a) (snd ew) then (snd ew) else (snd ew)@w)
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define TG ′ where TG ′: TG ′ = distribute-extension M1 T ′ G ′ cg-lookup
cg-insert u w ′ completeInputTraces append-heuristic

show ?thesis proof (cases ¬ converge M1 u a)
case True
then have after-initial M1 u 6= after-initial M1 a

using ‹u ∈ L M1 › ‹a ∈ L M1 ›
using assms(1 ) assms(3 ) convergence-minimal by blast

obtain γ where distinguishes M1 (after-initial M1 u) (after-initial M1 a)
(snd ew @ γ)

unfolding ‹ew = get-prefix-of-separating-sequence M1 T ′ G ′ cg-lookup
get-distinguishing-trace u a k›

using get-prefix-of-separating-sequence-result(2 )[OF assms(1 ,2 ,3 ) ‹u ∈
L M1 › ‹u ∈ L M2 › ‹a ∈ L M1 › ‹a ∈ L M2 › ‹after-initial M1 u 6= after-initial M1
a› assms(7 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup G ′› - ∗]

using ‹L M1 ∩ Prefix-Tree.set T ′ = L M2 ∩ Prefix-Tree.set T ′› by
presburger

have dh (T ′,G ′) a = distribute-extension M1 (fst TG ′) (snd TG ′) cg-lookup
cg-insert a w ′ completeInputTraces append-heuristic

unfolding dh w w ′ TG ′ case-prod-conv
unfolding ew[symmetric] Let-def
using ew False ‹after-initial M1 u 6= after-initial M1 a›
by meson

have L M1 ∩ set (fst (dh (T ′,G ′) a)) = L M2 ∩ set (fst (dh (T ′,G ′) a))
using snoc.prems(3 )

using ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic = dh (spyh-distinguish M1 T G
cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)
a› ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace u X k com-
pleteInputTraces append-heuristic = (T ′, G ′)›

by auto
moreover have set (fst (distribute-extension M1 T ′ G ′ cg-lookup cg-insert

u w ′ completeInputTraces append-heuristic)) ⊆ set (fst (dh (T ′,G ′) a))
by (metis TG ′ ‹dh (T ′, G ′) a = distribute-extension M1 (fst TG ′) (snd

TG ′) cg-lookup cg-insert a w ′ completeInputTraces append-heuristic› distribute-extension-subset)
ultimately have (L M1 ∩ set (fst (distribute-extension M1 T ′ G ′

cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)) = L M2 ∩ set (fst
(distribute-extension M1 T ′ G ′ cg-lookup cg-insert u w ′ completeInputTraces ap-
pend-heuristic)))

by blast

obtain u ′ where converge M1 u u ′ and converge M2 u u ′

and u ′ @ w ′ ∈ set (fst (distribute-extension M1 T ′ G ′ cg-lookup
cg-insert u w ′ completeInputTraces append-heuristic))

and convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)
using distribute-extension-adds-sequence[OF assms(1 ,3 ) ‹u ∈ L M1 › ‹u ∈
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L M2 › ‹convergence-graph-lookup-invar M1 M2 cg-lookup G ′› ‹convergence-graph-insert-invar
M1 M2 cg-lookup cg-insert›, of - - completeInputTraces append-heuristic, OF -
assms(13 ) ]

‹(L M1 ∩ set (fst (distribute-extension M1 T ′ G ′ cg-lookup cg-insert u
w ′ completeInputTraces append-heuristic)) = L M2 ∩ set (fst (distribute-extension
M1 T ′ G ′ cg-lookup cg-insert u w ′ completeInputTraces append-heuristic)))›

unfolding TG ′

by blast
then have u ′ @ w ′ ∈ set (fst (dh (T ′,G ′) a))
unfolding ‹dh (T ′,G ′) a = distribute-extension M1 (fst TG ′) (snd TG ′)

cg-lookup cg-insert a w ′ completeInputTraces append-heuristic›
by (metis (no-types, opaque-lifting) TG ′ distribute-extension-subset

in-mono)

obtain a ′ where converge M1 a a ′ and converge M2 a a ′

and a ′ @ w ′ ∈ set (fst (dh (T ′,G ′) a))
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (dh

(T ′,G ′) a))
using distribute-extension-adds-sequence[OF assms(1 ,3 ) ‹a ∈ L M1 › ‹a

∈ L M2 › ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)› ‹conver-
gence-graph-insert-invar M1 M2 cg-lookup cg-insert›, of fst TG ′ w ′ completeInput-
Traces append-heuristic, OF - assms(13 )]

‹L M1 ∩ set (fst (dh (T ′,G ′) a)) = L M2 ∩ set (fst (dh (T ′,G ′) a))›
unfolding ‹dh (T ′,G ′) a = distribute-extension M1 (fst TG ′) (snd TG ′)

cg-lookup cg-insert a w ′ completeInputTraces append-heuristic›
by blast

have u ′ ∈ L M1 and a ′ ∈ L M1
using ‹converge M1 u u ′› ‹converge M1 a a ′› by auto

have ?P2 (X@[a])
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd (dh (T ′,G ′)

a))›
using False ‹after-initial M1 u 6= after-initial M1 a›

using ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic = dh (spyh-distinguish M1 T G
cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)
a› ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace u X k com-
pleteInputTraces append-heuristic= (T ′, G ′)›

by presburger

show ?thesis proof (cases does-distinguish M1 (after-initial M1 u)
(after-initial M1 a) (snd ew))

case True
then have distinguishes M1 (after-initial M1 u) (after-initial M1 a) w ′

using does-distinguish-correctness[OF assms(1 ) after-is-state[OF
assms(1 ) ‹u ∈ L M1 ›] after-is-state[OF assms(1 ) ‹a ∈ L M1 ›]] w ′
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by metis

show ?thesis
using distinguish-converge-diverge[OF assms(1 ,2 ,3 ) ‹u ′ ∈ L M1 › ‹a ′

∈ L M1 › ‹converge M1 u u ′› ‹converge M1 a a ′› ‹converge M2 u u ′› ‹converge M2
a a ′› ‹distinguishes M1 (after-initial M1 u) (after-initial M1 a) w ′› ‹u ′ @ w ′ ∈ set
(fst (dh (T ′,G ′) a))› ‹a ′ @ w ′ ∈ set (fst (dh (T ′,G ′) a))› ‹L M1 ∩ set (fst (dh
(T ′,G ′) a)) = L M2 ∩ set (fst (dh (T ′,G ′) a))›]

‹?P2 (X@[a])›
by blast

next
case False
then have ¬ distinguishes M1 (after-initial M1 u) (after-initial M1 a)

(snd ew)
using does-distinguish-correctness[OF assms(1 ) after-is-state[OF

assms(1 ) ‹u ∈ L M1 ›] after-is-state[OF assms(1 ) ‹a ∈ L M1 ›]]
by blast

then have snd ew ∈ LS M1 (after-initial M1 u) = (snd ew ∈ LS M1
(after-initial M1 a))

unfolding distinguishes-def
by blast

moreover have snd ew ∈ LS M1 (after-initial M1 u) ∨ (snd ew ∈ LS
M1 (after-initial M1 a))

using ‹distinguishes M1 (after-initial M1 u) (after-initial M1 a) (snd
ew @ γ)›

using language-prefix[of snd ew γ]
unfolding distinguishes-def
by fast

ultimately have snd ew ∈ LS M1 (after-initial M1 u) and snd ew ∈
LS M1 (after-initial M1 a)

by auto

have after-initial M1 (u @ snd ew) ∈ states M1
using ‹snd ew ∈ LS M1 (after-initial M1 u)› after-is-state[OF assms(1 )

‹u ∈ L M1 ›]
by (meson after-is-state after-language-iff assms(1 ) assms(5 ))

moreover have after-initial M1 (a @ snd ew) ∈ states M1
using ‹snd ew ∈ LS M1 (after-initial M1 a)› after-is-state[OF assms(1 )

‹a ∈ L M1 ›]
by (meson ‹a ∈ L M1 › after-is-state after-language-iff assms(1 ))

moreover have after-initial M1 (u @ snd ew) 6= after-initial M1 (a @
snd ew)

using ‹distinguishes M1 (after-initial M1 u) (after-initial M1 a) (snd
ew @ γ)›

by (metis ‹a ∈ L M1 › ‹snd ew ∈ LS M1 (after-initial M1 a)› ‹snd
ew ∈ LS M1 (after-initial M1 u)› after-distinguishes-language after-language-iff
append.assoc assms(1 ) assms(5 ))

ultimately have distinguishes M1 (after-initial M1 (u @ snd ew))
(after-initial M1 (a @ snd ew)) w
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unfolding w using assms(7 )
by blast

moreover have w ′ = snd ew @ w
using False w ′ by auto

ultimately have distinguishes M1 (after-initial M1 u) (after-initial M1
a) w ′

using distinguish-prepend-initial[OF assms(1 )]
by (meson ‹a ∈ L M1 › ‹snd ew ∈ LS M1 (after-initial M1 a)› ‹snd ew

∈ LS M1 (after-initial M1 u)› after-language-iff assms(1 ) assms(5 ))

show ?thesis
using distinguish-converge-diverge[OF assms(1 ,2 ,3 ) ‹u ′ ∈ L M1 › ‹a ′

∈ L M1 › ‹converge M1 u u ′› ‹converge M1 a a ′› ‹converge M2 u u ′› ‹converge M2
a a ′› ‹distinguishes M1 (after-initial M1 u) (after-initial M1 a) w ′› ‹u ′ @ w ′ ∈ set
(fst (dh (T ′,G ′) a))› ‹a ′ @ w ′ ∈ set (fst (dh (T ′,G ′) a))› ‹L M1 ∩ set (fst (dh
(T ′,G ′) a)) = L M2 ∩ set (fst (dh (T ′,G ′) a))›]

‹?P2 (X@[a])›
by blast

qed
next

case False
then have after-initial M1 u = after-initial M1 a
by (meson ‹a ∈ L M1 › assms(1 ) assms(3 ) assms(5 ) convergence-minimal)
then have dh (T ′,G ′) a = (T ′,G ′)

unfolding dh case-prod-conv
by auto

then have ?P2 (X@[a])
using ‹?P2 X›

by (metis ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace
u (X@[a]) k completeInputTraces append-heuristic = dh (spyh-distinguish M1 T G
cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)
a› ‹spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace u X k com-
pleteInputTraces append-heuristic = (T ′, G ′)›)

then show ?thesis
using False
by blast

qed
qed
then show ¬ converge M1 u a =⇒ ¬ converge M2 u a

and ?P2 (X@[a])
by blast+

qed

have ?P1 (X@[a])
proof −

have
∧

v . v ∈ list.set X =⇒ ¬converge M1 u v =⇒ ¬converge M2 u v
using ‹?P1 X›
unfolding preserves-divergence.simps
using Int-absorb2 ‹list.set X ⊆ L M1 › assms(5 ) by blast
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then show ?thesis
using ‹¬ converge M1 u a =⇒ ¬ converge M2 u a› by auto

qed
then show ?case

using ‹?P2 (X@[a])› by auto
qed

then show ?P1 X and ?P2 X
by auto

qed

lemma spyh-distinguish-preserves-divergence :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and u ∈ L M1 and u ∈ L M2
and

∧
α β q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒

distinguishes M1 q1 q2 (get-distinguishing-trace q1 q2 )
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and list.set X ⊆ L M1
and list.set X ⊆ L M2
and L M1 ∩ set (fst (spyh-distinguish M1 T G cg-lookup cg-insert get-distinguishing-trace

u X k completeInputTraces append-heuristic)) = L M2 ∩ set (fst (spyh-distinguish
M1 T G cg-lookup cg-insert get-distinguishing-trace u X k completeInputTraces ap-
pend-heuristic))

and
∧

T w u ′ uBest lBest . fst (append-heuristic T w (uBest,lBest) u ′) ∈
{u ′,uBest}

and preserves-divergence M1 M2 (list.set X)
shows preserves-divergence M1 M2 (Set.insert u (list.set X))
(is ?P1 X)

using spyh-distinguish-establishes-divergence(1 )[OF assms(1−13 )]
using assms(14 )
unfolding preserves-divergence.simps
by (metis IntD2 Int-iff assms(10 ) converge.elims(2 ) converge.elims(3 ) inf .absorb-iff2

insert-iff )

21.3 HandleIOPair
definition handle-io-pair :: bool ⇒ bool ⇒ (( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒

( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
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′a ⇒ ′b ⇒ ′c ⇒
(( ′b× ′c) prefix-tree × ′d)) where

handle-io-pair completeInputTraces useInputHeuristic M V T G cg-insert cg-lookup
q x y =

distribute-extension M T G cg-lookup cg-insert (V q) [(x,y)] completeInput-
Traces (if useInputHeuristic then append-heuristic-input M else append-heuristic-io)

lemma handle-io-pair-verifies-io-pair : verifies-io-pair (handle-io-pair b c) M1 M2
cg-lookup cg-insert
proof −

have ∗:
∧

(M ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm) V T (G:: ′d) cg-insert
cg-lookup q x y . set T ⊆ set (fst (handle-io-pair b c M V T G cg-insert cg-lookup
q x y))

using distribute-extension-subset unfolding handle-io-pair-def
by metis

have ∗∗∗:
∧

(M ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm) V T (G:: ′d) cg-insert
cg-lookup q x y . finite-tree T −→ finite-tree (fst (handle-io-pair b c M V T G
cg-insert cg-lookup q x y))

using distribute-extension-finite unfolding handle-io-pair-def
by metis

have ∗∗:
∧

(M1 ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm) V T (G:: ′d) cg-insert
cg-lookup q x y.

observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1 =⇒
q ∈ reachable-states M1 =⇒
x ∈ inputs M1 =⇒
y ∈ outputs M1 =⇒
convergence-graph-lookup-invar M1 M2 cg-lookup G =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
L M1 ∩ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q x y)) =

L M2 ∩ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q x y)) =⇒
(∃ α .

converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q x y)) ∧
α@[(x,y)] ∈ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q

x y)))
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (handle-io-pair b c

M1 V T G cg-insert cg-lookup q x y))
proof −
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fix M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fix G :: ′d
fix V T cg-insert cg-lookup q x y
assume a01 : observable M1
assume a02 : observable M2
assume a03 : minimal M1
assume a04 : minimal M2
assume a05 : FSM .inputs M2 = FSM .inputs M1
assume a06 : FSM .outputs M2 = FSM .outputs M1
assume a07 : is-state-cover-assignment M1 V
assume a09 : L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states

M1
assume a10 : q ∈ reachable-states M1
assume a11 : x ∈ inputs M1
assume a12 : y ∈ outputs M1
assume a13 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a14 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
assume a15 : L M1 ∩ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup

q x y)) = L M2 ∩ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q x y))

let ?heuristic = (if c then append-heuristic-input M1 else append-heuristic-io)

have d1 : V q ∈ L M1
using is-state-cover-assignment-language[OF a07 a10 ] by auto

have d2 : V q ∈ L M2
using is-state-cover-assignment-language[OF a07 a10 ]
using a09 a10 by auto

have d3 : L M1 ∩ Prefix-Tree.set (fst (distribute-extension M1 T G cg-lookup
cg-insert (V q) [(x,y)] b ?heuristic)) = L M2 ∩ Prefix-Tree.set (fst (distribute-extension
M1 T G cg-lookup cg-insert (V q) [(x,y)] b ?heuristic))

using a15 unfolding handle-io-pair-def .

have d4 : (
∧

T w u ′ uBest lBest. fst (?heuristic T w (uBest, lBest) u ′) ∈ {u ′,
uBest})

using append-heuristic-input-in[of M1 ] append-heuristic-io-in
by fastforce

show (∃ α .
converge M1 α (V q) ∧
converge M2 α (V q) ∧
α ∈ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q x y)) ∧
α@[(x,y)] ∈ set (fst (handle-io-pair b c M1 V T G cg-insert cg-lookup q

x y)))
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (handle-io-pair b c

M1 V T G cg-insert cg-lookup q x y))
using distribute-extension-adds-sequence[OF a01 a03 d1 d2 a13 a14 d3 d4 ]
unfolding handle-io-pair-def
by (metis converge-sym set-prefix)
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qed

show ?thesis
unfolding verifies-io-pair-def
using ∗ ∗∗∗ ∗∗ by presburger

qed

lemma handle-io-pair-handles-io-pair : handles-io-pair (handle-io-pair b c) M1 M2
cg-lookup cg-insert

using verifies-io-pair-handled[OF handle-io-pair-verifies-io-pair ] .

21.4 HandleStateCover
21.4.1 Dynamic
fun handle-state-cover-dynamic :: bool ⇒

bool ⇒
( ′a ⇒ ′a ⇒ ( ′b× ′c) list) ⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
(( ′b× ′c) prefix-tree × ′d)

where
handle-state-cover-dynamic completeInputTraces useInputHeuristic get-distinguishing-trace

M V cg-initial cg-insert cg-lookup =
(let

k = (2 ∗ size M );
heuristic = (if useInputHeuristic then append-heuristic-input M else ap-

pend-heuristic-io);
rstates = reachable-states-as-list M ;
T0 ′ = from-list (map V rstates);
T0 = (if completeInputTraces

then Prefix-Tree.combine T0 ′ (from-list (concat (map (λ q . lan-
guage-for-input M (initial M ) (map fst (V q))) rstates)))

else T0 ′);
G0 = cg-initial M T0 ;
separate-state = (λ (X ,T ,G) q . let u = V q;

TG ′ = spyh-distinguish M T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces heuristic;

X ′ = u#X
in (X ′,TG ′))

in snd (foldl separate-state ([],T0 ,G0 ) rstates))

lemma handle-state-cover-dynamic-separates-state-cover :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
fixes cg-insert :: ( ′d ⇒ ( ′b× ′c) list ⇒ ′d)
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assumes
∧

α β q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒
distinguishes M1 q1 q2 (dist-fun q1 q2 )

shows separates-state-cover (handle-state-cover-dynamic b c dist-fun) M1 M2
cg-initial cg-insert cg-lookup
proof −

let ?f = (handle-state-cover-dynamic b c dist-fun)

have
∧

(V :: ( ′a, ′b, ′c) state-cover-assignment) .
(V ‘ reachable-states M1 ⊆ set (fst (?f M1 V cg-initial cg-insert cg-lookup)))
∧ finite-tree (fst (?f M1 V cg-initial cg-insert cg-lookup))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
convergence-graph-initial-invar M1 M2 cg-lookup cg-initial −→
L M1 ∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup)) = L M2 ∩

set (fst (?f M1 V cg-initial cg-insert cg-lookup)) −→
(preserves-divergence M1 M2 (V ‘ reachable-states M1 )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (?f M1 V

cg-initial cg-insert cg-lookup)))) (is
∧

V . ?P V )
proof −

fix V :: ( ′a, ′b, ′c) state-cover-assignment

define k where k = 2 ∗ size M1
define heuristic where heuristic = (if c then append-heuristic-input M1 else

append-heuristic-io)
define separate-state where separate-state = (λ (X ,T ,G:: ′d) q . let u = V q;

TG ′ = spyh-distinguish M1 T G cg-lookup cg-insert
dist-fun u X k b heuristic;

X ′ = u#X
in (X ′,TG ′))

define rstates where rstates = reachable-states-as-list M1
define T0 ′ where T0 ′ = from-list (map V rstates)
define T0 where T0 = (if b

then Prefix-Tree.combine T0 ′ (from-list (concat (map (λ q . lan-
guage-for-input M1 (initial M1 ) (map fst (V q))) rstates)))

else T0 ′)
define G0 where G0 = cg-initial M1 T0

have ∗:(?f M1 V cg-initial cg-insert cg-lookup) = snd (foldl separate-state
([],T0 ,G0 ) rstates)

unfolding k-def separate-state-def rstates-def heuristic-def T0 ′-def T0-def
G0-def handle-state-cover-dynamic.simps Let-def

by simp
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have separate-state-subset :
∧

q X T G . set T ⊆ set (fst (snd (separate-state
(X ,T ,G) q)))

using spyh-distinguish-subset
unfolding separate-state-def case-prod-conv Let-def snd-conv
by metis

then have set T0 ⊆ set (fst (?f M1 V cg-initial cg-insert cg-lookup))
unfolding ∗
by (induction rstates rule: rev-induct; auto; metis (mono-tags, opaque-lifting)

Collect-mono-iff prod.exhaust-sel)
moreover have set T0 ′ ⊆ set T0

unfolding T0-def using combine-set by auto
moreover have V ‘ reachable-states M1 ⊆ set T0 ′

unfolding T0 ′-def rstates-def using from-list-subset
by (metis image-set reachable-states-as-list-set)

ultimately have p1 : V ‘ reachable-states M1 ⊆ set (fst (?f M1 V cg-initial
cg-insert cg-lookup))

by blast

have finite-tree T0 ′

unfolding T0 ′-def using from-list-finite-tree by auto
then have finite-tree T0

unfolding T0-def using combine-finite-tree[OF - from-list-finite-tree]
by auto

have separate-state-finite :
∧

q X T G . finite-tree T =⇒ finite-tree (fst (snd
(separate-state (X ,T ,G) q)))

using spyh-distinguish-finite
unfolding separate-state-def case-prod-conv Let-def snd-conv
by metis

have p2 : finite-tree (fst (?f M1 V cg-initial cg-insert cg-lookup))
unfolding ∗

proof (induction rstates rule: rev-induct)
case Nil
show ?case using ‹finite-tree T0 › by auto

next
case (snoc a rstates)
have ∗:foldl separate-state ([], T0 , G0 ) (rstates@[a]) = separate-state (foldl

separate-state ([], T0 , G0 ) rstates) a
by auto

show ?case
using separate-state-finite[OF snoc.IH ]
unfolding ∗
by (metis prod.collapse)

qed

have
∧

q X T G . fst (separate-state (X ,T ,G) q) = V q # X
unfolding separate-state-def case-prod-conv Let-def fst-conv by blast
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have heuristic-prop: (
∧

T w u ′ uBest lBest. fst (heuristic T w (uBest, lBest)
u ′) ∈ {u ′, uBest})

unfolding heuristic-def
using append-heuristic-input-in[of M1 ] append-heuristic-io-in
by fastforce

have p3 : observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
inputs M2 = inputs M1 =⇒
outputs M2 = outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
convergence-graph-initial-invar M1 M2 cg-lookup cg-initial =⇒
L M1 ∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup)) = L M2 ∩

set (fst (?f M1 V cg-initial cg-insert cg-lookup)) =⇒
(preserves-divergence M1 M2 (V ‘ reachable-states M1 )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (?f M1 V

cg-initial cg-insert cg-lookup)))
proof −

assume a0 : observable M1
and a1 : observable M2
and a2 : minimal M1
and a3 : minimal M2
and a4 : inputs M2 = inputs M1
and a5 : outputs M2 = outputs M1
and a6 : is-state-cover-assignment M1 V
and a7 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and a8 : convergence-graph-initial-invar M1 M2 cg-lookup cg-initial
and a9 : L M1 ∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup)) = L M2

∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup))

have
∧

rstates . (list.set (fst (foldl separate-state ([],T0 ,G0 ) rstates))) = V
‘ list.set rstates

proof −
fix rstates show (list.set (fst (foldl separate-state ([],T0 ,G0 ) rstates))) = V

‘ list.set rstates
proof (induction rstates rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc a rstates)
have ∗:(foldl separate-state ([], T0 , G0 ) (rstates@[a])) = separate-state

(foldl separate-state ([], T0 , G0 ) rstates) a
by auto

have ∗∗:
∧

q XTG . fst (separate-state XTG q) = V q # fst XTG
using ‹

∧
q X T G . fst (separate-state (X ,T ,G) q) = V q # X› by auto
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show ?case
unfolding ∗ ∗∗
using snoc by auto

qed
qed

then have (list.set (fst (foldl separate-state ([],T0 ,G0 ) rstates))) = V ‘
reachable-states M1

by (metis reachable-states-as-list-set rstates-def )

have
∧

q . q ∈ reachable-states M1 =⇒ V q ∈ set T0
using ‹Prefix-Tree.set T0 ′ ⊆ Prefix-Tree.set T0 › ‹V ‘ reachable-states M1

⊆ Prefix-Tree.set T0 ′› by auto

have list.set rstates ⊆ reachable-states M1
unfolding rstates-def
using reachable-states-as-list-set by auto

moreover have L M1 ∩ set (fst (snd (foldl separate-state ([],T0 ,G0 ) rstates)))
= L M2 ∩ set (fst (snd (foldl separate-state ([],T0 ,G0 ) rstates)))

using ∗ a9 by presburger
ultimately have preserves-divergence M1 M2 (list.set (fst (foldl separate-state

([],T0 ,G0 ) rstates)))
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd

(foldl separate-state ([],T0 ,G0 ) rstates)))
proof (induction rstates rule: rev-induct)

case Nil
have L M1 ∩ set T0 = L M2 ∩ set T0

using a9
using ‹set T0 ⊆ set (fst (handle-state-cover-dynamic b c dist-fun M1 V

cg-initial cg-insert cg-lookup))› by blast
then have convergence-graph-lookup-invar M1 M2 cg-lookup G0

using a8 ‹finite-tree T0 ›
unfolding G0-def convergence-graph-initial-invar-def
by blast

then show ?case by auto
next

case (snoc q rstates)

obtain X ′ T ′ G ′ where foldl separate-state ([],T0 ,G0 ) rstates = (X ′,T ′,G ′)
using prod-cases3 by blast

then have T ′ = fst (snd (foldl separate-state ([],T0 ,G0 ) rstates))
and X ′ = fst (foldl separate-state ([],T0 ,G0 ) rstates)

by auto

define u where u = V q
define TG ′′ where TG ′′ = spyh-distinguish M1 T ′ G ′ cg-lookup cg-insert

dist-fun u X ′ k b heuristic
define X ′′ where X ′′ = u#X ′
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have foldl separate-state ([], T0 , G0 ) (rstates@[q]) = separate-state (X ′,T ′,G ′)
q

using ‹foldl separate-state ([],T0 ,G0 ) rstates = (X ′,T ′,G ′)› by auto
also have separate-state (X ′,T ′,G ′) q = (X ′′,TG ′′)

unfolding separate-state-def u-def TG ′′-def X ′′-def case-prod-conv Let-def
by auto

finally have foldl separate-state ([], T0 , G0 ) (rstates@[q]) = (X ′′,TG ′′) .

have set T ′ ⊆ set (fst (snd (foldl separate-state ([],T0 ,G0 ) (rstates@[q]))))
using separate-state-subset
unfolding ‹foldl separate-state ([], T0 , G0 ) (rstates@[q]) = separate-state

(X ′,T ′,G ′) q› by simp
then have L M1 ∩ set T ′ = L M2 ∩ set T ′

using snoc.prems(2 ) by blast

then have preserves-divergence M1 M2 (list.set X ′)
and convergence-graph-lookup-invar M1 M2 cg-lookup G ′

using snoc unfolding ‹foldl separate-state ([],T0 ,G0 ) rstates = (X ′,T ′,G ′)›

by auto

have set T0 ⊆ set T ′

using separate-state-subset
unfolding ‹T ′ = fst (snd (foldl separate-state ([],T0 ,G0 ) rstates))›

by (induction rstates rule: rev-induct; auto; metis (mono-tags, opaque-lifting)
Collect-mono-iff prod.collapse)

have V q ∈ set T0
using snoc.prems
using ‹

∧
q. q ∈ reachable-states M1 =⇒ V q ∈ Prefix-Tree.set T0 › by

auto
then have V q ∈ set T ′

using ‹set T0 ⊆ set T ′› by auto
moreover have V q ∈ L M1
proof −

have q ∈ reachable-states M1
using snoc.prems(1 ) by auto

then show ?thesis
using is-state-cover-assignment-language[OF a6 ] by blast

qed
ultimately have V q ∈ L M2

using ‹L M1 ∩ set T ′ = L M2 ∩ set T ′› by blast

have list.set X ′ = V ‘ list.set rstates
unfolding ‹X ′ = fst (foldl separate-state ([],T0 ,G0 ) rstates)›
using ‹

∧
rstates . (list.set (fst (foldl separate-state ([],T0 ,G0 ) rstates)))
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= V ‘ list.set rstates›
by blast

moreover have list.set rstates ⊆ reachable-states M1
using snoc.prems(1 ) by auto

ultimately have list.set X ′ ⊆ set T ′

using ‹set T0 ⊆ set T ′›
using ‹

∧
q. q ∈ reachable-states M1 =⇒ V q ∈ Prefix-Tree.set T0 › by

auto
moreover have list.set X ′ ⊆ L M1

using ‹list.set X ′ = V ‘ list.set rstates› ‹list.set rstates ⊆ reachable-states
M1 › a6

by (metis dual-order .trans image-mono state-cover-assignment-language)
ultimately have list.set X ′ ⊆ L M2

using ‹L M1 ∩ set T ′ = L M2 ∩ set T ′› by blast

have ∗: L M1 ∩ set (fst (spyh-distinguish M1 T ′ G ′ cg-lookup cg-insert
dist-fun (V q) X ′ k b heuristic)) =

L M2 ∩ set (fst (spyh-distinguish M1 T ′ G ′ cg-lookup cg-insert
dist-fun (V q) X ′ k b heuristic))

using snoc.prems(2 ) TG ′′-def ‹foldl separate-state ([], T0 , G0 ) (rstates@[q])
= separate-state (X ′, T ′, G ′) q› ‹separate-state (X ′, T ′, G ′) q = (X ′′, TG ′′)› u-def
by auto

have preserves-divergence M1 M2 (Set.insert (V q) (list.set X ′))
using spyh-distinguish-preserves-divergence[OF a0 a1 a2 a3 ‹V q ∈ L M1 ›

‹V q ∈ L M2 › assms(1 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup G ′› a7
‹list.set X ′ ⊆ L M1 › ‹list.set X ′ ⊆ L M2 › ∗ heuristic-prop ‹preserves-divergence
M1 M2 (list.set X ′)›]

by presburger
then have preserves-divergence M1 M2 (list.set X ′′)

by (metis X ′′-def list.simps(15 ) u-def )

moreover have convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)
using spyh-distinguish-establishes-divergence(2 )[OF a0 a1 a2 a3 ‹V q ∈

L M1 › ‹V q ∈ L M2 › assms(1 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup
G ′› a7 ‹list.set X ′ ⊆ L M1 › ‹list.set X ′ ⊆ L M2 › ∗ heuristic-prop ]

unfolding u-def [symmetric] TG ′′-def [symmetric]
by presburger

ultimately show ?case
unfolding ‹foldl separate-state ([], T0 , G0 ) (rstates@[q]) = (X ′′,TG ′′)›

snd-conv fst-conv
by blast

qed
then show ?thesis

unfolding ‹(list.set (fst (foldl separate-state ([],T0 ,G0 ) rstates))) = V ‘
reachable-states M1 ›

unfolding ∗ .
qed
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show ?P V
using p1 p2 p3 by blast

qed

then show ?thesis
unfolding separates-state-cover-def by blast

qed

21.4.2 Static
fun handle-state-cover-static :: (nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒

( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
(( ′a, ′b, ′c) fsm ⇒ ( ′b× ′c) prefix-tree ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
(( ′b× ′c) prefix-tree × ′d)

where
handle-state-cover-static dist-set M V cg-initial cg-insert cg-lookup =
(let

separate-state = (λ T q . combine-after T (V q) (dist-set 0 q));
T ′ = foldl separate-state empty (reachable-states-as-list M );
G ′ = cg-initial M T ′

in (T ′,G ′))

lemma handle-state-cover-static-applies-dist-sets:
assumes q ∈ reachable-states M1
shows set (dist-fun 0 q) ⊆ set (after (fst (handle-state-cover-static dist-fun M1

V cg-initial cg-insert cg-lookup)) (V q))
(is set (dist-fun 0 q) ⊆ set (after ?T (V q)))

proof −

define k where k = 2 ∗ size M1
define separate-state where separate-state = (λ T q . combine-after T (V q)

(dist-fun 0 q))
define rstates where rstates = reachable-states-as-list M1
define T where T = foldl separate-state empty rstates
define G where G = cg-initial M1 T

have ∗:?T = T
unfolding k-def separate-state-def rstates-def T-def G-def handle-state-cover-static.simps

Let-def
by simp
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have separate-state-subset :
∧

q T . set T ⊆ set (separate-state T q)
unfolding separate-state-def combine-after-set
by blast

have
∧

q . q ∈ list.set rstates =⇒ set (dist-fun 0 q) ⊆ set (after T (V q))
proof −

fix q assume q ∈ list.set rstates
then show set (dist-fun 0 q) ⊆ set (after T (V q))

unfolding T-def proof (induction rstates arbitrary: q rule: rev-induct )
case Nil
then show ?case by auto

next
case (snoc a rstates)
have ∗: foldl separate-state empty (rstates@[a]) = separate-state (foldl sepa-

rate-state empty rstates) a
by auto

show ?case proof (cases q = a)
case True
show ?thesis

unfolding True using separate-state-def combine-after-after-subset by
force

next
case False
then have ‹q ∈ list.set rstates› using snoc.prems by auto

then have set (dist-fun 0 q) ⊆ set (after (foldl separate-state empty rstates)
(V q))

using snoc.IH by auto
moreover have set (after (foldl separate-state empty rstates) (V q)) ⊆ set

(after (foldl separate-state empty (rstates@[a])) (V q))
unfolding ∗
using subset-after-subset[OF separate-state-subset] by blast

ultimately show ?thesis by blast
qed

qed
qed

then show ?thesis
unfolding rstates-def ‹?T = T › using assms
using reachable-states-as-list-set by auto

qed

lemma handle-state-cover-static-separates-state-cover :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
fixes cg-insert :: ( ′d ⇒ ( ′b× ′c) list ⇒ ′d)
assumes observable M1 =⇒ minimal M1 =⇒ (

∧
q1 q2 . q1 ∈ states M1 =⇒

q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io . ∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set
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(dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2 io)
and

∧
k q . q ∈ states M1 =⇒ finite-tree (dist-fun k q)

shows separates-state-cover (handle-state-cover-static dist-fun) M1 M2 cg-initial
cg-insert cg-lookup
proof −

let ?f = (handle-state-cover-static dist-fun)

have
∧

(V :: ( ′a, ′b, ′c) state-cover-assignment) .
(V ‘ reachable-states M1 ⊆ set (fst (?f M1 V cg-initial cg-insert cg-lookup)))
∧ finite-tree (fst (?f M1 V cg-initial cg-insert cg-lookup))
∧ (observable M1 −→

observable M2 −→
minimal M1 −→
minimal M2 −→
inputs M2 = inputs M1 −→
outputs M2 = outputs M1 −→
is-state-cover-assignment M1 V −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
convergence-graph-initial-invar M1 M2 cg-lookup cg-initial −→
L M1 ∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup)) = L M2 ∩

set (fst (?f M1 V cg-initial cg-insert cg-lookup)) −→
(preserves-divergence M1 M2 (V ‘ reachable-states M1 )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (?f M1 V

cg-initial cg-insert cg-lookup)))) (is
∧

V . ?P V )
proof −

fix V :: ( ′a, ′b, ′c) state-cover-assignment

define k where k = 2 ∗ size M1
define separate-state where separate-state = (λ T q . combine-after T (V q)

(dist-fun 0 q))
define rstates where rstates = reachable-states-as-list M1
define T where T = foldl separate-state empty rstates
define G where G = cg-initial M1 T

have ∗:(?f M1 V cg-initial cg-insert cg-lookup) = (T ,G)
unfolding k-def separate-state-def rstates-def T-def G-def handle-state-cover-static.simps

Let-def
by simp

have separate-state-subset :
∧

q T . set T ⊆ set (separate-state T q)
unfolding separate-state-def combine-after-set
by blast

have V ‘ (list.set rstates) ⊆ set T
unfolding T-def proof (induction rstates rule: rev-induct)
case Nil
then show ?case by auto

next
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case (snoc a rstates)
have ∗: foldl separate-state empty (rstates@[a]) = separate-state (foldl sepa-

rate-state empty rstates) a
by auto

have V ‘ (list.set rstates) ⊆ set (foldl separate-state empty (rstates@[a]))
using snoc separate-state-subset by auto

moreover have V a ∈ set (separate-state (foldl separate-state empty rstates)
a)

unfolding separate-state-def combine-after-set
by simp

ultimately show ?case
unfolding ∗ by auto

qed
then have p1 : (V ‘ reachable-states M1 ⊆ set (fst (?f M1 V cg-initial cg-insert

cg-lookup)))
unfolding rstates-def ∗
using reachable-states-as-list-set by auto

have separate-state-finite :
∧

q X T G . q ∈ states M1 =⇒ finite-tree T =⇒
finite-tree (separate-state T q)

unfolding separate-state-def using combine-after-finite-tree[OF - assms(2 )]
by metis

moreover have
∧

q . q ∈ list.set rstates =⇒ q ∈ states M1
unfolding rstates-def
by (metis reachable-state-is-state reachable-states-as-list-set)

ultimately have p2 : finite-tree (fst (?f M1 V cg-initial cg-insert cg-lookup))
unfolding ∗ fst-conv T-def using empty-finite-tree
by (induction rstates rule: rev-induct; auto)

have p3 : observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
inputs M2 = inputs M1 =⇒
outputs M2 = outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
convergence-graph-initial-invar M1 M2 cg-lookup cg-initial =⇒
L M1 ∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup)) = L M2 ∩

set (fst (?f M1 V cg-initial cg-insert cg-lookup)) =⇒
(preserves-divergence M1 M2 (V ‘ reachable-states M1 )
∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (?f M1 V

cg-initial cg-insert cg-lookup)))
proof −

assume a0 : observable M1
and a1 : observable M2
and a2 : minimal M1
and a3 : minimal M2
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and a4 : inputs M2 = inputs M1
and a5 : outputs M2 = outputs M1
and a6 : is-state-cover-assignment M1 V
and a7 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and a8 : convergence-graph-initial-invar M1 M2 cg-lookup cg-initial
and a9 : L M1 ∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup)) = L M2

∩ set (fst (?f M1 V cg-initial cg-insert cg-lookup))

have L M1 ∩ set T = L M2 ∩ set T
using a9 unfolding ∗ by auto

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (?f M1 V
cg-initial cg-insert cg-lookup))

using a8 p2
unfolding ∗ fst-conv snd-conv G-def convergence-graph-initial-invar-def
by blast

moreover have preserves-divergence M1 M2 (V ‘ reachable-states M1 )
proof −

have
∧

u v . u∈L M1 ∩ V ‘ reachable-states M1 =⇒ v∈L M1 ∩ V ‘
reachable-states M1 =⇒ ¬ converge M1 u v =⇒ ¬ converge M2 u v

proof −
fix u v assume u∈L M1 ∩ V ‘ reachable-states M1 and v∈L M1 ∩ V ‘

reachable-states M1 and ¬ converge M1 u v
then obtain qv qu where qu ∈ reachable-states M1 and u = V qu

qv ∈ reachable-states M1 and v = V qv
by auto

then have u ∈ L M1 and v ∈ L M1
using a6 by (meson is-state-cover-assignment-language)+

then have qu 6= qv
using a6 ‹¬ converge M1 u v›
using ‹u = V qu› ‹v = V qv› a0 a2 convergence-minimal by blast

moreover have qu ∈ states M1 and qv ∈ states M1
using ‹qu ∈ reachable-states M1 › ‹qv ∈ reachable-states M1 ›
by (simp add: reachable-state-is-state)+
ultimately obtain w where distinguishes M1 qu qv w and w ∈ set

(dist-fun 0 qu) and w ∈ set (dist-fun 0 qv)
using assms(1 )[OF a0 a2 ]
by (metis Int-iff )

then have w 6= []
by (meson ‹qu ∈ FSM .states M1 › ‹qv ∈ FSM .states M1 › distin-

guishes-not-Nil)

have (u@w ∈ L M1 ) 6= (v@w ∈ L M1 )
unfolding ‹u = V qu› ‹v = V qv›

using state-cover-assignment-after [OF a0 a6 ‹qu ∈ reachable-states M1 ›]
using state-cover-assignment-after [OF a0 a6 ‹qv ∈ reachable-states M1 ›]
by (metis ‹distinguishes M1 qu qv w› a0 after-distinguishes-language)

moreover have u@w ∈ set T
using handle-state-cover-static-applies-dist-sets[OF ‹qu ∈ reachable-states

M1 ›, of dist-fun V cg-initial cg-insert cg-lookup] ‹w ∈ set (dist-fun 0 qu)› ‹w 6= []›
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unfolding ∗ fst-conv after-set ‹u = V qu› by auto
moreover have v@w ∈ set T
using handle-state-cover-static-applies-dist-sets[OF ‹qv ∈ reachable-states

M1 ›, of dist-fun V cg-initial cg-insert cg-lookup] ‹w ∈ set (dist-fun 0 qv)› ‹w 6= []›
unfolding ∗ fst-conv after-set ‹v = V qv› by auto

ultimately have (u@w ∈ L M2 ) 6= (v@w ∈ L M2 )
using ‹L M1 ∩ set T = L M2 ∩ set T ›
by blast

then show ¬ converge M2 u v
using a1 converge-append-language-iff by blast

qed
then show ?thesis

unfolding preserves-divergence.simps by blast
qed
ultimately show ?thesis

by blast
qed

show ?P V
using p1 p2 p3 by blast

qed

then show ?thesis
unfolding separates-state-cover-def by blast

qed

21.5 Establishing Convergence of Traces
21.5.1 Dynamic
fun distinguish-from-set :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′a, ′b, ′c)
state-cover-assignment ⇒ ( ′b× ′c) prefix-tree ⇒ ′d ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c)
list list) ⇒ ( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒ ( ′a ⇒ ′a ⇒ ( ′b× ′c) list) ⇒ ( ′b× ′c) list
⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list ⇒ nat ⇒ nat ⇒ bool ⇒ (( ′b× ′c) prefix-tree ⇒
( ′b× ′c) list ⇒ (( ′b× ′c) list × int) ⇒ ( ′b× ′c) list ⇒ (( ′b× ′c) list × int)) ⇒ bool
⇒ (( ′b× ′c) prefix-tree × ′d) where

distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace u v X k
depth completeInputTraces append-heuristic u-is-v=

(let TG ′ = spyh-distinguish M T G cg-lookup cg-insert get-distinguishing-trace
u X k completeInputTraces append-heuristic;

vClass = Set.insert v (list.set (cg-lookup (snd TG ′) v));
notReferenced = (¬ u-is-v) ∧ (∀ q ∈ reachable-states M . V q /∈ vClass);

TG ′′ = (if notReferenced then spyh-distinguish M (fst TG ′) (snd TG ′)
cg-lookup cg-insert get-distinguishing-trace v X k completeInputTraces append-heuristic

else TG ′)
in if depth > 0

then let X ′ = if notReferenced then (v#u#X) else (u#X);
XY = List.product (inputs-as-list M ) (outputs-as-list M );
handleIO = (λ (T ,G) (x,y) . (let TGu = distribute-extension M T

G cg-lookup cg-insert u [(x,y)] completeInputTraces append-heuristic;
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TGv = if u-is-v then TGu
else distribute-extension M (fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] com-
pleteInputTraces append-heuristic

in if is-in-language M (initial M ) (u@[(x,y)])
then distinguish-from-set M V (fst TGv)

(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
(depth − 1 ) completeInputTraces append-heuristic u-is-v

else TGv))
in foldl handleIO TG ′′ XY

else TG ′′)

lemma distinguish-from-set-subset :
set T ⊆ set (fst (distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace

u v X k depth completeInputTraces append-heuristic u-is-v))
proof (induction depth arbitrary: T G u v X)

case 0

define TG ′ where TG ′: TG ′ = spyh-distinguish M T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces append-heuristic

define vClass where vClass: vClass = Set.insert v (list.set (cg-lookup (snd TG ′)
v))

define notReferenced where notReferenced: notReferenced = ((¬ u-is-v) ∧ (∀ q
∈ reachable-states M . V q /∈ vClass))

define TG ′′ where TG ′′: TG ′′ = (if notReferenced then spyh-distinguish M (fst
TG ′) (snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInput-
Traces append-heuristic else TG ′)

have distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace u
v X k 0 completeInputTraces append-heuristic u-is-v = TG ′′

apply (subst distinguish-from-set.simps)
unfolding TG ′ vClass notReferenced TG ′′ Let-def
by force

moreover have set T ⊆ set (fst (TG ′))
unfolding TG ′

using spyh-distinguish-subset
by metis

moreover have set (fst (TG ′)) ⊆ set (fst (TG ′′))
unfolding TG ′′

using spyh-distinguish-subset
by (metis (mono-tags, lifting) equalityE)

ultimately show ?case
by blast

next
case (Suc depth)

have (Suc depth − 1 ) = depth
by auto

define TG ′ where TG ′: TG ′ = spyh-distinguish M T G cg-lookup cg-insert
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get-distinguishing-trace u X k completeInputTraces append-heuristic
define vClass where vClass: vClass = Set.insert v (list.set (cg-lookup (snd TG ′)

v))
define notReferenced where notReferenced: notReferenced = ((¬ u-is-v) ∧ (∀ q
∈ reachable-states M . V q /∈ vClass))

define TG ′′ where TG ′′: TG ′′ = (if notReferenced then spyh-distinguish M (fst
TG ′) (snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInput-
Traces append-heuristic else TG ′)

define X ′ where X ′: X ′ = (if notReferenced then (v#u#X) else (u#X))
define XY where XY : XY = List.product (inputs-as-list M ) (outputs-as-list

M )
define handleIO where handleIO: handleIO = (λ (T ,G) (x,y) . (let TGu =

distribute-extension M T G cg-lookup cg-insert u [(x,y)] completeInputTraces ap-
pend-heuristic;

TGv = if u-is-v then TGu
else distribute-extension M (fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] com-
pleteInputTraces append-heuristic

in if is-in-language M (initial M ) (u@[(x,y)])
then distinguish-from-set M V (fst TGv)

(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
(depth) completeInputTraces append-heuristic u-is-v

else TGv))

have
∧

x y T G . set T ⊆ set (fst (handleIO (T ,G) (x,y)))
proof −

fix x y T G

define TGu where TGu: TGu = distribute-extension M T G cg-lookup cg-insert
u [(x,y)] completeInputTraces append-heuristic

define TGv where TGv: TGv = (if u-is-v then TGu else distribute-extension M
(fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] completeInputTraces append-heuristic)

have ∗: handleIO (T ,G) (x,y) = (if is-in-language M (initial M ) (u@[(x,y)])
then distinguish-from-set M V (fst TGv)

(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
(depth) completeInputTraces append-heuristic u-is-v

else TGv)
unfolding handleIO TGu TGv case-prod-conv Let-def
by auto

have set T ⊆ set (fst TGu)
unfolding TGu
using distribute-extension-subset
by metis

moreover have set (fst TGu) ⊆ set (fst TGv)
unfolding TGv
using distribute-extension-subset by force

ultimately have set T ⊆ set (fst TGv)
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by blast

show set T ⊆ set (fst (handleIO (T ,G) (x,y)))
unfolding ∗
using ‹set T ⊆ set (fst TGv)›
using Suc.IH [of fst TGv snd TGv u@[(x,y)] v@[(x,y)] X ′]
by (cases is-in-language M (initial M ) (u@[(x,y)]); auto)

qed

have set (fst TG ′′) ⊆ set (fst (foldl handleIO TG ′′ XY ))
proof (induction XY rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc a XY )
obtain x y where a = (x,y)

using prod.exhaust by metis
then have ∗: (foldl handleIO TG ′′ (XY@[a])) = handleIO (fst (foldl handleIO

TG ′′ XY ),snd (foldl handleIO TG ′′ XY )) (x,y)
by auto

show ?case
using snoc unfolding ∗
using ‹

∧
x y T G . set T ⊆ set (fst (handleIO (T ,G) (x,y)))›

by blast
qed
moreover have set T ⊆ set (fst TG ′′)
proof −

have set T ⊆ set (fst TG ′)
unfolding TG ′

using spyh-distinguish-subset
by metis

moreover have set (fst TG ′) ⊆ set (fst TG ′′)
unfolding TG ′′

using spyh-distinguish-subset
by (metis (mono-tags, lifting) order-refl)

ultimately show ?thesis
by blast

qed
moreover have distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace

u v X k (Suc depth) completeInputTraces append-heuristic u-is-v = foldl handleIO
TG ′′ XY

apply (subst distinguish-from-set.simps)
unfolding TG ′ vClass notReferenced TG ′′ Let-def X ′ XY handleIO
unfolding ‹(Suc depth − 1 ) = depth›
by force

ultimately show ?case
by (metis (no-types, lifting) order-trans)
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qed

lemma distinguish-from-set-finite :
fixes T :: ( ′b::linorder× ′c::linorder) prefix-tree
assumes finite-tree T
shows finite-tree (fst (distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace

u v X k depth completeInputTraces append-heuristic u-is-v))
using assms proof (induction depth arbitrary: T G u v X)

case 0

define TG ′ where TG ′: TG ′ = spyh-distinguish M T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces append-heuristic

define vClass where vClass: vClass = Set.insert v (list.set (cg-lookup (snd TG ′)
v))

define notReferenced where notReferenced: notReferenced = ((¬ u-is-v) ∧ (∀ q
∈ reachable-states M . V q /∈ vClass))

define TG ′′ where TG ′′: TG ′′ = (if notReferenced then spyh-distinguish M (fst
TG ′) (snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInput-
Traces append-heuristic else TG ′)

have finite-tree (fst (TG ′))
unfolding TG ′

using spyh-distinguish-finite 0
by metis

then have finite-tree (fst (TG ′′))
unfolding TG ′′

using spyh-distinguish-finite[OF ‹finite-tree (fst (TG ′))›, of M snd TG ′ ]
by auto

moreover have distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace
u v X k 0 completeInputTraces append-heuristic u-is-v= TG ′′

apply (subst distinguish-from-set.simps)
unfolding TG ′ vClass notReferenced TG ′′ Let-def
by force

ultimately show ?case
by blast

next
case (Suc depth)

have (Suc depth − 1 ) = depth
by auto

define TG ′ where TG ′: TG ′ = spyh-distinguish M T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces append-heuristic

define vClass where vClass: vClass = Set.insert v (list.set (cg-lookup (snd TG ′)
v))

define notReferenced where notReferenced: notReferenced = ((¬ u-is-v) ∧ (∀ q
∈ reachable-states M . V q /∈ vClass))

define TG ′′ where TG ′′: TG ′′ = (if notReferenced then spyh-distinguish M (fst
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TG ′) (snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInput-
Traces append-heuristic else TG ′)

define X ′ where X ′: X ′ = (if notReferenced then (v#u#X) else (u#X))
define XY where XY : XY = List.product (inputs-as-list M ) (outputs-as-list

M )
define handleIO where handleIO: handleIO = (λ (T ,G) (x,y) . (let TGu =

distribute-extension M T G cg-lookup cg-insert u [(x,y)] completeInputTraces ap-
pend-heuristic;

TGv = if u-is-v then TGu
else distribute-extension M (fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] com-
pleteInputTraces append-heuristic

in if is-in-language M (initial M ) (u@[(x,y)])
then distinguish-from-set M V (fst TGv)

(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
(depth) completeInputTraces append-heuristic u-is-v

else TGv))

have
∧

x y T G . finite-tree T =⇒ finite-tree (fst (handleIO (T ,G) (x,y)))
proof −

fix T :: ( ′b::linorder× ′c::linorder) prefix-tree
fix x y G assume finite-tree T

define TGu where TGu: TGu = distribute-extension M T G cg-lookup cg-insert
u [(x,y)] completeInputTraces append-heuristic

define TGv where TGv: TGv = (if u-is-v then TGu else distribute-extension M
(fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] completeInputTraces append-heuristic)

have ∗: handleIO (T ,G) (x,y) = (if is-in-language M (initial M ) (u@[(x,y)])
then distinguish-from-set M V (fst TGv)

(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
(depth) completeInputTraces append-heuristic u-is-v

else TGv)
unfolding handleIO TGu TGv case-prod-conv Let-def
by auto

have finite-tree (fst TGu)
unfolding TGu
using distribute-extension-finite ‹finite-tree T ›
by metis

then have finite-tree (fst TGv)
unfolding TGv
using distribute-extension-finite by force

then show finite-tree (fst (handleIO (T ,G) (x,y)))
unfolding ∗
using Suc.IH [of fst TGv snd TGv u@[(x,y)] v@[(x,y)] X ′]
by (cases is-in-language M (initial M ) (u@[(x,y)]); auto)

qed
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have finite-tree (fst TG ′)
unfolding TG ′

using spyh-distinguish-finite ‹finite-tree T ›
by metis

then have finite-tree (fst TG ′′)
unfolding TG ′′

using spyh-distinguish-finite[OF ‹finite-tree (fst (TG ′))›, of M snd TG ′ ]
by auto

have finite-tree (fst (foldl handleIO TG ′′ XY ))
proof (induction XY rule: rev-induct)

case Nil
then show ?case using ‹finite-tree (fst TG ′′)› by auto

next
case (snoc a XY )
obtain x y where a = (x,y)

using prod.exhaust by metis
then have ∗: (foldl handleIO TG ′′ (XY@[a])) = handleIO (fst (foldl handleIO

TG ′′ XY ),snd (foldl handleIO TG ′′ XY )) (x,y)
by auto

show ?case
using snoc unfolding ∗
using ‹

∧
x y T G . finite-tree T =⇒ finite-tree (fst (handleIO (T ,G) (x,y)))›

by blast
qed
moreover have distinguish-from-set M V T G cg-lookup cg-insert get-distinguishing-trace

u v X k (Suc depth) completeInputTraces append-heuristic u-is-v = foldl handleIO
TG ′′ XY

apply (subst distinguish-from-set.simps)
unfolding TG ′ vClass notReferenced TG ′′ Let-def X ′ XY handleIO
unfolding ‹(Suc depth − 1 ) = depth›
by force

ultimately show ?case
by (metis (no-types, lifting))

qed

lemma distinguish-from-set-properties :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and is-state-cover-assignment M1 V
and V ‘ reachable-states M1 ⊆ list.set X
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and preserves-divergence M1 M2 (list.set X)
and

∧
w . w ∈ list.set X =⇒ ∃ w ′ . converge M1 w w ′ ∧ converge M2 w w ′

and converge M1 u v
and u ∈ L M2
and v ∈ L M2
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and

∧
α β q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒

distinguishes M1 q1 q2 (get-distinguishing-trace q1 q2 )
and L M1 ∩ set (fst (distinguish-from-set M1 V T G cg-lookup cg-insert

get-distinguishing-trace u v X k depth completeInputTraces append-heuristic (u =
v))) = L M2 ∩ set (fst (distinguish-from-set M1 V T G cg-lookup cg-insert get-distinguishing-trace
u v X k depth completeInputTraces append-heuristic (u = v)))

and
∧

T w u ′ uBest lBest . fst (append-heuristic T w (uBest,lBest) u ′) ∈
{u ′,uBest}
shows ∀ γ x y . length (γ@[(x,y)]) ≤ depth −→

γ ∈ LS M1 (after-initial M1 u) −→
x ∈ inputs M1 −→ y ∈ outputs M1 −→

L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set
(prefixes (γ@[(x,y)]))}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈
list.set (prefixes (γ@[(x,y)]))})

∧ preserves-divergence M1 M2 (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈
{u,v} ∧ ω ′ ∈ list.set (prefixes (γ@[(x,y)]))})
(is ?P1a X u v depth)
and preserves-divergence M1 M2 (list.set X ∪ {u,v})
(is ?P1b X u v)
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distinguish-from-set
M1 V T G cg-lookup cg-insert get-distinguishing-trace u v X k depth completeIn-
putTraces append-heuristic (u = v)))
(is ?P2 T G u v X depth)
proof −

have ?P1a X u v depth ∧ ?P1b X u v ∧ ?P2 T G u v X depth
using assms(8−14 ) assms(17 )

proof (induction depth arbitrary: T G u v X)
case 0

define TG ′ where TG ′: TG ′ = spyh-distinguish M1 T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces append-heuristic

define vClass where vClass: vClass = Set.insert v (list.set (cg-lookup (snd
TG ′) v))

define notReferenced where notReferenced: notReferenced = ((¬ (u = v)) ∧
(∀ q ∈ reachable-states M1 . V q /∈ vClass))

define TG ′′ where TG ′′: TG ′′ = (if notReferenced then spyh-distinguish M1
(fst TG ′) (snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeIn-
putTraces append-heuristic else TG ′)

have distinguish-from-set M1 V T G cg-lookup cg-insert get-distinguishing-trace
u v X k 0 completeInputTraces append-heuristic (u = v) = TG ′′

apply (subst distinguish-from-set.simps)
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unfolding TG ′ vClass notReferenced TG ′′ Let-def
by force

have set T ⊆ set (fst (distinguish-from-set M1 V T G cg-lookup cg-insert
get-distinguishing-trace u v X k 0 completeInputTraces append-heuristic (u = v)))

using distinguish-from-set-subset by metis
then have L M1 ∩ set T = L M2 ∩ set T

using 0 .prems(8 )
by blast

have list.set X ⊆ L M1 and list.set X ⊆ L M2
using 0 .prems(3 )
by (meson converge.elims(2 ) subsetI )+

have set (fst TG ′) ⊆ set (fst (distinguish-from-set M1 V T G cg-lookup cg-insert
get-distinguishing-trace u v X k 0 completeInputTraces append-heuristic (u = v)))

by (metis TG ′′ ‹distinguish-from-set M1 V T G cg-lookup cg-insert get-distinguishing-trace
u v X k 0 completeInputTraces append-heuristic (u = v) = TG ′′› order-refl spyh-distinguish-subset)

then have ∗: L M1 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 T G cg-lookup
cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic)) =

L M2 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 T G cg-lookup
cg-insert get-distinguishing-trace u X k completeInputTraces append-heuristic))

using 0 .prems(8 ) unfolding TG ′

by blast
have u ∈ L M1 and v ∈ L M1

using ‹converge M1 u v› by auto

have preserves-divergence M1 M2 (Set.insert u (list.set X))
using spyh-distinguish-preserves-divergence[OF assms(1−4 ) ‹u ∈ L M1 › ‹u

∈ L M2 › assms(16 ) 0 .prems(7 ) assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆ L
M2 › ∗ assms(18 ) 0 .prems(2 )]

unfolding TG ′ by presburger

have convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)
unfolding TG ′

using spyh-distinguish-establishes-divergence[OF assms(1−4 ) ‹u ∈ L M1 › ‹u
∈ L M2 › assms(16 ) 0 .prems(7 ) assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆ L
M2 › ∗ assms(18 )]

by linarith

have L M1 ∩ set (fst TG ′′) = L M2 ∩ set (fst TG ′′)
using 0 .prems(8 )

unfolding ‹distinguish-from-set M1 V T G cg-lookup cg-insert get-distinguishing-trace
u v X k 0 completeInputTraces append-heuristic (u = v) = TG ′′›

by blast

have preserves-divergence M1 M2 (Set.insert v (list.set X))
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)
proof −
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have preserves-divergence M1 M2 (Set.insert v (list.set X)) ∧ conver-
gence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)

proof (cases notReferenced)
case True

then have TG ′′ = spyh-distinguish M1 (fst TG ′) (snd TG ′) cg-lookup
cg-insert get-distinguishing-trace v X k completeInputTraces append-heuristic

unfolding TG ′′ by auto
then have ∗: L M1 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 (fst TG ′)

(snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInputTraces
append-heuristic)) =

L M2 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 (fst TG ′)
(snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInputTraces
append-heuristic))

using ‹L M1 ∩ set (fst TG ′′) = L M2 ∩ set (fst TG ′′)›
by simp

show ?thesis
using spyh-distinguish-preserves-divergence[OF assms(1−4 ) ‹v ∈ L M1 › ‹v

∈ L M2 › assms(16 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›
assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆ L M2 › ∗ assms(18 ) 0 .prems(2 )]

using spyh-distinguish-establishes-divergence(2 )[OF assms(1−4 ) ‹v ∈
L M1 › ‹v ∈ L M2 › assms(16 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup
(snd TG ′)› assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆ L M2 › ∗ assms(18 )]

unfolding ‹TG ′′ = spyh-distinguish M1 (fst TG ′) (snd TG ′) cg-lookup
cg-insert get-distinguishing-trace v X k completeInputTraces append-heuristic›

by presburger
next

case False
then consider u = v | (u 6= v) ∧ ¬(∀ q ∈ reachable-states M1 . V q /∈

vClass)
unfolding notReferenced by blast

then show ?thesis proof cases
case 1
then show ?thesis
using False TG ′′ ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd

TG ′)› ‹preserves-divergence M1 M2 (Set.insert u (list.set X))› by presburger
next

case 2
then have TG ′′ = TG ′

unfolding TG ′′ using False by auto

obtain q where q ∈ reachable-states M1
and V q ∈ Set.insert v (list.set (cg-lookup (snd TG ′) v))

using 2
unfolding notReferenced vClass
by blast

have converge M1 (V q) v and converge M2 (V q) v
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proof −
have converge M1 v (V q) ∧ converge M2 v (V q)
proof (cases V q = v)

case True
then show ?thesis

using ‹v ∈ L M1 › ‹v ∈ L M2 › by auto
next

case False
then have V q ∈ list.set (cg-lookup (snd TG ′) v)

using ‹V q ∈ Set.insert v (list.set (cg-lookup (snd TG ′) v))›
by blast

then show ?thesis
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›
unfolding convergence-graph-lookup-invar-def
using 0 .prems(6 ) ‹v ∈ L M1 › by blast

qed
then show converge M1 (V q) v and converge M2 (V q) v

by auto
qed

have V q ∈ Set.insert u (list.set X)
using ‹q ∈ reachable-states M1 › 0 .prems(1 ) by blast

have preserves-divergence M1 M2 (Set.insert v (list.set X))
using preserves-divergence-converge-insert[OF assms(1−4 ) ‹converge

M1 (V q) v› ‹converge M2 (V q) v› ‹preserves-divergence M1 M2 (Set.insert u
(list.set X))› ‹V q ∈ Set.insert u (list.set X)›]

unfolding preserves-divergence.simps by blast
then show ?thesis

unfolding ‹TG ′′ = TG ′›
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›
by auto

qed
qed
then show preserves-divergence M1 M2 (Set.insert v (list.set X)) and con-

vergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)
by auto

qed

have converge M1 u u and converge M1 v v and converge M1 v u and converge
M1 u v

using ‹u ∈ L M1 › ‹v ∈ L M1 › ‹converge M1 u v› by auto
then have preserves-divergence M1 M2 (Set.insert u (Set.insert v (list.set X)))

using ‹preserves-divergence M1 M2 (Set.insert v (list.set X))›
‹preserves-divergence M1 M2 (Set.insert u (list.set X))›

unfolding preserves-divergence.simps
by blast

then have ?P1b X u v
by (metis Un-insert-right sup-bot-right)
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moreover have ?P2 T G u v X 0
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)›

using ‹distinguish-from-set M1 V T G cg-lookup cg-insert get-distinguishing-trace
u v X k 0 completeInputTraces append-heuristic (u = v) = TG ′′› by blast

moreover have P1 : ?P1a X u v 0
by auto

ultimately show ?case
by blast

next
case (Suc depth)
have 0 < Suc depth = True

by auto
have Suc depth − 1 = depth

by auto

have u ∈ L M1 and v ∈ L M1
using ‹converge M1 u v› by auto

define TG ′ where TG ′: TG ′ = spyh-distinguish M1 T G cg-lookup cg-insert
get-distinguishing-trace u X k completeInputTraces append-heuristic

define vClass where vClass: vClass = Set.insert v (list.set (cg-lookup (snd
TG ′) v))

define notReferenced where notReferenced: notReferenced = (¬(u = v) ∧ (∀
q ∈ reachable-states M1 . V q /∈ vClass))

define TG ′′ where TG ′′: TG ′′ = (if notReferenced then spyh-distinguish M1
(fst TG ′) (snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeIn-
putTraces append-heuristic else TG ′)

define X ′ where X ′: X ′ = (if notReferenced then (v#u#X) else (u#X))
define XY where XY : XY = List.product (inputs-as-list M1 ) (outputs-as-list

M1 )
define handleIO where handleIO: handleIO = (λ (T ,G) (x,y). (let TGu =

distribute-extension M1 T G cg-lookup cg-insert u [(x,y)] completeInputTraces ap-
pend-heuristic;

TGv = if (u = v) then
TGu else distribute-extension M1 (fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)]
completeInputTraces append-heuristic

in if is-in-language M1 (initial M1 ) (u@[(x,y)])
then distinguish-from-set M1 V (fst TGv)

(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
depth completeInputTraces append-heuristic (u = v)

else TGv))

have result: distinguish-from-set M1 V T G cg-lookup cg-insert get-distinguishing-trace
u v X k (Suc depth) completeInputTraces append-heuristic (u = v) = foldl handleIO
TG ′′ XY

apply (subst distinguish-from-set.simps)
unfolding TG ′ vClass notReferenced TG ′′ X ′ XY handleIO ‹0 < Suc depth

= True› case-prod-conv ‹Suc depth − 1 = depth› if-True Let-def
by force
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then have pass-result: L M1 ∩ set (fst (foldl handleIO TG ′′ XY )) = L M2 ∩
set (fst (foldl handleIO TG ′′ XY ))

using Suc.prems(8 )
by metis

have handleIO-subset :
∧

x y T G . set T ⊆ set (fst (handleIO (T ,G) (x,y)))
proof −

fix x y T G

define TGu where TGu: TGu = distribute-extension M1 T G cg-lookup
cg-insert u [(x,y)] completeInputTraces append-heuristic

define TGv where TGv: TGv = (if (u = v) then TGu else distribute-extension
M1 (fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] completeInputTraces ap-
pend-heuristic)

have handleIO: handleIO (T ,G) (x,y) = (if is-in-language M1 (initial M1 )
(u@[(x,y)])

then distinguish-from-set M1 V (fst TGv)
(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
depth completeInputTraces append-heuristic (u = v)

else TGv)
unfolding handleIO TGu TGv case-prod-conv Let-def
by force

have set T ⊆ set (fst TGu)
using distribute-extension-subset[of T ]
unfolding TGu by metis

moreover have set (fst TGu) ⊆ set (fst TGv)
using distribute-extension-subset[of fst TGu]
unfolding TGv by force

moreover have set (fst TGv) ⊆ set (fst (handleIO (T ,G) (x,y)))
unfolding handleIO

using distinguish-from-set-subset[of fst TGv M1 V snd TGv cg-lookup cg-insert
get-distinguishing-trace u@[(x,y)] v@[(x,y)] X ′ k depth]

by auto
ultimately show set T ⊆ set (fst (handleIO (T ,G) (x,y)))

by blast
qed

have result-subset: set (fst TG ′′) ⊆ set (fst (foldl handleIO TG ′′ XY ))
proof (induction XY rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case

using handleIO-subset[of fst (foldl handleIO TG ′′ xs) snd (foldl handleIO
TG ′′ xs) fst x snd x]

by force
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qed
then have pass-TG ′′ : L M1 ∩ set (fst TG ′′) = L M2 ∩ set (fst TG ′′)

using pass-result by blast

have set (fst TG ′) ⊆ set (fst TG ′′)
unfolding TG ′′ using spyh-distinguish-subset
by (metis (mono-tags, lifting) equalityE)

then have pass-TG ′: L M1 ∩ set (fst TG ′) = L M2 ∩ set (fst TG ′)
using pass-TG ′′ by blast

have set T ⊆ set (fst TG ′)
unfolding TG ′ using spyh-distinguish-subset by metis

then have pass-T : L M1 ∩ set T = L M2 ∩ set T
using pass-TG ′ by blast

have list.set X ⊆ L M1 and list.set X ⊆ L M2
using Suc.prems(3 ) by auto

have preserves-divergence M1 M2 (Set.insert u (list.set X))
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)

using spyh-distinguish-preserves-divergence[OF assms(1−4 ) ‹u ∈ L M1 › ‹u
∈ L M2 › assms(16 ) Suc.prems(7 ) assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆
L M2 › - -Suc.prems(2 ), of T k completeInputTraces append-heuristic, OF - - - -
assms(18 )]

spyh-distinguish-establishes-divergence(2 )[OF assms(1−4 ) ‹u ∈ L M1 ›
‹u ∈ L M2 › assms(16 ) Suc.prems(7 ) assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆
L M2 ›, of T k completeInputTraces append-heuristic, OF - - - - assms(18 )]

pass-TG ′

unfolding TG ′[symmetric]
by linarith+

have preserves-divergence M1 M2 (Set.insert v (list.set X))
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)
proof −

have preserves-divergence M1 M2 (Set.insert v (list.set X)) ∧ conver-
gence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)

proof (cases notReferenced)
case True

then have TG ′′ = spyh-distinguish M1 (fst TG ′) (snd TG ′) cg-lookup
cg-insert get-distinguishing-trace v X k completeInputTraces append-heuristic

unfolding TG ′′ by auto
then have ∗: L M1 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 (fst TG ′)

(snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInputTraces
append-heuristic)) =

L M2 ∩ Prefix-Tree.set (fst (spyh-distinguish M1 (fst TG ′)
(snd TG ′) cg-lookup cg-insert get-distinguishing-trace v X k completeInputTraces
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append-heuristic))
using ‹L M1 ∩ set (fst TG ′′) = L M2 ∩ set (fst TG ′′)›
by simp

show ?thesis
using spyh-distinguish-preserves-divergence[OF assms(1−4 ) ‹v ∈ L M1 › ‹v

∈ L M2 › assms(16 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›
assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆ L M2 › ∗ assms(18 ) Suc.prems(2 )]

spyh-distinguish-establishes-divergence(2 )[OF assms(1−4 ) ‹v ∈ L
M1 › ‹v ∈ L M2 › assms(16 ) ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd
TG ′)› assms(15 ) ‹list.set X ⊆ L M1 › ‹list.set X ⊆ L M2 › ∗ assms(18 )]

unfolding ‹TG ′′ = spyh-distinguish M1 (fst TG ′) (snd TG ′) cg-lookup
cg-insert get-distinguishing-trace v X k completeInputTraces append-heuristic›

by presburger
next

case False
then consider u = v | (u 6= v) ∧ ¬(∀ q ∈ reachable-states M1 . V q /∈

vClass)
unfolding notReferenced by blast

then show ?thesis proof cases
case 1
then show ?thesis
using False TG ′′ ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd

TG ′)› ‹preserves-divergence M1 M2 (Set.insert u (list.set X))› by presburger
next

case 2
then have TG ′′ = TG ′

unfolding TG ′′ using False by auto

obtain q where q ∈ reachable-states M1
and V q ∈ Set.insert v (list.set (cg-lookup (snd TG ′) v))

using 2
unfolding notReferenced vClass
by blast

have converge M1 (V q) v and converge M2 (V q) v
proof −

have converge M1 v (V q) ∧ converge M2 v (V q)
proof (cases V q = v)

case True
then show ?thesis

using ‹v ∈ L M1 › ‹v ∈ L M2 › by auto
next

case False
then have V q ∈ list.set (cg-lookup (snd TG ′) v)

using ‹V q ∈ Set.insert v (list.set (cg-lookup (snd TG ′) v))›
by blast
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then show ?thesis
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›
unfolding convergence-graph-lookup-invar-def
using Suc.prems(6 ) ‹v ∈ L M1 › by blast

qed
then show converge M1 (V q) v and converge M2 (V q) v

by auto
qed

have V q ∈ Set.insert u (list.set X)
using ‹q ∈ reachable-states M1 › Suc.prems(1 ) by blast

have preserves-divergence M1 M2 (Set.insert v (list.set X))
using preserves-divergence-converge-insert[OF assms(1−4 ) ‹converge

M1 (V q) v› ‹converge M2 (V q) v› ‹preserves-divergence M1 M2 (Set.insert u
(list.set X))› ‹V q ∈ Set.insert u (list.set X)›]

unfolding preserves-divergence.simps by blast
then show ?thesis

unfolding ‹TG ′′ = TG ′›
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›
by auto

qed
qed
then show preserves-divergence M1 M2 (Set.insert v (list.set X)) and con-

vergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)
by auto

qed

have converge M1 u u and converge M1 v v and converge M1 v u and converge
M1 u v

using ‹u ∈ L M1 › ‹v ∈ L M1 › ‹converge M1 u v› by auto
then have preserves-divergence M1 M2 (Set.insert u (Set.insert v (list.set X)))

using ‹preserves-divergence M1 M2 (Set.insert v (list.set X))›
‹preserves-divergence M1 M2 (Set.insert u (list.set X))›

unfolding preserves-divergence.simps
by blast

have IS1 : V ‘ reachable-states M1 ⊆ list.set X ′

using Suc.prems(1 ) unfolding X ′ by auto

have IS2 : preserves-divergence M1 M2 (list.set X ′)
using ‹preserves-divergence M1 M2 (Set.insert u (Set.insert v (list.set X)))›

‹preserves-divergence M1 M2 (Set.insert u (list.set X))›
unfolding X ′

by (simp add: insert-commute)

have handleIO-props :
∧

x y T ′ G ′ . set T ⊆ set T ′=⇒ convergence-graph-lookup-invar
M1 M2 cg-lookup G ′ =⇒ L M1 ∩ set (fst (handleIO (T ′,G ′) (x,y))) = L M2 ∩
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set (fst (handleIO (T ′,G ′) (x,y))) =⇒
x ∈ inputs M1 =⇒ y ∈ outputs M1 =⇒

convergence-graph-lookup-invar M1 M2 cg-lookup
(snd (handleIO (T ′,G ′) (x,y)))

∧ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈
{u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω
∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

∧ preserves-divergence M1 M2 (list.set X ∪
{ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

∧ (∀ γ x ′ y ′ . length ((x,y)#γ@[(x ′,y ′)]) ≤ Suc
depth −→

((x,y)#γ) ∈ LS M1 (after-initial M1 u)
−→

x ′ ∈ inputs M1 −→ y ′ ∈ outputs M1 −→
L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ .

ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))}) = L M2 ∩ (list.set X ∪
{ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))})

∧ preserves-divergence M1 M2 (list.set
X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))}))

proof −
fix x y T ′ G ′

assume convergence-graph-lookup-invar M1 M2 cg-lookup G ′

and L M1 ∩ set (fst (handleIO (T ′,G ′) (x,y))) = L M2 ∩ set (fst (handleIO
(T ′,G ′) (x,y)))

and x ∈ inputs M1
and y ∈ outputs M1
and set T ⊆ set T ′

define TGu where TGu: TGu = distribute-extension M1 T ′ G ′ cg-lookup
cg-insert u [(x,y)] completeInputTraces append-heuristic

define TGv where TGv: TGv = (if (u=v) then TGu else distribute-extension
M1 (fst TGu) (snd TGu) cg-lookup cg-insert v [(x,y)] completeInputTraces ap-
pend-heuristic)

have handleIO: handleIO (T ′,G ′) (x,y) = (if is-in-language M1 (initial M1 )
(u@[(x,y)])

then distinguish-from-set M1 V (fst TGv)
(snd TGv) cg-lookup cg-insert get-distinguishing-trace (u@[(x,y)]) (v@[(x,y)]) X ′ k
depth completeInputTraces append-heuristic (u=v)

else TGv)
unfolding handleIO TGu TGv case-prod-conv Let-def
by force

have set T ′ ⊆ set (fst TGu)
using distribute-extension-subset[of T ′]
unfolding TGu by metis

have set (fst TGu) ⊆ set (fst TGv)
using distribute-extension-subset[of fst TGu]
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unfolding TGv by force
have set (fst TGv) ⊆ set (fst (handleIO (T ′,G ′) (x,y)))

unfolding handleIO
using distinguish-from-set-subset[of fst TGv M1 V snd TGv cg-lookup cg-insert

get-distinguishing-trace u@[(x,y)] v@[(x,y)] X ′ k depth]
by auto

then have pass-TGv: L M1 ∩ set (fst TGv) = L M2 ∩ set (fst TGv)
using ‹L M1 ∩ set (fst (handleIO (T ′,G ′) (x,y))) = L M2 ∩ set (fst

(handleIO (T ′,G ′) (x,y)))› ‹set (fst TGv) ⊆ set (fst (handleIO (T ′,G ′) (x,y)))›
by blast

have ∗:L M1 ∩ set (fst (distribute-extension M1 T ′ G ′ cg-lookup cg-insert u
[(x,y)] completeInputTraces append-heuristic)) = L M2 ∩ set (fst (distribute-extension
M1 T ′ G ′ cg-lookup cg-insert u [(x,y)] completeInputTraces append-heuristic))

using ‹L M1 ∩ set (fst (handleIO (T ′,G ′) (x,y))) = L M2 ∩ set (fst
(handleIO (T ′,G ′) (x,y)))› ‹set (fst TGv) ⊆ set (fst (handleIO (T ′,G ′) (x,y)))›
‹set (fst TGu) ⊆ set (fst TGv)›

unfolding TGu
by blast

obtain u ′ where converge M1 u u ′

u ′ @ [(x, y)] ∈ set (fst TGv)
converge M2 u u ′

convergence-graph-lookup-invar M1 M2 cg-lookup (snd TGu)
using distribute-extension-adds-sequence[OF assms(1 ,3 ) ‹u ∈ L M1 ›

‹u ∈ L M2 › ‹convergence-graph-lookup-invar M1 M2 cg-lookup G ′› assms(15 ) ∗
assms(18 )]

using ‹set (fst TGu) ⊆ set (fst TGv)›
unfolding TGu by blast

have u ′ ∈ set (fst TGv)
using ‹u ′ @ [(x, y)] ∈ set (fst TGv)› set-prefix by metis

have u ′ ∈ L M1
using ‹converge M1 u u ′› by auto

have ∗:¬(u=v) =⇒ L M1 ∩ set (fst (distribute-extension M1 (fst TGu)
(snd TGu) cg-lookup cg-insert v [(x,y)] completeInputTraces append-heuristic)) =
L M2 ∩ set (fst (distribute-extension M1 (fst TGu) (snd TGu) cg-lookup cg-insert
v [(x,y)] completeInputTraces append-heuristic))

using ‹L M1 ∩ set (fst (handleIO (T ′,G ′) (x,y))) = L M2 ∩ set (fst
(handleIO (T ′,G ′) (x,y)))› ‹set (fst TGv) ⊆ set (fst (handleIO (T ′,G ′) (x,y)))›

using TGv pass-TGv by presburger

obtain v ′ where converge M1 v v ′

v ′ @ [(x, y)] ∈ set (fst TGv)
converge M2 v v ′

convergence-graph-lookup-invar M1 M2 cg-lookup (snd TGv)
u=v =⇒ u ′ = v ′

proof (cases u=v)
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case True
then have TGv = TGu unfolding TGv by auto
show ?thesis

using that
using ‹converge M1 u u ′› ‹u ′ @ [(x, y)] ∈ set (fst TGv)› ‹converge M2 u

u ′› ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TGu)›
unfolding True ‹TGv = TGu› by blast

next
case False
then show ?thesis

using that
using distribute-extension-adds-sequence[OF assms(1 ,3 ) ‹v ∈ L M1 › ‹v ∈

L M2 › ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TGu)› assms(15 )
∗[OF False] assms(18 )]

unfolding TGv by auto
qed

have v ′ ∈ set (fst TGv)
using ‹v ′ @ [(x, y)] ∈ set (fst TGv)› set-prefix by metis

have v ′ ∈ L M1
using ‹converge M1 v v ′› by auto

have ∗: {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])} =
{u,v,u@[(x,y)],v@[(x,y)]}

by auto

have u ∈ L M1 = (u ∈ L M2 )
using Suc.prems(5 ) ‹u ∈ L M1 › by auto

moreover have v ∈ L M1 = (v ∈ L M2 )
using Suc.prems(6 ) ‹v ∈ L M1 › by auto

moreover have u @ [(x, y)] ∈ L M1 = (u @ [(x, y)] ∈ L M2 )
proof −

have u @ [(x, y)] ∈ L M1 = (u ′ @ [(x, y)] ∈ L M1 )
using ‹converge M1 u u ′› assms(1 ) converge-append-language-iff by blast

also have . . . = (u ′ @ [(x, y)] ∈ L M2 )
using pass-TGv ‹u ′ @ [(x, y)] ∈ set (fst TGv)› by blast

also have . . . = (u @ [(x, y)] ∈ L M2 )
using ‹converge M2 u u ′› assms(2 ) converge-append-language-iff by blast

finally show ?thesis .
qed
moreover have v @ [(x, y)] ∈ L M1 = (v @ [(x, y)] ∈ L M2 )
proof −

have v @ [(x, y)] ∈ L M1 = (v ′ @ [(x, y)] ∈ L M1 )
using ‹converge M1 v v ′› assms(1 ) converge-append-language-iff by blast

also have . . . = (v ′ @ [(x, y)] ∈ L M2 )
using pass-TGv ‹v ′ @ [(x, y)] ∈ set (fst TGv)› by blast

also have . . . = (v @ [(x, y)] ∈ L M2 )
using ‹converge M2 v v ′› assms(2 ) converge-append-language-iff by blast
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finally show ?thesis .
qed
moreover have L M1 ∩ list.set X = (L M2 ∩ list.set X)

using Suc.prems(3 )
by fastforce

ultimately have p2 : L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈
list.set (prefixes [(x,y)])}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′

∈ list.set (prefixes [(x,y)])})
unfolding ∗ by blast

show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (handleIO (T ′,G ′)
(x,y)))

∧ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈
{u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω
∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

∧ preserves-divergence M1 M2 (list.set X ∪
{ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

∧ (∀ γ x ′ y ′ . length ((x,y)#γ@[(x ′,y ′)]) ≤ Suc
depth −→

((x,y)#γ) ∈ LS M1 (after-initial M1 u)
−→

x ′ ∈ inputs M1 −→ y ′ ∈ outputs M1 −→
L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ .

ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))}) = L M2 ∩ (list.set X ∪
{ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))})

∧ preserves-divergence M1 M2 (list.set
X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))}))

proof (cases is-in-language M1 (initial M1 ) (u@[(x,y)]))
case False

have u@[(x,y)] /∈ L M1
using False by (meson assms(1 ) fsm-initial is-in-language-iff )

moreover have v@[(x,y)] /∈ L M1
using calculation Suc.prems(4 ) assms(1 ) converge-append-language-iff by

blast
moreover have preserves-divergence M1 M2 (list.set X ∪ {u,v})

by (metis (no-types) Un-insert-right ‹preserves-divergence M1 M2 (Set.insert
u (Set.insert v (list.set X)))› sup-bot-right)

ultimately have p3 : preserves-divergence M1 M2 (list.set X ∪ {ω@ω ′ | ω
ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

unfolding ∗ preserves-divergence.simps
by blast

have handleIO: (handleIO (T ′,G ′) (x,y)) = TGv
using handleIO False by auto

have
∧

x xs . x # xs = [x] @ xs by auto
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then have
∧

γ . (x, y) # γ /∈ LS M1 (after-initial M1 u)
by (metis ‹u @ [(x, y)] /∈ L M1 › ‹u ∈ L M1 › after-language-iff assms(1 )

language-prefix)

have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (handleIO
(T ′,G ′) (x,y)))

unfolding handleIO
by (simp add: ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd

TGv)›)
moreover note p2 p3 ‹

∧
γ . (x, y) # γ /∈ LS M1 (after-initial M1 u)›

ultimately show ?thesis
by presburger

next
case True

then have handleIO: (handleIO (T ′,G ′) (x,y)) = distinguish-from-set M1 V
(fst TGv) (snd TGv) cg-lookup cg-insert get-distinguishing-trace (u @ [(x, y)]) (v @
[(x, y)]) X ′ k depth completeInputTraces append-heuristic (u@[(x,y)] = v@[(x,y)])

using handleIO by auto

have converge M1 (u@[(x,y)]) (v@[(x,y)])
by (meson Suc.prems(4 ) True ‹v ∈ L M1 › assms(1 ) converge-append

fsm-initial is-in-language-iff )
then have (u@[(x,y)]) ∈ L M1 and (v@[(x,y)]) ∈ L M1

by auto
have (u@[(x,y)]) ∈ L M2
by (meson True ‹(u @ [(x, y)] ∈ L M1 ) = (u @ [(x, y)] ∈ L M2 )› assms(1 )

fsm-initial is-in-language-iff )
have (v@[(x,y)]) ∈ L M2

using Suc.prems(4 ) ‹(u @ [(x, y)] ∈ L M1 ) = (u @ [(x, y)] ∈ L M2 )›
‹(v @ [(x, y)] ∈ L M1 ) = (v @ [(x, y)] ∈ L M2 )› ‹u @ [(x, y)] ∈ L M2 › assms(1 )
converge-append-language-iff by blast

have preserves-divergence M1 M2 (list.set X ∪ {u,v})
by (metis (no-types) Un-insert-right ‹preserves-divergence M1 M2 (Set.insert

u (Set.insert v (list.set X)))› sup-bot-right)

have IS3 :
∧

w. w ∈ list.set X ′ =⇒ ∃w ′. converge M1 w w ′ ∧ converge M2
w w ′

unfolding X ′

by (metis (full-types) Suc.prems(3 ) ‹converge M1 u u ′› ‹converge M1 v v ′›
‹converge M2 u u ′› ‹converge M2 v v ′› set-ConsD)

have (u@[(x,y)] = v@[(x,y)]) = (u=v)
by auto
have IS4 : L M1 ∩ Prefix-Tree.set (fst (distinguish-from-set M1 V (fst

TGv) (snd TGv) cg-lookup cg-insert get-distinguishing-trace (u @ [(x, y)]) (v @
[(x, y)]) X ′ k depth completeInputTraces append-heuristic (u@[(x,y)] = v@[(x,y)])))
= L M2 ∩ Prefix-Tree.set (fst (distinguish-from-set M1 V (fst TGv) (snd TGv)
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cg-lookup cg-insert get-distinguishing-trace (u @ [(x, y)]) (v @ [(x, y)]) X ′ k depth
completeInputTraces append-heuristic (u@[(x,y)] = v@[(x,y)])))

using ‹L M1 ∩ set (fst (handleIO (T ′,G ′) (x,y))) = L M2 ∩ set (fst
(handleIO (T ′,G ′) (x,y)))›

unfolding handleIO ‹(u@[(x,y)] = v@[(x,y)]) = (u=v)›
by blast

have IH1 :
∧

γ xa ya. length (γ @ [(xa, ya)]) ≤ depth =⇒
γ ∈ LS M1 (after-initial M1 (u @ [(x, y)])) =⇒
xa ∈ FSM .inputs M1 =⇒
ya ∈ FSM .outputs M1 =⇒
L M1 ∩ (list.set X ′ ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x, y)], v @ [(x,

y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(xa, ya)]))}) = L M2 ∩ (list.set X ′ ∪ {ω @ ω ′

|ω ω ′. ω ∈ {u @ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(xa, ya)]))})
∧

preserves-divergence M1 M2 (list.set X ′ ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u
@ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(xa, ya)]))})

and IH2 : preserves-divergence M1 M2 (list.set X ′ ∪ {u @ [(x, y)], v @ [(x,
y)]})

and IH3 : convergence-graph-lookup-invar M1 M2 cg-lookup (snd (handleIO
(T ′, G ′) (x, y)))

using Suc.IH [OF IS1 IS2 IS3 ‹converge M1 (u@[(x,y)]) (v@[(x,y)])›
‹u@[(x,y)] ∈ L M2 › ‹v@[(x,y)] ∈ L M2 › ‹convergence-graph-lookup-invar M1 M2
cg-lookup (snd TGv)› IS4 ]

unfolding handleIO[symmetric]
by blast+

have p3 : preserves-divergence M1 M2 (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈
{u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

proof (cases notReferenced)
case True
then have list.set X ′ = list.set X ∪ {u,v}

unfolding X ′ by auto
show ?thesis

using IH2
unfolding ∗ preserves-divergence.simps ‹list.set X ′ = list.set X ∪ {u,v}›
by blast

next
case False
then consider u = v | (u 6= v) ∧ ¬(∀ q ∈ reachable-states M1 . V q /∈

vClass)
unfolding notReferenced by blast

then show ?thesis proof cases
case 1
then show ?thesis

by (metis (no-types, lifting) ∗ False IH2 Un-insert-left Un-insert-right
X ′ insertI1 insert-absorb list.simps(15 ))

next
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case 2

then have ∗∗:(list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set
(prefixes [(x,y)])}) = (list.set X ′ ∪ {u @ [(x, y)], v @ [(x, y)]}) ∪ {v}

unfolding ∗ X ′

by auto

obtain q where q ∈ reachable-states M1 and V q ∈ vClass
using 2 notReferenced by blast

then have V q ∈ list.set (cg-lookup (snd TG ′) v)
unfolding vClass
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)› ‹v

∈ L M1 › ‹v ∈ L M2 ›
unfolding convergence-graph-lookup-invar-def by blast

then have converge M1 (V q) v and converge M2 (V q) v
using convergence-graph-lookup-invar-simp[OF ‹convergence-graph-lookup-invar

M1 M2 cg-lookup (snd TG ′)› ‹v ∈ L M1 › ‹v ∈ L M2 ›, of V q]
by auto

have
∧

β . β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈
list.set (prefixes [(x,y)])}) =⇒ ¬converge M1 v β =⇒ ¬converge M2 v β

proof −
fix β assume β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧

ω ′ ∈ list.set (prefixes [(x,y)])}) and ¬converge M1 v β
then consider β = v | β ∈ L M1 ∩ (list.set X ′ ∪ {u @ [(x, y)], v @

[(x, y)]})
unfolding ∗∗ by blast

then show ¬converge M2 v β
proof cases

case 1
then show ?thesis using ‹¬converge M1 v β› ‹v ∈ L M1 › by auto

next
case 2
moreover have ¬converge M1 (V q) β

using ‹converge M1 (V q) v› ‹¬converge M1 v β›
by auto

moreover have V q ∈ list.set X ′

using Suc.prems(1 ) ‹q ∈ reachable-states M1 ›
unfolding X ′ by auto

moreover have V q ∈ L M1
using ‹converge M1 (V q) v› converge.simps by blast

ultimately have ¬converge M2 (V q) β
using IH2
unfolding preserves-divergence.simps
by blast

then show ?thesis
using ‹converge M2 (V q) v› unfolding converge.simps by force

qed
qed
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have
∧

α β . α ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈
list.set (prefixes [(x,y)])}) =⇒ β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v}
∧ ω ′ ∈ list.set (prefixes [(x,y)])}) =⇒ ¬converge M1 α β =⇒ ¬converge M2 α β

proof −
fix α β assume α ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧

ω ′ ∈ list.set (prefixes [(x,y)])})
β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈

list.set (prefixes [(x,y)])})
¬converge M1 α β

then consider α = v ∧ β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈
{u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])}) |

β = v ∧ α ∈ L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v}
∧ ω ′ ∈ list.set (prefixes [(x,y)])}) |

α ∈ L M1 ∩ (list.set X ′ ∪ {u @ [(x, y)], v @ [(x, y)]}) ∧ β
∈ L M1 ∩ (list.set X ′ ∪ {u @ [(x, y)], v @ [(x, y)]})

unfolding ∗∗ by auto
then show ¬converge M2 α β proof cases

case 1
then show ?thesis using ‹

∧
β . β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′

| ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])}) =⇒ ¬converge M1 v β =⇒
¬converge M2 v β›

using ‹¬ converge M1 α β› by blast
next

case 2
then show ?thesis using ‹

∧
β . β ∈ L M1 ∩ (list.set X ∪ {ω@ω ′

| ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])}) =⇒ ¬converge M1 v β =⇒
¬converge M2 v β›[of α]

using ‹¬ converge M1 α β›
unfolding converge-sym[of - α] by blast

next
case 3
then show ?thesis

using IH2 ‹¬ converge M1 α β›
unfolding preserves-divergence.simps by blast

qed
qed
then show ?thesis

unfolding preserves-divergence.simps
by blast

qed
qed

have p4 : (
∧

γ x ′ y ′.
length ((x, y) # γ @ [(x ′, y ′)]) ≤ Suc depth =⇒
(x, y) # γ ∈ LS M1 (after-initial M1 u) =⇒
x ′ ∈ FSM .inputs M1 =⇒
y ′ ∈ FSM .outputs M1 =⇒
L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set
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(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =
L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set

(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) ∧
preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}))
proof −

fix γ x ′ y ′

assume length ((x, y) # γ @ [(x ′, y ′)]) ≤ Suc depth
(x, y) # γ ∈ LS M1 (after-initial M1 u)
x ′ ∈ FSM .inputs M1
y ′ ∈ FSM .outputs M1

have s1 : length (γ @ [(x ′, y ′)]) ≤ depth
using ‹length ((x, y) # γ @ [(x ′, y ′)]) ≤ Suc depth› by auto

have s2 : γ ∈ LS M1 (after-initial M1 (u @ [(x, y)]))
using ‹(x, y) # γ ∈ LS M1 (after-initial M1 u)›
by (metis ‹u @ [(x, y)] ∈ L M1 › after-language-append-iff append-Cons

assms(1 ) empty-append-eq-id)

have pass ′: L M1 ∩ (list.set X ′ ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x, y)], v @
[(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))}) = L M2 ∩ (list.set X ′ ∪ {ω @
ω ′ |ω ω ′. ω ∈ {u @ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))})

and preserve ′: preserves-divergence M1 M2 (list.set X ′ ∪ {ω @ ω ′ |ω ω ′.
ω ∈ {u @ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))})

using IH1 [OF s1 s2 ‹x ′ ∈ FSM .inputs M1 › ‹y ′ ∈ FSM .outputs M1 ›]
by blast+

have ∗∗∗:{ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ
@ [(x ′, y ′)]))}

= {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set
(prefixes (γ @ [(x ′, y ′)]))} ∪ {u,v}

(is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix w assume w ∈ ?A
then obtain ω ω ′ where w = ω @ ω ′ and ω ∈ {u, v} and ω ′ ∈ list.set

(prefixes ((x, y) # γ @ [(x ′, y ′)]))
by blast

show w ∈ ?B
proof (cases ω ′)

case Nil
then show ?thesis unfolding ‹w = ω @ ω ′› prefixes-set using ‹ω ∈

{u, v}› by auto
next

case (Cons a list)
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then have a = (x,y) and list ∈ list.set (prefixes (γ @ [(x ′, y ′)]))
using ‹ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))›
by (meson prefixes-Cons)+

moreover have ω@[(x,y)] ∈ {u @ [(x, y)], v @ [(x, y)]}
using ‹ω ∈ {u, v}›
by auto

ultimately have ((ω@[(x,y)])@list) ∈ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x,
y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))}

by blast
then show ?thesis

unfolding ‹w = ω @ ω ′› Cons ‹a = (x,y)›
by auto

qed
qed
show ?B ⊆ ?A
proof

fix w assume w ∈ ?B
then consider w ∈ {u,v} | w ∈ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x, y)], v @

[(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))}
by blast

then show w ∈ ?A proof cases
case 1

then show ?thesis using prefixes-set-Nil[of ((x, y) # γ @ [(x ′, y ′)])]
using append.right-neutral by blast

next
case 2
then obtain ω ω ′ where w = ω @ ω ′ and ω ∈ {u @ [(x, y)], v @

[(x, y)]} and ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))
by blast

obtain ω ′′ where ω = ω ′′@[(x,y)]
using ‹ω ∈ {u @ [(x, y)], v @ [(x, y)]}› by auto

then have ω ′′ ∈ {u,v}
using ‹ω ∈ {u @ [(x, y)], v @ [(x, y)]}› by auto
moreover have [(x,y)]@ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′,

y ′)]))
using prefixes-prepend[OF ‹ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))›]
by (metis append-Cons empty-append-eq-id)

ultimately show w ∈ ?A
unfolding ‹w = ω @ ω ′› ‹ω = ω ′′@[(x,y)]›
using append-assoc by blast

qed
qed

qed

have list.set X ⊆ list.set X ′

unfolding X ′ by auto
then have pass ′′: L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′

∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) = L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω
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ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))})
using pass ′ ‹u ∈ L M1 › ‹v ∈ L M1 › ‹u ∈ L M2 › ‹v ∈ L M2 ›
unfolding ∗∗∗
by blast

have preserve ′′: preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′.
ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))})

proof (cases notReferenced)
case True
then have list.set X ′ = list.set X ∪ {u,v}

unfolding X ′ by auto
show ?thesis

using preserve ′

unfolding ∗∗∗ preserves-divergence.simps ‹list.set X ′ = list.set X ∪
{u,v}›

by blast
next

case False
then consider u = v | (u 6= v) ∧ ¬(∀ q ∈ reachable-states M1 . V q /∈

vClass)
unfolding notReferenced by blast

then show ?thesis proof cases
case 1
then show ?thesis

using ∗∗∗ X ′ preserve ′ by fastforce
next

case 2

then have ∗∗:(list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set
(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) = (list.set X ′ ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x,
y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))}) ∪ {v}

unfolding ∗∗∗ X ′ by auto

obtain q where q ∈ reachable-states M1 and V q ∈ vClass
using 2 notReferenced by blast

then have V q ∈ list.set (cg-lookup (snd TG ′) v)
unfolding vClass
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′)›

‹v ∈ L M1 › ‹v ∈ L M2 ›
unfolding convergence-graph-lookup-invar-def by blast

then have converge M1 (V q) v and converge M2 (V q) v
using convergence-graph-lookup-invar-simp[OF ‹convergence-graph-lookup-invar

M1 M2 cg-lookup (snd TG ′)› ‹v ∈ L M1 › ‹v ∈ L M2 ›, of V q]
by auto

have
∧

β . β ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈
list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =⇒ ¬converge M1 v β =⇒ ¬converge
M2 v β

proof −
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fix β assume β ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧
ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) and ¬converge M1 v β

then consider β = v | β ∈ L M1 ∩ (list.set X ′ ∪ {ω @ ω ′ |ω ω ′. ω
∈ {u @ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))})

unfolding ∗∗ by blast
then show ¬converge M2 v β
proof cases

case 1
then show ?thesis using ‹¬converge M1 v β› ‹v ∈ L M1 › by auto

next
case 2
moreover have ¬converge M1 (V q) β

using ‹converge M1 (V q) v› ‹¬converge M1 v β›
by auto

moreover have V q ∈ list.set X ′

using Suc.prems(1 ) ‹q ∈ reachable-states M1 ›
unfolding X ′ by auto

moreover have V q ∈ L M1
using ‹converge M1 (V q) v› converge.simps by blast

ultimately have ¬converge M2 (V q) β
using preserve ′

unfolding preserves-divergence.simps
by blast

then show ?thesis
using ‹converge M2 (V q) v› unfolding converge.simps by force

qed
qed

have
∧

α β . α ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v}
∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =⇒ β ∈ L M1 ∩ (list.set X ∪
{ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =⇒
¬converge M1 α β =⇒ ¬converge M2 α β

proof −
fix α β assume α ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v}

∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))})
β ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′

∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))})
¬converge M1 α β

then consider α = v ∧ β ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω
∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) |

β = v ∧ α ∈ L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,
v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) |

α ∈ L M1 ∩ (list.set X ′ ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x,
y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x ′, y ′)]))}) ∧ β ∈ L M1 ∩ (list.set
X ′ ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u @ [(x, y)], v @ [(x, y)]} ∧ ω ′ ∈ list.set (prefixes (γ @
[(x ′, y ′)]))})

unfolding ∗∗ by auto
then show ¬converge M2 α β proof cases

case 1
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then show ?thesis using ‹
∧

β . β ∈ L M1 ∩ (list.set X ∪ {ω
@ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =⇒
¬converge M1 v β =⇒ ¬converge M2 v β›

using ‹¬ converge M1 α β› by blast
next

case 2
then show ?thesis using ‹

∧
β . β ∈ L M1 ∩ (list.set X ∪ {ω

@ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =⇒
¬converge M1 v β =⇒ ¬converge M2 v β›[of α]

using ‹¬ converge M1 α β›
unfolding converge-sym[of - α] by blast

next
case 3
then show ?thesis

using preserve ′ ‹¬ converge M1 α β›
unfolding preserves-divergence.simps by blast

qed
qed
then show ?thesis

unfolding preserves-divergence.simps
by blast

qed
qed

show L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set
(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =

L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set
(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) ∧

preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,
v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))})

using pass ′′ preserve ′′

by presburger
qed

show ?thesis
using IH3 p2 p3 p4
by blast

qed
qed

have foldl-handleIO-subset:
∧

XY T G . set T ⊆ set (fst (foldl handleIO (T ,G)
XY ))

proof −
fix XY T G
show set T ⊆ set (fst (foldl handleIO (T ,G) XY ))
proof (induction XY rule: rev-induct)

case Nil
then show ?case by auto

next
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case (snoc x xs)
then show ?case
using handleIO-subset[of fst (foldl handleIO (T , G) xs) snd (foldl handleIO

(T , G) xs) fst x snd x]
by force

qed
qed

have list.set XY = inputs M1 × outputs M1
unfolding XY
by (metis inputs-as-list-set outputs-as-list-set set-product)

then have list.set XY ⊆ inputs M1 × outputs M1
by auto

moreover have L M1 ∩ set (fst (foldl handleIO (fst TG ′′, snd TG ′′) XY )) =
L M2 ∩ set (fst (foldl handleIO (fst TG ′′, snd TG ′′) XY ))

using pass-result by auto
ultimately have foldl-handleIO-props: convergence-graph-lookup-invar M1 M2

cg-lookup (snd (foldl handleIO (fst TG ′′, snd TG ′′) XY ))
∧ (∀ x y . (x,y) ∈ list.set XY −→

L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈
{u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω
∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

∧ preserves-divergence M1 M2 (list.set X
∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes [(x,y)])})

∧ (∀ γ x ′ y ′ . length ((x,y)#γ@[(x ′,y ′)])
≤ Suc depth −→

((x,y)#γ) ∈ LS M1 (after-initial
M1 u) −→

x ′ ∈ inputs M1 −→ y ′ ∈ outputs M1
−→

L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ .
ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))}) = L M2 ∩ (list.set X ∪
{ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))})

∧ preserves-divergence M1 M2 (list.set
X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes ((x,y)#γ@[(x ′,y ′)]))})))

proof (induction XY rule: rev-induct)
case Nil

have ∗:(foldl handleIO (fst TG ′′, snd TG ′′) []) = (fst TG ′′, snd TG ′′)
by auto

show ?case
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd TG ′′)›
unfolding ∗ snd-conv
by auto

next
case (snoc a XY )
obtain x ′ y ′ where a = (x ′,y ′)
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using prod.exhaust by metis
then have x ′ ∈ inputs M1 and y ′ ∈ outputs M1

using snoc.prems(1 ) by auto

have set T ⊆ set (fst TG ′′)
using ‹Prefix-Tree.set (fst TG ′) ⊆ Prefix-Tree.set (fst TG ′′)› ‹Prefix-Tree.set

T ⊆ Prefix-Tree.set (fst TG ′)› by auto

have (foldl handleIO (fst TG ′′, snd TG ′′) (XY@[a])) = handleIO (foldl
handleIO (fst TG ′′, snd TG ′′) XY ) (x ′,y ′)

unfolding ‹a = (x ′,y ′)› by auto
then have set (fst (foldl handleIO (fst TG ′′, snd TG ′′) XY )) ⊆ set (fst (foldl

handleIO (fst TG ′′, snd TG ′′) (XY@[a])))
using handleIO-subset
by (metis prod.collapse)

then have pass-XY : L M1 ∩ set (fst (foldl handleIO (fst TG ′′, snd TG ′′)
XY )) = L M2 ∩ set (fst (foldl handleIO (fst TG ′′, snd TG ′′) XY ))

using snoc.prems(2 ) by blast
have set T ⊆ set (fst (foldl handleIO (fst TG ′′, snd TG ′′) XY ))

using foldl-handleIO-subset ‹set T ⊆ set (fst TG ′′)›
by blast

have list.set XY ⊆ FSM .inputs M1 × FSM .outputs M1
using snoc.prems(1 ) by auto

have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl handleIO
(fst TG ′′, snd TG ′′) XY ))

using snoc.IH [OF ‹list.set XY ⊆ FSM .inputs M1 × FSM .outputs M1 ›
pass-XY ] by blast

have pass-aXY : L M1 ∩ Prefix-Tree.set (fst (handleIO (fst (foldl handleIO
(fst TG ′′, snd TG ′′) XY ), snd (foldl handleIO (fst TG ′′, snd TG ′′) XY )) (x ′,y ′) ))
= L M2 ∩ Prefix-Tree.set (fst (handleIO (fst (foldl handleIO (fst TG ′′, snd TG ′′)
XY ), snd (foldl handleIO (fst TG ′′, snd TG ′′) XY )) (x ′,y ′) ))

using snoc.prems(2 )
unfolding ‹(foldl handleIO (fst TG ′′, snd TG ′′) (XY@[a])) = handleIO

(foldl handleIO (fst TG ′′, snd TG ′′) XY ) (x ′,y ′)›
unfolding prod.collapse .

show ?case (is ?P1 ∧ ?P2 )
proof
show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl handleIO

(fst TG ′′, snd TG ′′) (XY@[a])))
using handleIO-props[OF ‹set T ⊆ set (fst (foldl handleIO (fst TG ′′, snd

TG ′′) XY ))› ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl han-
dleIO (fst TG ′′, snd TG ′′) XY ))› pass-aXY ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 ›]

unfolding ‹(foldl handleIO (fst TG ′′, snd TG ′′) (XY@[a])) = handleIO
(foldl handleIO (fst TG ′′, snd TG ′′) XY ) (x ′,y ′)›

unfolding prod.collapse
by blast
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have
∧

x y. (x, y) ∈ list.set (XY@[a]) =⇒
L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes

[(x,y)])}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set (prefixes
[(x,y)])}) ∧

preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′

∈ list.set (prefixes [(x, y)])}) ∧
(∀ γ x ′ y ′.

length ((x, y) # γ @ [(x ′, y ′)]) ≤ Suc depth −→
(x, y) # γ ∈ LS M1 (after-initial M1 u) −→
x ′ ∈ FSM .inputs M1 −→
y ′ ∈ FSM .outputs M1 −→

L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
((x, y) # γ @ [(x ′, y ′)]))}) =

L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
((x, y) # γ @ [(x ′, y ′)]))}) ∧

preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧
ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}))

proof −
fix x y assume (x, y) ∈ list.set (XY@[a])

show L M1 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set
(prefixes [(x,y)])}) = L M2 ∩ (list.set X ∪ {ω@ω ′ | ω ω ′ . ω ∈ {u,v} ∧ ω ′ ∈ list.set
(prefixes [(x,y)])}) ∧

preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v}
∧ ω ′ ∈ list.set (prefixes [(x, y)])}) ∧

(∀ γ x ′ y ′.
length ((x, y) # γ @ [(x ′, y ′)]) ≤ Suc depth −→
(x, y) # γ ∈ LS M1 (after-initial M1 u) −→
x ′ ∈ FSM .inputs M1 −→
y ′ ∈ FSM .outputs M1 −→
L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set

(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) =
L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set

(prefixes ((x, y) # γ @ [(x ′, y ′)]))}) ∧
preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

v} ∧ ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))}))
proof (cases a = (x,y))

case True
then have ∗:(x ′,y ′) = (x,y)

using ‹a = (x ′,y ′)› by auto

show ?thesis
using handleIO-props[OF ‹set T ⊆ set (fst (foldl handleIO (fst TG ′′, snd

TG ′′) XY ))› ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl han-
dleIO (fst TG ′′, snd TG ′′) XY ))› pass-aXY ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 ›]

unfolding ‹(foldl handleIO (fst TG ′′, snd TG ′′) (XY@[a])) = handleIO
(foldl handleIO (fst TG ′′, snd TG ′′) XY ) (x ′,y ′)›

unfolding prod.collapse ∗

735



by presburger
next

case False
then have (x,y) ∈ list.set XY

using ‹(x, y) ∈ list.set (XY@[a])› by auto

then show ?thesis
using snoc.IH [OF ‹list.set XY ⊆ FSM .inputs M1 × FSM .outputs M1 ›

pass-XY ]
by presburger

qed
qed
then show ?P2

by blast
qed

qed

have
∧

x y . (x,y) ∈ list.set XY = (x ∈ inputs M1 ∧ y ∈ outputs M1 )
unfolding ‹list.set XY = inputs M1 × outputs M1 › by auto

have result-props-1 :
∧

x y γ x ′ y ′. x ∈ inputs M1 =⇒ y ∈ outputs M1 =⇒
length ((x, y) # γ @ [(x ′, y ′)]) ≤ Suc depth =⇒
(x, y) # γ ∈ LS M1 (after-initial M1 u) =⇒
x ′ ∈ FSM .inputs M1 =⇒
y ′ ∈ FSM .outputs M1 =⇒
L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes

((x, y) # γ @ [(x ′, y ′)]))}) =
L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes

((x, y) # γ @ [(x ′, y ′)]))}) ∧
preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧

ω ′ ∈ list.set (prefixes ((x, y) # γ @ [(x ′, y ′)]))})
using foldl-handleIO-props
unfolding ‹

∧
x y . (x,y) ∈ list.set XY = (x ∈ inputs M1 ∧ y ∈ outputs M1 )›

by blast

have ?P1a X u v (Suc depth)
proof −

have
∧

γ x y.
length (γ @ [(x, y)]) ≤ Suc depth =⇒
γ ∈ LS M1 (after-initial M1 u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒

L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
(γ @ [(x, y)]))}) =

L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
(γ @ [(x, y)]))}) ∧

preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v}
∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
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proof −
fix γ x y
assume length (γ @ [(x, y)]) ≤ Suc depth

γ ∈ LS M1 (after-initial M1 u)
x ∈ FSM .inputs M1
y ∈ FSM .outputs M1

show L M1 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
(γ @ [(x, y)]))}) =

L M2 ∩ (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
(γ @ [(x, y)]))}) ∧

preserves-divergence M1 M2 (list.set X ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v}
∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})

proof (cases γ)
case Nil
then have ∗:γ @ [(x,y)] = [(x,y)]

by auto
have (x,y) ∈ list.set XY

unfolding ‹list.set XY = inputs M1 × outputs M1 ›
using ‹x ∈ FSM .inputs M1 › ‹y ∈ FSM .outputs M1 ›
by auto

show ?thesis
unfolding ∗
using foldl-handleIO-props ‹(x,y) ∈ list.set XY ›
by presburger

next
case (Cons a γ ′)
obtain x ′ y ′ where a = (x ′,y ′)

using prod.exhaust by metis
then have ∗: γ = (x ′,y ′)#γ ′

unfolding Cons by auto
then have ∗∗: γ @ [(x, y)] = (x ′,y ′)#γ ′@ [(x, y)]

by auto

have ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 ›
using language-io[OF ‹γ ∈ LS M1 (after-initial M1 u)›, of x ′ y ′]
unfolding ∗
by auto

have length ((x ′, y ′) # (γ ′ @ [(x, y)])) ≤ Suc depth
using ‹length (γ @ [(x, y)]) ≤ Suc depth› unfolding ∗ by auto

have (x ′, y ′) # γ ′ ∈ LS M1 (after-initial M1 u)
using ‹γ ∈ LS M1 (after-initial M1 u)› unfolding ∗ .

show ?thesis
using result-props-1 [OF ‹x ′ ∈ inputs M1 › ‹y ′ ∈ outputs M1 › ‹length

((x ′, y ′) # (γ ′ @ [(x, y)])) ≤ Suc depth› ‹(x ′, y ′) # γ ′ ∈ LS M1 (after-initial M1
u)› ‹x ∈ FSM .inputs M1 › ‹y ∈ outputs M1 ›]

unfolding ∗∗ .
qed
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qed
then show ?thesis by blast

qed

moreover have ?P1b X u v
using ‹preserves-divergence M1 M2 (Set.insert u (Set.insert v (list.set X)))›

by auto

moreover have ?P2 T G u v X (Suc depth)
using foldl-handleIO-props
unfolding result prod.collapse
by blast

ultimately show ?case
by blast

qed

then show ?P1a X u v depth and ?P1b X u v and ?P2 T G u v X depth
by presburger+

qed

lemma distinguish-from-set-establishes-convergence :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and is-state-cover-assignment M1 V
and preserves-divergence M1 M2 (V ‘ reachable-states M1 )
and L M1 ∩ (V ‘ reachable-states M1 ) = L M2 ∩ V ‘ reachable-states M1
and converge M1 u v
and u ∈ L M2
and v ∈ L M2
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert

and
∧

q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒
distinguishes M1 q1 q2 (get-distinguishing-trace q1 q2 )

and L M1 ∩ set (fst (distinguish-from-set M1 V T G cg-lookup cg-insert
get-distinguishing-trace u v (map V (reachable-states-as-list M1 )) k (m − size-r
M1 ) completeInputTraces append-heuristic (u=v))) = L M2 ∩ set (fst (distinguish-from-set
M1 V T G cg-lookup cg-insert get-distinguishing-trace u v (map V (reachable-states-as-list
M1 )) k (m − size-r M1 ) completeInputTraces append-heuristic (u=v)))

and
∧

T w u ′ uBest lBest . fst (append-heuristic T w (uBest,lBest) u ′) ∈
{u ′,uBest}
shows converge M2 u v
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and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distinguish-from-set
M1 V T G cg-lookup cg-insert get-distinguishing-trace u v (map V (reachable-states-as-list
M1 )) k (m − size-r M1 ) completeInputTraces append-heuristic (u=v)))
proof −

have d1 : V ‘ reachable-states M1 ⊆ list.set (map V (reachable-states-as-list M1 ))
using reachable-states-as-list-set by auto

have d2 : preserves-divergence M1 M2 (list.set (map V (reachable-states-as-list
M1 )))

using assms(10 ) reachable-states-as-list-set
by (metis image-set)

have d3 : (
∧

w. w ∈ list.set (map V (reachable-states-as-list M1 )) =⇒ ∃w ′.
converge M1 w w ′ ∧ converge M2 w w ′)

proof −
fix w assume w ∈ list.set (map V (reachable-states-as-list M1 ))
then have w ∈ V ‘ reachable-states M1

using reachable-states-as-list-set by auto
moreover have w ∈ L M1
by (metis assms(1 ) assms(9 ) calculation image-iff state-cover-assignment-after(1 ))
ultimately have w ∈ L M2

using assms(11 ) by blast

have converge M1 w w
using ‹w ∈ L M1 › by auto

moreover have converge M2 w w
using ‹w ∈ L M2 › by auto

ultimately show ∃w ′. converge M1 w w ′ ∧ converge M2 w w ′

by blast
qed

have list.set (map V (reachable-states-as-list M1 )) = V ‘ reachable-states M1
using reachable-states-as-list-set by auto

have prop1 :
∧
γ x y.

length (γ @ [(x, y)]) ≤ (m − size-r M1 ) =⇒
γ ∈ LS M1 (after-initial M1 u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set

(prefixes (γ @ [(x, y)]))}) =
L M2 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set

(prefixes (γ @ [(x, y)]))}) ∧
preserves-divergence M1 M2
(V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes

(γ @ [(x, y)]))})
and prop2 : preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {u, v})
and prop3 : convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distinguish-from-set

M1 V T G cg-lookup cg-insert get-distinguishing-trace u v (map V (reachable-states-as-list
M1 )) k (m − size-r M1 ) completeInputTraces append-heuristic (u=v)))
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using distinguish-from-set-properties[OF assms(1−4 ,7 ,8 ,9 ) d1 d2 d3 assms(12−19 )]
unfolding ‹list.set (map V (reachable-states-as-list M1 )) = V ‘ reachable-states

M1 ›
by presburger+

then show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distinguish-from-set
M1 V T G cg-lookup cg-insert get-distinguishing-trace u v (map V (reachable-states-as-list
M1 )) k (m − size-r M1 ) completeInputTraces append-heuristic (u=v)))

by presburger

show converge M2 u v
using establish-convergence-from-pass[OF assms(1−9 ,11−14 ) prop1 prop2 ]
by blast

qed

definition establish-convergence-dynamic :: bool ⇒ bool ⇒ ( ′a ⇒ ′a ⇒ ( ′b × ′c)
list) ⇒

( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
nat ⇒
( ′a, ′b, ′c) transition ⇒
(( ′b× ′c) prefix-tree × ′d) where

establish-convergence-dynamic completeInputTraces useInputHeuristic dist-fun M1
V T G cg-insert cg-lookup m t =

distinguish-from-set M1 V T G cg-lookup cg-insert
dist-fun
((V (t-source t))@[(t-input t, t-output t)])
(V (t-target t))
(map V (reachable-states-as-list M1 ))
(2 ∗ size M1 )
(m − size-r M1 )
completeInputTraces

(if useInputHeuristic then append-heuristic-input M1 else
append-heuristic-io)

False

lemma establish-convergence-dynamic-verifies-transition :
assumes

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒

distinguishes M1 q1 q2 (dist-fun q1 q2 )
shows verifies-transition (establish-convergence-dynamic b c dist-fun) M1 M2 V

T0 cg-insert cg-lookup
proof −

have ∗:
∧

(M1 ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm) V T (G:: ′d) cg-insert
cg-lookup m t. Prefix-Tree.set T ⊆ Prefix-Tree.set (fst (establish-convergence-dynamic
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b c dist-fun M1 V T G cg-insert cg-lookup m t))
using distinguish-from-set-subset unfolding establish-convergence-dynamic-def
by metis

have ∗∗∗:
∧

(M1 ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm) V T (G:: ′d) cg-insert
cg-lookup m t. finite-tree T −→ finite-tree (fst (establish-convergence-dynamic b c
dist-fun M1 V T G cg-insert cg-lookup m t))

using distinguish-from-set-finite unfolding establish-convergence-dynamic-def
by metis

have ∗∗:
∧

V T (G:: ′d) cg-insert cg-lookup m t.
observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
FSM .size M2 ≤ m =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) =⇒
V ‘ reachable-states M1 ⊆ set T =⇒
t ∈ FSM .transitions M1 =⇒
t-source t ∈ reachable-states M1 =⇒
((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t)) =⇒
V (t-source t) @ [(t-input t, t-output t)] ∈ L M2 =⇒
convergence-graph-lookup-invar M1 M2 cg-lookup G =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
L M1 ∩ Prefix-Tree.set (fst (establish-convergence-dynamic b c dist-fun M1

V T G cg-insert cg-lookup m t)) =
L M2 ∩ Prefix-Tree.set (fst (establish-convergence-dynamic b c dist-fun M1

V T G cg-insert cg-lookup m t)) =⇒
converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t)) ∧

convergence-graph-lookup-invar M1 M2 cg-lookup (snd (establish-convergence-dynamic
b c dist-fun M1 V T G cg-insert cg-lookup m t))

proof −

fix G :: ′d
fix V T cg-insert cg-lookup m t
assume a01 : observable M1
assume a02 : observable M2
assume a03 : minimal M1
assume a04 : minimal M2
assume a05 : size-r M1 ≤ m
assume a06 : FSM .size M2 ≤ m
assume a07 : FSM .inputs M2 = FSM .inputs M1
assume a08 : FSM .outputs M2 = FSM .outputs M1
assume a09 : is-state-cover-assignment M1 V
assume a10 : preserves-divergence M1 M2 (V ‘ reachable-states M1 )
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assume a11 : V ‘ reachable-states M1 ⊆ set T
assume a12 : t ∈ FSM .transitions M1
assume a13 : t-source t ∈ reachable-states M1
assume a14 : V (t-source t) @ [(t-input t, t-output t)] ∈ L M2
assume a15 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a16 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
assume a17 : L M1 ∩ Prefix-Tree.set (fst (establish-convergence-dynamic b

c dist-fun M1 V T G cg-insert cg-lookup m t)) = L M2 ∩ Prefix-Tree.set (fst
(establish-convergence-dynamic b c dist-fun M1 V T G cg-insert cg-lookup m t))

assume a18 : ((V (t-source t)) @ [(t-input t,t-output t)]) 6= (V (t-target t))

let ?heuristic = (if c then append-heuristic-input M1 else append-heuristic-io)

have d2 : converge M1 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target
t))

using state-cover-transition-converges[OF a01 a09 a12 a13 ] .

have d1 : L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using a11 a17 ∗[of T M1 V G cg-insert cg-lookup m t]
by blast

then have d3 : V (t-target t) ∈ L M2
using a11 is-state-cover-assignment-language[OF a09 , of t-target t] reach-

able-states-next[OF a13 a12 ] by auto

have d5 : L M1 ∩ Prefix-Tree.set (fst (distinguish-from-set M1 V T G cg-lookup
cg-insert dist-fun (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t)) (map
V (reachable-states-as-list M1 )) (2 ∗ size M1 ) (m − size-r M1 ) b ?heuristic (((V
(t-source t)) @ [(t-input t,t-output t)]) = (V (t-target t))))) = L M2 ∩ Pre-
fix-Tree.set (fst (distinguish-from-set M1 V T G cg-lookup cg-insert dist-fun (V
(t-source t) @ [(t-input t, t-output t)]) (V (t-target t)) (map V (reachable-states-as-list
M1 )) (2 ∗ size M1 ) (m − size-r M1 ) b ?heuristic (((V (t-source t)) @ [(t-input
t,t-output t)]) = (V (t-target t)))))

using a17 a18 unfolding establish-convergence-dynamic-def by force

have d6 : (
∧

T w u ′ uBest lBest. fst (?heuristic T w (uBest, lBest) u ′) ∈ {u ′,
uBest})

using append-heuristic-input-in[of M1 ] append-heuristic-io-in
by fastforce

show converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t)) ∧
convergence-graph-lookup-invar M1 M2 cg-lookup (snd (establish-convergence-dynamic

b c dist-fun M1 V T G cg-insert cg-lookup m t))
using distinguish-from-set-establishes-convergence[OF a01 a02 a03 a04 a05

a06 a07 a08 a09 a10 d1 d2 a14 d3 a15 a16 assms d5 d6 ] a18
unfolding establish-convergence-dynamic-def by force

qed

show ?thesis

742



unfolding verifies-transition-def
using ∗ ∗∗∗ ∗∗ by presburger

qed

definition handleUT-dynamic :: bool ⇒
bool ⇒
( ′a ⇒ ′a ⇒ ( ′b × ′c) list) ⇒
(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒

( ′a, ′b, ′c) transition ⇒ ( ′a, ′b, ′c) transition list ⇒ nat ⇒ bool) ⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
nat ⇒
( ′a, ′b, ′c) transition ⇒
( ′a, ′b, ′c) transition list ⇒
(( ′a, ′b, ′c) transition list × ( ′b× ′c) prefix-tree × ′d)

where
handleUT-dynamic complete-input-traces

use-input-heuristic
dist-fun
do-establish-convergence
M
V
T
G
cg-insert
cg-lookup
cg-merge
m
t
X

=
(let k = (2 ∗ size M );

l = (m − size-r M );
heuristic = (if use-input-heuristic then append-heuristic-input M

else append-heuristic-io);
rstates = (map V (reachable-states-as-list M ));
(T1 ,G1 ) = handle-io-pair complete-input-traces

use-input-heuristic
M
V
T
G
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cg-insert
cg-lookup
(t-source t)
(t-input t)
(t-output t);

u = ((V (t-source t))@[(t-input t, t-output t)]);
v = (V (t-target t));
X ′ = butlast X

in if (do-establish-convergence M V t X ′ l)
then let (T2 ,G2 ) = distinguish-from-set M

V
T1
G1
cg-lookup
cg-insert
dist-fun
u
v
rstates
k
l
complete-input-traces
heuristic
False;

G3 = cg-merge G2 u v
in

(X ′,T2 ,G3 )
else (X ′,distinguish-from-set M

V
T1
G1
cg-lookup
cg-insert
dist-fun
u
u
rstates
k
l
complete-input-traces
heuristic
True))

lemma handleUT-dynamic-handles-transition :
fixes M1 ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 ::( ′e, ′b, ′c) fsm
assumes

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒

distinguishes M1 q1 q2 (dist-fun q1 q2 )
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shows handles-transition (handleUT-dynamic b c dist-fun d) M1 M2 V T0
cg-insert cg-lookup cg-merge
proof −

have
∧

T G m t X .
Prefix-Tree.set T ⊆ Prefix-Tree.set (fst (snd (handleUT-dynamic b c dist-fun

d M1 V T G cg-insert cg-lookup cg-merge m t X))) ∧
(finite-tree T −→ finite-tree (fst (snd (handleUT-dynamic b c dist-fun d M1

V T G cg-insert cg-lookup cg-merge m t X)))) ∧
(observable M1 −→
observable M2 −→
minimal M1 −→
minimal M2 −→
size-r M1 ≤ m −→
FSM .size M2 ≤ m −→
FSM .inputs M2 = FSM .inputs M1 −→
FSM .outputs M2 = FSM .outputs M1 −→
is-state-cover-assignment M1 V −→
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) −→
V ‘ reachable-states M1 ⊆ Prefix-Tree.set T −→
t ∈ FSM .transitions M1 −→
t-source t ∈ reachable-states M1 −→
V (t-source t) @ [(t-input t, t-output t)] 6= V (t-target t) −→
convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
convergence-graph-merge-invar M1 M2 cg-lookup cg-merge −→
L M1 ∩ Prefix-Tree.set (fst (snd (handleUT-dynamic b c dist-fun d M1 V T

G cg-insert cg-lookup cg-merge m t X))) =
L M2 ∩ Prefix-Tree.set (fst (snd (handleUT-dynamic b c dist-fun d M1 V T

G cg-insert cg-lookup cg-merge m t X))) −→
Prefix-Tree.set T0 ⊆ Prefix-Tree.set T −→

(∀ γ. length γ ≤ m − size-r M1 ∧ list.set γ ⊆ FSM .inputs M1 × FSM .outputs
M1 ∧ butlast γ ∈ LS M1 (t-target t) −→

L M1 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) =

L M2 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) ∧

preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {(V (t-source
t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})) ∧

convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (handleUT-dynamic
b c dist-fun d M1 V T G cg-insert cg-lookup cg-merge m t X))))

(is
∧

T G m t X . ?P T G m t X)
proof −

fix T :: ( ′b× ′c) prefix-tree
fix G :: ′d
fix m :: nat
fix t :: ( ′a, ′b, ′c) transition
fix X :: ( ′a, ′b, ′c) transition list
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let ?TG = snd (handleUT-dynamic b c dist-fun d M1 V T G cg-insert cg-lookup
cg-merge m t X)

define k where k = (2 ∗ size M1 )
define l where l = (m − size-r M1 )
define X ′ where X ′ = butlast X
define heuristic where heuristic = (if c then append-heuristic-input M1 else

append-heuristic-io)
define rstates where rstates = (map V (reachable-states-as-list M1 ))
obtain T1 G1 where (T1 ,G1 ) = handle-io-pair b c M1 V T G cg-insert

cg-lookup (t-source t) (t-input t) (t-output t)
using prod.collapse by blast

then have T1-def : T1 = fst (handle-io-pair b c M1 V T G cg-insert cg-lookup
(t-source t) (t-input t) (t-output t))

and G1-def : G1 = snd (handle-io-pair b c M1 V T G cg-insert cg-lookup
(t-source t) (t-input t) (t-output t))

using fst-conv[of T1 G1 ] snd-conv[of T1 G1 ] by force+
define u where u = ((V (t-source t))@[(t-input t, t-output t)])
define v where v = (V (t-target t))

obtain T2 G2 where (T2 ,G2 ) = distinguish-from-set M1 V T1 G1 cg-lookup
cg-insert dist-fun u v rstates k l b heuristic False

using prod.collapse by blast
then have T2-def : T2 = fst (distinguish-from-set M1 V T1 G1 cg-lookup

cg-insert dist-fun u v rstates k l b heuristic False)
and G2-def : G2 = snd (distinguish-from-set M1 V T1 G1 cg-lookup

cg-insert dist-fun u v rstates k l b heuristic False)
using fst-conv[of T2 G2 ] snd-conv[of T2 G2 ] by force+

define G3 where G3 = cg-merge G2 u v

obtain TH GH where (TH ,GH ) = distinguish-from-set M1 V T1 G1 cg-lookup
cg-insert dist-fun u u rstates k l b heuristic True

using prod.collapse by blast
then have TH-def : TH = fst (distinguish-from-set M1 V T1 G1 cg-lookup

cg-insert dist-fun u u rstates k l b heuristic True)
and GH-def : GH = snd (distinguish-from-set M1 V T1 G1 cg-lookup

cg-insert dist-fun u u rstates k l b heuristic True)
using fst-conv[of TH GH ] snd-conv[of TH GH ] by force+

have TG-cases: ?TG = (if (d M1 V t X ′ l) then (T2 ,G3 ) else (TH ,GH ))
unfolding handleUT-dynamic-def Let-def

unfolding u-def [symmetric] v-def [symmetric] rstates-def [symmetric] k-def [symmetric]
l-def [symmetric] heuristic-def [symmetric]

unfolding ‹(T1 ,G1 ) = handle-io-pair b c M1 V T G cg-insert cg-lookup
(t-source t) (t-input t) (t-output t)›[symmetric] case-prod-conv

unfolding ‹(T2 ,G2 ) = distinguish-from-set M1 V T1 G1 cg-lookup cg-insert
dist-fun u v rstates k l b heuristic False›[symmetric] case-prod-conv
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unfolding G3-def [symmetric]
unfolding ‹(TH ,GH ) = distinguish-from-set M1 V T1 G1 cg-lookup cg-insert

dist-fun u u rstates k l b heuristic True›[symmetric]
unfolding X ′-def [symmetric]
by auto

then have TG-cases-fst: fst ?TG = (if (d M1 V t X ′ l) then T2 else TH )
and TG-cases-snd: snd ?TG = (if (d M1 V t X ′ l) then G3 else GH )

by auto

have set T ⊆ set T1
unfolding T1-def handle-io-pair-def
by (metis distribute-extension-subset)

moreover have set T1 ⊆ set T2
unfolding T2-def
by (meson distinguish-from-set-subset)

moreover have set T1 ⊆ set TH
unfolding TH-def
by (meson distinguish-from-set-subset)

ultimately have ∗:set T ⊆ set (fst ?TG)
using TG-cases by auto

have finite-tree T =⇒ finite-tree T1
unfolding T1-def handle-io-pair-def
by (metis distribute-extension-finite)

moreover have finite-tree T1 =⇒ finite-tree T2
unfolding T2-def
by (meson distinguish-from-set-finite)

moreover have finite-tree T1 =⇒ finite-tree TH
unfolding TH-def
by (meson distinguish-from-set-finite)

ultimately have ∗∗:finite-tree T =⇒ finite-tree (fst ?TG)
using TG-cases by auto

have ∗∗∗: observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
size M2 ≤ m =⇒
inputs M2 = inputs M1 =⇒
outputs M2 = outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) =⇒
V ‘ reachable-states M1 ⊆ set T =⇒
t ∈ transitions M1 =⇒
t-source t ∈ reachable-states M1 =⇒
V (t-source t) @ [(t-input t, t-output t)] 6= V (t-target t) =⇒
convergence-graph-lookup-invar M1 M2 cg-lookup G =⇒
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convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
convergence-graph-merge-invar M1 M2 cg-lookup cg-merge =⇒
L M1 ∩ set (fst ?TG) = L M2 ∩ set (fst ?TG) =⇒
(set T0 ⊆ set T ) =⇒
(∀ γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs

M1 ∧ butlast γ ∈ LS M1 (t-target t))
−→ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source

t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source

t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))
∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪

{((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})))

∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)
proof −

assume a01 : observable M1
assume a02 : observable M2
assume a03 : minimal M1
assume a04 : minimal M2
assume a05 : size-r M1 ≤ m
assume a06 : size M2 ≤ m
assume a07 : inputs M2 = inputs M1
assume a08 : outputs M2 = outputs M1
assume a09 : is-state-cover-assignment M1 V
assume a10 : preserves-divergence M1 M2 (V ‘ reachable-states M1 )
assume a11 : V ‘ reachable-states M1 ⊆ set T
assume a12 : t ∈ transitions M1
assume a13 : t-source t ∈ reachable-states M1
assume a14 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a15 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
assume a16 : convergence-graph-merge-invar M1 M2 cg-lookup cg-merge
assume a17 : L M1 ∩ set (fst ?TG) = L M2 ∩ set (fst ?TG)
assume a18 : (set T0 ⊆ set T )
assume a19 : V (t-source t) @ [(t-input t, t-output t)] 6= V (t-target t)

have pass-T1 : L M1 ∩ set T1 = L M2 ∩ set T1
using a17 ‹set T1 ⊆ set T2 › ‹set T1 ⊆ set TH › unfolding TG-cases-fst
by (cases d M1 V t X ′ l; auto)

then have pass-T : L M1 ∩ set T = L M2 ∩ set T
using ‹set T ⊆ set T1 › by blast

have t-target t ∈ reachable-states M1
using reachable-states-next[OF a13 a12 ] by auto

then have (V (t-target t)) ∈ L M1
using is-state-cover-assignment-language[OF a09 ] by blast

moreover have (V (t-target t)) ∈ set T
using a11 ‹t-target t ∈ reachable-states M1 › by blast

ultimately have (V (t-target t)) ∈ L M2

748



using pass-T by blast
then have v ∈ L M2

unfolding v-def .

have (V (t-source t)) ∈ L M1
using is-state-cover-assignment-language[OF a09 a13 ] by blast

moreover have (V (t-source t)) ∈ set T
using a11 a13 by blast

ultimately have (V (t-source t)) ∈ L M2
using pass-T by blast

have u ∈ L M1
unfolding u-def
using a01 a09 a12 a13 converge.simps state-cover-transition-converges by

blast

have heuristic-prop: (
∧

T w u ′ uBest lBest. fst (heuristic T w (uBest, lBest)
u ′) ∈ {u ′, uBest})

unfolding heuristic-def
using append-heuristic-input-in append-heuristic-io-in
by fastforce

have convergence-graph-lookup-invar M1 M2 cg-lookup G1
using distribute-extension-adds-sequence(2 )[OF a01 a03 ‹(V (t-source t)) ∈

L M1 › ‹(V (t-source t)) ∈ L M2 › a14 a15 , of T [(t-input t, t-output t)] b heuristic,
OF - heuristic-prop]

using pass-T1
unfolding T1-def G1-def handle-io-pair-def
unfolding heuristic-def [symmetric]
by blast

have list.set rstates = V ‘ reachable-states M1
unfolding rstates-def
using reachable-states-as-list-set by auto

then have V ‘ reachable-states M1 ⊆ list.set rstates
by auto

have preserves-divergence M1 M2 (list.set rstates)
unfolding rstates-def
using a10
by (metis image-set reachable-states-as-list-set)

then have preserves-divergence M1 M2 (V ‘ reachable-states M1 )
unfolding ‹list.set rstates = V ‘ reachable-states M1 › .

have (
∧

w. w ∈ list.set rstates =⇒ ∃w ′. converge M1 w w ′ ∧ converge M2 w
w ′)

proof −
fix w assume w ∈ list.set rstates
then obtain q where w = V q and q ∈ reachable-states M1

unfolding rstates-def
using reachable-states-as-list-set by auto
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then have w ∈ L M1 and w ∈ set T
using is-state-cover-assignment-language[OF a09 ] a11 by blast+

then have w ∈ L M2
using pass-T by blast

then have converge M1 w w and converge M2 w w
using ‹w ∈ L M1 › by auto

then show ∃w ′. converge M1 w w ′ ∧ converge M2 w w ′

by blast
qed
have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1

by (meson a11 inter-eq-subsetI pass-T )

have converge M1 u v
unfolding u-def v-def
using a01 a09 a12 a13 state-cover-transition-converges by blast

have u ∈ L M2
using distribute-extension-adds-sequence(1 )[OF a01 a03 ‹(V (t-source t)) ∈

L M1 › ‹(V (t-source t)) ∈ L M2 › a14 a15 , of T [(t-input t, t-output t)] b heuristic,
OF - heuristic-prop]

using pass-T1
unfolding T1-def G1-def handle-io-pair-def
unfolding heuristic-def [symmetric]
by (metis (no-types, lifting) Int-iff ‹V (t-target t) ∈ L M1 › ‹converge M1 u

v› a01 a02 append-Nil2 converge-append-language-iff u-def v-def )

have (u = v) = False
unfolding u-def v-def using a19 by simp

have after-initial M1 u = t-target t
using a09 unfolding u-def
by (metis ‹converge M1 u v› ‹t-target t ∈ reachable-states M1 › a01 a03 con-

verge.elims(2 ) convergence-minimal is-state-cover-assignment-observable-after u-def
v-def )

have
∧

γ x y . {u @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))} ⊆ {ω @
ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}

by blast

show (∀ γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs
M1 ∧ butlast γ ∈ LS M1 (t-target t))

−→ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪
{((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})))
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∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)
proof (cases d M1 V t X ′ l)

case True
then have ?TG = (T2 ,G3 )

unfolding TG-cases by auto

have pass-T2 : L M1 ∩ set T2 = L M2 ∩ set T2
using a17 unfolding ‹?TG = (T2 ,G3 )› by auto

have convergence-graph-lookup-invar M1 M2 cg-lookup G2
and converge M2 u v

using pass-T2
using distinguish-from-set-establishes-convergence[OF a01 a02 a03 a04 a05

a06 a07 a08 a09 ‹preserves-divergence M1 M2 (V ‘ reachable-states M1 )› ‹L M1
∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1 › ‹converge M1 u v›
‹u ∈ L M2 › ‹v ∈ L M2 › ‹convergence-graph-lookup-invar M1 M2 cg-lookup G1 ›
a15 assms, of T1 k b heuristic, OF - - - - heuristic-prop]

unfolding G2-def T2-def ‹(u = v) = False› rstates-def [symmetric]
l-def [symmetric]

by blast+
then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)

unfolding ‹?TG = (T2 ,G3 )› G3-def snd-conv using a16
by (meson ‹converge M1 u v› convergence-graph-merge-invar-def )

have cons-prop:
∧
γ x y.

length (γ @ [(x, y)]) ≤ l =⇒
γ ∈ LS M1 (after-initial M1 u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
L M1 ∩ (list.set rstates ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈

list.set (prefixes (γ @ [(x, y)]))}) =
L M2 ∩ (list.set rstates ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈

list.set (prefixes (γ @ [(x, y)]))}) ∧
preserves-divergence M1 M2 (list.set rstates ∪ {ω @ ω ′ |ω

ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
and nil-prop: preserves-divergence M1 M2 (list.set rstates ∪ {u, v})
using pass-T2

using distinguish-from-set-properties(1 ,2 )[OF a01 a02 a03 a04 a07 a08 a09
‹V ‘ reachable-states M1 ⊆ list.set rstates› ‹preserves-divergence M1 M2 (list.set
rstates)› ‹(

∧
w. w ∈ list.set rstates =⇒ ∃w ′. converge M1 w w ′ ∧ converge M2 w

w ′)› ‹converge M1 u v› ‹u ∈ L M2 › ‹v ∈ L M2 › ‹convergence-graph-lookup-invar
M1 M2 cg-lookup G1 › a15 assms, of T1 k l b heuristic, OF - - - - - heuristic-prop ]

unfolding G2-def T2-def ‹(u = v) = False›
by presburger+

have
∧

γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs
M1 ∧ butlast γ ∈ LS M1 (t-target t))

=⇒ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
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t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source

t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))
∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪

{((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))
(is

∧
γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs

M1 ∧ butlast γ ∈ LS M1 (t-target t)) =⇒ ?P1 γ ∧ ?P2 γ)
proof −

fix γ assume assm:(length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1
× outputs M1 ∧ butlast γ ∈ LS M1 (t-target t))

show ?P1 γ ∧ ?P2 γ
proof (cases γ rule: rev-cases)

case Nil
have ∗: (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input t,t-output

t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= (V ‘ reachable-states M1 ∪ {u})

unfolding u-def [symmetric] ‹list.set rstates = V ‘ reachable-states M1 ›
Nil by auto

have ?P1 γ
using ‹L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states

M1 ›
‹u ∈ L M1 › ‹u ∈ L M2 ›

unfolding ∗ by blast
moreover have ?P2 γ

using preserves-divergence-subset[OF nil-prop]
unfolding ∗ ‹list.set rstates = V ‘ reachable-states M1 ›

by (metis Un-empty-right Un-insert-right Un-upper1 insertI1 in-
sert-subsetI )

ultimately show ?thesis
by simp

next
case (snoc γ ′ xy)
moreover obtain x y where xy = (x,y)

using prod.exhaust by metis
ultimately have γ = γ ′@[(x,y)]

by auto

have ∗: (V ‘ reachable-states M1 ∪ {u @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
⊆ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
γ)})

by blast

have length (γ ′ @ [(x, y)]) ≤ l
using assm unfolding l-def ‹γ = γ ′@[(x,y)]› by auto

moreover have γ ′ ∈ LS M1 (after-initial M1 u)
using assm unfolding l-def ‹γ = γ ′@[(x,y)]›
by (simp add: ‹after-initial M1 u = t-target t›)

moreover have x ∈ FSM .inputs M1 and y ∈ FSM .outputs M1
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using assm unfolding ‹γ = γ ′@[(x,y)]› by auto
ultimately show ?thesis

using cons-prop[of γ ′ x y] preserves-divergence-subset[of M1 M2 (V
‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes γ)}),
OF - ∗]

unfolding ‹γ = γ ′@[(x,y)]›[symmetric] u-def [symmetric] ‹list.set rstates
= V ‘ reachable-states M1 ›

by blast
qed

qed
then show ?thesis

using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)›
by presburger

next
case False

then have ?TG = (TH ,GH )
unfolding TG-cases by auto

have pass-TH : L M1 ∩ set TH = L M2 ∩ set TH
using a17 unfolding ‹?TG = (TH ,GH )› by auto

have converge M1 u u
using ‹u ∈ L M1 › by auto

have cons-prop:
∧
γ x y.

length (γ @ [(x, y)]) ≤ l =⇒
γ ∈ LS M1 (t-target t) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

u} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) =
L M2 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

u} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) ∧
preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {ω

@ ω ′ |ω ω ′. ω ∈ {u, u} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
and nil-prop: preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {u,u})

and convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)
using pass-TH

using distinguish-from-set-properties[OF a01 a02 a03 a04 a07 a08 a09
‹V ‘ reachable-states M1 ⊆ list.set rstates› ‹preserves-divergence M1 M2 (list.set
rstates)› ‹(

∧
w. w ∈ list.set rstates =⇒ ∃w ′. converge M1 w w ′ ∧ converge M2 w

w ′)› ‹converge M1 u u› ‹u ∈ L M2 › ‹u ∈ L M2 › ‹convergence-graph-lookup-invar
M1 M2 cg-lookup G1 › a15 assms, of T1 k l b heuristic, OF - - - - - heuristic-prop ]

unfolding ‹?TG = (TH ,GH )› snd-conv
unfolding GH-def TH-def ‹list.set rstates = V ‘ reachable-states M1 ›

‹after-initial M1 u = t-target t›
by presburger+
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have
∧

γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs
M1 ∧ butlast γ ∈ LS M1 (t-target t))

=⇒ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪
{((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

(is
∧

γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs
M1 ∧ butlast γ ∈ LS M1 (t-target t)) =⇒ ?P1 γ ∧ ?P2 γ)

proof −
fix γ assume assm:(length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1

× outputs M1 ∧ butlast γ ∈ LS M1 (t-target t))
show ?P1 γ ∧ ?P2 γ
proof (cases γ rule: rev-cases)

case Nil
have ∗: (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input t,t-output

t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= (V ‘ reachable-states M1 ∪ {u})

unfolding u-def [symmetric] ‹list.set rstates = V ‘ reachable-states M1 ›
Nil by auto

have ?P1 γ
using ‹L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states

M1 ›
‹u ∈ L M1 › ‹u ∈ L M2 ›

unfolding ∗ by blast
moreover have ?P2 γ

using nil-prop
unfolding ∗ by auto

ultimately show ?thesis
by simp

next
case (snoc γ ′ xy)
moreover obtain x y where xy = (x,y)

using prod.exhaust by metis
ultimately have γ = γ ′@[(x,y)]

by auto

have ∗: {ω @ ω ′ |ω ω ′. ω ∈ {u, u} ∧ ω ′ ∈ list.set (prefixes γ)} = {u @
ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}

by blast

have length (γ ′ @ [(x, y)]) ≤ l
using assm unfolding l-def ‹γ = γ ′@[(x,y)]› by auto

moreover have γ ′ ∈ LS M1 (t-target t)
using assm unfolding l-def ‹γ = γ ′@[(x,y)]›
by simp
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moreover have x ∈ FSM .inputs M1 and y ∈ FSM .outputs M1
using assm unfolding ‹γ = γ ′@[(x,y)]› by auto

ultimately show ?thesis
using cons-prop[of γ ′ x y]

unfolding ‹γ = γ ′@[(x,y)]›[symmetric] u-def [symmetric] ‹list.set rstates
= V ‘ reachable-states M1 › ∗

by blast
qed

qed
then show ?thesis

using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)›
by presburger

qed
qed

show ?P T G m t X
using ∗ ∗∗ ∗∗∗ by blast

qed
then show ?thesis

unfolding handles-transition-def
by blast

qed

21.5.2 Static
fun traces-to-check :: ( ′a, ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ nat ⇒ ( ′b× ′c) list
list where

traces-to-check M q 0 = [] |
traces-to-check M q (Suc k) = (let

ios = List.product (inputs-as-list M ) (outputs-as-list M )
in concat (map (λ(x,y) . case h-obs M q x y of None ⇒ [[(x,y)]] | Some q ′⇒

[(x,y)] # (map ((#) (x,y)) (traces-to-check M q ′ k))) ios))

lemma traces-to-check-set :
fixes M :: ( ′a, ′b::linorder , ′c::linorder) fsm
assumes observable M
and q ∈ states M

shows list.set (traces-to-check M q k) = {(γ @ [(x, y)]) | γ x y . length (γ @ [(x,
y)]) ≤ k ∧ γ ∈ LS M q ∧ x ∈ inputs M ∧ y ∈ outputs M}

using assms(2 ) proof (induction k arbitrary: q)
case 0
then show ?case by auto

next
case (Suc k)

define ios where ios: ios = List.product (inputs-as-list M ) (outputs-as-list M )
define f where f : f = (λ(x,y) . case h-obs M q x y of None ⇒ [[(x,y)]] | Some
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q ′⇒ [(x,y)] # (map ((#) (x,y)) (traces-to-check M q ′ k)))

have list.set ios = inputs M × outputs M
using inputs-as-list-set outputs-as-list-set unfolding ios by auto

moreover have traces-to-check M q (Suc k) = concat (map f ios)
unfolding f ios by auto

ultimately have in-ex :
∧

io . io ∈ list.set (traces-to-check M q (Suc k)) ←→
(∃ x y . x ∈ inputs M ∧ y ∈ outputs M ∧ io ∈ list.set (f (x,y)))

by auto

show ?case
proof

show list.set (traces-to-check M q (Suc k)) ⊆ {(γ @ [(x, y)]) | γ x y . length (γ
@ [(x, y)]) ≤ (Suc k) ∧ γ ∈ LS M q ∧ x ∈ inputs M ∧ y ∈ outputs M}

proof
fix io assume io ∈ list.set (traces-to-check M q (Suc k))
then obtain x y where x ∈ inputs M and y ∈ outputs M

and io ∈ list.set (f (x,y))
using in-ex by blast

have [(x,y)] ∈ {(γ @ [(x, y)]) | γ x y . length (γ @ [(x, y)]) ≤ (Suc k) ∧ γ ∈
LS M q ∧ x ∈ inputs M ∧ y ∈ outputs M}

proof −
have length ([] @ [(x, y)]) ≤ Suc k

by auto
moreover have [] ∈ LS M q

using Suc.prems by auto
ultimately show ?thesis

using ‹x ∈ inputs M › ‹y ∈ outputs M › by blast
qed

show io ∈ {(γ @ [(x, y)]) | γ x y . length (γ @ [(x, y)]) ≤ (Suc k) ∧ γ ∈ LS
M q ∧ x ∈ inputs M ∧ y ∈ outputs M}

proof (cases h-obs M q x y)
case None
then have io = [(x,y)]

using ‹io ∈ list.set (f (x,y))› unfolding f by auto
then show ?thesis

using ‹[(x,y)] ∈ {(γ @ [(x, y)]) | γ x y . length (γ @ [(x, y)]) ≤ (Suc k) ∧
γ ∈ LS M q ∧ x ∈ inputs M ∧ y ∈ outputs M}›

by blast
next

case (Some q ′)
then consider io = [(x,y)] | io ∈ list.set (map ((#) (x,y)) (traces-to-check

M q ′ k))
using ‹io ∈ list.set (f (x,y))› unfolding f by auto

then show ?thesis proof cases
case 1
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then show ?thesis
using ‹[(x,y)] ∈ {(γ @ [(x, y)]) | γ x y . length (γ @ [(x, y)]) ≤ (Suc k)

∧ γ ∈ LS M q ∧ x ∈ inputs M ∧ y ∈ outputs M}›
by blast

next
case 2
then obtain io ′ where io = (x,y)#io ′ and io ′ ∈ list.set (traces-to-check

M q ′ k)
by auto

then have io ′ ∈ {(γ @ [(x, y)]) | γ x y . length (γ @ [(x, y)]) ≤ k ∧ γ ∈
LS M q ′ ∧ x ∈ inputs M ∧ y ∈ outputs M}

using Suc.IH [OF h-obs-state[OF Some]] by blast
then obtain γ x ′ y ′ where io ′ = (γ @ [(x ′, y ′)]) and length (γ @ [(x ′,

y ′)]) ≤ k and γ ∈ LS M q ′ and x ′ ∈ inputs M and y ′ ∈ outputs M
by auto

have length (((x,y)#γ) @ [(x ′, y ′)]) ≤ Suc k
using ‹length (γ @ [(x ′, y ′)]) ≤ k› by auto

moreover have ((x,y)#γ) ∈ LS M q
using ‹γ ∈ LS M q ′› Some assms(1 )
by (meson h-obs-language-iff )

ultimately show ?thesis
using ‹x ′ ∈ inputs M › ‹y ′ ∈ outputs M › unfolding ‹io = (x,y)#io ′› ‹io ′

= (γ @ [(x ′, y ′)])›
by auto

qed
qed

qed

show {γ @ [(x, y)] |γ x y. length (γ @ [(x, y)]) ≤ Suc k ∧ γ ∈ LS M q ∧ x ∈
FSM .inputs M ∧ y ∈ FSM .outputs M} ⊆ list.set (traces-to-check M q (Suc k))

proof
fix io assume io ∈ {γ @ [(x, y)] |γ x y. length (γ @ [(x, y)]) ≤ Suc k ∧ γ ∈

LS M q ∧ x ∈ FSM .inputs M ∧ y ∈ FSM .outputs M}
then obtain γ x ′ y ′ where io = (γ @ [(x ′, y ′)]) and length (γ @ [(x ′, y ′)])

≤ Suc k and γ ∈ LS M q and x ′ ∈ inputs M and y ′ ∈ outputs M
by auto

show io ∈ list.set (traces-to-check M q (Suc k))
proof (cases γ)

case Nil
then have io = [(x ′,y ′)]

using ‹io = (γ @ [(x ′, y ′)])› by auto
have io ∈ list.set (f (x ′,y ′))

unfolding f case-prod-conv ‹io = [(x ′,y ′)]›
by (cases FSM .h-obs M q x ′ y ′; auto)

then show ?thesis
using in-ex[of io] ‹x ′ ∈ inputs M › ‹y ′ ∈ outputs M › by blast

next
case (Cons xy γ ′)
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obtain x y where xy = (x,y)
using prod.exhaust by metis

obtain q ′ where h-obs M q x y = Some q ′ and x ∈ inputs M and y ∈
outputs M and γ ′ ∈ LS M q ′

using ‹γ ∈ LS M q› unfolding Cons ‹xy = (x,y)›
by (meson assms(1 ) h-obs-language-iff language-io(1 ) language-io(2 )

list.set-intros(1 ))
then have γ ′@[(x ′,y ′)] ∈ {γ @ [(x, y)] |γ x y. length (γ @ [(x, y)]) ≤ k ∧ γ

∈ LS M q ′ ∧ x ∈ FSM .inputs M ∧ y ∈ FSM .outputs M}
using ‹length (γ @ [(x ′, y ′)]) ≤ Suc k› ‹x ′ ∈ inputs M › ‹y ′ ∈ outputs M ›

unfolding Cons by auto
then have γ ′@[(x ′,y ′)] ∈ list.set (traces-to-check M q ′ k)

using Suc.IH [OF h-obs-state[OF ‹h-obs M q x y = Some q ′›]] by blast
then have io ∈ list.set (f (x,y))

unfolding f case-prod-conv ‹h-obs M q x y = Some q ′› unfolding ‹io =
(γ @ [(x ′, y ′)])› Cons ‹xy = (x,y)›

by auto
then show ?thesis

using in-ex[of io] ‹x ∈ inputs M › ‹y ∈ outputs M › by blast
qed

qed
qed

qed

fun establish-convergence-static :: (nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
nat ⇒
( ′a, ′b, ′c) transition ⇒
(( ′b× ′c) prefix-tree × ′d)

where
establish-convergence-static dist-fun M V T G cg-insert cg-lookup m t =
(let

α = V (t-source t);
xy = (t-input t, t-output t);
β = V (t-target t);
qSource = (after-initial M (V (t-source t)));
qTarget = (after-initial M (V (t-target t)));
k = m − size-r M ;
ttc = [] # traces-to-check M qTarget k;
handleTrace = (λ (T ,G) u .

if is-in-language M qTarget u
then let
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qu = FSM .after M qTarget u;
ws = sorted-list-of-maximal-sequences-in-tree (dist-fun (Suc (length

u)) qu);
appendDistTrace = (λ (T ,G) w . let

(T ′,G ′) = distribute-extension M T G
cg-lookup cg-insert α (xy#u@w) False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup
cg-insert β (u@w) False (append-heuristic-input M ))

in foldl appendDistTrace (T ,G) ws
else let

(T ′,G ′) = distribute-extension M T G cg-lookup cg-insert α (xy#u)
False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup cg-insert β u False
(append-heuristic-input M ))

in
foldl handleTrace (T ,G) ttc)

lemma appendDistTrace-subset-helper :
assumes appendDistTrace = (λ (T ,G) w . let

(T ′,G ′) = distribute-extension M T G cg-lookup
cg-insert α (xy#u@w) False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup
cg-insert β (u@w) False (append-heuristic-input M ))
shows set T ⊆ set (fst (appendDistTrace (T ,G) w))
proof −

obtain T ′ G ′ where ∗∗∗: distribute-extension M T G cg-lookup cg-insert α
(xy#u@w) False (append-heuristic-input M ) = (T ′,G ′)

using prod.exhaust by metis

show set T ⊆ set (fst (appendDistTrace (T ,G) w))
using distribute-extension-subset[of T M G cg-lookup cg-insert α xy#u@w False

(append-heuristic-input M )]
using distribute-extension-subset[of T ′ M G ′ cg-lookup cg-insert β u@w False

(append-heuristic-input M )]
unfolding assms case-prod-conv ∗∗∗ Let-def fst-conv
by blast

qed

lemma handleTrace-subset-helper :
assumes handleTrace = (λ (T ,G) u .

if is-in-language M qTarget u
then let

qu = FSM .after M qTarget u;
ws = sorted-list-of-maximal-sequences-in-tree (dist-fun (Suc (length

u)) qu);
appendDistTrace = (λ (T ,G) w . let

(T ′,G ′) = distribute-extension M T G
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cg-lookup cg-insert α (xy#u@w) False (append-heuristic-input M )
in distribute-extension M T ′ G ′ cg-lookup

cg-insert β (u@w) False (append-heuristic-input M ))
in foldl appendDistTrace (T ,G) ws

else let
(T ′,G ′) = distribute-extension M T G cg-lookup cg-insert α (xy#u)

False (append-heuristic-input M )
in distribute-extension M T ′ G ′ cg-lookup cg-insert β u False

(append-heuristic-input M ))
shows set T ⊆ set (fst (handleTrace (T ,G) u))
proof (cases is-in-language M qTarget u)

case True

define qu where qu: qu = FSM .after M qTarget u
define ws where ws: ws = sorted-list-of-maximal-sequences-in-tree (dist-fun (Suc

(length u)) qu)
define appendDistTrace where appendDistTrace: appendDistTrace = (λ (T ,G)

w . let
(T ′,G ′) = distribute-extension M T G cg-lookup

cg-insert α (xy#u@w) False (append-heuristic-input M )
in distribute-extension M T ′ G ′ cg-lookup

cg-insert β (u@w) False (append-heuristic-input M ))

have ∗∗: handleTrace (T ,G) u = foldl appendDistTrace (T ,G) ws
unfolding qu ws appendDistTrace Let-def case-prod-conv assms using True by

force

show ?thesis
using appendDistTrace-subset-helper [OF appendDistTrace]
unfolding ∗∗
apply (induction ws rule: rev-induct; simp)
by (metis (no-types, opaque-lifting) Collect-mono-iff fst-conv old.prod.exhaust)

next
case False

obtain T ′ G ′ where ∗∗∗: distribute-extension M T G cg-lookup cg-insert α
(xy#u) False (append-heuristic-input M ) = (T ′,G ′)

using prod.exhaust by metis

show set T ⊆ set (fst (handleTrace (T , G) u))
using distribute-extension-subset[of T M G cg-lookup cg-insert α xy#u False

(append-heuristic-input M )]
using distribute-extension-subset[of T ′ M G ′ cg-lookup cg-insert β u False

(append-heuristic-input M )]
using False
unfolding case-prod-conv ∗∗∗ Let-def fst-conv assms
by force

qed

760



lemma establish-convergence-static-subset :
set T ⊆ set (fst (establish-convergence-static dist-fun M V T G cg-insert cg-lookup

m t))
proof −

define α where α: α = V (t-source t)
define xy where xy: xy = (t-input t, t-output t)
define β where β: β = V (t-target t)
define qSource where qSource: qSource = (after-initial M (V (t-source t)))
define qTarget where qTarget: qTarget = (after-initial M (V (t-target t)))
define k where k: k = m − size-r M
define ttc where ttc : ttc = [] # traces-to-check M qTarget k
define handleTrace where handleTrace: handleTrace = (λ (T ,G) u .

if is-in-language M qTarget u
then let

qu = FSM .after M qTarget u;
ws = sorted-list-of-maximal-sequences-in-tree (dist-fun (Suc (length

u)) qu);
appendDistTrace = (λ (T ,G) w . let

(T ′,G ′) = distribute-extension M T G
cg-lookup cg-insert α (xy#u@w) False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup
cg-insert β (u@w) False (append-heuristic-input M ))

in foldl appendDistTrace (T ,G) ws
else let

(T ′,G ′) = distribute-extension M T G cg-lookup cg-insert α (xy#u)
False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup cg-insert β u False
(append-heuristic-input M ))

have ∗:establish-convergence-static dist-fun M V T G cg-insert cg-lookup m t =
foldl handleTrace (T ,G) ttc

unfolding establish-convergence-static.simps α xy β qSource qTarget k ttc han-
dleTrace Let-def by force

show ?thesis
unfolding ∗ proof (induction ttc rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc io ttc)

have ∗:foldl handleTrace (T , G) (ttc@[io]) = handleTrace (foldl handleTrace
(T ,G) ttc) io

by auto

have
∧

u T G . set T ⊆ set (fst (handleTrace (T ,G) u))
using handleTrace-subset-helper [of handleTrace] handleTrace
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unfolding α xy β qSource qTarget k ttc by blast
then show ?case

unfolding ∗
by (metis (no-types, opaque-lifting) snoc.IH dual-order .trans fst-conv old.prod.exhaust)

qed
qed

lemma establish-convergence-static-finite :
fixes M :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
assumes finite-tree T

shows finite-tree (fst (establish-convergence-static dist-fun M V T G cg-insert cg-lookup
m t))
proof −

define α where α: α = V (t-source t)
define xy where xy: xy = (t-input t, t-output t)
define β where β: β = V (t-target t)
define qSource where qSource: qSource = (after-initial M (V (t-source t)))
define qTarget where qTarget: qTarget = (after-initial M (V (t-target t)))
define k where k: k = m − size-r M
define ttc where ttc : ttc = [] # traces-to-check M qTarget k
define handleTrace where handleTrace: handleTrace = (λ (T ,G) u .

if is-in-language M qTarget u
then let

qu = FSM .after M qTarget u;
ws = sorted-list-of-maximal-sequences-in-tree (dist-fun (Suc (length

u)) qu);
appendDistTrace = (λ (T ,G) w . let

(T ′,G ′) = distribute-extension M T G
cg-lookup cg-insert α (xy#u@w) False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup
cg-insert β (u@w) False (append-heuristic-input M ))

in foldl appendDistTrace (T ,G) ws
else let

(T ′,G ′) = distribute-extension M T G cg-lookup cg-insert α (xy#u)
False (append-heuristic-input M )

in distribute-extension M T ′ G ′ cg-lookup cg-insert β u False
(append-heuristic-input M ))

have ∗:establish-convergence-static dist-fun M V T G cg-insert cg-lookup m t =
foldl handleTrace (T ,G) ttc

unfolding establish-convergence-static.simps α xy β qSource qTarget k ttc han-
dleTrace Let-def by force

show ?thesis
unfolding ∗ proof (induction ttc rule: rev-induct)
case Nil
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then show ?case using assms by auto
next

case (snoc io ttc)

have ∗:foldl handleTrace (T , G) (ttc@[io]) = handleTrace (foldl handleTrace
(T ,G) ttc) io

by auto

have
∧

u T G . finite-tree T =⇒ finite-tree (fst (handleTrace (T ,G) u))
proof −

fix T :: ( ′b× ′c) prefix-tree
fix u G assume finite-tree T
show finite-tree (fst (handleTrace (T ,G) u)) proof (cases is-in-language M

qTarget u)
case True

define qu where qu: qu = FSM .after M qTarget u
define ws where ws: ws = sorted-list-of-maximal-sequences-in-tree (dist-fun

(Suc (length u)) qu)
define appendDistTrace where appendDistTrace: appendDistTrace = (λ

(T ,G) w . let
(T ′,G ′) = distribute-extension M T G

cg-lookup cg-insert α (xy#u@w) False (append-heuristic-input M )
in distribute-extension M T ′ G ′ cg-lookup

cg-insert β (u@w) False (append-heuristic-input M ))

have ∗∗: handleTrace (T ,G) u = foldl appendDistTrace (T ,G) ws
unfolding handleTrace qu ws appendDistTrace Let-def case-prod-conv

using True by force

have
∧

w T G . finite-tree T =⇒ finite-tree (fst (appendDistTrace (T ,G)
w))

proof −
fix T :: ( ′b× ′c) prefix-tree
fix w G assume finite-tree T

obtain T ′ G ′ where ∗∗∗: distribute-extension M T G cg-lookup cg-insert
α (xy#u@w) False (append-heuristic-input M ) = (T ′,G ′)

using prod.exhaust by metis

show finite-tree (fst (appendDistTrace (T ,G) w))
using distribute-extension-finite[of T M G cg-lookup cg-insert α xy#u@w

False (append-heuristic-input M ), OF ‹finite-tree T ›]
using distribute-extension-finite[of T ′ M G ′ cg-lookup cg-insert β u@w

False (append-heuristic-input M )]
unfolding appendDistTrace case-prod-conv ∗∗∗ Let-def fst-conv
by blast

qed
then show ?thesis
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unfolding ∗∗ using ‹finite-tree T ›
apply (induction ws rule: rev-induct; simp)
by (metis (no-types, opaque-lifting) fst-conv old.prod.exhaust)

next
case False

obtain T ′ G ′ where ∗∗∗: distribute-extension M T G cg-lookup cg-insert α
(xy#u) False (append-heuristic-input M ) = (T ′,G ′)

using prod.exhaust by metis

show finite-tree (fst (handleTrace (T , G) u))
using distribute-extension-finite[of T M G cg-lookup cg-insert α xy#u False

(append-heuristic-input M ), OF ‹finite-tree T ›]
using distribute-extension-finite[of T ′ M G ′ cg-lookup cg-insert β u False

(append-heuristic-input M )]
using False
unfolding case-prod-conv ∗∗∗ Let-def fst-conv handleTrace
by force

qed
qed

then show ?case
unfolding ∗
by (metis (no-types, opaque-lifting) snoc.IH fst-conv old.prod.exhaust)

qed
qed

lemma establish-convergence-static-properties :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and t ∈ transitions M1
and t-source t ∈ reachable-states M1
and is-state-cover-assignment M1 V
and V (t-source t) @ [(t-input t, t-output t)] ∈ L M2
and V ‘ reachable-states M1 ⊆ set T
and preserves-divergence M1 M2 (V ‘ reachable-states M1 )
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q . q ∈ reachable-states M1 =⇒ set (dist-fun 0 q) ⊆ set (after T (V
q))

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
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and L M1 ∩ set (fst (establish-convergence-static dist-fun M1 V T G cg-insert
cg-lookup m t)) = L M2 ∩ set (fst (establish-convergence-static dist-fun M1 V T
G cg-insert cg-lookup m t))
shows ∀ γ x y . length (γ@[(x,y)]) ≤ m − size-r M1 −→

γ ∈ LS M1 (after-initial M1 (V (t-source t) @ [(t-input t, t-output
t)])) −→

x ∈ inputs M1 −→ y ∈ outputs M1 −→
L M1 ∩ ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′ . ω ∈ {((V

(t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes
(γ@[(x,y)]))}) = L M2 ∩ ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′ . ω ∈ {((V
(t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes
(γ@[(x,y)]))})

∧ preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {ω@ω ′

| ω ω ′ . ω ∈ {((V (t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈
list.set (prefixes (γ@[(x,y)]))})
(is ?P1a)
and preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {((V (t-source t))
@ [(t-input t,t-output t)]), (V (t-target t))})
(is ?P1b)
and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (establish-convergence-static
dist-fun M1 V T G cg-insert cg-lookup m t))
(is ?P2 )
proof −

define α where α: α = V (t-source t)
define xy where xy: xy = (t-input t, t-output t)
define β where β: β = V (t-target t)
define qSource where qSource: qSource = (after-initial M1 (V (t-source t)))
define qTarget where qTarget: qTarget = (after-initial M1 (V (t-target t)))
define k where k: k = m − size-r M1
define ttc where ttc : ttc = [] # traces-to-check M1 qTarget k
define handleTrace where handleTrace: handleTrace = (λ (T ,G) u .

if is-in-language M1 qTarget u
then let

qu = FSM .after M1 qTarget u;
ws = sorted-list-of-maximal-sequences-in-tree (dist-fun (Suc (length

u)) qu);
appendDistTrace = (λ (T ,G) w . let

(T ′,G ′) = distribute-extension M1 T G
cg-lookup cg-insert α (xy#u@w) False (append-heuristic-input M1 )

in distribute-extension M1 T ′ G ′ cg-lookup
cg-insert β (u@w) False (append-heuristic-input M1 ))

in foldl appendDistTrace (T ,G) ws
else let

(T ′,G ′) = distribute-extension M1 T G cg-lookup cg-insert α (xy#u)
False (append-heuristic-input M1 )

in distribute-extension M1 T ′ G ′ cg-lookup cg-insert β u False
(append-heuristic-input M1 ))
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have result: establish-convergence-static dist-fun M1 V T G cg-insert cg-lookup
m t = foldl handleTrace (T ,G) ttc

unfolding establish-convergence-static.simps α xy β qSource qTarget k ttc han-
dleTrace Let-def by force

then have result-pass: L M1 ∩ set (fst (foldl handleTrace (T ,G) ttc)) = L M2
∩ set (fst (foldl handleTrace (T ,G) ttc))

using assms(18 ) by auto

have V (t-source t) ∈ L M1 and t-source t = qSource
using state-cover-assignment-after [OF assms(1 ,9 ,8 )] unfolding qSource by

auto
then have qSource ∈ states M1

unfolding qSource
by (simp add: assms(8 ) reachable-state-is-state)

have α ∈ L M1
using ‹V (t-source t) ∈ L M1 › unfolding α by auto

have α ∈ L M2
by (metis α assms(10 ) language-prefix)

have qTarget ∈ reachable-states M1
using reachable-states-next[OF assms(8 ,7 )] unfolding qTarget
by (metis assms(1 ) assms(9 ) is-state-cover-assignment-observable-after)

then have qTarget ∈ states M1
using reachable-state-is-state by metis

have V (t-target t) ∈ L M1
by (meson assms(7 ) assms(8 ) assms(9 ) is-state-cover-assignment-language

reachable-states-next)
then have β ∈ L M1

unfolding β by auto
have t-target t = qTarget
by (metis assms(1 ) assms(7 ) assms(8 ) assms(9 ) is-state-cover-assignment-observable-after

qTarget reachable-states-next)
have converge M1 (α@[xy]) β

using state-cover-transition-converges[OF assms(1 ,9 ,7 ,8 )]
unfolding α xy β .

then have α@[xy] ∈ L M1
by auto

have L M1 ∩ set T = L M2 ∩ set T
using assms(18 ) establish-convergence-static-subset[of T dist-fun M1 V G

cg-insert cg-lookup m t]
by blast

then have β ∈ L M2
using reachable-states-next[OF assms(8 ,7 )] assms(11 ) ‹β ∈ L M1 ›
unfolding β qTarget by blast
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have (∀ u w . u ∈ list.set ttc −→ u ∈ LS M1 qTarget −→ w ∈ set (dist-fun (Suc
(length u)) (FSM .after M1 qTarget u)) −→ L M1 ∩ {α @ [xy] @ u @ w, β @ u @
w} = L M2 ∩ {α @ [xy] @ u @ w, β @ u @ w})

∧ (∀ u w . u ∈ list.set ttc −→ u /∈ LS M1 qTarget −→ L M1 ∩
{α@[xy]@u,β@u} = L M2 ∩ {α@[xy]@u,β@u})

∧ (convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl handleTrace
(T ,G) ttc)))

using result-pass
proof (induction ttc rule: rev-induct)

case Nil
then show ?case using assms(13 ) by auto

next
case (snoc a ttc)

have ∗:foldl handleTrace (T , G) (ttc@[a]) = handleTrace (foldl handleTrace
(T ,G) ttc) a

by auto
have L M1 ∩ Prefix-Tree.set (fst (foldl handleTrace (T , G) ttc)) = L M2 ∩

Prefix-Tree.set (fst (foldl handleTrace (T , G) ttc))
using snoc.prems handleTrace-subset-helper [of handleTrace M1 qTarget dist-fun

cg-lookup cg-insert, OF handleTrace]
unfolding ∗
by (metis (no-types, opaque-lifting) fst-conv inter-eq-subsetI old.prod.exhaust)
then have IH1 :

∧
u w. u ∈ list.set ttc =⇒ u ∈ LS M1 qTarget =⇒ w ∈

Prefix-Tree.set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u)) =⇒ L M1 ∩
{α @ [xy] @ u @ w, β @ u @ w} = L M2 ∩ {α @ [xy] @ u @ w, β @ u @ w}

and IH2 :
∧

u w. u ∈ list.set ttc =⇒ u /∈ LS M1 qTarget =⇒ L M1 ∩ {α
@ [xy] @ u, β @ u} = L M2 ∩ {α @ [xy] @ u, β @ u}

and IH3 : convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl
handleTrace (T , G) ttc))

using snoc.IH
by presburger+

show ?case proof (cases is-in-language M1 qTarget a)
case True

define qa where qa: qa = FSM .after M1 qTarget a
define ws where ws: ws = sorted-list-of-maximal-sequences-in-tree (dist-fun

(Suc (length a)) qa)
define appendDistTrace where appendDistTrace: appendDistTrace = (λ (T ,G)

w . let
(T ′,G ′) = distribute-extension M1 T G

cg-lookup cg-insert α (xy#a@w) False (append-heuristic-input M1 )
in distribute-extension M1 T ′ G ′ cg-lookup

cg-insert β (a@w) False (append-heuristic-input M1 ))

have ∗∗:
∧

TG . handleTrace TG a = foldl appendDistTrace TG ws
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using ‹is-in-language M1 qTarget a›
unfolding qa ws appendDistTrace Let-def case-prod-conv assms True han-

dleTrace by force
have foldl handleTrace (T , G) (ttc@[a]) = foldl appendDistTrace (foldl han-

dleTrace (T , G) ttc) ws
unfolding ∗
unfolding True
unfolding ∗∗ by auto

then have L M1 ∩ set (fst (foldl appendDistTrace (foldl handleTrace (T , G)
ttc) ws)) = L M2 ∩ set (fst (foldl appendDistTrace (foldl handleTrace (T , G) ttc)
ws))

using snoc.prems by metis

then have handleTrace-props: (∀ w . w ∈ list.set ws −→ ((∃ α ′ . converge
M1 α α ′ ∧ (α ′@[xy]@a@w) ∈ set (fst (foldl appendDistTrace (foldl handleTrace
(T , G) ttc) ws)) ∧ converge M2 α α ′)

∧ (∃ β ′ . converge M1 β β ′ ∧ (β ′@a@w) ∈ set (fst
(foldl appendDistTrace (foldl handleTrace (T , G) ttc) ws)) ∧ converge M2 β β ′)))

∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl append-
DistTrace (foldl handleTrace (T , G) ttc) ws))

proof (induction ws rule: rev-induct)
case Nil
then show ?case using IH3 by auto

next
case (snoc v ws)

have ∗:foldl appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v]) =
appendDistTrace (foldl appendDistTrace (foldl handleTrace (T , G) ttc) ws) v

by auto

define Tws where Tws: Tws = fst (foldl appendDistTrace (foldl handleTrace
(T , G) ttc) ws)

define Gws where Gws: Gws = snd (foldl appendDistTrace (foldl handleTrace
(T , G) ttc) ws)

have (foldl appendDistTrace (foldl handleTrace (T , G) ttc) ws) = (Tws,Gws)
unfolding Tws Gws by auto

obtain T ′ G ′ where distribute-extension M1 Tws Gws cg-lookup cg-insert
α (xy#a@v) False (append-heuristic-input M1 ) = (T ′,G ′)

using prod.exhaust by metis

have ∗∗: appendDistTrace (foldl appendDistTrace (foldl handleTrace (T , G)
ttc) ws) v

= distribute-extension M1 T ′ G ′ cg-lookup cg-insert β (a@v) False
(append-heuristic-input M1 )

using ‹distribute-extension M1 Tws Gws cg-lookup cg-insert α (xy # a
@ v) False (append-heuristic-input M1 ) = (T ′, G ′)› ‹foldl appendDistTrace (foldl
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handleTrace (T , G) ttc) ws = (Tws, Gws)› appendDistTrace by auto

have pass-outer : L M1 ∩ set (fst (distribute-extension M1 T ′ G ′ cg-lookup
cg-insert β (a@v) False (append-heuristic-input M1 )))

= L M2 ∩ set (fst (distribute-extension M1 T ′ G ′ cg-lookup
cg-insert β (a@v) False (append-heuristic-input M1 )))

using snoc.prems unfolding ∗ ∗∗ .
moreover have set (fst (distribute-extension M1 Tws Gws cg-lookup cg-insert

α (xy#a@v) False (append-heuristic-input M1 ))) ⊆ set (fst (distribute-extension
M1 T ′ G ′ cg-lookup cg-insert β (a@v) False (append-heuristic-input M1 )))

using distribute-extension-subset[of T ′ M1 G ′ cg-lookup cg-insert β (a@v)
False (append-heuristic-input M1 )]

using ‹distribute-extension M1 Tws Gws cg-lookup cg-insert α (xy#a@v)
False (append-heuristic-input M1 ) = (T ′,G ′)›

by (metis fst-conv)
ultimately have pass-inner : L M1 ∩ set (fst (distribute-extension M1 Tws

Gws cg-lookup cg-insert α (xy#a@v) False (append-heuristic-input M1 )))
= L M2 ∩ set (fst (distribute-extension M1 Tws Gws

cg-lookup cg-insert α (xy#a@v) False (append-heuristic-input M1 )))
by blast

then have pass-ws: L M1 ∩ Prefix-Tree.set (fst (foldl appendDistTrace (foldl
handleTrace (T , G) ttc) ws)) =

L M2 ∩ Prefix-Tree.set (fst (foldl appendDistTrace (foldl
handleTrace (T , G) ttc) ws))

using distribute-extension-subset[of Tws M1 Gws cg-lookup cg-insert]
unfolding Tws Gws
by blast

have set (fst (foldl appendDistTrace (foldl handleTrace (T , G) ttc) ws)) ⊆
set (fst (foldl appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v])))

using appendDistTrace-subset-helper [OF appendDistTrace]
by (metis ∗ Tws ‹foldl appendDistTrace (foldl handleTrace (T , G) ttc) ws

= (Tws, Gws)›)

have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl append-
DistTrace (foldl handleTrace (T , G) ttc) ws))

using snoc.IH [OF pass-ws ] by auto
then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distribute-extension

M1 Tws Gws cg-lookup cg-insert α (xy#a@v) False (append-heuristic-input M1 )))
using distribute-extension-adds-sequence(2 )[OF assms(1 ,3 ) ‹α ∈ L M1 ›

‹α ∈ L M2 › - assms(14 ) pass-inner append-heuristic-input-in]
unfolding Gws by blast

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (appendDistTrace
(foldl appendDistTrace (foldl handleTrace (T , G) ttc) ws) v))

unfolding ∗∗ ‹distribute-extension M1 Tws Gws cg-lookup cg-insert α
(xy#a@v) False (append-heuristic-input M1 ) = (T ′,G ′)› snd-conv

using distribute-extension-adds-sequence(2 )[OF assms(1 ,3 ) ‹β ∈ L M1 ›
‹β ∈ L M2 › - assms(14 ) pass-outer append-heuristic-input-in]
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by blast
moreover have

∧
w . w ∈ list.set (ws@[v]) =⇒ ((∃ α ′ . converge M1 α

α ′ ∧ (α ′@[xy]@a@w) ∈ set (fst (foldl appendDistTrace (foldl handleTrace (T , G)
ttc) (ws@[v]))) ∧ converge M2 α α ′)

∧ (∃ β ′ . converge M1 β β ′ ∧ (β ′@a@w) ∈ set (fst
(foldl appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v]))) ∧ converge M2 β
β ′))

proof −
fix w assume w ∈ list.set (ws@[v])
then consider w ∈ list.set ws | v = w

by auto
then show ((∃ α ′ . converge M1 α α ′ ∧ (α ′@[xy]@a@w) ∈ set (fst (foldl

appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v]))) ∧ converge M2 α α ′)
∧ (∃ β ′ . converge M1 β β ′ ∧ (β ′@a@w) ∈ set (fst

(foldl appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v]))) ∧ converge M2 β
β ′))

proof cases
case 1
then show ?thesis using snoc.IH [OF pass-ws]

using ‹set (fst (foldl appendDistTrace (foldl handleTrace (T , G) ttc)
ws)) ⊆ set (fst (foldl appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v])))›

by blast
next

case 2

have ∃ u ′. converge M1 α u ′ ∧ u ′ @ xy # a @ w ∈ set T ′ ∧ converge
M2 α u ′

using distribute-extension-adds-sequence(1 )[OF assms(1 ,3 ) ‹α ∈ L
M1 › ‹α ∈ L M2 › - assms(14 ) pass-inner append-heuristic-input-in]

‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl
appendDistTrace (foldl handleTrace (T , G) ttc) ws))›

unfolding Gws[symmetric]
unfolding ‹distribute-extension M1 Tws Gws cg-lookup cg-insert α

(xy#a@v) False (append-heuristic-input M1 ) = (T ′,G ′)›
unfolding 2 fst-conv
by blast

then have (∃ α ′ . converge M1 α α ′ ∧ (α ′@[xy]@a@w) ∈ set (fst (foldl
appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v]))) ∧ converge M2 α α ′)

using ∗∗ ‹Prefix-Tree.set (fst (distribute-extension M1 Tws Gws
cg-lookup cg-insert α (xy # a @ v) False (append-heuristic-input M1 ))) ⊆ Pre-
fix-Tree.set (fst (distribute-extension M1 T ′ G ′ cg-lookup cg-insert β (a @ v) False
(append-heuristic-input M1 )))› ‹distribute-extension M1 Tws Gws cg-lookup cg-insert
α (xy # a @ v) False (append-heuristic-input M1 ) = (T ′, G ′)› by auto

moreover have (∃ β ′ . converge M1 β β ′ ∧ (β ′@a@w) ∈ set (fst (foldl
appendDistTrace (foldl handleTrace (T , G) ttc) (ws@[v]))) ∧ converge M2 β β ′)

using distribute-extension-adds-sequence(1 )[OF assms(1 ,3 ) ‹β ∈ L
M1 › ‹β ∈ L M2 › - assms(14 ) pass-outer append-heuristic-input-in]

using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd (distribute-extension
M1 Tws Gws cg-lookup cg-insert α (xy#a@v) False (append-heuristic-input M1 )))›
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unfolding ‹distribute-extension M1 Tws Gws cg-lookup cg-insert α
(xy#a@v) False (append-heuristic-input M1 ) = (T ′,G ′)› snd-conv

unfolding ∗ ∗∗
unfolding 2
by blast

ultimately show ?thesis by blast
qed

qed
ultimately show ?case

by fastforce
qed

have
∧

u w. u ∈ list.set (ttc@[a]) =⇒ u ∈ LS M1 qTarget =⇒ w ∈ Pre-
fix-Tree.set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u)) =⇒ L M1 ∩ {α
@ [xy] @ u @ w, β @ u @ w} = L M2 ∩ {α @ [xy] @ u @ w, β @ u @ w}

proof −
fix u w assume u ∈ list.set (ttc@[a]) and a1 :u ∈ LS M1 qTarget and a2 :w

∈ Prefix-Tree.set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u))
then consider u ∈ list.set ttc | a = u

by auto
then show L M1 ∩ {α @ [xy] @ u @ w, β @ u @ w} = L M2 ∩ {α @ [xy]

@ u @ w, β @ u @ w}
proof cases

case 1
then show ?thesis

using IH1 [OF - a1 a2 ] by blast
next

case 2

obtain w ′ where w@w ′ ∈ list.set ws
proof −

have qa ∈ reachable-states M1
using ‹qTarget ∈ reachable-states M1 › ‹u ∈ LS M1 qTarget›
by (metis 2 after-reachable assms(1 ) qa)

then have finite-tree (dist-fun (Suc (length u)) qa)
using ‹

∧
q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)› reach-

able-state-is-state[of qa M1 ]
by blast

moreover have w ∈ set (dist-fun (Suc (length u)) qa)
using ‹w ∈ set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u))›
unfolding qa 2 .

ultimately show ?thesis
using sorted-list-of-maximal-sequences-in-tree-ob[of dist-fun (Suc (length

u)) qa w]
using that unfolding ws 2 by blast

qed
then obtain α ′ β ′ where converge M1 α α ′ and α ′ @ [xy] @ a @ w@w ′

∈ Prefix-Tree.set (fst (foldl handleTrace (T , G) (ttc@[a]))) and converge M2 α α ′

and converge M1 β β ′ and β ′ @ a @ w@w ′ ∈ Prefix-Tree.set
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(fst (foldl handleTrace (T , G) (ttc@[a]))) and converge M2 β β ′

using handleTrace-props
unfolding ∗∗[symmetric] ∗[symmetric]
by blast

then have α ′ @ [xy] @ a @ w ∈ Prefix-Tree.set (fst (foldl handleTrace (T ,
G) (ttc@[u])))

and β ′ @ a @ w ∈ Prefix-Tree.set (fst (foldl handleTrace (T , G)
(ttc@[u])))

using set-prefix[of α ′ @ [xy] @ a @ w w ′]
using set-prefix[of β ′ @ a @ w w ′]
unfolding 2
by auto

have α @ [xy] @ u @ w ∈ L M1 = (α ′ @ [xy] @ u @ w ∈ L M1 )
using ‹converge M1 α α ′›
using assms(1 ) converge-append-language-iff by blast

also have . . . = (α ′ @ [xy] @ u @ w ∈ L M2 )
using ‹α ′ @ [xy] @ a @ w ∈ Prefix-Tree.set (fst (foldl handleTrace (T ,

G) (ttc@[u])))›
using snoc.prems unfolding 2
by blast

also have . . . = (α @ [xy] @ u @ w ∈ L M2 )
using ‹converge M2 α α ′›
using assms(2 ) converge-append-language-iff by blast

finally have α @ [xy] @ u @ w ∈ L M1 = (α @ [xy] @ u @ w ∈ L M2 ) .

have β @ u @ w ∈ L M1 = (β ′ @ u @ w ∈ L M1 )
using ‹converge M1 β β ′›
using assms(1 ) converge-append-language-iff by blast

also have . . . = (β ′ @ u @ w ∈ L M2 )
using ‹β ′ @ a @ w ∈ Prefix-Tree.set (fst (foldl handleTrace (T , G)

(ttc@[u])))›
using snoc.prems unfolding 2
by blast

also have . . . = (β @ u @ w ∈ L M2 )
using ‹converge M2 β β ′›
using assms(2 ) converge-append-language-iff by blast

finally have β @ u @ w ∈ L M1 = (β @ u @ w ∈ L M2 ) .

then show ?thesis
using ‹α @ [xy] @ u @ w ∈ L M1 = (α @ [xy] @ u @ w ∈ L M2 )›
by blast

qed
qed
moreover have

∧
u w . u ∈ list.set (ttc@[a]) =⇒ u /∈ LS M1 qTarget =⇒

L M1 ∩ {α @ [xy] @ u, β @ u} = L M2 ∩ {α @ [xy] @ u, β @ u}
proof −

fix u w assume u ∈ list.set (ttc@[a]) and u /∈ LS M1 qTarget
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then have u 6= a
using True
unfolding is-in-language-iff [OF assms(1 ) ‹qTarget ∈ states M1 ›]
by auto

then have u ∈ list.set ttc
using ‹u ∈ list.set (ttc@[a])› by auto

then show L M1 ∩ {α @ [xy] @ u, β @ u} = L M2 ∩ {α @ [xy] @ u, β @
u}

using IH2 [OF - ‹u /∈ LS M1 qTarget›] by blast
qed
moreover have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl

handleTrace (T , G) (ttc@[a])))
using handleTrace-props unfolding ∗ ∗∗ by blast

ultimately show ?thesis
by blast

next
case False

define Tc where Tc: Tc = fst (foldl handleTrace (T , G) ttc)
define Gc where Gc: Gc = snd (foldl handleTrace (T , G) ttc)

have (foldl handleTrace (T , G) ttc) = (Tc,Gc)
unfolding Tc Gc by auto

define T ′ where T ′: T ′ = fst (distribute-extension M1 Tc Gc cg-lookup
cg-insert α (xy#a) False (append-heuristic-input M1 ))

define G ′ where G ′: G ′ = snd (distribute-extension M1 Tc Gc cg-lookup
cg-insert α (xy#a) False (append-heuristic-input M1 ))

have ∗∗: handleTrace (foldl handleTrace (T ,G) ttc) a = distribute-extension
M1 T ′ G ′ cg-lookup cg-insert β a False (append-heuristic-input M1 )

using False
unfolding ‹(foldl handleTrace (T , G) ttc) = (Tc,Gc)›
unfolding handleTrace
unfolding case-prod-conv Let-def
unfolding T ′ G ′ Tc Gc
by (meson case-prod-beta ′)

have pass-outer : L M1 ∩ set (fst (distribute-extension M1 T ′ G ′ cg-lookup
cg-insert β a False (append-heuristic-input M1 )))

= L M2 ∩ set (fst (distribute-extension M1 T ′ G ′ cg-lookup
cg-insert β a False (append-heuristic-input M1 )))

using snoc.prems unfolding ∗ ∗∗ .
moreover have set (fst (distribute-extension M1 Tc Gc cg-lookup cg-insert

α (xy#a) False (append-heuristic-input M1 ))) ⊆ set (fst (distribute-extension M1
T ′ G ′ cg-lookup cg-insert β (a) False (append-heuristic-input M1 )))

using distribute-extension-subset[of T ′ M1 G ′ cg-lookup cg-insert β a False
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(append-heuristic-input M1 )]
using ‹(foldl handleTrace (T , G) ttc) = (Tc,Gc)›
using T ′ by blast

ultimately have pass-inner : L M1 ∩ set (fst (distribute-extension M1 Tc Gc
cg-lookup cg-insert α (xy#a) False (append-heuristic-input M1 )))

= L M2 ∩ set (fst (distribute-extension M1 Tc Gc cg-lookup
cg-insert α (xy#a) False (append-heuristic-input M1 )))

by blast

have convergence-graph-lookup-invar M1 M2 cg-lookup Gc
using snoc.IH [OF ‹L M1 ∩ Prefix-Tree.set (fst (foldl handleTrace (T , G)

ttc)) = L M2 ∩ Prefix-Tree.set (fst (foldl handleTrace (T , G) ttc))›]
unfolding Gc by blast

then have convergence-graph-lookup-invar M1 M2 cg-lookup G ′

using distribute-extension-adds-sequence(2 )[OF assms(1 ,3 ) ‹α ∈ L M1 › ‹α
∈ L M2 › - assms(14 ) pass-inner append-heuristic-input-in]

unfolding G ′ by blast
then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl han-

dleTrace (T , G) (ttc@[a])))
unfolding ∗ ∗∗
using distribute-extension-adds-sequence(2 )[OF assms(1 ,3 ) ‹β ∈ L M1 ›

‹β ∈ L M2 › - assms(14 ) pass-outer append-heuristic-input-in]
by blast

moreover have
∧

u w. u ∈ list.set (ttc@[a]) =⇒ u ∈ LS M1 qTarget =⇒ w
∈ Prefix-Tree.set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u)) =⇒ L M1
∩ {α @ [xy] @ u @ w, β @ u @ w} = L M2 ∩ {α @ [xy] @ u @ w, β @ u @ w}

proof −
fix u w assume u ∈ list.set (ttc@[a]) and a1 :u ∈ LS M1 qTarget and a2 :w

∈ Prefix-Tree.set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u))
then have u 6= a

using False
unfolding is-in-language-iff [OF assms(1 ) ‹qTarget ∈ states M1 ›]
by auto

then have u ∈ list.set ttc
using ‹u ∈ list.set (ttc@[a])› by auto

then show L M1 ∩ {α @ [xy] @ u @ w, β @ u @ w} = L M2 ∩ {α @ [xy]
@ u @ w, β @ u @ w}

using IH1 [OF - a1 a2 ]
by blast

qed
moreover have

∧
u w . u ∈ list.set (ttc@[a]) =⇒ u /∈ LS M1 qTarget =⇒

L M1 ∩ {α @ [xy] @ u, β @ u} = L M2 ∩ {α @ [xy] @ u, β @ u}
proof −

fix u w assume u ∈ list.set (ttc@[a]) and u /∈ LS M1 qTarget
then consider u ∈ list.set ttc | a = u

by auto
then show L M1 ∩ {α @ [xy] @ u, β @ u} = L M2 ∩ {α @ [xy] @ u, β @

u} proof cases

774



case 1
then show ?thesis

using IH2 [OF - ‹u /∈ LS M1 qTarget›] by blast
next

case 2

obtain α ′ where converge M1 α α ′ and α ′ @ xy # a ∈ set (fst (foldl
handleTrace (T , G) (ttc@[a]))) and converge M2 α α ′

using distribute-extension-adds-sequence(1 )[OF assms(1 ,3 ) ‹α ∈
L M1 › ‹α ∈ L M2 › - assms(14 ) pass-inner append-heuristic-input-in] ‹conver-
gence-graph-lookup-invar M1 M2 cg-lookup Gc›

unfolding T ′[symmetric]
using distribute-extension-subset[of T ′ M1 G ′ cg-lookup cg-insert β a

False (append-heuristic-input M1 )]
unfolding ∗ ∗∗ by blast

have
∧

α ′ . α ′ @ xy # u = α ′ @ [xy] @ u
by auto

obtain β ′ where converge M1 β β ′ and β ′ @ a ∈ set (fst (foldl handleTrace
(T , G) (ttc@[a]))) and converge M2 β β ′

using distribute-extension-adds-sequence(1 )[OF assms(1 ,3 ) ‹β ∈
L M1 › ‹β ∈ L M2 › - assms(14 ) pass-outer append-heuristic-input-in] ‹conver-
gence-graph-lookup-invar M1 M2 cg-lookup G ′›

unfolding ∗ ∗∗ by blast

have α @ [xy] @ u ∈ L M1 = (α ′ @ [xy] @ u ∈ L M1 )
using ‹converge M1 α α ′›
using assms(1 ) converge-append-language-iff by blast

also have . . . = (α ′ @ [xy] @ u ∈ L M2 )
using ‹α ′ @ xy # a ∈ Prefix-Tree.set (fst (foldl handleTrace (T , G)

(ttc@[a])))›
using snoc.prems unfolding 2 ‹

∧
α ′ . α ′ @ xy # u = α ′ @ [xy] @ u›

by blast
also have . . . = (α @ [xy] @ u ∈ L M2 )

using ‹converge M2 α α ′›
using assms(2 ) converge-append-language-iff by blast

finally have α @ [xy] @ u ∈ L M1 = (α @ [xy] @ u ∈ L M2 ) .

have β @ u ∈ L M1 = (β ′ @ u ∈ L M1 )
using ‹converge M1 β β ′›
using assms(1 ) converge-append-language-iff by blast

also have . . . = (β ′ @ u ∈ L M2 )
using ‹β ′ @ a ∈ Prefix-Tree.set (fst (foldl handleTrace (T , G) (ttc@[a])))›

using snoc.prems unfolding 2
by blast

also have . . . = (β @ u ∈ L M2 )
using ‹converge M2 β β ′›
using assms(2 ) converge-append-language-iff by blast

finally have β @ u ∈ L M1 = (β @ u ∈ L M2 ) .
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then show ?thesis
using ‹α @ [xy] @ u ∈ L M1 = (α @ [xy] @ u ∈ L M2 )›
by blast

qed
qed
ultimately show ?thesis

by blast
qed

qed

then have handleTrace-foldl-props-1 :
∧

u w. u ∈ list.set ttc =⇒
u ∈ LS M1 qTarget =⇒

w ∈ Prefix-Tree.set (dist-fun (Suc (length u)) (FSM .after M1 qTarget u))
=⇒

L M1 ∩ {α @ [xy] @ u @ w, β @ u @ w} = L M2 ∩ {α @ [xy] @ u @
w, β @ u @ w}

and handleTrace-foldl-props-2 :
∧

u w. u ∈ list.set ttc =⇒ u /∈ LS M1 qTarget
=⇒ L M1 ∩ {α @ [xy] @ u, β @ u} = L M2 ∩ {α @ [xy] @ u, β @ u}

and convergence-graph-lookup-invar M1 M2 cg-lookup (snd (foldl handleTrace
(T , G) ttc))

by presburger+

then show ?P2
unfolding result by blast

show preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {((V (t-source
t)) @ [(t-input t,t-output t)]), (V (t-target t))})

proof −
let ?w = ((V (t-source t)) @ [(t-input t,t-output t)])

have V (t-target t) ∈ (V ‘ reachable-states M1 )
by (simp add: ‹qTarget ∈ reachable-states M1 › ‹t-target t = qTarget›)

then have ((V ‘ reachable-states M1 ) ∪ {((V (t-source t)) @ [(t-input t,t-output
t)]), (V (t-target t))}) = Set.insert ((V (t-source t)) @ [(t-input t,t-output t)]) (V
‘ reachable-states M1 )

by blast
moreover have Set.insert ?w (V ‘ reachable-states M1 ) ⊆ L M1

using state-cover-assignment-language[OF assms(9 )]
using α ‹converge M1 (α @ [xy]) β› xy by auto

ultimately have ∗:L M1 ∩ (V ‘ reachable-states M1 ∪ {V (t-source t) @
[(t-input t, t-output t)], V (t-target t)}) = Set.insert ?w (V ‘ reachable-states M1 )

and ∗∗:L M1 ∩ (V ‘ reachable-states M1 ) = (V ‘ reachable-states M1 )
by blast+

have
∧

u . u ∈ Set.insert ?w (V ‘ reachable-states M1 ) =⇒ ¬converge M1 u
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?w =⇒ ¬converge M2 u ?w
proof −
fix u assume u ∈ Set.insert ?w (V ‘ reachable-states M1 ) and ¬converge M1

u ?w
moreover have converge M1 ?w ?w

using ‹α@[xy] ∈ L M1 › unfolding α xy by auto
ultimately have u ∈ (V ‘ reachable-states M1 )

by auto

have ¬converge M1 u β
using ‹¬converge M1 u ?w› ‹converge M1 (α@[xy]) β› unfolding α xy β
by auto

have β = V qTarget
by (simp add: β ‹t-target t = qTarget›)

obtain qU where qU ∈ reachable-states M1 and u = V qU
using ‹u ∈ (V ‘ reachable-states M1 )› by blast

then have qU = after-initial M1 u
using state-cover-assignment-after [OF assms(1 ,9 )] by metis

then have qU 6= qTarget
using ‹¬converge M1 u β›
using β ‹β ∈ L M1 › ‹t-target t = qTarget› ‹u = V qU › by fastforce

then obtain w where ∀ k1 k2 . w ∈ set (dist-fun k1 qU ) ∩ set (dist-fun k2
qTarget) and distinguishes M1 qU qTarget w

using assms(15 )[OF reachable-state-is-state[OF ‹qU ∈ reachable-states M1 ›]
‹qTarget ∈ states M1 ›]

by blast
then have w ∈ set (after T (V qU )) and w ∈ set (after T (V qTarget))

using assms(16 )[OF ‹qU ∈ reachable-states M1 ›]
using assms(16 )[OF ‹qTarget ∈ reachable-states M1 ›]
by blast+

have [] ∈ list.set ttc
unfolding ttc by auto

moreover have [] ∈ LS M1 qTarget
using ‹qTarget ∈ states M1 › by auto

moreover have w ∈ set (dist-fun (Suc (length [])) (FSM .after M1 qTarget
[]))

using ‹∀ k1 k2 . w ∈ set (dist-fun k1 qU ) ∩ set (dist-fun k2 qTarget)› by
auto

ultimately have L M1 ∩ {?w @ w, β @ w} = L M2 ∩ {?w @ w, β @ w}
using handleTrace-foldl-props-1 [of [] w]
unfolding α xy
by auto

moreover have (?w @ w ∈ L M1 ) = (β@w ∈ L M1 )
using converge-extend[OF assms(1 ) ‹converge M1 (α@[xy]) β› - ‹β ∈ L
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M1 ›, of w]
using converge-extend[OF assms(1 ) - - ‹α@[xy] ∈ L M1 ›, of β w]
using ‹converge M1 (α@[xy]) β› unfolding converge-sym[where u=β]
unfolding α[symmetric] xy[symmetric]
by blast

ultimately have (?w @ w ∈ L M2 ) = (β@w ∈ L M2 )
by blast

have (w ∈ LS M1 qU ) 6= (w ∈ LS M1 qTarget)
using ‹distinguishes M1 qU qTarget w›
unfolding distinguishes-def
by blast

moreover have (w ∈ LS M1 qU ) = (u@w ∈ L M1 )
by (metis ∗∗ IntD1 ‹qU = after-initial M1 u› ‹u ∈ V ‘ reachable-states M1 ›

after-language-iff assms(1 ))
moreover have (w ∈ LS M1 qTarget) = (β@w ∈ L M1 )

by (metis ‹β = V qTarget› ‹β ∈ L M1 › ‹qTarget ∈ reachable-states M1 ›
after-language-iff assms(1 ) assms(9 ) is-state-cover-assignment-observable-after)

ultimately have (u@w ∈ L M1 ) 6= (β@w ∈ L M1 )
by blast

moreover have u@w ∈ set T
using ‹w ∈ set (after T (V qU ))›
unfolding after-set ‹u = V qU ›[symmetric]
using ‹u ∈ V ‘ reachable-states M1 › assms(11 ) by auto

moreover have β@w ∈ set T
using ‹w ∈ set (after T (V qTarget))›
unfolding after-set ‹β = V qTarget›
using ‹qTarget ∈ reachable-states M1 › assms(11 ) by auto

ultimately have (u@w ∈ L M2 ) 6= (β@w ∈ L M2 )
using ‹L M1 ∩ set T = L M2 ∩ set T › by blast

then have (u@w ∈ L M2 ) 6= (?w@w ∈ L M2 )
unfolding ‹(?w @ w ∈ L M2 ) = (β@w ∈ L M2 )› .

moreover have (u@w ∈ L M2 ) = (w ∈ LS M2 (after-initial M2 u))
by (metis (no-types, lifting) ∗∗ Int-iff ‹L M1 ∩ Prefix-Tree.set T = L M2

∩ Prefix-Tree.set T › ‹u ∈ V ‘ reachable-states M1 › after-language-iff assms(11 )
assms(2 ) inter-eq-subsetI )

moreover have (?w@w ∈ L M2 ) = (w ∈ LS M2 (after-initial M2 ?w))
using assms(10 ) unfolding α[symmetric] xy[symmetric]

by (metis assms(2 ) observable-after-language-append observable-after-language-none)

ultimately show ¬converge M2 u ?w
using converge.elims(2 ) by blast

qed
moreover have

∧
v . v ∈ (V ‘ reachable-states M1 ) =⇒ ¬converge M1 ?w v

=⇒ ¬converge M2 ?w v
using calculation unfolding converge-sym[where v=?w]
by blast

ultimately show ?thesis
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using assms(12 )
unfolding preserves-divergence.simps
unfolding ∗ ∗∗
by blast

qed

have
∧

γ x y . length (γ@[(x,y)]) ≤ m − size-r M1 =⇒
γ ∈ LS M1 (after-initial M1 (V (t-source t) @ [(t-input t, t-output

t)])) =⇒
x ∈ inputs M1 =⇒ y ∈ outputs M1 =⇒

L M1 ∩ ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′ . ω ∈ {((V
(t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes
(γ@[(x,y)]))}) = L M2 ∩ ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′ . ω ∈ {((V
(t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes
(γ@[(x,y)]))})

∧ preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {ω@ω ′

| ω ω ′ . ω ∈ {((V (t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈
list.set (prefixes (γ@[(x,y)]))})

proof
fix γ x y
assume length (γ@[(x,y)]) ≤ m − size-r M1
and γ ∈ LS M1 (after-initial M1 (V (t-source t) @ [(t-input t, t-output t)]))
and x ∈ inputs M1
and y ∈ outputs M1

have (after-initial M1 (V (t-source t) @ [(t-input t, t-output t)])) = qTarget
using ‹converge M1 (α@[xy]) β›
unfolding α[symmetric] xy[symmetric] qTarget β[symmetric]

using ‹α @ [xy] ∈ L M1 › ‹β ∈ L M1 › assms(1 ) assms(3 ) convergence-minimal
by blast

then have γ ∈ LS M1 qTarget
using ‹γ ∈ LS M1 (after-initial M1 (V (t-source t) @ [(t-input t, t-output

t)]))›
by auto

then have γ@[(x,y)] ∈ list.set (traces-to-check M1 qTarget k)
unfolding traces-to-check-set[OF assms(1 ) ‹qTarget ∈ states M1 ›] k
using ‹length (γ@[(x,y)]) ≤ m − size-r M1 › ‹x ∈ inputs M1 › ‹y ∈ outputs

M1 ›
by blast

then have (γ@[(x,y)]) ∈ list.set ttc
unfolding ttc by auto

have
∧

γ ′ . γ ′ ∈ list.set (prefixes γ) =⇒ γ ′ ∈ list.set ttc ∧ γ ′ ∈ LS M1 qTarget
proof

fix γ ′ assume γ ′ ∈ list.set (prefixes γ)
then obtain γ ′′ where γ = γ ′@γ ′′

using prefixes-set-ob by blast
then show γ ′ ∈ LS M1 qTarget
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using ‹γ ∈ LS M1 qTarget› language-prefix by metis

show γ ′ ∈ list.set ttc proof (cases γ ′ rule: rev-cases)
case Nil
then show ?thesis unfolding ttc by auto

next
case (snoc ioI ioL)
then obtain xL yL where γ ′ = ioI@[(xL,yL)]

using prod.exhaust by metis
then have xL ∈ inputs M1 and yL ∈ outputs M1

using language-io[OF ‹γ ′ ∈ LS M1 qTarget›, of xL yL]
by auto

moreover have length γ ′ ≤ m − size-r M1
using ‹length (γ@[(x,y)]) ≤ m − size-r M1 › ‹γ = γ ′@γ ′′› by auto

moreover have ioI ∈ LS M1 qTarget
using ‹γ ′ ∈ LS M1 qTarget› ‹γ ′ = ioI@[(xL,yL)]› language-prefix by metis

ultimately have γ ′ ∈ list.set (traces-to-check M1 qTarget k)
unfolding traces-to-check-set[OF assms(1 ) ‹qTarget ∈ states M1 ›] k ‹γ ′

= ioI@[(xL,yL)]›
by blast

then show ?thesis
unfolding ttc by auto

qed
qed

show L M1 ∩ ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′ . ω ∈ {((V (t-source t))
@ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes (γ@[(x,y)]))})
= L M2 ∩ ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′ . ω ∈ {((V (t-source t)) @
[(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes (γ@[(x,y)]))})

proof −
have L M1 ∩ (V ‘ reachable-states M1 ) = L M2 ∩ (V ‘ reachable-states M1 )

using assms(11 ) ‹L M1 ∩ set T = L M2 ∩ set T ›
by blast

moreover have L M1 ∩ {ω@ω ′ | ω ω ′ . ω ∈ {((V (t-source t)) @ [(t-input
t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set (prefixes (γ@[(x,y)]))} = L M2 ∩
{ω@ω ′ | ω ω ′ . ω ∈ {((V (t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))}
∧ ω ′ ∈ list.set (prefixes (γ@[(x,y)]))}

proof −
have ∗:{ω@ω ′ | ω ω ′ . ω ∈ {α@[xy],β} ∧ ω ′ ∈ list.set (prefixes (γ@[(x,y)]))}

= {ω@ω ′ | ω ω ′ . ω ∈ {α@[xy],β} ∧ ω ′ ∈ list.set (prefixes γ)} ∪
{(α@[xy])@(γ@[(x,y)]),β@(γ@[(x,y)])}

unfolding prefixes-set-Cons-insert by blast
have L M1 ∩ {ω@ω ′ | ω ω ′ . ω ∈ {α@[xy],β} ∧ ω ′ ∈ list.set (prefixes γ)}

= L M2 ∩ {ω@ω ′ | ω ω ′ . ω ∈ {α@[xy],β} ∧ ω ′ ∈ list.set (prefixes γ)}
proof −

have
∧

io . io ∈ {ω@ω ′ | ω ω ′ . ω ∈ {α@[xy],β} ∧ ω ′ ∈ list.set (prefixes
γ)} =⇒ (io ∈ L M1 ) = (io ∈ L M2 )
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proof −
fix io assume io ∈ {ω@ω ′ | ω ω ′ . ω ∈ {α@[xy],β} ∧ ω ′ ∈ list.set (prefixes

γ)}
then obtain γ ′ where io ∈ {α@[xy]@γ ′,β@γ ′} and γ ′ ∈ list.set (prefixes

γ)
by force

then have γ ′ ∈ list.set ttc and γ ′ ∈ LS M1 qTarget
using ‹

∧
γ ′ . γ ′ ∈ list.set (prefixes γ) =⇒ γ ′ ∈ list.set ttc ∧ γ ′ ∈ LS

M1 qTarget›
by blast+

moreover have [] ∈ Prefix-Tree.set (dist-fun (length γ ′) (FSM .after M1
qTarget γ ′))

by simp
ultimately have L M1 ∩ {α@[xy]@γ ′,β@γ ′} = L M2 ∩ {α@[xy]@γ ′,β@γ ′}

using handleTrace-foldl-props-1 [of γ ′ []]
by auto

then show (io ∈ L M1 ) = (io ∈ L M2 )
using ‹io ∈ {α@[xy]@γ ′,β@γ ′}› by blast

qed
then show ?thesis by blast

qed
moreover have L M1 ∩ {(α@[xy])@(γ@[(x,y)]),β@(γ@[(x,y)])} = L M2 ∩

{(α@[xy])@(γ@[(x,y)]),β@(γ@[(x,y)])}
proof (cases (γ@[(x,y)]) ∈ LS M1 qTarget)

case True
show ?thesis

using handleTrace-foldl-props-1 [OF ‹(γ@[(x,y)]) ∈ list.set ttc› True, of
[]]

by auto
next

case False
show ?thesis

using handleTrace-foldl-props-2 [OF ‹(γ@[(x,y)]) ∈ list.set ttc› False]
by auto

qed
ultimately show ?thesis

unfolding α[symmetric] xy[symmetric] β[symmetric] ∗
by (metis (no-types, lifting) Int-Un-distrib)

qed
ultimately show ?thesis

by (metis (no-types, lifting) Int-Un-distrib)
qed

show preserves-divergence M1 M2 ((V ‘ reachable-states M1 ) ∪ {ω@ω ′ | ω ω ′

. ω ∈ {((V (t-source t)) @ [(t-input t,t-output t)]), (V (t-target t))} ∧ ω ′ ∈ list.set
(prefixes (γ@[(x,y)]))})

proof −

have
∧

u v . u ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {α
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@ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) =⇒
v ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {α @

[xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) =⇒
¬ converge M1 u v =⇒
¬ converge M2 u v

proof −
fix u v assume u ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω

∈ {α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
and v ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈

{α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
and ¬ converge M1 u v

then have u ∈ L M1 and v ∈ L M1 and after-initial M1 u 6= after-initial
M1 v

by auto
then have after-initial M1 u ∈ states M1

and after-initial M1 v ∈ states M1
using after-is-state[OF assms(1 )] by auto

have pass-dist:
∧

u . u ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω
ω ′. ω ∈ {α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) =⇒

(∃ k . ∀ w ∈ Prefix-Tree.set (dist-fun k (after-initial M1 u)) .
(u@w ∈ L M1 ) = (u@w ∈ L M2 ))

proof −
fix u assume u ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω

∈ {α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
then consider u ∈ V ‘ reachable-states M1 | u ∈ {ω @ ω ′ |ω ω ′. ω ∈ {α

@ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}
by blast

then show (∃ k . ∀ w ∈ Prefix-Tree.set (dist-fun k (after-initial M1 u)) .
(u@w ∈ L M1 ) = (u@w ∈ L M2 ))

proof cases
case 1
then obtain qU where qU ∈ reachable-states M1 and V qU = u

by blast
have after-initial M1 u = qU

by (metis ‹V qU = u› ‹qU ∈ reachable-states M1 › assms(1 ) assms(9 )
is-state-cover-assignment-observable-after)

have
∧

w . w ∈ Prefix-Tree.set (dist-fun 0 (after-initial M1 u)) =⇒ (u@w
∈ L M1 ) = (u@w ∈ L M2 )

proof −
fix w assume w ∈ Prefix-Tree.set (dist-fun 0 (after-initial M1 u))
then have w ∈ Prefix-Tree.set (Prefix-Tree.after T u)

using assms(16 )[OF ‹qU ∈ reachable-states M1 ›]
unfolding ‹V qU = u› ‹after-initial M1 u = qU ›
by blast

moreover have u ∈ set T
using 1 assms(11 ) by auto
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ultimately have u@w ∈ set T
unfolding after-set
by auto

then show (u@w ∈ L M1 ) = (u@w ∈ L M2 )
using ‹L M1 ∩ set T = L M2 ∩ set T › by blast

qed
then show ?thesis

by blast
next

case 2
then obtain γ ′ where u ∈ {(α @ [xy]) @ γ ′, β @ γ ′} and γ ′ ∈ list.set

(prefixes (γ @ [(x, y)]))
by blast

then have γ ′ ∈ list.set ttc
using ‹(γ @ [(x, y)]) ∈ list.set ttc› ‹

∧
γ ′ . γ ′ ∈ list.set (prefixes γ) =⇒

γ ′ ∈ list.set ttc ∧ γ ′ ∈ LS M1 qTarget›
unfolding prefixes-set-Cons-insert by blast

have γ ′ ∈ LS M1 qTarget
proof −

have u ∈ L M1
using ‹u ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈

{α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})› by blast
then show ?thesis

using ‹u ∈ {(α @ [xy]) @ γ ′, β @ γ ′}› ‹converge M1 (α @ [xy]) β›
unfolding qTarget β[symmetric]

by (metis ‹β ∈ L M1 › assms(1 ) converge-append-language-iff insert-iff
observable-after-language-none singleton-iff )

qed

then have (FSM .after M1 qTarget γ ′) = (after-initial M1 u)
using ‹u ∈ {(α @ [xy]) @ γ ′, β @ γ ′}› ‹converge M1 (α @ [xy]) β›
unfolding qTarget β[symmetric]

by (metis ‹α @ [xy] ∈ L M1 › ‹β ∈ L M1 › after-split assms(1 ) assms(3 )
convergence-minimal insert-iff observable-after-language-append singleton-iff )

have
∧

w . {α @ [xy] @ γ ′ @ w, β @ γ ′ @ w} = {((α @ [xy]) @ γ ′) @
w, (β @ γ ′) @ w}

by auto

have
∧

w . w ∈ set (dist-fun (Suc (length γ ′)) (after-initial M1 u)) =⇒
(u @ w ∈ L M1 ) = (u @ w ∈ L M2 )

using handleTrace-foldl-props-1 [OF ‹γ ′ ∈ list.set ttc› ‹γ ′ ∈ LS M1
qTarget›]

unfolding ‹(FSM .after M1 qTarget γ ′) = (after-initial M1 u)›
using ‹u ∈ {(α @ [xy]) @ γ ′, β @ γ ′}›
unfolding ‹

∧
w . {α @ [xy] @ γ ′ @ w, β @ γ ′ @ w} = {((α @ [xy]) @

γ ′) @ w, (β @ γ ′) @ w}› by blast

then show ?thesis
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by blast
qed

qed

obtain ku where
∧

w . w ∈ set (dist-fun ku (after-initial M1 u)) =⇒ (u@w
∈ L M1 ) = (u@w ∈ L M2 )

using pass-dist[OF ‹u ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω
ω ′. ω ∈ {α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})›]

by blast

obtain kv where
∧

w . w ∈ set (dist-fun kv (after-initial M1 v)) =⇒ (v@w
∈ L M1 ) = (v@w ∈ L M2 )

using pass-dist[OF ‹v ∈ L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω
ω ′. ω ∈ {α @ [xy], β} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})›]

by blast

obtain w where w ∈ set (dist-fun ku (after-initial M1 u))
and w ∈ set (dist-fun kv (after-initial M1 v))
and distinguishes M1 (after-initial M1 u) (after-initial M1 v) w

using assms(15 )[OF ‹after-initial M1 u ∈ states M1 › ‹after-initial M1 v
∈ states M1 › ‹after-initial M1 u 6= after-initial M1 v›]

by blast

then have (w ∈ LS M1 (after-initial M1 u)) 6= (w ∈ LS M1 (after-initial
M1 v))

unfolding distinguishes-def by blast
moreover have w ∈ LS M1 (after-initial M1 u) = (w ∈ LS M2 (after-initial

M2 u))
by (metis ‹

∧
w. w ∈ Prefix-Tree.set (dist-fun ku (after-initial M1 u)) =⇒

(u @ w ∈ L M1 ) = (u @ w ∈ L M2 )› ‹u ∈ L M1 › ‹w ∈ Prefix-Tree.set (dist-fun ku
(after-initial M1 u))› append-Nil2 assms(1 ) assms(2 ) observable-after-language-append
observable-after-language-none set-Nil)

moreover have w ∈ LS M1 (after-initial M1 v) = (w ∈ LS M2 (after-initial
M2 v))

by (metis ‹
∧

w. w ∈ Prefix-Tree.set (dist-fun kv (after-initial M1 v)) =⇒
(v @ w ∈ L M1 ) = (v @ w ∈ L M2 )› ‹v ∈ L M1 › ‹w ∈ Prefix-Tree.set (dist-fun kv
(after-initial M1 v))› append-Nil2 assms(1 ) assms(2 ) observable-after-language-append
observable-after-language-none set-Nil)

ultimately have (w ∈ LS M2 (after-initial M2 u)) 6= (w ∈ LS M2
(after-initial M2 v))

by blast
then have after-initial M2 u 6= after-initial M2 v

by auto
then show ¬ converge M2 u v

using assms(2 ) assms(4 ) converge.simps convergence-minimal by blast
qed

then show ?thesis
unfolding preserves-divergence.simps α[symmetric] xy[symmetric] β[symmetric]
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by blast
qed

qed
then show ?P1a

by blast
qed

lemma establish-convergence-static-establishes-convergence :
assumes observable M1

and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and t ∈ transitions M1
and t-source t ∈ reachable-states M1
and is-state-cover-assignment M1 V
and V (t-source t) @ [(t-input t, t-output t)] ∈ L M2
and V ‘ reachable-states M1 ⊆ set T
and preserves-divergence M1 M2 (V ‘ reachable-states M1 )
and convergence-graph-lookup-invar M1 M2 cg-lookup G
and convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q . q ∈ reachable-states M1 =⇒ set (dist-fun 0 q) ⊆ set (after T (V
q))

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
and L M1 ∩ set (fst (establish-convergence-static dist-fun M1 V T G cg-insert

cg-lookup m t)) = L M2 ∩ set (fst (establish-convergence-static dist-fun M1 V T
G cg-insert cg-lookup m t))
shows converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t))
(is converge M2 ?u ?v)
proof −

have prop1 :
∧
γ x y.

length (γ @ [(x, y)]) ≤ (m − size-r M1 ) =⇒
γ ∈ LS M1 (after-initial M1 ?u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {?u, ?v} ∧ ω ′ ∈ list.set

(prefixes (γ @ [(x, y)]))}) =
L M2 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {?u, ?v} ∧ ω ′ ∈ list.set

(prefixes (γ @ [(x, y)]))}) ∧
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preserves-divergence M1 M2
(V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {?u, ?v} ∧ ω ′ ∈ list.set (prefixes

(γ @ [(x, y)]))})
and prop2 : preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {?u, ?v})

using establish-convergence-static-properties(1 ,2 )[OF assms(1−4 ,7−20 )]
by presburger+

have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using assms(13 ,20 )

using establish-convergence-static-subset[of T dist-fun M1 V G cg-insert cg-lookup
m t ]

by blast
then have V (t-target t) ∈ L M2
by (metis Int-iff assms(10 ) assms(11 ) assms(9 ) imageI is-state-cover-assignment-language

reachable-states-next)

have converge M1 ?u ?v
using state-cover-transition-converges[OF assms(1 ,11 ,9 ,10 )] .

show ?thesis
using establish-convergence-from-pass[OF assms(1−8 ,11 ) ‹L M1 ∩ V ‘ reach-

able-states M1 = L M2 ∩ V ‘ reachable-states M1 › ‹converge M1 ?u ?v› ‹V
(t-source t) @ [(t-input t, t-output t)] ∈ L M2 › ‹V (t-target t) ∈ L M2 › prop1
prop2 ]

by blast
qed

lemma establish-convergence-static-verifies-transition :
assumes

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io

. ∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1
q2 io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows verifies-transition (establish-convergence-static dist-fun) M1 M2 V (fst (handle-state-cover-static
dist-fun M1 V cg-initial cg-insert cg-lookup)) cg-insert cg-lookup
proof −
have ∗:

∧
V T (G:: ′d) m t. set T ⊆ set (fst ((establish-convergence-static dist-fun)

M1 V T G cg-insert cg-lookup m t))
using establish-convergence-static-subset
by metis

have ∗∗∗:
∧

V T (G:: ′d) m t. finite-tree T −→ finite-tree (fst ((establish-convergence-static
dist-fun) M1 V T G cg-insert cg-lookup m t))

using establish-convergence-static-finite
by metis

let ?distinguish-traces = (λ α t ′ q ′ β t ′′ g ′′ . dist-fun 0 q ′)
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have ∗∗:
∧

T (G:: ′d) m t.
observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
FSM .size M2 ≤ m =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) =⇒
V ‘ reachable-states M1 ⊆ set T =⇒
t ∈ FSM .transitions M1 =⇒
t-source t ∈ reachable-states M1 =⇒
V (t-source t) @ [(t-input t, t-output t)] ∈ L M2 =⇒
convergence-graph-lookup-invar M1 M2 cg-lookup G =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒

set (fst (handle-state-cover-static dist-fun M1 V cg-initial cg-insert cg-lookup))
⊆ set T =⇒

L M1 ∩ Prefix-Tree.set (fst ((establish-convergence-static dist-fun) M1 V T
G cg-insert cg-lookup m t)) =

L M2 ∩ Prefix-Tree.set (fst ((establish-convergence-static dist-fun) M1 V T
G cg-insert cg-lookup m t)) =⇒

converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t)) ∧
convergence-graph-lookup-invar M1 M2 cg-lookup (snd ((establish-convergence-static

dist-fun) M1 V T G cg-insert cg-lookup m t))
proof

fix G :: ′d
fix T m t
assume a01 : observable M1
assume a02 : observable M2
assume a03 : minimal M1
assume a04 : minimal M2
assume a05 : size-r M1 ≤ m
assume a06 : FSM .size M2 ≤ m
assume a07 : FSM .inputs M2 = FSM .inputs M1
assume a08 : FSM .outputs M2 = FSM .outputs M1
assume a09 : is-state-cover-assignment M1 V
assume a10 : preserves-divergence M1 M2 (V ‘ reachable-states M1 )
assume a11 : V ‘ reachable-states M1 ⊆ set T
assume a12 : t ∈ FSM .transitions M1
assume a13 : t-source t ∈ reachable-states M1
assume a14 : V (t-source t) @ [(t-input t, t-output t)] ∈ L M2
assume a15 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a16 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert

assume a17 : L M1 ∩ Prefix-Tree.set (fst ((establish-convergence-static dist-fun)
M1 V T G cg-insert cg-lookup m t)) = L M2 ∩ Prefix-Tree.set (fst ((establish-convergence-static
dist-fun) M1 V T G cg-insert cg-lookup m t))
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assume a18 : set (fst (handle-state-cover-static dist-fun M1 V cg-initial cg-insert
cg-lookup)) ⊆ set T

have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using a11 a17 ∗
by blast

then have d2 : V (t-target t) ∈ L M2
using a11 is-state-cover-assignment-language[OF a09 , of t-target t] reach-

able-states-next[OF a13 a12 ]
by blast

have d1 :
∧

q . q ∈ reachable-states M1 =⇒ set (dist-fun 0 q) ⊆ set (after T
(V q))

using handle-state-cover-static-applies-dist-sets[of - M1 dist-fun V cg-initial
cg-insert cg-lookup] a18

by (meson in-mono subsetI subset-after-subset)

show converge M2 (V (t-source t) @ [(t-input t, t-output t)]) (V (t-target t))
using establish-convergence-static-establishes-convergence[where dist-fun=dist-fun,

OF a01 a02 a03 a04 a05 a06 a07 a08 a12 a13 a09 a14 a11 a10 a15 a16 assms(1 )
d1 assms(2 ) a17 ]

by force

show convergence-graph-lookup-invar M1 M2 cg-lookup (snd (establish-convergence-static
dist-fun M1 V T G cg-insert cg-lookup m t))

using establish-convergence-static-properties(3 )[where dist-fun=dist-fun, OF
a01 a02 a03 a04 a07 a08 a12 a13 a09 a14 a11 a10 a15 a16 assms(1 ) d1 assms(2 )
a17 ]

by blast
qed

show ?thesis
unfolding verifies-transition-def
using ∗ ∗∗∗ ∗∗
by presburger

qed

definition handleUT-static :: (nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒
(( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒
( ′b× ′c) prefix-tree ⇒
′d ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list list) ⇒
( ′d ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) list ⇒ ′d) ⇒
nat ⇒
( ′a, ′b, ′c) transition ⇒
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( ′a, ′b, ′c) transition list ⇒
(( ′a, ′b, ′c) transition list × ( ′b× ′c) prefix-tree × ′d))

where
handleUT-static dist-fun M V T G cg-insert cg-lookup cg-merge l t X = (let

(T1 ,G1 ) = handle-io-pair False False M V T G cg-insert cg-lookup (t-source
t) (t-input t) (t-output t);

(T2 ,G2 ) = establish-convergence-static dist-fun M V T1 G1 cg-insert cg-lookup
l t;

G3 = cg-merge G2 ((V (t-source t))@[(t-input t, t-output t)]) (V (t-target
t))

in (X ,T2 ,G3 ))

lemma handleUT-static-handles-transition :
fixes M1 ::( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 ::( ′e, ′b, ′c) fsm
assumes

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io

. ∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1
q2 io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows handles-transition (handleUT-static dist-fun) M1 M2 V (fst (handle-state-cover-static

dist-fun M1 V cg-initial cg-insert cg-lookup)) cg-insert cg-lookup cg-merge
proof −

let ?T0 = (fst (handle-state-cover-static dist-fun M1 V cg-initial cg-insert cg-lookup))

have
∧

T G m t X .
Prefix-Tree.set T ⊆ Prefix-Tree.set (fst (snd (handleUT-static dist-fun M1 V

T G cg-insert cg-lookup cg-merge m t X))) ∧
(finite-tree T −→ finite-tree (fst (snd (handleUT-static dist-fun M1 V T G

cg-insert cg-lookup cg-merge m t X)))) ∧
(observable M1 −→
observable M2 −→
minimal M1 −→
minimal M2 −→
size-r M1 ≤ m −→
FSM .size M2 ≤ m −→
FSM .inputs M2 = FSM .inputs M1 −→
FSM .outputs M2 = FSM .outputs M1 −→
is-state-cover-assignment M1 V −→
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) −→
V ‘ reachable-states M1 ⊆ Prefix-Tree.set T −→
t ∈ FSM .transitions M1 −→
t-source t ∈ reachable-states M1 −→
V (t-source t) @ [(t-input t, t-output t)] 6= V (t-target t) −→
convergence-graph-lookup-invar M1 M2 cg-lookup G −→
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert −→
convergence-graph-merge-invar M1 M2 cg-lookup cg-merge −→

L M1 ∩ Prefix-Tree.set (fst (snd (handleUT-static dist-fun M1 V T G
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cg-insert cg-lookup cg-merge m t X))) =
L M2 ∩ Prefix-Tree.set (fst (snd (handleUT-static dist-fun M1 V T G

cg-insert cg-lookup cg-merge m t X))) −→
Prefix-Tree.set ?T0 ⊆ Prefix-Tree.set T −→

(∀ γ. length γ ≤ m − size-r M1 ∧ list.set γ ⊆ FSM .inputs M1 × FSM .outputs
M1 ∧ butlast γ ∈ LS M1 (t-target t) −→

L M1 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) =

L M2 ∩ (V ‘ reachable-states M1 ∪ {(V (t-source t) @ [(t-input t,
t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)}) ∧

preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {(V (t-source
t) @ [(t-input t, t-output t)]) @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})) ∧

convergence-graph-lookup-invar M1 M2 cg-lookup (snd (snd (handleUT-static
dist-fun M1 V T G cg-insert cg-lookup cg-merge m t X))))

(is
∧

T G m t X . ?P T G m t X)
proof −

fix T :: ( ′b× ′c) prefix-tree
fix G :: ′d
fix m :: nat
fix t :: ( ′a, ′b, ′c) transition
fix X :: ( ′a, ′b, ′c) transition list

let ?TG = snd (handleUT-static dist-fun M1 V T G cg-insert cg-lookup cg-merge
m t X)

obtain T1 G1 where (T1 ,G1 ) = handle-io-pair False False M1 V T G
cg-insert cg-lookup (t-source t) (t-input t) (t-output t)

using prod.collapse by blast
then have T1-def : T1 = fst (handle-io-pair False False M1 V T G cg-insert

cg-lookup (t-source t) (t-input t) (t-output t))
and G1-def : G1 = snd (handle-io-pair False False M1 V T G cg-insert

cg-lookup (t-source t) (t-input t) (t-output t))
using fst-conv[of T1 G1 ] snd-conv[of T1 G1 ] by force+

obtain T2 G2 where (T2 ,G2 ) = establish-convergence-static dist-fun M1 V
T1 G1 cg-insert cg-lookup m t

using prod.collapse by blast
have T2-def : T2 = fst (establish-convergence-static dist-fun M1 V T1 G1

cg-insert cg-lookup m t)
and G2-def : G2 = snd (establish-convergence-static dist-fun M1 V T1 G1

cg-insert cg-lookup m t)
unfolding ‹(T2 ,G2 ) = establish-convergence-static dist-fun M1 V T1 G1

cg-insert cg-lookup m t›[symmetric] by auto
define u where u = ((V (t-source t))@[(t-input t, t-output t)])
define v where v = (V (t-target t))

define G3 where G3 = cg-merge G2 u v
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have TG-cases: ?TG = (T2 ,G3 )
unfolding handleUT-static-def Let-def

unfolding ‹(T1 ,G1 ) = handle-io-pair False False M1 V T G cg-insert
cg-lookup (t-source t) (t-input t) (t-output t)›[symmetric] case-prod-conv

unfolding ‹(T2 ,G2 ) = establish-convergence-static dist-fun M1 V T1 G1
cg-insert cg-lookup m t›[symmetric] case-prod-conv

unfolding G3-def u-def v-def
by simp

have set T1 ⊆ set T2
and finite-tree T1 =⇒ finite-tree T2

using establish-convergence-static-verifies-transition[OF assms, of M2 V
cg-initial cg-insert cg-lookup]

unfolding T2-def verifies-transition-def by blast+
moreover have set T ⊆ set T1

and finite-tree T =⇒ finite-tree T1
using handle-io-pair-verifies-io-pair [of False False M1 M2 cg-insert cg-lookup]
unfolding T1-def verifies-io-pair-def
by blast+

ultimately have ∗:set T ⊆ set (fst ?TG)
and ∗∗:finite-tree T =⇒ finite-tree (fst ?TG)

using TG-cases by auto

have ∗∗∗: observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
size M2 ≤ m =⇒
inputs M2 = inputs M1 =⇒
outputs M2 = outputs M1 =⇒
is-state-cover-assignment M1 V =⇒
preserves-divergence M1 M2 (V ‘ reachable-states M1 ) =⇒
V ‘ reachable-states M1 ⊆ set T =⇒
t ∈ transitions M1 =⇒
t-source t ∈ reachable-states M1 =⇒
V (t-source t) @ [(t-input t, t-output t)] 6= V (t-target t) =⇒
convergence-graph-lookup-invar M1 M2 cg-lookup G =⇒
convergence-graph-insert-invar M1 M2 cg-lookup cg-insert =⇒
convergence-graph-merge-invar M1 M2 cg-lookup cg-merge =⇒
L M1 ∩ set (fst ?TG) = L M2 ∩ set (fst ?TG) =⇒
(set ?T0 ⊆ set T ) =⇒
(∀ γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs

M1 ∧ butlast γ ∈ LS M1 (t-target t))
−→ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source

t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
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t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))
∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪

{((V (t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})))

∧ convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)
proof −

assume a01 : observable M1
assume a02 : observable M2
assume a03 : minimal M1
assume a04 : minimal M2
assume a05 : size-r M1 ≤ m
assume a06 : size M2 ≤ m
assume a07 : inputs M2 = inputs M1
assume a08 : outputs M2 = outputs M1
assume a09 : is-state-cover-assignment M1 V
assume a10 : preserves-divergence M1 M2 (V ‘ reachable-states M1 )
assume a11 : V ‘ reachable-states M1 ⊆ set T
assume a12 : t ∈ transitions M1
assume a13 : t-source t ∈ reachable-states M1
assume a14 : convergence-graph-lookup-invar M1 M2 cg-lookup G
assume a15 : convergence-graph-insert-invar M1 M2 cg-lookup cg-insert
assume a16 : convergence-graph-merge-invar M1 M2 cg-lookup cg-merge
assume a17 : L M1 ∩ set (fst ?TG) = L M2 ∩ set (fst ?TG)
assume a18 : (set ?T0 ⊆ set T )
assume a19 : V (t-source t) @ [(t-input t, t-output t)] 6= V (t-target t)

have pass-T1 : L M1 ∩ set T1 = L M2 ∩ set T1
using a17 ‹set T1 ⊆ set T2 › unfolding TG-cases by auto

then have pass-T : L M1 ∩ set T = L M2 ∩ set T
using ‹set T ⊆ set T1 › by blast

have t-target t ∈ reachable-states M1
using reachable-states-next[OF a13 a12 ] by auto

then have (V (t-target t)) ∈ L M1
using is-state-cover-assignment-language[OF a09 ] by blast

moreover have (V (t-target t)) ∈ set T
using a11 ‹t-target t ∈ reachable-states M1 › by blast

ultimately have (V (t-target t)) ∈ L M2
using pass-T by blast

then have v ∈ L M2
unfolding v-def .

have (V (t-source t)) ∈ L M1
using is-state-cover-assignment-language[OF a09 a13 ] by blast

moreover have (V (t-source t)) ∈ set T
using a11 a13 by blast

ultimately have (V (t-source t)) ∈ L M2
using pass-T by blast
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have u ∈ L M1
unfolding u-def
using a01 a09 a12 a13 converge.simps state-cover-transition-converges by

blast

have after-initial M1 u = t-target t
using a09 unfolding u-def

by (metis ‹u ∈ L M1 › a01 a12 a13 after-split after-transition-exhaust
is-state-cover-assignment-observable-after u-def )

have u ∈ L M2
using distribute-extension-adds-sequence(1 )[OF a01 a03 ‹(V (t-source t)) ∈

L M1 › ‹(V (t-source t)) ∈ L M2 › a14 a15 , of T [(t-input t, t-output t)], of False
(if False then append-heuristic-input M1 else append-heuristic-io)]

using pass-T1 append-heuristic-io-in
unfolding T1-def G1-def handle-io-pair-def u-def

by (metis (no-types, lifting) Int-iff ‹u ∈ L M1 › a01 a02 converge-append-language-iff
u-def )

then have V (t-source t) @ [(t-input t, t-output t)] ∈ L M2
unfolding u-def .

have L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states M1
using a11 a17 ∗
by blast

have V ‘ reachable-states M1 ⊆ set T1
using a11 ‹set T ⊆ set T1 › by blast

have
∧

q . q ∈ reachable-states M1 =⇒ set (dist-fun 0 q) ⊆ set (after T (V
q))

using handle-state-cover-static-applies-dist-sets[of - M1 dist-fun V cg-initial
cg-insert cg-lookup] a18

by (meson in-mono subsetI subset-after-subset)
then have

∧
q . q ∈ reachable-states M1 =⇒ set (dist-fun 0 q) ⊆ set (after

T1 (V q))
using ‹set T ⊆ set T1 ›
by (meson dual-order .trans subset-after-subset)

have pass-T2 : L M1 ∩ Prefix-Tree.set (fst (establish-convergence-static
dist-fun M1 V T1 G1 cg-insert cg-lookup m t)) = L M2 ∩ Prefix-Tree.set (fst
(establish-convergence-static dist-fun M1 V T1 G1 cg-insert cg-lookup m t))

using a17 unfolding TG-cases T2-def fst-conv .
have convergence-graph-lookup-invar M1 M2 cg-lookup G1
using handle-io-pair-verifies-io-pair [of False False M1 M2 cg-insert cg-lookup]

using a01 a02 a03 a04 a07 a08 a09 ‹L M1 ∩ V ‘ reachable-states M1
= L M2 ∩ V ‘ reachable-states M1 › pass-T1 a13 fsm-transition-input[OF a12 ]
fsm-transition-output[OF a12 ] a14 a15

unfolding T1-def G1-def verifies-io-pair-def
by blast
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have cons-prop:
∧
γ x y.

length (γ @ [(x, y)]) ≤ m−size-r M1 =⇒
γ ∈ LS M1 (after-initial M1 u) =⇒
x ∈ FSM .inputs M1 =⇒
y ∈ FSM .outputs M1 =⇒
L M1 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) =
L M2 ∩ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u,

v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))}) ∧
preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {ω

@ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes (γ @ [(x, y)]))})
and nil-prop: preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {u,

v})
and conv-G2 : convergence-graph-lookup-invar M1 M2 cg-lookup G2
using establish-convergence-static-properties[OF a01 a02 a03 a04 a07 a08 a12

a13 a09 ‹V (t-source t) @ [(t-input t, t-output t)] ∈ L M2 › ‹V ‘ reachable-states
M1 ⊆ set T1 › a10 ‹convergence-graph-lookup-invar M1 M2 cg-lookup G1 › a15
assms(1 ) ‹

∧
q . q ∈ reachable-states M1 =⇒ set (dist-fun 0 q) ⊆ set (after T1 (V

q))› assms(2 ) pass-T2 ]
unfolding G2-def [symmetric] u-def [symmetric] v-def [symmetric]
by blast+

have converge M2 u v
using establish-convergence-static-establishes-convergence[OF a01 a02 a03

a04 a05 a06 a07 a08 a12 a13 a09 ‹V (t-source t) @ [(t-input t, t-output t)] ∈ L
M2 › ‹V ‘ reachable-states M1 ⊆ set T1 › a10 ‹convergence-graph-lookup-invar M1
M2 cg-lookup G1 › a15 assms(1 ) ‹

∧
q . q ∈ reachable-states M1 =⇒ set (dist-fun

0 q) ⊆ set (after T1 (V q))› assms(2 ) pass-T2 ]
unfolding u-def v-def by blast

moreover have converge M1 u v
unfolding u-def v-def using a09 a12 a13
using a01 state-cover-transition-converges by blast

ultimately have convergence-graph-lookup-invar M1 M2 cg-lookup G3
using ‹convergence-graph-lookup-invar M1 M2 cg-lookup G2 › a16
unfolding G3-def
by (meson convergence-graph-merge-invar-def )

then have convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)
unfolding TG-cases by auto

moreover have
∧

γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1
× outputs M1 ∧ butlast γ ∈ LS M1 (t-target t))

=⇒ ((L M1 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input
t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})

= L M2 ∩ (V ‘ reachable-states M1 ∪ {((V (t-source
t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

∧ preserves-divergence M1 M2 (V ‘ reachable-states M1 ∪ {((V
(t-source t))@[(t-input t,t-output t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)}))

(is
∧

γ . (length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 × outputs
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M1 ∧ butlast γ ∈ LS M1 (t-target t)) =⇒ ?P1 γ ∧ ?P2 γ)
proof −

fix γ assume assm:(length γ ≤ (m−size-r M1 ) ∧ list.set γ ⊆ inputs M1 ×
outputs M1 ∧ butlast γ ∈ LS M1 (t-target t))

show ?P1 γ ∧ ?P2 γ
proof (cases γ rule: rev-cases)

case Nil
have ∗: (V ‘ reachable-states M1 ∪ {((V (t-source t))@[(t-input t,t-output

t)]) @ ω ′ | ω ′. ω ′ ∈ list.set (prefixes γ)})
= (V ‘ reachable-states M1 ∪ {u})

unfolding u-def [symmetric] Nil by auto

have ?P1 γ
using ‹L M1 ∩ V ‘ reachable-states M1 = L M2 ∩ V ‘ reachable-states

M1 ›
‹u ∈ L M1 › ‹u ∈ L M2 ›

unfolding ∗ by blast
moreover have ?P2 γ

using preserves-divergence-subset[OF nil-prop]
unfolding ∗

by (metis Un-empty-right Un-insert-right Un-upper1 insertI1 in-
sert-subsetI )

ultimately show ?thesis
by simp

next
case (snoc γ ′ xy)
moreover obtain x y where xy = (x,y)

using prod.exhaust by metis
ultimately have γ = γ ′@[(x,y)]

by auto

have ∗: (V ‘ reachable-states M1 ∪ {u @ ω ′ |ω ′. ω ′ ∈ list.set (prefixes γ)})
⊆ (V ‘ reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes
γ)})

by blast

have length (γ ′ @ [(x, y)]) ≤ m − size-r M1
using assm unfolding ‹γ = γ ′@[(x,y)]› by auto

moreover have γ ′ ∈ LS M1 (after-initial M1 u)
using assm unfolding ‹γ = γ ′@[(x,y)]›
by (simp add: ‹after-initial M1 u = t-target t›)

moreover have x ∈ FSM .inputs M1 and y ∈ FSM .outputs M1
using assm unfolding ‹γ = γ ′@[(x,y)]› by auto

ultimately show ?thesis
using cons-prop[of γ ′ x y] preserves-divergence-subset[of M1 M2 (V ‘

reachable-states M1 ∪ {ω @ ω ′ |ω ω ′. ω ∈ {u, v} ∧ ω ′ ∈ list.set (prefixes γ)}), OF
- ∗]

unfolding ‹γ = γ ′@[(x,y)]›[symmetric] u-def [symmetric]
by blast
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qed
qed
then show ?thesis

using ‹convergence-graph-lookup-invar M1 M2 cg-lookup (snd ?TG)›
by presburger

qed
show ?P T G m t X

using ∗ ∗∗ ∗∗∗ by blast
qed
then show ?thesis

unfolding handles-transition-def
by blast

qed

21.6 Distinguishing Traces
21.6.1 Symmetry

The following lemmata serve to show that the function to choose distinguish-
ing sequences returns the same sequence for reversed pairs, thus ensuring
that the HSIs do not contain two sequences for the same pair of states.
lemma select-diverging-ofsm-table-io-sym :

assumes observable M
and q1 ∈ states M
and q2 ∈ states M
and ofsm-table M (λq . states M ) (Suc k) q1 6= ofsm-table M (λq . states

M ) (Suc k) q2
assumes (select-diverging-ofsm-table-io M q1 q2 (Suc k)) = (io,(a,b))
shows (select-diverging-ofsm-table-io M q2 q1 (Suc k)) = (io,(b,a))

proof −
define xs where xs: xs = (List.product (inputs-as-list M ) (outputs-as-list M ))

define f1 ′ where f1 ′: f1 ′ = (λ(x, y) ⇒ (case (h-obs M q1 x y, h-obs M q2 x y)
of

(None, None) ⇒ None |
(None, Some q2 ′) ⇒ Some ((x, y), None, Some q2 ′) |
(Some q1 ′, None) ⇒ Some ((x, y), Some q1 ′, None) |
(Some q1 ′, Some q2 ′) ⇒ (if ofsm-table M (λq . states M ) ((Suc

k) − 1 ) q1 ′ 6= ofsm-table M (λq . states M ) ((Suc k) − 1 ) q2 ′ then Some ((x, y),
Some q1 ′, Some q2 ′) else None)))

define f1 where f1 : f1 = (λxs . (hd (List.map-filter f1 ′ xs)))

define f2 ′ where f2 ′: f2 ′ = (λ(x, y) ⇒ (case (h-obs M q2 x y, h-obs M q1 x y)
of

(None, None) ⇒ None |
(None, Some q2 ′) ⇒ Some ((x, y), None, Some q2 ′) |
(Some q1 ′, None) ⇒ Some ((x, y), Some q1 ′, None) |
(Some q1 ′, Some q2 ′) ⇒ (if ofsm-table M (λq . states M ) ((Suc

k) − 1 ) q1 ′ 6= ofsm-table M (λq . states M ) ((Suc k) − 1 ) q2 ′ then Some ((x, y),
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Some q1 ′, Some q2 ′) else None)))
define f2 where f2 : f2 = (λxs . (hd (List.map-filter f2 ′ xs)))

obtain x y where select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(h-obs
M q1 x y, h-obs M q2 x y))

using select-diverging-ofsm-table-io-Some(1 )[OF assms(1−4 )]
by meson

have
∧

xy io a b . f1 ′ xy = Some (io,(a,b)) =⇒ f2 ′ xy = Some (io,(b,a))
proof −

fix xy io a b assume ∗: f1 ′ xy = Some (io,(a,b))
obtain x y where xy = (x,y)

using prod.exhaust by metis

show f2 ′ xy = Some (io,(b,a))
proof (cases h-obs M q1 x y)

case None
show ?thesis proof (cases h-obs M q2 x y)

case None
then show ?thesis using ‹h-obs M q1 x y = None› ∗ unfolding f1 ′ f2 ′ ‹xy

= (x,y)› by auto
next

case (Some q2 ′)

show ?thesis using ∗ unfolding f1 ′ f2 ′

unfolding case-prod-conv None Some ‹xy = (x,y)› by auto
qed

next
case (Some q1 ′)
show ?thesis proof (cases h-obs M q2 x y)

case None
show ?thesis using ∗ unfolding f1 ′ f2 ′

unfolding case-prod-conv None Some ‹xy = (x,y)› by auto
next

case (Some q2 ′)
have ofsm-table M (λq . states M ) ((Suc k) − 1 ) q2 ′ 6= ofsm-table M (λq

. states M ) ((Suc k) − 1 ) q1 ′

using ∗ unfolding f1 ′ case-prod-conv ‹h-obs M q1 x y = Some q1 ′› Some
‹xy = (x,y)› by auto

then have f1 ′ (x,y) = Some ((x,y),(h-obs M q1 x y,h-obs M q2 x y))
unfolding f1 ′ case-prod-conv ‹h-obs M q1 x y = Some q1 ′› Some by auto

then have io = (x,y) and b = h-obs M q2 x y and a = h-obs M q1 x y
using ∗ ‹xy = (x,y)› by auto

show ?thesis unfolding f2 ′

unfolding case-prod-conv ‹h-obs M q1 x y = Some q1 ′› Some ‹io = (x,y)›
‹b = h-obs M q2 x y› ‹a = h-obs M q1 x y› ‹xy = (x,y)›

using ‹ofsm-table M (λq . states M ) ((Suc k) − 1 ) q2 ′ 6= ofsm-table M
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(λq . states M ) ((Suc k) − 1 ) q1 ′› by simp
qed

qed
qed
moreover have

∧
xy io a b . f2 ′ xy = Some (io,(a,b)) =⇒ f1 ′ xy = Some

(io,(b,a))
proof −

fix xy io a b assume ∗: f2 ′ xy = Some (io,(a,b))
obtain x y where xy = (x,y)

using prod.exhaust by metis

show f1 ′ xy = Some (io,(b,a))
proof (cases h-obs M q1 x y)

case None
show ?thesis proof (cases h-obs M q2 x y)

case None
then show ?thesis using ‹h-obs M q1 x y = None› ∗ unfolding f1 ′ f2 ′ ‹xy

= (x,y)› by auto
next

case (Some q2 ′)

show ?thesis using ∗ unfolding f1 ′ f2 ′

unfolding case-prod-conv None Some ‹xy = (x,y)› by auto
qed

next
case (Some q1 ′)
show ?thesis proof (cases h-obs M q2 x y)

case None
show ?thesis using ∗ unfolding f1 ′ f2 ′

unfolding case-prod-conv None Some ‹xy = (x,y)› by auto
next

case (Some q2 ′)
have ofsm-table M (λq . states M ) ((Suc k) − 1 ) q2 ′ 6= ofsm-table M (λq

. states M ) ((Suc k) − 1 ) q1 ′

using ∗ unfolding f2 ′ case-prod-conv ‹h-obs M q1 x y = Some q1 ′› Some
‹xy = (x,y)› by auto

then have f2 ′ (x,y) = Some ((x,y),(h-obs M q2 x y,h-obs M q1 x y))
unfolding f2 ′ case-prod-conv ‹h-obs M q1 x y = Some q1 ′› Some by auto

then have io = (x,y) and b = h-obs M q1 x y and a = h-obs M q2 x y
using ∗ ‹xy = (x,y)› by auto

show ?thesis unfolding f1 ′

unfolding case-prod-conv ‹h-obs M q1 x y = Some q1 ′› Some ‹io = (x,y)›
‹b = h-obs M q1 x y› ‹a = h-obs M q2 x y› ‹xy = (x,y)›

using ‹ofsm-table M (λq . states M ) ((Suc k) − 1 ) q2 ′ 6= ofsm-table M
(λq . states M ) ((Suc k) − 1 ) q1 ′› by simp

qed
qed

qed
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ultimately have
∧

xy io a b . f2 ′ xy = Some (io,(a,b)) ←→ f1 ′ xy = Some
(io,(b,a))

by blast

moreover have
∧

xs . (
∧

xy io a b . f1 ′ xy = Some (io,(a,b)) ←→ f2 ′ xy =
Some (io,(b,a))) =⇒ ∃ xy ∈ list.set xs . f1 ′ xy 6= None =⇒ f1 xs = (io,(a,b)) =⇒
f2 xs = (io,(b,a))

proof −
fix xs assume (

∧
xy io a b . f1 ′ xy = Some (io,(a,b)) ←→ f2 ′ xy = Some

(io,(b,a)))
∃ xy ∈ list.set xs . f1 ′ xy 6= None
f1 xs = (io,(a,b))

then show f2 xs = (io,(b,a))
proof (induction xs)

case Nil
then show ?case by auto

next
case (Cons xy xs)
show ?case proof (cases f1 ′ xy)

case None
then have @ io a b . f1 ′ xy = Some (io,(a,b))

by auto
then have f2 ′ xy = None

using Cons.prems(1 )
by (metis option.exhaust prod-cases3 )

then have f2 (xy#xs) = f2 xs
unfolding f2 map-filter-simps by auto

moreover have f1 (xy#xs) = f1 xs
using None unfolding f1 map-filter-simps by auto

ultimately show ?thesis
using Cons.IH Cons.prems(1 ) Cons.prems(2 ) Cons.prems(3 ) None by

fastforce
next

case (Some ioab)
then have f1 (xy#xs) = ioab

unfolding f1 map-filter-simps
by simp

then have ioab = (io,(a,b))
using Cons.prems(3 ) by auto

then have f2 ′ xy = Some (io,(b,a))
using Cons.prems(1 ) Some by auto

then show f2 (xy#xs) = (io,(b,a))
unfolding f2 map-filter-simps by auto

qed
qed

qed

moreover have f1 xs = (io,(a,b))
using ‹(select-diverging-ofsm-table-io M q1 q2 (Suc k)) = (io,(a,b))›
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unfolding select-diverging-ofsm-table-io.simps f1 f1 ′ xs Let-def by auto

moreover have ∃ xy ∈ list.set xs . f1 ′ xy 6= None
proof −
let ?P = ∀ x y . x ∈ inputs M −→ y ∈ outputs M −→ (h-obs M q1 x y = None

←→ h-obs M q2 x y = None)
show ?thesis proof (cases ?P)

case False
then obtain x y where x ∈ inputs M and y ∈ outputs M and ¬ (h-obs M

q1 x y = None ←→ h-obs M q2 x y = None)
by blast

then consider h-obs M q1 x y = None ∧ (∃ q2 ′ . h-obs M q2 x y = Some
q2 ′) |

h-obs M q2 x y = None ∧ (∃ q1 ′ . h-obs M q1 x y = Some q1 ′)
by fastforce

then show ?thesis proof cases
case 1
then obtain q2 ′ where h-obs M q1 x y = None and h-obs M q2 x y =

Some q2 ′ by blast
then have f1 ′ (x,y) = Some ((x,y),(None, Some q2 ′))

unfolding f1 ′ by force
moreover have (x,y) ∈ list.set xs

unfolding xs
using ‹y ∈ outputs M › outputs-as-list-set[of M ]
using ‹x ∈ inputs M › inputs-as-list-set[of M ]
using image-iff by fastforce

ultimately show ?thesis
by blast

next
case 2
then obtain q1 ′ where h-obs M q2 x y = None and h-obs M q1 x y =

Some q1 ′ by blast
then have f1 ′ (x,y) = Some ((x,y),(Some q1 ′, None))

unfolding f1 ′ by force
moreover have (x,y) ∈ list.set xs

unfolding xs
using ‹y ∈ outputs M › outputs-as-list-set[of M ]
using ‹x ∈ inputs M › inputs-as-list-set[of M ]
using image-iff by fastforce

ultimately show ?thesis
by blast

qed
next

case True

obtain io where length io ≤ Suc k and io ∈ LS M q1 ∪ LS M q2 and io /∈
LS M q1 ∩ LS M q2

using ‹ofsm-table M (λq . states M ) (Suc k) q1 6= ofsm-table M (λq . states
M ) (Suc k) q2 ›
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unfolding ofsm-table-set-observable[OF assms(1 ,2 ) minimise-initial-partition]
ofsm-table-set-observable[OF assms(1 ,3 ) minimise-initial-partition] by blast

then have io 6= []
using assms(2 ) assms(3 ) by auto

then have io = [hd io] @ tl io
by (metis append.left-neutral append-Cons list.exhaust-sel)

then obtain x y where hd io = (x,y)
by (meson prod.exhaust-sel)

have [(x,y)] ∈ LS M q1 ∩ LS M q2
proof −

have [(x,y)] ∈ LS M q1 ∪ LS M q2
using ‹io ∈ LS M q1 ∪ LS M q2 › language-prefix ‹hd io = (x,y)› ‹io =

[hd io] @ tl io›
by (metis Un-iff )

then have x ∈ inputs M and y ∈ outputs M
by auto

consider [(x,y)] ∈ LS M q1 | [(x,y)] ∈ LS M q2
using ‹[(x,y)] ∈ LS M q1 ∪ LS M q2 › by blast

then show ?thesis
proof cases

case 1
then have h-obs M q1 x y 6= None

using h-obs-None[OF ‹observable M ›] unfolding LS-single-transition
by auto

then have h-obs M q2 x y 6= None
using True ‹x ∈ inputs M › ‹y ∈ outputs M › by meson

then show ?thesis
using 1 h-obs-None[OF ‹observable M ›]
by (metis IntI LS-single-transition fst-conv snd-conv)

next
case 2
then have h-obs M q2 x y 6= None

using h-obs-None[OF ‹observable M ›] unfolding LS-single-transition
by auto

then have h-obs M q1 x y 6= None
using True ‹x ∈ inputs M › ‹y ∈ outputs M › by meson

then show ?thesis
using 2 h-obs-None[OF ‹observable M ›]
by (metis IntI LS-single-transition fst-conv snd-conv)

qed
qed
then obtain q1 ′ q2 ′ where (q1 ,x,y,q1 ′) ∈ transitions M

and (q2 ,x,y,q2 ′) ∈ transitions M
using LS-single-transition by force

then have q1 ′ ∈ states M and q2 ′ ∈ states M using fsm-transition-target
by auto
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have tl io ∈ LS M q1 ′ ∪ LS M q2 ′

using observable-language-transition-target[OF ‹observable M › ‹(q1 ,x,y,q1 ′)
∈ transitions M ›]

observable-language-transition-target[OF ‹observable M › ‹(q2 ,x,y,q2 ′)
∈ transitions M ›]

‹io ∈ LS M q1 ∪ LS M q2 ›
unfolding fst-conv snd-conv

by (metis Un-iff ‹hd io = (x, y)› ‹io = [hd io] @ tl io› append-Cons
append-Nil)

moreover have tl io /∈ LS M q1 ′ ∩ LS M q2 ′

using observable-language-transition-target[OF ‹observable M › ‹(q1 ,x,y,q1 ′)
∈ transitions M ›]

observable-language-transition-target[OF ‹observable M › ‹(q2 ,x,y,q2 ′)
∈ transitions M ›]

‹io ∈ LS M q1 ∪ LS M q2 ›
unfolding fst-conv snd-conv
by (metis Int-iff LS-prepend-transition ‹(q1 , x, y, q1 ′) ∈ FSM .transitions

M › ‹(q2 , x, y, q2 ′) ∈ FSM .transitions M › ‹hd io = (x, y)› ‹io 6= []› ‹io /∈ LS M
q1 ∩ LS M q2 › fst-conv list.collapse snd-conv)

ultimately have ((tl io) ∈ LS M q1 ′) 6= (tl io ∈ LS M q2 ′)
by blast

moreover have length (tl io) ≤ k
using ‹length io ≤ Suc k› by auto

ultimately have q2 ′ /∈ ofsm-table M (λq . states M ) k q1 ′

unfolding ofsm-table-set-observable[OF assms(1 ) ‹q1 ′ ∈ states M › min-
imise-initial-partition]

by blast
then have ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq . states

M ) k q2 ′

by (metis ‹q2 ′ ∈ FSM .states M › ofsm-table-containment)
moreover have h-obs M q1 x y = Some q1 ′

using ‹(q1 ,x,y,q1 ′) ∈ transitions M › ‹observable M › unfolding h-obs-Some[OF
‹observable M ›] observable-alt-def by auto

moreover have h-obs M q2 x y = Some q2 ′

using ‹(q2 ,x,y,q2 ′) ∈ transitions M › ‹observable M › unfolding h-obs-Some[OF
‹observable M ›] observable-alt-def by auto

ultimately have f1 ′ (x,y) = Some ((x,y),(Some q1 ′, Some q2 ′))
unfolding f1 ′ by force

moreover have (x,y) ∈ list.set xs
unfolding xs

using fsm-transition-output[OF ‹(q1 ,x,y,q1 ′) ∈ transitions M ›] outputs-as-list-set[of
M ]

using fsm-transition-input[OF ‹(q1 ,x,y,q1 ′) ∈ transitions M ›] inputs-as-list-set[of
M ]

using image-iff by fastforce
ultimately show ?thesis

by blast
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qed
qed

ultimately have f2 xs = (io,(b,a))
by blast

then show ?thesis
unfolding select-diverging-ofsm-table-io.simps f2 f2 ′ xs Let-def by auto

qed

lemma assemble-distinguishing-sequence-from-ofsm-table-sym :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M
and ofsm-table M (λq . states M ) k q1 6= ofsm-table M (λq . states M ) k q2

shows assemble-distinguishing-sequence-from-ofsm-table M q1 q2 k = assemble-distinguishing-sequence-from-ofsm-table
M q2 q1 k

using assms(2 ,3 ,4 ) proof (induction k arbitrary: q1 q2 )
case 0
then show ?case by auto

next
case (Suc k)
obtain xy a b where select-diverging-ofsm-table-io M q1 q2 (Suc k) = (xy,(a,b))

using prod-cases3 by blast
then have select-diverging-ofsm-table-io M q2 q1 (Suc k) = (xy,(b, a))

using select-diverging-ofsm-table-io-sym[OF assms(1 ) Suc.prems] by auto

consider ∃ q1 ′ q2 ′ . a = Some q1 ′ ∧ b = Some q2 ′ | a = None ∨ b = None
using option.exhaust-sel by auto

then show ?case proof cases
case 1
then obtain q1 ′ q2 ′ where select-diverging-ofsm-table-io M q1 q2 (Suc k) =

(xy,(Some q1 ′, Some q2 ′))
using ‹select-diverging-ofsm-table-io M q1 q2 (Suc k) = (xy,(a,b))› by auto

then have select-diverging-ofsm-table-io M q2 q1 (Suc k) = (xy,(Some q2 ′,
Some q1 ′))

using select-diverging-ofsm-table-io-sym[OF assms(1 ) Suc.prems] by auto

obtain x y where select-diverging-ofsm-table-io M q1 q2 (Suc k) = ((x,y),(h-obs
M q1 x y, h-obs M q2 x y))

and
∧

q1 ′ q2 ′ . h-obs M q1 x y = Some q1 ′ =⇒ h-obs M q2 x y
= Some q2 ′ =⇒ ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq . states
M ) k q2 ′

and h-obs M q1 x y 6= None ∨ h-obs M q2 x y 6= None
using select-diverging-ofsm-table-io-Some(1 )[OF assms(1 ) Suc.prems]
by blast

then have xy = (x,y) and h-obs M q1 x y = Some q1 ′ and h-obs M q2 x y =
Some q2 ′

using ‹select-diverging-ofsm-table-io M q1 q2 (Suc k) = (xy,(Some q1 ′, Some
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q2 ′))› by auto
then have q1 ′ ∈ states M and q2 ′ ∈ states M

unfolding h-obs-Some[OF assms(1 )] using fsm-transition-target by fast-
force+

moreover have ofsm-table M (λq . states M ) k q1 ′ 6= ofsm-table M (λq .
states M ) k q2 ′

using ‹h-obs M q1 x y = Some q1 ′› ‹h-obs M q2 x y = Some q2 ′› ‹
∧

q1 ′ q2 ′

. h-obs M q1 x y = Some q1 ′ =⇒ h-obs M q2 x y = Some q2 ′ =⇒ ofsm-table M
(λq . states M ) k q1 ′ 6= ofsm-table M (λq . states M ) k q2 ′›

by blast
ultimately have assemble-distinguishing-sequence-from-ofsm-table M q1 ′ q2 ′

k = assemble-distinguishing-sequence-from-ofsm-table M q2 ′ q1 ′ k
using Suc.IH by auto

then show ?thesis
using ‹select-diverging-ofsm-table-io M q1 q2 (Suc k) = (xy,(Some q1 ′, Some

q2 ′))›
‹select-diverging-ofsm-table-io M q2 q1 (Suc k) = (xy,(Some q2 ′, Some

q1 ′))›
by auto

next
case 2

obtain x y where xy = (x,y)
using prod.exhaust by metis

have helper :
∧

f f1 f2 .(case ((x,y),(a,b)) of ((x,y),(Some a ′,Some b ′)) ⇒ f1 x
y a ′ b ′ | ((x,y),-) ⇒ f2 x y) = f2 x y

using 2 by (metis case-prod-conv option.case-eq-if )
have helper2 :

∧
f f1 f2 .(case ((x,y),(b,a)) of ((x,y),(Some a ′,Some b ′)) ⇒ f1

x y a ′ b ′ | ((x,y),-) ⇒ f2 x y) = f2 x y
using 2 by (metis case-prod-conv option.case-eq-if )

have assemble-distinguishing-sequence-from-ofsm-table M q1 q2 (Suc k) = [xy]
unfolding assemble-distinguishing-sequence-from-ofsm-table.simps

‹select-diverging-ofsm-table-io M q1 q2 (Suc k) = (xy,(a, b))› ‹xy =
(x,y)› helper

by simp
moreover have assemble-distinguishing-sequence-from-ofsm-table M q2 q1

(Suc k) = [xy]
unfolding assemble-distinguishing-sequence-from-ofsm-table.simps

‹select-diverging-ofsm-table-io M q2 q1 (Suc k) = (xy,(b, a))› ‹xy =
(x,y)› helper2

by simp
ultimately show ?thesis

by simp
qed

qed

lemma find-first-distinct-ofsm-table-sym :
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assumes q1 ∈ FSM .states M
and q2 ∈ FSM .states M
and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )

0 q2
shows find-first-distinct-ofsm-table M q1 q2 = find-first-distinct-ofsm-table M q2
q1
proof −

have
∧

q1 q2 . q1 ∈ FSM .states M =⇒ q2 ∈ FSM .states M =⇒ ofsm-table-fix M
(λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2 =⇒ find-first-distinct-ofsm-table
M q2 q1 < find-first-distinct-ofsm-table M q1 q2 =⇒ False

proof −
fix q1 q2 assume q1 ∈ FSM .states M and q2 ∈ FSM .states M

and ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq .
states M ) 0 q2

and find-first-distinct-ofsm-table M q2 q1 < find-first-distinct-ofsm-table
M q1 q2

show False
using find-first-distinct-ofsm-table-is-first(1 )[OF ‹q1 ∈ FSM .states M › ‹q2

∈ FSM .states M › ‹ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq .
states M ) 0 q2 ›]

find-first-distinct-ofsm-table-is-first(2 )[OF ‹q1 ∈ FSM .states M › ‹q2 ∈
FSM .states M › ‹ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq .
states M ) 0 q2 › ‹find-first-distinct-ofsm-table M q2 q1 < find-first-distinct-ofsm-table
M q1 q2 ›]

‹find-first-distinct-ofsm-table M q2 q1 < find-first-distinct-ofsm-table M
q1 q2 ›

by (metis ‹ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states
M ) 0 q2 › ‹q1 ∈ FSM .states M › ‹q2 ∈ FSM .states M › find-first-distinct-ofsm-table-gt-is-first-gt(1 ))

qed
then show ?thesis

using assms
by (metis linorder-neqE-nat)

qed

lemma get-distinguishing-sequence-from-ofsm-tables-sym :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows get-distinguishing-sequence-from-ofsm-tables M q1 q2 = get-distinguishing-sequence-from-ofsm-tables
M q2 q1
proof −

have ofsm-table-fix M (λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M )
0 q2

using ‹minimal M › unfolding minimal-observable-code[OF assms(1 )]
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using assms(3 ,4 ,5 ) by blast

let ?k = find-first-distinct-ofsm-table-gt M q1 q2 0
have ofsm-table M (λq . states M ) ?k q1 6= ofsm-table M (λq . states M ) ?k

q2
using find-first-distinct-ofsm-table-is-first(1 )[OF assms(3 ,4 ) ‹ofsm-table-fix M

(λq . states M ) 0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2 ›] .

show ?thesis
using assemble-distinguishing-sequence-from-ofsm-table-sym[OF assms(1 ,3 ,4 )

‹ofsm-table M (λq . states M ) ?k q1 6= ofsm-table M (λq . states M ) ?k q2 ›]
unfolding get-distinguishing-sequence-from-ofsm-tables.simps Let-def

find-first-distinct-ofsm-table-sym[OF assms(3 ,4 ) ‹ofsm-table-fix M (λq
. states M ) 0 q1 6= ofsm-table-fix M (λq . states M ) 0 q2 ›] .
qed

21.6.2 Harmonised State Identifiers
fun add-distinguishing-sequence :: ( ′a, ′b::linorder , ′c::linorder) fsm ⇒ (( ′b× ′c) list
× ′a) × (( ′b× ′c) list × ′a) ⇒ ( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) prefix-tree where
add-distinguishing-sequence M ((α,q1 ), (β,q2 )) t = insert empty (get-distinguishing-sequence-from-ofsm-tables

M q1 q2 )

lemma add-distinguishing-sequence-distinguishes :
assumes observable M
and minimal M
and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β

shows ∃ io ∈ set (add-distinguishing-sequence M ((α,after-initial M α),(β,after-initial
M β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes M (after-initial M α)
(after-initial M β) io
proof −

have set (add-distinguishing-sequence M ((α,after-initial M α),(β,after-initial M
β)) t) = set (insert empty (get-distinguishing-sequence-from-ofsm-tables M (after-initial
M α) (after-initial M β)))

by auto
then have get-distinguishing-sequence-from-ofsm-tables M (after-initial M α)

(after-initial M β) ∈ set (add-distinguishing-sequence M ((α,after-initial M α),(β,after-initial
M β)) t) ∪ (set (after t α) ∩ set (after t β))

unfolding insert-set by auto
then show ?thesis
using get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace(1 ,2 )[OF

assms(1 ,2 ) after-is-state[OF assms(1 ,3 )] after-is-state[OF assms(1 ,4 )] assms(5 )]
by (meson distinguishes-def )

qed

lemma add-distinguishing-sequence-finite :
finite-tree (add-distinguishing-sequence M ((α,after-initial M α),(β,after-initial
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M β)) t)
unfolding add-distinguishing-sequence.simps
using insert-finite-tree[OF empty-finite-tree] by metis

fun get-HSI :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ( ′b× ′c) prefix-tree
where

get-HSI M q = from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M )))

lemma get-HSI-elem :
assumes q2 ∈ states M
and q2 6= q1

shows get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ set (get-HSI M q1 )
proof −

have q2 ∈ list.set (filter (( 6=) q1 ) (states-as-list M ))
using assms unfolding states-as-list-set[of M ,symmetric] by auto

then have ∗:get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ list.set (map
(λq ′ . get-distinguishing-sequence-from-ofsm-tables M q1 q ′) (filter ((6=) q1 ) (states-as-list
M )))

by auto
show ?thesis

using from-list-set-elem[OF ∗]
unfolding get-HSI .simps .

qed

lemma get-HSI-distinguishes :
assumes observable M
and minimal M
and q1 ∈ states M and q2 ∈ states M and q1 6= q2

shows ∃ io ∈ set (get-HSI M q1 ) ∩ set (get-HSI M q2 ) . distinguishes M q1 q2 io
proof −

have get-distinguishing-sequence-from-ofsm-tables M q2 q1 ∈ set (get-HSI M q1 )
using get-HSI-elem[OF assms(4 ), of q1 ] assms(5 )
unfolding get-distinguishing-sequence-from-ofsm-tables-sym[OF assms]
by metis

moreover have get-distinguishing-sequence-from-ofsm-tables M q2 q1 ∈ set (get-HSI
M q2 )

using get-HSI-elem[OF assms(3 )] assms(5 ) by metis
moreover have distinguishes M q1 q2 (get-distinguishing-sequence-from-ofsm-tables

M q2 q1 )
using get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace(1 ,2 )[OF

assms]
unfolding get-distinguishing-sequence-from-ofsm-tables-sym[OF assms]
unfolding distinguishes-def
by blast

807



ultimately show ?thesis
by blast

qed

lemma get-HSI-finite :
finite-tree (get-HSI M q)
unfolding get-HSI .simps using from-list-finite-tree by metis

21.6.3 Distinguishing Sets
fun distinguishing-set :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒ ( ′b ×
′c) prefix-tree where

distinguishing-set M = (let
pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ))

in from-list (map (case-prod (get-distinguishing-sequence-from-ofsm-tables M ))
pairs))

lemma distinguishing-set-distinguishes :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows ∃ io ∈ set (distinguishing-set M ) . distinguishes M q1 q2 io
proof −

define pairs where pairs: pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs
(states-as-list M ))
then have ∗: distinguishing-set M = from-list (map (case-prod (get-distinguishing-sequence-from-ofsm-tables

M )) pairs)
by auto

have q1 ∈ list.set (states-as-list M ) and q2 ∈ list.set (states-as-list M )
unfolding states-as-list-set using assms(3 ,4 ) by blast+

then have (q1 ,q2 ) ∈ list.set pairs ∨ (q2 ,q1 ) ∈ list.set pairs
using list-ordered-pairs-set-containment[OF - - assms(5 )] assms(5 ) unfolding

pairs by auto
then have get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ list.set (map

(case-prod (get-distinguishing-sequence-from-ofsm-tables M )) pairs)
| get-distinguishing-sequence-from-ofsm-tables M q2 q1 ∈ list.set (map

(case-prod (get-distinguishing-sequence-from-ofsm-tables M )) pairs)
by (metis image-iff old.prod.case set-map)

then have get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ set (distinguishing-set
M )

∨ get-distinguishing-sequence-from-ofsm-tables M q2 q1 ∈ set (distinguishing-set
M )

unfolding ∗ from-list-set by blast
then show ?thesis
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using get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace(1 ,2 )[OF
assms]

get-distinguishing-sequence-from-ofsm-tables-is-distinguishing-trace(1 ,2 )[OF
assms(1 ,2 ,4 ,3 )] assms(5 )

unfolding distinguishes-def by blast
qed

lemma distinguishing-set-finite :
finite-tree (distinguishing-set M )
unfolding distinguishing-set.simps Let-def
using from-list-finite-tree by metis

function (domintros) intersection-is-distinguishing :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c)
prefix-tree ⇒ ′a ⇒ ( ′b × ′c) prefix-tree ⇒ ′a ⇒ bool where

intersection-is-distinguishing M (PT t1 ) q1 (PT t2 ) q2 =
(∃ (x,y) ∈ dom t1 ∩ dom t2 .

case h-obs M q1 x y of
None ⇒ h-obs M q2 x y 6= None |
Some q1 ′⇒ (case h-obs M q2 x y of

None ⇒ True |
Some q2 ′ ⇒ intersection-is-distinguishing M (the (t1 (x,y))) q1 ′ (the (t2

(x,y))) q2 ′))
by pat-completeness auto

termination
proof −

{
fix M :: ( ′a, ′b, ′c) fsm
fix t1
fix q1
fix t2
fix q2

have intersection-is-distinguishing-dom (M , t1 ,q1 , t2 ,q2 )
proof (induction t1 arbitrary: t2 q1 q2 )

case (PT m1 )

obtain m2 where t2 = PT m2
by (metis prefix-tree.exhaust)

have (
∧

xy t1 ′ t2 ′ q1 ′ q2 ′ . m1 xy = Some t1 ′=⇒ intersection-is-distinguishing-dom
(M , t1 ′, q1 ′, t2 ′, q2 ′))

proof −
fix xy t1 ′ t2 ′ q1 ′ q2 ′ assume m1 xy = Some t1 ′

then have Some t1 ′ ∈ range m1
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by (metis range-eqI )

show intersection-is-distinguishing-dom (M , t1 ′, q1 ′, t2 ′, q2 ′)
using PT (1 )[OF ‹Some t1 ′ ∈ range m1 ›]
by simp

qed

then show ?case
using intersection-is-distinguishing.domintros[of q1 M q2 m1 m2 ] unfolding

‹t2 = PT m2 › by blast
qed

}
then show ?thesis by auto

qed

lemma intersection-is-distinguishing-code[code] :
intersection-is-distinguishing M (MPT t1 ) q1 (MPT t2 ) q2 =
(∃ (x,y) ∈ Mapping.keys t1 ∩ Mapping.keys t2 .

case h-obs M q1 x y of
None ⇒ h-obs M q2 x y 6= None |
Some q1 ′⇒ (case h-obs M q2 x y of

None ⇒ True |
Some q2 ′ ⇒ intersection-is-distinguishing M (the (Mapping.lookup t1

(x,y))) q1 ′ (the (Mapping.lookup t2 (x,y))) q2 ′))
unfolding intersection-is-distinguishing.simps MPT-def
by (simp add: keys-dom-lookup)

lemma intersection-is-distinguishing-correctness :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M

shows intersection-is-distinguishing M t1 q1 t2 q2 = (∃ io . isin t1 io ∧ isin t2 io
∧ distinguishes M q1 q2 io)
(is ?P1 = ?P2 )

proof
show ?P1 =⇒ ?P2
proof (induction t1 arbitrary: t2 q1 q2 )

case (PT m1 )

obtain m2 where t2 = PT m2
using prefix-tree.exhaust by blast

then obtain x y where (x,y) ∈ dom m1 and (x,y) ∈ dom m2
and ∗: case h-obs M q1 x y of

None ⇒ h-obs M q2 x y 6= None |
Some q1 ′⇒ (case h-obs M q2 x y of

None ⇒ True |
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Some q2 ′ ⇒ intersection-is-distinguishing M (the
(m1 (x,y))) q1 ′ (the (m2 (x,y))) q2 ′)

using PT .prems(1 ) intersection-is-distinguishing.simps by force

obtain t1 ′ where m1 (x,y) = Some t1 ′

using ‹(x,y) ∈ dom m1 › by auto
then have isin (PT m1 ) [(x,y)]

by auto

obtain t2 ′ where m2 (x,y) = Some t2 ′

using ‹(x,y) ∈ dom m2 › by auto
then have isin t2 [(x,y)]

unfolding ‹t2 = PT m2 › by auto

show ?case proof (cases h-obs M q1 x y)
case None
then have h-obs M q2 x y 6= None

using ∗ by auto
then have [(x,y)] ∈ LS M q2

unfolding LS-single-transition h-obs-None[OF ‹observable M ›]
by fastforce

moreover have [(x,y)] /∈ LS M q1
using None unfolding LS-single-transition h-obs-None[OF ‹observable M ›]
by auto

ultimately have distinguishes M q1 q2 [(x,y)]
unfolding distinguishes-def by blast

then show ?thesis
using ‹isin (PT m1 ) [(x,y)]› ‹isin t2 [(x,y)]› by blast

next
case (Some q1 ′)
then have [(x,y)] ∈ LS M q1

unfolding LS-single-transition h-obs-Some[OF ‹observable M ›]
using insert-compr by fastforce

show ?thesis proof (cases h-obs M q2 x y)
case None
then have [(x,y)] /∈ LS M q2

unfolding LS-single-transition h-obs-None[OF ‹observable M ›]
by auto

then have distinguishes M q1 q2 [(x,y)]
using ‹[(x,y)] ∈ LS M q1 › unfolding distinguishes-def by blast

then show ?thesis
using ‹isin (PT m1 ) [(x,y)]› ‹isin t2 [(x,y)]› by blast

next
case (Some q2 ′)
then have intersection-is-distinguishing M (the (m1 (x,y))) q1 ′ (the (m2

(x,y))) q2 ′

using ‹h-obs M q1 x y = Some q1 ′› ∗ by auto

811



moreover have (the (m1 (x,y))) = t1 ′

using ‹m1 (x,y) = Some t1 ′› by auto
moreover have (the (m2 (x,y))) = t2 ′

using ‹m2 (x,y) = Some t2 ′› by auto
ultimately have intersection-is-distinguishing M t1 ′ q1 ′ t2 ′ q2 ′

by simp
then have ∃ io. isin t1 ′ io ∧ isin t2 ′ io ∧ distinguishes M q1 ′ q2 ′ io

using PT .IH [of Some t1 ′ t1 ′ q1 ′ t2 ′ q2 ′]
by (metis ‹m1 (x, y) = Some t1 ′› option.set-intros rangeI )

then obtain io where isin t1 ′ io
and isin t2 ′ io
and distinguishes M q1 ′ q2 ′ io

by blast

have isin (PT m1 ) ((x,y)#io)
using ‹m1 (x, y) = Some t1 ′› ‹isin t1 ′ io› by auto

moreover have isin t2 ((x,y)#io)
using ‹t2 = PT m2 › ‹m2 (x, y) = Some t2 ′› ‹isin t2 ′ io› by auto

moreover have distinguishes M q1 q2 ((x,y)#io)
using h-obs-language-iff [OF ‹observable M ›, of x y io q1 ] unfolding

‹h-obs M q1 x y = Some q1 ′›
using h-obs-language-iff [OF ‹observable M ›, of x y io q2 ] unfolding

Some
using ‹distinguishes M q1 ′ q2 ′ io›
unfolding distinguishes-def
by auto

ultimately show ?thesis
by blast

qed
qed

qed

show ?P2 =⇒ ?P1
proof −

assume ?P2
then obtain io where isin t1 io

and isin t2 io
and distinguishes M q1 q2 io

by blast
then show ?P1
using assms(2 ,3 ) proof (induction io arbitrary: t1 t2 q1 q2 )

case Nil
then have [] ∈ LS M q1 ∩ LS M q2

by auto
then have ¬ distinguishes M q1 q2 []

unfolding distinguishes-def by blast
then show ?case

using ‹distinguishes M q1 q2 []› by simp
next
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case (Cons a io)

obtain x y where a = (x,y)
by fastforce

obtain m1 where t1 = PT m1
using prefix-tree.exhaust by blast

obtain t1 ′ where m1 (x,y) = Some t1 ′

and isin t1 ′ io
using ‹isin t1 (a # io)› unfolding ‹a = (x,y)› ‹t1 = PT m1 › isin.simps
using case-optionE by blast

obtain m2 where t2 = PT m2
using prefix-tree.exhaust by blast

obtain t2 ′ where m2 (x,y) = Some t2 ′

and isin t2 ′ io
using ‹isin t2 (a # io)› unfolding ‹a = (x,y)› ‹t2 = PT m2 › isin.simps
using case-optionE by blast

then have (x,y) ∈ dom m1 ∩ dom m2
using ‹m1 (x,y) = Some t1 ′› by auto

show ?case proof (cases h-obs M q1 x y)
case None
then have [(x,y)] /∈ LS M q1

unfolding LS-single-transition h-obs-None[OF ‹observable M ›]
by auto

then have a#io /∈ LS M q1
unfolding ‹a = (x,y)›
by (metis None assms(1 ) h-obs-language-iff option.distinct(1 ))

then have a#io ∈ LS M q2
using ‹distinguishes M q1 q2 (a#io)› unfolding distinguishes-def by blast
then have [(x,y)] ∈ LS M q2

unfolding ‹a = (x,y)›
using language-prefix
by (metis append-Cons append-Nil)

then have h-obs M q2 x y 6= None
unfolding h-obs-None[OF ‹observable M ›] LS-single-transition by force

then show ?thesis
using None ‹(x,y) ∈ dom m1 ∩ dom m2 › unfolding ‹t1 = PT m1 › ‹t2

= PT m2 ›
by force

next
case (Some q1 ′)
then have [(x,y)] ∈ LS M q1

unfolding LS-single-transition h-obs-Some[OF ‹observable M ›]
by (metis Some assms(1 ) fst-conv h-obs-None option.distinct(1 ) snd-conv)
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show ?thesis proof (cases h-obs M q2 x y)
case None
then show ?thesis
using Some ‹(x,y) ∈ dom m1 ∩ dom m2 › unfolding ‹t1 = PT m1 › ‹t2

= PT m2 ›
unfolding intersection-is-distinguishing.simps

by (metis (no-types, lifting) case-prodI option.case-eq-if option.distinct(1 ))

next
case (Some q2 ′)

have distinguishes M q1 ′ q2 ′ io
using h-obs-language-iff [OF ‹observable M ›, of x y io q1 ] unfolding

‹h-obs M q1 x y = Some q1 ′›
using h-obs-language-iff [OF ‹observable M ›, of x y io q2 ] unfolding

Some
using ‹distinguishes M q1 q2 (a#io)› unfolding ‹a = (x,y)› distin-

guishes-def
by blast

moreover have q1 ′ ∈ states M and q2 ′ ∈ states M
using Some ‹h-obs M q1 x y = Some q1 ′› unfolding h-obs-Some[OF

‹observable M ›]
using fsm-transition-target[where M=M ]
by fastforce+

ultimately have intersection-is-distinguishing M t1 ′ q1 ′ t2 ′ q2 ′

using Cons.IH [OF ‹isin t1 ′ io› ‹isin t2 ′ io›]
by auto

then show ?thesis
using ‹(x,y) ∈ dom m1 ∩ dom m2 › Some ‹h-obs M q1 x y = Some q1 ′›
unfolding ‹t1 = PT m1 › ‹t2 = PT m2 ›
unfolding intersection-is-distinguishing.simps
by (metis (no-types, lifting) ‹m1 (x, y) = Some t1 ′› ‹m2 (x, y) = Some

t2 ′› case-prodI option.case-eq-if option.distinct(1 ) option.sel)
qed

qed
qed

qed
qed

fun contains-distinguishing-trace :: ( ′a, ′b, ′c) fsm ⇒ ( ′b × ′c) prefix-tree ⇒ ′a ⇒
′a ⇒ bool where

contains-distinguishing-trace M T q1 q2 = intersection-is-distinguishing M T q1
T q2

lemma contains-distinguishing-trace-code[code] :
contains-distinguishing-trace M (MPT t1 ) q1 q2 =
(∃ (x,y) ∈ Mapping.keys t1 .

case h-obs M q1 x y of
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None ⇒ h-obs M q2 x y 6= None |
Some q1 ′⇒ (case h-obs M q2 x y of

None ⇒ True |
Some q2 ′ ⇒ contains-distinguishing-trace M (the (Mapping.lookup t1

(x,y))) q1 ′ q2 ′))
unfolding intersection-is-distinguishing.simps MPT-def
by (simp add: keys-dom-lookup)

lemma contains-distinguishing-trace-correctness :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M

shows contains-distinguishing-trace M t q1 q2 = (∃ io . isin t io ∧ distinguishes
M q1 q2 io)

using intersection-is-distinguishing-correctness[OF assms]
by simp

fun distinguishing-set-reduced :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒
( ′b × ′c) prefix-tree where

distinguishing-set-reduced M = (let
pairs = filter (λ (q,q ′) . q 6= q ′) (list-ordered-pairs (states-as-list M ));
handlePair = (λ W (q,q ′) . if contains-distinguishing-trace M W q q ′

then W
else insert W (get-distinguishing-sequence-from-ofsm-tables

M q q ′))
in foldl handlePair empty pairs)

lemma distinguishing-set-reduced-distinguishes :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows ∃ io ∈ set (distinguishing-set-reduced M ) . distinguishes M q1 q2 io
proof −

define pairs where pairs: pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs
(states-as-list M ))

define handlePair where handlePair = (λ W (q,q ′) . if contains-distinguishing-trace
M W q q ′

then W
else insert W (get-distinguishing-sequence-from-ofsm-tables

M q q ′))

have distinguishing-set-reduced M = foldl handlePair empty pairs
unfolding distinguishing-set-reduced.simps handlePair-def pairs Let-def by
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metis

have handlePair-subset:
∧

W q q ′ . set W ⊆ set (handlePair W (q,q ′))
unfolding handlePair-def
using insert-set unfolding case-prod-conv
by (metis (mono-tags) Un-upper1 order-refl)

have q1 ∈ list.set (states-as-list M ) and q2 ∈ list.set (states-as-list M )
unfolding states-as-list-set using assms(3 ,4 ) by blast+

then have (q1 ,q2 ) ∈ list.set pairs ∨ (q2 ,q1 ) ∈ list.set pairs
using list-ordered-pairs-set-containment[OF - - assms(5 )] assms(5 ) unfolding

pairs by auto
moreover have

∧
pairs ′ . list.set pairs ′ ⊆ list.set pairs =⇒ (q1 ,q2 ) ∈ list.set

pairs ′ ∨ (q2 ,q1 ) ∈ list.set pairs ′ =⇒ (∃ io ∈ set (foldl handlePair empty pairs ′) .
distinguishes M q1 q2 io)

proof −
fix pairs ′ assume list.set pairs ′ ⊆ list.set pairs and (q1 ,q2 ) ∈ list.set pairs ′ ∨

(q2 ,q1 ) ∈ list.set pairs ′

then show (∃ io ∈ set (foldl handlePair empty pairs ′) . distinguishes M q1 q2
io)

proof (induction pairs ′ rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc qq qqs)

define W where W = foldl handlePair empty qqs
have foldl handlePair empty (qqs@[qq]) = handlePair W qq

unfolding W-def by auto
then have W-subset: set W ⊆ set (foldl handlePair empty (qqs@[qq]))

by (metis handlePair-subset prod.collapse)

have handlePair-sym : handlePair W (q1 ,q2 ) = handlePair W (q2 ,q1 )
unfolding handlePair-def case-prod-conv
unfolding contains-distinguishing-trace-correctness[OF assms(1 ,3 ,4 )] con-

tains-distinguishing-trace-correctness[OF assms(1 ,4 ,3 )]
unfolding get-distinguishing-sequence-from-ofsm-tables-sym[OF assms]
using distinguishes-sym
by metis

show ?case proof (cases qq = (q1 ,q2 ) ∨ qq = (q2 ,q1 ))
case True
then have foldl handlePair empty (qqs@[qq]) = handlePair W (q1 ,q2 )

unfolding ‹foldl handlePair empty (qqs@[qq]) = handlePair W qq›
using handlePair-sym
by auto
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show ?thesis proof (cases contains-distinguishing-trace M W q1 q2 )
case True
then show ?thesis

unfolding contains-distinguishing-trace-correctness[OF assms(1 ,3 ,4 )]
using W-subset
by auto

next
case False

then have foldl handlePair empty (qqs@[qq]) = insert W (get-distinguishing-sequence-from-ofsm-tables
M q1 q2 )

unfolding ‹foldl handlePair empty (qqs@[qq]) = handlePair W (q1 ,q2 )›
unfolding handlePair-def case-prod-conv
by auto
then have get-distinguishing-sequence-from-ofsm-tables M q1 q2 ∈ set

(foldl handlePair empty (qqs@[qq]))
using insert-isin
by metis

then show ?thesis
using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms]

by blast
qed

next
case False
then have (q1 , q2 ) ∈ list.set qqs ∨ (q2 , q1 ) ∈ list.set qqs

using snoc.prems by auto
then show ?thesis using snoc W-subset unfolding W-def

by (meson dual-order .trans list-prefix-subset subsetD)
qed

qed
qed
ultimately show ?thesis

unfolding ‹distinguishing-set-reduced M = foldl handlePair empty pairs›
by blast

qed

lemma distinguishing-set-reduced-finite :
finite-tree (distinguishing-set-reduced M )

proof −
define pairs where pairs: pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs

(states-as-list M ))

define handlePair where handlePair = (λ W (q,q ′) . if contains-distinguishing-trace
M W q q ′

then W
else insert W (get-distinguishing-sequence-from-ofsm-tables

M q q ′))
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have distinguishing-set-reduced M = foldl handlePair empty pairs
unfolding distinguishing-set-reduced.simps handlePair-def pairs Let-def by

metis

show ?thesis
unfolding ‹distinguishing-set-reduced M = foldl handlePair empty pairs›

proof (induction pairs rule: rev-induct)
case Nil
then show ?case using empty-finite-tree by auto

next
case (snoc qq qqs)
define W where W = foldl handlePair empty qqs
have foldl handlePair empty (qqs@[qq]) = handlePair W qq

unfolding W-def by auto

have finite-tree W
using snoc W-def by auto

then show ?case
unfolding ‹foldl handlePair empty (qqs@[qq]) = handlePair W qq›
unfolding handlePair-def
using insert-finite-tree[of W ]
by (simp add: case-prod-unfold)

qed
qed

fun add-distinguishing-set :: ( ′a :: linorder , ′b :: linorder , ′c :: linorder) fsm ⇒
(( ′b× ′c) list × ′a) × (( ′b× ′c) list × ′a) ⇒ ( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) prefix-tree
where

add-distinguishing-set M - t = distinguishing-set M

lemma add-distinguishing-set-distinguishes :
assumes observable M
and minimal M
and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β

shows ∃ io ∈ set (add-distinguishing-set M ((α,after-initial M α),(β,after-initial
M β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes M (after-initial M α)
(after-initial M β) io
using distinguishing-set-distinguishes[OF assms(1 ,2 ) after-is-state[OF assms(1 ,3 )]

after-is-state[OF assms(1 ,4 )] assms(5 )]
by force

lemma add-distinguishing-set-finite :
finite-tree ((add-distinguishing-set M ) x t)
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unfolding add-distinguishing-set.simps distinguishing-set.simps Let-def
using from-list-finite-tree
by simp

21.7 Transition Sorting
definition sort-unverified-transitions-by-state-cover-length :: ( ′a :: linorder , ′b ::
linorder , ′c :: linorder) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′a, ′b, ′c) tran-
sition list ⇒ ( ′a, ′b, ′c) transition list where

sort-unverified-transitions-by-state-cover-length M V ts = (let
default-weight = 2 ∗ size M ;

weights = mapping-of (map (λt . (t, length (V (t-source t)) + length (V
(t-target t)))) ts);

weight = (λq . case Mapping.lookup weights q of Some w ⇒ w | None ⇒
default-weight)

in mergesort-by-rel (λ t1 t2 . weight t1 ≤ weight t2 ) ts)

lemma sort-unverified-transitions-by-state-cover-length-retains-set :
List.set xs = List.set (sort-unverified-transitions-by-state-cover-length M1 (get-state-cover

M1 ) xs)
unfolding sort-unverified-transitions-by-state-cover-length-def Let-def
unfolding set-mergesort-by-rel
by simp

end

22 Test Suites for Language Equivalence

This file introduces a type for test suites represented as a prefix tree in which
each IO-pair is additionally labeled by a boolean value representing whether
the IO-pair should be exhibited by the SUT in order to pass the test suite.
theory Test-Suite-Representations
imports ../Minimisation ../Prefix-Tree
begin

type-synonym ( ′b, ′c) test-suite = (( ′b × ′c) × bool) prefix-tree

function (domintros) test-suite-from-io-tree :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b × ′c)
prefix-tree ⇒ ( ′b, ′c) test-suite where

test-suite-from-io-tree M q (PT m) = PT (λ ((x,y),b) . case m (x,y) of
None ⇒ None |
Some t ⇒ (case h-obs M q x y of

None ⇒ (if b then None else Some empty) |
Some q ′⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else None)))

by pat-completeness auto
termination
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proof −
{

fix M :: ( ′a, ′b, ′c) fsm
fix q t

have test-suite-from-io-tree-dom (M ,q,t)
proof (induction t arbitrary: M q)

case (PT m)
then have

∧
x y t q ′. m (x, y) = Some t =⇒ test-suite-from-io-tree-dom (M ,

q ′, t)
by blast

then show ?case
using test-suite-from-io-tree.domintros[of m q M ] by auto

qed
}
then show ?thesis by auto

qed

22.1 Transforming an IO-prefix-tree to a test suite
lemma test-suite-from-io-tree-set :

assumes observable M
and q ∈ states M

shows (set (test-suite-from-io-tree M q t)) = ((λ xs . map (λ x . (x,True)) xs)
‘ (set t ∩ LS M q))

∪ ((λ xs . (map (λ x . (x,True)) (butlast
xs))@[(last xs,False)]) ‘ {xs@[x] | xs x . xs ∈ set t ∩ LS M q ∧ xs@[x] ∈ set t −
LS M q})

(is ?S1 q t = ?S2 q t)
proof

show ?S1 q t ⊆ ?S2 q t
proof

fix xs assume xs ∈ ?S1 q t
then have isin (test-suite-from-io-tree M q t) xs

by auto
then show xs ∈ ?S2 q t

using ‹q ∈ states M ›
proof (induction xs arbitrary: q t)

case Nil

have [] ∈ set t
using Nil.prems(1 ) set-Nil by auto

moreover have [] ∈ LS M q
using Nil.prems(2 ) by auto

ultimately show ?case
by auto

next
case (Cons x ′ xs)
moreover obtain x y b where x ′ = ((x,y),b)

820



by (metis surj-pair)
moreover obtain m where t = PT m

by (meson prefix-tree.exhaust)
ultimately have isin (test-suite-from-io-tree M q (PT m)) (((x,y),b) # xs)

by auto

let ?fi = λ t . (case h-obs M q x y of
None ⇒ (if b then None else Some empty) |

Some q ′ ⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else
None))

let ?fo = case m (x,y) of
None ⇒ None |
Some t ⇒ ?fi t

obtain tst where ?fo = Some tst
using ‹isin (test-suite-from-io-tree M q (PT m)) (((x,y),b) # xs)›
unfolding test-suite-from-io-tree.simps isin.simps by force

then have isin tst xs
using ‹isin (test-suite-from-io-tree M q (PT m)) (((x,y),b) # xs)›
by auto

obtain t ′ where m (x,y) = Some t ′

and ?fi t ′ = Some tst
using ‹?fo = Some tst›

by (metis (no-types, lifting) option.case-eq-if option.collapse option.distinct(1 ))
then consider h-obs M q x y = None ∧ ¬b ∧ tst = empty |

∃ q ′ . h-obs M q x y = Some q ′ ∧ b ∧ tst = test-suite-from-io-tree
M q ′ t ′

unfolding option.case-eq-if
using option.collapse[of h-obs M q x y]
using option.distinct(1 ) option.inject
by metis

then show ?case proof cases
case 1
then have h-obs M q x y = None and b = False and tst = empty

by auto

have isin empty xs
using ‹isin tst xs› ‹tst = empty› by auto

then have xs = []
using set-empty by auto

then have ∗: x ′#xs = [((x,y),b)]
using ‹x ′ = ((x,y),b)› by auto

have [] ∈ LS M q
using ‹q ∈ states M › by auto

moreover have [] ∈ set t
using set-Nil by auto

moreover have [(x,y)] /∈ LS M q
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using ‹h-obs M q x y = None› unfolding h-obs-None[OF ‹observable M ›]
by auto

moreover have isin t [(x,y)]
unfolding ‹t = PT m› isin.simps using ‹m (x,y) = Some t ′›
using isin.elims(3 ) by auto

ultimately have [(x,y)] ∈ {xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ∩ LS M q
∧ xs @ [x] ∈ Prefix-Tree.set t − LS M q}

by auto
moreover have (x ′#xs) = ((λ xs . (map (λ x . (x,True)) (butlast xs))@[(last

xs,False)]) [(x,y)])
unfolding ∗ ‹b = False›
by auto

ultimately show ?thesis
by blast

next
case 2
then obtain q ′ where h-obs M q x y = Some q ′

b = True
tst = test-suite-from-io-tree M q ′ t ′

by blast

have p1 : isin (test-suite-from-io-tree M q ′ t ′) xs
using ‹isin tst xs› ‹tst = test-suite-from-io-tree M q ′ t ′› by auto

have p2 : q ′ ∈ states M
using ‹h-obs M q x y = Some q ′› fsm-transition-target unfolding

h-obs-Some[OF ‹observable M ›]
by fastforce

have xs ∈ ?S2 q ′ t ′

using Cons.IH [OF p1 p2 ] .
then consider (a) xs ∈ map (λx. (x, True)) ‘ (Prefix-Tree.set t ′ ∩ LS M

q ′) |
(b) xs ∈ (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])

‘ {xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ′ ∩ LS M q ′ ∧ xs @ [x] ∈ Prefix-Tree.set t ′

− LS M q ′}
by blast

then show ?thesis proof cases
case a
then obtain xs ′ where xs ′ ∈ set t ′ and xs ′ ∈ LS M q ′

and xs = map (λx. (x, True)) xs ′

by auto

have (x,y)#xs ′ ∈ set t
using ‹xs ′ ∈ set t ′› ‹m (x,y) = Some t ′› unfolding ‹t = PT m› by auto

moreover have (x,y)#xs ′ ∈ LS M q
using ‹h-obs M q x y = Some q ′› ‹xs ′ ∈ LS M q ′› unfolding h-obs-Some[OF

‹observable M ›]
using LS-prepend-transition[of (q,x,y,q ′) M xs ′] by auto

moreover have x ′#xs = map (λx. (x, True)) ((x,y)#xs ′)
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unfolding ‹x ′ = ((x,y),b)› ‹b = True› ‹xs = map (λx. (x, True)) xs ′›
by auto

ultimately show ?thesis
by (metis (no-types, lifting) Int-iff UnI1 image-eqI )

next
case b
then obtain xs ′ where xs ′ ∈ {xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ′ ∩

LS M q ′ ∧ xs @ [x] ∈ Prefix-Tree.set t ′ − LS M q ′}
and xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs,

False)]) xs ′

by blast
moreover obtain bl l where xs ′ = bl @ [l]

using calculation by blast
ultimately have bl ∈ set t ′ and bl ∈ LS M q ′ and bl @ [l] ∈ set t ′ and

bl@[l] /∈ LS M q ′

and xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs,
False)]) (bl@[l])

by auto

have (x,y)#bl ∈ set t
using ‹bl ∈ set t ′› ‹m (x,y) = Some t ′› unfolding ‹t = PT m› by auto

moreover have (x,y)#bl ∈ LS M q
using ‹h-obs M q x y = Some q ′› ‹bl ∈ LS M q ′› unfolding h-obs-Some[OF

‹observable M ›]
using LS-prepend-transition[of (q,x,y,q ′) M bl] by auto

moreover have (x,y)#(bl @ [l]) ∈ set t
using ‹bl @ [l] ∈ set t ′› ‹m (x,y) = Some t ′› unfolding ‹t = PT m› by

auto
moreover have (x,y)#(bl@[l]) /∈ LS M q

using ‹h-obs M q x y = Some q ′› ‹bl@[l] /∈ LS M q ′› unfolding
h-obs-Some[OF ‹observable M ›]

using observable-language-transition-target[OF ‹observable M ›, of
(q,x,y,q ′) bl@[l]]

unfolding fst-conv snd-conv
by blast

ultimately have (x,y)#bl@[l] ∈ {xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ∩
LS M q ∧ xs @ [x] ∈ Prefix-Tree.set t − LS M q}

by fastforce
moreover have x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last

xs, False)]) ((x,y)#(bl@[l]))
unfolding ‹x ′ = ((x,y),b)› ‹b = True› ‹xs = (λxs. map (λx. (x, True))

(butlast xs) @ [(last xs, False)]) (bl@[l])› by auto
ultimately show ?thesis

by fast
qed

qed
qed

qed
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show ?S2 q t ⊆ ?S1 q t
proof

fix xs assume xs ∈ ?S2 q t
then consider xs ∈ map (λx. (x, True)) ‘ (set t ∩ LS M q) |

xs ∈ (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)]) ‘
{xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ∩ LS M q ∧ xs @ [x] ∈ Prefix-Tree.set t −
LS M q}

by blast
then show xs ∈ ?S1 q t proof cases

case 1
then show ?thesis

using ‹q ∈ states M ›
proof (induction xs arbitrary: q t)

case Nil
then show ?case using set-Nil by auto

next
case (Cons x ′ xs)
obtain xs ′′ where xs ′′ ∈ set t and xs ′′ ∈ LS M q

and x ′#xs = map (λx. (x, True)) xs ′′

using Cons.prems(1 )
by (meson IntD1 IntD2 imageE)

then obtain x y xs ′ where (x,y)#xs ′ ∈ set t and (x,y)#xs ′ ∈ LS M q
and x ′#xs = map (λx. (x, True)) ((x,y)#xs ′)

by force
then have x ′ = ((x,y),True) and xs = map (λx. (x, True)) xs ′

by auto

obtain m where t = PT m
by (meson prefix-tree.exhaust)

have isin (PT m) ((x,y)#xs ′)
using ‹(x,y)#xs ′ ∈ set t› unfolding ‹t = PT m› by auto

then obtain t ′ where m (x,y) = Some t ′

and isin t ′ xs ′

by (metis case-optionE isin.simps(2 ))

have [(x,y)] ∈ LS M q
using ‹(x,y)#xs ′ ∈ LS M q› language-prefix[of [(x,y)] xs ′ M q]
by simp

then obtain q ′ where h-obs M q x y = Some q ′

using h-obs-None[OF ‹observable M ›, of q x y] unfolding LS-single-transition
by auto

have isin (test-suite-from-io-tree M q (PT m)) (((x,y),True)#xs)
= isin (test-suite-from-io-tree M q ′ t ′) (xs)

using ‹m (x,y) = Some t ′› ‹h-obs M q x y = Some q ′› by auto
then have ∗: x ′ # xs ∈ set (test-suite-from-io-tree M q t)
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= (xs ∈ set (test-suite-from-io-tree M q ′ t ′))
unfolding ‹t = PT m› ‹x ′ = ((x,y),True)› by auto

have xs ′ ∈ LS M q ′

using ‹h-obs M q x y = Some q ′› unfolding h-obs-Some[OF ‹observable
M ›, of q x y]

using ‹(x,y)#xs ′ ∈ LS M q› observable-language-transition-target[OF
‹observable M ›] by force

moreover have xs ′ ∈ set t ′

using ‹isin t ′ xs ′› by auto
ultimately have p1 : xs ∈ map (λx. (x, True)) ‘ (set t ′ ∩ LS M q ′)

unfolding ‹xs = map (λx. (x, True)) xs ′› by auto

have p2 : q ′ ∈ states M
using ‹h-obs M q x y = Some q ′› fsm-transition-target unfolding

h-obs-Some[OF ‹observable M ›]
by fastforce

show ?case
using Cons.IH [OF p1 p2 ] unfolding ∗ .

qed
next

case 2
then show ?thesis

using ‹q ∈ states M ›
proof (induction xs arbitrary: q t)

case Nil
then show ?case using set-Nil by auto

next
case (Cons x ′ xs)
then obtain xsT where x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @

[(last xs, False)]) xsT
and xsT ∈ {xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ∩ LS M q

∧ xs @ [x] ∈ Prefix-Tree.set t − LS M q}
by blast

moreover obtain bl l where xsT = bl @ [l]
using calculation by auto
ultimately have bl ∈ set t and bl ∈ LS M q and bl @ [l] ∈ set t and

bl@[l] /∈ LS M q
and x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs,

False)]) (bl@[l])
by auto

obtain m where t = PT m
by (meson prefix-tree.exhaust)

show ?case proof (cases xs)
case Nil
then have x ′ = (l,False) and bl = []
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using ‹x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])
(bl@[l])›

by auto
moreover obtain x y where l = (x,y)

using prod.exhaust by metis
ultimately have [(x,y)] ∈ set t and [(x,y)] /∈ LS M q

using ‹bl @ [l] ∈ set t› ‹bl@[l] /∈ LS M q› by auto

obtain t ′ where m (x,y) = Some t ′

using ‹[(x,y)] ∈ set t› unfolding ‹t = PT m› by force
moreover have h-obs M q x y = None

using ‹[(x,y)] /∈ LS M q› unfolding h-obs-None[OF ‹observable M ›]
LS-single-transition by auto

ultimately have isin (test-suite-from-io-tree M q (PT m)) (x ′#xs) = isin
empty []

unfolding Nil ‹x ′ = (l,False)› test-suite-from-io-tree.simps isin.simps ‹l
= (x,y)›

by (simp add: Prefix-Tree.empty-def )
then show ?thesis

using set-Nil unfolding ‹t = PT m› by auto
next

case (Cons x ′′ xs ′′)
then obtain x y bl ′ where bl = (x,y)#bl ′
using ‹x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])

(bl@[l])›
by (metis append.left-neutral butlast-snoc list.inject list.simps(8 )

neq-Nil-conv surj-pair)
then have x ′ = ((x,y),True)

and xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])
(bl ′@[l])

using ‹x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])
(bl@[l])›

by auto

have isin (PT m) ((x,y)#(bl ′@[l]))
using ‹bl@[l] ∈ set t› unfolding ‹bl = (x,y)#bl ′› ‹t = PT m› by auto

then obtain t ′ where m (x,y) = Some t ′

and isin t ′ (bl ′@[l])
unfolding isin.simps
using case-optionE by blast

have [(x,y)] ∈ LS M q
using ‹bl ∈ LS M q› language-prefix[of [(x,y)] bl ′ M q] unfolding ‹bl =

(x,y)#bl ′› by auto
then obtain q ′ where h-obs M q x y = Some q ′

using h-obs-None[OF ‹observable M ›] unfolding LS-single-transition
by force

then have p2 : q ′ ∈ states M
using fsm-transition-target unfolding h-obs-Some[OF ‹observable M ›]
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by fastforce

have bl ′ ∈ set t ′

using ‹isin t ′ (bl ′@[l])› isin-prefix by auto
moreover have bl ′ ∈ LS M q ′

using ‹h-obs M q x y = Some q ′› unfolding h-obs-Some[OF ‹observable
M ›]

using ‹bl ∈ LS M q› observable-language-transition-target[OF ‹observable
M ›]

unfolding ‹bl = (x,y)#bl ′› by force
moreover have bl ′@[l] ∈ set t ′

using ‹isin t ′ (bl ′@[l])› by auto
moreover have bl ′@[l] /∈ LS M q ′

proof −
have (x, y) # (bl ′ @ [l]) /∈ LS M q

using ‹bl@[l] /∈ LS M q› unfolding ‹bl = (x,y)#bl ′› by auto
then show ?thesis
using ‹h-obs M q x y = Some q ′› unfolding h-obs-Some[OF ‹observable

M ›]
using LS-prepend-transition[of (q,x,y,q ′) M bl ′@[l]]
unfolding ‹bl = (x,y)#bl ′› fst-conv snd-conv by blast

qed
ultimately have (bl ′@[l]) ∈ {xs @ [x] |xs x. xs ∈ Prefix-Tree.set t ′ ∩ LS

M q ′ ∧ xs @ [x] ∈ Prefix-Tree.set t ′ − LS M q ′}
by blast

moreover have xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs,
False)]) (bl ′@[l])

using ‹x ′#xs = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])
(bl@[l])›

unfolding Nil ‹bl = (x,y)#bl ′› by auto
ultimately have xs ∈ Prefix-Tree.set (test-suite-from-io-tree M q ′ t ′)

using Cons.IH [of t ′, OF - p2 ] by blast
then have isin (test-suite-from-io-tree M q t) (x ′#xs)

unfolding ‹x ′ = ((x,y),True)› ‹t = PT m›
unfolding test-suite-from-io-tree.simps isin.simps
using ‹m (x,y) = Some t ′› ‹h-obs M q x y = Some q ′› by auto

then show ?thesis
by auto

qed
qed

qed
qed

qed

function (domintros) passes-test-suite :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′b, ′c) test-suite ⇒
bool where

passes-test-suite M q (PT m) = (∀ xyb ∈ dom m . case h-obs M q (fst (fst xyb))
(snd (fst xyb)) of
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None ⇒ ¬(snd xyb) |
Some q ′⇒ snd xyb ∧ passes-test-suite M q ′ (case m xyb of Some t ⇒ t))

by pat-completeness auto
termination
proof −

{
fix M :: ( ′a, ′b, ′c) fsm
fix q t
have passes-test-suite-dom (M ,q,t)
proof (induction t arbitrary: M q)

case (PT m)
then have

∧
ab ba bb y x2 . m ((ab, ba), bb) = Some y =⇒ passes-test-suite-dom

(M , x2 , y)
by blast

then show ?case
using passes-test-suite.domintros[of q M m] by auto

qed
}
then show ?thesis by auto

qed

lemma passes-test-suite-iff :
assumes observable M

and q ∈ states M
shows passes-test-suite M q t = (∀ iob ∈ set t . (map fst iob) ∈ LS M q ←→
list-all snd iob)
proof

show passes-test-suite M q t =⇒ ∀ iob∈Prefix-Tree.set t. (map fst iob ∈ LS M q)
= list-all snd iob

proof
fix iob assume passes-test-suite M q t

and iob ∈ Prefix-Tree.set t
then show (map fst iob ∈ LS M q) = list-all snd iob

using ‹q ∈ states M ›
proof (induction iob arbitrary: q t)

case Nil
then show ?case by auto

next
case (Cons a iob)

obtain m where t = PT m
by (meson prefix-tree.exhaust)

then have isin (PT m) (a#iob)
using ‹a # iob ∈ Prefix-Tree.set t› by simp

moreover obtain x y b where a = ((x,y),b)
by (metis old.prod.exhaust)

ultimately obtain t ′ where m ((x,y),b) = Some t ′

and isin t ′ iob
unfolding isin.simps
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using case-optionE by blast
then have ((x,y),b) ∈ dom m

by auto
then have ∗: (case h-obs M q x y of

None ⇒ ¬b |
Some q ′⇒ b ∧ passes-test-suite M q ′ (case m ((x,y),b) of Some

t ⇒ t))
using ‹passes-test-suite M q t› ‹((x,y),b) ∈ dom m› unfolding ‹t = PT

m› passes-test-suite.simps
by (metis fst-conv snd-conv)

show ?case proof (cases b)
case False
then have h-obs M q x y = None

using ∗
using case-optionE by blast

then have [(x,y)] /∈ LS M q
unfolding h-obs-None[OF ‹observable M ›] by auto

then have (map fst (a#iob)) /∈ LS M q
unfolding ‹a = ((x,y),b)› using language-prefix[of [(x,y)] map fst iob M

q]
by fastforce

then show ?thesis
unfolding ‹a = ((x,y),b)› using False by auto

next
case True
then obtain q ′ where h-obs M q x y = Some q ′

using ∗ case-optionE by blast
then have ∗∗: ((map fst (a#iob)) ∈ LS M q) = ((map fst iob) ∈ LS M q ′)
using observable-language-transition-target[OF ‹observable M ›, of (q,x,y,q ′)

map fst iob]
unfolding ‹a = ((x,y),b)› h-obs-Some[OF ‹observable M ›] fst-conv snd-conv

by (metis (no-types, lifting) LS-prepend-transition fst-conv list.simps(9 )
mem-Collect-eq singletonI snd-conv)

have ∗∗∗: list-all snd (a#iob) = list-all snd iob
unfolding ‹a = ((x,y),b)› using True by auto

have passes-test-suite M q ′ t ′

using ‹passes-test-suite M q t› ‹((x,y),b) ∈ dom m› ‹h-obs M q x y = Some
q ′› True

unfolding ‹t = PT m› passes-test-suite.simps
using ∗ ‹m ((x, y), b) = Some t ′› by auto

moreover have iob ∈ set t ′

using ‹isin t ′ iob› by auto
moreover have q ′ ∈ states M

using ‹h-obs M q x y = Some q ′› fsm-transition-target
unfolding h-obs-Some[OF ‹observable M ›]
by fastforce

ultimately show ?thesis
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using Cons.IH unfolding ∗∗ ∗∗∗ by blast
qed

qed
qed

show ∀ iob∈Prefix-Tree.set t. (map fst iob ∈ LS M q) = list-all snd iob =⇒
passes-test-suite M q t

proof (induction t arbitrary: q)
case (PT m)

have
∧

xyb . xyb ∈ dom m =⇒ case h-obs M q (fst (fst xyb)) (snd (fst xyb))
of None ⇒ ¬ snd xyb | Some q ′⇒ snd xyb ∧ passes-test-suite M q ′ (case m xyb of
Some t ⇒ t)

proof −
fix xyb assume xyb ∈ dom m
moreover obtain x y b where xyb = ((x,y),b)

by (metis old.prod.exhaust)
ultimately obtain t ′ where m ((x,y),b) = Some t ′

by auto
then have isin (PT m) [((x,y),b)]

by auto
then have [((x,y),b)] ∈ set (PT m)

by auto
then have (map fst [((x,y),b)] ∈ LS M q) = list-all snd [((x,y),b)]

using ‹∀ iob∈Prefix-Tree.set (PT m). (map fst iob ∈ LS M q) = list-all snd
iob› by blast

then have ([(x,y)] ∈ LS M q) = b
by auto

show case h-obs M q (fst (fst xyb)) (snd (fst xyb)) of None ⇒ ¬ snd xyb |
Some q ′⇒ snd xyb ∧ passes-test-suite M q ′ (case m xyb of Some t ⇒ t)

proof (cases h-obs M q x y)
case None
then have [(x,y)] /∈ LS M q

unfolding h-obs-None[OF ‹observable M ›] by auto
then have b = False

using ‹([(x,y)] ∈ LS M q) = b› by blast
then show ?thesis

using None unfolding ‹xyb = ((x,y),b)› by auto
next

case (Some q ′)
then have [(x,y)] ∈ LS M q

unfolding h-obs-Some[OF ‹observable M ›] LS-single-transition by force
then have b

using ‹([(x,y)] ∈ LS M q) = b› by blast
moreover have passes-test-suite M q ′ t ′
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proof −
have Some t ′ ∈ range m

using ‹m ((x,y),b) = Some t ′›
by (metis range-eqI )

moreover have t ′ ∈ set-option (Some t ′)
by auto

moreover have ∀ iob∈Prefix-Tree.set t ′. (map fst iob ∈ LS M q ′) = list-all
snd iob

proof
fix iob assume iob ∈ Prefix-Tree.set t ′

then have isin t ′ iob
by auto

then have isin (PT m) (((x,y),b)#iob)
using ‹m ((x,y),b) = Some t ′›
by auto

then have ((x,y),b)#iob ∈ set (PT m)
by auto

then have (map fst (((x,y),b)#iob) ∈ LS M q) = list-all snd (((x,y),b)#iob)
using PT .prems by blast

moreover have (map fst (((x,y),b)#iob) ∈ LS M q) = (map fst iob ∈
LS M q ′)

using observable-language-transition-target[OF ‹observable M ›, of
(q,x,y,q ′) map fst iob]

by (metis (no-types, lifting) LS-prepend-transition Some h-obs-Some[OF
‹observable M ›] fst-conv list.simps(9 ) mem-Collect-eq singletonI snd-conv)

moreover have list-all snd (((x,y),b)#iob) = list-all snd iob
using ‹b› by auto

ultimately show (map fst iob ∈ LS M q ′) = list-all snd iob
by simp

qed
ultimately show ?thesis

using PT .IH by blast
qed
ultimately show ?thesis

using ‹m ((x,y),b) = Some t ′› ‹xyb = ((x,y),b)› Some
by simp

qed
qed
then show ?case

by auto
qed

qed

lemma passes-test-suite-from-io-tree :
assumes observable M
and observable I

831



and qM ∈ states M
and qI ∈ states I

shows passes-test-suite I qI (test-suite-from-io-tree M qM t) = ((set t ∩ LS M qM )
= (set t ∩ LS I qI ))
proof −

define ts where ts = test-suite-from-io-tree M qM t
then have passes-test-suite I qI (test-suite-from-io-tree M qM t) = (∀ iob∈set ts.

(map fst iob ∈ LS I qI ) = list-all snd iob)
using passes-test-suite-iff [OF assms(2 ,4 ), of ts]
by auto

also have . . . = ((set t ∩ LS M qM ) = (set t ∩ LS I qI ))
proof

have ts-set: set ts = map (λx. (x, True)) ‘ (set t ∩ LS M qM ) ∪
(λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)]) ‘
{xs @ [x] |xs x. xs ∈ set t ∩ LS M qM ∧ xs @ [x] ∈ set t −

LS M qM}
using test-suite-from-io-tree-set[OF assms(1 ,3 ), of t] ‹ts = test-suite-from-io-tree

M qM t›
by auto

show ∀ iob∈Prefix-Tree.set ts. (map fst iob ∈ LS I qI ) = list-all snd iob =⇒ set
t ∩ LS M qM = set t ∩ LS I qI

proof −
assume ∀ iob∈Prefix-Tree.set ts. (map fst iob ∈ LS I qI ) = list-all snd iob
then have ts-assm:

∧
iob . iob ∈ set ts =⇒ (map fst iob ∈ LS I qI ) = list-all

snd iob
by blast

show set t ∩ LS M qM = set t ∩ LS I qI
proof

show set t ∩ LS M qM ⊆ set t ∩ LS I qI
proof

fix io assume io ∈ set t ∩ LS M qM
then have map (λx. (x, True)) io ∈ set ts

unfolding ts-set by auto
moreover have list-all snd (map (λx. (x, True)) io)

by (induction io; auto)
moreover have map fst (map (λx. (x, True)) io) = io

by (induction io; auto)
ultimately have io ∈ LS I qI

using ts-assm by force
then show io ∈ set t ∩ LS I qI

using ‹io ∈ set t ∩ LS M qM › by blast
qed

show set t ∩ LS I qI ⊆ set t ∩ LS M qM
proof

fix io assume io ∈ set t ∩ LS I qI
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show io ∈ set t ∩ LS M qM
proof (rule ccontr)

assume io /∈ set t ∩ LS M qM
then have io ∈ LS I qI − LS M qM

using ‹io ∈ set t ∩ LS I qI › by blast
then obtain io ′ xy io ′′ where io = io ′ @ [xy] @ io ′′

and io ′ ∈ LS I qI ∩ LS M qM
and io ′ @ [xy] ∈ LS I qI − LS M qM

using minimal-failure-prefix-ob[OF assms]
by blast

have io ′ ∈ set t ∩ LS M qM
using ‹io ′ ∈ LS I qI ∩ LS M qM › ‹io ∈ set t ∩ LS I qI › isin-prefix[of

t io ′ [xy] @ io ′′] language-prefix[of io ′ [xy] @ io ′′]
unfolding ‹io = io ′ @ [xy] @ io ′′›
by auto

moreover have io ′ @ [xy] ∈ set t − LS M qM
using ‹io ′ @ [xy] ∈ LS I qI − LS M qM › ‹io ∈ set t ∩ LS I qI ›

isin-prefix[of t io ′@[xy] io ′′]
unfolding ‹io = io ′ @ [xy] @ io ′′›
by auto

ultimately have io ′@[xy] ∈ {xs @ [x] |xs x. xs ∈ set t ∩ LS M qM ∧ xs
@ [x] ∈ set t − LS M qM}

by blast
then have (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])

(io ′@[xy]) ∈ set ts
unfolding ts-set by blast

then have (map (λx. (x, True)) io ′ @ [(xy, False)]) ∈ set ts
by auto

moreover have (map fst (map (λx. (x, True)) io ′ @ [(xy, False)]) ∈ LS
I qI ) 6= list-all snd ((map (λx. (x, True)) io ′ @ [(xy, False)]))

proof −
have (map fst (map (λx. (x, True)) io ′ @ [(xy, False)])) = io ′@[xy]

by (induction io ′; auto)
then show ?thesis

using ‹io ′ @ [xy] ∈ set t − LS M qM › ‹io ∈ set t ∩ LS I qI ›
language-prefix[of io ′@[xy] io ′′ I qI ]

unfolding ‹io = io ′ @ [xy] @ io ′′›
by auto

qed
ultimately show False

using ts-assm by blast
qed

qed
qed

qed

show set t ∩ LS M qM = Prefix-Tree.set t ∩ LS I qI =⇒ ∀ iob∈set ts. (map
fst iob ∈ LS I qI ) = list-all snd iob
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proof
fix iob assume set t ∩ LS M qM = set t ∩ LS I qI

and iob ∈ set ts

then consider (a) iob ∈ map (λx. (x, True)) ‘ (set t ∩ LS M qM ) |
(b) iob ∈ (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])

‘
{xs @ [x] |xs x. xs ∈ set t ∩ LS M qM ∧ xs @ [x] ∈ set t −

LS M qM}
using ts-set by blast

then show (map fst iob ∈ LS I qI ) = list-all snd iob
proof cases

case a
then obtain io where iob = map (λx. (x, True)) io

and io ∈ set t ∩ LS M qM
by blast

then have map fst iob = io
by auto

then have map fst iob ∈ LS I qI
using ‹io ∈ set t ∩ LS M qM › ‹set t ∩ LS M qM = set t ∩ LS I qI ›
by auto

moreover have list-all snd iob
unfolding ‹iob = map (λx. (x, True)) io› by (induction io; auto)

ultimately show ?thesis
by simp

next
case b

then obtain ioxy where iob = (λxs. map (λx. (x, True)) (butlast xs) @
[(last xs, False)]) (ioxy)

and ioxy ∈ {xs @ [x] |xs x. xs ∈ set t ∩ LS M qM ∧ xs @
[x] ∈ set t − LS M qM}

by blast
then obtain io xy where ioxy = io@[xy]

and io@[xy] ∈ set t − LS M qM
by blast

then have ∗: iob = map (λx. (x, True)) io @ [(xy, False)]
using ‹iob = (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])

(ioxy)› by auto
then have ∗∗: map fst iob = io@[xy]

by (induction io arbitrary: iob; auto)

have ¬map fst iob ∈ LS I qI
unfolding ∗∗ using ‹io@[xy] ∈ set t − LS M qM › ‹set t ∩ LS M qM =

set t ∩ LS I qI ›
by blast

moreover have ¬ list-all snd iob
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unfolding ∗ by auto
ultimately show ?thesis

by simp
qed

qed
qed
finally show ?thesis .

qed

22.2 Code Refinement
context includes lifting-syntax
begin

lemma map-entries-parametric:
((A ===> B) ===> (A ===> C ===> rel-option D) ===> (B ===>

rel-option C ) ===> A ===> rel-option D)
(λf g m x. case (m ◦ f ) x of None ⇒ None | Some y ⇒ g x y) (λf g m x . case

(m ◦ f ) x of None ⇒ None | Some y ⇒ g x y)
by transfer-prover

end

lift-definition map-entries :: ( ′c ⇒ ′a) ⇒ ( ′c ⇒ ′b ⇒ ′d option) ⇒ ( ′a, ′b) map-
ping ⇒ ( ′c, ′d) mapping

is λf g m x. case (m ◦ f ) x of None ⇒ None | Some y ⇒ g x y parametric
map-entries-parametric .

lemma test-suite-from-io-tree-MPT [code] :
test-suite-from-io-tree M q (MPT m) =

MPT (map-entries
fst
(λ ((x,y),b) t . (case h-obs M q x y of

None ⇒ (if b then None else Some empty) |
Some q ′⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else None)))

m)
(is ?t M q (MPT m) = MPT (?f M q m))

proof −
have

∧
xyb . Mapping.lookup (?f M q m) xyb= (λ ((x,y),b) . case Mapping.lookup

m (x,y) of
None ⇒ None |
Some t ⇒ (case h-obs M q x y of

None ⇒ (if b then None else Some empty) |
Some q ′⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else None))) xyb

(is
∧

xyb. ?f1 xyb = ?f2 xyb)
proof −

fix xyb
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show ?f1 xyb = ?f2 xyb
proof −

obtain x y b where ∗:xyb = ((x,y),b)
by (metis prod.collapse)

show ?thesis proof (cases Mapping.lookup m (fst xyb))
case None

have ?f1 xyb = None
by (metis (no-types, lifting) None lookup.rep-eq map-entries.rep-eq op-

tion.simps(4 ))
moreover have ?f2 xyb = None

using None by (simp add: ∗)
ultimately show ?thesis

by simp
next

case (Some t)

then have ∗∗:?f1 xyb = (λ ((x,y),b) t . (case h-obs M q x y of
None ⇒ (if b then None else Some empty) |
Some q ′ ⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else None)))

xyb t
by (simp add: lookup.rep-eq map-entries.rep-eq)

show ?thesis
unfolding ∗∗ using Some
by (simp add: ∗)

qed
qed

qed
then show ?thesis

unfolding MPT-def by auto
qed

lemma passes-test-suite-MPT [code]:
passes-test-suite M q (MPT m) = (∀ xyb ∈ Mapping.keys m . case h-obs M q (fst

(fst xyb)) (snd (fst xyb)) of
None ⇒ ¬(snd xyb) |
Some q ′ ⇒ snd xyb ∧ passes-test-suite M q ′ (case Mapping.lookup m xyb of

Some t ⇒ t))
by (simp add: MPT-def keys-dom-lookup)

22.3 Pass relations on list of lists representations of test
suites

fun passes-test-case :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ (( ′b × ′c) × bool) list ⇒ bool where
passes-test-case M q [] = True |
passes-test-case M q (((x,y),b)#io) = (if b

836



then case h-obs M q x y of
Some q ′⇒ passes-test-case M q ′ io |
None ⇒ False

else h-obs M q x y = None)

lemma passes-test-case-iff :
assumes observable M
and q ∈ states M
shows passes-test-case M q iob = ((map fst (takeWhile snd iob) ∈ LS M q)

∧ (¬ (list-all snd iob) −→ map fst (take (Suc (length
(takeWhile snd iob))) iob) /∈ LS M q))
using assms(2 ) proof (induction iob arbitrary: q)

case Nil
then show ?case by auto

next
case (Cons a iob)
obtain x y b where a = ((x,y),b)

by (metis prod.collapse)

show ?case proof (cases b)
case True

show ?thesis proof (cases h-obs M q x y)
case None
then have [(x,y)] /∈ LS M q

unfolding h-obs-None[OF assms(1 )] LS-single-transition by force
then have (map fst (takeWhile snd (a#iob)) /∈ LS M q)

unfolding ‹a = ((x,y),b)› using True
by (metis (mono-tags, opaque-lifting) append.simps(1 ) append.simps(2 )

fst-conv language-prefix list.simps(9 ) prod.sel(2 ) takeWhile.simps(2 ))
moreover have passes-test-case M q (a#iob) = False

using None unfolding ‹a = ((x,y),b)› using True by auto
ultimately show ?thesis

by blast
next

case (Some q ′)
then have passes-test-case M q (a#iob) = passes-test-case M q ′ iob

unfolding ‹a = ((x,y),b)› using True by auto
moreover have (map fst (takeWhile snd (a#iob)) ∈ LS M q) = (map fst

(takeWhile snd iob) ∈ LS M q ′)
proof −

have ∗: map fst (takeWhile snd (a#iob)) = (x,y)#(map fst (takeWhile snd
iob))

using True unfolding ‹a = ((x,y),b)› by auto
show ?thesis

using Some
unfolding ∗ h-obs-Some[OF assms(1 )]
by (metis LS-prepend-transition assms(1 ) fst-conv mem-Collect-eq observ-

able-language-transition-target singletonI snd-conv)
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qed
moreover have (¬ list-all snd (a#iob) −→ map fst (take (Suc (length

(takeWhile snd (a#iob)))) (a#iob)) /∈ LS M q)
= (¬ list-all snd iob −→ map fst (take (Suc (length (takeWhile

snd iob))) iob) /∈ LS M q ′)
proof −

have ∗: map fst (take (Suc (length (takeWhile snd (a#iob)))) (a#iob)) =
(x,y)#(map fst (take (Suc (length (takeWhile snd iob))) iob))

using True unfolding ‹a = ((x,y),b)› by auto
have ∗∗: list-all snd (a#iob) = list-all snd iob

using True unfolding ‹a = ((x,y),b)› by auto
show ?thesis

using Some
unfolding ∗ ∗∗ h-obs-Some[OF assms(1 )]
by (metis LS-prepend-transition assms(1 ) fst-conv mem-Collect-eq observ-

able-language-transition-target prod.sel(2 ) singletonI )
qed
ultimately show ?thesis

unfolding Cons.IH [OF h-obs-state[OF Some]] by simp
qed

next
case False
show ?thesis proof (cases h-obs M q x y)

case None
then have [(x,y)] /∈ LS M q

unfolding h-obs-None[OF assms(1 )] LS-single-transition by force
then have (¬ list-all snd (a#iob) −→ map fst (take (Suc (length (takeWhile

snd (a#iob)))) (a#iob)) /∈ LS M q)
unfolding ‹a = ((x,y),b)› using False by auto

moreover have (map fst (takeWhile snd (a#iob)) ∈ LS M q)
unfolding ‹a = ((x,y),b)› using False Cons.prems by auto

moreover have passes-test-case M q (a#iob) = True
unfolding ‹a = ((x,y),b)› using False None by auto

ultimately show ?thesis
by simp

next
case (Some q ′)
then have [(x,y)] ∈ LS M q

unfolding h-obs-Some[OF assms(1 )] LS-single-transition by force
then have ¬ (¬ list-all snd (a#iob) −→ map fst (take (Suc (length (takeWhile

snd (a#iob)))) (a#iob)) /∈ LS M q)
unfolding ‹a = ((x,y),b)› using False by auto

moreover have passes-test-case M q (a#iob) = False
unfolding ‹a = ((x,y),b)› using False Some by auto

ultimately show ?thesis
by simp

qed
qed

qed
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lemma test-suite-from-io-tree-finite-tree :
assumes observable M
and qM ∈ states M
and finite-tree t

shows finite-tree (test-suite-from-io-tree M qM t)
proof −

have finite (Prefix-Tree.set t ∩ LS M qM )
using assms(3 ) unfolding finite-tree-iff by blast

then have finite (map (λx. (x, True)) ‘ (set t ∩ LS M qM ))
by blast

have ((λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)]) ‘
{xs @ [x] |xs x. xs ∈ set t ∩ LS M qM ∧ xs @ [x] ∈ set t − LS M qM})

⊆ ((λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)]) ‘ (set t))
by blast

moreover have finite ((λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])
‘ (set t))

using assms(3 ) unfolding finite-tree-iff by blast
ultimately have finite ((λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)])

‘
{xs @ [x] |xs x. xs ∈ set t ∩ LS M qM ∧ xs @ [x] ∈ set t − LS M qM})

using finite-subset by blast
then show ?thesis

using ‹finite (map (λx. (x, True)) ‘ (set t ∩ LS M qM ))›
unfolding finite-tree-iff test-suite-from-io-tree-set[OF assms(1 ,2 )]
by blast

qed

lemma passes-test-case-prefix :
assumes observable M
and passes-test-case M q (iob@iob ′)

shows passes-test-case M q iob
using assms(2 ) proof (induction iob arbitrary: q)

case Nil
then show ?case by auto

next
case (Cons a iob)
obtain x y b where a = ((x,y),b)

by (metis prod.collapse)

show ?case proof (cases b)
case False
then show ?thesis

using Cons.prems unfolding ‹a = ((x,y),b)› by auto
next
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case True

show ?thesis proof (cases h-obs M q x y)
case None
then show ?thesis

using Cons.prems unfolding ‹a = ((x,y),b)› by auto
next

case (Some q ′)
then have passes-test-case M q ′ (iob @ iob ′)

using True Cons.prems unfolding ‹a = ((x,y),b)› by auto
then have passes-test-case M q ′ iob

using Cons.IH by auto
then show ?thesis

using True Some unfolding ‹a = ((x,y),b)› by auto
qed

qed
qed

lemma passes-test-cases-of-test-suite :
assumes observable M
and observable I
and qM ∈ states M
and qI ∈ states I
and finite-tree t

shows list-all (passes-test-case I qI ) (sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree
M qM t)) = passes-test-suite I qI (test-suite-from-io-tree M qM t)
(is ?P1 = ?P2 )

proof

have list.set (sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M
qM t)) =

{y ∈ Prefix-Tree.set (test-suite-from-io-tree M qM t). @ y ′. y ′ 6= [] ∧ y @ y ′

∈ Prefix-Tree.set (test-suite-from-io-tree M qM t)}
using sorted-list-of-maximal-sequences-in-tree-set[OF test-suite-from-io-tree-finite-tree[OF

assms(1 ,3 ,5 )]] .

show ?P1 =⇒ ?P2
proof −

assume ?P1
show ?P2

unfolding passes-test-suite-iff [OF assms(2 ,4 )]
proof

fix iob assume iob ∈ Prefix-Tree.set (test-suite-from-io-tree M qM t)

then obtain iob ′ where iob@iob ′∈ list.set (sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M qM t))

unfolding sorted-list-of-maximal-sequences-in-tree-set[OF test-suite-from-io-tree-finite-tree[OF
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assms(1 ,3 ,5 )]]
using test-suite-from-io-tree-finite-tree[OF assms(1 ,3 ,5 )] unfolding fi-

nite-tree-iff
using prefix-free-set-maximal-list-ob[of set (test-suite-from-io-tree M qM t)]
by blast

then have passes-test-case I qI (iob@iob ′)
using ‹?P1 ›
by (metis in-set-conv-decomp-last list-all-append list-all-simps(1 ))

then have passes-test-case I qI iob
using passes-test-case-prefix[OF assms(2 )] by auto

then have map fst (takeWhile snd iob) ∈ LS I qI
and (¬ list-all snd iob −→ map fst (take (Suc (length (takeWhile snd

iob))) iob) /∈ LS I qI )
unfolding passes-test-case-iff [OF assms(2 ,4 )]
by auto

have list-all snd iob =⇒ (map fst iob ∈ LS I qI )
using ‹map fst (takeWhile snd iob) ∈ LS I qI ›

by (metis in-set-conv-decomp-last list-all-append list-all-simps(1 ) take-
While-eq-all-conv)

moreover have (map fst iob ∈ LS I qI ) =⇒ list-all snd iob
using ‹(¬ list-all snd iob −→ map fst (take (Suc (length (takeWhile snd

iob))) iob) /∈ LS I qI )›
by (metis append-take-drop-id language-prefix map-append)

ultimately show (map fst iob ∈ LS I qI ) = list-all snd iob
by blast

qed
qed

show ?P2 =⇒ ?P1
proof −

assume ?P2

have
∧

iob . iob ∈ list.set (sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree
M qM t)) =⇒ passes-test-case I qI iob

proof −
fix iob

assume iob ∈ list.set (sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree
M qM t))

then have iob ∈ set (test-suite-from-io-tree M qM t)
unfolding sorted-list-of-maximal-sequences-in-tree-set[OF test-suite-from-io-tree-finite-tree[OF

assms(1 ,3 ,5 )]]
by blast

then have ∗: (map fst iob ∈ LS I qI ) = list-all snd iob
using ‹?P2 › unfolding passes-test-suite-iff [OF assms(2 ,4 )]
by blast

consider iob ∈ map (λx. (x, True)) ‘ (Prefix-Tree.set t ∩ LS M qM ) |
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iob ∈ (λxs. map (λx. (x, True)) (butlast xs) @ [(last xs, False)]) ‘ {xs
@ [x] |xs x. xs ∈ Prefix-Tree.set t ∩ LS M qM ∧ xs @ [x] ∈ Prefix-Tree.set t − LS
M qM}

using ‹iob ∈ set (test-suite-from-io-tree M qM t)›
unfolding test-suite-from-io-tree-set[OF assms(1 ,3 )]
by blast

then show passes-test-case I qI iob proof cases
case 1
then obtain io where iob = map (λx. (x, True)) io

by blast
have list-all snd iob

unfolding ‹iob = map (λx. (x, True)) io› by (induction io; auto)
then have (takeWhile snd iob) = iob

by (induction iob; auto)

have map fst (takeWhile snd iob) ∈ LS I qI
using ∗ ‹list-all snd iob›
by (simp add: ‹takeWhile snd iob = iob›)

then show ?thesis
unfolding passes-test-case-iff [OF assms(2 ,4 )]
using ‹list-all snd iob›
by auto

next
case 2
then obtain xs x where iob = (λxs. map (λx. (x, True)) (butlast xs) @

[(last xs, False)]) (xs@[x])
and xs ∈ set t ∩ LS M qM
and xs @ [x] ∈ Prefix-Tree.set t − LS M qM

by blast
then have ∗∗: iob = (map (λx. (x, True)) xs) @ [(x,False)]

by auto

have isin (test-suite-from-io-tree M qM t) ((takeWhile snd iob)@(dropWhile
snd iob))

using ‹iob ∈ set (test-suite-from-io-tree M qM t)› by auto
then have (takeWhile snd iob) ∈ set (test-suite-from-io-tree M qM t)

using isin-prefix[of test-suite-from-io-tree M qM t takeWhile snd iob
dropWhile snd iob] by simp

then have (map fst (takeWhile snd iob) ∈ LS I qI ) = list-all snd (takeWhile
snd iob)

using ‹?P2 › unfolding passes-test-suite-iff [OF assms(2 ,4 )]
by blast

moreover have list-all snd (takeWhile snd iob)
by (induction iob; auto)

ultimately have map fst (takeWhile snd iob) ∈ LS I qI
by simp

have ¬ list-all snd iob
using ∗∗ by auto
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moreover have (take (Suc (length (takeWhile snd iob))) iob) = iob
unfolding ‹iob = (map (λx. (x, True)) xs) @ [(x,False)]› by (induction

xs; auto)
ultimately have map fst (take (Suc (length (takeWhile snd iob))) iob) /∈

LS I qI
using ∗ by simp

then show ?thesis
using ‹map fst (takeWhile snd iob) ∈ LS I qI ›
unfolding passes-test-case-iff [OF assms(2 ,4 )]
by simp

qed
qed
then show ?P1

using Ball-set-list-all by blast
qed

qed

lemma passes-test-cases-from-io-tree :
assumes observable M
and observable I
and qM ∈ states M
and qI ∈ states I
and finite-tree t

shows list-all (passes-test-case I qI ) (sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree
M qM t)) = ((set t ∩ LS M qM ) = (set t ∩ LS I qI ))
unfolding passes-test-cases-of-test-suite[OF assms] passes-test-suite-from-io-tree[OF

assms(1−4 )]
by blast

22.4 Alternative Representations
22.4.1 Pass and Fail Traces
type-synonym ( ′b, ′c) pass-traces = ( ′b × ′c) list list
type-synonym ( ′b, ′c) fail-traces = ( ′b × ′c) list list
type-synonym ( ′b, ′c) trace-test-suite = ( ′b, ′c) pass-traces × ( ′b, ′c) fail-traces

fun trace-test-suite-from-tree :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ( ′b ×
′c) prefix-tree ⇒ ( ′b, ′c) trace-test-suite where

trace-test-suite-from-tree M T = (let
(passes ′,fails) = separate-by (is-in-language M (initial M )) (sorted-list-of-sequences-in-tree

T );
passes = sorted-list-of-maximal-sequences-in-tree (from-list passes ′)

in (passes, fails))

lemma trace-test-suite-from-tree-language-equivalence :
assumes observable M and finite-tree T
shows (L M ∩ set T = L M ′ ∩ set T ) = (list.set (fst (trace-test-suite-from-tree

M T )) ⊆ L M ′ ∧ L M ′ ∩ list.set (snd (trace-test-suite-from-tree M T )) = {})
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proof −

obtain passes ′ fails where ∗: (passes ′,fails) = separate-by (is-in-language M
(initial M )) (sorted-list-of-sequences-in-tree T )

by auto

define passes where passes = sorted-list-of-maximal-sequences-in-tree (from-list
passes ′)

have fst (trace-test-suite-from-tree M T ) = passes
using ∗ passes-def by auto

have snd (trace-test-suite-from-tree M T ) = fails
using ∗ passes-def by auto

have list.set passes ′ = L M ∩ set T
using ∗ sorted-list-of-sequences-in-tree-set[OF assms(2 )]
unfolding separate-by.simps
unfolding is-in-language-iff [OF assms(1 ) fsm-initial]
by (metis inter-set-filter old.prod.inject)

moreover have list.set passes ′ ⊆ L M ′ = (list.set passes ⊆ L M ′)
proof −

have
∧

io . io ∈ list.set passes − {[]} =⇒ ∃ io ′ . io@io ′ ∈ list.set passes ′

unfolding passes-def
unfolding sorted-list-of-maximal-sequences-in-tree-set[OF from-list-finite-tree]
unfolding from-list-set by force

moreover have [] ∈ list.set passes ′

unfolding ‹list.set passes ′ = L M ∩ set T › by auto
ultimately have

∧
io . io ∈ list.set passes =⇒ ∃ io ′ . io@io ′ ∈ list.set passes ′

by force
moreover have

∧
io . io ∈ list.set passes ′ =⇒ ∃ io ′ . io@io ′ ∈ list.set passes

proof −
have

∧
io . io ∈ list.set passes ′ =⇒ io ∈ set (from-list passes ′)

unfolding from-list-set by auto
moreover have

∧
io. io ∈ set (from-list passes ′) =⇒ ∃ io ′ . io@io ′ ∈ list.set

passes
unfolding passes-def

unfolding sorted-list-of-maximal-sequences-in-tree-set[OF from-list-finite-tree]
using from-list-finite-tree sorted-list-of-maximal-sequences-in-tree-ob sorted-list-of-maximal-sequences-in-tree-set

by fastforce
ultimately show

∧
io . io ∈ list.set passes ′ =⇒ ∃ io ′ . io@io ′ ∈ list.set

passes
by blast

qed
ultimately show ?thesis

using language-prefix[of - - M ′ initial M ′]
by (meson subset-iff )

qed
moreover have list.set fails = set T − L M
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using ∗ sorted-list-of-sequences-in-tree-set[OF assms(2 )]
unfolding separate-by.simps
unfolding is-in-language-iff [OF assms(1 ) fsm-initial]
by (simp add: set-diff-eq)

ultimately show ?thesis
unfolding ‹fst (trace-test-suite-from-tree M T ) = passes›
unfolding ‹snd (trace-test-suite-from-tree M T ) = fails›
by blast

qed

22.4.2 Input Sequences
fun test-suite-to-input-sequences :: ( ′b::linorder× ′c::linorder) prefix-tree ⇒ ′b list
list where
test-suite-to-input-sequences T = sorted-list-of-maximal-sequences-in-tree (from-list

(map input-portion (sorted-list-of-maximal-sequences-in-tree T )))

lemma test-suite-to-input-sequences-pass :
fixes T :: ( ′b::linorder × ′c::linorder) prefix-tree
assumes finite-tree T
and (L M = L M ′) ←→ (L M ∩ set T = L M ′ ∩ set T )
shows (L M = L M ′)←→ ({io ∈ L M . (∃ xs ∈ list.set (test-suite-to-input-sequences

T ) . ∃ xs ′ ∈ list.set (prefixes xs) . input-portion io = xs ′)}
= {io ∈ L M ′ . (∃ xs ∈ list.set

(test-suite-to-input-sequences T ) . ∃ xs ′ ∈ list.set (prefixes xs) . input-portion io =
xs ′)})
proof −

have ∗:
∧

io :: ( ′b::linorder × ′c::linorder) list .
(∃ xs ∈ list.set (test-suite-to-input-sequences T ) . ∃ xs ′ ∈ list.set

(prefixes xs) . input-portion io = xs ′) = (∃ io ′∈set T . map fst io = map fst io ′)
proof −

fix io :: ( ′b::linorder × ′c::linorder) list

have (∃ io ′∈set T . map fst io = map fst io ′) = (∃ α ∈ list.set (sorted-list-of-maximal-sequences-in-tree
T ) . ∃ α ′ ∈ list.set (prefixes α) . map fst io = map fst α ′)

proof
have ∗:

∧
io ′ . io ′∈set T ←→ (∃ io ′′. io ′@io ′′∈ list.set (sorted-list-of-maximal-sequences-in-tree

T ))
using sorted-list-of-maximal-sequences-in-tree-set[OF assms(1 )]

using assms(1 ) set-prefix sorted-list-of-maximal-sequences-in-tree-ob by
fastforce

show (∃ io ′∈set T . map fst io = map fst io ′) =⇒ (∃ α ∈ list.set (sorted-list-of-maximal-sequences-in-tree
T ) . ∃ α ′ ∈ list.set (prefixes α) . map fst io = map fst α ′)

by (metis append-Nil2 assms(1 ) prefixes-prepend prefixes-set-Nil sorted-list-of-maximal-sequences-in-tree-ob)

show ∃α∈list.set (sorted-list-of-maximal-sequences-in-tree T ). ∃α ′∈list.set
(prefixes α). map fst io = map fst α ′ =⇒ ∃ io ′∈Prefix-Tree.set T . map fst io =
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map fst io ′

by (metis ∗ prefixes-set-ob)
qed

also have . . . = (∃ xs ∈ list.set (map input-portion (sorted-list-of-maximal-sequences-in-tree
T )) . ∃ xs ′ ∈ list.set (prefixes xs) . map fst io = xs ′)

proof −
have ∗: list.set (map input-portion (sorted-list-of-maximal-sequences-in-tree

T )) = input-portion ‘ (list.set (sorted-list-of-maximal-sequences-in-tree T ))
by auto

have ∗∗:
∧

(α :: ( ′b::linorder × ′c::linorder) list) . (∃ α ′ ∈ list.set (prefixes
α) . map fst io = map fst α ′) = (∃ xs ′ ∈ list.set (prefixes (input-portion α)) . map
fst io = xs ′)

proof
fix α :: ( ′b::linorder × ′c::linorder) list
show ∃α ′∈list.set (prefixes α). map fst io = map fst α ′ =⇒ ∃ xs ′∈list.set

(prefixes (map fst α)). map fst io = xs ′

proof −
assume ∃α ′∈list.set (prefixes α). map fst io = map fst α ′

then obtain α ′ α ′′ where α ′@α ′′ = α and map fst io = map fst α ′

unfolding prefixes-set by blast
then show ∃ xs ′∈list.set (prefixes (map fst α)). map fst io = xs ′

unfolding prefixes-set
by auto

qed
show ∃ xs ′∈list.set (prefixes (map fst α)). map fst io = xs ′ =⇒ ∃α ′∈list.set

(prefixes α). map fst io = map fst α ′

proof −
assume ∃ xs ′∈list.set (prefixes (map fst α)). map fst io = xs ′

then obtain xs ′ xs ′′ where xs ′@xs ′′ = (map fst α) and map fst io = xs ′

unfolding prefixes-set by blast
then have map fst (take (length xs ′) α) = map fst io

by (metis ‹∃ xs ′∈list.set (prefixes (map fst α)). map fst io = xs ′›
prefixes-take-iff take-map)

moreover have (take (length xs ′) α) ∈ list.set (prefixes α)
by (metis ‹map fst io = xs ′› calculation length-map prefixes-take-iff )

ultimately show ?thesis
by metis

qed
qed
show ?thesis

unfolding ∗∗ ∗
by blast

qed
also have . . . = (∃ xs ∈ list.set (test-suite-to-input-sequences T ) . ∃ xs ′ ∈

list.set (prefixes xs) . input-portion io = xs ′)
proof

show ∃ xs∈list.set (map (map fst) (sorted-list-of-maximal-sequences-in-tree
T )). ∃ xs ′∈list.set (prefixes xs). map fst io = xs ′=⇒ ∃ xs∈list.set (test-suite-to-input-sequences
T ). ∃ xs ′∈list.set (prefixes xs). map fst io = xs ′
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proof −
assume ∃ xs∈list.set (map (map fst) (sorted-list-of-maximal-sequences-in-tree

T )). ∃ xs ′∈list.set (prefixes xs). map fst io = xs ′

then obtain xs ′ xs ′′ where xs ′@xs ′′∈ list.set (map (map fst) (sorted-list-of-maximal-sequences-in-tree
T ))

and map fst io = xs ′

unfolding prefixes-set by blast
then have ∗:xs ′@xs ′′∈ set (from-list (map (map fst) (sorted-list-of-maximal-sequences-in-tree

T )))
unfolding from-list-set by blast

show ?thesis
using sorted-list-of-maximal-sequences-in-tree-ob[OF from-list-finite-tree ∗]

‹map fst io = xs ′›
unfolding test-suite-to-input-sequences.simps
by (metis append.assoc append-Nil2 prefixes-prepend prefixes-set-Nil)

qed
show ∃ xs∈list.set (test-suite-to-input-sequences T ). ∃ xs ′∈list.set (prefixes xs).

map fst io = xs ′=⇒ ∃ xs∈list.set (map (map fst) (sorted-list-of-maximal-sequences-in-tree
T )). ∃ xs ′∈list.set (prefixes xs). map fst io = xs ′

proof −
assume ∃ xs∈list.set (test-suite-to-input-sequences T ). ∃ xs ′∈list.set (prefixes

xs). map fst io = xs ′

then obtain xs ′ xs ′′ where xs ′@xs ′′ ∈ list.set (test-suite-to-input-sequences
T )

and map fst io = xs ′

unfolding prefixes-set by blast
then have xs ′@xs ′′ = [] ∨ (∃ xs ′′′ . (xs ′@xs ′′)@xs ′′′∈list.set (map (map fst)

(sorted-list-of-maximal-sequences-in-tree T )))
unfolding test-suite-to-input-sequences.simps

unfolding sorted-list-of-maximal-sequences-in-tree-set[OF from-list-finite-tree]

unfolding from-list-set
by blast

then obtain xs ′′′ where (xs ′@xs ′′)@xs ′′′∈list.set (map (map fst) (sorted-list-of-maximal-sequences-in-tree
T ))

by (metis Nil-is-append-conv ‹map fst io = xs ′› append.left-neutral calcu-
lation list.simps(8 ) set-Nil)

then show ?thesis
using ‹map fst io = xs ′›

by (metis append.assoc append.right-neutral prefixes-prepend prefixes-set-Nil)

qed
qed
finally show (∃ xs ∈ list.set (test-suite-to-input-sequences T ) . ∃ xs ′ ∈ list.set

(prefixes xs) . input-portion io = xs ′) = (∃ io ′∈set T . map fst io = map fst io ′)
by presburger

qed
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show ?thesis
unfolding ∗
using equivalence-io-relaxation[OF assms(2 )] .

qed

lemma test-suite-to-input-sequences-pass-alt-def :
fixes T :: ( ′b::linorder × ′c::linorder) prefix-tree
assumes finite-tree T
and (L M = L M ′) ←→ (L M ∩ set T = L M ′ ∩ set T )

shows (L M = L M ′) ←→ (∀ xs ∈ list.set (test-suite-to-input-sequences T ) . ∀
xs ′ ∈ list.set (prefixes xs) . {io ∈ L M . input-portion io = xs ′} = {io ∈ L M ′ .
input-portion io = xs ′})

unfolding test-suite-to-input-sequences-pass[OF assms]
by blast

end

23 Simple Convergence Graphs

This theory introduces a very simple implementation of convergence graphs
that consists of a list of convergent classes represented as sets of traces.
theory Simple-Convergence-Graph
imports Convergence-Graph
begin

23.1 Basic Definitions
type-synonym ′a simple-cg = ′a list fset list

definition simple-cg-empty :: ′a simple-cg where
simple-cg-empty = []

fun simple-cg-lookup :: ( ′a::linorder) simple-cg ⇒ ′a list ⇒ ′a list list where
simple-cg-lookup xs ys = sorted-list-of-fset (finsert ys (foldl (|∪|) fempty (filter

(λx . ys |∈| x) xs)))

fun simple-cg-lookup-with-conv :: ( ′a::linorder) simple-cg ⇒ ′a list ⇒ ′a list list
where

simple-cg-lookup-with-conv g ys = (let
lookup-for-prefix = (λi . let

pref = take i ys;
suff = drop i ys;
pref-conv = (foldl (|∪|) fempty (filter (λx . pref |∈| x)

g))
in fimage (λ pref ′ . pref ′@suff ) pref-conv)
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in sorted-list-of-fset (finsert ys (foldl (λ cs i . lookup-for-prefix i |∪| cs) fempty
[0 ..<Suc (length ys)])))

fun simple-cg-insert ′ :: ( ′a::linorder) simple-cg ⇒ ′a list ⇒ ′a simple-cg where
simple-cg-insert ′ xs ys = (case find (λx . ys |∈| x) xs

of Some x ⇒ xs |
None ⇒ {|ys|}#xs)

fun simple-cg-insert :: ( ′a::linorder) simple-cg ⇒ ′a list ⇒ ′a simple-cg where
simple-cg-insert xs ys = foldl (λ xs ′ ys ′ . simple-cg-insert ′ xs ′ ys ′) xs (prefixes ys)

fun simple-cg-initial :: ( ′a, ′b::linorder , ′c::linorder) fsm ⇒ ( ′b× ′c) prefix-tree ⇒
( ′b× ′c) simple-cg where
simple-cg-initial M1 T = foldl (λ xs ′ ys ′ . simple-cg-insert ′ xs ′ ys ′) simple-cg-empty

(filter (is-in-language M1 (initial M1 )) (sorted-list-of-sequences-in-tree T ))

23.2 Merging by Closure

The following implementation of the merge operation follows the closure
operation described by Simão et al. in Simão, A., Petrenko, A. and Yev-
tushenko, N. (2012), On reducing test length for FSMs with extra states.
Softw. Test. Verif. Reliab., 22: 435-454. https://doi.org/10.1002/stvr.452.
That is, two traces u and v are merged by adding u,v to the list of conver-
gent classes followed by computing the closure of the graph based on two
operations: (1) classes A and B can be merged if there exists some class
C such that C contains some w1, w2 and there exists some w such that A
contains w1.w and B contains w2.w. (2) classes A and B can be merged if
one is a subset of the other.
fun can-merge-by-suffix :: ′a list fset ⇒ ′a list fset ⇒ ′a list fset ⇒ bool where

can-merge-by-suffix x x1 x2 = (∃ α β γ . α |∈| x ∧ β |∈| x ∧ α@γ |∈| x1 ∧ β@γ
|∈| x2 )

lemma can-merge-by-suffix-code[code] :
can-merge-by-suffix x x1 x2 =
(∃ ys ∈ fset x .
∃ ys1 ∈ fset x1 .

is-prefix ys ys1 ∧
(∃ ys ′ ∈ fset x . ys ′@(drop (length ys) ys1 ) |∈| x2 ))

(is ?P1 = ?P2 )
proof

show ?P1 =⇒ ?P2
by (metis append-eq-conv-conj can-merge-by-suffix.elims(2 ) is-prefix-prefix)

show ?P2 =⇒ ?P1
by (metis append-eq-conv-conj can-merge-by-suffix.elims(3 ) is-prefix-prefix)

qed
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fun prefixes-in-list-helper :: ′a ⇒ ′a list list ⇒ (bool × ′a list list) ⇒ bool × ′a list
list where

prefixes-in-list-helper x [] res = res |
prefixes-in-list-helper x ([]#yss) res = prefixes-in-list-helper x yss (True, snd res)
|

prefixes-in-list-helper x ((y#ys)#yss) res =
(if x = y then prefixes-in-list-helper x yss (fst res, ys # snd res)

else prefixes-in-list-helper x yss res)

fun prefixes-in-list :: ′a list ⇒ ′a list ⇒ ′a list list ⇒ ′a list list ⇒ ′a list list where
prefixes-in-list [] prev yss res = (if List.member yss [] then prev#res else res) |
prefixes-in-list (x#xs) prev yss res = (let
(b,yss ′) = prefixes-in-list-helper x yss (False,[])

in if b then prefixes-in-list xs (prev@[x]) yss ′ (prev # res)
else prefixes-in-list xs (prev@[x]) yss ′ res)

fun prefixes-in-set :: ( ′a::linorder) list ⇒ ′a list fset ⇒ ′a list list where
prefixes-in-set xs yss = prefixes-in-list xs [] (sorted-list-of-fset yss) []

value prefixes-in-list [1 ::nat,2 ,3 ,4 ,5 ] []
[ [1 ,2 ,3 ], [1 ,2 ,4 ], [1 ,3 ], [], [1 ], [1 ,5 ,3 ], [2 ,5 ] ] []

value prefixes-in-list-helper (1 ::nat)
[ [1 ,2 ,3 ], [1 ,2 ,4 ], [1 ,3 ], [], [1 ], [1 ,5 ,3 ], [2 ,5 ] ]
(False,[])

lemma prefixes-in-list-helper-prop :
shows fst (prefixes-in-list-helper x yss res) = (fst res ∨ [] ∈ list.set yss) (is ?P1 )

and list.set (snd (prefixes-in-list-helper x yss res)) = list.set (snd res) ∪ {ys .
x#ys ∈ list.set yss} (is ?P2 )
proof −

have ?P1 ∧ ?P2
proof (induction yss arbitrary: res)

case Nil
then show ?case by auto

next
case (Cons ys yss)
show ?case proof (cases ys)

case Nil
then show ?thesis

using Cons.IH by auto
next

case (Cons y ys ′)
show ?thesis proof (cases x = y)

case True
have ∗: prefixes-in-list-helper x (ys # yss) res = prefixes-in-list-helper y yss

(fst res, ys ′ # snd res)
unfolding Cons True by auto
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show ?thesis
using Cons.IH [of (fst res, ys ′ # snd res)]
unfolding ∗
unfolding Cons
unfolding True
by auto

next
case False
then have ∗: prefixes-in-list-helper x (ys # yss) res = prefixes-in-list-helper

x yss res
unfolding Cons by auto

show ?thesis
unfolding ∗
unfolding Cons
using Cons.IH [of res] False
by force

qed
qed

qed
then show ?P1 and ?P2 by blast+

qed

lemma prefixes-in-list-prop :
shows list.set (prefixes-in-list xs prev yss res) = list.set res ∪ {prev@ys | ys . ys ∈
list.set (prefixes xs) ∧ ys ∈ list.set yss}
proof (induction xs arbitrary: prev yss res)

case Nil
show ?case

unfolding prefixes-in-list.simps List.member-def prefixes-set by auto
next

case (Cons x xs)

obtain b yss ′ where prefixes-in-list-helper x yss (False,[]) = (b,yss ′)
using prod.exhaust by metis

then have b = ([] ∈ list.set yss)
and list.set yss ′ = {ys . x#ys ∈ list.set yss}

using prefixes-in-list-helper-prop[of x yss (False,[])]
by auto

show ?case proof (cases b)
case True
then have ∗: prefixes-in-list (x#xs) prev yss res = prefixes-in-list xs (prev@[x])

yss ′ (prev # res)
using ‹prefixes-in-list-helper x yss (False,[]) = (b,yss ′)› by auto

show ?thesis
unfolding ∗
unfolding Cons ‹list.set yss ′ = {ys . x#ys ∈ list.set yss}›
using True unfolding ‹b = ([] ∈ list.set yss)›
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by auto
next

case False
then have ∗: prefixes-in-list (x#xs) prev yss res = prefixes-in-list xs (prev@[x])

yss ′ res
using ‹prefixes-in-list-helper x yss (False,[]) = (b,yss ′)› by auto

show ?thesis
unfolding ∗
unfolding Cons ‹list.set yss ′ = {ys . x#ys ∈ list.set yss}›
using False unfolding ‹b = ([] ∈ list.set yss)›
by auto

qed
qed

lemma prefixes-in-set-prop :
list.set (prefixes-in-set xs yss) = list.set (prefixes xs) ∩ fset yss
unfolding prefixes-in-set.simps
unfolding prefixes-in-list-prop
by auto

lemma can-merge-by-suffix-validity :
assumes observable M1 and observable M2
and

∧
u v . u |∈| x =⇒ v |∈| x =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and

∧
u v . u |∈| x1 =⇒ v |∈| x1 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and

∧
u v . u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and can-merge-by-suffix x x1 x2
and u |∈| (x1 |∪| x2 )
and v |∈| (x1 |∪| x2 )
and u ∈ L M1 and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

obtain α β γ where α |∈| x and β |∈| x and α@γ |∈| x1 and β@γ |∈| x2
using ‹can-merge-by-suffix x x1 x2 › by auto

consider u |∈| x1 | u |∈| x2
using ‹u |∈| (x1 |∪| x2 )› by blast

then show ?thesis proof cases
case 1

then have converge M1 u (α@γ) and converge M2 u (α@γ)
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using ‹u |∈| (x1 |∪| x2 )› assms(4 )[OF - ‹α@γ |∈| x1 › assms(9 ,10 )]
by blast+

then have (α@γ) ∈ L M1 and (α@γ) ∈ L M2
by auto

then have α ∈ L M1 and α ∈ L M2
using language-prefix by metis+

then have converge M1 α β and converge M2 α β
using assms(3 ) ‹α |∈| x› ‹β |∈| x›
by blast+

have converge M1 (α@γ) (β@γ)
using ‹converge M1 α β›
by (meson ‹α @ γ ∈ L M1 › assms(1 ) converge.simps converge-append)

then have β@γ ∈ L M1
by auto

have converge M2 (α@γ) (β@γ)
using ‹converge M2 α β›
by (meson ‹α @ γ ∈ L M2 › assms(2 ) converge.simps converge-append)

then have β@γ ∈ L M2
by auto

consider (11 ) v |∈| x1 | (12 ) v |∈| x2
using ‹v |∈| (x1 |∪| x2 )› by blast

then show ?thesis proof cases
case 11
show ?thesis

using 1 11 assms(10 ) assms(4 ) assms(9 ) by blast
next

case 12
then have converge M1 v (β@γ) and converge M2 v (β@γ)

using assms(5 )[OF ‹β@γ |∈| x2 › - ‹β@γ ∈ L M1 › ‹β@γ ∈ L M2 ›]
by auto

then show ?thesis
using ‹converge M1 (α@γ) (β@γ)› ‹converge M2 (α@γ) (β@γ)› ‹converge

M1 u (α@γ)› ‹converge M2 u (α@γ)›
by auto

qed
next

case 2

then have converge M1 u (β@γ) and converge M2 u (β@γ)
using ‹u |∈| (x1 |∪| x2 )› assms(5 )[OF - ‹β@γ |∈| x2 › assms(9 ,10 )]
by blast+

then have (β@γ) ∈ L M1 and (β@γ) ∈ L M2
by auto

then have β ∈ L M1 and β ∈ L M2
using language-prefix by metis+

then have converge M1 α β and converge M2 α β
using assms(3 )[OF ‹β |∈| x› ‹α |∈| x›]
by auto
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have converge M1 (α@γ) (β@γ)
using ‹converge M1 α β›

using ‹β @ γ ∈ L M1 › ‹β ∈ L M1 › assms(1 ) converge-append con-
verge-append-language-iff by blast

then have α@γ ∈ L M1
by auto

have converge M2 (α@γ) (β@γ)
using ‹converge M2 α β›

using ‹β @ γ ∈ L M2 › ‹β ∈ L M2 › assms(2 ) converge-append converge-append-language-iff
by blast

then have α@γ ∈ L M2
by auto

consider (21 ) v |∈| x1 | (22 ) v |∈| x2
using ‹v |∈| (x1 |∪| x2 )› by blast

then show ?thesis proof cases
case 22
show ?thesis

using 2 22 assms(10 ) assms(5 ) assms(9 ) by blast
next

case 21
then have converge M1 v (α@γ) and converge M2 v (α@γ)

using assms(4 )[OF ‹α@γ |∈| x1 › - ‹α@γ ∈ L M1 › ‹α@γ ∈ L M2 ›]
by auto

then show ?thesis
using ‹converge M1 (α@γ) (β@γ)› ‹converge M2 (α@γ) (β@γ)› ‹converge

M1 u (β@γ)› ‹converge M2 u (β@γ)›
by auto

qed
qed

qed

fun simple-cg-closure-phase-1-helper ′ :: ′a list fset ⇒ ′a list fset ⇒ ′a simple-cg ⇒
(bool × ′a list fset × ′a simple-cg) where

simple-cg-closure-phase-1-helper ′ x x1 xs =
(let (x2s,others) = separate-by (can-merge-by-suffix x x1 ) xs;

x1Union = foldl (|∪|) x1 x2s
in (x2s 6= [],x1Union,others))

lemma simple-cg-closure-phase-1-helper ′-False :
¬fst (simple-cg-closure-phase-1-helper ′ x x1 xs) =⇒ simple-cg-closure-phase-1-helper ′

x x1 xs = (False,x1 ,xs)
unfolding simple-cg-closure-phase-1-helper ′.simps Let-def separate-by.simps
by (simp add: filter-empty-conv)

lemma simple-cg-closure-phase-1-helper ′-True :
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assumes fst (simple-cg-closure-phase-1-helper ′ x x1 xs)
shows length (snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))) < length xs
proof −

have snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs)) = filter (λx2 . ¬
(can-merge-by-suffix x x1 x2 )) xs

by auto
moreover have filter (λx2 . (can-merge-by-suffix x x1 x2 )) xs 6= []

using assms unfolding simple-cg-closure-phase-1-helper ′.simps Let-def sepa-
rate-by.simps

by fastforce
ultimately show ?thesis

using filter-not-all-length[of can-merge-by-suffix x x1 xs]
by metis

qed

lemma simple-cg-closure-phase-1-helper ′-length :
length (snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))) ≤ length xs
by auto

lemma simple-cg-closure-phase-1-helper ′-validity-fst :
assumes observable M1 and observable M2
and

∧
u v . u |∈| x =⇒ v |∈| x =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and

∧
u v . u |∈| x1 =⇒ v |∈| x1 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and

∧
x2 u v . x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒

u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and u |∈| fst (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))
and v |∈| fst (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))
and u ∈ L M1 and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

have ∗:
∧

w . w |∈| fst (snd (simple-cg-closure-phase-1-helper ′ x x1 xs)) =⇒ w
|∈| x1 ∨ (∃ x2 . x2 ∈ list.set xs ∧ w |∈| x2 ∧ can-merge-by-suffix x x1 x2 )

proof −
fix w assume w |∈| fst (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))
then have w |∈| ffUnion (fset-of-list (x1#(filter (can-merge-by-suffix x x1 )

xs)))
using foldl-funion-fsingleton[where xs=(filter (can-merge-by-suffix x x1 ) xs)]
by auto

then obtain x2 where w |∈| x2
and x2 |∈| fset-of-list (x1#(filter (can-merge-by-suffix x x1 ) xs))

using ffUnion-fmember-ob
by metis

then consider x2=x1 | x2 ∈ list.set (filter (can-merge-by-suffix x x1 ) xs)
by (meson fset-of-list-elem set-ConsD)

then show w |∈| x1 ∨ (∃ x2 . x2 ∈ list.set xs ∧ w |∈| x2 ∧ can-merge-by-suffix
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x x1 x2 )
using ‹w |∈| x2 › by (cases; auto)

qed

consider u |∈| x1 | (∃ x2 . x2 ∈ list.set xs ∧ u |∈| x2 ∧ can-merge-by-suffix x
x1 x2 )

using ∗[OF assms(6 )] by blast
then show ?thesis proof cases

case 1

consider (a) v |∈| x1 | (b) (∃ x2 . x2 ∈ list.set xs ∧ v |∈| x2 ∧ can-merge-by-suffix
x x1 x2 )

using ∗[OF assms(7 )] by blast
then show ?thesis proof cases

case a
then show ?thesis using assms(4 )[OF 1 - assms(8 ,9 )] by auto

next
case b

then obtain x2v where x2v ∈ list.set xs and v |∈| x2v and can-merge-by-suffix
x x1 x2v

using ∗[OF assms(6 )]
by blast

then have u |∈| x1 |∪| x2v and v |∈| x1 |∪| x2v
using 1 by auto

show ?thesis
using can-merge-by-suffix-validity[OF assms(1 ,2 ), of x x1 x2v, OF assms(3 ,4 )

assms(5 )[OF ‹x2v ∈ list.set xs›] ‹can-merge-by-suffix x x1 x2v› ‹u |∈| x1 |∪| x2v›
‹v |∈| x1 |∪| x2v› assms(8 ,9 )]

by blast
qed

next
case 2

then obtain x2u where x2u ∈ list.set xs and u |∈| x2u and can-merge-by-suffix
x x1 x2u

using ∗[OF assms(6 )]
by blast

then have u |∈| x1 |∪| x2u
by auto

consider (a) v |∈| x1 | (b) (∃ x2 . x2 ∈ list.set xs ∧ v |∈| x2 ∧ can-merge-by-suffix
x x1 x2 )

using ∗[OF assms(7 )] by blast
then show ?thesis proof cases

case a
then have v |∈| x1 |∪| x2u

by auto
show ?thesis
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using can-merge-by-suffix-validity[OF assms(1 ,2 ), of x x1 x2u, OF assms(3 ,4 )
assms(5 )[OF ‹x2u ∈ list.set xs›] ‹can-merge-by-suffix x x1 x2u› ‹u |∈| x1 |∪| x2u›
‹v |∈| x1 |∪| x2u› assms(8 ,9 )]

by blast
next

case b

then obtain x2v where x2v ∈ list.set xs and v |∈| x2v and can-merge-by-suffix
x x1 x2v

using ∗[OF assms(6 )]
by blast

then have v |∈| x1 |∪| x2v
by auto

have
∧

v . v |∈| x1 |∪| x2u =⇒ converge M1 u v ∧ converge M2 u v
using can-merge-by-suffix-validity[OF assms(1 ,2 ), of x x1 x2u, OF assms(3 ,4 )

assms(5 )[OF ‹x2u ∈ list.set xs›] ‹can-merge-by-suffix x x1 x2u› ‹u |∈| x1 |∪| x2u›
- assms(8 ,9 )]

by blast
have

∧
u . u |∈| x1 |∪| x2v =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1

u v ∧ converge M2 u v
using can-merge-by-suffix-validity[OF assms(1 ,2 ), of x x1 x2v, OF assms(3 ,4 )

assms(5 )[OF ‹x2v ∈ list.set xs›] ‹can-merge-by-suffix x x1 x2v› - ‹v |∈| x1 |∪| x2v›]
by blast

obtain αv βv γv where αv |∈| x and βv |∈| x and αv@γv |∈| x1 and
βv@γv |∈| x2v

using ‹can-merge-by-suffix x x1 x2v› by auto

show ?thesis
using ‹

∧
u. [[u |∈| x1 |∪| x2v; u ∈ L M1 ; u ∈ L M2 ]] =⇒ converge M1 u v

∧ converge M2 u v› ‹
∧

v. v |∈| x1 |∪| x2u =⇒ converge M1 u v ∧ converge M2 u
v› ‹αv @ γv |∈| x1 › by fastforce

qed
qed

qed

lemma simple-cg-closure-phase-1-helper ′-validity-snd :
assumes

∧
x2 u v . x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs)))
and u |∈| x2
and v |∈| x2
and u ∈ L M1 and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

have list.set (snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))) ⊆ list.set xs
by auto

857



then show ?thesis
using assms by blast

qed

fun simple-cg-closure-phase-1-helper :: ′a list fset ⇒ ′a simple-cg ⇒ (bool × ′a
simple-cg) ⇒ (bool × ′a simple-cg) where

simple-cg-closure-phase-1-helper x [] (b,done) = (b,done) |
simple-cg-closure-phase-1-helper x (x1#xs) (b,done) = (let (hasChanged,x1 ′,xs ′)

= simple-cg-closure-phase-1-helper ′ x x1 xs
in simple-cg-closure-phase-1-helper x xs ′ (b ∨

hasChanged, x1 ′ # done))

lemma simple-cg-closure-phase-1-helper-validity :
assumes observable M1 and observable M2
and

∧
u v . u |∈| x =⇒ v |∈| x =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and

∧
x2 u v . x2 ∈ list.set don =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and

∧
x2 u v . x2 ∈ list.set xss =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (simple-cg-closure-phase-1-helper x xss (b,don)))
and u |∈| x2
and v |∈| x2
and u ∈ L M1 and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
using assms(4 ,5 ,6 )

proof (induction length xss arbitrary: xss don b rule: less-induct)
case less
show ?case proof (cases xss)

case Nil
then have x2 ∈ list.set don

using less.prems(3 ) by auto
then show ?thesis

using less.prems(1 ) assms(7 ,8 ,9 ,10 )
by blast

next
case (Cons x1 xs)
obtain b ′ x1 ′ xs ′ where simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)

using prod.exhaust by metis
then have simple-cg-closure-phase-1-helper x xss (b,don) = simple-cg-closure-phase-1-helper

x xs ′ (b ∨ b ′, x1 ′ # don)
unfolding Cons by auto

have ∗:
∧

u v . u |∈| x1 =⇒ v |∈| x1 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge
M1 u v ∧ converge M2 u v

using less.prems(2 )[of x1 ] unfolding Cons
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by (meson list.set-intros(1 ))

have ∗∗:
∧

x2 u v . x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1
=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v

using less.prems(2 ) unfolding Cons
by (meson list.set-intros(2 ))

have ∗∗∗:
∧

u v. u |∈| x1 ′ =⇒ v |∈| x1 ′ =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒
converge M1 u v ∧ converge M2 u v

using simple-cg-closure-phase-1-helper ′-validity-fst[of M1 M2 x x1 xs - -, OF
assms(1 ,2 ,3 ) ∗ ∗∗, of λ a b c . a]

unfolding ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› fst-conv
snd-conv

by blast

have length xs ′ < length xss
using simple-cg-closure-phase-1-helper ′-length[of x x1 xs]
unfolding ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› Cons by

auto

have (
∧

x2 u v. x2 ∈ list.set (x1 ′ # don) =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈
L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using ∗∗∗ less.prems(1 )
by (metis set-ConsD)

have xs ′ = snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))
using ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› by auto

have (
∧

x2 u v. x2 ∈ list.set xs ′ =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒
u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using simple-cg-closure-phase-1-helper ′-validity-snd[of xs ′ M1 ]
unfolding ‹xs ′ = snd (snd (simple-cg-closure-phase-1-helper ′ x x1 xs))›
using ∗∗ simple-cg-closure-phase-1-helper ′-validity-snd by blast

have x2 ∈ list.set (snd (simple-cg-closure-phase-1-helper x xs ′ (b ∨ b ′, x1 ′ #
don)))

using less.prems(3 ) unfolding ‹simple-cg-closure-phase-1-helper x xss (b,don)
= simple-cg-closure-phase-1-helper x xs ′ (b ∨ b ′, x1 ′ # don)› .

then show ?thesis
using less.hyps[OF ‹length xs ′ < length xss› ‹(

∧
x2 u v. x2 ∈ list.set (x1 ′ #

don) =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u
v ∧ converge M2 u v)› ‹(

∧
x2 u v. x2 ∈ list.set xs ′ =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒

u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)›, of x1 ′#don
λ a b c . a λ a b c . a]

by force
qed

qed
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lemma simple-cg-closure-phase-1-helper-length :
length (snd (simple-cg-closure-phase-1-helper x xss (b,don))) ≤ length xss + length

don
proof (induction length xss arbitrary: xss b don rule: less-induct)

case less
show ?case proof (cases xss)

case Nil
then show ?thesis by auto

next
case (Cons x1 xs)
obtain b ′ x1 ′ xs ′ where simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)

using prod.exhaust by metis
then have simple-cg-closure-phase-1-helper x xss (b,don) = simple-cg-closure-phase-1-helper

x xs ′ (b ∨ b ′, x1 ′ # don)
unfolding Cons by auto

have length xs ′ < length xss
using simple-cg-closure-phase-1-helper ′-length[of x x1 xs]
unfolding ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› Cons by

auto
then have length (snd (simple-cg-closure-phase-1-helper x xs ′ (b ∨ b ′, x1 ′#don)))

≤ length xs ′ + length (x1 ′#don)
using less[of xs ′] unfolding Cons by blast

moreover have length xs ′ + length (x1 ′#don) ≤ length xss + length don
using simple-cg-closure-phase-1-helper ′-length[of x x1 xs]
unfolding ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› snd-conv

Cons by auto
ultimately show ?thesis
unfolding ‹simple-cg-closure-phase-1-helper x xss (b,don) = simple-cg-closure-phase-1-helper

x xs ′ (b ∨ b ′, x1 ′ # don)›
by presburger

qed
qed

lemma simple-cg-closure-phase-1-helper-True :
assumes fst (simple-cg-closure-phase-1-helper x xss (False,don))
and xss 6= []

shows length (snd (simple-cg-closure-phase-1-helper x xss (False,don))) < length
xss + length don

using assms
proof (induction length xss arbitrary: xss don rule: less-induct)

case less
show ?case proof (cases xss)

case Nil
then show ?thesis using less.prems(2 ) by auto

next
case (Cons x1 xs)
obtain b ′ x1 ′ xs ′ where simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)
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using prod.exhaust by metis
then have simple-cg-closure-phase-1-helper x xss (False,don) = simple-cg-closure-phase-1-helper

x xs ′ (b ′, x1 ′ # don)
unfolding Cons by auto

show ?thesis proof (cases b ′)
case True
then have length xs ′ < length xs

using simple-cg-closure-phase-1-helper ′-True[of x x1 xs]
unfolding ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› fst-conv

snd-conv
by blast

then have length (snd (simple-cg-closure-phase-1-helper x xs ′ (b ′, x1 ′ # don)))
< length xss + length don

using simple-cg-closure-phase-1-helper-length[of x xs ′ b ′ x1 ′#don]
unfolding Cons
by auto

then show ?thesis
unfolding ‹simple-cg-closure-phase-1-helper x xss (False,don) = sim-

ple-cg-closure-phase-1-helper x xs ′ (b ′, x1 ′ # don)› .
next

case False
then have simple-cg-closure-phase-1-helper x xss (False,don) = simple-cg-closure-phase-1-helper

x xs ′ (False, x1 ′ # don)
using ‹simple-cg-closure-phase-1-helper x xss (False,don) = simple-cg-closure-phase-1-helper

x xs ′ (b ′, x1 ′ # don)›
by auto

then have fst (simple-cg-closure-phase-1-helper x xs ′ (False, x1 ′ # don))
using less.prems(1 ) by auto

have length xs ′ < length xss
using simple-cg-closure-phase-1-helper ′-length[of x x1 xs]
unfolding ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› Cons

by auto

have xs ′ 6= []
using ‹simple-cg-closure-phase-1-helper ′ x x1 xs = (b ′,x1 ′,xs ′)› False
by (metis ‹fst (simple-cg-closure-phase-1-helper x xs ′ (False, x1 ′ # don))›

simple-cg-closure-phase-1-helper .simps(1 ) fst-eqD)

show ?thesis
using less.hyps[OF ‹length xs ′< length xss› ‹fst (simple-cg-closure-phase-1-helper

x xs ′ (False, x1 ′ # don))› ‹xs ′ 6= []›] ‹length xs ′ < length xss›
unfolding ‹simple-cg-closure-phase-1-helper x xss (False,don) = sim-

ple-cg-closure-phase-1-helper x xs ′ (False, x1 ′ # don)›
unfolding Cons
by auto

qed
qed
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qed

fun simple-cg-closure-phase-1 :: ′a simple-cg ⇒ (bool × ′a simple-cg) where
simple-cg-closure-phase-1 xs = foldl (λ (b,xs) x. let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xs

lemma simple-cg-closure-phase-1-validity :
assumes observable M1 and observable M2
and

∧
x2 u v . x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒

u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (simple-cg-closure-phase-1 xs))
and u |∈| x2
and v |∈| x2
and u ∈ L M1 and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

have
∧

xss x2 u v . (
∧

x2 u v . x2 ∈ list.set xss =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒
u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v) =⇒ x2 ∈
list.set (snd (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper x xs
(False,[]) in (b∨b ′,xs ′)) (False,xs) xss)) =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1
=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v

proof −
fix xss x2 u v
assume

∧
x2 u v . x2 ∈ list.set xss =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss))
and u |∈| x2
and v |∈| x2
and u ∈ L M1
and u ∈ L M2

then show converge M1 u v ∧ converge M2 u v
proof (induction xss arbitrary: x2 u v rule: rev-induct)

case Nil
then have x2 ∈ list.set xs

by auto
then show ?case

using Nil.prems(3 ,4 ,5 ,6 ) assms(3 ) by blast
next

case (snoc x xss)

obtain b xss ′ where (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) = (b,xss ′)

using prod.exhaust by metis
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moreover obtain b ′ xss ′′ where simple-cg-closure-phase-1-helper x xss ′

(False,[]) = (b ′,xss ′′)
using prod.exhaust by metis

ultimately have ∗:(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) (xss@[x])) = (b∨b ′,xss ′′)

by auto

have (
∧

u v. u |∈| x =⇒ v |∈| x =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge
M1 u v ∧ converge M2 u v)

using snoc.prems(1 )
by (metis append-Cons list.set-intros(1 ) list-set-sym)

moreover have (
∧

x2 u v. x2 ∈ list.set [] =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u
∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

by auto
moreover have (

∧
x2 u v. x2 ∈ list.set xss ′ =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u

∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)
proof −

have (
∧

x2 u v. x2 ∈ list.set xss =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1
=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using snoc.prems(1 )
by (metis (no-types, lifting) append-Cons append-Nil2 insertCI list.simps(15 )

list-set-sym)
then show (

∧
x2 u v. x2 ∈ list.set xss ′ =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈

L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)
using snoc.IH

unfolding ‹(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) = (b,xss ′)› snd-conv

by blast
qed
ultimately have (

∧
x2 u v. x2 ∈ list.set xss ′′ =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒

u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)
using simple-cg-closure-phase-1-helper-validity[OF assms(1 ,2 ), of x [] xss ′ -

False]
unfolding ‹simple-cg-closure-phase-1-helper x xss ′ (False,[]) = (b ′,xss ′′)›

snd-conv
by blast

then show ?case
using snoc.prems(2 ,3 ,4 ,5 ,6 )
unfolding ∗ snd-conv
by blast

qed
qed

then show ?thesis
using assms(3 ,4 ,5 ,6 ,7 ,8 )
unfolding simple-cg-closure-phase-1 .simps
by blast

qed
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lemma simple-cg-closure-phase-1-length-helper :
length (snd (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper x xs

(False,[]) in (b∨b ′,xs ′)) (False,xs) xss)) ≤ length xs
proof (induction xss rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xss)

obtain b xss ′ where (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) = (b,xss ′)

using prod.exhaust by metis
moreover obtain b ′ xss ′′ where simple-cg-closure-phase-1-helper x xss ′ (False,[])

= (b ′,xss ′′)
using prod.exhaust by metis

ultimately have ∗:(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) (xss@[x])) = (b∨b ′,xss ′′)

by auto

have length xss ′ ≤ length xs
using snoc.IH
unfolding ‹(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper x

xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) = (b,xss ′)›
by auto

moreover have length xss ′′ ≤ length xss ′

using simple-cg-closure-phase-1-helper-length[of x xss ′ False []]
unfolding ‹simple-cg-closure-phase-1-helper x xss ′ (False,[]) = (b ′,xss ′′)›
by auto

ultimately show ?case
unfolding ∗ snd-conv
by simp

qed

lemma simple-cg-closure-phase-1-length :
length (snd (simple-cg-closure-phase-1 xs)) ≤ length xs
using simple-cg-closure-phase-1-length-helper by auto

lemma simple-cg-closure-phase-1-True :
assumes fst (simple-cg-closure-phase-1 xs)
shows length (snd (simple-cg-closure-phase-1 xs)) < length xs

proof −
have

∧
xss . fst (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) =⇒ length (snd (foldl (λ (b,xs) x . let
(b ′,xs ′) = simple-cg-closure-phase-1-helper x xs (False,[]) in (b∨b ′,xs ′)) (False,xs)
xss)) < length xs

proof −
fix xss
assume fst (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper x

xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss)
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then show length (snd (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss)) < length xs

proof (induction xss rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc x xss)

obtain b xss ′ where (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) = (b,xss ′)

using prod.exhaust by metis
moreover obtain b ′ xss ′′ where simple-cg-closure-phase-1-helper x xss ′

(False,[]) = (b ′,xss ′′)
using prod.exhaust by metis

ultimately have (foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper
x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) (xss@[x])) = (b∨b ′,xss ′′)

by auto

consider b | b ′

using snoc.prems
unfolding ‹(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) (xss@[x])) = (b∨b ′,xss ′′)› fst-conv
by blast

then show ?case proof cases
case 1
then have length xss ′ < length xs

using snoc.IH
unfolding ‹(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) xss) = (b,xss ′)› fst-conv snd-conv
by auto

moreover have length xss ′′ ≤ length xss ′

using simple-cg-closure-phase-1-helper-length[of x xss ′ False []]
unfolding ‹simple-cg-closure-phase-1-helper x xss ′ (False,[]) = (b ′,xss ′′)›
by auto

ultimately show ?thesis
unfolding ‹(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) (xss@[x])) = (b∨b ′,xss ′′)› snd-conv
by simp

next
case 2
have length xss ′ ≤ length xs

using simple-cg-closure-phase-1-length-helper [of xss xs]
by (metis ‹foldl (λ(b, xs) x. let (b ′, xs ′) = simple-cg-closure-phase-1-helper x

xs (False, []) in (b ∨ b ′, xs ′)) (False, xs) xss = (b, xss ′)› simple-cg-closure-phase-1-length-helper
snd-conv)

moreover have length xss ′′ < length xss ′

proof −
have xss ′ 6= []

using 2 ‹simple-cg-closure-phase-1-helper x xss ′ (False, []) = (b ′, xss ′′)›
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by auto
then show ?thesis

using simple-cg-closure-phase-1-helper-True[of x xss ′ []] 2
unfolding ‹simple-cg-closure-phase-1-helper x xss ′ (False,[]) = (b ′,xss ′′)›

fst-conv snd-conv
by auto

qed
ultimately show ?thesis
unfolding ‹(foldl (λ (b,xs) x . let (b ′,xs ′) = simple-cg-closure-phase-1-helper

x xs (False,[]) in (b∨b ′,xs ′)) (False,xs) (xss@[x])) = (b∨b ′,xss ′′)› snd-conv
by simp

qed
qed

qed
then show ?thesis

using assms by auto
qed

fun can-merge-by-intersection :: ′a list fset ⇒ ′a list fset ⇒ bool where
can-merge-by-intersection x1 x2 = (∃ α . α |∈| x1 ∧ α |∈| x2 )

lemma can-merge-by-intersection-code[code] :
can-merge-by-intersection x1 x2 = (∃ α ∈ fset x1 . α |∈| x2 )
unfolding can-merge-by-intersection.simps
by metis

lemma can-merge-by-intersection-validity :
assumes

∧
u v . u |∈| x1 =⇒ v |∈| x1 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒

converge M1 u v ∧ converge M2 u v
and

∧
u v . u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge

M1 u v ∧ converge M2 u v
and can-merge-by-intersection x1 x2
and u |∈| (x1 |∪| x2 )
and v |∈| (x1 |∪| x2 )
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

obtain α where α |∈| x1 and α |∈| x2
using assms(3 ) by auto

have converge M1 u α ∧ converge M2 u α
using ‹α |∈| x1 › ‹α |∈| x2 › assms(1 ,2 ,4 ,6 ,7 ) by blast

moreover have converge M1 v α ∧ converge M2 v α
by (metis (no-types, opaque-lifting) ‹α |∈| x1 › ‹α |∈| x2 › assms(1 ) assms(2 )
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assms(5 ) calculation converge.simps funion-iff )
ultimately show ?thesis

by simp
qed

fun simple-cg-closure-phase-2-helper :: ′a list fset ⇒ ′a simple-cg ⇒ (bool × ′a list
fset × ′a simple-cg) where

simple-cg-closure-phase-2-helper x1 xs =
(let (x2s,others) = separate-by (can-merge-by-intersection x1 ) xs;

x1Union = foldl (|∪|) x1 x2s
in (x2s 6= [],x1Union,others))

lemma simple-cg-closure-phase-2-helper-length :
length (snd (snd (simple-cg-closure-phase-2-helper x1 xs))) ≤ length xs
by auto

lemma simple-cg-closure-phase-2-helper-validity-fst :
assumes

∧
u v . u |∈| x1 =⇒ v |∈| x1 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒

converge M1 u v ∧ converge M2 u v
and

∧
x2 u v . x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒

u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and u |∈| fst (snd (simple-cg-closure-phase-2-helper x1 xs))
and v |∈| fst (snd (simple-cg-closure-phase-2-helper x1 xs))
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

have ∗:
∧

w . w |∈| fst (snd (simple-cg-closure-phase-2-helper x1 xs)) =⇒ w |∈|
x1 ∨ (∃ x2 . x2 ∈ list.set xs ∧ w |∈| x2 ∧ can-merge-by-intersection x1 x2 )

proof −
fix w assume w |∈| fst (snd (simple-cg-closure-phase-2-helper x1 xs))
then have w |∈| ffUnion (fset-of-list (x1#(filter (can-merge-by-intersection

x1 ) xs)))
using foldl-funion-fsingleton[where xs=(filter (can-merge-by-intersection x1 )

xs)]
by auto

then obtain x2 where w |∈| x2
and x2 |∈| fset-of-list (x1#(filter (can-merge-by-intersection x1 )

xs))
using ffUnion-fmember-ob
by metis

then consider x2=x1 | x2 ∈ list.set (filter (can-merge-by-intersection x1 ) xs)
by (meson fset-of-list-elem set-ConsD)

then show w |∈| x1 ∨ (∃ x2 . x2 ∈ list.set xs ∧ w |∈| x2 ∧ can-merge-by-intersection
x1 x2 )

using ‹w |∈| x2 › by (cases; auto)
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qed

consider u |∈| x1 | (∃ x2 . x2 ∈ list.set xs ∧ u |∈| x2 ∧ can-merge-by-intersection
x1 x2 )

using ∗[OF assms(3 )] by blast
then show ?thesis proof cases

case 1

consider (a) v |∈| x1 | (b) (∃ x2 . x2 ∈ list.set xs ∧ v |∈| x2 ∧ can-merge-by-intersection
x1 x2 )

using ∗[OF assms(4 )] by blast
then show ?thesis proof cases

case a
then show ?thesis using assms(1 )[OF 1 - assms(5 ,6 )] by auto

next
case b

then obtain x2v where x2v ∈ list.set xs and v |∈| x2v and can-merge-by-intersection
x1 x2v

using ∗[OF assms(3 )]
by blast

show ?thesis
using can-merge-by-intersection-validity[of x1 M1 M2 x2v, OF assms(1 )

assms(2 )[OF ‹x2v ∈ list.set xs›] ‹can-merge-by-intersection x1 x2v›]
using 1 ‹v |∈| x2v› assms(5 ,6 )
by blast

qed
next

case 2
then obtain x2u where x2u ∈ list.set xs and u |∈| x2u and can-merge-by-intersection

x1 x2u
using ∗[OF assms(3 )]
by blast

obtain αu where αu |∈| x1 and αu |∈| x2u
using ‹can-merge-by-intersection x1 x2u› by auto

consider (a) v |∈| x1 | (b) (∃ x2 . x2 ∈ list.set xs ∧ v |∈| x2 ∧ can-merge-by-intersection
x1 x2 )

using ∗[OF assms(4 )] by blast
then show ?thesis proof cases

case a

show ?thesis
using can-merge-by-intersection-validity[of x1 M1 M2 x2u, OF assms(1 )

assms(2 )[OF ‹x2u ∈ list.set xs›] ‹can-merge-by-intersection x1 x2u›]
using ‹u |∈| x2u› a assms(5 ,6 )
by blast

next
case b
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then obtain x2v where x2v ∈ list.set xs and v |∈| x2v and can-merge-by-intersection
x1 x2v

using ∗[OF assms(4 )]
by blast

obtain αv where αv |∈| x1 and αv |∈| x2v
using ‹can-merge-by-intersection x1 x2v› by auto

have
∧

v . v |∈| x1 |∪| x2u =⇒ converge M1 u v ∧ converge M2 u v
using can-merge-by-intersection-validity[of x1 M1 M2 x2u, OF assms(1 )

assms(2 )[OF ‹x2u ∈ list.set xs›] ‹can-merge-by-intersection x1 x2u› - - assms(5 ,6 )]
‹u |∈| x2u›

by blast
have

∧
u . u |∈| x1 |∪| x2v =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1

u v ∧ converge M2 u v
using can-merge-by-intersection-validity[of x1 M1 M2 x2v, OF assms(1 )

assms(2 )[OF ‹x2v ∈ list.set xs›] ‹can-merge-by-intersection x1 x2v› ] ‹v |∈| x2v›
by blast

show ?thesis
using ‹

∧
u. [[u |∈| x1 |∪| x2v; u ∈ L M1 ; u ∈ L M2 ]] =⇒ converge M1 u v

∧ converge M2 u v› ‹
∧

v. v |∈| x1 |∪| x2u =⇒ converge M1 u v ∧ converge M2 u
v› ‹αu |∈| x1 › by fastforce

qed
qed

qed

lemma simple-cg-closure-phase-2-helper-validity-snd :
assumes

∧
x2 u v . x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (snd (simple-cg-closure-phase-2-helper x1 xs)))
and u |∈| x2
and v |∈| x2
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

have list.set (snd (snd (simple-cg-closure-phase-2-helper x1 xs))) ⊆ list.set xs
by auto

then show ?thesis
using assms by blast

qed

lemma simple-cg-closure-phase-2-helper-True :
assumes fst (simple-cg-closure-phase-2-helper x xs)

shows length (snd (snd (simple-cg-closure-phase-2-helper x xs))) < length xs
proof −
have snd (snd (simple-cg-closure-phase-2-helper x xs)) = filter (λx2 . ¬ (can-merge-by-intersection
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x x2 )) xs
by auto

moreover have filter (λx2 . (can-merge-by-intersection x x2 )) xs 6= []
using assms unfolding simple-cg-closure-phase-1-helper ′.simps Let-def sepa-

rate-by.simps
by fastforce

ultimately show ?thesis
using filter-not-all-length[of can-merge-by-intersection x xs]
by metis

qed

function simple-cg-closure-phase-2 ′ :: ′a simple-cg ⇒ (bool × ′a simple-cg)⇒ (bool
× ′a simple-cg) where

simple-cg-closure-phase-2 ′ [] (b,done) = (b,done) |
simple-cg-closure-phase-2 ′ (x#xs) (b,done) = (let (hasChanged,x ′,xs ′) = sim-

ple-cg-closure-phase-2-helper x xs
in if hasChanged then simple-cg-closure-phase-2 ′ xs ′ (True,x ′#done)

else simple-cg-closure-phase-2 ′ xs (b,x#done))
by pat-completeness auto

termination
proof −

{
fix xa :: (bool × ′a list fset × ′a simple-cg)
fix x xs b don xb y xaa ya
assume xa = simple-cg-closure-phase-2-helper x xs
and (xb, y) = xa
and (xaa, ya) = y
and xb

have length ya < Suc (length xs)
using simple-cg-closure-phase-2-helper-True[of x xs] ‹xb›
unfolding ‹xa = simple-cg-closure-phase-2-helper x xs›[symmetric]
unfolding ‹(xb, y) = xa›[symmetric] ‹(xaa, ya) = y›[symmetric]
unfolding fst-conv snd-conv
by auto

then have ((ya, True, xaa # don), x # xs, b, don) ∈ measure (λ(xs, bd). length
xs)

by auto
}
then show ?thesis

apply (relation measure (λ (xs,bd) . length xs))
by force+

qed

lemma simple-cg-closure-phase-2 ′-validity :
assumes

∧
x2 u v . x2 ∈ list.set don =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1
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=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and

∧
x2 u v . x2 ∈ list.set xss =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (simple-cg-closure-phase-2 ′ xss (b,don)))
and u |∈| x2
and v |∈| x2
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
using assms(1 ,2 ,3 )

proof (induction length xss arbitrary: xss b don rule: less-induct)
case less
show ?case proof (cases xss)

case Nil
show ?thesis using less.prems(3 ) less.prems(1 )[OF - assms(4 ,5 ,6 ,7 )] unfold-

ing Nil
by auto

next
case (Cons x xs)

obtain hasChanged x ′ xs ′ where simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)
using prod.exhaust by metis

show ?thesis proof (cases hasChanged)
case True

then have simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs ′ (True,x ′#don)
using ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
unfolding Cons
by auto

have ∗:(
∧

u v. u |∈| x =⇒ v |∈| x =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge
M1 u v ∧ converge M2 u v) and

∗∗:(
∧

x2 u v. x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1
=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using less.prems(2 ) unfolding Cons
by (meson list.set-intros)+

have length xs ′ < length xss
unfolding Cons
using simple-cg-closure-phase-2-helper-True[of x xs] True

unfolding ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
fst-conv snd-conv

by auto
moreover have (

∧
x2 u v. x2 ∈ list.set (x ′ # don) =⇒ u |∈| x2 =⇒ v |∈|

x2 =⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)
using simple-cg-closure-phase-2-helper-validity-fst[of x M1 M2 xs, OF ∗ ∗∗,

of λ a b c . a]
using less.prems(1 )

unfolding ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
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fst-conv snd-conv
using set-ConsD[of - x ′ don]
by blast

moreover have (
∧

x2 u v. x2 ∈ list.set xs ′ =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u
∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using simple-cg-closure-phase-2-helper-validity-snd[of xs M1 M2 - x, OF ∗∗,
of λ a b c . a]

unfolding ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
fst-conv snd-conv

by blast
moreover have x2 ∈ list.set (snd (simple-cg-closure-phase-2 ′ xs ′ (True, x ′

# don)))
using less.prems(3 ) unfolding ‹simple-cg-closure-phase-2 ′ xss (b,don) =

simple-cg-closure-phase-2 ′ xs ′ (True,x ′#don)› .
ultimately show ?thesis

using less.hyps[of xs ′ x ′#don]
by blast

next
case False

then have simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs (b,x#don)
using ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
unfolding Cons
by auto

have length xs < length xss
unfolding Cons by auto

moreover have (
∧

x2 u v. x2 ∈ list.set (x # don) =⇒ u |∈| x2 =⇒ v |∈| x2
=⇒ u ∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using less.prems(1 ,2 ) unfolding Cons
by (metis list.set-intros(1 ) set-ConsD)

moreover have (
∧

x2 u v. x2 ∈ list.set xs =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u
∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using less.prems(2 ) unfolding Cons
by (metis list.set-intros(2 ))
moreover have x2 ∈ list.set (snd (simple-cg-closure-phase-2 ′ xs (b, x #

don)))
using less.prems(3 )

unfolding ‹simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs (b,x#don)›
unfolding Cons .

ultimately show ?thesis
using less.hyps[of xs x#don b]
by blast

qed
qed

qed
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lemma simple-cg-closure-phase-2 ′-length :
length (snd (simple-cg-closure-phase-2 ′ xss (b,don))) ≤ length xss + length don

proof (induction length xss arbitrary: xss b don rule: less-induct)
case less
show ?case proof (cases xss)

case Nil
then show ?thesis by auto

next
case (Cons x xs)

obtain hasChanged x ′ xs ′ where simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)
using prod.exhaust by metis

show ?thesis proof (cases hasChanged)
case True

then have simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs ′ (True,x ′#don)
using ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
unfolding Cons
by auto

have length xs ′ < length xss
using simple-cg-closure-phase-2-helper-True[of x xs] True

unfolding ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
snd-conv fst-conv

unfolding Cons
by auto

then show ?thesis
using less.hyps[of xs ′ True x ′#don]

unfolding ‹simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs ′ (True,x ′#don)›
unfolding Cons by auto

next
case False

then have simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs (b,x#don)
using ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
unfolding Cons
by auto

show ?thesis
using less.hyps[of xs b x#don]

unfolding ‹simple-cg-closure-phase-2 ′ xss (b,don) = simple-cg-closure-phase-2 ′

xs (b,x#don)›
unfolding Cons
by auto

qed
qed

qed
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lemma simple-cg-closure-phase-2 ′-True :
assumes fst (simple-cg-closure-phase-2 ′ xss (False,don))
and xss 6= []

shows length (snd (simple-cg-closure-phase-2 ′ xss (False,don))) < length xss +
length don

using assms
proof (induction length xss arbitrary: xss don rule: less-induct)

case less
show ?case proof (cases xss)

case Nil
then show ?thesis

using less.prems(2 ) by auto
next

case (Cons x xs)
obtain hasChanged x ′ xs ′ where simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)

using prod.exhaust by metis

show ?thesis proof (cases hasChanged)
case True

then have simple-cg-closure-phase-2 ′ xss (False,don) = simple-cg-closure-phase-2 ′

xs ′ (True,x ′#don)
using ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
unfolding Cons
by auto

have length xs ′ < length xs
using simple-cg-closure-phase-2-helper-True[of x xs] True

unfolding ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
snd-conv fst-conv

unfolding Cons
by auto

moreover have length (snd (simple-cg-closure-phase-2 ′ xs ′ (True,x ′#don)))
≤ length xs ′ + length (x ′#don)

using simple-cg-closure-phase-2 ′-length by metis
ultimately show ?thesis
unfolding ‹simple-cg-closure-phase-2 ′ xss (False,don) = simple-cg-closure-phase-2 ′

xs ′ (True,x ′#don)›
unfolding Cons
by auto

next
case False

then have simple-cg-closure-phase-2 ′ xss (False,don) = simple-cg-closure-phase-2 ′

xs (False,x#don)
using ‹simple-cg-closure-phase-2-helper x xs = (hasChanged,x ′,xs ′)›
unfolding Cons
by auto

have xs 6= []
using ‹simple-cg-closure-phase-2 ′ xss (False, don) = simple-cg-closure-phase-2 ′
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xs (False, x # don)› less.prems(1 ) by auto

show ?thesis
using less.hyps[of xs x#don, OF - - ‹xs 6= []›]
using less.prems(1 )

unfolding ‹simple-cg-closure-phase-2 ′ xss (False,don) = simple-cg-closure-phase-2 ′

xs (False,x#don)›
unfolding Cons
by auto

qed
qed

qed

fun simple-cg-closure-phase-2 :: ′a simple-cg ⇒ (bool × ′a simple-cg) where
simple-cg-closure-phase-2 xs = simple-cg-closure-phase-2 ′ xs (False,[])

lemma simple-cg-closure-phase-2-validity :
assumes

∧
x2 u v . x2 ∈ list.set xss =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (snd (simple-cg-closure-phase-2 xss))
and u |∈| x2
and v |∈| x2
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
using assms(2 )
unfolding simple-cg-closure-phase-2 .simps
using simple-cg-closure-phase-2 ′-validity[OF - assms(1 ) - assms(3 ,4 ,5 ,6 ), of []

xss λ a b c . a False]
by auto

lemma simple-cg-closure-phase-2-length :
length (snd (simple-cg-closure-phase-2 xss)) ≤ length xss
unfolding simple-cg-closure-phase-2 .simps
using simple-cg-closure-phase-2 ′-length[of xss False []]
by auto

lemma simple-cg-closure-phase-2-True :
assumes fst (simple-cg-closure-phase-2 xss)

shows length (snd (simple-cg-closure-phase-2 xss)) < length xss
proof −

have xss 6= []
using assms by auto

then show ?thesis
using simple-cg-closure-phase-2 ′-True[of xss []] assms by auto

qed
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function simple-cg-closure :: ′a simple-cg ⇒ ′a simple-cg where
simple-cg-closure g = (let (hasChanged1 ,g1 ) = simple-cg-closure-phase-1 g;

(hasChanged2 ,g2 ) = simple-cg-closure-phase-2 g1
in if hasChanged1 ∨ hasChanged2

then simple-cg-closure g2
else g2 )

by pat-completeness auto
termination
proof −

{
fix g :: ′a simple-cg
fix x hasChanged1 g1 xb hasChanged2 g2
assume x = simple-cg-closure-phase-1 g

(hasChanged1 , g1 ) = x
xb = simple-cg-closure-phase-2 g1
(hasChanged2 , g2 ) = xb
hasChanged1 ∨ hasChanged2

then have simple-cg-closure-phase-1 g = (hasChanged1 , g1 )
and simple-cg-closure-phase-2 g1 = (hasChanged2 , g2 )

by auto

have length g1 ≤ length g
using ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )›
using simple-cg-closure-phase-1-length[of g]
by auto

have length g2 ≤ length g1
using ‹simple-cg-closure-phase-2 g1 = (hasChanged2 , g2 )›
using simple-cg-closure-phase-2-length[of g1 ]
by auto

consider hasChanged1 | hasChanged2
using ‹hasChanged1 ∨ hasChanged2 › by blast

then have length g2 < length g
proof cases

case 1
then have length g1 < length g

using ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )›
using simple-cg-closure-phase-1-True[of g]
by auto

then show ?thesis
using ‹length g2 ≤ length g1 ›
by linarith

next
case 2
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then have length g2 < length g1
using ‹simple-cg-closure-phase-2 g1 = (hasChanged2 , g2 )›
using simple-cg-closure-phase-2-True[of g1 ]
by auto

then show ?thesis
using ‹length g1 ≤ length g›
by linarith

qed
then have (g2 , g) ∈ measure length

by auto
}
then show ?thesis by (relation measure length; force)

qed

lemma simple-cg-closure-validity :
assumes observable M1 and observable M2
and

∧
x2 u v . x2 ∈ list.set g =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒

u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v
and x2 ∈ list.set (simple-cg-closure g)
and u |∈| x2
and v |∈| x2
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
using assms(3 ,4 )

proof (induction length g arbitrary: g rule: less-induct)
case less

obtain hasChanged1 hasChanged2 g1 g2 where simple-cg-closure-phase-1 g =
(hasChanged1 , g1 )

and simple-cg-closure-phase-2 g1 = (hasChanged2 ,
g2 )

using prod.exhaust by metis

have length g1 ≤ length g
using ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )›
using simple-cg-closure-phase-1-length[of g]
by auto

have length g2 ≤ length g1
using ‹simple-cg-closure-phase-2 g1 = (hasChanged2 , g2 )›
using simple-cg-closure-phase-2-length[of g1 ]
by auto

have (
∧

x2 u v. x2 ∈ list.set g2 =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒ u
∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

proof −
have (

∧
x2 u v. x2 ∈ list.set g1 =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒

u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)
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using simple-cg-closure-phase-1-validity[OF assms(1 ,2 ), of g]
using less.prems(1 )
unfolding ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )› snd-conv
by blast

then show (
∧

x2 u v. x2 ∈ list.set g2 =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L
M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using simple-cg-closure-phase-2-validity[of g1 ]
unfolding ‹simple-cg-closure-phase-2 g1 = (hasChanged2 , g2 )› snd-conv
by blast

qed

show ?thesis proof (cases hasChanged1 ∨ hasChanged2 )
case True
then consider hasChanged1 | hasChanged2

by blast
then have length g2 < length g
proof cases

case 1
then have length g1 < length g

using ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )›
using simple-cg-closure-phase-1-True[of g]
by auto

then show ?thesis
using ‹length g2 ≤ length g1 ›
by linarith

next
case 2
then have length g2 < length g1

using ‹simple-cg-closure-phase-2 g1 = (hasChanged2 , g2 )›
using simple-cg-closure-phase-2-True[of g1 ]
by auto

then show ?thesis
using ‹length g1 ≤ length g›
by linarith

qed
moreover have x2 ∈ list.set (simple-cg-closure g2 )

using less.prems(2 )
using ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )› ‹simple-cg-closure-phase-2

g1 = (hasChanged2 , g2 )› True
by auto

moreover note ‹(
∧

x2 u v. x2 ∈ list.set g2 =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u
∈ L M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)›

ultimately show ?thesis
using less.hyps[of g2 ]
by blast

next
case False
then have (simple-cg-closure g) = g2
using ‹simple-cg-closure-phase-1 g = (hasChanged1 , g1 )› ‹simple-cg-closure-phase-2

878



g1 = (hasChanged2 , g2 )›
by auto

show ?thesis
using less.prems(2 )
using ‹(

∧
x2 u v. x2 ∈ list.set g2 =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1

=⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)› assms(5 ,6 ,7 ,8 )
unfolding ‹(simple-cg-closure g) = g2 ›
by blast

qed
qed

fun simple-cg-insert-with-conv :: ( ′a::linorder) simple-cg ⇒ ′a list ⇒ ′a simple-cg
where

simple-cg-insert-with-conv g ys = (let
insert-for-prefix = (λ g i . let

pref = take i ys;
suff = drop i ys;
pref-conv = simple-cg-lookup g pref
in foldl (λ g ′ ys ′ . simple-cg-insert ′ g ′ (ys ′@suff )) g

pref-conv);
g ′ = simple-cg-insert g ys;
g ′′ = foldl insert-for-prefix g ′ [0 ..<length ys]

in simple-cg-closure g ′′)

fun simple-cg-merge :: ′a simple-cg ⇒ ′a list ⇒ ′a list ⇒ ′a simple-cg where
simple-cg-merge g ys1 ys2 = simple-cg-closure ({|ys1 ,ys2 |}#g)

lemma simple-cg-merge-validity :
assumes observable M1 and observable M2
and converge M1 u ′ v ′ ∧ converge M2 u ′ v ′

and
∧

x2 u v . x2 ∈ list.set g =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒
u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v

and x2 ∈ list.set (simple-cg-merge g u ′ v ′)
and u |∈| x2
and v |∈| x2
and u ∈ L M1
and u ∈ L M2

shows converge M1 u v ∧ converge M2 u v
proof −

have (
∧

x2 u v. x2 ∈ list.set ({|u ′,v ′|}#g) =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L
M1 =⇒ u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

proof −
fix x2 u v assume x2 ∈ list.set ({|u ′,v ′|}#g) and u |∈| x2 and v |∈| x2 and

u ∈ L M1 and u ∈ L M2
then consider x2 = {|u ′,v ′|} | x2 ∈ list.set g

by auto
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then show converge M1 u v ∧ converge M2 u v proof cases
case 1
then have u ∈ {u ′,v ′} and v ∈ {u ′,v ′}

using ‹u |∈| x2 › ‹v |∈| x2 › by auto
then show ?thesis

using assms(3 )
by (cases u = u ′; cases v = v ′; auto)

next
case 2
then show ?thesis

using assms(4 ) ‹u |∈| x2 › ‹v |∈| x2 › ‹u ∈ L M1 › ‹u ∈ L M2 ›
by blast

qed
qed
moreover have x2 ∈ list.set (simple-cg-closure ({|u ′,v ′|}#g))

using assms(5 ) by auto
ultimately show ?thesis

using simple-cg-closure-validity[OF assms(1 ,2 ) - - assms(6 ,7 ,8 ,9 )]
by blast

qed

23.3 Invariants
lemma simple-cg-lookup-iff :
β ∈ list.set (simple-cg-lookup G α) ←→ (β = α ∨ (∃ x . x ∈ list.set G ∧ α |∈|

x ∧ β |∈| x))
proof (induction G rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x G)
show ?case proof (cases α |∈| x ∧ β |∈| x)

case True
then have β ∈ list.set (simple-cg-lookup (G@[x]) α)

unfolding simple-cg-lookup.simps
unfolding sorted-list-of-set-set
by simp

then show ?thesis
using True by auto

next
case False

have β ∈ list.set (simple-cg-lookup (G@[x]) α) = (β = α ∨ (β ∈ list.set
(simple-cg-lookup G α)))

proof −
consider α |/∈| x | β |/∈| x

using False by blast
then show β ∈ list.set (simple-cg-lookup (G@[x]) α) = (β = α ∨ (β ∈ list.set

(simple-cg-lookup G α)))
proof cases
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case 1
then show ?thesis

unfolding simple-cg-lookup.simps
unfolding sorted-list-of-set-set
by auto

next
case 2
then have β /∈ list.set (sorted-list-of-fset x)

by simp
then have (β ∈ list.set (simple-cg-lookup (G@[x]) α)) = (β ∈ Set.insert α

(list.set (simple-cg-lookup G α)))
unfolding simple-cg-lookup.simps
unfolding sorted-list-of-set-set
by auto

then show ?thesis
by (induction G; auto)

qed
qed
moreover have (∃ x ′ . x ′ ∈ list.set (G@[x]) ∧ α |∈| x ′ ∧ β |∈| x ′) = (∃ x . x

∈ list.set G ∧ α |∈| x ∧ β |∈| x)
using False by auto

ultimately show ?thesis
using snoc.IH
by blast

qed
qed

lemma simple-cg-insert ′-invar :
convergence-graph-insert-invar M1 M2 simple-cg-lookup simple-cg-insert ′

proof −
have

∧
G γ α β . γ ∈ L M1 =⇒

γ ∈ L M2 =⇒
(
∧
α . α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup G α)

∧ (∀ β . β ∈ list.set (simple-cg-lookup G α) −→ converge M1 α β ∧ converge M2
α β)) =⇒

α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup (simple-cg-insert ′

G γ) α) ∧ (∀ β . β ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G γ) α) −→
converge M1 α β ∧ converge M2 α β)

proof
fix G γ α
assume γ ∈ L M1
and γ ∈ L M2
and ∗:(

∧
α . α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup G

α) ∧ (∀ β . β ∈ list.set (simple-cg-lookup G α) −→ converge M1 α β ∧ converge
M2 α β))

and α ∈ L M1
and α ∈ L M2
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show α ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G γ) α)
unfolding simple-cg-lookup.simps
unfolding sorted-list-of-set-set
by auto

have
∧

β . β ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G γ) α) =⇒ converge
M1 α β ∧ converge M2 α β

proof −
fix β
assume ∗∗: β ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G γ) α)
show converge M1 α β ∧ converge M2 α β

proof (cases β ∈ list.set (simple-cg-lookup G α))
case True
then show ?thesis

using ∗[OF ‹α ∈ L M1 › ‹α ∈ L M2 ›]
by presburger

next
case False

show ?thesis proof (cases find ((|∈|) γ) G)
case None
then have (simple-cg-insert ′ G γ) = {|γ|}#G

by auto

have α = γ ∧ β = γ
using False ‹β ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G γ) α)›
unfolding ‹(simple-cg-insert ′ G γ) = {|γ|}#G›
by (metis fsingleton-iff set-ConsD simple-cg-lookup-iff )

then show ?thesis
using ‹γ ∈ L M1 › ‹γ ∈ L M2 › by auto

next
case (Some x)
then have (simple-cg-insert ′ G γ) = G

by auto
then show ?thesis

using ∗[OF ‹α ∈ L M1 › ‹α ∈ L M2 ›] ∗∗
by presburger

qed
qed

qed
then show (∀ β . β ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G γ) α) −→

converge M1 α β ∧ converge M2 α β)
by blast

qed
then show ?thesis
unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
by blast
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qed

lemma simple-cg-insert ′-foldl-helper :
assumes list.set xss ⊆ L M1 ∩ L M2
and (

∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L

M2 =⇒ converge M1 α β ∧ converge M2 α β)
shows (

∧
α β. β ∈ list.set (simple-cg-lookup (foldl (λ xs ′ ys ′ . simple-cg-insert ′

xs ′ ys ′) G xss) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge
M2 α β)

using ‹list.set xss ⊆ L M1 ∩ L M2 ›
proof (induction xss rule: rev-induct)

case Nil
then show ?case

using ‹(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L

M2 =⇒ converge M1 α β ∧ converge M2 α β)›
by auto

next
case (snoc x xs)

have x ∈ L M1 and x ∈ L M2
using snoc.prems by auto

have list.set xs ⊆ L M1 ∩ L M2
using snoc.prems by auto

then have ∗:(
∧
α β. β ∈ list.set (simple-cg-lookup (foldl (λ xs ′ ys ′. simple-cg-insert ′

xs ′ ys ′) G xs) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge
M2 α β)

using snoc.IH
by blast

have ∗∗:(foldl (λ xs ′ ys ′. simple-cg-insert ′ xs ′ ys ′) G (xs@[x])) = simple-cg-insert ′

(foldl (λ xs ′ ys ′ . simple-cg-insert ′ xs ′ ys ′) G xs) x
by auto

show ?case
using snoc.prems(1 ,2 ,3 ) ∗ ‹x ∈ L M1 › ‹x ∈ L M2 ›
unfolding ∗∗
using simple-cg-insert ′-invar [of M1 M2 ]

unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
using simple-cg-lookup-iff
by blast

qed

lemma simple-cg-insert-invar :
convergence-graph-insert-invar M1 M2 simple-cg-lookup simple-cg-insert

proof −
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have
∧

G γ α β . γ ∈ L M1 =⇒
γ ∈ L M2 =⇒
(
∧
α . α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup G α)

∧ (∀ β . β ∈ list.set (simple-cg-lookup G α) −→ converge M1 α β ∧ converge M2
α β)) =⇒

α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup (simple-cg-insert
G γ) α) ∧ (∀ β . β ∈ list.set (simple-cg-lookup (simple-cg-insert G γ) α) −→
converge M1 α β ∧ converge M2 α β)

proof
fix G γ α
assume γ ∈ L M1
and γ ∈ L M2
and ∗:(

∧
α . α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup G

α) ∧ (∀ β . β ∈ list.set (simple-cg-lookup G α) −→ converge M1 α β ∧ converge
M2 α β))

and α ∈ L M1
and α ∈ L M2

show α ∈ list.set (simple-cg-lookup (simple-cg-insert G γ) α)
unfolding simple-cg-lookup.simps
unfolding sorted-list-of-set-set
by auto

note simple-cg-insert ′-foldl-helper [of prefixes γ M1 M2 ]
moreover have list.set (prefixes γ) ⊆ L M1 ∩ L M2

by (metis (no-types, lifting) IntI ‹γ ∈ L M1 › ‹γ ∈ L M2 › language-prefix
prefixes-set-ob subsetI )

ultimately show (∀ β . β ∈ list.set (simple-cg-lookup (simple-cg-insert G γ)
α) −→ converge M1 α β ∧ converge M2 α β)

using ‹α ∈ L M1 › ‹α ∈ L M2 ›
by (metis ∗ simple-cg-insert.simps)

qed
then show ?thesis
unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
by blast

qed

lemma simple-cg-closure-invar-helper :
assumes observable M1 and observable M2
and (

∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L

M2 =⇒ converge M1 α β ∧ converge M2 α β)
and β ∈ list.set (simple-cg-lookup (simple-cg-closure G) α)
and α ∈ L M1 and α ∈ L M2

shows converge M1 α β ∧ converge M2 α β
proof (cases β = α)

case True
then show ?thesis using assms(5 ,6 ) by auto

next
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case False
show ?thesis
proof

obtain x where x ∈ list.set (simple-cg-closure G) and α |∈| x and β |∈| x
using False ‹β ∈ list.set (simple-cg-lookup (simple-cg-closure G) α)› unfolding

simple-cg-lookup-iff
by blast

have
∧

x2 u v . x2 ∈ list.set G =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒
u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v

using ‹(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L

M2 =⇒ converge M1 α β ∧ converge M2 α β)›
unfolding simple-cg-lookup-iff
by blast

have (
∧

x2 u v. x2 ∈ list.set G =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒
u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using ‹(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L

M2 =⇒ converge M1 α β ∧ converge M2 α β)›
unfolding simple-cg-lookup-iff by blast

then show converge M1 α β
using ‹α |∈| x› ‹β |∈| x› ‹x ∈ list.set (simple-cg-closure G)› assms(1 ) assms(2 )

assms(5 ) assms(6 ) simple-cg-closure-validity by blast

have (
∧

x2 u v. x2 ∈ list.set G =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒
u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using ‹(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L

M2 =⇒ converge M1 α β ∧ converge M2 α β)›
unfolding simple-cg-lookup-iff by blast

then show converge M2 α β
using ‹α |∈| x› ‹β |∈| x› ‹x ∈ list.set (simple-cg-closure G)› assms(1 ) assms(2 )

assms(5 ) assms(6 ) simple-cg-closure-validity by blast
qed

qed

lemma simple-cg-merge-invar :
assumes observable M1 and observable M2

shows convergence-graph-merge-invar M1 M2 simple-cg-lookup simple-cg-merge
proof −

have
∧

G γ γ ′ α β.
converge M1 γ γ ′ =⇒
converge M2 γ γ ′ =⇒
(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L M2
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=⇒ converge M1 α β ∧ converge M2 α β) =⇒
β ∈ list.set (simple-cg-lookup (simple-cg-merge G γ γ ′) α) =⇒ α ∈ L M1

=⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β
proof −

fix G γ γ ′ α β
assume converge M1 γ γ ′

converge M2 γ γ ′

(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈ L M2

=⇒ converge M1 α β ∧ converge M2 α β)
β ∈ list.set (simple-cg-lookup (simple-cg-merge G γ γ ′) α)
α ∈ L M1
α ∈ L M2

show converge M1 α β ∧ converge M2 α β
proof (cases β = α)

case True
then show ?thesis using ‹α ∈ L M1 › ‹α ∈ L M2 › by auto

next
case False
then obtain x where x ∈ list.set (simple-cg-merge G γ γ ′) and α |∈| x and

β |∈| x
using ‹β ∈ list.set (simple-cg-lookup (simple-cg-merge G γ γ ′) α)› unfolding

simple-cg-lookup-iff
by blast

have (
∧

x2 u v. x2 ∈ list.set G =⇒ u |∈| x2 =⇒ v |∈| x2 =⇒ u ∈ L M1 =⇒
u ∈ L M2 =⇒ converge M1 u v ∧ converge M2 u v)

using ‹(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α ∈

L M2 =⇒ converge M1 α β ∧ converge M2 α β)›
unfolding simple-cg-lookup-iff by blast

then show ?thesis
using simple-cg-merge-validity[OF assms(1 ,2 ) - - ‹x ∈ list.set (simple-cg-merge

G γ γ ′)› ‹α |∈| x› ‹β |∈| x› ‹α ∈ L M1 › ‹α ∈ L M2 ›]
‹converge M1 γ γ ′› ‹converge M2 γ γ ′›

by blast
qed

qed
then show ?thesis
unfolding convergence-graph-merge-invar-def convergence-graph-lookup-invar-def
unfolding simple-cg-lookup-iff
by metis

qed

lemma simple-cg-empty-invar :
convergence-graph-lookup-invar M1 M2 simple-cg-lookup simple-cg-empty
unfolding convergence-graph-lookup-invar-def simple-cg-empty-def
by auto
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lemma simple-cg-initial-invar :
assumes observable M1
shows convergence-graph-initial-invar M1 M2 simple-cg-lookup simple-cg-initial

proof −

have
∧

T . (L M1 ∩ set T = (L M2 ∩ set T )) =⇒ finite-tree T =⇒ (
∧
α β. β

∈ list.set (simple-cg-lookup (simple-cg-initial M1 T ) α) =⇒ α ∈ L M1 =⇒ α ∈ L
M2 =⇒ converge M1 α β ∧ converge M2 α β)

proof −
fix T assume (L M1 ∩ set T = (L M2 ∩ set T )) and finite-tree T

then have list.set (filter (is-in-language M1 (initial M1 )) (sorted-list-of-sequences-in-tree
T )) ⊆ L M1 ∩ L M2

unfolding is-in-language-iff [OF assms fsm-initial]
using sorted-list-of-sequences-in-tree-set[OF ‹finite-tree T ›]
by auto

moreover have (
∧
α β. β ∈ list.set (simple-cg-lookup simple-cg-empty α) =⇒

α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
using simple-cg-empty-invar
unfolding convergence-graph-lookup-invar-def
by blast

ultimately show (
∧
α β. β ∈ list.set (simple-cg-lookup (simple-cg-initial M1

T ) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
using simple-cg-insert ′-foldl-helper [of (filter (is-in-language M1 (initial M1 ))

(sorted-list-of-sequences-in-tree T )) M1 M2 ]
unfolding simple-cg-initial.simps
by blast

qed
then show ?thesis
unfolding convergence-graph-initial-invar-def convergence-graph-lookup-invar-def
using simple-cg-lookup-iff by blast

qed

lemma simple-cg-insert-with-conv-invar :
assumes observable M1
assumes observable M2
shows convergence-graph-insert-invar M1 M2 simple-cg-lookup simple-cg-insert-with-conv

proof −
have

∧
G γ α β . γ ∈ L M1 =⇒

γ ∈ L M2 =⇒
(
∧
α . α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup G α)

∧ (∀ β . β ∈ list.set (simple-cg-lookup G α) −→ converge M1 α β ∧ converge M2
α β)) =⇒

α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv
G γ) α) ∧ (∀ β . β ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv G γ)
α) −→ converge M1 α β ∧ converge M2 α β)

proof
fix G ys α
assume ys ∈ L M1
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and ys ∈ L M2
and ∗:(

∧
α . α ∈ L M1 =⇒ α ∈ L M2 =⇒ α ∈ list.set (simple-cg-lookup G

α) ∧ (∀ β . β ∈ list.set (simple-cg-lookup G α) −→ converge M1 α β ∧ converge
M2 α β))

and α ∈ L M1
and α ∈ L M2

show α ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv G ys) α)
using simple-cg-lookup-iff by blast

have
∧

β . β ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv G ys) α)
=⇒ converge M1 α β ∧ converge M2 α β

proof −
fix β
assume β ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv G ys) α)

define insert-for-prefix where insert-for-prefix:
insert-for-prefix = (λ g i . let

pref = take i ys;
suff = drop i ys;
pref-conv = simple-cg-lookup g pref

in foldl (λ g ′ ys ′ . simple-cg-insert ′ g ′ (ys ′@suff )) g
pref-conv)

define g ′ where g ′: g ′ = simple-cg-insert G ys
define g ′′ where g ′′: g ′′ = foldl insert-for-prefix g ′ [0 ..<length ys]

have simple-cg-insert-with-conv G ys = simple-cg-closure g ′′

unfolding simple-cg-insert-with-conv.simps g ′′ g ′ insert-for-prefix Let-def
by force

have g ′-invar : (
∧
α β. β ∈ list.set (simple-cg-lookup g ′ α) =⇒ α ∈ L M1 =⇒

α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
using g ′ ∗
using simple-cg-insert-invar ‹ys ∈ L M1 › ‹ys ∈ L M2 ›

unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
by blast

have insert-for-prefix-invar :
∧

i g . (
∧
α β. β ∈ list.set (simple-cg-lookup g

α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β) =⇒
(
∧
α β. β ∈ list.set (simple-cg-lookup (insert-for-prefix g i) α) =⇒ α ∈ L M1 =⇒

α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
proof −

fix i g assume (
∧
α β. β ∈ list.set (simple-cg-lookup g α) =⇒ α ∈ L M1

=⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)

define pref where pref : pref = take i ys
define suff where suff : suff = drop i ys
let ?pref-conv = simple-cg-lookup g pref
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have insert-for-prefix g i = foldl (λ g ′ ys ′ . simple-cg-insert ′ g ′ (ys ′@suff ))
g ?pref-conv

unfolding insert-for-prefix pref suff Let-def by force

have ys = pref @ suff
unfolding pref suff by auto

then have pref ∈ L M1 and pref ∈ L M2
using ‹ys ∈ L M1 › ‹ys ∈ L M2 › language-prefix by metis+

have insert-step-invar :
∧

ys ′ pc G . list.set pc ⊆ list.set (simple-cg-lookup
g pref ) =⇒ ys ′ ∈ list.set pc =⇒

(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒

α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β) =⇒
(
∧
α β. β ∈ list.set (simple-cg-lookup (simple-cg-insert ′ G

(ys ′@suff )) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge
M2 α β)

proof −
fix ys ′ pc G
assume list.set pc ⊆ list.set (simple-cg-lookup g pref )

and ys ′ ∈ list.set pc
and (

∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α

∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
then have converge M1 pref ys ′ and converge M2 pref ys ′

using ‹
∧
β α. β ∈ list.set (simple-cg-lookup g α) =⇒ α ∈ L M1 =⇒ α

∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β›
using ‹pref ∈ L M1 › ‹pref ∈ L M2 ›
by blast+

have (ys ′@suff ) ∈ L M1
using ‹converge M1 pref ys ′›

using ‹ys = pref @ suff › ‹ys ∈ L M1 › assms(1 ) converge-append-language-iff
by blast

moreover have (ys ′@suff ) ∈ L M2
using ‹converge M2 pref ys ′›

using ‹ys = pref @ suff › ‹ys ∈ L M2 › assms(2 ) converge-append-language-iff
by blast

ultimately show (
∧
α β. β ∈ list.set (simple-cg-lookup (simple-cg-insert ′

G (ys ′@suff )) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge
M2 α β)

using ‹(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒ α

∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)›
using simple-cg-insert ′-invar [of M1 M2 ]

unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
using simple-cg-lookup-iff by blast

qed

have insert-foldl-invar :
∧

pc G . list.set pc ⊆ list.set (simple-cg-lookup g
pref ) =⇒
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(
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1 =⇒

α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β) =⇒
(
∧
α β. β ∈ list.set (simple-cg-lookup (foldl (λ g ′ ys ′

. simple-cg-insert ′ g ′ (ys ′@suff )) G pc) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒
converge M1 α β ∧ converge M2 α β)

proof −
fix pc G assume list.set pc ⊆ list.set (simple-cg-lookup g pref )

and (
∧
α β. β ∈ list.set (simple-cg-lookup G α) =⇒ α ∈ L M1

=⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)

then show (
∧
α β. β ∈ list.set (simple-cg-lookup (foldl (λ g ′ ys ′ .

simple-cg-insert ′ g ′ (ys ′@suff )) G pc) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge
M1 α β ∧ converge M2 α β)

proof (induction pc rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc a pc)

have ∗∗:(foldl (λg ′ ys ′. simple-cg-insert ′ g ′ (ys ′ @ suff )) G (pc @ [a]))
= simple-cg-insert ′ (foldl (λg ′ ys ′. simple-cg-insert ′ g ′ (ys ′ @ suff ))

G pc) (a@suff )
unfolding foldl-append by auto

have list.set pc ⊆ list.set (simple-cg-lookup g pref )
using snoc.prems(4 ) by auto
then have ∗: (

∧
α β. β ∈ list.set (simple-cg-lookup (foldl (λ g ′ ys ′

. simple-cg-insert ′ g ′ (ys ′@suff )) G pc) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒
converge M1 α β ∧ converge M2 α β)

using snoc.IH
using snoc.prems(5 ) by blast

have a ∈ list.set (pc @ [a]) by auto
then show ?case

using snoc.prems(1 ,2 ,3 )
unfolding ∗∗

using insert-step-invar [OF snoc.prems(4 ), of a (foldl (λ g ′ ys ′ .
simple-cg-insert ′ g ′ (ys ′@suff )) G pc), OF - ∗]

by blast
qed

qed

show (
∧
α β. β ∈ list.set (simple-cg-lookup (insert-for-prefix g i) α) =⇒ α

∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
using insert-foldl-invar [of ?pref-conv g, OF - ‹(

∧
α β. β ∈ list.set

(simple-cg-lookup g α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧
converge M2 α β)›]

unfolding ‹insert-for-prefix g i = foldl (λ g ′ ys ′ . simple-cg-insert ′ g ′

(ys ′@suff )) g ?pref-conv›
by blast
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qed

have insert-for-prefix-foldl-invar :
∧

ns . (
∧
α β. β ∈ list.set (simple-cg-lookup

(foldl insert-for-prefix g ′ ns) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α
β ∧ converge M2 α β)

proof −
fix ns show (

∧
α β. β ∈ list.set (simple-cg-lookup (foldl insert-for-prefix g ′

ns) α) =⇒ α ∈ L M1 =⇒ α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)
proof (induction ns rule: rev-induct)

case Nil
then show ?case using g ′-invar by auto

next
case (snoc a ns)
show ?case

using snoc.prems
using insert-for-prefix-invar [OF snoc.IH ]
by auto

qed
qed

show ‹converge M1 α β ∧ converge M2 α β›
using ‹β ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv G ys) α)›
unfolding ‹simple-cg-insert-with-conv G ys = simple-cg-closure g ′′› g ′′

using insert-for-prefix-foldl-invar [of - [0 ..<length ys] -]
using simple-cg-closure-invar-helper [OF assms, of (foldl insert-for-prefix g ′

[0 ..<length ys]), OF insert-for-prefix-foldl-invar [of - [0 ..<length ys] -]]
using ‹α ∈ L M1 › ‹α ∈ L M2 › by blast

qed
then show (∀ β . β ∈ list.set (simple-cg-lookup (simple-cg-insert-with-conv G

ys) α) −→ converge M1 α β ∧ converge M2 α β)
by blast

qed

then show ?thesis
unfolding convergence-graph-insert-invar-def convergence-graph-lookup-invar-def
by blast

qed

lemma simple-cg-lookup-with-conv-from-lookup-invar :
assumes observable M1 and observable M2
and convergence-graph-lookup-invar M1 M2 simple-cg-lookup G

shows convergence-graph-lookup-invar M1 M2 simple-cg-lookup-with-conv G
proof −

have (
∧

α β. β ∈ list.set (simple-cg-lookup-with-conv G α) =⇒ α ∈ L M1 =⇒
α ∈ L M2 =⇒ converge M1 α β ∧ converge M2 α β)

proof −

891



fix ys β assume β ∈ list.set (simple-cg-lookup-with-conv G ys) and ys ∈ L M1
and ys ∈ L M2

define lookup-for-prefix where lookup-for-prefix:
lookup-for-prefix = (λi . let

pref = take i ys;
suff = drop i ys;
pref-conv = (foldl (|∪|) fempty (filter (λx . pref |∈| x)

G))
in fimage (λ pref ′ . pref ′@suff ) pref-conv)

have
∧

ns . β ∈ list.set (sorted-list-of-fset (finsert ys (foldl (λ cs i . lookup-for-prefix
i |∪| cs) fempty ns))) =⇒ converge M1 ys β ∧ converge M2 ys β

proof −
fix ns assume β ∈ list.set (sorted-list-of-fset (finsert ys (foldl (λ cs i .

lookup-for-prefix i |∪| cs) fempty ns)))
then show converge M1 ys β ∧ converge M2 ys β
proof (induction ns rule: rev-induct)

case Nil
then show ?case using ‹ys ∈ L M1 › ‹ys ∈ L M2 › by auto

next
case (snoc a ns)

have list.set (sorted-list-of-fset (finsert ys (foldl (λ cs i . lookup-for-prefix i
|∪| cs) fempty (ns@[a])))) =

(fset (lookup-for-prefix a) ∪ list.set (sorted-list-of-fset (finsert ys (foldl
(λ cs i . lookup-for-prefix i |∪| cs) fempty ns))))

by auto
then consider β ∈ fset (lookup-for-prefix a) | β ∈ list.set (sorted-list-of-fset

(finsert ys (foldl (λ cs i . lookup-for-prefix i |∪| cs) fempty ns)))
using snoc.prems by auto

then show ?case proof cases
case 1
define pref where pref : pref = take a ys
define suff where suff : suff = drop a ys
define pref-conv where pref-conv: pref-conv = (foldl (|∪|) fempty (filter

(λx . pref |∈| x) G))

have lookup-for-prefix a = fimage (λ pref ′ . pref ′@suff ) pref-conv
unfolding lookup-for-prefix pref suff pref-conv
by metis
then have β ∈ list.set (map (λ pref ′ . pref ′@suff ) (sorted-list-of-fset

(finsert pref (foldl (|∪|) {||} (filter ((|∈|) pref ) G)))))
using 1 unfolding pref-conv by auto

then obtain γ where γ ∈ list.set (simple-cg-lookup G pref )
and β = γ@suff

unfolding simple-cg-lookup.simps
by (meson set-map-elem)
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then have converge M1 γ pref and converge M2 γ pref
using ‹convergence-graph-lookup-invar M1 M2 simple-cg-lookup G›
unfolding convergence-graph-lookup-invar-def
by (metis ‹ys ∈ L M1 › ‹ys ∈ L M2 › append-take-drop-id converge-sym

language-prefix pref )+
then show ?thesis

by (metis ‹
∧

thesis. (
∧
γ. [[γ ∈ list.set (simple-cg-lookup G pref ); β = γ

@ suff ]] =⇒ thesis) =⇒ thesis› ‹ys ∈ L M1 › ‹ys ∈ L M2 › append-take-drop-id
assms(1 ) assms(2 ) assms(3 ) converge-append converge-append-language-iff con-
vergence-graph-lookup-invar-def language-prefix pref suff )

next
case 2
then show ?thesis using snoc.IH by blast

qed
qed

qed

then show converge M1 ys β ∧ converge M2 ys β
using ‹β ∈ list.set (simple-cg-lookup-with-conv G ys)›

unfolding simple-cg-lookup-with-conv.simps Let-def lookup-for-prefix sorted-list-of-set-set
by blast

qed
moreover have

∧
α . α ∈ list.set (simple-cg-lookup-with-conv G α)

unfolding simple-cg-lookup-with-conv.simps by auto
ultimately show ?thesis

unfolding convergence-graph-lookup-invar-def
by blast

qed

lemma simple-cg-lookup-from-lookup-invar-with-conv:
assumes convergence-graph-lookup-invar M1 M2 simple-cg-lookup-with-conv G

shows convergence-graph-lookup-invar M1 M2 simple-cg-lookup G
proof −

have
∧

α β. β ∈ list.set (simple-cg-lookup G α) =⇒ β ∈ list.set (simple-cg-lookup-with-conv
G α)

proof −

fix α β assume β ∈ list.set (simple-cg-lookup G α)

define lookup-for-prefix where lookup-for-prefix:
lookup-for-prefix = (λi . let

pref = take i α;
suff = drop i α;
pref-conv = simple-cg-lookup G pref

in map (λ pref ′ . pref ′@suff ) pref-conv)

have lookup-for-prefix (length α) = simple-cg-lookup G α
unfolding lookup-for-prefix by auto
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moreover have list.set (lookup-for-prefix (length α)) ⊆ list.set (simple-cg-lookup-with-conv
G α)

unfolding simple-cg-lookup-with-conv.simps lookup-for-prefix Let-def sorted-list-of-set-set
by auto

ultimately show β ∈ list.set (simple-cg-lookup-with-conv G α)
using ‹β ∈ list.set (simple-cg-lookup G α)›
by (metis subsetD)

qed

then show ?thesis
using assms
unfolding convergence-graph-lookup-invar-def
using simple-cg-lookup-iff by blast

qed

lemma simple-cg-lookup-invar-with-conv-eq :
assumes observable M1 and observable M2
shows convergence-graph-lookup-invar M1 M2 simple-cg-lookup-with-conv G =

convergence-graph-lookup-invar M1 M2 simple-cg-lookup G
using simple-cg-lookup-with-conv-from-lookup-invar [OF assms] simple-cg-lookup-from-lookup-invar-with-conv[of

M1 M2 ]
by blast

lemma simple-cg-insert-invar-with-conv :
assumes observable M1 and observable M2

shows convergence-graph-insert-invar M1 M2 simple-cg-lookup-with-conv simple-cg-insert
using simple-cg-insert-invar [of M1 M2 ]
unfolding convergence-graph-insert-invar-def
unfolding simple-cg-lookup-invar-with-conv-eq[OF assms]
.

lemma simple-cg-merge-invar-with-conv :
assumes observable M1 and observable M2

shows convergence-graph-merge-invar M1 M2 simple-cg-lookup-with-conv simple-cg-merge
using simple-cg-merge-invar [OF assms]
unfolding convergence-graph-merge-invar-def
unfolding simple-cg-lookup-invar-with-conv-eq[OF assms]
.

lemma simple-cg-initial-invar-with-conv :
assumes observable M1 and observable M2
shows convergence-graph-initial-invar M1 M2 simple-cg-lookup-with-conv sim-

ple-cg-initial
using simple-cg-initial-invar [OF assms(1 ), of M2 ]
unfolding convergence-graph-initial-invar-def
unfolding simple-cg-lookup-invar-with-conv-eq[OF assms]
.
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end

24 Intermediate Frameworks

This theory provides partial applications of the H, SPY, and Pair-Frameworks.
theory Intermediate-Frameworks
imports Intermediate-Implementations Test-Suite-Representations ../OFSM-Tables-Refined
Simple-Convergence-Graph Empty-Convergence-Graph
begin

24.1 Partial Applications of the SPY-Framework
definition spy-framework-static-with-simple-graph :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒

(nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒
nat ⇒
( ′b× ′c) prefix-tree

where
spy-framework-static-with-simple-graph M1

dist-fun
m

= spy-framework M1
get-state-cover-assignment
(handle-state-cover-static dist-fun)
(λ M V ts . ts)
(establish-convergence-static dist-fun)
(handle-io-pair False True)
simple-cg-initial
simple-cg-insert
simple-cg-lookup-with-conv
simple-cg-merge
m

lemma spy-framework-static-with-simple-graph-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .
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∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows (L M1 = L M2 )←→ ((L M1 ∩ set (spy-framework-static-with-simple-graph
M1 dist-fun m)) = (L M2 ∩ set (spy-framework-static-with-simple-graph M1 dist-fun
m)))
and finite-tree (spy-framework-static-with-simple-graph M1 dist-fun m)

using spy-framework-completeness-and-finiteness[OF assms(1−8 ),
of get-state-cover-assignment, OF

get-state-cover-assignment-is-state-cover-assignment,
of (λ M V ts . ts),

OF - simple-cg-initial-invar-with-conv[OF
assms(1 ,2 )],

OF - simple-cg-insert-invar-with-conv[OF
assms(1 ,2 )],

OF - simple-cg-merge-invar-with-conv[OF
assms(1 ,2 )],

of handle-state-cover-static dist-fun
establish-convergence-static dist-fun
handle-io-pair False True

]
using handle-state-cover-static-separates-state-cover [OF assms(9 ,10 )]
using establish-convergence-static-verifies-transition[of M1 dist-fun M2 get-state-cover-assignment

M1 simple-cg-initial simple-cg-insert simple-cg-lookup-with-conv, OF assms(9 ,10 )]
using handle-io-pair-verifies-io-pair [of False True M1 M2 simple-cg-insert sim-

ple-cg-lookup-with-conv]
unfolding spy-framework-static-with-simple-graph-def
by blast+

definition spy-framework-static-with-empty-graph :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒

(nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒
nat ⇒
( ′b× ′c) prefix-tree

where
spy-framework-static-with-empty-graph M1

dist-fun
m

= spy-framework M1
get-state-cover-assignment
(handle-state-cover-static dist-fun)
(λ M V ts . ts)
(establish-convergence-static dist-fun)
(handle-io-pair False True)
empty-cg-initial
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empty-cg-insert
empty-cg-lookup
empty-cg-merge
m

lemma spy-framework-static-with-empty-graph-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows (L M1 = L M2 )←→ ((L M1 ∩ set (spy-framework-static-with-empty-graph
M1 dist-fun m)) = (L M2 ∩ set (spy-framework-static-with-empty-graph M1 dist-fun
m)))
and finite-tree (spy-framework-static-with-empty-graph M1 dist-fun m)

using spy-framework-completeness-and-finiteness[OF assms(1−8 ),
of get-state-cover-assignment, OF

get-state-cover-assignment-is-state-cover-assignment,
of (λ M V ts . ts),
OF - empty-graph-initial-invar ,
OF - empty-graph-insert-invar ,
OF - empty-graph-merge-invar ,
of handle-state-cover-static dist-fun

establish-convergence-static dist-fun
handle-io-pair False True

]
using handle-state-cover-static-separates-state-cover [OF assms(9 ,10 )]
using establish-convergence-static-verifies-transition[of M1 dist-fun M2 get-state-cover-assignment

M1 empty-cg-initial empty-cg-insert empty-cg-lookup, OF assms(9 ,10 )]
using handle-io-pair-verifies-io-pair [of False True M1 M2 empty-cg-insert empty-cg-lookup]
unfolding spy-framework-static-with-empty-graph-def
by blast+

24.2 Partial Applications of the H-Framework
definition h-framework-static-with-simple-graph :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒

(nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒
nat ⇒
( ′b× ′c) prefix-tree
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where
h-framework-static-with-simple-graph M1 dist-fun m =

h-framework M1
get-state-cover-assignment
(handle-state-cover-static dist-fun)
(λ M V ts . ts)
(handleUT-static dist-fun)
(handle-io-pair False False)
simple-cg-initial
simple-cg-insert
simple-cg-lookup-with-conv
simple-cg-merge
m

lemma h-framework-static-with-simple-graph-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (h-framework-static-with-simple-graph
M1 dist-fun m)) = (L M2 ∩ set (h-framework-static-with-simple-graph M1 dist-fun
m)))
and finite-tree (h-framework-static-with-simple-graph M1 dist-fun m)

using h-framework-completeness-and-finiteness[OF assms(1−8 ),
of get-state-cover-assignment

(λ M V ts . ts) ,
OF get-state-cover-assignment-is-state-cover-assignment

-
simple-cg-initial-invar-with-conv[OF

assms(1 ,2 )]
simple-cg-insert-invar-with-conv[OF

assms(1 ,2 )]
simple-cg-merge-invar-with-conv[OF

assms(1 ,2 )]
handle-state-cover-static-separates-state-cover [OF

assms(9 ,10 )]
handleUT-static-handles-transition[OF

assms(9 ,10 )]
verifies-io-pair-handled[OF han-

898



dle-io-pair-verifies-io-pair [of False False M1 M2 simple-cg-insert simple-cg-lookup-with-conv]]
]

unfolding h-framework-static-with-simple-graph-def [symmetric]
by presburger+

definition h-framework-static-with-simple-graph-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ (nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
h-framework-static-with-simple-graph-lists M dist-fun m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (h-framework-static-with-simple-graph M dist-fun
m))

lemma h-framework-static-with-simple-graph-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (h-framework-static-with-simple-graph-lists
M1 dist-fun m)

unfolding h-framework-static-with-simple-graph-lists-def
using h-framework-static-with-simple-graph-completeness-and-finiteness(1 )[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 )]
using passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial h-framework-static-with-simple-graph-completeness-and-finiteness(2 )[OF

assms]]
by blast

definition h-framework-static-with-empty-graph :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒

(nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒
nat ⇒
( ′b× ′c) prefix-tree

where
h-framework-static-with-empty-graph M1 dist-fun m =

h-framework M1
get-state-cover-assignment
(handle-state-cover-static dist-fun)
(λ M V ts . ts)
(handleUT-static dist-fun)
(handle-io-pair False False)
empty-cg-initial

899



empty-cg-insert
empty-cg-lookup
empty-cg-merge
m

lemma h-framework-static-with-empty-graph-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (h-framework-static-with-empty-graph
M1 dist-fun m)) = (L M2 ∩ set (h-framework-static-with-empty-graph M1 dist-fun
m)))
and finite-tree (h-framework-static-with-empty-graph M1 dist-fun m)

using h-framework-completeness-and-finiteness[OF assms(1−8 ),
of get-state-cover-assignment

(λ M V ts . ts) ,
OF get-state-cover-assignment-is-state-cover-assignment

-
empty-graph-initial-invar
empty-graph-insert-invar
empty-graph-merge-invar

handle-state-cover-static-separates-state-cover [OF
assms(9 ,10 )]

handleUT-static-handles-transition[OF
assms(9 ,10 )]

verifies-io-pair-handled[OF han-
dle-io-pair-verifies-io-pair [of False False M1 M2 empty-cg-insert empty-cg-lookup]]

]
unfolding h-framework-static-with-empty-graph-def [symmetric]
by presburger+

definition h-framework-static-with-empty-graph-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ (nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree) ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
h-framework-static-with-empty-graph-lists M dist-fun m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (h-framework-static-with-empty-graph M dist-fun
m))

lemma h-framework-static-with-empty-graph-lists-completeness :
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fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
q1 q2 . q1 ∈ states M1 =⇒ q2 ∈ states M1 =⇒ q1 6= q2 =⇒ ∃ io .

∀ k1 k2 . io ∈ set (dist-fun k1 q1 ) ∩ set (dist-fun k2 q2 ) ∧ distinguishes M1 q1 q2
io

and
∧

q k . q ∈ states M1 =⇒ finite-tree (dist-fun k q)
shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (h-framework-static-with-empty-graph-lists
M1 dist-fun m)

unfolding h-framework-static-with-empty-graph-lists-def
using h-framework-static-with-empty-graph-completeness-and-finiteness(1 )[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 )]
using passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial h-framework-static-with-empty-graph-completeness-and-finiteness(2 )[OF

assms]]
by blast

definition h-framework-dynamic ::
(( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′a, ′b, ′c) transition

⇒ ( ′a, ′b, ′c) transition list ⇒ nat ⇒ bool) ⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
nat ⇒
bool ⇒
bool ⇒
( ′b× ′c) prefix-tree

where
h-framework-dynamic convergence-decisision M1 m completeInputTraces useIn-

putHeuristic =
h-framework M1

get-state-cover-assignment
(handle-state-cover-dynamic completeInputTraces useInputHeuristic

(get-distinguishing-sequence-from-ofsm-tables M1 ))
sort-unverified-transitions-by-state-cover-length

(handleUT-dynamic completeInputTraces useInputHeuristic
(get-distinguishing-sequence-from-ofsm-tables M1 ) convergence-decisision)

(handle-io-pair completeInputTraces useInputHeuristic)
simple-cg-initial
simple-cg-insert
simple-cg-lookup-with-conv
simple-cg-merge
m
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lemma h-framework-dynamic-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ ((L M1 ∩ set (h-framework-dynamic convergenceDeci-
sion M1 m completeInputTraces useInputHeuristic)) = (L M2 ∩ set (h-framework-dynamic
convergenceDecision M1 m completeInputTraces useInputHeuristic)))
and finite-tree (h-framework-dynamic convergenceDecision M1 m completeInput-
Traces useInputHeuristic)

using h-framework-completeness-and-finiteness[OF assms,
of get-state-cover-assignment

sort-unverified-transitions-by-state-cover-length
,

OF get-state-cover-assignment-is-state-cover-assignment
sort-unverified-transitions-by-state-cover-length-retains-set[of

- M1 get-state-cover-assignment]
simple-cg-initial-invar-with-conv[OF

assms(1 ,2 )]
simple-cg-insert-invar-with-conv[OF

assms(1 ,2 )]
simple-cg-merge-invar-with-conv[OF

assms(1 ,2 )]
handle-state-cover-dynamic-separates-state-cover [OF

get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )], of com-
pleteInputTraces useInputHeuristic M2 simple-cg-initial simple-cg-insert simple-cg-lookup-with-conv]

handleUT-dynamic-handles-transition[of
M1 (get-distinguishing-sequence-from-ofsm-tables M1 ) completeInputTraces useIn-
putHeuristic convergenceDecision M2 - - simple-cg-insert simple-cg-lookup-with-conv
simple-cg-merge, OF get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF
assms(1 ,3 )]]

verifies-io-pair-handled[OF han-
dle-io-pair-verifies-io-pair [of completeInputTraces useInputHeuristic M1 M2 sim-
ple-cg-insert simple-cg-lookup-with-conv]]

]
unfolding h-framework-dynamic-def [symmetric]
by presburger+

definition h-framework-dynamic-lists :: (( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) state-cover-assignment
⇒ ( ′a, ′b, ′c) transition ⇒ ( ′a, ′b, ′c) transition list ⇒ nat ⇒ bool)⇒ ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ (( ′b× ′c) × bool) list list where

h-framework-dynamic-lists convergenceDecision M m completeInputTraces useIn-
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putHeuristic = sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M
(initial M ) (h-framework-dynamic convergenceDecision M m completeInputTraces
useInputHeuristic))

lemma h-framework-dynamic-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (h-framework-dynamic-lists
convergenceDecision M1 m completeInputTraces useInputHeuristic)

unfolding h-framework-dynamic-lists-def
h-framework-dynamic-completeness-and-finiteness(1 )[OF assms, of con-

vergenceDecision completeInputTraces useInputHeuristic]
passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial

h-framework-dynamic-completeness-and-finiteness(2 )[OF assms]]
by blast

24.3 Partial Applications of the Pair-Framework
definition pair-framework-h-components :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒

(( ′a, ′b, ′c) fsm ⇒ (( ′b × ′c) list × ′a) × ( ′b ×
′c) list × ′a ⇒ ( ′b × ′c) prefix-tree ⇒ ( ′b × ′c) prefix-tree) ⇒

( ′b× ′c) prefix-tree
where

pair-framework-h-components M m get-separating-traces = (let
V = get-state-cover-assignment M

in pair-framework M m (get-initial-test-suite-H V ) (get-pairs-H V ) get-separating-traces)

lemma pair-framework-h-components-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
α β t . α ∈ L M1 =⇒ β ∈ L M1 =⇒ after-initial M1 α 6= after-initial M1
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β =⇒ ∃ io ∈ set (get-separating-traces M1 ((α,after-initial M1 α),(β,after-initial
M1 β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes M1 (after-initial M1
α) (after-initial M1 β) io
and

∧
α β t . α ∈ L M1 =⇒ β ∈ L M1 =⇒ after-initial M1 α 6= after-initial M1

β =⇒ finite-tree (get-separating-traces M1 ((α,after-initial M1 α),(β,after-initial
M1 β)) t)
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (pair-framework-h-components M1
m get-separating-traces)) = (L M2 ∩ set (pair-framework-h-components M1 m
get-separating-traces)))
and finite-tree (pair-framework-h-components M1 m get-separating-traces)
proof −

show (L M1 = L M2 ) ←→ ((L M1 ∩ set (pair-framework-h-components M1
m get-separating-traces)) = (L M2 ∩ set (pair-framework-h-components M1 m
get-separating-traces)))

using pair-framework-completeness[ OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ) get-state-cover-assignment-is-state-cover-assignment
, of get-initial-test-suite-H (get-state-cover-assignment

M1 ) get-pairs-H (get-state-cover-assignment M1 ) get-separating-traces
, OF get-initial-test-suite-H-set-and-finite(1 )[of

get-state-cover-assignment M1 M1 m]
, OF get-pairs-H-set(1 )[OF assms(1 )

get-state-cover-assignment-is-state-cover-assignment, where m=m] assms(8 )
]

unfolding pair-framework-h-components-def Let-def
using get-pairs-H-set(1 )[OF assms(1 ) get-state-cover-assignment-is-state-cover-assignment,

where m=m]
using assms(8 )
unfolding pair-framework-h-components-def Let-def
by presburger

show finite-tree (pair-framework-h-components M1 m get-separating-traces)
using pair-framework-finiteness[of M1 get-separating-traces get-initial-test-suite-H

(get-state-cover-assignment M1 ) m get-pairs-H (get-state-cover-assignment M1 ),
OF assms(9 ) get-initial-test-suite-H-set-and-finite(2 )[of

get-state-cover-assignment M1 M1 m] get-pairs-H-set(2 )[OF assms(1 ) get-state-cover-assignment-is-state-cover-assignment]
]

unfolding pair-framework-h-components-def Let-def
by auto

qed

definition pair-framework-h-components-2 :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒

(( ′a, ′b, ′c) fsm ⇒ (( ′b × ′c) list × ′a) × ( ′b ×
′c) list × ′a ⇒ ( ′b × ′c) prefix-tree ⇒ ( ′b × ′c) prefix-tree) ⇒

bool ⇒
( ′b× ′c) prefix-tree

where
pair-framework-h-components-2 M m get-separating-traces c = (let
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V = get-state-cover-assignment M
in pair-framework M m (get-initial-test-suite-H-2 c V ) (get-pairs-H V ) get-separating-traces)

lemma pair-framework-h-components-2-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
and

∧
α β t . α ∈ L M1 =⇒ β ∈ L M1 =⇒ after-initial M1 α 6= after-initial M1

β =⇒ ∃ io ∈ set (get-separating-traces M1 ((α,after-initial M1 α),(β,after-initial
M1 β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes M1 (after-initial M1
α) (after-initial M1 β) io
and

∧
α β t . α ∈ L M1 =⇒ β ∈ L M1 =⇒ after-initial M1 α 6= after-initial M1

β =⇒ finite-tree (get-separating-traces M1 ((α,after-initial M1 α),(β,after-initial
M1 β)) t)
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (pair-framework-h-components-2 M1
m get-separating-traces c)) = (L M2 ∩ set (pair-framework-h-components-2 M1 m
get-separating-traces c)))
and finite-tree (pair-framework-h-components-2 M1 m get-separating-traces c)
proof −

show (L M1 = L M2 ) ←→ ((L M1 ∩ set (pair-framework-h-components-2 M1
m get-separating-traces c)) = (L M2 ∩ set (pair-framework-h-components-2 M1 m
get-separating-traces c)))

using pair-framework-completeness[ OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ) get-state-cover-assignment-is-state-cover-assignment
, of get-initial-test-suite-H-2 c (get-state-cover-assignment

M1 ) get-pairs-H (get-state-cover-assignment M1 ) get-separating-traces
, OF get-initial-test-suite-H-2-set-and-finite(1 )[of

get-state-cover-assignment M1 M1 m]
, OF get-pairs-H-set(1 )[OF assms(1 )

get-state-cover-assignment-is-state-cover-assignment, where m=m] assms(8 )
]

unfolding pair-framework-h-components-2-def Let-def
using get-pairs-H-set(1 )[OF assms(1 ) get-state-cover-assignment-is-state-cover-assignment,

where m=m]
using assms(8 )
unfolding pair-framework-h-components-def Let-def
by presburger

show finite-tree (pair-framework-h-components-2 M1 m get-separating-traces c)
using pair-framework-finiteness[of M1 get-separating-traces get-initial-test-suite-H-2

c (get-state-cover-assignment M1 ) m get-pairs-H (get-state-cover-assignment M1 ),
OF assms(9 ) get-initial-test-suite-H-2-set-and-finite(2 )[of c
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get-state-cover-assignment M1 M1 m] get-pairs-H-set(2 )[OF assms(1 ) get-state-cover-assignment-is-state-cover-assignment]
]

unfolding pair-framework-h-components-2-def Let-def
by auto

qed

24.4 Code Generation
lemma h-framework-dynamic-code[code] :

h-framework-dynamic convergence-decisision M1 m completeInputTraces useIn-
putHeuristic = (let

tables = (compute-ofsm-tables M1 (size M1 − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M1 q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M1 )

(states-as-list M1 ))));
distHelper = (λ q1 q2 . if q1 ∈ states M1 ∧ q2 ∈ states M1 ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M1 q1 q2 )

in
h-framework M1

get-state-cover-assignment
(handle-state-cover-dynamic completeInputTraces useInputHeuristic

distHelper)
sort-unverified-transitions-by-state-cover-length

(handleUT-dynamic completeInputTraces useInputHeuristic distHelper
convergence-decisision)

(handle-io-pair completeInputTraces useInputHeuristic)
simple-cg-initial
simple-cg-insert
simple-cg-lookup-with-conv
simple-cg-merge
m)

unfolding h-framework-dynamic-def
apply (subst (1 2 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M1 ])
unfolding Let-def
by presburger

end

25 Implementations of the H-Method
theory H-Method-Implementations
imports Intermediate-Frameworks Pair-Framework ../Distinguishability Test-Suite-Representations
../OFSM-Tables-Refined HOL−Library.List-Lexorder
begin
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25.1 Using the H-Framework
definition h-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ bool ⇒ bool ⇒ ( ′b× ′c) prefix-tree where

h-method-via-h-framework = h-framework-dynamic (λ M V t X l . False)

definition h-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ (( ′b× ′c) × bool) list list where

h-method-via-h-framework-lists M m completeInputTraces useInputHeuristic =
sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M (initial M ) (h-method-via-h-framework
M m completeInputTraces useInputHeuristic))

lemma h-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (h-method-via-h-framework M1 m com-
pleteInputTraces useInputHeuristic)) = (L M2 ∩ set (h-method-via-h-framework
M1 m completeInputTraces useInputHeuristic)))
and finite-tree (h-method-via-h-framework M1 m completeInputTraces useInputHeuris-
tic)

using h-framework-dynamic-completeness-and-finiteness[OF assms]
unfolding h-method-via-h-framework-def
by blast+

lemma h-method-via-h-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (h-method-via-h-framework-lists
M1 m completeInputTraces useInputHeuristic)

using h-framework-dynamic-lists-completeness[OF assms]
unfolding h-method-via-h-framework-lists-def h-framework-dynamic-lists-def h-method-via-h-framework-def
by blast
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25.2 Using the Pair-Framework
25.2.1 Selection of Distinguishing Traces
fun add-distinguishing-sequence-if-required :: ( ′a⇒ ′a⇒ ( ′b × ′c) list)⇒ ( ′a, ′b::linorder , ′c::linorder)
fsm ⇒ (( ′b× ′c) list × ′a) × (( ′b× ′c) list × ′a) ⇒ ( ′b× ′c) prefix-tree ⇒ ( ′b× ′c)
prefix-tree where

add-distinguishing-sequence-if-required dist-fun M ((α,q1 ), (β,q2 )) t = (if inter-
section-is-distinguishing M (after t α) q1 (after t β) q2

then empty
else insert empty (dist-fun q1 q2 ))

lemma add-distinguishing-sequence-if-required-distinguishes :
assumes observable M
and minimal M
and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β
and

∧
q1 q2 . q1 ∈ states M =⇒ q2 ∈ states M =⇒ q1 6= q2 =⇒ distinguishes

M q1 q2 (dist-fun q1 q2 )
shows ∃ io ∈ set ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial
M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes
M (after-initial M α) (after-initial M β) io
proof (cases intersection-is-distinguishing M (after t α) (after-initial M α) (after
t β) (after-initial M β))

case True
then have (add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial

M α),(β,after-initial M β)) t = empty
by auto

then have set ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial
M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β)) = (set (after t
α) ∩ set (after t β))

using Prefix-Tree.set-empty
by (metis Int-insert-right inf .absorb-iff2 inf-bot-right insert-is-Un set-Nil sup-absorb2 )

moreover have ∃ io ∈ (set (after t α) ∩ set (after t β)) . distinguishes M
(after-initial M α) (after-initial M β) io

using True unfolding intersection-is-distinguishing-correctness[OF assms(1 )
after-is-state[OF assms(1 ,3 )] after-is-state[OF assms(1 ,4 )]]

by auto
ultimately show ?thesis

by blast
next

case False
then have set ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial

M α),(β,after-initial M β)) t) = set (insert empty (dist-fun (after-initial M α)
(after-initial M β)))

by auto
then have dist-fun (after-initial M α) (after-initial M β) ∈ set ((add-distinguishing-sequence-if-required

dist-fun M ) ((α,after-initial M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set
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(after t β))
unfolding insert-set by auto

then show ?thesis
using assms(6 )[OF after-is-state[OF assms(1 ,3 )] after-is-state[OF assms(1 ,4 )]

assms(5 )] by blast
qed

lemma add-distinguishing-sequence-if-required-finite :
finite-tree ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial M

α),(β,after-initial M β)) t)
proof (cases intersection-is-distinguishing M (after t α) (after-initial M α) (after
t β) (after-initial M β))

case True
then have ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial

M α),(β,after-initial M β)) t) = empty
by auto

then show ?thesis
using empty-finite-tree by simp

next
case False
then have ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial

M α),(β,after-initial M β)) t) = (insert empty (dist-fun (after-initial M α) (after-initial
M β)))

by auto
then show ?thesis

using insert-finite-tree[OF empty-finite-tree] by metis
qed

fun add-distinguishing-sequence-and-complete-if-required :: ( ′a ⇒ ′a ⇒ ( ′b × ′c)
list) ⇒ bool ⇒ ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ (( ′b× ′c) list × ′a) ×
(( ′b× ′c) list × ′a) ⇒ ( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) prefix-tree where

add-distinguishing-sequence-and-complete-if-required distFun completeInputTraces
M ((α,q1 ), (β,q2 )) t =

(if intersection-is-distinguishing M (after t α) q1 (after t β) q2
then empty
else let w = distFun q1 q2 ;

T = insert empty w
in if completeInputTraces

then let T1 = from-list (language-for-input M q1 (map fst w));
T2 = from-list (language-for-input M q2 (map fst w))

in Prefix-Tree.combine T (Prefix-Tree.combine T1 T2 )
else T )

lemma add-distinguishing-sequence-and-complete-if-required-distinguishes :
assumes observable M
and minimal M
and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β
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and
∧

q1 q2 . q1 ∈ states M =⇒ q2 ∈ states M =⇒ q1 6= q2 =⇒ distinguishes
M q1 q2 (dist-fun q1 q2 )
shows ∃ io ∈ set ((add-distinguishing-sequence-and-complete-if-required dist-fun c
M ) ((α,after-initial M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t
β)) . distinguishes M (after-initial M α) (after-initial M β) io
proof (cases intersection-is-distinguishing M (after t α) (after-initial M α) (after
t β) (after-initial M β))

case True
then have (add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial

M α),(β,after-initial M β)) t = empty
by auto

then have set ((add-distinguishing-sequence-if-required dist-fun M ) ((α,after-initial
M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β)) = (set (after t
α) ∩ set (after t β))

using Prefix-Tree.set-empty
by (metis Int-insert-right inf .absorb-iff2 inf-bot-right insert-is-Un set-Nil sup-absorb2 )

moreover have ∃ io ∈ (set (after t α) ∩ set (after t β)) . distinguishes M
(after-initial M α) (after-initial M β) io

using True unfolding intersection-is-distinguishing-correctness[OF assms(1 )
after-is-state[OF assms(1 ,3 )] after-is-state[OF assms(1 ,4 )]]

by auto
ultimately show ?thesis

by blast
next

case False
then have set (insert empty (dist-fun (after-initial M α) (after-initial M β))) ⊆

set ((add-distinguishing-sequence-and-complete-if-required dist-fun c M ) ((α,after-initial
M α),(β,after-initial M β)) t)

using combine-set[of insert empty (dist-fun (after-initial M α) (after-initial M
β))]

unfolding add-distinguishing-sequence-and-complete-if-required.simps Let-def
by (cases c; fastforce)

moreover have dist-fun (after-initial M α) (after-initial M β) ∈ set (insert
empty (dist-fun (after-initial M α) (after-initial M β)))

unfolding insert-set by auto
ultimately have dist-fun (after-initial M α) (after-initial M β) ∈ set ((add-distinguishing-sequence-and-complete-if-required

dist-fun c M ) ((α,after-initial M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩
set (after t β))

by blast
then show ?thesis
using assms(6 )[OF after-is-state[OF assms(1 ,3 )] after-is-state[OF assms(1 ,4 )]

assms(5 )]
by (meson distinguishes-def )

qed

lemma add-distinguishing-sequence-and-complete-if-required-finite :
finite-tree ((add-distinguishing-sequence-and-complete-if-required dist-fun c M )

((α,after-initial M α),(β,after-initial M β)) t)
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proof (cases intersection-is-distinguishing M (after t α) (after-initial M α) (after
t β) (after-initial M β))

case True
then have ((add-distinguishing-sequence-and-complete-if-required dist-fun c M )

((α,after-initial M α),(β,after-initial M β)) t) = empty
by auto

then show ?thesis
using empty-finite-tree by simp

next
case False

define w where w: w = dist-fun (after-initial M α) (after-initial M β)
define T where T : T = insert empty w
define T1 where T1 : T1 = from-list (language-for-input M (after-initial M α)

(map fst w))
define T2 where T2 : T2 = from-list (language-for-input M (after-initial M β)

(map fst w))

have finite-tree T
using insert-finite-tree[OF empty-finite-tree]
unfolding T by auto

moreover have finite-tree (Prefix-Tree.combine T (Prefix-Tree.combine T1 T2 ))
using combine-finite-tree[OF ‹finite-tree T › combine-finite-tree[OF from-list-finite-tree

from-list-finite-tree]]
unfolding T1 T2
by auto

ultimately show ?thesis
using False
unfolding add-distinguishing-sequence-and-complete-if-required.simps w T T1

T2 Let-def
by presburger

qed

function find-cheapest-distinguishing-trace :: ( ′a, ′b::linorder , ′c::linorder) fsm ⇒
( ′a ⇒ ′a ⇒ ( ′b × ′c) list) ⇒ ( ′b× ′c) list ⇒ ( ′b× ′c) prefix-tree ⇒ ′a ⇒ ( ′b× ′c)
prefix-tree ⇒ ′a ⇒ (( ′b× ′c) list × nat × nat) where

find-cheapest-distinguishing-trace M distFun ios (PT m1 ) q1 (PT m2 ) q2 =
(let

f = (λ (ω,l,w) (x,y) . if (x,y) /∈ list.set ios then (ω,l,w) else
(let

w1L = if (PT m1 ) = empty then 0 else 1 ;
w1C = if (x,y) ∈ dom m1 then 0 else 1 ;
w1 = min w1L w1C ;
w2L = if (PT m2 ) = empty then 0 else 1 ;
w2C = if (x,y) ∈ dom m2 then 0 else 1 ;
w2 = min w2L w2C ;
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w ′ = w1 + w2
in

case h-obs M q1 x y of
None ⇒ (case h-obs M q2 x y of

None ⇒ (ω,l,w) |
Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else

(ω,l,w)) |
Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)

|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case m1 (x,y) of

None ⇒ (case m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |

Some t1 ′⇒ (case m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w)))))))

in
foldl f (distFun q1 q2 , 0 , 3 ) ios)

by pat-completeness auto
termination
proof −

let ?f = (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over ios t2 )

have
∧
(M ::( ′a, ′b::linorder , ′c::linorder) fsm)

(distFun :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list))
(ios :: ( ′b× ′c) list)
m1 (q1 :: ′a) m2 (q2 :: ′a) x y t2 ′ q1 ′ q2 ′.

¬ (x, y) /∈ list.set ios =⇒
m1 (x, y) = None =⇒
m2 (x, y) = Some t2 ′ =⇒
((M , distFun, ios, Prefix-Tree.empty, q1 ′, t2 ′, q2 ′), M , distFun, ios,
PT m1 , q1 , PT m2 , q2 )
∈ measure (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over
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ios t2 )
proof −

fix M ::( ′a, ′b::linorder , ′c::linorder) fsm
fix distFun :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list)
fix ios :: ( ′b× ′c) list
fix m1 m2 :: ( ′b× ′c) ⇀ ( ′b× ′c) prefix-tree
fix t2 ′

fix q1 q2 q1 ′ q2 ′ :: ′a
fix x
fix y

assume m1 (x, y) = None
assume m2 (x, y) = Some t2 ′

assume ¬ (x, y) /∈ list.set ios

define pre where pre = (M , distFun, ios, PT m1 , q1 , PT m2 , q2 )
define post where post = (M , distFun, ios, Prefix-Tree.empty::( ′b× ′c) pre-

fix-tree, q1 ′, t2 ′, q2 ′)

have height-over ios empty ≤ height-over ios (PT m1 )
unfolding height-over .simps height-over-empty by auto

then have ?f post < ?f pre
unfolding pre-def post-def case-prod-conv
by (meson ‹¬ (x, y) /∈ list.set ios› ‹m2 (x, y) = Some t2 ′› add-le-less-mono

height-over-subtree-less)
then show ((M , distFun, ios, Prefix-Tree.empty, q1 ′, t2 ′, q2 ′), M , distFun,

ios,
PT m1 , q1 , PT m2 , q2 )
∈ measure (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over

ios t2 )
unfolding pre-def [symmetric] post-def [symmetric]
by simp

qed

moreover have
∧
(M ::( ′a, ′b::linorder , ′c::linorder) fsm)

(distFun :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list))
(ios :: ( ′b× ′c) list)
m1 (q1 :: ′a) m2 (q2 :: ′a) x y t1 ′ q1 ′ q2 ′.

¬ (x, y) /∈ list.set ios =⇒
m1 (x, y) = Some t1 ′ =⇒
m2 (x, y) = None =⇒
((M , distFun, ios, t1 ′, q1 ′, empty, q2 ′), M , distFun, ios,
PT m1 , q1 , PT m2 , q2 )
∈ measure (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over

ios t2 )
proof −

fix M ::( ′a, ′b::linorder , ′c::linorder) fsm
fix distFun :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list)
fix ios :: ( ′b× ′c) list
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fix m1 m2 :: ( ′b× ′c) ⇀ ( ′b× ′c) prefix-tree
fix t1 ′

fix q1 q2 q1 ′ q2 ′ :: ′a
fix x :: ′b
fix y :: ′c

assume m1 (x, y) = Some t1 ′

assume m2 (x, y) = None
assume ¬ (x, y) /∈ list.set ios

define pre where pre = (M , distFun, ios, PT m1 , q1 , PT m2 , q2 )
define post where post = (M , distFun, ios, t1 ′, q1 ′, Prefix-Tree.empty::( ′b× ′c)

prefix-tree, q2 ′)

have height-over ios empty ≤ height-over ios (PT m2 )
unfolding height-over .simps height-over-empty by auto

then have ?f post < ?f pre
unfolding pre-def post-def case-prod-conv

by (meson ‹¬ (x, y) /∈ list.set ios› ‹m1 (x, y) = Some t1 ′› add-mono-thms-linordered-field(3 )
height-over-subtree-less)

then show ((M , distFun, ios, t1 ′, q1 ′, Prefix-Tree.empty, q2 ′), M , distFun,
ios,

PT m1 , q1 , PT m2 , q2 )
∈ measure (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over

ios t2 )
unfolding pre-def [symmetric] post-def [symmetric]
by simp

qed

moreover have
∧
(M ::( ′a, ′b::linorder , ′c::linorder) fsm)

(distFun :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list))
(ios :: ( ′b× ′c) list)
m1 (q1 :: ′a) m2 (q2 :: ′a) x y t1 ′ t2 ′ q1 ′ q2 ′.

¬ (x, y) /∈ list.set ios =⇒
m1 (x, y) = Some t1 ′ =⇒
m2 (x, y) = Some t2 ′ =⇒
((M , distFun, ios, t1 ′, q1 ′, t2 ′, q2 ′), M , distFun, ios,
PT m1 , q1 , PT m2 , q2 )
∈ measure (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over

ios t2 )
proof −

fix M ::( ′a, ′b::linorder , ′c::linorder) fsm
fix distFun :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list)
fix ios :: ( ′b× ′c) list
fix m1 m2 :: ( ′b× ′c) ⇀ ( ′b× ′c) prefix-tree
fix t1 ′ t2 ′ :: ( ′b× ′c) prefix-tree
fix q1 q2 q1 ′ q2 ′ :: ′a
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fix x :: ′b
fix y :: ′c

define pre where pre = (M , distFun, ios, PT m1 , q1 , PT m2 , q2 )
define post where post = (M , distFun, ios, t1 ′, q1 ′, t2 ′, q2 ′)

assume m1 (x, y) = Some t1 ′

moreover assume m2 (x, y) = Some t2 ′

moreover assume ¬ (x, y) /∈ list.set ios
ultimately have ?f post < ?f pre

unfolding pre-def post-def case-prod-conv
by (meson add-less-mono height-over-subtree-less)

then show ((M , distFun, ios, t1 ′, q1 ′,t2 ′, q2 ′), M , distFun, ios,
PT m1 , q1 , PT m2 , q2 )
∈ measure (λ(M , dF , ios, t1 , q1 , t2 , q2 ). height-over ios t1 + height-over

ios t2 )
unfolding pre-def [symmetric] post-def [symmetric]
by simp

qed

ultimately show ?thesis
by (relation measure (λ (M ,dF ,ios,t1 ,q1 ,t2 ,q2 ) . height-over ios t1 + height-over

ios t2 ); simp)
qed

lemma find-cheapest-distinguishing-trace-alt-def :
find-cheapest-distinguishing-trace M distFun ios (PT m1 ) q1 (PT m2 ) q2 =
(let

f = (λ (ω,l,w) (x,y).
(let

w1L = if (PT m1 ) = empty then 0 else 1 ;
w1C = if (x,y) ∈ dom m1 then 0 else 1 ;
w1 = min w1L w1C ;
w2L = if (PT m2 ) = empty then 0 else 1 ;
w2C = if (x,y) ∈ dom m2 then 0 else 1 ;
w2 = min w2L w2C ;
w ′ = w1 + w2

in
case h-obs M q1 x y of

None ⇒ (case h-obs M q2 x y of
None ⇒ (ω,l,w) |

Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else
(ω,l,w)) |

Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)
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|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case m1 (x,y) of

None ⇒ (case m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |

Some t1 ′⇒ (case m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w)))))))

in
foldl f (distFun q1 q2 , 0 , 3 ) ios)

(is find-cheapest-distinguishing-trace M distFun ios (PT m1 ) q1 (PT m2 ) q2 =
?find-cheapest-distinguishing-trace)

proof −
define f ′ where f ′ = (λ (ω,l,w) (x,y) .

(let
w1L = if (PT m1 ) = empty then 0 else 1 ;
w1C = if (x,y) ∈ dom m1 then 0 else 1 ;
w1 = min w1L w1C ;
w2L = if (PT m2 ) = empty then 0 else 1 ;
w2C = if (x,y) ∈ dom m2 then 0 else 1 ;
w2 = min w2L w2C ;
w ′ = w1 + w2

in
case h-obs M q1 x y of

None ⇒ (case h-obs M q2 x y of
None ⇒ (ω,l,w) |

Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else
(ω,l,w)) |

Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)

|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case m1 (x,y) of
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None ⇒ (case m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |

Some t1 ′⇒ (case m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w)))))))

define f where f = (λ (ω,l,w) (x,y) . if (x,y) /∈ list.set ios then (ω,l,w) else
(let

w1L = if (PT m1 ) = empty then 0 else 1 ;
w1C = if (x,y) ∈ dom m1 then 0 else 1 ;
w1 = min w1L w1C ;
w2L = if (PT m2 ) = empty then 0 else 1 ;
w2C = if (x,y) ∈ dom m2 then 0 else 1 ;
w2 = min w2L w2C ;
w ′ = w1 + w2

in
case h-obs M q1 x y of

None ⇒ (case h-obs M q2 x y of
None ⇒ (ω,l,w) |

Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else
(ω,l,w)) |

Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)

|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case m1 (x,y) of

None ⇒ (case m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |
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Some t1 ′⇒ (case m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w)))))))

then have f = (λ y x . if x /∈ list.set ios then y else f ′ y x)
unfolding f ′-def by fast

moreover have find-cheapest-distinguishing-trace M distFun ios (PT m1 ) q1
(PT m2 ) q2 = foldl f (distFun q1 q2 , 0 , 3 ) ios

unfolding find-cheapest-distinguishing-trace.simps f-def [symmetric] by auto
ultimately have find-cheapest-distinguishing-trace M distFun ios (PT m1 ) q1

(PT m2 ) q2 = foldl (λ y x . if x /∈ list.set ios then y else f ′ y x) (distFun q1 q2 ,
0 , 3 ) ios

by auto
then show ?thesis

unfolding f ′-def [symmetric]
using foldl-elem-check[of ios list.set ios]
by auto

qed

lemma find-cheapest-distinguishing-trace-code[code] :
find-cheapest-distinguishing-trace M distFun ios (MPT m1 ) q1 (MPT m2 ) q2 =
(let

f = (λ (ω,l,w) (x,y) .
(let

w1L = if is-leaf (MPT m1 ) then 0 else 1 ;
w1C = if (x,y) ∈ Mapping.keys m1 then 0 else 1 ;
w1 = min w1L w1C ;
w2L = if is-leaf (MPT m2 ) then 0 else 1 ;
w2C = if (x,y) ∈ Mapping.keys m2 then 0 else 1 ;
w2 = min w2L w2C ;
w ′ = w1 + w2

in
case h-obs M q1 x y of

None ⇒ (case h-obs M q2 x y of
None ⇒ (ω,l,w) |

Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else
(ω,l,w)) |

Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)

|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case Mapping.lookup m1 (x,y) of
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None ⇒ (case Mapping.lookup m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |

Some t1 ′⇒ (case Mapping.lookup m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w)))))))

in
foldl f (distFun q1 q2 , 0 , 3 ) ios)

unfolding find-cheapest-distinguishing-trace-alt-def MPT-def
by (simp add: keys-dom-lookup)

lemma find-cheapest-distinguishing-trace-is-distinguishing-trace :
assumes observable M
and minimal M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2
and

∧
q1 q2 . q1 ∈ states M =⇒ q2 ∈ states M =⇒ q1 6= q2 =⇒ distinguishes

M q1 q2 (distFun q1 q2 )
shows distinguishes M q1 q2 (fst (find-cheapest-distinguishing-trace M distFun ios
t1 q1 t2 q2 ))

using assms(3 ,4 ,5 )
proof (induction height-over ios t1 + height-over ios t2 arbitrary: t1 q1 t2 q2 rule:
less-induct)

case less

obtain m1 where t1 = PT m1
using prefix-tree.exhaust by blast

obtain m2 where t2 = PT m2
using prefix-tree.exhaust by blast

define f where f = (λ (ω,l,w) (x,y) .
(let

w1L = if (PT m1 ) = empty then 0 else 1 ;
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w1C = if (x,y) ∈ dom m1 then 0 else 1 ;
w1 = min w1L w1C ;
w2L = if (PT m2 ) = empty then 0 else 1 ;
w2C = if (x,y) ∈ dom m2 then 0 else 1 ;
w2 = min w2L w2C ;
w ′ = w1 + w2

in
case h-obs M q1 x y of

None ⇒ (case h-obs M q2 x y of
None ⇒ (ω,l,w) |

Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else
(ω,l,w)) |

Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)

|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case m1 (x,y) of

None ⇒ (case m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |

Some t1 ′⇒ (case m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w)))))))

then have find-cheapest-distinguishing-trace M distFun ios t1 q1 t2 q2 = foldl f
(distFun q1 q2 , 0 , 3 ) ios

unfolding ‹t1 = PT m1 › ‹t2 = PT m2 ›
unfolding find-cheapest-distinguishing-trace-alt-def Let-def
by fast

define ios ′ where ios ′=ios

have list.set ios ′ ⊆ list.set ios =⇒ distinguishes M q1 q2 (fst (foldl f (distFun
q1 q2 , 0 , 3 ) ios ′))

proof (induction ios ′ rule: rev-induct)
case Nil
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then show ?case using assms(6 )[OF less.prems] by auto
next

case (snoc xy ios ′)

obtain x y where xy = (x,y)
using prod.exhaust by metis

moreover obtain ω l w where (foldl f (distFun q1 q2 , 0 , 3 ) ios ′) = (ω,l,w)
using prod.exhaust by metis

ultimately have foldl f (distFun q1 q2 , 0 , 3 ) (ios ′@[xy]) = f (ω,l,w) (x,y)
by auto

have distinguishes M q1 q2 ω
using ‹(foldl f (distFun q1 q2 , 0 , 3 ) ios ′) = (ω,l,w)› snoc by auto

have (x,y) ∈ list.set ios
using snoc.prems unfolding ‹xy = (x,y)› by auto

define w1L where w1L = (if (PT m1 ) = empty then 0 else 1 ::nat)
define w1C where w1C = (if (x,y) ∈ dom m1 then 0 else 1 ::nat)
define w1 where w1 = min w1L w1C
define w2L where w2L = (if (PT m2 ) = empty then 0 else 1 ::nat)
define w2C where w2C = (if (x,y) ∈ dom m2 then 0 else 1 ::nat)
define w2 where w2 = min w2L w2C
define w ′ where w ′ = w1 + w2

have ∗:f (ω,l,w) (x,y) = (case h-obs M q1 x y of
None ⇒ (case h-obs M q2 x y of

None ⇒ (ω,l,w) |
Some - ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else

(ω,l,w)) |
Some q1 ′⇒ (case h-obs M q2 x y of
None ⇒ if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′) else (ω,l,w)

|
Some q2 ′⇒ (if q1 ′ = q2 ′

then (ω,l,w)
else (case m1 (x,y) of

None ⇒ (case m2 (x,y) of
None ⇒ let ω ′ = distFun q1 ′ q2 ′;

l ′ = 2 + 2 ∗ length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then ((x,y)#ω ′,l ′,w ′)
else (ω,l,w) |

Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w)) |

Some t1 ′⇒ (case m2 (x,y) of
None ⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace M

distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
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then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w) |
Some t2 ′⇒ let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace

M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w))))))

unfolding w1-def w2-def w ′-def w1L-def w1C-def w2L-def w2C-def
unfolding f-def case-prod-conv Let-def
by fast

have distinguishes M q1 q2 (fst (f (ω,l,w) (x,y)))
proof (cases h-obs M q1 x y)

case None
then show ?thesis proof (cases h-obs M q2 x y)

case None
have f (ω,l,w) (x,y) = (ω,l,w)

unfolding ∗
unfolding ‹h-obs M q1 x y = None› None by auto

then show ?thesis
using ‹distinguishes M q1 q2 ω› by auto

next
case (Some a)
have f (ω,l,w) (x,y) = (if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′)

else (ω,l,w))
unfolding ∗ None Some by auto

moreover have distinguishes M q1 q2 [(x,y)]
using distinguishes-sym[OF h-obs-distinguishes[OF assms(1 ) Some None]]

.
ultimately show ?thesis

using ‹distinguishes M q1 q2 ω› by auto
qed

next
case (Some q1 ′)
then have q1 ′ ∈ states M

by (meson h-obs-state)

show ?thesis proof (cases h-obs M q2 x y)
case None
have f (ω,l,w) (x,y) = (if w ′ = 0 ∨ w ′ ≤ w then ([(x,y)],w1C+w2C ,w ′)

else (ω,l,w))
unfolding ∗ None Some by auto

moreover have distinguishes M q1 q2 [(x,y)]
using h-obs-distinguishes[OF assms(1 ) Some None] .

ultimately show ?thesis
using ‹distinguishes M q1 q2 ω› by auto

next
case (Some q2 ′)
then have q2 ′ ∈ states M

by (meson h-obs-state)
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show ?thesis proof (cases q1 ′ = q2 ′)
case True
have f (ω,l,w) (x,y) = (ω,l,w)

unfolding ∗
unfolding ‹h-obs M q1 x y = Some q1 ′› Some True by auto

then show ?thesis
using ‹distinguishes M q1 q2 ω› by auto

next
case False

have dist ′:
∧

ω . distinguishes M q1 ′ q2 ′ ω =⇒ distinguishes M q1 q2
((x,y)#ω)

using distinguishes-after-prepend[OF assms(1 ), of q1 x y q2 ]
using ‹h-obs M q1 x y = Some q1 ′› ‹h-obs M q2 x y = Some q2 ′›
unfolding after-h-obs[OF assms(1 ) ‹h-obs M q1 x y = Some q1 ′›]
unfolding after-h-obs[OF assms(1 ) ‹h-obs M q2 x y = Some q2 ′›]
by auto

show ?thesis proof (cases m1 (x,y))
case None
show ?thesis proof (cases m2 (x,y))

case None

have ∗∗: f (ω,l,w) (x,y) = (let ω ′ = distFun q1 ′ q2 ′; l ′ = 2 + 2 ∗
length ω ′

in if (w ′ < w) ∨ (w ′ = w ∧ l ′ < l) then
((x,y)#ω ′,l ′,w ′) else (ω,l,w))

unfolding ∗
unfolding ‹h-obs M q1 x y = Some q1 ′› ‹h-obs M q2 x y = Some

q2 ′› ‹m1 (x, y) = None› ‹m2 (x, y) = None›
using False
by auto

have distinguishes M q1 ′ q2 ′ (distFun q1 ′ q2 ′)
using ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › assms(6 ) False by blast

then have distinguishes M q1 q2 ((x,y)#(distFun q1 ′ q2 ′))
using dist ′ by auto

then show ?thesis
using ‹distinguishes M q1 q2 ω›
unfolding ∗∗ Let-def by auto

next
case (Some t2 ′)

have ∗∗: f (ω,l,w) (x,y) = (let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios empty q1 ′ t2 ′ q2 ′

in if (w ′′ + w1 < w) ∨ (w ′′ + w1 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w1 ) else (ω,l,w))

unfolding ∗
unfolding ‹h-obs M q1 x y = Some q1 ′› ‹h-obs M q2 x y = Some
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q2 ′› ‹m1 (x, y) = None› ‹m2 (x, y) = Some t2 ′›
using False
by auto

obtain ω ′′ l ′′ w ′′ where ∗∗∗:find-cheapest-distinguishing-trace M distFun
ios Prefix-Tree.empty q1 ′ t2 ′ q2 ′ = (ω ′′, l ′′, w ′′)

using prod.exhaust by metis

have distinguishes M q1 ′ q2 ′ (fst (find-cheapest-distinguishing-trace M
distFun ios empty q1 ′ t2 ′ q2 ′))

proof −

have height-over ios empty + height-over ios t2 ′ < height-over ios t1
+ height-over ios t2

using height-over-subtree-less[of m2 (x,y), OF ‹m2 (x,y) = Some
t2 ′› ‹(x,y) ∈ list.set ios› ]

unfolding height-over-empty ‹t2 = PT m2 ›[symmetric]
by (simp add: ‹t1 = PT m1 ›)

then show ?thesis
using less.hyps[OF - ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › False]
by blast

qed
then have distinguishes M q1 q2 ((x,y)#(fst (find-cheapest-distinguishing-trace

M distFun ios empty q1 ′ t2 ′ q2 ′)))
using dist ′ by blast

then show ?thesis
using ‹distinguishes M q1 q2 ω›
unfolding ∗∗ ∗∗∗ Let-def fst-conv case-prod-conv by auto

qed
next

case (Some t1 ′)
show ?thesis proof (cases m2 (x,y))

case None

have ∗∗: f (ω,l,w) (x,y) = (let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ empty q2 ′

in if (w ′′ + w2 < w) ∨ (w ′′ + w2 = w ∧ l ′′+1 < l)
then ((x,y)#ω ′′,l ′′+1 ,w ′′+w2 ) else (ω,l,w))

unfolding ∗
unfolding ‹h-obs M q1 x y = Some q1 ′› ‹h-obs M q2 x y = Some

q2 ′› ‹m1 (x, y) = Some t1 ′› ‹m2 (x, y) = None›
using False
by auto

obtain ω ′′ l ′′ w ′′ where ∗∗∗:find-cheapest-distinguishing-trace M distFun
ios t1 ′ q1 ′ empty q2 ′ = (ω ′′, l ′′, w ′′)

using prod.exhaust by metis

have distinguishes M q1 ′ q2 ′ (fst (find-cheapest-distinguishing-trace M
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distFun ios t1 ′ q1 ′ empty q2 ′))
proof −

have height-over ios t1 ′ + height-over ios empty < height-over ios t1
+ height-over ios t2

using height-over-subtree-less[of m1 (x,y), OF ‹m1 (x,y) = Some
t1 ′› ‹(x,y) ∈ list.set ios› ]

unfolding height-over-empty ‹t1 = PT m1 ›[symmetric]
by (simp add: ‹t2 = PT m2 ›)

then show ?thesis
using less.hyps[OF - ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › False]
by blast

qed
then have distinguishes M q1 q2 ((x,y)#(fst (find-cheapest-distinguishing-trace

M distFun ios t1 ′ q1 ′ empty q2 ′)))
using dist ′ by blast

then show ?thesis
using ‹distinguishes M q1 q2 ω›
unfolding ∗∗ ∗∗∗ Let-def fst-conv case-prod-conv by auto

next
case (Some t2 ′)

have ∗∗: f (ω,l,w) (x,y) = (let (ω ′′,l ′′,w ′′) = find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′

in if (w ′′ < w) ∨ (w ′′ = w ∧ l ′′ < l) then
((x,y)#ω ′′,l ′′,w ′′) else (ω,l,w))

unfolding ∗
unfolding ‹h-obs M q1 x y = Some q1 ′› ‹h-obs M q2 x y = Some

q2 ′› ‹m1 (x, y) = Some t1 ′› ‹m2 (x, y) = Some t2 ′›
using False
by auto

obtain ω ′′ l ′′ w ′′ where ∗∗∗:find-cheapest-distinguishing-trace M distFun
ios t1 ′ q1 ′ t2 ′ q2 ′ = (ω ′′, l ′′, w ′′)

using prod.exhaust by metis

have distinguishes M q1 ′ q2 ′ (fst (find-cheapest-distinguishing-trace M
distFun ios t1 ′ q1 ′ t2 ′ q2 ′))

proof −

have height-over ios t1 ′ + height-over ios t2 ′ < height-over ios t1 +
height-over ios t2

using height-over-subtree-less[of m1 (x,y), OF ‹m1 (x,y) = Some
t1 ′› ‹(x,y) ∈ list.set ios› ]

using height-over-subtree-less[of m2 (x,y), OF ‹m2 (x,y) = Some
t2 ′› ‹(x,y) ∈ list.set ios› ]

unfolding ‹t1 = PT m1 ›[symmetric] ‹t2 = PT m2 ›[symmetric]
by auto

then show ?thesis
using less.hyps[OF - ‹q1 ′ ∈ states M › ‹q2 ′ ∈ states M › False]
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by blast
qed

then have distinguishes M q1 q2 ((x,y)#(fst (find-cheapest-distinguishing-trace
M distFun ios t1 ′ q1 ′ t2 ′ q2 ′)))

using dist ′ by blast
then show ?thesis

using ‹distinguishes M q1 q2 ω›
unfolding ∗∗ ∗∗∗ Let-def fst-conv case-prod-conv by auto

qed
qed

qed
qed

qed
then show ?case

unfolding ‹foldl f (distFun q1 q2 , 0 , 3 ) (ios ′@[xy]) = f (ω,l,w) (x,y)› .
qed

then show ?case
unfolding ‹find-cheapest-distinguishing-trace M distFun ios t1 q1 t2 q2 = foldl

f (distFun q1 q2 , 0 , 3 ) ios›
‹ios ′ = ios›

by blast
qed

fun add-cheapest-distinguishing-trace :: ( ′a ⇒ ′a ⇒ ( ′b × ′c) list) ⇒ bool ⇒
( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ (( ′b× ′c) list × ′a) × (( ′b× ′c) list ×
′a) ⇒ ( ′b× ′c) prefix-tree ⇒ ( ′b× ′c) prefix-tree where

add-cheapest-distinguishing-trace distFun completeInputTraces M ((α,q1 ), (β,q2 ))
t =

(let w = (fst (find-cheapest-distinguishing-trace M distFun (List.product (inputs-as-list
M ) (outputs-as-list M )) (after t α) q1 (after t β) q2 ));

T = insert empty w
in if completeInputTraces

then let T1 = complete-inputs-to-tree M q1 (outputs-as-list M ) (map fst w);
T2 = complete-inputs-to-tree M q2 (outputs-as-list M ) (map fst w)

in Prefix-Tree.combine T (Prefix-Tree.combine T1 T2 )
else T )

lemma add-cheapest-distinguishing-trace-distinguishes :
assumes observable M
and minimal M
and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β
and

∧
q1 q2 . q1 ∈ states M =⇒ q2 ∈ states M =⇒ q1 6= q2 =⇒ distinguishes

M q1 q2 (dist-fun q1 q2 )
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shows ∃ io ∈ set ((add-cheapest-distinguishing-trace dist-fun c M ) ((α,after-initial
M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes
M (after-initial M α) (after-initial M β) io
proof −
define w where w = (fst (find-cheapest-distinguishing-trace M dist-fun (List.product

(inputs-as-list M ) (outputs-as-list M )) (after t α) (after-initial M α) (after t β)
(after-initial M β)))

have set (insert empty w) ⊆ set ((add-cheapest-distinguishing-trace dist-fun c M )
((α,after-initial M α),(β,after-initial M β)) t)

using combine-set[of insert empty w] w-def
unfolding add-cheapest-distinguishing-trace.simps Let-def
by (cases c; fastforce)

moreover have w ∈ set (insert empty w)
unfolding insert-set by auto

ultimately have w ∈ set ((add-cheapest-distinguishing-trace dist-fun c M ) ((α,after-initial
M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β))

by blast
moreover have distinguishes M (after-initial M α) (after-initial M β) w

using find-cheapest-distinguishing-trace-is-distinguishing-trace[OF assms(1 ,2 )
after-is-state[OF assms(1 ,3 )] after-is-state[OF assms(1 ,4 )] assms(5 ,6 )]

unfolding w-def
by blast

ultimately show ?thesis
by blast

qed

lemma add-cheapest-distinguishing-trace-finite :
finite-tree ((add-cheapest-distinguishing-trace dist-fun c M ) ((α,after-initial M

α),(β,after-initial M β)) t)
proof −

define w where w: w = (fst (find-cheapest-distinguishing-trace M dist-fun (List.product
(inputs-as-list M ) (outputs-as-list M )) (after t α) (after-initial M α) (after t β)
(after-initial M β)))

define T where T : T = insert empty w
define T1 where T1 : T1 = complete-inputs-to-tree M (after-initial M α)

(outputs-as-list M ) (map fst w)
define T2 where T2 : T2 = complete-inputs-to-tree M (after-initial M β)

(outputs-as-list M ) (map fst w)

have finite-tree T
using insert-finite-tree[OF empty-finite-tree]
unfolding T by auto

moreover have finite-tree (Prefix-Tree.combine T (Prefix-Tree.combine T1 T2 ))
using combine-finite-tree[OF ‹finite-tree T › combine-finite-tree[OF complete-inputs-to-tree-finite-tree

complete-inputs-to-tree-finite-tree]]
unfolding T1 T2
by auto
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ultimately show ?thesis
unfolding add-cheapest-distinguishing-trace.simps w T T1 T2 Let-def
by presburger

qed

25.2.2 Implementation
definition h-method-via-pair-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where
h-method-via-pair-framework M m = pair-framework-h-components M m (add-distinguishing-sequence-if-required

(get-distinguishing-sequence-from-ofsm-tables M ))

lemma h-method-via-pair-framework-completeness-and-finiteness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I ) ←→ (L M ∩ set (h-method-via-pair-framework M m) = L I
∩ set (h-method-via-pair-framework M m))
and finite-tree (h-method-via-pair-framework M m)
using pair-framework-h-components-completeness-and-finiteness[OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ),

where get-separating-traces=(add-distinguishing-sequence-if-required (get-distinguishing-sequence-from-ofsm-tables
M )), OF add-distinguishing-sequence-if-required-distinguishes[OF assms(1 ,3 ), where
dist-fun=(get-distinguishing-sequence-from-ofsm-tables M )] add-distinguishing-sequence-if-required-finite[where
dist-fun=(get-distinguishing-sequence-from-ofsm-tables M )] ]

using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )]
unfolding h-method-via-pair-framework-def [symmetric]
by blast+

definition h-method-via-pair-framework-2 :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ ( ′b× ′c) prefix-tree where
h-method-via-pair-framework-2 M m c = pair-framework-h-components M m (add-distinguishing-sequence-and-complete-if-required

(get-distinguishing-sequence-from-ofsm-tables M ) c)

lemma h-method-via-pair-framework-2-completeness-and-finiteness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I ) ←→ (L M ∩ set (h-method-via-pair-framework-2 M m c) =
L I ∩ set (h-method-via-pair-framework-2 M m c))
and finite-tree (h-method-via-pair-framework-2 M m c)
using pair-framework-h-components-completeness-and-finiteness[OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ),
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where get-separating-traces=(add-distinguishing-sequence-and-complete-if-required
(get-distinguishing-sequence-from-ofsm-tables M ) c), OF add-distinguishing-sequence-and-complete-if-required-distinguishes[OF
assms(1 ,3 ), where dist-fun=(get-distinguishing-sequence-from-ofsm-tables M )] add-distinguishing-sequence-and-complete-if-required-finite[where
dist-fun=(get-distinguishing-sequence-from-ofsm-tables M )] ]

using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )]
unfolding h-method-via-pair-framework-2-def [symmetric]
by blast+

definition h-method-via-pair-framework-3 :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ ( ′b× ′c) prefix-tree where

h-method-via-pair-framework-3 M m c1 c2 = pair-framework-h-components-2 M
m (add-cheapest-distinguishing-trace (get-distinguishing-sequence-from-ofsm-tables
M ) c2 ) c1

lemma h-method-via-pair-framework-3-completeness-and-finiteness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I ) ←→ (L M ∩ set (h-method-via-pair-framework-3 M m c1 c2 )
= L I ∩ set (h-method-via-pair-framework-3 M m c1 c2 ))
and finite-tree (h-method-via-pair-framework-3 M m c1 c2 )
using pair-framework-h-components-2-completeness-and-finiteness[OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ),

where get-separating-traces=(add-cheapest-distinguishing-trace (get-distinguishing-sequence-from-ofsm-tables
M ) c2 ), OF add-cheapest-distinguishing-trace-distinguishes[OF assms(1 ,3 ), where
dist-fun=(get-distinguishing-sequence-from-ofsm-tables M )] add-cheapest-distinguishing-trace-finite[where
dist-fun=(get-distinguishing-sequence-from-ofsm-tables M )] ]

using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )]
unfolding h-method-via-pair-framework-3-def [symmetric]
by blast+

definition h-method-via-pair-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

h-method-via-pair-framework-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (h-method-via-pair-framework M m))

lemma h-method-implementation-lists-completeness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I )←→ list-all (passes-test-case I (initial I )) (h-method-via-pair-framework-lists
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M m)
unfolding h-method-via-pair-framework-lists-def

h-method-via-pair-framework-completeness-and-finiteness(1 )[OF assms]
passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial

h-method-via-pair-framework-completeness-and-finiteness(2 )[OF assms]]
by blast

25.2.3 Code Equations
lemma h-method-via-pair-framework-code[code] :

h-method-via-pair-framework M m = (let
tables = (compute-ofsm-tables M (size M − 1 ));

distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
tables M q1 q2 ))

(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )
(states-as-list M ))));

distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the
(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

distFun = add-distinguishing-sequence-if-required distHelper
in pair-framework-h-components M m distFun)
unfolding h-method-via-pair-framework-def
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

lemma h-method-via-pair-framework-2-code[code] :
h-method-via-pair-framework-2 M m c = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

distFun = add-distinguishing-sequence-and-complete-if-required distHelper c
in pair-framework-h-components M m distFun)
unfolding h-method-via-pair-framework-2-def
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

lemma h-method-via-pair-framework-3-code[code] :
h-method-via-pair-framework-3 M m c1 c2 = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )
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(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

distFun = add-cheapest-distinguishing-trace distHelper c2
in pair-framework-h-components-2 M m distFun c1 )
unfolding h-method-via-pair-framework-3-def
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

end

26 Implementations of the HSI-Method
theory HSI-Method-Implementations
imports Intermediate-Frameworks Pair-Framework ../Distinguishability Test-Suite-Representations
../OFSM-Tables-Refined HOL−Library.List-Lexorder
begin

26.1 Using the H-Framework
definition hsi-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

hsi-method-via-h-framework M m = h-framework-static-with-empty-graph M (λ k
q . get-HSI M q) m

definition hsi-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

hsi-method-via-h-framework-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (hsi-method-via-h-framework M m))

lemma hsi-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (hsi-method-via-h-framework M1 m))
= (L M2 ∩ set (hsi-method-via-h-framework M1 m)))
and finite-tree (hsi-method-via-h-framework M1 m)
using h-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

where dist-fun=(λ k q . get-HSI M1 q)]
using get-HSI-distinguishes[OF assms(1 ,3 )]
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using get-HSI-finite
unfolding hsi-method-via-h-framework-def
by blast+

lemma hsi-method-via-h-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (hsi-method-via-h-framework-lists
M1 m)

using h-framework-static-with-empty-graph-lists-completeness[OF assms, where
dist-fun=(λ k q . get-HSI M1 q), OF - get-HSI-finite]

using get-HSI-distinguishes[OF assms(1 ,3 )]
unfolding hsi-method-via-h-framework-lists-def h-framework-static-with-empty-graph-lists-def

hsi-method-via-h-framework-def
by blast

26.2 Using the SPY-Framework
definition hsi-method-via-spy-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

hsi-method-via-spy-framework M m = spy-framework-static-with-empty-graph M
(λ k q . get-HSI M q) m

lemma hsi-method-via-spy-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (hsi-method-via-spy-framework M1 m))
= (L M2 ∩ set (hsi-method-via-spy-framework M1 m)))
and finite-tree (hsi-method-via-spy-framework M1 m)

unfolding hsi-method-via-spy-framework-def
using spy-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

of (λ k q . get-HSI M1 q)]
using get-HSI-distinguishes[OF assms(1 ,3 )]
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using get-HSI-finite[of M1 ]
by blast+

definition hsi-method-via-spy-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
hsi-method-via-spy-framework-lists M m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (hsi-method-via-spy-framework M m))

lemma hsi-method-via-spy-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (hsi-method-via-spy-framework-lists
M1 m)

unfolding hsi-method-via-spy-framework-lists-def
hsi-method-via-spy-framework-completeness-and-finiteness(1 )[OF assms]

passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial
hsi-method-via-spy-framework-completeness-and-finiteness(2 )[OF assms]]

by blast

26.3 Using the Pair-Framework
definition hsi-method-via-pair-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ ( ′b× ′c) prefix-tree where
hsi-method-via-pair-framework M m = pair-framework-h-components M m (add-distinguishing-sequence)

lemma hsi-method-via-pair-framework-completeness-and-finiteness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I ) ←→ (L M ∩ set (hsi-method-via-pair-framework M m) = L
I ∩ set (hsi-method-via-pair-framework M m))
and finite-tree (hsi-method-via-pair-framework M m)
using pair-framework-h-components-completeness-and-finiteness[OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ),

where get-separating-traces=add-distinguishing-sequence, OF add-distinguishing-sequence-distinguishes[OF
assms(1 ,3 )] add-distinguishing-sequence-finite]

using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )]
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unfolding hsi-method-via-pair-framework-def [symmetric]
by blast+

definition hsi-method-via-pair-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
hsi-method-via-pair-framework-lists M m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (hsi-method-via-pair-framework M m))

lemma hsi-method-implementation-lists-completeness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I )←→ list-all (passes-test-case I (initial I )) (hsi-method-via-pair-framework-lists
M m)
unfolding hsi-method-via-pair-framework-lists-def

hsi-method-via-pair-framework-completeness-and-finiteness(1 )[OF assms]
passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial

hsi-method-via-pair-framework-completeness-and-finiteness(2 )[OF assms]]
by blast

26.4 Code Generation
lemma hsi-method-via-pair-framework-code[code] :

hsi-method-via-pair-framework M m = (let
tables = (compute-ofsm-tables M (size M − 1 ));

distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
tables M q1 q2 ))

(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )
(states-as-list M ))));

distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the
(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

distFun = (λ M ((io1 ,q1 ),(io2 ,q2 )) t . insert empty (distHelper q1 q2 ))
in pair-framework-h-components M m distFun)

unfolding hsi-method-via-pair-framework-def pair-framework-h-components-def
pair-framework-def

unfolding add-distinguishing-sequence.simps
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def case-prod-conv
by presburger

lemma hsi-method-via-spy-framework-code[code] :
hsi-method-via-spy-framework M m = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
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tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

hsiMap = mapping-of (map (λ q . (q,from-list (map (λq ′ . distHelper q q ′) (filter
(( 6=) q) (states-as-list M ))))) (states-as-list M ));

distFun = (λ k q . if q ∈ states M then the (Mapping.lookup hsiMap q) else
get-HSI M q)

in spy-framework-static-with-empty-graph M distFun m)
(is ?f1 = ?f2 )
proof −

define hsiMap ′ where hsiMap ′ = mapping-of (map (λ q . (q,from-list (map (λq ′

. get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter (( 6=) q) (states-as-list
M ))))) (states-as-list M ))
define distFun ′ where distFun ′= (λ M q . if q ∈ states M then the (Mapping.lookup

hsiMap ′ q) else get-HSI M q)

have ∗: ?f2 = spy-framework-static-with-empty-graph M (λ k q . distFun ′ M q)
m

unfolding distFun ′-def hsiMap ′-def Let-def
apply (subst (2 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M ])
unfolding Let-def
by presburger

define hsiMap where hsiMap = map-of (map (λ q . (q,from-list (map (λq ′ .
get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter ((6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun where distFun = (λ M q . if q ∈ states M then the (hsiMap q)
else get-HSI M q)

have distinct (map fst (map (λ q . (q,from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M ))))) (states-as-list M )))

using states-as-list-distinct
by (metis map-pair-fst)

then have Mapping.lookup hsiMap ′ = hsiMap
unfolding hsiMap-def hsiMap ′-def
using mapping-of-map-of
by blast

then have distFun ′ = distFun
unfolding distFun-def distFun ′-def by meson

have ∗∗:distFun M = get-HSI M
proof
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fix q show distFun M q = get-HSI M q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by blast
then show ?thesis

unfolding distFun-def hsiMap-def map-of-map-pair-entry get-HSI .simps
using True
by fastforce

next
case False
then show ?thesis using distFun-def by auto

qed
qed

show ?thesis
unfolding ∗ ∗∗ ‹distFun ′ = distFun› hsi-method-via-spy-framework-def by simp

qed

lemma hsi-method-via-h-framework-code[code] :
hsi-method-via-h-framework M m = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

hsiMap = mapping-of (map (λ q . (q,from-list (map (λq ′ . distHelper q q ′)
(filter (( 6=) q) (states-as-list M ))))) (states-as-list M ));

distFun = (λ k q . if q ∈ states M then the (Mapping.lookup hsiMap q) else
get-HSI M q)

in h-framework-static-with-empty-graph M distFun m)
(is ?f1 = ?f2 )
proof −

define hsiMap ′ where hsiMap ′ = mapping-of (map (λ q . (q,from-list (map (λq ′

. get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter (( 6=) q) (states-as-list
M ))))) (states-as-list M ))
define distFun ′ where distFun ′= (λ M q . if q ∈ states M then the (Mapping.lookup

hsiMap ′ q) else get-HSI M q)

have ∗: ?f2 = h-framework-static-with-empty-graph M (λ k q . distFun ′ M q) m
unfolding distFun ′-def hsiMap ′-def Let-def
apply (subst (2 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M ])
unfolding Let-def
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by presburger

define hsiMap where hsiMap = map-of (map (λ q . (q,from-list (map (λq ′ .
get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter ((6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun where distFun = (λ M q . if q ∈ states M then the (hsiMap q)
else get-HSI M q)

have distinct (map fst (map (λ q . (q,from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M ))))) (states-as-list M )))

using states-as-list-distinct
by (metis map-pair-fst)

then have Mapping.lookup hsiMap ′ = hsiMap
unfolding hsiMap-def hsiMap ′-def
using mapping-of-map-of
by blast

then have distFun ′ = distFun
unfolding distFun-def distFun ′-def by meson

have ∗∗:distFun M = get-HSI M
proof

fix q show distFun M q = get-HSI M q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by blast
then show ?thesis

unfolding distFun-def hsiMap-def map-of-map-pair-entry get-HSI .simps
using True
by fastforce

next
case False
then show ?thesis using distFun-def by auto

qed
qed

show ?thesis
unfolding ∗ ∗∗ ‹distFun ′ = distFun› hsi-method-via-h-framework-def by simp

qed

end

27 Implementations of the Partial-S-Method
theory Partial-S-Method-Implementations
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imports Intermediate-Frameworks
begin

27.1 Using the H-Framework
fun distance-at-most :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒ ′a ⇒ ′a ⇒ nat
⇒ bool where

distance-at-most M q1 q2 0 = (q1 = q2 ) |
distance-at-most M q1 q2 (Suc k) = ((q1 = q2 ) ∨ (∃ x ∈ inputs M . ∃ (y,q1 ′)
∈ h M (q1 ,x) . distance-at-most M q1 ′ q2 k))

definition do-establish-convergence :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm ⇒
( ′a, ′b, ′c) state-cover-assignment ⇒ ( ′a, ′b, ′c) transition ⇒ ( ′a, ′b, ′c) transition list
⇒ nat ⇒ bool where

do-establish-convergence M V t X l = (find (λ t ′ . distance-at-most M (t-target
t) (t-source t ′) l) X 6= None)

definition partial-s-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ ( ′b× ′c) prefix-tree where
partial-s-method-via-h-framework = h-framework-dynamic do-establish-convergence

definition partial-s-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ (( ′b× ′c) × bool) list list where

partial-s-method-via-h-framework-lists M m completeInputTraces useInputHeuris-
tic = sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M (initial M )
(partial-s-method-via-h-framework M m completeInputTraces useInputHeuristic))

lemma partial-s-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ ((L M1 ∩ set (partial-s-method-via-h-framework M1 m
completeInputTraces useInputHeuristic)) = (L M2 ∩ set (partial-s-method-via-h-framework
M1 m completeInputTraces useInputHeuristic)))
and finite-tree (partial-s-method-via-h-framework M1 m completeInputTraces useIn-
putHeuristic)

using h-framework-dynamic-completeness-and-finiteness[OF assms]
unfolding partial-s-method-via-h-framework-def
by blast+

lemma partial-s-method-via-h-framework-lists-completeness :
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fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (partial-s-method-via-h-framework-lists
M1 m completeInputTraces useInputHeuristic)

using h-framework-dynamic-lists-completeness[OF assms]
unfolding partial-s-method-via-h-framework-lists-def h-framework-dynamic-lists-def

partial-s-method-via-h-framework-def
by blast

end

28 Implementations of the SPY-Method
theory SPY-Method-Implementations
imports Intermediate-Frameworks Pair-Framework ../Distinguishability Test-Suite-Representations
../OFSM-Tables-Refined HOL−Library.List-Lexorder
begin

28.1 Using the H-Framework
definition spy-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

spy-method-via-h-framework M m = h-framework-static-with-simple-graph M (λ
k q . get-HSI M q) m

definition spy-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

spy-method-via-h-framework-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (spy-method-via-h-framework M m))

lemma spy-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1

939



and outputs M2 = outputs M1
shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (spy-method-via-h-framework M1 m))
= (L M2 ∩ set (spy-method-via-h-framework M1 m)))
and finite-tree (spy-method-via-h-framework M1 m)
using h-framework-static-with-simple-graph-completeness-and-finiteness[OF assms,

where dist-fun=(λ k q . get-HSI M1 q)]
using get-HSI-distinguishes[OF assms(1 ,3 )]
using get-HSI-finite
unfolding spy-method-via-h-framework-def
by blast+

lemma spy-method-via-h-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (spy-method-via-h-framework-lists
M1 m)

using h-framework-static-with-simple-graph-lists-completeness[OF assms, where
dist-fun=(λ k q . get-HSI M1 q), OF - get-HSI-finite]

using get-HSI-distinguishes[OF assms(1 ,3 )]
unfolding spy-method-via-h-framework-lists-def h-framework-static-with-simple-graph-lists-def

spy-method-via-h-framework-def
by blast

28.2 Using the SPY-Framework
definition spy-method-via-spy-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ ( ′b× ′c) prefix-tree where

spy-method-via-spy-framework M m = spy-framework-static-with-simple-graph M
(λ k q . get-HSI M q) m

lemma spy-method-via-spy-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1
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shows (L M1 = L M2 )←→ ((L M1 ∩ set (spy-method-via-spy-framework M1 m))
= (L M2 ∩ set (spy-method-via-spy-framework M1 m)))
and finite-tree (spy-method-via-spy-framework M1 m)

unfolding spy-method-via-spy-framework-def
using spy-framework-static-with-simple-graph-completeness-and-finiteness[OF assms,

of (λ k q . get-HSI M1 q)]
using get-HSI-distinguishes[OF assms(1 ,3 )]
using get-HSI-finite[of M1 ]
by blast+

definition spy-method-via-spy-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
spy-method-via-spy-framework-lists M m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (spy-method-via-spy-framework M m))

lemma spy-method-via-spy-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (spy-method-via-spy-framework-lists
M1 m)

unfolding spy-method-via-spy-framework-lists-def
spy-method-via-spy-framework-completeness-and-finiteness(1 )[OF assms]

passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial
spy-method-via-spy-framework-completeness-and-finiteness(2 )[OF assms]]

by blast

28.3 Code Generation
lemma spy-method-via-spy-framework-code[code] :

spy-method-via-spy-framework M m = (let
tables = (compute-ofsm-tables M (size M − 1 ));

distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
tables M q1 q2 ))

(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )
(states-as-list M ))));

distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the
(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

hsiMap = mapping-of (map (λ q . (q,from-list (map (λq ′ . distHelper q q ′) (filter
(( 6=) q) (states-as-list M ))))) (states-as-list M ));

941



distFun = (λ k q . if q ∈ states M then the (Mapping.lookup hsiMap q) else
get-HSI M q)

in spy-framework-static-with-simple-graph M distFun m)
(is ?f1 = ?f2 )
proof −

define hsiMap ′ where hsiMap ′ = mapping-of (map (λ q . (q,from-list (map (λq ′

. get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter (( 6=) q) (states-as-list
M ))))) (states-as-list M ))
define distFun ′ where distFun ′= (λ M q . if q ∈ states M then the (Mapping.lookup

hsiMap ′ q) else get-HSI M q)

have ∗: ?f2 = spy-framework-static-with-simple-graph M (λ k q . distFun ′ M q)
m

unfolding distFun ′-def hsiMap ′-def Let-def
apply (subst (2 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M ])
unfolding Let-def
by presburger

define hsiMap where hsiMap = map-of (map (λ q . (q,from-list (map (λq ′ .
get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter ((6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun where distFun = (λ M q . if q ∈ states M then the (hsiMap q)
else get-HSI M q)

have distinct (map fst (map (λ q . (q,from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M ))))) (states-as-list M )))

using states-as-list-distinct
by (metis map-pair-fst)

then have Mapping.lookup hsiMap ′ = hsiMap
unfolding hsiMap-def hsiMap ′-def
using mapping-of-map-of
by blast

then have distFun ′ = distFun
unfolding distFun-def distFun ′-def by meson

have ∗∗:distFun M = get-HSI M
proof

fix q show distFun M q = get-HSI M q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by blast
then show ?thesis

unfolding distFun-def hsiMap-def map-of-map-pair-entry get-HSI .simps
using True
by fastforce
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next
case False
then show ?thesis using distFun-def by auto

qed
qed

show ?thesis
unfolding ∗ ∗∗ ‹distFun ′ = distFun› spy-method-via-spy-framework-def by

simp
qed

lemma spy-method-via-h-framework-code[code] :
spy-method-via-h-framework M m = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

hsiMap = mapping-of (map (λ q . (q,from-list (map (λq ′ . distHelper q q ′)
(filter (( 6=) q) (states-as-list M ))))) (states-as-list M ));

distFun = (λ k q . if q ∈ states M then the (Mapping.lookup hsiMap q) else
get-HSI M q)

in h-framework-static-with-simple-graph M distFun m)
(is ?f1 = ?f2 )
proof −

define hsiMap ′ where hsiMap ′ = mapping-of (map (λ q . (q,from-list (map (λq ′

. get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter (( 6=) q) (states-as-list
M ))))) (states-as-list M ))
define distFun ′ where distFun ′= (λ M q . if q ∈ states M then the (Mapping.lookup

hsiMap ′ q) else get-HSI M q)

have ∗: ?f2 = h-framework-static-with-simple-graph M (λ k q . distFun ′ M q) m
unfolding distFun ′-def hsiMap ′-def Let-def
apply (subst (2 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M ])
unfolding Let-def
by presburger

define hsiMap where hsiMap = map-of (map (λ q . (q,from-list (map (λq ′ .
get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter ((6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun where distFun = (λ M q . if q ∈ states M then the (hsiMap q)
else get-HSI M q)
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have distinct (map fst (map (λ q . (q,from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M ))))) (states-as-list M )))

using states-as-list-distinct
by (metis map-pair-fst)

then have Mapping.lookup hsiMap ′ = hsiMap
unfolding hsiMap-def hsiMap ′-def
using mapping-of-map-of
by blast

then have distFun ′ = distFun
unfolding distFun-def distFun ′-def by meson

have ∗∗:distFun M = get-HSI M
proof

fix q show distFun M q = get-HSI M q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by blast
then show ?thesis

unfolding distFun-def hsiMap-def map-of-map-pair-entry get-HSI .simps
using True
by fastforce

next
case False
then show ?thesis using distFun-def by auto

qed
qed

show ?thesis
unfolding ∗ ∗∗ ‹distFun ′ = distFun› spy-method-via-h-framework-def by simp

qed

end

29 Implementations of the SPYH-Method
theory SPYH-Method-Implementations
imports Intermediate-Frameworks
begin

29.1 Using the H-Framework
definition spyh-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ bool ⇒ bool ⇒ ( ′b× ′c) prefix-tree where

spyh-method-via-h-framework = h-framework-dynamic (λ M V t X l . True)
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definition spyh-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ (( ′b× ′c) × bool) list list where

spyh-method-via-h-framework-lists M m completeInputTraces useInputHeuristic =
sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M (initial M ) (spyh-method-via-h-framework
M m completeInputTraces useInputHeuristic))

lemma spyh-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (spyh-method-via-h-framework M1 m
completeInputTraces useInputHeuristic)) = (L M2 ∩ set (spyh-method-via-h-framework
M1 m completeInputTraces useInputHeuristic)))
and finite-tree (spyh-method-via-h-framework M1 m completeInputTraces useIn-
putHeuristic)

using h-framework-dynamic-completeness-and-finiteness[OF assms]
unfolding spyh-method-via-h-framework-def
by blast+

lemma spyh-method-via-h-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (spyh-method-via-h-framework-lists
M1 m completeInputTraces useInputHeuristic)

using h-framework-dynamic-lists-completeness[OF assms]
unfolding spyh-method-via-h-framework-lists-def h-framework-dynamic-lists-def

spyh-method-via-h-framework-def
by blast

29.2 Using the SPY-Framework
definition spyh-method-via-spy-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ ( ′b× ′c) prefix-tree where

spyh-method-via-spy-framework M1 m completeInputTraces useInputHeuristic =
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spy-framework M1
get-state-cover-assignment
(handle-state-cover-dynamic completeInputTraces useInputHeuristic

(get-distinguishing-sequence-from-ofsm-tables M1 ))
sort-unverified-transitions-by-state-cover-length

(establish-convergence-dynamic completeInputTraces useInputHeuristic
(get-distinguishing-sequence-from-ofsm-tables M1 ))

(handle-io-pair completeInputTraces useInputHeuristic)
simple-cg-initial
simple-cg-insert
simple-cg-lookup-with-conv
simple-cg-merge
m

lemma spyh-method-via-spy-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (spyh-method-via-spy-framework M1 m
completeInputTraces useInputHeuristic)) = (L M2 ∩ set (spyh-method-via-spy-framework
M1 m completeInputTraces useInputHeuristic)))
and finite-tree (spyh-method-via-spy-framework M1 m completeInputTraces useIn-
putHeuristic)

using spy-framework-completeness-and-finiteness[OF assms,
of get-state-cover-assignment

sort-unverified-transitions-by-state-cover-length
,

OF get-state-cover-assignment-is-state-cover-assignment
sort-unverified-transitions-by-state-cover-length-retains-set[of

- M1 get-state-cover-assignment]
simple-cg-initial-invar-with-conv[OF

assms(1 ,2 )]
simple-cg-insert-invar-with-conv[OF

assms(1 ,2 )]
simple-cg-merge-invar-with-conv[OF

assms(1 ,2 )]
handle-state-cover-dynamic-separates-state-cover [OF

get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )], of com-
pleteInputTraces useInputHeuristic M2 simple-cg-initial simple-cg-insert simple-cg-lookup-with-conv]

establish-convergence-dynamic-verifies-transition[of
M1 (get-distinguishing-sequence-from-ofsm-tables M1 ) completeInputTraces useIn-
putHeuristic M2 - - simple-cg-insert simple-cg-lookup-with-conv, OF get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF
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assms(1 ,3 )]]
handle-io-pair-verifies-io-pair [of completeIn-

putTraces useInputHeuristic M1 M2 simple-cg-insert simple-cg-lookup-with-conv]
]

unfolding spyh-method-via-spy-framework-def [symmetric]
by presburger+

definition spyh-method-via-spy-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ bool ⇒ bool ⇒ (( ′b× ′c) × bool) list list where

spyh-method-via-spy-framework-lists M m completeInputTraces useInputHeuris-
tic = sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M (initial M )
(spyh-method-via-spy-framework M m completeInputTraces useInputHeuristic))

lemma spyh-method-via-spy-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (spyh-method-via-spy-framework-lists
M1 m completeInputTraces useInputHeuristic)

unfolding spyh-method-via-spy-framework-lists-def
spyh-method-via-spy-framework-completeness-and-finiteness(1 )[OF assms,

of completeInputTraces useInputHeuristic]
passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial

spyh-method-via-spy-framework-completeness-and-finiteness(2 )[OF assms]]
by blast

29.3 Code Generation
lemma spyh-method-via-spy-framework-code[code] :

spyh-method-via-spy-framework M1 m completeInputTraces useInputHeuristic =
(let

tables = (compute-ofsm-tables M1 (size M1 − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M1 q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M1 )

(states-as-list M1 ))));
distHelper = (λ q1 q2 . if q1 ∈ states M1 ∧ q2 ∈ states M1 ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M1 q1 q2 )

in
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spy-framework M1
get-state-cover-assignment

(handle-state-cover-dynamic completeInputTraces useInputHeuristic
distHelper)

sort-unverified-transitions-by-state-cover-length
(establish-convergence-dynamic completeInputTraces useInputHeuris-

tic distHelper)
(handle-io-pair completeInputTraces useInputHeuristic)
simple-cg-initial
simple-cg-insert
simple-cg-lookup-with-conv
simple-cg-merge
m)

unfolding spyh-method-via-spy-framework-def
apply (subst (1 2 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M1 ])
unfolding Let-def
by presburger

end

30 Refined Code Generation for Test Suites

This theory provides alternative code equations for selected functions on
test suites. Currently only Mapping via RBT is supported.
theory Test-Suite-Representations-Refined
imports Test-Suite-Representations ../Prefix-Tree-Refined ../Util-Refined
begin

declare [[code drop: Test-Suite-Representations.test-suite-from-io-tree]]

lemma test-suite-from-io-tree-refined[code] :
fixes M :: ( ′a, ′b :: ccompare, ′c :: ccompare) fsm

and m :: (( ′b× ′c), ( ′b× ′c) prefix-tree) mapping-rbt
shows test-suite-from-io-tree M q (MPT (RBT-Mapping m))

= (case ID CCOMPARE(( ′b × ′c)) of
None ⇒ Code.abort (STR ′′test-suite-from-io-tree RBT-set: ccompare

= None ′′) (λ- . test-suite-from-io-tree M q (MPT (RBT-Mapping m))) |
Some - ⇒ MPT (Mapping.tabulate (map (λ((x,y),t) . ((x,y),h-obs

M q x y 6= None)) (RBT-Mapping2 .entries m)) (λ ((x,y),b) . case h-obs M q x
y of None ⇒ Prefix-Tree.empty | Some q ′ ⇒ test-suite-from-io-tree M q ′ (case
RBT-Mapping2 .lookup m (x,y) of Some t ′⇒ t ′))))
proof (cases ID CCOMPARE(( ′b × ′c)))

case None
then show ?thesis by auto

next
case (Some a)
then have ID CCOMPARE(( ′b × ′c)) 6= None
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using Some by auto

have distinct (map fst (RBT-Mapping2 .entries m))
apply transfer
using linorder .distinct-entries[OF ID-ccompare[OF Some]]

ord.is-rbt-rbt-sorted
Some

by auto

have
∧

a b . (RBT-Mapping2 .lookup m a = Some b) = ((a,b) ∈ List.set
(RBT-Mapping2 .entries m))

using map-of-entries[OF ‹ID CCOMPARE(( ′b × ′c)) 6= None›, of m]
using map-of-eq-Some-iff [OF ‹distinct (map fst (RBT-Mapping2 .entries m))›]

by auto

let ?f2 = Mapping.tabulate (map (λ((x,y),t) . ((x,y),h-obs M q x y 6= None))
(RBT-Mapping2 .entries m)) (λ ((x,y),b) . case h-obs M q x y of None ⇒ Pre-
fix-Tree.empty | Some q ′⇒ test-suite-from-io-tree M q ′ (case RBT-Mapping2 .lookup
m (x,y) of Some t ′⇒ t ′))

let ?f1 = λ xs . λ ((x,y),b) . case map-of xs (x,y) of
None ⇒ None |
Some t ⇒ (case h-obs M q x y of

None ⇒ (if b then None else Some empty) |
Some q ′⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else None))

have Mapping.lookup ?f2 = ?f1 (RBT-Mapping2 .entries m)
proof

fix k
show Mapping.lookup ?f2 k = ?f1 (RBT-Mapping2 .entries m) k
proof −

obtain x y b where k = ((x,y),b)
by (metis prod.exhaust-sel)

show ?thesis proof (cases RBT-Mapping2 .lookup m (x,y))
case None

then have ((x,y),b) /∈ List.set (map (λ((x,y),t) . ((x,y),h-obs M q x y 6=
None)) (RBT-Mapping2 .entries m))

using ‹
∧

a b . (RBT-Mapping2 .lookup m a = Some b) = ((a,b) ∈ List.set
(RBT-Mapping2 .entries m))›[of (x,y)]

by auto
then have Mapping.lookup ?f2 ((x,y),b) = None
by (metis (mono-tags, lifting) Mapping.lookup.rep-eq map-of-map-Pair-key

tabulate.rep-eq)
moreover have ?f1 (RBT-Mapping2 .entries m) ((x,y),b) = None
using ‹

∧
a b . (RBT-Mapping2 .lookup m a = Some b) = ((a,b) ∈ List.set

(RBT-Mapping2 .entries m))›[of (x,y)]
None

by (metis (no-types, lifting) map-of-SomeD not-None-eq old.prod.case
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option.simps(4 ))
ultimately show ?thesis

unfolding ‹k = ((x,y),b)› by simp
next

case (Some t ′)
then have ((x,y),t ′) ∈ List.set (RBT-Mapping2 .entries m)
using ‹

∧
a b . (RBT-Mapping2 .lookup m a = Some b) = ((a,b) ∈ List.set

(RBT-Mapping2 .entries m))› by auto

show ?thesis proof (cases h-obs M q x y)
case None

show ?thesis proof (cases b)
case True

then have ((x,y),b) /∈ List.set (map (λ((x,y),t) . ((x,y),h-obs M q x y 6=
None)) (RBT-Mapping2 .entries m))

using None by auto
then have Mapping.lookup ?f2 ((x,y),b) = None

by (metis (mono-tags, lifting) Mapping.lookup.rep-eq map-of-map-Pair-key
tabulate.rep-eq)

moreover have ?f1 (RBT-Mapping2 .entries m) ((x,y),b) = None
using Some None True

using ‹((x, y), t ′) ∈ list.set (RBT-Mapping2 .entries m)› ‹distinct (map
fst (RBT-Mapping2 .entries m))›

by auto
ultimately show ?thesis

unfolding ‹k = ((x,y),b)› by simp
next

case False

then have ((x,y),b) ∈ List.set (map (λ((x,y),t) . ((x,y),h-obs M q x y 6=
None)) (RBT-Mapping2 .entries m))

using None ‹((x,y),t ′) ∈ List.set (RBT-Mapping2 .entries m)› by force
then have Mapping.lookup ?f2 ((x,y),b) = Some empty
proof −

have
∧

p ps f . (p::( ′b × ′c) × bool) /∈ list.set ps ∨ Mapping.lookup
(Mapping.tabulate ps f ) p = Some (f p::(( ′b × ′c) × bool) prefix-tree)

by (simp add: Mapping.lookup.rep-eq map-of-map-Pair-key tabu-
late.rep-eq)

then show ?thesis
using None ‹((x, y), b) ∈ list.set (map (λ((x, y), t). ((x, y), h-obs M

q x y 6= None)) (RBT-Mapping2 .entries m))› by auto
qed

moreover have ?f1 (RBT-Mapping2 .entries m) ((x,y),b) = Some empty
using Some None False
using ‹((x, y), t ′) ∈ list.set (RBT-Mapping2 .entries m)›
using ‹distinct (map fst (RBT-Mapping2 .entries m))› by auto

ultimately show ?thesis
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unfolding ‹k = ((x,y),b)› by simp
qed

next
case (Some q ′)
show ?thesis proof (cases b)

case True
then have ((x,y),b) ∈ List.set (map (λ((x,y),t) . ((x,y),h-obs M q x y 6=

None)) (RBT-Mapping2 .entries m))
using Some ‹((x,y),t ′) ∈ List.set (RBT-Mapping2 .entries m)› by force

then have Mapping.lookup ?f2 ((x,y),b) = Some (test-suite-from-io-tree
M q ′ t ′)

proof −
have

∧
p ps f . (p::( ′b × ′c) × bool) /∈ list.set ps ∨ Mapping.lookup

(Mapping.tabulate ps f ) p = Some (f p::(( ′b × ′c) × bool) prefix-tree)
by (simp add: Mapping.lookup.rep-eq map-of-map-Pair-key tabu-

late.rep-eq)
then show ?thesis
using Some ‹RBT-Mapping2 .lookup m (x, y) = Some t ′› ‹((x, y), b) ∈

list.set (map (λ((x, y), t). ((x, y), h-obs M q x y 6= None)) (RBT-Mapping2 .entries
m))› by auto

qed
moreover have ?f1 (RBT-Mapping2 .entries m) ((x,y),b) = Some

(test-suite-from-io-tree M q ′ t ′)
using Some ‹RBT-Mapping2 .lookup m (x, y) = Some t ′› True
using ‹((x, y), t ′) ∈ list.set (RBT-Mapping2 .entries m)›
using ‹distinct (map fst (RBT-Mapping2 .entries m))› by auto

ultimately show ?thesis
unfolding ‹k = ((x,y),b)› by simp

next
case False
then have ((x,y),b) /∈ List.set (map (λ((x,y),t) . ((x,y),h-obs M q x y 6=

None)) (RBT-Mapping2 .entries m))
using Some by auto

then have Mapping.lookup ?f2 ((x,y),b) = None
by (metis (mono-tags, lifting) Mapping.lookup.rep-eq map-of-map-Pair-key

tabulate.rep-eq)
moreover have ?f1 (RBT-Mapping2 .entries m) ((x,y),b) = None

using Some ‹RBT-Mapping2 .lookup m (x, y) = Some t ′› False
using ‹((x, y), t ′) ∈ list.set (RBT-Mapping2 .entries m)› ‹distinct (map

fst (RBT-Mapping2 .entries m))›
by auto

ultimately show ?thesis
unfolding ‹k = ((x,y),b)› by simp

qed
qed

qed
qed

qed
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obtain m ′ where test-suite-from-io-tree M q (MPT (RBT-Mapping m)) = MPT
m ′

by (simp add: test-suite-from-io-tree-MPT )
then have test-suite-from-io-tree M q (MPT (RBT-Mapping m)) = PT (Mapping.lookup

m ′)
using MPT-def by simp

have Mapping.lookup m ′ = (λ ((x,y),b) . case RBT-Mapping2 .lookup m (x,y) of
None ⇒ None |
Some t ⇒ (case h-obs M q x y of

None ⇒ (if b then None else Some empty) |
Some q ′⇒ (if b then Some (test-suite-from-io-tree M q ′ t) else None)))

proof −
have test-suite-from-io-tree M q (PT (Mapping.lookup (RBT-Mapping m))) =

PT (Mapping.lookup m ′)
by (metis MPT-def ‹test-suite-from-io-tree M q (MPT (RBT-Mapping m)) =

PT (Mapping.lookup m ′)›)
then have Mapping.lookup m ′= (λ((b, c), ba). case Mapping.lookup (RBT-Mapping

m) (b, c) of None ⇒ None | Some p ⇒ (case h-obs M q b c of None ⇒ if ba then
None else Some Prefix-Tree.empty | Some a⇒ if ba then Some (test-suite-from-io-tree
M a p) else None))

by auto
then show ?thesis

by (metis (no-types) lookup-Mapping-code(2 ))
qed
then have Mapping.lookup m ′ = ?f1 (RBT-Mapping2 .entries m)

unfolding map-of-entries[OF ‹ID CCOMPARE(( ′b × ′c)) 6= None›, of m] by
simp

then have Mapping.lookup ?f2 = Mapping.lookup m ′

using ‹Mapping.lookup ?f2 = ?f1 (RBT-Mapping2 .entries m)› by simp
then show ?thesis

using Some unfolding ‹test-suite-from-io-tree M q (MPT (RBT-Mapping m))
= MPT m ′›

by (simp add: MPT-def )
qed

end

31 Implementations of the W-Method
theory W-Method-Implementations
imports Intermediate-Frameworks Pair-Framework ../Distinguishability Test-Suite-Representations
../OFSM-Tables-Refined HOL−Library.List-Lexorder
begin

31.1 Using the H-Framework
definition w-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

w-method-via-h-framework M m = h-framework-static-with-empty-graph M (λ k
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q . distinguishing-set M ) m

definition w-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

w-method-via-h-framework-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (w-method-via-h-framework M m))

lemma w-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (w-method-via-h-framework M1 m)) =
(L M2 ∩ set (w-method-via-h-framework M1 m)))
and finite-tree (w-method-via-h-framework M1 m)
using h-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

where dist-fun=(λ k q . distinguishing-set M1 )]
using distinguishing-set-distinguishes[OF assms(1 ,3 )]
using distinguishing-set-finite
unfolding w-method-via-h-framework-def
by blast+

lemma w-method-via-h-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (w-method-via-h-framework-lists
M1 m)

using h-framework-static-with-empty-graph-lists-completeness[OF assms, where
dist-fun=(λ k q . distinguishing-set M1 ), OF - distinguishing-set-finite]

using distinguishing-set-distinguishes[OF assms(1 ,3 )]
unfolding w-method-via-h-framework-lists-def h-framework-static-with-empty-graph-lists-def

w-method-via-h-framework-def
by blast
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definition w-method-via-h-framework-2 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

w-method-via-h-framework-2 M m = h-framework-static-with-empty-graph M (λ
k q . distinguishing-set-reduced M ) m

definition w-method-via-h-framework-2-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

w-method-via-h-framework-2-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (w-method-via-h-framework-2 M m))

lemma w-method-via-h-framework-2-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (w-method-via-h-framework-2 M1 m))
= (L M2 ∩ set (w-method-via-h-framework-2 M1 m)))
and finite-tree (w-method-via-h-framework-2 M1 m)
using h-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

where dist-fun=(λ k q . distinguishing-set-reduced M1 )]
using distinguishing-set-reduced-distinguishes[OF assms(1 ,3 )]
using distinguishing-set-reduced-finite
unfolding w-method-via-h-framework-2-def
by blast+

lemma w-method-via-h-framework-lists-2-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (w-method-via-h-framework-2-lists
M1 m)

using h-framework-static-with-empty-graph-lists-completeness[OF assms, where
dist-fun=(λ k q . distinguishing-set-reduced M1 ), OF - distinguishing-set-reduced-finite]

using distinguishing-set-reduced-distinguishes[OF assms(1 ,3 )]
unfolding w-method-via-h-framework-2-lists-def h-framework-static-with-empty-graph-lists-def
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w-method-via-h-framework-2-def
by blast

31.2 Using the SPY-Framework
definition w-method-via-spy-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

w-method-via-spy-framework M m = spy-framework-static-with-empty-graph M
(λ k q . distinguishing-set M ) m

lemma w-method-via-spy-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (w-method-via-spy-framework M1 m))
= (L M2 ∩ set (w-method-via-spy-framework M1 m)))
and finite-tree (w-method-via-spy-framework M1 m)

unfolding w-method-via-spy-framework-def
using spy-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

of (λ k q . distinguishing-set M1 )]
using distinguishing-set-distinguishes[OF assms(1 ,3 )]
using distinguishing-set-finite[of M1 ]
by (metis IntI )+

definition w-method-via-spy-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

w-method-via-spy-framework-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (w-method-via-spy-framework M m))

lemma w-method-via-spy-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (w-method-via-spy-framework-lists
M1 m)
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unfolding w-method-via-spy-framework-lists-def
w-method-via-spy-framework-completeness-and-finiteness(1 )[OF assms]

passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial
w-method-via-spy-framework-completeness-and-finiteness(2 )[OF assms]]

by blast

31.3 Using the Pair-Framework
definition w-method-via-pair-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where
w-method-via-pair-framework M m = pair-framework-h-components M m add-distinguishing-set

lemma w-method-via-pair-framework-completeness-and-finiteness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I ) ←→ (L M ∩ set (w-method-via-pair-framework M m) = L I
∩ set (w-method-via-pair-framework M m))
and finite-tree (w-method-via-pair-framework M m)
using pair-framework-h-components-completeness-and-finiteness[OF assms(1 ,2 ,3 ,5 ,4 ,6 ,7 ),

where get-separating-traces=add-distinguishing-set, OF add-distinguishing-set-distinguishes[OF
assms(1 ,3 )] add-distinguishing-set-finite]

using get-distinguishing-sequence-from-ofsm-tables-distinguishes[OF assms(1 ,3 )]
unfolding w-method-via-pair-framework-def [symmetric]
by blast+

definition w-method-via-pair-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
w-method-via-pair-framework-lists M m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (w-method-via-pair-framework M m))

lemma w-method-implementation-lists-completeness :
assumes observable M
and observable I
and minimal M
and size I ≤ m
and m ≥ size-r M
and inputs I = inputs M
and outputs I = outputs M

shows (L M = L I )←→ list-all (passes-test-case I (initial I )) (w-method-via-pair-framework-lists
M m)
unfolding w-method-via-pair-framework-lists-def

w-method-via-pair-framework-completeness-and-finiteness(1 )[OF assms]
passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial
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w-method-via-pair-framework-completeness-and-finiteness(2 )[OF assms]]
by blast

31.4 Code Generation
lemma w-method-via-pair-framework-code[code] :

w-method-via-pair-framework M m = (let
tables = (compute-ofsm-tables M (size M − 1 ));

distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
tables M q1 q2 ))

(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )
(states-as-list M ))));

distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the
(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ));
distSet = from-list (map (case-prod distHelper) pairs);
distFun = (λ M x t . distSet)

in pair-framework-h-components M m distFun)
unfolding w-method-via-pair-framework-def pair-framework-h-components-def pair-framework-def
unfolding add-distinguishing-set.simps
unfolding distinguishing-set.simps
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

lemma w-method-via-spy-framework-code[code] :
w-method-via-spy-framework M m = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ));
distSet = from-list (map (case-prod distHelper) pairs);
distFun = (λ k q . distSet)

in spy-framework-static-with-empty-graph M distFun m)
unfolding w-method-via-spy-framework-def
unfolding add-distinguishing-set.simps
unfolding distinguishing-set.simps
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

lemma w-method-via-h-framework-code[code] :
w-method-via-h-framework M m = (let
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tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ));
distSet = from-list (map (case-prod distHelper) pairs);
distFun = (λ k q . distSet)

in h-framework-static-with-empty-graph M distFun m)
unfolding w-method-via-h-framework-def
unfolding distinguishing-set.simps
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

lemma w-method-via-h-framework-2-code[code] :
w-method-via-h-framework-2 M m = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ));
handlePair = (λ W (q,q ′) . if contains-distinguishing-trace M W q q ′

then W
else insert W (distHelper q q ′));

distSet = foldl handlePair empty pairs;
distFun = (λ k q . distSet)

in h-framework-static-with-empty-graph M distFun m)
unfolding w-method-via-h-framework-2-def
unfolding distinguishing-set-reduced.simps
apply (subst get-distinguishing-sequence-from-ofsm-tables-precomputed[of M ])
unfolding Let-def
by presburger

end

32 Implementations of the Wp-Method
theory Wp-Method-Implementations
imports Intermediate-Frameworks Pair-Framework ../Distinguishability Test-Suite-Representations
../OFSM-Tables-Refined HOL−Library.List-Lexorder
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begin

32.1 Distinguishing Sets
fun add-distinguishing-set-or-state-identifier :: nat ⇒ ( ′a :: linorder , ′b :: linorder ,
′c :: linorder) fsm ⇒ (( ′b × ′c) list × ′a) × ( ′b × ′c) list × ′a ⇒ ( ′b × ′c) prefix-tree
⇒ ( ′b× ′c) prefix-tree where

add-distinguishing-set-or-state-identifier k M ((io1 ,q1 ),(io2 ,q2 )) t = (if length
io1 = k ∨ length io2 = k

then insert empty (get-distinguishing-sequence-from-ofsm-tables M q1 q2 )
else distinguishing-set M )

lemma add-distinguishing-set-or-state-identifier-distinguishes :
assumes observable M
and minimal M
and α ∈ L M
and β ∈ L M
and after-initial M α 6= after-initial M β

shows ∃ io ∈ set (add-distinguishing-set-or-state-identifier k M ((α,after-initial M
α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β)) . distinguishes M
(after-initial M α) (after-initial M β) io
proof (cases length α = k ∨ length β = k)

case False
then show ?thesis
using distinguishing-set-distinguishes[OF assms(1 ,2 ) after-is-state[OF assms(1 ,3 )]

after-is-state[OF assms(1 ,4 )] assms(5 )]
by auto

next
case True
then have set ((add-distinguishing-set-or-state-identifier k) M ((α,after-initial M

α),(β,after-initial M β)) t) = set (insert empty (get-distinguishing-sequence-from-ofsm-tables
M (after-initial M α) (after-initial M β)))

by auto
then have get-distinguishing-sequence-from-ofsm-tables M (after-initial M α)

(after-initial M β) ∈ set ((add-distinguishing-set-or-state-identifier k) M ((α,after-initial
M α),(β,after-initial M β)) t) ∪ (set (after t α) ∩ set (after t β))

unfolding insert-set by auto
then show ?thesis

by (meson after-is-state assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 )
get-distinguishing-sequence-from-ofsm-tables-distinguishes)
qed

lemma add-distinguishing-set-or-state-identifier-finite :
finite-tree ((add-distinguishing-set-or-state-identifier k) M ((α,after-initial M α),(β,after-initial

M β)) t)
proof (cases length α = k ∨ length β = k)

case False
then show ?thesis

959



unfolding add-distinguishing-set.simps distinguishing-set.simps Let-def
using from-list-finite-tree
by simp

next
case True
then have ((add-distinguishing-set-or-state-identifier k) M ((α,after-initial M

α),(β,after-initial M β)) t) = (insert empty (get-distinguishing-sequence-from-ofsm-tables
M (after-initial M α) (after-initial M β)))

by auto
then show ?thesis

using insert-finite-tree[OF empty-finite-tree] by metis
qed

fun distinguishing-set-or-state-identifier :: nat ⇒ ( ′a :: linorder , ′b :: linorder , ′c
:: linorder) fsm ⇒ nat ⇒ ′a ⇒ ( ′b× ′c) prefix-tree where

distinguishing-set-or-state-identifier l M k q = (if k = l
then get-HSI M q
else distinguishing-set M )

lemma get-HSI-subset :
assumes observable M
and minimal M
and q ∈ states M

shows set (get-HSI M q) ⊆ set (distinguishing-set M )
proof

fix io assume io ∈ set (get-HSI M q)

show io ∈ set (distinguishing-set M )
proof (cases io = [])

case True
then show ?thesis by auto

next
case False

then obtain io ′ where ∗:io@io ′∈ list.set (map (get-distinguishing-sequence-from-ofsm-tables
M q) (filter ((6=) q) (states-as-list M )))

using ‹io ∈ set (get-HSI M q)›
unfolding get-HSI .simps from-list-set
by blast

obtain q ′ where q 6= q ′ and q ′∈ states M and io@io ′= get-distinguishing-sequence-from-ofsm-tables
M q q ′

using states-as-list-set[of M ] filter-map-elem[OF ∗]
by blast

have (q,q ′) ∈ list.set (filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list
M )))

∨ (q ′,q) ∈ list.set (filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list
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M )))
using list-ordered-pairs-set-containment[of q states-as-list M q ′] ‹q ∈ states

M › ‹q ′ ∈ states M › ‹q 6= q ′›
unfolding states-as-list-set
by force

moreover define pairs where pairs: pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs
(states-as-list M ))

ultimately have (q,q ′) ∈ list.set pairs ∨ (q ′,q) ∈ list.set pairs
by auto

then have get-distinguishing-sequence-from-ofsm-tables M q q ′ ∈ list.set (map
(case-prod (get-distinguishing-sequence-from-ofsm-tables M )) pairs)

using get-distinguishing-sequence-from-ofsm-tables-sym[OF assms ‹q ′ ∈ states
M › ‹q 6= q ′›, symmetric]

by (metis case-prod-conv map-set)
then have io@io ′ ∈ set (distinguishing-set M )

unfolding ‹io@io ′ = get-distinguishing-sequence-from-ofsm-tables M q q ′›
distinguishing-set.simps Let-def pairs

using from-list-set-elem
by blast

then show ?thesis
using set-prefix by metis

qed
qed

lemma distinguishing-set-or-state-identifier-distinguishes :
assumes observable M
and minimal M
and q1 ∈ states M and q2 ∈ states M and q1 6= q2

shows ∃ io . ∀ k1 k2 . io ∈ set (distinguishing-set-or-state-identifier l M k1 q1 )
∩ set (distinguishing-set-or-state-identifier l M k2 q2 ) ∧ distinguishes M q1 q2 io

using get-HSI-distinguishes[OF assms]
using distinguishing-set-distinguishes[OF assms]
using get-HSI-subset[OF assms(1 ,2 ,3 )]
using get-HSI-subset[OF assms(1 ,2 ,4 )]
unfolding distinguishing-set-or-state-identifier .simps
by auto

lemma distinguishing-set-or-state-identifier-finite :
finite-tree (distinguishing-set-or-state-identifier l M k q)
using get-HSI-finite[of M q]
using distinguishing-set-finite[of M ]
unfolding distinguishing-set-or-state-identifier .simps
by (cases k = l; force)

32.2 Using the H-Framework
definition wp-method-via-h-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where
wp-method-via-h-framework M m = h-framework-static-with-empty-graph M (distinguishing-set-or-state-identifier
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(Suc (m − size-r M )) M ) m

definition wp-method-via-h-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where

wp-method-via-h-framework-lists M m = sorted-list-of-maximal-sequences-in-tree
(test-suite-from-io-tree M (initial M ) (wp-method-via-h-framework M m))

lemma wp-method-via-h-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′e, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (wp-method-via-h-framework M1 m))
= (L M2 ∩ set (wp-method-via-h-framework M1 m)))
and finite-tree (wp-method-via-h-framework M1 m)
using h-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

where dist-fun=distinguishing-set-or-state-identifier (Suc (m − size-r M1 )) M1 ]
using distinguishing-set-or-state-identifier-distinguishes[OF assms(1 ,3 )]
using distinguishing-set-or-state-identifier-finite
unfolding wp-method-via-h-framework-def
by blast+

lemma wp-method-via-h-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (wp-method-via-h-framework-lists
M1 m)

using h-framework-static-with-empty-graph-lists-completeness[OF assms, where
dist-fun=distinguishing-set-or-state-identifier (Suc (m − size-r M1 )) M1 , OF -
distinguishing-set-or-state-identifier-finite]

using distinguishing-set-or-state-identifier-distinguishes[OF assms(1 ,3 )]
unfolding wp-method-via-h-framework-lists-def h-framework-static-with-empty-graph-lists-def

wp-method-via-h-framework-def
by blast
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32.3 Using the SPY-Framework
definition wp-method-via-spy-framework :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
⇒ nat ⇒ ( ′b× ′c) prefix-tree where

wp-method-via-spy-framework M m = spy-framework-static-with-empty-graph M
(distinguishing-set-or-state-identifier (Suc (m − size-r M )) M ) m

lemma wp-method-via-spy-framework-completeness-and-finiteness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (wp-method-via-spy-framework M1 m))
= (L M2 ∩ set (wp-method-via-spy-framework M1 m)))
and finite-tree (wp-method-via-spy-framework M1 m)

unfolding wp-method-via-spy-framework-def
using spy-framework-static-with-empty-graph-completeness-and-finiteness[OF assms,

of distinguishing-set-or-state-identifier (Suc (m − size-r M1 )) M1 ]
using distinguishing-set-or-state-identifier-distinguishes[OF assms(1 ,3 )]
using distinguishing-set-or-state-identifier-finite
by metis+

definition wp-method-via-spy-framework-lists :: ( ′a::linorder , ′b::linorder , ′c::linorder)
fsm ⇒ nat ⇒ (( ′b× ′c) × bool) list list where
wp-method-via-spy-framework-lists M m = sorted-list-of-maximal-sequences-in-tree

(test-suite-from-io-tree M (initial M ) (wp-method-via-spy-framework M m))

lemma wp-method-via-spy-framework-lists-completeness :
fixes M1 :: ( ′a::linorder , ′b::linorder , ′c::linorder) fsm
fixes M2 :: ( ′d, ′b, ′c) fsm
assumes observable M1
and observable M2
and minimal M1
and minimal M2
and size-r M1 ≤ m
and size M2 ≤ m
and inputs M2 = inputs M1
and outputs M2 = outputs M1

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (initial M2 )) (wp-method-via-spy-framework-lists
M1 m)

unfolding wp-method-via-spy-framework-lists-def
wp-method-via-spy-framework-completeness-and-finiteness(1 )[OF assms]

passes-test-cases-from-io-tree[OF assms(1 ,2 ) fsm-initial fsm-initial
wp-method-via-spy-framework-completeness-and-finiteness(2 )[OF assms]]
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by blast

32.4 Code Generation
lemma wp-method-via-spy-framework-code[code] :

wp-method-via-spy-framework M m = (let
tables = (compute-ofsm-tables M (size M − 1 ));

distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables
tables M q1 q2 ))

(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )
(states-as-list M ))));

distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the
(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ));
distSet = from-list (map (case-prod distHelper) pairs);
hsiMap = mapping-of (map (λ q . (q,from-list (map (λq ′ . distHelper q q ′)

(filter (( 6=) q) (states-as-list M ))))) (states-as-list M ));
l = (Suc (m − size-r M ));
distFun = (λ k q . if k = l

then (if q ∈ states M then the (Mapping.lookup hsiMap q) else
get-HSI M q)

else distSet)
in spy-framework-static-with-empty-graph M distFun m)

(is ?f1 = ?f2 )
proof −

define hsiMap ′ where hsiMap ′ = mapping-of (map (λ q . (q,from-list (map (λq ′

. get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter (( 6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun ′ where distFun ′ = (λ k q . if k = (Suc (m − size-r M ))
then (if q ∈ states M then the (Mapping.lookup hsiMap ′ q) else

get-HSI M q)
else distinguishing-set M )

have ∗: ?f2 = spy-framework-static-with-empty-graph M distFun ′ m
unfolding distFun ′-def hsiMap ′-def distinguishing-set.simps Let-def
apply (subst (3 4 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M ])
unfolding Let-def
by presburger

define hsiMap where hsiMap = map-of (map (λ q . (q,from-list (map (λq ′ .
get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter ((6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun where distFun = (λ k q . if k = (Suc (m − size-r M ))
then (if q ∈ states M then the (hsiMap q) else get-HSI M q)
else distinguishing-set M )

have distinct (map fst (map (λ q . (q,from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M ))))) (states-as-list M )))
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using states-as-list-distinct
by (metis map-pair-fst)

then have Mapping.lookup hsiMap ′ = hsiMap
unfolding hsiMap-def hsiMap ′-def
using mapping-of-map-of
by blast

then have distFun ′ = distFun
unfolding distFun-def distFun ′-def by meson

have ∗∗:distFun ′ = (distinguishing-set-or-state-identifier (Suc (m − size-r M ))
M )

proof
fix k show distFun ′ k = (distinguishing-set-or-state-identifier (Suc (m − size-r

M )) M ) k
proof (cases k = (Suc (m − size-r M )))

case False
then show ?thesis

unfolding distFun-def distinguishing-set-or-state-identifier .simps ‹distFun ′

= distFun› by auto
next

case True
then have distFun k = (λ q . (if q ∈ states M then the (hsiMap q) else

get-HSI M q))
and (distinguishing-set-or-state-identifier (Suc (m − size-r M )) M ) k =

(λ q . get-HSI M q)
unfolding distFun-def distinguishing-set-or-state-identifier .simps by auto

moreover have (λ q . (if q ∈ states M then the (hsiMap q) else get-HSI M
q)) = (λ q . get-HSI M q)

proof
fix q show (if q ∈ states M then the (hsiMap q) else get-HSI M q) = get-HSI

M q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by blast
then show ?thesis

unfolding distFun-def hsiMap-def map-of-map-pair-entry get-HSI .simps
using True
by fastforce

next
case False
then show ?thesis using distFun-def by auto

qed
qed
ultimately show ?thesis unfolding ‹distFun ′ = distFun› by simp

qed
qed

show ?thesis
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unfolding ∗ ∗∗ wp-method-via-spy-framework-def by simp
qed

lemma wp-method-via-h-framework-code[code] :
wp-method-via-h-framework M m = (let

tables = (compute-ofsm-tables M (size M − 1 ));
distMap = mapping-of (map (λ (q1 ,q2 ) . ((q1 ,q2 ), get-distinguishing-sequence-from-ofsm-tables-with-provided-tables

tables M q1 q2 ))
(filter (λ qq . fst qq 6= snd qq) (List.product (states-as-list M )

(states-as-list M ))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 6= q2 then the

(Mapping.lookup distMap (q1 ,q2 )) else get-distinguishing-sequence-from-ofsm-tables
M q1 q2 );

pairs = filter (λ (x,y) . x 6= y) (list-ordered-pairs (states-as-list M ));
distSet = from-list (map (case-prod distHelper) pairs);
hsiMap = mapping-of (map (λ q . (q,from-list (map (λq ′ . distHelper q q ′)

(filter (( 6=) q) (states-as-list M ))))) (states-as-list M ));
l = (Suc (m − size-r M ));
distFun = (λ k q . if k = l

then (if q ∈ states M then the (Mapping.lookup hsiMap q) else
get-HSI M q)

else distSet)
in h-framework-static-with-empty-graph M distFun m)

(is ?f1 = ?f2 )
proof −

define hsiMap ′ where hsiMap ′ = mapping-of (map (λ q . (q,from-list (map (λq ′

. get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter (( 6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun ′ where distFun ′ = (λ k q . if k = (Suc (m − size-r M ))
then (if q ∈ states M then the (Mapping.lookup hsiMap ′ q) else

get-HSI M q)
else distinguishing-set M )

have ∗: ?f2 = h-framework-static-with-empty-graph M distFun ′ m
unfolding distFun ′-def hsiMap ′-def distinguishing-set.simps Let-def
apply (subst (3 4 ) get-distinguishing-sequence-from-ofsm-tables-precomputed[of

M ])
unfolding Let-def
by presburger

define hsiMap where hsiMap = map-of (map (λ q . (q,from-list (map (λq ′ .
get-distinguishing-sequence-from-ofsm-tables M q q ′) (filter ((6=) q) (states-as-list
M ))))) (states-as-list M ))

define distFun where distFun = (λ k q . if k = (Suc (m − size-r M ))
then (if q ∈ states M then the (hsiMap q) else get-HSI M q)
else distinguishing-set M )

have distinct (map fst (map (λ q . (q,from-list (map (λq ′ . get-distinguishing-sequence-from-ofsm-tables
M q q ′) (filter (( 6=) q) (states-as-list M ))))) (states-as-list M )))

using states-as-list-distinct
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by (metis map-pair-fst)
then have Mapping.lookup hsiMap ′ = hsiMap

unfolding hsiMap-def hsiMap ′-def
using mapping-of-map-of
by blast

then have distFun ′ = distFun
unfolding distFun-def distFun ′-def by meson

have ∗∗:distFun ′ = (distinguishing-set-or-state-identifier (Suc (m − size-r M ))
M )

proof
fix k show distFun ′ k = (distinguishing-set-or-state-identifier (Suc (m − size-r

M )) M ) k
proof (cases k = (Suc (m − size-r M )))

case False
then show ?thesis

unfolding distFun-def distinguishing-set-or-state-identifier .simps ‹distFun ′

= distFun› by auto
next

case True
then have distFun k = (λ q . (if q ∈ states M then the (hsiMap q) else

get-HSI M q))
and (distinguishing-set-or-state-identifier (Suc (m − size-r M )) M ) k =

(λ q . get-HSI M q)
unfolding distFun-def distinguishing-set-or-state-identifier .simps by auto

moreover have (λ q . (if q ∈ states M then the (hsiMap q) else get-HSI M
q)) = (λ q . get-HSI M q)

proof
fix q show (if q ∈ states M then the (hsiMap q) else get-HSI M q) = get-HSI

M q
proof (cases q ∈ states M )

case True
then have q ∈ list.set (states-as-list M )

using states-as-list-set by blast
then show ?thesis

unfolding distFun-def hsiMap-def map-of-map-pair-entry get-HSI .simps
using True
by fastforce

next
case False
then show ?thesis using distFun-def by auto

qed
qed
ultimately show ?thesis unfolding ‹distFun ′ = distFun› by simp

qed
qed

show ?thesis
unfolding ∗ ∗∗ wp-method-via-h-framework-def by simp
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qed

end

33 Backwards Reachability Analysis

This theory introduces function select-inputs which is used for the calcula-
tion of both state preambles and state separators.
theory Backwards-Reachability-Analysis
imports ../FSM
begin

Function select-inputs calculates an associative list that maps states to a
single input each such that the FSM induced by this input selection is acyclic,
single input and whose only deadlock states (if any) are contained in stateSet.
The following parameters are used: 1) transition function f (typically (h M )
for some FSM M ) 2) a source state q0 (selection terminates as soon as this
states is assigned some input) 3) a list of inputs that may be assigned to
states 4) a list of states not yet taken (these are considered when searching
for the next possible assignment) 5) a set stateSet of all states that already
have an input assigned to them by m 6) an associative list m containing
previously chosen assignments
function select-inputs :: (( ′a × ′b) ⇒ ( ′c × ′a) set) ⇒ ′a ⇒ ′b list ⇒ ′a list ⇒ ′a
set ⇒ ( ′a × ′b) list ⇒ ( ′a × ′b) list where

select-inputs f q0 inputList [] stateSet m = (case find (λ x . f (q0 ,x) 6= {} ∧ (∀
(y,q ′′) ∈ f (q0 ,x) . (q ′′ ∈ stateSet))) inputList of

Some x ⇒ m@[(q0 ,x)] |
None ⇒ m) |

select-inputs f q0 inputList (n#nL) stateSet m =
(case find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′ ∈ stateSet)))

inputList of
Some x ⇒ m@[(q0 ,x)] |
None ⇒ (case find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q ′,x) .

(q ′′ ∈ stateSet))) (n#nL) inputList
of None ⇒ m |

Some (q ′,x,stateList ′) ⇒ select-inputs f q0 inputList stateList ′ (insert q ′

stateSet) (m@[(q ′,x)])))
by pat-completeness auto

termination
proof −

{
fix f :: (( ′a × ′b) ⇒ ( ′c × ′a) set)
fix q0 :: ′a
fix inputList :: ′b list
fix n :: ′a
fix nL :: ′a list
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fix stateSet :: ′a set
fix m :: ( ′a × ′b) list
fix qynL ′ q ynL ′ x nL ′

assume find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ stateSet)) inputList
= None

and find-remove-2 (λq ′ x. f (q ′, x) 6= {} ∧ (∀ (y, q ′′)∈f (q ′, x). q ′′ ∈ stateSet))
(n # nL) inputList = Some qynL ′

and (q, ynL ′) = qynL ′

and (x, nL ′) = ynL ′

then have ∗: find-remove-2 (λq ′ x. f (q ′, x) 6= {} ∧ (∀ (y, q ′′)∈f (q ′, x). q ′′ ∈
stateSet)) (n # nL) inputList = Some (q,x,nL ′)

by auto

have q ∈ set (n # nL)
and nL ′ = remove1 q (n # nL)

using find-remove-2-set(2 ,6 )[OF ∗] by simp+

then have length nL ′ < length (n # nL)
using remove1-length by metis

then have ((f , q0 , inputList, nL ′, insert q stateSet, m @ [(q, x)]), f , q0 ,
inputList, n # nL, stateSet, m)

∈ measure (λ(f , q0 , iL, nL, nS , m). length nL)
by auto

}
then show ?thesis

by (relation measure (λ (f ,q0 ,iL,nL,nS ,m) . length nL); simp)
qed

lemma select-inputs-length :
length (select-inputs f q0 inputList stateList stateSet m) ≤ (length m) + Suc

(length stateList)
proof (induction length stateList arbitrary: stateList stateSet m)

case 0
then show ?case

by (cases find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ stateSet))
inputList; auto)
next

case (Suc k)
then obtain n nL where stateList = n # nL

by (meson Suc-length-conv)

show ?case
proof (cases find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′ ∈ stateSet)))

inputList)
case None
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then show ?thesis
proof (cases find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q ′,x) . (q ′′

∈ stateSet))) stateList inputList)
case None
then show ?thesis

using ‹find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ stateSet))
inputList = None›

unfolding ‹stateList = n # nL› by auto
next

case (Some a)
then obtain q ′ x stateList ′ where ∗: find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧

(∀ (y,q ′′) ∈ f (q ′,x) . (q ′′ ∈ stateSet))) (n#nL) inputList
= Some (q ′,x,stateList ′)

unfolding ‹stateList = n # nL› by (metis prod-cases3 )
have k = length stateList ′

using find-remove-2-length[OF ∗] ‹Suc k = length stateList›
unfolding ‹stateList = n # nL›
by simp

show ?thesis
using Suc.hyps(1 )[of stateList ′ insert q ′ stateSet m@[(q ′,x)], OF ‹k = length

stateList ′›]
unfolding ‹stateList = n # nL› select-inputs.simps None ∗ find-remove-2-length[OF

∗]
by simp

qed
next

case (Some a)
then show ?thesis

unfolding ‹stateList = n # nL› by auto
qed

qed

lemma select-inputs-length-min :
length (select-inputs f q0 inputList stateList stateSet m) ≥ (length m)

proof (induction length stateList arbitrary: stateList stateSet m)
case 0
then show ?case

by (cases find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ stateSet))
inputList; auto)
next

case (Suc k)
then obtain n nL where stateList = n # nL

by (meson Suc-length-conv)

show ?case
proof (cases find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′ ∈ stateSet)))

inputList)
case None
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then show ?thesis
proof (cases find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q ′,x) . (q ′′

∈ stateSet))) stateList inputList)
case None
then show ?thesis using ‹find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x).

q ′′ ∈ stateSet)) inputList = None›
unfolding ‹stateList = n # nL› by auto

next
case (Some a)
then obtain q ′ x stateList ′ where ∗: find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧

(∀ (y,q ′′) ∈ f (q ′,x) . (q ′′ ∈ stateSet))) (n#nL) inputList
= Some (q ′,x,stateList ′)

unfolding ‹stateList = n # nL› by (metis prod-cases3 )
have k = length stateList ′

using find-remove-2-length[OF ∗] ‹Suc k = length stateList›
unfolding ‹stateList = n # nL›
by simp

show ?thesis
unfolding ‹stateList = n # nL› select-inputs.simps None ∗ find-remove-2-length[OF

∗]
using Suc.hyps(1 )[of stateList ′ m@[(q ′,x)] insert q ′ stateSet , OF ‹k =

length stateList ′›]
by simp

qed
next

case (Some a)
then show ?thesis unfolding ‹stateList = n # nL› by auto

qed
qed

lemma select-inputs-helper1 :
find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ nS)) iL = Some x
=⇒ (select-inputs f q0 iL nL nS m) = m@[(q0 ,x)]

by (cases nL; auto)

lemma select-inputs-take :
take (length m) (select-inputs f q0 inputList stateList stateSet m) = m

proof (induction length stateList arbitrary: stateList stateSet m)
case 0
then show ?case

by (cases find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ stateSet))
inputList; auto)
next

case (Suc k)
then obtain n nL where stateList = n # nL

by (meson Suc-length-conv)
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show ?case proof (cases find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′

∈ stateSet))) inputList)
case None
then show ?thesis
proof (cases find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q ′,x) . (q ′′

∈ stateSet))) stateList inputList)
case None
then show ?thesis using ‹find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x).

q ′′ ∈ stateSet)) inputList = None›
unfolding ‹stateList = n # nL› by auto

next
case (Some a)
then obtain q ′ x stateList ′ where ∗: find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧

(∀ (y,q ′′) ∈ f (q ′,x) . (q ′′ ∈ stateSet))) (n#nL) inputList
= Some (q ′,x,stateList ′)

unfolding ‹stateList = n # nL›
by (metis prod-cases3 )

have k = length stateList ′

using find-remove-2-length[OF ∗] ‹Suc k = length stateList›
unfolding ‹stateList = n # nL›
by simp

have ∗∗: (select-inputs f q0 inputList stateList stateSet m)
= select-inputs f q0 inputList stateList ′ (insert q ′ stateSet) (m @

[(q ′, x)])
unfolding ‹stateList = n # nL› select-inputs.simps None ∗
by simp

show ?thesis
unfolding ∗∗

using Suc.hyps(1 )[of stateList ′ m@[(q ′,x)] insert q ′ stateSet , OF ‹k =
length stateList ′›]

by (metis butlast-snoc butlast-take diff-Suc-1 length-append-singleton se-
lect-inputs-length-min)

qed
next

case (Some a)
then show ?thesis unfolding ‹stateList = n # nL› by auto

qed
qed

lemma select-inputs-take ′ :
take (length m) (select-inputs f q0 iL nL nS (m@m ′)) = m
using select-inputs-take
by (metis (no-types, lifting) add-leE append-eq-append-conv select-inputs-length-min

length-append
length-take min-absorb2 take-add)
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lemma select-inputs-distinct :
assumes distinct (map fst m)
and set (map fst m) ⊆ nS
and q0 /∈ nS
and distinct nL
and q0 /∈ set nL
and set nL ∩ nS = {}
shows distinct (map fst (select-inputs f q0 iL nL nS m))

using assms proof (induction length nL arbitrary: nL nS m)
case 0
then show ?case

by (cases find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ nS)) iL; auto)
next

case (Suc k)
then obtain n nL ′′ where nL = n # nL ′′

by (meson Suc-length-conv)

show ?case proof (cases find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′

∈ nS))) iL)
case None
then show ?thesis
proof (cases find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q ′,x) . (q ′′

∈ nS))) nL iL)
case None
then have (select-inputs f q0 iL nL nS m) = m

using ‹find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ nS)) iL =
None›

unfolding ‹nL = n # nL ′′› by auto
then show ?thesis

using Suc.prems by auto
next

case (Some a)
then obtain q ′ x nL ′ where ∗: find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀

(y,q ′′) ∈ f (q ′,x) . (q ′′ ∈ nS))) nL iL
= Some (q ′,x,nL ′)

by (metis prod-cases3 )

have k = length nL ′

using find-remove-2-length[OF ∗] ‹Suc k = length nL›
by simp

have select-inputs f q0 iL nL nS m = select-inputs f q0 iL nL ′ (insert q ′ nS)
(m @ [(q ′, x)])

using ∗
unfolding ‹nL = n # nL ′′› select-inputs.simps None
by auto

have q ′ ∈ set nL
and set nL ′ = set nL − {q ′}
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and distinct nL ′

using find-remove-2-set[OF ∗ ] ‹distinct nL› by auto

have distinct (map fst (m@[(q ′,x)]))
using ‹(set (map fst m)) ⊆ nS› ‹set nL ∩ nS = {}› ‹q ′ ∈ set nL› ‹distinct

(map fst m)›
by auto

have q0 /∈ insert q ′ nS
using Suc.prems(3 ) Suc.prems(5 ) ‹q ′ ∈ set nL› by auto

have set (map fst (m@[(q ′,x)])) ⊆ insert q ′ nS
using ‹(set (map fst m)) ⊆ nS› by auto

have (set (map fst (m@[(q ′,x)]))) ⊆ insert q ′ nS
using‹(set (map fst m)) ⊆ nS› by auto

have q0 /∈ set nL ′

by (simp add: Suc.prems(5 ) ‹set nL ′ = set nL − {q ′}›)
have set nL ′ ∩ insert q ′ nS = {}

using Suc.prems(6 ) ‹set nL ′ = set nL − {q ′}› by auto

show ?thesis
unfolding select-inputs.simps None ∗
using Suc.hyps(1 )[OF ‹k = length nL ′› ‹distinct (map fst (m@[(q ′,x)]))›

‹set (map fst (m@[(q ′,x)])) ⊆ insert q ′ nS›
‹q0 /∈ insert q ′ nS›
‹distinct nL ′›
‹q0 /∈ set nL ′›
‹set nL ′ ∩ insert q ′ nS = {}›]

unfolding ‹select-inputs f q0 iL nL nS m = select-inputs f q0 iL nL ′ (insert
q ′ nS) (m @ [(q ′, x)])›

by assumption
qed

next
case (Some a)
then show ?thesis

using Suc ‹nL = n # nL ′′› by auto
qed

qed

lemma select-inputs-index-properties :
assumes i < length (select-inputs (h M ) q0 iL nL nS m)
and i ≥ length m
and distinct (map fst m)
and nS = nS0 ∪ set (map fst m)
and q0 /∈ nS
and distinct nL
and q0 /∈ set nL
and set nL ∩ nS = {}

shows fst (select-inputs (h M ) q0 iL nL nS m ! i) ∈ (insert q0 (set nL))
fst (select-inputs (h M ) q0 iL nL nS m ! i) /∈ nS0
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snd (select-inputs (h M ) q0 iL nL nS m ! i) ∈ set iL
(∀ qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS m)) . fst (select-inputs

(h M ) q0 iL nL nS m ! i) 6= fst qx ′)
(∃ t ∈ transitions M . t-source t = fst (select-inputs (h M ) q0 iL nL nS m !

i) ∧ t-input t = snd (select-inputs (h M ) q0 iL nL nS m ! i))
(∀ t ∈ transitions M . (t-source t = fst (select-inputs (h M ) q0 iL nL nS m !

i) ∧ t-input t = snd (select-inputs (h M ) q0 iL nL nS m ! i)) −→ (t-target t ∈ nS0
∨ (∃ qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS m)) . fst qx ′ = (t-target
t))))
proof −

have combined-props :
fst (select-inputs (h M ) q0 iL nL nS m ! i) ∈ (insert q0 (set nL))
∧ snd (select-inputs (h M ) q0 iL nL nS m ! i) ∈ set iL
∧ fst (select-inputs (h M ) q0 iL nL nS m ! i) /∈ nS0
∧ (∃ t ∈ transitions M . t-source t = fst (select-inputs (h M ) q0 iL nL nS m

! i) ∧ t-input t = snd (select-inputs (h M ) q0 iL nL nS m ! i))
∧ (∀ t ∈ transitions M . (t-source t = fst (select-inputs (h M ) q0 iL nL nS

m ! i) ∧ t-input t = snd (select-inputs (h M ) q0 iL nL nS m ! i)) −→ (t-target
t ∈ nS0 ∨ (∃ qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS m)) . fst qx ′ =
(t-target t))))

using assms proof (induction length nL arbitrary: nL nS m)
case 0
show ?case proof (cases find (λ x . (h M ) (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ (h M )

(q0 ,x) . (q ′′ ∈ nS))) iL)
case None
then have (select-inputs (h M ) q0 iL nL nS m) = m using 0 by auto
then have False using 0 .prems(1 ,2 ) by auto
then show ?thesis by simp

next
case (Some x)

have (select-inputs (h M ) q0 iL nL nS m) = m@[(q0 ,x)] using select-inputs-helper1 [OF
Some] by assumption

then have (select-inputs (h M ) q0 iL nL nS m ! i) = (q0 ,x) using 0 .prems(1 ,2 )
using antisym by fastforce

have fst (q0 , x) ∈ insert q0 (set nL) by auto
moreover have snd (q0 , x) ∈ set iL using find-set[OF Some] by auto
moreover have fst (select-inputs (h M ) q0 iL nL nS m ! i) /∈ nS0
using ‹select-inputs (h M ) q0 iL nL nS m ! i = (q0 , x)› assms(4 ) assms(5 )

by auto

moreover have (∃ t∈FSM .transitions M . t-source t = fst (q0 , x) ∧ t-input t
= snd (q0 , x))

using find-condition[OF Some] unfolding fst-conv snd-conv h.simps
by fastforce

moreover have
∧

t . t ∈ FSM .transitions M =⇒
t-source t = fst (q0 , x) =⇒ t-input t = snd (q0 , x) =⇒

t-target t ∈ nS0 ∨ (∃ qx ′∈set (take i (select-inputs (h M ) q0 iL nL nS m)).
fst qx ′ = t-target t)
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proof −
fix t assume t ∈ FSM .transitions M t-source t = fst (q0 , x) t-input t =

snd (q0 , x)
then have t-target t ∈ nS

using find-condition[OF Some] unfolding h.simps fst-conv snd-conv
by (metis (no-types, lifting) case-prod-beta ′ h-simps mem-Collect-eq

prod.collapse)
then show t-target t ∈ nS0 ∨ (∃ qx ′∈set (take i (select-inputs (h M ) q0 iL

nL nS m)). fst qx ′ = t-target t)
using ‹nS = nS0 ∪ set (map fst m)›
using 0 .prems(1 ) 0 .prems(2 ) ‹select-inputs (h M ) q0 iL nL nS m = m @

[(q0 , x)]› by fastforce
qed

ultimately show ?thesis
unfolding ‹(select-inputs (h M ) q0 iL nL nS m ! i) = (q0 ,x)› by blast

qed
next

case (Suc k)
then obtain n nL ′′ where nL = n # nL ′′

by (meson Suc-length-conv)

show ?case proof (cases find (λ x . (h M ) (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ (h M )
(q0 ,x) . (q ′′ ∈ nS))) iL)

case None
show ?thesis proof (cases find-remove-2 (λ q ′ x . (h M ) (q ′,x) 6= {} ∧ (∀

(y,q ′′) ∈ (h M ) (q ′,x) . (q ′′ ∈ nS))) nL iL)
case None
then have (select-inputs (h M ) q0 iL nL nS m) = m using ‹find (λx. h M

(q0 , x) 6= {} ∧ (∀ (y, q ′′)∈h M (q0 , x). q ′′ ∈ nS)) iL = None› ‹nL = n # nL ′′›
by auto

then have False using Suc.prems(1 ,2 ) by auto
then show ?thesis by simp

next
case (Some a)
then obtain q ′ x nL ′ where ∗∗: find-remove-2 (λ q ′ x . (h M ) (q ′,x) 6= {}

∧ (∀ (y,q ′′) ∈ (h M ) (q ′,x) . (q ′′ ∈ nS))) nL iL = Some (q ′,x,nL ′)
by (metis prod-cases3 )

have k = length nL ′

using find-remove-2-length[OF ∗∗] ‹Suc k = length nL› by simp

have select-inputs (h M ) q0 iL nL nS m = select-inputs (h M ) q0 iL nL ′

(insert q ′ nS) (m @ [(q ′, x)])
using ∗∗
unfolding ‹nL = n # nL ′′› select-inputs.simps None by auto

then have i < length (select-inputs (h M ) q0 iL nL ′ (insert q ′ nS)
(m@[(q ′,x)]))

using Suc.prems(1 ) by auto
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have (set (map fst (m @ [(q ′, x)]))) ⊆ insert q ′ nS
using Suc.prems(4 ) by auto

have q ′ ∈ set nL
and set nL ′ = set nL − {q ′}
and distinct nL ′

using find-remove-2-set[OF ∗∗ ] ‹distinct nL› by auto
have set nL ′ ⊆ set nL

using find-remove-2-set(4 )[OF ∗∗ ‹distinct nL›] by blast

have distinct (map fst (m @ [(q ′, x)]))
using Suc.prems(4 ) ‹set nL ∩ nS = {}› ‹q ′ ∈ set nL› ‹distinct (map fst

m)› by auto
have distinct (map fst (m@[(q ′,x)]))

using Suc.prems(4 ) ‹set nL ∩ nS = {}› ‹q ′ ∈ set nL› ‹distinct (map fst
m)› by auto

have q0 /∈ insert q ′ nS
using Suc.prems(7 ) Suc.prems(5 ) ‹q ′ ∈ set nL› by auto

have insert q ′ nS = nS0 ∪ set (map fst (m@[(q ′,x)]))
using Suc.prems(4 ) by auto

have q0 /∈ set nL ′

by (metis Suc.prems(7 ) ‹set nL ′ ⊆ set nL› subset-code(1 ))
have set nL ′ ∩ insert q ′ nS = {}

using Suc.prems(8 ) ‹set nL ′ = set nL − {q ′}› by auto

show ?thesis proof (cases length (m @ [(q ′, x)]) ≤ i)
case True

show ?thesis
using Suc.hyps(1 )[OF ‹k = length nL ′› ‹i < length (select-inputs (h M )

q0 iL nL ′ (insert q ′ nS) (m@[(q ′,x)]))›
True
‹distinct (map fst (m @ [(q ′, x)]))›
‹insert q ′ nS = nS0 ∪ set (map fst (m@[(q ′,x)]))›
‹q0 /∈ insert q ′ nS›
‹distinct nL ′›
‹q0 /∈ set nL ′›
‹set nL ′ ∩ insert q ′ nS = {}› ]

unfolding ‹select-inputs (h M ) q0 iL nL nS m = select-inputs (h M ) q0
iL nL ′ (insert q ′ nS) (m@[(q ′,x)])›

using ‹set nL ′ ⊆ set nL› by blast
next

case False
then have i = length m

using Suc.prems(2 ) by auto
then have ∗∗∗: select-inputs (h M ) q0 iL nL nS m ! i = (q ′,x)

unfolding ‹select-inputs (h M ) q0 iL nL nS m = select-inputs (h M ) q0
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iL nL ′ (insert q ′ nS) (m@[(q ′,x)])›
using select-inputs-take
by (metis length-append-singleton lessI nth-append-length nth-take)

have q ′ ∈ insert q0 (set nL)
by (simp add: ‹q ′ ∈ set nL›)

moreover have x ∈ set iL
using find-remove-2-set(3 )[OF ∗∗ ] by auto

moreover have q ′ /∈ nS0
using Suc.prems(4 ) Suc.prems(8 ) ‹q ′ ∈ set nL› by blast

moreover have (∃ t∈FSM .transitions M . t-source t = q ′ ∧ t-input t = x)

using find-remove-2-set(1 )[OF ∗∗ ] unfolding h.simps by force
moreover have (∀ t∈FSM .transitions M . t-source t = q ′ ∧ t-input t =

x −→ t-target t ∈ nS0 ∨ (∃ qx ′∈set (take i (select-inputs (h M ) q0 iL nL nS m)).
fst qx ′ = t-target t))

unfolding ‹i = length m› select-inputs-take
using find-remove-2-set(1 )[OF ∗∗ ] unfolding h.simps ‹nS = nS0 ∪

(set (map fst m))› by force
ultimately show ?thesis

unfolding ∗∗∗ fst-conv snd-conv by blast
qed

qed
next

case (Some x)
have (select-inputs (h M ) q0 iL nL nS m) = m@[(q0 ,x)] using select-inputs-helper1 [OF

Some] by assumption
then have (select-inputs (h M ) q0 iL nL nS m ! i) = (q0 ,x) using Suc.prems(1 ,2 )

using antisym by fastforce

have fst (q0 , x) ∈ insert q0 (set nL) by auto
moreover have snd (q0 , x) ∈ set iL using find-set[OF Some] by auto
moreover have fst (q0 , x) /∈ nS0

using assms(4 ) assms(5 ) by auto
moreover have

∧
qx ′ . qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS

m)) − set (take (length m) (select-inputs (h M ) q0 iL nL nS m)) =⇒ fst (q0 , x)
6= fst qx ′

using Suc.prems(1 ,2 ) ‹select-inputs (h M ) q0 iL nL nS m = m @ [(q0 , x)]›
by auto

moreover have (∃ t∈FSM .transitions M . t-source t = fst (q0 , x) ∧ t-input t
= snd (q0 , x))

using find-condition[OF Some] unfolding fst-conv snd-conv h.simps
by fastforce

moreover have
∧

t . t ∈ FSM .transitions M =⇒
t-source t = fst (q0 , x) =⇒ t-input t = snd (q0 , x) =⇒

t-target t ∈ nS0 ∨ (∃ qx ′∈set (take i (select-inputs (h M ) q0 iL nL nS m)).
fst qx ′ = t-target t)

proof −
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fix t assume t ∈ FSM .transitions M t-source t = fst (q0 , x) t-input t =
snd (q0 , x)

then have t-target t ∈ nS
using find-condition[OF Some] unfolding h.simps fst-conv snd-conv

by (metis (no-types, lifting) case-prod-beta ′ h-simps mem-Collect-eq
prod.collapse)

then show t-target t ∈ nS0 ∨ (∃ qx ′∈set (take i (select-inputs (h M ) q0 iL
nL nS m)). fst qx ′ = t-target t)

using ‹nS = nS0 ∪ (set (map fst m))›
using Suc.prems(1 ,2 ) ‹select-inputs (h M ) q0 iL nL nS m = m @ [(q0 ,

x)]› by fastforce
qed

ultimately show ?thesis
unfolding ‹(select-inputs (h M ) q0 iL nL nS m ! i) = (q0 ,x)› by blast

qed
qed

then show fst (select-inputs (h M ) q0 iL nL nS m ! i) ∈ (insert q0 (set nL))
snd (select-inputs (h M ) q0 iL nL nS m ! i) ∈ set iL
fst (select-inputs (h M ) q0 iL nL nS m ! i) /∈ nS0
(∃ t ∈ transitions M . t-source t = fst (select-inputs (h M ) q0 iL nL nS

m ! i) ∧ t-input t = snd (select-inputs (h M ) q0 iL nL nS m ! i))
(∀ t ∈ transitions M . (t-source t = fst (select-inputs (h M ) q0 iL nL

nS m ! i) ∧ t-input t = snd (select-inputs (h M ) q0 iL nL nS m ! i)) −→ (t-target
t ∈ nS0 ∨ (∃ qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS m)) . fst qx ′ =
(t-target t))))

by blast+

show (∀ qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS m)) . fst (select-inputs
(h M ) q0 iL nL nS m ! i) 6= fst qx ′)

proof
fix qx ′ assume qx ′ ∈ set (take i (select-inputs (h M ) q0 iL nL nS m))
then obtain j where (take i (select-inputs (h M ) q0 iL nL nS m)) ! j = qx ′

and j < length (take i (select-inputs (h M ) q0 iL nL nS m))
by (meson in-set-conv-nth)

then have fst qx ′ = (map fst (select-inputs (h M ) q0 iL nL nS m)) ! j and j
< length (select-inputs (h M ) q0 iL nL nS m) by auto

moreover have fst (select-inputs (h M ) q0 iL nL nS m ! i) = (map fst
(select-inputs (h M ) q0 iL nL nS m)) ! i

using assms(1 ) by auto

moreover have j 6= i
using ‹j < length (take i (select-inputs (h M ) q0 iL nL nS m))› by auto

moreover have set (map fst m) ⊆ nS
using ‹nS = nS0 ∪ set (map fst m)› by blast
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ultimately show fst (select-inputs (h M ) q0 iL nL nS m ! i) 6= fst qx ′

using assms(1 )
using select-inputs-distinct[OF ‹distinct (map fst m)› - ‹q0 /∈ nS› ‹distinct

nL› ‹q0 /∈ set nL› ‹set nL ∩ nS = {}›]
by (metis distinct-Ex1 in-set-conv-nth length-map)

qed
qed

lemma select-inputs-initial :
assumes qx ∈ set (select-inputs f q0 iL nL nS m) − set m
and fst qx = q0
shows (last (select-inputs f q0 iL nL nS m)) = qx

using assms(1 ) proof (induction length nL arbitrary: nS nL m)
case 0
then have nL = [] by auto

have find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ nS)) iL 6= None
using 0 unfolding ‹nL = []› select-inputs.simps
by (metis Diff-cancel empty-iff option.simps(4 ))

then obtain x where ∗: find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈
nS)) iL = Some x

by auto

have set (select-inputs f q0 iL nL nS m) − set m = {qx}
using 0 .prems(1 ) unfolding select-inputs-helper1 [OF ∗]
by auto

then show ?case unfolding select-inputs-helper1 [OF ∗]
by (metis DiffD1 DiffD2 UnE empty-iff empty-set insert-iff last-snoc list.simps(15 )

set-append)
next

case (Suc k)
then obtain n nL ′′ where nL = n # nL ′′

by (meson Suc-length-conv)

show ?case proof (cases find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈
nS)) iL)

case None
show ?thesis proof (cases find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈

f (q ′,x) . (q ′′ ∈ nS))) nL iL)
case None
have (select-inputs f q0 iL nL nS m) = m

using ‹find (λx. f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ nS)) iL =
None› None ‹nL = n # nL ′′› by auto

then have False
using Suc.prems(1 )
by simp

then show ?thesis by simp
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next
case (Some a)
then obtain q ′ x nL ′ where ∗∗: find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀

(y,q ′′) ∈ f (q ′,x) . (q ′′ ∈ nS))) nL iL = Some (q ′,x,nL ′)
by (metis prod-cases3 )

have k = length nL ′

using find-remove-2-length[OF ∗∗] ‹Suc k = length nL› by simp

have select-inputs f q0 iL nL nS m = select-inputs f q0 iL nL ′ (insert q ′ nS)
(m @ [(q ′, x)])

using ∗∗
unfolding ‹nL = n # nL ′′› select-inputs.simps None by auto

then have qx ∈ set (select-inputs f q0 iL nL ′ (insert q ′ nS) (m@[(q ′,x)])) −
set m

using Suc.prems by auto
moreover have q0 6= q ′

using None unfolding find-None-iff
using find-remove-2-set(1 ,2 ,3 )[OF ∗∗]
by blast

ultimately have qx ∈ set (select-inputs f q0 iL nL ′ (insert q ′ nS) (m@[(q ′,x)]))
− set (m@[(q ′,x)])

using ‹fst qx = q0 › by auto
then show ?thesis
using Suc.hyps unfolding ‹(select-inputs f q0 iL nL nS m) = (select-inputs

f q0 iL nL ′ (insert q ′ nS) (m@[(q ′,x)]))›
using ‹k = length nL ′› by blast

qed
next

case (Some a)

have set (select-inputs f q0 iL nL nS m ) − set m = {qx}
using Suc.prems(1 ) unfolding select-inputs-helper1 [OF Some]
by auto

then show ?thesis unfolding select-inputs-helper1 [OF Some]
by (metis DiffD1 DiffD2 UnE empty-iff empty-set insert-iff last-snoc list.simps(15 )

set-append)
qed

qed

lemma select-inputs-max-length :
assumes distinct nL
shows length (select-inputs f q0 iL nL nS m) ≤ length m + Suc (length nL)

using assms proof (induction length nL arbitrary: nL nS m)
case 0
then show ?case by (cases find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) .

(q ′′ ∈ nS))) iL; auto)
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next
case (Suc k)
then obtain n nL ′′ where nL = n # nL ′′

by (meson Suc-length-conv)

show ?case proof (cases find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′

∈ nS))) iL)
case None
show ?thesis proof (cases find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈

f (q ′,x) . (q ′′ ∈ nS))) nL iL)
case None
show ?thesis unfolding ‹nL = n # nL ′′› select-inputs.simps None ‹find (λx.

f (q0 , x) 6= {} ∧ (∀ (y, q ′′)∈f (q0 , x). q ′′ ∈ nS)) iL = None›
using None ‹nL = n # nL ′′› by auto

next
case (Some a)
then obtain q ′ x nL ′ where ∗∗: find-remove-2 (λ q ′ x . f (q ′,x) 6= {} ∧ (∀

(y,q ′′) ∈ f (q ′,x) . (q ′′ ∈ nS))) nL iL = Some (q ′,x,nL ′)
by (metis prod-cases3 )

have k = length nL ′

using find-remove-2-length[OF ∗∗] ‹Suc k = length nL› by simp

have select-inputs f q0 iL nL nS m = select-inputs f q0 iL nL ′ (insert q ′ nS)
(m @ [(q ′, x)])

using ∗∗
unfolding ‹nL = n # nL ′′› select-inputs.simps None by auto

have length nL = Suc (length nL ′) ∧ distinct nL ′

using find-remove-2-set(2 ,4 ,5 )[OF ∗∗] ‹distinct nL›
by (metis One-nat-def Suc-pred distinct-card distinct-remove1 equals0D

length-greater-0-conv length-remove1 set-empty2 set-remove1-eq)
then have length (select-inputs f q0 iL nL ′ (insert q ′ nS) (m@[(q ′,x)])) ≤

length m + Suc (length nL)
using Suc.hyps(1 )[OF ‹k = length nL ′›]
by (metis add-Suc-shift length-append-singleton)

then show ?thesis
using ‹(select-inputs f q0 iL nL nS m) = select-inputs f q0 iL nL ′ (insert q ′

nS) (m@[(q ′,x)])› by simp
qed

next
case (Some a)
show ?thesis unfolding select-inputs-helper1 [OF Some] by auto

qed
qed

lemma select-inputs-q0-containment :
assumes f (q0 ,x) 6= {}
and (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′ ∈ nS))
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and x ∈ set iL
shows (∃ qx ∈ set (select-inputs f q0 iL nL nS m) . fst qx = q0 )
proof −

have find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′ ∈ nS))) iL 6= None
using assms unfolding find-None-iff by blast

then obtain x ′ where ∗: find (λ x . f (q0 ,x) 6= {} ∧ (∀ (y,q ′′) ∈ f (q0 ,x) . (q ′′

∈ nS))) iL = Some x ′

by auto
show ?thesis

unfolding select-inputs-helper1 [OF ∗] by auto
qed

lemma select-inputs-from-submachine :
assumes single-input S
and acyclic S
and is-submachine S M
and

∧
q x . q ∈ reachable-states S =⇒ h S (q,x) 6= {} =⇒ h S (q,x) = h M

(q,x)
and

∧
q . q ∈ reachable-states S =⇒ deadlock-state S q =⇒ q ∈ nS0 ∪ set

(map fst m)
and states M = insert (initial S) (set nL ∪ nS0 ∪ set (map fst m))
and (initial S) /∈ (set nL ∪ nS0 ∪ set (map fst m))

shows fst (last (select-inputs (h M ) (initial S) (inputs-as-list M ) nL (nS0 ∪ set
(map fst m)) m)) = (initial S)
and length (select-inputs (h M ) (initial S) (inputs-as-list M ) nL (nS0 ∪ set (map
fst m)) m) > 0
proof −

have fst (last (select-inputs (h M ) (initial S) (inputs-as-list M ) nL (nS0 ∪ set
(map fst m)) m)) = (initial S) ∧ length (select-inputs (h M ) (initial S) (inputs-as-list
M ) nL (nS0 ∪ set (map fst m)) m) > 0

using assms(5 ,6 ,7 ) proof (induction length nL arbitrary: nL m)
case 0
then have nL = [] by auto

have ¬ (deadlock-state S (initial S))
using assms(5 ,6 ,3 ,7 ) reachable-states-initial by blast

then obtain x where x ∈ set (inputs-as-list M ) and h S ((initial S),x) 6= {}
using assms(3 ) unfolding deadlock-state.simps h.simps inputs-as-list-set
by fastforce

then have h M ((initial S),x) 6= {}
using assms(4 )[OF reachable-states-initial] by fastforce

have (initial S) ∈ reachable-states M
using assms(3 ) reachable-states-initial by auto

then have (initial S) ∈ states M
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using reachable-state-is-state by force

have
∧

y q ′′ . (y,q ′′) ∈ h M ((initial S),x) =⇒ q ′′ ∈ (nS0 ∪ set (map fst m))
proof −

fix y q ′′ assume (y,q ′′) ∈ h M ((initial S),x)
then have q ′′ ∈ reachable-states M using fsm-transition-target unfolding

h.simps
using ‹FSM .initial S ∈ reachable-states M › reachable-states-next by fastforce

then have q ′′ ∈ insert (initial S) (nS0 ∪ set (map fst m)) using 0 .prems(2 )
‹nL = []›

using reachable-state-is-state by force
moreover have q ′′ 6= (initial S)

using acyclic-no-self-loop[OF ‹acyclic S› reachable-states-initial]
using ‹(y,q ′′) ∈ h M ((initial S),x)› assms(4 )[OF reachable-states-initial ‹h

S ((initial S),x) 6= {}›] unfolding h-simps
by blast

ultimately show q ′′ ∈ (nS0 ∪ set (map fst m)) by blast
qed
then have x ∈ set (inputs-as-list M ) ∧ h M ((initial S), x) 6= {} ∧ (∀ (y, q ′′)∈h

M ((initial S), x). q ′′ ∈ nS0 ∪ set (map fst m))
using ‹x ∈ set (inputs-as-list M ) › ‹h M ((initial S), x) 6= {}› by blast

then have find (λ x . (h M ) ((initial S),x) 6= {} ∧ (∀ (y,q ′′) ∈ (h M ) ((initial
S),x) . (q ′′ ∈ (nS0 ∪ set (map fst m))))) (inputs-as-list M ) 6= None

unfolding find-None-iff by blast
then show ?case

unfolding ‹nL = []› select-inputs.simps by auto
next

case (Suc k)
then obtain n nL ′′ where nL = n # nL ′′

by (meson Suc-length-conv)

have ∃ q x . q ∈ reachable-states S − (nS0 ∪ set (map fst m)) ∧ h M (q,x) 6=
{} ∧ (∀ (y,q ′′) ∈ h M (q,x) . q ′′ ∈ (nS0 ∪ set (map fst m)))

proof −
define ndlps where ndlps-def : ndlps = {p . path S (initial S) p ∧ target

(initial S) p /∈ (nS0 ∪ set (map fst m))}

have path S (initial S) [] ∧ target (initial S) [] /∈ (nS0 ∪ set (map fst m))
using Suc.prems(3 ) by auto

then have [] ∈ ndlps
unfolding ndlps-def by blast

then have ndlps 6= {} by auto
moreover have finite ndlps
using acyclic-finite-paths-from-reachable-state[OF ‹acyclic S›, of []] unfold-

ing ndlps-def by fastforce
ultimately have ∃ p ∈ ndlps . ∀ p ′ ∈ ndlps . length p ′ ≤ length p
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by (meson max-length-elem not-le-imp-less)
then obtain p where path S (initial S) p

and target (initial S) p /∈ (nS0 ∪ set (map fst m))
and

∧
p ′ . path S (initial S) p ′ =⇒ target (initial S) p ′ /∈

(nS0 ∪ set (map fst m)) =⇒ length p ′ ≤ length p
unfolding ndlps-def by blast

let ?q = target (initial S) p
have ¬ deadlock-state S ?q

using Suc.prems(1 ) reachable-states-intro[OF ‹path S (initial S) p›] using
‹?q /∈ (nS0 ∪ set (map fst m))› by blast

then obtain x where h S (?q,x) 6= {}
unfolding deadlock-state.simps h.simps by fastforce

then have h M (?q,x) 6= {}
using assms(4 )[of ?q -] reachable-states-intro[OF ‹path S (initial S) p›]
by blast

moreover have
∧

y q ′′ . (y,q ′′) ∈ h M (?q,x) =⇒ q ′′ ∈ (nS0 ∪ set (map fst
m))

proof (rule ccontr)
fix y q ′′ assume (y,q ′′) ∈ h M (?q,x) and q ′′ /∈ nS0 ∪ set (map fst m)
then have (?q,x,y,q ′′) ∈ transitions S

using assms(4 )[OF reachable-states-intro[OF ‹path S (initial S) p›] ‹h S
(?q,x) 6= {}›] unfolding h-simps

by blast
then have path S (initial S) (p@[(?q,x,y,q ′′)])

using ‹path S (initial S) p› by (simp add: path-append-transition)
moreover have target (initial S) (p@[(?q,x,y,q ′′)]) /∈ (nS0 ∪ set (map fst

m))
using ‹q ′′ /∈ nS0 ∪ set (map fst m)› by auto

ultimately show False
using ‹

∧
p ′ . path S (initial S) p ′ =⇒ target (initial S) p ′ /∈ (nS0 ∪ set

(map fst m)) =⇒ length p ′ ≤ length p›[of (p@[(?q,x,y,q ′′)])] by simp
qed

moreover have ?q ∈ reachable-states S − (nS0 ∪ set (map fst m))
using ‹?q /∈ (nS0 ∪ set (map fst m))› ‹path S (initial S) p› by blast

ultimately show ?thesis by blast
qed

then obtain q x where q ∈ reachable-states S and q /∈ (nS0 ∪ set (map fst
m)) and h M (q,x) 6= {} and (∀ (y,q ′′) ∈ h M (q,x) . q ′′ ∈ (nS0 ∪ set (map fst
m)))

by blast
then have x ∈ set (inputs-as-list M )

unfolding h.simps using fsm-transition-input inputs-as-list-set by fastforce
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show ?case proof (cases q = initial S)
case True
have find (λx. h M (FSM .initial S , x) 6= {} ∧ (∀ (y, q ′′)∈h M (FSM .initial

S , x). q ′′ ∈ nS0 ∪ set (map fst m))) (inputs-as-list M ) 6= None
using ‹h M (q,x) 6= {}› ‹(∀ (y,q ′′) ∈ h M (q,x) . q ′′ ∈ (nS0 ∪ set (map fst

m)))› ‹x ∈ set (inputs-as-list M )›
unfolding True find-None-iff by blast

then show ?thesis unfolding ‹nL = n # nL ′′› by auto
next

case False
then have q ∈ set nL

using submachine-reachable-subset[OF ‹is-submachine S M ›]
unfolding is-submachine.simps ‹states M = insert (initial S) (set nL ∪ nS0

∪ set (map fst m))›
using ‹q ∈ reachable-states S› ‹q /∈ (nS0 ∪ set (map fst m))›

by (metis (no-types, lifting) Suc.prems(2 ) UnE insertE reachable-state-is-state
subsetD sup-assoc)

show ?thesis proof (cases find (λx. h M (FSM .initial S , x) 6= {} ∧ (∀ (y,
q ′′)∈h M (FSM .initial S , x). q ′′ ∈ nS0 ∪ set (map fst m))) (inputs-as-list M ))

case None

have find-remove-2 (λ q ′ x . (h M ) (q ′,x) 6= {} ∧ (∀ (y,q ′′) ∈ (h M ) (q ′,x)
. (q ′′ ∈ nS0 ∪ set (map fst m)))) (nL) (inputs-as-list M ) 6= None

using ‹q ∈ set nL› ‹h M (q,x) 6= {}› ‹(∀ (y,q ′′) ∈ h M (q,x) . q ′′ ∈ (nS0
∪ set (map fst m)))› ‹x ∈ set (inputs-as-list M )›

unfolding find-remove-2-None-iff ‹nL = n # nL ′′›
by blast

then obtain q ′ x ′ nL ′ where ∗: find-remove-2 (λ q ′ x . (h M ) (q ′,x) 6= {} ∧
(∀ (y,q ′′) ∈ (h M ) (q ′,x) . (q ′′ ∈ nS0 ∪ set (map fst m)))) (n#nL ′′) (inputs-as-list
M ) = Some (q ′,x ′,nL ′)

unfolding ‹nL = n # nL ′′› by auto
have k = length nL ′

using find-remove-2-length[OF ∗] ‹Suc k = length nL› ‹nL = n # nL ′′›
by simp

have ∗∗: select-inputs (h M ) (initial S) (inputs-as-list M ) nL (nS0 ∪ set
(map fst m)) m

= select-inputs (h M ) (initial S) (inputs-as-list M ) nL ′ (nS0 ∪ set
(map fst (m@[(q ′,x ′)]))) (m@[(q ′,x ′)])

unfolding ‹nL = n # nL ′′› select-inputs.simps None ∗ by auto

have p1 : (
∧

q. q ∈ reachable-states S =⇒ deadlock-state S q =⇒ q ∈ nS0 ∪
set (map fst (m@[(q ′,x ′)])))
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using Suc.prems(1 ) by fastforce

have set nL = insert q ′ (set nL ′) using find-remove-2-set(2 ,6 )[OF ∗]
unfolding ‹nL = n # nL ′′› by auto

then have (set nL ∪ set (map fst m)) = (set nL ′ ∪ set (map fst (m @ [(q ′,
x ′)]))) by auto

then have p2 : states M = insert (initial S) (set nL ′ ∪ nS0 ∪ set (map fst
(m @ [(q ′, x ′)])))

using Suc.prems(2 ) by auto

have p3 : initial S /∈ set nL ′ ∪ nS0 ∪ set (map fst (m @ [(q ′, x ′)]))
using Suc.prems(3 ) False ‹set nL = insert q ′ (set nL ′)› by auto

show ?thesis unfolding ∗∗
using Suc.hyps(1 )[OF ‹k = length nL ′› p1 p2 p3 ] by blast

next
case (Some a)
then show ?thesis unfolding ‹nL = n # nL ′′› by auto

qed
qed

qed
then show fst (last (select-inputs (h M ) (initial S) (inputs-as-list M ) nL (nS0
∪ set (map fst m)) m)) = (initial S)

and length (select-inputs (h M ) (initial S) (inputs-as-list M ) nL (nS0 ∪ set
(map fst m)) m) > 0

by blast+
qed

end

34 State Separators

This theory defined state separators. A state separator S of some pair of
states q1, q2 of some FSM M is an acyclic single-input FSM based on the
product machine P of M with initial state q1 and M with initial state q2
such that every maximal length sequence in the language of S is either in the
language of q1 or the language of q2, but not both. That is, C represents
a strategy of distinguishing q1 and q2 in every complete submachine of P.
In testing, separators are used to distinguish states reached in the SUT to
establish a lower bound on the number of distinct states in the SUT.
theory State-Separator
imports ../Product-FSM Backwards-Reachability-Analysis
begin
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34.1 Canonical Separators
34.1.1 Construction
fun canonical-separator :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm
where

canonical-separator M q1 q2 = (canonical-separator ′ M ((product (from-FSM M
q1 ) (from-FSM M q2 ))) q1 q2 )

lemma canonical-separator-simps :
assumes q1 ∈ states M and q2 ∈ states M
shows initial (canonical-separator M q1 q2 ) = Inl (q1 ,q2 )

states (canonical-separator M q1 q2 )
= (image Inl (states (product (from-FSM M q1 ) (from-FSM M q2 )))) ∪

{Inr q1 , Inr q2}
inputs (canonical-separator M q1 q2 ) = inputs M
outputs (canonical-separator M q1 q2 ) = outputs M
transitions (canonical-separator M q1 q2 )

= shifted-transitions (transitions ((product (from-FSM M q1 ) (from-FSM
M q2 ))))

∪ distinguishing-transitions (h-out M ) q1 q2 (states ((product
(from-FSM M q1 ) (from-FSM M q2 )))) (inputs ((product (from-FSM M q1 ) (from-FSM
M q2 ))))
proof −

have ∗: initial ((product (from-FSM M q1 ) (from-FSM M q2 ))) = (q1 ,q2 )
unfolding restrict-to-reachable-states-simps product-simps using assms by auto

have ∗∗∗: inputs ((product (from-FSM M q1 ) (from-FSM M q2 ))) = inputs M
unfolding restrict-to-reachable-states-simps product-simps using assms by auto

have ∗∗∗∗: outputs ((product (from-FSM M q1 ) (from-FSM M q2 ))) = outputs
M

unfolding restrict-to-reachable-states-simps product-simps using assms by auto

show initial (canonical-separator M q1 q2 ) = Inl (q1 ,q2 )
states (canonical-separator M q1 q2 ) = (image Inl (states (product (from-FSM

M q1 ) (from-FSM M q2 )))) ∪ {Inr q1 , Inr q2}
inputs (canonical-separator M q1 q2 ) = inputs M
outputs (canonical-separator M q1 q2 ) = outputs M
transitions (canonical-separator M q1 q2 ) = shifted-transitions (transitions

((product (from-FSM M q1 ) (from-FSM M q2 )))) ∪ distinguishing-transitions (h-out
M ) q1 q2 (states ((product (from-FSM M q1 ) (from-FSM M q2 )))) (inputs ((product
(from-FSM M q1 ) (from-FSM M q2 ))))

unfolding canonical-separator .simps canonical-separator ′-simps[OF ∗, of M ]
∗∗∗ ∗∗∗∗ by blast+
qed

lemma distinguishing-transitions-alt-def :
distinguishing-transitions (h-out M ) q1 q2 PS (inputs M ) =
{(Inl (q1 ′,q2 ′),x,y,Inr q1 ) | q1 ′ q2 ′ x y . (q1 ′,q2 ′) ∈ PS ∧ (∃ q ′ . (q1 ′,x,y,q ′)

988



∈ transitions M ) ∧ ¬(∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}
∪ {(Inl (q1 ′,q2 ′),x,y,Inr q2 ) | q1 ′ q2 ′ x y . (q1 ′,q2 ′) ∈ PS ∧ ¬(∃ q ′ . (q1 ′,x,y,q ′)

∈ transitions M ) ∧ (∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}
(is ?dts = ?dl ∪ ?dr)

proof −
have

∧
t . t ∈ ?dts =⇒ t ∈ ?dl ∨ t ∈ ?dr

unfolding distinguishing-transitions-def h-out.simps by fastforce
moreover have

∧
t . t ∈ ?dl ∨ t ∈ ?dr =⇒ t ∈ ?dts

proof −
fix t assume t ∈ ?dl ∨ t ∈ ?dr
then obtain q1 ′ q2 ′ where t-source t = Inl (q1 ′,q2 ′) and (q1 ′,q2 ′) ∈ PS

by auto

consider (a) t ∈ ?dl |
(b) t ∈ ?dr

using ‹t ∈ ?dl ∨ t ∈ ?dr› by blast
then show t ∈ ?dts proof cases

case a
then have t-target t = Inr q1 and (∃ q ′ . (q1 ′,t-input t,t-output t,q ′) ∈

transitions M )
and ¬(∃ q ′ . (q2 ′,t-input t,t-output t,q ′) ∈ transitions M )

using ‹t-source t = Inl (q1 ′,q2 ′)› by force+
then have t-output t ∈ h-out M (q1 ′,t-input t) − h-out M (q2 ′,t-input t)

unfolding h-out.simps by blast
then have t ∈ (λy. (Inl (q1 ′, q2 ′), t-input t, y, Inr q1 )) ‘ (h-out M (q1 ′,

t-input t) − h-out M (q2 ′, t-input t))
using ‹t-source t = Inl (q1 ′,q2 ′)› ‹t-target t = Inr q1 ›
by (metis (mono-tags, lifting) imageI surjective-pairing)

moreover have ((q1 ′,q2 ′),t-input t) ∈ PS × inputs M
using fsm-transition-input ‹(∃ q ′ . (q1 ′,t-input t,t-output t,q ′) ∈ transitions

M )›
‹(q1 ′,q2 ′) ∈ PS›

by auto
ultimately show ?thesis

unfolding distinguishing-transitions-def by fastforce
next

case b
then have t-target t = Inr q2 and ¬(∃ q ′ . (q1 ′,t-input t,t-output t,q ′) ∈

transitions M )
and (∃ q ′ . (q2 ′,t-input t,t-output t,q ′) ∈ transitions M )

using ‹t-source t = Inl (q1 ′,q2 ′)› by force+
then have t-output t ∈ h-out M (q2 ′,t-input t) − h-out M (q1 ′,t-input t)

unfolding h-out.simps by blast
then have t ∈ (λy. (Inl (q1 ′, q2 ′), t-input t, y, Inr q2 )) ‘ (h-out M (q2 ′,

t-input t) − h-out M (q1 ′, t-input t))
using ‹t-source t = Inl (q1 ′,q2 ′)› ‹t-target t = Inr q2 ›
by (metis (mono-tags, lifting) imageI surjective-pairing)

moreover have ((q1 ′,q2 ′),t-input t) ∈ PS × inputs M
using fsm-transition-input ‹(∃ q ′ . (q2 ′,t-input t,t-output t,q ′) ∈ transitions
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M )› ‹(q1 ′,q2 ′) ∈ PS›
by auto

ultimately show ?thesis
unfolding distinguishing-transitions-def by fastforce

qed
qed
ultimately show ?thesis by blast

qed

lemma distinguishing-transitions-alt-alt-def :
distinguishing-transitions (h-out M ) q1 q2 PS (inputs M ) =
{ t . ∃ q1 ′ q2 ′ . t-source t = Inl (q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ PS ∧ t-target t = Inr

q1 ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧ t-output
t ′ = t-output t) ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ = t-input
t ∧ t-output t ′ = t-output t)}
∪ { t . ∃ q1 ′ q2 ′ . t-source t = Inl (q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ PS ∧ t-target t = Inr

q2 ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧ t-output
t ′ = t-output t) ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ = t-input
t ∧ t-output t ′ = t-output t)}

proof −
have {(Inl (q1 ′,q2 ′),x,y,Inr q1 ) | q1 ′ q2 ′ x y . (q1 ′,q2 ′) ∈ PS ∧ (∃ q ′ . (q1 ′,x,y,q ′)
∈ transitions M ) ∧ ¬(∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}

= { t . ∃ q1 ′ q2 ′ . t-source t = Inl (q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ PS ∧ t-target
t = Inr q1 ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧
t-output t ′ = t-output t) ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t)}
by force

moreover have {(Inl (q1 ′,q2 ′),x,y,Inr q2 ) | q1 ′ q2 ′ x y . (q1 ′,q2 ′) ∈ PS ∧ ¬(∃
q ′ . (q1 ′,x,y,q ′) ∈ transitions M ) ∧ (∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}

= { t . ∃ q1 ′ q2 ′ . t-source t = Inl (q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ PS ∧ t-target t
= Inr q2 ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧
t-output t ′ = t-output t) ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t)}
by force

ultimately show ?thesis
unfolding distinguishing-transitions-alt-def by force

qed

lemma shifted-transitions-alt-def :
shifted-transitions ts = {(Inl (q1 ′,q2 ′), x, y, (Inl (q1 ′′,q2 ′′))) | q1 ′ q2 ′ x y q1 ′′

q2 ′′ . ((q1 ′,q2 ′), x, y, (q1 ′′,q2 ′′)) ∈ ts}
unfolding shifted-transitions-def by force

lemma canonical-separator-transitions-helper :
assumes q1 ∈ states M and q2 ∈ states M
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shows transitions (canonical-separator M q1 q2 ) =
(shifted-transitions (transitions (product (from-FSM M q1 ) (from-FSM M

q2 ))))
∪ {(Inl (q1 ′,q2 ′),x,y,Inr q1 ) | q1 ′ q2 ′ x y . (q1 ′,q2 ′) ∈ states (product

(from-FSM M q1 ) (from-FSM M q2 )) ∧ (∃ q ′ . (q1 ′,x,y,q ′) ∈ transitions M ) ∧
¬(∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}

∪ {(Inl (q1 ′,q2 ′),x,y,Inr q2 ) | q1 ′ q2 ′ x y . (q1 ′,q2 ′) ∈ states (product
(from-FSM M q1 ) (from-FSM M q2 )) ∧ ¬(∃ q ′ . (q1 ′,x,y,q ′) ∈ transitions M ) ∧
(∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}

unfolding canonical-separator-simps[OF assms]
restrict-to-reachable-states-simps

product-simps from-FSM-simps[OF assms(1 )] from-FSM-simps[OF
assms(2 )]

sup.idem
distinguishing-transitions-alt-def

by blast

definition distinguishing-transitions-left :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a × ′a
+ ′a) × ′b × ′c × ( ′a × ′a + ′a)) set where

distinguishing-transitions-left M q1 q2 ≡ {(Inl (q1 ′,q2 ′),x,y,Inr q1 ) | q1 ′ q2 ′

x y . (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 )) ∧ (∃ q ′ .
(q1 ′,x,y,q ′) ∈ transitions M ) ∧ ¬(∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}
definition distinguishing-transitions-right :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a ×
′a + ′a) × ′b × ′c × ( ′a × ′a + ′a)) set where

distinguishing-transitions-right M q1 q2 ≡ {(Inl (q1 ′,q2 ′),x,y,Inr q2 ) | q1 ′ q2 ′ x
y . (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 )) ∧ ¬(∃ q ′ .
(q1 ′,x,y,q ′) ∈ transitions M ) ∧ (∃ q ′ . (q2 ′,x,y,q ′) ∈ transitions M )}

definition distinguishing-transitions-left-alt :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a ×
′a + ′a) × ′b × ′c × ( ′a × ′a + ′a)) set where

distinguishing-transitions-left-alt M q1 q2 ≡ { t . ∃ q1 ′ q2 ′ . t-source t = Inl
(q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 )) ∧
t-target t = Inr q1 ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t) ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q2 ′

∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output t)}
definition distinguishing-transitions-right-alt :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a
× ′a + ′a) × ′b × ′c × ( ′a × ′a + ′a)) set where

distinguishing-transitions-right-alt M q1 q2 ≡ { t . ∃ q1 ′ q2 ′ . t-source t = Inl
(q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 )) ∧
t-target t = Inr q2 ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t) ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t)}

definition shifted-transitions-for :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a × ′a + ′a)
× ′b × ′c × ( ′a × ′a + ′a)) set where
shifted-transitions-for M q1 q2 ≡ {(Inl (t-source t),t-input t, t-output t, Inl (t-target
t)) | t . t ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))}
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lemma shifted-transitions-for-alt-def :
shifted-transitions-for M q1 q2 = {(Inl (q1 ′,q2 ′), x, y, (Inl (q1 ′′,q2 ′′))) | q1 ′ q2 ′

x y q1 ′′ q2 ′′ . ((q1 ′,q2 ′), x, y, (q1 ′′,q2 ′′)) ∈ transitions (product (from-FSM M q1 )
(from-FSM M q2 ))}

unfolding shifted-transitions-for-def by auto

lemma distinguishing-transitions-left-alt-alt-def :
distinguishing-transitions-left M q1 q2 = distinguishing-transitions-left-alt M q1

q2
proof −

have
∧

t . t ∈ distinguishing-transitions-left M q1 q2 =⇒ t ∈ distinguish-
ing-transitions-left-alt M q1 q2

proof −
fix t assume t ∈ distinguishing-transitions-left M q1 q2
then obtain q1 ′ q2 ′ x y where t = (Inl (q1 ′, q2 ′), x, y, Inr q1 )

(q1 ′, q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))

(∃ q ′. (q1 ′, x, y, q ′) ∈ FSM .transitions M )
(@ q ′. (q2 ′, x, y, q ′) ∈ FSM .transitions M )

unfolding distinguishing-transitions-left-def by blast

have t-source t = Inl (q1 ′, q2 ′)
using ‹t = (Inl (q1 ′, q2 ′), x, y, Inr q1 )› by auto

moreover note ‹(q1 ′, q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))›

moreover have t-target t = Inr q1
using ‹t = (Inl (q1 ′, q2 ′), x, y, Inr q1 )› by auto

moreover have (∃ t ′∈FSM .transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t)

using ‹(∃ q ′. (q1 ′, x, y, q ′) ∈ FSM .transitions M )› unfolding ‹t = (Inl (q1 ′,
q2 ′), x, y, Inr q1 )› by force

moreover have ¬(∃ t ′∈FSM .transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t)

using ‹(@ q ′. (q2 ′, x, y, q ′) ∈ FSM .transitions M )› unfolding ‹t = (Inl (q1 ′,
q2 ′), x, y, Inr q1 )› by force

ultimately show t ∈ distinguishing-transitions-left-alt M q1 q2
unfolding distinguishing-transitions-left-alt-def by simp

qed
moreover have

∧
t . t ∈ distinguishing-transitions-left-alt M q1 q2 =⇒ t ∈

distinguishing-transitions-left M q1 q2
unfolding distinguishing-transitions-left-alt-def distinguishing-transitions-left-def

by fastforce
ultimately show ?thesis by blast

qed
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lemma distinguishing-transitions-right-alt-alt-def :
distinguishing-transitions-right M q1 q2 = distinguishing-transitions-right-alt M

q1 q2
proof −

have
∧

t . t ∈ distinguishing-transitions-right M q1 q2 =⇒ t ∈ distinguish-
ing-transitions-right-alt M q1 q2

proof −
fix t assume t ∈ distinguishing-transitions-right M q1 q2
then obtain q1 ′ q2 ′ x y where t = (Inl (q1 ′, q2 ′), x, y, Inr q2 )

(q1 ′, q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))

(@ q ′. (q1 ′, x, y, q ′) ∈ FSM .transitions M )
(∃ q ′. (q2 ′, x, y, q ′) ∈ FSM .transitions M )

unfolding distinguishing-transitions-right-def by blast

have t-source t = Inl (q1 ′, q2 ′)
using ‹t = (Inl (q1 ′, q2 ′), x, y, Inr q2 )› by auto

moreover note ‹(q1 ′, q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))›

moreover have t-target t = Inr q2
using ‹t = (Inl (q1 ′, q2 ′), x, y, Inr q2 )› by auto

moreover have ¬(∃ t ′∈FSM .transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t)

using ‹(@ q ′. (q1 ′, x, y, q ′) ∈ FSM .transitions M )› unfolding ‹t = (Inl (q1 ′,
q2 ′), x, y, Inr q2 )› by force

moreover have (∃ t ′∈FSM .transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t)

using ‹(∃ q ′. (q2 ′, x, y, q ′) ∈ FSM .transitions M )› unfolding ‹t = (Inl (q1 ′,
q2 ′), x, y, Inr q2 )› by force

ultimately show t ∈ distinguishing-transitions-right-alt M q1 q2
unfolding distinguishing-transitions-right-def distinguishing-transitions-right-alt-def

by simp
qed
moreover have

∧
t . t ∈ distinguishing-transitions-right-alt M q1 q2 =⇒ t ∈

distinguishing-transitions-right M q1 q2
unfolding distinguishing-transitions-right-def distinguishing-transitions-right-alt-def

by fastforce
ultimately show ?thesis

by blast
qed

lemma canonical-separator-transitions-def :
assumes q1 ∈ states M and q2 ∈ states M
shows transitions (canonical-separator M q1 q2 ) =

{(Inl (q1 ′,q2 ′), x, y, (Inl (q1 ′′,q2 ′′))) | q1 ′ q2 ′ x y q1 ′′ q2 ′′ . ((q1 ′,q2 ′), x,
y, (q1 ′′,q2 ′′)) ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))}

∪ (distinguishing-transitions-left M q1 q2 )
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∪ (distinguishing-transitions-right M q1 q2 )
unfolding canonical-separator-transitions-helper [OF assms]

shifted-transitions-alt-def
distinguishing-transitions-left-def
distinguishing-transitions-right-def by simp

lemma canonical-separator-transitions-alt-def :
assumes q1 ∈ states M and q2 ∈ states M
shows transitions (canonical-separator M q1 q2 ) =

(shifted-transitions-for M q1 q2 )
∪ (distinguishing-transitions-left-alt M q1 q2 )
∪ (distinguishing-transitions-right-alt M q1 q2 )

proof −
have ∗: (shift-Inl ‘

{t ∈ FSM .transitions (Product-FSM .product (FSM .from-FSM M q1 )
(FSM .from-FSM M q2 )).

t-source t ∈ reachable-states (Product-FSM .product (FSM .from-FSM M
q1 ) (FSM .from-FSM M q2 ))})

= {(Inl (t-source t), t-input t, t-output t, Inl (t-target t)) |t.
t ∈ FSM .transitions (Product-FSM .product (FSM .from-FSM M q1 )

(FSM .from-FSM M q2 )) ∧
t-source t ∈ reachable-states (Product-FSM .product (FSM .from-FSM M

q1 ) (FSM .from-FSM M q2 ))}
by blast

show ?thesis
unfolding canonical-separator-simps[OF assms]

shifted-transitions-def
restrict-to-reachable-states-simps

product-simps from-FSM-simps[OF assms(1 )] from-FSM-simps[OF
assms(2 )]

sup.idem

distinguishing-transitions-alt-alt-def
shifted-transitions-for-def
∗

distinguishing-transitions-left-alt-def
distinguishing-transitions-right-alt-def

by blast
qed

34.1.2 State Separators as Submachines of Canonical Separators
definition is-state-separator-from-canonical-separator :: (( ′a × ′a) + ′a, ′b, ′c) fsm
⇒ ′a ⇒ ′a ⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm ⇒ bool where

is-state-separator-from-canonical-separator CSep q1 q2 S = (
is-submachine S CSep
∧ single-input S
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∧ acyclic S
∧ deadlock-state S (Inr q1 )
∧ deadlock-state S (Inr q2 )
∧ ((Inr q1 ) ∈ reachable-states S)
∧ ((Inr q2 ) ∈ reachable-states S)
∧ (∀ q ∈ reachable-states S . (q 6= Inr q1 ∧ q 6= Inr q2 ) −→ (isl q ∧ ¬

deadlock-state S q))
∧ (∀ q ∈ reachable-states S . ∀ x ∈ (inputs CSep) . (∃ t ∈ transitions S .

t-source t = q ∧ t-input t = x) −→ (∀ t ′ ∈ transitions CSep . t-source t ′ = q ∧
t-input t ′ = x −→ t ′ ∈ transitions S))
)

34.1.3 Canonical Separator Properties
lemma is-state-separator-from-canonical-separator-simps :

assumes is-state-separator-from-canonical-separator CSep q1 q2 S
shows is-submachine S CSep
and single-input S
and acyclic S
and deadlock-state S (Inr q1 )
and deadlock-state S (Inr q2 )
and ((Inr q1 ) ∈ reachable-states S)
and ((Inr q2 ) ∈ reachable-states S)
and

∧
q . q ∈ reachable-states S =⇒ q 6= Inr q1 =⇒ q 6= Inr q2 =⇒ (isl q ∧

¬ deadlock-state S q)
and

∧
q x t . q ∈ reachable-states S =⇒ x ∈ (inputs CSep) =⇒ (∃ t ∈ transitions

S . t-source t = q ∧ t-input t = x) =⇒ t ∈ transitions CSep =⇒ t-source t = q
=⇒ t-input t = x =⇒ t ∈ transitions S
using assms unfolding is-state-separator-from-canonical-separator-def by blast+

lemma is-state-separator-from-canonical-separator-initial :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 A
and q1 ∈ states M
and q2 ∈ states M

shows initial A = Inl (q1 ,q2 )
using is-state-separator-from-canonical-separator-simps(1 )[OF assms(1 )]
using canonical-separator-simps(1 )[OF assms(2 ,3 )] by auto

lemma path-shift-Inl :
assumes (image shift-Inl (transitions M )) ⊆ (transitions C )

and
∧

t . t ∈ (transitions C ) =⇒ isl (t-target t) =⇒ ∃ t ′ ∈ transitions M .
t = (Inl (t-source t ′), t-input t ′, t-output t ′, Inl (t-target t ′))

and initial C = Inl (initial M )
and (inputs C ) = (inputs M )
and (outputs C ) = (outputs M )

shows path M (initial M ) p = path C (initial C ) (map shift-Inl p)
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proof (induction p rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc t p)

have path M (initial M ) (p@[t]) =⇒ path C (initial C ) (map shift-Inl (p@[t]))
proof −

assume path M (initial M ) (p@[t])
then have path M (initial M ) p by auto
then have path C (initial C ) (map shift-Inl p) using snoc.IH

by auto

have t-source t = target (initial M ) p
using ‹path M (initial M ) (p@[t])› by auto

then have t-source (shift-Inl t) = target (Inl (initial M )) (map shift-Inl p)
by (cases p rule: rev-cases; auto)

then have t-source (shift-Inl t) = target (initial C ) (map shift-Inl p)
using assms(3 ) by auto

moreover have target (initial C ) (map shift-Inl p) ∈ states C
using path-target-is-state[OF ‹path C (initial C ) (map shift-Inl p)›] by as-

sumption
ultimately have t-source (shift-Inl t) ∈ states C

by auto
moreover have t ∈ transitions M

using ‹path M (initial M ) (p@[t])› by auto
ultimately have (shift-Inl t) ∈ transitions C

using assms by auto

show path C (initial C ) (map shift-Inl (p@[t]))
using path-append [OF ‹path C (initial C ) (map shift-Inl p)›, of [shift-Inl t]]
using ‹(shift-Inl t) ∈ transitions C › ‹t-source (shift-Inl t) = target (initial C )

(map shift-Inl p)›
using single-transition-path by force

qed

moreover have path C (initial C ) (map shift-Inl (p@[t])) =⇒ path M (initial
M ) (p@[t])

proof −
assume path C (initial C ) (map shift-Inl (p@[t]))
then have path C (initial C ) (map shift-Inl p) by auto
then have path M (initial M ) p using snoc.IH

by blast

have t-source (shift-Inl t) = target (initial C ) (map shift-Inl p)
using ‹path C (initial C ) (map shift-Inl (p@[t]))› by auto

then have t-source (shift-Inl t) = target (Inl (initial M )) (map shift-Inl p)
using assms(3 ) by (cases p rule: rev-cases; auto)

then have t-source t = target (initial M ) p
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by (cases p rule: rev-cases; auto)
moreover have target (initial M ) p ∈ states M

using path-target-is-state[OF ‹path M (initial M ) p›] by assumption
ultimately have t-source t ∈ states M

by auto
moreover have shift-Inl t ∈ transitions C

using ‹path C (initial C ) (map shift-Inl (p@[t]))› by auto
moreover have isl (t-target (shift-Inl t))

by auto
ultimately have t ∈ transitions M using assms by fastforce

show path M (initial M ) (p@[t])
using path-append [OF ‹path M (initial M ) p›, of [t]]

single-transition-path[OF ‹t ∈ transitions M ›]
‹t-source t = target (initial M ) p› by auto

qed

ultimately show ?case
by linarith

qed

lemma canonical-separator-product-transitions-subset :
assumes q1 ∈ states M and q2 ∈ states M
shows image shift-Inl (transitions (product (from-FSM M q1 ) (from-FSM M

q2 ))) ⊆ (transitions (canonical-separator M q1 q2 ))
unfolding canonical-separator-simps[OF assms] shifted-transitions-def restrict-to-reachable-states-simps

by blast

lemma canonical-separator-transition-targets :
assumes t ∈ (transitions (canonical-separator M q1 q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows isl (t-target t) =⇒ t ∈ {(Inl (t-source t),t-input t, t-output t, Inl (t-target
t)) | t . t ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))}
and t-target t = Inr q1 =⇒ q1 6= q2 =⇒ t ∈ (distinguishing-transitions-left-alt
M q1 q2 )
and t-target t = Inr q2 =⇒ q1 6= q2 =⇒ t ∈ (distinguishing-transitions-right-alt
M q1 q2 )
and isl (t-target t) ∨ t-target t = Inr q1 ∨ t-target t = Inr q2
unfolding shifted-transitions-for-def

distinguishing-transitions-left-alt-def
distinguishing-transitions-right-alt-def

proof −
let ?shftd = {(Inl (t-source t),t-input t, t-output t, Inl (t-target t)) | t . t ∈

transitions (product (from-FSM M q1 ) (from-FSM M q2 ))}
let ?dl = { t . ∃ q1 ′ q2 ′ . t-source t = Inl (q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ states
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(product (from-FSM M q1 ) (from-FSM M q2 )) ∧ t-target t = Inr q1 ∧ (∃ t ′ ∈
transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output
t) ∧ ¬(∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ = t-input t ∧ t-output
t ′ = t-output t)}

let ?dr = { t . ∃ q1 ′ q2 ′ . t-source t = Inl (q1 ′,q2 ′) ∧ (q1 ′,q2 ′) ∈ states
(product (from-FSM M q1 ) (from-FSM M q2 )) ∧ t-target t = Inr q2 ∧ ¬(∃ t ′ ∈
transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧ t-output t ′ = t-output
t) ∧ (∃ t ′ ∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ = t-input t ∧ t-output
t ′ = t-output t)}

have t ∈ ?shftd ∪ ?dl ∪ ?dr
using assms(1 )
unfolding canonical-separator-transitions-alt-def [OF assms(2 ,3 )]

shifted-transitions-for-def
distinguishing-transitions-left-alt-def
distinguishing-transitions-right-alt-def

by force

moreover have p1 :
∧

t ′ . t ′ ∈ ?shftd =⇒ isl (t-target t ′)
and p2 :

∧
t ′ . t ′ ∈ ?dl =⇒ t-target t ′ = Inr q1

and p3 :
∧

t ′ . t ′ ∈ ?dr =⇒ t-target t ′ = Inr q2
by auto

ultimately show isl (t-target t) ∨ t-target t = Inr q1 ∨ t-target t = Inr q2
by fast

show isl (t-target t) =⇒ t ∈ ?shftd
proof −

assume isl (t-target t)
then have t-target t 6= Inr q1 and t-target t 6= Inr q2 by auto
then have t /∈ ?dl and t /∈ ?dr by force+
then show ?thesis using ‹t ∈ ?shftd ∪ ?dl ∪ ?dr› by fastforce

qed

show t-target t = Inr q1 =⇒ q1 6= q2 =⇒ t ∈ ?dl
proof −

assume t-target t = Inr q1 and q1 6= q2
then have ¬ isl (t-target t) and t-target t 6= Inr q2 by auto
then have t /∈ ?shftd and t /∈ ?dr by force+
then show ?thesis using ‹t ∈ ?shftd ∪ ?dl ∪ ?dr› by fastforce

qed

show t-target t = Inr q2 =⇒ q1 6= q2 =⇒ t ∈ ?dr
proof −

assume t-target t = Inr q2 and q1 6= q2
then have ¬ isl (t-target t) and t-target t 6= Inr q1 by auto
then have t /∈ ?shftd and t /∈ ?dl by force+
then show ?thesis using ‹t ∈ ?shftd ∪ ?dl ∪ ?dr› by fastforce

qed
qed
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lemma canonical-separator-path-shift :
assumes q1 ∈ states M and q2 ∈ states M
shows path (product (from-FSM M q1 ) (from-FSM M q2 )) (initial (product

(from-FSM M q1 ) (from-FSM M q2 ))) p
= path (canonical-separator M q1 q2 ) (initial (canonical-separator M q1 q2 ))

(map shift-Inl p)
proof −

let ?C = (canonical-separator M q1 q2 )
let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))
let ?PR = (product (from-FSM M q1 ) (from-FSM M q2 ))

have (inputs ?C ) = (inputs ?P)
and (outputs ?C ) = (outputs ?P)

unfolding canonical-separator-simps(3 ,4 )[OF assms] using assms by auto

have p1 : shift-Inl ‘
FSM .transitions
((Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM M q2 )))
⊆ FSM .transitions (canonical-separator M q1 q2 )
using canonical-separator-product-transitions-subset[OF assms]
unfolding restrict-to-reachable-states-simps by assumption

have p2 : (
∧

t. t ∈ FSM .transitions (canonical-separator M q1 q2 ) =⇒
isl (t-target t) =⇒
∃ t ′∈FSM .transitions

((Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM M
q2 ))).

t = shift-Inl t ′)
using canonical-separator-transition-targets(1 )[OF - assms] unfolding re-

strict-to-reachable-states-simps by fastforce

have path ?PR (initial ?PR) p = path ?C (initial ?C ) (map shift-Inl p)
using path-shift-Inl[of ?PR ?C , OF p1 p2 ]

unfolding restrict-to-reachable-states-simps canonical-separator-simps(1 ,2 ,3 ,4 )[OF
assms] using assms by auto

moreover have path ?P (initial ?P) p = path ?PR (initial ?PR) p
unfolding restrict-to-reachable-states-simps

restrict-to-reachable-states-path[OF reachable-states-initial]
by simp

ultimately show ?thesis
by simp

qed

lemma canonical-separator-t-source-isl :
assumes t ∈ (transitions (canonical-separator M q1 q2 ))
and q1 ∈ states M and q2 ∈ states M
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shows isl (t-source t)
using assms(1 )
unfolding canonical-separator-transitions-alt-def [OF assms(2 ,3 )]

shifted-transitions-for-def
distinguishing-transitions-left-alt-def
distinguishing-transitions-right-alt-def

by force

lemma canonical-separator-path-from-shift :
assumes path (canonical-separator M q1 q2 ) (initial (canonical-separator M q1

q2 )) p
and isl (target (initial (canonical-separator M q1 q2 )) p)
and q1 ∈ states M and q2 ∈ states M
shows ∃ p ′ . path (product (from-FSM M q1 ) (from-FSM M q2 )) (initial

(product (from-FSM M q1 ) (from-FSM M q2 ))) p ′

∧ p = (map shift-Inl p ′)
using assms(1 ,2 ) proof (induction p rule: rev-induct)

case Nil
show ?case using canonical-separator-path-shift[OF assms(3 ,4 ), of []] by fast

next
case (snoc t p)
then have isl (t-target t) by auto

let ?C = (canonical-separator M q1 q2 )
let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

have t ∈ transitions ?C and t-source t = target (initial ?C ) p
using snoc.prems by auto

then have isl (t-source t)
using canonical-separator-t-source-isl[of t M q1 q2 , OF - assms(3 ,4 )] by blast

then have isl (target (initial (canonical-separator M q1 q2 )) p)
using ‹t-source t = target (initial ?C ) p› by auto

have path ?C (initial ?C ) p using snoc.prems by auto
then obtain p ′ where path ?P (initial ?P) p ′

and p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target
t))) p ′

using snoc.IH [OF - ‹isl (target (initial (canonical-separator M q1 q2 )) p)›] by
blast

then have target (initial ?C ) p = Inl (target (initial ?P) p ′)
proof (cases p rule: rev-cases)

case Nil
then show ?thesis
unfolding target.simps visited-states.simps using ‹p = map (λt. (Inl (t-source

t), t-input t, t-output t, Inl (t-target t))) p ′› canonical-separator-simps(1 )[OF assms(3 ,4 )]
by (simp add: assms(3 ) assms(4 ))

next
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case (snoc ys y)
then show ?thesis
unfolding target.simps visited-states.simps using ‹p = map (λt. (Inl (t-source

t), t-input t, t-output t, Inl (t-target t))) p ′› by (cases p ′ rule: rev-cases; auto)
qed

obtain t ′ where t ′ ∈ transitions ?P
and t = (Inl (t-source t ′), t-input t ′, t-output t ′, Inl (t-target t ′))

using canonical-separator-transition-targets(1 )[OF ‹t ∈ transitions ?C › assms(3 ,4 )
‹isl (t-target t)›]

by blast

have path ?P (initial ?P) (p ′@[t ′])
by (metis ‹path (Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM

M q2 )) (FSM .initial (Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM
M q2 ))) p ′›

‹t = shift-Inl t ′› ‹t ′∈ FSM .transitions (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))›

‹t-source t = target (FSM .initial (canonical-separator M q1 q2 )) p›
‹target (FSM .initial (canonical-separator M q1 q2 )) p = Inl (target

(FSM .initial (Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM M
q2 ))) p ′)›

fst-conv path-append-transition sum.inject(1 ))
moreover have p@[t] = map shift-Inl (p ′@[t ′])

using ‹p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target t))) p ′›

‹t = (Inl (t-source t ′), t-input t ′, t-output t ′, Inl (t-target t ′))›
by auto

ultimately show ?case
by meson

qed

lemma shifted-transitions-targets :
assumes t ∈ (shifted-transitions ts)
shows isl (t-target t)
using assms unfolding shifted-transitions-def by force

lemma distinguishing-transitions-left-sources-targets :
assumes t ∈ (distinguishing-transitions-left-alt M q1 q2 )

and q2 ∈ states M
obtains q1 ′ q2 ′ t ′ where t-source t = Inl (q1 ′,q2 ′)

q1 ′ ∈ states M
q2 ′ ∈ states M
t ′ ∈ transitions M
t-source t ′ = q1 ′

t-input t ′ = t-input t
t-output t ′ = t-output t
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¬ (∃ t ′′∈ transitions M . t-source t ′′ = q2 ′ ∧ t-input t ′′ =
t-input t ∧ t-output t ′′ = t-output t)

t-target t = Inr q1
using assms(1 ) assms(2 ) fsm-transition-source path-target-is-state
unfolding distinguishing-transitions-left-alt-def
by fastforce

lemma distinguishing-transitions-right-sources-targets :
assumes t ∈ (distinguishing-transitions-right-alt M q1 q2 )

and q1 ∈ states M
obtains q1 ′ q2 ′ t ′ where t-source t = Inl (q1 ′,q2 ′)

q1 ′ ∈ states M
q2 ′ ∈ states M
t ′ ∈ transitions M
t-source t ′ = q2 ′

t-input t ′ = t-input t
t-output t ′ = t-output t
¬ (∃ t ′′∈ transitions M . t-source t ′′ = q1 ′ ∧ t-input t ′′ =

t-input t ∧ t-output t ′′ = t-output t)
t-target t = Inr q2

using assms(1 ) assms(2 ) fsm-transition-source path-target-is-state
unfolding distinguishing-transitions-right-alt-def
by fastforce

lemma product-from-transition-split :
assumes t ∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 ))
and q1 ∈ states M
and q2 ∈ states M

shows (∃ t ′∈ transitions M . t-source t ′ = fst (t-source t) ∧ t-input t ′ = t-input t
∧ t-output t ′ = t-output t)
and (∃ t ′∈ transitions M . t-source t ′ = snd (t-source t) ∧ t-input t ′ = t-input t
∧ t-output t ′ = t-output t)

using product-transition-split-ob[OF assms(1 )]
unfolding product-transitions-alt-def from-FSM-simps[OF assms(2 )] from-FSM-simps[OF

assms(3 )] by blast+

lemma shifted-transitions-underlying-transition :
assumes tS ∈ shifted-transitions-for M q1 q2
and q1 ∈ states M
and q2 ∈ states M
obtains t where tS = (Inl (t-source t), t-input t, t-output t, Inl (t-target t))

and t ∈ (transitions ((product (from-FSM M q1 ) (from-FSM M q2 ))))
and (∃ t ′∈(transitions M ).

t-source t ′ = fst (t-source t) ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t)

and (∃ t ′∈(transitions M ).
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t-source t ′ = snd (t-source t) ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t)

proof −
obtain t where tS = (Inl (t-source t), t-input t, t-output t, Inl (t-target t))

and ∗: t ∈ (transitions ((product (from-FSM M q1 ) (from-FSM M q2 ))))
using assms unfolding shifted-transitions-for-def shifted-transitions-def re-

strict-to-reachable-states-simps by blast
moreover have (∃ t ′∈(transitions M ).

t-source t ′ = fst (t-source t) ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t)

using product-from-transition-split(1 )[OF - assms(2 ,3 )]
∗

unfolding restrict-to-reachable-states-simps by blast
moreover have (∃ t ′∈(transitions M ).

t-source t ′ = snd (t-source t) ∧
t-input t ′ = t-input t ∧ t-output t ′ = t-output t)

using product-from-transition-split(2 )[OF - assms(2 ,3 )]
∗

unfolding restrict-to-reachable-states-simps by blast
ultimately show ?thesis

using that by blast
qed

lemma shifted-transitions-observable-against-distinguishing-transitions-left :
assumes t1 ∈ (shifted-transitions-for M q1 q2 )
and t2 ∈ (distinguishing-transitions-left M q1 q2 )
and q1 ∈ states M
and q2 ∈ states M

shows ¬ (t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1 =
t-output t2 )

using assms(1 ,2 )
unfolding product-transitions-def from-FSM-simps[OF assms(3 )] from-FSM-simps[OF

assms(4 )]
shifted-transitions-for-def distinguishing-transitions-left-def

by force

lemma shifted-transitions-observable-against-distinguishing-transitions-right :
assumes t1 ∈ (shifted-transitions-for M q1 q2 )
and t2 ∈ (distinguishing-transitions-right M q1 q2 )
and q1 ∈ states M
and q2 ∈ states M

shows ¬ (t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1 =
t-output t2 )

using assms
unfolding product-transitions-def from-FSM-simps[OF assms(3 )] from-FSM-simps[OF

assms(4 )]
shifted-transitions-for-def distinguishing-transitions-right-def

by force
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lemma distinguishing-transitions-left-observable-against-distinguishing-transitions-right
:

assumes t1 ∈ (distinguishing-transitions-left M q1 q2 )
and t2 ∈ (distinguishing-transitions-right M q1 q2 )

shows ¬ (t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1 =
t-output t2 )

using assms
unfolding distinguishing-transitions-left-def distinguishing-transitions-right-def

by force

lemma distinguishing-transitions-left-observable-against-distinguishing-transitions-left
:

assumes t1 ∈ (distinguishing-transitions-left M q1 q2 )
and t2 ∈ (distinguishing-transitions-left M q1 q2 )
and t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1 =

t-output t2
shows t1 = t2

using assms unfolding distinguishing-transitions-left-def by force

lemma distinguishing-transitions-right-observable-against-distinguishing-transitions-right
:

assumes t1 ∈ (distinguishing-transitions-right M q1 q2 )
and t2 ∈ (distinguishing-transitions-right M q1 q2 )
and t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1 =

t-output t2
shows t1 = t2

using assms unfolding distinguishing-transitions-right-def by force

lemma shifted-transitions-observable-against-shifted-transitions :
assumes t1 ∈ (shifted-transitions-for M q1 q2 )
and t2 ∈ (shifted-transitions-for M q1 q2 )
and observable M
and t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1 =

t-output t2
shows t1 = t2
proof −

obtain t1 ′ where d1 : t1 = (Inl (t-source t1 ′), t-input t1 ′, t-output t1 ′, Inl
(t-target t1 ′))

and h1 : t1 ′ ∈ (transitions (product (from-FSM M q1 ) (from-FSM M
q2 )))

using assms(1 ) unfolding shifted-transitions-for-def by auto

obtain t2 ′ where d2 : t2 = (Inl (t-source t2 ′), t-input t2 ′, t-output t2 ′, Inl
(t-target t2 ′))
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and h2 : t2 ′ ∈ (transitions (product (from-FSM M q1 ) (from-FSM M
q2 )))

using assms(2 ) unfolding shifted-transitions-for-def by auto

have observable (product (from-FSM M q1 ) (from-FSM M q2 ))
using from-FSM-observable[OF assms(3 )]

product-observable
by metis

then have t1 ′ = t2 ′

using d1 d2 h1 h2 ‹t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧
t-output t1 = t-output t2 ›

by (metis fst-conv observable.elims(2 ) prod.expand snd-conv sum.inject(1 ))
then show ?thesis using d1 d2 by auto

qed

lemma canonical-separator-observable :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M

shows observable (canonical-separator M q1 q2 ) (is observable ?CSep)
proof −

have
∧

t1 t2 . t1 ∈ (transitions ?CSep) =⇒
t2 ∈ (transitions ?CSep) =⇒

t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output t1
= t-output t2 =⇒ t-target t1 = t-target t2

proof −
fix t1 t2 assume t1 ∈ (transitions ?CSep)

and t2 ∈ (transitions ?CSep)
and ∗: t-source t1 = t-source t2 ∧ t-input t1 = t-input t2 ∧ t-output

t1 = t-output t2

moreover have transitions ?CSep = shifted-transitions-for M q1 q2 ∪
distinguishing-transitions-left M q1 q2 ∪
distinguishing-transitions-right M q1 q2

using canonical-separator-transitions-alt-def [OF assms(2 ,3 )]
unfolding distinguishing-transitions-left-alt-alt-def distinguishing-transitions-right-alt-alt-def

by assumption

ultimately consider t1 ∈ shifted-transitions-for M q1 q2 ∧ t2 ∈ shifted-transitions-for
M q1 q2

| t1 ∈ shifted-transitions-for M q1 q2 ∧ t2 ∈ distinguish-
ing-transitions-left M q1 q2

| t1 ∈ shifted-transitions-for M q1 q2 ∧ t2 ∈ distinguish-
ing-transitions-right M q1 q2

| t1 ∈ distinguishing-transitions-left M q1 q2 ∧ t2 ∈
shifted-transitions-for M q1 q2
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| t1 ∈ distinguishing-transitions-left M q1 q2 ∧ t2 ∈ distinguish-
ing-transitions-left M q1 q2

| t1 ∈ distinguishing-transitions-left M q1 q2 ∧ t2 ∈ distinguish-
ing-transitions-right M q1 q2

| t1 ∈ distinguishing-transitions-right M q1 q2 ∧ t2 ∈
shifted-transitions-for M q1 q2

| t1 ∈ distinguishing-transitions-right M q1 q2 ∧ t2 ∈
distinguishing-transitions-left M q1 q2

| t1 ∈ distinguishing-transitions-right M q1 q2 ∧ t2 ∈
distinguishing-transitions-right M q1 q2

by force
then show t-target t1 = t-target t2 proof cases

case 1
then show ?thesis using shifted-transitions-observable-against-shifted-transitions[of

t1 M q1 q2 t2 , OF - - assms(1 ) ∗] by fastforce
next

case 2
then show ?thesis using shifted-transitions-observable-against-distinguishing-transitions-left[OF

- - assms(2 ,3 ), of t1 t2 ] ∗ by fastforce
next

case 3
then show ?thesis using shifted-transitions-observable-against-distinguishing-transitions-right[OF

- - assms(2 ,3 ), of t1 t2 ] ∗ by fastforce
next

case 4
then show ?thesis using shifted-transitions-observable-against-distinguishing-transitions-left[OF

- - assms(2 ,3 ), of t2 t1 ] ∗ by fastforce
next

case 5
then show ?thesis using ∗ unfolding distinguishing-transitions-left-def by

fastforce
next

case 6
then show ?thesis using ∗ unfolding distinguishing-transitions-left-def dis-

tinguishing-transitions-right-def by fastforce
next

case 7
then show ?thesis using shifted-transitions-observable-against-distinguishing-transitions-right[OF

- - assms(2 ,3 ), of t2 t1 ] ∗ by fastforce
next

case 8
then show ?thesis using ∗ unfolding distinguishing-transitions-left-def dis-

tinguishing-transitions-right-def by fastforce
next

case 9
then show ?thesis using ∗ unfolding distinguishing-transitions-right-def by

fastforce
qed

qed
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then show ?thesis unfolding observable.simps by blast
qed

lemma canonical-separator-targets-ineq :
assumes t ∈ transitions (canonical-separator M q1 q2 )

and q1 ∈ states M and q2 ∈ states M and q1 6= q2
shows isl (t-target t) =⇒ t ∈ (shifted-transitions-for M q1 q2 )

and t-target t = Inr q1 =⇒ t ∈ (distinguishing-transitions-left M q1 q2 )
and t-target t = Inr q2 =⇒ t ∈ (distinguishing-transitions-right M q1 q2 )

proof −
show isl (t-target t) =⇒ t ∈ (shifted-transitions-for M q1 q2 )
by (metis (no-types, lifting) assms(1 ) assms(2 ) assms(3 ) canonical-separator-transition-targets(1 )

shifted-transitions-for-def )
show t-target t = Inr q1 =⇒ t ∈ (distinguishing-transitions-left M q1 q2 )
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) canonical-separator-transition-targets(2 )

distinguishing-transitions-left-alt-alt-def )
show t-target t = Inr q2 =⇒ t ∈ (distinguishing-transitions-right M q1 q2 )
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) canonical-separator-transition-targets(3 )

distinguishing-transitions-right-alt-alt-def )
qed

lemma canonical-separator-targets-observable :
assumes t ∈ transitions (canonical-separator M q1 q2 )

and q1 ∈ states M and q2 ∈ states M and q1 6= q2
shows isl (t-target t) =⇒ t ∈ (shifted-transitions-for M q1 q2 )

and t-target t = Inr q1 =⇒ t ∈ (distinguishing-transitions-left M q1 q2 )
and t-target t = Inr q2 =⇒ t ∈ (distinguishing-transitions-right M q1 q2 )

proof −
show isl (t-target t) =⇒ t ∈ (shifted-transitions-for M q1 q2 )

by (metis assms canonical-separator-targets-ineq(1 ))
show t-target t = Inr q1 =⇒ t ∈ (distinguishing-transitions-left M q1 q2 )

by (metis assms canonical-separator-targets-ineq(2 ))
show t-target t = Inr q2 =⇒ t ∈ (distinguishing-transitions-right M q1 q2 )

by (metis assms canonical-separator-targets-ineq(3 ))
qed

lemma canonical-separator-maximal-path-distinguishes-left :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 S (is is-state-separator-from-canonical-separator ?C q1 q2 S)
and path S (initial S) p
and target (initial S) p = Inr q1
and observable M
and q1 ∈ states M and q2 ∈ states M and q1 6= q2

shows p-io p ∈ LS M q1 − LS M q2
proof (cases p rule: rev-cases)

case Nil
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then have initial S = Inr q1 using assms(3 ) by auto
then have initial ?C = Inr q1
using assms(1 ) assms(5 ) assms(6 ) is-state-separator-from-canonical-separator-initial

by fastforce
then show ?thesis using canonical-separator-simps(1 ) Inr-Inl-False

using assms(5 ) assms(6 ) by fastforce
next

case (snoc p ′ t)
then have path S (initial S) (p ′@[t])

using assms(2 ) by auto
then have t ∈ transitions S and t-source t = target (initial S) p ′ by auto

have path ?C (initial ?C ) (p ′@[t])
using ‹path S (initial S) (p ′@[t])› assms(1 ) is-state-separator-from-canonical-separator-def [of

?C q1 q2 S ] by (meson submachine-path-initial)
then have path ?C (initial ?C ) (p ′) and t ∈ transitions ?C

by auto

have isl (target (initial S) p ′)
proof (rule ccontr)

assume ¬ isl (target (initial S) p ′)
moreover have target (initial S) p ′ ∈ states S

using ‹path S (initial S) (p ′@[t])› by auto
ultimately have target (initial S) p ′ = Inr q1 ∨ target (initial S) p ′ = Inr q2

using ‹t ∈ FSM .transitions (canonical-separator M q1 q2 )› ‹t-source t =
target (FSM .initial S) p ′› assms(5 ) assms(6 ) canonical-separator-t-source-isl by
fastforce

moreover have deadlock-state S (Inr q1 ) and deadlock-state S (Inr q2 )
using assms(1 ) is-state-separator-from-canonical-separator-def [of ?C q1 q2 S ]

by presburger+
ultimately show False

using ‹t ∈ transitions S› ‹t-source t = target (initial S) p ′› unfolding
deadlock-state.simps

by metis
qed
then obtain q1 ′ q2 ′ where target (initial S) p ′ = Inl (q1 ′,q2 ′) using isl-def

prod.collapse by metis
then have isl (target (initial ?C ) p ′)

using assms(1 ) is-state-separator-from-canonical-separator-def [of ?C q1 q2 S ]
by (metis (no-types, lifting) Nil-is-append-conv assms(2 ) isl-def list.distinct(1 )

list.sel(1 ) path.cases snoc submachine-path-initial)

obtain pC where path (product (from-FSM M q1 ) (from-FSM M q2 )) (initial
(product (from-FSM M q1 ) (from-FSM M q2 ))) pC

and p ′ = map shift-Inl pC
by (metis (mono-tags, lifting) ‹isl (target (FSM .initial (canonical-separator M

q1 q2 )) p ′)›
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‹path (canonical-separator M q1 q2 ) (FSM .initial (canonical-separator M
q1 q2 )) p ′›

assms(5 ) assms(6 ) canonical-separator-path-from-shift)
then have path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ,q2 ) pC

by (simp add: assms(5 ) assms(6 ))
then have path (from-FSM M q1 ) q1 (left-path pC ) and path (from-FSM M q2 )

q2 (right-path pC )
using product-path[of from-FSM M q1 from-FSM M q2 q1 q2 pC ] by pres-

burger+

have path M q1 (left-path pC )
using from-FSM-path[OF assms(5 ) ‹path (from-FSM M q1 ) q1 (left-path pC )›]

by assumption
have path M q2 (right-path pC )

using from-FSM-path[OF assms(6 ) ‹path (from-FSM M q2 ) q2 (right-path
pC )›] by assumption

have t-target t = Inr q1
using ‹path S (initial S) (p ′@[t])› snoc assms(3 ) by auto

then have t ∈ (distinguishing-transitions-left M q1 q2 )
using canonical-separator-targets-ineq(2 )[OF ‹t ∈ transitions ?C › assms(5 ,6 ,7 )]

by auto
then have t ∈ (distinguishing-transitions-left-alt M q1 q2 )

using distinguishing-transitions-left-alt-alt-def by force

have t-source t = Inl (q1 ′,q2 ′)
using ‹target (initial S) p ′ = Inl (q1 ′,q2 ′)› ‹t-source t = target (initial S) p ′›

by auto

then obtain t ′ where q1 ′ ∈ states M
and q2 ′ ∈ states M
and t ′ ∈ transitions M
and t-source t ′ = q1 ′

and t-input t ′ = t-input t
and t-output t ′ = t-output t
and ¬ (∃ t ′′∈ transitions M . t-source t ′′ = q2 ′ ∧ t-input t ′′ =

t-input t ∧ t-output t ′′ = t-output t)
using ‹t ∈ (distinguishing-transitions-left-alt M q1 q2 )› assms(5 ,6 ) fsm-transition-source

path-target-is-state
unfolding distinguishing-transitions-left-alt-def reachable-states-def by fastforce

have initial S = Inl (q1 ,q2 )
by (meson assms(1 ) assms(5 ) assms(6 ) is-state-separator-from-canonical-separator-initial)

have length p ′ = length pC
using ‹p ′ = map shift-Inl pC › by auto

then have target (initial S) p ′ = Inl (target (q1 ,q2 ) pC )
using ‹p ′ = map shift-Inl pC › ‹initial S = Inl (q1 ,q2 )› by (induction p ′ pC

rule: list-induct2 ; auto)
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then have target (q1 ,q2 ) pC = (q1 ′,q2 ′)
using ‹target (initial S) p ′ = Inl (q1 ′,q2 ′)› by auto

then have target q2 (right-path pC ) = q2 ′

using product-target-split(2 ) by fastforce
then have ¬ (∃ t ′∈ transitions M . t-source t ′ = target q2 (right-path pC ) ∧

t-input t ′ = t-input t ∧ t-output t ′ = t-output t)
using ‹¬ (∃ t ′∈ transitions M . t-source t ′ = q2 ′ ∧ t-input t ′ = t-input t ∧

t-output t ′ = t-output t)› by blast

have target q1 (left-path pC ) = q1 ′

using ‹target (q1 ,q2 ) pC = (q1 ′,q2 ′)› product-target-split(1 ) by fastforce
then have path M q1 ((left-path pC )@[t ′])

using ‹path M q1 (left-path pC )› ‹t ′ ∈ transitions M › ‹t-source t ′ = q1 ′›
by (simp add: path-append-transition)

then have p-io ((left-path pC )@[t ′]) ∈ LS M q1
unfolding LS .simps by force

moreover have p-io p ′ = p-io (left-path pC )
using ‹p ′ = map shift-Inl pC › by auto

ultimately have p-io (p ′@[t]) ∈ LS M q1
using ‹t-input t ′ = t-input t› ‹t-output t ′ = t-output t› by auto

have p-io (right-path pC ) @ [(t-input t, t-output t)] /∈ LS M q2
using observable-path-language-step[OF assms(4 ) ‹path M q2 (right-path pC )›

‹¬ (∃ t ′∈ transitions M . t-source t ′ = target q2 (right-path pC ) ∧ t-input t ′ =
t-input t ∧ t-output t ′ = t-output t)›] by assumption

moreover have p-io p ′ = p-io (right-path pC )
using ‹p ′ = map shift-Inl pC › by auto

ultimately have p-io (p ′@[t]) /∈ LS M q2
by auto

show ?thesis
using ‹p-io (p ′@[t]) ∈ LS M q1 › ‹p-io (p ′@[t]) /∈ LS M q2 › snoc by blast

qed

lemma canonical-separator-maximal-path-distinguishes-right :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 S
(is is-state-separator-from-canonical-separator ?C q1 q2 S)

and path S (initial S) p
and target (initial S) p = Inr q2
and observable M
and q1 ∈ states M and q2 ∈ states M and q1 6= q2

shows p-io p ∈ LS M q2 − LS M q1
proof (cases p rule: rev-cases)

case Nil
then have initial S = Inr q2 using assms(3 ) by auto
then have initial ?C = Inr q2
using assms(1 ) assms(5 ) assms(6 ) is-state-separator-from-canonical-separator-initial
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by fastforce
then show ?thesis using canonical-separator-simps(1 ) Inr-Inl-False

using assms(5 ) assms(6 ) by fastforce
next

case (snoc p ′ t)
then have path S (initial S) (p ′@[t])

using assms(2 ) by auto
then have t ∈ transitions S and t-source t = target (initial S) p ′

by auto

have path ?C (initial ?C ) (p ′@[t])
using ‹path S (initial S) (p ′@[t])› assms(1 ) is-state-separator-from-canonical-separator-def [of

?C q1 q2 S ]
by (meson submachine-path-initial)

then have path ?C (initial ?C ) (p ′) and t ∈ transitions ?C
by auto

have isl (target (initial S) p ′)
proof (rule ccontr)

assume ¬ isl (target (initial S) p ′)
moreover have target (initial S) p ′ ∈ states S

using ‹path S (initial S) (p ′@[t])› by auto
ultimately have target (initial S) p ′ = Inr q1 ∨ target (initial S) p ′ = Inr q2

using assms(1 ) unfolding is-state-separator-from-canonical-separator-def
by (metis ‹t ∈ FSM .transitions (canonical-separator M q1 q2 )› ‹t-source t =

target (FSM .initial S) p ′›
assms(5 ) assms(6 ) canonical-separator-t-source-isl)

moreover have deadlock-state S (Inr q1 ) and deadlock-state S (Inr q2 )
using assms(1 ) is-state-separator-from-canonical-separator-def [of ?C q1 q2 S ]

by presburger+
ultimately show False

using ‹t ∈ transitions S› ‹t-source t = target (initial S) p ′› unfolding
deadlock-state.simps

by metis
qed
then obtain q1 ′ q2 ′ where target (initial S) p ′ = Inl (q1 ′,q2 ′)

using isl-def prod.collapse by metis
then have isl (target (initial ?C ) p ′)

using assms(1 ) is-state-separator-from-canonical-separator-def [of ?C q1 q2 S ]
by (metis (no-types, lifting) Nil-is-append-conv assms(2 ) isl-def list.distinct(1 )

list.sel(1 )
path.cases snoc submachine-path-initial)

obtain pC where path (product (from-FSM M q1 ) (from-FSM M q2 )) (initial
(product (from-FSM M q1 ) (from-FSM M q2 ))) pC

and p ′ = map shift-Inl pC
using canonical-separator-path-from-shift[OF ‹path ?C (initial ?C ) (p ′)› ‹isl

(target (initial ?C ) p ′)›]
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using assms(5 ) assms(6 ) by blast
then have path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ,q2 ) pC

by (simp add: assms(5 ) assms(6 ))

then have path (from-FSM M q1 ) q1 (left-path pC ) and path (from-FSM M q2 )
q2 (right-path pC )

using product-path[of from-FSM M q1 from-FSM M q2 q1 q2 pC ] by pres-
burger+

have path M q1 (left-path pC )
using from-FSM-path[OF assms(5 ) ‹path (from-FSM M q1 ) q1 (left-path pC )›]

by assumption
have path M q2 (right-path pC )

using from-FSM-path[OF assms(6 ) ‹path (from-FSM M q2 ) q2 (right-path
pC )›] by assumption

have t-target t = Inr q2
using ‹path S (initial S) (p ′@[t])› snoc assms(3 ) by auto

then have t ∈ (distinguishing-transitions-right M q1 q2 )
using canonical-separator-targets-ineq(3 )[OF ‹t ∈ transitions ?C › assms(5 ,6 ,7 )]

by auto
then have t ∈ (distinguishing-transitions-right-alt M q1 q2 )

unfolding distinguishing-transitions-right-alt-alt-def by assumption

have t-source t = Inl (q1 ′,q2 ′)
using ‹target (initial S) p ′ = Inl (q1 ′,q2 ′)› ‹t-source t = target (initial S) p ′›

by auto

then obtain t ′ where q1 ′ ∈ states M
and q2 ′ ∈ states M
and t ′ ∈ transitions M
and t-source t ′ = q2 ′

and t-input t ′ = t-input t
and t-output t ′ = t-output t
and ¬ (∃ t ′′∈ transitions M . t-source t ′′ = q1 ′ ∧ t-input t ′′ =

t-input t ∧ t-output t ′′ = t-output t)
using ‹t ∈ (distinguishing-transitions-right-alt M q1 q2 )› assms(5 ,6 ) fsm-transition-source

path-target-is-state
unfolding distinguishing-transitions-right-alt-def reachable-states-def by fast-

force

have initial S = Inl (q1 ,q2 )
by (meson assms(1 ) assms(5 ) assms(6 ) is-state-separator-from-canonical-separator-initial)

have length p ′ = length pC
using ‹p ′ = map shift-Inl pC › by auto

then have target (initial S) p ′ = Inl (target (q1 ,q2 ) pC )
using ‹p ′ = map shift-Inl pC › ‹initial S = Inl (q1 ,q2 )› by (induction p ′ pC

rule: list-induct2 ; auto)
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then have target (q1 ,q2 ) pC = (q1 ′,q2 ′)
using ‹target (initial S) p ′ = Inl (q1 ′,q2 ′)› by auto

then have target q1 (left-path pC ) = q1 ′

using product-target-split(1 ) by fastforce
then have ¬ (∃ t ′∈ transitions M . t-source t ′ = target q1 (left-path pC ) ∧ t-input

t ′ = t-input t ∧ t-output t ′ = t-output t)
using ‹¬ (∃ t ′∈ transitions M . t-source t ′ = q1 ′ ∧ t-input t ′ = t-input t ∧

t-output t ′ = t-output t)› by blast

have target q2 (right-path pC ) = q2 ′

using ‹target (q1 ,q2 ) pC = (q1 ′,q2 ′)› product-target-split(2 ) by fastforce
then have path M q2 ((right-path pC )@[t ′])

using ‹path M q2 (right-path pC )› ‹t ′ ∈ transitions M › ‹t-source t ′ = q2 ′›
by (simp add: path-append-transition)

then have p-io ((right-path pC )@[t ′]) ∈ LS M q2
unfolding LS .simps by force

moreover have p-io p ′ = p-io (right-path pC )
using ‹p ′ = map shift-Inl pC › by auto

ultimately have p-io (p ′@[t]) ∈ LS M q2
using ‹t-input t ′ = t-input t› ‹t-output t ′ = t-output t› by auto

have p-io (left-path pC ) @ [(t-input t, t-output t)] /∈ LS M q1
using observable-path-language-step[OF assms(4 ) ‹path M q1 (left-path pC )› ‹¬

(∃ t ′∈ transitions M . t-source t ′ = target q1 (left-path pC ) ∧ t-input t ′ = t-input t
∧ t-output t ′ = t-output t)›] by assumption

moreover have p-io p ′ = p-io (left-path pC )
using ‹p ′ = map shift-Inl pC › by auto

ultimately have p-io (p ′@[t]) /∈ LS M q1
by auto

show ?thesis
using ‹p-io (p ′@[t]) ∈ LS M q2 › ‹p-io (p ′@[t]) /∈ LS M q1 › snoc
by blast

qed

lemma state-separator-from-canonical-separator-observable :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 A
and observable M
and q1 ∈ states M
and q2 ∈ states M

shows observable A
using submachine-observable[OF - canonical-separator-observable[OF assms(2 ,3 ,4 )]]
using assms(1 ) unfolding is-state-separator-from-canonical-separator-def
by metis
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lemma canonical-separator-initial :
assumes q1 ∈ states M and q2 ∈ states M
shows initial (canonical-separator M q1 q2 ) = Inl (q1 ,q2 )

unfolding canonical-separator-simps[OF assms] by simp

lemma canonical-separator-states :
assumes Inl (s1 ,s2 ) ∈ states (canonical-separator M q1 q2 )
and q1 ∈ states M
and q2 ∈ states M

shows (s1 ,s2 ) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
using assms(1 ) reachable-state-is-state
unfolding canonical-separator-simps[OF assms(2 ,3 )] by fastforce

lemma canonical-separator-transition :
assumes t ∈ transitions (canonical-separator M q1 q2 ) (is t ∈ transitions ?C )
and q1 ∈ states M
and q2 ∈ states M
and t-source t = Inl (s1 ,s2 )
and observable M
and q1 6= q2

shows
∧

s1 ′ s2 ′ . t-target t = Inl (s1 ′,s2 ′) =⇒ (s1 , t-input t, t-output t, s1 ′) ∈
transitions M ∧ (s2 , t-input t, t-output t, s2 ′) ∈ transitions M
and t-target t = Inr q1 =⇒ (∃ t ′∈ transitions M . t-source t ′ = s1 ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t)
∧ (¬(∃ t ′∈ transitions M . t-source t ′ = s2 ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t))
and t-target t = Inr q2 =⇒ (∃ t ′∈ transitions M . t-source t ′ = s2 ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t)
∧ (¬(∃ t ′∈ transitions M . t-source t ′ = s1 ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t))
and (∃ s1 ′ s2 ′ . t-target t = Inl (s1 ′,s2 ′)) ∨ t-target t = Inr q1 ∨ t-target t =
Inr q2
proof −

show
∧

s1 ′ s2 ′ . t-target t = Inl (s1 ′,s2 ′) =⇒ (s1 , t-input t, t-output t, s1 ′) ∈
transitions M ∧ (s2 , t-input t, t-output t, s2 ′) ∈ transitions M

using canonical-separator-transition-targets(1 )[OF assms(1 ,2 ,3 )] assms(4 )
unfolding shifted-transitions-for-def [symmetric]
unfolding shifted-transitions-for-alt-def

unfolding product-transitions-def from-FSM-simps[OF assms(2 )] from-FSM-simps[OF
assms(3 )] by fastforce

show t-target t = Inr q1 =⇒ (∃ t ′∈ transitions M . t-source t ′ = s1 ∧ t-input
t ′ = t-input t ∧ t-output t ′ = t-output t)

∧ (¬(∃ t ′∈ transitions M . t-source t ′ = s2 ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t))
using canonical-separator-targets-observable(2 )[OF assms(1 ,2 ,3 ,6 )] assms(4 )
unfolding distinguishing-transitions-left-def by fastforce
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show t-target t = Inr q2 =⇒ (∃ t ′∈ transitions M . t-source t ′ = s2 ∧ t-input
t ′ = t-input t ∧ t-output t ′ = t-output t)

∧ (¬(∃ t ′∈ transitions M . t-source t ′ = s1 ∧ t-input t ′

= t-input t ∧ t-output t ′ = t-output t))
using canonical-separator-targets-observable(3 )[OF assms(1 ,2 ,3 ,6 )] assms(4 )
unfolding distinguishing-transitions-right-def by fastforce

show (∃ s1 ′ s2 ′ . t-target t = Inl (s1 ′,s2 ′)) ∨ t-target t = Inr q1 ∨ t-target t =
Inr q2

using canonical-separator-transition-targets(4 )[OF assms(1 ,2 ,3 )]
by (simp add: isl-def )

qed

lemma canonical-separator-transition-source :
assumes t ∈ transitions (canonical-separator M q1 q2 ) (is t ∈ transitions ?C )
and q1 ∈ states M
and q2 ∈ states M

obtains q1 ′ q2 ′ where t-source t = Inl (q1 ′,q2 ′)
(q1 ′,q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM M q1 )

(FSM .from-FSM M q2 ))
proof −
consider t ∈ shifted-transitions-for M q1 q2 | t ∈ distinguishing-transitions-left-alt

M q1 q2 |
t ∈ distinguishing-transitions-right-alt M q1 q2

using assms(1 )
unfolding canonical-separator-transitions-alt-def [OF assms(2 ,3 )] by blast

then show ?thesis proof cases
case 1
then show ?thesis unfolding shifted-transitions-for-def using that

using fsm-transition-source by fastforce
next

case 2
then show ?thesis unfolding distinguishing-transitions-left-alt-def using that

by fastforce
next

case 3
then show ?thesis unfolding distinguishing-transitions-right-alt-def using

that by fastforce
qed

qed

lemma canonical-separator-transition-ex :
assumes t ∈ transitions (canonical-separator M q1 q2 ) (is t ∈ transitions ?C )
and q1 ∈ states M
and q2 ∈ states M
and t-source t = Inl (s1 ,s2 )
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shows (∃ t1 ∈ transitions M . t-source t1 = s1 ∧ t-input t1 = t-input t ∧ t-output
t1 = t-output t) ∨

(∃ t2 ∈ transitions M . t-source t2 = s2 ∧ t-input t2 = t-input t ∧ t-output
t2 = t-output t)
proof −
consider t ∈ shifted-transitions-for M q1 q2 | t ∈ distinguishing-transitions-left-alt

M q1 q2 |
t ∈ distinguishing-transitions-right-alt M q1 q2

using assms(1 )
unfolding canonical-separator-transitions-alt-def [OF assms(2 ,3 )] by blast

then show ?thesis proof cases
case 1
then show ?thesis unfolding shifted-transitions-for-def

using product-from-transition-split[OF - assms(2 ,3 )]
using assms(4 ) by force

next
case 2
then show ?thesis unfolding distinguishing-transitions-left-alt-def

using assms(4 ) by auto

next
case 3
then show ?thesis unfolding distinguishing-transitions-right-alt-def

using assms(4 ) by auto
qed

qed

lemma canonical-separator-path-split-target-isl :
assumes path (canonical-separator M q1 q2 ) (initial (canonical-separator M q1

q2 )) (p@[t])
and q1 ∈ states M
and q2 ∈ states M
shows isl (target (initial (canonical-separator M q1 q2 )) p)

proof −
let ?C = (canonical-separator M q1 q2 )
have t ∈ transitions ?C

using assms by auto
moreover have ¬ deadlock-state ?C (t-source t)

using assms unfolding deadlock-state.simps by blast
ultimately show ?thesis

using canonical-separator-t-source-isl assms
by fastforce

qed

lemma canonical-separator-path-initial :
assumes path (canonical-separator M q1 q2 ) (initial (canonical-separator M q1

q2 )) p (is path ?C (initial ?C ) p)
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and q1 ∈ states M
and q2 ∈ states M
and observable M
and q1 6= q2

shows
∧

s1 ′ s2 ′ . target (initial (canonical-separator M q1 q2 )) p = Inl (s1 ′,s2 ′)
=⇒ (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = p-io p2 ∧ p-io p1 =
p-io p ∧ target q1 p1 = s1 ′ ∧ target q2 p2 = s2 ′)
and target (initial (canonical-separator M q1 q2 )) p = Inr q1 =⇒ (∃ p1 p2 t .
path M q1 (p1@[t]) ∧ path M q2 p2 ∧ p-io (p1@[t]) = p-io p ∧ p-io p2 = butlast
(p-io p)) ∧ (¬(∃ p2 . path M q2 p2 ∧ p-io p2 = p-io p))
and target (initial (canonical-separator M q1 q2 )) p = Inr q2 =⇒ (∃ p1 p2 t .
path M q1 p1 ∧ path M q2 (p2@[t]) ∧ p-io p1 = butlast (p-io p) ∧ p-io (p2@[t])
= p-io p) ∧ (¬(∃ p1 . path M q1 p1 ∧ p-io p1 = p-io p))
and (∃ s1 ′ s2 ′ . target (initial (canonical-separator M q1 q2 )) p = Inl (s1 ′,s2 ′)) ∨
target (initial (canonical-separator M q1 q2 )) p = Inr q1 ∨ target (initial (canonical-separator
M q1 q2 )) p = Inr q2
proof −

let ?P1 = ∀ s1 ′ s2 ′ . target (initial (canonical-separator M q1 q2 )) p = Inl
(s1 ′,s2 ′) −→ (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = p-io p2 ∧ p-io
p1 = p-io p ∧ target q1 p1 = s1 ′ ∧ target q2 p2 = s2 ′)

let ?P2 = target (initial (canonical-separator M q1 q2 )) p = Inr q1 −→ (∃ p1
p2 t . path M q1 (p1@[t]) ∧ path M q2 p2 ∧ p-io (p1@[t]) = p-io p ∧ p-io p2 =
butlast (p-io p)) ∧ (¬(∃ p2 . path M q2 p2 ∧ p-io p2 = p-io p))

let ?P3 = target (initial (canonical-separator M q1 q2 )) p = Inr q2 −→ (∃ p1
p2 t . path M q1 p1 ∧ path M q2 (p2@[t]) ∧ p-io p1 = butlast (p-io p) ∧ p-io
(p2@[t]) = p-io p) ∧ (¬(∃ p1 . path M q1 p1 ∧ p-io p1 = p-io p))

have ?P1 ∧ ?P2 ∧ ?P3
using assms(1 ) proof (induction p rule: rev-induct)

case Nil
then have target (FSM .initial (canonical-separator M q1 q2 )) [] = Inl (q1 , q2 )

unfolding canonical-separator-simps[OF assms(2 ,3 )] by auto
then show ?case using assms(2 ,3 ,4 ) by fastforce

next
case (snoc t p)

have path ?C (initial ?C ) p and t ∈ transitions ?C and t-source t = target
(initial ?C ) p

using snoc.prems(1 ) by auto

let ?P1 ′ = (∀ s1 ′ s2 ′. target (initial (canonical-separator M q1 q2 )) (p @ [t])
= Inl (s1 ′, s2 ′) −→ (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = p-io p2
∧ p-io p1 = p-io (p @ [t]) ∧ target q1 p1 = s1 ′ ∧ target q2 p2 = s2 ′))

let ?P2 ′ = (target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inr q1
−→ (∃ p1 p2 ta. path M q1 (p1 @ [ta]) ∧ path M q2 p2 ∧ p-io (p1 @ [ta]) = p-io
(p @ [t]) ∧ p-io p2 = butlast (p-io (p @ [t]))) ∧ (@ p2 . path M q2 p2 ∧ p-io p2 =
p-io (p @ [t])))

let ?P3 ′ = (target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inr q2
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−→ (∃ p1 p2 ta. path M q1 p1 ∧ path M q2 (p2 @ [ta]) ∧ p-io p1 = butlast (p-io
(p @ [t])) ∧ p-io (p2 @ [ta]) = p-io (p @ [t])) ∧ (@ p1 . path M q1 p1 ∧ p-io p1 =
p-io (p @ [t])))

let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

obtain p ′ where path ?P (initial ?P) p ′

and ∗:p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target
t))) p ′

using canonical-separator-path-from-shift[OF ‹path ?C (initial ?C ) p› canon-
ical-separator-path-split-target-isl[OF snoc.prems assms(2 ,3 )] assms(2 ,3 )]

by blast

let ?pL = (map (λt. (fst (t-source t), t-input t, t-output t, fst (t-target t))) p ′)
let ?pR = (map (λt. (snd (t-source t), t-input t, t-output t, snd (t-target t)))

p ′)

have path ?P (q1 ,q2 ) p ′

using ‹path ?P (initial ?P) p ′› assms(2 ,3 ) unfolding product-simps(1 )
from-FSM-simps(1 ) by simp

then have pL: path (from-FSM M q1 ) q1 ?pL
and pR: path (from-FSM M q2 ) q2 ?pR

using product-path[of from-FSM M q1 from-FSM M q2 q1 q2 p ′] by simp+

have p-io ?pL = p-io p and p-io ?pR = p-io p
using ∗ by auto

have pf1 : path (from-FSM M q1 ) (initial (from-FSM M q1 )) ?pL
using pL assms(2 ) unfolding from-FSM-simps(1 ) by auto

have pf2 : path (from-FSM M q2 ) (initial (from-FSM M q2 )) ?pR
using pR assms(3 ) unfolding from-FSM-simps(1 ) by auto

have pio: p-io ?pL = p-io ?pR
by auto

have p-io (zip-path ?pL ?pR) = p-io ?pL
by (induction p ′; auto)

have zip1 : path ?P (initial ?P) (zip-path ?pL ?pR)
and target (initial ?P) (zip-path ?pL ?pR) = (target q1 ?pL, target q2 ?pR)

using product-path-from-paths[OF pf1 pf2 pio] assms(2 ,3 )
unfolding from-FSM-simps(1 ) by simp+

have p-io (zip-path ?pL ?pR) = p-io p
using ‹p-io ?pL = p-io p› ‹p-io (zip-path ?pL ?pR) = p-io ?pL› by auto

have observable ?P
using product-observable[OF from-FSM-observable[OF assms(4 )] from-FSM-observable[OF

assms(4 )]] by assumption
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have p-io p ′ = p-io p
using ∗ by auto

obtain s1 s2 where t-source t = Inl (s1 ,s2 )
using canonical-separator-path-split-target-isl[OF snoc.prems(1 ) assms(2 ,3 )]
by (metis ‹t-source t = target (initial (canonical-separator M q1 q2 )) p› isl-def

old.prod.exhaust)

have map t-target p = map (Inl o t-target) p ′

using ∗ by auto
have target (initial ?C ) p = Inl (target (q1 ,q2 ) p ′)

unfolding target.simps visited-states.simps canonical-separator-simps[OF
assms(2 ,3 )]

unfolding ‹map t-target p = map (Inl o t-target) p ′›
by (simp add: last-map)

then have target (q1 ,q2 ) p ′= (s1 ,s2 )
using ‹t-source t = target (initial ?C ) p› ‹t-source t = Inl (s1 ,s2 )›
by auto

have target q1 ?pL = s1 and target q2 ?pR = s2
using product-target-split[OF ‹target (q1 ,q2 ) p ′= (s1 ,s2 )›] by auto

consider (a) (∃ s1 ′ s2 ′. t-target t = Inl (s1 ′, s2 ′)) |
(b) t-target t = Inr q1 |
(c) t-target t = Inr q2

using canonical-separator-transition(4 )[OF ‹t ∈ transitions ?C › ‹q1 ∈ states
M › ‹q2 ∈ states M › ‹t-source t = Inl (s1 ,s2 )› ‹observable M › ‹q1 6= q2 ›]

by blast
then show ?P1 ′ ∧ ?P2 ′ ∧ ?P3 ′ proof cases

case a
then obtain s1 ′ s2 ′ where t-target t = Inl (s1 ′,s2 ′)

by blast

let ?t1 = (s1 , t-input t, t-output t, s1 ′)
let ?t2 = (s2 , t-input t, t-output t, s2 ′)

have ?t1 ∈ transitions M
and ?t2 ∈ transitions M
using canonical-separator-transition(1 )[OF ‹t ∈ transitions ?C › ‹q1 ∈ states

M › ‹q2 ∈ states M › ‹t-source t = Inl (s1 ,s2 )› ‹observable M › ‹q1 6= q2 › ‹t-target
t = Inl (s1 ′,s2 ′)›]

by auto

have target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inl (s1 ′, s2 ′)
using ‹t-target t = Inl (s1 ′,s2 ′)› by auto

have path M q1 (?pL@[?t1 ])
using path-append-transition[OF from-FSM-path[OF ‹q1 ∈ states M › pL]

‹?t1 ∈ transitions M ›] ‹target q1 ?pL = s1 › by auto
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moreover have path M q2 (?pR@[?t2 ])
using path-append-transition[OF from-FSM-path[OF ‹q2 ∈ states M › pR]

‹?t2 ∈ transitions M ›] ‹target q2 ?pR = s2 › by auto
moreover have p-io (?pL@[?t1 ]) = p-io (?pR@[?t2 ])

by auto
moreover have p-io (?pL@[?t1 ]) = p-io (p@[t])

using ‹p-io ?pL = p-io p› by auto
moreover have target q1 (?pL@[?t1 ]) = s1 ′ and target q2 (?pR@[?t2 ]) =

s2 ′

by auto
ultimately have path M q1 (?pL@[?t1 ]) ∧ path M q2 (?pR@[?t2 ]) ∧ p-io

(?pL@[?t1 ]) = p-io (?pR@[?t2 ]) ∧ p-io (?pL@[?t1 ]) = p-io (p@[t]) ∧ target q1
(?pL@[?t1 ]) = s1 ′ ∧ target q2 (?pR@[?t2 ]) = s2 ′

by presburger
then have (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = p-io p2 ∧

p-io p1 = p-io (p @ [t]) ∧ target q1 p1 = s1 ′ ∧ target q2 p2 = s2 ′)
by meson

then have ?P1 ′

using ‹target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inl (s1 ′,
s2 ′)› by auto

then show ?thesis using ‹target (initial (canonical-separator M q1 q2 )) (p
@ [t]) = Inl (s1 ′, s2 ′)›

by auto
next

case b
then have target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inr q1

by auto

have (∃ t ′∈(transitions M ). t-source t ′ = s1 ∧ t-input t ′ = t-input t ∧ t-output
t ′ = t-output t)

and ¬ (∃ t ′∈(transitions M ). t-source t ′ = s2 ∧ t-input t ′ = t-input t ∧
t-output t ′ = t-output t)

using canonical-separator-transition(2 )[OF ‹t ∈ transitions ?C › ‹q1 ∈ states
M › ‹q2 ∈ states M › ‹t-source t = Inl (s1 ,s2 )› ‹observable M › ‹q1 6= q2 › b] by
blast+

then obtain t ′ where t ′ ∈ transitions M and t-source t ′ = s1 and t-input
t ′ = t-input t and t-output t ′ = t-output t

by blast

have path M q1 (?pL@[t ′])
using path-append-transition[OF from-FSM-path[OF ‹q1 ∈ states M › pL]

‹t ′ ∈ transitions M ›] ‹target q1 ?pL = s1 › ‹t-source t ′ = s1 › by auto
moreover have p-io (?pL@[t ′]) = p-io (p@[t])

using ‹p-io ?pL = p-io p› ‹t-input t ′ = t-input t› ‹t-output t ′ = t-output t›
by auto

moreover have p-io ?pR = butlast (p-io (p @ [t]))
using ‹p-io ?pR = p-io p› by auto

ultimately have path M q1 (?pL@[t ′]) ∧ path M q2 ?pR ∧ p-io (?pL@[t ′])
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= p-io (p @ [t]) ∧ p-io ?pR = butlast (p-io (p @ [t]))
using from-FSM-path[OF ‹q2 ∈ states M › pR] by linarith

then have (∃ p1 p2 ta. path M q1 (p1 @ [ta]) ∧ path M q2 p2 ∧ p-io (p1 @
[ta]) = p-io (p @ [t]) ∧ p-io p2 = butlast (p-io (p @ [t])))

by meson

moreover have (@ p2 . path M q2 p2 ∧ p-io p2 = p-io (p @ [t]))
proof

assume ∃ p2 . path M q2 p2 ∧ p-io p2 = p-io (p @ [t])
then obtain p ′′ where path M q2 p ′′ ∧ p-io p ′′ = p-io (p @ [t])

by blast
then have p ′′ 6= [] by auto
then obtain p2 t2 where p ′′ = p2@[t2 ]

using rev-exhaust by blast
then have path M q2 (p2@[t2 ]) and p-io (p2@[t2 ]) = p-io (p @ [t])

using ‹path M q2 p ′′ ∧ p-io p ′′ = p-io (p @ [t])› by auto
then have path M q2 p2 by auto

then have pf2 ′: path (from-FSM M q2 ) (initial (from-FSM M q2 )) p2
using from-FSM-path-initial[OF ‹q2 ∈ states M ›, of p2 ] by simp

have pio ′: p-io ?pL = p-io p2
using ‹p-io (?pL@[t ′]) = p-io (p@[t])› ‹p-io (p2@[t2 ]) = p-io (p @ [t])›

by auto

have zip2 : path ?P (initial ?P) (zip-path ?pL p2 )
and target (initial ?P) (zip-path ?pL p2 ) = (target q1 ?pL, target q2 p2 )

using product-path-from-paths[OF pf1 pf2 ′ pio ′] assms(2 ,3 )
unfolding from-FSM-simps(1 ) by simp+

have length p ′ = length p2
using ‹p-io (p2@[t2 ]) = p-io (p @ [t])›
by (metis (no-types, lifting) length-map pio ′)

then have p-io (zip-path ?pL p2 ) = p-io p ′

by (induction p ′ p2 rule: list-induct2 ; auto)
then have p-io (zip-path ?pL p2 ) = p-io p

using ∗ by auto
then have p-io (zip-path ?pL ?pR) = p-io (zip-path ?pL p2 )

using ‹p-io (zip-path ?pL ?pR) = p-io p› by simp

have p-io ?pR = p-io p2
using ‹p-io ?pL = p-io p2 › pio by auto

have l1 : length ?pL = length ?pR by auto
have l2 : length ?pR = length ?pL by auto
have l3 : length ?pL = length p2 using ‹length p ′ = length p2 › by auto

have p2 = ?pR
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using zip-path-eq-right[OF l1 l2 l3 ‹p-io ?pR = p-io p2 › observable-path-unique[OF
‹observable ?P› zip1 zip2 ‹p-io (zip-path ?pL ?pR) = p-io (zip-path ?pL p2 )›]] by
simp

then have target q2 p2 = s2
using ‹target q2 ?pR = s2 › by auto

then have t2 ∈ transitions M and t-source t2 = s2
using ‹path M q2 (p2@[t2 ])› by auto

moreover have t-input t2 = t-input t ∧ t-output t2 = t-output t
using ‹p-io (p2@[t2 ]) = p-io (p @ [t])› by auto

ultimately show False
using ‹¬ (∃ t ′∈(transitions M ). t-source t ′ = s2 ∧ t-input t ′ = t-input t ∧

t-output t ′ = t-output t)› by blast
qed

ultimately have ?P2 ′

by blast
moreover have ?P3 ′

using ‹q1 6= q2 › ‹t-target t = Inr q1 › by auto
moreover have ?P1 ′

using ‹target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inr q1 › by
auto

ultimately show ?thesis
by blast

next
case c
then have target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inr q2

by auto

have (∃ t ′∈(transitions M ). t-source t ′ = s2 ∧ t-input t ′ = t-input t ∧ t-output
t ′ = t-output t)

and ¬ (∃ t ′∈(transitions M ). t-source t ′ = s1 ∧ t-input t ′ = t-input t ∧
t-output t ′ = t-output t)

using canonical-separator-transition(3 )[OF ‹t ∈ transitions ?C › ‹q1 ∈ states
M › ‹q2 ∈ states M › ‹t-source t = Inl (s1 ,s2 )› ‹observable M › ‹q1 6= q2 › c] by
blast+

then obtain t ′ where t ′ ∈ transitions M and t-source t ′ = s2 and t-input
t ′ = t-input t and t-output t ′ = t-output t

by blast

have path M q2 (?pR@[t ′])
using path-append-transition[OF from-FSM-path[OF ‹q2 ∈ states M › pR]

‹t ′ ∈ transitions M ›] ‹target q2 ?pR = s2 › ‹t-source t ′ = s2 › by auto
moreover have p-io (?pR@[t ′]) = p-io (p@[t])

using ‹p-io ?pR = p-io p› ‹t-input t ′ = t-input t› ‹t-output t ′ = t-output t›
by auto

moreover have p-io ?pL = butlast (p-io (p @ [t]))
using ‹p-io ?pL = p-io p› by auto

ultimately have path M q2 (?pR@[t ′]) ∧ path M q1 ?pL ∧ p-io (?pR@[t ′])
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= p-io (p @ [t]) ∧ p-io ?pL = butlast (p-io (p @ [t]))
using from-FSM-path[OF ‹q1 ∈ states M › pL] by linarith

then have (∃ p1 p2 ta. path M q1 p1 ∧ path M q2 (p2 @ [ta]) ∧ p-io p1 =
butlast (p-io (p @ [t])) ∧ p-io (p2 @ [ta]) = p-io (p @ [t]))

by meson

moreover have (@ p1 . path M q1 p1 ∧ p-io p1 = p-io (p @ [t]))
proof

assume ∃ p1 . path M q1 p1 ∧ p-io p1 = p-io (p @ [t])
then obtain p ′′ where path M q1 p ′′ ∧ p-io p ′′ = p-io (p @ [t])

by blast
then have p ′′ 6= [] by auto
then obtain p1 t1 where p ′′ = p1@[t1 ]

using rev-exhaust by blast
then have path M q1 (p1@[t1 ]) and p-io (p1@[t1 ]) = p-io (p @ [t])

using ‹path M q1 p ′′ ∧ p-io p ′′ = p-io (p @ [t])› by auto
then have path M q1 p1

by auto
then have pf1 ′: path (from-FSM M q1 ) (initial (from-FSM M q1 )) p1

using from-FSM-path-initial[OF ‹q1 ∈ states M ›, of p1 ] by simp
have pio ′: p-io p1 = p-io ?pR

using ‹p-io (?pR@[t ′]) = p-io (p@[t])› ‹p-io (p1@[t1 ]) = p-io (p @ [t])›
by auto

have zip2 : path ?P (initial ?P) (zip-path p1 ?pR)
using product-path-from-paths[OF pf1 ′ pf2 pio ′]
unfolding from-FSM-simps(1 ) by simp

have length p ′ = length p1
using ‹p-io (p1@[t1 ]) = p-io (p @ [t])›
by (metis (no-types, lifting) length-map pio ′)

then have p-io (zip-path p1 ?pR) = p-io p ′

using ‹p-io p1 = p-io ?pR› by (induction p ′ p1 rule: list-induct2 ; auto)
then have p-io (zip-path p1 ?pR) = p-io p

using ∗ by auto
then have p-io (zip-path ?pL ?pR) = p-io (zip-path p1 ?pR)

using ‹p-io (zip-path ?pL ?pR) = p-io p› by simp

have l1 : length ?pL = length ?pR by auto
have l2 : length ?pR = length p1 using ‹length p ′ = length p1 › by auto
have l3 : length p1 = length ?pR using l2 by auto

have ?pL = p1
using zip-path-eq-left[OF l1 l2 l3 observable-path-unique[OF ‹observable

?P› zip1 zip2 ‹p-io (zip-path ?pL ?pR) = p-io (zip-path p1 ?pR)›]] by simp
then have target q1 p1 = s1

using ‹target q1 ?pL = s1 › by auto
then have t1 ∈ transitions M and t-source t1 = s1

using ‹path M q1 (p1@[t1 ])› by auto
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moreover have t-input t1 = t-input t ∧ t-output t1 = t-output t
using ‹p-io (p1@[t1 ]) = p-io (p @ [t])› by auto

ultimately show False
using ‹¬ (∃ t ′∈(transitions M ). t-source t ′ = s1 ∧ t-input t ′ = t-input t ∧

t-output t ′ = t-output t)› by blast
qed

ultimately have ?P3 ′

by blast
moreover have ?P2 ′

using ‹q1 6= q2 › ‹t-target t = Inr q2 › by auto
moreover have ?P1 ′

using ‹target (initial (canonical-separator M q1 q2 )) (p @ [t]) = Inr q2 › by
auto

ultimately show ?thesis
by blast

qed
qed

then show
∧

s1 ′ s2 ′ . target (initial (canonical-separator M q1 q2 )) p = Inl
(s1 ′,s2 ′) =⇒ (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = p-io p2 ∧ p-io
p1 = p-io p ∧ target q1 p1 = s1 ′ ∧ target q2 p2 = s2 ′)

and target (initial (canonical-separator M q1 q2 )) p = Inr q1 =⇒ (∃ p1
p2 t . path M q1 (p1@[t]) ∧ path M q2 p2 ∧ p-io (p1@[t]) = p-io p ∧ p-io p2 =
butlast (p-io p)) ∧ (¬(∃ p2 . path M q2 p2 ∧ p-io p2 = p-io p))

and target (initial (canonical-separator M q1 q2 )) p = Inr q2 =⇒ (∃ p1
p2 t . path M q1 p1 ∧ path M q2 (p2@[t]) ∧ p-io p1 = butlast (p-io p) ∧ p-io
(p2@[t]) = p-io p) ∧ (¬(∃ p1 . path M q1 p1 ∧ p-io p1 = p-io p))

by blast+

show (∃ s1 ′ s2 ′ . target (initial (canonical-separator M q1 q2 )) p = Inl
(s1 ′,s2 ′)) ∨ target (initial (canonical-separator M q1 q2 )) p = Inr q1 ∨ target
(initial (canonical-separator M q1 q2 )) p = Inr q2

proof (cases p rule: rev-cases)
case Nil
then show ?thesis unfolding canonical-separator-simps(1 )[OF assms(2 ,3 )]

by auto
next

case (snoc p ′ t)
then have t ∈ transitions ?C and target (initial (canonical-separator M q1

q2 )) p = t-target t
using assms(1 ) by auto

then have t ∈ (transitions ?C )
by auto

obtain s1 s2 where t-source t = Inl (s1 ,s2 )
using canonical-separator-t-source-isl[OF ‹t ∈ (transitions ?C )› assms(2 ,3 )]
by (metis sum.collapse(1 ) surjective-pairing)

show ?thesis
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using canonical-separator-transition(4 )[OF ‹t ∈ transitions ?C › assms(2 ,3 )
‹t-source t = Inl (s1 ,s2 )› assms(4 ) ‹q1 6= q2 ›]

‹target (initial (canonical-separator M q1 q2 )) p = t-target t›
by simp

qed
qed

lemma canonical-separator-path-initial-ex :
assumes path (canonical-separator M q1 q2 ) (initial (canonical-separator M q1

q2 )) p (is path ?C (initial ?C ) p)
and q1 ∈ states M
and q2 ∈ states M

shows (∃ p1 . path M q1 p1 ∧ p-io p1 = p-io p) ∨ (∃ p2 . path M q2 p2 ∧ p-io
p2 = p-io p)
and (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = butlast (p-io p) ∧
p-io p2 = butlast (p-io p))
proof −

have ((∃ p1 . path M q1 p1 ∧ p-io p1 = p-io p) ∨ (∃ p2 . path M q2 p2 ∧ p-io
p2 = p-io p))

∧ (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = butlast (p-io p) ∧
p-io p2 = butlast (p-io p))

using assms proof (induction p rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc t p)
then have path ?C (initial ?C ) p and t ∈ transitions ?C and t-source t =

target (initial ?C ) p
by auto

let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

obtain p ′ where path ?P (initial ?P) p ′

and ∗:p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target
t))) p ′

using canonical-separator-path-from-shift[OF ‹path ?C (initial ?C ) p› canon-
ical-separator-path-split-target-isl[OF snoc.prems(1 ) assms(2 ,3 )] assms(2 ,3 )]

by blast

let ?pL = (map (λt. (fst (t-source t), t-input t, t-output t, fst (t-target t))) p ′)
let ?pR = (map (λt. (snd (t-source t), t-input t, t-output t, snd (t-target t)))

p ′)

have path ?P (q1 ,q2 ) p ′

using ‹path ?P (initial ?P) p ′› assms(2 ,3 ) by simp

then have pL: path (from-FSM M q1 ) q1 ?pL
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and pR: path (from-FSM M q2 ) q2 ?pR
using product-path[of from-FSM M q1 from-FSM M q2 q1 q2 p ′] by auto

have p-io ?pL = butlast (p-io (p@[t])) and p-io ?pR = butlast (p-io (p@[t]))
using ∗ by auto

then have path M q1 ?pL ∧ path M q2 ?pR ∧ p-io ?pL = butlast (p-io (p@[t]))
∧ p-io ?pR = butlast (p-io (p@[t]))

using from-FSM-path[OF ‹q1 ∈ states M › pL] from-FSM-path[OF ‹q2 ∈
states M › pR] by auto

then have (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = butlast (p-io
(p @ [t])) ∧ p-io p2 = butlast (p-io (p @ [t])))

by blast

obtain s1 s2 where t-source t = Inl (s1 ,s2 )
using canonical-separator-path-split-target-isl[OF snoc.prems(1 ) assms(2 ,3 )]
by (metis ‹t-source t = target (initial (canonical-separator M q1 q2 )) p› isl-def

old.prod.exhaust)

have map t-target p = map (Inl o t-target) p ′

using ∗ by auto
then have target (initial ?C ) p = Inl (target (q1 ,q2 ) p ′)

unfolding target.simps visited-states.simps canonical-separator-simps(1 )[OF
assms(2 ,3 )]

by (simp add: last-map)
then have target (q1 ,q2 ) p ′= (s1 ,s2 )

using ‹t-source t = target (initial ?C ) p› ‹t-source t = Inl (s1 ,s2 )›
by auto

have target q1 ?pL = s1 and target q2 ?pR = s2
using product-target-split[OF ‹target (q1 ,q2 ) p ′= (s1 ,s2 )›] by auto

consider (a) (∃ t1∈(transitions M ). t-source t1 = s1 ∧ t-input t1 = t-input t
∧ t-output t1 = t-output t) |

(b) (∃ t2∈(transitions M ). t-source t2 = s2 ∧ t-input t2 = t-input t ∧
t-output t2 = t-output t)

using canonical-separator-transition-ex[OF ‹t ∈ transitions ?C › ‹q1 ∈ states
M › ‹q2 ∈ states M › ‹t-source t = Inl (s1 ,s2 )›] by blast

then show ?case proof cases
case a
then obtain t1 where t1 ∈ transitions M and t-source t1 = s1 and t-input

t1 = t-input t and t-output t1 = t-output t
by blast

have t-source t1 = target q1 ?pL
using ‹target q1 ?pL = s1 › ‹t-source t1 = s1 › by auto

then have path M q1 (?pL@[t1 ])
using pL ‹t1 ∈ transitions M ›
by (meson from-FSM-path path-append-transition snoc.prems(2 ))

moreover have p-io (?pL@[t1 ]) = p-io (p@[t])
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using ∗ ‹t-input t1 = t-input t› ‹t-output t1 = t-output t› by auto
ultimately show ?thesis

using ‹(∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = butlast (p-io (p
@ [t])) ∧ p-io p2 = butlast (p-io (p @ [t])))›

by meson
next

case b
then obtain t2 where t2 ∈ transitions M and t-source t2 = s2 and t-input

t2 = t-input t and t-output t2 = t-output t
by blast

have t-source t2 = target q2 ?pR
using ‹target q2 ?pR = s2 › ‹t-source t2 = s2 › by auto

then have path M q2 (?pR@[t2 ])
using pR ‹t2 ∈ transitions M ›
by (meson from-FSM-path path-append-transition snoc.prems(3 ))

moreover have p-io (?pR@[t2 ]) = p-io (p@[t])
using ∗ ‹t-input t2 = t-input t› ‹t-output t2 = t-output t› by auto

ultimately show ?thesis
using ‹(∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = butlast (p-io (p

@ [t])) ∧ p-io p2 = butlast (p-io (p @ [t])))›
by meson

qed
qed
then show (∃ p1 . path M q1 p1 ∧ p-io p1 = p-io p) ∨ (∃ p2 . path M q2 p2
∧ p-io p2 = p-io p)

and (∃ p1 p2 . path M q1 p1 ∧ path M q2 p2 ∧ p-io p1 = butlast (p-io p)
∧ p-io p2 = butlast (p-io p))

by blast+
qed

lemma canonical-separator-language :
assumes q1 ∈ states M
and q2 ∈ states M

shows L (canonical-separator M q1 q2 ) ⊆ L (from-FSM M q1 ) ∪ L (from-FSM M
q2 ) (is L ?C ⊆ L ?M1 ∪ L ?M2 )
proof

fix io assume io ∈ L (canonical-separator M q1 q2 )
then obtain p where ∗: path (canonical-separator M q1 q2 ) (initial (canonical-separator

M q1 q2 )) p and ∗∗: p-io p = io
by auto

show io ∈ L (from-FSM M q1 ) ∪ L (from-FSM M q2 )
using canonical-separator-path-initial-ex[OF ∗ assms] unfolding ∗∗

using from-FSM-path-initial[OF assms(1 )] from-FSM-path-initial[OF assms(2 )]

unfolding LS .simps by blast
qed
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lemma canonical-separator-language-prefix :
assumes io@[xy] ∈ L (canonical-separator M q1 q2 )
and q1 ∈ states M
and q2 ∈ states M
and observable M
and q1 6= q2

shows io ∈ LS M q1
and io ∈ LS M q2
proof −

let ?C = (canonical-separator M q1 q2 )
obtain p where path ?C (initial ?C ) p and p-io p = io@[xy]

using assms(1 ) by auto

consider (a) (∃ s1 ′ s2 ′. target (initial (canonical-separator M q1 q2 )) p = Inl
(s1 ′, s2 ′)) |

(b) target (initial (canonical-separator M q1 q2 )) p = Inr q1 |
(c) target (initial (canonical-separator M q1 q2 )) p = Inr q2

using canonical-separator-path-initial(4 )[OF ‹path ?C (initial ?C ) p› assms(2 ,3 ,4 ,5 )]
by blast

then have io ∈ LS M q1 ∧ io ∈ LS M q2
proof cases

case a
then obtain s1 s2 where ∗: target (initial (canonical-separator M q1 q2 )) p

= Inl (s1 , s2 )
by blast

show ?thesis using canonical-separator-path-initial(1 )[OF ‹path ?C (initial
?C ) p› assms(2 ,3 ,4 ,5 ) ∗] language-prefix

by (metis (mono-tags, lifting) LS .simps ‹p-io p = io @ [xy]› mem-Collect-eq
)

next
case b
show ?thesis using canonical-separator-path-initial(2 )[OF ‹path ?C (initial

?C ) p› assms(2 ,3 ,4 ,5 ) b]
using ‹p-io p = io @ [xy]› by fastforce

next
case c
show ?thesis using canonical-separator-path-initial(3 )[OF ‹path ?C (initial

?C ) p› assms(2 ,3 ,4 ,5 ) c]
using ‹p-io p = io @ [xy]› by fastforce

qed
then show io ∈ LS M q1 and io ∈ LS M q2

by auto
qed

lemma canonical-separator-distinguishing-transitions-left-containment :
assumes t ∈ (distinguishing-transitions-left M q1 q2 )
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and q1 ∈ states M and q2 ∈ states M
shows t ∈ transitions (canonical-separator M q1 q2 )

using assms(1 ) unfolding canonical-separator-transitions-def [OF assms(2 ,3 )]
by blast

lemma canonical-separator-distinguishing-transitions-right-containment :
assumes t ∈ (distinguishing-transitions-right M q1 q2 )

and q1 ∈ states M and q2 ∈ states M
shows t ∈ transitions (canonical-separator M q1 q2 ) (is t ∈ transitions ?C )
using assms(1 ) unfolding canonical-separator-transitions-def [OF assms(2 ,3 )]

by blast

lemma distinguishing-transitions-left-alt-intro :
assumes (s1 ,s2 ) ∈ states (Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM

M q2 ))
and (∃ t ∈ transitions M . t-source t = s1 ∧ t-input t = x ∧ t-output t = y)
and ¬(∃ t ∈ transitions M . t-source t = s2 ∧ t-input t = x ∧ t-output t = y)

shows (Inl (s1 ,s2 ), x, y, Inr q1 ) ∈ distinguishing-transitions-left-alt M q1 q2
using assms unfolding distinguishing-transitions-left-alt-def
by auto

lemma distinguishing-transitions-left-right-intro :
assumes (s1 ,s2 ) ∈ states (Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM

M q2 ))
and ¬(∃ t ∈ transitions M . t-source t = s1 ∧ t-input t = x ∧ t-output t = y)
and (∃ t ∈ transitions M . t-source t = s2 ∧ t-input t = x ∧ t-output t = y)

shows (Inl (s1 ,s2 ), x, y, Inr q2 ) ∈ distinguishing-transitions-right-alt M q1 q2
using assms unfolding distinguishing-transitions-right-alt-def
by auto

lemma canonical-separator-io-from-prefix-left :
assumes io @ [io1 ] ∈ LS M q1
and io ∈ LS M q2
and q1 ∈ states M
and q2 ∈ states M
and observable M
and q1 6= q2

shows io @ [io1 ] ∈ L (canonical-separator M q1 q2 )
proof −

let ?C = canonical-separator M q1 q2

obtain p1 where path M q1 p1 and p-io p1 = io @ [io1 ]
using ‹io @ [io1 ] ∈ LS M q1 › by auto

then have p1 6= []
by auto
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then obtain pL tL where p1 = pL @ [tL]
using rev-exhaust by blast

then have path M q1 (pL@[tL]) and path M q1 pL and p-io pL = io and tL ∈
transitions M

and t-input tL = fst io1 and t-output tL = snd io1 and p-io (pL@[tL]) =
io @ [io1 ]

using ‹path M q1 p1 › ‹p-io p1 = io @ [io1 ]› by auto
then have pLf : path (from-FSM M q1 ) (initial (from-FSM M q1 )) pL

and pLf ′: path (from-FSM M q1 ) (initial (from-FSM M q1 )) (pL@[tL])
using from-FSM-path-initial[OF ‹q1 ∈ states M ›] by auto

obtain pR where path M q2 pR and p-io pR = io
using ‹io ∈ LS M q2 › by auto

then have pRf : path (from-FSM M q2 ) (initial (from-FSM M q2 )) pR
using from-FSM-path-initial[OF ‹q2 ∈ states M ›] by auto

have p-io pL = p-io pR
using ‹p-io pL = io› ‹p-io pR = io› by auto

let ?pLR = zip-path pL pR
let ?pCLR = map shift-Inl ?pLR
let ?P = product (from-FSM M q1 ) (from-FSM M q2 )

have path ?P (initial ?P) ?pLR
and target (initial ?P) ?pLR = (target q1 pL, target q2 pR)

using product-path-from-paths[OF pLf pRf ‹p-io pL = p-io pR›]
unfolding from-FSM-simps[OF assms(3 )] from-FSM-simps[OF assms(4 )] by

linarith+

have path ?C (initial ?C ) ?pCLR
using canonical-separator-path-shift[OF assms(3 ,4 )] ‹path ?P (initial ?P)

?pLR›
by simp

have isl (target (initial ?C ) ?pCLR)
unfolding canonical-separator-simps(1 )[OF assms(3 ,4 )] by (cases ?pLR rule:

rev-cases; auto)
then obtain s1 s2 where target (initial ?C ) ?pCLR = Inl (s1 ,s2 )
by (metis (no-types, lifting) ‹path (canonical-separator M q1 q2 ) (initial (canonical-separator

M q1 q2 )) (map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target t))) (map
(λt. ((t-source (fst t), t-source (snd t)), t-input (fst t), t-output (fst t), t-target (fst
t), t-target (snd t))) (zip pL pR)))›

assms(3 ) assms(4 ) assms(5 ) assms(6 ) canonical-separator-path-initial(4 )
sum.discI (2 ))

then have Inl (s1 ,s2 ) ∈ states ?C
using path-target-is-state[OF ‹path ?C (initial ?C ) ?pCLR›] by simp

then have (s1 ,s2 ) ∈ states ?P
using canonical-separator-states[OF - assms(3 ,4 )] by force
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have target (initial ?P) ?pLR = (s1 ,s2 )
using ‹target (initial ?C ) ?pCLR = Inl (s1 ,s2 )› assms(3 ,4 )

unfolding canonical-separator-simps(1 )[OF assms(3 ,4 )] product-simps(1 ) from-FSM-simps
target.simps visited-states.simps

by (cases ?pLR rule: rev-cases; auto)
then have target q1 pL = s1 and target q2 pR = s2

using ‹target (initial ?P) ?pLR = (target q1 pL, target q2 pR)› by auto
then have t-source tL = s1

using ‹path M q1 (pL@[tL])› by auto

show ?thesis proof (cases ∃ tR ∈ (transitions M ) . t-source tR = target q2 pR
∧ t-input tR = t-input tL ∧ t-output tR = t-output tL)

case True
then obtain tR where tR ∈ (transitions M ) and t-source tR = target q2 pR

and t-input tR = t-input tL and t-output tR = t-output tL
by blast

have t-source tR ∈ states M
unfolding ‹t-source tR = target q2 pR› ‹target q2 pR = s2 ›

using ‹(s1 ,s2 ) ∈ states ?P› product-simps(2 ) from-FSM-simps(2 ) assms(3 ,4 )
by simp

then have tR ∈ transitions M
using ‹tR ∈ (transitions M )› ‹t-input tR = t-input tL› ‹t-output tR = t-output

tL› ‹tL ∈ transitions M › by auto

then have path M q2 (pR@[tR])
using ‹path M q2 pR› ‹t-source tR = target q2 pR› path-append-transition by

metis
then have pRf ′: path (from-FSM M q2 ) (initial (from-FSM M q2 )) (pR@[tR])

using from-FSM-path-initial[OF ‹q2 ∈ states M ›] by auto

let ?PP = (zip-path (pL@[tL]) (pR@[tR]))
let ?PC = map shift-Inl ?PP

have length pL = length pR
using ‹p-io pL = p-io pR› map-eq-imp-length-eq by blast

moreover have p-io (pL@[tL]) = p-io (pR@[tR])
using ‹p-io pR = io› ‹t-input tL = fst io1 › ‹t-output tL = snd io1 › ‹t-input

tR = t-input tL› ‹t-output tR = t-output tL› ‹p-io (pL@[tL]) = io@[io1 ]› by auto
ultimately have p-io ?PP = p-io (pL@[tL])

by (induction pL pR rule: list-induct2 ; auto)

have p-io ?PC = p-io ?PP
by auto

have path ?P (initial ?P) ?PP
using product-path-from-paths(1 )[OF pLf ′ pRf ′ ‹p-io (pL@[tL]) = p-io (pR@[tR])›]

by assumption
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then have path ?C (initial ?C ) ?PC
using canonical-separator-path-shift[OF assms(3 ,4 )] by simp

moreover have p-io ?PC = io@[io1 ]
using ‹p-io (pL@[tL]) = io@[io1 ]› ‹p-io ?PP = p-io (pL@[tL])› ‹p-io ?PC

= p-io ?PP› by simp
ultimately have ∃ p . path ?C (initial ?C ) p ∧ p-io p = io@[io1 ]

by blast
then show ?thesis unfolding LS .simps by force

next
case False

let ?t = (Inl (s1 ,s2 ), t-input tL, t-output tL, Inr q1 )

have (s1 ,s2 ) ∈ reachable-states (Product-FSM .product (FSM .from-FSM M q1 )
(FSM .from-FSM M q2 ))

by (metis (no-types, lifting) ‹path (Product-FSM .product (FSM .from-FSM M
q1 ) (FSM .from-FSM M q2 )) (FSM .initial (Product-FSM .product (FSM .from-FSM
M q1 ) (FSM .from-FSM M q2 ))) (zip-path pL pR)› ‹target (FSM .initial (Product-FSM .product
(FSM .from-FSM M q1 ) (FSM .from-FSM M q2 ))) (zip-path pL pR) = (s1 , s2 )›
reachable-states-intro)

moreover have (∃ tR∈FSM .transitions M .
t-source tR = target q1 pL ∧ t-input tR = t-input tL ∧ t-output tR =

t-output tL)
using ‹tL ∈ transitions M › ‹path M q1 (pL@[tL])›
by auto

ultimately have ?t ∈ (distinguishing-transitions-left-alt M q1 q2 )
using distinguishing-transitions-left-alt-intro[OF - - False ] ‹q1 6= q2 ›
unfolding ‹target q1 pL = s1 › ‹target q2 pR = s2 ›
using ‹(s1 , s2 ) ∈ FSM .states (Product-FSM .product (FSM .from-FSM M q1 )

(FSM .from-FSM M q2 ))› by blast
then have ?t ∈ transitions ?C

using canonical-separator-distinguishing-transitions-left-containment[OF -
assms(3 ,4 )] unfolding distinguishing-transitions-left-alt-alt-def by blast

then have path ?C (initial ?C ) (?pCLR@[?t])
using ‹path ?C (initial ?C ) ?pCLR› ‹target (initial ?C ) ?pCLR = Inl (s1 ,s2 )›

by (simp add: path-append-transition)

have length pL = length pR
using ‹p-io pL = p-io pR›
using map-eq-imp-length-eq by blast

then have p-io ?pCLR = p-io pL
by (induction pL pR rule: list-induct2 ; auto)

then have p-io (?pCLR@[?t]) = io @ [io1 ]
using ‹p-io pL = io› ‹t-input tL = fst io1 › ‹t-output tL = snd io1 ›
by auto

then have ∃ p . path ?C (initial ?C ) p ∧ p-io p = io@[io1 ]
using ‹path ?C (initial ?C ) (?pCLR@[?t])› by meson

then show ?thesis

1032



unfolding LS .simps by force
qed

qed

lemma canonical-separator-path-targets-language :
assumes path (canonical-separator M q1 q2 ) (initial (canonical-separator M q1

q2 )) p
and observable M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows isl (target (initial (canonical-separator M q1 q2 )) p) =⇒ p-io p ∈ LS M q1
∩ LS M q2
and (target (initial (canonical-separator M q1 q2 )) p) = Inr q1 =⇒ p-io p ∈ LS
M q1 − LS M q2 ∧ p-io (butlast p) ∈ LS M q1 ∩ LS M q2
and (target (initial (canonical-separator M q1 q2 )) p) = Inr q2 =⇒ p-io p ∈ LS
M q2 − LS M q1 ∧ p-io (butlast p) ∈ LS M q1 ∩ LS M q2
and p-io p ∈ LS M q1 ∩ LS M q2 =⇒ isl (target (initial (canonical-separator M
q1 q2 )) p)
and p-io p ∈ LS M q1 − LS M q2 =⇒ target (initial (canonical-separator M q1
q2 )) p = Inr q1
and p-io p ∈ LS M q2 − LS M q1 =⇒ target (initial (canonical-separator M q1
q2 )) p = Inr q2
proof −

let ?C = canonical-separator M q1 q2
let ?tgt = target (initial ?C ) p

show isl ?tgt =⇒ p-io p ∈ LS M q1 ∩ LS M q2
proof −

assume isl ?tgt
then obtain s1 s2 where ?tgt = Inl (s1 ,s2 )

by (metis isl-def old.prod.exhaust)
then obtain p1 p2 where path M q1 p1 and path M q2 p2 and p-io p1 =

p-io p and p-io p2 = p-io p
using canonical-separator-path-initial(1 )[OF assms(1 ) ‹q1 ∈ states M › ‹q2

∈ states M › ‹observable M › ‹q1 6= q2 › ‹?tgt = Inl (s1 ,s2 )› ] by force
then show p-io p ∈ LS M q1 ∩ LS M q2

unfolding LS .simps by force
qed
moreover show ?tgt = Inr q1 =⇒ p-io p ∈ LS M q1 − LS M q2 ∧ p-io (butlast

p) ∈ LS M q1 ∩ LS M q2
proof −

assume ?tgt = Inr q1
obtain p1 p2 t where path M q1 (p1 @ [t]) and path M q2 p2 and p-io (p1

@ [t]) = p-io p
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and p-io p2 = butlast (p-io p) and (@ p2 . path M q2 p2 ∧ p-io
p2 = p-io p)

using canonical-separator-path-initial(2 )[OF assms(1 ) ‹q1 ∈ states M › ‹q2
∈ states M ›

‹observable M › ‹q1 6= q2 › ‹?tgt = Inr q1 ›]
by meson

have path M q1 p1
using ‹path M q1 (p1@[t])› by auto

have p-io p1 = butlast (p-io p)
using ‹p-io (p1 @ [t]) = p-io p›
by (metis (no-types, lifting) butlast-snoc map-butlast)

have p-io p ∈ LS M q1
using ‹path M q1 (p1@[t])› ‹p-io (p1 @ [t]) = p-io p› unfolding LS .simps

by force
moreover have p-io p /∈ LS M q2

using ‹(@ p2 . path M q2 p2 ∧ p-io p2 = p-io p)› unfolding LS .simps by
force

moreover have butlast (p-io p) ∈ LS M q1
using ‹path M q1 p1 › ‹p-io p1 = butlast (p-io p)› unfolding LS .simps by

force
moreover have butlast (p-io p) ∈ LS M q2

using ‹path M q2 p2 › ‹p-io p2 = butlast (p-io p)› unfolding LS .simps by
force

ultimately show p-io p ∈ LS M q1 − LS M q2 ∧ p-io (butlast p) ∈ LS M q1
∩ LS M q2

by (simp add: map-butlast)
qed
moreover show ?tgt = Inr q2 =⇒ p-io p ∈ LS M q2 − LS M q1 ∧ p-io (butlast

p) ∈ LS M q1 ∩ LS M q2
proof −

assume ?tgt = Inr q2
obtain p1 p2 t where path M q2 (p2 @ [t]) and path M q1 p1 and p-io (p2

@ [t]) = p-io p
and p-io p1 = butlast (p-io p) and (@ p2 . path M q1 p2 ∧ p-io

p2 = p-io p)
using canonical-separator-path-initial(3 )[OF assms(1 ) ‹q1 ∈ states M › ‹q2

∈ states M ›
‹observable M › ‹q1 6= q2 › ‹?tgt = Inr q2 ›]

by meson

have path M q2 p2
using ‹path M q2 (p2@[t])› by auto

have p-io p2 = butlast (p-io p)
using ‹p-io (p2 @ [t]) = p-io p›
by (metis (no-types, lifting) butlast-snoc map-butlast)

have p-io p ∈ LS M q2
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using ‹path M q2 (p2@[t])› ‹p-io (p2 @ [t]) = p-io p› unfolding LS .simps
by force

moreover have p-io p /∈ LS M q1
using ‹(@ p2 . path M q1 p2 ∧ p-io p2 = p-io p)› unfolding LS .simps by

force
moreover have butlast (p-io p) ∈ LS M q1

using ‹path M q1 p1 › ‹p-io p1 = butlast (p-io p)› unfolding LS .simps by
force

moreover have butlast (p-io p) ∈ LS M q2
using ‹path M q2 p2 › ‹p-io p2 = butlast (p-io p)› unfolding LS .simps by

force
ultimately show p-io p ∈ LS M q2 − LS M q1 ∧ p-io (butlast p) ∈ LS M q1

∩ LS M q2
by (simp add: map-butlast)

qed
moreover have isl ?tgt ∨ ?tgt = Inr q1 ∨ ?tgt = Inr q2

using canonical-separator-path-initial(4 )[OF assms(1 ) ‹q1 ∈ states M › ‹q2 ∈
states M › ‹observable M › ‹q1 6= q2 ›] by force
ultimately show p-io p ∈ LS M q1 ∩ LS M q2 =⇒ isl (target (initial (canonical-separator

M q1 q2 )) p)
and p-io p ∈ LS M q1 − LS M q2 =⇒ target (initial (canonical-separator

M q1 q2 )) p = Inr q1
and p-io p ∈ LS M q2 − LS M q1 =⇒ target (initial (canonical-separator

M q1 q2 )) p = Inr q2
by blast+

qed

lemma canonical-separator-language-target :
assumes io ∈ L (canonical-separator M q1 q2 )
and observable M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows io ∈ LS M q1 − LS M q2 =⇒ io-targets (canonical-separator M q1 q2 ) io
(initial (canonical-separator M q1 q2 )) = {Inr q1}
and io ∈ LS M q2 − LS M q1 =⇒ io-targets (canonical-separator M q1 q2 ) io
(initial (canonical-separator M q1 q2 )) = {Inr q2}
proof −

let ?C = canonical-separator M q1 q2
obtain p where path ?C (initial ?C ) p and p-io p = io

using assms(1 ) by force

show io ∈ LS M q1 − LS M q2 =⇒ io-targets (canonical-separator M q1 q2 ) io
(initial (canonical-separator M q1 q2 )) = {Inr q1}

proof −
assume io ∈ LS M q1 − LS M q2
then have p-io p ∈ LS M q1 − LS M q2

using ‹p-io p = io› by auto
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have Inr q1 ∈ io-targets ?C io (initial ?C )
using canonical-separator-path-targets-language(5 )[OF ‹path ?C (initial ?C )

p› assms(2 ,3 ,4 ,5 ) ‹p-io p ∈ LS M q1 − LS M q2 ›]
using ‹path ?C (initial ?C ) p› unfolding io-targets.simps
by (metis (mono-tags, lifting) ‹p-io p = io› mem-Collect-eq)

then show ?thesis
by (metis (mono-tags, lifting) assms(1 ) assms(2 ) assms(3 ) assms(4 ) canon-

ical-separator-observable observable-io-targets singletonD)
qed

show io ∈ LS M q2 − LS M q1 =⇒ io-targets (canonical-separator M q1 q2 ) io
(initial (canonical-separator M q1 q2 )) = {Inr q2}

proof −
assume io ∈ LS M q2 − LS M q1
then have p-io p ∈ LS M q2 − LS M q1

using ‹p-io p = io› by auto
have Inr q2 ∈ io-targets ?C io (initial ?C )

using canonical-separator-path-targets-language(6 )[OF ‹path ?C (initial ?C )
p› assms(2 ,3 ,4 ,5 ) ‹p-io p ∈ LS M q2 − LS M q1 ›]

using ‹path ?C (initial ?C ) p› unfolding io-targets.simps
by (metis (mono-tags, lifting) ‹p-io p = io› mem-Collect-eq)

then show ?thesis
by (metis (mono-tags, lifting) assms(1 ) assms(2 ) assms(3 ) assms(4 ) canon-

ical-separator-observable observable-io-targets singletonD)
qed

qed

lemma canonical-separator-language-intersection :
assumes io ∈ LS M q1
and io ∈ LS M q2
and q1 ∈ states M
and q2 ∈ states M

shows io ∈ L (canonical-separator M q1 q2 ) (is io ∈ L ?C )
proof −

let ?P = product (from-FSM M q1 ) (from-FSM M q2 )

have io ∈ L ?P
using ‹io ∈ LS M q1 › ‹io ∈ LS M q2 › product-language[of from-FSM M q1

from-FSM M q2 ]
unfolding from-FSM-language[OF ‹q1 ∈ states M ›] from-FSM-language[OF

‹q2 ∈ states M ›]
by blast

then obtain p where path ?P (initial ?P) p and p-io p = io
by auto

then have ∗: path ?C (initial ?C ) (map shift-Inl p)
using canonical-separator-path-shift[OF assms(3 ,4 )] by auto

have ∗∗: p-io (map shift-Inl p) = io
using ‹p-io p = io› by (induction p; auto)
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show io ∈ L ?C
using language-state-containment[OF ∗ ∗∗] by assumption

qed

lemma canonical-separator-deadlock :
assumes q1 ∈ states M

and q2 ∈ states M
shows deadlock-state (canonical-separator M q1 q2 ) (Inr q1 )

and deadlock-state (canonical-separator M q1 q2 ) (Inr q2 )
unfolding deadlock-state.simps
by (metis assms(1 ) assms(2 ) canonical-separator-t-source-isl sum.disc(2 ))+

lemma canonical-separator-isl-deadlock :
assumes Inl (q1 ′,q2 ′) ∈ states (canonical-separator M q1 q2 )

and x ∈ inputs M
and completely-specified M
and ¬(∃ t ∈ transitions (canonical-separator M q1 q2 ) . t-source t = Inl

(q1 ′,q2 ′) ∧ t-input t = x ∧ isl (t-target t))
and q1 ∈ states M
and q2 ∈ states M

obtains y1 y2 where (Inl (q1 ′,q2 ′),x,y1 ,Inr q1 ) ∈ transitions (canonical-separator
M q1 q2 )

(Inl (q1 ′,q2 ′),x,y2 ,Inr q2 ) ∈ transitions (canonical-separator M q1
q2 )
proof −

let ?C = (canonical-separator M q1 q2 )
let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

have (q1 ′,q2 ′) ∈ states ?P
using assms(1 ) unfolding canonical-separator-simps[OF assms(5 ,6 )] by fast-

force
then have (q1 ′,q2 ′) ∈ states ?P

using reachable-state-is-state by force
then have q1 ′ ∈ states M and q2 ′ ∈ states M

using assms(5 ,6 ) by auto
then obtain y1 y2 where y1 ∈ h-out M (q1 ′,x) and y2 ∈ h-out M (q2 ′,x)

by (metis (no-types, lifting) assms(2 ,3 ) h-out.simps completely-specified-alt-def
mem-Collect-eq)

moreover have h-out M (q1 ′,x) ∩ h-out M (q2 ′,x) = {}
proof (rule ccontr)

assume h-out M (q1 ′, x) ∩ h-out M (q2 ′, x) 6= {}
then obtain y where y ∈ h-out M (q1 ′, x) ∩ h-out M (q2 ′, x) by blast
then obtain q1 ′′ q2 ′′ where ((q1 ′,q2 ′),x,y,(q1 ′′,q2 ′′)) ∈ transitions ?P

unfolding product-transitions-def h-out.simps using assms(5 ,6 ) by auto
then have (Inl (q1 ′,q2 ′),x,y,Inl (q1 ′′,q2 ′′)) ∈ transitions ?C
using ‹(q1 ′,q2 ′) ∈ states ?P› unfolding canonical-separator-transitions-def [OF

assms(5 ,6 )] h-out.simps by blast
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then show False
using assms(4 ) by auto

qed
ultimately have y1 ∈ h-out M (q1 ′,x) − h-out M (q2 ′,x)

and y2 ∈ h-out M (q2 ′,x) − h-out M (q1 ′,x)
by blast+

let ?t1 = (Inl (q1 ′,q2 ′),x,y1 ,Inr q1 )
let ?t2 = (Inl (q1 ′,q2 ′),x,y2 ,Inr q2 )

have ?t1 ∈ distinguishing-transitions-left M q1 q2
using ‹(q1 ′,q2 ′) ∈ states ?P› ‹y1 ∈ h-out M (q1 ′,x) − h-out M (q2 ′,x)›
unfolding distinguishing-transitions-left-def by auto

then have ?t1 ∈ transitions (canonical-separator M q1 q2 )
unfolding canonical-separator-transitions-def [OF assms(5 ,6 )] by blast

have ?t2 ∈ distinguishing-transitions-right M q1 q2
using ‹(q1 ′,q2 ′) ∈ states ?P› ‹y2 ∈ h-out M (q2 ′,x) − h-out M (q1 ′,x)›
unfolding distinguishing-transitions-right-def by auto

then have ?t2 ∈ transitions (canonical-separator M q1 q2 )
unfolding canonical-separator-transitions-def [OF assms(5 ,6 )] by blast

show ?thesis
using that ‹?t1 ∈ transitions (canonical-separator M q1 q2 )› ‹?t2 ∈ transitions

(canonical-separator M q1 q2 )› by blast
qed

lemma canonical-separator-deadlocks :
assumes q1 ∈ states M and q2 ∈ states M

shows deadlock-state (canonical-separator M q1 q2 ) (Inr q1 )
and deadlock-state (canonical-separator M q1 q2 ) (Inr q2 )

using canonical-separator-t-source-isl[OF - assms]
unfolding deadlock-state.simps by force+

lemma state-separator-from-canonical-separator-language-target :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 A
and io ∈ L A
and observable M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows io ∈ LS M q1 − LS M q2 =⇒ io-targets A io (initial A) = {Inr q1}
and io ∈ LS M q2 − LS M q1 =⇒ io-targets A io (initial A) = {Inr q2}
and io ∈ LS M q1 ∩ LS M q2 =⇒ io-targets A io (initial A) ∩ {Inr q1 , Inr q2}
= {}
proof −
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have observable A
using state-separator-from-canonical-separator-observable[OF assms(1 ,3 ,4 ,5 )]

by assumption

let ?C = canonical-separator M q1 q2

obtain p where path A (initial A) p and p-io p = io
using assms(2 ) by force

then have path ?C (initial ?C ) p
using submachine-path-initial[OF is-state-separator-from-canonical-separator-simps(1 )[OF

assms(1 )]] by auto
then have io ∈ L ?C

using ‹p-io p = io› by auto

show io ∈ LS M q1 − LS M q2 =⇒ io-targets A io (initial A) = {Inr q1}
proof −

assume io ∈ LS M q1 − LS M q2

have target (initial A) p = Inr q1
using submachine-path-initial[OF is-state-separator-from-canonical-separator-simps(1 )[OF

assms(1 )] ‹path A (initial A) p›]
canonical-separator-language-target(1 )[OF ‹io ∈ L ?C › assms(3 ,4 ,5 ,6 )

‹io ∈ LS M q1 − LS M q2 ›]
‹p-io p = io›

unfolding io-targets.simps is-state-separator-from-canonical-separator-initial[OF
assms(1 ,4 ,5 )]

canonical-separator-simps product-simps from-FSM-simps[OF assms(4 )]
from-FSM-simps[OF assms(5 )]

using assms(4 ) assms(5 ) canonical-separator-initial by fastforce
then have Inr q1 ∈ io-targets A io (initial A)

using ‹path A (initial A) p› ‹p-io p = io› unfolding io-targets.simps
by (metis (mono-tags, lifting) mem-Collect-eq)

then show io-targets A io (initial A) = {Inr q1}
using observable-io-targets[OF ‹observable A› ‹io ∈ L A›]
by (metis singletonD)

qed

show io ∈ LS M q2 − LS M q1 =⇒ io-targets A io (initial A) = {Inr q2}
proof −

assume io ∈ LS M q2 − LS M q1

have target (initial A) p = Inr q2
using submachine-path-initial[OF is-state-separator-from-canonical-separator-simps(1 )[OF

assms(1 )] ‹path A (initial A) p›]
canonical-separator-language-target(2 )[OF ‹io ∈ L ?C › assms(3 ,4 ,5 ,6 )

‹io ∈ LS M q2 − LS M q1 ›]
‹p-io p = io›

unfolding io-targets.simps is-state-separator-from-canonical-separator-initial[OF
assms(1 ,4 ,5 )]
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canonical-separator-simps product-simps from-FSM-simps[OF assms(4 )]
from-FSM-simps[OF assms(5 )]

using assms(4 ) assms(5 ) canonical-separator-initial by fastforce
then have Inr q2 ∈ io-targets A io (initial A)

using ‹path A (initial A) p› ‹p-io p = io› unfolding io-targets.simps
by (metis (mono-tags, lifting) mem-Collect-eq)

then show io-targets A io (initial A) = {Inr q2}
using observable-io-targets[OF ‹observable A› ‹io ∈ L A›]
by (metis singletonD)

qed

show io ∈ LS M q1 ∩ LS M q2 =⇒ io-targets A io (initial A) ∩ {Inr q1 , Inr
q2} = {}

proof −
let ?P = product (from-FSM M q1 ) (from-FSM M q2 )

assume io ∈ LS M q1 ∩ LS M q2

have
∧

q . q ∈ io-targets A io (initial A) =⇒ q /∈ {Inr q1 , Inr q2}
proof −

fix q assume q ∈ io-targets A io (initial A)
then obtain p where q = target (initial A) p and path A (initial A) p and

p-io p = io
by auto

then have path ?C (initial ?C ) p
using submachine-path-initial[OF is-state-separator-from-canonical-separator-simps(1 )[OF

assms(1 )]] by auto
then have isl (target (initial ?C ) p)
using canonical-separator-path-targets-language(4 )[OF - ‹observable M › ‹q1

∈ states M › ‹q2 ∈ states M › ‹q1 6= q2 ›]
using ‹p-io p = io› ‹io ∈ LS M q1 ∩ LS M q2 › by auto

then show q /∈ {Inr q1 , Inr q2}
using ‹q = target (initial A) p›

unfolding is-state-separator-from-canonical-separator-initial[OF assms(1 ,4 ,5 )]
unfolding canonical-separator-simps product-simps from-FSM-simps by

auto
qed

then show io-targets A io (initial A) ∩ {Inr q1 , Inr q2} = {}
by blast

qed
qed

lemma state-separator-language-intersections-nonempty :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 A
and observable M
and q1 ∈ states M
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and q2 ∈ states M
and q1 6= q2

shows ∃ io . io ∈ (L A ∩ LS M q1 ) − LS M q2 and ∃ io . io ∈ (L A ∩ LS M
q2 ) − LS M q1
proof −

have Inr q1 ∈ reachable-states A
using is-state-separator-from-canonical-separator-simps(6 )[OF assms(1 )] by

assumption
then obtain p where path A (initial A) p and target (initial A) p = Inr q1

unfolding reachable-states-def by auto
then have p-io p ∈ LS M q1 − LS M q2
using canonical-separator-maximal-path-distinguishes-left[OF assms(1 ) - - assms(2 ,3 ,4 ,5 )]

by blast
moreover have p-io p ∈ L A

using ‹path A (initial A) p› by auto
ultimately show ∃ io . io ∈ (L A ∩ LS M q1 ) − LS M q2 by blast

have Inr q2 ∈ reachable-states A
using is-state-separator-from-canonical-separator-simps(7 )[OF assms(1 )] by

assumption
then obtain p ′ where path A (initial A) p ′ and target (initial A) p ′ = Inr q2

unfolding reachable-states-def by auto
then have p-io p ′ ∈ LS M q2 − LS M q1

using canonical-separator-maximal-path-distinguishes-right[OF assms(1 ) - -
assms(2 ,3 ,4 ,5 )] by blast

moreover have p-io p ′ ∈ L A
using ‹path A (initial A) p ′› by auto

ultimately show ∃ io . io ∈ (L A ∩ LS M q2 ) − LS M q1 by blast
qed

lemma state-separator-language-inclusion :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 A
and q1 ∈ states M
and q2 ∈ states M

shows L A ⊆ LS M q1 ∪ LS M q2
using canonical-separator-language[OF assms(2 ,3 )]
using submachine-language[OF is-state-separator-from-canonical-separator-simps(1 )[OF

assms(1 )]]
unfolding from-FSM-language[OF assms(2 )] from-FSM-language[OF assms(3 )]

by blast

lemma state-separator-from-canonical-separator-targets-left-inclusion :
assumes observable T
and observable M
and t1 ∈ states T
and q1 ∈ states M
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and q2 ∈ states M
and is-state-separator-from-canonical-separator (canonical-separator M q1 q2 )

q1 q2 A
and (inputs T ) = (inputs M )
and path A (initial A) p
and p-io p ∈ LS M q1
and q1 6= q2

shows target (initial A) p 6= Inr q2
and target (initial A) p = Inr q1 ∨ isl (target (initial A) p)
proof −

let ?C = canonical-separator M q1 q2
have c-path:

∧
p . path A (initial A) p =⇒ path ?C (initial ?C ) p

using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] sub-
machine-path-initial by metis

have path ?C (initial ?C ) p
using assms(8 ) c-path by auto

show target (initial A) p 6= Inr q2
proof

assume target (initial A) p = Inr q2
then have target (initial ?C ) p = Inr q2

using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] by
auto

have (@ p1 . path M q1 p1 ∧ p-io p1 = p-io p)
using canonical-separator-path-initial(3 )[OF ‹path ?C (initial ?C ) p› assms(4 ,5 ,2 ,10 )

‹target (initial ?C ) p = Inr q2 ›] by blast
then have p-io p /∈ LS M q1

unfolding LS .simps by force
then show False

using ‹p-io p ∈ LS M q1 › by blast
qed
then have target (initial ?C ) p 6= Inr q2

using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] un-
folding is-submachine.simps by simp

then have target (initial ?C ) p = Inr q1 ∨ isl (target (initial ?C ) p)
proof (cases p rule: rev-cases)

case Nil
then show ?thesis unfolding canonical-separator-simps[OF assms(4 ,5 )] by

simp
next

case (snoc ys y)
then show ?thesis
by (metis ‹path (canonical-separator M q1 q2 ) (FSM .initial (canonical-separator

M q1 q2 )) p› ‹target (FSM .initial (canonical-separator M q1 q2 )) p 6= Inr q2 ›
assms(10 ) assms(2 ) assms(4 ) assms(5 ) canonical-separator-path-initial(4 ) isl-def )

qed
then show target (initial A) p = Inr q1 ∨ isl (target (initial A) p)
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using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] un-
folding is-submachine.simps by simp
qed

lemma state-separator-from-canonical-separator-targets-right-inclusion :
assumes observable T
and observable M
and t1 ∈ states T
and q1 ∈ states M
and q2 ∈ states M
and is-state-separator-from-canonical-separator (canonical-separator M q1 q2 )

q1 q2 A
and (inputs T ) = (inputs M )
and path A (initial A) p
and p-io p ∈ LS M q2
and q1 6= q2

shows target (initial A) p 6= Inr q1
and target (initial A) p = Inr q2 ∨ isl (target (initial A) p)
proof −

let ?C = canonical-separator M q1 q2
have c-path:

∧
p . path A (initial A) p =⇒ path ?C (initial ?C ) p

using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] sub-
machine-path-initial by metis

have path ?C (initial ?C ) p
using assms(8 ) c-path by auto

show target (initial A) p 6= Inr q1
proof

assume target (initial A) p = Inr q1
then have target (initial ?C ) p = Inr q1

using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] by
auto

have (@ p1 . path M q2 p1 ∧ p-io p1 = p-io p)
using canonical-separator-path-initial(2 )[OF ‹path ?C (initial ?C ) p› assms(4 ,5 ,2 ,10 )

‹target (initial ?C ) p = Inr q1 › ] by blast
then have p-io p /∈ LS M q2

unfolding LS .simps by force
then show False

using ‹p-io p ∈ LS M q2 › by blast
qed

then have target (initial ?C ) p 6= Inr q1
using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] un-

folding is-submachine.simps by simp
then have target (initial ?C ) p = Inr q2 ∨ isl (target (initial ?C ) p)
proof (cases p rule: rev-cases)

case Nil
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then show ?thesis unfolding canonical-separator-simps[OF assms(4 ,5 )] by
simp

next
case (snoc ys y)
then show ?thesis
by (metis ‹path (canonical-separator M q1 q2 ) (FSM .initial (canonical-separator

M q1 q2 )) p› ‹target (FSM .initial (canonical-separator M q1 q2 )) p 6= Inr q1 ›
assms(10 ) assms(2 ) assms(4 ) assms(5 ) canonical-separator-path-initial(4 ) isl-def )

qed
then show target (initial A) p = Inr q2 ∨ isl (target (initial A) p)

using is-state-separator-from-canonical-separator-simps(1 )[OF assms(6 )] un-
folding is-submachine.simps by simp
qed

34.2 Calculating State Separators
34.2.1 Sufficient Condition to Induce a State Separator
definition state-separator-from-input-choices :: ( ′a, ′b, ′c) fsm ⇒ (( ′a × ′a) + ′a, ′b, ′c)
fsm ⇒ ′a ⇒ ′a ⇒ ((( ′a × ′a) + ′a) × ′b) list ⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm where

state-separator-from-input-choices M CSep q1 q2 cs =
(let css = set cs;

cssQ = (set (map fst cs)) ∪ {Inr q1 , Inr q2};
S0 = filter-states CSep (λ q . q ∈ cssQ);
S1 = filter-transitions S0 (λ t . (t-source t, t-input t) ∈ css)

in S1 )

lemma state-separator-from-input-choices-simps :
assumes q1 ∈ states M

and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

shows
initial (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1 q2

cs) = Inl (q1 ,q2 )
states (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1 q2

cs) = (set (map fst cs)) ∪ {Inr q1 , Inr q2}
inputs (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1 q2

cs) = inputs M
outputs (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1

q2 cs) = outputs M
transitions (state-separator-from-input-choices M (canonical-separator M q1 q2 )

q1 q2 cs) =
{t ∈ (transitions (canonical-separator M q1 q2 )) . ∃ q1 ′ q2 ′ x . (Inl (q1 ′,q2 ′),x)

∈ set cs ∧ t-source t = Inl (q1 ′,q2 ′) ∧ t-input t = x ∧ t-target t ∈ (set (map fst
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cs)) ∪ {Inr q1 , Inr q2}}
proof −

let ?SS = (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs)

let ?S0 = filter-states (canonical-separator M q1 q2 ) (λ q . q ∈ (set (map fst cs))
∪ {Inr q1 , Inr q2})

have (λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}) (initial (canonical-separator
M q1 q2 ))

unfolding canonical-separator-simps[OF assms(1 ,2 )]
using assms(4 ) by simp

have states ?S0 = (set (map fst cs)) ∪ {Inr q1 , Inr q2}
proof −

have
∧

qq . qq ∈ states ?S0 =⇒ qq ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}
unfolding filter-states-simps[of (λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr

q2}),
OF ‹(λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2})

(initial (canonical-separator M q1 q2 ))› ]
by fastforce

moreover have
∧

qq . qq ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2} =⇒ qq ∈
states ?S0

proof −
fix qq assume qq ∈ set (map fst cs) ∪ {Inr q1 , Inr q2}
then consider (a) qq ∈ set (map fst cs) | (b) qq ∈ {Inr q1 , Inr q2}

by blast
then show qq ∈ states ?S0 proof cases

case a
then obtain q1 ′ q2 ′ where qq = Inl (q1 ′,q2 ′)

using assms(5 ) by (metis old.prod.exhaust)
then show ?thesis

using a assms(3 )[of qq]
unfolding filter-states-simps[of (λ q . q ∈ (set (map fst cs)) ∪ {Inr

q1 , Inr q2}), OF ‹(λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}) (initial
(canonical-separator M q1 q2 ))› ]

canonical-separator-simps[OF assms(1 ,2 )] by force
next

case b
then show ?thesis using assms(3 )

unfolding filter-states-simps[of (λ q . q ∈ (set (map fst cs)) ∪ {Inr
q1 , Inr q2}), OF ‹(λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}) (initial
(canonical-separator M q1 q2 ))› ]

canonical-separator-simps[OF assms(1 ,2 )] by force
qed

qed

ultimately show ?thesis by blast
qed
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show initial (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs) = Inl (q1 ,q2 )

states (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs) = (set (map fst cs)) ∪ {Inr q1 , Inr q2}

inputs (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs) = inputs M

outputs (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs) = outputs M

unfolding canonical-separator-simps[OF assms(1 ,2 )]
filter-transitions-simps
state-separator-from-input-choices-def
Let-def

filter-states-simps(1 ,3 ,4 ,5 )[of (λ q . q ∈ (set (map fst cs)) ∪ {Inr
q1 , Inr q2}), OF ‹(λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}) (initial
(canonical-separator M q1 q2 ))› ]

‹states ?S0 = (set (map fst cs)) ∪ {Inr q1 , Inr q2}›
by simp+

have alt-def-shared: {t ∈ {t ∈ FSM .transitions (canonical-separator M q1 q2 ).
t-source t ∈ set (map fst cs) ∪ {Inr q1 , Inr q2} ∧ t-target t ∈ set (map fst cs) ∪
{Inr q1 , Inr q2}}. (t-source t, t-input t) ∈ set cs}

= {t ∈ FSM .transitions (canonical-separator M q1 q2 ). ∃ q1 ′

q2 ′ x . (Inl (q1 ′, q2 ′), x)∈set cs ∧ t-source t = Inl (q1 ′, q2 ′) ∧ t-input t = x ∧
t-target t ∈ set (map fst cs) ∪ {Inr q1 , Inr q2}}

(is ?ts1 = ?ts2 )
proof −

have
∧

t . t ∈ ?ts1 =⇒ t ∈ ?ts2
proof −

fix t assume t ∈ ?ts1
then have t ∈ FSM .transitions (canonical-separator M q1 q2 ) and t-source

t ∈ set (map fst cs) ∪ {Inr q1 , Inr q2} and t-target t ∈ set (map fst cs) ∪ {Inr
q1 , Inr q2} and (t-source t, t-input t) ∈ set cs

by blast+

have t-source t ∈ set (map fst cs)
using ‹t ∈ FSM .transitions (canonical-separator M q1 q2 )› ‹t-source t ∈ set

(map fst cs) ∪ {Inr q1 , Inr q2}›
using canonical-separator-deadlocks[OF assms(1 ,2 )]
by fastforce

then obtain q1 ′ q2 ′ where t-source t = Inl (q1 ′,q2 ′)
using assms(5 ) by (metis old.prod.exhaust)

then have ∃ q1 ′ q2 ′ x. (Inl (q1 ′, q2 ′), x) ∈ set cs ∧ t-source t = Inl (q1 ′,
q2 ′) ∧ t-input t = x

using ‹(t-source t, t-input t) ∈ set cs› by auto

then show t ∈ ?ts2
using ‹t ∈ FSM .transitions (canonical-separator M q1 q2 )› ‹t-target t ∈ set

(map fst cs) ∪ {Inr q1 , Inr q2}›
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by simp
qed
moreover have

∧
t . t ∈ ?ts2 =⇒ t ∈ ?ts1

by force
ultimately show ?thesis by blast

qed

show transitions (state-separator-from-input-choices M (canonical-separator M
q1 q2 ) q1 q2 cs) =
{t ∈ (transitions (canonical-separator M q1 q2 )) . ∃ q1 ′ q2 ′ x . (Inl (q1 ′,q2 ′),x)

∈ set cs ∧ t-source t = Inl (q1 ′,q2 ′) ∧ t-input t = x ∧ t-target t ∈ (set (map fst
cs)) ∪ {Inr q1 , Inr q2}}

unfolding canonical-separator-simps(1 ,2 ,3 ,4 )[OF assms(1 ,2 )]
unfolding state-separator-from-input-choices-def Let-def
unfolding filter-transitions-simps

unfolding filter-states-simps[of (λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}),
OF ‹(λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}) (initial (canonical-separator
M q1 q2 ))› ]

unfolding alt-def-shared by blast
qed

lemma state-separator-from-input-choices-submachine :
assumes q1 ∈ states M

and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

shows is-submachine (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs) (canonical-separator M q1 q2 )
proof −
have (λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2}) (initial (canonical-separator

M q1 q2 ))
unfolding canonical-separator-simps[OF assms(1 ,2 )]
using assms(4 ) by simp

show ?thesis
unfolding state-separator-from-input-choices-def Let-def
using submachine-transitive[OF filter-states-submachine[of (λ q . q ∈ (set (map

fst cs)) ∪ {Inr q1 , Inr q2}), OF ‹(λ q . q ∈ (set (map fst cs)) ∪ {Inr q1 , Inr q2})
(initial (canonical-separator M q1 q2 ))›]

filter-transitions-submachine[of filter-states
(canonical-separator M q1 q2 ) (λq. q ∈ set (map fst cs) ∪ {Inr q1 , Inr q2}) (λt.
(t-source t, t-input t) ∈ set cs)]]

by assumption
qed
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lemma state-separator-from-input-choices-single-input :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

shows single-input (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs)
proof −

have
∧

t1 t2 . t1 ∈ FSM .transitions (state-separator-from-input-choices M
(canonical-separator M q1 q2 ) q1 q2 cs) =⇒

t2 ∈ FSM .transitions (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs) =⇒

t-source t1 = t-source t2 =⇒ t-input t1 = t-input t2
proof −

fix t1 t2
assume t1 ∈ FSM .transitions (state-separator-from-input-choices M (canonical-separator

M q1 q2 ) q1 q2 cs)
and t2 ∈ FSM .transitions (state-separator-from-input-choices M (canonical-separator

M q1 q2 ) q1 q2 cs)
and t-source t1 = t-source t2

obtain q1 ′ q2 ′ where (Inl (q1 ′,q2 ′),t-input t1 ) ∈ set cs
and t-source t1 = Inl (q1 ′,q2 ′)

using ‹t1 ∈ FSM .transitions (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs)›

using state-separator-from-input-choices-simps(5 )[OF assms(2 ,3 ,4 ,5 ,6 )] by
fastforce

obtain q1 ′′ q2 ′′ where (Inl (q1 ′′,q2 ′′),t-input t2 ) ∈ set cs
and t-source t2 = Inl (q1 ′′,q2 ′′)

using ‹t2 ∈ FSM .transitions (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs)›

using state-separator-from-input-choices-simps(5 )[OF assms(2 ,3 ,4 ,5 ,6 )] by
fastforce

have (Inl (q1 ′,q2 ′),t-input t2 ) ∈ set cs
using ‹(Inl (q1 ′′,q2 ′′),t-input t2 ) ∈ set cs› ‹t-source t1 = Inl (q1 ′,q2 ′)›

‹t-source t2 = Inl (q1 ′′,q2 ′′)› ‹t-source t1 = t-source t2 ›
by simp

then show t-input t1 = t-input t2
using ‹(Inl (q1 ′,q2 ′),t-input t1 ) ∈ set cs› ‹distinct (map fst cs)›
by (meson eq-key-imp-eq-value)

qed
then show ?thesis

by fastforce
qed
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lemma state-separator-from-input-choices-transition-list :
assumes q1 ∈ states M

and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and t ∈ transitions (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs)

shows (t-source t, t-input t) ∈ set cs
using state-separator-from-input-choices-simps(5 )[OF assms(1 ,2 ,3 ,4 ,5 )] assms(6 )
by auto

lemma state-separator-from-input-choices-transition-target :
assumes t ∈ transitions (state-separator-from-input-choices M (canonical-separator

M q1 q2 ) q1 q2 cs)
and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

shows t ∈ transitions (canonical-separator M q1 q2 ) ∨ t-target t ∈ {Inr q1 , Inr
q2}
using state-separator-from-input-choices-simps(5 )[OF assms(2−6 )] assms(1 ) by

fastforce

lemma state-separator-from-input-choices-acyclic-paths ′ :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

and path (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs) q ′ p

and target q ′ p = q ′

and p 6= []
shows False
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proof −

let ?S = (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1
q2 cs)

from ‹p 6= []› obtain p ′ t ′ where p = t ′#p ′

using list.exhaust by blast
then have path ?S q ′ (p@[t ′])

using assms(8 ,9 ) by fastforce

define f :: (( ′a × ′a + ′a) × ′b × ′c × ( ′a × ′a + ′a)) ⇒ nat
where f-def : f = (λ t . the (find-index (λ qx . (fst qx) = t-source t ∧ snd qx =

t-input t) cs))

have f-prop:
∧

t . t ∈ set (p@[t ′]) =⇒ (f t < length cs)
∧ (λ(q, x). (q, x)) (cs ! (f t)) = (t-source t,t-input t)
∧ (∀ j < f t . (fst (cs ! j)) 6= t-source t)

proof −
fix t assume t ∈ set (p@[t ′])
then have t ∈ set p using ‹p = t ′#p ′› by auto
then have t ∈ transitions ?S

using assms(8 )
by (meson path-transitions subsetD)

then have (t-source t, t-input t) ∈ set cs
using state-separator-from-input-choices-transition-list[OF assms(2 ,3 ,4 ,5 ,6 )]
by blast

then have ∃ qx ∈ set cs . (λ qx . (fst qx) = t-source t ∧ snd qx = t-input t) qx
by force

then have find-index (λ qx . (fst qx) = t-source t ∧ snd qx = t-input t) cs 6=
None

by (simp add: find-index-exhaustive)
then obtain i where ∗: find-index (λ qx . (fst qx) = t-source t ∧ snd qx =

t-input t) cs = Some i
by auto

have ∗∗:
∧

j . j < i =⇒ (fst (cs ! j)) = t-source t =⇒ cs ! i = cs ! j
using assms(1 )
using nth-eq-iff-index-eq find-index-index[OF ∗]
by (metis (mono-tags, lifting) Suc-lessD length-map less-trans-Suc nth-map)

have f t < length cs
unfolding f-def using find-index-index(1 )[OF ∗] unfolding ∗ by simp

moreover have (λ(q, x). (q, x)) (cs ! (f t)) = (t-source t, t-input t)
unfolding f-def using find-index-index(2 )[OF ∗]
by (metis ∗ case-prod-Pair-iden option.sel prod.collapse)

moreover have ∀ j < f t . (fst (cs ! j)) 6= t-source t
unfolding f-def using find-index-index(3 )[OF ∗] unfolding ∗
using assms(1 ) ∗∗
by (metis (no-types, lifting) ∗ ‹∃ qx∈set cs. fst qx = t-source t ∧ snd qx =
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t-input t› eq-key-imp-eq-value find-index-index(1 ) nth-mem option.sel prod.collapse)

ultimately show (f t < length cs)
∧ (λ(q, x). (q, x)) (cs ! (f t)) = (t-source t,t-input t)
∧ (∀ j < f t . (fst (cs ! j)) 6= t-source t) by simp

qed

have ∗:
∧

i . Suc i < length (p@[t ′]) =⇒ f ((p@[t ′]) ! i) > f ((p@[t ′]) ! (Suc i))
proof −

fix i assume Suc i < length (p@[t ′])
then have (p@[t ′]) ! i ∈ set (p@[t ′]) and (p@[t ′]) ! (Suc i) ∈ set (p@[t ′])

using Suc-lessD nth-mem by blast+
then have (p@[t ′]) ! i ∈ transitions ?S and (p@[t ′]) ! Suc i ∈ transitions ?S

using ‹path ?S q ′ (p@[t ′])›
by (meson path-transitions subsetD)+

then have (p @ [t ′]) ! i ∈ FSM .transitions (canonical-separator M q1 q2 ) ∨
t-target ((p @ [t ′]) ! i) ∈ {Inr q1 , Inr q2}

using state-separator-from-input-choices-transition-target[OF - assms(2−6 )]
by blast

have f ((p@[t ′]) ! i) < length cs
and (λ(q, x). (q, x)) (cs ! (f ((p@[t ′]) ! i))) = (t-source ((p@[t ′]) ! i), t-input

((p@[t ′]) ! i))
and (∀ j<f ((p@[t ′]) ! i). (fst (cs ! j)) 6= t-source ((p@[t ′]) ! i))

using f-prop[OF ‹(p@[t ′]) ! i ∈ set (p@[t ′])›] by auto

have f ((p@[t ′]) ! Suc i) < length cs
and (λ(q, x). (q, x)) (cs ! (f ((p@[t ′]) ! Suc i))) = (t-source ((p@[t ′]) ! Suc i),

t-input ((p@[t ′]) ! Suc i))
and (∀ j<f ((p@[t ′]) ! Suc i). (fst (cs ! j)) 6= t-source ((p@[t ′]) ! Suc i))

using f-prop[OF ‹(p@[t ′]) ! Suc i ∈ set (p@[t ′])›] by auto

have t-source ((p @ [t ′]) ! i) = (fst (cs ! f ((p @ [t ′]) ! i))) and t-input ((p @
[t ′]) ! i) = snd (cs ! f ((p @ [t ′]) ! i))

using f-prop[OF ‹(p@[t ′]) ! i ∈ set (p@[t ′])›]
by (simp add: prod.case-eq-if )+

have t-target ((p@[t ′]) ! i) = t-source ((p@[t ′]) ! Suc i)
using ‹Suc i < length (p@[t ′])› ‹path ?S q ′ (p@[t ′])›
by (simp add: path-source-target-index)

then have t-target ((p@[t ′]) ! i) /∈ {Inr q1 , Inr q2}
using state-separator-from-input-choices-transition-list[OF assms(2 ,3 ,4 ,5 ,6 )

‹(p@[t ′]) ! Suc i ∈ transitions ?S›] assms(6 ) by force
then have t-target ((p @ [t ′]) ! i) ∈ set (map fst (take (f ((p @ [t ′]) ! i)) cs))

using assms(7 )[OF ‹f ((p@[t ′]) ! i) < length cs› - ‹t-source ((p @ [t ′]) ! i) =
(fst (cs ! f ((p @ [t ′]) ! i)))› ‹t-input ((p @ [t ′]) ! i) = snd (cs ! f ((p @ [t ′]) ! i))›]

using ‹(p @ [t ′]) ! i ∈ FSM .transitions (canonical-separator M q1 q2 ) ∨
t-target ((p @ [t ′]) ! i) ∈ {Inr q1 , Inr q2}› by blast

then have (∃ qx ′∈set (take (f ((p@[t ′]) ! i)) cs). (fst qx ′) = t-target ((p@[t ′]) !
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i))
by force

then obtain j where (fst (cs ! j)) = t-source ((p@[t ′]) ! Suc i) and j < f
((p@[t ′]) ! i)

unfolding ‹t-target ((p@[t ′]) ! i) = t-source ((p@[t ′]) ! Suc i)›
by (metis (no-types, lifting) ‹f ((p@[t ′]) ! i) < length cs› in-set-conv-nth leD

length-take min-def-raw nth-take)
then show f ((p@[t ′]) ! i) > f ((p@[t ′]) ! (Suc i))

using ‹(∀ j<f ((p@[t ′]) ! Suc i). (fst (cs ! j)) 6= t-source ((p@[t ′]) ! Suc i))›
using leI le-less-trans by blast

qed

have
∧

i j . j < i =⇒ i < length (p@[t ′]) =⇒ f ((p@[t ′]) ! j) > f ((p@[t ′]) ! i)
using list-index-fun-gt[of p@[t ′] f ] ∗ by blast

then have f t ′ < f t ′

unfolding ‹p = t ′#p ′› by fastforce
then show False

by auto
qed

lemma state-separator-from-input-choices-acyclic-paths :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

and path (state-separator-from-input-choices M (canonical-separator M q1 q2 )
q1 q2 cs) q ′ p
shows distinct (visited-states q ′ p)
proof (rule ccontr)

assume ¬ distinct (visited-states q ′ p)

obtain i j where p1 :take j (drop i p) 6= []
and p2 :target (target q ′ (take i p)) (take j (drop i p)) = (target q ′ (take

i p))
and p3 :path (state-separator-from-input-choices M (canonical-separator

M q1 q2 ) q1 q2 cs) (target q ′ (take i p)) (take j (drop i p))
using cycle-from-cyclic-path[OF assms(8 ) ‹¬ distinct (visited-states q ′ p)›] by

blast

show False
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using state-separator-from-input-choices-acyclic-paths ′[OF assms(1−7 ) p3 p2
p1 ] by blast
qed

lemma state-separator-from-input-choices-acyclic :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

shows acyclic (state-separator-from-input-choices M (canonical-separator M q1
q2 ) q1 q2 cs)
unfolding acyclic.simps using state-separator-from-input-choices-acyclic-paths[OF

assms] by blast

lemma state-separator-from-input-choices-target :
assumes

∧
i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

and t ∈ FSM .transitions (canonical-separator M q1 q2 )
and ∃ q1 ′ q2 ′ x . (Inl (q1 ′, q2 ′), x)∈set cs ∧ t-source t = Inl (q1 ′, q2 ′) ∧

t-input t = x
shows t-target t ∈ set (map fst cs) ∪ {Inr q1 , Inr q2}

proof −
from assms(3 ) obtain q1 ′ q2 ′ x where (Inl (q1 ′, q2 ′), x)∈set cs and t-source

t = Inl (q1 ′, q2 ′) and t-input t = x
by auto

then obtain i where i < length cs and t-source t = (fst (cs ! i)) and t-input
t = snd (cs ! i)

by (metis fst-conv in-set-conv-nth snd-conv)
then have t-target t ∈ set (map fst (take i cs)) ∪ {Inr q1 , Inr q2} using

assms(1 )[OF - assms(2 )] by blast
then consider t-target t ∈ set (map fst (take i cs)) | t-target t ∈ {Inr q1 , Inr

q2} by blast
then show ?thesis proof cases

case 1
then have t-target t ∈ set (map fst cs)

by (metis in-set-takeD take-map)
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then show ?thesis by blast
next

case 2
then show ?thesis by auto

qed
qed

lemma state-separator-from-input-choices-transitions-alt-def :
assumes q1 ∈ states M

and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

shows transitions (state-separator-from-input-choices M (canonical-separator M
q1 q2 ) q1 q2 cs) =
{t ∈ (transitions (canonical-separator M q1 q2 )) . ∃ q1 ′ q2 ′ x . (Inl (q1 ′,q2 ′),x)

∈ set cs ∧ t-source t = Inl (q1 ′,q2 ′) ∧ t-input t = x}
proof −
have FSM .transitions (state-separator-from-input-choices M (canonical-separator

M q1 q2 ) q1 q2 cs) =
{t ∈ FSM .transitions (canonical-separator M q1 q2 ).
∃ q1 ′ q2 ′ x . (Inl (q1 ′, q2 ′), x)∈set cs ∧

t-source t = Inl (q1 ′, q2 ′) ∧
t-input t = x ∧ t-target t ∈ set (map fst cs) ∪ {Inr q1 , Inr q2}}

using state-separator-from-input-choices-simps(5 )[OF assms(1 ,2 ,3 ,4 ,5 )] by
blast

moreover have
∧

t . t ∈ FSM .transitions (canonical-separator M q1 q2 ) =⇒
∃ q1 ′ q2 ′ x . (Inl (q1 ′, q2 ′), x)∈set cs ∧ t-source t = Inl (q1 ′, q2 ′) ∧ t-input t =
x =⇒ t-target t ∈ set (map fst cs) ∪ {Inr q1 , Inr q2}

using state-separator-from-input-choices-target[OF assms(6 )] by blast

ultimately show ?thesis
by fast

qed

lemma state-separator-from-input-choices-deadlock :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )
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∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

shows
∧

qq . qq ∈ states (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs) =⇒ deadlock-state (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs) qq =⇒ qq ∈ {Inr q1 , Inr q2} ∨ (∃ q1 ′ q2 ′ x . qq = Inl (q1 ′,q2 ′)
∧ x ∈ inputs M ∧ (h-out M (q1 ′,x) = {} ∧ h-out M (q2 ′,x) = {}))
proof −

let ?C = (canonical-separator M q1 q2 )
let ?S = (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1

q2 cs)

fix qq assume qq ∈ states ?S and deadlock-state ?S qq

then consider (a) qq ∈ (set (map fst cs)) | (b) qq ∈ {Inr q1 , Inr q2}
using state-separator-from-input-choices-simps(2 )[OF assms(2 ,3 ,4 ,5 ,6 )] by

blast
then show qq ∈ {Inr q1 , Inr q2} ∨ (∃ q1 ′ q2 ′ x . qq = Inl (q1 ′,q2 ′) ∧ x ∈

inputs M ∧ (h-out M (q1 ′,x) = {} ∧ h-out M (q2 ′,x) = {}))
proof cases

case a
then obtain q1 ′ q2 ′ x where (Inl (q1 ′,q2 ′),x) ∈ set cs and qq = Inl (q1 ′,q2 ′)

using assms(6 ) by fastforce
then have Inl (q1 ′,q2 ′) ∈ states (canonical-separator M q1 q2 ) and x ∈ inputs

M using assms(4 ) by blast+
then have (q1 ′, q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))

using canonical-separator-simps(2 )[OF assms(2 ,3 )] by fastforce

have h-out M (q1 ′,x) = {} ∧ h-out M (q2 ′,x) = {}
proof (rule ccontr)

assume ¬ (h-out M (q1 ′, x) = {} ∧ h-out M (q2 ′, x) = {})
then consider (a1 ) ∃ y ∈ (h-out M (q1 ′, x) ∩ h-out M (q2 ′, x)) . True |

(a2 ) ∃ y ∈ (h-out M (q1 ′, x) − h-out M (q2 ′, x)) . True |
(a3 ) ∃ y ∈ (h-out M (q2 ′, x) − h-out M (q1 ′, x)) . True

by blast
then show False proof cases

case a1
then obtain y q1 ′′ q2 ′′ where (y,q1 ′′) ∈ h M (q1 ′,x) and (y,q2 ′′) ∈ h M

(q2 ′,x) by auto
then have ((q1 ′,q2 ′),x,y,(q1 ′′,q2 ′′)) ∈ transitions (Product-FSM .product

(FSM .from-FSM M q1 ) (FSM .from-FSM M q2 ))
unfolding product-transitions-def h.simps using assms(2 ,3 ) by auto

then have (Inl (q1 ′,q2 ′),x,y,Inl (q1 ′′,q2 ′′)) ∈ transitions ?C
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using ‹(q1 ′, q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))›
canonical-separator-transitions-def [OF assms(2 ,3 )] by fast

then have (Inl (q1 ′,q2 ′),x,y,Inl (q1 ′′,q2 ′′)) ∈ {t ∈ FSM .transitions
(canonical-separator M q1 q2 ).

∃ q1 ′ q2 ′ x . (Inl (q1 ′, q2 ′), x)∈set
cs ∧

t-source t = Inl (q1 ′, q2 ′) ∧
t-input t = x ∧ t-target t ∈ set

(map fst cs) ∪ {Inr q1 , Inr q2}}
using state-separator-from-input-choices-target[OF assms(7 ) ‹(Inl (q1 ′,q2 ′),x,y,Inl

(q1 ′′,q2 ′′)) ∈ transitions ?C ›]
using ‹(Inl (q1 ′, q2 ′), x) ∈ set cs› by force

then have (Inl (q1 ′,q2 ′), x, y, Inl (q1 ′′,q2 ′′)) ∈ transitions ?S
using state-separator-from-input-choices-simps(5 )[OF assms(2 ,3 ,4 ,5 ,6 )]

by fastforce
then show False

using ‹deadlock-state ?S qq› unfolding ‹qq = Inl (q1 ′,q2 ′)› by auto
next

case a2
then obtain y where y ∈ (h-out M (q1 ′, x) − h-out M (q2 ′, x)) unfolding

h-out.simps by blast
then have (∃ q ′. (q1 ′, x, y, q ′) ∈ FSM .transitions M ) ∧ (@ q ′. (q2 ′, x, y,

q ′) ∈ FSM .transitions M ) unfolding h-out.simps by blast
then have (Inl (q1 ′,q2 ′), x, y, Inr q1 ) ∈ distinguishing-transitions-left M

q1 q2
unfolding distinguishing-transitions-left-def h.simps
using ‹(q1 ′, q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))›

by blast
then have (Inl (q1 ′,q2 ′), x, y, Inr q1 ) ∈ transitions ?C

unfolding canonical-separator-transitions-def [OF assms(2 ,3 )] by blast
moreover have ∃ q1 ′′ q2 ′′ x ′ . (Inl (q1 ′′, q2 ′′), x ′)∈set cs ∧ t-source (Inl

(q1 ′,q2 ′), x, y, Inr q1 ) = Inl (q1 ′′, q2 ′′) ∧ t-input (Inl (q1 ′,q2 ′), x, y, Inr q1 ) =
x ′

using ‹(Inl (q1 ′, q2 ′), x) ∈ set cs› by auto
ultimately have (Inl (q1 ′,q2 ′), x, y, Inr q1 ) ∈ transitions ?S

using state-separator-from-input-choices-transitions-alt-def [OF assms(2 ,3 ,4 ,5 ,6 ,7 )]
by blast

then show False
using ‹deadlock-state ?S qq› unfolding ‹qq = Inl (q1 ′,q2 ′)› by auto

next
case a3

then obtain y where y ∈ (h-out M (q2 ′, x) − h-out M (q1 ′, x)) unfolding
h-out.simps by blast

then have ¬(∃ q ′. (q1 ′, x, y, q ′) ∈ FSM .transitions M ) ∧ (∃ q ′. (q2 ′, x, y,
q ′) ∈ FSM .transitions M ) unfolding h-out.simps by blast

then have (Inl (q1 ′,q2 ′), x, y, Inr q2 ) ∈ distinguishing-transitions-right M
q1 q2
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unfolding distinguishing-transitions-right-def h.simps
using ‹(q1 ′, q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))›

by blast
then have (Inl (q1 ′,q2 ′), x, y, Inr q2 ) ∈ transitions ?C

unfolding canonical-separator-transitions-def [OF assms(2 ,3 )] by blast
moreover have ∃ q1 ′′ q2 ′′ x ′ . (Inl (q1 ′′, q2 ′′), x ′)∈set cs ∧ t-source (Inl

(q1 ′,q2 ′), x, y, Inr q2 ) = Inl (q1 ′′, q2 ′′) ∧ t-input (Inl (q1 ′,q2 ′), x, y, Inr q2 ) =
x ′

using ‹(Inl (q1 ′, q2 ′), x) ∈ set cs› by auto
ultimately have (Inl (q1 ′,q2 ′), x, y, Inr q2 ) ∈ transitions ?S

using state-separator-from-input-choices-transitions-alt-def [OF assms(2 ,3 ,4 ,5 ,6 ,7 )]
by blast

then show False
using ‹deadlock-state ?S qq› unfolding ‹qq = Inl (q1 ′,q2 ′)› by auto

qed
qed
then show ?thesis

using ‹qq = Inl (q1 ′, q2 ′)› ‹x ∈ FSM .inputs M › by blast
next

case b
then show ?thesis by simp

qed
qed

lemma state-separator-from-input-choices-retains-io :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
and

∧
qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )

∧ x ∈ inputs M
and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

shows retains-outputs-for-states-and-inputs (canonical-separator M q1 q2 ) (state-separator-from-input-choices
M (canonical-separator M q1 q2 ) q1 q2 cs)

unfolding retains-outputs-for-states-and-inputs-def
using state-separator-from-input-choices-transitions-alt-def [OF assms(2 ,3 ,4 ,5 ,6 ,7 )]

by fastforce

lemma state-separator-from-input-choices-is-state-separator :
assumes distinct (map fst cs)

and q1 ∈ states M
and q2 ∈ states M
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and
∧

qq x . (qq,x) ∈ set cs =⇒ qq ∈ states (canonical-separator M q1 q2 )
∧ x ∈ inputs M

and Inl (q1 ,q2 ) ∈ set (map fst cs)
and

∧
qq . qq ∈ set (map fst cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

and
∧

i t . i < length cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (cs ! i))
=⇒ t-input t = snd (cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i cs))) ∪ {Inr q1 , Inr q2})

and completely-specified M
shows is-state-separator-from-canonical-separator

(canonical-separator M q1 q2 )
q1
q2
(state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1

q2 cs)
proof −

let ?C = (canonical-separator M q1 q2 )
let ?S = (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1

q2 cs)

have submachine-prop: is-submachine ?S ?C
using state-separator-from-input-choices-submachine[OF assms(2 ,3 ,4 ,5 ,6 )] by

blast

have single-input-prop: single-input ?S
using state-separator-from-input-choices-single-input[OF assms(1 ,2 ,3 ,4 ,5 ,6 )]

by blast

have acyclic-prop : acyclic ?S
using state-separator-from-input-choices-acyclic[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )] by

blast

have i3 :
∧

qq . qq ∈ states ?S
=⇒ deadlock-state ?S qq
=⇒ qq ∈ {Inr q1 , Inr q2}

∨ (∃ q1 ′ q2 ′ x . qq = Inl (q1 ′,q2 ′)
∧ x ∈ inputs M
∧ h-out M (q1 ′,x) = {}
∧ h-out M (q2 ′,x) = {})

using state-separator-from-input-choices-deadlock[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
by blast

have i4 : retains-outputs-for-states-and-inputs (canonical-separator
M q1 q2 ) (state-separator-from-input-choices M (canonical-separator M q1 q2 ) q1
q2 cs)

using state-separator-from-input-choices-retains-io[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
by blast
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have deadlock-prop-1 : deadlock-state ?S (Inr q1 )
using submachine-deadlock[OF ‹is-submachine ?S ?C › canonical-separator-deadlock(1 )[OF

assms(2 ,3 )]] by assumption

have deadlock-prop-2 : deadlock-state ?S (Inr q2 )
using submachine-deadlock[OF ‹is-submachine ?S ?C › canonical-separator-deadlock(2 )[OF

assms(2 ,3 )]] by assumption

have non-deadlock-prop ′:
∧

qq . qq ∈ states ?S =⇒ qq 6= Inr q1 =⇒ qq 6= Inr
q2 =⇒ (isl qq ∧ ¬ deadlock-state ?S qq)

proof −
fix qq assume qq ∈ states ?S and qq 6= Inr q1 and qq 6= Inr q2
then have qq ∈ set (map fst cs)

using state-separator-from-input-choices-simps(2 )[OF assms(2 ,3 ,4 ,5 ,6 )] by
blast

then obtain q1 ′ q2 ′ x where qq = Inl (q1 ′,q2 ′) and (Inl (q1 ′,q2 ′),x) ∈ set
cs

using assms(6 ) by fastforce
then have (Inl (q1 ′,q2 ′)) ∈ states (canonical-separator M q1 q2 ) and x ∈

inputs M
using assms(4 ) by blast+

then have (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
using canonical-separator-simps(2 )[OF assms(2 ,3 )] by fastforce

then have (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))
using reachable-state-is-state by fastforce

then have q1 ′ ∈ states M and q2 ′ ∈ states M
using assms(2 ,3 ) by auto

obtain y q1 ′′ where (y,q1 ′′) ∈ h M (q1 ′,x)
using ‹completely-specified M › ‹q1 ′ ∈ states M › ‹x ∈ inputs M ›
unfolding completely-specified.simps h.simps by fastforce

consider (a) y ∈ h-out M (q2 ′,x) | (b) y /∈ h-out M (q2 ′,x) by blast
then have ¬ deadlock-state ?S (Inl (q1 ′,q2 ′))
proof cases

case a
then obtain q2 ′′ where (y,q2 ′′) ∈ h M (q2 ′,x) by auto

then have ((q1 ′,q2 ′),x,y,(q1 ′′,q2 ′′)) ∈ transitions (product (from-FSM M q1 )
(from-FSM M q2 ))

using assms(2 ,3 ) ‹(y,q1 ′′) ∈ h M (q1 ′,x)›
unfolding h.simps product-transitions-def by fastforce

then have (Inl (q1 ′,q2 ′),x,y,Inl (q1 ′′,q2 ′′)) ∈ transitions ?C
using canonical-separator-transitions-def [OF assms(2 ,3 )]
using ‹(q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))›

by fast
then have (Inl (q1 ′,q2 ′),x,y,Inl (q1 ′′,q2 ′′)) ∈ transitions ?S
using state-separator-from-input-choices-transitions-alt-def [OF assms(2 ,3 ,4 ,5 ,6 ,7 )]
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‹(Inl (q1 ′,q2 ′),x) ∈ set cs› by fastforce
then show ?thesis

unfolding deadlock-state.simps by fastforce
next

case b
then have (Inl (q1 ′,q2 ′),x,y,Inr q1 ) ∈ distinguishing-transitions-left M q1 q2

using ‹(y,q1 ′′) ∈ h M (q1 ′,x)› ‹(q1 ′,q2 ′) ∈ states (product (from-FSM M
q1 ) (from-FSM M q2 ))›

unfolding h-simps h-out.simps distinguishing-transitions-left-def
by blast

then have (Inl (q1 ′,q2 ′),x,y,Inr q1 ) ∈ transitions ?C
unfolding canonical-separator-transitions-def [OF assms(2 ,3 )] by blast

then have (Inl (q1 ′,q2 ′),x,y,Inr q1 ) ∈ transitions ?S
using state-separator-from-input-choices-transitions-alt-def [OF assms(2 ,3 ,4 ,5 ,6 ,7 )]

‹(Inl (q1 ′,q2 ′),x) ∈ set cs› by fastforce
then show ?thesis

unfolding deadlock-state.simps by fastforce
qed
then show (isl qq ∧ ¬ deadlock-state ?S qq)

unfolding ‹qq = Inl (q1 ′,q2 ′)› by simp
qed
then have non-deadlock-prop: (∀ q ∈ reachable-states ?S . (q 6= Inr q1 ∧ q 6=

Inr q2 ) −→ (isl q ∧ ¬ deadlock-state ?S q))
using reachable-state-is-state by force

define ndlps where ndlps-def : ndlps = {p . path ?S (initial ?S) p ∧ isl (target
(initial ?S) p)}

obtain qdl where qdl ∈ reachable-states ?S and deadlock-state ?S qdl
using acyclic-deadlock-reachable[OF ‹acyclic ?S›] by blast

have qdl = Inr q1 ∨ qdl = Inr q2
using non-deadlock-prop ′[OF reachable-state-is-state[OF ‹qdl ∈ reachable-states

?S›]] ‹deadlock-state ?S qdl› by fastforce
then have Inr q1 ∈ reachable-states ?S ∨ Inr q2 ∈ reachable-states ?S

using ‹qdl ∈ reachable-states ?S› by blast

have isl (target (initial ?S) [])
using state-separator-from-input-choices-simps(1 )[OF assms(2 ,3 ,4 ,5 ,6 )] by

auto
then have [] ∈ ndlps

unfolding ndlps-def by auto
then have ndlps 6= {}

by blast
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moreover have finite ndlps
using acyclic-finite-paths-from-reachable-state[OF ‹acyclic ?S›, of []] unfolding

ndlps-def by fastforce
ultimately have ∃ p ∈ ndlps . ∀ p ′ ∈ ndlps . length p ′ ≤ length p

by (meson max-length-elem not-le-imp-less)
then obtain mndlp where path ?S (initial ?S) mndlp

and isl (target (initial ?S) mndlp)
and

∧
p . path ?S (initial ?S) p =⇒ isl (target (initial ?S) p)

=⇒ length p ≤ length mndlp
unfolding ndlps-def by blast

then have (target (initial ?S) mndlp) ∈ reachable-states ?S
unfolding reachable-states-def by auto

then have (target (initial ?S) mndlp) ∈ states ?S
using reachable-state-is-state by auto

then have (target (initial ?S) mndlp) ∈ (set (map fst cs))
using ‹isl (target (initial ?S) mndlp)› state-separator-from-input-choices-simps(2 )[OF

assms(2 ,3 ,4 ,5 ,6 )] by force
then obtain q1 ′ q2 ′ x where (Inl (q1 ′,q2 ′),x) ∈ set cs

and target (initial ?S) mndlp = Inl (q1 ′,q2 ′)
using assms(6 ) by fastforce

then obtain i where i < length cs and (cs ! i) = (Inl (q1 ′,q2 ′),x)
by (metis in-set-conv-nth)

have Inl (q1 ′, q2 ′) ∈ FSM .states (canonical-separator M q1 q2 ) and x ∈ FSM .inputs
M

using assms(4 )[OF ‹(Inl (q1 ′,q2 ′),x) ∈ set cs›] by blast+
then have (q1 ′,q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM M q1 )

(FSM .from-FSM M q2 ))
using canonical-separator-simps(2 )[OF assms(2 ,3 )] by blast

have q1 ′ ∈ states M and q2 ′ ∈ states M
using canonical-separator-states[OF ‹Inl (q1 ′, q2 ′) ∈ FSM .states (canonical-separator

M q1 q2 )› assms(2 ,3 )]
unfolding product-simps using assms(2 ,3 ) by simp+

have ¬(∃ t ′∈FSM .transitions (canonical-separator M q1 q2 ). t-source t ′ = target
(initial ?S) mndlp ∧ t-input t ′ = x ∧ isl (t-target t ′))

proof
assume ∃ t ′∈FSM .transitions (canonical-separator M q1 q2 ). t-source t ′ =

target (initial ?S) mndlp ∧ t-input t ′ = x ∧ isl (t-target t ′)
then obtain t ′ where t ′∈FSM .transitions (canonical-separator M q1 q2 )

and t-source t ′ = target (initial ?S) mndlp
and t-input t ′ = x
and isl (t-target t ′)

by blast
then have ∃ q1 ′ q2 ′ x . (Inl (q1 ′, q2 ′), x)∈set cs ∧ t-source t ′ = Inl (q1 ′, q2 ′)

∧ t-input t ′ = x
using ‹(Inl (q1 ′,q2 ′),x) ∈ set cs› unfolding ‹target (initial ?S) mndlp = Inl

(q1 ′,q2 ′)› by fast
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then have t ′ ∈ transitions ?S
using ‹t ′∈FSM .transitions (canonical-separator M q1 q2 )› ‹(Inl (q1 ′,q2 ′),x)

∈ set cs›
using state-separator-from-input-choices-transitions-alt-def [OF assms(2 ,3 ,4 ,5 ,6 ,7 )]

by blast

then have path ?S (initial ?S) (mndlp @ [t ′])
using ‹path ?S (initial ?S) mndlp› ‹t-source t ′ = target (initial ?S) mndlp›

by (metis path-append-transition)
moreover have isl (target (initial ?S) (mndlp @[t ′]))

using ‹isl (t-target t ′)› by auto
ultimately show False

using ‹
∧

p . path ?S (initial ?S) p =⇒ isl (target (initial ?S) p) =⇒ length
p ≤ length mndlp›[of mndlp@[t ′]] by auto

qed

then obtain y1 y2 where (Inl (q1 ′,q2 ′),x,y1 ,Inr q1 ) ∈ transitions (canonical-separator
M q1 q2 )

and (Inl (q1 ′,q2 ′),x,y2 ,Inr q2 ) ∈ transitions (canonical-separator
M q1 q2 )

using canonical-separator-isl-deadlock[OF ‹Inl (q1 ′, q2 ′) ∈ FSM .states (canonical-separator
M q1 q2 )› ‹x ∈ FSM .inputs M › ‹completely-specified M › - assms(2 ,3 )]

unfolding ‹target (initial ?S) mndlp = Inl (q1 ′,q2 ′)› by blast

have (Inl (q1 ′,q2 ′), x, y1 , Inr q1 ) ∈ transitions ?S
using ‹(Inl (q1 ′,q2 ′),x) ∈ set cs› state-separator-from-input-choices-transitions-alt-def [OF

assms(2 ,3 ,4 ,5 ,6 ,7 )] ‹(Inl (q1 ′,q2 ′),x,y1 ,Inr q1 ) ∈ transitions (canonical-separator
M q1 q2 )› by force

have (Inl (q1 ′,q2 ′), x, y2 , Inr q2 ) ∈ transitions ?S
using ‹(Inl (q1 ′,q2 ′),x) ∈ set cs› state-separator-from-input-choices-transitions-alt-def [OF

assms(2 ,3 ,4 ,5 ,6 ,7 )] ‹(Inl (q1 ′,q2 ′),x,y2 ,Inr q2 ) ∈ transitions (canonical-separator
M q1 q2 )› by force

have path ?S (initial ?S) (mndlp@[(Inl (q1 ′,q2 ′), x, y1 , Inr q1 )])
using ‹target (initial ?S) mndlp = Inl (q1 ′,q2 ′)›
using path-append-transition[OF ‹path ?S (initial ?S) mndlp› ‹(Inl (q1 ′,q2 ′),

x, y1 , Inr q1 ) ∈ transitions ?S›] by force
moreover have target (initial ?S) (mndlp@[(Inl (q1 ′,q2 ′), x, y1 , Inr q1 )]) =

Inr q1
by auto

ultimately have reachable-prop-1 : Inr q1 ∈ reachable-states ?S
using reachable-states-intro by metis

have path ?S (initial ?S) (mndlp@[(Inl (q1 ′,q2 ′), x, y2 , Inr q2 )])
using ‹target (initial ?S) mndlp = Inl (q1 ′,q2 ′)›
using path-append-transition[OF ‹path ?S (initial ?S) mndlp› ‹(Inl (q1 ′,q2 ′),

x, y2 , Inr q2 ) ∈ transitions ?S›] by force
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moreover have target (initial ?S) (mndlp@[(Inl (q1 ′,q2 ′), x, y2 , Inr q2 )]) =
Inr q2

by auto
ultimately have reachable-prop-2 : Inr q2 ∈ reachable-states ?S

using reachable-states-intro by metis

have retainment-prop :
∧

q x t ′ . q ∈ reachable-states ?S
=⇒ x ∈ FSM .inputs ?C
=⇒ (∃ t∈FSM .transitions ?S . t-source t = q ∧ t-input t = x)
=⇒ t ′ ∈ FSM .transitions ?C
=⇒ t-source t ′ = q
=⇒ t-input t ′ = x
=⇒ t ′ ∈ FSM .transitions ?S

proof −
fix q x t ′ assume q ∈ reachable-states ?S

and x ∈ FSM .inputs ?C
and (∃ t∈FSM .transitions ?S . t-source t = q ∧ t-input t = x)
and t ′ ∈ FSM .transitions ?C
and t-source t ′ = q
and t-input t ′ = x

obtain t where t ∈ FSM .transitions ?S and t-source t = q and t-input t = x
using ‹(∃ t∈FSM .transitions ?S . t-source t = q ∧ t-input t = x)› by blast

then have t-source t = t-source t ′ ∧ t-input t = t-input t ′

using ‹t-source t ′ = q› ‹t-input t ′ = x› by auto

show t ′ ∈ FSM .transitions ?S
using i4 unfolding retains-outputs-for-states-and-inputs-def
using ‹t ∈ FSM .transitions ?S› ‹t ′ ∈ FSM .transitions ?C › ‹t-source t =

t-source t ′ ∧ t-input t = t-input t ′›
by blast

qed

show ?thesis unfolding is-state-separator-from-canonical-separator-def
using submachine-prop

single-input-prop
acyclic-prop
deadlock-prop-1
deadlock-prop-2
reachable-prop-1
reachable-prop-2
non-deadlock-prop
retainment-prop by blast

qed
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34.2.2 Calculating a State Separator by Backwards Reachability
Analysis

A state separator for states q1 and q2 can be calculated using backwards
reachability analysis starting from the two deadlock states of their canonical
separator until Inl (q1 .q2 ) is reached or it is not possible to reach (q1 ,q2 ).
definition s-states :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒ ′a ⇒ ′a ⇒ ((( ′a × ′a) +
′a) × ′b) list where

s-states M q1 q2 = (let C = canonical-separator M q1 q2
in select-inputs (h C ) (initial C ) (inputs-as-list C ) (remove1 (Inl (q1 ,q2 ))

(remove1 (Inr q1 ) (remove1 (Inr q2 ) (states-as-list C )))) {Inr q1 , Inr q2} [])

definition state-separator-from-s-states :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒ ′a ⇒
′a ⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm option

where
state-separator-from-s-states M q1 q2 =
(let cs = s-states M q1 q2

in (case length cs of
0 ⇒ None |
- ⇒ if fst (last cs) = Inl (q1 ,q2 )

then Some (state-separator-from-input-choices M (canonical-separator
M q1 q2 ) q1 q2 cs)

else None))

lemma state-separator-from-s-states-code[code] :
state-separator-from-s-states M q1 q2 =
(let C = canonical-separator M q1 q2 ;

cs = select-inputs (h C ) (initial C ) (inputs-as-list C ) (remove1 (Inl (q1 ,q2 ))
(remove1 (Inr q1 ) (remove1 (Inr q2 ) (states-as-list C )))) {Inr q1 , Inr q2} []

in (case length cs of
0 ⇒ None |
- ⇒ if fst (last cs) = Inl (q1 ,q2 )

then Some (state-separator-from-input-choices M C q1 q2 cs)
else None))

unfolding s-states-def state-separator-from-s-states-def Let-def by simp

lemma s-states-properties :
assumes q1 ∈ states M and q2 ∈ states M
shows distinct (map fst (s-states M q1 q2 ))
and

∧
qq x . (qq,x) ∈ set (s-states M q1 q2 ) =⇒ qq ∈ states (canonical-separator

M q1 q2 ) ∧ x ∈ inputs M
and

∧
qq . qq ∈ set (map fst (s-states M q1 q2 )) =⇒ ∃ q1 ′ q2 ′ . qq = Inl

(q1 ′,q2 ′)
and

∧
i t . i < length (s-states M q1 q2 )

=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst ((s-states M q1 q2 ) ! i))
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=⇒ t-input t = snd ((s-states M q1 q2 ) ! i)
=⇒ t-target t ∈ ((set (map fst (take i (s-states M q1 q2 )))) ∪ {Inr

q1 , Inr q2})
proof −

let ?C = canonical-separator M q1 q2
let ?nS = {Inr q1 , Inr q2}
let ?nL = (remove1 (Inl (q1 ,q2 )) (remove1 (Inr q1 ) (remove1 (Inr q2 ) (states-as-list

?C ))))
let ?iL = (inputs-as-list ?C )
let ?q0 = (initial ?C )
let ?f = (h ?C )
let ?k = (size (canonical-separator M q1 q2 ))

let ?cs = (s-states M q1 q2 )

have pp1 : distinct (map fst []) by auto
have pp2 : set (map fst []) ⊆ ?nS by auto
have pp3 : ?nS = ?nS ∪ set (map fst []) by auto
have pp4 : ?q0 /∈ ?nS unfolding canonical-separator-simps[OF assms] by auto
have pp5 :distinct ?nL using states-as-list-distinct by simp
have pp6 : ?q0 /∈ set ?nL unfolding canonical-separator-simps[OF assms] by

auto
have pp7 : set ?nL ∩ ?nS = {} by auto

have
∧

i . length [] ≤ i by auto

have ip1 :
∧

i . i < length ?cs =⇒ fst (?cs ! i) ∈ (insert ?q0 (set ?nL))
and ip2 :

∧
i . i < length ?cs =⇒ fst (?cs ! i) /∈ ?nS0

and ip3 :
∧

i . i < length ?cs =⇒ snd (?cs ! i) ∈ set ?iL
and ip4 :

∧
i . i < length ?cs =⇒ (∀ qx ′ ∈ set (take i ?cs) . fst (?cs ! i) 6= fst

qx ′)
using select-inputs-index-properties[OF - ‹

∧
i . length [] ≤ i› pp1 pp3 pp4 pp5

pp6 pp7 ]
unfolding s-states-def Let-def by blast+

have ip5 :
∧

i . i < length ?cs =⇒ (∃ t ∈ transitions ?C . t-source t = fst (?cs
! i) ∧ t-input t = snd (?cs ! i))

using select-inputs-index-properties(5 )[OF - ‹
∧

i . length [] ≤ i› pp1 pp3 pp4
pp5 pp6 pp7 ]

unfolding s-states-def Let-def by blast
have ip6 :

∧
i t . i < length ?cs =⇒ t ∈ transitions ?C =⇒ t-source t = fst (?cs

! i) =⇒ t-input t = snd (?cs ! i) =⇒ (t-target t ∈ ?nS0 ∨ (∃ qx ′ ∈ set (take i ?cs)
. fst qx ′ = (t-target t)))

using select-inputs-index-properties(6 )[OF - ‹
∧

i . length [] ≤ i› pp1 pp3 pp4
pp5 pp6 pp7 ]

unfolding s-states-def Let-def by blast
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show distinct (map fst ?cs)
using select-inputs-distinct[OF pp1 pp2 pp4 pp5 pp6 pp7 ]
unfolding s-states-def Let-def by blast

show
∧

qq x . (qq,x) ∈ set ?cs =⇒ qq ∈ states (canonical-separator M q1 q2 ) ∧
x ∈ inputs M

proof −
fix qq x assume (qq,x) ∈ set ?cs
then obtain i where i < length ?cs and ?cs ! i = (qq,x)

by (meson in-set-conv-nth)
show qq ∈ states (canonical-separator M q1 q2 ) ∧ x ∈ inputs M

using ip1 [OF ‹i < length ?cs›] ip3 [OF ‹i < length ?cs›]
states-as-list-set[of ?C ] inputs-as-list-set[of ?C ]

unfolding ‹?cs ! i = (qq,x)› fst-conv snd-conv canonical-separator-simps(3 )[OF
assms]

by auto
qed

show
∧

qq . qq ∈ set (map fst ?cs) =⇒ ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)
proof −

fix qq assume qq ∈ set (map fst ?cs)
then obtain i where i < length ?cs and fst (?cs ! i) = qq

by (metis (no-types, lifting) in-set-conv-nth length-map nth-map)
show ∃ q1 ′ q2 ′ . qq = Inl (q1 ′,q2 ′)

using ip1 [OF ‹i < length ?cs›] states-as-list-set[of ?C ]
unfolding ‹fst (?cs ! i) = qq› canonical-separator-simps[OF assms]
by auto

qed

show
∧

i t . i < length ?cs
=⇒ t ∈ transitions (canonical-separator M q1 q2 )
=⇒ t-source t = (fst (?cs ! i))
=⇒ t-input t = snd (?cs ! i)
=⇒ t-target t ∈ ((set (map fst (take i ?cs))) ∪ {Inr q1 , Inr q2})

proof −
fix i t assume i < length ?cs

and t ∈ transitions ?C
and t-source t = (fst (?cs ! i))
and t-input t = snd (?cs ! i)

show t-target t ∈ ((set (map fst (take i ?cs))) ∪ {Inr q1 , Inr q2})
using ip6 [OF ‹i < length ?cs› ‹t ∈ transitions ?C › ‹t-source t = (fst (?cs !

i))› ‹t-input t = snd (?cs ! i)›]
by (metis Un-iff in-set-conv-nth length-map nth-map)

qed
qed
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lemma state-separator-from-s-states-soundness :
assumes state-separator-from-s-states M q1 q2 = Some A

and q1 ∈ states M and q2 ∈ states M and completely-specified M
shows is-state-separator-from-canonical-separator (canonical-separator M q1 q2 )

q1 q2 A
proof −

let ?cs = s-states M q1 q2

have length (s-states M q1 q2 ) 6= 0 ∧ fst (last (s-states M q1 q2 )) = Inl (q1 ,q2 )
and A = state-separator-from-input-choices M (canonical-separator M q1 q2 )

q1 q2 ?cs
using assms(1 ) unfolding state-separator-from-s-states-def Let-def
by (cases length (s-states M q1 q2 ); cases fst (last (s-states M q1 q2 )) = Inl

(q1 ,q2 ); auto)+
then have Inl (q1 ,q2 ) ∈ set (map fst ?cs)

by (metis last-in-set length-0-conv map-set)

show ?thesis
using state-separator-from-input-choices-is-state-separator [

OF - assms(2 ,3 ) - ‹Inl (q1 ,q2 ) ∈ set (map fst ?cs)›,
OF s-states-properties[OF assms(2 ,3 )] assms(4 )]

unfolding ‹A = state-separator-from-input-choices M (canonical-separator M
q1 q2 ) q1 q2 ?cs›[symmetric] by blast
qed

lemma state-separator-from-s-states-exhaustiveness :
assumes ∃ S . is-state-separator-from-canonical-separator (canonical-separator

M q1 q2 ) q1 q2 S
and q1 ∈ states M and q2 ∈ states M and completely-specified M and

observable M
shows state-separator-from-s-states M q1 q2 6= None

proof −
let ?CSep = (canonical-separator M q1 q2 )

obtain S where S-def : is-state-separator-from-canonical-separator (canonical-separator
M q1 q2 ) q1 q2 S

using assms(1 ) by blast

then have is-submachine S ?CSep
and single-input S
and acyclic S
and ∗:

∧
q . q ∈ reachable-states S =⇒ q 6= Inr q1 =⇒ q 6= Inr q2 =⇒ (isl

q ∧ ¬ deadlock-state S q)
and ∗∗:

∧
q x t . q ∈ reachable-states S =⇒ x ∈ (inputs ?CSep) =⇒ (∃ t

∈ transitions S . t-source t = q ∧ t-input t = x) =⇒ t ∈ transitions ?CSep =⇒
t-source t = q =⇒ t-input t = x =⇒ t ∈ transitions S

using assms unfolding is-state-separator-from-canonical-separator-def by blast+
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have p1 : (
∧

q x. q ∈ reachable-states S =⇒ h S (q, x) 6= {} =⇒ h S (q, x) = h
?CSep (q, x))

proof −
fix q x assume q ∈ reachable-states S and h S (q, x) 6= {}

then have x ∈ inputs ?CSep
using ‹is-submachine S ?CSep› fsm-transition-input by force

have (∃ t ∈ transitions S . t-source t = q ∧ t-input t = x)
using ‹h S (q, x) 6= {}› by fastforce

have
∧

y q ′′ . (y,q ′′) ∈ h S (q,x) =⇒ (y,q ′′) ∈ h ?CSep (q,x)
using ‹is-submachine S ?CSep› by force

moreover have
∧

y q ′′ . (y,q ′′) ∈ h ?CSep (q,x) =⇒ (y,q ′′) ∈ h S (q,x)
using ∗∗[OF ‹q ∈ reachable-states S› ‹x ∈ inputs ?CSep› ‹(∃ t ∈ transitions

S . t-source t = q ∧ t-input t = x)›]
unfolding h.simps by force

ultimately show h S (q, x) = h ?CSep (q, x)
by force

qed

have p2 :
∧

q ′. q ′ ∈ reachable-states S =⇒ deadlock-state S q ′ =⇒ q ′ ∈ {Inr q1 ,
Inr q2} ∪ set (map fst [])

using ∗ by fast

have initial S = Inl (q1 ,q2 )
using is-state-separator-from-canonical-separator-initial[OF S-def assms(2 ,3 )]

by assumption

have ∗∗∗: (set (remove1 (Inl (q1 , q2 )) (remove1 (Inr q1 ) (remove1 (Inr q2 )
(states-as-list ?CSep)))) ∪ {Inr q1 , Inr q2} ∪ set (map fst [])) = (states ?CSep −
{Inl (q1 ,q2 )})

using states-as-list-set[of ?CSep] states-as-list-distinct[of ?CSep]
unfolding

‹initial S = Inl (q1 ,q2 )›
canonical-separator-simps(2 )[OF assms(2 ,3 )]

by auto

have Inl (q1 ,q2 ) ∈ reachable-states ?CSep
using reachable-states-initial[of S ] unfolding ‹initial S = Inl (q1 ,q2 )›
using submachine-reachable-subset[OF ‹is-submachine S ?CSep›] by blast

then have p3 : states ?CSep = insert (FSM .initial S) (set (remove1 (Inl (q1 ,q2 ))
(remove1 (Inr q1 ) (remove1 (Inr q2 ) (states-as-list ?CSep)))) ∪ {Inr q1 , Inr q2}
∪ set (map fst []))

unfolding ∗∗∗ ‹initial S = Inl (q1 ,q2 )›
using reachable-state-is-state by fastforce

have p4 : initial S /∈ (set (remove1 (Inl (q1 ,q2 )) (remove1 (Inr q1 ) (remove1
(Inr q2 ) (states-as-list ?CSep)))) ∪ {Inr q1 , Inr q2} ∪ set (map fst []))
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using ‹FSM .initial S = Inl (q1 , q2 )› by auto

have fst (last (s-states M q1 q2 )) = Inl (q1 ,q2 ) and length (s-states M q1 q2 )
> 0

using select-inputs-from-submachine[OF ‹single-input S› ‹acyclic S› ‹is-submachine
S ?CSep› p1 p2 p3 p4 ]

unfolding s-states-def submachine-simps[OF ‹is-submachine S ?CSep›] Let-def
canonical-separator-simps(1 )[OF assms(2 ,3 )]

by auto

obtain k wherelength (s-states M q1 q2 ) = Suc k
using ‹length (s-states M q1 q2 ) > 0 › gr0-conv-Suc by blast

have (fst (last (s-states M q1 q2 )) = Inl (q1 ,q2 )) = True
using ‹fst (last (s-states M q1 q2 )) = Inl (q1 ,q2 )› by simp

show ?thesis
unfolding state-separator-from-s-states-def Let-def ‹length (s-states M q1 q2 )

= Suc k› ‹fst (last (s-states M q1 q2 )) = Inl (q1 ,q2 )›
by auto

qed

34.3 Generalizing State Separators

State separators can be defined without reverence to the canonical separator:
definition is-separator :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ ( ′d, ′b, ′c) fsm ⇒ ′d ⇒ ′d ⇒
bool where

is-separator M q1 q2 A t1 t2 =
(single-input A
∧ acyclic A
∧ observable A
∧ deadlock-state A t1
∧ deadlock-state A t2
∧ t1 ∈ reachable-states A
∧ t2 ∈ reachable-states A
∧ (∀ t ∈ reachable-states A . (t 6= t1 ∧ t 6= t2 ) −→ ¬ deadlock-state A t)
∧ (∀ io ∈ L A . (∀ x yq yt . (io@[(x,yq)] ∈ LS M q1 ∧ io@[(x,yt)] ∈ L A) −→

(io@[(x,yq)] ∈ L A))
∧ (∀ x yq2 yt . (io@[(x,yq2 )] ∈ LS M q2 ∧ io@[(x,yt)] ∈ L A) −→

(io@[(x,yq2 )] ∈ L A)))
∧ (∀ p . (path A (initial A) p ∧ target (initial A) p = t1 ) −→ p-io p ∈ LS M

q1 − LS M q2 )
∧ (∀ p . (path A (initial A) p ∧ target (initial A) p = t2 ) −→ p-io p ∈ LS M

q2 − LS M q1 )
∧ (∀ p . (path A (initial A) p ∧ target (initial A) p 6= t1 ∧ target (initial A)

p 6= t2 ) −→ p-io p ∈ LS M q1 ∩ LS M q2 )
∧ q1 6= q2
∧ t1 6= t2
∧ (inputs A) ⊆ (inputs M ))
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lemma is-separator-simps :
assumes is-separator M q1 q2 A t1 t2

shows single-input A
and acyclic A
and observable A
and deadlock-state A t1
and deadlock-state A t2
and t1 ∈ reachable-states A
and t2 ∈ reachable-states A
and

∧
t . t ∈ reachable-states A =⇒ t 6= t1 =⇒ t 6= t2 =⇒ ¬ deadlock-state A t

and
∧

io x yq yt . io@[(x,yq)] ∈ LS M q1 =⇒ io@[(x,yt)] ∈ L A =⇒ (io@[(x,yq)]
∈ L A)

and
∧

io x yq yt . io@[(x,yq)] ∈ LS M q2 =⇒ io@[(x,yt)] ∈ L A =⇒ (io@[(x,yq)]
∈ L A)

and
∧

p . path A (initial A) p =⇒ target (initial A) p = t1 =⇒ p-io p ∈ LS M
q1 − LS M q2

and
∧

p . path A (initial A) p =⇒ target (initial A) p = t2 =⇒ p-io p ∈ LS M
q2 − LS M q1

and
∧

p . path A (initial A) p =⇒ target (initial A) p 6= t1 =⇒ target (initial
A) p 6= t2 =⇒ p-io p ∈ LS M q1 ∩ LS M q2

and q1 6= q2
and t1 6= t2
and (inputs A) ⊆ (inputs M )

proof −
have p01 : single-input A
and p02 : acyclic A
and p03 : observable A
and p04 : deadlock-state A t1
and p05 : deadlock-state A t2
and p06 : t1 ∈ reachable-states A
and p07 : t2 ∈ reachable-states A
and p08 : (∀ t ∈ reachable-states A . (t 6= t1 ∧ t 6= t2 ) −→ ¬ deadlock-state A

t)
and p09 : (∀ io ∈ L A . (∀ x yq yt . (io@[(x,yq)] ∈ LS M q1 ∧ io@[(x,yt)] ∈ L

A) −→ (io@[(x,yq)] ∈ L A))
∧ (∀ x yq2 yt . (io@[(x,yq2 )] ∈ LS M q2 ∧ io@[(x,yt)] ∈ L A)

−→ (io@[(x,yq2 )] ∈ L A)))
and p10 : (∀ p . (path A (initial A) p ∧ target (initial A) p = t1 ) −→ p-io p ∈

LS M q1 − LS M q2 )
and p11 : (∀ p . (path A (initial A) p ∧ target (initial A) p = t2 ) −→ p-io p ∈

LS M q2 − LS M q1 )
and p12 : (∀ p . (path A (initial A) p ∧ target (initial A) p 6= t1 ∧ target (initial

A) p 6= t2 ) −→ p-io p ∈ LS M q1 ∩ LS M q2 )
and p13 : q1 6= q2
and p14 : t1 6= t2
and p15 : (inputs A) ⊆ (inputs M )

using assms unfolding is-separator-def by presburger+
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show single-input A using p01 by assumption
show acyclic A using p02 by assumption
show observable A using p03 by assumption
show deadlock-state A t1 using p04 by assumption
show deadlock-state A t2 using p05 by assumption
show t1 ∈ reachable-states A using p06 by assumption
show t2 ∈ reachable-states A using p07 by assumption
show

∧
io x yq yt . io@[(x,yq)] ∈ LS M q1 =⇒ io@[(x,yt)] ∈ L A =⇒ (io@[(x,yq)]

∈ L A) using p09 language-prefix[of - - A initial A] by blast
show

∧
io x yq yt . io@[(x,yq)] ∈ LS M q2 =⇒ io@[(x,yt)] ∈ L A =⇒ (io@[(x,yq)]

∈ L A) using p09 language-prefix[of - - A initial A] by blast
show

∧
t . t ∈ reachable-states A =⇒ t 6= t1 =⇒ t 6= t2 =⇒ ¬ deadlock-state

A t using p08 by blast
show

∧
p . path A (initial A) p =⇒ target (initial A) p = t1 =⇒ p-io p ∈ LS

M q1 − LS M q2 using p10 by blast
show

∧
p . path A (initial A) p =⇒ target (initial A) p = t2 =⇒ p-io p ∈ LS

M q2 − LS M q1 using p11 by blast
show

∧
p . path A (initial A) p =⇒ target (initial A) p 6= t1 =⇒ target (initial

A) p 6= t2 =⇒ p-io p ∈ LS M q1 ∩ LS M q2 using p12 by blast
show q1 6= q2 using p13 by assumption
show t1 6= t2 using p14 by assumption
show (inputs A) ⊆ (inputs M ) using p15 by assumption

qed

lemma separator-initial :
assumes is-separator M q1 q2 A t1 t2

shows initial A 6= t1
and initial A 6= t2
proof −

show initial A 6= t1
proof

assume initial A = t1
then have deadlock-state A (initial A)

using is-separator-simps(4 )[OF assms] by auto
then have reachable-states A = {initial A}

using states-initial-deadlock by blast
then show False

using is-separator-simps(7 ,15 )[OF assms] ‹initial A = t1 › by auto
qed

show initial A 6= t2
proof

assume initial A = t2
then have deadlock-state A (initial A)

using is-separator-simps(5 )[OF assms] by auto
then have reachable-states A = {initial A}

using states-initial-deadlock by blast
then show False
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using is-separator-simps(6 ,15 )[OF assms] ‹initial A = t2 › by auto
qed

qed

lemma separator-path-targets :
assumes is-separator M q1 q2 A t1 t2
and path A (initial A) p

shows p-io p ∈ LS M q1 − LS M q2 =⇒ target (initial A) p = t1
and p-io p ∈ LS M q2 − LS M q1 =⇒ target (initial A) p = t2
and p-io p ∈ LS M q1 ∩ LS M q2 =⇒ (target (initial A) p 6= t1 ∧ target (initial
A) p 6= t2 )
and p-io p ∈ LS M q1 ∪ LS M q2
proof −

have pt1 :
∧

p . path A (initial A) p =⇒ target (initial A) p = t1 =⇒ p-io p ∈
LS M q1 − LS M q2

and pt2 :
∧

p . path A (initial A) p =⇒ target (initial A) p = t2 =⇒ p-io p ∈
LS M q2 − LS M q1

and pt3 :
∧

p . path A (initial A) p =⇒ target (initial A) p 6= t1 =⇒ target
(initial A) p 6= t2 =⇒ p-io p ∈ LS M q1 ∩ LS M q2

and t1 6= t2
and observable A

using is-separator-simps[OF assms(1 )] by blast+

show p-io p ∈ LS M q1 − LS M q2 =⇒ target (initial A) p = t1
using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF

‹path A (initial A) p›] ‹t1 6= t2 › by blast
show p-io p ∈ LS M q2 − LS M q1 =⇒ target (initial A) p = t2

using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF
‹path A (initial A) p›] ‹t1 6= t2 › by blast

show p-io p ∈ LS M q1 ∩ LS M q2 =⇒ (target (initial A) p 6= t1 ∧ target (initial
A) p 6= t2 )

using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF
‹path A (initial A) p›] ‹t1 6= t2 › by blast

show p-io p ∈ LS M q1 ∪ LS M q2
using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF

‹path A (initial A) p›] ‹t1 6= t2 › by blast
qed

lemma separator-language :
assumes is-separator M q1 q2 A t1 t2
and io ∈ L A

shows io ∈ LS M q1 − LS M q2 =⇒ io-targets A io (initial A) = {t1}
and io ∈ LS M q2 − LS M q1 =⇒ io-targets A io (initial A) = {t2}
and io ∈ LS M q1 ∩ LS M q2 =⇒ io-targets A io (initial A) ∩ {t1 ,t2} = {}
and io ∈ LS M q1 ∪ LS M q2
proof −
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obtain p where path A (initial A) p and p-io p = io
using ‹io ∈ L A› by auto

have pt1 :
∧

p . path A (initial A) p =⇒ target (initial A) p = t1 =⇒ p-io p ∈
LS M q1 − LS M q2

and pt2 :
∧

p . path A (initial A) p =⇒ target (initial A) p = t2 =⇒ p-io p ∈
LS M q2 − LS M q1

and pt3 :
∧

p . path A (initial A) p =⇒ target (initial A) p 6= t1 =⇒ target
(initial A) p 6= t2 =⇒ p-io p ∈ LS M q1 ∩ LS M q2

and t1 6= t2
and observable A

using is-separator-simps[OF assms(1 )] by blast+

show io ∈ LS M q1 − LS M q2 =⇒ io-targets A io (initial A) = {t1}
proof −

assume io ∈ LS M q1 − LS M q2

then have p-io p ∈ LS M q1 − LS M q2
using ‹p-io p = io› by auto

then have target (initial A) p = t1
using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF

‹path A (initial A) p›] ‹t1 6= t2 ›
by blast

then have t1 ∈ io-targets A io (initial A)
using ‹path A (initial A) p› ‹p-io p = io› unfolding io-targets.simps by force

then show io-targets A io (initial A) = {t1}
using observable-io-targets[OF ‹observable A›]
by (metis ‹io ∈ L A› singletonD)

qed

show io ∈ LS M q2 − LS M q1 =⇒ io-targets A io (initial A) = {t2}
proof −

assume io ∈ LS M q2 − LS M q1

then have p-io p ∈ LS M q2 − LS M q1
using ‹p-io p = io› by auto

then have target (initial A) p = t2
using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF

‹path A (initial A) p›] ‹t1 6= t2 ›
by blast

then have t2 ∈ io-targets A io (initial A)
using ‹path A (initial A) p› ‹p-io p = io› unfolding io-targets.simps by force

then show io-targets A io (initial A) = {t2}
using observable-io-targets[OF ‹observable A›]
by (metis ‹io ∈ L A› singletonD)

qed

show io ∈ LS M q1 ∩ LS M q2 =⇒ io-targets A io (initial A) ∩ {t1 ,t2} = {}
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proof −
assume io ∈ LS M q1 ∩ LS M q2

then have p-io p ∈ LS M q1 ∩ LS M q2
using ‹p-io p = io› by auto

then have target (initial A) p 6= t1 and target (initial A) p 6= t2
using pt1 [OF ‹path A (initial A) p›] pt2 [OF ‹path A (initial A) p›] pt3 [OF

‹path A (initial A) p›] ‹t1 6= t2 ›
by blast+

moreover have target (initial A) p ∈ io-targets A io (initial A)
using ‹path A (initial A) p› ‹p-io p = io› unfolding io-targets.simps by force

ultimately show io-targets A io (initial A) ∩ {t1 ,t2} = {}
using observable-io-targets[OF ‹observable A› ‹io ∈ L A›]

by (metis (no-types, opaque-lifting) inf-bot-left insert-disjoint(2 ) insert-iff
singletonD)

qed

show io ∈ LS M q1 ∪ LS M q2
using separator-path-targets(4 )[OF assms(1 ) ‹path A (initial A) p›] ‹p-io p =

io› by auto
qed

lemma is-separator-sym :
is-separator M q1 q2 A t1 t2 =⇒ is-separator M q2 q1 A t2 t1
unfolding is-separator-def Int-commute[of LS M q2 LS M q1 ] by meson

lemma state-separator-from-canonical-separator-is-separator :
assumes is-state-separator-from-canonical-separator (canonical-separator M q1

q2 ) q1 q2 A
and observable M
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2

shows is-separator M q1 q2 A (Inr q1 ) (Inr q2 )
proof −

let ?C = canonical-separator M q1 q2
have observable ?C

using canonical-separator-observable[OF assms(2 ,3 ,4 )] by assumption

have is-submachine A ?C
and p1 : single-input A
and p2 : acyclic A
and p4 : deadlock-state A (Inr q1 )
and p5 : deadlock-state A (Inr q2 )
and p6 : ((Inr q1 ) ∈ reachable-states A)
and p7 : ((Inr q2 ) ∈ reachable-states A)
and

∧
q . q ∈ reachable-states A =⇒ q 6= Inr q1 =⇒ q 6= Inr q2 =⇒ (isl q ∧
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¬ deadlock-state A q)
and compl:

∧
q x t . q ∈ reachable-states A =⇒ x ∈ (inputs M ) =⇒ (∃ t ∈

transitions A . t-source t = q ∧ t-input t = x) =⇒ t ∈ transitions ?C =⇒ t-source
t = q =⇒ t-input t = x =⇒ t ∈ transitions A

using is-state-separator-from-canonical-separator-simps[OF assms(1 )]
unfolding canonical-separator-simps[OF assms(3 ,4 )]
by blast+

have p3 : observable A
using state-separator-from-canonical-separator-observable[OF assms(1−4 )] by

assumption

have p8 : (∀ t∈reachable-states A. t 6= Inr q1 ∧ t 6= Inr q2 −→ ¬ deadlock-state
A t)

using ‹
∧

q . q ∈ reachable-states A =⇒ q 6= Inr q1 =⇒ q 6= Inr q2 =⇒ (isl q
∧ ¬ deadlock-state A q)› by simp

have
∧

io . io ∈ L A =⇒
(io ∈ LS M q1 − LS M q2 −→ io-targets A io (initial A) = {Inr q1}) ∧
(io ∈ LS M q2 − LS M q1 −→ io-targets A io (initial A) = {Inr q2}) ∧
(io ∈ LS M q1 ∩ LS M q2 −→ io-targets A io (initial A) ∩ {Inr q1 , Inr

q2} = {}) ∧
(∀ x yq yt. io @ [(x, yq)] ∈ LS M q1 ∧ io @ [(x, yt)] ∈ LS A (initial A) −→

io @ [(x, yq)] ∈ LS A (initial A)) ∧
(∀ x yq2 yt. io @ [(x, yq2 )] ∈ LS M q2 ∧ io @ [(x, yt)] ∈ LS A (initial A)

−→ io @ [(x, yq2 )] ∈ LS A (initial A))
proof −

fix io assume io ∈ L A

have io ∈ LS M q1 − LS M q2 =⇒ io-targets A io (initial A) = {Inr q1}
using state-separator-from-canonical-separator-language-target(1 )[OF assms(1 )

‹io ∈ L A› assms(2 ,3 ,4 ,5 )] by assumption
moreover have io ∈ LS M q2 − LS M q1 =⇒ io-targets A io (initial A) =

{Inr q2}
using state-separator-from-canonical-separator-language-target(2 )[OF assms(1 )

‹io ∈ L A› assms(2 ,3 ,4 ,5 )] by assumption
moreover have io ∈ LS M q1 ∩ LS M q2 =⇒ io-targets A io (initial A) ∩

{Inr q1 , Inr q2} = {}
using state-separator-from-canonical-separator-language-target(3 )[OF assms(1 )

‹io ∈ L A› assms(2 ,3 ,4 ,5 )] by assumption
moreover have

∧
x yq yt. io @ [(x, yq)] ∈ LS M q1 =⇒ io @ [(x, yt)] ∈ L A

=⇒ io @ [(x, yq)] ∈ L A
proof −

fix x yq yt assume io @ [(x, yq)] ∈ LS M q1 and io @ [(x, yt)] ∈ L A

obtain pA tA where path A (initial A) (pA@[tA]) and p-io (pA@[tA]) = io
@ [(x, yt)]

using language-initial-path-append-transition[OF ‹io @ [(x, yt)] ∈ L A›] by
blast
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then have path A (initial A) pA and p-io pA = io
by auto

then have path ?C (initial ?C ) pA
using submachine-path-initial[OF ‹is-submachine A ?C ›] by auto

obtain p1 t1 where path M q1 (p1@[t1 ]) and p-io (p1@[t1 ]) = io @ [(x,
yq)]

using language-path-append-transition[OF ‹io @ [(x, yq)] ∈ LS M q1 ›] by
blast

then have path M q1 p1 and p-io p1 = io and t1 ∈ transitions M and
t-input t1 = x and t-output t1 = yq and t-source t1 = target q1 p1

by auto

let ?q = target (initial A) pA
have ?q ∈ states A

using path-target-is-state ‹path A (initial A) (pA@[tA])› by auto
have ?q ∈ reachable-states A

using ‹path A (initial A) pA› reachable-states-intro by blast

have tA ∈ transitions A and t-input tA = x and t-output tA = yt and
t-source tA = target (initial A) pA

using ‹path A (initial A) (pA@[tA])› ‹p-io (pA@[tA]) = io @ [(x, yt)]› by
auto

then have x ∈ (inputs M )
using ‹is-submachine A ?C ›
unfolding is-submachine.simps canonical-separator-simps[OF assms(3 ,4 )]

by auto

have ∃ t∈(transitions A). t-source t = target (initial A) pA ∧ t-input t = x
using ‹tA ∈ transitions A› ‹t-input tA = x› ‹t-source tA = target (initial

A) pA› by blast

have io ∈ LS M q2
using submachine-language[OF ‹is-submachine A ?C ›] ‹io @ [(x, yt)] ∈ L

A›
using canonical-separator-language-prefix[OF - assms(3 ,4 ,2 ,5 ), of io (x,yt)]

by blast
then obtain p2 where path M q2 p2 and p-io p2 = io

by auto

show io @ [(x, yq)] ∈ L A
proof (cases ∃ t2 ∈ transitions M . t-source t2 = target q2 p2 ∧ t-input t2

= x ∧ t-output t2 = yq)
case True
then obtain t2 where t2 ∈ transitions M and t-source t2 = target q2 p2

and t-input t2 = x and t-output t2 = yq
by blast
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then have path M q2 (p2@[t2 ]) and p-io (p2@[t2 ]) = io@[(x,yq)]
using path-append-transition[OF ‹path M q2 p2 ›] ‹p-io p2 = io› by auto

then have io @ [(x, yq)] ∈ LS M q2
unfolding LS .simps by (metis (mono-tags, lifting) mem-Collect-eq)

then have io@[(x,yq)] ∈ L ?C
using canonical-separator-language-intersection[OF ‹io @ [(x, yq)] ∈ LS

M q1 › - assms(3 ,4 )] by blast

obtain pA ′ tA ′ where path ?C (initial ?C ) (pA ′@[tA ′]) and p-io (pA ′@[tA ′])
= io@[(x,yq)]

using language-initial-path-append-transition[OF ‹io @ [(x, yq)] ∈ L ?C ›]
by blast

then have path ?C (initial ?C ) pA ′ and p-io pA ′ = io and tA ′ ∈ transitions
?C and t-source tA ′ = target (initial ?C ) pA ′ and t-input tA ′ = x and t-output
tA ′ = yq

by auto

have pA = pA ′

using observable-path-unique[OF ‹observable ?C › ‹path ?C (initial ?C )
pA ′› ‹path ?C (initial ?C ) pA›]

using ‹p-io pA ′ = io› ‹p-io pA = io› by auto
then have t-source tA ′ = target (initial A) pA

using ‹t-source tA ′ = target (initial ?C ) pA ′›
using is-state-separator-from-canonical-separator-initial[OF assms(1 ,3 ,4 )]
using canonical-separator-initial[OF assms(3 ,4 )] by fastforce

have tA ′ ∈ transitions A
using compl[OF ‹?q ∈ reachable-states A› ‹x ∈ (inputs M )› ‹∃ t∈(transitions

A). t-source t = target (initial A) pA ∧ t-input t = x› ‹tA ′ ∈ transitions ?C ›
‹t-source tA ′ = target (initial A) pA› ‹t-input tA ′ = x›] by assumption

then have path A (initial A) (pA@[tA ′])
using ‹path A (initial A) pA› ‹t-source tA ′ = target (initial A) pA› using

path-append-transition by metis
moreover have p-io (pA@[tA ′]) = io@[(x,yq)]

using ‹t-input tA ′ = x› ‹t-output tA ′ = yq› ‹p-io pA = io› by auto

ultimately show ?thesis
using language-state-containment
by (metis (mono-tags, lifting))

next
case False

let ?P = product (from-FSM M q1 ) (from-FSM M q2 )
let ?qq = (target q1 p1 , target q2 p2 )
let ?tA = (Inl (target q1 p1 , target q2 p2 ), x, yq, Inr q1 )

have path (from-FSM M q1 ) (initial (from-FSM M q1 )) p1
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using from-FSM-path-initial[OF ‹q1 ∈ states M ›] ‹path M q1 p1 › by auto
have path (from-FSM M q2 ) (initial (from-FSM M q2 )) p2
using from-FSM-path-initial[OF ‹q2 ∈ states M ›] ‹path M q2 p2 › by auto

have p-io p1 = p-io p2
using ‹p-io p1 = io› ‹p-io p2 = io› by auto

have ?qq ∈ states ?P
using reachable-states-intro[OF product-path-from-paths(1 )[OF ‹path

(from-FSM M q1 ) (initial (from-FSM M q1 )) p1 › ‹path (from-FSM M q2 ) (initial
(from-FSM M q2 )) p2 › ‹p-io p1 = p-io p2 ›]]

unfolding product-path-from-paths(2 )[OF ‹path (from-FSM M q1 )
(initial (from-FSM M q1 )) p1 › ‹path (from-FSM M q2 ) (initial (from-FSM M
q2 )) p2 › ‹p-io p1 = p-io p2 ›] from-FSM-simps[OF assms(3 )] from-FSM-simps[OF
assms(4 )]

using reachable-state-is-state
by metis

moreover have ∃ q ′. (target q1 p1 , x, yq, q ′) ∈ FSM .transitions M
using ‹t1 ∈ FSM .transitions M › ‹t-input t1 = x› ‹t-output t1 = yq›

‹t-source t1 = target q1 p1 ›
by (metis prod.collapse)

moreover have ¬(∃ q ′. (target q2 p2 , x, yq, q ′) ∈ FSM .transitions M )
using ‹t1 ∈ FSM .transitions M › ‹t-input t1 = x› ‹t-output t1 = yq›

‹t-source t1 = target q1 p1 › False
by fastforce

ultimately have ?tA ∈ (distinguishing-transitions-left M q1 q2 )
unfolding distinguishing-transitions-left-def
by blast

then have (Inl (target q1 p1 , target q2 p2 ), x, yq, Inr q1 ) ∈ transitions ?C
using canonical-separator-distinguishing-transitions-left-containment[OF -

assms(3 ,4 )] by metis

let ?pP = zip-path p1 p2
let ?pC = map shift-Inl ?pP
have path ?P (initial ?P) ?pP
and target (initial ?P) ?pP = (target q1 p1 , target q2 p2 )

using product-path-from-paths[OF ‹path (from-FSM M q1 ) (initial
(from-FSM M q1 )) p1 ›

‹path (from-FSM M q2 ) (initial (from-FSM M
q2 )) p2 ›

‹p-io p1 = p-io p2 ›]
using assms(3 ,4 ) by auto

have length p1 = length p2
using ‹p-io p1 = p-io p2 › map-eq-imp-length-eq by blast

then have p-io ?pP = io
using ‹p-io p1 = io› by (induction p1 p2 arbitrary: io rule: list-induct2 ;

auto)
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have path ?C (initial ?C ) ?pC
using canonical-separator-path-shift[OF assms(3 ,4 )] ‹path ?P (initial ?P)

?pP› by simp

have target (initial ?C ) ?pC = Inl (target q1 p1 , target q2 p2 )
using path-map-target[of Inl initial ?P Inl id id ?pP ]
using ‹target (initial ?P) ?pP = (target q1 p1 , target q2 p2 )›

unfolding canonical-separator-simps[OF assms(3 ,4 )] product-simps
from-FSM-simps[OF assms(3 )] from-FSM-simps[OF assms(4 )]

by fastforce

have p-io ?pC = io
using ‹p-io ?pP = io› by auto

have p-io pA = p-io ?pC
unfolding ‹p-io ?pC = io›
using ‹p-io pA = io› by assumption

then have ?pC = pA
using observable-path-unique[OF ‹observable ?C › ‹path ?C (initial ?C )

pA› ‹path ?C (initial ?C ) ?pC ›] by auto
then have t-source ?tA = target (initial A) pA

using ‹target (initial ?C ) ?pC = Inl (target q1 p1 , target q2 p2 )›
unfolding is-state-separator-from-canonical-separator-initial[OF assms(1 ,3 ,4 )]

canonical-separator-simps[OF assms(3 ,4 )] by force

have ?tA ∈ transitions A
using compl[OF ‹?q ∈ reachable-states A› ‹x ∈ (inputs M )› ‹∃ t∈(transitions

A). t-source t = target (initial A) pA ∧ t-input t = x› ‹?tA ∈ transitions ?C ›
‹t-source ?tA = target (initial A) pA› ]

unfolding snd-conv fst-conv by simp

have ∗: path A (initial A) (pA@[?tA])
using path-append-transition[OF ‹path A (initial A) pA› ‹?tA ∈ transitions

A› ‹t-source ?tA = target (initial A) pA›] by assumption

have ∗∗: p-io (pA@[?tA]) = io@[(x,yq)]
using ‹p-io pA = io› by auto

show ?thesis
using language-state-containment[OF ∗ ∗∗] by assumption

qed
qed

moreover have
∧

x yq yt. io @ [(x, yq)] ∈ LS M q2 =⇒ io @ [(x, yt)] ∈ L A
=⇒ io @ [(x, yq)] ∈ L A

proof −
fix x yq yt assume io @ [(x, yq)] ∈ LS M q2 and io @ [(x, yt)] ∈ L A

1079



obtain pA tA where path A (initial A) (pA@[tA]) and p-io (pA@[tA]) = io
@ [(x, yt)]

using language-initial-path-append-transition[OF ‹io @ [(x, yt)] ∈ L A›] by
blast

then have path A (initial A) pA and p-io pA = io
by auto

then have path ?C (initial ?C ) pA
using submachine-path-initial[OF ‹is-submachine A ?C ›] by auto

obtain p2 t2 where path M q2 (p2@[t2 ]) and p-io (p2@[t2 ]) = io @ [(x,
yq)]

using language-path-append-transition[OF ‹io @ [(x, yq)] ∈ LS M q2 ›] by
blast

then have path M q2 p2 and p-io p2 = io and t2 ∈ transitions M and
t-input t2 = x and t-output t2 = yq and t-source t2 = target q2 p2

by auto

let ?q = target (initial A) pA
have ?q ∈ states A

using path-target-is-state ‹path A (initial A) (pA@[tA])› by auto

have tA ∈ transitions A and t-input tA = x and t-output tA = yt and
t-source tA = target (initial A) pA

using ‹path A (initial A) (pA@[tA])› ‹p-io (pA@[tA]) = io @ [(x, yt)]› by
auto

then have x ∈ (inputs M )
using ‹is-submachine A ?C ›
unfolding is-submachine.simps canonical-separator-simps[OF assms(3 ,4 )]

by auto

have ∃ t∈(transitions A). t-source t = target (initial A) pA ∧ t-input t = x
using ‹tA ∈ transitions A› ‹t-input tA = x› ‹t-source tA = target (initial

A) pA› by blast

have io ∈ LS M q1
using submachine-language[OF ‹is-submachine A ?C ›] ‹io @ [(x, yt)] ∈ L

A›
using canonical-separator-language-prefix[OF - assms(3 ,4 ,2 ,5 ), of io (x,yt)]

by blast
then obtain p1 where path M q1 p1 and p-io p1 = io

by auto

show io @ [(x, yq)] ∈ L A
proof (cases ∃ t1 ∈ transitions M . t-source t1 = target q1 p1 ∧ t-input t1

= x ∧ t-output t1 = yq)
case True
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then obtain t1 where t1 ∈ transitions M and t-source t1 = target q1 p1
and t-input t1 = x and t-output t1 = yq

by blast
then have path M q1 (p1@[t1 ]) and p-io (p1@[t1 ]) = io@[(x,yq)]

using path-append-transition[OF ‹path M q1 p1 ›] ‹p-io p1 = io› by auto
then have io @ [(x, yq)] ∈ LS M q1

unfolding LS .simps by (metis (mono-tags, lifting) mem-Collect-eq)
then have io@[(x,yq)] ∈ L ?C
using canonical-separator-language-intersection[OF - ‹io @ [(x, yq)] ∈ LS

M q2 › assms(3 ,4 )] by blast

obtain pA ′ tA ′ where path ?C (initial ?C ) (pA ′@[tA ′]) and p-io (pA ′@[tA ′])
= io@[(x,yq)]

using language-initial-path-append-transition[OF ‹io @ [(x, yq)] ∈ L ?C ›]
by blast

then have path ?C (initial ?C ) pA ′ and p-io pA ′ = io and tA ′ ∈ transitions
?C and t-source tA ′ = target (initial ?C ) pA ′ and t-input tA ′ = x and t-output
tA ′ = yq

by auto

have pA = pA ′

using observable-path-unique[OF ‹observable ?C › ‹path ?C (initial ?C )
pA ′› ‹path ?C (initial ?C ) pA›]

using ‹p-io pA ′ = io› ‹p-io pA = io› by auto
then have t-source tA ′ = target (initial A) pA

using ‹t-source tA ′ = target (initial ?C ) pA ′›
using is-state-separator-from-canonical-separator-initial[OF assms(1 ,3 ,4 )]

unfolding canonical-separator-simps[OF assms(3 ,4 )] by auto

have ?q ∈ reachable-states A
using ‹path A (initial A) pA› reachable-states-intro by blast

have tA ′ ∈ transitions A
using compl[OF ‹?q ∈ reachable-states A› ‹x ∈ (inputs M )› ‹∃ t∈(transitions

A). t-source t = target (initial A) pA ∧ t-input t = x› ‹tA ′ ∈ transitions ?C ›
‹t-source tA ′ = target (initial A) pA› ‹t-input tA ′ = x›] by assumption

then have path A (initial A) (pA@[tA ′])
using ‹path A (initial A) pA› ‹t-source tA ′ = target (initial A) pA› using

path-append-transition by metis
moreover have p-io (pA@[tA ′]) = io@[(x,yq)]

using ‹t-input tA ′ = x› ‹t-output tA ′ = yq› ‹p-io pA = io› by auto

ultimately show ?thesis
using language-state-containment
by (metis (mono-tags, lifting))

next
case False
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let ?P = product (from-FSM M q1 ) (from-FSM M q2 )
let ?qq = (target q1 p1 , target q2 p2 )
let ?tA = (Inl (target q1 p1 , target q2 p2 ), x, yq, Inr q2 )

have path (from-FSM M q1 ) (initial (from-FSM M q1 )) p1
using from-FSM-path-initial[OF ‹q1 ∈ states M ›] ‹path M q1 p1 › by auto

have path (from-FSM M q2 ) (initial (from-FSM M q2 )) p2
using from-FSM-path-initial[OF ‹q2 ∈ states M ›] ‹path M q2 p2 › by auto

have p-io p1 = p-io p2
using ‹p-io p1 = io› ‹p-io p2 = io› by auto

have ?qq ∈ states ?P
using reachable-states-intro[OF product-path-from-paths(1 )[OF ‹path

(from-FSM M q1 ) (initial (from-FSM M q1 )) p1 › ‹path (from-FSM M q2 ) (initial
(from-FSM M q2 )) p2 › ‹p-io p1 = p-io p2 ›]]

unfolding product-path-from-paths(2 )[OF ‹path (from-FSM M q1 )
(initial (from-FSM M q1 )) p1 › ‹path (from-FSM M q2 ) (initial (from-FSM M
q2 )) p2 › ‹p-io p1 = p-io p2 ›] from-FSM-simps[OF assms(3 )] from-FSM-simps[OF
assms(4 )]

using reachable-state-is-state by metis
moreover have ∃ q ′. (target q2 p2 , x, yq, q ′) ∈ FSM .transitions M

using ‹t2 ∈ FSM .transitions M › ‹t-input t2 = x› ‹t-output t2 = yq›
‹t-source t2 = target q2 p2 ›

by (metis prod.collapse)
moreover have ¬(∃ q ′. (target q1 p1 , x, yq, q ′) ∈ FSM .transitions M )

using ‹t2 ∈ FSM .transitions M › ‹t-input t2 = x› ‹t-output t2 = yq›
‹t-source t2 = target q2 p2 › False

by fastforce
ultimately have ?tA ∈ (distinguishing-transitions-right M q1 q2 )

unfolding distinguishing-transitions-right-def
by blast

then have ?tA ∈ transitions ?C
using canonical-separator-distinguishing-transitions-right-containment[OF

- assms(3 ,4 )] by metis

let ?pP = zip-path p1 p2
let ?pC = map shift-Inl ?pP
have path ?P (initial ?P) ?pP
and target (initial ?P) ?pP = (target q1 p1 , target q2 p2 )

using product-path-from-paths[OF ‹path (from-FSM M q1 ) (initial
(from-FSM M q1 )) p1 ›

‹path (from-FSM M q2 ) (initial (from-FSM M
q2 )) p2 ›

‹p-io p1 = p-io p2 ›]
using assms(3 ,4 ) by auto

have length p1 = length p2
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using ‹p-io p1 = p-io p2 › map-eq-imp-length-eq by blast
then have p-io ?pP = io

using ‹p-io p1 = io› by (induction p1 p2 arbitrary: io rule: list-induct2 ;
auto)

have path ?C (initial ?C ) ?pC
using canonical-separator-path-shift[OF assms(3 ,4 )] ‹path ?P (initial ?P)

?pP› by simp

have target (initial ?C ) ?pC = Inl (target q1 p1 , target q2 p2 )
using path-map-target[of Inl initial ?P Inl id id ?pP ]
using ‹target (initial ?P) ?pP = (target q1 p1 , target q2 p2 )›

unfolding canonical-separator-simps[OF assms(3 ,4 )] product-simps
from-FSM-simps[OF assms(3 )] from-FSM-simps[OF assms(4 )] by force

have p-io ?pC = io
using ‹p-io ?pP = io› by auto

have p-io pA = p-io ?pC
unfolding ‹p-io ?pC = io›
using ‹p-io pA = io› by assumption

then have ?pC = pA
using observable-path-unique[OF ‹observable ?C › ‹path ?C (initial ?C )

pA› ‹path ?C (initial ?C ) ?pC ›] by auto
then have t-source ?tA = target (initial A) pA

using ‹target (initial ?C ) ?pC = Inl (target q1 p1 , target q2 p2 )›
unfolding is-state-separator-from-canonical-separator-initial[OF assms(1 ,3 ,4 )]

canonical-separator-simps[OF assms(3 ,4 )] by force

have ?q ∈ reachable-states A
using ‹path A (initial A) pA› reachable-states-intro by blast

have ?tA ∈ transitions A
using compl[OF ‹?q ∈ reachable-states A› ‹x ∈ (inputs M )› ‹∃ t∈(transitions

A). t-source t = target (initial A) pA ∧ t-input t = x› ‹?tA ∈ transitions ?C ›
‹t-source ?tA = target (initial A) pA› ]

unfolding snd-conv fst-conv by simp

have ∗: path A (initial A) (pA@[?tA])
using path-append-transition[OF ‹path A (initial A) pA› ‹?tA ∈ transitions

A› ‹t-source ?tA = target (initial A) pA›] by assumption

have ∗∗: p-io (pA@[?tA]) = io@[(x,yq)]
using ‹p-io pA = io› by auto

show ?thesis
using language-state-containment[OF ∗ ∗∗] by assumption

qed
qed
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ultimately show (io ∈ LS M q1 − LS M q2 −→ io-targets A io (initial A) =
{Inr q1}) ∧

(io ∈ LS M q2 − LS M q1 −→ io-targets A io (initial A) = {Inr q2}) ∧
(io ∈ LS M q1 ∩ LS M q2 −→ io-targets A io (initial A) ∩ {Inr q1 , Inr

q2} = {}) ∧
(∀ x yq yt. io @ [(x, yq)] ∈ LS M q1 ∧ io @ [(x, yt)] ∈ LS A (initial A) −→

io @ [(x, yq)] ∈ LS A (initial A)) ∧
(∀ x yq2 yt. io @ [(x, yq2 )] ∈ LS M q2 ∧ io @ [(x, yt)] ∈ LS A (initial A)

−→ io @ [(x, yq2 )] ∈ LS A (initial A))
by blast

qed

moreover have
∧

p . path A (initial A) p =⇒ target (initial A) p = Inr q1 =⇒
p-io p ∈ LS M q1 − LS M q2

using canonical-separator-maximal-path-distinguishes-left[OF assms(1 ) - - ‹ob-
servable M › ‹q1 ∈ states M › ‹q2 ∈ states M › ‹q1 6= q2 ›] by blast

moreover have
∧

p . path A (initial A) p =⇒ target (initial A) p = Inr q2 =⇒
p-io p ∈ LS M q2 − LS M q1

using canonical-separator-maximal-path-distinguishes-right[OF assms(1 ) - -
‹observable M › ‹q1 ∈ states M › ‹q2 ∈ states M › ‹q1 6= q2 ›] by blast

moreover have
∧

p . path A (initial A) p =⇒ target (initial A) p 6= Inr q1 =⇒
target (initial A) p 6= Inr q2 =⇒ p-io p ∈ LS M q1 ∩ LS M q2

proof −
fix p assume path A (initial A) p and target (initial A) p 6= Inr q1 and target

(initial A) p 6= Inr q2

have path ?C (initial ?C ) p
using submachine-path-initial[OF is-state-separator-from-canonical-separator-simps(1 )[OF

assms(1 )] ‹path A (initial A) p›] by assumption

have target (initial ?C ) p 6= Inr q1 and target (initial ?C ) p 6= Inr q2
using ‹target (initial A) p 6= Inr q1 › ‹target (initial A) p 6= Inr q2 ›

unfolding is-state-separator-from-canonical-separator-initial[OF assms(1 ,3 ,4 )]
canonical-separator-initial[OF assms(3 ,4 )] by blast+

then have isl (target (initial ?C ) p)
using canonical-separator-path-initial(4 )[OF ‹path ?C (initial ?C ) p› ‹q1 ∈

states M › ‹q2 ∈ states M › ‹observable M › ‹q1 6= q2 ›]
by auto

then show p-io p ∈ LS M q1 ∩ LS M q2
using ‹path ?C (initial ?C ) p› canonical-separator-path-targets-language(1 )[OF

- ‹observable M › ‹q1 ∈ states M › ‹q2 ∈ states M › ‹q1 6= q2 ›]
by auto

qed

moreover have (inputs A) ⊆ (inputs M )
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using ‹is-submachine A ?C ›
unfolding is-submachine.simps canonical-separator-simps[OF assms(3 ,4 )] by

auto

ultimately show ?thesis
unfolding is-separator-def
using p1 p2 p3 p4 p5 p6 p7 p8 ‹q1 6= q2 ›
by (meson sum.simps(2 ))

qed

lemma is-separator-separated-state-is-state :
assumes is-separator M q1 q2 A t1 t2
shows q1 ∈ states M and q2 ∈ states M

proof −
have initial A 6= t1

using separator-initial[OF assms(1 )] by blast

have t1 ∈ reachable-states A
and

∧
p . path A (FSM .initial A) p =⇒ target (FSM .initial A) p = t1 =⇒ p-io

p ∈ LS M q1 − LS M q2
and t2 ∈ reachable-states A
and

∧
p . path A (FSM .initial A) p =⇒ target (FSM .initial A) p = t2 =⇒ p-io

p ∈ LS M q2 − LS M q1
using is-separator-simps[OF assms(1 )]
by blast+

obtain p1 where path A (FSM .initial A) p1 and target (FSM .initial A) p1 =
t1

using ‹t1 ∈ reachable-states A› unfolding reachable-states-def by auto
then have p-io p1 ∈ LS M q1 − LS M q2

using ‹
∧

p . path A (FSM .initial A) p =⇒ target (FSM .initial A) p = t1 =⇒
p-io p ∈ LS M q1 − LS M q2 ›

by blast
then show q1 ∈ states M unfolding LS .simps

using path-begin-state by fastforce

obtain p2 where path A (FSM .initial A) p2 and target (FSM .initial A) p2 =
t2

using ‹t2 ∈ reachable-states A› unfolding reachable-states-def by auto
then have p-io p2 ∈ LS M q2 − LS M q1

using ‹
∧

p . path A (FSM .initial A) p =⇒ target (FSM .initial A) p = t2 =⇒
p-io p ∈ LS M q2 − LS M q1 ›

by blast
then show q2 ∈ states M unfolding LS .simps

using path-begin-state by fastforce
qed

end
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35 Adaptive Test Cases

An ATC is a single input, acyclic, observable FSM, which is equivalent to
a tree whose non-leaf states are labeled with inputs and whose edges are
labeled with outputs.
theory Adaptive-Test-Case

imports State-Separator
begin

definition is-ATC :: ( ′a, ′b, ′c) fsm ⇒ bool where
is-ATC M = (single-input M ∧ acyclic M ∧ observable M )

lemma is-ATC-from :
assumes t ∈ transitions A
and t-source t ∈ reachable-states A
and is-ATC A

shows is-ATC (from-FSM A (t-target t))
using from-FSM-single-input[of A]

from-FSM-acyclic[OF reachable-states-next[OF assms(2 ,1 )]]
from-FSM-observable[of A]
assms(3 )

unfolding is-ATC-def by fast

35.1 Applying Adaptive Test Cases
fun pass-ATC ′ :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ′d set ⇒ nat ⇒ bool where

pass-ATC ′ M A fail-states 0 = (¬ (initial A ∈ fail-states)) |
pass-ATC ′ M A fail-states (Suc k) = ((¬ (initial A ∈ fail-states)) ∧

(∀ x ∈ inputs A . h A (initial A,x) 6= {} −→ (∀ (yM ,qM ) ∈ h M (initial
M ,x) . ∃ (yA,qA) ∈ h A (initial A,x) . yM = yA ∧ pass-ATC ′ (from-FSM M qM )
(from-FSM A qA) fail-states k)))

fun pass-ATC :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ′d set ⇒ bool where
pass-ATC M A fail-states = pass-ATC ′ M A fail-states (size A)

lemma pass-ATC ′-initial :
assumes pass-ATC ′ M A FS k
shows initial A /∈ FS

using assms by (cases k; auto)

lemma pass-ATC ′-io :
assumes pass-ATC ′ M A FS k
and is-ATC A
and observable M

1086



and (inputs A) ⊆ (inputs M )
and io@[ioA] ∈ L A
and io@[ioM ] ∈ L M
and fst ioA = fst ioM
and length (io@[ioA]) ≤ k

shows io@[ioM ] ∈ L A
and io-targets A (io@[ioM ]) (initial A) ∩ FS = {}
proof −

have io@[ioM ] ∈ L A ∧ io-targets A (io@[ioM ]) (initial A) ∩ FS = {}
using assms proof (induction k arbitrary: io A M )
case 0
then show ?case by auto

next
case (Suc k)
then show ?case proof (cases io)

case Nil

obtain tA where tA ∈ transitions A
and t-source tA = initial A
and t-input tA = fst ioA
and t-output tA = snd ioA

using Nil ‹io@[ioA] ∈ L A› by auto
then have fst ioA ∈ (inputs A)

using fsm-transition-input by fastforce

have (t-output tA,t-target tA) ∈ h A (initial A,t-input tA)
using ‹tA ∈ transitions A› ‹t-source tA = initial A› unfolding h-simps
by (metis (no-types, lifting) case-prodI mem-Collect-eq prod.collapse)

then have h A (initial A,fst ioA) 6= {}
unfolding ‹t-input tA = fst ioA› by blast

then have ∗:
∧

yM qM . (yM ,qM ) ∈ h M (initial M ,fst ioA) =⇒ (∃ (yA,qA)
∈ h A (initial A,fst ioA) . yM = yA ∧ pass-ATC ′ (from-FSM M qM ) (from-FSM
A qA) FS k)

using Suc.prems(1 ) pass-ATC ′-initial[OF Suc.prems(1 )] unfolding pass-ATC ′.simps
using ‹fst ioA ∈ FSM .inputs A› by auto

obtain tM where tM ∈ transitions M
and t-source tM = initial M
and t-input tM = fst ioA
and t-output tM = snd ioM

using Nil ‹io@[ioM ] ∈ L M › ‹fst ioA = fst ioM › by auto
have (t-output tM ,t-target tM ) ∈ h M (initial M ,fst ioA)

using ‹tM ∈ transitions M › ‹t-source tM = initial M › ‹t-input tM = fst
ioA› unfolding h-simps

by (metis (mono-tags, lifting) case-prodI mem-Collect-eq prod.collapse)

obtain tA ′ where tA ′ ∈ transitions A
and t-source tA ′ = initial A
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and t-input tA ′ = fst ioA
and t-output tA ′ = snd ioM

and pass-ATC ′ (from-FSM M (t-target tM )) (from-FSM A
(t-target tA ′)) FS k

using ∗[OF ‹(t-output tM ,t-target tM ) ∈ h M (initial M ,fst ioA)›]
unfolding h.simps ‹t-output tM = snd ioM › by fastforce

then have path A (initial A) [tA ′]
using single-transition-path[OF ‹tA ′ ∈ transitions A›] by auto

moreover have p-io [tA ′] = [ioM ]
using ‹t-input tA ′ = fst ioA› ‹t-output tA ′ = snd ioM › unfolding ‹fst ioA

= fst ioM › by auto
ultimately have [ioM ] ∈ LS A (initial A)

unfolding LS .simps by (metis (mono-tags, lifting) mem-Collect-eq)
then have io @ [ioM ] ∈ LS A (initial A)

using Nil by auto

have target (initial A) [tA ′] = t-target tA ′

by auto
then have t-target tA ′ ∈ io-targets A [ioM ] (initial A)

unfolding io-targets.simps
using ‹path A (initial A) [tA ′]› ‹p-io [tA ′] = [ioM ]›
by (metis (mono-tags, lifting) mem-Collect-eq)

then have io-targets A (io @ [ioM ]) (initial A) = {t-target tA ′}
using observable-io-targets[OF - ‹io @ [ioM ] ∈ LS A (initial A)›] ‹is-ATC

A› Nil
unfolding is-ATC-def
by (metis append-self-conv2 singletonD)

moreover have t-target tA ′ /∈ FS
using pass-ATC ′-initial[OF ‹pass-ATC ′ (from-FSM M (t-target tM ))

(from-FSM A (t-target tA ′)) FS k›]
unfolding from-FSM-simps(1 )[OF fsm-transition-target[OF ‹tA ′ ∈ transi-

tions A›]] by assumption
ultimately have io-targets A (io @ [ioM ]) (initial A) ∩ FS = {}

by auto

then show ?thesis
using ‹io @ [ioM ] ∈ LS A (initial A)› by auto

next
case (Cons io ′ io ′′)

have [io ′] ∈ L A
using Cons ‹io@[ioA] ∈ L A›
by (metis append.left-neutral append-Cons language-prefix)

then obtain tA where tA ∈ transitions A
and t-source tA = initial A
and t-input tA = fst io ′

and t-output tA = snd io ′
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by auto
then have fst io ′ ∈ (inputs A)

using fsm-transition-input by metis

have (t-output tA,t-target tA) ∈ h A (initial A,t-input tA)
using ‹tA ∈ transitions A› ‹t-source tA = initial A› unfolding h-simps
by (metis (no-types, lifting) case-prodI mem-Collect-eq prod.collapse)

then have h A (initial A,fst io ′) 6= {}
unfolding ‹t-input tA = fst io ′› by blast

then have ∗:
∧

yM qM . (yM ,qM ) ∈ h M (initial M ,fst io ′) =⇒ (∃ (yA,qA)
∈ h A (initial A,fst io ′) . yM = yA ∧ pass-ATC ′ (from-FSM M qM ) (from-FSM
A qA) FS k)

using Suc.prems(1 ) pass-ATC ′-initial[OF Suc.prems(1 )] unfolding pass-ATC ′.simps
using ‹fst io ′ ∈ FSM .inputs A› by auto

obtain tM where tM ∈ transitions M
and t-source tM = initial M
and t-input tM = fst io ′

and t-output tM = snd io ′

using Cons ‹io@[ioM ] ∈ L M › ‹fst ioA = fst ioM › by auto
have (t-output tM ,t-target tM ) ∈ h M (initial M ,fst io ′)

using ‹tM ∈ transitions M › ‹t-source tM = initial M › ‹t-input tM = fst
io ′› unfolding h-simps

by (metis (mono-tags, lifting) case-prodI mem-Collect-eq prod.collapse)

obtain tA ′ where tA ′ ∈ transitions A
and t-source tA ′ = initial A
and t-input tA ′ = fst io ′

and t-output tA ′ = snd io ′

and pass-ATC ′ (from-FSM M (t-target tM )) (from-FSM A
(t-target tA ′)) FS k

using ∗[OF ‹(t-output tM ,t-target tM ) ∈ h M (initial M ,fst io ′)›]
unfolding h.simps ‹t-output tM = snd io ′› by fastforce

then have tA = tA ′

using ‹is-ATC A›
unfolding is-ATC-def observable.simps
by (metis ‹tA ∈ transitions A› ‹t-input tA = fst io ′› ‹t-output tA = snd io ′›

‹t-source tA = initial A› prod.collapse)
then have pass-ATC ′ (from-FSM M (t-target tM )) (from-FSM A (t-target

tA)) FS k
using ‹pass-ATC ′ (from-FSM M (t-target tM )) (from-FSM A (t-target tA ′))

FS k› by auto

have (inputs (from-FSM A (t-target tA))) ⊆ (inputs (from-FSM M (t-target
tM )))

using Suc.prems(4 )
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unfolding from-FSM-simps(2 )[OF fsm-transition-target[OF ‹tM ∈ transi-
tions M ›]]

from-FSM-simps(2 )[OF fsm-transition-target[OF ‹tA ∈ transitions
A›]] by assumption

have length (io ′′ @ [ioA]) ≤ k
using Cons ‹length (io @ [ioA]) ≤ Suc k› by auto

have (io ′ # (io ′′@[ioA])) ∈ LS A (t-source tA)
using ‹t-source tA = initial A› ‹io@[ioA] ∈ L A› Cons by auto
have io ′′ @ [ioA] ∈ LS (from-FSM A (t-target tA)) (initial (from-FSM A

(t-target tA)))
using observable-language-next[OF ‹(io ′ # (io ′′@[ioA])) ∈ LS A (t-source

tA)›]
‹is-ATC A› ‹tA ∈ transitions A› ‹t-input tA = fst io ′› ‹t-output tA =

snd io ′›
using is-ATC-def by blast

have (io ′ # (io ′′@[ioM ])) ∈ LS M (t-source tM )
using ‹t-source tM = initial M › ‹io@[ioM ] ∈ L M › Cons by auto

have io ′′ @ [ioM ] ∈ LS (from-FSM M (t-target tM )) (initial (from-FSM M
(t-target tM )))

using observable-language-next[OF ‹(io ′ # (io ′′@[ioM ])) ∈ LS M (t-source
tM )›]

‹observable M › ‹tM ∈ transitions M › ‹t-input tM = fst io ′› ‹t-output
tM = snd io ′›

by blast

have observable (from-FSM M (t-target tM ))
using from-FSM-observable[OF ‹observable M ›] by blast

have is-ATC (FSM .from-FSM A (t-target tA))
using is-ATC-from[OF ‹tA ∈ transitions A› - ‹is-ATC A›] reachable-states-initial

unfolding ‹t-source tA = initial A› by blast

have io ′′ @ [ioM ] ∈ LS (from-FSM A (t-target tA)) (initial (from-FSM A
(t-target tA)))

and io-targets (from-FSM A (t-target tA)) (io ′′ @ [ioM ]) (initial (from-FSM
A (t-target tA))) ∩ FS = {}

using Suc.IH [OF ‹pass-ATC ′ (from-FSM M (t-target tM )) (from-FSM A
(t-target tA)) FS k›

‹is-ATC (FSM .from-FSM A (t-target tA))›
‹observable (from-FSM M (t-target tM ))›
‹(inputs (from-FSM A (t-target tA))) ⊆ (inputs (from-FSM M

(t-target tM )))›
‹io ′′ @ [ioA] ∈ LS (from-FSM A (t-target tA)) (initial (from-FSM

A (t-target tA)))›
‹io ′′ @ [ioM ] ∈ LS (from-FSM M (t-target tM )) (initial

(from-FSM M (t-target tM )))›
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‹fst ioA = fst ioM ›
‹length (io ′′ @ [ioA]) ≤ k›]

by blast+

then obtain pA where path (from-FSM A (t-target tA)) (initial (from-FSM
A (t-target tA))) pA and p-io pA = io ′′ @ [ioM ]

by auto

have path A (initial A) (tA#pA)
using ‹path (from-FSM A (t-target tA)) (initial (from-FSM A (t-target tA)))

pA› ‹tA ∈ transitions A›
by (metis ‹t-source tA = initial A› cons from-FSM-path-initial fsm-transition-target)
moreover have p-io (tA#pA) = io ′ # io ′′ @ [ioM ]
using ‹t-input tA = fst io ′› ‹t-output tA = snd io ′› ‹p-io pA = io ′′ @ [ioM ]›

by auto
ultimately have io ′ # io ′′ @ [ioM ] ∈ L A

unfolding LS .simps
by (metis (mono-tags, lifting) mem-Collect-eq)

then have io @ [ioM ] ∈ L A
using Cons by auto

have observable A
using Suc.prems(2 ) is-ATC-def by blast

have io-targets A (io @ [ioM ]) (FSM .initial A) ∩ FS = {}
proof −

have
∧

p . path A (FSM .initial A) p =⇒ p-io p = (io ′ # io ′′) @ [ioM ] =⇒
p = tA # (tl p)

using ‹observable A› unfolding observable.simps
using ‹tA ∈ transitions A› ‹t-source tA = initial A› ‹t-input tA = fst io ′›

‹t-output tA = snd io ′› by fastforce

have
∧

q . q ∈ io-targets A (io @ [ioM ]) (FSM .initial A) =⇒ q ∈ io-targets
(from-FSM A (t-target tA)) (io ′′ @ [ioM ]) (initial (from-FSM A (t-target tA)))

proof −
fix q assume q ∈ io-targets A (io @ [ioM ]) (FSM .initial A)

then obtain p where q = target (FSM .initial A) p and path A (FSM .initial
A) p and p-io p = (io ′ # io ′′) @ [ioM ]

unfolding io-targets.simps Cons by blast
then have p = tA # (tl p)
using ‹

∧
p . path A (FSM .initial A) p =⇒ p-io p = (io ′ # io ′′) @ [ioM ]

=⇒ p = tA # (tl p)› by blast

have path A (FSM .initial A) (tA#(tl p))
using ‹path A (FSM .initial A) p› ‹p = tA # (tl p)› by simp

then have path (from-FSM A (t-target tA)) (initial (from-FSM A (t-target
tA))) (tl p)

by (meson from-FSM-path-initial fsm-transition-target path-cons-elim)
moreover have p-io (tl p) = (io ′′) @ [ioM ]
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using ‹p-io p = (io ′ # io ′′) @ [ioM ]› ‹p = tA # (tl p)› by auto
moreover have q = target (initial (from-FSM A (t-target tA))) (tl p)

using ‹q = target (FSM .initial A) p› ‹p = tA # (tl p)›
unfolding target.simps visited-states.simps from-FSM-simps[OF fsm-transition-target[OF

‹tA ∈ transitions A›]]
by (cases p; auto)

ultimately show q ∈ io-targets (from-FSM A (t-target tA)) (io ′′ @ [ioM ])
(initial (from-FSM A (t-target tA)))

unfolding io-targets.simps by blast
qed

moreover have
∧

q . q ∈ io-targets (from-FSM A (t-target tA)) (io ′′

@ [ioM ]) (initial (from-FSM A (t-target tA))) =⇒ q ∈ io-targets A (io @ [ioM ])
(FSM .initial A)

proof −
fix q assume q ∈ io-targets (from-FSM A (t-target tA)) (io ′′ @ [ioM ])

(initial (from-FSM A (t-target tA)))
then obtain p where q = target (FSM .initial (FSM .from-FSM A (t-target

tA))) p and path (FSM .from-FSM A (t-target tA)) (FSM .initial (FSM .from-FSM
A (t-target tA))) p and p-io p = io ′′ @ [ioM ]

unfolding io-targets.simps Cons by blast

have q = target (FSM .initial A) (tA#p)
unfolding ‹q = target (FSM .initial (FSM .from-FSM A (t-target tA)))

p› from-FSM-simps[OF fsm-transition-target[OF ‹tA ∈ transitions A›]] by auto
moreover have path A (initial A) (tA#p)

using ‹path (FSM .from-FSM A (t-target tA)) (FSM .initial (FSM .from-FSM
A (t-target tA))) p›

unfolding from-FSM-path-initial[OF fsm-transition-target[OF ‹tA ∈
transitions A›], symmetric]

using ‹tA ∈ transitions A› ‹t-source tA = initial A› cons
by fastforce

moreover have p-io (tA#p) = io @ [ioM ]
using ‹p-io p = io ′′ @ [ioM ]› ‹t-input tA = fst io ′› ‹t-output tA = snd

io ′› unfolding Cons by simp
ultimately show q ∈ io-targets A (io @ [ioM ]) (FSM .initial A)

unfolding io-targets.simps by fastforce
qed
ultimately show ?thesis

using ‹io-targets (from-FSM A (t-target tA)) (io ′′ @ [ioM ]) (initial
(from-FSM A (t-target tA))) ∩ FS = {}› by blast

qed

then show ?thesis
using ‹io @ [ioM ] ∈ L A› by simp

qed
qed

then show io@[ioM ] ∈ L A
and io-targets A (io@[ioM ]) (initial A) ∩ FS = {}
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by simp+
qed

lemma pass-ATC-io :
assumes pass-ATC M A FS
and is-ATC A
and observable M
and (inputs A) ⊆ (inputs M )
and io@[ioA] ∈ L A
and io@[ioM ] ∈ L M
and fst ioA = fst ioM

shows io@[ioM ] ∈ L A
and io-targets A (io@[ioM ]) (initial A) ∩ FS = {}
proof −

have acyclic A
using ‹is-ATC A› is-ATC-def by blast

then have length (io @ [ioA]) ≤ (size A)
using ‹io@[ioA] ∈ L A› unfolding LS .simps
using acyclic-path-length-limit unfolding acyclic.simps by fastforce

show io@[ioM ] ∈ L A
and io-targets A (io@[ioM ]) (initial A) ∩ FS = {}

using pass-ATC ′-io[OF - assms(2−7 ) ‹length (io @ [ioA]) ≤ (size A)›]
using assms(1 ) by simp+

qed

lemma pass-ATC-io-explicit-io-tuple :
assumes pass-ATC M A FS
and is-ATC A
and observable M
and (inputs A) ⊆ (inputs M )
and io@[(x,y)] ∈ L A
and io@[(x,y ′)] ∈ L M

shows io@[(x,y ′)] ∈ L A
and io-targets A (io@[(x,y ′)]) (initial A) ∩ FS = {}

apply (metis pass-ATC-io(1 ) assms fst-conv)
by (metis pass-ATC-io(2 ) assms fst-conv)

lemma pass-ATC-io-fail-fixed-io :
assumes is-ATC A
and observable M
and (inputs A) ⊆ (inputs M )
and io@[ioA] ∈ L A
and io@[ioM ] ∈ L M
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and fst ioA = fst ioM
and io@[ioM ] /∈ L A ∨ io-targets A (io@[ioM ]) (initial A) ∩ FS 6= {}

shows ¬pass-ATC M A FS
proof −

consider (a) io@[ioM ] /∈ L A |
(b) io-targets A (io@[ioM ]) (initial A) ∩ FS 6= {}

using assms(7 ) by blast
then show ?thesis proof (cases)

case a
then show ?thesis using pass-ATC-io(1 )[OF - assms(1−6 )] by blast

next
case b
then show ?thesis using pass-ATC-io(2 )[OF - assms(1−6 )] by blast

qed
qed

lemma pass-ATC ′-io-fail :
assumes ¬pass-ATC ′ M A FS k
and is-ATC A
and observable M
and (inputs A) ⊆ (inputs M )

shows initial A ∈ FS ∨ (∃ io ioA ioM . io@[ioA] ∈ L A
∧ io@[ioM ] ∈ L M
∧ fst ioA = fst ioM
∧ (io@[ioM ] /∈ L A ∨ io-targets A (io@[ioM ]) (initial A) ∩

FS 6= {}))
using assms proof (induction k arbitrary: M A)

case 0
then show ?case by auto

next
case (Suc k)
then show ?case proof (cases initial A ∈ FS)

case True
then show ?thesis by auto

next
case False
then obtain x where x ∈ inputs A

and h A (FSM .initial A, x) 6= {}
and ¬(∀ (yM , qM )∈h M (initial M , x). ∃ (yA, qA)∈h A (FSM .initial

A, x). yM = yA ∧ pass-ATC ′ (FSM .from-FSM M qM ) (FSM .from-FSM A qA)
FS k)

using Suc.prems(1 ) unfolding pass-ATC ′.simps
by fastforce

obtain tM where tM ∈ transitions M
and t-source tM = initial M
and t-input tM = x

and ¬(∃ (yA, qA)∈h A (FSM .initial A, x). t-output tM = yA ∧
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pass-ATC ′ (FSM .from-FSM M (t-target tM )) (FSM .from-FSM A qA) FS k)
using ‹¬(∀ (yM , qM )∈h M (initial M , x). ∃ (yA, qA)∈h A (FSM .initial A,

x). yM = yA ∧ pass-ATC ′ (FSM .from-FSM M qM ) (FSM .from-FSM A qA) FS
k)›

unfolding h.simps
by auto

have ¬ (∃ tA . tA ∈ transitions A ∧ t-source tA = initial A ∧ t-input tA =
x ∧ t-output tA = t-output tM ∧ pass-ATC ′ (FSM .from-FSM M (t-target tM ))
(FSM .from-FSM A (t-target tA)) FS k)

using ‹¬(∃ (yA, qA)∈h A (FSM .initial A, x). t-output tM = yA ∧ pass-ATC ′

(FSM .from-FSM M (t-target tM )) (FSM .from-FSM A qA) FS k)›
unfolding h.simps by force

moreover have ∃ tA . tA ∈ transitions A ∧ t-source tA = initial A ∧ t-input
tA = x

using ‹h A (FSM .initial A, x) 6= {}› unfolding h.simps by force
ultimately consider
(a)

∧
tA . tA ∈ transitions A =⇒ t-source tA = initial A =⇒ t-input tA = x

=⇒ t-output tM 6= t-output tA |
(b) ∃ tA . tA ∈ transitions A ∧ t-source tA = initial A ∧ t-input tA = x

∧ t-output tA = t-output tM ∧ ¬pass-ATC ′ (FSM .from-FSM M (t-target tM ))
(FSM .from-FSM A (t-target tA)) FS k

by force
then show ?thesis proof cases

case a
then have [(x,t-output tM )] /∈ L A

unfolding LS .simps by fastforce
moreover have ∃ y . [(x,y)] ∈ L A

using ‹h A (FSM .initial A, x) 6= {}› unfolding h.simps LS .simps
proof −

obtain pp :: ′d × ′b × ′c × ′d where
f1 : pp ∈ FSM .transitions A ∧ t-source pp = FSM .initial A ∧ t-input pp

= x
using ‹∃ tA. tA ∈ FSM .transitions A ∧ t-source tA = FSM .initial A ∧

t-input tA = x› by blast
then have path A (FSM .initial A) [pp]

by (metis single-transition-path)
then have (t-input pp, t-output pp) # p-io ([]::( ′d × ′b × ′c × -) list) ∈

{p-io ps |ps. path A (FSM .initial A) ps}
by force

then show ∃ c. [(x, c)] ∈ {p-io ps |ps. path A (FSM .initial A) ps}
using f1 by force

qed
moreover have [(x,t-output tM )] ∈ L M
unfolding LS .simps using ‹tM ∈ transitions M › ‹t-input tM = x› ‹t-source

tM = initial M ›
proof −

have ∃ ps. p-io [tM ] = p-io ps ∧ path M (FSM .initial M ) ps
by (metis (no-types) ‹tM ∈ FSM .transitions M › ‹t-source tM = FSM .initial
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M › single-transition-path)
then show [(x, t-output tM )] ∈ {p-io ps |ps. path M (FSM .initial M ) ps}

by (simp add: ‹t-input tM = x›)
qed
ultimately have (∃ io ioA ioM . io @ [ioA] ∈ L A ∧ io @ [ioM ] ∈ L M ∧ fst

ioA = fst ioM ∧ (io @ [ioM ] /∈ L A))
by (metis append-self-conv2 fst-conv)

then show ?thesis by blast
next

case b
then obtain t ′ where t ′ ∈ transitions A

and t-source t ′ = initial A
and t-input t ′ = x
and t-output t ′ = t-output tM

and ¬pass-ATC ′ (FSM .from-FSM M (t-target tM ))
(FSM .from-FSM A (t-target t ′)) FS k

by blast

have is-ATC (FSM .from-FSM A (t-target t ′))
using is-ATC-from[OF ‹t ′∈ transitions A› - ‹is-ATC A›] reachable-states-initial

unfolding ‹t-source t ′ = initial A› by blast

have (inputs (from-FSM A (t-target t ′))) ⊆ (inputs (from-FSM M (t-target
tM )))

by (simp add: Suc.prems(4 ) ‹t ′ ∈ FSM .transitions A› ‹tM ∈ FSM .transitions
M › fsm-transition-target)

let ?ioM = (x,t-output tM )
let ?ioA = (x,t-output t ′)

consider (b1 ) initial (from-FSM A (t-target t ′)) ∈ FS |
(b2 ) (∃ io ioA ioM .

io @ [ioA] ∈ LS (from-FSM A (t-target t ′)) (initial (from-FSM
A (t-target t ′))) ∧

io @ [ioM ] ∈ LS (from-FSM M (t-target tM )) (initial (from-FSM
M (t-target tM ))) ∧

fst ioA = fst ioM ∧
(io @ [ioM ] /∈ LS (from-FSM A (t-target t ′)) (initial (from-FSM

A (t-target t ′))) ∨
io-targets (from-FSM A (t-target t ′)) (io @ [ioM ]) (initial

(from-FSM A (t-target t ′))) ∩ FS 6= {}))
using Suc.IH [OF ‹¬pass-ATC ′ (FSM .from-FSM M (t-target tM )) (FSM .from-FSM

A (t-target t ′)) FS k›
‹is-ATC (FSM .from-FSM A (t-target t ′))›
from-FSM-observable[OF ‹observable M ›]
‹(inputs (from-FSM A (t-target t ′))) ⊆ (inputs (from-FSM M

(t-target tM )))›]
by blast
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then show ?thesis proof cases
case b1

have [?ioA] ∈ L A
unfolding LS .simps

proof −
have ∃ ps. [(x, t-output t ′)] = p-io ps ∧ path A (t-source t ′) ps

using ‹t ′ ∈ FSM .transitions A› ‹t-input t ′ = x› by force
then show [(x, t-output t ′)] ∈ {p-io ps |ps. path A (FSM .initial A) ps}

by (simp add: ‹t-source t ′ = FSM .initial A›)
qed

have [?ioM ] ∈ L M
unfolding LS .simps

proof −
have path M (FSM .initial M ) [tM ]

by (metis ‹tM ∈ FSM .transitions M › ‹t-source tM = FSM .initial M ›
single-transition-path)

then have ∃ ps. [(x, t-output tM )] = p-io ps ∧ path M (FSM .initial M ) ps
using ‹t-input tM = x› by force

then show [(x, t-output tM )] ∈ {p-io ps |ps. path M (FSM .initial M ) ps}
by simp

qed

have p-io [t ′] = [(x, t-output tM )]
using ‹t-input t ′ = x› ‹t-output t ′ = t-output tM ›
by auto

moreover have target (initial A) [t ′] = t-target t ′

using ‹t-source t ′ = initial A› by auto
ultimately have t-target t ′ ∈ io-targets A [(x,t-output tM )] (initial A)

unfolding io-targets.simps
using single-transition-path[OF ‹t ′ ∈ transitions A›]
by (metis (mono-tags, lifting) ‹t-source t ′ = initial A› mem-Collect-eq)
then have initial (from-FSM A (t-target t ′)) ∈ io-targets A [(x,t-output

tM )] (initial A)
unfolding io-targets.simps from-FSM-simps[OF fsm-transition-target[OF

‹t ′ ∈ transitions A›]] by simp
then have io-targets A ([] @ [?ioM ]) (initial A) ∩ FS 6= {}

using b1 by (metis IntI append-Nil empty-iff )

then have ∃ io ioA ioM . io@[ioA] ∈ L A
∧ io@[ioM ] ∈ L M
∧ fst ioA = fst ioM
∧ io-targets A (io @ [ioM ]) (initial A) ∩ FS 6= {}

using ‹[?ioA] ∈ L A› ‹[?ioM ] ∈ L M ›
by (metis ‹t-output t ′ = t-output tM › append.left-neutral)

then show ?thesis by blast
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next
case b2

then obtain io ioA ioM where
io @ [ioA] ∈ LS (from-FSM A (t-target t ′)) (initial (from-FSM A

(t-target t ′)))
and io @ [ioM ] ∈ LS (from-FSM M (t-target tM )) (initial (from-FSM M

(t-target tM )))
and fst ioA = fst ioM
and (io @ [ioM ] /∈ LS (from-FSM A (t-target t ′)) (initial (from-FSM A

(t-target t ′))) ∨ io-targets (from-FSM A (t-target t ′)) (io @ [ioM ]) (initial (from-FSM
A (t-target t ′))) ∩ FS 6= {})

by blast

have observable A
using Suc.prems(2 ) is-ATC-def by blast

have (?ioM # io) @ [ioA] ∈ L A
using language-state-prepend-transition[OF ‹io @ [ioA] ∈ LS (from-FSM

A (t-target t ′)) (initial (from-FSM A (t-target t ′)))› ‹t ′ ∈ transitions A›]
using ‹t-input t ′ = x› ‹t-source t ′ = initial A› ‹t-output t ′ = t-output tM ›
by simp

moreover have (?ioM # io) @ [ioM ] ∈ L M
using language-state-prepend-transition[OF ‹io @ [ioM ] ∈ L (from-FSM

M (t-target tM ))› ‹tM ∈ transitions M ›]
using ‹t-input tM = x› ‹t-source tM = initial M ›
by simp

moreover have ((?ioM # io) @ [ioM ] /∈ L A ∨ io-targets A ((?ioM # io)
@ [ioM ]) (initial A) ∩ FS 6= {})

proof −
consider (f1 ) io @ [ioM ] /∈ L (from-FSM A (t-target t ′)) |

(f2 ) io-targets (from-FSM A (t-target t ′)) (io @ [ioM ]) (initial
(from-FSM A (t-target t ′))) ∩ FS 6= {}

using ‹(io @ [ioM ] /∈ LS (from-FSM A (t-target t ′)) (initial (from-FSM A
(t-target t ′))) ∨ io-targets (from-FSM A (t-target t ′)) (io @ [ioM ]) (initial (from-FSM
A (t-target t ′))) ∩ FS 6= {})›

by blast
then show ?thesis proof cases

case f1

have p-io [t ′] = [(x, t-output tM )]
using ‹t-input t ′ = x› ‹t-output t ′ = t-output tM ›
by auto

moreover have target (initial A) [t ′] = t-target t ′

using ‹t-source t ′ = initial A› by auto
ultimately have t-target t ′ ∈ io-targets A [?ioM ] (initial A)

unfolding io-targets.simps
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using single-transition-path[OF ‹t ′ ∈ transitions A›]
by (metis (mono-tags, lifting) ‹t-source t ′ = initial A› mem-Collect-eq)

show ?thesis
using observable-io-targets-language[of [(x, t-output tM )] io@[ioM ] A

initial A t-target t ′, OF - ‹observable A› ‹t-target t ′ ∈ io-targets A [?ioM ] (initial
A)›]

f1
by (metis ‹observable A› ‹t ′ ∈ FSM .transitions A› ‹t-input t ′ = x›

‹t-output t ′ = t-output tM › ‹t-source t ′ = FSM .initial A› append-Cons fst-conv
observable-language-next snd-conv)

next
case f2

have io-targets A (p-io [t ′] @ io @ [ioM ]) (t-source t ′) = io-targets A
([?ioM ] @ io @ [ioM ]) (t-source t ′)

using ‹t-input t ′ = x› ‹t-output t ′ = t-output tM › by auto
moreover have io-targets A (io @ [ioM ]) (t-target t ′) = io-targets

(from-FSM A (t-target t ′)) (io @ [ioM ]) (initial (from-FSM A (t-target t ′)))
unfolding io-targets.simps

using from-FSM-path-initial[OF fsm-transition-target[OF ‹t ′∈ transitions
A›]] by auto

ultimately have io-targets A ([?ioM ] @ io @ [ioM ]) (t-source t ′) =
io-targets (from-FSM A (t-target t ′)) (io @ [ioM ]) (initial (from-FSM A (t-target
t ′)))

using observable-io-targets-next[OF ‹observable A› ‹t ′ ∈ transitions A›,
of io @ [ioM ]] by auto

then show ?thesis
using f2 ‹t-source t ′ = initial A› by auto

qed
qed

ultimately show ?thesis
using ‹fst ioA = fst ioM › by blast

qed
qed

qed
qed

lemma pass-ATC-io-fail :
assumes ¬pass-ATC M A FS
and is-ATC A
and observable M
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and (inputs A) ⊆ (inputs M )
shows initial A ∈ FS ∨ (∃ io ioA ioM . io@[ioA] ∈ L A

∧ io@[ioM ] ∈ L M
∧ fst ioA = fst ioM
∧ (io@[ioM ] /∈ L A ∨ io-targets A (io@[ioM ]) (initial A) ∩

FS 6= {}))
using pass-ATC ′-io-fail[OF - assms(2−4 )] using assms(1 ) by auto

lemma pass-ATC-fail :
assumes is-ATC A
and observable M
and (inputs A) ⊆ (inputs M )
and io@[(x,y)] ∈ L A
and io@[(x,y ′)] ∈ L M
and io@[(x,y ′)] /∈ L A

shows ¬ pass-ATC M A FS
using assms(6 ) pass-ATC-io-explicit-io-tuple(1 )[OF - assms(1 ,2 ,3 ,4 ,5 )]
by blast

lemma pass-ATC-reduction :
assumes L M2 ⊆ L M1
and is-ATC A
and observable M1
and observable M2
and (inputs A) ⊆ (inputs M1 )
and (inputs M2 ) = (inputs M1 )
and pass-ATC M1 A FS

shows pass-ATC M2 A FS
proof (rule ccontr)

assume ¬ pass-ATC M2 A FS
have (inputs A) ⊆ (inputs M2 )

using assms(5 ,6 ) by blast

have initial A /∈ FS
using ‹pass-ATC M1 A FS› by (cases size A; auto)

then show False
using pass-ATC-io-fail[OF ‹¬ pass-ATC M2 A FS› assms(2 ,4 ) ‹(inputs A) ⊆

(inputs M2 )›]
using assms(1 ) assms(2 ) assms(3 ) assms(5 ) assms(7 ) pass-ATC-io-fail-fixed-io

by blast
qed

lemma pass-ATC-fail-no-reduction :
assumes is-ATC A
and observable T
and observable M
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and (inputs A) ⊆ (inputs M )
and (inputs T ) = (inputs M )
and pass-ATC M A FS
and ¬pass-ATC T A FS

shows ¬ (L T ⊆ L M )
using pass-ATC-reduction[OF - assms(1 ,3 ,2 ,4 ,5 ,6 )] assms(7 ) by blast

35.2 State Separators as Adaptive Test Cases
fun pass-separator-ATC :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ′a ⇒ ′d ⇒ bool where

pass-separator-ATC M S q1 t2 = pass-ATC (from-FSM M q1 ) S {t2}

lemma separator-is-ATC :
assumes is-separator M q1 q2 A t1 t2
and observable M
and q1 ∈ states M
shows is-ATC A

unfolding is-ATC-def
using is-separator-simps(1 ,2 ,3 )[OF assms(1 )] by blast

lemma pass-separator-ATC-from-separator-left :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2

shows pass-separator-ATC M A q1 t2
proof (rule ccontr)

assume ¬ pass-separator-ATC M A q1 t2

then have ¬ pass-ATC (from-FSM M q1 ) A {t2}
by auto

have is-ATC A
using separator-is-ATC [OF assms(4 ,1 ,2 )] by assumption

have initial A /∈ {t2}
using separator-initial(2 )[OF assms(4 )] by blast

then obtain io ioA ioM where
io @ [ioA] ∈ L A
io @ [ioM ] ∈ LS M q1
fst ioA = fst ioM
io @ [ioM ] /∈ L A ∨ io-targets A (io @ [ioM ]) (initial A) ∩ {t2} 6= {}

using pass-ATC-io-fail[OF ‹¬ pass-ATC (from-FSM M q1 ) A {t2}› ‹is-ATC
A› from-FSM-observable[OF ‹observable M ›] ]

using is-separator-simps(16 )[OF assms(4 )]
using from-FSM-language[OF ‹q1 ∈ states M ›]
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unfolding from-FSM-simps[OF ‹q1 ∈ states M ›] by blast
then obtain x ya ym where

io @ [(x,ya)] ∈ L A
io @ [(x,ym)] ∈ LS M q1
io @ [(x,ym)] /∈ L A ∨ io-targets A (io @ [(x,ym)]) (initial A) ∩ {t2} 6= {}
by (metis fst-eqD old.prod.exhaust)

have io @ [(x,ym)] ∈ L A
using is-separator-simps(9 )[OF assms(4 ) ‹io @ [(x,ym)] ∈ LS M q1 › ‹io @

[(x,ya)] ∈ L A›] by assumption

have t1 6= t2 using is-separator-simps(15 )[OF assms(4 )] by assumption

consider (a) io @ [(x, ym)] ∈ LS M q1 − LS M q2 |
(b) io @ [(x, ym)] ∈ LS M q1 ∩ LS M q2

using ‹io @ [(x,ym)] ∈ LS M q1 › by blast
then have io-targets A (io @ [(x,ym)]) (initial A) ∩ {t2} = {}

proof (cases)
case a
show ?thesis using separator-language(1 )[OF assms(4 ) ‹io @ [(x,ym)] ∈ L A›

a] ‹t1 6= t2 › by auto
next

case b
show ?thesis using separator-language(3 )[OF assms(4 ) ‹io @ [(x,ym)] ∈ L A›

b] ‹t1 6= t2 › by auto
qed

then show False
using ‹io @ [(x,ym)] ∈ L A›
using ‹io @ [(x,ym)] /∈ L A ∨ io-targets A (io @ [(x,ym)]) (initial A) ∩ {t2}

6= {}› by blast
qed

lemma pass-separator-ATC-from-separator-right :
assumes observable M
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2

shows pass-separator-ATC M A q2 t1
using assms(1−3 ) is-separator-sym[OF assms(4 )] pass-separator-ATC-from-separator-left

by metis

lemma pass-separator-ATC-path-left :
assumes pass-separator-ATC S A s1 t2
and observable S
and observable M
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and s1 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and q1 6= q2
and path A (initial A) pA
and path S s1 pS
and p-io pA = p-io pS

shows target (initial A) pA 6= t2
and ∃ pM . path M q1 pM ∧ p-io pM = p-io pA
proof −

have pass-ATC (from-FSM S s1 ) A {t2}
using ‹pass-separator-ATC S A s1 t2 › by auto

have is-ATC A
using separator-is-ATC [OF assms(7 ,3 ,5 )] by assumption

have observable (from-FSM S s1 )
using from-FSM-observable[OF assms(2 )] by assumption

have (inputs A) ⊆ (inputs (from-FSM S s1 ))
using is-separator-simps(16 )[OF assms(7 )] ‹(inputs S) = (inputs M )›
unfolding from-FSM-simps[OF ‹s1 ∈ states S›] by blast

have target (initial A) pA 6= t2 ∧ (∃ pM . path M q1 pM ∧ p-io pM = p-io pA)
proof (cases pA rule: rev-cases)

case Nil
then have target (initial A) pA 6= t2

using separator-initial(2 )[OF assms(7 )] by auto
moreover have (∃ pM . path M q1 pM ∧ p-io pM = p-io pA)

unfolding Nil using ‹q1 ∈ states M › by auto
ultimately show ?thesis by auto

next
case (snoc ys y)
then have p-io pA = (p-io ys)@[(t-input y,t-output y)]

by auto
then have ∗: (p-io ys)@[(t-input y,t-output y)] ∈ L A

using language-state-containment[OF ‹path A (initial A) pA›] by blast
then have p-io pS = (p-io ys)@[(t-input y,t-output y)]

using ‹p-io pA = (p-io ys)@[(t-input y,t-output y)]› ‹p-io pA = p-io pS› by
auto

then have ∗∗: (p-io ys)@[(t-input y,t-output y)] ∈ L (from-FSM S s1 )
using language-state-containment[OF ‹path S s1 pS›]
unfolding from-FSM-language[OF ‹s1 ∈ states S›] by blast

have io-targets A ((p-io ys)@[(t-input y,t-output y)]) (initial A) ∩ {t2} = {}
using pass-ATC-io(2 )[OF ‹pass-ATC (from-FSM S s1 ) A {t2}› ‹is-ATC A›
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‹observable (from-FSM S s1 )› ‹(inputs A) ⊆ (inputs (from-FSM S s1 ))› ∗ ∗∗]
unfolding fst-conv by auto

then have target (initial A) pA 6= t2
using ‹p-io pA = (p-io ys)@[(t-input y,t-output y)]› ‹path A (initial A) pA›
unfolding io-targets.simps
by blast

have p-io ys @ [(t-input y, t-output y)] ∈ LS M q1
using separator-language(2 ,4 )[OF assms(7 ) ‹(p-io ys)@[(t-input y,t-output

y)] ∈ L A›]
using ‹io-targets A ((p-io ys)@[(t-input y,t-output y)]) (initial A) ∩ {t2} =

{}› by blast
then have ∃ pM . path M q1 pM ∧ p-io pM = p-io pA

using ‹p-io pA = (p-io ys)@[(t-input y,t-output y)]› by auto

then show ?thesis using ‹target (initial A) pA 6= t2 › by auto
qed

then show target (initial A) pA 6= t2 and ∃ pM . path M q1 pM ∧ p-io pM
= p-io pA

by blast+
qed

lemma pass-separator-ATC-path-right :
assumes pass-separator-ATC S A s2 t1
and observable S
and observable M
and s2 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and q1 6= q2
and path A (initial A) pA
and path S s2 pS
and p-io pA = p-io pS

shows target (initial A) pA 6= t1
and ∃ pM . path M q2 pM ∧ p-io pM = p-io pA
using pass-separator-ATC-path-left[OF assms(1−4 ,6 ,5 ) is-separator-sym[OF assms(7 )]

assms(8 ) - assms(10−12 )] assms(9 ) by blast+

lemma pass-separator-ATC-fail-no-reduction :
assumes observable S
and observable M
and s1 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
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and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and ¬pass-separator-ATC S A s1 t2

shows ¬ (LS S s1 ⊆ LS M q1 )
proof

assume LS S s1 ⊆ LS M q1

have is-ATC A
using separator-is-ATC [OF assms(6 ,2 ,4 )] by assumption

have ∗: (inputs A) ⊆ (inputs (from-FSM M q1 ))
using is-separator-simps(16 )[OF assms(6 )]
unfolding is-submachine.simps canonical-separator-simps from-FSM-simps[OF

‹q1 ∈ states M ›] by auto

have pass-ATC (from-FSM M q1 ) A {t2}
using pass-separator-ATC-from-separator-left[OF assms(2 ,4 ,5 ,6 )] by auto

have ¬ pass-ATC (from-FSM S s1 ) A {t2}
using ‹¬pass-separator-ATC S A s1 t2 › by auto

moreover have pass-ATC (from-FSM S s1 ) A {t2}
using pass-ATC-reduction[OF - ‹is-ATC A› from-FSM-observable[OF ‹observ-

able M ›] from-FSM-observable[OF ‹observable S›] ∗]
using ‹LS S s1 ⊆ LS M q1 › ‹pass-ATC (from-FSM M q1 ) A {t2}›

unfolding from-FSM-language[OF assms(3 )] from-FSM-language[OF assms(4 )]
using ‹L (FSM .from-FSM S s1 ) = LS S s1 › assms(3 ) assms(4 ) assms(7 ) by

auto
ultimately show False by simp

qed

lemma pass-separator-ATC-pass-left :
assumes observable S
and observable M
and s1 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and path A (initial A) p
and p-io p ∈ LS S s1
and q1 6= q2
and pass-separator-ATC S A s1 t2

shows target (initial A) p 6= t2
and target (initial A) p = t1 ∨ (target (initial A) p 6= t1 ∧ target (initial A) p
6= t2 )
proof −
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from ‹p-io p ∈ LS S s1 › obtain pS where path S s1 pS and p-io p = p-io pS
by auto

then show target (initial A) p 6= t2
using pass-separator-ATC-path-left[OF assms(11 ,1−7 ,10 ,8 )] by simp

obtain pM where path M q1 pM and p-io pM = p-io p
using pass-separator-ATC-path-left[OF assms(11 ,1−7 ,10 ,8 ) ‹path S s1 pS›

‹p-io p = p-io pS›] by blast
then have p-io p ∈ LS M q1

unfolding LS .simps by force

then show target (initial A) p = t1 ∨ (target (initial A) p 6= t1 ∧ target (initial
A) p 6= t2 )

using separator-path-targets(1 ,3 ,4 )[OF assms(6 ,8 )] by blast
qed

lemma pass-separator-ATC-pass-right :
assumes observable S
and observable M
and s2 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and path A (initial A) p
and p-io p ∈ LS S s2
and q1 6= q2
and pass-separator-ATC S A s2 t1

shows target (initial A) p 6= t1
and target (initial A) p = t2 ∨ (target (initial A) p 6= t2 ∧ target (initial A) p
6= t2 )

using pass-separator-ATC-pass-left[OF assms(1 ,2 ,3 ,5 ,4 ) is-separator-sym[OF
assms(6 )] assms(7−9 ) - assms(11 )] assms(10 ) by blast+

lemma pass-separator-ATC-completely-specified-left :
assumes observable S
and observable M
and s1 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and q1 6= q2
and pass-separator-ATC S A s1 t2
and completely-specified S

shows ∃ p . path A (initial A) p ∧ p-io p ∈ LS S s1 ∧ target (initial A) p = t1
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and ¬ (∃ p . path A (initial A) p ∧ p-io p ∈ LS S s1 ∧ target (initial A) p =
t2 )
proof −

have p1 : pass-ATC (from-FSM S s1 ) A {t2}
using assms(9 ) by auto

have p2 : is-ATC A
using separator-is-ATC [OF assms(6 ,2 ,4 )] by assumption

have p3 : observable (from-FSM S s1 )
using from-FSM-observable[OF assms(1 )] by assumption

have p4 : (inputs A) ⊆ (inputs (from-FSM S s1 ))
using is-separator-simps(16 )[OF assms(6 )]
unfolding from-FSM-simps[OF ‹s1 ∈ states S›] is-submachine.simps canoni-

cal-separator-simps assms(7 ) by auto

have t1 6= t2 and observable A
using is-separator-simps(15 ,3 )[OF assms(6 )] by linarith+

have path-ext:
∧

p . path A (initial A) p =⇒ p-io p ∈ LS S s1 =⇒ (target (initial
A) p 6= t2 ) ∧ (target (initial A) p = t1 ∨ (∃ t . path A (initial A) (p@[t]) ∧ p-io
(p@[t]) ∈ LS S s1 ))

proof −
fix p assume path A (initial A) p and p-io p ∈ LS S s1

consider (a) target (initial A) p = t1 |
(b) target (initial A) p 6= t1 ∧ target (initial A) p 6= t2

using pass-separator-ATC-pass-left(2 )[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 ) ‹path A
(initial A) p› ‹p-io p ∈ LS S s1 › assms(8 ,9 )] by blast

then have target (initial A) p = t1 ∨ (∃ t . path A (initial A) (p@[t]) ∧ p-io
(p@[t]) ∈ LS S s1 )

proof cases
case a
then show ?thesis by blast

next
case b

let ?t3 = target (initial A) p
have ?t3 6= t1 and ?t3 6= t2

using b by auto
moreover have ?t3 ∈ reachable-states A

using ‹path A (initial A) p› reachable-states-intro by blast
ultimately have ¬ deadlock-state A ?t3

using is-separator-simps(8 )[OF assms(6 )] by blast
then obtain tt where tt ∈ transitions A and t-source tt = ?t3

by auto
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then have path A (initial A) (p@[tt])
using ‹path A (initial A) p› using path-append-transition by metis

moreover have p-io (p@[tt]) = (p-io p)@[(t-input tt, t-output tt)]
by auto

ultimately have (p-io p)@[(t-input tt,t-output tt)] ∈ L A
using language-state-containment[of A initial A p@[tt]] by metis

let ?x = t-input tt
have ?x ∈ (inputs S)

using ‹tt ∈ transitions A› is-separator-simps(16 )[OF assms(6 )] assms(7 )
by auto

then obtain y where (p-io p)@[(?x,y)] ∈ LS S s1
using completely-specified-language-extension[OF ‹completely-specified S›

‹s1 ∈ states S› ‹p-io p ∈ LS S s1 › ] by auto

then have p-io p @ [(?x, y)] ∈ LS A (initial A)
using pass-ATC-io-explicit-io-tuple(1 )[OF p1 p2 p3 p4 ‹(p-io p)@[(t-input

tt,t-output tt)] ∈ L A›]
unfolding from-FSM-language[OF ‹s1 ∈ states S›] by auto

then obtain tt ′ where path A (initial A) (p@[tt ′]) and t-input tt ′ = ?x and
t-output tt ′ = y

using language-path-append-transition-observable[OF - ‹path A (initial A)
p› ‹observable A›] by blast

then have p-io (p @ [tt ′]) ∈ LS S s1
using ‹(p-io p)@[(?x,y)] ∈ LS S s1 › by auto

then show ?thesis
using ‹path A (initial A) (p@[tt ′])› by meson

qed

moreover have target (initial A) p 6= t2
using pass-separator-ATC-pass-left(1 )[OF assms(1 ,2 ,3 ,4 ,5 ,6 ,7 ) ‹path A

(initial A) p› ‹p-io p ∈ LS S s1 › assms(8 ,9 )] by assumption

ultimately show (target (initial A) p 6= t2 ) ∧ (target (initial A) p = t1 ∨ (∃
t . path A (initial A) (p@[t]) ∧ p-io (p@[t]) ∈ LS S s1 ))

by simp
qed

have acyclic A
using ‹is-ATC A› is-ATC-def by auto

then have finite {p . path A (initial A) p}
using acyclic-paths-finite[of A initial A] unfolding acyclic.simps
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by (metis (no-types, lifting) Collect-cong)
then have finite {p . path A (initial A) p ∧ p-io p ∈ LS S s1}

by auto

have [] ∈ {p . path A (initial A) p ∧ p-io p ∈ LS S s1}
using ‹s1 ∈ states S› by auto

then have {p . path A (initial A) p ∧ p-io p ∈ LS S s1} 6= {}
by blast

have scheme:
∧

S . finite S =⇒ S 6= {} =⇒ ∃ x ∈ S . ∀ y ∈ S . length y ≤
length x

by (meson leI max-length-elem)

obtain p where p ∈ {p . path A (initial A) p ∧ p-io p ∈ LS S s1} and
∧

p ′ .
p ′ ∈ {p . path A (initial A) p ∧ p-io p ∈ LS S s1} =⇒ length p ′ ≤ length p

using scheme[OF ‹finite {p . path A (initial A) p ∧ p-io p ∈ LS S s1}› ‹{p .
path A (initial A) p ∧ p-io p ∈ LS S s1} 6= {}›]

by blast
then have path A (initial A) p and p-io p ∈ LS S s1 and

∧
p ′ . path A (initial

A) p ′ =⇒ p-io p ′ ∈ LS S s1 =⇒ length p ′ ≤ length p
by blast+

have target (initial A) p = t1
using path-ext[OF ‹path A (initial A) p› ‹p-io p ∈ LS S s1 ›] ‹

∧
p ′ . path A

(initial A) p ′ =⇒ p-io p ′ ∈ LS S s1 =⇒ length p ′ ≤ length p›
by (metis (no-types, lifting) Suc-n-not-le-n length-append-singleton)

then show ∃ p. path A (initial A) p ∧ p-io p ∈ LS S s1 ∧ target (initial A) p =
t1

using ‹path A (initial A) p› ‹p-io p ∈ LS S s1 › by blast

show @ p. path A (initial A) p ∧ p-io p ∈ LS S s1 ∧ target (initial A) p = t2
using path-ext by blast

qed

lemma pass-separator-ATC-completely-specified-right :
assumes observable S
and observable M
and s2 ∈ states S
and q1 ∈ states M
and q2 ∈ states M
and is-separator M q1 q2 A t1 t2
and (inputs S) = (inputs M )
and q1 6= q2
and pass-separator-ATC S A s2 t1
and completely-specified S

shows ∃ p . path A (initial A) p ∧ p-io p ∈ LS S s2 ∧ target (initial A) p = t2
and ¬ (∃ p . path A (initial A) p ∧ p-io p ∈ LS S s2 ∧ target (initial A) p =
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t1 )
using pass-separator-ATC-completely-specified-left[OF assms(1 ,2 ,3 ,5 ,4 ) is-separator-sym[OF

assms(6 )] assms(7 ) - assms(9 ,10 )] assms(8 ) by blast+

lemma pass-separator-ATC-reduction-distinction :
assumes observable M
and observable S
and (inputs S) = (inputs M )
and pass-separator-ATC S A s1 t2
and pass-separator-ATC S A s2 t1
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2
and s1 ∈ states S
and s2 ∈ states S
and is-separator M q1 q2 A t1 t2
and completely-specified S

shows s1 6= s2
proof −

have ∃ p. path A (initial A) p ∧ p-io p ∈ LS S s1 ∧ target (initial A) p = t1
using pass-separator-ATC-completely-specified-left[OF assms(2 ,1 ,9 ,6 ,7 ,11 ,3 ,8 ,4 ,12 )]

by blast

moreover have ¬ (∃ p. path A (initial A) p ∧ p-io p ∈ LS S s2 ∧ target (initial
A) p = t1 )

using pass-separator-ATC-completely-specified-right[OF assms(2 ,1 ,10 ,6 ,7 ,11 ,3 ,8 ,5 ,12 )]
by blast

ultimately show s1 6= s2 by blast
qed

lemma pass-separator-ATC-failure-left :
assumes observable M
and observable S
and (inputs S) = (inputs M )
and is-separator M q1 q2 A t1 t2
and ¬ pass-separator-ATC S A s1 t2
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2
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and s1 ∈ states S
shows LS S s1 − LS M q1 6= {}
proof −

have p1 : is-ATC A
using separator-is-ATC [OF assms(4 ,1 ,6 )] by assumption

have p2 : observable (from-FSM S s1 )
using from-FSM-observable[OF assms(2 )] by assumption

have p3 : observable (from-FSM M q1 )
using from-FSM-observable[OF assms(1 )] by assumption

have p4 : (inputs A) ⊆ (inputs (from-FSM M q1 ))
using is-separator-simps(16 )[OF assms(4 )]
unfolding from-FSM-simps[OF ‹q1 ∈ states M ›] is-submachine.simps canoni-

cal-separator-simps assms(3 ) by auto

have p5 : (inputs (from-FSM S s1 )) = (inputs (from-FSM M q1 ))
using assms(3 ,6 ,9 ) by simp

have p6 : pass-ATC (from-FSM M q1 ) A {t2}
using pass-separator-ATC-from-separator-left[OF assms(1 ,6 ,7 ,4 )] by auto

have p7 : ¬ pass-ATC (from-FSM S s1 ) A {t2}
using assms(5 ) by auto

show ?thesis
using pass-ATC-fail-no-reduction[OF p1 p2 p3 p4 p5 p6 p7 ]
unfolding from-FSM-language[OF ‹q1 ∈ states M ›] from-FSM-language[OF

‹s1 ∈ states S›] by blast
qed

lemma pass-separator-ATC-failure-right :
assumes observable M
and observable S
and (inputs S) = (inputs M )
and is-separator M q1 q2 A t1 t2
and ¬ pass-separator-ATC S A s2 t1
and q1 ∈ states M
and q2 ∈ states M
and q1 6= q2
and s2 ∈ states S

shows LS S s2 − LS M q2 6= {}
using pass-separator-ATC-failure-left[OF assms(1−3 ) is-separator-sym[OF assms(4 )]

assms(5 ,7 ,6 ) - assms(9 )] assms(8 ) by blast
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35.3 ATCs Represented as Sets of IO Sequences
fun atc-to-io-set :: ( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′b × ′c) list set where

atc-to-io-set M A = L M ∩ L A

lemma atc-to-io-set-code :
assumes acyclic A
shows atc-to-io-set M A = acyclic-language-intersection M A
using acyclic-language-intersection-completeness[OF assms] unfolding atc-to-io-set.simps

by blast

lemma pass-io-set-from-pass-separator :
assumes is-separator M q1 q2 A t1 t2
and pass-separator-ATC S A s1 t2
and observable M
and observable S
and q1 ∈ states M
and s1 ∈ states S
and (inputs S) = (inputs M )

shows pass-io-set (from-FSM S s1 ) (atc-to-io-set (from-FSM M q1 ) A)
proof (rule ccontr)

assume ¬ pass-io-set (from-FSM S s1 ) (atc-to-io-set (from-FSM M q1 ) A)
then obtain io x y y ′ where io@[(x,y)] ∈ (atc-to-io-set (from-FSM M q1 ) A)

and io@[(x,y ′)] ∈ L (from-FSM S s1 ) and io@[(x,y ′)] /∈ (atc-to-io-set (from-FSM
M q1 ) A)

unfolding pass-io-set-def by blast

have is-ATC A
using separator-is-ATC [OF assms(1 ,3 ,5 )] by assumption

then have acyclic A
unfolding is-ATC-def by auto

have observable (from-FSM S s1 )
using from-FSM-observable[OF ‹observable S›] by assumption

have (inputs A) ⊆ (inputs (from-FSM S s1 ))
by (metis (no-types) assms(1 ) assms(6 ) assms(7 ) from-FSM-simps(2 ) is-separator-simps(16 ))

obtain y ′′ where io @ [(x, y ′′)] ∈ LS A (initial A)
using ‹io@[(x,y)] ∈ (atc-to-io-set (from-FSM M q1 ) A)› unfolding atc-to-io-set.simps

by blast

have pass-ATC (from-FSM S s1 ) A {t2}
using ‹pass-separator-ATC S A s1 t2 › by auto

then have io @ [(x, y ′)] ∈ L A
using pass-ATC-fail[OF ‹is-ATC A›

‹observable (from-FSM S s1 )›
‹(inputs A) ⊆ (inputs (from-FSM S s1 ))›
‹io @ [(x, y ′′)] ∈ LS A (initial A)›
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‹io@[(x,y ′)] ∈ L (from-FSM S s1 )›,
of {t2} ]

by auto

have io-targets A (io @ [(x, y ′)]) (initial A) ∩ {t2} = {}
using pass-ATC-io(2 )[OF ‹pass-ATC (from-FSM S s1 ) A {t2}› ‹is-ATC A›

‹observable (from-FSM S s1 )› ‹(inputs A) ⊆ (inputs (from-FSM S s1 ))› ‹io @ [(x,
y ′)] ∈ L A› ‹io@[(x,y ′)] ∈ L (from-FSM S s1 )›]

unfolding fst-conv by blast

then have io @ [(x, y ′)] ∈ LS M q1
using separator-language(1 ,3 ,4 )[OF assms(1 ) ‹io @ [(x, y ′)] ∈ L A›]
by (metis UnE Un-Diff-cancel ‹io @ [(x, y ′)] ∈ LS A (initial A)› assms(1 )

disjoint-insert(2 ) is-separator-sym separator-language(1 ) singletonI )
then show False

using ‹io @ [(x, y ′)] ∈ L A› ‹io@[(x,y ′)] /∈ (atc-to-io-set (from-FSM M q1 ) A)›

unfolding atc-to-io-set.simps from-FSM-language[OF ‹q1 ∈ states M ›]
by blast

qed

lemma separator-language-last-left :
assumes is-separator M q1 q2 A t1 t2
and completely-specified M
and q1 ∈ states M
and io @ [(x, y)] ∈ L A

obtains y ′′ where io@[(x,y ′′)] ∈ L A ∩ LS M q1
proof −

obtain p t where path A (initial A) (p@[t]) and p-io (p@[t]) = io@[(x,y)]
using language-initial-path-append-transition[OF ‹io @ [(x, y)] ∈ L A›] by blast

then have ¬ deadlock-state A (target (initial A) p)
unfolding deadlock-state.simps by fastforce

have path A (initial A) p
using ‹path A (initial A) (p@[t])› by auto

have p-io p ∈ LS M q1
using separator-path-targets(1 ,2 ,4 )[OF assms(1 ) ‹path A (initial A) p›]
using is-separator-simps(4 ,5 )[OF assms(1 )]
using ‹¬ deadlock-state A (target (initial A) p)› by fastforce

then have io ∈ LS M q1
using ‹p-io (p@[t]) = io@[(x,y)]› by auto

have x ∈ (inputs A)
using ‹io @ [(x, y)] ∈ L A› language-io(1 )
by (metis in-set-conv-decomp)

then have x ∈ (inputs M )
using is-separator-simps(16 )[OF assms(1 )] by blast
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then obtain y ′′ where io@[(x,y ′′)] ∈ LS M q1
using completely-specified-language-extension[OF ‹completely-specified M › ‹q1

∈ states M › ‹io ∈ LS M q1 ›] by blast
then have io@[(x,y ′′)] ∈ L A ∩ LS M q1

using is-separator-simps(9 )[OF assms(1 ) - ‹io @ [(x, y)] ∈ L A›] by blast
then show ?thesis

using that by blast
qed

lemma separator-language-last-right :
assumes is-separator M q1 q2 A t1 t2
and completely-specified M
and q2 ∈ states M
and io @ [(x, y)] ∈ L A

obtains y ′′ where io@[(x,y ′′)] ∈ L A ∩ LS M q2
using separator-language-last-left[OF is-separator-sym[OF assms(1 )] assms(2 ,3 ,4 )]

by blast

lemma pass-separator-from-pass-io-set :
assumes is-separator M q1 q2 A t1 t2
and pass-io-set (from-FSM S s1 ) (atc-to-io-set (from-FSM M q1 ) A)
and observable M
and observable S
and q1 ∈ states M
and s1 ∈ states S
and (inputs S) = (inputs M )
and completely-specified M

shows pass-separator-ATC S A s1 t2
proof (rule ccontr)

assume ¬ pass-separator-ATC S A s1 t2
then have ¬ pass-ATC (from-FSM S s1 ) A {t2} by auto

have is-ATC A
using separator-is-ATC [OF assms(1 ,3 ,5 )] by assumption

then have acyclic A
unfolding is-ATC-def by auto

have observable (from-FSM S s1 )
using from-FSM-observable[OF ‹observable S›] by assumption

have (inputs A) ⊆ (inputs (from-FSM S s1 ))
using assms(1 ) assms(6 ) assms(7 ) is-separator-simps(16 ) by fastforce

obtain io x y y ′ where io @ [(x,y)] ∈ L A
io @ [(x,y ′)] ∈ L (from-FSM S s1 )
(io @ [(x,y ′)] /∈ L A ∨ io-targets A (io @ [(x,y ′)]) (initial A) ∩

{t2} 6= {})
using pass-ATC-io-fail[OF ‹¬ pass-ATC (from-FSM S s1 ) A {t2}› ‹is-ATC

A› ‹observable (from-FSM S s1 )› ‹(inputs A) ⊆ (inputs (from-FSM S s1 ))›]
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using separator-initial(2 )[OF assms(1 )]
using prod.exhaust fst-conv
by (metis empty-iff insert-iff )

show False
proof (cases io-targets A (io @ [(x,y ′)]) (initial A) ∩ {t2} 6= {})

case True
then have io @ [(x,y ′)] ∈ L A

unfolding io-targets.simps LS .simps by force

have io @ [(x,y ′)] ∈ LS M q2 − LS M q1
proof −

have t2 6= t1
by (metis (full-types) ‹is-separator M q1 q2 A t1 t2 › is-separator-simps(15 ))

then show ?thesis
using True separator-language[OF assms(1 ) ‹io @ [(x,y ′)] ∈ L A›]
by blast

qed
then have io @ [(x,y ′)] /∈ LS M q1 by blast

obtain y ′′ where io @ [(x, y ′′)] ∈ LS M q1 ∩ L A
using separator-language-last-left[OF assms(1 ,8 ,5 ) ‹io @ [(x,y)] ∈ L A›] by

blast
then have io @ [(x, y ′)] ∈ LS M q1 ∩ LS A (initial A)

using ‹pass-io-set (from-FSM S s1 ) (atc-to-io-set (from-FSM M q1 ) A)›
using ‹io @ [(x,y ′)] ∈ L (from-FSM S s1 )›
unfolding pass-io-set-def atc-to-io-set.simps from-FSM-language[OF ‹q1 ∈

states M ›] by blast

then show False
using ‹io @ [(x,y ′)] /∈ LS M q1 › by blast

next
case False
then have io @ [(x,y ′)] /∈ L A

using ‹(io @ [(x,y ′)] /∈ L A ∨ io-targets A (io @ [(x,y ′)]) (initial A) ∩ {t2}
6= {})›

by blast

obtain y ′′ where io @ [(x, y ′′)] ∈ LS M q1 ∩ L A
using separator-language-last-left[OF assms(1 ,8 ,5 ) ‹io @ [(x,y)] ∈ L A›] by

blast
then have io @ [(x, y ′)] ∈ L A

using ‹pass-io-set (from-FSM S s1 ) (atc-to-io-set (from-FSM M q1 ) A)›
using ‹io @ [(x,y ′)] ∈ L (from-FSM S s1 )›
unfolding pass-io-set-def atc-to-io-set.simps from-FSM-language[OF ‹q1 ∈

states M ›] by blast

then show False
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using ‹io @ [(x,y ′)] /∈ L A› by blast
qed

qed

lemma pass-separator-pass-io-set-iff :
assumes is-separator M q1 q2 A t1 t2
and observable M
and observable S
and q1 ∈ states M
and s1 ∈ states S
and (inputs S) = (inputs M )
and completely-specified M

shows pass-separator-ATC S A s1 t2 ←→ pass-io-set (from-FSM S s1 ) (atc-to-io-set
(from-FSM M q1 ) A)

using pass-separator-from-pass-io-set[OF assms(1 ) - assms(2−7 )]
pass-io-set-from-pass-separator [OF assms(1 ) - assms(2−6 )] by blast

lemma pass-separator-pass-io-set-maximal-iff :
assumes is-separator M q1 q2 A t1 t2
and observable M
and observable S
and q1 ∈ states M
and s1 ∈ states S
and (inputs S) = (inputs M )
and completely-specified M

shows pass-separator-ATC S A s1 t2 ←→ pass-io-set-maximal (from-FSM S s1 )
(remove-proper-prefixes (atc-to-io-set (from-FSM M q1 ) A))
proof −

have is-ATC A
using separator-is-ATC [OF assms(1 ,2 ,4 )] by assumption

then have acyclic A
unfolding is-ATC-def by auto

then have finite (L A)
unfolding acyclic-alt-def by assumption

then have ∗: finite (atc-to-io-set (from-FSM M q1 ) A)
unfolding atc-to-io-set.simps by blast

have ∗∗:
∧

io ′ io ′′. io ′ @ io ′′ ∈ atc-to-io-set (from-FSM M q1 ) A =⇒ io ′ ∈
atc-to-io-set (from-FSM M q1 ) A

unfolding atc-to-io-set.simps
using language-prefix[of - - from-FSM M q1 initial (from-FSM M q1 )]
using language-prefix[of - - A initial A] by blast

show ?thesis
unfolding pass-separator-pass-io-set-iff [OF assms] remove-proper-prefixes-def
using pass-io-set-maximal-from-pass-io-set[of (atc-to-io-set (from-FSM M q1 )
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A) (from-FSM S s1 ), OF ∗ ] ∗∗ by blast
qed

end

36 State Preambles

This theory defines state preambles. A state preamble P of some state q
of some FSM M is an acyclic single-input submachine of M that contains
for each of its states and defined inputs in that state all transitions of M
and has q as its only deadlock state. That is, P represents a strategy of
reaching q in every complete submachine of M. In testing, preambles are
used to reach states in the SUT that must conform to a single known state
in the specification.
theory State-Preamble
imports ../Product-FSM Backwards-Reachability-Analysis
begin

definition is-preamble :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ bool where
is-preamble S M q =
( acyclic S
∧ single-input S
∧ is-submachine S M
∧ q ∈ reachable-states S
∧ deadlock-state S q
∧ (∀ q ′ ∈ reachable-states S .

(q = q ′ ∨ ¬ deadlock-state S q ′) ∧
(∀ x ∈ inputs M .
(∃ t ∈ transitions S . t-source t = q ′ ∧ t-input t = x)
−→ (∀ t ′ ∈ transitions M . t-source t ′ = q ′ ∧ t-input t ′ = x −→ t ′ ∈

transitions S))))

fun definitely-reachable :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ bool where
definitely-reachable M q = (∃ S . is-preamble S M q)

36.1 Basic Properties
lift-definition initial-preamble :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm is FSM-Impl.initial-singleton

by auto

lemma initial-preamble-simps[simp] :
initial (initial-preamble M ) = initial M
states (initial-preamble M ) = {initial M}
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inputs (initial-preamble M ) = inputs M
outputs (initial-preamble M ) = outputs M
transitions (initial-preamble M ) = {}
by (transfer ; auto)+

lemma is-preamble-initial :
is-preamble (initial-preamble M ) M (initial M )

proof −
have acyclic (initial-preamble M )

by (metis acyclic-code empty-iff initial-preamble-simps(5 ))
moreover have single-input (initial-preamble M )

by auto
moreover have is-submachine (initial-preamble M ) M

by (simp add: fsm-initial)
moreover have (initial M ) ∈ reachable-states (initial-preamble M )

unfolding reachable-states-def using reachable-states-intro by auto
moreover have deadlock-state (initial-preamble M ) (initial M )

by simp
ultimately show ?thesis

unfolding is-preamble-def
using reachable-state-is-state by force

qed

lemma is-preamble-next :
assumes is-preamble S M q
and q 6= initial M
and t ∈ transitions S
and t-source t = initial M

shows is-preamble (from-FSM S (t-target t)) (from-FSM M (t-target t)) q
(is is-preamble ?S ?M q)
proof −

have acyclic S
and single-input S
and is-submachine S M
and q ∈ reachable-states S
and deadlock-state S q
and ∗: (∀ q ′ ∈ reachable-states S . (q = q ′ ∨ ¬ deadlock-state S q ′)

∧ (∀ x ∈ inputs M . (∃ t ∈ transitions S . t-source t = q ′ ∧ t-input t =
x)

−→ (∀ t ′ ∈ transitions M . t-source t ′ = q ′ ∧ t-input t ′

= x
−→ t ′ ∈ transitions S)))

using assms(1 ) unfolding is-preamble-def by linarith+
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have t-target t ∈ states S
using assms(3 ) fsm-transition-target by metis

have t-target t ∈ states M
using ‹is-submachine S M › ‹t-target t ∈ FSM .states S› by auto

have is-acyclic: acyclic ?S
using from-FSM-path-initial[OF ‹t-target t ∈ states S›]
unfolding acyclic.simps from-FSM-simps[OF ‹t-target t ∈ states S›]
using acyclic-paths-from-reachable-states[OF ‹acyclic S›, of [t] t-target t]
by (metis ‹is-submachine S M › assms(3 ) assms(4 ) is-submachine.elims(2 )

prod.collapse single-transition-path target-single-transition)

have is-single-input: single-input ?S
using ‹single-input S›
unfolding single-input.simps from-FSM-simps[OF ‹t-target t ∈ states S›] by

blast

have initial ?S = initial ?M
by (simp add: ‹t-target t ∈ FSM .states M › ‹t-target t ∈ FSM .states S›)

moreover have inputs ?S = inputs ?M
using ‹is-submachine S M › by (simp add: ‹t-target t ∈ FSM .states M › ‹t-target

t ∈ FSM .states S›)
moreover have outputs ?S = outputs ?M
using ‹is-submachine S M › by (simp add: ‹t-target t ∈ FSM .states M › ‹t-target

t ∈ FSM .states S›)
moreover have transitions ?S ⊆ transitions ?M

using ‹is-submachine S M ›
by (simp add: ‹t-target t ∈ FSM .states M › ‹t-target t ∈ FSM .states S›)

ultimately have is-sub : is-submachine ?S ?M
using ‹is-submachine S M › ‹t-target t ∈ FSM .states M › ‹t-target t ∈ FSM .states

S› by auto

have contains-q : q ∈ reachable-states ?S
proof −

obtain qd where qd ∈ reachable-states ?S and deadlock-state ?S qd
using is-acyclic
using acyclic-deadlock-reachable by blast

have qd ∈ reachable-states S
by (metis (no-types, lifting) ‹is-submachine S M › ‹qd ∈ reachable-states

(FSM .from-FSM S (t-target t))›
assms(3 ) assms(4 ) from-FSM-reachable-states in-mono is-submachine.elims(2 )

prod.collapse
reachable-states-intro single-transition-path target-single-transition)

then have deadlock-state S qd
using ‹deadlock-state ?S qd› unfolding deadlock-state.simps
by (simp add: ‹t-target t ∈ FSM .states S›)
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then have qd = q
using ∗ ‹qd ∈ reachable-states S›
by fastforce

then show ?thesis
using ‹qd ∈ reachable-states ?S› by auto

qed

have has-deadlock-q : deadlock-state ?S q
using ∗
by (metis ‹deadlock-state S q› ‹t-target t ∈ FSM .states S› deadlock-state.simps

from-FSM-simps(4 ))

have has-states-prop-1 :
∧

q ′ . q ′ ∈ reachable-states ?S =⇒ deadlock-state ?S q ′

=⇒ q = q ′

proof −
fix q ′ assume q ′ ∈ reachable-states ?S and deadlock-state ?S q ′

have q ′ ∈ reachable-states S
by (metis (no-types, lifting) ‹is-submachine S M › ‹q ′ ∈ reachable-states

(FSM .from-FSM S (t-target t))›
assms(3 ) assms(4 ) from-FSM-reachable-states in-mono is-submachine.elims(2 )

prod.collapse
reachable-states-intro single-transition-path target-single-transition)

then have deadlock-state S q ′

using ‹deadlock-state ?S q ′› unfolding deadlock-state.simps
using ‹q ′ ∈ reachable-states ?S› by (simp add: ‹t-target t ∈ FSM .states S›)

then show q = q ′

using ∗ ‹q ′ ∈ reachable-states S› by fastforce
qed

moreover have has-states-prop-2 :
∧

x t t ′ q ′ .
q ′ ∈ reachable-states ?S =⇒
t ∈ transitions ?S =⇒ t-source t = q ′ =⇒ t-input t = x =⇒
t ′ ∈ transitions ?M =⇒ t-source t ′ = q ′ =⇒ t-input t ′ = x =⇒ t ′ ∈ transitions

?S
proof −

fix x tS tM q ′ assume q ′ ∈ reachable-states ?S and tS ∈ transitions ?S and
t-source tS = q ′

and t-input tS = x and tM ∈ transitions ?M and t-source tM
= q ′

and t-input tM = x

have q ′ ∈ reachable-states S
by (metis (no-types, lifting) ‹is-submachine S M › ‹q ′ ∈ reachable-states

(FSM .from-FSM S (t-target t))›
assms(3 ) assms(4 ) from-FSM-reachable-states in-mono is-submachine.elims(2 )

prod.collapse
reachable-states-intro single-transition-path target-single-transition)

1120



have tS ∈ transitions S
using ‹tS ∈ transitions ?S› by (simp add: ‹t-target t ∈ FSM .states S›)

have tM ∈ transitions M
using ‹tM ∈ transitions ?M ›
using ‹t-target t ∈ FSM .states M › by (simp add: ‹t-target t ∈ FSM .states

S›)
have t-source tS ∈ states (from-FSM S (t-target t))

using ‹tS ∈ transitions ?S› by auto
have t-source tM ∈ states (from-FSM M (t-target t))

using ‹tM ∈ transitions ?M › by auto

have q ′ ∈ reachable-states ?M
using ‹q ′ ∈ reachable-states ?S› submachine-path[OF ‹is-submachine ?S ?M ›]
unfolding reachable-states-def

proof −
assume q ′ ∈ {target (FSM .initial (FSM .from-FSM S (t-target t))) p |p.

path (FSM .from-FSM S (t-target t)) (FSM .initial (FSM .from-FSM
S (t-target t))) p}

then show q ′ ∈ {target (FSM .initial (FSM .from-FSM M (t-target t))) ps
|ps.

path (FSM .from-FSM M (t-target t)) (FSM .initial (FSM .from-FSM
M (t-target t))) ps}

using ‹FSM .initial (FSM .from-FSM S (t-target t)) = FSM .initial (FSM .from-FSM
M (t-target t))›

‹
∧

q p. path (FSM .from-FSM S (t-target t)) q p =⇒ path (FSM .from-FSM
M (t-target t)) q p›

by fastforce
qed

show tM ∈ transitions ?S
using ∗ ‹q ′ ∈ reachable-states S›

‹tM ∈ FSM .transitions M › ‹tS ∈ FSM .transitions S› ‹t-input tM = x›
‹t-input tS = x›

‹t-source tM = q ′› ‹t-source tS = q ′› ‹t-target t ∈ FSM .states S›
by fastforce

qed

show ?thesis
unfolding is-preamble-def
using is-acyclic

is-single-input
is-sub
contains-q
has-deadlock-q
has-states-prop-1
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using has-states-prop-2 by blast
qed

lemma observable-preamble-paths :
assumes is-preamble P M q ′

and observable M
and path M q p
and p-io p ∈ LS P q
and q ∈ reachable-states P

shows path P q p
using assms(3 ,4 ,5 ) proof (induction p arbitrary: q rule: list.induct)

case Nil
then show ?case by auto

next
case (Cons t p)

have is-submachine P M
and ∗:

∧
q ′ x t t ′ . q ′∈reachable-states P =⇒ x∈FSM .inputs M =⇒

t∈FSM .transitions P =⇒ t-source t = q ′ =⇒ t-input t = x =⇒
t ′∈FSM .transitions M =⇒ t-source t ′ = q ′ =⇒ t-input t ′ = x =⇒ t ′ ∈

FSM .transitions P
using assms(1 ) unfolding is-preamble-def by blast+

have observable P
using submachine-observable[OF ‹is-submachine P M › ‹observable M ›] by blast

obtain t ′ where t ′∈FSM .transitions P and t-source t ′ = q and t-input t ′ =
t-input t

using ‹p-io (t # p) ∈ LS P q› by auto

have t-source t = q and t ∈ transitions M and t-input t ∈ inputs M
using ‹path M q (t # p)› by auto

have t ∈ transitions P
using ∗[OF ‹q ∈ reachable-states P› ‹t-input t ∈ inputs M › ‹t ′∈FSM .transitions

P›
‹t-source t ′ = q› ‹t-input t ′ = t-input t› ‹t ∈ transitions M › ‹t-source

t = q›]
by auto

have path M (t-target t) p
using ‹path M q (t # p)› by auto

moreover have p-io p ∈ LS P (t-target t)
proof −

have f1 : t-input t = fst (t-input t, t-output t)
by (metis fst-conv)

have f2 : t-output t = snd (t-input t, t-output t)
by auto
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have f3 : (t-input t, t-output t) # p-io p ∈ LS P (t-source t)
using Cons.prems(2 ) ‹t-source t = q› by fastforce

have L (FSM .from-FSM P (t-target t)) = LS P (t-target t)
by (meson ‹t ∈ FSM .transitions P› from-FSM-language fsm-transition-target)

then show ?thesis
using f3 f2 f1 ‹observable P› ‹t ∈ FSM .transitions P› observable-language-next

by blast
qed
moreover have t-target t ∈ reachable-states P

using ‹t ∈ transitions P› ‹t-source t = q› ‹q ∈ reachable-states P›
by (meson reachable-states-next)

ultimately have path P (t-target t) p
using Cons.IH by blast

then show ?case
using ‹t ∈ transitions P› ‹t-source t = q› by auto

qed

lemma preamble-pass-path :
assumes is-preamble P M q
and

∧
io x y y ′ . io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L M ′ =⇒ io@[(x,y ′)] ∈

L P
and completely-specified M ′

and inputs M ′ = inputs M
obtains p where path P (initial P) p and target (initial P) p = q and p-io p ∈
L M ′

proof −

let ?ps = {p . path P (initial P) p ∧ p-io p ∈ L M ′}
have ?ps 6= {}
proof −

have [] ∈ ?ps by auto
then show ?thesis by blast

qed
moreover have finite ?ps
proof −

have acyclic P
using assms(1 ) unfolding is-preamble-def by blast

have finite {p. path P (FSM .initial P) p}
using acyclic-finite-paths-from-reachable-state[OF ‹acyclic P›, of [] initial P]

by auto
then show ?thesis

by simp
qed
ultimately obtain p where p ∈ ?ps and

∧
p ′ . p ′ ∈ ?ps =⇒ length p ′ ≤ length

p
by (meson leI max-length-elem)

then have path P (initial P) p

1123



and p-io p ∈ L M ′

by blast+

show ?thesis
proof (cases target (initial P) p = q)

case True
then show ?thesis using that[OF ‹path P (initial P) p› - ‹p-io p ∈ L M ′›] by

blast
next

case False

then have ¬ deadlock-state P (target (initial P) p)
using reachable-states-intro[OF ‹path P (initial P) p›] assms(1 ) unfolding

is-preamble-def by fastforce
then obtain t where t ∈ transitions P and t-source t = target (initial P) p

by auto
then have path P (initial P) (p@[t])

using ‹path P (initial P) p› path-append-transition by simp
have (p-io p) @ [(t-input t, t-output t)] ∈ L P

using language-intro[OF ‹path P (initial P) (p@[t])›] by simp

have t-input t ∈ inputs M ′

using assms(1 ,4 ) fsm-transition-input[OF ‹t ∈ transitions P›] unfolding
is-preamble-def is-submachine.simps by blast

obtain p ′ where path M ′ (initial M ′) p ′ and p-io p ′ = p-io p
using ‹p-io p ∈ L M ′› by auto

obtain t ′ where t ′ ∈ transitions M ′ and t-source t ′ = target (initial M ′) p ′

and t-input t ′ = t-input t
using ‹completely-specified M ′› ‹t-input t ∈ inputs M ′› path-target-is-state[OF

‹path M ′ (initial M ′) p ′›]
unfolding completely-specified.simps by blast

then have path M ′ (initial M ′) (p ′@[t ′])
using ‹path M ′ (initial M ′) p ′› path-append-transition by simp

have (p-io p) @ [(t-input t, t-output t ′)] ∈ L M ′

using language-intro[OF ‹path M ′ (initial M ′) (p ′@[t ′])›]
unfolding ‹p-io p ′ = p-io p›[symmetric] ‹t-input t ′ = t-input t›[symmetric]

by simp

have (p-io p) @ [(t-input t, t-output t ′)] ∈ L P
using assms(2 )[OF ‹(p-io p) @ [(t-input t, t-output t)] ∈ L P› ‹(p-io p) @

[(t-input t, t-output t ′)] ∈ L M ′›]
by assumption

then obtain pt ′ where path P (initial P) pt ′ and p-io pt ′ = (p-io p) @ [(t-input
t, t-output t ′)]

by auto
then have pt ′ ∈ ?ps
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using ‹(p-io p) @ [(t-input t, t-output t ′)] ∈ L M ′› by auto
then have length pt ′ ≤ length p

using ‹
∧

p ′ . p ′ ∈ ?ps =⇒ length p ′ ≤ length p› by blast
moreover have length pt ′ > length p

using ‹p-io pt ′ = (p-io p) @ [(t-input t, t-output t ′)]›
unfolding length-map[of (λ t . (t-input t, t-output t)), symmetric] by simp

ultimately have False
by simp

then show ?thesis
by simp

qed
qed

lemma preamble-maximal-io-paths :
assumes is-preamble P M q
and observable M
and path P (initial P) p
and target (initial P) p = q

shows @ io ′ . io ′ 6= [] ∧ p-io p @ io ′ ∈ L P
proof −

have deadlock-state P q
and is-submachine P M

using assms(1 ) unfolding is-preamble-def by blast+

have observable P
using ‹observable M › ‹is-submachine P M ›
using submachine-observable by blast

show @ io ′ . io ′ 6= [] ∧ p-io p @ io ′ ∈ L P
proof

assume ∃ io ′. io ′ 6= [] ∧ p-io p @ io ′ ∈ L P
then obtain io ′ where io ′ 6= [] and p-io p @ io ′ ∈ L P

by blast

obtain p1 p2 where path P (FSM .initial P) p1
and path P (target (FSM .initial P) p1 ) p2
and p-io p1 = p-io p
and p-io p2 = io ′

using language-state-split[OF ‹p-io p @ io ′ ∈ L P›] by blast

have p1 = p
using observable-path-unique[OF ‹observable P› ‹path P (FSM .initial P) p1 ›

‹path P (FSM .initial P) p› ‹p-io p1 = p-io p›]
by assumption

have io ′ ∈ LS P q
using ‹path P (target (FSM .initial P) p1 ) p2 › ‹p-io p2 = io ′›
unfolding ‹p1 = p› assms(4 ) by auto
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then show False
using ‹io ′ 6= []› ‹deadlock-state P q›
unfolding deadlock-state-alt-def
by blast

qed
qed

lemma preamble-maximal-io-paths-rev :
assumes is-preamble P M q
and observable M
and io ∈ L P
and @ io ′ . io ′ 6= [] ∧ io @ io ′ ∈ L P

obtains p where path P (initial P) p
and p-io p = io
and target (initial P) p = q

proof −
have acyclic P
and deadlock-state P q
and is-submachine P M
and

∧
q ′ . q ′∈reachable-states P =⇒ (q = q ′ ∨ ¬ deadlock-state P q ′)

using assms(1 ) unfolding is-preamble-def by blast+

have observable P
using ‹observable M › ‹is-submachine P M ›
using submachine-observable by blast

obtain p where path P (initial P) p and p-io p = io
using ‹io ∈ L P› by auto

moreover have target (initial P) p = q
proof (rule ccontr)

assume target (FSM .initial P) p 6= q
then have ¬ deadlock-state P (target (FSM .initial P) p)
using ‹

∧
q ′ . q ′∈reachable-states P =⇒ (q = q ′ ∨ ¬ deadlock-state P q ′)›[OF

reachable-states-intro[OF ‹path P (initial P) p›]] by simp
then obtain t where t ∈ transitions P and t-source t = target (initial P) p

by auto
then have path P (initial P) (p @ [t])

using path-append-transition[OF ‹path P (initial P) p›] by auto
then have p-io (p@[t]) ∈ L P

unfolding LS .simps by (metis (mono-tags, lifting) mem-Collect-eq)
then have io @ [(t-input t, t-output t)] ∈ L P

using ‹p-io p = io› by auto
then show False

using assms(4 ) by auto
qed

ultimately show ?thesis using that by blast
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qed

lemma is-preamble-is-state :
assumes is-preamble P M q
shows q ∈ states M
using assms unfolding is-preamble-def
by (meson nil path-nil-elim reachable-state-is-state submachine-path)

36.2 Calculating State Preambles via Backwards Reachabil-
ity Analysis

fun d-states :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒ ′a ⇒ ( ′a × ′b) list where
d-states M q = (if q = initial M

then []
else select-inputs (h M ) (initial M ) (inputs-as-list M ) (removeAll

q (removeAll (initial M ) (states-as-list M ))) {q} [])

lemma d-states-index-properties :
assumes i < length (d-states M q)

shows fst (d-states M q ! i) ∈ (states M − {q})
fst (d-states M q ! i) 6= q
snd (d-states M q ! i) ∈ inputs M
(∀ qx ′ ∈ set (take i (d-states M q)) . fst (d-states M q ! i) 6= fst qx ′)
(∃ t ∈ transitions M . t-source t = fst (d-states M q ! i) ∧ t-input t = snd

(d-states M q ! i))
(∀ t ∈ transitions M . (t-source t = fst (d-states M q ! i) ∧ t-input t = snd

(d-states M q ! i)) −→ (t-target t = q ∨ (∃ qx ′ ∈ set (take i (d-states M q)) . fst
qx ′ = (t-target t))))
proof −

have combined-goals : fst (d-states M q ! i) ∈ (states M − {q})
∧ fst (d-states M q ! i) 6= q
∧ snd (d-states M q ! i) ∈ inputs M
∧ (∀ qx ′ ∈ set (take i (d-states M q)) . fst (d-states M q ! i)

6= fst qx ′)
∧ (∃ t ∈ transitions M . t-source t = fst (d-states M q ! i) ∧

t-input t = snd (d-states M q ! i))
∧ (∀ t ∈ transitions M . (t-source t = fst (d-states M q !

i) ∧ t-input t = snd (d-states M q ! i)) −→ (t-target t = q ∨ (∃ qx ′ ∈ set (take i
(d-states M q)) . fst qx ′ = (t-target t))))

proof (cases q = initial M )
case True
then have d-states M q = [] by auto
then have False using assms by auto
then show ?thesis by simp

next
case False
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then have ∗: d-states M q = select-inputs (h M ) (initial M ) (inputs-as-list M )
(removeAll q (removeAll (initial M ) (states-as-list M ))) {q} [] by auto

have initial M ∈ states M by auto
then have insert (FSM .initial M ) (set (removeAll q (removeAll (FSM .initial

M ) (states-as-list M )))) = states M − {q}
using states-as-list-set False by auto

have i < length (select-inputs (h M ) (FSM .initial M ) (inputs-as-list M )
(removeAll q (removeAll (FSM .initial M ) (states-as-list M ))) {q} [])

using assms ∗ by simp
moreover have length [] ≤ i by auto
moreover have distinct (map fst []) by auto
moreover have {q} = {q} ∪ set (map fst []) by auto
moreover have initial M /∈ {q} using False by auto

moreover have distinct (removeAll q (removeAll (FSM .initial M ) (states-as-list
M ))) using states-as-list-distinct

by (simp add: distinct-removeAll)
moreover have FSM .initial M /∈ set (removeAll q (removeAll (FSM .initial

M ) (states-as-list M ))) by auto
moreover have set (removeAll q (removeAll (FSM .initial M ) (states-as-list

M ))) ∩ {q} = {} by auto

moreover show ?thesis
using select-inputs-index-properties[OF calculation]

unfolding ∗[symmetric] inputs-as-list-set ‹insert (FSM .initial M ) (set (removeAll
q (removeAll (FSM .initial M ) (states-as-list M )))) = states M − {q}› by blast

qed

then show fst (d-states M q ! i) ∈ (states M − {q})
fst (d-states M q ! i) 6= q
snd (d-states M q ! i) ∈ inputs M
(∀ qx ′ ∈ set (take i (d-states M q)) . fst (d-states M q ! i) 6= fst qx ′)
(∃ t ∈ transitions M . t-source t = fst (d-states M q ! i) ∧ t-input t = snd

(d-states M q ! i))
(∀ t ∈ transitions M . (t-source t = fst (d-states M q ! i) ∧ t-input t = snd

(d-states M q ! i)) −→ (t-target t = q ∨ (∃ qx ′ ∈ set (take i (d-states M q)) . fst
qx ′ = (t-target t))))

by blast+
qed

lemma d-states-distinct :
distinct (map fst (d-states M q))

proof −
have ∗:

∧
i q . i < length (map fst (d-states M q)) =⇒ q ∈ set (take i (map fst

(d-states M q))) =⇒ ((map fst (d-states M q)) ! i) 6= q
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using d-states-index-properties(2 ,4 ) by fastforce
then have (

∧
i. i < length (map fst (d-states M q)) =⇒

map fst (d-states M q) ! i /∈ set (take i (map fst (d-states M q))))
proof −

fix i :: nat
assume a1 : i < length (map fst (d-states M q))
then have ∀ p. p /∈ set (take i (d-states M q)) ∨ fst (d-states M q ! i) 6= fst p

by (metis (no-types) d-states-index-properties(4 ) length-map)
then show map fst (d-states M q) ! i /∈ set (take i (map fst (d-states M q)))

using a1 by (metis (no-types) length-map list-map-source-elem nth-map
take-map)

qed
then show ?thesis

using list-distinct-prefix[of map fst (d-states M q)] by blast
qed

lemma d-states-states :
set (map fst (d-states M q)) ⊆ states M − {q}
using d-states-index-properties(1 )[of - M q] list-property-from-index-property[of

map fst (d-states M q) λq ′ . q ′ ∈ states M − {q}]
by (simp add: subsetI )

lemma d-states-size :
assumes q ∈ states M
shows length (d-states M q) ≤ size M − 1

proof −
show ?thesis

using d-states-states[of M q]
d-states-distinct[of M q]
fsm-states-finite[of M ]
assms

by (metis card-Diff-singleton-if card-mono distinct-card finite-Diff length-map
size-def )
qed

lemma d-states-initial :
assumes qx ∈ set (d-states M q)
and fst qx = initial M

shows (last (d-states M q)) = qx
using assms(1 ) select-inputs-initial[of qx h M initial M - - - [], OF - assms(2 )]
by (cases q = initial M ; auto)

lemma d-states-q-noncontainment :
shows ¬(∃ qqx ∈ set (d-states M q) . fst qqx = q)
using d-states-index-properties(2 )
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by (metis in-set-conv-nth)

lemma d-states-acyclic-paths ′ :
fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes path (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states M

q))) q ′ p
and target q ′ p = q ′

and p 6= []
shows False
proof −

from ‹p 6= []› obtain p ′ t ′ where p = t ′#p ′

using list.exhaust by blast
then have path (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states

M q))) q ′ (p@[t ′])
using assms(1 ,2 ) by fastforce

define f :: ( ′a × ′b × ′c × ′a) ⇒ nat
where f-def : f = (λ t . the (find-index (λ qx . fst qx = t-source t ∧ snd qx =

t-input t) (d-states M q)))

have f-prop:
∧

t . t ∈ set (p@[t ′]) =⇒ (f t < length (d-states M q))
∧ ((d-states M q) ! (f t) = (t-source t, t-input t))
∧ (∀ j < f t . fst (d-states M q ! j) 6= t-source t)

proof −
fix t assume t ∈ set (p@[t ′])
then have t ∈ set p using ‹p = t ′#p ′› by auto
then have t ∈ transitions M and (t-source t, t-input t) ∈ set (d-states M q)

using assms(1 ) path-transitions by fastforce+
then have ∃ qx ∈ set (d-states M q) . (λ qx . fst qx = t-source t ∧ snd qx =

t-input t) qx
by (meson fst-conv snd-conv)

then have find-index (λ qx . fst qx = t-source t ∧ snd qx = t-input t) (d-states
M q) 6= None

by (simp add: find-index-exhaustive)
then obtain i where ∗: find-index (λ qx . fst qx = t-source t ∧ snd qx =

t-input t) (d-states M q) = Some i
by auto

have f t < length (d-states M q)
unfolding f-def using find-index-index(1 )[OF ∗] unfolding ∗ by simp

moreover have ((d-states M q) ! (f t) = (t-source t, t-input t))
unfolding f-def using find-index-index(2 )[OF ∗]
by (metis ∗ option.sel prod.collapse)

moreover have ∀ j < f t . fst (d-states M q ! j) 6= t-source t
unfolding f-def using find-index-index(3 )[OF ∗] unfolding ∗
using d-states-distinct[of M q]
by (metis (mono-tags, lifting) calculation(1 ) calculation(2 ) distinct-conv-nth

fst-conv length-map less-imp-le less-le-trans not-less nth-map option.sel snd-conv)
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ultimately show (f t < length (d-states M q))
∧ ((d-states M q) ! (f t) = (t-source t, t-input t))
∧ (∀ j < f t . fst (d-states M q ! j) 6= t-source t) by

simp
qed

have ∗:
∧

i . Suc i < length (p@[t ′]) =⇒ f ((p@[t ′]) ! i) > f ((p@[t ′]) ! (Suc i))
proof −

fix i assume Suc i < length (p@[t ′])
then have (p@[t ′]) ! i ∈ set (p@[t ′]) and (p@[t ′]) ! (Suc i) ∈ set (p@[t ′])

using Suc-lessD nth-mem by blast+
then have (p@[t ′]) ! i ∈ transitions M and (p@[t ′]) ! Suc i ∈ transitions M
using path-transitions[OF ‹path (filter-transitions M (λ t . (t-source t, t-input

t) ∈ set (d-states M q))) q ′ (p@[t ′])›]
using filter-transitions-simps(5 ) by blast+

have f ((p@[t ′]) ! i) < length (d-states M q)
and (d-states M q) ! (f ((p@[t ′]) ! i)) = (t-source ((p@[t ′]) ! i), t-input ((p@[t ′])

! i))
and (∀ j<f ((p@[t ′]) ! i). fst (d-states M q ! j) 6= t-source ((p@[t ′]) ! i))

using f-prop[OF ‹(p@[t ′]) ! i ∈ set (p@[t ′])›] by auto

have f ((p@[t ′]) ! Suc i) < length (d-states M q)
and (d-states M q) ! (f ((p@[t ′]) ! Suc i)) = (t-source ((p@[t ′]) ! Suc i), t-input

((p@[t ′]) ! Suc i))
and (∀ j<f ((p@[t ′]) ! Suc i). fst (d-states M q ! j) 6= t-source ((p@[t ′]) ! Suc

i))
using f-prop[OF ‹(p@[t ′]) ! Suc i ∈ set (p@[t ′])›] by auto

have t-target ((p@[t ′]) ! i) = t-source ((p@[t ′]) ! Suc i)
using ‹Suc i < length (p@[t ′])› ‹path (filter-transitions M (λ t . (t-source t,

t-input t) ∈ set (d-states M q))) q ′ (p@[t ′])›
by (simp add: path-source-target-index)

then have t-target ((p@[t ′]) ! i) 6= q
using d-states-index-properties(2 )[OF ‹f ((p@[t ′]) ! Suc i) < length (d-states

M q)›]
unfolding ‹(d-states M q) ! (f ((p@[t ′]) ! Suc i)) = (t-source ((p@[t ′]) ! Suc

i), t-input ((p@[t ′]) ! Suc i))› by auto
then have (∃ qx ′∈set (take (f ((p@[t ′]) ! i)) (d-states M q)). fst qx ′ = t-target

((p@[t ′]) ! i))
using d-states-index-properties(6 )[OF ‹f ((p@[t ′]) ! i) < length (d-states M

q)›] unfolding ‹(d-states M q) ! (f ((p@[t ′]) ! i)) = (t-source ((p@[t ′]) ! i), t-input
((p@[t ′]) ! i))› fst-conv snd-conv

using ‹(p@[t ′]) ! i ∈ transitions M ›
by blast

then have (∃ qx ′∈set (take (f ((p@[t ′]) ! i)) (d-states M q)). fst qx ′ = t-source
((p@[t ′]) ! Suc i))

unfolding ‹t-target ((p@[t ′]) ! i) = t-source ((p@[t ′]) ! Suc i)› by assumption
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then obtain j where fst (d-states M q ! j) = t-source ((p@[t ′]) ! Suc i) and j
< f ((p@[t ′]) ! i)

by (metis (no-types, lifting) ‹f ((p@[t ′]) ! i) < length (d-states M q)›
in-set-conv-nth leD length-take min-def-raw nth-take)

then show f ((p@[t ′]) ! i) > f ((p@[t ′]) ! (Suc i))
using ‹(∀ j<f ((p@[t ′]) ! Suc i). fst (d-states M q ! j) 6= t-source ((p@[t ′]) !

Suc i))›
using leI le-less-trans by blast

qed

have
∧

i j . j < i =⇒ i < length (p@[t ′]) =⇒ f ((p@[t ′]) ! j) > f ((p@[t ′]) ! i)
using list-index-fun-gt[of p@[t ′] f ] ∗ by blast

then have f t ′ < f t ′

unfolding ‹p = t ′#p ′› by fastforce
then show False

by auto
qed

lemma d-states-acyclic-paths :
fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes path (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states M

q))) q ′ p
(is path ?FM q ′ p)

shows distinct (visited-states q ′ p)
proof (rule ccontr)

assume ¬ distinct (visited-states q ′ p)

obtain i j where p1 :take j (drop i p) 6= []
and p2 :target (target q ′ (take i p)) (take j (drop i p)) = (target q ′ (take

i p))
and p3 :path ?FM (target q ′ (take i p)) (take j (drop i p))

using cycle-from-cyclic-path[OF assms ‹¬ distinct (visited-states q ′ p)›] by blast

show False
using d-states-acyclic-paths ′[OF p3 p2 p1 ] by assumption

qed

lemma d-states-induces-state-preamble-helper-acyclic :
shows acyclic (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states M

q)))
unfolding acyclic.simps
using d-states-acyclic-paths by force

lemma d-states-induces-state-preamble-helper-single-input :
shows single-input (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states

M q)))
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(is single-input ?FM )
unfolding single-input.simps filter-transitions-simps
by (metis (no-types, lifting) d-states-distinct eq-key-imp-eq-value mem-Collect-eq)

lemma d-states-induces-state-preamble :
assumes ∃ qx ∈ set (d-states M q) . fst qx = initial M
shows is-preamble (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states

M q))) M q
(is is-preamble ?S M q)

proof (cases q = initial M )
case True
then have d-states M q = [] by auto
then show ?thesis using assms(1 ) by auto

next
case False

have is-acyclic: acyclic ?S
using d-states-induces-state-preamble-helper-acyclic[of M q] by presburger

have is-single-input: single-input ?S
using d-states-induces-state-preamble-helper-single-input[of M q] by presburger

have is-sub : is-submachine ?S M
unfolding is-submachine.simps filter-transitions-simps by blast

have has-deadlock-q : deadlock-state ?S q
using d-states-q-noncontainment[of M q] unfolding deadlock-state.simps
by fastforce

have
∧

q ′ . q ′ ∈ reachable-states ?S =⇒ q ′ 6= q =⇒ ¬ deadlock-state ?S q ′

proof −
fix q ′ assume q ′ ∈ reachable-states ?S and q ′ 6= q
then obtain p where path ?S (initial ?S) p and target (initial ?S) p = q ′

unfolding reachable-states-def by auto

have ∃ qx ∈ set (d-states M q) . fst qx = q ′

proof (cases p rule: rev-cases)
case Nil
then show ?thesis
using assms(1 ) ‹target (initial ?S) p = q ′› unfolding filter-transitions-simps

by simp
next

case (snoc p ′ t)
then have t ∈ transitions ?S and t-target t = q ′

using ‹path ?S (initial ?S) p› ‹target (initial ?S) p = q ′› by auto
then have (t-source t, t-input t) ∈ set (d-states M q)

by simp
then obtain i where i < length (d-states M q) and d-states M q ! i =
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(t-source t, t-input t)
by (meson in-set-conv-nth)

have t ∈ transitions M
using ‹t ∈ transitions ?S›
using is-sub by auto

then show ?thesis
using ‹t-target t = q ′› ‹q ′ 6= q›
using d-states-index-properties(6 )[OF ‹i < length (d-states M q)›]
unfolding ‹d-states M q ! i = (t-source t, t-input t)› fst-conv snd-conv
by (metis in-set-takeD)

qed

then obtain qx where qx ∈ set (d-states M q) and fst qx = q ′ by blast

then have (∃ t ∈ transitions M . t-source t = fst qx ∧ t-input t = snd qx)
using d-states-index-properties(5 )[of - M q]
by (metis in-set-conv-nth)

then have (∃ t ∈ transitions ?S . t-source t = fst qx ∧ t-input t = snd qx)
using ‹qx ∈ set (d-states M q)› by fastforce

then show ¬ deadlock-state ?S q ′

unfolding deadlock-state.simps using ‹fst qx = q ′› by blast
qed

then have has-states-prop-1 :
∧

q ′ . q ′ ∈ reachable-states ?S =⇒ (q = q ′ ∨ ¬
deadlock-state ?S q ′)

by blast

have has-states-prop-2 :
∧

q ′ x t t ′. q ′ ∈ reachable-states ?S =⇒ x ∈ inputs M
=⇒

t ∈ transitions ?S =⇒ t-source t = q ′ =⇒ t-input t = x =⇒
t ′∈ transitions M =⇒ t-source t ′ = q ′ =⇒ t-input t ′ = x =⇒ t ′ ∈

transitions ?S
by simp

have contains-q : q ∈ reachable-states ?S
using ‹

∧
q ′. [[q ′ ∈ reachable-states ?S ; q ′ 6= q]] =⇒ ¬ deadlock-state ?S q ′›

acyclic-deadlock-reachable is-acyclic
by blast

show ?thesis
unfolding is-preamble-def
using is-acyclic

is-single-input
is-sub
contains-q
has-deadlock-q
has-states-prop-1 has-states-prop-2
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by blast
qed

fun calculate-state-preamble-from-input-choices :: ( ′a::linorder , ′b::linorder , ′c) fsm
⇒ ′a ⇒ ( ′a, ′b, ′c) fsm option

where
calculate-state-preamble-from-input-choices M q = (if q = initial M

then Some (initial-preamble M )
else
(let DS = (d-states M q);

DSS = set DS
in (case DS of

[] ⇒ None |
- ⇒ if fst (last DS) = initial M

then Some (filter-transitions M (λ t . (t-source t, t-input t) ∈ DSS))
else None)))

lemma calculate-state-preamble-from-input-choices-soundness :
assumes calculate-state-preamble-from-input-choices M q = Some S
shows is-preamble S M q

proof (cases q = initial M )
case True
then have S = initial-preamble M using assms by auto
then show ?thesis

using is-preamble-initial[of M ] True by presburger
next

case False

then have S = (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states
M q)))

and length (d-states M q) 6= 0
and fst (last (d-states M q)) = initial M

using assms by (cases (d-states M q); cases fst (last (d-states M q)) = initial
M ; simp)+

then have ∃ qx ∈ set (d-states M q) . fst qx = initial M
by auto

then show ?thesis
using d-states-induces-state-preamble
unfolding ‹S = (filter-transitions M (λ t . (t-source t, t-input t) ∈ set (d-states

M q)))›
by blast

qed

lemma calculate-state-preamble-from-input-choices-exhaustiveness :
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assumes ∃ S . is-preamble S M q
shows calculate-state-preamble-from-input-choices M q 6= None

proof (cases q = initial M )
case True
then show ?thesis by auto

next
case False

obtain S where is-preamble S M q
using assms by blast

then have acyclic S
and single-input S
and is-submachine S M
and q ∈ reachable-states S
and

∧
q ′ . q ′ ∈ reachable-states S =⇒ (q = q ′ ∨ ¬ deadlock-state S q ′)

and ∗:
∧

q ′ x . q ′ ∈ reachable-states S =⇒ x ∈ inputs M =⇒ (∃ t ∈
transitions S . t-source t = q ′ ∧ t-input t = x) =⇒ (∀ t ′ ∈ transitions M . t-source
t ′ = q ′ ∧ t-input t ′ = x −→ t ′ ∈ transitions S)

unfolding is-preamble-def by blast+

have p1 : (
∧

q x. q ∈ reachable-states S =⇒ h S (q, x) 6= {} =⇒ h S (q, x) = h
M (q, x))

proof −
fix q x assume q ∈ reachable-states S and h S (q, x) 6= {}

then have x ∈ inputs M
using ‹is-submachine S M › fsm-transition-input by force

have (∃ t ∈ transitions S . t-source t = q ∧ t-input t = x)
using ‹h S (q, x) 6= {}› by fastforce

have
∧

y q ′′ . (y,q ′′) ∈ h S (q,x) =⇒ (y,q ′′) ∈ h M (q,x)
using ‹is-submachine S M › by force

moreover have
∧

y q ′′ . (y,q ′′) ∈ h M (q,x) =⇒ (y,q ′′) ∈ h S (q,x)
using ∗[OF ‹q ∈ reachable-states S› ‹x ∈ inputs M › ‹(∃ t ∈ transitions S .

t-source t = q ∧ t-input t = x)›]
unfolding h.simps by force

ultimately show h S (q, x) = h M (q, x)
by force

qed

have p2 :
∧

q ′. q ′ ∈ reachable-states S =⇒ deadlock-state S q ′ =⇒ q ′ ∈ {q} ∪ set
(map fst [])

using ‹
∧

q ′ . q ′ ∈ reachable-states S =⇒ (q = q ′ ∨ ¬ deadlock-state S q ′)› by
fast

have q ∈ states M
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using ‹q ∈ reachable-states S› submachine-reachable-subset[OF ‹is-submachine
S M ›]

by (meson assms is-preamble-is-state)
then have p3 : states M = insert (FSM .initial S) (set (removeAll q (removeAll

(initial M ) (states-as-list M ))) ∪ {q} ∪ set (map fst []))
using states-as-list-set[of M ] fsm-initial[of M ]
unfolding submachine-simps[OF ‹is-submachine S M ›]
by auto

have p4 : initial S /∈ set (removeAll q (removeAll (initial M ) (states-as-list M )))
∪ {q} ∪ set (map fst [])

using False
unfolding submachine-simps[OF ‹is-submachine S M ›] by force

have fst (last (d-states M q)) = FSM .initial M and length (d-states M q) > 0
using False select-inputs-from-submachine[OF ‹single-input S› ‹acyclic S›

‹is-submachine S M › p1 p2 p3 p4 ]
unfolding d-states.simps submachine-simps[OF ‹is-submachine S M ›]
by auto

have (d-states M q) 6= []
using ‹length (d-states M q) > 0 › by auto

then obtain dl dl ′ where (d-states M q) = dl # dl ′
using list.exhaust by blast

then have (fst (last (dl#dl ′)) = FSM .initial M ) = True using ‹fst (last (d-states
M q)) = FSM .initial M › by simp

then show ?thesis
using False
unfolding calculate-state-preamble-from-input-choices.simps Let-def ‹(d-states

M q) = dl # dl ′›
by auto

qed

36.3 Minimal Sequences to Failures extending Preambles
definition sequence-to-failure-extending-preamble-path ::
( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′a × ( ′a, ′b, ′c) fsm) set ⇒ ( ′a× ′b× ′c× ′a) list
⇒ ( ′b × ′c) list ⇒ bool

where
sequence-to-failure-extending-preamble-path M M ′ PS p io = (∃ q P . q ∈ states

M
∧ (q,P) ∈ PS
∧ path P (initial P) p
∧ target (initial P) p = q
∧ ((p-io p) @ butlast io)

∈ L M
∧ ((p-io p) @ io) /∈ L M
∧ ((p-io p) @ io) ∈ L M ′)
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lemma sequence-to-failure-extending-preamble-ex :
assumes (initial M , (initial-preamble M )) ∈ PS (is (initial M ,?P) ∈ PS)
and ¬ L M ′ ⊆ L M

obtains p io where sequence-to-failure-extending-preamble-path M M ′ PS p io
proof −

obtain io where io ∈ L M ′ − L M
using ‹¬ L M ′ ⊆ L M › by auto

obtain j where take j io ∈ L M and take (Suc j) io /∈ L M
proof −

have ∃ j . take j io ∈ L M ∧ take (Suc j) io /∈ L M
proof (rule ccontr)

assume @ j. take j io ∈ LS M (initial M ) ∧ take (Suc j) io /∈ LS M (initial
M )

then have ∗:
∧

j . take j io ∈ LS M (initial M ) =⇒ take (Suc j) io ∈ LS M
(initial M ) by blast

have
∧

j . take j io ∈ LS M (initial M )
proof −

fix j
show take j io ∈ LS M (initial M )

using ∗ by (induction j; auto)
qed
then have take (length io) io ∈ L M by blast
then show False

using ‹io ∈ L M ′ − L M › by auto
qed
then show ?thesis using that by blast

qed

have
∧

i . take i io ∈ L M ′

proof −
fix i show take i io ∈ L M ′ using ‹io ∈ L M ′ − L M › language-prefix[of take

i io drop i io M ′ initial M ′] by auto
qed

let ?io = take (Suc j) io

have initial M ∈ states M
by auto

moreover note ‹(initial M , (initial-preamble M )) ∈ PS›
moreover have path ?P (initial ?P) [] by force
moreover have ((p-io []) @ butlast ?io) ∈ L M

using ‹take j io ∈ L M ›
unfolding List.list.map(1 ) append-Nil
by (metis Diff-iff One-nat-def ‹io ∈ LS M ′ (initial M ′) − LS M (initial M )›

butlast-take

1138



diff-Suc-Suc minus-nat.diff-0 not-less-eq-eq take-all)
moreover have ((p-io []) @ ?io) /∈ L M

using ‹take (Suc j) io /∈ L M › by auto
moreover have ((p-io []) @ ?io) ∈ L M ′

using ‹
∧

i . take i io ∈ L M ′› by auto
ultimately have sequence-to-failure-extending-preamble-path M M ′ PS [] ?io

unfolding sequence-to-failure-extending-preamble-path-def by force
then show ?thesis

using that by blast
qed

definition minimal-sequence-to-failure-extending-preamble-path ::
( ′a, ′b, ′c) fsm ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′a × ( ′a, ′b, ′c) fsm) set ⇒ ( ′a× ′b× ′c× ′a) list
⇒ ( ′b × ′c) list ⇒ bool

where
minimal-sequence-to-failure-extending-preamble-path M M ′ PS p io
= ((sequence-to-failure-extending-preamble-path M M ′ PS p io)
∧ (∀ p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′

−→ length io ≤ length io ′))

lemma minimal-sequence-to-failure-extending-preamble-ex :
assumes (initial M , (initial-preamble M )) ∈ PS (is (initial M ,?P) ∈ PS)
and ¬ L M ′ ⊆ L M

obtains p io where minimal-sequence-to-failure-extending-preamble-path M M ′ PS
p io
proof −

let ?ios = {io . ∃ p . sequence-to-failure-extending-preamble-path M M ′ PS p io}
let ?io-min = arg-min length (λio . io ∈ ?ios)

have ?ios 6= {}
using sequence-to-failure-extending-preamble-ex[OF assms] by blast

then have ?io-min ∈ ?ios and (∀ io ′ ∈ ?ios . length ?io-min ≤ length io ′)
by (meson arg-min-nat-lemma some-in-eq)+

obtain p where sequence-to-failure-extending-preamble-path M M ′ PS p ?io-min
using ‹?io-min ∈ ?ios›
by auto

moreover have (∀ p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS
p ′ io ′ −→ length ?io-min ≤ length io ′)

using ‹(∀ io ′ ∈ ?ios . length ?io-min ≤ length io ′)› by blast
ultimately show ?thesis

using that[of p ?io-min]
unfolding minimal-sequence-to-failure-extending-preamble-path-def
by blast

qed
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lemma minimal-sequence-to-failure-extending-preamble-no-repetitions-along-path :
assumes minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io
and observable M
and path M (target (initial M ) pP) p
and p-io p = butlast io
and q ′ ∈ io-targets M ′ (p-io pP) (initial M ′)
and path M ′ q ′ p ′

and p-io p ′ = io
and i < j
and j < length (butlast io)
and

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M q

shows t-target (p ! i) 6= t-target (p ! j) ∨ t-target (p ′ ! i) 6= t-target (p ′ ! j)
proof (rule ccontr)

assume ¬ (t-target (p ! i) 6= t-target (p ! j) ∨ t-target (p ′ ! i) 6= t-target (p ′ ! j))

then have t-target (p ! i) = t-target (p ! j)
and t-target (p ′ ! i) = t-target (p ′ ! j)

by blast+

have sequence-to-failure-extending-preamble-path M M ′ PS pP io
and

∧
p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′

=⇒ length io ≤ length io ′

using ‹minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding minimal-sequence-to-failure-extending-preamble-path-def
by blast+

obtain q P where (q,P) ∈ PS
and path P (initial P) pP
and target (initial P) pP = q
and ((p-io pP) @ butlast io) ∈ L M
and ((p-io pP) @ io) /∈ L M
and ((p-io pP) @ io) ∈ L M ′

using ‹sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding sequence-to-failure-extending-preamble-path-def
by blast

have is-preamble P M q
using ‹(q,P) ∈ PS› ‹

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M q› by blast

then have q ∈ states M
unfolding is-preamble-def
by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›

path-target-is-state submachine-path)

have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def by auto

have path M (initial M ) pP
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using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial
using ‹path P (FSM .initial P) pP› by blast

have target (initial M ) pP = q
using ‹target (initial P) pP = q› unfolding ‹initial P = initial M › by as-

sumption

then have path M q p
using ‹path M (target (initial M ) pP) p› by auto

have io 6= []
using ‹((p-io pP) @ butlast io) ∈ L M › ‹((p-io pP) @ io) /∈ L M › by auto

then have length p ′ > 0
using ‹p-io p ′ = io› by auto

then have p ′ = (butlast p ′)@[last p ′]
by auto

then have path M ′ q ′ ((butlast p ′)@[last p ′])
using ‹path M ′ q ′ p ′› by simp

then have path M ′ q ′ (butlast p ′) and (last p ′) ∈ transitions M ′ and t-source
(last p ′) = target q ′ (butlast p ′)

by auto

have p-io (butlast p ′) = butlast io
using ‹p ′ = (butlast p ′)@[last p ′]› ‹p-io p ′ = io›
using map-butlast by auto

let ?p = ((take (Suc i) p) @ (drop (Suc j) p))
let ?pCut = (drop (Suc i) (take (Suc j) p))
let ?p ′ = ((take (Suc i) (butlast p ′)) @ (drop (Suc j) (butlast p ′)))

have j < length p
using ‹j < length (butlast io)› ‹p-io p = butlast io›
by (metis (no-types, lifting) length-map)

have j < length (butlast p ′)
using ‹j < length (butlast io)› ‹p-io p ′ = io› ‹p ′ = (butlast p ′)@[last p ′]›
by auto

then have t-target ((butlast p ′) ! i) = t-target ((butlast p ′) ! j)
using ‹t-target (p ′ ! i) = t-target (p ′ ! j)›
by (simp add: ‹i < j› dual-order .strict-trans nth-butlast)

have path M q ?p
and target q ?p = target q p
and length ?p < length p
and path M (target q (take (Suc i) p)) ?pCut
and target (target q (take (Suc i) p)) ?pCut = target q (take (Suc i) p)

using path-loop-cut[OF ‹path M q p› ‹t-target (p ! i) = t-target (p ! j)› ‹i < j›
‹j < length p›]

by blast+

have path M ′ q ′ ?p ′
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and target q ′ ?p ′ = target q ′ (butlast p ′)
and length ?p ′ < length (butlast p ′)

using path-loop-cut[OF ‹path M ′ q ′ (butlast p ′)› ‹t-target ((butlast p ′) ! i) =
t-target ((butlast p ′) ! j)› ‹i < j› ‹j < length (butlast p ′)›]

by blast+

have path M ′ q ′ (?p ′@[last p ′])
using ‹t-source (last p ′) = target q ′ (butlast p ′)›
using path-append-transition[OF ‹path M ′ q ′ ?p ′› ‹(last p ′) ∈ transitions M ′›]
unfolding ‹target q ′ ?p ′ = target q ′ (butlast p ′)› by simp

have p-io ?p ′ = p-io ?p
using ‹p-io p = butlast io› ‹p-io (butlast p ′) = butlast io›
by (metis (no-types, lifting) drop-map map-append take-map)

have min-prop: length (p-io (?p ′@[last p ′])) < length io
using ‹length ?p ′ < length (butlast p ′)› ‹p-io p ′ = io›
unfolding length-map[of (λ t . (t-input t, t-output t))]
by auto

have q ∈ io-targets M (p-io pP) (initial M )
using ‹path M (initial M ) pP› ‹target (initial M ) pP = q› unfolding io-targets.simps
by blast

have ((p-io pP) @ (p-io ?p)) ∈ L M
using language-io-target-append[OF ‹q ∈ io-targets M (p-io pP) (initial M )›,

of p-io ?p]
‹path M q ?p›

unfolding LS .simps by blast
then have p1 : ((p-io pP) @ butlast (p-io (?p ′ @ [last p ′]))) ∈ L M

unfolding ‹p-io ?p ′ = p-io ?p›[symmetric]
by (metis (no-types, lifting) butlast-snoc map-butlast)

have p2 : ((p-io pP) @ (p-io (?p ′ @ [last p ′]))) /∈ L M
proof

assume ((p-io pP) @ (p-io (?p ′ @ [last p ′]))) ∈ L M
then obtain pCntr where path M (initial M ) pCntr

and p-io pCntr = (p-io pP) @ (p-io (?p ′ @ [last p ′]))
by auto

let ?pCntr1 = (take (length (p-io pP)) pCntr)
let ?pCntr23 = (drop (length (p-io pP)) pCntr)

have path M (initial M ) ?pCntr1
and p-io ?pCntr1 = p-io pP
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and path M (target (initial M ) ?pCntr1 ) ?pCntr23
and p-io ?pCntr23 = p-io (?p ′ @ [last p ′])

using path-io-split[OF ‹path M (initial M ) pCntr› ‹p-io pCntr = (p-io pP)
@ (p-io (?p ′ @ [last p ′]))›]

by blast+

let ?pCntr2 = (take (length (p-io (take (Suc i) (butlast p ′) @ drop (Suc j)
(butlast p ′)))) (drop (length (p-io pP)) pCntr))

let ?pCntr3 = (drop (length (p-io (take (Suc i) (butlast p ′) @ drop (Suc j)
(butlast p ′)))) (drop (length (p-io pP)) pCntr))

have p-io ?pCntr23 = p-io ?p ′ @ p-io [last p ′]
using ‹p-io ?pCntr23 = p-io (?p ′ @ [last p ′])› by auto

have path M (target (initial M ) ?pCntr1 ) ?pCntr2
and p-io ?pCntr2 = p-io ?p ′

and path M (target (target (initial M ) ?pCntr1 ) ?pCntr2 ) ?pCntr3
and p-io ?pCntr3 = p-io [last p ′]

using path-io-split[OF ‹path M (target (initial M ) ?pCntr1 ) ?pCntr23 › ‹p-io
?pCntr23 = p-io ?p ′ @ p-io [last p ′]›]

by blast+

have ?pCntr1 = pP
using observable-path-unique[OF ‹observable M › ‹path M (initial M ) ?pCntr1 ›

‹path M (initial M ) pP› ‹p-io ?pCntr1 = p-io pP›]
by assumption

then have (target (initial M ) ?pCntr1 ) = q
using ‹target (initial M ) pP = q› by auto

then have path M q ?pCntr2
and path M (target q ?pCntr2 ) ?pCntr3

using ‹path M (target (initial M ) ?pCntr1 ) ?pCntr2 ›
‹path M (target (target (initial M ) ?pCntr1 ) ?pCntr2 ) ?pCntr3 ›

by auto

have ?pCntr2 = ?p
using observable-path-unique[OF ‹observable M › ‹path M q ?pCntr2 › ‹path

M q ?p› ]
‹p-io ?pCntr2 = p-io ?p ′›

unfolding ‹p-io ?p ′ = p-io ?p›
by blast

then have (target q ?pCntr2 ) = (target q ?p)
by auto

then have (target q ?pCntr2 ) = (target q p)
using ‹target q ?p = target q p› by auto

have p-io ?pCntr3 = [last io]
using ‹p-io ?pCntr3 = p-io [last p ′]›

by (metis (mono-tags, lifting) ‹io 6= []› assms(7 ) last-map list.simps(8 )
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list.simps(9 ))

have path M (initial M ) (pP @ p @ ?pCntr3 )
using ‹path M (initial M ) pP› ‹target (initial M ) pP = q› ‹path M q p› ‹path

M (target q ?pCntr2 ) ?pCntr3 ›
unfolding ‹(target q ?pCntr2 ) = (target q p)›
by auto

moreover have p-io (pP @ p @ ?pCntr3 ) = ((p-io pP) @ io)
using ‹p-io p = butlast io› ‹p-io ?pCntr3 = [last io]›
by (simp add: ‹io 6= []›)

ultimately have ((p-io pP) @ io) ∈ L M
by (metis (mono-tags, lifting) language-state-containment)

then show False
using ‹((p-io pP) @ io) /∈ L M ›
by simp

qed

have p3 : ((p-io pP) @ (p-io (?p ′ @ [last p ′]))) ∈ L M ′

using language-io-target-append[OF ‹q ′ ∈ io-targets M ′ (p-io pP) (initial M ′)›,
of (p-io (?p ′ @ [last p ′]))]

using ‹path M ′ q ′ (?p ′@[last p ′])›
unfolding LS .simps
by (metis (mono-tags, lifting) mem-Collect-eq)

have sequence-to-failure-extending-preamble-path M M ′ PS pP (p-io (?p ′ @ [last
p ′]))

unfolding sequence-to-failure-extending-preamble-path-def
using ‹q ∈ states M ›

‹(q,P) ∈ PS›
‹path P (FSM .initial P) pP›
‹target (FSM .initial P) pP = q›
p1 p2 p3 by blast

show False
using ‹

∧
p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′

=⇒ length io ≤ length io ′›[OF ‹sequence-to-failure-extending-preamble-path M M ′

PS pP (p-io (?p ′ @ [last p ′]))›]
min-prop

by simp
qed

lemma minimal-sequence-to-failure-extending-preamble-no-repetitions-with-other-preambles
:

assumes minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io
and observable M
and path M (target (initial M ) pP) p
and p-io p = butlast io
and q ′ ∈ io-targets M ′ (p-io pP) (initial M ′)
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and path M ′ q ′ p ′

and p-io p ′ = io
and

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M q

and i < length (butlast io)
and (t-target (p ! i), P ′) ∈ PS
and path P ′ (initial P ′) pP ′

and target (initial P ′) pP ′ = t-target (p ! i)
shows t-target (p ′ ! i) /∈ io-targets M ′ (p-io pP ′) (initial M ′)
proof

assume t-target (p ′ ! i) ∈ io-targets M ′ (p-io pP ′) (FSM .initial M ′)

have sequence-to-failure-extending-preamble-path M M ′ PS pP io
and

∧
p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′ =⇒

length io ≤ length io ′

using ‹minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding minimal-sequence-to-failure-extending-preamble-path-def
by blast+

obtain q P where (q,P) ∈ PS
and path P (initial P) pP
and target (initial P) pP = q
and ((p-io pP) @ butlast io) ∈ L M
and ((p-io pP) @ io) /∈ L M
and ((p-io pP) @ io) ∈ L M ′

using ‹sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding sequence-to-failure-extending-preamble-path-def
by blast

have is-preamble P M q
using ‹(q,P) ∈ PS› ‹

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M q› by blast

then have q ∈ states M
unfolding is-preamble-def

by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›
path-target-is-state submachine-path)

have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def by auto

have path M (initial M ) pP
using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial
using ‹path P (FSM .initial P) pP› by blast

have target (initial M ) pP = q
using ‹target (initial P) pP = q› unfolding ‹initial P = initial M › by as-

sumption

then have path M q p
using ‹path M (target (initial M ) pP) p› by auto
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have is-preamble P ′ M (t-target (p ! i))
using ‹(t-target (p ! i), P ′) ∈ PS› ‹

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M

q› by blast
then have (t-target (p ! i)) ∈ states M

unfolding is-preamble-def
by (metis ‹path P ′ (initial P ′) pP ′› ‹target (initial P ′) pP ′ = t-target (p ! i)›

path-target-is-state submachine-path)

have initial P ′ = initial M
using ‹is-preamble P ′ M (t-target (p ! i))› unfolding is-preamble-def by auto

have path M (initial M ) pP ′

using ‹is-preamble P ′ M (t-target (p ! i))› unfolding is-preamble-def using
submachine-path-initial

using ‹path P ′ (initial P ′) pP ′› by blast
have target (initial M ) pP ′ = t-target (p ! i)

using ‹target (initial P ′) pP ′ = t-target (p ! i)› unfolding ‹initial P ′ = initial
M › by simp

have io 6= []
using ‹((p-io pP) @ butlast io) ∈ L M › ‹((p-io pP) @ io) /∈ L M › by auto

then have length p ′ > 0
using ‹p-io p ′ = io› by auto

then have p ′ = (butlast p ′)@[last p ′]
by auto

then have path M ′ q ′ ((butlast p ′)@[last p ′])
using ‹path M ′ q ′ p ′› by simp

then have path M ′ q ′ (butlast p ′) and (last p ′) ∈ transitions M ′ and t-source
(last p ′) = target q ′ (butlast p ′)

by auto

have p-io (butlast p ′) = butlast io
using ‹p ′ = (butlast p ′)@[last p ′]› ‹p-io p ′ = io›
using map-butlast by auto

have butlast io 6= []
using assms(9 ) by fastforce

let ?p = (drop (Suc i) p)
let ?p ′ = (drop (Suc i) (butlast p ′))

have i < length p
using ‹i < length (butlast io)› unfolding ‹p-io p = butlast io›[symmetric]

length-map[of (λ t . (t-input t, t-output t))]
by assumption

then have p ! i = last (take (Suc i) p)
by (simp add: take-last-index)

then have t-target (p ! i) = target q (take (Suc i) p)
unfolding target.simps visited-states.simps
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by (metis (no-types, lifting) ‹i < length p› gr-implies-not0 last-ConsR length-0-conv
length-map nth-map old.nat.distinct(2 ) take-eq-Nil take-last-index take-map)

have p = (take (Suc i) p @ ?p)
by simp

then have p-io p = (p-io (take (Suc i) p)) @ (p-io ?p)
by (metis map-append)

have (length (p-io (take (Suc i) p))) = Suc i
using ‹i < length p›
unfolding length-map[of (λ t . (t-input t, t-output t))]
by auto

have path M (t-target (p ! i)) ?p
using path-io-split(3 )[OF ‹path M q p› ‹p-io p = (p-io (take (Suc i) p)) @ (p-io

?p)›]
unfolding ‹(length (p-io (take (Suc i) p))) = Suc i› ‹t-target (p ! i) = target

q (take (Suc i) p)›
by assumption

then have path M (initial M ) (pP ′ @ ?p)
using ‹path M (initial M ) pP ′› ‹target (initial M ) pP ′ = t-target (p ! i)›
by (simp add: path-append)

let ?io = (p-io ?p) @ [last io]
have is-shorter : length ?io < length io
proof −

have p-io ?p = drop (Suc i) (butlast io)
by (metis assms(4 ) drop-map)

moreover have length (drop (Suc i) (butlast io)) < length (butlast io)
using assms(9 ) by auto

ultimately have length (p-io ?p) < length (butlast io)
by simp

then show ?thesis
by auto

qed

have p1 : ((p-io pP ′) @ (p-io ?p)) ∈ L M
using ‹path M (initial M ) (pP ′ @ ?p)›
by (metis (mono-tags, lifting) language-state-containment map-append)

have p2 : ((p-io pP ′) @ ?io) /∈ L M
proof

assume ((p-io pP ′) @ ?io) ∈ L M
then obtain pCntr where path M (initial M ) pCntr and p-io pCntr = (p-io

pP ′) @ (p-io ?p) @ [last io]
by auto

let ?pCntr1 = (take (length (p-io pP ′)) pCntr)
let ?pCntr23 = (drop (length (p-io pP ′)) pCntr)
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have path M (initial M ) ?pCntr1
and p-io ?pCntr1 = p-io pP ′

and path M (target (initial M ) ?pCntr1 ) ?pCntr23
and p-io ?pCntr23 = (p-io ?p) @ [last io]

using path-io-split[OF ‹path M (initial M ) pCntr› ‹p-io pCntr = (p-io pP ′)
@ (p-io ?p) @ [last io]›]

by blast+

have ?pCntr1 = pP ′

using observable-path-unique[OF ‹observable M › ‹path M (initial M ) ?pCntr1 ›
‹path M (initial M ) pP ′› ‹p-io ?pCntr1 = p-io pP ′›]

by assumption
then have (target (initial M ) ?pCntr1 ) = (t-target (p ! i))

using ‹target (initial M ) pP ′ = (t-target (p ! i))› by auto
then have path M (t-target (p ! i)) ?pCntr23

using ‹path M (target (initial M ) ?pCntr1 ) ?pCntr23 ›
by simp

have path M q (take (Suc i) p)
using ‹path M q p›
by (metis append-take-drop-id path-prefix)

then have path M q ((take (Suc i) p) @ ?pCntr23 )
using ‹path M (target (initial M ) ?pCntr1 ) ?pCntr23 ›
unfolding ‹(target (initial M ) ?pCntr1 ) = (t-target (p ! i))›
unfolding ‹t-target (p ! i) = target q (take (Suc i) p)›
by auto

then have path M (initial M ) (pP @ ((take (Suc i) p) @ ?pCntr23 ))
using ‹path M (initial M ) pP› ‹target (initial M ) pP = q›
by auto

moreover have p-io (pP @ ((take (Suc i) p) @ ?pCntr23 )) = p-io pP @ io
using ‹io 6= []› ‹p-io (drop (length (p-io pP ′)) pCntr) = p-io (drop (Suc

i) p) @ [last io]› ‹p-io p = p-io (take (Suc i) p) @ p-io (drop (Suc i) p)› ap-
pend-butlast-last-id assms(4 )

by fastforce

ultimately have (p-io pP @ io) ∈ L M
by (metis (mono-tags, lifting) language-state-containment)

then show False
using ‹(p-io pP @ io) /∈ L M ›
by simp

qed

have p3 : ((p-io pP ′) @ ?io) ∈ L M ′

proof −
have i < length (butlast p ′)

using ‹i < length (butlast io)› unfolding ‹p-io p ′ = io›[symmetric]
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using length-map[of (λ t . (t-input t, t-output t))]
by simp

then have butlast p ′ ! i = last (take (Suc i) (butlast p ′))
by (simp add: nth-butlast take-last-index)

moreover have (take (Suc i) (butlast p ′)) 6= []
by (metis Zero-not-Suc ‹i < length (butlast p ′)› list.size(3 ) not-less0 take-eq-Nil)

ultimately have (target q ′ (take (Suc i) (butlast p ′))) = t-target ((butlast p ′)
! i)

unfolding target.simps visited-states.simps
by (simp add: last-map)

moreover have (butlast p ′) ! i = p ′ ! i
using ‹i < length (butlast p ′)›
by (simp add: nth-butlast)

ultimately have (target q ′ (take (Suc i) (butlast p ′))) = t-target (p ′ ! i)
by simp

have p ′ = (take (Suc i) (butlast p ′)) @ ?p ′ @ [last p ′]
by (metis ‹p ′ = butlast p ′ @ [last p ′]› append.assoc append-take-drop-id)

then have path M ′ (target q ′ (take (Suc i) (butlast p ′))) (?p ′ @ [last p ′])
by (metis assms(6 ) path-suffix)

then have path M ′ (t-target (p ′ ! i)) (?p ′ @ [last p ′])
unfolding ‹(target q ′ (take (Suc i) (butlast p ′))) = t-target (p ′ ! i)› by

assumption
moreover have p-io (?p ′ @ [last p ′]) = ?io
by (metis (no-types, lifting) ‹io 6= []› ‹p ′ = butlast p ′ @ [last p ′]› ‹p-io (butlast

p ′) = butlast io› append-butlast-last-id assms(4 ) assms(7 ) drop-map map-append
same-append-eq)

ultimately have ?io ∈ LS M ′ (t-target (p ′ ! i))
by (metis (mono-tags, lifting) language-state-containment)

show ((p-io pP ′) @ ?io) ∈ L M ′

using language-io-target-append[OF ‹t-target (p ′ ! i) ∈ io-targets M ′ (p-io
pP ′) (FSM .initial M ′)› ‹?io ∈ LS M ′ (t-target (p ′ ! i))›]

by assumption
qed

have ∗:
∧

xs x . butlast (xs @ [x]) = xs by auto

have sequence-to-failure-extending-preamble-path M M ′ PS pP ′ ?io
unfolding sequence-to-failure-extending-preamble-path-def
using ‹t-target (p ! i) ∈ states M › assms(10−12 ) p1 p2 p3
unfolding ∗ by blast

then have length io ≤ length ?io
using ‹

∧
p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′

=⇒ length io ≤ length io ′›
by blast
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then show False
using is-shorter
by simp

qed

end

37 Helper Algorithms

This theory contains several algorithms used to calculate components of a
test suite.
theory Helper-Algorithms
imports State-Separator State-Preamble
begin

37.1 Calculating r-distinguishable State Pairs with Separa-
tors

definition r-distinguishable-state-pairs-with-separators ::
( ′a::linorder , ′b::linorder , ′c) fsm ⇒ (( ′a × ′a) × (( ′a × ′a) + ′a, ′b, ′c) fsm) set
where
r-distinguishable-state-pairs-with-separators M =
{((q1 ,q2 ),Sep) | q1 q2 Sep . q1 ∈ states M

∧ q2 ∈ states M
∧ ((q1 < q2 ∧ state-separator-from-s-states M q1 q2 = Some

Sep)
∨ (q2 < q1 ∧ state-separator-from-s-states M q2 q1 = Some

Sep)) }

lemma r-distinguishable-state-pairs-with-separators-alt-def :
r-distinguishable-state-pairs-with-separators M =⋃

(image (λ ((q1 ,q2 ),A) . {((q1 ,q2 ),the A),((q2 ,q1 ),the A)})
(Set.filter (λ (qq,A) . A 6= None)

(image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states M
q1 q2 ))

(Set.filter (λ (q1 ,q2 ) . q1 < q2 ) (states M × states
M )))))
(is ?P1 = ?P2 )

proof −
have

∧
x . x ∈ ?P1 =⇒ x ∈ ?P2

proof −
fix x assume x ∈ ?P1
then obtain q1 q2 A where x = ((q1 ,q2 ),A)

by (metis eq-snd-iff )
then have ((q1 ,q2 ),A) ∈ ?P1 using ‹x ∈ ?P1 › by auto
then have q1 ∈ states M

and q2 ∈ states M
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and ((q1 < q2 ∧ state-separator-from-s-states M q1 q2 = Some A)
∨ (q2 < q1 ∧ state-separator-from-s-states M q2 q1 = Some A))

unfolding r-distinguishable-state-pairs-with-separators-def by blast+

then consider (a) q1 < q2 ∧ state-separator-from-s-states M q1 q2 = Some
A |

(b) q2 < q1 ∧ state-separator-from-s-states M q2 q1 = Some A
by blast

then show x ∈ ?P2
using ‹q1 ∈ states M › ‹q2 ∈ states M › unfolding ‹x = ((q1 ,q2 ),A)› by

(cases; force)
qed
moreover have

∧
x . x ∈ ?P2 =⇒ x ∈ ?P1

proof −
fix x assume x ∈ ?P2
then obtain q1 q2 A where x = ((q1 ,q2 ),A)

by (metis eq-snd-iff )
then have ((q1 ,q2 ),A) ∈ ?P2 using ‹x ∈ ?P2 › by auto
then obtain q1 ′ q2 ′ A ′ where ((q1 ,q2 ),A) ∈ {((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the

A ′)}
and A ′ 6= None

and ((q1 ′,q2 ′), A ′) ∈ (image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(Set.filter (λ (q1 ,q2 ) . q1 < q2 )
(states M × states M )))

by force

then have A ′ = Some A
by (metis (no-types, lifting) empty-iff insert-iff old.prod.inject option.collapse)

moreover have A ′ = state-separator-from-s-states M q1 ′ q2 ′

and q1 ′ < q2 ′

and q1 ′ ∈ states M
and q2 ′ ∈ states M

using ‹((q1 ′,q2 ′), A ′) ∈ (image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(Set.filter (λ (q1 ,q2 ) . q1 < q2 ) (states M × states
M )))›

by force+
ultimately have state-separator-from-s-states M q1 ′ q2 ′ = Some A by simp

consider ((q1 ′,q2 ′),the A ′) = ((q1 ,q2 ),A) | ((q1 ′,q2 ′),the A ′) = ((q2 ,q1 ),A)
using ‹((q1 ,q2 ),A) ∈ {((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the A ′)}›
by force

then show x ∈ ?P1
proof cases

case 1
then have ∗: q1 ′ = q1 and ∗∗: q2 ′ = q2 by auto
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show ?thesis
using ‹q1 ′∈ states M › ‹q2 ′∈ states M › ‹q1 ′< q2 ′› ‹state-separator-from-s-states

M q1 ′ q2 ′ = Some A›
unfolding r-distinguishable-state-pairs-with-separators-def
unfolding ∗ ∗∗ ‹x = ((q1 ,q2 ),A)› by blast

next
case 2
then have ∗: q1 ′ = q2 and ∗∗: q2 ′ = q1 by auto

show ?thesis
using ‹q1 ′∈ states M › ‹q2 ′∈ states M › ‹q1 ′< q2 ′› ‹state-separator-from-s-states

M q1 ′ q2 ′ = Some A›
unfolding r-distinguishable-state-pairs-with-separators-def
unfolding ∗ ∗∗ ‹x = ((q1 ,q2 ),A)› by blast

qed
qed
ultimately show ?thesis by blast

qed

lemma r-distinguishable-state-pairs-with-separators-code[code] :
r-distinguishable-state-pairs-with-separators M =

set (concat (map
(λ ((q1 ,q2 ),A) . [((q1 ,q2 ),the A),((q2 ,q1 ),the A)])
(filter (λ (qq,A) . A 6= None)

(map (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states M q1
q2 ))

(filter (λ (q1 ,q2 ) . q1 < q2 )
(List.product(states-as-list M ) (states-as-list M )))))))

(is r-distinguishable-state-pairs-with-separators M = ?C2 )
proof −

let ?C1 =
⋃

(image (λ ((q1 ,q2 ),A) . {((q1 ,q2 ),the A),((q2 ,q1 ),the A)})
(Set.filter (λ (qq,A) . A 6= None)

(image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(Set.filter (λ (q1 ,q2 ) . q1 < q2 ) (states M ×
states M )))))

have r-distinguishable-state-pairs-with-separators M = ?C1
using r-distinguishable-state-pairs-with-separators-alt-def by assumption

also have . . . = ?C2
proof

show ?C1 ⊆ ?C2
proof

fix x assume x ∈ ?C1
then obtain q1 q2 A where x = ((q1 ,q2 ),A)

by (metis eq-snd-iff )
then have ((q1 ,q2 ),A) ∈ ?C1 using ‹x ∈ ?C1 › by auto
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then obtain q1 ′ q2 ′ A ′ where ((q1 ,q2 ),A) ∈ {((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the
A ′)}

and A ′ 6= None
and ((q1 ′,q2 ′), A ′) ∈ (image (λ (q1 ,q2 ) .

((q1 ,q2 ),state-separator-from-s-states M q1 q2 ))
(Set.filter (λ (q1 ,q2 ) . q1 < q2 )

(states M × states M )))
by force

then have A ′ = Some A
by (metis (no-types, lifting) empty-iff insert-iff old.prod.inject option.collapse)

moreover have A ′ = state-separator-from-s-states M q1 ′ q2 ′

and q1 ′ < q2 ′

and q1 ′ ∈ states M
and q2 ′ ∈ states M

using ‹((q1 ′,q2 ′), A ′) ∈ (image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(Set.filter (λ (q1 ,q2 ) . q1 < q2 ) (states M × states
M )))›

by force+
ultimately have state-separator-from-s-states M q1 ′ q2 ′ = Some A

and (q1 ′,q2 ′) ∈ set (filter (λ (q1 ,q2 ) . q1 < q2 ) (List.product(states-as-list
M ) (states-as-list M )))

unfolding states-as-list-set[symmetric] by auto

then have ((q1 ′,q2 ′),A ′) ∈ set (filter (λ (qq,A) . A 6= None)
(map (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states

M q1 q2 ))
(filter (λ (q1 ,q2 ) . q1 < q2 )

(List.product(states-as-list M )
(states-as-list M )))))

using ‹A ′ = state-separator-from-s-states M q1 ′ q2 ′› ‹A ′ = Some A› by
force

have scheme1 :
∧

f xs x . x ∈ set xs =⇒ f x ∈ set (map f xs) by auto
have scheme2 :

∧
x xs xss . xs ∈ set xss =⇒ x ∈ set xs =⇒ x ∈ set (concat

xss) by auto
have ∗:[((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the A ′)] ∈

set (map (λ ((q1 ,q2 ),A) . [((q1 ,q2 ),the A),((q2 ,q1 ),the A)])
(filter (λ (qq,A) . A 6= None)

(map (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(filter (λ (q1 ,q2 ) . q1 < q2 )
(List.product(states-as-list M ) (states-as-list

M ))))))
using scheme1 [OF ‹((q1 ′,q2 ′),A ′) ∈ set (filter (λ (qq,A) . A 6= None) (map

(λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states M q1 q2 )) (filter (λ (q1 ,q2 ) . q1
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< q2 ) (List.product(states-as-list M ) (states-as-list M )))))›, of λ ((q1 ′, q2 ′), A ′) .
[((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the A ′)]]

by force
have ∗∗: ((q1 ,q2 ),A) ∈ set [((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the A ′)]

using ‹((q1 ,q2 ),A) ∈ {((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the A ′)}› by auto

show x ∈ ?C2
unfolding ‹x = ((q1 ,q2 ),A)› using scheme2 [OF ∗ ∗∗] by assumption

qed

show ?C2 ⊆ ?C1
proof

fix x assume x ∈ ?C2
obtain q1q2A where x ∈ set ((λ ((q1 ′, q2 ′), A ′) . [((q1 ′,q2 ′),the A ′),((q2 ′,q1 ′),the

A ′)]) q1q2A)
and q1q2A ∈ set (filter (λ (qq,A) . A 6= None)

(map (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(filter (λ (q1 ,q2 ) . q1 < q2 )
(List.product(states-as-list M )

(states-as-list M )))))
using concat-map-elem[OF ‹x ∈ ?C2 ›] by blast

moreover obtain q1 q2 A where q1q2A = ((q1 ,q2 ),A)
by (metis prod.collapse)

ultimately have x ∈ set [((q1 ,q2 ),the A),((q2 ,q1 ),the A)]
and ((q1 ,q2 ),A) ∈ set (filter (λ (qq,A) . A 6= None)

(map (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states
M q1 q2 ))

(filter (λ (q1 ,q2 ) . q1 < q2 )
(List.product(states-as-list M )

(states-as-list M )))))
by force+

then have A = state-separator-from-s-states M q1 q2
and A 6= None

and (q1 ,q2 ) ∈ set (filter (λ (q1 ,q2 ) . q1 < q2 ) (List.product(states-as-list
M ) (states-as-list M )))

by auto

then have q1 < q2 and q1 ∈ states M and q2 ∈ states M
unfolding states-as-list-set[symmetric] by auto
then have (q1 ,q2 ) ∈ Set.filter (λ(q1 , q2 ). q1 < q2 ) (FSM .states M ×

FSM .states M )
by auto

then have ((q1 ,q2 ),A) ∈ (Set.filter (λ (qq,A) . A 6= None)
(image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states

M q1 q2 ))
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(Set.filter (λ (q1 ,q2 ) . q1 < q2 ) (states M
× states M ))))

using ‹A 6= None› unfolding ‹A = state-separator-from-s-states M q1 q2 ›
by auto

then have {((q1 ,q2 ),the A),((q2 ,q1 ),the A)} ∈
(image (λ ((q1 ,q2 ),A) . {((q1 ,q2 ),the A),((q2 ,q1 ),the A)})

(Set.filter (λ (qq,A) . A 6= None)
(image (λ (q1 ,q2 ) . ((q1 ,q2 ),state-separator-from-s-states

M q1 q2 ))
(Set.filter (λ (q1 ,q2 ) . q1 < q2 ) (states M

× states M )))))
by (metis (no-types, lifting) ‹q1q2A = ((q1 , q2 ), A)› case-prod-conv image-iff )
then show x ∈ ?C1

using ‹x ∈ set [((q1 ,q2 ),the A),((q2 ,q1 ),the A)]›
by (metis (no-types, lifting) UnionI list.simps(15 ) set-empty2 )

qed
qed

finally show ?thesis .
qed

lemma r-distinguishable-state-pairs-with-separators-same-pair-same-separator :
assumes ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators M
and ((q1 ,q2 ),A ′) ∈ r-distinguishable-state-pairs-with-separators M

shows A = A ′

using assms unfolding r-distinguishable-state-pairs-with-separators-def
by force

lemma r-distinguishable-state-pairs-with-separators-sym-pair-same-separator :
assumes ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators M
and ((q2 ,q1 ),A ′) ∈ r-distinguishable-state-pairs-with-separators M

shows A = A ′

using assms unfolding r-distinguishable-state-pairs-with-separators-def
by force

lemma r-distinguishable-state-pairs-with-separators-elem-is-separator :
assumes ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators M
and observable M
and completely-specified M

shows is-separator M q1 q2 A (Inr q1 ) (Inr q2 )
proof −

have ∗:q1 ∈ states M
and ∗∗:q2 ∈ states M
and ∗∗∗:q1 6= q2
and ∗∗∗∗: q2 6=q1
and ∗∗∗∗∗: state-separator-from-s-states M q1 q2 = Some A ∨ state-separator-from-s-states
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M q2 q1 = Some A
using assms(1 ) unfolding r-distinguishable-state-pairs-with-separators-def by

auto

from ∗∗∗∗∗ have is-state-separator-from-canonical-separator (canonical-separator
M q1 q2 ) q1 q2 A

∨ is-state-separator-from-canonical-separator (canonical-separator
M q2 q1 ) q2 q1 A

using state-separator-from-s-states-soundness[of M q1 q2 A, OF - ∗ ∗∗ assms(3 )]
using state-separator-from-s-states-soundness[of M q2 q1 A, OF - ∗∗ ∗ assms(3 )]

by auto
then show ?thesis

using state-separator-from-canonical-separator-is-separator [of M q1 q2 A, OF -
‹observable M › ∗ ∗∗ ∗∗∗]

using state-separator-from-canonical-separator-is-separator [of M q2 q1 A, OF -
‹observable M › ∗∗ ∗ ∗∗∗∗]

using is-separator-sym[of M q2 q1 A Inr q2 Inr q1 ] by auto
qed

37.2 Calculating Pairwise r-distinguishable Sets of States
definition pairwise-r-distinguishable-state-sets-from-separators :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ′a set set where

pairwise-r-distinguishable-state-sets-from-separators M
= { S . S ⊆ states M ∧ (∀ q1 ∈ S . ∀ q2 ∈ S . q1 6= q2 −→ (q1 ,q2 ) ∈ image

fst (r-distinguishable-state-pairs-with-separators M ))}

definition pairwise-r-distinguishable-state-sets-from-separators-list :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ′a set list where

pairwise-r-distinguishable-state-sets-from-separators-list M =
(let RDS = image fst (r-distinguishable-state-pairs-with-separators M )

in filter (λ S . ∀ q1 ∈ S . ∀ q2 ∈ S . q1 6= q2 −→ (q1 ,q2 ) ∈ RDS)
(map set (pow-list (states-as-list M ))))

lemma pairwise-r-distinguishable-state-sets-from-separators-code[code] :
pairwise-r-distinguishable-state-sets-from-separators M = set (pairwise-r-distinguishable-state-sets-from-separators-list

M )
using pow-list-set[of states-as-list M ]
unfolding states-as-list-set[of M ]

pairwise-r-distinguishable-state-sets-from-separators-def
pairwise-r-distinguishable-state-sets-from-separators-list-def

by auto

lemma pairwise-r-distinguishable-state-sets-from-separators-cover :
assumes q ∈ states M
shows ∃ S ∈ (pairwise-r-distinguishable-state-sets-from-separators M ) . q ∈ S
unfolding pairwise-r-distinguishable-state-sets-from-separators-def using assms
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by blast

definition maximal-pairwise-r-distinguishable-state-sets-from-separators :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ′a set set where

maximal-pairwise-r-distinguishable-state-sets-from-separators M
= { S . S ∈ (pairwise-r-distinguishable-state-sets-from-separators M )

∧ (@ S ′ . S ′ ∈ (pairwise-r-distinguishable-state-sets-from-separators M )
∧ S ⊂ S ′)}

definition maximal-pairwise-r-distinguishable-state-sets-from-separators-list :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ′a set list where

maximal-pairwise-r-distinguishable-state-sets-from-separators-list M =
remove-subsets (pairwise-r-distinguishable-state-sets-from-separators-list M )

lemma maximal-pairwise-r-distinguishable-state-sets-from-separators-code[code] :
maximal-pairwise-r-distinguishable-state-sets-from-separators M
= set (maximal-pairwise-r-distinguishable-state-sets-from-separators-list M )

unfolding maximal-pairwise-r-distinguishable-state-sets-from-separators-list-def
Let-def remove-subsets-set pairwise-r-distinguishable-state-sets-from-separators-code[symmetric]

maximal-pairwise-r-distinguishable-state-sets-from-separators-def
by blast

lemma maximal-pairwise-r-distinguishable-state-sets-from-separators-cover :
assumes q ∈ states M
shows ∃ S ∈ (maximal-pairwise-r-distinguishable-state-sets-from-separators M ).

q ∈ S
proof −

have ∗: {q} ∈ (pairwise-r-distinguishable-state-sets-from-separators M )
unfolding pairwise-r-distinguishable-state-sets-from-separators-def using assms

by blast
have ∗∗: finite (pairwise-r-distinguishable-state-sets-from-separators M )

unfolding pairwise-r-distinguishable-state-sets-from-separators-def by (simp
add: fsm-states-finite)

have (maximal-pairwise-r-distinguishable-state-sets-from-separators M ) =
{S ∈ (pairwise-r-distinguishable-state-sets-from-separators M ).
¬(∃ S ′ ∈ (pairwise-r-distinguishable-state-sets-from-separators M ) . S ⊂

S ′)}
unfolding maximal-pairwise-r-distinguishable-state-sets-from-separators-def

pairwise-r-distinguishable-state-sets-from-separators-def
by metis
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then have (maximal-pairwise-r-distinguishable-state-sets-from-separators M ) =
{S ∈ (pairwise-r-distinguishable-state-sets-from-separators M ) .

(∀ S ′ ∈ (pairwise-r-distinguishable-state-sets-from-separators M ) . ¬ S
⊂ S ′)}

by blast
moreover have ∃ S ∈ {S ∈ (pairwise-r-distinguishable-state-sets-from-separators

M ) .
(∀ S ′ ∈ (pairwise-r-distinguishable-state-sets-from-separators M )

. ¬ S ⊂ S ′)} . q ∈ S
using maximal-set-cover [OF ∗∗ ∗]
by blast

ultimately show ?thesis
by blast

qed

37.3 Calculating d-reachable States with Preambles
definition d-reachable-states-with-preambles :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒
( ′a × ( ′a, ′b, ′c) fsm) set where

d-reachable-states-with-preambles M =
image (λ qp . (fst qp, the (snd qp)))

(Set.filter (λ qp . snd qp 6= None)
(image (λ q . (q, calculate-state-preamble-from-input-choices M

q))
(states M )))

lemma d-reachable-states-with-preambles-exhaustiveness :
assumes ∃ P . is-preamble P M q
and q ∈ states M

shows ∃ P . (q,P) ∈ (d-reachable-states-with-preambles M )
using calculate-state-preamble-from-input-choices-exhaustiveness[OF assms(1 )]

assms(2 )
unfolding d-reachable-states-with-preambles-def by force

lemma d-reachable-states-with-preambles-soundness :
assumes (q,P) ∈ (d-reachable-states-with-preambles M )
and observable M
shows is-preamble P M q

and q ∈ states M
using assms(1 ) calculate-state-preamble-from-input-choices-soundness[of M q P]
unfolding d-reachable-states-with-preambles-def
using imageE by auto

37.4 Calculating Repetition Sets

Repetition sets are sets of tuples each containing a maximal set of pairwise
r-distinguishable states and the subset of those states that have a preamble.
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definition maximal-repetition-sets-from-separators :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ( ′a set × ′a set) set where

maximal-repetition-sets-from-separators M
= {(S , S ∩ (image fst (d-reachable-states-with-preambles M ))) | S .

S ∈ (maximal-pairwise-r-distinguishable-state-sets-from-separators M )}

definition maximal-repetition-sets-from-separators-list-naive :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ( ′a set × ′a set) list where

maximal-repetition-sets-from-separators-list-naive M
= (let DR = (image fst (d-reachable-states-with-preambles M ))

in map (λ S . (S , S ∩ DR)) (maximal-pairwise-r-distinguishable-state-sets-from-separators-list
M ))

lemma maximal-repetition-sets-from-separators-code[code]:
maximal-repetition-sets-from-separators M = (let DR = (image fst (d-reachable-states-with-preambles

M ))
in image (λ S . (S , S ∩ DR)) (maximal-pairwise-r-distinguishable-state-sets-from-separators

M ))
unfolding maximal-repetition-sets-from-separators-def Let-def by force

lemma maximal-repetition-sets-from-separators-code-alt:
maximal-repetition-sets-from-separators M = set (maximal-repetition-sets-from-separators-list-naive

M )
unfolding maximal-repetition-sets-from-separators-def

maximal-repetition-sets-from-separators-list-naive-def
maximal-pairwise-r-distinguishable-state-sets-from-separators-code

by force

37.4.1 Calculating Sub-Optimal Repetition Sets

Finding maximal pairwise r-distinguishable subsets of the state set of some
FSM is likely too expensive for FSMs containing a large number of r-
distinguishable pairs of states. The following functions calculate only subset
of all repetition sets while maintaining the property that every state is con-
tained in some repetition set.
fun extend-until-conflict :: ( ′a × ′a) set ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list where

extend-until-conflict non-confl-set candidates xs 0 = xs |
extend-until-conflict non-confl-set candidates xs (Suc k) = (case dropWhile (λ x

. find (λ y . (x,y) /∈ non-confl-set) xs 6= None) candidates of
[] ⇒ xs |
(c#cs) ⇒ extend-until-conflict non-confl-set cs (c#xs) k)

lemma extend-until-conflict-retainment :
assumes x ∈ set xs
shows x ∈ set (extend-until-conflict non-confl-set candidates xs k)

using assms proof (induction k arbitrary: candidates xs)
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case 0
then show ?case by auto

next
case (Suc k)
then show ?case proof (cases dropWhile (λ x . find (λ y . (x,y) /∈ non-confl-set)

xs 6= None) candidates)
case Nil
then show ?thesis

by (metis Suc.prems extend-until-conflict.simps(2 ) list.simps(4 ))
next

case (Cons c cs)
then show ?thesis

by (simp add: Suc.IH Suc.prems)
qed

qed

lemma extend-until-conflict-elem :
assumes x ∈ set (extend-until-conflict non-confl-set candidates xs k)
shows x ∈ set xs ∨ x ∈ set candidates

using assms proof (induction k arbitrary: candidates xs)
case 0
then show ?case by auto

next
case (Suc k)
then show ?case proof (cases dropWhile (λ x . find (λ y . (x,y) /∈ non-confl-set)

xs 6= None) candidates)
case Nil
then show ?thesis

by (metis Suc.prems extend-until-conflict.simps(2 ) list.simps(4 ))
next

case (Cons c cs)
then have extend-until-conflict non-confl-set candidates xs (Suc k) = ex-

tend-until-conflict non-confl-set cs (c#xs) k
by auto

then have x ∈ set (c # xs) ∨ x ∈ set cs
using Suc.IH [of cs (c#xs)] Suc.prems by auto

moreover have set (c#cs) ⊆ set candidates
using Cons by (metis set-dropWhileD subsetI )

ultimately show ?thesis
using set-ConsD by auto

qed
qed

lemma extend-until-conflict-no-conflicts :
assumes x ∈ set (extend-until-conflict non-confl-set candidates xs k)
and y ∈ set (extend-until-conflict non-confl-set candidates xs k)
and x ∈ set xs =⇒ y ∈ set xs =⇒ (x,y) ∈ non-confl-set ∨ (y,x) ∈ non-confl-set
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and x 6= y
shows (x,y) ∈ non-confl-set ∨ (y,x) ∈ non-confl-set
using assms proof (induction k arbitrary: candidates xs)

case 0
then show ?case by auto

next
case (Suc k)
then show ?case proof (cases dropWhile (λ x . find (λ y . (x,y) /∈ non-confl-set)

xs 6= None) candidates)
case Nil
then have extend-until-conflict non-confl-set candidates xs (Suc k) = xs

by (metis extend-until-conflict.simps(2 ) list.simps(4 ))
then show ?thesis

using Suc.prems by auto
next

case (Cons c cs)
then have extend-until-conflict non-confl-set candidates xs (Suc k) = ex-

tend-until-conflict non-confl-set cs (c#xs) k
by auto

then have xk: x ∈ set (extend-until-conflict non-confl-set cs (c#xs) k)
and yk: y ∈ set (extend-until-conflict non-confl-set cs (c#xs) k)

using Suc.prems by auto

have ∗∗: x ∈ set (c#xs) =⇒ y ∈ set (c#xs) =⇒ (x,y) ∈ non-confl-set ∨ (y,x)
∈ non-confl-set

proof −
have scheme:

∧
P xs x xs ′ . dropWhile P xs = (x#xs ′) =⇒ ¬ P x

by (simp add: dropWhile-eq-Cons-conv)
have find (λ y . (c,y) /∈ non-confl-set) xs = None

using scheme[OF Cons] by simp
then have ∗:

∧
y . y ∈ set xs =⇒ (c,y) ∈ non-confl-set

unfolding find-None-iff by blast

assume x ∈ set (c#xs) and y ∈ set (c#xs)
then consider (a1 ) x = c ∧ y ∈ set xs |

(a2 ) y = c ∧ x ∈ set xs |
(a3 ) x ∈ set xs ∧ y ∈ set xs

using ‹x 6= y› by auto
then show ?thesis

using ∗ Suc.prems(3 ) by (cases; auto)
qed

show ?thesis using Suc.IH [OF xk yk ∗∗ Suc.prems(4 )] by blast
qed

qed

definition greedy-pairwise-r-distinguishable-state-sets-from-separators :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ′a set list where
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greedy-pairwise-r-distinguishable-state-sets-from-separators M =
(let pwrds = image fst (r-distinguishable-state-pairs-with-separators M );

k = size M ;
nL = states-as-list M

in map (λq . set (extend-until-conflict pwrds (remove1 q nL) [q] k)) nL)

definition maximal-repetition-sets-from-separators-list-greedy :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ ( ′a set × ′a set) list where

maximal-repetition-sets-from-separators-list-greedy M = (let DR = (image fst
(d-reachable-states-with-preambles M ))

in remdups (map (λ S . (S , S ∩ DR)) (greedy-pairwise-r-distinguishable-state-sets-from-separators
M )))

lemma greedy-pairwise-r-distinguishable-state-sets-from-separators-cover :
assumes q ∈ states M

shows ∃ S ∈ set (greedy-pairwise-r-distinguishable-state-sets-from-separators M ).
q ∈ S

using assms extend-until-conflict-retainment[of q [q]]
unfolding states-as-list-set[symmetric] greedy-pairwise-r-distinguishable-state-sets-from-separators-def

Let-def
by auto

lemma r-distinguishable-state-pairs-with-separators-sym :
assumes (q1 ,q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M
shows (q2 ,q1 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M
using assms
unfolding r-distinguishable-state-pairs-with-separators-def
by force

lemma greedy-pairwise-r-distinguishable-state-sets-from-separators-soundness :
set (greedy-pairwise-r-distinguishable-state-sets-from-separators M ) ⊆ (pairwise-r-distinguishable-state-sets-from-separators

M )
proof
fix S assume S ∈ set (greedy-pairwise-r-distinguishable-state-sets-from-separators

M )
then obtain q ′ where q ′ ∈ states M

and ∗: S = set (extend-until-conflict (image fst (r-distinguishable-state-pairs-with-separators
M ))

(remove1 q ′ (states-as-list M ))
[q ′]
(size M ))

unfolding greedy-pairwise-r-distinguishable-state-sets-from-separators-def Let-def
states-as-list-set[symmetric]

by auto
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have S ⊆ states M
proof

fix q assume q ∈ S
then have q ∈ set (extend-until-conflict (image fst (r-distinguishable-state-pairs-with-separators

M )) (remove1 q ′ (states-as-list M )) [q ′] (size M ))
using ∗ by auto

then show q ∈ states M
using extend-until-conflict-elem[of q image fst (r-distinguishable-state-pairs-with-separators

M ) (remove1 q ′ (states-as-list M )) [q ′] size M ]
using states-as-list-set ‹q ′ ∈ states M › by auto

qed

moreover have
∧

q1 q2 . q1 ∈ S =⇒ q2 ∈ S =⇒ q1 6= q2 =⇒ (q1 ,q2 ) ∈ image
fst (r-distinguishable-state-pairs-with-separators M )

proof −
fix q1 q2 assume q1 ∈ S and q2 ∈ S and q1 6= q2

then have e1 : q1 ∈ set (extend-until-conflict (image fst (r-distinguishable-state-pairs-with-separators
M )) (remove1 q ′ (states-as-list M )) [q ′] (size M ))

and e2 : q2 ∈ set (extend-until-conflict (image fst (r-distinguishable-state-pairs-with-separators
M )) (remove1 q ′ (states-as-list M )) [q ′] (size M ))

unfolding ∗ by simp+
have e3 : (q1 ∈ set [q ′] =⇒ q2 ∈ set [q ′]

=⇒ (q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M
∨ (q2 , q1 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M )

using ‹q1 6= q2 › by auto

show (q1 ,q2 ) ∈ image fst (r-distinguishable-state-pairs-with-separators M )
using extend-until-conflict-no-conflicts[OF e1 e2 e3 ‹q1 6= q2 ›]

r-distinguishable-state-pairs-with-separators-sym[of q2 q1 M ] by blast
qed

ultimately show S ∈ (pairwise-r-distinguishable-state-sets-from-separators M )
unfolding pairwise-r-distinguishable-state-sets-from-separators-def by blast

qed

end

38 Maximal Path Tries

Drastically reduced implementation of tries that consider only maximum
length sequences as elements. Inserting a sequence that is prefix of some
already contained sequence does not alter the trie. Intended to store IO-
sequences to apply in testing, as in this use-case proper prefixes need not be
applied separately.
theory Maximal-Path-Trie
imports ../Util
begin
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38.1 Utils for Updating Associative Lists
fun update-assoc-list-with-default :: ′a ⇒ ( ′b ⇒ ′b) ⇒ ′b ⇒ ( ′a × ′b) list ⇒ ( ′a ×
′b) list where

update-assoc-list-with-default k f d [] = [(k,f d)] |
update-assoc-list-with-default k f d ((x,y)#xys) = (if k = x

then ((x,f y)#xys)
else (x,y) # (update-assoc-list-with-default k f d xys))

lemma update-assoc-list-with-default-key-found :
assumes distinct (map fst xys)
and i < length xys
and fst (xys ! i) = k

shows update-assoc-list-with-default k f d xys =
((take i xys) @ [(k, f (snd (xys ! i)))] @ (drop (Suc i) xys))

using assms proof (induction xys arbitrary: i)
case Nil
then show ?case by auto

next
case (Cons a xys)

show ?case
proof (cases i)

case 0
then have fst a = k using Cons.prems(3 ) by auto
then have update-assoc-list-with-default k f d (a#xys) = (k, f (snd a)) # xys
unfolding 0 by (metis prod.collapse update-assoc-list-with-default.simps(2 ))

then show ?thesis unfolding 0 by auto
next

case (Suc j)
then have fst a 6= k

using Cons.prems by auto

have distinct (map fst xys)
and j < length xys
and fst (xys ! j) = k

using Cons.prems unfolding Suc by auto

then have update-assoc-list-with-default k f d xys = take j xys @ [(k, f (snd
(xys ! j)))] @ drop (Suc j) xys

using Cons.IH [of j] by auto

then show ?thesis unfolding Suc using ‹fst a 6= k›
by (metis append-Cons drop-Suc-Cons nth-Cons-Suc prod.collapse take-Suc-Cons

update-assoc-list-with-default.simps(2 ))
qed

qed

lemma update-assoc-list-with-default-key-not-found :
assumes distinct (map fst xys)
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and k /∈ set (map fst xys)
shows update-assoc-list-with-default k f d xys = xys @ [(k,f d)]

using assms by (induction xys; auto)

lemma update-assoc-list-with-default-key-distinct :
assumes distinct (map fst xys)
shows distinct (map fst (update-assoc-list-with-default k f d xys))

proof (cases k ∈ set (map fst xys))
case True
then obtain i where i < length xys and fst (xys ! i) = k

by (metis in-set-conv-nth length-map nth-map)
then have ∗: (map fst (take i xys @ [(k, f (snd (xys ! i)))] @ drop (Suc i) xys))

= (map fst xys)
proof −

have xys ! i # drop (Suc i) xys = drop i xys
using Cons-nth-drop-Suc ‹i < length xys› by blast

then show ?thesis
by (metis (no-types) ‹fst (xys ! i) = k› append-Cons append-self-conv2 ap-

pend-take-drop-id fst-conv list.simps(9 ) map-append)
qed
show ?thesis

unfolding update-assoc-list-with-default-key-found[OF assms ‹i < length xys›
‹fst (xys ! i) = k›] ∗

using assms by assumption
next

case False
have ∗: (map fst (xys @ [(k, f d)])) = (map fst xys)@[k] by auto
show ?thesis

using assms False
unfolding update-assoc-list-with-default-key-not-found[OF assms False] ∗ by

auto
qed

38.2 Maximum Path Trie Implementation
datatype ′a mp-trie = MP-Trie ( ′a × ′a mp-trie) list

fun mp-trie-invar :: ′a mp-trie ⇒ bool where
mp-trie-invar (MP-Trie ts) = (distinct (map fst ts) ∧ (∀ t ∈ set (map snd ts) .

mp-trie-invar t))

definition empty :: ′a mp-trie where
empty = MP-Trie []

lemma empty-invar : mp-trie-invar empty unfolding empty-def by auto
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fun height :: ′a mp-trie ⇒ nat where
height (MP-Trie []) = 0 |
height (MP-Trie (xt#xts)) = Suc (foldr (λ t m . max (height t) m) (map snd

(xt#xts)) 0 )

lemma height-0 :
assumes height t = 0
shows t = empty

proof (rule ccontr)
assume t 6= empty
then obtain xt xts where t = MP-Trie (xt#xts)

by (metis empty-def height.cases)
have height t > 0

unfolding ‹t = MP-Trie (xt#xts)› height.simps
by simp

then show False
using assms by simp

qed

lemma height-inc :
assumes t ∈ set (map snd ts)
shows height t < height (MP-Trie ts)

proof −
obtain xt xts where ts = xt#xts

using assms
by (metis list.set-cases list-map-source-elem)

have height t < Suc (foldr (λ t m . max (height t) m) (map snd (xt#xts)) 0 )
using assms unfolding ‹ts = xt#xts› using max-by-foldr [of t (map snd

(xt#xts)) height]
by blast

then show ?thesis unfolding ‹ts = xt#xts› by auto
qed

fun insert :: ′a list ⇒ ′a mp-trie ⇒ ′a mp-trie where
insert [] t = t |
insert (x#xs) (MP-Trie ts) = (MP-Trie (update-assoc-list-with-default x (λ t .

insert xs t) empty ts))

lemma insert-invar : mp-trie-invar t =⇒ mp-trie-invar (insert xs t)
proof (induction xs arbitrary: t)

case Nil
then show ?case by auto
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next
case (Cons x xs)

obtain ts where t = MP-Trie ts
using mp-trie-invar .cases by auto

then have distinct (map fst ts)
and

∧
t . t ∈ set (map snd ts) =⇒ mp-trie-invar t

using Cons.prems by auto

show ?case proof (cases x ∈ set (map fst ts))
case True
then obtain i where i < length ts and fst (ts ! i) = x

by (metis in-set-conv-nth length-map nth-map)
have insert (x#xs) (MP-Trie ts) = (MP-Trie (take i ts @ [(x, insert xs (snd

(ts ! i)))] @ drop (Suc i) ts))
unfolding insert.simps empty-def
unfolding update-assoc-list-with-default-key-found[OF ‹distinct (map fst ts)›

‹i < length ts› ‹fst (ts ! i) = x›
,of (λ t . insert xs t) (MP-Trie [])]

by simp

have
∧

t . t ∈ set (map snd (take i ts @ [(x, insert xs (snd (ts ! i)))] @ drop
(Suc i) ts)) =⇒ mp-trie-invar t

proof −
fix t assume t ∈ set (map snd (take i ts @ [(x, insert xs (snd (ts ! i)))] @

drop (Suc i) ts))
then consider (a) t ∈ set (map snd (take i ts @ drop (Suc i) ts)) |

(b) t = insert xs (snd (ts ! i))
by auto

then show mp-trie-invar t proof cases
case a
then have t ∈ set (map snd ts)

by (metis drop-map in-set-dropD in-set-takeD list-concat-non-elem map-append
take-map)

then show ?thesis using ‹
∧

t . t ∈ set (map snd ts) =⇒ mp-trie-invar t›
by blast

next
case b
have (snd (ts ! i)) ∈ set (map snd ts)

using ‹i < length ts› by auto
then have mp-trie-invar (snd (ts ! i)) using ‹

∧
t . t ∈ set (map snd ts)

=⇒ mp-trie-invar t› by blast
then show ?thesis using Cons.IH unfolding b by blast

qed
qed
moreover have distinct (map fst (take i ts @ [(x, insert xs (snd (ts ! i)))] @

drop (Suc i) ts))
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using update-assoc-list-with-default-key-distinct[OF ‹distinct (map fst ts)›]
by (metis ‹distinct (map fst ts)› ‹fst (ts ! i) = x› ‹i < length ts› up-

date-assoc-list-with-default-key-found)

ultimately show ?thesis
unfolding ‹t = MP-Trie ts› ‹insert (x#xs) (MP-Trie ts) = (MP-Trie (take

i ts @ [(x, insert xs (snd (ts ! i)))] @ drop (Suc i) ts))›
by auto

next
case False

have mp-trie-invar (insert xs empty)
by (simp add: empty-invar Cons.IH )

then show ?thesis
using Cons.prems update-assoc-list-with-default-key-distinct[OF ‹distinct (map

fst ts)›, of x (insert xs) (MP-Trie [])]
unfolding ‹t = MP-Trie ts› insert.simps
unfolding update-assoc-list-with-default-key-not-found[OF ‹distinct (map fst

ts)› False]
by auto

qed
qed

fun paths :: ′a mp-trie ⇒ ′a list list where
paths (MP-Trie []) = [[]] |
paths (MP-Trie (t#ts)) = concat (map (λ (x,t) . map ((#) x) (paths t)) (t#ts))

lemma paths-empty :
assumes [] ∈ set (paths t)
shows t = empty

proof (rule ccontr)
assume t 6= empty
then obtain xt xts where t = MP-Trie (xt#xts)

by (metis empty-def height.cases)
then have [] ∈ set (concat (map (λ (x,t) . map ((#) x) (paths t)) (xt#xts)))

using assms by auto
then show False by auto

qed

lemma paths-nonempty :
assumes [] /∈ set (paths t)
shows set (paths t) 6= {}

using assms proof (induction t rule: mp-trie-invar .induct)
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case (1 ts)
have ts 6= [] using 1 .prems by auto
then obtain x t xts where ts = ((x,t)#xts)

using linear-order-from-list-position ′.cases
by (metis old.prod.exhaust)

then have t ∈ set (map snd ts) by auto

show ?case
proof (cases [] ∈ set (paths t))

case True
then show ?thesis

unfolding ‹ts = ((x,t)#xts)› paths.simps by auto
next

case False
show ?thesis

using 1 .IH [OF ‹t ∈ set (map snd ts)› False]
unfolding ‹ts = ((x,t)#xts)› paths.simps by auto

qed
qed

lemma paths-maximal: mp-trie-invar t =⇒ xs ′ ∈ set (paths t) =⇒ ¬ (∃ xs ′′ . xs ′′

6= [] ∧ xs ′@xs ′′ ∈ set (paths t))
proof (induction xs ′ arbitrary: t)

case Nil
then have t = empty

using paths-empty by blast
then have paths t = [[]]

by (simp add: empty-def )
then show ?case by auto

next
case (Cons x xs ′)

then have t 6= empty unfolding empty-def by auto
then obtain xt xts where t = MP-Trie (xt#xts)

by (metis empty-def height.cases)

obtain t ′ where (x,t ′) ∈ set (xt#xts)
and xs ′ ∈ set (paths t ′)

using Cons.prems(2 )
unfolding ‹t = MP-Trie (xt#xts)› paths.simps
by force

have mp-trie-invar t ′

using Cons.prems(1 ) ‹(x,t ′) ∈ set (xt#xts)› unfolding ‹t = MP-Trie (xt#xts)›
by auto

show ?case
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proof
assume ∃ xs ′′. xs ′′ 6= [] ∧ (x # xs ′) @ xs ′′ ∈ set (paths t)
then obtain xs ′′ where xs ′′ 6= [] and (x # (xs ′ @ xs ′′)) ∈ set (paths (MP-Trie

(xt # xts)))
unfolding ‹t = MP-Trie (xt#xts)› by force

obtain t ′′ where (x,t ′′) ∈ set (xt#xts)
and (xs ′ @ xs ′′) ∈ set (paths t ′′)

using ‹(x # (xs ′ @ xs ′′)) ∈ set (paths (MP-Trie (xt # xts)))›
unfolding ‹t = MP-Trie (xt#xts)› paths.simps
by force

have distinct (map fst (xt#xts))
using Cons.prems(1 ) unfolding ‹t = MP-Trie (xt#xts)› by simp

then have t ′′ = t ′

using ‹(x,t ′) ∈ set (xt#xts)› ‹(x,t ′′) ∈ set (xt#xts)›
by (meson eq-key-imp-eq-value)

then have xs ′@xs ′′ ∈ set (paths t ′)
using ‹(xs ′ @ xs ′′) ∈ set (paths t ′′)› by auto

then show False
using ‹xs ′′ 6= []› Cons.IH [OF ‹mp-trie-invar t ′› ‹xs ′ ∈ set (paths t ′)›] by blast

qed
qed

lemma paths-insert-empty :
paths (insert xs empty) = [xs]

proof (induction xs)
case Nil
then show ?case unfolding empty-def by auto

next
case (Cons x xs)
then show ?case unfolding empty-def insert.simps by auto

qed

lemma paths-order :
assumes set ts = set ts ′

and length ts = length ts ′

shows set (paths (MP-Trie ts)) = set (paths (MP-Trie ts ′))
using assms(2 ,1 ) proof (induction ts ts ′ rule: list-induct2 )
case Nil
then show ?case by auto

next
case (Cons x xs y ys)

have scheme:
∧

f xs ys . set xs = set ys =⇒ set (concat (map f xs)) = set (concat
(map f ys))
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by auto

show ?case
using scheme[OF Cons.prems(1 ), of (λ(x, t). map ((#) x) (paths t))] by simp

qed

lemma paths-insert-maximal :
assumes mp-trie-invar t
shows set (paths (insert xs t)) = (if (∃ xs ′ . xs@xs ′ ∈ set (paths t))

then set (paths t)
else Set.insert xs (set (paths t) − {xs ′ . ∃ xs ′′ .

xs ′@xs ′′ = xs}))
using assms proof (induction xs arbitrary: t)

case Nil
then show ?case

using paths-nonempty by force
next

case (Cons x xs)
show ?case proof (cases t = empty)

case True
show ?thesis

unfolding True
unfolding paths-insert-empty
unfolding empty-def paths.simps by auto

next
case False

then obtain xt xts where t = MP-Trie (xt#xts)
by (metis empty-def height.cases)

then have t = MP-Trie ((fst xt, snd xt)#xts)
by auto

have distinct (map fst (xt#xts))
using Cons.prems ‹t = MP-Trie (xt#xts)› by auto

have (paths t) = concat (map (λ(x, t). map ((#) x) (paths t)) (xt # xts))
unfolding ‹t = MP-Trie ((fst xt, snd xt)#xts)› by simp

then have set (paths t) = {x#xs | x xs t . (x,t) ∈ set (xt#xts) ∧ xs ∈ set
(paths t)}

by auto
then have Set.insert (x#xs) (set (paths t)) = Set.insert (x#xs) {x#xs | x xs

t . (x,t) ∈ set (xt#xts) ∧ xs ∈ set (paths t)}
by blast

show ?thesis proof (cases x ∈ set (map fst (xt#xts)))
case True
case True
then obtain i where i < length (xt#xts) and fst ((xt#xts) ! i) = x
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by (metis in-set-conv-nth list-map-source-elem)
then have ((xt#xts) ! i) = (x,snd ((xt#xts) ! i)) by auto

have mp-trie-invar (snd ((xt # xts) ! i))
using Cons.prems ‹i < length (xt#xts)› unfolding ‹t = MP-Trie (xt#xts)›

by (metis ‹(xt # xts) ! i = (x, snd ((xt # xts) ! i))› in-set-zipE mp-trie-invar .simps
nth-mem zip-map-fst-snd)

have insert (x#xs) t = MP-Trie (take i (xt # xts) @ [(x, insert xs (snd ((xt
# xts) ! i)))] @ drop (Suc i) (xt # xts))

unfolding ‹t = MP-Trie (xt#xts)› insert.simps
unfolding update-assoc-list-with-default-key-found[OF ‹distinct (map fst

(xt#xts))› ‹i < length (xt#xts)› ‹fst ((xt#xts) ! i) = x›]
by simp

then have set (paths (insert (x#xs) t))
= set (paths (MP-Trie (take i (xt # xts) @ [(x, insert xs (snd ((xt

# xts) ! i)))] @ drop (Suc i) (xt # xts))))
by simp

also have ... = set (paths (MP-Trie ((x, insert xs (snd ((xt # xts) ! i))) #
(take i (xt # xts) @ drop (Suc i) (xt # xts)))))

using paths-order [of (take i (xt # xts) @ [(x, insert xs (snd ((xt # xts) !
i)))] @ drop (Suc i) (xt # xts))

((x, insert xs (snd ((xt # xts) ! i))) # (take i (xt # xts) @
drop (Suc i) (xt # xts)))]

by force
also have ... = set ((map ((#) x) (paths (insert xs (snd ((xt # xts) ! i)))))

@ (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt # xts) @ drop (Suc i)
(xt # xts)))))

unfolding paths.simps by force
finally have set (paths (insert (x#xs) t)) =

set (map ((#) x) (paths (insert xs (snd ((xt # xts) ! i)))))
∪ set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt

# xts) @ drop (Suc i) (xt # xts))))
by force

also have . . . = (image ((#) x) (set (paths (insert xs (snd ((xt # xts) ! i))))))
∪ set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt

# xts) @ drop (Suc i) (xt # xts))))
by auto

finally have pi1 : set (paths (insert (x#xs) t)) =
image ((#) x) (if ∃ xs ′. xs @ xs ′ ∈ set (paths (snd ((xt # xts) !

i))) then set (paths (snd ((xt # xts) ! i)))
else

Set.insert xs (set (paths (snd ((xt # xts) ! i))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs}))
∪ set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt

# xts) @ drop (Suc i) (xt # xts))))
unfolding Cons.IH [OF ‹mp-trie-invar (snd ((xt # xts) ! i))›] by blast
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have po1 : set (xt#xts) = set ((x,snd ((xt#xts) ! i)) # ((take i (xt # xts) @
drop (Suc i) (xt # xts))))

using list-index-split-set[OF ‹i < length (xt#xts)›]
unfolding ‹((xt#xts) ! i) = (x,snd ((xt#xts) ! i))›[symmetric] by assumption
have po2 : length (xt#xts) = length ((x,snd ((xt#xts) ! i)) # ((take i (xt #

xts) @ drop (Suc i) (xt # xts))))
using ‹i < length (xt#xts)› by auto

have set (paths t) = set (paths (MP-Trie ((x,snd ((xt#xts) ! i)) # ((take i
(xt # xts) @ drop (Suc i) (xt # xts))))))

unfolding ‹t = MP-Trie (xt#xts)›
using paths-order [OF po1 po2 ] by assumption

also have . . . = set ((map ((#) x) (paths (snd ((xt # xts) ! i)))) @ (concat
(map (λ(x, t). map ((#) x) (paths t)) (take i (xt # xts) @ drop (Suc i) (xt #
xts)))))

unfolding paths.simps by auto
finally have set (paths t) =

set (map ((#) x) (paths (snd ((xt # xts) ! i))))
∪ set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt

# xts) @ drop (Suc i) (xt # xts))))
by force

then have pi2 : set (paths t) = (image ((#) x) (set (paths (snd ((xt # xts) !
i)))))

∪ set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt
# xts) @ drop (Suc i) (xt # xts))))

by auto

show ?thesis proof (cases ∃ xs ′. xs @ xs ′ ∈ set (paths (snd ((xt # xts) ! i))))
case True
then have pi1 ′: set (paths (insert (x#xs) t)) = image ((#) x) (set (paths

(snd ((xt # xts) ! i))))
∪ set (concat (map (λ(x, t). map

((#) x) (paths t)) (take i (xt # xts) @ drop (Suc i) (xt # xts))))
using pi1 by auto

have set (paths (insert (x # xs) t)) = set (paths t)
unfolding pi1 ′ pi2 by simp

moreover have ∃ xs ′. (x # xs) @ xs ′ ∈ set (paths t)
using True unfolding pi2 by force

ultimately show ?thesis by simp
next

case False
then have pi1 ′: set (paths (insert (x#xs) t)) = image ((#) x) (Set.insert

xs (set (paths (snd ((xt # xts) ! i))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs}))
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∪ set (concat (map (λ(x, t). map
((#) x) (paths t)) (take i (xt # xts) @ drop (Suc i) (xt # xts))))

using pi1 by auto

have x1 : ((#) x ‘ Set.insert xs (set (paths (snd ((xt # xts) ! i))) − {xs ′.
∃ xs ′′. xs ′ @ xs ′′ = xs}))

= Set.insert (x # xs) ((#) x ‘ set (paths (snd ((xt # xts) ! i))) − {xs ′.
∃ xs ′′. xs ′ @ xs ′′ = x # xs})

proof −
have

∧
a . a ∈ ((#) x ‘ Set.insert xs (set (paths (snd ((xt # xts) ! i))) −

{xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs})) =⇒
a ∈ Set.insert (x # xs) ((#) x ‘ set (paths (snd ((xt # xts) !

i))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs})
by fastforce

moreover have
∧

a . a ∈ Set.insert (x # xs) ((#) x ‘ set (paths (snd
((xt # xts) ! i))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs}) =⇒

a ∈ ((#) x ‘ Set.insert xs (set (paths (snd ((xt # xts) !
i))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs}))

proof −
fix a assume a ∈ Set.insert (x # xs) ((#) x ‘ set (paths (snd ((xt #

xts) ! i))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs})
then consider (a) a = (x#xs) |

(b) a ∈ ((#) x ‘ set (paths (snd ((xt # xts) ! i))) − {xs ′.
∃ xs ′′. xs ′ @ xs ′′ = x # xs}) by blast

then show a ∈ ((#) x ‘ Set.insert xs (set (paths (snd ((xt # xts) ! i)))
− {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = xs}))

proof cases
case a
then show ?thesis by blast

next
case b
then show ?thesis by force

qed
qed
ultimately show ?thesis by blast

qed

have x2 : set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt #
xts) @ drop (Suc i) (xt # xts))))

= (set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt
# xts) @ drop (Suc i) (xt # xts)))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs})

and x3 : ¬(∃ xs ′. (x # xs) @ xs ′ ∈ set (paths t))
proof −

have
∧

j . j < length (xt#xts) =⇒ j 6= i =⇒ fst ((xt#xts) ! j) 6= x
using ‹i < length (xt#xts)› ‹fst ((xt#xts) ! i) = x› ‹distinct (map fst

(xt#xts))›
by (metis (no-types, lifting) length-map nth-eq-iff-index-eq nth-map)
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have
∧

xt ′ . xt ′ ∈ set (take i (xt # xts) @ drop (Suc i) (xt # xts)) =⇒
fst xt ′ 6= x

proof −
fix xt ′ assume xt ′ ∈ set (take i (xt # xts) @ drop (Suc i) (xt # xts))
then consider (a) xt ′ ∈ set (take i (xt # xts)) |

(b) xt ′ ∈ set (drop (Suc i) (xt # xts))
by auto

then show fst xt ′ 6= x proof cases
case a
then obtain j where j < length (take i (xt#xts)) (take i (xt#xts)) !

j = xt ′

by (meson in-set-conv-nth)

have j < length (xt#xts) and j < i
using ‹j < length (take i (xt#xts))› by auto

moreover have (xt#xts) ! j = xt ′

using ‹(take i (xt#xts)) ! j = xt ′› ‹j < i› by auto
ultimately show ?thesis using ‹

∧
j . j < length (xt#xts) =⇒ j 6= i

=⇒ fst ((xt#xts) ! j) 6= x› by blast
next

case b
then obtain j where j < length (drop (Suc i) (xt#xts)) (drop (Suc i)

(xt#xts)) ! j = xt ′

by (meson in-set-conv-nth)

have (Suc i) + j < length (xt#xts) and (Suc i) + j > i
using ‹j < length (drop (Suc i) (xt#xts))› by auto

moreover have (xt#xts) ! ((Suc i) + j) = xt ′

using ‹(drop (Suc i) (xt#xts)) ! j = xt ′›
using ‹i < length (xt # xts)› by auto

ultimately show ?thesis using ‹
∧

j . j < length (xt#xts) =⇒ j 6= i
=⇒ fst ((xt#xts) ! j) 6= x›[of (Suc i) + j]

by auto
qed

qed
then show set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt

# xts) @ drop (Suc i) (xt # xts))))
= (set (concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt

# xts) @ drop (Suc i) (xt # xts)))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs})
by force

show ¬(∃ xs ′. (x # xs) @ xs ′ ∈ set (paths t))
proof

assume ∃ xs ′. (x # xs) @ xs ′ ∈ set (paths t)
then obtain xs ′ where (x # (xs @ xs ′)) ∈ ((#) x ‘ set (paths (snd ((xt

# xts) ! i)))) ∪
set (concat (map (λ(x, t). map ((#)

x) (paths t)) (take i (xt # xts) @ drop (Suc i) (xt # xts))))
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unfolding pi2 by force
then consider (a) (x # (xs @ xs ′)) ∈ ((#) x ‘ set (paths (snd ((xt #

xts) ! i)))) |
(b) (x # (xs @ xs ′)) ∈ set (concat (map (λ(x, t). map ((#)

x) (paths t)) (take i (xt # xts) @ drop (Suc i) (xt # xts))))
by blast

then show False proof cases
case a
then show ?thesis using False by force

next
case b
then show ?thesis using ‹

∧
xt ′ . xt ′ ∈ set (take i (xt # xts) @ drop

(Suc i) (xt # xts)) =⇒ fst xt ′ 6= x› by force
qed

qed
qed

have ∗: Set.insert (x # xs) ((#) x ‘ set (paths (snd ((xt # xts) ! i))) ∪ set
(concat (map (λ(x, t). map ((#) x) (paths t)) (take i (xt # xts) @ drop (Suc i) (xt
# xts)))) − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs})

= Set.insert (x # xs) (((#) x ‘ set (paths (snd ((xt # xts) ! i)))) −
{xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs}) ∪ set (concat (map (λ(x, t). map ((#) x) (paths
t)) (take i (xt # xts) @ drop (Suc i) (xt # xts))))

using x2 by blast

have set (paths (insert (x # xs) t)) = Set.insert (x # xs) (set (paths t) −
{xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x # xs})

unfolding pi1 ′ pi2 x1 ∗ by blast
then show ?thesis

using x3 by simp
qed

next
case False
have insert (x#xs) t = MP-Trie (xt # (xts @ [(x, insert xs empty)]))

unfolding ‹t = MP-Trie (xt#xts)› insert.simps
unfolding update-assoc-list-with-default-key-not-found[OF ‹distinct (map

fst (xt#xts))› False]
by simp

have (paths (MP-Trie (xt # (xts @ [(x, insert xs empty)])))) = concat (map
(λ(x, t). map ((#) x) (paths t)) (xt # xts @ [(x, insert xs empty)]))

unfolding paths.simps empty-def by simp
also have ... = (concat (map (λ(x, t). map ((#) x) (paths t)) (xt # xts))) @

(map ((#) x) (paths (insert xs empty)))
by auto

finally have paths (insert (x#xs) t) = (paths t) @ [x#xs]
unfolding ‹insert (x#xs) t = MP-Trie (xt # (xts @ [(x, insert xs empty)]))›

‹(paths t) = concat (map (λ(x, t). map ((#) x) (paths t)) (xt #
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xts))›[symmetric]
paths-insert-empty

by auto
then have set (paths (insert (x#xs) t)) = Set.insert (x#xs) (set (paths t))

by force

have
∧

p . p ∈ set (paths t) =⇒ p 6= [] ∧ hd p 6= x
using False
unfolding ‹(paths t) = concat (map (λ(x, t). map ((#) x) (paths t)) (xt #

xts))› by force
then have

∧
xs ′ . xs ′ ∈ set (paths t) =⇒ ¬(∃ xs ′′ . xs ′@xs ′′ = x#xs)

by (metis hd-append2 list.sel(1 ))
then have set (paths t) = (set (paths t) − {xs ′ . ∃ xs ′′ . xs ′@xs ′′ = x#xs})

by blast
then show ?thesis

unfolding ‹set (paths (insert (x#xs) t)) = Set.insert (x#xs) (set (paths
t))›

using ‹
∧

p. p ∈ set (paths t) =⇒ p 6= [] ∧ hd p 6= x› by force
qed

qed
qed

fun from-list :: ′a list list ⇒ ′a mp-trie where
from-list seqs = foldr insert seqs empty

lemma from-list-invar : mp-trie-invar (from-list xs)
using empty-invar insert-invar by (induction xs; auto)

lemma from-list-paths :
set (paths (from-list (x#xs))) = {y. y ∈ set (x#xs) ∧ ¬(∃ y ′ . y ′ 6= [] ∧ y@y ′ ∈

set (x#xs))}
proof (induction xs arbitrary: x)

case Nil
have ∗: paths (from-list [x]) = paths (insert x empty) by auto

show ?case
unfolding ∗
unfolding paths-insert-maximal[OF empty-invar , of x]
unfolding empty-def
by (cases x ; auto)

next
case (Cons x ′ xs)

have from-list (x#x ′#xs) = insert x (insert x ′ (from-list xs)) by auto
have from-list (x#x ′#xs) = insert x (from-list (x ′#xs)) by auto
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have mp-trie-invar (insert x ′ (from-list xs))
using from-list-invar insert-invar by metis

have (insert x ′ (from-list xs)) = from-list (x ′#xs) by auto

thm paths-insert-maximal[OF ‹mp-trie-invar (insert x ′ (from-list xs))›, of x]

show ?case proof (cases ∃ xs ′. x @ xs ′ ∈ set (paths (insert x ′ (from-list xs))))
case True
then have set (paths (insert x (insert x ′ (from-list xs)))) = set (paths (insert

x ′ (from-list xs)))
using paths-insert-maximal[OF ‹mp-trie-invar (insert x ′ (from-list xs))›, of

x] by simp
then have set (paths (insert x (from-list (x ′ # xs)))) = set (paths (from-list

(x ′ # xs)))
unfolding ‹(insert x ′ (from-list xs)) = from-list (x ′#xs)›
by assumption

then have set (paths (from-list (x#x ′#xs))) = {y ∈ set (x ′ # xs). @ y ′. y ′ 6=
[] ∧ y @ y ′ ∈ set (x ′ # xs)}

unfolding Cons ‹from-list (x#x ′#xs) = insert x (from-list (x ′#xs))›
by assumption

show ?thesis proof (cases x ∈ set (paths (insert x ′ (from-list xs))))
case True
then have x ∈ set (x ′#xs)
using ‹set (paths (insert x (insert x ′ (from-list xs)))) = set (paths (insert x ′

(from-list xs)))› ‹set (paths (from-list (x # x ′ # xs))) = {y ∈ set (x ′ # xs). @ y ′.
y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}› by auto

then show ?thesis
unfolding ‹set (paths (from-list (x#x ′#xs))) = {y ∈ set (x ′ # xs). @ y ′. y ′

6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}› by auto
next

case False

have {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)} = {y ∈ set
(x # x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)}

proof −
obtain xs ′ where xs ′ 6= [] and x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= []

∧ y @ y ′ ∈ set (x ′ # xs)}
using True False

by (metis ‹from-list (x # x ′ # xs) = insert x (insert x ′ (from-list xs))› ‹set
(paths (insert x (insert x ′ (from-list xs)))) = set (paths (insert x ′ (from-list xs)))›
‹set (paths (from-list (x # x ′ # xs))) = {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′

∈ set (x ′ # xs)}› append-Nil2 )
then have s1 : {y ∈ set (x # x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′

# xs)} = {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)}
by auto
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have
∧

y . (@ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)) =⇒ (@ y ′. y ′ 6= [] ∧ y @
y ′ ∈ set (x # x ′ # xs))

proof −
fix y assume (@ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs))

show (@ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs))
proof

assume ∃ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)
then have ∃ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs) − set (x ′ # xs)

using ‹(@ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs))› by auto
then have ∃ y ′ . y ′ 6= [] ∧ y @ y ′ = x

by auto
then show False

by (metis (no-types, lifting) Nil-is-append-conv ‹@ y ′. y ′ 6= [] ∧ y @ y ′

∈ set (x ′ # xs)› ‹x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ #
xs)}› append.assoc mem-Collect-eq)

qed
qed
then have s2 : {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}

= {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)}
by auto

show ?thesis
unfolding s1 s2 by simp

qed
then show ?thesis

using ‹set (paths (from-list (x # x ′ # xs))) = {y ∈ set (x ′ # xs). @ y ′. y ′

6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}› by auto
qed

next
case False

then have ∗: set (paths (insert x (insert x ′ (from-list xs))))
= Set.insert x (set (paths (insert x ′ (from-list xs))) − {xs ′. ∃ xs ′′. xs ′

@ xs ′′ = x})
using paths-insert-maximal[OF ‹mp-trie-invar (insert x ′ (from-list xs))›, of

x] by simp

have f : @ xs ′. x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ #
xs)}

using False
unfolding ‹(insert x ′ (from-list xs)) = from-list (x ′#xs)› Cons
by assumption

then have x /∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}
by (metis (no-types, lifting) append-Nil2 )

have x /∈ set (x ′ # xs)
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proof
assume x ∈ set (x ′ # xs)
then have ∃ y ′. y ′ 6= [] ∧ x @ y ′ ∈ set (x ′ # xs)

using ‹x /∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}› by
auto

let ?xms = {xs ′ . xs ′ 6= [] ∧ x @ xs ′ ∈ set (x ′ # xs)}
have ?xms 6= {}

using ‹∃ y ′. y ′ 6= [] ∧ x @ y ′ ∈ set (x ′ # xs)›
by simp

moreover have finite ?xms
proof −

have ?xms ⊆ image (drop (length x)) (set (x ′#xs)) by force
then show ?thesis by (meson List.finite-set finite-surj)

qed
ultimately have ∃ xs ′ ∈ ?xms . ∀ xs ′′ ∈ ?xms . length xs ′′ ≤ length xs ′

by (meson max-length-elem not-le-imp-less)
then obtain xs ′ where xs ′ 6= []

and x@xs ′ ∈ set (x ′#xs)
and

∧
xs ′′ . xs ′′ 6= [] =⇒ x@xs ′′ ∈ set (x ′#xs) =⇒ length xs ′′

≤ length xs ′

by blast

have @ y ′. y ′ 6= [] ∧ (x@xs ′) @ y ′ ∈ set (x ′ # xs)
proof

assume ∃ y ′. y ′ 6= [] ∧ (x @ xs ′) @ y ′ ∈ set (x ′ # xs)
then obtain xs ′′ where xs ′′ 6= [] and (x @ xs ′) @ xs ′′ ∈ set (x ′ # xs)

by blast
then have xs ′@xs ′′ 6= [] and x @ (xs ′ @ xs ′′) ∈ set (x ′ # xs)

by auto
then have length (xs ′@xs ′′) ≤ length xs ′

using ‹
∧

xs ′′ . xs ′′ 6= [] =⇒ x@xs ′′ ∈ set (x ′#xs) =⇒ length xs ′′ ≤ length
xs ′› by blast

then show False
using ‹xs ′′ 6= []› by auto

qed

then have x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ #
xs)}

using ‹x@xs ′ ∈ set (x ′#xs)› by blast
then show False using ‹@ xs ′. x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y

@ y ′ ∈ set (x ′ # xs)}›
by blast

qed

have @ y ′. y ′ 6= [] ∧ x @ y ′ ∈ set (x # x ′ # xs)
proof

assume ∃ y ′. y ′ 6= [] ∧ x @ y ′ ∈ set (x # x ′ # xs)
then obtain y ′ where y ′ 6= [] and x@y ′ ∈ set (x#x ′#xs)

1180



by blast
then have x@y ′ ∈ set (x ′#xs)

by auto

let ?xms = {xs ′ . xs ′ 6= [] ∧ x @ xs ′ ∈ set (x # x ′ # xs)}
have ?xms 6= {}

using ‹∃ y ′. y ′ 6= [] ∧ x @ y ′ ∈ set (x # x ′ # xs)›
by simp

moreover have finite ?xms
proof −

have ?xms ⊆ image (drop (length x)) (set (x ′#xs)) by force
then show ?thesis by (meson List.finite-set finite-surj)

qed
ultimately have ∃ xs ′ ∈ ?xms . ∀ xs ′′ ∈ ?xms . length xs ′′ ≤ length xs ′

by (meson max-length-elem not-le-imp-less)
then obtain xs ′ where xs ′ 6= []

and x@xs ′ ∈ set (x#x ′#xs)
and

∧
xs ′′ . xs ′′ 6= [] =⇒ x@xs ′′ ∈ set (x#x ′#xs) =⇒ length

xs ′′ ≤ length xs ′

by blast

have @ y ′. y ′ 6= [] ∧ (x@xs ′) @ y ′ ∈ set (x # x ′ # xs)
proof

assume ∃ y ′. y ′ 6= [] ∧ (x @ xs ′) @ y ′ ∈ set (x # x ′ # xs)
then obtain xs ′′ where xs ′′ 6= [] and (x @ xs ′) @ xs ′′ ∈ set (x # x ′ # xs)

by blast
then have xs ′@xs ′′ 6= [] and x @ (xs ′ @ xs ′′) ∈ set (x # x ′ # xs)

by auto
then have length (xs ′@xs ′′) ≤ length xs ′

using ‹
∧

xs ′′ . xs ′′ 6= [] =⇒ x@xs ′′ ∈ set (x#x ′#xs) =⇒ length xs ′′ ≤
length xs ′› by blast

then show False
using ‹xs ′′ 6= []› by auto

qed

then have x @ xs ′ ∈ {y ∈ set (x # x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x
# x ′ # xs)}

using ‹x@xs ′ ∈ set (x # x ′#xs)› by blast
then have x @ xs ′ ∈ set (x ′ # xs) and @ y ′. y ′ 6= [] ∧ (x@xs ′) @ y ′ ∈ set (x ′

# xs)
using ‹xs ′ 6= []› by auto

then have x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ #
xs)}

by blast
then show False using ‹@ xs ′. x @ xs ′ ∈ {y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y

@ y ′ ∈ set (x ′ # xs)}›
by blast
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qed

have Set.insert x ({y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)}
− {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x})

= {y ∈ set (x # x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)}
proof −

have
∧

y . y ∈ Set.insert x ({y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set
(x ′ # xs)} − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x}) =⇒ y ∈ {y ∈ set (x # x ′ # xs). @ y ′. y ′

6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)}
proof −

fix y assume y ∈ Set.insert x ({y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈
set (x ′ # xs)} − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x})

then consider (a) y = x |
(b) y ∈ ({y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ #

xs)} − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x})
by blast

then show y ∈ {y ∈ set (x # x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x #
x ′ # xs)}

proof cases
case a
show ?thesis

using ‹@ y ′. y ′ 6= [] ∧ x @ y ′ ∈ set (x # x ′ # xs)› unfolding a by auto
next

case b
then have y ∈ set (x ′ # xs) and @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)

and ¬(∃ xs ′′. y @ xs ′′ = x)
by blast+

have y ∈ set (x#x ′#xs)
using ‹y ∈ set (x ′ # xs)› by auto

moreover have @ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x # x ′ # xs)
using ‹@ y ′. y ′ 6= [] ∧ y @ y ′ ∈ set (x ′ # xs)› ‹¬(∃ xs ′′. y @ xs ′′ = x)›
by auto

ultimately show ?thesis by blast
qed

qed

moreover have
∧

y .y ∈ {y ∈ set (x # x ′ # xs). @ y ′. y ′ 6= [] ∧ y @ y ′ ∈
set (x # x ′ # xs)} =⇒ y ∈ Set.insert x ({y ∈ set (x ′ # xs). @ y ′. y ′ 6= [] ∧ y @
y ′ ∈ set (x ′ # xs)} − {xs ′. ∃ xs ′′. xs ′ @ xs ′′ = x})

by auto
ultimately show ?thesis by blast

qed
then show ?thesis

using ∗ Cons.IH by auto
qed

qed
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38.2.1 New Code Generation for remove-proper-prefixes
declare [[code drop: remove-proper-prefixes]]

lemma remove-proper-prefixes-code-trie[code] :
remove-proper-prefixes (set xs) = (case xs of [] ⇒ {} | (x#xs ′) ⇒ set (paths

(from-list (x#xs ′))))
unfolding from-list-paths remove-proper-prefixes-def by (cases xs; auto)

end

39 R-Distinguishability

This theory defines the notion of r-distinguishability and relates it to state
separators.
theory R-Distinguishability
imports State-Separator
begin

definition r-compatible :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ bool where
r-compatible M q1 q2 = ((∃ S . completely-specified S ∧ is-submachine S (product

(from-FSM M q1 ) (from-FSM M q2 ))))

abbreviation(input) r-distinguishable M q1 q2 ≡ ¬ r-compatible M q1 q2

fun r-distinguishable-k :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ nat ⇒ bool where
r-distinguishable-k M q1 q2 0 = (∃ x ∈ (inputs M ) . ¬ (∃ t1 ∈ transitions M .
∃ t2 ∈ transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧
t-input t2 = x ∧ t-output t1 = t-output t2 )) |

r-distinguishable-k M q1 q2 (Suc k) = (r-distinguishable-k M q1 q2 k
∨ (∃ x ∈ (inputs M ) . ∀ t1 ∈ transitions M .

∀ t2 ∈ transitions M . (t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧
t-input t2 = x ∧ t-output t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 )
(t-target t2 ) k))

39.1 R(k)-Distinguishability Properties
lemma r-distinguishable-k-0-alt-def :

r-distinguishable-k M q1 q2 0 = (∃ x ∈ (inputs M ) . ¬(∃ y q1 ′ q2 ′ . (q1 ,x,y,q1 ′)
∈ transitions M ∧ (q2 ,x,y,q2 ′) ∈ transitions M ))

by fastforce

lemma r-distinguishable-k-Suc-k-alt-def :
r-distinguishable-k M q1 q2 (Suc k) = (r-distinguishable-k M q1 q2 k
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∨ (∃ x ∈ (inputs M ) . ∀ y q1 ′ q2 ′ . ((q1 ,x,y,q1 ′)
∈ transitions M ∧ (q2 ,x,y,q2 ′) ∈ transitions M ) −→ r-distinguishable-k M q1 ′ q2 ′

k))
by fastforce

lemma r-distinguishable-k-by-larger :
assumes r-distinguishable-k M q1 q2 k

and k ≤ k ′

shows r-distinguishable-k M q1 q2 k ′

using assms nat-induct-at-least by fastforce

lemma r-distinguishable-k-0-not-completely-specified :
assumes r-distinguishable-k M q1 q2 0

and q1 ∈ states M
and q2 ∈ states M

shows ¬ completely-specified-state (product (from-FSM M q1 ) (from-FSM M q2 ))
(initial (product (from-FSM M q1 ) (from-FSM M q2 )))
proof −

let ?F1 = from-FSM M q1
let ?F2 = from-FSM M q2
let ?P = product ?F1 ?F2

obtain x where x ∈ (inputs M )
and ¬ (∃ t1 t2 . t1 ∈ transitions M ∧ t2 ∈ transitions M ∧ t-source

t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =
t-output t2 )

using assms(1 ) by fastforce

then have ∗: ¬ (∃ t1 t2 . t1 ∈ transitions ?F1 ∧ t2 ∈ transitions ?F2 ∧ t-source
t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =
t-output t2 )

unfolding from-FSM-simps[OF assms(2 )] from-FSM-simps[OF assms(3 )] by
simp

have ∗∗: ¬ (∃ t ∈ transitions ?P . t-source t = (q1 ,q2 ) ∧ t-input t = x)
proof (rule ccontr)

assume ¬ ¬ (∃ t∈ transitions (product (from-FSM M q1 ) (from-FSM M q2 )).
t-source t = (q1 , q2 ) ∧ t-input t = x)

then obtain t where t ∈ transitions ?P and t-source t = (q1 ,q2 ) and t-input
t = x

by blast

have ∃ t1 t2 . t1 ∈ transitions ?F1 ∧ t2 ∈ transitions ?F2 ∧ t-source t1 = q1
∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output t2

using product-transition-split[OF ‹t ∈ transitions ?P›]
by (metis ‹t-input t = x› ‹t-source t = (q1 , q2 )› fst-conv snd-conv)

then show False
using ∗ by auto
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qed

moreover have x ∈ (inputs ?P)
using ‹x ∈ (inputs M )›
by (simp add: assms(3 ))

ultimately have ¬ completely-specified-state ?P (q1 ,q2 )
by (meson completely-specified-state.elims(2 ))

have (q1 ,q2 ) = initial (product (from-FSM M q1 ) (from-FSM M q2 ))
by (simp add: assms(2 ) assms(3 ))

then show ?thesis
using ‹¬ completely-specified-state (product (from-FSM M q1 ) (from-FSM M

q2 )) (q1 , q2 )› by presburger
qed

lemma r-0-distinguishable-from-not-completely-specified-initial :
assumes ¬ completely-specified-state (product (from-FSM M q1 ) (from-FSM M

q2 )) (q1 ,q2 )
and q1 ∈ states M
and q2 ∈ states M

shows r-distinguishable-k M q1 q2 0
proof −

let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

from assms obtain x where x ∈ (inputs ?P)
and ¬ (∃ t∈ transitions ?P. t-source t = (q1 , q2 ) ∧ t-input t =

x)
unfolding completely-specified-state.simps by blast

then have x ∈ (inputs M )
by (simp add: assms(2 ) assms(3 ))

have ∗: ¬ (∃ t1 t2 .
t1 ∈ transitions (from-FSM M q1 ) ∧
t2 ∈ transitions (from-FSM M q2 ) ∧
t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =

t-output t2 )
proof

assume ∃ t1 t2 .
t1 ∈ transitions (from-FSM M q1 ) ∧
t2 ∈ transitions (from-FSM M q2 ) ∧
t-source t1 = q1 ∧
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t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output
t2

then obtain t1 t2 where t1 ∈ transitions (from-FSM M q1 )
and t2 ∈ transitions (from-FSM M q2 )
and t-source t1 = q1
and t-source t2 = q2
and t-input t1 = x
and t-input t2 = x
and t-output t1 = t-output t2

by blast

let ?t = ((t-source t1 , t-source t2 ),t-input t1 ,t-output t1 ,(t-target t1 ,t-target
t2 ))

let ?t1 = (fst (t-source ?t), t-input ?t, t-output ?t, fst (t-target ?t))
let ?t2 = (snd (t-source ?t), t-input ?t, t-output ?t, snd (t-target ?t))

have t1-alt : t1 = ?t1
by auto

have t-source t2 = snd (t-source ?t)
by auto

moreover have t-input t2 = t-input ?t
using ‹t-input t1 = x› ‹t-input t2 = x› by auto

moreover have t-output t2 = t-output ?t
using ‹t-output t1 = t-output t2 › by auto

moreover have t-target t2 = snd (t-target ?t)
by auto

ultimately have (t-source t2 , t-input t2 , t-output t2 , t-target t2 ) = ?t2
by auto

then have t2-alt : t2 = ?t2
by auto

have ?t1 ∈ transitions (from-FSM M q1 )
using ‹t1 ∈ transitions (from-FSM M q1 )› by auto

moreover have ?t2 ∈ transitions (from-FSM M q2 )
using ‹t2 ∈ transitions (from-FSM M q2 )› t2-alt by auto

ultimately have ?t ∈ transitions ?P
unfolding product-transitions-def by force

moreover have t-source ?t = (q1 ,q2 ) using ‹t-source t1 = q1 › ‹t-source t2 =
q2 › by auto

moreover have t-input ?t = x using ‹t-input t1 = x› by auto
ultimately show False
using ‹¬ (∃ t∈ transitions ?P. t-source t = (q1 , q2 ) ∧ t-input t = x)› by blast

qed

have ∗∗:
∧

t1 . t1 ∈ transitions M =⇒ t-source t1 = q1 =⇒ t1 ∈ transitions
(from-FSM M q1 )

and ∗∗∗:
∧

t2 . t2 ∈ transitions M =⇒ t-source t2 = q2 =⇒ t2 ∈ transitions
(from-FSM M q2 )
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by (simp add: assms(2 ,3 ))+

then show ?thesis unfolding r-distinguishable-k.simps
using ‹x ∈ (inputs M )› ∗ by blast

qed

lemma r-0-distinguishable-from-not-completely-specified :
assumes ¬ completely-specified-state (product (from-FSM M q1 ) (from-FSM M

q2 )) (q1 ′,q2 ′)
and q1 ∈ states M
and q2 ∈ states M
and (q1 ′,q2 ′) ∈ states (product (from-FSM M q1 ) (from-FSM M q2 ))

shows r-distinguishable-k M q1 ′ q2 ′ 0
proof −

have q1 ′ ∈ states M
using assms(2 ) assms(4 ) by simp

have q2 ′ ∈ states M
using assms(3 ) assms(4 ) by simp

show ?thesis
using r-0-distinguishable-from-not-completely-specified-initial[OF - ‹q1 ′ ∈ states

M › ‹q2 ′ ∈ states M ›]
assms(1 )

unfolding completely-specified-state.simps product-simps from-FSM-simps[OF
assms(2 )] from-FSM-simps[OF assms(3 )] from-FSM-simps[OF ‹q1 ′ ∈ states M ›]
from-FSM-simps[OF ‹q2 ′ ∈ states M ›]

product-transitions-alt-def by auto
qed

lemma r-distinguishable-k-intersection-path :
assumes ¬ r-distinguishable-k M q1 q2 k
and length xs ≤ Suc k
and set xs ⊆ (inputs M )
and q1 ∈ states M
and q2 ∈ states M

shows ∃ p . path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ,q2 ) p ∧ map
fst (p-io p) = xs
using assms proof (induction k arbitrary: q1 q2 xs)

case 0
let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))
show ?case
proof (cases length xs < Suc 0 )

case True
then have xs = [] by auto
moreover have path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ,q2 ) []

by (simp add: 0 .prems(4 ) 0 .prems(5 ) nil)
moreover have map fst (p-io []) = [] by auto

1187



ultimately show ?thesis
by simp

next
case False

have completely-specified-state ?P (q1 ,q2 )
proof (rule ccontr)

assume ¬ completely-specified-state ?P (q1 ,q2 )
then have r-distinguishable-k M q1 q2 0

using r-0-distinguishable-from-not-completely-specified-initial
by (metis 0 .prems(4 ) 0 .prems(5 ))

then show False
using 0 .prems by simp

qed
then have ∗: ∀ x ∈ (inputs ?P) . ∃ t . t ∈ transitions ?P ∧ t-source t =

(q1 ,q2 ) ∧ t-input t = x
unfolding completely-specified-state.simps by blast

let ?x = hd xs
have xs = [?x]

using 0 .prems(2 ) False
by (metis Suc-length-conv le-neq-implies-less length-0-conv list.sel(1 ))

have ?x ∈ (inputs M )
using 0 .prems(3 ) False by auto

then obtain t where t ∈ transitions ?P and t-source t = (q1 ,q2 ) and t-input
t = ?x

using ∗ 0 .prems(4 ) 0 .prems(5 ) by auto

then have path ?P (q1 ,q2 ) [t]
using single-transition-path by metis

moreover have map fst (p-io [t]) = xs
using ‹t-input t = ?x› ‹xs = [hd xs]› by auto

ultimately show ?thesis
by (metis (no-types, lifting))

qed
next

case (Suc k)
let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

show ?case
proof (cases length xs ≤ Suc k)

case True
have ¬ r-distinguishable-k M q1 q2 k

using Suc.prems(1 ) by auto
show ?thesis

using Suc.IH [OF ‹¬ r-distinguishable-k M q1 q2 k› True Suc.prems(3 ,4 ,5 )]
by assumption

next
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case False
then have length xs = Suc (Suc k)

using Suc.prems(2 ) by auto

then have hd xs ∈ (inputs M )
by (metis Suc.prems(3 ) contra-subsetD hd-in-set length-greater-0-conv zero-less-Suc)

have set (tl xs) ⊆ (inputs M )
by (metis ‹length xs = Suc (Suc k)› Suc.prems(3 ) dual-order .trans hd-Cons-tl

length-0-conv nat.simps(3 ) set-subset-Cons)
have length (tl xs) ≤ Suc k

by (simp add: ‹length xs = Suc (Suc k)›)

let ?x = hd xs
let ?xs = tl xs

have ∀ x ∈ (inputs M ) . ∃ t ∈ transitions ?P . t-source t = (q1 ,q2 ) ∧ t-input
t = x ∧ ¬ r-distinguishable-k M (fst (t-target t)) (snd (t-target t)) k

proof
fix x assume x ∈ (inputs M )

have ¬(∃ x ∈ (inputs M ) . ∀ t1 ∈ transitions M . ∀ t2 ∈ transitions M .
(t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output
t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

using Suc.prems by auto
then have ∀ x ∈ (inputs M ) . ∃ t1 t2 . (t1 ∈ transitions M ∧ t2 ∈ transitions

M ∧ t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧
t-output t1 = t-output t2 ∧ ¬ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

by blast
then obtain t1 t2 where t1 ∈ transitions M

and t2 ∈ transitions M
and t-source t1 = q1
and t-source t2 = q2
and t-input t1 = x
and t-input t2 = x
and p4 : t-output t1 = t-output t2
and ∗∗: ¬ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k

using ‹x ∈ (inputs M )› by auto

have p1 : t1 ∈ transitions (from-FSM M q1 )
by (simp add: Suc.prems(4 ) ‹t1 ∈ FSM .transitions M ›)

have p2 : t2 ∈ transitions (from-FSM M q2 )
by (simp add: Suc.prems(5 ) ‹t2 ∈ FSM .transitions M ›)

have p3 : t-input t1 = t-input t2
using ‹t-input t1 = x› ‹t-input t2 = x› by auto

have ∗∗∗: ((q1 ,q2 ), x, t-output t1 , (t-target t1 , t-target t2 )) ∈ transitions ?P
using ‹t-source t1 = q1 › ‹t-source t2 = q2 › ‹t-input t1 = x› p1 p2 p3 p4
unfolding product-transitions-alt-def
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by blast

show ∃ t ∈ transitions ?P . t-source t = (q1 ,q2 ) ∧ t-input t = x ∧ ¬
r-distinguishable-k M (fst (t-target t)) (snd (t-target t)) k

by (metis ∗∗ ∗∗∗ fst-conv snd-conv)
qed

then obtain t where t ∈ transitions ?P and t-source t = (q1 ,q2 ) and t-input
t = ?x

and ¬ r-distinguishable-k M (fst (t-target t)) (snd (t-target t)) k
using ‹?x ∈ (inputs M )› by blast

have fst (t-target t) ∈ FSM .states M and snd (t-target t) ∈ FSM .states M
using fsm-transition-target[OF ‹t ∈ transitions ?P›] unfolding product-simps

from-FSM-simps[OF ‹q1 ∈ states M ›] from-FSM-simps[OF ‹q2 ∈ states M ›] by
auto

then obtain p where p-def : path (product (from-FSM M (fst (t-target t)))
(from-FSM M (snd (t-target t)))) (t-target t) p

and map fst (p-io p) = ?xs
using Suc.IH [OF ‹¬ r-distinguishable-k M (fst (t-target t)) (snd (t-target t))

k› ‹length (tl xs) ≤ Suc k› ‹set (tl xs) ⊆ (inputs M )›] by auto

have path ?P (t-target t) p
using product-from-path-previous[OF p-def ‹t ∈ transitions ?P› Suc.prems(4 ,5 )]

by assumption

have path ?P (q1 ,q2 ) (t#p)
using path.cons[OF‹t ∈ transitions ?P› ‹path ?P (t-target t) p›] ‹t-source t

= (q1 ,q2 )› by metis
moreover have map fst (p-io (t#p)) = xs

using ‹t-input t = ?x› ‹map fst (p-io p) = ?xs›
by (metis (no-types, lifting) ‹length xs = Suc (Suc k)› ‹t-input t = hd xs›

fst-conv hd-Cons-tl length-greater-0-conv list.simps(9 ) zero-less-Suc)
ultimately show ?thesis

by (metis (no-types, lifting))
qed

qed

lemma r-distinguishable-k-intersection-paths :
assumes ¬(∃ k . r-distinguishable-k M q1 q2 k)
and q1 ∈ states M
and q2 ∈ states M
shows ∀ xs . set xs ⊆ (inputs M ) −→ (∃ p . path (product (from-FSM M q1 )

(from-FSM M q2 )) (q1 ,q2 ) p ∧ map fst (p-io p) = xs)
proof (rule ccontr)

assume ¬ (∀ xs . set xs ⊆ (inputs M ) −→ (∃ p . path (product (from-FSM M
q1 ) (from-FSM M q2 )) (q1 ,q2 ) p ∧ map fst (p-io p) = xs))
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then obtain xs where set xs ⊆ (inputs M )
and ¬ (∃ p . path (product (from-FSM M q1 ) (from-FSM M q2 ))

(q1 ,q2 ) p ∧ map fst (p-io p) = xs)
by blast

have ¬ r-distinguishable-k M q1 q2 (length xs)
using assms by auto

show False
using r-distinguishable-k-intersection-path[OF ‹¬ r-distinguishable-k M q1 q2

(length xs)› - ‹set xs ⊆ (inputs M )› assms(2 ,3 )]
‹¬ (∃ p . path (product (from-FSM M q1 ) (from-FSM M q2 )) (q1 ,q2 ) p

∧ map fst (p-io p) = xs)› by fastforce
qed

39.1.1 Equivalence of R-Distinguishability Definitions
lemma r-distinguishable-alt-def :

assumes q1 ∈ states M and q2 ∈ states M
shows r-distinguishable M q1 q2 ←→ (∃ k . r-distinguishable-k M q1 q2 k)

proof
show r-distinguishable M q1 q2 =⇒ ∃ k. r-distinguishable-k M q1 q2 k
proof (rule ccontr)

assume r-distinguishable M q1 q2
assume c-assm: ¬ (∃ k. r-distinguishable-k M q1 q2 k)

let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))

let ?f = λ t . ¬ r-distinguishable-k M (fst (t-source t)) (snd (t-source t)) 0 ∧
¬ (∃ k . r-distinguishable-k M (fst (t-target t)) (snd (t-target t)) k) ∧ t-source t ∈
reachable-states ?P

let ?ft = Set.filter ?f (transitions ?P)

let ?PC = filter-transitions ?P ?f
let ?PCR = restrict-to-reachable-states ?PC

have h-ft : transitions ?PC = { t ∈ transitions ?P . ?f t }
by auto

have states-non-r-d-k :
∧

q . q ∈ reachable-states ?PC =⇒ ¬ (∃ k . r-distinguishable-k
M (fst q) (snd q) k)

proof −
fix q assume q ∈ reachable-states ?PC
have q = initial ?PC ∨ (∃ t ∈ transitions ?PC . q = t-target t)

by (metis (no-types, lifting) ‹q ∈ reachable-states (FSM .filter-transitions
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(Product-FSM .product (FSM .from-FSM M q1 ) (FSM .from-FSM M q2 )) (λt. ¬
r-distinguishable-k M (fst (t-source t)) (snd (t-source t)) 0 ∧ (@ k. r-distinguishable-k
M (fst (t-target t)) (snd (t-target t)) k) ∧ t-source t ∈ reachable-states (Product-FSM .product
(FSM .from-FSM M q1 ) (FSM .from-FSM M q2 ))))› reachable-states-initial-or-target)

then have q = (q1 ,q2 ) ∨ (∃ t ∈ transitions ?PC . q = t-target t)
by (simp add: assms(1 ) assms(2 ))

show ¬ (∃ k . r-distinguishable-k M (fst q) (snd q) k)
proof (cases q = (q1 ,q2 ))

case True
then show ?thesis using c-assm by auto

next
case False
then obtain t where t ∈ transitions ?PC and q = t-target t using ‹q =

(q1 ,q2 ) ∨ (∃ t ∈ transitions ?PC . q = t-target t)› by blast
then show ?thesis

using h-ft by blast
qed

qed
then have states-non-r-d-k-PCR:

∧
q . q ∈ states ?PCR =⇒ ¬ (∃ k .

r-distinguishable-k M (fst q) (snd q) k)
unfolding restrict-to-reachable-states-simps by blast

have
∧

q . q ∈ reachable-states ?PC =⇒ completely-specified-state ?PC q
proof −

fix q assume q ∈ reachable-states ?PC
then have q ∈ reachable-states ?P

using filter-transitions-reachable-states by fastforce

show completely-specified-state ?PC q
proof (rule ccontr)

assume ¬ completely-specified-state ?PC q
then obtain x where x ∈ (inputs ?PC )

and ¬(∃ t ∈ transitions ?PC . t-source t = q ∧ t-input t = x)
unfolding completely-specified-state.simps by blast

then have ¬(∃ t ∈ transitions ?P . t-source t = q ∧ t-input t = x ∧ ?f t)
using h-ft by blast

then have not-f :
∧

t . t ∈ transitions ?P =⇒ t-source t = q =⇒ t-input t
= x =⇒ ¬ ?f t

by blast

have ∃ k . r-distinguishable-k M (fst q) (snd q) k
proof (cases r-distinguishable-k M (fst q) (snd q) 0 )

case True
then show ?thesis by blast

next
case False
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let ?tp = {t . t ∈ transitions ?P ∧ t-source t = q ∧ t-input t = x}
have finite ?tp using fsm-transitions-finite[of ?P] by force

have k-ex : ∀ t ∈ ?tp . ∃ k . ∀ k ′ . k ′ ≥ k −→ r-distinguishable-k M (fst
(t-target t)) (snd (t-target t)) k ′

proof
fix t assume t ∈ ?tp
then have ¬ ?f t using not-f by blast

then obtain k where r-distinguishable-k M (fst (t-target t)) (snd (t-target
t)) k

using False ‹t ∈ ?tp›
using ‹q ∈ reachable-states (Product-FSM .product (FSM .from-FSM M

q1 ) (FSM .from-FSM M q2 ))› by blast
then have ∀ k ′ . k ′ ≥ k −→ r-distinguishable-k M (fst (t-target t)) (snd

(t-target t)) k ′

using nat-induct-at-least by fastforce
then show ∃ k . ∀ k ′ . k ′ ≥ k −→ r-distinguishable-k M (fst (t-target

t)) (snd (t-target t)) k ′ by auto
qed

obtain k where k-def :
∧

t . t ∈ ?tp =⇒ r-distinguishable-k M (fst
(t-target t)) (snd (t-target t)) k

using finite-set-min-param-ex[OF ‹finite ?tp›, of λ t k ′ . r-distinguishable-k
M (fst (t-target t)) (snd (t-target t)) k ′] k-ex by blast

then have ∀ t ∈ transitions ?P . (t-source t = q ∧ t-input t = x) −→
r-distinguishable-k M (fst (t-target t)) (snd (t-target t)) k

by blast

have r-distinguishable-k M (fst q) (snd q) (Suc k)
proof −

have
∧

t1 t2 . t1 ∈ transitions M =⇒ t2 ∈ transitions M =⇒ t-source
t1 = fst q =⇒ t-source t2 = snd q =⇒ t-input t1 = x =⇒ t-input t2 = x =⇒
t-output t1 = t-output t2 =⇒ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k

proof −
fix t1 t2 assume t1 ∈ transitions M

and t2 ∈ transitions M
and t-source t1 = fst q
and t-source t2 = snd q
and t-input t1 = x
and t-input t2 = x
and t-output t1 = t-output t2

then have t-input t1 = t-input t2
and t-output t1 = t-output t2 by auto

have (fst q, snd q) ∈ reachable-states ?P using ‹q ∈ reachable-states
?P› by (metis prod.collapse)

then have (fst q, snd q) ∈ states ?P using reachable-state-is-state by

1193



metis
then have fst q ∈ states (from-FSM M q1 )

and snd q ∈ states (from-FSM M q2 )
unfolding product-simps by auto

have t1 ∈ transitions (from-FSM M q1 )
by (simp add: ‹t1 ∈ FSM .transitions M › assms(1 ))

moreover have t2 ∈ transitions (from-FSM M q2 )
by (simp add: ‹t2 ∈ FSM .transitions M › assms(2 ))

moreover have t-source ((t-source t1 , t-source t2 ),t-input t1 ,t-output
t1 ,(t-target t1 ,t-target t2 )) = q

using ‹t-source t1 = fst q› ‹t-source t2 = snd q› by auto
moreover have t-input ((t-source t1 , t-source t2 ),t-input t1 ,t-output

t1 ,(t-target t1 ,t-target t2 )) = x
using ‹t-input t1 = x› by auto

ultimately have tt: ((t-source t1 , t-source t2 ),t-input t1 ,t-output
t1 ,(t-target t1 ,t-target t2 )) ∈ ?tp

unfolding product-transitions-alt-def
using ‹t-input t1 = x› ‹t-input t2 = x› ‹t-output t1 = t-output t2 ›

by fastforce

show r-distinguishable-k M (t-target t1 ) (t-target t2 ) k
using k-def [OF tt] by auto

qed

moreover have x ∈ (inputs M )
using ‹x ∈ (inputs ?PC )› unfolding filter-transitions-simps product-simps

from-FSM-simps[OF ‹q1 ∈ states M ›] from-FSM-simps[OF ‹q2 ∈ states M ›]
by blast

ultimately show ?thesis
unfolding r-distinguishable-k.simps by blast

qed
then show ?thesis by blast

qed

then show False
using states-non-r-d-k[OF ‹q ∈ reachable-states ?PC ›] by blast

qed
qed
then have

∧
q . q ∈ states ?PCR =⇒ completely-specified-state ?PCR q

unfolding restrict-to-reachable-states-simps completely-specified-state.simps
by blast

then have completely-specified ?PCR
using completely-specified-states by blast

moreover have is-submachine ?PCR ?P
proof −

have is-submachine ?PC ?P
unfolding is-submachine.simps filter-transitions-simps by blast
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moreover have is-submachine ?PCR ?PC
unfolding is-submachine.simps restrict-to-reachable-states-simps
using reachable-state-is-state by fastforce

ultimately show ?thesis
using submachine-transitive by blast

qed
ultimately have r-compatible M q1 q2

unfolding r-compatible-def by blast
then show False using ‹r-distinguishable M q1 q2 ›

by blast
qed

show ∃ k. r-distinguishable-k M q1 q2 k =⇒ r-distinguishable M q1 q2
proof (rule ccontr)

assume ∗: ¬ r-distinguishable M q1 q2
assume ∗∗: ∃ k. r-distinguishable-k M q1 q2 k
then obtain k where r-distinguishable-k M q1 q2 k by auto
then show False
using ∗ assms proof (induction k arbitrary: q1 q2 )

case 0
then obtain S where is-submachine S (product (from-FSM M q1 ) (from-FSM

M q2 ))
and completely-specified S

by (meson r-compatible-def )
then have completely-specified-state (product (from-FSM M q1 ) (from-FSM

M q2 )) (initial (product (from-FSM M q1 ) (from-FSM M q2 )))
using complete-submachine-initial by metis
then show False using r-distinguishable-k-0-not-completely-specified[OF

0 .prems(1 ,3 ,4 ) ] by metis
next

case (Suc k)
then show False
proof (cases r-distinguishable-k M q1 q2 k)

case True
then show ?thesis

using Suc.IH Suc.prems by blast
next

case False
then obtain x where x ∈ (inputs M )

and ∀ y q1 ′ q2 ′. (q1 , x, y, q1 ′) ∈ transitions M ∧ (q2 , x, y,
q2 ′) ∈ transitions M −→ r-distinguishable-k M q1 ′ q2 ′ k

using Suc.prems(1 ) by fastforce

from Suc obtain S where is-submachine S (product (from-FSM M q1 )
(from-FSM M q2 ))

and completely-specified S
by (meson r-compatible-def )
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have x ∈ (inputs (product (from-FSM M q1 ) (from-FSM M q2 )))
by (simp add: Suc.prems(4 ) ‹x ∈ FSM .inputs M ›)

then have x ∈ (inputs S)
using ‹is-submachine S (product (from-FSM M q1 ) (from-FSM M q2 ))›
by (metis is-submachine.elims(2 ))

moreover have initial S = (q1 ,q2 )
using ‹is-submachine S (product (from-FSM M q1 ) (from-FSM M q2 ))›
by (simp add: Suc.prems(3 ) Suc.prems(4 ))

ultimately obtain y q1 ′ q2 ′ where ((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions S
using ‹completely-specified S› using fsm-initial by fastforce

then have ((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions (product (from-FSM M q1 )
(from-FSM M q2 ))

using ‹is-submachine S (product (from-FSM M q1 ) (from-FSM M q2 ))›
by auto

then have (q1 , x, y, q1 ′) ∈ transitions (from-FSM M q1 ) and (q2 , x, y,
q2 ′) ∈ transitions (from-FSM M q2 )

unfolding product-transitions-def by force+
then have (q1 , x, y, q1 ′) ∈ transitions M and (q2 , x, y, q2 ′) ∈ transitions

M
by (simp add: Suc.prems(3 ,4 ))+

then have r-distinguishable-k M q1 ′ q2 ′ k
using ‹∀ y q1 ′ q2 ′. (q1 , x, y, q1 ′) ∈ transitions M ∧ (q2 , x, y, q2 ′) ∈

transitions M −→ r-distinguishable-k M q1 ′ q2 ′ k› by blast
have r-distinguishable M q1 ′ q2 ′

by (metis (no-types) Suc.IH ‹(q1 , x, y, q1 ′) ∈ FSM .transitions M › ‹(q2 , x, y,
q2 ′) ∈ FSM .transitions M › ‹r-distinguishable-k M q1 ′ q2 ′ k› fsm-transition-target
snd-conv)

moreover have ∃ S ′ . completely-specified S ′ ∧ is-submachine S ′ (product
(from-FSM M q1 ′) (from-FSM M q2 ′))

using submachine-transition-complete-product-from[OF ‹is-submachine S
(product (from-FSM M q1 ) (from-FSM M q2 ))› ‹completely-specified S› ‹((q1 ,q2 ),x,y,(q1 ′,q2 ′))
∈ transitions S› Suc.prems(3 ,4 )]

submachine-transition-product-from[OF ‹is-submachine S (product
(from-FSM M q1 ) (from-FSM M q2 ))› ‹((q1 ,q2 ),x,y,(q1 ′,q2 ′)) ∈ transitions S›
Suc.prems(3 ,4 )] by blast

ultimately show False unfolding r-compatible-def by blast
qed

qed
qed

qed

39.2 Bounds
inductive is-least-r-d-k-path :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ (( ′a × ′a) × ′b ×
nat) list ⇒ bool where

immediate[intro!] : x ∈ (inputs M ) =⇒ ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈ tran-
sitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 =
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x ∧ t-output t1 = t-output t2 ) =⇒ is-least-r-d-k-path M q1 q2 [((q1 ,q2 ),x,0 )] |
step[intro!] : Suc k = (LEAST k ′ . r-distinguishable-k M q1 q2 k ′)

=⇒ x ∈ (inputs M )
=⇒ (∀ t1 ∈ transitions M . ∀ t2 ∈ transitions M . (t-source t1 =

q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output
t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

=⇒ t1 ∈ transitions M
=⇒ t2 ∈ transitions M
=⇒ t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input

t2 = x ∧ t-output t1 = t-output t2
=⇒ is-least-r-d-k-path M (t-target t1 ) (t-target t2 ) p
=⇒ is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc k)#p)

inductive-cases is-least-r-d-k-path-immediate-elim[elim!]: is-least-r-d-k-path M q1
q2 [((q1 ,q2 ),x,0 )]
inductive-cases is-least-r-d-k-path-step-elim[elim!]: is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc
k)#p)

lemma is-least-r-d-k-path-nonempty :
assumes is-least-r-d-k-path M q1 q2 p
shows p 6= []
using is-least-r-d-k-path.cases[OF assms] by blast

lemma is-least-r-d-k-path-0-extract :
assumes is-least-r-d-k-path M q1 q2 [t]
shows ∃ x . t = ((q1 ,q2 ),x,0 )

using is-least-r-d-k-path.cases[OF assms]
by (metis (no-types, lifting) list.inject is-least-r-d-k-path-nonempty)

lemma is-least-r-d-k-path-Suc-extract :
assumes is-least-r-d-k-path M q1 q2 (t#t ′#p)
shows ∃ x k . t = ((q1 ,q2 ),x,Suc k)

using is-least-r-d-k-path.cases[OF assms]
by (metis (no-types, lifting) list.distinct(1 ) list.inject)

lemma is-least-r-d-k-path-Suc-transitions :
assumes is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc k)#p)
shows (∀ t1 ∈ transitions M . ∀ t2 ∈ transitions M . (t-source t1 = q1 ∧

t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output t2 )
−→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

using is-least-r-d-k-path-step-elim[OF assms]
Suc-inject[of - k]

by metis

lemma is-least-r-d-k-path-is-least :
assumes is-least-r-d-k-path M q1 q2 (t#p)
shows r-distinguishable-k M q1 q2 (snd (snd t)) ∧ (snd (snd t)) = (LEAST k ′ .
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r-distinguishable-k M q1 q2 k ′)
proof (cases p)

case Nil
then obtain x where t = ((q1 ,q2 ),x,0 ) and is-least-r-d-k-path M q1 q2 [((q1 ,q2 ),x,0 )]

using assms is-least-r-d-k-path-0-extract by metis
have ∗: r-distinguishable-k M q1 q2 0
using is-least-r-d-k-path-immediate-elim[OF ‹is-least-r-d-k-path M q1 q2 [((q1 ,q2 ),x,0 )]›]

unfolding r-distinguishable-k.simps by auto
then have (∃ k. r-distinguishable-k M q1 q2 k)

by blast
then have 0 = (LEAST k ′ . r-distinguishable-k M q1 q2 k ′)

using ‹r-distinguishable-k M q1 q2 0 › by auto
moreover have snd (snd t) = 0

using ‹t = ((q1 ,q2 ),x,0 )› by auto
ultimately show ?thesis using ∗ by auto

next
case (Cons t ′ p ′)
then obtain x k where t = ((q1 ,q2 ),x,Suc k) and is-least-r-d-k-path M q1 q2

(((q1 ,q2 ),x,Suc k)#t ′#p ′)
using assms is-least-r-d-k-path-Suc-extract by metis

have x ∈ (inputs M )
using is-least-r-d-k-path-step-elim[OF ‹is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc

k)#t ′#p ′)›] by blast
moreover have (∀ t1 ∈ transitions M . ∀ t2 ∈ transitions M . (t-source t1 =

q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output
t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

using is-least-r-d-k-path-Suc-transitions[OF ‹is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc
k)#(t ′#p ′))›] by assumption

ultimately have r-distinguishable-k M q1 q2 (Suc k)
unfolding r-distinguishable-k.simps by blast

moreover have Suc k = (LEAST k ′ . r-distinguishable-k M q1 q2 k ′)
using is-least-r-d-k-path-step-elim[OF ‹is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc

k)#t ′#p ′)›] by blast
ultimately show ?thesis

by (metis ‹t = ((q1 , q2 ), x, Suc k)› snd-conv)
qed

lemma r-distinguishable-k-least-next :
assumes ∃ k . r-distinguishable-k M q1 q2 k

and (LEAST k . r-distinguishable-k M q1 q2 k) = Suc k
and x ∈ (inputs M )
and ∀ t1∈ transitions M . ∀ t2∈ transitions M .

t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =

t-output t2 −→
r-distinguishable-k M (t-target t1 ) (t-target t2 ) k

shows ∃ t1 ∈ transitions M . ∃ t2 ∈ transitions M . (t-source t1 = q1 ∧
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t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output t2 )
∧ (LEAST k . r-distinguishable-k M (t-target t1 ) (t-target t2 ) k) = k
proof −

have r-distinguishable-k M q1 q2 (Suc k)
using assms LeastI by metis

moreover have ¬ r-distinguishable-k M q1 q2 k
using assms(2 ) by (metis lessI not-less-Least)

have ∗∗: (∀ t1∈ transitions M .
∀ t2∈ transitions M .

t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =

t-output t2 −→
(LEAST k ′ . r-distinguishable-k M (t-target t1 ) (t-target t2 ) k ′) ≤ k)

using assms(3 ,4 ) Least-le by blast

show ?thesis proof (rule ccontr)
assume assm : ¬ (∃ t1∈(transitions M ).

∃ t2∈(transitions M ).
(t-source t1 = q1 ∧

t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =
t-output t2 ) ∧

(LEAST k. r-distinguishable-k M (t-target t1 ) (t-target t2 ) k) = k)

let ?hs = {(t1 ,t2 ) | t1 t2 . t1 ∈ transitions M ∧ t2 ∈ transitions M ∧ t-source
t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =
t-output t2}

have finite ?hs
proof −

have ?hs ⊆ (transitions M × transitions M ) by blast
moreover have finite (transitions M × transitions M ) using fsm-transitions-finite

by blast
ultimately show ?thesis

by (simp add: finite-subset)
qed
have fk-def :

∧
tt . tt ∈ ?hs =⇒ r-distinguishable-k M (t-target (fst tt)) (t-target

(snd tt)) (LEAST k . r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt)) k)
proof −

fix tt assume tt ∈ ?hs
then have (fst tt) ∈ transitions M ∧ (snd tt) ∈ transitions M ∧ t-source (fst

tt) = q1 ∧ t-source (snd tt) = q2 ∧ t-input (fst tt) = x ∧ t-input (snd tt) = x ∧
t-output (fst tt) = t-output (snd tt)

by force
then have ∃ k . r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt)) k

using assms(4 ) by blast
then show r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt)) (LEAST

k . r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt)) k)
using LeastI2-wellorder by blast

qed
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let ?k = Max (image (λ tt . (LEAST k . r-distinguishable-k M (t-target (fst
tt)) (t-target (snd tt)) k)) ?hs)

have
∧

t1 t2 . t1 ∈ transitions M =⇒ t2 ∈ transitions M =⇒ t-source t1 =
q1 =⇒ t-source t2 = q2 =⇒ t-input t1 = x =⇒ t-input t2 = x =⇒ t-output t1 =
t-output t2 =⇒ r-distinguishable-k M (t-target t1 ) (t-target t2 ) ?k

proof −
fix t1 t2 assume t1 ∈ transitions M

and t2 ∈ transitions M
and t-source t1 = q1
and t-source t2 = q2
and t-input t1 = x
and t-input t2 = x
and t-output t1 = t-output t2

then have (t1 ,t2 ) ∈ ?hs by force
then have r-distinguishable-k M (t-target t1 ) (t-target t2 ) ((λ tt . (LEAST k

. r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt)) k)) (t1 ,t2 ))
using fk-def by force

have (λ tt . (LEAST k . r-distinguishable-k M (t-target (fst tt)) (t-target (snd
tt)) k)) (t1 ,t2 ) ≤ ?k

using ‹(t1 ,t2 ) ∈ ?hs› ‹finite ?hs›
by (meson Max.coboundedI finite-imageI image-iff )

show r-distinguishable-k M (t-target t1 ) (t-target t2 ) ?k
using r-distinguishable-k-by-larger [OF ‹r-distinguishable-k M (t-target t1 )

(t-target t2 ) ((λ tt . (LEAST k . r-distinguishable-k M (t-target (fst tt)) (t-target
(snd tt)) k)) (t1 ,t2 ))› ‹(λ tt . (LEAST k . r-distinguishable-k M (t-target (fst tt))
(t-target (snd tt)) k)) (t1 ,t2 ) ≤ ?k›] by assumption

qed

then have r-distinguishable-k M q1 q2 (Suc ?k)
unfolding r-distinguishable-k.simps
using ‹x ∈ (inputs M )› by blast

have ?hs 6= {}
proof

assume ?hs = {}
then have r-distinguishable-k M q1 q2 0

unfolding r-distinguishable-k.simps using ‹x ∈ (inputs M )› by force
then show False

using assms(2 ) by auto
qed

have
∧

t1 t2 . t1∈ transitions M =⇒
t2∈ transitions M =⇒

t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =

t-output t2 =⇒
(LEAST k ′ . r-distinguishable-k M (t-target t1 ) (t-target t2 ) k ′) < k
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proof −
fix t1 t2 assume t1∈ transitions M and t2∈ transitions M and t12-def :

t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output
t1 = t-output t2

have (LEAST k ′ . r-distinguishable-k M (t-target t1 ) (t-target t2 ) k ′) ≤ k
using ‹t1∈ transitions M › ‹t2∈ transitions M › t12-def ∗∗ by blast

moreover have (LEAST k ′ . r-distinguishable-k M (t-target t1 ) (t-target t2 )
k ′) 6= k using ‹t1∈ transitions M › ‹t2∈ transitions M › t12-def assm by blast

ultimately show (LEAST k ′ . r-distinguishable-k M (t-target t1 ) (t-target
t2 ) k ′) < k by auto

qed
moreover have

∧
tt . tt ∈ ?hs =⇒ (fst tt) ∈ transitions M ∧ (snd tt) ∈

transitions M ∧ t-source (fst tt) = q1 ∧ t-source (snd tt) = q2 ∧ t-input (fst tt)
= x ∧ t-input (snd tt) = x ∧ t-output (fst tt) = t-output (snd tt)

by force
ultimately have

∧
tt . tt ∈ ?hs =⇒ (LEAST k ′ . r-distinguishable-k M (t-target

(fst tt)) (t-target (snd tt)) k ′) < k by blast
moreover obtain tt where tt ∈ ?hs and ?k = (LEAST k ′ . r-distinguishable-k

M (t-target (fst tt)) (t-target (snd tt)) k ′)
using Max-elem[OF ‹finite ?hs› ‹?hs 6= {}›, of λ tt . (LEAST k ′ . r-distinguishable-k

M (t-target (fst tt)) (t-target (snd tt)) k ′)] by blast
ultimately have ?k < k

using ‹finite ?hs› by presburger

then show False
using assms(2 ) ‹r-distinguishable-k M q1 q2 (Suc ?k)›
by (metis (no-types, lifting) Suc-mono not-less-Least)

qed
qed

lemma is-least-r-d-k-path-length-from-r-d :
assumes ∃ k . r-distinguishable-k M q1 q2 k
shows ∃ t p . is-least-r-d-k-path M q1 q2 (t#p) ∧ length (t#p) = Suc (LEAST

k . r-distinguishable-k M q1 q2 k)
proof −

let ?k = LEAST k . r-distinguishable-k M q1 q2 k
have r-distinguishable-k M q1 q2 ?k

using assms LeastI by blast

then show ?thesis using assms proof (induction ?k arbitrary: q1 q2 )
case 0
then have r-distinguishable-k M q1 q2 0 by auto
then obtain x where x ∈ (inputs M ) and ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈

transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2
= x ∧ t-output t1 = t-output t2 )

unfolding r-distinguishable-k.simps by blast
then have is-least-r-d-k-path M q1 q2 [((q1 ,q2 ),x,0 )]

by auto
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then show ?case using 0 .hyps
by (metis length-Cons list.size(3 ))

next
case (Suc k)
then have r-distinguishable-k M q1 q2 (Suc k) by auto
moreover have ¬ r-distinguishable-k M q1 q2 k

using Suc by (metis lessI not-less-Least)
ultimately obtain x where x ∈ (inputs M ) and ∗: (∀ t1∈(transitions M ).

∀ t2∈(transitions M ).
t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 =

t-output t2 −→
r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

unfolding r-distinguishable-k.simps by blast

obtain t1 t2 where t1 ∈ transitions M and t2 ∈ transitions M
and t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧

t-input t2 = x ∧ t-output t1 = t-output t2
and k = (LEAST k. r-distinguishable-k M (t-target t1 ) (t-target

t2 ) k)
using r-distinguishable-k-least-next[OF Suc.prems(2 ) - ‹x ∈ (inputs M )› ∗]

Suc.hyps(2 ) by metis
then have r-distinguishable-k M (t-target t1 ) (t-target t2 ) (LEAST k. r-distinguishable-k

M (t-target t1 ) (t-target t2 ) k)
using ∗ by metis

then obtain t ′ p ′ where is-least-r-d-k-path M (t-target t1 ) (t-target t2 ) (t ′ #
p ′)

and length (t ′ # p ′) = Suc (Least (r-distinguishable-k M
(t-target t1 ) (t-target t2 )))

using Suc.hyps(1 )[OF ‹k = (LEAST k. r-distinguishable-k M (t-target t1 )
(t-target t2 ) k)›] by blast

then have is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc k)#t ′#p ′)
using is-least-r-d-k-path.step[OF Suc.hyps(2 ) ‹x ∈ (inputs M )› ∗ ‹t1 ∈ tran-

sitions M › ‹t2 ∈ transitions M › ‹t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1
= x ∧ t-input t2 = x ∧ t-output t1 = t-output t2 ›]

by auto

show ?case
by (metis (no-types) Suc.hyps(2 ) ‹is-least-r-d-k-path M q1 q2 (((q1 , q2 ), x,

Suc k) # t ′ # p ′)› ‹k = (LEAST k. r-distinguishable-k M (t-target t1 ) (t-target
t2 ) k)› ‹length (t ′ # p ′) = Suc (Least (r-distinguishable-k M (t-target t1 ) (t-target
t2 )))› length-Cons)

qed
qed
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lemma is-least-r-d-k-path-states :
assumes is-least-r-d-k-path M q1 q2 p

and q1 ∈ states M
and q2 ∈ states M

shows set (map fst p) ⊆ states (product (from-FSM M q1 ) (from-FSM M q2 ))
using assms proof (induction p)
case (immediate x M q1 q2 )
then show ?case by auto

next
case (step k M q1 q2 x t1 t2 p)
then have t-target t1 ∈ states M and t-target t2 ∈ states M by blast+
have t-source t1 = q1 and t-source t2 = q2

using step by metis+

have t-target t1 ∈ states (from-FSM M q1 )
by (simp add: ‹t-target t1 ∈ FSM .states M › step.prems(1 ))

have t-target t2 ∈ states (from-FSM M q2 )
by (simp add: ‹t-target t2 ∈ FSM .states M › step.prems(2 ))

have t1 ∈ transitions (from-FSM M q1 )
by (simp add: step.hyps(4 ) step.prems(1 ))

have t2 ∈ transitions (from-FSM M q2 )
by (simp add: step.hyps(5 ) step.prems(2 ))

have t-input t1 = t-input t2 using step.hyps(6 ) by auto
have t-output t1 = t-output t2 using step.hyps(6 ) by auto

have ((q1 ,q2 ),t-input t1 , t-output t1 , (t-target t1 , t-target t2 )) ∈ transitions
(product (from-FSM M q1 ) (from-FSM M q2 ))

using ‹t1 ∈ transitions (from-FSM M q1 )› ‹t2 ∈ transitions (from-FSM M q2 )›
‹t-input t1 = t-input t2 › ‹t-output t1 = t-output t2 › ‹t-source t1 = q1 › ‹t-source
t2 = q2 ›

unfolding product-transitions-alt-def by blast

then have (t-target t1 , t-target t2 ) ∈ states (product (from-FSM M q1 ) (from-FSM
M q2 ))

using fsm-transition-target
by (metis snd-conv)

moreover have states (product (from-FSM M (t-target t1 )) (from-FSM M
(t-target t2 ))) ⊆ states (product (from-FSM M q1 ) (from-FSM M q2 ))

using calculation step.prems(1 ) step.prems(2 ) by auto

moreover have set (map fst p) ⊆ states (product (from-FSM M (t-target t1 ))
(from-FSM M (t-target t2 )))

using step.IH ‹t-target t1 ∈ states (from-FSM M q1 )› ‹t-target t2 ∈ states
(from-FSM M q2 )›

using step.prems by auto

1203



ultimately have set (map fst p) ⊆ states (product (from-FSM M q1 ) (from-FSM
M q2 ))

by blast

moreover have set (map fst [((q1 ,q2 ),x,Suc k)]) ⊆ states (product (from-FSM
M q1 ) (from-FSM M q2 ))

using fsm-transition-source[OF ‹((q1 , q2 ), t-input t1 , t-output t1 , t-target t1 ,
t-target t2 ) ∈ (transitions (product (from-FSM M q1 ) (from-FSM M q2 )))›]

by auto

ultimately show ?case
by auto

qed

lemma is-least-r-d-k-path-decreasing :
assumes is-least-r-d-k-path M q1 q2 p
shows ∀ t ′ ∈ set (tl p) . snd (snd t ′) < snd (snd (hd p))

using assms proof(induction p)
case (immediate x M q1 q2 )
then show ?case by auto

next
case (step k M q1 q2 x t1 t2 p)
then show ?case proof (cases p)

case Nil
then show ?thesis by auto

next
case (Cons t ′ p ′)

then have is-least-r-d-k-path M (t-target t1 ) (t-target t2 ) (t ′#p ′) using step.hyps(7 )
by auto

have r-distinguishable-k M (t-target t1 ) (t-target t2 ) (snd (snd t ′))
and snd (snd t ′) = (LEAST k ′. r-distinguishable-k M (t-target t1 ) (t-target

t2 ) k ′)
using is-least-r-d-k-path-is-least[OF ‹is-least-r-d-k-path M (t-target t1 ) (t-target

t2 ) (t ′#p ′)›] by auto

have snd (snd t ′) < Suc k
by (metis ‹snd (snd t ′) = (LEAST k ′. r-distinguishable-k M (t-target t1 )

(t-target t2 ) k ′)› local.step(3 ) local.step(4 ) local.step(5 ) local.step(6 ) not-less-Least
not-less-eq)

moreover have ∀ t ′′∈set p. snd (snd t ′′) ≤ snd (snd t ′)
using Cons step.IH by auto

ultimately show ?thesis by auto
qed

qed

lemma is-least-r-d-k-path-suffix :

1204



assumes is-least-r-d-k-path M q1 q2 p
and i < length p

shows is-least-r-d-k-path M (fst (fst (hd (drop i p)))) (snd (fst (hd (drop i p))))
(drop i p)
using assms proof(induction p arbitrary: i)

case (immediate x M q1 q2 )
then show ?case by auto

next
case (step k M q1 q2 x t1 t2 p)
then have is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc k)#p)

by blast

have
∧

i . i < length p =⇒ is-least-r-d-k-path M (fst (fst (hd (drop (Suc i)
(((q1 , q2 ), x, Suc k) # p))))) (snd (fst (hd (drop (Suc i) (((q1 , q2 ), x, Suc k) #
p))))) (drop (Suc i) (((q1 , q2 ), x, Suc k) # p))

using step.IH by simp
then have

∧
i . i < length (((q1 , q2 ), x, Suc k) # p) =⇒ i > 0 =⇒ is-least-r-d-k-path

M (fst (fst (hd (drop i (((q1 , q2 ), x, Suc k) # p))))) (snd (fst (hd (drop i (((q1 ,
q2 ), x, Suc k) # p))))) (drop i (((q1 , q2 ), x, Suc k) # p))

by (metis Suc-less-eq gr0-implies-Suc length-Cons)
moreover have

∧
i . i < length (((q1 , q2 ), x, Suc k) # p) =⇒ i = 0 =⇒

is-least-r-d-k-path M (fst (fst (hd (drop i (((q1 , q2 ), x, Suc k) # p))))) (snd (fst
(hd (drop i (((q1 , q2 ), x, Suc k) # p))))) (drop i (((q1 , q2 ), x, Suc k) # p))

using ‹is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc k)#p)› by auto
ultimately show ?case

using step.prems by blast
qed

lemma is-least-r-d-k-path-distinct :
assumes is-least-r-d-k-path M q1 q2 p
shows distinct (map fst p)

using assms proof(induction p)
case (immediate x M q1 q2 )
then show ?case by auto

next
case (step k M q1 q2 x t1 t2 p)
then have is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc k)#p)

by blast

show ?case proof (rule ccontr)
assume ¬ distinct (map fst (((q1 , q2 ), x, Suc k) # p))
then have (q1 ,q2 ) ∈ set (map fst p)

using step.IH by simp
then obtain i where i < length p and (map fst p) ! i = (q1 ,q2 )

by (metis distinct-Ex1 length-map step.IH )
then obtain x ′ k ′ where hd (drop i p) = ((q1 ,q2 ),x ′,k ′)

by (metis fst-conv hd-drop-conv-nth nth-map old.prod.exhaust)

1205



have is-least-r-d-k-path M q1 q2 (drop i p)
using is-least-r-d-k-path-suffix[OF ‹is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc

k)#p)›] ‹i < length p›
proof −

have snd (fst (hd (drop i p))) = q2
using ‹hd (drop i p) = ((q1 , q2 ), x ′, k ′)› by auto

then show ?thesis
by (metis (no-types) ‹hd (drop i p) = ((q1 , q2 ), x ′, k ′)› ‹i < length p›

fst-conv is-least-r-d-k-path-suffix step.hyps(7 ))
qed

have k ′ < Suc k
using is-least-r-d-k-path-decreasing[OF ‹is-least-r-d-k-path M q1 q2 (((q1 ,q2 ),x,Suc

k)#p)›]
by (metis Cons-nth-drop-Suc ‹hd (drop i p) = ((q1 , q2 ), x ′, k ′)› ‹i < length

p› hd-in-set in-set-dropD list.sel(1 ) list.sel(3 ) list.simps(3 ) snd-conv)
moreover have k ′ = (LEAST k ′. r-distinguishable-k M q1 q2 k ′)

using is-least-r-d-k-path-is-least ‹is-least-r-d-k-path M q1 q2 (drop i p)›
is-least-r-d-k-path-is-least

by (metis Cons-nth-drop-Suc ‹hd (drop i p) = ((q1 , q2 ), x ′, k ′)› ‹i < length
p› hd-drop-conv-nth snd-conv)

ultimately show False
using step.hyps(1 ) dual-order .strict-implies-not-eq by blast

qed
qed

lemma r-distinguishable-k-least-bound :
assumes ∃ k . r-distinguishable-k M q1 q2 k

and q1 ∈ states M
and q2 ∈ states M

shows (LEAST k . r-distinguishable-k M q1 q2 k) ≤ (size (product (from-FSM
M q1 ) (from-FSM M q2 )))
proof (rule ccontr)

assume ¬ (LEAST k. r-distinguishable-k M q1 q2 k) ≤ (size (product (from-FSM
M q1 ) (from-FSM M q2 )))

then have c-assm : (size (product (from-FSM M q1 ) (from-FSM M q2 ))) <
(LEAST k. r-distinguishable-k M q1 q2 k)

by linarith

obtain t p where is-least-r-d-k-path M q1 q2 (t # p)
and length (t # p) = Suc (LEAST k. r-distinguishable-k M q1 q2 k)

using is-least-r-d-k-path-length-from-r-d[OF assms(1 )] by blast
then have (size (product (from-FSM M q1 ) (from-FSM M q2 ))) < length (t #

p)
using c-assm by linarith

have distinct (map fst (t # p))
using is-least-r-d-k-path-distinct[OF ‹is-least-r-d-k-path M q1 q2 (t # p)›] by
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assumption
then have card (set (map fst (t # p))) = length (t # p)

using distinct-card by fastforce
moreover have card (set (map fst (t # p))) ≤ size (product (from-FSM M q1 )

(from-FSM M q2 ))
using is-least-r-d-k-path-states[OF ‹is-least-r-d-k-path M q1 q2 (t # p)› assms(2 ,3 )]

fsm-states-finite card-mono unfolding size-def by blast
ultimately have length (t # p) ≤ size (product (from-FSM M q1 ) (from-FSM

M q2 ))
by (metis)

then show False
using ‹size (product (from-FSM M q1 ) (from-FSM M q2 )) < length (t # p)›

by linarith
qed

39.3 Deciding R-Distinguishability
fun r-distinguishable-k-least :: ( ′a, ′b::linorder , ′c) fsm ⇒ ′a ⇒ ′a ⇒ nat ⇒ (nat
× ′b) option where

r-distinguishable-k-least M q1 q2 0 = (case find (λ x . ¬ (∃ t1 ∈ transitions M
. ∃ t2 ∈ transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧
t-input t2 = x ∧ t-output t1 = t-output t2 )) (sort (inputs-as-list M )) of

Some x ⇒ Some (0 ,x) |
None ⇒ None) |

r-distinguishable-k-least M q1 q2 (Suc n) = (case r-distinguishable-k-least M q1
q2 n of

Some k ⇒ Some k |
None ⇒ (case find (λ x . ∀ t1 ∈ transitions M . ∀ t2 ∈ transitions M .

(t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output
t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) n) (sort
(inputs-as-list M )) of

Some x ⇒ Some (Suc n,x) |
None ⇒ None))

lemma r-distinguishable-k-least-ex :
assumes r-distinguishable-k-least M q1 q2 k = None
shows ¬ r-distinguishable-k M q1 q2 k

using assms proof (induction k)
case 0
show ?case proof (rule ccontr)

assume ¬ ¬ r-distinguishable-k M q1 q2 0
then have (∃ x∈set (sort (inputs-as-list M )).

¬ (∃ t1∈(transitions M ).
∃ t2∈(transitions M ).

t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output

t1 = t-output t2 ))
unfolding r-distinguishable-k.simps
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using inputs-as-list-set by auto
then obtain x where find (λ x . ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈ transitions

M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧
t-output t1 = t-output t2 )) (sort (inputs-as-list M )) = Some x

unfolding r-distinguishable-k.simps using find-None-iff [of λ x . ¬ (∃ t1 ∈
transitions M . ∃ t2 ∈ transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧
t-input t1 = x ∧ t-input t2 = x ∧ t-output t1 = t-output t2 ) sort (inputs-as-list
M )] by blast

then have r-distinguishable-k-least M q1 q2 0 = Some (0 ,x)
unfolding r-distinguishable-k-least.simps by auto

then show False using 0 by simp
qed

next
case (Suc k)

have r-distinguishable-k-least M q1 q2 k = None
using Suc.prems unfolding r-distinguishable-k-least.simps
using option.disc-eq-case(2 ) by force

then have ∗: ¬ r-distinguishable-k M q1 q2 k
using Suc.IH by auto

have find
(λx. ∀ t1∈(transitions M ).

∀ t2∈(transitions M ).
t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output

t1 = t-output t2 −→
r-distinguishable-k M (t-target t1 ) (t-target t2 ) k)

(sort (inputs-as-list M )) = None
using Suc.prems ‹r-distinguishable-k-least M q1 q2 k = None› unfolding

r-distinguishable-k-least.simps
using option.disc-eq-case(2 ) by force

then have ∗∗: ¬(∃ x ∈ set (sort (inputs-as-list M )) . (∀ t1∈(transitions M ).
∀ t2∈(transitions M ).

t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output

t1 = t-output t2 −→
r-distinguishable-k M (t-target t1 ) (t-target t2 ) k))

using find-None-iff [of (λx. ∀ t1∈(transitions M ).
∀ t2∈(transitions M ).

t-source t1 = q1 ∧
t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output

t1 = t-output t2 −→
r-distinguishable-k M (t-target t1 ) (t-target t2 ) k) (sort

(inputs-as-list M ))] by auto

show ?case using ∗ ∗∗ unfolding r-distinguishable-k.simps
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using inputs-as-list-set by fastforce
qed

lemma r-distinguishable-k-least-0-correctness :
assumes r-distinguishable-k-least M q1 q2 n = Some (0 ,x)
shows r-distinguishable-k M q1 q2 0 ∧ 0 =

(LEAST k . r-distinguishable-k M q1 q2 k)
∧ (x ∈ (inputs M ) ∧ ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈ transitions M .

t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output
t1 = t-output t2 ))

∧ (∀ x ′ ∈ (inputs M ) . x ′ < x −→ (∃ t1 ∈ transitions M . ∃ t2 ∈
transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ′ ∧ t-input
t2 = x ′ ∧ t-output t1 = t-output t2 ))
using assms proof (induction n)

case 0
then obtain x ′ where x ′-def : find (λ x . ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈

transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2
= x ∧ t-output t1 = t-output t2 )) (sort (inputs-as-list M )) = Some x ′

unfolding r-distinguishable-k-least.simps by fastforce
then have x = x ′ using 0 unfolding r-distinguishable-k-least.simps by fastforce
then have x ∈ set (sort (inputs-as-list M )) ∧ ¬ (∃ t1 ∈ transitions M . ∃ t2 ∈

transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 =
x ∧ t-output t1 = t-output t2 ) using 0 unfolding r-distinguishable-k-least.simps
r-distinguishable-k.simps

using find-condition[OF x ′-def ] find-set[OF x ′-def ] by blast
moreover have r-distinguishable-k M q1 q2 0
using calculation List.linorder-class.set-sort unfolding r-distinguishable-k.simps
using inputs-as-list-set by auto

moreover have 0 = (LEAST k . r-distinguishable-k M q1 q2 k)
using calculation(2 ) by auto

moreover have (∀ x ′ ∈ (inputs M ) . x ′ < x −→ (∃ t1 ∈ transitions M . ∃ t2
∈ transitions M . t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ′ ∧ t-input
t2 = x ′ ∧ t-output t1 = t-output t2 ))

using find-sort-least(1 )[OF x ′-def ] ‹x = x ′› inputs-as-list-set
using leD by blast

ultimately show ?case unfolding inputs-as-list-set set-sort by force
next

case (Suc n)
then show ?case proof (cases r-distinguishable-k-least M q1 q2 n)

case None
have r-distinguishable-k-least M q1 q2 (Suc n) 6= Some (0 , x)

using Suc.prems unfolding r-distinguishable-k-least.simps None
by (metis (no-types, lifting) Zero-not-Suc fst-conv option.case-eq-if option.distinct(1 )

option.sel)
then show ?thesis using Suc.prems by auto

next
case (Some a)
then have r-distinguishable-k-least M q1 q2 n = Some (0 , x)
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using Suc.prems by auto
then show ?thesis using Suc.IH by blast

qed
qed

lemma r-distinguishable-k-least-Suc-correctness :
assumes r-distinguishable-k-least M q1 q2 n = Some (Suc k,x)
shows r-distinguishable-k M q1 q2 (Suc k) ∧ (Suc k) =

(LEAST k . r-distinguishable-k M q1 q2 k)
∧ (x ∈ (inputs M ) ∧ (∀ t1 ∈ transitions M . ∀ t2 ∈ transitions M .

(t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧ t-output
t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) k))

∧ (∀ x ′ ∈ (inputs M ) . x ′ < x −→ ¬(∀ t1 ∈ transitions M . ∀ t2 ∈
transitions M . (t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ′ ∧ t-input t2
= x ′ ∧ t-output t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target
t2 ) k))
using assms proof (induction n)

case 0
then show ?case by (cases find

(λx. ¬ (∃ t1∈(transitions M ).
∃ t2∈(transitions M ).

t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input
t2 = x ∧ t-output t1 = t-output t2 ))

(sort (inputs-as-list M )); auto)
next

case (Suc n)
then show ?case proof (cases r-distinguishable-k-least M q1 q2 n)

case None
then have ∗: (case find (λ x . ∀ t1 ∈ transitions M . ∀ t2 ∈ transitions

M . (t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧
t-output t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) n)
(sort (inputs-as-list M )) of

Some x ⇒ Some (Suc n,x) |
None ⇒ None) = Some (Suc k,x)
using Suc.prems unfolding r-distinguishable-k-least.simps by auto

then obtain x ′ where x ′-def : find (λ x . ∀ t1 ∈ transitions M . ∀ t2 ∈
transitions M . (t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2
= x ∧ t-output t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target
t2 ) n) (sort (inputs-as-list M )) = Some x ′

by fastforce
then have x = x ′ using ∗ by fastforce
then have p3 : x ∈ (inputs M ) ∧ (∀ t1 ∈ transitions M . ∀ t2 ∈ transitions

M . (t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ∧ t-input t2 = x ∧
t-output t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target t2 ) n)

using find-condition[OF x ′-def ] find-set[OF x ′-def ] set-sort inputs-as-list-set
by metis

then have p1 : r-distinguishable-k M q1 q2 (Suc n)
unfolding r-distinguishable-k.simps by blast
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moreover have ¬ r-distinguishable-k M q1 q2 n
using r-distinguishable-k-least-ex[OF None] by assumption

ultimately have p2 : (Suc n) = (LEAST k . r-distinguishable-k M q1 q2 k)
by (metis LeastI Least-le le-SucE r-distinguishable-k-by-larger)

from ∗ have k = n using x ′-def by auto
then have (∀ x ′ ∈ (inputs M ) . x ′ < x −→ ¬(∀ t1 ∈ transitions M . ∀ t2 ∈

transitions M . (t-source t1 = q1 ∧ t-source t2 = q2 ∧ t-input t1 = x ′ ∧ t-input t2
= x ′ ∧ t-output t1 = t-output t2 ) −→ r-distinguishable-k M (t-target t1 ) (t-target
t2 ) k))

using find-sort-least(1 )[OF x ′-def ] ‹x = x ′› inputs-as-list-set
using leD by blast

then show ?thesis using p1 p2 p3 ‹k = n› by blast
next

case (Some a)
then have r-distinguishable-k-least M q1 q2 n = Some (Suc k, x)

using Suc.prems by auto
then show ?thesis using Suc.IH

by (meson r-distinguishable-k.simps(2 ))
qed

qed

lemma r-distinguishable-k-least-is-least :
assumes r-distinguishable-k-least M q1 q2 n = Some (k,x)
shows (∃ k . r-distinguishable-k M q1 q2 k) ∧ (k = (LEAST k . r-distinguishable-k

M q1 q2 k))
proof (cases k)

case 0
then show ?thesis using assms r-distinguishable-k-least-0-correctness by metis

next
case (Suc n)
then show ?thesis using assms r-distinguishable-k-least-Suc-correctness by metis

qed

lemma r-distinguishable-k-from-r-distinguishable-k-least :
assumes q1 ∈ states M and q2 ∈ states M

shows (∃ k . r-distinguishable-k M q1 q2 k) = (r-distinguishable-k-least M q1 q2
(size (product (from-FSM M q1 ) (from-FSM M q2 ))) 6= None)
(is ?P1 = ?P2 )

proof
show ?P1 =⇒ ?P2

using r-distinguishable-k-least-ex r-distinguishable-k-least-bound[OF - assms]
r-distinguishable-k-by-larger

by (metis LeastI )
show ?P2 =⇒ ?P1
proof −

assume ?P2
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then obtain a where (r-distinguishable-k-least M q1 q2 (size (product (from-FSM
M q1 ) (from-FSM M q2 ))) = Some a)

by blast
then obtain x k where kx-def : (r-distinguishable-k-least M q1 q2 (size (product

(from-FSM M q1 ) (from-FSM M q2 ))) = Some (k,x))
using prod.collapse by metis

then show ?P1
proof (cases k)

case 0
then have (r-distinguishable-k-least M q1 q2 (size (product (from-FSM M q1 )

(from-FSM M q2 ))) = Some (0 ,x))
using kx-def by presburger

show ?thesis using r-distinguishable-k-least-0-correctness[OF ‹(r-distinguishable-k-least
M q1 q2 (size (product (from-FSM M q1 ) (from-FSM M q2 ))) = Some (0 ,x))›] by
blast

next
case (Suc n)
then have (r-distinguishable-k-least M q1 q2 (size (product (from-FSM M q1 )

(from-FSM M q2 ))) = Some ((Suc n),x))
using kx-def by presburger

show ?thesis using r-distinguishable-k-least-Suc-correctness[OF ‹(r-distinguishable-k-least
M q1 q2 (size (product (from-FSM M q1 ) (from-FSM M q2 ))) = Some ((Suc
n),x))›] by blast

qed
qed

qed

definition is-r-distinguishable :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ bool where
is-r-distinguishable M q1 q2 = (∃ k . r-distinguishable-k M q1 q2 k)

lemma is-r-distinguishable-contained-code[code] :
is-r-distinguishable M q1 q2 = (if (q1 ∈ states M ∧ q2 ∈ states M ) then

(r-distinguishable-k-least M q1 q2 (size (product (from-FSM M q1 ) (from-FSM M
q2 ))) 6= None)

else ¬(inputs M = {}))
proof (cases q1 ∈ states M ∧ q2 ∈ states M )

case True
then show ?thesis
unfolding is-r-distinguishable-def using r-distinguishable-k-from-r-distinguishable-k-least

by metis
next

case False
then have ∗: (¬ (∃ t ∈ transitions M . t-source t = q1 )) ∨ (¬ (∃ t ∈ transitions

M . t-source t = q2 ))
using fsm-transition-source by auto

show ?thesis proof (cases inputs M = {})
case True
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moreover have
∧

k . r-distinguishable-k M q1 q2 k =⇒ inputs M 6= {}
proof −

fix k assume r-distinguishable-k M q1 q2 k
then show inputs M 6= {} by (induction k; auto)

qed
ultimately have is-r-distinguishable M q1 q2 = False

by (meson is-r-distinguishable-def )
then show ?thesis using False True by auto

next
case False
then show ?thesis
by (meson ∗ equals0I fst-conv is-r-distinguishable-def r-distinguishable-k-0-alt-def

r-distinguishable-k-from-r-distinguishable-k-least)
qed

qed

39.4 State Separators and R-Distinguishability
lemma state-separator-r-distinguishes-k :

assumes is-state-separator-from-canonical-separator (canonical-separator M q1
q2 ) q1 q2 S

and q1 ∈ states M and q2 ∈ states M
shows ∃ k . r-distinguishable-k M q1 q2 k

proof −
let ?P = (product (from-FSM M q1 ) (from-FSM M q2 ))
let ?C = (canonical-separator M q1 q2 )

have is-submachine S ?C
and single-input S
and acyclic S
and deadlock-state S (Inr q1 )
and deadlock-state S (Inr q2 )
and Inr q1 ∈ reachable-states S
and Inr q2 ∈ reachable-states S

and (∀ q∈reachable-states S . q 6= Inr q1 ∧ q 6= Inr q2 −→ isl q ∧ ¬
deadlock-state S q)

and tc: (∀ q∈reachable-states S .
∀ x∈(inputs ?C ).

(∃ t∈ transitions S . t-source t = q ∧ t-input t = x) −→
(∀ t ′∈ transitions ?C . t-source t ′ = q ∧ t-input t ′ = x −→ t ′ ∈

transitions S))
using assms(1 ) unfolding is-state-separator-from-canonical-separator-def by

linarith+

let ?Prop = (λ q . case q of
(Inl (q1 ′,q2 ′)) ⇒ (∃ k . r-distinguishable-k M q1 ′ q2 ′ k) |
(Inr qr) ⇒ True)

have rprop: ∀ q ∈ reachable-states S . ?Prop q
using ‹acyclic S› proof (induction rule: acyclic-induction)
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case (reachable-state q)
then show ?case proof (cases ¬ isl q)

case True
then have q = Inr q1 ∨ q = Inr q2

using ‹(∀ q∈reachable-states S . q 6= Inr q1 ∧ q 6= Inr q2 −→ isl q ∧ ¬
deadlock-state S q)› reachable-state(1 ) by blast

then show ?thesis by auto
next

case False
then obtain q1 ′ q2 ′ where q = Inl (q1 ′,q2 ′)

using isl-def prod.collapse by metis
then have ¬ deadlock-state S q

using ‹(∀ q∈reachable-states S . q 6= Inr q1 ∧ q 6= Inr q2 −→ isl q ∧ ¬
deadlock-state S q)› reachable-state(1 ) by blast

then obtain t where t ∈ transitions S and t-source t = q
unfolding deadlock-state.simps by blast

then have (∀ t ′∈ transitions ?C . t-source t ′ = q ∧ t-input t ′ = t-input t −→
t ′ ∈ transitions S)

using reachable-state(1 ) tc
using fsm-transition-input by fastforce

have Inl (q1 ′,q2 ′) ∈ reachable-states ?C
using reachable-state(1 ) unfolding ‹q = Inl (q1 ′,q2 ′)› reachable-states-def
using submachine-path-initial[OF ‹is-submachine S (canonical-separator M

q1 q2 )›]
unfolding canonical-separator-simps[OF assms(2 ,3 )] is-state-separator-from-canonical-separator-initial[OF

assms(1−3 )] by fast
then obtain p where path ?C (initial ?C ) p

and target (initial ?C ) p = Inl (q1 ′,q2 ′)
unfolding reachable-states-def by auto

then have isl (target (initial ?C ) p) by auto
then obtain p ′ where path ?P (initial ?P) p ′

and p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl
(t-target t))) p ′

using canonical-separator-path-from-shift[OF ‹path ?C (initial ?C ) p›]
using assms(2 ) assms(3 ) by blast

have (q1 ′,q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM M q1 )
(FSM .from-FSM M q2 ))

using reachable-state-is-state[OF ‹Inl (q1 ′,q2 ′) ∈ reachable-states ?C ›]
unfolding canonical-separator-simps[OF assms(2 ,3 )]

by auto

have path (from-FSM M q1 ) (initial (from-FSM M q1 )) (left-path p ′)
and path (from-FSM M q2 ) (initial (from-FSM M q2 )) (right-path p ′)

using product-path[of from-FSM M q1 from-FSM M q2 q1 q2 p ′] ‹path ?P
(initial ?P) p ′›
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by (simp add: paths-from-product-path)+
moreover have target (initial (from-FSM M q1 )) (left-path p ′) = q1 ′

using ‹p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target
t))) p ′› ‹target (initial ?C ) p = Inl (q1 ′,q2 ′)› canonical-separator-simps(1 )[OF
assms(2 ,3 )] assms(2 )

by (cases p ′ rule: rev-cases; auto)
moreover have target (initial (from-FSM M q2 )) (right-path p ′) = q2 ′

using ‹p = map (λt. (Inl (t-source t), t-input t, t-output t, Inl (t-target
t))) p ′› ‹target (initial ?C ) p = Inl (q1 ′,q2 ′)› canonical-separator-simps(1 )[OF
assms(2 ,3 )] assms(3 )

by (cases p ′ rule: rev-cases; auto)
moreover have p-io (left-path p ′) = p-io (right-path p ′) by auto
ultimately have p12 ′ : ∃ p1 p2 .

path (from-FSM M q1 ) (initial (from-FSM M q1 )) p1 ∧
path (from-FSM M q2 ) (initial (from-FSM M q2 )) p2 ∧
target (initial (from-FSM M q1 )) p1 = q1 ′ ∧
target (initial (from-FSM M q2 )) p2 = q2 ′ ∧ p-io p1 = p-io p2

by blast

have q1 ′ ∈ states (from-FSM M q1 )
using path-target-is-state[OF ‹path (from-FSM M q1 ) (initial (from-FSM

M q1 )) (left-path p ′)›] ‹target (initial (from-FSM M q1 )) (left-path p ′) = q1 ′› by
auto

have q2 ′ ∈ states (from-FSM M q2 )
using path-target-is-state[OF ‹path (from-FSM M q2 ) (initial (from-FSM

M q2 )) (right-path p ′)›] ‹target (initial (from-FSM M q2 )) (right-path p ′) = q2 ′›
by auto

have t-input t ∈ (inputs S)
using ‹t ∈ transitions S› by auto

then have t-input t ∈ (inputs ?C )
using ‹is-submachine S ?C › by auto

then have t-input t ∈ (inputs M )
using canonical-separator-simps(3 )[OF assms(2 ,3 )] by metis

have ∗:
∧

t1 t2 . t1 ∈ transitions M =⇒ t2 ∈ transitions M =⇒ t-source t1 =
q1 ′ =⇒ t-source t2 = q2 ′ =⇒ t-input t1 = t-input t =⇒ t-input t2 = t-input t =⇒
t-output t1 = t-output t2 =⇒ (∃ k . r-distinguishable-k M (t-target t1 ) (t-target
t2 ) k)

proof −
fix t1 t2 assume t1 ∈ transitions M

and t2 ∈ transitions M
and t-source t1 = q1 ′

and t-source t2 = q2 ′

and t-input t1 = t-input t
and t-input t2 = t-input t
and t-output t1 = t-output t2

then have t-input t1 = t-input t2 by auto
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have t1 ∈ transitions (from-FSM M q1 )
using ‹t-source t1 = q1 ′› ‹q1 ′ ∈ states (from-FSM M q1 )› ‹t1 ∈ transitions

M › by (simp add: assms(2 ))
have t2 ∈ transitions (from-FSM M q2 )
using ‹t-source t2 = q2 ′› ‹q2 ′ ∈ states (from-FSM M q2 )› ‹t2 ∈ transitions

M › by (simp add: assms(3 ))

let ?t = ((t-source t1 , t-source t2 ), t-input t1 , t-output t1 , t-target t1 , t-target
t2 )

have ?t ∈ transitions ?P
using ‹t1 ∈ transitions (from-FSM M q1 )› ‹t2 ∈ transitions (from-FSM

M q2 )› ‹t-input t1 = t-input t2 › ‹t-output t1 = t-output t2 ›
unfolding product-transitions-alt-def
by blast

then have shift-Inl ?t ∈ transitions ?C
using ‹(q1 ′,q2 ′) ∈ states (Product-FSM .product (FSM .from-FSM M q1 )

(FSM .from-FSM M q2 ))›
unfolding ‹t-source t1 = q1 ′› ‹t-source t2 = q2 ′› canonical-separator-transitions-def [OF

assms(2 ,3 )] by fastforce
moreover have t-source (shift-Inl ?t) = q

using ‹t-source t1 = q1 ′› ‹t-source t2 = q2 ′› ‹q = Inl (q1 ′,q2 ′)› by auto
ultimately have shift-Inl ?t ∈ transitions S

using ‹(∀ t ′∈ transitions ?C . t-source t ′ = q ∧ t-input t ′ = t-input t −→
t ′ ∈ transitions S)› ‹t-input t1 = t-input t› by auto

have case t-target (shift-Inl ?t) of Inl (q1 ′, q2 ′) ⇒ ∃ k. r-distinguishable-k
M q1 ′ q2 ′ k | Inr qr ⇒ True

using reachable-state.IH (2 )[OF ‹shift-Inl ?t ∈ transitions S› ‹t-source
(shift-Inl ?t) = q›] by (cases q; auto)

moreover have t-target (shift-Inl ?t) = Inl (t-target t1 , t-target t2 )
by auto

ultimately show ∃ k. r-distinguishable-k M (t-target t1 ) (t-target t2 ) k
by auto

qed

let ?hs = {(t1 ,t2 ) | t1 t2 . t1 ∈ transitions M ∧ t2 ∈ transitions M ∧ t-source
t1 = q1 ′ ∧ t-source t2 = q2 ′ ∧ t-input t1 = t-input t ∧ t-input t2 = t-input t ∧
t-output t1 = t-output t2}

have finite ?hs
proof −

have ?hs ⊆ (transitions M × transitions M ) by blast
moreover have finite (transitions M × transitions M ) using fsm-transitions-finite

by blast
ultimately show ?thesis

by (simp add: finite-subset)
qed
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obtain fk where fk-def :
∧

tt . tt ∈ ?hs =⇒ r-distinguishable-k M (t-target
(fst tt)) (t-target (snd tt)) (fk tt)

proof
let ?fk = λ tt . SOME k . r-distinguishable-k M (t-target (fst tt)) (t-target

(snd tt)) k
show

∧
tt . tt ∈ ?hs =⇒ r-distinguishable-k M (t-target (fst tt)) (t-target

(snd tt)) (?fk tt)
proof −

fix tt assume tt ∈ ?hs
then have (fst tt) ∈ transitions M ∧ (snd tt) ∈ transitions M ∧ t-source

(fst tt) = q1 ′ ∧ t-source (snd tt) = q2 ′ ∧ t-input (fst tt) = t-input t ∧ t-input (snd
tt) = t-input t ∧ t-output (fst tt) = t-output (snd tt)

by force
then have ∃ k . r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt))

k
using ∗ by blast

then show r-distinguishable-k M (t-target (fst tt)) (t-target (snd tt)) (?fk
tt)

by (simp add: someI-ex)
qed

qed

let ?k = Max (image fk ?hs)
have

∧
t1 t2 . t1 ∈ transitions M =⇒ t2 ∈ transitions M =⇒ t-source t1

= q1 ′ =⇒ t-source t2 = q2 ′ =⇒ t-input t1 = t-input t =⇒ t-input t2 = t-input t
=⇒ t-output t1 = t-output t2 =⇒ r-distinguishable-k M (t-target t1 ) (t-target t2 )
?k

proof −
fix t1 t2 assume t1 ∈ transitions M

and t2 ∈ transitions M
and t-source t1 = q1 ′

and t-source t2 = q2 ′

and t-input t1 = t-input t
and t-input t2 = t-input t
and t-output t1 = t-output t2

then have (t1 ,t2 ) ∈ ?hs
by force

then have r-distinguishable-k M (t-target t1 ) (t-target t2 ) (fk (t1 ,t2 ))
using fk-def by force

have fk (t1 ,t2 ) ≤ ?k
using ‹(t1 ,t2 ) ∈ ?hs› ‹finite ?hs› by auto

show r-distinguishable-k M (t-target t1 ) (t-target t2 ) ?k
using r-distinguishable-k-by-larger [OF ‹r-distinguishable-k M (t-target t1 )

(t-target t2 ) (fk (t1 ,t2 ))› ‹fk (t1 ,t2 ) ≤ ?k›] by assumption
qed

then have r-distinguishable-k M q1 ′ q2 ′ (Suc ?k)
unfolding r-distinguishable-k.simps
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using ‹t-input t ∈ (inputs M )› by blast
then show ?Prop q

using ‹q = Inl (q1 ′,q2 ′)›
by (metis (no-types, lifting) case-prodI old.sum.simps(5 ))

qed
qed

moreover have Inl (q1 ,q2 ) ∈ states S
using ‹is-submachine S ?C › canonical-separator-simps(1 )[OF assms(2 ,3 )] fsm-initial[of

S ] by auto
ultimately show ∃ k. r-distinguishable-k M q1 q2 k
using reachable-states-initial[of S ] using is-state-separator-from-canonical-separator-initial[OF

assms(1−3 )] by auto
qed

end

40 Traversal Set

This theory defines the calculation of m-traversal paths. These are paths
extended from some state until they visit pairwise r-distinguishable states a
number of times dependent on m.
theory Traversal-Set
imports Helper-Algorithms
begin

definition m-traversal-paths-with-witness-up-to-length ::
( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′a set × ′a set) list ⇒ nat ⇒ nat ⇒ (( ′a× ′b× ′c× ′a) list
× ( ′a set × ′a set)) set

where
m-traversal-paths-with-witness-up-to-length M q D m k
= paths-up-to-length-or-condition-with-witness M (λ p . find (λ d . length (filter

(λt . t-target t ∈ fst d) p) ≥ Suc (m − (card (snd d)))) D) k q

definition m-traversal-paths-with-witness ::
( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ( ′a set × ′a set) list ⇒ nat ⇒ (( ′a× ′b× ′c× ′a) list × ( ′a

set × ′a set)) set
where
m-traversal-paths-with-witness M q D m = m-traversal-paths-with-witness-up-to-length

M q D m (Suc (size M ∗ m))

lemma m-traversal-paths-with-witness-finite : finite (m-traversal-paths-with-witness
M q D m)
unfolding m-traversal-paths-with-witness-def m-traversal-paths-with-witness-up-to-length-def
by (simp add: paths-up-to-length-or-condition-with-witness-finite)
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lemma m-traversal-paths-with-witness-up-to-length-max-length :
assumes

∧
q . q ∈ states M =⇒ ∃ d ∈ set D . q ∈ fst d

and
∧

d . d ∈ set D =⇒ snd d ⊆ fst d
and q ∈ states M
and (p,d) ∈ (m-traversal-paths-with-witness-up-to-length M q D m k)

shows length p ≤ Suc ((size M ) ∗ m)
proof (rule ccontr)

assume ¬ length p ≤ Suc (FSM .size M ∗ m)

let ?f = (λ p . find (λ d . length (filter (λt . t-target t ∈ fst d) p) ≥ Suc (m −
(card (snd d)))) D)

have path M q [] using assms(3 ) by auto

have path M q p
and length p ≤ k
and ?f p = Some d
and ∀ p ′ p ′′. p = p ′ @ p ′′ ∧ p ′′ 6= [] −→ ?f p ′ = None

using assms(4 )
unfolding m-traversal-paths-with-witness-up-to-length-def paths-up-to-length-or-condition-with-witness-def

by auto

let ?p = take (Suc (m ∗ size M )) p
let ?p ′ = drop (Suc (m ∗ size M )) p
have path M q ?p

using ‹path M q p› using path-prefix[of M q ?p drop (Suc (m ∗ size M )) p]
by simp

have ?p ′ 6= []
using ‹¬ length p ≤ Suc (FSM .size M ∗ m)›
by (simp add: mult.commute)

have ∃ q ∈ states M . length (filter (λt . t-target t = q) ?p) ≥ Suc m
proof (rule ccontr)

assume ¬ (∃ q∈states M . Suc m ≤ length (filter (λt. t-target t = q) ?p))
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) < Suc m

by auto
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) ≤ m

by auto

have (
∑

q∈states M . length (filter (λt. t-target t = q) ?p)) ≤ (
∑

q∈states M
. m)

using ‹∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) ≤ m› by (meson
sum-mono)

then have length ?p ≤ m ∗ (size M )
using path-length-sum[OF ‹path M q ?p›]
using fsm-states-finite[of M ]
by (simp add: mult.commute)
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then show False
using ‹¬ length p ≤ Suc (FSM .size M ∗ m)›
by (simp add: mult.commute)

qed

then obtain q where q ∈ states M
and length (filter (λ t . t-target t = q) ?p) ≥ Suc m

by blast
then obtain d where d ∈ set D

and q ∈ fst d
using assms(1 ) by blast

then have
∧

t . t-target t = q =⇒ t-target t ∈ fst d by auto
then have length (filter (λ t . t-target t = q) ?p) ≤ length (filter (λ t . t-target

t ∈ fst d) ?p)
using filter-length-weakening[of λ t . t-target t = q λ t . t-target t ∈ fst d] by

auto
then have Suc m ≤ length (filter (λt. t-target t ∈ fst d) ?p)

using ‹length (filter (λ t . t-target t = q) ?p) ≥ Suc m› by auto
then have ?f ?p 6= None

using assms(2 )
proof −

have ∀ p. find p D 6= None ∨ ¬ p d
by (metis ‹d ∈ set D› find-from)

then show ?thesis
using ‹Suc m ≤ length (filter (λt. t-target t ∈ fst d) (take (Suc (m ∗ FSM .size

M )) p))›
diff-le-self le-trans not-less-eq-eq

by blast
qed
then obtain d ′ where ?f ?p = Some d ′

by blast

then have p = ?p@?p ′ ∧ ?p ′ 6= [] ∧ ?f ?p = Some d ′

using ‹?p ′ 6= []› by auto

then show False
using ‹∀ p ′ p ′′. p = p ′ @ p ′′ ∧ p ′′ 6= [] −→ (?f p ′) = None›
by (metis (no-types) option.distinct(1 ))

qed

lemma m-traversal-paths-with-witness-set :
assumes

∧
q . q ∈ states M =⇒ ∃ d ∈ set D . q ∈ fst d

and
∧

d . d ∈ set D =⇒ snd d ⊆ fst d
and q ∈ states M

shows (m-traversal-paths-with-witness M q D m)
= {(p,d) | p d . path M q p

∧ find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
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t-target t ∈ fst d) p)) D = Some d
∧ (∀ p ′ p ′′. p = p ′ @ p ′′ ∧ p ′′ 6= [] −→ find (λd. Suc (m −

card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) D = None)}
(is ?MTP = ?P)

proof −
let ?f = (λ p . find (λ d . length (filter (λt . t-target t ∈ fst d) p) ≥ Suc (m −

(card (snd d)))) D)

have path M q []
using assms(3 ) by auto

have
∧

p . p ∈ ?MTP =⇒ p ∈ ?P
unfolding m-traversal-paths-with-witness-def m-traversal-paths-with-witness-up-to-length-def

paths-up-to-length-or-condition-with-witness-def
by force

moreover have
∧

p . p ∈ ?P =⇒ p ∈ ?MTP
proof −

fix px assume px ∈ ?P
then obtain p x where px = (p,x)

and p1 : path M q p
and ∗∗: find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) p)) D = Some x
and ∗∗∗:(∀ p ′ p ′′.

p = p ′ @ p ′′ ∧ p ′′ 6= [] −→
find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) p ′)) D = None)
using prod.collapse by force

then have (p,x) ∈ (m-traversal-paths-with-witness-up-to-length M q D m (length
p))

unfolding m-traversal-paths-with-witness-up-to-length-def paths-up-to-length-or-condition-with-witness-def
by force

then have length p ≤ Suc (size M ∗ m)
using m-traversal-paths-with-witness-up-to-length-max-length[OF assms] by

blast

have (p,x) ∈ ?MTP
using ‹path M q p› ‹length p ≤ Suc (size M ∗ m)› ‹?f p = Some x›

‹∀ p ′ p ′′. p = p ′ @ p ′′ ∧ p ′′ 6= [] −→ (?f p ′) = None›
unfolding m-traversal-paths-with-witness-def m-traversal-paths-with-witness-up-to-length-def

paths-up-to-length-or-condition-with-witness-def
by force

then show px ∈ ?MTP
using ‹px = (p,x)› by simp

qed
ultimately show ?thesis
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by (meson subsetI subset-antisym)
qed

lemma maximal-repetition-sets-from-separators-cover :
assumes q ∈ states M
shows ∃ d ∈ (maximal-repetition-sets-from-separators M ) . q ∈ fst d
unfolding maximal-repetition-sets-from-separators-def
using maximal-pairwise-r-distinguishable-state-sets-from-separators-cover [OF assms]

by auto

lemma maximal-repetition-sets-from-separators-d-reachable-subset :
shows

∧
d . d ∈ (maximal-repetition-sets-from-separators M ) =⇒ snd d ⊆ fst d

unfolding maximal-repetition-sets-from-separators-def
by auto

lemma m-traversal-paths-with-witness-set-containment :
assumes q ∈ states M
and path M q p
and d ∈ set repSets
and Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p)
and

∧
p ′ p ′′.

p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒
¬ (∃ d∈set repSets.

Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)
p ′))

and
∧

q . q∈states M =⇒ ∃ d∈set repSets. q ∈ fst d
and

∧
d . d∈set repSets =⇒ snd d ⊆ fst d

shows ∃ d ′ . (p,d ′) ∈ (m-traversal-paths-with-witness M q repSets m)
proof −

obtain d ′ where find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target
t ∈ fst d) p)) repSets = Some d ′

using assms(3 ,4 ) find-None-iff [of (λd. Suc (m − card (snd d)) ≤ length (filter
(λt. t-target t ∈ fst d) p)) repSets]

by auto
moreover have (

∧
p ′ p ′′. p = p ′ @ p ′′ =⇒ p ′′ 6= []

=⇒ find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) p ′)) repSets = None)

using assms(5 ) find-None-iff [of - repSets] by force
ultimately show ?thesis

using m-traversal-paths-with-witness-set[of M repSets q m, OF assms(6 ,7 ,1 )]
using assms(2 ) by blast

qed
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lemma m-traversal-path-exist :
assumes completely-specified M
and q ∈ states M
and inputs M 6= {}
and

∧
q . q∈states M =⇒ ∃ d∈set D. q ∈ fst d

and
∧

d . d ∈ set D =⇒ snd d ⊆ fst d
shows ∃ p ′ d ′ . (p ′,d ′) ∈ (m-traversal-paths-with-witness M q D m)
proof −

obtain p where path M q p and length p = Suc ((size M ) ∗ m)
using path-of-length-ex[OF assms(1−3 )] by blast

let ?f = (λ p . find (λ d . length (filter (λt . t-target t ∈ fst d) p) ≥ Suc (m −
(card (snd d)))) D)

have ∃ q ∈ states M . length (filter (λt . t-target t = q) p) ≥ Suc m
proof (rule ccontr)

assume ¬ (∃ q∈states M . Suc m ≤ length (filter (λt. t-target t = q) p))
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) p) < Suc m

by auto
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) p) ≤ m

by auto

have (
∑

q∈states M . length (filter (λt. t-target t = q) p)) ≤ (
∑

q∈states M .
m)

using ‹∀ q ∈ states M . length (filter (λt. t-target t = q) p) ≤ m› by (meson
sum-mono)

then have length p ≤ m ∗ (size M )
using path-length-sum[OF ‹path M q p›]
using fsm-states-finite[of M ]
by (simp add: mult.commute)

then show False
using ‹length p = Suc ((size M ) ∗ m)›
by (simp add: mult.commute)

qed

then obtain q ′ where q ′ ∈ states M
and length (filter (λ t . t-target t = q ′) p) ≥ Suc m

by blast
then obtain d where d ∈ set D

and q ′ ∈ fst d
using assms(4 ) by blast

then have
∧

t . t-target t = q ′ =⇒ t-target t ∈ fst d by auto
then have length (filter (λ t . t-target t = q ′) p) ≤ length (filter (λ t . t-target t
∈ fst d) p)

using filter-length-weakening[of λ t . t-target t = q ′ λ t . t-target t ∈ fst d] by
auto

then have Suc m ≤ length (filter (λt. t-target t ∈ fst d) p)
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using ‹length (filter (λ t . t-target t = q ′) p) ≥ Suc m› by auto
then have ?f p 6= None

using assms(2 )
proof −

have ∀ p. find p D 6= None ∨ ¬ p d
by (metis ‹d ∈ set D› find-from)

have Suc (m − card (snd d)) ≤ length (filter (λp. t-target p ∈ fst d) p)
using ‹Suc m ≤ length (filter (λt. t-target t ∈ fst d) p)› by linarith

then show ?thesis
using ‹∀ p. find p D 6= None ∨ ¬ p d› by blast

qed
then obtain d ′ where ?f p = Some d ′

by blast

show ?thesis proof (cases (∀ p ′ p ′′. p = p ′ @ p ′′ ∧ p ′′ 6= [] −→ find (λd. Suc
(m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) D = None))

case True
then show ?thesis

using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] ‹path M q
p› ‹?f p = Some d ′›

by blast
next

case False

define ps where ps-def : ps = {p ′ . ∃ p ′′. p = p ′ @ p ′′ ∧ p ′′ 6= []
∧ find (λd. Suc (m − card (snd d)) ≤ length

(filter (λt. t-target t ∈ fst d) p ′)) D 6= None}
have ps 6= {}

using False ps-def
by blast

moreover have finite ps
proof −

have ps ⊆ set (prefixes p)
unfolding prefixes-set ps-def
by blast

then show ?thesis
by (meson List.finite-set rev-finite-subset)

qed
ultimately obtain p ′ where p ′ ∈ ps and

∧
p ′′ . p ′′ ∈ ps =⇒ length p ′ ≤

length p ′′

by (meson leI min-length-elem)
then have

∧
p ′′ p ′′′ . p ′ = p ′′ @ p ′′′ =⇒ p ′′′ 6= []

=⇒ find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) p ′′)) D = None

proof −
fix p ′′ p ′′′ assume p ′ = p ′′ @ p ′′′ and p ′′′ 6= []
show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst

d) p ′′)) D = None
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proof (rule ccontr)
assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈

fst d) p ′′)) D 6= None
moreover have ∃ p ′′′. p = p ′′ @ p ′′′ ∧ p ′′′ 6= []

using ‹p ′ ∈ ps› ‹p ′ = p ′′ @ p ′′′› unfolding ps-def by auto
ultimately have p ′′ ∈ ps

unfolding ps-def by auto
moreover have length p ′′ < length p ′

using ‹p ′′′ 6= []› ‹p ′ = p ′′ @ p ′′′› by auto
ultimately show False

using ‹
∧

p ′′ . p ′′ ∈ ps =⇒ length p ′ ≤ length p ′′›
using leD by auto

qed
qed

have path M q p ′ and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
t-target t ∈ fst d) p ′)) D 6= None

using ‹path M q p› ‹p ′ ∈ ps› unfolding ps-def by auto
then obtain d ′ where find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.

t-target t ∈ fst d) p ′)) D = Some d ′

by auto

then have path M q p ′ ∧
find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst

d) p ′)) D = Some d ′ ∧
(∀ p ′′ p ′′′. p ′ = p ′′ @ p ′′′ ∧ p ′′′ 6= [] −→ find (λd. Suc (m − card (snd

d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None)
using ‹

∧
p ′′ p ′′′ . p ′ = p ′′ @ p ′′′ =⇒ p ′′′ 6= [] =⇒ find (λd. Suc (m − card

(snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None›
‹path M q p ′›

by blast
then have (p ′,d ′) ∈ (m-traversal-paths-with-witness M q D m)

using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] by blast
then show ?thesis by blast

qed
qed

lemma m-traversal-path-extension-exist :
assumes completely-specified M
and q ∈ states M
and inputs M 6= {}
and

∧
q . q∈states M =⇒ ∃ d∈set D. q ∈ fst d

and
∧

d . d ∈ set D =⇒ snd d ⊆ fst d
and path M q p1
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)

p1 )) D = None
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shows ∃ p2 d ′ . (p1@p2 ,d ′) ∈ (m-traversal-paths-with-witness M q D m)
proof −

obtain p2 where path M (target q p1 ) p2 and length p2 = (Suc ((size M ) ∗
m)) − length p1

using path-of-length-ex[OF assms(1 ) path-target-is-state[OF assms(6 )] assms(3 )]

by blast

have path M q (p1@p2 )
using assms(6 ) ‹path M (target q p1 ) p2 › by auto

let ?f = (λ p . find (λ d . length (filter (λt . t-target t ∈ fst d) p) ≥ Suc (m −
(card (snd d)))) D)

have length p1 < Suc ((size M ) ∗ m)
proof (rule ccontr)

assume ¬ length p1 < Suc (FSM .size M ∗ m)
then have length (take (Suc (FSM .size M ∗ m)) p1 ) = Suc (FSM .size M ∗

m)
by auto

let ?p = (take (Suc (FSM .size M ∗ m)) p1 )

have path M q ?p
using ‹path M q p1 ›
by (metis append-take-drop-id path-append-elim)

have ∃ q ∈ states M . length (filter (λt . t-target t = q) ?p) ≥ Suc m
proof (rule ccontr)

assume ¬ (∃ q∈states M . Suc m ≤ length (filter (λt. t-target t = q) ?p))
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) < Suc m

by auto
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) ≤ m

by auto

have (
∑

q∈states M . length (filter (λt. t-target t = q) ?p)) ≤ (
∑

q∈states M
. m)

using ‹∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) ≤ m› by
(meson sum-mono)

then have length ?p ≤ m ∗ (size M )
using path-length-sum[OF ‹path M q ?p›]
using fsm-states-finite[of M ]
by (simp add: mult.commute)

then show False
using ‹length ?p = Suc ((size M ) ∗ m)›
by (simp add: mult.commute)

qed
then obtain q ′ where q ′ ∈ states M

and length (filter (λ t . t-target t = q ′) ?p) ≥ Suc m
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by blast
then obtain d where d ∈ set D

and q ′ ∈ fst d
using assms(4 ) by blast

then have
∧

t . t-target t = q ′ =⇒ t-target t ∈ fst d by auto
then have length (filter (λ t . t-target t = q ′) ?p) ≤ length (filter (λ t . t-target

t ∈ fst d) ?p)
using filter-length-weakening[of λ t . t-target t = q ′ λ t . t-target t ∈ fst d]

by auto
then have Suc m ≤ length (filter (λt. t-target t ∈ fst d) ?p)

using ‹length (filter (λ t . t-target t = q ′) ?p) ≥ Suc m› by auto
moreover have length (filter (λt. t-target t ∈ fst d) ?p) ≤ length (filter (λt.

t-target t ∈ fst d) p1 )
proof −

have
∧

xs P n . length (filter P (take n xs)) ≤ length (filter P xs)
by (metis append-take-drop-id filter-append le0 le-add-same-cancel1 length-append)
then show ?thesis by auto

qed
ultimately have Suc m ≤ length (filter (λt. t-target t ∈ fst d) p1 )

by auto
then have ?f p1 6= None

using assms(2 )
proof −

have ∀ p. find p D 6= None ∨ ¬ p d
by (metis ‹d ∈ set D› find-from)

have Suc (m − card (snd d)) ≤ length (filter (λp. t-target p ∈ fst d) p1 )
using ‹Suc m ≤ length (filter (λt. t-target t ∈ fst d) p1 )› by linarith

then show ?thesis
using ‹∀ p. find p D 6= None ∨ ¬ p d› by blast

qed
then obtain d ′ where ?f p1 = Some d ′

by blast
then show False

using assms(7 ) by simp
qed

have length (p1@p2 ) = (Suc ((size M ) ∗ m))
using ‹length p2 = (Suc ((size M ) ∗ m)) − length p1 ›

‹length p1 < Suc ((size M ) ∗ m)›
by simp

have ∃ q ∈ states M . length (filter (λt . t-target t = q) (p1@p2 )) ≥ Suc m
proof (rule ccontr)

assume ¬ (∃ q∈states M . Suc m ≤ length (filter (λt. t-target t = q) (p1@p2 )))
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) (p1@p2 )) < Suc

m
by auto

then have ∀ q ∈ states M . length (filter (λt. t-target t = q) (p1@p2 )) ≤ m
by auto
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have (
∑

q∈states M . length (filter (λt. t-target t = q) (p1@p2 ))) ≤ (
∑

q∈states
M . m)

using ‹∀ q ∈ states M . length (filter (λt. t-target t = q) (p1@p2 )) ≤ m› by
(meson sum-mono)

then have length (p1@p2 ) ≤ m ∗ (size M )
using path-length-sum[OF ‹path M q (p1@p2 )›]
using fsm-states-finite[of M ]
by (simp add: mult.commute)

then show False
using ‹length (p1@p2 ) = Suc ((size M ) ∗ m)›
by (simp add: mult.commute)

qed
then obtain q ′ where q ′ ∈ states M

and length (filter (λ t . t-target t = q ′) (p1@p2 )) ≥ Suc m
by blast

then obtain d where d ∈ set D
and q ′ ∈ fst d

using assms(4 ) by blast
then have

∧
t . t-target t = q ′ =⇒ t-target t ∈ fst d by auto

then have length (filter (λ t . t-target t = q ′) (p1@p2 )) ≤ length (filter (λ t .
t-target t ∈ fst d) (p1@p2 ))

using filter-length-weakening[of λ t . t-target t = q ′ λ t . t-target t ∈ fst d]
by blast

then have Suc m ≤ length (filter (λt. t-target t ∈ fst d) (p1@p2 ))
using ‹length (filter (λ t . t-target t = q ′) (p1@p2 )) ≥ Suc m› by auto

then have ?f (p1@p2 ) 6= None
using assms(2 )

proof −
have ∀ p. find p D 6= None ∨ ¬ p d

by (metis ‹d ∈ set D› find-from)
have Suc (m − card (snd d)) ≤ length (filter (λp. t-target p ∈ fst d) (p1@p2 ))

using ‹Suc m ≤ length (filter (λt. t-target t ∈ fst d) (p1@p2 ))› by linarith
then show ?thesis

using ‹∀ p. find p D 6= None ∨ ¬ p d› by blast
qed
then obtain d ′ where ?f (p1@p2 ) = Some d ′

by blast

show ?thesis proof (cases (∀ p ′ p ′′. (p1@p2 ) = p ′ @ p ′′ ∧ p ′′ 6= []
−→ find (λd. Suc (m − card (snd d)) ≤ length (filter

(λt. t-target t ∈ fst d) p ′)) D = None))
case True
then show ?thesis

using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] ‹path M q
(p1@p2 )› ‹?f (p1@p2 ) = Some d ′›

by blast
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next
case False

define ps where ps-def : ps = {p ′ . ∃ p ′′. (p1@p2 ) = p ′ @ p ′′ ∧ p ′′ 6= []
∧ find (λd. Suc (m − card (snd d)) ≤ length

(filter (λt. t-target t ∈ fst d) p ′)) D 6= None}
have ps 6= {} using False ps-def by blast
moreover have finite ps
proof −

have ps ⊆ set (prefixes (p1@p2 ))
unfolding prefixes-set ps-def
by auto

then show ?thesis
by (meson List.finite-set rev-finite-subset)

qed
ultimately obtain p ′ where p ′ ∈ ps and

∧
p ′′ . p ′′ ∈ ps =⇒ length p ′ ≤

length p ′′

by (meson leI min-length-elem)
then have

∧
p ′′ p ′′′ . p ′ = p ′′ @ p ′′′ =⇒ p ′′′ 6= []

=⇒ find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
t-target t ∈ fst d) p ′′)) D = None

proof −
fix p ′′ p ′′′ assume p ′ = p ′′ @ p ′′′ and p ′′′ 6= []
show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst

d) p ′′)) D = None
proof (rule ccontr)

assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) p ′′)) D 6= None

moreover have ∃ p ′′′. (p1@p2 ) = p ′′ @ p ′′′ ∧ p ′′′ 6= []
using ‹p ′ ∈ ps› ‹p ′ = p ′′ @ p ′′′› unfolding ps-def by auto

ultimately have p ′′ ∈ ps
unfolding ps-def by auto

moreover have length p ′′ < length p ′

using ‹p ′′′ 6= []› ‹p ′ = p ′′ @ p ′′′› by auto
ultimately show False

using ‹
∧

p ′′ . p ′′ ∈ ps =⇒ length p ′ ≤ length p ′′›
using leD by auto

qed
qed

obtain p ′′ where (p1@p2 ) = p ′ @ p ′′

and p ′′ 6= []
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) p ′)) D 6= None
using ‹p ′ ∈ ps› unfolding ps-def by blast

then obtain d ′ where find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
t-target t ∈ fst d) p ′)) D = Some d ′

by auto
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have path M q p ′

using ‹path M q (p1@p2 )› unfolding ‹(p1@p2 ) = p ′ @ p ′′› by auto

have length p ′ > length p1
proof (rule ccontr)

assume ¬ length p1 < length p ′

then obtain i where p ′ = take i p1
by (metis ‹p1 @ p2 = p ′ @ p ′′› append-eq-append-conv-if less-le)

have
∧

i . find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) (take i p1 ))) D = None

proof −
fix i
show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst

d) (take i p1 ))) D = None
proof (rule ccontr)

assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) (take i p1 ))) D 6= None

then obtain d where d ∈ set D
and Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈

fst d) (take i p1 ))
using find-None-iff [of (λd. Suc (m − card (snd d)) ≤ length (filter (λt.

t-target t ∈ fst d) (take i p1 ))) D]
by meson

moreover have length (filter (λt. t-target t ∈ fst d) (take i p1 )) ≤ length
(filter (λt. t-target t ∈ fst d) p1 )

using filter-take-length by metis
ultimately have Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) p1 )
using le-trans by blast

then show False
using ‹d ∈ set D› assms(7 ) unfolding find-None-iff
by blast

qed
qed

then have find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) p ′)) D = None

unfolding ‹p ′ = take i p1 › by blast
then show False

using ‹find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) p ′)) D 6= None›

by auto
qed

moreover have p ′ = take (length p ′) (p1@p2 )
using ‹(p1@p2 ) = p ′ @ p ′′› by auto
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ultimately obtain p where p ′ = p1 @ p
by auto

have path M q p ′ ∧
find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)

p ′)) D = Some d ′ ∧
(∀ p ′′ p ′′′. p ′ = p ′′ @ p ′′′ ∧ p ′′′ 6= [] −→ find (λd. Suc (m − card (snd d))

≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None)
using ‹

∧
p ′′ p ′′′ . p ′ = p ′′ @ p ′′′ =⇒ p ′′′ 6= [] =⇒ find (λd. Suc (m − card

(snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None›
‹path M q p ′› ‹find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.

t-target t ∈ fst d) p ′)) D = Some d ′›
by blast

then have (p ′,d ′) ∈ (m-traversal-paths-with-witness M q D m)
using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] by blast

then show ?thesis unfolding ‹p ′ = p1 @ p› by blast
qed

qed

lemma m-traversal-path-extension-exist-for-transition :
assumes completely-specified M
and q ∈ states M
and inputs M 6= {}
and

∧
q . q∈states M =⇒ ∃ d∈set D. q ∈ fst d

and
∧

d . d ∈ set D =⇒ snd d ⊆ fst d
and path M q p1
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)

p1 )) D = None
and t ∈ transitions M
and t-source t = target q p1

shows ∃ p2 d ′ . (p1@[t]@p2 ,d ′) ∈ (m-traversal-paths-with-witness M q D m)
proof −

let ?q = (target q (p1 @ [t]))
let ?p = p1 @ [t]

have path M q ?p
using ‹path M q p1 › ‹t ∈ transitions M › ‹t-source t = target q p1 › path-append-transition

by simp

obtain p2 where path M ?q p2 and length p2 = (Suc ((size M ) ∗ m)) − (length
?p)

using path-of-length-ex[OF assms(1 ) path-target-is-state[OF ‹path M q (p1@[t])›]
assms(3 )]

by blast

have path M q (?p@p2 )

1231



using ‹path M q ?p› ‹path M ?q p2 › by auto

let ?f = (λ p . find (λ d . length (filter (λt . t-target t ∈ fst d) p) ≥ Suc (m −
(card (snd d)))) D)

have length p1 < Suc ((size M ) ∗ m)
proof (rule ccontr)

assume ¬ length p1 < Suc (FSM .size M ∗ m)
then have length (take (Suc (FSM .size M ∗ m)) p1 ) = Suc (FSM .size M ∗

m)
by auto

let ?p = (take (Suc (FSM .size M ∗ m)) p1 )

have path M q ?p
using ‹path M q p1 ›
by (metis append-take-drop-id path-append-elim)

have ∃ q ∈ states M . length (filter (λt . t-target t = q) ?p) ≥ Suc m
proof (rule ccontr)

assume ¬ (∃ q∈states M . Suc m ≤ length (filter (λt. t-target t = q) ?p))
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) < Suc m

by auto
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) ≤ m

by auto

have (
∑

q∈states M . length (filter (λt. t-target t = q) ?p)) ≤ (
∑

q∈states M
. m)

using ‹∀ q ∈ states M . length (filter (λt. t-target t = q) ?p) ≤ m› by
(meson sum-mono)

then have length ?p ≤ m ∗ (size M )
using path-length-sum[OF ‹path M q ?p›]
using fsm-states-finite[of M ]
by (simp add: mult.commute)

then show False
using ‹length ?p = Suc ((size M ) ∗ m)›
by (simp add: mult.commute)

qed
then obtain q ′ where q ′ ∈ states M

and length (filter (λ t . t-target t = q ′) ?p) ≥ Suc m
by blast

then obtain d where d ∈ set D
and q ′ ∈ fst d

using assms(4 ) by blast
then have

∧
t . t-target t = q ′ =⇒ t-target t ∈ fst d by auto

then have length (filter (λ t . t-target t = q ′) ?p) ≤ length (filter (λ t . t-target
t ∈ fst d) ?p)

using filter-length-weakening[of λ t . t-target t = q ′ λ t . t-target t ∈ fst d]
by auto
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then have Suc m ≤ length (filter (λt. t-target t ∈ fst d) ?p)
using ‹length (filter (λ t . t-target t = q ′) ?p) ≥ Suc m› by auto

moreover have length (filter (λt. t-target t ∈ fst d) ?p) ≤ length (filter (λt.
t-target t ∈ fst d) p1 )

proof −
have

∧
xs P n . length (filter P (take n xs)) ≤ length (filter P xs)

by (metis append-take-drop-id filter-append le0 le-add-same-cancel1 length-append)
then show ?thesis by auto

qed
ultimately have Suc m ≤ length (filter (λt. t-target t ∈ fst d) p1 )

by auto
then have ?f p1 6= None

using assms(2 )
proof −

have ∀ p. find p D 6= None ∨ ¬ p d
by (metis ‹d ∈ set D› find-from)

have Suc (m − card (snd d)) ≤ length (filter (λp. t-target p ∈ fst d) p1 )
using ‹Suc m ≤ length (filter (λt. t-target t ∈ fst d) p1 )› by linarith

then show ?thesis
using ‹∀ p. find p D 6= None ∨ ¬ p d› by blast

qed
then obtain d ′ where ?f p1 = Some d ′

by blast
then show False

using assms(7 ) by simp
qed

have length (?p@p2 ) = (Suc ((size M ) ∗ m))
using ‹length p2 = (Suc ((size M ) ∗ m)) − length ?p›

‹length p1 < Suc ((size M ) ∗ m)›
by simp

have ∃ q ∈ states M . length (filter (λt . t-target t = q) (?p@p2 )) ≥ Suc m
proof (rule ccontr)

assume ¬ (∃ q∈states M . Suc m ≤ length (filter (λt. t-target t = q) (?p@p2 )))
then have ∀ q ∈ states M . length (filter (λt. t-target t = q) (?p@p2 )) < Suc

m
by auto

then have ∀ q ∈ states M . length (filter (λt. t-target t = q) (?p@p2 )) ≤ m
by auto

have (
∑

q∈states M . length (filter (λt. t-target t = q) (?p@p2 ))) ≤ (
∑

q∈states
M . m)

using ‹∀ q ∈ states M . length (filter (λt. t-target t = q) (?p@p2 )) ≤ m› by
(meson sum-mono)

then have length (?p@p2 ) ≤ m ∗ (size M )
using path-length-sum[OF ‹path M q (?p@p2 )›]
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using fsm-states-finite[of M ]
by (simp add: mult.commute)

then show False
using ‹length (?p@p2 ) = Suc ((size M ) ∗ m)›
by (simp add: mult.commute)

qed

then obtain q ′ where q ′ ∈ states M
and length (filter (λ t . t-target t = q ′) (?p@p2 )) ≥ Suc m

by blast
then obtain d where d ∈ set D

and q ′ ∈ fst d
using assms(4 ) by blast

then have
∧

t . t-target t = q ′ =⇒ t-target t ∈ fst d by auto
then have length (filter (λ t . t-target t = q ′) (?p@p2 )) ≤ length (filter (λ t .

t-target t ∈ fst d) (?p@p2 ))
using filter-length-weakening[of λ t . t-target t = q ′ λ t . t-target t ∈ fst d]
by blast

then have Suc m ≤ length (filter (λt. t-target t ∈ fst d) (?p@p2 ))
using ‹length (filter (λ t . t-target t = q ′) (?p@p2 )) ≥ Suc m› by auto

then have ?f (?p@p2 ) 6= None
using assms(2 )

proof −
have ∀ p. find p D 6= None ∨ ¬ p d

by (metis ‹d ∈ set D› find-from)
have Suc (m − card (snd d)) ≤ length (filter (λp. t-target p ∈ fst d) (?p@p2 ))

using ‹Suc m ≤ length (filter (λt. t-target t ∈ fst d) (?p@p2 ))› by linarith
then show ?thesis

using ‹∀ p. find p D 6= None ∨ ¬ p d› by blast
qed
then obtain d ′ where ?f (?p@p2 ) = Some d ′

by blast

show ?thesis proof (cases (∀ p ′ p ′′. (?p@p2 ) = p ′ @ p ′′ ∧ p ′′ 6= [] −→ find (λd.
Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) D = None))

case True
obtain d ′ where ((?p@p2 ), d ′) ∈ m-traversal-paths-with-witness M q D m

using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] ‹path M q
(?p@p2 )› ‹?f (?p@p2 ) = Some d ′› True by force

then show ?thesis
unfolding append.assoc[symmetric] by blast

next
case False
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show ?thesis proof (cases find (λd. Suc (m − card (snd d)) ≤ length (filter
(λt. t-target t ∈ fst d) ?p)) D)

case (Some a)

have ∗: (∀ p ′ p ′′. ?p = p ′ @ p ′′ ∧ p ′′ 6= [] −→ find (λd. Suc (m − card (snd
d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) D = None)

proof −
have

∧
p ′ p ′′. ?p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m − card (snd

d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) D = None
proof −

fix p ′ p ′′ assume ?p = p ′ @ p ′′ and p ′′ 6= []
then have length p ′ ≤ length p1 by (induction p ′′ rule: rev-induct; auto)
moreover have p ′ = take (length p ′) ?p

unfolding ‹?p = p ′ @ p ′′› by auto
ultimately have p ′ = take (length p ′) p1

by auto

show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) p ′)) D = None

proof (rule ccontr)
assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) p ′)) D 6= None
moreover have

∧
x . length (filter (λt. t-target t ∈ fst x) p ′) ≤ length

(filter (λt. t-target t ∈ fst x) p1 )
using ‹p ′ = take (length p ′) p1 ›
by (metis filter-take-length)

ultimately have find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
t-target t ∈ fst d) p1 )) D 6= None

unfolding find-None-iff
using le-trans by blast

then show False
using assms(7 ) by simp

qed
qed
then show ?thesis by blast

qed

obtain d ′ where (?p, d ′) ∈ m-traversal-paths-with-witness M q D m
using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] ‹path M q

?p› Some ∗ by force
then show ?thesis

by fastforce
next

case None

define ps where ps-def : ps = {p ′ . ∃ p ′′. (?p@p2 ) = p ′ @ p ′′

∧ p ′′ 6= []
∧ find (λd. Suc (m − card (snd d)) ≤
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length (filter (λt. t-target t ∈ fst d) p ′)) D 6= None}
have ps 6= {} using False ps-def by blast
moreover have finite ps
proof −

have ps ⊆ set (prefixes (?p@p2 ))
unfolding prefixes-set ps-def
by auto

then show ?thesis
by (meson List.finite-set rev-finite-subset)

qed
ultimately obtain p ′ where p ′ ∈ ps and

∧
p ′′ . p ′′ ∈ ps =⇒ length p ′ ≤

length p ′′

by (meson leI min-length-elem)
then have

∧
p ′′ p ′′′ . p ′ = p ′′ @ p ′′′ =⇒ p ′′′ 6= [] =⇒ find (λd. Suc (m −

card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None
proof −

fix p ′′ p ′′′ assume p ′ = p ′′ @ p ′′′ and p ′′′ 6= []
show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst

d) p ′′)) D = None
proof (rule ccontr)

assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) p ′′)) D 6= None

moreover have ∃ p ′′′. (?p@p2 ) = p ′′ @ p ′′′ ∧ p ′′′ 6= []
using ‹p ′ ∈ ps› ‹p ′ = p ′′ @ p ′′′› unfolding ps-def by auto

ultimately have p ′′ ∈ ps
unfolding ps-def by auto

moreover have length p ′′ < length p ′

using ‹p ′′′ 6= []› ‹p ′ = p ′′ @ p ′′′› by auto
ultimately show False

using ‹
∧

p ′′ . p ′′ ∈ ps =⇒ length p ′ ≤ length p ′′›
using leD by auto

qed
qed

obtain p ′′ where (?p@p2 ) = p ′ @ p ′′

and p ′′ 6= []
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target

t ∈ fst d) p ′)) D 6= None
using ‹p ′ ∈ ps› unfolding ps-def by blast

then obtain d ′ where find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
t-target t ∈ fst d) p ′)) D = Some d ′

by auto

have path M q p ′

using ‹path M q (?p@p2 )› unfolding ‹(?p@p2 ) = p ′ @ p ′′› by auto

have length p ′ > length ?p
proof (rule ccontr)
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assume ¬ length ?p < length p ′

then obtain i where p ′ = take i ?p
by (metis ‹?p @ p2 = p ′ @ p ′′› append-eq-append-conv-if less-le)

have
∧

i . find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) (take i ?p))) D = None

proof −
fix i
show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈

fst d) (take i ?p))) D = None
proof (rule ccontr)

assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) (take i ?p))) D 6= None

then obtain d where d ∈ set D
and Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) (take i ?p))
using find-None-iff [of (λd. Suc (m − card (snd d)) ≤ length (filter

(λt. t-target t ∈ fst d) (take i ?p))) D]
by meson

moreover have length (filter (λt. t-target t ∈ fst d) (take i ?p)) ≤ length
(filter (λt. t-target t ∈ fst d) ?p)

using filter-take-length by metis
ultimately have Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) ?p)
using le-trans by blast

then show False
using ‹d ∈ set D› None unfolding find-None-iff
by blast

qed
qed

then have find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) p ′)) D = None

unfolding ‹p ′ = take i ?p› by blast
then show False

using ‹find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) p ′)) D 6= None›

by auto
qed

moreover have p ′ = take (length p ′) (?p@p2 )
using ‹(?p@p2 ) = p ′ @ p ′′› by auto

ultimately obtain p where p ′ = ?p @ p
by (metis dual-order .strict-implies-order take-all take-append)

have path M q p ′ ∧
find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)
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p ′)) D = Some d ′ ∧
(∀ p ′′ p ′′′. p ′ = p ′′ @ p ′′′ ∧ p ′′′ 6= [] −→ find (λd. Suc (m − card (snd

d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None)
using ‹

∧
p ′′ p ′′′ . p ′ = p ′′ @ p ′′′ =⇒ p ′′′ 6= [] =⇒ find (λd. Suc (m − card

(snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′′)) D = None› ‹path M q p ′› ‹find
(λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) D = Some
d ′›

by blast
then have (p ′,d ′) ∈ (m-traversal-paths-with-witness M q D m)

using m-traversal-paths-with-witness-set[OF assms(4 ,5 ,2 ), of m] by blast
then show ?thesis unfolding ‹p ′ = ?p @ p› by fastforce

qed
qed

qed

end

41 Test Suites

This theory introduces a predicate implies-completeness and proves that
any test suite satisfying this predicate is sufficient to check the reduction
conformance relation between two (possibly nondeterministic FSMs)
theory Test-Suite
imports Helper-Algorithms Adaptive-Test-Case Traversal-Set
begin

41.1 Preliminary Definitions
type-synonym ( ′a, ′b, ′c) preamble = ( ′a, ′b, ′c) fsm
type-synonym ( ′a, ′b, ′c) traversal-path = ( ′a × ′b × ′c × ′a) list
type-synonym ( ′a, ′b, ′c) separator = ( ′a, ′b, ′c) fsm

A test suite contains of 1) a set of d-reachable states with their associated
preambles 2) a map from d-reachable states to their associated m-traversal
paths 3) a map from d-reachable states and associated m-traversal paths to
the set of states to r-distinguish the targets of those paths from 4) a map
from pairs of r-distinguishable states to a separator
datatype ( ′a, ′b, ′c, ′d) test-suite = Test-Suite ( ′a × ( ′a, ′b, ′c) preamble) set

′a ⇒ ( ′a, ′b, ′c) traversal-path set
( ′a × ( ′a, ′b, ′c) traversal-path) ⇒ ′a set

( ′a × ′a) ⇒ (( ′d, ′b, ′c) separator × ′d × ′d) set

41.2 A Sufficiency Criterion for Reduction Testing
fun implies-completeness-for-repetition-sets :: ( ′a, ′b, ′c, ′d) test-suite ⇒ ( ′a, ′b, ′c)
fsm ⇒ nat ⇒ ( ′a set × ′a set) list ⇒ bool where

implies-completeness-for-repetition-sets (Test-Suite prs tps rd-targets separators)
M m repetition-sets =
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( (initial M ,initial-preamble M ) ∈ prs
∧ (∀ q P . (q,P) ∈ prs −→ (is-preamble P M q) ∧ (tps q) 6= {})
∧ (∀ q1 q2 A d1 d2 . (A,d1 ,d2 ) ∈ separators (q1 ,q2 ) −→ (A,d2 ,d1 ) ∈ separators

(q2 ,q1 ) ∧ is-separator M q1 q2 A d1 d2 )
∧ (∀ q . q ∈ states M −→ (∃ d ∈ set repetition-sets. q ∈ fst d))
∧ (∀ d . d ∈ set repetition-sets −→ ((fst d ⊆ states M ) ∧ (snd d = fst d ∩ fst

‘ prs) ∧ (∀ q1 q2 . q1 ∈ fst d −→ q2 ∈ fst d −→ q1 6= q2 −→ separators (q1 ,q2 )
6= {})))

∧ (∀ q . q ∈ image fst prs −→ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈
m-traversal-paths-with-witness M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness
M q repetition-sets m) ⊆ tps q)
∧ (∀ q p d . q ∈ image fst prs −→ (p,d) ∈ m-traversal-paths-with-witness M q

repetition-sets m −→
( (∀ p1 p2 p3 . p=p1@p2@p3 −→ p2 6= [] −→ target q p1 ∈ fst d −→

target q (p1@p2 ) ∈ fst d −→ target q p1 6= target q (p1@p2 ) −→ (p1 ∈ tps q ∧
(p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets (q,(p1@p2 )) ∧ target q (p1@p2 ) ∈
rd-targets (q,p1 )))

∧ (∀ p1 p2 q ′ . p=p1@p2 −→ q ′ ∈ image fst prs −→ target q p1 ∈ fst d
−→ q ′ ∈ fst d −→ target q p1 6= q ′ −→ (p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1 ∈
rd-targets (q ′,[]) ∧ q ′ ∈ rd-targets (q,p1 ))))

∧ (∀ q1 q2 . q1 6= q2 −→ q1 ∈ snd d −→ q2 ∈ snd d −→ ([] ∈ tps q1 ∧
[] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets (q1 ,[]))))
)

definition implies-completeness :: ( ′a, ′b, ′c, ′d) test-suite ⇒ ( ′a, ′b, ′c) fsm ⇒ nat ⇒
bool where
implies-completeness T M m = (∃ repetition-sets . implies-completeness-for-repetition-sets

T M m repetition-sets)

lemma implies-completeness-for-repetition-sets-simps :
assumes implies-completeness-for-repetition-sets (Test-Suite prs tps rd-targets

separators) M m repetition-sets
shows (initial M ,initial-preamble M ) ∈ prs

and
∧

q P . (q,P) ∈ prs =⇒ (is-preamble P M q) ∧ (tps q) 6= {}
and

∧
q1 q2 A d1 d2 . (A,d1 ,d2 ) ∈ separators (q1 ,q2 ) =⇒ (A,d2 ,d1 ) ∈

separators (q2 ,q1 ) ∧ is-separator M q1 q2 A d1 d2
and

∧
q . q ∈ states M =⇒ (∃ d ∈ set repetition-sets. q ∈ fst d)

and
∧

d . d ∈ set repetition-sets =⇒ (fst d ⊆ states M ) ∧ (snd d = fst d ∩ fst
‘ prs)

and
∧

d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1
6= q2 =⇒ separators (q1 ,q2 ) 6= {}

and
∧

q . q ∈ image fst prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈
m-traversal-paths-with-witness M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness
M q repetition-sets m) ⊆ tps q

and
∧

q p d p1 p2 p3 . q ∈ image fst prs =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m =⇒ p=p1@p2@p3 =⇒ p2 6= [] =⇒ target q p1 ∈ fst d =⇒
target q (p1@p2 ) ∈ fst d =⇒ target q p1 6= target q (p1@p2 ) =⇒ (p1 ∈ tps q ∧
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(p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets (q,(p1@p2 )) ∧ target q (p1@p2 ) ∈
rd-targets (q,p1 ))

and
∧

q p d p1 p2 q ′ . q ∈ image fst prs =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m =⇒ p=p1@p2 =⇒ q ′ ∈ image fst prs =⇒ target q p1 ∈ fst
d =⇒ q ′ ∈ fst d =⇒ target q p1 6= q ′ =⇒ (p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1
∈ rd-targets (q ′,[]) ∧ q ′ ∈ rd-targets (q,p1 ))

and
∧

q p d q1 q2 . q ∈ image fst prs =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m =⇒ q1 6= q2 =⇒ q1 ∈ snd d =⇒ q2 ∈ snd d =⇒ ([] ∈ tps
q1 ∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets (q1 ,[]))
proof−

show (initial M ,initial-preamble M ) ∈ prs
and

∧
q . q ∈ image fst prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈

m-traversal-paths-with-witness M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness
M q repetition-sets m) ⊆ tps q

using assms unfolding implies-completeness-for-repetition-sets.simps by blast+

show
∧

q1 q2 A d1 d2 . (A,d1 ,d2 ) ∈ separators (q1 ,q2 ) =⇒ (A,d2 ,d1 ) ∈
separators (q2 ,q1 ) ∧ is-separator M q1 q2 A d1 d2

and
∧

q P . (q,P) ∈ prs =⇒ (is-preamble P M q) ∧ (tps q) 6= {}
and

∧
q . q ∈ states M =⇒ (∃ d ∈ set repetition-sets. q ∈ fst d)

and
∧

d . d ∈ set repetition-sets =⇒ (fst d ⊆ states M ) ∧ (snd d = fst d ∩ fst
‘ prs)

and
∧

d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1 6=
q2 =⇒ separators (q1 ,q2 ) 6= {}

using assms unfolding implies-completeness-for-repetition-sets.simps by force+

show
∧

q p d p1 p2 p3 . q ∈ image fst prs =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m =⇒ p=p1@p2@p3 =⇒ p2 6= [] =⇒ target q p1 ∈ fst d =⇒
target q (p1@p2 ) ∈ fst d =⇒ target q p1 6= target q (p1@p2 ) =⇒ (p1 ∈ tps q ∧
(p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets (q,(p1@p2 )) ∧ target q (p1@p2 ) ∈
rd-targets (q,p1 ))

using assms unfolding implies-completeness-for-repetition-sets.simps by (metis
(no-types, lifting))

show
∧

q p d p1 p2 q ′ . q ∈ image fst prs =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m =⇒ p=p1@p2 =⇒ q ′ ∈ image fst prs =⇒ target q p1 ∈ fst
d =⇒ q ′ ∈ fst d =⇒ target q p1 6= q ′ =⇒ (p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1
∈ rd-targets (q ′,[]) ∧ q ′ ∈ rd-targets (q,p1 ))

using assms unfolding implies-completeness-for-repetition-sets.simps by (metis
(no-types, lifting))

show
∧

q p d q1 q2 . q ∈ image fst prs =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m =⇒ q1 6= q2 =⇒ q1 ∈ snd d =⇒ q2 ∈ snd d =⇒ ([] ∈ tps
q1 ∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets (q1 ,[]))

using assms unfolding implies-completeness-for-repetition-sets.simps by (metis
(no-types, lifting))
qed
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41.3 A Pass Relation for Test Suites and Reduction Testing
fun passes-test-suite :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c, ′d) test-suite ⇒ ( ′e, ′b, ′c) fsm ⇒
bool where

passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′ = (
— Reduction on preambles: as the preambles contain all responses of M to their

chosen inputs, M’ must not exhibit any other response
(∀ q P io x y y ′ . (q,P) ∈ prs −→ io@[(x,y)] ∈ L P −→ io@[(x,y ′)] ∈ L M ′

−→ io@[(x,y ′)] ∈ L P)
— Reduction on traversal-paths applied after preambles (i.e., completed paths

in preambles) - note that tps q is not necessarily prefix-complete
∧ (∀ q P pP ioT pT x y y ′ . (q,P) ∈ prs −→ path P (initial P) pP −→ target

(initial P) pP = q −→ pT ∈ tps q −→ ioT@[(x,y)] ∈ set (prefixes (p-io pT )) −→
(p-io pP)@ioT@[(x,y ′)] ∈ L M ′ −→ (∃ pT ′ . pT ′ ∈ tps q ∧ ioT@[(x,y ′)] ∈ set
(prefixes (p-io pT ′))))

— Passing separators: if M’ contains an IO-sequence that in the test suite leads
through a preamble and an m-traversal path and the target of the latter is to be
r-distinguished from some other state, then M’ passes the corresponding ATC
∧ (∀ q P pP pT . (q,P) ∈ prs −→ path P (initial P) pP −→ target (initial

P) pP = q −→ pT ∈ tps q −→ (p-io pP)@(p-io pT ) ∈ L M ′ −→ (∀ q ′ A d1 d2
qT . q ′ ∈ rd-targets (q,pT ) −→ (A,d1 ,d2 ) ∈ separators (target q pT , q ′) −→ qT
∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′) −→ pass-separator-ATC M ′ A
qT d2 ))

)

41.4 Soundness of Sufficient Test Suites
lemma passes-test-suite-soundness-helper-1 :

assumes is-preamble P M q
and observable M
and io@[(x,y)] ∈ L P
and io@[(x,y ′)] ∈ L M

shows io@[(x,y ′)] ∈ L P
proof −

have is-submachine P M
and ∗:

∧
q ′ x t t ′ . q ′∈reachable-states P =⇒ x∈FSM .inputs M =⇒

t∈FSM .transitions P =⇒ t-source t = q ′ =⇒ t-input t = x =⇒
t ′∈FSM .transitions M =⇒ t-source t ′ = q ′ =⇒ t-input t ′ = x =⇒ t ′ ∈

FSM .transitions P
using assms(1 ) unfolding is-preamble-def by blast+

have initial P = initial M
unfolding submachine-simps[OF ‹is-submachine P M ›]
by simp

obtain p where path M (initial M ) p and p-io p = io @ [(x,y ′)]
using assms(4 ) unfolding submachine-simps[OF ‹is-submachine P M ›] by

auto

obtain p ′ t where p = p ′@[t]
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using ‹p-io p = io @ [(x,y ′)]› by (induction p rule: rev-induct; auto)

have path M (initial M ) p ′ and t ∈ transitions M and t-source t = target (initial
M ) p ′

using ‹path M (initial M ) p› path-append-transition-elim
unfolding ‹p = p ′@[t]› by force+

have p-io p ′ = io and t-input t = x and t-output t = y ′

using ‹p-io p = io @ [(x,y ′)]› unfolding ‹p = p ′@[t]› by force+

have p-io p ′ ∈ LS P (FSM .initial M )
using assms(3 ) unfolding ‹p-io p ′ = io› ‹initial P = initial M ›
by (meson language-prefix)

have FSM .initial M ∈ reachable-states P
unfolding submachine-simps(1 )[OF ‹is-submachine P M ›, symmetric]
using reachable-states-initial by blast

obtain pp where path P (initial P) pp and p-io pp = io @ [(x,y)]
using assms(3 ) by auto

then obtain pp ′ t ′ where pp = pp ′@[t ′]
proof −

assume a1 :
∧

pp ′ t ′. pp = pp ′ @ [t ′] =⇒ thesis
have pp 6= []

using ‹p-io pp = io @ [(x, y)]› by auto
then show ?thesis

using a1 by (metis (no-types) rev-exhaust)
qed

have path P (initial P) pp ′ and t ′ ∈ transitions P and t-source t ′ = target
(initial P) pp ′

using ‹path P (initial P) pp› path-append-transition-elim
unfolding ‹pp = pp ′@[t ′]› by force+

have p-io pp ′ = io and t-input t ′ = x
using ‹p-io pp = io @ [(x,y)]› unfolding ‹pp = pp ′@[t ′]› by force+

have path M (initial M ) pp ′

using ‹path P (initial P) pp ′› submachine-path-initial[OF ‹is-submachine P
M ›] by blast

have pp ′ = p ′

using observable-path-unique[OF assms(2 ) ‹path M (initial M ) pp ′› ‹path M
(initial M ) p ′› ]

unfolding ‹p-io pp ′ = io› ‹p-io p ′ = io›
by blast

then have t-source t ′ = target (initial M ) p ′

using ‹t-source t ′ = target (initial P) pp ′› unfolding ‹initial P = initial M ›
by blast
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have path P (FSM .initial M ) p ′

using observable-preamble-paths[OF assms(1 ,2 ) ‹path M (initial M ) p ′›
‹p-io p ′ ∈ LS P (FSM .initial M )›
‹FSM .initial M ∈ reachable-states P›]

by assumption
then have target (initial M ) p ′ ∈ reachable-states P

using reachable-states-intro unfolding ‹initial P = initial M ›[symmetric] by
blast

moreover have x ∈ inputs M
using ‹t ∈ transitions M › ‹t-input t = x› fsm-transition-input by blast

have t ∈ transitions P
using ∗[OF ‹target (initial M ) p ′ ∈ reachable-states P› ‹x ∈ inputs M › ‹t ′ ∈

transitions P›
‹t-source t ′ = target (initial M ) p ′› ‹t-input t ′ = x› ‹t ∈ transitions

M ›
‹t-source t = target (FSM .initial M ) p ′› ‹t-input t = x›]

by assumption

then have path P (initial P) (p ′@[t])
using ‹path P (initial P) pp ′› ‹t-source t = target (initial M ) p ′›
unfolding ‹pp ′ = p ′› ‹initial P = initial M ›
using path-append-transition by simp

then show ?thesis
unfolding ‹p = p ′@[t]›[symmetric] LS .simps
using ‹p-io p = io@[(x,y ′)]›
by force

qed

lemma passes-test-suite-soundness :
assumes implies-completeness (Test-Suite prs tps rd-targets separators) M m
and observable M
and observable M ′

and inputs M ′ = inputs M
and completely-specified M
and L M ′ ⊆ L M

shows passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′

proof −
obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets

(Test-Suite prs tps rd-targets separators) M m repetition-sets
using assms(1 ) unfolding implies-completeness-def by blast

have t1 : (initial M , initial-preamble M ) ∈ prs
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using implies-completeness-for-repetition-sets-simps(1 )[OF repetition-sets-def ]
by assumption

have t2 :
∧

q P. (q, P) ∈ prs =⇒ is-preamble P M q ∧ tps q 6= {}
using implies-completeness-for-repetition-sets-simps(2 )[OF repetition-sets-def ]

by assumption
have t3 :

∧
q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ separators (q1 , q2 ) =⇒ (A, d2 , d1 ) ∈

separators (q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2
using implies-completeness-for-repetition-sets-simps(3 )[OF repetition-sets-def ]

by assumption

have t5 :
∧

q. q ∈ FSM .states M =⇒ (∃ d∈set repetition-sets. q ∈ fst d)
using implies-completeness-for-repetition-sets-simps(4 )[OF repetition-sets-def ]

by assumption

have t6 :
∧

q. q ∈ fst ‘ prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m}

∧ fst ‘ (m-traversal-paths-with-witness
M q repetition-sets m) ⊆ tps q

using implies-completeness-for-repetition-sets-simps(7 )[OF repetition-sets-def ]
by assumption

have t7 :
∧

d. d ∈ set repetition-sets =⇒ fst d ⊆ FSM .states M
and t8 :

∧
d. d ∈ set repetition-sets =⇒ snd d ⊆ fst d

and t9 :
∧

d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1
6= q2 =⇒ separators (q1 , q2 ) 6= {}

using implies-completeness-for-repetition-sets-simps(5 ,6 )[OF repetition-sets-def ]

by blast+

have t10 :
∧

q p d p1 p2 p3 .
q ∈ fst ‘ prs =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
p = p1 @ p2 @ p3 =⇒
p2 6= [] =⇒
target q p1 ∈ fst d =⇒
target q (p1 @ p2 ) ∈ fst d =⇒
target q p1 6= target q (p1 @ p2 ) =⇒
p1 ∈ tps q ∧ p1 @ p2 ∈ tps q ∧ target q p1 ∈ rd-targets (q, p1 @ p2 )

∧ target q (p1 @ p2 ) ∈ rd-targets (q, p1 )
using implies-completeness-for-repetition-sets-simps(8 )[OF repetition-sets-def ]

by assumption

have t11 :
∧

q p d p1 p2 q ′.
q ∈ fst ‘ prs =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
p = p1 @ p2 =⇒
q ′ ∈ fst ‘ prs =⇒
target q p1 ∈ fst d =⇒
q ′ ∈ fst d =⇒
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target q p1 6= q ′ =⇒
p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1 ∈ rd-targets (q ′, []) ∧ q ′ ∈

rd-targets (q, p1 )
using implies-completeness-for-repetition-sets-simps(9 )[OF repetition-sets-def ]

by assumption

have
∧

q P io x y y ′ . (q,P) ∈ prs =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L M ′

=⇒ io@[(x,y ′)] ∈ L P
proof −

fix q P io x y y ′ assume (q,P) ∈ prs and io@[(x,y)] ∈ L P and io@[(x,y ′)] ∈
L M ′

have is-preamble P M q
using ‹(q,P) ∈ prs› ‹

∧
q P. (q, P) ∈ prs =⇒ is-preamble P M q ∧ tps q 6=

{}› by blast

have io@[(x,y ′)] ∈ L M
using ‹io@[(x,y ′)] ∈ L M ′› assms(6 ) by blast

show io@[(x,y ′)] ∈ L P
using passes-test-suite-soundness-helper-1 [OF ‹is-preamble P M q› assms(2 )

‹io@[(x,y)] ∈ L P› ‹io@[(x,y ′)] ∈ L M ›]
by assumption

qed
then have p1 : (∀ q P io x y y ′ . (q,P) ∈ prs −→ io@[(x,y)] ∈ L P −→ io@[(x,y ′)]
∈ L M ′ −→ io@[(x,y ′)] ∈ L P)

by blast

have
∧

q P pP ioT pT x x ′ y y ′ . (q,P) ∈ prs =⇒
path P (initial P) pP =⇒
target (initial P) pP = q =⇒
pT ∈ tps q =⇒
ioT @ [(x, y)] ∈ set (prefixes (p-io pT )) =⇒
(p-io pP)@ioT@[(x ′,y ′)] ∈ L M ′ =⇒

(∃ pT ′ . pT ′ ∈ tps q ∧ ioT @ [(x ′, y ′)] ∈ set (prefixes
(p-io pT ′)))

proof −
fix q P pP ioT pT x x ′ y y ′

assume (q,P) ∈ prs
and path P (initial P) pP
and target (initial P) pP = q
and pT ∈ tps q
and ioT @ [(x, y)] ∈ set (prefixes (p-io pT ))
and (p-io pP)@ioT@[(x ′,y ′)] ∈ L M ′

have is-preamble P M q
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using ‹(q,P) ∈ prs› ‹
∧

q P. (q, P) ∈ prs =⇒ is-preamble P M q ∧ tps q 6=
{}› by blast

then have q ∈ states M
unfolding is-preamble-def

by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›
path-target-is-state submachine-path)

have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def by auto

have path M (initial M ) pP
using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial

using ‹path P (FSM .initial P) pP› by blast

have (p-io pP)@ioT@[(x ′,y ′)] ∈ L M
using ‹(p-io pP)@ioT@[(x ′,y ′)] ∈ L M ′› assms(6 ) by blast
then obtain pM ′ where path M (initial M ) pM ′ and p-io pM ′ = (p-io

pP)@ioT@[(x ′,y ′)]
by auto

let ?pP = take (length pP) pM ′

let ?pT = take (length ioT ) (drop (length pP) pM ′)
let ?t = last pM ′

have pM ′ = ?pP @ ?pT @ [?t]
proof −

have length pM ′ = (length pP) + (length ioT ) + 1
using ‹p-io pM ′ = (p-io pP)@ioT@[(x ′,y ′)]›
unfolding length-map[of (λ t . (t-input t, t-output t)), of pM ′, symmetric]

length-map[of (λ t . (t-input t, t-output t)), of pP, symmetric]
by auto

then show ?thesis
by (metis (no-types, lifting) add-diff-cancel-right ′ antisym-conv antisym-conv2

append-butlast-last-id append-eq-append-conv2 butlast-conv-take drop-Nil
drop-eq-Nil

le-add1 less-add-one take-add)
qed

have p-io ?pP = p-io pP
using ‹p-io pM ′ = (p-io pP)@ioT@[(x ′,y ′)]›
by (metis (no-types, lifting) append-eq-conv-conj length-map take-map)

have p-io ?pT = ioT
using ‹p-io pM ′ = (p-io pP)@ioT@[(x ′,y ′)]›
using ‹pM ′ = ?pP @ ?pT @ [?t]›

by (metis (no-types, lifting) append-eq-conv-conj length-map map-append
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take-map)

have p-io [?t] = [(x ′,y ′)]
using ‹p-io pM ′ = (p-io pP)@ioT@[(x ′,y ′)]›
using ‹pM ′ = ?pP @ ?pT @ [?t]›

by (metis (no-types, lifting) append-is-Nil-conv last-appendR last-map last-snoc
list.simps(8 ) list.simps(9 ))

have path M (initial M ) ?pP
using ‹path M (initial M ) pM ′› ‹pM ′ = ?pP @ ?pT @ [?t]›
by (meson path-prefix-take)

have ?pP = pP
using observable-path-unique[OF ‹observable M › ‹path M (initial M ) ?pP›

‹path M (initial M ) pP› ‹p-io ?pP = p-io pP›]
by assumption

then have path M q (?pT@[?t])
by (metis ‹FSM .initial P = FSM .initial M › ‹pM ′ = take (length pP) pM ′ @

take (length ioT ) (drop (length pP) pM ′) @ [last pM ′]› ‹path M (FSM .initial M )
pM ′› ‹target (FSM .initial P) pP = q› path-suffix)

then have path M q ?pT
and ?t ∈ transitions M
and t-source ?t = target q ?pT

by auto

have inputs M 6= {}
using language-io(1 )[OF ‹(p-io pP)@ioT@[(x ′,y ′)] ∈ L M ›, of x ′ y ′]
by auto

have q ∈ fst ‘ prs
using ‹(q,P) ∈ prs›
using image-iff by fastforce

obtain ioT ′ where p-io pT = (ioT @ [(x, y)]) @ ioT ′

using ‹ioT @ [(x, y)] ∈ set (prefixes (p-io pT ))›
unfolding prefixes-set mem-Collect-eq by metis

then have length pT > length ioT
using length-map[of (λ t . (t-input t, t-output t)) pT ]
by auto

obtain pT ′ d ′ where (pT @ pT ′, d ′) ∈ m-traversal-paths-with-witness M q
repetition-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pT ∈ tps q›
by blast

let ?p = pT @ pT ′

have path M q ?p
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)
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?p)) repetition-sets = Some d ′

and
∧

p ′ p ′′. ?p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m − card (snd d))
≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None

using ‹(pT @ pT ′, d ′) ∈ m-traversal-paths-with-witness M q repetition-sets
m›

m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by blast+

let ?pIO = take (length ioT ) pT
have ?pIO = take (length ioT ) ?p

using ‹length pT > length ioT › by auto
then have ?p = ?pIO@(drop (length ioT ) ?p)

by auto
have (drop (length ioT ) ?p) 6= []

using ‹length pT > length ioT › by auto

have p-io ?pIO = ioT
proof −

have p-io ?pIO = take (length ioT ) (p-io pT )
by (simp add: take-map)

moreover have take (length ioT ) (p-io pT ) = ioT
using ‹p-io pT = (ioT @ [(x, y)]) @ ioT ′› by auto

ultimately show ?thesis by simp
qed
then have p-io ?pIO = p-io ?pT

using ‹p-io ?pT = ioT › by simp

have path M q ?pIO
using ‹path M q ?p› unfolding ‹?pIO = take (length ioT ) ?p›
using path-prefix-take by metis

have ?pT = ?pIO
using observable-path-unique[OF ‹observable M › ‹path M q ?pIO› ‹path M q

?pT › ‹p-io ?pIO = p-io ?pT ›]
by simp

show (∃ pT ′ . pT ′ ∈ tps q ∧ ioT @ [(x ′, y ′)] ∈ set (prefixes (p-io pT ′)))
proof (cases find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) (?pT@[?t]))) repetition-sets = None)
case True

obtain pT ′ d ′ where (?pT @ [?t] @ pT ′, d ′) ∈ m-traversal-paths-with-witness
M q repetition-sets m

using m-traversal-path-extension-exist[OF ‹completely-specified M › ‹q ∈
states M › ‹inputs M 6= {}› t5 t8 ‹path M q (?pT@[?t])› True]

by auto
then have ?pT @ [?t] @ pT ′ ∈ tps q

using t6 [OF ‹q ∈ fst ‘ prs›] by force
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moreover have ioT @ [(x ′, y ′)] ∈ set (prefixes (p-io (?pT @ [?t] @ pT ′)))
using ‹p-io ?pIO = ioT › ‹p-io [?t] = [(x ′,y ′)]›
unfolding ‹?pT = ?pIO› prefixes-set by force

ultimately show ?thesis
by blast

next
case False

note ‹path M q (?pT @ [?t])›
moreover obtain d ′ where find (λd. Suc (m − card (snd d)) ≤ length (filter

(λt. t-target t ∈ fst d) (?pT@[?t]))) repetition-sets = Some d ′

using False by blast

moreover have ∀ p ′ p ′′. (?pT @ [?t]) = p ′ @ p ′′ ∧ p ′′ 6= [] −→ find (λd.
Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets
= None

proof −
have

∧
p ′ p ′′. (?pT @ [?t]) = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m

− card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None
proof −

fix p ′ p ′′ assume (?pT @ [?t]) = p ′ @ p ′′ and p ′′ 6= []
then obtain pIO ′ where ?pIO = p ′ @ pIO ′

unfolding ‹?pT = ?pIO›
by (metis butlast-append butlast-snoc)

then have ?p = p ′@pIO ′@(drop (length ioT ) ?p)
using ‹?p = ?pIO@((drop (length ioT ) ?p))›
by (metis append.assoc)

have pIO ′ @ drop (length ioT ) (pT @ pT ′) 6= []
using ‹(drop (length ioT ) ?p) 6= []› by auto

show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) p ′)) repetition-sets = None

using ‹
∧

p ′ p ′′. ?p = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m − card
(snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None›

[of p ′ pIO ′@(drop (length ioT ) ?p), OF ‹?p = p ′@pIO ′@(drop (length
ioT ) ?p)› ‹pIO ′ @ drop (length ioT ) (pT @ pT ′) 6= []›]

by assumption
qed
then show ?thesis by blast

qed

ultimately have ((?pT @ [?t]),d ′) ∈ m-traversal-paths-with-witness M q
repetition-sets m

using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by auto

then have (?pT @ [?t]) ∈ tps q
using t6 [OF ‹q ∈ fst ‘ prs›] by force
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moreover have ioT @ [(x ′, y ′)] ∈ set (prefixes (p-io (?pT @ [?t])))
using ‹p-io ?pT = ioT › ‹p-io [?t] = [(x ′,y ′)]›
unfolding prefixes-set by force

ultimately show ?thesis
by blast

qed
qed
then have p2 : (∀ q P pP ioT pT x y y ′ . (q,P) ∈ prs −→

path P (initial P) pP −→
target (initial P) pP = q −→
pT ∈ tps q −→
ioT @ [(x, y)] ∈ set (prefixes (p-io pT )) −→
(p-io pP)@ioT@[(x,y ′)] ∈ L M ′ −→
(∃ pT ′ . pT ′ ∈ tps q ∧ ioT @ [(x, y ′)] ∈ set

(prefixes (p-io pT ′))))
by blast

have
∧

q P pP pT q ′ A d1 d2 qT . (q,P) ∈ prs =⇒
path P (initial P) pP =⇒
target (initial P) pP = q =⇒
pT ∈ tps q =⇒
q ′ ∈ rd-targets (q,pT ) =⇒
(A,d1 ,d2 ) ∈ separators (target q pT , q ′) =⇒
qT ∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial

M ′) =⇒
pass-separator-ATC M ′ A qT d2

proof −
fix q P pP pT q ′ A d1 d2 qT
assume (q,P) ∈ prs
and path P (initial P) pP
and target (initial P) pP = q
and pT ∈ tps q
and q ′ ∈ rd-targets (q,pT )
and (A,d1 ,d2 ) ∈ separators (target q pT , q ′)
and qT ∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′)

have q ∈ fst ‘ prs
using ‹(q,P) ∈ prs› by force

have is-preamble P M q
using ‹(q,P) ∈ prs› ‹

∧
q P. (q, P) ∈ prs =⇒ is-preamble P M q ∧ tps q 6=

{}› by blast
then have q ∈ states M

unfolding is-preamble-def
by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›

path-target-is-state submachine-path)

have initial P = initial M
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using ‹is-preamble P M q› unfolding is-preamble-def by auto
have path M (initial M ) pP
using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial

using ‹path P (FSM .initial P) pP› by blast

have is-separator M (target q pT ) q ′ A d1 d2
using t3 [OF ‹(A,d1 ,d2 ) ∈ separators (target q pT , q ′)›]
by blast

have qT ∈ states M ′

using ‹qT ∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′)›
io-targets-states

by (metis (no-types, lifting) subsetD)

obtain pT ′ d ′ where (pT @ pT ′, d ′) ∈ m-traversal-paths-with-witness M q
repetition-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pT ∈ tps q›
by blast

then have path M q pT
using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by auto

then have target q pT ∈ FSM .states M
using path-target-is-state by metis

have q ′ ∈ FSM .states M
using is-separator-separated-state-is-state[OF ‹is-separator M (target q pT )

q ′ A d1 d2 ›] by simp

have ¬ pass-separator-ATC M ′ A qT d2 =⇒ ¬ LS M ′ qT ⊆ LS M (target q
pT )

using pass-separator-ATC-fail-no-reduction[OF ‹observable M ′› ‹observable
M › ‹qT ∈ states M ′›

‹target q pT ∈ FSM .states M › ‹q ′ ∈
FSM .states M ›

‹is-separator M (target q pT ) q ′ A d1
d2 › ‹inputs M ′ = inputs M ›]

by assumption

moreover have LS M ′ qT ⊆ LS M (target q pT )
proof −

have (target q pT ) = target (initial M ) (pP@pT )
using ‹target (initial P) pP = q› unfolding ‹initial P = initial M › by auto

have path M (initial M ) (pP@pT )
using ‹path M (initial M ) pP› ‹target (initial P) pP = q› ‹path M q pT ›

unfolding ‹initial P = initial M › by auto

then have (target q pT ) ∈ io-targets M (p-io pP @ p-io pT ) (FSM .initial
M )
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unfolding io-targets.simps ‹(target q pT ) = target (initial M ) (pP@pT )›
using map-append by blast

show ?thesis
using observable-language-target[OF ‹observable M › ‹(target q pT ) ∈

io-targets M (p-io pP @ p-io pT ) (FSM .initial M )›
‹qT ∈ io-targets M ′ ((p-io pP)@(p-io pT ))

(initial M ′)› ‹L M ′ ⊆ L M ›]
by assumption

qed

ultimately show pass-separator-ATC M ′ A qT d2
by blast

qed
then have p3 : (∀ q P pP pT . (q,P) ∈ prs −→

path P (initial P) pP −→
target (initial P) pP = q −→
pT ∈ tps q −→
(p-io pP)@(p-io pT ) ∈ L M ′ −→
(∀ q ′ A d1 d2 qT . q ′ ∈ rd-targets (q,pT ) −→
(A,d1 ,d2 ) ∈ separators (target q pT , q ′) −→
qT ∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′)

−→
pass-separator-ATC M ′ A qT d2 ))

by blast

show ?thesis
using p1 p2 p3
unfolding passes-test-suite.simps
by blast

qed

41.5 Exhaustiveness of Sufficient Test Suites

This subsection shows that test suites satisfying the sufficiency criterion are
exhaustive. That is, for a System Under Test with at most m states that
contains an error (i.e.: is not a reduction) a test suite sufficient for m will
not pass.

41.5.1 R Functions
definition R :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ ( ′a × ′b × ′c × ′a) list ⇒ ( ′a × ′b ×
′c × ′a) list ⇒ ( ′a × ′b × ′c × ′a) list set where

R M q q ′ pP p = {pP @ p ′ | p ′ . p ′ 6= [] ∧ target q p ′ = q ′ ∧ (∃ p ′′ . p = p ′@p ′′)}
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definition RP :: ( ′a, ′b, ′c) fsm ⇒ ′a ⇒ ′a ⇒ ( ′a × ′b × ′c × ′a) list ⇒ ( ′a × ′b
× ′c × ′a) list ⇒ ( ′a × ( ′a, ′b, ′c) preamble) set ⇒ ( ′d, ′b, ′c) fsm ⇒ ( ′a × ′b × ′c
× ′a) list set where

RP M q q ′ pP p PS M ′ = (if ∃ P ′ . (q ′,P ′) ∈ PS then insert (SOME pP ′ . ∃
P ′ . (q ′,P ′) ∈ PS ∧ path P ′ (initial P ′) pP ′ ∧ target (initial P ′) pP ′ = q ′ ∧ p-io
pP ′ ∈ L M ′) (R M q q ′ pP p) else (R M q q ′ pP p))

lemma RP-from-R :
assumes

∧
q P . (q,P) ∈ PS =⇒ is-preamble P M q

and
∧

q P io x y y ′ . (q,P) ∈ PS =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L
M ′ =⇒ io@[(x,y ′)] ∈ L P

and completely-specified M ′

and inputs M ′ = inputs M
shows (RP M q q ′ pP p PS M ′ = R M q q ′ pP p)

∨ (∃ P ′ pP ′ . (q ′,P ′) ∈ PS ∧
path P ′ (initial P ′) pP ′ ∧
target (initial P ′) pP ′ = q ′ ∧
path M (initial M ) pP ′ ∧
target (initial M ) pP ′ = q ′ ∧
p-io pP ′ ∈ L M ′ ∧
RP M q q ′ pP p PS M ′ =
insert pP ′ (R M q q ′ pP p))

proof (rule ccontr)
assume ¬ (RP M q q ′ pP p PS M ′ = R M q q ′ pP p ∨ (∃ P ′ pP ′ . (q ′,P ′) ∈

PS ∧ path P ′ (initial P ′) pP ′ ∧ target (initial P ′) pP ′ = q ′ ∧ path M (initial M )
pP ′ ∧ target (initial M ) pP ′ = q ′ ∧ p-io pP ′ ∈ L M ′ ∧ RP M q q ′ pP p PS M ′ =
insert pP ′ (R M q q ′ pP p)))

then have (RP M q q ′ pP p PS M ′ 6= R M q q ′ pP p)
and ¬ (∃ P ′ pP ′ . (q ′,P ′) ∈ PS ∧

path P ′ (initial P ′) pP ′ ∧
target (initial P ′) pP ′ = q ′ ∧
path M (initial M ) pP ′ ∧
target (initial M ) pP ′ = q ′ ∧
p-io pP ′ ∈ L M ′ ∧
RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p))

by blast+

let ?p = SOME pP ′ . ∃ P ′ . (q ′,P ′) ∈ PS ∧ path P ′ (initial P ′) pP ′ ∧ target
(initial P ′) pP ′ = q ′ ∧ p-io pP ′ ∈ L M ′

have ∃ P ′ . (q ′,P ′) ∈ PS
using ‹(RP M q q ′ pP p PS M ′ 6= R M q q ′ pP p)› unfolding RP-def by auto

then obtain P ′ where (q ′,P ′) ∈ PS
by auto

then have is-preamble P ′ M q ′

using assms by blast
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obtain pP ′ where path P ′ (initial P ′) pP ′ and target (initial P ′) pP ′ = q ′ and
p-io pP ′ ∈ L M ′

using preamble-pass-path[OF ‹is-preamble P ′ M q ′›
assms(2 )[OF ‹(q ′,P ′) ∈ PS›] assms(3 ,4 )]

by force
then have ∃ pP ′ . ∃ P ′ . (q ′,P ′) ∈ PS ∧ path P ′ (initial P ′) pP ′ ∧ target

(initial P ′) pP ′ = q ′ ∧ p-io pP ′ ∈ L M ′

using ‹(q ′,P ′) ∈ PS› by blast
have ∃ P ′ . (q ′,P ′) ∈ PS ∧ path P ′ (initial P ′) ?p ∧ target (initial P ′) ?p = q ′

∧ p-io ?p ∈ L M ′

using someI-ex[OF ‹∃ pP ′ . ∃ P ′ . (q ′,P ′) ∈ PS ∧ path P ′ (initial P ′) pP ′ ∧
target (initial P ′) pP ′ = q ′ ∧ p-io pP ′ ∈ L M ′›]

by blast

then obtain P ′′ where (q ′,P ′′) ∈ PS and path P ′′ (initial P ′′) ?p and target
(initial P ′′) ?p = q ′ and p-io ?p ∈ L M ′

by auto
then have is-preamble P ′′ M q ′

using assms by blast

have initial P ′′ = initial M
using ‹is-preamble P ′′ M q ′› unfolding is-preamble-def by auto

have path M (initial M ) ?p
using ‹is-preamble P ′′ M q ′› unfolding is-preamble-def using submachine-path-initial
using ‹path P ′′ (FSM .initial P ′′) ?p› by blast

have target (initial M ) ?p = q ′

using ‹target (initial P ′′) ?p = q ′› unfolding ‹initial P ′′ = initial M › by
assumption

have RP M q q ′ pP p PS M ′ = insert ?p (R M q q ′ pP p)
using ‹∃ P ′ . (q ′,P ′) ∈ PS› unfolding RP-def by auto

then have (∃ P ′ pP ′ . (q ′,P ′) ∈ PS ∧
path P ′ (initial P ′) pP ′ ∧
target (initial P ′) pP ′ = q ′ ∧
path M (initial M ) pP ′ ∧
target (initial M ) pP ′ = q ′ ∧
p-io pP ′ ∈ L M ′ ∧
RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p))

using ‹(q ′,P ′′) ∈ PS› ‹path P ′′ (initial P ′′) ?p› ‹target (initial P ′′) ?p = q ′›
‹path M (initial M ) ?p› ‹target (initial M ) ?p = q ′› ‹p-io ?p ∈ L M ′› by

blast
then show False

using ‹¬ (∃ P ′ pP ′ . (q ′,P ′) ∈ PS ∧ path P ′ (initial P ′) pP ′ ∧ target (initial
P ′) pP ′ = q ′ ∧ path M (initial M ) pP ′ ∧ target (initial M ) pP ′ = q ′ ∧ p-io pP ′ ∈
L M ′ ∧ RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p))›

by blast
qed
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lemma RP-from-R-inserted :
assumes

∧
q P . (q,P) ∈ PS =⇒ is-preamble P M q

and
∧

q P io x y y ′ . (q,P) ∈ PS =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L
M ′ =⇒ io@[(x,y ′)] ∈ L P

and completely-specified M ′

and inputs M ′ = inputs M
and pP ′ ∈ RP M q q ′ pP p PS M ′

and pP ′ /∈ R M q q ′ pP p
obtains P ′ where (q ′,P ′) ∈ PS

path P ′ (initial P ′) pP ′

target (initial P ′) pP ′ = q ′

path M (initial M ) pP ′

target (initial M ) pP ′ = q ′

p-io pP ′ ∈ L M ′

RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p)
proof −

have (RP M q q ′ pP p PS M ′ 6= R M q q ′ pP p)
using assms(5 ,6 ) by blast

then have (∃P ′ pP ′.
(q ′, P ′) ∈ PS ∧
path P ′ (FSM .initial P ′) pP ′ ∧
target (FSM .initial P ′) pP ′ = q ′ ∧

path M (FSM .initial M ) pP ′ ∧ target (FSM .initial M ) pP ′ = q ′ ∧ p-io
pP ′ ∈ L M ′ ∧ RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p))

using RP-from-R[OF assms(1−4 ), of PS - - q q ′ pP p] by force
then obtain P ′ pP ′′ where (q ′, P ′) ∈ PS

path P ′ (FSM .initial P ′) pP ′′

target (FSM .initial P ′) pP ′′ = q ′

path M (FSM .initial M ) pP ′′

target (FSM .initial M ) pP ′′ = q ′

p-io pP ′′ ∈ L M ′

RP M q q ′ pP p PS M ′ = insert pP ′′ (R M q q ′ pP p)
by blast

moreover have pP ′′ = pP ′ using ‹RP M q q ′ pP p PS M ′ = insert pP ′′ (R M
q q ′ pP p)› assms(5 ,6 ) by simp

ultimately show ?thesis using that[of P ′] unfolding ‹pP ′′ = pP ′› by blast
qed

lemma finite-R :
assumes path M q p
shows finite (R M q q ′ pP p)

proof −
have

∧
p ′ . p ′ ∈ (R M q q ′ pP p) =⇒ p ′ ∈ set (prefixes (pP@p))

proof −

1255



fix p ′ assume p ′ ∈ (R M q q ′ pP p)
then obtain p ′′ where p ′ = pP @ p ′′

unfolding R-def by blast
then obtain p ′′′ where p = p ′′ @ p ′′′

using ‹p ′ ∈ (R M q q ′ pP p)› unfolding R-def by blast

show p ′ ∈ set (prefixes (pP@p))
unfolding prefixes-set ‹p ′ = pP @ p ′′› ‹p = p ′′ @ p ′′′› by auto

qed
then have (R M q q ′ pP p) ⊆ set (prefixes (pP@p))

by blast
then show ?thesis

using rev-finite-subset by auto
qed

lemma finite-RP :
assumes path M q p
and

∧
q P . (q,P) ∈ PS =⇒ is-preamble P M q

and
∧

q P io x y y ′ . (q,P) ∈ PS =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L
M ′ =⇒ io@[(x,y ′)] ∈ L P

and completely-specified M ′

and inputs M ′ = inputs M
shows finite (RP M q q ′ pP p PS M ′)

using finite-R[OF assms(1 ), of q ′ pP ]
RP-from-R[OF assms(2 ,3 ,4 ,5 ), of PS - - q q ′ pP p] by force

lemma R-component-ob :
assumes pR ′ ∈ R M q q ′ pP p
obtains pR where pR ′ = pP@pR
using assms unfolding R-def by blast

lemma R-component :
assumes (pP@pR) ∈ R M q q ′ pP p

shows pR = take (length pR) p
and length pR ≤ length p
and t-target (p ! (length pR − 1 )) = q ′

and pR 6= []
proof −

let ?R = R M q q ′ p

have pR 6= [] and target q pR = q ′ and ∃ p ′′ . p = pR@p ′′

using ‹pP@pR ∈ R M q q ′ pP p› unfolding R-def by blast+
then obtain pR ′ where p = pR@pR ′

by blast

then show pR = take (length pR) p and length pR ≤ length p
by auto
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show t-target (p ! (length pR − 1 )) = q ′

using ‹pR 6= []› ‹target q pR = q ′› unfolding target.simps visited-states.simps
by (metis (no-types, lifting) Suc-diff-1 ‹pR = take (length pR) p›

append-butlast-last-id last.simps last-map length-butlast lessI list.map-disc-iff

not-gr-zero nth-append-length nth-take take-eq-Nil)

show pR 6= []
using ‹pR 6= []›
by assumption

qed

lemma R-component-observable :
assumes pP@pR ∈ R M (target (initial M ) pP) q ′ pP p
and observable M
and path M (initial M ) pP
and path M (target (initial M ) pP) p

shows io-targets M (p-io pP @ p-io pR) (initial M ) = {target (target (initial M )
pP) (take (length pR) p)}
proof −

have pR = take (length pR) p
and length pR ≤ length p
and t-target (p ! (length pR − 1 )) = q ′

using R-component[OF assms(1 )] by blast+

let ?q = (target (initial M ) pP)
have path M ?q (take (length pR) p)

using assms(4 ) by (simp add: path-prefix-take)
have p-io (take (length pR) p) = p-io pR

using ‹pR = take (length pR) p› by auto

have ∗:path M (initial M ) (pP @ (take (length pR) p))
using ‹path M (initial M ) pP› ‹path M ?q (take (length pR) p)› by auto

have ∗∗:p-io (pP @ (take (length pR) p)) = (p-io pP @ p-io pR)
using ‹p-io (take (length pR) p) = p-io pR› by auto

have target (initial M ) (pP @ (take (length pR) p)) = target ?q (take (length
pR) p)

by auto
then have target ?q (take (length pR) p) ∈ io-targets M (p-io pP @ p-io pR)

(initial M )
unfolding io-targets.simps using ∗ ∗∗
by (metis (mono-tags, lifting) mem-Collect-eq)

show io-targets M (p-io pP @ p-io pR) (initial M ) = {target ?q (take (length
pR) p)}
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using observable-io-targets[OF ‹observable M › language-state-containment[OF
∗ ∗∗]]

by (metis (no-types) ‹target (target (FSM .initial M ) pP) (take (length pR) p)
∈ io-targets M (p-io pP @ p-io pR) (FSM .initial M )› singleton-iff )
qed

lemma R-count :
assumes minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io
and observable M
and observable M ′

and
∧

q P. (q, P) ∈ PS =⇒ is-preamble P M q
and path M (target (initial M ) pP) p
and butlast io = p-io p @ ioX

shows card (
⋃

(image (λ pR . io-targets M ′ (p-io pR) (initial M ′)) (R M (target
(initial M ) pP) q ′ pP p))) = card (R M (target (initial M ) pP) q ′ pP p)
(is card ?Tgts = card ?R)

and
∧

pR . pR ∈ (R M (target (initial M ) pP) q ′ pP p) =⇒ ∃ q . io-targets M ′

(p-io pR) (initial M ′) = {q}
and

∧
pR1 pR2 . pR1 ∈ (R M (target (initial M ) pP) q ′ pP p) =⇒

pR2 ∈ (R M (target (initial M ) pP) q ′ pP p) =⇒
pR1 6= pR2 =⇒
io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 )

(initial M ′) = {}
proof −

have sequence-to-failure-extending-preamble-path M M ′ PS pP io
and

∧
p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′ =⇒

length io ≤ length io ′

using ‹minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding minimal-sequence-to-failure-extending-preamble-path-def
by blast+

obtain q P where (q,P) ∈ PS
and path P (initial P) pP
and target (initial P) pP = q
and ((p-io pP) @ butlast io) ∈ L M
and ((p-io pP) @ io) /∈ L M
and ((p-io pP) @ io) ∈ L M ′

using ‹sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding sequence-to-failure-extending-preamble-path-def
by blast

have is-preamble P M q
using ‹(q,P) ∈ PS› ‹

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M q› by blast

then have q ∈ states M
unfolding is-preamble-def

by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›
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path-target-is-state submachine-path)

have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def by auto

have path M (initial M ) pP
using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial
using ‹path P (FSM .initial P) pP› by blast

have target (initial M ) pP = q
using ‹target (initial P) pP = q› unfolding ‹initial P = initial M › by as-

sumption

then have path M q p
using ‹path M (target (initial M ) pP) p› by auto

have io 6= []
using ‹((p-io pP) @ butlast io) ∈ L M › ‹((p-io pP) @ io) /∈ L M › by auto

obtain pX where path M (target (initial M ) pP) (p@pX) and p-io (p@pX) =
butlast io

proof −
have p-io pP @ p-io p @ ioX ∈ L M

using ‹((p-io pP) @ butlast io) ∈ L M ›
unfolding ‹butlast io = p-io p @ ioX›
by assumption

obtain p1 p23 where path M (FSM .initial M ) p1
and path M (target (FSM .initial M ) p1 ) p23
and p-io p1 = p-io pP
and p-io p23 = p-io p @ ioX

using language-state-split[OF ‹p-io pP @ p-io p @ ioX ∈ L M ›]
by blast

have p1 = pP
using observable-path-unique[OF ‹observable M › ‹path M (FSM .initial M )

p1 › ‹path M (FSM .initial M ) pP› ‹p-io p1 = p-io pP›]
by assumption

then have path M (target (FSM .initial M ) pP) p23
using ‹path M (target (FSM .initial M ) p1 ) p23 › by auto

then have p-io p @ ioX ∈ LS M (target (initial M ) pP)
using ‹p-io p23 = p-io p @ ioX› language-state-containment by auto

obtain p2 p3 where path M (target (FSM .initial M ) pP) p2
and path M (target (target (FSM .initial M ) pP) p2 ) p3
and p-io p2 = p-io p
and p-io p3 = ioX

using language-state-split[OF ‹p-io p @ ioX ∈ LS M (target (initial M ) pP)›]
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by blast

have p2 = p
using observable-path-unique[OF ‹observable M › ‹path M (target (FSM .initial

M ) pP) p2 › ‹path M (target (FSM .initial M ) pP) p› ‹p-io p2 = p-io p›]
by assumption

then have path M (target (FSM .initial M ) pP) (p@p3 )
using ‹path M (target (FSM .initial M ) pP) p› ‹path M (target (target

(FSM .initial M ) pP) p2 ) p3 ›
by auto

moreover have p-io (p@p3 ) = butlast io
unfolding ‹butlast io = p-io p @ ioX› using ‹p-io p3 = ioX›
by auto

ultimately show ?thesis
using that[of p3 ]
by simp

qed

have finite ?R
using finite-R[OF ‹path M (target (initial M ) pP) p›]
by assumption

moreover have
∧

pR . pR ∈ ?R =⇒ finite (io-targets M ′ (p-io pR) (initial M ′))
using io-targets-finite by metis

ultimately have finite ?Tgts
by blast

obtain pP ′ p ′ where path M ′ (FSM .initial M ′) pP ′

and path M ′ (target (FSM .initial M ′) pP ′) p ′

and p-io pP ′ = p-io pP
and p-io p ′ = io

using language-state-split[OF ‹((p-io pP) @ io) ∈ L M ′›]
by blast

have length p ≤ length (butlast io)
using ‹butlast io = p-io p @ ioX› by auto

moreover have length (butlast io) < length io
using ‹io 6= []› by auto

ultimately have length p < length p ′

unfolding ‹p-io p ′ = io› length-map[of (λ t . (t-input t, t-output t)), symmetric]
by simp
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let ?q = (target (FSM .initial M ′) pP ′)

have
∧

pR . pP@pR ∈ ?R =⇒ path M ′ ?q (take (length pR) p ′) ∧ p-io (take
(length pR) p ′) = p-io pR

proof −
fix pR assume pP@pR ∈ ?R
then have pR = take (length pR) p ∧ length pR ≤ length p

using R-component(1 ,2 ) by metis
then have p-io pR = take (length pR) (butlast io)

unfolding ‹butlast io = p-io p @ ioX›
by (metis (no-types, lifting) length-map take-le take-map)

moreover have p-io (take (length pR) p ′) = take (length pR) io
by (metis (full-types) ‹p-io p ′ = io› take-map)

moreover have take (length pR) (butlast io) = take (length pR) io
by (meson ‹length (butlast io) < length io› ‹length p ≤ length (butlast io)›

‹pR = take (length pR) p ∧ length pR ≤ length p› dual-order .strict-trans2
take-butlast)

ultimately have p-io (take (length pR) p ′) = p-io pR
by simp

moreover have path M ′ ?q (take (length pR) p ′)
using ‹path M ′ (target (FSM .initial M ′) pP ′) p ′›
by (simp add: path-prefix-take)

ultimately show path M ′ ?q (take (length pR) p ′) ∧ p-io (take (length pR) p ′)
= p-io pR

by blast
qed

have singleton-prop ′:
∧

pR . pP@pR ∈ ?R =⇒ io-targets M ′ (p-io (pP@pR))
(initial M ′) = {target ?q (take (length pR) p ′)}

proof −
fix pR assume pP@pR ∈ ?R
then have path M ′ ?q (take (length pR) p ′) and p-io (take (length pR) p ′) =

p-io pR
using ‹

∧
pR . pP@pR ∈ ?R =⇒ path M ′ ?q (take (length pR) p ′) ∧ p-io

(take (length pR) p ′) = p-io pR› by blast+

have ∗:path M ′ (initial M ′) (pP ′ @ (take (length pR) p ′))
using ‹path M ′ (initial M ′) pP ′› ‹path M ′ ?q (take (length pR) p ′)› by auto

have ∗∗:p-io (pP ′ @ (take (length pR) p ′)) = (p-io (pP@pR))
using ‹p-io pP ′ = p-io pP› ‹p-io (take (length pR) p ′) = p-io pR› by auto

have target (initial M ′) (pP ′ @ (take (length pR) p ′)) = target ?q (take (length
pR) p ′)

by auto
then have target ?q (take (length pR) p ′) ∈ io-targets M ′ (p-io (pP@pR))

(initial M ′)
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unfolding io-targets.simps using ∗ ∗∗
by (metis (mono-tags, lifting) mem-Collect-eq)

show io-targets M ′ (p-io (pP@pR)) (initial M ′) = {target ?q (take (length pR)
p ′)}

using observable-io-targets[OF ‹observable M ′› language-state-containment[OF
∗ ∗∗]]

by (metis (no-types) ‹target (target (FSM .initial M ′) pP ′) (take (length pR)
p ′) ∈ io-targets M ′ (p-io (pP@pR)) (FSM .initial M ′)› singleton-iff )

qed

have singleton-prop:
∧

pR . pR ∈ ?R =⇒ io-targets M ′ (p-io pR) (initial M ′) =
{target ?q (take (length pR − length pP) p ′)}

proof −
fix pR assume pR ∈ ?R
then obtain pR ′ where pR = pP@pR ′

using R-component-ob[of - M (target (FSM .initial M ) pP) q ′ pP p] by blast
have ∗∗: (length (pP @ pR ′) − length pP) = length pR ′

by auto

show io-targets M ′ (p-io pR) (initial M ′) = {target ?q (take (length pR −
length pP) p ′)}

using singleton-prop ′[of pR ′] ‹pR ∈ ?R› unfolding ‹pR = pP@pR ′› ∗∗ by
blast

qed
then show

∧
pR . pR ∈ ?R =⇒ ∃ q . io-targets M ′ (p-io pR) (initial M ′) =

{q}
by blast

have pairwise-dist-prop ′:
∧

pR1 pR2 . pP@pR1 ∈ ?R =⇒ pP@pR2 ∈ ?R =⇒
pR1 6= pR2 =⇒ io-targets M ′ (p-io (pP@pR1 )) (initial M ′) ∩ io-targets M ′ (p-io
(pP@pR2 )) (initial M ′) = {}

proof −

have diff-prop:
∧

pR1 pR2 . pP@pR1 ∈ ?R =⇒ pP@pR2 ∈ ?R =⇒ length
pR1 < length pR2 =⇒ io-targets M ′ (p-io (pP@pR1 )) (initial M ′) ∩ io-targets M ′

(p-io (pP@pR2 )) (initial M ′) = {}
proof −

fix pR1 pR2 assume pP@pR1 ∈ ?R and pP@pR2 ∈ ?R and length pR1 <
length pR2

let ?i = length pR1 − 1
let ?j = length pR2 − 1

have pR1 = take (length pR1 ) p and ‹length pR1 ≤ length p› and t-target
(p ! ?i) = q ′

using R-component[OF ‹pP@pR1 ∈ ?R›]
by simp+
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have length pR1 6= 0
using ‹pP@pR1 ∈ ?R› unfolding R-def
by simp

then have ?i < ?j
using ‹length pR1 < length pR2 ›
by (simp add: less-diff-conv)

have pR2 = take (length pR2 ) p and ‹length pR2 ≤ length p› and t-target
(p ! ?j) = q ′

using R-component[OF ‹pP@pR2 ∈ ?R›]
by simp+

then have ?j < length (butlast io)
using ‹length p ≤ length (butlast io)› ‹length pR1 < length pR2 › by linarith

have ?q ∈ io-targets M ′ (p-io pP) (FSM .initial M ′)
unfolding ‹p-io pP ′ = p-io pP›[symmetric] io-targets.simps
using ‹path M ′ (initial M ′) pP ′› by auto

have t-target (p ! ?i) = t-target (p ! ?j)
using ‹t-target (p ! ?i) = q ′› ‹t-target (p ! ?j) = q ′› by simp

moreover have (p @ pX) ! ?i = p ! ?i
by (meson ‹length pR1 < length pR2 › ‹length pR2 ≤ length p› less-imp-diff-less

less-le-trans nth-append)
moreover have (p @ pX) ! ?j = p ! ?j
by (metis (no-types) ‹length pR1 < length pR2 › ‹pR2 = take (length pR2 ) p›

diff-less less-imp-diff-less less-nat-zero-code less-numeral-extra(1 ) not-le-imp-less
not-less-iff-gr-or-eq nth-append take-all)

ultimately have t-target (p ′ ! ?i) 6= t-target (p ′ ! ?j)
using minimal-sequence-to-failure-extending-preamble-no-repetitions-along-path[OF

assms(1 ,2 ) ‹path M (target (initial M ) pP) (p@pX)› ‹p-io (p @ pX) = butlast io›
‹?q ∈ io-targets M ′ (p-io pP) (FSM .initial M ′)› ‹path M ′ (target (FSM .initial M ′)
pP ′) p ′› ‹p-io p ′ = io› ‹?i < ?j› ‹?j < length (butlast io)› assms(4 )]

by auto

have t1 : io-targets M ′ (p-io (pP@pR1 )) (initial M ′) = {t-target (p ′ ! ?i)}
proof −

have (p ′ ! ?i) = last (take (length pR1 ) p ′)
using ‹length pR1 ≤ length p› ‹length p < length p ′›

by (metis Suc-diff-1 ‹length pR1 6= 0 › dual-order .strict-trans2 length-0-conv
length-greater-0-conv less-imp-diff-less take-last-index)

then have ∗: target (target (FSM .initial M ′) pP ′) (take (length pR1 ) p ′) =
t-target (p ′ ! ?i)

unfolding target.simps visited-states.simps
by (metis (no-types, lifting) ‹length p < length p ′› ‹length pR1 6= 0 ›

gr-implies-not-zero last.simps last-map length-0-conv map-is-Nil-conv take-eq-Nil)
have ∗∗: (length (pP @ pR1 ) − length pP) = length pR1

by auto
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show ?thesis
using singleton-prop[OF ‹pP@pR1 ∈ ?R›]
unfolding ∗ ∗∗ by assumption

qed

have t2 : io-targets M ′ (p-io (pP@pR2 )) (initial M ′) = {t-target (p ′ ! ?j)}
proof −

have (p ′ ! ?j) = last (take (length pR2 ) p ′)
using ‹length pR2 ≤ length p› ‹length p < length p ′›

by (metis Suc-diff-1 ‹length pR1 − 1 < length pR2 − 1 › le-less-trans
less-imp-diff-less

linorder-neqE-nat not-less-zero take-last-index zero-less-diff )
then have ∗: target (target (FSM .initial M ′) pP ′) (take (length pR2 ) p ′) =

t-target (p ′ ! ?j)
unfolding target.simps visited-states.simps
by (metis (no-types, lifting) Nil-is-map-conv ‹length p < length p ′› ‹length

pR1 < length pR2 ›
last.simps last-map list.size(3 ) not-less-zero take-eq-Nil)

have ∗∗: (length (pP @ pR2 ) − length pP) = length pR2
by auto

show ?thesis
using singleton-prop ′[OF ‹pP@pR2 ∈ ?R›]
unfolding ∗ ∗∗ by assumption

qed

show io-targets M ′ (p-io (pP@pR1 )) (initial M ′) ∩ io-targets M ′ (p-io
(pP@pR2 )) (initial M ′) = {}

using ‹t-target (p ′ ! ?i) 6= t-target (p ′ ! ?j)›
unfolding t1 t2 by simp

qed

fix pR1 pR2 assume pP@pR1 ∈ ?R and pP@pR2 ∈ ?R and pR1 6= pR2
then have length pR1 6= length pR2

unfolding R-def
by auto

then consider (a) length pR1 < length pR2 | (b) length pR2 < length pR1
using nat-neq-iff by blast

then show io-targets M ′ (p-io (pP@pR1 )) (initial M ′) ∩ io-targets M ′ (p-io
(pP@pR2 )) (initial M ′) = {}

proof cases
case a
show ?thesis using diff-prop[OF ‹pP@pR1 ∈ ?R› ‹pP@pR2 ∈ ?R› a] by

blast
next

case b
show ?thesis using diff-prop[OF ‹pP@pR2 ∈ ?R› ‹pP@pR1 ∈ ?R› b] by

blast
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qed
qed

then show pairwise-dist-prop:
∧

pR1 pR2 . pR1 ∈ ?R =⇒ pR2 ∈ ?R =⇒ pR1
6= pR2 =⇒ io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial
M ′) = {}

using R-component-ob
by (metis (no-types, lifting))

let ?f = (λ pR . io-targets M ′ (p-io pR) (initial M ′))

have p1 : (
∧

S1 S2 . S1 ∈ ?R =⇒ S2 ∈ ?R =⇒ S1 = S2 ∨ ?f S1 ∩ ?f S2 = {})
using pairwise-dist-prop by blast

have p2 : (
∧

S . S ∈ R M (target (FSM .initial M ) pP) q ′ pP p =⇒ io-targets M ′

(p-io S) (FSM .initial M ′) 6= {})
using singleton-prop by blast

have c1 : card (R M (target (FSM .initial M ) pP) q ′ pP p) = card ((λS . io-targets
M ′ (p-io S) (FSM .initial M ′)) ‘ R M (target (FSM .initial M ) pP) q ′ pP p)

using card-union-of-distinct[of ?R, OF p1 ‹finite ?R› p2 ] by force

have p3 : (
∧

S . S ∈ (λS . io-targets M ′ (p-io S) (FSM .initial M ′)) ‘ R M (target
(FSM .initial M ) pP) q ′ pP p =⇒ ∃ t. S = {t})

using singleton-prop by blast
have c2 :card ((λS . io-targets M ′ (p-io S) (FSM .initial M ′)) ‘ R M (target

(FSM .initial M ) pP) q ′ pP p) = card (
⋃

S∈R M (target (FSM .initial M ) pP)
q ′ pP p. io-targets M ′ (p-io S) (FSM .initial M ′))

using card-union-of-singletons[of ((λS . io-targets M ′ (p-io S) (FSM .initial M ′))
‘ R M (target (FSM .initial M ) pP) q ′ pP p), OF p3 ] by force

show card ?Tgts = card ?R
unfolding c1 c2 by blast

qed

lemma R-update :
R M q q ′ pP (p@[t]) = (if (target q (p@[t]) = q ′)

then insert (pP@p@[t]) (R M q q ′ pP p)
else (R M q q ′ pP p))

(is ?R1 = ?R2 )
proof (cases (target q (p@[t]) = q ′))

case True
then have ∗: ?R2 = insert (pP@p@[t]) (R M q q ′ pP p)

by auto

have
∧

p ′ . p ′ ∈ R M q q ′ pP (p@[t]) =⇒ p ′ ∈ insert (pP@p@[t]) (R M q q ′ pP
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p)
proof −

fix p ′ assume p ′ ∈ R M q q ′ pP (p@[t])

obtain p ′′ where p ′ = pP @ p ′′

using R-component-ob[OF ‹p ′ ∈ R M q q ′ pP (p@[t])›] by blast

obtain p ′′′ where p ′′ 6= [] and target q p ′′ = q ′ and p @ [t] = p ′′ @ p ′′′

using ‹p ′ ∈ R M q q ′ pP (p@[t])› unfolding R-def ‹p ′ = pP @ p ′′›
by auto

show p ′ ∈ insert (pP@p@[t]) (R M q q ′ pP p)
proof (cases p ′′′ rule: rev-cases)

case Nil
then have p ′ = pP@(p@[t]) using ‹p ′ = pP @ p ′′› ‹p @ [t] = p ′′ @ p ′′′› by

auto
then show ?thesis by blast

next
case (snoc p ′′′′ t ′)
then have p = p ′′ @ p ′′′′ using ‹p @ [t] = p ′′ @ p ′′′› by auto
then show ?thesis

unfolding R-def using ‹p ′′ 6= []› ‹target q p ′′ = q ′›
by (simp add: ‹p ′ = pP @ p ′′›)

qed
qed
moreover have

∧
p ′ . p ′ ∈ insert (pP@p@[t]) (R M q q ′ pP p) =⇒ p ′ ∈ R M

q q ′ pP (p@[t])
proof −

fix p ′ assume p ′ ∈ insert (pP@p@[t]) (R M q q ′ pP p)
then consider (a) p ′ = (pP@p@[t]) | (b) p ′ ∈ (R M q q ′ pP p) by blast
then show p ′ ∈ R M q q ′ pP (p@[t]) proof cases

case a
then show ?thesis using True unfolding R-def

by simp
next

case b
then show ?thesis unfolding R-def

using append.assoc by blast
qed

qed
ultimately show ?thesis

unfolding ∗ by blast
next

case False
then have ∗: ?R2 = (R M q q ′ pP p)

by auto

have
∧

p ′ . p ′ ∈ R M q q ′ pP (p@[t]) =⇒ p ′ ∈ (R M q q ′ pP p)
proof −
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fix p ′ assume p ′ ∈ R M q q ′ pP (p@[t])

obtain p ′′ where p ′ = pP @ p ′′

using R-component-ob[OF ‹p ′ ∈ R M q q ′ pP (p@[t])›] by blast

obtain p ′′′ where p ′′ 6= [] and target q p ′′ = q ′ and p @ [t] = p ′′ @ p ′′′

using ‹p ′ ∈ R M q q ′ pP (p@[t])› unfolding R-def ‹p ′ = pP @ p ′′› by blast

show p ′ ∈ (R M q q ′ pP p)
proof (cases p ′′′ rule: rev-cases)

case Nil
then have p ′ = pP@(p@[t]) using ‹p ′ = pP @ p ′′› ‹p @ [t] = p ′′ @ p ′′′› by

auto
then show ?thesis

using False ‹p @ [t] = p ′′ @ p ′′′› ‹target q p ′′ = q ′› local.Nil by auto
next

case (snoc p ′′′′ t ′)
then have p = p ′′ @ p ′′′′ using ‹p @ [t] = p ′′ @ p ′′′› by auto
then show ?thesis

unfolding R-def using ‹p ′′ 6= []› ‹target q p ′′ = q ′›
by (simp add: ‹p ′ = pP @ p ′′›)

qed
qed
moreover have

∧
p ′ . p ′ ∈ (R M q q ′ pP p) =⇒ p ′ ∈ R M q q ′ pP (p@[t])

proof −
fix p ′ assume p ′ ∈ (R M q q ′ pP p)
then show p ′ ∈ R M q q ′ pP (p@[t]) unfolding R-def

using append.assoc by blast
qed
ultimately show ?thesis

unfolding ∗ by blast
qed

lemma R-union-card-is-suffix-length :
assumes path M (initial M ) pP
and path M (target (initial M ) pP) p

shows (
∑

q ∈ states M . card (R M (target (initial M ) pP) q pP p)) = length p
using assms(2 ) proof (induction p rule: rev-induct)

case Nil
have

∧
q ′ . R M (target (initial M ) pP) q ′ pP [] = {}

unfolding R-def by auto
then show ?case

by simp
next

case (snoc t p)
then have path M (target (initial M ) pP) p

by auto
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let ?q = (target (initial M ) pP)
let ?q ′ = target ?q (p @ [t])

have
∧

q . q 6= ?q ′ =⇒ R M ?q q pP (p@[t]) = R M ?q q pP p
using R-update[of M ?q - pP p t] by force

then have ∗: (
∑

q ∈ states M − {?q ′} . card (R M (target (initial M ) pP) q
pP (p@[t])))

= (
∑

q ∈ states M − {?q ′} . card (R M (target (initial M ) pP) q
pP p))

by force

have R M ?q ?q ′ pP (p@[t]) = insert (pP@p@[t]) (R M ?q ?q ′ pP p)
using R-update[of M ?q ?q ′ pP p t] by force

moreover have (pP@p@[t]) /∈ (R M ?q ?q ′ pP p)
unfolding R-def by simp

ultimately have ∗∗: card (R M (target (initial M ) pP) ?q ′ pP (p@[t])) = Suc
(card (R M (target (initial M ) pP) ?q ′ pP p))

using finite-R[OF ‹path M (target (initial M ) pP) (p@[t])›] finite-R[OF ‹path
M (target (initial M ) pP) p›]

by simp

have ?q ′ ∈ states M
using path-target-is-state[OF ‹path M (target (FSM .initial M ) pP) (p @ [t])›]

by assumption
then have ∗∗∗: (

∑
q ∈ states M . card (R M (target (initial M ) pP) q pP

(p@[t])))
= (

∑
q ∈ states M − {?q ′} . card (R M (target (initial M ) pP)

q pP (p@[t]))) + (card (R M (target (initial M ) pP) ?q ′ pP (p@[t])))
and ∗∗∗∗: (

∑
q ∈ states M . card (R M (target (initial M ) pP) q pP p))

= (
∑

q ∈ states M − {?q ′} . card (R M (target (initial M ) pP)
q pP p)) + (card (R M (target (initial M ) pP) ?q ′ pP p))

by (metis (no-types, lifting) Diff-insert-absorb add.commute finite-Diff fsm-states-finite
mk-disjoint-insert sum.insert)+

have (
∑

q ∈ states M . card (R M (target (initial M ) pP) q pP (p@[t]))) =
Suc (

∑
q ∈ states M . card (R M (target (initial M ) pP) q pP p))

unfolding ∗∗∗∗ ∗∗∗ ∗∗ ∗ by simp

then show ?case
unfolding snoc.IH [OF ‹path M (target (initial M ) pP) p›] by auto

qed

lemma RP-count :
assumes minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io
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and observable M
and observable M ′

and
∧

q P. (q, P) ∈ PS =⇒ is-preamble P M q
and path M (target (initial M ) pP) p
and butlast io = p-io p @ ioX
and

∧
q P io x y y ′ . (q,P) ∈ PS =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L

M ′ =⇒ io@[(x,y ′)] ∈ L P
and completely-specified M ′

and inputs M ′ = inputs M
shows card (

⋃
(image (λ pR . io-targets M ′ (p-io pR) (initial M ′)) (RP M (target

(initial M ) pP) q ′ pP p PS M ′)))
= card (RP M (target (initial M ) pP) q ′ pP p PS M ′)

(is card ?Tgts = card ?RP)
and

∧
pR . pR ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) =⇒ ∃ q .

io-targets M ′ (p-io pR) (initial M ′) = {q}
and

∧
pR1 pR2 . pR1 ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) =⇒ pR2

∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) =⇒ pR1 6= pR2 =⇒ io-targets
M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial M ′) = {}
proof −

let ?P1 = card (
⋃

(image (λ pR . io-targets M ′ (p-io pR) (initial M ′)) (RP M
(target (initial M ) pP) q ′ pP p PS M ′))) = card (RP M (target (initial M ) pP)
q ′ pP p PS M ′)

let ?P2 = ∀ pR . pR ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) −→ (∃
q . io-targets M ′ (p-io pR) (initial M ′) = {q})

let ?P3 = ∀ pR1 pR2 . pR1 ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′)
−→ pR2 ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) −→ pR1 6= pR2 −→
io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial M ′) = {}

let ?combined-goals = ?P1 ∧ ?P2 ∧ ?P3

let ?q = (target (initial M ) pP)
let ?R = R M ?q q ′ pP p

consider (a) (?RP = ?R) |
(b) (∃ P ′ pP ′ . (q ′,P ′) ∈ PS ∧

path P ′ (initial P ′) pP ′ ∧
target (initial P ′) pP ′ = q ′ ∧
path M (initial M ) pP ′ ∧
target (initial M ) pP ′ = q ′ ∧
p-io pP ′ ∈ L M ′ ∧
?RP = insert pP ′ ?R)

using RP-from-R[OF assms(4 ,7 ,8 ,9 ), of PS - - ?q q ′ pP p] by force

then have ?combined-goals proof cases
case a
show ?thesis unfolding a using R-count[OF assms(1−6 )] by blast

next
case b
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have sequence-to-failure-extending-preamble-path M M ′ PS pP io
and

∧
p ′ io ′ . sequence-to-failure-extending-preamble-path M M ′ PS p ′ io ′ =⇒

length io ≤ length io ′

using ‹minimal-sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding minimal-sequence-to-failure-extending-preamble-path-def
by blast+

obtain q P where (q,P) ∈ PS
and path P (initial P) pP
and target (initial P) pP = q
and ((p-io pP) @ butlast io) ∈ L M
and ((p-io pP) @ io) /∈ L M
and ((p-io pP) @ io) ∈ L M ′

using ‹sequence-to-failure-extending-preamble-path M M ′ PS pP io›
unfolding sequence-to-failure-extending-preamble-path-def
by blast

have is-preamble P M q
using ‹(q,P) ∈ PS› ‹

∧
q P. (q, P) ∈ PS =⇒ is-preamble P M q› by blast

then have q ∈ states M
unfolding is-preamble-def

by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›
path-target-is-state submachine-path)

have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def by auto

have path M (initial M ) pP
using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial

using ‹path P (FSM .initial P) pP› by blast
have target (initial M ) pP = q

using ‹target (initial P) pP = q› unfolding ‹initial P = initial M › by
assumption

then have path M q p
using ‹path M (target (initial M ) pP) p› by auto

have io 6= []
using ‹((p-io pP) @ butlast io) ∈ L M › ‹((p-io pP) @ io) /∈ L M › by auto

have finite ?RP
using finite-RP[OF ‹path M (target (initial M ) pP) p› assms(4 ,7 ,8 ,9 )] by

force
moreover have

∧
pR . pR ∈ ?RP =⇒ finite (io-targets M ′ (p-io pR) (initial
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M ′))
using io-targets-finite by metis

ultimately have finite ?Tgts
by blast

obtain pP ′ p ′ where path M ′ (FSM .initial M ′) pP ′

and path M ′ (target (FSM .initial M ′) pP ′) p ′

and p-io pP ′ = p-io pP
and p-io p ′ = io

using language-state-split[OF ‹((p-io pP) @ io) ∈ L M ′›]
by blast

have length p ≤ length (butlast io)
using ‹butlast io = p-io p @ ioX› by auto

moreover have length (butlast io) < length io
using ‹io 6= []› by auto

ultimately have length p < length p ′

unfolding ‹p-io p ′= io› length-map[of (λ t . (t-input t, t-output t)), symmetric]
by simp

let ?q = (target (FSM .initial M ′) pP ′)

have
∧

pR . pP@pR ∈ ?R =⇒ path M ′ ?q (take (length pR) p ′) ∧ p-io (take
(length pR) p ′) = p-io pR

proof −
fix pR assume pP@pR ∈ ?R
then have pR = take (length pR) p ∧ length pR ≤ length p

using R-component(1 ,2 ) by metis
then have p-io pR = take (length pR) (butlast io)

by (metis (no-types, lifting) assms(6 ) length-map take-le take-map)
moreover have p-io (take (length pR) p ′) = take (length pR) io

by (metis (full-types) ‹p-io p ′ = io› take-map)
moreover have take (length pR) (butlast io) = take (length pR) io
using ‹length p ≤ length (butlast io)› ‹pR = take (length pR) p ∧ length pR

≤ length p›
butlast-take-le dual-order .trans

by blast
ultimately have p-io (take (length pR) p ′) = p-io pR

by simp
moreover have path M ′ ?q (take (length pR) p ′)

using ‹path M ′ (target (FSM .initial M ′) pP ′) p ′›
by (simp add: path-prefix-take)

ultimately show path M ′ ?q (take (length pR) p ′) ∧ p-io (take (length pR)
p ′) = p-io pR

by blast
qed
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have singleton-prop ′-R:
∧

pR . pP@pR ∈ ?R =⇒ io-targets M ′ (p-io (pP@pR))
(initial M ′) = {target ?q (take (length pR) p ′)}

proof −
fix pR assume pP@pR ∈ ?R
then have path M ′ ?q (take (length pR) p ′) and p-io (take (length pR) p ′)

= p-io pR
using ‹

∧
pR . pP@pR ∈ ?R =⇒ path M ′ ?q (take (length pR) p ′) ∧ p-io

(take (length pR) p ′) = p-io pR› by blast+

have ∗:path M ′ (initial M ′) (pP ′ @ (take (length pR) p ′))
using ‹path M ′ (initial M ′) pP ′› ‹path M ′ ?q (take (length pR) p ′)› by auto

have ∗∗:p-io (pP ′ @ (take (length pR) p ′)) = (p-io (pP@pR))
using ‹p-io pP ′ = p-io pP› ‹p-io (take (length pR) p ′) = p-io pR› by auto

have target (initial M ′) (pP ′ @ (take (length pR) p ′)) = target ?q (take (length
pR) p ′)

by auto
then have target ?q (take (length pR) p ′) ∈ io-targets M ′ (p-io (pP@pR))

(initial M ′)
unfolding io-targets.simps using ∗ ∗∗
by (metis (mono-tags, lifting) mem-Collect-eq)

show io-targets M ′ (p-io (pP@pR)) (initial M ′) = {target ?q (take (length
pR) p ′)}

using observable-io-targets[OF ‹observable M ′› language-state-containment[OF
∗ ∗∗]]

by (metis (no-types) ‹target (target (FSM .initial M ′) pP ′) (take (length pR)
p ′) ∈ io-targets M ′ (p-io (pP@pR)) (FSM .initial M ′)› singleton-iff )

qed

have singleton-prop-R:
∧

pR . pR ∈ ?R =⇒ io-targets M ′ (p-io pR) (initial
M ′) = {target ?q (take (length pR − length pP) p ′)}

proof −
fix pR assume pR ∈ ?R
then obtain pR ′ where pR = pP@pR ′

using R-component-ob[of - M (target (FSM .initial M ) pP) q ′ pP p] by blast
have ∗∗: (length (pP @ pR ′) − length pP) = length pR ′

by auto

show io-targets M ′ (p-io pR) (initial M ′) = {target ?q (take (length pR −
length pP) p ′)}

using singleton-prop ′-R[of pR ′] ‹pR ∈ ?R› unfolding ‹pR = pP@pR ′› ∗∗
by blast

qed

1272



from b obtain P ′ pP ′′ where (q ′,P ′) ∈ PS
and path P ′ (initial P ′) pP ′′

and target (initial P ′) pP ′′ = q ′

and path M (initial M ) pP ′′

and target (initial M ) pP ′′ = q ′

and p-io pP ′′ ∈ L M ′

and ?RP = insert pP ′′ ?R
by blast

have initial P ′ = initial M
using assms(4 )[OF ‹(q ′,P ′) ∈ PS›] unfolding is-preamble-def by auto

have
∧

pR . pR ∈ ?RP =⇒ pR ∈ ?R ∨ pR = pP ′′

using ‹?RP = insert pP ′′ ?R› by blast
then have rp-cases[consumes 1 , case-names in-R inserted]:

∧
pR P . (pR ∈

?RP) =⇒ (pR ∈ ?R =⇒ P) =⇒ (pR = pP ′′ =⇒ P) =⇒ P
by force

have singleton-prop-RP:
∧

pR . pR ∈ ?RP =⇒ ∃ q . io-targets M ′ (p-io pR)
(initial M ′) = {q}

proof −
fix pR assume pR ∈ ?RP
then show ∃ q . io-targets M ′ (p-io pR) (initial M ′) = {q}
proof (cases rule: rp-cases)

case in-R
then show ?thesis using singleton-prop-R by blast

next
case inserted
show ?thesis

using observable-io-targets[OF ‹observable M ′› ‹p-io pP ′′ ∈ L M ′›]
unfolding inserted

by meson
qed

qed
then have ?P2 by blast

have pairwise-dist-prop-RP:
∧

pR1 pR2 . pR1 ∈ ?RP =⇒ pR2 ∈ ?RP =⇒
pR1 6= pR2 =⇒ io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 )
(initial M ′) = {}

proof −

1273



have pairwise-dist-prop-R:
∧

pR1 pR2 . pR1 ∈ ?R =⇒ pR2 ∈ ?R =⇒ pR1 6=
pR2 =⇒ io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial
M ′) = {}

using R-count(3 )[OF assms(1−6 )] by force

have pairwise-dist-prop-PS :
∧

pR1 . pR1 ∈ ?RP =⇒ pR1 6= pP ′′ =⇒
io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pP ′′) (initial M ′) = {}

proof −
fix pR1 assume pR1 ∈ ?RP and pR1 6= pP ′′

then have pR1 ∈ ?R
using ‹

∧
pR . pR ∈ ?RP =⇒ pR ∈ ?R ∨ pR = pP ′′› by blast

obtain pR ′ where pR1 = pP@pR ′

using R-component-ob[OF ‹pR1 ∈ ?R›] by blast
then have pP@pR ′ ∈ ?R

using ‹pR1 ∈ ?R› by blast

have pR ′ = take (length pR ′) p
and length pR ′ ≤ length p
and t-target (p ! (length pR ′ − 1 )) = q ′

and pR ′ 6= []
using R-component[OF ‹pP@pR ′ ∈ ?R›] by blast+

let ?i = (length pR ′) − 1
have ?i < length p

using ‹length pR ′ ≤ length p› ‹pR ′ 6= []›
using diff-less dual-order .strict-trans1 less-numeral-extra(1 ) by blast

then have ?i < length (butlast io)
using ‹length p ≤ length (butlast io)› less-le-trans by blast

have io-targets M ′ (p-io pR1 ) (initial M ′) = {t-target (p ′ ! ?i)}
proof −

have (p ′ ! ?i) = last (take (length pR ′) p ′)
using ‹length pR ′ ≤ length p› ‹length p < length p ′›

by (metis Suc-diff-1 ‹pR ′ 6= []› dual-order .strict-trans2 length-greater-0-conv
less-imp-diff-less take-last-index)

then have ∗: target ?q (take (length pR ′) p ′) = t-target (p ′ ! ?i)
unfolding target.simps visited-states.simps

by (metis (no-types, lifting) ‹length p < length p ′› ‹pR ′ 6= []› gr-implies-not-zero
last.simps

last-map length-0-conv map-is-Nil-conv take-eq-Nil)
moreover have io-targets M ′ (p-io pR1 ) (initial M ′) = {target ?q (take

(length pR ′) p ′)}
using singleton-prop ′-R ‹pR1 ∈ ?R› unfolding ‹pR1 = pP@pR ′› by

auto
ultimately show ?thesis by auto

qed
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have t-target (p ′ ! (length pR ′ − 1 )) /∈ io-targets M ′ (p-io pP ′′) (FSM .initial
M ′)

proof −

obtain pX where path M (target (initial M ) pP) (p@pX) and p-io
(p@pX) = butlast io

proof −
have p-io pP @ p-io p @ ioX ∈ L M

using ‹((p-io pP) @ butlast io) ∈ L M ›
unfolding ‹butlast io = p-io p @ ioX›
by assumption

obtain p1 p23 where path M (FSM .initial M ) p1 and path M (target
(FSM .initial M ) p1 ) p23

and p-io p1 = p-io pP and p-io p23 = p-io p @ ioX
using language-state-split[OF ‹p-io pP @ p-io p @ ioX ∈ L M ›] by

blast

have p1 = pP
using observable-path-unique[OF ‹observable M › ‹path M (FSM .initial

M ) p1 › ‹path M (FSM .initial M ) pP› ‹p-io p1 = p-io pP›]
by assumption

then have path M (target (FSM .initial M ) pP) p23
using ‹path M (target (FSM .initial M ) p1 ) p23 › by auto

then have p-io p @ ioX ∈ LS M (target (initial M ) pP)
using ‹p-io p23 = p-io p @ ioX› language-state-containment by auto

obtain p2 p3 where path M (target (FSM .initial M ) pP) p2
and path M (target (target (FSM .initial M ) pP) p2 ) p3
and p-io p2 = p-io p
and p-io p3 = ioX

using language-state-split[OF ‹p-io p @ ioX ∈ LS M (target (initial
M ) pP)›]

by blast

have p2 = p
using observable-path-unique[OF ‹observable M › ‹path M (target

(FSM .initial M ) pP) p2 › ‹path M (target (FSM .initial M ) pP) p› ‹p-io p2 = p-io
p›]

by assumption
then have path M (target (FSM .initial M ) pP) (p@p3 )

using ‹path M (target (FSM .initial M ) pP) p› ‹path M (target (target
(FSM .initial M ) pP) p2 ) p3 ›

by auto
moreover have p-io (p@p3 ) = butlast io

unfolding ‹butlast io = p-io p @ ioX›
using ‹p-io p3 = ioX›
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by auto
ultimately show ?thesis

using that[of p3 ]
by simp

qed

have target (FSM .initial M ′) pP ′ ∈ io-targets M ′ (p-io pP) (FSM .initial
M ′)

using ‹p-io pP ′ = p-io pP› ‹path M ′ (FSM .initial M ′) pP ′› observ-
able-path-io-target by auto

have (t-target (p ! (length pR ′ − 1 )), P ′) ∈ PS
using ‹(q ′,P ′) ∈ PS› unfolding ‹t-target (p ! (length pR ′ − 1 )) = q ′›

by assumption
then have (t-target ((p @ pX) ! ?i), P ′) ∈ PS

by (metis ‹length pR ′ − 1 < length p› nth-append)

have target (FSM .initial P ′) pP ′′ = t-target (p ! (length pR ′ − 1 ))
unfolding ‹target (initial M ) pP ′′ = q ′› ‹t-target (p ! (length pR ′ − 1 ))

= q ′› ‹initial P ′ = initial M › by simp
then have target (FSM .initial P ′) pP ′′ = t-target ((p @ pX) ! ?i)

by (metis ‹length pR ′ − 1 < length p› nth-append)

show ?thesis
using minimal-sequence-to-failure-extending-preamble-no-repetitions-with-other-preambles

[OF assms(1 ,2 ) ‹path M (target (initial M ) pP) (p@pX)› ‹p-io
(p@pX) = butlast io›

‹target (FSM .initial M ′) pP ′ ∈ io-targets M ′ (p-io pP)
(FSM .initial M ′)›

‹path M ′ (target (FSM .initial M ′) pP ′) p ′› ‹p-io p ′ = io›
assms(4 )

‹?i < length (butlast io)› ‹(t-target ((p @ pX) ! ?i), P ′) ∈ PS›
‹path P ′ (initial P ′) pP ′′› ‹target (FSM .initial P ′) pP ′′ =

t-target ((p @ pX) ! ?i)›]
by blast

qed
then show io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pP ′′)

(initial M ′) = {}
unfolding ‹io-targets M ′ (p-io pR1 ) (initial M ′) = {t-target (p ′ ! ?i)}›
by blast

qed

fix pR1 pR2 assume pR1 ∈ ?RP and pR2 ∈ ?RP and pR1 6= pR2

then consider (a) pR1 ∈ ?R ∧ pR2 ∈ ?R |
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(b) pR1 = pP ′′ |
(c) pR2 = pP ′′

using ‹
∧

pR . pR ∈ ?RP =⇒ pR ∈ ?R ∨ pR = pP ′′› ‹pR1 6= pR2 › by
blast

then show io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 )
(initial M ′) = {}

proof cases
case a
then show ?thesis using pairwise-dist-prop-R[of pR1 pR2 , OF - - ‹pR1 6=

pR2 ›] by blast
next

case b
then show ?thesis using pairwise-dist-prop-PS [OF ‹pR2 ∈ ?RP›] ‹pR1 6=

pR2 › by blast
next

case c
then show ?thesis using pairwise-dist-prop-PS [OF ‹pR1 ∈ ?RP›] ‹pR1 6=

pR2 › by blast
qed

qed
then have ?P3 by blast

let ?f = (λ pR . io-targets M ′ (p-io pR) (initial M ′))

have p1 : (
∧

S1 S2 . S1 ∈ ?RP =⇒ S2 ∈ ?RP =⇒ S1 = S2 ∨ ?f S1 ∩ ?f S2
= {})

using pairwise-dist-prop-RP by blast
have p2 : (

∧
S . S ∈ ?RP =⇒ io-targets M ′ (p-io S) (FSM .initial M ′) 6= {})

using singleton-prop-RP by blast
have c1 : card ?RP = card ((λS . io-targets M ′ (p-io S) (FSM .initial M ′)) ‘

?RP)
using card-union-of-distinct[of ?RP, OF p1 ‹finite ?RP› p2 ] by force

have p3 : (
∧

S . S ∈ (λS . io-targets M ′ (p-io S) (FSM .initial M ′)) ‘ ?RP =⇒
∃ t. S = {t})

using singleton-prop-RP by blast
have c2 :card ((λS . io-targets M ′ (p-io S) (FSM .initial M ′)) ‘ ?RP) = card

(
⋃

S∈?RP. io-targets M ′ (p-io S) (FSM .initial M ′))
using card-union-of-singletons[of ((λS . io-targets M ′ (p-io S) (FSM .initial

M ′)) ‘ ?RP), OF p3 ] by force

have ?P1
unfolding c1 c2 by blast

show ?combined-goals
using ‹?P1 › ‹?P2 › ‹?P3 ›
by blast

qed
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then show card (
⋃

(image (λ pR . io-targets M ′ (p-io pR) (initial M ′)) (RP M
(target (initial M ) pP) q ′ pP p PS M ′))) = card (RP M (target (initial M ) pP)
q ′ pP p PS M ′)

and
∧

pR . pR ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) =⇒ ∃ q
. io-targets M ′ (p-io pR) (initial M ′) = {q}

and
∧

pR1 pR2 . pR1 ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′)
=⇒ pR2 ∈ (RP M (target (initial M ) pP) q ′ pP p PS M ′) =⇒ pR1 6= pR2 =⇒
io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial M ′) = {}

by blast+
qed

lemma RP-target:
assumes pR ∈ (RP M q q ′ pP p PS M ′)
assumes

∧
q P . (q,P) ∈ PS =⇒ is-preamble P M q

and
∧

q P io x y y ′ . (q,P) ∈ PS =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)] ∈ L
M ′ =⇒ io@[(x,y ′)] ∈ L P

and completely-specified M ′

and inputs M ′ = inputs M
shows target (initial M ) pR = q ′

proof −
show target (initial M ) pR = q ′

proof (cases pR ∈ R M q q ′ pP p)
case True
then show ?thesis unfolding R-def by force

next
case False
then have RP M q q ′ pP p PS M ′ 6= R M q q ′ pP p

using assms(1 ) by blast
then have (∃P ′ pP ′.

(q ′, P ′) ∈ PS ∧
path P ′ (FSM .initial P ′) pP ′ ∧
target (FSM .initial P ′) pP ′ = q ′ ∧
path M (FSM .initial M ) pP ′ ∧ target (FSM .initial M ) pP ′ = q ′ ∧ p-io pP ′

∈ L M ′ ∧ RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p))
using RP-from-R[OF assms(2−5 ), of PS - - q q ′ pP p] by force

then obtain pP ′ where target (FSM .initial M ) pP ′ = q ′ and RP M q q ′ pP
p PS M ′ = insert pP ′ (R M q q ′ pP p)

by blast

have pR = pP ′

using ‹RP M q q ′ pP p PS M ′ = insert pP ′ (R M q q ′ pP p)› ‹pR ∈ (RP M
q q ′ pP p PS M ′)› False by blast

show ?thesis using ‹target (FSM .initial M ) pP ′ = q ′› unfolding ‹pR = pP ′›
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by assumption
qed

qed

41.5.2 Proof of Exhaustiveness
lemma passes-test-suite-exhaustiveness-helper-1 :

assumes completely-specified M ′

and inputs M ′ = inputs M
and observable M
and observable M ′

and (q,P) ∈ PS
and path P (initial P) pP
and target (initial P) pP = q
and p-io pP @ p-io p ∈ L M ′

and (p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m
and implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets sep-

arators) M m repetition-sets
and passes-test-suite M (Test-Suite PS tps rd-targets separators) M ′

and q ′ 6= q ′′

and q ′ ∈ fst d
and q ′′ ∈ fst d
and pR1 ∈ (RP M q q ′ pP p PS M ′)
and pR2 ∈ (RP M q q ′′ pP p PS M ′)

shows io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial
M ′) = {}
proof −

let ?RP1 = (RP M q q ′ pP p PS M ′)
let ?RP2 = (RP M q q ′′ pP p PS M ′)
let ?R1 = (R M q q ′ pP p)
let ?R2 = (R M q q ′′ pP p)

have t1 : (initial M , initial-preamble M ) ∈ PS
using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets

separators) M m repetition-sets›
unfolding implies-completeness-for-repetition-sets.simps by blast

have t2 :
∧

q P. (q, P) ∈ PS =⇒ is-preamble P M q
using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets

separators) M m repetition-sets›
unfolding implies-completeness-for-repetition-sets.simps by force

have t3 :
∧

q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ separators (q1 , q2 ) =⇒ (A, d2 , d1 ) ∈
separators (q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2

using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets
separators) M m repetition-sets›

unfolding implies-completeness-for-repetition-sets.simps by force

1279



have t5 :
∧

q. q ∈ FSM .states M =⇒ (∃ d∈set repetition-sets. q ∈ fst d)
using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets

separators) M m repetition-sets›
unfolding implies-completeness-for-repetition-sets.simps by force

have t6 :
∧

q. q ∈ fst ‘ PS =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness M q repetition-sets
m) ⊆ tps q

using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets
separators) M m repetition-sets›

unfolding implies-completeness-for-repetition-sets.simps by auto

have
∧

d. d ∈ set repetition-sets =⇒ fst d ⊆ FSM .states M ∧ snd d = fst d ∩
fst ‘ PS ∧ (∀ q1 q2 . q1 ∈ fst d −→ q2 ∈ fst d −→ q1 6= q2 −→ separators (q1 ,
q2 ) 6= {})

using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets
separators) M m repetition-sets›

unfolding implies-completeness-for-repetition-sets.simps by force
then have t7 :

∧
d. d ∈ set repetition-sets =⇒ fst d ⊆ FSM .states M

and t8 :
∧

d. d ∈ set repetition-sets =⇒ snd d ⊆ fst d
and t8 ′:

∧
d. d ∈ set repetition-sets =⇒ snd d = fst d ∩ fst ‘ PS

and t9 :
∧

d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1
6= q2 =⇒ separators (q1 , q2 ) 6= {}

by blast+

have t10 :
∧

q p d p1 p2 p3 .
q ∈ fst ‘ PS =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
p = p1 @ p2 @ p3 =⇒
p2 6= [] =⇒
target q p1 ∈ fst d =⇒
target q (p1 @ p2 ) ∈ fst d =⇒
target q p1 6= target q (p1 @ p2 ) =⇒
p1 ∈ tps q ∧ p1 @ p2 ∈ tps q ∧ target q p1 ∈ rd-targets (q, p1 @ p2 )

∧ target q (p1 @ p2 ) ∈ rd-targets (q, p1 )
using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets

separators) M m repetition-sets›
unfolding implies-completeness-for-repetition-sets.simps
by (metis (no-types, lifting))

have t11 :
∧

q p d p1 p2 q ′.
q ∈ fst ‘ PS =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
p = p1 @ p2 =⇒
q ′ ∈ fst ‘ PS =⇒
target q p1 ∈ fst d =⇒
q ′ ∈ fst d =⇒
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target q p1 6= q ′ =⇒
p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1 ∈ rd-targets (q ′, []) ∧ q ′ ∈

rd-targets (q, p1 )
using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets

separators) M m repetition-sets›
unfolding implies-completeness-for-repetition-sets.simps
by (metis (no-types, lifting))

have t12 :
∧

q p d q1 q2 .
q ∈ fst ‘ PS =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
q1 6= q2 =⇒
q1 ∈ snd d =⇒
q2 ∈ snd d =⇒
[] ∈ tps q1 ∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 , []) ∧ q2 ∈ rd-targets

(q1 , [])
using ‹implies-completeness-for-repetition-sets (Test-Suite PS tps rd-targets

separators) M m repetition-sets›
unfolding implies-completeness-for-repetition-sets.simps
by (metis (no-types, lifting))

have pass1 :
∧

q P io x y y ′ . (q,P) ∈ PS =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)]
∈ L M ′ =⇒ io@[(x,y ′)] ∈ L P

using ‹passes-test-suite M (Test-Suite PS tps rd-targets separators) M ′›
unfolding passes-test-suite.simps
by meson

have pass2 :
∧

q P pP ioT pT x y y ′ . (q,P) ∈ PS =⇒ path P (initial P) pP
=⇒ target (initial P) pP = q =⇒ pT ∈ tps q =⇒ ioT@[(x,y)] ∈ set (prefixes (p-io
pT )) =⇒ (p-io pP)@ioT@[(x,y ′)] ∈ L M ′ =⇒ (∃ pT ′ . pT ′ ∈ tps q ∧ ioT@[(x,y ′)]
∈ set (prefixes (p-io pT ′)))

using ‹passes-test-suite M (Test-Suite PS tps rd-targets separators) M ′›
unfolding passes-test-suite.simps by blast

have pass3 :
∧

q P pP pT q ′ A d1 d2 qT . (q,P) ∈ PS =⇒ path P (initial P) pP
=⇒ target (initial P) pP = q =⇒ pT ∈ tps q =⇒ (p-io pP)@(p-io pT ) ∈ L M ′

=⇒ q ′ ∈ rd-targets (q,pT ) =⇒ (A,d1 ,d2 ) ∈ separators (target q pT , q ′) =⇒ qT
∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′) =⇒ pass-separator-ATC M ′ A
qT d2

using ‹passes-test-suite M (Test-Suite PS tps rd-targets separators) M ′›
unfolding passes-test-suite.simps by blast

have is-preamble P M q
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using ‹(q,P) ∈ PS› ‹
∧

q P. (q, P) ∈ PS =⇒ is-preamble P M q›
by blast

then have q ∈ states M
unfolding is-preamble-def

by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›
path-target-is-state submachine-path)

have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def
by auto

have path M (initial M ) pP
using ‹is-preamble P M q› submachine-path-initial ‹path P (FSM .initial P)

pP›
unfolding is-preamble-def
by blast

moreover have target (initial M ) pP = q
using ‹target (initial P) pP = q›
unfolding ‹initial P = initial M ›
by assumption

ultimately have q ∈ states M
using path-target-is-state
by metis

have q ∈ fst ‘ PS
using ‹(q,P) ∈ PS› by force

have d ∈ set repetition-sets
using ‹(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m›
using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
using find-set by force

have q ′ ∈ states M
by (meson ‹d ∈ set repetition-sets› assms(13 ) subset-iff t7 )

have q ′′ ∈ states M
by (meson ‹d ∈ set repetition-sets› assms(14 ) subset-iff t7 )

have target (initial M ) pR1 = q ′

using RP-target[OF ‹pR1 ∈ ?RP1 › t2 pass1 ‹completely-specified M ′› ‹inputs
M ′ = inputs M ›] by force

then have target (initial M ) pR1 ∈ fst d
using ‹q ′ ∈ fst d› by blast

have target (initial M ) pR2 = q ′′

using RP-target[OF ‹pR2 ∈ ?RP2 › t2 pass1 ‹completely-specified M ′› ‹inputs
M ′ = inputs M ›] by force

then have target (initial M ) pR2 ∈ fst d
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using ‹q ′′ ∈ fst d› by blast

have pR1 6= pR2
using ‹target (initial M ) pR1 = q ′› ‹target (initial M ) pR2 = q ′′› ‹q ′ 6= q ′′›

by auto

obtain A t1 t2 where (A,t1 ,t2 ) ∈ separators (q ′,q ′′)
using t9 [OF ‹d ∈ set repetition-sets› ‹q ′ ∈ fst d› ‹q ′′ ∈ fst d› ‹q ′ 6= q ′′›]
by auto

have (A,t2 ,t1 ) ∈ separators (q ′′,q ′) and is-separator M q ′ q ′′ A t1 t2
using t3 [OF ‹(A,t1 ,t2 ) ∈ separators (q ′,q ′′)›] by simp+

then have is-separator M q ′′ q ′ A t2 t1
using is-separator-sym by force

show io-targets M ′ (p-io pR1 ) (initial M ′) ∩ io-targets M ′ (p-io pR2 ) (initial
M ′) = {}

proof (rule ccontr)
assume io-targets M ′ (p-io pR1 ) (FSM .initial M ′) ∩ io-targets M ′ (p-io pR2 )

(FSM .initial M ′) 6= {}
then obtain qT where qT ∈ io-targets M ′ (p-io pR1 ) (FSM .initial M ′)

and qT ∈ io-targets M ′ (p-io pR2 ) (FSM .initial M ′)
by blast

then have qT ∈ states M ′

using path-target-is-state unfolding io-targets.simps by force

consider (a) pR1 ∈ ?R1 ∧ pR2 ∈ ?R2 |
(b) pR1 ∈ ?R1 ∧ pR2 /∈ ?R2 |
(c) pR1 /∈ ?R1 ∧ pR2 ∈ ?R2 |
(d) pR1 /∈ ?R1 ∧ pR2 /∈ ?R2

by blast

then show False proof cases
case a
then have pR1 ∈ ?R1 and pR2 ∈ ?R2 by auto

obtain pR1 ′ where pR1 = pP@pR1 ′ using R-component-ob[OF ‹pR1 ∈
?R1 ›] by blast

obtain pR2 ′ where pR2 = pP@pR2 ′ using R-component-ob[OF ‹pR2 ∈
?R2 ›] by blast

have pR1 ′ = take (length pR1 ′) p and length pR1 ′ ≤ length p and t-target
(p ! (length pR1 ′ − 1 )) = q ′ and pR1 ′ 6= []

using R-component[of pP pR1 ′ M q q ′ p] ‹pR1 ∈ ?R1 › unfolding ‹pR1 =
pP@pR1 ′› by blast+

have pR2 ′ = take (length pR2 ′) p and length pR2 ′ ≤ length p and t-target
(p ! (length pR2 ′ − 1 )) = q ′′ and pR2 ′ 6= []
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using R-component[of pP pR2 ′ M q q ′′ p] ‹pR2 ∈ ?R2 › unfolding ‹pR2
= pP@pR2 ′› by blast+

have target q pR1 ′ = q ′

using ‹target (initial M ) pR1 = q ′› ‹pR1 ′ 6= []› unfolding target.simps
visited-states.simps ‹pR1 = pP@pR1 ′› by simp

then have target q pR1 ′ ∈ fst d
using ‹q ′ ∈ fst d› by blast

have target q pR2 ′ = q ′′

using ‹target (initial M ) pR2 = q ′′› ‹pR2 ′ 6= []› unfolding target.simps
visited-states.simps ‹pR2 = pP@pR2 ′› by simp

then have target q pR2 ′ ∈ fst d
using ‹q ′′ ∈ fst d› by blast

have pR1 ′ 6= pR2 ′

using ‹pR1 6= pR2 › unfolding ‹pR1 = pP@pR1 ′› ‹pR2 = pP@pR2 ′› by
simp

then have length pR1 ′ 6= length pR2 ′

using ‹pR1 ′ = take (length pR1 ′) p› ‹pR2 ′ = take (length pR2 ′) p› by auto
then consider (a1 ) length pR1 ′ < length pR2 ′ | (a2 ) length pR2 ′ < length

pR1 ′

using nat-neq-iff by blast
then have pR1 ′ ∈ tps q ∧ pR2 ′ ∈ tps q ∧ q ′ ∈ rd-targets (q, pR2 ′) ∧ q ′′ ∈

rd-targets (q, pR1 ′)
proof cases

case a1
then have pR2 ′ = pR1 ′ @ (drop (length pR1 ′) pR2 ′)

using ‹pR1 ′ = take (length pR1 ′) p› ‹pR2 ′ = take (length pR2 ′) p›
by (metis append-take-drop-id less-imp-le-nat take-le)

then have p = pR1 ′ @ (drop (length pR1 ′) pR2 ′) @ (drop (length pR2 ′) p)
using ‹pR2 ′ = take (length pR2 ′) p›
by (metis append.assoc append-take-drop-id)

have (drop (length pR1 ′) pR2 ′) 6= []
using a1 ‹pR2 ′ = take (length pR2 ′) p› by auto

have target q (pR1 ′ @ drop (length pR1 ′) pR2 ′) ∈ fst d
using ‹pR2 ′ = pR1 ′ @ (drop (length pR1 ′) pR2 ′)›[symmetric] ‹target q

pR2 ′ ∈ fst d› by auto

show ?thesis
using t10 [OF ‹q ∈ fst ‘ PS› ‹(p, d) ∈ m-traversal-paths-with-witness M q

repetition-sets m›
‹p = pR1 ′ @ (drop (length pR1 ′) pR2 ′) @ (drop (length pR2 ′)

p)›
‹(drop (length pR1 ′) pR2 ′) 6= []› ‹target q pR1 ′ ∈ fst d›
‹target q (pR1 ′ @ drop (length pR1 ′) pR2 ′) ∈ fst d›]

unfolding ‹pR2 ′ = pR1 ′ @ (drop (length pR1 ′) pR2 ′)›[symmetric] ‹target
q pR1 ′ = q ′› ‹target q pR2 ′ = q ′′›
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using ‹q ′ 6= q ′′›
by blast

next
case a2
then have pR1 ′ = pR2 ′ @ (drop (length pR2 ′) pR1 ′)

using ‹pR1 ′ = take (length pR1 ′) p› ‹pR2 ′ = take (length pR2 ′) p›
by (metis append-take-drop-id less-imp-le-nat take-le)

then have p = pR2 ′ @ (drop (length pR2 ′) pR1 ′) @ (drop (length pR1 ′) p)
using ‹pR1 ′ = take (length pR1 ′) p›
by (metis append.assoc append-take-drop-id)

have (drop (length pR2 ′) pR1 ′) 6= []
using a2 ‹pR1 ′ = take (length pR1 ′) p› by auto

have target q (pR2 ′ @ drop (length pR2 ′) pR1 ′) ∈ fst d
using ‹pR1 ′ = pR2 ′ @ (drop (length pR2 ′) pR1 ′)›[symmetric] ‹target q

pR1 ′ ∈ fst d› by auto

show ?thesis
using t10 [OF ‹q ∈ fst ‘ PS› ‹(p, d) ∈ m-traversal-paths-with-witness M q

repetition-sets m›
‹p = pR2 ′ @ (drop (length pR2 ′) pR1 ′) @ (drop (length pR1 ′)

p)›
‹(drop (length pR2 ′) pR1 ′) 6= []› ‹target q pR2 ′ ∈ fst d›
‹target q (pR2 ′ @ drop (length pR2 ′) pR1 ′) ∈ fst d›]

unfolding ‹pR1 ′ = pR2 ′ @ (drop (length pR2 ′) pR1 ′)›[symmetric] ‹target
q pR1 ′ = q ′› ‹target q pR2 ′ = q ′′›

using ‹q ′ 6= q ′′›
by blast

qed
then have pR1 ′ ∈ tps q and pR2 ′ ∈ tps q and q ′ ∈ rd-targets (q, pR2 ′) and

q ′′ ∈ rd-targets (q, pR1 ′)
by simp+

have p-io pP @ p-io pR1 ′ ∈ L M ′

using language-prefix-append[OF ‹p-io pP @ p-io p ∈ L M ′›, of length pR1 ′]
using ‹pR1 ′ = take (length pR1 ′) p› by simp

have pass-separator-ATC M ′ A qT t2
using pass3 [OF ‹(q, P) ∈ PS› ‹path P (initial P) pP› ‹target (initial P)

pP = q› ‹pR1 ′ ∈ tps q›
‹p-io pP @ p-io pR1 ′ ∈ L M ′› ‹q ′′ ∈ rd-targets (q, pR1 ′)›, of A

t1 t2 ]
‹(A, t1 , t2 ) ∈ separators (q ′, q ′′)› ‹qT ∈ io-targets M ′ (p-io pR1 )

(FSM .initial M ′)›
unfolding ‹target q pR1 ′ = q ′› ‹pR1 = pP @ pR1 ′› by auto

have p-io pP @ p-io pR2 ′ ∈ L M ′
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using language-prefix-append[OF ‹p-io pP @ p-io p ∈ L M ′›, of length pR2 ′]
using ‹pR2 ′ = take (length pR2 ′) p› by simp

have pass-separator-ATC M ′ A qT t1
using pass3 [OF ‹(q, P) ∈ PS› ‹path P (initial P) pP› ‹target (initial P)

pP = q› ‹pR2 ′ ∈ tps q›
‹p-io pP @ p-io pR2 ′ ∈ L M ′› ‹q ′ ∈ rd-targets (q, pR2 ′)›, of A

t2 t1 ]
‹(A, t2 , t1 ) ∈ separators (q ′′, q ′)› ‹qT ∈ io-targets M ′ (p-io pR2 )

(FSM .initial M ′)›
unfolding ‹target q pR2 ′ = q ′′› ‹pR2 = pP @ pR2 ′› by auto

have qT 6= qT
using pass-separator-ATC-reduction-distinction[OF ‹observable M › ‹observ-

able M ′› ‹inputs M ′= inputs M › ‹pass-separator-ATC M ′ A qT t2 › ‹pass-separator-ATC
M ′ A qT t1 › ‹q ′ ∈ states M › ‹q ′′ ∈ states M › ‹q ′ 6= q ′′› ‹qT ∈ states M ′› ‹qT ∈
states M ′› ‹is-separator M q ′ q ′′ A t1 t2 › ‹completely-specified M ′›]

by assumption
then show False

by simp

next
case b

then have pR1 ∈ ?R1 and pR2 /∈ ?R2
using ‹pR1 ∈ ?RP1 › by auto

obtain pR1 ′ where pR1 = pP@pR1 ′ using R-component-ob[OF ‹pR1 ∈
?R1 ›] by blast

have pR1 ′ = take (length pR1 ′) p and length pR1 ′ ≤ length p and t-target
(p ! (length pR1 ′ − 1 )) = q ′ and pR1 ′ 6= []

using R-component[of pP pR1 ′ M q q ′ p] ‹pR1 ∈ ?R1 › unfolding ‹pR1 =
pP@pR1 ′› by blast+

have target q pR1 ′ = q ′

using ‹target (initial M ) pR1 = q ′› ‹pR1 ′ 6= []› unfolding target.simps
visited-states.simps ‹pR1 = pP@pR1 ′› by simp

then have target q pR1 ′ ∈ fst d and target q pR1 ′ 6= q ′′

using ‹q ′ ∈ fst d› ‹q ′ 6= q ′′› by blast+

obtain P ′ where (q ′′, P ′) ∈ PS
path P ′ (FSM .initial P ′) pR2
target (FSM .initial P ′) pR2 = q ′′

path M (FSM .initial M ) pR2
target (FSM .initial M ) pR2 = q ′′
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p-io pR2 ∈ L M ′

RP M q q ′′ pP p PS M ′ = insert pR2 (R M q q ′′ pP p)
using RP-from-R-inserted[OF t2 pass1 ‹completely-specified M ′› ‹inputs M ′

= inputs M › ‹pR2 ∈ ?RP2 › ‹pR2 /∈ ?R2 ›,
of λ q P io x y y ′ . q λ q P io x y y ′ . y]

by blast

have q ′′ ∈ fst ‘ PS using ‹(q ′′,P ′) ∈ PS› by force
have p = pR1 ′ @ (drop (length pR1 ′) p) using ‹pR1 ′ = take (length pR1 ′)

p›
by (metis append-take-drop-id)

have pR1 ′ ∈ tps q and [] ∈ tps q ′′ and target q pR1 ′ ∈ rd-targets (q ′′, [])
and q ′′ ∈ rd-targets (q, pR1 ′)

using t11 [OF ‹q ∈ fst ‘ PS› ‹(p, d) ∈ m-traversal-paths-with-witness M q
repetition-sets m›

‹p = pR1 ′ @ (drop (length pR1 ′) p)› ‹q ′′ ∈ fst ‘ PS›
‹target q pR1 ′ ∈ fst d› ‹q ′′ ∈ fst d› ‹target q pR1 ′ 6= q ′′›]

by simp+

have p-io pP @ p-io pR1 ′ ∈ L M ′

using language-prefix-append[OF ‹p-io pP @ p-io p ∈ L M ′›, of length pR1 ′]
using ‹pR1 ′ = take (length pR1 ′) p› by simp

have pass-separator-ATC M ′ A qT t2
using pass3 [OF ‹(q, P) ∈ PS› ‹path P (initial P) pP› ‹target (initial P)

pP = q› ‹pR1 ′ ∈ tps q›
‹p-io pP @ p-io pR1 ′ ∈ L M ′› ‹q ′′ ∈ rd-targets (q, pR1 ′)›, of A

t1 t2 ]
‹(A, t1 , t2 ) ∈ separators (q ′, q ′′)› ‹qT ∈ io-targets M ′ (p-io pR1 )

(FSM .initial M ′)›
unfolding ‹target q pR1 ′ = q ′› ‹pR1 = pP @ pR1 ′› by auto

have pass-separator-ATC M ′ A qT t1
using pass3 [OF ‹(q ′′, P ′) ∈ PS› ‹path P ′ (FSM .initial P ′) pR2 › ‹target

(FSM .initial P ′) pR2 = q ′′›
‹[] ∈ tps q ′′› - ‹target q pR1 ′ ∈ rd-targets (q ′′, [])›, of A t2 t1 qT ]

‹(A, t2 , t1 ) ∈ separators (q ′′, q ′)› ‹qT ∈ io-targets M ′ (p-io pR2 )
(FSM .initial M ′)› ‹p-io pR2 ∈ L M ′›

unfolding ‹target q pR1 ′ = q ′› by auto

have qT 6= qT
using pass-separator-ATC-reduction-distinction[OF ‹observable M › ‹observ-

able M ′› ‹inputs M ′ = inputs M ›
‹pass-separator-ATC M ′ A qT t2 ›
‹pass-separator-ATC M ′ A qT t1 ›

‹q ′ ∈ states M ›
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‹q ′′ ∈ states M › ‹q ′ 6= q ′′› ‹qT ∈
states M ′›

‹qT ∈ states M ′› ‹is-separator M q ′

q ′′ A t1 t2 ›
‹completely-specified M ′›]

by assumption
then show False

by simp
next

case c
then have pR2 ∈ ?R2 and pR1 /∈ ?R1

using ‹pR2 ∈ ?RP2 › by auto

obtain pR2 ′ where pR2 = pP@pR2 ′ using R-component-ob[OF ‹pR2 ∈
?R2 ›] by blast

have pR2 ′ = take (length pR2 ′) p
and length pR2 ′ ≤ length p
and t-target (p ! (length pR2 ′ − 1 )) = q ′′

and pR2 ′ 6= []
using R-component[of pP pR2 ′ M q q ′′ p] ‹pR2 ∈ ?R2 ›
unfolding ‹pR2 = pP@pR2 ′›
by blast+

have target q pR2 ′ = q ′′

using ‹target (initial M ) pR2 = q ′′› ‹pR2 ′ 6= []›
unfolding target.simps visited-states.simps ‹pR2 = pP@pR2 ′›
by simp

then have target q pR2 ′ ∈ fst d and target q pR2 ′ 6= q ′

using ‹q ′′ ∈ fst d› ‹q ′ 6= q ′′› by blast+

obtain P ′ where (q ′, P ′) ∈ PS
path P ′ (FSM .initial P ′) pR1
target (FSM .initial P ′) pR1 = q ′

path M (FSM .initial M ) pR1
target (FSM .initial M ) pR1 = q ′

p-io pR1 ∈ L M ′

RP M q q ′ pP p PS M ′ = insert pR1 (R M q q ′ pP p)
using RP-from-R-inserted[OF t2 pass1 ‹completely-specified M ′› ‹inputs M ′

= inputs M › ‹pR1 ∈ ?RP1 › ‹pR1 /∈ ?R1 ›,
of λ q P io x y y ′ . q λ q P io x y y ′ . y]

by blast

have q ′ ∈ fst ‘ PS using ‹(q ′,P ′) ∈ PS› by force
have p = pR2 ′ @ (drop (length pR2 ′) p) using ‹pR2 ′ = take (length pR2 ′)

p›
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by (metis append-take-drop-id)

have pR2 ′ ∈ tps q and [] ∈ tps q ′ and target q pR2 ′ ∈ rd-targets (q ′, []) and
q ′ ∈ rd-targets (q, pR2 ′)

using t11 [OF ‹q ∈ fst ‘ PS› ‹(p, d) ∈ m-traversal-paths-with-witness M q
repetition-sets m›

‹p = pR2 ′ @ (drop (length pR2 ′) p)› ‹q ′ ∈ fst ‘ PS› ‹target q
pR2 ′ ∈ fst d›

‹q ′ ∈ fst d› ‹target q pR2 ′ 6= q ′›]
by simp+

have p-io pP @ p-io pR2 ′ ∈ L M ′

using language-prefix-append[OF ‹p-io pP @ p-io p ∈ L M ′›, of length pR2 ′]
using ‹pR2 ′ = take (length pR2 ′) p› by simp

have pass-separator-ATC M ′ A qT t1
using pass3 [OF ‹(q, P) ∈ PS› ‹path P (initial P) pP› ‹target (initial P)

pP = q› ‹pR2 ′ ∈ tps q›
‹p-io pP @ p-io pR2 ′ ∈ L M ′› ‹q ′ ∈ rd-targets (q, pR2 ′)›, of A

t2 t1 ]
‹(A, t2 , t1 ) ∈ separators (q ′′, q ′)› ‹qT ∈ io-targets M ′ (p-io pR2 )

(FSM .initial M ′)›
unfolding ‹target q pR2 ′ = q ′′› ‹pR2 = pP @ pR2 ′› by auto

have pass-separator-ATC M ′ A qT t2
using pass3 [OF ‹(q ′, P ′) ∈ PS› ‹path P ′ (FSM .initial P ′) pR1 › ‹target

(FSM .initial P ′) pR1 = q ′›
‹[] ∈ tps q ′› - ‹target q pR2 ′ ∈ rd-targets (q ′, [])›, of A t1 t2 qT ]

‹(A, t1 , t2 ) ∈ separators (q ′, q ′′)› ‹qT ∈ io-targets M ′ (p-io pR1 )
(FSM .initial M ′)› ‹p-io pR1 ∈ L M ′›

unfolding ‹target q pR2 ′ = q ′′› by auto

have qT 6= qT
using pass-separator-ATC-reduction-distinction[OF ‹observable M › ‹observ-

able M ′› ‹inputs M ′ = inputs M ›
‹pass-separator-ATC M ′ A qT t1 ›

‹pass-separator-ATC M ′ A qT t2 ›
‹q ′′ ∈ states M › ‹q ′ ∈ states M › -

‹qT ∈ states M ′› ‹qT ∈ states M ′›
‹is-separator M q ′′ q ′ A t2 t1 ›

‹completely-specified M ′›]
‹q ′ 6= q ′′› by simp

then show False
by simp

next
case d

then have pR1 /∈ ?R1 and pR2 /∈ ?R2
by auto
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obtain P ′ where (q ′, P ′) ∈ PS
path P ′ (FSM .initial P ′) pR1
target (FSM .initial P ′) pR1 = q ′

path M (FSM .initial M ) pR1
target (FSM .initial M ) pR1 = q ′

p-io pR1 ∈ L M ′

RP M q q ′ pP p PS M ′ = insert pR1 (R M q q ′ pP p)
using RP-from-R-inserted[OF t2 pass1 ‹completely-specified M ′› ‹inputs M ′

= inputs M ›
‹pR1 ∈ ?RP1 › ‹pR1 /∈ ?R1 ›, of λ q P io x y y ′ . q λ

q P io x y y ′ . y]
by blast

have q ′ ∈ snd d
by (metis IntI ‹(q ′, P ′) ∈ PS› ‹d ∈ set repetition-sets› assms(13 ) fst-eqD

image-eqI t8 ′)

obtain P ′′ where (q ′′, P ′′) ∈ PS
path P ′′ (FSM .initial P ′′) pR2
target (FSM .initial P ′′) pR2 = q ′′

path M (FSM .initial M ) pR2
target (FSM .initial M ) pR2 = q ′′

p-io pR2 ∈ L M ′

RP M q q ′′ pP p PS M ′ = insert pR2 (R M q q ′′ pP p)
using RP-from-R-inserted[OF t2 pass1 ‹completely-specified M ′› ‹inputs M ′

= inputs M › ‹pR2 ∈ ?RP2 › ‹pR2 /∈ ?R2 ›,
of λ q P io x y y ′ . q λ q P io x y y ′ . y]

by blast

have q ′′ ∈ snd d
by (metis IntI ‹(q ′′, P ′′) ∈ PS› ‹d ∈ set repetition-sets› assms(14 ) fst-eqD

image-eqI t8 ′)

have [] ∈ tps q ′ and [] ∈ tps q ′′ and q ′ ∈ rd-targets (q ′′, []) and q ′′ ∈ rd-targets
(q ′, [])

using t12 [OF ‹q ∈ fst ‘ PS› ‹(p, d) ∈ m-traversal-paths-with-witness M q
repetition-sets m› ‹q ′ 6= q ′′› ‹q ′ ∈ snd d› ‹q ′′ ∈ snd d›]

by simp+

have pass-separator-ATC M ′ A qT t1
using pass3 [OF ‹(q ′′, P ′′) ∈ PS› ‹path P ′′ (initial P ′′) pR2 › ‹target (initial

P ′′) pR2 = q ′′›
‹[] ∈ tps q ′′› - ‹q ′ ∈ rd-targets (q ′′, [])›, of A t2 t1 qT ]

‹p-io pR2 ∈ L M ′› ‹(A, t2 , t1 ) ∈ separators (q ′′, q ′)› ‹qT ∈ io-targets
M ′ (p-io pR2 ) (FSM .initial M ′)›

by auto
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have pass-separator-ATC M ′ A qT t2
using pass3 [OF ‹(q ′, P ′) ∈ PS› ‹path P ′ (initial P ′) pR1 › ‹target (initial

P ′) pR1 = q ′›
‹[] ∈ tps q ′› - ‹q ′′ ∈ rd-targets (q ′, [])›, of A t1 t2 qT ]

‹p-io pR1 ∈ L M ′› ‹(A, t1 , t2 ) ∈ separators (q ′, q ′′)› ‹qT ∈ io-targets
M ′ (p-io pR1 ) (FSM .initial M ′)›

by auto

have qT 6= qT
using pass-separator-ATC-reduction-distinction[OF ‹observable M › ‹observ-

able M ′›
‹inputs M ′ = inputs M ›

‹pass-separator-ATC M ′ A qT t1 ›
‹pass-separator-ATC M ′ A qT t2 ›

‹q ′′ ∈ states M ›
‹q ′ ∈ states M › - ‹qT ∈ states M ′›

‹qT ∈ states M ′›
‹is-separator M q ′′ q ′ A t2 t1 ›

‹completely-specified M ′›]
‹q ′ 6= q ′′› by simp

then show False
by simp

qed
qed

qed

lemma passes-test-suite-exhaustiveness :
assumes passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′

and implies-completeness (Test-Suite prs tps rd-targets separators) M m
and observable M
and observable M ′

and inputs M ′ = inputs M
and inputs M 6= {}
and completely-specified M
and completely-specified M ′

and size M ′ ≤ m
shows L M ′ ⊆ L M
proof (rule ccontr)

assume ¬ L M ′ ⊆ L M

obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets
(Test-Suite prs tps rd-targets separators) M m repetition-sets

using assms(2 ) unfolding implies-completeness-def by blast
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have t1 : (initial M , initial-preamble M ) ∈ prs
using implies-completeness-for-repetition-sets-simps(1 )[OF repetition-sets-def ]

by assumption
have t2 :

∧
q P. (q, P) ∈ prs =⇒ is-preamble P M q

using implies-completeness-for-repetition-sets-simps(2 )[OF repetition-sets-def ]

by blast
have t3 :

∧
q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ separators (q1 , q2 ) =⇒ (A, d2 , d1 ) ∈

separators (q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2
using implies-completeness-for-repetition-sets-simps(3 )[OF repetition-sets-def ]

by assumption
have t5 :

∧
q. q ∈ FSM .states M =⇒ (∃ d∈set repetition-sets. q ∈ fst d)

using implies-completeness-for-repetition-sets-simps(4 )[OF repetition-sets-def ]
by assumption

have t6 :
∧

q. q ∈ fst ‘ prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness M q repetition-sets
m) ⊆ tps q

using implies-completeness-for-repetition-sets-simps(7 )[OF repetition-sets-def ]

by assumption

have t7 :
∧

d. d ∈ set repetition-sets =⇒ fst d ⊆ FSM .states M
and t8 :

∧
d. d ∈ set repetition-sets =⇒ snd d ⊆ fst d

and t8 ′:
∧

d. d ∈ set repetition-sets =⇒ snd d = fst d ∩ fst ‘ prs
and t9 :

∧
d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1

6= q2 =⇒ separators (q1 , q2 ) 6= {}
using implies-completeness-for-repetition-sets-simps(5 ,6 )[OF repetition-sets-def ]

by blast+

have t10 :
∧

q p d p1 p2 p3 .
q ∈ fst ‘ prs =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
p = p1 @ p2 @ p3 =⇒
p2 6= [] =⇒
target q p1 ∈ fst d =⇒
target q (p1 @ p2 ) ∈ fst d =⇒
target q p1 6= target q (p1 @ p2 ) =⇒
p1 ∈ tps q ∧ p1 @ p2 ∈ tps q ∧ target q p1 ∈ rd-targets (q, p1 @ p2 )

∧ target q (p1 @ p2 ) ∈ rd-targets (q, p1 )
using implies-completeness-for-repetition-sets-simps(8 )[OF repetition-sets-def ]

by assumption

have t11 :
∧

q p d p1 p2 q ′.
q ∈ fst ‘ prs =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
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p = p1 @ p2 =⇒
q ′ ∈ fst ‘ prs =⇒
target q p1 ∈ fst d =⇒
q ′ ∈ fst d =⇒
target q p1 6= q ′ =⇒

p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1 ∈ rd-targets (q ′, []) ∧ q ′ ∈
rd-targets (q, p1 )

using implies-completeness-for-repetition-sets-simps(9 )[OF repetition-sets-def ]
by assumption

have t12 :
∧

q p d q1 q2 .
q ∈ fst ‘ prs =⇒
(p, d) ∈ m-traversal-paths-with-witness M q repetition-sets m =⇒
q1 6= q2 =⇒
q1 ∈ snd d =⇒
q2 ∈ snd d =⇒
[] ∈ tps q1 ∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 , []) ∧ q2 ∈ rd-targets

(q1 , [])
using implies-completeness-for-repetition-sets-simps(10 )[OF repetition-sets-def ]

by assumption

have pass1 :
∧

q P io x y y ′ . (q,P) ∈ prs =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)]
∈ L M ′ =⇒ io@[(x,y ′)] ∈ L P

using ‹passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′›
unfolding passes-test-suite.simps
by meson

have pass2 :
∧

q P pP ioT pT x y y ′ . (q,P) ∈ prs =⇒ path P (initial P) pP
=⇒ target (initial P) pP = q =⇒ pT ∈ tps q =⇒ ioT@[(x,y)] ∈ set (prefixes (p-io
pT )) =⇒ (p-io pP)@ioT@[(x,y ′)] ∈ L M ′ =⇒ (∃ pT ′ . pT ′ ∈ tps q ∧ ioT@[(x,y ′)]
∈ set (prefixes (p-io pT ′)))

using ‹passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′›
unfolding passes-test-suite.simps
by blast

have pass3 :
∧

q P pP pT q ′ A d1 d2 qT . (q,P) ∈ prs =⇒ path P (initial P) pP
=⇒ target (initial P) pP = q =⇒ pT ∈ tps q =⇒ (p-io pP)@(p-io pT ) ∈ L M ′

=⇒ q ′ ∈ rd-targets (q,pT ) =⇒ (A,d1 ,d2 ) ∈ separators (target q pT , q ′) =⇒ qT
∈ io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′) =⇒ pass-separator-ATC M ′ A
qT d2

using ‹passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′›
unfolding passes-test-suite.simps
by blast

1293



obtain pP io where minimal-sequence-to-failure-extending-preamble-path M M ′

prs pP io
using minimal-sequence-to-failure-extending-preamble-ex[OF t1 ‹¬ L M ′ ⊆ L

M ›]
by blast

then have sequence-to-failure-extending-preamble-path M M ′ prs pP io∧
io ′. sequence-to-failure-extending-preamble-path M M ′ prs pP io ′ =⇒

length io ≤ length io ′

unfolding minimal-sequence-to-failure-extending-preamble-path-def
by blast+

obtain q P where q ∈ states M
and (q,P) ∈ prs
and path P (initial P) pP
and target (initial P) pP = q
and ((p-io pP) @ butlast io) ∈ L M
and ((p-io pP) @ io) /∈ L M
and ((p-io pP) @ io) ∈ L M ′

using ‹sequence-to-failure-extending-preamble-path M M ′ prs pP io›
unfolding sequence-to-failure-extending-preamble-path-def
by blast

let ?xF = fst (last io)
let ?yF = snd (last io)
let ?xyF = (?xF ,?yF)
let ?ioF = butlast io
have io 6= []

using ‹((p-io pP) @ io) /∈ L M › ‹((p-io pP) @ butlast io) ∈ L M › by auto
then have io = ?ioF@[?xyF ]

by auto

have ?xF ∈ inputs M ′

using language-io(1 )[OF ‹((p-io pP) @ io) ∈ L M ′›, of ?xF ?yF ] ‹io 6= []› by
auto

then have ?xF ∈ inputs M
using ‹inputs M ′ = inputs M › by simp

have q ∈ fst ‘ prs
using ‹(q,P) ∈ prs› by force

have is-preamble P M q
using ‹(q,P) ∈ prs› t2 by blast

then have q ∈ states M
unfolding is-preamble-def

by (metis ‹path P (FSM .initial P) pP› ‹target (FSM .initial P) pP = q›
path-target-is-state submachine-path)
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have initial P = initial M
using ‹is-preamble P M q› unfolding is-preamble-def by auto

have path M (initial M ) pP
using ‹is-preamble P M q› unfolding is-preamble-def using submachine-path-initial
using ‹path P (FSM .initial P) pP› by blast

have target (initial M ) pP = q
using ‹target (initial P) pP = q› unfolding ‹initial P = initial M › by as-

sumption

obtain pM dM ioEx where (pM ,dM ) ∈ m-traversal-paths-with-witness M q rep-
etition-sets m

and io = (p-io pM )@ioEx
and ioEx 6= []

proof −

obtain pF where path M q pF and p-io pF = ?ioF
using observable-path-suffix[OF ‹((p-io pP) @ ?ioF) ∈ L M › ‹path M (initial

M ) pP› ‹observable M › ]
unfolding ‹target (initial M ) pP = q›
by blast

obtain tM where tM ∈ transitions M and t-source tM = target q pF and
t-input tM = ?xF

using ‹?xF ∈ inputs M › path-target-is-state[OF ‹path M q pF›]
‹completely-specified M ›

unfolding completely-specified.simps
by blast

then have path M q (pF@[tM ])
using ‹path M q pF› path-append-transition by simp

show ?thesis proof (cases find (λd. Suc (m − card (snd d)) ≤ length (filter
(λt. t-target t ∈ fst d) (pF@[tM ]))) repetition-sets)

case None

obtain pF ′ d ′ where ((pF@[tM ]) @ pF ′, d ′) ∈ m-traversal-paths-with-witness
M q repetition-sets m

using m-traversal-path-extension-exist[OF ‹completely-specified M › ‹q ∈
states M › ‹inputs M 6= {}› t5 t8 ‹path M q (pF@[tM ])› None]

by blast
then have (pF@[tM ]) @ pF ′ ∈ tps q

using t6 [OF ‹q ∈ fst ‘ prs›] by force

have (p-io pF) @ [(?xF ,t-output tM )] ∈ set (prefixes (p-io ((pF@[tM ])@pF ′)))
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using ‹t-input tM = ?xF›
unfolding prefixes-set by auto

have p-io pP @ p-io pF @ [?xyF ] ∈ L M ′

using ‹((p-io pP) @ io) ∈ L M ′› unfolding ‹p-io pF = ?ioF› ‹io =
?ioF@[?xyF ]›[symmetric] by assumption

obtain pT ′ where pT ′ ∈ tps q
and p-io pF @ [(fst (last io), snd (last io))] ∈ set (prefixes (p-io

pT ′))
using pass2 [OF ‹(q,P) ∈ prs› ‹path P (initial P) pP› ‹target (initial P) pP

= q› ‹(pF@[tM ]) @ pF ′ ∈ tps q›
‹(p-io pF) @ [(?xF ,t-output tM )] ∈ set (prefixes (p-io

((pF@[tM ])@pF ′)))› ‹p-io pP @ p-io pF @ [?xyF ] ∈ L M ′›]
by blast

have path M q pT ′

proof −
obtain pT ′′ d ′′ where (pT ′@pT ′′, d ′′) ∈ m-traversal-paths-with-witness M

q repetition-sets m
using ‹pT ′ ∈ tps q› t6 [OF ‹q ∈ fst ‘ prs›]
by blast

then have path M q (pT ′@pT ′′)
using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›]
by force

then show ?thesis
by auto

qed
then have path M (initial M ) (pP@pT ′)

using ‹path M (initial M ) pP› ‹target (initial M ) pP = q› by auto
then have (p-io (pP@pT ′)) ∈ L M

unfolding LS .simps by blast
then have (p-io pP)@(p-io pT ′) ∈ L M

by auto

have io ∈ set (prefixes (p-io pT ′))
using ‹p-io pF @ [(fst (last io), snd (last io))] ∈ set (prefixes (p-io pT ′))›

unfolding ‹p-io pF = ?ioF› ‹io = ?ioF@[?xyF ]›[symmetric] by assumption
then obtain io ′ where p-io pT ′ = io @ io ′

unfolding prefixes-set mem-Collect-eq by metis

have p-io pP @ io ∈ L M
using ‹(p-io pP)@(p-io pT ′) ∈ L M ›
unfolding ‹p-io pT ′ = io @ io ′›
unfolding append.assoc[symmetric]
using language-prefix[of p-io pP @ io io ′, of M initial M ]
by blast
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then show ?thesis
using ‹(p-io pP) @ io /∈ L M › by simp

next
case (Some d)

let ?ps = { p1 . ∃ p2 . (pF@[tM ]) = p1 @ p2 ∧ find (λd. Suc (m − card
(snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p1 )) repetition-sets 6= None}

have finite ?ps
proof −

have ?ps ⊆ set (prefixes (pF@[tM ]))
unfolding prefixes-set by force

moreover have finite (set (prefixes (pF@[tM ])))
by simp

ultimately show ?thesis
by (simp add: finite-subset)

qed
moreover have ?ps 6= {}
proof −

have pF @ [tM ] = (pF @ [tM ]) @ [] ∧ find (λd. Suc (m − card (snd d))
≤ length (filter (λt. t-target t ∈ fst d) (pF @ [tM ]))) repetition-sets 6= None

using Some by auto
then have (pF@[tM ]) ∈ ?ps

by blast
then show ?thesis by blast

qed
ultimately obtain pMin where pMin ∈ ?ps and

∧
p ′ . p ′ ∈ ?ps =⇒ length

pMin ≤ length p ′

by (meson leI min-length-elem)

obtain pMin ′ dMin where (pF@[tM ]) = pMin @ pMin ′

and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.
t-target t ∈ fst d) pMin)) repetition-sets = Some dMin

using ‹pMin ∈ ?ps› by blast
then have path M q pMin

using ‹path M q (pF@[tM ])› by auto

moreover have (∀ p ′ p ′′. pMin = p ′ @ p ′′ ∧ p ′′ 6= [] −→ find (λd. Suc (m −
card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None)

proof −
have

∧
p ′ p ′′. pMin = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m − card

(snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None
proof −

fix p ′ p ′′ assume pMin = p ′ @ p ′′ and p ′′ 6= []
show find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈

fst d) p ′)) repetition-sets = None
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proof (rule ccontr)
assume find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t

∈ fst d) p ′)) repetition-sets 6= None
then have p ′ ∈ ?ps

using ‹(pF@[tM ]) = pMin @ pMin ′› unfolding ‹pMin = p ′ @ p ′′›
append.assoc by blast

have length p ′ < length pMin
using ‹pMin = p ′ @ p ′′› ‹p ′′ 6= []› by auto

then show False
using ‹

∧
p ′ . p ′ ∈ ?ps =⇒ length pMin ≤ length p ′›[OF ‹p ′ ∈ ?ps›] by

simp
qed

qed
then show ?thesis by blast

qed

ultimately have (pMin,dMin) ∈ m-traversal-paths-with-witness M q repeti-
tion-sets m

using ‹find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈
fst d) pMin)) repetition-sets = Some dMin›

m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by blast

then have pMin ∈ tps q
using t6 [OF ‹q ∈ fst ‘ prs›]
by force

show ?thesis proof (cases pMin = (pF@[tM ]))

case True
then have ?ioF @ [(?xF , t-output tM )] ∈ set (prefixes (p-io pMin))

using ‹p-io pF = ?ioF› ‹t-input tM = ?xF› unfolding prefixes-set by
force

obtain pMinF where pMinF ∈ tps q and io ∈ set (prefixes (p-io pMinF))
using pass2 [OF ‹(q,P) ∈ prs› ‹path P (initial P) pP› ‹target (initial P) pP

= q› ‹pMin ∈ tps q› ‹?ioF @ [(?xF , t-output tM )] ∈ set (prefixes (p-io pMin))›,
of ?yF ]

using ‹p-io pP @ io ∈ L M ′›
unfolding ‹io = ?ioF@[?xyF ]›[symmetric]
by blast

have path M q pMinF
proof −
obtain pT ′′ d ′′ where (pMinF@pT ′′, d ′′) ∈ m-traversal-paths-with-witness

M q repetition-sets m
using ‹pMinF ∈ tps q› t6 [OF ‹q ∈ fst ‘ prs›] by blast

then have path M q (pMinF@pT ′′)
using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›]
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by force
then show ?thesis by auto

qed
then have path M (initial M ) (pP@pMinF)

using ‹path M (initial M ) pP› ‹target (initial M ) pP = q› by auto
then have (p-io (pP@pMinF)) ∈ L M

unfolding LS .simps by blast
then have (p-io pP)@(p-io pMinF) ∈ L M

by auto

obtain io ′ where p-io pMinF = io @ io ′

using ‹io ∈ set (prefixes (p-io pMinF))›
unfolding prefixes-set mem-Collect-eq by metis

have p-io pP @ io ∈ L M
using ‹(p-io pP)@(p-io pMinF) ∈ L M ›
unfolding ‹p-io pMinF = io @ io ′›
unfolding append.assoc[symmetric]
using language-prefix[of p-io pP @ io io ′, of M initial M ]
by blast

then show ?thesis
using ‹(p-io pP) @ io /∈ L M › by simp

next
case False
then obtain pMin ′′ where pF = pMin @ pMin ′′

using ‹(pF@[tM ]) = pMin @ pMin ′›
by (metis butlast-append butlast-snoc)

then have io = (p-io pMin) @ (p-io pMin ′′) @ [?xyF ]
using ‹io = ?ioF @ [?xyF ]› ‹p-io pF = ?ioF›
by (metis (no-types, lifting) append-assoc map-append)

then show ?thesis
using that[OF ‹(pMin,dMin) ∈ m-traversal-paths-with-witness M q repe-

tition-sets m›, of (p-io pMin ′′) @ [?xyF ]]
by auto

qed
qed

qed

have p-io pP @ p-io pM ∈ L M ′

using ‹((p-io pP) @ io) ∈ L M ′› unfolding ‹io = (p-io pM )@ioEx› ap-
pend.assoc[symmetric]

using language-prefix[of p-io pP @ p-io pM ioEx M ′ initial M ′] by blast

have no-shared-targets-for-distinct-states :
∧

q ′ q ′′ pR1 pR2 . q ′ 6= q ′′ =⇒
q ′ ∈ fst dM =⇒
q ′′ ∈ fst dM =⇒
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pR1 ∈ RP M q q ′ pP pM prs M ′ =⇒
pR2 ∈ RP M q q ′′ pP pM prs M ′ =⇒

io-targets M ′ (p-io pR1 ) (initial M ′) ∩
io-targets M ′ (p-io pR2 ) (initial M ′) = {}

using passes-test-suite-exhaustiveness-helper-1 [OF ‹completely-specified M ′›
‹inputs M ′ = inputs M › ‹observable M › ‹observable M ′› ‹(q,P) ∈ prs› ‹path P
(initial P) pP› ‹target (FSM .initial P) pP = q› ‹p-io pP @ p-io pM ∈ L M ′› ‹(pM ,
dM ) ∈ m-traversal-paths-with-witness M q repetition-sets m› repetition-sets-def
‹passes-test-suite M (Test-Suite prs tps rd-targets separators) M ′›]

by blast

have path M q pM
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d)

pM )) repetition-sets = Some dM
using ‹(pM ,dM ) ∈ m-traversal-paths-with-witness M q repetition-sets m›
using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m] by

force+
then have path M (target (FSM .initial M ) pP) pM

unfolding ‹(target (FSM .initial M ) pP) = q› by simp

have dM ∈ set repetition-sets
using find-set[OF ‹find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.

t-target t ∈ fst d) pM )) repetition-sets = Some dM ›] by assumption
have Suc (m − card (snd dM )) ≤ length (filter (λt. t-target t ∈ fst dM ) pM )
using find-condition[OF ‹find (λd. Suc (m − card (snd d)) ≤ length (filter (λt.

t-target t ∈ fst d) pM )) repetition-sets = Some dM ›] by assumption

obtain ioX where butlast io = (p-io pM )@ioX
using ‹io = (p-io pM )@ioEx›
by (simp add: ‹ioEx 6= []› butlast-append)

have RP-card :
∧

q ′ . card (
⋃

pR∈RP M (target (FSM .initial M ) pP) q ′ pP
pM prs M ′. io-targets M ′ (p-io pR) (FSM .initial M ′)) = card (RP M (target
(FSM .initial M ) pP) q ′ pP pM prs M ′)

and RP-targets:
∧

q ′ pR . pR ∈ RP M (target (FSM .initial M ) pP) q ′ pP pM
prs M ′ =⇒ ∃ q. io-targets M ′ (p-io pR) (FSM .initial M ′) = {q}

and no-shared-targets-for-identical-states:
∧

q ′ pR1 pR2 . pR1 ∈ RP M (target
(FSM .initial M ) pP) q ′ pP pM prs M ′ =⇒ pR2 ∈ RP M (target (FSM .initial M )
pP) q ′ pP pM prs M ′ =⇒ pR1 6= pR2 =⇒ io-targets M ′ (p-io pR1 ) (FSM .initial
M ′) ∩ io-targets M ′ (p-io pR2 ) (FSM .initial M ′) = {}

using RP-count[OF ‹minimal-sequence-to-failure-extending-preamble-path M
M ′ prs pP io› ‹observable M › ‹observable M ′› t2 ‹path M (target (FSM .initial M )
pP) pM › ‹butlast io = (p-io pM )@ioX› pass1 ‹completely-specified M ′› ‹inputs M ′

= inputs M ›, of λ q P io x y y ′ . q λ q P io x y y ′ . y]
by blast+
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have snd-dM-prop:
∧

q ′ . q ′ ∈ snd dM =⇒ (
⋃

pR ∈ (RP M q q ′ pP pM prs M ′)
. io-targets M ′ (p-io pR) (initial M ′)) 6= (

⋃
pR ∈ (R M q q ′ pP pM ) . io-targets

M ′ (p-io pR) (initial M ′))
proof −

fix q ′ assume q ′ ∈ snd dM

let ?RP = (RP M q q ′ pP pM prs M ′)
let ?R = (R M q q ′ pP pM )
let ?P = λ pP ′ . ∃P ′. (q ′, P ′) ∈ prs ∧ path P ′ (FSM .initial P ′) pP ′ ∧ target

(FSM .initial P ′) pP ′ = q ′ ∧ p-io pP ′ ∈ L M ′

obtain PQ where (q ′,PQ) ∈ prs
using ‹q ′ ∈ snd dM › t8 ′[OF ‹dM ∈ set repetition-sets›] by auto

then have is-preamble PQ M q ′ and ∃P ′. (q ′, P ′) ∈ prs
using t2 by blast+

obtain pq where path PQ (initial PQ) pq and target (initial PQ) pq = q ′ and
p-io pq ∈ L M ′

using preamble-pass-path[OF ‹is-preamble PQ M q ′› pass1 [OF ‹(q ′,PQ) ∈
prs›] ‹completely-specified M ′› ‹inputs M ′ = inputs M ›]

by force
then have ∃ pP ′ . ?P pP ′

using ‹(q ′,PQ) ∈ prs› by blast

define pPQ where pPQ-def : pPQ = (SOME pP ′. ?P pP ′)

have ?P pPQ
unfolding pPQ-def using someI-ex[OF ‹∃ pP ′ . ?P pP ′›] by assumption

then obtain PQ ′ where (q ′,PQ ′) ∈ prs
and path PQ ′ (initial PQ ′) pPQ
and target (initial PQ ′) pPQ = q ′

and p-io pPQ ∈ L M ′

by blast

have ?RP = insert pPQ (R M q q ′ pP pM )
unfolding RP-def pPQ-def
using ‹∃P ′. (q ′, P ′) ∈ prs› by auto

obtain pPQ ′ where path M ′ (initial M ′) pPQ ′ and p-io pPQ ′ = p-io pPQ
using ‹p-io pPQ ∈ L M ′› by auto

then have io-targets M ′ (p-io pPQ) (initial M ′) = {target (initial M ′) pPQ ′}
using ‹observable M ′› by (metis (mono-tags, lifting) observable-path-io-target)

moreover have target (initial M ′) pPQ ′ /∈ (
⋃

(image (λ pR . io-targets M ′

(p-io pR) (initial M ′)) ?R))
proof
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assume target (initial M ′) pPQ ′ ∈ (
⋃

(image (λ pR . io-targets M ′ (p-io
pR) (initial M ′)) ?R))

then obtain pR where pR ∈ ?R and target (initial M ′) pPQ ′ ∈ io-targets
M ′ (p-io pR) (initial M ′)

by blast

obtain pR ′ where pR = pP@pR ′

using R-component-ob[OF ‹pR ∈ ?R›] by blast
then have pP@pR ′ ∈ ?R

using ‹pR ∈ ?R› by simp
have pR ′ = take (length pR ′) pM
and length pR ′ ≤ length pM
and t-target (pM ! (length pR ′ − 1 )) = q ′

and pR ′ 6= []
using R-component[OF ‹pP@pR ′ ∈ ?R›] by auto

obtain pX where path M (target (initial M ) pP) (pM@pX) and p-io
(pM@pX) = butlast io

proof −
have p-io pP @ p-io pM @ ioX ∈ L M

using ‹((p-io pP) @ butlast io) ∈ L M ›
unfolding ‹butlast io = p-io pM @ ioX›
by assumption

obtain p1 p23 where path M (FSM .initial M ) p1
and path M (target (FSM .initial M ) p1 ) p23
and p-io p1 = p-io pP
and p-io p23 = p-io pM @ ioX

using language-state-split[OF ‹p-io pP @ p-io pM @ ioX ∈ L M ›]
by blast

have p1 = pP
using observable-path-unique[OF ‹observable M › ‹path M (FSM .initial M )

p1 › ‹path M (FSM .initial M ) pP› ‹p-io p1 = p-io pP›]
by assumption

then have path M (target (FSM .initial M ) pP) p23
using ‹path M (target (FSM .initial M ) p1 ) p23 › by auto

then have p-io pM @ ioX ∈ LS M (target (initial M ) pP)
using ‹p-io p23 = p-io pM @ ioX› language-state-containment by auto

obtain p2 p3 where path M (target (FSM .initial M ) pP) p2
and path M (target (target (FSM .initial M ) pP) p2 ) p3
and p-io p2 = p-io pM
and p-io p3 = ioX

using language-state-split[OF ‹p-io pM @ ioX ∈ LS M (target (initial M )
pP)›]
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by blast

have p2 = pM
using observable-path-unique[OF ‹observable M › ‹path M (target (FSM .initial

M ) pP) p2 ›
‹path M (target (FSM .initial M ) pP) pM › ‹p-io

p2 = p-io pM ›]
by assumption

then have path M (target (FSM .initial M ) pP) (pM@p3 )
using ‹path M (target (FSM .initial M ) pP) pM › ‹path M (target (target

(FSM .initial M ) pP) p2 ) p3 ›
by auto

moreover have p-io (pM@p3 ) = butlast io
unfolding ‹butlast io = p-io pM @ ioX› using ‹p-io p3 = ioX›
by auto

ultimately show ?thesis
using that[of p3 ] by simp

qed

obtain pP ′ pIO where path M ′ (FSM .initial M ′) pP ′

and path M ′ (target (FSM .initial M ′) pP ′) pIO
and p-io pP ′ = p-io pP
and p-io pIO = io

using language-state-split[OF ‹((p-io pP) @ io) ∈ L M ′›]
by blast

have target (initial M ′) pP ′ ∈ io-targets M ′ (p-io pP) (FSM .initial M ′)
using ‹path M ′ (FSM .initial M ′) pP ′›
unfolding ‹p-io pP ′ = p-io pP›[symmetric]
by auto

let ?i = length pR ′ − 1
have ?i < length pR ′

using ‹pR ′ 6= []› by auto
have ?i < length (butlast io)

using ‹pR ′ = take (length pR ′) pM › ‹pR ′ 6= []›
unfolding ‹p-io (pM@pX) = butlast io›[symmetric]
using leI by fastforce

have t-target ((pM @ pX) ! (length pR ′ − 1 )) = q ′

by (metis ‹length pR ′ − 1 < length pR ′› ‹length pR ′ ≤ length pM › ‹t-target
(pM ! (length pR ′ − 1 )) = q ′›

dual-order .strict-trans1 nth-append)
then have (t-target ((pM @ pX) ! (length pR ′ − 1 )), PQ ′) ∈ prs

using ‹(q ′,PQ ′) ∈ prs› by simp
have target (FSM .initial PQ ′) pPQ = t-target ((pM @ pX) ! (length pR ′ −

1 ))
using ‹t-target ((pM @ pX) ! (length pR ′ − 1 )) = q ′› ‹target (FSM .initial

PQ ′) pPQ = q ′›
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by blast

have t-target (pIO ! ?i) /∈ io-targets M ′ (p-io pPQ) (FSM .initial M ′)
using minimal-sequence-to-failure-extending-preamble-no-repetitions-with-other-preambles

[OF ‹minimal-sequence-to-failure-extending-preamble-path M M ′ prs pP io›
‹observable M › ‹

path M (target (initial M ) pP) (pM@pX)› ‹p-io (pM@pX) = butlast
io›

‹target (initial M ′) pP ′ ∈ io-targets M ′ (p-io pP) (FSM .initial M ′)›
‹path M ′ (target (FSM .initial M ′) pP ′) pIO› ‹p-io pIO = io› t2
‹?i < length (butlast io)› ‹(t-target ((pM @ pX) ! (length pR ′ − 1 )),

PQ ′) ∈ prs›
‹path PQ ′ (initial PQ ′) pPQ› ‹target (FSM .initial PQ ′) pPQ = t-target

((pM @ pX) ! (length pR ′ − 1 ))›]
by blast

moreover have io-targets M ′ (p-io pPQ) (FSM .initial M ′) = {target (initial
M ′) pPQ ′}

using ‹path M ′ (initial M ′) pPQ ′›
using ‹io-targets M ′ (p-io pPQ) (FSM .initial M ′) = {target (FSM .initial

M ′) pPQ ′}› ‹p-io pPQ ′ = p-io pPQ› by auto
moreover have io-targets M ′ (p-io (pP@pR ′)) (FSM .initial M ′) = {t-target

(pIO ! ?i)}
proof −

have (take (length pR ′) pIO) 6= []
using ‹p-io pIO = io› ‹?i < length pR ′›
using ‹io = p-io pM @ ioEx› ‹pR ′ = take (length pR ′) pM › by auto

moreover have pIO ! ?i = last (take (length pR ′) pIO)
using ‹p-io pIO = io› ‹?i < length pR ′›
by (metis (no-types, lifting) ‹io = p-io pM @ ioEx› ‹length pR ′ ≤ length

pM › ‹pR ′ = take (length pR ′) pM ›
butlast.simps(1 ) last-conv-nth length-butlast length-map neq-iff nth-take

take-le take-map)
ultimately have t-target (pIO ! ?i) = target (target (FSM .initial M ′) pP ′)

(take (length pR ′) pIO)
unfolding target.simps visited-states.simps
by (simp add: last-map)
then have t-target (pIO ! ?i) = target (initial M ′) (pP ′ @ (take (length

pR ′) pIO))
by auto

have path M ′ (target (FSM .initial M ′) pP ′) (take (length pR ′) pIO)
using ‹path M ′ (target (FSM .initial M ′) pP ′) pIO›
by (simp add: path-prefix-take)

then have path M ′ (initial M ′) (pP ′ @ (take (length pR ′) pIO))
using ‹path M ′ (FSM .initial M ′) pP ′› by auto

moreover have p-io (pP ′ @ (take (length pR ′) pIO)) = (p-io (pP@pR ′))
proof −
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have p-io (take (length pR ′) pIO) = p-io pR ′

using ‹p-io pIO = io› ‹pR ′ = take (length pR ′) pM › ‹p-io (pM@pX) =
butlast io› ‹length pR ′ ≤ length pM ›

by (metis (no-types, lifting) ‹io = p-io pM @ ioEx› length-map take-le
take-map)

then show ?thesis
using ‹p-io pP ′ = p-io pP› by auto

qed
ultimately have io-targets M ′ (p-io (pP@pR ′)) (FSM .initial M ′) = {target

(initial M ′) (pP ′ @ (take (length pR ′) pIO))}
by (metis (mono-tags, lifting) assms(4 ) observable-path-io-target)

then show ?thesis
unfolding ‹t-target (pIO ! ?i) = target (initial M ′) (pP ′ @ (take (length

pR ′) pIO))›
by assumption

qed

ultimately have target (initial M ′) pPQ ′ /∈ io-targets M ′ (p-io pR) (initial
M ′)

unfolding ‹pR = pP@pR ′› by auto
then show False

using ‹target (initial M ′) pPQ ′ ∈ io-targets M ′ (p-io pR) (initial M ′)›
by blast

qed

ultimately have io-targets M ′ (p-io pPQ) (initial M ′) ∩ (
⋃

(image (λ pR .
io-targets M ′ (p-io pR) (initial M ′)) ?R)) = {}

by force

then show (
⋃

pR ∈ (RP M q q ′ pP pM prs M ′) . io-targets M ′ (p-io pR)
(initial M ′)) 6= (

⋃
pR ∈ (R M q q ′ pP pM ) . io-targets M ′ (p-io pR) (initial M ′))

unfolding ‹?RP = insert pPQ (R M q q ′ pP pM )›
using ‹io-targets M ′ (p-io pPQ) (FSM .initial M ′) = {target (FSM .initial M ′)

pPQ ′}›
by force

qed

then obtain f where f-def :
∧

q ′ . q ′ ∈ snd dM =⇒ (RP M q q ′ pP pM prs M ′)
= insert (f q ′) (R M q q ′ pP pM ) ∧ (f q ′) /∈ (R M q q ′ pP pM )

proof −
define f where f-def : f = (λ q ′ . SOME p . (RP M q q ′ pP pM prs M ′) =

insert p (R M q q ′ pP pM ) ∧ p /∈ (R M q q ′ pP pM ))

have
∧

q ′ . q ′ ∈ snd dM =⇒ (RP M q q ′ pP pM prs M ′) = insert (f q ′) (R M
q q ′ pP pM ) ∧ (RP M q q ′ pP pM prs M ′) 6= (R M q q ′ pP pM )

proof −

1305



fix q ′ assume q ′ ∈ snd dM

have (
⋃

pR∈RP M q q ′ pP pM prs M ′. io-targets M ′ (p-io pR) (FSM .initial
M ′)) 6= (

⋃
pR∈R M q q ′ pP pM . io-targets M ′ (p-io pR) (FSM .initial M ′))

using snd-dM-prop[OF ‹q ′ ∈ snd dM ›]
by assumption

then have (RP M q q ′ pP pM prs M ′) 6= (R M q q ′ pP pM )
by blast

then obtain x where (RP M q q ′ pP pM prs M ′) = insert x (R M q q ′ pP
pM )

using RP-from-R[OF t2 pass1 ‹completely-specified M ′› ‹inputs M ′ = inputs
M ›, of prs λ q P io x y y ′ . q λ q P io x y y ′ . y q q ′ pP pM ]

by force
then have x /∈ (R M q q ′ pP pM )

using ‹(RP M q q ′ pP pM prs M ′) 6= (R M q q ′ pP pM )›
by auto

then have ∃ p . (RP M q q ′ pP pM prs M ′) = insert p (R M q q ′ pP pM )
∧ p /∈ (R M q q ′ pP pM )

using ‹(RP M q q ′ pP pM prs M ′) = insert x (R M q q ′ pP pM )› by blast

show (RP M q q ′ pP pM prs M ′) = insert (f q ′) (R M q q ′ pP pM ) ∧ (RP
M q q ′ pP pM prs M ′) 6= (R M q q ′ pP pM )

using someI-ex[OF ‹∃ p . (RP M q q ′ pP pM prs M ′) = insert p (R M q
q ′ pP pM ) ∧ p /∈ (R M q q ′ pP pM )›]

unfolding f-def by auto
qed

then show ?thesis using that by force
qed

have (
∑

q ′ ∈ fst dM . card (
⋃

pR ∈ (RP M q q ′ pP pM prs M ′) . io-targets
M ′ (p-io pR) (initial M ′))) ≥ Suc m

proof −

have
∧

nds . finite nds =⇒ nds ⊆ fst dM =⇒ (
∑

q ′ ∈ nds . card (RP M q
q ′ pP pM prs M ′)) ≥ length (filter (λt. t-target t ∈ nds) pM ) + card (nds ∩ snd
dM )

proof −
fix nds assume finite nds and nds ⊆ fst dM
then show (

∑
q ′ ∈ nds . card (RP M q q ′ pP pM prs M ′)) ≥ length (filter

(λt. t-target t ∈ nds) pM ) + card (nds ∩ snd dM )
proof induction

case empty
then show ?case by auto
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next
case (insert q ′ nds)
then have leq1 : length (filter (λt. t-target t ∈ nds) pM ) + card (nds ∩ snd

dM ) ≤ (
∑

q ′∈nds. card (RP M q q ′ pP pM prs M ′))
by blast

have p4 : (card (R M q q ′ pP pM )) = length (filter (λt. t-target t = q ′) pM )

using ‹path M q pM › proof (induction pM rule: rev-induct)
case Nil
then show ?case unfolding R-def by auto

next
case (snoc t pM )
then have path M q pM and card (R M q q ′ pP pM ) = length (filter (λt.

t-target t = q ′) pM )
by auto

show ?case proof (cases target q (pM @ [t]) = q ′)
case True
then have (R M q q ′ pP (pM @ [t])) = insert (pP @ pM @ [t]) (R M q

q ′ pP pM )
unfolding R-update[of M q q ′ pP pM t] by simp

moreover have (pP @ pM @ [t]) /∈ (R M q q ′ pP pM )
unfolding R-def by auto

ultimately have card (R M q q ′ pP (pM @ [t])) = Suc (card (R M q
q ′ pP pM ))

using finite-R[OF ‹path M q pM ›, of q ′ pP] by simp
then show ?thesis

using True unfolding ‹card (R M q q ′ pP pM ) = length (filter (λt.
t-target t = q ′) pM )› by auto

next
case False
then have card (R M q q ′ pP (pM @ [t])) = card (R M q q ′ pP pM )

unfolding R-update[of M q q ′ pP pM t] by simp
then show ?thesis

using False unfolding ‹card (R M q q ′ pP pM ) = length (filter (λt.
t-target t = q ′) pM )› by auto

qed
qed

show ?case proof (cases q ′ ∈ snd dM )
case True
then have p0 : (RP M q q ′ pP pM prs M ′) = insert (f q ′) (R M q q ′ pP

pM ) and (f q ′) /∈ (R M q q ′ pP pM )
using f-def by blast+

then have card (RP M q q ′ pP pM prs M ′) = Suc (card (R M q q ′ pP
pM ))

by (simp add: ‹path M q pM › finite-R)
then have p1 : (

∑
q ′ ∈ (insert q ′ nds). card (RP M q q ′ pP pM prs M ′))
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= (
∑

q ′∈nds. card (RP M q q ′ pP pM prs M ′)) + Suc (card (R M q q ′ pP pM ))
by (simp add: insert.hyps(1 ) insert.hyps(2 ))

have p2 : length (filter (λt. t-target t ∈ insert q ′ nds) pM ) = length (filter
(λt. t-target t ∈ nds) pM ) + length (filter (λt. t-target t = q ′) pM )

using ‹q ′ /∈ nds› by (induction pM ; auto)
have p3 : card ((insert q ′ nds) ∩ snd dM ) = Suc (card (nds ∩ snd dM ))

using True ‹finite nds› ‹q ′ /∈ nds› by simp

show ?thesis
using leq1
unfolding p1 p2 p3 p4 by simp

next
case False

have card (RP M q q ′ pP pM prs M ′) ≥ (card (R M q q ′ pP pM ))
proof (cases (RP M q q ′ pP pM prs M ′) = (R M q q ′ pP pM ))

case True
then show ?thesis using finite-R[OF ‹path M q pM ›, of q ′ pP] by auto

next
case False
then obtain pX where (RP M q q ′ pP pM prs M ′) = insert pX (R M

q q ′ pP pM )
using RP-from-R[OF t2 pass1 ‹completely-specified M ′› ‹inputs M ′ =

inputs M ›, of prs λ q P io x y y ′ . q λ q P io x y y ′ . y q q ′ pP pM ]
by force

then show ?thesis using finite-R[OF ‹path M q pM ›, of q ′ pP]
by (simp add: card-insert-le)

qed
then have p1 : (

∑
q ′ ∈ (insert q ′ nds). card (RP M q q ′ pP pM prs M ′))

≥ ((
∑

q ′∈nds. card (RP M q q ′ pP pM prs M ′)) + (card (R M q q ′ pP pM )))
by (simp add: insert.hyps(1 ) insert.hyps(2 ))

have p2 : length (filter (λt. t-target t ∈ insert q ′ nds) pM ) = length (filter
(λt. t-target t ∈ nds) pM ) + length (filter (λt. t-target t = q ′) pM )

using ‹q ′ /∈ nds› by (induction pM ; auto)
have p3 : card ((insert q ′ nds) ∩ snd dM ) = (card (nds ∩ snd dM ))

using False ‹finite nds› ‹q ′ /∈ nds› by simp

have length (filter (λt. t-target t ∈ nds) pM ) + length (filter (λt. t-target
t = q ′) pM ) + card (nds ∩ snd dM ) ≤ (

∑
q ′∈nds. card (RP M q q ′ pP pM prs

M ′)) + length (filter (λt. t-target t = q ′) pM )
using leq1 add-le-cancel-right by auto

then show ?thesis
using p1
unfolding p2 p3 p4 by simp

qed
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qed
qed

moreover have finite (fst dM )
using t7 [OF ‹dM ∈ set repetition-sets›] fsm-states-finite[of M ]
using rev-finite-subset by auto

ultimately have (
∑

q ′ ∈ fst dM . card (RP M q q ′ pP pM prs M ′)) ≥ length
(filter (λt. t-target t ∈ fst dM ) pM ) + card (fst dM ∩ snd dM )

by blast
have (fst dM ∩ snd dM ) = (snd dM )

using t8 [OF ‹dM ∈ set repetition-sets›] by blast
have (

∑
q ′ ∈ fst dM . card (RP M q q ′ pP pM prs M ′)) ≥ length (filter (λt.

t-target t ∈ fst dM ) pM ) + card (snd dM )
using ‹(

∑
q ′ ∈ fst dM . card (RP M q q ′ pP pM prs M ′)) ≥ length (filter

(λt. t-target t ∈ fst dM ) pM ) + card (fst dM ∩ snd dM )›
unfolding ‹(fst dM ∩ snd dM ) = (snd dM )›
by assumption

moreover have (
∑

q ′∈fst dM . card (
⋃

pR∈RP M q q ′ pP pM prs M ′. io-targets
M ′ (p-io pR) (FSM .initial M ′))) = (

∑
q ′ ∈ fst dM . card (RP M q q ′ pP pM prs

M ′))
using RP-card ‹FSM .initial P = FSM .initial M › ‹target (FSM .initial P) pP

= q› by auto
ultimately have (

∑
q ′∈fst dM . card (

⋃
pR∈RP M q q ′ pP pM prs M ′.

io-targets M ′ (p-io pR) (FSM .initial M ′))) ≥ length (filter (λt. t-target t ∈ fst
dM ) pM ) + card (snd dM )

by linarith
moreover have Suc m ≤ length (filter (λt. t-target t ∈ fst dM ) pM ) + card

(snd dM )
using ‹Suc (m − card (snd dM )) ≤ length (filter (λt. t-target t ∈ fst dM )

pM )›
by linarith

ultimately show ?thesis
by linarith

qed

moreover have (
∑

q ′ ∈ fst dM . card (
⋃

pR ∈ (RP M q q ′ pP pM prs M ′) .
io-targets M ′ (p-io pR) (initial M ′))) ≤ card (states M ′)

proof −
have finite (fst dM )

by (meson ‹dM ∈ set repetition-sets› fsm-states-finite rev-finite-subset t7 )

have (
∧

x1 . finite (RP M q x1 pP pM prs M ′))
using finite-RP[OF ‹path M q pM › t2 pass1 ‹completely-specified M ′› ‹inputs

M ′ = inputs M ›] by force

have (
∧

y1 . finite (io-targets M ′ (p-io y1 ) (FSM .initial M ′)))
by (meson io-targets-finite)
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have (
∧

y1 . io-targets M ′ (p-io y1 ) (FSM .initial M ′) ⊆ states M ′)
by (meson io-targets-states)

show ?thesis
using distinct-union-union-card
[ of fst dM λ q ′ . (RP M q q ′ pP pM prs M ′) λ pR . io-targets M ′ (p-io pR)

(initial M ′)
, OF ‹finite (fst dM )›

no-shared-targets-for-distinct-states
no-shared-targets-for-identical-states
‹(
∧

x1 . finite (RP M q x1 pP pM prs M ′))›
io-targets-finite
io-targets-states
fsm-states-finite[of M ′]]

unfolding ‹(target (FSM .initial M ) pP) = q› by force
qed

moreover have card (states M ′) ≤ m
using ‹size M ′ ≤ m› by auto

ultimately show False
by linarith

qed

41.6 Completeness of Sufficient Test Suites

This subsection combines the soundness and exhaustiveness properties of
sufficient test suites to show completeness: for any System Under Test with
at most m states a test suite sufficient for m passes if and only if the System
Under Test is a reduction of the specification.
lemma passes-test-suite-completeness :

assumes implies-completeness T M m
and observable M
and observable M ′

and inputs M ′ = inputs M
and inputs M 6= {}
and completely-specified M
and completely-specified M ′

and size M ′ ≤ m
shows (L M ′ ⊆ L M ) ←→ passes-test-suite M T M ′

using passes-test-suite-exhaustiveness[OF - - assms(2−8 )]
passes-test-suite-soundness[OF - assms(2 ,3 ,4 ,6 )]
assms(1 )
test-suite.exhaust[of T ]

by metis
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41.7 Additional Test Suite Properties
fun is-finite-test-suite :: ( ′a, ′b, ′c, ′d) test-suite ⇒ bool where

is-finite-test-suite (Test-Suite prs tps rd-targets separators) =
((finite prs) ∧ (∀ q p . q ∈ fst ‘ prs −→ finite (rd-targets (q,p))) ∧ (∀ q q ′ .

finite (separators (q,q ′))))

end

42 Representing Test Suites as Sets of Input-Output
Sequences

This theory describes the representation of test suites as sets of input-output
sequences and defines a pass relation for this representation.
theory Test-Suite-IO
imports Test-Suite Maximal-Path-Trie
begin

fun test-suite-to-io :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c, ′d) test-suite ⇒ ( ′b × ′c) list set
where

test-suite-to-io M (Test-Suite prs tps rd-targets atcs) =
(
⋃

(q,P) ∈ prs . L P)
∪ (

⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt . ∃ q P . (q,P) ∈

prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q})
∪ (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M (target

q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P (initial P) p ∧ target
(initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧ (A,t1 ,t2 ) ∈ atcs (target
q pt,q ′) })

lemma test-suite-to-io-language :
assumes implies-completeness T M m

shows (test-suite-to-io M T ) ⊆ L M
proof

fix io assume io ∈ test-suite-to-io M T

obtain prs tps rd-targets atcs where T = Test-Suite prs tps rd-targets atcs
by (meson test-suite.exhaust)

then obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets
(Test-Suite prs tps rd-targets atcs) M m repetition-sets

using assms(1 ) unfolding implies-completeness-def
by blast

then have implies-completeness (Test-Suite prs tps rd-targets atcs) M m
unfolding implies-completeness-def
by blast
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have t2 :
∧

q P. (q, P) ∈ prs =⇒ is-preamble P M q
using implies-completeness-for-repetition-sets-simps(2 )[OF repetition-sets-def ]

by blast

have t5 :
∧

q. q ∈ FSM .states M =⇒ (∃ d∈set repetition-sets. q ∈ fst d)
using implies-completeness-for-repetition-sets-simps(4 )[OF repetition-sets-def ]

by assumption

have t6 :
∧

q. q ∈ fst ‘ prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness M q repetition-sets
m) ⊆ tps q

using implies-completeness-for-repetition-sets-simps(7 )[OF repetition-sets-def ]

by assumption

have t8 :
∧

d. d ∈ set repetition-sets =⇒ snd d ⊆ fst d
using implies-completeness-for-repetition-sets-simps(5 ,6 )[OF repetition-sets-def ]

by blast

from ‹io ∈ test-suite-to-io M T › consider
(a) io ∈ (

⋃
(q,P) ∈ prs . L P) |

(b) io ∈ (
⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt . ∃ q P .

(q,P) ∈ prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q}) |
(c) io ∈ (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM

M (target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P (initial P) p
∧ target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧ (A,t1 ,t2 ) ∈ atcs
(target q pt,q ′) })

unfolding ‹T = Test-Suite prs tps rd-targets atcs› test-suite-to-io.simps
by blast

then show io ∈ L M proof cases
case a
then obtain q P where (q, P) ∈ prs and io ∈ L P

by blast

have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›] unfolding is-preamble-def by blast

show io ∈ L M
using submachine-language[OF ‹is-submachine P M ›] ‹io ∈ L P› by blast

next
case b
then obtain p pt q P where io ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io

pt)))
and (q,P) ∈ prs
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and path P (initial P) p
and target (initial P) p = q
and pt ∈ tps q

by blast

then obtain io ′ where io = p-io p @ io ′ and io ′ ∈ (set (prefixes (p-io pt)))
by blast

then obtain io ′′ where p-io pt = io ′ @ io ′′ and io = p-io p @ io ′

unfolding prefixes-set using ‹io ′ ∈ set (prefixes (p-io pt))› prefixes-set-ob by
blast

have q ∈ fst ‘ prs
using ‹(q,P) ∈ prs›
by force

have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›]
unfolding is-preamble-def
by blast

then have initial P = initial M
by auto

have path M (initial M ) p
using submachine-path[OF ‹is-submachine P M › ‹path P (initial P) p›]
unfolding ‹initial P = initial M ›
by assumption

have target (initial M ) p = q
using ‹target (initial P) p = q›
unfolding ‹initial P = initial M ›
by assumption

obtain p2 d where (pt @ p2 , d) ∈ m-traversal-paths-with-witness M q repeti-
tion-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pt ∈ tps q›
by blast

then have path M q (pt @ p2 )
using m-traversal-paths-with-witness-set[OF t5 t8 path-target-is-state[OF ‹path

M (initial M ) p›], of m]
unfolding ‹target (initial M ) p = q›
by blast

then have path M (initial M ) (p@pt)
using ‹path M (initial M ) p› ‹target (initial M ) p = q›
by auto

then have p-io p @ p-io pt ∈ L M
by (metis (mono-tags, lifting) language-intro map-append)

then show io ∈ L M
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unfolding ‹io = p-io p @ io ′› ‹p-io pt = io ′ @ io ′′› append.assoc[symmetric]
using language-prefix[of p-io p @ io ′ io ′′ M initial M ]
by blast

next
case c

then obtain p pt q A P q ′ t1 t2 where io ∈ (λ io-atc . p-io p @ p-io pt @
io-atc) ‘ (atc-to-io-set (from-FSM M (target q pt)) A)

and (q,P) ∈ prs
and path P (initial P) p
and target (initial P) p = q
and pt ∈ tps q
and q ′ ∈ rd-targets (q,pt)
and (A,t1 ,t2 ) ∈ atcs (target q pt,q ′)

by blast

obtain ioA where io = p-io p @ p-io pt @ ioA
and ioA ∈ (atc-to-io-set (from-FSM M (target q pt)) A)

using ‹io ∈ (λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM
M (target q pt)) A)›

by blast
then have ioA ∈ L (from-FSM M (target q pt))

unfolding atc-to-io-set.simps by blast

have q ∈ fst ‘ prs
using ‹(q,P) ∈ prs› by force

have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›] unfolding is-preamble-def by blast

then have initial P = initial M by auto

have path M (initial M ) p
using submachine-path[OF ‹is-submachine P M › ‹path P (initial P) p›]
unfolding ‹initial P = initial M ›
by assumption

have target (initial M ) p = q
using ‹target (initial P) p = q›
unfolding ‹initial P = initial M ›
by assumption

obtain p2 d where (pt @ p2 , d) ∈ m-traversal-paths-with-witness M q repeti-
tion-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pt ∈ tps q› by blast

then have path M q (pt @ p2 )
using m-traversal-paths-with-witness-set[OF t5 t8 path-target-is-state[OF ‹path

M (initial M ) p›], of m]
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unfolding ‹target (initial M ) p = q›
by blast

then have path M (initial M ) (p@pt)
using ‹path M (initial M ) p› ‹target (initial M ) p = q›
by auto

moreover have (target q pt) = target (initial M ) (p@pt)
using ‹target (initial M ) p = q›
by auto

ultimately have (target q pt) ∈ states M
using path-target-is-state
by metis

have ioA ∈ LS M (target q pt)
using from-FSM-language[OF ‹(target q pt) ∈ states M ›] ‹ioA ∈ L (from-FSM

M (target q pt))›
by blast

then obtain pA where path M (target q pt) pA and p-io pA = ioA
by auto

then have path M (initial M ) (p @ pt @ pA)
using ‹path M (initial M ) (p@pt)› unfolding ‹(target q pt) = target (initial

M ) (p@pt)›
by auto

then have p-io p @ p-io pt @ ioA ∈ L M
unfolding ‹p-io pA = ioA›[symmetric]
using language-intro by fastforce

then show io ∈ L M
unfolding ‹io = p-io p @ p-io pt @ ioA›
by assumption

qed
qed

lemma minimal-io-seq-to-failure :
assumes ¬ (L M ′ ⊆ L M )
and inputs M ′ = inputs M
and completely-specified M

obtains io x y y ′ where io@[(x,y)] ∈ L M and io@[(x,y ′)] /∈ L M and io@[(x,y ′)]
∈ L M ′

proof −
obtain ioF where ioF ∈ L M ′ and ioF /∈ L M

using assms(1 ) by blast

let ?prefs = {ioF ′ ∈ set (prefixes ioF) . ioF ′ ∈ L M ′ ∧ ioF ′ /∈ L M}
have finite ?prefs

using prefixes-finite by auto
moreover have ?prefs 6= {}

unfolding prefixes-set using ‹ioF ∈ L M ′› ‹ioF /∈ L M › by auto
ultimately obtain ioF ′ where ioF ′ ∈ ?prefs and

∧
ioF ′′ . ioF ′′ ∈ ?prefs =⇒
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length ioF ′ ≤ length ioF ′′

by (meson leI min-length-elem)

then have ioF ′ ∈ L M ′ and ioF ′ /∈ L M
by auto

then have ioF ′ 6= []
by auto

then have ioF ′ = (butlast ioF ′)@[last ioF ′] and length (butlast ioF ′) < length
ioF ′

by auto
then have butlast ioF ′ /∈ ?prefs

using ‹
∧

ioF ′′ . ioF ′′ ∈ ?prefs =⇒ length ioF ′ ≤ length ioF ′′› leD by blast
moreover have butlast ioF ′ ∈ L M ′

using ‹ioF ′ ∈ L M ′› language-prefix[of butlast ioF ′ [last ioF ′] M ′ initial M ′]
unfolding ‹ioF ′ = (butlast ioF ′)@[last ioF ′]›[symmetric] by blast

moreover have butlast ioF ′ ∈ set (prefixes ioF)
using ‹ioF ′ = (butlast ioF ′)@[last ioF ′]› ‹ioF ′ ∈ ?prefs› prefixes-set

proof −
have ∃ ps. (butlast ioF ′ @ [last ioF ′]) @ ps = ioF

using ‹ioF ′ = butlast ioF ′ @ [last ioF ′]› ‹ioF ′ ∈ {ioF ′ ∈ set (prefixes ioF).
ioF ′ ∈ L M ′ ∧ ioF ′ /∈ L M}›

unfolding prefixes-set
by auto

then show ?thesis
using prefixes-set by fastforce

qed
ultimately have butlast ioF ′ ∈ L M

by blast

have ∗: (butlast ioF ′)@[(fst (last ioF ′), snd (last ioF ′))] ∈ L M ′

using ‹ioF ′ ∈ L M ′› ‹ioF ′ = (butlast ioF ′)@[last ioF ′]› by auto
have ∗∗: (butlast ioF ′)@[(fst (last ioF ′), snd (last ioF ′))] /∈ L M

using ‹ioF ′ /∈ L M › ‹ioF ′ = (butlast ioF ′)@[last ioF ′]› by auto

obtain p where path M (initial M ) p and p-io p = butlast ioF ′

using ‹butlast ioF ′ ∈ L M › by auto
moreover obtain t where t ∈ transitions M

and t-source t = target (initial M ) p
and t-input t = fst (last ioF ′)

proof −
have fst (last ioF ′) ∈ inputs M ′

using language-io(1 )[OF ∗, of fst (last ioF ′) snd (last ioF ′)]
by simp

then have fst (last ioF ′) ∈ inputs M
using assms(2 ) by auto

then show ?thesis
using that ‹completely-specified M › path-target-is-state[OF ‹path M (initial

M ) p›]
unfolding completely-specified.simps by blast

1316



qed
ultimately have ∗∗∗: (butlast ioF ′)@[(fst (last ioF ′), t-output t)] ∈ L M
proof −

have p-io (p @ [t]) ∈ L M
by (metis (no-types) ‹path M (FSM .initial M ) p› ‹t ∈ FSM .transitions M ›

‹t-source t = target (FSM .initial M ) p›
language-intro path-append single-transition-path)

then show ?thesis
by (simp add: ‹p-io p = butlast ioF ′› ‹t-input t = fst (last ioF ′)›)

qed

show ?thesis
using that[OF ∗∗∗ ∗∗ ∗]
by assumption

qed

lemma observable-minimal-path-to-failure :
assumes ¬ (L M ′ ⊆ L M )
and observable M
and observable M ′

and inputs M ′ = inputs M
and completely-specified M
and completely-specified M ′

obtains p p ′ t t ′ where path M (initial M ) (p@[t])
and path M ′ (initial M ′) (p ′@[t ′])
and p-io p ′ = p-io p
and t-input t ′ = t-input t
and ¬(∃ t ′′ . t ′′ ∈ transitions M ∧ t-source t ′′ = target (initial

M ) p ∧ t-input t ′′ = t-input t ∧ t-output t ′′ = t-output t ′)
proof −

obtain io x y y ′ where io@[(x,y)] ∈ L M and io@[(x,y ′)] /∈ L M and io@[(x,y ′)]
∈ L M ′

using minimal-io-seq-to-failure[OF assms(1 ,4 ,5 )] by blast

obtain p t where path M (initial M ) (p@[t]) and p-io p = io and t-input t =
x and t-output t = y

using language-append-path-ob[OF ‹io@[(x,y)] ∈ L M ›] by blast

moreover obtain p ′ t ′ where path M ′ (initial M ′) (p ′@[t ′]) and p-io p ′ = io
and t-input t ′ = x and t-output t ′ = y ′

using language-append-path-ob[OF ‹io@[(x,y ′)] ∈ L M ′›] by blast

moreover have ¬(∃ t ′′ . t ′′ ∈ transitions M ∧ t-source t ′′ = target (initial M )
p ∧ t-input t ′′ = t-input t ∧ t-output t ′′ = t-output t ′)

proof
assume ∃ t ′′. t ′′ ∈ FSM .transitions M ∧ t-source t ′′ = target (FSM .initial M )
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p ∧ t-input t ′′ = t-input t ∧ t-output t ′′ = t-output t ′

then obtain t ′′ where t ′′ ∈ FSM .transitions M and t-source t ′′ = target
(FSM .initial M ) p and t-input t ′′ = x and t-output t ′′ = y ′

unfolding ‹t-input t = x› ‹t-output t ′ = y ′› by blast

then have path M (initial M ) (p@[t ′′])
using ‹path M (initial M ) (p@[t])›
by (meson path-append-elim path-append-transition)

moreover have p-io (p@[t ′′]) = io@[(x,y ′)]
using ‹p-io p = io› ‹t-input t ′′ = x› ‹t-output t ′′ = y ′› by auto

ultimately have io@[(x,y ′)] ∈ L M
using language-state-containment
by (metis (mono-tags, lifting))

then show False
using ‹io@[(x,y ′)] /∈ L M › by blast

qed

ultimately show ?thesis using that[of p t p ′ t ′]
by force

qed

lemma test-suite-to-io-pass :
assumes implies-completeness T M m
and observable M
and observable M ′

and inputs M ′ = inputs M
and inputs M 6= {}
and completely-specified M
and completely-specified M ′

shows pass-io-set M ′ (test-suite-to-io M T ) = passes-test-suite M T M ′

proof −
obtain prs tps rd-targets atcs where T = Test-Suite prs tps rd-targets atcs

by (meson test-suite.exhaust)
then obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets

(Test-Suite prs tps rd-targets atcs) M m repetition-sets
using assms(1 ) unfolding implies-completeness-def by blast

then have implies-completeness (Test-Suite prs tps rd-targets atcs) M m
unfolding implies-completeness-def by blast

then have test-suite-language-prop: test-suite-to-io M (Test-Suite prs tps rd-targets
atcs) ⊆ L M

using test-suite-to-io-language by blast

have t1 : (initial M , initial-preamble M ) ∈ prs
using implies-completeness-for-repetition-sets-simps(1 )[OF repetition-sets-def ]

by assumption
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have t2 :
∧

q P. (q, P) ∈ prs =⇒ is-preamble P M q
using implies-completeness-for-repetition-sets-simps(2 )[OF repetition-sets-def ]

by blast
have t3 :

∧
q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ atcs (q1 , q2 ) =⇒ (A, d2 , d1 ) ∈ atcs

(q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2
using implies-completeness-for-repetition-sets-simps(3 )[OF repetition-sets-def ]

by assumption

have t5 :
∧

q. q ∈ FSM .states M =⇒ (∃ d∈set repetition-sets. q ∈ fst d)
using implies-completeness-for-repetition-sets-simps(4 )[OF repetition-sets-def ]

by assumption

have t6 :
∧

q. q ∈ fst ‘ prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness M q repetition-sets
m) ⊆ tps q

using implies-completeness-for-repetition-sets-simps(7 )[OF repetition-sets-def ]

by assumption

have t7 :
∧

d. d ∈ set repetition-sets =⇒ fst d ⊆ FSM .states M
and t8 :

∧
d. d ∈ set repetition-sets =⇒ snd d ⊆ fst d

and t8 ′:
∧

d. d ∈ set repetition-sets =⇒ snd d = fst d ∩ fst ‘ prs
and t9 :

∧
d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1

6= q2 =⇒ atcs (q1 , q2 ) 6= {}
using implies-completeness-for-repetition-sets-simps(5 ,6 )[OF repetition-sets-def ]

by blast+

have pass-io-set M ′ (test-suite-to-io M (Test-Suite prs tps rd-targets atcs)) =⇒
passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′

proof −
assume pass-io-set M ′ (test-suite-to-io M (Test-Suite prs tps rd-targets atcs))

then have pass-io-prop:
∧

io x y y ′ . io @ [(x, y)] ∈ test-suite-to-io M (Test-Suite
prs tps rd-targets atcs) =⇒ io @ [(x, y ′)] ∈ L M ′ =⇒ io @ [(x, y ′)] ∈ test-suite-to-io
M (Test-Suite prs tps rd-targets atcs)

unfolding pass-io-set-def
by blast

show passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′

proof (rule ccontr)
assume ¬ passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′

then consider (a) ¬ (∀ q P io x y y ′. (q, P) ∈ prs −→ io @ [(x, y)] ∈ L P
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−→ io @ [(x, y ′)] ∈ L M ′ −→ io @ [(x, y ′)] ∈ L P) |
(b) ¬ ((∀ q P pP ioT pT x y y ′.

(q, P) ∈ prs −→
path P (FSM .initial P) pP −→
target (FSM .initial P) pP = q −→
pT ∈ tps q −→
ioT @ [(x, y)] ∈ set (prefixes (p-io pT )) −→

p-io pP @ ioT @ [(x, y ′)] ∈ L M ′ −→ (∃ pT ′. pT ′ ∈ tps q
∧ ioT @ [(x, y ′)] ∈ set (prefixes (p-io pT ′))))) |

(c) ¬ ((∀ q P pP pT .
(q, P) ∈ prs −→
path P (FSM .initial P) pP −→
target (FSM .initial P) pP = q −→
pT ∈ tps q −→
p-io pP @ p-io pT ∈ L M ′ −→
(∀ q ′ A d1 d2 qT .

q ′ ∈ rd-targets (q, pT ) −→
(A, d1 , d2 ) ∈ atcs (target q pT , q ′) −→ qT ∈ io-targets

M ′ (p-io pP @ p-io pT ) (FSM .initial M ′) −→ pass-separator-ATC M ′ A qT d2 )))

unfolding passes-test-suite.simps by blast
then show False proof cases

case a
then obtain q P io x y y ′ where (q, P) ∈ prs

and io @ [(x, y)] ∈ L P
and io @ [(x, y ′)] ∈ L M ′

and io @ [(x, y ′)] /∈ L P
by blast

have is-preamble P M q
using t2 [OF ‹(q, P) ∈ prs›] by assumption

have io @ [(x, y)] ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)
unfolding test-suite-to-io.simps using ‹(q, P) ∈ prs› ‹io @ [(x, y)] ∈ L

P›
by fastforce

have io @ [(x, y ′)] ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)
using pass-io-prop[OF ‹io @ [(x, y)] ∈ test-suite-to-io M (Test-Suite prs

tps rd-targets atcs)› ‹io @ [(x, y ′)] ∈ L M ′›]
by assumption

then have io @ [(x, y ′)] ∈ L M
using test-suite-language-prop
by blast

have io @ [(x, y ′)] ∈ L P
using passes-test-suite-soundness-helper-1 [OF ‹is-preamble P M q› ‹ob-
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servable M › ‹io @ [(x, y)] ∈ L P› ‹io @ [(x, y ′)] ∈ L M ›]
by assumption

then show False
using ‹io @ [(x, y ′)] /∈ L P›
by blast

next
case b
then obtain q P pP ioT pT x y y ′ where (q, P) ∈ prs

and path P (FSM .initial P) pP
and target (FSM .initial P) pP = q
and pT ∈ tps q
and ioT @ [(x, y)] ∈ set (prefixes (p-io pT ))
and p-io pP @ ioT @ [(x, y ′)] ∈ L M ′

and ¬ (∃ pT ′. pT ′ ∈ tps q ∧ ioT @ [(x, y ′)] ∈
set (prefixes (p-io pT ′)))

by blast

have ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) pP ∧ target (FSM .initial
P) pP = q ∧ pT ∈ tps q

using ‹(q, P) ∈ prs› ‹path P (FSM .initial P) pP› ‹target (FSM .initial P)
pP = q› ‹pT ∈ tps q› by blast

moreover have p-io pP @ ioT @ [(x, y)] ∈ (@) (p-io pP) ‘ set (prefixes
(p-io pT ))

using ‹ioT @ [(x, y)] ∈ set (prefixes (p-io pT ))› by auto
ultimately have p-io pP @ ioT @ [(x, y)] ∈ (

⋃
{(@) (p-io p) ‘ set

(prefixes (p-io pt)) |p pt. ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target
(FSM .initial P) p = q ∧ pt ∈ tps q})

by blast
then have p-io pP @ ioT @ [(x, y)] ∈ test-suite-to-io M (Test-Suite prs tps

rd-targets atcs)
unfolding test-suite-to-io.simps
by blast

then have ∗: (p-io pP @ ioT ) @ [(x, y)] ∈ test-suite-to-io M (Test-Suite
prs tps rd-targets atcs)

by auto

have ∗∗: (p-io pP @ ioT ) @ [(x, y ′)] ∈ L M ′

using ‹p-io pP @ ioT @ [(x, y ′)] ∈ L M ′› by auto

have (p-io pP @ ioT ) @ [(x, y ′)] ∈ test-suite-to-io M (Test-Suite prs tps
rd-targets atcs)

using pass-io-prop[OF ∗ ∗∗ ] by assumption
then have (p-io pP @ ioT ) @ [(x, y ′)] ∈ L M

using test-suite-language-prop by blast

have q ∈ states M
using is-preamble-is-state[OF t2 [OF ‹(q, P) ∈ prs›]] by assumption
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have q ∈ fst ‘ prs
using ‹(q, P) ∈ prs› by force

obtain pT ′ d ′ where (pT @ pT ′, d ′) ∈ m-traversal-paths-with-witness M q
repetition-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pT ∈ tps q› by blast

then have path M q (pT @ pT ′)
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈

fst d) (pT @ pT ′))) repetition-sets = Some d ′

and
∧

p ′ p ′′. (pT @ pT ′) = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m
− card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None

using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by blast+

obtain ioT ′ where p-io pT = ioT @ [(x,y)] @ ioT ′

using prefixes-set-ob[OF ‹ioT @ [(x, y)] ∈ set (prefixes (p-io pT ))›]
unfolding prefixes-set append.assoc[symmetric]
by blast

let ?pt = take (length (ioT @ [(x,y)])) pT
let ?p = butlast ?pt
let ?t = last ?pt

have length ?pt > 0
using ‹p-io pT = ioT @ [(x,y)] @ ioT ′›
unfolding length-map[of (λ t . (t-input t, t-output t)), symmetric]
by auto

then have ?pt = ?p @ [?t]
by auto

moreover have path M q ?pt
using ‹path M q (pT @ pT ′)›
by (meson path-prefix path-prefix-take)

ultimately have path M q (?p@[?t])
by simp

have p-io ?p = ioT
proof −

have p-io ?pt = take (length (ioT @ [(x,y)])) (p-io pT )
by (simp add: take-map)

then have p-io ?pt = ioT @ [(x,y)]
using ‹p-io pT = ioT @ [(x,y)] @ ioT ′› by auto

then show ?thesis
by (simp add: map-butlast)

qed

have path M q ?p
using path-append-transition-elim[OF ‹path M q (?p@[?t])›] by blast
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have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›] unfolding is-preamble-def by blast

then have initial P = initial M by auto

have path M (initial M ) pP
using submachine-path[OF ‹is-submachine P M › ‹path P (initial P) pP›]
unfolding ‹initial P = initial M ›
by assumption

moreover have target (initial M ) pP = q
using ‹target (initial P) pP = q›
unfolding ‹initial P = initial M ›
by assumption

ultimately have path M (initial M ) (pP@?p)
using ‹path M q ?p›
by auto

have find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst
d) ?p)) repetition-sets = None

proof −
have ∗: (pT @ pT ′) = ?p @ ([?t] @ (drop (length (ioT @ [(x,y)])) pT ) @

pT ′)
using ‹?pt = ?p @ [?t]›
by (metis append-assoc append-take-drop-id)

have ∗∗: ([?t] @ (drop (length (ioT @ [(x,y)])) pT ) @ pT ′) 6= []
by simp

show ?thesis
using ‹

∧
p ′ p ′′. (pT @ pT ′) = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc

(m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets =
None›[OF ∗ ∗∗]

by assumption
qed

obtain p ′ t ′ where path M (FSM .initial M ) (p ′ @ [t ′]) and p-io p ′ = p-io
pP @ ioT and t-input t ′ = x and t-output t ′ = y ′

using language-append-path-ob[OF ‹(p-io pP @ ioT ) @ [(x, y ′)] ∈ L M ›]
by blast

then have path M (FSM .initial M ) p ′ and t-source t ′ = target (initial M )
p ′ and t ′ ∈ transitions M

by auto

have p ′ = pP @ ?p
using observable-path-unique[OF ‹observable M › ‹path M (FSM .initial M )

p ′› ‹path M (initial M ) (pP@?p)›]
‹p-io ?p = ioT ›

unfolding ‹p-io p ′ = p-io pP @ ioT ›
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by simp
then have t-source t ′ = target q ?p

unfolding ‹t-source t ′ = target (initial M ) p ′› using ‹target (initial M )
pP = q›

by auto

obtain pTt ′ dt ′ where (?p @ [t ′] @ pTt ′, dt ′) ∈ m-traversal-paths-with-witness
M q repetition-sets m

using m-traversal-path-extension-exist-for-transition[OF ‹completely-specified
M › ‹q ∈ states M › ‹FSM .inputs M 6= {}›

t5 t8 ‹path M q ?p› ‹find (λd.
Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) ?p)) repetition-sets
= None›

‹t ′ ∈ transitions M › ‹t-source
t ′ = target q ?p›]

by blast

have ?p @ [t ′] @ pTt ′ ∈ tps q
using t6 [OF ‹q ∈ fst ‘ prs› ] ‹(?p @ [t ′] @ pTt ′, dt ′) ∈ m-traversal-paths-with-witness

M q repetition-sets m›
by force

moreover have ioT @ [(x, y ′)] ∈ set (prefixes (p-io (?p @ [t ′] @ pTt ′)))
proof −

have p-io (?p @ [t ′] @ pTt ′) = ioT @ [(x,y ′)] @ p-io pTt ′

using ‹p-io ?p = ioT › using ‹t-input t ′ = x› ‹t-output t ′ = y ′›
by auto

then show ?thesis
unfolding prefixes-set
by force

qed

ultimately show False
using ‹¬ (∃ pT ′. pT ′ ∈ tps q ∧ ioT @ [(x, y ′)] ∈ set (prefixes (p-io pT ′)))›

by blast
next

case c

then obtain q P pP pT q ′ A d1 d2 qT where (q, P) ∈ prs
and path P (FSM .initial P) pP
and target (FSM .initial P) pP = q
and pT ∈ tps q
and p-io pP @ p-io pT ∈ L M ′

and q ′ ∈ rd-targets (q, pT )
and (A, d1 , d2 ) ∈ atcs (target q pT , q ′)

and qT ∈ io-targets M ′ (p-io pP @ p-io pT )
(FSM .initial M ′)

and ¬pass-separator-ATC M ′ A qT d2
by blast
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have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›]
unfolding is-preamble-def
by blast

then have initial P = initial M by auto

have path M (initial M ) pP
using submachine-path[OF ‹is-submachine P M › ‹path P (initial P) pP›]
unfolding ‹initial P = initial M ›
by assumption

have target (initial M ) pP = q
using ‹target (initial P) pP = q›
unfolding ‹initial P = initial M ›
by assumption

have q ∈ states M
using is-preamble-is-state[OF t2 [OF ‹(q, P) ∈ prs›]]
by assumption

have q ∈ fst ‘ prs
using ‹(q, P) ∈ prs› by force

obtain pT ′ d ′ where (pT @ pT ′, d ′) ∈ m-traversal-paths-with-witness M q
repetition-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pT ∈ tps q› by blast

then have path M q (pT @ pT ′)
and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t ∈

fst d) (pT @ pT ′))) repetition-sets = Some d ′

and
∧

p ′ p ′′. (pT @ pT ′) = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m
− card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None

using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by blast+

then have path M q pT
by auto

have qT ∈ states M ′

using ‹qT ∈ io-targets M ′ (p-io pP @ p-io pT ) (FSM .initial M ′)›
io-targets-states subset-iff

by fastforce

have is-separator M (target q pT ) q ′ A d1 d2
using t3 [OF ‹(A, d1 , d2 ) ∈ atcs (target q pT , q ′)›] by blast

have ¬ pass-io-set (FSM .from-FSM M ′ qT ) (atc-to-io-set (FSM .from-FSM
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M (target q pT )) A)
using ‹¬pass-separator-ATC M ′ A qT d2 ›

pass-separator-pass-io-set-iff [OF ‹is-separator M (target q pT ) q ′ A
d1 d2 › ‹observable M ›

‹observable M ′› path-target-is-state[OF
‹path M q pT ›]

‹qT ∈ states M ′› ‹inputs M ′ = inputs M ›
‹completely-specified M ›]

by simp

have pass-io-set (FSM .from-FSM M ′ qT ) (atc-to-io-set (FSM .from-FSM
M (target q pT )) A)

proof −
have

∧
io x y y ′ . io @ [(x, y)] ∈ atc-to-io-set (FSM .from-FSM M (target

q pT )) A =⇒
io @ [(x, y ′)] ∈ L (FSM .from-FSM M ′ qT ) =⇒
io @ [(x, y ′)] ∈ atc-to-io-set (FSM .from-FSM M (target

q pT )) A
proof −

fix io x y y ′ assume io @ [(x, y)] ∈ atc-to-io-set (FSM .from-FSM M
(target q pT )) A

and io @ [(x, y ′)] ∈ L (FSM .from-FSM M ′ qT )

define tmp where tmp-def : tmp = (
⋃
{(λio-atc. p-io p @ p-io pt @

io-atc) ‘ atc-to-io-set (FSM .from-FSM M (target q pt)) A |p pt q A. ∃P q ′ t1 t2 .
(q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈
tps q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)})

define tmp2 where tmp2-def : tmp2 =
⋃
{(@) (p-io p) ‘ set (prefixes (p-io

pt)) |p pt. ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial
P) p = q ∧ pt ∈ tps q}

have ∃P q ′ t1 t2 . (q, P) ∈ prs ∧ path P (FSM .initial P) pP ∧ target
(FSM .initial P) pP = q ∧ pT ∈ tps q ∧ q ′ ∈ rd-targets (q, pT ) ∧ (A, t1 , t2 ) ∈
atcs (target q pT , q ′)

using ‹(q, P) ∈ prs› ‹path P (FSM .initial P) pP› ‹target (FSM .initial
P) pP = q› ‹pT ∈ tps q› ‹q ′ ∈ rd-targets (q, pT )› ‹(A, d1 , d2 ) ∈ atcs (target q
pT , q ′)› by blast

then have (λio-atc. p-io pP @ p-io pT @ io-atc) ‘ atc-to-io-set
(FSM .from-FSM M (target q pT )) A ⊆ tmp

unfolding tmp-def by blast
then have (λio-atc. p-io pP @ p-io pT @ io-atc) ‘ atc-to-io-set

(FSM .from-FSM M (target q pT )) A ⊆ test-suite-to-io M (Test-Suite prs tps
rd-targets atcs)

unfolding test-suite-to-io.simps tmp-def [symmetric] tmp2-def [symmetric]
by blast

moreover have (p-io pP @ p-io pT @ (io @ [(x, y)])) ∈ (λio-atc. p-io
pP @ p-io pT @ io-atc) ‘ atc-to-io-set (FSM .from-FSM M (target q pT )) A
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using ‹io @ [(x, y)] ∈ atc-to-io-set (FSM .from-FSM M (target q pT ))
A› by auto

ultimately have (p-io pP @ p-io pT @ (io @ [(x, y)])) ∈ test-suite-to-io
M (Test-Suite prs tps rd-targets atcs)

by blast
then have ∗: (p-io pP @ p-io pT @ io) @ [(x, y)] ∈ test-suite-to-io M

(Test-Suite prs tps rd-targets atcs)
by simp

have io @ [(x, y ′)] ∈ LS M ′ qT
using ‹io @ [(x, y ′)] ∈ L (FSM .from-FSM M ′ qT )› ‹qT ∈ states M ′›
by (metis from-FSM-language)

have ∗∗: (p-io pP @ p-io pT @ io) @ [(x, y ′)] ∈ L M ′

using io-targets-language-append[OF ‹qT ∈ io-targets M ′ (p-io pP @
p-io pT ) (FSM .initial M ′)› ‹io @ [(x, y ′)] ∈ LS M ′ qT ›]

by simp

have (p-io pP @ p-io pT ) @ (io @ [(x, y ′)]) ∈ test-suite-to-io M (Test-Suite
prs tps rd-targets atcs)

using pass-io-prop[OF ∗ ∗∗ ] by simp
then have (p-io pP @ p-io pT ) @ (io @ [(x, y ′)]) ∈ L M

using test-suite-language-prop by blast

moreover have target q pT ∈ io-targets M (p-io pP @ p-io pT ) (initial
M )

proof −
have target (initial M ) (pP@pT ) = target q pT

unfolding ‹target (initial M ) pP = q›[symmetric] by auto
moreover have path M (initial M ) (pP@pT )

using ‹path M (initial M ) pP› ‹path M q pT › unfolding ‹target
(initial M ) pP = q›[symmetric]

by auto
moreover have p-io (pP@pT ) = (p-io pP @ p-io pT )

by auto
ultimately show ?thesis

unfolding io-targets.simps
by (metis (mono-tags, lifting) mem-Collect-eq)

qed

ultimately have io @ [(x, y ′)] ∈ LS M (target q pT )
using observable-io-targets-language[OF - ‹observable M ›, of (p-io pP

@ p-io pT ) (io @ [(x, y ′)]) initial M target q pT ]
by blast

then have io @ [(x, y ′)] ∈ L (FSM .from-FSM M (target q pT ))
unfolding from-FSM-language[OF path-target-is-state[OF ‹path M q

pT ›]]
by assumption

moreover have io @ [(x, y ′)] ∈ L A
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by (metis Int-iff ‹io @ [(x, y ′)] ∈ LS M (target q pT )› ‹io @ [(x, y)] ∈
atc-to-io-set (FSM .from-FSM M (target q pT )) A›

‹is-separator M (target q pT ) q ′ A d1 d2 › atc-to-io-set.simps
is-separator-simps(9 ))

ultimately show io @ [(x, y ′)] ∈ atc-to-io-set (FSM .from-FSM M (target
q pT )) A

unfolding atc-to-io-set.simps by blast
qed

then show ?thesis unfolding pass-io-set-def by blast
qed

then show False
using pass-separator-from-pass-io-set[OF ‹is-separator M (target q pT ) q ′

A d1 d2 › - ‹observable M ›
‹observable M ′› path-target-is-state[OF

‹path M q pT ›]
‹qT ∈ states M ′› ‹inputs M ′ = inputs M ›

‹completely-specified M ›]
‹¬pass-separator-ATC M ′ A qT d2 ›

by simp
qed

qed
qed

moreover have passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′ =⇒
pass-io-set M ′ (test-suite-to-io M (Test-Suite prs tps rd-targets atcs))

proof −
assume passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′

have pass1 :
∧

q P io x y y ′ . (q,P) ∈ prs =⇒ io@[(x,y)] ∈ L P =⇒ io@[(x,y ′)]
∈ L M ′ =⇒ io@[(x,y ′)] ∈ L P

using ‹passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′›
unfolding passes-test-suite.simps
by meson

have pass2 :
∧

q P pP ioT pT x y y ′ . (q,P) ∈ prs =⇒ path P (initial P) pP
=⇒ target (initial P) pP = q =⇒ pT ∈ tps q =⇒ ioT@[(x,y)] ∈ set (prefixes (p-io
pT )) =⇒ (p-io pP)@ioT@[(x,y ′)] ∈ L M ′ =⇒ (∃ pT ′ . pT ′ ∈ tps q ∧ ioT@[(x,y ′)]
∈ set (prefixes (p-io pT ′)))

using ‹passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′›
unfolding passes-test-suite.simps by blast

have pass3 :
∧

q P pP pT q ′ A d1 d2 qT . (q,P) ∈ prs =⇒ path P (initial P)
pP =⇒ target (initial P) pP = q =⇒ pT ∈ tps q =⇒ (p-io pP)@(p-io pT ) ∈ L
M ′ =⇒ q ′ ∈ rd-targets (q,pT ) =⇒ (A,d1 ,d2 ) ∈ atcs (target q pT , q ′) =⇒ qT ∈
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io-targets M ′ ((p-io pP)@(p-io pT )) (initial M ′) =⇒ pass-separator-ATC M ′ A qT
d2

using ‹passes-test-suite M (Test-Suite prs tps rd-targets atcs) M ′›
unfolding passes-test-suite.simps by blast

show pass-io-set M ′ (test-suite-to-io M (Test-Suite prs tps rd-targets atcs))
proof (rule ccontr)

assume ¬ pass-io-set M ′ (test-suite-to-io M (Test-Suite prs tps rd-targets
atcs))

then obtain io x y y ′ where io @ [(x, y)] ∈ test-suite-to-io M (Test-Suite
prs tps rd-targets atcs)

and io @ [(x, y ′)] ∈ L M ′

and io @ [(x, y ′)] /∈ test-suite-to-io M (Test-Suite prs tps
rd-targets atcs)

unfolding pass-io-set-def by blast

have preamble-prop:
∧

q P . (q, P) ∈ prs =⇒ io @ [(x, y)] ∈ L P =⇒ False
proof −

fix q P assume (q, P)∈prs and io @ [(x, y)] ∈ L P
have io @ [(x, y ′)] ∈ L P using pass1 [OF ‹(q, P)∈prs› ‹io @ [(x, y)] ∈ L

P› ‹io @ [(x, y ′)] ∈ L M ′› ]
by assumption

then have io @ [(x, y ′)] ∈ test-suite-to-io M (Test-Suite prs tps rd-targets
atcs)

unfolding test-suite-to-io.simps using ‹(q, P)∈prs› by blast
then show False using ‹io @ [(x, y ′)] /∈ test-suite-to-io M (Test-Suite prs

tps rd-targets atcs)›
by simp

qed

have traversal-path-prop :
∧

pP pt q P . io @ [(x, y)] ∈ (@) (p-io pP) ‘ set
(prefixes (p-io pt)) =⇒ (q, P) ∈ prs =⇒ path P (FSM .initial P) pP =⇒ target
(FSM .initial P) pP = q =⇒ pt ∈ tps q =⇒ False

proof −
fix pP pt q P assume io @ [(x, y)] ∈ (@) (p-io pP) ‘ set (prefixes (p-io pt))

and (q, P) ∈ prs
and path P (FSM .initial P) pP
and target (FSM .initial P) pP = q
and pt ∈ tps q

obtain io ′ io ′′ where io @ [(x, y)] = (p-io pP) @ io ′ and io ′@io ′′ = p-io pt
using ‹io @ [(x, y)] ∈ (@) (p-io pP) ‘ set (prefixes (p-io pt))›
unfolding prefixes-set
by blast
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have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›]
unfolding is-preamble-def
by blast

then have initial P = initial M
by auto

have path M (initial M ) pP
using submachine-path[OF ‹is-submachine P M › ‹path P (initial P) pP›]
unfolding ‹initial P = initial M ›
by assumption

have target (initial M ) pP = q
using ‹target (initial P) pP = q›
unfolding ‹initial P = initial M ›
by assumption

have q ∈ states M
using is-preamble-is-state[OF t2 [OF ‹(q, P) ∈ prs›]]
by assumption

have q ∈ fst ‘ prs
using ‹(q, P) ∈ prs› by force

show False proof (cases io ′ rule: rev-cases)
case Nil
then have p-io pP = io @ [(x, y)]

using ‹io @ [(x, y)] = (p-io pP) @ io ′›
by auto

show ?thesis
using preamble-prop[OF ‹(q,P) ∈ prs› language-state-containment[OF

‹path P (FSM .initial P) pP› ‹p-io pP = io @ [(x, y)]›]]
by assumption

next
case (snoc ioI xy)
then have xy = (x,y) and io = (p-io pP) @ ioI

using ‹io @ [(x, y)] = (p-io pP) @ io ′› by auto
then have p-io pP @ ioI @ [(x, y ′)] ∈ L M ′

using ‹io @ [(x, y ′)] ∈ L M ′› by simp

have ioI @ [(x, y)] ∈ set (prefixes (p-io pt))
unfolding prefixes-set
using ‹io ′ @ io ′′ = p-io pt› ‹xy = (x, y)› snoc
by auto

obtain pT ′ where pT ′ ∈ tps q and ioI @ [(x, y ′)] ∈ set (prefixes (p-io
pT ′))

using pass2 [OF ‹(q, P) ∈ prs› ‹path P (FSM .initial P) pP› ‹target
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(FSM .initial P) pP = q› ‹pt ∈ tps q›
‹ioI @ [(x, y)] ∈ set (prefixes (p-io pt))› ‹p-io pP @ ioI @

[(x, y ′)] ∈ L M ′›] by blast

have io @ [(x, y ′)] ∈ (@) (p-io pP) ‘ set (prefixes (p-io pT ′))
using ‹ioI @ [(x, y ′)] ∈ set (prefixes (p-io pT ′))›
unfolding ‹io = (p-io pP) @ ioI ›
by simp

have io @ [(x, y ′)] ∈ (
⋃
{(@) (p-io p) ‘ set (prefixes (p-io pt)) |p pt. ∃ q

P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt
∈ tps q})

using ‹(q, P) ∈ prs› ‹path P (FSM .initial P) pP› ‹target (FSM .initial
P) pP = q›

‹pT ′ ∈ tps q› ‹io @ [(x, y ′)] ∈ (@) (p-io pP) ‘ set (prefixes (p-io
pT ′))›

by blast
then have io @ [(x, y ′)] ∈ test-suite-to-io M (Test-Suite prs tps rd-targets

atcs)
unfolding test-suite-to-io.simps
by blast

then show False
using ‹io @ [(x, y ′)] /∈ test-suite-to-io M (Test-Suite prs tps rd-targets

atcs)›
by blast

qed
qed

consider (a) io @ [(x, y)] ∈ (
⋃

(q, P)∈prs. L P) |
(b) io @ [(x, y)] ∈ (

⋃
{(@) (p-io p) ‘ set (prefixes (p-io pt)) |p pt. ∃ q

P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt
∈ tps q}) |

(c) io @ [(x, y)] ∈ (
⋃
{(λio-atc. p-io p @ p-io pt @ io-atc) ‘ atc-to-io-set

(FSM .from-FSM M (target q pt)) A |p pt q A.
∃P q ′ t1 t2 .

(q, P) ∈ prs ∧
path P (FSM .initial P) p ∧ target (FSM .initial

P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt,
q ′)})

using ‹io @ [(x, y)] ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)›
unfolding test-suite-to-io.simps by blast

then show False proof cases
case a
then show ?thesis using preamble-prop by blast

next
case b
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then show ?thesis using traversal-path-prop by blast
next

case c

then obtain pP pt q A P q ′ t1 t2 where io @ [(x, y)] ∈ (λio-atc. p-io pP
@ p-io pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM M (target q pt)) A

and (q, P) ∈ prs
and path P (FSM .initial P) pP
and target (FSM .initial P) pP = q
and pt ∈ tps q
and q ′ ∈ rd-targets (q, pt)
and (A, t1 , t2 ) ∈ atcs (target q pt, q ′)

by blast

obtain ioA where io @ [(x, y)] = p-io pP @ p-io pt @ ioA
using ‹io @ [(x, y)] ∈ (λio-atc. p-io pP @ p-io pt @ io-atc) ‘ atc-to-io-set

(FSM .from-FSM M (target q pt)) A›
unfolding prefixes-set
by blast

show False proof (cases ioA rule: rev-cases)
case Nil
then have io @ [(x, y)] = p-io pP @ p-io pt

using ‹io @ [(x, y)] = p-io pP @ p-io pt @ ioA› by simp
then have io @ [(x, y)] ∈ (@) (p-io pP) ‘ set (prefixes (p-io pt))

unfolding prefixes-set by blast
show ?thesis
using traversal-path-prop[OF ‹io @ [(x, y)] ∈ (@) (p-io pP) ‘ set (prefixes

(p-io pt))› ‹(q, P) ∈ prs›
‹path P (FSM .initial P) pP› ‹target (FSM .initial

P) pP = q› ‹pt ∈ tps q›]
by assumption

next
case (snoc ioAI xy)
then have xy = (x,y) and io = p-io pP @ p-io pt @ ioAI

using ‹io @ [(x, y)] = p-io pP @ p-io pt @ ioA› by simp+
then have p-io pP @ p-io pt @ ioAI @ [(x,y)] ∈ (λio-atc. p-io pP @ p-io

pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM M (target q pt)) A
using ‹io @ [(x, y)] ∈ (λio-atc. p-io pP @ p-io pt @ io-atc) ‘ atc-to-io-set

(FSM .from-FSM M (target q pt)) A›
by auto
then have ioAI @ [(x,y)] ∈ atc-to-io-set (FSM .from-FSM M (target q

pt)) A
by auto

have p-io pP @ p-io pt ∈ L M ′

using ‹io @ [(x,y ′)] ∈ L M ′› language-prefix[of p-io pP @ p-io pt ioAI
@ [(x, y ′)] M ′ initial M ′]
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unfolding ‹io = p-io pP @ p-io pt @ ioAI ›
by simp

then obtain pt ′ where path M ′ (initial M ′) pt ′ and p-io pt ′ = p-io pP
@ p-io pt

by auto
then have target (initial M ′) pt ′ ∈ io-targets M ′ (p-io pP @ p-io pt)

(FSM .initial M ′)
by fastforce

have pass-separator-ATC M ′ A (target (FSM .initial M ′) pt ′) t2
using pass3 [OF ‹(q, P) ∈ prs› ‹path P (FSM .initial P) pP› ‹target

(FSM .initial P) pP = q› ‹pt ∈ tps q›
‹p-io pP @ p-io pt ∈ L M ′› ‹q ′ ∈ rd-targets (q, pt)› ‹(A, t1 ,

t2 ) ∈ atcs (target q pt, q ′)›
‹target (initial M ′) pt ′ ∈ io-targets M ′ (p-io pP @ p-io pt)

(FSM .initial M ′)›]
by assumption

have is-separator M (target q pt) q ′ A t1 t2
using t3 [OF ‹(A, t1 , t2 ) ∈ atcs (target q pt, q ′)›] by blast

have is-submachine P M
using t2 [OF ‹(q, P) ∈ prs›] unfolding is-preamble-def by blast

then have initial P = initial M by auto

have path M (initial M ) pP
using submachine-path[OF ‹is-submachine P M › ‹path P (initial P) pP›]

unfolding ‹initial P = initial M ›
by assumption

have target (initial M ) pP = q
using ‹target (initial P) pP = q›
unfolding ‹initial P = initial M ›
by assumption

have q ∈ states M
using is-preamble-is-state[OF t2 [OF ‹(q, P) ∈ prs›]]
by assumption

have q ∈ fst ‘ prs
using ‹(q, P) ∈ prs› by force

obtain pT ′ d ′ where (pt @ pT ′, d ′) ∈ m-traversal-paths-with-witness M
q repetition-sets m

using t6 [OF ‹q ∈ fst ‘ prs›] ‹pt ∈ tps q›
by blast

then have path M q (pt @ pT ′)
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and find (λd. Suc (m − card (snd d)) ≤ length (filter (λt. t-target t
∈ fst d) (pt @ pT ′))) repetition-sets = Some d ′

and
∧

p ′ p ′′. (pt @ pT ′) = p ′ @ p ′′ =⇒ p ′′ 6= [] =⇒ find (λd. Suc (m
− card (snd d)) ≤ length (filter (λt. t-target t ∈ fst d) p ′)) repetition-sets = None

using m-traversal-paths-with-witness-set[OF t5 t8 ‹q ∈ states M ›, of m]
by blast+

then have path M q pt
by auto

have target (initial M ′) pt ′ ∈ states M ′

using ‹target (initial M ′) pt ′ ∈ io-targets M ′ (p-io pP @ p-io pt)
(FSM .initial M ′)› io-targets-states

using subset-iff
by fastforce

have pass-io-set (FSM .from-FSM M ′ (target (FSM .initial M ′) pt ′))
(atc-to-io-set (FSM .from-FSM M (target q pt)) A)

using pass-io-set-from-pass-separator [OF ‹is-separator M (target q pt)
q ′ A t1 t2 ›

‹pass-separator-ATC M ′ A (target
(FSM .initial M ′) pt ′) t2 ›

‹observable M › ‹observable M ′›
path-target-is-state[OF ‹path M q pt›]

‹target (FSM .initial M ′) pt ′ ∈ FSM .states
M ′› ‹inputs M ′ = inputs M ›]

by assumption
moreover note ‹ioAI @ [(x,y)] ∈ atc-to-io-set (FSM .from-FSM M (target

q pt)) A›
moreover have ioAI @ [(x, y ′)] ∈ L (FSM .from-FSM M ′ (target

(FSM .initial M ′) pt ′))
using ‹io @ [(x,y ′)] ∈ L M ′› unfolding ‹io = p-io pP @ p-io pt @

ioAI ›
by (metis (no-types, lifting) ‹target (FSM .initial M ′) pt ′ ∈ FSM .states

M ′›
‹target (FSM .initial M ′) pt ′ ∈ io-targets M ′ (p-io pP @ p-io pt)

(FSM .initial M ′)›
append-assoc assms(3 ) from-FSM-language observable-io-targets-language)

ultimately have ioAI @ [(x,y ′)] ∈ atc-to-io-set (FSM .from-FSM M (target
q pt)) A

unfolding pass-io-set-def by blast

define tmp where tmp-def : tmp = (
⋃
{(λio-atc. p-io p @ p-io pt @

io-atc) ‘ atc-to-io-set (FSM .from-FSM M (target q pt)) A |p pt q A. ∃P q ′ t1 t2 .
(q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈
tps q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)})
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define tmp2 where tmp2-def : tmp2 =
⋃
{(@) (p-io p) ‘ set (prefixes (p-io

pt)) |p pt. ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial
P) p = q ∧ pt ∈ tps q}

have ∃P q ′ t1 t2 . (q, P) ∈ prs ∧ path P (FSM .initial P) pP ∧ target
(FSM .initial P) pP = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs
(target q pt, q ′)

using ‹(q, P) ∈ prs› ‹path P (FSM .initial P) pP› ‹target (FSM .initial
P) pP = q› ‹pt ∈ tps q› ‹q ′ ∈ rd-targets (q, pt)› ‹(A, t1 , t2 ) ∈ atcs (target q pt,
q ′)› by blast

then have (λio-atc. p-io pP @ p-io pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM
M (target q pt)) A ⊆ tmp

unfolding tmp-def by blast
then have (λio-atc. p-io pP @ p-io pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM

M (target q pt)) A ⊆ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)
unfolding test-suite-to-io.simps tmp-def [symmetric] tmp2-def [symmetric]

by blast
moreover have (p-io pP @ p-io pt @ (ioAI @ [(x, y ′)])) ∈ (λio-atc. p-io

pP @ p-io pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM M (target q pt)) A
using ‹ioAI @ [(x, y ′)] ∈ atc-to-io-set (FSM .from-FSM M (target q pt))

A› by auto
ultimately have (p-io pP @ p-io pt @ (ioAI @ [(x, y ′)])) ∈ test-suite-to-io

M (Test-Suite prs tps rd-targets atcs)
by blast

then have io @ [(x, y ′)] ∈ test-suite-to-io M (Test-Suite prs tps rd-targets
atcs)

unfolding ‹io = p-io pP @ p-io pt @ ioAI › by auto
then show False

using ‹io @ [(x, y ′)] /∈ test-suite-to-io M (Test-Suite prs tps rd-targets
atcs)›

by blast
qed

qed
qed

qed

ultimately show ?thesis
unfolding ‹T = Test-Suite prs tps rd-targets atcs›
by blast

qed

lemma test-suite-to-io-finite :
assumes implies-completeness T M m
and is-finite-test-suite T

shows finite (test-suite-to-io M T )
proof −

obtain prs tps rd-targets atcs where T = Test-Suite prs tps rd-targets atcs
by (meson test-suite.exhaust)
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then obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets
(Test-Suite prs tps rd-targets atcs) M m repetition-sets

using assms(1 )
unfolding implies-completeness-def
by blast

then have implies-completeness (Test-Suite prs tps rd-targets atcs) M m
unfolding implies-completeness-def
by blast

then have test-suite-language-prop: test-suite-to-io M (Test-Suite prs tps rd-targets
atcs) ⊆ L M

using test-suite-to-io-language
by blast

have f1 : (finite prs)
and f2 :

∧
q p . q ∈ fst ‘ prs =⇒ finite (rd-targets (q,p))

and f3 :
∧

q q ′ . finite (atcs (q,q ′))
using assms(2 )
unfolding ‹T = Test-Suite prs tps rd-targets atcs› is-finite-test-suite.simps
by blast+

have t1 : (initial M , initial-preamble M ) ∈ prs
using implies-completeness-for-repetition-sets-simps(1 )[OF repetition-sets-def ]

by assumption
have t2 :

∧
q P. (q, P) ∈ prs =⇒ is-preamble P M q

using implies-completeness-for-repetition-sets-simps(2 )[OF repetition-sets-def ]

by blast
have t3 :

∧
q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ atcs (q1 , q2 ) =⇒ (A, d2 , d1 ) ∈ atcs

(q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2
using implies-completeness-for-repetition-sets-simps(3 )[OF repetition-sets-def ]

by assumption

have t5 :
∧

q. q ∈ FSM .states M =⇒ (∃ d∈set repetition-sets. q ∈ fst d)
using implies-completeness-for-repetition-sets-simps(4 )[OF repetition-sets-def ]

by assumption

have t6 :
∧

q. q ∈ fst ‘ prs =⇒ tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m} ∧ fst ‘ (m-traversal-paths-with-witness M q repetition-sets
m) ⊆ tps q

using implies-completeness-for-repetition-sets-simps(7 )[OF repetition-sets-def ]

by assumption

have t7 :
∧

d. d ∈ set repetition-sets =⇒ fst d ⊆ FSM .states M
and t8 :

∧
d. d ∈ set repetition-sets =⇒ snd d ⊆ fst d

and t8 ′:
∧

d. d ∈ set repetition-sets =⇒ snd d = fst d ∩ fst ‘ prs
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and t9 :
∧

d q1 q2 . d ∈ set repetition-sets =⇒ q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1
6= q2 =⇒ atcs (q1 , q2 ) 6= {}

using implies-completeness-for-repetition-sets-simps(5 ,6 )[OF repetition-sets-def ]

by blast+

have f4 :
∧

q . q ∈ fst ‘ prs =⇒ finite (tps q)
proof −

fix q assume q ∈ fst ‘ prs
then have tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness

M q repetition-sets m}
using t6 by blast

moreover have {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness
M q repetition-sets m} ⊆ (

⋃
p2 ∈ fst ‘ m-traversal-paths-with-witness M q repeti-

tion-sets m . set (prefixes p2 ))
proof
fix p1 assume p1 ∈ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness

M q repetition-sets m}
then obtain p2 d where (p1@p2 ,d) ∈ m-traversal-paths-with-witness M q

repetition-sets m by blast
then have p1@p2 ∈ fst ‘ m-traversal-paths-with-witness M q repetition-sets

m by force
moreover have p1 ∈ set (prefixes (p1@p2 )) unfolding prefixes-set by blast

ultimately show p1 ∈ (
⋃

p2 ∈ fst ‘ m-traversal-paths-with-witness M q
repetition-sets m . set (prefixes p2 )) by blast

qed
ultimately have tps q ⊆ (

⋃
p2 ∈ fst ‘ m-traversal-paths-with-witness M q

repetition-sets m . set (prefixes p2 ))
by simp

moreover have finite (
⋃

p2 ∈ fst ‘ m-traversal-paths-with-witness M q repe-
tition-sets m . set (prefixes p2 ))

proof −
have finite (fst ‘ m-traversal-paths-with-witness M q repetition-sets m)
using m-traversal-paths-with-witness-finite[of M q repetition-sets m] by auto

moreover have
∧

p2 . finite (set (prefixes p2 )) by auto
ultimately show ?thesis by blast

qed
ultimately show finite (tps q)

using finite-subset by blast
qed
then have f4 ′ :

∧
q P . (q,P) ∈ prs =⇒ finite (tps q)

by force

define T1 where T1-def : T1 = (
⋃

(q, P)∈prs. L P)
define T2 where T2-def : T2 =

⋃
{(@) (p-io p) ‘ set (prefixes (p-io pt)) |p pt.

∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧
pt ∈ tps q}

define T3 where T3-def : T3 =
⋃
{(λio-atc. p-io p @ p-io pt @ io-atc) ‘
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atc-to-io-set (FSM .from-FSM M (target q pt)) A |p pt q A.
∃P q ′ t1 t2 .

(q, P) ∈ prs ∧
path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q ∧

q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)}

have test-suite-to-io M T = T1 ∪ T2 ∪ T3
unfolding ‹T = Test-Suite prs tps rd-targets atcs› test-suite-to-io.simps T1-def

T2-def T3-def by simp

moreover have finite T1
proof −

have
∧

q P . (q, P)∈prs =⇒ finite (L P)
proof −

fix q P assume (q, P)∈prs
have acyclic P

using t2 [OF ‹(q, P)∈prs›]
unfolding is-preamble-def
by blast

then show finite (L P)
using acyclic-alt-def
by blast

qed
then show ?thesis using f1 unfolding T1-def

by auto
qed

moreover have finite T2
proof −

have ∗: T2 = (
⋃

(p,pt) ∈ {(p,pt) | p pt. ∃ q P. (q, P) ∈ prs ∧ path P
(FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q} . ((@) (p-io p) ‘
set (prefixes (p-io pt))))

unfolding T2-def
by auto

have
∧

p pt . finite ((@) (p-io p) ‘ set (prefixes (p-io pt)))
by auto

moreover have finite {(p,pt) | p pt. ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial
P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q}

proof −
have {(p,pt) | p pt. ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target

(FSM .initial P) p = q ∧ pt ∈ tps q} ⊆ (
⋃

(q,P) ∈ prs . {p . path P (initial P)
p} × (tps q))

by auto
moreover have finite (

⋃
(q,P) ∈ prs . {p . path P (initial P) p} × (tps q))

proof −
note ‹finite prs›
moreover have

∧
q P . (q,P) ∈ prs =⇒ finite ({p . path P (initial P) p}

× (tps q))

1338



proof −
fix q P assume (q,P) ∈ prs

have acyclic P using t2 [OF ‹(q, P)∈prs›]
unfolding is-preamble-def
by blast

then have finite {p . path P (initial P) p}
using acyclic-paths-finite[of P initial P]
unfolding acyclic.simps
by (metis (no-types, lifting) Collect-cong)

then show finite ({p . path P (initial P) p} × (tps q))
using f4 ′[OF ‹(q,P) ∈ prs›]
by simp

qed
ultimately show ?thesis

by force
qed
ultimately show ?thesis

by (meson rev-finite-subset)
qed
ultimately show ?thesis

unfolding ∗ by auto
qed

moreover have finite T3
proof −

have scheme:
∧

f P . (
⋃
{f a b c d | a b c d . P a b c d}) = (

⋃
(a,b,c,d) ∈

{(a,b,c,d) | a b c d . P a b c d} . f a b c d)
by blast

have ∗: T3 = (
⋃

(p,pt,q,A) ∈ {(p, pt, q, A) | p pt q A . ∃P q ′ t1 t2 . (q, P)
∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q ∧
q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)}

. (λio-atc. p-io p @ p-io pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM
M (target q pt)) A)

unfolding T3-def scheme by blast

have {(p, pt, q, A) | p pt q A . ∃P q ′ t1 t2 . (q, P) ∈ prs ∧ path P (FSM .initial
P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A,
t1 , t2 ) ∈ atcs (target q pt, q ′)}

⊆ (
⋃

(q,P) ∈ prs .
⋃

pt ∈ tps q .
⋃

q ′ ∈ rd-targets (q, pt) . (
⋃

(A, t1 ,
t2 ) ∈ atcs (target q pt, q ′) . {p . path P (initial P) p} × {pt} × {q} × {A}))

by blast
moreover have finite (

⋃
(q,P) ∈ prs .

⋃
pt ∈ tps q .

⋃
q ′ ∈ rd-targets (q,

pt) . (
⋃

(A, t1 , t2 ) ∈ atcs (target q pt, q ′) . {p . path P (initial P) p} × {pt} ×
{q} × {A}))

proof −
note ‹finite prs›
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moreover have
∧

q P . (q,P) ∈ prs =⇒ finite (
⋃

pt ∈ tps q .
⋃

q ′ ∈
rd-targets (q, pt) . (

⋃
(A, t1 , t2 ) ∈ atcs (target q pt, q ′) . {p . path P (initial P)

p} × {pt} × {q} × {A}))
proof −

fix q P assume (q,P) ∈ prs
then have q ∈ fst ‘ prs by force

have finite (tps q) using f4 ′[OF ‹(q,P) ∈ prs›] by assumption
moreover have

∧
pt . pt ∈ tps q =⇒ finite (

⋃
q ′ ∈ rd-targets (q, pt) .

(
⋃

(A, t1 , t2 ) ∈ atcs (target q pt, q ′) . {p . path P (initial P) p} × {pt} × {q} ×
{A}))

proof −
fix pt assume pt ∈ tps q

have finite (rd-targets (q,pt)) using f2 [OF ‹q ∈ fst ‘ prs›] by blast
moreover have

∧
q ′ . q ′ ∈ rd-targets (q, pt) =⇒ finite (

⋃
(A, t1 , t2 ) ∈

atcs (target q pt, q ′) . {p . path P (initial P) p} × {pt} × {q} × {A})
proof −

fix q ′ assume q ′ ∈ rd-targets (q, pt)
have finite (atcs (target q pt, q ′)) using f3 by blast
moreover have finite {p . path P (initial P) p}
proof −

have acyclic P using t2 [OF ‹(q, P)∈prs›] unfolding is-preamble-def
by blast

then show ?thesis using acyclic-paths-finite[of P initial P] unfolding
acyclic.simps by (metis (no-types, lifting) Collect-cong)

qed
ultimately show finite (

⋃
(A, t1 , t2 ) ∈ atcs (target q pt, q ′) . {p . path

P (initial P) p} × {pt} × {q} × {A})
by force

qed
ultimately show finite (

⋃
q ′ ∈ rd-targets (q, pt) . (

⋃
(A, t1 , t2 ) ∈ atcs

(target q pt, q ′) . {p . path P (initial P) p} × {pt} × {q} × {A}))
by force

qed
ultimately show finite (

⋃
pt ∈ tps q .

⋃
q ′ ∈ rd-targets (q, pt) . (

⋃
(A,

t1 , t2 ) ∈ atcs (target q pt, q ′) . {p . path P (initial P) p} × {pt} × {q} × {A}))
by force

qed
ultimately show ?thesis by force

qed
ultimately have finite {(p, pt, q, A) | p pt q A . ∃P q ′ t1 t2 . (q, P) ∈ prs

∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈
rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)}

by (meson rev-finite-subset)

moreover have
∧

p pt q A . (p,pt,q,A) ∈ {(p, pt, q, A) | p pt q A . ∃P q ′ t1
t2 . (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt
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∈ tps q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)}
=⇒ finite ((λio-atc. p-io p @ p-io pt @ io-atc) ‘ atc-to-io-set

(FSM .from-FSM M (target q pt)) A)
proof −

fix p pt q A assume (p,pt,q,A) ∈ {(p, pt, q, A) | p pt q A . ∃P q ′ t1 t2 . (q,
P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps
q ∧ q ′ ∈ rd-targets (q, pt) ∧ (A, t1 , t2 ) ∈ atcs (target q pt, q ′)}

then obtain P q ′ t1 t2 where (q, P) ∈ prs and path P (FSM .initial P) p
and target (FSM .initial P) p = q and pt ∈ tps q and q ′ ∈ rd-targets (q, pt) and
(A, t1 , t2 ) ∈ atcs (target q pt, q ′) by blast

have is-separator M (target q pt) q ′ A t1 t2
using t3 [OF ‹(A, t1 , t2 ) ∈ atcs (target q pt, q ′)›] by blast

then have acyclic A
using is-separator-simps(2 ) by simp

then have finite (L A)
unfolding acyclic-alt-def by assumption

then have finite (atc-to-io-set (FSM .from-FSM M (target q pt)) A)
unfolding atc-to-io-set.simps by blast

then show finite ((λio-atc. p-io p @ p-io pt @ io-atc) ‘ atc-to-io-set (FSM .from-FSM
M (target q pt)) A)

by blast
qed

ultimately show ?thesis unfolding ∗ by force
qed

ultimately show ?thesis
by simp

qed

42.1 Calculating the Sets of Sequences
abbreviation L-acyclic M ≡ LS-acyclic M (initial M )

fun test-suite-to-io ′ :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c, ′d) test-suite ⇒ ( ′b × ′c) list set
where

test-suite-to-io ′ M (Test-Suite prs tps rd-targets atcs)
= (

⋃
(q,P) ∈ prs .

L-acyclic P
∪ (

⋃
ioP ∈ remove-proper-prefixes (L-acyclic P) .⋃
pt ∈ tps q .

((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt))))
∪ (

⋃
q ′ ∈ rd-targets (q,pt) .⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) .

(λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection
(from-FSM M (target q pt)) A))))
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lemma test-suite-to-io-code :
assumes implies-completeness T M m
and is-finite-test-suite T
and observable M

shows test-suite-to-io M T = test-suite-to-io ′ M T
proof −

obtain prs tps rd-targets atcs where T = Test-Suite prs tps rd-targets atcs
by (meson test-suite.exhaust)

then obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets
(Test-Suite prs tps rd-targets atcs) M m repetition-sets

using assms(1 )
unfolding implies-completeness-def
by blast

have t2 :
∧

q P. (q, P) ∈ prs =⇒ is-preamble P M q
using implies-completeness-for-repetition-sets-simps(2 )[OF repetition-sets-def ]

by blast
have t3 :

∧
q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ atcs (q1 , q2 ) =⇒ (A, d2 , d1 ) ∈ atcs

(q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2
using implies-completeness-for-repetition-sets-simps(3 )[OF repetition-sets-def ]

by assumption

have test-suite-to-io ′-alt-def : test-suite-to-io ′ M T
= (

⋃
(q,P) ∈ prs . L-acyclic P)

∪ (
⋃

(q,P) ∈ prs .
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P) .
⋃

pt ∈
tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))))

∪ (
⋃

(q,P) ∈ prs .
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P) .
⋃

pt ∈
tps q .

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc

. ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q
pt)) A))

unfolding test-suite-to-io ′.simps ‹T = Test-Suite prs tps rd-targets atcs›
by fast

have test-suite-to-io-alt-def : test-suite-to-io M T =
(
⋃

(q,P) ∈ prs . L P)
∪ (

⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt . ∃ q P . (q,P) ∈

prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q})
∪ (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M (target

q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P (initial P) p ∧ target
(initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧ (A,t1 ,t2 ) ∈ atcs (target
q pt,q ′) })

unfolding ‹T = Test-Suite prs tps rd-targets atcs› test-suite-to-io.simps
by force
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have preamble-language-prop:
∧

q P . (q,P) ∈ prs =⇒ L-acyclic P = L P
proof −

fix q P assume (q,P) ∈ prs
have acyclic P using t2 [OF ‹(q, P)∈prs›] unfolding is-preamble-def by blast

then show L-acyclic P = L P using LS-from-LS-acyclic by blast
qed

have preamble-path-prop:
∧

q P ioP . (q,P) ∈ prs =⇒ ioP ∈ remove-proper-prefixes
(L-acyclic P) ←→ (∃ p . path P (initial P) p ∧ target (initial P) p = q ∧ p-io p
= ioP)

proof −
fix q P ioP assume (q,P) ∈ prs
have is-preamble P M q using t2 [OF ‹(q, P)∈prs›] by assumption

have ioP ∈ remove-proper-prefixes (L-acyclic P) =⇒ (∃ p . path P (initial P)
p ∧ target (initial P) p = q ∧ p-io p = ioP)

proof −
assume ioP ∈ remove-proper-prefixes (L-acyclic P)
then have ioP ∈ L P and @ x ′. x ′ 6= [] ∧ ioP @ x ′ ∈ L P
unfolding preamble-language-prop[OF ‹(q,P) ∈ prs›] remove-proper-prefixes-def

by blast+
show (∃ p . path P (initial P) p ∧ target (initial P) p = q ∧ p-io p = ioP)

using preamble-maximal-io-paths-rev[OF ‹is-preamble P M q› ‹observable
M › ‹ioP ∈ L P› ‹@ x ′. x ′ 6= [] ∧ ioP @ x ′ ∈ L P›] by blast

qed
moreover have (∃ p . path P (initial P) p ∧ target (initial P) p = q ∧ p-io p

= ioP) =⇒ ioP ∈ remove-proper-prefixes (L-acyclic P)
proof −
assume (∃ p . path P (initial P) p ∧ target (initial P) p = q ∧ p-io p = ioP)
then obtain p where path P (initial P) p and target (initial P) p = q and

p-io p = ioP
by blast

then have @ io ′. io ′ 6= [] ∧ p-io p @ io ′ ∈ L P
using preamble-maximal-io-paths[OF ‹is-preamble P M q› ‹observable M ›]

by blast
then show ioP ∈ remove-proper-prefixes (L-acyclic P)
using language-state-containment[OF ‹path P (initial P) p› ‹p-io p = ioP›]

unfolding preamble-language-prop[OF ‹(q,P) ∈ prs›] remove-proper-prefixes-def
‹p-io p = ioP› by blast

qed
ultimately show ioP ∈ remove-proper-prefixes (L-acyclic P) ←→ (∃ p . path

P (initial P) p ∧ target (initial P) p = q ∧ p-io p = ioP)
by blast

qed
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have eq1 : (
⋃

(q,P) ∈ prs . L-acyclic P) = (
⋃

(q,P) ∈ prs . L P)
using preamble-language-prop by blast

have eq2 : (
⋃

(q,P) ∈ prs .
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P) .
⋃

pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt))))) = (
⋃
{(λ io ′ . p-io p

@ io ′) ‘ (set (prefixes (p-io pt))) | p pt . ∃ q P . (q,P) ∈ prs ∧ path P (initial P)
p ∧ target (initial P) p = q ∧ pt ∈ tps q})

proof
show (

⋃
(q, P)∈prs.

⋃
ioP∈remove-proper-prefixes (L-acyclic P).

⋃
pt∈tps q.

(@) ioP ‘ set (prefixes (p-io pt))) ⊆
⋃
{(@) (p-io p) ‘ set (prefixes (p-io pt)) |p

pt. ∃ q P. (q, P) ∈ prs ∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p =
q ∧ pt ∈ tps q}

proof
fix io assume io ∈ (

⋃
(q,P) ∈ prs . (

⋃
ioP ∈ remove-proper-prefixes

(L-acyclic P) .
⋃

pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt))))))
then obtain q P where (q,P) ∈ prs

and io ∈ (
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P) .
⋃

pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))))
by blast

then obtain ioP where ioP ∈ remove-proper-prefixes (L-acyclic P)
and io ∈ (

⋃
pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes

(p-io pt)))))
by blast

obtain p where path P (initial P) p and target (initial P) p = q and ioP
= p-io p

using preamble-path-prop[OF ‹(q,P) ∈ prs›, of ioP] ‹ioP ∈ remove-proper-prefixes
(L-acyclic P)› by auto

obtain pt where pt ∈ tps q and io ∈ ((λ io ′ . p-io p @ io ′) ‘ (set (prefixes
(p-io pt))))

using ‹io ∈ (
⋃

pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))))›
unfolding ‹ioP = p-io p› by blast

show io ∈ (
⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt . ∃ q P

. (q,P) ∈ prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q})
using ‹io ∈ ((λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))))› ‹(q,P) ∈ prs›

‹path P (initial P) p› ‹target (initial P) p = q› ‹pt ∈ tps q› by blast
qed

show
⋃
{(@) (p-io p) ‘ set (prefixes (p-io pt)) |p pt. ∃ q P. (q, P) ∈ prs

∧ path P (FSM .initial P) p ∧ target (FSM .initial P) p = q ∧ pt ∈ tps q} ⊆
(
⋃
(q, P)∈prs.

⋃
ioP∈remove-proper-prefixes (L-acyclic P).

⋃
pt∈tps q. (@) ioP ‘

set (prefixes (p-io pt)))
proof

fix io assume io ∈ (
⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt

. ∃ q P . (q,P) ∈ prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps
q})

then obtain p pt q P where io ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io
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pt)))
and (q,P) ∈ prs and path P (initial P) p and target (initial

P) p = q and pt ∈ tps q
by blast

then obtain ioP where ioP ∈ remove-proper-prefixes (L-acyclic P)
and p-io p = ioP

using preamble-path-prop[OF ‹(q,P) ∈ prs›, of p-io p] by blast

show io ∈ (
⋃

(q,P) ∈ prs . (
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P)
.
⋃

pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt))))))
using ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes (L-acyclic P)› ‹pt ∈ tps

q› ‹io ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt)))› unfolding ‹p-io p =
ioP› by blast

qed
qed

have eq3 : (
⋃

(q,P) ∈ prs .
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P) .
⋃

pt
∈ tps q .

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc

. ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q
pt)) A)) = (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M

(target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P (initial P) p ∧
target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧ (A,t1 ,t2 ) ∈ atcs
(target q pt,q ′) })

proof
show (

⋃
(q,P) ∈ prs .

⋃
ioP ∈ remove-proper-prefixes (L-acyclic P) .

⋃
pt

∈ tps q .
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc
. ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q
pt)) A)) ⊆ (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M

(target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P (initial P) p ∧
target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧ (A,t1 ,t2 ) ∈ atcs
(target q pt,q ′) })

proof
fix io assume io ∈ (

⋃
(q,P) ∈ prs .

⋃
ioP ∈ remove-proper-prefixes (L-acyclic

P) .
⋃

pt ∈ tps q .
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) .
(λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M
(target q pt)) A))

then obtain q P ioP pt q ′ A t1 t2 where (q,P) ∈ prs
and ioP ∈ remove-proper-prefixes (L-acyclic P)
and pt ∈ tps q
and q ′ ∈ rd-targets (q,pt)
and (A,t1 ,t2 ) ∈ atcs (target q pt,q ′)
and io ∈ (λ io-atc . ioP @ p-io pt @ io-atc) ‘

(acyclic-language-intersection (from-FSM M (target q pt)) A)
by blast

obtain p where path P (initial P) p and target (initial P) p = q and ioP
= p-io p
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using preamble-path-prop[OF ‹(q,P) ∈ prs›, of ioP] ‹ioP ∈ remove-proper-prefixes
(L-acyclic P)› by auto

have acyclic A
using t3 [OF ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)›] is-separator-simps(2 ) by

metis
have (acyclic-language-intersection (from-FSM M (target q pt)) A) = (atc-to-io-set

(from-FSM M (target q pt)) A)
unfolding acyclic-language-intersection-completeness[OF ‹acyclic A›] atc-to-io-set.simps

by simp
have io ∈ (λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M

(target q pt)) A)
using ‹io ∈ (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection

(from-FSM M (target q pt)) A)› unfolding ‹(acyclic-language-intersection (from-FSM
M (target q pt)) A) = (atc-to-io-set (from-FSM M (target q pt)) A)› ‹ioP = p-io
p› by simp

then show io ∈ (
⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set

(from-FSM M (target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P
(initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) })

using ‹(q,P) ∈ prs› ‹path P (initial P) p› ‹target (initial P) p = q› ‹pt ∈
tps q› ‹q ′ ∈ rd-targets (q,pt)› ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)› by blast

qed

show (
⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M

(target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P (initial P) p ∧
target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧ (A,t1 ,t2 ) ∈ atcs
(target q pt,q ′) }) ⊆ (

⋃
(q,P) ∈ prs .

⋃
ioP ∈ remove-proper-prefixes (L-acyclic

P) .
⋃

pt ∈ tps q .
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) .
(λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M
(target q pt)) A))

proof
fix io assume io ∈ (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set

(from-FSM M (target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P
(initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) })

then obtain p pt q A P q ′ t1 t2 where io ∈ (λ io-atc . p-io p @ p-io pt @
io-atc) ‘ (atc-to-io-set (from-FSM M (target q pt)) A)

and (q,P) ∈ prs
and path P (initial P) p
and target (initial P) p = q
and pt ∈ tps q
and q ′ ∈ rd-targets (q,pt)
and (A,t1 ,t2 ) ∈ atcs (target q pt,q ′)

by blast

then obtain ioP where ioP ∈ remove-proper-prefixes (L-acyclic P)
and p-io p = ioP
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using preamble-path-prop[OF ‹(q,P) ∈ prs›, of p-io p] by blast

have acyclic A
using t3 [OF ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)›] is-separator-simps(2 ) by

metis
have ∗: (atc-to-io-set (from-FSM M (target q pt)) A) = (acyclic-language-intersection

(from-FSM M (target q pt)) A)
unfolding acyclic-language-intersection-completeness[OF ‹acyclic A›] atc-to-io-set.simps

by simp
have io ∈ (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection

(from-FSM M (target q pt)) A)
using ‹io ∈ (λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM

M (target q pt)) A)› unfolding ∗ ‹p-io p = ioP› by simp

then show io ∈ (
⋃

(q,P) ∈ prs .
⋃

ioP ∈ remove-proper-prefixes (L-acyclic
P) .

⋃
pt ∈ tps q .

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) .

(λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M
(target q pt)) A))

using ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes (L-acyclic P)› ‹pt ∈ tps
q› ‹q ′ ∈ rd-targets (q,pt)› ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)› by force

qed
qed

show ?thesis
unfolding test-suite-to-io ′-alt-def test-suite-to-io-alt-def eq1 eq2 eq3 by simp

qed

42.2 Using Maximal Sequences Only
fun test-suite-to-io-maximal :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒ ( ′a, ′b, ′c, ′d::linorder)
test-suite ⇒ ( ′b × ′c) list set where

test-suite-to-io-maximal M (Test-Suite prs tps rd-targets atcs) =
remove-proper-prefixes (

⋃
(q,P) ∈ prs . L-acyclic P ∪ (

⋃
ioP ∈ remove-proper-prefixes

(L-acyclic P) .
⋃

pt ∈ tps q . Set.insert (ioP @ p-io pt) (
⋃

q ′ ∈ rd-targets
(q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘

(remove-proper-prefixes (acyclic-language-intersection (from-FSM M (target q pt))
A)))))

lemma test-suite-to-io-maximal-code :
assumes implies-completeness T M m
and is-finite-test-suite T
and observable M

shows {io ′∈ (test-suite-to-io M T ) . ¬ (∃ io ′′ . io ′′ 6= [] ∧ io ′@io ′′∈ (test-suite-to-io
M T ))} = test-suite-to-io-maximal M T
proof −

obtain prs tps rd-targets atcs where T = Test-Suite prs tps rd-targets atcs
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by (meson test-suite.exhaust)

have t-def : test-suite-to-io M T = test-suite-to-io ′ M T
using test-suite-to-io-code[OF assms] by assumption

have t1-def : test-suite-to-io ′ M T = (
⋃

(q,P) ∈ prs . L-acyclic P ∪ (
⋃

ioP
∈ remove-proper-prefixes (L-acyclic P) .

⋃
pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set

(prefixes (p-io pt)))) ∪ (
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)
. (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M
(target q pt)) A))))

unfolding ‹T = Test-Suite prs tps rd-targets atcs› by simp

define tmax where tmax-def : tmax = (
⋃

(q,P) ∈ prs . L-acyclic P ∪ (
⋃

ioP ∈
remove-proper-prefixes (L-acyclic P) .

⋃
pt ∈ tps q . Set.insert (ioP @ p-io pt) (

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io

pt @ io-atc) ‘ (remove-proper-prefixes (acyclic-language-intersection (from-FSM M
(target q pt)) A)))))

have t2-def : test-suite-to-io-maximal M T = remove-proper-prefixes tmax
unfolding ‹T = Test-Suite prs tps rd-targets atcs› tmax-def by simp

have tmax-sub: tmax ⊆ (test-suite-to-io M T )
unfolding tmax-def t-def t1-def

proof
fix io assume io ∈ (

⋃
(q,P) ∈ prs . L-acyclic P ∪ (

⋃
ioP ∈ remove-proper-prefixes

(L-acyclic P) .
⋃

pt ∈ tps q . Set.insert (ioP @ p-io pt) (
⋃

q ′ ∈ rd-targets
(q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘

(remove-proper-prefixes (acyclic-language-intersection (from-FSM M (target q pt))
A)))))

then obtain q P where (q,P) ∈ prs
and io ∈ L-acyclic P ∪ (

⋃
ioP ∈ remove-proper-prefixes

(L-acyclic P) .
⋃

pt ∈ tps q . Set.insert (ioP @ p-io pt) (
⋃

q ′ ∈ rd-targets
(q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘

(remove-proper-prefixes (acyclic-language-intersection (from-FSM M (target q pt))
A))))

by force
then consider (a) io ∈ L-acyclic P |

(b) io ∈ (
⋃

ioP ∈ remove-proper-prefixes (L-acyclic P) .
⋃

pt
∈ tps q . Set.insert (ioP @ p-io pt) (

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈

atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (remove-proper-prefixes
(acyclic-language-intersection (from-FSM M (target q pt)) A))))

by blast
then show io ∈ (

⋃
(q,P) ∈ prs . L-acyclic P ∪ (

⋃
ioP ∈ remove-proper-prefixes

(L-acyclic P) .
⋃

pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))) ∪ (
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io
pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q pt)) A))))

proof cases
case a
then show ?thesis using ‹(q,P) ∈ prs› by blast

next
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case b
then obtain ioP pt where ioP ∈ remove-proper-prefixes (L-acyclic P)

and pt ∈ tps q
and io ∈ Set.insert (ioP @ p-io pt) (

⋃
q ′ ∈ rd-targets

(q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘
(remove-proper-prefixes (acyclic-language-intersection (from-FSM M (target q pt))
A)))

by blast
then consider (b1 ) io = (ioP @ p-io pt) |

(b2 ) io ∈ (
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs
(target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (remove-proper-prefixes
(acyclic-language-intersection (from-FSM M (target q pt)) A)))

by blast
then show ?thesis proof cases

case b1
then have io ∈ ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))) unfolding

prefixes-set by blast
then show ?thesis using ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes

(L-acyclic P)› ‹pt ∈ tps q› by blast
next

case b2
then obtain q ′ A t1 t2 where q ′ ∈ rd-targets (q,pt)

and (A,t1 ,t2 ) ∈ atcs (target q pt,q ′)
and io ∈ (λ io-atc . ioP @ p-io pt @ io-atc) ‘

(remove-proper-prefixes (acyclic-language-intersection (from-FSM M (target q pt))
A))

by blast
then have io ∈ (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection

(from-FSM M (target q pt)) A)
unfolding remove-proper-prefixes-def by blast
then show ?thesis using ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes

(L-acyclic P)› ‹pt ∈ tps q› ‹q ′ ∈ rd-targets (q,pt)› ‹(A,t1 ,t2 ) ∈ atcs (target q
pt,q ′)› by force

qed
qed

qed

have tmax-max:
∧

io . io ∈ test-suite-to-io M T =⇒ io /∈ tmax =⇒ ∃ io ′′ . io ′′

6= [] ∧ io@io ′′ ∈ (test-suite-to-io M T )
proof −

fix io assume io ∈ test-suite-to-io M T and io /∈ tmax

then have io ∈ (
⋃

(q,P) ∈ prs . L-acyclic P ∪ (
⋃

ioP ∈ remove-proper-prefixes
(L-acyclic P) .

⋃
pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))) ∪ (

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io

pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q pt)) A))))
unfolding t-def t1-def by blast

then obtain q P where (q,P) ∈ prs
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and io ∈ (L-acyclic P ∪ (
⋃

ioP ∈ remove-proper-prefixes
(L-acyclic P) .

⋃
pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))) ∪ (

⋃
q ′ ∈ rd-targets (q,pt) .

⋃
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io

pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q pt)) A))))
by force

then consider (a) io ∈ L-acyclic P |
(b) io ∈ (

⋃
ioP ∈ remove-proper-prefixes (L-acyclic P) .

⋃
pt ∈ tps q . ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))) ∪ (

⋃
q ′ ∈ rd-targets

(q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @ p-io pt @ io-atc) ‘
(acyclic-language-intersection (from-FSM M (target q pt)) A)))

by blast
then show ∃ io ′′ . io ′′ 6= [] ∧ io@io ′′ ∈ (test-suite-to-io M T ) proof cases

case a
then have io ∈ tmax

using ‹(q,P) ∈ prs› unfolding tmax-def by blast
then show ?thesis

using ‹io /∈ tmax› by simp
next

case b
then obtain ioP pt where ioP ∈ remove-proper-prefixes (L-acyclic P)

and pt ∈ tps q
and io ∈ ((λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt)))) ∪

(
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) . (λ io-atc . ioP @
p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M (target q pt)) A))

by blast
then consider (b1 ) io ∈ (λ io ′ . ioP @ io ′) ‘ (set (prefixes (p-io pt))) |

(b2 ) io ∈ (
⋃

q ′ ∈ rd-targets (q,pt) .
⋃

(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)
. (λ io-atc . ioP @ p-io pt @ io-atc) ‘ (acyclic-language-intersection (from-FSM M
(target q pt)) A))

by blast
then show ?thesis proof cases

case b1
then obtain pt1 pt2 where io = ioP @ pt1 and p-io pt = pt1@pt2

by (metis (no-types, lifting) b1 image-iff prefixes-set-ob)

have ioP @ (p-io pt) ∈ tmax
using ‹io /∈ tmax› ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes (L-acyclic

P)› ‹pt ∈ tps q› unfolding tmax-def by force
then have io 6= ioP @ (p-io pt)

using ‹io /∈ tmax› by blast
then have pt2 6= []

using ‹io = ioP @ pt1 › unfolding ‹p-io pt = pt1@pt2 › by auto

have ioP @ (p-io pt) ∈ test-suite-to-io M T
using ‹ioP @ (p-io pt) ∈ tmax› tmax-sub by blast

then show ?thesis
unfolding ‹io = ioP @ pt1 › append.assoc ‹p-io pt = pt1@pt2 ›
using ‹pt2 6= []› by blast

next
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case b2
then obtain q ′ A t1 t2 where q ′ ∈ rd-targets (q,pt)

and (A,t1 ,t2 ) ∈ atcs (target q pt,q ′)
and io ∈ (λ io-atc . ioP @ p-io pt @ io-atc) ‘

(acyclic-language-intersection (from-FSM M (target q pt)) A)
by blast

then obtain ioA where io = ioP @ p-io pt @ ioA
and ioA ∈ acyclic-language-intersection (from-FSM M (target

q pt)) A
by blast

moreover have ioA /∈ (remove-proper-prefixes (acyclic-language-intersection
(from-FSM M (target q pt)) A))

proof
assume ioA ∈ remove-proper-prefixes (acyclic-language-intersection

(FSM .from-FSM M (target q pt)) A)
then have io ∈ tmax
using ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes (L-acyclic P)› ‹pt ∈ tps

q› ‹q ′ ∈ rd-targets (q,pt)› ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)› unfolding tmax-def
‹io = ioP @ p-io pt @ ioA› by force

then show False
using ‹io /∈ tmax› by simp

qed
ultimately obtain ioA2 where ioA @ ioA2 ∈ acyclic-language-intersection

(from-FSM M (target q pt)) A
and ioA2 6= []

unfolding remove-proper-prefixes-def by blast
then have io@ioA2 ∈ test-suite-to-io M T

using ‹(q,P) ∈ prs› ‹ioP ∈ remove-proper-prefixes (L-acyclic P)› ‹pt
∈ tps q› ‹q ′ ∈ rd-targets (q,pt)› ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)› ‹ioA @ ioA2
∈ acyclic-language-intersection (from-FSM M (target q pt)) A› unfolding t-def
t1-def ‹io = ioP @ p-io pt @ ioA› by force

then show ?thesis
using ‹ioA2 6= []› by blast

qed
qed

qed

show ?thesis unfolding t2-def
proof

show {io ′ ∈ test-suite-to-io M T . @ io ′′. io ′′ 6= [] ∧ io ′ @ io ′′ ∈ test-suite-to-io
M T} ⊆ remove-proper-prefixes tmax

proof
fix io assume io ∈ {io ′ ∈ test-suite-to-io M T . @ io ′′. io ′′ 6= [] ∧ io ′ @ io ′′ ∈

test-suite-to-io M T}
then have io ∈ test-suite-to-io M T and @ io ′′. io ′′ 6= [] ∧ io @ io ′′ ∈
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test-suite-to-io M T
by blast+

show io ∈ remove-proper-prefixes tmax
using ‹@ io ′′. io ′′ 6= [] ∧ io @ io ′′ ∈ test-suite-to-io M T ›

using tmax-sub tmax-max[OF ‹io ∈ test-suite-to-io M T ›] unfolding
remove-proper-prefixes-def

by auto
qed
show remove-proper-prefixes tmax ⊆ {io ′ ∈ test-suite-to-io M T . @ io ′′. io ′′ 6=

[] ∧ io ′ @ io ′′ ∈ test-suite-to-io M T}
proof

fix io assume io ∈ remove-proper-prefixes tmax
then have io ∈ tmax and @ io ′′. io ′′ 6= [] ∧ io @ io ′′ ∈ remove-proper-prefixes

tmax
unfolding remove-proper-prefixes-def by blast+

then have io ∈ test-suite-to-io M T
using tmax-sub by blast

moreover have @ io ′′. io ′′ 6= [] ∧ io @ io ′′ ∈ test-suite-to-io M T
proof

assume ∃ io ′′. io ′′ 6= [] ∧ io @ io ′′ ∈ test-suite-to-io M T
then obtain io ′′ where io ′′ 6= [] and io @ io ′′ ∈ test-suite-to-io M T

by blast
then obtain io ′′′ where (io @ io ′′) @ io ′′′ ∈ test-suite-to-io M T

and (@ zs. zs 6= [] ∧ (io @ io ′′) @ io ′′′ @ zs ∈ test-suite-to-io
M T )

using finite-set-elem-maximal-extension-ex[OF ‹io @ io ′′ ∈ test-suite-to-io
M T › test-suite-to-io-finite[OF assms(1 ,2 )]] by blast

have io @ (io ′′ @ io ′′′) ∈ tmax
using tmax-max[OF ‹(io @ io ′′) @ io ′′′ ∈ test-suite-to-io M T ›] ‹(@ zs. zs

6= [] ∧ (io @ io ′′) @ io ′′′ @ zs ∈ test-suite-to-io M T )› by force
moreover have io ′′@io ′′′ 6= []

using ‹io ′′ 6= []› by auto

ultimately show False
using ‹@ io ′′. io ′′ 6= [] ∧ io @ io ′′ ∈ remove-proper-prefixes tmax›

by (metis (mono-tags, lifting) ‹io ∈ remove-proper-prefixes tmax› mem-Collect-eq
remove-proper-prefixes-def )

qed

ultimately show io ∈ {io ′ ∈ test-suite-to-io M T . @ io ′′. io ′′ 6= [] ∧ io ′ @ io ′′

∈ test-suite-to-io M T}
by blast

qed
qed

qed
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lemma test-suite-to-io-pass-maximal :
assumes implies-completeness T M m
and is-finite-test-suite T

shows pass-io-set M ′ (test-suite-to-io M T ) = pass-io-set-maximal M ′ {io ′ ∈
(test-suite-to-io M T ) . ¬ (∃ io ′′ . io ′′ 6= [] ∧ io ′@io ′′ ∈ (test-suite-to-io M T ))}
proof −

have p1 : finite (test-suite-to-io M T )
using test-suite-to-io-finite[OF assms] by assumption

obtain prs tps rd-targets atcs where T = Test-Suite prs tps rd-targets atcs
by (meson test-suite.exhaust)

then obtain repetition-sets where repetition-sets-def : implies-completeness-for-repetition-sets
(Test-Suite prs tps rd-targets atcs) M m repetition-sets

using assms(1 ) unfolding implies-completeness-def by blast
then have implies-completeness (Test-Suite prs tps rd-targets atcs) M m

unfolding implies-completeness-def by blast
then have test-suite-language-prop: test-suite-to-io M (Test-Suite prs tps rd-targets

atcs) ⊆ L M
using test-suite-to-io-language by blast

have p2 :
∧

io ′ io ′′. io ′ @ io ′′ ∈ test-suite-to-io M T =⇒ io ′ ∈ test-suite-to-io M
T

unfolding ‹T = Test-Suite prs tps rd-targets atcs›
proof −

fix io ′ io ′′ assume io ′ @ io ′′ ∈ test-suite-to-io M (Test-Suite prs tps rd-targets
atcs)

have preamble-prop :
∧

io ′′′ q P . (q,P) ∈ prs =⇒ io ′@io ′′′ ∈ L P =⇒ io ′ ∈
test-suite-to-io M (Test-Suite prs tps rd-targets atcs)

proof −
fix io ′′′ q P assume (q,P) ∈ prs and io ′@io ′′′ ∈ L P
have io ′ ∈ (

⋃
(q,P) ∈ prs . L P)

using ‹(q,P) ∈ prs› language-prefix[OF ‹io ′@io ′′′ ∈ L P›] by auto
then show io ′ ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)

unfolding test-suite-to-io.simps by blast
qed

have traversal-path-prop :
∧

io ′′′ p pt q P . io ′@io ′′′ ∈ (λ io ′ . p-io p @ io ′)
‘ (set (prefixes (p-io pt))) =⇒ (q,P) ∈ prs =⇒ path P (initial P) p =⇒ target
(initial P) p = q =⇒ pt ∈ tps q =⇒ io ′ ∈ test-suite-to-io M (Test-Suite prs tps
rd-targets atcs)

proof −
fix io ′′′ p pt q P assume io ′@io ′′′ ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io

pt)))
and (q,P) ∈ prs
and path P (initial P) p
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and target (initial P) p = q
and pt ∈ tps q

obtain ioP1 where io ′@io ′′′ = p-io p @ ioP1 and ioP1 ∈ (set (prefixes
(p-io pt)))

using ‹io ′@io ′′′ ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt)))› by auto
then obtain ioP2 where ioP1 @ ioP2 = p-io pt

unfolding prefixes-set by blast

show io ′ ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)
proof (cases length io ′ ≤ length (p-io p))

case True
then have io ′ = (take (length io ′) (p-io p))

using ‹io ′@io ′′′ = p-io p @ ioP1 ›
by (metis (no-types, lifting) order-refl take-all take-le)

then have p-io p = io ′@(drop (length io ′) (p-io p))
by (metis (no-types, lifting) append-take-drop-id)

then have io ′@(drop (length io ′) (p-io p)) ∈ L P
using language-state-containment[OF ‹path P (initial P) p›] by blast

then show ?thesis
using preamble-prop[OF ‹(q,P) ∈ prs›] by blast

next
case False
then have io ′ = p-io p @ (take (length io ′ − length (p-io p)) ioP1 )

using ‹io ′@io ′′′ = p-io p @ ioP1 ›
by (metis (no-types, lifting) le-cases take-all take-append take-le)

moreover have (take (length io ′ − length (p-io p)) ioP1 ) ∈ (set (prefixes
(p-io pt)))

proof −
have ioP1 = (take (length io ′ − length (p-io p)) ioP1 ) @ (drop (length io ′

− length (p-io p)) ioP1 )
by auto

then have (take (length io ′ − length (p-io p)) ioP1 ) @ ((drop (length io ′

− length (p-io p)) ioP1 ) @ ioP2 ) = p-io pt
using ‹ioP1 @ ioP2 = p-io pt› by (metis (mono-tags, lifting) append-assoc)

then show ?thesis
unfolding prefixes-set by blast

qed
ultimately have io ′ ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt)))

by blast
then have io ′ ∈ (

⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt

. ∃ q P . (q,P) ∈ prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps
q})

using ‹(q,P) ∈ prs› ‹path P (initial P) p› ‹target (initial P) p = q› ‹pt ∈
tps q› by blast

then show ?thesis
unfolding test-suite-to-io.simps by blast
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qed
qed

from ‹io ′ @ io ′′ ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)› con-
sider

(a) io ′ @ io ′′ ∈ (
⋃

(q,P) ∈ prs . L P) |
(b) io ′ @ io ′′ ∈ (

⋃
{(λ io ′ . p-io p @ io ′) ‘ (set (prefixes (p-io pt))) | p pt . ∃

q P . (q,P) ∈ prs ∧ path P (initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q}) |
(c) io ′ @ io ′′ ∈ (

⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set

(from-FSM M (target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P
(initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) })

unfolding test-suite-to-io.simps
by blast

then show io ′ ∈ test-suite-to-io M (Test-Suite prs tps rd-targets atcs)
proof cases

case a
then show ?thesis using preamble-prop by blast

next
case b
then show ?thesis using traversal-path-prop by blast

next
case c
then obtain p pt q A P q ′ t1 t2 where io ′ @ io ′′ ∈ (λ io-atc . p-io p @

p-io pt @ io-atc) ‘ (atc-to-io-set (from-FSM M (target q pt)) A)
and (q,P) ∈ prs
and path P (initial P) p
and target (initial P) p = q
and pt ∈ tps q
and q ′ ∈ rd-targets (q,pt)
and (A,t1 ,t2 ) ∈ atcs (target q pt,q ′)

by blast

obtain ioA where io ′ @ io ′′ = p-io p @ p-io pt @ ioA
and ioA ∈ (atc-to-io-set (from-FSM M (target q pt)) A)

using ‹io ′ @ io ′′ ∈ (λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set
(from-FSM M (target q pt)) A)›

by blast

show ?thesis proof (cases length io ′ ≤ length (p-io p @ p-io pt))
case True
then have io ′ @ (drop (length io ′) (p-io p @ p-io pt)) = p-io p @ p-io pt

using ‹io ′ @ io ′′ = p-io p @ p-io pt @ ioA›
by (simp add: append-eq-conv-conj)
moreover have p-io p @ p-io pt ∈ (λ io ′ . p-io p @ io ′) ‘ (set (prefixes

(p-io pt)))
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unfolding prefixes-set by blast
ultimately have io ′@(drop (length io ′) (p-io p @ p-io pt)) ∈ (λ io ′ . p-io p

@ io ′) ‘ (set (prefixes (p-io pt)))
by simp

then show ?thesis
using traversal-path-prop[OF - ‹(q,P) ∈ prs› ‹path P (initial P) p› ‹target

(initial P) p = q› ‹pt ∈ tps q›] by blast
next

case False
then have io ′ = (p-io p @ p-io pt) @ (take (length io ′ − length (p-io p @

p-io pt)) ioA)
proof −

have io ′ = take (length io ′) (io ′ @ io ′′)
by auto

then show ?thesis
using False ‹io ′ @ io ′′ = p-io p @ p-io pt @ ioA› by fastforce

qed
moreover have (take (length io ′ − length (p-io p @ p-io pt)) ioA) ∈

(atc-to-io-set (from-FSM M (target q pt)) A)
proof −

have (take (length io ′ − length (p-io p @ p-io pt)) ioA)@(drop (length io ′

− length (p-io p @ p-io pt)) ioA) ∈ L (from-FSM M (target q pt)) ∩ L A
using ‹ioA ∈ (atc-to-io-set (from-FSM M (target q pt)) A)› by auto

then have ∗: (take (length io ′ − length (p-io p @ p-io pt)) ioA)@(drop
(length io ′ − length (p-io p @ p-io pt)) ioA) ∈ L (from-FSM M (target q pt))

and ∗∗: (take (length io ′ − length (p-io p @ p-io pt)) ioA)@(drop
(length io ′ − length (p-io p @ p-io pt)) ioA) ∈ L A

by blast+
show ?thesis

using language-prefix[OF ∗] language-prefix[OF ∗∗]
unfolding atc-to-io-set.simps by blast

qed
ultimately have io ′ ∈ (λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set

(from-FSM M (target q pt)) A)
by force

then have io ′ ∈ (
⋃
{(λ io-atc . p-io p @ p-io pt @ io-atc) ‘ (atc-to-io-set

(from-FSM M (target q pt)) A) | p pt q A . ∃ P q ′ t1 t2 . (q,P) ∈ prs ∧ path P
(initial P) p ∧ target (initial P) p = q ∧ pt ∈ tps q ∧ q ′ ∈ rd-targets (q,pt) ∧
(A,t1 ,t2 ) ∈ atcs (target q pt,q ′) })

using ‹(q,P) ∈ prs› ‹path P (initial P) p› ‹target (initial P) p = q› ‹pt ∈
tps q› ‹q ′ ∈ rd-targets (q,pt)› ‹(A,t1 ,t2 ) ∈ atcs (target q pt,q ′)› by blast

then show ?thesis
unfolding test-suite-to-io.simps by blast

qed
qed

qed
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then show ?thesis
using pass-io-set-maximal-from-pass-io-set[OF p1 ] by blast

qed

lemma passes-test-suite-as-maximal-sequences-completeness :
assumes implies-completeness T M m
and is-finite-test-suite T
and observable M
and observable M ′

and inputs M ′ = inputs M
and inputs M 6= {}
and completely-specified M
and completely-specified M ′

and size M ′ ≤ m
shows (L M ′ ⊆ L M ) ←→ pass-io-set-maximal M ′ (test-suite-to-io-maximal M
T )

unfolding passes-test-suite-completeness[OF assms(1 ,3−9 )]
unfolding test-suite-to-io-pass[OF assms(1 ,3−8 ),symmetric]
unfolding test-suite-to-io-pass-maximal[OF assms(1 ,2 )]
unfolding test-suite-to-io-maximal-code[OF assms(1 ,2 ,3 )]
by simp

lemma test-suite-to-io-maximal-finite :
assumes implies-completeness T M m
and is-finite-test-suite T
and observable M

shows finite (test-suite-to-io-maximal M T )
using test-suite-to-io-finite[OF assms(1 ,2 )]
unfolding test-suite-to-io-maximal-code[OF assms, symmetric]
by simp

end

43 Calculating Sufficient Test Suites

This theory describes algorithms to calculate test suites that satisfy the
sufficiency criterion for a given specification FSM and upper bound m on
the number of states in the System Under Test.
theory Test-Suite-Calculation
imports Test-Suite-IO
begin
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43.1 Calculating Path Prefixes that are to be Extended With
Adaptive Cest Cases

43.1.1 Calculating Tests along m-Traversal-Paths
fun prefix-pair-tests :: ′a ⇒ (( ′a, ′b, ′c) traversal-path × ( ′a set × ′a set)) set ⇒ ( ′a
× ( ′a, ′b, ′c) traversal-path × ′a) set where

prefix-pair-tests q pds
=

⋃
{{(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))} | p1 p2 .
∃ (p,(rd,dr)) ∈ pds .

(p1 ,p2 ) ∈ set (prefix-pairs p) ∧
(target q p1 ) ∈ rd ∧
(target q p2 ) ∈ rd ∧
(target q p1 ) 6= (target q p2 )}

lemma prefix-pair-tests-code[code] :
prefix-pair-tests q pds = (

⋃
(image (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 ) .

{(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd
∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) pds))
proof −

have
∧

tp . tp ∈ prefix-pair-tests q pds =⇒ tp ∈ (
⋃

(image (λ (p,(rd,dr)) .
⋃

(set
(map (λ (p1 ,p2 ) . {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) .
(target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs
p))))) pds))

proof −
fix tp assume tp ∈ prefix-pair-tests q pds
then obtain tps where tp ∈ tps

and tps ∈ {{(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))} | p1 p2 .
∃ (p,(rd,dr)) ∈ pds . (p1 ,p2 ) ∈ set (prefix-pairs p) ∧ (target q p1 ) ∈ rd ∧ (target
q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )}

unfolding prefix-pair-tests.simps
by (meson UnionE)

then obtain p1 p2 where tps = {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}
and ∃ (p,(rd,dr)) ∈ pds . (p1 ,p2 ) ∈ set (prefix-pairs p) ∧

(target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )
unfolding mem-Collect-eq by blast

then obtain p rd dr where (p,(rd,dr)) ∈ pds and (p1 ,p2 ) ∈ set (prefix-pairs
p) and (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )

by blast

have scheme :
∧

f x xs . x ∈ set xs =⇒ f x ∈ set (map f xs)
by auto

have (p1 ,p2 ) ∈ set (filter (λ(p1 , p2 ). target q p1 ∈ rd ∧ target q p2 ∈ rd ∧
target q p1 6= target q p2 ) (prefix-pairs p))

using ‹(p1 ,p2 ) ∈ set (prefix-pairs p)›
‹(target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )›

by auto
have {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))} ∈ (set (map (λ (p1 ,p2 ) .
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{(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd
∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))

using scheme[OF ‹(p1 ,p2 ) ∈ set (filter (λ(p1 , p2 ). target q p1 ∈ rd ∧
target q p2 ∈ rd ∧ target q p1 6= target q p2 ) (prefix-pairs p))›, of (λ (p1 ,p2 ) .
{(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))})]

by simp

then show tp ∈ (
⋃
(image (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target

q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 )
∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) pds))

using ‹tp ∈ tps› ‹(p,(rd,dr)) ∈ pds›
unfolding ‹tps = {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}›
by blast

qed
moreover have

∧
tp . tp ∈ (

⋃
(image (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 )

. {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈
rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) pds))

=⇒ tp ∈ prefix-pair-tests q pds
proof −

fix tp assume tp ∈ (
⋃
(image (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 ) .

{(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd
∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) pds))

then obtain prddr where prddr ∈ pds
and tp ∈ (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target

q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 )
∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) prddr

by blast
then obtain p rd dr where prddr = (p,(rd,dr)) by auto

then have tp ∈
⋃

(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target q p2 )), (q,p2 ,(target q
p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 )
6= (target q p2 )) (prefix-pairs p))))

using ‹tp ∈ (λ (p,(rd,dr)) .
⋃

(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target q p2 )),
(q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd
∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) prddr› by auto

then obtain p1 p2 where (p1 ,p2 ) ∈ set (filter (λ (p1 ,p2 ) . (target q p1 ) ∈
rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))

and tp ∈ {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}
by auto

then have (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q
p2 )

and (p1 ,p2 ) ∈ set (prefix-pairs p)
by auto

then show tp ∈ prefix-pair-tests q pds
using ‹prddr ∈ pds› ‹tp ∈ {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}›
unfolding prefix-pair-tests.simps ‹prddr = (p,(rd,dr))›
by blast
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qed
ultimately show ?thesis

by blast
qed

43.1.2 Calculating Tests between Preambles
fun preamble-prefix-tests ′ :: ′a ⇒ (( ′a, ′b, ′c) traversal-path × ( ′a set × ′a set)) list
⇒ ′a list ⇒ ( ′a × ( ′a, ′b, ′c) traversal-path × ′a) list where

preamble-prefix-tests ′ q pds drs =
concat (map (λ((p,(rd,dr)),q2 ,p1 ) . [(q,p1 ,q2 ), (q2 ,[],(target q p1 ))])

(filter (λ((p,(rd,dr)),q2 ,p1 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target
q p1 ) 6= q2 )

(concat (map (λ((p,(rd,dr)),q2 ) . map (λp1 . ((p,(rd,dr)),q2 ,p1 ))
(prefixes p)) (List.product pds drs)))))

definition preamble-prefix-tests :: ′a ⇒ (( ′a, ′b, ′c) traversal-path × ( ′a set × ′a
set)) set ⇒ ′a set ⇒ ( ′a × ( ′a, ′b, ′c) traversal-path × ′a) set where

preamble-prefix-tests q pds drs =
⋃
{{(q,p1 ,q2 ), (q2 ,[],(target q p1 ))} | p1 q2 . ∃

(p,(rd,dr)) ∈ pds . q2 ∈ drs ∧ (∃ p2 . p = p1@p2 ) ∧ (target q p1 ) ∈ rd ∧ q2 ∈
rd ∧ (target q p1 ) 6= q2}

lemma preamble-prefix-tests-code[code] :
preamble-prefix-tests q pds drs = (

⋃
(image (λ (p,(rd,dr)) .

⋃
(image (λ (p1 ,q2 )

. {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}) (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2
∈ rd ∧ (target q p1 ) 6= q2 ) ((set (prefixes p)) × drs)))) pds))
proof −
have

∧
pp . pp ∈ preamble-prefix-tests q pds drs =⇒ pp ∈ (

⋃
(image (λ (p,(rd,dr))

.
⋃

(image (λ (p1 ,q2 ) . {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}) (Set.filter (λ (p1 ,q2 ) .
(target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 ) ((set (prefixes p)) × drs))))
pds))

proof −
fix pp assume pp ∈ preamble-prefix-tests q pds drs
then obtain p1 q2 where pp ∈ {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}

and ∃ (p,(rd,dr)) ∈ pds . q2 ∈ drs ∧ (∃ p2 . p = p1@p2 ) ∧
(target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2

unfolding preamble-prefix-tests-def by blast
then obtain p rd dr where (p,(rd,dr)) ∈ pds and q2 ∈ drs and (∃ p2 . p =

p1@p2 ) and (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2
by auto

then have (p1 ,q2 ) ∈ (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧
(target q p1 ) 6= q2 ) ((set (prefixes p)) × drs))

unfolding prefixes-set by force
then show pp ∈ (

⋃
(image (λ (p,(rd,dr)) .

⋃
(image (λ (p1 ,q2 ) . {(q,p1 ,q2 ),

(q2 ,[],(target q p1 ))}) (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target
q p1 ) 6= q2 ) ((set (prefixes p)) × drs)))) pds))

using ‹(p,(rd,dr)) ∈ pds›
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‹pp ∈ {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}› by blast
qed
moreover have

∧
pp . pp ∈ (

⋃
(image (λ (p,(rd,dr)) .

⋃
(image (λ (p1 ,q2 ) .

{(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}) (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2
∈ rd ∧ (target q p1 ) 6= q2 ) ((set (prefixes p)) × drs)))) pds))

=⇒ pp ∈ preamble-prefix-tests q pds drs
proof −
fix pp assume pp ∈ (

⋃
(image (λ (p,(rd,dr)) .

⋃
(image (λ (p1 ,q2 ) . {(q,p1 ,q2 ),

(q2 ,[],(target q p1 ))}) (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target
q p1 ) 6= q2 ) ((set (prefixes p)) × drs)))) pds))

then obtain prddr where prddr ∈ pds
and pp ∈ (λ (p,(rd,dr)) .

⋃
(image (λ (p1 ,q2 ) . {(q,p1 ,q2 ),

(q2 ,[],(target q p1 ))}) (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target
q p1 ) 6= q2 ) ((set (prefixes p)) × drs)))) prddr

by blast

obtain p rd dr where prddr = (p,(rd,dr))
using prod-cases3 by blast

obtain p1 q2 where (p1 ,q2 ) ∈ (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2
∈ rd ∧ (target q p1 ) 6= q2 ) ((set (prefixes p)) × drs))

and pp ∈ {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}
using ‹pp ∈ (λ (p,(rd,dr)) .

⋃
(image (λ (p1 ,q2 ) . {(q,p1 ,q2 ), (q2 ,[],(target q

p1 ))}) (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 )
((set (prefixes p)) × drs)))) prddr›

unfolding ‹prddr = (p,(rd,dr))›
by blast

have q2 ∈ drs ∧ (∃ p2 . p = p1@p2 ) ∧ (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target
q p1 ) 6= q2

using ‹(p1 ,q2 ) ∈ (Set.filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧
(target q p1 ) 6= q2 ) ((set (prefixes p)) × drs))›

unfolding prefixes-set
by auto

then have ∃ (p, rd, dr)∈pds. q2 ∈ drs ∧ (∃ p2 . p = p1 @ p2 ) ∧ target q p1 ∈
rd ∧ q2 ∈ rd ∧ target q p1 6= q2

using ‹prddr ∈ pds› ‹prddr = (p,(rd,dr))›
by blast

then have ∗: {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))} ∈ {{(q, p1 , q2 ), (q2 , [], target
q p1 )} |p1 q2 .

∃ (p, rd, dr)∈pds. q2 ∈ drs ∧ (∃ p2 . p = p1 @ p2 ) ∧ target q p1 ∈ rd
∧ q2 ∈ rd ∧ target q p1 6= q2} by blast

show pp ∈ preamble-prefix-tests q pds drs
using UnionI [OF ∗ ‹pp ∈ {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}›]
unfolding preamble-prefix-tests-def by assumption

qed
ultimately show ?thesis by blast

qed
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43.1.3 Calculating Tests between m-Traversal-Paths Prefixes and
Preambles

fun preamble-pair-tests :: ′a set set ⇒ ( ′a × ′a) set ⇒ ( ′a × ( ′a, ′b, ′c) traversal-path
× ′a) set where

preamble-pair-tests drss rds = (
⋃

drs ∈ drss . (λ (q1 ,q2 ) . (q1 ,[],q2 )) ‘ ((drs ×
drs) ∩ rds))

43.2 Calculating a Test Suite
definition calculate-test-paths ::
( ′a, ′b, ′c) fsm
⇒ nat
⇒ ′a set
⇒ ( ′a × ′a) set
⇒ ( ′a set × ′a set) list
⇒ (( ′a ⇒ ( ′a, ′b, ′c) traversal-path set) × (( ′a × ( ′a, ′b, ′c) traversal-path) ⇒ ′a

set))
where
calculate-test-paths M m d-reachable-states r-distinguishable-pairs repetition-sets

=
(let

paths-with-witnesses
= (image (λ q . (q,m-traversal-paths-with-witness M q repetition-sets

m)) d-reachable-states);
get-paths

= m2f (set-as-map paths-with-witnesses);
PrefixPairTests

=
⋃

q ∈ d-reachable-states .
⋃

mrsps ∈ get-paths q . prefix-pair-tests
q mrsps;

PreamblePrefixTests
=

⋃
q ∈ d-reachable-states .

⋃
mrsps ∈ get-paths q . preamble-prefix-tests

q mrsps d-reachable-states;
PreamblePairTests

= preamble-pair-tests (
⋃

(q,pw) ∈ paths-with-witnesses . ((λ (p,(rd,dr))
. dr) ‘ pw)) r-distinguishable-pairs;

tests
= PrefixPairTests ∪ PreamblePrefixTests ∪ PreamblePairTests;

tps ′

= m2f-by
⋃

(set-as-map (image (λ (q,p) . (q, image fst p))
paths-with-witnesses));

tps ′′

= m2f (set-as-map (image (λ (q,p,q ′) . (q,p)) tests));
tps

= (λ q . tps ′ q ∪ tps ′′ q);
rd-targets

= m2f (set-as-map (image (λ (q,p,q ′) . ((q,p),q ′)) tests))
in
( tps, rd-targets ))
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definition combine-test-suite ::
( ′a, ′b, ′c) fsm
⇒ nat
⇒ ( ′a × ( ′a, ′b, ′c) preamble) set
⇒ (( ′a × ′a) × (( ′d, ′b, ′c) separator × ′d × ′d)) set
⇒ ( ′a set × ′a set) list
⇒ ( ′a, ′b, ′c, ′d) test-suite
where
combine-test-suite M m states-with-preambles pairs-with-separators repetition-sets

=
(let drs = image fst states-with-preambles;

rds = image fst pairs-with-separators;
tps-and-targets = calculate-test-paths M m drs rds repetition-sets;
atcs = m2f (set-as-map pairs-with-separators)

in (Test-Suite states-with-preambles (fst tps-and-targets) (snd tps-and-targets) atcs))

definition calculate-test-suite-for-repetition-sets ::
( ′a::linorder , ′b::linorder , ′c) fsm ⇒ nat ⇒ ( ′a set × ′a set) list ⇒ ( ′a, ′b, ′c, ( ′a ×

′a) + ′a) test-suite
where
calculate-test-suite-for-repetition-sets M m repetition-sets =
(let

states-with-preambles = d-reachable-states-with-preambles M ;
pairs-with-separators = image (λ((q1 ,q2 ),A) . ((q1 ,q2 ),A,Inr q1 ,Inr q2 ))

(r-distinguishable-state-pairs-with-separators M )
in combine-test-suite M m states-with-preambles pairs-with-separators repetition-sets)

43.3 Sufficiency of the Calculated Test Suite
lemma calculate-test-suite-for-repetition-sets-sufficient-and-finite :

fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes observable M
and completely-specified M
and inputs M 6= {}
and

∧
q. q ∈ FSM .states M =⇒ ∃ d∈set RepSets. q ∈ fst d

and
∧

d. d ∈ set RepSets =⇒ fst d ⊆ states M ∧ (snd d = fst d ∩ fst ‘
d-reachable-states-with-preambles M )

and
∧

q1 q2 d. d ∈ set RepSets =⇒ q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒
(q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M
shows implies-completeness (calculate-test-suite-for-repetition-sets M m RepSets)
M m
and is-finite-test-suite (calculate-test-suite-for-repetition-sets M m RepSets)
proof −
obtain states-with-preambles tps rd-targets atcs where calculate-test-suite-for-repetition-sets

M m RepSets
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= Test-Suite states-with-preambles
tps rd-targets atcs

using test-suite.exhaust by blast

have
∧

a b c d . Test-Suite states-with-preambles tps rd-targets atcs = Test-Suite
a b c d =⇒ tps = b

by blast

have states-with-preambles-def : states-with-preambles = d-reachable-states-with-preambles
M

and tps-def : tps = (λq. (m2f-by
⋃

(set-as-map ((λ(q,
p). (q, fst ‘ p)) ‘ (λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘ fst
‘ d-reachable-states-with-preambles M ))) q

∪ (m2f (set-as-map ((λ(q, p, q ′). (q, p)) ‘
((
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ (m2f (set-as-map ((λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M )) q)))
∪ (

⋃
q∈fst ‘ d-reachable-states-with-preambles M .⋃

mrsps∈ m2f (set-as-map ((λq. (q, m-traversal-paths-with-witness M q RepSets
m)) ‘ fst ‘ d-reachable-states-with-preambles M )) q . preamble-prefix-tests q mrsps
(fst ‘ d-reachable-states-with-preambles M ))

∪ preamble-pair-tests (
⋃
(q, y)∈(λq. (q,

m-traversal-paths-with-witness M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles
M . (λ(p, rd, dr). dr) ‘ y) (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a +
′a, Inr q2 :: ′a × ′a + ′a)) ‘ r-distinguishable-state-pairs-with-separators M ))))) q)

and rd-targets-def : rd-targets = m2f (set-as-map
((λ(q, p, y). ((q, p), y)) ‘

((
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ (m2f (set-as-map ((λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M )) q)))
∪ (

⋃
q∈fst ‘ d-reachable-states-with-preambles M .⋃

mrsps∈ m2f (set-as-map ((λq. (q, m-traversal-paths-with-witness M q RepSets
m)) ‘ fst ‘ d-reachable-states-with-preambles M )) q . preamble-prefix-tests q mrsps
(fst ‘ d-reachable-states-with-preambles M ))

∪ preamble-pair-tests (
⋃
(q, y)∈(λq. (q,

m-traversal-paths-with-witness M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles
M . (λ(p, rd, dr). dr) ‘ y) (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a +
′a, Inr q2 :: ′a × ′a + ′a)) ‘ r-distinguishable-state-pairs-with-separators M ))))

and atcs-def : atcs = m2f (set-as-map ((λ((q1 , q2 ), A). ((q1 , q2 ),
A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M ))

using ‹calculate-test-suite-for-repetition-sets M m RepSets = Test-Suite states-with-preambles
tps rd-targets atcs›[symmetric]

unfolding calculate-test-suite-for-repetition-sets-def combine-test-suite-def Let-def
calculate-test-paths-def fst-conv snd-conv by force+

have tps-alt-def :
∧

q . q ∈ fst ‘ d-reachable-states-with-preambles M =⇒

1364



tps q = (fst ‘ m-traversal-paths-with-witness M q RepSets m) ∪
{z. (q, z)
∈ (λ(q, p, q ′). (q, p)) ‘
((prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets

m)) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

and rd-targets-alt-def :
∧

q p . q ∈ fst ‘ d-reachable-states-with-preambles M =⇒
rd-targets (q,p) = {z. ((q, p), z)

∈ (λ(q, p, y). ((q, p), y)) ‘
((prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets

m)) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃

(q, y)∈(λq. (q, m-traversal-paths-with-witness
M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

proof −
fix q p assume q ∈ fst ‘ d-reachable-states-with-preambles M

have scheme0 : (case set-as-map
((λ(q, p). (q, fst ‘ p)) ‘
(λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘
fst ‘ d-reachable-states-with-preambles M )

q of
None ⇒

⋃
{} | Some x ⇒

⋃
x) = image fst (m-traversal-paths-with-witness

M q RepSets m)
proof −

have ∗: ((λ(q, p). (q, fst ‘ p)) ‘
(λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘
fst ‘ d-reachable-states-with-preambles M )
= (λ q . (q , image fst (m-traversal-paths-with-witness M q RepSets

m))) ‘ (fst ‘ d-reachable-states-with-preambles M )
by force

have ∗∗:
∧

f q xs . (case set-as-map
((λq. (q, f q)) ‘ xs)
q of

None ⇒
⋃
{} | Some xs ⇒

⋃
xs) = (if q ∈ xs then

⋃
{f q}
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else
⋃
{})

unfolding set-as-map-def by auto

show ?thesis
unfolding ∗ ∗∗
using ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›
by auto

qed

have scheme1 :
∧

f q xs . (case set-as-map
((λq. (q, f q)) ‘ xs)
q of

None ⇒ {} | Some xs ⇒ xs) = (if q ∈ xs then {f q} else {})
unfolding set-as-map-def by auto

have scheme2 : (
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘
(if q ∈ fst ‘ d-reachable-states-with-preambles M
then {m-traversal-paths-with-witness M q RepSets m} else {})))

= (
⋃

q∈fst ‘ d-reachable-states-with-preambles M . (
⋃

(prefix-pair-tests q ‘
{m-traversal-paths-with-witness M q RepSets m})))

unfolding set-as-map-def by auto

have scheme3 : (
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈if q ∈ fst ‘ d-reachable-states-with-preambles M

then {m-traversal-paths-with-witness M q RepSets m} else {}.
preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles

M ))
= (

⋃
q∈fst ‘ d-reachable-states-with-preambles M . (

⋃
mrsps∈{m-traversal-paths-with-witness

M q RepSets m} . preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )))

unfolding set-as-map-def by auto

have scheme4 : (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘
r-distinguishable-state-pairs-with-separators M )

= image fst (r-distinguishable-state-pairs-with-separators M )
by force

have ∗:tps q = (fst ‘ m-traversal-paths-with-witness M q RepSets m) ∪
{z. (q, z)
∈ (λ(q, p, q ′). (q, p)) ‘

((
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q

RepSets m})) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.
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preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

unfolding tps-def
unfolding scheme0 scheme1 scheme2 scheme3 scheme4
unfolding set-as-map-def
by auto

have ∗∗: {z. (q, z)
∈ (λ(q, p, q ′). (q, p)) ‘

((
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q

RepSets m})) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

= {z. (q, z)
∈ (λ(q, p, q ′). (q, p)) ‘
((prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets

m)) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

(is {z. (q, z) ∈ ?S1} = {z. (q, z) ∈ ?S2})
proof −

have
∧

z . (q, z) ∈ ?S1 =⇒ (q, z) ∈ ?S2
proof −

fix z assume (q, z) ∈ ?S1
then consider (q, z) ∈ (λ(q, p, q ′). (q, p)) ‘ (

⋃
q∈fst ‘ d-reachable-states-with-preambles

M . ⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q

RepSets m}))
| (q,z) ∈ (λ(q, p, q ′). (q, p)) ‘ (

⋃
q∈fst ‘ d-reachable-states-with-preambles

M . ⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
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M ))
| (q,z) ∈ (λ(q, p, q ′). (q, p)) ‘ (preamble-pair-tests (

⋃
(q, y)∈(λq. (q,

m-traversal-paths-with-witness M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles
M . (λ(p, rd, dr). dr) ‘ y) (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a +
′a, Inr q2 :: ′a × ′a + ′a)) ‘ r-distinguishable-state-pairs-with-separators M ))

by blast
then show (q, z) ∈ ?S2 proof cases

case 1
have scheme:

∧
f y xs . y ∈ image f xs =⇒ ∃ x . x ∈ xs ∧ f x = y by auto

obtain qzq where qzq ∈ (
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q RepSets m}))

and (λ(q, p, q ′). (q, p)) qzq = (q,z)
using scheme[OF 1 ] by blast

then obtain q ′ where q ′∈fst ‘ d-reachable-states-with-preambles M
and qzq ∈

⋃
(prefix-pair-tests q ′ ‘ {m-traversal-paths-with-witness

M q ′ RepSets m})
by blast

then have fst qzq = q ′

by auto
then have q ′ = q

using ‹(λ(q, p, q ′). (q, p)) qzq = (q,z)›
by (simp add: prod.case-eq-if )

then have qzq ∈
⋃

(prefix-pair-tests q ‘ {m-traversal-paths-with-witness
M q RepSets m})

using ‹qzq ∈
⋃

(prefix-pair-tests q ′ ‘ {m-traversal-paths-with-witness M
q ′ RepSets m})›

by blast
then have (λ(q, p, q ′). (q, p)) qzq ∈ ?S2

by auto
then show ?thesis

unfolding ‹(λ(q, p, q ′). (q, p)) qzq = (q,z)›
by assumption

next
case 2
then show ?thesis by blast

next
case 3
then show ?thesis by blast

qed
qed
moreover have

∧
z . (q, z) ∈ ?S2 =⇒ (q, z) ∈ ?S1

using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › by blast
ultimately show ?thesis

by meson
qed

show tps q = (fst ‘ m-traversal-paths-with-witness M q RepSets m) ∪
{z. (q, z)
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∈ (λ(q, p, q ′). (q, p)) ‘
((prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets

m)) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

using ∗ unfolding ∗∗ by assumption

have ∗∗∗: rd-targets (q,p) = {z. ((q, p), z)
∈ (λ(q, p, y). ((q, p), y)) ‘

((
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q

RepSets m})) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃

(q, y)∈(λq. (q, m-traversal-paths-with-witness
M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

unfolding rd-targets-def
unfolding scheme1 scheme2 scheme3 scheme4
unfolding set-as-map-def
by auto

have ∗∗∗∗: {z. ((q, p), z)
∈ (λ(q, p, y). ((q, p), y)) ‘

((
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q

RepSets m})) ∪
(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃

(q, y)∈(λq. (q, m-traversal-paths-with-witness
M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

= {z. ((q, p), z)
∈ (λ(q, p, y). ((q, p), y)) ‘

((prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets
m)) ∪
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(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃

(q, y)∈(λq. (q, m-traversal-paths-with-witness
M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

(is {z. ((q, p), z) ∈ ?S1} = {z. ((q, p), z) ∈ ?S2})
proof −

have
∧

z . ((q, p), z) ∈ ?S1 =⇒ ((q, p), z) ∈ ?S2
proof −

fix z assume ((q, p), z) ∈ ?S1
then consider ((q, p), z) ∈ (λ(q, p, y). ((q, p), y)) ‘ (

⋃
q∈fst ‘ d-reachable-states-with-preambles

M . ⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q

RepSets m}))
| ((q, p), z) ∈ (λ(q, p, y). ((q, p), y)) ‘ (

⋃
q∈fst ‘ d-reachable-states-with-preambles

M . ⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M ))

| ((q, p), z) ∈ (λ(q, p, y). ((q, p), y)) ‘ (preamble-pair-tests (
⋃
(q,

y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles
M . (λ(p, rd, dr). dr) ‘ y) (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a +
′a, Inr q2 :: ′a × ′a + ′a)) ‘ r-distinguishable-state-pairs-with-separators M ))

by blast
then show ((q, p), z) ∈ ?S2 proof cases

case 1
have scheme:

∧
f y xs . y ∈ image f xs =⇒ ∃ x . x ∈ xs ∧ f x = y by auto

obtain qzq where qzq ∈ (
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
(prefix-pair-tests q ‘ {m-traversal-paths-with-witness M q RepSets m}))

and (λ(q, p, y). ((q, p), y)) qzq = ((q,p),z)
using scheme[OF 1 ] by blast

then obtain q ′ where q ′∈fst ‘ d-reachable-states-with-preambles M
and qzq ∈

⋃
(prefix-pair-tests q ′ ‘ {m-traversal-paths-with-witness

M q ′ RepSets m})
by blast

then have fst qzq = q ′

by auto
then have q ′ = q

using ‹(λ(q, p, y). ((q, p), y)) qzq = ((q,p),z)›
by (simp add: prod.case-eq-if )

then have qzq ∈
⋃

(prefix-pair-tests q ‘ {m-traversal-paths-with-witness
M q RepSets m})

using ‹qzq ∈
⋃

(prefix-pair-tests q ′ ‘ {m-traversal-paths-with-witness M
q ′ RepSets m})›

by blast
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then have (λ(q, p, y). ((q, p), y)) qzq ∈ ?S2
by auto

then show ?thesis
unfolding ‹(λ(q, p, y). ((q, p), y)) qzq = ((q,p),z)›
by assumption

next
case 2
then show ?thesis by blast

next
case 3
then show ?thesis by blast

qed
qed
moreover have

∧
z . ((q, p), z) ∈ ?S2 =⇒ ((q, p), z) ∈ ?S1

using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › by blast
ultimately show ?thesis

by meson
qed

show rd-targets (q,p) = {z. ((q, p), z)
∈ (λ(q, p, y). ((q, p), y)) ‘

((prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets
m)) ∪

(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests (
⋃

(q, y)∈(λq. (q, m-traversal-paths-with-witness
M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a))
‘ r-distinguishable-state-pairs-with-separators M ))}

using ∗∗∗ unfolding ∗∗∗∗ by assumption
qed

define pps-alt :: ( ′a × ( ′a, ′b, ′c) traversal-path × ′a) set where pps-alt-def :
pps-alt = {(q1 ,[],q2 ) | q1 q2 . ∃ q p rd dr . q ∈ fst ‘ d-reachable-states-with-preambles
M ∧ (p,(rd,dr)) ∈ m-traversal-paths-with-witness M q RepSets m ∧ q1 ∈ dr ∧ q2
∈ dr ∧ (q1 ,q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M}

have preamble-pair-tests-alt :
preamble-pair-tests (

⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets

m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y) (fst ‘ (λ((q1 ,
q2 ), A). ((q1 , q2 ), A, Inr q1 :: ′a × ′a + ′a, Inr q2 :: ′a × ′a + ′a)) ‘ r-distinguishable-state-pairs-with-separators
M )

= pps-alt
(is ?PP1 = ?PP2 )

proof −
have

∧
x . x ∈ ?PP1 =⇒ x ∈ ?PP2

proof −
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fix x assume x ∈ ?PP1
then obtain drs where drs ∈ (

⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness

M q RepSets m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
and x ∈ (λ(q1 , q2 ). (q1 , [], q2 )) ‘ (drs × drs ∩ fst ‘ (λ((q1 , q2 ),

A). ((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M )
unfolding preamble-pair-tests.simps by force

obtain q y where (q,y) ∈ (λq. (q, m-traversal-paths-with-witness M q RepSets
m)) ‘ fst ‘ d-reachable-states-with-preambles M

and drs ∈ (λ(p, rd, dr). dr) ‘ y
using ‹drs ∈ (

⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets

m)) ‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)›
by force

have q ∈ fst ‘ d-reachable-states-with-preambles M
and y = m-traversal-paths-with-witness M q RepSets m
using ‹(q,y) ∈ (λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘ fst

‘ d-reachable-states-with-preambles M ›
by force+

obtain p rd where (p,(rd,drs)) ∈ m-traversal-paths-with-witness M q RepSets
m

using ‹drs ∈ (λ(p, rd, dr). dr) ‘ y› unfolding ‹y = m-traversal-paths-with-witness
M q RepSets m›

by force

obtain q1 q2 where (q1 ,q2 ) ∈ (drs × drs ∩ fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ),
A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M )

and x = (q1 , [], q2 )
using ‹x ∈ (λ(q1 , q2 ). (q1 , [], q2 )) ‘ (drs × drs ∩ fst ‘ (λ((q1 , q2 ), A).

((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M )›
by force

have q1 ∈ drs ∧ q2 ∈ drs ∧ (q1 ,q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators
M

using ‹(q1 ,q2 ) ∈ (drs × drs ∩ fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 ,
Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M )›

by force

then show x ∈ ?PP2
unfolding ‹x = (q1 , [], q2 )› pps-alt-def

using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › ‹(p,(rd,drs)) ∈
m-traversal-paths-with-witness M q RepSets m›

by blast
qed

moreover have
∧

x . x ∈ ?PP2 =⇒ x ∈ ?PP1
proof −
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fix x assume x ∈ ?PP2
then obtain q1 q2 where x = (q1 ,[],q2 ) unfolding pps-alt-def

by auto
then obtain q p rd dr where q ∈ fst ‘ d-reachable-states-with-preambles M

and (p,(rd,dr)) ∈ m-traversal-paths-with-witness M q
RepSets m

and q1 ∈ dr ∧ q2 ∈ dr ∧ (q1 ,q2 ) ∈ fst ‘
r-distinguishable-state-pairs-with-separators M

using ‹x ∈ ?PP2 › unfolding pps-alt-def by blast

have dr ∈ (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets m))

‘ fst ‘ d-reachable-states-with-preambles M . (λ(p, rd, dr). dr) ‘ y)
using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › ‹(p,(rd,dr)) ∈ m-traversal-paths-with-witness

M q RepSets m› by force

moreover have x ∈ (λ(q1 , q2 ). (q1 , [], q2 )) ‘ (dr × dr ∩ fst ‘ (λ((q1 , q2 ),
A). ((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M )

unfolding ‹x = (q1 ,[],q2 )› using ‹q1 ∈ dr ∧ q2 ∈ dr ∧ (q1 ,q2 ) ∈ fst ‘
r-distinguishable-state-pairs-with-separators M › by force

ultimately show x ∈ ?PP1
unfolding preamble-pair-tests.simps by force

qed

ultimately show ?thesis by blast
qed

have p1 : (initial M ,initial-preamble M ) ∈ states-with-preambles
using fsm-initial[of M ]
unfolding states-with-preambles-def d-reachable-states-with-preambles-def cal-

culate-state-preamble-from-input-choices.simps by force

have p2a:
∧

q P . (q,P) ∈ states-with-preambles =⇒ is-preamble P M q
using assms(1 ) d-reachable-states-with-preambles-soundness(1 ) states-with-preambles-def

by blast

have p2b:
∧

q P . (q,P) ∈ states-with-preambles =⇒ (tps q) 6= {}
proof −

fix q P assume (q,P) ∈ states-with-preambles
then have q ∈ (image fst (d-reachable-states-with-preambles M ))

unfolding states-with-preambles-def
by (simp add: rev-image-eqI )

have q ∈ states M
using ‹(q, P) ∈ states-with-preambles› assms(1 ) d-reachable-states-with-preambles-soundness(2 )

states-with-preambles-def by blast
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obtain p ′ d ′ where (p ′, d ′) ∈ m-traversal-paths-with-witness M q RepSets m
using m-traversal-path-exist[OF assms(2 ) ‹q ∈ states M › assms(3 ) ‹

∧
q. q ∈

FSM .states M =⇒ ∃ d∈set RepSets. q ∈ fst d›] assms(5 )
by blast

then have p ′ ∈ image fst (m-traversal-paths-with-witness M q RepSets m)
using image-iff by fastforce

have (q, image fst (m-traversal-paths-with-witness M q RepSets m)) ∈ (image
(λ (q,p) . (q, image fst p)) (image (λ q . (q,m-traversal-paths-with-witness M q
RepSets m)) (image fst (d-reachable-states-with-preambles M ))))

using ‹q ∈ (image fst (d-reachable-states-with-preambles M ))› by force
have (image fst (m-traversal-paths-with-witness M q RepSets m)) ∈ (m2f

(set-as-map (image (λ (q,p) . (q, image fst p)) (image (λ q . (q,m-traversal-paths-with-witness
M q RepSets m)) (image fst (d-reachable-states-with-preambles M )))))) q

using set-as-map-containment[OF ‹(q, image fst (m-traversal-paths-with-witness
M q RepSets m)) ∈ (image (λ (q,p) . (q, image fst p)) (image (λ q . (q,m-traversal-paths-with-witness
M q RepSets m)) (image fst (d-reachable-states-with-preambles M ))))›]

by assumption
then have p ′ ∈ (

⋃
((m2f (set-as-map (image (λ (q,p) . (q, image fst p)) (image

(λ q . (q,m-traversal-paths-with-witness M q RepSets m)) (image fst (d-reachable-states-with-preambles
M )))))) q))

using ‹p ′ ∈ image fst (m-traversal-paths-with-witness M q RepSets m)› by
blast

then show (tps q) 6= {}
unfolding tps-def m2f-by-from-m2f by blast

qed

have p2 : (∀ q P. (q, P) ∈ states-with-preambles −→ is-preamble P M q ∧ tps q
6= {})

using p2a p2b by blast

have
∧

q1 q2 A d1 d2 . ((A,d1 ,d2 ) ∈ atcs (q1 ,q2 )) =⇒ ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators
M ∧ d1 = Inr q1 ∧ d2 = Inr q2

proof −
fix q1 q2 A d1 d2 assume ((A,d1 ,d2 ) ∈ atcs (q1 ,q2 ))
then have atcs (q1 ,q2 ) = {z. ((q1 , q2 ), z) ∈ (λ((q1 , q2 ), A). ((q1 , q2 ), A,

Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators M}
unfolding atcs-def set-as-map-def by auto

then show ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators M ∧ d1
= Inr q1 ∧ d2 = Inr q2

using ‹((A,d1 ,d2 ) ∈ atcs (q1 ,q2 ))› by auto
qed

have
∧

q1 q2 A d1 d2 . (A,d1 ,d2 ) ∈ atcs (q1 ,q2 ) =⇒ (A,d2 ,d1 ) ∈ atcs (q2 ,q1 )
∧ is-separator M q1 q2 A d1 d2

proof −
fix q1 q2 A d1 d2 assume (A,d1 ,d2 ) ∈ atcs (q1 ,q2 )
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then have ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators M and
d1 = Inr q1 and d2 = Inr q2

using ‹
∧

q1 q2 A d1 d2 . ((A,d1 ,d2 ) ∈ atcs (q1 ,q2 )) =⇒ ((q1 ,q2 ),A) ∈
r-distinguishable-state-pairs-with-separators M ∧ d1 = Inr q1 ∧ d2 = Inr q2 ›

by blast+
then have ((q2 ,q1 ),A) ∈ r-distinguishable-state-pairs-with-separators M

unfolding r-distinguishable-state-pairs-with-separators-def
by auto

then have (A,d2 ,d1 ) ∈ atcs (q2 ,q1 )
unfolding atcs-def ‹d1 = Inr q1 › ‹d2 = Inr q2 › set-as-map-def by force

moreover have is-separator M q1 q2 A d1 d2
using r-distinguishable-state-pairs-with-separators-elem-is-separator [OF ‹((q1 ,q2 ),A)

∈ r-distinguishable-state-pairs-with-separators M › assms(1 ,2 )]
unfolding ‹d1 = Inr q1 › ‹d2 = Inr q2 ›
by assumption

ultimately show (A,d2 ,d1 ) ∈ atcs (q2 ,q1 ) ∧ is-separator M q1 q2 A d1 d2
by simp

qed
then have p3 : (∀ q1 q2 A d1 d2 . (A, d1 , d2 ) ∈ atcs (q1 , q2 ) −→ (A, d2 , d1 )
∈ atcs (q2 , q1 ) ∧ is-separator M q1 q2 A d1 d2 )

by blast

have p4 :
∧

q . q ∈ states M =⇒ (∃ d ∈ set RepSets. q ∈ fst d)
by (simp add: assms(4 ))

have p5 :
∧

d . d ∈ set RepSets =⇒ ((fst d ⊆ states M ) ∧ (snd d = fst d ∩ fst
‘ states-with-preambles) ∧ (∀ q1 q2 . q1 ∈ fst d −→ q2 ∈ fst d −→ q1 6= q2 −→
atcs (q1 ,q2 ) 6= {}))

proof −
fix d assume d ∈ set RepSets

then have
∧

q1 q2 . q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1 6= q2 =⇒ atcs (q1 ,q2 )
6= {}

proof −
fix q1 q2 assume q1 ∈ fst d and q2 ∈ fst d and q1 6= q2
then have (q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M

using assms(6 )[OF ‹d ∈ set RepSets›] by blast
then obtain A where ((q1 ,q2 ),A) ∈ r-distinguishable-state-pairs-with-separators

M
by auto

then have (A,Inr q1 ,Inr q2 ) ∈ atcs (q1 ,q2 )
unfolding atcs-def set-as-map-def
by force

then show atcs (q1 ,q2 ) 6= {}
by blast

qed
then show ((fst d ⊆ states M ) ∧ (snd d = fst d ∩ fst ‘ states-with-preambles)

∧ (∀ q1 q2 . q1 ∈ fst d −→ q2 ∈ fst d −→ q1 6= q2 −→ atcs (q1 ,q2 ) 6= {}))
using assms(5 )[OF ‹d ∈ set RepSets›] unfolding states-with-preambles-def
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by blast
qed

have p6 :
∧

q . q ∈ image fst states-with-preambles =⇒ tps q ⊆ {p1 . ∃ p2 d .
(p1@p2 ,d) ∈ m-traversal-paths-with-witness M q RepSets m} ∧ fst ‘ (m-traversal-paths-with-witness
M q RepSets m) ⊆ tps q

proof
fix q assume q ∈ image fst states-with-preambles
then have q ∈ fst ‘ d-reachable-states-with-preambles M

unfolding states-with-preambles-def by assumption
then have q ∈ states M
by (metis (no-types, lifting) assms(1 ) d-reachable-states-with-preambles-soundness(2 )

image-iff prod.collapse)
show fst ‘ m-traversal-paths-with-witness M q RepSets m ⊆ tps q

unfolding tps-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›]
by blast

show tps q ⊆ {p1 . ∃ p2 d . (p1@p2 ,d) ∈ m-traversal-paths-with-witness M q
RepSets m}

proof
fix p assume p ∈ tps q

have ∗ : (
∧

q . q ∈ states M =⇒ (∃ d ∈ set RepSets. q ∈ fst d))
using p4 by blast

have ∗∗: (
∧

d . d ∈ set RepSets =⇒ (snd d ⊆ fst d))
using p5 by simp

from ‹p ∈ tps q› consider
(a) p ∈ fst ‘ m-traversal-paths-with-witness M q RepSets m |

(b) (q, p) ∈ (λ(q, p, q ′). (q, p)) ‘ (prefix-pair-tests q (m-traversal-paths-with-witness
M q RepSets m)) |

(c) (q, p) ∈ (λ(q, p, q ′). (q, p)) ‘ (
⋃

q∈fst ‘ d-reachable-states-with-preambles
M . ⋃

mrsps∈{m-traversal-paths-with-witness M q RepSets m}.
preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles

M )) |
(d) (q, p) ∈ (λ(q, p, q ′). (q, p)) ‘ pps-alt
unfolding tps-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›]

preamble-pair-tests-alt by blast

then show p ∈ {p1 . ∃ p2 d. (p1 @ p2 , d) ∈ m-traversal-paths-with-witness
M q RepSets m}

proof cases
case a
then obtain d where (p,d) ∈ m-traversal-paths-with-witness M q RepSets

m
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by auto
then have ∃ p2 d. (p @ p2 , d) ∈ m-traversal-paths-with-witness M q RepSets

m
by (metis append-eq-append-conv2 )

then show ?thesis
by blast

next
case b

obtain p1 p2 where (q,p) ∈ ((λ(q, p, q ′). (q, p)) ‘{(q, p1 , target q p2 ),
(q, p2 , target q p1 )})

and ∃ (p, rd, dr)∈m-traversal-paths-with-witness M q RepSets m.
(p1 , p2 ) ∈ set (prefix-pairs p) ∧ target q p1 ∈ rd ∧ target q p2 ∈ rd ∧

target q p1 6= target q p2
using b
unfolding prefix-pair-tests.simps by blast

obtain p ′ d where (p ′, d) ∈ m-traversal-paths-with-witness M q RepSets m
and (p1 , p2 ) ∈ set (prefix-pairs p ′)

using ‹∃ (p, rd, dr)∈m-traversal-paths-with-witness M q RepSets m.
(p1 , p2 ) ∈ set (prefix-pairs p) ∧ target q p1 ∈ rd ∧ target q p2 ∈ rd ∧

target q p1 6= target q p2 ›
by blast

have ∃ p ′′ . p ′ = p @ p ′′

using ‹(p1 , p2 ) ∈ set (prefix-pairs p ′)› unfolding prefix-pairs-set-alt
using ‹(q,p) ∈ ((λ(q, p, q ′). (q, p)) ‘{(q, p1 , target q p2 ), (q, p2 , target q

p1 )})› by auto
then show ?thesis

using ‹(p ′, d) ∈ m-traversal-paths-with-witness M q RepSets m›
by blast

next
case c

obtain q ′ where q ′ ∈ fst ‘ d-reachable-states-with-preambles M
and (q,p) ∈ (λ(q, p, q ′). (q, p)) ‘ (preamble-prefix-tests q ′

(m-traversal-paths-with-witness M q ′ RepSets m) (fst ‘ d-reachable-states-with-preambles
M ))

using c by blast

obtain p1 q2 where (q,p) ∈ ((λ(q, p, q ′). (q, p)) ‘{(q ′, p1 , q2 ), (q2 , [],
target q ′ p1 )})

and ∃ (p, rd, dr)∈m-traversal-paths-with-witness M q ′ RepSets m.
q2 ∈ fst ‘ d-reachable-states-with-preambles M ∧ (∃ p2 . p = p1 @ p2 )

∧ target q ′ p1 ∈ rd ∧ q2 ∈ rd ∧ target q ′ p1 6= q2
using ‹(q,p) ∈ (λ(q, p, q ′). (q, p)) ‘ (preamble-prefix-tests q ′ (m-traversal-paths-with-witness

M q ′ RepSets m) (fst ‘ d-reachable-states-with-preambles M ))›
unfolding preamble-prefix-tests-def
by blast
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obtain p2 d where (p1@p2 , d)∈m-traversal-paths-with-witness M q ′ RepSets
m

and q2 ∈ fst ‘ d-reachable-states-with-preambles M
using ‹∃ (p, rd, dr)∈m-traversal-paths-with-witness M q ′ RepSets m.

q2 ∈ fst ‘ d-reachable-states-with-preambles M ∧ (∃ p2 . p = p1 @ p2 )
∧ target q ′ p1 ∈ rd ∧ q2 ∈ rd ∧ target q ′ p1 6= q2 ›

by blast

consider (a) q = q ′ ∧ p = p1 | (b) q = q2 ∧ p = []
using ‹(q,p) ∈ ((λ(q, p, q ′). (q, p)) ‘{(q ′, p1 , q2 ), (q2 , [], target q ′ p1 )})›

by auto
then show ?thesis proof cases

case a
then show ?thesis

using ‹(p1 @ p2 , d) ∈ m-traversal-paths-with-witness M q ′ RepSets m›
by blast

next
case b

then have q ∈ states M and p = []
using ‹q2 ∈ fst ‘ d-reachable-states-with-preambles M › unfolding

d-reachable-states-with-preambles-def by auto

have ∃ p ′ d ′. (p ′, d ′) ∈ m-traversal-paths-with-witness M q RepSets m
using m-traversal-path-exist[OF assms(2 ) ‹q ∈ states M › assms(3 ) ∗ ∗∗]
by blast

then show ?thesis
unfolding ‹p = []›
by simp

qed
next

case d
then have p = []

unfolding pps-alt-def by force

have q ∈ states M
using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › unfolding d-reachable-states-with-preambles-def

by auto

have ∃ p ′ d ′. (p ′, d ′) ∈ m-traversal-paths-with-witness M q RepSets m
using m-traversal-path-exist[OF assms(2 ) ‹q ∈ states M › assms(3 ) ∗ ∗∗]
by blast

then show ?thesis
unfolding ‹p = []›
by simp

qed
qed
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qed

have p7 :
∧

q p d . q ∈ image fst states-with-preambles =⇒ (p,d) ∈ m-traversal-paths-with-witness
M q RepSets m =⇒

( (∀ p1 p2 p3 . p=p1@p2@p3 −→ p2 6= [] −→ target q p1 ∈ fst d −→
target q (p1@p2 ) ∈ fst d −→ target q p1 6= target q (p1@p2 ) −→ (p1 ∈ tps q ∧
(p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets (q,(p1@p2 )) ∧ target q (p1@p2 ) ∈
rd-targets (q,p1 )))

∧ (∀ p1 p2 q ′ . p=p1@p2 −→ q ′ ∈ image fst states-with-preambles −→
target q p1 ∈ fst d −→ q ′ ∈ fst d −→ target q p1 6= q ′ −→ (p1 ∈ tps q ∧ [] ∈ tps
q ′ ∧ target q p1 ∈ rd-targets (q ′,[]) ∧ q ′ ∈ rd-targets (q,p1 )))

∧ (∀ q1 q2 . q1 6= q2 −→ q1 ∈ snd d −→ q2 ∈ snd d −→ ([] ∈ tps q1
∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets (q1 ,[]))))

proof −
fix q p d assume q ∈ image fst states-with-preambles and (p,d) ∈ m-traversal-paths-with-witness

M q RepSets m
then have (p,(fst d, snd d)) ∈ m-traversal-paths-with-witness M q RepSets m

by auto

have q ∈ fst ‘ d-reachable-states-with-preambles M
using ‹q ∈ image fst states-with-preambles› unfolding states-with-preambles-def

by assumption

have p7c1 :
∧

p1 p2 p3 . p=p1@p2@p3 =⇒ p2 6= [] =⇒ target q p1 ∈ fst d
=⇒ target q (p1@p2 ) ∈ fst d =⇒ target q p1 6= target q (p1@p2 ) =⇒ (p1 ∈ tps
q ∧ (p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets (q,(p1@p2 )) ∧ target q (p1@p2 )
∈ rd-targets (q,p1 ))

proof −
fix p1 p2 p3 assume p=p1@p2@p3 and p2 6= [] and target q p1 ∈ fst d

and target q (p1@p2 ) ∈ fst d and target q p1 6= target q (p1@p2 )

have (p1 ,p1@p2 ) ∈ set (prefix-pairs p)
using ‹p=p1@p2@p3 › ‹p2 6= []› unfolding prefix-pairs-set
by simp

then have (p1 ,p1@p2 ) ∈ set (filter (λ(p1 , p2 ). target q p1 ∈ fst d ∧ target
q p2 ∈ fst d ∧ target q p1 6= target q p2 ) (prefix-pairs p))

using ‹target q p1 ∈ fst d› ‹target q (p1@p2 ) ∈ fst d› ‹target q p1 6= target
q (p1@p2 )›

by auto
have {(q, p1 , target q (p1@p2 )), (q, (p1@p2 ), target q p1 )} ∈ ((set (map

(λ(p1 , p2 ). {(q, p1 , target q p2 ), (q, p2 , target q p1 )})
(filter (λ(p1 , p2 ). target q p1 ∈ fst d ∧ target q p2 ∈ fst d ∧ target q p1

6= target q p2 ) (prefix-pairs p)))))
using map-set[OF ‹(p1 ,p1@p2 ) ∈ set (filter (λ(p1 , p2 ). target q p1 ∈ fst

d ∧ target q p2 ∈ fst d ∧ target q p1 6= target q p2 ) (prefix-pairs p))›, of (λ(p1 ,
p2 ). {(q, p1 , target q p2 ), (q, p2 , target q p1 )})]

by force
then have (q, p1 , target q (p1@p2 )) ∈ prefix-pair-tests q (m-traversal-paths-with-witness

M q RepSets m)
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and (q, p1@p2 , target q p1 ) ∈ prefix-pair-tests q (m-traversal-paths-with-witness
M q RepSets m)

unfolding prefix-pair-tests-code[of q m-traversal-paths-with-witness M q
RepSets m]

using ‹(p,(fst d, snd d)) ∈ m-traversal-paths-with-witness M q RepSets m›
by blast+

have p1 ∈ tps q
proof −
have (q, p1 ) ∈ ((λ(q, p, q ′). (q, p)) ‘ (prefix-pair-tests q (m-traversal-paths-with-witness

M q RepSets m)))
using ‹(q, p1 , target q (p1@p2 )) ∈ prefix-pair-tests q (m-traversal-paths-with-witness

M q RepSets m)›
by (simp add: rev-image-eqI )

then show ?thesis
unfolding tps-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›]
by blast

qed

moreover have (p1@p2 ) ∈ tps q
proof −
have (q, p1@p2 ) ∈ ((λ(q, p, q ′). (q, p)) ‘ (prefix-pair-tests q (m-traversal-paths-with-witness

M q RepSets m)))
using ‹(q, p1@p2 , target q p1 ) ∈ prefix-pair-tests q (m-traversal-paths-with-witness

M q RepSets m)›
by (simp add: rev-image-eqI )

then show ?thesis
unfolding tps-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›]
by blast

qed

moreover have target q p1 ∈ rd-targets (q,(p1@p2 ))
proof −

have ((q, p1@p2 ), target q p1 ) ∈ (λ(q, p, y). ((q, p), y)) ‘ prefix-pair-tests
q (m-traversal-paths-with-witness M q RepSets m)

using ‹(q, p1@p2 , target q p1 ) ∈ prefix-pair-tests q (m-traversal-paths-with-witness
M q RepSets m)›

by (simp add: rev-image-eqI )
then show ?thesis
unfolding rd-targets-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles

M ›]
by blast

qed

moreover have target q (p1@p2 ) ∈ rd-targets (q,p1 )
proof −
have ((q, p1 ), target q (p1@p2 )) ∈ (λ(q, p, y). ((q, p), y)) ‘ prefix-pair-tests

q (m-traversal-paths-with-witness M q RepSets m)
using ‹(q, p1 , target q (p1@p2 )) ∈ prefix-pair-tests q (m-traversal-paths-with-witness
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M q RepSets m)›
by (simp add: rev-image-eqI )

then show ?thesis
unfolding rd-targets-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles

M ›]
by blast

qed

ultimately show (p1 ∈ tps q ∧ (p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets
(q,(p1@p2 )) ∧ target q (p1@p2 ) ∈ rd-targets (q,p1 ))

by blast
qed

moreover have p7c2 :
∧

p1 p2 q ′ . p=p1@p2 =⇒ q ′∈ image fst states-with-preambles
=⇒ target q p1 ∈ fst d =⇒ q ′ ∈ fst d =⇒ target q p1 6= q ′ =⇒ (p1 ∈ tps q ∧ [] ∈
tps q ′ ∧ target q p1 ∈ rd-targets (q ′,[]) ∧ q ′ ∈ rd-targets (q,p1 ))

proof −
fix p1 p2 q ′ assume p=p1@p2 and q ′ ∈ image fst states-with-preambles and

target q p1 ∈ fst d and q ′ ∈ fst d and target q p1 6= q ′

then have q ′ ∈ fst ‘ d-reachable-states-with-preambles M
unfolding states-with-preambles-def by blast

have p1 ∈ set (prefixes p)
using ‹p=p1@p2 › unfolding prefixes-set
by simp

then have (p1 ,q ′) ∈ Set.filter (λ(p1 , q2 ). target q p1 ∈ fst d ∧ q2 ∈ fst d ∧
target q p1 6= q2 ) (set (prefixes p) × fst ‘ d-reachable-states-with-preambles M )

using ‹target q p1 ∈ fst d› ‹q ′ ∈ fst d› ‹q ′ ∈ image fst states-with-preambles›
‹target q p1 6= q ′› unfolding states-with-preambles-def

by force
then have {(q, p1 , q ′), (q ′, [], target q p1 )} ⊆ preamble-prefix-tests q

(m-traversal-paths-with-witness M q RepSets m) (fst ‘ d-reachable-states-with-preambles
M )

using preamble-prefix-tests-code[of q m-traversal-paths-with-witness M q
RepSets m (fst ‘ d-reachable-states-with-preambles M )]

using ‹(p,(fst d, snd d)) ∈ m-traversal-paths-with-witness M q RepSets m›
by blast

then have (q, p1 , q ′) ∈ preamble-prefix-tests q (m-traversal-paths-with-witness
M q RepSets m) (fst ‘ d-reachable-states-with-preambles M )

and (q ′, [], target q p1 ) ∈ preamble-prefix-tests q (m-traversal-paths-with-witness
M q RepSets m) (fst ‘ d-reachable-states-with-preambles M )

by blast+

have p1 ∈ tps q
using ‹(q, p1 , q ′) ∈ preamble-prefix-tests q (m-traversal-paths-with-witness

M q RepSets m) (fst ‘ d-reachable-states-with-preambles M )›
‹q ∈ fst ‘ d-reachable-states-with-preambles M ›

unfolding tps-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›]
by force
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moreover have [] ∈ tps q ′

using ‹(q ′, [], target q p1 ) ∈ preamble-prefix-tests q (m-traversal-paths-with-witness
M q RepSets m) (fst ‘ d-reachable-states-with-preambles M )›

‹q ∈ fst ‘ d-reachable-states-with-preambles M ›
unfolding tps-alt-def [OF ‹q ′ ∈ fst ‘ d-reachable-states-with-preambles M ›]
by force

moreover have target q p1 ∈ rd-targets (q ′,[])
using ‹(q ′, [], target q p1 ) ∈ preamble-prefix-tests q (m-traversal-paths-with-witness

M q RepSets m) (fst ‘ d-reachable-states-with-preambles M )›
‹q ∈ fst ‘ d-reachable-states-with-preambles M ›

unfolding rd-targets-alt-def [OF ‹q ′ ∈ fst ‘ d-reachable-states-with-preambles
M ›]

by force

moreover have q ′ ∈ rd-targets (q,p1 )
using ‹(q, p1 , q ′) ∈ preamble-prefix-tests q (m-traversal-paths-with-witness

M q RepSets m) (fst ‘ d-reachable-states-with-preambles M )›
‹q ∈ fst ‘ d-reachable-states-with-preambles M ›

unfolding rd-targets-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles
M ›]

by force

ultimately show (p1 ∈ tps q ∧ [] ∈ tps q ′ ∧ target q p1 ∈ rd-targets (q ′,[])
∧ q ′ ∈ rd-targets (q,p1 ))

by blast
qed

moreover have p7c3 :
∧

q1 q2 . q1 6= q2 =⇒ q1 ∈ snd d =⇒ q2 ∈ snd d =⇒
([] ∈ tps q1 ∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets (q1 ,[]))

proof −
fix q1 q2 assume q1 6= q2 and q1 ∈ snd d and q2 ∈ snd d

have (
∧

d. d ∈ set RepSets =⇒ snd d ⊆ fst d)
using p5 by blast

have q ∈ states M
by (metis (no-types, lifting) ‹q ∈ fst ‘ d-reachable-states-with-preambles M ›

assms(1 )
d-reachable-states-with-preambles-soundness(2 ) image-iff prod.collapse)

have d ∈ set RepSets
using m-traversal-paths-with-witness-set[OF p4 ‹(

∧
d. d ∈ set RepSets =⇒

snd d ⊆ fst d)› ‹q ∈ states M ›, of m]
using ‹(p, d) ∈ m-traversal-paths-with-witness M q RepSets m› find-set
by force

have fst d ⊆ states M
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and snd d = fst d ∩ fst ‘ states-with-preambles
and

∧
q1 q2 . q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1 6= q2 =⇒ atcs (q1 , q2 ) 6= {}

using p5 [OF ‹d ∈ set RepSets›] by blast+

have q1 ∈ fst d
and q2 ∈ fst d
and q1 ∈ fst ‘ d-reachable-states-with-preambles M
and q2 ∈ fst ‘ d-reachable-states-with-preambles M

using ‹q1 ∈ snd d› ‹q2 ∈ snd d› unfolding ‹snd d = fst d ∩ fst ‘
states-with-preambles›

unfolding states-with-preambles-def by blast+

obtain A t1 t2 where (A,t1 ,t2 ) ∈ atcs (q1 , q2 )
using ‹

∧
q1 q2 . q1 ∈ fst d =⇒ q2 ∈ fst d =⇒ q1 6= q2 =⇒ atcs (q1 , q2 )

6= {}›[OF ‹q1 ∈ fst d› ‹q2 ∈ fst d› ‹q1 6= q2 ›]
by auto

then have (q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M
unfolding atcs-def using set-as-map-elem by force

then have (q1 ,[],q2 ) ∈ pps-alt
using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › ‹(p,(fst d, snd d)) ∈

m-traversal-paths-with-witness M q RepSets m›
unfolding pps-alt-def
by (metis (mono-tags, lifting) ‹q1 ∈ snd d› ‹q2 ∈ snd d› mem-Collect-eq)

then have [] ∈ tps q1 and q2 ∈ rd-targets (q1 ,[])
unfolding tps-alt-def [OF ‹q1 ∈ fst ‘ d-reachable-states-with-preambles M ›]

rd-targets-alt-def [OF ‹q1 ∈ fst ‘ d-reachable-states-with-preambles
M ›]

preamble-pair-tests-alt
by force+

have (A,t2 ,t1 ) ∈ atcs (q2 , q1 )
using p3 ‹(A,t1 ,t2 ) ∈ atcs (q1 , q2 )› by blast

then have (q2 , q1 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators M
unfolding atcs-def using set-as-map-elem by force

then have (q2 ,[],q1 ) ∈ pps-alt
using ‹q ∈ fst ‘ d-reachable-states-with-preambles M › ‹(p,(fst d, snd d)) ∈

m-traversal-paths-with-witness M q RepSets m›
unfolding pps-alt-def
by (metis (mono-tags, lifting) ‹q1 ∈ snd d› ‹q2 ∈ snd d› mem-Collect-eq)

then have [] ∈ tps q2 and q1 ∈ rd-targets (q2 ,[])
unfolding tps-alt-def [OF ‹q2 ∈ fst ‘ d-reachable-states-with-preambles M ›]

rd-targets-alt-def [OF ‹q2 ∈ fst ‘ d-reachable-states-with-preambles
M ›]

preamble-pair-tests-alt
by force+

then show ([] ∈ tps q1 ∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets
(q1 ,[]))
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using ‹[] ∈ tps q1 › ‹q2 ∈ rd-targets (q1 ,[])›
by simp

qed

ultimately show (∀ p1 p2 p3 . p=p1@p2@p3 −→ p2 6= [] −→ target q p1
∈ fst d −→ target q (p1@p2 ) ∈ fst d −→ target q p1 6= target q (p1@p2 ) −→
(p1 ∈ tps q ∧ (p1@p2 ) ∈ tps q ∧ target q p1 ∈ rd-targets (q,(p1@p2 )) ∧ target q
(p1@p2 ) ∈ rd-targets (q,p1 )))

∧ (∀ p1 p2 q ′ . p=p1@p2 −→ q ′ ∈ image fst states-with-preambles −→
target q p1 ∈ fst d −→ q ′ ∈ fst d −→ target q p1 6= q ′ −→ (p1 ∈ tps q ∧ [] ∈ tps
q ′ ∧ target q p1 ∈ rd-targets (q ′,[]) ∧ q ′ ∈ rd-targets (q,p1 )))

∧ (∀ q1 q2 . q1 6= q2 −→ q1 ∈ snd d −→ q2 ∈ snd d −→ ([] ∈ tps q1
∧ [] ∈ tps q2 ∧ q1 ∈ rd-targets (q2 ,[]) ∧ q2 ∈ rd-targets (q1 ,[])))

by blast
qed

have implies-completeness-for-repetition-sets (Test-Suite states-with-preambles
tps rd-targets atcs) M m RepSets

unfolding implies-completeness-for-repetition-sets.simps
using p1 p2 p3 p4 p5 p6 p7
by force

then show implies-completeness (calculate-test-suite-for-repetition-sets M m RepSets)
M m

unfolding ‹calculate-test-suite-for-repetition-sets M m RepSets = Test-Suite
states-with-preambles tps rd-targets atcs›

implies-completeness-def
by blast

show is-finite-test-suite (calculate-test-suite-for-repetition-sets M m RepSets)
proof −

have finite states-with-preambles
unfolding states-with-preambles-def d-reachable-states-with-preambles-def
using fsm-states-finite[of M ] by simp

moreover have
∧

q p. q ∈ fst ‘ states-with-preambles =⇒ finite (rd-targets (q,
p))

proof −
fix q p assume q ∈ fst ‘ states-with-preambles

then have q ∈ fst ‘ d-reachable-states-with-preambles M unfolding states-with-preambles-def
by assumption

have ∗: finite ((λ(q, p, y). ((q, p), y)) ‘ (prefix-pair-tests q (m-traversal-paths-with-witness
M q RepSets m) ∪

(
⋃

q∈fst ‘ d-reachable-states-with-preambles M .⋃
mrsps∈{m-traversal-paths-with-witness M q RepSets m}.

preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) ∪

preamble-pair-tests
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(
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘

fst ‘ d-reachable-states-with-preambles M .
(λ(p, rd, dr). dr) ‘ y)

(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators
M )))

proof −
have ∗ :

∧
a b c f . finite (f ‘ (a ∪ b ∪ c)) = (finite (f‘a) ∧ finite (f‘b) ∧

finite (f‘c))
by (simp add: image-Un)

have finite ((λ(q, p, y). ((q, p), y)) ‘ (prefix-pair-tests q (m-traversal-paths-with-witness
M q RepSets m)))

proof −
have prefix-pair-tests q (m-traversal-paths-with-witness M q RepSets m) ⊆

(
⋃

(p, rd, dr)∈m-traversal-paths-with-witness M q RepSets m .
⋃

(p1 , p2 ) ∈ set (prefix-pairs p) .{(q, p1 , target q p2 ), (q, p2 , target q p1 )})
unfolding prefix-pair-tests.simps by blast

moreover have finite (
⋃

(p, rd, dr)∈m-traversal-paths-with-witness M q
RepSets m .

⋃
(p1 , p2 ) ∈ set (prefix-pairs p) .{(q, p1 , target q p2 ), (q, p2 , target

q p1 )})
proof −

have finite (m-traversal-paths-with-witness M q RepSets m)
using m-traversal-paths-with-witness-finite[of M q RepSets m] by

assumption
moreover have

∧
p rd dr . finite (

⋃
(p1 , p2 ) ∈ set (prefix-pairs p)

.{(q, p1 , target q p2 ), (q, p2 , target q p1 )})
by auto

ultimately show ?thesis by force
qed
ultimately show ?thesis using infinite-super by blast

qed

moreover have finite ((λ(q, p, y). ((q, p), y)) ‘ (
⋃

q∈fst ‘ d-reachable-states-with-preambles
M . ⋃

mrsps∈{m-traversal-paths-with-witness M q RepSets m}.
preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles

M )))
proof −

have finite (fst ‘ d-reachable-states-with-preambles M ) using ‹finite
states-with-preambles› unfolding states-with-preambles-def by auto

moreover have
∧

q . q∈fst ‘ d-reachable-states-with-preambles M =⇒ finite
(
⋃

mrsps∈{m-traversal-paths-with-witness M q RepSets m}. preamble-prefix-tests q
mrsps (fst ‘ d-reachable-states-with-preambles M ))

proof −
fix q assume q∈fst ‘ d-reachable-states-with-preambles M

have finite {m-traversal-paths-with-witness M q RepSets m} by simp
moreover have

∧
mrsps . mrsps∈{m-traversal-paths-with-witness M q

RepSets m} =⇒ finite (preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
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M ))
proof −
fix mrsps assume mrsps∈{m-traversal-paths-with-witness M q RepSets

m}
then have ∗: mrsps = m-traversal-paths-with-witness M q RepSets m

by simp

have preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )

⊆ (
⋃

(p,rd,dr) ∈ m-traversal-paths-with-witness M q RepSets m
.
⋃

q2 ∈ (fst ‘ d-reachable-states-with-preambles M ) . (
⋃

p1 ∈ set (prefixes p) .
{(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}))

unfolding preamble-prefix-tests-def ∗ prefixes-set by blast
moreover have finite (

⋃
(p,rd,dr) ∈ m-traversal-paths-with-witness M

q RepSets m .
⋃

q2 ∈ (fst ‘ d-reachable-states-with-preambles M ) . (
⋃

p1 ∈ set
(prefixes p) . {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}))

proof −
have finite (m-traversal-paths-with-witness M q RepSets m)

using m-traversal-paths-with-witness-finite by metis
moreover have

∧
p rd dr . (p,rd,dr) ∈ m-traversal-paths-with-witness

M q RepSets m =⇒ finite (
⋃

q2 ∈ (fst ‘ d-reachable-states-with-preambles M ) .
(
⋃

p1 ∈ set (prefixes p) . {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}))
using ‹finite (fst ‘ d-reachable-states-with-preambles M )› by blast

ultimately show ?thesis by force
qed

ultimately show finite (preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) using infinite-super by blast

qed
ultimately show finite (

⋃
mrsps∈{m-traversal-paths-with-witness M q

RepSets m}. preamble-prefix-tests q mrsps (fst ‘ d-reachable-states-with-preambles
M )) by force

qed
ultimately show ?thesis by blast

qed

moreover have finite ((λ(q, p, y). ((q, p), y)) ‘ (preamble-pair-tests
(
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets m)) ‘

fst ‘ d-reachable-states-with-preambles M .
(λ(p, rd, dr). dr) ‘ y)

(fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators
M )))

proof −

have finite (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets

m)) ‘
fst ‘ d-reachable-states-with-preambles M .

(λ(p, rd, dr). dr) ‘ y)
proof −
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have ∗: (
⋃
(q, y)∈(λq. (q, m-traversal-paths-with-witness M q RepSets

m)) ‘
fst ‘ d-reachable-states-with-preambles M .

(λ(p, rd, dr). dr) ‘ y) =
(
⋃

q ∈ fst ‘ d-reachable-states-with-preambles M .
⋃

(p, rd, dr) ∈
m-traversal-paths-with-witness M q RepSets m . {dr})

by force

have finite (
⋃

q ∈ fst ‘ d-reachable-states-with-preambles M .
⋃

(p, rd,
dr) ∈ m-traversal-paths-with-witness M q RepSets m . {dr})

proof −
have finite (fst ‘ d-reachable-states-with-preambles M )

using ‹finite states-with-preambles› unfolding states-with-preambles-def
by auto

moreover have
∧

q . q ∈ fst ‘ d-reachable-states-with-preambles M =⇒
finite (

⋃
(p, rd, dr) ∈ m-traversal-paths-with-witness M q RepSets m . {dr})

proof −
fix q assume q ∈ fst ‘ d-reachable-states-with-preambles M

have finite (m-traversal-paths-with-witness M q RepSets m)
using m-traversal-paths-with-witness-finite by metis

moreover have
∧

p rd dr . (p, rd, dr) ∈ m-traversal-paths-with-witness
M q RepSets m =⇒ finite {dr}

by simp
ultimately show finite (

⋃
(p, rd, dr) ∈ m-traversal-paths-with-witness

M q RepSets m . {dr})
by force

qed
ultimately show ?thesis by blast

qed
then show ?thesis unfolding ∗ by assumption

qed
moreover have finite (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 , Inr q2 ))

‘ r-distinguishable-state-pairs-with-separators M )
proof −

have (fst ‘ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr q1 , Inr q2 )) ‘ r-distinguishable-state-pairs-with-separators
M ) ⊆ states M × states M

unfolding r-distinguishable-state-pairs-with-separators-def by auto
moreover have finite (states M × states M )

using fsm-states-finite by auto
ultimately show ?thesis using infinite-super by blast

qed
ultimately show ?thesis

unfolding preamble-pair-tests.simps by blast
qed

ultimately show ?thesis
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unfolding ∗ by blast

qed

show finite (rd-targets (q, p))
unfolding rd-targets-alt-def [OF ‹q ∈ fst ‘ d-reachable-states-with-preambles

M ›]
using finite-snd-helper [of - q p, OF ∗] by assumption

qed

moreover have
∧

q q ′. finite (atcs (q, q ′))
proof −

fix q q ′

show finite (atcs (q,q ′)) proof (cases set-as-map ((λ((q1 , q2 ), A). ((q1 , q2 ), A,
Inr q1 :: ( ′a × ′a) + ′a, Inr q2 :: ( ′a × ′a) + ′a)) ‘ r-distinguishable-state-pairs-with-separators
M ) (q, q ′))

case None
then have atcs (q, q ′) = {} unfolding atcs-def by auto
then show ?thesis by auto

next
case (Some a)
then have atcs (q, q ′) = a unfolding atcs-def by auto

then have ∗: atcs (q, q ′) = {z. ((q, q ′), z) ∈ (λ((q1 , q2 ), A). ((q1 , q2 ), A, Inr
q1 :: ( ′a × ′a) + ′a, Inr q2 :: ( ′a × ′a) + ′a)) ‘ r-distinguishable-state-pairs-with-separators
M} using Some unfolding set-as-map-def

by (metis (no-types, lifting) option.distinct(1 ) option.inject)

have finite (r-distinguishable-state-pairs-with-separators M )
proof −

have r-distinguishable-state-pairs-with-separators M ⊆ (
⋃

q1 ∈ states
M .

⋃
q2 ∈ states M . {((q1 ,q2 ), the (state-separator-from-s-states M q1 q2 )),

((q1 ,q2 ), the (state-separator-from-s-states M q2 q1 ))})
proof

fix x assume x ∈ r-distinguishable-state-pairs-with-separators M
then obtain q1 q2 Sep where x = ((q1 ,q2 ),Sep)

and q1 ∈ states M
and q2 ∈ states M

and (q1 < q2 ∧ state-separator-from-s-states M q1 q2
= Some Sep) ∨ (q2 < q1 ∧ state-separator-from-s-states M q2 q1 = Some Sep)

unfolding r-distinguishable-state-pairs-with-separators-def by blast
then consider state-separator-from-s-states M q1 q2 = Some Sep |

state-separator-from-s-states M q2 q1 = Some Sep by blast

then show x ∈ (
⋃

q1 ∈ states M .
⋃

q2 ∈ states M . {((q1 ,q2 ), the
(state-separator-from-s-states M q1 q2 )), ((q1 ,q2 ), the (state-separator-from-s-states
M q2 q1 ))})

using ‹q1 ∈ states M › ‹q2 ∈ states M › unfolding ‹x = ((q1 ,q2 ),Sep)›
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by (cases; force)
qed

moreover have finite (
⋃

q1 ∈ states M .
⋃

q2 ∈ states M . {((q1 ,q2 ), the
(state-separator-from-s-states M q1 q2 )), ((q1 ,q2 ), the (state-separator-from-s-states
M q2 q1 ))})

using fsm-states-finite[of M ] by force

ultimately show ?thesis using infinite-super by blast
qed
then show ?thesis unfolding ∗ by (simp add: finite-snd-helper)

qed
qed

ultimately show ?thesis
unfolding ‹calculate-test-suite-for-repetition-sets M m RepSets = Test-Suite

states-with-preambles tps rd-targets atcs›
is-finite-test-suite.simps

by blast
qed

qed

43.4 Two Complete Example Implementations
43.4.1 Naive Repetition Set Strategy
definition calculate-test-suite-naive :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒ nat ⇒
( ′a, ′b, ′c, ( ′a × ′a) + ′a) test-suite where
calculate-test-suite-naive M m = calculate-test-suite-for-repetition-sets M m (maximal-repetition-sets-from-separators-list-naive

M )

definition calculate-test-suite-naive-as-io-sequences :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ nat ⇒ ( ′b × ′c) list set where
calculate-test-suite-naive-as-io-sequences M m = test-suite-to-io-maximal M (calculate-test-suite-naive

M m)

lemma calculate-test-suite-naive-completeness :
fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes observable M
and observable M ′

and inputs M ′ = inputs M
and inputs M 6= {}
and completely-specified M
and completely-specified M ′

and size M ′ ≤ m
shows (L M ′ ⊆ L M ) ←→ passes-test-suite M (calculate-test-suite-naive M m)
M ′

and (L M ′⊆ L M )←→ pass-io-set-maximal M ′ (calculate-test-suite-naive-as-io-sequences
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M m)
proof −

have
∧

q. q ∈ FSM .states M =⇒ ∃ d∈set (maximal-repetition-sets-from-separators-list-naive
M ). q ∈ fst d

unfolding maximal-repetition-sets-from-separators-list-naive-def Let-def
by (metis (mono-tags, lifting) list.set-map maximal-pairwise-r-distinguishable-state-sets-from-separators-code

maximal-repetition-sets-from-separators-code maximal-repetition-sets-from-separators-cover)
moreover have

∧
d. d ∈ set (maximal-repetition-sets-from-separators-list-naive

M ) =⇒ fst d ⊆ states M ∧ (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles
M )

and
∧

d q1 q2 . d ∈ set (maximal-repetition-sets-from-separators-list-naive
M ) =⇒ q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒ (q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators
M

proof
fix d assume d ∈ set (maximal-repetition-sets-from-separators-list-naive M )
then have d ∈ maximal-repetition-sets-from-separators M

by (simp add: maximal-repetition-sets-from-separators-code-alt)

then show fst d ⊆ states M and (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles
M )

and
∧

q1 q2 . q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒ (q1 , q2 ) ∈ fst ‘
r-distinguishable-state-pairs-with-separators M

unfolding maximal-repetition-sets-from-separators-def
maximal-pairwise-r-distinguishable-state-sets-from-separators-def
pairwise-r-distinguishable-state-sets-from-separators-def

by force+
qed
ultimately have implies-completeness (calculate-test-suite-naive M m) M m

and is-finite-test-suite (calculate-test-suite-naive M m)
using calculate-test-suite-for-repetition-sets-sufficient-and-finite[OF ‹observable

M › ‹completely-specified M › ‹inputs M 6= {}›]
unfolding calculate-test-suite-naive-def by force+

then show (L M ′ ⊆ L M ) ←→ passes-test-suite M (calculate-test-suite-naive M
m) M ′

and (L M ′⊆ L M )←→ pass-io-set-maximal M ′ (calculate-test-suite-naive-as-io-sequences
M m)

using passes-test-suite-completeness[OF - assms]
passes-test-suite-as-maximal-sequences-completeness[OF - - assms]

unfolding calculate-test-suite-naive-as-io-sequences-def
by blast+

qed

definition calculate-test-suite-naive-as-io-sequences-with-assumption-check :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ nat ⇒ String.literal + (( ′b × ′c) list set) where

calculate-test-suite-naive-as-io-sequences-with-assumption-check M m =
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(if inputs M 6= {}
then if observable M

then if completely-specified M
then (Inr (test-suite-to-io-maximal M (calculate-test-suite-naive M m)))
else (Inl (STR ′′specification is not completely specified ′′))

else (Inl (STR ′′specification is not observable ′′))
else (Inl (STR ′′specification has no inputs ′′)))

lemma calculate-test-suite-naive-as-io-sequences-with-assumption-check-completeness
:

fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes observable M ′

and inputs M ′ = inputs M
and completely-specified M ′

and size M ′ ≤ m
and calculate-test-suite-naive-as-io-sequences-with-assumption-check M m =

Inr ts
shows (L M ′ ⊆ L M ) ←→ pass-io-set-maximal M ′ ts
proof −

have inputs M 6= {}
and observable M
and completely-specified M

using ‹calculate-test-suite-naive-as-io-sequences-with-assumption-check M m =
Inr ts›

unfolding calculate-test-suite-naive-as-io-sequences-with-assumption-check-def
by (meson Inl-Inr-False)+

then have ts = (test-suite-to-io-maximal M (calculate-test-suite-naive M m))
using ‹calculate-test-suite-naive-as-io-sequences-with-assumption-check M m =

Inr ts›
unfolding calculate-test-suite-naive-as-io-sequences-with-assumption-check-def
by (metis sum.inject(2 ))

then show ?thesis
using calculate-test-suite-naive-completeness(2 )[OF ‹observable M › assms(1 ,2 )

‹inputs M 6= {}›
‹completely-specified M › assms(3 ,4 )]

unfolding calculate-test-suite-naive-as-io-sequences-def
by simp

qed

43.4.2 Greedy Repetition Set Strategy
definition calculate-test-suite-greedy :: ( ′a::linorder , ′b::linorder , ′c) fsm ⇒ nat ⇒
( ′a, ′b, ′c, ( ′a × ′a) + ′a) test-suite where
calculate-test-suite-greedy M m = calculate-test-suite-for-repetition-sets M m (maximal-repetition-sets-from-separators-list-greedy

M )

definition calculate-test-suite-greedy-as-io-sequences :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ nat ⇒ ( ′b × ′c) list set where
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calculate-test-suite-greedy-as-io-sequences M m = test-suite-to-io-maximal M (calculate-test-suite-greedy
M m)

lemma calculate-test-suite-greedy-completeness :
fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes observable M
and observable M ′

and inputs M ′ = inputs M
and inputs M 6= {}
and completely-specified M
and completely-specified M ′

and size M ′ ≤ m
shows (L M ′ ⊆ L M ) ←→ passes-test-suite M (calculate-test-suite-greedy M
m) M ′

and (L M ′⊆ L M )←→ pass-io-set-maximal M ′ (calculate-test-suite-greedy-as-io-sequences
M m)
proof −

have
∧

q. q ∈ FSM .states M =⇒ ∃ d∈set (maximal-repetition-sets-from-separators-list-greedy
M ). q ∈ fst d

unfolding maximal-repetition-sets-from-separators-list-greedy-def Let-def
using greedy-pairwise-r-distinguishable-state-sets-from-separators-cover [of - M ]
by simp

moreover have
∧

d. d ∈ set (maximal-repetition-sets-from-separators-list-greedy
M ) =⇒ fst d ⊆ states M ∧ (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles
M )

and
∧

d q1 q2 . d ∈ set (maximal-repetition-sets-from-separators-list-greedy
M ) =⇒ q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒ (q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators
M

proof
fix d assume d ∈ set (maximal-repetition-sets-from-separators-list-greedy M )

then have fst d ∈ set (greedy-pairwise-r-distinguishable-state-sets-from-separators
M )

and (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles M )
unfolding maximal-repetition-sets-from-separators-list-greedy-def Let-def by

force+

then have fst d ∈ pairwise-r-distinguishable-state-sets-from-separators M
using greedy-pairwise-r-distinguishable-state-sets-from-separators-soundness

by blast
then show fst d ⊆ states M and (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles

M )
and

∧
q1 q2 . q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒ (q1 , q2 ) ∈ fst ‘

r-distinguishable-state-pairs-with-separators M
using ‹(snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles M )›
unfolding pairwise-r-distinguishable-state-sets-from-separators-def
by force+

qed
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ultimately have implies-completeness (calculate-test-suite-greedy M m) M m
and is-finite-test-suite (calculate-test-suite-greedy M m)

using calculate-test-suite-for-repetition-sets-sufficient-and-finite[OF ‹observable
M › ‹completely-specified M › ‹inputs M 6= {}›]

unfolding calculate-test-suite-greedy-def by force+

then show (L M ′ ⊆ L M ) ←→ passes-test-suite M (calculate-test-suite-greedy
M m) M ′

and (L M ′⊆ L M )←→ pass-io-set-maximal M ′ (calculate-test-suite-greedy-as-io-sequences
M m)

using passes-test-suite-completeness[OF - assms]
passes-test-suite-as-maximal-sequences-completeness[OF - - assms]

unfolding calculate-test-suite-greedy-as-io-sequences-def
by blast+

qed

definition calculate-test-suite-greedy-as-io-sequences-with-assumption-check :: ( ′a::linorder , ′b::linorder , ′c)
fsm ⇒ nat ⇒ String.literal + (( ′b × ′c) list set) where

calculate-test-suite-greedy-as-io-sequences-with-assumption-check M m =
(if inputs M 6= {}

then if observable M
then if completely-specified M

then (Inr (test-suite-to-io-maximal M (calculate-test-suite-greedy M m)))
else (Inl (STR ′′specification is not completely specified ′′))

else (Inl (STR ′′specification is not observable ′′))
else (Inl (STR ′′specification has no inputs ′′)))

lemma calculate-test-suite-greedy-as-io-sequences-with-assumption-check-completeness
:

fixes M :: ( ′a::linorder , ′b::linorder , ′c) fsm
assumes observable M ′

and inputs M ′ = inputs M
and completely-specified M ′

and size M ′ ≤ m
and calculate-test-suite-greedy-as-io-sequences-with-assumption-check M m =

Inr ts
shows (L M ′ ⊆ L M ) ←→ pass-io-set-maximal M ′ ts
proof −

have inputs M 6= {}
and observable M
and completely-specified M
using ‹calculate-test-suite-greedy-as-io-sequences-with-assumption-check M m =

Inr ts›
unfolding calculate-test-suite-greedy-as-io-sequences-with-assumption-check-def

by (meson Inl-Inr-False)+
then have ts = (test-suite-to-io-maximal M (calculate-test-suite-greedy M m))
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using ‹calculate-test-suite-greedy-as-io-sequences-with-assumption-check M m =
Inr ts›

unfolding calculate-test-suite-greedy-as-io-sequences-with-assumption-check-def
by (metis sum.inject(2 ))

then show ?thesis
using calculate-test-suite-greedy-completeness(2 )[OF ‹observable M › assms(1 ,2 )

‹inputs M 6= {}›
‹completely-specified M › assms(3 ,4 )]

unfolding calculate-test-suite-greedy-as-io-sequences-def
by simp

qed

end

44 Refined Test Suite Calculation

This theory refines some of the algorithms defined in Test-Suite-Calculation
using containers from the Containers framework.
theory Test-Suite-Calculation-Refined

imports Test-Suite-Calculation
../Util-Refined
Deriving.Compare
Containers.Containers

begin

44.1 New Instances
44.1.1 Order on FSMs
instantiation fsm :: (ord,ord,ord) ord
begin

fun less-eq-fsm :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm ⇒ bool where
less-eq-fsm M1 M2 =
(if initial M1 < initial M2

then True
else ((initial M1 = initial M2 ) ∧ (if set-less-aux (states M1 ) (states M2 )

then True
else ((states M1 = states M2 ) ∧ (if set-less-aux (inputs M1 ) (inputs M2 )

then True
else ((inputs M1 = inputs M2 ) ∧ (if set-less-aux (outputs M1 ) (outputs

M2 )
then True

else ((outputs M1 = outputs M2 ) ∧ (set-less-aux (transitions M1 )
(transitions M2 ) ∨ (transitions M1 ) = (transitions M2 ))))))))))

fun less-fsm :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm ⇒ bool where
less-fsm a b = (a ≤ b ∧ a 6= b)
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instance by (intro-classes)
end

instantiation fsm :: (linorder ,linorder ,linorder) linorder
begin

lemma less-le-not-le-FSM :
fixes x :: ( ′a, ′b, ′c) fsm
and y :: ( ′a, ′b, ′c) fsm

shows (x < y) = (x ≤ y ∧ ¬ y ≤ x)
proof

show x < y =⇒ x ≤ y ∧ ¬ y ≤ x

proof −
assume x < y
then show x ≤ y ∧ ¬ y ≤ x
proof (cases FSM .initial x < FSM .initial y)

case True
then show ?thesis unfolding less-fsm.simps less-eq-fsm.simps by auto

next
case False
then have ∗: FSM .initial x = FSM .initial y

using ‹x < y› unfolding less-fsm.simps less-eq-fsm.simps by auto

show ?thesis proof (cases set-less-aux (FSM .states x) (FSM .states y))
case True
then show ?thesis

unfolding less-fsm.simps less-eq-fsm.simps
using ∗ set-less-aux-antisym by fastforce

next
case False
then have ∗∗: FSM .states x = FSM .states y

using ‹x < y› ∗ unfolding less-fsm.simps less-eq-fsm.simps by auto

show ?thesis proof (cases set-less-aux (FSM .inputs x) (FSM .inputs y))
case True
then show ?thesis

unfolding less-fsm.simps less-eq-fsm.simps
using ∗ ∗∗ set-less-aux-antisym by fastforce

next
case False
then have ∗∗∗: FSM .inputs x = FSM .inputs y

using ‹x < y› ∗ ∗∗
unfolding less-fsm.simps less-eq-fsm.simps
by (simp add: set-less-def )

show ?thesis proof (cases set-less-aux (FSM .outputs x) (FSM .outputs y))
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case True
then show ?thesis

unfolding less-fsm.simps less-eq-fsm.simps
using ∗ ∗∗ ∗∗∗ set-less-aux-antisym
by fastforce

next
case False
then have ∗∗∗∗: FSM .outputs x = FSM .outputs y

using ‹x < y› ∗ ∗∗ ∗∗∗
unfolding less-fsm.simps less-eq-fsm.simps
by (simp add: set-less-def )

have x 6= y using ‹x < y› by auto
then have FSM .transitions x 6= FSM .transitions y

using ∗ ∗∗ ∗∗∗ ∗∗∗∗ apply transfer
by (metis fsm-impl.exhaust-sel)

then have ∗∗∗∗∗: set-less-aux (FSM .transitions x) (FSM .transitions y)
using ‹x < y› ∗ ∗∗ ∗∗∗ ∗∗∗∗
unfolding less-fsm.simps less-eq-fsm.simps
by (simp add: set-less-aux-def )

then have ¬(set-less-aux (FSM .transitions y) (FSM .transitions x) ∨
transitions y = transitions x)

using ‹FSM .transitions x 6= FSM .transitions y› fsm-transitions-finite
set-less-aux-antisym

by auto
then have ¬ y ≤ x

using ∗ ∗∗ ∗∗∗ ∗∗∗∗
unfolding less-fsm.simps less-eq-fsm.simps
by (simp add: set-less-def )

then show ?thesis using ‹x < y›
using less-fsm.elims(2 )
by blast

qed
qed

qed
qed

qed

show x ≤ y ∧ ¬ y ≤ x =⇒ x < y
using less-fsm.elims(3 )
by blast

qed

lemma order-refl-FSM :
fixes x :: ( ′a, ′b, ′c) fsm
shows x ≤ x
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by auto

lemma order-trans-FSM :
fixes x :: ( ′a, ′b, ′c) fsm
fixes y :: ( ′a, ′b, ′c) fsm
fixes z :: ( ′a, ′b, ′c) fsm
shows x ≤ y =⇒ y ≤ z =⇒ x ≤ z
unfolding less-eq-fsm.simps
using less-trans[of initial x initial y initial z]

set-less-aux-trans[of states x states y states z]
set-less-aux-trans[of inputs x inputs y inputs z]
set-less-aux-trans[of outputs x outputs y outputs z]
set-less-aux-trans[of transitions x transitions y transitions z]

by metis

lemma antisym-FSM :
fixes x :: ( ′a, ′b, ′c) fsm
fixes y :: ( ′a, ′b, ′c) fsm

shows x ≤ y =⇒ y ≤ x =⇒ x = y
unfolding less-eq-fsm.simps
using equal-fsm-def [of x y]
unfolding equal-class.equal
by (metis order .asym set-less-aux-antisym)

lemma linear-FSM :
fixes x :: ( ′a, ′b, ′c) fsm
fixes y :: ( ′a, ′b, ′c) fsm

shows x ≤ y ∨ y ≤ x
unfolding less-eq-fsm.simps
by (metis fsm-inputs-finite fsm-states-finite fsm-outputs-finite fsm-transitions-finite

neq-iff set-less-aux-finite-total)

instance
using less-le-not-le-FSM order-refl-FSM order-trans-FSM antisym-FSM linear-FSM

by (intro-classes; metis+)
end

instantiation fsm :: (linorder ,linorder ,linorder) compare
begin
fun compare-fsm :: ( ′a, ′b, ′c) fsm ⇒ ( ′a, ′b, ′c) fsm ⇒ order where

compare-fsm x y = comparator-of x y

instance
using comparator-of compare-fsm.elims
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by (intro-classes; simp add: comparator-def )
end

44.1.2 Derived Instances
derive (eq) ceq fsm

derive (dlist) set-impl fsm
derive (assoclist) mapping-impl fsm

derive (no) cenum fsm
derive (no) ccompare fsm

44.1.3 Finiteness and Cardinality Instantiations for FSMs
lemma finiteness-fsm-UNIV : finite (UNIV :: ( ′a, ′b, ′c) fsm set) =

(finite (UNIV :: ′a set) ∧ finite (UNIV :: ′b set) ∧ finite
(UNIV :: ′c set))
proof

define f :: ′a ⇒ ( ′a) fset where f-def : f = (λ q . {| q |})
have inj f
proof

fix x y assume x ∈ (UNIV :: ′a set) and y ∈ UNIV and f x = f y
then show x = y unfolding f-def by (transfer ; auto)

qed

show finite (UNIV :: ( ′a, ′b, ′c) fsm set) =⇒ (finite (UNIV :: ′a set) ∧ finite
(UNIV :: ′b set) ∧ finite (UNIV :: ′c set))

proof (rule ccontr)

obtain q where q ∈ (UNIV :: ′a set) by auto
obtain x where x ∈ (UNIV :: ′b set) by auto
obtain y where y ∈ (UNIV :: ′c set) by auto

assume finite (UNIV :: ( ′a, ′b, ′c) fsm set) and ¬ (finite (UNIV :: ′a set) ∧
finite (UNIV :: ′b set) ∧ finite (UNIV :: ′c set))

then consider (a) ¬ finite (UNIV :: ′a set) | (b) ¬ finite (UNIV :: ′b set) |
(c) ¬ finite (UNIV :: ′c set)

by blast
then show False proof cases

case a
define f :: ′a ⇒ ( ′a, ′b, ′c) fsm where f = (λ q . fsm-from-list q [])
have inj f

unfolding inj-def f-def by (transfer ; auto)
then have ¬ finite (f ‘ UNIV )

using ‹inj f › finite-imageD a by auto
then have ¬ finite (UNIV :: ( ′a, ′b, ′c) fsm set)

by (meson infinite-iff-countable-subset top-greatest)
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then show ?thesis
using ‹finite (UNIV :: ( ′a, ′b, ′c) fsm set)› by blast

next
case b
define f :: ′b ⇒ ( ′a, ′b, ′c) fsm where f = (λ x . fsm-from-list q [(q,x,y,q)])
have inj f

unfolding inj-def f-def by (transfer ; auto)
then have ¬ finite (f ‘ UNIV )

using ‹inj f › finite-imageD b by auto
then have ¬ finite (UNIV :: ( ′a, ′b, ′c) fsm set)

by (meson infinite-iff-countable-subset top-greatest)
then show ?thesis

using ‹finite (UNIV :: ( ′a, ′b, ′c) fsm set)› by blast
next

case c
define f :: ′c ⇒ ( ′a, ′b, ′c) fsm where f = (λ y . fsm-from-list q [(q,x,y,q)])
have inj f

unfolding inj-def f-def by (transfer ; auto)
then have ¬ finite (f ‘ UNIV )

using ‹inj f › finite-imageD c by auto
then have ¬ finite (UNIV :: ( ′a, ′b, ′c) fsm set)

by (meson infinite-iff-countable-subset top-greatest)
then show ?thesis

using ‹finite (UNIV :: ( ′a, ′b, ′c) fsm set)› by blast
qed

qed

show (finite (UNIV :: ′a set) ∧ finite (UNIV :: ′b set) ∧ finite (UNIV :: ′c set))
=⇒ finite (UNIV :: ( ′a, ′b, ′c) fsm set)

proof −
define f :: ( ′a, ′b, ′c) fsm ⇒ ( ′a × ′a set × ′b set × ′c set × ( ′a × ′b × ′c ×

′a) set) where
f = (λ m . (initial m, states m, inputs m, outputs m, transitions m))

assume (finite (UNIV :: ′a set) ∧ finite (UNIV :: ′b set) ∧ finite (UNIV :: ′c
set))

then have finite (UNIV :: ( ′a × ′a set × ′b set × ′c set × ( ′a × ′b × ′c × ′a)
set) set)

by (simp add: Finite-Set.finite-set finite-prod)
moreover have f ‘ (UNIV :: ( ′a, ′b, ′c) fsm set) ⊆ (UNIV :: ( ′a × ′a set × ′b

set × ′c set × ( ′a × ′b × ′c × ′a) set) set)
by auto

moreover have inj f
unfolding inj-def f-def apply transfer
by (simp add: fsm-impl.expand)

ultimately show ?thesis by (metis inj-on-finite)
qed

qed
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instantiation fsm :: (finite-UNIV ,finite-UNIV ,finite-UNIV ) finite-UNIV begin
definition finite-UNIV = Phantom(( ′a, ′b, ′c) fsm) (of-phantom (finite-UNIV :: ′a
finite-UNIV ) ∧

of-phantom (finite-UNIV :: ′b finite-UNIV )
∧

of-phantom (finite-UNIV :: ′c finite-UNIV ))

instance by(intro-classes)(simp add: finite-UNIV-fsm-def finite-UNIV finiteness-fsm-UNIV )
end

instantiation fsm :: (card-UNIV ,card-UNIV ,card-UNIV ) card-UNIV begin

definition card-UNIV = Phantom(( ′a, ′b, ′c) fsm)
(if CARD( ′a) = 0 ∨ CARD( ′b) = 0 ∨ CARD( ′c) = 0

then 0
else card ((λ(q:: ′a, Q, X :: ′b set, Y :: ′c set, T ). FSM .create-fsm-from-sets q Q X

Y T ) ‘ UNIV ))
instance apply intro-classes
proof (cases CARD( ′a) = 0 ∨ CARD( ′b) = 0 ∨ CARD( ′c) = 0 )

case True
then have ¬ (finite (UNIV :: ′a set) ∧ finite (UNIV :: ′b set) ∧ finite (UNIV ::

′c set))
by force

then have infinite (UNIV :: ( ′a, ′b, ′c) fsm set)
using finiteness-fsm-UNIV by blast

then have card (UNIV :: ( ′a, ′b, ′c) fsm set) = 0
by auto

then show card-UNIV-class.card-UNIV = Phantom(( ′a, ′b, ′c) fsm) CARD(( ′a,
′b, ′c) fsm)

using True
by (simp add: card-UNIV-fsm-def )

next
case False
then have finite (UNIV :: ′a set) and finite (UNIV :: ′b set) and finite (UNIV

:: ′c set)
by force+

then have surj (λ(q:: ′a, Q, X :: ′b set, Y :: ′c set, T ). FSM .create-fsm-from-sets q
Q X Y T )

using create-fsm-from-sets-surj by blast
then show card-UNIV-class.card-UNIV = Phantom(( ′a, ′b, ′c) fsm) CARD(( ′a,

′b, ′c) fsm)
using False
by (simp add: card-UNIV-fsm-def )
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qed
end

instantiation fsm :: (type,type,type) cproper-interval begin
definition cproper-interval-fsm :: (( ′a, ′b, ′c) fsm) proper-interval where

cproper-interval-fsm m1 m2 = undefined
instance by(intro-classes)(simp add: ID-None ccompare-fsm-def )
end

44.2 Updated Code Equations
44.2.1 New Code Equations for remove-proper-prefixes
declare [[code drop: remove-proper-prefixes]]

lemma remove-proper-prefixes-refined[code] :
fixes t :: ( ′a :: ccompare) list set-rbt

shows remove-proper-prefixes (RBT-set t) = (case ID CCOMPARE(( ′a list)) of
Some - ⇒ (if (is-empty t) then {} else set (paths (from-list (RBT-Set2 .keys t))))
|
None ⇒ Code.abort (STR ′′remove-proper-prefixes RBT-set: ccompare = None ′′)

(λ-. remove-proper-prefixes (RBT-set t)))
(is ?v1 = ?v2 )

proof (cases ID CCOMPARE(( ′a list)))
case None
then show ?thesis by simp

next
case (Some a)
then have ∗:ID ccompare 6= (None :: ( ′a::ccompare list ⇒ ′a::ccompare list ⇒

order) option) by auto

show ?thesis proof (cases is-empty t)
case True
then show ?thesis unfolding Some remove-proper-prefixes-def by auto

next
case False
then have ?v2 = set (paths (from-list (RBT-Set2 .keys t))) using Some by

auto
moreover have ?v1 = set (paths (from-list (RBT-Set2 .keys t)))
using False unfolding RBT-set-conv-keys[OF ∗, of t] remove-proper-prefixes-code-trie

by (cases RBT-Set2 .keys t; auto)
ultimately show ?thesis by simp

qed
qed
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44.2.2 Special Handling for set-as-map on image

Avoid creating an intermediate set for (image f xs) when evaluating (set-as-map
(image f xs)).
definition set-as-map-image :: ( ′a1 × ′a2 ) set ⇒ (( ′a1 × ′a2 ) ⇒ ( ′b1 × ′b2 )) ⇒
( ′b1 ⇒ ′b2 set option) where

set-as-map-image xs f = (set-as-map (image f xs))

definition dual-set-as-map-image :: ( ′a1 × ′a2 ) set ⇒ (( ′a1 × ′a2 ) ⇒ ( ′b1 ×
′b2 )) ⇒ (( ′a1 × ′a2 ) ⇒ ( ′c1 × ′c2 )) ⇒ (( ′b1 ⇒ ′b2 set option) × ( ′c1 ⇒ ′c2 set
option)) where

dual-set-as-map-image xs f1 f2 = (set-as-map (image f1 xs), set-as-map (image
f2 xs))

lemma set-as-map-image-code[code] :
fixes t :: ( ′a1 ::ccompare × ′a2 :: ccompare) set-rbt
and f1 :: ( ′a1 × ′a2 ) ⇒ ( ′b1 :: ccompare × ′b2 ::ccompare)

shows set-as-map-image (RBT-set t) f1 = (case ID CCOMPARE(( ′a1 × ′a2 )) of
Some - ⇒ Mapping.lookup

(RBT-Set2 .fold (λ kv m1 .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )))

t
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map-image RBT-set: ccompare =
None ′′)

(λ-. set-as-map-image (RBT-set t) f1 ))
proof (cases ID CCOMPARE(( ′a1 × ′a2 )))

case None
then show ?thesis by auto

next
case (Some a)

let ?f ′ = λ t . (RBT-Set2 .fold (λ kv m1 .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )))

t
Mapping.empty)

let ?f = λ xs . (fold (λ kv m1 . case f1 kv of (x,z) ⇒ (case Mapping.lookup
m1 (x) of None ⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x)
(Set.insert z zs) m1 ))

xs Mapping.empty)
have

∧
xs :: ( ′a1 × ′a2 ) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈

f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None)
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proof −
fix xs :: ( ′a1 × ′a2 ) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some

{z . (x,z) ∈ f1 ‘ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where f1 xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

then have ∗: (?f (xs@[xz])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |
Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))

by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[xz])) = Mapping.lookup (Mapping.update
x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[xz])) = (λ x ′ . if x ′ = x then Some {z}
else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs}
else None) x = None

using None snoc by auto
then have ¬(∃ z . (x,z) ∈ f1 ‘ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])) and {z ′ . (x,z ′) ∈ f1 ‘ set

(xs@[xz])} = {z}
using ‹f1 xz = (x,z)› by fastforce+

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some {z ′

. (x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None)
= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈ f1 ‘

set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′)
using ‹f1 xz = (x,z)› by fastforce

show ?thesis using m1 m2 snoc
using ‹f1 xz = (x, z)› by presburger
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next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[xz])) = Mapping.lookup (Mapping.update
x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[xz])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs}
else None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ f1 ‘ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])) by fastforce

have {z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ f1 ‘ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set

xs} else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ f1 ‘ set xs} = zs by auto
then show ?thesis

using ‹f1 xz = (x, z)› by auto
qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some {z ′ .
(x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z .
(x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′) a

proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some {z ′ .

(x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None) a
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z

. (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′) ∈

f1 ‘ set (xs@[xz]))› ‹f1 xz = (x, z)›
by (cases a = x; auto)

qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some {z ′

. (x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None)
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
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. (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹f1 xz = (x, z)› by presburger

qed
qed

qed

then have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ f1 ‘ set (RBT-Set2 .keys
t)) then Some {z . (x,z) ∈ f1 ‘ set (RBT-Set2 .keys t)} else None)

unfolding fold-conv-fold-keys by metis
moreover have set (RBT-Set2 .keys t) = (RBT-set t)

using Some by (simp add: RBT-set-conv-keys)
ultimately have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ f1 ‘ (RBT-set

t)) then Some {z . (x,z) ∈ f1 ‘ (RBT-set t)} else None)
by force

then show ?thesis
using Some unfolding set-as-map-image-def set-as-map-def by simp

qed

lemma dual-set-as-map-image-code[code] :
fixes t :: ( ′a1 ::ccompare × ′a2 :: ccompare) set-rbt
and f1 :: ( ′a1 × ′a2 ) ⇒ ( ′b1 :: ccompare × ′b2 ::ccompare)
and f2 :: ( ′a1 × ′a2 ) ⇒ ( ′c1 :: ccompare × ′c2 ::ccompare)
shows dual-set-as-map-image (RBT-set t) f1 f2 = (case ID CCOMPARE(( ′a1
× ′a2 )) of

Some - ⇒ let mm = (RBT-Set2 .fold (λ kv (m1 ,m2 ) .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )

, case f2 kv of (x,z) ⇒ (case Mapping.lookup m2 (x) of None
⇒ Mapping.update (x) {z} m2 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m2 )))

t
(Mapping.empty,Mapping.empty))

in (Mapping.lookup (fst mm), Mapping.lookup (snd mm)) |
None ⇒ Code.abort (STR ′′dual-set-as-map-image RBT-set: ccompare

= None ′′)
(λ-. (dual-set-as-map-image (RBT-set t) f1 f2 )))

proof (cases ID CCOMPARE(( ′a1 × ′a2 )))
case None
then show ?thesis by auto

next
case (Some a)
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let ?f1 = λ xs . (fold (λ kv m . case f1 kv of (x,z) ⇒ (case Mapping.lookup m (x)
of None ⇒ Mapping.update (x) {z} m | Some zs ⇒ Mapping.update (x) (Set.insert
z zs) m)) xs Mapping.empty)

let ?f2 = λ xs . (fold (λ kv m . case f2 kv of (x,z) ⇒ (case Mapping.lookup m (x)
of None ⇒ Mapping.update (x) {z} m | Some zs ⇒ Mapping.update (x) (Set.insert
z zs) m)) xs Mapping.empty)

let ?f12 = λ xs . fold (λ kv (m1 ,m2 ) .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )

, case f2 kv of (x,z) ⇒ (case Mapping.lookup m2 (x) of None
⇒ Mapping.update (x) {z} m2 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m2 )))

xs
(Mapping.empty,Mapping.empty)

let ?f1 ′ = λ t . (RBT-Set2 .fold (λ kv m . case f1 kv of (x,z) ⇒ (case Map-
ping.lookup m (x) of None ⇒ Mapping.update (x) {z} m | Some zs ⇒ Map-
ping.update (x) (Set.insert z zs) m)) t Mapping.empty)

let ?f2 ′ = λ t . (RBT-Set2 .fold (λ kv m . case f2 kv of (x,z) ⇒ (case Map-
ping.lookup m (x) of None ⇒ Mapping.update (x) {z} m | Some zs ⇒ Map-
ping.update (x) (Set.insert z zs) m)) t Mapping.empty)

let ?f12 ′ = λ t . RBT-Set2 .fold (λ kv (m1 ,m2 ) .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )

, case f2 kv of (x,z) ⇒ (case Mapping.lookup m2 (x) of None
⇒ Mapping.update (x) {z} m2 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m2 )))

t
(Mapping.empty,Mapping.empty)

have
∧

xs . ?f12 xs = (?f1 xs, ?f2 xs)
unfolding fold-dual[symmetric] by simp

then have ?f12 (RBT-Set2 .keys t) = (?f1 (RBT-Set2 .keys t), ?f2 (RBT-Set2 .keys
t))

by simp
then have ?f12 ′ t = (?f1 ′ t, ?f2 ′ t)

unfolding fold-conv-fold-keys by metis

have Mapping.lookup (fst (?f12 ′ t)) = set-as-map (f1 ‘ (RBT-set t))
unfolding ‹?f12 ′ t = (?f1 ′ t, ?f2 ′ t)› fst-conv set-as-map-image-def [symmetric]
using set-as-map-image-code[of t f1 ] Some by simp

moreover have Mapping.lookup (snd (?f12 ′ t)) = set-as-map (f2 ‘ (RBT-set t))

unfolding ‹?f12 ′ t = (?f1 ′ t, ?f2 ′ t)› snd-conv set-as-map-image-def [symmetric]
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using set-as-map-image-code[of t f2 ] Some by simp
ultimately show ?thesis

unfolding dual-set-as-map-image-def Let-def using Some by simp
qed

44.2.3 New Code Equations for h
declare [[code drop: h]]
lemma h-refined[code] : h M (q,x)
= (let m = set-as-map-image (transitions M ) (λ(q,x,y,q ′) . ((q,x),y,q ′))

in (case m (q,x) of Some yqs ⇒ yqs | None ⇒ {}))
apply transfer
unfolding h-code set-as-map-image-def by simp

44.2.4 New Code Equations for canonical-separator ′

lemma canonical-separator ′-refined[code] :
fixes M :: ( ′a, ′b, ′c) fsm-impl
shows

FSM-Impl.canonical-separator ′ M P q1 q2 = (if FSM-Impl.fsm-impl.initial P =
(q1 ,q2 )

then
(let f ′ = set-as-map-image (FSM-Impl.fsm-impl.transitions M ) (λ(q,x,y,q ′) .

((q,x),y));
f = (λqx . (case f ′ qx of Some yqs ⇒ yqs | None ⇒ {}));

shifted-transitions ′ = shifted-transitions (FSM-Impl.fsm-impl.transitions P);
distinguishing-transitions-lr = distinguishing-transitions f q1 q2 (FSM-Impl.fsm-impl.states

P) (FSM-Impl.fsm-impl.inputs P);
ts = shifted-transitions ′ ∪ distinguishing-transitions-lr

in FSMI
(Inl (q1 ,q2 ))
((image Inl (FSM-Impl.fsm-impl.states P)) ∪ {Inr q1 , Inr q2})
(FSM-Impl.fsm-impl.inputs M ∪ FSM-Impl.fsm-impl.inputs P)
(FSM-Impl.fsm-impl.outputs M ∪ FSM-Impl.fsm-impl.outputs P)
(ts))

else FSMI
(Inl (q1 ,q2 )) {Inl (q1 ,q2 )} {} {} {})

unfolding set-as-map-image-def by simp

44.2.5 New Code Equations for calculate-test-paths
lemma calculate-test-paths-refined[code] :

calculate-test-paths M m d-reachable-states r-distinguishable-pairs repetition-sets
=

(let
paths-with-witnesses

= (image (λ q . (q,m-traversal-paths-with-witness M q repetition-sets
m)) d-reachable-states);

get-paths
= m2f (set-as-map paths-with-witnesses);
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PrefixPairTests
=

⋃
q ∈ d-reachable-states .

⋃
mrsps ∈ get-paths q . prefix-pair-tests

q mrsps;
PreamblePrefixTests
=

⋃
q ∈ d-reachable-states .

⋃
mrsps ∈ get-paths q . preamble-prefix-tests

q mrsps d-reachable-states;
PreamblePairTests

= preamble-pair-tests (
⋃

(q,pw) ∈ paths-with-witnesses . ((λ (p,(rd,dr))
. dr) ‘ pw)) r-distinguishable-pairs;

tests
= PrefixPairTests ∪ PreamblePrefixTests ∪ PreamblePairTests;

tps ′

= m2f-by
⋃

(set-as-map-image paths-with-witnesses (λ (q,p) . (q, image
fst p)));

dual-maps
= dual-set-as-map-image tests (λ (q,p,q ′) . (q,p)) (λ (q,p,q ′) . ((q,p),q ′));

tps ′′

= m2f (fst dual-maps);
tps

= (λ q . tps ′ q ∪ tps ′′ q);
rd-targets

= m2f (snd dual-maps)
in ( tps, rd-targets))

unfolding calculate-test-paths-def Let-def dual-set-as-map-image-def fst-conv snd-conv
set-as-map-image-def

by simp

44.2.6 New Code Equations for prefix-pair-tests
fun target ′ :: ′state ⇒ ( ′state, ′input, ′output) path ⇒ ′state where

target ′ q [] = q |
target ′ q p = t-target (last p)

lemma target-refined[code] :
target q p = target ′ q p

proof (cases p rule: rev-cases)
case Nil
then show ?thesis by auto

next
case (snoc p ′ t)
then have p 6= [] by auto
then show ?thesis unfolding snoc target.simps visited-states.simps

by (metis (no-types, lifting) last-ConsR last-map list.map-disc-iff target ′.elims)

qed

declare [[code drop: prefix-pair-tests]]
lemma prefix-pair-tests-refined[code] :
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fixes t :: (( ′a ::ccompare, ′b::ccompare, ′c::ccompare) traversal-path × ( ′a set × ′a
set)) set-rbt
shows prefix-pair-tests q (RBT-set t) = (case ID CCOMPARE((( ′a, ′b, ′c) traver-
sal-path × ( ′a set × ′a set))) of

Some - ⇒ set
(concat (map (λ (p,(rd,dr)) .

(concat (map (λ (p1 ,p2 ) . [(q,p1 ,(target q p2 )), (q,p2 ,(target q
p1 ))])

(filter (λ (p1 ,p2 ) . (target q p1 ) 6= (target q p2 ) ∧
(target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd) (prefix-pairs p)))))

(RBT-Set2 .keys t))) |
None ⇒ Code.abort (STR ′′prefix-pair-tests RBT-set: ccompare = None ′′)

(λ-. (prefix-pair-tests q (RBT-set t))))
(is prefix-pair-tests q (RBT-set t) = ?C )

proof (cases ID CCOMPARE((( ′a ::ccompare, ′b::ccompare, ′c::ccompare) traver-
sal-path × ( ′a set × ′a set))))

case None
then show ?thesis by auto

next
case (Some a)

have ∗: ?C = (
⋃
(image (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target

q p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 )
∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) (set (RBT-Set2 .keys t))))

proof −
let ?S1 = set (concat (map (λ (p,(rd,dr)) . (concat (map (λ (p1 ,p2 ) . [(q,p1 ,(target

q p2 )), (q,p2 ,(target q p1 ))]) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 )
∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) (RBT-Set2 .keys t)))

let ?S2 = (
⋃
(image (λ (p,(rd,dr)) .

⋃
(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target q

p2 )), (q,p2 ,(target q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 )
∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))))) (set (RBT-Set2 .keys t))))

have ∗: ?C = ?S1
proof −

have ∗:
∧

rd p . (filter (λ (p1 ,p2 ) . (target q p1 ) 6= (target q p2 ) ∧ (target
q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd) (prefix-pairs p)) = (filter (λ (p1 ,p2 ) . (target q
p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p))

by meson
have ?C = set (concat (map (λ (p,(rd,dr)) . (concat (map (λ (p1 ,p2 )

. [(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))]) (filter (λ (p1 ,p2 ) . (target q p1 )
6= (target q p2 ) ∧ (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd) (prefix-pairs p)))))
(RBT-Set2 .keys t)))

using Some by auto
then show ?thesis

unfolding ∗ by presburger
qed

have union-filter-helper :
∧

xs f x1 x2 y . y ∈ f (x1 ,x2 ) =⇒ (x1 ,x2 ) ∈ set xs
=⇒ y ∈

⋃
(set (map f xs))
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by auto
have concat-set-helper :

∧
xss xs x . x ∈ set xs =⇒ xs ∈ set xss =⇒ x ∈ set

(concat xss)
by auto

have
∧

x . x ∈ ?S1 =⇒ x ∈ ?S2
proof −

fix x assume x ∈ ?S1
then obtain p rd dr p1 p2 where (p,(rd,dr)) ∈ set (RBT-Set2 .keys t)

and (p1 ,p2 ) ∈ set ((filter (λ (p1 ,p2 ) . (target q p1 ) ∈
rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p)))

and x ∈ set [(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))]
by auto

then have x ∈ {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}
by auto

then have x ∈
⋃

(set (map (λ (p1 ,p2 ) . {(q,p1 ,(target q p2 )), (q,p2 ,(target
q p1 ))}) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 )
6= (target q p2 )) (prefix-pairs p))))

using union-filter-helper [OF - ‹(p1 ,p2 ) ∈ set ((filter (λ (p1 ,p2 ) . (target q
p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p)))›,
of x (λ(p1 , p2 ). {(q, p1 , target q p2 ), (q, p2 , target q p1 )})] by simp

then show x ∈ ?S2
using ‹(p,(rd,dr)) ∈ set (RBT-Set2 .keys t)› by blast

qed

moreover have
∧

x . x ∈ ?S2 =⇒ x ∈ ?S1
proof −

fix x assume x ∈ ?S2
then obtain p rd dr p1 p2 where (p,(rd,dr)) ∈ set (RBT-Set2 .keys t)

and (p1 ,p2 ) ∈ set ((filter (λ (p1 ,p2 ) . (target q p1 ) ∈
rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p)))

and x ∈ {(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))}
by auto

then have ∗: x ∈ set [(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))] by auto
have ∗∗: [(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))] ∈ set (map (λ (p1 ,p2 ) .

[(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))]) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd
∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p)))

using ‹(p1 ,p2 ) ∈ set ((filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 )
∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p)))› by force

have ∗∗∗: (concat (map (λ (p1 ,p2 ) . [(q,p1 ,(target q p2 )), (q,p2 ,(target q
p1 ))]) (filter (λ (p1 ,p2 ) . (target q p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 )
6= (target q p2 )) (prefix-pairs p)))) ∈ set ((map (λ (p,(rd,dr)) . (concat (map (λ
(p1 ,p2 ) . [(q,p1 ,(target q p2 )), (q,p2 ,(target q p1 ))]) (filter (λ (p1 ,p2 ) . (target q
p1 ) ∈ rd ∧ (target q p2 ) ∈ rd ∧ (target q p1 ) 6= (target q p2 )) (prefix-pairs p)))))
(RBT-Set2 .keys t)))

using ‹(p,(rd,dr)) ∈ set (RBT-Set2 .keys t)› by force

show x ∈ ?S1
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using concat-set-helper [OF concat-set-helper [OF ∗ ∗∗] ∗∗∗] by assumption
qed

ultimately show ?thesis unfolding ∗ by blast
qed

show ?thesis
unfolding ∗ unfolding prefix-pair-tests-code
using Some by (simp add: RBT-set-conv-keys)

qed

44.2.7 New Code Equations for preamble-prefix-tests
declare [[code drop: preamble-prefix-tests]]
lemma preamble-prefix-tests-refined[code] :

fixes t1 :: (( ′a ::ccompare, ′b::ccompare, ′c::ccompare) traversal-path × ( ′a set ×
′a set)) set-rbt

and t2 :: ′a set-rbt
shows preamble-prefix-tests q (RBT-set t1 ) (RBT-set t2 ) = (case ID CCOM-
PARE((( ′a, ′b, ′c) traversal-path × ( ′a set × ′a set))) of
Some - ⇒ (case ID CCOMPARE( ′a) of

Some - ⇒ set (concat (map (λ (p,(rd,dr)) .
(concat (map (λ (p1 ,q2 ) . [(q,p1 ,q2 ), (q2 ,[],(target q p1 ))])

(filter (λ (p1 ,q2 ) . (target q p1 ) 6= q2 ∧ (target q p1 ) ∈ rd
∧ q2 ∈ rd)

(List.product (prefixes p) (RBT-Set2 .keys t2 ))))))
(RBT-Set2 .keys t1 ))) |

None ⇒ Code.abort (STR ′′prefix-pair-tests RBT-set: ccompare = None ′′) (λ-.
(preamble-prefix-tests q (RBT-set t1 ) (RBT-set t2 )))) |
None ⇒ Code.abort (STR ′′prefix-pair-tests RBT-set: ccompare = None ′′) (λ-.
(preamble-prefix-tests q (RBT-set t1 ) (RBT-set t2 ))))
(is preamble-prefix-tests q (RBT-set t1 ) (RBT-set t2 ) = ?C )

proof (cases ID CCOMPARE((( ′a, ′b, ′c) traversal-path × ( ′a set × ′a set))))
case None
then show ?thesis by auto

next
case (Some a)
then have k1 : (RBT-set t1 ) = set (RBT-Set2 .keys t1 )

by (simp add: RBT-set-conv-keys)

show ?thesis proof (cases ID CCOMPARE( ′a))
case None
then show ?thesis using Some by auto

next
case (Some b)
then have k2 : (RBT-set t2 ) = set (RBT-Set2 .keys t2 )

by (simp add: RBT-set-conv-keys)

have preamble-prefix-tests q (RBT-set t1 ) (RBT-set t2 ) = (
⋃
(p, rd, dr)∈ set
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(RBT-Set2 .keys t1 ).
⋃
(p1 , q2 )∈Set.filter (λ(p1 , q2 ). target q p1 ∈ rd ∧ q2 ∈ rd

∧ target q p1 6= q2 ) (set (prefixes p) × (set (RBT-Set2 .keys t2 ))). {(q, p1 , q2 ),
(q2 , [], target q p1 )})

unfolding preamble-prefix-tests-code k1 k2 by simp

moreover have ?C = (
⋃
(p, rd, dr)∈ set (RBT-Set2 .keys t1 ).

⋃
(p1 , q2 )∈Set.filter

(λ(p1 , q2 ). target q p1 ∈ rd ∧ q2 ∈ rd ∧ target q p1 6= q2 ) (set (prefixes p) × (set
(RBT-Set2 .keys t2 ))). {(q, p1 , q2 ), (q2 , [], target q p1 )})

proof −
let ?S1 = set (concat (map (λ (p,(rd,dr)) . (concat (map (λ (p1 ,q2 ) .

[(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]) (filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2
∈ rd ∧ (target q p1 ) 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys t2 ))))))
(RBT-Set2 .keys t1 )))

let ?S2 = (
⋃
(p, rd, dr)∈ set (RBT-Set2 .keys t1 ).

⋃
(p1 , q2 )∈Set.filter

(λ(p1 , q2 ). target q p1 ∈ rd ∧ q2 ∈ rd ∧ target q p1 6= q2 ) (set (prefixes p) × (set
(RBT-Set2 .keys t2 ))). {(q, p1 , q2 ), (q2 , [], target q p1 )})

have ∗: ?C = ?S1
proof −

have ∗:
∧

rd p . (filter (λ (p1 ,q2 ) . (target q p1 ) 6= q2 ∧ (target q p1 ) ∈
rd ∧ q2 ∈ rd) (List.product (prefixes p) (RBT-Set2 .keys t2 ))) = (filter (λ (p1 ,q2 )
. (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 ) (List.product (prefixes p)
(RBT-Set2 .keys t2 )))

by meson
have ?C = set (concat (map (λ (p,(rd,dr)) . (concat (map (λ (p1 ,q2 ) .

[(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]) (filter (λ (p1 ,q2 ) . (target q p1 ) 6= q2 ∧ (target q
p1 ) ∈ rd ∧ q2 ∈ rd) (List.product (prefixes p) (RBT-Set2 .keys t2 )))))) (RBT-Set2 .keys
t1 )))

using Some ‹ID ccompare = Some a› by auto
then show ?thesis

unfolding ∗ by presburger
qed

have union-filter-helper :
∧

xs f x1 x2 y . y ∈ f (x1 ,x2 ) =⇒ (x1 ,x2 ) ∈ set xs
=⇒ y ∈

⋃
(set (map f xs))

by auto
have concat-set-helper :

∧
xss xs x . x ∈ set xs =⇒ xs ∈ set xss =⇒ x ∈ set

(concat xss)
by auto

have
∧

x . x ∈ ?S1 =⇒ x ∈ ?S2
proof −

fix x assume x ∈ ?S1

obtain prddr where prddr ∈ set (RBT-Set2 .keys t1 )
and x ∈ set ((λ (p,(rd,dr)) . (concat (map (λ (p1 ,q2 ) .

[(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]) (filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd
∧ (target q p1 ) 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys t2 )))))) prddr)
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using concat-map-elem[OF ‹x ∈ ?S1 ›] by blast

moreover obtain p rd dr where prddr = (p,(rd,dr))
using prod-cases3 by blast

ultimately have (p,(rd,dr)) ∈ set (RBT-Set2 .keys t1 )
and x ∈ set ((concat (map (λ (p1 ,q2 ) . [(q,p1 ,q2 ), (q2 ,[],(target

q p1 ))]) (filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 )
(List.product (prefixes p) (RBT-Set2 .keys t2 ))))))

by auto
then obtain p1 q2 where (p1 ,q2 ) ∈ set ((filter (λ (p1 ,q2 ) . (target q p1 )

∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys
t2 ))))

and x ∈ set [(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]
by auto

then have x ∈ {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))}
by auto

then have x ∈
⋃

(set (map (λ(p1 , q2 ). {(q, p1 , q2 ), (q2 , [], target q p1 )})
(filter (λ(p1 , q2 ). target q p1 ∈ rd ∧ q2 ∈ rd ∧ target q p1 6= q2 ) (List.product
(prefixes p) (RBT-Set2 .keys t2 )))))

using union-filter-helper [OF - ‹(p1 ,q2 ) ∈ set ((filter (λ (p1 ,q2 ) . (target q
p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys
t2 ))))›, of x (λ (p1 ,q2 ) . {(q,p1 ,q2 ), (q2 ,[],(target q p1 ))})] by simp

then have x ∈ (
⋃

(p1 , q2 )∈Set.filter (λ(p1 , q2 ). target q p1 ∈ rd ∧ q2
∈ rd ∧ target q p1 6= q2 ) (set (prefixes p) × (set (RBT-Set2 .keys t2 ))). {(q, p1 ,
q2 ), (q2 , [], target q p1 )})

by auto
then show x ∈ ?S2

using ‹(p,(rd,dr)) ∈ set (RBT-Set2 .keys t1 )› by blast
qed

moreover have
∧

x . x ∈ ?S2 =⇒ x ∈ ?S1
proof −

fix x assume x ∈ ?S2
then obtain p rd dr p1 q2 where (p, rd, dr)∈ set (RBT-Set2 .keys t1 )

and (p1 , q2 )∈Set.filter (λ(p1 , q2 ). target q p1 ∈ rd
∧ q2 ∈ rd ∧ target q p1 6= q2 ) (set (prefixes p) × (set (RBT-Set2 .keys t2 )))

and x ∈ {(q, p1 , q2 ), (q2 , [], target q p1 )}
by blast

then have ∗:x ∈ set [(q, p1 , q2 ), (q2 , [], target q p1 )]
by auto

have (p1 ,q2 ) ∈ set (filter (λ(p1 , q2 ). target q p1 ∈ rd ∧ q2 ∈ rd ∧ target
q p1 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys t2 )))

using ‹(p1 , q2 )∈Set.filter (λ(p1 , q2 ). target q p1 ∈ rd ∧ q2 ∈ rd ∧ target
q p1 6= q2 ) (set (prefixes p) × (set (RBT-Set2 .keys t2 )))›

by auto
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then have ∗∗:[(q, p1 , q2 ), (q2 , [], target q p1 )] ∈ set ((map (λ (p1 ,q2 ) .
[(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]) (filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd
∧ (target q p1 ) 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys t2 )))))

by force

have ∗∗∗: (concat (map (λ (p1 ,q2 ) . [(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]) (filter
(λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧ q2 ∈ rd ∧ (target q p1 ) 6= q2 ) (List.product
(prefixes p) (RBT-Set2 .keys t2 ))))) ∈ set (map (λ (p,(rd,dr)) . (concat (map (λ
(p1 ,q2 ) . [(q,p1 ,q2 ), (q2 ,[],(target q p1 ))]) (filter (λ (p1 ,q2 ) . (target q p1 ) ∈ rd ∧
q2 ∈ rd ∧ (target q p1 ) 6= q2 ) (List.product (prefixes p) (RBT-Set2 .keys t2 ))))))
(RBT-Set2 .keys t1 ))

using ‹(p, rd, dr)∈ set (RBT-Set2 .keys t1 )› by force

show x ∈ ?S1
using concat-set-helper [OF concat-set-helper [OF ∗ ∗∗] ∗∗∗] by assumption

qed

ultimately show ?thesis unfolding ∗ by blast
qed

ultimately show ?thesis by simp
qed

qed

end

45 Data Refinement on FSM Representations

This section introduces a refinement of the type of finite state machines for
code generation, maintaining mappings to access the transition relation to
avoid repeated computations.
theory FSM-Code-Datatype
imports FSM HOL−Library.Mapping Containers.Containers
begin

45.1 Mappings and Function h
fun list-as-mapping :: ( ′a × ′c) list ⇒ ( ′a, ′c set) mapping where

list-as-mapping xs = (foldr (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (insert z zs) m)
xs
Mapping.empty)

lemma list-as-mapping-lookup:
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fixes xs :: ( ′a × ′c) list
shows (Mapping.lookup (list-as-mapping xs)) = (λ x . if (∃ z . (x,z) ∈ (set xs))

then Some {z . (x,z) ∈ (set xs)} else None)
proof −

let ?P = λm :: ( ′a, ′c set) mapping . (Mapping.lookup m) = (λ x . if (∃ z . (x,z)
∈ (set xs)) then Some {z . (x,z) ∈ (set xs)} else None)

have ?P (list-as-mapping xs)
proof (induction xs)

case Nil
then show ?case

using Mapping.lookup-empty by fastforce
next

case (Cons xz xs)
then obtain x z where xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

have ∗: (list-as-mapping ((x,z)#xs)) = (case Mapping.lookup (list-as-mapping
xs) x of

None ⇒ Mapping.update x {z} (list-as-mapping xs) |
Some zs ⇒ Mapping.update x (insert z zs) (list-as-mapping

xs))
unfolding list-as-mapping.simps
by auto

show ?case proof (cases Mapping.lookup (list-as-mapping xs) x)
case None

then have ∗∗: Mapping.lookup (list-as-mapping ((x,z)#xs)) = (Mapping.lookup
(Mapping.update x {z} (list-as-mapping xs)))

using ∗ by auto
then have m1 : Mapping.lookup (list-as-mapping ((x,z)#xs)) = (λ x ′ . if x ′

= x then Some {z} else Mapping.lookup (list-as-mapping xs) x ′)
by (metis (lifting) lookup-update ′)

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None)
x = None

using None Cons by auto
then have ¬(∃ z . (x,z) ∈ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z . (x,z) ∈ set ((x,z)#xs)) and {z ′ . (x,z ′) ∈ set ((x,z)#xs)}

= {z}
by auto

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set ((x,z)#xs))
then Some {z ′ . (x ′,z ′) ∈ set ((x,z)#xs)}
else None)

= (λ x ′ . if x ′ = x
then Some {z} else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs}
else None) x ′)
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by force

show ?thesis using m1 m2 Cons
using ‹xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (list-as-mapping ((x,z)#xs)) = (Mapping.lookup
(Mapping.update x (insert z zs) (list-as-mapping xs)))

using ∗ by auto
then have m1 : Mapping.lookup (list-as-mapping ((x,z)#xs)) = (λ x ′ . if x ′

= x then Some (insert z zs) else Mapping.lookup (list-as-mapping xs) x ′)
by (metis (lifting) lookup-update ′)

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None)
x = Some zs

using Some Cons by auto
then have (∃ z . (x,z) ∈ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z . (x,z) ∈ set ((x,z)#xs)) by simp

have {z ′ . (x,z ′) ∈ set ((x,z)#xs)} = insert z zs
proof −

have Some {z . (x,z) ∈ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else

None) x
= Some zs›

unfolding case-prod-conv using option.distinct(2 ) by metis
then have {z . (x,z) ∈ set xs} = zs by auto
then show ?thesis by auto

qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set ((x,z)#xs))
then Some {z ′ . (x ′,z ′) ∈ set ((x,z)#xs)} else None) a

= (λ x ′ . if x ′ = x
then Some (insert z zs)
else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs} else None) x ′) a
proof −

fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set ((x,z)#xs))
then Some {z ′ . (x ′,z ′) ∈ set ((x,z)#xs)} else None) a

= (λ x ′ . if x ′ = x
then Some (insert z zs)
else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ set ((x,z)#xs)} = insert z zs› ‹(∃ z . (x,z) ∈ set

((x,z)#xs))›
by (cases a = x; auto)

qed
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then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set ((x,z)#xs))
then Some {z ′ . (x ′,z ′) ∈ set ((x,z)#xs)} else None)

= (λ x ′ . if x ′ = x
then Some (insert z zs)
else (λ x . if (∃ z . (x,z) ∈ set xs)

then Some {z . (x,z) ∈ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 Cons
using ‹xz = (x, z)› by presburger

qed
qed
then show ?thesis .

qed

lemma list-as-mapping-lookup-transitions :
(case (Mapping.lookup (list-as-mapping (map (λ(q,x,y,q ′) . ((q,x),y,q ′)) ts)) (q,x))

of Some ts ⇒ ts | None ⇒ {}) = { (y,q ′) . (q,x,y,q ′) ∈ set ts}
(is ?S1 = ?S2 )
proof (cases ∃ z. ((q, x), z) ∈ set (map (λ(q, x, y, q ′). ((q, x), y, q ′)) ts))

case True
then have ?S1 = {z. ((q, x), z) ∈ set (map (λ(q, x, y, q ′). ((q, x), y, q ′)) ts)}

unfolding list-as-mapping-lookup by auto
also have . . . = ?S2

by (induction ts; auto)
finally show ?thesis .

next
case False
then have ?S1 = {}

unfolding list-as-mapping-lookup by auto
also have . . . = ?S2

using False by (induction ts; auto)
finally show ?thesis .

qed

lemma list-as-mapping-Nil :
list-as-mapping [] = Mapping.empty
by auto

definition set-as-mapping :: ( ′a × ′c) set ⇒ ( ′a, ′c set) mapping where
set-as-mapping s = (THE m . Mapping.lookup m = (set-as-map s))

lemma set-as-mapping-ob :
obtains m where set-as-mapping s = m and Mapping.lookup m = set-as-map

s
proof −
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obtain m where ∗:Mapping.lookup m = set-as-map s
using Mapping.lookup.abs-eq by auto

moreover have (THE x . Mapping.lookup x = set-as-map s) = m
using the-equality[of λm . Mapping.lookup m = set-as-map s, OF ∗]
unfolding ∗[symmetric]
by (simp add: mapping-eqI )

ultimately show ?thesis
using that[of m] unfolding set-as-mapping-def by blast

qed

lemma set-as-mapping-refined[code] :
fixes t :: ( ′a :: ccompare × ′c :: ccompare) set-rbt
and xs:: ( ′b :: ceq × ′d :: ceq) set-dlist
shows set-as-mapping (RBT-set t) = (case ID CCOMPARE(( ′a × ′c)) of

Some - ⇒ (RBT-Set2 .fold (λ (x,z) m . case Mapping.lookup m (x) of
None ⇒ Mapping.update (x) {z} m |
Some zs ⇒ Mapping.update (x) (Set.insert z zs) m)

t
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map RBT-set: ccompare = None ′′)
(λ-. set-as-mapping (RBT-set t)))

(is set-as-mapping (RBT-set t) = ?C1 (RBT-set t))
and set-as-mapping (DList-set xs) = (case ID CEQ(( ′b × ′d)) of

Some - ⇒ (DList-Set.fold (λ (x,z) m . case Mapping.lookup m (x) of
None ⇒ Mapping.update (x) {z} m |
Some zs ⇒ Mapping.update (x) (Set.insert z zs) m)

xs
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map RBT-set: ccompare = None ′′)
(λ-. set-as-mapping (DList-set xs)))

(is set-as-mapping (DList-set xs) = ?C2 (DList-set xs))
proof −

show set-as-mapping (RBT-set t) = ?C1 (RBT-set t)
proof (cases ID CCOMPARE(( ′a × ′c)))

case None
then show ?thesis by auto

next
case (Some a)

let ?f ′ = (λ t ′ . (RBT-Set2 .fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (Set.insert z
zs) m)

t ′

Mapping.empty))

let ?f = λ xs . (fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (Set.insert z
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zs) m)
xs Mapping.empty)

have
∧

xs :: ( ′a × ′c) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈
set xs) then Some {z . (x,z) ∈ set xs} else None)

proof −
fix xs :: ( ′a × ′c) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z

. (x,z) ∈ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

have ∗: (?f (xs@[(x,z)])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |

Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))
by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
{z} else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = None

using None snoc by auto
then have ¬(∃ z . (x,z) ∈ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) and {z ′ . (x,z ′) ∈ set

(xs@[(x,z)])} = {z}
by fastforce+

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈

set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
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by force

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) by fastforce

have {z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs}

else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ set xs} = zs by auto
then show ?thesis by auto

qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .
(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
. (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a

proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .

(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′) ∈

set (xs@[(x,z)]))›
by (cases a = x; auto)

qed
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then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

qed
qed

qed
then have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ set (RBT-Set2 .keys

t)) then Some {z . (x,z) ∈ set (RBT-Set2 .keys t)} else None)
unfolding fold-conv-fold-keys by metis

moreover have set (RBT-Set2 .keys t) = (RBT-set t)
using Some by (simp add: RBT-set-conv-keys)

ultimately have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ (RBT-set
t)) then Some {z . (x,z) ∈ (RBT-set t)} else None)

by force
then have Mapping.lookup (?f ′ t) = set-as-map (RBT-set t)

unfolding set-as-map-def by blast
then have ∗:Mapping.lookup (?C1 (RBT-set t)) = set-as-map (RBT-set t)

unfolding Some by force

have
∧

t ′ . Mapping.lookup (?C1 (RBT-set t)) = Mapping.lookup (?C1 t ′) =⇒
(?C1 (RBT-set t)) = (?C1 t ′)

by (simp add: Some)
then have ∗∗: (

∧
x. Mapping.lookup x = set-as-map (RBT-set t) =⇒ x = (?C1

(RBT-set t)))
by (simp add: ∗ mapping-eqI )

show ?thesis
using the-equality[of λ m . Mapping.lookup m = (set-as-map (RBT-set t)),

OF ∗ ∗∗]
unfolding set-as-mapping-def by blast

qed

show set-as-mapping (DList-set xs) = ?C2 (DList-set xs)
proof (cases ID CEQ(( ′b × ′d)))

case None
then show ?thesis by auto

next
case (Some a)

let ?f ′ = (λ t ′ . (DList-Set.fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (Set.insert z
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zs) m)
t ′

Mapping.empty))

let ?f = λ xs . (fold (λ (x,z) m . case Mapping.lookup m x of
None ⇒ Mapping.update x {z} m |

Some zs ⇒ Mapping.update x (Set.insert z
zs) m)

xs Mapping.empty)
have ∗:

∧
xs :: ( ′b × ′d) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z)

∈ set xs) then Some {z . (x,z) ∈ set xs} else None)
proof −

fix xs :: ( ′b × ′d) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z

. (x,z) ∈ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

have ∗: (?f (xs@[(x,z)])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |

Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))
by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
{z} else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = None

using None snoc by auto
then have ¬(∃ z . (x,z) ∈ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
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then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) and {z ′ . (x,z ′) ∈ set
(xs@[(x,z)])} = {z}

by fastforce+
then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈

set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
by force

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[(x,z)])) = Mapping.lookup
(Mapping.update x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[(x,z)])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else
None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ set (xs@[(x,z)])) by fastforce

have {z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs}

else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ set xs} = zs by auto
then show ?thesis by auto

qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .
(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
. (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a

proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′ .

(x ′,z ′) ∈ set (xs@[(x,z)])} else None) a
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= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃
z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′) a

using ‹{z ′ . (x,z ′) ∈ set (xs@[(x,z)])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′) ∈
set (xs@[(x,z)]))›

by (cases a = x; auto)
qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ set (xs@[(x,z)])) then Some {z ′

. (x ′,z ′) ∈ set (xs@[(x,z)])} else None)
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ set xs) then Some {z . (x,z) ∈ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹xz = (x, z)› by presburger

qed
qed

qed

have ID CEQ( ′b × ′d) 6= None
using Some by auto

then have ∗∗:
∧

x . x ∈ set (list-of-dlist xs) = (x ∈ (DList-set xs))
using DList-Set.member .rep-eq[of xs]
using Set-member-code(2 ) ceq-class.ID-ceq in-set-member by fastforce

have Mapping.lookup (?f ′ xs) = (λ x . if (∃ z . (x,z) ∈ (DList-set xs)) then
Some {z . (x,z) ∈ (DList-set xs)} else None)

using ∗[of (list-of-dlist xs)]
unfolding DList-Set.fold.rep-eq ∗∗ by assumption

then have Mapping.lookup (?f ′ xs) = set-as-map (DList-set xs)
unfolding set-as-map-def by blast

then have ∗:Mapping.lookup (?C2 (DList-set xs)) = set-as-map (DList-set xs)
unfolding Some by force

have
∧

t ′ . Mapping.lookup (?C2 (DList-set xs)) = Mapping.lookup (?C2 t ′)
=⇒ (?C2 (DList-set xs)) = (?C2 t ′)

by (simp add: Some)
then have ∗∗: (

∧
x. Mapping.lookup x = set-as-map (DList-set xs) =⇒ x =

(?C2 (DList-set xs)))
by (simp add: ∗ mapping-eqI )

show ?thesis
using the-equality[of λ m . Mapping.lookup m = (set-as-map (DList-set xs)),

OF ∗ ∗∗]
unfolding set-as-mapping-def by blast

qed
qed
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fun h-obs-impl-from-h :: (( ′state × ′input), ( ′output × ′state) set) mapping ⇒
( ′state × ′input, ( ′output, ′state) mapping) mapping where

h-obs-impl-from-h h ′ = Mapping.map-values
(λ - yqs . let m ′ = set-as-mapping yqs;

m ′′ = Mapping.filter (λ y qs . card qs = 1 ) m ′;
m ′′′ = Mapping.map-values (λ - qs . the-elem

qs) m ′′

in m ′′′)
h ′

fun h-obs-impl :: (( ′state × ′input), ( ′output × ′state) set) mapping ⇒ ′state ⇒
′input ⇒ ′output ⇒ ′state option where

h-obs-impl h ′ q x y = (let
tgts = snd ‘ Set.filter (λ(y ′,q ′) . y ′ = y) (case (Mapping.lookup h ′ (q,x)) of

Some ts ⇒ ts | None ⇒ {})
in if card tgts = 1

then Some (the-elem tgts)
else None)

abbreviation(input) h-obs-lookup ≡ (λ h ′ q x y . (case Mapping.lookup h ′ (q,x)
of Some m ⇒ Mapping.lookup m y | None ⇒ None))

lemma h-obs-impl-from-h-invar : h-obs-impl h ′ q x y = h-obs-lookup (h-obs-impl-from-h
h ′) q x y
(is ?A q x y = ?B q x y)

proof (cases Mapping.lookup h ′ (q,x))
case None

then have Mapping.lookup (h-obs-impl-from-h h ′) (q,x) = None
unfolding h-obs-impl-from-h.simps Mapping.lookup-map-values
by auto

then have ?B q x y = None
by auto

moreover have ?A q x y = None
unfolding h-obs-impl.simps Let-def None
by (simp add: Set.filter-def )

ultimately show ?thesis
by presburger

next
case (Some yqs)

define m ′ where m ′ = set-as-mapping yqs
define m ′′ where m ′′ = Mapping.filter (λ y qs . card qs = 1 ) m ′

define m ′′′ where m ′′′ = Mapping.map-values (λ - qs . the-elem qs) m ′′

have Mapping.lookup (h-obs-impl-from-h h ′) (q,x) = Some m ′′′

unfolding m ′′′-def m ′′-def m ′-def h-obs-impl-from-h.simps Let-def
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unfolding Mapping.lookup-map-values Some
by auto

have Mapping.lookup m ′ = set-as-map yqs
using set-as-mapping-ob m ′-def
by auto

have ∗:(snd ‘ Set.filter (λ(y ′, q ′). y ′ = y) (case Some yqs of None ⇒ {} | Some
ts ⇒ ts)) = {z. (y, z) ∈ yqs}

by force

have
∧

qs . Mapping.lookup m ′′ y = Some qs ←→ qs = {z. (y, z) ∈ yqs} ∧ card
{z. (y, z) ∈ yqs} = 1

unfolding m ′′-def Mapping.lookup-filter
unfolding ‹Mapping.lookup m ′ = set-as-map yqs› set-as-map-def
by auto

then have ∗∗:
∧

q ′ . Mapping.lookup m ′′′ y = Some q ′ ←→ card {z. (y, z) ∈
yqs} = 1 ∧ q ′ = the-elem {z. (y, z) ∈ yqs}

unfolding m ′′′-def lookup-map-values by auto
then show ?thesis

unfolding h-obs-impl.simps Let-def
unfolding ‹Mapping.lookup (h-obs-impl-from-h h ′) (q,x) = Some m ′′′›
using ∗ Some by force

qed

definition set-as-mapping-image :: ( ′a1 × ′a2 ) set ⇒ (( ′a1 × ′a2 )⇒ ( ′b1 × ′b2 ))
⇒ ( ′b1 , ′b2 set) mapping where

set-as-mapping-image s f = (THE m . Mapping.lookup m = set-as-map (image f
s))

lemma set-as-mapping-image-ob :
obtains m where set-as-mapping-image s f = m and Mapping.lookup m =

set-as-map (image f s)
proof −

obtain m where ∗:Mapping.lookup m = set-as-map (image f s)
using Mapping.lookup.abs-eq by auto

moreover have (THE x . Mapping.lookup x = set-as-map (image f s)) = m
using the-equality[of λm . Mapping.lookup m = set-as-map (image f s), OF ∗]
unfolding ∗[symmetric]
by (simp add: mapping-eqI )

ultimately show ?thesis
using that[of m] unfolding set-as-mapping-image-def by blast

qed
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lemma set-as-mapping-image-code[code] :
fixes t :: ( ′a1 ::ccompare × ′a2 :: ccompare) set-rbt
and f1 :: ( ′a1 × ′a2 ) ⇒ ( ′b1 :: ccompare × ′b2 ::ccompare)
and xs :: ( ′c1 :: ceq × ′c2 :: ceq) set-dlist
and f2 :: ( ′c1 × ′c2 ) ⇒ ( ′d1 × ′d2 )

shows set-as-mapping-image (RBT-set t) f1 = (case ID CCOMPARE(( ′a1 ×
′a2 )) of

Some - ⇒ (RBT-Set2 .fold (λ kv m1 .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )))

t
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map-image RBT-set: ccompare =
None ′′)

(λ-. set-as-mapping-image (RBT-set t) f1 ))
(is set-as-mapping-image (RBT-set t) f1 = ?C1 (RBT-set t))

and set-as-mapping-image (DList-set xs) f2 = (case ID CEQ(( ′c1 × ′c2 )) of
Some - ⇒ (DList-Set.fold (λ kv m1 .

( case f2 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None
⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )))

xs
Mapping.empty) |

None ⇒ Code.abort (STR ′′set-as-map-image DList-set: ccompare =
None ′′)

(λ-. set-as-mapping-image (DList-set xs) f2 ))
(is set-as-mapping-image (DList-set xs) f2 = ?C2 (DList-set xs))

proof −
show set-as-mapping-image (RBT-set t) f1 = ?C1 (RBT-set t)

proof (cases ID CCOMPARE(( ′a1 × ′a2 )))
case None
then show ?thesis by auto

next
case (Some a)

let ?f ′ = λ t . (RBT-Set2 .fold (λ kv m1 .
( case f1 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )))

t
Mapping.empty)

let ?f = λ xs . (fold (λ kv m1 . case f1 kv of (x,z) ⇒ (case Mapping.lookup
m1 (x) of None ⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x)
(Set.insert z zs) m1 ))

xs Mapping.empty)
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have
∧

xs :: ( ′a1 × ′a2 ) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z)
∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None)

proof −
fix xs :: ( ′a1 × ′a2 ) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some

{z . (x,z) ∈ f1 ‘ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where f1 xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

then have ∗: (?f (xs@[xz])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |

Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))
by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[xz])) = Mapping.lookup (Mapping.update
x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[xz])) = (λ x ′ . if x ′ = x then Some
{z} else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set
xs} else None) x = None

using None snoc by auto
then have ¬(∃ z . (x,z) ∈ f1 ‘ set xs)

by (metis (mono-tags, lifting) option.distinct(1 ))
then have (∃ z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])) and {z ′ . (x,z ′) ∈ f1 ‘ set

(xs@[xz])} = {z}
using ‹f1 xz = (x,z)› by fastforce+

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some
{z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None)

= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈ f1
‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′)

using ‹f1 xz = (x,z)› by fastforce
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show ?thesis using m1 m2 snoc
using ‹f1 xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[xz])) = Mapping.lookup (Mapping.update
x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[xz])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set
xs} else None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ f1 ‘ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])) by fastforce

have {z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ f1 ‘ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘

set xs} else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ f1 ‘ set xs} = zs by auto
then show ?thesis

using ‹f1 xz = (x, z)› by auto
qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some {z ′ .
(x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
. (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′) a

proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some {z ′ .

(x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None) a
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ f1 ‘ set (xs@[xz])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′)

∈ f1 ‘ set (xs@[xz]))› ‹f1 xz = (x, z)›
by (cases a = x; auto)

qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])) then Some
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{z ′ . (x ′,z ′) ∈ f1 ‘ set (xs@[xz])} else None)
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ f1 ‘ set xs) then Some {z . (x,z) ∈ f1 ‘ set xs} else None) x ′)
by auto

show ?thesis using m1 m2 snoc
using ‹f1 xz = (x, z)› by presburger

qed
qed

qed

then have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ f1 ‘ set (RBT-Set2 .keys
t)) then Some {z . (x,z) ∈ f1 ‘ set (RBT-Set2 .keys t)} else None)

unfolding fold-conv-fold-keys by metis
moreover have set (RBT-Set2 .keys t) = (RBT-set t)

using Some by (simp add: RBT-set-conv-keys)
ultimately have Mapping.lookup (?f ′ t) = (λ x . if (∃ z . (x,z) ∈ f1 ‘ (RBT-set

t)) then Some {z . (x,z) ∈ f1 ‘ (RBT-set t)} else None)
by force

then have Mapping.lookup (?f ′ t) = set-as-map (image f1 (RBT-set t))
unfolding set-as-map-def by blast
then have ∗:Mapping.lookup (?C1 (RBT-set t)) = set-as-map (image f1

(RBT-set t))
unfolding Some by force

have
∧

t ′ . Mapping.lookup (?C1 (RBT-set t)) = Mapping.lookup (?C1 t ′) =⇒
(?C1 (RBT-set t)) = (?C1 t ′)

by (simp add: Some)
then have ∗∗: (

∧
x. Mapping.lookup x = set-as-map (image f1 (RBT-set t))

=⇒ x = (?C1 (RBT-set t)))
by (simp add: ∗ mapping-eqI )

show ?thesis
using the-equality[of λ m . Mapping.lookup m = (set-as-map (image f1

(RBT-set t))), OF ∗ ∗∗]
unfolding set-as-mapping-image-def by blast

qed

show set-as-mapping-image (DList-set xs) f2 = ?C2 (DList-set xs)
proof (cases ID CEQ(( ′c1 × ′c2 )))

case None
then show ?thesis by auto

next
case (Some a)
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let ?f ′ = λ t . (DList-Set.fold (λ kv m1 .
( case f2 kv of (x,z) ⇒ (case Mapping.lookup m1 (x) of None

⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x) (Set.insert z zs)
m1 )))

t
Mapping.empty)

let ?f = λ xs . (fold (λ kv m1 . case f2 kv of (x,z) ⇒ (case Mapping.lookup
m1 (x) of None ⇒ Mapping.update (x) {z} m1 | Some zs ⇒ Mapping.update (x)
(Set.insert z zs) m1 ))

xs Mapping.empty)
have ∗:

∧
xs :: ( ′c1 × ′c2 ) list . Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z)

∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set xs} else None)
proof −

fix xs :: ( ′c1 × ′c2 ) list
show Mapping.lookup (?f xs) = (λ x . if (∃ z . (x,z) ∈ f2 ‘ set xs) then Some

{z . (x,z) ∈ f2 ‘ set xs} else None)
proof (induction xs rule: rev-induct)

case Nil
then show ?case

by (simp add: Mapping.empty.abs-eq Mapping.lookup.abs-eq)
next

case (snoc xz xs)
then obtain x z where f2 xz = (x,z)

by (metis (mono-tags, opaque-lifting) surj-pair)

then have ∗: (?f (xs@[xz])) = (case Mapping.lookup (?f xs) x of
None ⇒ Mapping.update x {z} (?f xs) |

Some zs ⇒ Mapping.update x (Set.insert z zs) (?f xs))
by auto

then show ?case proof (cases Mapping.lookup (?f xs) x)
case None

then have ∗∗: Mapping.lookup (?f (xs@[xz])) = Mapping.lookup (Mapping.update
x {z} (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[xz])) = (λ x ′ . if x ′ = x then Some
{z} else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set
xs} else None) x = None

using None snoc by auto
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then have ¬(∃ z . (x,z) ∈ f2 ‘ set xs)
by (metis (mono-tags, lifting) option.distinct(1 ))

then have (∃ z ′ . (x,z ′) ∈ f2 ‘ set (xs@[xz])) and {z ′ . (x,z ′) ∈ f2 ‘ set
(xs@[xz])} = {z}

using ‹f2 xz = (x,z)› by fastforce+
then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f2 ‘ set (xs@[xz])) then Some

{z ′ . (x ′,z ′) ∈ f2 ‘ set (xs@[xz])} else None)
= (λ x ′ . if x ′ = x then Some {z} else (λ x . if (∃ z . (x,z) ∈ f2

‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set xs} else None) x ′)
using ‹f2 xz = (x,z)› by fastforce

show ?thesis using m1 m2 snoc
using ‹f2 xz = (x, z)› by presburger

next
case (Some zs)

then have ∗∗: Mapping.lookup (?f (xs@[xz])) = Mapping.lookup (Mapping.update
x (Set.insert z zs) (?f xs)) using ∗ by auto

have scheme:
∧

m k v . Mapping.lookup (Mapping.update k v m) = (λk ′ .
if k ′ = k then Some v else Mapping.lookup m k ′)

by (metis lookup-update ′)

have m1 : Mapping.lookup (?f (xs@[xz])) = (λ x ′ . if x ′ = x then Some
(Set.insert z zs) else Mapping.lookup (?f xs) x ′)

unfolding ∗∗
unfolding scheme by force

have (λ x . if (∃ z . (x,z) ∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set
xs} else None) x = Some zs

using Some snoc by auto
then have (∃ z ′ . (x,z ′) ∈ f2 ‘ set xs)

unfolding case-prod-conv using option.distinct(2 ) by metis
then have (∃ z ′ . (x,z ′) ∈ f2 ‘ set (xs@[xz])) by fastforce

have {z ′ . (x,z ′) ∈ f2 ‘ set (xs@[xz])} = Set.insert z zs
proof −

have Some {z . (x,z) ∈ f2 ‘ set xs} = Some zs
using ‹(λ x . if (∃ z . (x,z) ∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘

set xs} else None) x = Some zs›
unfolding case-prod-conv using option.distinct(2 ) by metis

then have {z . (x,z) ∈ f2 ‘ set xs} = zs by auto
then show ?thesis

using ‹f2 xz = (x, z)› by auto
qed

have
∧

a . (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f2 ‘ set (xs@[xz])) then Some {z ′ .
(x ′,z ′) ∈ f2 ‘ set (xs@[xz])} else None) a

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃ z
. (x,z) ∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set xs} else None) x ′) a
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proof −
fix a show (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f2 ‘ set (xs@[xz])) then Some {z ′ .

(x ′,z ′) ∈ f2 ‘ set (xs@[xz])} else None) a
= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃

z . (x,z) ∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set xs} else None) x ′) a
using ‹{z ′ . (x,z ′) ∈ f2 ‘ set (xs@[xz])} = Set.insert z zs› ‹(∃ z ′ . (x,z ′)

∈ f2 ‘ set (xs@[xz]))› ‹f2 xz = (x, z)›
by (cases a = x; auto)

qed

then have m2 : (λ x ′ . if (∃ z ′ . (x ′,z ′) ∈ f2 ‘ set (xs@[xz])) then Some
{z ′ . (x ′,z ′) ∈ f2 ‘ set (xs@[xz])} else None)

= (λ x ′ . if x ′ = x then Some (Set.insert z zs) else (λ x . if (∃
z . (x,z) ∈ f2 ‘ set xs) then Some {z . (x,z) ∈ f2 ‘ set xs} else None) x ′)

by auto

show ?thesis using m1 m2 snoc
using ‹f2 xz = (x, z)› by presburger

qed
qed

qed

have ID CEQ( ′c1 × ′c2 ) 6= None
using Some by auto

then have ∗∗:
∧

x . x ∈ f2 ‘ set (list-of-dlist xs) = (x ∈ f2 ‘ (DList-set xs))
using DList-Set.member .rep-eq[of xs]
using Set-member-code(2 ) ceq-class.ID-ceq in-set-member by fastforce

have Mapping.lookup (?f ′ xs) = (λ x . if (∃ z . (x,z) ∈ f2 ‘ (DList-set xs))
then Some {z . (x,z) ∈ f2 ‘ (DList-set xs)} else None)

using ∗[of (list-of-dlist xs)]
unfolding DList-Set.fold.rep-eq ∗∗ .

then have Mapping.lookup (?f ′ xs) = set-as-map (image f2 (DList-set xs))
unfolding set-as-map-def by blast
then have ∗:Mapping.lookup (?C2 (DList-set xs)) = set-as-map (image f2

(DList-set xs))
unfolding Some by force

have
∧

t ′ . Mapping.lookup (?C2 (DList-set xs)) = Mapping.lookup (?C2 t ′)
=⇒ (?C2 (DList-set xs)) = (?C2 t ′)

by (simp add: Some)
then have ∗∗: (

∧
x. Mapping.lookup x = set-as-map (image f2 (DList-set xs))

=⇒ x = (?C2 (DList-set xs)))
by (simp add: ∗ mapping-eqI )

then show ?thesis
using ∗
using set-as-mapping-image-ob by blast
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qed
qed

45.2 Impl Datatype

The following type extends fsm-impl with fields for h and h-obs.
datatype ( ′state, ′input, ′output) fsm-with-precomputations-impl =

FSMWPI (initial-wpi : ′state)
(states-wpi : ′state set)
(inputs-wpi : ′input set)
(outputs-wpi : ′output set)
(transitions-wpi : ( ′state × ′input × ′output × ′state) set)
(h-wpi : (( ′state × ′input), ( ′output × ′state) set) mapping)
(h-obs-wpi: ( ′state × ′input, ( ′output, ′state) mapping) mapping)

fun fsm-with-precomputations-impl-from-list :: ′a ⇒ ( ′a × ′b × ′c × ′a) list ⇒ ( ′a,
′b, ′c) fsm-with-precomputations-impl where

fsm-with-precomputations-impl-from-list q [] = FSMWPI q {q} {} {} {} Map-
ping.empty Mapping.empty |

fsm-with-precomputations-impl-from-list q (t#ts) = (let ts ′ = set (t#ts)
in FSMWPI (t-source t)

((image t-source ts ′) ∪ (image t-target ts ′))
(image t-input ts ′)
(image t-output ts ′)
(ts ′)

(list-as-mapping (map (λ(q,x,y,q ′) . ((q,x),y,q ′))
(t#ts)))

(h-obs-impl-from-h (list-as-mapping (map (λ(q,x,y,q ′)
. ((q,x),y,q ′)) (t#ts)))))

fun fsm-with-precomputations-impl-from-list ′ :: ′a ⇒ ( ′a × ′b × ′c × ′a) list ⇒
( ′a, ′b, ′c) fsm-with-precomputations-impl where

fsm-with-precomputations-impl-from-list ′ q [] = FSMWPI q {q} {} {} {} Map-
ping.empty Mapping.empty |

fsm-with-precomputations-impl-from-list ′ q (t#ts) = (let tsr = (remdups (t#ts));
h ′ = (list-as-mapping (map

(λ(q,x,y,q ′) . ((q,x),y,q ′)) tsr))
in FSMWPI (t-source t)

(set (remdups ((map t-source tsr) @ (map t-target
tsr))))

(set (remdups (map t-input tsr)))
(set (remdups (map t-output tsr)))
(set tsr)
h ′

(h-obs-impl-from-h h ′))

lemma fsm-impl-from-list-code[code] :
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fsm-with-precomputations-impl-from-list q ts = fsm-with-precomputations-impl-from-list ′

q ts
proof (cases ts)

case Nil
then show ?thesis by auto

next
case (Cons t ts)
have ∗∗: set (t#ts) = set (remdups (t#ts))

by auto
have ∗: set (map (λ(q,x,y,q ′) . ((q,x),y,q ′)) (t#ts)) = set (map (λ(q,x,y,q ′) .

((q,x),y,q ′)) (remdups (t#ts)))
by (metis remdups-map-remdups set-remdups)

have Mapping.lookup (list-as-mapping (map (λ(q,x,y,q ′) . ((q,x),y,q ′)) (t#ts)))
= Mapping.lookup (list-as-mapping (map (λ(q,x,y,q ′) . ((q,x),y,q ′))

(remdups (t#ts))))
unfolding list-as-mapping-lookup ∗ by simp

then have ∗∗∗: list-as-mapping (map (λ(q,x,y,q ′) . ((q,x),y,q ′)) (t#ts)) = list-as-mapping
(map (λ(q,x,y,q ′) . ((q,x),y,q ′)) (remdups (t#ts)))

by (simp add: mapping-eqI )

have ∗∗∗∗: (set (map t-source (remdups (t # ts)) @ map t-target (remdups (t #
ts)))) = (t-source ‘ set (t # ts) ∪ t-target ‘ set (t # ts))

by auto

have ∗∗∗∗∗:
∧

f xs . set (map f (remdups xs)) = f ‘ set xs
by auto

show ?thesis
unfolding Cons fsm-with-precomputations-impl-from-list ′.simps fsm-with-precomputations-impl-from-list.simps

Let-def
unfolding ∗∗ ∗∗∗
unfolding set-remdups ∗∗∗∗ ∗∗∗∗∗
unfolding remdups-map-remdups
by presburger

qed

45.3 Refined Datatype

Well-formedness now also encompasses the new fields for h and h-obs.
fun well-formed-fsm-with-precomputations :: ( ′state, ′input, ′output) fsm-with-precomputations-impl
⇒ bool where

well-formed-fsm-with-precomputations M = (initial-wpi M ∈ states-wpi M
∧ finite (states-wpi M )
∧ finite (inputs-wpi M )
∧ finite (outputs-wpi M )
∧ finite (transitions-wpi M )
∧ (∀ t ∈ transitions-wpi M . t-source t ∈ states-wpi M ∧

t-input t ∈ inputs-wpi M ∧
t-target t ∈ states-wpi M ∧
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t-output t ∈ outputs-wpi M )
∧ (∀ q x . (case (Mapping.lookup (h-wpi M ) (q,x)) of Some ts ⇒ ts | None

⇒ {}) = { (y,q ′) . (q,x,y,q ′) ∈ transitions-wpi M })
∧ (∀ q x y . h-obs-impl (h-wpi M ) q x y = h-obs-lookup (h-obs-wpi M ) q x y))

lemma well-formed-h-set-as-mapping :
assumes h-wpi M = set-as-mapping-image (transitions-wpi M ) (λ(q,x,y,q ′) .

((q,x),y,q ′))
shows (case (Mapping.lookup (h-wpi M ) (q,x)) of Some ts ⇒ ts | None ⇒ {})

= { (y,q ′) . (q,x,y,q ′) ∈ transitions-wpi M }
(is ?A q x = ?B q x)
proof −
have ∗:Mapping.lookup (h-wpi M ) = (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y,q ′))

(transitions-wpi M )))
unfolding assms using set-as-mapping-image-ob
by auto

have ∗∗: (case Mapping.lookup (h-wpi M ) (q, x) of None ⇒ {} | Some ts ⇒ ts)
= {a. case a of (y, q ′) ⇒ (q, x, y, q ′) ∈ (transitions-wpi M )}

unfolding ∗
unfolding set-as-map-def by force

show ?thesis
unfolding ∗∗ by force

qed

lemma well-formed-h-obs-impl-from-h :
assumes h-obs-wpi M = h-obs-impl-from-h (h-wpi M )
shows h-obs-impl (h-wpi M ) q x y = (h-obs-lookup (h-obs-wpi M ) q x y)
unfolding assms h-obs-impl-from-h-invar by presburger

typedef ( ′state, ′input, ′output) fsm-with-precomputations =
{M :: ( ′state, ′input, ′output) fsm-with-precomputations-impl . well-formed-fsm-with-precomputations

M}
morphisms fsm-with-precomputations-impl-of-fsm-with-precomputations Abs-fsm-with-precomputations

proof −
obtain q :: ′state where True by blast
define M :: ( ′state, ′input, ′output) fsm-with-precomputations-impl where

M : M = FSMWPI q {q} {} {} {} Mapping.empty Mapping.empty

have (
∧

q x . (case (Mapping.lookup (h-wpi M ) (q,x)) of Some ts ⇒ ts | None
⇒ {}) = { (y,q ′) . (q,x,y,q ′) ∈ transitions-wpi M })

proof −
fix q x
have { (y,q ′) . (q,x,y,q ′) ∈ transitions-wpi M } = {}

unfolding M by auto
moreover have (case (Mapping.lookup (h-wpi M ) (q,x)) of Some ts ⇒ ts |

None ⇒ {}) = {}
unfolding M by (metis fsm-with-precomputations-impl.sel(6 ) lookup-default-def

1436



lookup-default-empty)
ultimately show (case (Mapping.lookup (h-wpi M ) (q,x)) of Some ts ⇒ ts |

None ⇒ {}) = { (y,q ′) . (q,x,y,q ′) ∈ transitions-wpi M }
by blast

qed
moreover have (∀ q x y . h-obs-impl (h-wpi M ) q x y = (h-obs-lookup (h-obs-wpi

M ) q x y))
unfolding h-obs-impl.simps Let-def
unfolding calculation M
by (simp add: Mapping.empty-def Mapping.lookup.abs-eq Set.filter-def )

ultimately have well-formed-fsm-with-precomputations M
unfolding M by auto

then show ?thesis
by blast

qed

setup-lifting type-definition-fsm-with-precomputations

lift-definition initial-wp :: ( ′state, ′input, ′output) fsm-with-precomputations ⇒
′state is FSM-Code-Datatype.initial-wpi done
lift-definition states-wp :: ( ′state, ′input, ′output) fsm-with-precomputations ⇒
′state set is FSM-Code-Datatype.states-wpi done
lift-definition inputs-wp :: ( ′state, ′input, ′output) fsm-with-precomputations ⇒
′input set is FSM-Code-Datatype.inputs-wpi done
lift-definition outputs-wp :: ( ′state, ′input, ′output) fsm-with-precomputations ⇒
′output set is FSM-Code-Datatype.outputs-wpi done
lift-definition transitions-wp ::
( ′state, ′input, ′output) fsm-with-precomputations ⇒ ( ′state × ′input × ′output
× ′state) set

is FSM-Code-Datatype.transitions-wpi done
lift-definition h-wp ::
( ′state, ′input, ′output) fsm-with-precomputations ⇒ (( ′state × ′input), ( ′output
× ′state) set) mapping

is FSM-Code-Datatype.h-wpi done
lift-definition h-obs-wp ::
( ′state, ′input, ′output) fsm-with-precomputations ⇒ (( ′state × ′input), ( ′output,

′state) mapping) mapping
is FSM-Code-Datatype.h-obs-wpi done

lemma fsm-with-precomputations-initial: initial-wp M ∈ states-wp M
by (transfer ; auto)

lemma fsm-with-precomputations-states-finite: finite (states-wp M )
by (transfer ; auto)

lemma fsm-with-precomputations-inputs-finite: finite (inputs-wp M )
by (transfer ; auto)

lemma fsm-with-precomputations-outputs-finite: finite (outputs-wp M )
by (transfer ; auto)
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lemma fsm-with-precomputations-transitions-finite: finite (transitions-wp M )
by (transfer ; auto)

lemma fsm-with-precomputations-transition-props: t ∈ transitions-wp M =⇒ t-source
t ∈ states-wp M ∧

t-input t ∈ inputs-wp M ∧
t-target t ∈ states-wp M ∧
t-output t ∈ outputs-wp M

by (transfer ; auto)
lemma fsm-with-precomputations-h-prop: (case (Mapping.lookup (h-wp M ) (q,x))
of Some ts ⇒ ts | None ⇒ {}) = { (y,q ′) . (q,x,y,q ′) ∈ transitions-wp M }

by (transfer ; auto)

lemma fsm-with-precomputations-h-obs-prop: (h-obs-lookup (h-obs-wp M ) q x y)
= h-obs-impl (h-wp M ) q x y
proof −
define M ′ where M ′= fsm-with-precomputations-impl-of-fsm-with-precomputations

M
then have well-formed-fsm-with-precomputations M ′

by (transfer ;blast)
then have ∗:h-obs-impl (fsm-with-precomputations-impl.h-wpi M ′) q x y =

(h-obs-lookup (h-obs-wpi M ′) q x y)
unfolding well-formed-fsm-with-precomputations.simps by blast

have ∗∗: (h-obs-lookup (h-obs-wpi M ′) q x y) = h-obs-impl (fsm-with-precomputations-impl.h-wpi
M ′) q x y

unfolding ∗ by auto
have ∗∗∗: h-wp M = (fsm-with-precomputations-impl.h-wpi M ′)

unfolding M ′-def apply transfer by presburger
have ∗∗∗∗: h-obs-wp M = (fsm-with-precomputations-impl.h-obs-wpi M ′)

unfolding M ′-def apply transfer by presburger

show ?thesis
using ∗∗ ∗∗∗ ∗∗∗∗ by presburger

qed

lemma map-values-empty : Mapping.map-values f Mapping.empty = Mapping.empty
by (metis Mapping.keys-empty empty-iff keys-map-values mapping-eqI ′)

lift-definition fsm-with-precomputations-from-list :: ′a ⇒ ( ′a × ′b × ′c × ′a) list
⇒ ( ′a, ′b, ′c) fsm-with-precomputations

is fsm-with-precomputations-impl-from-list
proof −

fix q :: ′a
fix ts :: ( ′a × ′b × ′c × ′a) list

define M where M = fsm-with-precomputations-impl-from-list q ts

have base-props: (initial-wpi M ∈ states-wpi M
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∧ finite (states-wpi M )
∧ finite (inputs-wpi M )
∧ finite (outputs-wpi M )
∧ finite (transitions-wpi M ))

proof (cases ts)
case Nil
show ?thesis

unfolding M-def Nil fsm-with-precomputations-impl-from-list.simps by auto
next

case (Cons t ts ′)
show ?thesis

unfolding M-def Cons fsm-with-precomputations-impl-from-list.simps Let-def
by force

qed

have transition-prop: (∀ t ∈ transitions-wpi M . t-source t ∈ states-wpi M ∧
t-input t ∈ inputs-wpi M ∧
t-target t ∈ states-wpi M ∧
t-output t ∈ outputs-wpi M )

proof (cases ts)
case Nil
show ?thesis

unfolding M-def Nil fsm-with-precomputations-impl-from-list.simps by auto
next

case (Cons t ts ′)
show ?thesis

unfolding M-def Cons fsm-with-precomputations-impl-from-list.simps Let-def
by force

qed

have h-prop:
∧

qa x .
(case Mapping.lookup (h-wpi M ) (qa, x) of None ⇒ {} | Some ts ⇒ ts) =
{a. case a of (y, q ′) ⇒ (qa, x, y, q ′) ∈ transitions-wpi M}

(is
∧

qa x . ?P qa x)
proof −

fix qa x
show ?P qa x unfolding M-def
proof (induction ts)

case Nil
have (case Mapping.lookup (h-wpi (fsm-with-precomputations-impl-from-list q

[])) (qa, x) of None ⇒ {} | Some ts ⇒ ts) = {}
by simp
moreover have transitions-wpi (fsm-with-precomputations-impl-from-list q

[]) = {}
by auto

ultimately show ?case
by blast
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next
case (Cons t ts)

have ∗: (h-wpi (fsm-with-precomputations-impl-from-list q (t#ts))) = (list-as-mapping
(map (λ(q,x,y,q ′) . ((q,x),y,q ′)) (t#ts)))

unfolding fsm-with-precomputations-impl-from-list.simps Let-def by simp
show ?case proof (cases ∃ z. ((qa, x), z) ∈ set (map (λ(q, x, y, q ′). ((q, x),

y, q ′)) (t # ts)))
case True

then have (case Mapping.lookup (h-wpi (fsm-with-precomputations-impl-from-list
q (t#ts))) (qa, x) of None ⇒ {} | Some ts ⇒ ts) = {z. ((qa, x), z) ∈ set (map
(λ(q, x, y, q ′). ((q, x), y, q ′)) (t # ts))}

unfolding ∗ list-as-mapping-lookup by auto
also have . . . = {a. case a of (y, q ′) ⇒ (qa, x, y, q ′) ∈ transitions-wpi

(fsm-with-precomputations-impl-from-list q (t#ts))}
unfolding fsm-with-precomputations-impl-from-list.simps Let-def
by (induction ts; cases t; auto)

finally show ?thesis .
next

case False
then have (case Mapping.lookup (h-wpi (fsm-with-precomputations-impl-from-list

q (t#ts))) (qa, x) of None ⇒ {} | Some ts ⇒ ts) = {}
unfolding ∗ list-as-mapping-lookup by auto
also have . . . = {a. case a of (y, q ′) ⇒ (qa, x, y, q ′) ∈ transitions-wpi

(fsm-with-precomputations-impl-from-list q (t#ts))}
using False unfolding fsm-with-precomputations-impl-from-list.simps

Let-def
by (induction ts; cases t; auto)

finally show ?thesis .
qed

qed
qed

have h-obs-prop: (∀ q x y . h-obs-impl (h-wpi M ) q x y = (h-obs-lookup (h-obs-wpi
M ) q x y))

proof −
have ∗∗∗:h-obs-wpi M = (h-obs-impl-from-h (h-wpi M ))
proof (cases ts)

case Nil
then have ∗:h-wpi M = Mapping.empty and ∗∗:h-obs-wpi M = Map-

ping.empty
unfolding M-def by auto

show ?thesis
unfolding ∗ ∗∗ h-obs-impl-from-h.simps map-values-empty by simp

next
case (Cons t ts ′)
show ?thesis
unfolding Cons M-def fsm-with-precomputations-impl-from-list.simps Let-def

by simp
qed
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then show ?thesis
unfolding h-obs-impl-from-h-invar
by simp

qed

show well-formed-fsm-with-precomputations (fsm-with-precomputations-impl-from-list
q ts)

using base-props transition-prop h-prop h-obs-prop
unfolding well-formed-fsm-with-precomputations.simps M-def [symmetric]
by blast

qed

lemma fsm-with-precomputations-from-list-Nil-simps :
initial-wp (fsm-with-precomputations-from-list q []) = q
states-wp (fsm-with-precomputations-from-list q []) = {q}
inputs-wp (fsm-with-precomputations-from-list q []) = {}
outputs-wp (fsm-with-precomputations-from-list q []) = {}
transitions-wp (fsm-with-precomputations-from-list q []) = {}
by (transfer ; auto)+

lemma fsm-with-precomputations-from-list-Cons-simps :
initial-wp (fsm-with-precomputations-from-list q (t#ts)) = (t-source t)
states-wp (fsm-with-precomputations-from-list q (t#ts)) = ((image t-source (set

(t#ts))) ∪ (image t-target (set (t#ts))))
inputs-wp (fsm-with-precomputations-from-list q (t#ts)) = (image t-input (set

(t#ts)))
outputs-wp (fsm-with-precomputations-from-list q (t#ts)) = (image t-output (set

(t#ts)))
transitions-wp (fsm-with-precomputations-from-list q (t#ts)) = (set (t#ts))
by (transfer ; auto)+

definition Fsm-with-precomputations :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
⇒ ( ′a, ′b, ′c) fsm-with-precomputations where
Fsm-with-precomputations M = Abs-fsm-with-precomputations (if well-formed-fsm-with-precomputations

M then M else FSMWPI undefined {undefined} {} {} {} Mapping.empty Map-
ping.empty)

lemma fsm-with-precomputations-code-abstype [code abstype] :
Fsm-with-precomputations (fsm-with-precomputations-impl-of-fsm-with-precomputations

M ) = M
proof −
have well-formed-fsm-with-precomputations (fsm-with-precomputations-impl-of-fsm-with-precomputations

M )
using fsm-with-precomputations-impl-of-fsm-with-precomputations[of M ] by

blast
then show ?thesis

unfolding Fsm-with-precomputations-def
using fsm-with-precomputations-impl-of-fsm-with-precomputations-inverse[of M ]

by presburger
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qed

lemma fsm-with-precomputations-impl-of-fsm-with-precomputations-code [code] :
fsm-with-precomputations-impl-of-fsm-with-precomputations (fsm-with-precomputations-from-list

q ts) = fsm-with-precomputations-impl-from-list q ts
by (fact fsm-with-precomputations-from-list.rep-eq)

definition FSMWP :: ( ′state, ′input, ′output) fsm-with-precomputations ⇒ ( ′state,
′input, ′output) fsm-impl where

FSMWP M = FSMI (initial-wp M )
(states-wp M )
(inputs-wp M )
(outputs-wp M )
(transitions-wp M )

code-datatype FSMWP

45.4 Lifting
declare [[code drop: fsm-impl-from-list]]
lemma fsm-impl-from-list[code] :

fsm-impl-from-list q ts = FSMWP (fsm-with-precomputations-from-list q ts)
proof (induction ts)

case Nil
show ?case unfolding fsm-impl-from-list.simps FSMWP-def fsm-with-precomputations-from-list-Nil-simps

by simp
next

case (Cons t ts)
show ?case unfolding fsm-impl-from-list.simps FSMWP-def fsm-with-precomputations-from-list-Cons-simps

Let-def by simp
qed

declare [[code drop: fsm-impl.initial fsm-impl.states fsm-impl.inputs fsm-impl.outputs
fsm-impl.transitions]]
lemma fsm-impl-FSMWP-initial[code,simp] : fsm-impl.initial (FSMWP M ) = ini-
tial-wp M

by (simp add: FSMWP-def )
lemma fsm-impl-FSMWP-states[code,simp] : fsm-impl.states (FSMWP M ) = states-wp
M

by (simp add: FSMWP-def )
lemma fsm-impl-FSMWP-inputs[code,simp] : fsm-impl.inputs (FSMWP M ) = in-
puts-wp M

by (simp add: FSMWP-def )
lemma fsm-impl-FSMWP-outputs[code,simp] : fsm-impl.outputs (FSMWP M ) =
outputs-wp M

by (simp add: FSMWP-def )
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lemma fsm-impl-FSMWP-transitions[code,simp] : fsm-impl.transitions (FSMWP
M ) = transitions-wp M

by (simp add: FSMWP-def )

lemma well-formed-FSMWP: well-formed-fsm (FSMWP M )
proof −
have ∗: well-formed-fsm-with-precomputations (fsm-with-precomputations-impl-of-fsm-with-precomputations

M )
using fsm-with-precomputations-impl-of-fsm-with-precomputations by blast

then have (initial-wp M ∈ states-wp M
∧ finite (states-wp M )
∧ finite (inputs-wp M )
∧ finite (outputs-wp M )
∧ finite (transitions-wp M )
∧ (∀ t ∈ transitions-wp M . t-source t ∈ states-wp M ∧

t-input t ∈ inputs-wp M ∧
t-target t ∈ states-wp M ∧
t-output t ∈ outputs-wp M ))

unfolding well-formed-fsm-with-precomputations.simps
by (simp add: FSM-Code-Datatype.initial-wp.rep-eq FSM-Code-Datatype.inputs-wp.rep-eq

FSM-Code-Datatype.outputs-wp.rep-eq FSM-Code-Datatype.states-wp.rep-eq FSM-Code-Datatype.transitions-wp.rep-eq)
then show ?thesis

unfolding FSMWP-def by simp
qed

declare [[code drop: FSM-Impl.h ]]
lemma h-with-precomputations-code [code] : FSM-Impl.h ((FSMWP M )) = (λ
(q,x) . case Mapping.lookup (h-wp M ) (q,x) of Some yqs ⇒ yqs | None ⇒ {})
proof −

have ∗:
∧

q x . (case (Mapping.lookup (h-wp M ) (q,x)) of Some ts ⇒ ts | None
⇒ {}) = { (y,q ′) . (q,x,y,q ′) ∈ transitions-wp M }

by (transfer ; auto)

have ∗∗: fsm-impl.transitions ((FSMWP M )) = transitions-wp M
by (simp add: FSMWP-def )

have
∧

q x . FSM-Impl.h ((FSMWP M )) (q,x) = (λ (q,x) . case Mapping.lookup
(h-wp M ) (q,x) of Some yqs ⇒ yqs | None ⇒ {}) (q,x)

unfolding ∗ FSM-Impl.h.simps case-prod-unfold fst-conv snd-conv ∗∗ by blast
then show ?thesis

by blast
qed

declare [[code drop: FSM-Impl.h-obs ]]
lemma h-obs-with-precomputations-code [code] : FSM-Impl.h-obs ((FSMWP M ))
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q x y = (h-obs-lookup (h-obs-wp M ) q x y)
unfolding fsm-with-precomputations-h-obs-prop
unfolding FSM-Impl.h-obs.simps
unfolding h-obs-impl.simps
unfolding Let-def
unfolding FSM-Impl.h.simps[of FSMWP M q x]
unfolding fsm-with-precomputations-h-prop[of M q x]
by auto

fun filter-states-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ ( ′a ⇒ bool) ⇒
( ′a, ′b, ′c) fsm-with-precomputations-impl where

filter-states-impl M P = (if P (initial-wpi M )
then (let

h ′ = Mapping.filter (λ (q,x) yqs . P q) (h-wpi M );
h ′′ = Mapping.map-values (λ - yqs . Set.filter (λ (y,q ′)

. P q ′) yqs) h ′

in
FSMWPI (initial-wpi M )
(Set.filter P (states-wpi M ))
(inputs-wpi M )
(outputs-wpi M )

(Set.filter (λ t . P (t-source t) ∧ P (t-target t))
(transitions-wpi M ))

h ′′

(h-obs-impl-from-h h ′′))
else M )

lift-definition filter-states :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒ ( ′a ⇒ bool) ⇒
( ′a, ′b, ′c) fsm-with-precomputations

is filter-states-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix P :: ( ′a ⇒ bool)

let ?M = (filter-states-impl M P)

show well-formed-fsm-with-precomputations M =⇒ well-formed-fsm-with-precomputations
?M

proof −
assume assm: well-formed-fsm-with-precomputations M
show well-formed-fsm-with-precomputations ?M
proof (cases P (initial-wpi M ))

case False
then have ?M = M by auto
then show ?thesis using assm by presburger

next
case True
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have initial-wpi ?M = initial-wpi M
unfolding filter-states-impl.simps Let-def by auto

have states-wpi ?M = Set.filter P (states-wpi M )
using True unfolding filter-states-impl.simps Let-def by auto

have inputs-wpi ?M = inputs-wpi M
unfolding filter-states-impl.simps Let-def by auto

have outputs-wpi ?M = outputs-wpi M
unfolding filter-states-impl.simps Let-def by auto

have transitions-wpi ?M = (Set.filter (λ t . P (t-source t) ∧ P (t-target t))
(transitions-wpi M ))

using True unfolding filter-states-impl.simps Let-def by auto

define h ′ where h ′ = Mapping.filter (λ (q,x) yqs . P q) (h-wpi M )
define h ′′ where h ′′ = Mapping.map-values (λ - yqs . Set.filter (λ (y,q ′) . P

q ′) yqs) h ′

have h-wpi ?M = h ′′

unfolding h ′′-def h ′-def using True unfolding filter-states-impl.simps
Let-def by auto

then have h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )
using True unfolding filter-states-impl.simps Let-def by auto

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))

using assm True unfolding filter-states-impl.simps Let-def by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
∧

t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

using assm True unfolding filter-states-impl.simps Let-def by auto

have h-prop:
∧

qa x .
(case Mapping.lookup (h-wpi ?M ) (qa, x) of None ⇒ {} | Some ts ⇒ ts)

=
{a. case a of (y, q ′) ⇒ (qa, x, y, q ′) ∈ transitions-wpi ?M}

(is
∧

qa x . ?A qa x = ?B qa x)
proof −

fix q x
show ?A q x = ?B q x
proof (cases P q)

case False
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then have Mapping.lookup h ′ (q,x) = None
unfolding h ′-def
unfolding Mapping.lookup-filter case-prod-conv
by (metis (mono-tags) not-None-eq option.simps(4 ) option.simps(5 ))

then have ?A q x = {}
unfolding ‹h-wpi ?M = h ′′› h ′′-def
unfolding Mapping.lookup-map-values
by simp

moreover have ?B q x = {}
unfolding ‹transitions-wpi ?M = (Set.filter (λ t . P (t-source t) ∧ P

(t-target t)) (transitions-wpi M ))›
using False by auto

ultimately show ?thesis by blast
next

case True
then have Mapping.lookup h ′ (q,x) = Mapping.lookup (h-wpi M ) (q,x)

unfolding h ′-def
unfolding Mapping.lookup-filter case-prod-conv
by (cases Mapping.lookup (h-wpi M ) (q, x); auto)

have ?A q x = Set.filter (λ (y,q ′) . P q ′) (case Mapping.lookup (h-wpi M )
(q, x) of None ⇒ {} | Some ts ⇒ ts)

unfolding ‹h-wpi ?M = h ′′› h ′′-def
unfolding Mapping.lookup-map-values

unfolding ‹Mapping.lookup h ′ (q,x) = Mapping.lookup (h-wpi M ) (q,x)›
by (cases Mapping.lookup (h-wpi M ) (q, x); auto)

also have . . . = ?B q x
proof −

have ∗:(case Mapping.lookup (h-wpi M ) (q, x) of None ⇒ {} | Some ts
⇒ ts) = {a. case a of (y, q ′) ⇒ (q, x, y, q ′) ∈ transitions-wpi M}

using assm by auto
show ?thesis

unfolding ∗
unfolding ‹transitions-wpi ?M = (Set.filter (λ t . P (t-source t) ∧ P

(t-target t)) (transitions-wpi M ))›
using True
by auto

qed
finally show ?thesis .

qed
qed

show ?thesis
using base-props transition-prop h-prop well-formed-h-obs-impl-from-h[OF

‹h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )›]
unfolding well-formed-fsm-with-precomputations.simps by blast

qed
qed

qed
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lemma filter-states-simps:
initial-wp (filter-states M P) = initial-wp M
states-wp (filter-states M P) = (if P (initial-wp M ) then Set.filter P (states-wp

M ) else states-wp M )
inputs-wp (filter-states M P) = inputs-wp M
outputs-wp (filter-states M P) = outputs-wp M
transitions-wp (filter-states M P) = (if P (initial-wp M ) then (Set.filter (λ t . P

(t-source t) ∧ P (t-target t)) (transitions-wp M )) else transitions-wp M )
by (transfer ; simp add: Let-def )+

declare [[code drop: FSM-Impl.filter-states ]]
lemma filter-states-with-precomputations-code [code] : FSM-Impl.filter-states ((FSMWP
M )) P = FSMWP (filter-states M P)

unfolding FSM-Impl.filter-states.simps Let-def
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs

fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
using filter-states-simps[of M P]
by (simp add: FSMWP-def )

fun create-unconnected-fsm-from-fsets-impl :: ′a ⇒ ′a fset ⇒ ′b fset ⇒ ′c fset ⇒
( ′a, ′b, ′c) fsm-with-precomputations-impl where

create-unconnected-fsm-from-fsets-impl q ns ins outs = FSMWPI q (insert q (fset
ns)) (fset ins) (fset outs) {} Mapping.empty Mapping.empty

lift-definition create-unconnected-fsm-from-fsets :: ′a ⇒ ′a fset ⇒ ′b fset ⇒ ′c
fset ⇒ ( ′a, ′b, ′c) fsm-with-precomputations

is create-unconnected-fsm-from-fsets-impl
proof −

fix q :: ′a
fix ns
fix ins :: ′b fset
fix outs :: ′c fset

let ?M = (create-unconnected-fsm-from-fsets-impl q ns ins outs)

show well-formed-fsm-with-precomputations (create-unconnected-fsm-from-fsets-impl
q ns ins outs)

proof −

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))
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by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
∧

t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

by auto

have ∗: (h-wpi ?M ) = Mapping.empty
by auto

have ∗∗: transitions-wpi ?M = {}
by auto

have ∗∗∗: (h-obs-wpi ?M ) = Mapping.empty
by auto

have h-prop:
∧

qa x .
(case Mapping.lookup (h-wpi ?M ) (qa, x) of None ⇒ {} | Some ts ⇒ ts) =
{a. case a of (y, q ′) ⇒ (qa, x, y, q ′) ∈ transitions-wpi ?M}

unfolding ∗ ∗∗ Mapping.lookup-empty by auto

have h-obs-prop:
∧

q x y . h-obs-impl (h-wpi ?M ) q x y = h-obs-lookup
(h-obs-wpi ?M ) q x y

unfolding h-obs-impl.simps Let-def
unfolding ∗ ∗∗∗ Mapping.lookup-empty
by (simp add: Set.filter-def )

show ?thesis
using base-props transition-prop h-prop h-obs-prop
unfolding well-formed-fsm-with-precomputations.simps by blast

qed
qed

lemma fsm-with-precomputations-impl-of-code [code] :
fsm-with-precomputations-impl-of-fsm-with-precomputations (create-unconnected-fsm-from-fsets

q ns ins outs) = create-unconnected-fsm-from-fsets-impl q ns ins outs
by (fact create-unconnected-fsm-from-fsets.rep-eq)

lemma create-unconnected-fsm-from-fsets-simps:
initial-wp (create-unconnected-fsm-from-fsets q ns ins outs) = q
states-wp (create-unconnected-fsm-from-fsets q ns ins outs) = (insert q (fset ns))
inputs-wp (create-unconnected-fsm-from-fsets q ns ins outs) = fset ins
outputs-wp (create-unconnected-fsm-from-fsets q ns ins outs) = fset outs
transitions-wp (create-unconnected-fsm-from-fsets q ns ins outs) = {}
by (transfer ; simp add: Let-def )+

declare [[code drop: FSM-Impl.create-unconnected-fsm-from-fsets ]]
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lemma create-unconnected-fsm-with-precomputations-code [code] : FSM-Impl.create-unconnected-fsm-from-fsets
q ns ins outs = FSMWP (create-unconnected-fsm-from-fsets q ns ins outs)

unfolding FSM-Impl.create-unconnected-fsm-from-fsets.simps
unfolding FSMWP-def
unfolding create-unconnected-fsm-from-fsets-simps
by presburger

fun add-transitions-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ ( ′a × ′b ×
′c × ′a) set ⇒ ( ′a, ′b, ′c) fsm-with-precomputations-impl where

add-transitions-impl M ts = (if (∀ t ∈ ts . t-source t ∈ states-wpi M ∧ t-input t
∈ inputs-wpi M ∧ t-output t ∈ outputs-wpi M ∧ t-target t ∈ states-wpi M )

then (let ts ′ = ((transitions-wpi M ) ∪ ts);
h ′ = set-as-mapping-image ts ′ (λ(q,x,y,q ′) . ((q,x),y,q ′))

in FSMWPI
(initial-wpi M )
(states-wpi M )
(inputs-wpi M )
(outputs-wpi M )
ts ′

h ′

(h-obs-impl-from-h h ′))
else M )

lift-definition add-transitions :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒ ( ′a × ′b ×
′c × ′a) set ⇒ ( ′a, ′b, ′c) fsm-with-precomputations

is add-transitions-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix ts

let ?M = (add-transitions-impl M ts)

show well-formed-fsm-with-precomputations M =⇒ well-formed-fsm-with-precomputations
?M

proof −
assume assm: well-formed-fsm-with-precomputations M

show well-formed-fsm-with-precomputations ?M
proof (cases (∀ t ∈ ts . t-source t ∈ states-wpi M ∧ t-input t ∈ inputs-wpi M

∧ t-output t ∈ outputs-wpi M ∧ t-target t ∈ states-wpi M ))
case False
then have ?M = M by auto
then show ?thesis using assm by presburger

next
case True
then have ts ⊆ states-wpi M × inputs-wpi M × outputs-wpi M × states-wpi
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M
by fastforce

moreover have finite (states-wpi M × inputs-wpi M × outputs-wpi M ×
states-wpi M )

using assm unfolding well-formed-fsm-with-precomputations.simps by blast
ultimately have finite ts

using rev-finite-subset by auto

have initial-wpi ?M = initial-wpi M
unfolding add-transitions-impl.simps Let-def by auto

have states-wpi ?M = states-wpi M
unfolding add-transitions-impl.simps Let-def by auto

have inputs-wpi ?M = inputs-wpi M
unfolding add-transitions-impl.simps Let-def by auto

have outputs-wpi ?M = outputs-wpi M
unfolding add-transitions-impl.simps Let-def by auto

have transitions-wpi ?M = (transitions-wpi M ) ∪ ts
using True unfolding add-transitions-impl.simps Let-def by auto

define ts ′ where ts ′ = ((transitions-wpi M ) ∪ ts)
define h ′ where h ′ = set-as-mapping-image ts ′ (λ(q,x,y,q ′) . ((q,x),y,q ′))

have h-wpi ?M = set-as-mapping-image (transitions-wpi ?M ) (λ(q,x,y,q ′) .
((q,x),y,q ′))

unfolding h ′-def ts ′-def using True unfolding add-transitions-impl.simps
Let-def by auto

have h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )
unfolding h ′-def ts ′-def using True unfolding add-transitions-impl.simps

Let-def by auto

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))

using assm True ‹finite ts› unfolding add-transitions-impl.simps Let-def
by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
∧

t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

using assm True unfolding add-transitions-impl.simps Let-def by auto

have h-prop:
∧

qa x .
(case Mapping.lookup (h-wpi ?M ) (qa, x) of None ⇒ {} | Some ts ⇒ ts)
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=
{a. case a of (y, q ′) ⇒ (qa, x, y, q ′) ∈ transitions-wpi ?M}

(is
∧

qa x . ?A qa x = ?B qa x)
proof −

fix q x
show ?A q x = ?B q x
proof −

have ∗:Mapping.lookup (h-wpi ?M ) = (set-as-map (image (λ(q,x,y,q ′) .
((q,x),y,q ′)) (transitions-wpi ?M )))

unfolding ‹h-wpi ?M = set-as-mapping-image (transitions-wpi ?M )
(λ(q,x,y,q ′) . ((q,x),y,q ′))› using set-as-mapping-image-ob

by auto

have ∗∗:
∧

z . ((q, x), z) ∈ (λ(q, x, y, q ′). ((q, x), y, q ′)) ‘ (transitions-wpi
?M ) = ((q,x,z) ∈ (transitions-wpi ?M ))

by force

show ?thesis
unfolding ∗ set-as-map-def ∗∗ by force

qed
qed

show ?thesis
using base-props transition-prop h-prop well-formed-h-obs-impl-from-h[OF

‹h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )›]
unfolding well-formed-fsm-with-precomputations.simps by blast

qed
qed

qed

lemma add-transitions-simps:
initial-wp (add-transitions M ts) = initial-wp M
states-wp (add-transitions M ts) = states-wp M
inputs-wp (add-transitions M ts) = inputs-wp M
outputs-wp (add-transitions M ts) = outputs-wp M
transitions-wp (add-transitions M ts) = (if (∀ t ∈ ts . t-source t ∈ states-wp M
∧ t-input t ∈ inputs-wp M ∧ t-output t ∈ outputs-wp M ∧ t-target t ∈ states-wp
M )

then transitions-wp M ∪ ts else transitions-wp M )
by (transfer ; simp add: Let-def )+

declare [[code drop: FSM-Impl.add-transitions ]]
lemma add-transitions-with-precomputations-code [code] : FSM-Impl.add-transitions
((FSMWP M )) ts = FSMWP (add-transitions M ts)

unfolding FSM-Impl.add-transitions.simps
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs

fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
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unfolding FSMWP-def
unfolding add-transitions-simps
by presburger

fun rename-states-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ ( ′a ⇒ ′d) ⇒
( ′d, ′b, ′c) fsm-with-precomputations-impl where

rename-states-impl M f = (let ts = ((λt . (f (t-source t), t-input t, t-output t, f
(t-target t))) ‘ transitions-wpi M );

h ′ = set-as-mapping-image ts (λ(q,x,y,q ′) . ((q,x),y,q ′))
in
FSMWPI (f (initial-wpi M ))

(f ‘ states-wpi M )
(inputs-wpi M )
(outputs-wpi M )
ts
h ′

(h-obs-impl-from-h h ′))

lift-definition rename-states :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒( ′a ⇒ ′d) ⇒
( ′d, ′b, ′c) fsm-with-precomputations

is rename-states-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix f :: ( ′a ⇒ ′d)

let ?M = (rename-states-impl M f )

show well-formed-fsm-with-precomputations M =⇒ well-formed-fsm-with-precomputations
?M

proof −
assume assm: well-formed-fsm-with-precomputations M

show well-formed-fsm-with-precomputations ?M
proof −

have initial-wpi ?M = f (initial-wpi M )
unfolding rename-states-impl.simps Let-def by auto

have states-wpi ?M = f ‘ states-wpi M
unfolding rename-states-impl.simps Let-def by auto

have inputs-wpi ?M = inputs-wpi M
unfolding rename-states-impl.simps Let-def by auto

have outputs-wpi ?M = outputs-wpi M
unfolding rename-states-impl.simps Let-def by auto
have transitions-wpi ?M = ((λt . (f (t-source t), t-input t, t-output t, f

(t-target t))) ‘ transitions-wpi M )
unfolding rename-states-impl.simps Let-def by auto
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define ts where ts = ((λt . (f (t-source t), t-input t, t-output t, f (t-target
t))) ‘ transitions-wpi M )

define h ′ where h ′ = set-as-mapping-image ts (λ(q,x,y,q ′) . ((q,x),y,q ′))

have transitions-wpi ?M = ts
unfolding ts-def rename-states-impl.simps Let-def by auto

then have h-wpi ?M = set-as-mapping-image (transitions-wpi ?M ) (λ(q,x,y,q ′)
. ((q,x),y,q ′))

unfolding h ′-def unfolding rename-states-impl.simps Let-def by auto
then have h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )

unfolding rename-states-impl.simps Let-def by auto

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))

using assm unfolding rename-states-impl.simps Let-def by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
∧

t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

using assm unfolding rename-states-impl.simps Let-def by auto

show ?thesis
using base-props transition-prop

well-formed-h-set-as-mapping[OF ‹h-wpi ?M = set-as-mapping-image
(transitions-wpi ?M ) (λ(q,x,y,q ′) . ((q,x),y,q ′))›]

well-formed-h-obs-impl-from-h[OF ‹h-obs-wpi ?M = h-obs-impl-from-h
(h-wpi ?M )›]

unfolding well-formed-fsm-with-precomputations.simps by blast
qed

qed
qed

lemma rename-states-simps:
initial-wp (rename-states M f ) = f (initial-wp M )
states-wp (rename-states M f ) = f ‘ states-wp M
inputs-wp (rename-states M f ) = inputs-wp M
outputs-wp (rename-states M f ) = outputs-wp M
transitions-wp (rename-states M f ) = ((λt . (f (t-source t), t-input t, t-output t,

f (t-target t))) ‘ transitions-wp M )
by (transfer ; simp add: Let-def )+
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declare [[code drop: FSM-Impl.rename-states ]]
lemma rename-states-with-precomputations-code[code] : FSM-Impl.rename-states
((FSMWP M )) f = FSMWP (rename-states M f )

unfolding FSM-Impl.rename-states.simps
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs

fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
unfolding FSMWP-def
unfolding rename-states-simps
by presburger

fun filter-transitions-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ (( ′a × ′b
× ′c × ′a) ⇒ bool) ⇒ ( ′a, ′b, ′c) fsm-with-precomputations-impl where

filter-transitions-impl M P = (let ts = (Set.filter P (transitions-wpi M ));
h ′ = (set-as-mapping-image ts (λ(q,x,y,q ′) .

((q,x),y,q ′)))
in FSMWPI (initial-wpi M )

(states-wpi M )
(inputs-wpi M )
(outputs-wpi M )
ts
h ′

(h-obs-impl-from-h h ′))

lift-definition filter-transitions :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒ (( ′a × ′b
× ′c × ′a) ⇒ bool) ⇒ ( ′a, ′b, ′c) fsm-with-precomputations

is filter-transitions-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix P :: (( ′a × ′b × ′c × ′a) ⇒ bool)

let ?M = filter-transitions-impl M P

show well-formed-fsm-with-precomputations M =⇒ well-formed-fsm-with-precomputations
?M

proof −
assume assm: well-formed-fsm-with-precomputations M

show well-formed-fsm-with-precomputations ?M
proof −

have initial-wpi ?M = initial-wpi M
unfolding filter-transitions-impl.simps Let-def by auto

have states-wpi ?M = states-wpi M
unfolding filter-transitions-impl.simps Let-def by auto

have inputs-wpi ?M = inputs-wpi M
unfolding filter-transitions-impl.simps Let-def by auto

have outputs-wpi ?M = outputs-wpi M
unfolding filter-transitions-impl.simps Let-def by auto
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have transitions-wpi ?M = (Set.filter P (transitions-wpi M ))
unfolding filter-transitions-impl.simps Let-def by auto

have h-wpi ?M = (set-as-mapping-image (transitions-wpi ?M ) (λ(q,x,y,q ′) .
((q,x),y,q ′)))

unfolding filter-transitions-impl.simps Let-def by auto
then have h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )

unfolding filter-transitions-impl.simps Let-def by auto

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))

using assm unfolding filter-transitions-impl.simps Let-def by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
∧

t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

using assm unfolding filter-transitions-impl.simps Let-def by auto

show ?thesis
using base-props transition-prop

well-formed-h-set-as-mapping[OF ‹h-wpi ?M = set-as-mapping-image
(transitions-wpi ?M ) (λ(q,x,y,q ′) . ((q,x),y,q ′))›]

well-formed-h-obs-impl-from-h[OF ‹h-obs-wpi ?M = h-obs-impl-from-h
(h-wpi ?M )›]

unfolding well-formed-fsm-with-precomputations.simps by blast
qed

qed
qed

lemma filter-transitions-simps:
initial-wp (filter-transitions M P) = initial-wp M
states-wp (filter-transitions M P) = states-wp M
inputs-wp (filter-transitions M P) = inputs-wp M
outputs-wp (filter-transitions M P) = outputs-wp M
transitions-wp (filter-transitions M P) = Set.filter P (transitions-wp M )
by (transfer ; simp add: Let-def )+

declare [[code drop: FSM-Impl.filter-transitions ]]
lemma filter-transitions-with-precomputations-code [code] : FSM-Impl.filter-transitions
((FSMWP M )) P = FSMWP (filter-transitions M P)

unfolding FSM-Impl.filter-transitions.simps
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs
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fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
unfolding FSMWP-def
unfolding filter-transitions-simps
by presburger

fun initial-singleton-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ ( ′a, ′b, ′c)
fsm-with-precomputations-impl where

initial-singleton-impl M = FSMWPI (initial-wpi M )
{initial-wpi M}
(inputs-wpi M )
(outputs-wpi M )
{}
Mapping.empty
Mapping.empty

lemma set-as-mapping-empty :
set-as-mapping-image {} f = Mapping.empty

proof −
obtain m where set-as-mapping-image {} f = m and Mapping.lookup m =

set-as-map (f ‘ {})
using set-as-mapping-image-ob by blast

then have
∧

k . Mapping.lookup m k = None
unfolding set-as-map-def
by simp

then show ?thesis
unfolding ‹set-as-mapping-image {} f = m›
by (simp add: mapping-eqI )

qed

lemma h-obs-from-impl-h : h-obs-impl-from-h Mapping.empty = Mapping.empty
unfolding h-obs-impl-from-h.simps
by (simp add: map-values-empty)

lift-definition initial-singleton :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒ ( ′a, ′b, ′c)
fsm-with-precomputations

is initial-singleton-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl

let ?M = initial-singleton-impl M

show well-formed-fsm-with-precomputations M =⇒ well-formed-fsm-with-precomputations
?M

proof −
assume assm: well-formed-fsm-with-precomputations M

show well-formed-fsm-with-precomputations ?M
proof −
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have transitions-wpi ?M = {}
unfolding filter-transitions-impl.simps Let-def by auto

have h-wpi ?M = Mapping.empty and h-obs-wpi ?M = Mapping.empty
unfolding filter-transitions-impl.simps Let-def by auto

have h-wpi ?M = (set-as-mapping-image (transitions-wpi ?M ) (λ(q,x,y,q ′) .
((q,x),y,q ′)))

unfolding ‹h-wpi ?M = Mapping.empty› ‹transitions-wpi ?M = {}›
unfolding set-as-mapping-empty by presburger

have h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )
unfolding ‹h-wpi ?M = Mapping.empty› ‹h-obs-wpi ?M = Mapping.empty›
unfolding h-obs-from-impl-h by simp

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))

using assm unfolding filter-transitions-impl.simps Let-def by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
∧

t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

using assm unfolding filter-transitions-impl.simps Let-def by auto

show ?thesis
using base-props transition-prop

well-formed-h-set-as-mapping[OF ‹h-wpi ?M = set-as-mapping-image
(transitions-wpi ?M ) (λ(q,x,y,q ′) . ((q,x),y,q ′))›]

well-formed-h-obs-impl-from-h[OF ‹h-obs-wpi ?M = h-obs-impl-from-h
(h-wpi ?M )›]

unfolding well-formed-fsm-with-precomputations.simps by blast
qed

qed
qed

lemma initial-singleton-simps:
initial-wp (initial-singleton M ) = initial-wp M
states-wp (initial-singleton M ) = {initial-wp M}
inputs-wp (initial-singleton M ) = inputs-wp M
outputs-wp (initial-singleton M ) = outputs-wp M
transitions-wp (initial-singleton M ) = {}
by (transfer ; simp add: Let-def )+
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declare [[code drop: FSM-Impl.initial-singleton]]
lemma initial-singleton-with-precomputations-code[code] : FSM-Impl.initial-singleton
((FSMWP M )) = FSMWP (initial-singleton M )

unfolding FSM-Impl.initial-singleton.simps
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs

fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
unfolding FSMWP-def
unfolding initial-singleton-simps
by presburger

fun canonical-separator ′-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ (( ′a
× ′a), ′b, ′c) fsm-with-precomputations-impl ⇒ ′a ⇒ ′a ⇒ (( ′a × ′a) + ′a, ′b, ′c)
fsm-with-precomputations-impl where

canonical-separator ′-impl M P q1 q2 = (if initial-wpi P = (q1 ,q2 )
then
(let f ′ = set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions-wpi M ));

f = (λqx . (case f ′ qx of Some yqs ⇒ yqs | None ⇒ {}));
shifted-transitions ′ = shifted-transitions (transitions-wpi P);
distinguishing-transitions-lr = distinguishing-transitions f q1 q2 (states-wpi

P) (inputs-wpi P);
ts = shifted-transitions ′ ∪ distinguishing-transitions-lr ;
h ′ = set-as-mapping-image ts (λ(q,x,y,q ′) . ((q,x),y,q ′))

in

FSMWPI (Inl (q1 ,q2 ))
((image Inl (states-wpi P)) ∪ {Inr q1 , Inr q2})
(inputs-wpi M ∪ inputs-wpi P)
(outputs-wpi M ∪ outputs-wpi P)
ts
h ′

(h-obs-impl-from-h h ′))
else FSMWPI (Inl (q1 ,q2 )) {Inl (q1 ,q2 )} {} {} {}Mapping.empty Mapping.empty)

lemma canonical-separator ′-impl-refined[code]:
canonical-separator ′-impl M P q1 q2 = (if initial-wpi P = (q1 ,q2 )
then
(let f ′ = set-as-mapping-image (transitions-wpi M ) (λ(q,x,y,q ′) . ((q,x),y));

f = (λqx . (case Mapping.lookup f ′ qx of Some yqs ⇒ yqs | None ⇒ {}));
shifted-transitions ′ = shifted-transitions (transitions-wpi P);
distinguishing-transitions-lr = distinguishing-transitions f q1 q2 (states-wpi

P) (inputs-wpi P);
ts = shifted-transitions ′ ∪ distinguishing-transitions-lr ;
h ′ = set-as-mapping-image ts (λ(q,x,y,q ′) . ((q,x),y,q ′))

in

FSMWPI (Inl (q1 ,q2 ))
((image Inl (states-wpi P)) ∪ {Inr q1 , Inr q2})
(inputs-wpi M ∪ inputs-wpi P)
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(outputs-wpi M ∪ outputs-wpi P)
ts
h ′

(h-obs-impl-from-h h ′))
else FSMWPI (Inl (q1 ,q2 )) {Inl (q1 ,q2 )} {} {} {}Mapping.empty Mapping.empty)
unfolding canonical-separator ′-impl.simps
using set-as-mapping-image-ob[of (transitions-wpi M ) (λ(q,x,y,q ′) . ((q,x),y))]
by fastforce

lift-definition canonical-separator ′ :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒ (( ′a ×
′a), ′b, ′c) fsm-with-precomputations⇒ ′a⇒ ′a⇒ (( ′a × ′a) + ′a, ′b, ′c) fsm-with-precomputations

is canonical-separator ′-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix P q1 q2
show well-formed-fsm-with-precomputations M =⇒ well-formed-fsm-with-precomputations

P =⇒ well-formed-fsm-with-precomputations (canonical-separator ′-impl M P q1
q2 )

proof −
assume a1 : well-formed-fsm-with-precomputations M
assume a2 : well-formed-fsm-with-precomputations P

let ?M = canonical-separator ′-impl M P q1 q2

show well-formed-fsm-with-precomputations ?M
proof (cases initial-wpi P = (q1 ,q2 ))

case False

have h-wpi ?M = Mapping.empty and h-obs-wpi ?M = Mapping.empty and
transitions-wpi ?M = {}

using False unfolding canonical-separator ′-impl.simps Let-def by auto
have h-wpi ?M = (set-as-mapping-image (transitions-wpi ?M ) (λ(q,x,y,q ′) .

((q,x),y,q ′)))
unfolding ‹h-wpi ?M = Mapping.empty› ‹transitions-wpi ?M = {}›
unfolding set-as-mapping-empty by presburger

have h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )
unfolding ‹h-wpi ?M = Mapping.empty› ‹h-obs-wpi ?M = Mapping.empty›
unfolding h-obs-from-impl-h by simp

have base-props: (initial-wpi ?M ∈ states-wpi ?M
∧ finite (states-wpi ?M )
∧ finite (inputs-wpi ?M )
∧ finite (outputs-wpi ?M )
∧ finite (transitions-wpi ?M ))

using a1 False unfolding canonical-separator ′-impl.simps Let-def by auto

have transition-prop: (∀ t ∈ transitions-wpi ?M . t-source t ∈ states-wpi ?M
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∧
t-input t ∈ inputs-wpi ?M ∧
t-target t ∈ states-wpi ?M ∧
t-output t ∈ outputs-wpi ?M )

using a1 False unfolding canonical-separator ′-impl.simps Let-def by auto

show ?thesis
using base-props transition-prop

well-formed-h-set-as-mapping[OF ‹h-wpi ?M = set-as-mapping-image
(transitions-wpi ?M ) (λ(q,x,y,q ′) . ((q,x),y,q ′))›]

well-formed-h-obs-impl-from-h[OF ‹h-obs-wpi ?M = h-obs-impl-from-h
(h-wpi ?M )›]

unfolding well-formed-fsm-with-precomputations.simps by blast
next

case True

let ?f = (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions-wpi
M ))) qx of Some yqs ⇒ yqs | None ⇒ {}))

have
∧

qx . (λqx . (case (set-as-map (image (λ(q,x,y,q ′) . ((q,x),y)) (transitions-wpi
M ))) qx of Some yqs ⇒ yqs | None ⇒ {})) qx = (λ qx . {z. (qx, z) ∈ (λ(q, x, y,
q ′). ((q, x), y)) ‘ transitions-wpi M}) qx

by (metis (mono-tags, lifting) Collect-cong Collect-mem-eq set-as-map-containment
set-as-map-elem)

moreover have
∧

qx . (λ qx . {z. (qx, z) ∈ (λ(q, x, y, q ′). ((q, x), y)) ‘ tran-
sitions-wpi M}) qx = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx, y, q ′) ∈ transitions-wpi
M}) qx

by force
ultimately have ∗: ?f = (λ qx . {y | y . ∃ q ′ . (fst qx, snd qx, y, q ′) ∈

transitions-wpi M})
by blast

let ?shifted-transitions ′ = shifted-transitions (transitions-wpi P)
let ?distinguishing-transitions-lr = distinguishing-transitions ?f q1 q2 (states-wpi

P) (inputs-wpi P)
let ?ts = ?shifted-transitions ′ ∪ ?distinguishing-transitions-lr

have states-wpi ?M = (image Inl (states-wpi P)) ∪ {Inr q1 , Inr q2}
and transitions-wpi ?M = ?ts

unfolding canonical-separator ′-impl.simps Let-def True by simp+

have p2 : finite (states-wpi ?M )
unfolding ‹states-wpi ?M = (image Inl (states-wpi P)) ∪ {Inr q1 , Inr q2}›

using a2 by auto

have initial-wpi ?M = Inl (q1 ,q2 ) by auto
then have p1 : initial-wpi ?M ∈ states-wpi ?M

using a1 a2 unfolding canonical-separator ′.simps True by auto
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have p3 : finite (inputs-wpi ?M )
using a1 a2 by auto

have p4 : finite (outputs-wpi ?M )
using a1 a2 by auto

have finite (states-wpi P × inputs-wpi P)
using a2 by auto

moreover have ∗∗:
∧

x q1 . finite ({y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y,
q ′) ∈ transitions-wpi M})

proof −
fix x q1
have {y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′) ∈ transitions-wpi M} =

{t-output t | t . t ∈ transitions-wpi M ∧ t-source t = q1 ∧ t-input t = x}
by auto

then have {y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′) ∈ transitions-wpi M}
⊆ image t-output (transitions-wpi M )

unfolding fst-conv snd-conv by blast
moreover have finite (image t-output (transitions-wpi M ))

using a1 by auto
ultimately show finite ({y |y. ∃ q ′. (fst (q1 , x), snd (q1 , x), y, q ′) ∈

transitions-wpi M})
by (simp add: finite-subset)

qed
ultimately have finite ?distinguishing-transitions-lr

unfolding ∗ distinguishing-transitions-def by force
moreover have finite ?shifted-transitions ′

unfolding shifted-transitions-def using a2 by auto
ultimately have finite ?ts by blast
then have p5 : finite (transitions-wpi ?M )

by simp

have inputs-wpi ?M = inputs-wpi M ∪ inputs-wpi P
using True by auto

have outputs-wpi ?M = outputs-wpi M ∪ outputs-wpi P
using True by auto

have
∧

t . t ∈ ?shifted-transitions ′ =⇒ t-source t ∈ states-wpi ?M ∧ t-target
t ∈ states-wpi ?M

unfolding ‹states-wpi ?M = (image Inl (states-wpi P)) ∪ {Inr q1 , Inr q2}›
shifted-transitions-def

using a2 by auto
moreover have

∧
t . t ∈ ?distinguishing-transitions-lr =⇒ t-source t ∈

states-wpi ?M ∧ t-target t ∈ states-wpi ?M
unfolding ‹states-wpi ?M = (image Inl (states-wpi P)) ∪ {Inr q1 , Inr q2}›

distinguishing-transitions-def ∗ by force
ultimately have

∧
t . t ∈ ?ts =⇒ t-source t ∈ states-wpi ?M ∧ t-target t ∈

states-wpi ?M
by blast

moreover have
∧

t . t ∈ ?shifted-transitions ′ =⇒ t-input t ∈ inputs-wpi ?M
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∧ t-output t ∈ outputs-wpi ?M
proof −

have
∧

t . t ∈ ?shifted-transitions ′ =⇒ t-input t ∈ inputs-wpi P ∧ t-output
t ∈ outputs-wpi P

unfolding shifted-transitions-def using a2 by auto
then show

∧
t . t ∈ ?shifted-transitions ′ =⇒ t-input t ∈ inputs-wpi ?M ∧

t-output t ∈ outputs-wpi ?M
unfolding ‹inputs-wpi ?M = inputs-wpi M ∪ inputs-wpi P›

‹outputs-wpi ?M = outputs-wpi M ∪ outputs-wpi P› by blast
qed

moreover have
∧

t . t ∈ ?distinguishing-transitions-lr =⇒ t-input t ∈
inputs-wpi ?M ∧ t-output t ∈ outputs-wpi ?M

unfolding ∗ distinguishing-transitions-def using a1 a2 True by auto
ultimately have p6 : (∀ t∈transitions-wpi ?M .

t-source t ∈ states-wpi ?M ∧
t-input t ∈ inputs-wpi ?M ∧ t-target t ∈ states-wpi ?M ∧

t-output t ∈ outputs-wpi ?M )
unfolding ‹transitions-wpi ?M = ?ts› by blast

have h-wpi ?M = set-as-mapping-image (transitions-wpi ?M ) (λ(q,x,y,q ′) .
((q,x),y,q ′))

and h-obs-wpi ?M = h-obs-impl-from-h (h-wpi ?M )
using True unfolding canonical-separator ′-impl.simps Let-def by auto

show well-formed-fsm-with-precomputations ?M
using p1 p2 p3 p4 p5 p6
using well-formed-h-set-as-mapping[OF ‹h-wpi ?M = set-as-mapping-image

(transitions-wpi ?M ) (λ(q,x,y,q ′) . ((q,x),y,q ′))›]
well-formed-h-obs-impl-from-h[OF ‹h-obs-wpi ?M = h-obs-impl-from-h

(h-wpi ?M )›]
unfolding well-formed-fsm-with-precomputations.simps by blast

qed
qed

qed

lemma canonical-separator ′-simps :
initial-wp (canonical-separator ′ M P q1 q2 ) = Inl (q1 ,q2 )

states-wp (canonical-separator ′ M P q1 q2 ) = (if initial-wp P = (q1 ,q2 ) then
(image Inl (states-wp P)) ∪ {Inr q1 , Inr q2} else {Inl (q1 ,q2 )})

inputs-wp (canonical-separator ′ M P q1 q2 ) = (if initial-wp P = (q1 ,q2 )
then inputs-wp M ∪ inputs-wp P else {})

outputs-wp (canonical-separator ′ M P q1 q2 ) = (if initial-wp P = (q1 ,q2 )
then outputs-wp M ∪ outputs-wp P else {})

transitions-wp (canonical-separator ′ M P q1 q2 ) = (if initial-wp P = (q1 ,q2 )
then shifted-transitions (transitions-wp P) ∪ distinguishing-transitions (λ (q,x) .
{y . ∃ q ′ . (q,x,y,q ′) ∈ transitions-wp M}) q1 q2 (states-wp P) (inputs-wp P) else
{})

unfolding h-out-impl-helper by (transfer ; simp add: Let-def )+
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declare [[code drop: FSM-Impl.canonical-separator ′]]
lemma canonical-separator-with-precomputations-code [code] : FSM-Impl.canonical-separator ′

((FSMWP M )) ((FSMWP P)) q1 q2 = FSMWP (canonical-separator ′ M P q1 q2 )
proof −

have ∗:
∧

M1 M2 . (M1 = M2 ) = (fsm-impl.initial M1 = fsm-impl.initial M2
∧ fsm-impl.states M1 = fsm-impl.states M2
∧ fsm-impl.inputs M1 = fsm-impl.inputs M2
∧ fsm-impl.outputs M1 = fsm-impl.outputs M2
∧ fsm-impl.transitions M1 = fsm-impl.transitions M2 )

by (meson fsm-impl.expand)

show ?thesis
unfolding ∗
unfolding FSM-Impl.canonical-separator ′-simps

unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs
fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions

unfolding canonical-separator ′-simps
by blast

qed

fun product-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ ( ′d, ′b, ′c) fsm-with-precomputations-impl
⇒ ( ′a × ′d, ′b, ′c) fsm-with-precomputations-impl where
product-impl A B = (let ts = (image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))

(Set.filter (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′ ∧ y = y ′) (
⋃
(image (λ tA .

image (λ tB . (tA,tB)) (transitions-wpi B)) (transitions-wpi A)))));
h ′ = set-as-mapping-image ts (λ(q,x,y,q ′) . ((q,x),y,q ′))

in
FSMWPI ((initial-wpi A, initial-wpi B))

((states-wpi A) × (states-wpi B))
(inputs-wpi A ∪ inputs-wpi B)
(outputs-wpi A ∪ outputs-wpi B)
ts
h ′

(h-obs-impl-from-h h ′))

lift-definition product :: ( ′a, ′b, ′c) fsm-with-precomputations⇒ ( ′d, ′b, ′c) fsm-with-precomputations
⇒ ( ′a × ′d, ′b, ′c) fsm-with-precomputations is product-impl
proof −

fix A :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix B :: ( ′d, ′b, ′c) fsm-with-precomputations-impl
assume a1 : well-formed-fsm-with-precomputations A and a2 : well-formed-fsm-with-precomputations

B

let ?P = product-impl A B

have (
⋃
(image (λ tA . image (λ tB . (tA,tB)) (transitions-wpi B)) (transitions-wpi
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A))) = {(tA,tB) | tA tB . tA ∈ transitions-wpi A ∧ tB ∈ transitions-wpi B}
by auto

then have (Set.filter (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′∧ y = y ′) (
⋃
(image

(λ tA . image (λ tB . (tA,tB)) (transitions-wpi B)) (transitions-wpi A)))) = {((qA,x,y,qA ′),(qB,x,y,qB ′))
| qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈ transitions-wpi A ∧ (qB,x,y,qB ′) ∈ transi-
tions-wpi B}

by auto
then have image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′))) (Set.filter

(λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′ ∧ y = y ′) (
⋃

(image (λ tA . image (λ tB
. (tA,tB)) (transitions-wpi B)) (transitions-wpi A))))

= image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))
{((qA,x,y,qA ′),(qB,x,y,qB ′)) | qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈ transitions-wpi
A ∧ (qB,x,y,qB ′) ∈ transitions-wpi B}

by auto
then have transitions-wpi ?P = image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))
{((qA,x,y,qA ′),(qB,x,y,qB ′)) | qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈ transitions-wpi
A ∧ (qB,x,y,qB ′) ∈ transitions-wpi B}

by auto
also have . . . = {((qA,qB),x,y,(qA ′,qB ′)) | qA qB x y qA ′ qB ′ . (qA,x,y,qA ′) ∈

transitions-wpi A ∧ (qB,x,y,qB ′) ∈ transitions-wpi B}
by force

finally have transitions-wpi ?P = {((qA,qB),x,y,(qA ′,qB ′)) | qA qB x y qA ′ qB ′

. (qA,x,y,qA ′) ∈ transitions-wpi A ∧ (qB,x,y,qB ′) ∈ transitions-wpi B} .

have h-wpi ?P = set-as-mapping-image (transitions-wpi ?P) (λ(q,x,y,q ′) . ((q,x),y,q ′))
and h-obs-wpi ?P = h-obs-impl-from-h (h-wpi ?P)
unfolding canonical-separator ′-impl.simps Let-def by auto

have initial-wpi ?P ∈ states-wpi ?P
using a1 a2 by auto

moreover have finite (states-wpi ?P)
using a1 a2 by auto

moreover have finite (inputs-wpi ?P)
using a1 a2 by auto

moreover have finite (outputs-wpi ?P)
using a1 a2 by auto

moreover have finite (transitions-wpi ?P)
using a1 a2 unfolding product-code-naive by auto

moreover have (∀ t∈transitions-wpi ?P.
t-source t ∈ states-wpi ?P ∧
t-input t ∈ inputs-wpi ?P ∧ t-target t ∈ states-wpi ?P ∧

t-output t ∈ outputs-wpi ?P)
using a1 a2 unfolding well-formed-fsm-with-precomputations.simps
unfolding ‹transitions-wpi ?P = {((qA,qB),x,y,(qA ′,qB ′)) | qA qB x y qA ′ qB ′

. (qA,x,y,qA ′) ∈ transitions-wpi A ∧ (qB,x,y,qB ′) ∈ transitions-wpi B}›
by fastforce

ultimately show well-formed-fsm-with-precomputations ?P
using well-formed-h-set-as-mapping[OF ‹h-wpi ?P = set-as-mapping-image

(transitions-wpi ?P) (λ(q,x,y,q ′) . ((q,x),y,q ′))›]
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well-formed-h-obs-impl-from-h[OF ‹h-obs-wpi ?P = h-obs-impl-from-h
(h-wpi ?P)›]

unfolding well-formed-fsm-with-precomputations.simps by blast
qed

lemma product-simps:
initial-wp (product A B) = (initial-wp A, initial-wp B)
states-wp (product A B) = (states-wp A) × (states-wp B)
inputs-wp (product A B) = inputs-wp A ∪ inputs-wp B
outputs-wp (product A B) = outputs-wp A ∪ outputs-wp B
transitions-wp (product A B) = (image (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . ((qA,qB),x,y,(qA ′,qB ′)))

(Set.filter (λ((qA,x,y,qA ′), (qB,x ′,y ′,qB ′)) . x = x ′ ∧ y = y ′) (
⋃
(image (λ tA .

image (λ tB . (tA,tB)) (transitions-wp B)) (transitions-wp A)))))
by (transfer ; simp)+

declare [[code drop: FSM-Impl.product]]
lemma product-with-precomputations-code [code] : FSM-Impl.product ((FSMWP
A)) ((FSMWP B)) = FSMWP (product A B)

unfolding FSM-Impl.product-code-naive
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs

fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
unfolding FSMWP-def
unfolding product-simps
by presburger

fun from-FSMI-impl :: ( ′a, ′b, ′c) fsm-with-precomputations-impl ⇒ ′a ⇒ ( ′a, ′b, ′c)
fsm-with-precomputations-impl where

from-FSMI-impl M q = (if q ∈ states-wpi M then FSMWPI q (states-wpi M )
(inputs-wpi M ) (outputs-wpi M ) (transitions-wpi M ) (h-wpi M ) (h-obs-wpi M )
else M )

lift-definition from-FSMI :: ( ′a, ′b, ′c) fsm-with-precomputations ⇒ ′a ⇒ ( ′a, ′b, ′c)
fsm-with-precomputations is from-FSMI-impl
proof −

fix M :: ( ′a, ′b, ′c) fsm-with-precomputations-impl
fix q
assume well-formed-fsm-with-precomputations M
then show well-formed-fsm-with-precomputations (from-FSMI-impl M q)

by (cases q ∈ states-wpi M ; auto)
qed

lemma from-FSMI-simps:
initial-wp (from-FSMI M q) = (if q ∈ states-wp M then q else initial-wp M )
states-wp (from-FSMI M q) = states-wp M
inputs-wp (from-FSMI M q) = inputs-wp M
outputs-wp (from-FSMI M q) = outputs-wp M
transitions-wp (from-FSMI M q) = transitions-wp M
by (transfer ; simp add: Let-def )+
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declare [[code drop: FSM-Impl.from-FSMI ]]
lemma from-FSMI-with-precomputations-code [code] : FSM-Impl.from-FSMI ((FSMWP
M )) q = FSMWP (from-FSMI M q)

unfolding FSM-Impl.from-FSMI .simps
unfolding fsm-impl-FSMWP-initial fsm-impl-FSMWP-states fsm-impl-FSMWP-inputs

fsm-impl-FSMWP-outputs fsm-impl-FSMWP-transitions
unfolding FSMWP-def
unfolding from-FSMI-simps
by presburger

end

46 Code Export

This theory exports various functions developed in this library.
theory Test-Suite-Generator-Code-Export

imports EquivalenceTesting/H-Method-Implementations
EquivalenceTesting/HSI-Method-Implementations
EquivalenceTesting/W-Method-Implementations
EquivalenceTesting/Wp-Method-Implementations
EquivalenceTesting/SPY-Method-Implementations
EquivalenceTesting/SPYH-Method-Implementations
EquivalenceTesting/Partial-S-Method-Implementations
AdaptiveStateCounting/Test-Suite-Calculation-Refined
Prime-Transformation
Prefix-Tree-Refined
EquivalenceTesting/Test-Suite-Representations-Refined
HOL−Library.List-Lexorder
HOL−Library.Code-Target-Nat
HOL−Library.Code-Target-Int
Native-Word.Uint64
FSM-Code-Datatype

begin

46.1 Reduction Testing
definition generate-reduction-test-suite-naive :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ String.literal + (uint64×uint64 ) list list where
generate-reduction-test-suite-naive M m = (case (calculate-test-suite-naive-as-io-sequences-with-assumption-check

M (nat-of-integer m)) of
Inl err ⇒ Inl err |
Inr ts ⇒ Inr (sorted-list-of-set ts))

definition generate-reduction-test-suite-greedy :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ String.literal + (uint64×uint64 ) list list where
generate-reduction-test-suite-greedy M m = (case (calculate-test-suite-greedy-as-io-sequences-with-assumption-check

M (nat-of-integer m)) of
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Inl err ⇒ Inl err |
Inr ts ⇒ Inr (sorted-list-of-set ts))

46.1.1 Fault Detection Capabilities of the Test Harness

The test harness for reduction testing (see https://bitbucket.org/Robert-
Sachtleben/an-approach-for-the-verification-and-synthesis-of-complete) applies
a test suite to a system under test (SUT) by repeatedly applying each IO-
sequence (test case) in the test suite input by input to the SUT until either
the test case has been fully applied or the first output is observed that does
not correspond to the outputs in the IO-sequence and then checks whether
the observed IO-sequence (consisting of a prefix of the test case possibly
followed by an IO-pair consisting of the next input in the test case and an
output that is not the next output in the test case) is prefix of some test
case in the test suite. If such a prefix exists, then the application passes,
else it fails and the overall application is aborted, reporting a failure.
The following lemma shows that the SUT (whose behaviour corresponds
to an FSM M ′) conforms to the specification (here FSM M ) if and only if
the above application procedure does not fail. As the following lemma uses
quantification over all possible responses of the SUT to each test case, a
further testability hypothesis is required to transfer this result to the actual
test application process, which by necessity can only perform a finite number
of applications: we assume that some value k exists such that by applying
each test case k times, all responses of the SUT to it can be observed.
lemma reduction-test-harness-soundness :

fixes M :: (uint64 ,uint64 ,uint64 ) fsm
assumes observable M ′

and FSM .inputs M ′ = FSM .inputs M
and completely-specified M ′

and size M ′ ≤ nat-of-integer m
and generate-reduction-test-suite-greedy M m = Inr ts

shows (L M ′ ⊆ L M ) ←→ (list-all (λ io . ¬ (∃ ioPre x y y ′ ioSuf . io =
ioPre@[(x,y)]@ioSuf ∧ ioPre@[(x,y ′)] ∈ L M ′ ∧ ¬(∃ ioSuf ′ . ioPre@[(x,y ′)]@ioSuf ′

∈ list.set ts))) ts)
proof −

obtain tss where calculate-test-suite-greedy-as-io-sequences-with-assumption-check
M (nat-of-integer m) = Inr tss

using assms(5 ) unfolding generate-reduction-test-suite-greedy-def
by (metis Inr-Inl-False old.sum.exhaust old.sum.simps(5 ))

have FSM .inputs M 6= {}
and observable M
and completely-specified M
using ‹calculate-test-suite-greedy-as-io-sequences-with-assumption-check M (nat-of-integer
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m) = Inr tss›
unfolding calculate-test-suite-greedy-as-io-sequences-with-assumption-check-def

by (meson Inl-Inr-False)+
then have tss = (test-suite-to-io-maximal M (calculate-test-suite-greedy M (nat-of-integer

m)))
using ‹calculate-test-suite-greedy-as-io-sequences-with-assumption-check M (nat-of-integer

m) = Inr tss›
unfolding calculate-test-suite-greedy-as-io-sequences-with-assumption-check-def
by (metis sum.inject(2 ))

have
∧

q. q ∈ FSM .states M =⇒ ∃ d∈list.set (maximal-repetition-sets-from-separators-list-greedy
M ). q ∈ fst d

unfolding maximal-repetition-sets-from-separators-list-greedy-def Let-def
using greedy-pairwise-r-distinguishable-state-sets-from-separators-cover [of - M ]
by simp

moreover have
∧

d. d ∈ list.set (maximal-repetition-sets-from-separators-list-greedy
M ) =⇒ fst d ⊆ FSM .states M ∧ (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles
M )

and
∧

d q1 q2 . d ∈ list.set (maximal-repetition-sets-from-separators-list-greedy
M ) =⇒ q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒ (q1 , q2 ) ∈ fst ‘ r-distinguishable-state-pairs-with-separators
M

proof
fix d assume d ∈ list.set (maximal-repetition-sets-from-separators-list-greedy

M )
then have fst d ∈ list.set (greedy-pairwise-r-distinguishable-state-sets-from-separators

M )
and (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles M )

unfolding maximal-repetition-sets-from-separators-list-greedy-def Let-def by
force+

then have fst d ∈ pairwise-r-distinguishable-state-sets-from-separators M
using greedy-pairwise-r-distinguishable-state-sets-from-separators-soundness

by blast
then show fst d ⊆ FSM .states M and (snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles

M )
and

∧
q1 q2 . q1∈fst d =⇒ q2∈fst d =⇒ q1 6= q2 =⇒ (q1 , q2 ) ∈ fst ‘

r-distinguishable-state-pairs-with-separators M
using ‹(snd d = fst d ∩ fst ‘ d-reachable-states-with-preambles M )›
unfolding pairwise-r-distinguishable-state-sets-from-separators-def
by force+

qed
ultimately have implies-completeness (calculate-test-suite-greedy M (nat-of-integer

m)) M (nat-of-integer m)
and is-finite-test-suite (calculate-test-suite-greedy M (nat-of-integer m))

using calculate-test-suite-for-repetition-sets-sufficient-and-finite[OF ‹observable
M › ‹completely-specified M › ‹FSM .inputs M 6= {}›]

unfolding calculate-test-suite-greedy-def
by simp+
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then have finite tss
using test-suite-to-io-maximal-finite[OF - - ‹observable M ›]
unfolding ‹tss = (test-suite-to-io-maximal M (calculate-test-suite-greedy M

(nat-of-integer m)))›
by blast

have list.set ts = test-suite-to-io-maximal M (calculate-test-suite-greedy M (nat-of-integer
m))

and ts = sorted-list-of-set tss
using sorted-list-of-set(1 )[OF ‹finite tss›]
using assms(5 )
unfolding ‹tss = (test-suite-to-io-maximal M (calculate-test-suite-greedy M

(nat-of-integer m)))›
‹calculate-test-suite-greedy-as-io-sequences-with-assumption-check M

(nat-of-integer m) = Inr tss›
generate-reduction-test-suite-greedy-def

by simp+

then have (L M ′ ⊆ L M ) = pass-io-set-maximal M ′ (list.set ts)
using calculate-test-suite-greedy-as-io-sequences-with-assumption-check-completeness[OF

assms(1 ,2 ,3 ,4 )]
‹calculate-test-suite-greedy-as-io-sequences-with-assumption-check M (nat-of-integer

m) = Inr tss›
‹tss = test-suite-to-io-maximal M (calculate-test-suite-greedy M (nat-of-integer

m))›
by simp

moreover have pass-io-set-maximal M ′ (list.set ts)
= (list-all (λ io . ¬ (∃ ioPre x y y ′ ioSuf . io = ioPre@[(x,y)]@ioSuf

∧ ioPre@[(x,y ′)] ∈ L M ′ ∧ ¬(∃ ioSuf ′ . ioPre@[(x,y ′)]@ioSuf ′ ∈ list.set ts))) ts)
proof −

have
∧

P . list-all P (sorted-list-of-set tss) = (∀ x ∈ tss . P x)
by (simp add: ‹finite tss› list-all-iff )

then have scheme:
∧

P . list-all P ts = (∀ x ∈ (list.set ts) . P x)
unfolding ‹ts = sorted-list-of-set tss› sorted-list-of-set(1 )[OF ‹finite tss›]
by simp

show ?thesis
using scheme[of (λ io . ¬ (∃ ioPre x y y ′ ioSuf . io = ioPre@[(x,y)]@ioSuf

∧ ioPre@[(x,y ′)] ∈ L M ′ ∧ ¬(∃ ioSuf ′ . ioPre@[(x,y ′)]@ioSuf ′ ∈ list.set ts)))]
unfolding pass-io-set-maximal-def
by fastforce

qed

ultimately show ?thesis
by simp

qed
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46.2 Equivalence Testing
46.2.1 Test Strategy Application and Transformation
fun apply-method-to-prime :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer ⇒ bool ⇒
((uint64 ,uint64 ,uint64 ) fsm ⇒ nat ⇒ (uint64×uint64 ) prefix-tree)⇒ (uint64×uint64 )
prefix-tree where

apply-method-to-prime M additionalStates isAlreadyPrime f = (let
M ′ = (if isAlreadyPrime then M else to-prime-uint64 M );
m = size-r M ′ + (nat-of-integer additionalStates)

in f M ′ m)

lemma apply-method-to-prime-completeness :
fixes M2 :: ( ′a,uint64 ,uint64 ) fsm
assumes

∧
M1 m (M2 :: ( ′a,uint64 ,uint64 ) fsm) .

observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
size M2 ≤ m =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
(L M1 = L M2 ) ←→ ((L M1 ∩ set (f M1 m)) = (L M2 ∩ set (f M1

m)))
and observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ ((L M1 ∩ set (apply-method-to-prime M1 addition-
alStates isAlreadyPrime f )) = (L M2 ∩ set (apply-method-to-prime M1 addition-
alStates isAlreadyPrime f )))
proof −

define M ′ where M ′ = (if isAlreadyPrime then M1 else to-prime-uint64 M1 )
have observable M ′ and minimal M ′ and L M1 = L M ′ and FSM .inputs M ′

= FSM .inputs M1 and FSM .outputs M ′ = FSM .outputs M1
unfolding M ′-def using to-prime-uint64-props[OF assms(8 )] assms(7 )
by (metis (full-types))+

then have FSM .inputs M2 = FSM .inputs M ′ and FSM .outputs M2 = FSM .outputs
M ′

using assms(5 ,6 ) by auto

have size-r M ′ = size-r (to-prime M1 )
by (metis (no-types) ‹L M1 = L M ′› ‹minimal M ′› ‹observable M ′› mini-
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mal-equivalence-size-r to-prime-props(1 ) to-prime-props(2 ) to-prime-props(3 ))
then have size-r M ′ ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)

by simp

show ?thesis
using assms(1 )[OF ‹observable M ′› assms(2 ) ‹minimal M ′› assms(3 ) ‹size-r

M ′≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)› assms(4 ) ‹FSM .inputs
M2 = FSM .inputs M ′› ‹FSM .outputs M2 = FSM .outputs M ′›]

unfolding apply-method-to-prime.simps Let-def ‹size-r M ′ = size-r (to-prime
M1 )›[symmetric] M ′-def ‹L M1 = L M ′› .
qed

fun apply-to-prime-and-return-io-lists :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer ⇒
bool ⇒ ((uint64 ,uint64 ,uint64 ) fsm ⇒ nat ⇒ (uint64×uint64 ) prefix-tree) ⇒
((uint64×uint64 )×bool) list list where

apply-to-prime-and-return-io-lists M additionalStates isAlreadyPrime f = (let M ′

= (if isAlreadyPrime then M else to-prime-uint64 M ) in
sorted-list-of-maximal-sequences-in-tree (test-suite-from-io-tree M ′ (FSM .initial

M ′) (apply-method-to-prime M additionalStates isAlreadyPrime f )))

lemma apply-to-prime-and-return-io-lists-completeness :
fixes M2 :: ( ′a,uint64 ,uint64 ) fsm
assumes

∧
M1 m (M2 :: ( ′a,uint64 ,uint64 ) fsm) .

observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
size M2 ≤ m =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
((L M1 = L M2 ) ←→ ((L M1 ∩ set (f M1 m)) = (L M2 ∩ set (f M1

m))))
∧ finite-tree (f M1 m)

and observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (apply-to-prime-and-return-io-lists
M1 additionalStates isAlreadyPrime f )
proof −

define M ′ where M ′ = (if isAlreadyPrime then M1 else to-prime-uint64 M1 )
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have observable M ′ and minimal M ′ and L M1 = L M ′ and FSM .inputs M ′

= FSM .inputs M1 and FSM .outputs M ′ = FSM .outputs M1
unfolding M ′-def using to-prime-uint64-props[OF assms(8 )] assms(7 )
by (metis (full-types))+

then have FSM .inputs M2 = FSM .inputs M ′ and FSM .outputs M2 = FSM .outputs
M ′

using assms(5 ,6 ) by auto

have L M ′ = L (to-prime M1 )
using to-prime-props(1 ) M ′-def
using ‹L M1 = L M ′› by blast

have size-r M ′ = size-r (to-prime M1 )
using minimal-equivalence-size-r [OF ‹minimal M ′› - ‹observable M ′› - ‹L M ′

= L (to-prime M1 )›]
using assms(7 ) to-prime-props(2 ,3 )
unfolding M ′-def
by blast

then have size-r M ′ ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
by simp

have ∗:(L M1 = L M2 ) ←→ ((L M1 ∩ set (f M ′ (size-r (to-prime M1 ) +
nat-of-integer additionalStates))) = (L M2 ∩ set (f M ′ (size-r (to-prime M1 ) +
nat-of-integer additionalStates))))

and ∗∗:finite-tree (f M ′ (size-r (to-prime M1 ) + nat-of-integer additionalStates))
using assms(1 )[OF ‹observable M ′› assms(2 ) ‹minimal M ′› assms(3 ) ‹size-r

M ′≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)› assms(4 ) ‹FSM .inputs
M2 = FSM .inputs M ′› ‹FSM .outputs M2 = FSM .outputs M ′›]

unfolding ‹L M1 = L M ′› by blast+

show ?thesis
unfolding ∗
using passes-test-cases-from-io-tree[OF ‹observable M ′› assms(2 ) fsm-initial[of

M ′] fsm-initial[of M2 ] ∗∗ ]
unfolding ‹size-r M ′ = size-r (to-prime M1 )›[symmetric]

unfolding apply-to-prime-and-return-io-lists.simps apply-method-to-prime.simps
Let-def ‹L M1 = L M ′›

unfolding M ′-def by blast
qed

fun apply-to-prime-and-return-input-lists :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64 ,uint64 ,uint64 ) fsm ⇒ nat ⇒ (uint64×uint64 ) prefix-tree) ⇒
uint64 list list where
apply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime f = test-suite-to-input-sequences

(apply-method-to-prime M additionalStates isAlreadyPrime f )

lemma apply-to-prime-and-return-input-lists-completeness :
fixes M2 :: ( ′a,uint64 ,uint64 ) fsm
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assumes
∧

M1 m (M2 :: ( ′a,uint64 ,uint64 ) fsm) .
observable M1 =⇒
observable M2 =⇒
minimal M1 =⇒
minimal M2 =⇒
size-r M1 ≤ m =⇒
size M2 ≤ m =⇒
FSM .inputs M2 = FSM .inputs M1 =⇒
FSM .outputs M2 = FSM .outputs M1 =⇒
((L M1 = L M2 ) ←→ ((L M1 ∩ set (f M1 m)) = (L M2 ∩ set (f M1

m))))
∧ finite-tree (f M1 m)

and observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (apply-to-prime-and-return-input-lists
M1 additionalStates isAlreadyPrime f ). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 .
map fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
proof −

define M ′ where M ′ = (if isAlreadyPrime then M1 else to-prime-uint64 M1 )
have observable M ′ and minimal M ′ and L M1 = L M ′ and FSM .inputs M ′

= FSM .inputs M1 and FSM .outputs M ′ = FSM .outputs M1
unfolding M ′-def using to-prime-uint64-props[OF assms(8 )] assms(7 )
by (metis (full-types))+

then have FSM .inputs M2 = FSM .inputs M ′ and FSM .outputs M2 = FSM .outputs
M ′

using assms(5 ,6 ) by auto

have L M ′ = L (to-prime M1 )
using to-prime-props(1 ) M ′-def ‹L M1 = L M ′› by metis

have size-r M ′ = size-r (to-prime M1 )
using minimal-equivalence-size-r [OF ‹minimal M ′› - ‹observable M ′› - ‹L M ′

= L (to-prime M1 )›]
using assms(7 ) to-prime-props(2 ,3 )
unfolding M ′-def
by blast

then have size-r M ′ ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
by simp

have ∗:(L M1 = L M2 ) = ((L M1 ∩ set (f M ′ (size-r (to-prime M1 ) +
nat-of-integer additionalStates))) = (L M2 ∩ set (f M ′ (size-r (to-prime M1 ) +
nat-of-integer additionalStates))))

and ∗∗:finite-tree (f M ′ (size-r (to-prime M1 ) + nat-of-integer additionalStates))
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using assms(1 )[OF ‹observable M ′› assms(2 ) ‹minimal M ′› assms(3 ) ‹size-r
M ′≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)› assms(4 ) ‹FSM .inputs
M2 = FSM .inputs M ′› ‹FSM .outputs M2 = FSM .outputs M ′›]

unfolding ‹L M1 = L M ′› by blast+

show ?thesis
using test-suite-to-input-sequences-pass-alt-def [OF ∗∗ ∗]
unfolding ‹size-r M ′ = size-r (to-prime M1 )›[symmetric]

unfolding apply-to-prime-and-return-input-lists.simps apply-method-to-prime.simps
Let-def M ′-def .
qed

46.2.2 W-Method
definition w-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
w-method-via-h-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime w-method-via-h-framework

lemma w-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (w-method-via-h-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=w-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-h-framework-completeness-and-finiteness
unfolding w-method-via-h-framework-ts-def
by metis

definition w-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ uint64 list list where
w-method-via-h-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime w-method-via-h-framework

lemma w-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
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and size (to-prime M1 ) < 2^64
shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (w-method-via-h-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=w-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-h-framework-completeness-and-finiteness
unfolding w-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition w-method-via-h-framework-2-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
w-method-via-h-framework-2-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime w-method-via-h-framework-2

lemma w-method-via-h-framework-2-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (w-method-via-h-framework-2-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=w-method-via-h-framework-2

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-h-framework-2-completeness-and-finiteness
unfolding w-method-via-h-framework-2-ts-def
by metis

definition w-method-via-h-framework-2-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ uint64 list list where
w-method-via-h-framework-2-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime w-method-via-h-framework-2

lemma w-method-via-h-framework-2-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (w-method-via-h-framework-2-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
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using apply-to-prime-and-return-input-lists-completeness[where f=w-method-via-h-framework-2
and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using w-method-via-h-framework-2-completeness-and-finiteness
unfolding w-method-via-h-framework-2-input-def [symmetric]
by (metis (no-types, lifting))

definition w-method-via-spy-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
w-method-via-spy-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime w-method-via-spy-framework

lemma w-method-via-spy-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (w-method-via-spy-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=w-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-spy-framework-completeness-and-finiteness
unfolding w-method-via-spy-framework-ts-def
by metis

definition w-method-via-spy-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ uint64 list list where
w-method-via-spy-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime w-method-via-spy-framework

lemma w-method-via-spy-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (w-method-via-spy-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=w-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-spy-framework-completeness-and-finiteness
unfolding w-method-via-spy-framework-input-def [symmetric]
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by (metis (no-types, lifting))

definition w-method-via-pair-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
w-method-via-pair-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime w-method-via-pair-framework

lemma w-method-via-pair-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (w-method-via-pair-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=w-method-via-pair-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-pair-framework-completeness-and-finiteness
unfolding w-method-via-pair-framework-ts-def
by metis

definition w-method-via-pair-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ uint64 list list where
w-method-via-pair-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime w-method-via-pair-framework

lemma w-method-via-pair-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ (∀ xs∈list.set (w-method-via-pair-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=w-method-via-pair-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using w-method-via-pair-framework-completeness-and-finiteness
unfolding w-method-via-pair-framework-input-def [symmetric]
by (metis (no-types, lifting))
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46.2.3 Wp-Method
definition wp-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
wp-method-via-h-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime wp-method-via-h-framework

lemma wp-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (wp-method-via-h-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=wp-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using wp-method-via-h-framework-completeness-and-finiteness
unfolding wp-method-via-h-framework-ts-def
by metis

definition wp-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ uint64 list list where
wp-method-via-h-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime wp-method-via-h-framework

lemma wp-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (wp-method-via-h-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=wp-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using wp-method-via-h-framework-completeness-and-finiteness
unfolding wp-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition wp-method-via-spy-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
wp-method-via-spy-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists
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M additionalStates isAlreadyPrime wp-method-via-spy-framework

lemma wp-method-via-spy-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (wp-method-via-spy-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=wp-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using wp-method-via-spy-framework-completeness-and-finiteness
unfolding wp-method-via-spy-framework-ts-def
by metis

definition wp-method-via-spy-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ uint64 list list where

wp-method-via-spy-framework-input M additionalStates isAlreadyPrime = ap-
ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime wp-method-via-spy-framework

lemma wp-method-via-spy-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (wp-method-via-spy-framework-input
M1 additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map
fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=wp-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using wp-method-via-spy-framework-completeness-and-finiteness
unfolding wp-method-via-spy-framework-input-def [symmetric]
by (metis (no-types, lifting))

46.2.4 HSI-Method
definition hsi-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
hsi-method-via-h-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime hsi-method-via-h-framework
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lemma hsi-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (hsi-method-via-h-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=hsi-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using hsi-method-via-h-framework-completeness-and-finiteness
unfolding hsi-method-via-h-framework-ts-def
by metis

definition hsi-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ uint64 list list where
hsi-method-via-h-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime hsi-method-via-h-framework

lemma hsi-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (hsi-method-via-h-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=hsi-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using hsi-method-via-h-framework-completeness-and-finiteness
unfolding hsi-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition hsi-method-via-spy-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
hsi-method-via-spy-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime hsi-method-via-spy-framework

lemma hsi-method-via-spy-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
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and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (hsi-method-via-spy-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=hsi-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using hsi-method-via-spy-framework-completeness-and-finiteness
unfolding hsi-method-via-spy-framework-ts-def
by metis

definition hsi-method-via-spy-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ uint64 list list where

hsi-method-via-spy-framework-input M additionalStates isAlreadyPrime = ap-
ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime hsi-method-via-spy-framework

lemma hsi-method-via-spy-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (hsi-method-via-spy-framework-input
M1 additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map
fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=hsi-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using hsi-method-via-spy-framework-completeness-and-finiteness
unfolding hsi-method-via-spy-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition hsi-method-via-pair-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
hsi-method-via-pair-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime hsi-method-via-pair-framework

lemma hsi-method-via-pair-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
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and size (to-prime M1 ) < 2^64
shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (hsi-method-via-pair-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=hsi-method-via-pair-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using hsi-method-via-pair-framework-completeness-and-finiteness
unfolding hsi-method-via-pair-framework-ts-def
by metis

definition hsi-method-via-pair-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ uint64 list list where

hsi-method-via-pair-framework-input M additionalStates isAlreadyPrime = ap-
ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime hsi-method-via-pair-framework

lemma hsi-method-via-pair-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (hsi-method-via-pair-framework-input
M1 additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map
fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=hsi-method-via-pair-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using hsi-method-via-pair-framework-completeness-and-finiteness
unfolding hsi-method-via-pair-framework-input-def [symmetric]
by (metis (no-types, lifting))

46.2.5 H-Method
definition h-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ bool ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
h-method-via-h-framework-ts M additionalStates isAlreadyPrime c b = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime (λ M m . h-method-via-h-framework M m c b)

lemma h-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (h-method-via-h-framework-ts
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M1 additionalStates isAlreadyPrime c b)
using apply-to-prime-and-return-io-lists-completeness[where f=(λ M m . h-method-via-h-framework

M m c b) and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using h-method-via-h-framework-completeness-and-finiteness
unfolding h-method-via-h-framework-ts-def
by metis

definition h-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ bool ⇒ bool ⇒ uint64 list list where

h-method-via-h-framework-input M additionalStates isAlreadyPrime c b = ap-
ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime (λ M m .
h-method-via-h-framework M m c b)

lemma h-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (h-method-via-h-framework-input M1
additionalStates isAlreadyPrime c b). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map
fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})

using apply-to-prime-and-return-input-lists-completeness[where f=(λ M m .
h-method-via-h-framework M m c b) and isAlreadyPrime=isAlreadyPrime, OF -
assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using h-method-via-h-framework-completeness-and-finiteness
unfolding h-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition h-method-via-pair-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
h-method-via-pair-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime h-method-via-pair-framework

lemma h-method-via-pair-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (h-method-via-pair-framework-ts
M1 additionalStates isAlreadyPrime)
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using apply-to-prime-and-return-io-lists-completeness[where f=h-method-via-pair-framework
and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using h-method-via-pair-framework-completeness-and-finiteness
unfolding h-method-via-pair-framework-ts-def
by metis

definition h-method-via-pair-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ uint64 list list where
h-method-via-pair-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime h-method-via-pair-framework

lemma h-method-via-pair-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (h-method-via-pair-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=h-method-via-pair-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using h-method-via-pair-framework-completeness-and-finiteness
unfolding h-method-via-pair-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition h-method-via-pair-framework-2-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where

h-method-via-pair-framework-2-ts M additionalStates isAlreadyPrime c = ap-
ply-to-prime-and-return-io-lists M additionalStates isAlreadyPrime (λ M m . h-method-via-pair-framework-2
M m c)

lemma h-method-via-pair-framework-2-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (h-method-via-pair-framework-2-ts
M1 additionalStates isAlreadyPrime c)
using apply-to-prime-and-return-io-lists-completeness[where f=(λ M m . h-method-via-pair-framework-2

M m c) and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
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using h-method-via-pair-framework-2-completeness-and-finiteness
unfolding h-method-via-pair-framework-2-ts-def
by metis

definition h-method-via-pair-framework-2-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ bool ⇒ uint64 list list where

h-method-via-pair-framework-2-input M additionalStates isAlreadyPrime c = ap-
ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime (λ M m .
h-method-via-pair-framework-2 M m c)

lemma h-method-via-pair-framework-2-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (h-method-via-pair-framework-2-input
M1 additionalStates isAlreadyPrime c). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 .
map fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})

using apply-to-prime-and-return-input-lists-completeness[where f=(λ M m .
h-method-via-pair-framework-2 M m c) and isAlreadyPrime=isAlreadyPrime, OF
- assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using h-method-via-pair-framework-2-completeness-and-finiteness
unfolding h-method-via-pair-framework-2-input-def [symmetric]
by (metis (no-types, lifting))

definition h-method-via-pair-framework-3-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ bool ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where

h-method-via-pair-framework-3-ts M additionalStates isAlreadyPrime c1 c2 = ap-
ply-to-prime-and-return-io-lists M additionalStates isAlreadyPrime (λ M m . h-method-via-pair-framework-3
M m c1 c2 )

lemma h-method-via-pair-framework-3-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (h-method-via-pair-framework-3-ts
M1 additionalStates isAlreadyPrime c1 c2 )
using apply-to-prime-and-return-io-lists-completeness[where f=(λ M m . h-method-via-pair-framework-3

M m c1 c2 ) and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
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using h-method-via-pair-framework-3-completeness-and-finiteness
unfolding h-method-via-pair-framework-3-ts-def
by metis

definition h-method-via-pair-framework-3-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ bool ⇒ bool ⇒ uint64 list list where

h-method-via-pair-framework-3-input M additionalStates isAlreadyPrime c1 c2 =
apply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime (λ M m .
h-method-via-pair-framework-3 M m c1 c2 )

lemma h-method-via-pair-framework-3-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (h-method-via-pair-framework-3-input
M1 additionalStates isAlreadyPrime c1 c2 ). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 .
map fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})

using apply-to-prime-and-return-input-lists-completeness[where f=(λ M m .
h-method-via-pair-framework-3 M m c1 c2 ) and isAlreadyPrime=isAlreadyPrime,
OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using h-method-via-pair-framework-3-completeness-and-finiteness
unfolding h-method-via-pair-framework-3-input-def [symmetric]
by (metis (no-types, lifting))

46.2.6 SPY-Method
definition spy-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ integer
⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
spy-method-via-h-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime spy-method-via-h-framework

lemma spy-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (spy-method-via-h-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=spy-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
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using spy-method-via-h-framework-completeness-and-finiteness
unfolding spy-method-via-h-framework-ts-def
by metis

definition spy-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ uint64 list list where
spy-method-via-h-framework-input M additionalStates isAlreadyPrime = apply-to-prime-and-return-input-lists

M additionalStates isAlreadyPrime spy-method-via-h-framework

lemma spy-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (spy-method-via-h-framework-input M1
additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map fst
io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=spy-method-via-h-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using spy-method-via-h-framework-completeness-and-finiteness
unfolding spy-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition spy-method-via-spy-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where
spy-method-via-spy-framework-ts M additionalStates isAlreadyPrime = apply-to-prime-and-return-io-lists

M additionalStates isAlreadyPrime spy-method-via-spy-framework

lemma spy-method-via-spy-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (spy-method-via-spy-framework-ts
M1 additionalStates isAlreadyPrime)
using apply-to-prime-and-return-io-lists-completeness[where f=spy-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using spy-method-via-spy-framework-completeness-and-finiteness
unfolding spy-method-via-spy-framework-ts-def
by metis
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definition spy-method-via-spy-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ uint64 list list where

spy-method-via-spy-framework-input M additionalStates isAlreadyPrime = ap-
ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime spy-method-via-spy-framework

lemma spy-method-via-spy-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (spy-method-via-spy-framework-input
M1 additionalStates isAlreadyPrime). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map
fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=spy-method-via-spy-framework

and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using spy-method-via-spy-framework-completeness-and-finiteness
unfolding spy-method-via-spy-framework-input-def [symmetric]
by (metis (no-types, lifting))

46.2.7 SPYH-Method
definition spyh-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ inte-
ger ⇒ bool ⇒ bool ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where

spyh-method-via-h-framework-ts M additionalStates isAlreadyPrime c b = ap-
ply-to-prime-and-return-io-lists M additionalStates isAlreadyPrime (λ M m . spyh-method-via-h-framework
M m c b)

lemma spyh-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (spyh-method-via-h-framework-ts
M1 additionalStates isAlreadyPrime c b)
using apply-to-prime-and-return-io-lists-completeness[where f=(λ M m . spyh-method-via-h-framework

M m c b) and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using spyh-method-via-h-framework-completeness-and-finiteness
unfolding spyh-method-via-h-framework-ts-def
by metis

definition spyh-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
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integer ⇒ bool ⇒ bool ⇒ bool ⇒ uint64 list list where
spyh-method-via-h-framework-input M additionalStates isAlreadyPrime c b = ap-

ply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime (λ M m .
spyh-method-via-h-framework M m c b)

lemma spyh-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ (∀ xs∈list.set (spyh-method-via-h-framework-input M1
additionalStates isAlreadyPrime c b). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 . map
fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})

using apply-to-prime-and-return-input-lists-completeness[where f=(λ M m .
spyh-method-via-h-framework M m c b) and isAlreadyPrime=isAlreadyPrime, OF
- assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using spyh-method-via-h-framework-completeness-and-finiteness
unfolding spyh-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

definition spyh-method-via-spy-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒ in-
teger ⇒ bool ⇒ bool ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where

spyh-method-via-spy-framework-ts M additionalStates isAlreadyPrime c b = ap-
ply-to-prime-and-return-io-lists M additionalStates isAlreadyPrime (λ M m . spyh-method-via-spy-framework
M m c b)

lemma spyh-method-via-spy-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (spyh-method-via-spy-framework-ts
M1 additionalStates isAlreadyPrime c b)
using apply-to-prime-and-return-io-lists-completeness[where f=(λ M m . spyh-method-via-spy-framework

M m c b) and isAlreadyPrime=isAlreadyPrime, OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]
using spyh-method-via-spy-framework-completeness-and-finiteness
unfolding spyh-method-via-spy-framework-ts-def
by metis

definition spyh-method-via-spy-framework-input :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ bool ⇒ bool ⇒ uint64 list list where
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spyh-method-via-spy-framework-input M additionalStates isAlreadyPrime c b =
apply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime (λ M m .
spyh-method-via-spy-framework M m c b)

lemma spyh-method-via-spy-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 ) ←→ (∀ xs∈list.set (spyh-method-via-spy-framework-input
M1 additionalStates isAlreadyPrime c b). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 .
map fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})

using apply-to-prime-and-return-input-lists-completeness[where f=(λ M m .
spyh-method-via-spy-framework M m c b) and isAlreadyPrime=isAlreadyPrime,
OF - assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using spyh-method-via-spy-framework-completeness-and-finiteness
unfolding spyh-method-via-spy-framework-input-def [symmetric]
by (metis (no-types, lifting))

46.2.8 Partial S-Method
definition partial-s-method-via-h-framework-ts :: (uint64 ,uint64 ,uint64 ) fsm ⇒
integer ⇒ bool ⇒ bool ⇒ bool ⇒ ((uint64×uint64 )×bool) list list where

partial-s-method-via-h-framework-ts M additionalStates isAlreadyPrime c b = ap-
ply-to-prime-and-return-io-lists M additionalStates isAlreadyPrime (λ M m . par-
tial-s-method-via-h-framework M m c b)

lemma partial-s-method-via-h-framework-ts-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ list-all (passes-test-case M2 (FSM .initial M2 )) (partial-s-method-via-h-framework-ts
M1 additionalStates isAlreadyPrime c b)

using apply-to-prime-and-return-io-lists-completeness[where f=(λ M m . par-
tial-s-method-via-h-framework M m c b) and isAlreadyPrime=isAlreadyPrime, OF
- assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using partial-s-method-via-h-framework-completeness-and-finiteness
unfolding partial-s-method-via-h-framework-ts-def
by metis
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definition partial-s-method-via-h-framework-input :: (uint64 ,uint64 ,uint64 ) fsm
⇒ integer ⇒ bool ⇒ bool ⇒ bool ⇒ uint64 list list where

partial-s-method-via-h-framework-input M additionalStates isAlreadyPrime c b =
apply-to-prime-and-return-input-lists M additionalStates isAlreadyPrime (λ M m .
partial-s-method-via-h-framework M m c b)

lemma partial-s-method-via-h-framework-input-completeness :
assumes observable M2
and minimal M2
and size M2 ≤ size-r (to-prime M1 ) + (nat-of-integer additionalStates)
and FSM .inputs M2 = FSM .inputs M1
and FSM .outputs M2 = FSM .outputs M1
and isAlreadyPrime =⇒ observable M1 ∧ minimal M1 ∧ reachable-states M1

= states M1
and size (to-prime M1 ) < 2^64

shows (L M1 = L M2 )←→ (∀ xs∈list.set (partial-s-method-via-h-framework-input
M1 additionalStates isAlreadyPrime c b). ∀ xs ′∈list.set (prefixes xs). {io ∈ L M1 .
map fst io = xs ′} = {io ∈ L M2 . map fst io = xs ′})
using apply-to-prime-and-return-input-lists-completeness[where f=(λ M m . par-

tial-s-method-via-h-framework M m c b) and isAlreadyPrime=isAlreadyPrime, OF
- assms(1 ,2 ,3 ,4 ,5 ,6 ,7 )]

using partial-s-method-via-h-framework-completeness-and-finiteness
unfolding partial-s-method-via-h-framework-input-def [symmetric]
by (metis (no-types, lifting))

46.3 New Instances
lemma finiteness-fset-UNIV : finite (UNIV :: ′a fset set) = finite (UNIV :: ′a set)
proof

define f :: ′a ⇒ ( ′a) fset where f-def : f = (λ q . {| q |})
have inj f
proof

fix x y assume x ∈ (UNIV :: ′a set) and y ∈ UNIV and f x = f y
then show x = y unfolding f-def by (transfer ; auto)

qed

show finite (UNIV :: ′a fset set) =⇒ finite (UNIV :: ′a set)
proof (rule ccontr)

assume finite (UNIV :: ′a fset set) and ¬ finite (UNIV :: ′a set)

then have ¬ finite (f ‘ UNIV )
using ‹inj f ›
using finite-imageD by blast

then have ¬ finite (UNIV :: ′a fset set)
by (meson infinite-iff-countable-subset top-greatest)

then show False
using ‹finite (UNIV :: ′a fset set)› by auto

qed
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show finite (UNIV :: ′a set) =⇒ finite (UNIV :: ′a fset set)
proof −

assume finite (UNIV :: ′a set)
then have finite (UNIV :: ′a set set)

by (simp add: Finite-Set.finite-set)
moreover have fset ‘ (UNIV :: ′a fset set) ⊆ (UNIV :: ′a set set)

by auto
moreover have inj fset

by (meson fset-inject injI )
ultimately show ?thesis by (metis inj-on-finite)

qed
qed

instantiation fset :: (finite-UNIV ) finite-UNIV begin
definition finite-UNIV = Phantom( ′a fset) (of-phantom (finite-UNIV :: ′a fi-
nite-UNIV ))
instance by(intro-classes)(simp add: finite-UNIV-fset-def finite-UNIV finiteness-fset-UNIV )
end

derive (eq) ceq fset
derive (no) cenum fset
derive (no) ccompare fset
derive (dlist) set-impl fset

instantiation fset :: (type) cproper-interval begin
definition cproper-interval-fset :: (( ′a) fset) proper-interval

where cproper-interval-fset - - = undefined
instance by(intro-classes)(simp add: ID-None ccompare-fset-def )
end

lemma card-fPow: card (Pow (fset A)) = 2 ^ card (fset A)
using card-Pow[of fset A]
by simp

lemma finite-sets-finite-univ :
assumes finite (UNIV :: ′a set)
shows finite (xs :: ′a set)
by (metis Diff-UNIV Diff-infinite-finite assms finite-Diff )

lemma card-UNIV-fset: CARD( ′a fset) = (if CARD( ′a) = 0 then 0 else 2 ^
CARD( ′a))

apply (simp add: card-eq-0-iff )
proof

have inj fset
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by (meson fset-inject injI )
have card (UNIV :: ′a fset set) = card (fset ‘ (UNIV :: ′a fset set))

by (simp add: ‹inj fset› card-image)

show finite (UNIV :: ′a set) −→ CARD( ′a fset) = 2 ^ CARD( ′a)
proof

assume finite (UNIV :: ′a set)
then have CARD( ′a set) = 2 ^ CARD( ′a)

by (metis Pow-UNIV card-Pow)

have finite (UNIV :: ′a set set)
using ‹finite (UNIV :: ′a set)›
by (simp add: Finite-Set.finite-set)

have finite (UNIV :: ′a fset set)
using ‹finite (UNIV :: ′a set)› finiteness-fset-UNIV by auto

have
∧

xs :: ′a set . finite xs
using finite-sets-finite-univ[OF ‹finite (UNIV :: ′a set)›] .

then have (UNIV :: ′a set set) = fset ‘ (UNIV :: ′a fset set)
by (metis UNIV-I UNIV-eq-I fset-to-fset image-iff )

have CARD( ′a fset) ≤ CARD( ′a set)
unfolding ‹card (UNIV :: ′a fset set) = card (fset ‘ (UNIV :: ′a fset set))›
by (metis ‹finite (UNIV :: ′a set set)› card-mono subset-UNIV )

moreover have CARD( ′a fset) ≥ CARD( ′a set)
unfolding ‹(UNIV :: ′a set set) = fset ‘ (UNIV :: ′a fset set)›
using ‹CARD( ′a::type fset) = card (range fset)› by linarith

ultimately have CARD( ′a fset) = CARD( ′a set)
by linarith

then show CARD( ′a fset) = (2 ::nat) ^ CARD( ′a)
by (simp add: ‹CARD( ′a::type set) = (2 ::nat) ^ CARD( ′a::type)›)

qed

show infinite (UNIV :: ′a set) −→ infinite (UNIV :: ′a fset set)
by (simp add: finiteness-fset-UNIV )

qed

instantiation fset :: (card-UNIV ) card-UNIV begin
definition card-UNIV = Phantom( ′a fset)
(let c = of-phantom (card-UNIV :: ′a card-UNIV ) in if c = 0 then 0 else 2 ^ c)

instance by intro-classes (simp add: card-UNIV-fset-def card-UNIV-fset card-UNIV )
end

derive (choose) mapping-impl fset

lemma uint64-range : range nat-of-uint64 = {..<2 ^ 64}

1493



proof
show {..<2 ^ 64} ⊆ range nat-of-uint64

using uint64-nat-bij
by (metis lessThan-iff range-eqI subsetI )

have
∧

x . nat-of-uint64 x < 2^64
apply transfer using take-bit-nat-eq-self
by (metis uint64 .size-eq-length unsigned-less)

then show range nat-of-uint64 ⊆ {..<2 ^ 64}
by auto

qed

lemma card-UNIV-uint64 : CARD(uint64 ) = 2^64
proof −

have inj nat-of-uint64
apply transfer
by simp

then have bij-betw nat-of-uint64 (UNIV :: uint64 set) {..<2^64}
using uint64-range
unfolding bij-betw-def by blast

then show ?thesis
by (simp add: bij-betw-same-card)

qed

lemma nat-of-uint64-bij-betw : bij-betw nat-of-uint64 (UNIV :: uint64 set) {..<2
^ 64}

unfolding bij-betw-def
using uint64-range
by transfer (auto)

lemma uint64-UNIV : (UNIV :: uint64 set) = uint64-of-nat ‘ {..<2 ^ 64}
using nat-of-uint64-bij-betw
by (metis UNIV-I UNIV-eq-I bij-betw-def card-UNIV-uint64 imageI image-eqI

inj-on-contraD lessThan-iff rangeI uint64-nat-bij uint64-range)

lemma uint64-of-nat-bij-betw : bij-betw uint64-of-nat {..<2 ^ 64} (UNIV :: uint64
set)

unfolding bij-betw-def
proof

show inj-on uint64-of-nat {..<2 ^ 64}
using nat-of-uint64-bij-betw uint64-nat-bij
by (metis inj-on-inverseI lessThan-iff )

show uint64-of-nat ‘ {..<2 ^ 64} = UNIV
using uint64-UNIV by blast

qed

lemma uint64-finite : finite (UNIV :: uint64 set)
unfolding uint64-UNIV
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by simp

instantiation uint64 :: finite-UNIV begin
definition finite-UNIV = Phantom(uint64 ) True
instance apply intro-classes

by (simp add: finite-UNIV-uint64-def uint64-finite)
end

instantiation uint64 :: card-UNIV begin
definition card-UNIV = Phantom(uint64 ) (2^64 )
instance

by intro-classes (simp add: card-UNIV-uint64-def card-UNIV-uint64 card-UNIV )
end

instantiation uint64 :: compare
begin
definition compare-uint64 :: uint64 ⇒ uint64 ⇒ order where

compare-uint64 x y = (case (x < y, x = y) of (True,-) ⇒ Lt | (False,True) ⇒
Eq | (False,False) ⇒ Gt)

instance
apply intro-classes

proof
show

∧
x y::uint64 . invert-order (compare x y) = compare y x

proof −
fix x y::uint64 show invert-order (compare x y) = compare y x
proof (cases x = y)

case True
then show ?thesis unfolding compare-uint64-def by auto

next
case False
then show ?thesis proof (cases x < y)

case True
then show ?thesis unfolding compare-uint64-def using False

using order-less-not-sym by fastforce
next

case False
then show ?thesis unfolding compare-uint64-def using ‹x 6= y›

using linorder-less-linear by fastforce
qed

qed
qed

show
∧

x y::uint64 . compare x y = Eq =⇒ x = y
unfolding compare-uint64-def
by (metis (mono-tags) case-prod-conv old.bool.simps(3 ) old.bool.simps(4 ) or-
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der .distinct(1 ) order .distinct(3 ))

show
∧

x y z::uint64 . compare x y = Lt =⇒ compare y z = Lt =⇒ compare x z
= Lt

unfolding compare-uint64-def
by (metis (full-types, lifting) case-prod-conv old.bool.simps(3 ) old.bool.simps(4 )

order .distinct(5 ) order-less-trans)
qed
end

instantiation uint64 :: ccompare
begin
definition ccompare-uint64 :: (uint64 ⇒ uint64 ⇒ order) option where

ccompare-uint64 = Some compare

instance by (intro-classes; simp add: ccompare-uint64-def comparator-compare)
end

derive (eq) ceq uint64
derive (no) cenum uint64
derive (rbt) set-impl uint64
derive (rbt) mapping-impl uint64

instantiation uint64 :: proper-interval begin
fun proper-interval-uint64 :: uint64 proper-interval

where
proper-interval-uint64 None None = True |
proper-interval-uint64 None (Some y) = (y > 0 )|
proper-interval-uint64 (Some x) None = (x 6= uint64-of-nat (2^64−1 )) |
proper-interval-uint64 (Some x) (Some y) = (x < y ∧ x+1 < y)

instance apply intro-classes
proof −

show proper-interval None (None :: uint64 option) = True by auto

show
∧

y. proper-interval None (Some (y::uint64 )) = (∃ z. z < y)
unfolding proper-interval-uint64 .simps
apply transfer
using word-gt-a-gt-0 by auto

have
∧

x . (x 6= uint64-of-nat (2^64−1 )) = (nat-of-uint64 x 6= 2^64−1 )
proof

fix x
show (x 6= uint64-of-nat (2^64−1 )) =⇒ (nat-of-uint64 x 6= 2^64−1 )

apply transfer
by (metis Word.of-nat-unat ucast-id)

show nat-of-uint64 x 6= 2 ^ 64 − 1 =⇒ x 6= uint64-of-nat (2 ^ 64 − 1 )
by (meson diff-less pos2 uint64-nat-bij zero-less-one zero-less-power)
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qed
then show

∧
x. proper-interval (Some (x::uint64 )) None = (∃ z. x < z)

unfolding proper-interval-uint64 .simps
apply transfer

by (metis uint64 .size-eq-length unat-minus-one-word word-le-less-eq word-le-not-less
word-order .extremum)

show
∧

x y. proper-interval (Some x) (Some (y::uint64 )) = (∃ z>x. z < y)
unfolding proper-interval-uint64 .simps
apply transfer
using inc-le less-is-non-zero-p1 word-overflow
by fastforce

qed
end

instantiation uint64 :: cproper-interval begin
definition cproper-interval = (proper-interval :: uint64 proper-interval)
instance

apply intro-classes
apply (simp add: cproper-interval-uint64-def ord-defs ccompare-uint64-def ID-Some

proper-interval-class.axioms uint64-finite)
proof

fix x y :: uint64

show proper-interval None (None :: uint64 option) = True
by auto

have (∃ z. lt-of-comp compare z y) = (∃ z. z < y)
unfolding compare-uint64-def lt-of-comp-def

by (metis bool.case-eq-if case-prod-conv order .simps(7 ) order .simps(8 ) or-
der .simps(9 ))

then show proper-interval None (Some y) = (∃ z. lt-of-comp compare z y)
using proper-interval-simps(2 ) by blast

have (∃ z. lt-of-comp compare x z) = (∃ z. x < z)
unfolding compare-uint64-def lt-of-comp-def

by (metis bool.case-eq-if case-prod-conv order .simps(7 ) order .simps(8 ) or-
der .simps(9 ))

then show proper-interval (Some x) None = (∃ z. lt-of-comp compare x z)
using proper-interval-simps(3 ) by blast

have (∃ z. lt-of-comp compare x z ∧ lt-of-comp compare z y) =⇒ (∃ z>x. z < y)
unfolding compare-uint64-def lt-of-comp-def
by (metis bool.case-eq-if case-prod-conv order .simps(7 ) order .simps(9 ))

moreover have (∃ z>x. z < y) =⇒ (∃ z. lt-of-comp compare x z ∧ lt-of-comp
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compare z y)
unfolding compare-uint64-def lt-of-comp-def
unfolding proper-interval-simps(4 )[symmetric]
using compare-uint64-def
by (metis (mono-tags, lifting) ‹

∧
y x. (∃ z>x. z < y) = proper-interval (Some

x) (Some y)› case-prod-conv old.bool.simps(3 ) order .simps(8 ))
ultimately show proper-interval (Some x) (Some y) = (∃ z. lt-of-comp compare

x z ∧ lt-of-comp compare z y)
using proper-interval-simps(4 ) by blast

qed
end

46.4 Exports
fun fsm-from-list-uint64 :: uint64 ⇒ (uint64 × uint64 × uint64 × uint64 ) list ⇒
(uint64 , uint64 , uint64 ) fsm

where fsm-from-list-uint64 q ts = fsm-from-list q ts

fun fsm-from-list-integer :: integer ⇒ (integer × integer × integer × integer) list
⇒ (integer , integer , integer) fsm

where fsm-from-list-integer q ts = fsm-from-list q ts

export-code Inl
fsm-from-list
fsm-from-list-uint64
fsm-from-list-integer
size
to-prime
make-observable
rename-states
index-states
restrict-to-reachable-states
integer-of-nat
generate-reduction-test-suite-naive
generate-reduction-test-suite-greedy
w-method-via-h-framework-ts
w-method-via-h-framework-input
w-method-via-h-framework-2-ts
w-method-via-h-framework-2-input
w-method-via-spy-framework-ts
w-method-via-spy-framework-input
w-method-via-pair-framework-ts
w-method-via-pair-framework-input
wp-method-via-h-framework-ts
wp-method-via-h-framework-input
wp-method-via-spy-framework-ts
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wp-method-via-spy-framework-input
hsi-method-via-h-framework-ts
hsi-method-via-h-framework-input
hsi-method-via-spy-framework-ts
hsi-method-via-spy-framework-input
hsi-method-via-pair-framework-ts
hsi-method-via-pair-framework-input
h-method-via-h-framework-ts
h-method-via-h-framework-input
h-method-via-pair-framework-ts
h-method-via-pair-framework-input
h-method-via-pair-framework-2-ts
h-method-via-pair-framework-2-input
h-method-via-pair-framework-3-ts
h-method-via-pair-framework-3-input
spy-method-via-h-framework-ts
spy-method-via-h-framework-input
spy-method-via-spy-framework-ts
spy-method-via-spy-framework-input
spyh-method-via-h-framework-ts
spyh-method-via-h-framework-input
spyh-method-via-spy-framework-ts
spyh-method-via-spy-framework-input
partial-s-method-via-h-framework-ts
partial-s-method-via-h-framework-input

in Haskell module-name GeneratedCode file-prefix haskell-export

export-code Inl
fsm-from-list
fsm-from-list-uint64
fsm-from-list-integer
size
to-prime
make-observable
rename-states
index-states
restrict-to-reachable-states
integer-of-nat
generate-reduction-test-suite-naive
generate-reduction-test-suite-greedy
w-method-via-h-framework-ts
w-method-via-h-framework-input
w-method-via-h-framework-2-ts
w-method-via-h-framework-2-input
w-method-via-spy-framework-ts
w-method-via-spy-framework-input
w-method-via-pair-framework-ts
w-method-via-pair-framework-input
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wp-method-via-h-framework-ts
wp-method-via-h-framework-input
wp-method-via-spy-framework-ts
wp-method-via-spy-framework-input
hsi-method-via-h-framework-ts
hsi-method-via-h-framework-input
hsi-method-via-spy-framework-ts
hsi-method-via-spy-framework-input
hsi-method-via-pair-framework-ts
hsi-method-via-pair-framework-input
h-method-via-h-framework-ts
h-method-via-h-framework-input
h-method-via-pair-framework-ts
h-method-via-pair-framework-input
h-method-via-pair-framework-2-ts
h-method-via-pair-framework-2-input
h-method-via-pair-framework-3-ts
h-method-via-pair-framework-3-input
spy-method-via-h-framework-ts
spy-method-via-h-framework-input
spy-method-via-spy-framework-ts
spy-method-via-spy-framework-input
spyh-method-via-h-framework-ts
spyh-method-via-h-framework-input
spyh-method-via-spy-framework-ts
spyh-method-via-spy-framework-input
partial-s-method-via-h-framework-ts
partial-s-method-via-h-framework-input

in Scala module-name GeneratedCode file-prefix scala-export (case-insensitive)

export-code Inl
fsm-from-list
fsm-from-list-uint64
fsm-from-list-integer
size
to-prime
make-observable
rename-states
index-states
restrict-to-reachable-states
integer-of-nat
generate-reduction-test-suite-naive
generate-reduction-test-suite-greedy
w-method-via-h-framework-ts
w-method-via-h-framework-input
w-method-via-h-framework-2-ts
w-method-via-h-framework-2-input
w-method-via-spy-framework-ts

1500



w-method-via-spy-framework-input
w-method-via-pair-framework-ts
w-method-via-pair-framework-input
wp-method-via-h-framework-ts
wp-method-via-h-framework-input
wp-method-via-spy-framework-ts
wp-method-via-spy-framework-input
hsi-method-via-h-framework-ts
hsi-method-via-h-framework-input
hsi-method-via-spy-framework-ts
hsi-method-via-spy-framework-input
hsi-method-via-pair-framework-ts
hsi-method-via-pair-framework-input
h-method-via-h-framework-ts
h-method-via-h-framework-input
h-method-via-pair-framework-ts
h-method-via-pair-framework-input
h-method-via-pair-framework-2-ts
h-method-via-pair-framework-2-input
h-method-via-pair-framework-3-ts
h-method-via-pair-framework-3-input
spy-method-via-h-framework-ts
spy-method-via-h-framework-input
spy-method-via-spy-framework-ts
spy-method-via-spy-framework-input
spyh-method-via-h-framework-ts
spyh-method-via-h-framework-input
spyh-method-via-spy-framework-ts
spyh-method-via-spy-framework-input
partial-s-method-via-h-framework-ts
partial-s-method-via-h-framework-input

in SML module-name GeneratedCode file-prefix sml-export

export-code Inl
fsm-from-list
fsm-from-list-uint64
fsm-from-list-integer
size
to-prime
make-observable
rename-states
index-states
restrict-to-reachable-states
integer-of-nat
generate-reduction-test-suite-naive
generate-reduction-test-suite-greedy
w-method-via-h-framework-ts
w-method-via-h-framework-input
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w-method-via-h-framework-2-ts
w-method-via-h-framework-2-input
w-method-via-spy-framework-ts
w-method-via-spy-framework-input
w-method-via-pair-framework-ts
w-method-via-pair-framework-input
wp-method-via-h-framework-ts
wp-method-via-h-framework-input
wp-method-via-spy-framework-ts
wp-method-via-spy-framework-input
hsi-method-via-h-framework-ts
hsi-method-via-h-framework-input
hsi-method-via-spy-framework-ts
hsi-method-via-spy-framework-input
hsi-method-via-pair-framework-ts
hsi-method-via-pair-framework-input
h-method-via-h-framework-ts
h-method-via-h-framework-input
h-method-via-pair-framework-ts
h-method-via-pair-framework-input
h-method-via-pair-framework-2-ts
h-method-via-pair-framework-2-input
h-method-via-pair-framework-3-ts
h-method-via-pair-framework-3-input
spy-method-via-h-framework-ts
spy-method-via-h-framework-input
spy-method-via-spy-framework-ts
spy-method-via-spy-framework-input
spyh-method-via-h-framework-ts
spyh-method-via-h-framework-input
spyh-method-via-spy-framework-ts
spyh-method-via-spy-framework-input
partial-s-method-via-h-framework-ts
partial-s-method-via-h-framework-input

in OCaml module-name GeneratedCode file-prefix ocaml-export

end
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