
A Sequent Calculus Prover for First-Order Logic
with Functions

Asta Halkjær From Frederik Krogsdal Jacobsen

March 17, 2025

Abstract

We formalize an automated theorem prover for first-order logic with func-
tions. The proof search procedure is based on sequent calculus and we verify
its soundness and completeness using the Abstract Soundness and Abstract
Completeness theories. Our analytic completeness proof covers both open
and closed formulas. Since our deterministic prover considers only the subset
of terms relevant to proving a given sequent, we do so as well when building
a countermodel from a failed proof. We formally connect our prover with the
proof system and semantics of the existing SeCaV system. In particular, the
prover’s output can be post-processed in Haskell to generate human-readable
SeCaV proofs which are also machine-verifiable proof certificates.

Contents

1 SeCaV 2
1.1 Sequent Calculus Verifier (SeCaV) 2
1.2 Syntax: Terms / Formulas . 2
1.3 Semantics: Terms / Formulas 2
1.4 Auxiliary Functions . 3
1.5 Sequent Calculus . 4
1.6 Shorthands . 4
1.7 Appendix: Soundness . 5

1.7.1 Increment Function 5
1.7.2 Parameters: Terms . 6
1.7.3 Parameters: Formulas 6
1.7.4 Update Lemmas . 7
1.7.5 Substitution . 7
1.7.6 Auxiliary Lemmas . 8
1.7.7 Soundness . 8

1.8 Reference . 9
1.9 Appendix: Completeness . 9
1.10 Reference . 11

2 The prover 12
2.1 Proof search procedure . 12

2.1.1 Datatypes . 12
2.1.2 Auxiliary functions . 12
2.1.3 Effects of rules . 14
2.1.4 The rule stream . 15
2.1.5 Abstract completeness 15

2.2 Export . 16
2.3 Lemmas about the prover . 17

2.3.1 SeCaV lemmas . 17
2.3.2 Fairness . 18
2.3.3 Substitution . 21
2.3.4 Custom cases . 23
2.3.5 Unaffected formulas 25

1

2.3.6 Affected formulas . 26
2.3.7 Generating new function names 28
2.3.8 Finding axioms . 28
2.3.9 Subterms . 28

2.4 Hintikka sets for SeCaV . 29
2.5 Escape path formulas are Hintikka 30

2.5.1 Definitions . 30
2.5.2 Facts about streams 31
2.5.3 Transformation of states on an escape path 31
2.5.4 Preservation of formulas on escape paths 32
2.5.5 Formulas on an escape path form a Hintikka set . . . 33

2.6 Bounded semantics . 48
2.7 Countermodels from Hintikka sets 50
2.8 Soundness . 56
2.9 Completeness . 63
2.10 Results . 64

2.10.1 Alternate semantics 65
2.10.2 SeCaV . 65
2.10.3 Semantics . 66

2

Chapter 1

SeCaV

1.1 Sequent Calculus Verifier (SeCaV)
theory SeCaV imports Main begin

1.2 Syntax: Terms / Formulas
datatype tm = Fun nat ‹tm list› | Var nat

datatype fm = Pre nat ‹tm list› | Imp fm fm | Dis fm fm | Con fm fm | Exi fm
| Uni fm | Neg fm

1.3 Semantics: Terms / Formulas
definition ‹shift e v x ≡ λn. if n < v then e n else if n = v then x else e (n − 1)›

primrec semantics-term and semantics-list where
‹semantics-term e f (Var n) = e n› |
‹semantics-term e f (Fun i l) = f i (semantics-list e f l)› |
‹semantics-list e f [] = []› |
‹semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l›

primrec semantics where
‹semantics e f g (Pre i l) = g i (semantics-list e f l)› |
‹semantics e f g (Imp p q) = (semantics e f g p −→ semantics e f g q)› |
‹semantics e f g (Dis p q) = (semantics e f g p ∨ semantics e f g q)› |
‹semantics e f g (Con p q) = (semantics e f g p ∧ semantics e f g q)› |
‹semantics e f g (Exi p) = (∃ x. semantics (shift e 0 x) f g p)› |
‹semantics e f g (Uni p) = (∀ x. semantics (shift e 0 x) f g p)› |
‹semantics e f g (Neg p) = (¬ semantics e f g p)›

— Test

corollary ‹semantics e f g (Imp (Pre 0 []) (Pre 0 []))›

3

by simp

lemma ‹¬ semantics e f g (Neg (Imp (Pre 0 []) (Pre 0 [])))›
by simp

1.4 Auxiliary Functions
primrec new-term and new-list where

‹new-term c (Var n) = True› |
‹new-term c (Fun i l) = (if i = c then False else new-list c l)› |
‹new-list c [] = True› |
‹new-list c (t # l) = (if new-term c t then new-list c l else False)›

primrec new where
‹new c (Pre i l) = new-list c l› |
‹new c (Imp p q) = (if new c p then new c q else False)› |
‹new c (Dis p q) = (if new c p then new c q else False)› |
‹new c (Con p q) = (if new c p then new c q else False)› |
‹new c (Exi p) = new c p› |
‹new c (Uni p) = new c p› |
‹new c (Neg p) = new c p›

primrec news where
‹news c [] = True› |
‹news c (p # z) = (if new c p then news c z else False)›

primrec inc-term and inc-list where
‹inc-term (Var n) = Var (n + 1)› |
‹inc-term (Fun i l) = Fun i (inc-list l)› |
‹inc-list [] = []› |
‹inc-list (t # l) = inc-term t # inc-list l›

primrec sub-term and sub-list where
‹sub-term v s (Var n) = (if n < v then Var n else if n = v then s else Var (n −

1))› |
‹sub-term v s (Fun i l) = Fun i (sub-list v s l)› |
‹sub-list v s [] = []› |
‹sub-list v s (t # l) = sub-term v s t # sub-list v s l›

primrec sub where
‹sub v s (Pre i l) = Pre i (sub-list v s l)› |
‹sub v s (Imp p q) = Imp (sub v s p) (sub v s q)› |
‹sub v s (Dis p q) = Dis (sub v s p) (sub v s q)› |
‹sub v s (Con p q) = Con (sub v s p) (sub v s q)› |
‹sub v s (Exi p) = Exi (sub (v + 1) (inc-term s) p)› |
‹sub v s (Uni p) = Uni (sub (v + 1) (inc-term s) p)› |
‹sub v s (Neg p) = Neg (sub v s p)›

primrec member where

4

‹member p [] = False› |
‹member p (q # z) = (if p = q then True else member p z)›

primrec ext where
‹ext y [] = True› |
‹ext y (p # z) = (if member p y then ext y z else False)›

— Simplifications

lemma member [iff]: ‹member p z ←→ p ∈ set z›
by (induct z) simp-all

lemma ext [iff]: ‹ext y z ←→ set z ⊆ set y›
by (induct z) simp-all

1.5 Sequent Calculus
inductive sequent-calculus (‹`̀ -› 0) where

‹`̀ p # z› if ‹member (Neg p) z› |
‹`̀ Dis p q # z› if ‹`̀ p # q # z› |
‹`̀ Imp p q # z› if ‹`̀ Neg p # q # z› |
‹`̀ Neg (Con p q) # z› if ‹`̀ Neg p # Neg q # z› |
‹`̀ Con p q # z› if ‹`̀ p # z› and ‹`̀ q # z› |
‹`̀ Neg (Imp p q) # z› if ‹`̀ p # z› and ‹`̀ Neg q # z› |
‹`̀ Neg (Dis p q) # z› if ‹`̀ Neg p # z› and ‹`̀ Neg q # z› |
‹`̀ Exi p # z› if ‹`̀ sub 0 t p # z› |
‹`̀ Neg (Uni p) # z› if ‹`̀ Neg (sub 0 t p) # z› |
‹`̀ Uni p # z› if ‹`̀ sub 0 (Fun i []) p # z› and ‹news i (p # z)› |
‹`̀ Neg (Exi p) # z› if ‹`̀ Neg (sub 0 (Fun i []) p) # z› and ‹news i (p # z)› |
‹`̀ Neg (Neg p) # z› if ‹`̀ p # z› |
‹`̀ y› if ‹`̀ z› and ‹ext y z›

— Test

corollary ‹`̀ [Imp (Pre 0 []) (Pre 0 [])]›
using sequent-calculus.intros(1 ,3 ,13) ext.simps member .simps(2) by metis

1.6 Shorthands
lemmas Basic = sequent-calculus.intros(1)

lemmas AlphaDis = sequent-calculus.intros(2)
lemmas AlphaImp = sequent-calculus.intros(3)
lemmas AlphaCon = sequent-calculus.intros(4)

lemmas BetaCon = sequent-calculus.intros(5)
lemmas BetaImp = sequent-calculus.intros(6)
lemmas BetaDis = sequent-calculus.intros(7)

5

lemmas GammaExi = sequent-calculus.intros(8)
lemmas GammaUni = sequent-calculus.intros(9)

lemmas DeltaUni = sequent-calculus.intros(10)
lemmas DeltaExi = sequent-calculus.intros(11)

lemmas Neg = sequent-calculus.intros(12)

lemmas Ext = sequent-calculus.intros(13)

— Test

lemma ‹`̀
[

Imp (Pre 0 []) (Pre 0 [])
]
›

proof −
from AlphaImp have ?thesis if ‹`̀
[

Neg (Pre 0 []),
Pre 0 []

]
›
using that by simp

with Ext have ?thesis if ‹`̀
[

Pre 0 [],
Neg (Pre 0 [])

]
›
using that by simp

with Basic show ?thesis
by simp

qed

1.7 Appendix: Soundness
1.7.1 Increment Function
primrec liftt :: ‹tm ⇒ tm› and liftts :: ‹tm list ⇒ tm list› where

‹liftt (Var i) = Var (Suc i)› |
‹liftt (Fun a ts) = Fun a (liftts ts)› |
‹liftts [] = []› |
‹liftts (t # ts) = liftt t # liftts ts›

6

1.7.2 Parameters: Terms
primrec paramst :: ‹tm ⇒ nat set› and paramsts :: ‹tm list ⇒ nat set› where

‹paramst (Var n) = {}› |
‹paramst (Fun a ts) = {a} ∪ paramsts ts› |
‹paramsts [] = {}› |
‹paramsts (t # ts) = (paramst t ∪ paramsts ts)›

lemma p0 [simp]: ‹paramsts ts =
⋃
(set (map paramst ts))›

by (induct ts) simp-all

primrec paramst ′ :: ‹tm ⇒ nat set› where
‹paramst ′ (Var n) = {}› |
‹paramst ′ (Fun a ts) = {a} ∪

⋃
(set (map paramst ′ ts))›

lemma p1 [simp]: ‹paramst ′ t = paramst t›
by (induct t) simp-all

1.7.3 Parameters: Formulas
primrec params :: ‹fm ⇒ nat set› where

‹params (Pre b ts) = paramsts ts› |
‹params (Imp p q) = params p ∪ params q› |
‹params (Dis p q) = params p ∪ params q› |
‹params (Con p q) = params p ∪ params q› |
‹params (Exi p) = params p› |
‹params (Uni p) = params p› |
‹params (Neg p) = params p›

primrec params ′ :: ‹fm ⇒ nat set› where
‹params ′ (Pre b ts) =

⋃
(set (map paramst ′ ts))› |

‹params ′ (Imp p q) = params ′ p ∪ params ′ q› |
‹params ′ (Dis p q) = params ′ p ∪ params ′ q› |
‹params ′ (Con p q) = params ′ p ∪ params ′ q› |
‹params ′ (Exi p) = params ′ p› |
‹params ′ (Uni p) = params ′ p› |
‹params ′ (Neg p) = params ′ p›

lemma p2 [simp]: ‹params ′ p = params p›
by (induct p) simp-all

fun paramst ′′ :: ‹tm ⇒ nat set› where
‹paramst ′′ (Var n) = {}› |
‹paramst ′′ (Fun a ts) = {a} ∪ (

⋃
t ∈ set ts. paramst ′′ t)›

lemma p1 ′ [simp]: ‹paramst ′′ t = paramst t›
by (induct t) simp-all

fun params ′′ :: ‹fm ⇒ nat set› where
‹params ′′ (Pre b ts) = (

⋃
t ∈ set ts. paramst ′′ t)› |

7

‹params ′′ (Imp p q) = params ′′ p ∪ params ′′ q› |
‹params ′′ (Dis p q) = params ′′ p ∪ params ′′ q› |
‹params ′′ (Con p q) = params ′′ p ∪ params ′′ q› |
‹params ′′ (Exi p) = params ′′ p› |
‹params ′′ (Uni p) = params ′′ p› |
‹params ′′ (Neg p) = params ′′ p›

lemma p2 ′ [simp]: ‹params ′′ p = params p›
by (induct p) simp-all

1.7.4 Update Lemmas
lemma upd-lemma ′ [simp]:

‹n /∈ paramst t =⇒ semantics-term e (f (n := z)) t = semantics-term e f t›
‹n /∈ paramsts ts =⇒ semantics-list e (f (n := z)) ts = semantics-list e f ts›
by (induct t and ts rule: paramst.induct paramsts.induct) auto

lemma upd-lemma [iff]: ‹n /∈ params p =⇒ semantics e (f (n := z)) g p ←→
semantics e f g p›

by (induct p arbitrary: e) simp-all

1.7.5 Substitution
primrec substt :: ‹tm ⇒ tm ⇒ nat ⇒ tm› and substts :: ‹tm list ⇒ tm ⇒ nat ⇒
tm list› where

‹substt (Var i) s k = (if k < i then Var (i − 1) else if i = k then s else Var i)› |
‹substt (Fun a ts) s k = Fun a (substts ts s k)› |
‹substts [] s k = []› |
‹substts (t # ts) s k = substt t s k # substts ts s k›

primrec subst :: ‹fm ⇒ tm ⇒ nat ⇒ fm› where
‹subst (Pre b ts) s k = Pre b (substts ts s k)› |
‹subst (Imp p q) s k = Imp (subst p s k) (subst q s k)› |
‹subst (Dis p q) s k = Dis (subst p s k) (subst q s k)› |
‹subst (Con p q) s k = Con (subst p s k) (subst q s k)› |
‹subst (Exi p) s k = Exi (subst p (liftt s) (Suc k))› |
‹subst (Uni p) s k = Uni (subst p (liftt s) (Suc k))› |
‹subst (Neg p) s k = Neg (subst p s k)›

lemma shift-eq [simp]: ‹i = j =⇒ (shift e i T) j = T › for i :: nat
unfolding shift-def by simp

lemma shift-gt [simp]: ‹j < i =⇒ (shift e i T) j = e j› for i :: nat
unfolding shift-def by simp

lemma shift-lt [simp]: ‹i < j =⇒ (shift e i T) j = e (j − 1)› for i :: nat
unfolding shift-def by simp

lemma shift-commute [simp]: ‹shift (shift e i U) 0 T = shift (shift e 0 T) (Suc i)
U ›

8

unfolding shift-def by force

lemma subst-lemma ′ [simp]:
‹semantics-term e f (substt t u i) = semantics-term (shift e i (semantics-term e

f u)) f t›
‹semantics-list e f (substts ts u i) = semantics-list (shift e i (semantics-term e f

u)) f ts›
by (induct t and ts rule: substt.induct substts.induct) simp-all

lemma lift-lemma [simp]:
‹semantics-term (shift e 0 x) f (liftt t) = semantics-term e f t›
‹semantics-list (shift e 0 x) f (liftts ts) = semantics-list e f ts›
by (induct t and ts rule: liftt.induct liftts.induct) simp-all

lemma subst-lemma [iff]:
‹semantics e f g (subst a t i) ←→ semantics (shift e i (semantics-term e f t)) f g

a›
by (induct a arbitrary: e i t) simp-all

1.7.6 Auxiliary Lemmas
lemma s1 [iff]: ‹new-term c t ←→ (c /∈ paramst t)› ‹new-list c l ←→ (c /∈ paramsts
l)›

by (induct t and l rule: new-term.induct new-list.induct) simp-all

lemma s2 [iff]: ‹new c p ←→ (c /∈ params p)›
by (induct p) simp-all

lemma s3 [iff]: ‹news c z ←→ list-all (λp. c /∈ params p) z›
by (induct z) simp-all

lemma s4 [simp]: ‹inc-term t = liftt t› ‹inc-list l = liftts l›
by (induct t and l rule: inc-term.induct inc-list.induct) simp-all

lemma s5 [simp]: ‹sub-term v s t = substt t s v› ‹sub-list v s l = substts l s v›
by (induct t and l rule: inc-term.induct inc-list.induct) simp-all

lemma s6 [simp]: ‹sub v s p = subst p s v›
by (induct p arbitrary: v s) simp-all

1.7.7 Soundness
theorem sound: ‹`̀ z =⇒ ∃ p ∈ set z . semantics e f g p›
proof (induct arbitrary: f rule: sequent-calculus.induct)

case (10 i p z)
then show ?case
proof (cases ‹∀ x. semantics e (f (i := λ-. x)) g (sub 0 (Fun i []) p)›)

case False
moreover have ‹list-all (λp. i /∈ params p) z›

using 10 by simp

9

ultimately show ?thesis
using 10 Ball-set insert-iff list.set(2) upd-lemma by metis

qed simp
next

case (11 i p z)
then show ?case
proof (cases ‹∀ x. semantics e (f (i := λ-. x)) g (Neg (sub 0 (Fun i []) p))›)

case False
moreover have ‹list-all (λp. i /∈ params p) z›

using 11 by simp
ultimately show ?thesis

using 11 Ball-set insert-iff list.set(2) upd-lemma by metis
qed simp

qed force+

corollary ‹`̀ z =⇒ ∃ p. member p z ∧ semantics e f g p›
using sound by force

corollary ‹`̀ [p] =⇒ semantics e f g p›
using sound by force

corollary ‹¬ (`̀ [])›
using sound by force

1.8 Reference

Mordechai Ben-Ari (Springer 2012): Mathematical Logic for Computer Sci-
ence (Third Edition)
end
theory Sequent1 imports FOL-Seq-Calc1 .Sequent
begin

This theory exists exclusively as a shim to link the AFP theory imported
here to the Sequent-Calculus-Verifier theory.
end

1.9 Appendix: Completeness
theory Sequent-Calculus-Verifier imports Sequent1 SeCaV begin

primrec from-tm and from-tm-list where
‹from-tm (Var n) = FOL-Fitting.Var n› |
‹from-tm (Fun a ts) = App a (from-tm-list ts)› |
‹from-tm-list [] = []› |
‹from-tm-list (t # ts) = from-tm t # from-tm-list ts›

primrec from-fm where

10

‹from-fm (Pre b ts) = Pred b (from-tm-list ts)› |
‹from-fm (Con p q) = And (from-fm p) (from-fm q)› |
‹from-fm (Dis p q) = Or (from-fm p) (from-fm q)› |
‹from-fm (Imp p q) = Impl (from-fm p) (from-fm q)› |
‹from-fm (Neg p) = FOL-Fitting.Neg (from-fm p)› |
‹from-fm (Uni p) = Forall (from-fm p)› |
‹from-fm (Exi p) = Exists (from-fm p)›

primrec to-tm and to-tm-list where
‹to-tm (FOL-Fitting.Var n) = Var n› |
‹to-tm (App a ts) = Fun a (to-tm-list ts)› |
‹to-tm-list [] = []› |
‹to-tm-list (t # ts) = to-tm t # to-tm-list ts›

primrec to-fm where
‹to-fm ⊥ = Neg (Imp (Pre 0 []) (Pre 0 []))› |
‹to-fm > = Imp (Pre 0 []) (Pre 0 [])› |
‹to-fm (Pred b ts) = Pre b (to-tm-list ts)› |
‹to-fm (And p q) = Con (to-fm p) (to-fm q)› |
‹to-fm (Or p q) = Dis (to-fm p) (to-fm q)› |
‹to-fm (Impl p q) = Imp (to-fm p) (to-fm q)› |
‹to-fm (FOL-Fitting.Neg p) = Neg (to-fm p)› |
‹to-fm (Forall p) = Uni (to-fm p)› |
‹to-fm (Exists p) = Exi (to-fm p)›

theorem to-from-tm [simp]: ‹to-tm (from-tm t) = t› ‹to-tm-list (from-tm-list ts)
= ts›

by (induct t and ts rule: from-tm.induct from-tm-list.induct) simp-all

theorem to-from-fm [simp]: ‹to-fm (from-fm p) = p›
by (induct p) simp-all

lemma Truth [simp]: ‹`̀ Imp (Pre 0 []) (Pre 0 []) # z›
using AlphaImp Basic Ext ext.simps member .simps(2) by metis

lemma paramst [simp]:
‹FOL-Fitting.new-term c t = new-term c (to-tm t)›
‹FOL-Fitting.new-list c l = new-list c (to-tm-list l)›
by (induct t and l rule: FOL-Fitting.paramst.induct FOL-Fitting.paramsts.induct)

simp-all

lemma params [iff]: ‹FOL-Fitting.new c p ←→ new c (to-fm p)›
by (induct p) simp-all

lemma list-params [iff]: ‹FOL-Fitting.news c z ←→ news c (map to-fm z)›
by (induct z) simp-all

lemma liftt [simp]:
‹to-tm (FOL-Fitting.liftt t) = inc-term (to-tm t)›

11

‹to-tm-list (FOL-Fitting.liftts l) = inc-list (to-tm-list l)›
by (induct t and l rule: FOL-Fitting.liftt.induct FOL-Fitting.liftts.induct) simp-all

lemma substt [simp]:
‹to-tm (FOL-Fitting.substt t s v) = sub-term v (to-tm s) (to-tm t)›
‹to-tm-list (FOL-Fitting.substts l s v) = sub-list v (to-tm s) (to-tm-list l)›
by (induct t and l rule: FOL-Fitting.substt.induct FOL-Fitting.substts.induct)

simp-all

lemma subst [simp]: ‹to-fm (FOL-Fitting.subst A t s) = sub s (to-tm t) (to-fm A)›
by (induct A arbitrary: t s) simp-all

lemma sim: ‹(` x) =⇒ (`̀ (map to-fm x))›
by (induct rule: SC .induct) (force intro: sequent-calculus.intros)+

lemma evalt [simp]:
‹semantics-term e f t = evalt e f (from-tm t)›
‹semantics-list e f ts = evalts e f (from-tm-list ts)›
by (induct t and ts rule: from-tm.induct from-tm-list.induct) simp-all

lemma shift [simp]: ‹shift e 0 x = e〈0 :x〉›
unfolding shift-def FOL-Fitting.shift-def by simp

lemma semantics [iff]: ‹semantics e f g p ←→ eval e f g (from-fm p)›
by (induct p arbitrary: e) simp-all

abbreviation valid (‹>> -› 0) where
‹(>> p) ≡ ∀ (e :: - ⇒ nat hterm) f g. semantics e f g p›

theorem complete-sound: ‹>> p =⇒ `̀ [p]› ‹`̀ [q] =⇒ semantics e f g q›
by (metis to-from-fm sim semantics list.map SC-completeness) (use sound in

force)

corollary ‹(>> p) ←→ (`̀ [p])›
using complete-sound by fast

1.10 Reference

Asta Halkjær From (2019): Sequent Calculus https://www.isa-afp.org/entries/
FOL_Seq_Calc1.html
end

12

https://www.isa-afp.org/entries/FOL_Seq_Calc1.html
https://www.isa-afp.org/entries/FOL_Seq_Calc1.html

Chapter 2

The prover

2.1 Proof search procedure
theory Prover

imports SeCaV
HOL−Library.Stream
Abstract-Completeness.Abstract-Completeness
Abstract-Soundness.Finite-Proof-Soundness
HOL−Library.Countable
HOL−Library.Code-Lazy

begin

This theory defines the actual proof search procedure.

2.1.1 Datatypes

A sequent is a list of formulas
type-synonym sequent = ‹fm list›

We introduce a number of rules to prove sequents. These rules mirror the
proof system of SeCaV, but are higher-level in the sense that they apply to
all formulas in the sequent at once. This obviates the need for the structural
Ext rule. There is also no Basic rule, since this is implicit in the prover.
datatype rule
= AlphaDis | AlphaImp | AlphaCon
| BetaCon | BetaImp | BetaDis
| DeltaUni | DeltaExi
| NegNeg
| GammaExi | GammaUni

2.1.2 Auxiliary functions

Before defining what the rules do, we need to define a number of auxiliary
functions needed for the semantics of the rules.

13

listFunTm is a list of function and constant names in a term
primrec listFunTm :: ‹tm ⇒ nat list› and listFunTms :: ‹tm list ⇒ nat list›where

‹listFunTm (Fun n ts) = n # listFunTms ts›
| ‹listFunTm (Var n) = []›
| ‹listFunTms [] = []›
| ‹listFunTms (t # ts) = listFunTm t @ listFunTms ts›

generateNew uses the listFunTms function to obtain a fresh function index
definition generateNew :: ‹tm list ⇒ nat› where

‹generateNew ts ≡ 1 + foldr max (listFunTms ts) 0 ›

subtermTm returns a list of all terms occurring within a term
primrec subtermTm :: ‹tm ⇒ tm list› where

‹subtermTm (Fun n ts) = Fun n ts # remdups (concat (map subtermTm ts))›
| ‹subtermTm (Var n) = [Var n]›

subtermFm returns a list of all terms occurring within a formula
primrec subtermFm :: ‹fm ⇒ tm list› where

‹subtermFm (Pre - ts) = concat (map subtermTm ts)›
| ‹subtermFm (Imp p q) = subtermFm p @ subtermFm q›
| ‹subtermFm (Dis p q) = subtermFm p @ subtermFm q›
| ‹subtermFm (Con p q) = subtermFm p @ subtermFm q›
| ‹subtermFm (Exi p) = subtermFm p›
| ‹subtermFm (Uni p) = subtermFm p›
| ‹subtermFm (Neg p) = subtermFm p›

subtermFms returns a list of all terms occurring within a list of formulas
abbreviation ‹subtermFms z ≡ concat (map subtermFm z)›

subterms returns a list of all terms occurring within a sequent. This is used
to determine which terms to instantiate Gamma-formulas with. We must
always be able to instantiate Gamma-formulas, so if there are no terms in
the sequent, the function simply returns a list containing the first function.
definition subterms :: ‹sequent ⇒ tm list› where

‹subterms z ≡ case remdups (subtermFms z) of
[] ⇒ [Fun 0 []]
| ts ⇒ ts›

We need to be able to detect if a sequent is an axiom to know whether a
branch of the proof is done. The disjunct Neg (Neg p) ∈ set z is not necessary
for the prover, but makes the proof of the lemma branchDone-contradiction
easier.
fun branchDone :: ‹sequent ⇒ bool› where

‹branchDone [] = False›
| ‹branchDone (Neg p # z) = (p ∈ set z ∨ Neg (Neg p) ∈ set z ∨ branchDone z)›
| ‹branchDone (p # z) = (Neg p ∈ set z ∨ branchDone z)›

14

2.1.3 Effects of rules

This defines the resulting formulas when applying a rule to a single for-
mula. This definition mirrors the semantics of SeCaV. If the rule and the
formula do not match, the resulting formula is simply the original formula.
Parameter A should be the list of terms on the branch.
definition parts :: ‹tm list ⇒ rule ⇒ fm ⇒ fm list list› where

‹parts A r f = (case (r , f) of
(NegNeg, Neg (Neg p)) ⇒ [[p]]
| (AlphaImp, Imp p q) ⇒ [[Neg p, q]]
| (AlphaDis, Dis p q) ⇒ [[p, q]]
| (AlphaCon, Neg (Con p q)) ⇒ [[Neg p, Neg q]]
| (BetaImp, Neg (Imp p q)) ⇒ [[p], [Neg q]]
| (BetaDis, Neg (Dis p q)) ⇒ [[Neg p], [Neg q]]
| (BetaCon, Con p q) ⇒ [[p], [q]]
| (DeltaExi, Neg (Exi p)) ⇒ [[Neg (sub 0 (Fun (generateNew A) []) p)]]
| (DeltaUni, Uni p) ⇒ [[sub 0 (Fun (generateNew A) []) p]]
| (GammaExi, Exi p) ⇒ [Exi p # map (λt. sub 0 t p) A]
| (GammaUni, Neg (Uni p)) ⇒ [Neg (Uni p) # map (λt. Neg (sub 0 t p)) A]
| - ⇒ [[f]])›

This function defines the Cartesian product of two lists. This is needed to
create the list of branches created when applying a beta rule.
primrec list-prod :: ‹ ′a list list ⇒ ′a list list ⇒ ′a list list› where

‹list-prod - [] = []›
| ‹list-prod hs (t # ts) = map (λh. h @ t) hs @ list-prod hs ts›

This function computes the children of a node in the proof tree. For Alpha
rules, Delta rules and Gamma rules, there will be only one sequent, which is
the result of applying the rule to every formula in the current sequent. For
Beta rules, the proof tree will branch into two branches once for each formula
in the sequent that matches the rule, which results in 2n branches (created
using list-prod). The list of terms in the sequent needs to be updated after
applying the rule to each formula since Delta rules and Gamma rules may
introduce new terms. Note that any formulas that don’t match the rule are
left unchanged in the new sequent.
primrec children :: ‹tm list ⇒ rule ⇒ sequent ⇒ sequent list› where

‹children - - [] = [[]]›
| ‹children A r (p # z) =
(let hs = parts A r p; A ′ = remdups (A @ subtermFms (concat hs))
in list-prod hs (children A ′ r z))›

The proof state is the combination of a list of terms and a sequent.
type-synonym state = ‹tm list × sequent›

This function defines the effect of applying a rule to a proof state. If the
sequent is an axiom, the effect is to end the branch of the proof tree, so an

15

empty set of child branches is returned. Otherwise, we compute the children
generated by applying the rule to the current proof state, then add any new
subterms to the proof states of the children.
primrec effect :: ‹rule ⇒ state ⇒ state fset› where

‹effect r (A, z) =
(if branchDone z then {||} else

fimage (λz ′. (remdups (A @ subterms z @ subterms z ′), z ′))
(fset-of-list (children (remdups (A @ subtermFms z)) r z)))›

2.1.4 The rule stream

We need to define an infinite stream of rules that the prover should try to
apply. Since rules simply do nothing if they don’t fit the formulas in the
sequent, the rule stream is just all rules in the order: Alpha, Delta, Beta,
Gamma, which guarantees completeness.
definition ‹rulesList ≡ [

NegNeg, AlphaImp, AlphaDis, AlphaCon,
DeltaExi, DeltaUni,
BetaImp, BetaDis, BetaCon,
GammaExi, GammaUni

]›

By cycling the list of all rules we obtain an infinite stream with every rule
occurring infinitely often.
definition rules where

‹rules = cycle rulesList›

2.1.5 Abstract completeness

We write effect as a relation to use it with the abstract completeness frame-
work.
definition eff where

‹eff ≡ λr s ss. effect r s = ss›

To use the framework, we need to prove enabledness. This is trivial because
all of our rules are always enabled and simply do nothing if they don’t match
the formulas.
lemma all-rules-enabled: ‹∀ st. ∀ r ∈ i.R (cycle rulesList). ∃ sl. eff r st sl›

unfolding eff-def by blast

The first step of the framework is to prove that our prover fits the framework.
interpretation RuleSystem eff rules UNIV

unfolding rules-def RuleSystem-def
using all-rules-enabled stream.set-sel(1)
by blast

16

Next, we need to prove that our rules are persistent. This is also trivial,
since all of our rules are always enabled.
lemma all-rules-persistent: ‹∀ r . r ∈ R −→ per r›

by (metis all-rules-enabled enabled-def per-def rules-def)

We can then prove that our prover fully fits the framework.
interpretation PersistentRuleSystem eff rules UNIV
unfolding PersistentRuleSystem-def RuleSystem-def PersistentRuleSystem-axioms-def
using all-rules-persistent enabled-R
by blast

We can then use the framework to define the prover. The mkTree function
applies the rules to build the proof tree using the effect relation, but the
prover is not actually executable yet.
definition ‹secavProver ≡ mkTree rules›

abbreviation ‹rootSequent t ≡ snd (fst (root t))›

end

2.2 Export
theory Export

imports Prover
begin

In this theory, we make the prover executable using the code interpretation
of the abstract completeness framework and the Isabelle to Haskell code
generator.

To actually execute the prover, we need to lazily evaluate the stream of rules
to apply. Otherwise, we will never actually get to a result.
code-lazy-type stream

We would also like to make the evaluation of streams a bit more efficient.
declare Stream.smember-code [code del]
lemma [code]: Stream.smember x (y ## s) = (x = y ∨ Stream.smember x s)

unfolding Stream.smember-def by auto

To export code to Haskell, we need to specify that functions on the option
type should be exported into the equivalent functions on the Maybe monad.
code-printing

constant the ⇀ (Haskell) MaybeExt.fromJust
| constant Option.is-none ⇀ (Haskell) MaybeExt.isNothing

To use the Maybe monad, we need to import it, so we add a shim to do so
in every module.

17

code-printing code-module MaybeExt ⇀ (Haskell)
‹module MaybeExt(fromJust, isNothing) where

import Data.Maybe(fromJust, isNothing);›

The default export setup will create a cycle of module imports, so we roll
most of the theories into one module when exporting to Haskell to prevent
this.
code-identifier

code-module Stream ⇀ (Haskell) Prover
| code-module Prover ⇀ (Haskell) Prover
| code-module Export ⇀ (Haskell) Prover
| code-module Option ⇀ (Haskell) Prover
| code-module MaybeExt ⇀ (Haskell) Prover
| code-module Abstract-Completeness ⇀ (Haskell) Prover

Finally, we define an executable version of the prover using the code in-
terpretation from the framework, and a version where the list of terms is
initially empty.
definition ‹secavTreeCode ≡ i.mkTree (λr s. Some (effect r s)) rules›
definition ‹secavProverCode ≡ λz . secavTreeCode ([], z)›

We then export this version of the prover into Haskell.
export-code open secavProverCode in Haskell

end

2.3 Lemmas about the prover
theory ProverLemmas imports Prover begin

This theory contains a number of lemmas about the prover. We will need
these when proving soundness and completeness.

2.3.1 SeCaV lemmas

We need a few lemmas about the SeCaV system.

Incrementing variable indices does not change the function names in term
or a list of terms.
lemma paramst-liftt [simp]:

‹paramst (liftt t) = paramst t› ‹paramsts (liftts ts) = paramsts ts›
by (induct t and ts rule: liftt.induct liftts.induct) auto

Subterms do not contain any functions except those in the original term
lemma paramst-sub-term:

‹paramst (sub-term m s t) ⊆ paramst s ∪ paramst t›

18

‹paramsts (sub-list m s l) ⊆ paramst s ∪ paramsts l›
by (induct t and l rule: sub-term.induct sub-list.induct) auto

Substituting a variable for a term does not introduce function names not in
that term
lemma params-sub: ‹params (sub m t p) ⊆ paramst t ∪ params p›
proof (induct p arbitrary: m t)

case (Pre x1 x2)
then show ?case

using paramst-sub-term(2) by simp
qed fastforce+

abbreviation ‹paramss z ≡
⋃

p ∈ set z . params p›

If a function name is fresh, it is not in the list of function names in the
sequent
lemma news-paramss: ‹news i z ←→ i /∈ paramss z›

by (induct z) auto

If a list of terms is a subset of another, the set of function names in it is too
lemma paramsts-subset: ‹set A ⊆ set B =⇒ paramsts A ⊆ paramsts B›

by (induct A) auto

Substituting a variable by a term does not change the depth of a formula
(only the term size changes)
lemma size-sub [simp]: ‹size (sub i t p) = size p›

by (induct p arbitrary: i t) auto

2.3.2 Fairness

While fairness of the rule stream should be pretty trivial (since we are simply
repeating a static list of rules forever), the proof is a bit involved.

This function tells us what rule comes next in the stream.
primrec next-rule :: ‹rule ⇒ rule› where

‹next-rule NegNeg = AlphaImp›
| ‹next-rule AlphaImp = AlphaDis›
| ‹next-rule AlphaDis = AlphaCon›
| ‹next-rule AlphaCon = DeltaExi›
| ‹next-rule DeltaExi = DeltaUni›
| ‹next-rule DeltaUni = BetaImp›
| ‹next-rule BetaImp = BetaDis›
| ‹next-rule BetaDis = BetaCon›
| ‹next-rule BetaCon = GammaExi›
| ‹next-rule GammaExi = GammaUni›
| ‹next-rule GammaUni = NegNeg›

This function tells us the index of a rule in the list of rules to repeat.

19

primrec rule-index :: ‹rule ⇒ nat› where
‹rule-index NegNeg = 0 ›
| ‹rule-index AlphaImp = 1 ›
| ‹rule-index AlphaDis = 2 ›
| ‹rule-index AlphaCon = 3 ›
| ‹rule-index DeltaExi = 4 ›
| ‹rule-index DeltaUni = 5 ›
| ‹rule-index BetaImp = 6 ›
| ‹rule-index BetaDis = 7 ›
| ‹rule-index BetaCon = 8 ›
| ‹rule-index GammaExi = 9 ›
| ‹rule-index GammaUni = 10 ›

The list of rules does not have any duplicates. This is important because
we can then look up rules by their index.
lemma distinct-rulesList: ‹distinct rulesList›

unfolding rulesList-def by simp

If you cycle a list, it repeats every length elements.
lemma cycle-nth: ‹xs 6= [] =⇒ cycle xs !! n = xs ! (n mod length xs)›
by (metis cycle.sel(1) hd-rotate-conv-nth rotate-conv-mod sdrop-cycle sdrop-simps(1))

The rule index function can actually be used to look up rules in the list.
lemma nth-rule-index: ‹rulesList ! (rule-index r) = r›

unfolding rulesList-def by (cases r) simp-all

lemma rule-index-bnd: ‹rule-index r < length rulesList›
unfolding rulesList-def by (cases r) simp-all

lemma unique-rule-index:
assumes ‹n < length rulesList› ‹rulesList ! n = r›
shows ‹n = rule-index r›
using assms nth-rule-index distinct-rulesList rule-index-bnd nth-eq-iff-index-eq

by metis

The rule indices repeat in the stream each cycle.
lemma rule-index-mod:

assumes ‹rules !! n = r›
shows ‹n mod length rulesList = rule-index r›

proof −
have ‹n mod length rulesList < length rulesList›

by (simp add: rulesList-def)
moreover have ‹rulesList ! (n mod length rulesList) = r›
using assms cycle-nth unfolding rules-def rulesList-def by (metis list.distinct(1))

ultimately show ?thesis
by (rule unique-rule-index)

qed

20

We need some lemmas about the modulo function to show that the rules
repeat at the right rate.
lemma mod-hit:

fixes k :: nat
assumes ‹0 < k›
shows ‹∀ i < k. ∃n > m. n mod k = i›

proof safe
fix i
let ?n = ‹(1 + m) ∗ k + i›
assume ‹i < k›
then have ‹?n mod k = i›

by (metis mod-less mod-mult-self3)
moreover have ‹?n > m›

using assms
by (metis One-nat-def Suc-eq-plus1-left Suc-leI add.commute add-lessD1 less-add-one

mult.right-neutral nat-mult-less-cancel1 order-le-less trans-less-add1 zero-less-one)
ultimately show ‹∃n > m. n mod k = i›

by fast
qed

lemma mod-suff :
assumes ‹∀ (n :: nat) > m. P (n mod k)› ‹0 < k›
shows ‹∀ i < k. P i›
using assms mod-hit by blast

It is always possible to find an index after some point that results in any
given rule.
lemma rules-repeat: ‹∃n > m. rules !! n = r›
proof (rule ccontr)

assume ‹¬ (∃n > m. rules !! n = r)›
then have ‹¬ (∃n > m. n mod length rulesList = rule-index r)›

using rule-index-mod nth-rule-index by metis
then have ‹∀n > m. n mod length rulesList 6= rule-index r›

by blast
moreover have ‹length rulesList > 0 ›

unfolding rulesList-def by simp
ultimately have ‹∀ k < length rulesList. k 6= rule-index r›

using mod-suff [where P=‹λa. a 6= rule-index r›] by blast
then show False

using rule-index-bnd by blast
qed

It is possible to find such an index no matter where in the stream we start.
lemma rules-repeat-sdrop: ‹∃n. (sdrop k rules) !! n = r›

using rules-repeat by (metis less-imp-add-positive sdrop-snth)

Using the lemma above, we prove that the stream of rules is fair by coin-
duction.

21

lemma fair-rules: ‹fair rules›
proof −

{ fix r assume ‹r ∈ R›
then obtain m where r : ‹r = rules !! m› unfolding sset-range by blast
{ fix n :: nat and rs let ?rules = ‹λn. sdrop n rules›

assume ‹n > 0 ›
then have ‹alw (ev (holds ((=) r))) (rs @− ?rules n)›
proof (coinduction arbitrary: n rs)

case alw
show ?case
proof (rule exI [of - ‹rs @− ?rules n›], safe)

show ‹∃n ′ rs ′. stl (rs @− ?rules n) = rs ′ @− ?rules n ′ ∧ n ′ > 0 ›
proof (cases rs)

case Nil then show ?thesis unfolding alw
by (metis sdrop-simps(2) shift.simps(1) zero-less-Suc)

qed (auto simp: alw intro: exI [of - n])
next

have ‹ev (holds ((=) r)) (sdrop n rules)›
unfolding ev-holds-sset using rules-repeat-sdrop by (metis snth-sset)

then show ‹ev (holds ((=) r)) (rs @− sdrop n rules)›
unfolding ev-holds-sset by simp

qed
qed

}
}
then show ‹fair rules› unfolding fair-def
by (metis (full-types) alw-iff-sdrop ev-holds-sset neq0-conv order-refl sdrop.simps(1)

stake-sdrop)
qed

2.3.3 Substitution

We need some lemmas about substitution of variables for terms for the Delta
and Gamma rules.

If a term is a subterm of another, so are all of its subterms.
lemma subtermTm-le: ‹t ∈ set (subtermTm s) =⇒ set (subtermTm t) ⊆ set (subtermTm
s)›

by (induct s) auto

Trying to substitute a variable that is not in the term does nothing (contra-
positively).
lemma sub-term-const-transfer :

‹sub-term m (Fun a []) t 6= sub-term m s t =⇒
Fun a [] ∈ set (subtermTm (sub-term m (Fun a []) t))›

‹sub-list m (Fun a []) ts 6= sub-list m s ts =⇒
Fun a [] ∈ (

⋃
t ∈ set (sub-list m (Fun a []) ts). set (subtermTm t))›

proof (induct t and ts rule: sub-term.induct sub-list.induct)
case (Var x)

22

then show ?case
by (metis list.set-intros(1) sub-term.simps(1) subtermTm.simps(1))

qed auto

If substituting different terms makes a difference, then the substitution has
an effect.
lemma sub-const-transfer :

assumes ‹sub m (Fun a []) p 6= sub m t p›
shows ‹Fun a [] ∈ set (subtermFm (sub m (Fun a []) p))›
using assms

proof (induct p arbitrary: m t)
case (Pre i l)
then show ?case

using sub-term-const-transfer(2) by simp
qed auto

If the list of subterms is empty for all formulas in a sequent, constant 0 is
used instead.
lemma set-subterms:

fixes z
defines ‹ts ≡

⋃
p ∈ set z. set (subtermFm p)›

shows ‹set (subterms z) = (if ts = {} then {Fun 0 []} else ts)›
proof −
have ∗: ‹set (remdups (concat (map subtermFm z))) = (

⋃
p ∈ set z. set (subtermFm

p))›
by (induct z) auto

then show ?thesis
proof (cases ‹ts = {}›)

case True
then show ?thesis

unfolding subterms-def ts-def using ∗
by (metis list.simps(15) list.simps(4) set-empty)

next
case False
then show ?thesis

unfolding subterms-def ts-def using ∗
by (metis empty-set list.exhaust list.simps(5))

qed
qed

The parameters and the subterm functions respect each other.
lemma paramst-subtermTm:

‹∀ i ∈ paramst t. ∃ l. Fun i l ∈ set (subtermTm t)›
‹∀ i ∈ paramsts ts. ∃ l. Fun i l ∈ (

⋃
t ∈ set ts. set (subtermTm t))›

by (induct t and ts rule: paramst.induct paramsts.induct) fastforce+

lemma params-subtermFm: ‹∀ i ∈ params p. ∃ l. Fun i l ∈ set (subtermFm p)›
proof (induct p)

23

case (Pre x1 x2)
then show ?case

using paramst-subtermTm by simp
qed auto

lemma subtermFm-subset-params: ‹set (subtermFm p) ⊆ set A =⇒ params p ⊆
paramsts A›

using params-subtermFm by force

2.3.4 Custom cases

Some proofs are more efficient with some custom case lemmas.
lemma Neg-exhaust
[case-names Pre Imp Dis Con Exi Uni NegPre NegImp NegDis NegCon NegExi

NegUni NegNeg]:
assumes

‹
∧

i ts. x = Pre i ts =⇒ P›
‹
∧

p q. x = Imp p q =⇒ P›
‹
∧

p q. x = Dis p q =⇒ P›
‹
∧

p q. x = Con p q =⇒ P›
‹
∧

p. x = Exi p =⇒ P›
‹
∧

p. x = Uni p =⇒ P›
‹
∧

i ts. x = Neg (Pre i ts) =⇒ P›
‹
∧

p q. x = Neg (Imp p q) =⇒ P›
‹
∧

p q. x = Neg (Dis p q) =⇒ P›
‹
∧

p q. x = Neg (Con p q) =⇒ P›
‹
∧

p. x = Neg (Exi p) =⇒ P›
‹
∧

p. x = Neg (Uni p) =⇒ P›
‹
∧

p. x = Neg (Neg p) =⇒ P›
shows P
using assms

proof (induct x)
case (Neg p)
then show ?case

by (cases p) simp-all
qed simp-all

lemma parts-exhaust
[case-names AlphaDis AlphaImp AlphaCon BetaDis BetaImp BetaCon

DeltaUni DeltaExi NegNeg GammaExi GammaUni Other]:
assumes

‹
∧

p q. r = AlphaDis =⇒ x = Dis p q =⇒ P›
‹
∧

p q. r = AlphaImp =⇒ x = Imp p q =⇒ P›
‹
∧

p q. r = AlphaCon =⇒ x = Neg (Con p q) =⇒ P›
‹
∧

p q. r = BetaDis =⇒ x = Neg (Dis p q) =⇒ P›
‹
∧

p q. r = BetaImp =⇒ x = Neg (Imp p q) =⇒ P›
‹
∧

p q. r = BetaCon =⇒ x = Con p q =⇒ P›
‹
∧

p. r = DeltaUni =⇒ x = Uni p =⇒ P›
‹
∧

p. r = DeltaExi =⇒ x = Neg (Exi p) =⇒ P›

24

‹
∧

p. r = NegNeg =⇒ x = Neg (Neg p) =⇒ P›
‹
∧

p. r = GammaExi =⇒ x = Exi p =⇒ P›
‹
∧

p. r = GammaUni =⇒ x = Neg (Uni p) =⇒ P›
‹∀A. parts A r x = [[x]] =⇒ P›

shows P
using assms

proof (cases r)
case BetaCon
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (Con p q)
then show ?thesis

using BetaCon assms by blast
qed (simp-all add: parts-def)

next
case BetaImp
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (NegImp p q)
then show ?thesis

using BetaImp assms by blast
qed (simp-all add: parts-def)

next
case DeltaUni
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (Uni p)
then show ?thesis

using DeltaUni assms by fast
qed (simp-all add: parts-def)

next
case DeltaExi
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (NegExi p)
then show ?thesis

using DeltaExi assms by fast
qed (simp-all add: parts-def)

next
case n: NegNeg
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (NegNeg p)
then show ?thesis

25

using n assms by fast
qed (simp-all add: parts-def)

next
case GammaExi
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (Exi p)
then show ?thesis

using GammaExi assms by fast
qed (simp-all add: parts-def)

next
case GammaUni
then show ?thesis

using assms
proof (cases x rule: Neg-exhaust)

case (NegUni p)
then show ?thesis

using GammaUni assms by fast
qed (simp-all add: parts-def)

qed (cases x rule: Neg-exhaust, simp-all add: parts-def)+

2.3.5 Unaffected formulas

We need some lemmas to show that formulas to which rules do not apply
are not lost.

This function returns True if the rule applies to the formula, and False
otherwise.
definition affects :: ‹rule ⇒ fm ⇒ bool› where

‹affects r p ≡ case (r , p) of
(AlphaDis, Dis - -) ⇒ True
| (AlphaImp, Imp - -) ⇒ True
| (AlphaCon, Neg (Con - -)) ⇒ True
| (BetaCon, Con - -) ⇒ True
| (BetaImp, Neg (Imp - -)) ⇒ True
| (BetaDis, Neg (Dis - -)) ⇒ True
| (DeltaUni, Uni -) ⇒ True
| (DeltaExi, Neg (Exi -)) ⇒ True
| (NegNeg, Neg (Neg -)) ⇒ True
| (GammaExi, Exi -) ⇒ False
| (GammaUni, Neg (Uni -)) ⇒ False
| (-, -) ⇒ False›

If a rule does not affect a formula, that formula will be in the sequent
obtained after applying the rule.
lemma parts-preserves-unaffected:

assumes ‹¬ affects r p› ‹z ′ ∈ set (parts A r p)›

26

shows ‹p ∈ set z ′›
using assms unfolding affects-def
by (cases r p rule: parts-exhaust) (simp-all add: parts-def)

The list-prod function computes the Cartesian product.
lemma list-prod-is-cartesian:

‹set (list-prod hs ts) = {h @ t |h t. h ∈ set hs ∧ t ∈ set ts}›
by (induct ts) auto

The children function produces the Cartesian product of the branches from
the first formula and the branches from the rest of the sequent.
lemma set-children-Cons:

‹set (children A r (p # z)) =
{hs @ ts |hs ts. hs ∈ set (parts A r p) ∧

ts ∈ set (children (remdups (A @ subtermFms (concat (parts A r p)))) r z)}›
using list-prod-is-cartesian by (metis children.simps(2))

The children function does not change unaffected formulas.
lemma children-preserves-unaffected:

assumes ‹p ∈ set z› ‹¬ affects r p› ‹z ′ ∈ set (children A r z)›
shows ‹p ∈ set z ′›
using assms parts-preserves-unaffected set-children-Cons
by (induct z arbitrary: A z ′) auto

The effect function does not change unaffected formulas.
lemma effect-preserves-unaffected:

assumes ‹p ∈ set z› and ‹¬ affects r p› and ‹(B, z ′) |∈| effect r (A, z)›
shows ‹p ∈ set z ′›
using assms children-preserves-unaffected
unfolding effect-def
by (smt (verit, best) Pair-inject femptyE fimageE fset-of-list-elem old.prod.case)

2.3.6 Affected formulas

We need some lemmas to show that formulas to which rules do apply are
decomposed into their constituent parts correctly.

If a formula occurs in a sequent on a child branch generated by children, it
was part of the current sequent.
lemma parts-in-children:

assumes ‹p ∈ set z› ‹z ′ ∈ set (children A r z)›
shows ‹∃B xs. set A ⊆ set B ∧ xs ∈ set (parts B r p) ∧ set xs ⊆ set z ′›
using assms

proof (induct z arbitrary: A z ′)
case (Cons a -)
then show ?case
proof (cases ‹a = p›)

27

case True
then show ?thesis

using Cons(3) set-children-Cons by fastforce
next

case False
then show ?thesis

using Cons set-children-Cons
by (smt (verit, del-insts) le-sup-iff mem-Collect-eq set-ConsD set-append

set-remdups subset-trans sup-ge2)
qed

qed simp

If effect contains something, then the input sequent is not an axiom.
lemma ne-effect-not-branchDone: ‹(B, z ′) |∈| effect r (A, z) =⇒ ¬ branchDone z›

by (cases ‹branchDone z›) simp-all

The effect function decomposes formulas in the sequent using the parts func-
tion. (Unless the sequent is an axiom, in which case no child branches are
generated.)
lemma parts-in-effect:

assumes ‹p ∈ set z› and ‹(B, z ′) |∈| effect r (A, z)›
shows ‹∃C xs. set A ⊆ set C ∧ xs ∈ set (parts C r p) ∧ set xs ⊆ set z ′›
using assms parts-in-children ne-effect-not-branchDone
by (smt (verit, ccfv-threshold) Pair-inject effect.simps fimageE fset-of-list-elem

le-sup-iff
set-append set-remdups)

Specifically, this applied to the double negation elimination rule and the
GammaUni rule.
corollary ‹Neg (Neg p) ∈ set z =⇒ (B, z ′) |∈| effect NegNeg (A, z) =⇒ p ∈ set
z ′›

using parts-in-effect unfolding parts-def by fastforce

corollary ‹Neg (Uni p) ∈ set z =⇒ (B, z ′) |∈| effect GammaUni (A, z) =⇒
set (map (λt. Neg (sub 0 t p)) A) ⊆ set z ′›

using parts-in-effect unfolding parts-def by fastforce

If the sequent is not an axiom, and the rule and sequent match, all of the
child branches generated by children will be included in the proof tree.
lemma eff-children:

assumes ‹¬ branchDone z› ‹eff r (A, z) ss›
shows ‹∀ z ′ ∈ set (children (remdups (A @ subtermFms z)) r z). ∃B. (B, z ′) |∈|

ss›
using assms unfolding eff-def using fset-of-list-elem by fastforce

28

2.3.7 Generating new function names

We need to show that the generateNew function actually generates new
function names. This requires a few lemmas about the interplay between
max and foldr.
lemma foldr-max:

fixes xs :: ‹nat list›
shows ‹foldr max xs 0 = (if xs = [] then 0 else Max (set xs))›
by (induct xs) simp-all

lemma Suc-max-new:
fixes xs :: ‹nat list›
shows ‹Suc (foldr max xs 0) /∈ set xs›

proof (cases xs)
case (Cons x xs)
then have ‹foldr max (x # xs) 0 = Max (set (x # xs))›

using foldr-max by simp
then show ?thesis

using Cons by (metis List.finite-set Max.insert add-0 empty-iff list.set(2)
max-0-1 (2)

n-not-Suc-n nat-add-max-left plus-1-eq-Suc remdups.simps(2) set-remdups)
qed simp

lemma listFunTm-paramst: ‹set (listFunTm t) = paramst t› ‹set (listFunTms ts)
= paramsts ts›

by (induct t and ts rule: paramst.induct paramsts.induct) auto

2.3.8 Finding axioms

The branchDone function correctly determines whether a sequent is an ax-
iom.
lemma branchDone-contradiction: ‹branchDone z ←→ (∃ p. p ∈ set z ∧ Neg p ∈
set z)›

by (induct z rule: branchDone.induct) auto

2.3.9 Subterms

We need a few lemmas about the behaviour of our subterm functions.

Any term is a subterm of itself.
lemma subtermTm-refl [simp]: ‹t ∈ set (subtermTm t)›

by (induct t) simp-all

The arguments of a predicate are subterms of it.
lemma subterm-Pre-refl: ‹set ts ⊆ set (subtermFm (Pre n ts))›

by (induct ts) auto

The arguments of function are subterms of it.

29

lemma subterm-Fun-refl: ‹set ts ⊆ set (subtermTm (Fun n ts))›
by (induct ts) auto

This function computes the predicates in a formula. We will use this function
to help prove the final lemma in this section.
primrec preds :: ‹fm ⇒ fm set› where

‹preds (Pre n ts) = {Pre n ts}›
| ‹preds (Imp p q) = preds p ∪ preds q›
| ‹preds (Dis p q) = preds p ∪ preds q›
| ‹preds (Con p q) = preds p ∪ preds q›
| ‹preds (Exi p) = preds p›
| ‹preds (Uni p) = preds p›
| ‹preds (Neg p) = preds p›

If a term is a subterm of a formula, it is a subterm of some predicate in the
formula.
lemma subtermFm-preds: ‹t ∈ set (subtermFm p) ←→ (∃ pre ∈ preds p. t ∈ set
(subtermFm pre))›

by (induct p) auto

lemma preds-shape: ‹pre ∈ preds p =⇒ ∃n ts. pre = Pre n ts›
by (induct p) auto

If a function is a subterm of a formula, so are the arguments of that function.
lemma fun-arguments-subterm:

assumes ‹Fun n ts ∈ set (subtermFm p)›
shows ‹set ts ⊆ set (subtermFm p)›

proof −
obtain pre where pre: ‹pre ∈ preds p› ‹Fun n ts ∈ set (subtermFm pre)›

using assms subtermFm-preds by blast
then obtain n ′ ts ′ where ‹pre = Pre n ′ ts ′›

using preds-shape by blast
then have ‹set ts ⊆ set (subtermFm pre)›

using subtermTm-le pre by force
then have ‹set ts ⊆ set (subtermFm p)›

using pre subtermFm-preds by blast
then show ?thesis

by blast
qed

end

2.4 Hintikka sets for SeCaV
theory Hintikka

imports Prover
begin

30

In this theory, we define the concept of a Hintikka set for SeCaV formulas.
The definition mirrors the SeCaV proof system such that Hintikka sets are
downwards closed with respect to the proof system.

This defines the set of all terms in a set of formulas (containing Fun 0 [] if
it would otherwise be empty).
definition

‹terms H ≡ if (
⋃

p ∈ H . set (subtermFm p)) = {} then {Fun 0 []}
else (

⋃
p ∈ H . set (subtermFm p))›

locale Hintikka =
fixes H :: ‹fm set›
assumes

Basic: ‹Pre n ts ∈ H =⇒ Neg (Pre n ts) /∈ H › and
AlphaDis: ‹Dis p q ∈ H =⇒ p ∈ H ∧ q ∈ H › and
AlphaImp: ‹Imp p q ∈ H =⇒ Neg p ∈ H ∧ q ∈ H › and
AlphaCon: ‹Neg (Con p q) ∈ H =⇒ Neg p ∈ H ∧ Neg q ∈ H › and
BetaCon: ‹Con p q ∈ H =⇒ p ∈ H ∨ q ∈ H › and
BetaImp: ‹Neg (Imp p q) ∈ H =⇒ p ∈ H ∨ Neg q ∈ H › and
BetaDis: ‹Neg (Dis p q) ∈ H =⇒ Neg p ∈ H ∨ Neg q ∈ H › and
GammaExi: ‹Exi p ∈ H =⇒ ∀ t ∈ terms H . sub 0 t p ∈ H › and
GammaUni: ‹Neg (Uni p) ∈ H =⇒ ∀ t ∈ terms H . Neg (sub 0 t p) ∈ H › and
DeltaUni: ‹Uni p ∈ H =⇒ ∃ t ∈ terms H . sub 0 t p ∈ H › and
DeltaExi: ‹Neg (Exi p) ∈ H =⇒ ∃ t ∈ terms H . Neg (sub 0 t p) ∈ H › and
Neg: ‹Neg (Neg p) ∈ H =⇒ p ∈ H ›

end

2.5 Escape path formulas are Hintikka
theory EPathHintikka imports Hintikka ProverLemmas begin

In this theory, we show that the formulas in the sequents on a saturated
escape path in a proof tree form a Hintikka set. This is a crucial part of our
completeness proof.

2.5.1 Definitions

In this section we define a few concepts that make the following proofs easier
to read.

pseq is the sequent in a node.
definition pseq :: ‹state × rule ⇒ sequent› where

‹pseq z = snd (fst z)›

ptms is the list of terms in a node.
definition ptms :: ‹state × rule ⇒ tm list› where

‹ptms z = fst (fst z)›

31

2.5.2 Facts about streams

Escape paths are infinite, so if you drop the first n nodes, you are still on
the path.
lemma epath-sdrop: ‹epath steps =⇒ epath (sdrop n steps)›

by (induct n) (auto elim: epath.cases)

Dropping the first n elements of a stream can only reduce the set of elements
in the stream.
lemma sset-sdrop: ‹sset (sdrop n s) ⊆ sset s›
proof (induct n arbitrary: s)

case (Suc n)
then show ?case

by (metis in-mono sdrop-simps(2) stl-sset subsetI)
qed simp

2.5.3 Transformation of states on an escape path

We need to prove some lemmas about how the states of an escape path are
connected.

Since escape paths are well-formed, the eff relation holds between the nodes
on the path.
lemma epath-eff :

assumes ‹epath steps› ‹eff (snd (shd steps)) (fst (shd steps)) ss›
shows ‹fst (shd (stl steps)) |∈| ss›
using assms by (metis (mono-tags, lifting) epath.simps eff-def)

The list of terms in a state contains the terms of the current sequent and
the terms from the previous state.
lemma effect-tms:

assumes ‹(B, z ′) |∈| effect r (A, z)›
shows ‹B = remdups (A @ subterms z @ subterms z ′)›
using assms by (smt (verit, best) effect.simps fempty-iff fimageE prod.simps(1))

The two previous lemmas can be combined into a single lemma.
lemma epath-effect:

assumes ‹epath steps› ‹shd steps = ((A, z), r)›
shows ‹∃B z ′ r ′. (B, z ′) |∈| effect r (A, z) ∧ shd (stl steps) = ((B, z ′), r ′) ∧

(B = remdups (A @ subterms z @ subterms z ′))›
using assms epath-eff effect-tms
by (metis (mono-tags, lifting) eff-def fst-conv prod.collapse snd-conv)

The list of terms in the next state on an escape path contains the terms in
the current state plus the terms from the next state.
lemma epath-stl-ptms:

assumes ‹epath steps›

32

shows ‹ptms (shd (stl steps)) = remdups (ptms (shd steps) @
subterms (pseq (shd steps)) @ subterms (pseq (shd (stl steps))))›

using assms epath-effect
by (metis (mono-tags) eff-def effect-tms epath-eff pseq-def ptms-def surjective-pairing)

The list of terms never decreases on an escape path.
lemma epath-sdrop-ptms:

assumes ‹epath steps›
shows ‹set (ptms (shd steps)) ⊆ set (ptms (shd (sdrop n steps)))›
using assms

proof (induct n)
case (Suc n)
then have ‹epath (sdrop n steps)›

using epath-sdrop by blast
then show ?case

using Suc epath-stl-ptms by fastforce
qed simp

2.5.4 Preservation of formulas on escape paths

If a property will eventually hold on a path, there is some index from which
it begins to hold, and before which it does not hold.
lemma ev-prefix-sdrop:

assumes ‹ev (holds P) xs›
shows ‹∃n. list-all (not P) (stake n xs) ∧ holds P (sdrop n xs)›
using assms

proof (induct xs)
case (base xs)
then show ?case

by (metis list.pred-inject(1) sdrop.simps(1) stake.simps(1))
next

case (step xs)
then show ?case

by (metis holds.elims(1) list.pred-inject(2) list-all-simps(2) sdrop.simps(1−2)
stake.simps(1−2))
qed

More specifically, the path will consists of a prefix and a suffix for which the
property does not hold and does hold, respectively.
lemma ev-prefix:

assumes ‹ev (holds P) xs›
shows ‹∃ pre suf . list-all (not P) pre ∧ holds P suf ∧ xs = pre @− suf ›
using assms ev-prefix-sdrop by (metis stake-sdrop)

All rules are always enabled, so they are also always enabled at specific steps.
lemma always-enabledAtStep: ‹enabledAtStep r xs›

by (simp add: RuleSystem-Defs.enabled-def eff-def)

33

If a formula is in the sequent in the first state of an escape path and none
of the rule applications in some prefix of the path affect that formula, the
formula will still be in the sequent after that prefix.
lemma epath-preserves-unaffected:

assumes ‹p ∈ set (pseq (shd steps))› and ‹epath steps› and ‹steps = pre @−
suf › and

‹list-all (not (λstep. affects (snd step) p)) pre›
shows ‹p ∈ set (pseq (shd suf))›
using assms

proof (induct pre arbitrary: steps)
case Nil
then show ?case

by simp
next

case (Cons q pre)
from this(3) show ?case
proof cases

case (epath sl)
from this(2−4) show ?thesis
using Cons(1−2 , 4−5) effect-preserves-unaffected unfolding eff-def pseq-def

list-all-def
by (metis (no-types, lifting) list.sel(1) list.set-intros(1−2) prod.exhaust-sel

shift.simps(2) shift-simps(1) stream.sel(2))
qed

qed

2.5.5 Formulas on an escape path form a Hintikka set

This definition captures the set of formulas on an entire path
definition ‹tree-fms steps ≡

⋃
ss ∈ sset steps. set (pseq ss)›

The sequent at the head of a path is in the set of formulas on that path
lemma pseq-in-tree-fms: ‹[[x ∈ sset steps; p ∈ set (pseq x)]] =⇒ p ∈ tree-fms steps›

using pseq-def tree-fms-def by blast

If a formula is in the set of formulas on a path, there is some index on the
path where that formula can be found in the sequent.
lemma tree-fms-in-pseq: ‹p ∈ tree-fms steps =⇒ ∃n. p ∈ set (pseq (steps !! n))›

unfolding pseq-def tree-fms-def using sset-range[of steps] by simp

If a path is saturated, so is any suffix of that path (since saturation is defined
in terms of the always operator).
lemma Saturated-sdrop: ‹Saturated steps =⇒ Saturated (sdrop n steps)›

by (simp add: RuleSystem-Defs.Saturated-def alw-iff-sdrop saturated-def)

This is an abbreviation that determines whether a given rule is applied in a
given state.

34

abbreviation ‹is-rule r step ≡ snd step = r›

If a path is saturated, it is always possible to find a state in which a given
rule is applied.
lemma Saturated-ev-rule:

assumes ‹Saturated steps›
shows ‹ev (holds (is-rule r)) (sdrop n steps)›

proof −
have ‹Saturated (sdrop n steps)›

using ‹Saturated steps› Saturated-sdrop by fast
moreover have ‹r ∈ Prover .R›

by (metis rules-repeat snth-sset)
ultimately have ‹saturated r (sdrop n steps)›

unfolding Saturated-def by fast
then show ?thesis

unfolding saturated-def using always-enabledAtStep holds.elims(3) by blast
qed

On an escape path, the sequent is never an axiom (since that would end the
branch, and escape paths are infinitely long).
lemma epath-never-branchDone:

assumes ‹epath steps›
shows ‹alw (holds (not (branchDone o pseq))) steps›

proof (rule ccontr)
assume ‹¬ ?thesis›
then have ‹ev (holds (branchDone o pseq)) steps›

by (simp add: alw-iff-sdrop ev-iff-sdrop)
then obtain n where n: ‹holds (branchDone o pseq) (sdrop n steps)›

using sdrop-wait by blast
let ?suf = ‹sdrop n steps›
have ‹∀ r A. effect r (A, pseq (shd ?suf)) = {||}›

unfolding effect-def using n by simp
moreover have ‹epath ?suf ›

using ‹epath steps› epath-sdrop by blast
then have ‹∀ r A. ∃ z ′ r ′. z ′ |∈| effect r (A, pseq (shd ?suf)) ∧ shd (stl ?suf) =

(z ′, r ′)›
using epath-effect by (metis calculation prod.exhaust-sel pseq-def)

ultimately show False
by blast

qed

Finally we arrive at the main result of this theory: The set of formulas on a
saturated escape path form a Hintikka set.
The proof basically says that, given a formula, we can find some index into
the path where a rule is applied to decompose that formula into the parts
needed for the Hintikka set. The lemmas above are used to guarantee that
the formula does not disappear (and that the branch does not end) before
the rule is applied, and that the correct formulas are generated by the effect

35

function when the rule is finally applied. For Beta rules, only one of the
constituent formulas need to be on the path, since the path runs along only
one of the two branches. For Gamma and Delta rules, the construction of
the list of terms in each state guarantees that the formulas are instantiated
with terms in the Hintikka set.
lemma escape-path-Hintikka:

assumes ‹epath steps› and ‹Saturated steps›
shows ‹Hintikka (tree-fms steps)›
(is ‹Hintikka ?H ›)

proof
fix n ts
assume pre: ‹Pre n ts ∈ ?H ›
then obtain m where m: ‹Pre n ts ∈ set (pseq (shd (sdrop m steps)))›

using tree-fms-in-pseq by auto

show ‹Neg (Pre n ts) /∈ ?H ›
proof

assume ‹Neg (Pre n ts) ∈ ?H ›
then obtain k where k: ‹Neg (Pre n ts) ∈ set (pseq (shd (sdrop k steps)))›

using tree-fms-in-pseq by auto

let ?pre = ‹stake (m + k) steps›
let ?suf = ‹sdrop (m + k) steps›

have
1 : ‹¬ affects r (Pre n ts)› and
2 : ‹¬ affects r (Neg (Pre n ts))› for r
unfolding affects-def by (cases r , simp-all)+

have ‹list-all (not (λstep. affects (snd step) (Pre n ts))) ?pre›
unfolding list-all-def using 1 by (induct ?pre) simp-all

then have p: ‹Pre n ts ∈ set (pseq (shd ?suf))›
using ‹epath steps› epath-preserves-unaffected m epath-sdrop
by (metis (no-types, lifting) list.pred-mono-strong list-all-append

sdrop-add stake-add stake-sdrop)

have ‹list-all (not (λstep. affects (snd step) (Neg (Pre n ts)))) ?pre›
unfolding list-all-def using 2 by (induct ?pre) simp-all

then have np: ‹Neg (Pre n ts) ∈ set (pseq (shd ?suf))›
using ‹epath steps› epath-preserves-unaffected k epath-sdrop

by (smt (verit, best) add.commute list.pred-mono-strong list-all-append sdrop-add
stake-add stake-sdrop)

have ‹holds (branchDone o pseq) ?suf ›
using p np branchDone-contradiction by auto

moreover have ‹¬ holds (branchDone o pseq) ?suf ›
using ‹epath steps› epath-never-branchDone by (simp add: alw-iff-sdrop)

ultimately show False

36

by blast
qed

next
fix p q
assume ‹Dis p q ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = AlphaDis
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately have ‹p ∈ set z ′› ‹q ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce+

then show ‹p ∈ ?H ∧ q ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, opaque-lifting) Un-iff fst-conv pseq-def shd-sset snd-conv

sset-sdrop
sset-shift stl-sset subset-eq)

next
fix p q
assume ‹Imp p q ∈ tree-fms steps› (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = AlphaImp
have ‹ev (holds (is-rule ?r)) ?steps›

37

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately have ‹Neg p ∈ set z ′› ‹q ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce+

then show ‹Neg p ∈ ?H ∧ q ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, opaque-lifting) Un-iff fst-conv pseq-def shd-sset snd-conv

sset-sdrop
sset-shift stl-sset subset-eq)

next
fix p q
assume ‹Neg (Con p q) ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = AlphaCon
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›

38

using pre by simp
moreover have ‹epath (pre @− suf)›

using ‹epath steps› epath-sdrop ori by metis
ultimately have ‹?f ∈ set (pseq (shd suf))›

using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately have ‹Neg p ∈ set z ′› ‹Neg q ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce+

then show ‹Neg p ∈ ?H ∧ Neg q ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, opaque-lifting) Un-iff fst-conv pseq-def shd-sset snd-conv

sset-sdrop
sset-shift stl-sset subset-eq)

next
fix p q
assume ‹Con p q ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = BetaCon
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

39

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately consider ‹p ∈ set z ′› | ‹q ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce

then show ‹p ∈ ?H ∨ q ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, opaque-lifting) Un-iff fst-conv pseq-def shd-sset snd-conv

sset-sdrop
sset-shift stl-sset subset-eq)

next
fix p q
assume ‹Neg (Imp p q) ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = BetaImp
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately consider ‹p ∈ set z ′› | ‹Neg q ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce

then show ‹p ∈ ?H ∨ Neg q ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, opaque-lifting) Un-iff fst-conv pseq-def shd-sset snd-conv

sset-sdrop

40

sset-shift stl-sset subset-eq)
next

fix p q
assume ‹Neg (Dis p q) ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = BetaDis
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately consider ‹Neg p ∈ set z ′› | ‹Neg q ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce

then show ‹Neg p ∈ ?H ∨ Neg q ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, opaque-lifting) Un-iff fst-conv pseq-def shd-sset snd-conv

sset-sdrop
sset-shift stl-sset subset-eq)

next
fix p
assume ‹Exi p ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto

let ?r = GammaExi

show ‹∀ t ∈ terms ?H . sub 0 t p ∈ ?H ›

41

proof
fix t
assume t: ‹t ∈ terms ?H ›
show ‹sub 0 t p ∈ ?H ›
proof −

have ‹∃m. t ∈ set (subterms (pseq (shd (sdrop m steps))))›
proof (cases ‹(

⋃
f ∈ ?H . set (subtermFm f)) = {}›)

case True
moreover have ‹∀ p ∈ set (pseq (shd steps)). p ∈ ?H ›

unfolding tree-fms-def by (metis pseq-in-tree-fms shd-sset tree-fms-def)
ultimately have ‹∀ p ∈ set (pseq (shd steps)). subtermFm p = []›

by simp
then have ‹concat (map subtermFm (pseq (shd steps))) = []›

by (induct ‹pseq (shd steps)›) simp-all
then have ‹subterms (pseq (shd steps)) = [Fun 0 []]›

unfolding subterms-def by (metis list.simps(4) remdups-eq-nil-iff)
then show ?thesis

using True t unfolding terms-def
by (metis empty-iff insert-iff list.set-intros(1) sdrop.simps(1))

next
case False
then obtain pt where pt: ‹t ∈ set (subtermFm pt)› ‹pt ∈ ?H ›

using t unfolding terms-def by (metis (no-types, lifting) UN-E)
then obtain m where m: ‹pt ∈ set (pseq (shd (sdrop m steps)))›

using tree-fms-in-pseq by auto
then show ?thesis

using pt(1) set-subterms by fastforce
qed
then obtain m where ‹t ∈ set (subterms (pseq (shd (sdrop m steps))))›

by blast
then have ‹t ∈ set (ptms (shd (stl (sdrop m steps))))›

using epath-stl-ptms epath-sdrop ‹epath steps›
by (metis (no-types, opaque-lifting) Un-iff set-append set-remdups)

moreover have ‹epath (stl (sdrop m steps))›
using epath-sdrop ‹epath steps› by (meson epath.cases)

ultimately have ‹∀ k ≥ m. t ∈ set (ptms (shd (stl (sdrop k steps))))›
using epath-sdrop-ptms by (metis (no-types, lifting) le-Suc-ex sdrop-add

sdrop-stl subsetD)
then have above: ‹∀ k > m. t ∈ set (ptms (shd (sdrop k steps)))›
by (metis Nat.lessE less-irrefl-nat less-trans-Suc linorder-not-less sdrop-simps(2))

let ?pre = ‹stake (n + m + 1) steps›
let ?suf = ‹sdrop (n + m + 1) steps›

have ∗: ‹¬ affects r ?f › for r
unfolding affects-def by (cases r , simp-all)+

have ‹ev (holds (is-rule ?r)) ?suf ›
using ‹Saturated steps› Saturated-ev-rule by blast

42

then obtain pre suf k where
pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹pre = stake k ?suf › ‹suf = sdrop k ?suf ›
using ev-prefix-sdrop by blast

have k: ‹∃ k > m. suf = sdrop k steps›
using ori by (meson le-add2 less-add-one order-le-less-trans sdrop-add

trans-less-add1)

have ‹list-all (not (λstep. affects (snd step) ?f)) ?pre›
unfolding list-all-def using ∗ by (induct ?pre) simp-all

then have ‹?f ∈ set (pseq (shd ?suf))›
using ‹epath steps› epath-preserves-unaffected n epath-sdrop
by (metis (no-types, lifting) list.pred-mono-strong list-all-append

sdrop-add stake-add stake-sdrop)
then have ‹?f ∈ set (pseq (shd suf))›

using ‹epath steps› epath-preserves-unaffected n epath-sdrop ∗ ori
by (metis (no-types, lifting) list.pred-mono-strong pre stake-sdrop)

moreover have ‹epath suf ›
using ‹epath steps› epath-sdrop ori by blast

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))›
‹shd (stl suf) = ((B, z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

moreover have ‹t ∈ set (ptms (shd suf))›
using above k by (meson le-add2 less-add-one order-le-less-trans)

ultimately have ‹sub 0 t p ∈ set z ′›
using parts-in-effect[where A=‹ptms (shd suf)›] unfolding parts-def by

fastforce
then show ?thesis

using k pseq-in-tree-fms z ′(2)
by (metis Pair-inject in-mono prod.collapse pseq-def shd-sset sset-sdrop

stl-sset)
qed

qed
next

fix p
assume ‹Neg (Uni p) ∈ ?H › (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto

let ?r = GammaUni

show ‹∀ t ∈ terms ?H . Neg (sub 0 t p) ∈ ?H ›
proof

fix t

43

assume t: ‹t ∈ terms ?H ›
show ‹Neg (sub 0 t p) ∈ ?H ›
proof −

have ‹∃m. t ∈ set (subterms (pseq (shd (sdrop m steps))))›
proof (cases ‹(

⋃
f ∈ ?H . set (subtermFm f)) = {}›)

case True
moreover have ‹∀ p ∈ set (pseq (shd steps)). p ∈ ?H ›

unfolding tree-fms-def by (metis pseq-in-tree-fms shd-sset tree-fms-def)
ultimately have ‹∀ p ∈ set (pseq (shd steps)). subtermFm p = []›

by simp
then have ‹concat (map subtermFm (pseq (shd steps))) = []›

by (induct ‹pseq (shd steps)›) simp-all
then have ‹subterms (pseq (shd steps)) = [Fun 0 []]›

unfolding subterms-def by (metis list.simps(4) remdups-eq-nil-iff)
then show ?thesis

using True t unfolding terms-def
by (metis empty-iff insert-iff list.set-intros(1) sdrop.simps(1))

next
case False
then obtain pt where pt: ‹t ∈ set (subtermFm pt)› ‹pt ∈ ?H ›

using t unfolding terms-def by (metis (no-types, lifting) UN-E)
then obtain m where m: ‹pt ∈ set (pseq (shd (sdrop m steps)))›

using tree-fms-in-pseq by auto
then show ?thesis

using pt(1) set-subterms by fastforce
qed
then obtain m where ‹t ∈ set (subterms (pseq (shd (sdrop m steps))))›

by blast
then have ‹t ∈ set (ptms (shd (stl (sdrop m steps))))›

using epath-stl-ptms epath-sdrop ‹epath steps›
by (metis (no-types, lifting) Un-iff set-append set-remdups)

moreover have ‹epath (stl (sdrop m steps))›
using epath-sdrop ‹epath steps› by (meson epath.cases)

ultimately have ‹∀ k ≥ m. t ∈ set (ptms (shd (stl (sdrop k steps))))›
using epath-sdrop-ptms by (metis (no-types, lifting) le-Suc-ex sdrop-add

sdrop-stl subsetD)
then have above: ‹∀ k > m. t ∈ set (ptms (shd (sdrop k steps)))›
by (metis Nat.lessE less-irrefl-nat less-trans-Suc linorder-not-less sdrop-simps(2))

let ?pre = ‹stake (n + m + 1) steps›
let ?suf = ‹sdrop (n + m + 1) steps›

have ∗: ‹¬ affects r ?f › for r
unfolding affects-def by (cases r , simp-all)+

have ‹ev (holds (is-rule ?r)) ?suf ›
using ‹Saturated steps› Saturated-ev-rule by blast

then obtain pre suf k where
pre: ‹list-all (not (is-rule ?r)) pre› and

44

suf : ‹holds (is-rule ?r) suf › and
ori: ‹pre = stake k ?suf › ‹suf = sdrop k ?suf ›
using ev-prefix-sdrop by blast

have k: ‹∃ k > m. suf = sdrop k steps›
using ori by (meson le-add2 less-add-one order-le-less-trans sdrop-add

trans-less-add1)

have ‹list-all (not (λstep. affects (snd step) ?f)) ?pre›
unfolding list-all-def using ∗ by (induct ?pre) simp-all

then have ‹?f ∈ set (pseq (shd ?suf))›
using ‹epath steps› epath-preserves-unaffected n epath-sdrop
by (metis (no-types, lifting) list.pred-mono-strong list-all-append

sdrop-add stake-add stake-sdrop)
then have ‹?f ∈ set (pseq (shd suf))›

using ‹epath steps› epath-preserves-unaffected n epath-sdrop ∗ ori
by (metis (no-types, lifting) list.pred-mono-strong pre stake-sdrop)

moreover have ‹epath suf ›
using ‹epath steps› epath-sdrop ori by blast

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))›
‹shd (stl suf) = ((B, z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

moreover have ‹t ∈ set (ptms (shd suf))›
using above k by (meson le-add2 less-add-one order-le-less-trans)

ultimately have ‹Neg (sub 0 t p) ∈ set z ′›
using parts-in-effect[where A=‹ptms (shd suf)›] unfolding parts-def by

fastforce
then show ?thesis

using k pseq-in-tree-fms z ′(2)
by (metis Pair-inject in-mono prod.collapse pseq-def shd-sset sset-sdrop

stl-sset)
qed

qed
next

fix p
assume ‹Uni p ∈ tree-fms steps› (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = DeltaUni
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›

45

using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately obtain C where
C : ‹set (ptms (shd suf)) ⊆ set C › ‹sub 0 (Fun (generateNew C) []) p ∈ set z ′›
using parts-in-effect[where B=B and z ′=‹z ′› and z=‹pseq (shd suf)› and

r=‹?r› and p=‹Uni p›]
unfolding parts-def by auto

then have ∗: ‹sub 0 (Fun (generateNew C) []) p ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, lifting) Pair-inject Un-iff in-mono prod.collapse pseq-def

shd-sset
sset-sdrop sset-shift stl-sset)

let ?t = ‹Fun (generateNew C) []›
show ‹∃ t ∈ terms ?H . sub 0 t p ∈ ?H ›
proof (cases ‹?t ∈ set (subtermFm (sub 0 ?t p))›)

case True
then have ‹?t ∈ terms ?H ›

unfolding terms-def using ∗ by (metis UN-I empty-iff)
then show ?thesis

using ∗ by blast
next

case False
then have ‹sub 0 t p = sub 0 ?t p› for t

using sub-const-transfer by metis
moreover have ‹terms ?H 6= {}›

unfolding terms-def by simp
then have ‹∃ t. t ∈ terms ?H ›

by blast
ultimately show ?thesis

using ∗ by metis
qed

next
fix p

46

assume ‹Neg (Exi p) ∈ tree-fms steps› (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = DeltaExi
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately obtain C where
C : ‹set (ptms (shd suf)) ⊆ set C › ‹Neg (sub 0 (Fun (generateNew C) []) p) ∈

set z ′›
using parts-in-effect[where B=B and z ′=z ′ and z=‹pseq (shd suf)› and

r=‹?r› and p=‹Neg (Exi p)›]
unfolding parts-def by auto

then have ∗: ‹Neg (sub 0 (Fun (generateNew C) []) p) ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, lifting) Pair-inject Un-iff in-mono prod.collapse pseq-def

shd-sset
sset-sdrop sset-shift stl-sset)

let ?t = ‹Fun (generateNew C) []›
show ‹∃ t ∈ terms ?H . Neg (sub 0 t p) ∈ ?H ›
proof (cases ‹?t ∈ set (subtermFm (Neg (sub 0 ?t p)))›)

case True
then have ‹?t ∈ terms ?H ›

unfolding terms-def using ∗ by (metis UN-I empty-iff)
then show ?thesis

using ∗ by blast
next

47

case False
then have ‹Neg (sub 0 t p) = Neg (sub 0 ?t p)› for t

using sub-const-transfer by (metis subtermFm.simps(7))
moreover have ‹terms ?H 6= {}›

unfolding terms-def by simp
then have ‹∃ t. t ∈ terms ?H ›

by blast
ultimately show ?thesis

using ∗ by metis
qed

next
fix p
assume ‹Neg (Neg p) ∈ tree-fms steps› (is ‹?f ∈ ?H ›)
then obtain n where n: ‹?f ∈ set (pseq (shd (sdrop n steps)))›

using tree-fms-in-pseq by auto
let ?steps = ‹sdrop n steps›
let ?r = NegNeg
have ‹ev (holds (is-rule ?r)) ?steps›

using ‹Saturated steps› Saturated-ev-rule by blast
then obtain pre suf where

pre: ‹list-all (not (is-rule ?r)) pre› and
suf : ‹holds (is-rule ?r) suf › and
ori: ‹?steps = pre @− suf ›
using ev-prefix by blast

have ‹affects r ?f ←→ r = ?r› for r
unfolding affects-def by (cases r) simp-all

then have ‹list-all (not (λstep. affects (snd step) ?f)) pre›
using pre by simp

moreover have ‹epath (pre @− suf)›
using ‹epath steps› epath-sdrop ori by metis

ultimately have ‹?f ∈ set (pseq (shd suf))›
using epath-preserves-unaffected n ori by metis

moreover have ‹epath suf ›
using ‹epath (pre @− suf)› epath-sdrop by (metis alwD alw-iff-sdrop alw-shift)

then obtain B z ′ r ′ where
z ′: ‹(B, z ′) |∈| effect ?r (ptms (shd suf), pseq (shd suf))› ‹shd (stl suf) = ((B,

z ′), r ′)›
using suf epath-effect unfolding pseq-def ptms-def
by (metis (mono-tags, lifting) holds.elims(2) prod.collapse)

ultimately have ‹p ∈ set z ′›
using parts-in-effect unfolding parts-def by fastforce

then show ‹p ∈ ?H ›
using z ′(2) ori pseq-in-tree-fms
by (metis (no-types, lifting) Pair-inject Un-iff in-mono prod.collapse pseq-def

shd-sset
sset-sdrop sset-shift stl-sset)

48

qed

end

2.6 Bounded semantics
theory Usemantics imports SeCaV begin

In this theory, we define an alternative semantics for SeCaV formulas where
the quantifiers are bounded to terms in a specific set. This is needed to
construct a countermodel from a Hintikka set.

This function defines the semantics, which are bounded by the set u.
primrec usemantics where

‹usemantics u e f g (Pre i l) = g i (semantics-list e f l)›
| ‹usemantics u e f g (Imp p q) = (usemantics u e f g p −→ usemantics u e f g q)›
| ‹usemantics u e f g (Dis p q) = (usemantics u e f g p ∨ usemantics u e f g q)›
| ‹usemantics u e f g (Con p q) = (usemantics u e f g p ∧ usemantics u e f g q)›
| ‹usemantics u e f g (Exi p) = (∃ x ∈ u. usemantics u (SeCaV .shift e 0 x) f g p)›
| ‹usemantics u e f g (Uni p) = (∀ x ∈ u. usemantics u (SeCaV .shift e 0 x) f g p)›
| ‹usemantics u e f g (Neg p) = (¬ usemantics u e f g p)›

An environment is well-formed if the variables are actually in the quantifier
set u.
definition is-env :: ‹ ′a set ⇒ (nat ⇒ ′a) ⇒ bool› where

‹is-env u e ≡ ∀n. e n ∈ u›

A function interpretation is well-formed if it is closed in the quantifier set u.
definition is-fdenot :: ‹ ′a set ⇒ (nat ⇒ ′a list ⇒ ′a) ⇒ bool› where

‹is-fdenot u f ≡ ∀ i l. list-all (λx. x ∈ u) l −→ f i l ∈ u›

If we choose to quantify over the universal set, we obtain the usual semantics
lemma usemantics-UNIV : ‹usemantics UNIV e f g p ←→ semantics e f g p›

by (induct p arbitrary: e) auto

If a function name n is not in a formula, it does not matter whether it is in
the function interpretation or not.
lemma uupd-lemma [iff]: ‹n /∈ params p =⇒ usemantics u e (f (n := x)) g p ←→
usemantics u e f g p›

by (induct p arbitrary: e) simp-all

The semantics of substituting variable i by term t in formula a are well-
defined
lemma usubst-lemma [iff]:
‹usemantics u e f g (subst a t i)←→ usemantics u (SeCaV .shift e i (semantics-term

e f t)) f g a›
by (induct a arbitrary: e i t) simp-all

49

Soundness of SeCaV with regards to the bounded semantics

We would like to prove that the SeCaV proof system is sound under the
bounded semantics.

If the environment and the function interpretation are well-formed, the se-
mantics of terms are in the quantifier set u.
lemma usemantics-term [simp]:

assumes ‹is-env u e› ‹is-fdenot u f ›
shows ‹semantics-term e f t ∈ u› ‹list-all (λx. x ∈ u) (semantics-list e f ts)›
using assms by (induct t and ts rule: semantics-term.induct semantics-list.induct)
(simp-all add: is-env-def is-fdenot-def)

If a function interpretation is well-formed, replacing the value by one in the
quantifier set results in a well-formed function interpretation.
lemma is-fdenot-shift [simp]: ‹is-fdenot u f =⇒ x ∈ u =⇒ is-fdenot u (f (i := λ-.
x))›

unfolding is-fdenot-def SeCaV .shift-def by simp

If a sequent is provable in the SeCaV proof system and the environment
and function interpretation are well-formed, the sequent is valid under the
bounded semantics.
theorem sound-usemantics:

assumes ‹`̀ z› and ‹is-env u e› and ‹is-fdenot u f ›
shows ‹∃ p ∈ set z. usemantics u e f g p›
using assms

proof (induct arbitrary: f rule: sequent-calculus.induct)
case (10 i p z)
then show ?case
proof (cases ‹∀ x ∈ u. usemantics u e (f (i := λ-. x)) g (sub 0 (Fun i []) p)›)

case False
moreover have ‹∀ x ∈ u. ∃ p ∈ set (sub 0 (Fun i []) p # z). usemantics u e

(f (i := λ-. x)) g p›
using 10 is-fdenot-shift by metis

ultimately have ‹∃ x ∈ u. ∃ p ∈ set z. usemantics u e (f (i := λ-. x)) g p›
by fastforce

moreover have ‹list-all (λp. i /∈ params p) z›
using 10 by simp

ultimately show ?thesis
using 10 Ball-set insert-iff list.set(2) uupd-lemma by metis

qed simp
next

case (11 i p z)
then show ?case
proof (cases ‹∀ x ∈ u. usemantics u e (f (i := λ-. x)) g (Neg (sub 0 (Fun i [])

p))›)
case False
moreover have

50

‹∀ x ∈ u. ∃ p ∈ set (Neg (sub 0 (Fun i []) p) # z). usemantics u e (f (i := λ-.
x)) g p›

using 11 is-fdenot-shift by metis
ultimately have ‹∃ x ∈ u. ∃ p ∈ set z. usemantics u e (f (i := λ-. x)) g p›

by fastforce
moreover have ‹list-all (λp. i /∈ params p) z›

using 11 by simp
ultimately show ?thesis

using 11 Ball-set insert-iff list.set(2) uupd-lemma by metis
qed simp

qed fastforce+

end

2.7 Countermodels from Hintikka sets
theory Countermodel

imports Hintikka Usemantics ProverLemmas
begin

In this theory, we will construct a countermodel in the bounded semantics
from a Hintikka set. This will allow us to prove completeness of the prover.

A predicate is satisfied in the model based on a set of formulas S when its
negation is in S.
abbreviation (input)

‹G S n ts ≡ Neg (Pre n ts) ∈ S›

Alternate interpretation for environments: if a variable is not present, we
interpret it as some existing term.
abbreviation

‹E S n ≡ if Var n ∈ terms S then Var n else SOME t. t ∈ terms S›

Alternate interpretation for functions: if a function application is not present,
we interpret it as some existing term.
abbreviation

‹F S i l ≡ if Fun i l ∈ terms S then Fun i l else SOME t. t ∈ terms S›

The terms function never returns the empty set (because it will add Fun 0
[] if that is the case).
lemma terms-ne [simp]: ‹terms S 6= {}›

unfolding terms-def by simp

If a term is in the set of terms, it is either the default term or a subterm of
some formula in the set.
lemma terms-cases: ‹t ∈ terms S =⇒ t = Fun 0 [] ∨ (∃ p ∈ S . t ∈ set (subtermFm
p))›

51

unfolding terms-def by (simp split: if-splits)

The set of terms is downwards closed under the subterm function.
lemma terms-downwards-closed: ‹t ∈ terms S =⇒ set (subtermTm t) ⊆ terms S›
proof (induct t)

case (Fun n ts)
moreover have ‹∀ t ∈ set ts. t ∈ set ts›

by simp
moreover have ‹∀ t ∈ set ts. t ∈ terms S›
proof

fix t
assume ∗: ‹t ∈ set ts›
then show ‹t ∈ terms S›
proof (cases ‹terms S = {Fun 0 []}›)

case True
then show ?thesis

using Fun ∗ by simp
next

case False
moreover obtain p where p: ‹p ∈ S› ‹Fun n ts ∈ set (subtermFm p)›

using Fun(2) terms-cases ∗ by fastforce
then have ‹set ts ⊆ set (subtermFm p)›

using fun-arguments-subterm by blast
ultimately show ‹t ∈ terms S›

unfolding terms-def using ∗ p(1) by (metis UN-iff in-mono)
qed

qed
ultimately have ‹∀ t ∈ set ts. set (subtermTm t) ⊆ terms S›

using Fun by meson
moreover note ‹Fun n ts ∈ terms S›
ultimately show ?case

by auto
next

case (Var x)
then show ?case

by simp
qed

If terms are actually in a set of formulas, interpreting the environment over
these formulas allows for a Herbrand interpretation.
lemma usemantics-E :

‹t ∈ terms S =⇒ semantics-term (E S) (F S) t = t›
‹list-all (λt. t ∈ terms S) ts =⇒ semantics-list (E S) (F S) ts = ts›

proof (induct t and ts arbitrary: ts rule: semantics-term.induct semantics-list.induct)
case (Fun i ts ′)
moreover have ‹∀ t ′ ∈ set ts ′. t ′ ∈ set (subtermTm (Fun i ts ′))›

using subterm-Fun-refl by blast
ultimately have ‹list-all (λt. t ∈ terms S) ts ′›

52

using terms-downwards-closed unfolding list-all-def by (metis (no-types, lift-
ing) subsetD)

then show ?case
using Fun by simp

qed simp-all

Our alternate interpretation of environments is well-formed for the terms
function.
lemma is-env-E :

‹is-env (terms S) (E S)›
unfolding is-env-def

proof
fix n
show ‹E S n ∈ terms S›

by (cases ‹Var n ∈ terms S›) (simp-all add: some-in-eq)
qed

Our alternate function interpretation is well-formed for the terms function.
lemma is-fdenot-F :

‹is-fdenot (terms S) (F S)›
unfolding is-fdenot-def

proof (intro allI impI)
fix i l
assume ‹list-all (λx. x ∈ terms S) l›
then show ‹F S i l ∈ terms S›

by (cases ‹∀n. Var n ∈ terms S›) (simp-all add: some-in-eq)
qed

abbreviation
‹M S ≡ usemantics (terms S) (E S) (F S) (G S)›

If S is a Hintikka set, then we can construct a countermodel for any formula
using our bounded semantics and a Herbrand interpretation.
theorem Hintikka-counter-model:

assumes ‹Hintikka S›
shows ‹(p ∈ S −→ ¬ M S p) ∧ (Neg p ∈ S −→ M S p)›

proof (induct p rule: wf-induct [where r=‹measure size›])
case 1
then show ?case ..

next
fix x
assume wf : ‹∀ q. (q, x) ∈ measure size −→
(q ∈ S −→ ¬ M S q) ∧ (Neg q ∈ S −→ M S q)›

show ‹(x ∈ S −→ ¬ M S x) ∧ (Neg x ∈ S −→ M S x)›
proof (cases x)

case (Pre n ts)
show ?thesis
proof (intro conjI impI)

53

assume ‹x ∈ S›
then have ‹Neg (Pre n ts) /∈ S›

using assms Pre Hintikka.Basic by blast
moreover have ‹list-all (λt. t ∈ terms S) ts›
using ‹x ∈ S› Pre subterm-Pre-refl unfolding terms-def list-all-def by force
ultimately show ‹¬ M S x›

using Pre usemantics-E
by (metis (no-types, lifting) usemantics.simps(1))

next
assume ‹Neg x ∈ S›
then have ‹G S n ts›

using assms Pre Hintikka.Basic by blast
moreover have ‹list-all (λt. t ∈ terms S) ts›
using ‹Neg x ∈ S› Pre subterm-Pre-refl unfolding terms-def list-all-def by

force
ultimately show ‹M S x›

using Pre usemantics-E
by (metis (no-types, lifting) usemantics.simps(1))

qed
next

case (Imp p q)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ S›
then have ‹Neg p ∈ S› ‹q ∈ S›

using Imp assms Hintikka.AlphaImp by blast+
then show ‹¬ M S x›

using wf Imp by fastforce
next

assume ‹Neg x ∈ S›
then have ‹p ∈ S ∨ Neg q ∈ S›

using Imp assms Hintikka.BetaImp by blast
then show ‹M S x›

using wf Imp by fastforce
qed

next
case (Dis p q)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ S›
then have ‹p ∈ S› ‹q ∈ S›

using Dis assms Hintikka.AlphaDis by blast+
then show ‹¬ M S x›

using wf Dis by fastforce
next

assume ‹Neg x ∈ S›
then have ‹Neg p ∈ S ∨ Neg q ∈ S›

using Dis assms Hintikka.BetaDis by blast
then show ‹M S x›

54

using wf Dis by fastforce
qed

next
case (Con p q)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ S›
then have ‹p ∈ S ∨ q ∈ S›

using Con assms Hintikka.BetaCon by blast
then show ‹¬ M S x›

using wf Con by fastforce
next

assume ‹Neg x ∈ S›
then have ‹Neg p ∈ S› ‹Neg q ∈ S›

using Con assms Hintikka.AlphaCon by blast+
then show ‹M S x›

using wf Con by fastforce
qed

next
case (Exi p)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ S›
then have ‹∀ t ∈ terms S . sub 0 t p ∈ S›

using Exi assms Hintikka.GammaExi by blast
then have ‹∀ t ∈ terms S . ¬ M S (sub 0 t p)›

using wf Exi size-sub
by (metis (no-types, lifting) add.right-neutral add-Suc-right fm.size(12)

in-measure lessI)
moreover have ‹∀ t ∈ terms S . semantics-term (E S) (F S) t = t›

using usemantics-E(1) terms-downwards-closed unfolding list-all-def by
blast

ultimately have ‹∀ t ∈ terms S . ¬ usemantics (terms S) (SeCaV .shift (E
S) 0 t) (F S) (G S) p›

by simp
then show ‹¬ M S x›

using Exi by simp
next

assume ‹Neg x ∈ S›
then obtain t where ‹t ∈ terms S› ‹Neg (sub 0 t p) ∈ S›

using Exi assms Hintikka.DeltaExi by metis
then have ‹M S (sub 0 t p)›

using wf Exi size-sub
by (metis (no-types, lifting) add.right-neutral add-Suc-right fm.size(12)

in-measure lessI)
moreover have ‹semantics-term (E S) (F S) t = t›

using ‹t ∈ terms S› usemantics-E(1) terms-downwards-closed unfolding
list-all-def by blast

ultimately show ‹M S x›

55

using Exi ‹t ∈ terms S› by auto
qed

next
case (Uni p)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ S›
then obtain t where ‹t ∈ terms S› ‹sub 0 t p ∈ S›

using Uni assms Hintikka.DeltaUni by metis
then have ‹¬ M S (sub 0 t p)›

using wf Uni size-sub
by (metis (no-types, lifting) add.right-neutral add-Suc-right fm.size(13)

in-measure lessI)
moreover have ‹semantics-term (E S) (F S) t = t›

using ‹t ∈ terms S› usemantics-E(1) terms-downwards-closed unfolding
list-all-def by blast

ultimately show ‹¬ M S x›
using Uni ‹t ∈ terms S› by auto

next
assume ‹Neg x ∈ S›
then have ‹∀ t ∈ terms S . Neg (sub 0 t p) ∈ S›

using Uni assms Hintikka.GammaUni by blast
then have ‹∀ t ∈ terms S . M S (sub 0 t p)›

using wf Uni size-sub
by (metis (no-types, lifting) Nat.add-0-right add-Suc-right fm.size(13)

in-measure lessI)
moreover have ‹∀ t ∈ terms S . semantics-term (E S) (F S) t = t›

using usemantics-E(1) terms-downwards-closed unfolding list-all-def by
blast

ultimately have ‹∀ t ∈ terms S . ¬ usemantics (terms S) (SeCaV .shift (E
S) 0 t) (F S) (G S) (Neg p)›

by simp
then show ‹M S x›

using Uni by simp
qed

next
case (Neg p)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ S›
then show ‹¬ M S x›

using wf Neg by fastforce
next

assume ‹Neg x ∈ S›
then have ‹p ∈ S›

using Neg assms Hintikka.Neg by blast
then show ‹M S x›

using wf Neg by fastforce
qed

56

qed
qed

end

2.8 Soundness
theory Soundness

imports ProverLemmas
begin

In this theory, we prove that the prover is sound with regards to the SeCaV
proof system using the abstract soundness framework.

If some suffix of the sequents in all of the children of a state are provable,
so is some suffix of the sequent in the current state, with the prefix in each
sequent being the same. (As a side condition, the lists of terms need to be
compatible.)
lemma SeCaV-children-pre:

assumes ‹∀ z ′ ∈ set (children A r z). (`̀ pre @ z ′)›
and ‹paramss (pre @ z) ⊆ paramsts A›

shows ‹`̀ pre @ z›
using assms

proof (induct z arbitrary: pre A)
case Nil
then show ?case

by simp
next

case (Cons p z)
then have ih: ‹∀ z ′ ∈ set (children A r z). (`̀ pre @ z ′) =⇒ (`̀ pre @ z)›

if ‹paramss (pre @ z) ⊆ paramsts A› for pre A
using that by simp

let ?A = ‹remdups (A @ subtermFms (concat (parts A r p)))›

have A: ‹paramss (pre @ p # z) ⊆ paramsts ?A›
using paramsts-subset Cons.prems(2) by fastforce

have ‹∀ z ′ ∈ set (list-prod (parts A r p) (children ?A r z)). (`̀ pre @ z ′)›
using Cons.prems by (metis children.simps(2))

then have ‹∀ z ′ ∈ {hs @ ts |hs ts. hs ∈ set (parts A r p) ∧ ts ∈ set (children ?A
r z)}.

(`̀ pre @ z ′)›
using list-prod-is-cartesian by blast

then have ∗:
‹∀ hs ∈ set (parts A r p). ∀ ts ∈ set (children ?A r z). (`̀ pre @ hs @ ts)›
by blast

then show ?case

57

proof (cases r p rule: parts-exhaust)
case (AlphaDis p q)
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ p # q # z ′)›

using ∗ unfolding parts-def by simp
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [p, q]) @ z ′)›

by simp
then have ‹`̀ pre @ p # q # z›

using AlphaDis ih[where pre=‹pre @ [p, q]› and A=‹?A›] A by simp
then have ‹`̀ p # q # pre @ z›

using Ext by simp
then have ‹`̀ Dis p q # pre @ z›

using SeCaV .AlphaDis by blast
then show ?thesis

using AlphaDis Ext by simp
next

case (AlphaImp p q)
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg p # q # z ′)›

using ∗ unfolding parts-def by simp
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [Neg p, q]) @ z ′)›

by simp
then have ‹`̀ pre @ Neg p # q # z›

using AlphaImp ih[where pre=‹pre @ [Neg p, q]› and A=‹?A›] A by simp
then have ‹`̀ Neg p # q # pre @ z›

using Ext by simp
then have ‹`̀ Imp p q # pre @ z›

using SeCaV .AlphaImp by blast
then show ?thesis

using AlphaImp Ext by simp
next

case (AlphaCon p q)
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg p # Neg q # z ′)›

using ∗ unfolding parts-def by simp
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [Neg p, Neg q]) @ z ′)›

by simp
then have ‹`̀ pre @ Neg p # Neg q # z›

using AlphaCon ih[where pre=‹pre @ [Neg p, Neg q]› and A=‹?A›] A by
simp

then have ‹`̀ Neg p # Neg q # pre @ z›
using Ext by simp

then have ‹`̀ Neg (Con p q) # pre @ z›
using SeCaV .AlphaCon by blast

then show ?thesis
using AlphaCon Ext by simp

next
case (BetaCon p q)
then have

‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ p # z ′)›
‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ q # z ′)›
using ∗ unfolding parts-def by simp-all

58

then have
‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [p]) @ z ′)›
‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [q]) @ z ′)›
by simp-all

then have ‹`̀ pre @ p # z› ‹`̀ pre @ q # z›
using BetaCon ih[where pre=‹pre @ [-]› and A=‹?A›] A by simp-all

then have ‹`̀ p # pre @ z› ‹`̀ q # pre @ z›
using Ext by simp-all

then have ‹`̀ Con p q # pre @ z›
using SeCaV .BetaCon by blast

then show ?thesis
using BetaCon Ext by simp

next
case (BetaImp p q)
then have

‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ p # z ′)›
‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg q # z ′)›
using ∗ unfolding parts-def by simp-all

then have
‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [p]) @ z ′)›
‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [Neg q]) @ z ′)›
by simp-all

then have ‹`̀ pre @ p # z› ‹`̀ pre @ Neg q # z›
using BetaImp ih ih[where pre=‹pre @ [-]› and A=‹?A›] A by simp-all

then have ‹`̀ p # pre @ z› ‹`̀ Neg q # pre @ z›
using Ext by simp-all

then have ‹`̀ Neg (Imp p q) # pre @ z›
using SeCaV .BetaImp by blast

then show ?thesis
using BetaImp Ext by simp

next
case (BetaDis p q)
then have

‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg p # z ′)›
‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg q # z ′)›
using ∗ unfolding parts-def by simp-all

then have
‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [Neg p]) @ z ′)›
‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [Neg q]) @ z ′)›
by simp-all

then have ‹`̀ pre @ Neg p # z› ‹`̀ pre @ Neg q # z›
using BetaDis ih[where pre=‹pre @ [-]› and A=‹?A›] A by simp-all

then have ‹`̀ Neg p # pre @ z› ‹`̀ Neg q # pre @ z›
using Ext by simp-all

then have ‹`̀ Neg (Dis p q) # pre @ z›
using SeCaV .BetaDis by blast

then show ?thesis
using BetaDis Ext by simp

next

59

case (DeltaUni p)
let ?i = ‹generateNew A›
have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ sub 0 (Fun ?i []) p # z ′)›

using DeltaUni ∗ unfolding parts-def by simp
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [sub 0 (Fun ?i []) p]) @ z ′)›

by simp
moreover have ‹set (subtermFm (sub 0 (Fun ?i []) p)) ⊆ set ?A›

using DeltaUni unfolding parts-def by simp
then have ‹params (sub 0 (Fun ?i []) p) ⊆ paramsts ?A›

using subtermFm-subset-params by blast
ultimately have ‹`̀ pre @ sub 0 (Fun ?i []) p # z›

using DeltaUni ih[where pre=‹pre @ [-]› and A=‹?A›] A by simp
then have ‹`̀ sub 0 (Fun ?i []) p # pre @ z›

using Ext by simp
moreover have ‹?i /∈ paramsts A›

by (induct A) (metis Suc-max-new generateNew-def listFunTm-paramst(2)
plus-1-eq-Suc)+

then have ‹news ?i (p # pre @ z)›
using DeltaUni Cons.prems(2) news-paramss by auto

ultimately have ‹`̀ Uni p # pre @ z›
using SeCaV .DeltaUni by blast

then show ?thesis
using DeltaUni Ext by simp

next
case (DeltaExi p)
let ?i = ‹generateNew A›
have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg (sub 0 (Fun ?i []) p) # z ′)›

using DeltaExi ∗ unfolding parts-def by simp
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [Neg (sub 0 (Fun ?i []) p)])

@ z ′)›
by simp

moreover have ‹set (subtermFm (sub 0 (Fun ?i []) p)) ⊆ set ?A›
using DeltaExi unfolding parts-def by simp

then have ‹params (sub 0 (Fun ?i []) p) ⊆ paramsts ?A›
using subtermFm-subset-params by blast

ultimately have ‹`̀ pre @ Neg (sub 0 (Fun ?i []) p) # z›
using DeltaExi ih[where pre=‹pre @ [-]› and A=‹?A›] A by simp

then have ‹`̀ Neg (sub 0 (Fun ?i []) p) # pre @ z›
using Ext by simp

moreover have ‹?i /∈ paramsts A›
by (induct A) (metis Suc-max-new generateNew-def listFunTm-paramst(2)

plus-1-eq-Suc)+
then have ‹news ?i (p # pre @ z)›

using DeltaExi Cons.prems(2) news-paramss by auto
ultimately have ‹`̀ Neg (Exi p) # pre @ z›

using SeCaV .DeltaExi by blast
then show ?thesis

using DeltaExi Ext by simp
next

60

case (NegNeg p)
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ p # z ′)›

using ∗ unfolding parts-def by simp
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [p]) @ z ′)›

by simp
then have ‹`̀ pre @ p # z›

using NegNeg ih[where pre=‹pre @ [-]› and A=‹?A›] A by simp
then have ‹`̀ p # pre @ z›

using Ext by simp
then have ‹`̀ Neg (Neg p) # pre @ z›

using SeCaV .Neg by blast
then show ?thesis

using NegNeg Ext by simp
next

case (GammaExi p)
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Exi p # map (λt. sub 0 t p)

A @ z ′)›
using ∗ unfolding parts-def by simp

then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ ((pre @ Exi p # map (λt. sub 0 t
p) A) @ z ′))›

by simp
moreover have ‹∀ t ∈ set A. params (sub 0 t p) ⊆ paramsts A ∪ params p›

using params-sub by fastforce
then have ‹∀ t ∈ set A. params (sub 0 t p) ⊆ paramsts ?A›

using GammaExi A by fastforce
then have ‹paramss (map (λt. sub 0 t p) A) ⊆ paramsts ?A›

by auto
ultimately have ‹`̀ pre @ Exi p # map (λt. sub 0 t p) A @ z›

using GammaExi ih[where pre=‹pre @ Exi p # map - A› and A=‹?A›] A
by simp

moreover have ‹ext (map (λt. sub 0 t p) A @ Exi p # pre @ z)
(pre @ Exi p # map (λt. sub 0 t p) A @ z)›

by auto
ultimately have ‹`̀ map (λt. sub 0 t p) A @ Exi p # pre @ z›

using Ext by blast
then have ‹`̀ Exi p # pre @ z›
proof (induct A)

case Nil
then show ?case

by simp
next

case (Cons a A)
then have ‹`̀ Exi p # map (λt. sub 0 t p) A @ Exi p # pre @ z›

using SeCaV .GammaExi by simp
then have ‹`̀ map (λt. sub 0 t p) A @ Exi p # pre @ z›

using Ext by simp
then show ?case

using Cons.hyps by blast
qed

61

then show ?thesis
using GammaExi Ext by simp

next
case (GammaUni p)
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ pre @ Neg (Uni p) # map (λt. Neg

(sub 0 t p)) A @ z ′)›
using ∗ unfolding parts-def by simp

then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ ((pre @ Neg (Uni p) # map (λt.
Neg (sub 0 t p)) A) @ z ′))›

by simp
moreover have ‹∀ t ∈ set A. params (sub 0 t p) ⊆ paramsts A ∪ params p›

using params-sub by fastforce
then have ‹∀ t ∈ set A. params (sub 0 t p) ⊆ paramsts ?A›

using GammaUni A by fastforce
then have ‹paramss (map (λt. sub 0 t p) A) ⊆ paramsts ?A›

by auto
ultimately have ‹`̀ pre @ Neg (Uni p) # map (λt. Neg (sub 0 t p)) A @ z›

using GammaUni ih[where pre=‹pre @ Neg (Uni p) # map - A› and
A=‹?A›] A by simp

moreover have ‹ext (map (λt. Neg (sub 0 t p)) A @ Neg (Uni p) # pre @ z)
(pre @ Neg (Uni p) # map (λt. Neg (sub 0 t p)) A @ z)›

by auto
ultimately have ‹`̀ map (λt. Neg (sub 0 t p)) A @ Neg (Uni p) # pre @ z›

using Ext by blast
then have ‹`̀ Neg (Uni p) # pre @ z›
proof (induct A)

case Nil
then show ?case

by simp
next

case (Cons a A)
then have ‹`̀ Neg (Uni p) # map (λt. Neg (sub 0 t p)) A @ Neg (Uni p) #

pre @ z›
using SeCaV .GammaUni by simp

then have ‹`̀ map (λt. Neg (sub 0 t p)) A @ Neg (Uni p) # pre @ z›
using Ext by simp

then show ?case
using Cons.hyps by blast

qed
then show ?thesis

using GammaUni Ext by simp
next

case Other
then have ‹∀ z ′ ∈ set (children ?A r z). (`̀ (pre @ [p]) @ z ′)›

using ∗ by simp
then show ?thesis

using ih[where pre=‹pre @ [p]› and A=‹?A›] A by simp
qed

qed

62

As a special case, the prefix can be empty.
corollary SeCaV-children:

assumes ‹∀ z ′ ∈ set (children A r z). (`̀ z ′)› and ‹paramss z ⊆ paramsts A›
shows ‹`̀ z›
using SeCaV-children-pre assms by (metis append-Nil)

Using this lemma, we can instantiate the abstract soundness framework.
interpretation Soundness eff rules UNIV ‹λ- (A, z). (`̀ z)›

unfolding Soundness-def
proof safe

fix r A z ss S
assume r-enabled: ‹eff r (A, z) ss›

assume ‹∀ s ′. s ′ |∈| ss −→ (∀S ∈ UNIV . case s ′ of (A, z) ⇒ `̀ z)›
then have next-sound: ‹∀B z. (B, z) |∈| ss −→ (`̀ z)›

by simp

show ‹`̀ z›
proof (cases ‹branchDone z›)

case True
then obtain p where ‹p ∈ set z› ‹Neg p ∈ set z›

using branchDone-contradiction by blast
then show ?thesis

using Ext Basic by fastforce
next

case False
let ?A = ‹remdups (A @ subtermFms z)›
have ‹∀ z ′ ∈ set (children ?A r z). (`̀ z ′)›

using False r-enabled eff-children next-sound by blast
moreover have ‹set (subtermFms z) ⊆ set ?A›

by simp
then have ‹paramss z ⊆ paramsts ?A›

using subtermFm-subset-params by fastforce
ultimately show ‹`̀ z›

using SeCaV-children by blast
qed

qed

Using the result from the abstract soundness framework, we can finally state
our soundness result: for a finite, well-formed proof tree, the sequent at the
root of the tree is provable in the SeCaV proof system.
theorem prover-soundness-SeCaV :

assumes ‹tfinite t› and ‹wf t›
shows ‹`̀ rootSequent t›
using assms soundness by fastforce

end

63

2.9 Completeness
theory Completeness

imports Countermodel EPathHintikka
begin

In this theory, we prove that the prover is complete with regards to the
SeCaV proof system using the abstract completeness framework.

We start out by specializing the abstract completeness theorem to our
prover. It is necessary to reproduce the final theorem here so we can alter
it to state that our prover produces a proof tree instead of simply stating
that a proof tree exists.
theorem epath-prover-completeness:

fixes A :: ‹tm list› and z :: ‹fm list›
defines ‹t ≡ secavProver (A, z)›
shows ‹(fst (root t) = (A, z) ∧ wf t ∧ tfinite t) ∨
(∃ steps. fst (shd steps) = (A, z) ∧ epath steps ∧ Saturated steps)›
(is ‹?A ∨ ?B›)

proof −
{ assume ‹¬ ?A›

with assms have ‹¬ tfinite (mkTree rules (A, z))›
unfolding secavProver-def using wf-mkTree fair-rules by simp

then obtain steps where ‹ipath (mkTree rules (A, z)) steps› using Konig by
blast

with assms have ‹fst (shd steps) = (A, z) ∧ epath steps ∧ Saturated steps›
by (metis UNIV-I fair-rules ipath.cases ipath-mkTree-Saturated mkTree.simps(1)

prod.sel(1)
wf-ipath-epath wf-mkTree)

then have ?B by blast
}
then show ?thesis by blast

qed

This is an abbreviation for validity under our bounded semantics (for well-
formed interpretations).
abbreviation

‹uvalid z ≡ ∀ u (e :: nat ⇒ tm) f g. is-env u e −→ is-fdenot u f −→
(∃ p ∈ set z. usemantics u e f g p)›

The sequent in the first state of a saturated escape path is not valid. This
follows from our results in the theories EPathHintikka and Countermodel.
lemma epath-countermodel:

assumes ‹fst (shd steps) = (A, z)› and ‹epath steps› and ‹Saturated steps›
shows ‹¬ uvalid z›

proof
assume ‹uvalid z›
moreover have ‹Hintikka (tree-fms steps)› (is ‹Hintikka ?S›)

64

using assms escape-path-Hintikka assms by simp
moreover have ‹∀ p ∈ set z . p ∈ tree-fms steps›
using assms shd-sset by (metis Pair-inject prod.collapse pseq-def pseq-in-tree-fms)

then have ‹∃ g. ∀ p ∈ set z . ¬ usemantics (terms ?S) (E ?S) (F ?S) g p›
using calculation(2) Hintikka-counter-model assms by blast

moreover have ‹is-env (terms ?S) (E ?S)› ‹is-fdenot (terms ?S) (F ?S)›
using is-env-E is-fdenot-F by blast+

ultimately show False
by blast

qed

Combining the results above, we can prove completeness with regards to our
bounded semantics: if a sequent is valid under our bounded semantics, the
prover will produce a finite, well-formed proof tree with the sequent at its
root.
theorem prover-completeness-usemantics:

fixes A :: ‹tm list›
assumes ‹uvalid z›
defines ‹t ≡ secavProver (A, z)›
shows ‹fst (root t) = (A, z) ∧ wf t ∧ tfinite t›
using assms epath-prover-completeness epath-countermodel by blast

Since our bounded semantics are sound, we can derive our main completeness
theorem as a corollary: if a sequent is provable in the SeCaV proof system,
the prover will produce a finite, well-formed proof tree with the sequent at
its root.
corollary prover-completeness-SeCaV :

fixes A :: ‹tm list›
assumes ‹`̀ z›
defines ‹t ≡ secavProver (A, z)›
shows ‹fst (root t) = (A, z) ∧ wf t ∧ tfinite t›

proof −
have ‹uvalid z›

using assms sound-usemantics by blast
then show ?thesis

using assms prover-completeness-usemantics by blast
qed

end

2.10 Results
theory Results imports Soundness Completeness Sequent-Calculus-Verifier be-
gin

In this theory, we collect our soundness and completeness results and prove
some extra results linking the SeCaV proof system, the usual semantics of
SeCaV, and our bounded semantics.

65

2.10.1 Alternate semantics

The existence of a finite, well-formed proof tree with a formula at its root
implies that the formula is valid under our bounded semantics.
corollary prover-soundness-usemantics:

assumes ‹tfinite t› ‹wf t› ‹is-env u e› ‹is-fdenot u f ›
shows ‹∃ p ∈ set (rootSequent t). usemantics u e f g p›
using assms prover-soundness-SeCaV sound-usemantics by blast

The prover returns a finite, well-formed proof tree if and only if the sequent
to be proved is valid under our bounded semantics.
theorem prover-usemantics:

fixes A :: ‹tm list› and z :: ‹fm list›
defines ‹t ≡ secavProver (A, z)›
shows ‹tfinite t ∧ wf t ←→ uvalid z›
using assms prover-soundness-usemantics prover-completeness-usemantics
unfolding secavProver-def by fastforce

The prover returns a finite, well-formed proof tree for a single formula if and
only if the formula is valid under our bounded semantics.
corollary

fixes p :: fm
defines ‹t ≡ secavProver ([], [p])›
shows ‹tfinite t ∧ wf t ←→ uvalid [p]›
using assms prover-usemantics by simp

2.10.2 SeCaV

The prover returns a finite, well-formed proof tree if and only if the sequent
to be proven is provable in the SeCaV proof system.
theorem prover-SeCaV :

fixes A :: ‹tm list› and z :: ‹fm list›
defines ‹t ≡ secavProver (A, z)›
shows ‹tfinite t ∧ wf t ←→ (`̀ z)›
using assms prover-soundness-SeCaV prover-completeness-SeCaV
unfolding secavProver-def by fastforce

The prover returns a finite, well-formed proof tree if and only if the single
formula to be proven is provable in the SeCaV proof system.
corollary

fixes p :: fm
defines ‹t ≡ secavProver ([], [p])›
shows ‹tfinite t ∧ wf t ←→ (`̀ [p])›
using assms prover-SeCaV by blast

66

2.10.3 Semantics

If the prover returns a finite, well-formed proof tree, some formula in the
sequent at the root of the tree is valid under the usual SeCaV semantics.
corollary prover-soundness-semantics:

assumes ‹tfinite t› ‹wf t›
shows ‹∃ p ∈ set (rootSequent t). semantics e f g p›
using assms prover-soundness-SeCaV sound by blast

If the prover returns a finite, well-formed proof tree, the single formula in
the sequent at the root of the tree is valid under the usual SeCaV semantics.
corollary

assumes ‹tfinite t› ‹wf t› ‹snd (fst (root t)) = [p]›
shows ‹semantics e f g p›
using assms prover-soundness-SeCaV complete-sound(2) by metis

If a formula is valid under the usual SeCaV semantics, the prover will return
a finite, well-formed proof tree with the formula at its root when called on
it.
corollary prover-completeness-semantics:

fixes A :: ‹tm list›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. semantics e f g p›
defines ‹t ≡ secavProver (A, [p])›
shows ‹fst (root t) = (A, [p]) ∧ wf t ∧ tfinite t›

proof −
have ‹`̀ [p]›

using assms complete-sound(1) by blast
then show ?thesis

using assms prover-completeness-SeCaV by blast
qed

The prover produces a finite, well-formed proof tree for a formula if and only
if that formula is valid under the usual SeCaV semantics.
theorem prover-semantics:

fixes A :: ‹tm list› and p :: fm
defines ‹t ≡ secavProver (A, [p])›
shows ‹tfinite t ∧ wf t ←→ (∀ (e :: nat ⇒ nat hterm) f g. semantics e f g p)›
using assms prover-soundness-semantics prover-completeness-semantics
unfolding secavProver-def by fastforce

Validity in the two semantics (in the proper universes) coincide.
theorem semantics-usemantics:

‹(∀ (e :: nat ⇒ nat hterm) f g. semantics e f g p) ←→
(∀ (u :: tm set) e f g. is-env u e −→ is-fdenot u f −→ usemantics u e f g p)›

using prover-semantics prover-usemantics by simp

end

67

	SeCaV
	Sequent Calculus Verifier (SeCaV)
	Syntax: Terms / Formulas
	Semantics: Terms / Formulas
	Auxiliary Functions
	Sequent Calculus
	Shorthands
	Appendix: Soundness
	Increment Function
	Parameters: Terms
	Parameters: Formulas
	Update Lemmas
	Substitution
	Auxiliary Lemmas
	Soundness

	Reference
	Appendix: Completeness
	Reference

	The prover
	Proof search procedure
	Datatypes
	Auxiliary functions
	Effects of rules
	The rule stream
	Abstract completeness

	Export
	Lemmas about the prover
	SeCaV lemmas
	Fairness
	Substitution
	Custom cases
	Unaffected formulas
	Affected formulas
	Generating new function names
	Finding axioms
	Subterms

	Hintikka sets for SeCaV
	Escape path formulas are Hintikka
	Definitions
	Facts about streams
	Transformation of states on an escape path
	Preservation of formulas on escape paths
	Formulas on an escape path form a Hintikka set

	Bounded semantics
	Countermodels from Hintikka sets
	Soundness
	Completeness
	Results
	Alternate semantics
	SeCaV
	Semantics

