
A Sequent Calculus for First-Order Logic

Asta Halkjær From

March 17, 2025

Abstract

This work formalizes soundness and completeness of a one-sided
sequent calculus for first-order logic. The completeness is shown via
a translation from a complete semantic tableau calculus, the proof of
which is based on the First-Order Logic According to Fitting theory.
The calculi and proof techniques are taken from Ben-Ari’s Mathemat-
ical Logic for Computer Science [1].

Contents
1 Common Notation 2

2 Tableau Calculus 2
2.1 Soundness . 3
2.2 Completeness for Closed Formulas 4
2.3 Open Formulas . 8
2.4 Completeness . 19

3 Sequent Calculus 20
3.1 Soundness . 21
3.2 Tableau Calculus Equivalence 22
3.3 Completeness . 23

4 Completeness Revisited 24

1

1 Common Notation
theory Common imports FOL−Fitting.FOL-Fitting begin

notation FF (‹⊥›)
notation TT (‹>›)

end

2 Tableau Calculus
theory Tableau imports Common begin

inductive TC :: ‹(′a, ′b) form list ⇒ bool› (‹a -› 0) where
Basic: ‹a Pred i l # Neg (Pred i l) # G›
| BasicFF : ‹a ⊥ # G›
| BasicNegTT : ‹a Neg > # G›
| AlphaNegNeg: ‹a A # G =⇒ a Neg (Neg A) # G›
| AlphaAnd: ‹a A # B # G =⇒ a And A B # G›
| AlphaNegOr : ‹a Neg A # Neg B # G =⇒ a Neg (Or A B) # G›
| AlphaNegImpl: ‹a A # Neg B # G =⇒ a Neg (Impl A B) # G›
| BetaNegAnd: ‹a Neg A # G =⇒ a Neg B # G =⇒ a Neg (And A B) # G›
| BetaOr : ‹a A # G =⇒ a B # G =⇒ a Or A B # G›
| BetaImpl: ‹a Neg A # G =⇒ a B # G =⇒ a Impl A B # G›
| GammaForall: ‹a subst A t 0 # G =⇒ a Forall A # G›
| GammaNegExists: ‹a Neg (subst A t 0) # G =⇒ a Neg (Exists A) # G›
| DeltaExists: ‹a subst A (App n []) 0 # G =⇒ news n (A # G) =⇒ a Exists A
G›
| DeltaNegForall: ‹a Neg (subst A (App n []) 0) # G =⇒ news n (A # G) =⇒ a
Neg (Forall A) # G›
| Order : ‹a G =⇒ set G = set G ′ =⇒ a G ′›

lemma Shift: ‹a rotate1 G =⇒ a G›
by (simp add: Order)

lemma Swap: ‹a B # A # G =⇒ a A # B # G›
by (simp add: Order insert-commute)

definition tableauproof :: ‹(′a, ′b) form list ⇒ (′a, ′b) form ⇒ bool› where
‹tableauproof ps p ≡ (a Neg p # ps)›

theorem tableauNotAA: ‹a [Neg (Pred ′′A ′′ []), Pred ′′A ′′ []]›
by (rule Shift, simp) (rule Basic)

theorem AndAnd:
‹a [And (Pred ′′A ′′ []) (Pred ′′B ′′ []), Neg (And (Pred ′′B ′′ []) (Pred ′′A ′′ []))]›
apply (rule AlphaAnd)
apply (rule Shift, rule Shift, simp)
apply (rule BetaNegAnd)

2

apply (rule Shift, rule Shift, simp)
apply (rule Basic)

apply (rule Swap)
apply (rule Basic)
done

2.1 Soundness
lemma TC-soundness:

‹a G =⇒ ∃ p ∈ set G. ¬ eval e f g p›
proof (induct G arbitrary: f rule: TC .induct)

case (DeltaExists A n G)
show ?case
proof (rule ccontr)

assume ‹¬ (∃ p ∈ set (Exists A # G). ¬ eval e f g p)›
then have ∗: ‹∀ p ∈ set (Exists A # G). eval e f g p›

by simp

then obtain x where ‹eval (shift e 0 x) (f (n := λw. x)) g A›
using ‹news n (A # G)› by auto

then have ∗∗: ‹eval e (f (n := λw. x)) g (subst A (App n []) 0)›
by simp

have ‹∃ p ∈ set (subst A (App n []) 0 # G). ¬ eval e (f (n := λw. x)) g p›
using DeltaExists by fast

then consider
‹¬ eval e (f (n := λw. x)) g (subst A (App n []) 0)› |
‹∃ p ∈ set G. ¬ eval e (f (n := λw. x)) g p›
by auto

then show False
proof cases

case 1
then show ?thesis

using ∗∗ ..
next

case 2
then obtain p where ‹¬ eval e (f (n := λw. x)) g p› ‹p ∈ set G›

by blast
then have ‹¬ eval e f g p›

using ‹news n (A # G)› by (metis Ball-set set-subset-Cons subsetCE
upd-lemma)

then show ?thesis
using ∗ ‹p ∈ set G› by simp

qed
qed

next
case (DeltaNegForall A n G)
show ?case
proof (rule ccontr)

3

assume ‹¬ (∃ p ∈ set (Neg (Forall A) # G). ¬ eval e f g p)›
then have ∗: ‹∀ p ∈ set (Neg (Forall A) # G). eval e f g p›

by simp

then obtain x where ‹eval (shift e 0 x) (f (n := λw. x)) g (Neg A)›
using ‹news n (A # G)› by auto

then have ∗∗: ‹eval e (f (n := λw. x)) g (Neg (subst A (App n []) 0))›
by simp

have ‹∃ p ∈ set (Neg (subst A (App n []) 0) # G). ¬ eval e (f (n := λw. x)) g
p›

using DeltaNegForall by fast
then consider

‹¬ eval e (f (n := λw. x)) g (Neg (subst A (App n []) 0))› |
‹∃ p ∈ set G. ¬ eval e (f (n := λw. x)) g p›
by auto

then show False
proof cases

case 1
then show ?thesis

using ∗∗ ..
next

case 2
then obtain p where ‹¬ eval e (f (n := λw. x)) g p› ‹p ∈ set G›

by blast
then have ‹¬ eval e f g p›

using ‹news n (A # G)› by (metis Ball-set set-subset-Cons subsetCE
upd-lemma)

then show ?thesis
using ∗ ‹p ∈ set G› by simp

qed
qed

qed auto

theorem tableau-soundness:
‹tableauproof ps p =⇒ list-all (eval e f g) ps =⇒ eval e f g p›
using TC-soundness unfolding tableauproof-def list-all-def by fastforce

2.2 Completeness for Closed Formulas
theorem infinite-nonempty: ‹infinite A =⇒ ∃ x. x ∈ A›

by (simp add: ex-in-conv infinite-imp-nonempty)

theorem TCd-consistency:
assumes inf-param: ‹infinite (UNIV :: ′a set)›
shows ‹consistency {S ::(′a, ′b) form set. ∃G. S = set G ∧ ¬ (a G)}›
unfolding consistency-def

proof (intro conjI allI impI notI)
fix S :: ‹(′a, ′b) form set›

4

assume ‹S ∈ {set G | G. ¬ (a G)}› (is ‹S ∈ ?C ›)
then obtain G :: ‹(′a, ′b) form list›

where ∗: ‹S = set G› and ‹¬ (a G)›
by blast

{ fix p ts
assume ‹Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S›
then show False

using ∗ Basic Order ‹¬ (a G)› by fastforce }

{ assume ‹⊥ ∈ S›
then show False

using ∗ BasicFF Order ‹¬ (a G)› by fastforce }

{ assume ‹Neg > ∈ S›
then show False

using ∗ BasicNegTT Order ‹¬ (a G)› by fastforce }

{ fix Z
assume ‹Neg (Neg Z) ∈ S›
then have ‹¬ (a Z # G)›

using ∗ AlphaNegNeg Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {Z} = set (Z # G)›
using ∗ by simp

ultimately show ‹S ∪ {Z} ∈ ?C ›
by blast }

{ fix A B
assume ‹And A B ∈ S›
then have ‹¬ (a A # B # G)›

using ∗ AlphaAnd Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {A, B} = set (A # B # G)›
using ∗ by simp

ultimately show ‹S ∪ {A, B} ∈ ?C ›
by blast }

{ fix A B
assume ‹Neg (Or A B) ∈ S›
then have ‹¬ (a Neg A # Neg B # G)›

using ∗ AlphaNegOr Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {Neg A, Neg B} = set (Neg A # Neg B # G)›
using ∗ by simp

ultimately show ‹S ∪ {Neg A, Neg B} ∈ ?C ›
by blast }

{ fix A B

5

assume ‹Neg (Impl A B) ∈ S›
then have ‹¬ (a A # Neg B # G)›

using ∗ AlphaNegImpl Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹{A, Neg B} ∪ S = set (A # Neg B # G)›
using ∗ by simp

ultimately show ‹S ∪ {A, Neg B} ∈ ?C ›
by blast }

{ fix A B
assume ‹Or A B ∈ S›
then have ‹¬ (a A # G) ∨ ¬ (a B # G)›

using ∗ BetaOr Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

then show ‹S ∪ {A} ∈ ?C ∨ S ∪ {B} ∈ ?C ›
using ∗ by auto }

{ fix A B
assume ‹Neg (And A B) ∈ S›
then have ‹¬ (a Neg A # G) ∨ ¬ (a Neg B # G)›

using ∗ BetaNegAnd Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

then show ‹S ∪ {Neg A} ∈ ?C ∨ S ∪ {Neg B} ∈ ?C ›
using ∗ by auto }

{ fix A B
assume ‹Impl A B ∈ S›
then have ‹¬ (a Neg A # G) ∨ ¬ (a B # G)›

using ∗ BetaImpl Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

then show ‹S ∪ {Neg A} ∈ ?C ∨ S ∪ {B} ∈ ?C ›
using ∗ by auto }

{ fix P and t :: ‹ ′a term›
assume ‹Forall P ∈ S›
then have ‹¬ (a subst P t 0 # G)›

using ∗ GammaForall Order‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {subst P t 0} = set (subst P t 0 # G)›
using ∗ by simp

ultimately show ‹S ∪ {subst P t 0} ∈ ?C ›
by blast }

{ fix P and t :: ‹ ′a term›
assume ‹Neg (Exists P) ∈ S›
then have ‹¬ (a Neg (subst P t 0) # G)›

using ∗ GammaNegExists Order ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {Neg (subst P t 0)} = set (Neg (subst P t 0) # G)›

6

using ∗ by simp
ultimately show ‹S ∪ {Neg (subst P t 0)} ∈ ?C ›

by blast }

{ fix P
assume ‹Exists P ∈ S›
have ‹finite ((

⋃
p ∈ set G. params p) ∪ params P)›

by simp
then have ‹infinite (− ((

⋃
p ∈ set G. params p) ∪ params P))›

using inf-param Diff-infinite-finite finite-compl infinite-UNIV-listI by blast
then obtain x where ∗∗: ‹x ∈ − ((

⋃
p ∈ set G. params p) ∪ params P)›

using infinite-imp-nonempty by blast
then have ‹news x (P # G)›

using Ball-set-list-all by auto
then have ‹¬ (a subst P (App x []) 0 # G)›

using ∗ ‹Exists P ∈ S› Order DeltaExists ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {subst P (App x []) 0} = set (subst P (App x []) 0 #
G)›

using ∗ by simp
ultimately show ‹∃ x. S ∪ {subst P (App x []) 0} ∈ ?C ›

by blast }

{ fix P
assume ‹Neg (Forall P) ∈ S›
have ‹finite ((

⋃
p ∈ set G. params p) ∪ params P)›

by simp
then have ‹infinite (− ((

⋃
p ∈ set G. params p) ∪ params P))›

using inf-param Diff-infinite-finite finite-compl infinite-UNIV-listI by blast
then obtain x where ∗∗: ‹x ∈ − ((

⋃
p ∈ set G. params p) ∪ params P)›

using infinite-imp-nonempty by blast
then have ‹news x (P # G)›

using Ball-set-list-all by auto
then have ‹¬ (a Neg (subst P (App x []) 0) # G)›

using ∗ ‹Neg (Forall P) ∈ S› Order DeltaNegForall ‹¬ (a G)›
by (metis insert-absorb list.set(2))

moreover have ‹S ∪ {Neg (subst P (App x []) 0)} = set (Neg (subst P (App
x []) 0) # G)›

using ∗ by simp
ultimately show ‹∃ x. S ∪ {Neg (subst P (App x []) 0)} ∈ ?C ›

by blast }
qed

theorem tableau-completeness ′:
fixes p :: ‹(nat, nat) form›
assumes ‹closed 0 p›

and ‹list-all (closed 0) ps›
and mod: ‹∀ (e :: nat ⇒ nat hterm) f g. list-all (eval e f g) ps −→ eval e f g p›

shows ‹tableauproof ps p›

7

proof (rule ccontr)
fix e
assume ‹¬ tableauproof ps p›

let ?S = ‹set (Neg p # ps)›
let ?C = ‹{set (G :: (nat, nat) form list) | G. ¬ (a G)}›
let ?f = HApp
let ?g = ‹(λa ts. Pred a (terms-of-hterms ts) ∈ Extend ?S

(mk-finite-char (mk-alt-consistency (close ?C))) from-nat)›

from ‹list-all (closed 0) ps›
have ‹∀ p ∈ set ps. closed 0 p›

by (simp add: list-all-iff)

{ fix x
assume ‹x ∈ ?S›
moreover have ‹consistency ?C ›

using TCd-consistency by blast
moreover have ‹?S ∈ ?C ›

using ‹¬ tableauproof ps p› unfolding tableauproof-def by blast
moreover have ‹infinite (− (

⋃
p ∈ ?S . params p))›

by (simp add: Compl-eq-Diff-UNIV infinite-UNIV-listI)
moreover note ‹closed 0 p› ‹∀ p ∈ set ps. closed 0 p› ‹x ∈ ?S›
then have ‹closed 0 x› by auto
ultimately have ‹eval e ?f ?g x›

using model-existence by blast }
then have ‹list-all (eval e ?f ?g) (Neg p # ps)›

by (simp add: list-all-iff)
moreover have ‹eval e ?f ?g (Neg p)›

using calculation by simp
moreover have ‹list-all (eval e ?f ?g) ps›

using calculation by simp
then have ‹eval e ?f ?g p›

using mod by blast
ultimately show False by simp

qed

2.3 Open Formulas
lemma TC-psubst:

fixes f :: ‹ ′a ⇒ ′a›
assumes inf-params: ‹infinite (UNIV :: ′a set)›
shows ‹a G =⇒ a map (psubst f) G›

proof (induct G arbitrary: f rule: TC .induct)
case (DeltaExists A n G)
let ?params = ‹params A ∪ (

⋃
p ∈ set G. params p)›

have ‹finite ?params›
by simp

8

then obtain fresh where ∗: ‹fresh /∈ ?params ∪ {n} ∪ image f ?params›
using ex-new-if-finite inf-params
by (metis finite.emptyI finite.insertI finite-UnI finite-imageI)

let ?f = ‹f (n := fresh)›

have ‹news n (A # G)›
using DeltaExists by blast

then have ‹new fresh (psubst ?f A)› ‹news fresh (map (psubst ?f) G)›
using ∗ new-psubst-image news-psubst by (fastforce simp add: image-Un)+

then have G: ‹map (psubst ?f) G = map (psubst f) G›
using DeltaExists

by (metis (mono-tags, lifting) Ball-set insertCI list.set(2) map-eq-conv psubst-upd)

have ‹a psubst ?f (subst A (App n []) 0) # map (psubst ?f) G›
using DeltaExists by (metis list.simps(9))

then have ‹a subst (psubst ?f A) (App fresh []) 0 # map (psubst ?f) G›
by simp

moreover have ‹news fresh (map (psubst ?f) (A # G))›
using ‹new fresh (psubst ?f A)› ‹news fresh (map (psubst ?f) G)› by simp

then have ‹news fresh (psubst ?f A # map (psubst ?f) G)›
by simp

ultimately have ‹a map (psubst ?f) (Exists A # G)›
using TC .DeltaExists by fastforce

then show ?case
using DeltaExists G by simp

next
case (DeltaNegForall A n G)
let ?params = ‹params A ∪ (

⋃
p ∈ set G. params p)›

have ‹finite ?params›
by simp

then obtain fresh where ∗: ‹fresh /∈ ?params ∪ {n} ∪ image f ?params›
using ex-new-if-finite inf-params
by (metis finite.emptyI finite.insertI finite-UnI finite-imageI)

let ?f = ‹f (n := fresh)›

have ‹news n (A # G)›
using DeltaNegForall by blast

then have ‹new fresh (psubst ?f A)› ‹news fresh (map (psubst ?f) G)›
using ∗ new-psubst-image news-psubst by (fastforce simp add: image-Un)+

then have G: ‹map (psubst ?f) G = map (psubst f) G›
using DeltaNegForall

by (metis (mono-tags, lifting) Ball-set insertCI list.set(2) map-eq-conv psubst-upd)

have ‹a psubst ?f (Neg (subst A (App n []) 0)) # map (psubst ?f) G›
using DeltaNegForall by (metis list.simps(9))

then have ‹a Neg (subst (psubst ?f A) (App fresh []) 0) # map (psubst ?f) G›

9

by simp
moreover have ‹news fresh (map (psubst ?f) (A # G))›

using ‹new fresh (psubst ?f A)› ‹news fresh (map (psubst ?f) G)› by simp
then have ‹news fresh (psubst ?f A # map (psubst ?f) G)›

by simp
ultimately have ‹a map (psubst ?f) (Neg (Forall A) # G)›

using TC .DeltaNegForall by fastforce
then show ?case

using DeltaNegForall G by simp
next

case (Order G G ′)
then show ?case

using Order TC .Order set-map by metis
qed (auto intro: TC .intros)

lemma subcs-map: ‹subcs c s G = map (subc c s) G›
by (induct G) simp-all

lemma TC-subcs:
fixes G :: ‹(′a, ′b) form list›
assumes inf-params: ‹infinite (UNIV :: ′a set)›
shows ‹a G =⇒ a subcs c s G›

proof (induct G arbitrary: c s rule: TC .induct)
case (GammaForall A t G)
let ?params = ‹params A ∪ (

⋃
p ∈ set G. params p) ∪ paramst s ∪ paramst t ∪

{c}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using ex-new-if-finite inf-params by metis

let ?f = ‹id(c := fresh)›
let ?g = ‹id(fresh := c)›
let ?s = ‹psubstt ?f s›

have s: ‹psubstt ?g ?s = s›
using fresh psubst-new-away ′ by simp

have ‹subc (?g c) (psubstt ?g ?s) (psubst ?g (Forall A)) = subc c s (Forall A)›
using fresh by simp

then have A: ‹psubst ?g (subc c ?s (Forall A)) = subc c s (Forall A)›
using fun-upd-apply id-def subc-psubst UnCI fresh params.simps(8) by metis

have ‹∀ x ∈ (
⋃

p ∈ set (Forall A # G). params p). x 6= c −→ ?g x 6= ?g c›
using fresh by auto

moreover have ‹map (psubst ?g) (Forall A # G) = Forall A # G›
using fresh by (induct G) simp-all

ultimately have G: ‹map (psubst ?g) (subcs c ?s (Forall A # G)) = subcs c s
(Forall A # G)›

using s A by (simp add: subcs-psubst)

10

have ‹new-term c ?s›
using fresh psubst-new-free ′ by fast

then have ‹a subc c ?s (subst A (subc-term c ?s t) 0) # subcs c ?s G›
using GammaForall by (metis new-subc-put subcs.simps(2))

moreover have ‹new-term c (subc-term c ?s t)›
using ‹new-term c ?s› new-subc-same ′ by simp

ultimately have ‹a subst (subc c (liftt ?s) A) (subc-term c ?s t) 0 # subcs c ?s
G›

by simp
moreover have ‹Forall (subc c (liftt ?s) A) ∈ set (subcs c ?s (Forall A # G))›

by simp
ultimately have ‹a subcs c ?s (Forall A # G)›

using TC .GammaForall by simp
then have ‹a map (psubst ?g) (subcs c ?s (Forall A # G))›

using TC-psubst inf-params by blast
then show ‹a subcs c s (Forall A # G)›

using G by simp
next

case (GammaNegExists A t G)
let ?params = ‹params A ∪ (

⋃
p ∈ set G. params p) ∪ paramst s ∪ paramst t ∪

{c}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using ex-new-if-finite inf-params by metis

let ?f = ‹id(c := fresh)›
let ?g = ‹id(fresh := c)›
let ?s = ‹psubstt ?f s›

have s: ‹psubstt ?g ?s = s›
using fresh psubst-new-away ′ by simp

have ‹subc (?g c) (psubstt ?g ?s) (psubst ?g (Neg (Exists A))) = subc c s (Neg
(Exists A))›

using fresh by simp
then have A: ‹psubst ?g (subc c ?s (Neg (Exists A))) = subc c s (Neg (Exists

A))›
using fun-upd-apply id-def subc-psubst UnCI fresh params.simps(7 ,9) by metis

have ‹∀ x ∈ (
⋃

p ∈ set (Neg (Exists A) # G). params p). x 6= c −→ ?g x 6= ?g
c›

using fresh by auto
moreover have ‹map (psubst ?g) (Neg (Exists A) # G) = Neg (Exists A) # G›

using fresh by (induct G) simp-all
ultimately have G: ‹map (psubst ?g) (subcs c ?s (Neg (Exists A) # G)) =

subcs c s (Neg (Exists A) # G)›
using s A by (simp add: subcs-psubst)

11

have ‹new-term c ?s›
using fresh psubst-new-free ′ by fast

then have ‹a Neg (subc c ?s (subst A (subc-term c ?s t) 0)) # subcs c ?s G›
using GammaNegExists by (metis new-subc-put subc.simps(4) subcs.simps(2))

moreover have ‹new-term c (subc-term c ?s t)›
using ‹new-term c ?s› new-subc-same ′ by simp

ultimately have ‹a Neg (subst (subc c (liftt ?s) A) (subc-term c ?s t) 0) #
subcs c ?s G›

by simp
moreover have ‹Neg (Exists (subc c (liftt ?s) A)) ∈ set (subcs c ?s (Neg (Exists

A) # G))›
by simp

ultimately have ‹a subcs c ?s (Neg (Exists A) # G)›
using TC .GammaNegExists by simp

then have ‹a map (psubst ?g) (subcs c ?s (Neg (Exists A) # G))›
using TC-psubst inf-params by blast

then show ‹a subcs c s (Neg (Exists A) # G)›
using G by simp

next
case (DeltaExists A n G)
then show ?case
proof (cases ‹c = n›)

case True
then have ‹a Exists A # G›

using DeltaExists TC .DeltaExists by metis
moreover have ‹new c A› and ‹news c G›

using DeltaExists True by simp-all
ultimately show ?thesis

by (simp add: subcs-news)
next

case False
let ?params = ‹params A ∪ (

⋃
p ∈ set G. params p) ∪ paramst s ∪ {c} ∪ {n}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using ex-new-if-finite inf-params by metis

let ?s = ‹psubstt (id(n := fresh)) s›
let ?f = ‹id(n := fresh, fresh := n)›

have f : ‹∀ x ∈ ?params. x 6= c −→ ?f x 6= ?f c›
using fresh by simp

have ‹new-term n ?s›
using fresh psubst-new-free ′ by fast

then have ‹psubstt ?f ?s = psubstt (id(fresh := n)) ?s›
by (metis fun-upd-twist psubstt-upd(1))

12

then have psubst-s: ‹psubstt ?f ?s = s›
using fresh psubst-new-away ′ by simp

have ‹?f c = c› and ‹new-term c (App fresh [])›
using False fresh by auto

have ‹psubst ?f (subc c ?s (subst A (App n []) 0)) =
subc (?f c) (psubstt ?f ?s) (psubst ?f (subst A (App n []) 0))›
by (simp add: subc-psubst)

also have ‹. . . = subc c s (subst (psubst ?f A) (App fresh []) 0)›
using ‹?f c = c› psubst-subst psubst-s by simp

also have ‹. . . = subc c s (subst A (App fresh []) 0)›
using DeltaExists fresh by simp

finally have psubst-A: ‹psubst ?f (subc c ?s (subst A (App n []) 0)) =
subst (subc c (liftt s) A) (App fresh []) 0 ›

using ‹new-term c (App fresh [])› by simp

have ‹news n G›
using DeltaExists by simp

moreover have ‹news fresh G›
using fresh by (induct G) simp-all

ultimately have ‹map (psubst ?f) G = G›
by (induct G) simp-all

moreover have ‹∀ x ∈
⋃

p ∈ set G. params p. x 6= c −→ ?f x 6= ?f c›
by auto

ultimately have psubst-G: ‹map (psubst ?f) (subcs c ?s G) = subcs c s G›
using ‹?f c = c› psubst-s by (simp add: subcs-psubst)

have ‹a subc c ?s (subst A (App n []) 0) # subcs c ?s G›
using DeltaExists by simp

then have ‹a psubst ?f (subc c ?s (subst A (App n []) 0)) # map (psubst ?f)
(subcs c ?s G)›

using TC-psubst inf-params DeltaExists.hyps(3) by fastforce
then have ‹a psubst ?f (subc c ?s (subst A (App n []) 0)) # subcs c s G›

using psubst-G by simp
then have sub-A: ‹a subst (subc c (liftt s) A) (App fresh []) 0 # subcs c s G›

using psubst-A by simp

have ‹new-term fresh s›
using fresh by simp

then have ‹new-term fresh (liftt s)›
by simp

then have ‹new fresh (subc c (liftt s) A)›
using fresh new-subc by simp

moreover have ‹news fresh (subcs c s G)›
using ‹news fresh G› ‹new-term fresh s› news-subcs by fast

ultimately show ‹a subcs c s (Exists A # G)›
using TC .DeltaExists sub-A by fastforce

qed

13

next
case (DeltaNegForall A n G)
then show ?case
proof (cases ‹c = n›)

case True
then have ‹a Neg (Forall A) # G›

using DeltaNegForall TC .DeltaNegForall by metis
moreover have ‹new c A› and ‹news c G›

using DeltaNegForall True by simp-all
ultimately show ?thesis

by (simp add: subcs-news)
next

case False
let ?params = ‹params A ∪ (

⋃
p ∈ set G. params p) ∪ paramst s ∪ {c} ∪ {n}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using ex-new-if-finite inf-params by metis

let ?s = ‹psubstt (id(n := fresh)) s›
let ?f = ‹id(n := fresh, fresh := n)›

have f : ‹∀ x ∈ ?params. x 6= c −→ ?f x 6= ?f c›
using fresh by simp

have ‹new-term n ?s›
using fresh psubst-new-free ′ by fast

then have ‹psubstt ?f ?s = psubstt (id(fresh := n)) ?s›
using fun-upd-twist psubstt-upd(1) by metis

then have psubst-s: ‹psubstt ?f ?s = s›
using fresh psubst-new-away ′ by simp

have ‹?f c = c› and ‹new-term c (App fresh [])›
using False fresh by auto

have ‹psubst ?f (subc c ?s (Neg (subst A (App n []) 0))) =
subc (?f c) (psubstt ?f ?s) (psubst ?f (Neg (subst A (App n []) 0)))›
by (simp add: subc-psubst)

also have ‹. . . = subc c s (Neg (subst (psubst ?f A)(App fresh []) 0))›
using ‹?f c = c› psubst-subst psubst-s by simp

also have ‹. . . = subc c s (Neg (subst A (App fresh []) 0))›
using DeltaNegForall fresh by simp

finally have psubst-A: ‹psubst ?f (subc c ?s (Neg (subst A (App n []) 0))) =
Neg (subst (subc c (liftt s) A) (App fresh []) 0)›

using ‹new-term c (App fresh [])› by simp

have ‹news n G›
using DeltaNegForall by simp

14

moreover have ‹news fresh G›
using fresh by (induct G) simp-all

ultimately have ‹map (psubst ?f) G = G›
by (induct G) simp-all

moreover have ‹∀ x ∈
⋃

p ∈ set G. params p. x 6= c −→ ?f x 6= ?f c›
by auto

ultimately have psubst-G: ‹map (psubst ?f) (subcs c ?s G) = subcs c s G›
using ‹?f c = c› psubst-s by (simp add: subcs-psubst)

have ‹a subc c ?s (Neg (subst A (App n []) 0)) # subcs c ?s G›
using DeltaNegForall by simp

then have ‹a psubst ?f (subc c ?s (Neg (subst A (App n []) 0)))
map (psubst ?f) (subcs c ?s G)›

using TC-psubst inf-params DeltaNegForall.hyps(3) by fastforce
then have ‹a psubst ?f (subc c ?s (Neg (subst A (App n []) 0))) # subcs c s

G›
using psubst-G by simp

then have sub-A: ‹a Neg (subst (subc c (liftt s) A) (App fresh []) 0) # subcs
c s G›

using psubst-A by simp

have ‹new-term fresh s›
using fresh by simp

then have ‹new-term fresh (liftt s)›
by simp

then have ‹new fresh (subc c (liftt s) A)›
using fresh new-subc by simp

moreover have ‹news fresh (subcs c s G)›
using ‹news fresh G› ‹new-term fresh s› news-subcs by fast

ultimately show ‹a subcs c s (Neg (Forall A) # G)›
using TC .DeltaNegForall sub-A by fastforce

qed
next

case (Order G G ′)
then show ?case

using TC .Order set-map subcs-map by metis
qed (auto intro: TC .intros)

lemma TC-map-subc:
fixes G :: ‹(′a, ′b) form list›
assumes inf-params: ‹infinite (UNIV :: ′a set)›
shows ‹a G =⇒ a map (subc c s) G›
using assms TC-subcs subcs-map by metis

lemma ex-all-closed: ‹∃m. list-all (closed m) G›
proof (induct G)

case Nil
then show ?case

by simp

15

next
case (Cons a G)
then show ?case

unfolding list-all-def
using ex-closed closed-mono
by (metis Ball-set list-all-simps(1) nat-le-linear)

qed

primrec sub-consts :: ‹ ′a list ⇒ (′a, ′b) form ⇒ (′a, ′b) form› where
‹sub-consts [] p = p›
| ‹sub-consts (c # cs) p = sub-consts cs (subst p (App c []) (length cs))›

lemma valid-sub-consts:
assumes ‹∀ (e :: nat ⇒ ′a) f g. eval e f g p›
shows ‹eval (e :: nat => ′a) f g (sub-consts cs p)›
using assms by (induct cs arbitrary: p) simp-all

lemma closed-sub ′ [simp]:
assumes ‹k ≤ m› shows

‹closedt (Suc m) t = closedt m (substt t (App c []) k)›
‹closedts (Suc m) l = closedts m (substts l (App c []) k)›

using assms by (induct t and l rule: closedt.induct closedts.induct) auto

lemma closed-sub: ‹k ≤ m =⇒ closed (Suc m) p = closed m (subst p (App c [])
k)›

by (induct p arbitrary: m k) simp-all

lemma closed-sub-consts: ‹length cs = k =⇒ closed m (sub-consts cs p) = closed
(m + k) p›
proof (induct cs arbitrary: k p)

case Nil
then show ?case

by simp
next

case (Cons c cs)
then show ?case

using closed-sub by fastforce
qed

lemma map-sub-consts-Nil: ‹map (sub-consts []) G = G›
by (induct G) simp-all

primrec conjoin :: ‹(′a, ′b) form list ⇒ (′a, ′b) form› where
‹conjoin [] = Neg ⊥›
| ‹conjoin (p # ps) = And p (conjoin ps)›

lemma eval-conjoin: ‹list-all (eval e f g) G = eval e f g (conjoin G)›
by (induct G) simp-all

16

lemma valid-sub:
fixes e :: ‹nat ⇒ ′a›
assumes ‹∀ (e :: nat ⇒ ′a) f g. eval e f g p −→ eval e f g q›
shows ‹eval e f g (subst p t m) −→ eval e f g (subst q t m)›
using assms by simp

lemma eval-sub-consts:
fixes e :: ‹nat ⇒ ′a›
assumes ‹∀ (e :: nat ⇒ ′a) f g. eval e f g p −→ eval e f g q›

and ‹eval e f g (sub-consts cs p)›
shows ‹eval e f g (sub-consts cs q)›
using assms

proof (induct cs arbitrary: p q)
case Nil
then show ?case

by simp
next

case (Cons c cs)
then show ?case

by (metis sub-consts.simps(2) subst-lemma)
qed

lemma sub-consts-And [simp]: ‹sub-consts cs (And p q) = And (sub-consts cs p)
(sub-consts cs q)›

by (induct cs arbitrary: p q) simp-all

lemma sub-consts-conjoin:
‹eval e f g (sub-consts cs (conjoin G)) = eval e f g (conjoin (map (sub-consts cs)

G))›
proof (induct G)

case Nil
then show ?case

by (induct cs) simp-all
next

case (Cons p G)
then show ?case

using sub-consts-And by simp
qed

lemma all-sub-consts-conjoin:
‹list-all (eval e f g) (map (sub-consts cs) G) = eval e f g (sub-consts cs (conjoin

G))›
by (induct G) (simp-all add: valid-sub-consts)

lemma valid-all-sub-consts:
fixes e :: ‹nat ⇒ ′a›
assumes ‹∀ (e :: nat ⇒ ′a) f g. list-all (eval e f g) G −→ eval e f g p›
shows ‹list-all (eval e f g) (map (sub-consts cs) G) −→ eval e f g (sub-consts cs

p)›

17

using assms eval-conjoin eval-sub-consts all-sub-consts-conjoin by metis

lemma TC-vars-for-consts:
fixes G :: ‹(′a, ′b) form list›
assumes ‹infinite (UNIV :: ′a set)›
shows ‹a G =⇒ a map (λp. vars-for-consts p cs) G›

proof (induct cs)
case Nil
then show ?case

by simp
next

case (Cons c cs)
have ‹(a map (λp. vars-for-consts p (c # cs)) G) =

(a map (λp. subc c (Var (length cs)) (vars-for-consts p cs)) G)›
by simp

also have ‹. . . = (a map (subc c (Var (length cs)) o (λp. vars-for-consts p cs))
G)›

unfolding comp-def by simp
also have ‹. . . = (a map (subc c (Var (length cs))) (map (λp. vars-for-consts p

cs) G))›
by simp

finally show ?case
using Cons TC-map-subc assms by metis

qed

lemma vars-for-consts-sub-consts:
‹closed (length cs) p =⇒ list-all (λc. new c p) cs =⇒ distinct cs =⇒
vars-for-consts (sub-consts cs p) cs = p›

proof (induct cs arbitrary: p)
case (Cons c cs)
then show ?case

using subst-new-all closed-sub by force
qed simp

lemma all-vars-for-consts-sub-consts:
‹list-all (closed (length cs)) G =⇒ list-all (λc. list-all (new c) G) cs =⇒ distinct

cs =⇒
map (λp. vars-for-consts p cs) (map (sub-consts cs) G) = G›

using vars-for-consts-sub-consts unfolding list-all-def
by (induct G) fastforce+

lemma new-conjoin: ‹new c (conjoin G) =⇒ list-all (new c) G›
by (induct G) simp-all

lemma all-fresh-constants:
fixes G :: ‹(′a, ′b) form list›
assumes ‹infinite (UNIV :: ′a set)›
shows ‹∃ cs. length cs = m ∧ list-all (λc. list-all (new c) G) cs ∧ distinct cs›

proof −

18

obtain cs where ‹length cs = m› ‹list-all (λc. new c (conjoin G)) cs› ‹distinct
cs›

using assms fresh-constants by blast
then show ?thesis

using new-conjoin unfolding list-all-def by metis
qed

lemma sub-consts-Neg: ‹sub-consts cs (Neg p) = Neg (sub-consts cs p)›
by (induct cs arbitrary: p) simp-all

2.4 Completeness
theorem tableau-completeness:

fixes G :: ‹(nat, nat) form list›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. list-all (eval e f g) G −→ eval e f g p›
shows ‹tableauproof G p›

proof −
obtain m where ∗: ‹list-all (closed m) (p # G)›

using ex-all-closed by blast
moreover obtain cs where ∗∗:

‹length cs = m›
‹distinct cs›
‹list-all (λc. list-all (new c) (p # G)) cs›
using all-fresh-constants by blast

ultimately have ‹closed 0 (sub-consts cs p)›
using closed-sub-consts by fastforce

moreover have ‹list-all (closed 0) (map (sub-consts cs) G)›
using closed-sub-consts ∗ ‹length cs = m› by (induct G) fastforce+

moreover have ‹∀ (e :: nat ⇒ nat hterm) f g. list-all (eval e f g) (map (sub-consts
cs) G) −→

eval e f g (sub-consts cs p)›
using assms valid-all-sub-consts by blast

ultimately have ‹a Neg (sub-consts cs p) # map (sub-consts cs) G›
using tableau-completeness ′ unfolding tableauproof-def by simp

then have ‹a map (sub-consts cs) (Neg p # G)›
by (simp add: sub-consts-Neg)

then have ‹a map (λp. vars-for-consts p cs) (map (sub-consts cs) (Neg p # G))›
using TC-vars-for-consts by blast

then show ?thesis
unfolding tableauproof-def
using all-vars-for-consts-sub-consts[where G=‹Neg p # G›] ∗ ∗∗ by simp

qed

corollary
fixes p :: ‹(nat, nat) form›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. eval e f g p›
shows ‹a [Neg p]›
using assms tableau-completeness unfolding tableauproof-def by simp

19

end

3 Sequent Calculus
theory Sequent imports Tableau begin

inductive SC :: ‹(′a, ′b) form list ⇒ bool› (‹` -› 0) where
Basic: ‹` Pred i l # Neg (Pred i l) # G›
| BasicNegFF : ‹` Neg ⊥ # G›
| BasicTT : ‹` > # G›
| AlphaNegNeg: ‹` A # G =⇒ ` Neg (Neg A) # G›
| AlphaNegAnd: ‹` Neg A # Neg B # G =⇒ ` Neg (And A B) # G›
| AlphaOr : ‹` A # B # G =⇒ ` Or A B # G›
| AlphaImpl: ‹` Neg A # B # G =⇒ ` Impl A B # G›
| BetaAnd: ‹` A # G =⇒ ` B # G =⇒ ` And A B # G›
| BetaNegOr : ‹` Neg A # G =⇒ ` Neg B # G =⇒ ` Neg (Or A B) # G›
| BetaNegImpl: ‹` A # G =⇒ ` Neg B # G =⇒ ` Neg (Impl A B) # G›
| GammaExists: ‹` subst A t 0 # G =⇒ ` Exists A # G›
| GammaNegForall: ‹` Neg (subst A t 0) # G =⇒ ` Neg (Forall A) # G›
| DeltaForall: ‹` subst A (App n []) 0 # G =⇒ news n (A # G) =⇒ ` Forall A
G›
| DeltaNegExists: ‹` Neg (subst A (App n []) 0) # G =⇒ news n (A # G) =⇒ `
Neg (Exists A) # G›
| Order : ‹` G =⇒ set G = set G ′ =⇒ ` G ′›

lemma Shift: ‹` rotate1 G =⇒ ` G›
by (simp add: Order)

lemma Swap: ‹` B # A # G =⇒ ` A # B # G›
by (simp add: Order insert-commute)

lemma ‹` [Neg (Pred ′′A ′′ []), Pred ′′A ′′ []]›
by (rule Shift, simp) (rule Basic)

lemma ‹` [And (Pred ′′A ′′ []) (Pred ′′B ′′ []), Neg (And (Pred ′′B ′′ []) (Pred ′′A ′′

[]))]›
apply (rule BetaAnd)
apply (rule Swap)
apply (rule AlphaNegAnd)
apply (rule Shift, simp, rule Swap)
apply (rule Basic)

apply (rule Swap)
apply (rule AlphaNegAnd)
apply (rule Shift, rule Shift, simp)
apply (rule Basic)
done

20

3.1 Soundness
lemma SC-soundness: ‹` G =⇒ ∃ p ∈ set G. eval e f g p›
proof (induct G arbitrary: f rule: SC .induct)

case (DeltaForall A n G)
then consider

‹∀ x. eval e (f (n := λw. x)) g (subst A (App n []) 0)› |
‹∃ x. ∃ p ∈ set G. eval e (f (n := λw. x)) g p›
by fastforce

then show ?case
proof cases

case 1
then have ‹∀ x. eval (shift e 0 x) (f (n := λw. x)) g A›

by simp
then have ‹∀ x. eval (shift e 0 x) f g A›

using ‹news n (A # G)› by simp
then show ?thesis

by simp
next

case 2
then have ‹∃ p ∈ set G. eval e f g p›

using ‹news n (A # G)› using Ball-set insert-iff list.set(2) upd-lemma by
metis

then show ?thesis
by simp

qed
next

case (DeltaNegExists A n G)
then consider

‹∀ x. eval e (f (n := λw. x)) g (Neg (subst A (App n []) 0))› |
‹∃ x. ∃ p ∈ set G. eval e (f (n := λw. x)) g p›
by fastforce

then show ?case
proof cases

case 1
then have ‹∀ x. eval (shift e 0 x) (f (n := λw. x)) g (Neg A)›

by simp
then have ‹∀ x. eval (shift e 0 x) f g (Neg A)›

using ‹news n (A # G)› by simp
then show ?thesis

by simp
next

case 2
then have ‹∃ p ∈ set G. eval e f g p›

using ‹news n (A # G)› using Ball-set insert-iff list.set(2) upd-lemma by
metis

then show ?thesis
by simp

qed
qed auto

21

3.2 Tableau Calculus Equivalence
fun compl :: ‹(′a, ′b) form ⇒ (′a, ′b) form› where

‹compl (Neg p) = p›
| ‹compl p = Neg p›

lemma compl: ‹compl p = Neg p ∨ (∃ q. compl p = q ∧ p = Neg q)›
by (cases p rule: compl.cases) simp-all

lemma new-compl: ‹new n p =⇒ new n (compl p)›
by (cases p rule: compl.cases) simp-all

lemma news-compl: ‹news n G =⇒ news n (map compl G)›
using new-compl by (induct G) fastforce+

theorem TC-SC : ‹a G =⇒ ` map compl G›
proof (induct G rule: TC .induct)

case (Basic i l G)
then show ?case

using SC .Basic Swap by fastforce
next

case (AlphaNegNeg A G)
then show ?case

using SC .AlphaNegNeg compl by (metis compl.simps(1) list.simps(9))
next

case (AlphaAnd A B G)
then have ∗: ‹` compl A # compl B # map compl G›

by simp
then have ‹` Neg A # Neg B # map compl G›

using compl AlphaNegNeg Swap by metis
then show ?case

using AlphaNegAnd by simp
next

case (AlphaNegImpl A B G)
then have ‹` compl A # B # map compl G›

by simp
then have ‹` Neg A # B # map compl G›

using compl AlphaNegNeg by metis
then show ?case

using AlphaImpl by simp
next

case (BetaOr A G B)
then have ‹` compl A # map compl G› ‹` compl B # map compl G›

by simp-all
then have ‹` Neg A # map compl G› ‹` Neg B # map compl G›

using compl AlphaNegNeg by metis+
then show ?case

using BetaNegOr by simp
next

case (BetaImpl A G B)

22

then have ‹` A # map compl G› ‹` compl B # map compl G›
by simp-all

then have ‹` A # map compl G› ‹` Neg B # map compl G›
by − (assumption, metis compl AlphaNegNeg)

then have ‹` Neg (Impl A B) # map compl G›
using BetaNegImpl by blast

then have ‹` compl (Impl A B) # map compl G›
using ‹` A # map compl G› compl by simp

then show ?case
by simp

next
case (GammaForall A t G)
then have ‹` compl (subst A t 0) # map compl G›

by simp
then have ‹` Neg (subst A t 0) # map compl G›

using compl AlphaNegNeg by metis
then show ?case

using GammaNegForall by simp
next

case (DeltaExists A n G)
then have ‹` compl (subst A (App n []) 0) # map compl G›

by simp
then have ‹` Neg (subst A (App n []) 0) # map compl G›

using compl AlphaNegNeg by metis
moreover have ‹news n (A # map compl G)›

using DeltaExists news-compl by fastforce
ultimately show ?case

using DeltaNegExists by simp
next

case (DeltaNegForall A n G)
then have ‹` subst A (App n []) 0 # map compl G›

by simp
moreover have ‹news n (A # map compl G)›

using DeltaNegForall news-compl by fastforce
ultimately show ?case

using DeltaForall by simp
qed (simp-all add: SC .intros)

3.3 Completeness
theorem SC-completeness:

fixes p :: ‹(nat, nat) form›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. list-all (eval e f g) ps −→ eval e f g p›
shows ‹` p # map compl ps›

proof −
have ‹a Neg p # ps›

using assms tableau-completeness unfolding tableauproof-def by simp
then show ?thesis

using TC-SC by fastforce

23

qed

corollary
fixes p :: ‹(nat, nat) form›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. eval e f g p›
shows ‹` [p]›
using assms SC-completeness list.map(1) by metis

end
theory Sequent2 imports Sequent begin

4 Completeness Revisited
lemma ‹∃ p. q = compl p›

by (metis compl.simps(1))

definition compl ′ where
‹compl ′ = (λq. (SOME p. q = compl p))›

lemma comp ′-sem:
‹eval e f g (compl ′ p) ←→ ¬ eval e f g p›
by (smt compl ′-def compl.simps(1) compl eval.simps(7) someI-ex)

lemma comp ′-sem-list: ‹list-ex (λp. ¬ eval e f g p) (map compl ′ ps) ←→ list-ex
(eval e f g) ps›

by (induct ps) (use comp ′-sem in auto)

theorem SC-completeness ′:
fixes ps :: ‹(nat, nat) form list›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. list-ex (eval e f g) (p # ps)›
shows ‹` p # ps›

proof −
define ps ′ where ‹ps ′ = map compl ′ ps›
then have ‹ps = map compl ps ′›

by (induct ps arbitrary: ps ′) (simp, smt (verit) compl ′-def compl.simps(1)
list.simps(9) someI-ex)

from assms have ‹∀ (e :: nat ⇒ nat hterm) f g. (list-ex (eval e f g) ps) ∨ eval e
f g p›

by auto
then have ‹∀ (e :: nat ⇒ nat hterm) f g. (list-ex (λp. ¬ eval e f g p) ps ′) ∨ eval

e f g p›
unfolding ps ′-def using comp ′-sem-list by blast

then have ‹∀ (e :: nat ⇒ nat hterm) f g. list-all (eval e f g) ps ′ −→ eval e f g p›
by (metis Ball-set Bex-set)

then have ‹` p # map compl ps ′›
using SC-completeness by blast

then show ?thesis
using ‹ps = map compl ps ′› by auto

qed

24

corollary
fixes ps :: ‹(nat, nat) form list›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. list-ex (eval e f g) ps›
shows ‹` ps›
using assms SC-completeness ′ by (cases ps) auto

end

References

[1] M. Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition.
Springer, 2012.

25

	Common Notation
	Tableau Calculus
	Soundness
	Completeness for Closed Formulas
	Open Formulas
	Completeness

	Sequent Calculus
	Soundness
	Tableau Calculus Equivalence
	Completeness

	Completeness Revisited

