
Meta-theory of first-order predicate logic

Stefan Berghofer

March 17, 2025

Abstract

We present a formalization of parts of Melvin Fitting’s book “First-
Order Logic and Automated Theorem Proving” [1]. The formalization
covers the syntax of first-order logic, its semantics, the model existence
theorem, a natural deduction proof calculus together with a proof of
correctness and completeness, as well as the Löwenheim-Skolem theo-
rem.

Contents
1 First-Order Logic According to Fitting 2

2 Miscellaneous Utilities 2

3 Terms and formulae 2
3.1 Closed terms and formulae . 3
3.2 Substitution . 4
3.3 Parameters . 5

4 Semantics 7

5 Proof calculus 9

6 Correctness 12

7 Completeness 13
7.1 Consistent sets . 14
7.2 Closure under subsets . 18
7.3 Finite character . 22
7.4 Enumerating datatypes . 29
7.5 Extension to maximal consistent sets 29
7.6 Hintikka sets and Herbrand models 34
7.7 Model existence theorem . 44
7.8 Completeness for Natural Deduction 45

1

8 Löwenheim-Skolem theorem 54

9 Completeness for open formulas 59
9.1 Renaming . 59
9.2 Substitution for constants . 63
9.3 Weakening assumptions . 74
9.4 Implications and assumptions 77
9.5 Closure elimination . 78
9.6 Completeness . 81

1 First-Order Logic According to Fitting

2 Miscellaneous Utilities

Some facts about (in)finite sets
theorem set-inter-compl-diff [simp]: ‹− A ∩ B = B − A› by blast

3 Terms and formulae

The datatypes of terms and formulae in de Bruijn notation are defined as
follows:
datatype ′a term
= Var nat
| App ′a ‹ ′a term list›

datatype (′a, ′b) form
= FF
| TT
| Pred ′b ‹ ′a term list›
| And ‹(′a, ′b) form› ‹(′a, ′b) form›
| Or ‹(′a, ′b) form› ‹(′a, ′b) form›
| Impl ‹(′a, ′b) form› ‹(′a, ′b) form›
| Neg ‹(′a, ′b) form›
| Forall ‹(′a, ′b) form›
| Exists ‹(′a, ′b) form›

We use ′a and ′b to denote the type of function symbols and predicate sym-
bols, respectively. In applications App a ts and predicates Pred a ts, the
length of ts is considered to be a part of the function or predicate name, so
App a [t] and App a [t,u] refer to different functions.
The size of a formula is used later for wellfounded induction. The default
implementation provided by the datatype package is not quite what we need,
so here is an alternative version:
primrec size-form :: ‹(′a, ′b) form ⇒ nat› where

2

‹size-form FF = 0 ›
| ‹size-form TT = 0 ›
| ‹size-form (Pred - -) = 0 ›
| ‹size-form (And p q) = size-form p + size-form q + 1 ›
| ‹size-form (Or p q) = size-form p + size-form q + 1 ›
| ‹size-form (Impl p q) = size-form p + size-form q + 1 ›
| ‹size-form (Neg p) = size-form p + 1 ›
| ‹size-form (Forall p) = size-form p + 1 ›
| ‹size-form (Exists p) = size-form p + 1 ›

3.1 Closed terms and formulae

Many of the results proved in the following sections are restricted to closed
terms and formulae. We call a term or formula closed at level i, if it only
contains “loose” bound variables with indices smaller than i.
primrec

closedt :: ‹nat ⇒ ′a term ⇒ bool› and
closedts :: ‹nat ⇒ ′a term list ⇒ bool› where
‹closedt m (Var n) = (n < m)›

| ‹closedt m (App a ts) = closedts m ts›
| ‹closedts m [] = True›
| ‹closedts m (t # ts) = (closedt m t ∧ closedts m ts)›

primrec closed :: ‹nat ⇒ (′a, ′b) form ⇒ bool› where
‹closed m FF = True›

| ‹closed m TT = True›
| ‹closed m (Pred b ts) = closedts m ts›
| ‹closed m (And p q) = (closed m p ∧ closed m q)›
| ‹closed m (Or p q) = (closed m p ∧ closed m q)›
| ‹closed m (Impl p q) = (closed m p ∧ closed m q)›
| ‹closed m (Neg p) = closed m p›
| ‹closed m (Forall p) = closed (Suc m) p›
| ‹closed m (Exists p) = closed (Suc m) p›

theorem closedt-mono: assumes le: ‹i ≤ j›
shows ‹closedt i (t:: ′a term) =⇒ closedt j t›

and ‹closedts i (ts:: ′a term list) =⇒ closedts j ts›
using le by (induct t and ts rule: closedt.induct closedts.induct) simp-all

theorem closed-mono: assumes le: ‹i ≤ j›
shows ‹closed i p =⇒ closed j p›
using le

proof (induct p arbitrary: i j)
case (Pred i l)
then show ?case

using closedt-mono by simp
qed auto

3

3.2 Substitution

We now define substitution functions for terms and formulae. When per-
forming substitutions under quantifiers, we need to lift the terms to be sub-
stituted for variables, in order for the “loose” bound variables to point to
the right position.
primrec

substt :: ‹ ′a term ⇒ ′a term ⇒ nat ⇒ ′a term› (‹-[- ′/-]› [300 , 0 , 0] 300) and
substts :: ‹ ′a term list ⇒ ′a term ⇒ nat ⇒ ′a term list› (‹-[- ′/-]› [300 , 0 , 0] 300)

where
‹(Var i)[s/k] = (if k < i then Var (i − 1) else if i = k then s else Var i)›

| ‹(App a ts)[s/k] = App a (ts[s/k])›
| ‹[][s/k] = []›
| ‹(t # ts)[s/k] = t[s/k] # ts[s/k]›

primrec
liftt :: ‹ ′a term ⇒ ′a term› and
liftts :: ‹ ′a term list ⇒ ′a term list› where
‹liftt (Var i) = Var (Suc i)›

| ‹liftt (App a ts) = App a (liftts ts)›
| ‹liftts [] = []›
| ‹liftts (t # ts) = liftt t # liftts ts›

primrec subst :: ‹(′a, ′b) form ⇒ ′a term ⇒ nat ⇒ (′a, ′b) form›
(‹-[- ′/-]› [300 , 0 , 0] 300) where
‹FF [s/k] = FF›

| ‹TT [s/k] = TT ›
| ‹(Pred b ts)[s/k] = Pred b (ts[s/k])›
| ‹(And p q)[s/k] = And (p[s/k]) (q[s/k])›
| ‹(Or p q)[s/k] = Or (p[s/k]) (q[s/k])›
| ‹(Impl p q)[s/k] = Impl (p[s/k]) (q[s/k])›
| ‹(Neg p)[s/k] = Neg (p[s/k])›
| ‹(Forall p)[s/k] = Forall (p[liftt s/Suc k])›
| ‹(Exists p)[s/k] = Exists (p[liftt s/Suc k])›

theorem lift-closed [simp]:
‹closedt 0 (t:: ′a term) =⇒ closedt 0 (liftt t)›
‹closedts 0 (ts:: ′a term list) =⇒ closedts 0 (liftts ts)›
by (induct t and ts rule: closedt.induct closedts.induct) simp-all

theorem subst-closedt [simp]:
assumes u: ‹closedt 0 u›
shows ‹closedt (Suc i) t =⇒ closedt i (t[u/i])›

and ‹closedts (Suc i) ts =⇒ closedts i (ts[u/i])›
using u closedt-mono(1)
by (induct t and ts rule: closedt.induct closedts.induct) auto

theorem subst-closed [simp]:
‹closedt 0 t =⇒ closed (Suc i) p =⇒ closed i (p[t/i])›

4

by (induct p arbitrary: i t) simp-all

theorem subst-size-form [simp]: ‹size-form (subst p t i) = size-form p›
by (induct p arbitrary: i t) simp-all

3.3 Parameters

The introduction rule ForallI for the universal quantifier, as well as the
elimination rule ExistsE for the existential quantifier introduced in §5 require
the quantified variable to be replaced by a “fresh” parameter. Fitting’s
solution is to use a new nullary function symbol for this purpose. To express
that a function symbol is “fresh”, we introduce functions for collecting all
function symbols occurring in a term or formula.
primrec

paramst :: ‹ ′a term ⇒ ′a set› and
paramsts :: ‹ ′a term list ⇒ ′a set› where
‹paramst (Var n) = {}›

| ‹paramst (App a ts) = {a} ∪ paramsts ts›
| ‹paramsts [] = {}›
| ‹paramsts (t # ts) = (paramst t ∪ paramsts ts)›

primrec params :: ‹(′a, ′b) form ⇒ ′a set› where
‹params FF = {}›

| ‹params TT = {}›
| ‹params (Pred b ts) = paramsts ts›
| ‹params (And p q) = params p ∪ params q›
| ‹params (Or p q) = params p ∪ params q›
| ‹params (Impl p q) = params p ∪ params q›
| ‹params (Neg p) = params p›
| ‹params (Forall p) = params p›
| ‹params (Exists p) = params p›

We also define parameter substitution functions on terms and formulae that
apply a function f to all function symbols.
primrec

psubstt :: ‹(′a ⇒ ′c) ⇒ ′a term ⇒ ′c term› and
psubstts :: ‹(′a ⇒ ′c) ⇒ ′a term list ⇒ ′c term list› where
‹psubstt f (Var i) = Var i›

| ‹psubstt f (App x ts) = App (f x) (psubstts f ts)›
| ‹psubstts f [] = []›
| ‹psubstts f (t # ts) = psubstt f t # psubstts f ts›

primrec psubst :: ‹(′a ⇒ ′c) ⇒ (′a, ′b) form ⇒ (′c, ′b) form› where
‹psubst f FF = FF›

| ‹psubst f TT = TT ›
| ‹psubst f (Pred b ts) = Pred b (psubstts f ts)›
| ‹psubst f (And p q) = And (psubst f p) (psubst f q)›
| ‹psubst f (Or p q) = Or (psubst f p) (psubst f q)›

5

| ‹psubst f (Impl p q) = Impl (psubst f p) (psubst f q)›
| ‹psubst f (Neg p) = Neg (psubst f p)›
| ‹psubst f (Forall p) = Forall (psubst f p)›
| ‹psubst f (Exists p) = Exists (psubst f p)›

theorem psubstt-closed [simp]:
‹closedt i (psubstt f t) = closedt i t›
‹closedts i (psubstts f ts) = closedts i ts›
by (induct t and ts rule: closedt.induct closedts.induct) simp-all

theorem psubst-closed [simp]:
‹closed i (psubst f p) = closed i p›
by (induct p arbitrary: i) simp-all

theorem psubstt-subst [simp]:
‹psubstt f (substt t u i) = substt (psubstt f t) (psubstt f u) i›
‹psubstts f (substts ts u i) = substts (psubstts f ts) (psubstt f u) i›
by (induct t and ts rule: psubstt.induct psubstts.induct) simp-all

theorem psubstt-lift [simp]:
‹psubstt f (liftt t) = liftt (psubstt f t)›
‹psubstts f (liftts ts) = liftts (psubstts f ts)›
by (induct t and ts rule: psubstt.induct psubstts.induct) simp-all

theorem psubst-subst [simp]:
‹psubst f (subst P t i) = subst (psubst f P) (psubstt f t) i›
by (induct P arbitrary: i t) simp-all

theorem psubstt-upd [simp]:
‹x /∈ paramst (t:: ′a term) =⇒ psubstt (f (x := y)) t = psubstt f t›
‹x /∈ paramsts (ts:: ′a term list) =⇒ psubstts (f (x := y)) ts = psubstts f ts›
by (induct t and ts rule: psubstt.induct psubstts.induct) (auto split: sum.split)

theorem psubst-upd [simp]: ‹x /∈ params P =⇒ psubst (f (x := y)) P = psubst f
P›

by (induct P) (simp-all del: fun-upd-apply)

theorem psubstt-id:
fixes t :: ‹ ′a term› and ts :: ‹ ′a term list›
shows ‹psubstt id t = t› and ‹psubstts (λx. x) ts = ts›
by (induct t and ts rule: psubstt.induct psubstts.induct) simp-all

theorem psubst-id [simp]: ‹psubst id = id›
proof

fix p :: ‹(′a, ′b) form›
show ‹psubst id p = id p›

by (induct p) (simp-all add: psubstt-id)
qed

6

theorem psubstt-image [simp]:
‹paramst (psubstt f t) = f ‘ paramst t›
‹paramsts (psubstts f ts) = f ‘ paramsts ts›
by (induct t and ts rule: paramst.induct paramsts.induct) (simp-all add: im-

age-Un)

theorem psubst-image [simp]: ‹params (psubst f p) = f ‘ params p›
by (induct p) (simp-all add: image-Un)

4 Semantics

In this section, we define evaluation functions for terms and formulae. Eval-
uation is performed relative to an environment mapping indices of variables
to values. We also introduce a function, denoted by e〈i:a〉, for inserting
a value a at position i into the environment. All values of variables with
indices less than i are left untouched by this operation, whereas the values
of variables with indices greater or equal than i are shifted one position up.
definition shift :: ‹(nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a› (‹-〈-:-〉› [90 , 0 , 0] 91)
where

‹e〈i:a〉 = (λj. if j < i then e j else if j = i then a else e (j − 1))›

lemma shift-eq [simp]: ‹i = j =⇒ (e〈i:T 〉) j = T ›
by (simp add: shift-def)

lemma shift-gt [simp]: ‹j < i =⇒ (e〈i:T 〉) j = e j›
by (simp add: shift-def)

lemma shift-lt [simp]: ‹i < j =⇒ (e〈i:T 〉) j = e (j − 1)›
by (simp add: shift-def)

lemma shift-commute [simp]: ‹e〈i:U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i:U 〉›
proof

fix x
show ‹(e〈i:U 〉〈0 :T 〉) x = (e〈0 :T 〉〈Suc i:U 〉) x›

by (cases x) (simp-all add: shift-def)
qed

primrec
evalt :: ‹(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒ ′a term ⇒ ′c› and
evalts :: ‹(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒ ′a term list ⇒ ′c list› where
‹evalt e f (Var n) = e n›

| ‹evalt e f (App a ts) = f a (evalts e f ts)›
| ‹evalts e f [] = []›
| ‹evalts e f (t # ts) = evalt e f t # evalts e f ts›

primrec eval :: ‹(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒
(′b ⇒ ′c list ⇒ bool) ⇒ (′a, ′b) form ⇒ bool› where

7

‹eval e f g FF = False›
| ‹eval e f g TT = True›
| ‹eval e f g (Pred a ts) = g a (evalts e f ts)›
| ‹eval e f g (And p q) = ((eval e f g p) ∧ (eval e f g q))›
| ‹eval e f g (Or p q) = ((eval e f g p) ∨ (eval e f g q))›
| ‹eval e f g (Impl p q) = ((eval e f g p) −→ (eval e f g q))›
| ‹eval e f g (Neg p) = (¬ (eval e f g p))›
| ‹eval e f g (Forall p) = (∀ z. eval (e〈0 :z〉) f g p)›
| ‹eval e f g (Exists p) = (∃ z. eval (e〈0 :z〉) f g p)›

We write e,f ,g,ps |= p to mean that the formula p is a semantic consequence
of the list of formulae ps with respect to an environment e and interpreta-
tions f and g for function and predicate symbols, respectively.
definition model :: ‹(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒ (′b ⇒ ′c list ⇒ bool) ⇒

(′a, ′b) form list ⇒ (′a, ′b) form ⇒ bool› (‹-,-,-,- |= -› [50 ,50] 50) where
‹(e,f ,g,ps |= p) = (list-all (eval e f g) ps −→ eval e f g p)›

The following substitution lemmas relate substitution and evaluation func-
tions:
theorem subst-lemma ′ [simp]:

‹evalt e f (substt t u i) = evalt (e〈i:evalt e f u〉) f t›
‹evalts e f (substts ts u i) = evalts (e〈i:evalt e f u〉) f ts›
by (induct t and ts rule: substt.induct substts.induct) simp-all

theorem lift-lemma [simp]:
‹evalt (e〈0 :z〉) f (liftt t) = evalt e f t›
‹evalts (e〈0 :z〉) f (liftts ts) = evalts e f ts›
by (induct t and ts rule: liftt.induct liftts.induct) simp-all

theorem subst-lemma [simp]:
‹eval e f g (subst a t i) = eval (e〈i:evalt e f t〉) f g a›
by (induct a arbitrary: e i t) simp-all

theorem upd-lemma ′ [simp]:
‹n /∈ paramst t =⇒ evalt e (f (n := x)) t = evalt e f t›
‹n /∈ paramsts ts =⇒ evalts e (f (n := x)) ts = evalts e f ts›
by (induct t and ts rule: paramst.induct paramsts.induct) auto

theorem upd-lemma [simp]:
‹n /∈ params p =⇒ eval e (f (n := x)) g p = eval e f g p›
by (induct p arbitrary: e) simp-all

theorem list-upd-lemma [simp]: ‹list-all (λp. n /∈ params p) G =⇒
list-all (eval e (f (n := x)) g) G = list-all (eval e f g) G›
by (induct G) simp-all

theorem psubst-eval ′ [simp]:
‹evalt e f (psubstt h t) = evalt e (λp. f (h p)) t›
‹evalts e f (psubstts h ts) = evalts e (λp. f (h p)) ts›

8

by (induct t and ts rule: psubstt.induct psubstts.induct) simp-all

theorem psubst-eval:
‹eval e f g (psubst h p) = eval e (λp. f (h p)) g p›
by (induct p arbitrary: e) simp-all

In order to test the evaluation function defined above, we apply it to an
example:
theorem ex-all-commute-eval:

‹eval e f g (Impl (Exists (Forall (Pred p [Var 1 , Var 0])))
(Forall (Exists (Pred p [Var 0 , Var 1]))))›

apply simp

Simplification yields the following proof state:

1 . (∃ z. ∀ za. g p [z, za]) −→ (∀ z. ∃ za. g p [za, z])

This is easily proved using intuitionistic logic:

by iprover

5 Proof calculus

We now introduce a natural deduction proof calculus for first order logic.
The derivability judgement G ` a is defined as an inductive predicate.
inductive deriv :: ‹(′a, ′b) form list ⇒ (′a, ′b) form ⇒ bool› (‹- ` -› [50 ,50] 50)
where

Assum: ‹a ∈ set G =⇒ G ` a›
| TTI : ‹G ` TT ›
| FFE : ‹G ` FF =⇒ G ` a›
| NegI : ‹a # G ` FF =⇒ G ` Neg a›
| NegE : ‹G ` Neg a =⇒ G ` a =⇒ G ` FF›
| Class: ‹Neg a # G ` FF =⇒ G ` a›
| AndI : ‹G ` a =⇒ G ` b =⇒ G ` And a b›
| AndE1 : ‹G ` And a b =⇒ G ` a›
| AndE2 : ‹G ` And a b =⇒ G ` b›
| OrI1 : ‹G ` a =⇒ G ` Or a b›
| OrI2 : ‹G ` b =⇒ G ` Or a b›
| OrE : ‹G ` Or a b =⇒ a # G ` c =⇒ b # G ` c =⇒ G ` c›
| ImplI : ‹a # G ` b =⇒ G ` Impl a b›
| ImplE : ‹G ` Impl a b =⇒ G ` a =⇒ G ` b›
| ForallI : ‹G ` a[App n []/0] =⇒ list-all (λp. n /∈ params p) G =⇒

n /∈ params a =⇒ G ` Forall a›
| ForallE : ‹G ` Forall a =⇒ G ` a[t/0]›
| ExistsI : ‹G ` a[t/0] =⇒ G ` Exists a›
| ExistsE : ‹G ` Exists a =⇒ a[App n []/0] # G ` b =⇒

list-all (λp. n /∈ params p) G =⇒ n /∈ params a =⇒ n /∈ params b =⇒ G ` b›

The following derived inference rules are sometimes useful in applications.

9

theorem Class ′: ‹Neg A # G ` A =⇒ G ` A›
by (rule Class, rule NegE , rule Assum) (simp, iprover)

theorem cut: ‹G ` A =⇒ A # G ` B =⇒ G ` B›
by (rule ImplE , rule ImplI)

theorem ForallE ′: ‹G ` Forall a =⇒ subst a t 0 # G ` B =⇒ G ` B›
by (rule cut, rule ForallE)

As an example, we show that the excluded middle, a commutation property
for existential and universal quantifiers, the drinker principle, as well as
Peirce’s law are derivable in the calculus given above.
theorem tnd: ‹[] ` Or (Pred p []) (Neg (Pred p []))› (is ‹- ` ?or›)
proof −

have ‹[Neg ?or] ` Neg ?or›
by (simp add: Assum)

moreover { have ‹[Pred p [], Neg ?or] ` Neg ?or›
by (simp add: Assum)

moreover have ‹[Pred p [], Neg ?or] ` Pred p []›
by (simp add: Assum)

then have ‹[Pred p [], Neg ?or] ` ?or›
by (rule OrI1)

ultimately have ‹[Pred p [], Neg ?or] ` FF›
by (rule NegE)

then have ‹[Neg ?or] ` Neg (Pred p [])›
by (rule NegI)

then have ‹[Neg ?or] ` ?or›
by (rule OrI2) }

ultimately have ‹[Neg ?or] ` FF›
by (rule NegE)

then show ?thesis
by (rule Class)

qed

theorem ex-all-commute:
‹([]::(nat, ′b) form list) ` Impl (Exists (Forall (Pred p [Var 1 , Var 0])))

(Forall (Exists (Pred p [Var 0 , Var 1])))›
proof −

let ?forall = ‹Forall (Pred p [Var 1 , Var 0]) :: (nat, ′b) form›

have ‹[Exists ?forall] ` Exists ?forall›
by (simp add: Assum)

moreover { have ‹[?forall[App 1 []/0], Exists ?forall] ` Forall (Pred p [App 1
[], Var 0])›

by (simp add: Assum)
moreover have ‹[Pred p [App 1 [], Var 0][App 0 []/0], ?forall[App 1 []/0],

Exists ?forall] ` Pred p [Var 0 , App 0 []][App 1 []/0]›
by (simp add: Assum)

ultimately have ‹[?forall[App 1 []/0], Exists ?forall] ` (Pred p [Var 0 , App 0

10

[]])[App 1 []/0]›
by (rule ForallE ′) }

then have ‹[?forall[App 1 []/0], Exists ?forall] ` Exists (Pred p [Var 0 , App 0
[]])›

by (rule ExistsI)
moreover have ‹list-all (λp. 1 /∈ params p) [Exists ?forall]›

by simp
moreover have ‹1 /∈ params ?forall›

by simp
moreover have ‹1 /∈ params (Exists (Pred p [Var 0 , App (0 :: nat) []]))›

by simp
ultimately have ‹[Exists ?forall] ` Exists (Pred p [Var 0 , App 0 []])›

by (rule ExistsE)
then have ‹[Exists ?forall] ` (Exists (Pred p [Var 0 , Var 1]))[App 0 []/0]›

by simp
moreover have ‹list-all (λp. 0 /∈ params p) [Exists ?forall]›

by simp
moreover have ‹0 /∈ params (Exists (Pred p [Var 0 , Var 1]))›

by simp
ultimately have ‹[Exists ?forall] ` Forall (Exists (Pred p [Var 0 , Var 1]))›

by (rule ForallI)
then show ?thesis

by (rule ImplI)
qed

theorem drinker : ‹([]::(nat, ′b) form list) `
Exists (Impl (Pred P [Var 0]) (Forall (Pred P [Var 0])))›

proof −
let ?impl = ‹(Impl (Pred P [Var 0]) (Forall (Pred P [Var 0]))) :: (nat, ′b) form›
let ?G ′ = ‹[Pred P [Var 0], Neg (Exists ?impl)]›
let ?G = ‹Neg (Pred P [App 0 []]) # ?G ′›

have ‹?G ` Neg (Exists ?impl)›
by (simp add: Assum)

moreover have ‹Pred P [App 0 []] # ?G ` Neg (Pred P [App 0 []])›
and ‹Pred P [App 0 []] # ?G ` Pred P [App 0 []]›
by (simp-all add: Assum)

then have ‹Pred P [App 0 []] # ?G ` FF›
by (rule NegE)

then have ‹Pred P [App 0 []] # ?G ` Forall (Pred P [Var 0])›
by (rule FFE)

then have ‹?G ` ?impl[App 0 []/0]›
using ImplI by simp

then have ‹?G ` Exists ?impl›
by (rule ExistsI)

ultimately have ‹?G ` FF›
by (rule NegE)

then have ‹?G ′ ` Pred P [Var 0][App 0 []/0]›
using Class by simp

11

moreover have ‹list-all (λp. (0 :: nat) /∈ params p) ?G ′›
by simp

moreover have ‹(0 :: nat) /∈ params (Pred P [Var 0])›
by simp

ultimately have ‹?G ′ ` Forall (Pred P [Var 0])›
by (rule ForallI)

then have ‹[Neg (Exists ?impl)] ` ?impl[Var 0/0]›
using ImplI by simp

then have ‹[Neg (Exists ?impl)] ` Exists ?impl›
by (rule ExistsI)

then show ?thesis
by (rule Class ′)

qed

theorem peirce:
‹[] ` Impl (Impl (Impl (Pred P []) (Pred Q [])) (Pred P [])) (Pred P [])›
(is ‹[] ` Impl ?PQP (Pred P [])›)

proof −
let ?PQPP = ‹Impl ?PQP (Pred P [])›

have ‹[?PQP, Neg ?PQPP] ` ?PQP›
by (simp add: Assum)

moreover { have ‹[Pred P [], ?PQP, Neg ?PQPP] ` Neg ?PQPP›
by (simp add: Assum)

moreover have ‹[?PQP, Pred P [], ?PQP, Neg ?PQPP] ` Pred P []›
by (simp add: Assum)

then have ‹[Pred P [], ?PQP, Neg ?PQPP] ` ?PQPP›
by (rule ImplI)

ultimately have ‹[Pred P [], ?PQP, Neg ?PQPP] ` FF›
by (rule NegE) }

then have ‹[Pred P [], ?PQP, Neg ?PQPP] ` Pred Q []›
by (rule FFE)

then have ‹[?PQP, Neg ?PQPP] ` Impl (Pred P []) (Pred Q [])›
by (rule ImplI)

ultimately have ‹[?PQP, Neg ?PQPP] ` Pred P []›
by (rule ImplE)

then have ‹[Neg ?PQPP] ` ?PQPP›
by (rule ImplI)

then show ‹[] ` ?PQPP›
by (rule Class ′)

qed

6 Correctness

The correctness of the proof calculus introduced in §5 can now be proved
by induction on the derivation of G ` p, using the substitution rules proved
in §4.
theorem correctness: ‹G ` p =⇒ ∀ e f g. e,f ,g,G |= p›

12

proof (induct p rule: deriv.induct)
case (Assum a G)
then show ?case by (simp add: model-def list-all-iff)

next
case (ForallI G a n)
show ?case
proof (intro allI)

fix f g and e :: ‹nat ⇒ ′c›
have ‹∀ z. e, (f (n := λx. z)), g, G |= (a[App n []/0])›

using ForallI by blast
then have ‹∀ z. list-all (eval e f g) G −→ eval (e〈0 :z〉) f g a›

using ForallI unfolding model-def by simp
then show ‹e,f ,g,G |= Forall a› unfolding model-def by simp

qed
next

case (ExistsE G a n b)
show ?case
proof (intro allI)

fix f g and e :: ‹nat ⇒ ′c›
obtain z where ‹list-all (eval e f g) G −→ eval (e〈0 :z〉) f g a›

using ExistsE unfolding model-def by simp blast
then have ‹e, (f (n := λx. z)), g, G |= b›

using ExistsE unfolding model-def by simp
then show ‹e,f ,g,G |= b›

using ExistsE unfolding model-def by simp
qed

qed (simp-all add: model-def , blast+)

7 Completeness

The goal of this section is to prove completeness of the natural deduction
calculus introduced in §5. Before we start with the actual proof, it is useful
to note that the following two formulations of completeness are equivalent:

1. All valid formulae are derivable, i.e. ps |= p =⇒ ps ` p

2. All consistent sets are satisfiable

The latter property is called the model existence theorem. To see why 2
implies 1, observe that Neg p, ps 6` FF implies that Neg p, ps is consistent,
which, by the model existence theorem, implies that Neg p, ps has a model,
which in turn implies that ps 6|= p. By contraposition, it therefore follows
from ps |= p that Neg p, ps ` FF, which allows us to deduce ps ` p using
rule Class.
In most textbooks on logic, a set S of formulae is called consistent, if no
contradiction can be derived from S using a specific proof calculus, i.e. S 6`
FF. Rather than defining consistency relative to a specific calculus, Fitting

13

uses the more general approach of describing properties that all consistent
sets must have (see §7.1).
The key idea behind the proof of the model existence theorem is to extend
a consistent set to one that is maximal (see §7.5). In order to do this, we
use the fact that the set of formulae is enumerable (see §7.4), which allows
us to form a sequence φ0, φ1, φ2, . . . containing all formulae. We can then
construct a sequence Si of consistent sets as follows:

S0 = S

Si+1 =

{
Si ∪ {φi} if Si ∪ {φi} consistent
Si otherwise

To obtain a maximal consistent set, we form the union
⋃

i Si of these sets.
To ensure that this union is still consistent, additional closure (see §7.2) and
finiteness (see §7.3) properties are needed. It can be shown that a maximal
consistent set is a Hintikka set (see §7.6). Hintikka sets are satisfiable in
Herbrand models, where closed terms coincide with their interpretation.

7.1 Consistent sets

In this section, we describe an abstract criterion for consistent sets. A set
of sets of formulae is called a consistency property, if the following holds:
definition consistency :: ‹(′a, ′b) form set set ⇒ bool› where

‹consistency C = (∀S . S ∈ C −→
(∀ p ts. ¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)) ∧
FF /∈ S ∧ Neg TT /∈ S ∧
(∀Z . Neg (Neg Z) ∈ S −→ S ∪ {Z} ∈ C) ∧
(∀A B. And A B ∈ S −→ S ∪ {A, B} ∈ C) ∧
(∀A B. Neg (Or A B) ∈ S −→ S ∪ {Neg A, Neg B} ∈ C) ∧
(∀A B. Or A B ∈ S −→ S ∪ {A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. Neg (And A B) ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {Neg B} ∈ C) ∧
(∀A B. Impl A B ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. Neg (Impl A B) ∈ S −→ S ∪ {A, Neg B} ∈ C) ∧
(∀P t. closedt 0 t −→ Forall P ∈ S −→ S ∪ {P[t/0]} ∈ C) ∧
(∀P t. closedt 0 t −→ Neg (Exists P) ∈ S −→ S ∪ {Neg (P[t/0])} ∈ C) ∧
(∀P. Exists P ∈ S −→ (∃ x. S ∪ {P[App x []/0]} ∈ C)) ∧
(∀P. Neg (Forall P) ∈ S −→ (∃ x. S ∪ {Neg (P[App x []/0])} ∈ C)))›

In §7.3, we will show how to extend a consistency property to one that is
of finite character. However, the above definition of a consistency property
cannot be used for this, since there is a problem with the treatment of
formulae of the form Exists P and Neg (Forall P). Fitting therefore suggests
to define an alternative consistency property as follows:
definition alt-consistency :: ‹(′a, ′b) form set set ⇒ bool› where

‹alt-consistency C = (∀S . S ∈ C −→
(∀ p ts. ¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)) ∧

14

FF /∈ S ∧ Neg TT /∈ S ∧
(∀Z . Neg (Neg Z) ∈ S −→ S ∪ {Z} ∈ C) ∧
(∀A B. And A B ∈ S −→ S ∪ {A, B} ∈ C) ∧
(∀A B. Neg (Or A B) ∈ S −→ S ∪ {Neg A, Neg B} ∈ C) ∧
(∀A B. Or A B ∈ S −→ S ∪ {A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. Neg (And A B) ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {Neg B} ∈ C) ∧
(∀A B. Impl A B ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. Neg (Impl A B) ∈ S −→ S ∪ {A, Neg B} ∈ C) ∧
(∀P t. closedt 0 t −→ Forall P ∈ S −→ S ∪ {P[t/0]} ∈ C) ∧
(∀P t. closedt 0 t −→ Neg (Exists P) ∈ S −→ S ∪ {Neg (P[t/0])} ∈ C) ∧
(∀P x. (∀ a ∈ S . x /∈ params a) −→ Exists P ∈ S −→

S ∪ {P[App x []/0]} ∈ C) ∧
(∀P x. (∀ a ∈ S . x /∈ params a) −→ Neg (Forall P) ∈ S −→

S ∪ {Neg (P[App x []/0])} ∈ C))›

Note that in the clauses for Exists P and Neg (Forall P), the first definition
requires the existence of a parameter x with a certain property, whereas the
second definition requires that all parameters x that are new for S have a
certain property. A consistency property can easily be turned into an alter-
native consistency property by applying a suitable parameter substitution:
definition mk-alt-consistency :: ‹(′a, ′b) form set set ⇒ (′a, ′b) form set set›
where

‹mk-alt-consistency C = {S . ∃ f . psubst f ‘ S ∈ C}›

theorem alt-consistency:
assumes conc: ‹consistency C ›
shows ‹alt-consistency (mk-alt-consistency C)› (is ‹alt-consistency ?C ′›)
unfolding alt-consistency-def

proof (intro allI impI conjI)
fix f :: ‹ ′a ⇒ ′a› and S :: ‹(′a, ′b) form set›

assume ‹S ∈ mk-alt-consistency C ›
then obtain f where sc: ‹psubst f ‘ S ∈ C › (is ‹?S ′ ∈ C ›)

unfolding mk-alt-consistency-def by blast

fix p ts
show ‹¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)›
proof

assume ∗: ‹Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S›
then have ‹psubst f (Pred p ts) ∈ ?S ′›

by blast
then have ‹Pred p (psubstts f ts) ∈ ?S ′›

by simp
then have ‹Neg (Pred p (psubstts f ts)) /∈ ?S ′›

using conc sc by (simp add: consistency-def)
then have ‹Neg (Pred p ts) /∈ S›

by force
then show False

using ∗ by blast

15

qed

have ‹FF /∈ ?S ′› and ‹Neg TT /∈ ?S ′›
using conc sc unfolding consistency-def by simp-all

then show ‹FF /∈ S› and ‹Neg TT /∈ S›
by (force, force)

{ fix Z
assume ‹Neg (Neg Z) ∈ S›
then have ‹psubst f (Neg (Neg Z)) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {psubst f Z} ∈ C ›

using conc sc by (simp add: consistency-def)
then show ‹S ∪ {Z} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix A B
assume ‹And A B ∈ S›
then have ‹psubst f (And A B) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {psubst f A, psubst f B} ∈ C ›

using conc sc by (simp add: consistency-def)
then show ‹S ∪ {A, B} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix A B
assume ‹Neg (Or A B) ∈ S›
then have ‹psubst f (Neg (Or A B)) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {Neg (psubst f A), Neg (psubst f B)} ∈ C ›

using conc sc by (simp add: consistency-def)
then show ‹S ∪ {Neg A, Neg B} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix A B
assume ‹Neg (Impl A B) ∈ S›
then have ‹psubst f (Neg (Impl A B)) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {psubst f A, Neg (psubst f B)} ∈ C ›

using conc sc by (simp add: consistency-def)
then show ‹S ∪ {A, Neg B} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix A B
assume ‹Or A B ∈ S›
then have ‹psubst f (Or A B) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {psubst f A} ∈ C ∨ ?S ′ ∪ {psubst f B} ∈ C ›

using conc sc by (simp add: consistency-def)

16

then show ‹S ∪ {A} ∈ ?C ′ ∨ S ∪ {B} ∈ ?C ′›
unfolding mk-alt-consistency-def by auto }

{ fix A B
assume ‹Neg (And A B) ∈ S›
then have ‹psubst f (Neg (And A B)) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {Neg (psubst f A)} ∈ C ∨ ?S ′ ∪ {Neg (psubst f B)} ∈ C ›

using conc sc by (simp add: consistency-def)
then show ‹S ∪ {Neg A} ∈ ?C ′ ∨ S ∪ {Neg B} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix A B
assume ‹Impl A B ∈ S›
then have ‹psubst f (Impl A B) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {Neg (psubst f A)} ∈ C ∨ ?S ′ ∪ {psubst f B} ∈ C ›

using conc sc by (simp add: consistency-def)
then show ‹S ∪ {Neg A} ∈ ?C ′ ∨ S ∪ {B} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix P and t :: ‹ ′a term›
assume ‹closedt 0 t› and ‹Forall P ∈ S›
then have ‹psubst f (Forall P) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {psubst f P[psubstt f t/0]} ∈ C ›

using ‹closedt 0 t› conc sc by (simp add: consistency-def)
then show ‹S ∪ {P[t/0]} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix P and t :: ‹ ′a term›
assume ‹closedt 0 t› and ‹Neg (Exists P) ∈ S›
then have ‹psubst f (Neg (Exists P)) ∈ ?S ′›

by blast
then have ‹?S ′ ∪ {Neg (psubst f P[psubstt f t/0])} ∈ C ›

using ‹closedt 0 t› conc sc by (simp add: consistency-def)
then show ‹S ∪ {Neg (P[t/0])} ∈ ?C ′›

unfolding mk-alt-consistency-def by auto }

{ fix P :: ‹(′a, ′b) form› and x f ′

assume ‹∀ a ∈ S . x /∈ params a› and ‹Exists P ∈ S›
moreover have ‹psubst f (Exists P) ∈ ?S ′›

using calculation by blast
then have ‹∃ y. ?S ′ ∪ {psubst f P[App y []/0]} ∈ C ›

using conc sc by (simp add: consistency-def)
then obtain y where ‹?S ′ ∪ {psubst f P[App y []/0]} ∈ C ›

by blast

moreover have ‹psubst (f (x := y)) ‘ S = ?S ′›

17

using calculation by (simp cong add: image-cong)
moreover have ‹psubst (f (x := y)) ‘

S ∪ {psubst (f (x := y)) P[App ((f (x := y)) x) []/0]} ∈ C ›
using calculation by auto

ultimately have ‹∃ f . psubst f ‘ S ∪ {psubst f P[App (f x) []/0]} ∈ C ›
by blast

then show ‹S ∪ {P[App x []/0]} ∈ ?C ′›
unfolding mk-alt-consistency-def by simp }

{ fix P :: ‹(′a, ′b) form› and x
assume ‹∀ a ∈ S . x /∈ params a› and ‹Neg (Forall P) ∈ S›
moreover have ‹psubst f (Neg (Forall P)) ∈ ?S ′›

using calculation by blast
then have ‹∃ y. ?S ′ ∪ {Neg (psubst f P[App y []/0])} ∈ C ›

using conc sc by (simp add: consistency-def)
then obtain y where ‹?S ′ ∪ {Neg (psubst f P[App y []/0])} ∈ C ›

by blast

moreover have ‹psubst (f (x := y)) ‘ S = ?S ′›
using calculation by (simp cong add: image-cong)

moreover have ‹psubst (f (x := y)) ‘
S ∪ {Neg (psubst (f (x := y)) P[App ((f (x := y)) x) []/0])} ∈ C ›

using calculation by auto
ultimately have ‹∃ f . psubst f ‘ S ∪ {Neg (psubst f P[App (f x) []/0])} ∈ C ›

by blast
then show ‹S ∪ {Neg (P[App x []/0])} ∈ ?C ′›

unfolding mk-alt-consistency-def by simp }
qed

theorem mk-alt-consistency-subset: ‹C ⊆ mk-alt-consistency C ›
unfolding mk-alt-consistency-def

proof
fix x assume ‹x ∈ C ›
then have ‹psubst id ‘ x ∈ C ›

by simp
then have ‹(∃ f . psubst f ‘ x ∈ C)›

by blast
then show ‹x ∈ {S . ∃ f . psubst f ‘ S ∈ C}›

by simp
qed

7.2 Closure under subsets

We now show that a consistency property can be extended to one that is
closed under subsets.
definition close :: ‹(′a, ′b) form set set ⇒ (′a, ′b) form set set› where

‹close C = {S . ∃S ′ ∈ C . S ⊆ S ′}›

definition subset-closed :: ‹ ′a set set ⇒ bool› where

18

‹subset-closed C = (∀S ′ ∈ C . ∀S . S ⊆ S ′ −→ S ∈ C)›

lemma subset-in-close:
assumes ‹S ⊆ S ′›
shows ‹S ′ ∪ x ∈ C −→ S ∪ x ∈ close C ›

proof −
have ‹S ′ ∪ x ∈ close C −→ S ∪ x ∈ close C ›

unfolding close-def using ‹S ⊆ S ′› by blast
then show ?thesis unfolding close-def by blast

qed

theorem close-consistency:
assumes conc: ‹consistency C ›
shows ‹consistency (close C)›
unfolding consistency-def

proof (intro allI impI conjI)
fix S
assume ‹S ∈ close C ›
then obtain x where ‹x ∈ C › and ‹S ⊆ x›

unfolding close-def by blast

{ fix p ts
have ‹¬ (Pred p ts ∈ x ∧ Neg (Pred p ts) ∈ x)›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)›

using ‹S ⊆ x› by blast }

{ have ‹FF /∈ x›
using ‹x ∈ C › conc unfolding consistency-def by blast

then show ‹FF /∈ S›
using ‹S ⊆ x› by blast }

{ have ‹Neg TT /∈ x›
using ‹x ∈ C › conc unfolding consistency-def by blast

then show ‹Neg TT /∈ S›
using ‹S ⊆ x› by blast }

{ fix Z
assume ‹Neg (Neg Z) ∈ S›
then have ‹Neg (Neg Z) ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {Z} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹S ∪ {Z} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix A B
assume ‹And A B ∈ S›
then have ‹And A B ∈ x›

19

using ‹S ⊆ x› by blast
then have ‹x ∪ {A, B} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹S ∪ {A, B} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix A B
assume ‹Neg (Or A B) ∈ S›
then have ‹Neg (Or A B) ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {Neg A, Neg B} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹S ∪ {Neg A, Neg B} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix A B
assume ‹Or A B ∈ S›
then have ‹Or A B ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {A} ∈ C ∨ x ∪ {B} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹S ∪ {A} ∈ close C ∨ S ∪ {B} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix A B
assume ‹Neg (And A B) ∈ S›
then have ‹Neg (And A B) ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {Neg A} ∈ C ∨ x ∪ {Neg B} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹S ∪ {Neg A} ∈ close C ∨ S ∪ {Neg B} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix A B
assume ‹Impl A B ∈ S›
then have ‹Impl A B ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {Neg A} ∈ C ∨ x ∪ {B} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹S ∪ {Neg A} ∈ close C ∨ S ∪ {B} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix A B
assume ‹Neg (Impl A B) ∈ S›
then have ‹Neg (Impl A B) ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {A, Neg B} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by blast
then show ‹S ∪ {A, Neg B} ∈ close C ›

20

using ‹S ⊆ x› subset-in-close by blast }

{ fix P and t :: ‹ ′a term›
assume ‹closedt 0 t› and ‹Forall P ∈ S›
then have ‹Forall P ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {P[t/0]} ∈ C ›

using ‹closedt 0 t› ‹x ∈ C › conc unfolding consistency-def by blast
then show ‹S ∪ {P[t/0]} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix P and t :: ‹ ′a term›
assume ‹closedt 0 t› and ‹Neg (Exists P) ∈ S›
then have ‹Neg (Exists P) ∈ x›

using ‹S ⊆ x› by blast
then have ‹x ∪ {Neg (P[t/0])} ∈ C ›

using ‹closedt 0 t› ‹x ∈ C › conc unfolding consistency-def by blast
then show ‹S ∪ {Neg (P[t/0])} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix P
assume ‹Exists P ∈ S›
then have ‹Exists P ∈ x›

using ‹S ⊆ x› by blast
then have ‹∃ c. x ∪ {P[App c []/0]} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by blast
then show ‹∃ c. S ∪ {P[App c []/0]} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }

{ fix P
assume ‹Neg (Forall P) ∈ S›
then have ‹Neg (Forall P) ∈ x›

using ‹S ⊆ x› by blast
then have ‹∃ c. x ∪ {Neg (P[App c []/0])} ∈ C ›

using ‹x ∈ C › conc unfolding consistency-def by simp
then show ‹∃ c. S ∪ {Neg (P[App c []/0])} ∈ close C ›

using ‹S ⊆ x› subset-in-close by blast }
qed

theorem close-closed: ‹subset-closed (close C)›
unfolding close-def subset-closed-def by blast

theorem close-subset: ‹C ⊆ close C ›
unfolding close-def by blast

If a consistency property C is closed under subsets, so is the corresponding
alternative consistency property:
theorem mk-alt-consistency-closed:

assumes ‹subset-closed C ›

21

shows ‹subset-closed (mk-alt-consistency C)›
unfolding subset-closed-def mk-alt-consistency-def

proof (intro ballI allI impI)
fix S S ′ :: ‹(′a, ′b) form set›
assume ‹S ⊆ S ′› and ‹S ′ ∈ {S . ∃ f . psubst f ‘ S ∈ C}›
then obtain f where ∗: ‹psubst f ‘ S ′ ∈ C ›

by blast
moreover have ‹psubst f ‘ S ⊆ psubst f ‘ S ′›

using ‹S ⊆ S ′› by blast
moreover have ‹∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C ›

using ‹subset-closed C › unfolding subset-closed-def by blast
ultimately have ‹psubst f ‘ S ∈ C ›

by blast
then show ‹S ∈ {S . ∃ f . psubst f ‘ S ∈ C}›

by blast
qed

7.3 Finite character

In this section, we show that an alternative consistency property can be
extended to one of finite character. A set of sets C is said to be of finite
character, provided that S is a member of C if and only if every subset of S
is.
definition finite-char :: ‹ ′a set set ⇒ bool› where

‹finite-char C = (∀S . S ∈ C = (∀S ′. finite S ′ −→ S ′ ⊆ S −→ S ′ ∈ C))›

definition mk-finite-char :: ‹ ′a set set ⇒ ′a set set› where
‹mk-finite-char C = {S . ∀S ′. S ′ ⊆ S −→ finite S ′ −→ S ′ ∈ C}›

theorem finite-alt-consistency:
assumes altconc: ‹alt-consistency C ›

and ‹subset-closed C ›
shows ‹alt-consistency (mk-finite-char C)›
unfolding alt-consistency-def

proof (intro allI impI conjI)
fix S
assume ‹S ∈ mk-finite-char C ›
then have finc: ‹∀S ′ ⊆ S . finite S ′ −→ S ′ ∈ C ›

unfolding mk-finite-char-def by blast

have ‹∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C ›
using ‹subset-closed C › unfolding subset-closed-def by blast

then have sc: ‹∀S ′ x. S ′ ∪ x ∈ C −→ (∀S ⊆ S ′ ∪ x. S ∈ C)›
by blast

{ fix p ts
show ‹¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)›
proof

22

assume ‹Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S›
then have ‹{Pred p ts, Neg (Pred p ts)} ∈ C ›

using finc by simp
then show False

using altconc unfolding alt-consistency-def by fast
qed }

show ‹FF /∈ S›
proof

assume ‹FF ∈ S›
then have ‹{FF} ∈ C ›

using finc by simp
then show False

using altconc unfolding alt-consistency-def by fast
qed

show ‹Neg TT /∈ S›
proof

assume ‹Neg TT ∈ S›
then have ‹{Neg TT} ∈ C ›

using finc by simp
then show False

using altconc unfolding alt-consistency-def by fast
qed

{ fix Z
assume ∗: ‹Neg (Neg Z) ∈ S›
show ‹S ∪ {Z} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {Z} ∪ {Neg (Neg Z)}›

assume ‹S ′ ⊆ S ∪ {Z}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
then have ‹?S ′ ∪ {Z} ∈ C ›

using altconc unfolding alt-consistency-def by simp
then show ‹S ′ ∈ C ›

using sc by blast
qed }

{ fix A B
assume ∗: ‹And A B ∈ S›
show ‹S ∪ {A, B} ∈ mk-finite-char C ›

23

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {A, B} ∪ {And A B}›

assume ‹S ′ ⊆ S ∪ {A, B}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
then have ‹?S ′ ∪ {A, B} ∈ C ›

using altconc unfolding alt-consistency-def by simp
then show ‹S ′ ∈ C ›

using sc by blast
qed }

{ fix A B
assume ∗: ‹Neg (Or A B) ∈ S›
show ‹S ∪ {Neg A, Neg B} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {Neg A, Neg B} ∪ {Neg (Or A B)}›

assume ‹S ′ ⊆ S ∪ {Neg A, Neg B}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
then have ‹?S ′ ∪ {Neg A, Neg B} ∈ C ›

using altconc unfolding alt-consistency-def by simp
then show ‹S ′ ∈ C ›

using sc by blast
qed }

{ fix A B
assume ∗: ‹Neg (Impl A B) ∈ S›
show ‹S ∪ {A, Neg B} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {A, Neg B} ∪ {Neg (Impl A B)}›

assume ‹S ′ ⊆ S ∪ {A, Neg B}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

24

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
then have ‹?S ′ ∪ {A, Neg B} ∈ C ›

using altconc unfolding alt-consistency-def by simp
then show ‹S ′ ∈ C ›

using sc by blast
qed }

{ fix A B
assume ∗: ‹Or A B ∈ S›
show ‹S ∪ {A} ∈ mk-finite-char C ∨ S ∪ {B} ∈ mk-finite-char C ›
proof (rule ccontr)

assume ‹¬ ?thesis›
then obtain Sa and Sb

where ‹Sa ⊆ S ∪ {A}› and ‹finite Sa› and ‹Sa /∈ C ›
and ‹Sb ⊆ S ∪ {B}› and ‹finite Sb› and ‹Sb /∈ C ›

unfolding mk-finite-char-def by blast

let ?S ′ = ‹(Sa − {A}) ∪ (Sb − {B}) ∪ {Or A B}›

have ‹?S ′ ⊆ S›
using ‹Sa ⊆ S ∪ {A}› ‹Sb ⊆ S ∪ {B}› ∗ by blast

moreover have ‹finite ?S ′›
using ‹finite Sa› ‹finite Sb› by blast

ultimately have ‹?S ′ ∈ C ›
using finc by blast

then have ‹?S ′ ∪ {A} ∈ C ∨ ?S ′ ∪ {B} ∈ C ›
using altconc unfolding alt-consistency-def by simp

then have ‹Sa ∈ C ∨ Sb ∈ C ›
using sc by blast

then show False
using ‹Sa /∈ C › ‹Sb /∈ C › by blast

qed }

{ fix A B
assume ∗: ‹Neg (And A B) ∈ S›
show ‹S ∪ {Neg A} ∈ mk-finite-char C ∨ S ∪ {Neg B} ∈ mk-finite-char C ›
proof (rule ccontr)

assume ‹¬ ?thesis›
then obtain Sa and Sb

where ‹Sa ⊆ S ∪ {Neg A}› and ‹finite Sa› and ‹Sa /∈ C ›
and ‹Sb ⊆ S ∪ {Neg B}› and ‹finite Sb› and ‹Sb /∈ C ›

unfolding mk-finite-char-def by blast

let ?S ′ = ‹(Sa − {Neg A}) ∪ (Sb − {Neg B}) ∪ {Neg (And A B)}›

25

have ‹?S ′ ⊆ S›
using ‹Sa ⊆ S ∪ {Neg A}› ‹Sb ⊆ S ∪ {Neg B}› ∗ by blast

moreover have ‹finite ?S ′›
using ‹finite Sa› ‹finite Sb› by blast

ultimately have ‹?S ′ ∈ C ›
using finc by blast

then have ‹?S ′ ∪ {Neg A} ∈ C ∨ ?S ′ ∪ {Neg B} ∈ C ›
using altconc unfolding alt-consistency-def by simp

then have ‹Sa ∈ C ∨ Sb ∈ C ›
using sc by blast

then show False
using ‹Sa /∈ C › ‹Sb /∈ C › by blast

qed }

{ fix A B
assume ∗: ‹Impl A B ∈ S›
show ‹S ∪ {Neg A} ∈ mk-finite-char C ∨ S ∪ {B} ∈ mk-finite-char C ›
proof (rule ccontr)

assume ‹¬ ?thesis›
then obtain Sa and Sb

where ‹Sa ⊆ S ∪ {Neg A}› and ‹finite Sa› and ‹Sa /∈ C ›
and ‹Sb ⊆ S ∪ {B}› and ‹finite Sb› and ‹Sb /∈ C ›

unfolding mk-finite-char-def by blast

let ?S ′ = ‹(Sa − {Neg A}) ∪ (Sb − {B}) ∪ {Impl A B}›

have ‹?S ′ ⊆ S›
using ‹Sa ⊆ S ∪ {Neg A}› ‹Sb ⊆ S ∪ {B}› ∗ by blast

moreover have ‹finite ?S ′›
using ‹finite Sa› ‹finite Sb› by blast

ultimately have ‹?S ′ ∈ C ›
using finc by blast

then have ‹?S ′ ∪ {Neg A} ∈ C ∨ ?S ′ ∪ {B} ∈ C ›
using altconc unfolding alt-consistency-def by simp

then have ‹Sa ∈ C ∨ Sb ∈ C ›
using sc by blast

then show False
using ‹Sa /∈ C › ‹Sb /∈ C › by blast

qed }

{ fix P and t :: ‹ ′a term›
assume ∗: ‹Forall P ∈ S› and ‹closedt 0 t›
show ‹S ∪ {P[t/0]} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {P[t/0]} ∪ {Forall P}›

assume ‹S ′ ⊆ S ∪ {P[t/0]}› and ‹finite S ′›

26

then have ‹?S ′ ⊆ S›
using ∗ by blast

moreover have ‹finite ?S ′›
using ‹finite S ′› by blast

ultimately have ‹?S ′ ∈ C ›
using finc by blast

then have ‹?S ′ ∪ {P[t/0]} ∈ C ›
using altconc ‹closedt 0 t› unfolding alt-consistency-def by simp

then show ‹S ′ ∈ C ›
using sc by blast

qed }

{ fix P and t :: ‹ ′a term›
assume ∗: ‹Neg (Exists P) ∈ S› and ‹closedt 0 t›
show ‹S ∪ {Neg (P[t/0])} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {Neg (P[t/0])} ∪ {Neg (Exists P)}›

assume ‹S ′ ⊆ S ∪ {Neg (P[t/0])}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
then have ‹?S ′ ∪ {Neg (P[t/0])} ∈ C ›

using altconc ‹closedt 0 t› unfolding alt-consistency-def by simp
then show ‹S ′ ∈ C ›

using sc by blast
qed }

{ fix P x
assume ∗: ‹Exists P ∈ S› and ‹∀ a ∈ S . x /∈ params a›
show ‹S ∪ {P[App x []/0]} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {P[App x []/0]} ∪ {Exists P}›

assume ‹S ′ ⊆ S ∪ {P[App x []/0]}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
moreover have ‹∀ a ∈ ?S ′. x /∈ params a›

27

using ‹∀ a ∈ S . x /∈ params a› ‹?S ′ ⊆ S› by blast
ultimately have ‹?S ′ ∪ {P[App x []/0]} ∈ C ›

using altconc ‹∀ a ∈ S . x /∈ params a› unfolding alt-consistency-def by
blast

then show ‹S ′ ∈ C ›
using sc by blast

qed }

{ fix P x
assume ∗: ‹Neg (Forall P) ∈ S› and ‹∀ a ∈ S . x /∈ params a›
show ‹S ∪ {Neg (P[App x []/0])} ∈ mk-finite-char C ›

unfolding mk-finite-char-def
proof (intro allI impI CollectI)

fix S ′

let ?S ′ = ‹S ′ − {Neg (P[App x []/0])} ∪ {Neg (Forall P)}›

assume ‹S ′ ⊆ S ∪ {Neg (P[App x []/0])}› and ‹finite S ′›
then have ‹?S ′ ⊆ S›

using ∗ by blast
moreover have ‹finite ?S ′›

using ‹finite S ′› by blast
ultimately have ‹?S ′ ∈ C ›

using finc by blast
moreover have ‹∀ a ∈ ?S ′. x /∈ params a›

using ‹∀ a ∈ S . x /∈ params a› ‹?S ′ ⊆ S› by blast
ultimately have ‹?S ′ ∪ {Neg (P[App x []/0])} ∈ C ›

using altconc ‹∀ a ∈ S . x /∈ params a› unfolding alt-consistency-def by
simp

then show ‹S ′ ∈ C ›
using sc by blast

qed }
qed

theorem finite-char : ‹finite-char (mk-finite-char C)›
unfolding finite-char-def mk-finite-char-def by blast

theorem finite-char-closed: ‹finite-char C =⇒ subset-closed C ›
unfolding finite-char-def subset-closed-def

proof (intro ballI allI impI)
fix S S ′

assume ∗: ‹∀S . (S ∈ C) = (∀S ′. finite S ′ −→ S ′ ⊆ S −→ S ′ ∈ C)›
and ‹S ′ ∈ C › and ‹S ⊆ S ′›

then have ‹∀S ′. finite S ′ −→ S ′ ⊆ S −→ S ′ ∈ C › by blast
then show ‹S ∈ C › using ∗ by blast

qed

theorem finite-char-subset: ‹subset-closed C =⇒ C ⊆ mk-finite-char C ›
unfolding mk-finite-char-def subset-closed-def by blast

28

7.4 Enumerating datatypes

As has already been mentioned earlier, the proof of the model existence
theorem relies on the fact that the set of formulae is enumerable. Using
the infrastructure for datatypes, the types FOL-Fitting.term and form can
automatically be shown to be a member of the countable type class:
instance ‹term› :: (countable) countable

by countable-datatype

instance form :: (countable, countable) countable
by countable-datatype

7.5 Extension to maximal consistent sets

Given a set C of finite character, we show that the least upper bound of a
chain of sets that are elements of C is again an element of C.
definition is-chain :: ‹(nat ⇒ ′a set) ⇒ bool› where

‹is-chain f = (∀n. f n ⊆ f (Suc n))›

theorem is-chainD: ‹is-chain f =⇒ x ∈ f m =⇒ x ∈ f (m + n)›
by (induct n) (auto simp: is-chain-def)

theorem is-chainD ′:
assumes ‹is-chain f › and ‹x ∈ f m› and ‹m ≤ k›
shows ‹x ∈ f k›

proof −
have ‹∃n. k = m + n›

using ‹m ≤ k› by (simp add: le-iff-add)
then obtain n where ‹k = m + n›

by blast
then show ‹x ∈ f k›

using ‹is-chain f › ‹x ∈ f m›
by (simp add: is-chainD)

qed

theorem chain-index:
assumes ch: ‹is-chain f › and fin: ‹finite F›
shows ‹F ⊆ (

⋃
n. f n) =⇒ ∃n. F ⊆ f n›

using fin
proof (induct rule: finite-induct)

case empty
then show ?case by blast

next
case (insert x F)
then have ‹∃n. F ⊆ f n› and ‹∃m. x ∈ f m› and ‹F ⊆ (

⋃
x. f x)›

using ch by simp-all
then obtain n and m where ‹F ⊆ f n› and ‹x ∈ f m›

by blast

29

have ‹m ≤ max n m› and ‹n ≤ max n m›
by simp-all

have ‹x ∈ f (max n m)›
using is-chainD ′ ch ‹x ∈ f m› ‹m ≤ max n m› by fast

moreover have ‹F ⊆ f (max n m)›
using is-chainD ′ ch ‹F ⊆ f n› ‹n ≤ max n m› by fast

moreover have ‹x ∈ f (max n m) ∧ F ⊆ f (max n m)›
using calculation by blast

ultimately show ?case by blast
qed

lemma chain-union-closed ′:
assumes ‹is-chain f › and ‹(∀n. f n ∈ C)› and ‹∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C ›

and ‹finite S ′› and ‹S ′ ⊆ (
⋃

n. f n)›
shows ‹S ′ ∈ C ›

proof −
note ‹finite S ′› and ‹S ′ ⊆ (

⋃
n. f n)›

then obtain n where ‹S ′ ⊆ f n›
using chain-index ‹is-chain f › by blast

moreover have ‹f n ∈ C ›
using ‹∀n. f n ∈ C › by blast

ultimately show ‹S ′ ∈ C ›
using ‹∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C › by blast

qed

theorem chain-union-closed:
assumes ‹finite-char C › and ‹is-chain f › and ‹∀n. f n ∈ C ›
shows ‹(

⋃
n. f n) ∈ C ›

proof −
have ‹subset-closed C ›

using finite-char-closed ‹finite-char C › by blast
then have ‹∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C ›

using subset-closed-def by blast
then have ‹∀S ′. finite S ′ −→ S ′ ⊆ (

⋃
n. f n) −→ S ′ ∈ C ›

using chain-union-closed ′ assms by blast
moreover have ‹((

⋃
n. f n) ∈ C) = (∀S ′. finite S ′ −→ S ′ ⊆ (

⋃
n. f n) −→ S ′

∈ C)›
using ‹finite-char C › unfolding finite-char-def by blast

ultimately show ?thesis by blast
qed

We can now define a function Extend that extends a consistent set to a
maximal consistent set. To this end, we first define an auxiliary function
extend that produces the elements of an ascending chain of consistent sets.
primrec (nonexhaustive) dest-Neg :: ‹(′a, ′b) form ⇒ (′a, ′b) form› where

‹dest-Neg (Neg p) = p›

primrec (nonexhaustive) dest-Forall :: ‹(′a, ′b) form ⇒ (′a, ′b) form› where
‹dest-Forall (Forall p) = p›

30

primrec (nonexhaustive) dest-Exists :: ‹(′a, ′b) form ⇒ (′a, ′b) form› where
‹dest-Exists (Exists p) = p›

primrec extend :: ‹(nat, ′b) form set ⇒ (nat, ′b) form set set ⇒
(nat ⇒ (nat, ′b) form) ⇒ nat ⇒ (nat, ′b) form set› where

‹extend S C f 0 = S›
| ‹extend S C f (Suc n) = (if extend S C f n ∪ {f n} ∈ C

then
(if (∃ p. f n = Exists p)
then extend S C f n ∪ {f n} ∪ {subst (dest-Exists (f n))
(App (SOME k. k /∈ (

⋃
p ∈ extend S C f n ∪ {f n}. params p)) []) 0}

else if (∃ p. f n = Neg (Forall p))
then extend S C f n ∪ {f n} ∪ {Neg (subst (dest-Forall (dest-Neg (f n)))
(App (SOME k. k /∈ (

⋃
p ∈ extend S C f n ∪ {f n}. params p)) []) 0)}

else extend S C f n ∪ {f n})
else extend S C f n)›

definition Extend :: ‹(nat, ′b) form set ⇒ (nat, ′b) form set set ⇒
(nat ⇒ (nat, ′b) form) ⇒ (nat, ′b) form set› where

‹Extend S C f = (
⋃

n. extend S C f n)›

theorem is-chain-extend: ‹is-chain (extend S C f)›
by (simp add: is-chain-def) blast

theorem finite-paramst [simp]: ‹finite (paramst (t :: ′a term))›
‹finite (paramsts (ts :: ′a term list))›
by (induct t and ts rule: paramst.induct paramsts.induct) (simp-all split: sum.split)

theorem finite-params [simp]: ‹finite (params p)›
by (induct p) simp-all

theorem finite-params-extend [simp]:
‹infinite (

⋂
p ∈ S . − params p) =⇒ infinite (

⋂
p ∈ extend S C f n. − params p)›

by (induct n) simp-all

lemma infinite-params-available:
assumes ‹infinite (− (

⋃
p ∈ S . params p))›

shows ‹∃ x. x /∈ (
⋃

p ∈ extend S C f n ∪ {f n}. params p)›
proof −

let ?S ′ = ‹extend S C f n ∪ {f n}›

have ‹infinite (− (
⋃

x ∈ ?S ′. params x))›
using assms by simp

then obtain x where ‹x ∈ − (
⋃

x ∈ ?S ′. params x)›
using infinite-imp-nonempty by blast

then have ‹∀ a ∈ ?S ′. x /∈ params a›
by blast

then show ?thesis

31

by blast
qed

lemma extend-in-C-Exists:
assumes ‹alt-consistency C ›

and ‹infinite (− (
⋃

p ∈ S . params p))›
and ‹extend S C f n ∪ {f n} ∈ C › (is ‹?S ′ ∈ C ›)
and ‹∃ p. f n = Exists p›

shows ‹extend S C f (Suc n) ∈ C ›
proof −

obtain p where ∗: ‹f n = Exists p›
using ‹∃ p. f n = Exists p› by blast

have ‹∃ x. x /∈ (
⋃

p ∈ ?S ′. params p)›
using ‹infinite (− (

⋃
p ∈ S . params p))› infinite-params-available

by blast
moreover have ‹Exists p ∈ ?S ′›

using ∗ by simp
then have ‹∀ x. x /∈ (

⋃
p ∈ ?S ′. params p) −→ ?S ′ ∪ {p[App x []/0]} ∈ C ›

using ‹?S ′ ∈ C › ‹alt-consistency C ›
unfolding alt-consistency-def by simp

ultimately have ‹(?S ′ ∪ {p[App (SOME k. k /∈ (
⋃

p ∈ ?S ′. params p)) []/0]})
∈ C ›

by (metis (mono-tags, lifting) someI2)
then show ?thesis

using assms ∗ by simp
qed

lemma extend-in-C-Neg-Forall:
assumes ‹alt-consistency C ›

and ‹infinite (− (
⋃

p ∈ S . params p))›
and ‹extend S C f n ∪ {f n} ∈ C › (is ‹?S ′ ∈ C ›)
and ‹∀ p. f n 6= Exists p›
and ‹∃ p. f n = Neg (Forall p)›

shows ‹extend S C f (Suc n) ∈ C ›
proof −

obtain p where ∗: ‹f n = Neg (Forall p)›
using ‹∃ p. f n = Neg (Forall p)› by blast

have ‹∃ x. x /∈ (
⋃

p ∈ ?S ′. params p)›
using ‹infinite (− (

⋃
p ∈ S . params p))› infinite-params-available

by blast
moreover have ‹Neg (Forall p) ∈ ?S ′›

using ∗ by simp
then have ‹∀ x. x /∈ (

⋃
p ∈ ?S ′. params p) −→ ?S ′ ∪ {Neg (p[App x []/0])} ∈

C ›
using ‹?S ′ ∈ C › ‹alt-consistency C ›
unfolding alt-consistency-def by simp

ultimately have ‹(?S ′ ∪ {Neg (p[App (SOME k. k /∈ (
⋃

p ∈ ?S ′. params p))
[]/0])}) ∈ C ›

by (metis (mono-tags, lifting) someI2)

32

then show ?thesis
using assms ∗ by simp

qed

lemma extend-in-C-no-delta:
assumes ‹extend S C f n ∪ {f n} ∈ C ›

and ‹∀ p. f n 6= Exists p›
and ‹∀ p. f n 6= Neg (Forall p)›

shows ‹extend S C f (Suc n) ∈ C ›
using assms by simp

lemma extend-in-C-stop:
assumes ‹extend S C f n ∈ C ›

and ‹extend S C f n ∪ {f n} /∈ C ›
shows ‹extend S C f (Suc n) ∈ C ›
using assms by simp

theorem extend-in-C : ‹alt-consistency C =⇒
S ∈ C =⇒ infinite (− (

⋃
p ∈ S . params p)) =⇒ extend S C f n ∈ C ›

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
then show ?case

using extend-in-C-Exists extend-in-C-Neg-Forall
extend-in-C-no-delta extend-in-C-stop

by metis
qed

The main theorem about Extend says that if C is an alternative consistency
property that is of finite character, S is consistent and S uses only finitely
many parameters, then Extend S C f is again consistent.
theorem Extend-in-C : ‹alt-consistency C =⇒ finite-char C =⇒

S ∈ C =⇒ infinite (− (
⋃

p ∈ S . params p)) =⇒ Extend S C f ∈ C ›
unfolding Extend-def
using chain-union-closed is-chain-extend extend-in-C
by blast

theorem Extend-subset: ‹S ⊆ Extend S C f ›
proof

fix x
assume ‹x ∈ S›
then have ‹x ∈ extend S C f 0 › by simp
then have ‹∃n. x ∈ extend S C f n› by blast
then show ‹x ∈ Extend S C f › by (simp add: Extend-def)

qed

The Extend function yields a maximal set:

33

definition maximal :: ‹ ′a set ⇒ ′a set set ⇒ bool› where
‹maximal S C = (∀S ′ ∈ C . S ⊆ S ′ −→ S = S ′)›

theorem extend-maximal:
assumes ‹∀ y. ∃n. y = f n›

and ‹finite-char C ›
shows ‹maximal (Extend S C f) C ›
unfolding maximal-def Extend-def

proof (intro ballI impI)
fix S ′

assume ‹S ′ ∈ C ›
and ‹(

⋃
x. extend S C f x) ⊆ S ′›

moreover have ‹S ′ ⊆ (
⋃

x. extend S C f x)›
proof (rule ccontr)

assume ‹¬ S ′ ⊆ (
⋃

x. extend S C f x)›
then have ‹∃ z. z ∈ S ′ ∧ z /∈ (

⋃
x. extend S C f x)›

by blast
then obtain z where ‹z ∈ S ′› and ∗: ‹z /∈ (

⋃
x. extend S C f x)›

by blast
then obtain n where ‹z = f n›

using ‹∀ y. ∃n. y = f n› by blast

from ‹(
⋃

x. extend S C f x) ⊆ S ′› ‹z = f n› ‹z ∈ S ′›
have ‹extend S C f n ∪ {f n} ⊆ S ′› by blast

from ‹finite-char C ›
have ‹subset-closed C › using finite-char-closed by blast
then have ‹∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C ›

unfolding subset-closed-def by simp
then have ‹∀S ⊆ S ′. S ∈ C ›

using ‹S ′ ∈ C › by blast
then have ‹extend S C f n ∪ {f n} ∈ C ›

using ‹extend S C f n ∪ {f n} ⊆ S ′›
by blast

then have ‹z ∈ extend S C f (Suc n)›
using ‹z /∈ (

⋃
x. extend S C f x)› ‹z = f n›

by simp
then show False using ∗ by blast

qed
ultimately show ‹(

⋃
x. extend S C f x) = S ′›

by simp
qed

7.6 Hintikka sets and Herbrand models

A Hintikka set is defined as follows:
definition hintikka :: ‹(′a, ′b) form set ⇒ bool› where

‹hintikka H =
((∀ p ts. ¬ (Pred p ts ∈ H ∧ Neg (Pred p ts) ∈ H)) ∧

34

FF /∈ H ∧ Neg TT /∈ H ∧
(∀Z . Neg (Neg Z) ∈ H −→ Z ∈ H) ∧
(∀A B. And A B ∈ H −→ A ∈ H ∧ B ∈ H) ∧
(∀A B. Neg (Or A B) ∈ H −→ Neg A ∈ H ∧ Neg B ∈ H) ∧
(∀A B. Or A B ∈ H −→ A ∈ H ∨ B ∈ H) ∧
(∀A B. Neg (And A B) ∈ H −→ Neg A ∈ H ∨ Neg B ∈ H) ∧
(∀A B. Impl A B ∈ H −→ Neg A ∈ H ∨ B ∈ H) ∧
(∀A B. Neg (Impl A B) ∈ H −→ A ∈ H ∧ Neg B ∈ H) ∧
(∀P t. closedt 0 t −→ Forall P ∈ H −→ subst P t 0 ∈ H) ∧
(∀P t. closedt 0 t −→ Neg (Exists P) ∈ H −→ Neg (subst P t 0) ∈ H) ∧
(∀P. Exists P ∈ H −→ (∃ t. closedt 0 t ∧ subst P t 0 ∈ H)) ∧
(∀P. Neg (Forall P) ∈ H −→ (∃ t. closedt 0 t ∧ Neg (subst P t 0) ∈ H)))›

In Herbrand models, each closed term is interpreted by itself. We introduce
a new datatype hterm (“Herbrand terms”), which is similar to the datatype
term introduced in §3, but without variables. We also define functions for
converting between closed terms and Herbrand terms.
datatype ′a hterm = HApp ′a ‹ ′a hterm list›

primrec
term-of-hterm :: ‹ ′a hterm ⇒ ′a term› and
terms-of-hterms :: ‹ ′a hterm list ⇒ ′a term list› where
‹term-of-hterm (HApp a hts) = App a (terms-of-hterms hts)›

| ‹terms-of-hterms [] = []›
| ‹terms-of-hterms (ht # hts) = term-of-hterm ht # terms-of-hterms hts›

theorem herbrand-evalt [simp]:
‹closedt 0 t =⇒ term-of-hterm (evalt e HApp t) = t›
‹closedts 0 ts =⇒ terms-of-hterms (evalts e HApp ts) = ts›
by (induct t and ts rule: closedt.induct closedts.induct) simp-all

theorem herbrand-evalt ′ [simp]:
‹evalt e HApp (term-of-hterm ht) = ht›
‹evalts e HApp (terms-of-hterms hts) = hts›
by (induct ht and hts rule: term-of-hterm.induct terms-of-hterms.induct) simp-all

theorem closed-hterm [simp]:
‹closedt 0 (term-of-hterm (ht:: ′a hterm))›
‹closedts 0 (terms-of-hterms (hts:: ′a hterm list))›
by (induct ht and hts rule: term-of-hterm.induct terms-of-hterms.induct) simp-all

We can prove that Hintikka sets are satisfiable in Herbrand models. Note
that this theorem cannot be proved by a simple structural induction (as
claimed in Fitting’s book), since a parameter substitution has to be applied
in the cases for quantifiers. However, since parameter substitution does not
change the size of formulae, the theorem can be proved by well-founded
induction on the size of the formula p.
theorem hintikka-model:

35

assumes hin: ‹hintikka H ›
shows ‹(p ∈ H −→ closed 0 p −→

eval e HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H) p) ∧
(Neg p ∈ H −→ closed 0 p −→

eval e HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H) (Neg p))›
proof (induct p rule: wf-induct [where r=‹measure size-form›])

show ‹wf (measure size-form)›
by blast

next
let ?eval = ‹eval e HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H)›

fix x
assume wf : ‹∀ y. (y, x) ∈ measure size-form −→

(y ∈ H −→ closed 0 y −→ ?eval y) ∧
(Neg y ∈ H −→ closed 0 y −→ ?eval (Neg y))›

show ‹(x ∈ H −→ closed 0 x −→ ?eval x) ∧ (Neg x ∈ H −→ closed 0 x −→
?eval (Neg x))›

proof (cases x)
case FF
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H ›
then show ‹?eval x›

using FF hin by (simp add: hintikka-def)
next

assume ‹Neg x ∈ H ›
then show ‹?eval (Neg x)› using FF by simp

qed
next

case TT
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H ›
then show ‹?eval x›

using TT by simp
next

assume ‹Neg x ∈ H ›
then show ‹?eval (Neg x)›

using TT hin by (simp add: hintikka-def)
qed

next
case (Pred p ts)
show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H › and ‹closed 0 x›
then show ‹?eval x› using Pred by simp

next
assume ‹Neg x ∈ H › and ‹closed 0 x›

36

then have ‹Neg (Pred p ts) ∈ H ›
using Pred by simp

then have ‹Pred p ts /∈ H ›
using hin unfolding hintikka-def by fast

then show ‹?eval (Neg x)›
using Pred ‹closed 0 x› by simp

qed
next

case (Neg Z)
then show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H › and ‹closed 0 x›
then show ‹?eval x›

using Neg wf by simp
next

assume ‹Neg x ∈ H ›
then have ‹Z ∈ H ›

using Neg hin unfolding hintikka-def by blast
moreover assume ‹closed 0 x›
then have ‹closed 0 Z ›

using Neg by simp
ultimately have ‹?eval Z ›

using Neg wf by simp
then show ‹?eval (Neg x)›

using Neg by simp
qed

next
case (And A B)
then show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H › and ‹closed 0 x›
then have ‹And A B ∈ H › and ‹closed 0 (And A B)›

using And by simp-all
then have ‹A ∈ H ∧ B ∈ H ›

using And hin unfolding hintikka-def by blast
then show ‹?eval x›

using And wf ‹closed 0 (And A B)› by simp
next

assume ‹Neg x ∈ H › and ‹closed 0 x›
then have ‹Neg (And A B) ∈ H › and ‹closed 0 (And A B)›

using And by simp-all
then have ‹Neg A ∈ H ∨ Neg B ∈ H ›

using hin unfolding hintikka-def by blast
then show ‹?eval (Neg x)›

using And wf ‹closed 0 (And A B)› by fastforce
qed

next
case (Or A B)
then show ?thesis

37

proof (intro conjI impI)
assume ‹x ∈ H › and ‹closed 0 x›
then have ‹Or A B ∈ H › and ‹closed 0 (Or A B)›

using Or by simp-all
then have ‹A ∈ H ∨ B ∈ H ›

using hin unfolding hintikka-def by blast
then show ‹?eval x›

using Or wf ‹closed 0 (Or A B)› by fastforce
next

assume ‹Neg x ∈ H › and ‹closed 0 x›
then have ‹Neg (Or A B) ∈ H › and ‹closed 0 (Or A B)›

using Or by simp-all
then have ‹Neg A ∈ H ∧ Neg B ∈ H ›

using hin unfolding hintikka-def by blast
then show ‹?eval (Neg x)›

using Or wf ‹closed 0 (Or A B)› by simp
qed

next
case (Impl A B)
then show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H › and ‹closed 0 x›
then have ‹Impl A B ∈ H › and ‹closed 0 (Impl A B)›

using Impl by simp-all
then have ‹Neg A ∈ H ∨ B ∈ H ›

using hin unfolding hintikka-def by blast
then show ‹?eval x›

using Impl wf ‹closed 0 (Impl A B)› by fastforce
next

assume ‹Neg x ∈ H › and ‹closed 0 x›
then have ‹Neg (Impl A B) ∈ H › and ‹closed 0 (Impl A B)›

using Impl by simp-all
then have ‹A ∈ H ∧ Neg B ∈ H ›

using hin unfolding hintikka-def by blast
then show ‹?eval (Neg x)›

using Impl wf ‹closed 0 (Impl A B)› by simp
qed

next
case (Forall P)
then show ?thesis
proof (intro conjI impI)

assume ‹x ∈ H › and ‹closed 0 x›
have ‹∀ z. eval (e〈0 :z〉) HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H) P›
proof (rule allI)

fix z
from ‹x ∈ H › and ‹closed 0 x›
have ‹Forall P ∈ H › and ‹closed 0 (Forall P)›

using Forall by simp-all
then have ∗: ‹∀P t. closedt 0 t −→ Forall P ∈ H −→ P[t/0] ∈ H ›

38

using hin unfolding hintikka-def by blast
from ‹closed 0 (Forall P)›
have ‹closed (Suc 0) P› by simp

have ‹(P[term-of-hterm z/0], Forall P) ∈ measure size-form −→
(P[term-of-hterm z/0] ∈ H −→ closed 0 (P[term-of-hterm z/0]) −→
?eval (P[term-of-hterm z/0]))›

using Forall wf by blast
then show ‹eval (e〈0 :z〉) HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H)

P›
using ∗ ‹Forall P ∈ H › ‹closed (Suc 0) P› by simp

qed
then show ‹?eval x›

using Forall by simp
next

assume ‹Neg x ∈ H › and ‹closed 0 x›
then have ‹Neg (Forall P) ∈ H ›

using Forall by simp
then have ‹∃ t. closedt 0 t ∧ Neg (P[t/0]) ∈ H ›

using Forall hin unfolding hintikka-def by blast
then obtain t where ∗: ‹closedt 0 t ∧ Neg (P[t/0]) ∈ H ›

by blast
then have ‹closed 0 (P[t/0])›

using Forall ‹closed 0 x› by simp

have ‹(subst P t 0 , Forall P) ∈ measure size-form −→
(Neg (subst P t 0) ∈ H −→ closed 0 (subst P t 0) −→
?eval (Neg (subst P t 0)))›

using Forall wf by blast
then have ‹?eval (Neg (P[t/0]))›

using Forall ∗ ‹closed 0 (P[t/0])› by simp
then have ‹∃ z. ¬ eval (e〈0 :z〉) HApp (λa ts. Pred a (terms-of-hterms ts) ∈

H) P›
by auto

then show ‹?eval (Neg x)›
using Forall by simp

qed
next

case (Exists P)
then show ?thesis
proof (intro conjI impI allI)

assume ‹x ∈ H › and ‹closed 0 x›
then have ‹∃ t. closedt 0 t ∧ (P[t/0]) ∈ H ›

using Exists hin unfolding hintikka-def by blast
then obtain t where ∗: ‹closedt 0 t ∧ (P[t/0]) ∈ H ›

by blast
then have ‹closed 0 (P[t/0])›

using Exists ‹closed 0 x› by simp

39

have ‹(subst P t 0 , Exists P) ∈ measure size-form −→
((subst P t 0) ∈ H −→ closed 0 (subst P t 0) −→
?eval (subst P t 0))›

using Exists wf by blast
then have ‹?eval (P[t/0])›

using Exists ∗ ‹closed 0 (P[t/0])› by simp
then have ‹∃ z. eval (e〈0 :z〉) HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H)

P›
by auto

then show ‹?eval x›
using Exists by simp

next
assume ‹Neg x ∈ H › and ‹closed 0 x›
have ‹∀ z. ¬ eval (e〈0 :z〉) HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H) P›
proof (rule allI)

fix z
from ‹Neg x ∈ H › and ‹closed 0 x›
have ‹Neg (Exists P) ∈ H › and ‹closed 0 (Neg (Exists P))›

using Exists by simp-all
then have ∗: ‹∀P t. closedt 0 t −→ Neg (Exists P) ∈ H −→ Neg (P[t/0])

∈ H ›
using hin unfolding hintikka-def by blast

from ‹closed 0 (Neg (Exists P))›
have ‹closed (Suc 0) P› by simp

have ‹(P[term-of-hterm z/0], Exists P) ∈ measure size-form −→
(Neg (P[term-of-hterm z/0]) ∈ H −→ closed 0 (P[term-of-hterm z/0])

−→
?eval (Neg (P[term-of-hterm z/0])))›

using Exists wf by blast
then show ‹¬ eval (e〈0 :z〉) HApp (λa ts. Pred a (terms-of-hterms ts) ∈ H)

P›
using ∗ ‹Neg (Exists P) ∈ H › ‹closed (Suc 0) P› by simp

qed
then show ‹?eval (Neg x)›

using Exists by simp
qed

qed
qed

Using the maximality of Extend S C f, we can show that Extend S C f yields
Hintikka sets:
lemma Exists-in-extend:

assumes ‹extend S C f n ∪ {f n} ∈ C › (is ‹?S ′ ∈ C ›)
and ‹Exists P = f n›

shows ‹P[(App (SOME k. k /∈ (
⋃

p ∈ extend S C f n ∪ {f n}. params p)) [])/0]
∈

extend S C f (Suc n)›
(is ‹subst P ?t 0 ∈ extend S C f (Suc n)›)

40

proof −
have ‹∃ p. f n = Exists p›

using ‹Exists P = f n› by metis
then have ‹extend S C f (Suc n) = (?S ′ ∪ {(dest-Exists (f n))[?t/0]})›

using ‹?S ′ ∈ C › by simp
also have ‹. . . = (?S ′ ∪ {(dest-Exists (Exists P))[?t/0]})›

using ‹Exists P = f n› by simp
also have ‹. . . = (?S ′ ∪ {P[?t/0]})›

by simp
finally show ?thesis

by blast
qed

lemma Neg-Forall-in-extend:
assumes ‹extend S C f n ∪ {f n} ∈ C › (is ‹?S ′ ∈ C ›)

and ‹Neg (Forall P) = f n›
shows ‹Neg (P[(App (SOME k. k /∈ (

⋃
p ∈ extend S C f n ∪ {f n}. params p))

[])/0]) ∈
extend S C f (Suc n)›

(is ‹Neg (subst P ?t 0) ∈ extend S C f (Suc n)›)
proof −

have ‹f n 6= Exists P›
using ‹Neg (Forall P) = f n› by auto

have ‹∃ p. f n = Neg (Forall p)›
using ‹Neg (Forall P) = f n› by metis

then have ‹extend S C f (Suc n) = (?S ′ ∪ {Neg (dest-Forall (dest-Neg (f
n))[?t/0])})›

using ‹?S ′ ∈ C › ‹f n 6= Exists P› by auto
also have ‹. . . = (?S ′ ∪ {Neg (dest-Forall (dest-Neg (Neg (Forall P)))[?t/0])})›

using ‹Neg (Forall P) = f n› by simp
also have ‹. . . = (?S ′ ∪ {Neg (P[?t/0])})›

by simp
finally show ?thesis

by blast
qed

theorem extend-hintikka:
assumes fin-ch: ‹finite-char C ›

and infin-p: ‹infinite (− (
⋃

p ∈ S . params p))›
and surj: ‹∀ y. ∃n. y = f n›
and altc: ‹alt-consistency C ›
and ‹S ∈ C ›

shows ‹hintikka (Extend S C f)› (is ‹hintikka ?H ›)
unfolding hintikka-def

proof (intro allI impI conjI)
have ‹maximal ?H C ›

by (simp add: extend-maximal fin-ch surj)

41

have ‹?H ∈ C ›
using Extend-in-C assms by blast

have ‹∀S ′ ∈ C . ?H ⊆ S ′ −→ ?H = S ′›
using ‹maximal ?H C ›
unfolding maximal-def by blast

{ fix p ts
show ‹¬ (Pred p ts ∈ ?H ∧ Neg (Pred p ts) ∈ ?H)›

using ‹?H ∈ C › altc unfolding alt-consistency-def by fast }

show ‹FF /∈ ?H ›
using ‹?H ∈ C › altc unfolding alt-consistency-def by blast

show ‹Neg TT /∈ ?H ›
using ‹?H ∈ C › altc unfolding alt-consistency-def by blast

{ fix Z
assume ‹Neg (Neg Z) ∈ ?H ›
then have ‹?H ∪ {Z} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by fast
then show ‹Z ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast }

{ fix A B
assume ‹And A B ∈ ?H ›
then have ‹?H ∪ {A, B} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by fast
then show ‹A ∈ ?H › and ‹B ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast+ }

{ fix A B
assume ‹Neg (Or A B) ∈ ?H ›
then have ‹?H ∪ {Neg A, Neg B} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by fast
then show ‹Neg A ∈ ?H › and ‹Neg B ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast+ }

{ fix A B
assume ‹Neg (Impl A B) ∈ ?H ›
then have ‹?H ∪ {A, Neg B} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by blast
then show ‹A ∈ ?H › and ‹Neg B ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast+ }

{ fix A B
assume ‹Or A B ∈ ?H ›
then have ‹?H ∪ {A} ∈ C ∨ ?H ∪ {B} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by fast

42

then show ‹A ∈ ?H ∨ B ∈ ?H ›
using ‹maximal ?H C › unfolding maximal-def by fast }

{ fix A B
assume ‹Neg (And A B) ∈ ?H ›
then have ‹?H ∪ {Neg A} ∈ C ∨ ?H ∪ {Neg B} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by simp
then show ‹Neg A ∈ ?H ∨ Neg B ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast }

{ fix A B
assume ‹Impl A B ∈ ?H ›
then have ‹?H ∪ {Neg A} ∈ C ∨ ?H ∪ {B} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by simp
then show ‹Neg A ∈ ?H ∨ B ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast }

{ fix P and t :: ‹nat term›
assume ‹Forall P ∈ ?H › and ‹closedt 0 t›
then have ‹?H ∪ {P[t/0]} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by blast
then show ‹P[t/0] ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast }

{ fix P and t :: ‹nat term›
assume ‹Neg (Exists P) ∈ ?H › and ‹closedt 0 t›
then have ‹?H ∪ {Neg (P[t/0])} ∈ C ›

using ‹?H ∈ C › altc unfolding alt-consistency-def by blast
then show ‹Neg (P[t/0]) ∈ ?H ›

using ‹maximal ?H C › unfolding maximal-def by fast }

{ fix P
assume ‹Exists P ∈ ?H ›
obtain n where ∗: ‹Exists P = f n›

using surj by blast

let ?t = ‹App (SOME k. k /∈ (
⋃

p ∈ extend S C f n ∪ {f n}. params p)) []›
have ‹closedt 0 ?t› by simp

have ‹Exists P ∈ (
⋃

n. extend S C f n)›
using ‹Exists P ∈ ?H › Extend-def by blast

then have ‹extend S C f n ∪ {f n} ⊆ (
⋃

n. extend S C f n)›
using ∗ by (simp add: UN-upper)

then have ‹extend S C f n ∪ {f n} ∈ C ›
using Extend-def ‹Extend S C f ∈ C › fin-ch finite-char-closed
unfolding subset-closed-def by metis

then have ‹P[?t/0] ∈ extend S C f (Suc n)›
using ∗ Exists-in-extend by blast

then have ‹P[?t/0] ∈ ?H ›

43

using Extend-def by blast
then show ‹∃ t. closedt 0 t ∧ P[t/0] ∈ ?H ›

using ‹closedt 0 ?t› by blast }

{ fix P
assume ‹Neg (Forall P) ∈ ?H ›
obtain n where ∗: ‹Neg (Forall P) = f n›

using surj by blast

let ?t = ‹App (SOME k. k /∈ (
⋃

p ∈ extend S C f n ∪ {f n}. params p)) []›
have ‹closedt 0 ?t› by simp

have ‹Neg (Forall P) ∈ (
⋃

n. extend S C f n)›
using ‹Neg (Forall P) ∈ ?H › Extend-def by blast

then have ‹extend S C f n ∪ {f n} ⊆ (
⋃

n. extend S C f n)›
using ∗ by (simp add: UN-upper)

then have ‹extend S C f n ∪ {f n} ∈ C ›
using Extend-def ‹Extend S C f ∈ C › fin-ch finite-char-closed
unfolding subset-closed-def by metis

then have ‹Neg (P[?t/0]) ∈ extend S C f (Suc n)›
using ∗ Neg-Forall-in-extend by blast

then have ‹Neg (P[?t/0]) ∈ ?H ›
using Extend-def by blast

then show ‹∃ t. closedt 0 t ∧ Neg (P[t/0]) ∈ ?H ›
using ‹closedt 0 ?t› by blast }

qed

7.7 Model existence theorem

Since the result of extending S is a superset of S, it follows that each con-
sistent set S has a Herbrand model:
lemma hintikka-Extend-S :

assumes ‹consistency C › and ‹S ∈ C ›
and ‹infinite (− (

⋃
p ∈ S . params p))›

shows ‹hintikka (Extend S (mk-finite-char (mk-alt-consistency (close C))) from-nat)›
(is ‹hintikka (Extend S ?C ′ from-nat)›)

proof −
have ‹finite-char ?C ′›

using finite-char by blast
moreover have ‹∀ y. y = from-nat (to-nat y)›

by simp
then have ‹∀ y. ∃n. y = from-nat n›

by blast
moreover have ‹alt-consistency ?C ′›

using alt-consistency close-closed close-consistency ‹consistency C ›
finite-alt-consistency mk-alt-consistency-closed

by blast
moreover have ‹S ∈ close C ›

using close-subset ‹S ∈ C › by blast

44

then have ‹S ∈ mk-alt-consistency (close C)›
using mk-alt-consistency-subset by blast

then have ‹S ∈ ?C ′›
using close-closed finite-char-subset mk-alt-consistency-closed by blast

ultimately show ?thesis
using extend-hintikka ‹infinite (− (

⋃
p ∈ S . params p))›

by metis
qed

theorem model-existence:
assumes ‹consistency C ›

and ‹S ∈ C ›
and ‹infinite (− (

⋃
p ∈ S . params p))›

and ‹p ∈ S›
and ‹closed 0 p›

shows ‹eval e HApp (λa ts. Pred a (terms-of-hterms ts) ∈ Extend S
(mk-finite-char (mk-alt-consistency (close C))) from-nat) p›

using assms hintikka-model hintikka-Extend-S Extend-subset
by blast

7.8 Completeness for Natural Deduction

Thanks to the model existence theorem, we can now show the completeness
of the natural deduction calculus introduced in §5. In order for the model
existence theorem to be applicable, we have to prove that the set of sets
that are consistent with respect to ` is a consistency property:
theorem deriv-consistency:

assumes inf-param: ‹infinite (UNIV :: ′a set)›
shows ‹consistency {S ::(′a, ′b) form set. ∃G. S = set G ∧ ¬ G ` FF}›
unfolding consistency-def

proof (intro conjI allI impI notI)
fix S :: ‹(′a, ′b) form set›
assume ‹S ∈ {set G | G. ¬ G ` FF}› (is ‹S ∈ ?C ›)
then obtain G :: ‹(′a, ′b) form list›

where ∗: ‹S = set G› and ‹¬ G ` FF›
by blast

{ fix p ts
assume ‹Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S›
then have ‹G ` Pred p ts› and ‹G ` Neg (Pred p ts)›

using Assum ∗ by blast+
then have ‹G ` FF›

using NegE by blast
then show False

using ‹¬ G ` FF› by blast }

{ assume ‹FF ∈ S›
then have ‹G ` FF›

45

using Assum ∗ by blast
then show False

using ‹¬ G ` FF› by blast }

{ assume ‹Neg TT ∈ S›
then have ‹G ` Neg TT ›

using Assum ∗ by blast
moreover have ‹G ` TT ›

using TTI by blast
ultimately have ‹G ` FF›

using NegE by blast
then show False

using ‹¬ G ` FF› by blast }

{ fix Z
assume ‹Neg (Neg Z) ∈ S›
then have ‹G ` Neg (Neg Z)›

using Assum ∗ by blast

{ assume ‹Z # G ` FF›
then have ‹G ` Neg Z ›

using NegI by blast
then have ‹G ` FF›

using NegE ‹G ` Neg (Neg Z)› by blast
then have False

using ‹¬ G ` FF› by blast }
then have ‹¬ Z # G ` FF›

by blast
moreover have ‹S ∪ {Z} = set (Z # G)›

using ∗ by simp
ultimately show ‹S ∪ {Z} ∈ ?C ›

by blast }

{ fix A B
assume ‹And A B ∈ S›
then have ‹G ` And A B›

using Assum ∗ by blast
then have ‹G ` A› and ‹G ` B›

using AndE1 AndE2 by blast+

{ assume ‹A # B # G ` FF›
then have ‹B # G ` Neg A›

using NegI by blast
then have ‹G ` Neg A›

using cut ‹G ` B› by blast
then have ‹G ` FF›

using NegE ‹G ` A› by blast
then have False

using ‹¬ G ` FF› by blast }

46

then have ‹¬ A # B # G ` FF›
by blast

moreover have ‹S ∪ {A, B} = set (A # B # G)›
using ∗ by simp

ultimately show ‹S ∪ {A, B} ∈ ?C ›
by blast }

{ fix A B
assume ‹Neg (Or A B) ∈ S›
then have ‹G ` Neg (Or A B)›

using Assum ∗ by blast

have ‹A # Neg B # G ` A›
by (simp add: Assum)

then have ‹A # Neg B # G ` Or A B›
using OrI1 by blast

moreover have ‹A # Neg B # G ` Neg (Or A B)›
using ∗ ‹Neg (Or A B) ∈ S› by (simp add: Assum)

ultimately have ‹A # Neg B # G ` FF›
using NegE ‹A # Neg B # G ` Neg (Or A B)› by blast

then have ‹Neg B # G ` Neg A›
using NegI by blast

have ‹B # G ` B›
by (simp add: Assum)

then have ‹B # G ` Or A B›
using OrI2 by blast

moreover have ‹B # G ` Neg (Or A B)›
using ∗ ‹Neg (Or A B) ∈ S› by (simp add: Assum)

ultimately have ‹B # G ` FF›
using NegE ‹B # G ` Neg (Or A B)› by blast

then have ‹G ` Neg B›
using NegI by blast

{ assume ‹Neg A # Neg B # G ` FF›
then have ‹Neg B # G ` Neg (Neg A)›

using NegI by blast
then have ‹Neg B # G ` FF›

using NegE ‹Neg B # G ` Neg A› by blast
then have ‹G ` FF›

using cut ‹G ` Neg B› by blast
then have False

using ‹¬ G ` FF› by blast }
then have ‹¬ Neg A # Neg B # G ` FF›

by blast
moreover have ‹S ∪ {Neg A, Neg B} = set (Neg A # Neg B # G)›

using ∗ by simp
ultimately show ‹S ∪ {Neg A, Neg B} ∈ ?C ›

by blast }

47

{ fix A B
assume ‹Neg (Impl A B) ∈ S›

have ‹A # Neg A # Neg B # G ` A›
by (simp add: Assum)

moreover have ‹A # Neg A # Neg B # G ` Neg A›
by (simp add: Assum)

ultimately have ‹A # Neg A # Neg B # G ` FF›
using NegE by blast

then have ‹A # Neg A # Neg B # G ` B›
using FFE by blast

then have ‹Neg A # Neg B # G ` Impl A B›
using ImplI by blast

moreover have ‹Neg A # Neg B # G ` Neg (Impl A B)›
using ∗ ‹Neg (Impl A B) ∈ S› by (simp add: Assum)

ultimately have ‹Neg A # Neg B # G ` FF›
using NegE by blast

then have ‹Neg B # G ` A›
using Class by blast

have ‹A # B # G ` B›
by (simp add: Assum)

then have ‹B # G ` Impl A B›
using ImplI by blast

moreover have ‹B # G ` Neg (Impl A B)›
using ∗ ‹Neg (Impl A B) ∈ S› by (simp add: Assum)

ultimately have ‹B # G ` FF›
using NegE by blast

then have ‹G ` Neg B›
using NegI by blast

{ assume ‹A # Neg B # G ` FF›
then have ‹Neg B # G ` Neg A›

using NegI by blast
then have ‹Neg B # G ` FF›

using NegE ‹Neg B # G ` A› by blast
then have ‹G ` FF›

using cut ‹G ` Neg B› by blast
then have False

using ‹¬ G ` FF›
by blast }

then have ‹¬ A # Neg B # G ` FF›
by blast

moreover have ‹{A, Neg B} ∪ S = set (A # Neg B # G)›
using ∗ by simp

ultimately show ‹S ∪ {A, Neg B} ∈ ?C ›
by blast }

48

{ fix A B
assume ‹Or A B ∈ S›
then have ‹G ` Or A B›

using ∗ Assum by blast

{ assume ‹(∀G ′. set G ′ = S ∪ {A} −→ G ′ ` FF)›
and ‹(∀G ′. set G ′ = S ∪ {B} −→ G ′ ` FF)›

then have ‹A # G ` FF› and ‹B # G ` FF›
using ∗ by simp-all

then have ‹G ` FF›
using OrE ‹G ` Or A B› by blast

then have False
using ‹¬ G ` FF› by blast }

then show ‹S ∪ {A} ∈ ?C ∨ S ∪ {B} ∈ ?C ›
by blast }

{ fix A B
assume ‹Neg (And A B) ∈ S›

let ?x = ‹Or (Neg A) (Neg B)›

have ‹B # A # Neg ?x # G ` A› and ‹B # A # Neg ?x # G ` B›
by (simp-all add: Assum)

then have ‹B # A # Neg ?x # G ` And A B›
using AndI by blast

moreover have ‹B # A # Neg ?x # G ` Neg (And A B)›
using ∗ ‹Neg (And A B) ∈ S› by (simp add: Assum)

ultimately have ‹B # A # Neg ?x # G ` FF›
using NegE by blast

then have ‹A # Neg ?x # G ` Neg B›
using NegI by blast

then have ‹A # Neg ?x # G ` ?x›
using OrI2 by blast

moreover have ‹A # Neg ?x # G ` Neg ?x›
by (simp add: Assum)

ultimately have ‹A # Neg ?x # G ` FF›
using NegE by blast

then have ‹Neg ?x # G ` Neg A›
using NegI by blast

then have ‹Neg ?x # G ` ?x›
using OrI1 by blast

then have ‹G ` Or (Neg A) (Neg B)›
using Class ′ by blast

{ assume ‹(∀G ′. set G ′ = S ∪ {Neg A} −→ G ′ ` FF)›
and ‹(∀G ′. set G ′ = S ∪ {Neg B} −→ G ′ ` FF)›

then have ‹Neg A # G ` FF› and ‹Neg B # G ` FF›
using ∗ by simp-all

then have ‹G ` FF›

49

using OrE ‹G ` Or (Neg A) (Neg B)› by blast
then have False

using ‹¬ G ` FF› by blast }
then show ‹S ∪ {Neg A} ∈ ?C ∨ S ∪ {Neg B} ∈ ?C ›

by blast }

{ fix A B
assume ‹Impl A B ∈ S›

let ?x = ‹Or (Neg A) B›

have ‹A # Neg ?x # G ` A›
by (simp add: Assum)

moreover have ‹A # Neg ?x # G ` Impl A B›
using ∗ ‹Impl A B ∈ S› by (simp add: Assum)

ultimately have ‹A # Neg ?x # G ` B›
using ImplE by blast

then have ‹A # Neg ?x # G ` ?x›
using OrI2 by blast

moreover have ‹A # Neg ?x # G ` Neg ?x›
by (simp add: Assum)

ultimately have ‹A # Neg ?x # G ` FF›
using NegE by blast

then have ‹Neg ?x # G ` Neg A›
using NegI by blast

then have ‹Neg ?x # G ` ?x›
using OrI1 by blast

then have ‹G ` Or (Neg A) B›
using Class ′ by blast

{ assume ‹(∀G ′. set G ′ = S ∪ {Neg A} −→ G ′ ` FF)›
and ‹(∀G ′. set G ′ = S ∪ {B} −→ G ′ ` FF)›

then have ‹Neg A # G ` FF› and ‹B # G ` FF›
using ∗ by simp-all

then have ‹G ` FF›
using OrE ‹G ` Or (Neg A) B› by blast

then have False
using ‹¬ G ` FF› by blast }

then show ‹S ∪ {Neg A} ∈ ?C ∨ S ∪ {B} ∈ ?C ›
by blast }

{ fix P and t :: ‹ ′a term›
assume ‹closedt 0 t› and ‹Forall P ∈ S›
then have ‹G ` Forall P›

using Assum ∗ by blast
then have ‹G ` P[t/0]›

using ForallE by blast

{ assume ‹P[t/0] # G ` FF›

50

then have ‹G ` FF›
using cut ‹G ` P[t/0]› by blast

then have False
using ‹¬ G ` FF› by blast }

then have ‹¬ P[t/0] # G ` FF›
by blast

moreover have ‹S ∪ {P[t/0]} = set (P[t/0] # G)›
using ∗ by simp

ultimately show ‹S ∪ {P[t/0]} ∈ ?C ›
by blast }

{ fix P and t :: ‹ ′a term›
assume ‹closedt 0 t› and ‹Neg (Exists P) ∈ S›
then have ‹G ` Neg (Exists P)›

using Assum ∗ by blast
then have ‹P[t/0] ∈ set (P[t/0] # G)›

by (simp add: Assum)
then have ‹P[t/0] # G ` P[t/0]›

using Assum by blast
then have ‹P[t/0] # G ` Exists P›

using ExistsI by blast
moreover have ‹P[t/0] # G ` Neg (Exists P)›

using ∗ ‹Neg (Exists P) ∈ S› by (simp add: Assum)
ultimately have ‹P[t/0] # G ` FF›

using NegE by blast
then have ‹G ` Neg (P[t/0])›

using NegI by blast

{ assume ‹Neg (P[t/0]) # G ` FF›
then have ‹G ` FF›

using cut ‹G ` Neg (P[t/0])› by blast
then have False

using ‹¬ G ` FF› by blast }
then have ‹¬ Neg (P[t/0]) # G ` FF›

by blast
moreover have ‹S ∪ {Neg (P[t/0])} = set (Neg (P[t/0]) # G)›

using ∗ by simp
ultimately show ‹S ∪ {Neg (P[t/0])} ∈ ?C ›

by blast }

{ fix P
assume ‹Exists P ∈ S›
then have ‹G ` Exists P›

using ∗ Assum by blast

have ‹finite ((
⋃

p ∈ set G. params p) ∪ params P)›
by simp

then have ‹infinite (− ((
⋃

p ∈ set G. params p) ∪ params P))›
using inf-param Diff-infinite-finite finite-compl by blast

51

then have ‹infinite (− ((
⋃

p ∈ set G. params p) ∪ params P))›
by (simp add: Compl-eq-Diff-UNIV)

then obtain x where ∗∗: ‹x ∈ − ((
⋃

p ∈ set G. params p) ∪ params P)›
using infinite-imp-nonempty by blast

{ assume ‹P[App x []/0] # G ` FF›
moreover have ‹list-all (λp. x /∈ params p) G›

using ∗∗ by (simp add: list-all-iff)
moreover have ‹x /∈ params P›

using ∗∗ by simp
moreover have ‹x /∈ params FF›

by simp
ultimately have ‹G ` FF›

using ExistsE ‹G ` Exists P› by fast
then have False

using ‹¬ G ` FF›
by blast}

then have ‹¬ P[App x []/0] # G ` FF›
by blast

moreover have ‹S ∪ {P[App x []/0]} = set (P[App x []/0] # G)›
using ∗ by simp

ultimately show ‹∃ x. S ∪ {P[App x []/0]} ∈ ?C ›
by blast }

{ fix P
assume ‹Neg (Forall P) ∈ S›
then have ‹G ` Neg (Forall P)›

using ∗ Assum by blast

have ‹finite ((
⋃

p ∈ set G. params p) ∪ params P)›
by simp

then have ‹infinite (− ((
⋃

p ∈ set G. params p) ∪ params P))›
using inf-param Diff-infinite-finite finite-compl by blast

then have ‹infinite (− ((
⋃

p ∈ set G. params p) ∪ params P))›
by (simp add: Compl-eq-Diff-UNIV)

then obtain x where ∗∗: ‹x ∈ − ((
⋃

p ∈ set G. params p) ∪ params P)›
using infinite-imp-nonempty by blast

let ?x = ‹Neg (Exists (Neg P))›

have ‹Neg (P[App x []/0]) # ?x # G ` Neg P[App x []/0]›
by (simp add: Assum)

then have ‹Neg (P[App x []/0]) # ?x # G ` Exists (Neg P)›
using ExistsI by blast

moreover have ‹Neg (P[App x []/0]) # ?x # G ` ?x›
by (simp add: Assum)

ultimately have ‹Neg (P[App x []/0]) # ?x # G ` FF›
using NegE by blast

then have ‹?x # G ` P[App x []/0]›

52

using Class by blast
moreover have ‹list-all (λp. x /∈ params p) (?x # G)›

using ∗∗ by (simp add: list-all-iff)
moreover have ‹x /∈ params P›

using ∗∗ by simp
ultimately have ‹?x # G ` Forall P›

using ForallI by fast
moreover have ‹?x # G ` Neg (Forall P)›

using ∗ ‹Neg (Forall P) ∈ S› by (simp add: Assum)
ultimately have ‹?x # G ` FF›

using NegE by blast
then have ‹G ` Exists (Neg P)›

using Class by blast

{ assume ‹Neg (P[App x []/0]) # G ` FF›
moreover have ‹list-all (λp. x /∈ params p) G›

using ∗∗ by (simp add: list-all-iff)
moreover have ‹x /∈ params P›

using ∗∗ by simp
moreover have ‹x /∈ params FF›

by simp
ultimately have ‹G ` FF›

using ExistsE ‹G ` Exists (Neg P)› by fastforce
then have False

using ‹¬ G ` FF›
by blast}

then have ‹¬ Neg (P[App x []/0]) # G ` FF›
by blast

moreover have ‹S ∪ {Neg (P[App x []/0])} = set (Neg (P[App x []/0]) # G)›
using ∗ by simp

ultimately show ‹∃ x. S ∪ {Neg (P[App x []/0])} ∈ ?C ›
by blast }

qed

Hence, by contradiction, we have completeness of natural deduction:
theorem natded-complete:

assumes ‹closed 0 p›
and ‹list-all (closed 0) ps›
and mod: ‹∀ e f g. e,(f :: nat ⇒ nat hterm list ⇒ nat hterm),

(g :: nat ⇒ nat hterm list ⇒ bool),ps |= p›
shows ‹ps ` p›

proof (rule Class, rule ccontr)
fix e
assume ‹¬ Neg p # ps ` FF›

let ?S = ‹set (Neg p # ps)›
let ?C = ‹{set (G :: (nat, nat) form list) | G. ¬ G ` FF}›
let ?f = HApp
let ?g = ‹(λa ts. Pred a (terms-of-hterms ts) ∈ Extend ?S

53

(mk-finite-char (mk-alt-consistency (close ?C))) from-nat)›

from ‹list-all (closed 0) ps›
have ‹∀ p ∈ set ps. closed 0 p›

by (simp add: list-all-iff)

{ fix x
assume ‹x ∈ ?S›
moreover have ‹consistency ?C ›

using deriv-consistency by blast
moreover have ‹?S ∈ ?C ›

using ‹¬ Neg p # ps ` FF› by blast
moreover have ‹infinite (− (

⋃
p ∈ ?S . params p))›

by (simp add: Compl-eq-Diff-UNIV)
moreover note ‹closed 0 p› ‹∀ p ∈ set ps. closed 0 p› ‹x ∈ ?S›
then have ‹closed 0 x› by auto
ultimately have ‹eval e ?f ?g x›

using model-existence by blast }
then have ‹list-all (eval e ?f ?g) (Neg p # ps)›

by (simp add: list-all-iff)
moreover have ‹eval e ?f ?g (Neg p)›

using calculation by simp
moreover have ‹list-all (eval e ?f ?g) ps›

using calculation by simp
then have ‹eval e ?f ?g p›

using mod unfolding model-def by blast
ultimately show False by simp

qed

8 Löwenheim-Skolem theorem

Another application of the model existence theorem presented in §7.7 is the
Löwenheim-Skolem theorem. It says that a set of formulae that is satisfiable
in an arbitrary model is also satisfiable in a Herbrand model. The main idea
behind the proof is to show that satisfiable sets are consistent, hence they
must be satisfiable in a Herbrand model.
theorem sat-consistency:

‹consistency {S . infinite (− (
⋃

p ∈ S . params p)) ∧ (∃ f . ∀ (p::(′a, ′b)form) ∈ S .
eval e f g p)}›

unfolding consistency-def
proof (intro allI impI conjI)

let ?C = ‹{S . infinite (− (
⋃

p ∈ S . params p)) ∧ (∃ f . ∀ p ∈ S . eval e f g p)}›

fix S :: ‹(′a, ′b) form set›
assume ‹S ∈ ?C ›
then have inf-params: ‹infinite (− (

⋃
p ∈ S . params p))›

and ‹∃ f . ∀ p ∈ S . eval e f g p›
by blast+

54

then obtain f where ∗: ‹∀ x ∈ S . eval e f g x› by blast

{ fix p ts
show ‹¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)›
proof

assume ‹Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S›
then have ‹eval e f g (Pred p ts) ∧ eval e f g (Neg (Pred p ts))›

using ∗ by blast
then show False by simp

qed }

show ‹FF /∈ S›
using ∗ by fastforce

show ‹Neg TT /∈ S›
using ∗ by fastforce

{ fix Z
assume ‹Neg (Neg Z) ∈ S›
then have ‹∀ x ∈ S ∪ {Neg (Neg Z)}. eval e f g x›

using ∗ by blast
then have ‹∀ x ∈ S ∪ {Z}. eval e f g x›

by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {Z}. params p))›

using inf-params by simp
ultimately show ‹S ∪ {Z} ∈ ?C ›

by blast }

{ fix A B
assume ‹And A B ∈ S›
then have ‹∀ x ∈ S ∪ {And A B}. eval e f g x›

using ∗ by blast
then have ‹∀ x ∈ S ∪ {A, B}. eval e f g x›

by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {A, B}. params p))›

using inf-params by simp
ultimately show ‹S ∪ {A, B} ∈ ?C ›

by blast }

{ fix A B
assume ‹Neg (Or A B) ∈ S›
then have ‹∀ x ∈ S ∪ {Neg (Or A B)}. eval e f g x›

using ∗ by blast
then have ‹∀ x ∈ S ∪ {Neg A, Neg B}. eval e f g x›

by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {Neg A, Neg B}. params p))›

using inf-params by simp
ultimately show ‹S ∪ {Neg A, Neg B} ∈ ?C ›

by blast }

55

{ fix A B
assume ‹Neg (Impl A B) ∈ S›
then have ‹∀ x ∈ S ∪ {Neg (Impl A B)}. eval e f g x›

using ∗ by blast
then have ‹∀ x ∈ S ∪ {A, Neg B}. eval e f g x›

by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {A, Neg B}. params p))›

using inf-params by simp
ultimately show ‹S ∪ {A, Neg B} ∈ ?C ›

by blast }

{ fix A B
assume ‹Or A B ∈ S›
then have ‹∀ x ∈ S ∪ {Or A B}. eval e f g x›

using ∗ by blast
then have ‹(∀ x ∈ S ∪ {A}. eval e f g x) ∨

(∀ x ∈ S ∪ {B}. eval e f g x)›
by simp

moreover have ‹infinite (− (
⋃

p ∈ S ∪ {A}. params p))›
and ‹infinite (− (

⋃
p ∈ S ∪ {B}. params p))›

using inf-params by simp-all
ultimately show ‹S ∪ {A} ∈ ?C ∨ S ∪ {B} ∈ ?C ›

by blast }

{ fix A B
assume ‹Neg (And A B) ∈ S›
then have ‹∀ x ∈ S ∪ {Neg (And A B)}. eval e f g x›

using ∗ by blast
then have ‹(∀ x ∈ S ∪ {Neg A}. eval e f g x) ∨

(∀ x ∈ S ∪ {Neg B}. eval e f g x)›
by simp

moreover have ‹infinite (− (
⋃

p ∈ S ∪ {Neg A}. params p))›
and ‹infinite (− (

⋃
p ∈ S ∪ {Neg B}. params p))›

using inf-params by simp-all
ultimately show ‹S ∪ {Neg A} ∈ ?C ∨ S ∪ {Neg B} ∈ ?C ›

by blast }

{ fix A B
assume ‹Impl A B ∈ S›
then have ‹∀ x ∈ S ∪ {Impl A B}. eval e f g x›

using ∗ by blast
then have ‹(∀ x ∈ S ∪ {Neg A}. eval e f g x) ∨

(∀ x ∈ S ∪ {B}. eval e f g x)›
by simp

moreover have ‹infinite (− (
⋃

p ∈ S ∪ {Neg A}. params p))›
and ‹infinite (− (

⋃
p ∈ S ∪ {B}. params p))›

using inf-params by simp-all
ultimately show ‹S ∪ {Neg A} ∈ ?C ∨ S ∪ {B} ∈ ?C ›

56

by blast }

{ fix P and t :: ‹ ′a term›
assume ‹Forall P ∈ S›
then have ‹∀ x ∈ S ∪ {Forall P}. eval e f g x›

using ∗ by blast
then have ‹∀ x ∈ S ∪ {P[t/0]}. eval e f g x›

by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {P[t/0]}. params p))›

using inf-params by simp
ultimately show ‹S ∪ {P[t/0]} ∈ ?C ›

by blast }

{ fix P and t :: ‹ ′a term›
assume ‹Neg (Exists P) ∈ S›
then have ‹∀ x ∈ S ∪ {Neg (Exists P)}. eval e f g x›

using ∗ by blast
then have ‹∀ x ∈ S ∪ {Neg (P[t/0])}. eval e f g x›

by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {Neg (P[t/0])}. params p))›

using inf-params by simp
ultimately show ‹S ∪ {Neg (P[t/0])} ∈ ?C ›

by blast }

{ fix P
assume ‹Exists P ∈ S›
then have ‹∀ x ∈ S ∪ {Exists P}. eval e f g x›

using ∗ by blast
then have ‹eval e f g (Exists P)›

by blast
then obtain z where ‹eval (e〈0 :z〉) f g P›

by auto
moreover obtain x where ∗∗: ‹x ∈ − (

⋃
p ∈ S . params p)›

using inf-params infinite-imp-nonempty by blast
then have ‹x /∈ params P›

using ‹Exists P ∈ S› by auto
ultimately have ‹eval (e〈0 :(f (x := λy. z)) x []〉) (f (x := λy. z)) g P›

by simp
moreover have ‹∀ p ∈ S . eval e (f (x := λy. z)) g p›

using ∗ ∗∗ by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {P[App x []/0]}. params p))›

using inf-params by simp
ultimately have ‹S ∪ {P[App x []/0]} ∈

{S . infinite (− (
⋃

p ∈ S . params p)) ∧ (∀ p ∈ S . eval e (f (x :=
λy. z)) g p)}›

by simp
then show ‹∃ x. S ∪ {P[App x []/0]} ∈ ?C ›

by blast }

57

{ fix P
assume ‹Neg (Forall P) ∈ S›
then have ‹∀ x ∈ S ∪ {Neg (Forall P)}. eval e f g x›

using ∗ by blast
then have ‹eval e f g (Neg (Forall P))›

by blast
then obtain z where ‹¬ eval (e〈0 :z〉) f g P›

by auto
moreover obtain x where ∗∗: ‹x ∈ − (

⋃
p ∈ S . params p)›

using inf-params infinite-imp-nonempty by blast
then have ‹x /∈ params P›

using ‹Neg (Forall P) ∈ S› by auto
ultimately have ‹¬ eval (e〈0 :(f (x := λy. z)) x []〉) (f (x := λy. z)) g P›

by simp
moreover have ‹∀ p ∈ S . eval e (f (x := λy. z)) g p›

using ∗ ∗∗ by simp
moreover have ‹infinite (− (

⋃
p ∈ S ∪ {P[App x []/0]}. params p))›

using inf-params by simp
ultimately have ‹S ∪ {Neg (P[App x []/0])} ∈

{S . infinite (− (
⋃

p ∈ S . params p)) ∧ (∀ p ∈ S . eval e (f (x :=
λy. z)) g p)}›

by simp
then show ‹∃ x. S ∪ {Neg (P[App x []/0])} ∈ ?C ›

by blast }
qed

theorem doublep-infinite-params:
‹infinite (− (

⋃
p ∈ psubst (λn::nat. 2 ∗ n) ‘ S . params p))›

proof (rule infinite-super)
show ‹infinite (range (λn::nat. 2 ∗ n + 1))›
using inj-onI Suc-1 Suc-mult-cancel1 add-right-imp-eq finite-imageD infinite-UNIV-char-0
by (metis (no-types, lifting))

next
have ‹

∧
m n. Suc (2 ∗ m) 6= 2 ∗ n› by arith

then show ‹range (λn. 2 ∗ n + 1)
⊆ − (

⋃
p::(nat, ′a) form ∈ psubst (λn . 2 ∗ n) ‘ S . params p)›

by auto
qed

When applying the model existence theorem, there is a technical complica-
tion. We must make sure that there are infinitely many unused parameters.
In order to achieve this, we encode parameters as natural numbers and mul-
tiply each parameter occurring in the set S by 2.
theorem loewenheim-skolem:

assumes evalS : ‹∀ p ∈ S . eval e f g p›
shows ‹∀ p ∈ S . closed 0 p −→ eval e ′ (λn. HApp (2∗n)) (λa ts.

Pred a (terms-of-hterms ts) ∈ Extend (psubst (λn. 2 ∗ n) ‘ S)
(mk-finite-char (mk-alt-consistency (close

{S . infinite (− (
⋃

p ∈ S . params p)) ∧ (∃ f . ∀ p ∈ S . eval e f g p)})))

58

from-nat) p›
(is ‹∀ - ∈ -. - - - −→ eval - - ?g -›)

using evalS
proof (intro ballI impI)

fix p

let ?C = ‹{S . infinite (− (
⋃

p ∈ S . params p)) ∧ (∃ f . ∀ x ∈ S . eval e f g x)}›

assume ‹p ∈ S›
and ‹closed 0 p›

then have ‹eval e f g p›
using evalS by blast

then have ‹∀ x ∈ S . eval e f g x›
using evalS by blast

then have ‹∀ p ∈ psubst (λn. 2 ∗ n) ‘ S . eval e (λn. f (n div 2)) g p›
by (simp add: psubst-eval)

then have ‹psubst (λn. 2 ∗ n) ‘ S ∈ ?C ›
using doublep-infinite-params by blast

moreover have ‹psubst (λn. 2 ∗ n) p ∈ psubst (λn. 2 ∗ n) ‘ S›
using ‹p ∈ S› by blast

moreover have ‹closed 0 (psubst (λn. 2 ∗ n) p)›
using ‹closed 0 p› by simp

moreover have ‹consistency ?C ›
using sat-consistency by blast

ultimately have ‹eval e ′ HApp ?g (psubst (λn. 2 ∗ n) p)›
using model-existence by blast

then show ‹eval e ′ (λn. HApp (2 ∗ n)) ?g p›
using psubst-eval by blast

qed

9 Completeness for open formulas
abbreviation ‹new-term c t ≡ c /∈ paramst t›
abbreviation ‹new-list c ts ≡ c /∈ paramsts ts›

abbreviation ‹new c p ≡ c /∈ params p›

abbreviation ‹news c z ≡ list-all (new c) z›

9.1 Renaming
lemma new-psubst-image ′:

‹new-term c t =⇒ d /∈ image f (paramst t) =⇒ new-term d (psubstt (f (c := d))
t)›

‹new-list c l =⇒ d /∈ image f (paramsts l) =⇒ new-list d (psubstts (f (c := d))
l)›

by (induct t and l rule: paramst.induct paramsts.induct) auto

lemma new-psubst-image: ‹new c p =⇒ d /∈ image f (params p) =⇒ new d (psubst

59

(f (c := d)) p)›
using new-psubst-image ′ by (induct p) auto

lemma news-psubst: ‹news c z =⇒ d /∈ image f (
⋃

p ∈ set z. params p) =⇒
news d (map (psubst (f (c := d))) z)›

using new-psubst-image by (induct z) auto

lemma member-psubst: ‹p ∈ set z =⇒ psubst f p ∈ set (map (psubst f) z)›
by (induct z) auto

lemma deriv-psubst:
fixes f :: ‹ ′a ⇒ ′a›
assumes inf-params: ‹infinite (UNIV :: ′a set)›
shows ‹z ` p =⇒ map (psubst f) z ` psubst f p›

proof (induct z p arbitrary: f rule: deriv.induct)
case (Assum a G)
then show ?case

using deriv.Assum member-psubst by blast
next

case (TTI G)
then show ?case

using deriv.TTI by auto
next

case (FFE G a)
then show ?case

using deriv.FFE by auto
next

case (NegI a G)
then show ?case

using deriv.NegI by auto
next

case (NegE G a)
then show ?case

using deriv.NegE by auto
next

case (Class a G)
then show ?case

using deriv.Class by auto
next

case (ImplE G a b)
then have ‹map (psubst f) G ` Impl (psubst f a) (psubst f b)›

and ‹map (psubst f) G ` psubst f a›
by simp-all

then show ?case
using deriv.ImplE by blast

next
case (ImplI G a b)
then show ?case

using deriv.ImplI by auto

60

next
case (OrE G a b c)
then have ‹map (psubst f) G ` Or (psubst f a) (psubst f b)›

and ‹psubst f a # map (psubst f) G ` psubst f c›
and ‹psubst f b # map (psubst f) G ` psubst f c›
by simp-all

then show ?case
using deriv.OrE by blast

next
case (OrI1 G a b)
then show ?case

using deriv.OrI1 by auto
next

case (OrI2 G a b)
then show ?case

using deriv.OrI2 by auto
next

case (AndE1 G a b)
then show ?case

using deriv.AndE1 by auto
next

case (AndE2 p q z)
then show ?case

using deriv.AndE2 by auto
next

case (AndI G a b)
then show ?case

using deriv.AndI by fastforce
next

case (ExistsE z p c q)
let ?params = ‹params p ∪ params q ∪ (

⋃
p ∈ set z. params p)›

have ‹finite ?params›
by simp

then obtain fresh where ∗: ‹fresh /∈ ?params ∪ {c} ∪ image f ?params›
using ex-new-if-finite inf-params
by (metis finite.emptyI finite.insertI finite-UnI finite-imageI)

let ?f = ‹f (c := fresh)›

have ‹news c (p # q # z)›
using ExistsE by simp

then have ‹new fresh (psubst ?f p)› ‹new fresh (psubst ?f q)› ‹news fresh (map
(psubst ?f) z)›

using ∗ new-psubst-image news-psubst by (fastforce simp add: image-Un)+
then have ‹map (psubst ?f) z = map (psubst f) z›

using ExistsE by (metis (mono-tags, lifting) Ball-set map-eq-conv psubst-upd)

have ‹map (psubst ?f) z ` psubst ?f (Exists p)›

61

using ExistsE by blast
then have ‹map (psubst ?f) z ` Exists (psubst ?f p)›

by simp
moreover have ‹map (psubst ?f) (subst p (App c []) 0 # z) ` psubst ?f q›

using ExistsE by blast
then have ‹subst (psubst ?f p) (App fresh []) 0 # map (psubst ?f) z ` psubst ?f

q›
by simp

moreover have ‹news fresh (map (psubst ?f) (p # q # z))›
using ‹new fresh (psubst ?f p)› ‹new fresh (psubst ?f q)› ‹news fresh (map

(psubst ?f) z)›
by simp

then have ‹new fresh (psubst ?f p)› ‹new fresh (psubst ?f q)› ‹news fresh (map
(psubst ?f) z)›

by simp-all
ultimately have ‹map (psubst ?f) z ` psubst ?f q›

using deriv.ExistsE by metis
then show ?case

using ExistsE ‹map (psubst ?f) z = map (psubst f) z› by simp
next

case (ExistsI z p t)
then show ?case

using deriv.ExistsI by auto
next

case (ForallE z p t)
then show ?case

using deriv.ForallE by auto
next

case (ForallI z p c)
let ?params = ‹params p ∪(

⋃
p ∈ set z. params p)›

have ‹finite ?params›
by simp

then obtain fresh where ∗: ‹fresh /∈ ?params ∪ {c} ∪ image f ?params›
using ex-new-if-finite inf-params
by (metis finite.emptyI finite.insertI finite-UnI finite-imageI)

let ?f = ‹f (c := fresh)›

have ‹news c (p # z)›
using ForallI by simp

then have ‹new fresh (psubst ?f p)› ‹news fresh (map (psubst ?f) z)›
using ∗ new-psubst-image news-psubst by (fastforce simp add: image-Un)+

then have ‹map (psubst ?f) z = map (psubst f) z›
using ForallI by (metis (mono-tags, lifting) Ball-set map-eq-conv psubst-upd)

have ‹map (psubst ?f) z ` psubst ?f (subst p (App c []) 0)›
using ForallI by blast

then have ‹map (psubst ?f) z ` subst (psubst ?f p) (App fresh []) 0 ›

62

by simp
moreover have ‹news fresh (map (psubst ?f) (p # z))›

using ‹new fresh (psubst ?f p)› ‹news fresh (map (psubst ?f) z)›
by simp

then have ‹new fresh (psubst ?f p)› ‹news fresh (map (psubst ?f) z)›
by simp-all

ultimately have ‹map (psubst ?f) z ` Forall (psubst ?f p)›
using deriv.ForallI by metis

then show ?case
using ForallI ‹map (psubst ?f) z = map (psubst f) z› by simp

qed

9.2 Substitution for constants
primrec

subc-term :: ‹ ′a ⇒ ′a term ⇒ ′a term ⇒ ′a term› and
subc-list :: ‹ ′a ⇒ ′a term ⇒ ′a term list ⇒ ′a term list› where
‹subc-term c s (Var n) = Var n› |
‹subc-term c s (App i l) = (if i = c then s else App i (subc-list c s l))› |
‹subc-list c s [] = []› |
‹subc-list c s (t # l) = subc-term c s t # subc-list c s l›

primrec subc :: ‹ ′a ⇒ ′a term ⇒ (′a, ′b) form ⇒ (′a, ′b) form› where
‹subc c s FF = FF› |
‹subc c s TT = TT › |
‹subc c s (Pred i l) = Pred i (subc-list c s l)› |
‹subc c s (Neg p) = Neg (subc c s p)› |
‹subc c s (Impl p q) = Impl (subc c s p) (subc c s q)› |
‹subc c s (Or p q) = Or (subc c s p) (subc c s q)› |
‹subc c s (And p q) = And (subc c s p) (subc c s q)› |
‹subc c s (Exists p) = Exists (subc c (liftt s) p)› |
‹subc c s (Forall p) = Forall (subc c (liftt s) p)›

primrec subcs :: ‹ ′a ⇒ ′a term ⇒ (′a, ′b) form list ⇒ (′a, ′b) form list› where
‹subcs c s [] = []› |
‹subcs c s (p # z) = subc c s p # subcs c s z›

lemma subst-0-lift:
‹substt (liftt t) s 0 = t›
‹substts (liftts l) s 0 = l›
by (induct t and l rule: substt.induct substts.induct) simp-all

lemma params-lift [simp]:
fixes t :: ‹ ′a term› and ts :: ‹ ′a term list›
shows

‹paramst (liftt t) = paramst t›
‹paramsts (liftts ts) = paramsts ts›

by (induct t and ts rule: paramst.induct paramsts.induct) simp-all

63

lemma subst-new ′ [simp]:
‹new-term c s =⇒ new-term c t =⇒ new-term c (substt t s m)›
‹new-term c s =⇒ new-list c l =⇒ new-list c (substts l s m)›
by (induct t and l rule: substt.induct substts.induct) simp-all

lemma subst-new [simp]: ‹new-term c s =⇒ new c p =⇒ new c (subst p s m)›
by (induct p arbitrary: m s) simp-all

lemma subst-new-all:
assumes ‹a /∈ set cs› ‹list-all (λc. new c p) cs›
shows ‹list-all (λc. new c (subst p (App a []) m)) cs›
using assms by (induct cs) auto

lemma subc-new ′ [simp]:
‹new-term c t =⇒ subc-term c s t = t›
‹new-list c l =⇒ subc-list c s l = l›
by (induct t and l rule: subc-term.induct subc-list.induct) auto

lemma subc-new [simp]: ‹new c p =⇒ subc c s p = p›
by (induct p arbitrary: s) simp-all

lemma subcs-news: ‹news c z =⇒ subcs c s z = z›
by (induct z) simp-all

lemma subc-psubst ′ [simp]:
‹(∀ x ∈ paramst t. x 6= c −→ f x 6= f c) =⇒

psubstt f (subc-term c s t) = subc-term (f c) (psubstt f s) (psubstt f t)›
‹(∀ x ∈ paramsts l. x 6= c −→ f x 6= f c) =⇒

psubstts f (subc-list c s l) = subc-list (f c) (psubstt f s) (psubstts f l)›
by (induct t and l rule: psubstt.induct psubstts.induct) simp-all

lemma subc-psubst: ‹(∀ x ∈ params p. x 6= c −→ f x 6= f c) =⇒
psubst f (subc c s p) = subc (f c) (psubstt f s) (psubst f p)›

by (induct p arbitrary: s) simp-all

lemma subcs-psubst: ‹(∀ x ∈ (
⋃

p ∈ set z. params p). x 6= c −→ f x 6= f c) =⇒
map (psubst f) (subcs c s z) = subcs (f c) (psubstt f s) (map (psubst f) z)›

by (induct z) (simp-all add: subc-psubst)

lemma new-lift:
‹new-term c t =⇒ new-term c (liftt t)›
‹new-list c l =⇒ new-list c (liftts l)›
by (induct t and l rule: liftt.induct liftts.induct) simp-all

lemma new-subc ′ [simp]:
‹new-term d s =⇒ new-term d t =⇒ new-term d (subc-term c s t)›
‹new-term d s =⇒ new-list d l =⇒ new-list d (subc-list c s l)›
by (induct t and l rule: substt.induct substts.induct) simp-all

64

lemma new-subc [simp]: ‹new-term d s =⇒ new d p =⇒ new d (subc c s p)›
by (induct p arbitrary: s) simp-all

lemma news-subcs: ‹new-term d s =⇒ news d z =⇒ news d (subcs c s z)›
by (induct z) simp-all

lemma psubst-new-free ′:
‹c 6= n =⇒ new-term n (psubstt (id(n := c)) t)›
‹c 6= n =⇒ new-list n (psubstts (id(n := c)) l)›
by (induct t and l rule: paramst.induct paramsts.induct) simp-all

lemma psubst-new-free: ‹c 6= n =⇒ new n (psubst (id(n := c)) p)›
using psubst-new-free ′ by (induct p) fastforce+

lemma map-psubst-new-free: ‹c 6= n =⇒ news n (map (psubst (id(n := c))) z)›
using psubst-new-free by (induct z) fastforce+

lemma psubst-new-away ′ [simp]:
‹new-term fresh t =⇒ psubstt (id(fresh := c)) (psubstt (id(c := fresh)) t) = t›
‹new-list fresh l =⇒ psubstts (id(fresh := c)) (psubstts (id(c := fresh)) l) = l›
by (induct t and l rule: psubstt.induct psubstts.induct) auto

lemma psubst-new-away [simp]: ‹new fresh p =⇒ psubst (id(fresh := c)) (psubst
(id(c := fresh)) p) = p›

by (induct p) simp-all

lemma map-psubst-new-away:
‹news fresh z =⇒ map (psubst (id(fresh := c))) (map (psubst (id(c := fresh)))

z) = z›
by (induct z) simp-all

lemma psubst-new ′:
‹new-term c t =⇒ psubstt (id(c := x)) t = t›
‹new-list c l =⇒ psubstts (id(c := x)) l = l›
by (induct t and l rule: psubstt.induct psubstts.induct) auto

lemma psubst-new: ‹new c p =⇒ psubst (id(c := x)) p = p›
using psubst-new ′ by (induct p) fastforce+

lemma map-psubst-new: ‹news c z =⇒ map (psubst (id(c := x))) z = z›
using psubst-new by (induct z) auto

lemma lift-subst [simp]:
‹liftt (substt t u m) = substt (liftt t) (liftt u) (m + 1)›
‹liftts (substts l u m) = substts (liftts l) (liftt u) (m + 1)›
by (induct t and l rule: substt.induct substts.induct) simp-all

lemma new-subc-same ′ [simp]:
‹new-term c s =⇒ new-term c (subc-term c s t)›

65

‹new-term c s =⇒ new-list c (subc-list c s l)›
by (induct t and l rule: subc-term.induct subc-list.induct) simp-all

lemma new-subc-same: ‹new-term c s =⇒ new c (subc c s p)›
by (induct p arbitrary: s) simp-all

lemma lift-subc:
‹liftt (subc-term c s t) = subc-term c (liftt s) (liftt t)›
‹liftts (subc-list c s l) = subc-list c (liftt s) (liftts l)›
by (induct t and l rule: liftt.induct liftts.induct) simp-all

lemma new-subc-put ′:
‹new-term c s =⇒ subc-term c s (substt t u m) = subc-term c s (substt t (subc-term

c s u) m)›
‹new-term c s =⇒ subc-list c s (substts l u m) = subc-list c s (substts l (subc-term

c s u) m)›
by (induct t and l rule: subc-term.induct subc-list.induct) simp-all

lemma new-subc-put:
‹new-term c s =⇒ subc c s (subst p t m) = subc c s (subst p (subc-term c s t)

m)›
proof (induct p arbitrary: s m t)

case FF
then show ?case

by simp
next

case TT
then show ?case

by simp
next

case (Pred i l)
then show ?case

using new-subc-put ′ by fastforce
next

case (Neg p)
then show ?case

by (metis subc.simps(4) subst.simps(7))
next

case (Impl p q)
then show ?case

by (metis subc.simps(5) subst.simps(6))
next

case (Or p q)
then show ?case

by (metis subc.simps(6) subst.simps(5))
next

case (And p q)
then show ?case

by (metis subc.simps(7) subst.simps(4))

66

next
case (Exists p)
have ‹subc c s (subst (Exists p) (subc-term c s t) m) =

Exists (subc c (liftt s) (subst p (subc-term c (liftt s) (liftt t)) (Suc m)))›
by (simp add: lift-subc)

also have ‹. . . = Exists (subc c (liftt s) (subst p (liftt t) (Suc m)))›
using Exists new-lift(1) by metis

finally show ?case
by simp

next
case (Forall p)
have ‹subc c s (subst (Forall p) (subc-term c s t) m) =

Forall (subc c (liftt s) (subst p (subc-term c (liftt s) (liftt t)) (Suc m)))›
by (simp add: lift-subc)

also have ‹. . . = Forall (subc c (liftt s) (subst p (liftt t) (Suc m)))›
using Forall new-lift(1) by metis

finally show ?case
by simp

qed

lemma subc-subst-new ′:
‹new-term c u =⇒ subc-term c (substt s u m) (substt t u m) = substt (subc-term

c s t) u m›
‹new-term c u =⇒ subc-list c (substt s u m) (substts l u m) = substts (subc-list c

s l) u m›
by (induct t and l rule: subc-term.induct subc-list.induct) simp-all

lemma subc-subst-new:
‹new-term c t =⇒ subc c (substt s t m) (subst p t m) = subst (subc c s p) t m›
using subc-subst-new ′ by (induct p arbitrary: m t s) fastforce+

lemma subc-sub-0-new [simp]:
‹new-term c t =⇒ subc c s (subst p t 0) = subst (subc c (liftt s) p) t 0 ›
using subc-subst-new subst-0-lift(1) by metis

lemma member-subc: ‹p ∈ set z =⇒ subc c s p ∈ set (subcs c s z)›
by (induct z) auto

lemma deriv-subc:
fixes p :: ‹(′a, ′b) form›
assumes inf-params: ‹infinite (UNIV :: ′a set)›
shows ‹z ` p =⇒ subcs c s z ` subc c s p›

proof (induct z p arbitrary: c s rule: deriv.induct)
case (Assum p z)
then show ?case

using member-subc deriv.Assum by fast
next

case TTI
then show ?case

67

using deriv.TTI by simp
case FFE
then show ?case

using deriv.FFE by auto
next

case (NegI z p)
then show ?case

using deriv.NegI by auto
next

case (NegE z p)
then show ?case

using deriv.NegE by fastforce
next

case (Class p z)
then show ?case

using deriv.Class by auto
next

case (ImplE z p q)
then show ?case

using deriv.ImplE by fastforce
next

case (ImplI z q p)
then show ?case

using deriv.ImplI by fastforce
next

case (OrE z p q r)
then show ?case

using deriv.OrE by fastforce
next

case (OrI1 z p q)
then show ?case

using deriv.OrI1 by fastforce
next

case (OrI2 z q p)
then show ?case

using deriv.OrI2 by fastforce
next

case (AndE1 z p q)
then show ?case

using deriv.AndE1 by fastforce
next

case (AndE2 z p q)
then show ?case

using deriv.AndE2 by fastforce
next

case (AndI p z q)
then show ?case

using deriv.AndI by fastforce
next

68

case (ExistsE z p d q)
then show ?case
proof (cases ‹c = d›)

case True
then have ‹z ` q›

using ExistsE deriv.ExistsE by fast
moreover have ‹new c q› and ‹news c z›

using ExistsE True by simp-all
ultimately show ?thesis

using subc-new subcs-news by metis
next

case False
let ?params = ‹params p ∪ params q ∪ (

⋃
p ∈ set z. params p) ∪ paramst s ∪

{c} ∪ {d}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using inf-params by (meson ex-new-if-finite infinite-UNIV-listI)

let ?s = ‹psubstt (id(d := fresh)) s›
let ?f = ‹id(d := fresh, fresh := d)›

have f : ‹∀ x ∈ ?params. x 6= c −→ ?f x 6= ?f c›
using fresh by simp

have ‹new-term d ?s›
using fresh psubst-new-free ′(1) by fast

then have ‹psubstt ?f ?s = psubstt (id(fresh := d)) ?s›
by (metis fun-upd-twist psubstt-upd(1))

then have psubst-s: ‹psubstt ?f ?s = s›
using fresh by simp

have ‹?f c = c› and ‹new-term (?f c) (App fresh [])›
using False fresh by auto

have ‹subcs c (psubstt ?f ?s) z ` subc c (psubstt ?f ?s) (Exists p)›
using ExistsE by blast

then have exi-p:
‹subcs c s z ` Exists (subc c (liftt (psubstt ?f ?s)) p)›
using psubst-s by simp

have ‹news d z›
using ExistsE by simp

moreover have ‹news fresh z›
using fresh by (induct z) simp-all

ultimately have ‹map (psubst ?f) z = z›
by (induct z) simp-all

moreover have ‹∀ x ∈
⋃

p ∈ set z. params p. x 6= c −→ ?f x 6= ?f c›

69

by auto
ultimately have psubst-z: ‹map (psubst ?f) (subcs c ?s z) = subcs c s z›

using ‹?f c = c› psubst-s by (simp add: subcs-psubst)

have ‹psubst ?f (subc c ?s (subst p (App d []) 0)) =
subc (?f c) (psubstt ?f ?s) (psubst ?f (subst p (App d []) 0))›

using fresh by (simp add: subc-psubst)
also have ‹. . . = subc c s (subst (psubst ?f p) (App fresh []) 0)›

using psubst-subst psubst-s ‹?f c = c› by simp
also have ‹. . . = subc c s (subst p (App fresh []) 0)›

using ExistsE fresh by simp
finally have psubst-p: ‹psubst ?f (subc c ?s (subst p (App d []) 0)) =

subst (subc c (liftt s) p) (App fresh []) 0 ›
using subc-sub-0-new ‹new-term (?f c) (App fresh [])› ‹?f c = c› by metis

have ‹∀ x ∈ params q. x 6= c −→ ?f x 6= ?f c›
using f by blast

then have psubst-q: ‹psubst ?f (subc c ?s q) = subc c s q›
using ExistsE fresh ‹?f c = c› psubst-s f by (simp add: subc-psubst)

have ‹subcs c ?s (subst p (App d []) 0 # z) ` subc c ?s q›
using ExistsE by blast

then have ‹subc c ?s (subst p (App d []) 0) # subcs c ?s z ` subc c ?s q›
by simp

then have ‹psubst ?f (subc c ?s (subst p (App d []) 0)) # map (psubst ?f)
(subcs c ?s z)

` psubst ?f (subc c ?s q)›
using deriv-psubst inf-params by fastforce

then have q: ‹subst (subc c (liftt s) p) (App fresh []) 0 # subcs c s z ` subc c
s q›

using psubst-q psubst-z psubst-p by simp

have ‹new fresh (subc c (liftt s) p)›
using fresh new-subc new-lift by simp

moreover have ‹new fresh (subc c s q)›
using fresh new-subc by simp

moreover have ‹news fresh (subcs c s z)›
using fresh ‹news fresh z› by (simp add: news-subcs)

ultimately show ‹subcs c s z ` subc c s q›
using deriv.ExistsE exi-p q psubst-s by metis

qed
next

case (ExistsI z p t)
let ?params = ‹params p ∪ (

⋃
p ∈ set z. params p) ∪ paramst s ∪ paramst t ∪

{c}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›

70

using inf-params by (meson ex-new-if-finite infinite-UNIV-listI)

let ?f = ‹id(c := fresh)›
let ?g = ‹id(fresh := c)›
let ?s = ‹psubstt ?f s›

have c: ‹?g c = c›
using fresh by simp

have s: ‹psubstt ?g ?s = s›
using fresh by simp

have p: ‹psubst ?g (Exists p) = Exists p›
using fresh by simp

have ‹∀ x ∈ (
⋃

p ∈ set z . params p). x 6= c −→ ?g x 6= ?g c›
using fresh by auto

moreover have ‹map (psubst ?g) z = z›
using fresh by (induct z) simp-all

ultimately have z: ‹map (psubst ?g) (subcs c ?s z) = subcs c s z›
using s by (simp add: subcs-psubst)

have ‹new-term c ?s›
using fresh psubst-new-free ′ by fast

then have ‹subcs c ?s z ` subc c ?s (subst p (subc-term c ?s t) 0)›
using ExistsI new-subc-put by metis

moreover have ‹new-term c (subc-term c ?s t)›
using ‹new-term c ?s› new-subc-same ′ by fast

ultimately have ‹subcs c ?s z ` subst (subc c (liftt ?s) p) (subc-term c ?s t) 0 ›
using subc-sub-0-new by metis

then have ‹subcs c ?s z ` subc c ?s (Exists p)›
using deriv.ExistsI by simp

then have ‹map (psubst ?g) (subcs c ?s z) ` psubst ?g (subc c ?s (Exists p))›
using deriv-psubst inf-params by blast

moreover have ‹∀ x ∈ params (Exists p). x 6= c −→ ?g x 6= ?g c›
using fresh by auto

ultimately show ‹subcs c s z ` subc c s (Exists p)›
using c s p z by (simp add: subc-psubst)

next
case (ForallE z p t)
let ?params = ‹params p ∪ (

⋃
p ∈ set z. params p) ∪ paramst s ∪ paramst t ∪

{c}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using inf-params by (meson ex-new-if-finite infinite-UNIV-listI)

let ?f = ‹id(c := fresh)›
let ?g = ‹id(fresh := c)›

71

let ?s = ‹psubstt ?f s›

have c: ‹?g c = c›
using fresh by simp

have s: ‹psubstt ?g ?s = s›
using fresh by simp

have p: ‹psubst ?g (subst p t 0) = subst p t 0 ›
using fresh psubst-new psubst-subst subst-new psubst-new ′(1) by fastforce

have ‹∀ x ∈ (
⋃

p ∈ set z . params p). x 6= c −→ ?g x 6= ?g c›
using fresh by auto

moreover have ‹map (psubst ?g) z = z›
using fresh by (induct z) simp-all

ultimately have z: ‹map (psubst ?g) (subcs c ?s z) = subcs c s z›
using s by (simp add: subcs-psubst)

have ‹new-term c ?s›
using fresh psubst-new-free ′ by fastforce

have ‹subcs c ?s z ` Forall (subc c (liftt ?s) p)›
using ForallE by simp

then have ‹subcs c ?s z ` subst (subc c (liftt ?s) p) (subc-term c ?s t) 0 ›
using deriv.ForallE by blast

moreover have ‹new-term c (subc-term c ?s t)›
using ‹new-term c ?s› new-subc-same ′ by fast

ultimately have ‹subcs c ?s z ` subc c ?s (subst p (subc-term c ?s t) 0)›
by simp

then have ‹subcs c ?s z ` subc c ?s (subst p t 0)›
using new-subc-put ‹new-term c ?s› by metis

then have ‹map (psubst ?g) (subcs c ?s z) ` psubst ?g (subc c ?s (subst p t 0))›
using deriv-psubst inf-params by blast

moreover have ‹∀ x ∈ params (subst p t 0). x 6= c −→ ?g x 6= ?g c›
using fresh p psubst-new-free by (metis fun-upd-apply id-apply)

ultimately show ‹subcs c s z ` subc c s (subst p t 0)›
using c s p z by (simp add: subc-psubst)

next
case (ForallI z p d)
then show ?case
proof (cases ‹c = d›)

case True
then have ‹z ` Forall p›

using ForallI deriv.ForallI by fast
moreover have ‹new c p› and ‹news c z›

using ForallI True by simp-all
ultimately show ?thesis

by (simp add: subcs-news)
next

case False
let ?params = ‹params p ∪ (

⋃
p ∈ set z. params p) ∪ paramst s ∪ {c} ∪ {d}›

72

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using inf-params by (meson ex-new-if-finite infinite-UNIV-listI)

let ?s = ‹psubstt (id(d := fresh)) s›
let ?f = ‹id(d := fresh, fresh := d)›

have f : ‹∀ x ∈ ?params. x 6= c −→ ?f x 6= ?f c›
using fresh by simp

have ‹new-term d ?s›
using fresh psubst-new-free ′ by fastforce

then have ‹psubstt ?f ?s = psubstt (id(fresh := d)) ?s›
by (metis fun-upd-twist psubstt-upd(1))

then have psubst-s: ‹psubstt ?f ?s = s›
using fresh by simp

have ‹?f c = c› and ‹new-term c (App fresh [])›
using False fresh by auto

have ‹psubst ?f (subc c ?s (subst p (App d []) 0)) =
subc (?f c) (psubstt ?f ?s) (psubst ?f (subst p (App d []) 0))›
by (simp add: subc-psubst)

also have ‹. . . = subc c s (subst (psubst ?f p) (App fresh []) 0)›
using ‹?f c = c› psubst-subst psubst-s by simp

also have ‹. . . = subc c s (subst p (App fresh []) 0)›
using ForallI fresh by simp

finally have psubst-p: ‹psubst ?f (subc c ?s (subst p (App d []) 0)) =
subst (subc c (liftt s) p) (App fresh []) 0 ›

using subc-sub-0-new ‹new-term c (App fresh [])› by simp

have ‹news d z›
using ForallI by simp

moreover have ‹news fresh z›
using fresh by (induct z) simp-all

ultimately have ‹map (psubst ?f) z = z›
by (induct z) simp-all

moreover have ‹∀ x ∈
⋃

p ∈ set z. params p. x 6= c −→ ?f x 6= ?f c›
by auto

ultimately have psubst-z: ‹map (psubst ?f) (subcs c ?s z) = subcs c s z›
using ‹?f c = c› psubst-s by (simp add: subcs-psubst)

have ‹subcs c ?s z ` subc c ?s (subst p (App d []) 0)›
using ForallI by blast

then have ‹map (psubst ?f) (subcs c ?s z) ` psubst ?f (subc c ?s (subst p (App
d []) 0))›

using deriv-psubst inf-params by blast

73

then have ‹subcs c s z ` psubst ?f (subc c ?s (subst p (App d []) 0))›
using psubst-z by simp

then have sub-p: ‹subcs c s z ` subst (subc c (liftt s) p) (App fresh []) 0 ›
using psubst-p by simp

have ‹new-term fresh s›
using fresh by simp

then have ‹new-term fresh (liftt s)›
using new-lift by simp

then have ‹new fresh (subc c (liftt s) p)›
using fresh new-subc by simp

moreover have ‹news fresh (subcs c s z)›
using ‹news fresh z› ‹new-term fresh s› news-subcs by fast

ultimately show ‹subcs c s z ` subc c s (Forall p)›
using deriv.ForallI sub-p by simp

qed
qed

9.3 Weakening assumptions
lemma psubst-new-subset:

assumes ‹set z ⊆ set z ′› ‹c /∈ (
⋃

p ∈ set z . params p)›
shows ‹set z ⊆ set (map (psubst (id(c := n))) z ′)›
using assms by force

lemma subset-cons: ‹set z ⊆ set z ′ =⇒ set (p # z) ⊆ set (p # z ′)›
by auto

lemma weaken-assumptions:
fixes p :: ‹(′a, ′b) form›
assumes inf-params: ‹infinite (UNIV :: ′a set)›
shows ‹z ` p =⇒ set z ⊆ set z ′ =⇒ z ′ ` p›

proof (induct z p arbitrary: z ′ rule: deriv.induct)
case (Assum p z)
then show ?case

using deriv.Assum by auto
next

case TTI
then show ?case

using deriv.TTI by auto
next

case FFE
then show ?case

using deriv.FFE by auto
next

case (NegI p z)
then show ?case

using deriv.NegI subset-cons by metis
next

74

case (NegE p z)
then show ?case

using deriv.NegE by metis
next

case (Class z p)
then show ?case

using deriv.Class subset-cons by metis
next

case (ImplE z p q)
then show ?case

using deriv.ImplE by blast
next

case (ImplI z q p)
then show ?case

using deriv.ImplI subset-cons by metis
next

case (OrE z p q z)
then show ?case

using deriv.OrE subset-cons by metis
next

case (OrI1 z p q)
then show ?case

using deriv.OrI1 by blast
next

case (OrI2 z q p)
then show ?case

using deriv.OrI2 by blast
next

case (AndE1 z p q)
then show ?case

using deriv.AndE1 by blast
next

case (AndE2 z p q)
then show ?case

using deriv.AndE2 by blast
next

case (AndI z p q)
then show ?case

using deriv.AndI by blast
next

case (ExistsE z p c q)
let ?params = ‹params p ∪ params q ∪ (

⋃
p ∈ set z ′. params p) ∪ {c}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using inf-params by (meson ex-new-if-finite List.finite-set infinite-UNIV-listI)

let ?z ′ = ‹map (psubst (id(c := fresh))) z ′›

75

have ‹news c z›
using ExistsE by simp

then have ‹set z ⊆ set ?z ′›
using ExistsE psubst-new-subset by (simp add: Ball-set)

then have ‹?z ′ ` Exists p›
using ExistsE by blast

moreover have ‹set (subst p (App c []) 0 # z) ⊆ set (subst p (App c []) 0 #
?z ′)›

using ‹set z ⊆ set ?z ′› by auto
then have ‹subst p (App c []) 0 # ?z ′ ` q›

using ExistsE by blast

moreover have ‹news c ?z ′›
using fresh by (simp add: map-psubst-new-free)

then have ‹new c p› ‹new c q› ‹news c ?z ′›
using ExistsE by simp-all

ultimately have ‹?z ′ ` q›
using ExistsE deriv.ExistsE by metis

then have ‹map (psubst (id(fresh := c))) ?z ′ ` psubst (id(fresh := c)) q›
using deriv-psubst inf-params by blast

moreover have ‹map (psubst (id(fresh := c))) ?z ′ = z ′›
using fresh map-psubst-new-away Ball-set by fastforce

moreover have ‹psubst (id(fresh := c)) q = q›
using fresh by simp

ultimately show ‹z ′ ` q›
by simp

next
case (ExistsI z p t)
then show ?case

using deriv.ExistsI by blast
next

case (ForallE p z t)
then show ?case

using deriv.ForallE by blast
next

case (ForallI z p c)
let ?params = ‹params p ∪ (

⋃
p ∈ set z ′. params p) ∪ {c}›

have ‹finite ?params›
by simp

then obtain fresh where fresh: ‹fresh /∈ ?params›
using inf-params by (meson ex-new-if-finite List.finite-set infinite-UNIV-listI)

let ?z ′ = ‹map (psubst (id(c := fresh))) z ′›

76

have ‹news c z›
using ForallI by simp

then have ‹set z ⊆ set ?z ′›
using ForallI psubst-new-subset by (metis (no-types, lifting) Ball-set UN-iff)

then have ‹?z ′ ` subst p (App c []) 0 ›
using ForallI by blast

moreover have ‹∀ p ∈ set ?z ′. c /∈ params p›
using fresh psubst-new-free by fastforce

then have ‹list-all (λp. c /∈ params p) (p # ?z ′)›
using ForallI by (simp add: list-all-iff)

then have ‹new c p› ‹news c ?z ′›
by simp-all

ultimately have ‹?z ′ ` Forall p›
using ForallI deriv.ForallI by fast

then have ‹map (psubst (id(fresh := c))) ?z ′ ` psubst (id(fresh := c)) (Forall
p)›

using deriv-psubst inf-params by blast
moreover have ‹map (psubst (id(fresh := c))) ?z ′ = z ′›

using fresh map-psubst-new-away Ball-set by fastforce
moreover have ‹psubst (id(fresh := c)) (Forall p) = Forall p›

using fresh ForallI by simp
ultimately show ‹z ′ ` Forall p›

by simp
qed

9.4 Implications and assumptions
primrec put-imps :: ‹(′a, ′b) form ⇒ (′a, ′b) form list ⇒ (′a, ′b) form› where

‹put-imps p [] = p› |
‹put-imps p (q # z) = Impl q (put-imps p z)›

lemma semantics-put-imps:
‹(e,f ,g,z |= p) = eval e f g (put-imps p z)›
unfolding model-def by (induct z) auto

lemma shift-imp-assum:
fixes p :: ‹(′a, ′b) form›
assumes inf-params: ‹infinite (UNIV :: ′a set)›

and ‹z ` Impl p q›
shows ‹p # z ` q›

proof −
have ‹set z ⊆ set (p # z)›

by auto
then have ‹p # z ` Impl p q›

using assms weaken-assumptions inf-params by blast
moreover have ‹p # z ` p›

77

by (simp add: Assum)
ultimately show ‹p # z ` q›

using ImplE by blast
qed

lemma remove-imps:
assumes ‹infinite (− params p)›
shows ‹z ′ ` put-imps p z =⇒ rev z @ z ′ ` p›
using assms shift-imp-assum by (induct z arbitrary: z ′) auto

9.5 Closure elimination
lemma subc-sub-closed-var ′ [simp]:

‹new-term c t =⇒ closedt (Suc m) t =⇒ subc-term c (Var m) (substt t (App c
[]) m) = t›

‹new-list c l =⇒ closedts (Suc m) l =⇒ subc-list c (Var m) (substts l (App c [])
m) = l›

by (induct t and l rule: substt.induct substts.induct) auto

lemma subc-sub-closed-var [simp]: ‹new c p =⇒ closed (Suc m) p =⇒
subc c (Var m) (subst p (App c []) m) = p›

by (induct p arbitrary: m) simp-all

primrec put-unis :: ‹nat ⇒ (′a, ′b) form ⇒ (′a, ′b) form› where
‹put-unis 0 p = p› |
‹put-unis (Suc m) p = Forall (put-unis m p)›

lemma sub-put-unis [simp]:
‹subst (put-unis k p) (App c []) i = put-unis k (subst p (App c []) (i + k))›
by (induct k arbitrary: i) simp-all

lemma closed-put-unis [simp]: ‹closed m (put-unis k p) = closed (m + k) p›
by (induct k arbitrary: m) simp-all

lemma valid-put-unis: ‹∀ (e :: nat ⇒ ′a) f g. eval e f g p =⇒
eval (e :: nat ⇒ ′a) f g (put-unis m p)›

by (induct m arbitrary: e) simp-all

lemma put-unis-collapse: ‹put-unis m (put-unis n p) = put-unis (m + n) p›
by (induct m) simp-all

fun consts-for-unis :: ‹(′a, ′b) form ⇒ ′a list ⇒ (′a, ′b) form› where
‹consts-for-unis (Forall p) (c#cs) = consts-for-unis (subst p (App c []) 0) cs› |
‹consts-for-unis p - = p›

lemma consts-for-unis: ‹[] ` put-unis (length cs) p =⇒
[] ` consts-for-unis (put-unis (length cs) p) cs›

proof (induct cs arbitrary: p)
case (Cons c cs)

78

then have ‹[] ` Forall (put-unis (length cs) p)›
by simp

then have ‹[] ` subst (put-unis (length cs) p) (App c []) 0 ›
using ForallE by blast

then show ?case
using Cons by simp

qed simp

primrec vars-for-consts :: ‹(′a, ′b) form ⇒ ′a list ⇒ (′a, ′b) form› where
‹vars-for-consts p [] = p› |
‹vars-for-consts p (c # cs) = subc c (Var (length cs)) (vars-for-consts p cs)›

lemma vars-for-consts:
assumes ‹infinite (− params p)›
shows ‹[] ` p =⇒ [] ` vars-for-consts p xs›
using assms deriv-subc by (induct xs arbitrary: p) fastforce+

lemma vars-for-consts-for-unis:
‹closed (length cs) p =⇒ list-all (λc. new c p) cs =⇒ distinct cs =⇒
vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) cs = p›

by (induct cs arbitrary: p) (simp-all add: subst-new-all)

lemma fresh-constant:
fixes p :: ‹(′a, ′b) form›
assumes ‹infinite (UNIV :: ′a set)›
shows ‹∃ c. c /∈ set cs ∧ new c p›

proof −
have ‹finite (set cs ∪ params p)›

by simp
then show ?thesis

using assms ex-new-if-finite UnI1 UnI2 by metis
qed

lemma fresh-constants:
fixes p :: ‹(′a, ′b) form›
assumes ‹infinite (UNIV :: ′a set)›
shows ‹∃ cs. length cs = m ∧ list-all (λc. new c p) cs ∧ distinct cs›

proof (induct m)
case (Suc m)
then obtain cs where ‹length cs = m ∧ list-all (λc. new c p) cs ∧ distinct cs›

by blast
moreover obtain c where ‹c /∈ set cs ∧ new c p›

using Suc assms fresh-constant by blast
ultimately have ‹length (c # cs) = Suc m ∧ list-all (λc. new c p) (c # cs) ∧

distinct (c # cs)›
by simp

then show ?case
by blast

qed simp

79

lemma closed-max:
assumes ‹closed m p› ‹closed n q›
shows ‹closed (max m n) p ∧ closed (max m n) q›

proof −
have ‹m ≤ max m n› and ‹n ≤ max m n›

by simp-all
then show ?thesis

using assms closed-mono by metis
qed

lemma ex-closed ′ [simp]:
fixes t :: ‹ ′a term› and l :: ‹ ′a term list›
shows ‹∃m. closedt m t› ‹∃n. closedts n l›

proof (induct t and l rule: closedt.induct closedts.induct)
case (Cons-term t l)
then obtain m and n where ‹closedt m t› and ‹closedts n l›

by blast
moreover have ‹m ≤ max m n› and ‹n ≤ max m n›

by simp-all
ultimately have ‹closedt (max m n) t› and ‹closedts (max m n) l›

using closedt-mono by blast+
then show ?case

by auto
qed auto

lemma ex-closed [simp]: ‹∃m. closed m p›
proof (induct p)

case FF
then show ?case

by simp
next

case TT
then show ?case

by simp
next

case (Neg p)
then show ?case

by simp
next

case (Impl p q)
then show ?case

using closed-max by fastforce
next

case (Or p q)
then show ?case

using closed-max by fastforce
next

case (And p q)

80

then show ?case
using closed-max by fastforce

next
case (Exists p)
then obtain m where ‹closed m p›

by blast
then have ‹closed (Suc m) p›

using closed-mono Suc-n-not-le-n nat-le-linear by blast
then show ?case

by auto
next

case (Forall p)
then obtain m where ‹closed m p›

by blast
then have ‹closed (Suc m) p›

using closed-mono Suc-n-not-le-n nat-le-linear by blast
then show ?case

by auto
qed simp-all

lemma ex-closure: ‹∃m. closed 0 (put-unis m p)›
by simp

lemma remove-unis-sentence:
assumes inf-params: ‹infinite (− params p)›

and ‹closed 0 (put-unis m p)› ‹[] ` put-unis m p›
shows ‹[] ` p›

proof −
obtain cs :: ‹ ′a list› where ‹length cs = m›

and ∗: ‹distinct cs› and ∗∗: ‹list-all (λc. new c p) cs›
using assms finite-compl finite-params fresh-constants inf-params by metis

then have ‹[] ` consts-for-unis (put-unis (length cs) p) cs›
using assms consts-for-unis by blast

then have ‹[] ` vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) cs›
using vars-for-consts inf-params by fastforce

moreover have ‹closed (length cs) p›
using assms ‹length cs = m› by simp

ultimately show ‹[] ` p›
using vars-for-consts-for-unis ∗ ∗∗ by metis

qed

9.6 Completeness
theorem completeness:

fixes p :: ‹(nat, nat) form›
assumes ‹∀ (e :: nat ⇒ nat hterm) f g. e, f , g, z |= p›
shows ‹z ` p›

proof −
let ?p = ‹put-imps p (rev z)›

81

have ∗: ‹∀ (e :: nat ⇒ nat hterm) f g. eval e f g ?p›
using assms semantics-put-imps unfolding model-def by fastforce

obtain m where ∗∗: ‹closed 0 (put-unis m ?p)›
using ex-closure by blast

moreover have ‹list-all (closed 0) []›
by simp

moreover have ‹∀ (e :: nat ⇒ nat hterm) f g. e, f , g, [] |= put-unis m ?p›
using ∗ valid-put-unis unfolding model-def by blast

ultimately have ‹[] ` put-unis m ?p›
using natded-complete by blast

then have ‹[] ` ?p›
using ∗∗ remove-unis-sentence by fastforce

then show ‹z ` p›
using remove-imps by fastforce

qed

abbreviation ‹valid p ≡ ∀ (e :: nat ⇒ nat hterm) f g. eval e f g p›

proposition
fixes p :: ‹(nat, nat) form›
shows ‹valid p =⇒ eval e f g p›
using completeness correctness
unfolding model-def by (metis list.pred-inject(1))

proposition
fixes p :: ‹(nat, nat) form›
shows ‹([] ` p) = valid p›
using completeness correctness
unfolding model-def by fastforce

corollary ‹∀ e (f ::nat ⇒ nat hterm list ⇒ nat hterm) (g::nat ⇒ nat hterm list ⇒
bool).

e,f ,g,ps |= p =⇒ ps ` p›
by (rule completeness)

References

[1] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, second edition, 1996.

82

	First-Order Logic According to Fitting
	Miscellaneous Utilities
	Terms and formulae
	Closed terms and formulae
	Substitution
	Parameters

	Semantics
	Proof calculus
	Correctness
	Completeness
	Consistent sets
	Closure under subsets
	Finite character
	Enumerating datatypes
	Extension to maximal consistent sets
	Hintikka sets and Herbrand models
	Model existence theorem
	Completeness for Natural Deduction

	Löwenheim-Skolem theorem
	Completeness for open formulas
	Renaming
	Substitution for constants
	Weakening assumptions
	Implications and assumptions
	Closure elimination
	Completeness

