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Abstract

Expander Graphs are low-degree graphs that are highly connected. They have diverse appli-
cations, for example in derandomization and pseudo-randomness, error-correcting codes, as well
as pure mathematical subjects such as metric embeddings. This entry formalizes the concept and
derives main theorems about them such as Cheeger’s inequality or tail bounds on distribution of
random walks on them. It includes a strongly explicit construction for every size and spectral
gap. The latter is based on the Margulis-Gabber-Galil graphs and several graph operations that
preserve spectral properties. The proofs are based on the survey papers/monographs by Hoory et
al. [4] and Vadhan [11], as well as results from Impagliazzo and Kabanets [5] and Murtagh et al. [9]

Contents
1 Introduction 2

2 Preliminary Results 2
2.1 Constructive Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Congruence Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Definitions 17

4 Setup for Types to Sets 35

5 Algebra-only Theorems 37

6 Spectral Theory 54

7 Cheeger Inequality 80

8 Margulis Gabber Galil Construction 92

9 Random Walks 114

10 Graph Powers 124

11 Strongly Explicit Expander Graphs 134

12 Expander Walks as Pseudorandom Objects 152

1



1 Introduction
A good introduction into Expander Graphs can be found in the survey article by Hoory et al. [4]:
An expander graph is an infinite family of undirected regular graphs1 with increasing sizes, but
contant degrees, all fulfilling a non-trivial expansion condition consistently. Most common are the
following expansion conditions:

• One-sided spectral expansion – an upper-bound on the second largest eigenvalue λ2 of the
adjacency matrix,

• Two-sided spectral expansion – an upper-bound on the absolute value of both λ2 and λn the
smallest eigenvalue,

• Edge expansion – a lower-bound on the relative count of edges between any subset and its
complement.

There are various implications between the three types of families, most notably the Cheeger
inequality, which relates edge-expansion to (one-sided) spectral expansion. (Section 7)
This entry formalizes

• definitions for the expansion conditions, as well as proofs for the relations between them,
• a construction and proofs of spectral expansion of the Margulis-Gabber-Galil expander (Sec-

tion 8), and
• proofs of how expansion-properties are affected by graph operations (Sections 10 and 11).

And concludes with a consturction of strongly explicit expanders for every size and spectral gap
with asymptotically optimal degree (Section 11).
It also includes a proof of the hitting property, i.e., tail-bounds for the probability that a random
walk in an expander graph ramains inside a given subset, as well as Chernoff-type bounds on the
number of times a given subset will be hit by a random walk. (Section 9)
The basis for the graph theory relies on the formalization by Lars Noschinski [10]. Most of the
algabraic development is carried out in the type-based formalization of linear algebra in “HOL-
Analysis”. To achieve that I have transferred some results from the set based world into the type-
based world - most notably unified diagonalization of commuting hermitian matrices by Echenim [2]
(Section 6). The transfer happens using the pre-exisiting framework by Divasón et al. [1].
On the otherhand, results that are obtained using the stochastic matrix, but do not explicitly
reference it are transferred back into purely graph-theoretic theorems using the Types-To-Sets
mechanism by Kuncăr and Popescu [7] (Section 4), i.e., the stochastic matrix is defined using a
local type (isomorphic to the vertex set.)

2 Preliminary Results
2.1 Constructive Chernoff Bound

This section formalizes Theorem 5 by Impagliazzo and Kabanets [5]. It is a general
result with which Chernoff-type tail bounds for various kinds of weakly dependent random
variables can be obtained. The results here are general and will be applied in Section 9 to
random walks in expander graphs.
theory Constructive-Chernoff-Bound

imports
HOL−Probability.Probability-Measure
Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF
Weighted-Arithmetic-Geometric-Mean.Weighted-Arithmetic-Geometric-Mean

begin

lemma powr-mono-rev:
fixes x :: real

1A graph is regular if every node has the same degree.
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assumes a ≤ b and x > 0 x ≤ 1
shows x powr b ≤ x powr a

proof −
have x powr b = (1/x) powr (−b)

using assms by (simp add: powr-divide powr-minus-divide)
also have ... ≤ (1/x) powr (−a)

using assms by (intro powr-mono) auto
also have ... = x powr a

using assms by (simp add: powr-divide powr-minus-divide)
finally show ?thesis by simp

qed

lemma exp-powr : (exp x) powr y = exp (x∗y) for x :: real
unfolding powr-def by simp

lemma integrable-pmf-iff-bounded:
fixes f :: ′a ⇒ real
assumes

∧
x. x ∈ set-pmf p =⇒ abs (f x) ≤ C

shows integrable (measure-pmf p) f
proof −

obtain x where x ∈ set-pmf p
using set-pmf-not-empty by fast

hence C ≥ 0 using assms(1 ) by fastforce
hence (

∫
+ x. ennreal (abs (f x)) ∂measure-pmf p) ≤ (

∫
+ x. C ∂measure-pmf p)

using assms ennreal-le-iff
by (intro nn-integral-mono-AE AE-pmfI ) auto

also have ... = C
by simp

also have ... < Orderings.top
by simp

finally have (
∫

+ x. ennreal (abs (f x)) ∂measure-pmf p) < Orderings.top by simp
thus ?thesis

by (intro iffD2 [OF integrable-iff-bounded]) auto
qed

lemma split-pair-pmf :
measure-pmf .prob (pair-pmf A B) S = integralL A (λa. measure-pmf .prob B {b. (a,b) ∈ S})
(is ?L = ?R)

proof −
have a:integrable (measure-pmf A) (λx. measure-pmf .prob B {b. (x, b) ∈ S})

by (intro integrable-pmf-iff-bounded[where C=1 ]) simp

have ?L = (
∫

+x. indicator S x ∂(measure-pmf (pair-pmf A B)))
by (simp add: measure-pmf .emeasure-eq-measure)

also have ... = (
∫

+x. (
∫

+y. indicator S (x,y) ∂B) ∂A)
by (simp add: nn-integral-pair-pmf ′)

also have ... = (
∫

+x. (
∫

+y. indicator {b. (x,b) ∈ S} y ∂B) ∂A)
by (simp add:indicator-def )

also have ... = (
∫

+x. (measure-pmf .prob B {b. (x,b) ∈ S}) ∂A)
by (simp add: measure-pmf .emeasure-eq-measure)

also have ... = ?R
using a
by (subst nn-integral-eq-integral) auto

finally show ?thesis by simp
qed

lemma split-pair-pmf-2 :
measure(pair-pmf A B) S = integralL B (λa. measure-pmf .prob A {b. (b,a) ∈ S})
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(is ?L = ?R)
proof −

have ?L = measure (pair-pmf B A) {ω. (snd ω, fst ω) ∈ S}
by (subst pair-commute-pmf ) (simp add:vimage-def case-prod-beta)

also have ... = ?R
unfolding split-pair-pmf by simp

finally show ?thesis by simp
qed

definition KL-div :: real ⇒ real ⇒ real
where KL-div p q = p ∗ ln (p/q) + (1−p) ∗ ln ((1−p)/(1−q))

theorem impagliazzo-kabanets-pmf :
fixes Y :: nat ⇒ ′a ⇒ bool
fixes p :: ′a pmf
assumes n > 0
assumes

∧
i. i ∈ {..<n} =⇒ δ i ∈ {0 ..1}

assumes
∧

S . S ⊆ {..<n} =⇒ measure p {ω. (∀ i ∈ S . Y i ω)} ≤ (
∏

i ∈ S . δ i)
defines δ-avg ≡ (

∑
i∈ {..<n}. δ i)/n

assumes γ ∈ {δ-avg..1}
assumes δ-avg > 0
shows measure p {ω. real (card {i ∈ {..<n}. Y i ω}) ≥ γ ∗ n} ≤ exp (−real n ∗ KL-div γ

δ-avg)
(is ?L ≤ ?R)

proof −
let ?n = real n
define q :: real where q = (if γ = 1 then 1 else (γ−δ-avg)/(γ∗(1−δ-avg)))

define g where g ω = card {i. i < n ∧ ¬Y i ω} for ω
let ?E = (λω. real (card {i. i < n ∧ Y i ω}) ≥ γ ∗ n)
let ?Ξ = prod-pmf {..<n} (λ-. bernoulli-pmf q)

have q-range:q ∈{0 ..1}
proof (cases γ < 1 )

case True
then show ?thesis

using assms(5 ,6 )
unfolding q-def by (auto intro!:divide-nonneg-pos simp add:algebra-simps)

next
case False
hence γ = 1 using assms(5 ) by simp
then show ?thesis unfolding q-def by simp

qed

have abs-pos-le-1I : abs x ≤ 1 if x ≥ 0 x ≤ 1 for x :: real
using that by auto

have γ-n-nonneg: γ∗?n ≥ 0
using assms(1 ,5 ,6 ) by simp

define r where r = n − nat dγ∗ne

have 2 :(1−q) ^ r ≤ (1−q)^ g ω if ?E ω for ω
proof −

have g ω = card ({i. i < n} − {i. i < n ∧ Y i ω})
unfolding g-def by (intro arg-cong[where f=λx. card x]) auto

also have ... = card {i. i < n} − card {i. i < n ∧ Y i ω}
by (subst card-Diff-subset, auto)

also have ... ≤ card {i. i < n} − nat dγ∗ne
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using that γ-n-nonneg by (intro diff-le-mono2 ) simp
also have ... = r

unfolding r-def by simp
finally have g ω ≤ r by simp
thus (1−q) ^ r ≤ (1−q) ^ (g ω)

using q-range by (intro power-decreasing) auto
qed

have γ-gt-0 : γ > 0
using assms(5 ,6 ) by simp

have q-lt-1 : q < 1 if γ < 1
proof −

have δ-avg < 1 using assms(5 ) that by simp
hence (γ − δ-avg) / (γ ∗ (1 − δ-avg)) < 1

using γ-gt-0 assms(6 ) that
by (subst pos-divide-less-eq) (auto simp add:algebra-simps)

thus q < 1
unfolding q-def using that by simp

qed

have 5 : (δ-avg ∗ q + (1−q)) / (1−q) powr (1−γ) = exp (− KL-div γ δ-avg) (is ?L1 = ?R1 )
if γ < 1

proof −
have δ-avg-range: δ-avg ∈ {0<..<1}

using that assms(5 ,6 ) by simp

have ?L1 = (1 − (1−δ-avg) ∗ q) / (1−q) powr (1−γ)
by (simp add:algebra-simps)

also have ... = (1 − (γ−δ-avg) / γ ) / (1−q) powr (1−γ)
unfolding q-def using that γ-gt-0 δ-avg-range by simp

also have ... = (δ-avg / γ) / (1−q) powr (1−γ)
using γ-gt-0 by (simp add:divide-simps)

also have ... = (δ-avg / γ) ∗ (1/(1−q)) powr (1−γ)
using q-lt-1 [OF that] by (subst powr-divide, simp-all)

also have ... = (δ-avg / γ) ∗ (1/((γ∗(1−δ-avg)−(γ−δ-avg))/(γ∗(1−δ-avg)))) powr (1−γ)
using γ-gt-0 δ-avg-range unfolding q-def by (simp add:divide-simps)

also have ... = (δ-avg / γ) ∗ ((γ / δ-avg) ∗((1−δ-avg)/(1−γ))) powr (1−γ)
by (simp add:algebra-simps)

also have ... = (δ-avg / γ) ∗ (γ / δ-avg) powr (1−γ) ∗((1−δ-avg)/(1−γ)) powr (1−γ)
using γ-gt-0 δ-avg-range that by (subst powr-mult, auto)

also have ... = (δ-avg / γ) powr 1 ∗ (δ-avg / γ) powr −(1−γ) ∗((1−δ-avg)/(1−γ)) powr
(1−γ)

using γ-gt-0 δ-avg-range that unfolding powr-minus-divide by (simp add:powr-divide)
also have ... = (δ-avg / γ) powr γ ∗((1−δ-avg)/(1−γ)) powr (1−γ)

by (subst powr-add[symmetric]) simp
also have ... = exp ( ln ((δ-avg / γ) powr γ ∗((1−δ-avg)/(1−γ)) powr (1−γ)))

using γ-gt-0 δ-avg-range that by (intro exp-ln[symmetric] mult-pos-pos) auto
also have ... = exp ((ln ((δ-avg / γ) powr γ) + ln (((1 − δ-avg) / (1 − γ)) powr (1−γ))))

using γ-gt-0 δ-avg-range that by (subst ln-mult) auto
also have ... = exp ((γ ∗ ln (δ-avg / γ) + (1 − γ) ∗ ln ((1 − δ-avg) / (1 − γ))))

using γ-gt-0 δ-avg-range that by (simp add:ln-powr algebra-simps)
also have ... = exp (− (γ ∗ ln (γ / δ-avg) + (1 − γ) ∗ ln ((1 − γ) / (1 − δ-avg))))

using γ-gt-0 δ-avg-range that by (simp add: ln-div algebra-simps)
also have ... = ?R1

unfolding KL-div-def by simp

finally show ?thesis by simp
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qed

have 3 : (δ-avg ∗ q + (1−q)) ^ n / (1−q) ^ r ≤ exp (− ?n∗ KL-div γ δ-avg) (is ?L1 ≤ ?R1 )
proof (cases γ < 1 )

case True
have γ ∗ real n ≤ 1 ∗ real n

using True by (intro mult-right-mono) auto
hence r = real n − real (nat dγ ∗ real ne)

unfolding r-def by (subst of-nat-diff ) auto
also have ... = real n − dγ ∗ real ne

using γ-n-nonneg by (subst of-nat-nat, auto)
also have ... ≤ ?n − γ ∗ ?n

by (intro diff-mono) auto
also have ... = (1−γ) ∗?n by (simp add:algebra-simps)
finally have r-bound: r ≤ (1−γ)∗n by simp

have ?L1 = (δ-avg ∗ q + (1−q)) ^ n / (1−q) powr r
using q-lt-1 [OF True] assms(1 ) by (simp add: powr-realpow)

also have ... = (δ-avg ∗ q + (1−q)) powr n / (1−q) powr r
using q-lt-1 [OF True] assms(6 ) q-range
by (subst powr-realpow[symmetric], auto intro!:add-nonneg-pos)

also have ... ≤ (δ-avg ∗ q + (1−q)) powr n / (1−q) powr ((1−γ)∗n)
using q-range q-lt-1 [OF True] by (intro divide-left-mono powr-mono-rev r-bound) auto

also have ... = (δ-avg ∗ q + (1−q)) powr n / ((1−q) powr (1−γ)) powr n
unfolding powr-powr by simp

also have ... = ((δ-avg ∗ q + (1−q)) / (1−q) powr (1−γ)) powr n
using assms(6 ) q-range by (subst powr-divide) auto

also have ... = exp (− KL-div γ δ-avg) powr real n
unfolding 5 [OF True] by simp

also have ... = ?R1
unfolding exp-powr by simp

finally show ?thesis by simp
next

case False
hence γ-eq-1 : γ=1 using assms(5 ) by simp
have ?L1 = δ-avg ^ n

using γ-eq-1 r-def q-def by simp
also have ... = exp( − KL-div 1 δ-avg) ^ n

unfolding KL-div-def using assms(6 ) by (simp add:ln-div)
also have ... = ?R1

using γ-eq-1 by (simp add: powr-realpow[symmetric] exp-powr)
finally show ?thesis by simp

qed

have 4 : (1 − q) ^ r > 0
proof (cases γ < 1 )

case True
then show ?thesis using q-lt-1 [OF True] by simp

next
case False
hence γ=1 using assms(5 ) by simp
hence r=0 unfolding r-def by simp
then show ?thesis by simp

qed

have (1−q) ^ r ∗ ?L = (
∫
ω. indicator {ω. ?E ω} ω ∗ (1−q) ^ r ∂p)

by simp
also have ... ≤ (

∫
ω. indicator {ω. ?E ω} ω ∗ (1−q) ^ g ω ∂p)
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using q-range 2 by (intro integral-mono-AE integrable-pmf-iff-bounded[where C=1 ]
abs-pos-le-1I mult-le-one power-le-one AE-pmfI ) (simp-all split:split-indicator)

also have ... = (
∫
ω. indicator {ω. ?E ω} ω ∗ (

∏
i ∈ {i. i < n ∧ ¬Y i ω}. (1−q)) ∂p)

unfolding g-def using q-range
by (intro integral-cong-AE AE-pmfI , simp-all add:powr-realpow)

also have ... = (
∫
ω. indicator {ω. ?E ω} ω ∗ measure ?Ξ ({j. j < n ∧ ¬Y j ω} → {False})

∂p)
using q-range by (subst prob-prod-pmf ′) (auto simp add:measure-pmf-single)

also have ... = (
∫
ω. measure ?Ξ {ξ. ?E ω ∧ (∀ i∈{j. j < n ∧ ¬Y j ω}. ¬ξ i)} ∂p)

by (intro integral-cong-AE AE-pmfI , simp-all add:Pi-def split:split-indicator)
also have ... = (

∫
ω. measure ?Ξ {ξ. ?E ω ∧ (∀ i∈{..<n}. ξ i −→ Y i ω)} ∂p)

by (intro integral-cong-AE AE-pmfI measure-eq-AE) auto
also have ... = measure (pair-pmf p ?Ξ) {ϕ.?E (fst ϕ)∧(∀ i ∈ {..<n}. snd ϕ i −→ Y i (fst ϕ))}

unfolding split-pair-pmf by simp
also have ... ≤ measure (pair-pmf p ?Ξ) {ϕ. (∀ i ∈ {j. j < n ∧ snd ϕ j}. Y i (fst ϕ))}

by (intro pmf-mono, auto)
also have ... = (

∫
ξ. measure p {ω. ∀ i∈{j. j< n ∧ ξ j}. Y i ω} ∂ ?Ξ)

unfolding split-pair-pmf-2 by simp
also have ... ≤ (

∫
a. (

∏
i ∈ {j. j < n ∧ a j}. δ i) ∂ ?Ξ)

using assms(2 ) by (intro integral-mono-AE AE-pmfI assms(3 ) subsetI prod-le-1 prod-nonneg
integrable-pmf-iff-bounded[where C=1 ] abs-pos-le-1I ) auto

also have ... = (
∫

a. (
∏

i ∈ {..<n}. δ i^ of-bool(a i)) ∂ ?Ξ)
unfolding of-bool-def by (intro integral-cong-AE AE-pmfI )
(auto simp add:if-distrib prod.If-cases Int-def )

also have ... = (
∏

i<n. (
∫

a. (δ i ^ of-bool a) ∂(bernoulli-pmf q)))
using assms(2 ) by (intro expectation-prod-Pi-pmf integrable-pmf-iff-bounded[where C=1 ])

auto
also have ... = (

∏
i<n. δ i ∗ q + (1−q))

using q-range by simp
also have ... = (root (card {..<n}) (

∏
i<n. δ i ∗ q + (1−q))) ^ (card {..<n})

using assms(1 ,2 ) q-range by (intro real-root-pow-pos2 [symmetric] prod-nonneg) auto
also have ... ≤ ((

∑
i<n. δ i ∗ q + (1−q))/card{..<n})^(card {..<n})

using assms(1 ,2 ) q-range by (intro power-mono arithmetic-geometric-mean)
(auto intro: prod-nonneg)

also have ... = ((
∑

i<n. δ i ∗ q)/n + (1−q))^n
using assms(1 ) by (simp add:sum.distrib divide-simps mult.commute)

also have ... = (δ-avg ∗ q + (1−q))^n
unfolding δ-avg-def by (simp add: sum-distrib-right[symmetric])

finally have (1−q) ^ r ∗ ?L ≤ (δ-avg ∗ q + (1−q)) ^ n by simp
hence ?L ≤ (δ-avg ∗ q + (1−q)) ^ n / (1−q) ^ r

using 4 by (subst pos-le-divide-eq) (auto simp add:algebra-simps)
also have ... ≤ ?R

by (intro 3 )
finally show ?thesis by simp

qed

The distribution of a random variable with a countable range is a discrete probability
space, i.e., induces a PMF. Using this it is possible to generalize the previous result to
arbitrary probability spaces.
lemma (in prob-space) establish-pmf :

fixes f :: ′a ⇒ ′b
assumes rv: random-variable discrete f
assumes countable (f ‘ space M )
shows distr M discrete f ∈ {M . prob-space M ∧ sets M = UNIV ∧ (AE x in M . measure M
{x} 6= 0 )}
proof −

define N where N = {x ∈ space M .¬ prob (f −‘ {f x} ∩ space M ) 6= 0}
define I where I = {z ∈ (f ‘ space M ). prob (f −‘ {z} ∩ space M ) = 0}
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have countable-I : countable I
unfolding I-def by (intro countable-subset[OF - assms(2 )]) auto

have disj: disjoint-family-on (λy. f −‘ {y} ∩ space M ) I
unfolding disjoint-family-on-def by auto

have N-alt-def : N = (
⋃

y ∈ I . f −‘ {y} ∩ space M )
unfolding N-def I-def by (auto simp add:set-eq-iff )

have emeasure M N =
∫

+ y. emeasure M (f −‘ {y} ∩ space M ) ∂count-space I
using rv countable-I unfolding N-alt-def
by (subst emeasure-UN-countable) (auto simp add:disjoint-family-on-def )

also have ... =
∫

+ y. 0 ∂count-space I
unfolding I-def using emeasure-eq-measure ennreal-0
by (intro nn-integral-cong) auto

also have ... = 0 by simp
finally have 0 :emeasure M N = 0 by simp

have 1 :N ∈ events
unfolding N-alt-def using rv
by (intro sets.countable-UN ′′ countable-I ) simp

have AE x in M . prob (f −‘ {f x} ∩ space M ) 6= 0
using 0 1 by (subst AE-iff-measurable[OF - N-def [symmetric]])

hence AE x in M . measure (distr M discrete f ) {f x} 6= 0
by (subst measure-distr [OF rv], auto)

hence AE x in distr M discrete f . measure (distr M discrete f ) {x} 6= 0
by (subst AE-distr-iff [OF rv], auto)

thus ?thesis
using prob-space-distr rv by auto

qed

lemma singletons-image-eq:
(λx. {x}) ‘ T ⊆ Pow T
by auto

theorem (in prob-space) impagliazzo-kabanets:
fixes Y :: nat ⇒ ′a ⇒ bool
assumes n > 0
assumes

∧
i. i ∈ {..<n} =⇒ random-variable discrete (Y i)

assumes
∧

i. i ∈ {..<n} =⇒ δ i ∈ {0 ..1}
assumes

∧
S . S ⊆ {..<n} =⇒ P(ω in M . (∀ i ∈ S . Y i ω)) ≤ (

∏
i ∈ S . δ i)

defines δ-avg ≡ (
∑

i∈ {..<n}. δ i)/n
assumes γ ∈ {δ-avg..1} δ-avg > 0
shows P(ω in M . real (card {i ∈ {..<n}. Y i ω}) ≥ γ ∗ n) ≤ exp (−real n ∗ KL-div γ δ-avg)
(is ?L ≤ ?R)

proof −
define f where f = (λω i. if i < n then Y i ω else False)
define g where g = (λω i. if i < n then ω i else False)
define T where T = {ω. (∀ i. ω i −→ i < n)}

have g-idem: g ◦ f = f unfolding f-def g-def by (simp add:comp-def )

have f-range: f ∈ space M → T
unfolding T-def f-def by simp

have T = PiE-dflt {..<n} False (λ-. UNIV )
unfolding T-def PiE-dflt-def by auto
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hence finite T
using finite-PiE-dflt by auto

hence countable-T : countable T
by (intro countable-finite)

moreover have f ‘ space M ⊆ T
using f-range by auto

ultimately have countable-f : countable (f ‘ space M )
using countable-subset by auto

have f −‘ y ∩ space M ∈ events if t:y ∈ (λx. {x}) ‘ T for y
proof −

obtain t where y = {t} and t-range: t ∈ T using t by auto
hence f −‘ y ∩ space M = {ω ∈ space M . f ω = t}

by (auto simp add:vimage-def )
also have ... = {ω ∈ space M . (∀ i < n. Y i ω = t i)}

using t-range unfolding f-def T-def by auto
also have ... = (

⋂
i ∈ {..<n}. {ω ∈ space M . Y i ω = t i})

using assms(1 ) by auto
also have ... ∈ events

using assms(1 ,2 )
by (intro sets.countable-INT ) auto

finally show ?thesis by simp
qed

hence random-variable (count-space T ) f
using sigma-sets-singletons[OF countable-T ] singletons-image-eq f-range
by (intro measurable-sigma-sets[where Ω=T and A= (λx. {x}) ‘ T ]) simp-all

moreover have g ∈ measurable discrete (count-space T )
unfolding g-def T-def by simp

ultimately have random-variable discrete (g ◦ f )
by simp

hence rv:random-variable discrete f
unfolding g-idem by simp

define M ′ :: (nat ⇒ bool) measure
where M ′ = distr M discrete f

define Ω where Ω = Abs-pmf M ′

have a:measure-pmf (Abs-pmf M ′) = M ′

unfolding M ′-def
by (intro Abs-pmf-inverse[OF establish-pmf ] rv countable-f )

have b:{i. (i < n −→ Y i x) ∧ i < n} = {i. i < n ∧ Y i x} for x
by auto

have c: measure Ω {ω. ∀ i∈S . ω i} ≤ prod δ S (is ?L1 ≤ ?R1 ) if S ⊆ {..<n} for S
proof −

have d: i ∈ S =⇒ i < n for i
using that by auto

have ?L1 = measure M ′ {ω. ∀ i∈S . ω i}
unfolding Ω-def a by simp

also have ... = P(ω in M . (∀ i ∈ S . Y i ω))
unfolding M ′-def using that d
by (subst measure-distr [OF rv]) (auto simp add:f-def Int-commute Int-def )

also have ... ≤ ?R1
using that assms(4 ) by simp

finally show ?thesis by simp
qed
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have ?L = measure M ′ {ω. real (card {i. i < n ∧ ω i}) ≥ γ ∗ n}
unfolding M ′-def by (subst measure-distr [OF rv])
(auto simp add:f-def algebra-simps Int-commute Int-def b)

also have ... = measure-pmf .prob Ω {ω. real (card {i ∈ {..<n}. ω i}) ≥ γ ∗ n}
unfolding Ω-def a by simp

also have ... ≤ ?R
using assms(1 ,3 ,6 ,7 ) c unfolding δ-avg-def
by (intro impagliazzo-kabanets-pmf ) auto

finally show ?thesis by simp
qed

Bounds and properties of KL-div
lemma KL-div-mono-right-aux-1 :

assumes 0 ≤ p p ≤ q q ≤ q ′ q ′ < 1
shows KL-div p q−2∗(p−q)^2 ≤ KL-div p q ′−2∗(p−q ′)^2

proof (cases p = 0 )
case True
define f ′ :: real ⇒ real where f ′ = (λx. 1/(1−x) − 4 ∗ x)

have deriv: ((λq. ln (1/(1−q)) − 2∗q^2 ) has-real-derivative (f ′ x)) (at x)
if x ∈ {q..q ′} for x

proof −
have x ∈ {0 ..<1} using assms that by auto
thus ?thesis unfolding f ′-def by (auto intro!: derivative-eq-intros)

qed

have deriv-nonneg: f ′ x ≥ 0 if x ∈ {q..q ′} for x
proof −

have 0 :x ∈ {0 ..<1} using assms that by auto
have 4 ∗ x∗(1−x) = 1 − 4∗(x−1/2 )^2 by (simp add:power2-eq-square field-simps)
also have ... ≤ 1 by simp
finally have 4∗x∗(1−x) ≤ 1 by simp
hence 1/(1−x) ≥ 4∗x using 0 by (simp add: pos-le-divide-eq)
thus ?thesis unfolding f ′-def by auto

qed

have ln (1 / (1 − q)) − 2 ∗ q^2 ≤ ln (1 / (1 − q ′)) − 2 ∗ q ′̂ 2
using deriv deriv-nonneg by (intro DERIV-nonneg-imp-nondecreasing[OF assms(3 )]) auto

thus ?thesis using True unfolding KL-div-def by simp
next

case False
hence p-gt-0 : p > 0 using assms by auto

define f ′ :: real ⇒ real where f ′ = (λx. (1−p)/(1−x) − p/x + 4 ∗ (p−x))

have deriv: ((λq. KL-div p q − 2∗(p−q)^2 ) has-real-derivative (f ′ x)) (at x) if x ∈ {q..q ′}
for x

proof −
have 0 < p /x 0 < (1 − p) / (1 − x) using that assms p-gt-0 by auto
thus ?thesis unfolding KL-div-def f ′-def by (auto intro!: derivative-eq-intros)

qed

have f ′-part-nonneg: (1/(x∗(1−x)) − 4 ) ≥ 0 if x ∈ {0<..<1} for x :: real
proof −

have 4 ∗ x ∗ (1−x) = 1 − 4 ∗ (x−1/2 )^2 by (simp add:power2-eq-square algebra-simps)
also have ... ≤ 1 by simp
finally have 4 ∗ x ∗ (1−x) ≤ 1 by simp
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hence 1/(x∗(1−x)) ≥ 4 using that by (subst pos-le-divide-eq) auto
thus ?thesis by simp

qed

have f ′-alt: f ′ x = (x−p)∗(1/(x∗(1−x)) − 4 ) if x ∈ {0<..<1} for x
proof −
have f ′ x = (x−p)/(x∗(1−x)) + 4 ∗ (p−x) using that unfolding f ′-def by (simp add:field-simps)
also have ... = (x−p)∗(1/(x∗(1−x)) − 4 ) by (simp add:algebra-simps)
finally show ?thesis by simp

qed

have deriv-nonneg: f ′ x ≥ 0 if x ∈ {q..q ′} for x
proof −

have x ∈ {0<..<1} using assms that p-gt-0 by auto
have f ′ x =(x−p)∗(1/(x∗(1−x)) − 4 ) using that assms p-gt-0 by (subst f ′-alt) auto
also have ... ≥ 0 using that f ′-part-nonneg assms p-gt-0 by (intro mult-nonneg-nonneg) auto
finally show ?thesis by simp

qed

show ?thesis using deriv deriv-nonneg
by (intro DERIV-nonneg-imp-nondecreasing[OF assms(3 )]) auto

qed

lemma KL-div-swap: KL-div (1−p) (1−q) = KL-div p q
unfolding KL-div-def by auto

lemma KL-div-mono-right-aux-2 :
assumes 0 < q ′ q ′ ≤ q q ≤ p p ≤ 1
shows KL-div p q−2∗(p−q)^2 ≤ KL-div p q ′−2∗(p−q ′)^2

proof −
have KL-div (1−p) (1−q)−2∗((1−p)−(1−q))^2 ≤ KL-div (1−p) (1−q ′)−2∗((1−p)−(1−q ′))^2

using assms by (intro KL-div-mono-right-aux-1 ) auto
thus ?thesis unfolding KL-div-swap by (auto simp:algebra-simps power2-commute)

qed

lemma KL-div-mono-right-aux:
assumes (0 ≤ p ∧ p ≤ q ∧ q ≤ q ′ ∧ q ′ < 1 ) ∨ (0 < q ′ ∧ q ′ ≤ q ∧ q ≤ p ∧ p ≤ 1 )
shows KL-div p q−2∗(p−q)^2 ≤ KL-div p q ′−2∗(p−q ′)^2
using KL-div-mono-right-aux-1 KL-div-mono-right-aux-2 assms by auto

lemma KL-div-mono-right:
assumes (0 ≤ p ∧ p ≤ q ∧ q ≤ q ′ ∧ q ′ < 1 ) ∨ (0 < q ′ ∧ q ′ ≤ q ∧ q ≤ p ∧ p ≤ 1 )
shows KL-div p q ≤ KL-div p q ′ (is ?L ≤ ?R)

proof −
consider (a) 0 ≤ p p ≤ q q ≤ q ′ q ′ < 1 | (b) 0 < q ′ q ′ ≤ q q ≤ p p ≤ 1

using assms by auto
hence 0 : (p − q)2 ≤ (p − q ′)2

proof (cases)
case a
hence (q−p)^2 ≤ (q ′ − p)^2 by auto
thus ?thesis by (simp add: power2-commute)

next
case b thus ?thesis by simp

qed
have ?L = (KL-div p q − 2∗(p−q)^2 ) + 2 ∗ (p−q)^2 by simp
also have ... ≤ (KL-div p q ′ − 2∗(p−q ′)^2 ) + 2 ∗ (p−q ′)^2

by (intro add-mono KL-div-mono-right-aux assms mult-left-mono 0 ) auto
also have ... = ?R by simp
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finally show ?thesis by simp
qed

lemma KL-div-lower-bound:
assumes p ∈ {0 ..1} q ∈ {0<..<1}
shows 2∗(p−q)^2 ≤ KL-div p q

proof −
have 0 ≤ KL-div p p − 2 ∗ (p−p)^2 unfolding KL-div-def by simp
also have ... ≤ KL-div p q − 2 ∗ (p−q)^2 using assms by (intro KL-div-mono-right-aux) auto
finally show ?thesis by simp

qed

end

2.2 Congruence Method

The following is a method for proving equalities of large terms by checking the equivalence
of subterms. It is possible to precisely control which operators to split by.
theory Extra-Congruence-Method

imports
Main
HOL−Eisbach.Eisbach

begin

datatype cong-tag-type = CongTag

definition cong-tag-1 :: ( ′a ⇒ ′b) ⇒ cong-tag-type
where cong-tag-1 x = CongTag

definition cong-tag-2 :: ( ′a ⇒ ′b ⇒ ′c) ⇒ cong-tag-type
where cong-tag-2 x = CongTag

definition cong-tag-3 :: ( ′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ cong-tag-type
where cong-tag-3 x = CongTag

lemma arg-cong3 :
assumes x1 = x2 y1 = y2 z1 = z2
shows f x1 y1 z1 = f x2 y2 z2
using assms by auto

method intro-cong for A :: cong-tag-type list uses more =
(match (A) in

cong-tag-1 f#h (multi) for f :: ′a ⇒ ′b and h
⇒ ‹intro-cong h more:more arg-cong[where f=f]›

| cong-tag-2 f#h (multi) for f :: ′a ⇒ ′b ⇒ ′c and h
⇒ ‹intro-cong h more:more arg-cong2 [where f=f]›

| cong-tag-3 f#h (multi) for f :: ′a ⇒ ′b ⇒ ′c ⇒ ′d and h
⇒ ‹intro-cong h more:more arg-cong3 [where f=f]›

| - ⇒ ‹intro more refl›)

bundle intro-cong-syntax
begin
notation cong-tag-1 (‹σ1›)
notation cong-tag-2 (‹σ2›)
notation cong-tag-3 (‹σ3›)
end

lemma restr-Collect-cong:
assumes

∧
x. x ∈ A =⇒ P x = Q x
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shows {x ∈ A. P x} = {x ∈ A. Q x}
using assms by auto

end

2.3 Multisets

Some preliminary results about multisets.
theory Expander-Graphs-Multiset-Extras

imports
HOL−Library.Multiset
Extra-Congruence-Method

begin

unbundle intro-cong-syntax

This is an induction scheme over the distinct elements of a multisets: We can represent each
multiset as a sum like: replicate-mset n1 x1 + replicate-mset n2 x2 + ... + replicate-mset
nk xk where the x i are distinct.
lemma disj-induct-mset:

assumes P {#}
assumes

∧
n M x. P M =⇒ ¬(x ∈# M ) =⇒ n > 0 =⇒ P (M + replicate-mset n x)

shows P M
proof (induction size M arbitrary: M rule:nat-less-induct)

case 1
show ?case
proof (cases M = {#})

case True
then show ?thesis using assms by simp

next
case False
then obtain x where x-def : x ∈# M using multiset-nonemptyE by auto
define M1 where M1 = M − replicate-mset (count M x) x
then have M-def : M = M1 + replicate-mset (count M x) x

by (metis count-le-replicate-mset-subset-eq dual-order .refl subset-mset.diff-add)
have size M1 < size M
by (metis M-def x-def count-greater-zero-iff less-add-same-cancel1 size-replicate-mset size-union)
hence P M1 using 1 by blast
then show P M

apply (subst M-def , rule assms(2 ), simp)
by (simp add:M1-def x-def count-eq-zero-iff [symmetric])+

qed
qed

lemma sum-mset-conv:
fixes f :: ′a ⇒ ′b::{semiring-1}
shows sum-mset (image-mset f A) = sum (λx. of-nat (count A x) ∗ f x) (set-mset A)

proof (induction A rule: disj-induct-mset)
case 1
then show ?case by simp

next
case (2 n M x)
moreover have count M x = 0 using 2 by (simp add: count-eq-zero-iff )
moreover have

∧
y. y ∈ set-mset M =⇒ y 6= x using 2 by blast

ultimately show ?case by (simp add:algebra-simps)
qed
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lemma sum-mset-conv-2 :
fixes f :: ′a ⇒ ′b::{semiring-1}
assumes set-mset A ⊆ B finite B
shows sum-mset (image-mset f A) = sum (λx. of-nat (count A x) ∗ f x) B (is ?L = ?R)

proof −
have ?L = sum (λx. of-nat (count A x) ∗ f x) (set-mset A)

unfolding sum-mset-conv by simp
also have ... = ?R

by (intro sum.mono-neutral-left assms) (simp-all add: iffD2 [OF count-eq-zero-iff ])
finally show ?thesis by simp

qed

lemma count-mset-exp: count A x = size (filter-mset (λy. y = x) A)
by (induction A, simp, simp)

lemma mset-repl: mset (replicate k x) = replicate-mset k x
by (induction k, auto)

lemma count-image-mset-inj:
assumes inj f
shows count (image-mset f A) (f x) = count A x

proof (cases x ∈ set-mset A)
case True
hence f −‘ {f x} ∩ set-mset A = {x}

using assms by (auto simp add:vimage-def inj-def )
then show ?thesis by (simp add:count-image-mset)

next
case False
hence f −‘ {f x} ∩ set-mset A = {}

using assms by (auto simp add:vimage-def inj-def )
thus ?thesis using False by (simp add:count-image-mset count-eq-zero-iff )

qed

lemma count-image-mset-0-triv:
assumes x /∈ range f
shows count (image-mset f A) x = 0

proof −
have x /∈ set-mset (image-mset f A)

using assms by auto
thus ?thesis

by (meson count-inI )
qed

lemma filter-mset-ex-predicates:
assumes

∧
x. ¬ P x ∨ ¬ Q x

shows filter-mset P M + filter-mset Q M = filter-mset (λx. P x ∨ Q x) M
using assms by (induction M , auto)

lemma sum-count-2 :
assumes finite F
shows sum (count M ) F = size (filter-mset (λx. x ∈ F) M )
using assms

proof (induction F rule:finite-induct)
case empty
then show ?case by simp

next
case (insert x F)
have sum (count M ) (insert x F) = size ({#y ∈# M . y = x#} + {#x ∈# M . x ∈ F#})
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using insert(1 ,2 ,3 ) by (simp add:count-mset-exp)
also have ... = size ({#y ∈# M . y = x ∨ y ∈ F#})

using insert(2 )
by (intro arg-cong[where f=size] filter-mset-ex-predicates) simp

also have ... = size (filter-mset (λy. y ∈ insert x F) M )
by simp

finally show ?case by simp
qed

definition concat-mset :: ( ′a multiset) multiset ⇒ ′a multiset
where concat-mset xss = fold-mset (λxs ys. xs + ys) {#} xss

lemma image-concat-mset:
image-mset f (concat-mset xss) = concat-mset (image-mset (image-mset f ) xss)
unfolding concat-mset-def by (induction xss, auto)

lemma concat-add-mset:
concat-mset (image-mset (λx. f x + g x) xs) = concat-mset (image-mset f xs) + concat-mset

(image-mset g xs)
unfolding concat-mset-def by (induction xs) auto

lemma concat-add-mset-2 :
concat-mset (xs + ys) = concat-mset xs + concat-mset ys
unfolding concat-mset-def by (induction xs, auto)

lemma size-concat-mset:
size (concat-mset xss) = sum-mset (image-mset size xss)
unfolding concat-mset-def by (induction xss, auto)

lemma filter-concat-mset:
filter-mset P (concat-mset xss) = concat-mset (image-mset (filter-mset P) xss)
unfolding concat-mset-def by (induction xss, auto)

lemma count-concat-mset:
count (concat-mset xss) xs = sum-mset (image-mset (λx. count x xs) xss)
unfolding concat-mset-def by (induction xss, auto)

lemma set-mset-concat-mset:
set-mset (concat-mset xss) =

⋃
(set-mset ‘ (set-mset xss))

unfolding concat-mset-def by (induction xss, auto)

lemma concat-mset-empty: concat-mset {#} = {#}
unfolding concat-mset-def by simp

lemma concat-mset-single: concat-mset {#x#} = x
unfolding concat-mset-def by simp

lemma concat-disjoint-union-mset:
assumes finite I
assumes

∧
i. i ∈ I =⇒ finite (A i)

assumes
∧

i j. i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ A i ∩ A j = {}
shows mset-set (

⋃
(A ‘ I )) = concat-mset (image-mset (mset-set ◦ A) (mset-set I ))

using assms
proof (induction I rule:finite-induct)

case empty
then show ?case by (simp add:concat-mset-empty)

next
case (insert x F)
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have mset-set (
⋃

(A ‘ insert x F)) = mset-set (A x ∪ (
⋃

(A ‘ F)))
by simp

also have ... = mset-set (A x) + mset-set (
⋃

(A ‘ F))
using insert by (intro mset-set-Union) auto

also have ... = mset-set (A x) + concat-mset (image-mset (mset-set ◦ A) (mset-set F))
using insert by (intro arg-cong2 [where f=(+)] insert(3 )) auto

also have ... = concat-mset (image-mset (mset-set ◦ A) ({#x#} + mset-set F))
by (simp add:concat-mset-def )

also have ... = concat-mset (image-mset (mset-set ◦ A) (mset-set (insert x F)))
using insert by (intro-cong [σ1 concat-mset, σ2 image-mset]) auto

finally show ?case by blast
qed

lemma size-filter-mset-conv:
size (filter-mset f A) = sum-mset (image-mset (λx. of-bool (f x) :: nat) A)
by (induction A, auto)

lemma filter-mset-const: filter-mset (λ-. c) xs = (if c then xs else {#})
by simp

lemma repeat-image-concat-mset:
repeat-mset n (image-mset f A) = concat-mset (image-mset (λx. replicate-mset n (f x)) A)
unfolding concat-mset-def by (induction A, auto)

lemma mset-prod-eq:
assumes finite A finite B
shows

mset-set (A × B) = concat-mset {# {# (x,y). y ∈# mset-set B #} .x ∈# mset-set A #}
using assms(1 )

proof (induction rule:finite-induct)
case empty
then show ?case unfolding concat-mset-def by simp

next
case (insert x F)
have mset-set (insert x F × B) = mset-set (F × B ∪ (λy. (x,y)) ‘ B)

by (intro arg-cong[where f=mset-set]) auto
also have ... = mset-set (F × B) + mset-set ((λy. (x,y)) ‘ B)

using insert(1 ,2 ) assms(2 ) by (intro mset-set-Union finite-cartesian-product) auto
also have ... = mset-set (F × B) + {# (x,y). y ∈# mset-set B #}

by (intro arg-cong2 [where f=(+)] image-mset-mset-set[symmetric] inj-onI ) auto
also have ... = concat-mset {#image-mset (Pair x) (mset-set B). x ∈# {#x#} + (mset-set

F)#}
unfolding insert image-mset-union concat-add-mset-2 by (simp add:concat-mset-single)

also have ... = concat-mset {#image-mset (Pair x) (mset-set B). x ∈# mset-set (insert x F)#}
using insert(1 ,2 ) by (intro-cong [σ1 concat-mset, σ2 image-mset]) auto

finally show ?case by simp
qed

lemma sum-mset-repeat:
fixes f :: ′a ⇒ ′b :: {comm-monoid-add,semiring-1}
shows sum-mset (image-mset f (repeat-mset n A)) = of-nat n ∗ sum-mset (image-mset f A)
by (induction n, auto simp add:sum-mset.distrib algebra-simps)

unbundle no intro-cong-syntax

end
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3 Definitions

This section introduces regular graphs as a sublocale in the graph theory developed by
Lars Noschinski [10] and introduces various expansion coefficients.
theory Expander-Graphs-Definition

imports
Graph-Theory.Digraph-Isomorphism
HOL−Analysis.L2-Norm
Extra-Congruence-Method
Expander-Graphs-Multiset-Extras
Jordan-Normal-Form.Conjugate
Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities

begin

unbundle intro-cong-syntax

definition arcs-betw where arcs-betw G u v = {a. a ∈ arcs G ∧ head G a = v ∧ tail G a = u}

The following is a stronger notion than the notion of symmetry defined in Graph-Theory.Digraph,
it requires that the number of edges from v to w must be equal to the number of edges
from w to v for any pair of vertices v w ∈ verts G.
definition symmetric-multi-graph where symmetric-multi-graph G =
(fin-digraph G ∧ (∀ v w. {v, w} ⊆ verts G −→ card (arcs-betw G w v) = card (arcs-betw G v

w)))

lemma symmetric-multi-graphI :
assumes fin-digraph G
assumes bij-betw f (arcs G) (arcs G)
assumes

∧
e. e ∈ arcs G =⇒ head G (f e) = tail G e ∧ tail G (f e) = head G e

shows symmetric-multi-graph G
proof −

have card (arcs-betw G w v) = card (arcs-betw G v w)
(is ?L = ?R) if v ∈ verts G w ∈ verts G for v w

proof −
have a:f x ∈ arcs G if x ∈ arcs G for x

using assms(2 ) that unfolding bij-betw-def by auto
have b:∃ y. y ∈ arcs G ∧ f y = x if x ∈ arcs G for x

using bij-betw-imp-surj-on[OF assms(2 )] that by force

have inj-on f (arcs G)
using assms(2 ) unfolding bij-betw-def by simp

hence inj-on f {e ∈ arcs G. head G e = v ∧ tail G e = w}
by (rule inj-on-subset, auto)

hence ?L = card (f ‘ {e ∈ arcs G. head G e = v ∧ tail G e = w})
unfolding arcs-betw-def
by (intro card-image[symmetric])

also have ... = ?R
unfolding arcs-betw-def using a b assms(3 )
by (intro arg-cong[where f=card] order-antisym image-subsetI subsetI ) fastforce+

finally show ?thesis by simp
qed
thus ?thesis

using assms(1 ) unfolding symmetric-multi-graph-def by simp
qed

lemma symmetric-multi-graphD2 :
assumes symmetric-multi-graph G
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shows fin-digraph G
using assms unfolding symmetric-multi-graph-def by simp

lemma symmetric-multi-graphD:
assumes symmetric-multi-graph G
shows card {e ∈ arcs G. head G e=v ∧ tail G e=w} = card {e ∈ arcs G. head G e=w ∧ tail

G e=v}
(is card ?L = card ?R)

proof (cases v ∈ verts G ∧ w ∈ verts G)
case True
then show ?thesis
using assms unfolding symmetric-multi-graph-def arcs-betw-def by simp

next
case False
interpret fin-digraph G

using symmetric-multi-graphD2 [OF assms(1 )] by simp
have 0 :?L = {} ?R = {}

using False wellformed by auto
show ?thesis unfolding 0 by simp

qed

lemma symmetric-multi-graphD3 :
assumes symmetric-multi-graph G
shows

card {e∈arcs G. tail G e=v ∧ head G e=w}=card {e∈arcs G. tail G e=w∧head G e=v}
using symmetric-multi-graphD[OF assms] by (simp add:conj.commute)

lemma symmetric-multi-graphD4 :
assumes symmetric-multi-graph G
shows card (arcs-betw G v w) = card (arcs-betw G w v)
using symmetric-multi-graphD[OF assms] unfolding arcs-betw-def by simp

lemma symmetric-degree-eq:
assumes symmetric-multi-graph G
assumes v ∈ verts G
shows out-degree G v = in-degree G v (is ?L = ?R)

proof −
interpret fin-digraph G

using assms(1 ) symmetric-multi-graph-def by auto

have ?L = card {e ∈ arcs G. tail G e = v}
unfolding out-degree-def out-arcs-def by simp

also have ... = card (
⋃

w ∈ verts G. {e ∈ arcs G. head G e = w ∧ tail G e = v})
by (intro arg-cong[where f=card]) (auto simp add:set-eq-iff )

also have ... = (
∑

w ∈ verts G. card {e ∈ arcs G. head G e = w ∧ tail G e = v})
by (intro card-UN-disjoint) auto

also have ... = (
∑

w ∈ verts G. card {e ∈ arcs G. head G e = v ∧ tail G e = w})
by (intro sum.cong refl symmetric-multi-graphD assms)

also have ... = card (
⋃

w ∈ verts G. {e ∈ arcs G. head G e = v ∧ tail G e = w})
by (intro card-UN-disjoint[symmetric]) auto

also have ... = card (in-arcs G v)
by (intro arg-cong[where f=card]) (auto simp add:set-eq-iff )

also have ... = ?R
unfolding in-degree-def by simp

finally show ?thesis by simp
qed

definition edges where edges G = image-mset (arc-to-ends G) (mset-set (arcs G))
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lemma (in fin-digraph) count-edges:
count (edges G) (u,v) = card (arcs-betw G u v) (is ?L = ?R)

proof −
have ?L = card {x ∈ arcs G. arc-to-ends G x = (u, v)}

unfolding edges-def count-mset-exp image-mset-filter-mset-swap[symmetric] by simp
also have ... = ?R

unfolding arcs-betw-def arc-to-ends-def
by (intro arg-cong[where f=card]) auto

finally show ?thesis by simp
qed

lemma (in fin-digraph) count-edges-sym:
assumes symmetric-multi-graph G
shows count (edges G) (v, w) = count (edges G) (w, v)
unfolding count-edges using symmetric-multi-graphD4 [OF assms] by simp

lemma (in fin-digraph) edges-sym:
assumes symmetric-multi-graph G
shows {# (y,x). (x,y) ∈# (edges G) #} = edges G

proof −
have count {#(y, x). (x, y) ∈# edges G#} x = count (edges G) x (is ?L = ?R) for x
proof −

have ?L = count (edges G) (snd x, fst x)
unfolding count-mset-exp
by (simp add:image-mset-filter-mset-swap[symmetric] case-prod-beta prod-eq-iff ac-simps)

also have ... = count (edges G) (fst x, snd x)
unfolding count-edges-sym[OF assms] by simp

also have ... = count (edges G) x by simp
finally show ?thesis by simp

qed

thus ?thesis
by (intro multiset-eqI ) simp

qed

definition vertices-from G v = {# snd e | e ∈# edges G. fst e = v #}
definition vertices-to G v = {# fst e | e ∈# edges G. snd e = v #}

context fin-digraph
begin

lemma edge-set:
assumes x ∈# edges G
shows fst x ∈ verts G snd x ∈ verts G
using assms unfolding edges-def arc-to-ends-def by auto

lemma verts-from-alt:
vertices-from G v = image-mset (head G) (mset-set (out-arcs G v))

proof −
have {#x ∈# mset-set (arcs G). tail G x = v#} = mset-set {a ∈ arcs G. tail G a = v}

by (intro filter-mset-mset-set) simp
thus ?thesis

unfolding vertices-from-def out-arcs-def edges-def arc-to-ends-def
by (simp add:image-mset.compositionality image-mset-filter-mset-swap[symmetric] comp-def )

qed

lemma verts-to-alt:
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vertices-to G v = image-mset (tail G) (mset-set (in-arcs G v))
proof −

have {#x ∈# mset-set (arcs G). head G x = v#} = mset-set {a ∈ arcs G. head G a = v}
by (intro filter-mset-mset-set) simp

thus ?thesis
unfolding vertices-to-def in-arcs-def edges-def arc-to-ends-def
by (simp add:image-mset.compositionality image-mset-filter-mset-swap[symmetric] comp-def )

qed

lemma set-mset-vertices-from:
set-mset (vertices-from G x) ⊆ verts G
unfolding vertices-from-def using edge-set by auto

lemma set-mset-vertices-to:
set-mset (vertices-to G x) ⊆ verts G
unfolding vertices-to-def using edge-set by auto

end

A symmetric multigraph is regular if every node has the same degree. This is the context
in which the expansion conditions are introduced.
locale regular-graph = fin-digraph +

assumes sym: symmetric-multi-graph G
assumes verts-non-empty: verts G 6= {}
assumes arcs-non-empty: arcs G 6= {}
assumes reg ′:

∧
v w. v ∈ verts G =⇒ w ∈ verts G =⇒ out-degree G v = out-degree G w

begin

definition d where d = out-degree G (SOME v. v ∈ verts G)

lemmas count-sym = count-edges-sym[OF sym]

lemma reg:
assumes v ∈ verts G
shows out-degree G v = d in-degree G v = d

proof −
define w where w = (SOME v. v ∈ verts G)
have w ∈ verts G

unfolding w-def using assms(1 ) by (rule someI )
hence out-degree G v = out-degree G w

by (intro reg ′ assms(1 ))
also have ... = d

unfolding d-def w-def by simp
finally show a:out-degree G v = d by simp

show in-degree G v = d
using a symmetric-degree-eq[OF sym assms(1 )] by simp

qed

definition n where n = card (verts G)

lemma n-gt-0 : n > 0
unfolding n-def using verts-non-empty by auto

lemma d-gt-0 : d > 0
proof −

obtain a where a:a ∈ arcs G
using arcs-non-empty by auto
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hence a ∈ in-arcs G (head G a)
unfolding in-arcs-def by simp

hence 0 < in-degree G (head G a)
unfolding in-degree-def card-gt-0-iff by blast

also have ... = d
using a by (intro reg) simp

finally show ?thesis by simp
qed

definition g-inner :: ( ′a ⇒ ( ′c :: conjugatable-field)) ⇒ ( ′a ⇒ ′c) ⇒ ′c
where g-inner f g = (

∑
x ∈ verts G. (f x) ∗ conjugate (g x))

lemma conjugate-divide[simp]:
fixes x y :: ′c :: conjugatable-field
shows conjugate (x / y) = conjugate x / conjugate y

proof (cases y = 0 )
case True
then show ?thesis by simp

next
case False
have conjugate (x/y) ∗ conjugate y = conjugate x

using False by (simp add:conjugate-dist-mul[symmetric])
thus ?thesis

by (simp add:divide-simps)
qed

lemma g-inner-simps:
g-inner (λx. 0 ) g = 0
g-inner f (λx. 0 ) = 0
g-inner (λx. c ∗ f x) g = c ∗ g-inner f g
g-inner f (λx. c ∗ g x) = conjugate c ∗ g-inner f g
g-inner (λx. f x − g x) h = g-inner f h − g-inner g h
g-inner (λx. f x + g x) h = g-inner f h + g-inner g h
g-inner f (λx. g x + h x) = g-inner f g + g-inner f h
g-inner f (λx. g x / c) = g-inner f g / conjugate c
g-inner (λx. f x / c) g = g-inner f g / c
unfolding g-inner-def
by (auto simp add:sum.distrib algebra-simps sum-distrib-left sum-subtractf sum-divide-distrib

conjugate-dist-mul conjugate-dist-add)

definition g-norm f = sqrt (g-inner f f )

lemma g-norm-eq: g-norm f = L2-set f (verts G)
unfolding g-norm-def g-inner-def L2-set-def
by (intro arg-cong[where f=sqrt] sum.cong refl) (simp add:power2-eq-square)

lemma g-inner-cauchy-schwartz:
fixes f g :: ′a ⇒ real
shows |g-inner f g| ≤ g-norm f ∗ g-norm g

proof −
have |g-inner f g| ≤ (

∑
v ∈ verts G. |f v ∗ g v|)

unfolding g-inner-def conjugate-real-def by (intro sum-abs)
also have ... ≤ g-norm f ∗ g-norm g

unfolding g-norm-eq abs-mult by (intro L2-set-mult-ineq)
finally show ?thesis by simp

qed

lemma g-inner-cong:
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assumes
∧

x. x ∈ verts G =⇒ f1 x = f2 x
assumes

∧
x. x ∈ verts G =⇒ g1 x = g2 x

shows g-inner f1 g1 = g-inner f2 g2
unfolding g-inner-def using assms
by (intro sum.cong refl) auto

lemma g-norm-cong:
assumes

∧
x. x ∈ verts G =⇒ f x = g x

shows g-norm f = g-norm g
unfolding g-norm-def
by (intro arg-cong[where f=sqrt] g-inner-cong assms)

lemma g-norm-nonneg: g-norm f ≥ 0
unfolding g-norm-def g-inner-def
by (intro real-sqrt-ge-zero sum-nonneg) auto

lemma g-norm-sq:
g-norm f^2 = g-inner f f
using g-norm-nonneg g-norm-def by simp

definition g-step :: ( ′a ⇒ real) ⇒ ( ′a ⇒ real)
where g-step f v = (

∑
x ∈ in-arcs G v. f (tail G x) / real d)

lemma g-step-simps:
g-step (λx. f x + g x) y = g-step f y + g-step g y
g-step (λx. f x / c) y = g-step f y / c
unfolding g-step-def sum-divide-distrib[symmetric] using finite-in-arcs d-gt-0
by (auto intro:sum.cong simp add:sum.distrib field-simps sum-distrib-left sum-subtractf )

lemma g-inner-step-eq:
g-inner f (g-step f ) = (

∑
a ∈ arcs G. f (head G a) ∗ f (tail G a)) / d (is ?L = ?R)

proof −
have ?L = (

∑
v∈verts G. f v ∗ (

∑
a∈in-arcs G v. f (tail G a) / d))

unfolding g-inner-def g-step-def by simp
also have ... = (

∑
v∈verts G. (

∑
a∈in-arcs G v. f v ∗ f (tail G a) / d))

by (subst sum-distrib-left) simp
also have ... = (

∑
v∈verts G. (

∑
a∈in-arcs G v. f (head G a) ∗ f (tail G a) / d))

unfolding in-arcs-def by (intro sum.cong refl) simp
also have ... = (

∑
a ∈ (

⋃
(in-arcs G ‘ verts G)). f (head G a) ∗ f (tail G a) / d)

using finite-verts by (intro sum.UNION-disjoint[symmetric] ballI )
(auto simp add:in-arcs-def )

also have ... = (
∑

a ∈ arcs G. f (head G a) ∗ f (tail G a) / d)
unfolding in-arcs-def using wellformed by (intro sum.cong) auto

also have ... = ?R
by (intro sum-divide-distrib[symmetric])

finally show ?thesis by simp
qed

definition Λ-test
where Λ-test = {f . g-norm f^2 6= 0 ∧ g-inner f (λ-. 1 ) = 0}

lemma Λ-test-ne:
assumes n > 1
shows Λ-test 6= {}

proof −
obtain v where v-def : v ∈ verts G using verts-non-empty by auto
have False if

∧
w. w ∈ verts G =⇒ w = v

proof −
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have verts G = {v} using that v-def
by (intro iffD2 [OF set-eq-iff ] allI ) blast

thus False
using assms n-def by simp

qed
then obtain w where w-def : w ∈ verts G v 6= w

by auto
define f where f x= (if x = v then 1 else (if x = w then (−1 ) else (0 ::real))) for x

have g-norm f^2 = (
∑

x∈verts G. (if x = v then 1 else if x = w then − 1 else 0 )2)
unfolding g-norm-sq g-inner-def conjugate-real-def power2-eq-square[symmetric]
by (simp add:f-def )

also have ... = (
∑

x ∈ {v,w}. (if x = v then 1 else if x = w then −1 else 0 )2)
using v-def (1 ) w-def (1 ) by (intro sum.mono-neutral-cong refl) auto

also have ... = (
∑

x ∈ {v,w}. (if x = v then 1 else − 1 )2)
by (intro sum.cong) auto

also have ... = 2
using w-def (2 ) by (simp add:if-distrib if-distribR sum.If-cases)

finally have g-norm f^2 = 2 by simp
hence g-norm f 6= 0 by auto

moreover have g-inner f (λ-.1 ) = 0
unfolding g-inner-def f-def using v-def w-def by (simp add:sum.If-cases)

ultimately have f ∈ Λ-test
unfolding Λ-test-def by simp

thus ?thesis by auto
qed

lemma Λ-test-empty:
assumes n = 1
shows Λ-test = {}

proof −
obtain v where v-def : verts G = {v}

using assms card-1-singletonE unfolding n-def by auto
have False if f ∈ Λ-test for f
proof −

have 0 = (g-inner f (λ-.1 ))^2
using that Λ-test-def by simp

also have ... = (f v)^2
unfolding g-inner-def v-def by simp

also have ... = g-norm f^2
unfolding g-norm-sq g-inner-def v-def
by (simp add:power2-eq-square)

also have ... 6= 0
using that Λ-test-def by simp

finally show False by simp
qed
thus ?thesis by auto

qed

The following are variational definitions for the maxiumum of the spectrum (resp. maxi-
mum modulus of the spectrum) of the stochastic matrix (excluding the Perron eigenvalue
1). Note that both values can still obtain the value one 1 (if the multiplicity of the
eigenvalue 1 is larger than 1 in the stochastic matrix, or in the modulus case if −1 is an
eigenvalue).
The definition relies on the supremum of the Rayleigh-Quotient for vectors orthogonal to
the stationary distribution). In Section 6, the equivalence of this value with the algebraic
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definition will be shown. The definition here has the advantage that it is (obviously)
independent of the matrix representation (ordering of the vertices) used.
definition Λ2 :: real

where Λ2 = (if n > 1 then (SUP f ∈ Λ-test. g-inner f (g-step f )/g-inner f f ) else 0 )

definition Λa :: real
where Λa = (if n > 1 then (SUP f ∈ Λ-test. |g-inner f (g-step f )|/g-inner f f ) else 0 )

lemma sum-arcs-tail:
fixes f :: ′a ⇒ ( ′c :: semiring-1 )
shows (

∑
a ∈ arcs G. f (tail G a)) = of-nat d ∗ (

∑
v ∈ verts G. f v) (is ?L = ?R)

proof −
have ?L = (

∑
a∈(

⋃
(out-arcs G ‘ verts G)). f (tail G a))

by (intro sum.cong) auto
also have ... = (

∑
v ∈ verts G. (

∑
a ∈ out-arcs G v. f (tail G a)))

by (intro sum.UNION-disjoint) auto
also have ... = (

∑
v ∈ verts G. of-nat (out-degree G v) ∗ f v)

unfolding out-degree-def by simp
also have ... = (

∑
v ∈ verts G. of-nat d ∗ f v)

by (intro sum.cong arg-cong2 [where f=(∗)] arg-cong[where f=of-nat] reg) auto
also have ... = ?R by (simp add:sum-distrib-left)
finally show ?thesis by simp

qed

lemma sum-arcs-head:
fixes f :: ′a ⇒ ( ′c :: semiring-1 )
shows (

∑
a ∈ arcs G. f (head G a)) = of-nat d ∗ (

∑
v ∈ verts G. f v) (is ?L = ?R)

proof −
have ?L = (

∑
a∈(

⋃
(in-arcs G ‘ verts G)). f (head G a))

by (intro sum.cong) auto
also have ... = (

∑
v ∈ verts G. (

∑
a ∈ in-arcs G v. f (head G a)))

by (intro sum.UNION-disjoint) auto
also have ... = (

∑
v ∈ verts G. of-nat (in-degree G v) ∗ f v)

unfolding in-degree-def by simp
also have ... = (

∑
v ∈ verts G. of-nat d ∗ f v)

by (intro sum.cong arg-cong2 [where f=(∗)] arg-cong[where f=of-nat] reg) auto
also have ... = ?R by (simp add:sum-distrib-left)
finally show ?thesis by simp

qed

lemma bdd-above-aux:
|
∑

a∈arcs G. f (head G a)∗f (tail G a)| ≤ d∗ g-norm f^2 (is ?L ≤ ?R)
proof −

have (
∑

a∈arcs G. f (head G a)^2 ) = d ∗ g-norm f^2
unfolding sum-arcs-head[where f=λx. f x^2 ] g-norm-sq g-inner-def
by (simp add:power2-eq-square)

hence 0 :L2-set (λa. f (head G a)) (arcs G) ≤ sqrt (d ∗ g-norm f^2 )
using g-norm-nonneg unfolding L2-set-def by simp

have (
∑

a∈arcs G. f (tail G a)^2 ) = d ∗ g-norm f^2
unfolding sum-arcs-tail[where f=λx. f x^2 ] sum-distrib-left[symmetric] g-norm-sq g-inner-def
by (simp add:power2-eq-square)

hence 1 :L2-set (λa. f (tail G a)) (arcs G) ≤ sqrt (d ∗ g-norm f^2 )
unfolding L2-set-def by simp

have ?L ≤ (
∑

a ∈ arcs G. |f (head G a)| ∗ |f (tail G a)|)
unfolding abs-mult[symmetric] by (intro divide-right-mono sum-abs)
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also have ... ≤ (L2-set (λa. f (head G a)) (arcs G) ∗ L2-set (λa. f (tail G a)) (arcs G))
by (intro L2-set-mult-ineq)

also have ... ≤ (sqrt (d ∗ g-norm f^2 ) ∗ sqrt (d ∗ g-norm f^2 ))
by (intro mult-mono 0 1 ) auto

also have ... = d ∗ g-norm f^2
using d-gt-0 g-norm-nonneg by simp

finally show ?thesis by simp
qed

lemma bdd-above-aux-2 :
assumes f ∈ Λ-test
shows |g-inner f (g-step f )| / g-inner f f ≤ 1

proof −
have 0 :g-inner f f > 0

using assms unfolding Λ-test-def g-norm-sq[symmetric] by auto

have |g-inner f (g-step f )| = |
∑

a∈arcs G. f (head G a) ∗ f (tail G a)| / real d
unfolding g-inner-step-eq by simp

also have ... ≤ d ∗ g-norm f^2 / d
by (intro divide-right-mono bdd-above-aux assms) auto

also have ... = g-inner f f
using d-gt-0 unfolding g-norm-sq by simp

finally have |g-inner f (g-step f )| ≤ g-inner f f
by simp

thus ?thesis
using 0 by simp

qed

lemma bdd-above-aux-3 :
assumes f ∈ Λ-test
shows g-inner f (g-step f ) / g-inner f f ≤ 1 (is ?L ≤ ?R)

proof −
have ?L ≤ |g-inner f (g-step f )| / g-inner f f

unfolding g-norm-sq[symmetric]
by (intro divide-right-mono) auto

also have ... ≤ 1
using bdd-above-aux-2 [OF assms] by simp

finally show ?thesis by simp
qed

lemma bdd-above-Λ: bdd-above ((λf . |g-inner f (g-step f )| / g-inner f f ) ‘ Λ-test)
using bdd-above-aux-2
by (intro bdd-aboveI [where M=1 ]) auto

lemma bdd-above-Λ2: bdd-above ((λf . g-inner f (g-step f ) / g-inner f f ) ‘ Λ-test)
using bdd-above-aux-3
by (intro bdd-aboveI [where M=1 ]) auto

lemma Λ-le-1 : Λa ≤ 1
proof (cases n > 1 )

case True
have (SUP f∈Λ-test. |g-inner f (g-step f )| / g-inner f f ) ≤ 1

using bdd-above-aux-2 Λ-test-ne[OF True] by (intro cSup-least) auto
thus Λa ≤ 1

unfolding Λa-def using True by simp
next

case False
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thus ?thesis unfolding Λa-def by simp
qed

lemma Λ2-le-1 : Λ2 ≤ 1
proof (cases n > 1 )

case True
have (SUP f∈Λ-test. g-inner f (g-step f ) / g-inner f f ) ≤ 1

using bdd-above-aux-3 Λ-test-ne[OF True] by (intro cSup-least) auto
thus Λ2 ≤ 1

unfolding Λ2-def using True by simp
next

case False
thus ?thesis unfolding Λ2-def by simp

qed

lemma Λ-ge-0 : Λa ≥ 0
proof (cases n > 1 )

case True
obtain f where f-def : f ∈ Λ-test

using Λ-test-ne[OF True] by auto
have 0 ≤ |g-inner f (g-step f )| / g-inner f f

unfolding g-norm-sq[symmetric] by (intro divide-nonneg-nonneg) auto
also have ... ≤ (SUP f∈Λ-test. |g-inner f (g-step f )| / g-inner f f )

using f-def by (intro cSup-upper bdd-above-Λ) auto
finally have (SUP f∈Λ-test. |g-inner f (g-step f )| / g-inner f f ) ≥ 0

by simp
thus ?thesis

unfolding Λa-def using True by simp
next

case False
thus ?thesis unfolding Λa-def by simp

qed

lemma os-expanderI :
assumes n > 1
assumes

∧
f . g-inner f (λ-. 1 )=0 =⇒ g-inner f (g-step f ) ≤ C∗g-norm f^2

shows Λ2 ≤ C
proof −

have g-inner f (g-step f ) / g-inner f f ≤ C if f ∈ Λ-test for f
proof −

have g-inner f (g-step f ) ≤ C∗g-inner f f
using that Λ-test-def assms(2 ) unfolding g-norm-sq by auto

moreover have g-inner f f > 0
using that unfolding Λ-test-def g-norm-sq[symmetric] by auto

ultimately show ?thesis
by (simp add:divide-simps)

qed
hence (SUP f∈Λ-test. g-inner f (g-step f ) / g-inner f f ) ≤ C

using Λ-test-ne[OF assms(1 )] by (intro cSup-least) auto
thus ?thesis

unfolding Λ2-def using assms by simp
qed

lemma os-expanderD:
assumes g-inner f (λ-. 1 ) = 0
shows g-inner f (g-step f ) ≤ Λ2 ∗ g-norm f^2 (is ?L ≤ ?R)

proof (cases g-norm f 6= 0 )
case True

26



have 0 :f ∈ Λ-test
unfolding Λ-test-def using assms True by auto

hence 1 :n > 1
using Λ-test-empty n-gt-0 by fastforce

have g-inner f (g-step f )/ g-norm f^2 = g-inner f (g-step f )/g-inner f f
unfolding g-norm-sq by simp

also have ... ≤ (SUP f∈Λ-test. g-inner f (g-step f ) / g-inner f f )
by (intro cSup-upper bdd-above-Λ2 imageI 0 )

also have ... = Λ2

using 1 unfolding Λ2-def by simp
finally have g-inner f (g-step f )/ g-norm f^2 ≤ Λ2 by simp
thus ?thesis

using True by (simp add:divide-simps)
next

case False
hence g-inner f f = 0

unfolding g-norm-sq[symmetric] by simp
hence 0 :

∧
v. v ∈ verts G =⇒ f v = 0

unfolding g-inner-def by (subst (asm) sum-nonneg-eq-0-iff ) auto
hence ?L = 0

unfolding g-step-def g-inner-def by simp
also have ... ≤ Λ2 ∗ g-norm f^2

using False by simp
finally show ?thesis by simp

qed

lemma expander-intro-1 :
assumes C ≥ 0
assumes

∧
f . g-inner f (λ-. 1 )=0 =⇒ |g-inner f (g-step f )| ≤ C∗g-norm f^2

shows Λa ≤ C
proof (cases n > 1 )

case True
have |g-inner f (g-step f )| / g-inner f f ≤ C if f ∈ Λ-test for f
proof −

have |g-inner f (g-step f )| ≤ C∗g-inner f f
using that Λ-test-def assms(2 ) unfolding g-norm-sq by auto

moreover have g-inner f f > 0
using that unfolding Λ-test-def g-norm-sq[symmetric] by auto

ultimately show ?thesis
by (simp add:divide-simps)

qed

hence (SUP f∈Λ-test. |g-inner f (g-step f )| / g-inner f f ) ≤ C
using Λ-test-ne[OF True] by (intro cSup-least) auto

thus ?thesis using True unfolding Λa-def by auto
next

case False
then show ?thesis using assms unfolding Λa-def by simp

qed

lemma expander-intro:
assumes C ≥ 0
assumes

∧
f . g-inner f (λ-. 1 )=0 =⇒ |

∑
a ∈ arcs G. f (head G a) ∗ f (tail G a)| ≤ C∗g-norm

f^2
shows Λa ≤ C/d
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proof −
have |g-inner f (g-step f )| ≤ C / real d ∗ (g-norm f )2 (is ?L ≤ ?R)

if g-inner f (λ-. 1 ) = 0 for f
proof −

have ?L = |
∑

a∈arcs G. f (head G a) ∗ f (tail G a)| / real d
unfolding g-inner-step-eq by simp

also have ... ≤ C∗g-norm f^2 / real d
by (intro divide-right-mono assms(2 )[OF that]) auto

also have ... = ?R by simp
finally show ?thesis by simp

qed
thus ?thesis

by (intro expander-intro-1 divide-nonneg-nonneg assms) auto
qed

lemma expansionD1 :
assumes g-inner f (λ-. 1 ) = 0
shows |g-inner f (g-step f )| ≤ Λa ∗ g-norm f^2 (is ?L ≤ ?R)

proof (cases g-norm f 6= 0 )
case True

have 0 :f ∈ Λ-test
unfolding Λ-test-def using assms True by auto

hence 1 :n > 1
using Λ-test-empty n-gt-0 by fastforce

have |g-inner f (g-step f )|/ g-norm f^2 = |g-inner f (g-step f )|/g-inner f f
unfolding g-norm-sq by simp

also have ... ≤ (SUP f∈Λ-test. |g-inner f (g-step f )| / g-inner f f )
by (intro cSup-upper bdd-above-Λ imageI 0 )

also have ... = Λa

using 1 unfolding Λa-def by simp
finally have |g-inner f (g-step f )|/ g-norm f^2 ≤ Λa by simp
thus ?thesis

using True by (simp add:divide-simps)
next

case False
hence g-inner f f = 0

unfolding g-norm-sq[symmetric] by simp
hence 0 :

∧
v. v ∈ verts G =⇒ f v = 0

unfolding g-inner-def by (subst (asm) sum-nonneg-eq-0-iff ) auto
hence ?L = 0

unfolding g-step-def g-inner-def by simp
also have ... ≤ Λa ∗ g-norm f^2

using False by simp
finally show ?thesis by simp

qed

lemma expansionD:
assumes g-inner f (λ-. 1 ) = 0
shows |

∑
a ∈ arcs G. f (head G a) ∗ f (tail G a)| ≤ d ∗ Λa ∗ g-norm f^2 (is ?L ≤ ?R)

proof −
have ?L = |g-inner f (g-step f ) ∗ d|

unfolding g-inner-step-eq using d-gt-0 by simp
also have ... ≤ |g-inner f (g-step f )| ∗ d

by (simp add:abs-mult)
also have ... ≤ (Λa ∗ g-norm f^2 ) ∗ d
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by (intro expansionD1 mult-right-mono assms(1 )) auto
also have ... = ?R by simp
finally show ?thesis by simp

qed

definition edges-betw where edges-betw S T = {a ∈ arcs G. tail G a ∈ S ∧ head G a ∈ T}

This parameter is the edge expansion. It is usually denoted by the symbol h or h(G)
in text books. Contrary to the previous definitions it doesn’t have a spectral theoretic
counter part.
definition Λe where Λe = (if n > 1 then
(MIN S∈{S . S⊆verts G∧2∗card S≤n∧S 6={}}. real (card (edges-betw S (−S)))/card S) else 0 )

lemma edge-expansionD:
assumes S ⊆ verts G 2∗card S ≤ n
shows Λe ∗ card S ≤ real (card (edges-betw S (−S)))

proof (cases S 6= {})
case True
moreover have finite S

using finite-subset[OF assms(1 )] by simp
ultimately have card S > 0 by auto
hence 1 : real (card S) > 0 by simp
hence 2 : n > 1 using assms(2 ) by simp

let ?St = {S . S ⊆ verts G ∧ 2 ∗ card S ≤ n ∧ S 6= {}}

have 0 : finite ?St
by (rule finite-subset[where B=Pow (verts G)]) auto

have Λe = (MIN S∈?St. real (card (edges-betw S (−S)))/card S)
using 2 unfolding Λe-def by simp

also have ... ≤ real (card (edges-betw S (−S))) / card S
using assms True by (intro Min-le finite-imageI imageI ) auto

finally have Λe ≤ real (card (edges-betw S (−S))) / card S by simp
thus ?thesis using 1 by (simp add:divide-simps)

next
case False
hence card S = 0 by simp
thus ?thesis by simp

qed

lemma edge-expansionI :
fixes α :: real
assumes n > 1
assumes

∧
S . S ⊆ verts G =⇒ 2∗card S ≤ n =⇒ S 6= {} =⇒ card (edges-betw S (−S)) ≥ α ∗

card S
shows Λe ≥ α

proof −
define St where St = {S . S ⊆ verts G ∧ 2∗card S ≤ n ∧ S 6= {}}
have 0 : finite St

unfolding St-def
by (rule finite-subset[where B=Pow (verts G)]) auto

obtain v where v-def : v ∈ verts G using verts-non-empty by auto

have {v} ∈ St
using assms v-def unfolding St-def n-def by auto

hence 1 : St 6= {} by auto
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have 2 : α ≤ real (card (edges-betw S (− S))) / real (card S) if S ∈ St for S
proof −

have real (card (edges-betw S (− S))) ≥ α ∗ card S
using assms(2 ) that unfolding St-def by simp

moreover have finite S
using that unfolding St-def
by (intro finite-subset[OF - finite-verts]) auto

hence card S > 0
using that unfolding St-def by auto

ultimately show ?thesis
by (simp add:divide-simps)

qed

have α ≤ (MIN S∈St. real (card (edges-betw S (− S))) / real (card S))
using 0 1 2
by (intro Min.boundedI finite-imageI ) auto

thus ?thesis
unfolding Λe-def St-def [symmetric] using assms by auto

qed

end

lemma regular-graphI :
assumes symmetric-multi-graph G
assumes verts G 6= {} d > 0
assumes

∧
v. v ∈ verts G =⇒ out-degree G v = d

shows regular-graph G
proof −

obtain v where v-def : v ∈ verts G
using assms(2 ) by auto

have arcs G 6= {}
proof (rule ccontr)

assume ¬arcs G 6= {}
hence arcs G = {} by simp
hence out-degree G v = 0

unfolding out-degree-def out-arcs-def by simp
hence d = 0

using v-def assms(4 ) by simp
thus False

using assms(3 ) by simp
qed

thus ?thesis
using assms symmetric-multi-graphD2 [OF assms(1 )]
unfolding regular-graph-def regular-graph-axioms-def
by simp

qed

The following theorems verify that a graph isomorphisms preserve symmetry, regularity
and all the expansion coefficients.
lemma (in fin-digraph) symmetric-graph-iso:

assumes digraph-iso G H
assumes symmetric-multi-graph G
shows symmetric-multi-graph H

proof −
obtain h where hom-iso: digraph-isomorphism h and H-alt: H = app-iso h G
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using assms unfolding digraph-iso-def by auto

have 0 :fin-digraph H
unfolding H-alt
by (intro fin-digraphI-app-iso hom-iso)

interpret H :fin-digraph H
using 0 by auto

have 1 :arcs-betw H (iso-verts h v) (iso-verts h w) = iso-arcs h ‘ arcs-betw G v w
(is ?L = ?R) if v ∈ verts G w ∈ verts G for v w

proof −
have ?L = {a ∈ iso-arcs h ‘ arcs G. iso-head h a=iso-verts h w ∧ iso-tail h a=iso-verts h v}

unfolding arcs-betw-def H-alt arcs-app-iso head-app-iso tail-app-iso by simp
also have ... = {a. (∃ b ∈ arcs G. a = iso-arcs h b ∧ iso-verts h (head G b) = iso-verts h w ∧

iso-verts h (tail G b) = iso-verts h v)}
using iso-verts-head[OF hom-iso] iso-verts-tail[OF hom-iso] by auto

also have ... = {a. (∃ b ∈ arcs G. a = iso-arcs h b ∧ head G b = w ∧ tail G b = v)}
using that iso-verts-eq-iff [OF hom-iso] by auto

also have ... = ?R
unfolding arcs-betw-def by (auto simp add:image-iff set-eq-iff )

finally show ?thesis by simp
qed

have card (arcs-betw H w v) = card (arcs-betw H v w) (is ?L = ?R)
if v-range: v ∈ verts H and w-range: w ∈ verts H for v w

proof −
obtain v ′ where v ′: v = iso-verts h v ′ v ′ ∈ verts G

using that v-range verts-app-iso unfolding H-alt by auto
obtain w ′ where w ′: w = iso-verts h w ′ w ′ ∈ verts G

using that w-range verts-app-iso unfolding H-alt by auto
have ?L = card (arcs-betw H (iso-verts h w ′) (iso-verts h v ′))

unfolding v ′ w ′ by simp
also have ... = card (iso-arcs h ‘ arcs-betw G w ′ v ′)

by (intro arg-cong[where f=card] 1 v ′ w ′)
also have ... = card (arcs-betw G w ′ v ′)

using iso-arcs-eq-iff [OF hom-iso] unfolding arcs-betw-def
by (intro card-image inj-onI ) auto

also have ... = card (arcs-betw G v ′ w ′)
by (intro symmetric-multi-graphD4 assms(2 ))

also have ... = card (iso-arcs h ‘ arcs-betw G v ′ w ′)
using iso-arcs-eq-iff [OF hom-iso] unfolding arcs-betw-def
by (intro card-image[symmetric] inj-onI ) auto

also have ... = card (arcs-betw H (iso-verts h v ′) (iso-verts h w ′))
by (intro arg-cong[where f=card] 1 [symmetric] v ′ w ′)

also have ... = ?R
unfolding v ′ w ′ by simp

finally show ?thesis by simp
qed

thus ?thesis
using 0 unfolding symmetric-multi-graph-def by auto

qed

lemma (in regular-graph)
assumes digraph-iso G H
shows regular-graph-iso: regular-graph H

and regular-graph-iso-size: regular-graph.n H = n
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and regular-graph-iso-degree: regular-graph.d H = d
and regular-graph-iso-expansion-le: regular-graph.Λa H ≤ Λa

and regular-graph-iso-os-expansion-le: regular-graph.Λ2 H ≤ Λ2

and regular-graph-iso-edge-expansion-ge: regular-graph.Λe H ≥ Λe

proof −
obtain h where hom-iso: digraph-isomorphism h and H-alt: H = app-iso h G

using assms unfolding digraph-iso-def by auto

have 0 :symmetric-multi-graph H
by (intro symmetric-graph-iso[OF assms(1 )] sym)

have 1 :verts H 6= {}
unfolding H-alt verts-app-iso using verts-non-empty by simp

then obtain h-wit where h-wit: h-wit ∈ verts H
by auto

have 3 :out-degree H v = d if v-range: v ∈ verts H for v
proof −

obtain v ′ where v ′: v = iso-verts h v ′ v ′ ∈ verts G
using that v-range verts-app-iso unfolding H-alt by auto

have out-degree H v = out-degree G v ′

unfolding v ′ H-alt by (intro out-degree-app-iso-eq[OF hom-iso] v ′)
also have ... = d

by (intro reg v ′)
finally show ?thesis by simp

qed

thus 2 :regular-graph H
by (intro regular-graphI [where d=d] 0 d-gt-0 1 ) auto

interpret H :regular-graph H
using 2 by auto

have H .n = card (iso-verts h ‘ verts G)
unfolding H .n-def unfolding H-alt verts-app-iso by simp

also have ... = card (verts G)
by (intro card-image digraph-isomorphism-inj-on-verts hom-iso)

also have ... = n
unfolding n-def by simp

finally show n-eq: H .n = n by simp

have H .d = out-degree H h-wit
by (intro H .reg[symmetric] h-wit)

also have ... = d
by (intro 3 h-wit)

finally show 4 :H .d = d by simp

have bij-betw (iso-verts h) (verts G) (verts H )
unfolding H-alt using hom-iso
by (simp add: bij-betw-def digraph-isomorphism-inj-on-verts)

hence g-inner-conv:
H .g-inner f g = g-inner (λx. f (iso-verts h x)) (λx. g (iso-verts h x))
for f g :: ′c ⇒ real
unfolding g-inner-def H .g-inner-def by (intro sum.reindex-bij-betw[symmetric])

have g-step-conv:
H .g-step f (iso-verts h x) = g-step (λx. f (iso-verts h x)) x if x ∈ verts G
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for f :: ′c ⇒ real and x
proof −

have inj-on (iso-arcs h) (in-arcs G x)
using inj-on-subset[OF digraph-isomorphism-inj-on-arcs[OF hom-iso]]
by (simp add:in-arcs-def )

moreover have in-arcs H (iso-verts h x) = iso-arcs h ‘ in-arcs G x
unfolding H-alt by (intro in-arcs-app-iso-eq[OF hom-iso] that)

moreover have tail H (iso-arcs h a) = iso-verts h (tail G a) if a ∈ in-arcs G x for a
unfolding H-alt using that by (simp add: hom-iso iso-verts-tail)

ultimately show ?thesis
unfolding g-step-def H .g-step-def
by (intro-cong [σ2(/), σ1 f , σ1 of-nat] more: 4 sum.reindex-cong[where l=iso-arcs h])

qed

show H .Λa ≤ Λa

using expansionD1 by (intro H .expander-intro-1 Λ-ge-0 )
(simp add:g-inner-conv g-step-conv H .g-norm-sq g-norm-sq cong:g-inner-cong)

show H .Λ2 ≤ Λ2

proof (cases n > 1 )
case True
hence H .n > 1

by (simp add:n-eq)
thus ?thesis

using os-expanderD by (intro H .os-expanderI )
(simp-all add:g-inner-conv g-step-conv H .g-norm-sq g-norm-sq cong:g-inner-cong)

next
case False
thus ?thesis

unfolding H .Λ2-def Λ2-def by (simp add:n-eq)
qed

show H .Λe ≥ Λe

proof (cases n > 1 )
case True
hence n-gt-1 : H .n > 1

by (simp add:n-eq)
have Λe ∗ real (card S) ≤ real (card (H .edges-betw S (− S)))

if S ⊆ verts H 2 ∗ card S ≤ H .n S 6= {} for S
proof −

define T where T = iso-verts h −‘ S ∩ verts G
have 4 :card T = card S

using that(1 ) unfolding T-def H-alt verts-app-iso
by (intro card-vimage-inj-on digraph-isomorphism-inj-on-verts[OF hom-iso]) auto

have card (H .edges-betw S (−S))=card {a∈iso-arcs h‘arcs G. iso-tail h a∈S∧iso-head h a∈
−S}

unfolding H .edges-betw-def unfolding H-alt tail-app-iso head-app-iso arcs-app-iso
by simp

also have ...=
card(iso-arcs h‘ {a ∈ arcs G. iso-tail h (iso-arcs h a)∈S∧ iso-head h (iso-arcs h a)∈−S})
by (intro arg-cong[where f=card]) auto

also have ... = card {a ∈ arcs G. iso-tail h (iso-arcs h a)∈S∧ iso-head h (iso-arcs h a)∈−S}
by (intro card-image inj-on-subset[OF digraph-isomorphism-inj-on-arcs[OF hom-iso]]) auto

also have ... = card {a ∈ arcs G. iso-verts h (tail G a) ∈ S ∧ iso-verts h (head G a) ∈ −S}
by (intro restr-Collect-cong arg-cong[where f=card])
(simp add: iso-verts-tail[OF hom-iso] iso-verts-head[OF hom-iso])

also have ... = card {a ∈ arcs G. tail G a ∈ T ∧ head G a ∈ −T }
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unfolding T-def by (intro-cong [σ1(card),σ2 (∧)] more: restr-Collect-cong) auto
also have ... = card (edges-betw T (−T ))

unfolding edges-betw-def by simp
finally have 5 :card (edges-betw T (−T )) = card (H .edges-betw S (−S))

by simp

have 6 : T ⊆ verts G unfolding T-def by simp

have Λe ∗ real (card S) = Λe ∗ real (card T )
unfolding 4 by simp

also have ... ≤ real (card (edges-betw T (−T )))
using that(2 ) by (intro edge-expansionD 6 ) (simp add:4 n-eq)

also have ... = real (card (H .edges-betw S (−S)))
unfolding 5 by simp

finally show ?thesis by simp
qed

thus ?thesis
by (intro H .edge-expansionI n-gt-1 ) auto

next
case False
thus ?thesis

unfolding H .Λe-def Λe-def by (simp add:n-eq)
qed

qed

lemma (in regular-graph)
assumes digraph-iso G H
shows regular-graph-iso-expansion: regular-graph.Λa H = Λa

and regular-graph-iso-os-expansion: regular-graph.Λ2 H = Λ2

and regular-graph-iso-edge-expansion: regular-graph.Λe H = Λe

proof −
interpret H :regular-graph H

by (intro regular-graph-iso assms)

have iso:digraph-iso H G
using digraph-iso-swap assms wf-digraph-axioms by blast

hence Λa ≤ H .Λa

by (intro H .regular-graph-iso-expansion-le)
moreover have H .Λa ≤ Λa

using regular-graph-iso-expansion-le[OF assms] by auto
ultimately show H .Λa = Λa

by auto

have Λ2 ≤ H .Λ2 using iso
by (intro H .regular-graph-iso-os-expansion-le)

moreover have H .Λ2 ≤ Λ2

using regular-graph-iso-os-expansion-le[OF assms] by auto
ultimately show H .Λ2 = Λ2

by auto

have Λe ≥ H .Λe using iso
by (intro H .regular-graph-iso-edge-expansion-ge)

moreover have H .Λe ≥ Λe

using regular-graph-iso-edge-expansion-ge[OF assms] by auto
ultimately show H .Λe = Λe
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by auto
qed

unbundle no intro-cong-syntax

end

4 Setup for Types to Sets
theory Expander-Graphs-TTS

imports
Expander-Graphs-Definition
HOL−Analysis.Cartesian-Space
HOL−Types-To-Sets.Types-To-Sets

begin

This section sets up a sublocale with the assumption that there is a finite type with the
same cardinality as the vertex set of a regular graph. This allows defining the adjacency
matrix for the graph using type-based linear algebra.
Theorems shown in the sublocale that do not refer to the local type are then lifted to the
regular-graph locale using the Types-To-Sets mechanism.
locale regular-graph-tts = regular-graph +

fixes n-itself :: ( ′n :: finite) itself
assumes td: ∃ (f :: ( ′n ⇒ ′a)) g. type-definition f g (verts G)

begin

definition td-components :: ( ′n ⇒ ′a) × ( ′a ⇒ ′n)
where td-components = (SOME q. type-definition (fst q) (snd q) (verts G))

definition enum-verts where enum-verts = fst td-components
definition enum-verts-inv where enum-verts-inv = snd td-components

sublocale type-definition enum-verts enum-verts-inv verts G
proof −

have 0 :∃ q. type-definition ((fst q)::( ′n ⇒ ′a)) (snd q) (verts G)
using td by simp

show type-definition enum-verts enum-verts-inv (verts G)
unfolding td-components-def enum-verts-def enum-verts-inv-def using someI-ex[OF 0 ] by

simp
qed

lemma enum-verts: bij-betw enum-verts UNIV (verts G)
unfolding bij-betw-def by (simp add: Rep-inject Rep-range inj-on-def )

The stochastic matrix associated to the graph.
definition A :: ( ′c::field)^ ′n^ ′n where

A = (χ i j. of-nat (count (edges G) (enum-verts j,enum-verts i))/of-nat d)

lemma card-n: CARD( ′n) = n
unfolding n-def card by simp

lemma symmetric-A: transpose A = A
proof −

have A $ i $ j = A $ j $ i for i j
unfolding A-def count-edges arcs-betw-def using symmetric-multi-graphD[OF sym]
by auto
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thus ?thesis
unfolding transpose-def
by (intro iffD2 [OF vec-eq-iff ] allI ) auto

qed

lemma g-step-conv:
(χ i. g-step f (enum-verts i)) = A ∗v (χ i. f (enum-verts i))

proof −
have g-step f (enum-verts i) = (

∑
j∈UNIV . A $ i $ j ∗ f (enum-verts j)) (is ?L = ?R) for i

proof −
have ?L = (

∑
x∈in-arcs G (enum-verts i). f (tail G x) / d)

unfolding g-step-def by simp
also have ... = (

∑
x∈#vertices-to G (enum-verts i). f x/d)

unfolding verts-to-alt sum-unfold-sum-mset by (simp add:image-mset.compositionality
comp-def )

also have ... = (
∑

j∈verts G. (count (vertices-to G (enum-verts i)) j) ∗ (f j / real d))
by (intro sum-mset-conv-2 set-mset-vertices-to) auto

also have ... = (
∑

j∈verts G. (count (edges G) (j,enum-verts i)) ∗ (f j / real d))
unfolding vertices-to-def count-mset-exp
by (intro sum.cong arg-cong[where f=real] arg-cong2 [where f=(∗)])
(auto simp add:filter-filter-mset image-mset-filter-mset-swap[symmetric] prod-eq-iff ac-simps)

also have ...=(
∑

j∈UNIV .(count(edges G)(enum-verts j,enum-verts i))∗(f (enum-verts j)/real
d))

by (intro sum.reindex-bij-betw[symmetric] enum-verts)
also have ... = ?R

unfolding A-def by simp
finally show ?thesis by simp

qed
thus ?thesis

unfolding matrix-vector-mult-def by (intro iffD2 [OF vec-eq-iff ] allI ) simp
qed

lemma g-inner-conv:
g-inner f g = (χ i. f (enum-verts i)) · (χ i. g (enum-verts i))
unfolding inner-vec-def g-inner-def vec-lambda-beta inner-real-def conjugate-real-def
by (intro sum.reindex-bij-betw[symmetric] enum-verts)

lemma g-norm-conv:
g-norm f = norm (χ i. f (enum-verts i))

proof −
have g-norm f^2 = norm (χ i. f (enum-verts i))^2

unfolding g-norm-sq power2-norm-eq-inner g-inner-conv by simp
thus ?thesis

using g-norm-nonneg norm-ge-zero by simp
qed

end

lemma eg-tts-1 :
assumes regular-graph G
assumes ∃ (f ::( ′n::finite) ⇒ ′a) g. type-definition f g (verts G)
shows regular-graph-tts TYPE( ′n) G
using assms
unfolding regular-graph-tts-def regular-graph-tts-axioms-def by auto

context regular-graph
begin
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lemma remove-finite-premise-aux:
assumes ∃ (Rep :: ′n ⇒ ′a) Abs. type-definition Rep Abs (verts G)
shows class.finite TYPE( ′n)

proof −
obtain Rep :: ′n ⇒ ′a and Abs where d:type-definition Rep Abs (verts G)

using assms by auto
interpret type-definition Rep Abs verts G

using d by simp

have finite (verts G) by simp
thus ?thesis

unfolding class.finite-def univ by auto
qed

lemma remove-finite-premise:
(class.finite TYPE( ′n) =⇒ ∃ (Rep :: ′n ⇒ ′a) Abs. type-definition Rep Abs (verts G) =⇒ PROP

Q)
≡ (∃ (Rep :: ′n ⇒ ′a) Abs. type-definition Rep Abs (verts G) =⇒ PROP Q)
(is ?L ≡ ?R)

proof (intro Pure.equal-intr-rule)
assume e:∃ (Rep :: ′n ⇒ ′a) Abs. type-definition Rep Abs (verts G) and l:PROP ?L
hence f : class.finite TYPE( ′n)

using remove-finite-premise-aux[OF e] by simp

show PROP ?R
using l[OF f ] by auto

next
assume ∃ (Rep :: ′n ⇒ ′a) Abs. type-definition Rep Abs (verts G) and l:PROP ?R
show PROP ?L

using l by auto
qed

end

end

5 Algebra-only Theorems

This section verifies the linear algebraic counter-parts of the graph-theoretic theorems
about Random walks. The graph-theoretic results are then derived in Section 9.
theory Expander-Graphs-Algebra

imports
HOL−Library.Monad-Syntax
Expander-Graphs-TTS

begin

lemma pythagoras:
fixes v w :: ′a::real-inner
assumes v · w = 0
shows norm (v+w)^2 = norm v^2 + norm w^2
using assms by (simp add:power2-norm-eq-inner algebra-simps inner-commute)

definition diag :: ( ′a :: zero)^ ′n ⇒ ′a^ ′n^ ′n
where diag v = (χ i j. if i = j then (v $ i) else 0 )

definition ind-vec :: ′n set ⇒ real^ ′n
where ind-vec S = (χ i. of-bool( i ∈ S))
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lemma diag-mult-eq: diag x ∗∗ diag y = diag (x ∗ y)
unfolding diag-def
by (vector matrix-matrix-mult-def )
(auto simp add:if-distrib if-distribR sum.If-cases)

lemma diag-vec-mult-eq: diag x ∗v y = x ∗ y
unfolding diag-def matrix-vector-mult-def
by (simp add:if-distrib if-distribR sum.If-cases times-vec-def )

definition matrix-norm-bound :: real^ ′n^ ′m ⇒ real ⇒ bool
where matrix-norm-bound A l = (∀ x. norm (A ∗v x) ≤ l ∗ norm x)

lemma matrix-norm-boundI :
assumes

∧
x. norm (A ∗v x) ≤ l ∗ norm x

shows matrix-norm-bound A l
using assms unfolding matrix-norm-bound-def by simp

lemma matrix-norm-boundD:
assumes matrix-norm-bound A l
shows norm (A ∗v x) ≤ l ∗ norm x
using assms unfolding matrix-norm-bound-def by simp

lemma matrix-norm-bound-nonneg:
fixes A :: real^ ′n^ ′m
assumes matrix-norm-bound A l
shows l ≥ 0

proof −
have 0 ≤ norm (A ∗v 1 ) by simp
also have ... ≤ l ∗ norm (1 ::real^ ′n)

using assms(1 ) unfolding matrix-norm-bound-def by simp
finally have 0 ≤ l ∗ norm (1 ::real^ ′n)

by simp
moreover have norm (1 ::real^ ′n) > 0

by simp
ultimately show ?thesis

by (simp add: zero-le-mult-iff )
qed

lemma matrix-norm-bound-0 :
assumes matrix-norm-bound A 0
shows A = (0 ::real^ ′n^ ′m)

proof (intro iffD2 [OF matrix-eq] allI )
fix x :: real^ ′n
have norm (A ∗v x) = 0

using assms unfolding matrix-norm-bound-def by simp
thus A ∗v x = 0 ∗v x

by simp
qed

lemma matrix-norm-bound-diag:
fixes x :: real^ ′n
assumes

∧
i. |x $ i| ≤ l

shows matrix-norm-bound (diag x) l
proof (rule matrix-norm-boundI )

fix y :: real^ ′n

have l-ge-0 : l ≥ 0 using assms by fastforce
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have a: |x $ i ∗ v| ≤ |l ∗ v| for v i
using l-ge-0 assms by (simp add:abs-mult mult-right-mono)

have norm (diag x ∗v y) = sqrt (
∑

i ∈ UNIV . (x $ i ∗ y $ i)^2 )
unfolding matrix-vector-mult-def diag-def norm-vec-def L2-set-def
by (auto simp add:if-distrib if-distribR sum.If-cases)

also have ... ≤ sqrt (
∑

i ∈ UNIV . (l ∗ y $ i)^2 )
by (intro real-sqrt-le-mono sum-mono iffD1 [OF abs-le-square-iff ] a)

also have ... = l ∗ norm y
using l-ge-0 by (simp add:norm-vec-def L2-set-def algebra-simps

sum-distrib-left[symmetric] real-sqrt-mult)
finally show norm (diag x ∗v y) ≤ l ∗ norm y by simp

qed

lemma vector-scaleR-matrix-ac-2 : b ∗R (A::real^ ′n^ ′m) ∗v x = b ∗R (A ∗v x)
unfolding vector-transpose-matrix[symmetric] transpose-scalar
by (intro vector-scaleR-matrix-ac)

lemma matrix-norm-bound-scale:
assumes matrix-norm-bound A l
shows matrix-norm-bound (b ∗R A) (|b| ∗ l)

proof (intro matrix-norm-boundI )
fix x
have norm (b ∗R A ∗v x) = norm (b ∗R (A ∗v x))

by (metis transpose-scalar vector-scaleR-matrix-ac vector-transpose-matrix)
also have ... = |b| ∗ norm (A ∗v x)

by simp
also have ... ≤ |b| ∗ (l ∗ norm x)

using assms matrix-norm-bound-def by (intro mult-left-mono) auto
also have ... ≤ (|b| ∗ l) ∗ norm x by simp
finally show norm (b ∗R A ∗v x) ≤ (|b| ∗ l) ∗ norm x by simp

qed

definition nonneg-mat :: real^ ′n^ ′m ⇒ bool
where nonneg-mat A = (∀ i j. A $ i $ j ≥ 0 )

lemma nonneg-mat-1 :
shows nonneg-mat (mat 1 )
unfolding nonneg-mat-def mat-def by auto

lemma nonneg-mat-prod:
assumes nonneg-mat A nonneg-mat B
shows nonneg-mat (A ∗∗ B)
using assms unfolding nonneg-mat-def matrix-matrix-mult-def
by (auto intro:sum-nonneg)

lemma nonneg-mat-transpose:
nonneg-mat (transpose A) = nonneg-mat A
unfolding nonneg-mat-def transpose-def
by auto

definition spec-bound :: real^ ′n^ ′n ⇒ real ⇒ bool
where spec-bound M l = (l ≥ 0 ∧ (∀ v. v · 1 = 0 −→ norm (M ∗v v) ≤ l ∗ norm v))

lemma spec-boundD1 :
assumes spec-bound M l
shows 0 ≤ l
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using assms unfolding spec-bound-def by simp

lemma spec-boundD2 :
assumes spec-bound M l
assumes v · 1 = 0
shows norm (M ∗v v) ≤ l ∗ norm v
using assms unfolding spec-bound-def by simp

lemma spec-bound-mono:
assumes spec-bound M α α ≤ β
shows spec-bound M β

proof −
have norm (M ∗v v) ≤ β ∗ norm v if inner v 1 = 0 for v
proof −

have norm (M ∗v v) ≤ α ∗ norm v
by (intro spec-boundD2 [OF assms(1 )] that)

also have ... ≤ β ∗ norm v
by (intro mult-right-mono assms(2 )) auto

finally show ?thesis by simp
qed
moreover have β ≥ 0

using assms(2 ) spec-boundD1 [OF assms(1 )] by simp
ultimately show ?thesis

unfolding spec-bound-def by simp
qed

definition markov :: real^ ′n^ ′n ⇒ bool
where markov M = (nonneg-mat M ∧ M ∗v 1 = 1 ∧ 1 v∗ M = 1 )

lemma markov-symI :
assumes nonneg-mat A transpose A = A A ∗v 1 = 1
shows markov A

proof −
have 1 v∗ A = transpose A ∗v 1

unfolding vector-transpose-matrix[symmetric] by simp
also have ... = 1 unfolding assms(2 ,3 ) by simp
finally have 1 v∗ A = 1 by simp
thus ?thesis

unfolding markov-def using assms by auto
qed

lemma markov-apply:
assumes markov M
shows M ∗v 1 = 1 1 v∗ M = 1
using assms unfolding markov-def by auto

lemma markov-transpose:
markov A = markov (transpose A)
unfolding markov-def nonneg-mat-transpose by auto

fun matrix-pow where
matrix-pow M 0 = mat 1 |
matrix-pow M (Suc n) = M ∗∗ (matrix-pow M n)

lemma markov-orth-inv:
assumes markov A
shows inner (A ∗v x) 1 = inner x 1

proof −
have inner (A ∗v x) 1 = inner x (1 v∗ A)
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using dot-lmul-matrix inner-commute by metis
also have ... = inner x 1

using markov-apply[OF assms(1 )] by simp
finally show ?thesis by simp

qed

lemma markov-id:
markov (mat 1 )
unfolding markov-def using nonneg-mat-1 by simp

lemma markov-mult:
assumes markov A markov B
shows markov (A ∗∗ B)

proof −
have nonneg-mat (A ∗∗ B)

using assms unfolding markov-def by (intro nonneg-mat-prod) auto
moreover have (A ∗∗ B) ∗v 1 = 1

using assms unfolding markov-def
unfolding matrix-vector-mul-assoc[symmetric] by simp

moreover have 1 v∗ (A ∗∗ B) = 1
using assms unfolding markov-def
unfolding vector-matrix-mul-assoc[symmetric] by simp

ultimately show ?thesis
unfolding markov-def by simp

qed

lemma markov-matrix-pow:
assumes markov A
shows markov (matrix-pow A k)
using markov-id assms markov-mult
by (induction k, auto)

lemma spec-bound-prod:
assumes markov A markov B
assumes spec-bound A la spec-bound B lb
shows spec-bound (A ∗∗ B) (la∗lb)

proof −
have la-ge-0 : la ≥ 0 using spec-boundD1 [OF assms(3 )] by simp

have norm ((A ∗∗ B) ∗v x) ≤ (la ∗ lb) ∗ norm x if inner x 1 = 0 for x
proof −

have norm ((A ∗∗ B) ∗v x) = norm (A ∗v (B ∗v x))
by (simp add:matrix-vector-mul-assoc)

also have ... ≤ la ∗ norm (B ∗v x)
by (intro spec-boundD2 [OF assms(3 )]) (simp add:markov-orth-inv that assms(2 ))

also have ... ≤ la ∗ (lb ∗ norm x)
by (intro spec-boundD2 [OF assms(4 )] mult-left-mono that la-ge-0 )

finally show ?thesis by simp
qed
moreover have la ∗ lb ≥ 0

using la-ge-0 spec-boundD1 [OF assms(4 )] by simp
ultimately show ?thesis

using spec-bound-def by auto
qed

lemma spec-bound-pow:
assumes markov A
assumes spec-bound A l
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shows spec-bound (matrix-pow A k) (l^k)
proof (induction k)

case 0
then show ?case unfolding spec-bound-def by simp

next
case (Suc k)
have spec-bound (A ∗∗ matrix-pow A k) (l ∗ l ^ k)

by (intro spec-bound-prod assms Suc markov-matrix-pow)
thus ?case by simp

qed

fun intersperse :: ′a ⇒ ′a list ⇒ ′a list
where

intersperse x [] = [] |
intersperse x (y#[]) = y#[] |
intersperse x (y#z#zs) = y#x#intersperse x (z#zs)

lemma intersperse-snoc:
assumes xs 6= []
shows intersperse z (xs@[y]) = intersperse z xs@[z,y]
using assms

proof (induction xs rule:list-nonempty-induct)
case (single x)
then show ?case by simp

next
case (cons x xs)
then obtain xsh xst where t:xs = xsh#xst

by (metis neq-Nil-conv)
have intersperse z ((x # xs) @ [y]) = x#z#intersperse z (xs@[y])

unfolding t by simp
also have ... = x#z#intersperse z xs@[z,y]

using cons by simp
also have ... = intersperse z (x#xs)@[z,y]

unfolding t by simp
finally show ?case by simp

qed

lemma foldl-intersperse:
assumes xs 6= []
shows foldl f a ((intersperse x xs)@[x]) = foldl (λy z. f (f y z) x) a xs
using assms by (induction xs rule:rev-nonempty-induct) (auto simp add:intersperse-snoc)

lemma foldl-intersperse-2 :
shows foldl f a (intersperse y (x#xs)) = foldl (λx z. f (f x y) z) (f a x) xs

proof (induction xs rule:rev-induct)
case Nil
then show ?case by simp

next
case (snoc xst xs)
have foldl f a (intersperse y ((x # xs) @ [xst])) = foldl (λx. f (f x y)) (f a x) (xs @ [xst])

by (subst intersperse-snoc, auto simp add:snoc)
then show ?case by simp

qed

context regular-graph-tts
begin
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definition stat :: real^ ′n
where stat = (1 / real CARD( ′n)) ∗R 1

definition J :: ( ′c :: field)^ ′n^ ′n
where J = (χ i j. of-nat 1 / of-nat CARD( ′n))

lemma inner-1-1 : 1 · (1 ::real^ ′n) = CARD( ′n)
unfolding inner-vec-def by simp

definition proj-unit :: real^ ′n ⇒ real^ ′n
where proj-unit v = (1 · v) ∗R stat

definition proj-rem :: real^ ′n ⇒ real^ ′n
where proj-rem v = v − proj-unit v

lemma proj-rem-orth: 1 · (proj-rem v) = 0
unfolding proj-rem-def proj-unit-def inner-diff-right stat-def
by (simp add:inner-1-1 )

lemma split-vec: v = proj-unit v + proj-rem v
unfolding proj-rem-def by simp

lemma apply-J : J ∗v x = proj-unit x
proof (intro iffD2 [OF vec-eq-iff ] allI )

fix i
have (J ∗v x) $ i = inner (χ j. 1 / real CARD( ′n)) x

unfolding matrix-vector-mul-component J-def by simp
also have ... = inner stat x

unfolding stat-def scaleR-vec-def by auto
also have ... = (proj-unit x) $ i

unfolding proj-unit-def stat-def by simp
finally show (J ∗v x) $ i = (proj-unit x) $ i by simp

qed

lemma spec-bound-J : spec-bound (J :: real^ ′n^ ′n) 0
proof −

have norm (J ∗v v) = 0 if inner v 1 = 0 for v :: real^ ′n
proof −

have inner (proj-unit v + proj-rem v) 1 = 0
using that by (subst (asm) split-vec[of v], simp)

hence inner (proj-unit v) 1 = 0
using proj-rem-orth inner-commute unfolding inner-add-left
by (metis add-cancel-left-right)

hence proj-unit v = 0
unfolding proj-unit-def stat-def by simp

hence J ∗v v = 0
unfolding apply-J by simp

thus ?thesis by simp
qed
thus ?thesis

unfolding spec-bound-def by simp
qed

lemma matrix-decomposition-lemma-aux:
fixes A :: real^ ′n^ ′n
assumes markov A
shows spec-bound A l ←→ matrix-norm-bound (A − (1−l) ∗R J ) l (is ?L ←→ ?R)

proof
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assume a:?L
hence l-ge-0 : l ≥ 0 using spec-boundD1 by auto
show ?R
proof (rule matrix-norm-boundI )

fix x :: real^ ′n
have (A − (1−l) ∗R J ) ∗v x = A ∗v x − (1−l) ∗R (proj-unit x)

by (simp add:algebra-simps vector-scaleR-matrix-ac-2 apply-J )
also have ... = A ∗v proj-unit x + A ∗v proj-rem x − (1−l) ∗R (proj-unit x)

by (subst split-vec[of x], simp add:algebra-simps)
also have ... = proj-unit x + A ∗v proj-rem x − (1−l) ∗R (proj-unit x)

using markov-apply[OF assms(1 )]
unfolding proj-unit-def stat-def by (simp add:algebra-simps)

also have ... = A ∗v proj-rem x + l ∗R proj-unit x (is - = ?R1 )
by (simp add:algebra-simps)

finally have d:(A − (1−l) ∗R J ) ∗v x = ?R1 by simp

have inner (l ∗R proj-unit x) (A ∗v proj-rem x) =
inner ((l ∗ inner 1 x / real CARD( ′n)) ∗R 1 v∗ A) (proj-rem x)
by (subst dot-lmul-matrix[symmetric]) (simp add:proj-unit-def stat-def )

also have ... = (l ∗ inner 1 x / real CARD( ′n)) ∗ inner 1 (proj-rem x)
unfolding scaleR-vector-matrix-assoc markov-apply[OF assms] by simp

also have ... = 0
unfolding proj-rem-orth by simp

finally have b:inner (l ∗R proj-unit x) (A ∗v proj-rem x) = 0 by simp

have c: inner (proj-rem x) (proj-unit x) = 0
using proj-rem-orth[of x]
unfolding proj-unit-def stat-def by (simp add:inner-commute)

have norm (?R1 )^2 = norm (A ∗v proj-rem x)^2 + norm (l ∗R proj-unit x)^2
using b by (intro pythagoras) (simp add:inner-commute)

also have ... ≤ (l ∗ norm (proj-rem x))^2 + norm (l ∗R proj-unit x)^2
using proj-rem-orth[of x]
by (intro add-mono power-mono spec-boundD2 a) (auto simp add:inner-commute)

also have ... = l^2 ∗ (norm (proj-rem x)^2 + norm (proj-unit x)^2 )
by (simp add:algebra-simps)

also have ... = l^2 ∗ (norm (proj-rem x + proj-unit x)^2 )
using c by (subst pythagoras) auto

also have ... = l^2 ∗ norm x^2
by (subst (3 ) split-vec[of x]) (simp add:algebra-simps)

also have ... = (l ∗ norm x)^2
by (simp add:algebra-simps)

finally have norm (?R1 )^2 ≤ (l ∗ norm x)^2 by simp
hence norm (?R1 ) ≤ l ∗ norm x

using l-ge-0 by (subst (asm) power-mono-iff ) auto

thus norm ((A − (1−l) ∗R J ) ∗v x) ≤ l ∗ norm x
unfolding d by simp

qed
next

assume a:?R
have norm (A ∗v x) ≤ l ∗ norm x if inner x 1 = 0 for x
proof −

have (1 − l) ∗R J ∗v x = (1 − l) ∗R (proj-unit x)
by (simp add:vector-scaleR-matrix-ac-2 apply-J )

also have ... = 0
unfolding proj-unit-def using that by (simp add:inner-commute)

finally have b: (1 − l) ∗R J ∗v x = 0 by simp

44



have norm (A ∗v x) = norm ((A − (1−l) ∗R J ) ∗v x + ((1−l) ∗R J ) ∗v x)
by (simp add:algebra-simps)

also have ... ≤ norm ((A − (1−l) ∗R J ) ∗v x) + norm (((1−l) ∗R J ) ∗v x)
by (intro norm-triangle-ineq)

also have ... ≤ l ∗ norm x + 0
using a b unfolding matrix-norm-bound-def by (intro add-mono, auto)

also have ... = l ∗ norm x
by simp

finally show ?thesis by simp
qed

moreover have l ≥ 0
using a matrix-norm-bound-nonneg by blast

ultimately show ?L
unfolding spec-bound-def by simp

qed

lemma matrix-decomposition-lemma:
fixes A :: real^ ′n^ ′n
assumes markov A
shows spec-bound A l ←→ (∃E . A = (1−l) ∗R J + l ∗R E ∧ matrix-norm-bound E 1 ∧ l ≥ 0 )
(is ?L ←→ ?R)

proof −
have ?L ←→ matrix-norm-bound (A − (1−l) ∗R J ) l

using matrix-decomposition-lemma-aux[OF assms] by simp
also have ... ←→ ?R
proof

assume a:matrix-norm-bound (A − (1 − l) ∗R J ) l
hence l-ge-0 : l ≥ 0 using matrix-norm-bound-nonneg by auto
define E where E = (1/l) ∗R (A − (1−l) ∗R J )
have A = J if l = 0
proof −

have matrix-norm-bound (A − J ) 0
using a that by simp

hence A − J = 0 using matrix-norm-bound-0 by blast
thus A = J by simp

qed
hence A = (1−l) ∗R J + l ∗R E

unfolding E-def by simp
moreover have matrix-norm-bound E 1
proof (cases l = 0 )

case True
hence E = 0 if l = 0

unfolding E-def by simp
thus matrix-norm-bound E 1 if l = 0

using that unfolding matrix-norm-bound-def by auto
next

case False
hence l > 0 using l-ge-0 by simp
moreover have matrix-norm-bound E (|1 / l|∗ l)

unfolding E-def
by (intro matrix-norm-bound-scale a)

ultimately show ?thesis by auto
qed
ultimately show ?R using l-ge-0 by auto

next
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assume a:?R
then obtain E where E-def : A = (1 − l) ∗R J + l ∗R E matrix-norm-bound E 1 l ≥ 0

by auto
have matrix-norm-bound (l ∗R E) (abs l∗1 )

by (intro matrix-norm-bound-scale E-def (2 ))
moreover have l ≥ 0 using E-def by simp
moreover have l ∗R E = (A − (1 − l) ∗R J )

using E-def (1 ) by simp
ultimately show matrix-norm-bound (A − (1 − l) ∗R J ) l

by simp
qed
finally show ?thesis by simp

qed

lemma hitting-property-alg:
fixes S :: ( ′n :: finite) set
assumes l-range: l ∈ {0 ..1}
defines P ≡ diag (ind-vec S)
defines µ ≡ card S / CARD( ′n)
assumes

∧
M . M ∈ set Ms =⇒ spec-bound M l ∧ markov M

shows foldl (λx M . P ∗v (M ∗v x)) (P ∗v stat) Ms · 1 ≤ (µ + l ∗ (1−µ))^(length Ms+1 )
proof −

define t :: real^ ′n where t = (χ i. of-bool (i ∈ S))
define r where r = foldl (λx M . P ∗v (M ∗v x)) (P ∗v stat) Ms
have P-proj: P ∗∗ P = P

unfolding P-def diag-mult-eq ind-vec-def by (intro arg-cong[where f=diag]) (vector)

have P-1-left: 1 v∗ P = t
unfolding P-def diag-def ind-vec-def vector-matrix-mult-def t-def by simp

have P-1-right: P ∗v 1 = t
unfolding P-def diag-def ind-vec-def matrix-vector-mult-def t-def by simp

have P-norm :matrix-norm-bound P 1
unfolding P-def ind-vec-def by (intro matrix-norm-bound-diag) simp

have norm-t: norm t = sqrt (real (card S))
unfolding t-def norm-vec-def L2-set-def of-bool-def
by (simp add:sum.If-cases if-distrib if-distribR)

have µ-range: µ ≥ 0 µ ≤ 1
unfolding µ-def by (auto simp add:card-mono)

define condition :: real^ ′n ⇒ nat ⇒ bool
where condition = (λx n. norm x ≤ (µ + l ∗ (1−µ))^n ∗ sqrt (card S)/CARD( ′n) ∧ P ∗v x

= x)

have a:condition r (length Ms)
unfolding r-def using assms(4 )

proof (induction Ms rule:rev-induct)
case Nil
have norm (P ∗v stat) = (1 / real CARD( ′n)) ∗ norm t

unfolding stat-def matrix-vector-mult-scaleR P-1-right by simp
also have ... ≤ (1 / real CARD( ′n)) ∗ sqrt (real (card S))

using norm-t by (intro mult-left-mono) auto
also have ... = sqrt (card S)/CARD( ′n) by simp
finally have norm (P ∗v stat) ≤ sqrt (card S)/CARD( ′n) by simp
moreover have P ∗v (P ∗v stat) = P ∗v stat
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unfolding matrix-vector-mul-assoc P-proj by simp
ultimately show ?case unfolding condition-def by simp

next
case (snoc M xs)
hence spec-bound M l ∧ markov M

using snoc(2 ) by simp
then obtain E where E-def : M = (1−l) ∗R J + l ∗R E matrix-norm-bound E 1

using iffD1 [OF matrix-decomposition-lemma] by auto

define y where y = foldl (λx M . P ∗v (M ∗v x)) (P ∗v stat) xs
have b:condition y (length xs)

using snoc unfolding y-def by simp
hence a:P ∗v y = y using condition-def by simp

have norm (P ∗v (M ∗v y)) = norm (P ∗v ((1−l)∗R J ∗v y) + P ∗v (l ∗R E ∗v y))
by (simp add:E-def algebra-simps)

also have ... ≤ norm (P ∗v ((1−l)∗R J ∗v y)) + norm (P ∗v (l ∗R E ∗v y))
by (intro norm-triangle-ineq)

also have ... = (1 − l) ∗ norm (P ∗v (J ∗v y)) + l ∗ norm (P ∗v (E ∗v y))
using l-range
by (simp add:vector-scaleR-matrix-ac-2 matrix-vector-mult-scaleR)

also have ... = (1−l) ∗ |1 · (P ∗v y)/real CARD( ′n)| ∗ norm t + l ∗ norm (P ∗v (E ∗v y))
by (subst a[symmetric])
(simp add:apply-J proj-unit-def stat-def P-1-right matrix-vector-mult-scaleR)

also have ... = (1−l) ∗ |t · y|/real CARD( ′n) ∗ norm t + l ∗ norm (P ∗v (E ∗v y))
by (subst dot-lmul-matrix[symmetric]) (simp add:P-1-left)

also have ... ≤ (1−l) ∗ (norm t ∗ norm y) / real CARD( ′n) ∗ norm t + l ∗ (1 ∗ norm (E ∗v
y))

using P-norm Cauchy-Schwarz-ineq2 l-range
by (intro add-mono mult-right-mono mult-left-mono divide-right-mono matrix-norm-boundD)

auto
also have ... = (1−l) ∗ µ ∗ norm y + l ∗ norm (E ∗v y)

unfolding µ-def norm-t by simp
also have ... ≤ (1−l) ∗ µ ∗ norm y + l ∗ (1 ∗ norm y)

using µ-range l-range
by (intro add-mono matrix-norm-boundD mult-left-mono E-def ) auto

also have ... = (µ + l ∗ (1−µ)) ∗ norm y
by (simp add:algebra-simps)

also have ... ≤ (µ + l ∗ (1−µ)) ∗ ((µ + l ∗ (1−µ))^length xs ∗ sqrt (card S)/CARD( ′n))
using b µ-range l-range unfolding condition-def
by (intro mult-left-mono) auto

also have ... = (µ + l ∗ (1−µ))^(length xs +1 ) ∗ sqrt (card S)/CARD( ′n)
by simp
finally have norm (P ∗v (M ∗v y)) ≤ (µ + l ∗ (1−µ))^(length xs +1 ) ∗ sqrt (card

S)/CARD( ′n)
by simp

moreover have P ∗v (P ∗v (M ∗v y)) = P ∗v (M ∗v y)
unfolding matrix-vector-mul-assoc matrix-mul-assoc P-proj
by simp

ultimately have condition (P ∗v (M ∗v y)) (length (xs@[M ]))
unfolding condition-def by simp

then show ?case
unfolding y-def by simp

qed
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have inner r 1 = inner (P ∗v r) 1
using a condition-def by simp

also have ... = inner (1 v∗ P) r
unfolding dot-lmul-matrix by (simp add:inner-commute)

also have ... = inner t r
unfolding P-1-left by simp

also have ... ≤ norm t ∗ norm r
by (intro norm-cauchy-schwarz)

also have ... ≤ sqrt (card S) ∗ ((µ + l ∗ (1−µ))^(length Ms) ∗ sqrt(card S)/CARD( ′n))
using a unfolding condition-def norm-t
by (intro mult-mono) auto

also have ... = (µ + 0 ) ∗ ((µ + l ∗ (1−µ))^(length Ms))
by (simp add:µ-def )

also have ... ≤ (µ + l ∗ (1−µ)) ∗ (µ + l ∗ (1−µ))^(length Ms)
using µ-range l-range
by (intro mult-right-mono zero-le-power add-mono) auto

also have ... = (µ + l ∗ (1−µ))^(length Ms+1 ) by simp
finally show ?thesis

unfolding r-def by simp
qed

lemma upto-append:
assumes i ≤ j j ≤ k
shows [i..<j]@[j..<k] = [i..<k]
using assms by (metis less-eqE upt-add-eq-append)

definition bool-list-split :: bool list ⇒ (nat list × nat)
where bool-list-split xs = foldl (λ(ys,z) x. (if x then (ys@[z],0 ) else (ys,z+1 ))) ([],0 ) xs

lemma bool-list-split:
assumes bool-list-split xs = (ys,z)
shows xs = concat (map (λk. replicate k False@[True]) ys)@replicate z False
using assms

proof (induction xs arbitrary: ys z rule:rev-induct)
case Nil
then show ?case unfolding bool-list-split-def by simp

next
case (snoc x xs)
obtain u v where uv-def : bool-list-split xs = (u,v)

by (metis surj-pair)

show ?case
proof (cases x)

case True
have a:ys = u@[v] z = 0

using snoc(2 ) True uv-def unfolding bool-list-split-def by auto
have xs@[x] = concat (map (λk. replicate k False@[True]) u)@replicate v False@[True]

using snoc(1 )[OF uv-def ] True by simp
also have ... = concat (map (λk. replicate k False@[True]) (u@[v]))@replicate 0 False

by simp
also have ... = concat (map (λk. replicate k False@[True]) (ys))@replicate z False

using a by simp
finally show ?thesis by simp

next
case False
have a:ys = u z = v+1

using snoc(2 ) False uv-def unfolding bool-list-split-def by auto
have xs@[x] = concat (map (λk. replicate k False@[True]) u)@replicate (v+1 ) False
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using snoc(1 )[OF uv-def ] False unfolding replicate-add by simp
also have ... = concat (map (λk. replicate k False@[True]) (ys))@replicate z False

using a by simp
finally show ?thesis by simp

qed
qed

lemma bool-list-split-count:
assumes bool-list-split xs = (ys,z)
shows length (filter id xs) = length ys
unfolding bool-list-split[OF assms(1 )] by (simp add:filter-concat comp-def )

lemma foldl-concat:
foldl f a (concat xss) = foldl (λy xs. foldl f y xs) a xss
by (induction xss rule:rev-induct, auto)

lemma hitting-property-alg-2 :
fixes S :: ( ′n :: finite) set and l :: nat
fixes M :: real^ ′n^ ′n
assumes α-range: α ∈ {0 ..1}
assumes I ⊆ {..<l}
defines P i ≡ (if i ∈ I then diag (ind-vec S) else mat 1 )
defines µ ≡ real (card S) / real (CARD( ′n))
assumes spec-bound M α markov M
shows

foldl (λx M . M ∗v x) stat (intersperse M (map P [0 ..<l])) · 1 ≤ (µ+α∗(1−µ))^card I
(is ?L ≤ ?R)

proof (cases I 6= {})
case True
define xs where xs = map (λi. i ∈ I ) [0 ..<l]
define Q where Q = diag (ind-vec S)
define P ′ where P ′ = (λx. if x then Q else mat 1 )

let ?rep = (λx. replicate x (mat 1 ))

have P-eq: P i = P ′ (i ∈ I ) for i
unfolding P-def P ′-def Q-def by simp

have l > 0
using True assms(2 ) by auto

hence xs-ne: xs 6= []
unfolding xs-def by simp

obtain ys z where ys-z: bool-list-split xs = (ys,z)
by (metis surj-pair)

have length ys = length (filter id xs)
using bool-list-split-count[OF ys-z ] by simp

also have ... = card (I ∩ {0 ..<l})
unfolding xs-def filter-map by (simp add:comp-def distinct-length-filter)

also have ... = card I
using Int-absorb2 [OF assms(2 )] unfolding atLeast0LessThan by simp

finally have len-ys: length ys = card I by simp

hence length ys > 0
using True assms(2 ) by (metis card-gt-0-iff finite-nat-iff-bounded)

then obtain yh yt where ys-split: ys = yh#yt
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by (metis length-greater-0-conv neq-Nil-conv)

have a:foldl (λx N . M ∗v (N ∗v x)) x (?rep z) · 1 = x · 1 for x
proof (induction z)

case 0
then show ?case by simp

next
case (Suc z)
have foldl (λx N . M ∗v (N ∗v x)) x (?rep (z+1 )) · 1 = x · 1

unfolding replicate-add using Suc
by (simp add:markov-orth-inv[OF assms(6 )])

then show ?case by simp
qed

have M ∗v stat = stat
using assms(6 ) unfolding stat-def matrix-vector-mult-scaleR markov-def by simp

hence b: foldl (λx N . M ∗v (N ∗v x)) stat (?rep yh) = stat
by (induction yh, auto)

have foldl (λx N . N ∗v (M ∗v x)) a (?rep x) = matrix-pow M x ∗v a for x a
proof (induction x)

case 0
then show ?case by simp

next
case (Suc x)
have foldl (λx N . N ∗v (M ∗v x)) a (?rep (x+1 )) = matrix-pow M (x+1 ) ∗v a

unfolding replicate-add using Suc by (simp add: matrix-vector-mul-assoc)
then show ?case by simp

qed
hence c: foldl (λx N . N ∗v (M ∗v x)) a (?rep x @ [Q]) = Q ∗v (matrix-pow M (x+1 ) ∗v a)

for x a
by (simp add:matrix-vector-mul-assoc matrix-mul-assoc)

have d: spec-bound N α ∧ markov N if t1 : N ∈ set (map (λx. matrix-pow M (x + 1 )) yt) for
N

proof −
obtain y where N-def : N = matrix-pow M (y+1 )

using t1 by auto
hence d1 : spec-bound N (α^(y+1 ))

unfolding N-def using spec-bound-pow assms(5 ,6 ) by blast
have spec-bound N (α^1 )

using α-range by (intro spec-bound-mono[OF d1 ] power-decreasing) auto
moreover have markov N

unfolding N-def by (intro markov-matrix-pow assms(6 ))
ultimately show ?thesis by simp

qed

have ?L = foldl (λx M . M ∗v x) stat (intersperse M (map P ′ xs)) · 1
unfolding P-eq xs-def map-map by (simp add:comp-def )

also have ... = foldl (λx M . M ∗v x) stat (intersperse M (map P ′ xs)@[M ]) · 1
by (simp add:markov-orth-inv[OF assms(6 )])

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map P ′ xs) · 1
using xs-ne by (subst foldl-intersperse) auto

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat ((ys >>= (λx. ?rep x @ [Q])) @ ?rep z) · 1
unfolding bool-list-split[OF ys-z ] P ′-def List.bind-def by (simp add: comp-def map-concat)

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (ys >>= (λx. ?rep x @ [Q])) · 1
by (simp add: a)

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (?rep yh @[Q]@(yt >>=(λx. ?rep x @ [Q]))) · 1
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unfolding ys-split by simp
also have ... = foldl (λx N . M ∗v (N ∗v x)) stat ([Q]@(yt >>=(λx. ?rep x @ [Q]))) · 1

by (simp add:b)
also have ... = foldl (λx N . N ∗v x) stat (intersperse M (Q#(yt >>=(λx.?rep x@[Q])))@[M ])·1

by (subst foldl-intersperse, auto)
also have ... = foldl (λx N . N ∗v x) stat (intersperse M (Q#(yt >>=(λx.?rep x@[Q])))) · 1

by (simp add:markov-orth-inv[OF assms(6 )])
also have ... = foldl (λx N . N ∗v (M ∗v x)) (Q ∗v stat) (yt >>=(λx.?rep x@[Q])) · 1

by (subst foldl-intersperse-2 , simp)
also have ... = foldl (λa x. foldl (λx N . N ∗v (M ∗v x)) a (?rep x @ [Q])) (Q ∗v stat) yt · 1

unfolding List.bind-def foldl-concat foldl-map by simp
also have ... = foldl (λa x. Q ∗v (matrix-pow M (x+1 ) ∗v a)) (Q ∗v stat) yt · 1

unfolding c by simp
also have ... = foldl (λa N . Q ∗v (N ∗v a)) (Q ∗v stat) (map (λx. matrix-pow M (x+1 )) yt) ·

1
by (simp add:foldl-map)

also have ... ≤ (µ + α∗(1−µ))^(length (map (λx. matrix-pow M (x+1 )) yt)+1 )
unfolding µ-def Q-def by (intro hitting-property-alg α-range d) simp

also have ... = (µ + α∗(1−µ))^(length ys)
unfolding ys-split by simp

also have ... = ?R unfolding len-ys by simp
finally show ?thesis by simp

next
case False
hence I-empty: I = {} by simp

have ?L = stat · (1 :: real^ ′n)
proof (cases l > 0 )

case True
have ?L = foldl (λx M . M ∗v x) stat ((intersperse M (map P [0 ..<l]))@[M ]) · 1

by (simp add:markov-orth-inv[OF assms(6 )])
also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map P [0 ..<l]) · 1

using True by (subst foldl-intersperse, auto)
also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map (λ-. mat 1 ) [0 ..<l]) · 1

unfolding P-def using I-empty by simp
also have ... = foldl (λx -. M ∗v x) stat [0 ..<l] · 1

unfolding foldl-map by simp
also have ... = stat · (1 :: real^ ′n)

by (induction l, auto simp add:markov-orth-inv[OF assms(6 )])
finally show ?thesis by simp

next
case False
then show ?thesis by simp

qed
also have ... = 1

unfolding stat-def by (simp add:inner-vec-def )
also have ... ≤ ?R unfolding I-empty by simp
finally show ?thesis by simp

qed

lemma uniform-property-alg:
fixes x :: ( ′n :: finite) and l :: nat
assumes i < l
defines P j ≡ (if j = i then diag (ind-vec {x}) else mat 1 )
assumes markov M
shows foldl (λx M . M ∗v x) stat (intersperse M (map P [0 ..<l])) · 1 = 1 / CARD( ′n)
(is ?L = ?R)

proof −
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have a:l > 0 using assms(1 ) by simp

have 0 : foldl (λx N . M ∗v (N ∗v x)) y (xs) · 1 = y · 1 if set xs ⊆ {mat 1} for xs y
using that

proof (induction xs rule:rev-induct)
case Nil
then show ?case by simp

next
case (snoc x xs)
have x = mat 1

using snoc(2 ) by simp
hence foldl (λx N . M ∗v (N ∗v x)) y (xs @ [x]) · 1 = foldl (λx N . M ∗v (N ∗v x)) y xs · 1

by (simp add:markov-orth-inv[OF assms(3 )])
also have ... = y · 1

using snoc(2 ) by (intro snoc(1 )) auto
finally show ?case by simp

qed

have M-stat: M ∗v stat = stat
using assms(3 ) unfolding stat-def matrix-vector-mult-scaleR markov-def by simp

hence 1 : (foldl (λx N . M ∗v (N ∗v x)) stat xs) = stat if set xs ⊆ {mat 1} for xs
using that by (induction xs, auto)

have ?L = foldl (λx M . M ∗v x) stat ((intersperse M (map P [0 ..<l]))@[M ]) · 1
by (simp add:markov-orth-inv[OF assms(3 )])

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map P [0 ..<l]) · 1
using a by (subst foldl-intersperse) auto

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map P ([0 ..<i+1 ]@[i+1 ..<l])) · 1
using assms(1 ) by (subst upto-append) auto

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map P [0 ..<i + 1 ]) · 1
unfolding map-append foldl-append P-def by (subst 0 ) auto

also have ... = foldl (λx N . M ∗v (N ∗v x)) stat (map P ([0 ..<i]@[i])) · 1
by simp

also have ... = (M ∗v (diag (ind-vec {x}) ∗v stat)) · 1
unfolding map-append foldl-append P-def by (subst 1 ) auto

also have ... = (diag (ind-vec {x}) ∗v stat) · 1
by (simp add:markov-orth-inv[OF assms(3 )])

also have ... = ((1/CARD( ′n)) ∗R ind-vec {x}) · 1
unfolding diag-def ind-vec-def stat-def matrix-vector-mult-def
by (intro arg-cong2 [where f=(·)] refl)
(vector of-bool-def sum.If-cases if-distrib if-distribR)

also have ... = (1/CARD( ′n)) ∗ (ind-vec {x} · 1 )
by simp

also have ... = (1/CARD( ′n)) ∗ 1
unfolding inner-vec-def ind-vec-def of-bool-def
by (intro arg-cong2 [where f=(∗)] refl) (simp)

finally show ?thesis by simp
qed

end

lemma foldl-matrix-mult-expand:
fixes Ms :: (( ′r ::{semiring-1 ,comm-monoid-mult})^ ′a^ ′a) list
shows (foldl (λx M . M ∗v x) a Ms) $ k = (

∑
x | length x = length Ms+1 ∧ x! length Ms = k.

(
∏

i< length Ms. (Ms ! i) $ (x ! (i+1 )) $ (x ! i)) ∗ a $ (x ! 0 ))
proof (induction Ms arbitrary: k rule:rev-induct)

case Nil
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have length x = Suc 0 =⇒ x = [x!0 ] for x :: ′a list
by (cases x, auto)

hence {x. length x = Suc 0 ∧ x ! 0 = k} = {[k]}
by auto

thus ?case by auto
next

case (snoc M Ms)
let ?l = length Ms

have 0 : finite {w. length w = Suc (length Ms) ∧ w ! length Ms = i} for i :: ′a
using finite-lists-length-eq[where A=UNIV :: ′a set and n=?l +1 ] by simp

have take (?l+1 ) x @ [x ! (?l+1 )] = x if length x = ?l+2 for x :: ′a list
proof −

have take (?l+1 ) x @ [x ! (?l+1 )] = take (Suc (?l+1 )) x
using that by (intro take-Suc-conv-app-nth[symmetric], simp)

also have ... = x
using that by simp

finally show ?thesis by simp
qed
hence 1 : bij-betw (take (?l+1 )) {w. length w=?l+2 ∧ w!(?l+1 ) =k} {w. length w = ?l+1}

by (intro bij-betwI [where g=λx. x@[k]]) (auto simp add:nth-append)

have foldl (λx M . M ∗v x) a (Ms @ [M ]) $ k = (
∑

j∈UNIV . M$k$j ∗(foldl (λx M . M ∗v x) a
Ms $ j))

by (simp add:matrix-vector-mult-def )
also have ... =
(
∑

j∈UNIV . M$k$j ∗ (
∑

w|length w=?l+1∧w!?l=j. (
∏

i<?l. Ms!i $ w!(i+1 ) $ w!i) ∗ a $
w!0 ))

unfolding snoc by simp
also have ... =
(
∑

j∈UNIV . (
∑

w|length w=?l+1∧w!?l=j. M$k$w!?l ∗ (
∏

i<?l. Ms!i $ w!(i+1 ) $ w!i) ∗ a
$ w!0 ))

by (intro sum.cong refl) (simp add: sum-distrib-left algebra-simps)
also have ... = (

∑
w∈ (

⋃
j ∈ UNIV . {w. length w=?l+1 ∧ w!?l =j}).

M$k$w!?l∗(
∏

i<?l. Ms!i $ w!(i+1 ) $ w!i) ∗ a $ w!0 )
using 0 by (subst sum.UNION-disjoint, simp, simp) auto

also have ... = (
∑

w | length w=?l+1 . M$k$(w!?l)∗(
∏

i<?l. Ms!i $ w!(i+1 ) $ w!i) ∗ a $ w!0 )
by (intro sum.cong arg-cong2 [where f=(∗)] refl) auto

also have ... = (
∑

w ∈ take (?l+1 ) ‘ {w. length w=?l+2 ∧ w!(?l+1 ) =k}.
M$k$w!?l∗(

∏
i<?l. Ms!i $ w!(i+1 ) $ w!i) ∗ a $ w!0 )

using 1 unfolding bij-betw-def by (intro sum.cong refl, auto)
also have ... = (

∑
w|length w=?l+2∧w!(?l+1 )=k. M$k$w!?l∗(

∏
i<?l. Ms!i $ w!(i+1 ) $ w!i)∗

a$w!0 )
using 1 unfolding bij-betw-def by (subst sum.reindex, auto)

also have ... = (
∑

w|length w=?l+2∧w!(?l+1 )=k.
(Ms@[M ])!?l$k$w!?l∗(

∏
i<?l. (Ms@[M ])!i $ w!(i+1 ) $ w!i)∗ a$w!0 )

by (intro sum.cong arg-cong2 [where f=(∗)] prod.cong refl) (auto simp add:nth-append)
also have ... = (

∑
w|length w=?l+2∧w!(?l+1 )=k. (

∏
i<(?l+1 ). (Ms@[M ])!i $ w!(i+1 ) $ w!i)∗

a$w!0 )
by (intro sum.cong, auto simp add:algebra-simps)

finally have foldl (λx M . M ∗v x) a (Ms @ [M ]) $ k =
(
∑

w | length w = ?l+2 ∧ w ! (?l+1 ) = k. (
∏

i<(?l+1 ). (Ms@[M ])!i $ w!(i+1 ) $ w!i)∗
a$w!0 )

by simp
then show ?case by simp

qed
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lemma foldl-matrix-mult-expand-2 :
fixes Ms :: (real^ ′a^ ′a) list
shows (foldl (λx M . M ∗v x) a Ms) · 1 = (

∑
x | length x = length Ms+1 .

(
∏

i< length Ms. (Ms ! i) $ (x ! (i+1 )) $ (x ! i)) ∗ a $ (x ! 0 ))
(is ?L = ?R)

proof −
let ?l = length Ms
have ?L = (

∑
j ∈ UNIV . (foldl (λx M . M ∗v x) a Ms) $ j)

by (simp add:inner-vec-def )
also have ... = (

∑
j∈UNIV .

∑
x|length x=?l+1 ∧ x!?l=j.(

∏
i<?l. Ms!i $ x!(i+1 ) $ x!i) ∗ a

$ x!0 )
unfolding foldl-matrix-mult-expand by simp

also have ... = (
∑

x ∈ (
⋃

j∈ UNIV .{w. length w = length Ms+1 ∧ w ! length Ms = j}).
(
∏

i< length Ms. (Ms ! i) $ (x ! (i+1 )) $ (x ! i)) ∗ a $ (x ! 0 ))
using finite-lists-length-eq[where A=UNIV :: ′a set and n=?l +1 ]
by (intro sum.UNION-disjoint[symmetric]) auto

also have ... = ?R
by (intro sum.cong, auto)

finally show ?thesis by simp
qed

end

6 Spectral Theory

This section establishes the correspondence of the variationally defined expansion paramters
with the definitions using the spectrum of the stochastic matrix. Additionally stronger
results for the expansion parameters are derived.
theory Expander-Graphs-Eigenvalues

imports
Expander-Graphs-Algebra
Expander-Graphs-TTS
Perron-Frobenius.HMA-Connect
Commuting-Hermitian.Commuting-Hermitian

begin

unbundle intro-cong-syntax

hide-const Matrix-Legacy.transpose
hide-const Matrix-Legacy.row
hide-const Matrix-Legacy.mat
hide-const Matrix.mat
hide-const Matrix.row
hide-fact Matrix-Legacy.row-def
hide-fact Matrix-Legacy.mat-def
hide-fact Matrix.vec-eq-iff
hide-fact Matrix.mat-def
hide-fact Matrix.row-def
no-notation Matrix.scalar-prod (infix ‹·› 70 )
no-notation Ordered-Semiring.max (‹Maxı›)

lemma mult-right-mono ′: y ≥ (0 ::real) =⇒ x ≤ z ∨ y = 0 =⇒ x ∗ y ≤ z ∗ y
by (metis mult-cancel-right mult-right-mono)

lemma poly-prod-zero:
fixes x :: ′a :: idom
assumes poly (

∏
a∈#xs. [:− a, 1 :]) x = 0
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shows x ∈# xs
using assms by (induction xs, auto)

lemma poly-prod-inj-aux-1 :
fixes xs ys :: ( ′a :: idom) multiset
assumes x ∈# xs
assumes (

∏
a∈#xs. [:− a, 1 :]) = (

∏
a∈#ys. [:− a, 1 :])

shows x ∈# ys
proof −

have poly (
∏

a∈#ys. [:− a, 1 :]) x = poly (
∏

a∈#xs. [:− a, 1 :]) x using assms(2 ) by simp
also have ... = poly (

∏
a∈#xs − {#x#} + {#x#}. [:− a, 1 :]) x

using assms(1 ) by simp
also have ... = 0

by simp
finally have poly (

∏
a∈#ys. [:− a, 1 :]) x = 0 by simp

thus x ∈# ys using poly-prod-zero by blast
qed

lemma poly-prod-inj-aux-2 :
fixes xs ys :: ( ′a :: idom) multiset
assumes x ∈# xs ∪# ys
assumes (

∏
a∈#xs. [:− a, 1 :]) = (

∏
a∈#ys. [:− a, 1 :])

shows x ∈# xs ∩# ys
proof (cases x ∈# xs)

case True
then show ?thesis using poly-prod-inj-aux-1 [OF True assms(2 )] by simp

next
case False
hence a:x ∈# ys

using assms(1 ) by simp
then show ?thesis

using poly-prod-inj-aux-1 [OF a assms(2 )[symmetric]] by simp
qed

lemma poly-prod-inj:
fixes xs ys :: ( ′a :: idom) multiset
assumes (

∏
a∈#xs. [:− a, 1 :]) = (

∏
a∈#ys. [:− a, 1 :])

shows xs = ys
using assms

proof (induction size xs + size ys arbitrary: xs ys rule:nat-less-induct)
case 1
show ?case
proof (cases xs ∪# ys = {#})

case True
then show ?thesis by simp

next
case False
then obtain x where x ∈# xs ∪# ys by auto
hence a:x ∈# xs ∩# ys

by (intro poly-prod-inj-aux-2 [OF - 1 (2 )])
have b: [:− x, 1 :] 6= 0

by simp
have c: size (xs−{#x#}) + size (ys−{#x#}) < size xs + size ys

using a by (simp add: add-less-le-mono size-Diff1-le size-Diff1-less)

have [:− x, 1 :] ∗ (
∏

a∈#xs − {#x#}. [:− a, 1 :]) = (
∏

a∈#xs. [:− a, 1 :])
using a by (subst prod-mset.insert[symmetric]) simp

also have ... = (
∏

a∈#ys. [:− a, 1 :]) using 1 by simp
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also have ... = [:− x, 1 :] ∗ (
∏

a∈#ys − {#x#}. [:− a, 1 :])
using a by (subst prod-mset.insert[symmetric]) simp

finally have [:− x, 1 :]∗(
∏

a∈#xs−{#x#}. [:− a, 1 :])=[:−x, 1 :]∗(
∏

a∈#ys−{#x#}. [:− a,
1 :])

by simp
hence (

∏
a∈#xs−{#x#}. [:− a, 1 :]) = (

∏
a∈#ys−{#x#}. [:− a, 1 :])

using mult-left-cancel[OF b] by simp
hence d:xs − {#x#} = ys − {#x#}

using 1 c by simp
have xs = xs − {#x#} + {#x#}

using a by simp
also have ... = ys − {#x#} + {#x#}

unfolding d by simp
also have ... = ys

using a by simp
finally show ?thesis by simp

qed
qed

definition eigenvalues :: ( ′a::comm-ring-1 )^ ′n^ ′n ⇒ ′a multiset
where

eigenvalues A = (SOME as. charpoly A = (
∏

a∈#as. [:− a, 1 :]) ∧ size as = CARD ( ′n))

lemma char-poly-factorized-hma:
fixes A :: complex^ ′n^ ′n
shows ∃ as. charpoly A = (

∏
a←as. [:− a, 1 :]) ∧ length as = CARD ( ′n)

by (transfer-hma rule:char-poly-factorized)

lemma eigvals-poly-length:
fixes A :: complex^ ′n^ ′n
shows

charpoly A = (
∏

a∈#eigenvalues A. [:− a, 1 :]) (is ?A)
size (eigenvalues A) = CARD ( ′n) (is ?B)

proof −
define f where f as = (charpoly A = (

∏
a∈#as. [:− a, 1 :]) ∧ size as = CARD( ′n)) for as

obtain as where as-def : charpoly A = (
∏

a←as. [:− a, 1 :]) length as = CARD( ′n)
using char-poly-factorized-hma by auto

have charpoly A = (
∏

a←as. [:− a, 1 :])
unfolding as-def by simp

also have ... = (
∏

a∈#mset as. [:− a, 1 :])
unfolding prod-mset-prod-list[symmetric] mset-map by simp

finally have charpoly A = (
∏

a∈#mset as. [:− a, 1 :]) by simp
moreover have size (mset as) = CARD( ′n)

using as-def by simp
ultimately have f (mset as)

unfolding f-def by auto
hence f (eigenvalues A)

unfolding eigenvalues-def f-def [symmetric] using someI [where x = mset as and P=f ] by
auto

thus ?A ?B
unfolding f-def by auto

qed

lemma similar-matrix-eigvals:
fixes A B :: complex^ ′n^ ′n
assumes similar-matrix A B
shows eigenvalues A = eigenvalues B
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proof −
have (

∏
a∈#eigenvalues A. [:− a, 1 :]) = (

∏
a∈#eigenvalues B. [:− a, 1 :])

using similar-matrix-charpoly[OF assms] unfolding eigvals-poly-length(1 ) by simp
thus ?thesis

by (intro poly-prod-inj) simp
qed

definition upper-triangular-hma :: ′a::zero^ ′n^ ′n ⇒ bool
where upper-triangular-hma A ≡
∀ i. ∀ j. (to-nat j < Bij-Nat.to-nat i −→ A $h i $h j = 0 )

lemma for-all-reindex2 :
assumes range f = A
shows (∀ x ∈ A. ∀ y ∈ A. P x y) ←→ (∀ x y. P (f x) (f y))
using assms by auto

lemma upper-triangular-hma:
fixes A :: ( ′a::zero)^ ′n^ ′n
shows upper-triangular (from-hmam A) = upper-triangular-hma A (is ?L = ?R)

proof −
have ?L ←→ (∀ i∈{0 ..<CARD( ′n)}. ∀ j∈{0 ..<CARD( ′n)}. j < i −→ A $h from-nat i $h

from-nat j = 0 )
unfolding upper-triangular-def from-hmam-def by auto

also have ... ←→ (∀ (i:: ′n) (j:: ′n). to-nat j < to-nat i −→ A $h from-nat (to-nat i) $h from-nat
(to-nat j) = 0 )

by (intro for-all-reindex2 range-to-nat[where ′a= ′n])
also have ... ←→ ?R

unfolding upper-triangular-hma-def by auto
finally show ?thesis by simp

qed

lemma from-hma-carrier :
fixes A :: ′a^( ′n::finite)^( ′m::finite)
shows from-hmam A ∈ carrier-mat (CARD ( ′m)) (CARD ( ′n))
unfolding from-hmam-def by simp

definition diag-mat-hma :: ′a^ ′n^ ′n ⇒ ′a multiset
where diag-mat-hma A = image-mset (λi. A $h i $h i) (mset-set UNIV )

lemma diag-mat-hma:
fixes A :: ′a^ ′n^ ′n
shows mset (diag-mat (from-hmam A)) = diag-mat-hma A (is ?L = ?R)

proof −
have ?L = {#from-hmam A $$ (i, i). i ∈# mset [0 ..<CARD( ′n)]#}

using from-hma-carrier [where A=A] unfolding diag-mat-def mset-map by simp
also have ... = {#from-hmam A $$ (i, i). i ∈# image-mset to-nat (mset-set (UNIV :: ′n set))#}

using range-to-nat[where ′a= ′n]
by (intro arg-cong2 [where f=image-mset] refl) (simp add:image-mset-mset-set[OF inj-to-nat])

also have ... = {#from-hmam A $$ (to-nat i, to-nat i). i ∈# (mset-set (UNIV :: ′n set))#}
by (simp add:image-mset.compositionality comp-def )

also have ... = ?R
unfolding diag-mat-hma-def from-hmam-def using to-nat-less-card[where ′a= ′n]
by (intro image-mset-cong) auto

finally show ?thesis by simp
qed

definition adjoint-hma :: complex^ ′m^ ′n ⇒ complex^ ′n^ ′m where
adjoint-hma A = map-matrix cnj (transpose A)
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lemma adjoint-hma-eq: adjoint-hma A $h i $h j = cnj (A $h j $h i)
unfolding adjoint-hma-def map-matrix-def map-vector-def transpose-def by auto

lemma adjoint-hma:
fixes A :: complex^( ′n::finite)^( ′m::finite)
shows mat-adjoint (from-hmam A) = from-hmam (adjoint-hma A)

proof −
have mat-adjoint (from-hmam A) $$ (i,j) = from-hmam (adjoint-hma A) $$ (i,j)

if i < CARD( ′n) j < CARD( ′m) for i j
using from-hma-carrier that unfolding mat-adjoint-def from-hmam-def adjoint-hma-def

Matrix.mat-of-rows-def map-matrix-def map-vector-def transpose-def by auto
thus ?thesis

using from-hma-carrier
by (intro eq-matI ) auto

qed

definition cinner where cinner v w = scalar-product v (map-vector cnj w)

context
includes lifting-syntax

begin

lemma cinner-hma:
fixes x y :: complex^ ′n
shows cinner x y = (from-hmav x) ·c (from-hmav y) (is ?L = ?R)

proof −
have ?L = (

∑
i∈UNIV . x $h i ∗ cnj (y $h i))

unfolding cinner-def map-vector-def scalar-product-def by simp
also have ... = (

∑
i = 0 ..<CARD( ′n). x $h from-nat i ∗ cnj (y $h from-nat i))

using to-nat-less-card to-nat-from-nat-id
by (intro sum.reindex-bij-betw[symmetric] bij-betwI [where g=to-nat]) auto

also have ... = ?R
unfolding Matrix.scalar-prod-def from-hmav-def
by simp

finally show ?thesis by simp
qed

lemma cinner-hma-transfer [transfer-rule]:
(HMA-V ===> HMA-V ===> (=)) (·c) cinner
unfolding HMA-V-def cinner-hma
by (auto simp:rel-fun-def )

lemma adjoint-hma-transfer [transfer-rule]:
(HMA-M ===> HMA-M ) (mat-adjoint) adjoint-hma
unfolding HMA-M-def rel-fun-def by (auto simp add:adjoint-hma)

end

lemma adjoint-adjoint-id[simp]: adjoint-hma (adjoint-hma A ) = A
by (transfer) (simp add:adjoint-adjoint)

lemma adjoint-def-alter-hma:
cinner (A ∗v v) w = cinner v (adjoint-hma A ∗v w)
by (transfer-hma rule:adjoint-def-alter)

lemma cinner-0 : cinner 0 0 = 0
by (transfer-hma)
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lemma cinner-scale-left: cinner (a ∗s v) w = a ∗ cinner v w
by transfer-hma

lemma cinner-scale-right: cinner v (a ∗s w) = cnj a ∗ cinner v w
by transfer (simp add: inner-prod-smult-right)

lemma norm-of-real:
shows norm (map-vector complex-of-real v) = norm v
unfolding norm-vec-def map-vector-def
by (intro L2-set-cong) auto

definition unitary-hma :: complex^ ′n^ ′n ⇒ bool
where unitary-hma A ←→ A ∗∗ adjoint-hma A = Finite-Cartesian-Product.mat 1

definition unitarily-equiv-hma where
unitarily-equiv-hma A B U ≡ (unitary-hma U ∧ similar-matrix-wit A B U (adjoint-hma U ))

definition diagonal-mat :: ( ′a::zero)^( ′n::finite)^ ′n ⇒ bool where
diagonal-mat A ≡ (∀ i. ∀ j. i 6= j −→ A $h i $h j = 0 )

lemma diagonal-mat-ex:
assumes diagonal-mat A
shows A = diag (χ i. A $h i $h i)
using assms unfolding diagonal-mat-def diag-def
by (intro iffD2 [OF vec-eq-iff ] allI ) auto

lemma diag-diagonal-mat[simp]: diagonal-mat (diag x)
unfolding diag-def diagonal-mat-def by auto

lemma diag-imp-upper-tri: diagonal-mat A =⇒ upper-triangular-hma A
unfolding diagonal-mat-def upper-triangular-hma-def
by (metis nat-neq-iff )

definition unitary-diag where
unitary-diag A b U ≡ unitarily-equiv-hma A (diag b) U

definition real-diag-decomp-hma where
real-diag-decomp-hma A d U ≡ unitary-diag A d U ∧
(∀ i. d $h i ∈ Reals)

definition hermitian-hma :: complex^ ′n^ ′n ⇒ bool where
hermitian-hma A = (adjoint-hma A = A)

lemma from-hma-one:
from-hmam (mat 1 :: (( ′a::{one,zero})^ ′n^ ′n)) = 1m CARD( ′n)
unfolding Finite-Cartesian-Product.mat-def from-hmam-def using from-nat-inj
by (intro eq-matI ) auto

lemma from-hma-mult:
fixes A :: ( ′a :: semiring-1 )^ ′m^ ′n
fixes B :: ′a^ ′k^ ′m::finite
shows from-hmam A ∗ from-hmam B = from-hmam (A ∗∗ B)
using HMA-M-mult unfolding rel-fun-def HMA-M-def by auto

lemma hermitian-hma:
hermitian-hma A = hermitian (from-hmam A)
unfolding hermitian-def adjoint-hma hermitian-hma-def by auto
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lemma unitary-hma:
fixes A :: complex^ ′n^ ′n
shows unitary-hma A = unitary (from-hmam A) (is ?L = ?R)

proof −
have ?R ←→ from-hmam A ∗ mat-adjoint (from-hmam A) = 1m (CARD( ′n))

using from-hma-carrier
unfolding unitary-def inverts-mat-def by simp

also have ... ←→ from-hmam (A ∗∗ adjoint-hma A) = from-hmam (mat 1 ::complex^ ′n^ ′n)
unfolding adjoint-hma from-hma-mult from-hma-one by simp

also have ... ←→ A ∗∗ adjoint-hma A = Finite-Cartesian-Product.mat 1
unfolding from-hmam-inj by simp

also have ... ←→ ?L unfolding unitary-hma-def by simp
finally show ?thesis by simp

qed

lemma unitary-hmaD:
fixes A :: complex^ ′n^ ′n
assumes unitary-hma A
shows adjoint-hma A ∗∗ A = mat 1 (is ?A) A ∗∗ adjoint-hma A = mat 1 (is ?B)

proof −
have mat-adjoint (from-hmam A) ∗ from-hmam A = 1m CARD( ′n)

using assms unitary-hma by (intro unitary-simps from-hma-carrier ) auto
thus ?A

unfolding adjoint-hma from-hma-mult from-hma-one[symmetric] from-hmam-inj
by simp

show ?B
using assms unfolding unitary-hma-def by simp

qed

lemma unitary-hma-adjoint:
assumes unitary-hma A
shows unitary-hma (adjoint-hma A)
unfolding unitary-hma-def adjoint-adjoint-id unitary-hmaD[OF assms] by simp

lemma unitarily-equiv-hma:
fixes A :: complex^ ′n^ ′n
shows unitarily-equiv-hma A B U =

unitarily-equiv (from-hmam A) (from-hmam B) (from-hmam U )
(is ?L = ?R)

proof −
have ?R ←→ (unitary-hma U ∧ similar-mat-wit (from-hmam A) (from-hmam B) (from-hmam

U ) (from-hmam (adjoint-hma U )))
unfolding Spectral-Theory-Complements.unitarily-equiv-def unitary-hma[symmetric] adjoint-hma
by simp

also have ... ←→ unitary-hma U ∧ similar-matrix-wit A B U (adjoint-hma U )
using HMA-similar-mat-wit unfolding rel-fun-def HMA-M-def
by (intro arg-cong2 [where f=(∧)] refl) force

also have ... ←→ ?L
unfolding unitarily-equiv-hma-def by auto

finally show ?thesis by simp
qed

lemma Matrix-diagonal-matD:
assumes Matrix.diagonal-mat A
assumes i<dim-row A j<dim-col A
assumes i 6= j
shows A $$ (i,j) = 0
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using assms unfolding Matrix.diagonal-mat-def by auto

lemma diagonal-mat-hma:
fixes A :: ( ′a :: zero)^( ′n :: finite)^ ′n
shows diagonal-mat A = Matrix.diagonal-mat (from-hmam A) (is ?L = ?R)

proof
show ?L =⇒ ?R

unfolding diagonal-mat-def Matrix.diagonal-mat-def from-hmam-def
using from-nat-inj by auto

next
assume a:?R

have A $h i $h j = 0 if i 6= j for i j
proof −

have A $h i $h j = (from-hmam A) $$ (to-nat i,to-nat j)
unfolding from-hmam-def using to-nat-less-card[where ′a= ′n] by simp

also have ... = 0
using to-nat-less-card[where ′a= ′n] to-nat-inj that
by (intro Matrix-diagonal-matD[OF a]) auto

finally show ?thesis by simp
qed
thus ?L

unfolding diagonal-mat-def by auto
qed

lemma unitary-diag-hma:
fixes A :: complex^ ′n^ ′n
shows unitary-diag A d U =

Spectral-Theory-Complements.unitary-diag (from-hmam A) (from-hmam (diag d)) (from-hmam

U )
proof −

have Matrix.diagonal-mat (from-hmam (diag d))
unfolding diagonal-mat-hma[symmetric] by simp

thus ?thesis
unfolding unitary-diag-def Spectral-Theory-Complements.unitary-diag-def unitarily-equiv-hma
by auto

qed

lemma real-diag-decomp-hma:
fixes A :: complex^ ′n^ ′n
shows real-diag-decomp-hma A d U =

real-diag-decomp (from-hmam A) (from-hmam (diag d)) (from-hmam U )
proof −

have 0 :(∀ i. d $h i ∈ �) ←→ (∀ i < CARD( ′n). from-hmam (diag d) $$ (i,i) ∈ �)
unfolding from-hmam-def diag-def using to-nat-less-card by fastforce

show ?thesis
unfolding real-diag-decomp-hma-def real-diag-decomp-def unitary-diag-hma 0
by auto

qed

lemma diagonal-mat-diag-ex-hma:
assumes Matrix.diagonal-mat A A ∈ carrier-mat CARD( ′n) CARD ( ′n :: finite)
shows from-hmam (diag (χ (i:: ′n). A $$ (to-nat i,to-nat i))) = A
using assms from-nat-inj unfolding from-hmam-def diag-def Matrix.diagonal-mat-def
by (intro eq-matI ) (auto simp add:to-nat-from-nat-id)

theorem commuting-hermitian-family-diag-hma:
fixes Af :: (complex^ ′n^ ′n) set
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assumes finite Af
and Af 6= {}
and

∧
A. A ∈ Af =⇒ hermitian-hma A

and
∧

A B. A ∈ Af =⇒ B∈ Af =⇒ A ∗∗ B = B ∗∗ A
shows ∃ U . ∀ A∈ Af . ∃B. real-diag-decomp-hma A B U

proof −
have 0 :finite (from-hmam ‘ Af )

using assms(1 )by (intro finite-imageI )
have 1 : from-hmam ‘ Af 6= {}

using assms(2 ) by simp
have 2 : A ∈ carrier-mat (CARD ( ′n)) (CARD ( ′n)) if A ∈ from-hmam ‘ Af for A

using that unfolding from-hmam-def by (auto simp add:image-iff )
have 3 : 0 < CARD( ′n)

by simp
have 4 : hermitian A if A ∈ from-hmam ‘ Af for A

using hermitian-hma assms(3 ) that by auto
have 5 : A ∗ B = B ∗ A if A ∈ from-hmam ‘ Af B ∈ from-hmam ‘ Af for A B

using that assms(4 ) by (auto simp add:image-iff from-hma-mult)
have ∃U . ∀A∈ from-hmam ‘ Af . ∃B. real-diag-decomp A B U

using commuting-hermitian-family-diag[OF 0 1 2 3 4 5 ] by auto
then obtain U Bmap where U-def :

∧
A. A ∈ from-hmam ‘ Af =⇒ real-diag-decomp A (Bmap

A) U
by metis

define U ′ :: complex^ ′n^ ′n where U ′ = to-hmam U
define Bmap ′ :: complex^ ′n^ ′n ⇒ complex^ ′n

where Bmap ′ = (λM . (χ i. (Bmap (from-hmam M )) $$ (to-nat i,to-nat i)))

have real-diag-decomp-hma A (Bmap ′ A) U ′ if A ∈ Af for A
proof −

have rdd: real-diag-decomp (from-hmam A) (Bmap (from-hmam A)) U
using U-def that by simp

have U ∈ carrier-mat CARD( ′n) CARD( ′n) Bmap (from-hmam A) ∈ carrier-mat CARD( ′n)
CARD( ′n)

Matrix.diagonal-mat (Bmap (from-hmam A))
using rdd unfolding real-diag-decomp-def Spectral-Theory-Complements.unitary-diag-def

Spectral-Theory-Complements.unitarily-equiv-def similar-mat-wit-def
by (auto simp add:Let-def )

hence (from-hmam (diag (Bmap ′ A))) = Bmap (from-hmam A) (from-hmam U ′) = U
unfolding Bmap ′-def U ′-def by (auto simp add:diagonal-mat-diag-ex-hma)

hence real-diag-decomp (from-hmam A) (from-hmam (diag (Bmap ′ A))) (from-hmam U ′)
using rdd by auto

thus ?thesis
unfolding real-diag-decomp-hma by simp

qed
thus ?thesis

by (intro exI [where x=U ′]) auto
qed

lemma char-poly-upper-triangular :
fixes A :: complex^ ′n^ ′n
assumes upper-triangular-hma A
shows charpoly A = (

∏
a ∈# diag-mat-hma A. [:− a, 1 :])

proof −
have charpoly A = char-poly (from-hmam A)

using HMA-char-poly unfolding rel-fun-def HMA-M-def
by (auto simp add:eq-commute)
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also have ... = (
∏

a←diag-mat (from-hmam A). [:− a, 1 :])
using assms unfolding upper-triangular-hma[symmetric]
by (intro char-poly-upper-triangular [where n=CARD( ′n)] from-hma-carrier) auto

also have ... = (
∏

a∈# mset (diag-mat (from-hmam A)). [:− a, 1 :])
unfolding prod-mset-prod-list[symmetric] mset-map by simp

also have ... = (
∏

a∈# diag-mat-hma A. [:− a, 1 :])
unfolding diag-mat-hma by simp

finally show charpoly A = (
∏

a∈# diag-mat-hma A. [:− a, 1 :]) by simp
qed

lemma upper-tri-eigvals:
fixes A :: complex^ ′n^ ′n
assumes upper-triangular-hma A
shows eigenvalues A = diag-mat-hma A

proof −
have (

∏
a∈#eigenvalues A. [:− a, 1 :]) = charpoly A

unfolding eigvals-poly-length[symmetric] by simp
also have ... = (

∏
a∈#diag-mat-hma A. [:− a, 1 :])

by (intro char-poly-upper-triangular assms)
finally have (

∏
a∈#eigenvalues A. [:− a, 1 :]) = (

∏
a∈#diag-mat-hma A. [:− a, 1 :])

by simp
thus ?thesis

by (intro poly-prod-inj) simp
qed

lemma cinner-self :
fixes v :: complex^ ′n
shows cinner v v = norm v^2

proof −
have 0 : x ∗ cnj x = complex-of-real (x · x) for x :: complex

unfolding inner-complex-def complex-mult-cnj by (simp add:power2-eq-square)
thus ?thesis

unfolding cinner-def power2-norm-eq-inner scalar-product-def inner-vec-def
map-vector-def by simp

qed

lemma unitary-iso:
assumes unitary-hma U
shows norm (U ∗v v) = norm v

proof −
have norm (U ∗v v)^2 = cinner (U ∗v v) (U ∗v v)

unfolding cinner-self by simp
also have ... = cinner v v

unfolding adjoint-def-alter-hma matrix-vector-mul-assoc unitary-hmaD[OF assms] by simp
also have ... = norm v^2

unfolding cinner-self by simp
finally have complex-of-real (norm (U ∗v v)^2 ) = norm v^2 by simp
thus ?thesis

by (meson norm-ge-zero of-real-hom.injectivity power2-eq-iff-nonneg)
qed

lemma (in semiring-hom) mult-mat-vec-hma:
map-vector hom (A ∗v v) = map-matrix hom A ∗v map-vector hom v
using mult-mat-vec-hom by transfer auto

lemma (in semiring-hom) mat-hom-mult-hma:
map-matrix hom (A ∗∗ B) = map-matrix hom A ∗∗ map-matrix hom B
using mat-hom-mult by transfer auto
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context regular-graph-tts
begin

lemma to-nat-less-n: to-nat (x:: ′n) < n
using to-nat-less-card card-n by metis

lemma to-nat-from-nat: x < n =⇒ to-nat (from-nat x :: ′n) = x
using to-nat-from-nat-id card-n by metis

lemma hermitian-A: hermitian-hma A
using count-sym unfolding hermitian-hma-def adjoint-hma-def A-def map-matrix-def

map-vector-def transpose-def by simp

lemma nonneg-A: nonneg-mat A
unfolding nonneg-mat-def A-def by auto

lemma g-step-1 :
assumes v ∈ verts G
shows g-step (λ-. 1 ) v = 1 (is ?L = ?R)

proof −
have ?L = in-degree G v / d

unfolding g-step-def in-degree-def by simp
also have ... = 1

unfolding reg(2 )[OF assms] using d-gt-0 by simp
finally show ?thesis by simp

qed

lemma markov: markov (A :: real^ ′n^ ′n)
proof −

have A ∗v 1 = (1 ::real ^ ′n) (is ?L = ?R)
proof −

have A ∗v 1 = (χ i. g-step (λ-. 1 ) (enum-verts i))
unfolding g-step-conv one-vec-def by simp

also have ... = (χ i. 1 )
using bij-betw-apply[OF enum-verts] by (subst g-step-1 ) auto

also have ... = 1 unfolding one-vec-def by simp
finally show ?thesis by simp

qed
thus ?thesis

by (intro markov-symI nonneg-A symmetric-A)
qed

lemma nonneg-J : nonneg-mat J
unfolding nonneg-mat-def J-def by auto

lemma J-eigvals: eigenvalues J = {#1 ::complex#} + replicate-mset (n − 1 ) 0
proof −

define α :: nat ⇒ real where α i = sqrt (i^2+i) for i :: nat

define q :: nat ⇒ nat ⇒ real
where q i j = (

if i = 0 then (1/sqrt n) else (
if j < i then ((−1 ) / α i) else (
if j = i then (i / α i) else 0 ))) for i j

define Q :: complex^ ′n^ ′n where Q = (χ i j. complex-of-real (q (to-nat i) (to-nat j)))
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define D :: complex^ ′n^ ′n where
D = (χ i j. if to-nat i = 0 ∧ to-nat j = 0 then 1 else 0 )

have 2 : [0 ..<n] = 0#[1 ..<n]
using n-gt-0 upt-conv-Cons by auto

have aux0 : (
∑

k = 0 ..<n. q j k ∗ q i k) = of-bool (i = j) if 1 :i ≤ j j < n for i j
proof −

consider (a) i = j ∧ j = 0 | (b) i = 0 ∧ i < j | (c) 0 < i ∧ i < j | (d) 0 < i ∧ i = j
using 1 by linarith

thus ?thesis
proof (cases)

case a
then show ?thesis using n-gt-0 by (simp add:q-def )

next
case b
have (

∑
k = 0 ..<n. q j k∗q i k)=(

∑
k∈insert j ({0 ..<j} ∪ {j+1 ..<n}). q j k∗q i k)

using that(2 ) by (intro sum.cong) auto
also have ...=q j j∗q i j+(

∑
k=0 ..<j. q j k ∗ q i k)+(

∑
k=j+1 ..<n. q j k ∗ q i k)

by (subst sum.insert) (auto simp add: sum.union-disjoint)
also have ... = 0 using b unfolding q-def by simp
finally show ?thesis using b by simp

next
case c
have (

∑
k = 0 ..<n. q j k∗q i k)=(

∑
k∈insert i ({0 ..<i} ∪ {i+1 ..<n}). q j k∗q i k)

using that(2 ) c by (intro sum.cong) auto
also have ...=q j i∗q i i+(

∑
k=0 ..<i. q j k ∗ q i k)+(

∑
k=i+1 ..<n. q j k ∗ q i k)

by (subst sum.insert) (auto simp add: sum.union-disjoint)
also have ... =(−1 ) / α j ∗ i / α i+ i ∗ ((−1 ) / α j ∗ (−1 ) / α i)

using c unfolding q-def by simp
also have ... = 0

by (simp add:algebra-simps)
finally show ?thesis using c by simp

next
case d
have real i + real i^2 = real (i + i^2 ) by simp
also have ... 6= real 0

unfolding of-nat-eq-iff using d by simp
finally have d-1 : real i + real i^2 6= 0 by simp
have (

∑
k = 0 ..<n. q j k∗q i k)=(

∑
k∈insert i ({0 ..<i} ∪ {i+1 ..<n}). q j k∗q i k)

using that(2 ) d by (intro sum.cong) auto
also have ...=q j i∗q i i+(

∑
k=0 ..<i. q j k ∗ q i k)+(

∑
k=i+1 ..<n. q j k ∗ q i k)

by (subst sum.insert) (auto simp add: sum.union-disjoint)
also have ... = i/ α i ∗ i / α i+ i ∗ ((−1 ) / α i ∗ (−1 ) / α i)

using d that unfolding q-def by simp
also have ... = (i^2 + i) / (α i)^2

by (simp add: power2-eq-square divide-simps)
also have ... = 1

using d-1 unfolding α-def by (simp add:algebra-simps)
finally show ?thesis using d by simp

qed
qed

have 0 :(
∑

k = 0 ..<n. q j k ∗ q i k) = of-bool (i = j) (is ?L = ?R) if i < n j < n for i j
proof −

have ?L = (
∑

k = 0 ..<n. q (max i j) k ∗ q (min i j) k)
by (cases i ≤ j) ( simp-all add:ac-simps cong:sum.cong)

also have ... = of-bool (min i j = max i j)

65



using that by (intro aux0 ) auto
also have ... = ?R

by (cases i ≤ j) auto
finally show ?thesis by simp

qed

have (
∑

k∈UNIV . Q $h j $h k ∗ cnj (Q $h i $h k)) = of-bool (i=j) (is ?L = ?R) for i j
proof −
have ?L = complex-of-real (

∑
k ∈ (UNIV :: ′n set). q (to-nat j) (to-nat k) ∗ q (to-nat i) (to-nat

k))
unfolding Q-def

by (simp add:case-prod-beta scalar-prod-def map-vector-def inner-vec-def row-def inner-complex-def )
also have ... = complex-of-real (

∑
k=0 ..<n. q (to-nat j) k ∗ q (to-nat i) k)

using to-nat-less-n to-nat-from-nat
by (intro arg-cong[where f=of-real] sum.reindex-bij-betw bij-betwI [where g=from-nat])

(auto)
also have ... = complex-of-real (of-bool(to-nat i = to-nat j))

using to-nat-less-n by (intro arg-cong[where f=of-real] 0 ) auto
also have ... = ?R

using to-nat-inj by auto
finally show ?thesis by simp

qed
hence Q ∗∗ adjoint-hma Q = mat 1

by (intro iffD2 [OF vec-eq-iff ]) (auto simp add:matrix-matrix-mult-def mat-def adjoint-hma-eq)
hence unit-Q: unitary-hma Q

unfolding unitary-hma-def by simp

have card {(k:: ′n). to-nat k = 0} = card {from-nat 0 :: ′n}
using to-nat-from-nat[where x=0 ] n-gt-0
by (intro arg-cong[where f=card] iffD2 [OF set-eq-iff ]) auto

hence 5 :card {(k:: ′n). to-nat k = 0} = 1 by simp
hence 1 :adjoint-hma Q ∗∗ D = (χ i j. (if to-nat j = 0 then complex-of-real (1/sqrt n) else 0 ))

unfolding Q-def D-def by (intro iffD2 [OF vec-eq-iff ] allI )
(auto simp add:adjoint-hma-eq matrix-matrix-mult-def q-def if-distrib if-distribR sum.If-cases)

have (adjoint-hma Q ∗∗ D ∗∗ Q) $h i $h j = J $h i $h j (is ?L1 = ?R1 ) for i j
proof −

have ?L1 =1/((sqrt (real n)) ∗ complex-of-real (sqrt (real n)))
unfolding 1 unfolding Q-def using n-gt-0 5
by (auto simp add:matrix-matrix-mult-def q-def if-distrib if-distribR sum.If-cases)

also have ... = 1/sqrt (real n)^2
unfolding of-real-divide of-real-mult power2-eq-square
by simp

also have ... = J $h i $h j
unfolding J-def card-n using n-gt-0 by simp

finally show ?thesis by simp
qed

hence adjoint-hma Q ∗∗ D ∗∗ Q = J
by (intro iffD2 [OF vec-eq-iff ] allI ) auto

hence similar-matrix-wit J D (adjoint-hma Q) Q
unfolding similar-matrix-wit-def unitary-hmaD[OF unit-Q] by auto

hence similar-matrix J D
unfolding similar-matrix-def by auto

hence eigenvalues J = eigenvalues D
by (intro similar-matrix-eigvals)

also have ... = diag-mat-hma D
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by (intro upper-tri-eigvals diag-imp-upper-tri) (simp add:D-def diagonal-mat-def )
also have ... = {# of-bool (to-nat i = 0 ). i ∈# mset-set (UNIV :: ′n set)#}

unfolding diag-mat-hma-def D-def of-bool-def by simp
also have ... = {# of-bool (i = 0 ). i ∈# mset-set (to-nat ‘ (UNIV :: ′n set))#}

unfolding image-mset-mset-set[OF inj-to-nat, symmetric]
by (simp add:image-mset.compositionality comp-def )

also have ... = mset (map (λi. of-bool(i=0 )) [0 ..<n])
unfolding range-to-nat card-n mset-map by simp

also have ... = mset (1 # map (λi. 0 ) [1 ..<n])
unfolding 2 by (intro arg-cong[where f=mset]) simp

also have ... = {#1#} + replicate-mset (n−1 ) 0
using n-gt-0 by (simp add:map-replicate-const mset-repl)

finally show ?thesis by simp
qed

lemma J-markov: markov J
proof −

have nonneg-mat J
unfolding J-def nonneg-mat-def by auto

moreover have transpose J = J
unfolding J-def transpose-def by auto

moreover have J ∗v 1 = (1 :: real^ ′n)
unfolding J-def by (simp add:matrix-vector-mult-def one-vec-def )

ultimately show ?thesis
by (intro markov-symI ) auto

qed

lemma markov-complex-apply:
assumes markov M
shows (map-matrix complex-of-real M ) ∗v (1 :: complex^ ′n) = 1 (is ?L = ?R)

proof −
have ?L = (map-matrix complex-of-real M ) ∗v (map-vector complex-of-real 1 )

by (intro arg-cong2 [where f=(∗v)] refl) (simp add: map-vector-def one-vec-def )
also have ... = map-vector (complex-of-real) 1

unfolding of-real-hom.mult-mat-vec-hma[symmetric] markov-apply[OF assms] by simp
also have ... = ?R

by (simp add: map-vector-def one-vec-def )
finally show ?thesis by simp

qed

lemma J-A-comm-real: J ∗∗ A = A ∗∗ (J :: real^ ′n^ ′n)
proof −

have 0 : (
∑

k∈UNIV . A $h k $h i / real CARD( ′n)) = 1 / real CARD( ′n) (is ?L = ?R) for i
proof −

have ?L = (1 v∗ A) $h i / real CARD( ′n)
unfolding vector-matrix-mult-def by (simp add:sum-divide-distrib)

also have ... = ?R
unfolding markov-apply[OF markov] by simp

finally show ?thesis by simp
qed
have 1 : (

∑
k∈UNIV . A $h i $h k / real CARD( ′n)) = 1 / real CARD( ′n) (is ?L = ?R) for i

proof −
have ?L = (A ∗v 1 ) $h i / real CARD( ′n)

unfolding matrix-vector-mult-def by (simp add:sum-divide-distrib)
also have ... = ?R

unfolding markov-apply[OF markov] by simp
finally show ?thesis by simp

qed
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show ?thesis
unfolding J-def using 0 1
by (intro iffD2 [OF vec-eq-iff ] allI ) (simp add:matrix-matrix-mult-def )

qed

lemma J-A-comm: J ∗∗ A = A ∗∗ (J :: complex^ ′n^ ′n) (is ?L = ?R)
proof −

have J ∗∗ A = map-matrix complex-of-real (J ∗∗ A)
unfolding of-real-hom.mat-hom-mult-hma J-def A-def
by (auto simp add:map-matrix-def map-vector-def )

also have ... = map-matrix complex-of-real (A ∗∗ J )
unfolding J-A-comm-real by simp

also have ... = map-matrix complex-of-real A ∗∗ map-matrix complex-of-real J
unfolding of-real-hom.mat-hom-mult-hma by simp

also have ... = ?R
unfolding A-def J-def
by (auto simp add:map-matrix-def map-vector-def )

finally show ?thesis by simp
qed

definition γa :: ′n itself ⇒ real where
γa - = (if n > 1 then Max-mset (image-mset cmod (eigenvalues A − {#1#})) else 0 )

definition γ2 :: ′n itself ⇒ real where
γ2 - = (if n > 1 then Max-mset {# Re x. x ∈# (eigenvalues A − {#1#})#} else 0 )

lemma J-sym: hermitian-hma J
unfolding J-def hermitian-hma-def
by (intro iffD2 [OF vec-eq-iff ] allI ) (simp add: adjoint-hma-eq)

lemma
shows evs-real: set-mset (eigenvalues A::complex multiset) ⊆ � (is ?R1 )

and ev-1 : (1 ::complex) ∈# eigenvalues A
and γa-ge-0 : γa TYPE ( ′n) ≥ 0
and find-any-ev:
∀α ∈# eigenvalues A − {#1#}. ∃ v. cinner v 1 = 0 ∧ v 6= 0 ∧ A ∗v v = α ∗s v

and γa-bound: ∀ v. cinner v 1 = 0 −→ norm (A ∗v v) ≤ γa TYPE( ′n) ∗ norm v
and γ2-bound: ∀ (v::real^ ′n). v · 1 = 0 −→ v · (A ∗v v) ≤ γ2 TYPE ( ′n) ∗ norm v^2

proof −
have ∃ U . ∀ A∈ {J ,A}. ∃B. real-diag-decomp-hma A B U

using J-sym hermitian-A J-A-comm
by (intro commuting-hermitian-family-diag-hma) auto

then obtain U Ad Jd
where A-decomp: real-diag-decomp-hma A Ad U and K-decomp: real-diag-decomp-hma J Jd

U
by auto

have J-sim: similar-matrix-wit J (diag Jd) U (adjoint-hma U ) and
unit-U : unitary-hma U
using K-decomp unfolding real-diag-decomp-hma-def unitary-diag-def unitarily-equiv-hma-def
by auto

have diag-mat-hma (diag Jd) = eigenvalues (diag Jd)
by (intro upper-tri-eigvals[symmetric] diag-imp-upper-tri J-sim) auto

also have ... = eigenvalues J
using J-sim by (intro similar-matrix-eigvals[symmetric]) (auto simp add:similar-matrix-def )

also have ... ={#1 ::complex#} + replicate-mset (n − 1 ) 0
unfolding J-eigvals by simp
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finally have 0 :diag-mat-hma (diag Jd) = {#1 ::complex#} + replicate-mset (n − 1 ) 0 by simp
hence 1 ∈# diag-mat-hma (diag Jd) by simp
then obtain i where i-def :Jd $h i = 1

unfolding diag-mat-hma-def diag-def by auto
have {# Jd $h j. j ∈# mset-set (UNIV − {i}) #} = {#Jd $h j. j ∈# mset-set UNIV −

mset-set {i}#}
unfolding diag-mat-hma-def by (intro arg-cong2 [where f=image-mset] mset-set-Diff ) auto

also have ... = diag-mat-hma (diag Jd) − {#1#}
unfolding diag-mat-hma-def diag-def by (subst image-mset-Diff ) (auto simp add:i-def )

also have ... = replicate-mset (n − 1 ) 0
unfolding 0 by simp

finally have {# Jd $h j. j ∈# mset-set (UNIV − {i}) #} = replicate-mset (n − 1 ) 0
by simp

hence set-mset {# Jd $h j. j ∈# mset-set (UNIV − {i}) #} ⊆ {0}
by simp

hence 1 :Jd $h j = 0 if j 6= i for j
using that by auto

define u where u = adjoint-hma U ∗v 1
define α where α = u $h i

have U ∗v u = (U ∗∗ adjoint-hma U ) ∗v 1
unfolding u-def by (simp add:matrix-vector-mul-assoc)

also have ... = 1
unfolding unitary-hmaD[OF unit-U ] by simp

also have ... 6= 0
by simp

finally have U ∗v u 6= 0 by simp
hence u-nz: u 6= 0

by (cases u = 0 ) auto

have diag Jd ∗v u = adjoint-hma U ∗∗ U ∗∗ diag Jd ∗∗ adjoint-hma U ∗v 1
unfolding unitary-hmaD[OF unit-U ] u-def by (auto simp add:matrix-vector-mul-assoc)

also have ... = adjoint-hma U ∗∗ (U ∗∗ diag Jd ∗∗ adjoint-hma U ) ∗v 1
by (simp add:matrix-mul-assoc)

also have ... = adjoint-hma U ∗∗ J ∗v 1
using J-sim unfolding similar-matrix-wit-def by simp

also have ... = adjoint-hma U ∗v (map-matrix complex-of-real J ∗v 1 )
by (simp add:map-matrix-def map-vector-def J-def matrix-vector-mul-assoc)

also have ... = u
unfolding u-def markov-complex-apply[OF J-markov] by simp

finally have u-ev: diag Jd ∗v u = u by simp
hence Jd ∗ u = u

unfolding diag-vec-mult-eq by simp
hence u $h j = 0 if j 6= i for j

using 1 that unfolding times-vec-def vec-eq-iff by auto
hence u-alt: u = axis i α

unfolding α-def axis-def vec-eq-iff by auto
hence α-nz: α 6= 0

using u-nz by (cases α=0 ) auto

have A-sim: similar-matrix-wit A (diag Ad) U (adjoint-hma U ) and Ad-real: ∀ i. Ad $h i ∈ �
using A-decomp unfolding real-diag-decomp-hma-def unitary-diag-def unitarily-equiv-hma-def
by auto

have diag-mat-hma (diag Ad) = eigenvalues (diag Ad)
by (intro upper-tri-eigvals[symmetric] diag-imp-upper-tri A-sim) auto

also have ... = eigenvalues A
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using A-sim by (intro similar-matrix-eigvals[symmetric]) (auto simp add:similar-matrix-def )
finally have 3 :diag-mat-hma (diag Ad) = eigenvalues A

by simp

show ?R1
unfolding 3 [symmetric] diag-mat-hma-def diag-def using Ad-real by auto

have diag Ad ∗v u = adjoint-hma U ∗∗ U ∗∗ diag Ad ∗∗ adjoint-hma U ∗v 1
unfolding unitary-hmaD[OF unit-U ] u-def by (auto simp add:matrix-vector-mul-assoc)

also have ... = adjoint-hma U ∗∗ (U ∗∗ diag Ad ∗∗ adjoint-hma U ) ∗v 1
by (simp add:matrix-mul-assoc)

also have ... = adjoint-hma U ∗∗ A ∗v 1
using A-sim unfolding similar-matrix-wit-def by simp

also have ... = adjoint-hma U ∗v (map-matrix complex-of-real A ∗v 1 )
by (simp add:map-matrix-def map-vector-def A-def matrix-vector-mul-assoc)

also have ... = u
unfolding u-def markov-complex-apply[OF markov] by simp

finally have u-ev-A: diag Ad ∗v u = u by simp
hence Ad ∗ u = u

unfolding diag-vec-mult-eq by simp
hence 5 :Ad $h i = 1

using α-nz unfolding u-alt times-vec-def vec-eq-iff axis-def by force

thus ev-1 : (1 ::complex) ∈# eigenvalues A
unfolding 3 [symmetric] diag-mat-hma-def diag-def by auto

have eigenvalues A − {#1#} = diag-mat-hma (diag Ad) − {#1#}
unfolding 3 by simp

also have ... = {#Ad $h j. j ∈# mset-set UNIV#} − {# Ad $h i #}
unfolding 5 diag-mat-hma-def diag-def by simp

also have ... = {#Ad $h j. j ∈# mset-set UNIV − mset-set {i}#}
by (subst image-mset-Diff ) auto

also have ... = {#Ad $h j. j ∈# mset-set (UNIV − {i})#}
by (intro arg-cong2 [where f=image-mset] mset-set-Diff [symmetric]) auto

finally have 4 :eigenvalues A − {#1#} = {#Ad $h j. j ∈# mset-set (UNIV − {i})#} by simp

have cmod (Ad $h k) ≤ γa TYPE ( ′n) if n > 1 k 6= i for k
unfolding γa-def 4 using that Max-ge by auto

moreover have k = i if n = 1 for k
using that to-nat-less-n by simp

ultimately have norm-Ad: norm (Ad $h k) ≤ γa TYPE ( ′n) ∨ k = i for k
using n-gt-0 by (cases n = 1 , auto)

have Re (Ad $h k) ≤ γ2 TYPE ( ′n) if n > 1 k 6= i for k
unfolding γ2-def 4 using that Max-ge by auto

moreover have k = i if n = 1 for k
using that to-nat-less-n by simp

ultimately have Re-Ad: Re (Ad $h k) ≤ γ2 TYPE ( ′n) ∨ k = i for k
using n-gt-0 by (cases n = 1 , auto)

show Λe-ge-0 : γa TYPE ( ′n) ≥ 0
proof (cases n > 1 )

case True
then obtain k where k-def : k 6= i

by (metis (full-types) card-n from-nat-inj n-gt-0 one-neq-zero)
have 0 ≤ cmod (Ad $h k)

by simp
also have ... ≤ γa TYPE ( ′n)
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using norm-Ad k-def by auto
finally show ?thesis by auto

next
case False
thus ?thesis unfolding γa-def by simp

qed

have ∃ v. cinner v 1 = 0 ∧ v 6= 0 ∧ A ∗v v = β ∗s v if β-ran: β ∈# eigenvalues A − {#1#}
for β

proof −
obtain j where j-def : β = Ad $h j j 6= i

using β-ran unfolding 4 by auto
define v where v = U ∗v axis j 1

have A ∗v v = A ∗∗ U ∗v axis j 1
unfolding v-def by (simp add:matrix-vector-mul-assoc)

also have ... = ((U ∗∗ diag Ad ∗∗ adjoint-hma U ) ∗∗ U ) ∗v axis j 1
using A-sim unfolding similar-matrix-wit-def by simp

also have ... = U ∗∗ diag Ad ∗∗ (adjoint-hma U ∗∗ U ) ∗v axis j 1
by (simp add:matrix-mul-assoc)

also have ... = U ∗∗ diag Ad ∗v axis j 1
using unitary-hmaD[OF unit-U ] by simp

also have ... = U ∗v (Ad ∗ axis j 1 )
by (simp add:matrix-vector-mul-assoc[symmetric] diag-vec-mult-eq)

also have ... = U ∗v (β ∗s axis j 1 )
by (intro arg-cong2 [where f=(∗v)] iffD2 [OF vec-eq-iff ]) (auto simp:j-def axis-def )

also have ... = β ∗s v
unfolding v-def by (simp add:vector-scalar-commute)

finally have 5 :A ∗v v = β ∗s v by simp

have cinner v 1 = cinner (axis j 1 ) (adjoint-hma U ∗v 1 )
unfolding v-def adjoint-def-alter-hma by simp

also have ... = cinner (axis j 1 ) (axis i α)
unfolding u-def [symmetric] u-alt by simp

also have ... = 0
using j-def (2 ) unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)

finally have 6 :cinner v 1 = 0
by simp

have cinner v v = cinner (axis j 1 ) (adjoint-hma U ∗v (U ∗v (axis j 1 )))
unfolding v-def adjoint-def-alter-hma by simp

also have ... = cinner (axis j 1 ) (axis j 1 )
unfolding matrix-vector-mul-assoc unitary-hmaD[OF unit-U ] by simp

also have ... = 1
unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)

finally have cinner v v = 1
by simp

hence 7 :v 6= 0
by (cases v=0 ) (auto simp add:cinner-0 )

show ?thesis
by (intro exI [where x=v] conjI 6 7 5 )

qed

thus ∀α ∈# eigenvalues A − {#1#}. ∃ v. cinner v 1 = 0 ∧ v 6= 0 ∧ A ∗v v = α ∗s v
by simp
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have norm (A ∗v v) ≤ γa TYPE( ′n) ∗ norm v if cinner v 1 = 0 for v
proof −

define w where w= adjoint-hma U ∗v v

have w $h i = cinner w (axis i 1 )
unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)

also have ... = cinner v (U ∗v axis i 1 )
unfolding w-def adjoint-def-alter-hma by simp

also have ... = cinner v ((1 / α) ∗s (U ∗v u))
unfolding vector-scalar-commute[symmetric] u-alt using α-nz
by (intro-cong [σ2 cinner , σ2 (∗v)]) (auto simp add:axis-def vec-eq-iff )

also have ... = cinner v ((1 / α) ∗s 1 )
unfolding u-def matrix-vector-mul-assoc unitary-hmaD[OF unit-U ] by simp

also have ... = 0
unfolding cinner-scale-right that by simp

finally have w-orth: w $h i = 0 by simp

have norm (A ∗v v) = norm (U ∗v (diag Ad ∗v w))
using A-sim unfolding matrix-vector-mul-assoc similar-matrix-wit-def w-def
by (simp add:matrix-mul-assoc)

also have ... = norm (diag Ad ∗v w)
unfolding unitary-iso[OF unit-U ] by simp

also have ... = norm (Ad ∗ w)
unfolding diag-vec-mult-eq by simp

also have ... = sqrt (
∑

i∈UNIV . (cmod (Ad $h i) ∗ cmod (w $h i))2)
unfolding norm-vec-def L2-set-def times-vec-def by (simp add:norm-mult)

also have ... ≤ sqrt (
∑

i∈UNIV . ((γa TYPE( ′n)) ∗ cmod (w $h i))^2 )
using w-orth norm-Ad
by (intro iffD2 [OF real-sqrt-le-iff ] sum-mono power-mono mult-right-mono ′) auto

also have ... = |γa TYPE( ′n)| ∗ sqrt (
∑

i∈UNIV . (cmod (w $h i))2)
by (simp add:power-mult-distrib sum-distrib-left[symmetric] real-sqrt-mult)

also have ... = |γa TYPE( ′n)| ∗ norm w
unfolding norm-vec-def L2-set-def by simp

also have ... = γa TYPE( ′n) ∗ norm w
using Λe-ge-0 by simp

also have ... = γa TYPE( ′n) ∗ norm v
unfolding w-def unitary-iso[OF unitary-hma-adjoint[OF unit-U ]] by simp

finally show norm (A ∗v v) ≤ γa TYPE( ′n) ∗ norm v
by simp

qed

thus ∀ v. cinner v 1 = 0 −→ norm (A ∗v v) ≤ γa TYPE( ′n) ∗ norm v by auto

have v · (A ∗v v) ≤ γ2 TYPE ( ′n) ∗ norm v^2 if v · 1 = 0 for v :: real^ ′n
proof −

define v ′ where v ′ = map-vector complex-of-real v
define w where w= adjoint-hma U ∗v v ′

have w $h i = cinner w (axis i 1 )
unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)

also have ... = cinner v ′ (U ∗v axis i 1 )
unfolding w-def adjoint-def-alter-hma by simp

also have ... = cinner v ′ ((1 / α) ∗s (U ∗v u))
unfolding vector-scalar-commute[symmetric] u-alt using α-nz
by (intro-cong [σ2 cinner , σ2 (∗v)]) (auto simp add:axis-def vec-eq-iff )
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also have ... = cinner v ′ ((1 / α) ∗s 1 )
unfolding u-def matrix-vector-mul-assoc unitary-hmaD[OF unit-U ] by simp

also have ... = cnj (1 / α) ∗ cinner v ′ 1
unfolding cinner-scale-right by simp

also have ... = cnj (1 / α) ∗ complex-of-real (v · 1 )
unfolding cinner-def scalar-product-def map-vector-def inner-vec-def v ′-def
by (intro arg-cong2 [where f=(∗)] refl) (simp)

also have ... = 0
unfolding that by simp

finally have w-orth: w $h i = 0 by simp

have complex-of-real (norm v^2 ) = complex-of-real (v · v)
by (simp add: power2-norm-eq-inner)

also have ... = cinner v ′ v ′

unfolding v ′-def cinner-def scalar-product-def inner-vec-def map-vector-def by simp
also have ... = norm v ′̂ 2

unfolding cinner-self by simp
also have ... = norm w^2

unfolding w-def unitary-iso[OF unitary-hma-adjoint[OF unit-U ]] by simp
also have ... = cinner w w

unfolding cinner-self by simp
also have ... = (

∑
j∈UNIV . complex-of-real (cmod (w $h j)^2 ))

unfolding cinner-def scalar-product-def map-vector-def
cmod-power2 complex-mult-cnj[symmetric] by simp

also have ... = complex-of-real (
∑

j∈UNIV . (cmod (w $h j)^2 ))
by simp

finally have complex-of-real (norm v^2 ) = complex-of-real (
∑

j∈UNIV . (cmod (w $h j)^2 ))
by simp

hence norm-v: norm v^2 = (
∑

j∈UNIV . (cmod (w $h j)^2 ))
using of-real-hom.injectivity by blast

have complex-of-real (v · (A ∗v v)) = cinner v ′ (map-vector of-real (A ∗v v))
unfolding v ′-def cinner-def scalar-product-def inner-vec-def map-vector-def
by simp

also have ... = cinner v ′ (map-matrix of-real A ∗v v ′)
unfolding v ′-def of-real-hom.mult-mat-vec-hma by simp

also have ... = cinner v ′ (A ∗v v ′)
unfolding map-matrix-def map-vector-def A-def by auto

also have ... = cinner v ′ (U ∗∗ diag Ad ∗∗ adjoint-hma U ∗v v ′)
using A-sim unfolding similar-matrix-wit-def by simp

also have ... = cinner (adjoint-hma U ∗v v ′) (diag Ad ∗∗ adjoint-hma U ∗v v ′)
unfolding adjoint-def-alter-hma adjoint-adjoint adjoint-adjoint-id
by (simp add:matrix-vector-mul-assoc matrix-mul-assoc)

also have ... = cinner w (diag Ad ∗v w)
unfolding w-def by (simp add:matrix-vector-mul-assoc)

also have ... = cinner w (Ad ∗ w)
unfolding diag-vec-mult-eq by simp

also have ... = (
∑

j∈UNIV . cnj (Ad $h j) ∗ cmod (w $h j)^2 )
unfolding cinner-def map-vector-def scalar-product-def cmod-power2 complex-mult-cnj[symmetric]

by (simp add:algebra-simps)
also have ... = (

∑
j∈UNIV . Ad $h j ∗ cmod (w $h j)^2 )

using Ad-real by (intro sum.cong refl arg-cong2 [where f=(∗)] iffD1 [OF Reals-cnj-iff ]) auto
also have ... = (

∑
j∈UNIV . complex-of-real (Re (Ad $h j) ∗ cmod (w $h j)^2 ))

using Ad-real by (intro sum.cong refl) simp
also have ... = complex-of-real (

∑
j∈ UNIV . Re (Ad $h j) ∗ cmod (w $h j)^2 )

by simp
finally have complex-of-real (v·(A ∗v v)) = of-real(

∑
j∈UNIV . Re (Ad $h j) ∗ cmod (w $h

j)^2 )
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by simp
hence v·(A ∗v v) = (

∑
j∈UNIV . Re (Ad $h j) ∗ cmod (w $h j)^2 )

using of-real-hom.injectivity by blast
also have ... ≤ (

∑
j∈UNIV . γ2 TYPE ( ′n) ∗ cmod (w $h j)^2 )

using w-orth Re-Ad by (intro sum-mono mult-right-mono ′) auto
also have ... = γ2 TYPE ( ′n) ∗ (

∑
j∈UNIV . cmod (w $h j)^2 )

by (simp add:sum-distrib-left)
also have ... = γ2 TYPE ( ′n) ∗ norm v^2

unfolding norm-v by simp
finally show ?thesis by simp

qed

thus ∀ (v::real^ ′n). v · 1 = 0 −→ v · (A ∗v v) ≤ γ2 TYPE ( ′n) ∗ norm v^2
by auto

qed

lemma find-any-real-ev:
assumes complex-of-real α ∈# eigenvalues A − {#1#}
shows ∃ v. v · 1 = 0 ∧ v 6= 0 ∧ A ∗v v = α ∗s v

proof −
obtain w where w-def : cinner w 1 = 0 w 6= 0 A ∗v w = α ∗s w

using find-any-ev assms by auto

have w = 0 if map-vector Re (1 ∗s w) = 0 map-vector Re (i ∗s w) = 0
using that by (simp add:vec-eq-iff map-vector-def complex-eq-iff )

then obtain c where c-def : map-vector Re (c ∗s w) 6= 0
using w-def (2 ) by blast

define u where u = c ∗s w

define v where v = map-vector Re u

hence v · 1 = Re (cinner u 1 )
unfolding cinner-def inner-vec-def scalar-product-def map-vector-def by simp

also have ... = 0
unfolding u-def cinner-scale-left w-def (1 ) by simp

finally have 1 :v · 1 = 0 by simp

have A ∗v v = (χ i.
∑

j∈UNIV . A $h i $h j ∗ Re (u $h j))
unfolding matrix-vector-mult-def v-def map-vector-def by simp

also have ... = (χ i.
∑

j∈UNIV . Re ( of-real (A $h i $h j) ∗ u $h j))
by simp

also have ... = (χ i. Re (
∑

j∈UNIV . A $h i $h j ∗ u $h j))
unfolding A-def by simp

also have ... = map-vector Re (A ∗v u)
unfolding map-vector-def matrix-vector-mult-def by simp

also have ... = map-vector Re (of-real α ∗s u)
unfolding u-def vector-scalar-commute w-def (3 )
by (simp add:ac-simps)

also have ... = α ∗s v
unfolding v-def by (simp add:vec-eq-iff map-vector-def )

finally have 2 : A ∗v v = α ∗s v by simp

have 3 :v 6= 0
unfolding v-def u-def using c-def by simp

show ?thesis
by (intro exI [where x=v] conjI 1 2 3 )
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qed

lemma size-evs:
size (eigenvalues A − {#1 ::complex#}) = n−1

proof −
have size (eigenvalues A :: complex multiset) = n

using eigvals-poly-length card-n[symmetric] by auto
thus size (eigenvalues A − {#(1 ::complex)#}) = n −1

using ev-1 by (simp add: size-Diff-singleton)
qed

lemma find-γ2:
assumes n > 1
shows γa TYPE( ′n) ∈# image-mset cmod (eigenvalues A − {#1 ::complex#})

proof −
have set-mset (eigenvalues A − {#(1 ::complex)#}) 6= {}

using assms size-evs by auto
hence 2 : cmod ‘ set-mset (eigenvalues A − {#1#}) 6= {}

by simp
have γa TYPE( ′n) ∈ set-mset (image-mset cmod (eigenvalues A − {#1#}))

unfolding γa-def using assms 2 Max-in by auto
thus γa TYPE( ′n) ∈# image-mset cmod (eigenvalues A − {#1#})

by simp
qed

lemma γ2-real-ev:
assumes n > 1
shows ∃ v. (∃α. abs α=γa TYPE( ′n) ∧ v · 1=0 ∧ v 6= 0 ∧ A ∗v v = α ∗s v)

proof −
obtain α where α-def : cmod α = γa TYPE( ′n) α ∈# eigenvalues A − {#1#}

using find-γ2[OF assms] by auto
have α ∈ �

using in-diffD[OF α-def (2 )] evs-real by auto
then obtain β where β-def : α = of-real β

using Reals-cases by auto

have 0 :complex-of-real β ∈# eigenvalues A−{#1#}
using α-def unfolding β-def by auto

have 1 : |β| = γa TYPE( ′n)
using α-def unfolding β-def by simp

show ?thesis
using find-any-real-ev[OF 0 ] 1 by auto

qed

lemma γa-real-bound:
fixes v :: real^ ′n
assumes v · 1 = 0
shows norm (A ∗v v) ≤ γa TYPE( ′n) ∗ norm v

proof −
define w where w = map-vector complex-of-real v

have cinner w 1 = v · 1
unfolding w-def cinner-def map-vector-def scalar-product-def inner-vec-def
by simp

also have ... = 0 using assms by simp
finally have 0 : cinner w 1 = 0 by simp
have norm (A ∗v v) = norm (map-matrix complex-of-real A ∗v (map-vector complex-of-real v))

75



unfolding norm-of-real of-real-hom.mult-mat-vec-hma[symmetric] by simp
also have ... = norm (A ∗v w)

unfolding w-def A-def map-matrix-def map-vector-def by simp
also have ... ≤ γa TYPE( ′n) ∗ norm w

using γa-bound 0 by auto
also have ... = γa TYPE( ′n) ∗ norm v

unfolding w-def norm-of-real by simp
finally show ?thesis by simp

qed

lemma Λe-eq-Λ: Λa = γa TYPE( ′n)
proof −

have |g-inner f (g-step f )| ≤ γa TYPE( ′n) ∗ (g-norm f )2
(is ?L ≤ ?R) if g-inner f (λ-. 1 ) = 0 for f

proof −
define v where v = (χ i. f (enum-verts i))
have 0 : v · 1 = 0

using that unfolding g-inner-conv one-vec-def v-def by auto
have ?L = |v · (A ∗v v)|

unfolding g-inner-conv g-step-conv v-def by simp
also have ... ≤ (norm v ∗ norm (A ∗v v))

by (intro Cauchy-Schwarz-ineq2 )
also have ... ≤ (norm v ∗ (γa TYPE( ′n) ∗ norm v))

by (intro mult-left-mono γa-real-bound 0 ) auto
also have ... = ?R

unfolding g-norm-conv v-def by (simp add:algebra-simps power2-eq-square)
finally show ?thesis by simp

qed
hence Λa ≤ γa TYPE( ′n)

using γa-ge-0 by (intro expander-intro-1 ) auto

moreover have Λa ≥ γa TYPE( ′n)
proof (cases n > 1 )

case True
then obtain v α where v-def : abs α = γa TYPE( ′n) A ∗v v =α ∗s v v 6= 0 v · 1 = 0

using γ2-real-ev by auto
define f where f x = v $h enum-verts-inv x for x
have v-alt: v = (χ i. f (enum-verts i))

unfolding f-def Rep-inverse by simp

have g-inner f (λ-. 1 ) = v · 1
unfolding g-inner-conv v-alt one-vec-def by simp

also have ... = 0 using v-def by simp
finally have 2 :g-inner f (λ-. 1 ) = 0 by simp

have γa TYPE( ′n) ∗ g-norm f^2 = γa TYPE( ′n) ∗ norm v^2
unfolding g-norm-conv v-alt by simp

also have ... = γa TYPE( ′n) ∗ |v · v|
by (simp add: power2-norm-eq-inner)

also have ... = |v · (α ∗s v)|
unfolding v-def (1 )[symmetric] scalar-mult-eq-scaleR
by (simp add:abs-mult)

also have ... = |v · (A ∗v v)|
unfolding v-def by simp

also have ... = |g-inner f (g-step f )|
unfolding g-inner-conv g-step-conv v-alt by simp

also have ... ≤ Λa ∗ g-norm f^2
by (intro expansionD1 2 )
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finally have γa TYPE( ′n) ∗ g-norm f^2 ≤ Λa ∗ g-norm f^2 by simp
moreover have norm v^2 > 0

using v-def (3 ) by simp
hence g-norm f^2 > 0

unfolding g-norm-conv v-alt by simp
ultimately show ?thesis by simp

next
case False
hence n = 1 using n-gt-0 by simp
hence γa TYPE( ′n) = 0

unfolding γa-def by simp

then show ?thesis using Λ-ge-0 by simp
qed
ultimately show ?thesis by simp

qed

lemma γ2-ev:
assumes n > 1
shows ∃ v. v · 1 = 0 ∧ v 6= 0 ∧ A ∗v v = γ2 TYPE( ′n) ∗s v

proof −
have set-mset (eigenvalues A − {#1 ::complex#}) 6= {}

using size-evs assms by auto
hence Max (Re ‘ set-mset (eigenvalues A − {#1#})) ∈ Re ‘ set-mset (eigenvalues A − {#1#})

by (intro Max-in) auto
hence γ2 TYPE ( ′n) ∈ Re ‘ set-mset (eigenvalues A − {#1#})

unfolding γ2-def using assms by simp
then obtain α where α-def : α ∈ set-mset (eigenvalues A − {#1#}) γ2 TYPE ( ′n) = Re α

by auto
have α-real: α ∈ �

using evs-real in-diffD[OF α-def (1 )] by auto
have complex-of-real (γ2 TYPE ( ′n)) = of-real (Re α)

unfolding α-def by simp
also have ... = α

using α-real by simp
also have ... ∈# eigenvalues A − {#1#}

using α-def (1 ) by simp
finally have 0 :complex-of-real (γ2 TYPE ( ′n)) ∈# eigenvalues A − {#1#} by simp
thus ?thesis

using find-any-real-ev[OF 0 ] by auto
qed

lemma Λ2-eq-γ2: Λ2 = γ2 TYPE ( ′n)
proof (cases n > 1 )

case True

obtain v where v-def : v · 1 = 0 v 6= 0 A ∗v v = γ2 TYPE( ′n) ∗s v
using γ2-ev[OF True] by auto

define f where f x = v $h enum-verts-inv x for x
have v-alt: v = (χ i. f (enum-verts i))

unfolding f-def Rep-inverse by simp

have g-inner f (λ-. 1 ) = v · 1
unfolding g-inner-conv v-alt one-vec-def by simp

also have ... = 0 unfolding v-def (1 ) by simp
finally have f-orth: g-inner f (λ-. 1 ) = 0 by simp
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have γ2 TYPE( ′n) ∗ norm v^2= v · (γ2 TYPE( ′n) ∗s v)
unfolding power2-norm-eq-inner by (simp add:algebra-simps scalar-mult-eq-scaleR)

also have ... = v · (A ∗v v)
unfolding v-def by simp

also have ... = g-inner f (g-step f )
unfolding v-alt g-inner-conv g-step-conv by simp

also have ... ≤ Λ2 ∗ g-norm f^2
by (intro os-expanderD f-orth)

also have ... = Λ2 ∗ norm v^2
unfolding v-alt g-norm-conv by simp

finally have γ2 TYPE( ′n) ∗ norm v^2 ≤ Λ2 ∗ norm v^2 by simp
hence γ2 TYPE( ′n) ≤ Λ2

using v-def (2 ) by simp
moreover have Λ2 ≤ γ2 TYPE ( ′n)

using γ2-bound
by (intro os-expanderI [OF True])
(simp add: g-inner-conv g-step-conv g-norm-conv one-vec-def )

ultimately show ?thesis by simp
next

case False
then show ?thesis

unfolding Λ2-def γ2-def by simp
qed

lemma expansionD2 :
assumes g-inner f (λ-. 1 ) = 0
shows g-norm (g-step f ) ≤ Λa ∗ g-norm f (is ?L ≤ ?R)

proof −
define v where v = (χ i. f (enum-verts i))
have v · 1 = g-inner f (λ-. 1 )

unfolding g-inner-conv v-def one-vec-def by simp
also have ... = 0 using assms by simp
finally have 0 :v · 1 = 0 by simp
have g-norm (g-step f ) = norm (A ∗v v)

unfolding g-norm-conv g-step-conv v-def by auto
also have ... ≤ Λa ∗ norm v

unfolding Λe-eq-Λ by (intro γa-real-bound 0 )
also have ... = Λa ∗ g-norm f

unfolding g-norm-conv v-def by simp
finally show ?thesis by simp

qed

lemma rayleigh-bound:
fixes v :: real^ ′n
shows |v · (A ∗v v)| ≤ norm v^2

proof −
define f where f x = v $h enum-verts-inv x for x
have v-alt: v = (χ i. f (enum-verts i))

unfolding f-def Rep-inverse by simp

have |v · (A ∗v v)| = |g-inner f (g-step f )|
unfolding v-alt g-inner-conv g-step-conv by simp

also have ... = |(
∑

a∈arcs G. f (head G a) ∗ f (tail G a))|/d
unfolding g-inner-step-eq by simp

also have ... ≤ (d ∗ (g-norm f )2) / d
by (intro divide-right-mono bdd-above-aux) auto

also have ... = g-norm f^2
using d-gt-0 by simp
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also have ... = norm v^2
unfolding g-norm-conv v-alt by simp

finally show ?thesis by simp
qed

The following implies that two-sided expanders are also one-sided expanders.
lemma Λ2-range: |Λ2| ≤ Λa

proof (cases n > 1 )
case True
hence 0 :set-mset (eigenvalues A − {#1 ::complex#}) 6= {}

using size-evs by auto

have γ2 TYPE ( ′n) = Max (Re ‘ set-mset (eigenvalues A − {#1 ::complex#}))
unfolding γ2-def using True by simp

also have ... ∈ Re ‘ set-mset (eigenvalues A − {#1 ::complex#})
using Max-in 0 by simp

finally have γ2 TYPE ( ′n) ∈ Re ‘ set-mset (eigenvalues A − {#1 ::complex#})
by simp

then obtain α where α-def : α ∈ set-mset (eigenvalues A − {#1 ::complex#}) γ2 TYPE ( ′n)
= Re α

by auto

have |Λ2| = |γ2 TYPE ( ′n) |
using Λ2-eq-γ2 by simp

also have ... = |Re α|
using α-def by simp

also have ... ≤ cmod α
using abs-Re-le-cmod by simp

also have ... ≤ Max (cmod ‘ set-mset (eigenvalues A − {#1#}))
using α-def (1 ) by (intro Max-ge) auto

also have ... ≤ γa TYPE( ′n)
unfolding γa-def using True by simp

also have ... = Λa

using Λe-eq-Λ by simp
finally show ?thesis by simp

next
case False
thus ?thesis

unfolding Λ2-def Λa-def by simp
qed

end

lemmas (in regular-graph) expansionD2 =
regular-graph-tts.expansionD2 [OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

lemmas (in regular-graph) Λ2-range =
regular-graph-tts.Λ2-range[OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

unbundle no intro-cong-syntax

end
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7 Cheeger Inequality

The Cheeger inequality relates edge expansion (a combinatorial property) with the second
largest eigenvalue.
theory Expander-Graphs-Cheeger-Inequality

imports Expander-Graphs-Eigenvalues
begin

unbundle intro-cong-syntax
hide-const Quantum.T

context regular-graph
begin

lemma edge-expansionD2 :
assumes m = card (S ∩ verts G) 2∗m ≤ n
shows Λe ∗ m ≤ real (card (edges-betw S (−S)))

proof −
define S ′ where S ′ = S ∩ verts G
have Λe ∗ m = Λe ∗ card S ′

using assms(1 ) S ′-def by simp
also have ... ≤ real (card (edges-betw S ′ (−S ′)))

using assms unfolding S ′-def by (intro edge-expansionD) auto
also have ... = real (card (edges-betw S (−S)))

unfolding S ′-def edges-betw-def
by (intro arg-cong[where f=real] arg-cong[where f=card]) auto

finally show ?thesis by simp
qed

lemma edges-betw-sym:
card (edges-betw S T ) = card (edges-betw T S) (is ?L = ?R)

proof −
have ?L = (

∑
a ∈ arcs G. of-bool (tail G a ∈ S ∧ head G a ∈ T ))

unfolding edges-betw-def of-bool-def by (simp add:sum.If-cases Int-def )
also have ... = (

∑
e ∈# edges G. of-bool (fst e ∈ S ∧ snd e ∈ T ))

unfolding sum-unfold-sum-mset edges-def arc-to-ends-def
by (simp add:image-mset.compositionality comp-def )

also have ... = (
∑

e ∈# edges G. of-bool (snd e ∈ S ∧ fst e ∈ T ))
by (subst edges-sym[OF sym, symmetric])

(simp add:image-mset.compositionality comp-def case-prod-beta)
also have ... = (

∑
a ∈ arcs G. of-bool (tail G a ∈ T ∧ head G a ∈ S))

unfolding sum-unfold-sum-mset edges-def arc-to-ends-def
by (simp add:image-mset.compositionality comp-def conj.commute)

also have ... = ?R
unfolding edges-betw-def of-bool-def by (simp add:sum.If-cases Int-def )

finally show ?thesis by simp
qed

lemma edges-betw-reg:
assumes S ⊆ verts G
shows card (edges-betw S UNIV ) = card S ∗ d (is ?L = ?R)

proof −
have ?L = card (

⋃
(out-arcs G ‘ S))

unfolding edges-betw-def out-arcs-def by (intro arg-cong[where f=card]) auto
also have ... = (

∑
i∈S . card (out-arcs G i))

using finite-subset[OF assms] unfolding out-arcs-def
by (intro card-UN-disjoint) auto
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also have ... = (
∑

i∈S . out-degree G i)
unfolding out-degree-def by simp

also have ... = (
∑

i∈S . d)
using assms by (intro sum.cong reg) auto

also have ... = ?R
by simp

finally show ?thesis by simp
qed

The following proof follows Hoory et al. [4, §4.5.1].
lemma cheeger-aux-2 :

assumes n > 1
shows Λe ≥ d∗(1−Λ2)/2

proof −
have real (card (edges-betw S (−S))) ≥ (d ∗ (1 − Λ2) / 2 ) ∗ real (card S)

if S ⊆ verts G 2 ∗ card S ≤ n for S
proof −

let ?ct = real (card (verts G − S))
let ?cs = real (card S)

have card (edges-betw S S)+card (edges-betw S (−S))=card(edges-betw S S∪edges-betw S (−S))
unfolding edges-betw-def by (intro card-Un-disjoint[symmetric]) auto

also have ... = card (edges-betw S UNIV )
unfolding edges-betw-def by (intro arg-cong[where f=card]) auto

also have ... = d ∗ ?cs
using edges-betw-reg[OF that(1 )] by simp

finally have card (edges-betw S S) + card (edges-betw S (−S)) = d ∗ ?cs by simp
hence 4 : card (edges-betw S S) = d ∗ ?cs − card (edges-betw S (−S))

by simp

have card(edges-betw S(−S))+card(edges-betw(−S)(−S))=card(edges-betw S(−S)∪edges-betw(−S)(−S))
unfolding edges-betw-def by (intro card-Un-disjoint[symmetric]) auto

also have ... = card (edges-betw UNIV (verts G − S))
unfolding edges-betw-def by (intro arg-cong[where f=card]) auto

also have ... = card (edges-betw (verts G − S) UNIV )
by (intro edges-betw-sym)

also have ... = d ∗ ?ct
using edges-betw-reg by auto

finally have card (edges-betw S (−S)) + card (edges-betw (−S) (−S)) = d ∗ ?ct by simp
hence 5 : card (edges-betw (−S) (−S)) = d ∗ ?ct − card (edges-betw S (−S))

by simp
have 6 : card (edges-betw (−S) S) = card (edges-betw S (−S))

by (intro edges-betw-sym)

have ?cs + ?ct =real (card (S ∪ (verts G− S)))
unfolding of-nat-add[symmetric] using finite-subset[OF that(1 )]
by (intro-cong [σ1 of-nat, σ1 card] more:card-Un-disjoint[symmetric]) auto

also have ... = real n
unfolding n-def using that(1 ) by (intro-cong [σ1 of-nat, σ1 card]) auto

finally have 7 : ?cs + ?ct = n by simp

define f where
f x = real (card (verts G − S)) ∗ of-bool (x ∈ S) − card S ∗ of-bool (x /∈ S) for x

have g-inner f (λ-. 1 ) = ?cs ∗ ?ct − real (card (verts G ∩ {x. x /∈ S})) ∗ ?cs
unfolding g-inner-def f-def using Int-absorb1 [OF that(1 )] by (simp add:sum-subtractf )

also have ... = ?cs ∗ ?ct − ?ct ∗ ?cs
by (intro-cong [σ2 (−), σ2 (∗), σ1 of-nat, σ1 card]) auto
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also have ... = 0 by simp
finally have 11 : g-inner f (λ-. 1 ) = 0 by simp

have g-norm f^2 = (
∑

v∈verts G. f v^2 )
unfolding g-norm-sq g-inner-def conjugate-real-def by (simp add:power2-eq-square)

also have ...=(
∑

v∈verts G. ?ct^2∗(of-bool (v ∈ S))2)+(
∑

v∈verts G. ?cs^2∗(of-bool (v /∈
S))2)

unfolding f-def power2-diff by (simp add:sum.distrib sum-subtractf power-mult-distrib)
also have ... = real (card (verts G ∩ S))∗?ct^2 + real (card (verts G ∩ {v. v /∈ S})) ∗ ?cs^2

unfolding of-bool-def by (simp add:if-distrib if-distribR sum.If-cases)
also have ... = real(card S)∗(real(card(verts G−S)))2 + real(card(verts G−S))∗(real(card S))2

using that(1 ) by (intro-cong [σ2(+), σ2 (∗), σ2 power , σ1 of-nat, σ1 card]) auto
also have ... = real(card S)∗real (card (verts G −S))∗(?cs + ?ct)

by (simp add:power2-eq-square algebra-simps)
also have ... = real(card S)∗real (card (verts G −S))∗n

unfolding 7 by simp
finally have 9 : g-norm f^2 = real(card S)∗real (card (verts G −S))∗real n by simp

have (
∑

a ∈ arcs G. f (head G a) ∗ f (tail G a)) =
(card (edges-betw S S) ∗ ?ct∗?ct) + (card (edges-betw (−S) (−S)) ∗ ?cs∗?cs) −
(card (edges-betw S (−S)) ∗ ?ct∗?cs) − (card (edges-betw (−S) S) ∗ ?cs∗?ct)
unfolding f-def by (simp add:of-bool-def algebra-simps Int-def if-distrib if-distribR

edges-betw-def sum.If-cases)
also have ... = d∗?cs∗?ct∗(?cs+?ct) − card (edges-betw S (−S))∗(?ct∗?ct+2∗?ct∗?cs+?cs∗?cs)

unfolding 4 5 6 by (simp add:algebra-simps)
also have ... = d∗?cs∗?ct∗n − (?ct+?cs)^2 ∗ card (edges-betw S (−S))

unfolding power2-diff 7 power2-sum by (simp add:ac-simps power2-eq-square)
also have ... = d ∗?cs∗?ct∗n − n^2 ∗ card (edges-betw S (−S))

using 7 by (simp add:algebra-simps)
finally have 8 :(

∑
a ∈ arcs G. f (head G a)∗f (tail G a))=d∗?cs∗?ct∗n−n^2∗card(edges-betw

S (−S))
by simp

have d∗?cs∗?ct∗n−n^2∗card(edges-betw S (−S)) = (
∑

a ∈ arcs G. f (head G a) ∗ f (tail G
a))

unfolding 8 by simp
also have ... ≤ d ∗ (g-inner f (g-step f ))

unfolding g-inner-step-eq using d-gt-0
by simp

also have ... ≤ d ∗ (Λ2 ∗ g-norm f^2 )
by (intro mult-left-mono os-expanderD 11 ) auto

also have ... = d ∗ Λ2 ∗ ?cs∗?ct∗n
unfolding 9 by simp

finally have d∗?cs∗?ct∗n−n^2∗card(edges-betw S (−S)) ≤ d ∗ Λ2 ∗ ?cs∗?ct∗n
by simp

hence n ∗ n ∗ card (edges-betw S (−S)) ≥ n ∗ (d ∗ ?cs ∗ ?ct ∗ (1−Λ2))
by (simp add:power2-eq-square algebra-simps)

hence 10 :n ∗ card (edges-betw S (−S)) ≥ d ∗ ?cs ∗ ?ct ∗ ( 1−Λ2)
using n-gt-0 by simp

have (d ∗ (1 − Λ2) / 2 ) ∗ ?cs = (d ∗ (1−Λ2) ∗ (1 − 1 / 2 )) ∗ ?cs
by simp

also have ... ≤ d ∗ (1−Λ2) ∗ ((n − ?cs) / n) ∗ ?cs
using that n-gt-0 Λ2-le-1
by (intro mult-left-mono mult-right-mono mult-nonneg-nonneg) auto

also have ... = (d ∗ (1−Λ2) ∗ ?ct / n) ∗ ?cs
using 7 by simp

also have ... = d ∗ ?cs ∗ ?ct ∗ (1−Λ2) / n
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by simp
also have ... ≤ n ∗ card (edges-betw S (−S)) / n

by (intro divide-right-mono 10 ) auto
also have ... = card (edges-betw S (−S))

using n-gt-0 by simp
finally show ?thesis by simp

qed
thus ?thesis

by (intro edge-expansionI assms) auto
qed

end

lemma surj-onI :
assumes

∧
x. x ∈ B =⇒ g x ∈ A ∧ f (g x) = x

shows B ⊆ f ‘ A
using assms by force

lemma find-sorted-bij-1 :
fixes g :: ′a ⇒ ( ′b :: linorder)
assumes finite S
shows ∃ f . bij-betw f {..<card S} S ∧ mono-on {..<card S} (g◦ f )

proof −
define h where h x = from-nat-into S x for x

have h-bij:bij-betw h {..<card S} S
unfolding h-def using bij-betw-from-nat-into-finite[OF assms] by simp

define xs where xs = sort-key (g ◦ h) [0 ..<card S ]
define f where f i = h (xs ! i) for i

have l-xs: length xs = card S
unfolding xs-def by auto

have set-xs: set xs = {..<card S}
unfolding xs-def by auto

have dist-xs: distinct xs
using l-xs set-xs by (intro card-distinct) simp

have sorted-xs: sorted (map (g ◦ h) xs)
unfolding xs-def using sorted-sort-key by simp

have (λi. xs ! i) ‘ {..<card S} = set xs
using l-xs by (auto simp:in-set-conv-nth)

also have ... = {..<card S}
unfolding set-xs by simp

finally have set-xs ′:
(λi. xs ! i) ‘ {..<card S} = {..<card S} by simp

have f ‘ {..<card S} = h ‘ ((λi. xs ! i) ‘ {..<card S})
unfolding f-def image-image by simp

also have ... = h ‘ {..<card S}
unfolding set-xs ′ by simp

also have ... = S
using bij-betw-imp-surj-on[OF h-bij] by simp

finally have 0 : f ‘ {..<card S} = S by simp

have inj-on ((!) xs) {..<card S}
using dist-xs l-xs unfolding distinct-conv-nth
by (intro inj-onI ) auto
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hence inj-on (h ◦ (λi. xs ! i)) {..<card S}
using set-xs ′ bij-betw-imp-inj-on[OF h-bij]
by (intro comp-inj-on) auto

hence 1 : inj-on f {..<card S}
unfolding f-def comp-def by simp

have 2 : mono-on {..<card S} (g ◦ f )
using sorted-nth-mono[OF sorted-xs] l-xs unfolding f-def
by (intro mono-onI ) simp

thus ?thesis
using 0 1 2 unfolding bij-betw-def by auto

qed

lemma find-sorted-bij-2 :
fixes g :: ′a ⇒ ( ′b :: linorder)
assumes finite S
shows ∃ f . bij-betw f S {..<card S} ∧ (∀ x y. x ∈ S ∧ y ∈ S ∧ f x < f y −→ g x ≤ g y)

proof −
obtain f where f-def : bij-betw f {..<card S} S mono-on {..<card S} (g ◦ f )

using find-sorted-bij-1 [OF assms] by auto

define h where h = the-inv-into {..<card S} f
have bij-h: bij-betw h S {..<card S}

unfolding h-def by (intro bij-betw-the-inv-into f-def )

moreover have g x ≤ g y if h x < h y x ∈ S y ∈ S for x y
proof −

have h y < card S h x < card S h x ≤ h y
using bij-betw-apply[OF bij-h] that by auto

hence g (f (h x)) ≤ g (f (h y))
using f-def (2 ) unfolding mono-on-def by simp

moreover have f ‘ {..<card S} = S
using bij-betw-imp-surj-on[OF f-def (1 )] by simp

ultimately show g x ≤ g y
unfolding h-def using that f-the-inv-into-f [OF bij-betw-imp-inj-on[OF f-def (1 )]]
by auto

qed
ultimately show ?thesis by auto

qed

context regular-graph-tts
begin

Normalized Laplacian of the graph
definition L where L = mat 1 − A

lemma L-pos-semidefinite:
fixes v :: real ^ ′n
shows v · (L ∗v v) ≥ 0

proof −
have 0 = v · v − norm v^2 unfolding power2-norm-eq-inner by simp
also have ... ≤ v · v − abs (v · (A ∗v v))

by (intro diff-mono rayleigh-bound) auto
also have ... ≤ v · v − v · (A ∗v v)

by (intro diff-mono) auto
also have ... = v · (L ∗v v)

unfolding L-def by (simp add:algebra-simps)
finally show ?thesis by simp

qed
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The following proof follows Hoory et al. [4, §4.5.2].
lemma cheeger-aux-1 :

assumes n > 1
shows Λe ≤ d ∗ sqrt (2 ∗ (1−Λ2))

proof −
obtain v where v-def : v · 1 = 0 v 6= 0 A ∗v v = Λ2 ∗s v

using Λ2-eq-γ2 γ2-ev[OF assms] by auto

have False if 2∗card {i. (1 ∗s v) $h i > 0} > n 2∗card {i. ((−1 ) ∗s v) $h i > 0} > n
proof −

have 2 ∗ n = n + n by simp
also have ... <2 ∗ card {i. (1 ∗s v) $h i > 0} + 2 ∗ card {i. ((−1 ) ∗s v) $h i > 0}

by (intro add-strict-mono that)
also have ... = 2 ∗ (card {i. (1 ∗s v) $h i > 0} + card {i. ((−1 ) ∗s v) $h i > 0})

by simp
also have ... = 2 ∗ (card ({i. (1 ∗s v) $h i > 0} ∪ {i. ((−1 ) ∗s v) $h i > 0}))

by (intro arg-cong2 [where f=(∗)] card-Un-disjoint[symmetric]) auto
also have ... ≤ 2 ∗ (card (UNIV :: ′n set))

by (intro mult-left-mono card-mono) auto
finally have 2 ∗ n < 2 ∗ n

unfolding n-def card-n by auto
thus ?thesis by simp

qed
then obtain β :: real where β-def : β = 1 ∨ β=(−1 ) 2∗ card {i. (β ∗s v) $h i > 0 } ≤ n

unfolding not-le[symmetric] by blast

define g where g = β ∗s v

have g-orth: g · 1 = 0 unfolding g-def using v-def (1 )
by (simp add: scalar-mult-eq-scaleR)

have g-nz: g 6= 0
unfolding g-def using β-def (1 ) v-def (2 ) by auto

have g-ev: A ∗v g = Λ2 ∗s g
unfolding g-def scalar-mult-eq-scaleR matrix-vector-mult-scaleR v-def (3 ) by auto

have g-supp: 2 ∗ card { i. g $h i > 0 } ≤ n
unfolding g-def using β-def (2 ) by auto

define f where f = (χ i. max (g $h i) 0 )

have (L ∗v f ) $h i ≤ (1−Λ2) ∗ g $h i (is ?L ≤ ?R) if g $h i > 0 for i
proof −

have ?L = f $h i − (A ∗v f ) $h i
unfolding L-def by (simp add:algebra-simps)

also have ... = g $h i − (
∑

j ∈ UNIV . A $h i $h j ∗ f $h j)
unfolding matrix-vector-mult-def f-def using that by auto

also have ... ≤ g $h i − (
∑

j ∈ UNIV . A $h i $h j ∗ g $h j)
unfolding f-def A-def by (intro diff-mono sum-mono mult-left-mono) auto

also have ... = g $h i − (A ∗v g) $h i
unfolding matrix-vector-mult-def by simp

also have ... = (1−Λ2) ∗ g $h i
unfolding g-ev by (simp add:algebra-simps)

finally show ?thesis by simp
qed
moreover have f $h i 6= 0 =⇒ g $h i > 0 for i

unfolding f-def by simp
ultimately have 0 :(L ∗v f ) $h i ≤ (1−Λ2) ∗ g $h i ∨ f $h i = 0 for i

by auto
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Part (i) in Hoory et al. (§4.5.2) but the operator L here is normalized.
have f · (L ∗v f ) = (

∑
i∈UNIV . (L ∗v f ) $h i ∗ f $h i)

unfolding inner-vec-def by (simp add:ac-simps)
also have ... ≤ (

∑
i∈UNIV . ((1−Λ2) ∗ g $h i) ∗ f $h i)

by (intro sum-mono mult-right-mono ′ 0 ) (simp add:f-def )
also have ... = (

∑
i∈UNIV . (1−Λ2) ∗ f $h i ∗ f $h i)

unfolding f-def by (intro sum.cong refl) auto
also have ... = (1−Λ2) ∗ (f · f )

unfolding inner-vec-def by (simp add:sum-distrib-left ac-simps)
also have ... = (1 − Λ2) ∗ norm f^2

by (simp add: power2-norm-eq-inner)
finally have h-part-i: f · (L ∗v f ) ≤ (1 − Λ2) ∗ norm f^2 by simp

define f ′ where f ′ x = f $h (enum-verts-inv x) for x
have f ′-alt: f = (χ i. f ′ (enum-verts i))

unfolding f ′-def Rep-inverse by simp

define Bf where Bf = (
∑

a∈arcs G. |f ′ (tail G a)^2−f ′ (head G a)^2 |)

have (x + y)^2 ≤ 2 ∗ (x^2 + y^2 ) for x y :: real
proof −

have (x + y)^2 = (x^2 + y^2 ) + 2 ∗ x ∗ y
unfolding power2-sum by simp

also have ... ≤ (x^2 + y^2 ) + (x^2 + y^2 )
by (intro add-mono sum-squares-bound) auto

finally show ?thesis by simp
qed
hence (

∑
a∈arcs G.(f ′(tail G a)+ f ′(head G a))2)≤(

∑
a∈arcs G. 2∗(f ′(tail G a)^2+f ′(head G

a)^2 ))
by (intro sum-mono) auto

also have ... = 2∗((
∑

a∈arcs G. f ′(tail G a)^2 ) + (
∑

a∈arcs G. f ′(head G a)^2 ))
by (simp add:sum-distrib-left)

also have ... = 4 ∗ d ∗ g-norm f ′̂ 2
unfolding sum-arcs-tail[where f=λx. f ′ x^2 ] sum-arcs-head[where f=λx. f ′ x^2 ]

g-norm-sq g-inner-def by (simp add:power2-eq-square)
also have ... = 4 ∗ d ∗ norm f^2

unfolding g-norm-conv f ′-alt by simp
finally have 1 : (

∑
i∈arcs G. (f ′ (tail G i) + f ′ (head G i))2) ≤ 4∗d∗ norm f^2

by simp

have (
∑

a∈arcs G. (f ′ (tail G a) − f ′ (head G a))2) = (
∑

a∈arcs G. (f ′ (tail G a))2) +
(
∑

a∈arcs G. (f ′ (head G a))2) − 2∗ (
∑

a∈arcs G. f ′ (tail G a) ∗ f ′ (head G a))
unfolding power2-diff by (simp add:sum-subtractf sum-distrib-left ac-simps)

also have ... = 2 ∗ (d ∗ (
∑

v∈verts G. (f ′ v)2) − (
∑

a∈arcs G. f ′ (tail G a) ∗ f ′ (head G a)))
unfolding sum-arcs-tail[where f=λx. f ′ x^2 ] sum-arcs-head[where f=λx. f ′ x^2 ] by simp

also have ... = 2 ∗ (d ∗ g-inner f ′ f ′ − d ∗ g-inner f ′ (g-step f ′))
unfolding g-inner-step-eq using d-gt-0
by (intro-cong [σ2 (∗), σ2 (−)]) (auto simp:power2-eq-square g-inner-def ac-simps)

also have ... = 2 ∗ d ∗ (g-inner f ′ f ′ −g-inner f ′ (g-step f ′))
by (simp add:algebra-simps)

also have ... = 2 ∗ d ∗ (f · f − f · (A ∗v f ))
unfolding g-inner-conv g-step-conv f ′-alt by simp

also have ... = 2 ∗ d ∗ (f · (L ∗v f ))
unfolding L-def by (simp add:algebra-simps)

finally have 2 :(
∑

a∈arcs G. (f ′ (tail G a) − f ′ (head G a))2) = 2 ∗ d ∗ (f · (L ∗v f )) by simp

have Bf = (
∑

a∈arcs G. |f ′ (tail G a)+f ′ (head G a)|∗|f ′ (tail G a)−f ′ (head G a)|)
unfolding Bf -def abs-mult[symmetric] by (simp add:algebra-simps power2-eq-square)
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also have ...≤ L2-set (λa. f ′(tail G a) + f ′(head G a)) (arcs G) ∗
L2-set (λa. f ′ (tail G a) − f ′(head G a)) (arcs G)
by (intro L2-set-mult-ineq)

also have ... ≤ sqrt (4∗d∗ norm f^2 ) ∗ sqrt (2 ∗ d ∗ (f · (L ∗v f )))
unfolding L2-set-def 2
by (intro mult-right-mono iffD2 [OF real-sqrt-le-iff ] 1 real-sqrt-ge-zero

mult-nonneg-nonneg L-pos-semidefinite) auto
also have ... = 2 ∗ sqrt 2 ∗ d ∗ norm f ∗ sqrt (f · (L ∗v f ))

by (simp add:real-sqrt-mult)
finally have hoory-4-12 : Bf ≤ 2 ∗ sqrt 2 ∗ d ∗ norm f ∗ sqrt (f · (L ∗v f ))

by simp

The last statement corresponds to Lemma 4.12 in Hoory et al.
obtain % :: ′a ⇒ nat where %-bij: bij-betw % (verts G) {..<n} and
%-dec:

∧
x y. x ∈ verts G =⇒ y ∈ verts G =⇒ % x < % y =⇒ f ′ x ≥ f ′ y

unfolding n-def
using find-sorted-bij-2 [where S=verts G and g=(λx. − f ′ x)] by auto

define ϕ where ϕ = the-inv-into (verts G) %
have ϕ-bij: bij-betw ϕ {..<n} (verts G)

unfolding ϕ-def by (intro bij-betw-the-inv-into %-bij)

have edges G = {# e ∈# edges G . %(fst e) 6= %(snd e) ∨ %(fst e) = %(snd e) #}
by simp

also have ... = {# e ∈# edges G . %(fst e) 6= %(snd e) #} + {#e∈#edges G. %(fst e)=%(snd
e)#}

by (simp add:filter-mset-ex-predicates)
also have ...={# e∈#edges G. %(fst e)<%(snd e)∨%(fst e)>%(snd e)#}+{#e∈#edges G. fst

e=snd e#}
using bij-betw-imp-inj-on[OF %-bij] edge-set
by (intro arg-cong2 [where f=(+)] filter-mset-cong refl inj-on-eq-iff [where A=verts G])
auto

also have ... = {#e ∈# edges G. %(fst e) < % (snd e) #} +
{#e ∈# edges G. %(fst e) > % (snd e) #} +
{#e ∈# edges G. fst e = snd e #}
by (intro arg-cong2 [where f=(+)] filter-mset-ex-predicates[symmetric]) auto

finally have edges-split: edges G = {#e ∈# edges G. %(fst e) < % (snd e) #} +
{#e ∈# edges G. %(fst e) > % (snd e) #} + {#e ∈# edges G. fst e = snd e #}
by simp

have %-lt-n: % x < n if x ∈ verts G for x
using bij-betw-apply[OF %-bij] that by auto

have ϕ-%-inv: ϕ (% x) = x if x ∈ verts G for x
unfolding ϕ-def using bij-betw-imp-inj-on[OF %-bij]
by (intro the-inv-into-f-f that) auto

have %-ϕ-inv: % (ϕ x) = x if x < n for x
unfolding ϕ-def using bij-betw-imp-inj-on[OF %-bij] bij-betw-imp-surj-on[OF %-bij] that
by (intro f-the-inv-into-f ) auto

define τ where τ x = (if x < n then f ′ (ϕ x) else 0 ) for x

have τ -nonneg: τ k ≥ 0 for k
unfolding τ -def f ′-def f-def by auto

have τ -antimono: τ k ≥ τ l if k < l for k l
proof (cases l ≥ n)
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case True
hence τ l = 0 unfolding τ -def by simp
then show ?thesis using τ -nonneg by simp

next
case False
hence τ l = f ′ (ϕ l)

unfolding τ -def by simp
also have ... ≤ f ′ (ϕ k)

using %-ϕ-inv False that
by (intro %-dec bij-betw-apply[OF ϕ-bij]) auto

also have ... = τ k
unfolding τ -def using False that by simp

finally show ?thesis by simp
qed

define m :: nat where m = Min {i. τ i = 0 ∧ i ≤ n}

have τ n = 0
unfolding τ -def by simp

hence m ∈ {i. τ i = 0 ∧ i ≤ n}
unfolding m-def by (intro Min-in) auto

hence m-rel-1 : τ m = 0 and m-le-n: m ≤ n by auto

have τ k > 0 if k < m for k
proof (rule ccontr)

assume ¬(τ k > 0 )
hence τ k = 0

by (intro order-antisym τ -nonneg) simp
hence k ∈ {i. τ i = 0 ∧ i ≤ n}

using that m-le-n by simp
hence m ≤ k

unfolding m-def by (intro Min-le) auto
thus False using that by simp

qed
hence m-rel-2 : f ′ x > 0 if x ∈ ϕ ‘ {..<m} for x

unfolding τ -def using m-le-n that by auto

have 2 ∗ m = 2 ∗ card {..<m} by simp
also have ... = 2 ∗ card (ϕ ‘ {..<m})

using m-le-n inj-on-subset[OF bij-betw-imp-inj-on[OF ϕ-bij]]
by (intro-cong [σ2 (∗)] more:card-image[symmetric]) auto

also have ... ≤ 2 ∗ card {x ∈ verts G. f ′ x > 0}
using m-rel-2 bij-betw-apply[OF ϕ-bij] m-le-n
by (intro mult-left-mono card-mono subsetI ) auto

also have ... = 2 ∗ card (enum-verts-inv ‘ {x ∈ verts G. f $h (enum-verts-inv x) > 0})
unfolding f ′-def using Abs-inject
by (intro arg-cong2 [where f=(∗)] card-image[symmetric] inj-onI ) auto

also have ... = 2 ∗ card {x. f $h x > 0}
using Rep-inverse Rep-range unfolding f ′-def by (intro-cong [σ2 (∗), σ1 card]

more:subset-antisym image-subsetI surj-onI [where g=enum-verts]) auto
also have ... = 2 ∗ card {x. g $h x > 0}

unfolding f-def by (intro-cong [σ2 (∗), σ1 card]) auto
also have ... ≤ n

by (intro g-supp)
finally have m2-le-n: 2∗m ≤ n by simp

have τ k ≤ 0 if k > m for k
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using m-rel-1 τ -antimono that by metis
hence τ k ≤ 0 if k ≥ m for k

using m-rel-1 that by (cases k > m) auto
hence τ -supp: τ k = 0 if k ≥ m for k

using that by (intro order-antisym τ -nonneg) auto

have 4 : % v ≤ x ←→ v ∈ ϕ ‘ {..x} if v ∈ verts G x < n for v x
proof −

have % v ≤ x ←→ % v ∈ {..x}
by simp

also have ... ←→ ϕ (% v) ∈ ϕ ‘ {..x}
using bij-betw-imp-inj-on[OF ϕ-bij] bij-betw-apply[OF %-bij] that
by (intro inj-on-image-mem-iff [where B={..<n}, symmetric]) auto

also have ... ←→ v ∈ ϕ ‘ {..x}
unfolding ϕ-%-inv[OF that(1 )] by simp

finally show ?thesis by simp
qed

have Bf = (
∑

a∈arcs G. |f ′ (tail G a)^2 − f ′ (head G a)^2 |)
unfolding Bf -def by simp

also have ... = (
∑

e ∈# edges G. |f ′ (fst e)^2 − f ′ (snd e)^2 |)
unfolding edges-def arc-to-ends-def sum-unfold-sum-mset
by (simp add:image-mset.compositionality comp-def )

also have ... =
(
∑

e∈#{#e ∈# edges G. % (fst e) < % (snd e)#}. |(f ′ (fst e))2 − (f ′ (snd e))2|) +
(
∑

e∈#{#e ∈# edges G. % (snd e) < % (fst e)#}. |(f ′ (fst e))2 − (f ′ (snd e))2|) +
(
∑

e∈#{#e ∈# edges G. fst e = snd e#}. |(f ′ (fst e))2 − (f ′ (snd e))2|)
by (subst edges-split) simp

also have ... =
(
∑

e∈#{#e ∈# edges G. % (snd e) < % (fst e)#}. |(f ′ (fst e))2 − (f ′ (snd e))2|) +
(
∑

e∈#{#e ∈# edges G. % (snd e) < % (fst e)#}. |(f ′ (snd e))2 − (f ′ (fst e))2|) +
(
∑

e∈#{#e ∈# edges G. fst e = snd e#}. |(f ′ (fst e))2 − (f ′ (snd e))2|)
by (subst edges-sym[OF sym, symmetric]) (simp add:image-mset.compositionality

comp-def image-mset-filter-mset-swap[symmetric] case-prod-beta)
also have ... =
(
∑

e∈#{#e ∈# edges G. % (snd e) < % (fst e)#}. |(f ′ (snd e))2 − (f ′ (fst e))2|) +
(
∑

e∈#{#e ∈# edges G. % (snd e) < % (fst e)#}. |(f ′ (snd e))2 − (f ′ (fst e))2|) +
(
∑

e∈#{#e ∈# edges G. fst e = snd e#}. 0 )
by (intro-cong [σ2 (+), σ1 sum-mset] more:image-mset-cong) auto

also have ... = 2 ∗ (
∑

e∈#{#e∈#edges G. %(snd e)<%(fst e)#}. |(f ′ (snd e))2 − (f ′ (fst e))2|)
by simp

also have ... = 2 ∗(
∑

a|a∈arcs G∧%(tail G a)>%(head G a). |f ′(head G a)^2 − f ′(tail G a)^2 |)
unfolding edges-def arc-to-ends-def sum-unfold-sum-mset
by (simp add:image-mset.compositionality comp-def image-mset-filter-mset-swap[symmetric])

also have ... = 2 ∗
(
∑

a|a∈arcs G∧%(tail G a)>%(head G a). |τ(%(head G a))^2 − τ(%(tail G a))^2 |)
unfolding τ -def using ϕ-%-inv %-lt-n
by (intro arg-cong2 [where f=(∗)] sum.cong refl) auto

also have ... = 2 ∗ (
∑

a|a∈arcs G∧%(tail G a)>%(head G a). τ(%(head G a))^2 − τ(%(tail G
a))^2 )

using τ -antimono power-mono τ -nonneg
by (intro arg-cong2 [where f=(∗)] sum.cong refl abs-of-nonneg)(auto)

also have ... = 2 ∗
(
∑

a|a∈arcs G∧%(tail G a)>%(head G a). (−(τ(%(tail G a))^2 )) − (−(τ(%(head G a))^2 )))
by (simp add:algebra-simps)

also have ... = 2 ∗(
∑

a|a∈arcs G∧%(tail G a)>%(head G a).
(
∑

i=%(head G a)..<%(tail G a). (−(τ (Suc i)^2 )) − (−(τ i^2 ))))
by (intro arg-cong2 [where f=(∗)] sum.cong refl sum-Suc-diff ′[symmetric]) auto
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also have ...=2∗(
∑

(a, i)∈(SIGMA x:{a ∈ arcs G. % (head G a) < % (tail G a)}.
{% (head G x)..<% (tail G x)}). τ i^2 − τ (Suc i)^2 )
by (subst sum.Sigma) auto

also have ...=2∗(
∑

p∈{(a,i).a ∈ arcs G∧%(head G a)≤i∧i<%(tail G a)}. τ(snd p)^2−τ (snd
p+1 )^2 )

by (intro arg-cong2 [where f=(∗)] sum.cong refl) (auto simp add:Sigma-def )
also have ...=2∗(

∑
p∈{(i,a).a ∈ arcs G∧%(head G a) ≤ i∧i < %(tail G a)}. τ(fst p)^2−τ(fst

p+1 )^2 )
by (intro sum.reindex-cong[where l=prod.swap] arg-cong2 [where f=(∗)]) auto

also have ...=2∗
(
∑

(i, a)∈(SIGMA x :{..<n}. {a ∈ arcs G. % (head G a)≤x ∧ x<%(tail G a)}). τ i^2−τ
(i+1 )^2 )

using less-trans[OF - %-lt-n] by (intro sum.cong arg-cong2 [where f=(∗)]) auto
also have ...=2∗(

∑
i<n. (

∑
a|a∈arcs G ∧%(head G a) ≤ i∧i < %(tail G a). τ i^2 − τ (i+1 )^2 ))

by (subst sum.Sigma) auto
also have ...=2∗(

∑
i<n. card {a∈arcs G. %(head G a)≤i∧i<%(tail G a)} ∗ (τ i^2 − τ (i+1 )^2 ))

by simp
also have ...=2∗(

∑
i<n. card {a∈arcs G. %(head G a)≤i∧¬(%(tail G a)≤i)} ∗ (τ i^2 − τ

(i+1 )^2 ))
by (intro-cong [σ2 (∗), σ1 card, σ1 of-nat] more:sum.cong Collect-cong) auto

also have ...=2∗(
∑

i<n. card {a∈arcs G. head G a∈ϕ‘{..i}∧tail G a /∈ϕ‘{..i}} ∗ (τ i^2−τ
(i+1 )^2 ))

using 4
by (intro-cong [σ2 (∗), σ1 card, σ1 of-nat, σ2 (∧)] more:sum.cong restr-Collect-cong) auto

also have ... = 2 ∗ (
∑

i<n. real (card (edges-betw (−ϕ‘{..i}) (ϕ‘{..i}))) ∗ (τ i^2−τ (i+1 )^2 ))
unfolding edges-betw-def by (auto simp:conj.commute)

also have ... = 2 ∗ (
∑

i<n. real (card (edges-betw (ϕ‘{..i}) (−ϕ‘{..i}))) ∗ (τ i^2−τ (i+1 )^2 ))
using edges-betw-sym by simp

also have ... = 2 ∗ (
∑

i<m. real (card (edges-betw (ϕ‘{..i}) (−ϕ‘{..i}))) ∗ (τ i^2−τ (i+1 )^2 ))
using τ -supp m-le-n by (intro sum.mono-neutral-right arg-cong2 [where f=(∗)]) auto

finally have Bf-eq:
Bf = 2 ∗ (

∑
i<m. real (card (edges-betw (ϕ‘{..i}) (−ϕ‘{..i}))) ∗ (τ i^2−τ (i+1 )^2 ))

by simp

have 3 :card (ϕ ‘ {..i} ∩ verts G) = i + 1 if i < m for i
proof −

have card (ϕ ‘ {..i} ∩ verts G) = card (ϕ ‘ {..i})
using m-le-n that by (intro arg-cong[where f=card] Int-absorb2

image-subsetI bij-betw-apply[OF ϕ-bij]) auto
also have ... = card {..i}

using m-le-n that by (intro card-image
inj-on-subset[OF bij-betw-imp-inj-on[OF ϕ-bij]]) auto

also have ... = i+1 by simp
finally show ?thesis

by simp
qed

have 2 ∗ Λe ∗ norm f^2 = 2 ∗ Λe ∗ (g-norm f ′̂ 2 )
unfolding g-norm-conv f ′-alt by simp

also have ... ≤ 2 ∗ Λe ∗ (
∑

v∈ verts G. f ′ v^2 )
unfolding g-norm-sq g-inner-def by (simp add:power2-eq-square)

also have ... = 2 ∗ Λe ∗ (
∑

i<n. f ′ (ϕ i)^2 )
by (intro arg-cong2 [where f=(∗)] refl sum.reindex-bij-betw[symmetric] ϕ-bij)

also have ... = 2 ∗ Λe ∗ (
∑

i<n. τ i^2 )
unfolding τ -def by (intro arg-cong2 [where f=(∗)] refl sum.cong) auto

also have ... = 2 ∗ Λe ∗ (
∑

i<m. τ i^2 )
using τ -supp m-le-n by (intro sum.mono-neutral-cong-right arg-cong2 [where f=(∗)] refl) auto

also have ... ≤ 2 ∗ Λe ∗ ((
∑

i<m. τ i^2 ) + (real 0 ∗ τ 0^2 − m ∗ τ m^2 ))
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using τ -supp[of m] by simp
also have ... ≤ 2 ∗ Λe ∗ ((

∑
i<m. τ i^2 ) + (

∑
i<m. i∗τ i^2−(Suc i)∗τ (Suc i)^2 ))

by (subst sum-lessThan-telescope ′[symmetric]) simp
also have ... ≤ 2 ∗ (

∑
i<m. (Λe ∗ (i+1 )) ∗ (τ i^2−τ (i+1 )^2 ))

by (simp add:sum-distrib-left algebra-simps sum.distrib[symmetric])
also have ... ≤ 2 ∗ (

∑
i<m. real (card (edges-betw (ϕ‘{..i}) (−ϕ‘{..i}))) ∗ (τ i^2−τ (i+1 )^2 ))

using τ -nonneg τ -antimono power-mono 3 m2-le-n
by (intro mult-left-mono sum-mono mult-right-mono edge-expansionD2 ) auto

also have ... = Bf

unfolding Bf-eq by simp
finally have hoory-4-13 : 2 ∗ Λe ∗ norm f^2 ≤ Bf

by simp

Corresponds to Lemma 4.13 in Hoory et al.
have f-nz: f 6= 0
proof (rule ccontr)

assume f-nz-assms: ¬ (f 6= 0 )
have g $h i ≤ 0 for i
proof −

have g $h i ≤ max (g $h i) 0
by simp

also have ... = 0
using f-nz-assms unfolding f-def vec-eq-iff by auto

finally show ?thesis by simp
qed
moreover have (

∑
i ∈ UNIV . 0−g $h i) = 0

using g-orth unfolding sum-subtractf inner-vec-def by auto
ultimately have ∀ x∈UNIV . −(g $h x) = 0

by (intro iffD1 [OF sum-nonneg-eq-0-iff ]) auto
thus False

using g-nz unfolding vec-eq-iff by simp
qed
hence norm-f-gt-0 : norm f> 0

by simp

have Λe ∗ norm f ∗ norm f ≤ sqrt 2 ∗ real d ∗ norm f ∗ sqrt (f · (L ∗v f ))
using order-trans[OF hoory-4-13 hoory-4-12 ] by (simp add:power2-eq-square)

hence Λe ≤ real d ∗ sqrt 2 ∗ sqrt (f · (L ∗v f )) / norm f
using norm-f-gt-0 by (simp add:ac-simps divide-simps)

also have ... ≤ real d ∗ sqrt 2 ∗ sqrt ((1 − Λ2) ∗ (norm f )2) / norm f
by (intro mult-left-mono divide-right-mono real-sqrt-le-mono h-part-i) auto

also have ... = real d ∗ sqrt 2 ∗ sqrt (1− Λ2)
using f-nz by (simp add:real-sqrt-mult)

also have ... = d ∗ sqrt (2 ∗ (1−Λ2))
by (simp add:real-sqrt-mult[symmetric])

finally show ?thesis
by simp

qed

end

context regular-graph
begin

lemmas (in regular-graph) cheeger-aux-1 =
regular-graph-tts.cheeger-aux-1 [OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
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theorem cheeger-inequality:
assumes n > 1
shows Λe ∈ {d ∗ (1 − Λ2) / 2 .. d ∗ sqrt (2 ∗ (1 − Λ2))}
using cheeger-aux-1 cheeger-aux-2 assms by auto

unbundle no intro-cong-syntax

end

end

8 Margulis Gabber Galil Construction

This section formalizes the Margulis-Gabber-Galil expander graph, which is defined on
the product space Zn × Zn. The construction is an adaptation of graph introduced by
Margulis [8], for which he gave a non-constructive proof of its spectral gap. Later Gabber
and Galil [3] adapted the graph and derived an explicit spectral gap, i.e., that the sec-
ond largest eigenvalue is bounded by 5

8

√
2. The proof was later improved by Jimbo and

Marouka [6] using Fourier Analysis. Hoory et al. [4, §8] present a slight simplification of
that proof (due to Boppala) which this formalization is based on.
theory Expander-Graphs-MGG

imports
HOL−Analysis.Complex-Transcendental
HOL−Decision-Procs.Approximation
Expander-Graphs-Definition

begin

datatype ( ′a, ′b) arc = Arc (arc-tail: ′a) (arc-head: ′a) (arc-label: ′b)

fun mgg-graph-step :: nat ⇒ (int × int) ⇒ (nat × int) ⇒ (int × int)
where mgg-graph-step n (i,j) (l,σ) =
[ ((i+σ∗(2∗j+0 )) mod int n, j), (i, (j+σ∗(2∗i+0 )) mod int n)
, ((i+σ∗(2∗j+1 )) mod int n, j), (i, (j+σ∗(2∗i+1 )) mod int n) ] ! l

definition mgg-graph :: nat ⇒ (int × int, (int × int, nat × int) arc) pre-digraph where
mgg-graph n =
(| verts = {0 ..<n} × {0 ..<n},
arcs = (λ(t,l). (Arc t (mgg-graph-step n t l) l))‘(({0 ..<int n}×{0 ..<int n})×({..<4}×{−1 ,1})),

tail = arc-tail,
head = arc-head |)

locale margulis-gaber-galil =
fixes m :: nat
assumes m-gt-0 : m > 0

begin

abbreviation G where G ≡ mgg-graph m

lemma wf-digraph: wf-digraph (mgg-graph m)
proof −

have
tail (mgg-graph m) e ∈ verts (mgg-graph m) (is ?A)
head (mgg-graph m) e ∈ verts (mgg-graph m) (is ?B)
if a:e ∈ arcs (mgg-graph m) for e

proof −
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obtain t l σ where tl-def :
t ∈ {0 ..<int m} × {0 ..<int m} l ∈ {..<4} σ ∈ {−1 ,1}
e = Arc t (mgg-graph-step m t (l,σ)) (l,σ)
using a mgg-graph-def by auto

thus ?A
unfolding mgg-graph-def by auto

have mgg-graph-step m (fst t, snd t) (l,σ) ∈ {0 ..<int m} × {0 ..<int m}
unfolding mgg-graph-step.simps using tl-def (1 ,2 ) m-gt-0
by (intro set-mp[OF - nth-mem]) auto

hence arc-head e ∈ {0 ..<int m} × {0 ..<int m}
unfolding tl-def (4 ) by simp

thus ?B
unfolding mgg-graph-def by simp

qed
thus ?thesis

by unfold-locales auto
qed

lemma mgg-finite: fin-digraph (mgg-graph m)
proof −

have finite (verts (mgg-graph m)) finite (arcs (mgg-graph m))
unfolding mgg-graph-def by auto

thus ?thesis
using wf-digraph
unfolding fin-digraph-def fin-digraph-axioms-def by auto

qed

interpretation fin-digraph mgg-graph m
using mgg-finite by simp

definition arcs-pos :: (int × int, nat × int) arc set
where arcs-pos = (λ(t,l). (Arc t (mgg-graph-step m t (l,1 )) (l, 1 )))‘(verts G×{..<4})

definition arcs-neg :: (int × int, nat × int) arc set
where arcs-neg = (λ(h,l). (Arc (mgg-graph-step m h (l,1 )) h (l,−1 )))‘(verts G×{..<4})

lemma arcs-sym:
arcs G = arcs-pos ∪ arcs-neg

proof −
have 0 : x ∈ arcs G if x ∈ arcs-pos for x

using that unfolding arcs-pos-def mgg-graph-def by auto
have 1 : a ∈ arcs G if t:a ∈ arcs-neg for a
proof −

obtain h l where hl-def : h ∈ verts G l ∈ {..<4} a = Arc (mgg-graph-step m h (l,1 )) h (l,−1 )
using t unfolding arcs-neg-def by auto

define t where t = mgg-graph-step m h (l,1 )

have h-ran: h ∈ {0 ..<int m} × {0 ..<int m}
using hl-def (1 ) unfolding mgg-graph-def by simp

have l-ran: l ∈ set [0 ,1 ,2 ,3 ]
using hl-def (2 ) by auto

have t ∈ {0 ..<int m} × {0 ..<int m}
using h-ran l-ran
unfolding t-def by (cases h, auto simp add:mod-simps)

hence t-ran: t ∈ verts G
unfolding mgg-graph-def by simp
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have h = mgg-graph-step m t (l,−1 )
using h-ran l-ran unfolding t-def by (cases h, auto simp add:mod-simps)

hence a = Arc t (mgg-graph-step m t (l,−1 )) (l,−1 )
unfolding t-def hl-def (3 ) by simp

thus ?thesis
using t-ran hl-def (2 ) mgg-graph-def by (simp add:image-iff )

qed

have card (arcs-pos ∪ arcs-neg) = card arcs-pos + card arcs-neg
unfolding arcs-pos-def arcs-neg-def by (intro card-Un-disjoint finite-imageI ) auto

also have ... = card (verts G×{..<4 ::nat}) + card (verts G×{..<4 ::nat})
unfolding arcs-pos-def arcs-neg-def
by (intro arg-cong2 [where f=(+)] card-image inj-onI ) auto

also have ... = card (verts G×{..<4 ::nat}×{−1 ,1 ::int})
by simp

also have ... = card ((λ(t, l). Arc t (mgg-graph-step m t l) l) ‘ (verts G ×{..<4}×{−1 ,1}))
by (intro card-image[symmetric] inj-onI ) auto

also have ... = card (arcs G)
unfolding mgg-graph-def by simp

finally have card (arcs-pos ∪ arcs-neg) = card (arcs G)
by simp

hence arcs-pos ∪ arcs-neg = arcs G
using 0 1 by (intro card-subset-eq, auto)

thus ?thesis by simp
qed

lemma sym: symmetric-multi-graph (mgg-graph m)
proof −

define f :: (int × int, nat × int) arc ⇒ (int × int, nat × int) arc
where f a = Arc (arc-head a) (arc-tail a) (apsnd (λx. (−1 ) ∗ x) (arc-label a)) for a

have a: bij-betw f arcs-pos arcs-neg
by (intro bij-betwI [where g=f ])
(auto simp add:f-def image-iff arcs-pos-def arcs-neg-def )

have b: bij-betw f arcs-neg arcs-pos
by (intro bij-betwI [where g=f ])
(auto simp add:f-def image-iff arcs-pos-def arcs-neg-def )

have c:bij-betw f (arcs-pos ∪ arcs-neg) (arcs-neg ∪ arcs-pos)
by (intro bij-betw-combine[OF a b]) (auto simp add:arcs-pos-def arcs-neg-def )

hence c:bij-betw f (arcs G) (arcs G)
unfolding arcs-sym by (subst (2 ) sup-commute, simp)

show ?thesis
by (intro symmetric-multi-graphI [where f=f ] fin-digraph-axioms c)
(simp add:f-def mgg-graph-def )

qed

lemma out-deg:
assumes v ∈ verts G
shows out-degree G v = 8

proof −
have out-degree (mgg-graph m) v = card (out-arcs (mgg-graph m) v)

unfolding out-degree-def by simp
also have ... = card {e. (∃w ∈ verts (mgg-graph m). ∃ l ∈ {..<4} × {−1 ,1}.

e = Arc w (mgg-graph-step m w l) l ∧ arc-tail e = v)}
unfolding mgg-graph-def out-arcs-def by (simp add:image-iff )
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also have ... = card {e. (∃ l ∈ {..<4} × {−1 ,1}. e = Arc v (mgg-graph-step m v l) l)}
using assms by (intro arg-cong[where f=card] iffD2 [OF set-eq-iff ] allI ) auto

also have ... = card ((λl. Arc v (mgg-graph-step m v l) l) ‘ ({..<4} × {−1 ,1}))
by (intro arg-cong[where f=card]) (auto simp add:image-iff )

also have ... = card ({..<4 ::nat} × {−1 ,1 ::int})
by (intro card-image inj-onI ) simp

also have ... = 8 by simp
finally show ?thesis by simp

qed

lemma verts-ne:
verts G 6= {}
using m-gt-0 unfolding mgg-graph-def by simp

sublocale regular-graph mgg-graph m
using out-deg verts-ne
by (intro regular-graphI [where d=8 ] sym) auto

lemma d-eq-8 : d = 8
proof −

obtain v where v-def : v ∈ verts G
using verts-ne by auto

hence 0 :(SOME v. v ∈ verts G) ∈ verts G
by (rule someI [where x=v])

show ?thesis
using out-deg[OF 0 ]
unfolding d-def by simp

qed

We start by introducing Fourier Analysis on the torus Zn × Zn. The following is too
specialized for a general AFP entry.
lemma g-inner-sum-left:

assumes finite I
shows g-inner (λx. (

∑
i ∈ I . f i x)) g = (

∑
i∈ I . g-inner (f i) g)

using assms by (induction I rule:finite-induct) (auto simp add:g-inner-simps)

lemma g-inner-sum-right:
assumes finite I
shows g-inner f (λx. (

∑
i ∈ I . g i x)) = (

∑
i∈ I . g-inner f (g i))

using assms by (induction I rule:finite-induct) (auto simp add:g-inner-simps)

lemma g-inner-reindex:
assumes bij-betw h (verts G) (verts G)
shows g-inner f g = g-inner (λx. (f (h x))) (λx. (g (h x)))
unfolding g-inner-def
by (subst sum.reindex-bij-betw[OF assms,symmetric]) simp

definition ωF :: real ⇒ complex where ωF x = cis (2∗pi∗x/m)

lemma ωF -simps:
ωF (x + y) = ωF x ∗ ωF y
ωF (x − y) = ωF x ∗ ωF (−y)
cnj (ωF x) = ωF (−x)
unfolding ωF -def by (auto simp add:algebra-simps diff-divide-distrib

add-divide-distrib cis-mult cis-divide cis-cnj)

lemma ωF -cong:
fixes x y :: int
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assumes x mod m = y mod m
shows ωF (of-int x) = ωF (of-int y)

proof −
obtain z :: int where y = x + m∗z using mod-eqE [OF assms] by auto
hence ωF (of-int y) = ωF (of-int x + of-int (m∗z))

by simp
also have ... = ωF (of-int x) ∗ ωF (of-int (m∗z))

by (simp add:ωF -simps)
also have ... = ωF (of-int x) ∗ cis (2 ∗ pi ∗ of-int (z))

unfolding ωF -def using m-gt-0
by (intro arg-cong2 [where f=(∗)] arg-cong[where f=cis]) auto

also have ... = ωF (of-int x) ∗ 1
by (intro arg-cong2 [where f=(∗)] cis-multiple-2pi) auto

finally show ?thesis by simp
qed

lemma cis-eq-1-imp:
assumes cis (2 ∗ pi ∗ x) = 1
shows x ∈ �

proof −
have cos (2 ∗ pi ∗ x) = Re (cis (2∗pi∗x))

using cis.simps by simp
also have ... = 1

unfolding assms by simp
finally have cos (2 ∗ pi ∗ x) = 1 by simp
then obtain y where 2 ∗ pi ∗ x = of-int y ∗ 2 ∗ pi

using cos-one-2pi-int by auto
hence y = x by simp
thus ?thesis by auto

qed

lemma ωF -eq-1-iff :
fixes x :: int
shows ωF x = 1 ←→ x mod m = 0

proof
assume ωF (real-of-int x) = 1
hence cis (2 ∗ pi ∗ real-of-int x / real m) = 1

unfolding ωF -def by simp
hence real-of-int x / real m ∈ �

using cis-eq-1-imp by simp
then obtain z :: int where of-int x / real m = z

using Ints-cases by auto
hence x = z ∗ real m

using m-gt-0 by (simp add: nonzero-divide-eq-eq)
hence x = z ∗ m using of-int-eq-iff by fastforce
thus x mod m = 0 by simp

next
assume x mod m = 0
hence ωF x = ωF (of-int 0 )

by (intro ωF -cong) auto
also have ... = 1 unfolding ωF -def by simp
finally show ωF x= 1 by simp

qed

definition FT :: (int × int ⇒ complex) ⇒ (int × int ⇒ complex)
where FT f v = g-inner f (λx. ωF (fst x ∗ fst v + snd x ∗ snd v))

lemma FT-altdef : FT f (u,v) = g-inner f (λx. ωF (fst x ∗ u + snd x ∗ v))
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unfolding FT-def by (simp add:case-prod-beta)

lemma FT-add: FT (λx. f x + g x) v = FT f v + FT g v
unfolding FT-def by (simp add:g-inner-simps algebra-simps)

lemma FT-zero: FT (λx. 0 ) v = 0
unfolding FT-def g-inner-def by simp

lemma FT-sum:
assumes finite I
shows FT (λx. (

∑
i ∈ I . f i x)) v = (

∑
i ∈ I . FT (f i) v)

using assms by (induction rule: finite-induct, auto simp add:FT-zero FT-add)

lemma FT-scale: FT (λx. c ∗ f x) v = c ∗ FT f v
unfolding FT-def by (simp add: g-inner-simps)

lemma FT-cong:
assumes

∧
x. x ∈ verts G =⇒ f x = g x

shows FT f = FT g
unfolding FT-def by (intro ext g-inner-cong assms refl)

lemma parseval:
g-inner f g = g-inner (FT f ) (FT g)/m^2 (is ?L = ?R)

proof −
define δ :: (int × int) ⇒ (int × int) ⇒ complex where δ x y = of-bool (x = y) for x y

have FT-δ: FT (δ v) x = ωF (−(fst v ∗fst x +snd v ∗ snd x)) if v ∈ verts G for v x
using that by (simp add:FT-def g-inner-def δ-def ωF -simps)

have 1 : (
∑

x=0 ..<int m. ωF (z∗x)) = m ∗ of-bool(z mod m = 0 ) (is ?L1 = ?R1 ) for z :: int
proof (cases z mod m = 0 )

case True
have (

∑
x=0 ..<int m. ωF (z∗x)) = (

∑
x=0 ..<int m. ωF (of-int 0 ))

using True by (intro sum.cong ωF -cong refl) auto
also have ... = m ∗ of-bool(z mod m = 0 )

unfolding ωF -def True by simp
finally show ?thesis by simp

next
case False
have (1−ωF z) ∗ ?L1 = (1−ωF z) ∗ (

∑
x ∈ int ‘ {..<m}. ωF (z∗x))

by (intro arg-cong2 [where f=(∗)] sum.cong refl)
(simp add: image-atLeastZeroLessThan-int)

also have ... = (
∑

x<m. ωF (z∗real x) − ωF (z∗(real (Suc x))))
by (subst sum.reindex, auto simp add:algebra-simps sum-distrib-left ωF -simps)

also have ... = ωF (z ∗ 0 ) − ωF (z ∗ m)
by (subst sum-lessThan-telescope ′) simp

also have ... = ωF (of-int 0 ) − ωF (of-int 0 )
by (intro arg-cong2 [where f=(−)] ωF -cong) auto

also have ... = 0
by simp

finally have (1− ωF z) ∗ ?L1 = 0 by simp
moreover have ωF z 6= 1 using ωF -eq-1-iff False by simp
hence (1− ωF z) 6= 0 by simp
ultimately have ?L1 = 0 by simp
then show ?thesis using False by simp

qed

have 0 :g-inner (δ v) (δ w) = g-inner (FT (δ v)) (FT (δ w))/m^2 (is ?L1 = ?R1/-)
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if v ∈ verts G w ∈ verts G for v w
proof −

have ?R1=g-inner(λx. ωF (−(fst v ∗fst x +snd v ∗ snd x)))(λx. ωF (−(fst w ∗fst x +snd w ∗
snd x)))

using that by (intro g-inner-cong, auto simp add:FT-δ)
also have ...=(

∑
(x,y)∈{0 ..<int m}×{0 ..<int m}. ωF ((fst w−fst v)∗x)∗ωF ((snd w − snd v)∗

y))
unfolding g-inner-def by (simp add:ωF -simps algebra-simps case-prod-beta mgg-graph-def )

also have ...=(
∑

x=0 ..<int m.
∑

y = 0 ..<int m. ωF ((fst w − fst v)∗x)∗ωF ((snd w − snd v)
∗ y))

by (subst sum.cartesian-product[symmetric]) simp
also have ...=(

∑
x=0 ..<int m. ωF ((fst w − fst v)∗x))∗(

∑
y = 0 ..<int m. ωF ((snd w − snd

v) ∗ y))
by (subst sum.swap) (simp add:sum-distrib-left sum-distrib-right)

also have ... = of-nat (m ∗ of-bool(fst v mod m = fst w mod m)) ∗
of-nat (m ∗ of-bool(snd v mod m = snd w mod m))
using m-gt-0 unfolding 1
by (intro arg-cong2 [where f=(∗)] arg-cong[where f=of-bool]

arg-cong[where f=of-nat] refl) (auto simp add:algebra-simps cong:mod-diff-cong)
also have ... = m^2 ∗ of-bool(v = w)

using that by (auto simp add:prod-eq-iff mgg-graph-def power2-eq-square)
also have ... = m^2 ∗ ?L1

using that unfolding g-inner-def δ-def by simp
finally have ?R1 = m^2 ∗ ?L1 by simp
thus ?thesis using m-gt-0 by simp

qed

have ?L = g-inner (λx. (
∑

v ∈ verts G. (f v) ∗ δ v x)) (λx. (
∑

v ∈ verts G. (g v) ∗ δ v x))
unfolding δ-def by (intro g-inner-cong) auto

also have ... = (
∑

v∈verts G. (f v) ∗ (
∑

w∈verts G. cnj (g w) ∗ g-inner (δ v) (δ w)))
by (simp add:g-inner-simps g-inner-sum-left g-inner-sum-right)

also have ... = (
∑

v∈verts G. (f v) ∗ (
∑

w∈verts G. cnj (g w) ∗ g-inner(FT (δ v)) (FT (δ
w))))/m^2

by (simp add:0 sum-divide-distrib sum-distrib-left algebra-simps)
also have ...=g-inner(λx.(

∑
v∈verts G. (f v)∗FT (δ v) x))(λx.(

∑
v∈verts G. (g v)∗FT (δ v)

x))/m2

by (simp add:g-inner-simps g-inner-sum-left g-inner-sum-right)
also have ...=g-inner(FT (λx.(

∑
v∈verts G.(f v)∗δ v x)))(FT (λx.(

∑
v∈verts G.(g v)∗δ v x)))/m2

by (intro g-inner-cong arg-cong2 [where f=(/)]) (simp-all add: FT-sum FT-scale)
also have ... = g-inner (FT f ) (FT g)/m^2

unfolding δ-def comp-def
by (intro g-inner-cong arg-cong2 [where f=(/)] fun-cong[OF FT-cong]) auto

finally show ?thesis by simp
qed

lemma plancharel:
(
∑

v ∈ verts G. norm (f v)^2 ) = (
∑

v ∈ verts G. norm (FT f v)^2 )/m^2 (is ?L = ?R)
proof −

have complex-of-real ?L = g-inner f f
by (simp flip:of-real-power add:complex-norm-square g-inner-def algebra-simps)

also have ... = g-inner (FT f ) (FT f ) / m^2
by (subst parseval) simp

also have ... = complex-of-real ?R
by (simp flip:of-real-power add:complex-norm-square g-inner-def algebra-simps) simp

finally have complex-of-real ?L = complex-of-real ?R by simp
thus ?thesis

using of-real-eq-iff by blast
qed
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lemma FT-swap:
FT (λx. f (snd x, fst x)) (u,v) = FT f (v,u)

proof −
have 0 :bij-betw (λ(x::int × int). (snd x, fst x)) (verts G) (verts G)

by (intro bij-betwI [where g=(λ(x::int × int). (snd x, fst x))])
(auto simp add:mgg-graph-def )

show ?thesis
unfolding FT-def
by (subst g-inner-reindex[OF 0 ]) (simp add:algebra-simps)

qed

lemma mod-add-mult-eq:
fixes a x y :: int
shows (a + x ∗ (y mod m)) mod m = (a+x∗y) mod m
using mod-add-cong mod-mult-right-eq by blast

definition periodic where periodic f = (∀ x y. f (x,y) = f (x mod int m, y mod int m))

lemma periodicD:
assumes periodic f
shows f (x,y) = f (x mod m, y mod m)
using assms unfolding periodic-def by simp

lemma periodic-comp:
assumes periodic f
shows periodic (λx. g (f x))
using assms unfolding periodic-def by simp

lemma periodic-cong:
fixes x y u v :: int
assumes periodic f
assumes x mod m = u mod m y mod m = v mod m
shows f (x,y) = f (u, v)
using periodicD[OF assms(1 )] assms(2 ,3 ) by metis

lemma periodic-FT : periodic (FT f )
proof −

have FT f (x,y) = FT f (x mod m,y mod m) for x y
unfolding FT-altdef by (intro g-inner-cong ωF -cong ext)
(auto simp add:mod-simps cong:mod-add-cong)

thus ?thesis
unfolding periodic-def by simp

qed

lemma FT-sheer-aux:
fixes u v c d :: int
assumes periodic f
shows FT (λx. f (fst x,snd x+c∗fst x+d)) (u,v) = ωF (d∗ v) ∗ FT f (u−c∗ v,v)
(is ?L = ?R)

proof −
define s where s = (λ(x,y). (x, (y − c ∗ x−d) mod m))
define s0 where s0 = (λ(x,y). (x, (y−c∗x) mod m))
define s1 where s1 = (λ(x::int,y). (x, (y−d) mod m))

have 0 :bij-betw s0 (verts G) (verts G)
by (intro bij-betwI [where g=λ(x,y). (x,(y+c∗x) mod m)])
(auto simp add:mgg-graph-def s0-def Pi-def mod-simps)
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have 1 :bij-betw s1 (verts G) (verts G)
by (intro bij-betwI [where g=λ(x,y). (x,(y+d) mod m)])
(auto simp add:mgg-graph-def s1-def Pi-def mod-simps)

have 2 : s = (s1 ◦ s0 )
by (simp add:s1-def s0-def s-def comp-def mod-simps case-prod-beta ext)

have 3 :bij-betw s (verts G) (verts G)
unfolding 2 using bij-betw-trans[OF 0 1 ] by simp

have 4 :(snd (s x) + c ∗ fst x + d) mod int m = snd x mod m for x
unfolding s-def by (simp add:case-prod-beta cong:mod-add-cong) (simp add:algebra-simps)

have 5 : fst (s x) = fst x for x
unfolding s-def by (cases x, simp)

have ?L = g-inner (λx. f (fst x, snd x + c∗fst x+d)) (λx. ωF (fst x∗u + snd x∗ v))
unfolding FT-altdef by simp

also have ... = g-inner (λx. f (fst x, (snd x + c∗fst x+d) mod m)) (λx. ωF (fst x∗u + snd x∗
v))

by (intro g-inner-cong periodic-cong[OF assms]) (auto simp add:algebra-simps)
also have ... = g-inner (λx. f (fst x, snd x mod m)) (λx. ωF (fst x∗u+ snd (s x)∗ v))

by (subst g-inner-reindex[OF 3 ]) (simp add:4 5 )
also have ... =

g-inner (λx. f (fst x, snd x mod m)) (λx. ωF (fst x∗u+ ((snd x−c∗fst x−d) mod m)∗ v))
by (simp add:s-def case-prod-beta)

also have ... = g-inner f (λx. ωF (fst x∗ (u−c ∗ v) + snd x ∗ v−d ∗ v))
by (intro g-inner-cong ωF -cong) (auto simp add:mgg-graph-def algebra-simps mod-add-mult-eq)

also have ... = g-inner f (λx. ωF (−d∗ v)∗ωF (fst x∗(u−c∗ v) + snd x ∗ v))
by (simp add: ωF -simps algebra-simps)

also have ... = ωF (d∗ v)∗g-inner f (λx. ωF (fst x∗(u−c∗ v) + snd x ∗ v))
by (simp add:g-inner-simps ωF -simps)

also have ... = ?R
unfolding FT-altdef by simp

finally show ?thesis by simp
qed

lemma FT-sheer :
fixes u v c d :: int
assumes periodic f
shows

FT (λx. f (fst x,snd x+c∗fst x+d)) (u,v) = ωF (d∗ v) ∗ FT f (u−c∗ v,v) (is ?A)
FT (λx. f (fst x,snd x+c∗fst x)) (u,v) = FT f (u−c∗ v,v) (is ?B)
FT (λx. f (fst x+c∗ snd x+d,snd x)) (u,v) = ωF (d∗ u) ∗ FT f (u,v−c∗u) (is ?C )
FT (λx. f (fst x+c∗ snd x,snd x)) (u,v) = FT f (u,v−c∗u) (is ?D)

proof −
have 1 : periodic (λx. f (snd x, fst x))

using assms unfolding periodic-def by simp

have 0 :ωF 0 = 1
unfolding ωF -def by simp

show ?A
using FT-sheer-aux[OF assms] by simp

show ?B
using 0 FT-sheer-aux[OF assms, where d=0 ] by simp

show ?C
using FT-sheer-aux[OF 1 ] by (subst (1 2 ) FT-swap[symmetric], simp)

show ?D
using 0 FT-sheer-aux[OF 1 , where d=0 ] by (subst (1 2 ) FT-swap[symmetric], simp)

qed
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definition T1 :: int × int ⇒ int × int where T1 x = ((fst x + 2 ∗ snd x) mod m, snd x)
definition S1 :: int × int ⇒ int × int where S1 x = ((fst x − 2 ∗ snd x) mod m, snd x)
definition T2 :: int × int ⇒ int × int where T2 x = (fst x, (snd x + 2 ∗ fst x) mod m)
definition S2 :: int × int ⇒ int × int where S2 x = (fst x, (snd x − 2 ∗ fst x) mod m)

definition γ-aux :: int × int ⇒ real × real
where γ-aux x = (|fst x/m−1/2 |,|snd x/m−1/2 |)

definition compare :: real × real ⇒ real × real ⇒ bool
where compare x y = (fst x ≤ fst y ∧ snd x ≤ snd y ∧ x 6= y)

The value here is different from the value in the source material. This is because the
proof in Hoory [4, §8] only establishes the bound 73

80 while this formalization establishes
the improved bound of 5

8

√
2.

definition α :: real where α = sqrt 2

lemma α-inv: 1/α = α/2
unfolding α-def by (simp add: real-div-sqrt)

definition γ :: int × int ⇒ int × int ⇒ real
where γ x y = (if compare (γ-aux x) (γ-aux y) then α else (if compare (γ-aux y) (γ-aux x)

then (1 / α) else 1 ))

lemma γ-sym: γ x y ∗ γ y x = 1
unfolding γ-def α-def compare-def by (auto simp add:prod-eq-iff )

lemma γ-nonneg: γ x y ≥ 0
unfolding γ-def α-def by auto

definition τ :: int ⇒ real where τ x = |cos(pi∗x/m)|

definition γ ′ :: real ⇒ real ⇒ real
where γ ′ x y = (if abs (x − 1/2 ) < abs (y − 1/2 ) then α else (if abs (x−1/2 ) > abs (y−1/2 )

then (1 / α) else 1 ))

definition ϕ :: real ⇒ real ⇒ real
where ϕ x y = γ ′ y (frac(y−2∗x))+γ ′ y (frac (y+2∗x))

lemma γ ′-cases:
abs (x−1/2 ) = abs (y−1/2 ) =⇒ γ ′ x y = 1
abs (x−1/2 ) > abs (y−1/2 ) =⇒ γ ′ x y = 1/α
abs (x−1/2 ) < abs (y−1/2 ) =⇒ γ ′ x y = α
unfolding γ ′-def by auto

lemma if-cong-direct:
assumes a = b
assumes c = d ′

assumes e = f
shows (if a then c else e) = (if b then d ′ else f )
using assms by (intro if-cong) auto

lemma γ ′-cong:
assumes abs (x−1/2 ) = abs (u−1/2 )
assumes abs (y−1/2 ) = abs (v−1/2 )
shows γ ′ x y = γ ′ u v
unfolding γ ′-def
using assms by (intro if-cong-direct refl) auto
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lemma add-swap-cong:
fixes x y u v :: ′a :: ab-semigroup-add
assumes x = y u = v
shows x + u = v + y
using assms by (simp add:algebra-simps)

lemma frac-cong:
fixes x y :: real
assumes x − y ∈ �
shows frac x = frac y

proof −
obtain k where x-eq: x = y + of-int k

using Ints-cases[OF assms] by (metis add-minus-cancel uminus-add-conv-diff )
thus ?thesis

unfolding x-eq unfolding frac-def by simp
qed

lemma frac-expand:
fixes x :: real
shows frac x = (if x < (−1 ) then (x−bxc) else (if x < 0 then (x+1 ) else (if x < 1 then x else

(if x < 2 then (x−1 ) else (x−bxc)))))
proof −

have real-of-int y = −1 ←→ y= −1 for y
by auto

thus ?thesis
unfolding frac-def by (auto simp add:not-less floor-eq-iff )

qed

lemma one-minus-frac:
fixes x :: real
shows 1 − frac x = (if x ∈ � then 1 else frac (−x))
unfolding frac-neg by simp

lemma abs-rev-cong:
fixes x y :: real
assumes x = − y
shows abs x = abs y
using assms by simp

lemma cos-pi-ge-0 :
assumes x ∈{−1/2 .. 1/2}
shows cos (pi ∗ x) ≥ 0

proof −
have pi ∗ x ∈ ((∗) pi ‘ {−1/2 ..1/2})

by (intro imageI assms)
also have ... = {−pi/2 ..pi/2}

by (subst image-mult-atLeastAtMost[OF pi-gt-zero]) simp
finally have pi ∗ x ∈ {−pi/2 ..pi/2} by simp
thus ?thesis

by (intro cos-ge-zero) auto
qed

The following is the first step in establishing Eq. 15 in Hoory et al. [4, §8]. Afterwards
using various symmetries (diagonal, x-axis, y-axis) the result will follow for the entire
square [0, 1]× [0, 1].
lemma fun-bound-real-3 :

assumes 0 ≤ x x ≤ y y ≤ 1/2 (x,y) 6= (0 ,0 )
shows |cos(pi∗x)|∗ϕ x y + |cos(pi∗y)|∗ϕ y x ≤ 2 .5 ∗ sqrt 2 (is ?L ≤ ?R)
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proof −
have apx:4 ≤ 5 ∗ sqrt (2 ::real) 8 ∗ cos (pi / 4 ) ≤ 5 ∗ sqrt (2 ::real)

by (approximation 5 )+

have cos (pi ∗ x) ≥ 0
using assms(1 ,2 ,3 ) by (intro cos-pi-ge-0 ) simp

moreover have cos (pi ∗ y) ≥ 0
using assms(1 ,2 ,3 ) by (intro cos-pi-ge-0 ) simp

ultimately have 0 :?L = cos(pi∗x)∗ϕ x y + cos(pi∗y)∗ϕ y x (is - = ?T )
by simp

consider (a) x+y < 1/2 | (b) y = 1/2− x | (c) x+y > 1/2 by argo
hence ?T ≤ 2 .5 ∗ sqrt 2 (is ?T ≤ ?R)
proof (cases)

case a
consider
(1 ) x < y x > 0 |
(2 ) x=0 y < 1/2 |
(3 ) y=x x > 0
using assms(1 ,2 ,3 ,4 ) a by fastforce

thus ?thesis
proof (cases)

case 1
have ϕ x y = α + 1/α

unfolding ϕ-def using 1 a
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover have ϕ y x = 1/α + 1/α
unfolding ϕ-def using 1 a
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

ultimately have ?T = cos (pi ∗ x) ∗ (α + 1/α) + cos (pi ∗ y) ∗ (1/α + 1/α)
by simp

also have ... ≤ 1 ∗ (α + 1/α) + 1 ∗ (1/α + 1/α)
unfolding α-def by (intro add-mono mult-right-mono) auto

also have ... = ?R
unfolding α-def by (simp add:divide-simps)

finally show ?thesis by simp
next

case 2
have y-range: y ∈ {0<..<1/2}

using assms 2 by simp
have ϕ 0 y = 1 + 1

unfolding ϕ-def using y-range
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover
have |x| ∗ 2 < 1 ←→ x < 1/2 ∧ −x < 1/2 for x :: real by auto
hence ϕ y 0 = 1 / α + 1/ α

unfolding ϕ-def using y-range
by (intro arg-cong2 [where f=(+)] γ ′-cases) (simp-all add:frac-expand)

ultimately have ?T = 2 + cos (pi ∗ y) ∗ (2 / α)
unfolding 2 by simp

also have ... ≤ 2 + 1 ∗ (2 / α)
unfolding α-def by (intro add-mono mult-right-mono) auto

also have ... ≤ ?R
unfolding α-def by (approximation 10 )

finally show ?thesis by simp
next

case 3
have ϕ x y = 1 + 1/α

103



unfolding ϕ-def using 3 a
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover have ϕ y x = 1 + 1/α
unfolding ϕ-def using 3 a
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

ultimately have ?T = cos (pi ∗ x) ∗ (2∗(1+1/ α))
unfolding 3 by simp

also have ... ≤ 1 ∗ (2∗(1+1/ α))
unfolding α-def by (intro mult-right-mono) auto

also have ... ≤ ?R
unfolding α-def by (approximation 10 )

finally show ?thesis by simp
qed

next
case b
have x-range: x ∈ {0 ..1/4}

using assms b by simp
then consider (1 ) x = 0 | (2 ) x = 1/4 | (3 ) x ∈ {0<..<1/4} by fastforce
thus ?thesis
proof (cases)

case 1
hence y-eq: y = 1/2 using b by simp
show ?thesis using apx unfolding 1 y-eq ϕ-def by (simp add:γ ′-def α-def frac-def )

next
case 2
hence y-eq: y = 1/4 using b by simp
show ?thesis using apx unfolding y-eq 2 ϕ-def by (simp add:γ ′-def frac-def )

next
case 3
have ϕ x y = α + 1

unfolding ϕ-def b using 3
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover have ϕ y x = 1/α + 1
unfolding ϕ-def b using 3
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

ultimately have ?T = cos (pi ∗ x) ∗ (α + 1 ) + cos (pi ∗ (1 / 2 − x)) ∗ (1/α + 1 )
unfolding b by simp

also have ... ≤ ?R
unfolding α-def using x-range
by (approximation 10 splitting: x=10 )

finally show ?thesis by simp
qed

next
case c
consider
(1 ) x < y y < 1/2 |
(2 ) y=1/2 x < 1/2 |
(3 ) y=x x < 1/2 |
(4 ) x=1/2 y =1/2
using assms(2 ,3 ) c by fastforce

thus ?thesis
proof (cases)

case 1
define ϑ :: real where ϑ = arcsin (6 / 10 )
have cos ϑ = sqrt (1−0 .6^2 )

unfolding ϑ-def by (intro cos-arcsin) auto
also have ... = sqrt ( 0 .8^2 )

by (intro arg-cong[where f=sqrt]) (simp add:power2-eq-square)
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also have ... = 0 .8 by simp
finally have cos-ϑ: cos ϑ = 0 .8 by simp
have sin-ϑ: sin ϑ = 0 .6

unfolding ϑ-def by simp

have ϕ x y = α + α
unfolding ϕ-def using c 1
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover have ϕ y x = 1/α + α
unfolding ϕ-def using c 1
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

ultimately have ?T = cos (pi ∗ x) ∗ (2 ∗ α) + cos (pi ∗ y) ∗ (α + 1 / α)
by simp

also have ... ≤ cos (pi ∗ (1/2−y)) ∗ (2∗α) + cos (pi ∗ y) ∗ (α+1 / α)
unfolding α-def using assms(1 ,2 ,3 ) c
by (intro add-mono mult-right-mono order .refl iffD2 [OF cos-mono-le-eq]) auto

also have ... = (2 .5∗α)∗ (sin (pi ∗ y) ∗ 0 .8 + cos (pi ∗ y) ∗ 0 .6 )
unfolding sin-cos-eq α-inv by (simp add:algebra-simps)

also have ... = (2 .5∗α)∗ sin(pi∗y + ϑ)
unfolding sin-add cos-ϑ sin-ϑ
by (intro arg-cong2 [where f=(∗)] arg-cong2 [where f=(+)] refl)

also have ... ≤ (?R) ∗ 1
unfolding α-def by (intro mult-left-mono) auto

finally show ?thesis by simp
next

case 2
have x-range: x > 0 x < 1/2

using c 2 by auto
have ϕ x y = α + α

unfolding ϕ-def 2 using x-range
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover have ϕ y x = 1 + 1
unfolding ϕ-def 2 using x-range
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

ultimately have ?T = cos (pi ∗ x) ∗ (2∗α)
unfolding 2 by simp

also have ... ≤ 1 ∗ (2∗ sqrt 2 )
unfolding α-def by (intro mult-right-mono) auto

also have ... ≤ ?R
by (approximation 5 )

finally show ?thesis by simp
next

case 3
have x-range: x ∈ {1/4 ..1/2} using 3 c by simp
hence cos-bound: cos (pi ∗ x) ≤ 0 .71

by (approximation 10 )
have ϕ x y = 1+α

unfolding ϕ-def 3 using 3 c
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

moreover have ϕ y x = 1+α
unfolding ϕ-def 3 using 3 c
by (intro arg-cong2 [where f=(+)] γ ′-cases) (auto simp add:frac-expand)

ultimately have ?T = 2 ∗ cos (pi ∗ x) ∗ (1+α)
unfolding 3 by simp

also have ... ≤ 2 ∗ 0 .71 ∗ (1+sqrt 2 )
unfolding α-def by (intro mult-right-mono mult-left-mono cos-bound) auto

also have ... ≤ ?R
by (approximation 6 )
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finally show ?thesis by simp
next

case 4
show ?thesis unfolding 4 by simp

qed
qed
thus ?thesis using 0 by simp

qed

Extend to square [0, 12 ]× [0, 12 ] using symmetry around x=y axis.
lemma fun-bound-real-2 :

assumes x ∈ {0 ..1/2} y ∈ {0 ..1/2} (x,y) 6= (0 ,0 )
shows |cos(pi∗x)|∗ϕ x y + |cos(pi∗y)|∗ϕ y x ≤ 2 .5 ∗ sqrt 2 (is ?L ≤ ?R)

proof (cases y < x)
case True
have ?L = |cos(pi∗y)|∗ϕ y x + |cos(pi∗x)|∗ϕ x y

by simp
also have ... ≤ ?R

using True assms
by (intro fun-bound-real-3 ) auto

finally show ?thesis by simp
next

case False
then show ?thesis using assms

by (intro fun-bound-real-3 ) auto
qed

Extend to x > 1
2 using symmetry around x = 1

2 axis.
lemma fun-bound-real-1 :

assumes x ∈ {0 ..<1} y ∈ {0 ..1/2} (x,y) 6= (0 ,0 )
shows |cos(pi∗x)|∗ϕ x y + |cos(pi∗y)|∗ϕ y x ≤ 2 .5 ∗ sqrt 2 (is ?L ≤ ?R)

proof (cases x > 1/2 )
case True
define x ′ where x ′ = 1−x

have |frac (x − 2 ∗ y) − 1 / 2 | = |frac (1 − x + 2 ∗ y) − 1 / 2 |
proof (cases x − 2 ∗ y ∈ �)

case True
then obtain k where x-eq: x = 2∗y + of-int k using Ints-cases[OF True]

by (metis add-minus-cancel uminus-add-conv-diff )
show ?thesis unfolding x-eq frac-def by simp

next
case False
hence 1 − x + 2 ∗ y /∈ �

using Ints-1 Ints-diff by fastforce
thus ?thesis

by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed

moreover have |frac (x + 2 ∗ y) − 1 / 2 | = |frac (1 − x − 2 ∗ y) − 1 / 2 |
proof (cases x + 2 ∗ y ∈ �)

case True
then obtain k where x-eq: x = of-int k − 2∗y using Ints-cases[OF True]

by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel)
show ?thesis unfolding x-eq frac-def by simp

next
case False
hence 1 − x − 2 ∗ y /∈ �
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using Ints-1 Ints-diff by fastforce
thus ?thesis

by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed
ultimately have ϕ y x = ϕ y x ′

unfolding ϕ-def x ′-def by (intro γ ′-cong add-swap-cong) simp-all

moreover have ϕ x y = ϕ x ′ y
unfolding ϕ-def x ′-def
by (intro γ ′-cong add-swap-cong refl arg-cong[where f=(λx. abs (x−1/2 ))] frac-cong)
(simp-all add:algebra-simps)

moreover have |cos(pi∗x)| = |cos(pi∗x ′)|
unfolding x ′-def by (intro abs-rev-cong) (simp add:algebra-simps)

ultimately have ?L = |cos(pi∗x ′)|∗ϕ x ′ y + |cos(pi∗y)|∗ϕ y x ′

by simp
also have ... ≤ ?R

using assms True by (intro fun-bound-real-2 ) (auto simp add:x ′-def )
finally show ?thesis by simp

next
case False
thus ?thesis using assms fun-bound-real-2 by simp

qed

Extend to y > 1
2 using symmetry around y = 1

2 axis.
lemma fun-bound-real:

assumes x ∈ {0 ..<1} y ∈ {0 ..<1} (x,y) 6= (0 ,0 )
shows |cos(pi∗x)|∗ϕ x y + |cos(pi∗y)|∗ϕ y x ≤ 2 .5 ∗ sqrt 2 (is ?L ≤ ?R)

proof (cases y > 1/2 )
case True
define y ′ where y ′ = 1−y

have |frac (y − 2 ∗ x) − 1 / 2 | = |frac (1 − y + 2 ∗ x) − 1 / 2 |
proof (cases y − 2 ∗ x ∈ �)

case True
then obtain k where y-eq: y = 2∗x + of-int k using Ints-cases[OF True]

by (metis add-minus-cancel uminus-add-conv-diff )
show ?thesis unfolding y-eq frac-def by simp

next
case False
hence 1 − y + 2 ∗ x /∈ �

using Ints-1 Ints-diff by fastforce
thus ?thesis

by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed

moreover have |frac (y + 2 ∗ x) − 1 / 2 | = |frac (1 − y − 2 ∗ x) − 1 / 2 |
proof (cases y + 2 ∗ x ∈ �)

case True
then obtain k where y-eq: y = of-int k − 2∗x using Ints-cases[OF True]

by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel)
show ?thesis unfolding y-eq frac-def by simp

next
case False
hence 1 − y − 2 ∗ x /∈ �

using Ints-1 Ints-diff by fastforce
thus ?thesis
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by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed
ultimately have ϕ x y = ϕ x y ′

unfolding ϕ-def y ′-def by (intro γ ′-cong add-swap-cong) simp-all

moreover have ϕ y x = ϕ y ′ x
unfolding ϕ-def y ′-def
by (intro γ ′-cong add-swap-cong refl arg-cong[where f=(λx. abs (x−1/2 ))] frac-cong)
(simp-all add:algebra-simps)

moreover have |cos(pi∗y)| = |cos(pi∗y ′)|
unfolding y ′-def by (intro abs-rev-cong) (simp add:algebra-simps)

ultimately have ?L = |cos(pi∗x)|∗ϕ x y ′ + |cos(pi∗y ′)|∗ϕ y ′ x
by simp

also have ... ≤ ?R
using assms True by (intro fun-bound-real-1 ) (auto simp add:y ′-def )

finally show ?thesis by simp
next

case False
thus ?thesis using assms fun-bound-real-1 by simp

qed

lemma mod-to-frac:
fixes x :: int
shows real-of-int (x mod m) = m ∗ frac (x/m) (is ?L = ?R)

proof −
obtain y where y-def : x mod m = x + int m∗ y

by (metis mod-eqE mod-mod-trivial)

have 0 : x mod int m < m x mod int m ≥ 0
using m-gt-0 by auto

have ?L = real m ∗ (of-int (x mod m) / m )
using m-gt-0 by (simp add:algebra-simps)

also have ... = real m ∗ frac (of-int (x mod m) / m)
using 0 by (subst iffD2 [OF frac-eq]) auto

also have ... = real m ∗ frac (x / m + y)
unfolding y-def using m-gt-0 by (simp add:divide-simps mult.commute)

also have ... = ?R
unfolding frac-def by simp

finally show ?thesis by simp
qed

lemma fun-bound:
assumes v ∈ verts G v 6= (0 ,0 )
shows τ(fst v)∗(γ v (S2 v)+γ v (T2 v))+τ(snd v)∗(γ v (S1 v)+γ v (T1 v)) ≤ 2 .5 ∗ sqrt 2
(is ?L ≤ ?R)

proof −
obtain x y where v-def : v = (x,y) by (cases v) auto
define x ′ where x ′ = x/real m
define y ′ where y ′ = y/real m

have 0 :γ v (S1 v) = γ ′ x ′ (frac(x ′−2∗y ′))
unfolding γ-def γ ′-def compare-def v-def γ-aux-def T1-def S1-def x ′-def y ′-def using m-gt-0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)

have 1 :γ v (T1 v) = γ ′ x ′ (frac(x ′+2∗y ′))
unfolding γ-def γ ′-def compare-def v-def γ-aux-def T1-def x ′-def y ′-def using m-gt-0
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by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)
have 2 :γ v (S2 v) = γ ′ y ′ (frac(y ′−2∗x ′))

unfolding γ-def γ ′-def compare-def v-def γ-aux-def S2-def x ′-def y ′-def using m-gt-0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)

have 3 :γ v (T2 v) = γ ′ y ′ (frac(y ′+2∗x ′))
unfolding γ-def γ ′-def compare-def v-def γ-aux-def T2-def x ′-def y ′-def using m-gt-0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)

have 4 : τ (fst v) = |cos(pi∗x ′)| τ (snd v) = |cos(pi∗y ′)|
unfolding τ -def v-def x ′-def y ′-def by auto

have x ∈ {0 ..<int m} y ∈ {0 ..<int m} (x,y) 6= (0 ,0 )
using assms unfolding v-def mgg-graph-def by auto

hence 5 :x ′ ∈ {0 ..<1} y ′ ∈ {0 ..<1} (x ′,y ′) 6= (0 ,0 )
unfolding x ′-def y ′-def by auto

have ?L = |cos(pi∗x ′)|∗ϕ x ′ y ′ + |cos(pi∗y ′)|∗ϕ y ′ x ′

unfolding 0 1 2 3 4 ϕ-def by simp
also have ... ≤ ?R

by (intro fun-bound-real 5 )
finally show ?thesis by simp

qed

Equation 15 in Proof of Theorem 8.8
lemma hoory-8-8 :

fixes f :: int × int ⇒ real
assumes

∧
x. f x ≥ 0

assumes f (0 ,0 ) = 0
assumes periodic f
shows g-inner f (λx. f (S2 x)∗τ (fst x)+f (S1 x)∗τ (snd x))≤1 .25∗ sqrt 2∗g-norm f^2
(is ?L ≤ ?R)

proof −
have 0 : 2 ∗ f x ∗ f y ≤ γ x y ∗ f x^2 + γ y x ∗ f y^2 (is ?L1 ≤ ?R1 ) for x y
proof −

have 0 ≤ ((sqrt (γ x y) ∗ f x) − (sqrt (γ y x) ∗ f y))^2
by simp

also have ... = ?R1 − 2 ∗ (sqrt (γ x y) ∗ f x) ∗ (sqrt (γ y x) ∗ f y)
unfolding power2-diff using γ-nonneg assms(1 )

by (intro arg-cong2 [where f=(−)] arg-cong2 [where f=(+)]) (auto simp add: power2-eq-square)
also have ... = ?R1 −2 ∗ sqrt (γ x y ∗ γ y x) ∗ f x ∗ f y

unfolding real-sqrt-mult by simp
also have ... = ?R1 − ?L1

unfolding γ-sym by simp
finally have 0 ≤ ?R1 − ?L1 by simp
thus ?thesis by simp

qed

have [simp]: fst (S2 x) = fst x snd (S1 x) = snd x for x
unfolding S1-def S2-def by auto

have S-2-inv [simp]: T2 (S2 x) = x if x ∈ verts G for x
using that unfolding T2-def S2-def mgg-graph-def
by (cases x,simp add:mod-simps)

have S-1-inv [simp]: T1 (S1 x) = x if x ∈ verts G for x
using that unfolding T1-def S1-def mgg-graph-def
by (cases x,simp add:mod-simps)

have S2-inj: inj-on S2 (verts G)
using S-2-inv by (intro inj-on-inverseI [where g=T2])
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have S1-inj: inj-on S1 (verts G)
using S-1-inv by (intro inj-on-inverseI [where g=T1])

have S2 ‘ verts G ⊆ verts G
unfolding mgg-graph-def S2-def
by (intro image-subsetI ) auto

hence S2-ran: S2 ‘ verts G = verts G
by (intro card-subset-eq card-image S2-inj) auto

have S1 ‘ verts G ⊆ verts G
unfolding mgg-graph-def S1-def
by (intro image-subsetI ) auto

hence S1-ran: S1 ‘ verts G = verts G
by (intro card-subset-eq card-image S1-inj) auto

have 2 : g v ∗ f v^2 ≤ 2 .5 ∗ sqrt 2 ∗ f v^2 if g v ≤ 2 .5 ∗ sqrt 2 ∨ v = (0 ,0 ) for v g
proof (cases v=(0 ,0 ))

case True
then show ?thesis using assms(2 ) by simp

next
case False
then show ?thesis using that by (intro mult-right-mono) auto

qed

have 2∗?L=(
∑

v∈verts G. τ(fst v)∗(2∗f v ∗f (S2 v)))+(
∑

v∈verts G. τ(snd v) ∗ (2 ∗ f v ∗ f
(S1 v)))

unfolding g-inner-def by (simp add: algebra-simps sum-distrib-left sum.distrib)
also have ... ≤
(
∑

v∈verts G. τ(fst v)∗(γ v (S2 v) ∗ f v^2 + γ (S2 v) v ∗ f (S2 v)^2 ))+
(
∑

v∈verts G. τ(snd v)∗(γ v (S1 v) ∗ f v^2 + γ (S1 v) v ∗ f (S1 v)^2 ))
unfolding τ -def by (intro add-mono sum-mono mult-left-mono 0 ) auto

also have ... =
(
∑

v∈verts G. τ(fst v)∗γ v (S2 v)∗f v^2 )+(
∑

v∈verts G. τ(fst v) ∗ γ (S2 v) v ∗ f (S2 v)^2 )+
(
∑

v∈verts G. τ(snd v)∗γ v (S1 v)∗f v^2 )+(
∑

v∈verts G. τ(snd v) ∗ γ (S1 v) v ∗ f (S1 v)^2 )
by (simp add:sum.distrib algebra-simps)

also have ... =
(
∑

v∈verts G. τ(fst v)∗γ v (S2 v)∗f v^2 )+
(
∑

v∈verts G. τ(fst (S2 v)) ∗ γ (S2 v) (T2 (S2 v)) ∗ f (S2 v)^2 )+
(
∑

v∈verts G. τ(snd v)∗γ v (S1 v)∗f v^2 )+
(
∑

v∈verts G. τ(snd (S1 v)) ∗ γ (S1 v) (T1 (S1 v)) ∗ f (S1 v)^2 )
by (intro arg-cong2 [where f=(+)] sum.cong refl) simp-all

also have ... =
(
∑

v∈verts G. τ(fst v)∗γ v (S2 v)∗f v^2 )+ (
∑

v∈S2 ‘ verts G. τ(fst v) ∗ γ v (T2 v) ∗ f v^2 )+
(
∑

v∈verts G. τ(snd v)∗γ v (S1 v)∗f v^2 )+ (
∑

v∈S1 ‘ verts G. τ(snd v) ∗ γ v (T1 v) ∗ f v^2 )
using S1-inj S2-inj by (simp add:sum.reindex)

also have ... =
(
∑

v∈verts G. (τ(fst v)∗(γ v (S2 v)+γ v (T2 v))+τ(snd v)∗(γ v (S1 v)+γ v (T1 v))) ∗f v^2 )
unfolding S1-ran S2-ran by (simp add:algebra-simps sum.distrib)

also have ... ≤ (
∑

v∈verts G. 2 .5 ∗ sqrt 2 ∗ f v^2 )
using fun-bound by (intro sum-mono 2 ) auto

also have ... ≤ 2 .5 ∗ sqrt 2 ∗ g-norm f^2
unfolding g-norm-sq g-inner-def
by (simp add:algebra-simps power2-eq-square sum-distrib-left)

finally have 2 ∗ ?L ≤ 2 .5 ∗ sqrt 2 ∗ g-norm f^2 by simp
thus ?thesis by simp

qed

lemma hoory-8-7 :
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fixes f :: int×int ⇒ complex
assumes f (0 ,0 ) = 0
assumes periodic f
shows norm(g-inner f (λx. f (S2 x) ∗ (1+ωF (fst x)) + f (S1 x) ∗ (1+ωF (snd x))))
≤ (2 .5 ∗ sqrt 2 ) ∗ (

∑
v ∈ verts G. norm (f v)^2 ) (is ?L ≤ ?R)

proof −
define g :: int×int ⇒ real where g x = norm (f x) for x

have g-zero: g (0 ,0 ) = 0
using assms(1 ) unfolding g-def by simp

have g-nonneg: g x ≥ 0 for x
unfolding g-def by simp

have g-periodic: periodic g
unfolding g-def by (intro periodic-comp[OF assms(2 )])

have 0 : norm(1+ωF x) = 2∗τ x for x :: int
proof −

have norm(1+ωF x) = norm(ωF (−x/2 )∗(ωF 0 + ωF x))
unfolding ωF -def norm-mult by simp

also have ... = norm (ωF (0−x/2 ) + ωF (x−x/2 ))
unfolding ωF -simps by (simp add: algebra-simps)

also have ... = norm (ωF (x/2 ) + cnj (ωF (x/2 )))
unfolding ωF -simps(3 ) by (simp add:algebra-simps)

also have ... = |2∗Re (ωF (x/2 ))|
unfolding complex-add-cnj norm-of-real by simp

also have ... = 2∗|cos(pi∗x/m)|
unfolding ωF -def cis.simps by simp

also have ... = 2∗τ x unfolding τ -def by simp
finally show ?thesis by simp

qed

have ?L≤norm(
∑

v∈verts G. f v ∗ cnj(f (S2 v)∗(1+ωF (fst v))+f (S1 v )∗(1+ωF (snd v))))
unfolding g-inner-def by (simp add:case-prod-beta)

also have ...≤(
∑

v∈verts G. norm(f v ∗ cnj(f (S2 v) ∗(1+ωF (fst v))+f (S1 v)∗(1+ωF (snd
v)))))

by (intro norm-sum)
also have ...=(

∑
v∈verts G. g v ∗ norm(f (S2 v) ∗(1+ωF (fst v))+f (S1 v)∗(1+ωF (snd v))))

unfolding norm-mult g-def complex-mod-cnj by simp
also have ...≤(

∑
v∈verts G. g v ∗ (norm (f (S2 v)∗(1+ωF (fst v)))+norm(f (S1 v)∗(1+ωF (snd

v)))))
by (intro sum-mono norm-triangle-ineq mult-left-mono g-nonneg)

also have ...=2∗g-inner g (λx. g (S2 x)∗τ (fst x)+g(S1 x)∗τ (snd x))
unfolding g-def g-inner-def norm-mult 0
by (simp add:sum-distrib-left algebra-simps case-prod-beta)

also have ... ≤2∗(1 .25∗ sqrt 2∗g-norm g^2 )
by (intro mult-left-mono hoory-8-8 g-nonneg g-zero g-periodic) auto

also have ... = ?R
unfolding g-norm-sq g-def g-inner-def by (simp add:power2-eq-square)

finally show ?thesis by simp
qed

lemma hoory-8-3 :
assumes g-inner f (λ-. 1 ) = 0
assumes periodic f
shows |(

∑
(x,y)∈verts G. f (x,y)∗(f (x+2∗y,y)+f (x+2∗y+1 ,y)+f (x,y+2∗x)+f (x,y+2∗x+1 )))|

≤ (2 .5 ∗ sqrt 2 ) ∗ g-norm f^2 (is |?L| ≤ ?R)
proof −

let ?f = (λx. complex-of-real (f x))
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define Ts :: (int × int ⇒ int × int) list where
Ts = [(λ(x,y).(x+2∗y,y)),(λ(x,y).(x+2∗y+1 ,y)),(λ(x,y).(x,y+2∗x)),(λ(x,y).(x,y+2∗x+1 ))]

have p: periodic ?f
by (intro periodic-comp[OF assms(2 )])

have 0 : (
∑

T←Ts. FT (?f ◦T ) v) = FT ?f (S2 v)∗(1+ωF (fst v))+FT ?f (S1 v)∗(1+ωF (snd
v))

(is ?L1 = ?R1 ) for v :: int × int
proof −

obtain x y where v-def : v = (x,y) by (cases v, auto)
have ?L1 = (

∑
T←Ts. FT (?f ◦T ) (x,y))

unfolding v-def by simp
also have ... = FT ?f (x,y−2∗x)∗(1+ωF x) + FT ?f (x−2∗y,y)∗(1+ωF y)
unfolding Ts-def by (simp add:FT-sheer [OF p] case-prod-beta comp-def ) (simp add:algebra-simps)
also have ... = ?R1

unfolding v-def S2-def S1-def
by (intro arg-cong2 [where f=(+)] arg-cong2 [where f=(∗)] periodic-cong[OF periodic-FT ])

auto
finally show ?thesis by simp

qed

have cmod ((of-nat m)^2 ) = cmod (of-real (of-nat m^2 )) by simp
also have ... = abs (of-nat m^2 ) by (intro norm-of-real)
also have ... = real m^2 by simp
finally have 1 : cmod ((of-nat m)2) = (real m)2 by simp

have FT (λx. complex-of-real (f x)) (0 , 0 ) = complex-of-real (g-inner f (λ- . 1 ))
unfolding FT-def g-inner-def g-inner-def ωF -def by simp

also have ... = 0
unfolding assms by simp

finally have 2 : FT (λx. complex-of-real (f x)) (0 , 0 ) = 0
by simp

have abs ?L = norm (complex-of-real ?L)
unfolding norm-of-real by simp

also have ... = norm (
∑

T ← Ts. (g-inner ?f (?f ◦ T )))
unfolding Ts-def by (simp add:algebra-simps g-inner-def sum.distrib comp-def case-prod-beta)

also have ... = norm (
∑

T ← Ts. (g-inner (FT ?f ) (FT (?f ◦ T )))/m^2 )
by (subst parseval) simp

also have ... = norm (g-inner (FT ?f ) (λx. (
∑

T ← Ts. (FT (?f ◦ T ) x)))/m^2 )
unfolding Ts-def by (simp add:g-inner-simps case-prod-beta add-divide-distrib)

also have ...=norm(g-inner(FT ?f )(λx.(FT ?f (S2 x)∗(1+ωF (fst x))+FT f (S1 x)∗(1+ωF (snd
x)))))/m^2

by (subst 0 ) (simp add:norm-divide 1 )
also have ... ≤ (2 .5 ∗ sqrt 2 ) ∗ (

∑
v ∈ verts G. norm (FT f v)^2 ) / m^2

by (intro divide-right-mono hoory-8-7 [where f=FT f ] 2 periodic-FT ) auto
also have ... = (2 .5 ∗ sqrt 2 ) ∗ (

∑
v ∈ verts G. cmod (f v)^2 )

by (subst (2 ) plancharel) simp
also have ... = (2 .5 ∗ sqrt 2 ) ∗ (g-inner f f )

unfolding g-inner-def norm-of-real by (simp add: power2-eq-square)
also have ... = ?R

using g-norm-sq by auto
finally show ?thesis by simp

qed

Inequality stated before Theorem 8.3 in Hoory.
lemma mgg-numerical-radius-aux:
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assumes g-inner f (λ-. 1 ) = 0
shows |(

∑
a ∈ arcs G. f (head G a) ∗ f (tail G a))| ≤ (5 ∗ sqrt 2 ) ∗ g-norm f^2 (is ?L ≤ ?R)

proof −
define g where g x = f (fst x mod m, snd x mod m) for x :: int × int
have 0 :g x = f x if x ∈ verts G for x

unfolding g-def using that
by (auto simp add:mgg-graph-def mem-Times-iff )

have g-mod-simps[simp]: g (x, y mod m) = g (x, y) g (x mod m, y) = g (x, y) for x y :: int
unfolding g-def by auto

have periodic-g: periodic g
unfolding periodic-def by simp

have g-inner g (λ-. 1 ) = g-inner f (λ-. 1 )
by (intro g-inner-cong 0 ) auto

also have ... = 0
using assms by simp

finally have 1 :g-inner g (λ-. 1 ) = 0 by simp

have 2 :g-norm g = g-norm f
by (intro g-norm-cong 0 ) (auto)

have ?L = |(
∑

a ∈ arcs G. g (head G a) ∗ g (tail G a))|
using wellformed
by (intro arg-cong[where f=abs] sum.cong arg-cong2 [where f=(∗)] 0 [symmetric]) auto

also have ...=|(
∑

a∈arcs-pos. g(head G a)∗g(tail G a))+(
∑

a∈arcs-neg. g(head G a)∗g(tail G
a))|

unfolding arcs-sym arcs-pos-def arcs-neg-def
by (intro arg-cong[where f=abs] sum.union-disjoint) auto

also have ... = |2 ∗ (
∑

(v,l)∈verts G × {..<4}. g v ∗ g (mgg-graph-step m v (l, 1 )))|
unfolding arcs-pos-def arcs-neg-def
by (simp add:inj-on-def sum.reindex case-prod-beta mgg-graph-def algebra-simps)

also have ... = 2 ∗ |(
∑

v ∈ verts G. (
∑

l ∈ {..<4}. g v ∗ g (mgg-graph-step m v (l, 1 ))))|
by (subst sum.cartesian-product) (simp add:abs-mult)

also have ... = 2∗|(
∑

(x,y)∈verts G. (
∑

l←[0 ..<4 ]. g(x,y)∗ g (mgg-graph-step m (x,y) (l,1 ))))|
by (subst interv-sum-list-conv-sum-set-nat)
(auto simp add:atLeast0LessThan case-prod-beta simp del:mgg-graph-step.simps)

also have ... =2∗|
∑

(x,y)∈verts G. g (x,y)∗ (g(x+2∗y,y)+g(x+2∗y+1 ,y)+g(x,y+2∗x)+g(x,y+2∗x+1 ))|
by (simp add:case-prod-beta numeral-eq-Suc algebra-simps)

also have ... ≤ 2∗ ((2 .5 ∗ sqrt 2 ) ∗ g-norm g^2 )
by (intro mult-left-mono hoory-8-3 1 periodic-g) auto

also have ... ≤ ?R unfolding 2 by simp
finally show ?thesis by simp

qed

definition MGG-bound :: real
where MGG-bound = 5 ∗ sqrt 2 / 8

Main result: Theorem 8.2 in Hoory.
lemma mgg-numerical-radius: Λa ≤ MGG-bound
proof −

have Λa ≤ (5 ∗ sqrt 2 )/real d
by (intro expander-intro mgg-numerical-radius-aux) auto

also have ... = MGG-bound
unfolding MGG-bound-def d-eq-8 by simp

finally show ?thesis by simp
qed
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end

end

9 Random Walks
theory Expander-Graphs-Walks

imports
Expander-Graphs-Algebra
Expander-Graphs-Eigenvalues
Expander-Graphs-TTS
Constructive-Chernoff-Bound

begin

unbundle intro-cong-syntax

no-notation Matrix.vec-index (infixl ‹$› 100 )
hide-const Matrix.vec-index
hide-const Matrix.vec
no-notation Matrix.scalar-prod (infix ‹·› 70 )

fun walks ′ :: ( ′a, ′b) pre-digraph ⇒ nat ⇒ ( ′a list) multiset
where

walks ′ G 0 = image-mset (λx. [x]) (mset-set (verts G)) |
walks ′ G (Suc n) =

concat-mset {#{#w @[z].z∈# vertices-from G (last w)#}. w ∈# walks ′ G n#}

definition walks G l = (case l of 0 ⇒ {#[]#} | Suc pl ⇒ walks ′ G pl)

lemma Union-image-mono: (
∧

x. x ∈ A =⇒ f x ⊆ g x) =⇒
⋃

(f ‘ A) ⊆
⋃

(g ‘ A)
by auto

context fin-digraph
begin

lemma count-walks ′:
assumes set xs ⊆ verts G
assumes length xs = l+1
shows count (walks ′ G l) xs = (

∏
i ∈ {..<l}. count (edges G) (xs ! i, xs ! (i+1 )))

proof −
have a:xs 6= [] using assms(2 ) by auto

have count (walks ′ G (length xs−1 )) xs = (
∏

i<length xs −1 . count (edges G) (xs ! i, xs ! (i
+ 1 )))

using a assms(1 )
proof (induction xs rule:rev-nonempty-induct)

case (single x)
hence x ∈ verts G by simp
hence count {#[x]. x ∈# mset-set (verts G)#} [x] = 1

by (subst count-image-mset-inj, auto simp add:inj-def )
then show ?case by simp

next
case (snoc x xs)
have set-xs: set xs ⊆ verts G using snoc by simp

define l where l = length xs − 1
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have l-xs: length xs = l + 1 unfolding l-def using snoc by simp
have count (walks ′ G (length (xs @ [x]) − 1 )) (xs @ [x]) =
(
∑

ys∈#walks ′ G l. count {#ys @ [z]. z ∈# vertices-from G (last ys)#} (xs @ [x]))
by (simp add:l-xs count-concat-mset image-mset.compositionality comp-def )

also have ... = (
∑

ys∈#walks ′ G l.
(if ys = xs then count {#xs @ [z]. z ∈# vertices-from G (last xs)#} (xs @ [x]) else 0 ))

by (intro arg-cong[where f=sum-mset] image-mset-cong) (auto intro!: count-image-mset-0-triv)
also have ... = (

∑
ys∈#walks ′ G l.(if ys=xs then count (vertices-from G (last xs)) x else 0 ))

by (subst count-image-mset-inj, auto simp add:inj-def )
also have ... = count (walks ′ G l) xs ∗ count (vertices-from G (last xs)) x

by (subst sum-mset-delta, simp)
also have ... = count (walks ′ G l) xs ∗ count (edges G) (last xs, x)

unfolding vertices-from-def count-mset-exp image-mset-filter-mset-swap[symmetric]
filter-filter-mset by (simp add:prod-eq-iff )

also have ... = count (walks ′ G l) xs ∗ count (edges G) ((xs@[x])!l, (xs@[x])!(l+1 ))
using snoc(1 ) unfolding l-def nth-append last-conv-nth[OF snoc(1 )] by simp

also have ... = (
∏

i<l+1 . count (edges G) ((xs@[x])!i, (xs@[x])!(i+1 )))
unfolding l-def snoc(2 )[OF set-xs] by (simp add:nth-append)

finally have count (walks ′ G (length (xs @ [x]) − 1 )) (xs @ [x]) =
(
∏

i<length (xs@[x]) − 1 . count (edges G) ((xs@[x])!i, (xs@[x])!(i+1 )))
unfolding l-def using snoc(1 ) by simp

then show ?case by simp
qed
moreover have l = length xs − 1 using a assms by simp
ultimately show ?thesis by simp

qed

lemma count-walks:
assumes set xs ⊆ verts G
assumes length xs = l l > 0
shows count (walks G l) xs = (

∏
i ∈ {..<l−1}. count (edges G) (xs ! i, xs ! (i+1 )))

using assms unfolding walks-def by (cases l, auto simp add:count-walks ′)

lemma set-walks ′:
set-mset (walks ′ G l) ⊆ {xs. set xs ⊆ verts G ∧ length xs = (l+1 )}

proof (induction l)
case 0
then show ?case by auto

next
case (Suc l)

have set-mset (walks ′ G (Suc l)) =
(
⋃

x∈set-mset (walks ′ G l). (λz. x @ [z]) ‘ set-mset (vertices-from G (last x)))
by (simp add:set-mset-concat-mset)

also have ... ⊆ (
⋃

x∈{xs. set xs ⊆ verts G ∧ length xs = l + 1}.
(λz. x @ [z]) ‘ set-mset (vertices-from G (last x)))
by (intro Union-mono image-mono Suc)

also have ... ⊆ (
⋃

x∈{xs. set xs ⊆ verts G ∧ length xs = l + 1}. (λz. x @ [z]) ‘ verts G)
by (intro Union-image-mono image-mono set-mset-vertices-from)

also have ... ⊆ {xs. set xs ⊆ verts G ∧ length xs = (Suc l + 1 )}
by (intro subsetI ) auto

finally show ?case by simp
qed

lemma set-walks:
set-mset (walks G l) ⊆ {xs. set xs ⊆ verts G ∧ length xs = l}
unfolding walks-def using set-walks ′ by (cases l, auto)
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lemma set-walks-2 :
assumes xs ∈# walks ′ G l
shows set xs ⊆ verts G xs 6= []

proof −
have a:xs ∈ set-mset (walks ′ G l)

using assms by simp
thus set xs ⊆ verts G

using set-walks ′ by auto
have length xs 6= 0

using set-walks ′ a by fastforce
thus xs 6= [] by simp

qed

lemma set-walks-3 :
assumes xs ∈# walks G l
shows set xs ⊆ verts G length xs = l
using set-walks assms by auto

end

lemma measure-pmf-of-multiset:
assumes A 6= {#}
shows measure (pmf-of-multiset A) S = real (size (filter-mset (λx. x ∈ S) A)) / size A
(is ?L = ?R)

proof −
have sum (count A) (S ∩ set-mset A) = size (filter-mset (λx. x ∈ S ∩ set-mset A) A)

by (intro sum-count-2 ) simp
also have ... = size (filter-mset (λx. x ∈ S) A)

by (intro arg-cong[where f=size] filter-mset-cong) auto
finally have a: sum (count A) (S ∩ set-mset A) = size (filter-mset (λx. x ∈ S) A)

by simp

have ?L = measure (pmf-of-multiset A) (S ∩ set-mset A)
using assms by (intro measure-eq-AE AE-pmfI ) auto

also have ... = sum (pmf (pmf-of-multiset A)) (S ∩ set-mset A)
by (intro measure-measure-pmf-finite) simp

also have ... = (
∑

x ∈ S ∩ set-mset A. count A x / size A)
using assms by (intro sum.cong, auto)

also have ... = (
∑

x ∈ S ∩ set-mset A. count A x) / size A
by (simp add:sum-divide-distrib)

also have ... = ?R
using a by simp

finally show ?thesis
by simp

qed

lemma pmf-of-multiset-image-mset:
assumes A 6= {#}
shows pmf-of-multiset (image-mset f A) = map-pmf f (pmf-of-multiset A)
using assms by (intro pmf-eqI ) (simp add:pmf-map measure-pmf-of-multiset count-mset-exp

image-mset-filter-mset-swap[symmetric])

context regular-graph
begin

lemma size-walks ′:
size (walks ′ G l) = card (verts G) ∗ d^l

proof (induction l)
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case 0
then show ?case by simp

next
case (Suc l)
have a:out-degree G (last x) = d if x ∈# walks ′ G l for x
proof −

have last x ∈ verts G
using set-walks-2 that by fastforce

thus ?thesis
using reg by simp

qed

have size (walks ′ G (Suc l)) = (
∑

x∈#walks ′ G l. out-degree G (last x))
by (simp add:size-concat-mset image-mset.compositionality comp-def verts-from-alt out-degree-def )

also have ... = (
∑

x∈#walks ′ G l. d)
by (intro arg-cong[where f=sum-mset] image-mset-cong a) simp

also have ... = size (walks ′ G l) ∗ d by simp
also have ... = card (verts G) ∗ d^(Suc l) using Suc by simp
finally show ?case by simp

qed

lemma size-walks:
size (walks G l) = (if l > 0 then n ∗ d^(l−1 ) else 1 )
using size-walks ′ unfolding walks-def n-def by (cases l, auto)

lemma walks-nonempty:
walks G l 6= {#}

proof −
have size (walks G l) > 0

unfolding size-walks using d-gt-0 n-gt-0 by auto
thus walks G l 6= {#}

by auto
qed

end

context regular-graph-tts
begin

lemma g-step-remains-orth:
assumes g-inner f (λ-. 1 ) = 0
shows g-inner (g-step f ) (λ-. 1 ) = 0 (is ?L = ?R)

proof −
have ?L = (A ∗v (χ i. f (enum-verts i))) · 1

unfolding g-inner-conv g-step-conv one-vec-def by simp
also have ... = (χ i. f (enum-verts i)) · 1

by (intro markov-orth-inv markov)
also have ... = g-inner f (λ-. 1 )

unfolding g-inner-conv one-vec-def by simp
also have ... = 0 using assms by simp
finally show ?thesis by simp

qed

lemma spec-bound:
spec-bound A Λa

proof −
have norm (A ∗v v) ≤ Λa ∗ norm v if v · 1 = (0 ::real) for v::real^ ′n

unfolding Λe-eq-Λ
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by (intro γa-real-bound that)
thus ?thesis

unfolding spec-bound-def using Λ-ge-0 by auto
qed

A spectral expansion rule that does not require orthogonality of the vector for the station-
ary distribution:
lemma expansionD3 :
|g-inner f (g-step f )| ≤ Λa ∗ g-norm f^2 + (1−Λa) ∗ g-inner f (λ-. 1 )^2 / n (is ?L ≤ ?R)

proof −
define v where v = (χ i. f (enum-verts i))
define v1 :: real^ ′n where v1 = ((v · 1 ) / n) ∗R 1
define v2 :: real^ ′n where v2 = v − v1
have v-eq: v = v1 + v2

unfolding v2-def by simp

have 0 : A ∗v v1 = v1
unfolding v1-def using markov-apply[OF markov]
by (simp add:algebra-simps)

have 1 : v1 v∗ A = v1
unfolding v1-def using markov-apply[OF markov]
by (simp add:algebra-simps scaleR-vector-matrix-assoc)

have v2 · 1 = v · 1 − v1 · 1
unfolding v2-def by (simp add:algebra-simps)

also have ... = v · 1 − v · 1 ∗ real CARD( ′n) / real n
unfolding v1-def by (simp add:inner-1-1 )

also have ... = 0
using verts-non-empty unfolding card n-def by simp

finally have 4 :v2 · 1 = 0 by simp
hence 2 : v1 · v2 = 0

unfolding v1-def by (simp add:inner-commute)

define f2 where f2 i = v2 $ (enum-verts-inv i) for i
have f2-def : v2 = (χ i. f2 (enum-verts i))

unfolding f2-def Rep-inverse by simp

have 6 : g-inner f2 (λ-. 1 ) = 0
unfolding g-inner-conv f2-def [symmetric] one-vec-def [symmetric] 4 by simp

have |v2 · (A ∗v v2 )| = |g-inner f2 (g-step f2 )|
unfolding f2-def g-inner-conv g-step-conv by simp

also have ... ≤ Λa ∗ (g-norm f2 )2
by (intro expansionD1 6 )

also have ... = Λa ∗ (norm v2 )^2
unfolding g-norm-conv f2-def by simp

finally have 5 :|v2 · (A ∗v v2 )| ≤ Λa ∗ (norm v2 )2 by simp

have 3 : norm (1 :: real^ ′n)^2 = n
unfolding power2-norm-eq-inner inner-1-1 card n-def by presburger

have ?L = |v · (A ∗v v)|
unfolding g-inner-conv g-step-conv v-def by simp

also have ... = |v1 · (A ∗v v1 ) + v2 · (A ∗v v1 ) + v1 · (A ∗v v2 ) + v2 · (A ∗v v2 )|
unfolding v-eq by (simp add:algebra-simps)

also have ... = |v1 · v1 + v2 · v1 + v1 · v2 + v2 · (A ∗v v2 )|
unfolding dot-lmul-matrix[where x=v1 ,symmetric] 0 1 by simp

also have ... = |v1 · v1 + v2 · (A ∗v v2 )|
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using 2 by (simp add:inner-commute)
also have ... ≤ |norm v1^2 | + |v2 · (A ∗v v2 )|

unfolding power2-norm-eq-inner by (intro abs-triangle-ineq)
also have ... ≤ norm v1^2 + Λa ∗ norm v2^2

by (intro add-mono 5 ) auto
also have ... = Λa ∗ (norm v1^2 + norm v2^2 ) + (1 − Λa) ∗ norm v1^2

by (simp add:algebra-simps)
also have ... = Λa ∗ norm v^2 + (1 − Λa) ∗ norm v1^2

unfolding v-eq pythagoras[OF 2 ] by simp
also have ... = Λa ∗ norm v^2 + ((1 − Λa)) ∗ ((v · 1 )^2∗n)/n^2

unfolding v1-def by (simp add:power-divide power-mult-distrib 3 )
also have ... = Λa ∗ norm v^2 + ((1 − Λa)/n) ∗ (v · 1 )^2

by (simp add:power2-eq-square)
also have ... = ?R

unfolding g-norm-conv g-inner-conv v-def one-vec-def by (simp add:field-simps)
finally show ?thesis by simp

qed

definition ind-mat where ind-mat S = diag (ind-vec (enum-verts −‘ S))

lemma walk-distr :
measure (pmf-of-multiset (walks G l)) {ω. (∀ i<l. ω ! i ∈ S i)} =
foldl (λx M . M ∗v x) stat (intersperse A (map (λi. ind-mat (S i)) [0 ..<l]))·1
(is ?L = ?R)

proof (cases l > 0 )
case True
let ?n = real n
let ?d = real d
let ?W = {(w:: ′a list). set w ⊆ verts G ∧ length w = l}
let ?V = {(w:: ′n list). length w = l}

have a: set-mset (walks G l) ⊆ ?W
using set-walks by auto

have b: finite ?W
by (intro finite-lists-length-eq) auto

define lp where lp = l − 1

define xs where xs = map (λi. ind-mat (S i)) [0 ..<l]
have xs 6= [] unfolding xs-def using True by simp
then obtain xh xt where xh-xt: xh#xt=xs by (cases xs, auto)

have length xs = l
unfolding xs-def by simp

hence len-xt: length xt = lp
using True unfolding xh-xt[symmetric] lp-def by simp

have xh = xs ! 0
unfolding xh-xt[symmetric] by simp

also have ... = ind-mat (S 0 )
using True unfolding xs-def by simp

finally have xh-eq: xh = ind-mat (S 0 )
by simp

have inj-map-enum-verts: inj-on (map enum-verts) ?V
using bij-betw-imp-inj-on[OF enum-verts] inj-on-subset
by (intro inj-on-mapI ) auto
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have card ?W = card (verts G)^l
by (intro card-lists-length-eq) simp

also have ... = card {w. set w ⊆ (UNIV :: ′n set) ∧ length w = l}
unfolding card[symmetric] by (intro card-lists-length-eq[symmetric]) simp

also have ... = card ?V
by (intro arg-cong[where f=card]) auto

also have ... = card (map enum-verts ‘ ?V )
by (intro card-image[symmetric] inj-map-enum-verts)

finally have card ?W = card (map enum-verts ‘ ?V )
by simp

hence map enum-verts ‘ ?V = ?W
using bij-betw-apply[OF enum-verts]
by (intro card-subset-eq b image-subsetI ) auto

hence bij-map-enum-verts: bij-betw (map enum-verts) ?V ?W
using inj-map-enum-verts unfolding bij-betw-def by auto

have ?L = size {# w ∈# walks G l. ∀ i<l. w ! i ∈ S i #} / (?n ∗ ?d^(l−1 ))
using True unfolding size-walks measure-pmf-of-multiset[OF walks-nonempty] by simp

also have ... = (
∑

w∈?W . real (count (walks G l) w) ∗ of-bool (∀ i<l. w!i ∈ S i))/(?n∗?d^(l−1 ))
unfolding size-filter-mset-conv sum-mset-conv-2 [OF a b] by simp

also have ... = (
∑

w∈?W . (
∏

i<l−1 . real (count (edges G) (w!i,w!(i+1 )))) ∗
(
∏

i<l. of-bool (w!i ∈ S i)))/(?n∗?d^(l−1 ))
using True by (intro sum.cong arg-cong2 [where f=(/)]) (auto simp add: count-walks)

also have ... =
(
∑

w∈?W . (
∏

i<l−1 . real (count (edges G) (w!i,w!(i+1 )))/?d)∗(
∏

i<l. of-bool (w!i ∈ S
i)))/?n

using True unfolding prod-dividef by (simp add:sum-divide-distrib algebra-simps)
also have ... =
(
∑

w∈?V . (
∏

i<l−1 . count (edges G) (map enum-verts w!i,map enum-verts w!(i+1 )) / ?d) ∗
(
∏

i<l. of-bool (map enum-verts w!i ∈ S i)))/?n
by (intro sum.reindex-bij-betw[symmetric] arg-cong2 [where f=(/)] refl bij-map-enum-verts)

also have ... =
(
∑

w∈?V . (
∏

i<lp. A $ w!(i+1 ) $ w!i) ∗ (
∏

i<Suc lp. of-bool(enum-verts (w!i) ∈ S i)))/?n
unfolding A-def lp-def using True by simp

also have ... = (
∑

w∈?V . (
∏

i<lp. A $ w!(i+1 ) $ w!i) ∗
(
∏

i∈insert 0 (Suc ‘ {..<lp}). of-bool(enum-verts (w!i) ∈ S i)))/?n
using lessThan-Suc-eq-insert-0
by (intro sum.cong arg-cong2 [where f=(/)] arg-cong2 [where f=(∗)] prod.cong) auto

also have ... = (
∑

w∈?V . (
∏

i<lp. of-bool(enum-verts (w!(i+1 ))∈S(i+1 ))∗ A$ w!(i+1 ) $ w!i)
∗ of-bool(enum-verts(w!0 )∈S 0 ))/?n
by (simp add:prod.reindex algebra-simps prod.distrib)

also have ... =
(
∑

w∈?V . (
∏

i<lp. (ind-mat (S (i+1 ))∗∗A) $ w!(i+1 ) $ w!i) ∗ of-bool(enum-verts (w!0 )∈S
0 ))/?n

unfolding diag-def ind-vec-def matrix-matrix-mult-def ind-mat-def
by (intro sum.cong arg-cong2 [where f=(/)] arg-cong2 [where f=(∗)] prod.cong refl)
(simp add:if-distrib if-distribR sum.If-cases)

also have ... =
(
∑

w∈?V . (
∏

i<lp. (xs!(i+1 )∗∗A) $ w!(i+1 ) $ w!i) ∗ of-bool(enum-verts (w!0 )∈S 0 ))/?n
unfolding xs-def lp-def True
by (intro sum.cong arg-cong2 [where f=(/)] arg-cong2 [where f=(∗)] prod.cong refl) auto

also have ... =
(
∑

w∈?V . (
∏

i<lp. (xt ! i ∗∗ A) $ w!(i+1 ) $ w!i) ∗ of-bool(enum-verts (w!0 )∈S 0 ))/?n
unfolding xh-xt[symmetric] by auto

also have ... = (
∑

w∈?V . (
∏

i<lp. (xt!i∗∗A)$ w!(i+1 ) $ w!i)∗(ind-mat(S 0 )∗v stat) $w!0 )
using n-def unfolding matrix-vector-mult-def diag-def stat-def ind-vec-def ind-mat-def card
by (simp add:sum.If-cases if-distrib if-distribR sum-divide-distrib)
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also have ... = (
∑

w∈?V . (
∏

i<lp. (xt ! i ∗∗ A) $ w!(i+1 ) $ w!i) ∗ (xh ∗v stat) $ w ! 0 )
unfolding xh-eq by simp

also have ... = foldl (λx M . M ∗v x) (xh ∗v stat) (map (λx. x ∗∗ A) xt) · 1
using True unfolding foldl-matrix-mult-expand-2 by (simp add:len-xt lp-def )

also have ... = foldl (λx M . M ∗v (A ∗v x)) (xh ∗v stat) xt · 1
by (simp add: matrix-vector-mul-assoc foldl-map)

also have ... = foldl (λx M . M ∗v x) stat (intersperse A (xh#xt)) · 1
by (subst foldl-intersperse-2 , simp)

also have ... = ?R unfolding xh-xt xs-def by simp
finally show ?thesis by simp

next
case False
hence l = 0 by simp
thus ?thesis unfolding stat-def by (simp add: inner-1-1 )

qed

lemma hitting-property:
assumes S ⊆ verts G
assumes I ⊆ {..<l}
defines µ ≡ real (card S) / card (verts G)
shows measure (pmf-of-multiset (walks G l)) {w. set (nths w I ) ⊆ S} ≤ (µ+Λa∗(1−µ))^card I
(is ?L ≤ ?R)

proof −
define T where T = (λi. if i ∈ I then S else UNIV )

have 0 : ind-mat UNIV = mat 1
unfolding ind-mat-def diag-def ind-vec-def Finite-Cartesian-Product.mat-def by vector

have Λ-range: Λa ∈ {0 ..1}
using Λ-ge-0 Λ-le-1 by simp

have S ⊆ range enum-verts
using assms(1 ) enum-verts unfolding bij-betw-def by simp

moreover have inj enum-verts
using bij-betw-imp-inj-on[OF enum-verts] by simp

ultimately have µ-alt: µ = real (card (enum-verts −‘ S)) / CARD ( ′n)
unfolding µ-def card by (subst card-vimage-inj) auto

have ?L = measure (pmf-of-multiset (walks G l)) {w. ∀ i<l. w ! i ∈ T i}
using walks-nonempty set-walks-3 unfolding T-def set-nths
by (intro measure-eq-AE AE-pmfI ) auto

also have ... = foldl (λx M . M ∗v x) stat
(intersperse A (map (λi. (if i ∈ I then ind-mat S else mat 1 )) [0 ..<l])) · 1
unfolding walk-distr T-def by (simp add:if-distrib if-distribR 0 cong:if-cong)

also have ... ≤ ?R
unfolding µ-alt ind-mat-def
by (intro hitting-property-alg-2 [OF Λ-range assms(2 ) spec-bound markov])

finally show ?thesis by simp
qed

lemma uniform-property:
assumes i < l x ∈ verts G
shows measure (pmf-of-multiset (walks G l)) {w. w ! i = x} = 1/real (card (verts G))
(is ?L = ?R)

proof −
obtain xi where xi-def : enum-verts xi = x

using assms(2 ) bij-betw-imp-surj-on[OF enum-verts] by force
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define T where T = (λj. if j = i then {x} else UNIV )

have diag (ind-vec UNIV ) = mat 1
unfolding diag-def ind-vec-def Finite-Cartesian-Product.mat-def by vector

moreover have enum-verts −‘ {x} = {xi}
using bij-betw-imp-inj-on[OF enum-verts]
unfolding vimage-def xi-def [symmetric] by (auto simp add:inj-on-def )

ultimately have 0 : ind-mat (T j) = (if j = i then diag (ind-vec {xi}) else mat 1 ) for j
unfolding T-def ind-mat-def by (cases j = i, auto)

have ?L = measure (pmf-of-multiset (walks G l)) {w. ∀ j < l. w ! j ∈ T j}
unfolding T-def using assms(1 ) by simp

also have ... = foldl (λx M . M ∗v x) stat (intersperse A (map (λj. ind-mat (T j)) [0 ..<l])) · 1
unfolding walk-distr by simp

also have ... = 1/CARD( ′n)
unfolding 0 uniform-property-alg[OF assms(1 ) markov] by simp

also have ... = ?R
unfolding card by simp

finally show ?thesis by simp
qed

end

context regular-graph
begin

lemmas expansionD3 =
regular-graph-tts.expansionD3 [OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

lemmas g-step-remains-orth =
regular-graph-tts.g-step-remains-orth[OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

lemmas hitting-property =
regular-graph-tts.hitting-property[OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

lemmas uniform-property-2 =
regular-graph-tts.uniform-property[OF eg-tts-1 ,

internalize-sort ′n :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

theorem uniform-property:
assumes i < l
shows map-pmf (λw. w ! i) (pmf-of-multiset (walks G l)) = pmf-of-set (verts G) (is ?L = ?R)

proof (rule pmf-eqI )
fix x :: ′a
have a:measure (pmf-of-multiset (walks G l)) {w. w ! i = x} = 0 (is ?L1 = ?R1 )

if x /∈ verts G
proof −

have ?L1 ≤ measure (pmf-of-multiset (walks G l)) {w. set w ⊆ verts G ∧ x ∈ set w}
using walks-nonempty set-walks-3 assms(1 )
by (intro pmf-mono) auto

also have ... ≤ measure (pmf-of-multiset (walks G l)) {}
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using that by (intro pmf-mono) auto
also have ... = 0 by simp
finally have ?L1 ≤ 0 by simp
thus ?thesis using measure-le-0-iff by blast

qed

have pmf ?L x = measure (pmf-of-multiset (walks G l)) {w. w ! i = x}
unfolding pmf-map by (simp add:vimage-def )

also have ... = indicator (verts G) x/real (card (verts G))
using uniform-property-2 [OF assms(1 )] a
by (cases x ∈ verts G, auto)

also have ... = pmf ?R x
using verts-non-empty by (intro pmf-of-set[symmetric]) auto

finally show pmf ?L x = pmf ?R x by simp
qed

lemma uniform-property-gen:
fixes S :: ′a set
assumes S ⊆ verts G i < l
defines µ ≡ real (card S) / card (verts G)
shows measure (pmf-of-multiset (walks G l)) {w. w ! i ∈ S} = µ (is ?L = ?R)

proof −

have ?L = measure (map-pmf (λw. w ! i) (pmf-of-multiset (walks G l))) S
unfolding measure-map-pmf by (simp add:vimage-def )

also have ... = measure (pmf-of-set (verts G)) S
unfolding uniform-property[OF assms(2 )] by simp

also have ... = ?R
using verts-non-empty Int-absorb1 [OF assms(1 )]
unfolding µ-def by (subst measure-pmf-of-set) auto

finally show ?thesis by simp
qed

theorem kl-chernoff-property:
assumes l > 0
assumes S ⊆ verts G
defines µ ≡ real (card S) / card (verts G)
assumes γ ≤ 1 µ + Λa ∗ (1−µ) ∈ {0<..γ}
shows measure (pmf-of-multiset (walks G l)) {w. real (card {i ∈ {..<l}. w ! i ∈ S}) ≥ γ∗l}
≤ exp (− real l ∗ KL-div γ (µ+Λa∗(1−µ))) (is ?L ≤ ?R)

proof −
let ?δ = (

∑
i<l. µ+Λa∗(1−µ))/l

have a: measure (pmf-of-multiset (walks G l)) {w. ∀ i∈T . w ! i ∈ S} ≤ (µ + Λa∗(1−µ)) ^ card
T

(is ?L1 ≤ ?R1 ) if T ⊆ {..<l} for T
proof −

have ?L1 = measure (pmf-of-multiset (walks G l)) {w. set (nths w T ) ⊆ S}
unfolding set-nths setcompr-eq-image using that set-walks-3 walks-nonempty
by (intro measure-eq-AE AE-pmfI ) (auto simp add:image-subset-iff )

also have ... ≤ ?R1
unfolding µ-def by (intro hitting-property[OF assms(2 ) that])

finally show ?thesis by simp
qed

have ?L ≤ exp ( − real l ∗ KL-div γ ?δ)
using assms(1 ,4 ,5 ) a by (intro impagliazzo-kabanets-pmf ) simp-all

also have ... = ?R by simp
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finally show ?thesis by simp
qed

end

unbundle no intro-cong-syntax

end

10 Graph Powers
theory Expander-Graphs-Power-Construction

imports
Expander-Graphs-Walks
Graph-Theory.Arc-Walk

begin

unbundle intro-cong-syntax

fun is-arc-walk :: ( ′a, ′b) pre-digraph ⇒ ′a ⇒ ′b list ⇒ bool
where

is-arc-walk G - [] = True |
is-arc-walk G y (x#xs) = (is-arc-walk G (head G x) xs ∧ tail G x = y ∧ x ∈ arcs G)

definition arc-walk-head :: ( ′a, ′b) pre-digraph ⇒ ( ′a × ′b list) ⇒ ′a
where

arc-walk-head G x = (if snd x = [] then fst x else head G (last (snd x)))

lemma is-arc-walk-snoc:
is-arc-walk G y (xs@[x]) ←→ is-arc-walk G y xs ∧ x ∈ out-arcs G (arc-walk-head G (y,xs))
by (induction xs arbitrary: y, simp-all add:ac-simps arc-walk-head-def )

lemma is-arc-walk-set:
assumes is-arc-walk G u w
shows set w ⊆ arcs G
using assms by (induction w arbitrary: u, auto)

lemma (in wf-digraph) awalk-is-arc-walk:
assumes u ∈ verts G
shows is-arc-walk G u w ←→ awalk u w (awlast u w)
using assms unfolding awalk-def by (induction w arbitrary: u, auto)

definition arc-walks :: ( ′a, ′b) pre-digraph ⇒ nat ⇒ ( ′a × ′b list) set
where

arc-walks G l = {(u,w). u ∈ verts G ∧ is-arc-walk G u w ∧ length w = l}

lemma arc-walks-len:
assumes x ∈ arc-walks G l
shows length (snd x) = l
using assms unfolding arc-walks-def by auto

lemma (in wf-digraph) awhd-of-arc-walk:
assumes w ∈ arc-walks G l
shows awhd (fst w) (snd w) = fst w
using assms unfolding arc-walks-def awalk-verts-def
by (cases snd w, auto)

124



lemma (in wf-digraph) awlast-of-arc-walk:
assumes w ∈ arc-walks G l
shows awlast (fst w) (snd w) = arc-walk-head G w
unfolding awalk-verts-conv arc-walk-head-def by simp

lemma (in wf-digraph) arc-walk-head-wellformed:
assumes w ∈ arc-walks G l
shows arc-walk-head G w ∈ verts G

proof (cases snd w = [])
case True
then show ?thesis

using assms unfolding arc-walks-def arc-walk-head-def by auto
next

case False
have 0 :is-arc-walk G (fst w) (snd w) using assms unfolding arc-walks-def by auto
have last (snd w) ∈ set (snd w)

using False last-in-set by auto
also have ... ⊆ arcs G

by (intro is-arc-walk-set[OF 0 ])
finally have last (snd w) ∈ arcs G by simp
thus ?thesis unfolding arc-walk-head-def using False by simp

qed

lemma (in wf-digraph) arc-walk-tail-wellformed:
assumes w ∈ arc-walks G l
shows fst w ∈ verts G
using assms unfolding arc-walks-def by auto

lemma (in fin-digraph) arc-walks-fin:
finite (arc-walks G l)

proof −
have 0 :finite (verts G × {w. set w ⊆ arcs G ∧ length w = l})

by (intro finite-cartesian-product finite-lists-length-eq) auto
show finite (arc-walks G l)

unfolding arc-walks-def using is-arc-walk-set[where G=G]
by (intro finite-subset[OF - 0 ] subsetI ) auto

qed

lemma (in wf-digraph) awalk-verts-unfold:
assumes w ∈ arc-walks G l
shows awalk-verts (fst w) (snd w) = fst w#map (head G) (snd w) (is ?L = ?R)

proof −
obtain u v where w-def : w = (u,v) by fastforce

have awalk u v (awlast u v)
using assms unfolding w-def arc-walks-def
by (intro iffD1 [OF awalk-is-arc-walk]) auto

hence cas: cas u v (awlast u v)
unfolding awalk-def by simp

have 0 : tail G (hd v) = u if v 6= []
using cas that by (cases v) auto

have ?L = awalk-verts u v
unfolding w-def by simp

also have ... = (if v = [] then [u] else tail G (hd v) # map (head G) v)
by (intro awalk-verts-conv ′[OF cas])

also have ... = u# map (head G) v
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using 0 by simp
also have ... = ?R

unfolding w-def by simp
finally show ?thesis by simp

qed

lemma (in fin-digraph) arc-walks-map-walks ′:
walks ′ G l = image-mset (case-prod awalk-verts) (mset-set (arc-walks G l))

proof (induction l)
case 0
let ?g = λx. fst x#map (head G) (snd x)

have walks ′ G 0 = {#[x]. x ∈# mset-set (verts G)#}
by simp

also have ... = image-mset ?g (image-mset (λx. (x,[])) (mset-set (verts G)))
unfolding image-mset.compositionality by (simp add:comp-def )

also have ... = image-mset ?g (mset-set ((λx. (x,[])) ‘ verts G))
by (intro arg-cong2 [where f=image-mset] image-mset-mset-set inj-onI ) auto

also have ... = image-mset ?g (mset-set ({(u, w). u ∈ verts G ∧ w = []}))
by (intro-cong [σ2 image-mset]) auto

also have ... = image-mset ?g (mset-set (arc-walks G 0 ))
unfolding arc-walks-def by (intro-cong [σ2 image-mset,σ1 mset-set]) auto

also have ... = image-mset (case-prod awalk-verts) (mset-set (arc-walks G 0 ))
using arc-walks-fin by (intro image-mset-cong) (simp add:case-prod-beta awalk-verts-unfold)

finally show ?case by simp
next

case (Suc l)
let ?f = λ(u,w) a. (u,w@[a])
let ?g = λx. fst x#map (head G) (snd x)

have arc-walks G (l+1 ) = case-prod ?f ‘ {(x,y). ?f x y ∈ arc-walks G (l+1 )}
using arc-walks-len[where G=G and l=Suc l, THEN iffD1 [OF length-Suc-conv-rev]]
by force

also have ... = case-prod ?f ‘ {(x,y). x ∈ arc-walks G l ∧ y ∈ out-arcs G (arc-walk-head G x)}
unfolding arc-walks-def using is-arc-walk-snoc[where G=G]
by (intro-cong [σ2 image]) auto

also have ... = (
⋃

w ∈ arc-walks G l. ?f w ‘ out-arcs G (arc-walk-head G w))
by (auto simp add:image-iff )

finally have 0 :arc-walks G (l+1 ) = (
⋃

w ∈ arc-walks G l. ?f w ‘ out-arcs G (arc-walk-head G
w))

by simp

have mset-set (arc-walks G (l+1 )) = concat-mset (image-mset (mset-set ◦
(λw. ?f w ‘ out-arcs G (arc-walk-head G w))) (mset-set (arc-walks G l)))
unfolding 0 by (intro concat-disjoint-union-mset arc-walks-fin finite-imageI ) auto

also have ... = concat-mset {# mset-set (?f x ‘ out-arcs G (arc-walk-head G x)).
x∈#mset-set(arc-walks G l)#}
by (simp add:comp-def case-prod-beta)

also have ... = concat-mset {# {# ?f x y. y ∈# mset-set (out-arcs G (arc-walk-head G x))#}.
x ∈# mset-set (arc-walks G l)#}

by (intro-cong [σ1 concat-mset] more:image-mset-cong image-mset-mset-set[symmetric] inj-onI )
auto

finally have 1 :mset-set (arc-walks G (l+1 )) = concat-mset
{# {# ?f x y. y ∈# mset-set (out-arcs G (arc-walk-head G x))#}. x ∈# mset-set (arc-walks

G l)#}
by simp

have walks ′ G (l+1 )=concat-mset {#{#w @ [z]. z∈# vertices-from G (last w)#}. w ∈# walks ′
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G l#}
by simp

also have ... = concat-mset {#
{#awalk-verts (fst x) (snd x) @ [z]. z ∈# vertices-from G (awlast (fst x) (snd x))#}.
x ∈# mset-set (arc-walks G l)#}

unfolding Suc by (simp add:image-mset.compositionality comp-def case-prod-beta)
also have ... = concat-mset {#
{#?g x @ [z]. z ∈# vertices-from G (awlast (fst x) (snd x))#}.
x ∈# mset-set (arc-walks G l)#}

using arc-walks-fin
by (intro-cong [σ1 concat-mset] more:image-mset-cong) (auto simp: awalk-verts-unfold)

also have ... = concat-mset {# {#?g x @ [z]. z ∈# vertices-from G (arc-walk-head G x)#}.
x ∈# mset-set (arc-walks G l)#}

using arc-walks-fin awlast-of-arc-walk
by (intro-cong [σ1 concat-mset, σ2 image-mset] more: image-mset-cong) auto

also have ... = (concat-mset {# {# ?g (fst x, snd x@[y]).
y ∈# mset-set (out-arcs G (arc-walk-head G x))#}. x ∈# mset-set (arc-walks G l)#})
unfolding verts-from-alt by (simp add:image-mset.compositionality comp-def )

also have ... = image-mset ?g (concat-mset {# {# ?f x y.
y ∈# mset-set (out-arcs G (arc-walk-head G x))#}. x ∈# mset-set (arc-walks G l)#})
unfolding image-concat-mset
by (auto simp add:comp-def case-prod-beta image-mset.compositionality)

also have ... = image-mset ?g (mset-set (arc-walks G (l+1 )))
unfolding 1 by simp

also have ... = image-mset (case-prod awalk-verts) (mset-set (arc-walks G (l+1 )))
using arc-walks-fin by (intro image-mset-cong) (simp add:case-prod-beta awalk-verts-unfold)

finally show ?case by simp
qed

lemma (in fin-digraph) arc-walks-map-walks:
walks G (l+1 ) = image-mset (case-prod awalk-verts) (mset-set (arc-walks G l))
using arc-walks-map-walks ′ unfolding walks-def by simp

lemma (in wf-digraph)
assumes awalk u a v length a = l l > 0
shows awalk-ends: tail G (hd a) = u head G (last a) = v

proof −
have 0 :cas u a v

using assms unfolding awalk-def by simp
have 1 : a 6= [] using assms(2 ,3 ) by auto

show tail G (hd a) = u
using 0 unfolding cas-simp[OF 1 ] by auto

show head G (last a) = v
using 1 0 by (induction a arbitrary:u rule:list-nonempty-induct) auto

qed

definition graph-power :: ( ′a, ′b) pre-digraph ⇒ nat ⇒ ( ′a, ( ′a × ′b list)) pre-digraph
where graph-power G l =
(| verts = verts G, arcs = arc-walks G l, tail = fst, head = arc-walk-head G |)

lemma (in wf-digraph) graph-power-wf :
wf-digraph (graph-power G l)

proof −
have tail (graph-power G l) a ∈ verts (graph-power G l)

head (graph-power G l) a ∈ verts (graph-power G l)
if a ∈ arcs (graph-power G l) for a
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using that arc-walk-head-wellformed arc-walk-tail-wellformed
unfolding graph-power-def by simp-all

thus ?thesis
unfolding wf-digraph-def by auto

qed

lemma (in fin-digraph) graph-power-fin:
fin-digraph (graph-power G l)

proof −
interpret H :wf-digraph graph-power G l

using graph-power-wf by auto

have finite (arcs (graph-power G l))
using arc-walks-fin
unfolding graph-power-def by simp

moreover have finite (verts (graph-power G l))
unfolding graph-power-def by simp

ultimately show ?thesis
by unfold-locales auto

qed

lemma (in fin-digraph) graph-power-count-edges:
fixes l v w
defines S ≡ {x. length x=l+1∧set x⊆verts G∧hd x=v∧last x=w}
shows count (edges (graph-power G l)) (v,w) = (

∑
x ∈ S .(

∏
i<l. count(edges G)(x!i,x!(i+1 ))))

(is ?L = ?R)
proof −

interpret H :fin-digraph graph-power G l
using graph-power-fin by auto

have 0 :finite {x. set x ⊆ verts G ∧ length x = l+1}
by (intro finite-lists-length-eq) auto

have fin-S : finite S
unfolding S-def by (intro finite-subset[OF - 0 ]) auto

have ?L = size {#x ∈# mset-set (arc-walks G l). fst x = v ∧ arc-walk-head G x = w#}
unfolding graph-power-def edges-def arc-to-ends-def
by (simp add:count-mset-exp image-mset-filter-mset-swap[symmetric])

also have ... = size
{#x ∈# mset-set (arc-walks G l). awhd (fst x) (snd x) = v ∧ awlast (fst x) (snd x) = w#}
using awlast-of-arc-walk awhd-of-arc-walk arc-walks-fin
by (intro arg-cong[where f=size] filter-mset-cong refl) simp

also have ... = size {#x ∈# walks G (l+1 ). hd x = v ∧ last x = w#}
unfolding arc-walks-map-walks
by (simp add:image-mset-filter-mset-swap[symmetric] case-prod-beta)

also have ...=size{#x∈# walks G (l+1 ).x ∈ S#}
unfolding S-def using set-walks-3
by (intro arg-cong[where f=size] filter-mset-cong refl) auto

also have ...=sum (count (walks G (l+1 ))) S
by (intro sum-count-2 [symmetric] fin-S)

also have ...=(
∑

x∈S .(
∏

i<l+1−1 . count (edges G) (x!i,x!(i+1 ))))
unfolding S-def
by (intro sum.cong refl count-walks) auto

also have ...=?R
by simp

finally show ?thesis by simp
qed
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lemma (in fin-digraph) graph-power-sym-aux:
assumes symmetric-multi-graph G
assumes v ∈ verts (graph-power G l) w ∈ verts (graph-power G l)
shows card (arcs-betw (graph-power G l) v w) = card (arcs-betw (graph-power G l) w v)
(is ?L = ?R)

proof −
interpret H :fin-digraph graph-power G l

using graph-power-fin by auto

define S where S v w = {x. length x=l+1 ∧ set x ⊆ verts G ∧ hd x = v ∧ last x = w} for v w

have 0 : bij-betw rev (S w v) (S v w)
unfolding S-def by (intro bij-betwI [where g=rev]) (auto simp add:hd-rev last-rev)

have 1 : bij-betw ((−) (l − 1 )) {..<l} {..<l}
by (intro bij-betwI [where g=λx. (l−1−x)]) auto

have ?L = count (edges (graph-power G l)) (v, w)
unfolding H .count-edges by simp

also have ... = (
∑

x ∈ S v w. (
∏

i<l. count (edges G) (x!i,x!(i+1 ))))
unfolding S-def graph-power-count-edges by simp

also have ... = (
∑

x ∈ S w v. (
∏

i<l. count (edges G) (rev x!i,rev x!(i+1 ))))
by (intro sum.reindex-bij-betw[symmetric] 0 )

also have ... = (
∑

x ∈ S w v. (
∏

i<l. count (edges G) (x!((l−1−i)+1 ),x!(l−1−i))))
unfolding S-def by (intro sum.cong refl prod.cong) (simp-all add: rev-nth Suc-diff-Suc)

also have ... = (
∑

x ∈ S w v. (
∏

i<l. count (edges G) (x!(i+1 ),x!i)))
by (intro sum.cong prod.reindex-bij-betw refl 1 )

also have ... = (
∑

x ∈ S w v. (
∏

i<l. count (edges G) (x!i,x!(i+1 ))))
by (intro sum.cong prod.cong count-edges-sym[OF assms(1 )] refl)

also have ... = count (edges (graph-power G l)) (w, v)
unfolding S-def graph-power-count-edges by simp

also have ... = ?R
unfolding H .count-edges by simp

finally show ?thesis by simp
qed

lemma (in fin-digraph) graph-power-sym:
assumes symmetric-multi-graph G
shows symmetric-multi-graph (graph-power G l)

proof −
interpret H :fin-digraph graph-power G l

using graph-power-fin by auto

show ?thesis
using graph-power-sym-aux[OF assms]
unfolding symmetric-multi-graph-def by auto

qed

lemma (in fin-digraph) graph-power-out-degree ′:
assumes reg:

∧
v. v ∈ verts G =⇒ out-degree G v = d

assumes v ∈ verts (graph-power G l)
shows out-degree (graph-power G l) v = d ^ l (is ?L = ?R)

proof −
interpret H :fin-digraph graph-power G l

using graph-power-fin by auto

have v-vert: v ∈ verts G
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using assms unfolding graph-power-def by simp

have ?L = size (vertices-from (graph-power G l) v)
unfolding out-degree-def H .verts-from-alt by simp

also have ... = size ({# e ∈# edges (graph-power G l). fst e = v #})
unfolding vertices-from-def by simp

also have ... = size {#w ∈# mset-set (arc-walks G l). fst w = v#}
unfolding graph-power-def edges-def arc-to-ends-def
by (simp add:count-mset-exp image-mset-filter-mset-swap[symmetric])

also have ... = size {#w ∈# mset-set (arc-walks G l). awhd (fst w) (snd w) = v#}
using awlast-of-arc-walk awhd-of-arc-walk arc-walks-fin
by (intro arg-cong[where f=size] filter-mset-cong refl) simp

also have ... = size {#x ∈# walks ′ G l. hd x = v #}
unfolding arc-walks-map-walks ′

by (simp add:image-mset-filter-mset-swap[symmetric] case-prod-beta)
also have ... = d^l
proof (induction l)

case 0
have size {#x ∈# walks ′ G 0 . hd x = v#} = card {x. x = v ∧ x ∈ verts G}

by (simp add:image-mset-filter-mset-swap[symmetric])
also have ... = card {v}

using v-vert by (intro arg-cong[where f=card]) auto
also have ... = d^0 by simp
finally show ?case by simp

next
case (Suc l)
have size {#x ∈# walks ′ G (Suc l). hd x = v#} =
(
∑

x∈#walks ′ G l. size {#y ∈# vertices-from G (last x). hd (x @ [y]) = v#})
by (simp add:size-concat-mset image-mset-filter-mset-swap[symmetric]

filter-concat-mset image-mset.compositionality comp-def )
also have ... = (

∑
x∈#walks ′ G l. size {#y ∈# vertices-from G (last x). hd x = v#})

using set-walks-2
by (intro-cong [σ1 sum-mset, σ1 size] more:image-mset-cong filter-mset-cong) auto

also have ... = (
∑

x∈#walks ′ G l. (if hd x = v then out-degree G (last x) else 0 ))
unfolding verts-from-alt out-degree-def
by (simp add:filter-mset-const if-distribR if-distrib cong:if-cong)

also have ... = (
∑

x∈#walks ′ G l. d ∗ of-bool (hd x = v))
using set-walks-2 [where l=l] last-in-set
by (intro arg-cong[where f=sum-mset] image-mset-cong) (auto intro!:reg)

also have ... = d ∗ (
∑

x∈#walks ′ G l. of-bool (hd x = v))
by (simp add:sum-mset-distrib-left image-mset.compositionality comp-def )

also have ... = d ∗ (size {#x ∈# walks ′ G l. hd x = v#})
by (simp add:size-filter-mset-conv)

also have ... = d ∗ d ^ l
using Suc by simp

also have ... = d^Suc l
by simp

finally show ?case by simp
qed

finally show ?thesis by simp
qed

lemma (in regular-graph) graph-power-out-degree:
assumes v ∈ verts (graph-power G l)
shows out-degree (graph-power G l) v = d ^ l (is ?L = ?R)
by (intro graph-power-out-degree ′ assms reg) auto
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lemma (in regular-graph) graph-power-regular :
regular-graph (graph-power G l)

proof −
interpret H :fin-digraph graph-power G l

using graph-power-fin by auto

have verts (graph-power G l) 6= {}
using verts-non-empty unfolding graph-power-def by simp

moreover have 0 < d^l
using d-gt-0 by simp

ultimately show ?thesis
using graph-power-out-degree
by (intro regular-graphI [where d=d^l] graph-power-sym sym)

qed

lemma (in regular-graph) graph-power-degree:
regular-graph.d (graph-power G l) = d^l (is ?L = ?R)

proof −
interpret H :regular-graph graph-power G l

using graph-power-regular by auto
obtain v where v-set: v ∈ verts (graph-power G l)

using H .verts-non-empty by auto
hence ?L = out-degree (graph-power G l) v

using v-set H .reg by auto
also have ... =?R

by (intro graph-power-out-degree[OF v-set])
finally show ?thesis by simp

qed

lemma (in regular-graph) graph-power-step:
assumes x ∈ verts G
shows regular-graph.g-step (graph-power G l) f x = (g-step^^l) f x
using assms

proof (induction l arbitrary: x)
case 0
let ?H = graph-power G 0
interpret H :regular-graph ?H

using graph-power-regular by auto
have regular-graph.g-step (graph-power G 0 ) f x = H .g-step f x

by simp
have H .g-step f x = (

∑
x∈in-arcs ?H x. f (tail ?H x))

unfolding H .g-step-def graph-power-degree by simp
also have ... = (

∑
v∈{e ∈ arc-walks G 0 . arc-walk-head G e = x}. f (fst v))

unfolding in-arcs-def graph-power-def by (simp add:case-prod-beta)
also have ... = (

∑
v∈{x}. f v)

unfolding arc-walks-def using 0
by (intro sum.reindex-bij-betw bij-betwI [where g=(λx. (x,[]))])
(auto simp add:arc-walk-head-def )

also have ... = f x
by simp

also have ... = (g-step^^0 ) f x
by simp

finally show ?case by simp
next

case (Suc l)
let ?H = graph-power G l
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interpret H :regular-graph ?H
using graph-power-regular by auto

let ?HS = graph-power G (l+1 )
interpret HS :regular-graph ?HS

using graph-power-regular by auto

let ?bij = (λ(x,(y1 ,y2 )). (y1 ,y2@[x]))
let ?bijr = (λ(y1 ,y2 ). (last y2 , (y1 ,butlast y2 )))

define S where S = {y. fst y ∈ in-arcs G x ∧ snd y ∈ in-arcs ?H (tail G (fst y))}

have S = {(u,v). u ∈ arcs G ∧ head G u = x ∧ v ∈ arc-walks G l ∧ arc-walk-head G v = tail
G u}

unfolding S-def graph-power-def in-arcs-def by auto
also have ... = {(u,v). (fst v,snd v@[u]) ∈ arc-walks G (l+1 ) ∧ arc-walk-head G (fst v,snd

v@[u]) = x}
unfolding arc-walks-def by (intro iffD2 [OF set-eq-iff ] allI )
(auto simp add: is-arc-walk-snoc case-prod-beta arc-walk-head-def )

also have ... = {(u,v). (fst v,snd v@[u]) ∈ in-arcs ?HS x}
unfolding in-arcs-def graph-power-def by auto

finally have S-alt: S = {(u,v). (fst v,snd v@[u]) ∈ in-arcs ?HS x} by simp

have len-in-arcs: a ∈ in-arcs ?HS x =⇒ snd a 6= [] for a
unfolding in-arcs-def graph-power-def arc-walks-def by auto

have 0 :bij-betw ?bij S (in-arcs ?HS x)
unfolding S-alt using len-in-arcs
by (intro bij-betwI [where g=?bijr ]) auto

have HS .g-step f x = (
∑

y∈in-arcs ?HS x. f (tail ?HS y)/ d^(l+1 ))
unfolding HS .g-step-def graph-power-degree by simp

also have ... = (
∑

y∈in-arcs ?HS x. f (fst y)/ d^(l+1 ))
unfolding graph-power-def by simp

also have ... = (
∑

y ∈ S . f (fst (?bij y))/ d^(l+1 ))
by (intro sum.reindex-bij-betw[symmetric] 0 )

also have ... = (
∑

y ∈ S . f (fst (snd y))/ d^(l+1 ))
by (intro-cong [σ2 (/),σ1 f ] more: sum.cong) (simp add:case-prod-beta)

also have ...=(
∑

y∈(
⋃

a∈in-arcs G x. (Pair a)‘in-arcs ?H (tail G a)). f (fst (snd y))/ d^(l+1 ))
unfolding S-def by (intro sum.cong) auto

also have ...=(
∑

a∈in-arcs G x. (
∑

y∈(Pair a)‘in-arcs ?H (tail G a). f (fst (snd y))/ d^(l+1 )))
by (intro sum.UNION-disjoint) auto

also have ... = (
∑

a ∈ in-arcs G x. (
∑

b ∈ in-arcs ?H (tail G a). f (fst b) / d^(l+1 )))
by (intro sum.cong sum.reindex-bij-betw) (auto simp add:bij-betw-def inj-on-def image-iff )

also have ... = (
∑

a ∈ in-arcs G x. (
∑

b ∈ in-arcs ?H (tail G a). f (tail ?H b) / d^l)/d)
unfolding graph-power-def
by (simp add:sum-divide-distrib algebra-simps)

also have ... = (
∑

a ∈ in-arcs G x. H .g-step f (tail G a)/ d)
unfolding H .g-step-def graph-power-degree by simp

also have ... = (
∑

a ∈ in-arcs G x. (g-step^^l) f (tail G a)/ d)
by (intro sum.cong refl arg-cong2 [where f=(/)] Suc) auto

also have ... = g-step ((g-step^^l) f ) x
unfolding g-step-def by simp

also have ... = (g-step^^(l+1 )) f x
by simp

finally show ?case by simp
qed

lemma (in regular-graph) graph-power-expansion:
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regular-graph.Λa (graph-power G l) ≤ Λa^l
proof −

interpret H :regular-graph graph-power G l
using graph-power-regular by auto

have |H .g-inner f (H .g-step f )| ≤ Λa ^ l ∗ (H .g-norm f )2 (is ?L ≤ ?R)
if H .g-inner f (λ-. 1 ) = 0 for f

proof −
have g-inner f (λ-. 1 ) = H .g-inner f (λ-.1 )

unfolding g-inner-def H .g-inner-def
by (intro sum.cong) (auto simp add:graph-power-def )

also have ... = 0 using that by simp
finally have 1 :g-inner f (λ-. 1 ) = 0 by simp

have 2 : g-inner ((g-step^^l) f ) (λ-. 1 ) = 0 for l
using g-step-remains-orth 1 by (induction l, auto)

have 0 : g-norm ((g-step^^l) f ) ≤ Λa ^ l ∗ g-norm f
proof (induction l)

case 0
then show ?case by simp

next
case (Suc l)
have g-norm ((g-step ^^ Suc l) f ) = g-norm (g-step ((g-step ^^ l) f ))

by simp
also have ... ≤ Λa ∗ g-norm (((g-step ^^ l) f ))

by (intro expansionD2 2 )
also have ... ≤ Λa ∗ (Λa^l ∗ g-norm f )

by (intro mult-left-mono Λ-ge-0 Suc)
also have ... = Λa^(l+1 ) ∗ g-norm f by simp
finally show ?case by simp

qed

have ?L = |g-inner f (H .g-step f )|
unfolding H .g-inner-def g-inner-def
by (intro-cong [σ1 abs] more:sum.cong) (auto simp add:graph-power-def )

also have ... = |g-inner f ((g-step^^l) f )|
by (intro-cong [σ1 abs] more:g-inner-cong graph-power-step) auto

also have ... ≤ g-norm f ∗ g-norm ((g-step^^l) f )
by (intro g-inner-cauchy-schwartz)

also have ... ≤ g-norm f ∗ (Λa ^ l ∗ g-norm f )
by (intro mult-left-mono 0 g-norm-nonneg)

also have ... = Λa ^ l ∗ g-norm f^2
by (simp add:power2-eq-square)

also have ... = ?R
unfolding g-norm-sq H .g-norm-sq g-inner-def H .g-inner-def
by (intro-cong [σ2 (∗)] more:sum.cong) (auto simp add:graph-power-def )

finally show ?thesis by simp
qed
moreover have 0 ≤ Λa ^ l

using Λ-ge-0 by simp

ultimately show ?thesis
by (intro H .expander-intro-1 ) auto

qed

unbundle no intro-cong-syntax
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end

11 Strongly Explicit Expander Graphs

In some applications, representing an expander graph using a data structure (for example
as an adjacency lists) would be prohibitive. For such cases strongly explicit expander
graphs (SEE) are relevant. These are expander graphs, which can be represented implicitly
using a function that computes for each vertex its neighbors in space and time logarithmic
w.r.t. to the size of the graph. An application can for example sample a random walk,
from a SEE using such a function efficiently. An example of such a graph is the Margulis
construction from Section 8. This section presents the latter as a SEE but also shows
that two graph operations that preserve the SEE property, in particular the graph power
construction from Section 10 and a compression scheme introduced by Murtagh et al. [9,
Theorem 20]. Combining all of the above it is possible to construct strongly explicit
expander graphs of every size and spectral gap.
theory Expander-Graphs-Strongly-Explicit

imports Expander-Graphs-Power-Construction Expander-Graphs-MGG
begin

unbundle intro-cong-syntax
no-notation Digraph.dominates (‹- →ı -› [100 ,100 ] 40 )

record strongly-explicit-expander =
see-size :: nat
see-degree :: nat
see-step :: nat ⇒ nat ⇒ nat

definition graph-of :: strongly-explicit-expander ⇒ (nat, (nat,nat) arc) pre-digraph
where graph-of e =
(| verts = {..<see-size e},

arcs = (λ(v, i). Arc v (see-step e i v) i) ‘ ({..<see-size e} × {..<see-degree e}),
tail = arc-tail,
head = arc-head |)

definition is-expander e Λa ←→
regular-graph (graph-of e) ∧ regular-graph.Λa (graph-of e) ≤ Λa

lemma is-expander-mono:
assumes is-expander e a a ≤ b
shows is-expander e b
using assms unfolding is-expander-def by auto

lemma graph-of-finI :
assumes see-step e ∈ ({..<see-degree e} → ({..<see-size e} → {..<see-size e}))
shows fin-digraph (graph-of e)

proof −
let ?G = graph-of e

have head ?G a ∈ verts ?G ∧ tail ?G a ∈ verts ?G if a ∈ arcs ?G for a
using assms that unfolding graph-of-def by (auto simp add:Pi-def )

hence 0 : wf-digraph ?G
unfolding wf-digraph-def by auto

have 1 : finite (verts ?G)
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unfolding graph-of-def by simp

have 2 : finite (arcs ?G)
unfolding graph-of-def by simp

show ?thesis
using 0 1 2 unfolding fin-digraph-def fin-digraph-axioms-def by auto

qed

lemma edges-graph-of :
edges(graph-of e)={#(v,see-step e i v). (v,i)∈#mset-set ({..<see-size e}×{..<see-degree e})#}

proof −
have 0 :mset-set ((λ(v, i). Arc v (see-step e i v) i) ‘ ({..<see-size e} × {..<see-degree e}))
= {# Arc v (see-step e i v) i. (v,i) ∈# mset-set ( {..<see-size e} × {..<see-degree e})#}
by (intro image-mset-mset-set[symmetric] inj-onI ) auto

have edges (graph-of e) =
{#(fst p, see-step e (snd p) (fst p)). p ∈# mset-set ({..<see-size e} × {..<see-degree e})#}
unfolding edges-def graph-of-def arc-to-ends-def using 0
by (simp add:image-mset.compositionality comp-def case-prod-beta)

also have ... = {#(v, see-step e i v). (v,i) ∈# mset-set ({..<see-size e} × {..<see-degree e})#}
by (intro image-mset-cong) auto

finally show ?thesis by simp
qed

lemma out-degree-see:
assumes v ∈ verts (graph-of e)
shows out-degree (graph-of e) v = see-degree e (is ?L = ?R)

proof −
let ?d = see-degree e
let ?n = see-size e
have 0 : v < ?n

using assms unfolding graph-of-def by simp

have ?L = card {a. (∃ x∈{..<?n}. ∃ y∈{..<?d}. a = Arc x (see-step e y x) y) ∧ arc-tail a = v}
unfolding out-degree-def out-arcs-def graph-of-def by (simp add:image-iff )

also have ... = card {a. (∃ y∈{..<?d}. a = Arc v (see-step e y v) y)}
using 0 by (intro arg-cong[where f=card]) auto

also have ... = card ((λy. Arc v (see-step e y v) y) ‘ {..<?d})
by (intro arg-cong[where f=card] iffD2 [OF set-eq-iff ]) (simp add:image-iff )

also have ... = card {..<?d}
by (intro card-image inj-onI ) auto

also have ... = ?d by simp
finally show ?thesis by simp

qed

lemma card-arc-walks-see:
assumes fin-digraph (graph-of e)
shows card (arc-walks (graph-of e) n) = see-degree e^n ∗ see-size e (is ?L = ?R)

proof −
let ?G = graph-of e
interpret fin-digraph ?G

using assms by auto
have ?L = card (

⋃
v ∈ verts ?G. {x. fst x = v ∧ is-arc-walk ?G v (snd x) ∧ length (snd x) =

n})
unfolding arc-walks-def by (intro arg-cong[where f=card]) auto

also have ... = (
∑

v ∈ verts ?G. card {x. fst x=v∧is-arc-walk ?G v (snd x)∧length (snd x) =
n})

using is-arc-walk-set[where G=?G]
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by (intro card-UN-disjoint ballI finite-cartesian-product subsetI finite-lists-length-eq
finite-subset[where B=verts ?G × {x. set x ⊆ arcs ?G ∧ length x = n}]) force+

also have ... = (
∑

v ∈ verts ?G. out-degree (graph-power ?G n) v)
unfolding out-degree-def graph-power-def out-arcs-def arc-walks-def
by (intro sum.cong arg-cong[where f=card]) auto

also have ... = (
∑

v ∈ verts ?G. see-degree e^n)
by (intro sum.cong graph-power-out-degree ′ out-degree-see refl) (simp-all add: graph-power-def )

also have ... = ?R
by (simp add:graph-of-def )

finally show ?thesis by simp
qed

lemma regular-graph-degree-eq-see-degree:
assumes regular-graph (graph-of e)
shows regular-graph.d (graph-of e) = see-degree e (is ?L = ?R)

proof −
interpret regular-graph graph-of e

using assms(1 ) by simp
obtain v where v-set: v ∈ verts (graph-of e)

using verts-non-empty by auto
hence ?L = out-degree (graph-of e) v

using v-set reg by auto
also have ... = see-degree e

by (intro out-degree-see v-set)
finally show ?thesis by simp

qed

The following introduces the compression scheme, described in [9, Theorem 20].
fun see-compress :: nat ⇒ strongly-explicit-expander ⇒ strongly-explicit-expander

where see-compress m e =
(| see-size = m, see-degree = see-degree e ∗ 2
, see-step = (λk v.

if k < see-degree e
then (see-step e k v) mod m
else (if v+m < see-size e then (see-step e (k−see-degree e) (v+m)) mod m else v)) |)

lemma edges-of-compress:
fixes e m
assumes 2∗m ≥ see-size e m ≤ see-size e
defines A ≡ {# (x mod m, y mod m). (x,y) ∈# edges (graph-of e)#}
defines B ≡ repeat-mset (see-degree e) {# (x,x). x ∈# (mset-set {see-size e − m..<m})#}
shows edges (graph-of (see-compress m e)) = A + B (is ?L = ?R)

proof −
let ?d = see-degree e
let ?c = see-step (see-compress m e)
let ?n = see-size e
let ?s = see-step e

have 7 :m ≤ v =⇒ v < ?n =⇒ v − m = v mod m for v
using assms by (simp add: le-mod-geq)

let ?M = mset-set ({..<m}×{..<2∗?d})
define M1 where M1 = mset-set ({..<m} × {..<?d})
define M2 where M2 = mset-set ({..<?n−m} × {?d..<2∗?d})
define M3 where M3 = mset-set ({?n−m..<m} × {?d..<2∗?d})

have M2 = mset-set ((λ(x,y). (x−m,y+?d)) ‘ ({m..<?n} × {..<?d}))
using assms(2 ) unfolding M2-def map-prod-def [symmetric] atLeast0LessThan[symmetric]
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by (intro arg-cong[where f=mset-set] map-prod-surj-on[symmetric])
(simp-all add: image-minus-const-atLeastLessThan-nat mult-2 )

also have ... = image-mset (λ(x,y). (x−m,y+?d)) (mset-set ({m..<?n} × {..<?d}))
by (intro image-mset-mset-set[symmetric] inj-onI ) auto

finally have M2-eq: M2 = image-mset (λ(x,y). (x−m,y+?d)) (mset-set ({m..<?n} × {..<?d}))
by simp

have ?M = mset-set ({..<m}×{..<?d} ∪ {..<?n−m}×{?d..<2∗?d} ∪ {?n−m..<m}×{?d..<2∗?d})
using assms(1 ,2 ) by (intro arg-cong[where f=mset-set]) auto

also have ... = mset-set ({..<m}×{..<?d} ∪ {..<?n−m}×{?d..<2∗?d}) + M3
unfolding M3-def by (intro mset-set-Union) auto

also have ... = M1 + M2 + M3
unfolding M1-def M2-def
by (intro arg-cong2 [where f=(+)] mset-set-Union) auto

finally have 0 :mset-set ({..<m} × {..<2∗?d}) = M1 + M2 + M3 by simp

have 1 :{#(v,?c i v). (v,i)∈#M1#}={#(v mod m,?s i v mod m). (v,i)∈#mset-set ({..<m}×{..<?d})#}
unfolding M1-def by (intro image-mset-cong) auto

have {#(v,?c i v).(v,i)∈#M2#}={#(fst x−m,?c(snd x+?d)(fst x−m)).x∈#mset-set({m..<?n}×{..<?d})#}
unfolding M2-eq
by (simp add:image-mset.compositionality comp-def case-prod-beta del:see-compress.simps)

also have ... = {#(v − m,?s i v mod m). (v,i)∈#mset-set ({m..<?n}×{..<?d})#}
by (intro image-mset-cong) auto

also have ... = {#(v mod m,?s i v mod m). (v,i)∈#mset-set ({m..<?n}×{..<?d})#}
using 7 by (intro image-mset-cong) auto

finally have 2 :
{#(v,?c i v). (v,i)∈#M2#}={#(v mod m,?s i v mod m). (v,i)∈#mset-set ({m..<?n}×{..<?d})#}
by simp

have {#(v,?c i v). (v,i)∈#M3#} = {#(v,v). (v,i) ∈# mset-set ({?n−m..<m} × {?d..<2∗?d})#}
unfolding M3-def by (intro image-mset-cong) auto

also have ... = concat-mset {#{#(x, x). xa ∈# mset-set {?d..<2 ∗ ?d}#}. x ∈# mset-set {?n
− m..<m}#}

by (subst mset-prod-eq) (auto simp:image-mset.compositionality image-concat-mset comp-def )
also have ... = concat-mset {#replicate-mset ?d (x, x). x ∈# mset-set {?n − m..<m}#}

unfolding image-mset-const-eq by simp
also have ... = B

unfolding B-def repeat-image-concat-mset by simp
finally have 3 :{#(v,?c i v). (v,i)∈#M3#}=B by simp

have A = {#(fst x mod m, ?s (snd x) (fst x) mod m). x ∈# mset-set ({..<?n} × {..<?d})#}
unfolding A-def edges-graph-of by (simp add:image-mset.compositionality comp-def case-prod-beta)

also have ... = {#(v mod m,?s i v mod m). (v,i)∈#mset-set({..<?n}×{..<?d})#}
by (intro image-mset-cong) auto

finally have 4 : A = {#(v mod m,?s i v mod m). (v,i)∈#mset-set({..<?n}×{..<?d})#}
by simp

have ?L = {# (v, ?c i v). (v,i) ∈# ?M #}
unfolding edges-graph-of by (simp add:ac-simps)

also have ... = {#(v,?c i v). (v,i)∈#M1#}+{#(v,?c i v). (v,i)∈#M2#}+{#(v,?c i v). (v,i)∈#M3#}
unfolding 0 image-mset-union by simp

also have ...={#(v mod m,?s i v mod m). (v,i)∈#mset-set({..<m}×{..<?d}∪{m..<?n}×{..<?d})#}+B
unfolding 1 2 3 image-mset-union[symmetric]
by (intro-cong [σ2 (+), σ2 image-mset] more: mset-set-Union[symmetric]) auto

also have ...={#(v mod m,?s i v mod m). (v,i)∈#mset-set({..<?n}×{..<?d})#}+B
using assms(2 ) by (intro-cong [σ2 (+), σ2 image-mset, σ1 mset-set]) auto

also have ... = A + B
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unfolding 4 by simp
finally show ?thesis by simp

qed

lemma see-compress-sym:
assumes 2∗m ≥ see-size e m ≤ see-size e
assumes symmetric-multi-graph (graph-of e)
shows symmetric-multi-graph (graph-of (see-compress m e))

proof −
let ?c = see-compress m e
let ?d = see-degree e
let ?G = graph-of e
let ?H = graph-of (see-compress m e)

interpret G:fin-digraph ?G
by (intro symmetric-multi-graphD2 [OF assms(3 )])

interpret H :fin-digraph ?H
by (intro graph-of-finI ) simp

have deg-compres: see-degree ?c = 2 ∗ see-degree e
by simp

have 1 : card (arcs-betw ?H v w) = card (arcs-betw ?H w v) (is ?L = ?R)
if v ∈ verts ?H w ∈ verts ?H for v w

proof −
define b where b =count {#(x, x). x ∈# mset-set {see-size e − m..<m}#} (v, w)

have b-alt-def : b = count {#(x, x). x ∈# mset-set {see-size e − m..<m}#} (w, v)
unfolding b-def count-mset-exp
by (simp add:case-prod-beta image-mset-filter-mset-swap[symmetric] ac-simps)

have ?L = count (edges ?H ) (v,w)
unfolding H .count-edges by simp

also have ... = count {#(x mod m, y mod m). (x, y) ∈# edges (graph-of e)#} (v, w) + ?d ∗ b
unfolding edges-of-compress[OF assms(1 ,2 )] b-def by simp

also have ... = count {#(snd e mod m, fst e mod m). e ∈# edges (graph-of e)#} (v, w) + ?d
∗ b

by (subst G.edges-sym[OF assms(3 ),symmetric])
(simp add:image-mset.compositionality comp-def case-prod-beta)

also have ... = count {#(x mod m, y mod m). (x,y) ∈# edges (graph-of e)#} (w, v) + ?d ∗ b
unfolding count-mset-exp
by (simp add:image-mset-filter-mset-swap[symmetric] ac-simps case-prod-beta)

also have ... = count (edges ?H ) (w,v)
unfolding edges-of-compress[OF assms(1 ,2 )] b-alt-def by simp

also have ... = ?R
unfolding H .count-edges by simp

finally show ?thesis by simp
qed

show ?thesis
using 1 H .fin-digraph-axioms
unfolding symmetric-multi-graph-def by auto

qed

lemma see-compress:
assumes is-expander e Λa

assumes 2∗m ≥ see-size e m ≤ see-size e
shows is-expander (see-compress m e) (Λa/2 + 1/2 )
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proof −
let ?H = graph-of (see-compress m e)
let ?G = graph-of e
let ?d = see-degree e
let ?n = see-size e

interpret G:regular-graph graph-of e
using assms(1 ) is-expander-def by simp

have d-eq: ?d = G.d
using regular-graph-degree-eq-see-degree[OF G.regular-graph-axioms] by simp

have n-eq: G.n = ?n
unfolding G.n-def by (simp add:graph-of-def )

have n-gt-1 : ?n > 0
using G.n-gt-0 n-eq by auto

have symmetric-multi-graph (graph-of (see-compress m e))
by (intro see-compress-sym assms(2 ,3 ) G.sym)

moreover have see-size e > 0
using G.verts-non-empty unfolding graph-of-def by auto

hence m > 0 using assms(2 ) by simp
hence verts (graph-of (see-compress m e)) 6= {}

unfolding graph-of-def by auto
moreover have 1 :0 < see-degree e

using d-eq G.d-gt-0 by auto
hence 0 < see-degree (see-compress m e) by simp
ultimately have 0 :regular-graph ?H

by (intro regular-graphI [where d=see-degree (see-compress m e)] out-degree-see) auto
interpret H :regular-graph ?H

using 0 by auto

have |
∑

a∈arcs ?H . f (head ?H a) ∗ f (tail ?H a)| ≤ (real G.d ∗ G.Λa + G.d) ∗ (H .g-norm f )2
(is ?L ≤ ?R) if H .g-inner f (λ-. 1 ) = 0 for f

proof −
define f ′ where f ′ x = f (x mod m) for x
let ?L1 = G.g-norm f ′̂ 2 + |

∑
x=?n−m..<m. f x^2 |

let ?L2 = G.g-inner f ′ (λ-.1 )^2/ G.n + |
∑

x=?n−m..<m. f x^2 |

have ?L1 = (
∑

x<?n. f (x mod m)^2 ) + |
∑

x=?n−m..<m. f x^2 |
unfolding G.g-norm-sq G.g-inner-def f ′-def by (simp add:graph-of-def power2-eq-square)

also have ... = (
∑

x∈{0 ..<m} ∪ {m..<?n}. f (x mod m)^2 ) + (
∑

x=?n−m..<m. f x^2 )
using assms(3 ) by (intro-cong [σ2 (+)] more:sum.cong abs-of-nonneg sum-nonneg) auto

also have ...=(
∑

x=0 ..<m. f (x mod m)^2 ) + (
∑

x=m..<?n. f (x mod m)^2 ) + (
∑

x=?n−m..<m.
f x^2 )

by (intro-cong [σ2 (+)] more:sum.union-disjoint) auto
also have ... = (

∑
x=0 ..<m. f (x mod m)^2 ) + (

∑
x=0 ..<?n−m. f x^2 ) + (

∑
x=?n−m..<m.

f x^2 )
using assms(2 ,3 )
by (intro-cong [σ2 (+)] more: sum.reindex-bij-betw bij-betwI [where g=(λx. x+m)])
(auto simp add:le-mod-geq)

also have ... = (
∑

x=0 ..<m. f x^2 ) + (
∑

x=0 ..<?n−m. f x^2 ) + (
∑

x=?n−m..<m. f x^2 )
by (intro sum.cong arg-cong2 [where f=(+)]) auto

also have ... = (
∑

x=0 ..<m. f x^2 ) + ((
∑

x=0 ..<?n−m. f x^2 ) + (
∑

x=?n−m..<m. f x^2 ))
by simp

also have ... = (
∑

x=0 ..<m. f x^2 ) + (
∑

x∈{0 ..<?n−m}∪{?n−m..<m}. f x^2 )
by (intro sum.union-disjoint[symmetric] arg-cong2 [where f=(+)]) auto
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also have ... = (
∑

x<m. f x^2 ) + (
∑

x<m. f x^2 )
using assms(2 ,3 ) by (intro arg-cong2 [where f=(+)] sum.cong) auto

also have ... = 2 ∗ H .g-norm f^2
unfolding mult-2 H .g-norm-sq H .g-inner-def by (simp add:graph-of-def power2-eq-square)

finally have 2 :?L1 = 2 ∗ H .g-norm f^2 by simp

have ?L2 = (
∑

x∈{..<m}∪{m..<?n}. f (x mod m))^2/G.n + (
∑

x=?n−m..<m. f x^2 )
unfolding G.g-inner-def f ′-def using assms(2 ,3 )
by (intro-cong [σ2 (+), σ2 (/), σ2 (power)] more: sum.cong abs-of-nonneg sum-nonneg)
(auto simp add:graph-of-def )

also have ...=((
∑

x<m. f (x mod m))+(
∑

x=m..<?n. f (x mod m)))^2/G.n + (
∑

x=?n−m..<m.
f x^2 )

by (intro-cong [σ2 (+), σ2 (/), σ2 (power)] more:sum.union-disjoint) auto
also have ...=((

∑
x<m. f (x mod m))+(

∑
x=0 ..<?n−m. f x))^2/G.n + (

∑
x=?n−m..<m.

f x^2 )
using assms(2 ,3 ) by (intro-cong [σ2 (+), σ2 (/), σ2 (power)]

more:sum.reindex-bij-betw bij-betwI [where g=(λx. x+m)]) (auto simp add:le-mod-geq)
also have ...=(H .g-inner f (λ-. 1 ) +(

∑
x<?n−m. f x))^2/G.n + (

∑
x=?n−m..<m. f x^2 )

unfolding H .g-inner-def
by (intro-cong [σ2 (+), σ2 (/), σ2 (power)] more: sum.cong) (auto simp:graph-of-def )

also have ...=(
∑

x<?n−m. f x)^2/G.n + (
∑

x=?n−m..<m. f x^2 )
unfolding that by simp

also have ...≤ (
∑

x<?n−m. |f x| ∗ |1 |)^2/G.n + (
∑

x=?n−m..<m. f x^2 )
by (intro add-mono divide-right-mono iffD1 [OF abs-le-square-iff ]) auto

also have ... ≤ (L2-set f {..<?n−m} ∗ L2-set (λ-. 1 ) {..<?n−m})^2/G.n + (
∑

x=?n−m..<m.
f x^2 )

by (intro add-mono divide-right-mono power-mono L2-set-mult-ineq sum-nonneg) auto
also have ... = ((

∑
x <?n−m. f x^2 ) ∗ (?n−m))/G.n + (

∑
x=?n−m..<m. f x^2 )

unfolding power-mult-distrib L2-set-def real-sqrt-mult
by (intro-cong [σ2 (+), σ2 (/),σ2 (∗)] more:real-sqrt-pow2 sum-nonneg) auto

also have ... = (
∑

x <?n−m. f x^2 ) ∗ ((?n−m)/?n) + (
∑

x=?n−m..<m. f x^2 )
unfolding n-eq by simp

also have ... ≤ (
∑

x <?n−m. f x^2 ) ∗ 1 + (
∑

x=?n−m..<m. f x^2 )
using assms(3 ) n-gt-1 by (intro mult-left-mono add-mono sum-nonneg) auto

also have ... = (
∑

x∈{..<?n−m}∪{?n−m..<m}. f x^2 )
unfolding mult-1-right by (intro sum.union-disjoint[symmetric]) auto

also have ... = H .g-norm f^2
using assms(2 ,3 ) unfolding H .g-norm-sq H .g-inner-def
by (intro sum.cong) (auto simp add:graph-of-def power2-eq-square)

finally have 3 :?L2 ≤ H .g-norm f^2 by simp

have ?L = |
∑

(u, v)∈#edges ?H . f v ∗ f u|
unfolding edges-def arc-to-ends-def sum-unfold-sum-mset
by (simp add:image-mset.compositionality comp-def del:see-compress.simps)

also have ...=|(
∑

x ∈# edges ?G.f (snd x mod m)∗f (fst x mod m))+(
∑

x=?n−m..<m.?d∗(f
x^2 ))|

unfolding edges-of-compress[OF assms(2 ,3 )] sum-unfold-sum-mset
by (simp add:image-mset.compositionality sum-mset-repeat comp-def

case-prod-beta power2-eq-square del:see-compress.simps)
also have ...=|(

∑
(u,v) ∈# edges ?G.f (u mod m)∗f (v mod m))+(

∑
x=?n−m..<m.?d∗(f x^2 ))|

by (intro-cong [σ1 abs, σ2 (+), σ1 sum-mset] more:image-mset-cong)
(simp-all add:case-prod-beta)

also have ... ≤ |
∑

(u,v) ∈# edges ?G.f (u mod m)∗f (v mod m)|+|
∑

x=?n−m..<m.?d∗(f x^2 )|

by (intro abs-triangle-ineq)
also have ... = ?d ∗ (|

∑
(u,v) ∈# edges ?G.f (v mod m)∗f (u mod m)|/G.d+|

∑
x=?n−m..<m.(f

x^2 )|)
unfolding d-eq using G.d-gt-0
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by (simp add:divide-simps ac-simps sum-distrib-left[symmetric] abs-mult)
also have ... = ?d ∗ (|G.g-inner f ′ (G.g-step f ′)| + |

∑
x=?n−m..<m. f x^2 |)

unfolding G.g-inner-step-eq sum-unfold-sum-mset edges-def arc-to-ends-def f ′-def
by (simp add:image-mset.compositionality comp-def del:see-compress.simps)

also have ...≤ ?d ∗ ((G.Λa ∗ G.g-norm f ′̂ 2 + (1−G.Λa)∗G.g-inner f ′ (λ-.1 )^2/ G.n)
+ |

∑
x=?n−m..<m. f x^2 |)

by (intro add-mono G.expansionD3 mult-left-mono) auto
also have ... = ?d ∗ (G.Λa ∗ ?L1 + (1 − G.Λa) ∗ ?L2 )

by (simp add:algebra-simps)
also have ... ≤ ?d ∗ (G.Λa ∗ (2 ∗ H .g-norm f^2 ) + (1−G.Λa) ∗ H .g-norm f^2 )

unfolding 2 using G.Λ-ge-0 G.Λ-le-1 by (intro mult-left-mono add-mono 3 ) auto
also have ... = ?R

unfolding d-eq[symmetric] by (simp add:algebra-simps)
finally show ?thesis by simp

qed

hence H .Λa ≤ (G.d∗G.Λa+G.d)/H .d
using G.d-gt-0 G.Λ-ge-0 by (intro H .expander-intro) (auto simp del:see-compress.simps)

also have ... = (see-degree e ∗ G.Λa + see-degree e) / (2∗ see-degree e)
unfolding d-eq[symmetric] regular-graph-degree-eq-see-degree[OF H .regular-graph-axioms]
by simp

also have ... = G.Λa/2 + 1/2
using 1 by (simp add:field-simps)

also have ... ≤ Λa/2 + 1/2
using assms(1 ) unfolding is-expander-def by simp

finally have H .Λa ≤ Λa/2 + 1/2 by simp
thus ?thesis unfolding is-expander-def using 0 by simp

qed

The graph power of a strongly explicit expander graph is itself a strongly explicit expander
graph.
fun to-digits :: nat ⇒ nat ⇒ nat ⇒ nat list

where
to-digits - 0 - = [] |
to-digits b (Suc l) k = (k mod b)# to-digits b l (k div b)

fun from-digits :: nat ⇒ nat list ⇒ nat
where

from-digits b [] = 0 |
from-digits b (x#xs) = x + b ∗ from-digits b xs

lemma to-from-digits:
assumes length xs = n set xs ⊆ {..<b}
shows to-digits b n (from-digits b xs) = xs

proof −
have to-digits b (length xs) (from-digits b xs) = xs

using assms(2 ) by (induction xs, auto)
thus ?thesis unfolding assms(1 ) by auto

qed

lemma from-digits-range:
assumes length xs = n set xs ⊆ {..<b}
shows from-digits b xs < b^n

proof (cases b > 0 )
case True
have from-digits b xs ≤ b^length xs − 1

using assms(2 )
proof (induction xs)
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case Nil
then show ?case by simp

next
case (Cons a xs)
have from-digits b (a # xs) = a + b ∗ from-digits b xs

by simp
also have ... ≤ (b−1 ) + b ∗ from-digits b xs

using Cons by (intro add-mono) auto
also have ... ≤ (b−1 ) + b ∗ (b^length xs−1 )

using Cons(2 ) by (intro add-mono mult-left-mono Cons(1 )) auto
also have ... = b^length (a#xs) − 1

using True by (simp add:algebra-simps)
finally show from-digits b (a # xs) ≤ b^length (a#xs) − 1 by simp

qed
also have ... < b^n

using True assms(1 ) by simp
finally show ?thesis by simp

next
case False
hence b = 0 by simp
hence xs = []

using assms(2 ) by simp
thus ?thesis using assms(1 ) by simp

qed

lemma from-digits-inj:
inj-on (from-digits b) {xs. set xs ⊆ {..<b} ∧ length xs = n}
by (intro inj-on-inverseI [where g=to-digits b n] to-from-digits) auto

fun see-power :: nat ⇒ strongly-explicit-expander ⇒ strongly-explicit-expander
where see-power l e =
(| see-size = see-size e, see-degree = see-degree e^l
, see-step = (λk v. foldl (λy x. see-step e x y) v (to-digits (see-degree e) l k)) |)

lemma graph-power-iso-see-power :
assumes fin-digraph (graph-of e)
shows digraph-iso (graph-power (graph-of e) n) (graph-of (see-power n e))

proof −
let ?G = graph-of e
let ?P = graph-power (graph-of e) n
let ?H = graph-of (see-power n e)
let ?d = see-degree e
let ?n = see-size e

interpret fin-digraph (graph-of e)
using assms by auto

interpret P:fin-digraph ?P
by (intro graph-power-fin)

define ϕ where
ϕ = (λ(u,v). Arc u (arc-walk-head ?G (u, v)) (from-digits ?d (map arc-label v)))

define iso where iso =
(| iso-verts = id, iso-arcs = ϕ, iso-head = arc-head, iso-tail = arc-tail |)

have xs = ys if length xs = length ys map arc-label xs = map arc-label ys
is-arc-walk ?G u xs ∧ is-arc-walk ?G u ys ∧ u ∈ verts ?G for xs ys u
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using that
proof (induction xs ys arbitrary: u rule:list-induct2 )

case Nil
then show ?case by simp

next
case (Cons x xs y ys)
have arc-label x = arc-label y u ∈ verts ?G x ∈ out-arcs ?G u y ∈ out-arcs ?G u

using Cons by auto
hence a:x = y

unfolding graph-of-def by auto
moreover have head ?G y ∈ verts ?G using Cons by auto
ultimately have xs = ys

using Cons(3 ,4 ) by (intro Cons(2 )[of head ?G y]) auto
thus ?case using a by auto

qed
hence 5 :inj-on (λ(u,v). (u, map arc-label v)) (arc-walks ?G n)

unfolding arc-walks-def by (intro inj-onI ) auto
have 3 :set (map arc-label (snd xs)) ⊆ {..<?d} length (snd xs) = n

if xs ∈ arc-walks ?G n for xs
proof −

show length (snd xs) = n
using subsetD[OF is-arc-walk-set[where G=?G]] that unfolding arc-walks-def by auto

have set (snd xs) ⊆ arcs ?G
using subsetD[OF is-arc-walk-set[where G=?G]] that unfolding arc-walks-def by auto

thus set (map arc-label (snd xs)) ⊆ {..<?d}
unfolding graph-of-def by auto

qed

hence 7 :inj-on (λ(u,v). (u, from-digits ?d (map arc-label v))) (arc-walks ?G n)
using inj-onD[OF 5 ] inj-onD[OF from-digits-inj] by (intro inj-onI ) auto

hence inj-on ϕ (arc-walks ?G n)
unfolding inj-on-def ϕ-def by auto

hence inj-on (iso-arcs iso) (arcs (graph-power (graph-of e) n))
unfolding iso-def graph-power-def by simp

moreover have inj-on (iso-verts iso) (verts (graph-power (graph-of e) n))
unfolding iso-def by simp

moreover have
iso-verts iso (tail ?P a) = iso-tail iso (iso-arcs iso a)
iso-verts iso (head ?P a) = iso-head iso (iso-arcs iso a) if a ∈ arcs ?P for a
unfolding ϕ-def iso-def graph-power-def by (simp-all add:case-prod-beta)

ultimately have 0 :P.digraph-isomorphism iso
unfolding P.digraph-isomorphism-def by (intro conjI ballI P.wf-digraph-axioms) auto

have card((λ(u, v).(u,from-digits ?d (map arc-label v)))‘arc-walks ?G n)=card(arc-walks ?G n)
by (intro card-image 7 )

also have ... = ?d^n ∗ ?n
by (intro card-arc-walks-see fin-digraph-axioms)

finally have card((λ(u, v).(u,from-digits ?d (map arc-label v)))‘arc-walks ?G n) = ?d^n ∗ ?n
by simp

moreover have fst v ∈ {..<?n} if v ∈ arc-walks ?G n for v
using that unfolding arc-walks-def graph-of-def by auto

moreover have from-digits ?d (map arc-label (snd v)) < ?d ^ n if v ∈ arc-walks ?G n for v
using 3 [OF that] by (intro from-digits-range) auto

ultimately have 2 :
{..<?n}×{..<?d^n} = (λ(u,v). (u, from-digits ?d (map arc-label v))) ‘ arc-walks ?G n
by (intro card-subset-eq[symmetric]) auto
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have foldl (λy x. see-step e x y) u (map arc-label w) = arc-walk-head ?G (u,w)
if is-arc-walk ?G u w u ∈ verts ?G for u w
using that

proof (induction w rule:rev-induct)
case Nil
then show ?case by (simp add:arc-walk-head-def )

next
case (snoc x xs)
hence x ∈ arcs ?G by (simp add:is-arc-walk-snoc)
hence see-step e (arc-label x) (tail ?G x) = (head ?G x)

unfolding graph-of-def by (auto simp add:image-iff )
also have ... = arc-walk-head (graph-of e) (u, xs @ [x])

unfolding arc-walk-head-def by simp
finally have see-step e (arc-label x) (tail ?G x) = arc-walk-head (graph-of e) (u, xs @ [x])

by simp
thus ?case using snoc by (simp add:is-arc-walk-snoc)

qed

hence 4 : foldl (λy x. see-step e x y) (fst x) (map arc-label (snd x)) = arc-walk-head ?G x
if x ∈ arc-walks (graph-of e) n for x
using that unfolding arc-walks-def by (simp add:case-prod-beta)

have arcs ?H = (λ(v, i). Arc v (see-step (see-power n e) i v) i) ‘ ({..<?n}×{..<?d^n})
unfolding graph-of-def by simp

also have ... = (λ(v,w). Arc v (see-step (see-power n e) (from-digits ?d (map arc-label w)) v)
(from-digits ?d (map arc-label w))) ‘ arc-walks ?G n
unfolding 2 image-image by (simp del:see-power .simps add: case-prod-beta comp-def )

also have ... = (λ(v,w). Arc v (foldl (λy x. see-step e x y) v (map arc-label w))
(from-digits ?d (map arc-label w))) ‘ arc-walks ?G n
using 3 by (intro image-cong refl) (simp add:case-prod-beta to-from-digits)

also have ... = ϕ ‘ arc-walks ?G n
unfolding ϕ-def using 4 by (simp add:case-prod-beta)

also have ... = iso-arcs iso ‘ arcs ?P
unfolding iso-def graph-power-def by simp

finally have arcs ?H = iso-arcs iso ‘ arcs ?P
by simp

moreover have verts ?H = iso-verts iso ‘ verts ?P
unfolding iso-def graph-of-def graph-power-def by simp

moreover have tail ?H = iso-tail iso
unfolding iso-def graph-of-def by simp

moreover have head ?H = iso-head iso
unfolding iso-def graph-of-def by simp

ultimately have 1 :?H = app-iso iso ?P
unfolding app-iso-def
by (intro pre-digraph.equality) (simp-all del:see-power .simps)

show ?thesis
using 0 1 unfolding digraph-iso-def by auto

qed

lemma see-power :
assumes is-expander e Λa

shows is-expander (see-power n e) (Λa^n)
proof −

interpret G: regular-graph graph-of e
using assms unfolding is-expander-def by auto
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interpret H :regular-graph graph-power (graph-of e) n
by (intro G.graph-power-regular)

have 0 :digraph-iso (graph-power (graph-of e) n) (graph-of (see-power n e))
by (intro graph-power-iso-see-power) auto

have regular-graph.Λa (graph-of (see-power n e)) = H .Λa

using H .regular-graph-iso-expansion[OF 0 ] by auto
also have ... ≤ G.Λa^n

by (intro G.graph-power-expansion)
also have ... ≤ Λa^n

using assms(1 ) unfolding is-expander-def
by (intro power-mono G.Λ-ge-0 ) auto

finally have regular-graph.Λa (graph-of (see-power n e)) ≤ Λa^n
by simp

moreover have regular-graph (graph-of (see-power n e))
using H .regular-graph-iso[OF 0 ] by auto

ultimately show ?thesis
unfolding is-expander-def by auto

qed

The Margulis Construction from Section 8 is a strongly explicit expander graph.
definition mgg-vert :: nat ⇒ nat ⇒ (int × int)

where mgg-vert n x = (x mod n, x div n)

definition mgg-vert-inv :: nat ⇒ (int × int) ⇒ nat
where mgg-vert-inv n x = nat (fst x) + nat (snd x) ∗ n

lemma mgg-vert-inv:
assumes n > 0 x ∈ {0 ..<int n}×{0 ..<int n}
shows mgg-vert n (mgg-vert-inv n x) = x
using assms unfolding mgg-vert-def mgg-vert-inv-def by auto

definition mgg-arc :: nat ⇒ (nat × int)
where mgg-arc k = (k mod 4 , if k ≥ 4 then (−1 ) else 1 )

definition mgg-arc-inv :: (nat × int) ⇒ nat
where mgg-arc-inv x = (nat (fst x) + 4 ∗ of-bool (snd x < 0 ))

lemma mgg-arc-inv:
assumes x ∈ {..<4}×{−1 ,1}
shows mgg-arc (mgg-arc-inv x) = x
using assms unfolding mgg-arc-def mgg-arc-inv-def by auto

definition see-mgg :: nat ⇒ strongly-explicit-expander where
see-mgg n = (| see-size = n^2 , see-degree = 8 ,

see-step = (λi v. mgg-vert-inv n (mgg-graph-step n (mgg-vert n v) (mgg-arc i))) |)

lemma mgg-graph-iso:
assumes n > 0
shows digraph-iso (mgg-graph n) (graph-of (see-mgg n))

proof −
let ?v = mgg-vert n let ?vi = mgg-vert-inv n
let ?a = mgg-arc let ?ai = mgg-arc-inv
let ?G = graph-of (see-mgg n) let ?s = mgg-graph-step n

define ϕ where ϕ a = Arc (?vi (arc-tail a)) (?vi (arc-head a)) (?ai (arc-label a)) for a
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define iso where iso =
(| iso-verts = mgg-vert-inv n, iso-arcs = ϕ, iso-head = arc-head, iso-tail = arc-tail |)

interpret M : margulis-gaber-galil n
using assms by unfold-locales

have inj-vi: inj-on ?vi (verts M .G)
unfolding mgg-graph-def mgg-vert-inv-def
by (intro inj-on-inverseI [where g=mgg-vert n]) (auto simp:mgg-vert-def )

have card (?vi ‘ verts M .G) = card (verts M .G)
by (intro card-image inj-vi)

moreover have card (verts M .G) = n2

unfolding mgg-graph-def by (auto simp:power2-eq-square)
moreover have mgg-vert-inv n x ∈ {..<n2} if x ∈ verts M .G for x
proof −

have mgg-vert-inv n x = nat (fst x) + nat (snd x) ∗ n
unfolding mgg-vert-inv-def by simp

also have ... ≤ (n−1 ) + (n−1 ) ∗ n
using that unfolding mgg-graph-def
by (intro add-mono mult-right-mono) auto

also have ... = n ∗ n − 1 using assms by (simp add:algebra-simps)
also have ... < n^2

using assms by (simp add: power2-eq-square)
finally have mgg-vert-inv n x < n^2 by simp
thus ?thesis by simp

qed
ultimately have 0 :{..<n^2} = ?vi ‘ verts M .G

by (intro card-subset-eq[symmetric] image-subsetI ) auto

have inj-ai: inj-on ?ai ({..<4} × {−1 ,1})
unfolding mgg-arc-inv-def by (intro inj-onI ) auto

have card (?ai ‘ ({..<4} × {− 1 , 1})) = card ({..<4 ::nat} × {−1 ,1 ::int})
by (intro card-image inj-ai)

hence 1 :{..<8} = ?ai ‘ ({..<4} × {−1 ,1})
by (intro card-subset-eq[symmetric] image-subsetI ) (auto simp add:mgg-arc-inv-def )

have arcs ?G = (λ(v, i). Arc v (?vi (?s (?v v) (?a i))) i) ‘ ({..<n2} × {..<8})
by (simp add:see-mgg-def graph-of-def )

also have ... = (λ(v, i). Arc (?vi v) (?vi (?s (?v (?vi v)) (?a (?ai i)))) (?ai i)) ‘
(verts M .G × ({..<4} × {−1 ,1}))
unfolding 0 1 mgg-arc-inv by (auto simp add:image-iff )

also have ... = (λ(v, i). Arc (?vi v) (?vi (?s v i)) (?ai i)) ‘ (verts M .G × ({..<4} × {−1 ,1}))
using mgg-vert-inv[OF assms] mgg-arc-inv unfolding mgg-graph-def by (intro image-cong)

auto
also have ... = (ϕ ◦ (λ(t, l). Arc t (?s t l) l)) ‘ (verts M .G × ({..<4} × {−1 ,1}))

unfolding ϕ-def by (intro image-cong refl) ( simp add:comp-def case-prod-beta )
also have ... = ϕ ‘ arcs M .G

unfolding mgg-graph-def by (simp add:image-image)
also have ... = iso-arcs iso ‘ arcs (mgg-graph n)

unfolding iso-def by simp
finally have arcs (graph-of (see-mgg n)) = iso-arcs iso ‘ arcs (mgg-graph n)

by simp
moreover have verts ?G = iso-verts iso ‘ verts (mgg-graph n)

unfolding iso-def graph-of-def see-mgg-def using 0 by simp
moreover have tail ?G = iso-tail iso

unfolding iso-def graph-of-def by simp
moreover have head ?G = iso-head iso

unfolding iso-def graph-of-def by simp
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ultimately have 0 :?G = app-iso iso (mgg-graph n)
unfolding app-iso-def by (intro pre-digraph.equality) simp-all

have inj-on ϕ (arcs M .G)
proof (rule inj-onI )

fix x y assume assms ′: x ∈ arcs M .G y ∈ arcs M .G ϕ x = ϕ y

have ?vi (head M .G x) = ?vi (head M .G y)
using assms ′(3 ) unfolding ϕ-def mgg-graph-def by auto

hence head M .G x = head M .G y
using assms ′(1 ,2 ) by (intro inj-onD[OF inj-vi]) auto

hence arc-head x = arc-head y
unfolding mgg-graph-def by simp

moreover have ?vi (tail M .G x) = ?vi (tail M .G y)
using assms ′(3 ) unfolding ϕ-def mgg-graph-def by auto

hence tail M .G x = tail M .G y
using assms ′(1 ,2 ) by (intro inj-onD[OF inj-vi]) auto

hence arc-tail x = arc-tail y
unfolding mgg-graph-def by simp

moreover have ?ai (arc-label x) = ?ai (arc-label y)
using assms ′(3 ) unfolding ϕ-def by auto

hence arc-label x = arc-label y
using assms ′(1 ,2 ) unfolding mgg-graph-def
by (intro inj-onD[OF inj-ai]) (auto simp del:mgg-graph-step.simps)

ultimately show x = y
by (intro arc.expand) auto

qed
hence inj-on (iso-arcs iso) (arcs M .G)

unfolding iso-def by simp
moreover have inj-on (iso-verts iso) (verts M .G)

using inj-vi unfolding iso-def by simp
moreover have

iso-verts iso (tail M .G a) = iso-tail iso (iso-arcs iso a)
iso-verts iso (head M .G a) = iso-head iso (iso-arcs iso a) if a ∈ arcs M .G for a
unfolding iso-def ϕ-def mgg-graph-def by auto

ultimately have 1 :M .digraph-isomorphism iso
unfolding M .digraph-isomorphism-def by (intro conjI ballI M .wf-digraph-axioms) auto

show ?thesis unfolding digraph-iso-def using 0 1 by auto
qed

lemma see-mgg:
assumes n > 0
shows is-expander (see-mgg n) (5∗ sqrt 2 / 8 )

proof −
interpret G: margulis-gaber-galil n

using assms by unfold-locales auto

note 0 = mgg-graph-iso[OF assms]

have regular-graph.Λa (graph-of (see-mgg n)) = G.Λa

using G.regular-graph-iso-expansion[OF 0 ] by auto
also have ... ≤ (5∗ sqrt 2 / 8 )

using G.mgg-numerical-radius unfolding G.MGG-bound-def by simp
finally have regular-graph.Λa (graph-of (see-mgg n)) ≤ (5∗ sqrt 2 / 8 )
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by simp
moreover have regular-graph (graph-of (see-mgg n))

using G.regular-graph-iso[OF 0 ] by auto
ultimately show ?thesis

unfolding is-expander-def by auto
qed

Using all of the above it is possible to construct strongly explicit expanders of every size
and spectral gap with asymptotically optimal degree.
definition see-standard-aux

where see-standard-aux n = see-compress n (see-mgg (nat dsqrt ne))

lemma see-standard-aux:
assumes n > 0
shows

is-expander (see-standard-aux n) ((8+5 ∗ sqrt 2 ) / 16 ) (is ?A)
see-degree (see-standard-aux n) = 16 (is ?B)
see-size (see-standard-aux n) = n (is ?C )

proof −
have 2 :sqrt (real n) > −1

by (rule less-le-trans[where y=0 ]) auto

have 0 :real n ≤ of-int dsqrt (real n)e^2
by (simp add:sqrt-le-D)

consider (a) n = 1 | (b) n ≥ 2 ∧ n ≤ 4 | (c) n ≥ 5 ∧ n ≤ 9 | (d) n ≥ 10
using assms by linarith

hence 1 :of-int dsqrt (real n)e^2 ≤ 2 ∗ real n
proof (cases)

case a then show ?thesis by simp
next

case b
hence real-of-int dsqrt (real n)e^2 ≤ of-int dsqrt (real 4 )e^2

using 2
by (intro power-mono iffD2 [OF of-int-le-iff ] ceiling-mono iffD2 [OF real-sqrt-le-iff ]) auto

also have ... = 2 ∗ real 2 by simp
also have ... ≤ 2 ∗ real n

using b by (intro mult-left-mono) auto
finally show ?thesis by simp

next
case c
hence real-of-int dsqrt (real n)e^2 ≤ of-int dsqrt (real 9 )e^2

using 2
by (intro power-mono iffD2 [OF of-int-le-iff ] ceiling-mono iffD2 [OF real-sqrt-le-iff ]) auto

also have ... = 9 by simp
also have ... ≤ 2 ∗ real 5 by simp
also have ... ≤ 2 ∗ real n

using c by (intro mult-left-mono) auto
finally show ?thesis by simp

next
case d
have real-of-int dsqrt (real n)e^2 ≤ (sqrt (real n)+1 )^2

using 2 by (intro power-mono) auto
also have ... = real n + sqrt (4 ∗ real n + 0 ) + 1

using real-sqrt-pow2 by (simp add:power2-eq-square algebra-simps real-sqrt-mult)
also have ... ≤ real n + sqrt (4 ∗ real n + (real n ∗ (real n − 6 ) + 1 )) + 1

using d by (intro add-mono iffD2 [OF real-sqrt-le-iff ]) auto
also have ... = real n + sqrt ((real n−1 )^2 ) + 1
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by (intro-cong [σ2 (+), σ1 sqrt]) (auto simp add:power2-eq-square algebra-simps)
also have ... = 2 ∗ real n

using d by simp
finally show ?thesis by simp

qed

have nat dsqrt (real n)e^2 ∈ {n..2∗n}
by (simp add: approximation-preproc-nat(13 ) sqrt-le-D 1 )

hence see-size (see-mgg (nat dsqrt (real n)e)) ∈ {n..2∗n}
by (simp add:see-mgg-def )

moreover have sqrt (real n) > 0 using assms by simp
hence 0 < nat dsqrt (real n)e by simp
ultimately have is-expander (see-standard-aux n) ((5∗ sqrt 2 / 8 )/2 + 1/2 )

unfolding see-standard-aux-def by (intro see-compress see-mgg) auto
thus ?A

by (auto simp add:field-simps)
show ?B

unfolding see-standard-aux-def by (simp add:see-mgg-def )
show ?C

unfolding see-standard-aux-def by simp
qed

definition see-standard-power
where see-standard-power x = (if x ≤ (0 ::real) then 0 else nat dln x / ln 0 .95 e)

lemma see-standard-power :
assumes Λa > 0
shows 0 .95^(see-standard-power Λa) ≤ Λa (is ?L ≤ ?R)

proof (cases Λa ≤ 1 )
case True
hence 0 ≤ ln Λa / ln 0 .95

using assms by (intro divide-nonpos-neg) auto
hence 1 :0 ≤ dln Λa / ln 0 .95 e

by simp
have ?L = 0 .95^nat dln Λa / ln 0 .95 e

using assms unfolding see-standard-power-def by simp
also have ... = 0 .95 powr (of-nat (nat (dln Λa / ln 0 .95 e)))

by (subst powr-realpow) auto
also have ... = 0 .95 powr dln Λa / ln 0 .95 e

using 1 by (subst of-nat-nat) auto
also have ... ≤ 0 .95 powr (ln Λa / ln 0 .95 )

by (intro powr-mono-rev) auto
also have ... = ?R

using assms unfolding powr-def by simp
finally show ?thesis by simp

next
case False
hence ln Λa / ln 0 .95 ≤ 0

by (subst neg-divide-le-eq) auto
hence see-standard-power Λa = 0

unfolding see-standard-power-def by simp
then show ?thesis using False by simp

qed

lemma see-standard-power-eval[code]:
see-standard-power x = (if x ≤ 0 ∨ x ≥ 1 then 0 else (1+see-standard-power (x/0 .95 )))

proof (cases x ≤ 0 ∨ x ≥ 1 )
case True
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have ln x / ln (19 / 20 ) ≤ 0 if x > 0
proof −

have x ≥ 1 using that True by auto
thus ?thesis

by (intro divide-nonneg-neg) auto
qed
then show ?thesis using True unfolding see-standard-power-def by simp

next
case False
hence x-range: x > 0 x < 1 by auto

have ln (x / 0 .95 ) < ln (1/0 .95 )
using x-range by (intro iffD2 [OF ln-less-cancel-iff ]) auto

also have ... = − ln 0 .95
by (subst ln-div) auto

finally have ln (x / 0 .95 ) < − ln 0 .95 by simp
hence 0 : −1 < ln (x / 0 .95 ) / ln 0 .95

by (subst neg-less-divide-eq) auto

have see-standard-power x = nat dln x / ln 0 .95 e
using x-range unfolding see-standard-power-def by simp

also have ... = nat dln (x/0 .95 ) / ln 0 .95 + 1 e
by (subst ln-divide-pos[OF x-range(1 )]) (simp-all add:field-simps )

also have ... = nat (dln (x/0 .95 ) / ln 0 .95 e+1 )
by (intro arg-cong[where f=nat]) simp

also have ... = 1 + nat dln (x/0 .95 ) / ln 0 .95 e
using 0 by (subst nat-add-distrib) auto

also have ... = (if x ≤ 0 ∨ 1 ≤ x then 0 else 1 + see-standard-power (x/0 .95 ))
unfolding see-standard-power-def using x-range by auto

finally show ?thesis by simp
qed

definition see-standard :: nat ⇒ real ⇒ strongly-explicit-expander
where see-standard n Λa = see-power (see-standard-power Λa) (see-standard-aux n)

theorem see-standard:
assumes n > 0 Λa > 0
shows is-expander (see-standard n Λa) Λa

and see-size (see-standard n Λa) = n
and see-degree (see-standard n Λa) = 16 ^ (nat dln Λa / ln 0 .95 e) (is ?C )

proof −
have 0 :is-expander (see-standard-aux n) 0 .95

by (intro see-standard-aux(1 )[OF assms(1 )] is-expander-mono[where a=(8+5 ∗ sqrt 2 ) /
16 ])

(approximation 10 )

show is-expander (see-standard n Λa) Λa

unfolding see-standard-def
by (intro see-power 0 is-expander-mono[where a=0 .95^(see-standard-power Λa)]

see-standard-power assms(2 ))
show see-size (see-standard n Λa) = n

unfolding see-standard-def using see-standard-aux[OF assms(1 )] by simp

have see-degree (see-standard n Λa) = 16 ^ (see-standard-power Λa)
unfolding see-standard-def using see-standard-aux[OF assms(1 )] by simp

also have ... = 16 ^ (nat dln Λa / ln 0 .95 e)
unfolding see-standard-power-def using assms(2 ) by simp

finally show ?C by simp
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qed

fun see-sample-walk :: strongly-explicit-expander ⇒ nat ⇒ nat ⇒ nat list
where

see-sample-walk e 0 x = [x] |
see-sample-walk e (Suc l) x = (let w = see-sample-walk e l (x div (see-degree e)) in

w@[see-step e (x mod (see-degree e)) (last w)])

theorem see-sample-walk:
fixes e l
assumes fin-digraph (graph-of e)
defines r ≡ see-size e ∗ see-degree e ^l
shows {# see-sample-walk e l k. k ∈# mset-set {..<r} #} = walks ′ (graph-of e) l
unfolding r-def

proof (induction l)
case 0
then show ?case unfolding graph-of-def by simp

next
case (Suc l)
interpret fin-digraph graph-of e

using assms(1 ) by auto

let ?d = see-degree e
let ?n = see-size e
let ?w = see-sample-walk e
let ?G = graph-of e
define r where r = ?n ∗ ?d^l

have 1 : {i ∗ ?d..<(i + 1 ) ∗ ?d} ∩ {j ∗ ?d..<(j + 1 ) ∗ ?d} = {} if i 6= j for i j
using that index-div-eq by blast

have 2 :vertices-from ?G x = {# see-step e i x. i ∈# mset-set {..<?d}#} (is ?L = ?R)
if x ∈ verts ?G for x

proof −
have x < ?n

using that unfolding graph-of-def by simp
hence 1 :out-arcs ?G x = (λi. Arc x (see-step e i x) i) ‘ {..<?d}

unfolding out-arcs-def graph-of-def by (auto simp add:image-iff set-eq-iff )

have ?L = {# arc-head a. a ∈# mset-set (out-arcs ?G x) #}
unfolding verts-from-alt by (simp add:graph-of-def )

also have ... = {# arc-head a. a ∈# {# Arc x (see-step e i x) i. i ∈# mset-set {..<?d}#}#}

unfolding 1
by (intro arg-cong2 [where f= image-mset] image-mset-mset-set[symmetric] inj-onI ) auto

also have ... = ?R
by (simp add:image-mset.compositionality comp-def )

finally show ?thesis by simp
qed

have card (
⋃

w<r . {w ∗ ?d..<(w + 1 ) ∗?d}) = (
∑

w < r . card {w ∗ ?d..<(w + 1 ) ∗?d})
using 1 by (intro card-UN-disjoint) auto

also have ... = r ∗ ?d by simp
finally have card (

⋃
w<r . {w ∗ ?d..<(w + 1 ) ∗?d}) = card {..<?d ∗ r} by simp

moreover have ?d + z ∗ ?d ≤ ?d ∗ r if z < r for z
proof −

have ?d + z ∗ ?d = ?d ∗ (z + 1 ) by simp
also have ... ≤ ?d ∗ r
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using that by (intro mult-left-mono) auto
finally show ?thesis by simp

qed
ultimately have 0 : (

⋃
w<r . {w ∗ ?d..<(w + 1 ) ∗?d}) = {..<?d ∗ r}

using order-less-le-trans by (intro card-subset-eq subsetI ) auto

have {# ?w (l+1 ) k. k ∈# mset-set {..<?n ∗ ?d^(l+1 )} #} = {#?w (l+1 ) k. k ∈# mset-set
{..<?d ∗ r}#}

unfolding r-def by (simp add:ac-simps)
also have ... = {# ?w (l+1 ) x. x ∈# mset-set (

⋃
w<r . {w ∗ ?d..<(w + 1 ) ∗ ?d})#}

unfolding 0 by simp
also have ... = image-mset (?w (l+1 )) (concat-mset

(image-mset (mset-set ◦ (λw. {w ∗ ?d..<(w + 1 ) ∗ ?d})) (mset-set {..<r})))
by (intro arg-cong2 [where f=image-mset] concat-disjoint-union-mset refl 1 ) auto

also have ... = concat-mset{#{#?w (l+1 ) i. i∈#mset-set {w∗?d..<(w+1 )∗?d}#}. w∈#mset-set
{..<r}#}

by (simp add:image-concat-mset image-mset.compositionality comp-def del:see-sample-walk.simps)
also have ...=concat-mset {#{#?w(l+1 )i. i∈#mset-set ((+)(w∗?d)‘{..<?d})#}. w∈#mset-set
{..<r}#}

by (intro-cong [σ1 concat-mset, σ2 image-mset, σ1 mset-set] more:ext)
(simp add: atLeast0LessThan[symmetric])

also have ... = concat-mset
{#{#?w (l+1 ) i. i∈#image-mset ((+) (w∗?d)) (mset-set {..<?d})#}. w∈#mset-set {..<r}#}
by (intro-cong [σ1 concat-mset, σ2 image-mset] more:image-mset-cong

image-mset-mset-set[symmetric] inj-onI ) auto
also have ... = concat-mset {#{#?w (l+1 ) (w∗?d+i).i∈#mset-set {..<?d}#}. w∈#mset-set
{..<r}#}

by (simp add:image-mset.compositionality comp-def del:see-sample-walk.simps)
also have ... = concat-mset
{#{#?w l w@[see-step e i (last (?w l w))].i∈#mset-set {..<?d}#}.w∈#mset-set {..<r}#}
by (intro-cong [σ1 concat-mset] more:image-mset-cong) (simp add:Let-def )

also have ... = concat-mset {#{#w@[see-step e i (last w)].i∈#mset-set {..<?d}#}.w∈#walks ′

?G l#}
unfolding r-def Suc[symmetric] image-mset.compositionality comp-def by simp

also have ... = concat-mset
{#{#w@[x].x∈#{# see-step e i (last w). i∈#mset-set {..<?d}#}#}. w ∈# walks ′ ?G l#}
unfolding image-mset.compositionality comp-def by simp

also have ... = concat-mset {#{#w@[x].x∈#vertices-from ?G (last w)#}. w ∈# walks ′ ?G l#}
using last-in-set set-walks-2 (1 ,2 )
by (intro-cong [σ1 concat-mset, σ2 image-mset] more:image-mset-cong 2 [symmetric]) blast

also have ... = walks ′ (graph-of e) (l+1 )
by (simp add:image-mset.compositionality comp-def )

finally show ?case by simp
qed

unbundle no intro-cong-syntax

end

12 Expander Walks as Pseudorandom Objects
theory Pseudorandom-Objects-Expander-Walks

imports
Universal-Hash-Families.Pseudorandom-Objects
Expander-Graphs.Expander-Graphs-Strongly-Explicit

begin
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unbundle intro-cong-syntax
hide-const (open) Quantum.T
hide-fact (open) SN-Orders.of-nat-mono
hide-fact Missing-Ring.mult-pos-pos

definition expander-pro ::
nat ⇒ real ⇒ ( ′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudorandom-object
where expander-pro l Λ S = (

let e = see-standard (pro-size S) Λ in
(| pro-last = see-size e ∗ see-degree e^(l−1 ) − 1 ,

pro-select = (λi j. pro-select S (see-sample-walk e (l−1 ) i ! j mod pro-size S)) |)
)

context
fixes l :: nat
fixes Λ :: real
fixes S :: ( ′a, ′b) pseudorandom-object-scheme
assumes l-gt-0 : l > 0
assumes Λ-gt-0 : Λ > 0

begin

private definition e where e = see-standard (pro-size S) Λ

private lemma expander-pro-alt: expander-pro l Λ S = (| pro-last = see-size e ∗ see-degree
e^(l−1 ) − 1 ,

pro-select = (λi j. pro-select S (see-sample-walk e (l−1 ) i ! j mod pro-size S)) |)
unfolding expander-pro-def e-def [symmetric] by (auto simp:Let-def )

private lemmas see-standard = see-standard [OF pro-size-gt-0 [where S=S ] Λ-gt-0 ]

interpretation E : regular-graph graph-of e
using see-standard(1 ) unfolding is-expander-def e-def by auto

private lemma e-deg-gt-0 : see-degree e > 0
unfolding e-def see-standard by simp

private lemma e-size-gt-0 : see-size e > 0
unfolding e-def using see-standard pro-size-gt-0 by simp

private lemma expander-sample-size: pro-size (expander-pro l Λ S) = see-size e ∗ see-degree
e^(l−1 )

using e-deg-gt-0 e-size-gt-0 unfolding expander-pro-alt pro-size-def by simp

private lemma sample-pro-expander-walks:
defines R ≡ map-pmf (λxs i. pro-select S (xs ! i mod pro-size S))
(pmf-of-multiset (walks (graph-of e) l))

shows sample-pro (expander-pro l Λ S) = R
proof −

let ?S = {..<see-size e ∗ see-degree e ^ (l−1 )}
let ?T = (map-pmf (see-sample-walk e (l−1 )) (pmf-of-set ?S))

have 0 ∈ ?S
using e-size-gt-0 e-deg-gt-0 by auto

hence ?S 6= {}
by blast

hence ?T = pmf-of-multiset {#see-sample-walk e (l−1 ) i. i ∈# mset-set ?S#}
by (subst map-pmf-of-set) simp-all

also have ... = pmf-of-multiset (walks ′ (graph-of e) (l−1 ))
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by (subst see-sample-walk) auto
also have ... = pmf-of-multiset (walks (graph-of e) l)

unfolding walks-def using l-gt-0 by (cases l, simp-all)
finally have 0 :?T = pmf-of-multiset (walks (graph-of e) l)

by simp

have sample-pro (expander-pro l Λ S) = map-pmf (λxs j. pro-select S (xs ! j mod pro-size S))
?T

unfolding expander-sample-size sample-pro-alt unfolding map-pmf-comp expander-pro-alt by
simp

also have ... = R unfolding 0 R-def by simp
finally show ?thesis by simp

qed

lemma expander-pro-range: pro-select (expander-pro l Λ S) i j ∈ pro-set S
unfolding expander-pro-alt by (simp add:pro-select-in-set)

lemma expander-uniform-property:
assumes i < l
shows map-pmf (λw. w i) (sample-pro (expander-pro l Λ S)) = sample-pro S (is ?L = ?R)

proof −
have ?L = map-pmf (λx. pro-select S (x mod pro-size S)) (map-pmf (λxs. (xs ! i)) (pmf-of-multiset

(walks (graph-of e) l)))
unfolding sample-pro-expander-walks by (simp add: map-pmf-comp)

also have ... = map-pmf (λx. pro-select S (x mod pro-size S)) (pmf-of-set (verts (graph-of e)))
unfolding E .uniform-property[OF assms] by simp

also have ... = ?R
using pro-size-gt-0 unfolding sample-pro-alt
by (intro map-pmf-cong) (simp-all add:e-def graph-of-def see-standard select-def )

finally show ?thesis
by simp

qed

lemma expander-kl-chernoff-bound:
assumes measure (sample-pro S) {w. T w} ≤ µ
assumes γ ≤ 1 µ + Λ ∗ (1−µ) ≤ γ µ ≤ 1
shows measure (sample-pro (expander-pro l Λ S)) {w. real (card {i ∈ {..<l}. T (w i)}) ≥ γ∗l}
≤ exp (− real l ∗ KL-div γ (µ + Λ∗(1−µ))) (is ?L ≤ ?R)

proof (cases measure (sample-pro S) {w. T w} > 0 )
case True
let ?w = pmf-of-multiset (walks (graph-of e) l)
define V where V = {v∈ verts (graph-of e). T (pro-select S v)}
define ν where ν = measure (sample-pro S) {w. T w}

have ν-gt-0 : ν > 0 unfolding ν-def using True by simp
have ν-le-1 : ν ≤ 1 unfolding ν-def by simp
have ν-le-µ: ν ≤ µ unfolding ν-def using assms(1 ) by simp

have 0 : card {i ∈ {..<l}. T (pro-select S (w ! i mod pro-size S))} = card {i ∈ {..<l}. w ! i ∈
V }

if w ∈ set-pmf (pmf-of-multiset (walks (graph-of e) l)) for w
proof −

have a0 : w ∈# walks (graph-of e) l using that E .walks-nonempty by simp
have a1 :w ! i ∈ verts (graph-of e) if i < l for i

using that E .set-walks-3 [OF a0 ] by auto
moreover have w ! i mod pro-size S = w ! i if i < l for i

using a1 [OF that] see-standard(2 ) e-def by (simp add:graph-of-def )
ultimately show ?thesis
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unfolding V-def
by (intro arg-cong[where f=card] restr-Collect-cong) auto

qed

have 1 :E .Λa ≤ Λ
using see-standard(1 ) unfolding is-expander-def e-def by simp

have 2 : V ⊆ verts (graph-of e)
unfolding V-def by simp

have ν = measure (pmf-of-set {..<pro-size S}) ({v. T (pro-select S v)})
unfolding ν-def sample-pro-alt by simp

also have ... = real (card ({v∈{..<pro-size S}. T (pro-select S v)})) / real (pro-size S)
using pro-size-gt-0 by (subst measure-pmf-of-set) (auto simp add:Int-def )

also have ... = real (card V ) / card (verts (graph-of e))
unfolding V-def graph-of-def e-def using see-standard by (simp add:Int-commute)

finally have ν-eq: ν = real (card V ) / card (verts (graph-of e))
by simp

have 3 : 0 < ν + E .Λa ∗ (1 − ν)
using ν-le-1 by (intro add-pos-nonneg ν-gt-0 mult-nonneg-nonneg E .Λ-ge-0 ) auto

have ν + E .Λa ∗ (1 − ν) = ν ∗ (1 − E .Λa) + E .Λa by (simp add:algebra-simps)
also have ... ≤ µ ∗ (1− E .Λa) + E .Λa using E .Λ-le-1

by (intro add-mono mult-right-mono ν-le-µ) auto
also have ... = µ + E .Λa ∗ (1 − µ) by (simp add:algebra-simps)
also have ... ≤ µ + Λ ∗ (1 − µ) using assms(4 ) by (intro add-mono mult-right-mono 1 ) auto
finally have 4 : ν + E .Λa ∗ (1 − ν) ≤ µ + Λ ∗ (1 − µ) by simp

have 5 : ν + E .Λa∗(1−ν) ≤ γ using 4 assms(3 ) by simp

have ?L = measure ?w {y. γ ∗ real l ≤ real (card {i ∈ {..<l}. T (pro-select S (y ! i mod pro-size
S))})}

unfolding sample-pro-expander-walks by simp
also have ... = measure ?w {y. γ ∗ real l ≤ real (card {i ∈ {..<l}. y ! i ∈ V })}

using 0 by (intro measure-pmf-cong) (simp)
also have ... ≤ exp (− real l ∗ KL-div γ (ν + E .Λa∗(1−ν)) )

using assms(2 ) 3 5 unfolding ν-eq by (intro E .kl-chernoff-property l-gt-0 2 ) auto
also have ... ≤ exp (− real l ∗ KL-div γ (µ + Λ∗(1−µ)))

using l-gt-0 by (intro iffD2 [OF exp-le-cancel-iff ] iffD2 [OF mult-le-cancel-left-neg]
KL-div-mono-right[OF disjI2 ] conjI 3 4 assms(2 ,3 )) auto

finally show ?thesis by simp
next

case False
hence 0 :measure (sample-pro S) {w. T w} = 0 using zero-less-measure-iff by blast
hence 1 :T w = False if w ∈ pro-set S for w using that measure-pmf-posI by force

have µ + Λ ∗ (1−µ) > 0
proof (cases µ = 0 )

case True then show ?thesis using Λ-gt-0 by auto
next

case False
then show ?thesis using assms(1 ,4 ) 0 Λ-gt-0

by (intro add-pos-nonneg mult-nonneg-nonneg) simp-all
qed
hence γ > 0 using assms(3 ) by auto
hence 2 :γ∗real l > 0 using l-gt-0 by simp
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let ?w = pmf-of-multiset (walks (graph-of e) l)

have ?L = measure ?w {y. γ∗real l≤ card {i ∈ {..<l}. T (pro-select S (y ! i mod pro-size S))}}
unfolding sample-pro-expander-walks by simp

also have ... = 0 using pro-select-in-set 2 by (subst 1 ) auto
also have ... ≤ ?R by simp
finally show ?thesis by simp

qed

lemma expander-chernoff-bound-one-sided:
assumes AE x in sample-pro S . f x ∈ {0 ,1 ::real}
assumes (

∫
x. f x ∂sample-pro S) ≤ µ l > 0 γ ≥ 0

shows measure (expander-pro l Λ S) {w. (
∑

i<l. f (w i))/l−µ≥γ+Λ} ≤ exp (− 2 ∗ real l ∗
γ^2 )

(is ?L ≤ ?R)
proof −

let ?w = sample-pro (expander-pro l Λ S)
define T where T x = (f x=1 ) for x

have 1 : indicator {w. T w} x = f x if x ∈ pro-set S for x
proof −

have f x ∈ {0 ,1} using assms(1 ) that unfolding AE-measure-pmf-iff by simp
thus ?thesis unfolding T-def by auto

qed

have measure S {w. T w} = (
∫

x. indicator {w. T w} x ∂S) by simp
also have ... = (

∫
x. f x ∂S) using 1 by (intro integral-cong-AE AE-pmfI ) auto

also have ... ≤ µ using assms(2 ) by simp
finally have 0 : measure S {w. T w} ≤ µ by simp

hence µ-ge-0 : µ ≥ 0 using measure-nonneg order .trans by blast

have cases: (γ=0 =⇒ p) =⇒ (γ+Λ+µ > 1 =⇒ p) =⇒ (γ+Λ+µ ≤ 1 ∧ γ > 0 =⇒ p) =⇒ p
for p

using assms(4 ) by argo

have ?L = measure ?w {w. (γ+Λ+µ)∗l ≤ (
∑

i<l. f (w i))}
using assms(3 ) by (intro measure-pmf-cong) (auto simp:field-simps)

also have ... = measure ?w {w. (γ+Λ+µ)∗l ≤ card {i ∈ {..<l}. T (w i)}}
proof (rule measure-pmf-cong)

fix ω
assume ω ∈ pro-set (expander-pro l Λ S)
hence ω x ∈ pro-set S for x using expander-pro-range set-sample-pro by (metis image-iff )
hence (

∑
i<l. f (ω i)) = (

∑
i<l. indicator {w. T w} (ω i)) using 1 by (intro sum.cong)

auto
also have ... = card {i ∈ {..<l}. T (ω i)} unfolding indicator-def by (auto simp:Int-def )
finally have (

∑
i<l. f (ω i)) = (card {i ∈ {..<l}. T (ω i)}) by simp

thus (ω ∈ {w. (γ+Λ+µ)∗l ≤ (
∑

i<l. f (w i))})=(ω ∈ {w. (γ+Λ+µ)∗l≤card {i ∈ {..<l}. T
(w i)}})

by simp
qed
also have ... ≤ ?R (is ?L1 ≤ -)
proof (rule cases)

assume γ = 0 thus ?thesis by simp
next

assume a:γ + Λ + µ ≤ 1 ∧ 0 < γ
hence µ-lt-1 : µ < 1 using assms(4 ) Λ-gt-0 by simp
hence µ-le-1 : µ ≤ 1 by simp

156



have µ + Λ ∗ (1 − µ) ≤ µ + Λ ∗ 1 using µ-ge-0 Λ-gt-0 by (intro add-mono mult-left-mono)
auto

also have ... < γ+Λ+µ using assms(4 ) a by simp
finally have b:µ + Λ ∗ (1 − µ) < γ +Λ +µ by simp
hence µ + Λ ∗ (1 − µ) < 1 using a by simp
moreover have µ + Λ ∗ (1 − µ) > 0 using µ-lt-1

by (intro add-nonneg-pos µ-ge-0 mult-pos-pos Λ-gt-0 ) simp
ultimately have c: µ + Λ ∗ (1 − µ) ∈ {0<..<1} by simp
have d: γ + Λ + µ ∈ {0 ..1} using a b c by simp
have ?L1 ≤ exp (− real l ∗ KL-div (γ+Λ+µ) (µ + Λ∗(1−µ)))

using a b by (intro expander-kl-chernoff-bound µ-le-1 0 ) auto
also have ... ≤ exp (− real l ∗ (2 ∗ ((γ+Λ+µ)− (µ + Λ∗(1−µ)))^2 ))

by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono-neg KL-div-lower-bound c d) simp
also have ... ≤ exp (− real l ∗ (2 ∗ (γ^2 )))

using assms(4 ) µ-lt-1 Λ-gt-0 µ-ge-0
by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono-neg[where c=−real l] mult-left-mono

power-mono) simp-all
also have ... = ?R by simp
finally show ?L1 ≤ ?R by simp

next
assume a:1 < γ + Λ + µ
have (γ+Λ+µ)∗ real l > real (card {i ∈ {..<l}. (x i)}) for x
proof −

have real (card {i ∈ {..<l}. (x i)}) ≤ card {..<l} by (intro of-nat-mono card-mono) auto
also have ... = real l by simp
also have ... < (γ+Λ+µ)∗ real l using assms(3 ) a by simp
finally show ?thesis by simp

qed
hence ?L1 = 0 unfolding not-le[symmetric] by auto
also have ... ≤ ?R by simp
finally show ?L1 ≤ ?R by simp

qed
finally show ?thesis by simp

qed

lemma expander-chernoff-bound:
assumes AE x in sample-pro S . f x ∈ {0 ,1 ::real} l > 0 γ ≥ 0
defines µ ≡ (

∫
x. f x ∂sample-pro S)

shows measure (expander-pro l Λ S) {w. |(
∑

i<l. f (w i))/l−µ|≥γ+Λ} ≤ 2∗exp (− 2 ∗ real l
∗ γ^2 )

(is ?L ≤ ?R)
proof −

let ?w = sample-pro (expander-pro l Λ S)
have ?L ≤ measure ?w {w. (

∑
i<l. f (w i))/l−µ≥γ+Λ} + measure ?w {w. (

∑
i<l. f (w

i))/l−µ≤−(γ+Λ)}
by (intro pmf-add) auto

also have ... ≤ exp (−2∗real l∗γ^2 ) + measure ?w {w. −((
∑

i<l. f (w i))/l−µ)≥(γ+Λ)}
using assms by (intro add-mono expander-chernoff-bound-one-sided) (auto simp:algebra-simps)

also have ... ≤ exp (−2∗real l∗γ^2 ) + measure ?w {w. ((
∑

i<l. 1−f (w i))/l−(1−µ))≥(γ+Λ)}
using assms(2 ) by (auto simp: sum-subtractf field-simps)

also have ... ≤ exp (−2∗real l∗γ^2 ) + exp (−2∗real l∗γ^2 )
using assms by (intro add-mono expander-chernoff-bound-one-sided) auto

also have ... = ?R by simp
finally show ?thesis by simp

qed

lemma expander-pro-size:
pro-size (expander-pro l Λ S) = pro-size S ∗ (16 ^ ((l−1 ) ∗ nat dln Λ / ln (19 / 20 )e))
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(is ?L = ?R)
proof −

have ?L = see-size e ∗ see-degree e ^ (l − 1 )
unfolding expander-sample-size by simp

also have ... = pro-size S ∗ (16 ^ nat dln Λ / ln (19 / 20 )e) ^ (l − 1 )
using see-standard unfolding e-def by simp

also have ... = pro-size S ∗ (16 ^ ((l−1 ) ∗ nat dln Λ / ln (19 / 20 )e))
unfolding power-mult[symmetric] by (simp add:ac-simps)

finally show ?thesis
by simp

qed

end

open-bundle expander-pseudorandom-object-syntax
begin
notation expander-pro (‹E›)
end

unbundle no intro-cong-syntax

end
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