
Executable Randomized Algorithms

Emin Karayel and Manuel Eberl

March 17, 2025

Abstract

In Isabelle, randomized algorithms are usually represented using probability mass functions
(PMFs), with which it is possible to verify their correctness, particularly properties about the
distribution of their result. However, that approach does not provide a way to generate executable
code for such algorithms. In this entry, we introduce a new monad for randomized algorithms, for
which it is possible to generate code and simultaneously reason about the correctness of randomized
algorithms. The latter works by a Scott-continuous monad morphism between the newly introduced
random monad and PMFs. On the other hand, when supplied with an external source of random
coin flips, the randomized algorithms can be executed.

Contents
1 Introduction 1

2 τ-Additivity 2

3 Coin Flip Space 5

4 Randomized Algorithms (Internal Representation) 22

5 Randomized Algorithms 42
5.1 Almost surely terminating randomized algorithms 51

6 Tracking Randomized Algorithms 52

7 Tracking SPMFs 61

8 Dice Roll 67

9 A Pseudo-random Number Generator 76

10 Basic Randomized Algorithms 77

1 Introduction
In Isabelle, randomized algorithms are usually represented using probability mass functions (PMFs).
(These are distributions on the discrete σ-algebra, i.e., pure point measures.) That representation
allows the verification of the correctness of randomized algorithms, for example the expected value
of their result, moments or other probabilistic properties. However, it is not directly possible to
execute a randomized algorithm modelled as a PMF.

In this work, we introduce a representation of randomized algorithms as a parser monad over
an external arbitrary source of random coin flips, modelled using a lazy infinite stream of booleans.
Using for example a PRG or some other mechanism, like a hardware RNG to supply the coin flips,
the generated code for the monad can be executed.

1

′a random-alg

(′a × nat) random-alg

′a spmf

′a tspmf

spmf-of-ra

track-random-bits

spmf-of-ra

map-spmf fst
tspmf-of-ra

Figure 1: Scott-continuous monad morphisms verified in this work.

Then we introduce a monad morphism between such algorithms and the corresponding PMF,
i.e., the PMF representing the distribution of the randomized algorithm under the idealized as-
sumption that the coin flips are independent and unbiased, such that correctness properties can
still be verified.

In the presence of loops and possible likelihood of non-termination, the resulting PMF maybe an
SPMF (a finite measure space with total measure less than 1). (Internally these are just PMFs over
the option type, where None represents non-termination.) If a randomized algorithm terminates
almost surely, the weight of the SPMF will be 1.

With this framework, it is also possible to reason about the number of coin-flips consumed by
the algorithm. The latter is itself a distribution, where for example the average count of used coin-
flips is represented as the expectation of that distribution. To facilitate the latter, we introduce a
second monad morphism, between randomized algorithm and a resource monad on top of the SPMF
monad. Indeed the latter describes the joint-distribution of the result of a randomized algorithm
and the number of used coin flips. (It is easy to construct examples where the individual marginal
distributions are not enough, for example when the number of coin-flips used in intermediate steps
of the algorithm depend on parameters.)

Figure 1 summarizes the Scott-continuous monad morphisms verified in this work. In particular:

• spmf-of-ra: Morphism between randomized algorithms and the distribution of their result.
(Section 5)

• track-coin-usage: Morphism between randomized algorithms and randomized algorithms that
track their coin flip usage. The result is still executable. (Section 6)

• tspmf-of-ra: Morpshism between randomized algorithms and the joint-distribution of their
result and coin-flip usage. (Section 7)

In addition to that we also introduce the monad morphism pmf-of-ra which returns a PMF
instead of an SPMF. It is defined for algorithms that terminate unconditionally or almost surely.

Section 10 contains some examples showing how to use this library, as well as randomized
algorithms for standard probability distributions.

Section 8 contains an extended example with verification of correctness, as well as bounds on
the the average coin-flip usage for a dice roll algorithm. (It is a specialization of an algorithm
presented by Hao and Hoshi [4].)

2 τ-Additivity
theory Tau-Additivity

imports HOL−Analysis.Regularity
begin

In this section we show τ -additivity for measures, that are compatible with a second-
countable topology. This will be essential for the verification of the Scott-continuity of the
monad morphisms. To understand the property, let us recall that for general countable
chains of measurable sets, it is possible to deduce that the supremum of the measures of

2

the sets is equal to the measure of the union of the family:

µ
(⋃
X
)
= sup

X∈X
µ(X)

this is shown in SUP-emeasure-incseq.
It is possible to generalize that to arbitrary chains 1 of open sets for some measures without
the restriction of countability, such measures are called τ -additive [3].
In the following this property is derived for measures that are at least borel (i.e. every open
set is measurable) in a complete second-countable topology. The result is an immediate
consequence of inner-regularity. The latter is already verified in HOL−Analysis.Regularity.
definition op-stable op F = (∀ x y. x ∈ F ∧ y ∈ F −→ op x y ∈ F)

lemma op-stableD:
assumes op-stable op F
assumes x ∈ F y ∈ F
shows op x y ∈ F
using assms unfolding op-stable-def by auto

lemma tau-additivity-aux:
fixes M :: ′a::{second-countable-topology, complete-space} measure
assumes sb: sets M = sets borel
assumes fin: emeasure M (space M) 6= ∞
assumes of :

∧
a. a ∈ A =⇒ open a

assumes ud: op-stable (∪) A
shows emeasure M (

⋃
A) = (SUP a ∈ A. emeasure M a) (is ?L = ?R)

proof (cases A 6= {})
case True

have open (
⋃

A) using of by auto
hence

⋃
A ∈ sets borel by simp

hence usets:
⋃

A ∈ sets M using assms(1) by simp

have 0 :a ∈ sets borel if a ∈ A for a
using of that by simp

have 1 :
⋃

T ∈ A if finite T T 6= {} T ⊆ A for T
using that op-stableD[OF ud] by (induction T rule:finite-ne-induct) auto

have 2 :emeasure M K ≤ ?R if K-def : compact K K ⊆
⋃

A for K
proof (cases K 6= {})

case True
obtain T where T-def : K ⊆

⋃
T T ⊆ A finite T

using compactE [OF K-def of] that by metis
have T-ne: T 6= {} using T-def (1) True by auto
define t where t =

⋃
T

have t-in: t ∈ A
unfolding t-def by (intro 1 T-ne T-def)

have K ⊆ t
unfolding t-def using T-def by simp

hence emeasure M K ≤ emeasure M t
using 0 sb t-in by (intro emeasure-mono) auto

also have ... ≤ ?R
using t-in by (intro cSup-upper) auto

finally show ?thesis
1More generally families closed under pairwise unions.

3

by simp
next

case False
hence K = {} by simp
thus ?thesis by simp

qed

have ?L = (SUP K ∈ {K . K ⊆
⋃

A ∧ compact K}. emeasure M K)
using usets unfolding sb by (intro inner-regular [OF sb fin]) auto

also have ... ≤ ?R
using 2 by (intro cSup-least) auto

finally have ?L ≤ ?R by simp
moreover have emeasure M a ≤ emeasure M (

⋃
A) if a ∈ A for a

using that by (intro emeasure-mono usets) auto
hence ?R ≤ ?L

using True by (intro cSup-least) auto
ultimately show ?thesis by auto

next
case False
thus ?thesis by (simp add:bot-ennreal)

qed

lemma chain-imp-union-stable:
assumes Complete-Partial-Order .chain (⊆) F
shows op-stable (∪) F

proof −
have x ∪ y ∈ F if x ∈ F y ∈ F for x y
proof (cases x ⊆ y)

case True
then show ?thesis using that sup.absorb2 [OF True] by simp

next
case False
hence 0 :y ⊆ x

using assms that unfolding Complete-Partial-Order .chain-def by auto
then show ?thesis using that sup.absorb1 [OF 0] by simp

qed
thus ?thesis

unfolding op-stable-def by auto
qed

theorem tau-additivity:
fixes M :: ′a::{second-countable-topology, complete-space} measure
assumes sb:

∧
x. open x =⇒ x ∈ sets M

assumes fin: emeasure M (space M) 6= ∞
assumes of :

∧
a. a ∈ A =⇒ open a

assumes ud: op-stable (∪) A
shows emeasure M (

⋃
A) = (SUP a ∈ A. emeasure M a) (is ?L = ?R)

proof −
have UNIV ∈ sets M

using open-UNIV sb by auto
hence space-M [simp]:space M = UNIV

using sets.sets-into-space by blast

have id-borel: (λx. x) ∈ M →M borel
using sb by (intro borel-measurableI) auto

have open (
⋃

A) using of by auto
hence usets: (

⋃
A) ∈ sets borel by simp

4

define N where N = distr M borel (λx. x)
have sets-N : sets N = sets borel

unfolding N-def by simp
have fin-N : emeasure N (space N) 6= ∞

using fin id-borel unfolding N-def
by (subst emeasure-distr) auto

have ?L = emeasure N (
⋃

A)
unfolding N-def by (subst emeasure-distr [OF id-borel usets]) auto

also have ... = (SUP a ∈ A. emeasure N a)
by (intro tau-additivity-aux sets-N of ud fin-N) auto

also have ... = (SUP a∈A. emeasure M ((λx. x) −‘ a ∩ space M))
unfolding N-def using of
by (intro arg-cong[where f=Sup] image-cong emeasure-distr id-borel) auto

also have ... = ?R by simp
finally show ?thesis by simp

qed

end

3 Coin Flip Space

In this section, we introduce the coin flip space, an infinite lazy stream of booleans and
introduce a probability measure and topology for the space.
theory Coin-Space

imports
HOL−Probability.Probability
HOL−Library.Code-Lazy

begin

lemma stream-eq-iff :
assumes

∧
i. x !! i = y !! i

shows x = y
proof −

have x = smap id x by (simp add: stream.map-id)
also have ... = y using assms unfolding smap-alt by auto
finally show ?thesis by simp

qed

Notation for the discrete σ-algebra:
abbreviation discrete-sigma-algebra

where discrete-sigma-algebra ≡ count-space UNIV

open-bundle discrete-sigma-algebra-syntax
begin
notation discrete-sigma-algebra (‹D›)
end

lemma map-prod-measurable[measurable]:
assumes f ∈ M →M M ′

assumes g ∈ N →M N ′

shows map-prod f g ∈ M
⊗

M N →M M ′ ⊗
M N ′

using assms by (subst measurable-pair-iff) simp

lemma measurable-sigma-sets-with-exception:
fixes f :: ′a ⇒ ′b :: countable

5

assumes
∧

x. x 6= d =⇒ f −‘ {x} ∩ space M ∈ sets M
shows f ∈ M →M count-space UNIV

proof −
define A :: ′b set set where A = (λx. {x}) ‘ UNIV

have 0 : sets (count-space UNIV) = sigma-sets (UNIV :: ′b set) A
unfolding A-def by (subst sigma-sets-singletons) auto

have 1 : f −‘ {x} ∩ space M ∈ sets M for x
proof (cases x = d)

case True
have f −‘ {d} ∩ space M = space M − (

⋃
y ∈ UNIV − {d}. f −‘ {y} ∩ space M)

by (auto simp add:set-eq-iff)
also have ... ∈ sets M

using assms
by (intro sets.compl-sets sets.countable-UN) auto

finally show ?thesis
using True by simp

next
case False
then show ?thesis using assms by simp

qed
hence 1 :

∧
y. y ∈ A =⇒ f −‘ y ∩ space M ∈ sets M

unfolding A-def by auto

thus ?thesis
by (intro measurable-sigma-sets[OF 0]) simp-all

qed

lemma restr-empty-eq: restrict-space M {} = restrict-space N {}
by (intro measure-eqI) (auto simp add:sets-restrict-space)

lemma (in prob-space) distr-stream-space-snth [simp]:
assumes sets M = sets N
shows distr (stream-space M) N (λxs. snth xs n) = M

proof −
have distr (stream-space M) N (λxs. snth xs n) = distr (stream-space M) M (λxs. snth xs n)

by (rule distr-cong) (use assms in auto)
also have . . . = distr (PiM UNIV (λi. M)) M (λf . f n)

by (subst stream-space-eq-distr , subst distr-distr) (auto simp: to-stream-def o-def)
also have . . . = M

by (intro distr-PiM-component prob-space-axioms) auto
finally show ?thesis .

qed

lemma (in prob-space) distr-stream-space-shd [simp]:
assumes sets M = sets N
shows distr (stream-space M) N shd = M
using distr-stream-space-snth[OF assms, of 0] by (simp del: distr-stream-space-snth)

lemma shift-measurable:
assumes set x ⊆ space M
shows (λbs. x @− bs) ∈ stream-space M →M stream-space M

proof −
have (λbs. (x @− bs) !! n) ∈ (stream-space M) →M M for n
proof (cases n < length x)

case True
have (λbs. (x @− bs) !! n) = (λbs. x ! n)

6

using True by simp
also have ... ∈ stream-space M →M M

using assms True by (intro measurable-const) auto
finally show ?thesis by simp

next
case False
have (λbs. (x @− bs) !! n) = (λbs. bs !! (n − length x))

using False by simp
also have ... ∈ (stream-space M) →M M

by (intro measurable-snth)
finally show ?thesis by simp

qed
thus ?thesis

by (intro measurable-stream-space2) auto
qed

lemma (in sigma-finite-measure) restrict-space-pair-lift:
assumes A ′ ∈ sets A
shows restrict-space A A ′ ⊗

M M = restrict-space (A
⊗

M M) (A ′ × space M) (is ?L = ?R)
proof −

let ?X = ((∩) (A ′ × space M) ‘ {a × b |a b. a ∈ sets A ∧ b ∈ sets M})
have 0 : A ′ ⊆ space A

using assms sets.sets-into-space by blast

have ?X ⊆ {a × b |a b. a ∈ sets (restrict-space A A ′) ∧ b ∈ sets M}
proof (rule image-subsetI)

fix x assume x ∈ {a × b |a b. a ∈ sets A ∧ b ∈ sets M}
then obtain u v where uv-def : x = u × v u ∈ sets A v ∈ sets M

by auto
have 1 :u ∩ A ′ ∈ sets (restrict-space A A ′)

using uv-def (2) unfolding sets-restrict-space by auto
have v ⊆ space M

using uv-def (3) sets.sets-into-space by auto
hence A ′ × space M ∩ x = (u ∩ A ′) × v

unfolding uv-def (1) by auto
also have ... ∈ {a × b |a b. a ∈ sets (restrict-space A A ′) ∧ b ∈ sets M}

using 1 uv-def (3) by auto

finally show A ′ × space M ∩ x ∈ {a × b |a b. a ∈ sets (restrict-space A A ′) ∧ b ∈ sets M}
by simp

qed
moreover have {a × b |a b. a ∈ sets (restrict-space A A ′) ∧ b ∈ sets M} ⊆ ?X
proof (rule subsetI)

fix x assume x ∈ {a × b |a b. a ∈ sets (restrict-space A A ′) ∧ b ∈ sets M}
then obtain u v where uv-def : x = u × v u ∈ sets (restrict-space A A ′) v ∈ sets M

by auto

have x = (A ′ × space M) ∩ x
unfolding uv-def (1) using uv-def (2 ,3) sets.sets-into-space
by (intro Int-absorb1 [symmetric]) (auto simp add:sets-restrict-space)

moreover have u ∈ sets A using uv-def (2) assms unfolding sets-restrict-space by blast
hence x ∈ {a × b |a b. a ∈ sets A ∧ b ∈ sets M}

unfolding uv-def (1) using uv-def (3) by auto
ultimately show x ∈ ?X

by simp
qed
ultimately have 2 : ?X = {a × b |a b. a ∈ sets (restrict-space A A ′) ∧ b ∈ sets M} by simp

7

have sets ?R = sigma-sets (A ′×space M) ((∩) (A ′×space M) ‘ {a×b |a b. a ∈ sets A∧b ∈ sets
M})

unfolding sets-restrict-space sets-pair-measure using assms sets.sets-into-space
by (intro sigma-sets-Int sigma-sets.Basic) auto

also have ... = sets (restrict-space A A ′ ⊗
M M)

unfolding sets-pair-measure space-restrict-space Int-absorb2 [OF 0] sets-restrict-space 2
by auto

finally have 3 :sets (restrict-space (A
⊗

M M) (A ′ × space M)) = sets (restrict-space A A ′⊗
M M)
by simp

have 4 : emeasure (restrict-space A A ′⊗
MM) S = emeasure (restrict-space (A

⊗
MM) (A ′×space

M)) S
(is ?L1 = ?R1) if 5 :S ∈ sets (restrict-space A A ′ ⊗

M M) for S
proof −

have Pair x −‘ S = {} if x /∈ A ′ x ∈ space A for x
using that 5 by (auto simp add:3 [symmetric] sets-restrict-space)

hence 5 : emeasure M (Pair x −‘ S) = 0 if x /∈ A ′ x ∈ space A for x
using that by auto

have ?L1 = (
∫

+ x. emeasure M (Pair x −‘ S) ∂restrict-space A A ′)
by (intro emeasure-pair-measure-alt[OF that])

also have ... = (
∫

+x∈A ′. emeasure M (Pair x −‘ S) ∂A)
using assms by (intro nn-integral-restrict-space) auto

also have ... = (
∫

+x. emeasure M (Pair x −‘ S) ∂A)
using 5 by (intro nn-integral-cong) force

also have ... = emeasure (A
⊗

M M) S
using that assms by (intro emeasure-pair-measure-alt[symmetric])
(auto simp add:3 [symmetric] sets-restrict-space)

also have ... = ?R1
using assms that by (intro emeasure-restrict-space[symmetric])
(auto simp add:3 [symmetric] sets-restrict-space)

finally show ?thesis by simp
qed

show ?thesis using 3 4
by (intro measure-eqI) auto

qed

lemma to-stream-comb-seq-eq:
to-stream (comb-seq n x y) = stake n (to-stream x) @− to-stream y
unfolding comb-seq-def to-stream-def
by (intro stream-eq-iff) simp

lemma to-stream-snth: to-stream ((!!) x) = x
by (intro ext stream-eq-iff) (simp add:to-stream-def)

lemma snth-to-stream: snth (to-stream x) = x
by (intro ext) (simp add:to-stream-def)

lemma (in prob-space) branch-stream-space:
(λ(x, y). stake n x @− y) ∈ stream-space M

⊗
M stream-space M →M stream-space M

distr (stream-space M
⊗

M stream-space M) (stream-space M) (λ(x,y). stake n x@−y)
= stream-space M (is ?L = ?R)

proof −
let ?T = stream-space M
let ?S = PiM UNIV (λ-. M)

interpret S : sequence-space M

8

by standard

show 0 :(λ(x, y). stake n x @− y) ∈ ?T
⊗

M ?T →M ?T
by simp

have ?L = distr (distr ?S ?T to-stream
⊗

M distr ?S ?T to-stream) ?T (λ(x,y). stake n x@−y)
by (subst (1 2) stream-space-eq-distr) simp

also have ... = distr (distr (?S
⊗

M ?S) (?T
⊗

M ?T) (λ(x, y). (to-stream x, to-stream y)))
?T (λ(x, y). stake n x @− y)

using prob-space-imp-sigma-finite[OF prob-space-stream-space]
by (intro arg-cong2 [where f=(λx y. distr x ?T y)] pair-measure-distr)
(simp-all flip:stream-space-eq-distr)

also have ... = distr (?S
⊗

M?S) ?T ((λ(x, y). stake n x@−y)◦(λ(x, y). (to-stream x,to-stream
y)))

by (intro distr-distr 0) (simp add: measurable-pair-iff)
also have ... = distr (?S

⊗
M?S) ?T ((λ(x, y). stake n (to-stream x) @− to-stream y))

by (simp add:comp-def case-prod-beta ′)
also have ... = distr (?S

⊗
M?S) ?T (to-stream ◦ (λ(x, y). comb-seq n x y))

using to-stream-comb-seq-eq[symmetric]
by (intro arg-cong2 [where f=(λx y. distr x ?T y)] ext) auto

also have ... = distr (distr (?S
⊗

M?S) ?S (λ(x, y). comb-seq n x y)) ?T to-stream
by (intro distr-distr [symmetric] measurable-comb-seq) simp

also have ... = distr ?S ?T to-stream
by (subst S .PiM-comb-seq) simp

also have ... = ?R
unfolding stream-space-eq-distr [symmetric] by simp

finally show ?L = ?R
by simp

qed

The type for the coin flip space is isomorphic to bool stream. Nevertheless, we introduce
it as a separate type to be able to introduce a topology and mark it as a lazy type for
code-generation:
codatatype coin-stream = Coin (chd:bool) (ctl:coin-stream)

code-lazy-type coin-stream

primcorec from-coins :: coin-stream ⇒ bool stream where
from-coins coins = chd coins ## (from-coins (ctl coins))

primcorec to-coins :: bool stream ⇒ coin-stream where
to-coins str = Coin (shd str) (to-coins (stl str))

lemma to-from-coins: to-coins (from-coins x) = x
by (rule coin-stream.coinduct[where R=(λx y. x = to-coins (from-coins y))]) simp-all

lemma from-to-coins: from-coins (to-coins x) = x
by (rule stream.coinduct[where R=(λx y. x = from-coins (to-coins y))]) simp-all

lemma bij-to-coins: bij to-coins
by (intro bij-betwI [where g=from-coins] to-from-coins from-to-coins) auto

lemma bij-from-coins: bij from-coins
by (intro bij-betwI [where g=to-coins] to-from-coins from-to-coins) auto

definition cshift where cshift x y = to-coins (x @− from-coins y)
definition cnth where cnth x n = from-coins x !! n
definition ctake where ctake n x = stake n (from-coins x)

9

definition cdrop where cdrop n x = to-coins (sdrop n (from-coins x))
definition rel-coins where rel-coins x y = (to-coins x = y)
definition cprefix where cprefix x y ←→ ctake (length x) y = x
definition cconst where cconst x = to-coins (sconst x)

context
includes lifting-syntax

begin

lemma bi-unique-rel-coins [transfer-rule]: bi-unique rel-coins
unfolding rel-coins-def using inj-onD[OF bij-is-inj[OF bij-to-coins]]
by (intro bi-uniqueI left-uniqueI right-uniqueI) auto

lemma bi-total-rel-coins [transfer-rule]: bi-total rel-coins
unfolding rel-coins-def using from-to-coins to-from-coins
by (intro bi-totalI left-totalI right-totalI) auto

lemma cnth-transfer [transfer-rule]: (rel-coins ===> (=) ===> (=)) snth cnth
unfolding rel-coins-def cnth-def rel-fun-def by (auto simp:from-to-coins)

lemma cshift-transfer [transfer-rule]: ((=) ===> rel-coins ===> rel-coins) shift cshift
unfolding rel-coins-def cshift-def rel-fun-def by (auto simp:from-to-coins)

lemma ctake-transfer [transfer-rule]: ((=) ===> rel-coins ===> (=)) stake ctake
unfolding rel-coins-def ctake-def rel-fun-def by (auto simp:from-to-coins)

lemma cdrop-transfer [transfer-rule]: ((=) ===> rel-coins ===> rel-coins) sdrop cdrop
unfolding rel-coins-def cdrop-def rel-fun-def by (auto simp:from-to-coins)

lemma chd-transfer [transfer-rule]: (rel-coins ===> (=)) shd chd
unfolding rel-coins-def rel-fun-def by (auto simp:from-to-coins)

lemma ctl-transfer [transfer-rule]: (rel-coins ===> rel-coins) stl ctl
unfolding rel-coins-def rel-fun-def by (auto simp:from-to-coins)

lemma cconst-transfer [transfer-rule]: ((=) ===> rel-coins) sconst cconst
unfolding rel-coins-def cconst-def rel-fun-def by (auto simp:from-to-coins)

end

lemma coins-eq-iff :
assumes

∧
i. cnth x i = cnth y i

shows x = y
proof −

have (∀ i. cnth x i = cnth y i) −→ x = y
by transfer (use stream-eq-iff in auto)

thus ?thesis using assms by simp
qed

lemma length-ctake [simp]: length (ctake n x) = n
by transfer (rule length-stake)

lemma ctake-nth[simp]: m < n =⇒ ctake n s ! m = cnth s m
by transfer (rule stake-nth)

lemma ctake-cdrop: cshift (ctake n s) (cdrop n s) = s
by transfer (rule stake-sdrop)

10

lemma cshift-append[simp]: cshift (p@q) s = cshift p (cshift q s)
by transfer (rule shift-append)

lemma cshift-empty[simp]: cshift [] xs = xs
by transfer simp

lemma ctake-null[simp]: ctake 0 xs = []
by transfer simp

lemma ctake-Suc[simp]: ctake (Suc n) s = chd s # ctake n (ctl s)
by transfer simp

lemma cdrop-null[simp]: cdrop 0 s = s
by transfer simp

lemma cdrop-Suc[simp]: cdrop (Suc n) s = cdrop n (ctl s)
by transfer simp

lemma chd-shift[simp]: chd (cshift xs s) = (if xs = [] then chd s else hd xs)
by transfer simp

lemma ctl-shift[simp]: ctl (cshift xs s) = (if xs = [] then ctl s else cshift (tl xs) s)
by transfer simp

lemma shd-sconst[simp]: chd (cconst x) = x
by transfer simp

lemma take-ctake: take n (ctake m s) = ctake (min n m) s
by transfer (rule take-stake)

lemma ctake-add[simp]: ctake m s @ ctake n (cdrop m s) = ctake (m + n) s
by transfer (rule stake-add)

lemma cdrop-add[simp]: cdrop m (cdrop n s) = cdrop (n + m) s
by transfer (rule sdrop-add)

lemma cprefix-iff : cprefix x y ←→ (∀ i < length x. cnth y i = x ! i) (is ?L ←→ ?R)
proof −

have ?L ←→ ctake (length x) y = x
unfolding cprefix-def by simp

also have ... ←→ (∀ i < length x . (ctake (length x) y) ! i = x ! i)
by (simp add: list-eq-iff-nth-eq)

also have ... ←→ ?R
by (intro all-cong) simp

finally show ?thesis by simp
qed

A non-empty shift is not idempotent:
lemma empty-if-shift-idem:

assumes
∧

cs. cshift h cs = cs
shows h = []

proof (cases h)
case Nil
then show ?thesis by simp

next
case (Cons hh ht)
have [hh] = ctake 1 (cshift (hh#ht) (cconst (¬ hh)))

by simp

11

also have ... = ctake 1 (cconst (¬ hh))
using assms unfolding Cons by simp

also have ... = [¬ hh] by simp
finally show ?thesis by simp

qed

Stream version of prefix-length-prefix:
lemma cprefix-length-prefix:

assumes length x ≤ length y
assumes cprefix x bs cprefix y bs
shows prefix x y

proof −
have take (length x) y = take (length x) (ctake (length y) bs)

using assms(3) unfolding cprefix-def by simp
also have ... = ctake (length x) bs

unfolding take-ctake using assms by simp
also have ... = x

using assms(2) unfolding cprefix-def by simp
finally have take (length x) y = x

by simp
thus ?thesis

by (metis take-is-prefix)
qed

lemma same-prefix-not-parallel:
assumes cprefix x bs cprefix y bs
shows ¬(x ‖ y)
using assms cprefix-length-prefix
by (cases length x ≤ length y) auto

lemma ctake-shift:
ctake m (cshift xs ys) = (if m ≤ length xs then take m xs else xs @ ctake (m − length xs) ys)

proof (induction m arbitrary: xs)
case (Suc m xs)
thus ?case

by (cases xs) auto
qed auto

lemma ctake-shift-small [simp]: m ≤ length xs =⇒ ctake m (cshift xs ys) = take m xs
and ctake-shift-big [simp]:

m ≥ length xs =⇒ ctake m (cshift xs ys) = xs @ ctake (m − length xs) ys
by (subst ctake-shift; simp)+

lemma cdrop-shift:
cdrop m (cshift xs ys) = (if m ≤ length xs then cshift (drop m xs) ys else cdrop (m − length xs)

ys)
proof (induction m arbitrary: xs)

case (Suc m xs)
thus ?case

by (cases xs) auto
qed auto

lemma cdrop-shift-small [simp]:
m ≤ length xs =⇒ cdrop m (cshift xs ys) = cshift (drop m xs) ys

and cdrop-shift-big [simp]:
m ≥ length xs =⇒ cdrop m (cshift xs ys) = cdrop (m − length xs) ys

by (subst cdrop-shift; simp)+

12

Infrastructure for building coin streams:
primcorec cmap-iterate :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ coin-stream

where
cmap-iterate m f s = Coin (m s) (cmap-iterate m f (f s))

lemma cmap-iterate: cmap-iterate m f s = to-coins (smap m (siterate f s))
proof (rule coin-stream.coinduct

[where R=(λxs ys. (∃ x. xs = cmap-iterate m f x ∧ ys= to-coins (smap m (siterate f x))))])
show ∃ x. cmap-iterate m f s = cmap-iterate m f x ∧

to-coins (smap m (siterate f s)) = to-coins (smap m (siterate f x))
by (intro exI [where x=s] refl conjI)

next
fix xs ys
assume ∃ x. xs = cmap-iterate m f x ∧ ys = to-coins (smap m (siterate f x))
then obtain x where 0 :xs = cmap-iterate m f x ys = to-coins (smap m (siterate f x))

by auto

have chd xs = chd ys
unfolding 0 by (subst cmap-iterate.ctr , subst siterate.ctr) simp

moreover have ctl xs = cmap-iterate m f (f x)
unfolding 0 by (subst cmap-iterate.ctr) simp

moreover have ctl ys = to-coins(smap m(siterate f (f x)))
unfolding 0 by (subst siterate.ctr) simp

ultimately show
chd xs = chd ys ∧ (∃ x. ctl xs=cmap-iterate m f x ∧ ctl ys = to-coins (smap m (siterate f x)))
by auto

qed

definition build-coin-gen :: (′a ⇒ bool list) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ coin-stream
where

build-coin-gen m f s = cmap-iterate (hd ◦ fst)
(λ(r ,s ′). (if tl r = [] then (m s ′, f s ′) else (tl r , s ′))) (m s, f s)

lemma build-coin-gen-aux:
fixes f :: ′a ⇒ ′b stream
assumes

∧
x. (∃n y. n 6= [] ∧ f x = n@−f y ∧ g x = n@−g y)

shows f x = g x
proof (rule stream.coinduct[where R=(λxs ys. (∃ x n. xs = n @− (f x) ∧ ys = n @− (g x)))])

show ∃ y n. f x = n @−(f y) ∧ g x = n @− (g y)
by (intro exI [where x=x] exI [where x=[]]) auto

next
fix xs ys :: ′b stream
assume ∃ x n. xs = n @− (f x) ∧ ys = n @− (g x)
hence ∃ x n. n 6= [] ∧ xs = n @− (f x) ∧ ys = n @− (g x)

using assms by (metis shift.simps(1))
then obtain x n where 0 :xs = n @− (f x) ys = n @− (g x) n 6= []

by auto

have shd xs = shd ys
using 0 by simp

moreover have stl xs = tl n@−(f x) stl ys = tl n@−(g x)
using 0 by auto

ultimately show shd xs = shd ys ∧ (∃ x n. stl xs = n@− (f x) ∧ stl ys = n@− (g x))
by auto

qed

lemma build-coin-gen:
assumes

∧
x. m x 6= []

13

shows build-coin-gen m f s = to-coins (flat (smap m (siterate f s)))
proof −

let ?g = (λ(r , s ′). if tl r = [] then (m s ′, f s ′) else (tl r , s ′))

have liter : smap (hd ◦ fst) (siterate ?g (bs, x)) =
bs @− (smap (hd ◦ fst) (siterate ?g (m x, f x))) if bs 6= [] for x bs
using that

proof (induction bs rule:list-nonempty-induct)
case (single y)
then show ?case by (subst siterate.ctr) simp

next
case (cons y ys)
then show ?case by (subst siterate.ctr) (simp add:comp-def)

qed
have smap(hd◦fst) (siterate ?g (m x,f x)) = m x@− smap(hd◦fst) (siterate ?g (m (f x), f (f x)))

for x by (subst liter [OF assms]) auto
moreover have flat (smap m (siterate f x)) = m x @− flat (smap m (siterate f (f x))) for x

by (subst siterate.ctr) (simp add:flat-Stream[OF assms])

ultimately have ∃n y. n 6= [] ∧
smap (hd ◦ fst) (siterate ?g (m x, f x)) = n @− smap (hd ◦ fst) (siterate ?g (m y, f y)) ∧
flat (smap m (siterate f x)) = n @− flat (smap m (siterate f y)) for x
by (intro exI [where x=m x] exI [where x=f x] conjI assms)

hence smap (hd ◦ fst) (siterate ?g (m s ′, f s ′)) = flat (smap m (siterate f s ′)) for s ′

by (rule build-coin-gen-aux[where f=(λx. smap (hd ◦ fst) (siterate ?g (m x, f x)))])
thus ?thesis

unfolding build-coin-gen-def cmap-iterate by simp
qed

Measure space for coin streams:
definition coin-space :: coin-stream measure

where coin-space = embed-measure (stream-space (measure-pmf (pmf-of-set UNIV))) to-coins

open-bundle coin-space-syntax
begin
notation coin-space (‹B›)
end

lemma space-coin-space: space B = UNIV
using bij-is-surj[OF bij-to-coins]
unfolding coin-space-def space-embed-measure space-stream-space by simp

lemma B-t-eq-distr : B = distr (stream-space (pmf-of-set UNIV)) B to-coins
unfolding coin-space-def by (intro embed-measure-eq-distr bij-is-inj[OF bij-to-coins])

lemma from-coins-measurable: from-coins ∈ B →M (stream-space (pmf-of-set UNIV))
unfolding coin-space-def by (intro measurable-embed-measure1) (simp add:from-to-coins)

lemma to-coins-measurable: to-coins ∈ (stream-space (pmf-of-set UNIV)) →M B
unfolding coin-space-def
by (intro measurable-embed-measure2 bij-is-inj[OF bij-to-coins])

lemma chd-measurable: chd ∈ B →M D
proof −

have 0 :chd (to-coins x) = shd x for x
using chd-transfer unfolding rel-fun-def by auto

thus ?thesis

14

unfolding coin-space-def by (intro measurable-embed-measure1) simp
qed

lemma cnth-measurable: (λxs. cnth xs i) ∈ B →M D
unfolding coin-space-def cnth-def by (intro measurable-embed-measure1) (simp add:from-to-coins)

lemma B-eq-distr :
stream-space (pmf-of-set UNIV) = distr B (stream-space (pmf-of-set UNIV)) from-coins
(is ?L = ?R)

proof −
let ?S = stream-space (pmf-of-set UNIV)
have ?R = distr (distr ?S B to-coins) ?S from-coins

using B-t-eq-distr by simp
also have ... = distr ?S ?S (from-coins ◦ to-coins)

by (intro distr-distr to-coins-measurable from-coins-measurable)
also have ... = distr ?S ?S id

unfolding id-def comp-def from-to-coins by simp
also have ... = ?L

unfolding id-def by simp
finally show ?thesis

by simp
qed

lemma B-t-finite: emeasure B (space B) = 1
proof −

let ?S = stream-space (pmf-of-set (UNIV ::bool set))
have 1 = emeasure ?S (space ?S)

by (intro prob-space.emeasure-space-1 [symmetric] prob-space.prob-space-stream-space
prob-space-measure-pmf)

also have ... = emeasure B (from-coins −‘ (space (stream-space (pmf-of-set UNIV))) ∩ space
B)

by (subst B-eq-distr) (intro emeasure-distr from-coins-measurable sets.top)
also have ... = emeasure B (space B)

unfolding space-coin-space space-stream-space vimage-def by simp
finally show ?thesis by simp

qed

interpretation coin-space: prob-space coin-space
using B-t-finite by standard

lemma distr-shd: distr B D chd = pmf-of-set UNIV (is ?L = ?R)
proof −

have ?L = distr (stream-space (measure-pmf (pmf-of-set UNIV))) D (chd ◦ to-coins)
by (subst B-t-eq-distr) (intro distr-distr to-coins-measurable chd-measurable)

also have ... = distr (stream-space (measure-pmf (pmf-of-set UNIV))) D shd
using chd-transfer unfolding rel-fun-def rel-coins-def by (simp add:comp-def)

also have ... = ?R
using coin-space.distr-stream-space-shd by auto

finally show ?thesis by simp
qed

lemma cshift-measurable: cshift x ∈ B →M B
proof −

have (to-coins ◦ shift x ◦ from-coins) ∈ B →M B
by (intro measurable-comp[OF from-coins-measurable] measurable-comp[OF - to-coins-measurable]

shift-measurable) auto
thus ?thesis

unfolding cshift-def by (simp add:comp-def)

15

qed

lemma cdrop-measurable: cdrop x ∈ B →M B
proof −

have (to-coins ◦ sdrop x ◦ from-coins) ∈ B →M B
by (intro measurable-comp[OF from-coins-measurable] measurable-comp[OF - to-coins-measurable]

shift-measurable) auto
thus ?thesis

unfolding cdrop-def by (simp add:comp-def)
qed

lemma ctake-measurable: ctake k ∈ B →M D
proof −

have stake k ◦ from-coins ∈ B →M D
by (intro measurable-comp[OF from-coins-measurable]) simp

thus ?thesis
unfolding ctake-def by (simp add:comp-def)

qed

lemma branch-coin-space:
(λ(x, y). cshift (ctake n x) y) ∈ B

⊗
M B →M B

distr (B
⊗

M B) B (λ(x,y). cshift (ctake n x) y) = B (is ?L = ?R)
proof −

let ?M = stream-space (measure-pmf (pmf-of-set UNIV))
let ?f = (λ(x,y). stake n x @− y)
let ?g = map-prod from-coins from-coins

have (λ(x, y). cshift (ctake n x) y) = to-coins ◦ (?f ◦ ?g)
by (simp add:comp-def cshift-def ctake-def case-prod-beta ′)

also have ... ∈ B
⊗

M B →M B
by (intro measurable-comp[OF - to-coins-measurable] measurable-comp[where N=(?M

⊗
M

?M)]
map-prod-measurable from-coins-measurable prob-space.branch-stream-space(1)
prob-space-measure-pmf)

finally show (λ(x, y). cshift (ctake n x) y) ∈ B
⊗

M B →M B
by simp

have distr (B
⊗

M B) (?M
⊗

M ?M) ?g = (distr B ?M from-coins
⊗

M distr B ?M from-coins)
unfolding map-prod-def using prob-space-measure-pmf
by (intro pair-measure-distr [symmetric] from-coins-measurable) (auto intro!:

prob-space-imp-sigma-finite prob-space.prob-space-stream-space simp:B-eq-distr [symmetric])
also have ... = ?M

⊗
M ?M

unfolding B-eq-distr [symmetric] by simp
finally have 0 : distr (B

⊗
M B) (?M

⊗
M ?M) ?g = (?M

⊗
M ?M)

by simp

have ?L = distr (B
⊗

M B) B (to-coins ◦ ?f ◦ ?g)
unfolding cshift-def ctake-def by (simp add:comp-def map-prod-def case-prod-beta ′)

also have ... = distr (distr (B
⊗

M B) (?M
⊗

M ?M) ?g) B (to-coins ◦ ?f)
by (intro distr-distr [symmetric] map-prod-measurable from-coins-measurable

measurable-comp[OF - to-coins-measurable] prob-space-measure-pmf) simp
also have ... = distr (?M

⊗
M ?M) B (to-coins ◦ ?f)

unfolding 0 by simp
also have ... = distr (distr (?M

⊗
M ?M) ?M ?f) B to-coins

by (intro distr-distr [symmetric] to-coins-measurable) simp
also have ... = distr ?M B to-coins

by (subst prob-space.branch-stream-space(2)) (auto intro:prob-space-measure-pmf)
also have ... = ?R

16

using B-t-eq-distr by simp
finally show ?L = ?R

by simp
qed

definition from-coins-t :: coin-stream ⇒ (nat ⇒ bool discrete)
where from-coins-t = snth ◦ smap discrete ◦ from-coins

definition to-coins-t :: (nat ⇒ bool discrete) ⇒ coin-stream
where to-coins-t = to-coins ◦ smap of-discrete ◦ to-stream

lemma from-to-coins-t:
from-coins-t (to-coins-t x) = x
unfolding to-coins-t-def from-coins-t-def
by (intro ext) (simp add:snth-to-stream from-to-coins of-discrete-inverse)

lemma to-from-coins-t:
to-coins-t (from-coins-t x) = x
unfolding to-coins-t-def from-coins-t-def
by (simp add:to-stream-snth to-from-coins comp-def discrete-inverse

stream.map-comp stream.map-ident)

lemma bij-to-coins-t: bij to-coins-t
by (intro bij-betwI [where g=from-coins-t] to-from-coins-t from-to-coins-t) auto

lemma bij-from-coins-t: bij from-coins-t
by (intro bij-betwI [where g=to-coins-t] to-from-coins-t from-to-coins-t) auto

instantiation coin-stream :: topological-space
begin
definition open-coin-stream :: coin-stream set ⇒ bool

where open-coin-stream U = open (from-coins-t ‘ U)

instance proof
show open (UNIV :: coin-stream set)

using bij-is-surj[OF bij-from-coins-t] unfolding open-coin-stream-def by simp
show open (S ∩ T) if open S open T for S T :: coin-stream set

using that unfolding open-coin-stream-def image-Int[OF bij-is-inj[OF bij-from-coins-t]]
by auto

show open (
⋃

K) if ∀S ∈ K . open S for K :: coin-stream set set
using that unfolding open-coin-stream-def image-Union
by auto

qed
end

definition coin-stream-basis
where coin-stream-basis = (λx. Collect (cprefix x)) ‘ UNIV

lemma image-collect-eq: f ‘ {x. A (f x)} = {x. A x} ∩ range f
by auto

lemma coin-stream-basis: topological-basis coin-stream-basis
proof −

have bij-betw (λx. (!!) (smap discrete x)) UNIV UNIV
by (intro bij-betwI [where g=smap of-discrete ◦ to-stream]) (simp-all add:to-stream-snth

snth-to-stream stream.map-comp comp-def of-discrete-inverse discrete-inverse
stream.map-ident)

hence 3 :range (λx. (!!) (smap discrete x)) = UNIV

17

using bij-is-surj by auto

obtain K :: (nat ⇒ bool discrete) set set where
K-countable: countable K and K-top-basis: topological-basis K and
K-cylinder : ∀ k∈K . ∃X . (k = PiE UNIV X) ∧ (∀ i. open (X i)) ∧ finite {i. X i 6= UNIV }

using product-topology-countable-basis by auto

have from-coins-cprefix: from-coins-t ‘ {xs. cprefix p xs} =
PiE UNIV (λi. if i < length p then {discrete (p ! i)} else UNIV) (is ?L = ?R) for p

proof −
have 2 :from-coins ‘ {xs. cprefix p xs} = {f . ∀ i < length p. f !! i = p ! i}

unfolding cprefix-iff cnth-def using bij-is-surj[OF bij-from-coins]
by (subst image-collect-eq) auto

have from-coins-t‘{xs. cprefix p xs} = (snth◦smap discrete)‘(from-coins ‘ {xs. cprefix p xs})
unfolding from-coins-t-def image-image by simp

also have ... = (snth ◦ smap discrete) ‘ {f . ∀ i < length p. f !! i = p ! i}
unfolding 2 by simp

also have ... = (λx. snth (smap discrete x)) ‘
{f . ∀ i < length p. (smap discrete f) !! i = discrete (p ! i)}
by (simp add:discrete-inject)

also have ... = {x. ∀ i<length p. x i = discrete (p ! i)} ∩ range (λx. (!!) (smap discrete x))
by (intro image-collect-eq)

also have ... = {x. ∀ i<length p. x i = discrete (p ! i)}
unfolding 3 by simp

also have ... = PiE UNIV (λi. if i < length p then {discrete (p ! i)} else UNIV)
unfolding PiE-def Pi-def by auto

finally show ?thesis
by simp

qed

have open U if 0 :U ∈ coin-stream-basis for U
proof −

obtain p where U-eq:U = {xs. cprefix p xs} using 0 unfolding coin-stream-basis-def by
auto

show ?thesis
unfolding open-coin-stream-def U-eq from-coins-cprefix
by (intro open-PiE) (auto intro:open-discrete)

qed
moreover have ∃B∈coin-stream-basis. x ∈ B ∧ B ⊆ U if open U x ∈ U for U x
proof −

have open (from-coins-t ‘ U) from-coins-t x ∈ from-coins-t ‘ U
using that unfolding open-coin-stream-def by auto

then obtain B where B: B ∈ K from-coins-t x ∈ B B ⊆ from-coins-t ‘ U
using topological-basisE [OF K-top-basis] by blast

obtain X where X : B = PiE UNIV X and fin-X : finite {i. X i 6= UNIV }
using K-cylinder B(1) by auto

define Z where Z i = (X i 6= UNIV) for i
define n where n = (if {i. X i 6= UNIV } 6= {} then Suc (Max {i. X i 6= UNIV }) else 0)
have i < n if Z i for i

using fin-X that less-Suc-eq-le unfolding n-def Z-def [symmetric] by (auto split:if-split-asm)
hence X-univ: X i = UNIV if i ≥ n for i

using that leD unfolding Z-def by auto

define R where R = {xs. cprefix (ctake n x) xs}
have {discrete (ctake n x ! i)} ⊆ X i if i < n for i
proof −

have {discrete (ctake n x ! i)} = {discrete (cnth x i)} using that

18

by simp
also have ... = {from-coins-t x i}

unfolding from-coins-t-def cnth-def by simp
also have ... ⊆ X i

using B(2) unfolding X PiE-def Pi-def by auto
finally show ?thesis

by simp
qed
hence from-coins-t ‘ R ⊆ PiE UNIV X

using X-univ unfolding R-def from-coins-cprefix
by (intro PiE-mono) auto

moreover have ... ⊆ from-coins-t ‘ U
using B(3) X by simp

ultimately have from-coins-t ‘ R ⊆ from-coins-t ‘ U
by simp

hence R ⊆ U
using bij-is-inj[OF bij-from-coins-t]
by (simp add: inj-image-eq-iff subset-image-iff)

moreover have R ∈ coin-stream-basis x ∈ R
unfolding R-def coin-stream-basis-def by (auto simp:cprefix-def)

ultimately show ?thesis
by auto

qed
ultimately show ?thesis

by (intro topological-basisI) auto
qed

lemma coin-steam-open: open {xs. cprefix x xs}
by (intro topological-basis-open[OF coin-stream-basis]) (simp add:coin-stream-basis-def)

instance coin-stream :: second-countable-topology
proof

show ∃ (B :: coin-stream set set). countable B ∧ open = generate-topology B
by (intro exI [where x=coin-stream-basis] topological-basis-imp-subbasis conjI

coin-stream-basis) (simp add:coin-stream-basis-def)
qed

instantiation coin-stream :: uniformity-dist
begin
definition dist-coin-stream :: coin-stream ⇒ coin-stream ⇒ real

where dist-coin-stream x y = dist (from-coins-t x) (from-coins-t y)

definition uniformity-coin-stream :: (coin-stream × coin-stream) filter
where uniformity-coin-stream = (INF e∈{0 <..}. principal {(x, y). dist x y < e})

instance proof
show uniformity = (INF e∈{0 <..}. principal {(x, y). dist (x::coin-stream) y < e})

unfolding uniformity-coin-stream-def by simp
qed
end

lemma in-from-coins-iff : x ∈ from-coins-t ‘ U ←→ (to-coins-t x ∈ U)
using to-from-coins-t from-to-coins-t by (simp add:image-iff) metis

instantiation coin-stream :: metric-space
begin
instance proof

show open U = (∀ x∈U . ∀ F (x ′, y) in uniformity. x ′ = x −→ y ∈ U) for U :: coin-stream set

19

proof −
have open U ←→ open (from-coins-t ‘ U)

unfolding open-coin-stream-def by simp
also have ... ←→ (∀ x∈U . ∃ e>0 . ∀ y. dist (from-coins-t x) y < e −→ y ∈ from-coins-t ‘ U)

unfolding fun-open-ball-aux by auto
also have ... ←→ (∀ x∈U . ∃ e>0 . ∀ y ∈ to-coins-t ‘ UNIV . dist x y < e −→ y ∈ U)

unfolding dist-coin-stream-def by (intro ball-cong refl ex-cong)
(simp add: from-to-coins-t in-from-coins-iff)

also have ... ←→ (∀ x∈U . ∃ e>0 . ∀ y. dist x y < e −→ y ∈ U)
using bij-is-surj[OF bij-to-coins-t] by simp

finally have open U = (∀ x∈U . ∃ e>0 . ∀ y. dist x y < e −→ y ∈ U)
by simp

thus ?thesis
unfolding eventually-uniformity-metric by simp

qed
show (dist x y = 0) = (x = y) for x y :: coin-stream

unfolding dist-coin-stream-def by (metis dist-eq-0-iff to-from-coins-t)
show dist x y ≤ dist x z + dist y z for x y z :: coin-stream

unfolding dist-coin-stream-def by (intro dist-triangle2)
qed
end

lemma from-coins-t-u-continuous: uniformly-continuous-on UNIV from-coins-t
unfolding uniformly-continuous-on-def dist-coin-stream-def by auto

lemma to-coins-t-u-continuous: uniformly-continuous-on UNIV to-coins-t
unfolding uniformly-continuous-on-def dist-coin-stream-def from-to-coins-t by auto

lemma to-coins-t-continuous: continuous-on UNIV to-coins-t
using to-coins-t-u-continuous uniformly-continuous-imp-continuous by auto

instance coin-stream :: complete-space
proof

show convergent X if Cauchy X for X :: nat ⇒ coin-stream
proof −

have Cauchy (from-coins-t ◦ X)
using uniformly-continuous-imp-Cauchy-continuous[unfolded Cauchy-continuous-on-def]

from-coins-t-u-continuous that by auto
hence convergent (from-coins-t ◦ X)

by (rule Cauchy-convergent)
then obtain x where (from-coins-t ◦ X) −−−−→ x

unfolding convergent-def by auto
moreover have isCont to-coins-t x

using to-coins-t-continuous continuous-on-eq-continuous-within by blast
ultimately have (to-coins-t ◦ from-coins-t ◦ X) −−−−→ to-coins-t x

using isCont-tendsto-compose by (auto simp add:comp-def)
thus convergent X

unfolding convergent-def comp-def to-from-coins-t by auto
qed

qed

lemma at-least-borelI :
assumes topological-basis K
assumes countable K
assumes K ⊆ sets M
assumes open U
shows U ∈ sets M

proof −

20

obtain K ′ where K ′-range: K ′ ⊆ K and
⋃

K ′ = U
using assms(1 ,4) unfolding topological-basis-def by blast

hence U =
⋃

K ′ by simp
also have ... ∈ sets M

using K ′-range assms(2 ,3) countable-subset
by (intro sets.countable-Union) auto

finally show ?thesis by simp
qed

lemma measurable-sets-coin-space:
assumes f ∈ measurable B A
assumes Collect P ∈ sets A
shows {xs. P (f xs)} ∈ sets B

proof −
have {xs. P (f xs)} = f −‘ Collect P ∩ space B

unfolding vimage-def space-coin-space by simp
also have ... ∈ sets B

by (intro measurable-sets[OF assms(1 ,2)])
finally show ?thesis by simp

qed

lemma coin-space-is-borel-measure:
assumes open U
shows U ∈ sets B

proof −
have 0 :countable coin-stream-basis

unfolding coin-stream-basis-def by simp

have cnth-sets: {xs. cnth xs i = v} ∈ sets B for i v
by (intro measurable-sets-coin-space[OF cnth-measurable]) auto

have {xs. cprefix x xs} ∈ sets B for x
proof (cases x 6= [])

case True
have {xs. cprefix x xs} = (

⋂
i < length x. {xs. cnth xs i = x ! i})

unfolding cprefix-iff by auto
also have ... ∈ sets B

using cnth-sets True
by (intro sets.countable-INT image-subsetI) auto

finally show ?thesis by simp
next

case False
hence {xs. cprefix x xs} = space B

unfolding cprefix-iff space-coin-space by simp
also have ... ∈ sets B

by simp
finally show ?thesis by simp

qed
hence 1 :coin-stream-basis ⊆ sets B

unfolding coin-stream-basis-def by auto
show ?thesis

using at-least-borelI [OF coin-stream-basis 0 1 assms] by simp
qed

This is the upper topology on ′a option with the natural partial order on ′a option.
definition option-ud :: ′a option topology

where option-ud = topology (λS . S=UNIV ∨ None /∈ S)

21

lemma option-ud-topology: istopology (λS . S=UNIV ∨ None /∈ S) (is istopology ?T)
proof −

have ?T (U ∩ V) if ?T U ?T V for U V using that by auto
moreover have ?T (

⋃
K) if

∧
U . U ∈ K =⇒ ?T U for K using that by auto

ultimately show ?thesis unfolding istopology-def by auto
qed

lemma openin-option-ud: openin option-ud S ←→ (S = UNIV ∨ None /∈ S)
unfolding option-ud-def by (subst topology-inverse ′[OF option-ud-topology]) auto

lemma topspace-option-ud: topspace option-ud = UNIV
proof −

have UNIV ⊆ topspace option-ud by (intro openin-subset) (simp add:openin-option-ud)
thus ?thesis by auto

qed

lemma contionuos-into-option-udI :
assumes

∧
x. openin X (f −‘ {Some x} ∩ topspace X)

shows continuous-map X option-ud f
proof −

have openin X {x ∈ topspace X . f x ∈ U} if openin option-ud U for U
proof (cases U = UNIV)

case True
then show ?thesis by simp

next
case False
define V where V = the ‘ U
have None /∈ U

using that False unfolding openin-option-ud by simp
hence Some ‘ V = id ‘ U

unfolding V-def image-image id-def
by (intro image-cong refl) (metis option.exhaust-sel)

hence U = Some ‘ V by simp
hence {x ∈ topspace X . f x ∈ U} = (

⋃
v ∈ V . f −‘ {Some v} ∩ topspace X) by auto

moreover have openin X (
⋃

v ∈ V . f −‘ {Some v} ∩ topspace X)
using assms by (intro openin-Union) auto

ultimately show ?thesis by auto
qed
thus ?thesis

unfolding continuous-map topspace-option-ud by auto
qed

lemma map-option-continuous:
continuous-map option-ud option-ud (map-option f)
by (intro contionuos-into-option-udI) (simp add:topspace-option-ud vimage-def openin-option-ud)

end

4 Randomized Algorithms (Internal Representation)
theory Randomized-Algorithm-Internal

imports
HOL−Probability.Probability
Coin-Space
Tau-Additivity
Zeta-Function.Zeta-Library

22

begin

This section introduces the internal representation for randomized algorithms. For ease of
use, we will introduce in Section 5 a typedef for the monad which is easier to work with.

This is the inverse of set-option
definition the-elem-opt :: ′a set ⇒ ′a option

where the-elem-opt S = (if Set.is-singleton S then Some (the-elem S) else None)

lemma the-elem-opt-empty[simp]: the-elem-opt {} = None
unfolding the-elem-opt-def is-singleton-def by (simp split:if-split-asm)

lemma the-elem-opt-single[simp]: the-elem-opt {x} = Some x
unfolding the-elem-opt-def by simp

definition at-most-one :: ′a set ⇒ bool
where at-most-one S ←→ (∀ x y. x ∈ S ∧ y ∈ S −→ x = y)

lemma at-most-one-cases[consumes 1]:
assumes at-most-one S
assumes P {the-elem S}
assumes P {}
shows P S

proof (cases S = {})
case True
then show ?thesis using assms by auto

next
case False
then obtain x where x ∈ S by auto
hence S = {x} using assms(1) unfolding at-most-one-def by auto
thus ?thesis using assms(2) by simp

qed

lemma the-elem-opt-Some-iff [simp]: at-most-one S =⇒ the-elem-opt S = Some x ←→ S = {x}
by (induction S rule:at-most-one-cases) auto

lemma the-elem-opt-None-iff [simp]: at-most-one S =⇒ the-elem-opt S = None ←→ S = {}
by (induction S rule:at-most-one-cases) auto

The following is the fundamental type of the randomized algorithms, which are represented
as functions that take an infinite stream of coin flips and return the unused suffix of coin-
flips together with the result. We use the ′a option type to be able to introduce the
denotational semantics for the monad.
type-synonym ′a random-alg-int = coin-stream ⇒ (′a × coin-stream) option

The return-rai combinator, does not consume any coin-flips and thus returns the entire
stream together with the result.
definition return-rai :: ′a ⇒ ′a random-alg-int

where return-rai x bs = Some (x, bs)

The bind-rai combinator passes the coin-flips to the first algorithm, then passes the re-
maining coin flips to the second function, and returns the unused coin-flips from both
steps.
definition bind-rai :: ′a random-alg-int ⇒ (′a ⇒ ′b random-alg-int) ⇒ ′b random-alg-int

where bind-rai m f bs =
do {

23

(r , bs ′) ← m bs;
f r bs ′

}

adhoc-overloading Monad-Syntax.bind
 bind-rai

The coin-rai combinator consumes one coin-flip and return it as the result, while the tail
of the coin flips are returned as unused.
definition coin-rai :: bool random-alg-int

where coin-rai bs = Some (chd bs, ctl bs)

This representation is similar to the model proposed by Hurd [5] 2. It is also closely related
to the construction of parser monads in functional languages [6].
We also had following alternatives considered, with various advantages and drawbacks:

• Returning the count of used coin flips: Instead of returning a suffix of the input stream
a randomized algorithm could also return the number of used coin flips, which then
would allow the definition of the bind function, in a way that performs the appropriate
shift in the stream according to the returned number. An advantage of this model,
is that it makes the number of used coin-flips immediately available. (As we will see
below, this is still possible even in the formalized model, albeit with some more work.)
The main disadvantage of this model is that in scenarios, where the coin-flips cannot
be computed in a random-access way, it leads to performance degradation. Indeed it
is easy to construct example algorithms, which incur asymptotically quadratic slow-
down compared to the formalized model.

• Trees of coin-flips: Another model we were considering is to require an infinite tree
of coin-flips as input instead of a stream. Here the idea is that each bind operation
would pass the left sub-tree to the first algorithm and the right sub-tree to the second
algorithm. This model has the dis-advantage that the resulting ‘’monad”, does not
fulfill the associativity law. Moreover many PRG’s are designed and tested in the
streaming sense, and there is not a lot of research into the performance of PRGs
with tree structured output. (A related idea was to still use a stream as input, and
split it into two sub-streams for example by the parity of the stream position. This
alternative also suffers from the lack of associativity problem and may lead to a lot
of unused coin flips.)

Another reason for using the formalized representation is compatibility with linear types [1],
if support for them are introduced in Isabelle in future.

Monad laws:
lemma return-bind-rai: bind-rai (return-rai x) g = g x

unfolding bind-rai-def return-rai-def by simp

lemma bind-rai-assoc: bind-rai (bind-rai f g) h = bind-rai f (λx. bind-rai (g x) h)
unfolding bind-rai-def by (simp add:case-prod-beta ′)

lemma bind-return-rai: bind-rai m return-rai = m
unfolding bind-rai-def return-rai-def by simp

definition wf-on-prefix :: ′a random-alg-int ⇒ bool list ⇒ ′a ⇒ bool where
wf-on-prefix f p r = (∀ cs. f (cshift p cs) = Some (r ,cs))

definition wf-random :: ′a random-alg-int ⇒ bool where
2Although we were not aware of the technical report, when initially considering this representation.

24

wf-random f ←→ (∀ bs.
case f bs of

None ⇒ True |
Some (r ,bs ′) ⇒ (∃ p. cprefix p bs ∧ wf-on-prefix f p r))

definition range-rm :: ′a random-alg-int ⇒ ′a set
where range-rm f = Some −‘ (range (map-option fst ◦ f))

lemma in-range-rmI :
assumes r bs = Some (y, n)
shows y ∈ range-rm r

proof −
have Some (y, n) ∈ range r

using assms[symmetric] by auto
thus ?thesis

unfolding range-rm-def using fun.set-map by force
qed

definition distr-rai :: ′a random-alg-int ⇒ ′a option measure
where distr-rai f = distr B D (map-option fst ◦ f)

lemma wf-randomI :
assumes

∧
bs. f bs 6= None =⇒ (∃ p r . cprefix p bs ∧ wf-on-prefix f p r)

shows wf-random f
proof −

have ∃ p. cprefix p bs ∧ wf-on-prefix f p r if 0 :f bs = Some (r , bs ′) for bs r bs ′

proof −
obtain p r ′ where 1 :cprefix p bs and 2 :wf-on-prefix f p r ′

using assms 0 by force
have f bs = f (cshift p (cdrop (length p) bs))

using 1 unfolding cprefix-def by (metis ctake-cdrop)
also have ... = Some (r ′, cdrop (length p) bs)

using 2 unfolding wf-on-prefix-def by auto
finally have f bs = Some (r ′, cdrop (length p) bs)

by simp
hence r = r ′ using 0 by simp
thus ?thesis using 1 2 by auto

qed
thus ?thesis

unfolding wf-random-def by (auto split:option.split)
qed

lemma wf-on-prefix-bindI :
assumes wf-on-prefix m p r
assumes wf-on-prefix (f r) q s
shows wf-on-prefix (m >>= f) (p@q) s

proof −
have (m >>= f) (cshift (p@q) cs) = Some (s, cs) for cs
proof −

have (m >>= f) (cshift (p@q) cs) = (m >>= f) (cshift p (cshift q cs))
by simp

also have ... = (f r) (cshift q cs)
using assms unfolding wf-on-prefix-def bind-rai-def by simp

also have ... = Some (s,cs)
using assms unfolding wf-on-prefix-def by simp

finally show ?thesis by simp
qed
thus ?thesis

25

unfolding wf-on-prefix-def by simp
qed

lemma wf-bind:
assumes wf-random m
assumes

∧
x. x ∈ range-rm m =⇒ wf-random (f x)

shows wf-random (m >>= f)
proof (rule wf-randomI)

fix bs
assume (m >>= f) bs 6= None
then obtain x bs ′ y bs ′′ where 1 : m bs = Some (x,bs ′) and 2 :f x bs ′ = Some (y, bs ′′)

unfolding bind-rai-def by (cases m bs) auto
hence wf : wf-random (f x)

by (intro assms(2) in-range-rmI) auto
obtain p where 5 :wf-on-prefix m p x and 3 :cprefix p bs

using assms(1) 1 unfolding wf-random-def by (auto split:option.split-asm)
have 4 :bs = cshift p (cdrop (length p) bs)

using 3 unfolding cprefix-def by (metis ctake-cdrop)
hence m bs = Some (x, cdrop (length p) bs)

using 5 unfolding wf-on-prefix-def by metis
hence bs ′ = cdrop (length p) bs

using 1 by auto
hence 6 :bs = cshift p bs ′

using 4 by auto

obtain q where 7 :wf-on-prefix (f x) q y and 8 :cprefix q bs ′

using wf 2 unfolding wf-random-def by (auto split:option.split-asm)

have cprefix (p@q) bs
unfolding 6 using 8 unfolding cprefix-def by auto

moreover have wf-on-prefix (m >>= f) (p@q) y
by (intro wf-on-prefix-bindI [OF 5] 7)

ultimately show ∃ p r . cprefix p bs ∧ wf-on-prefix (m >>= f) p r
by auto

qed

lemma wf-return:
wf-random (return-rai x)

proof (rule wf-randomI)
fix bs assume return-rai x bs 6= None
have wf-on-prefix (return-rai x) [] x

unfolding wf-on-prefix-def return-rai-def by auto
moreover have cprefix [] bs

unfolding cprefix-def by auto
ultimately show ∃ p r . cprefix p bs ∧ wf-on-prefix (return-rai x) p r

by auto
qed

lemma wf-coin:
wf-random (coin-rai)

proof (rule wf-randomI)
fix bs assume coin-rai bs 6= None
have wf-on-prefix coin-rai [chd bs] (chd bs)

unfolding wf-on-prefix-def coin-rai-def by auto
moreover have cprefix [chd bs] bs

unfolding cprefix-def by auto
ultimately show ∃ p r . cprefix p bs ∧ wf-on-prefix coin-rai p r

26

by auto
qed

definition ptree-rm :: ′a random-alg-int ⇒ bool list set
where ptree-rm f = {p. ∃ r . wf-on-prefix f p r}

definition eval-rm :: ′a random-alg-int ⇒ bool list ⇒ ′a where
eval-rm f p = fst (the (f (cshift p (cconst False))))

lemma eval-rmD:
assumes wf-on-prefix f p r
shows eval-rm f p = r
using assms unfolding wf-on-prefix-def eval-rm-def by auto

lemma wf-on-prefixD:
assumes wf-on-prefix f p r
assumes cprefix p bs
shows f bs = Some (eval-rm f p, cdrop (length p) bs)

proof −
have 0 :bs = cshift p (cdrop (length p) bs)

using assms(2) unfolding cprefix-def by (metis ctake-cdrop)
hence f bs = Some (r , cdrop (length p) bs)

using assms(1) 0 unfolding wf-on-prefix-def by metis
thus ?thesis

using eval-rmD[OF assms(1)] by simp
qed

lemma prefixes-parallel-helper :
assumes p ∈ ptree-rm f
assumes q ∈ ptree-rm f
assumes prefix p q
shows p = q

proof −
obtain h where 0 :q = p@h

using assms(3) prefixE that by auto
obtain r1 where 1 :wf-on-prefix f p r1

using assms(1) unfolding ptree-rm-def by auto
obtain r2 where 2 :wf-on-prefix f q r2

using assms(2) unfolding ptree-rm-def by auto
have x = cshift h x for x :: coin-stream
proof −

have Some (r2 , x) = f (cshift q x)
using 2 unfolding wf-on-prefix-def by auto

also have ... = f (cshift p (cshift h x))
using 0 by auto

also have ... = Some (r1 , cshift h x)
using 1 unfolding wf-on-prefix-def by auto

finally show x = cshift h x
by simp

qed
hence h = []

using empty-if-shift-idem by simp
thus ?thesis using 0 by simp

qed

lemma prefixes-parallel:
assumes p ∈ ptree-rm f
assumes q ∈ ptree-rm f

27

shows p = q ∨ p ‖ q
using prefixes-parallel-helper assms by blast

lemma prefixes-singleton:
assumes p ∈ {p. p ∈ ptree-rm f ∧ cprefix p bs}
shows {p ∈ ptree-rm f . cprefix p bs} = {p}

proof
have q = p if q ∈ ptree-rm f cprefix q bs for q

using same-prefix-not-parallel assms prefixes-parallel that by blast
thus {p ∈ ptree-rm f . cprefix p bs} ⊆ {p}

by (intro subsetI) simp
next

show {p} ⊆ {p ∈ ptree-rm f . cprefix p bs}
using assms by auto

qed

lemma prefixes-at-most-one:
at-most-one {p ∈ ptree-rm f . cprefix p x}
unfolding at-most-one-def using same-prefix-not-parallel prefixes-parallel by blast

definition consumed-prefix f bs = the-elem-opt {p ∈ ptree-rm f . cprefix p bs}

lemma wf-random-alt:
assumes wf-random f
shows f bs = map-option (λp. (eval-rm f p, cdrop (length p) bs)) (consumed-prefix f bs)

proof (cases f bs)
case None
have False if p-in: p ∈ ptree-rm f and p-pref : cprefix p bs for p
proof −

obtain r where wf : wf-on-prefix f p r using that p-in unfolding ptree-rm-def by auto
have bs = cshift p (cdrop (length p) bs)

using p-pref unfolding cprefix-def by (metis ctake-cdrop)
hence f bs 6= None

using wf unfolding wf-on-prefix-def
by (metis option.simps(3))

thus False using None by simp
qed
hence 0 :{p ∈ ptree-rm f . cprefix p bs} = {}

by auto
show ?thesis unfolding 0 None consumed-prefix-def by simp

next
case (Some a)
moreover obtain r cs where a = (r , cs) by (cases a) auto
ultimately have f bs = Some (r , cs) by simp
hence ∃ p. cprefix p bs ∧ wf-on-prefix f p r

using assms(1) unfolding wf-random-def by (auto split:option.split-asm)
then obtain p where sp: cprefix p bs and wf : wf-on-prefix f p r

by auto
hence p ∈ {p ∈ ptree-rm f . cprefix p bs}

unfolding ptree-rm-def by auto
hence 0 :{p ∈ ptree-rm f . cprefix p bs} = {p}

using prefixes-singleton by auto
show ?thesis unfolding 0 wf-on-prefixD[OF wf sp] consumed-prefix-def by simp

qed

lemma range-rm-alt:
assumes wf-random f
shows range-rm f = eval-rm f ‘ ptree-rm f (is ?L = ?R)

28

proof −
have 0 :cprefix p (cshift p (cconst False)) for p

unfolding cprefix-def by auto
have ?L = {x. ∃ bs. map-option (eval-rm f) (consumed-prefix f bs) = Some x}

unfolding range-rm-def comp-def by (subst wf-random-alt[OF assms])
(simp add:map-option.compositionality comp-def vimage-def image-iff eq-commute)

also have ... = {x. ∃ p bs. x = eval-rm f p ∧ consumed-prefix f bs = Some p}
unfolding map-option-eq-Some
by (intro Collect-cong) metis

also have ... = {x. ∃ p. p ∈ptree-rm f ∧ x = eval-rm f p}
unfolding consumed-prefix-def the-elem-opt-Some-iff [OF prefixes-at-most-one]
using 0 prefixes-singleton
by (intro Collect-cong) blast

also have ... = ?R
by auto

finally show ?thesis
by simp

qed

lemma consumed-prefix-some-iff :
consumed-prefix f bs = Some p ←→ (p ∈ ptree-rm f ∧ cprefix p bs)

proof −
have p ∈ ptree-rm f =⇒ cprefix p bs =⇒ x ∈ ptree-rm f =⇒ cprefix x bs =⇒ x = p for x

using same-prefix-not-parallel prefixes-parallel by blast
thus ?thesis

unfolding consumed-prefix-def the-elem-opt-Some-iff [OF prefixes-at-most-one]
by auto

qed

definition consumed-bits where
consumed-bits f bs = map-option length (consumed-prefix f bs)

definition used-bits-distr :: ′a random-alg-int ⇒ nat option measure
where used-bits-distr f = distr B D (consumed-bits f)

lemma wf-random-alt2 :
assumes wf-random f
shows f bs = map-option (λn. (eval-rm f (ctake n bs), cdrop n bs)) (consumed-bits f bs)
(is ?L = ?R)

proof −
have 0 :cprefix x bs if consumed-prefix f bs = Some x for x

using that the-elem-opt-Some-iff [OF prefixes-at-most-one] unfolding consumed-prefix-def by
auto

have ?L = map-option (λp. (eval-rm f p, cdrop (length p) bs)) (consumed-prefix f bs)
by (subst wf-random-alt[OF assms]) simp

also have ... = ?R
using 0 unfolding consumed-bits-def map-option.compositionality comp-def cprefix-def
by (cases consumed-prefix f bs) auto

finally show ?thesis by simp
qed

lemma consumed-prefix-none-iff :
assumes wf-random f
shows f bs = None ←→ consumed-prefix f bs = None

using wf-random-alt[OF assms] by (simp)

lemma consumed-bits-inf-iff :
assumes wf-random f

29

shows f bs = None ←→ consumed-bits f bs = None
using wf-random-alt2 [OF assms] by (simp)

lemma consumed-bits-enat-iff :
consumed-bits f bs = Some n ←→ ctake n bs ∈ ptree-rm f (is ?L = ?R)

proof
assume consumed-bits f bs = Some n
then obtain p where the-elem-opt {p ∈ ptree-rm f . cprefix p bs} = Some p and 0 : length p =

n
unfolding consumed-bits-def consumed-prefix-def by (auto split:option.split-asm)

hence p ∈ ptree-rm f cprefix p bs
unfolding the-elem-opt-Some-iff [OF prefixes-at-most-one] by auto

thus ctake n bs ∈ ptree-rm f
using 0 unfolding cprefix-def by auto

next
assume ctake n bs ∈ ptree-rm f
hence ctake n bs ∈ {p ∈ ptree-rm f . cprefix p bs}

unfolding cprefix-def by auto
hence {p ∈ ptree-rm f . cprefix p bs} = {ctake n bs}

using prefixes-singleton by auto
thus consumed-bits f bs = Some n

unfolding consumed-bits-def consumed-prefix-def by simp
qed

lemma consumed-bits-measurable: consumed-bits f ∈ B →M D
proof −

have 0 : consumed-bits f −‘ {x} ∩ space B ∈ sets B (is ?L ∈ -)
if x-ne-inf : x 6= None for x

proof −
obtain n where x-def : x = Some n

using x-ne-inf that by auto

have ?L = {bs. ∃ z. consumed-prefix f bs = Some z ∧ length z = n}
unfolding consumed-bits-def vimage-def space-coin-space x-def by simp

also have ... = {bs. ∃ p. {p ∈ ptree-rm f . cprefix p bs} = {p} ∧ length p = n}
unfolding consumed-prefix-def x-def the-elem-opt-Some-iff [OF prefixes-at-most-one] by simp

also have ... = {bs. ∃ p. cprefix p bs ∧ length p = n ∧ p ∈ ptree-rm f }
using prefixes-singleton by (intro Collect-cong ex-cong1) auto

also have ... = {bs. ctake n bs ∈ ptree-rm f }
unfolding cprefix-def by (intro Collect-cong) (metis length-ctake)

also have ... ∈ sets B
by (intro measurable-sets-coin-space[OF ctake-measurable]) simp

finally show ?thesis
by simp

qed

thus ?thesis
by (intro measurable-sigma-sets-with-exception[where d=None])

qed

lemma R-sets:
assumes wf :wf-random f
shows {bs. f bs = None} ∈ sets B {bs. f bs 6= None} ∈ sets B

proof −
show 0 : {bs. f bs = None} ∈ sets B

unfolding consumed-bits-inf-iff [OF wf]
by (intro measurable-sets-coin-space[OF consumed-bits-measurable]) simp

have {bs. f bs 6= None} = space B − {bs. f bs = None}

30

unfolding space-coin-space by (simp add:set-eq-iff del:not-None-eq)
also have ... ∈ sets B

by (intro sets.compl-sets 0)
finally show {bs. f bs 6= None} ∈ sets B

by simp
qed

lemma countable-range:
assumes wf :wf-random f
shows countable (range-rm f)

proof −
have countable (eval-rm f ‘ UNIV)

by (intro countable-image) simp
moreover have range-rm f ⊆ eval-rm f ‘ UNIV

unfolding range-rm-alt[OF wf] by auto
ultimately show ?thesis using countable-subset by blast

qed

lemma consumed-prefix-continuous:
continuous-map euclidean option-ud (consumed-prefix f)

proof (intro contionuos-into-option-udI)
fix x :: bool list

have open ((consumed-prefix f) −‘ {Some x}) (is open ?T)
proof (cases x ∈ ptree-rm f)

case True
hence 0 :?T = {bs. cprefix x bs}

unfolding vimage-def comp-def by (simp add:consumed-prefix-some-iff)
show ?thesis

unfolding 0 by (intro coin-steam-open)
next

case False
hence ?T = {}

unfolding vimage-def comp-def by (simp add:consumed-prefix-some-iff)
thus ?thesis

by simp
qed
thus openin euclidean ((consumed-prefix f) −‘ {Some x} ∩ topspace euclidean)

by simp
qed

Randomized algorithms are continuous with respect to the product topology on the domain
and the upper topology on the range.
lemma f-continuous:

assumes wf :wf-random f
shows continuous-map euclidean option-ud (map-option fst ◦ f)

proof −
have 0 : map-option fst ◦ (λbs. f bs) =

map-option (eval-rm f) ◦ (consumed-prefix f)
by (subst wf-random-alt[OF wf]) (simp add:map-option.compositionality comp-def)

show ?thesis unfolding 0
by (intro continuous-map-compose[OF consumed-prefix-continuous] map-option-continuous)

qed

lemma none-measure-subprob-algebra:
return D None ∈ space (subprob-algebra D)
by (metis measure-subprob return-pmf .rep-eq)

31

context
fixes f :: ′a random-alg-int
fixes R
assumes wf : wf-random f
defines R ≡ restrict-space B {bs. f bs 6= None}

begin

lemma the-f-measurable: the ◦ f ∈ R →M D
⊗

M B
proof −

define h where h = the ◦ consumed-bits f
define g where g bs = (ctake (h bs) bs, cdrop (h bs) bs) for bs

have consumed-bits f bs 6= None if bs ∈ space R for bs
using that consumed-bits-inf-iff [OF wf] unfolding R-def space-restrict-space space-coin-space
by (simp del:not-infinity-eq not-None-eq)

hence 0 :the (f bs) = map-prod (eval-rm f) id (g bs) if bs ∈ space R for bs
unfolding g-def h-def using that
by (subst wf-random-alt2 [OF wf]) (cases consumed-bits f bs, auto simp del: not-None-eq)

have 1 :h ∈ R →M D
unfolding R-def h-def
by (intro measurable-restrict-space1 measurable-comp[OF consumed-bits-measurable]) simp

have ctake k ∈ R →M D for k
unfolding R-def by (intro measurable-restrict-space1 ctake-measurable)

moreover have cdrop k ∈ R →M B for k
unfolding R-def by (intro measurable-restrict-space1 cdrop-measurable)

ultimately have g ∈ R →M D
⊗

M B
unfolding g-def
by (intro measurable-Pair measurable-Pair-compose-split[OF - 1 measurable-id]) simp-all

hence (map-prod (eval-rm f) id ◦ g) ∈ R →M D
⊗

M B
by (intro measurable-comp[where N=D

⊗
M B] map-prod-measurable) auto

moreover have (the ◦ f) ∈ R →M D
⊗

M B ←→ (map-prod (eval-rm f) id ◦ g) ∈ R →M D⊗
M B
using 0 by (intro measurable-cong) (simp add:comp-def)

ultimately show ?thesis
by auto

qed

lemma distr-rai-measurable: map-option fst ◦ f ∈ B →M D
proof −

have 0 :countable {{bs. f bs 6= None}, {bs. f bs = None}}
by simp

have 1 : Ω ∈ sets B ∧ map-option fst ◦ f ∈ restrict-space B Ω →M D
if Ω ∈ {{bs. f bs 6= None}, {bs. f bs = None}} for Ω

proof (cases Ω = {bs. f bs 6= None})
case True
have Some ◦ fst ◦ (the ◦ f) ∈ R →M D

by (intro measurable-comp[OF the-f-measurable]) auto
hence map-option fst ◦ f ∈ R →M D

unfolding R-def by (subst measurable-cong[where g=Some ◦ fst ◦ (the ◦ f)])
(auto simp add: space-restrict-space space-coin-space)

thus Ω ∈ sets B ∧ map-option fst ◦ f ∈ restrict-space B Ω →M D
unfolding R-def True using R-sets[OF wf] by auto

next

32

case False
hence 2 :Ω = {bs. f bs = None}

using that by simp

have map-option fst ◦ f ∈ restrict-space B {bs. f bs = None} →M D
by (subst measurable-cong[where g=λ-. None])
(simp-all add:space-restrict-space)

thus Ω ∈ sets B ∧ map-option fst ◦ f ∈ restrict-space B Ω →M D
unfolding 2 using R-sets[OF wf] by auto

qed

have 3 : space B ⊆
⋃
{{bs. f bs 6= None}, {bs. f bs = None}}

unfolding space-coin-space by auto

show ?thesis
by (rule measurable-piecewise-restrict[OF 0]) (use 1 3 space-coin-space in ‹auto›)

qed

lemma distr-rai-subprob-space:
distr-rai f ∈ space (subprob-algebra D)

proof −
have prob-space (distr-rai f)

unfolding distr-rai-def using distr-rai-measurable
by (intro coin-space.prob-space-distr) auto

moreover have sets (distr-rai f) = D
unfolding distr-rai-def by simp

ultimately show ?thesis
unfolding space-subprob-algebra using prob-space-imp-subprob-space
by auto

qed

lemma fst-the-f-measurable: fst ◦ the ◦ f ∈ R →M D
proof −

have fst ◦ (the ◦ f) ∈ R →M D
by (intro measurable-comp[OF the-f-measurable]) simp

thus ?thesis by (simp add:comp-def)
qed

lemma prob-space-distr-rai:
prob-space (distr-rai f)
unfolding distr-rai-def by (intro coin-space.prob-space-distr distr-rai-measurable)

This is the central correctness property for the monad. The returned stream of coins is
independent of the result of the randomized algorithm.
lemma remainder-indep:

distr R (D
⊗

M B) (the ◦ f) = distr R D (fst ◦ the ◦ f)
⊗

M B
proof −

define C where C k = consumed-bits f −‘ {Some k} for k

have 2 : (∃ k. x ∈ C k) ←→ f x 6= None for x
using consumed-bits-inf-iff [OF wf] unfolding C-def
by auto

hence 5 : C k ⊆ space R for k
unfolding R-def space-restrict-space space-coin-space
by auto

33

have 1 :{bs. f bs 6= None} ∩ space B ∈ sets B
using R-sets[OF wf] by simp

have 6 : C k ∈ sets B for k
unfolding C-def vimage-def
by (intro measurable-sets-coin-space[OF consumed-bits-measurable]) simp

have 8 : x ∈ C k ←→ ctake k x ∈ ptree-rm f for x k
unfolding C-def using consumed-bits-enat-iff by auto

have 7 : the (f (cshift (ctake k x) y)) = (fst (the (f x)), y) if x ∈ C k for x y k
proof −

have cshift (ctake k x) y ∈ C k
using that 8 by simp

hence the (f (cshift (ctake k x) y)) = (eval-rm f (ctake k x), y)
using wf-random-alt2 [OF wf] unfolding C-def by simp

also have ... = (fst (the (f x)), y)
using that wf-random-alt2 [OF wf] unfolding C-def by simp

finally show ?thesis by simp
qed

have C-disj: disjoint-family C
unfolding disjoint-family-on-def C-def by auto

have 0 :
emeasure (distr R (D

⊗
M B) (the ◦ f)) (A × B) =

emeasure (distr R D (fst ◦ the ◦ f)) A ∗ emeasure B B
(is ?L = ?R) if A ∈ sets D B ∈ sets B for A B

proof −
have 3 : {bs. fst (the (f bs)) ∈ A ∧ bs ∈ C k} ∈ sets B (is ?L1 ∈ -) for k
proof −

have ?L1 = (fst ◦ the ◦ f) −‘ A ∩ space (restrict-space R (C k))
using 5 unfolding vimage-def space-restrict-space R-def space-coin-space by auto

also have ... ∈ sets (restrict-space R (C k))
by (intro measurable-sets[OF - that(1)] measurable-restrict-space1 fst-the-f-measurable)

also have ... = sets (restrict-space B (C k))
using 5 unfolding R-def sets-restrict-restrict-space space-restrict-space space-coin-space
by (intro arg-cong2 [where f=restrict-space] arg-cong[where f=sets] refl) auto

finally have ?L1 ∈ sets (restrict-space B (C k))
by simp

thus ?L1 ∈ sets B
using 6 space-coin-space sets-restrict-space-iff [where M=B and Ω=C k] by auto

qed

have 4 : {bs. the (f bs) ∈ A × B ∧ bs ∈ C k} ∈ sets B (is ?L1 ∈ -) for k
proof −

have ?L1 = (the ◦ f) −‘ (A × B) ∩ space (restrict-space R (C k))
using 5 unfolding vimage-def space-restrict-space R-def space-coin-space by auto

also have ... ∈ sets (restrict-space R (C k))
using that by (intro measurable-sets[where A=D

⊗
M B] measurable-restrict-space1

the-f-measurable) auto
also have ... = sets (restrict-space B (C k))

using 5 unfolding R-def sets-restrict-restrict-space space-restrict-space space-coin-space
by (intro arg-cong2 [where f=restrict-space] arg-cong[where f=sets] refl) auto

finally have ?L1 ∈ sets (restrict-space B (C k))
by simp

thus ?L1 ∈ sets B
using 6 space-coin-space sets-restrict-space-iff [where M=B and Ω=C k] by auto

34

qed

have ?L = emeasure R ((the ◦ f) −‘ (A × B) ∩ space R)
using that the-f-measurable by (intro emeasure-distr) auto

also have ... = emeasure R {x. the (f x) ∈ A × B ∧ f x 6= None}
unfolding vimage-def R-def Int-def
by (simp add:space-restrict-space space-coin-space)

also have ... = emeasure B {x. the (f x) ∈ A × B ∧ (∃ k. x ∈ C k)}
unfolding R-def 2 using 1 by (intro emeasure-restrict-space) auto

also have ... = emeasure B (
⋃

k. {x. the (f x) ∈ A × B ∧ x ∈ C k})
by (intro arg-cong2 [where f=emeasure]) auto

also have ... = (
∑

k. emeasure B {x. the (f x) ∈ A × B ∧ x ∈ C k})
using 4 C-disj
by (intro suminf-emeasure[symmetric] subsetI) (auto simp:disjoint-family-on-def)

also have ... = (
∑

k. emeasure (distr (B
⊗

M B) B (λ(x,y). (cshift (ctake k x) y)))
{x. the (f x) ∈ A × B ∧ x ∈ C k})
by (intro suminf-cong arg-cong2 [where f=emeasure] branch-coin-space(2)[symmetric] refl)

also have ... = (
∑

k. emeasure (B
⊗

M B)
{x. the (f (cshift (ctake k (fst x)) (snd x))) ∈ A × B ∧ (cshift (ctake k (fst x)) (snd x)) ∈ C

k})
using branch-coin-space(1) 4 by (subst emeasure-distr)
(simp-all add:case-prod-beta Int-def space-pair-measure space-coin-space)

also have ... = (
∑

k. emeasure (B
⊗

M B)
{x. the (f (cshift (ctake k (fst x)) (snd x))) ∈ A × B ∧ fst x ∈ C k})
using 8 by (intro suminf-cong arg-cong2 [where f=emeasure] refl Collect-cong) auto

also have ... = (
∑

k. emeasure (B
⊗

M B) ({x. fst (the (f x)) ∈ A ∧ x ∈ C k} × B))
using 7 by (intro suminf-cong arg-cong2 [where f=emeasure] refl)
(auto simp add:mem-Times-iff set-eq-iff)

also have ... = (
∑

k. emeasure B {x. fst (the (f x)) ∈ A ∧ x ∈ C k} ∗ emeasure B B)
using 3 that(2)
by (intro suminf-cong coin-space.emeasure-pair-measure-Times) auto

also have ... = (
∑

k. emeasure B {x. fst (the (f x)) ∈ A ∧ x ∈ C k}) ∗ emeasure B B
by simp

also have ... = emeasure B (
⋃

k. {x. fst (the (f x)) ∈ A ∧ x ∈ C k}) ∗ emeasure B B
using 3 C-disj
by (intro arg-cong2 [where f=(∗)] suminf-emeasure refl image-subsetI)
(auto simp add:disjoint-family-on-def)

also have ... = emeasure B {x. fst (the (f x)) ∈ A ∧ (∃ k. x ∈ C k)} ∗ emeasure B B
by (intro arg-cong2 [where f=emeasure] arg-cong2 [where f=(∗)]) auto

also have ... = emeasure R {x. fst (the (f x)) ∈ A ∧ f x 6= None} ∗ emeasure B B
unfolding R-def 2 using 1
by (intro arg-cong2 [where f=(∗)] emeasure-restrict-space[symmetric] subsetI) simp-all

also have ... = emeasure R ((fst ◦ the ◦ f) −‘ A ∩ space R) ∗ emeasure B B
unfolding vimage-def R-def Int-def by (simp add:space-restrict-space space-coin-space)

also have ... = ?R
using that
by (intro arg-cong2 [where f=(∗)] emeasure-distr [symmetric] fst-the-f-measurable) auto

finally show ?thesis by simp
qed

have finite-measure R
using 1 unfolding R-def space-coin-space
by (intro finite-measure-restrict-space) simp-all

hence finite-measure (distr R D (fst ◦ the ◦ f))
by (intro finite-measure.finite-measure-distr fst-the-f-measurable)

hence 1 :sigma-finite-measure (distr R D (fst ◦ the ◦ f))
unfolding finite-measure-def by auto

35

have 2 :sigma-finite-measure B
using prob-space-imp-sigma-finite[OF coin-space.prob-space-axioms] by simp

show ?thesis
using 0 by (intro pair-measure-eqI [symmetric] 1 2) (simp-all add:sets-pair-measure)

qed

end

lemma distr-rai-bind:
assumes wf-m: wf-random m
assumes wf-f :

∧
x. x ∈ range-rm m =⇒ wf-random (f x)

shows distr-rai (m >>= f) = distr-rai m >>=
(λx. if x ∈ Some ‘ range-rm m then distr-rai (f (the x)) else return D None)
(is ?L = ?RHS)

proof (rule measure-eqI)
have sets ?L = UNIV

unfolding distr-rai-def by simp
also have ... = sets ?RHS

unfolding distr-rai-def by (subst sets-bind[where N=D])
(simp-all add:option.case-distrib option.case-eq-if)

finally show sets ?L = sets ?RHS by simp
next

let ?m = distr-rai
let ?H = count-space (range-rm m)
let ?R = restrict-space B {bs. m bs 6= None}

fix A assume A ∈ sets (distr-rai (m >>= f))
define N where N = {x. m x 6= None}

have N-meas: N ∈ sets coin-space
unfolding N-def using R-sets[OF wf-m] by simp

hence N-meas ′: −N ∈ sets coin-space
unfolding Compl-eq-Diff-UNIV using space-coin-space by (metis sets.compl-sets)

have wf-bind: wf-random (m >>= f)
using wf-bind[OF assms] by auto

have 0 : (map-option fst ◦ (m >>= f)) ∈ coin-space →M D
using distr-rai-measurable[OF wf-bind] by auto

have 1 : (map-option fst ◦ (m >>= f)) −‘ A ∈ sets B
unfolding vimage-def by (intro measurable-sets-coin-space[OF 0]) simp

have {(v, bs). map-option fst (f v bs) ∈ A ∧ v ∈ range-rm m} =
(map-option fst ◦ case-prod f) −‘ A ∩ space (?H

⊗
M B)

unfolding vimage-def space-pair-measure space-coin-space by auto
also have ... ∈ sets (?H

⊗
M B)

using distr-rai-measurable[OF wf-f]
by (intro measurable-sets[where A=D] measurable-pair-measure-countable1 countable-range

wf-m)
(simp-all add:comp-def)

also have ... = sets (restrict-space D (range-rm m)
⊗

M B)
unfolding restrict-count-space inf-top-right by simp

also have ... = sets (restrict-space (D
⊗

M B) (range-rm m × space coin-space))
by (subst coin-space.restrict-space-pair-lift) auto

finally have {(v, bs). map-option fst (f v bs) ∈ A ∧ v ∈ range-rm m} ∈
sets (restrict-space (D

⊗
M B) (range-rm m × UNIV))

36

unfolding space-coin-space by simp
moreover have range-rm m × space coin-space ∈ sets (D

⊗
M B)

by (intro pair-measureI sets.top) auto
ultimately have 2 : {(v, bs). map-option fst (f v bs) ∈ A ∧ v∈ range-rm m} ∈ sets (D

⊗
M B)

by (subst (asm) sets-restrict-space-iff) (auto simp: space-coin-space)

have space-R: space ?R = {x. m x 6= None}
by (simp add:space-restrict-space space-coin-space)

have 3 : distr-rai (f (the x)) ∈ space (subprob-algebra D)
if x ∈ Some ‘ range-rm m for x
using distr-rai-subprob-space[OF wf-f] that by fastforce

have (λx. emeasure (distr-rai (f (fst (the (m x))))) A ∗ indicator N x) =
(λx. emeasure (if m x 6= None then distr-rai (f (fst (the (m x)))) else null-measure D) A)
unfolding N-def by (intro ext) simp

also have ... = (λv. emeasure (if v∈Some‘range-rm m then ?m (f (the v)) else null-measure D)
A)
◦ (map-option fst ◦ m)
unfolding comp-def by (intro ext arg-cong2 [where f=emeasure] refl if-cong)
(auto intro:in-range-rmI simp add:vimage-def image-iff)

also have ... ∈ borel-measurable coin-space
using 3 by (intro distr-rai-measurable[OF wf-m] measurable-comp[where N=D]

measurable-emeasure-kernel[where N=D]) simp-all
finally have 4 :(λx. emeasure (distr-rai (f (fst (the (m x))))) A ∗ indicator N x)
∈ coin-space →M borel by simp

let ?N = emeasure B {bs. bs /∈ N ∧ None ∈ A}

have emeasure ?L A = emeasure B ((map-option fst ◦ (m >>= f)) −‘ A)
unfolding distr-rai-def using 0 by (subst emeasure-distr) (simp-all add:space-coin-space)

also have ... =
emeasure B ((map-option fst◦(m>>=f))−‘A ∩ −N) + emeasure B ((map-option fst◦(m>>=f))−‘A

∩ N)
using N-meas N-meas ′ 1
by (subst emeasure-Un ′[symmetric]) (simp-all add:Int-Un-distrib[symmetric])

also have ... =
emeasure B ((map-option fst◦(m>>=f))−‘A∩ −N) + emeasure ?R ((map-option fst◦(m>>=f))−‘A∩

N)
using N-meas unfolding N-def
by (intro arg-cong2 [where f=(+)] refl emeasure-restrict-space[symmetric]) simp-all

also have ... =?N + emeasure ?R ((the ◦ m) −‘
{(v, bs). map-option fst (f v bs) ∈ A ∧ v∈ range-rm m} ∩ space ?R)
unfolding bind-rai-def N-def space-R apfst-def
by (intro arg-cong2 [where f=(+)] arg-cong2 [where f=emeasure])
(simp-all add: set-eq-iff in-range-rmI split:option.split bind-splits)

also have ... = ?N + emeasure (distr ?R (D
⊗

MB) (the ◦ m))
{(v,bs). map-option fst (f v bs)∈A ∧ v∈ range-rm m}
using 2 by (intro arg-cong2 [where f=(+)] emeasure-distr [symmetric]

the-f-measurable map-prod-measurable wf-m) simp-all
also have ... = ?N + emeasure (distr ?R D (fst ◦ the ◦ m)

⊗
M B)

{(v,bs). map-option fst (f v bs) ∈ A ∧ v ∈ range-rm m}
unfolding N-def remainder-indep[OF wf-m] by simp

also have ... = ?N +
∫

+ v. emeasure B
{bs. map-option fst (f v bs) ∈ A ∧ v ∈ range-rm m} ∂distr ?R D (fst ◦ (the ◦ m))
using 2 by (subst coin-space.emeasure-pair-measure-alt) (simp-all add:vimage-def comp-assoc)

also have ... = ?N +
∫

+ x. emeasure B
{bs. map-option fst (f ((fst ◦ (the ◦ m)) x) bs) ∈ A ∧ (fst ◦ (the ◦ m)) x ∈ range-rm m} ∂?R

37

using the-f-measurable[OF wf-m]
by (intro arg-cong2 [where f=(+)] refl nn-integral-distr) simp-all

also have ... = ?N + (
∫

+x∈{bs. m bs 6= None}. emeasure B
{bs. map-option fst (f (fst (the (m x))) bs) ∈ A ∧ fst (the (m x)) ∈ range-rm m} ∂B)
using N-meas unfolding N-def using nn-integral-restrict-space
by (subst nn-integral-restrict-space) simp-all

also have ... = ?N + (
∫

+x∈{bs. m bs 6= None}.
emeasure B ((map-option fst ◦ f (fst (the (m x)))) −‘ A ∩ space B) ∂B)
by (intro arg-cong2 [where f=(+)] set-nn-integral-cong refl arg-cong2 [where f=emeasure])
(auto intro:in-range-rmI simp:space-coin-space)

also have ... = ?N + (
∫

+x∈N . emeasure (distr-rai(f (fst(the(m x))))) A ∂B)
unfolding distr-rai-def N-def
by (intro arg-cong2 [where f=(+)] set-nn-integral-cong refl emeasure-distr [symmetric]

distr-rai-measurable[OF wf-f]) (auto intro:in-range-rmI)
also have ... = (

∫
+x. (indicator {bs. bs /∈ N ∧ None ∈ A}) x ∂B) +

(
∫

+x∈N . emeasure (distr-rai(f (fst(the(m x))))) A ∂B)
using N-meas N-meas ′

by (intro arg-cong2 [where f=(+)] nn-integral-indicator [symmetric] refl)
(cases None ∈ A; auto simp:Collect-neg-eq)

also have ... =
∫

+ x. indicator {bs. bs /∈ N ∧ None ∈ A} x +
emeasure (distr-rai (f (fst (the (m x))))) A ∗ indicator N x ∂B

using N-meas ′ N-meas by (intro nn-integral-add[symmetric] 4) simp
also have ... =

∫
+ x. indicator (−N) x ∗ indicator A None +

indicator N x ∗ emeasure (distr-rai (f (fst (the (m x))))) A ∂B
unfolding N-def by (intro arg-cong2 [where f=nn-integral] ext refl arg-cong2 [where f=(+)])
(simp-all split:split-indicator)

also have ... =∫
+ x. emeasure (case m x of None ⇒ return D None | Some x ⇒ distr-rai (f (fst x))) A ∂B

unfolding N-def by (intro arg-cong2 [where f=nn-integral] ext)
(auto split:split-indicator option.split)

also have ... =
∫

+ x. emeasure (if (map-option fst ◦ m) x ∈ Some ‘ range-rm m
then distr-rai (f (the ((map-option fst ◦ m) x)))
else return D None) A ∂B
by (intro arg-cong2 [where f=nn-integral] arg-cong2 [where f=emeasure] refl ext)
(auto simp add: in-range-rmI vimage-def split:option.splits)

also have ... =∫
+ x. emeasure (if x ∈ Some ‘ range-rm m then ?m (f (the x)) else return D None) A ∂?m m

unfolding distr-rai-def using distr-rai-measurable[OF wf-m]
by (intro nn-integral-distr [symmetric]) (simp-all add:comp-def)

also have ... = emeasure ?RHS A
using 3 none-measure-subprob-algebra
by (intro emeasure-bind[symmetric, where N=D]) (auto simp add:distr-rai-def Pi-def)

finally show emeasure ?L A = emeasure ?RHS A
by simp

qed

lemma return-discrete: return D x = return-pmf x
by (intro measure-eqI) auto

lemma distr-rai-return: distr-rai (return-rai x) = return D (Some x)
unfolding return-rai-def distr-rai-def by (simp add:comp-def)

lemma distr-rai-return ′: distr-rai (return-rai x) = return-spmf x
unfolding distr-rai-return return-discrete by auto

lemma distr-rai-coin: distr-rai coin-rai = coin-spmf (is ?L = ?R)
proof −

have ?L = distr B D (λx. Some (chd x))

38

unfolding coin-rai-def distr-rai-def by (simp add:comp-def)
also have ... = distr (distr B D chd) D Some

by (subst distr-distr) (auto simp add:comp-def chd-measurable)
also have ... = map-pmf Some (pmf-of-set UNIV)

unfolding distr-shd map-pmf-rep-eq by simp
also have ... = spmf-of-pmf (pmf-of-set UNIV)

by (simp add:spmf-of-pmf-def)
also have ... = coin-spmf

by auto
finally show ?thesis by simp

qed

definition ord-rai :: ′a random-alg-int ⇒ ′a random-alg-int ⇒ bool
where ord-rai = fun-ord (flat-ord None)

definition lub-rai :: ′a random-alg-int set ⇒ ′a random-alg-int
where lub-rai = fun-lub (flat-lub None)

lemma random-alg-int-pd-fact:
partial-function-definitions ord-rai lub-rai
unfolding ord-rai-def lub-rai-def
by (intro partial-function-lift flat-interpretation)

interpretation random-alg-int-pd: partial-function-definitions ord-rai lub-rai
by (rule random-alg-int-pd-fact)

lemma wf-lub-helper :
assumes ord-rai f g
assumes wf-on-prefix f p r
shows wf-on-prefix g p r

proof −
have g (cshift p cs) = Some (r , cs) for cs
proof −

have f (cshift p cs) = Some (r ,cs)
using assms(2) unfolding wf-on-prefix-def by auto

moreover have flat-ord None (f (cshift p cs)) (g (cshift p cs))
using assms(1) unfolding ord-rai-def fun-ord-def by simp

ultimately show ?thesis
unfolding flat-ord-def by auto

qed
thus ?thesis

unfolding wf-on-prefix-def by auto
qed

lemma wf-lub:
assumes Complete-Partial-Order .chain ord-rai R
assumes

∧
r . r ∈ R =⇒ wf-random r

shows wf-random (lub-rai R)
proof (rule wf-randomI)

fix bs
assume a:lub-rai R bs 6= None
define S where S = ((λx. x bs) ‘ R)
have 0 :lub-rai R bs = flat-lub None S

unfolding S-def lub-rai-def fun-lub-def
by (intro arg-cong2 [where f=flat-lub]) auto

have lub-rai R bs = None if S ⊆ {None}
using that unfolding 0 flat-lub-def by auto

39

hence ¬ (S ⊆ {None})
using a by auto

then obtain r where 1 :r ∈ R and 2 : r bs 6= None
unfolding S-def by blast

then obtain p y where 3 :cprefix p bs and 4 :wf-on-prefix r p y
using assms(2)[OF 1] 2 unfolding wf-random-def by (auto split:option.split-asm)

have wf-on-prefix (lub-rai R) p y
by (intro wf-lub-helper [OF - 4] random-alg-int-pd.lub-upper 1 assms(1))

thus ∃ p r . cprefix p bs ∧ wf-on-prefix (lub-rai R) p r
using 3 by auto

qed

lemma ord-rai-mono:
assumes ord-rai f g
assumes ¬ (P None)
assumes P (f bs)
shows P (g bs)
using assms unfolding ord-rai-def fun-ord-def flat-ord-def by metis

lemma lub-rai-empty:
lub-rai {} = Map.empty
unfolding lub-rai-def fun-lub-def flat-lub-def by simp

lemma distr-rai-lub:
assumes F 6= {}
assumes Complete-Partial-Order .chain ord-rai F
assumes wf-f :

∧
f . f ∈ F =⇒ wf-random f

assumes None /∈ A
shows emeasure (distr-rai (lub-rai F)) A = (SUP f ∈ F . emeasure (distr-rai f) A) (is ?L = ?R)

proof −
have wf-lub: wf-random (lub-rai F)

by (intro wf-lub assms)

have 4 : ord-rai f (lub-rai F) if f ∈ F for f
using that random-alg-int-pd.lub-upper [OF assms(2)] by simp

have 0 :map-option fst (lub-rai F bs) ∈ A ←→ (∃ f ∈ F . map-option fst (f bs) ∈ A) for bs
proof

assume ∃ f∈F . map-option fst (f bs) ∈ A
then obtain f where 3 :map-option fst (f bs) ∈ A and 5 :f ∈ F

by auto
show map-option fst (lub-rai F bs) ∈ A

by (rule ord-rai-mono[OF 4 [OF 5]]) (use 3 assms(4) in auto)
next

assume map-option fst (lub-rai F bs) ∈ A
then obtain y where 6 :lub-rai F bs = Some y Some (fst y) ∈ A

using assms(4) by (cases lub-rai F bs) auto
hence f bs = None ∨ f bs = Some y if f ∈ F for f

using 4 [OF that] unfolding ord-rai-def fun-ord-def flat-ord-def by auto
moreover have lub-rai F bs = None if

∧
f . f ∈ F =⇒ f bs = None

using that unfolding lub-rai-def flat-lub-def fun-lub-def by auto
ultimately obtain f where f bs = Some y f ∈ F

using 6 (1) by auto
thus ∃ f∈F . map-option fst (f bs) ∈ A

using 6 (2) by force
qed

have 1 : Complete-Partial-Order .chain (⊆) ((λf . {bs. map-option fst (f bs) ∈ A}) ‘ F)

40

using assms(4) by (intro chain-imageI [OF assms(2)] Collect-mono impI) (auto intro:ord-rai-mono)

have 2 : open {bs. map-option fst (f bs) ∈ A} (is open ?T) if f ∈ F for f
proof −

have wf-f ′: wf-random f
by (intro assms that)

have 4 :?T = {bs ∈ topspace euclidean. (map-option fst ◦ f) bs ∈ A}
by simp

have openin option-ud A
using assms(4) unfolding openin-option-ud by simp

hence openin euclidean ?T
unfolding 4 by (intro openin-continuous-map-preimage[OF f-continuous] wf-f ′)

thus ?thesis
using open-openin by simp

qed

have 3 : {bs. map-option fst (f bs) ∈ A} ∈ sets B (is ?L1 ∈ -) if wf-random f for f
using distr-rai-measurable[OF that]
by (intro measurable-sets-coin-space[where P=λx. x ∈ A and A=D]) (auto simp:comp-def)

have ?L = emeasure B ((map-option fst ◦ lub-rai F) −‘ A ∩ space B)
unfolding distr-rai-def by (intro emeasure-distr distr-rai-measurable[OF wf-lub]) auto

also have ... = emeasure B {x. map-option fst (lub-rai F x) ∈ A}
unfolding space-coin-space by (simp add:vimage-def)

also have ... = emeasure B (
⋃

f ∈ F . {bs. map-option fst (f bs) ∈ A})
unfolding 0 by (intro arg-cong2 [where f=emeasure]) auto

also have ... = Sup (emeasure B ‘ (λf . {bs. map-option fst (f bs) ∈ A}) ‘ F)
using 2 by (intro tau-additivity[OF coin-space-is-borel-measure] chain-imp-union-stable 1)

auto
also have ... = (SUP f ∈ F . (emeasure B {bs. map-option fst (f bs) ∈ A}))

unfolding image-image by simp
also have ... = (SUP f∈F . emeasure B ((map-option fst ◦ f) −‘ A ∩ space B))

by (simp add:image-image space-coin-space vimage-def)
also have ... = ?R

unfolding distr-rai-def using distr-rai-measurable[OF wf-f]
by (intro arg-cong[where f=(Sup)] image-cong ext emeasure-distr [symmetric]) auto

finally show ?thesis
by simp

qed

lemma distr-rai-ord-rai-mono:
assumes wf-random f wf-random g ord-rai f g
assumes None /∈ A
shows emeasure (distr-rai f) A ≤ emeasure (distr-rai g) A (is ?L ≤ ?R)

proof −
have 0 :Complete-Partial-Order .chain ord-rai {f ,g}

using assms(3) unfolding Complete-Partial-Order .chain-def
using random-alg-int-pd.leq-refl by auto

have ord-rai (lub-rai {f ,g}) g
using assms(3) random-alg-int-pd.leq-refl
by (intro random-alg-int-pd.lub-least 0) auto

moreover have ord-rai g (lub-rai {f ,g})
by (intro random-alg-int-pd.lub-upper 0) simp

ultimately have 1 :g = lub-rai {f ,g}
by (intro random-alg-int-pd.leq-antisym) auto

have emeasure (distr-rai f) A ≤ (SUP x ∈ {f ,g}. emeasure (distr-rai x) A)
using prob-space-distr-rai assms(1 ,2) prob-space.measure-le-1

41

by (intro cSup-upper bdd-aboveI [where M=1]) auto
also have ... = emeasure (distr-rai (lub-rai {f ,g})) A

using assms by (intro distr-rai-lub[symmetric] 0) auto
also have ... = emeasure (distr-rai g) A

using 1 by auto
finally show ?thesis

by simp
qed

lemma distr-rai-None: distr-rai (λ-. None) = measure-pmf (return-pmf (None :: ′a option))
proof −

have emeasure (distr-rai Map.empty) A = emeasure (measure-pmf (return-pmf None)) A
for A :: ′a option set
using coin-space.emeasure-space-1 unfolding distr-rai-def
by (subst emeasure-distr) simp-all

thus ?thesis
by (intro measure-eqI) (simp-all add:distr-rai-def)

qed

lemma bind-rai-mono:
assumes ord-rai f1 f2

∧
y. ord-rai (g1 y) (g2 y)

shows ord-rai (bind-rai f1 g1) (bind-rai f2 g2)
proof −

have flat-ord None (bind-rai f1 g1 bs) (bind-rai f2 g2 bs) for bs
proof (cases (f1 >>= g1) bs)

case None
then show ?thesis by (simp add:flat-ord-def)

next
case (Some a)
then obtain y bs ′ where 0 : f1 bs = Some (y,bs ′) and 1 :g1 y bs ′ 6= None and f1 bs 6= None

by (cases f1 bs, auto simp:bind-rai-def)
hence f2 bs = f1 bs

using assms(1) unfolding ord-rai-def fun-ord-def flat-ord-def by metis
hence f2 bs = Some (y,bs ′)

using 0 by auto
moreover have g1 y bs ′ = g2 y bs ′

using assms(2) 1 unfolding ord-rai-def fun-ord-def flat-ord-def by metis
ultimately have (f1 >>= g1) bs = (f2 >>= g2) bs

unfolding bind-rai-def 0 by auto
thus ?thesis unfolding flat-ord-def by auto

qed
thus ?thesis

unfolding ord-rai-def fun-ord-def by simp
qed

end

5 Randomized Algorithms

This section introduces the random-alg monad, that can be used to represent executable
randomized algorithms. It is a type-definition based on the internal representation from
Section 4 with the wellformedness restriction.
Additionally, we introduce the spmf-of-ra morphism, which represent the distribution of
a randomized algorithm, under the assumption that the coin flips are independent and
unbiased.
We also show that it is a Scott-continuous monad-morphism and introduce transfer the-

42

orems, with which it is possible to establish the corresponding SPMF of a randomized
algorithms, even in the case of (possibly infinite) loops.
theory Randomized-Algorithm

imports
Randomized-Algorithm-Internal

begin

A stronger variant of pmf-eqI.
lemma pmf-eq-iff-le:

fixes p q :: ′a pmf
assumes

∧
x. pmf p x ≤ pmf q x

shows p = q
proof −

have (
∫

x. pmf q x − pmf p x ∂count-space UNIV) = 0
by (simp-all add:integrable-pmf integral-pmf)

moreover have integrable (count-space UNIV) (λx. pmf q x − pmf p x)
by (simp add:integrable-pmf)

moreover have AE x in count-space UNIV . 0 ≤ pmf q x − pmf p x
using assms unfolding AE-count-space by auto

ultimately have AE x in count-space UNIV . pmf q x − pmf p x = 0
using integral-nonneg-eq-0-iff-AE by blast

hence
∧

x. pmf p x = pmf q x unfolding AE-count-space by simp
thus ?thesis by (intro pmf-eqI) auto

qed

The following is a stronger variant of ord-spmf-eq-pmf-None-eq
lemma eq-iff-ord-spmf :

assumes weight-spmf p ≥ weight-spmf q
assumes ord-spmf (=) p q
shows p = q

proof −
have

∧
x. spmf p x ≤ spmf q x

using ord-spmf-eq-leD[OF assms(2)] by simp
moreover have pmf p None ≤ pmf q None

using assms(1) unfolding pmf-None-eq-weight-spmf by auto
ultimately have pmf p x ≤ pmf q x for x by (cases x) auto
thus ?thesis using pmf-eq-iff-le by auto

qed

lemma wf-empty: wf-random (λ-. None)
unfolding wf-random-def by auto

typedef ′a random-alg = {(r :: ′a random-alg-int). wf-random r}
using wf-empty by (intro exI [where x=λ-. None]) auto

setup-lifting type-definition-random-alg

lift-definition return-ra :: ′a ⇒ ′a random-alg is return-rai
by (rule wf-return)

lift-definition coin-ra :: bool random-alg is coin-rai
by (rule wf-coin)

lift-definition bind-ra :: ′a random-alg ⇒ (′a ⇒ ′b random-alg) ⇒ ′b random-alg is bind-rai
by (rule wf-bind)

adhoc-overloading Monad-Syntax.bind
 bind-ra

43

Monad laws:
lemma return-bind-ra:

bind-ra (return-ra x) g = g x
by (rule return-bind-rai[transferred])

lemma bind-ra-assoc:
bind-ra (bind-ra f g) h = bind-ra f (λx. bind-ra (g x) h)
by (rule bind-rai-assoc[transferred])

lemma bind-return-ra:
bind-ra m return-ra = m
by (rule bind-return-rai[transferred])

lift-definition lub-ra :: ′a random-alg set ⇒ ′a random-alg is
(λF . if Complete-Partial-Order .chain ord-rai F then lub-rai F else (λx. None))
using wf-lub wf-empty by auto

lift-definition ord-ra :: ′a random-alg ⇒ ′a random-alg ⇒ bool is ord-rai .

lift-definition run-ra :: ′a random-alg ⇒ coin-stream ⇒ ′a option is
(λf s. map-option fst (f s)) .

context
begin

interpretation pmf-as-measure .

lemma distr-rai-is-pmf :
assumes wf-random f
shows

prob-space (distr-rai f) (is ?A)
sets (distr-rai f) = UNIV (is ?B)
AE x in distr-rai f . measure (distr-rai f) {x} 6= 0 (is ?C)

proof −
show prob-space (distr-rai f)

using prob-space-distr-rai[OF assms] by simp
then interpret p: prob-space distr-rai f

by auto
show ?B

unfolding distr-rai-def by simp

have AE bs in B. map-option fst (f bs) ∈ Some ‘ range-rm f ∪ {None}
unfolding range-rm-def
by (intro AE-I2) (auto simp:image-iff split:option.split)

hence AE x in distr-rai f . x ∈ Some ‘ range-rm f ∪ {None}
unfolding distr-rai-def using distr-rai-measurable[OF assms]
by (subst AE-distr-iff) auto

moreover have countable (Some ‘ range-rm f ∪ {None})
using countable-range[OF assms] by simp

moreover have p.events = UNIV
unfolding distr-rai-def by simp

ultimately show ?C
by (intro iffD2 [OF p.AE-support-countable] exI [where x= Some ‘ range-rm f ∪ {None}]) auto

qed

lift-definition spmf-of-ra :: ′a random-alg ⇒ ′a spmf is distr-rai
using distr-rai-is-pmf by metis

44

lemma used-bits-distr-is-pmf :
assumes wf-random f
shows

prob-space (used-bits-distr f) (is ?A)
sets (used-bits-distr f) = UNIV (is ?B)
AE x in used-bits-distr f . measure (used-bits-distr f) {x} 6= 0 (is ?C)

proof −
show prob-space (used-bits-distr f)

unfolding used-bits-distr-def
by (intro coin-space.prob-space-distr consumed-bits-measurable)

then interpret p: prob-space used-bits-distr f
by auto

show ?B
unfolding used-bits-distr-def by simp

have p.events = UNIV
unfolding used-bits-distr-def by simp

thus ?C
by (intro iffD2 [OF p.AE-support-countable] exI [where x= UNIV]) auto

qed

lift-definition coin-usage-of-ra-aux :: ′a random-alg ⇒ nat spmf is used-bits-distr
using used-bits-distr-is-pmf by auto

definition coin-usage-of-ra
where coin-usage-of-ra p = map-pmf (case-option ∞ enat) (coin-usage-of-ra-aux p)

end

lemma wf-rep-rand-alg:
wf-random (Rep-random-alg f)
using Rep-random-alg by auto

lemma set-pmf-spmf-of-ra:
set-pmf (spmf-of-ra f) ⊆ Some ‘ range-rm (Rep-random-alg f) ∪ {None}

proof
let ?f = Rep-random-alg f

fix x assume x ∈ set-pmf (spmf-of-ra f)
hence pmf (spmf-of-ra f) x > 0

using pmf-positive by metis
hence measure (distr-rai ?f) {x} > 0

by (subst spmf-of-ra.rep-eq[symmetric]) (simp add: pmf .rep-eq)
hence 0 < measure B {ω. map-option fst (?f ω) = x}

using distr-rai-measurable[OF wf-rep-rand-alg] unfolding distr-rai-def
by (subst (asm) measure-distr) (simp-all add:vimage-def space-coin-space)

moreover have {ω. map-option fst (?f ω) = x} = {} if x /∈ range (map-option fst ◦ ?f)
using that by (auto simp:set-eq-iff image-iff)

hence measure B {ω. map-option fst (?f ω) = x} = 0 if x /∈ range (map-option fst ◦ ?f)
using that by simp

ultimately have x ∈ range (map-option fst ◦ ?f)
by auto

thus x ∈ Some ‘ range-rm (Rep-random-alg f) ∪ {None}
unfolding range-rm-def by (cases x) auto

qed

lemma spmf-of-ra-return: spmf-of-ra (return-ra x) = return-spmf x
proof −

have measure-pmf (spmf-of-ra (return-ra x)) = measure-pmf (return-spmf x)

45

unfolding spmf-of-ra.rep-eq distr-rai-return ′[symmetric]
by (simp add: return-ra.rep-eq)

thus ?thesis
using measure-pmf-inject by blast

qed

lemma spmf-of-ra-coin: spmf-of-ra coin-ra = coin-spmf
proof −

have measure-pmf (spmf-of-ra coin-ra) = measure-pmf coin-spmf
unfolding spmf-of-ra.rep-eq distr-rai-coin[symmetric]
by (simp add: coin-ra.rep-eq)

thus ?thesis
using measure-pmf-inject by blast

qed

lemma spmf-of-ra-bind:
spmf-of-ra (bind-ra f g) = bind-spmf (spmf-of-ra f) (λx. spmf-of-ra (g x)) (is ?L = ?R)

proof −
let ?f = Rep-random-alg f
let ?g = λx. Rep-random-alg (g x)

have 0 : x ∈ Some ‘ range-rm ?f ∨ x = None if x ∈ set-pmf (spmf-of-ra f) for x
using that set-pmf-spmf-of-ra by auto

have measure-pmf ?L = distr-rai (?f >>= ?g)
unfolding spmf-of-ra.rep-eq bind-ra.rep-eq by (simp add:comp-def)

also have ... = distr-rai ?f >>=
(λx. if x ∈ Some ‘ range-rm ?f then distr-rai (?g (the x)) else return D None)
by (intro distr-rai-bind wf-rep-rand-alg)

also have ... = measure-pmf (spmf-of-ra f) >>=
(λx. measure-pmf (if x ∈ Some ‘ range-rm ?f then spmf-of-ra (g (the x)) else return-pmf None))
by (intro arg-cong2 [where f=bind] ext) (auto simp:spmf-of-ra.rep-eq return-discrete)

also have ... = measure-pmf (spmf-of-ra f >>=
(λx. if x ∈ Some ‘ range-rm ?f then spmf-of-ra (g (the x)) else return-pmf None))
unfolding bind-pmf .rep-eq by (simp add:comp-def id-def)

also have ... = measure-pmf ?R
using 0 unfolding bind-spmf-def
by (intro arg-cong[where f=measure-pmf] bind-pmf-cong refl) (auto split:option.split)

finally have measure-pmf ?L = measure-pmf ?R by simp
thus ?thesis

using measure-pmf-inject by blast
qed

lemma spmf-of-ra-mono:
assumes ord-ra f g
shows ord-spmf (=) (spmf-of-ra f) (spmf-of-ra g)

proof −
have ord-rai (Rep-random-alg f) (Rep-random-alg g)

using assms unfolding ord-ra.rep-eq by simp
hence ennreal (spmf (spmf-of-ra f) x) ≤ ennreal (spmf (spmf-of-ra g) x) for x

unfolding emeasure-pmf-single[symmetric] spmf-of-ra.rep-eq
by (intro distr-rai-ord-rai-mono wf-rep-rand-alg) auto

hence spmf (spmf-of-ra f) x ≤ spmf (spmf-of-ra g) x for x
by simp

thus ?thesis
by (intro ord-pmf-increaseI) auto

qed

46

lemma spmf-of-ra-lub-ra-empty:
spmf-of-ra (lub-ra {}) = return-pmf None (is ?L = ?R)

proof −
have measure-pmf ?L = distr-rai (lub-rai {})

unfolding spmf-of-ra.rep-eq lub-ra.rep-eq Complete-Partial-Order .chain-def by auto
also have ... = distr-rai (λ-. None)

unfolding lub-rai-def fun-lub-def flat-lub-def by auto
also have ... = measure-pmf ?R

unfolding distr-rai-None by simp
finally have measure-pmf ?L = measure-pmf ?R

by simp
thus ?thesis

using measure-pmf-inject by auto
qed

lemma spmf-of-ra-lub-ra:
fixes A :: ′a random-alg set
assumes Complete-Partial-Order .chain ord-ra A
shows spmf-of-ra (lub-ra A) = lub-spmf (spmf-of-ra ‘ A) (is ?L = ?R)

proof (cases A 6= {})
case True
have 0 :Complete-Partial-Order .chain ord-rai (Rep-random-alg ‘ A)

using assms unfolding ord-ra.rep-eq Complete-Partial-Order .chain-def by auto
have 1 :Complete-Partial-Order .chain (ord-spmf (=)) (spmf-of-ra ‘ A)

using spmf-of-ra-mono by (intro chain-imageI [OF assms]) auto

show ?thesis
proof (rule spmf-eqI)

fix x :: ′a
have ennreal (spmf ?L x) = emeasure (distr-rai (lub-rai (Rep-random-alg ‘ A))) {Some x}

using 0 unfolding emeasure-pmf-single[symmetric] spmf-of-ra.rep-eq lub-ra.rep-eq by simp
also have ... = (SUP f∈Rep-random-alg ‘ A. emeasure (distr-rai f) {Some x})

using True wf-rep-rand-alg by (intro distr-rai-lub 0) auto
also have ... = (SUP p∈A. ennreal (spmf (spmf-of-ra p) x))

unfolding emeasure-pmf-single[symmetric] spmf-of-ra.rep-eq by (simp add:image-image)
also have ... = (SUP p∈spmf-of-ra ‘ A. ennreal (spmf p x))

by (simp add:image-image)
also have ... = ennreal (spmf ?R x)

using True by (intro ennreal-spmf-lub-spmf [symmetric] 1) auto
finally have ennreal (spmf ?L x) = ennreal (spmf ?R x)

by simp
thus spmf ?L x = spmf ?R x

by simp
qed

next
case False
thus ?thesis using spmf-of-ra-lub-ra-empty by simp

qed

lemma rep-lub-ra:
assumes Complete-Partial-Order .chain ord-ra F
shows Rep-random-alg (lub-ra F) = lub-rai (Rep-random-alg ‘ F)

proof −
have Complete-Partial-Order .chain ord-rai (Rep-random-alg ‘ F)

using assms unfolding ord-ra.rep-eq Complete-Partial-Order .chain-def by auto
thus ?thesis

unfolding lub-ra.rep-eq by simp
qed

47

lemma partial-function-image-improved:
fixes ord
assumes

∧
A. Complete-Partial-Order .chain ord (f ‘ A) =⇒ l1 (f ‘ A) = f (l2 A)

assumes partial-function-definitions ord l1
assumes inj f
shows partial-function-definitions (img-ord f ord) l2

proof −
interpret pd: partial-function-definitions ord l1

using assms(2) by auto
have img-ord f ord x x for x

unfolding img-ord-def using pd.leq-refl by simp
moreover have img-ord f ord x z if img-ord f ord x y img-ord f ord y z for x y z

using that pd.leq-trans unfolding img-ord-def by blast
moreover have x = y if img-ord f ord x y img-ord f ord y x for x y
proof −

have f x = f y
using that pd.leq-antisym unfolding img-ord-def by blast

thus ?thesis
using inj-onD[OF assms(3)] by simp

qed
moreover have img-ord f ord x (l2 A)

if x ∈ A Complete-Partial-Order .chain (img-ord f ord) A for x A
proof −

have 0 :Complete-Partial-Order .chain ord (f ‘ A)
using that(2) unfolding chain-def img-ord-def by auto

have ord (f x) (l1 (f ‘ A))
using that by (intro pd.lub-upper [OF 0]) auto

thus ?thesis
unfolding img-ord-def assms(1)[OF 0] by auto

qed
moreover have img-ord f ord (l2 A) z

if Complete-Partial-Order .chain (img-ord f ord) A (∀ x. x ∈ A −→ img-ord f ord x z)
for z A

proof −
have 0 :Complete-Partial-Order .chain ord (f ‘ A)

using that(1) unfolding chain-def img-ord-def by auto
have ord (l1 (f ‘ A)) (f z)

using that(2) by (intro pd.lub-least[OF 0]) (auto simp:img-ord-def)
thus ?thesis

unfolding img-ord-def assms(1)[OF 0] by auto
qed
ultimately show ?thesis

unfolding partial-function-definitions-def by blast
qed

lemma random-alg-pfd: partial-function-definitions ord-ra lub-ra
proof −

have 0 : inj Rep-random-alg
using Rep-random-alg-inject unfolding inj-on-def by auto

have 1 :partial-function-definitions ord-rai lub-rai
using random-alg-int-pd-fact by simp

have 2 :ord-ra = img-ord Rep-random-alg ord-rai
unfolding ord-ra.rep-eq img-ord-def by auto

show ?thesis

48

unfolding 2 by (intro partial-function-image-improved[OF - 1 0]) (auto simp: lub-ra.rep-eq)
qed

interpretation random-alg-pf : partial-function-definitions ord-ra lub-ra
using random-alg-pfd by auto

abbreviation mono-ra ≡ monotone (fun-ord ord-ra) ord-ra

lemma bind-mono-aux-ra:
assumes ord-ra f1 f2

∧
y. ord-ra (g1 y) (g2 y)

shows ord-ra (bind-ra f1 g1) (bind-ra f2 g2)
using assms unfolding ord-ra.rep-eq bind-ra.rep-eq
by (intro bind-rai-mono) auto

lemma bind-mono-ra [partial-function-mono]:
assumes mono-ra B and

∧
y. mono-ra (C y)

shows mono-ra (λf . bind-ra (B f) (λy. C y f))
using assms by (intro monotoneI bind-mono-aux-ra) (auto simp:monotone-def)

definition map-ra :: (′a ⇒ ′b) ⇒ ′a random-alg ⇒ ′b random-alg
where map-ra f p = p >>= (λx. return-ra (f x))

lemma spmf-of-ra-map: spmf-of-ra (map-ra f p) = map-spmf f (spmf-of-ra p)
unfolding map-ra-def map-spmf-conv-bind-spmf spmf-of-ra-bind spmf-of-ra-return by simp

lemmas spmf-of-ra-simps =
spmf-of-ra-return spmf-of-ra-bind spmf-of-ra-coin spmf-of-ra-map

lemma map-mono-ra [partial-function-mono]:
assumes mono-ra B
shows mono-ra (λf . map-ra g (B f))
using assms unfolding map-ra-def by (intro bind-mono-ra) auto

definition rel-spmf-of-ra :: ′a spmf ⇒ ′a random-alg ⇒ bool where
rel-spmf-of-ra q p ←→ q = spmf-of-ra p

lemma admissible-rel-spmf-of-ra:
ccpo.admissible (prod-lub lub-spmf lub-ra) (rel-prod (ord-spmf (=)) ord-ra) (case-prod rel-spmf-of-ra)
(is ccpo.admissible ?lub ?ord ?P)

proof (rule ccpo.admissibleI)
fix Y
assume chain: Complete-Partial-Order .chain ?ord Y

and Y : Y 6= {}
and R: ∀ (p, q) ∈ Y . rel-spmf-of-ra p q

from R have R:
∧

p q. (p, q) ∈ Y =⇒ rel-spmf-of-ra p q by auto
have chain1 : Complete-Partial-Order .chain (ord-spmf (=)) (fst ‘ Y)

and chain2 : Complete-Partial-Order .chain (ord-ra) (snd ‘ Y)
using chain by(rule chain-imageI ; clarsimp)+

from Y have Y1 : fst ‘ Y 6= {} and Y2 : snd ‘ Y 6= {} by auto

have lub-spmf (fst ‘ Y) = lub-spmf (spmf-of-ra ‘ snd ‘ Y)
unfolding image-image using R
by (intro arg-cong[of - - lub-spmf] image-cong) (auto simp: rel-spmf-of-ra-def)

also have . . . = spmf-of-ra (lub-ra (snd ‘ Y))
by (intro spmf-of-ra-lub-ra[symmetric] chain2)

finally have rel-spmf-of-ra (lub-spmf (fst ‘ Y)) (lub-ra (snd ‘ Y))
unfolding rel-spmf-of-ra-def .

then show ?P (?lub Y)

49

by (simp add: prod-lub-def)
qed

lemma admissible-rel-spmf-of-ra-cont [cont-intro]:
fixes ord
shows [[mcont lub ord lub-spmf (ord-spmf (=)) f ; mcont lub ord lub-ra ord-ra g]]
=⇒ ccpo.admissible lub ord (λx. rel-spmf-of-ra (f x) (g x))
by (rule admissible-subst[OF admissible-rel-spmf-of-ra, where f=λx. (f x, g x), simplified])

(rule mcont-Pair)

lemma mcont2mcont-spmf-of-ra[THEN spmf .mcont2mcont, cont-intro]:
shows mcont-spmf-of-sampler : mcont lub-ra ord-ra lub-spmf (ord-spmf (=)) spmf-of-ra
unfolding mcont-def monotone-def cont-def
by (auto simp: spmf-of-ra-mono spmf-of-ra-lub-ra)

context
includes lifting-syntax

begin

lemma fixp-ra-parametric[transfer-rule]:
assumes f :

∧
x. mono-spmf (λf . F f x)

and g:
∧

x. mono-ra (λf . G f x)
and param: ((A ===> rel-spmf-of-ra) ===> A ===> rel-spmf-of-ra) F G
shows (A ===> rel-spmf-of-ra) (spmf .fixp-fun F) (random-alg-pf .fixp-fun G)
using f g

proof(rule parallel-fixp-induct-1-1 [OF
partial-function-definitions-spmf random-alg-pfd - - reflexive reflexive,

where P=(A ===> rel-spmf-of-ra)])
show ccpo.admissible (prod-lub (fun-lub lub-spmf) (fun-lub lub-ra))

(rel-prod (fun-ord (ord-spmf (=))) (fun-ord ord-ra))
(λx. (A ===> rel-spmf-of-ra) (fst x) (snd x))

unfolding rel-fun-def
by(rule admissible-all admissible-imp cont-intro)+

show (A ===> rel-spmf-of-ra) (λ-. lub-spmf {}) (λ-. lub-ra {})
by (auto simp: rel-fun-def rel-spmf-of-ra-def spmf-of-ra-lub-ra-empty)

show (A ===> rel-spmf-of-ra) (F f) (G g) if (A ===> rel-spmf-of-ra) f g for f g
using that by(rule rel-funD[OF param])

qed

lemma return-ra-tranfer [transfer-rule]: ((=) ===> rel-spmf-of-ra) return-spmf return-ra
unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-return by simp

lemma bind-ra-tranfer [transfer-rule]:
(rel-spmf-of-ra ===> ((=) ===> rel-spmf-of-ra) ===> rel-spmf-of-ra) bind-spmf bind-ra
unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-bind by simp presburger

lemma coin-ra-tranfer [transfer-rule]:
rel-spmf-of-ra coin-spmf coin-ra
unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-coin by simp

lemma map-ra-tranfer [transfer-rule]:
((=) ===> rel-spmf-of-ra ===> rel-spmf-of-ra) map-spmf map-ra
unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-map by simp

end

declare [[function-internals]]

50

declaration ‹Partial-Function.init random-alg term ‹random-alg-pf .fixp-fun›
term ‹random-alg-pf .mono-body›
@{thm random-alg-pf .fixp-rule-uc} @{thm random-alg-pf .fixp-induct-uc}
NONE›

5.1 Almost surely terminating randomized algorithms
definition terminates-almost-surely :: ′a random-alg ⇒ bool

where terminates-almost-surely f ←→ lossless-spmf (spmf-of-ra f)

definition pmf-of-ra :: ′a random-alg ⇒ ′a pmf where
pmf-of-ra p = map-pmf the (spmf-of-ra p)

lemma pmf-of-spmf : map-pmf the (spmf-of-pmf x) = x
by (simp add:map-pmf-comp spmf-of-pmf-def)

definition coin-pmf :: bool pmf where coin-pmf = pmf-of-set UNIV

lemma pmf-of-ra-coin: pmf-of-ra (coin-ra) = coin-pmf (is ?L = ?R)
proof −

have 0 :spmf-of-ra (coin-ra) = spmf-of-pmf (pmf-of-set UNIV)
unfolding spmf-of-ra-coin spmf-of-set-def by simp

thus ?thesis
unfolding 0 pmf-of-ra-def pmf-of-spmf coin-pmf-def by simp

qed

lemma pmf-of-ra-return: pmf-of-ra (return-ra x) = return-pmf x
unfolding pmf-of-ra-def spmf-of-ra-return by simp

lemma pmf-of-ra-bind:
assumes terminates-almost-surely f
shows pmf-of-ra (f >>= g) = pmf-of-ra f >>= (λx. pmf-of-ra (g x)) (is ?L = ?R)

proof −
have 0 :x 6= None if x ∈ set-pmf (spmf-of-ra f) for x

using assms that unfolding terminates-almost-surely-def
by (meson lossless-iff-set-pmf-None)

have ?L = spmf-of-ra f >>= (λx. map-pmf the (case-option (return-pmf None) (spmf-of-ra ◦ g)
x))

unfolding pmf-of-ra-def spmf-of-ra-bind bind-spmf-def map-bind-pmf comp-def by simp
also have ... = spmf-of-ra f >>=
(λx. (case x of None ⇒ return-pmf (the None) | Some x ⇒ pmf-of-ra (g x)))
unfolding map-pmf-def comp-def pmf-of-ra-def map-pmf-def
by (intro arg-cong2 [where f=bind-pmf] refl ext) (simp add:bind-return-pmf split:option.split)

also have ... = spmf-of-ra f >>= (λx. pmf-of-ra (g (the x)))
using 0 by (intro bind-pmf-cong refl) (auto split:option.split)

also have ... = ?R
unfolding pmf-of-ra-def map-pmf-def by (simp add:bind-assoc-pmf bind-return-pmf)

finally show ?thesis
by simp

qed

lemma pmf-of-ra-map:
assumes terminates-almost-surely m
shows pmf-of-ra (map-ra f m) = map-pmf f (pmf-of-ra m)
unfolding map-ra-def pmf-of-ra-bind[OF assms] pmf-of-ra-return map-pmf-def by simp

lemma terminates-almost-surely-return:

51

terminates-almost-surely (return-ra x)
unfolding terminates-almost-surely-def spmf-of-ra-return by simp

lemma terminates-almost-surely-coin:
terminates-almost-surely coin-ra
unfolding terminates-almost-surely-def spmf-of-ra-coin by simp

lemma terminates-almost-surely-bind:
assumes terminates-almost-surely f
assumes

∧
x. x ∈ set-pmf (pmf-of-ra f) =⇒ terminates-almost-surely (g x)

shows terminates-almost-surely (f >>= g)
proof −

have 0 : None /∈ set-pmf (spmf-of-ra f)
using assms(1) lossless-iff-set-pmf-None unfolding terminates-almost-surely-def
by blast

hence Some x ∈ set-pmf (spmf-of-ra f) ←→ x ∈ the ‘ set-pmf (spmf-of-ra f) for x
by (metis image-iff option.collapse option.sel)

hence set-spmf (spmf-of-ra f) = set-pmf (pmf-of-ra f)
unfolding pmf-of-ra-def set-map-pmf by (simp add:set-eq-iff set-spmf-def)

thus ?thesis
using assms(1 ,2) unfolding terminates-almost-surely-def spmf-of-ra-bind lossless-bind-spmf
by auto

qed

lemma terminates-almost-surely-map:
assumes terminates-almost-surely p
shows terminates-almost-surely (map-ra f p)
unfolding map-ra-def
by (intro assms terminates-almost-surely-bind terminates-almost-surely-return)

lemmas pmf-of-ra-simps =
pmf-of-ra-return pmf-of-ra-bind pmf-of-ra-coin pmf-of-ra-map

lemmas terminates-almost-surely-intros =
terminates-almost-surely-return
terminates-almost-surely-bind
terminates-almost-surely-coin
terminates-almost-surely-map

end

6 Tracking Randomized Algorithms

This section introduces the track-random-bits monad morphism, which converts a random-
ized algorithm to one that tracks the number of used coin-flips. The resulting algorithm
can still be executed. This morphism is useful for testing and debugging. For the verifi-
cation of coin-flip usage, the morphism tspmf-of-ra introduced in Section 7 is more useful.
theory Tracking-Randomized-Algorithm

imports Randomized-Algorithm
begin

definition track-random-bits :: ′a random-alg-int ⇒ (′a × nat) random-alg-int
where track-random-bits f bs =

do {
(r ,bs ′) ← f bs;

52

n ← consumed-bits f bs;
Some ((r ,n),bs ′)
}

lemma track-random-bits-Some-iff :
assumes track-random-bits f bs 6= None
shows f bs 6= None
using assms unfolding track-random-bits-def by (cases f bs, auto)

lemma track-random-bits-alt:
assumes wf-random f
shows track-random-bits f bs =

map-option (λp. ((eval-rm f p, length p), cdrop (length p) bs)) (consumed-prefix f bs)
proof (cases consumed-prefix f bs)

case None
hence f bs = None

by (subst wf-random-alt[OF assms(1)]) simp
then show ?thesis

unfolding track-random-bits-def None by simp
next

case (Some a)
hence f bs = Some (eval-rm f a, cdrop (length a) bs)

by (subst wf-random-alt[OF assms(1)]) simp
then show ?thesis

unfolding track-random-bits-def Some consumed-bits-def by simp
qed

lemma track-rb-coin:
track-random-bits coin-rai = coin-rai >>= (λb. return-rai (b,1)) (is ?L = ?R)

proof (rule ext)
fix bs :: coin-stream
have wf-on-prefix coin-rai [chd bs] (chd bs)

unfolding wf-on-prefix-def coin-rai-def by simp
moreover have cprefix [chd bs] bs

unfolding cprefix-def by simp
ultimately have {p ∈ ptree-rm (coin-rai). cprefix p bs} = {[chd bs]}

by (intro prefixes-singleton) (auto simp:ptree-rm-def)
hence consumed-prefix (coin-rai) bs = Some [chd bs]

unfolding consumed-prefix-def by simp
hence consumed-bits (coin-rai) bs = Some 1

unfolding consumed-bits-def by simp
thus ?L bs = ?R bs

unfolding track-random-bits-def bind-rai-def
by (simp add:coin-rai-def return-rai-def)

qed

lemma track-rb-return: track-random-bits (return-rai x) = return-rai (x,0) (is ?L = ?R)
proof (rule ext)

fix bs :: coin-stream
have wf-on-prefix (return-rai x) [] x

unfolding wf-on-prefix-def return-rai-def by simp
moreover have cprefix [] bs

unfolding cprefix-def by simp
ultimately have {p ∈ ptree-rm (return-rai x). cprefix p bs} = {[]}

by (intro prefixes-singleton) (auto simp:ptree-rm-def)
hence consumed-prefix (return-rai x) bs = Some []

unfolding consumed-prefix-def by simp
hence consumed-bits (return-rai x) bs = Some 0

53

unfolding consumed-bits-def by simp
thus ?L bs = ?R bs

unfolding track-random-bits-def by (simp add:return-rai-def)
qed

lemma consumed-prefix-imp-wf :
assumes consumed-prefix m bs = Some p
shows wf-on-prefix m p (eval-rm m p)

proof −
have p ∈ ptree-rm m

using assms unfolding consumed-prefix-def the-elem-opt-Some-iff [OF prefixes-at-most-one]
by blast

then obtain r where wf-on-prefix m p r
unfolding ptree-rm-def by auto

thus ?thesis
unfolding wf-on-prefix-def eval-rm-def by simp

qed

lemma consumed-prefix-imp-prefix:
assumes consumed-prefix m bs = Some p
shows cprefix p bs
using assms unfolding consumed-prefix-def the-elem-opt-Some-iff [OF prefixes-at-most-one] by

blast

lemma consumed-prefix-bindI :
assumes consumed-prefix m bs = Some p
assumes consumed-prefix (f (eval-rm m p)) (cdrop (length p) bs) = Some q
shows consumed-prefix (m >>= f) bs = Some (p@q)

proof −
define r where r = eval-rm m p

have 0 : wf-on-prefix m p r
unfolding r-def using consumed-prefix-imp-wf [OF assms(1)] by simp

have consumed-prefix (f r) (cdrop (length p) bs) = Some q
using assms(2) unfolding r-def by simp

hence 1 : wf-on-prefix (f r) q (eval-rm (f r) q)
using consumed-prefix-imp-wf by auto

have wf-on-prefix (m >>= f) (p@q) (eval-rm (f r) q)
by (intro wf-on-prefix-bindI [where r=r] 0 1)

hence p@q ∈ ptree-rm (m >>= f)
unfolding ptree-rm-def by auto

moreover have cprefix p bs cprefix q (cdrop (length p) bs)
using consumed-prefix-imp-prefix assms by auto

hence cprefix (p@q) bs
unfolding cprefix-def by (metis length-append ctake-add)

ultimately have {p ∈ ptree-rm (m >>= f). cprefix p bs} = {p@q}
by (intro prefixes-singleton) auto

thus ?thesis
unfolding consumed-prefix-def by simp

qed

lemma track-rb-bind:
assumes wf-random m
assumes

∧
x. x ∈ range-rm m =⇒ wf-random (f x)

shows track-random-bits (m >>= f) = track-random-bits m >>=
(λ(r ,n). track-random-bits (f r) >>= (λ(r ′,m). return-rai (r ′,n+m))) (is ?L = ?R)

proof (rule ext)

54

fix bs :: coin-stream
have wf-bind: wf-random (m >>= f)

by (intro wf-bind assms)

consider (a) m bs = None | (b) m bs 6= None ∧ (m >>= f) bs = None | (c) (m >>= f) bs 6=
None

by blast
then show ?L bs = ?R bs
proof (cases)

case a
thus ?thesis

unfolding track-random-bits-def bind-rai-def a by simp
next

case b
then obtain r bs ′ where 0 :m bs = Some (r ,bs ′) by auto
have 1 :(f r) bs ′ = None using b unfolding bind-rai-def 0 by simp
then show ?thesis unfolding track-random-bits-def bind-rai-def 0 by simp

next
case c
have (m >>= f) bs = None if m bs = None

using that unfolding bind-rai-def by simp
hence m bs 6= None using c by blast
then obtain p where 0 :

m bs = Some (eval-rm m p, cdrop (length p) bs) consumed-prefix m bs = Some p
using wf-random-alt[OF assms(1)] by auto

define bs ′ where bs ′ = cdrop (length p) bs
define r where r = eval-rm m p
have 1 : m bs = Some (r , bs ′) unfolding 0 r-def bs ′-def by simp
hence r ∈ range-rm m using 1 in-range-rmI by metis
hence wf : wf-random (f r) by (intro assms(2))
have f r bs ′ 6= None using c 1 unfolding bind-rai-def by force
then obtain q where 2 :

f r bs ′ = Some (eval-rm (f r) q, cdrop (length q) bs ′) consumed-prefix (f r) bs ′ = Some q
using wf-random-alt[OF wf] by auto

hence 3 :consumed-prefix (m >>= f) bs = Some (p@q)
unfolding r-def bs ′-def by (intro consumed-prefix-bindI 0) auto

have track-random-bits m bs = Some ((r , length p), bs ′)
unfolding track-random-bits-alt[OF assms(1)] bind-rai-def 0 bs ′-def r-def by simp

moreover have track-random-bits (f r) bs ′ =
Some ((eval-rm (f r) q, length q), cdrop (length q) bs ′)
unfolding track-random-bits-alt[OF wf] 2 by simp

moreover have wf-on-prefix m p r
unfolding r-def by (intro consumed-prefix-imp-wf [OF 0 (2)])

hence eval-rm (f r) q = eval-rm (m >>= f) (p@q)
unfolding eval-rm-def bind-rai-def wf-on-prefix-def by simp

ultimately have
?R bs = Some ((eval-rm (m >>= f) (p@q), length p+length q), cdrop (length p+length q) bs)
unfolding bind-rai-def return-rai-def bs ′-def by simp

also have ... = ?L bs
unfolding track-random-bits-alt[OF wf-bind] 3 by simp

finally show ?thesis by simp
qed

qed

lemma track-random-bits-mono:
assumes wf-random f wf-random g

55

assumes ord-rai f g
shows ord-rai (track-random-bits f) (track-random-bits g)

proof −
have track-random-bits f bs = track-random-bits g bs

if track-random-bits f bs 6= None for bs
proof −

have f bs 6= None using that track-random-bits-Some-iff by simp
then obtain r bs ′ where f bs = Some (r ,bs ′) by auto
then obtain p where 0 :wf-on-prefix f p r and 2 :cprefix p bs

using assms(1) unfolding wf-random-def by (auto split:option.split-asm)

have 1 : wf-on-prefix g p r
using wf-lub-helper [OF assms(3)] 0 by blast

have track-random-bits h bs = Some ((r , length p),cdrop (length p) bs)
if wf-on-prefix h p r wf-random h for h

proof −
have p ∈ ptree-rm h

using that unfolding ptree-rm-def by auto
hence {p ∈ ptree-rm h. cprefix p bs} = {p}

using 2 by (intro prefixes-singleton) auto
hence consumed-prefix h bs = Some p

unfolding consumed-prefix-def by simp
moreover have eval-rm h p = r

using that(1) unfolding wf-on-prefix-def eval-rm-def by simp
ultimately show ?thesis

unfolding track-random-bits-alt[OF that(2)] by simp
qed

thus ?thesis
using 0 1 assms(1 ,2) by simp

qed
thus ?thesis

unfolding ord-rai-def fun-ord-def flat-ord-def by blast
qed

lemma wf-track-random-bits:
assumes wf-random f
shows wf-random (track-random-bits f)

proof (rule wf-randomI)
fix bs
assume track-random-bits f bs 6= None
hence f bs 6= None using track-random-bits-Some-iff by blast
then obtain r bs ′ where f bs = Some (r , bs ′)

by auto
then obtain p where 0 :wf-on-prefix f p r cprefix p bs

using assms unfolding wf-random-def by (auto split:option.split-asm)
hence {q ∈ ptree-rm f . cprefix q (cshift p cs)} = {p} for cs

by (intro prefixes-singleton) (auto simp:cprefix-def ptree-rm-def)
hence consumed-prefix f (cshift p cs) = Some p for cs

unfolding consumed-prefix-def by simp
hence wf-on-prefix (track-random-bits f) p (r , length p)

using 0 unfolding track-random-bits-def wf-on-prefix-def consumed-bits-def by simp
thus ∃ p r . cprefix p bs ∧ wf-on-prefix (track-random-bits f) p r

using 0 by auto
qed

lemma track-random-bits-lub-rai:

56

assumes Complete-Partial-Order .chain ord-rai A
assumes

∧
r . r ∈ A =⇒ wf-random r

shows track-random-bits (lub-rai A) = lub-rai (track-random-bits ‘ A) (is ?L = ?R)
proof −

have 0 :Complete-Partial-Order .chain ord-rai (track-random-bits ‘ A)
by (intro chain-imageI [OF assms(1)] track-random-bits-mono assms(2))

have ?L bs = ?R bs if ?L bs 6= None for bs
proof −

have 1 :lub-rai A bs 6= None using that track-random-bits-Some-iff by simp
have lub-rai A bs = None if

∧
f . f ∈ A =⇒ f bs = None

using that unfolding lub-rai-def fun-lub-def flat-lub-def by auto
then obtain f where f-in-A: f ∈ A and f bs 6= None

using 1 by blast
hence consumed-prefix f bs 6= None

using consumed-prefix-none-iff [OF assms(2)[OF f-in-A]] by simp
hence 2 :track-random-bits f bs 6= None

unfolding track-random-bits-alt[OF assms(2)[OF f-in-A]] by simp
have ord-rai (track-random-bits f) (track-random-bits (lub-rai A))

by (intro track-random-bits-mono wf-lub[OF assms(1)] assms(2)
random-alg-int-pd.lub-upper [OF assms(1)] f-in-A)

hence track-random-bits (lub-rai A) bs = track-random-bits f bs
using 2 unfolding ord-rai-def fun-ord-def flat-ord-def by metis

moreover have ord-rai (track-random-bits f) (lub-rai (track-random-bits ‘ A))
using f-in-A by (intro random-alg-int-pd.lub-upper [OF 0]) auto

hence lub-rai (track-random-bits ‘ A) bs = track-random-bits f bs
using 2 unfolding ord-rai-def fun-ord-def flat-ord-def by metis

ultimately show ?thesis by simp
qed
hence flat-ord None (?L bs) (?R bs) for bs

unfolding flat-ord-def by blast
hence ord-rai ?L ?R

unfolding ord-rai-def fun-ord-def by simp
moreover have ord-rai (track-random-bits f) (track-random-bits (lub-rai A)) if f ∈ A for f

using that assms(2) wf-lub[OF assms(1 ,2)]
by (intro track-random-bits-mono random-alg-int-pd.lub-upper [OF assms(1)])

hence ord-rai ?R ?L
by (intro random-alg-int-pd.lub-least 0) auto

ultimately show ?thesis
using random-alg-int-pd.leq-antisym by auto

qed

lemma untrack-random-bits:
assumes wf-random f
shows track-random-bits f >>= (λx. return-rai (fst x)) = f (is ?L = ?R)

proof −
have ?L bs = ?R bs for bs

unfolding track-random-bits-alt[OF assms] bind-rai-def return-rai-def
by (subst wf-random-alt[OF assms]) (cases consumed-prefix f bs, auto)

thus ?thesis
by auto

qed

lift-definition track-coin-use :: ′a random-alg ⇒ (′a × nat) random-alg
is track-random-bits
by (rule wf-track-random-bits)

57

definition bind-tra ::
(′a × nat) random-alg ⇒ (′a ⇒ (′b × nat) random-alg) ⇒ (′b × nat) random-alg
where bind-tra m f = do {
(r ,k) ← m;
(s,l) ← (f r);
return-ra (s, k+l)
}

definition coin-tra :: (bool × nat) random-alg
where coin-tra = do {

b ← coin-ra;
return-ra (b,1)
}

definition return-tra :: ′a ⇒ (′a × nat) random-alg
where return-tra x = return-ra (x,0)

adhoc-overloading Monad-Syntax.bind
 bind-tra

Monad laws:
lemma return-bind-tra:

bind-tra (return-tra x) g = g x
unfolding bind-tra-def return-tra-def
by (simp add:bind-return-ra return-bind-ra)

lemma bind-tra-assoc:
bind-tra (bind-tra f g) h = bind-tra f (λx. bind-tra (g x) h)
unfolding bind-tra-def
by (simp add:bind-return-ra return-bind-ra bind-ra-assoc case-prod-beta ′ algebra-simps)

lemma bind-return-tra:
bind-tra m return-tra = m
unfolding bind-tra-def return-tra-def
by (simp add:bind-return-ra return-bind-ra)

lemma track-coin-use-bind:
fixes m :: ′a random-alg
fixes f :: ′a ⇒ ′b random-alg
shows track-coin-use (m >>= f) = track-coin-use m >>= (λr . track-coin-use (f r))
(is ?L = ?R)

proof −
have Rep-random-alg ?L = Rep-random-alg ?R

unfolding track-coin-use.rep-eq bind-ra.rep-eq bind-tra-def
by (subst track-rb-bind) (simp-all add:wf-rep-rand-alg comp-def case-prod-beta ′

track-coin-use.rep-eq bind-ra.rep-eq return-ra.rep-eq)
thus ?thesis

using Rep-random-alg-inject by auto
qed

lemma track-coin-use-coin: track-coin-use coin-ra = coin-tra (is ?L = ?R)
unfolding coin-tra-def using track-rb-coin[transferred] by metis

lemma track-coin-use-return: track-coin-use (return-ra x) = return-tra x (is ?L = ?R)
unfolding return-tra-def using track-rb-return[transferred] by metis

lemma track-coin-use-lub:
assumes Complete-Partial-Order .chain ord-ra A
shows track-coin-use (lub-ra A) = lub-ra (track-coin-use ‘ A) (is ?L = ?R)

58

proof −
have 0 : Complete-Partial-Order .chain ord-rai (Rep-random-alg ‘ A)

using assms unfolding ord-ra.rep-eq Complete-Partial-Order .chain-def by auto

have 2 : (Rep-random-alg ‘ track-coin-use ‘ A) = track-random-bits ‘ Rep-random-alg ‘ A
using track-coin-use.rep-eq unfolding image-image by auto

have 1 : Complete-Partial-Order .chain ord-rai (Rep-random-alg ‘ track-coin-use ‘ A)
using wf-rep-rand-alg unfolding 2 by (intro chain-imageI [OF 0] track-random-bits-mono)

auto

have Rep-random-alg ?L = track-random-bits (lub-rai (Rep-random-alg ‘ A))
using 0 unfolding track-coin-use.rep-eq lub-ra.rep-eq by simp

also have ... = lub-rai (track-random-bits ‘ Rep-random-alg ‘ A)
using wf-rep-rand-alg by (intro track-random-bits-lub-rai 0) auto

also have ... = Rep-random-alg ?R
using 1 unfolding lub-ra.rep-eq 2 by simp

finally have Rep-random-alg ?L = Rep-random-alg ?R
by simp

thus ?thesis
using Rep-random-alg-inject by auto

qed

lemma track-coin-use-mono:
assumes ord-ra f g
shows ord-ra (track-coin-use f) (track-coin-use g)
using assms by transfer (rule track-random-bits-mono)

lemma bind-mono-tra-aux:
assumes ord-ra f1 f2

∧
y. ord-ra (g1 y) (g2 y)

shows ord-ra (bind-tra f1 g1) (bind-tra f2 g2)
using assms unfolding bind-tra-def ord-ra.rep-eq bind-ra.rep-eq
by (auto intro!:bind-rai-mono random-alg-int-pd.leq-refl

simp:comp-def bind-ra.rep-eq case-prod-beta ′ return-ra.rep-eq)

lemma bind-tra-mono [partial-function-mono]:
assumes mono-ra B and

∧
y. mono-ra (C y)

shows mono-ra (λf . bind-tra (B f) (λy. C y f))
using assms by (intro monotoneI bind-mono-tra-aux) (auto simp:monotone-def)

lemma track-coin-use-empty:
track-coin-use (lub-ra {}) = (lub-ra {}) (is ?L = ?R)

proof −
have ?L = lub-ra (track-coin-use ‘ {})

by (intro track-coin-use-lub) (simp add:Complete-Partial-Order .chain-def)
also have ... = ?R by simp
finally show ?thesis by simp

qed

lemma untrack-coin-use:
map-ra fst (track-coin-use f) = f (is ?L = ?R)

proof −
have Rep-random-alg ?L = Rep-random-alg ?R

unfolding map-ra-def bind-ra.rep-eq track-coin-use.rep-eq comp-def return-ra.rep-eq
by (auto intro!:untrack-random-bits simp:wf-rep-rand-alg)

thus ?thesis
using Rep-random-alg-inject by auto

qed

59

definition rel-track-coin-use :: (′a × nat) random-alg ⇒ ′a random-alg ⇒ bool where
rel-track-coin-use q p ←→ q = track-coin-use p

lemma admissible-rel-track-coin-use:
ccpo.admissible (prod-lub lub-ra lub-ra) (rel-prod ord-ra ord-ra) (case-prod rel-track-coin-use)
(is ccpo.admissible ?lub ?ord ?P)

proof (rule ccpo.admissibleI)
fix Y
assume chain: Complete-Partial-Order .chain ?ord Y

and Y : Y 6= {}
and R: ∀ (p, q) ∈ Y . rel-track-coin-use p q

from R have R:
∧

p q. (p, q) ∈ Y =⇒ rel-track-coin-use p q by auto
have chain1 : Complete-Partial-Order .chain (ord-ra) (fst ‘ Y)

and chain2 : Complete-Partial-Order .chain (ord-ra) (snd ‘ Y)
using chain by(rule chain-imageI ; clarsimp)+

from Y have Y1 : fst ‘ Y 6= {} and Y2 : snd ‘ Y 6= {} by auto

have lub-ra (fst ‘ Y) = lub-ra (track-coin-use ‘ snd ‘ Y)
unfolding image-image using R
by (intro arg-cong[of - - lub-ra] image-cong) (auto simp: rel-track-coin-use-def)

also have . . . = track-coin-use (lub-ra (snd ‘ Y))
by (intro track-coin-use-lub[symmetric] chain2)

finally have rel-track-coin-use (lub-ra (fst ‘ Y)) (lub-ra (snd ‘ Y))
unfolding rel-track-coin-use-def .

then show ?P (?lub Y)
by (simp add: prod-lub-def)

qed

lemma admissible-rel-track-coin-use-cont [cont-intro]:
fixes ord
shows [[mcont lub ord lub-ra ord-ra f ; mcont lub ord lub-ra ord-ra g]]
=⇒ ccpo.admissible lub ord (λx. rel-track-coin-use (f x) (g x))
by (rule admissible-subst[OF admissible-rel-track-coin-use, where f=λx. (f x, g x), simplified])

(rule mcont-Pair)

lemma mcont-track-coin-use:
mcont lub-ra ord-ra lub-ra ord-ra track-coin-use
unfolding mcont-def monotone-def cont-def
by (auto simp: track-coin-use-mono track-coin-use-lub)

lemmas mcont2mcont-track-coin-use = mcont-track-coin-use[THEN random-alg-pf .mcont2mcont]

context includes lifting-syntax
begin

lemma fixp-track-coin-use-parametric[transfer-rule]:
assumes f :

∧
x. mono-ra (λf . F f x)

and g:
∧

x. mono-ra (λf . G f x)
and param: ((A ===> rel-track-coin-use) ===> A ===> rel-track-coin-use) F G
shows (A ===> rel-track-coin-use) (random-alg-pf .fixp-fun F) (random-alg-pf .fixp-fun G)
using f g

proof(rule parallel-fixp-induct-1-1 [OF
random-alg-pfd random-alg-pfd - - reflexive reflexive,

where P=(A ===> rel-track-coin-use)])
show ccpo.admissible (prod-lub (fun-lub lub-ra) (fun-lub lub-ra))

(rel-prod (fun-ord ord-ra) (fun-ord ord-ra))
(λx. (A ===> rel-track-coin-use) (fst x) (snd x))

60

unfolding rel-fun-def
by(rule admissible-all admissible-imp cont-intro)+

have 0 :track-coin-use (lub-ra {}) = lub-ra {}
using track-coin-use-lub[where A={}]
by (simp add:Complete-Partial-Order .chain-def)

show (A ===> rel-track-coin-use) (λ-. lub-ra {}) (λ-. lub-ra {})
by (auto simp: rel-fun-def rel-track-coin-use-def 0)

show (A ===> rel-track-coin-use) (F f) (G g) if (A ===> rel-track-coin-use) f g for f g
using that by(rule rel-funD[OF param])

qed

lemma return-ra-tranfer [transfer-rule]: ((=) ===> rel-track-coin-use) return-tra return-ra
unfolding rel-fun-def rel-track-coin-use-def track-coin-use-return by simp

lemma bind-ra-tranfer [transfer-rule]:
(rel-track-coin-use ===> ((=) ===> rel-track-coin-use) ===> rel-track-coin-use) bind-tra

bind-ra
unfolding rel-fun-def rel-track-coin-use-def track-coin-use-bind by simp presburger

lemma coin-ra-tranfer [transfer-rule]:
rel-track-coin-use coin-tra coin-ra
unfolding rel-fun-def rel-track-coin-use-def track-coin-use-coin by simp

end

end

7 Tracking SPMFs

This section introduces tracking SPMFs — this is a resource monad on top of SPMFs, we
also introduce the Scott-continous monad morphism tspmf-of-ra, with which it is possible
to reason about the joint-distribution of a randomized algorithm’s result and used coin-
flips.
An example application of the results in this theory can be found in Section 8.
theory Tracking-SPMF

imports Tracking-Randomized-Algorithm
begin

type-synonym ′a tspmf = (′a × nat) spmf

definition return-tspmf :: ′a ⇒ ′a tspmf where
return-tspmf x = return-spmf (x,0)

definition coin-tspmf :: bool tspmf where
coin-tspmf = pair-spmf coin-spmf (return-spmf 1)

definition bind-tspmf :: ′a tspmf ⇒ (′a ⇒ ′b tspmf) ⇒ ′b tspmf where
bind-tspmf f g = bind-spmf f (λ(r ,c). map-spmf (apsnd ((+) c)) (g r))

adhoc-overloading Monad-Syntax.bind
 bind-tspmf

Monad laws:
lemma return-bind-tspmf :

bind-tspmf (return-tspmf x) g = g x
unfolding bind-tspmf-def return-tspmf-def map-spmf-conv-bind-spmf
by (simp add:apsnd-def map-prod-def)

61

lemma bind-tspmf-assoc:
bind-tspmf (bind-tspmf f g) h = bind-tspmf f (λx. bind-tspmf (g x) h)
unfolding bind-tspmf-def
by (simp add: case-prod-beta ′ algebra-simps map-spmf-conv-bind-spmf apsnd-def map-prod-def)

lemma bind-return-tspmf :
bind-tspmf m return-tspmf = m
unfolding bind-tspmf-def return-tspmf-def map-spmf-conv-bind-spmf apsnd-def
by (simp add:case-prod-beta ′)

lemma bind-mono-tspmf-aux:
assumes ord-spmf (=) f1 f2

∧
y. ord-spmf (=) (g1 y) (g2 y)

shows ord-spmf (=) (bind-tspmf f1 g1) (bind-tspmf f2 g2)
using assms unfolding bind-tspmf-def map-spmf-conv-bind-spmf
by (auto intro!: bind-spmf-mono ′ simp add:case-prod-beta ′)

lemma bind-mono-tspmf [partial-function-mono]:
assumes mono-spmf B and

∧
y. mono-spmf (C y)

shows mono-spmf (λf . bind-tspmf (B f) (λy. C y f))
using assms by (intro monotoneI bind-mono-tspmf-aux) (auto simp:monotone-def)

definition ord-tspmf :: ′a tspmf ⇒ ′a tspmf ⇒ bool where
ord-tspmf = ord-spmf (λx y. fst x = fst y ∧ snd x ≥ snd y)

open-bundle ord-tspmf-syntax
begin
notation ord-tspmf (‹(-/ ≤R -)› [51 , 51] 50)
end

definition coin-usage-of-tspmf :: ′a tspmf ⇒ enat pmf
where coin-usage-of-tspmf = map-pmf (λx. case x of None ⇒ ∞ | Some y ⇒ enat (snd y))

definition expected-coin-usage-of-tspmf :: ′a tspmf ⇒ ennreal
where

expected-coin-usage-of-tspmf p = (
∫

+x. x ∂(map-pmf ennreal-of-enat (coin-usage-of-tspmf p)))

definition expected-coin-usage-of-ra where
expected-coin-usage-of-ra p =

∫
+x. x ∂(map-pmf ennreal-of-enat (coin-usage-of-ra p))

definition result :: ′a tspmf ⇒ ′a spmf
where result = map-spmf fst

lemma coin-usage-of-tspmf-alt-def :
coin-usage-of-tspmf p = map-pmf (λx. case x of None ⇒ ∞ | Some y ⇒ enat y) (map-spmf snd

p)
unfolding coin-usage-of-tspmf-def map-pmf-comp map-option-case
by (metis enat-def infinity-enat-def option.case-eq-if option.sel)

lemma coin-usage-of-tspmf-bind-return:
coin-usage-of-tspmf (bind-tspmf f (λx. return-tspmf (g x))) = (coin-usage-of-tspmf f)
unfolding bind-tspmf-def return-tspmf-def coin-usage-of-tspmf-alt-def map-spmf-bind-spmf
by (simp add:comp-def case-prod-beta map-spmf-conv-bind-spmf)

lemma coin-usage-of-tspmf-mono:
assumes ord-tspmf p q
shows measure (coin-usage-of-tspmf p) {..k} ≤ measure (coin-usage-of-tspmf q) {..k}

proof −

62

define p ′ where p ′ = map-spmf snd p
define q ′ where q ′ = map-spmf snd q
have 0 :ord-spmf (≥) p ′ q ′

using assms(1) ord-spmf-mono unfolding p ′-def q ′-def ord-tspmf-def ord-spmf-map-spmf12
by fastforce

have cp:coin-usage-of-tspmf p = map-pmf (case-option ∞ enat) p ′

unfolding coin-usage-of-tspmf-alt-def p ′-def by simp
have cq:coin-usage-of-tspmf q = map-pmf (case-option ∞ enat) q ′

unfolding coin-usage-of-tspmf-alt-def q ′-def by simp

have 0 :rel-pmf (≥) (coin-usage-of-tspmf p) (coin-usage-of-tspmf q)
unfolding cp cq map-pmf-def by (intro rel-pmf-bindI [OF 0]) (auto split:option.split)

show ?thesis
unfolding atMost-def by (intro measure-Ici[OF 0] transp-on-ge) (simp add:reflp-def)

qed

lemma coin-usage-of-tspmf-mono-rev:
assumes ord-tspmf p q
shows measure (coin-usage-of-tspmf q) {x. x > k} ≤ measure (coin-usage-of-tspmf p) {x. x >

k}
(is ?L ≤ ?R)

proof −
have 0 :UNIV − {x. x > k} = {..k}

by (auto simp add:set-diff-eq set-eq-iff)
have 1 − ?R ≤ 1 − ?L

using coin-usage-of-tspmf-mono[OF assms]
by (subst (1 2) measure-pmf .prob-compl[symmetric]) (auto simp:0)

thus ?thesis
by simp

qed

lemma expected-coin-usage-of-tspmf :
expected-coin-usage-of-tspmf p = (

∑
k. ennreal (measure (coin-usage-of-tspmf p) {x. x > enat

k})) (is ?L = ?R)
proof −

have ?L = integralN (measure-pmf (coin-usage-of-tspmf p)) ennreal-of-enat
unfolding expected-coin-usage-of-tspmf-def by simp

also have ... = (
∑

k. emeasure (measure-pmf (coin-usage-of-tspmf p)) {x. enat k < x})
by (subst nn-integral-enat-function) auto

also have ... = ?R
by (subst measure-pmf .emeasure-eq-measure) simp

finally show ?thesis
by simp

qed

lemma ord-tspmf-min: ord-tspmf (return-pmf None) p
unfolding ord-tspmf-def by (simp add: ord-spmf-reflI)

lemma ord-tspmf-refl: ord-tspmf p p
unfolding ord-tspmf-def by (simp add: ord-spmf-reflI)

lemma ord-tspmf-trans[trans]:
assumes ord-tspmf p q ord-tspmf q r
shows ord-tspmf p r

proof −
have 0 :transp (ord-tspmf)

unfolding ord-tspmf-def

63

by (intro transp-rel-pmf transp-ord-option) (auto simp:transp-def)
thus ?thesis

using assms transpD[OF 0] by auto
qed

lemma ord-tspmf-map-spmf :
assumes

∧
x. x ≤ f x

shows ord-tspmf (map-spmf (apsnd f) p) p
using assms unfolding ord-tspmf-def ord-spmf-map-spmf1
by (intro ord-spmf-reflI) auto

lemma ord-tspmf-bind-pmf :
assumes

∧
x. ord-tspmf (f x) (g x)

shows ord-tspmf (bind-pmf p f) (bind-pmf p g)
using assms unfolding ord-tspmf-def
by (intro rel-pmf-bindI [where R=(=)]) (auto simp add: pmf .rel-refl)

lemma ord-tspmf-bind-tspmf :
assumes

∧
x. ord-tspmf (f x) (g x)

shows ord-tspmf (bind-tspmf p f) (bind-tspmf p g)
using assms unfolding bind-tspmf-def ord-tspmf-def
by (intro ord-spmf-bind-reflI) (simp add:case-prod-beta ord-spmf-map-spmf12)

definition use-coins :: nat ⇒ ′a tspmf ⇒ ′a tspmf
where use-coins k = map-spmf (apsnd ((+) k))

lemma use-coins-add:
use-coins k (use-coins s f) = use-coins (k+s) f
unfolding use-coins-def spmf .map-comp
by (simp add:comp-def apsnd-def map-prod-def case-prod-beta ′ algebra-simps)

lemma coin-tspmf-split:
fixes f :: bool ⇒ ′b tspmf
shows (coin-tspmf >>= f) = use-coins 1 (coin-spmf >>= f)
unfolding coin-tspmf-def use-coins-def map-spmf-conv-bind-spmf pair-spmf-alt-def bind-tspmf-def
by (simp)

lemma ord-tspmf-use-coins:
ord-tspmf (use-coins k p) p
unfolding use-coins-def by (intro ord-tspmf-map-spmf) auto

lemma ord-tspmf-use-coins-2 :
assumes ord-tspmf p q
shows ord-tspmf (use-coins k p) (use-coins k q)
using assms unfolding use-coins-def ord-tspmf-def ord-spmf-map-spmf12 by auto

lemma result-mono:
assumes ord-tspmf p q
shows ord-spmf (=) (result p) (result q)
using assms ord-spmf-mono unfolding result-def ord-tspmf-def ord-spmf-map-spmf12 by force

lemma result-bind:
result (bind-tspmf f g) = result f >>= (λx. result (g x))
unfolding bind-tspmf-def result-def map-spmf-conv-bind-spmf by (simp add:case-prod-beta ′)

lemma result-return:
result (return-tspmf x) = return-spmf x
unfolding return-tspmf-def result-def map-spmf-conv-bind-spmf by (simp add:case-prod-beta ′)

64

lemma result-coin:
result (coin-tspmf) = coin-spmf
unfolding coin-tspmf-def result-def pair-spmf-alt-def map-spmf-conv-bind-spmf by (simp add:case-prod-beta ′)

definition tspmf-of-ra :: ′a random-alg ⇒ ′a tspmf where
tspmf-of-ra = spmf-of-ra ◦ track-coin-use

lemma tspmf-of-ra-coin: tspmf-of-ra coin-ra = coin-tspmf
unfolding tspmf-of-ra-def comp-def track-coin-use-coin coin-tra-def coin-tspmf-def

spmf-of-ra-bind spmf-of-ra-coin spmf-of-ra-return pair-spmf-alt-def
by simp

lemma tspmf-of-ra-return: tspmf-of-ra (return-ra x) = return-tspmf x
unfolding tspmf-of-ra-def comp-def track-coin-use-return return-tra-def return-tspmf-def

spmf-of-ra-return by simp

lemma tspmf-of-ra-bind:
tspmf-of-ra (bind-ra m f) = bind-tspmf (tspmf-of-ra m) (λx. tspmf-of-ra (f x))
unfolding tspmf-of-ra-def comp-def track-coin-use-bind bind-tra-def bind-tspmf-def

map-spmf-conv-bind-spmf
by (simp add:case-prod-beta ′ spmf-of-ra-bind spmf-of-ra-return apsnd-def map-prod-def)

lemmas tspmf-of-ra-simps = tspmf-of-ra-bind tspmf-of-ra-return tspmf-of-ra-coin

lemma tspmf-of-ra-mono:
assumes ord-ra f g
shows ord-spmf (=) (tspmf-of-ra f) (tspmf-of-ra g)
unfolding tspmf-of-ra-def comp-def
by (intro spmf-of-ra-mono track-coin-use-mono assms)

lemma tspmf-of-ra-lub:
assumes Complete-Partial-Order .chain ord-ra A
shows tspmf-of-ra (lub-ra A) = lub-spmf (tspmf-of-ra ‘ A) (is ?L = ?R)

proof −
have 0 :Complete-Partial-Order .chain ord-ra (track-coin-use ‘ A)

by (intro chain-imageI [OF assms] track-coin-use-mono)

have ?L = spmf-of-ra (lub-ra (track-coin-use ‘ A))
unfolding tspmf-of-ra-def comp-def
by (intro arg-cong[where f=spmf-of-ra] track-coin-use-lub assms)

also have ... = lub-spmf (spmf-of-ra ‘ track-coin-use ‘ A)
by (intro spmf-of-ra-lub-ra 0)

also have ... = ?R
unfolding image-image tspmf-of-ra-def by simp

finally show ?thesis by simp
qed

definition rel-tspmf-of-ra :: ′a tspmf ⇒ ′a random-alg ⇒ bool where
rel-tspmf-of-ra q p ←→ q = tspmf-of-ra p

lemma admissible-rel-tspmf-of-ra:
ccpo.admissible (prod-lub lub-spmf lub-ra) (rel-prod (ord-spmf (=)) ord-ra) (case-prod rel-tspmf-of-ra)
(is ccpo.admissible ?lub ?ord ?P)

proof (rule ccpo.admissibleI)
fix Y
assume chain: Complete-Partial-Order .chain ?ord Y

and Y : Y 6= {}

65

and R: ∀ (p, q) ∈ Y . rel-tspmf-of-ra p q
from R have R:

∧
p q. (p, q) ∈ Y =⇒ rel-tspmf-of-ra p q by auto

have chain1 : Complete-Partial-Order .chain (ord-spmf (=)) (fst ‘ Y)
and chain2 : Complete-Partial-Order .chain ord-ra (snd ‘ Y)
using chain by(rule chain-imageI ; clarsimp)+

from Y have Y1 : fst ‘ Y 6= {} and Y2 : snd ‘ Y 6= {} by auto

have lub-spmf (fst ‘ Y) = lub-spmf (tspmf-of-ra ‘ snd ‘ Y)
unfolding image-image using R
by (intro arg-cong[of - - lub-spmf] image-cong) (auto simp: rel-tspmf-of-ra-def)

also have . . . = tspmf-of-ra (lub-ra (snd ‘ Y))
by (intro tspmf-of-ra-lub[symmetric] chain2)

finally have rel-tspmf-of-ra (lub-spmf (fst ‘ Y)) (lub-ra (snd ‘ Y))
unfolding rel-tspmf-of-ra-def .

then show ?P (?lub Y)
by (simp add: prod-lub-def)

qed

lemma admissible-rel-tspmf-of-ra-cont [cont-intro]:
fixes ord
shows [[mcont lub ord lub-spmf (ord-spmf (=)) f ; mcont lub ord lub-ra ord-ra g]]
=⇒ ccpo.admissible lub ord (λx. rel-tspmf-of-ra (f x) (g x))
by (rule admissible-subst[OF admissible-rel-tspmf-of-ra, where f=λx. (f x, g x), simplified])

(rule mcont-Pair)

lemma mcont-tspmf-of-ra:
mcont lub-ra ord-ra lub-spmf (ord-spmf (=)) tspmf-of-ra
unfolding mcont-def monotone-def cont-def
by (auto simp: tspmf-of-ra-mono tspmf-of-ra-lub)

lemmas mcont2mcont-tspmf-of-ra = mcont-tspmf-of-ra[THEN spmf .mcont2mcont]

context includes lifting-syntax
begin

lemma fixp-rel-tspmf-of-ra-parametric[transfer-rule]:
assumes f :

∧
x. mono-spmf (λf . F f x)

and g:
∧

x. mono-ra (λf . G f x)
and param: ((A ===> rel-tspmf-of-ra) ===> A ===> rel-tspmf-of-ra) F G
shows (A ===> rel-tspmf-of-ra) (spmf .fixp-fun F) (random-alg-pf .fixp-fun G)
using f g

proof(rule parallel-fixp-induct-1-1 [OF
partial-function-definitions-spmf random-alg-pfd - - reflexive reflexive,

where P=(A ===> rel-tspmf-of-ra)])
show ccpo.admissible (prod-lub (fun-lub lub-spmf) (fun-lub lub-ra))

(rel-prod (fun-ord (ord-spmf (=))) (fun-ord ord-ra))
(λx. (A ===> rel-tspmf-of-ra) (fst x) (snd x))

unfolding rel-fun-def
by(rule admissible-all admissible-imp cont-intro)+

have 0 :tspmf-of-ra (lub-ra {}) = return-pmf None
using tspmf-of-ra-lub[where A={}]
by (simp add:Complete-Partial-Order .chain-def)

show (A ===> rel-tspmf-of-ra) (λ-. lub-spmf {}) (λ-. lub-ra {})
by (auto simp: rel-fun-def rel-tspmf-of-ra-def 0)

show (A ===> rel-tspmf-of-ra) (F f) (G g) if (A ===> rel-tspmf-of-ra) f g for f g
using that by(rule rel-funD[OF param])

qed

66

lemma return-ra-tranfer [transfer-rule]: ((=) ===> rel-tspmf-of-ra) return-tspmf return-ra
unfolding rel-fun-def rel-tspmf-of-ra-def tspmf-of-ra-return by simp

lemma bind-ra-tranfer [transfer-rule]:
(rel-tspmf-of-ra ===> ((=) ===> rel-tspmf-of-ra) ===> rel-tspmf-of-ra) bind-tspmf bind-ra
unfolding rel-fun-def rel-tspmf-of-ra-def tspmf-of-ra-bind by simp presburger

lemma coin-ra-tranfer [transfer-rule]:
rel-tspmf-of-ra coin-tspmf coin-ra
unfolding rel-fun-def rel-tspmf-of-ra-def tspmf-of-ra-coin by simp

end

lemma spmf-of-tspmf :
result (tspmf-of-ra f) = spmf-of-ra f
unfolding tspmf-of-ra-def result-def
by (simp add: untrack-coin-use spmf-of-ra-map[symmetric])

lemma coin-usage-of-tspmf-correct:
coin-usage-of-tspmf (tspmf-of-ra p) = coin-usage-of-ra p (is ?L = ?R)

proof −
let ?p = Rep-random-alg p

have measure-pmf (map-spmf snd (tspmf-of-ra p)) =
distr (distr-rai (track-random-bits ?p)) D (map-option snd)
unfolding tspmf-of-ra-def map-pmf-rep-eq spmf-of-ra.rep-eq comp-def track-coin-use.rep-eq
by simp

also have ... = distr B D (map-option snd ◦ (map-option fst ◦ track-random-bits ?p))
unfolding distr-rai-def
by (intro distr-distr distr-rai-measurable wf-track-random-bits wf-rep-rand-alg) simp

also have ... = distr B D (λx. ?p x >>= (λxa. consumed-bits ?p x))
unfolding track-random-bits-def by (simp add:comp-def map-option-bind case-prod-beta)

also have ... = distr B D (λx. consumed-bits ?p x)
by (intro arg-cong[where f=distr B D] ext)
(auto simp:consumed-bits-inf-iff [OF wf-rep-rand-alg] split:bind-split)

also have ... = measure-pmf (coin-usage-of-ra-aux p)
unfolding coin-usage-of-ra-aux.rep-eq used-bits-distr-def by simp

finally have measure-pmf (map-spmf snd (tspmf-of-ra p)) = measure-pmf (coin-usage-of-ra-aux
p)

by simp
hence 0 :map-spmf snd (tspmf-of-ra p) = coin-usage-of-ra-aux p

using measure-pmf-inject by auto
show ?thesis

unfolding coin-usage-of-tspmf-def 0 [symmetric] coin-usage-of-ra-def map-pmf-comp
by (intro map-pmf-cong) (auto split:option.split)

qed

lemma expected-coin-usage-of-tspmf-correct:
expected-coin-usage-of-tspmf (tspmf-of-ra p) = expected-coin-usage-of-ra p
unfolding expected-coin-usage-of-tspmf-def coin-usage-of-tspmf-correct

expected-coin-usage-of-ra-def by simp

end

8 Dice Roll
theory Dice-Roll

67

imports Tracking-SPMF
begin

The following is a dice roll algorithm for an arbitrary number of sides n. Besides correctness
we also show that the expected number of coin flips is at most log 2 n + 2. It is a
specialization of the algorithm presented by Hao and Hoshi [4]. 3

lemma floor-le-ceil-minus-one:
fixes x y :: real
shows x < y =⇒ bxc ≤ dye−1
by linarith

lemma combine-spmf-set-coin-spmf :
fixes f :: nat ⇒ ′a spmf
fixes k :: nat
shows pmf-of-set {..<2^k} >>= (λl. coin-spmf >>=(λb. f (2∗l+ of-bool b))) =

pmf-of-set {..<2^(k+1)} >>= f (is ?L = ?R)
proof −

let ?f = (λ(l::nat,b). 2∗l+ of-bool b)
let ?coin = pmf-of-set (UNIV :: bool set)

have [simp]:{..<(2 ::nat) ^ k} 6= {}
by (simp add: lessThan-empty-iff)

have bij:bij-betw ?f ({..<2^k} × UNIV) {..<2^(k+1)}
by (intro bij-betwI [where g=(λx. (x div 2 , odd x))]) auto

have pmf (pair-pmf (pmf-of-set {..<2^k}) ?coin) x =
pmf (pmf-of-set ({..<2^k}×UNIV)) x for x :: nat× bool
by (cases x) (simp add:pmf-pair indicator-def)

hence 0 :pair-pmf (pmf-of-set {..<(2 ::nat)^k}) ?coin = pmf-of-set ({..<2^k}×UNIV)
by (intro pmf-eqI) simp

have map-pmf ?f (pmf-of-set ({..<2^k}×UNIV)) = pmf-of-set (?f ‘ ({..<2^k}×UNIV))
using bij-betw-imp-inj-on[OF bij] by (intro map-pmf-of-set-inj) auto

also have ... = pmf-of-set {..<2^(k+1)}
by (intro arg-cong[where f=pmf-of-set] bij-betw-imp-surj-on[OF bij])

finally have 1 :map-pmf ?f (pmf-of-set ({..<2^k}×UNIV)) = pmf-of-set {..<2^(k+1)}
by simp

have ?L = pmf-of-set {..<2^k} >>= (λl. ?coin >>= (λb. f (2∗l + of-bool b)))
unfolding spmf-of-set-def bind-spmf-def spmf-of-pmf-def by (simp add:bind-map-pmf)

also have ... = pair-pmf (pmf-of-set {..<2^k}) ?coin >>= (λ(l,b). f (2∗l + of-bool b))
unfolding pair-pmf-def by (simp add:bind-assoc-pmf bind-return-pmf)

also have ... = map-pmf (λ(l,b). 2 ∗ l + of-bool b) (pmf-of-set ({..<2^k}×UNIV)) >>= f
unfolding 0 bind-map-pmf by (simp add:comp-def case-prod-beta ′)

also have ... = ?R
unfolding 1 by simp

finally show ?thesis by simp
qed

lemma count-ints-in-range:
real (card {x. of-int x ∈ {u..v}}) ≥ v−u−1 (is ?L ≥ ?R)

proof (cases u ≤ v)
case True
have 0 :of-int x ∈ {u..v} ←→ x ∈ {due..bvc} for x by simp linarith

3An interesting alternative algorithm, which we did not formalized here, has been introduced by Lambruso [7].

68

have v − u − 1 ≤ bvc − due + 1 using True by linarith
also have ... = real (nat (bvc − due + 1)) using True by (intro of-nat-nat[symmetric]) linarith
also have ... = card {due..bvc} by simp
also have ... = ?L

unfolding 0 by (intro arg-cong[where f=real] arg-cong[where f=card]) auto
finally show ?thesis by simp

next
case False
hence v−u−1 ≤ 0 by simp
thus ?thesis by simp

qed

partial-function (random-alg) dice-roll-step-ra :: real ⇒ real ⇒ int random-alg
where dice-roll-step-ra l h = (

if blc = dl+he−1 then
return-ra blc

else
do { b ← coin-ra; dice-roll-step-ra (l + (h/2) ∗ of-bool b) (h/2) }

)

definition dice-roll-ra n = map-ra nat (dice-roll-step-ra 0 (of-nat n))

partial-function (spmf) drs-tspmf :: real ⇒ real ⇒ int tspmf
where drs-tspmf l h = (

if blc = dl+he−1 then
return-tspmf blc

else
do { b ← coin-tspmf ; drs-tspmf (l + (h/2) ∗ of-bool b) (h/2) }

)

definition dice-roll-tspmf n = drs-tspmf 0 (of-nat n) >>= (λx. return-tspmf (nat x))

lemma drs-tspmf : drs-tspmf l u = tspmf-of-ra (dice-roll-step-ra l u)
proof −

include lifting-syntax
have ((=) ===> (=) ===> rel-tspmf-of-ra) drs-tspmf dice-roll-step-ra

unfolding drs-tspmf-def dice-roll-step-ra-def
apply (rule rel-funD[OF curry-transfer])
apply (rule fixp-rel-tspmf-of-ra-parametric[OF drs-tspmf .mono dice-roll-step-ra.mono])
by transfer-prover

thus ?thesis
unfolding rel-fun-def rel-tspmf-of-ra-def by auto

qed

lemma dice-roll-ra-tspmf : tspmf-of-ra (dice-roll-ra n) = dice-roll-tspmf n
unfolding dice-roll-ra-def dice-roll-tspmf-def map-ra-def tspmf-of-ra-bind tspmf-of-ra-return

drs-tspmf by simp

lemma dice-roll-step-tspmf-lb:
assumes h > 0
shows coin-tspmf >>= (λb. drs-tspmf (l + (h/2) ∗ of-bool b) (h/2)) ≤R drs-tspmf l h

proof (cases blc = dl+he−1)
case True
hence 2 :drs-tspmf l h = return-tspmf blc

by (subst drs-tspmf .simps) simp

have 0 : bl + h / 2 ∗ of-bool bc = blc for b
proof −

69

have bl + h / 2 ∗ of-bool bc ≤ bl + h / 2 c
using assms by (intro floor-mono add-mono) auto

also have ... ≤ dl + he − 1
using assms by (intro floor-le-ceil-minus-one add-strict-left-mono) auto

also have ... = blc using True by simp
finally have bl + h / 2 ∗ of-bool bc ≤ blc by simp
moreover have blc ≤ bl + h / 2 ∗ of-bool bc

using assms by (intro floor-mono) auto
ultimately show ?thesis by simp

qed

have 1 : dl + h / 2 ∗ of-bool b + h / 2 e − 1 = blc for b
proof −

have dl + h / 2 ∗ of-bool b + h / 2 e − 1 ≤ dl + he−1
using assms by (intro diff-mono ceiling-mono) auto

also have ... = blc using True by simp
finally have dl + h / 2 ∗ of-bool b + h / 2 e − 1 ≤ blc by simp
moreover have blc ≤ dl + h / 2 ∗ of-bool b + h / 2 e − 1

using assms by (intro floor-le-ceil-minus-one) auto
ultimately show ?thesis by simp

qed

have 3 :drs-tspmf (l + (h/2) ∗ of-bool b) (h/2) = return-tspmf blc for b
using 0 1 by (subst drs-tspmf .simps) simp

show ?thesis
unfolding 2 3 bind-tspmf-def coin-tspmf-def pair-spmf-alt-def
by (simp add:bind-spmf-const ord-tspmf-map-spmf)

next
case False
thus ?thesis

by (subst drs-tspmf .simps) (auto intro:ord-tspmf-refl)
qed

abbreviation coins k ≡ pmf-of-set {..<(2 ::nat)^k}

lemma dice-roll-step-tspmf-expand:
assumes h > 0
shows coins k >>= (λl. use-coins k (drs-tspmf (real l∗h) h)) ≤R drs-tspmf 0 (h∗2^k)
using assms

proof (induction k arbitrary:h)
case 0
have {..<Suc 0} = {0} by auto
then show ?case

by (auto intro:ord-tspmf-use-coins simp:pmf-of-set-singleton bind-return-pmf)
next

case (Suc k)
have (coins (k+1) >>= (λl. use-coins (k+1) (drs-tspmf (real l∗h) h))) =

coins k >>= (λl. coin-spmf >>= (λb. use-coins (k+1) (drs-tspmf (real (2∗l+ of-bool b) ∗ h) h)))
by (intro combine-spmf-set-coin-spmf [symmetric])

also have ... = coins k >>= (λl. use-coins (k+1) (coin-spmf >>=
(λb. drs-tspmf (real l∗ (2∗h) + h ∗ of-bool b) h)))
unfolding use-coins-def map-spmf-conv-bind-spmf by (simp add:algebra-simps)

also have ... = coins k >>= (λl. use-coins k (coin-tspmf >>=
(λb. drs-tspmf (real l∗ (2∗h) + h ∗ of-bool b) h)))
unfolding coin-tspmf-split use-coins-add by simp

also have ... = coins k >>= (λl. use-coins k (coin-tspmf >>=
(λb. drs-tspmf (real l∗ (2∗h) + ((2∗h)/2) ∗ of-bool b) ((2∗h)/2))))

70

using Suc(2) by simp
also have ... ≤R coins k >>= (λl. use-coins k (drs-tspmf (real l ∗ (2 ∗ h)) (2∗h)))

using Suc(2) by (intro ord-tspmf-bind-pmf ord-tspmf-use-coins-2 dice-roll-step-tspmf-lb) simp
also have ... ≤R drs-tspmf 0 ((2∗h)∗2^k)

using Suc(2) by (intro Suc(1)) auto
also have ... = drs-tspmf 0 (h∗2^(k+1))

unfolding power-add by (simp add:algebra-simps)
finally show ?case

by simp
qed

lemma dice-roll-step-tspmf-approx:
fixes k :: nat
assumes h > (0 ::real)
defines f ≡ (λl. if bl∗hc=d(l+1)∗he−1 then Some (bl∗hc,k) else None)
shows map-pmf f (coins k) ≤R drs-tspmf 0 (h∗2^k) (is ?L ≤R ?R)

proof −
have ?L = coins k >>=
(λl. use-coins k (if breal l∗hc=d(l+1)∗he−1 then return-tspmf bl∗hc else return-pmf None))
unfolding f-def return-tspmf-def use-coins-def map-pmf-def
by (simp add:if-distribR if-distrib bind-return-pmf algebra-simps cong:if-cong)

also have ... ≤R coins k >>= (λl. use-coins k (drs-tspmf (real l∗h) h))
by (subst drs-tspmf .simps, intro ord-tspmf-bind-pmf ord-tspmf-use-coins-2)
(simp add:ord-tspmf-min ord-tspmf-refl algebra-simps)

also have ... ≤R drs-tspmf 0 (h∗2^k)
by (intro dice-roll-step-tspmf-expand assms)

finally show ?thesis by simp
qed

lemma dice-roll-step-spmf-approx:
fixes k :: nat
assumes h > (0 ::real)
defines f ≡ (λl. if bl∗hc=d(l+1)∗he−1 then Some (bl∗hc) else None)
shows ord-spmf (=) (map-pmf f (coins k)) (result (drs-tspmf 0 (h∗2^k)))
(is ord-spmf - ?L ?R)

proof −
have 0 : ?L = result (map-pmf (λl. if bl∗hc=d(l+1)∗he−1 then Some (bl∗hc,k) else None) (coins

k))
unfolding result-def map-pmf-comp f-def by (intro map-pmf-cong refl) auto

show ?thesis
unfolding 0 using assms result-mono[OF dice-roll-step-tspmf-approx] by simp

qed

lemma spmf-dice-roll-step-lb:
assumes j < n
shows spmf (result (drs-tspmf 0 (of-nat n))) (of-nat j) ≥ 1/n (is ?L ≥ ?R)

proof (rule ccontr)
assume ¬(spmf (result (drs-tspmf 0 (of-nat n))) (of-nat j) ≥ 1/n)
hence a:?L < 1/n by simp
define k :: nat where k = nat b2−log 2 (1/n−?L)c
define h where h = real n/2^k
define f where f l = (if bl∗hc=d(l+1)∗he−1 then Some bl∗hc else None) for l :: nat

have h-gt-0 : h > 0 using assms unfolding h-def by auto
have n-gt-0 : real n > 0 using assms by simp

have 0 : x < 2^k if real x ≤ (real j+1)∗2^k/n−1 for x

71

proof −
have real x ≤ (real j+1)∗2^k/n−1 using that by simp
also have ... ≤ real n ∗ 2^k/n − 1

using assms by (intro diff-mono divide-right-mono mult-right-mono) auto
also have ... ≤ 2^k−1 by simp
finally have real x ≤ 2^k−1 by simp
thus ?thesis using nat-less-real-le by auto

qed
have 2 : int ‘ {x. P (real x)} = {x. P (real-of-int x)} if

∧
x. P x =⇒ x ≥ 0 for P

proof −
have bij-betw int {x. P (real x)} {x. P (real-of-int x)}

using that by (intro bij-betwI [where g=nat]) force+
thus ?thesis

using bij-betw-imp-surj-on by auto
qed
have 1 : real j∗2^k/n ≥ 0 by auto

have 3 :breal l∗hc≤dreal (l+1)∗he−1 for l
using h-gt-0 by (intro floor-le-ceil-minus-one) force

have 2 = (1/n − ?L)∗2 powr (1−log 2 (1/n−?L))
using a n-gt-0 unfolding powr-diff by (subst powr-log-cancel) (auto simp:divide-simps)

also have ... < (1/n − ?L)∗2 powr b2−log 2 (1/n−?L)c
using a by (intro mult-strict-left-mono powr-less-mono) linarith+

also have ... ≤ (1/n − ?L)∗2 powr real k
using a unfolding k-def by (intro mult-left-mono powr-mono) auto

also have ... = (1/n − ?L)∗2^k by (subst powr-realpow) auto
finally have 2 < (1/n − ?L)∗2^k by simp
hence ?L < 1/n−2/2^k by (simp add:field-simps)
also have ... = (((real j+1)∗2^k/n−1)−(real j∗2^k/n)−1) / 2^k

using n-gt-0 by (simp add:field-simps)
also have ... ≤ real (card {x. of-int x ∈ {real j∗2^k/n..(real j+1)∗2^k/n−1}})/2^k

by (intro divide-right-mono count-ints-in-range) auto
also have ... = real (card (int ‘ {x. real x ∈ {real j∗2^k/n..(real j+1)∗2^k/n−1}}))/2^k

using order-trans[OF 1] by (subst 2) auto
also have ... = real (card {x. real x ∈ {real j∗2^k/n..(real j+1)∗2^k/n−1}})/2^k

by (subst card-image) auto
also have ... = real (card {x. x<2^k ∧ real x ∈ {real j∗2^k/n..(real j+1)∗2^k/n−1}})/2^k

using 0 by (intro arg-cong[where f=λx. real (card x)/2^k]) auto
also have ... = real (card {l. l< 2^k ∧ real j ≤ real l ∗ h ∧ (1 + real l)∗h≤real j+1}) / 2^k

using assms unfolding h-def
by (intro arg-cong[where f=λx. real (card x)/2^k] Collect-cong) (auto simp:field-simps)

also have ... = measure (coins k) {l. real j ≤ real l∗h ∧ real (l+1)∗h ≤ real j + 1 }
by (subst measure-pmf-of-set) (simp-all add:lessThan-empty-iff Int-def)

also have ... = measure (coins k) {l. int j ≤ breal l∗hc ∧ dreal (l+1)∗he − 1 ≤ int j }
by (intro arg-cong2 [where f=measure] refl Collect-cong) linarith

also have ... = measure (coins k) {l. int j = breal l∗hc ∧ int j = dreal (l+1)∗he − 1}
using 3 order .trans order-antisym
by (intro arg-cong2 [where f=measure] refl Collect-cong iffI , blast, simp)

also have ... = spmf (map-pmf f (coins k)) j
unfolding pmf-map f-def vimage-def
by (intro arg-cong2 [where f=measure] refl Collect-cong) auto

also have ... ≤ spmf (result (drs-tspmf 0 (h∗2^k))) j
unfolding f-def by (intro ord-spmf-eq-leD dice-roll-step-spmf-approx h-gt-0)

also have ... = ?L
unfolding h-def by simp

finally have ?L < ?L by simp
thus False by simp

72

qed

lemma dice-roll-correct-aux:
assumes n > 0
shows result (drs-tspmf 0 (of-nat n)) = spmf-of-set {0 ..<n}

proof −
have weight-spmf (spmf-of-set {0 ..<int n}) ≥ weight-spmf (result (drs-tspmf 0 (of-nat n)))

using assms unfolding weight-spmf-of-set
by (simp add:lessThan-empty-iff weight-spmf-le-1)

moreover have spmf (spmf-of-set {0 ..<int n}) x ≤ spmf (result (drs-tspmf 0 (of-nat n))) x
for x

proof (cases x < n ∧ x ≥ 0)
case True
hence spmf (spmf-of-set {0 ..<int n}) x = 1/n

unfolding spmf-of-set by auto
also have ... ≤ spmf (result (drs-tspmf 0 (of-nat n))) (of-nat (nat x))

using True by (intro spmf-dice-roll-step-lb) auto
also have ... = spmf (result (drs-tspmf 0 (of-nat n))) x

using True by (subst of-nat-nat) auto
finally show ?thesis by simp

next
case False
hence spmf (spmf-of-set {0 ..<int n}) x = 0

unfolding spmf-of-set by auto
then show ?thesis by simp

qed
hence ord-spmf (=) (spmf-of-set {0 ..<int n}) (result (drs-tspmf 0 (of-nat n)))

by (intro ord-pmf-increaseI refl) auto
ultimately show ?thesis

by (intro eq-iff-ord-spmf [symmetric]) auto
qed

theorem dice-roll-correct:
assumes n > 0
shows

result (dice-roll-tspmf n) = spmf-of-set {..<n} (is ?L = ?R)
spmf-of-ra (dice-roll-ra n) = spmf-of-set {..<n}

proof −
have bij:bij-betw nat {0 ..<int n} {..<n}

by (intro bij-betwI [where g=int]) auto

have ?L = map-spmf nat (spmf-of-set {0 ..<int n})
unfolding dice-roll-tspmf-def dice-roll-correct-aux[OF assms] result-bind result-return

map-spmf-conv-bind-spmf by simp
also have ... = spmf-of-set (nat ‘ {0 ..<int n})

by (intro map-spmf-of-set-inj-on inj-onI) auto
also have ... = ?R

using bij-betw-imp-surj-on[OF bij] by (intro arg-cong[where f=spmf-of-set]) auto
finally show ?L = ?R by simp
thus spmf-of-ra (dice-roll-ra n) = ?R

using spmf-of-tspmf dice-roll-ra-tspmf by metis
qed

lemma dice-roll-consumption-bound:
assumes n > 0
shows measure (coin-usage-of-tspmf (dice-roll-tspmf n)) {x. x > enat k } ≤ real n/2^k
(is ?L ≤ ?R)

proof −

73

define h where h = real n/2^k
define f where f l = (if bl∗hc=d(l+1)∗he−1 then Some (bl∗hc,k) else None) for l :: nat

have h-gt-0 : h > 0
using assms unfolding h-def
by (intro divide-pos-pos) auto

have 0 :real n = h ∗ 2^k
unfolding h-def by simp

have 1 :breal l∗hc<b(real l+1)∗hc if breal l∗hc6=d(real l+1)∗he−1 for l
proof −

have breal l∗hc≤d(real l+1)∗he−1
using h-gt-0 by (intro floor-le-ceil-minus-one) force

hence breal l∗hc<d(real l+1)∗he−1
using that by simp

also have ... ≤ b(real l+1)∗hc
by linarith

finally show ?thesis by simp
qed

have ?L = measure (coin-usage-of-tspmf (drs-tspmf 0 n)) {x. x > enat k}
unfolding dice-roll-tspmf-def coin-usage-of-tspmf-bind-return by simp

also have ... ≤ measure (coin-usage-of-tspmf (map-pmf f (coins k))) {x. x > enat k}
unfolding f-def 0
by (intro coin-usage-of-tspmf-mono-rev dice-roll-step-tspmf-approx h-gt-0)

also have ... = measure (coins k) {l. breal l∗hc6=d(real l+1)∗he−1}
unfolding coin-usage-of-tspmf-def map-pmf-comp
by (simp add:vimage-def f-def algebra-simps split:option.split)

also have ... ≤ measure (coins k) {l. breal l∗hc<b(real l+1)∗hc}
using 1 by (intro measure-pmf .finite-measure-mono subsetI) (simp-all)

also have ... = (
∫

l. indicator {l. breal l∗hc<b(real l+1)∗hc} l ∂(coins k))
by simp

also have ... = (
∑

j<2 ^ k. indicat-real {l. breal l∗hc < b(real l+1)∗hc} j ∗ pmf (coins k) j)
by (intro integral-measure-pmf-real[where A={..<2^k}]) (simp-all add:lessThan-empty-iff)

also have ... = (
∑

l<2 ^ k. of-bool (breal l∗hc < b(real l+1)∗hc)) / 2^k
by (simp add:lessThan-empty-iff indicator-def flip:sum-divide-distrib)

also have ... ≤ (
∑

l<2 ^ k. of-int breal (Suc l)∗hc − of-int breal l∗hc) / 2^k
using h-gt-0 int-less-real-le
by (intro divide-right-mono sum-mono) (auto intro:floor-mono simp:algebra-simps)

also have ... = of-int b2 ^ k ∗ hc / 2 ^ k
by (subst sum-lessThan-telescope) simp

also have ... = real n / 2^k
unfolding h-def by simp

finally show ?thesis
by simp

qed

lemma dice-roll-expected-consumption-aux:
assumes n > (0 ::nat)
shows expected-coin-usage-of-tspmf (dice-roll-tspmf n) ≤ log 2 n + 2 (is ?L ≤ ?R)

proof −
define k0 where k0 = nat dlog 2 ne
define δ where δ = log 2 n − dlog 2 ne

have 0 : ennreal (measure (coin-usage-of-tspmf (dice-roll-tspmf n)) {x. x > enat k}) ≤
ennreal (min (real n/2^k) 1) (is ?L1 ≤ ?R1) for k
by (intro iffD2 [OF ennreal-le-iff] min.boundedI dice-roll-consumption-bound[OF assms]) auto

74

have 1 [simp]: (2 ::ennreal)^k < Orderings.top for k::nat
using ennreal-numeral-less-top power-less-top-ennreal by blast

have (
∑

k. ennreal ((1/2)^k)) = ennreal (
∑

k. ((1/2)^k))
by (intro suminf-ennreal2) auto

also have ... = ennreal 2
by (subst suminf-geometric) simp-all

finally have 2 :(
∑

k. ennreal ((1/2)^k)) = ennreal 2
by simp

have real n ≥ 1
using assms by simp

hence 3 : log 2 (real n) ≥ 0
by simp

have real-of-int dlog 2 (real n)e ≤ 1 + log 2 (real n)
by linarith

hence 4 : δ+1 ∈ {0 ..1}
unfolding δ-def by (auto simp:algebra-simps)

have twop-conv: convex-on UNIV (λx. 2 powr (x::real))
using convex-on-exp[where l=ln 2] unfolding powr-def
by (auto simp:algebra-simps)

have 5 :2 powr x ≤ 1 + x if x ∈ {0 ..1} for x :: real
using that convex-onD[OF twop-conv, where x=0 and y=1 and t=x]
by (simp add:algebra-simps)

have ?L = (
∑

k. ennreal (measure (coin-usage-of-tspmf (dice-roll-tspmf n)) {x. x > enat k}))
unfolding expected-coin-usage-of-tspmf by simp

also have ... ≤ (
∑

k. ennreal (min (real n/2^k) 1))
by (intro suminf-le summableI 0)

also have ... = (
∑

k. ennreal (min (real n/2^(k+k0)) 1))+(
∑

k < k0 . ennreal(min (real n/2^k)
1))

by (intro suminf-offset summableI)
also have ... ≤ (

∑
k. ennreal (real n/2^(k+k0))) + (

∑
k < k0 . 1)

by (intro add-mono suminf-le summableI sum-mono iffD2 [OF ennreal-le-iff]) auto
also have ... = (

∑
k. ennreal (real n /2^k0) ∗ ennreal ((1/2)^k)) + of-nat k0

by (intro suminf-cong arg-cong2 [where f=(+)])
(simp-all add: ennreal-mult[symmetric] power-add divide-simps)

also have ... = ennreal (real n /2^k0) ∗ (
∑

k. ennreal ((1/2)^k)) + ennreal (real k0)
unfolding ennreal-of-nat-eq-real-of-nat by simp

also have ... = ennreal (real n / 2^k0 ∗ 2 + real k0)
unfolding 2 by (subst ennreal-mult[symmetric]) simp-all

also have ... = ennreal (real n / 2 powr k0 ∗ 2 + real k0)
by (subst powr-realpow) auto

also have ... = ennreal (real n / 2 powr dlog 2 ne ∗ 2 + real k0)
using 3 unfolding k0-def by (subst of-nat-nat) auto

also have ... = ennreal (real n / 2 powr (log 2 n − δ) ∗ 2 + real k0)
unfolding δ-def by simp

also have ... = ennreal (2 powr δ ∗ 2 powr 1 + real k0)
using assms unfolding powr-diff by (subst powr-log-cancel) auto

also have ... ≤ ennreal (1+(δ+1) + real k0)
using 4 unfolding powr-add[symmetric]
by (intro iffD2 [OF ennreal-le-iff] add-mono 5) auto

also have ... = ?R
using 3 unfolding δ-def k0-def by (subst of-nat-nat) auto

finally show ?thesis
by simp

75

qed

theorem dice-roll-coin-usage:
assumes n > (0 ::nat)
shows expected-coin-usage-of-ra (dice-roll-ra n) ≤ log 2 n + 2 (is ?L ≤ ?R)

proof −
have ?L = expected-coin-usage-of-tspmf (tspmf-of-ra (dice-roll-ra n))

unfolding expected-coin-usage-of-tspmf-correct[symmetric] by simp
also have ... = expected-coin-usage-of-tspmf (dice-roll-tspmf n)

unfolding dice-roll-ra-tspmf by simp
also have ... ≤ ?R

by (intro dice-roll-expected-consumption-aux assms)
finally show ?thesis

by simp
qed

end

9 A Pseudo-random Number Generator

In this section we introduce a PRG, that can be used to generate random bits. It is an
implementation of O’Neil’s Permuted congruential generator [9] (specifically PCG-XSH-
RR). In empirical tests it ranks high [2, 10] while having a low implementation complexity.
This is for easy testing purposes only, the generated code can be run with any source of
random bits.
theory Permuted-Congruential-Generator

imports
HOL−Library.Word
Coin-Space

begin

The following are default constants from the reference implementation [8].
definition pcg-mult :: 64 word

where pcg-mult = 6364136223846793005
definition pcg-increment :: 64 word

where pcg-increment = 1442695040888963407

fun pcg-rotr :: 32 word ⇒ nat ⇒ 32 word
where pcg-rotr x r = Bit-Operations.or (drop-bit r x) (push-bit (32−r) x)

fun pcg-step :: 64 word ⇒ 64 word
where pcg-step state = state ∗ pcg-mult + pcg-increment

Based on [9, Section 6.3.1]:
fun pcg-get :: 64 word ⇒ 32 word

where pcg-get state =
(let count = unsigned (drop-bit 59 state);

x = xor (drop-bit 18 state) state
in pcg-rotr (ucast (drop-bit 27 x)) count)

fun pcg-init :: 64 word ⇒ 64 word
where pcg-init seed = pcg-step (seed + pcg-increment)

definition to-bits :: 32 word ⇒ bool list
where to-bits x = map (λk. bit x k) [0 ..<32]

76

definition random-coins
where random-coins seed = build-coin-gen (to-bits ◦ pcg-get) pcg-step (pcg-init seed)

end

10 Basic Randomized Algorithms

This section introduces a few randomized algorithms for well-known distributions. These
both serve as building blocks for more complex algorithms and as examples describing how
to use the framework.
theory Basic-Randomized-Algorithms

imports
Randomized-Algorithm
Probabilistic-While.Bernoulli
Probabilistic-While.Geometric
Permuted-Congruential-Generator

begin

A simple example: Here we define a randomized algorithm that can sample uniformly from
pmf-of-set {..<2 n}. (The same problem for general ranges is discussed in Section 8).
fun binary-dice-roll :: nat ⇒ nat random-alg

where
binary-dice-roll 0 = return-ra 0 |
binary-dice-roll (Suc n) =

do { h ← binary-dice-roll n;
c ← coin-ra;
return-ra (of-bool c + 2 ∗ h)

}

Because the algorithm terminates unconditionally it is easy to verify that binary-dice-roll
terminates almost surely:
lemma binary-dice-roll-terminates: terminates-almost-surely (binary-dice-roll n)

by (induction n) (auto intro:terminates-almost-surely-intros)

The corresponding PMF can be written as:
fun binary-dice-roll-pmf :: nat ⇒ nat pmf

where
binary-dice-roll-pmf 0 = return-pmf 0 |
binary-dice-roll-pmf (Suc n) =

do { h ← binary-dice-roll-pmf n;
c ← coin-pmf ;
return-pmf (of-bool c + 2 ∗ h)

}

To verify that the distribution of the result of binary-dice-roll is binary-dice-roll-pmf we
can rely on the pmf-of-ra-simps simp rules and the terminates-almost-surely-intros intro-
duction rules:
lemma pmf-of-ra (binary-dice-roll n) = binary-dice-roll-pmf n

using binary-dice-roll-terminates
by (induction n) (simp-all add:terminates-almost-surely-intros pmf-of-ra-simps)

Let us now consider an algorithm that does not terminate unconditionally but just almost
surely:
partial-function (random-alg) binary-geometric :: nat ⇒ nat random-alg

where

77

binary-geometric n =
do { c ← coin-ra;

if c then (return-ra n) else binary-geometric (n+1)
}

This is necessary for running randomized algorithms defined with the partial-function
directive:
declare binary-geometric.simps[code]

In this case, we need to map to an SPMF:
partial-function (spmf) binary-geometric-spmf :: nat ⇒ nat spmf

where
binary-geometric-spmf n =

do { c ← coin-spmf ;
if c then (return-spmf n) else binary-geometric-spmf (n+1)

}

We use the transfer rules for spmf-of-ra to show the correspondence:
lemma binary-geometric-ra-correct:

spmf-of-ra (binary-geometric x) = binary-geometric-spmf x
proof −

include lifting-syntax
have ((=) ===> rel-spmf-of-ra) binary-geometric-spmf binary-geometric

unfolding binary-geometric-def binary-geometric-spmf-def
apply (rule fixp-ra-parametric[OF binary-geometric-spmf .mono binary-geometric.mono])
by transfer-prover

thus ?thesis
unfolding rel-fun-def rel-spmf-of-ra-def by auto

qed

Bernoulli distribution: For this example we show correspondence with the already existing
definition of bernoulli SPMF.
partial-function (random-alg) bernoulli-ra :: real ⇒ bool random-alg where

bernoulli-ra p = do {
b ← coin-ra;
if b then return-ra (p ≥ 1 / 2)
else if p < 1 / 2 then bernoulli-ra (2 ∗ p)
else bernoulli-ra (2 ∗ p − 1)
}

declare bernoulli-ra.simps[code]

The following is a different technique to show equivalence of an SPMF with a randomized
algorithm. It only works if the SPMF has weight 1. First we show that the SPMF is a
lower bound:
lemma bernoulli-ra-correct-aux: ord-spmf (=) (bernoulli x) (spmf-of-ra (bernoulli-ra x))
proof (induction arbitrary:x rule:bernoulli.fixp-induct)

case 1
thus ?case by simp

next
case 2
thus ?case by simp

next
case (3 p)
thus ?case by (subst bernoulli-ra.simps)

(auto intro:ord-spmf-bind-reflI simp:spmf-of-ra-simps)

78

qed

Then relying on the fact that the SPMF has weight one, we can derive equivalence:
lemma bernoulli-ra-correct: bernoulli x = spmf-of-ra (bernoulli-ra x)

using lossless-bernoulli weight-spmf-le-1 unfolding lossless-spmf-def
by (intro eq-iff-ord-spmf [OF - bernoulli-ra-correct-aux]) auto

Because bernoulli p is a lossless SPMF equivalent to spmf-of-pmf (bernoulli-pmf p) it is
also possible to express the above, without referring to SPMFs:
lemma

terminates-almost-surely (bernoulli-ra p)
bernoulli-pmf p = pmf-of-ra (bernoulli-ra p)
unfolding terminates-almost-surely-def pmf-of-ra-def bernoulli-ra-correct[symmetric]
by (simp-all add: bernoulli-eq-bernoulli-pmf pmf-of-spmf)

context
includes lifting-syntax

begin

lemma bernoulli-ra-transfer [transfer-rule]:
((=) ===> rel-spmf-of-ra) bernoulli bernoulli-ra
unfolding rel-fun-def rel-spmf-of-ra-def bernoulli-ra-correct by simp

end

Using the randomized algorithm for the Bernoulli distribution, we can introduce one for
the general geometric distribution:
partial-function (random-alg) geometric-ra :: real ⇒ nat random-alg where

geometric-ra p = do {
b ← bernoulli-ra p;
if b then return-ra 0 else map-ra ((+) 1) (geometric-ra p)

}
declare geometric-ra.simps[code]

lemma geometric-ra-correct: spmf-of-ra (geometric-ra x) = geometric-spmf x
proof −

include lifting-syntax
have ((=) ===> rel-spmf-of-ra) geometric-spmf geometric-ra

unfolding geometric-ra-def geometric-spmf-def
apply (rule fixp-ra-parametric[OF geometric-spmf .mono geometric-ra.mono])
by transfer-prover

thus ?thesis
unfolding rel-fun-def rel-spmf-of-ra-def by auto

qed

Replication of a distribution
fun replicate-ra :: nat ⇒ ′a random-alg ⇒ ′a list random-alg

where
replicate-ra 0 f = return-ra [] |
replicate-ra (Suc n) f = do { xh ← f ; xt ← replicate-ra n f ; return-ra (xh#xt) }

fun replicate-spmf :: nat ⇒ ′a spmf ⇒ ′a list spmf
where

replicate-spmf 0 f = return-spmf [] |
replicate-spmf (Suc n) f = do { xh ← f ; xt ← replicate-spmf n f ; return-spmf (xh#xt) }

lemma replicate-ra-correct: spmf-of-ra (replicate-ra n f) = replicate-spmf n (spmf-of-ra f)

79

by (induction n) (auto simp :spmf-of-ra-simps)

lemma replicate-spmf-of-pmf : replicate-spmf n (spmf-of-pmf f) = spmf-of-pmf (replicate-pmf n f)
by (induction n) (simp-all add:spmf-of-pmf-bind)

Binomial distribution
definition binomial-ra :: nat ⇒ real ⇒ nat random-alg

where binomial-ra n p = map-ra (length ◦ filter id) (replicate-ra n (bernoulli-ra p))

lemma
assumes p ∈ {0 ..1}
shows spmf-of-ra (binomial-ra n p) = spmf-of-pmf (binomial-pmf n p)

proof −
have spmf-of-ra (replicate-ra n (bernoulli-ra p))=spmf-of-pmf (replicate-pmf n (bernoulli-pmf p))

unfolding replicate-ra-correct bernoulli-ra-correct[symmetric] bernoulli-eq-bernoulli-pmf
by (simp add:replicate-spmf-of-pmf)

thus ?thesis
unfolding binomial-pmf-altdef [OF assms] binomial-ra-def
by (simp flip:map-spmf-of-pmf add:spmf-of-ra-map)

qed

Running randomized algorithms: Here we use the PRG introduced in Section 9.
value run-ra (binomial-ra 10 0 .5) (random-coins 42)

value run-ra (replicate-ra 20 (bernoulli-ra 0 .3)) (random-coins 42)

end

References
[1] J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones, and A. Spiwack. Linear

haskell: Practical linearity in a higher-order polymorphic language. Proc. ACM Program.
Lang., 2(POPL), dec 2017.

[2] K. Bhattacharjee, K. Maity, and S. Das. A search for good pseudo-random number generators:
Survey and empirical studies. Comput. Sci. Rev., 45:100471, 2018.

[3] D. H. Fremlin. Measure theory, volume 4. Torres Fremlin, 2000.
[4] T. S. Hao and M. Hoshi. Interval algorithm for random number generation. IEEE Transactions

on Information Theory, 43(2):599–611, 1997.
[5] J. Hurd. Formal verification of probabilistic algorithms. Technical report, University of

Cambridge, Computer Laboratory, 2003.
[6] G. Hutton and E. Meijer. Monadic parsing in haskell. Journal of Functional Programming,

8(4):437444, 1998.
[7] J. O. Lumbroso. Optimal discrete uniform generation from coin flips, and applications. CoRR,

abs/1304.1916, 2013.
[8] M. E. O’Neill. PCG random number generation, minimal C edition.
[9] M. E. O’Neill. PCG: A family of simple fast space-efficient statistically good algorithms for

random number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College,
Claremont, CA, Sept. 2014.

[10] M. Singh, P. Singh, and P. Kumar. An empirical study of non-cryptographically secure
pseudorandom number generators. In 2020 International Conference on Computer Science,
Engineering and Applications (ICCSEA), pages 1–6, 2020.

80

	Introduction
	-Additivity
	Coin Flip Space
	Randomized Algorithms (Internal Representation)
	Randomized Algorithms
	Almost surely terminating randomized algorithms

	Tracking Randomized Algorithms
	Tracking SPMFs
	Dice Roll
	A Pseudo-random Number Generator
	Basic Randomized Algorithms

