Executable Randomized Algorithms

Emin Karayel and Manuel Eberl

September 13, 2023

Abstract

In Isabelle, randomized algorithms are usually represented using probability mass functions (PMFs), with which it is possible to verify their correctness, particularly properties about the distribution of their result. However, that approach does not provide a way to generate executable code for such algorithms. In this entry, we introduce a new monad for randomized algorithms, for which it is possible to generate code and simultaneously reason about the correctness of randomized algorithms. The latter works by a Scott-continuous monad morphism between the newly introduced random monad and PMFs. On the other hand, when supplied with an external source of random coin flips, the randomized algorithms can be executed.

Contents

1 Introduction 1
2τ-Additivity 2
3 Coin Flip Space 5
4 Randomized Algorithms (Internal Representation) 23
5 Randomized Algorithms 43
5.1 Almost surely terminating randomized algorithms 51
6 Tracking Randomized Algorithms 52
7 Tracking SPMFs 61
8 Dice Roll 68
9 A Pseudo-random Number Generator 76
10 Basic Randomized Algorithms 77

1 Introduction

In Isabelle, randomized algorithms are usually represented using probability mass functions (PMFs). (These are distributions on the discrete σ-algebra, i.e., pure point measures.) That representation allows the verification of the correctness of randomized algorithms, for example the expected value of their result, moments or other probabilistic properties. However, it is not directly possible to execute a randomized algorithm modelled as a PMF.

In this work, we introduce a representation of randomized algorithms as a parser monad over an external arbitrary source of random coin flips, modelled using a lazy infinite stream of booleans. Using for example a PRG or some other mechanism, like a hardware RNG to supply the coin flips, the generated code for the monad can be executed.

Figure 1: Scott-continuous monad morphisms verified in this work.

Then we introduce a monad morphism between such algorithms and the corresponding PMF, i.e., the PMF representing the distribution of the randomized algorithm under the idealized assumption that the coin flips are independent and unbiased, such that correctness properties can still be verified.

In the presence of loops and possible likelihood of non-termination, the resulting PMF maybe an SPMF (a finite measure space with total measure less than 1). (Internally these are just PMFs over the option type, where None represents non-termination.) If a randomized algorithm terminates almost surely, the weight of the SPMF will be 1 .

With this framework, it is also possible to reason about the number of coin-flips consumed by the algorithm. The latter is itself a distribution, where for example the average count of used coinflips is represented as the expectation of that distribution. To facilitate the latter, we introduce a second monad morphism, between randomized algorithm and a resource monad on top of the SPMF monad. Indeed the latter describes the joint-distribution of the result of a randomized algorithm and the number of used coin flips. (It is easy to construct examples where the individual marginal distributions are not enough, for example when the number of coin-flips used in intermediate steps of the algorithm depend on parameters.)

Figure 1 summarizes the Scott-continuous monad morphisms verified in this work. In particular:

- spmf-of-ra: Morphism between randomized algorithms and the distribution of their result. (Section 5)
- track-coin-usage: Morphism between randomized algorithms and randomized algorithms that track their coin flip usage. The result is still executable. (Section 6)
- tspmf-of-ra: Morpshism between randomized algorithms and the joint-distribution of their result and coin-flip usage. (Section 7)

In addition to that we also introduce the monad morphism pmf-of-ra which returns a PMF instead of an SPMF. It is defined for algorithms that terminate unconditionally or almost surely.

Section 10 contains some examples showing how to use this library, as well as randomized algorithms for standard probability distributions.

Section 8 contains an extended example with verification of correctness, as well as bounds on the the average coin-flip usage for a dice roll algorithm. (It is a specialization of an algorithm presented by Hao and Hoshi [4].)

2τ-Additivity

```
theory Tau-Additivity
    imports HOL-Analysis.Regularity
begin
```

In this section we show τ-additivity for measures, that are compatible with a secondcountable topology. This will be essential for the verification of the Scott-continuity of the monad morphisms. To understand the property, let us recall that for general countable chains of measurable sets, it is possible to deduce that the supremum of the measures of
the sets is equal to the measure of the union of the family:

$$
\mu(\bigcup \mathcal{X})=\sup _{X \in \mathcal{X}} \mu(X)
$$

this is shown in $S U P$-emeasure-incseq.
It is possible to generalize that to arbitrary chains ${ }^{1}$ of open sets for some measures without the restriction of countability, such measures are called τ-additive [3].
In the following this property is derived for measures that are at least borel (i.e. every open set is measurable) in a complete second-countable topology. The result is an immediate consequence of inner-regularity. The latter is already verified in $H O L-$ Analysis.Regularity.
definition op-stable op $F=(\forall x y . x \in F \wedge y \in F \longrightarrow$ op $x y \in F)$
lemma op-stableD:
assumes op-stable op F
assumes $x \in F y \in F$
shows op $x y \in F$
using assms unfolding op-stable-def by auto
lemma tau-additivity-aux:
fixes $M:: ' a::\{$ second-countable-topology, complete-space $\}$ measure
assumes sb: sets $M=$ sets borel
assumes fin: emeasure $M($ space $M) \neq \infty$
assumes of: $\bigwedge a . a \in A \Longrightarrow$ open a
assumes ud: op-stable (\cup) A
shows emeasure $M(\bigcup A)=(S U P a \in A$. emeasure $M a)($ is $? L=? R)$
proof (cases $A \neq\{ \}$)
case True
have open $(\bigcup A)$ using of by auto
hence $\bigcup A \in$ sets borel by simp
hence usets: $\bigcup A \in$ sets M using $\operatorname{assms}(1)$ by simp
have $0: a \in$ sets borel if $a \in A$ for a using of that by simp
have $1: \bigcup T \in A$ if finite $T T \neq\{ \} T \subseteq A$ for T
using that op-stable $D[O F u d]$ by (induction T rule:finite-ne-induct) auto
have 2:emeasure $M K \leq ? R$ if K-def: compact $K K \subseteq \bigcup A$ for K
proof (cases $K \neq\{ \}$)
case True
obtain T where T-def: $K \subseteq \bigcup T T \subseteq A$ finite T using compactE[OF K-def of] that by metis
have T-ne: $T \neq\{ \}$ using T-def(1) True by auto
define t where $t=\bigcup T$
have t-in: $t \in A$
unfolding t-def by (intro 1 T-ne T-def)
have $K \subseteq t$ unfolding t-def using T-def by simp
hence emeasure $M K \leq$ emeasure $M t$
using 0 sb t-in by (intro emeasure-mono) auto
also have $\ldots \leq$? R
using t-in by (intro cSup-upper) auto
finally show ?thesis

[^0]```
 by simp
 next
 case False
 hence K={} by simp
 thus ?thesis by simp
 qed
 have ? L = (SUP K \in{K.K\subseteq\bigcup A ^ compact K}. emeasure M K)
 using usets unfolding sb by (intro inner-regular[OF sb fin]) auto
 also have ... \leq?R
 using 2 by (intro cSup-least) auto
 finally have ?L }\leq\mathrm{ ?R by simp
 moreover have emeasure Ma\leqemeasure M (\bigcupA) if a\inA for a
 using that by (intro emeasure-mono usets) auto
 hence ?R \leq?L
 using True by (intro cSup-least) auto
 ultimately show ?thesis by auto
next
 case False
 thus ?thesis by (simp add:bot-ennreal)
qed
lemma chain-imp-union-stable:
 assumes Complete-Partial-Order.chain (\subseteq)F
 shows op-stable (U) F
proof -
 have }x\cupy\inF\mathrm{ if }x\inFy\inF\mathrm{ for }x
 proof (cases x\subseteqy)
 case True
 then show ?thesis using that sup.absorb2[OF True] by simp
 next
 case False
 hence 0:y\subseteqx
 using assms that unfolding Complete-Partial-Order.chain-def by auto
 then show ?thesis using that sup.absorb1[OF 0] by simp
 qed
 thus ?thesis
 unfolding op-stable-def by auto
qed
theorem tau-additivity:
 fixes M :: 'a::{second-countable-topology, complete-space} measure
 assumes sb:\x. open }x\Longrightarrowx\in\mathrm{ sets M
 assumes fin: emeasure M (space M)}\not=
 assumes of: \bigwedgea.a\inA\Longrightarrow open a
 assumes ud: op-stable (\cup) A
 shows emeasure M (\bigcupA) = (SUP a \inA. emeasure Ma) (is ?L = ?R)
proof -
 have UNIV \in sets M
 using open-UNIV sb by auto
 hence space-M[simp]:space M = UNIV
 using sets.sets-into-space by blast
 have id-borel: }(\lambdax.x)\inM\mp@subsup{->}{M}{}\mathrm{ borel
 using sb by (intro borel-measurableI) auto
 have open (\A) using of by auto
 hence usets: (\bigcupA)\in sets borel by simp
```

```
 define \(N\) where \(N=\operatorname{distr} M\) borel \((\lambda x . x)\)
 have sets- \(N\) : sets \(N=\) sets borel
 unfolding \(N\)-def by simp
 have fin- \(N\) : emeasure \(N(\) space \(N) \neq \infty\)
 using fin id-borel unfolding \(N\)-def
 by (subst emeasure-distr) auto
 have ? \(L=\) emeasure \(N(\bigcup A)\)
 unfolding \(N\)-def by (subst emeasure-distr[OF id-borel usets]) auto
 also have \(\ldots=(S U P a \in A\). emeasure \(N a)\)
 by (intro tau-additivity-aux sets- \(N\) of \(u d\) fin- \(N\)) auto
 also have \(\ldots=\left(S U P a \in A\right.\). emeasure \(M\left((\lambda x . x)-{ }^{`} a \cap\right.\) space \(\left.\left.M\right)\right)\)
 unfolding \(N\)-def using of
 by (intro arg-cong[where \(f=\) Sup \(]\) image-cong emeasure-distr id-borel) auto
 also have \(\ldots=\) ? \(R\) by simp
 finally show? thesis by simp
qed
end
```


## 3 Coin Flip Space

In this section, we introduce the coin flip space, an infinite lazy stream of booleans and introduce a probability measure and topology for the space.

```
theory Coin-Space
 imports
 HOL-Probability.Probability
 HOL-Library.Code-Lazy
begin
lemma stream-eq-iff:
 assumes \(\bigwedge i . x!!i=y!!i\)
 shows \(x=y\)
proof -
 have \(x=\) smap id \(x\) by (simp add: stream.map-id)
 also have \(\ldots=y\) using assms unfolding smap-alt by auto
 finally show ?thesis by simp
qed
```

Notation for the discrete $\sigma$-algebra:
abbreviation discrete-sigma-algebra
where discrete-sigma-algebra $\equiv$ count-space UNIV
bundle discrete-sigma-algebra-notation
begin
notation discrete-sigma-algebra ( $\mathcal{D}$ )
end
bundle no-discrete-sigma-algebra-notation
begin
no-notation discrete-sigma-algebra ( $\mathcal{D}$ )
end
unbundle discrete-sigma-algebra-notation
lemma map-prod-measurable[measurable]:

```
 assumes f\inM 例 M'
 assumes g}\inN\mp@subsup{->}{M}{}\mp@subsup{N}{}{\prime
 shows map-prod fg}\inM\mp@subsup{\otimes}{M}{}N\mp@subsup{->}{M}{}\mp@subsup{M}{}{\prime}\mp@subsup{\otimes}{M}{}\mp@subsup{N}{}{\prime
 using assms by (subst measurable-pair-iff) simp
lemma measurable-sigma-sets-with-exception:
 fixes f :: 'a > 'b :: countable
 assumes \x. x\not=d\Longrightarrowf -`{x}\cap space M\in sets M
 shows f\inM ->M count-space UNIV
proof -
 define A :: 'b set set where A=(\lambdax.{x})'UNIV
 have 0: sets (count-space UNIV) = sigma-sets (UNIV :: 'b set) A
 unfolding A-def by (subst sigma-sets-singletons) auto
 have 1: f-`{x}\cap space M\in sets M for x
 proof (cases x=d)
 case True
 have f-`{d}\cap space M = space M - (\bigcupy\inUNIV - {d}.f-`{y}\cap space M)
 by (auto simp add:set-eq-iff)
 also have ... \in sets M
 using assms
 by (intro sets.compl-sets sets.countable-UN) auto
 finally show ?thesis
 using True by simp
 next
 case False
 then show ?thesis using assms by simp
 qed
 hence 1: \y. y\inA\Longrightarrowf-`}y\cap\mathrm{ space M
 unfolding }A\mathrm{ -def by auto
 thus ?thesis
 by (intro measurable-sigma-sets[OF 0]) simp-all
qed
lemma restr-empty-eq: restrict-space M {} = restrict-space N {}
 by (intro measure-eqI) (auto simp add:sets-restrict-space)
lemma (in prob-space) distr-stream-space-snth [simp]:
 assumes sets M = sets N
 shows distr (stream-space M)N(\lambdaxs. snth xs n) =M
proof -
 have distr (stream-space M)N(\lambdaxs. snth xs n) = distr (stream-space M)M (\lambdaxs. snth xs n)
 by (rule distr-cong) (use assms in auto)
 also have ... = distr (Pi⿱M
 by (subst stream-space-eq-distr, subst distr-distr) (auto simp: to-stream-def o-def)
 also have ... = M
 by (intro distr-PiM-component prob-space-axioms) auto
 finally show ?thesis .
qed
lemma (in prob-space) distr-stream-space-shd [simp]:
 assumes sets M = sets N
 shows distr (stream-space M) N shd = M
 using distr-stream-space-snth[OF assms, of 0] by (simp del: distr-stream-space-snth)
```

lemma shift-measurable:
assumes set $x \subseteq$ space $M$
shows ( $\lambda b s . x$ @-bs) $\in$ stream-space $M \rightarrow_{M}$ stream-space $M$
proof -
have $(\lambda b s .(x @-b s)!!n) \in($ stream-space $M) \rightarrow_{M} M$ for $n$
proof (cases $n<$ length $x$ )
case True
have $(\lambda b s .(x @-b s)!!n)=(\lambda b s . x!n)$
using True by simp
also have $\ldots \in$ stream-space $M \rightarrow_{M} M$
using assms True by (intro measurable-const) auto
finally show? thesis by simp
next
case False
have $(\lambda b s .(x @-b s)!!n)=(\lambda b s . b s!!(n-$ length $x))$
using False by simp
also have $\ldots \in($ stream-space $M) \rightarrow_{M} M$ by (intro measurable-snth)
finally show? ?thesis by simp
qed
thus ?thesis
by (intro measurable-stream-space2) auto
qed
lemma (in sigma-finite-measure) restrict-space-pair-lift:
assumes $A^{\prime} \in$ sets $A$
shows restrict-space $A A^{\prime} \bigotimes_{M} M=$ restrict-space $\left(A \bigotimes_{M} M\right)\left(A^{\prime} \times\right.$ space $\left.M\right)(\mathbf{i s} ? L=? R)$
proof -
let ? $X=\left((\cap)\left(A^{\prime} \times\right.\right.$ space $\left.M\right) '\{a \times b \mid a b . a \in$ sets $A \wedge b \in$ sets $\left.M\}\right)$
have $0: A^{\prime} \subseteq$ space $A$
using assms sets.sets-into-space by blast
have ? $X \subseteq\left\{a \times b \mid a b . a \in\right.$ sets (restrict-space $\left.A A^{\prime}\right) \wedge b \in$ sets $\left.M\right\}$
proof (rule image-subsetI)
fix $x$ assume $x \in\{a \times b \mid a b . a \in$ sets $A \wedge b \in$ sets $M\}$
then obtain $u v$ where $u v$-def: $x=u \times v u \in$ sets $A v \in$ sets $M$
by auto
have $1: u \cap A^{\prime} \in$ sets (restrict-space $A A^{\prime}$ )
using $u v-\operatorname{def}(2)$ unfolding sets-restrict-space by auto
have $v \subseteq$ space $M$
using uv-def(3) sets.sets-into-space by auto
hence $A^{\prime} \times$ space $M \cap x=\left(u \cap A^{\prime}\right) \times v$ unfolding uv-def(1) by auto
also have $\ldots \in\left\{a \times b \mid a b . a \in\right.$ sets (restrict-space $\left.A A^{\prime}\right) \wedge b \in$ sets $\left.M\right\}$
using 1 uv- $\operatorname{def}(3)$ by auto
finally show $A^{\prime} \times$ space $M \cap x \in\left\{a \times b \mid a b\right.$. $a \in$ sets (restrict-space $\left.A A^{\prime}\right) \wedge b \in$ sets $\left.M\right\}$ by $\operatorname{simp}$
qed
moreover have $\left\{a \times b \mid a b\right.$. $a \in$ sets (restrict-space $\left.A A^{\prime}\right) \wedge b \in$ sets $\left.M\right\} \subseteq$ ? $X$
proof (rule subsetI)
fix $x$ assume $x \in\left\{a \times b \mid a b\right.$. $a \in$ sets (restrict-space $\left.A A^{\prime}\right) \wedge b \in$ sets $\left.M\right\}$
then obtain $u v$ where $u v$-def: $x=u \times v u \in$ sets (restrict-space $A A^{\prime}$ ) $v \in$ sets $M$ by auto
have $x=\left(A^{\prime} \times\right.$ space $\left.M\right) \cap x$
unfolding $u v-\operatorname{def}(1)$ using $u v-\operatorname{def}(2,3)$ sets.sets-into-space
by (intro Int-absorb1[symmetric]) (auto simp add:sets-restrict-space)
moreover have $u \in$ sets $A$ using $u v-\operatorname{def}(2)$ assms unfolding sets-restrict-space by blast
hence $x \in\{a \times b \mid a b$. $a \in$ sets $A \wedge b \in$ sets $M\}$
unfolding $u v-\operatorname{def}(1)$ using $u v-\operatorname{def}(3)$ by auto
ultimately show $x \in$ ? $X$
by $\operatorname{simp}$
qed
ultimately have 2: ? $X=\left\{a \times b \mid a b\right.$. $a \in$ sets (restrict-space $\left.A A^{\prime}\right) \wedge b \in$ sets $\left.M\right\}$ by simp
have sets ? $R=$ sigma-sets $\left(A^{\prime} \times\right.$ space $\left.M\right)\left((\cap)\left(A^{\prime} \times\right.\right.$ space $\left.M\right)$ ' $\{a \times b \mid a b . a \in$ sets $A \wedge b \in$ sets M \})
unfolding sets-restrict-space sets-pair-measure using assms sets.sets-into-space
by (intro sigma-sets-Int sigma-sets.Basic) auto
also have $\ldots=$ sets (restrict-space $A A^{\prime} \bigotimes_{M} M$ )
unfolding sets-pair-measure space-restrict-space Int-absorb2[OF 0 ] sets-restrict-space 2
by auto
finally have 3:sets (restrict-space $\left(A \bigotimes_{M} M\right)\left(A^{\prime} \times\right.$ space $\left.\left.M\right)\right)=$ sets $\left(\right.$ restrict-space $A A^{\prime}$ $\otimes_{M} M$ )
by $\operatorname{simp}$
have 4: emeasure (restrict-space $\left.A A^{\prime} \bigotimes_{M} M\right) S=$ emeasure (restrict-space $\left(A \bigotimes_{M} M\right)\left(A^{\prime} \times\right.$ space M)) $S$
(is ? $L 1=? R 1)$ if $5: S \in$ sets $\left(\right.$ restrict-space $\left.A A^{\prime} \otimes_{M} M\right)$ for $S$
proof -
have Pair $x-' S=\{ \}$ if $x \notin A^{\prime} x \in$ space $A$ for $x$
using that 5 by (auto simp add:3[symmetric] sets-restrict-space)
hence 5: emeasure $M\left(\operatorname{Pair} x-{ }^{\prime} S\right)=0$ if $x \notin A^{\prime} x \in$ space $A$ for $x$ using that by auto
have ?L1 $=\left(\int^{+}\right.$x. emeasure $M\left(\right.$ Pair $\left.x-{ }^{\prime} S\right)$ drestrict-space $\left.A A^{\prime}\right)$ by (intro emeasure-pair-measure-alt $[$ OF that $]$ )
also have $\ldots=\left(\int^{+} x \in A^{\prime}\right.$. emeasure $M\left(\right.$ Pair $\left.\left.x-{ }^{\prime} S\right) \partial A\right)$
using assms by (intro nn-integral-restrict-space) auto
also have $\ldots=\left(\int^{+} x\right.$. emeasure $M\left(\right.$ Pair $\left.\left.x-{ }^{\prime} S\right) \partial A\right)$
using 5 by (intro nn-integral-cong) force
also have $\ldots=$ emeasure $\left(A \bigotimes_{M} M\right) S$
using that assms by (intro emeasure-pair-measure-alt [symmetric])
(auto simp add:3[symmetric] sets-restrict-space)
also have $\ldots=$ ? $R 1$
using assms that by (intro emeasure-restrict-space[symmetric])
(auto simp add:3[symmetric] sets-restrict-space)
finally show? thesis by simp
qed
show ?thesis using 34
by (intro measure-eqI) auto
qed
lemma to-stream-comb-seq-eq:
to-stream (comb-seq n x y) = stake $n($ to-stream $x) @$ to-stream $y$
unfolding comb-seq-def to-stream-def
by (intro stream-eq-iff) simp
lemma to-stream-snth: to-stream ((!!) $x)=x$
by (intro ext stream-eq-iff) (simp add:to-stream-def)
lemma snth-to-stream: snth (to-stream $x)=x$
by (intro ext) (simp add:to-stream-def)
lemma (in prob-space) branch-stream-space:
$(\lambda(x, y)$. stake $n x @-y) \in$ stream-space $M \bigotimes_{M}$ stream-space $M \rightarrow_{M}$ stream-space $M$

```
 distr (stream-space \(M \bigotimes_{M}\) stream-space \(\left.M\right)\) (stream-space \(\left.M\right)(\lambda(x, y)\).stake \(n x @-y)\)
 \(=\) stream-space \(M(\) is \(? L=? R)\)
proof -
 let ? \(T\) = stream-space \(M\)
 let \(? S=P i M U N I V(\lambda-. M)\)
 interpret \(S\) : sequence-space \(M\)
 by standard
 show \(0:(\lambda(x, y)\). stake \(n x @-y) \in ? T \bigotimes_{M} ? T \rightarrow_{M}\) ? \(T\)
 by \(\operatorname{simp}\)
 have ? \(L=\) distr (distr ?S ? T to-stream \(\bigotimes_{M}\) distr ? \(S\) ?T to-stream) ?T \((\lambda(x, y)\).stake \(n x @-y)\)
 by (subst (1 2) stream-space-eq-distr) simp
 also have \(\ldots=\operatorname{distr}\left(\operatorname{distr}\left(? S \bigotimes_{M} ? S\right)\left(? T \bigotimes_{M} ? T\right)(\lambda(x, y) .(\right.\) to-stream \(x\), to-stream \(\left.y))\right)\)
 ?T \((\lambda(x, y)\). stake \(n x\) @- \(y)\)
 using prob-space-imp-sigma-finite[OF prob-space-stream-space]
 by (intro arg-cong2[where \(f=(\lambda x y\). distr \(x\) ? \(T\) y \()\)] pair-measure-distr)
 (simp-all flip:stream-space-eq-distr)
 also have \(\ldots=\operatorname{distr}\left(? S \bigotimes_{M} ? S\right)\) ?T \(((\lambda(x, y)\). stake \(n x @-y) \circ(\lambda(x, y)\). (to-stream \(x\),to-stream
y)))
 by (intro distr-distr 0) (simp add: measurable-pair-iff)
 also have \(\ldots=\operatorname{distr}\left(? S \bigotimes_{M} ? S\right)\) ? \(T((\lambda(x, y)\). stake \(n(\) to-stream \(x) @-\) to-stream \(y))\)
 by (simp add:comp-def case-prod-beta')
 also have \(\ldots=\operatorname{distr}\left(? S \bigotimes_{M} ? S\right) ? T(\) to-stream \(\circ(\lambda(x, y) . \operatorname{comb}-s e q n x y))\)
 using to-stream-comb-seq-eq[symmetric]
 by (intro arg-cong2 [where \(f=(\lambda x y\). distr \(x\) ? \(T y)]\) ext) auto
 also have \(\ldots=\operatorname{distr}\left(\operatorname{distr}\left(? S \bigotimes_{M} ? S\right) ? S \quad(\lambda(x, y)\right.\). comb-seq \(\left.n x y)\right)\) ?T to-stream
 by (intro distr-distr[symmetric] measurable-comb-seq) simp
 also have \(\ldots=\) distr ?S ?T to-stream
 by (subst S.PiM-comb-seq) simp
 also have...\(=? R\)
 unfolding stream-space-eq-distr[symmetric] by simp
 finally show \(? L=? R\)
 by \(\operatorname{simp}\)
qed
```

The type for the coin flip space is isomorphic to bool stream. Nevertheless, we introduce it as a separate type to be able to introduce a topology and mark it as a lazy type for code-generation:
codatatype coin-stream $=$ Coin $(c h d: b o o l)(c t l: c o i n-s t r e a m)$
code-lazy-type coin-stream
primcorec from-coins :: coin-stream $\Rightarrow$ bool stream where
from-coins coins $=$ chd coins \#\# (from-coins (ctl coins))
primcorec to-coins :: bool stream $\Rightarrow$ coin-stream where
to-coins str $=$ Coin (shd str) (to-coins (stl str))
lemma to-from-coins: to-coins (from-coins $x$ ) $=x$
by (rule coin-stream.coinduct $[$ where $R=(\lambda x y . x=$ to-coins $($ from-coins $y))])$ simp-all
lemma from-to-coins: from-coins (to-coins $x$ ) $=x$
by (rule stream.coinduct $[$ where $R=(\lambda x y . x=$ from-coins (to-coins $y))])$ simp-all
lemma bij-to-coins: bij to-coins
by (intro bij-betwI[where $g=$ from-coins $]$ to-from-coins from-to-coins) auto

```
lemma bij-from-coins: bij from-coins
 by (intro bij-betwI[where g=to-coins] to-from-coins from-to-coins) auto
definition cshift where cshift x y = to-coins (x @- from-coins y)
definition cnth where cnth x n= from-coins x !! n
definition ctake where ctake n x = stake n (from-coins x)
definition cdrop where cdrop n x to-coins (sdrop n (from-coins x))
definition rel-coins where rel-coins x y (to-coins x=y)
definition cprefix where cprefix x y ctake (length x) y=x
definition cconst where cconst x = to-coins (sconst x)
context
 includes lifting-syntax
begin
lemma bi-unique-rel-coins [transfer-rule]: bi-unique rel-coins
 unfolding rel-coins-def using inj-onD[OF bij-is-inj[OF bij-to-coins]]
 by (intro bi-uniqueI left-uniqueI right-uniqueI) auto
lemma bi-total-rel-coins [transfer-rule]: bi-total rel-coins
 unfolding rel-coins-def using from-to-coins to-from-coins
 by (intro bi-totalI left-totalI right-totalI) auto
lemma cnth-transfer [transfer-rule]: (rel-coins ===> (=) ===> (=)) snth cnth
 unfolding rel-coins-def cnth-def rel-fun-def by (auto simp:from-to-coins)
lemma cshift-transfer [transfer-rule]: ((=) ===>> rel-coins ===> rel-coins) shift cshift
 unfolding rel-coins-def cshift-def rel-fun-def by (auto simp:from-to-coins)
lemma ctake-transfer [transfer-rule]: ((=) ===> rel-coins ===> (=)) stake ctake
 unfolding rel-coins-def ctake-def rel-fun-def by (auto simp:from-to-coins)
lemma cdrop-transfer [transfer-rule]: ((=) ===> rel-coins ===> rel-coins) sdrop cdrop
 unfolding rel-coins-def cdrop-def rel-fun-def by (auto simp:from-to-coins)
lemma chd-transfer [transfer-rule]:(rel-coins ===> (=)) shd chd
 unfolding rel-coins-def rel-fun-def by (auto simp:from-to-coins)
lemma ctl-transfer [transfer-rule]: (rel-coins ===> rel-coins) stl ctl
 unfolding rel-coins-def rel-fun-def by (auto simp:from-to-coins)
lemma cconst-transfer [transfer-rule]: ((=) ===> rel-coins) sconst cconst
 unfolding rel-coins-def cconst-def rel-fun-def by (auto simp:from-to-coins)
end
lemma coins-eq-iff:
assumes \(\bigwedge i\). cnth \(x i=\) cnth \(y i\)
 shows }x=
proof -
 have (\foralli.cnth xi= cnth y i)}\longrightarrowx=
 by transfer (use stream-eq-iff in auto)
 thus ?thesis using assms by simp
qed
lemma length-ctake [simp]: length (ctake n x) = n
 by transfer (rule length-stake)
```

```
lemma ctake-nth \([\) simp \(]: m<n \Longrightarrow\) ctake \(n s!m=\) cnth \(s m\)
 by transfer (rule stake-nth)
lemma ctake-cdrop: cshift (ctake \(n s)(\) cdrop \(n s)=s\)
 by transfer (rule stake-sdrop)
lemma cshift-append[simp]: cshift \((p @ q) s=\operatorname{cshift} p(c s h i f t ~ q s)\)
 by transfer (rule shift-append)
lemma cshift-empty[simp]: cshift [] xs \(=x s\)
 by transfer simp
lemma ctake-null[simp]: ctake 0 xs = []
 by transfer simp
lemma ctake-Suc \([\) simp \(]\) :ctake \((\) Suc \(n) s=\operatorname{chd} s \#\) ctake \(n(\) ctl s)
 by transfer simp
lemma cdrop-null[simp]: cdrop \(0 s=s\)
 by transfer simp
lemma cdrop-Suc[simp]: cdrop \((\) Suc \(n) s=c d r o p n(c t l s)\)
 by transfer simp
lemma chd-shift \([\) simp \(]:\) chd \((\) cshift \(x s ~ s)=(\) if \(x s=[]\) then chd s else hd xs \()\)
 by transfer simp
lemma ctl-shift [simp]: ctl (cshift xs s) \(=(\) if \(x s=[]\) then ctl s else cshift \((t l x s) s)\)
 by transfer simp
lemma shd-sconst \([\) simp \(]:\) chd \((\) cconst \(x)=x\)
 by transfer simp
lemma take-ctake: take \(n(\) ctake \(m s)=\) ctake \((\min n m) s\)
 by transfer (rule take-stake)
lemma ctake-add[simp]: ctake \(m s\) @ ctake \(n(\) cdrop \(m s)=\operatorname{ctake}(m+n) s\)
 by transfer (rule stake-add)
lemma cdrop-add[simp]: cdrop \(m(\) cdrop \(n s)=c d r o p(n+m) s\)
 by transfer (rule sdrop-add)
lemma cprefix-iff: cprefix \(x y \longleftrightarrow(\forall i<\) length \(x\). cnth \(y i=x!i)(\) is ? \(L \longleftrightarrow ? R)\)
proof -
 have ? \(L \longleftrightarrow\) ctake (length \(x\)) \(y=x\)
 unfolding cprefix-def by simp
 also have \(\ldots \longleftrightarrow(\forall i<\) length \(x .(\) ctake (length \(x) y)!i=x!i)\)
 by (simp add: list-eq-iff-nth-eq)
 also have \(\ldots \longleftrightarrow\) ? \(R\)
 by (intro all-cong) simp
 finally show ?thesis by simp
qed
A non-empty shift is not idempotent:
lemma empty-if-shift-idem:
 assumes \(\bigwedge c s\). cshift \(h c s=c s\)
 shows \(h=[]\)
```

```
proof (cases h)
 case Nil
 then show ?thesis by simp
next
 case (Cons hh ht)
 have [hh] = ctake 1 (cshift (hh#ht)(cconst (\neghh)))
 by simp
 also have ... = ctake 1 (cconst (}\neg\mathrm{ hh))
 using assms unfolding Cons by simp
 also have ... = [\neg hh] by simp
 finally show?thesis by simp
qed
Stream version of prefix-length-prefix:
lemma cprefix-length-prefix:
 assumes length x}\leq\mathrm{ length }
 assumes cprefix x bs cprefix y bs
 shows prefix x y
proof -
 have take (length x) y = take (length x) (ctake (length y) bs)
 using assms(3) unfolding cprefix-def by simp
 also have ... = ctake (length x) bs
 unfolding take-ctake using assms by simp
 also have ... = x
 using assms(2) unfolding cprefix-def by simp
 finally have take (length x) y=x
 by simp
 thus ?thesis
 by (metis take-is-prefix)
qed
lemma same-prefix-not-parallel:
 assumes cprefix x bs cprefix y bs
 shows }\neg(x|y
 using assms cprefix-length-prefix
 by (cases length }x\leqlength y) aut
lemma ctake-shift:
 ctake m (cshift xs ys) = (if m\leq length xs then take m xs else xs @ ctake (m - length xs) ys)
proof (induction m arbitrary: xs)
 case (Suc m xs)
 thus ?case
 by (cases xs) auto
qed auto
lemma ctake-shift-small [simp]: m < length xs \Longrightarrowctake m (cshift xs ys) = take m xs
 and ctake-shift-big [simp]:
 m\geq length xs \Longrightarrow ctake m (cshift xs ys) = xs @ ctake (m - length xs) ys
 by (subst ctake-shift; simp)+
lemma cdrop-shift:
 cdrop m (cshift xs ys) = (if m\leq length xs then cshift (drop m xs) ys else cdrop (m l length xs)
ys)
proof (induction m arbitrary: xs)
 case (Suc m xs)
 thus ?case
 by (cases xs) auto
qed auto
```

lemma cdrop-shift-small [simp]:
$m \leq$ length $x s \Longrightarrow$ cdrop $m$ (cshift $x s$ ys $)=$ cshift (drop $m x s)$ ys
and cdrop-shift-big [simp]:
$m \geq$ length $x s \Longrightarrow$ cdrop $m$ (cshift xs ys) $=$ cdrop $(m-$ length $x s)$ ys
by (subst cdrop-shift; simp) +
Infrastructure for building coin streams:

```
primcorec cmap-iterate :: \(\left({ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow^{\prime} a \Rightarrow\) coin-stream
 where
 cmap-iterate \(m f s=\) Coin \((m s)(\) cmap-iterate \(m f(f s))\)
```

lemma cmap-iterate: cmap-iterate $m f s=$ to-coins (smap $m$ (siterate $f s)$ )
proof (rule coin-stream.coinduct
$[$ where $R=(\lambda x s$ ys. $(\exists x . x s=$ cmap-iterate $m f x \wedge y s=$ to-coins $(\operatorname{smap} m($ siterate $f x))))])$
show $\exists x$. cmap-iterate $m f s=$ cmap-iterate $m f x \wedge$
to-coins $($ smap $m($ siterate $f s))=$ to-coins $(\operatorname{smap} m($ siterate $f x))$
by (intro exI[where $x=s]$ refl conjI)
next
fix $x s$ ys
assume $\exists x . x s=$ cmap-iterate $m f x \wedge y s=$ to-coins (smap $m$ (siterate $f x)$ )
then obtain $x$ where 0 :xs $=$ cmap-iterate $m f x y s=t o-c o i n s(s m a p m(s i t e r a t e ~ f x))$
by auto
have chd $x s=$ chd $y s$
unfolding 0 by (subst cmap-iterate.ctr, subst siterate.ctr) simp
moreover have ctl $x s=$ cmap-iterate $m f(f x)$
unfolding 0 by (subst cmap-iterate.ctr) simp
moreover have ctl ys $=$ to-coins $(\operatorname{smap} m(\operatorname{siterate} f(f x)))$
unfolding 0 by (subst siterate.ctr) simp
ultimately show
chd $x s=$ chd $y s \wedge(\exists x$.ctl $x s=$ cmap-iterate $m f x \wedge$ ctl $y s=$ to-coins $($ smap $m($ siterate $f x)))$
by auto
qed
definition build-coin-gen :: $\quad\left({ }^{\prime} a \Rightarrow\right.$ bool list $) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow$ coin-stream
where
build-coin-gen $m f s=$ cmap-iterate $(h d \circ f s t)$
$\left(\lambda\left(r, s^{\prime}\right)\right.$. (if $t l r=[]$ then $\left(m s^{\prime}, f s^{\prime}\right)$ else $\left.\left(t l r, s^{\prime}\right)\right)(m s, f s)$
lemma build-coin-gen-aux:
fixes $f::^{\prime} a \Rightarrow$ ' $b$ stream
assumes $\wedge x .(\exists n y . n \neq[] \wedge f x=n @-f y \wedge g x=n @-g y)$
shows $f x=g x$
proof (rule stream.coinduct[where $R=(\lambda x s$ ys. $(\exists x n . x s=n @-(f x) \wedge y s=n @-(g x)))])$
show $\exists y n . f x=n @-(f y) \wedge g x=n @-(g y)$
by (intro exI[where $x=x]$ exI $[$ where $x=[]]$ ) auto
next
fix $x s$ ys :: 'b stream
assume $\exists x n . x s=n @-(f x) \wedge y s=n @-(g x)$
hence $\exists x n . n \neq[] \wedge x s=n @-(f x) \wedge y s=n @-(g x)$
using assms by (metis shift.simps(1))
then obtain $x n$ where $0: x s=n @-(f x) y s=n @-(g x) n \neq[]$
by auto
have shd $x s=s h d y s$
using 0 by simp
moreover have stl xs =tl $n @-(f x)$ stl ys $=t l n @-(g x)$
using 0 by auto
ultimately show shd $x s=$ shd ys $\wedge(\exists x n$. stl $x s=n @-(f x) \wedge$ stl $y s=n @-(g x))$ by auto
qed
lemma build-coin-gen:
assumes $\bigwedge x$. $m x \neq[]$
shows build-coin-gen $m f s=$ to-coins (flat (smap m (siterate $f s)$ ))
proof -
let ? $g=\left(\lambda\left(r, s^{\prime}\right)\right.$. if tl $r=[]$ then $\left(m s^{\prime}, f s^{\prime}\right)$ else $\left.\left(t l r, s^{\prime}\right)\right)$
have liter: smap $(h d \circ f s t)($ siterate $? g(b s, x))=$ $b s @-($ smap $(h d \circ f s t)($ siterate ? $g(m x, f x)))$ if $b s \neq[]$ for $x b s$ using that
proof (induction bs rule:list-nonempty-induct)
case (single $y$ )
then show ?case by (subst siterate.ctr) simp
next
case (cons y ys)
then show ?case by (subst siterate.ctr) (simp add:comp-def)
qed
have $\operatorname{smap}(h d \circ f s t)($ siterate ? $g(m x, f x))=m x @-\operatorname{smap}(h d \circ f s t)($ siterate ? $g(m(f x), f(f x)))$ for $x$ by (subst liter [OF assms]) auto
moreover have flat (smap m (siterate $f x)$ ) $=m x$ @-flat (smap $m($ siterate $f(f x))$ ) for $x$ by (subst siterate.ctr) (simp add:flat-Stream[OF assms])
ultimately have $\exists n y . n \neq[] \wedge$
$\operatorname{smap}(h d \circ f s t)($ siterate ? $g(m x, f x))=n @-\operatorname{smap}(h d \circ f s t)($ siterate ? $g(m y, f y)) \wedge$ flat $($ smap $m($ siterate $f x))=n @-$ flat $($ smap $m($ siterate $f y)$ ) for $x$ by (intro exI[where $x=m x]$ exI[where $x=f x]$ conjI assms)
hence smap $(h d \circ f s t)\left(\right.$ siterate ? $\left.g\left(m s^{\prime}, f s^{\prime}\right)\right)=$ flat (smap m (siterate $\left.f s^{\prime}\right)$ ) for $s^{\prime}$ by (rule build-coin-gen-aux $[$ where $f=(\lambda x$. smap $(h d \circ f s t)($ siterate ? $g(m x, f x)))])$
thus ?thesis
unfolding build-coin-gen-def cmap-iterate by simp
qed
Measure space for coin streams:
definition coin-space :: coin-stream measure
where coin-space $=$ embed-measure $($ stream-space $($ measure-pmf $(p m f$-of-set UNIV $))$ )to-coins
bundle coin-space-notation
begin
notation coin-space ( $\mathcal{B}$ )
end
bundle no-coin-space-notation
begin
no-notation coin-space ( $\mathcal{B}$ )
end
unbundle coin-space-notation
lemma space-coin-space: space $\mathcal{B}=U N I V$
using bij-is-surj[OF bij-to-coins]
unfolding coin-space-def space-embed-measure space-stream-space by simp
lemma $B$-t-eq-distr: $\mathcal{B}=\operatorname{distr}($ stream-space $($ pmf-of-set UNIV)) $\mathcal{B}$ to-coins
unfolding coin-space-def by (intro embed-measure-eq-distr bij-is-inj[OF bij-to-coins])
lemma from-coins-measurable: from-coins $\in \mathcal{B} \rightarrow_{M}$ (stream-space (pmf-of-set UNIV))
unfolding coin-space-def by (intro measurable-embed-measure1) (simp add:from-to-coins)
lemma to-coins-measurable: to-coins $\in($ stream-space $($ pmf-of-set $U N I V)) \rightarrow_{M} \mathcal{B}$ unfolding coin-space-def
by (intro measurable-embed-measure2 bij-is-inj[OF bij-to-coins])
lemma chd-measurable: chd $\in \mathcal{B} \rightarrow_{M} \mathcal{D}$
proof -
have 0 :chd (to-coins $x)=\operatorname{sh} d x$ for $x$
using chd-transfer unfolding rel-fun-def by auto
thus ?thesis unfolding coin-space-def by (intro measurable-embed-measure1) simp
qed
lemma cnth-measurable: $(\lambda x s$. cnth xs $i) \in \mathcal{B} \rightarrow_{M} \mathcal{D}$ unfolding coin-space-def cnth-def by (intro measurable-embed-measure1) (simp add:from-to-coins)
lemma $B$-eq-distr:
stream-space $(p m f$-of-set UNIV $)=$ distr $\mathcal{B}$ (stream-space $(p m f$-of-set UNIV)) from-coins
(is ? $L=? R$ )
proof -
let ? $S=$ stream-space $(p m f$-of-set UNIV)
have ?R $=$ distr (distr ?S $\mathcal{B}$ to-coins) ?S from-coins
using $B$ - $t$-eq-distr by simp
also have $\ldots=$ distr ? $S$ ? $S$ (from-coins $\circ$ to-coins)
by (intro distr-distr to-coins-measurable from-coins-measurable)
also have $\ldots=$ distr ? S ?S id
unfolding id-def comp-def from-to-coins by simp
also have ... $=$ ? $L$
unfolding id-def by simp
finally show ?thesis by $\operatorname{simp}$
qed
lemma $B$-t-finite: emeasure $\mathcal{B}($ space $\mathcal{B})=1$
proof -
let ? $S=$ stream-space (pmf-of-set (UNIV::bool set))
have $1=$ emeasure ?S (space ?S)
by (intro prob-space.emeasure-space-1[symmetric] prob-space.prob-space-stream-space prob-space-measure-pmf)
also have $\ldots=$ emeasure $\mathcal{B}($ from-coins -' $($ space $($ stream-space $($ pmf-of-set UNIV $))) \cap$ space B)
by (subst $B$-eq-distr) (intro emeasure-distr from-coins-measurable sets.top)
also have $\ldots=$ emeasure $\mathcal{B}($ space $\mathcal{B})$
unfolding space-coin-space space-stream-space vimage-def by simp
finally show?thesis by simp
qed
interpretation coin-space: prob-space coin-space
using $B$-t-finite by standard
lemma distr-shd: distr $\mathcal{B} \mathcal{D}$ chd $=$ pmf-of-set UNIV (is ? $L=? R$ )
proof -
have $? L=$ distr (stream-space (measure-pmf (pmf-of-set UNIV))) $\mathcal{D}$ (chd $\circ$ to-coins $)$
by (subst B-t-eq-distr) (intro distr-distr to-coins-measurable chd-measurable)

```
 also have ... = distr (stream-space (measure-pmf (pmf-of-set UNIV))) \mathcal{D shd}
 using chd-transfer unfolding rel-fun-def rel-coins-def by (simp add:comp-def)
 also have ... = ?R
 using coin-space.distr-stream-space-shd by auto
 finally show ?thesis by simp
qed
lemma cshift-measurable: cshift }x\in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B
proof -
 have (to-coins ○ shift x ○ from-coins) }\in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B
 by (intro measurable-comp[OF from-coins-measurable] measurable-comp[OF - to-coins-measurable]
 shift-measurable) auto
 thus ?thesis
 unfolding cshift-def by (simp add:comp-def)
qed
lemma cdrop-measurable: cdrop }x\in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B
proof -
 have (to-coins o sdrop x ○ from-coins) \in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B}
 by (intro measurable-comp[OF from-coins-measurable] measurable-comp[OF - to-coins-measurable]
 shift-measurable) auto
 thus ?thesis
 unfolding cdrop-def by (simp add:comp-def)
qed
lemma ctake-measurable: ctake k\in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{D}
proof -
 have stake k ofrom-coins }\in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{D
 by (intro measurable-comp[OF from-coins-measurable]) simp
 thus ?thesis
 unfolding ctake-def by (simp add:comp-def)
qed
lemma branch-coin-space:
 (\lambda(x,y).cshift (ctake n x) y) \in\mathcal{B}\mp@subsup{\bigotimes}{M}{}\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B}
```



```
proof -
 let ?M = stream-space (measure-pmf (pmf-of-set UNIV))
 let ?f = (\lambda(x,y). stake n x @- y)
 let ?g = map-prod from-coins from-coins
 have }(\lambda(x,y).cshift (ctake n x) y)= to-coins \circ(?f ○?g)
 by (simp add:comp-def cshift-def ctake-def case-prod-beta')
 also have ... \in\mathcal{B}\mp@subsup{\otimes}{M}{}\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B}
 by (intro measurable-comp[OF - to-coins-measurable] measurable-comp[where N=(?M 囚 M
?M)]
 map-prod-measurable from-coins-measurable prob-space.branch-stream-space(1)
 prob-space-measure-pmf)
 finally show }(\lambda(x,y).cshift (ctake n x) y) \in\mathcal{B}\mp@subsup{\bigotimes}{M}{}\mathcal{B}\mp@subsup{->}{M}{}\mathcal{B
 by simp
```



```
 unfolding map-prod-def using prob-space-measure-pmf
 by (intro pair-measure-distr[symmetric] from-coins-measurable) (auto intro!:
 prob-space-imp-sigma-finite prob-space.prob-space-stream-space simp:B-eq-distr[symmetric])
 also have ... = ?M 囚 < \
 unfolding B-eq-distr[symmetric] by simp
```



```
 by simp
 have ?L = distr (\mathcal{B }\mp@subsup{\otimes}{M}{}\mathcal{B})\mathcal{B}(to-coins ○ ?f ○?g)
 unfolding cshift-def ctake-def by (simp add:comp-def map-prod-def case-prod-beta')
 also have ... = distr (distr (\mathcal{B}\mp@subsup{\bigotimes}{M}{}\mathcal{B})(?M 囚 M ?M) ?g)\mathcal{B (to-coins ○ ?f)}
 by (intro distr-distr[symmetric] map-prod-measurable from-coins-measurable
 measurable-comp[OF - to-coins-measurable] prob-space-measure-pmf) simp
 also have ... = distr (?M 囚 <M ?M)\mathcal{B}\mathrm{ (to-coins ○?f)}
 unfolding 0 by simp
 also have ... = distr (distr (?M 囚 M ?M) ?M ?f) \mathcal{B to-coins}
 by (intro distr-distr[symmetric] to-coins-measurable) simp
 also have ... = distr ?M \mathcal{B to-coins}
 by (subst prob-space.branch-stream-space(2)) (auto intro:prob-space-measure-pmf)
 also have ... = ?R
 using B-t-eq-distr by simp
 finally show ?L = ?R
 by simp
qed
definition from-coins-t :: coin-stream }=>\mathrm{ (nat }=>\mathrm{ bool discrete)
 where from-coins-t = snth \circ smap discrete \circ from-coins
definition to-coins-t :: (nat }=>\mathrm{ bool discrete) }=>\mathrm{ coin-stream
 where to-coins-t = to-coins \circ smap of-discrete ○ to-stream
lemma from-to-coins-t:
 from-coins-t (to-coins-t x)=x
 unfolding to-coins-t-def from-coins-t-def
 by (intro ext) (simp add:snth-to-stream from-to-coins of-discrete-inverse)
lemma to-from-coins-t:
 to-coins-t (from-coins-t x)}=
 unfolding to-coins-t-def from-coins-t-def
 by (simp add:to-stream-snth to-from-coins comp-def discrete-inverse
 stream.map-comp stream.map-ident)
lemma bij-to-coins-t: bij to-coins-t
 by (intro bij-betwI[where g=from-coins-t] to-from-coins-t from-to-coins-t) auto
lemma bij-from-coins-t: bij from-coins-t
 by (intro bij-betwI[where g=to-coins-t] to-from-coins-t from-to-coins-t) auto
instantiation coin-stream :: topological-space
begin
definition open-coin-stream :: coin-stream set }=>\mathrm{ bool
 where open-coin-stream }U=\mathrm{ open (from-coins-t'}U\mathrm{)
instance proof
 show open (UNIV :: coin-stream set)
 using bij-is-surj[OF bij-from-coins-t] unfolding open-coin-stream-def by simp
 show open (S \capT) if open S open T for S T :: coin-stream set
 using that unfolding open-coin-stream-def image-Int[OF bij-is-inj[OF bij-from-coins-t]]
 by auto
 show open (UK) if }\forallS\inK. open S for K :: coin-stream set set
 using that unfolding open-coin-stream-def image-Union
 by auto
qed
end
```

definition coin-stream-basis
where coin-stream-basis $=(\lambda x$. Collect $($ cprefix $x))$ ' UNIV
lemma image-collect-eq: $f$ ' $\{x . A(f x)\}=\{x . A x\} \cap$ range $f$
by auto
lemma coin-stream-basis: topological-basis coin-stream-basis
proof -
have bij-betw ( $\lambda x$. (!!) (smap discrete $x)$ ) UNIV UNIV
by (intro bij-betwI[where $g=s m a p$ of-discrete $\circ$ to-stream]) (simp-all add:to-stream-snth snth-to-stream stream.map-comp comp-def of-discrete-inverse discrete-inverse stream.map-ident)
hence 3:range $(\lambda x$. (!!) $(\operatorname{smap}$ discrete $x))=$ UNIV
using bij-is-surj by auto
obtain $K::(n a t \Rightarrow$ bool discrete $)$ set set where
$K$-countable: countable $K$ and $K$-top-basis: topological-basis $K$ and K-cylinder: $\forall k \in K . \exists X .\left(k=P i_{E} U N I V X\right) \wedge(\forall i$. open $(X i)) \wedge$ finite $\{i . X i \neq U N I V\}$
using product-topology-countable-basis by auto
have from-coins-cprefix: from-coins-t' $\{x s$. cprefix $p x s\}=$ PiE UNIV ( $\lambda i$. if $i<$ length $p$ then $\{$ discrete $(p!i)\}$ else UNIV) (is $? L=? R$ ) for $p$
proof -
have 2:from-coins ' $\{x s$. cprefix $p x s\}=\{f . \forall i<$ length $p . f!!i=p!i\}$
unfolding cprefix-iff cnth-def using bij-is-surj[OF bij-from-coins]
by (subst image-collect-eq) auto
have from-coins-t‘\{xs. cprefix pxs\}=(snthosmap discrete) '(from-coins ' $\{x$ x. cprefix $p x s\})$ unfolding from-coins-t-def image-image by simp
also have $\ldots=($ snth $\circ$ smap discrete $) '\{f . \forall i<$ length $p . f!!i=p!i\}$ unfolding 2 by simp
also have $\ldots=(\lambda x$. snth (smap discrete $x))$ '
$\{f . \forall i<$ length $p .($ smap discrete $f)!!i=\operatorname{discrete}(p!i)\}$
by (simp add:discrete-inject)
also have $\ldots=\{x . \forall i<$ length $p . x i=\operatorname{discrete}(p!i)\} \cap \operatorname{range}(\lambda x$. (!!) (smap discrete $x))$ by (intro image-collect-eq)
also have $\ldots=\{x . \forall i<$ length $p . x i=\operatorname{discrete}(p!i)\}$
unfolding 3 by simp
also have $\ldots=\operatorname{PiE} \operatorname{UNIV}$ ( $\lambda i$. if $i<$ length $p$ then $\{$ discrete $(p!i)\}$ else UNIV)
unfolding PiE-def Pi-def by auto
finally show ?thesis
by simp
qed
have open $U$ if $0: U \in$ coin-stream-basis for $U$
proof -
obtain $p$ where $U$-eq: $U=\{x s$. cprefix $p x s\}$ using 0 unfolding coin-stream-basis-def by auto show ?thesis
unfolding open-coin-stream-def U-eq from-coins-cprefix
by (intro open-PiE) (auto intro:open-discrete)
qed
moreover have $\exists B \in$ coin-stream-basis. $x \in B \wedge B \subseteq U$ if open $U x \in U$ for $U x$
proof -
have open (from-coins-t' $U$ ) from-coins- $t x \in$ from-coins- $t$ ' $U$
using that unfolding open-coin-stream-def by auto
then obtain $B$ where $B: B \in K$ from-coins-t $x \in B B \subseteq$ from-coins- $t$ ' $U$
using topological-basisE[OF K-top-basis] by blast
obtain $X$ where $X: B=P i_{E} U N I V X$ and fin- $X$ : finite $\{i . X i \neq U N I V\}$
using $K$-cylinder $B(1)$ by auto
define $Z$ where $Z i=(X i \neq U N I V)$ for $i$
define $n$ where $n=($ if $\{i . X i \neq U N I V\} \neq\{ \}$ then $\operatorname{Suc}(\operatorname{Max}\{i . X i \neq U N I V\})$ else 0)
have $i<n$ if $Z i$ for $i$
using fin-X that less-Suc-eq-le unfolding $n$-def $Z$-def[symmetric] by (auto split:if-split-asm)
hence $X$-univ: $X i=U N I V$ if $i \geq n$ for $i$
using that leD unfolding $Z$-def by auto
define $R$ where $R=\{x s$. cprefix (ctake $n x$ ) xs $\}$
have $\{$ discrete (ctake $n x!i)\} \subseteq X i$ if $i<n$ for $i$
proof -
have $\{$ discrete (ctake $n x!i)\}=\{$ discrete (cnth $x i$ ) $\}$ using that by $\operatorname{simp}$
also have $\ldots=\{$ from-coins- $t x i\}$
unfolding from-coins-t-def cnth-def by simp
also have $\ldots \subseteq X i$
using $B$ (2) unfolding $X$ PiE-def Pi-def by auto
finally show ?thesis by $\operatorname{simp}$
qed
hence from-coins-t ' $R \subseteq$ PiE UNIV X
using $X$-univ unfolding $R$-def from-coins-cprefix
by (intro PiE-mono) auto
moreover have $\ldots \subseteq$ from-coins-t ' $U$
using $B(3) X$ by simp
ultimately have from-coins-t ' $R \subseteq$ from-coins-t ' $U$
by $\operatorname{simp}$
hence $R \subseteq U$
using bij-is-inj[OF bij-from-coins-t]
by (simp add: inj-image-eq-iff subset-image-iff)
moreover have $R \in$ coin-stream-basis $x \in R$
unfolding $R$-def coin-stream-basis-def by (auto simp:cprefix-def)
ultimately show ?thesis
by auto
qed
ultimately show ?thesis
by (intro topological-basisI) auto
qed
lemma coin-steam-open: open $\{x s$. cprefix $x x s\}$
by (intro topological-basis-open[OF coin-stream-basis]) (simp add:coin-stream-basis-def)
instance coin-stream :: second-countable-topology
proof
show $\exists(B$ :: coin-stream set set $)$. countable $B \wedge$ open $=$ generate-topology $B$
by (intro exI[where $x=$ coin-stream-basis] topological-basis-imp-subbasis conjI
coin-stream-basis) (simp add:coin-stream-basis-def)
qed
instantiation coin-stream :: uniformity-dist
begin
definition dist-coin-stream $::$ coin-stream $\Rightarrow$ coin-stream $\Rightarrow$ real
where dist-coin-stream $x y=\operatorname{dist}$ (from-coins-t $x)($ from-coins-t $y)$
definition uniformity-coin-stream :: (coin-stream $\times$ coin-stream) filter where uniformity-coin-stream $=($ INF $e \in\{0<.$.$\} . principal \{(x, y)$. dist $x y<e\})$

```
instance proof
 show uniformity =(INF e\in{0<..}. principal {(x,y). dist (x::coin-stream) y<e})
 unfolding uniformity-coin-stream-def by simp
qed
end
lemma in-from-coins-iff: }x\in\mathrm{ from-coins-t' }U\longleftrightarrow(to-coins-t x 僤
 using to-from-coins-t from-to-coins-t by (simp add:image-iff) metis
instantiation coin-stream :: metric-space
begin
instance proof
 show open }U=(\forallx\inU.\mp@subsup{\forall}{F}{}(\mp@subsup{x}{}{\prime},y)\mathrm{ in uniformity. }\mp@subsup{x}{}{\prime}=x\longrightarrowy\inU)\mathrm{ for }U\mathrm{ :: coin-stream set
 proof -
 have open }U\longleftrightarrow\mathrm{ open (from-coins-t' }U\mathrm{)
 unfolding open-coin-stream-def by simp
 also have ...\longleftrightarrow(\forallx\inU.\existse>0.\forally.dist (from-coins-t x) y<e\longrightarrowy from-coins-t'U)
 unfolding fun-open-ball-aux by auto
 also have ...\longleftrightarrow(\forallx\inU.\existse>0.\forally\into-coins-t'UNIV. dist x y<e < < y \inU)
 unfolding dist-coin-stream-def by (intro ball-cong refl ex-cong)
 (simp add: from-to-coins-t in-from-coins-iff)
 also have ... \longleftrightarrow(\forallx\inU.\existse>0.\forally. dist }xy<e\longrightarrowy\inU
 using bij-is-surj[OF bij-to-coins-t] by simp
 finally have open }U=(\forallx\inU.\existse>0.\forally.dist x y<e\longrightarrowy\inU
 by simp
 thus ?thesis
 unfolding eventually-uniformity-metric by simp
 qed
 show (dist x y = 0) = (x=y) for x y :: coin-stream
 unfolding dist-coin-stream-def by (metis dist-eq-0-iff to-from-coins-t)
 show dist x y \leq dist xz+dist y z for x y z :: coin-stream
 unfolding dist-coin-stream-def by (intro dist-triangle2)
qed
end
lemma from-coins-t-u-continuous:uniformly-continuous-on UNIV from-coins-t
 unfolding uniformly-continuous-on-def dist-coin-stream-def by auto
lemma to-coins-t-u-continuous: uniformly-continuous-on UNIV to-coins-t
 unfolding uniformly-continuous-on-def dist-coin-stream-def from-to-coins-t by auto
lemma to-coins-t-continuous:continuous-on UNIV to-coins-t
 using to-coins-t-u-continuous uniformly-continuous-imp-continuous by auto
instance coin-stream :: complete-space
proof
 show convergent X if Cauchy X for X :: nat }=>\mathrm{ coin-stream
 proof -
 have Cauchy (from-coins-t ○ X)
 using uniformly-continuous-imp-Cauchy-continuous[unfolded Cauchy-continuous-on-def]
 from-coins-t-u-continuous that by auto
 hence convergent (from-coins-t ○ X)
 by (rule Cauchy-convergent)
 then obtain }x\mathrm{ where (from-coins-t ○X) }\longrightarrow
 unfolding convergent-def by auto
 moreover have isCont to-coins-t x
 using to-coins-t-continuous continuous-on-eq-continuous-within by blast
```

```
 ultimately have (to-coins-t \circ from-coins-t }\circX)\longrightarrowto-coins-t x
 using isCont-tendsto-compose by (auto simp add:comp-def)
 thus convergent X
 unfolding convergent-def comp-def to-from-coins-t by auto
 qed
qed
lemma at-least-borelI:
 assumes topological-basis K
 assumes countable K
 assumes K}\subseteq\mathrm{ sets }
 assumes open U
 shows U E sets M
proof -
 obtain }\mp@subsup{K}{}{\prime}\mathrm{ where }\mp@subsup{K}{}{\prime}\mathrm{ -range: }\mp@subsup{K}{}{\prime}\subseteqK\mathrm{ and }\bigcup\mp@subsup{K}{}{\prime}=
 using assms(1,4) unfolding topological-basis-def by blast
 hence U}=\bigcup\\mp@subsup{K}{}{\prime}\mathrm{ by simp
 also have ... \in sets M
 using K'-range assms(2,3) countable-subset
 by (intro sets.countable-Union) auto
 finally show ?thesis by simp
qed
lemma measurable-sets-coin-space:
 assumes f\in measurable }\mathcal{B}
 assumes Collect P}\in\mathrm{ sets A
 shows {xs. P (f xs)}\in sets \mathcal{B}
proof -
 have {xs. P(fxs)}=f-` Collect P\cap space \mathcal{B}
 unfolding vimage-def space-coin-space by simp
 also have ... \in sets }\mathcal{B
 by (intro measurable-sets[OF assms(1,2)])
 finally show ?thesis by simp
qed
lemma coin-space-is-borel-measure:
 assumes open U
 shows U\in sets }\mathcal{B
proof -
 have 0:countable coin-stream-basis
 unfolding coin-stream-basis-def by simp
 have cnth-sets:{xs.cnth xs i=v}\in sets }\mathcal{B}\mathrm{ for iv
 by (intro measurable-sets-coin-space[OF cnth-measurable]) auto
 have {xs.cprefix x xs} } sets \mathcal{B}}\mathrm{ for x
 proof (cases x
 case True
 have {xs.cprefix x xs } = (\bigcapi<length x. {xs.cnth xs i=x!i})
 unfolding cprefix-iff by auto
 also have ... \in sets }\mathcal{B
 using cnth-sets True
 by (intro sets.countable-INT image-subsetI) auto
 finally show ?thesis by simp
 next
 case False
 hence {xs.cprefix x xs} = space \mathcal{B}
 unfolding cprefix-iff space-coin-space by simp
```

```
 also have ... \in sets \mathcal{B}
 by simp
 finally show ?thesis by simp
 qed
 hence 1:coin-stream-basis }\subseteq\mathrm{ sets }\mathcal{B
 unfolding coin-stream-basis-def by auto
 show ?thesis
 using at-least-borelI[OF coin-stream-basis 0 1 assms] by simp
qed
```

This is the upper topology on 'a option with the natural partial order on 'a option.
definition option-ud :: 'a option topology
where option-ud $=$ topology $(\lambda S . S=U N I V \vee$ None $\notin S)$
lemma option-ud-topology: istopology ( $\lambda S . S=U N I V \vee$ None $\notin S$ ) (is istopology?T)
proof -
have ? $T(U \cap V)$ if ?T $U$ ? $T V$ for $U V$ using that by auto
moreover have ? $T(\bigcup K)$ if $\bigwedge U . U \in K \Longrightarrow$ ? $T U$ for $K$ using that by auto
ultimately show ?thesis unfolding istopology-def by auto
qed
lemma openin-option-ud: openin option-ud $S \longleftrightarrow(S=U N I V \vee$ None $\notin S)$
unfolding option-ud-def by (subst topology-inverse'[OF option-ud-topology]) auto

```
lemma topspace-option-ud: topspace option-ud \(=U N I V\)
proof -
 have \(U N I V \subseteq\) topspace option-ud by (intro openin-subset) (simp add:openin-option-ud)
 thus ?thesis by auto
qed
lemma contionuos-into-option-udI:
 assumes \(\wedge x\). openin \(X(f-‘\{\) Some \(x\} \cap\) topspace \(X)\)
 shows continuous-map \(X\) option-ud \(f\)
proof -
 have openin \(X\{x \in\) topspace \(X . f x \in U\}\) if openin option-ud \(U\) for \(U\)
 proof (cases \(U=U N I V)\)
 case True
 then show ?thesis by simp
 next
 case False
 define \(V\) where \(V=\) the ' \(U\)
 have None \(\notin U\)
 using that False unfolding openin-option-ud by simp
 hence Some' \(V=i d\) ' \(U\)
 unfolding \(V\)-def image-image id-def
 by (intro image-cong refl) (metis option.exhaust-sel)
 hence \(U=\) Some ' \(V\) by simp
 hence \(\{x \in\) topspace \(X . f x \in U\}=(\bigcup v \in V . f-‘\{\) Some \(v\} \cap\) topspace \(X)\) by auto
 moreover have openin \(X(\bigcup v \in V . f-‘\{\) Some \(v\} \cap\) topspace \(X)\)
 using assms by (intro openin-Union) auto
 ultimately show ?thesis by auto
 qed
 thus ?thesis
 unfolding continuous-map topspace-option-ud by auto
qed
lemma map-option-continuous:
 continuous-map option-ud option-ud (map-option f)
``` end

\section*{4 Randomized Algorithms (Internal Representation)}

\author{
theory Randomized-Algorithm-Internal \\ imports \\ HOL-Probability.Probability \\ Coin-Space \\ Tau-Additivity \\ Zeta-Function.Zeta-Library
}
begin
This section introduces the internal representation for randomized algorithms. For ease of use, we will introduce in Section 5 a typedef for the monad which is easier to work with.

This is the inverse of set-option
definition the-elem-opt :: ' \(a\) set \(\Rightarrow\) 'a option
where the-elem-opt \(S=(\) if Set.is-singleton \(S\) then Some (the-elem \(S\) ) else None)
lemma the-elem-opt-empty \([\) simp \(]\) : the-elem-opt \(\}=\) None
unfolding the-elem-opt-def is-singleton-def by (simp split:if-split-asm)
lemma the-elem-opt-single \([\) simp \(]\) : the-elem-opt \(\{x\}=\) Some \(x\)
unfolding the-elem-opt-def by simp
definition at-most-one :: 'a set \(\Rightarrow\) bool
where at-most-one \(S \longleftrightarrow(\forall x y . x \in S \wedge y \in S \longrightarrow x=y)\)
lemma at-most-one-cases[consumes 1]:
assumes at-most-one \(S\)
assumes \(P\) \{the-elem \(S\}\)
assumes \(P\) \{\}
shows \(P S\)
proof (cases \(S=\{ \}\) )
case True
then show ?thesis using assms by auto
next
case False
then obtain \(x\) where \(x \in S\) by auto
hence \(S=\{x\}\) using assms(1) unfolding at-most-one-def by auto
thus ?thesis using assms(2) by simp
qed
lemma the-elem-opt-Some-iff[simp]: at-most-one \(S \Longrightarrow\) the-elem-opt \(S=\) Some \(x \longleftrightarrow S=\{x\}\)
by (induction \(S\) rule:at-most-one-cases) auto
lemma the-elem-opt-None-iff[simp]: at-most-one \(S \Longrightarrow\) the-elem-opt \(S=\) None \(\longleftrightarrow S=\{ \}\)
by (induction \(S\) rule:at-most-one-cases) auto
The following is the fundamental type of the randomized algorithms, which are represented as functions that take an infinite stream of coin flips and return the unused suffix of coinflips together with the result. We use the 'a option type to be able to introduce the denotational semantics for the monad.
type-synonym 'a random-alg-int \(=\) coin-stream \(\Rightarrow\left({ }^{\prime} a \times\right.\) coin-stream \()\) option

The return-rai combinator, does not consume any coin-flips and thus returns the entire stream together with the result.
definition return-rai :: ' \(a \Rightarrow\) ' \(a\) random-alg-int
where return-rai \(x b s=\operatorname{Some}(x, b s)\)
The bind-rai combinator passes the coin-flips to the first algorithm, then passes the remaining coin flips to the second function, and returns the unused coin-flips from both steps.
```

definition bind-rai :: 'a random-alg-int $\Rightarrow(' a \Rightarrow$ 'b random-alg-int $) \Rightarrow$ 'b random-alg-int
where bind-rai $m f$ bs $=$
do \{
$\left(r, b s^{\prime}\right) \leftarrow m b s ;$
$f r b s^{\prime}$
\}

```
adhoc-overloading Monad-Syntax.bind bind-rai
The coin-rai combinator consumes one coin-flip and return it as the result, while the tail of the coin flips are returned as unused.
```

definition coin-rai :: bool random-alg-int
where coin-rai bs = Some (chd bs,ctl bs)

```

This representation is similar to the model proposed by Hurd [5] \({ }^{2}\). It is also closely related to the construction of parser monads in functional languages [6].
We also had following alternatives considered, with various advantages and drawbacks:
- Returning the count of used coin flips: Instead of returning a suffix of the input stream a randomized algorithm could also return the number of used coin flips, which then would allow the definition of the bind function, in a way that performs the appropriate shift in the stream according to the returned number. An advantage of this model, is that it makes the number of used coin-flips immediately available. (As we will see below, this is still possible even in the formalized model, albeit with some more work.) The main disadvantage of this model is that in scenarios, where the coin-flips cannot be computed in a random-access way, it leads to performance degradation. Indeed it is easy to construct example algorithms, which incur asymptotically quadratic slowdown compared to the formalized model.
- Trees of coin-flips: Another model we were considering is to require an infinite tree of coin-flips as input instead of a stream. Here the idea is that each bind operation would pass the left sub-tree to the first algorithm and the right sub-tree to the second algorithm. This model has the dis-advantage that the resulting 'monad", does not fulfill the associativity law. Moreover many PRG's are designed and tested in the streaming sense, and there is not a lot of research into the performance of PRGs with tree structured output. (A related idea was to still use a stream as input, and split it into two sub-streams for example by the parity of the stream position. This alternative also suffers from the lack of associativity problem and may lead to a lot of unused coin flips.)

Another reason for using the formalized representation is compatibility with linear types [1], if support for them are introduced in Isabelle in future.

Monad laws:
lemma return-bind-rai: bind-rai (return-rai x) \(g=g x\)

\footnotetext{
\({ }^{2}\) Although we were not aware of the technical report, when initially considering this representation.
}
```

 unfolding bind-rai-def return-rai-def by simp
 lemma bind-rai-assoc: bind-rai (bind-rai f g) h=bind-rai f (\lambdax. bind-rai (g x) h)
unfolding bind-rai-def by (simp add:case-prod-beta')
lemma bind-return-rai: bind-rai m return-rai =m
unfolding bind-rai-def return-rai-def by simp
definition wf-on-prefix :: 'a random-alg-int => bool list => 'a = bool where
wf-on-prefix f p r = (}\forall\mathrm{ cs.f (cshift p cs) = Some (r,cs))
definition wf-random :: 'a random-alg-int }=>\mathrm{ bool where
wf-random f}\longleftrightarrow(\forallbs
case f bs of
None = True |
Some (r,bs')}=>(\exists\textrm{p}.
definition range-rm :: 'a random-alg-int }=>\mathrm{ ' 'a set
where range-rm f}=\mathrm{ Some -'(range (map-option fst of))
lemma in-range-rmI:
assumes rbs=Some (y,n)
shows }y\in\mathrm{ range-rm r
proof -
have Some (}y,n)\in\mathrm{ range r
using assms[symmetric] by auto
thus ?thesis
unfolding range-rm-def using fun.set-map by force
qed
definition distr-rai :: 'a random-alg-int = 'a option measure
where distr-rai f = distr \mathcal{B D}(map-option fst \circf)
lemma wf-randomI:
assumes \bs.f fs \not=None \Longrightarrow(\existspr.cprefix p bs ^ wf-on-prefix f pr)
shows wf-random f
proof -
have \existsp.cprefix p bs ^ wf-on-prefix f pr if 0:f bs=Some (r,bs') for bs rbs'
proof -
obtain pr' where 1:cprefix p bs and 2:wf-on-prefix f p r r
using assms 0 by force
have fbs =f (cshift p (cdrop (length p) bs))
using }1\mathrm{ unfolding cprefix-def by (metis ctake-cdrop)
also have ... = Some (}\mp@subsup{r}{}{\prime}\mathrm{ , cdrop (length p) bs)
using 2 unfolding wf-on-prefix-def by auto
finally have fbs=Some (r', cdrop (length p) bs)
by simp
hence }r=\mp@subsup{r}{}{\prime}\mathrm{ using 0 by simp
thus ?thesis using 1 2 by auto
qed
thus ?thesis
unfolding wf-random-def by (auto split:option.split)
qed
lemma wf-on-prefix-bindI:
assumes wf-on-prefix m pr
assumes wf-on-prefix (f r) q s
shows wf-on-prefix (m>>) (p@q)s

```
```

proof -
have (m>> f)(cshift (p@q)cs)=Some (s,cs) for cs
proof -
have (m>>) (cshift (p@q)cs)=(m>>f)(cshift p (cshift q cs))
by simp
also have ... = (fr) (cshift q cs)
using assms unfolding wf-on-prefix-def bind-rai-def by simp
also have ... = Some (s,cs)
using assms unfolding wf-on-prefix-def by simp
finally show ?thesis by simp
qed
thus ?thesis
unfolding wf-on-prefix-def by simp
qed
lemma wf-bind:
assumes wf-random m
assumes \x. x fange-rm m\Longrightarrowwf-random (}fx\mathrm{)
shows wf-random (}m>>>f\mathrm{)
proof (rule wf-randomI)
fix bs
assume (}m>>f\mathrm{) bs f= None
then obtain xbs' y bs '\prime where 1:m bs=Some (x,bs') and 2:f x bs' = Some (y,bs')
unfolding bind-rai-def by (cases m bs) auto
hence wf:wf-random (}fx\mathrm{)
by (intro assms(2) in-range-rmI) auto
obtain p where 5:wf-on-prefix m p x and 3:cprefix p bs
using assms(1) 1 unfolding wf-random-def by (auto split:option.split-asm)
have 4:bs=cshift p (cdrop (length p) bs)
using 3 unfolding cprefix-def by (metis ctake-cdrop)
hence mbs = Some (x, cdrop (length p) bs)
using 5 unfolding wf-on-prefix-def by metis
hence bs'= cdrop (length p) bs
using 1 by auto
hence 6:bs=cshift p bs'
using 4 by auto
obtain q where 7:wf-on-prefix (f x) q y and 8:cprefix q bs'
using wf 2 unfolding wf-random-def by (auto split:option.split-asm)
have cprefix(p@q)bs
unfolding 6 using 8 unfolding cprefix-def by auto
moreover have wf-on-prefix (m>>f) (p@q)y
by (intro wf-on-prefix-bindI[OF 5] 7)
ultimately show \exists pr.cprefix p bs ^ wf-on-prefix (m>> >) pr
by auto
qed
lemma wf-return:
wf-random (return-rai x)
proof (rule wf-randomI)
fix bs assume return-rai x bs \not= None
have wf-on-prefix (return-rai x) [] x
unfolding wf-on-prefix-def return-rai-def by auto
moreover have cprefix [] bs
unfolding cprefix-def by auto
ultimately show \exists}pr\mathrm{ . cprefix p bs ^wf-on-prefix (return-rai x) pr

```
```

 by auto
 qed
lemma wf-coin:
wf-random (coin-rai)
proof (rule wf-randomI)
fix bs assume coin-rai bs }\not=\mathrm{ None
have wf-on-prefix coin-rai [chd bs] (chd bs)
unfolding wf-on-prefix-def coin-rai-def by auto
moreover have cprefix [chd bs] bs
unfolding cprefix-def by auto
ultimately show \exists}\boldsymbol{p}r\mathrm{ . cprefix p bs ^ wf-on-prefix coin-rai pr
by auto
qed
definition ptree-rm :: 'a random-alg-int }=>\mathrm{ bool list set
where ptree-rm f}={p.\existsr.wf-on-prefix f pr
definition eval-rm :: 'a random-alg-int }=>\mathrm{ bool list }=>\mp@subsup{}{}{\prime}'a\mathrm{ where
eval-rm f p = fst (the (f (cshift p (cconst False))))
lemma eval-rmD:
assumes wf-on-prefix f p r
shows eval-rm f p=r
using assms unfolding wf-on-prefix-def eval-rm-def by auto
lemma wf-on-prefixD:
assumes wf-on-prefix f p r
assumes cprefix p bs
shows f bs = Some (eval-rm f p, cdrop (length p)bs)
proof -
have 0:bs = cshift p (cdrop (length p)bs)
using assms(2) unfolding cprefix-def by (metis ctake-cdrop)
hence f bs = Some (r, cdrop (length p) bs)
using assms(1) 0 unfolding wf-on-prefix-def by metis
thus ?thesis
using eval-rmD[OF assms(1)] by simp
qed
lemma prefixes-parallel-helper:
assumes p}\in\mathrm{ ptree-rm f
assumes q\in ptree-rmf
assumes prefix pq
shows p=q
proof -
obtain }h\mathrm{ where 0:q=p@h
using assms(3) prefixE that by auto
obtain r1 where 1:wf-on-prefix f p r1
using assms(1) unfolding ptree-rm-def by auto
obtain r2 where 2:wf-on-prefix f q r2
using assms(2) unfolding ptree-rm-def by auto
have x=cshift hx}\mathrm{ for x :: coin-stream
proof -
have Some (r2, x)=f(cshift q x)
using 2 unfolding wf-on-prefix-def by auto
also have ... =f(cshift p(cshift hx))
using 0 by auto
also have ... = Some (r1, cshift h x)

```
using 1 unfolding wf-on-prefix-def by auto
finally show \(x=\) cshift \(h x\)
by \(\operatorname{simp}\)
qed
hence \(h=[]\)
using empty-if-shift-idem by simp
thus ?thesis using 0 by simp
qed
lemma prefixes-parallel:
assumes \(p \in\) ptree-rm \(f\)
assumes \(q \in\) ptree-rm \(f\)
shows \(p=q \vee p \| q\)
using prefixes-parallel-helper assms by blast
lemma prefixes-singleton:
assumes \(p \in\{p . p \in\) ptree-rm \(f \wedge\) cprefix \(p b s\}\)
shows \(\{p \in\) ptree-rm \(f\). cprefix \(p b s\}=\{p\}\)
proof
have \(q=p\) if \(q \in\) ptree-rm \(f\) cprefix \(q\) bs for \(q\)
using same-prefix-not-parallel assms prefixes-parallel that by blast
thus \(\{p \in\) ptree-rm \(f\). cprefix \(p b s\} \subseteq\{p\}\)
by (intro subsetI) simp
next
show \(\{p\} \subseteq\{p \in\) ptree-rm \(f\). cprefix \(p b s\}\)
using assms by auto
qed
lemma prefixes-at-most-one:
at-most-one \(\{p \in\) ptree-rm \(f\). cprefix \(p x\}\)
unfolding at-most-one-def using same-prefix-not-parallel prefixes-parallel by blast
definition consumed-prefix f bs \(=\) the-elem-opt \(\{p \in\) ptree-rm \(f\). cprefix \(p b s\}\)
lemma wf-random-alt:
assumes wf-random \(f\)
shows \(f\) bs \(=\) map-option \((\lambda p .(\) eval-rm \(f p, c d r o p(l e n g t h ~ p) b s))(\) consumed-prefix \(f b s)\)
proof (cases \(f\) bs)
case None
have False if \(p\)-in: \(p \in\) ptree-rm \(f\) and \(p\)-pref: cprefix \(p\) bs for \(p\)
proof -
obtain \(r\) where \(w f\) : wf-on-prefix f \(p r\) using that \(p\)-in unfolding ptree-rm-def by auto
have \(b s=\) cshift \(p\) (cdrop (length \(p\) ) bs)
using \(p\)-pref unfolding cprefix-def by (metis ctake-cdrop)
hence \(f\) bs \(\neq\) None
using wf unfolding wf-on-prefix-def
by (metis option.simps(3))
thus False using None by simp
qed
hence \(0:\{p \in\) ptree-rm \(f\). cprefix \(p b s\}=\{ \}\)
by auto
show ?thesis unfolding 0 None consumed-prefix-def by simp
next
case (Some a)
moreover obtain \(r\) cs where \(a=(r, c s)\) by (cases a) auto
ultimately have \(f b s=\operatorname{Some}(r, c s)\) by \(\operatorname{simp}\)
hence \(\exists p\). cprefix \(p\) bs \(\wedge w f\)-on-prefix f \(p r\)
using assms(1) unfolding wf-random-def by (auto split:option.split-asm)
```

 then obtain p}\mathrm{ where sp:cprefix p bs and wf:wf-on-prefix f pr
 by auto
 hence p}\in{p\in\mathrm{ ptree-rm f.cprefix p bs}
 unfolding ptree-rm-def by auto
 hence 0:{p\in ptree-rm f. cprefix pbs}={p}
 using prefixes-singleton by auto
 show ?thesis unfolding 0 wf-on-prefixD[OF wf sp] consumed-prefix-def by simp
 qed
lemma range-rm-alt:
assumes wf-random f
shows range-rm f = eval-rm f'ptree-rm f (is ?L = ?R)
proof -
have 0:cprefix p (cshift p (cconst False)) for p
unfolding cprefix-def by auto
have ?L ={x.\existsbs. map-option (eval-rm f) (consumed-prefix f bs)=Some x}
unfolding range-rm-def comp-def by (subst wf-random-alt[OF assms])
(simp add:map-option.compositionality comp-def vimage-def image-iff eq-commute)
also have ... ={x.\existsp bs. x = eval-rm f p ^ consumed-prefix f bs=Some p}
unfolding map-option-eq-Some
by (intro Collect-cong) metis
also have ... ={x.\existsp.p\inptree-rm f ^x=eval-rm f p}
unfolding consumed-prefix-def the-elem-opt-Some-iff[OF prefixes-at-most-one]
using 0 prefixes-singleton
by (intro Collect-cong) blast
also have ... = ?R
by auto
finally show ?thesis
by simp
qed
lemma consumed-prefix-some-iff:
consumed-prefix f bs=Some p}\longleftrightarrow(p\in\mathrm{ ptree-rm f ^cprefix p bs)
proof -
have p}\in\mathrm{ ptree-rm f cmrefix pbs \# x ptree-rm f cprefix x bs \# x=p for x
using same-prefix-not-parallel prefixes-parallel by blast
thus ?thesis
unfolding consumed-prefix-def the-elem-opt-Some-iff[OF prefixes-at-most-one]
by auto
qed
definition consumed-bits where
consumed-bits f bs = map-option length (consumed-prefix f bs)
definition used-bits-distr :: 'a random-alg-int }=>\mathrm{ nat option measure
where used-bits-distr f}=\operatorname{distr}\mathcal{B}\mathcal{D}\mathrm{ (consumed-bits f)
lemma wf-random-alt2:
assumes wf-random f
shows f bs = map-option (}\lambdan.(\mathrm{ eval-rm f (ctake n bs), cdrop n bs)) (consumed-bits f bs)
(is ?L = ?R)
proof -
have 0:cprefix x bs if consumed-prefix f bs =Some }x\mathrm{ for }
using that the-elem-opt-Some-iff[OF prefixes-at-most-one] unfolding consumed-prefix-def by
auto
have ?L = map-option (}\lambda\mathrm{ p. (eval-rm f p, cdrop (length p) bs)) (consumed-prefix f bs)
by (subst wf-random-alt[OF assms]) simp
also have ... = ?R

```
using 0 unfolding consumed-bits-def map-option.compositionality comp-def cprefix-def by (cases consumed-prefix \(f\) bs) auto
finally show ?thesis by simp
qed
lemma consumed-prefix-none-iff:
assumes wf-random \(f\)
shows \(f\) bs \(=\) None \(\longleftrightarrow\) consumed-prefix \(f\) bs \(=\) None using wf-random-alt[OF assms] by (simp)
lemma consumed-bits-inf-iff:
assumes wf-random \(f\)
shows \(f\) bs \(=\) None \(\longleftrightarrow\) consumed-bits \(f\) bs \(=\) None
using wf-random-alt2[OF assms] by (simp)
lemma consumed-bits-enat-iff:
\[
\text { consumed-bits } f \text { bs }=\text { Some } n \longleftrightarrow \text { ctake } n \text { bs } \in \text { ptree-rm } f(\text { is } ? L=? R)
\]
proof
assume consumed-bits f bs \(=\) Some \(n\)
then obtain \(p\) where the-elem-opt \(\{p \in\) ptree-rm \(f\).cprefix \(p\) bs \(\}=\) Some \(p\) and 0 : length \(p=\) \(n\)
unfolding consumed-bits-def consumed-prefix-def by (auto split:option.split-asm)
hence \(p \in\) ptree-rm \(f\) cprefix \(p\) bs
unfolding the-elem-opt-Some-iff[OF prefixes-at-most-one] by auto
thus ctake \(n\) bs \(\in\) ptree-rm \(f\) using 0 unfolding cprefix-def by auto
next
assume ctake \(n\) bs \(\in\) ptree-rm \(f\)
hence ctake \(n\) bs \(\in\{p \in\) ptree-rm \(f\). cprefix \(p b s\}\)
unfolding cprefix-def by auto
hence \(\{p \in\) ptree-rm \(f\). cprefix \(p b s\}=\{\) ctake \(n b s\}\)
using prefixes-singleton by auto
thus consumed-bits \(f\) bs \(=\) Some \(n\) unfolding consumed-bits-def consumed-prefix-def by simp
qed
lemma consumed-bits-measurable: consumed-bits \(f \in \mathcal{B} \rightarrow_{M} \mathcal{D}\)
proof -
have 0 : consumed-bits \(f-‘\{x\} \cap\) space \(\mathcal{B} \in\) sets \(\mathcal{B}\) (is ? \(L \in-\) )
if \(x\)-ne-inf: \(x \neq\) None for \(x\)
proof -
obtain \(n\) where \(x\)-def: \(x=\) Some \(n\)
using \(x\)-ne-inf that by auto
have \(? L=\{b s . \exists z\). consumed-prefix \(f\) bs \(=\) Some \(z \wedge\) length \(z=n\}\)
unfolding consumed-bits-def vimage-def space-coin-space \(x\)-def by simp
also have \(\ldots=\{b s . \exists p .\{p \in\) ptree-rm \(f\). cprefix \(p b s\}=\{p\} \wedge\) length \(p=n\}\)
unfolding consumed-prefix-def \(x\)-def the-elem-opt-Some-iff [OF prefixes-at-most-one] by simp
also have \(\ldots=\{b s . \exists p\). cprefix \(p\) bs \(\wedge\) length \(p=n \wedge p \in\) ptree-rm \(f\}\)
using prefixes-singleton by (intro Collect-cong ex-cong1) auto
also have \(\ldots=\{b s\). ctake \(n\) bs \(\in\) ptree-rm \(f\}\)
unfolding cprefix-def by (intro Collect-cong) (metis length-ctake)
also have \(\ldots \in\) sets \(\mathcal{B}\)
by (intro measurable-sets-coin-space[OF ctake-measurable]) simp
finally show ?thesis
by simp
qed
```

 thus ?thesis
 by (intro measurable-sigma-sets-with-exception[where d=None])
 qed
lemma R-sets:
assumes wf:wf-random f
shows {bs.fbs=None }}\in\mathrm{ sets }\mathcal{B}{bs.fbs\not=None}\in\mathrm{ sets }\mathcal{B
proof -
show 0:{bs.f bs=None} \in sets \mathcal{B}
unfolding consumed-bits-inf-iff[OF wf]
by (intro measurable-sets-coin-space[OF consumed-bits-measurable]) simp
have {bs.f bs \not=None} = space \mathcal{B }-{bs.fbs=None}
unfolding space-coin-space by (simp add:set-eq-iff del:not-None-eq)
also have ... \in sets \mathcal{B}
by (intro sets.compl-sets 0)
finally show {bs.f bs \not=None} \in sets \mathcal{B}
by simp
qed
lemma countable-range:
assumes wf:wf-random f
shows countable (range-rmf)
proof -
have countable (eval-rm f' UNIV)
by (intro countable-image) simp
moreover have range-rm f\subseteqeval-rm f'UNIV
unfolding range-rm-alt[OF wf] by auto
ultimately show ?thesis using countable-subset by blast
qed
lemma consumed-prefix-continuous:
continuous-map euclidean option-ud (consumed-prefix f)
proof (intro contionuos-into-option-udI)
fix x :: bool list
have open ((consumed-prefix f) -'{Some x}) (is open ?T)
proof (cases x ptree-rm f)
case True
hence 0:?T = {bs.cprefix x bs}
unfolding vimage-def comp-def by (simp add:consumed-prefix-some-iff)
show ?thesis
unfolding 0 by (intro coin-steam-open)
next
case False
hence ?T = {}
unfolding vimage-def comp-def by (simp add:consumed-prefix-some-iff)
thus ?thesis
by simp
qed
thus openin euclidean ((consumed-prefix f) -`{Some x} \cap topspace euclidean)
by simp
qed

```

Randomized algorithms are continuous with respect to the product topology on the domain and the upper topology on the range.
```

lemma f-continuous:
assumes wf:wf-random f
shows continuous-map euclidean option-ud (map-option fst \circf)

```
```

proof -
have 0: map-option fst \circ (\lambdabs.f bs)=
map-option (eval-rm f) ○ (consumed-prefix f)
by (subst wf-random-alt[OF wf]) (simp add:map-option.compositionality comp-def)
show ?thesis unfolding 0
by (intro continuous-map-compose[OF consumed-prefix-continuous] map-option-continuous)
qed
lemma none-measure-subprob-algebra:
return \mathcal{D None }\in\mathrm{ space (subprob-algebra D D)}
by (metis measure-subprob return-pmf.rep-eq)
context
fixes f :: 'a random-alg-int
fixes }
assumes wf:wf-random f
defines }R\equiv\mathrm{ restrict-space }\mathcal{B}{bs.fbs\not=None
begin

```

```

proof -
define h}\mathrm{ where }h=\mathrm{ the o consumed-bits f
define g}\mathrm{ where g bs =(ctake (hbs)bs,cdrop (hbs)bs) for bs
have consumed-bits f bs \not=None if bs \in space R for bs
using that consumed-bits-inf-iff[OF wf] unfolding R-def space-restrict-space space-coin-space
by (simp del:not-infinity-eq not-None-eq)
hence 0:the (fbs) = map-prod (eval-rmf) id (gbs) if bs\in space R for bs
unfolding g-def h-def using that
by (subst wf-random-alt2[OF wf]) (cases consumed-bits f bs, auto simp del: not-None-eq)
have 1:h\inR 吘 D
unfolding R-def h-def
by (intro measurable-restrict-space1 measurable-comp[OF consumed-bits-measurable]) simp
have ctake k }\inR\mp@subsup{->}{M}{}\mathcal{D}\mathrm{ for }
unfolding R-def by (intro measurable-restrict-space1 ctake-measurable)
moreover have cdrop k\inR 积 \mathcal{B for k}
unfolding }R\mathrm{ -def by (intro measurable-restrict-space1 cdrop-measurable)
ultimately have g}\inR\mp@subsup{->}{M}{}\mathcal{D}\mp@subsup{\otimes}{M}{}\mathcal{B
unfolding g-def
by (intro measurable-Pair measurable-Pair-compose-split[OF - 1 measurable-id]) simp-all
hence (map-prod (eval-rm f) id og) \inR 稆 \mathcal{D }\mp@subsup{\otimes}{M}{}\mathcal{B}
by (intro measurable-comp[where N=\mathcal{D}\mp@subsup{\bigotimes}{M}{}\mathcal{B}] map-prod-measurable) auto

```

```

\otimes M B
using 0 by (intro measurable-cong) (simp add:comp-def)
ultimately show ?thesis
by auto
qed
lemma distr-rai-measurable: map-option fst \circf\in\mathcal{B}\mp@subsup{->}{M}{}\mathcal{D}
proof -
have 0:countable {{bs.fbs\not=None},{bs.fbs=None}}
by simp

```
```

 have 1:\Omega\in sets \mathcal{B}\wedge map-option fst of\in restrict-space }\mathcal{B}\Omega\mp@subsup{->}{M}{}\mathcal{D
 if \Omega\in{{bs.fbs\not=None},{bs.fbs=None}} for \Omega
 proof (cases \Omega={bs.fbs\not=None})
 case True
    ```

```

 by (intro measurable-comp[OF the-f-measurable]) auto
 hence map-option fst \circf\inR 稆疎
 unfolding R-def by (subst measurable-cong[where g=Some \circfst\circ(the\circf)])
 (auto simp add: space-restrict-space space-coin-space)
 thus \Omega\in sets \mathcal{B}\wedge map-option fst of\in restrict-space \mathcal{B }\Omega\mp@subsup{->}{M}{}\mathcal{D}
 unfolding R}R\mathrm{ -def True using R-sets[OF wf] by auto
 next
 case False
 hence 2:\Omega={bs.f bs=None}
 using that by simp
 have map-option fst \circf\in restrict-space \mathcal{B {bs.f bs=None} }\mp@subsup{->}{M}{}\mathcal{D}
 by (subst measurable-cong[where g=\lambda-. None])
 (simp-all add:space-restrict-space)
 thus \Omega\in sets \mathcal{B}\wedge map-option fst of\in restrict-space \mathcal{B }\Omega\mp@subsup{->}{M}{}\mathcal{D}
 unfolding 2 using R-sets[OF wf] by auto
 qed
 have 3: space \mathcal{B}\subseteq\bigcup{{bs.f bs\not= None},{bs.f bs=None}}
 unfolding space-coin-space by auto
 show ?thesis
 by (rule measurable-piecewise-restrict[OF 0]) (use 1 3 space-coin-space in <auto>)
 qed
lemma distr-rai-subprob-space:
distr-rai f}\in\mathrm{ space (subprob-algebra }\mathcal{D}
proof -
have prob-space (distr-rai f)
unfolding distr-rai-def using distr-rai-measurable
by (intro coin-space.prob-space-distr) auto
moreover have sets (distr-rai f)}=\mathcal{D
unfolding distr-rai-def by simp
ultimately show ?thesis
unfolding space-subprob-algebra using prob-space-imp-subprob-space
by auto
qed
lemma fst-the-f-measurable: fst o the \circf\inR }\mp@subsup{->}{M}{}\mathcal{D
proof -
have fst \circ (the \circf)\inR 梠 D
by (intro measurable-comp[OF the-f-measurable]) simp
thus ?thesis by (simp add:comp-def)
qed
lemma prob-space-distr-rai:
prob-space (distr-rai f)
unfolding distr-rai-def by (intro coin-space.prob-space-distr distr-rai-measurable)

```

This is the central correctness property for the monad．The returned stream of coins is independent of the result of the randomized algorithm．
lemma remainder－indep：
\(\operatorname{distr} R\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)(\) the \(\circ f)=\operatorname{distr} R \mathcal{D}(f s t \circ\) the \(\circ f) \bigotimes_{M} \mathcal{B}\)
proof -
define \(C\) where \(C k=\) consumed-bits \(f-\) ' \(\{\) Some \(k\}\) for \(k\)
have 2: \((\exists k . x \in C k) \longleftrightarrow f x \neq\) None for \(x\)
using consumed-bits-inf-iff [OF wf] unfolding C-def
by auto
hence 5: \(C k \subseteq\) space \(R\) for \(k\)
unfolding \(R\)-def space-restrict-space space-coin-space
by auto
have \(1:\{b s\). f bs \(\neq\) None \(\} \cap\) space \(\mathcal{B} \in\) sets \(\mathcal{B}\) using \(R\)-sets \([O F w f]\) by \(\operatorname{simp}\)
have 6: \(C k \in\) sets \(\mathcal{B}\) for \(k\)
unfolding \(C\)-def vimage-def
by (intro measurable-sets-coin-space[OF consumed-bits-measurable]) simp
have 8: \(x \in C k \longleftrightarrow\) ctake \(k x \in\) ptree-rm \(f\) for \(x k\)
unfolding \(C\)-def using consumed-bits-enat-iff by auto
have 7: the \((f(\) cshift \((\) ctake \(k x) y))=(f s t(\) the \((f x)), y)\) if \(x \in C k\) for \(x y k\)
proof -
have cshift (ctake \(k x) y \in C k\)
using that 8 by simp
hence the \((f(\) cshift \((\) ctake \(k x) y))=(\) eval-rm \(f(\) ctake \(k x), y)\)
using wf-random-alt2[OF wf] unfolding \(C\)-def by simp
also have \(\ldots=(f s t(\) the \((f x)), y)\)
using that wf-random-alt2 [OF wf] unfolding \(C\)-def by simp
finally show? ?thesis by simp
qed
have \(C\)-disj: disjoint-family \(C\)
unfolding disjoint-family-on-def \(C\)-def by auto
have 0 :
emeasure \(\left(\operatorname{distr} R\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)(\right.\) the \(\left.\circ f)\right)(A \times B)=\)
emeasure \((\operatorname{distr} R \mathcal{D}(f s t \circ\) the \(\circ f)) A *\) emeasure \(\mathcal{B} B\)
(is ? \(L=\) ? \(R\) ) if \(A \in\) sets \(\mathcal{D} B \in\) sets \(\mathcal{B}\) for \(A B\)
proof -
have 3: \(\{b s\). fst \((\) the \((f b s)) \in A \wedge b s \in C k\} \in \operatorname{sets} \mathcal{B}\) (is ?L1 \(\in-)\) for \(k\)
proof -
have ? \(L 1=(f\) st \(\circ\) the \(\circ f)-{ }^{\prime} A \cap\) space (restrict-space \(\left.R(C k)\right)\)
using 5 unfolding vimage-def space-restrict-space \(R\)-def space-coin-space by auto also have \(\ldots \in\) sets (restrict-space \(R(C k)\) )
by (intro measurable-sets[OF - that(1)] measurable-restrict-space1 fst-the-f-measurable)
also have \(\ldots=\) sets (restrict-space \(\mathcal{B}(C k)\) )
using 5 unfolding \(R\)-def sets-restrict-restrict-space space-restrict-space space-coin-space
by (intro arg-cong2 [where \(f=\) restrict-space \(]\) arg-cong \([\) where \(f=\) sets \(]\) refl) auto
finally have ? L1 \(\in\) sets (restrict-space \(\mathcal{B}(C k)\) )
by \(\operatorname{simp}\)
thus ? L1 \(\in\) sets \(\mathcal{B}\)
using 6 space-coin-space sets-restrict-space-iff \([\) where \(M=\mathcal{B}\) and \(\Omega=C k]\) by auto qed
have 4: \(\{b s\). the \((f b s) \in A \times B \wedge b s \in C k\} \in \operatorname{sets} \mathcal{B}\) (is ?L1 \(\in-\) ) for \(k\)
proof -
have ? \(L 1=(\) the \(\circ f)-{ }^{\prime}(A \times B) \cap\) space (restrict-space \(\left.R(C k)\right)\)
using 5 unfolding vimage-def space-restrict-space \(R\)-def space-coin-space by auto
also have \(\ldots \in\) sets (restrict-space \(R(C k)\) )
using that by (intro measurable-sets[where \(\left.A=\mathcal{D} \bigotimes_{M} \mathcal{B}\right]\) measurable-restrict-space 1 the-f-measurable) auto
also have \(\ldots=\) sets (restrict-space \(\mathcal{B}(C k))\)
using 5 unfolding \(R\)-def sets-restrict-restrict-space space-restrict-space space-coin-space by (intro arg-cong2[where \(f=\) restrict-space] arg-cong[where \(f=\) sets] refl) auto
finally have ? L1 \(\in\) sets (restrict-space \(\mathcal{B}\left(\begin{array}{l}C\end{array}\right)\) )
by \(\operatorname{simp}\)
thus ? L1 \(\in\) sets \(\mathcal{B}\)
using 6 space-coin-space sets-restrict-space-iff \([\) where \(M=\mathcal{B}\) and \(\Omega=C k]\) by auto qed
have \(? L=\) emeasure \(R((\) the \(\circ f)-‘(A \times B) \cap\) space \(R)\)
using that the-f-measurable by (intro emeasure-distr) auto
also have \(\ldots=\) emeasure \(R\{x\). the \((f x) \in A \times B \wedge f x \neq\) None \(\}\)
unfolding vimage-def \(R\)-def Int-def
by (simp add:space-restrict-space space-coin-space)
also have \(\ldots=\) emeasure \(\mathcal{B}\{x\). the \((f x) \in A \times B \wedge(\exists k . x \in C k)\}\)
unfolding \(R\)-def 2 using 1 by (intro emeasure-restrict-space) auto
also have \(\ldots=\) emeasure \(\mathcal{B}(\bigcup k\). \(\{x\). the \((f x) \in A \times B \wedge x \in C k\})\)
by (intro arg-cong2[where \(f=\) emeasure]) auto
also have \(\ldots=\left(\sum k\right.\). emeasure \(\mathcal{B}\{x\). the \(\left.(f x) \in A \times B \wedge x \in C k\}\right)\)
using \(4 C\)-disj
by (intro suminf-emeasure[symmetric] subsetI) (auto simp:disjoint-family-on-def)
also have \(\ldots=\left(\sum k\right.\). emeasure \(\left(\operatorname{distr}\left(\mathcal{B} \bigotimes_{M} \mathcal{B}\right) \mathcal{B}(\lambda(x, y) .(\operatorname{cshift}(\operatorname{ctake} k x) y))\right)\)
\(\{x\). the \((f x) \in A \times B \wedge x \in C k\})\)
by (intro suminf-cong arg-cong2[where \(f=\) emeasure \(]\) branch-coin-space(2)[symmetric] refl)
also have \(\ldots=\left(\sum k\right.\). emeasure \(\left(\mathcal{B} \bigotimes_{M} \mathcal{B}\right)\)
\(\{x\). the \((f(\) cshift \((\) ctake \(k(f s t x))(\) snd \(x))) \in A \times B \wedge(\) cshift \((\) ctake \(k(f s t x))(\) snd \(x)) \in C\)
k\})
using branch-coin-space(1) 4 by (subst emeasure-distr) (simp-all add:case-prod-beta Int-def space-pair-measure space-coin-space)
also have \(\ldots=\left(\sum k\right.\). emeasure \(\left(\mathcal{B} \otimes_{M} \mathcal{B}\right)\)
\(\left\{x\right.\). the \((f(\operatorname{cshift}(\operatorname{ctake} k(f s t x))(\) snd \(\left.\left.x))) \in A \times B \wedge f_{s t} x \in C k\right\}\right)\)
using 8 by (intro suminf-cong arg-cong2[where \(f=\) emeasure] refl Collect-cong) auto
also have \(\ldots=\left(\sum k\right.\). emeasure \(\left(\mathcal{B} \bigotimes_{M} \mathcal{B}\right)(\{x . f\) st \((\) the \(\left.(f x)) \in A \wedge x \in C k\} \times B)\right)\)
using 7 by (intro suminf-cong arg-cong2[where \(f=\) emeasure \(]\) refl)
(auto simp add:mem-Times-iff set-eq-iff)
also have \(\ldots=\left(\sum k\right.\). emeasure \(\mathcal{B}\{x\). fst \((\) the \((f x)) \in A \wedge x \in C k\} *\) emeasure \(\left.\mathcal{B} B\right)\) using 3 that(2)
by (intro suminf-cong coin-space.emeasure-pair-measure-Times) auto
also have \(\ldots=\left(\sum k\right.\). emeasure \(\mathcal{B}\{x\). fst \((\) the \(\left.(f x)) \in A \wedge x \in C k\}\right) *\) emeasure \(\mathcal{B} B\) by \(\operatorname{simp}\)
also have \(\ldots=\) emeasure \(\mathcal{B}(\bigcup k .\{x\). fst \((\) the \((f x)) \in A \wedge x \in C k\}) *\) emeasure \(\mathcal{B} B\) using 3 C-disj
by (intro arg-cong2[where \(f=(*)\) ] suminf-emeasure refl image-subsetI) (auto simp add:disjoint-family-on-def)
also have \(\ldots=\) emeasure \(\mathcal{B}\{x\). fst \((\) the \((f x)) \in A \wedge(\exists k . x \in C k)\} *\) emeasure \(\mathcal{B} B\) by (intro arg-cong2[where \(f=\) emeasure \(]\) arg-cong2[where \(f=(*)]\) ) auto
also have \(\ldots=\) emeasure \(R\{x\). fst (the \((f x)) \in A \wedge f x \neq\) None \(\} *\) emeasure \(\mathcal{B} B\) unfolding \(R\)-def 2 using 1
by (intro arg-cong2[where \(f=(*)\) ] emeasure-restrict-space[symmetric] subsetI) simp-all
also have \(\ldots=\) emeasure \(R((f\) st \(\circ\) the \(\circ f)-\) ' \(A \cap\) space \(R) *\) emeasure \(\mathcal{B} B\)
unfolding vimage-def \(R\)-def Int-def by (simp add:space-restrict-space space-coin-space)
also have \(\ldots=\) ? \(R\)
using that
by (intro arg-cong2[where \(f=(*)\) ] emeasure-distr[symmetric] fst-the-f-measurable) auto finally show? ?hesis by simp
qed
have finite-measure \(R\)
using 1 unfolding \(R\)-def space-coin-space
by (intro finite-measure-restrict-space) simp-all
hence finite-measure (distr \(R \mathcal{D}(f s t \circ\) the \(\circ f))\)
by (intro finite-measure.finite-measure-distr fst-the-f-measurable)
hence 1:sigma-finite-measure (distr \(R \mathcal{D}(f s t \circ\) the \(\circ f))\)
unfolding finite-measure-def by auto
have 2:sigma-finite-measure \(\mathcal{B}\)
using prob-space-imp-sigma-finite[OF coin-space.prob-space-axioms] by simp
show ?thesis
using 0 by (intro pair-measure-eqI[symmetric] 1 2) (simp-all add:sets-pair-measure)
qed
end
lemma distr-rai-bind:
assumes \(w f\) - \(m\) : wf-random \(m\)
assumes wf-f: \(\bigwedge x . x \in\) range-rm \(m \Longrightarrow\) wf-random \((f x)\)
shows distr-rai \((m \gg f)=\) distr-rai \(m \gg=\)
( \(\lambda x\). if \(x \in\) Some' range-rm \(m\) then distr-rai \((f(\) the \(x))\) else return \(\mathcal{D}\) None)
(is ? \(L=\) ? RHS )
proof (rule measure-eqI)
have sets ? \(L=U N I V\)
unfolding distr-rai-def by simp
also have..\(=\) sets ?RHS
unfolding distr-rai-def by (subst sets-bind \([\) where \(N=\mathcal{D}]\) )
( simp-all add:option.case-distrib option.case-eq-if)
finally show sets \(? L=\) sets ? RHS by simp
next
let \(? m=\) distr-rai
let ? \(H=\) count-space (range-rm m)
let \(? R=\) restrict-space \(\mathcal{B}\{b s . m\) bs \(\neq\) None \(\}\)
fix \(A\) assume \(A \in \operatorname{sets}(\) distr-rai \((m \gg f))\)
define \(N\) where \(N=\{x . m x \neq\) None \(\}\)
have \(N\)-meas: \(N \in\) sets coin-space
unfolding \(N\)-def using \(R\)-sets \([O F w f-m]\) by simp
hence \(N\)-meas \({ }^{\prime}:-N \in\) sets coin-space
unfolding Compl-eq-Diff-UNIV using space-coin-space by (metis sets.compl-sets)
have wf-bind: wf-random \((m \gg f)\)
using wf-bind \([\) OF assms] by auto
have 0 : (map-option fst \(\circ(m \gg f)) \in\) coin-space \(\rightarrow_{M} \mathcal{D}\)
using distr-rai-measurable[OF wf-bind \(]\) by auto
have 1: (map-option fst \(\circ(m \gg=f))-^{\prime} A \in\) sets \(\mathcal{B}\)
unfolding vimage-def by (intro measurable-sets-coin-space \(\left[\begin{array}{lll}O F & 0\end{array}\right]\) ) simp
have \(\{(v, b s)\). map-option fst \((f v b s) \in A \wedge v \in\) range-rm \(m\}=\)
(map-option fst \(\circ\) case-prod \(f)-‘ A \cap\) space \(\left(? H \otimes_{M^{\prime}} \mathcal{B}\right)\)
unfolding vimage-def space-pair-measure space-coin-space by auto
also have \(\ldots \in\) sets \(\left(? H \bigotimes_{M} \mathcal{B}\right)\)
using distr-rai-measurable \([O F\) wf-f]
by (intro measurable-sets[where \(A=\mathcal{D}]\) measurable-pair-measure-countable1 countable-range \(w f-m\) )
(simp-all add:comp-def)
also have \(\ldots=\) sets (restrict-space \(\mathcal{D}(\) range-rm \(\left.m) \bigotimes_{M} \mathcal{B}\right)\)
unfolding restrict-count-space inf-top-right by simp
also have \(\ldots=\) sets (restrict-space \(\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)\) (range-rm \(m \times\) space coin-space))
by (subst coin-space.restrict-space-pair-lift) auto
finally have \(\{(v, b s)\). map-option \(f s t(f v b s) \in A \wedge v \in\) range-rm \(m\} \in\) sets (restrict-space \(\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)(\) range-rm \(\left.m \times U N I V)\right)\)
unfolding space-coin-space by simp
moreover have range-rm \(m \times\) space coin-space \(\in \operatorname{sets}\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)\)
by (intro pair-measureI sets.top) auto
ultimately have 2: \(\{(v, b s)\). map-option \(f s t(f v b s) \in A \wedge v \in\) range-rm \(m\} \in\) sets \(\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)\)
by (subst (asm) sets-restrict-space-iff) (auto simp: space-coin-space)
have space- \(R\) : space \(? R=\{x . m x \neq\) None \(\}\)
by (simp add:space-restrict-space space-coin-space)
have 3: distr-rai \((f(\) the \(x)) \in\) space (subprob-algebra \(\mathcal{D})\)
if \(x \in\) Some' range-rm \(m\) for \(x\)
using distr-rai-subprob-space[OF wf-f] that by fastforce
have \((\lambda x\). emeasure \((\) distr-rai \((f(f s t(\) the \((m x))))) A *\) indicator \(N x)=\)
( \(\lambda x\). emeasure (if \(m x \neq\) None then distr-rai \((f(f s t(\) the \((m x))))\) else null-measure \(\mathcal{D}) A)\)
unfolding \(N\)-def by (intro ext) simp
also have \(\ldots=(\lambda v\). emeasure (if \(v \in\) Some'range-rm m then ? \(m\) ( \(f\) (the \(v)\) ) else null-measure \(\mathcal{D})\)
A)
- (map-option fst \(\circ m)\)
unfolding comp-def by (intro ext arg-cong2[where \(f=\) emeasure] refl if-cong) (auto intro:in-range-rmI simp add:vimage-def image-iff)
also have ... \(\in\) borel-measurable coin-space
using 3 by (intro distr-rai-measurable[OF wf-m] measurable-comp [where \(N=\mathcal{D}\) ]
measurable-emeasure-kernel \([\) where \(N=\mathcal{D}]\) ) simp-all
finally have \(4:(\lambda x\). emeasure \((\) distr-rai \((f(f s t(t h e ~(m x))))) A *\) indicator \(N x)\)
\(\in\) coin-space \(\rightarrow_{M}\) borel by simp
let \(? N=\) emeasure \(\mathcal{B}\{\) bs. bs \(\notin N \wedge\) None \(\in A\}\)
have emeasure ? \(L A=\) emeasure \(\mathcal{B}\left((\right.\) map-option \(\left.f s t \circ(m \gg f))-{ }^{\prime} A\right)\)
unfolding distr-rai-def using 0 by (subst emeasure-distr) (simp-all add:space-coin-space)
also have ... =
emeasure \(\mathcal{B}((\) map-option \(f\) sto \((m \gg f))-‘ A \cap-N)+\) emeasure \(\mathcal{B}((\) map-option \(f s t \circ(m \gg=f))-‘ A\)
\(\cap N)\)
using \(N\)-meas \(N\)-meas \({ }^{\prime} 1\)
by (subst emeasure-Un'[symmetric]) (simp-all add:Int-Un-distrib[symmetric])
also have ... =
emeasure \(\mathcal{B}((\) map-option \(f\) sto \((m \gg f))-‘ A \cap-N)+\) emeasure ? \(R((\) map-option fsto \((m \gg=f))-‘ A \cap\)
N)
using \(N\)-meas unfolding \(N\)-def
by (intro arg-cong2 [where \(f=(+)]\) refl emeasure-restrict-space[symmetric]) simp-all
also have \(\ldots=\) ? \(N+\) emeasure ? \(R((\) the \(\circ m)-\) '
\(\{(v, b s)\). map-option \(f s t(f v b s) \in A \wedge v \in\) range-rm \(m\} \cap\) space? \(R)\)
unfolding bind-rai-def \(N\)-def space- \(R\) apfst-def
by (intro arg-cong2 [where \(f=(+)]\) arg-cong2 [where \(f=\) emeasure \(]\) )
(simp-all add: set-eq-iff in-range-rmI split:option.split bind-splits)
also have \(\ldots=? N+\) emeasure \(\left(\right.\) distr \(? R\left(\mathcal{D} \bigotimes_{M} \mathcal{B}\right)(\) the \(\left.\circ m)\right)\)
\(\{(v, b s)\). map-option \(f s t(f v b s) \in A \wedge v \in\) range-rm \(m\}\)
using 2 by (intro arg-cong2[where \(f=(+)\) ] emeasure-distr[symmetric]
the-f-measurable map-prod-measurable wf-m) simp-all
also have \(\ldots=? N+\) emeasure \(\left(\right.\) distr ? \(R \mathcal{D}(f s t \circ\) the \(\left.\circ m) \otimes_{M} \mathcal{B}\right)\)
\(\{(v, b s)\). map-option \(f s t(f v b s) \in A \wedge v \in\) range-rm \(m\}\)
unfolding \(N\)-def remainder-indep \([O F w f-m]\) by simp
also have \(\ldots=\) ? \(N+\int^{+}\)v. emeasure \(\mathcal{B}\)
\{bs. map-option fst \((f v b s) \in A \wedge v \in\) range-rm \(m\}\) ddistr ? \(R\) D \((f s t \circ(\) the \(\circ m))\)
using 2 by (subst coin-space.emeasure-pair-measure-alt) (simp-all add:vimage-def comp-assoc)
also have \(\ldots=\) ? \(N+\int+{ }^{+}\). emeasure \(\mathcal{B}\)
\(\{b s\). map-option \(f s t(f((f s t \circ(\) the \(\circ m)) x) b s) \in A \wedge(f s t \circ(\) the \(\circ m)) x \in\) range-rm \(m\} \partial ? R\)
using the-f-measurable[OF wf-m]
by (intro arg-cong2[where \(f=(+)\) ] refl \(n n\)-integral-distr) simp-all
also have \(\ldots=? N+\left(\int{ }^{+} x \in\{b s . m b s \neq\right.\) None \(\}\). emeasure \(\mathcal{B}\)
\(\{b s\). map-option \(f s t(f(f s t(\) the \((m x))) b s) \in A \wedge f s t(\) the \((m x)) \in\) range-rm \(m\} \partial \mathcal{B})\)
using \(N\)-meas unfolding \(N\)-def using nn-integral-restrict-space
by (subst nn-integral-restrict-space) simp-all
also have \(\ldots=? N+\left(\int^{+} x \in\{b s . m b s \neq\right.\) None \(\}\).
emeasure \(\mathcal{B}((\) map-option fst \(\circ f(\) fst \((\) the \((m x))))-‘ A \cap\) space \(\mathcal{B}) \partial \mathcal{B})\)
by (intro arg-cong2[where \(f=(+)]\) set-nn-integral-cong refl arg-cong2[where \(f=\) emeasure \(]\) )
(auto intro:in-range-rmI simp:space-coin-space)
also have \(\ldots=\) ? \(N+\left(\int^{+} x \in N\right.\). emeasure \((\operatorname{distr-rai}(f(f s t(\) the \(\left.(m x))))) A \partial \mathcal{B}\right)\)
unfolding distr-rai-def \(N\)-def
by (intro arg-cong2 [where \(f=(+)]\) set-nn-integral-cong refl emeasure-distr[symmetric]
distr-rai-measurable[OF wf-f]) (auto intro:in-range-rmI)
also have \(\ldots=\left(\int^{+} x\right.\). (indicator \(\{\) bs. bs \(\notin N \wedge\) None \(\left.\left.\in A\}\right) x \partial \mathcal{B}\right)+\)
\(\left(\int{ }^{+} x \in N\right.\). emeasure \((\) distr-rai \(\left.(f(f s t(\operatorname{the}(m x))))) A \partial \mathcal{B}\right)\)
using \(N\)-meas \(N\)-meas \({ }^{\prime}\)
by (intro arg-cong2[where \(f=(+)\) ]n-integral-indicator[symmetric] refl)
(cases None \(\in A\); auto simp:Collect-neg-eq)
also have \(\ldots=\int+x\). indicator \(\{b s\). bs \(\notin N \wedge\) None \(\in A\} x+\) emeasure \((\) distr-rai \((f(f s t(\) the \((m x))))) A *\) indicator \(N x \partial \mathcal{B}\)
using \(N\)-meas \({ }^{\prime} N\)-meas by (intro nn-integral-add[symmetric] 4) simp
also have \(\ldots=\int{ }^{+} x\). indicator \((-N) x *\) indicator A None +
indicator \(N x *\) emeasure (distr-rai \((f(f s t(\) the \((m x)))))\) A \(\partial \mathcal{B}\)
unfolding \(N\)-def by (intro arg-cong2[where \(f=n n\)-integral \(]\) ext refl arg-cong2 \([\) where \(f=(+)])\) ( simp-all split:split-indicator)
also have ... =
\(\int^{+} x\). emeasure (case \(m x\) of None \(\Rightarrow\) return \(\mathcal{D}\) None \(\mid\) Some \(\left.x \Rightarrow \operatorname{distr-rai}(f(f s t x))\right)\) A \(\partial \mathcal{B}\)
unfolding \(N\)-def by (intro arg-cong2[where \(f=n n\)-integral] ext)
(auto split:split-indicator option.split)
also have \(\ldots=\int+x\). emeasure (if (map-option fst \(\circ m\) ) \(x \in\) Some'range-rm \(m\)
then distr-rai \((f(\) the \(((\) map-option \(f s t \circ m) x)))\)
else return \(\mathcal{D}\) None) \(A \partial \mathcal{B}\)
by (intro arg-cong2[where \(f=n n\)-integral] arg-cong2[where \(f=\) emeasure \(]\) refl ext)
(auto simp add: in-range-rmI vimage-def split:option.splits)
also have ... =
```

 \(\int+x\). emeasure (if \(x \in\) Some'range-rm \(m\) then ? \(m(f(\) the \(x)\)) else return \(\mathcal{D}\) None) \(A \partial\) ? \(m m\)
 unfolding distr-rai-def using distr-rai-measurable \([O F\) wf-m]
 by (intro nn-integral-distr[symmetric]) (simp-all add:comp-def)
 also have $\ldots=$ emeasure ? $R H S A$
using 3 none-measure-subprob-algebra
by (intro emeasure-bind[symmetric, where $N=\mathcal{D}]$) (auto simp add:distr-rai-def Pi-def)
finally show emeasure ? $L A=$ emeasure ? $R H S A$
by simp
qed

```
lemma return-discrete: return \(\mathcal{D} x=\) return-pmf \(x\)
by (intro measure-eqI) auto
lemma distr-rai-return: distr-rai (return-rai \(x)=\) return \(\mathcal{D}(\) Some \(x)\) unfolding return-rai-def distr-rai-def by (simp add:comp-def)
lemma distr-rai-return': distr-rai (return-rai \(x)=\) return-spmf \(x\) unfolding distr-rai-return return-discrete by auto
lemma distr-rai-coin: distr-rai coin-rai \(=\) coin-spmf \((\) is \(? L=? R)\)
proof -
have \(? L=\operatorname{distr} \mathcal{B} \mathcal{D}(\lambda x\). Some \((\operatorname{chd} x))\)
unfolding coin-rai-def distr-rai-def by (simp add:comp-def)
also have \(\ldots=\operatorname{distr}(\operatorname{distr} \mathcal{B} \mathcal{D}\) chd) \(\mathcal{D}\) Some by (subst distr-distr) (auto simp add:comp-def chd-measurable)
also have...\(=\) map-pmf Some (pmf-of-set UNIV)
unfolding distr-shd map-pmf-rep-eq by simp
also have \(\ldots=s p m f\)-of-pmf ( \(p m f\)-of-set UNIV) by (simp add:spmf-of-pmf-def)
also have..\(=\) coin-spmf by auto
finally show?thesis by simp
qed
definition ord-rai :: 'a random-alg-int \(\Rightarrow\) 'a random-alg-int \(\Rightarrow\) bool where ord-rai \(=\) fun-ord (flat-ord None)
definition lub-rai :: 'a random-alg-int set \(\Rightarrow{ }^{\prime}\) 'a random-alg-int where lub-rai \(=\) fun-lub (flat-lub None)
lemma random-alg-int-pd-fact:
partial-function-definitions ord-rai lub-rai
unfolding ord-rai-def lub-rai-def
by (intro partial-function-lift flat-interpretation)
interpretation random-alg-int-pd: partial-function-definitions ord-rai lub-rai by (rule random-alg-int-pd-fact)
lemma \(w f\)-lub-helper:
assumes ord-raif \(g\)
assumes wf-on-prefix \(f\) pr
shows wf-on-prefix g \(p r\)
proof -
have \(g(c s h i f t p c s)=\operatorname{Some}(r, c s)\) for \(c s\)
proof -
have \(f(c s h i f t ~ p c s)=\) Some ( \(r, c s\) )
using assms(2) unfolding wf-on-prefix-def by auto
moreover have flat-ord None ( \(f(\) cshift \(p c s)\) ) ( \(g\) (cshift p cs))
using assms(1) unfolding ord-rai-def fun-ord-def by simp
ultimately show ?thesis
unfolding flat-ord-def by auto
qed
thus ?thesis
unfolding wf-on-prefix-def by auto
qed
lemma wf-lub:
assumes Complete-Partial-Order.chain ord-rai \(R\)
```

 assumes \(\bigwedge r . r \in R \Longrightarrow\) wf-random \(r\)
 shows wf-random (lub-rai \(R\))
 proof (rule wf-randomI)
fix $b s$
assume a:lub-rai R bs \neq None
define S where $S=\left((\lambda x . x b s)^{\prime} R\right)$
have 0:lub-rai R bs $=$ flat-lub None S
unfolding S-def lub-rai-def fun-lub-def
by (intro arg-cong2 [where $f=$ flat-lub]) auto
have lub-rai R bs $=$ None if $S \subseteq\{N o n e\}$
using that unfolding 0 flat-lub-def by auto
hence $\neg(S \subseteq\{$ None $\})$
using a by auto
then obtain r where 1:r $\in R$ and 2: $r b s \neq$ None
unfolding S-def by blast
then obtain $p y$ where 3:cprefix $p b s$ and 4:wf-on-prefix r p y
using assms(2)[OF 1] 2 unfolding wf-random-def by (auto split:option.split-asm)
have wf-on-prefix (lub-rai R) p y
by (intro wf-lub-helper[OF - 4] random-alg-int-pd.lub-upper $1 \operatorname{assms}(1))$
thus $\exists p r$. cprefix p bs $\wedge w f$-on-prefix (lub-rai R) $p r$
using 3 by auto
qed
lemma ord-rai-mono:
assumes ord-raifg
assumes $\neg(P$ None $)$
assumes $P(f b s)$
shows $P(g b s)$
using assms unfolding ord-rai-def fun-ord-def flat-ord-def by metis
lemma lub-rai-empty:
lub-rai $\}=$ Map.empty
unfolding lub-rai-def fun-lub-def flat-lub-def by simp
lemma distr-rai-lub:
assumes $F \neq\{ \}$
assumes Complete-Partial-Order.chain ord-rai F
assumes $w f$-f: $\bigwedge f . f \in F \Longrightarrow w f$-random f
assumes None $\notin A$
shows emeasure (distr-rai (lub-rai $F)$) $A=(S U P f \in F$. emeasure (distr-rai f) $A)($ is $? L=? R)$
proof -
have wf-lub: wf-random (lub-rai F)
by (intro wf-lub assms)
have 4: ord-rai f (lub-rai F) if $f \in F$ for f
using that random-alg-int-pd.lub-upper[OF assms(2)] by simp
have 0:map-option fst (lub-rai $F b s) \in A \longleftrightarrow(\exists f \in F$. map-option $f s t(f b s) \in A)$ for $b s$
proof
assume $\exists f \in F$. map-option $f s t(f b s) \in A$
then obtain f where 3:map-option $f s t(f b s) \in A$ and $5: f \in F$
by auto
show map-option fst (lub-rai F bs) $\in A$
by (rule ord-rai-mono[OF 4 [OF 5]]) (use 3 assms(4) in auto)
next
assume map-option fst (lub-rai F bs) $\in A$
then obtain y where 6 :lub-rai F bs $=$ Some y Some $($ fst $y) \in A$

```
using assms(4) by (cases lub-rai F bs) auto
hence \(f b s=\) None \(\vee f\) bs Some \(y\) if \(f \in F\) for \(f\)
using 4 [OF that \(]\) unfolding ord-rai-def fun-ord-def flat-ord-def by auto
moreover have lub-rai \(F b s=\) None if \(\bigwedge f . f \in F \Longrightarrow f b s=\) None
using that unfolding lub-rai-def flat-lub-def fun-lub-def by auto
ultimately obtain \(f\) where \(f\) bs Some y \(f \in F\) using \(6(1)\) by auto
thus \(\exists f \in F\). map-option \(f s t(f b s) \in A\)
using 6 (2) by force
qed
have 1: Complete-Partial-Order.chain \((\subseteq)((\lambda f .\{b s\). map-option \(f s t(f b s) \in A\})\) ' \(F)\)
using assms(4) by (intro chain-imageI[OF assms(2)] Collect-mono impI) (auto intro:ord-rai-mono)
have 2: open \(\{b s\). map-option \(f s t(f b s) \in A\}\) (is open ?T) if \(f \in F\) for \(f\)
proof -
have wf-f \(f^{\prime}\) wf-random \(f\)
by (intro assms that)
have \(4: ? T=\{b s \in\) topspace euclidean. (map-option fst \(\circ f) b s \in A\}\)
by simp
have openin option-ud \(A\)
using assms(4) unfolding openin-option-ud by simp
hence openin euclidean?T
unfolding 4 by (intro openin-continuous-map-preimage[OF f-continuous] wf-f')
thus ?thesis
using open-openin by simp
qed
have 3: \(\{\) bs. map-option \(f s t(f b s) \in A\} \in \operatorname{sets} \mathcal{B}\) (is ?L1 \(\in-\) ) if wf-random \(f\) for \(f\) using distr-rai-measurable[OF that]
by (intro measurable-sets-coin-space[where \(P=\lambda x . x \in A\) and \(A=\mathcal{D}]\) ) (auto simp:comp-def)
have ? \(L=\) emeasure \(\mathcal{B}((\) map-option fst \(\circ\) lub-rai \(F)-‘ A \cap\) space \(\mathcal{B})\)
unfolding distr-rai-def by (intro emeasure-distr distr-rai-measurable[OF wf-lub]) auto
also have \(\ldots=\) emeasure \(\mathcal{B}\{x\). map-option fst (lub-rai \(F x) \in A\}\)
unfolding space-coin-space by (simp add:vimage-def)
also have \(\ldots=\) emeasure \(\mathcal{B}(\bigcup f \in F .\{b s\). map-option \(f s t(f b s) \in A\})\)
unfolding 0 by (intro arg-cong2[where \(f=\) emeasure]) auto
also have \(\ldots=\operatorname{Sup}(\text { emeasure } \mathcal{B} \text { ' }(\lambda f \text {. \{bs. map-option fst }(f b s) \in A\})^{\prime} F\) )
using 2 by (intro tau-additivity[OF coin-space-is-borel-measure] chain-imp-union-stable 1)
auto
also have \(\ldots=(S U P f \in F .(\) emeasure \(\mathcal{B}\{b s\). map-option \(f s t(f b s) \in A\}))\)
unfolding image-image by simp
also have \(\ldots=(S U P f \in F\). emeasure \(\mathcal{B}((\) map-option \(f s t \circ f)-‘ A \cap\) space \(\mathcal{B}))\)
by (simp add:image-image space-coin-space vimage-def)
also have \(\ldots=\) ? \(R\)
unfolding distr-rai-def using distr-rai-measurable[OF wf-f]
by (intro arg-cong[where \(f=(\) Sup \()\) ] image-cong ext emeasure-distr[symmetric]) auto
finally show ?thesis
by simp
qed
lemma distr-rai-ord-rai-mono:
assumes wf-random \(f\) wf-random \(g\) ord-rai \(f g\)
assumes None \(\notin A\)
shows emeasure (distr-raif) \(A \leq\) emeasure (distr-rai g) \(A\) (is ? \(L \leq ? R\) )
proof -
have 0:Complete-Partial-Order.chain ord-rai \(\{f, g\}\)
using assms(3) unfolding Complete-Partial-Order.chain-def
using random-alg-int-pd.leq-refl by auto
have ord-rai (lub-rai \(\{f, g\}\) ) g
using assms(3) random-alg-int-pd.leq-refl
by (intro random-alg-int-pd.lub-least 0) auto
moreover have ord-rai \(g\) (lub-rai \(\{f, g\}\) )
by (intro random-alg-int-pd.lub-upper 0) simp
ultimately have \(1: g=\operatorname{lub}-r a i\{f, g\}\)
by (intro random-alg-int-pd.leq-antisym) auto
have emeasure (distr-rai f) \(A \leq(S U P x \in\{f, g\}\). emeasure (distr-rai \(x) A\) )
using prob-space-distr-rai assms (1,2) prob-space.measure-le-1
by (intro cSup-upper bdd-aboveI[where \(M=1]\) ) auto
also have \(\ldots=\) emeasure (distr-rai (lub-rai \(\{f, g\})\) ) \(A\)
using assms by (intro distr-rai-lub[symmetric] 0) auto
also have \(\ldots=\) emeasure (distr-rai g) \(A\)
using 1 by auto
finally show ?thesis
by \(\operatorname{simp}\)
qed
lemma distr-rai-None: distr-rai \((\lambda-\). None \()=\) measure-pmf (return-pmf (None :: 'a option \()\) )
proof -
have emeasure (distr-rai Map.empty) \(A=\) emeasure (measure-pmf (return-pmf None)) \(A\)
for \(A\) :: 'a option set
using coin-space.emeasure-space-1 unfolding distr-rai-def
by (subst emeasure-distr) simp-all
thus ?thesis
by (intro measure-eqI) (simp-all add:distr-rai-def)
qed
lemma bind-rai-mono:
assumes ord-rai f1 fO \(\bigwedge y\). ord-rai (g1 y) (g2 y)
shows ord-rai (bind-rai f1 g1) (bind-rai f2 g2)
proof -
have flat-ord None (bind-rai f1 g1 bs) (bind-rai f2 g2 bs) for \(b s\)
proof (cases (f1>> g1) bs)
case None
then show ?thesis by (simp add:flat-ord-def)
next
```

 case (Some a)
    ```
        then obtain \(y b s^{\prime}\) where \(0: f 1 b s=\) Some \(\left(y, b s^{\prime}\right)\) and \(1: g 1\) y \(b s^{\prime} \neq\) None and \(f 1 b s \neq\) None
            by (cases f1 bs, auto simp:bind-rai-def)
    hence f2 bs =f1 bs
            using assms(1) unfolding ord-rai-def fun-ord-def flat-ord-def by metis
            hence \(f 2 b s=\) Some \(\left(y, b s^{\prime}\right)\)
                using 0 by auto
    moreover have g1 y \(b s^{\prime}=g 2\) y \(b s^{\prime}\)
                using assms(2) 1 unfolding ord-rai-def fun-ord-def flat-ord-def by metis
    ultimately have \((f 1 \gg g 1) b s=(f 2 \gg g 2) b s\)
            unfolding bind-rai-def 0 by auto
        thus ?thesis unfolding flat-ord-def by auto
    qed
    thus ?thesis
        unfolding ord-rai-def fun-ord-def by simp
qed
end

\section*{5 Randomized Algorithms}

This section introduces the random-alg monad, that can be used to represent executable randomized algorithms. It is a type-definition based on the internal representation from Section 4 with the wellformedness restriction.
Additionally, we introduce the spmf-of-ra morphism, which represent the distribution of a randomized algorithm, under the assumption that the coin flips are independent and unbiased.
We also show that it is a Scott-continuous monad-morphism and introduce transfer theorems, with which it is possible to establish the corresponding SPMF of a randomized algorithms, even in the case of (possibly infinite) loops.
```

theory Randomized-Algorithm
imports
Randomized-Algorithm-Internal
begin
A stronger variant of $p m f$-eqI.
lemma $p m f$-eq-iff-le:
fixes $p q$:: 'a $p m f$
assumes $\wedge x$. pmf $p x \leq p m f q x$
shows $p=q$
proof -
have $\left(\int x . p m f q x-p m f p x\right.$ dcount-space UNIV $)=0$
by (simp-all add:integrable-pmf integral-pmf)
moreover have integrable (count-space UNIV) (λx. pmf $q x-p m f p x)$
by (simp add:integrable-pmf)
moreover have $A E x$ in count-space UNIV. $0 \leq p m f q x-p m f p x$
using assms unfolding AE-count-space by auto
ultimately have $A E x$ in count-space UNIV. pmf $q x-p m f$ p $x=0$
using integral-nonneg-eq-0-iff-AE by blast
hence $\bigwedge x$. pmf $p x=p m f q x$ unfolding $A E$-count-space by simp
thus ?thesis by (intro pmf-eqI) auto
qed
The following is a stronger variant of ord-spmf-eq-pmf-None-eq
lemma eq-iff-ord-spmf:
assumes weight-spmf $p \geq$ weight-spmf q
assumes ord-spmf (=) pq
shows $p=q$
proof -
have $\bigwedge x . \operatorname{spmf} p x \leq \operatorname{spmf} q x$
using ord-spmf-eq-leD[OF assms(2)] by simp
moreover have pmf p None $\leq p m f q$ None
using assms(1) unfolding pmf-None-eq-weight-spmf by auto
ultimately have $p m f p x \leq p m f q x$ for x by (cases x) auto
thus ?thesis using pmf-eq-iff-le by auto
qed
lemma wf-empty: wf-random (λ-. None)
unfolding wf-random-def by auto
typedef 'a random-alg $=\{(r::$ 'a random-alg-int $)$. wf-random $r\}$
using wf-empty by (intro exI [where $x=\lambda$-. None $]$) auto
setup-lifting type-definition-random-alg

```
```

lift-definition return-ra :: ' }a>\mp@subsup{|}{}{\prime}a\mathrm{ random-alg is return-rai
by (rule wf-return)
lift-definition coin-ra :: bool random-alg is coin-rai
by (rule wf-coin)
lift-definition bind-ra :: 'a random-alg => ('a \# 'b random-alg) => 'b random-alg is bind-rai
by (rule wf-bind)
adhoc-overloading Monad-Syntax.bind bind-ra
Monad laws:
lemma return-bind-ra:
bind-ra (return-ra x) g=gx
by (rule return-bind-rai[transferred])
lemma bind-ra-assoc:
bind-ra (bind-ra fg) h = bind-ra f (\lambdax. bind-ra (g x) h)
by (rule bind-rai-assoc[transferred])
lemma bind-return-ra:
bind-ra m return-ra = m
by (rule bind-return-rai[transferred])
lift-definition lub-ra :: 'a random-alg set }=>\mathrm{ ' 'a random-alg is
(}\lambdaF\mathrm{ . if Complete-Partial-Order.chain ord-rai F then lub-rai F else (}\lambdax.None)
using wf-lub wf-empty by auto
lift-definition ord-ra :: 'a random-alg = 'a random-alg => bool is ord-rai .
lift-definition run-ra :: 'a random-alg }=>\mathrm{ coin-stream }=>\mp@subsup{}{}{\prime}'a option i
(}\lambdaf\mathrm{ s. map-option fst (f s)).
context
begin
interpretation pmf-as-measure .
lemma distr-rai-is-pmf:
assumes wf-random f
shows
prob-space (distr-rai f) (is ?A)
sets (distr-raif)=UNIV (is ?B)
AE x in distr-raif. measure (distr-raif) {x}\not=0 (is ?C)
proof -
show prob-space (distr-rai f)
using prob-space-distr-rai[OF assms] by simp
then interpret p: prob-space distr-rai f
by auto
show ?B
unfolding distr-rai-def by simp
have AE bs in \mathcal{B}.map-option fst (fbs)\inSome 'range-rm f\cup{None}
unfolding range-rm-def
by (intro AE-I2) (auto simp:image-iff split:option.split)
hence AE x in distr-raif. x\inSome'range-rm f \cup {None}
unfolding distr-rai-def using distr-rai-measurable[OF assms]
by (subst AE-distr-iff) auto

```
```

 moreover have countable (Some'range-rm f U {None})
 using countable-range[OF assms] by simp
 moreover have p.events = UNIV
 unfolding distr-rai-def by simp
 ultimately show ?C
 by (intro iffD2[OF p.AE-support-countable] exI[where x=Some'range-rm f\cup{None}]) auto
 qed
lift-definition spmf-of-ra :: 'a random-alg => 'a spmf is distr-rai
using distr-rai-is-pmf by metis
lemma used-bits-distr-is-pmf:
assumes wf-random f
shows
prob-space (used-bits-distr f) (is ?A)
sets (used-bits-distr f) = UNIV (is ?B)
AE x in used-bits-distr f. measure (used-bits-distr f) {x}\not=0 (is ?C)
proof -
show prob-space (used-bits-distr f)
unfolding used-bits-distr-def
by (intro coin-space.prob-space-distr consumed-bits-measurable)
then interpret p: prob-space used-bits-distr f
by auto
show ?B
unfolding used-bits-distr-def by simp
have p.events = UNIV
unfolding used-bits-distr-def by simp
thus ?C
by (intro iffD2[OF p.AE-support-countable] exI[where x=UNIV]) auto
qed
lift-definition coin-usage-of-ra-aux :: 'a random-alg => nat spmf is used-bits-distr
using used-bits-distr-is-pmf by auto
definition coin-usage-of-ra
where coin-usage-of-ra p = map-pmf (case-option }\infty\mathrm{ enat) (coin-usage-of-ra-aux p)
end
lemma wf-rep-rand-alg:
wf-random (Rep-random-alg f)
using Rep-random-alg by auto
lemma set-pmf-spmf-of-ra:
set-pmf (spmf-of-ra f)\subseteqSome'range-rm (Rep-random-alg f)\cup{None}
proof
let ?f = Rep-random-alg f
fix }x\mathrm{ assume }x\in\mathrm{ set-pmf(spmf-of-ra f)
hence pmf (spmf-of-raf) x>0
using pmf-positive by metis
hence measure (distr-rai ?f) {x}>0
by (subst spmf-of-ra.rep-eq[symmetric]) (simp add: pmf.rep-eq)

```

```

 using distr-rai-measurable[OF wf-rep-rand-alg] unfolding distr-rai-def
 by (subst (asm) measure-distr) (simp-all add:vimage-def space-coin-space)
 moreover have {\omega. map-option fst (?f }\omega)=x}={}\mathrm{ if }x\not\in\mathrm{ range (map-option fst ○ ?f)
 using that by (auto simp:set-eq-iff image-iff)
    ```
hence measure \(\mathcal{B}\{\omega\). map-option fst \((\) ? \(f \omega)=x\}=0\) if \(x \notin\) range (map-option fst \(\circ\) ? \(f\) ) using that by simp
ultimately have \(x \in\) range (map-option fst \(\circ\) ?f)
by auto
thus \(x \in\) Some 'range-rm (Rep-random-alg f) \(\cup\{\) None \(\}\)
unfolding range-rm-def by (cases \(x\) ) auto
qed
lemma spmf-of-ra-return: spmf-of-ra (return-ra \(x)=\) return-spmf \(x\)
proof -
have measure-pmf (spmf-of-ra (return-ra \(x))=\) measure-pmf \((\) return-spmf \(x)\) unfolding spmf-of-ra.rep-eq distr-rai-return'[symmetric] by (simp add: return-ra.rep-eq)
thus ?thesis using measure-pmf-inject by blast
qed
lemma spmf-of-ra-coin: spmf-of-ra coin-ra \(=\) coin-spmf
proof -
have measure-pmf (spmf-of-ra coin-ra) \(=\) measure-pmf coin-spmf
unfolding spmf-of-ra.rep-eq distr-rai-coin[symmetric]
by (simp add: coin-ra.rep-eq)
thus ?thesis
using measure-pmf-inject by blast
qed
lemma spmf-of-ra-bind:
spmf-of-ra \((b i n d-r a f g)=\) bind-spmf \((\) spmf-of-ra \(f)(\lambda x . \operatorname{spmf-of-ra~}(g x))(\) is \(? L=? R)\)
proof -
let \(? f=\) Rep-random-alg \(f\)
let \(? g=\lambda x\). Rep-random-alg \((g x)\)
have \(0: x \in\) Some'range-rm ?f \(\vee x=\) None if \(x \in \operatorname{set}-p m f(s p m f-o f-r a f)\) for \(x\)
using that set-pmf-spmf-of-ra by auto
have measure-pmf ? \(L=\) distr-rai \((? f \gg ?\) ? \()\)
unfolding spmf-of-ra.rep-eq bind-ra.rep-eq by (simp add:comp-def)
also have \(\ldots=\) distr-rai ?f \(\gg\)
( \(\lambda x\). if \(x \in\) Some'range-rm ?f then distr-rai \((? g\) (the \(x)\) ) else return \(\mathcal{D}\) None \()\)
by (intro distr-rai-bind wf-rep-rand-alg)
also have \(\ldots=\) measure-pmf (spmf-of-ra \(f\) ) >
( \(\lambda x\). measure-pmf (if \(x \in\) Some'range-rm ?f then spmf-of-ra ( \(g(\) the \(x)\) ) else return-pmf None))
by (intro arg-cong2[where \(f=b i n d]\) ext) (auto simp:spmf-of-ra.rep-eq return-discrete)
also have \(\ldots=\) measure-pmf (spmf-of-ra \(f \gg\)
( \(\lambda x\). if \(x \in\) Some'range-rm ?f then spmf-of-ra ( \(g(\) the \(x)\) ) else return-pmf None))
unfolding bind-pmf.rep-eq by (simp add:comp-def id-def)
also have...\(=\) measure-pmf ? \(R\)
using 0 unfolding bind-spmf-def
by (intro arg-cong[where \(f=\) measure-pmf] bind-pmf-cong refl) (auto split:option.split)
finally have measure-pmf ? \(L=\) measure-pmf \(? R\) by simp
thus ?thesis
using measure-pmf-inject by blast
qed
lemma spmf-of-ra-mono:
assumes ord-ra \(f g\)
shows ord-spmf \((=)(s p m f\)-of-raf) \((s p m f\)-of-ra g)
proof -
```

 have ord-rai (Rep-random-alg f) (Rep-random-alg g)
 using assms unfolding ord-ra.rep-eq by simp
 hence ennreal (spmf (spmf-of-raf) x) \(\leq\) ennreal (spmf (spmf-of-ra g) \(x\)) for \(x\)
 unfolding emeasure-pmf-single[symmetric] spmf-of-ra.rep-eq
 by (intro distr-rai-ord-rai-mono wf-rep-rand-alg) auto
 hence \(\operatorname{spmf}(s p m f\)-of-ra \(f) x \leq \operatorname{spmf}(s p m f\)-of-ra \(g) x\) for \(x\)
 by \(\operatorname{simp}\)
 thus ?thesis
 by (intro ord-pmf-increaseI) auto
 qed
lemma spmf-of-ra-lub-ra-empty:
spmf-of-ra (lub-ra $\})=$ return-pmf None $($ is $? L=? R)$
proof -
have measure-pmf $? L=$ distr-rai $(l u b-r a i ~\{ \})$
unfolding spmf-of-ra.rep-eq lub-ra.rep-eq Complete-Partial-Order.chain-def by auto
also have $\ldots=$ distr-rai (λ-. None)
unfolding lub-rai-def fun-lub-def flat-lub-def by auto
also have $\ldots=$ measure-pmf ? R
unfolding distr-rai-None by simp
finally have measure-pmf ? $L=$ measure-pmf $? R$
by simp
thus ?thesis
using measure-pmf-inject by auto
qed
lemma spmf-of-ra-lub-ra:
fixes A :: 'a random-alg set
assumes Complete-Partial-Order.chain ord-ra A
shows spmf-of-ra (lub-ra A) lub-spmf (spmf-of-ra'A) (is ? $L=? R)$
proof (cases $A \neq\{ \}$)
case True
have 0:Complete-Partial-Order.chain ord-rai (Rep-random-alg ‘A)
using assms unfolding ord-ra.rep-eq Complete-Partial-Order.chain-def by auto
have 1:Complete-Partial-Order.chain (ord-spmf (=)) (spmf-of-ra' A)
using spmf-of-ra-mono by (intro chain-imageI[OF assms]) auto
show ?thesis
proof (rule spmf-eqI)
fix $x::{ }^{\prime} a$
have ennreal (spmf ? $L x)=$ emeasure (distr-rai (lub-rai (Rep-random-alg'A))) \{Some $x\}$
using 0 unfolding emeasure-pmf-single[symmetric] spmf-of-ra.rep-eq lub-ra.rep-eq by simp
also have $\ldots=(S U P f \in$ Rep-random-alg'A. emeasure (distr-rai f) $\{$ Some $x\})$
using True wf-rep-rand-alg by (intro distr-rai-lub 0) auto
also have $\ldots=(S U P$ pA. ennreal (spmf (spmf-of-ra $p) x)$)
unfolding emeasure-pmf-single[symmetric] spmf-of-ra.rep-eq by (simp add:image-image)
also have $\ldots=(S U P$ pespmf-of-ra' A. ennreal (spmf $p x)$)
by (simp add:image-image)
also have $\ldots=$ ennreal (spmf ? $R x$)
using True by (intro ennreal-spmf-lub-spmf[symmetric] 1) auto
finally have ennreal (spmf ?L x) $=$ ennreal ($s p m f$? R x)
by simp
thus spmf ?L $x=s p m f ? R x$
by simp
qed
next
case False
thus ?thesis using spmf-of-ra-lub-ra-empty by simp

```
qed
```

lemma rep-lub-ra:
assumes Complete-Partial-Order.chain ord-ra F
shows Rep-random-alg (lub-ra F) =lub-rai (Rep-random-alg'F)
proof -
have Complete-Partial-Order.chain ord-rai (Rep-random-alg'F)
using assms unfolding ord-ra.rep-eq Complete-Partial-Order.chain-def by auto
thus ?thesis
unfolding lub-ra.rep-eq by simp
qed
lemma partial-function-image-improved:
fixes ord
assumes }\A\mathrm{ . Complete-Partial-Order.chain ord (f`A) >l1 (f`A)=f(l2 A)
assumes partial-function-definitions ord l1
assumes injf
shows partial-function-definitions (img-ord f ord) l2
proof -
interpret pd: partial-function-definitions ord l1
using assms(2) by auto
have img-ord f ord x x for }
unfolding img-ord-def using pd.leq-refl by simp
moreover have img-ord ford xz if img-ord ford x y img-ord ford y z for x yz
using that pd.leq-trans unfolding img-ord-def by blast
moreover have }x=y\mathrm{ if img-ord f ord }xy\mathrm{ img-ord ford y x for x y
proof -
have fx=fy
using that pd.leq-antisym unfolding img-ord-def by blast
thus ?thesis
using inj-onD[OF assms(3)] by simp
qed
moreover have img-ord f ord x (l2 A)
if x\inA Complete-Partial-Order.chain (img-ord ford) A for x A
proof -
have 0:Complete-Partial-Order.chain ord (f 'A)
using that(2) unfolding chain-def img-ord-def by auto
have ord (f x) (l1 (f'A))
using that by (intro pd.lub-upper[OF 0]) auto
thus ?thesis
unfolding img-ord-def assms(1)[OF 0] by auto
qed
moreover have img-ord f ord (l2 A)z
if Complete-Partial-Order.chain (img-ord f ord) A(\forallx.x\inA\longrightarrow img-ord f ord x z)
for z A
proof -
have 0:Complete-Partial-Order.chain ord (f`A) using that(1) unfolding chain-def img-ord-def by auto have ord (l1 (f`A)) (fz)
using that(2) by (intro pd.lub-least[OF 0]) (auto simp:img-ord-def)
thus ?thesis
unfolding img-ord-def assms(1)[OF 0] by auto
qed
ultimately show ?thesis
unfolding partial-function-definitions-def by blast
qed

```
lemma random-alg-pfd: partial-function-definitions ord-ra lub-ra

\section*{proof -}
have 0: inj Rep-random-alg using Rep-random-alg-inject unfolding inj-on-def by auto
have 1:partial-function-definitions ord-rai lub-rai using random-alg-int-pd-fact by simp
have 2:ord-ra \(=\) img-ord Rep-random-alg ord-rai unfolding ord-ra.rep-eq img-ord-def by auto
show ?thesis
unfolding 2 by (intro partial-function-image-improved[OF - 1 0]) (auto simp: lub-ra.rep-eq) qed
interpretation random-alg-pf: partial-function-definitions ord-ra lub-ra
using random-alg-pfd by auto
abbreviation mono-ra \(\equiv\) monotone (fun-ord ord-ra) ord-ra
lemma bind-mono-aux-ra:
assumes ord-ra f1 f2 \(\bigwedge y\). ord-ra (g1 y) (g2 y)
shows ord-ra (bind-ra f1 g1) (bind-ra f2 g2)
using assms unfolding ord-ra.rep-eq bind-ra.rep-eq
by (intro bind-rai-mono) auto
lemma bind-mono-ra [partial-function-mono]:
assumes mono-ra \(B\) and \(\bigwedge y\). mono-ra ( \(C\) y)
shows mono-ra \((\lambda f\). bind-ra \((B f)(\lambda y . C y f))\)
using assms by (intro monotoneI bind-mono-aux-ra) (auto simp:monotone-def)
definition map-ra :: (' \(a \Rightarrow\) ' \(b) \Rightarrow{ }^{\prime}\) a random-alg \(\Rightarrow\) 'b random-alg
where map-ra f \(p=p \gg(\lambda x\). return-ra \((f x))\)
lemma spmf-of-ra-map: spmf-of-ra (map-ra \(f\) p) \(=\) map-spmff \((\) spmf-of-ra \(p)\)
unfolding map-ra-def map-spmf-conv-bind-spmf spmf-of-ra-bind spmf-of-ra-return by simp
lemmas spmf-of-ra-simps \(=\)
spmf-of-ra-return spmf-of-ra-bind spmf-of-ra-coin spmf-of-ra-map
lemma map-mono-ra [partial-function-mono]:
assumes mono-ra \(B\)
shows mono-ra ( \(\lambda f\). map-ra \(g(B f)\) )
using assms unfolding map-ra-def by (intro bind-mono-ra) auto
definition rel-spmf-of-ra :: ' \(a\) spmf \(\Rightarrow{ }^{\prime} a\) random-alg \(\Rightarrow\) bool where
rel-spmf-of-ra \(q p \longleftrightarrow q=\) spmf-of-ra \(p\)
lemma admissible-rel-spmf-of-ra:
ccpo.admissible (prod-lub lub-spmflub-ra) (rel-prod (ord-spmf (=)) ord-ra) (case-prod rel-spmf-of-ra)
(is ccpo.admissible ?lub ?ord ?P)
proof (rule ccpo.admissibleI)
fix \(Y\)
assume chain: Complete-Partial-Order.chain ?ord Y
and \(Y: Y \neq\{ \}\)
and \(R: \forall(p, q) \in Y\). rel-spmf-of-ra \(p q\)
from \(R\) have \(R: \bigwedge p q .(p, q) \in Y \Longrightarrow\) rel-spmf-of-ra \(p q\) by auto
have chain1: Complete-Partial-Order.chain (ord-spmf (=)) (fst‘Y) and chain2: Complete-Partial-Order.chain (ord-ra) (snd' Y)
using chain by(rule chain-imageI; clarsimp)+
from \(Y\) have \(Y 1\) : fst ' \(Y \neq\{ \}\) and \(Y 2\) : snd' \(Y \neq\{ \}\) by auto
have lub-spmf \((f s t\) ' \(Y)=\) lub-spmf (spmf-of-ra'snd ' \(Y\) )
unfolding image-image using \(R\)
by (intro arg-cong[of - lub-spmf] image-cong) (auto simp: rel-spmf-of-ra-def)
also have \(\ldots\) = spmf-of-ra (lub-ra (snd' \(Y\) ))
by (intro spmf-of-ra-lub-ra[symmetric] chain2)
finally have rel-spmf-of-ra (lub-spmf (fst'Y)) (lub-ra (snd'Y))
unfolding rel-spmf-of-ra-def.
then show ?P (?lub Y)
by ( simp add: prod-lub-def)
qed
lemma admissible-rel-spmf-of-ra-cont [cont-intro]:
fixes ord
shows 【 mcont lub ord lub-spmf (ord-spmf \((=)) f\); mcont lub ord lub-ra ord-ra \(g \rrbracket\)
\(\Longrightarrow\) ccpo.admissible lub ord \((\lambda x\). rel-spmf-of-ra \((f x)(g x))\)
by (rule admissible-subst[OF admissible-rel-spmf-of-ra, where \(f=\lambda x .(f x, g x)\), simplified \(])\) (rule mcont-Pair)
lemma mcont2mcont-spmf-of-ra[THEN spmf.mcont2mcont, cont-intro]:
shows mcont-spmf-of-sampler: mcont lub-ra ord-ra lub-spmf (ord-spmf (=)) spmf-of-ra
unfolding mcont-def monotone-def cont-def
by (auto simp: spmf-of-ra-mono spmf-of-ra-lub-ra)

\section*{context}
includes lifting-syntax
begin
lemma fixp-ra-parametric[transfer-rule]:
assumes \(f: \bigwedge x\). mono-spmf \((\lambda f . F f x)\)
and \(g: \bigwedge x\). mono-ra \((\lambda f . G f x)\)
and param: \(((A===>\) rel-spmf-of-ra \()===>A===>\) rel-spmf-of-ra) FG
shows \((A===>\) rel-spmf-of-ra) (spmf.fixp-fun \(F)\) (random-alg-pf.fixp-fun \(G)\)
using \(f g\)
proof (rule parallel-fixp-induct-1-1[OF
partial-function-definitions-spmf random-alg-pfd --reflexive reflexive, where \(P=(A===>\) rel-spmf-of-ra \()])\)
show ccpo.admissible (prod-lub (fun-lub lub-spmf) (fun-lub lub-ra)) (rel-prod \((\) fun-ord \((\) ord-spmf \((=)))(\) fun-ord ord-ra \())\) ( \(\lambda x\). \((A===>\) rel-spmf-of-ra) \((f s t x)(\) snd \(x))\)
unfolding rel-fun-def
by(rule admissible-all admissible-imp cont-intro) +
show \((A===>\) rel-spmf-of-ra) \((\lambda\)-. lub-spmf \(\})(\lambda\)-. lub-ra \(\})\)
by (auto simp: rel-fun-def rel-spmf-of-ra-def spmf-of-ra-lub-ra-empty)
show \((A===>\) rel-spmf-of-ra) \((F f)(G g)\) if \((A===>r e l-s p m f-o f-r a) f g\) for \(f g\)
using that by (rule rel-funD[OF param])
qed
lemma return-ra-tranfer[transfer-rule]: \(((=)===>\) rel-spmf-of-ra) return-spmf return-ra unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-return by simp
lemma bind-ra-tranfer[transfer-rule]:
(rel-spmf-of-ra \(===>((=)===>\) rel-spmf-of-ra) \(===>\) rel-spmf-of-ra) bind-spmf bind-ra unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-bind by simp presburger
lemma coin-ra-tranfer[transfer-rule]:
```

 rel-spmf-of-ra coin-spmf coin-ra
 unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-coin by simp
 lemma map-ra-tranfer[transfer-rule]:
((=) ===> rel-spmf-of-ra ===> rel-spmf-of-ra) map-spmf map-ra
unfolding rel-fun-def rel-spmf-of-ra-def spmf-of-ra-map by simp
end
declare [[function-internals]]
declaration <Partial-Function.init random-alg term<random-alg-pf.fixp-fun` term 〈random-alg-pf.mono-body`
@{thm random-alg-pf.fixp-rule-uc} @{thm random-alg-pf.fixp-induct-uc}
NONE>

```

\subsection*{5.1 Almost surely terminating randomized algorithms}
```

definition terminates-almost-surely $::$ 'a random-alg \Rightarrow bool where terminates-almost-surely $f \longleftrightarrow$ lossless-spmf (spmf-of-ra f)
definition $p m f$-of-ra :: 'a random-alg \Rightarrow 'a pmf where pmf-of-ra $p=$ map-pmf the (spmf-of-ra p)
lemma pmf-of-spmf: map-pmf the (spmf-of-pmf x) $=x$ by (simp add:map-pmf-comp spmf-of-pmf-def)
definition coin-pmf :: bool pmf where coin-pmf $=p m f$-of-set UNIV
lemma pmf-of-ra-coin: pmf-of-ra $($ coin-ra $)=$ coin-pmf (is $? L=? R)$
proof -
have 0:spmf-of-ra (coin-ra) $=$ spmf-of-pmf (pmf-of-set UNIV) unfolding spmf-of-ra-coin spmf-of-set-def by simp
thus ?thesis unfolding 0 pmf-of-ra-def pmf-of-spmf coin-pmf-def by simp
qed
lemma $p m f$-of-ra-return: $p m f$-of-ra (return-ra $x)=$ return-pmf x
unfolding pmf-of-ra-def spmf-of-ra-return by simp
lemma pmf-of-ra-bind:
assumes terminates-almost-surely f
shows pmf-of-ra $(f \gg g)=p m f-o f-r a f \gg(\lambda x . p m f$-of-ra $(g x))($ is $? L=? R)$
proof -
have $0: x \neq$ None if $x \in$ set-pmf (spmf-of-ra f) for x
using assms that unfolding terminates-almost-surely-def
by (meson lossless-iff-set-pmf-None)
have ? $L=$ spmf-of-ra $f \gg(\lambda x$. map-pmf the (case-option (return-pmf None) (spmf-of-ra $\circ g$) $x)$)
unfolding pmf-of-ra-def spmf-of-ra-bind bind-spmf-def map-bind-pmf comp-def by simp
also have $\ldots=$ spmf-of-ra $f \gg$
(λ x. (case x of None \Rightarrow return-pmf (the None) |Some $x \Rightarrow$ pmf-of-ra $(g x))$)
unfolding map-pmf-def comp-def pmf-of-ra-def map-pmf-def
by (intro arg-cong2[where $f=$ bind-pmf] refl ext) (simp add:bind-return-pmf split:option.split)
also have $\ldots=s p m f$-of-ra $f \gg=(\lambda x$. pmf-of-ra $(g$ (the $x)))$
using 0 by (intro bind-pmf-cong refl) (auto split:option.split)
also have $\ldots=$? R

```
```

 unfolding pmf-of-ra-def map-pmf-def by (simp add:bind-assoc-pmf bind-return-pmf)
 finally show ?thesis
 by simp
 qed
lemma pmf-of-ra-map:
assumes terminates-almost-surely m
shows pmf-of-ra (map-ra fm) = map-pmff (pmf-of-ra m)
unfolding map-ra-def pmf-of-ra-bind[OF assms] pmf-of-ra-return map-pmf-def by simp
lemma terminates-almost-surely-return:
terminates-almost-surely (return-ra x)
unfolding terminates-almost-surely-def spmf-of-ra-return by simp
lemma terminates-almost-surely-coin:
terminates-almost-surely coin-ra
unfolding terminates-almost-surely-def spmf-of-ra-coin by simp
lemma terminates-almost-surely-bind:
assumes terminates-almost-surely f
assumes }\x.x\in\mathrm{ set-pmf (pmf-of-ra f) }\Longrightarrow\mathrm{ terminates-almost-surely (g x)
shows terminates-almost-surely (f>>g)
proof -
have 0: None \& set-pmf (spmf-of-ra f)
using assms(1) lossless-iff-set-pmf-None unfolding terminates-almost-surely-def
by blast
hence Some }x\in\mathrm{ set-pmf (spmf-of-ra f) }\longleftrightarrowx\in the'set-pmf (spmf-of-ra f) for x
by (metis image-iff option.collapse option.sel)
hence set-spmf (spmf-of-ra f) = set-pmf (pmf-of-ra f)
unfolding pmf-of-ra-def set-map-pmf by (simp add:set-eq-iff set-spmf-def)
thus ?thesis
using assms(1,2) unfolding terminates-almost-surely-def spmf-of-ra-bind lossless-bind-spmf
by auto
qed
lemma terminates-almost-surely-map:
assumes terminates-almost-surely p
shows terminates-almost-surely (map-ra f p)
unfolding map-ra-def
by (intro assms terminates-almost-surely-bind terminates-almost-surely-return)
lemmas pmf-of-ra-simps =
pmf-of-ra-return pmf-of-ra-bind pmf-of-ra-coin pmf-of-ra-map
lemmas terminates-almost-surely-intros =
terminates-almost-surely-return
terminates-almost-surely-bind
terminates-almost-surely-coin
terminates-almost-surely-map
end

```

\section*{6 Tracking Randomized Algorithms}

This section introduces the track-random-bits monad morphism, which converts a randomized algorithm to one that tracks the number of used coin-flips. The resulting algorithm
can still be executed. This morphism is useful for testing and debugging. For the verification of coin-flip usage, the morphism tspmf-of-ra introduced in Section 7 is more useful.
```

theory Tracking-Randomized-Algorithm
imports Randomized-Algorithm
begin
definition track-random-bits :: ' a random-alg-int $\Rightarrow\left({ }^{\prime} a \times n a t\right)$ random-alg-int
where track-random-bits f bs $=$
do \{
$\left(r, b s^{\prime}\right) \leftarrow f b s ;$
$n \leftarrow$ consumed-bits f bs;
Some ($\left.(r, n), b s^{\prime}\right)$
\}
lemma track-random-bits-Some-iff:
assumes track-random-bits f bs \neq None
shows f bs \neq None
using assms unfolding track-random-bits-def by (cases f bs, auto)
lemma track-random-bits-alt:
assumes wf-random f
shows track-random-bits f bs $=$
map-option $(\lambda p$. (eval-rm f p, length $p)$, cdrop (length $p) b s)$) (consumed-prefix f bs)
proof (cases consumed-prefix f bs)
case None
hence f bs $=$ None
by (subst wf-random-alt[OF assms(1)]) simp
then show ?thesis
unfolding track-random-bits-def None by simp
next
case (Some a)
hence f bs $=$ Some (eval-rm $f a$, cdrop (length a) bs)
by (subst wf-random-alt[OF assms(1)]) simp
then show ?thesis
unfolding track-random-bits-def Some consumed-bits-def by simp
qed
lemma track-rb-coin:
track-random-bits coin-rai $=$ coin-rai $\gg=(\lambda b$. return-rai $(b, 1))($ is $? L=? R)$
proof (rule ext)
fix $b s$:: coin-stream
have wf-on-prefix coin-rai [chd bs] (chd bs)
unfolding wf-on-prefix-def coin-rai-def by simp
moreover have cprefix [chd bs] bs
unfolding cprefix-def by simp
ultimately have $\{p \in$ ptree-rm (coin-rai). cprefix p bs $\}=\{[$ chd bs $]\}$
by (intro prefixes-singleton) (auto simp:ptree-rm-def)
hence consumed-prefix (coin-rai) bs = Some [chd bs]
unfolding consumed-prefix-def by simp
hence consumed-bits (coin-rai) bs $=$ Some 1
unfolding consumed-bits-def by simp
thus ? $L b s=? R b s$
unfolding track-random-bits-def bind-rai-def
by (simp add:coin-rai-def return-rai-def)
qed

```
lemma track-rb-return: track-random-bits (return-rai \(x)=\) return-rai \((x, 0)(\) is \(? L=? R)\)
```

proof (rule ext)
fix bs :: coin-stream
have wf-on-prefix (return-rai x) [] x
unfolding wf-on-prefix-def return-rai-def by simp
moreover have cprefix [] bs
unfolding cprefix-def by simp
ultimately have {p\in ptree-rm (return-rai x). cprefix p bs} ={[]}
by (intro prefixes-singleton) (auto simp:ptree-rm-def)
hence consumed-prefix (return-rai x) bs = Some []
unfolding consumed-prefix-def by simp
hence consumed-bits (return-rai x) bs=Some 0
unfolding consumed-bits-def by simp
thus ?L bs=? ?R bs
unfolding track-random-bits-def by (simp add:return-rai-def)
qed
lemma consumed-prefix-imp-wf:
assumes consumed-prefix m bs = Some p
shows wf-on-prefix m p (eval-rm m p)
proof -
have p\in ptree-rm m
using assms unfolding consumed-prefix-def the-elem-opt-Some-iff[OF prefixes-at-most-one]
by blast
then obtain r where wf-on-prefix m p r
unfolding ptree-rm-def by auto
thus ?thesis
unfolding wf-on-prefix-def eval-rm-def by simp
qed
lemma consumed-prefix-imp-prefix:
assumes consumed-prefix m bs = Some p
shows cprefix p bs
using assms unfolding consumed-prefix-def the-elem-opt-Some-iff[OF prefixes-at-most-one] by
blast
lemma consumed-prefix-bindI:
assumes consumed-prefix m bs = Some p
assumes consumed-prefix (f (eval-rm m p)) (cdrop (length p) bs)=Some q
shows consumed-prefix (m>>) bs=Some (p@q)
proof -
define r where r= eval-rm m p
have 0:wf-on-prefix m p r
unfolding r-def using consumed-prefix-imp-wf[OF assms(1)] by simp
have consumed-prefix (fr) (cdrop (length p) bs)=Some q
using assms(2) unfolding r-def by simp
hence 1: wf-on-prefix (f r) q (eval-rm (fr)q)
using consumed-prefix-imp-wf by auto
have wf-on-prefix (m>>f)(p@q)(eval-rm (frr)q)
by (intro wf-on-prefix-bindI[where r=r] 0 1)
hence p@q\inptree-rm (}m>>>=f
unfolding ptree-rm-def by auto
moreover have cprefix p bs cprefix q (cdrop (length p) bs)
using consumed-prefix-imp-prefix assms by auto
hence cprefix(p@q)bs
unfolding cprefix-def by (metis length-append ctake-add)
ultimately have {p\in ptree-rm (m>> f).cprefix pbs}={p@q}

```
```

 by (intro prefixes-singleton) auto
 thus ?thesis
 unfolding consumed-prefix-def by simp
 qed
lemma track-rb-bind:
assumes wf-random m
assumes }\x.x\in\mathrm{ range-rm m > wf-random (}fx
shows track-random-bits (m>>f) = track-random-bits m>>
(\lambda(r,n).track-random-bits (fr)>> (\lambda(r',m).return-rai (r',n+m)))(is ?L = ?R)
proof (rule ext)
fix bs :: coin-stream
have wf-bind: wf-random (}m>>>f
by (intro wf-bind assms)
consider (a) mbs=None | (b) mbs\not=None ^(m>>f)bs=None|(c) (m>>f)bs\not=
None
by blast
then show ?L bs =?R bs
proof (cases)
case a
thus ?thesis
unfolding track-random-bits-def bind-rai-def a by simp
next
case b
then obtain rbs' where 0:mbs=Some (r,b\mp@subsup{s}{}{\prime})\mathrm{ by auto}
have 1:(fr)bs'=None using b unfolding bind-rai-def 0 by simp
then show ?thesis unfolding track-random-bits-def bind-rai-def 0 by simp
next
case c
have (}m>>f\mathrm{) bs = None if mbs=None
using that unfolding bind-rai-def by simp
hence mbs}\not=\mathrm{ None using c by blast
then obtain p where 0:
mbs = Some (eval-rm m p, cdrop (length p) bs) consumed-prefix m bs = Some p
using wf-random-alt[OF assms(1)] by auto
define bs' where bs'= cdrop (length p) bs
define r where r=eval-rm mp
have 1:mbs=Some (r,bs') unfolding 0 r-def bs'-def by simp
hence }r\in\mathrm{ range-rm m using 1 in-range-rmI by metis
hence wf:wf-random (fr) by (intro assms(2))
have frbs'\not= None using c 1 unfolding bind-rai-def by force
then obtain q}\mathrm{ where 2:
frbs'=Some (eval-rm (fr) q, cdrop (length q) bs') consumed-prefix (fr)bs'=Some q
using wf-random-alt[OF wf] by auto
hence 3:consumed-prefix (m>>f) bs=Some (p@q)
unfolding r-def bs'-def by (intro consumed-prefix-bindI 0) auto
have track-random-bits mbs=Some ((r, length p),bs')
unfolding track-random-bits-alt[OF assms(1)] bind-rai-def 0 bs'-def r-def by simp
moreover have track-random-bits (fr)bs'=
Some ((eval-rm (fr) q, length q), cdrop (length q) bs')
unfolding track-random-bits-alt[OF wf] 2 by simp
moreover have wf-on-prefix m pr
unfolding r-def by (intro consumed-prefix-imp-wf[OF 0(2)])
hence eval-rm (fr) q = eval-rm (m>> f) (p@q)
unfolding eval-rm-def bind-rai-def wf-on-prefix-def by simp

```
```

 ultimately have
 ?R bs=Some ((eval-rm (}m>>f)(p@q), length p+length q), cdrop (length p+length q) bs
 unfolding bind-rai-def return-rai-def bs'-def by simp
 also have ... = ?L bs
 unfolding track-random-bits-alt[OF wf-bind] 3 by simp
 finally show ?thesis by simp
 qed
 qed
lemma track-random-bits-mono:
assumes wf-random f wf-random g
assumes ord-raifg
shows ord-rai (track-random-bits f) (track-random-bits g)
proof -
have track-random-bits f bs=track-random-bits g bs
if track-random-bits f bs }\not=N\mathrm{ None for bs
proof -
have fbs \not= None using that track-random-bits-Some-iff by simp
then obtain rbs' where f bs=Some (r,bs') by auto
then obtain p where 0:wf-on-prefix f p r and 2:cprefix p bs
using assms(1) unfolding wf-random-def by (auto split:option.split-asm)
have 1:wf-on-prefix g pr
using wf-lub-helper[OF assms(3)] 0 by blast
have track-random-bits h bs = Some ((r, length p),cdrop (length p)bs)
if wf-on-prefix h p r wf-random h for h
proof -
have p\in ptree-rm h
using that unfolding ptree-rm-def by auto
hence {p\in ptree-rm h. cprefix p bs} ={p}
using 2 by (intro prefixes-singleton) auto
hence consumed-prefix h bs=Some p
unfolding consumed-prefix-def by simp
moreover have eval-rm h p=r
using that(1) unfolding wf-on-prefix-def eval-rm-def by simp
ultimately show ?thesis
unfolding track-random-bits-alt[OF that(2)] by simp
qed
thus ?thesis
using 0 1 assms(1,2) by simp
qed
thus ?thesis
unfolding ord-rai-def fun-ord-def flat-ord-def by blast
qed
lemma wf-track-random-bits:
assumes wf-random f
shows wf-random (track-random-bits f)
proof (rule wf-randomI)
fix bs
assume track-random-bits f bs \not= None
hence f bs \not= None using track-random-bits-Some-iff by blast
then obtain rbs' where fbs=Some (r,bs')
by auto
then obtain p}\mathrm{ where 0:wf-on-prefix f p r cprefix p bs
using assms unfolding wf-random-def by (auto split:option.split-asm)

```
```

 hence \(\{q \in\) ptree-rm \(f\). cprefix \(q(\) cshift \(p c s)\}=\{p\}\) for \(c s\)
 by (intro prefixes-singleton) (auto simp:cprefix-def ptree-rm-def)
 hence consumed-prefix \(f\) (cshift p cs) \(=\) Some \(p\) for \(c s\)
 unfolding consumed-prefix-def by simp
 hence \(w f\)-on-prefix (track-random-bits f) \(p\) (r, length \(p\))
 using 0 unfolding track-random-bits-def wf-on-prefix-def consumed-bits-def by simp
 thus \(\exists p r\). cprefix \(p\) bs \(\wedge\) wf-on-prefix (track-random-bits f) \(p r\)
 using 0 by auto
 qed
lemma track-random-bits-lub-rai:
assumes Complete-Partial-Order.chain ord-rai A
assumes $\wedge r . r \in A \Longrightarrow w f$-random r
shows track-random-bits (lub-rai $A)=$ lub-rai (track-random-bits' A) (is ? $L=? R$)
proof -
have 0:Complete-Partial-Order.chain ord-rai (track-random-bits ' A)
by (intro chain-imageI $[$ OF assms(1)] track-random-bits-mono assms(2))
have ? $L b s=? R$ bs if $? L b s \neq$ None for $b s$
proof -
have 1:lub-rai A bs \neq None using that track-random-bits-Some-iff by simp
have lub-rai $A b s=$ None if $\Lambda f . f \in A \Longrightarrow f b s=$ None
using that unfolding lub-rai-def fun-lub-def flat-lub-def by auto
then obtain f where f-in- $A: f \in A$ and $f b s \neq$ None
using 1 by blast
hence consumed-prefix f bs \neq None
using consumed-prefix-none-iff [OF assms(2)[OF f-in-A]] by simp
hence 2:track-random-bits f bs \neq None
unfolding track-random-bits-alt $[$ OF assms(2)[OF f-in-A]] by simp
have ord-rai (track-random-bits f) (track-random-bits (lub-rai A))
by (intro track-random-bits-mono wf-lub[OF assms(1)] assms(2)
random-alg-int-pd.lub-upper [OF assms(1)] f-in-A)
hence track-random-bits (lub-rai A) bs =track-random-bits f bs
using 2 unfolding ord-rai-def fun-ord-def flat-ord-def by metis
moreover have ord-rai (track-random-bits f) (lub-rai (track-random-bits ‘A))
using f-in- A by (intro random-alg-int-pd.lub-upper [OF 0]) auto
hence lub-rai (track-random-bits' A) bs $=$ track-random-bits f bs
using 2 unfolding ord-rai-def fun-ord-def flat-ord-def by metis
ultimately show ?thesis by simp
qed
hence flat-ord None (?L bs) (?R bs) for bs
unfolding flat-ord-def by blast
hence ord-rai ?L ?R
unfolding ord-rai-def fun-ord-def by simp
moreover have ord-rai (track-random-bits f) (track-random-bits (lub-rai A)) if $f \in A$ for f
using that $\operatorname{assms}(2) w f-l u b[O F \operatorname{assms}(1,2)]$
by (intro track-random-bits-mono random-alg-int-pd.lub-upper[OF assms(1)])
hence ord-rai ?R ?L
by (intro random-alg-int-pd.lub-least 0) auto
ultimately show ?thesis
using random-alg-int-pd.leq-antisym by auto
qed
lemma untrack-random-bits:
assumes wf-random f
shows track-random-bits $f \gg=(\lambda x$. return-rai $(f s t x))=f($ is $? L=? R)$
proof -

```
```

 have ?L bs =?R bs for bs
 unfolding track-random-bits-alt[OF assms] bind-rai-def return-rai-def
 by (subst wf-random-alt[OF assms]) (cases consumed-prefix f bs, auto)
 thus ?thesis
 by auto
 qed

```
lift-definition track-coin-use :: 'a random-alg \(\Rightarrow\) ('a \(\times\) nat) random-alg
    is track-random-bits
    by (rule wf-track-random-bits)
definition bind-tra ::
    ('a \(\times\) nat) random-alg \(\Rightarrow\left({ }^{\prime} a \Rightarrow(' b \times n a t)\right.\) random-alg \() \Rightarrow\left({ }^{\prime} b \times n a t\right)\) random-alg
    where bind-tra \(m f=d o\) \{
        \((r, k) \leftarrow m\);
        \((s, l) \leftarrow(f r) ;\)
        return-ra \((s, k+l)\)
    \}
definition coin-tra \(::(\) bool \(\times\) nat) random-alg
    where coin-tra \(=\) do \(\{\)
        \(b \leftarrow\) coin-ra;
        return-ra (b,1)
    \}
definition return-tra \(::\) ' \(a \Rightarrow\left({ }^{\prime} a \times n a t\right)\) random-alg
    where return-tra \(x=\) return-ra \((x, 0)\)
adhoc-overloading Monad-Syntax.bind bind-tra
Monad laws:
lemma return-bind-tra:
bind-tra (return-tra \(x) g=g x\)
unfolding bind-tra-def return-tra-def
by (simp add:bind-return-ra return-bind-ra)
lemma bind-tra-assoc:
bind-tra \((\) bind-tra \(f g) h=\operatorname{bind-traf}(\lambda x\). bind-tra \((g x) h)\)
unfolding bind-tra-def
by (simp add:bind-return-ra return-bind-ra bind-ra-assoc case-prod-beta' algebra-simps)
lemma bind-return-tra:
bind-tra \(m\) return-tra \(=m\)
unfolding bind-tra-def return-tra-def
by (simp add:bind-return-ra return-bind-ra)
lemma track-coin-use-bind:
fixes \(m\) :: 'a random-alg
fixes \(f::\) ' \(a \Rightarrow\) 'b random-alg
shows track-coin-use \((m \gg f)=\) track-coin-use \(m \gg(\lambda r\).track-coin-use \((f r))\) (is ? \(L=? R\) )
proof -
have Rep-random-alg ? \(L=\) Rep-random-alg \(? R\) unfolding track-coin-use.rep-eq bind-ra.rep-eq bind-tra-def by (subst track-rb-bind) (simp-all add:wf-rep-rand-alg comp-def case-prod-beta'
track-coin-use.rep-eq bind-ra.rep-eq return-ra.rep-eq)
thus ?thesis
using Rep-random-alg-inject by auto

\section*{qed}
lemma track-coin-use-coin: track-coin-use coin-ra \(=\) coin-tra \((\) is \(? L=? R)\)
unfolding coin-tra-def using track-rb-coin[transferred] by metis
lemma track-coin-use-return: track-coin-use (return-ra \(x\) ) return-tra \(x\) (is ? \(L=? R\) )
unfolding return-tra-def using track-rb-return[transferred] by metis
lemma track-coin-use-lub:
assumes Complete-Partial-Order.chain ord-ra A
shows track-coin-use (lub-ra \(A)=\) lub-ra (track-coin-use' \(A)(\) is \(? L=? R)\)
proof -
have 0: Complete-Partial-Order.chain ord-rai (Rep-random-alg ' A)
using assms unfolding ord-ra.rep-eq Complete-Partial-Order.chain-def by auto
have 2: (Rep-random-alg'track-coin-use' \(A)=\) track-random-bits'Rep-random-alg' \(A\)
using track-coin-use.rep-eq unfolding image-image by auto
have 1: Complete-Partial-Order.chain ord-rai (Rep-random-alg'track-coin-use ‘ A) using wf-rep-rand-alg unfolding 2 by (intro chain-imageI[OF 0\(]\) track-random-bits-mono) auto
have Rep-random-alg ? \(L=\) track-random-bits (lub-rai (Rep-random-alg'A)) using 0 unfolding track-coin-use.rep-eq lub-ra.rep-eq by simp
also have ... = lub-rai (track-random-bits'Rep-random-alg' A)
using wf-rep-rand-alg by (intro track-random-bits-lub-rai 0) auto
also have \(\ldots=\) Rep-random-alg ?R
using 1 unfolding lub-ra.rep-eq 2 by simp
finally have Rep-random-alg?L \(=\) Rep-random-alg?R by \(\operatorname{simp}\)
thus ?thesis
using Rep-random-alg-inject by auto
qed
lemma track-coin-use-mono:
assumes ord-ra \(f g\)
shows ord-ra (track-coin-use f) (track-coin-use g)
using assms by transfer (rule track-random-bits-mono)
lemma bind-mono-tra-aux:
assumes ord-ra f1 f2 \(\wedge\) y. ord-ra (g1 y) (g2 y)
shows ord-ra (bind-tra f1 g1) (bind-tra f2 g2)
using assms unfolding bind-tra-def ord-ra.rep-eq bind-ra.rep-eq
by (auto intro!:bind-rai-mono random-alg-int-pd.leq-refl simp:comp-def bind-ra.rep-eq case-prod-beta' return-ra.rep-eq)
lemma bind-tra-mono [partial-function-mono]:
assumes mono-ra \(B\) and \(\bigwedge y\). mono-ra ( \(C\) y)
shows mono-ra \((\lambda f\). bind-tra \((B f)(\lambda y . C y f))\)
using assms by (intro monotoneI bind-mono-tra-aux) (auto simp:monotone-def)
lemma track-coin-use-empty:
track-coin-use \((\) lub-ra \(\})=(\) lub-ra \(\{ \})(\) is \(? L=? R)\)
proof -
have \(? L=\) lub-ra (track-coin-use' \(\}\) )
by (intro track-coin-use-lub) (simp add:Complete-Partial-Order.chain-def)
also have \(\ldots=\) ? \(R\) by simp
finally show? ?thesis by simp

\section*{qed}
lemma untrack-coin-use:
map-ra fst \((\) track-coin-use \(f)=f(\) is \(? L=? R)\)
proof -
have Rep-random-alg \(? L=\) Rep-random-alg \(? R\)
unfolding map-ra-def bind-ra.rep-eq track-coin-use.rep-eq comp-def return-ra.rep-eq
by (auto intro!:untrack-random-bits simp:wf-rep-rand-alg)
thus ?thesis
using Rep-random-alg-inject by auto
qed
definition rel-track-coin-use :: ('a nat) random-alg \(\Rightarrow{ }^{\prime}\) ' random-alg \(\Rightarrow\) bool where rel-track-coin-use \(q\) p \(\longleftrightarrow q=\) track-coin-use \(p\)
lemma admissible-rel-track-coin-use:
ccpo.admissible (prod-lub lub-ra lub-ra) (rel-prod ord-ra ord-ra) (case-prod rel-track-coin-use)
(is ccpo.admissible ?lub ?ord ?P)
proof (rule ccpo.admissibleI)
fix \(Y\)
assume chain: Complete-Partial-Order.chain ?ord Y
and \(Y: Y \neq\{ \}\)
and \(R: \forall(p, q) \in Y\). rel-track-coin-use \(p q\)
from \(R\) have \(R: \bigwedge p q .(p, q) \in Y \Longrightarrow\) rel-track-coin-use \(p q\) by auto
have chain1: Complete-Partial-Order.chain (ord-ra) ( \(f s t\) ' \(Y\) )
and chain2: Complete-Partial-Order.chain (ord-ra) (snd' Y)
using chain by(rule chain-imageI; clarsimp)+
from \(Y\) have \(Y 1\) : \(f s t\) ' \(Y \neq\{ \}\) and \(Y 2\) : snd' ' \(Y \neq\{ \}\) by auto
have lub-ra \(\left(f_{s t}\right.\) ' \(\left.Y\right)=\) lub-ra (track-coin-use'snd' \(Y\) )
unfolding image-image using \(R\)
by (intro arg-cong[of - lub-ra] image-cong) (auto simp: rel-track-coin-use-def)
also have \(\ldots=\) track-coin-use (lub-ra (snd'Y))
by (intro track-coin-use-lub[symmetric] chain2)
finally have rel-track-coin-use (lub-ra (fst'Y)) (lub-ra (snd'Y)) unfolding rel-track-coin-use-def .
then show ?P (?lub Y)
by (simp add: prod-lub-def)
qed
lemma admissible-rel-track-coin-use-cont [cont-intro]:
fixes ord
shows 【 mcont lub ord lub-ra ord-ra f; mcont lub ord lub-ra ord-ra g 】
\(\Longrightarrow\) ccpo.admissible lub ord ( \(\lambda x\). rel-track-coin-use \((f x)(g x)\) )
by (rule admissible-subst[OF admissible-rel-track-coin-use, where \(f=\lambda x .(f x, g x)\), simplified \(])\) (rule mcont-Pair)
lemma mcont-track-coin-use:
mcont lub-ra ord-ra lub-ra ord-ra track-coin-use
unfolding mcont-def monotone-def cont-def
by (auto simp: track-coin-use-mono track-coin-use-lub)
lemmas mcont2mcont-track-coin-use \(=\) mcont-track-coin-use[THEN random-alg-pf.mcont2mcont]

\section*{context includes lifting-syntax}
begin
lemma fixp-track-coin-use-parametric[transfer-rule]:
```

 assumes f: \x. mono-ra (}\lambdaf.Ffx
 and g: \x.mono-ra (\lambdaf.Gfx)
 and param: ((}A===>\mathrm{ rel-track-coin-use) ===> A ===> rel-track-coin-use) F G
 shows (A ===> rel-track-coin-use) (random-alg-pf.fixp-fun F) (random-alg-pf.fixp-fun G)
 using fg
 proof(rule parallel-fixp-induct-1-1[OF
random-alg-pfd random-alg-pfd - reflexive reflexive,

```

```

 show ccpo.admissible (prod-lub (fun-lub lub-ra) (fun-lub lub-ra))
 (rel-prod (fun-ord ord-ra) (fun-ord ord-ra))
 (\lambdax. (A ===> rel-track-coin-use) (fst x) (snd x))
 unfolding rel-fun-def
 by(rule admissible-all admissible-imp cont-intro)+
 have 0:track-coin-use (lub-ra {}) = lub-ra {}
using track-coin-use-lub[where }A={}
by (simp add:Complete-Partial-Order.chain-def)
show (}A===>\mathrm{ rel-track-coin-use) (}\lambda\mathrm{ -. lub-ra {}) (}\lambda\mathrm{ -. lub-ra {})
by (auto simp: rel-fun-def rel-track-coin-use-def 0)
show (A===> rel-track-coin-use) (F f) (Gg) if (A===> rel-track-coin-use) fg for fg
using that by(rule rel-funD[OF param])
qed
lemma return-ra-tranfer[transfer-rule]: ((=) ===> rel-track-coin-use) return-tra return-ra
unfolding rel-fun-def rel-track-coin-use-def track-coin-use-return by simp
lemma bind-ra-tranfer[transfer-rule]:
(rel-track-coin-use ===> ((=) ===> rel-track-coin-use) ===> rel-track-coin-use) bind-tra
bind-ra
unfolding rel-fun-def rel-track-coin-use-def track-coin-use-bind by simp presburger
lemma coin-ra-tranfer[transfer-rule]:
rel-track-coin-use coin-tra coin-ra
unfolding rel-fun-def rel-track-coin-use-def track-coin-use-coin by simp
end
end

```

\section*{7 Tracking SPMFs}

This section introduces tracking SPMFs - this is a resource monad on top of SPMFs, we also introduce the Scott-continous monad morphism tspmf-of-ra, with which it is possible to reason about the joint-distribution of a randomized algorithm's result and used coinflips.
An example application of the results in this theory can be found in Section 8.
```

theory Tracking-SPMF
imports Tracking-Randomized-Algorithm
begin

```
type-synonym 'a tspmf \(=\left({ }^{\prime} a \times n a t\right)\) spmf
definition return-tspmf \(::\) ' \(a \Rightarrow\) 'a tspmf where
    return-tspmf \(x=\) return-spmf \((x, 0)\)
definition coin-tspmf :: bool tspmf where
    coin-tspmf \(=\) pair-spmf coin-spmf (return-spmf 1)
```

definition bind-tspmf :: 'a tspmf => ('a m 'b tspmf) => 'b tspmf where

```
    bind-tspmf \(f g=\) bind-spmf \(f(\lambda(r, c)\). map-spmf \((\operatorname{apsnd}((+) c))(g r))\)
adhoc-overloading Monad-Syntax.bind bind-tspmf
Monad laws:
lemma return-bind-tspmf:
    bind-tspmf (return-tspmf \(x\) ) \(g=g x\)
    unfolding bind-tspmf-def return-tspmf-def map-spmf-conv-bind-spmf
    by (simp add:apsnd-def map-prod-def)
lemma bind-tspmf-assoc:
    bind-tspmf \((\) bind-tspmf \(f g) h=\operatorname{bind-tspmf} f(\lambda x . \operatorname{bind-tspmf}(g x) h)\)
    unfolding bind-tspmf-def
    by (simp add: case-prod-beta' algebra-simps map-spmf-conv-bind-spmf apsnd-def map-prod-def)
lemma bind-return-tspmf:
bind-tspmf \(m\) return-tspmf \(=m\)
unfolding bind-tspmf-def return-tspmf-def map-spmf-conv-bind-spmf apsnd-def
by (simp add:case-prod-beta')
lemma bind-mono-tspmf-aux:
assumes ord-spmf (=) f1 f2 \(\wedge y\). ord-spmf (=) (g1 y) (g2 y)
shows ord-spmf (=) (bind-tspmf f1 g1) (bind-tspmf f2 g2)
using assms unfolding bind-tspmf-def map-spmf-conv-bind-spmf
by (auto intro!: bind-spmf-mono' simp add:case-prod-beta')
lemma bind-mono-tspmf [partial-function-mono]:
assumes mono-spmf \(B\) and \(\bigwedge y\). mono-spmf ( \(C\) y)
shows mono-spmf \((\lambda f\). bind-tspmf \((B f)(\lambda y . C y f))\)
using assms by (intro monotoneI bind-mono-tspmf-aux) (auto simp:monotone-def)
definition ord-tspmf :: 'a tspmf \(\Rightarrow\) 'a tspmf \(\Rightarrow\) bool where
ord-tspmf \(=\) ord-spmf \((\lambda x y\).fst \(x=\) fst \(y \wedge\) snd \(x \geq\) snd \(y)\)
bundle ord-tspmf-notation
begin
notation ord-tspmf \(\left(\left(-/ \leq_{R}-\right)[51,51] 50\right)\)
end
bundle no-ord-tspmf-notation
begin
no-notation ord-tspmf ((-/ \(\left.\leq_{R}-\right)\) [51, 51] 50)
end
unbundle ord-tspmf-notation
definition coin-usage-of-tspmf :: 'a tspmf \(\Rightarrow\) enat pmf
where coin-usage-of-tspmf \(=\) map-pmf \((\lambda x\). case \(x\) of None \(\Rightarrow \infty \mid\) Some \(y \Rightarrow\) enat (snd \(y))\)
definition expected-coin-usage-of-tspmf :: 'a tspmf \(\Rightarrow\) ennreal where expected-coin-usage-of-tspmf \(p=\left(\int^{+} x . x \partial(\right.\) map-pmf ennreal-of-enat (coin-usage-of-tspmf \(\left.\left.p)\right)\right)\)
definition expected-coin-usage-of-ra where
expected-coin-usage-of-ra \(p=\int^{+}\)x. \(x \partial(\) map-pmf ennreal-of-enat (coin-usage-of-ra \(p)\) )
definition result :: 'a tspmf \(\Rightarrow{ }^{\prime}\) a spmf
where result \(=\) map-spmf fst
lemma coin-usage-of-tspmf-alt-def:
coin-usage-of-tspmf \(p=\) map-pmf \((\lambda x\). case \(x\) of None \(\Rightarrow \infty \mid\) Some \(y \Rightarrow\) enat \(y)\) (map-spmf snd p)
unfolding coin-usage-of-tspmf-def map-pmf-comp map-option-case
by (metis enat-def infinity-enat-def option.case-eq-if option.sel)
lemma coin-usage-of-tspmf-bind-return:
coin-usage-of-tspmf \((\) bind-tspmf \(f(\lambda x\). return-tspmf \((g x)))=(\) coin-usage-of-tspmf \(f)\)
unfolding bind-tspmf-def return-tspmf-def coin-usage-of-tspmf-alt-def map-spmf-bind-spmf
by (simp add:comp-def case-prod-beta map-spmf-conv-bind-spmf)
lemma coin-usage-of-tspmf-mono:
assumes ord-tspmf \(p\) q
shows measure (coin-usage-of-tspmf \(p\) ) \(\{. . k\} \leq\) measure (coin-usage-of-tspmf q) \(\{. . k\}\)
proof -
define \(p^{\prime}\) where \(p^{\prime}=\) map-spmf snd \(p\)
define \(q^{\prime}\) where \(q^{\prime}=\operatorname{map-spmf}\) snd \(q\)
have 0:ord-spmf \((\geq) p^{\prime} q^{\prime}\)
using assms(1) ord-spmf-mono unfolding \(p^{\prime}\)-def \(q^{\prime}\)-def ord-tspmf-def ord-spmf-map-spmf12
by fastforce
have cp:coin-usage-of-tspmf \(p=\operatorname{map-pmf}\left(\right.\) case-option \(\infty\) enat) \(p^{\prime}\)
unfolding coin-usage-of-tspmf-alt-def \(p^{\prime}\)-def by simp
have cq:coin-usage-of-tspmf \(q=\) map-pmf (case-option \(\infty\) enat) \(q^{\prime}\) unfolding coin-usage-of-tspmf-alt-def \(q^{\prime}\)-def by simp
have 0:rel-pmf \((\geq)\) (coin-usage-of-tspmf \(p)(\) coin-usage-of-tspmf \(q)\) unfolding \(c p\) cq map-pmf-def by (intro rel-pmf-bindI[OF 0]) (auto split:option.split)
show ?thesis
unfolding atMost-def by (intro measure-Ici[OF 0] transp-on-ge) (simp add:reflp-def)
qed
lemma coin-usage-of-tspmf-mono-rev:
assumes ord-tspmf p q
shows measure (coin-usage-of-tspmf \(q\) ) \(\{x . x>k\} \leq\) measure (coin-usage-of-tspmf \(p\) ) \(\{x . x>\) \(k\}\)
(is ? \(L \leq ? R\) )
proof -
have \(0: U N I V-\{x . x>k\}=\{. . k\}\)
by (auto simp add:set-diff-eq set-eq-iff)
have \(1-? R \leq 1-? L\)
using coin-usage-of-tspmf-mono[OF assms]
by (subst (1 2) measure-pmf.prob-compl[symmetric]) (auto simp:0)
thus ?thesis
by \(\operatorname{simp}\)
qed
lemma expected-coin-usage-of-tspmf:
expected-coin-usage-of-tspmf \(p=\left(\sum k\right.\). ennreal (measure (coin-usage-of-tspmf \(p\) ) \(\{x . x>\) enat
\(k\})(\) is ? \(L=? R)\)
proof -
have \(? L=\) integral \(^{N}\) (measure-pmf (coin-usage-of-tspmf \(p\) )) ennreal-of-enat
unfolding expected-coin-usage-of-tspmf-def by simp
also have \(\ldots=\left(\sum k\right.\). emeasure ( measure-pmf (coin-usage-of-tspmf \(\left.\left.p\right)\right)\{x\). enat \(\left.k<x\}\right)\)
by (subst nn-integral-enat-function) auto
```

 also have ... = ?R
 by (subst measure-pmf.emeasure-eq-measure) simp
 finally show ?thesis
 by simp
 qed
lemma ord-tspmf-min: ord-tspmf (return-pmf None) p
unfolding ord-tspmf-def by (simp add: ord-spmf-reflI)
lemma ord-tspmf-refl: ord-tspmf p p
unfolding ord-tspmf-def by (simp add: ord-spmf-reflI)
lemma ord-tspmf-trans[trans]:
assumes ord-tspmf p q ord-tspmf q r
shows ord-tspmf p r
proof -
have 0:transp (ord-tspmf)
unfolding ord-tspmf-def
by (intro transp-rel-pmf transp-ord-option) (auto simp:transp-def)
thus ?thesis
using assms transpD[OF 0] by auto
qed
lemma ord-tspmf-map-spmf:
assumes \x. x \leqfx
shows ord-tspmf (map-spmf (apsnd f) p) p
using assms unfolding ord-tspmf-def ord-spmf-map-spmf1
by (intro ord-spmf-reflI) auto
lemma ord-tspmf-bind-pmf:
assumes \x. ord-tspmf (fx) (g x)
shows ord-tspmf (bind-pmf p f) (bind-pmf p g)
using assms unfolding ord-tspmf-def
by (intro rel-pmf-bindI[where R=(=)]) (auto simp add: pmf.rel-refl)
lemma ord-tspmf-bind-tspmf:
assumes \x. ord-tspmf (fx)(gx)
shows ord-tspmf (bind-tspmf p f) (bind-tspmf p g)
using assms unfolding bind-tspmf-def ord-tspmf-def
by (intro ord-spmf-bind-reflI) (simp add:case-prod-beta ord-spmf-map-spmf12)
definition use-coins :: nat => ' a tspmf = 'a tspmf
where use-coins k=map-spmf (apsnd ((+)k))
lemma use-coins-add:
use-coins k (use-coins sf) = use-coins (k+s)f
unfolding use-coins-def spmf.map-comp
by (simp add:comp-def apsnd-def map-prod-def case-prod-beta' algebra-simps)
lemma coin-tspmf-split:
fixes f :: bool \# 'b tspmf
shows (coin-tspmf >> f)=use-coins 1 (coin-spmf >>f)
unfolding coin-tspmf-def use-coins-def map-spmf-conv-bind-spmf pair-spmf-alt-def bind-tspmf-def
by (simp)
lemma ord-tspmf-use-coins:
ord-tspmf (use-coins $k p$) p
unfolding use-coins-def by (intro ord-tspmf-map-spmf) auto

```
lemma ord-tspmf-use-coins-2:
assumes ord-tspmf \(p q\)
shows ord-tspmf (use-coins \(k p\) ) (use-coins \(k q\) )
using assms unfolding use-coins-def ord-tspmf-def ord-spmf-map-spmf12 by auto
lemma result-mono:
assumes ord-tspmf p q
shows ord-spmf (=) (result p) (result q)
using assms ord-spmf-mono unfolding result-def ord-tspmf-def ord-spmf-map-spmf12 by force
lemma result-bind:
result \((\) bind-tspmf \(f g)=\) result \(f \gg(\lambda x\). result \((g x))\)
unfolding bind-tspmf-def result-def map-spmf-conv-bind-spmf by (simp add:case-prod-beta')
lemma result-return:
result \((\) return-tspmf \(x)=\) return-spmf \(x\)
unfolding return-tspmf-def result-def map-spmf-conv-bind-spmf by (simp add:case-prod-beta')
lemma result-coin:
result \((\) coin-tspmf \()=\) coin-spmf
unfolding coin-tspmf-def result-def pair-spmf-alt-def map-spmf-conv-bind-spmf by (simp add:case-prod-beta')
definition tspmf-of-ra :: 'a random-alg \(\Rightarrow\) 'a tspmf where
tspmf-of-ra \(=\) spmf-of-ra \(\circ\) track-coin-use
lemma tspmf-of-ra-coin: tspmf-of-ra coin-ra \(=\) coin-tspmf
unfolding tspmf-of-ra-def comp-def track-coin-use-coin coin-tra-def coin-tspmf-def spmf-of-ra-bind spmf-of-ra-coin spmf-of-ra-return pair-spmf-alt-def
by \(\operatorname{simp}\)
lemma tspmf-of-ra-return: tspmf-of-ra (return-ra \(x\) ) \(=\) return-tspmf \(x\)
unfolding tspmf-of-ra-def comp-def track-coin-use-return return-tra-def return-tspmf-def spmf-of-ra-return by simp
lemma tspmf-of-ra-bind:
tspmf-of-ra (bind-ra \(m f\) ) \(=\) bind-tspmf \((t s p m f-o f-r a m)(\lambda x . t s p m f-o f-r a(f x))\)
unfolding tspmf-of-ra-def comp-def track-coin-use-bind bind-tra-def bind-tspmf-def map-spmf-conv-bind-spmf
by (simp add:case-prod-beta' spmf-of-ra-bind spmf-of-ra-return apsnd-def map-prod-def)
lemmas tspmf-of-ra-simps \(=\) tspmf-of-ra-bind tspmf-of-ra-return tspmf-of-ra-coin
lemma tspmf-of-ra-mono:
assumes ord-ra \(f g\)
shows ord-spmf (=) (tspmf-of-ra f) (tspmf-of-ra g)
unfolding tspmf-of-ra-def comp-def
by (intro spmf-of-ra-mono track-coin-use-mono assms)
lemma tspmf-of-ra-lub:
assumes Complete-Partial-Order.chain ord-ra A
shows tspmf-of-ra (lub-ra \(A)=\) lub-spmf (tspmf-of-ra' \(A)(\) is \(? L=? R)\)
proof -
have 0:Complete-Partial-Order.chain ord-ra (track-coin-use ' A)
by (intro chain-imageI [OF assms] track-coin-use-mono)
have ? \(L=\) spmf-of-ra (lub-ra (track-coin-use' \(A)\) ) unfolding tspmf-of-ra-def comp-def
```

 by (intro arg-cong[where f=spmf-of-ra] track-coin-use-lub assms)
 also have ... = lub-spmf (spmf-of-ra'track-coin-use ' A)
 by (intro spmf-of-ra-lub-ra 0)
 also have ... = ?R
 unfolding image-image tspmf-of-ra-def by simp
 finally show ?thesis by simp
 qed
definition rel-tspmf-of-ra :: 'a tspmf => 'a random-alg }=>\mathrm{ bool where
rel-tspmf-of-ra q p\longleftrightarrowq=tspmf-of-ra p
lemma admissible-rel-tspmf-of-ra:
ccpo.admissible (prod-lub lub-spmf lub-ra) (rel-prod (ord-spmf (=)) ord-ra) (case-prod rel-tspmf-of-ra)
(is ccpo.admissible ?lub ?ord ?P)
proof (rule ccpo.admissibleI)
fix Y
assume chain: Complete-Partial-Order.chain ?ord Y
and Y:Y\not={}
and R:}\forall(p,q)\inY.rel-tspmf-of-ra p q
from R have R:\bigwedgepq. (p,q) \inY\Longrightarrow rel-tspmf-of-ra p q by auto
have chain1: Complete-Partial-Order.chain (ord-spmf (=)) (fst' Y)
and chain2: Complete-Partial-Order.chain ord-ra (snd 'Y)
using chain by(rule chain-imageI; clarsimp)+
from Y have Y1: fst' }Y\not={}\mathrm{ and Y2: snd' }Y\not={}\mathrm{ by auto
have lub-spmf (fst'` Y) = lub-spmf (tspmf-of-ra'snd' Y)
unfolding image-image using }
by (intro arg-cong[of - lub-spmf] image-cong) (auto simp: rel-tspmf-of-ra-def)
also have ... = tspmf-of-ra (lub-ra (snd'Y))
by (intro tspmf-of-ra-lub[symmetric] chain2)
finally have rel-tspmf-of-ra (lub-spmf (fst' Y)) (lub-ra (snd'Y))
unfolding rel-tspmf-of-ra-def .
then show ?P (?lub Y)
by (simp add: prod-lub-def)
qed
lemma admissible-rel-tspmf-of-ra-cont [cont-intro]:
fixes ord
shows \llbracket mcont lub ord lub-spmf (ord-spmf (=)) f; mcont lub ord lub-ra ord-ra g\rrbracket
\Longrightarrow ~ c c p o . a d m i s s i b l e ~ l u b ~ o r d ~ (~ \lambda x . r e l - t s p m f - o f - r a ~ (f ~ x) ~ (~ g ~ x ~) ~)
by (rule admissible-subst[OF admissible-rel-tspmf-of-ra, where f=\lambdax.(f x,g x), simplified])
(rule mcont-Pair)
lemma mcont-tspmf-of-ra:
mcont lub-ra ord-ra lub-spmf (ord-spmf (=)) tspmf-of-ra
unfolding mcont-def monotone-def cont-def
by (auto simp: tspmf-of-ra-mono tspmf-of-ra-lub)
lemmas mcont2mcont-tspmf-of-ra = mcont-tspmf-of-ra[THEN spmf.mcont2mcont]
context includes lifting-syntax
begin
lemma fixp-rel-tspmf-of-ra-parametric[transfer-rule]:
assumes f: \x. mono-spmf (}\lambdaf.Ffx
and g: \bigwedgex. mono-ra (\lambdaf.Gfx)
and param: ((}A===>> rel-tspmf-of-ra) ===> A ===> rel-tspmf-of-ra) F
shows (A ===> rel-tspmf-of-ra)(spmf.fixp-fun F)(random-alg-pf.fixp-fun G)

```
using \(f g\)
proof (rule parallel-fixp-induct-1-1[OF
partial-function-definitions-spmf random-alg-pfd - - reflexive reflexive,
where \(P=(A===>\) rel-tspmf-of-ra \()])\)
show ccpo.admissible (prod-lub (fun-lub lub-spmf) (fun-lub lub-ra))
(rel-prod (fun-ord \((\) ord-spmf \((=)))\) (fun-ord ord-ra) \()\)
\((\lambda x .(A===>\) rel-tspmf-of-ra) (fst \(x)(\) snd \(x))\)
unfolding rel-fun-def
by(rule admissible-all admissible-imp cont-intro)+
have 0:tspmf-of-ra (lub-ra \(\})=\) return-pmf None
using tspmf-of-ra-lub[where \(A=\{ \}]\)
by (simp add:Complete-Partial-Order.chain-def)
show \((A===>\) rel-tspmf-of-ra) \((\lambda\)-. lub-spmf \(\})(\lambda\)-. lub-ra \(\})\)
by (auto simp: rel-fun-def rel-tspmf-of-ra-def 0)
show \((A===>\) rel-tspmf-of-ra) \((F f)(G g)\) if \((A===>\) rel-tspmf-of-ra) \(f g\) for \(f g\) using that by (rule rel-funD[OF param])
qed
lemma return-ra-tranfer[transfer-rule]: \(((=)===>\) rel-tspmf-of-ra) return-tspmf return-ra unfolding rel-fun-def rel-tspmf-of-ra-def tspmf-of-ra-return by simp
lemma bind-ra-tranfer[transfer-rule]:
(rel-tspmf-of-ra \(===>((=)===>\) rel-tspmf-of-ra) \(===>\) rel-tspmf-of-ra) bind-tspmf bind-ra
unfolding rel-fun-def rel-tspmf-of-ra-def tspmf-of-ra-bind by simp presburger
lemma coin-ra-tranfer[transfer-rule]:
rel-tspmf-of-ra coin-tspmf coin-ra
unfolding rel-fun-def rel-tspmf-of-ra-def tspmf-of-ra-coin by simp
end
lemma spmf-of-tspmf:
result (tspmf-of-ra \(f\) ) \(=\) spmf-of-ra \(f\)
unfolding tspmf-of-ra-def result-def
by (simp add: untrack-coin-use spmf-of-ra-map[symmetric])
lemma coin-usage-of-tspmf-correct:
coin-usage-of-tspmf (tspmf-of-ra \(p\) ) \(=\) coin-usage-of-ra \(p(\) is \(? L=? R)\)
proof -
let \(? p=\) Rep-random-alg \(p\)
have measure-pmf (map-spmf snd (tspmf-of-ra p)) =
distr (distr-rai (track-random-bits ?p)) \(\mathcal{D}\) (map-option snd)
unfolding tspmf-of-ra-def map-pmf-rep-eq spmf-of-ra.rep-eq comp-def track-coin-use.rep-eq
by \(\operatorname{simp}\)
also have \(\ldots=\operatorname{distr} \mathcal{B} \mathcal{D}\) (map-option snd \(\circ(\) map-option fst \(\circ\) track-random-bits ? \(p\) ) \()\)
unfolding distr-rai-def
by (intro distr-distr distr-rai-measurable wf-track-random-bits wf-rep-rand-alg) simp
also have \(\ldots=\operatorname{distr} \mathcal{B} \mathcal{D}(\lambda x\). ?p \(x \gg=(\lambda\) xa. consumed-bits ?p \(x))\)
unfolding track-random-bits-def by (simp add:comp-def map-option-bind case-prod-beta)
also have \(\ldots=\operatorname{distr} \mathcal{B} \mathcal{D}(\lambda x\). consumed-bits ?p \(x)\)
by (intro arg-cong \([\) where \(f=\operatorname{distr} \mathcal{B} \mathcal{D}]\) ext)
(auto simp:consumed-bits-inf-iff[OF wf-rep-rand-alg] split:bind-split)
also have \(\ldots=\) measure-pmf (coin-usage-of-ra-aux p)
unfolding coin-usage-of-ra-aux.rep-eq used-bits-distr-def by simp
finally have measure-pmf (map-spmf snd (tspmf-of-ra p) ) measure-pmf (coin-usage-of-ra-aux p)
by \(\operatorname{simp}\)
```

 hence 0:map-spmf snd (tspmf-of-ra p)=coin-usage-of-ra-aux p
 using measure-pmf-inject by auto
 show ?thesis
 unfolding coin-usage-of-tspmf-def 0[symmetric] coin-usage-of-ra-def map-pmf-comp
 by (intro map-pmf-cong) (auto split:option.split)
 qed
lemma expected-coin-usage-of-tspmf-correct:
expected-coin-usage-of-tspmf (tspmf-of-ra p) = expected-coin-usage-of-ra p
unfolding expected-coin-usage-of-tspmf-def coin-usage-of-tspmf-correct
expected-coin-usage-of-ra-def by simp
end

```

\section*{8 Dice Roll}
```

theory Dice-Roll
imports Tracking-SPMF
begin

```

The following is a dice roll algorithm for an arbitrary number of sides \(n\). Besides correctness we also show that the expected number of coin flips is at most \(\log 2 n+2\). It is a specialization of the algorithm presented by Hao and Hoshi [4]. \({ }^{3}\)
```

lemma floor-le-ceil-minus-one:
fixes x y :: real
shows $x<y \Longrightarrow\lfloor x\rfloor \leq\lceil y\rceil-1$
by linarith
lemma combine-spmf-set-coin-spmf:
fixes $f::$ nat $\Rightarrow{ }^{\prime}$ a spmf
fixes $k::$ nat
shows pmf-of-set $\left\{. .<\mathfrak{2}^{\wedge} k\right\} \gg(\lambda l$. coin-spmf $\gg=(\lambda b . f(2 * l+$ of-bool $b)))=$
pmf-of-set $\{. .<2 \wedge(k+1)\} \gg f($ is $? L=? R)$
proof -
let $? f=(\lambda(l:: n a t, b) .2 * l+$ of-bool $b)$
let ?coin = pmf-of-set (UNIV :: bool set)
have $[\operatorname{simp}]:\left\{. .<(2:: n a t)^{\wedge} k\right\} \neq\{ \}$
by (simp add: lessThan-empty-iff)
have bij:bij-betw ?f $(\{. .<2 \wedge k\} \times U N I V)\{. .<2 \wedge(k+1)\}$
by (intro bij-betwI $[$ where $g=(\lambda x$. (x div 2, odd $x)$)]) auto
have $p m f($ pair-pmf (pmf-of-set $\{. .<2 \mathfrak{Z}\})$? coin) $x=$
pmf (pmf-of-set $(\{. .<2 \wedge k\} \times U N I V)) x$ for $x::$ nat \times bool
by (cases x) (simp add:pmf-pair indicator-def)
hence 0:pair-pmf (pmf-of-set $\left.\left\{. .<(2:: n a t)^{\wedge} k\right\}\right)$?coin $=p m f$-of-set $(\{. .<2 \wedge k\} \times U N I V)$
by (intro pmf-eqI) simp
have map-pmf ?f $($ pmf-of-set $(\{. .<2 \wedge k\} \times U N I V))=p m f$-of-set $(? f \cdot(\{. .<2 \wedge k\} \times U N I V))$
using bij-betw-imp-inj-on [OF bij] by (intro map-pmf-of-set-inj) auto
also have $\ldots=p m f$-of-set $\{. .<2 `(k+1)\}$
by (intro arg-cong[where $f=p m f$-of-set] bij-betw-imp-surj-on[OF bij])
finally have 1:map-pmf ?f $\left(\right.$ pmf-of-set $\left.\left(\left\{. .<\mathscr{Z}^{\wedge} k\right\} \times U N I V\right)\right)=p m f$-of-set $\left\{. .<2^{\wedge}(k+1)\right\}$
by simp

```

\footnotetext{
\({ }^{3}\) An interesting alternative algorithm, which we did not formalized here, has been introduced by Lambruso [7].
}
```

 have ?L = pmf-of-set {..<2^k} >> (\lambdal. ?coin >> (\lambdab.f (2*l + of-bool b)))
 unfolding spmf-of-set-def bind-spmf-def spmf-of-pmf-def by (simp add:bind-map-pmf)
 also have ... = pair-pmf (pmf-of-set {..<2`k})?coin >> (\lambda(l,b).f(2*l + of-bool b))
 unfolding pair-pmf-def by (simp add:bind-assoc-pmf bind-return-pmf)
 also have ... = map-pmf (\lambda(l,b). 2 * l + of-bool b) (pmf-of-set ({..<2^k}\timesUNIV)) > =f
 unfolding 0 bind-map-pmf by (simp add:comp-def case-prod-beta')
 also have ... = ?R
 unfolding 1 by simp
 finally show ?thesis by simp
 qed
lemma count-ints-in-range:
real (card {x. of-int }x\in{u..v}})\geqv-u-1 (is ?L \geq?R
proof (cases u\leqv)
case True
have 0:of-int }x\in{u..v}\longleftrightarrowx\in{\lceilu\rceil...vv\rfloor} for x by simp linarith
have v-u-1\leq\lfloorv\rfloor-\lceilu\rceil+1 using True by linarith
also have ... = real (nat (\lfloorv\rfloor-\lceilu\rceil +1)) using True by (intro of-nat-nat[symmetric]) linarith
also have ... = card {\lceil\lceilu\rceil..\v\rfloor} by simp
also have ... = ?L
unfolding 0 by (intro arg-cong[where f=real] arg-cong[where f=card]) auto
finally show?thesis by simp
next
case False
hence v-u-1\leq0 by simp
thus ?thesis by simp
qed
partial-function (random-alg) dice-roll-step-ra :: real }=>\mathrm{ real }=>\mathrm{ int random-alg
where dice-roll-step-ra l h = (
if \lfloorl\rfloor=\lceill+h\rceil-1 then
return-ra \l\rfloor
else
do { b \leftarrow coin-ra; dice-roll-step-ra (l + (h/2)* of-bool b) (h/2) }
)
definition dice-roll-ra n = map-ra nat (dice-roll-step-ra 0 (of-nat n))
partial-function (spmf) drs-tspmf :: real => real }=>\mathrm{ int tspmf
where drs-tspmf l h = (
if \lfloorl\rfloor=\lceill+h\rceil-1 then
return-tspmf \lfloorl\rfloor
else
do {b}\leftarrow\mathrm{ coin-tspmf;drs-tspmf (l + (h/2) * of-bool b) (h/2) }
)
definition dice-roll-tspmf n =drs-tspmf 0(of-nat n)>>(\lambdax.return-tspmf (nat x))
lemma drs-tspmf:drs-tspmf l u =tspmf-of-ra (dice-roll-step-ra l u)
proof -
include lifting-syntax
have }((=)===> (=)===> rel-tspmf-of-ra)drs-tspmf dice-roll-step-ra
unfolding drs-tspmf-def dice-roll-step-ra-def
apply (rule rel-funD[OF curry-transfer])
apply (rule fixp-rel-tspmf-of-ra-parametric[OF drs-tspmf.mono dice-roll-step-ra.mono])
by transfer-prover

```
```

 thus ?thesis
 unfolding rel-fun-def rel-tspmf-of-ra-def by auto
 qed
lemma dice-roll-ra-tspmf: tspmf-of-ra (dice-roll-ra n) = dice-roll-tspmf n
unfolding dice-roll-ra-def dice-roll-tspmf-def map-ra-def tspmf-of-ra-bind tspmf-of-ra-return
drs-tspmf by simp
lemma dice-roll-step-tspmf-lb:
assumes h>0
shows coin-tspmf >> (\lambdab.drs-tspmf (l + (h/2)* of-bool b) (h/2)) \leq _R drs-tspmf lh
proof (cases \lfloorl\rfloor=\lceill+h\rceil-1)
case True
hence 2:drs-tspmf l h = return-tspmf \lfloorl\rfloor
by (subst drs-tspmf.simps) simp
have 0: \lfloorl+h/2 * of-bool b\rfloor=\lfloorl\rfloor for b
proof -
have \lfloorl +h/2* of-bool b\rfloor\leq\lfloorl +h/2\rfloor
using assms by (intro floor-mono add-mono) auto
also have ... \leq\lceill +h\rceil-1
using assms by (intro floor-le-ceil-minus-one add-strict-left-mono) auto
also have ... = \l\rfloor using True by simp
finally have \lfloorl +h/2* of-bool b\rfloor\leq\lfloorl\rfloor by simp
moreover have \lfloorl\rfloor\leq \l +h/2 * of-bool b\rfloor
using assms by (intro floor-mono) auto
ultimately show ?thesis by simp
qed
have 1:\lceill +h/2 * of-bool b +h/2\rceil-1=\lfloorl\rfloor for b
proof -
have \lceill +h/2* of-bool b +h/2\rceil-1\leq\lceill +h\rceil-1
using assms by (intro diff-mono ceiling-mono) auto
also have ... =\l\rfloor using True by simp
finally have \lceill+h/2* of-bool b +h/2\rceil-1\leq\lfloorl\rfloor by simp
moreover have \lfloorl\rfloor\leq\lceill +h/2* of-bool b + h/2\rceil-1
using assms by (intro floor-le-ceil-minus-one) auto
ultimately show ?thesis by simp
qed
have 3:drs-tspmf (l + (h/2)* of-bool b) (h/2) = return-tspmf \lfloorl\rfloor for b
using 0 1 by (subst drs-tspmf.simps) simp
show ?thesis
unfolding 2 3 bind-tspmf-def coin-tspmf-def pair-spmf-alt-def
by (simp add:bind-spmf-const ord-tspmf-map-spmf)
next
case False
thus ?thesis
by (subst drs-tspmf.simps) (auto intro:ord-tspmf-refl)
qed
abbreviation coins k \equivpmf-of-set {..<(2::nat)^k}
lemma dice-roll-step-tspmf-expand:
assumes h>0
shows coins k>>(\lambdal. use-coins k (drs-tspmf (real l*h)h)) \leqR drs-tspmf 0 (h*2`k)
using assms

```
```

proof (induction k arbitrary:h)
case 0
have {..<Suc 0}={0} by auto
then show ?case
by (auto intro:ord-tspmf-use-coins simp:pmf-of-set-singleton bind-return-pmf)
next
case (Suc k)
have (coins (k+1)>>(\lambdal.use-coins (k+1) (drs-tspmf (real l*h)h)))=
coins k>>(\lambdal.coin-spmf >> (\lambdab. use-coins (k+1) (drs-tspmf (real (2*l+ of-bool b)*h) h)))
by (intro combine-spmf-set-coin-spmf[symmetric])
also have ... = coins k>> (}\lambdal\mathrm{ . use-coins (k+1) (coin-spmf >>
(\lambdab.drs-tspmf (real l* (2*h) +h* of-bool b) h)))
unfolding use-coins-def map-spmf-conv-bind-spmf by (simp add:algebra-simps)
also have ... = coins k>>(}\lambdal\mathrm{ . use-coins k (coin-tspmf >>
(\lambdab. drs-tspmf (real l* (2*h) +h* of-bool b) h)))
unfolding coin-tspmf-split use-coins-add by simp
also have ... = coins k>>(}\lambdal\mathrm{ . use-coins k (coin-tspmf >>
(\lambdab.drs-tspmf (real l* (2*h) + ((2*h)/2)* of-bool b) ((2*h)/2))))
using Suc(2) by simp
also have ... \leqR coins k>>(\lambdal. use-coins k (drs-tspmf (real l* (2 *h)) (2*h)))
using Suc(2) by (intro ord-tspmf-bind-pmf ord-tspmf-use-coins-2 dice-roll-step-tspmf-lb) simp
also have ... \leq < drs-tspmf 0 ((2*h)*2`k) using Suc(2) by (intro Suc(1)) auto also have ... = drs-tspmf 0 (h*2``}(k+1) unfolding power-add by (simp add:algebra-simps) finally show ?case by simp qed lemma dice-roll-step-tspmf-approx: fixes }k:: na assumes h> (0::real) defines f}\equiv(\lambdal. if \lfloorl*h\rfloor=\lceil(l+1)*h\rceil-1 then Some (\lfloorl*h\rfloor,k) else None shows map-pmf f(coins k) \leq \leq drs-tspmf 0 (h*\mathcal{Z}k) (is ?L \leq \leq R ?R) proof - have ?L = coins k> (\lambdal. use-coins k (if \lfloorreal l*h\rfloor=\lceil(l+1)*h\rceil-1 then return-tspmf \lfloorl*h\rfloor else return-pmf None)) unfolding f-def return-tspmf-def use-coins-def map-pmf-def by (simp add:if-distribR if-distrib bind-return-pmf algebra-simps cong:if-cong) also have ... \leq < coins k>>(}\lambdal\mathrm{ . use-coins k (drs-tspmf (real l*h)h)) by (subst drs-tspmf.simps, intro ord-tspmf-bind-pmf ord-tspmf-use-coins-2) (simp add:ord-tspmf-min ord-tspmf-refl algebra-simps) also have ... \leq _ drs-tspmf 0 (h*2^k) by (intro dice-roll-step-tspmf-expand assms) finally show ?thesis by simp qed lemma dice-roll-step-spmf-approx: fixes }k:: na assumes h> (0::real) defines }f\equiv(\lambdal\mathrm{ . if }\lfloorl*h\rfloor=\lceil(l+1)*h\rceil-1 then Some (\lfloorl*h\rfloor) else None shows ord-spmf (=) (map-pmff (coins k)) (result (drs-tspmf 0 (h*2`k)))
(is ord-spmf - ?L ?R)
proof -
have 0: ?L = result (map-pmf (\lambdal. if \lfloorl*h\rfloor=\lceil(l+1)*h\rceil-1 then Some (\lfloorl*h\rfloor,k) else None) (coins
k))
unfolding result-def map-pmf-comp f-def by (intro map-pmf-cong refl) auto

```
show ?thesis
unfolding 0 using assms result-mono[OF dice-roll-step-tspmf-approx] by simp qed
lemma spmf-dice-roll-step-lb:
assumes \(j<n\)
shows \(\operatorname{spmf}(\) result \((d r s-t s p m f 0(\) of-nat \(n)))(\) of-nat \(j) \geq 1 / n(\) is ? \(L \geq ? R)\)
proof (rule ccontr)
assume \(\neg(\) spmf \((\) result \((\) drs-tspmf \(0(\) of-nat \(n)))(\) of-nat \(j) \geq 1 / n)\)
hence \(a\) :? \(L<1 / n\) by simp
define \(k::\) nat where \(k=\) nat \(\lfloor 2-\log 2(1 / n-? L)\rfloor\)
define \(h\) where \(h=\) real \(n / 2^{\wedge} k\)
define \(f\) where \(f l=(\) if \(\lfloor l * h\rfloor=\lceil(l+1) * h\rceil-1\) then Some \(\lfloor l * h\rfloor\) else None \()\) for \(l::\) nat
have \(h\)-gt-0: \(h>0\) using assms unfolding \(h\)-def by auto
have \(n\)-gt- 0 : real \(n>0\) using assms by simp
have \(0: x<\mathcal{Z}^{\wedge} k\) if real \(x \leq(\) real \(j+1) * \mathcal{Z}^{\wedge} k / n-1\) for \(x\)
proof -
have real \(x \leq(\) real \(j+1) * \mathcal{D}^{\wedge} k / n-1\) using that by simp
also have \(\ldots \leq\) real \(n * 2 \wedge k / n-1\)
using assms by (intro diff-mono divide-right-mono mult-right-mono) auto
also have \(\ldots \leq 2 \wedge k-1\) by \(\operatorname{simp}\)
finally have real \(x \leq 2 へ k-1\) by \(\operatorname{simp}\)
thus ?thesis using nat-less-real-le by auto
qed
have 2: int' \(\{x . P(\) real \(x)\}=\{x . P(\) real-of-int \(x)\}\) if \(\wedge x . P x \Longrightarrow x \geq 0\) for \(P\)
proof -
have bij-betw int \(\{x . P(\) real \(x)\}\{x . P(\) real-of-int \(x)\}\)
using that by (intro bij-betwI[where \(g=n a t]\) ) force +
thus ?thesis
using bij-betw-imp-surj-on by auto
qed
have 1: real \(j * \mathcal{Z}^{\wedge} k / n \geq 0\) by auto
have \(3:\lfloor\) real \(l * h\rfloor \leq\lceil\) real \((l+1) * h\rceil-1\) for \(l\)
using \(h\)-gt-0 by (intro floor-le-ceil-minus-one) force
have \(2=(1 / n-? L) * 2\) powr \((1-\log 2(1 / n-? L))\)
using a n-gt-0 unfolding powr-diff by (subst powr-log-cancel) (auto simp:divide-simps)
also have \(\ldots<(1 / n-\) ? \(L) * 2\) powr \(\lfloor 2-\log 2(1 / n-? L)\rfloor\)
using \(a\) by (intro mult-strict-left-mono powr-less-mono) linarith +
also have \(\ldots \leq(1 / n-\) ? \(L) * 2\) powr real \(k\)
using a unfolding \(k\)-def by (intro mult-left-mono powr-mono) auto
also have \(\ldots=(1 / n-? L) * 2^{\wedge} k\) by (subst powr-realpow) auto
finally have \(2<(1 / n-? L) * 2 \wedge k\) by \(\operatorname{simp}\)
hence ? \(L<1 / n-2 / 2 \wedge k\) by (simp add:field-simps)
also have \(\ldots=(((\) real \(j+1) * 2 \wedge k / n-1)-(\) real \(j * 2 \wedge k / n)-1) / 2 \wedge k\)
using \(n\)-gt- 0 by (simp add:field-simps)
also have \(\ldots \leq\) real (card \(\{x\). of-int \(x \in\{\) real \(j * 2 \wedge k / n . .(\) real \(j+1) * 2 \wedge k / n-1\}\}) / \mathscr{D}^{\wedge} k\)
by (intro divide-right-mono count-ints-in-range) auto
also have \(\ldots=\) real (card (int' \(\left\{x\right.\). real \(x \in\left\{\right.\) real \(j * \mathcal{Z} \wedge k / n . .(\) real \(\left.\left.\left.\left.j+1) * \mathcal{Z}^{\wedge} k / n-1\right\}\right\}\right)\right) / \mathscr{Z}^{\wedge} k\)
using order-trans[OF 1] by (subst 2) auto
also have \(\ldots=\operatorname{real}(\operatorname{card}\{x\). real \(x \in\{\) real \(j * 2 \wedge k / n . .(\) real \(j+1) * 2 \wedge k / n-1\}\}) / 2 \wedge k\)
by (subst card-image) auto

using 0 by (intro arg-cong[where \(f=\lambda x\). real (card \(\left.x) / \mathcal{D}^{\wedge} k\right]\) ) auto
also have \(\ldots=\operatorname{real}\left(\operatorname{card}\left\{l . l<\mathcal{Z}^{\wedge} k \wedge\right.\right.\) real \(j \leq \operatorname{real} l * h \wedge(1+\) real \(l) * h \leq\) real \(\left.\left.j+1\right\}\right) / 2 \wedge k\)
using assms unfolding \(h\)-def
by (intro arg-cong[where \(f=\lambda x\). real (card \(x) /\) 2^ \(^{\wedge} k\) ] Collect-cong) (auto simp:field-simps)
also have \(\ldots=\) measure (coins \(k)\{l\). real \(j \leq\) real \(l * h \wedge \operatorname{real}(l+1) * h \leq \operatorname{real} j+1\}\)
by (subst measure-pmf-of-set) (simp-all add:lessThan-empty-iff Int-def)
also have \(\ldots=\) measure (coins \(k)\{l\). int \(j \leq\lfloor\) real \(l * h\rfloor \wedge\lceil\) real \((l+1) * h\rceil-1 \leq\) int \(j\}\)
by (intro arg-cong2[where \(f=\) measure \(]\) refl Collect-cong) linarith
also have \(\ldots=\) measure (coins \(k\) ) \(\{l\). int \(j=\lfloor\) real \(l * h\rfloor \wedge\) int \(j=\lceil\) real \((l+1) * h\rceil-1\}\)
using 3 order.trans order-antisym
by (intro arg-cong2[where \(f=\) measure \(]\) refl Collect-cong iffI, blast, simp)
also have \(\ldots=\operatorname{spmf}(\operatorname{map}-p m f f(\) coins \(k)) j\)
unfolding pmf-map \(f\)-def vimage-def
by (intro arg-cong2 [where \(f=\) measure \(]\) refl Collect-cong) auto
also have \(\ldots \leq \operatorname{spmf}(\) result \((d r s-t s p m f 0(h * 2 \wedge k))) j\)
unfolding \(f\)-def by (intro ord-spmf-eq-leD dice-roll-step-spmf-approx h-gt-0)
also have ... \(=\) ? \(L\)
unfolding \(h\)-def by simp
finally have ? \(L<? L\) by simp
thus False by simp
qed
lemma dice-roll-correct-aux:
assumes \(n>0\)
shows result \((\) drs-tspmf \(0(\) of-nat \(n))=\) spmf-of-set \(\{0 . .<n\}\)
proof -
have weight-spmf \((\) spmf-of-set \(\{0 . .<\) int \(n\}) \geq\) weight-spmf (result \((\) drs-tspmf \(0(\) of-nat \(n))\) )
using assms unfolding weight-spmf-of-set
by (simp add:lessThan-empty-iff weight-spmf-le-1)
moreover have \(\operatorname{spmf}(\operatorname{spmf}\)-of-set \(\{0 . .<\) int \(n\}) x \leq \operatorname{spmf}(\) result \((d r s-t s p m f 0(\) of-nat \(n))) x\)
for \(x\)
proof (cases \(x<n \wedge x \geq 0\) )
case True
hence \(\operatorname{spmf}(s p m f\)-of-set \(\{0 . .<\) int \(n\}) x=1 / n\)
unfolding spmf-of-set by auto
also have \(\ldots \leq \operatorname{spmf}(\) result \((d r s-t s p m f 0(\) of-nat n) \())(\) of-nat (nat \(x))\)
using True by (intro spmf-dice-roll-step-lb) auto
also have \(\ldots=\operatorname{spmf}(\) result \((d r s-t s p m f 0(o f-n a t n))) x\)
using True by (subst of-nat-nat) auto
finally show?thesis by simp
next
case False
hence \(\operatorname{spmf}(s p m f\)-of-set \(\{0 . .<\) int \(n\}) x=0\) unfolding spmf-of-set by auto
then show ?thesis by simp
qed
hence \(\operatorname{ord}\)-spmf \((=)(\) spmf-of-set \(\{0 . .<\) int \(n\})(\) result \((d r s-t s p m f 0(o f-n a t n)))\)
by (intro ord-pmf-increaseI refl) auto
ultimately show ?thesis
by (intro eq-iff-ord-spmf[symmetric]) auto
qed
theorem dice-roll-correct:
assumes \(n>0\)
shows
result \((\) dice-roll-tspmf \(n)=\) spmf-of-set \(\{. .<n\}(\) is \(? L=? R)\)
spmf-of-ra \((\) dice-roll-ra \(n)=s p m f\)-of-set \(\{. .<n\}\)
proof -
have bij:bij-betw nat \(\{0 . .<\) int \(n\}\{. .<n\}\)
by (intro bij-betwI[where \(g=i n t]\) ) auto
have \(? L=\) map-spmf nat (spmf-of-set \(\{0 . .<\) int \(n\}\) )
unfolding dice-roll-tspmf-def dice-roll-correct-aux[OF assms] result-bind result-return map-spmf-conv-bind-spmf by simp
also have \(\ldots=\operatorname{spmf}\)-of-set ( \(n a t\) ' \(\{0 . .<\) int \(n\}\) )
by (intro map-spmf-of-set-inj-on inj-onI) auto
also have \(\ldots=\) ? \(R\)
using bij-betw-imp-surj-on [OF bij] by (intro arg-cong[where \(f=s p m f\)-of-set \(]\) ) auto
finally show ? \(L=? R\) by simp
thus spmf-of-ra (dice-roll-ra \(n\) ) \(=? R\)
using spmf-of-tspmf dice-roll-ra-tspmf by metis
qed
lemma dice-roll-consumption-bound:
assumes \(n>0\)
shows measure (coin-usage-of-tspmf (dice-roll-tspmf \(n\) ) \(\{x . x>\) enat \(k\} \leq\) real \(n / \mathscr{Z}^{\wedge} k\)
(is ? \(L \leq ? R\) )
proof -
define \(h\) where \(h=\) real \(n / 2^{\wedge} k\)
define \(f\) where \(f l=(\) if \(\lfloor l * h\rfloor=\lceil(l+1) * h\rceil-1\) then Some \((\lfloor l * h\rfloor, k)\) else None \()\) for \(l::\) nat
have \(h\)-gt- \(0: \quad h>0\)
using assms unfolding \(h\)-def
by (intro divide-pos-pos) auto
have 0:real \(n=h *\) 2^ \(^{\wedge} k\)
unfolding \(h\)-def by simp
have \(1:\lfloor\) real \(l * h\rfloor<\lfloor(\) real \(l+1) * h\rfloor\) if \(\lfloor\) real \(l * h\rfloor \neq\lceil(\) real \(l+1) * h\rceil-1\) for \(l\)
proof -
have \(\lfloor\) real \(l * h\rfloor \leq\lceil(\) real \(l+1) * h\rceil-1\)
using \(h\)-gt-0 by (intro floor-le-ceil-minus-one) force
hence \(\lfloor\) real \(l * h\rfloor<\lceil(\) real \(l+1) * h\rceil-1\)
using that by simp
also have \(\ldots \leq\lfloor(\) real \(l+1) * h\rfloor\) by linarith
finally show? ?thesis by simp
qed
have \({ }^{2} L=\) measure (coin-usage-of-tspmf \(\left.(d r s-t s p m f 0 n)\right)\{x . x>\) enat \(k\}\)
unfolding dice-roll-tspmf-def coin-usage-of-tspmf-bind-return by simp
also have \(\ldots \leq\) measure (coin-usage-of-tspmf (map-pmff(coins \(k)\) )) \(\{x . x>\) enat \(k\}\)
unfolding \(f\)-def 0
by (intro coin-usage-of-tspmf-mono-rev dice-roll-step-tspmf-approx h-gt-0)
also have \(\ldots=\) measure \((\) coins \(k)\{l .\lfloor\) real \(l * h\rfloor \neq\lceil(\) real \(l+1) * h\rceil-1\}\)
unfolding coin-usage-of-tspmf-def map-pmf-comp
by (simp add:vimage-def f-def algebra-simps split:option.split)
also have \(\ldots \leq\) measure (coins \(k\) ) \(\{l .\lfloor\) real \(l * h\rfloor<\lfloor(\) real \(l+1) * h\rfloor\}\)
using 1 by (intro measure-pmf.finite-measure-mono subsetI) (simp-all)
also have \(\ldots=\left(\int l\right.\). indicator \(\{l .\lfloor\) real \(l * h\rfloor<\lfloor(\) real \(l+1) * h\rfloor\} l \partial(\) coins \(\left.k)\right)\)
by \(\operatorname{simp}\)
also have \(\ldots=\left(\sum j<\mathcal{Z}^{\wedge} k\right.\). indicat-real \(\{l .\lfloor\) real \(l * h\rfloor<\lfloor(\) real \(l+1) * h\rfloor\} j * p m f(\) coins \(\left.k) j\right)\)
by (intro integral-measure-pmf-real[where \(A=\{. .<2 \wedge k\}]\) ) (simp-all add:lessThan-empty-iff)
also have \(\ldots=\left(\sum l<2^{\wedge} k\right.\). of-bool \((\lfloor\) real \(l * h\rfloor<\lfloor(\) real \(\left.l+1) * h\rfloor)\right) / 2^{2} k\)
by (simp add:lessThan-empty-iff indicator-def fip:sum-divide-distrib)
also have \(\ldots \leq\left(\sum l<2^{\wedge} k\right.\). of-int \(\lfloor\) real \((S u c l) * h\rfloor-o f\)-int \(\lfloor\) real \(\left.l * h\rfloor\right) / 2 \wedge k\)
using \(h\)-gt-0 int-less-real-le
by (intro divide-right-mono sum-mono) (auto intro:floor-mono simp:algebra-simps)
also have \(\ldots=\) of-int \(\left\lfloor 2^{\wedge} k * h\right\rfloor / 2^{\wedge} k\)
by (subst sum-lessThan-telescope) simp
also have \(\ldots=\) real \(n / 2^{\wedge} k\)
unfolding \(h\)-def by simp
finally show ?thesis
by simp
qed
lemma dice-roll-expected-consumption-aux:
assumes \(n>(0:: n a t)\)
shows expected-coin-usage-of-tspmf (dice-roll-tspmf \(n) \leq \log 2 n+2(\) is \(? L \leq ? R)\)
proof -
define \(k 0\) where \(k 0=n a t\lceil\log 2 n\rceil\)
define \(\delta\) where \(\delta=\log 2 n-\lceil\log 2 n\rceil\)
have 0: ennreal (measure (coin-usage-of-tspmf (dice-roll-tspmf \(n\) )) \(\{x . x>\) enat \(k\}) \leq\)
ennreal \(\left(\min \left(\right.\right.\) real \(\left.\left.n / \mathfrak{D}^{\wedge} k\right) 1\right)\) (is ?L1 \(\leq\) ?R1) for \(k\)
by (intro iffD2 \([O F\) ennreal-le-iff \(]\) min.boundedI dice-roll-consumption-bound \([O F\) assms \(]\) ) auto
have 1 [simp]: (2::ennreal) \({ }^{\wedge} k<\) Orderings.top for \(k::\) nat
using ennreal-numeral-less-top power-less-top-ennreal by blast
have \(\left(\sum k\right.\). ennreal \(\left.\left((1 / 2)^{\wedge} k\right)\right)=\) ennreal \(\left(\sum k \cdot\left((1 / 2)^{\wedge} k\right)\right)\)
by (intro suminf-ennreal2) auto
also have...\(=\) ennreal 2
by (subst suminf-geometric) simp-all
finally have \(2:\left(\sum k\right.\). ennreal \(\left.((1 / 2) \wedge k)\right)=\) ennreal 2
by simp
have real \(n \geq 1\)
using assms by simp
hence 3: \(\log 2(\) real \(n) \geq 0\)
by simp
have real-of-int \(\lceil\log 2(\) real \(n)\rceil \leq 1+\log 2(\) real \(n)\)
by linarith
hence \(4: \delta+1 \in\{0 . .1\}\)
unfolding \(\delta\)-def by (auto simp:algebra-simps)
have twop-conv: convex-on UNIV ( \(\lambda x\). 2 powr ( \(x:\) :real) )
using convex-on-exp[where \(l=\ln\) 2] unfolding powr-def
by (auto simp:algebra-simps)
have 5:2 powr \(x \leq 1+x\) if \(x \in\{0 . .1\}\) for \(x::\) real
using that convex-onD[OF twop-conv, where \(x=0\) and \(y=1\) and \(t=x]\)
by (simp add:algebra-simps)
have \(? L=\left(\sum k\right.\). ennreal (measure (coin-usage-of-tspmf \((\) dice-roll-tspmf \(\left.n)\right)\{x . x>\) enat \(\left.\left.k\}\right)\right)\) unfolding expected-coin-usage-of-tspmf by simp
also have \(\ldots \leq\left(\sum k\right.\). ennreal \((\min (\) real \(\left.n / 2 \uparrow k) 1)\right)\)
by (intro suminf-le summableI 0)
also have \(\ldots=\left(\sum k\right.\). ennreal \(\left(\min \left(\right.\right.\) real \(n /\) 2^ \(\left.\left.\left.^{\wedge}(k+k 0)\right) 1\right)\right)+\left(\sum k<k 0 . \operatorname{ennreal}\left(\min \left(\right.\right.\right.\) real \(\left.n / \mathscr{2}^{\wedge} k\right)\) 1))
by (intro suminf-offset summableI)
also have \(\ldots \leq\left(\sum k\right.\). ennreal \(\left(\right.\) real \(\left.\left.n / \mathscr{D}^{\wedge}(k+k 0)\right)\right)+\left(\sum k<k 0.1\right)\)
by (intro add-mono suminf-le summableI sum-mono iffD2[OF ennreal-le-iff]) auto
also have \(\ldots=\left(\sum k\right.\). ennreal \((\) real \(n / 2 \wedge k 0) *\) ennreal \(\left.((1 / 2) \wedge k)\right)+\) of-nat \(k 0\)
by (intro suminf-cong arg-cong2[where \(f=(+)]\) )
(simp-all add: ennreal-mult[symmetric] power-add divide-simps)
also have \(\ldots=\) ennreal \((\) real \(n / 2 \wedge k 0) *\left(\sum k\right.\). ennreal \(\left.((1 / 2) \wedge k)\right)+\) ennreal (real \(\left.k 0\right)\)
```

 unfolding ennreal-of-nat-eq-real-of-nat by simp
 also have ... = ennreal (real n / 2`k0 * 2 + real k0)
 unfolding 2 by (subst ennreal-mult[symmetric]) simp-all
 also have ... = ennreal (real n / 2 powr k0 * 2 + real k0)
 by (subst powr-realpow) auto
 also have ... = ennreal (real n / 2 powr \lceillog 2 n\rceil*2 + real k0)
 using 3 unfolding kO-def by (subst of-nat-nat) auto
 also have ... = ennreal (real n / 2 powr (log 2 n - \delta)* 2 + real k0)
 unfolding \delta-def by simp
 also have ... = ennreal (2 powr }\delta*2\mathrm{ powr 1 + real k0)
 using assms unfolding powr-diff by (subst powr-log-cancel) auto
 also have ... \leq ennreal (1+(\delta+1) + real k0)
 using 4 unfolding powr-add[symmetric]
 by (intro iffD2[OF ennreal-le-iff] add-mono 5) auto
 also have ... = ?R
 using 3 unfolding \delta-def k0-def by (subst of-nat-nat) auto
 finally show ?thesis
 by simp
 qed
theorem dice-roll-coin-usage:
assumes n> (0::nat)
shows expected-coin-usage-of-ra (dice-roll-ra n)\leqlog 2 n + 2 (is ?L}\leq?R
proof -
have ?L = expected-coin-usage-of-tspmf (tspmf-of-ra (dice-roll-ra n))
unfolding expected-coin-usage-of-tspmf-correct[symmetric] by simp
also have ... = expected-coin-usage-of-tspmf (dice-roll-tspmf n)
unfolding dice-roll-ra-tspmf by simp
also have ... \leq?R
by (intro dice-roll-expected-consumption-aux assms)
finally show ?thesis
by simp
qed
end

```

\section*{9 A Pseudo-random Number Generator}

In this section we introduce a PRG, that can be used to generate random bits. It is an implementation of O'Neil's Permuted congruential generator [9] (specifically PCG-XSH\(R R)\). In empirical tests it ranks high \([2,10]\) while having a low implementation complexity. This is for easy testing purposes only, the generated code can be run with any source of random bits.
```

theory Permuted-Congruential-Generator
imports
HOL-Library.Word
Coin-Space
begin

```

The following are default constants from the reference implementation [8].
```

definition pcg-mult :: 64 word
where pcg-mult $=6364136223846793005$
definition pcg-increment :: 64 word
where pcg-increment $=1442695040888963407$
fun pcg-rotr :: 32 word \Rightarrow nat $\Rightarrow 32$ word

```
```

where pcg-rotr x r $=$ Bit-Operations.or (drop-bit $r x)($ push-bit $(32-r) x)$
fun pcg-step $:: 64$ word $\Rightarrow 64$ word
where pcg-step state $=$ state $*$ pcg-mult + pcg-increment
Based on [9, Section 6.3.1]:
fun pcg-get :: 64 word $\Rightarrow 32$ word
where pcg-get state $=$
(let count $=$ unsigned (drop-bit 59 state);
$x \quad=$ xor (drop-bit 18 state) state
in pcg-rotr (ucast (drop-bit $27 x$)) count)
fun pcg-init $:: 64$ word $\Rightarrow 64$ word
where $p c g$-init seed $=p c g$-step $($ seed $+p c g$-increment $)$
definition to-bits :: 32 word \Rightarrow bool list
where to-bits $x=\operatorname{map}(\lambda k$. bit $x k)[0 . .<32]$
definition random-coins
where random-coins seed $=$ build-coin-gen (to-bits \circ pcg-get) pcg-step $($ pcg-init seed $)$
end

```

\section*{10 Basic Randomized Algorithms}

This section introduces a few randomized algorithms for well-known distributions. These both serve as building blocks for more complex algorithms and as examples describing how to use the framework.
```

theory Basic-Randomized-Algorithms
imports
Randomized-Algorithm
Probabilistic-While.Bernoulli
Probabilistic-While.Geometric
Permuted-Congruential-Generator
begin

```

A simple example: Here we define a randomized algorithm that can sample uniformly from \(p m f\)-of-set \(\left\{. .<2^{n}\right\}\). (The same problem for general ranges is discussed in Section 8).
```

fun binary-dice-roll :: nat \Rightarrow nat random-alg
where
binary-dice-roll $0=$ return-ra $0 \mid$
binary-dice-roll (Suc n) =
do $\{h \leftarrow$ binary-dice-roll n;
$c \leftarrow$ coin-ra;
return-ra (of-bool c+2*h)
\}

```

Because the algorithm terminates unconditionally it is easy to verify that binary-dice-roll terminates almost surely:
lemma binary-dice-roll-terminates: terminates-almost-surely (binary-dice-roll \(n\) ) by (induction \(n\) ) (auto intro:terminates-almost-surely-intros)

The corresponding PMF can be written as:
fun binary-dice-roll-pmf :: nat \(\Rightarrow\) nat pmf where
```

binary-dice-roll-pmf $0=$ return-pmf $0 \mid$
binary-dice-roll-pmf (Suc n) =
do $\{h \leftarrow$ binary-dice-roll-pmf n;
$c \leftarrow$ coin-pmf;
return-pmf (of-bool $c+2 * h$)
\}

```

To verify that the distribution of the result of binary-dice-roll is binary-dice-roll-pmf we can rely on the pmf-of-ra-simps simp rules and the terminates-almost-surely-intros introduction rules:
```

lemma pmf-of-ra (binary-dice-roll n) $=$ binary-dice-roll-pmf n
using binary-dice-roll-terminates
by (induction n) (simp-all add:terminates-almost-surely-intros pmf-of-ra-simps)

```

Let us now consider an algorithm that does not terminate unconditionally but just almost surely:
```

partial-function (random-alg) binary-geometric :: nat }=>\mathrm{ nat random-alg
where
binary-geometric n=
do { c\leftarrow coin-ra;
if c then (return-ra n) else binary-geometric (n+1)
}

```

This is necessary for running randomized algorithms defined with the partial-function directive:
declare binary-geometric.simps[code]
In this case, we need to map to an SPMF:
```

partial-function (spmf) binary-geometric-spmf :: nat \Rightarrow nat spmf
where
binary-geometric-spmf $n=$
do $\{c \leftarrow$ coin-spmf;
if c then (return-spmf n) else binary-geometric-spmf $(n+1)$
\}

```

We use the transfer rules for \(s p m f-o f-r a\) to show the correspondence:
```

lemma binary-geometric-ra-correct:
spmf-of-ra (binary-geometric x) = binary-geometric-spmf x
proof -
include lifting-syntax
have ((=) ===> rel-spmf-of-ra) binary-geometric-spmf binary-geometric
unfolding binary-geometric-def binary-geometric-spmf-def
apply (rule fixp-ra-parametric[OF binary-geometric-spmf.mono binary-geometric.mono])
by transfer-prover
thus ?thesis
unfolding rel-fun-def rel-spmf-of-ra-def by auto
qed

```

Bernoulli distribution: For this example we show correspondence with the already existing definition of bernoulli SPMF.
partial-function (random-alg) bernoulli-ra :: real \(\Rightarrow\) bool random-alg where
        bernoulli-ra \(p=\) do \{
        \(b \leftarrow\) coin-ra;
        if \(b\) then return-ra ( \(p \geq 1 / 2\) )
        else if \(p<1 / 2\) then bernoulli-ra \((2 * p)\)
        else bernoulli-ra (2*p-1)
declare bernoulli-ra.simps[code]
The following is a different technique to show equivalence of an SPMF with a randomized algorithm. It only works if the SPMF has weight 1. First we show that the SPMF is a lower bound:
```

lemma bernoulli-ra-correct-aux:ord-spmf (=) (bernoulli x) (spmf-of-ra (bernoulli-ra x))
proof (induction arbitrary:x rule:bernoulli.fixp-induct)
case 1
thus?case by simp
next
case 2
thus ?case by simp
next
case (3 p)
thus ?case by (subst bernoulli-ra.simps)
(auto intro:ord-spmf-bind-reflI simp:spmf-of-ra-simps)
qed

```

Then relying on the fact that the SPMF has weight one, we can derive equivalence:
lemma bernoulli-ra-correct: bernoulli \(x=\) spmf-of-ra (bernoulli-ra \(x)\)
using lossless-bernoulli weight-spmf-le-1 unfolding lossless-spmf-def
by (intro eq-iff-ord-spmf[OF - bernoulli-ra-correct-aux]) auto
Because bernoulli \(p\) is a lossless SPMF equivalent to spmf-of-pmf (bernoulli-pmf \(p\) ) it is also possible to express the above, without referring to SPMFs:

\section*{lemma}
terminates-almost-surely (bernoulli-ra p)
bernoulli-pmf \(p=p m f\)-of-ra (bernoulli-ra \(p\) )
unfolding terminates-almost-surely-def pmf-of-ra-def bernoulli-ra-correct[symmetric]
by (simp-all add: bernoulli-eq-bernoulli-pmf pmf-of-spmf)
context
includes lifting-syntax
begin
lemma bernoulli-ra-transfer [transfer-rule]:
\(((=)===>\) rel-spmf-of-ra) bernoulli bernoulli-ra
unfolding rel-fun-def rel-spmf-of-ra-def bernoulli-ra-correct by simp
end
Using the randomized algorithm for the Bernoulli distribution, we can introduce one for the general geometric distribution:
```

partial-function (random-alg) geometric-ra :: real \Rightarrow nat random-alg where
geometric-ra $p=$ do \{
$b \leftarrow$ bernoulli-ra $p ;$
if b then return-ra 0 else map-ra $((+) 1)$ (geometric-ra $p)$
\}
declare geometric-ra.simps[code]
lemma geometric-ra-correct: spmf-of-ra (geometric-ra $x)=$ geometric-spmf x
proof -
include lifting-syntax
have $((=)===>$ rel-spmf-of-ra) geometric-spmf geometric-ra
unfolding geometric-ra-def geometric-spmf-def

```
```

 apply (rule fixp-ra-parametric[OF geometric-spmf.mono geometric-ra.mono])
 by transfer-prover
 thus ?thesis
 unfolding rel-fun-def rel-spmf-of-ra-def by auto
 qed
Replication of a distribution
fun replicate-ra $::$ nat \Rightarrow 'a random-alg \Rightarrow 'a list random-alg where
replicate-ra 0 f = return-ra [] |
replicate-ra (Suc n) f=do {xh\leftarrowf;xt\leftarrowreplicate-ra n f; return-ra (xh\#xt)}
fun replicate-spmf :: nat }=>\mp@subsup{}{}{\prime}\mathrm{ 'a spmf }=>\mp@subsup{}{}{\prime}\mathrm{ 'a list spmf
where
replicate-spmf 0f = return-spmf [] |
replicate-spmf (Suc n) f=do { xh \leftarrowf;xt \leftarrowreplicate-spmf nf;return-spmf (xh\#xt)}

```
lemma replicate-ra-correct: spmf-of-ra (replicate-ra \(n f)=\) replicate-spmf \(n(\) spmf-of-ra \(f)\)
    by (induction \(n\) ) (auto simp :spmf-of-ra-simps)
lemma replicate-spmf-of-pmf: replicate-spmf \(n(s p m f-o f-p m f f)=s p m f\)-of-pmf (replicate-pmf \(n f)\)
    by (induction \(n\) ) (simp-all add:spmf-of-pmf-bind)

Binomial distribution
definition binomial-ra :: nat \(\Rightarrow\) real \(\Rightarrow\) nat random-alg
    where binomial-ra \(n\) p \(=\) map-ra (length \(\circ\) filter \(i d)(\) replicate-ra \(n(\) bernoulli-ra \(p))\)

\section*{lemma}
assumes \(p \in\{0 . .1\}\)
shows spmf-of-ra (binomial-ra \(n\) p) \(=\) spmf-of-pmf (binomial-pmf \(n\) p)
proof -
have spmf-of-ra (replicate-ra \(n(\) bernoulli-ra \(p))=s p m f\)-of-pmf (replicate-pmf \(n(\) bernoulli-pmf p)) unfolding replicate-ra-correct bernoulli-ra-correct[symmetric] bernoulli-eq-bernoulli-pmf by (simp add:replicate-spmf-of-pmf)
thus ?thesis
unfolding binomial-pmf-altdef[OF assms] binomial-ra-def
by (simp flip:map-spmf-of-pmf add:spmf-of-ra-map)
qed
Running randomized algorithms: Here we use the PRG introduced in Section 9.
value run-ra (binomial-ra 10 0.5) (random-coins 42)
value run-ra (replicate-ra 20 (bernoulli-ra 0.3)) (random-coins 42)
end

\section*{References}
[1] J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones, and A. Spiwack. Linear haskell: Practical linearity in a higher-order polymorphic language. Proc. ACM Program. Lang., 2(POPL), dec 2017.
[2] K. Bhattacharjee, K. Maity, and S. Das. A search for good pseudo-random number generators: Survey and empirical studies. Comput. Sci. Rev., 45:100471, 2018.
[3] D. H. Fremlin. Measure theory, volume 4. Torres Fremlin, 2000.
[4] T. S. Hao and M. Hoshi. Interval algorithm for random number generation. IEEE Transactions on Information Theory, 43(2):599-611, 1997.
[5] J. Hurd. Formal verification of probabilistic algorithms. Technical report, University of Cambridge, Computer Laboratory, 2003.
[6] G. Hutton and E. Meijer. Monadic parsing in haskell. Journal of Functional Programming, 8(4):437444, 1998.
[7] J. O. Lumbroso. Optimal discrete uniform generation from coin flips, and applications. CoRR, abs/1304.1916, 2013.
[8] M. E. O'Neill. PCG random number generation, minimal C edition.
[9] M. E. O'Neill. PCG: A family of simple fast space-efficient statistically good algorithms for random number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College, Claremont, CA, Sept. 2014.
[10] M. Singh, P. Singh, and P. Kumar. An empirical study of non-cryptographically secure pseudorandom number generators. In 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), pages 1-6, 2020.```


[^0]:    ${ }^{1}$ More generally families closed under pairwise unions.

