Euler’s Polyhedron Formula

Lawrence C. Paulson

March 17, 2025

Abstract

Euler stated in 1752 that every convex polyhedron satisfied the for-
mula V — E+ F = 2 where V, FE and F' are the numbers of its vertices,
edges, and faces. For three dimensions, the well-known proof involves
removing one face and then flattening the remainder to form a planar
graph, which then is iteratively transformed to leave a single triangle.
The history of that proof is extensively discussed and elaborated by
Imre Lakatos [1], leaving one finally wondering whether the theorem
even holds. The formal proof provided here has been ported from HOL
Light, where it is credited to Lawrence [2]. The proof generalises Eu-
ler’s observation from solid polyhedra to convex polytopes of arbitrary
dimension.

Contents

1 Euler’s Polyhedron Formula 3
1.1 Cells of a hyperplane arrangement 3
1.2 A cell complex is considered to be a union of such cells 7
1.3 FEuler characteristic L. 10
1.4 Show that the characteristic is invariant w.r.t. hyperplane

arrangement. Lo 12

1.5 Euler-type relation for full-dimensional proper polyhedral cones 17
1.6 Euler-Poincare relation for special (n— 1)-dimensional polytope 29
1.7 Now Euler-Poincare for a general full-dimensional polytope . 38

Acknowledgements The author was supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council.

1 Euler’s Polyhedron Formula

One of the Famous 100 Theorems, ported from HOL Light

Cited source: Lawrence, J. (1997). A Short Proof of Euler’s Relation for
Convex Polytopes. Canadian Mathematical Bulletin, 40(4), 471-474.

theory Fuler-Formula
imports
HOL— Analysis. Analysis
begin

Interpret which "side" of a hyperplane a point is on.

definition hyperplane-side
where hyperplane-side = A(a,b). Az. sgn (a - x — b)

Equivalence relation imposed by a hyperplane arrangement.

definition hyperplane-equiv
where hyperplane-equiv = ANA x y. Y h € A. hyperplane-side h x = hyperplane-side
hy

lemma hyperplane-equiv-refl [iff]: hyperplane-equiv A = x
by (simp add: hyperplane-equiv-def)

lemma hyperplane-equiv-sym:
hyperplane-equiv A x y <— hyperplane-equiv A y x
by (auto simp: hyperplane-equiv-def)

lemma hyperplane-equiv-trans:
[hyperplane-equiv A x y; hyperplane-equiv A y z] = hyperplane-equiv A z z
by (auto simp: hyperplane-equiv-def)

lemma hyperplane-equiv-Un:
hyperplane-equiv (A U B) z y +— hyperplane-equiv A x y A hyperplane-equiv B
zy

by (meson Un-iff hyperplane-equiv-def)
1.1 Cells of a hyperplane arrangement

definition hyperplane-cell :: ('a::real-inner x real) set = 'a set = bool
where hyperplane-cell = MA C. Fz. C = Collect (hyperplane-equiv A)

lemma hyperplane-cell: hyperplane-cell A C +— (Jz. C = {y. hyperplane-equiv
Azy})
by (simp add: hyperplane-cell-def)

lemma not-hyperplane-cell-empty [simp]: = hyperplane-cell A {}
using hyperplane-cell by auto

lemma nonempty-hyperplane-cell: hyperplane-cell A C = (C # {})

by auto

lemma Union-hyperplane-cells: | J {C. hyperplane-cell A C} = UNIV
using hyperplane-cell by blast

lemma disjoint-hyperplane-cells:
[hyperplane-cell A C1; hyperplane-cell A C2; C1 # C2] = disjnt C1 C2
by (force simp: hyperplane-cell-def disjnit-iff hyperplane-equiv-def)

lemma disjoint-hyperplane-cells-eq:
[hyperplane-cell A C1; hyperplane-cell A C2] = (disjnt C1 C2 +— (C1 #
C2))
using disjoint-hyperplane-cells by auto

lemma hyperplane-cell-empty [iff]: hyperplane-cell {} C +— C = UNIV
by (simp add: hyperplane-cell hyperplane-equiv-def)

lemma hyperplane-cell-singleton-cases:
assumes hyperplane-cell {(a,b)} C
shows C ={z.a-z2=0b}VvVC={z.a-2<b}Vv C={z. a-2>0b}
proof —
obtain z where z: C = {y. hyperplane-side (a, b) © = hyperplane-side (a, b) y}
using assms by (auto simp: hyperplane-equiv-def hyperplane-cell)
then show ?thesis
by (auto simp: hyperplane-side-def sgn-if split: if-split-asm)
qged

lemma hyperplane-cell-singleton:
hyperplane-cell {(a,b)} C +—
(ifa=0then C = UNIVelse C={z.a-z=b}VC={z.a-z<b}VC
={z.a-2z>b})
apply (simp add: hyperplane-cell-def hyperplane-equiv-def hyperplane-side-def
sgn-if split: if-split-asm)
by (smt (verit) Collect-cong gt-ex hyperplane-eq-Ex lt-ex)

lemma hyperplane-cell-Un:
hyperplane-cell (A U B) C «—
C#{A
(3C1 C2. hyperplane-cell A C1 A hyperplane-cell B C2 AN C = C1 N C2)
by (auto simp: hyperplane-cell hyperplane-equiv-def)

lemma finite-hyperplane-cells:
finite A = finite {C. hyperplane-cell A C}
proof (induction rule: finite-induct)
case (insert p A)
obtain a b where peq: p = (a,b)
by fastforce
have Collect (hyperplane-cell {p}) C{{z. a-z=b}{z. a-z < b}{z.a- -z >

b}}

using hyperplane-cell-singleton-cases
by (auto simp: peq)
then have «: finite (Collect (hyperplane-cell {p}))
by (simp add: finite-subset)
define C where C = (|J C1 € {C. hyperplane-cell A C}. |JC2 € {C. hyper-
plane-cell {p} C}. {C1 N C2})
have {a. hyperplane-cell (insert p A) a} C C
using hyperplane-cell-Un [of {p} A] by (auto simp: C-def)
moreover have finite C
using *x C-def insert.IH by blast
ultimately show Zcase
using finite-subset by blast
qed auto

lemma finite-restrict-hyperplane-cells:
finite A = finite {C. hyperplane-cell A C N P C}
by (simp add: finite-hyperplane-cells)

lemma finite-set-of-hyperplane-cells:
[finite A; ANC. C € C = hyperplane-cell A C| = finite C
by (metis finite-hyperplane-cells finite-subset mem-Collect-eq subsetl)

lemma pairwise-disjoint-hyperplane-cells:
(AC. C € C = hyperplane-cell A C') = pairwise disjnt C
by (metis disjoint-hyperplane-cells pairwisel)

lemma hyperplane-cell-Int-open-affine:
assumes finite A hyperplane-cell A C
obtains S T where open S affine TC =SnNT
using assms
proof (induction arbitrary: thesis C rule: finite-induct)
case empty
then show ?case
by auto
next
case (insert p A thesis C")
obtain a b where peq: p = (a,b)
by fastforce
obtain C' C1 where C1: hyperplane-cell {(a,b)} C1 and C: hyperplane-cell A
C
and C'# {}and C. C'=CI N C
by (metis hyperplane-cell-Un insert.prems(2) insert-is-Un peq)
then obtain S T where ST: open S affine TC =S N T
by (meson insert.IH)
show ?Zcase
proof (cases a=0)
case True
with insert.prems show #thesis
by (metis C1 Int-commute ST «C’' = C1 N C» hyperplane-cell-singleton

inf-top.right-neutral)
next
case Fulse
then consider C1 ={z. a-2=0} | Cl ={2z.a-2<b} | Cl ={z. b<a
.z}
by (metis C1 hyperplane-cell-singleton)
then show %thesis
proof cases
case [
then show thesis
by (metis C' ST affine-Int affine-hyperplane inf-left-commute insert.prems(1))
next
case 2
with ST show thesis
by (metis Int-assoc C' insert.prems(1) open-Int open-halfspace-It)
next
case 3
with ST show thesis
by (metis Int-assoc C' insert.prems(1) open-Int open-halfspace-gt)
qed
qged
qged

lemma hyperplane-cell-relatively-open:
assumes finite A hyperplane-cell A C
shows openin (subtopology euclidean (affine hull C)) C
proof —
obtain S T where open S affine TC =5SNT
by (meson assms hyperplane-cell-Int-open-affine)
show ?thesis
proof (cases SN T = {})
case True
then show ?thesis
by (simp add: «<C = S N 1))
next
case False
then have affine hull (SN T) =T
by (metis <affine T» <open Sy affine-hull-affine-Int-open hull-same inf-commute)
then show ?thesis
using <C = S N T» <open S» openin-subtopology by fastforce
qed
qged

lemma hyperplane-cell-relative-interior:
[finite A; hyperplane-cell A C| = rel-interior C = C
by (simp add: hyperplane-cell-relatively-open rel-interior-openin)

lemma hyperplane-cell-convex:
assumes hyperplane-cell A C

shows convex C
proof —
obtain ¢ where ¢: C = {y. hyperplane-equiv A ¢ y}
by (meson assms hyperplane-cell)
have convex ((Vh€A. {y. hyperplane-side h ¢ = hyperplane-side h y})
proof (rule convez-INT)
fix h:: 'a x real
assume h € A
obtain a b where heq: h = (a,b)
by fastforce
have [simp]: {y. " a-c<a-yANa-y=a-c}={y.a-y=a-c}
{ymb<a-yNa-y#b={y. b>a-y}
by auto
then show convez {y. hyperplane-side h ¢ = hyperplane-side h y}
by (fastforce simp: heq hyperplane-side-def sgn-if convez-halfspace-gt con-
vex-halfspace-lt convex-hyperplane cong: conj-cong)
qed
with ¢ show ?thesis
by (simp add: hyperplane-equiv-def INTER-eq)
qed

lemma hyperplane-cell-Inter:
assumes A\C. C € C = hyperplane-cell A C
and C # {} and INT: NC # {}
shows hyperplane-cell A (NC)
proof —
have (N C = {y. hyperplane-equiv A z y}
if z € NC for z
using assms that by (force simp: hyperplane-cell hyperplane-equiv-def)
with INT hyperplane-cell show #thesis
by fastforce
qed

lemma hyperplane-cell-Int:

[hyperplane-cell A S; hyperplane-cell A T; S N T # {}] = hyperplane-cell A
(SN 7T

by (metis hyperplane-cell-Un sup.idem)

1.2 A cell complex is considered to be a union of such cells

definition hyperplane-cellcomplex
where hyperplane-cellcomplex A S =
IAT. (VC € T. hyperplane-cell A C) NS =T

lemma hyperplane-cellcomplez-empty [simp]: hyperplane-cellcomplex A {}
using hyperplane-cellcomplex-def by auto

lemma hyperplane-cell-cellcomplex:

hyperplane-cell A C = hyperplane-cellcomplex A C
by (auto simp: hyperplane-cellcomplex-def)

lemma hyperplane-cellcomplex- Union:
assumes A\S. S € C = hyperplane-cellcomplex A S
shows hyperplane-cellcomplex A (| C)
proof —
obtain F where 7: \S. S € C = (VC € F S. hyperplane-cell A C) N S =
U(F 9)
by (metis assms hyperplane-cellcomplex-def)
show ?thesis
unfolding hyperplane-cellcomplez-def
using F by (fastforce intro: ezl [where z=J (F ‘C)])
qed

lemma hyperplane-cellcomplex-Un:
[hyperplane-cellcomplex A S; hyperplane-cellcomplex A T]
= hyperplane-cellcomplex A (S U T)
by (smt (verit) Un-iff Union-Un-distrib hyperplane-cellcomplez-def)

lemma hyperplane-cellcomplex-UNIV [simp]: hyperplane-cellcomplex A UNIV
by (metis Union-hyperplane-cells hyperplane-cellcomplez-def mem-Collect-eq)

lemma hyperplane-cellcomplex-Inter:
assumes AS. S € C = hyperplane-cellcomplez A S
shows hyperplane-cellcomplez A ((C)
proof (cases C = {})
case True
then show ?thesis
by simp
next
case Fulse
obtain 7 where 7: A\S. S € C = (VC € F S. hyperplane-cell A C) N S =
U(F 5)
by (metis assms hyperplane-cellcomplez-def)
have x: C = (AS. J(F 9)) ‘C
using F by force
define U where U =J {T € {N(g ‘C) |g.- VSeC. g S € F S}. T # {}}
have NC =U{N(g ‘C) |g- VSeC. ¢ S € F S}

using Fualse F unfolding Inter-over-Union [symmetric]

by blast

also have ... = U
unfolding U-def
by blast

finally have (C = U .

have hyperplane-cellcomplex A U
using Fulse F unfolding U-def
apply (intro hyperplane-cellcomplez-Union hyperplane-cell-cellcomplex)
by (auto intro!: hyperplane-cell-Inter)

then show ?thesis
by (simp add: \C = U>»)
qed

lemma hyperplane-cellcomplex-Int:
[hyperplane-cellcomplex A S; hyperplane-cellcomplex A T]
= hyperplane-cellcomplex A (S N T)
using hyperplane-cellcomplez-Inter [of {S,T}] by force

lemma hyperplane-cellcomplex-Compl:
assumes hyperplane-cellcompler A S
shows hyperplane-cellcomplex A (— S)
proof —
obtain C where C: AC. C € C = hyperplane-cell A C' and S = |JC
by (meson assms hyperplane-cellcomplez-def)
have hyperplane-cellicomplex A (T € C. = T)
proof (intro hyperplane-cellcomplex-Inter)
fix C0
assume C0 € uminus ‘C
then obtain C where C: C0 = —-C C €C
by auto
have x: —C = |J {D. hyperplane-cell A D AN D # C} (is - = %rhs)
proof
show — C C ?rhs
using hyperplane-cell by blast
show 2rhs C — C
by clarify (meson <C € C> C disjnt-iff disjoint-hyperplane-cells)
qed
then show hyperplane-cellcomplex A CO
by (metis (no-types, lifting) C(1) hyperplane-cell-cellcomplex hyperplane-cellcomplez-Union
mem-Collect-eq)
qed
then show ?thesis
by (simp add: «S = J C» uminus-Sup)
qed

lemma hyperplane-cellcomplex-diff:
[hyperplane-cellcomplex A S; hyperplane-cellcomplex A T]
= hyperplane-cellcomplex A (S — T)
using hyperplane-cellcomplez-Inter [of {S,—T}]
by (force simp: Diff-eq hyperplane-cellcomplex-Compl)

lemma hyperplane-cellcomplex-mono:
assumes hyperplane-cellcomplex A S A C B
shows hyperplane-cellcomplex B S
proof —
obtain C where C: AC. C' € C = hyperplane-cell A C and eq: S = JC
by (meson assms hyperplane-cellcomplex-def)
show ?thesis

unfolding eq
proof (intro hyperplane-cellcomplex-Union)
fix C
assume C € C
have A\z. 2 € C = 3D'". (3D. D' = D N C A hyperplane-cell (B — A) D A
DNnC#{})ANzeD
unfolding hyperplane-cell-def by blast
then
have hyperplane-cellcomplex (A U (B — A)) C
unfolding hyperplane-cellcomplex-def hyperplane-cell-Un
using C <C € C» by (fastforce intro!: exI [where z= {D N C |D. hyper-
plane-cell (B — A) D A DN C # {}}])
moreover have B = AU (B — A)
using <A C B» by auto
ultimately show hyperplane-cellcompler B C' by simp
qged
qed

lemma finite-hyperplane-cellcomplexes:
assumes finite A
shows finite {C. hyperplane-cellcomplex A C'}
proof —
have {C. hyperplane-cellcomplex A C} C image |J {T. T C {C. hyperplane-cell
4 ch)
by (force simp: hyperplane-cellcomplez-def subset-eq)
with finite-hyperplane-cells show #thesis
by (metis assms finite-Collect-subsets finite-surj)
qed

lemma finite-restrict-hyperplane-cellcomplexes:
finite A = finite {C. hyperplane-cellcomplex A C N P C}
by (simp add: finite-hyperplane-cellcomplezes)

lemma finite-set-of-hyperplane-cellcomplex:

assumes finite A NC. C € C = hyperplane-cellcomplez A C

shows finite C

by (metis assms finite-hyperplane-cellcomplexes mem-Collect-eq rev-finite-subset
subsetl)

lemma cell-subset-cellcomplex:
[hyperplane-cell A C; hyperplane-cellcomplex A S] = C C S «— ~ disjnt C' S
by (smt (verit) Union-iff disjnt-iff disjnt-subset! disjoint-hyperplane-cells-eq hy-
perplane-cellcomplex-def subsetl)

1.3 Euler characteristic

definition Euler-characteristic :: ('a::euclidean-space x real) set = 'a set = int
where Euler-characteristic A § =
(5> C | hyperplane-cell A C A C C S. (—1) ~ nat (aff-dim C))

10

lemma Fuler-characteristic-empty [simp|: Euler-characteristic A {} = 0
by (simp add: sum.neutral Euler-characteristic-def)

lemma FEuler-characteristic-cell-Union:
assumes A\C. C € C = hyperplane-cell A C
shows FEuler-characteristic A (I C) = (3. CeC. (— 1) ~ nat (aff-dim C))
proof —
have Az. [hyperplane-cell A x; 2 C|J C] = z € C
by (metis assms disjnt-Unionl disjnt-subsetl disjoint-hyperplane-cells-eq)
then have {C. hyperplane-cell A C N C C|J C} =C
by (auto simp: assms)
then show ?thesis
by (auto simp: Euler-characteristic-def)
qed

lemma FEuler-characteristic-cell:
hyperplane-cell A C = Euler-characteristic A C = (—1) ~ (nat(aff-dim C))
using Euler-characteristic-cell-Union [of {C}] by force

lemma FEuler-characteristic-cellcomplex-Un:
assumes finite A hyperplane-cellcomplex A S
and AT: hyperplane-cellcomplex A T and disjnt S T
shows Euler-characteristic A (S U T) =
Euler-characteristic A S + Euler-characteristic A T
proof —
have x: {C. hyperplane-cell A C AN C C SU T} =
{C. hyperplane-cell A C N C C S} U {C. hyperplane-cell A C N C C T}
using cell-subset-cellcomplex [OF - AT] by (auto simp: disjnt-iff)
have xx: {C. hyperplane-cell A C A C C S} N {C. hyperplane-cell A C N C C
T} = {)
using assms cell-subset-cellcomplex disjnt-subset! by fastforce
show ?thesis
unfolding Fuler-characteristic-def
by (simp add: finite-restrict-hyperplane-cells assms * xx flip: sum.union-disjoint)
qed

lemma FEuler-characteristic-cellcomplex-Union:
assumes finite A
and C: \C. C € C = hyperplane-cellcomplex A C pairwise disjnt C
shows Euler-characteristic A (|J C) = sum (Euler-characteristic A) C
proof —
have finite C
using assms finite-set-of-hyperplane-cellcomplex by blast
then show ?thesis
using C
proof (induction rule: finite-induct)
case empty
then show ?case

11

by auto
next
case (insert C C)
then obtain disjoint C disjnt C (|J C)
by (metis disjnt-Union2 pairwise-insert)
with insert show ?case
by (simp add: Euler-characteristic-cellcomplex- Un hyperplane-cellcomplex- Union
finite A»)
qed
qed

lemma FEuler-characteristic:
fixes A :: ('n::euclidean-space * real) set
assumes finite A
shows Euler-characteristic A § =
(3> d = 0..DIM('n). (—=1) ~d * int (card {C. hyperplane-cell A C N C C
S A aff-dim C = int d}))
(is - = %rhs)
proof —
have AT. [hyperplane-cell A T; T C S] = aff-dim T € {0..DIM('n)}
by (metis atLeastAtMost-iff nle-le order.strict-iff-not aff-dim-negative-iff
nonempty-hyperplane-cell aff-dim-le-DIM)
then have x: aff-dim ‘ {C. hyperplane-cell A C AN C C S} C int ‘{0..DIM('n)}
by (auto simp: image-int-atLeastAtMost)
have Fuler-characteristic A S = (3 yeint ‘ {0..DIM('n)}.
> Ce{x. hyperplane-cell A x N x C S A aff-dim x = y}. (— 1) " nat y)
using sum.group [of {C. hyperplane-cell A C N C C S} int “ {0..DIM('n)}
aff-dim XC. (—1::int) ~ nat(aff-dim C), symmetric]
by (simp add: assms Euler-characteristic-def finite-restrict-hyperplane-cells x)
also have ... = %rhs
by (simp add: sum.reindex mult-of-nat-commute)
finally show ?thesis .
qed

1.4 Show that the characteristic is invariant w.r.t. hyper-
plane arrangement.

lemma hyperplane-cells-distinct-lemma:

{z.a-z=0N{z.a-z<b}={} A

{z.a-z=0Nn{z.a-z2>b}={} A
{z.a-z<bd}n{z.a-z=0}={} A
{z.a-z<b}nN{z.a-z>b}={}A
{z.a-z>b}N{z.a-z=0b}={} A
{z.a-z>b}N{z.a-z<b}={}

by auto
proposition FEuler-characterstic-lemma:

assumes finite A and hyperplane-cellcomplex A S
shows Fuler-characteristic (insert h A) S = Euler-characteristic A S

12

proof —
obtain C where C: ANC. C € C = hyperplane-cell A C and S = |JC
and pairwise disjnt C
by (meson assms hyperplane-cellcomplex-def pairwise-disjoint-hyperplane-cells)
obtain a b where h = (a,b)
by fastforce
have AC. C € C = hyperplane-cellcomplex A C A hyperplane-cellcomplex
(insert (a,b) A) C
by (meson C hyperplane-cell-cellcomplex hyperplane-cellcomplez-mono sub-
set-insertl)
moreover
have sum (Euler-characteristic (insert (a,b) A)) C = sum (FEuler-characteristic
A)C
proof (rule sum.cong [OF refl])
fix C
assume C € C
have Euler-characteristic (insert (a, b) A) C
proof (cases hyperplane-cell (insert (a,b) A)
case True
then show ?thesis
using Fuler-characteristic-cell by blast
next
case Fulse
with C[OF «C € C)] have a # 0
by (smt (verit, ccfo-threshold) hyperplane-cell-Un hyperplane-cell-empty
hyperplane-cell-singleton insert-is-Un sup-bot-left)
have conver C
using <hyperplane-cell A C» hyperplane-cell-convex by blast
define r where r = (3. De{C' N C |C'. hyperplane-cell {(a, b)} C' A C'N
C # {}}. (—=1:int) ~ nat (aff-dim D))
have Euler-characteristic (insert (a, b) A) C
— (2D [(D#{}A
(3 C1 C2. hyperplane-cell {(a, b)} C1 A hyperplane-cell A C2 A
D=CIinC2)ANDCC.
(= 1) " nat (aff-dim D))
unfolding r-def Euler-characteristic-def insert-is-Un [of - A] hyperplane-cell-Un

(—=1) ~ nat(aff-dim C)

also have ... =r

unfolding r-def

apply (rule sum.cong [OF - refl])

using <hyperplane-cell A C» disjoint-hyperplane-cells disjnt-iff

by (smt (verit, ccfv-SIG) Collect-cong Int-iff disjoint-iff subsetD subsetl)
also have ... = (—1) " nat(aff-dim C)
proof —

have C # {}

using <hyperplane-cell A C» by auto
show ?thesis
proof (cases C C{z.a-z2<b}VCC{z.a-z2>b}V_CC{z.a-2z=

b})

13

case Csub: True
with «C # {}» have r = sum (Ac. (—1) " nat (aff-dim ¢)) {C}
unfolding r-def
apply (intro sum.cong [OF - refl])
by (auto simp: <a # 0> hyperplane-cell-singleton)
also have ... = (—1) " nat(aff-dim C)
by simp
finally show ?thesis .
next
case Fulse
then obtain v v where uv: u e C ~na-u<bveC—-a-v>0b
by blast
have CInt-ne: C N {z. a - z = b} # {}
proof (casesa-u=0bV a-v=0>0)
case True
with wv show ?thesis
by blast
next
case Fulse
have a - v <a-u
using Fulse uv by auto
define w where w=v+ ((b—a-v) /(a+u— a-v)) *xg (u— v)
have *x: v + a *g (u — v) = (I — a) xgr v + a *p u for a
by (simp add: algebra-simps)
have w € C
unfolding w-def *x
proof (intro convexD-alt)
qged (use <a - v < a -+ w <conver C» uwv in auto)
moreover have w € {z. a - © = b}
using <a - v < a - w by (simp add: w-def inner-add-right inner-diff-right)
ultimately show ?thesis
by blast
qed
have Cab: CN{z.a-z<b}#{IACnNn{z.b<a-z}#{}
proof —
obtain v v where u € Ca-u=bve Ca-v+#butv
using Fualse <C' N {z. a - x = b} # {}» by blast
have openin (subtopology euclidean (affine hull C)) C
using <hyperplane-cell A C» <finite A> hyperplane-cell-relatively-open
by blast
then obtain ¢ where 0 < ¢
and e: Az’ [z’ € affine hull C; dist 2’ v < e] = 2’ € C
by (meson <u € C openin-euclidean-subtopology-iff)
define £ where { = u — (¢ / 2 / norm (v — u)) *g (v — u)
have ¢ € C
proof (rule €)
show ¢ € affine hull C
by (simp add: {-def «u € Cy <v € C» hull-inc mem-affine-3-minus2)
qged (use &-def <0 < ey in force)

14

consider a - v <b|a-v>b
using <a - v # by by linarith

then show ?thesis

proof cases

case 1
moreover have { € {z. b < a « z}
using 1 <0 < &) <a + u = by divide-less-cancel
by (fastforce simp: £-def algebra-simps)

ultimately show ?Zthesis
using v € C) £ € C» by blast

next

case 2
moreover have ¢ € {z. b > a - 1}
u = by divide-less-cancel

using 2 <0 < &) <a -+
by (fastforce simp: &-def algebra-simps)

ultimately show ?thesis
using v € C» «¢ € C) by blast

qed

qed

have r = 3. Ce{{z. a-2=0}NnC,{z.b<a-z}NC,{z. a2z < b}

N C}.
(= 1) " nat (aff-dim C))

unfolding r-def
proof (intro sum.cong [OF - refl] equalityl)
show {{z.a-z2=0NnC, {z.b<a-2}NC, {z.a-2<b}nNC}
C{C’'n C|C" hyperplane-cell {(a, b)} C' A C'N C # {}}
apply clarsimp
using Cab Int-commute <«C N {z. a - x = b} # {}p hyper-
plane-cell-singleton <a # 0>
by metis
qged (auto simp: <a # 0> hyperplane-cell-singleton)
also have ... = (=1) " nat (aff-dim (C N {z. a - z = b}))
+ (=1) " nat (aff-dim (C N {z. b < a-z}))
+ (—1) " nat (aff-dim (C N {z. a -z < b}))
using hyperplane-cells-distinct-lemma [of a b] Cab
by (auto simp: sum.insert-if Int-commute Int-left-commute)

also have ... = (— 1) " nat (aff-dim C)
proof —
have x: aff-dim (C N {z. a - x < b}) = aff-dim C A aff-dim (C N {z. a

-z > b}) = aff-dim C
by (metis Cab open-halfspace-lt open-halfspace-gt aff-dim-affine-hull
affine-hull-convex-Int-open[OF <convex C)))
obtain S T where open S affine T and Ceq: C = SN T
by (meson <hyperplane-cell A C» <finite Ay hyperplane-cell-Int-open-affine)

have affine hull C = affine hull T
by (metis Ceq «C # {}> <affine T» <open S» affine-hull-affine-Int-open

inf-commute)

moreover
have TN ({z.a-2=0}NSY) # {}

15

using Ceq <C N {z. a - x = b} # {}» by blast
then have affine hull (C N {z. a - x = b}) = affine hull (T N {z. a - z
= b})
using affine-hull-affine-Int-openof T N {z. a - z = b}]
by (simp add: Ceq Int-ac <affine T»> <open S» affine-Int affine-hyperplane)
ultimately have aff-dim (affine hull C) = aff-dim(affine hull (C N {z.
a-z=>0}))+ 1
using ClInt-ne False Ceq
by (auto simp: aff-dim-affine-Int-hyperplane <affine T»)
moreover have 0 < aff-dim (C N {z. a - x = b})
by (metis CInt-ne aff-dim-negative-iff linorder-not-le)
ultimately show ¢thesis
by (simp add: x nat-add-distrib)
qed
finally show ?thesis .
qged
qed
finally show FEuler-characteristic (insert (a, b) A) C = (—1) ~ nat(aff-dim
0) .
qed
then show FEuler-characteristic (insert (a, b) A) C = (FEuler-characteristic A
)
by (simp add: Euler-characteristic-cell C «C € C»)
qed
ultimately show ?thesis
by (simp add: Euler-characteristic-cellcomplex-Union «S = |J C» «disjoint C»
<h = (a, b)) assms(1))
qed

lemma FEuler-characterstic-invariant-aux:

assumes finite B finite A hyperplane-cellcomplex A S

shows Fuler-characteristic (A U B) S = Euler-characteristic A S

using assms

by (induction rule: finite-induct) (auto simp: Euler-characterstic-lemma hyper-
plane-cellcomplez-mono)

lemma FEuler-characterstic-invariant:

assumes finite A finite B hyperplane-cellcomplex A S hyperplane-cellcomplexr B
S

shows FEuler-characteristic A S = Euler-characteristic B S

by (metis Euler-characterstic-invariant-auz assms sup-commaute)

lemma FEuler-characteristic-inclusion-exclusion:

assumes finite A finite S NK. K € § = hyperplane-cellcomplex A K

shows Euler-characteristic A (|J S) = QT | T CSAT #{}. (—1) " (card
T + 1) % Euler-characteristic A (7))
proof —

interpret Incl-FExcl hyperplane-cellcomplex A Euler-characteristic A

16

proof
show Euler-characteristic A (S U T) = Euler-characteristic A S + Euler-characteristic
AT
if hyperplane-cellcomplexr A S and hyperplane-cellcompler A T and disjnt S T
for ST
using that Euler-characteristic-cellcomplex-Un assms(1) by blast
qed (use hyperplane-cellcomplex-Int hyperplane-cellcomplex-Un hyperplane-cellcomplex-diff
in auto)
show ?thesis
using restricted assms by blast
qed

1.5 Euler-type relation for full-dimensional proper polyhe-
dral cones

lemma Fuler-polyhedral-cone:
fixes S :: 'n::euclidean-space set
assumes polyhedron S conic S and intS: interior S # {} and S # UNIV
shows (3. d = 0.DIM('n). (— 1) ~d * int (card {f. f face-of S A aff-dim [=
int d})) = 0 (is ?lhs = 0)
proof —
have [simp]: affine hull S = UNIV
by (simp add: affine-hull-nonempty-interior intS)
with <polyhedron S»
obtain H where finite H
and Seq: S = H
and Hex: Ah. he H = Ja b. a#0 N h = {z. a - < b}
and Hsub: N\G.G C H = S C (G
by (fastforce simp: polyhedron-Int-affine-minimal)
have 0 € S
using assms(2) conic-contains-0 intS interior-empty by blast
have x: 3a. a0 Nh={z. a2 < 0} if h € H for h
proof —
obtain a b where a#0 and ab: h = {z. a - < b}
using Hezx [OF <h € H»] by blast
have 0 e N H
using Seq <0 € S» by force
then have 0 € h
using that by blast
consider b=0 | b < 0| b> 0
by linarith
then
show ?thesis
proof cases
case I
then show ?thesis
using <a # 0> ab by blast
next
case 2

17

then show ?thesis
using <0 € h) ab by auto
next
case 3
have S ¢ " (H — {h})
using Hsub [of H — {h}] that by auto
then obtain z where z: z € (((H — {h}) and z ¢ S
by auto
define ¢ where ¢ = min (1/2) (b / (a - 1))
have b < a -z
using <z ¢ S ab x by (fastforce simp: «<S = [H>)
with 8 have 0 < a - z
by auto
with 3 have 0 < ¢
by (simp add: e-def)
have ¢ < I
using e-def by linarith
havee x (a - z) < b
unfolding e-def using <0 < a - x> pos-le-divide-eq by fastforce
have z = inverse € xg € *g «
using <0 < e» by force
moreover
have e xp 2 € S
proof —
have ¢ xp v € h
by (simp add: < * (a -) < b ab)
moreover have ¢ xg z € (| (H — {h})
proof —
havecxpzc kifz e kke Hk # hfor k
proof —
obtain a’ b’ where a'£20 k = {z. o' - 2 < b’}
using Hez <k € H» by blast
have (0 < a' 2= a'-ec*xgz<a’ -1
by (metis <¢ < 1) inner-scaleR-right order-less-le pth-1 real-scaleR-def
scaleR-right-mono)
moreover have (0 < —(a’-z) = 0 < —(a’ - € *g 1))
using 0 < e mult-le-0-iff order-less-imp-le by auto
ultimately
have o' - 2 < b = a’'-c*xp 2 < b’
by (smt (verit) InterD <0 € (\H» <k = {z. a’ - z < b’}» inner-zero-right
mem-Collect-eq that(2))
then show ?thesis
using <k = {z. a’ - 2 < b’} <z € k> by fastforce
qed
with z show %thesis
by blast
qed
ultimately show ?thesis
using Seq by blast

18

qed
with <conic S» have inverse ¢ xg € xg x € S
by (meson <0 <) conic-def inverse-nonnegative-iff-nonnegative order-less-le)
ultimately show ?thesis
using <z ¢ S» by presburger
qed
qed
then obtain fa where fa: Ah. h€ H = fah# 0 ANh={z. fah- -z <0}
by metis
define fa-le-0 where fa-le-0 = Ah. {z. fa h - z < 0}
have fa": Ah. h € H = fa-le-0 h = h
using fa fa-le-0-def by blast
define A where A = (Ah. (fa h,0::real)) ‘ H
have finite A
using «finite H» by (simp add: A-def)
then have ?lhs = Euler-characteristic A S
proof —
have [simp]: card {f. f face-of S A aff-dim f = int d} = card {C. hyperplane-cell
ACNANCCSA aff-dim C = int d}
if finite A and d < card (Basis::'n set)
for d :: nat
proof (rule bij-betw-same-card)
have hyper1: hyperplane-cell A (rel-interior f) A rel-interior f C S
A aff-dim (rel-interior f) = d A closure (rel-interior f) = f
if f face-of S aff-dim f = d for f
proof —
have 1: closure(rel-interior f) = f
proof —
have closure(rel-interior f) = closure f
by (meson convex-closure-rel-interior face-of-imp-convex that(1))
also have ... = f
by (meson assms(1) closure-closed face-of-polyhedron-polyhedron polyhe-
dron-imp-closed that(1))
finally show ?thesis .
qed
then have 2: aff-dim (rel-interior f) = d
by (metis closure-aff-dim that(2))
have f £ {}
using aff-dim-negative-iff [of f] by (simp add: that(2))
obtain J0 where J0 C H and J0: f = () (fa-le-0 * H) N (N h € JO. {z.
fah-z=20})
proof (cases f = S5)
case True
have S = (fa-le-0 ‘ H)
using Seq fa by (auto simp: fa-le-0-def)
then show ?thesis
using True that by blast
next
case Fulse

19

have fexzp: f =N{SN{z. fah-z=0} |h.he HANfCSNn{x fah-
v = 0})
proof (rule face-of-polyhedron-explicit)
show S = affine hull S N (| H
by (simp add: Seq hull-subset inf.absorb2)
qed (auto simp: False <f # {}> «f face-of S» «finite H> Hsub fa)
show ?thesis
proof
have x: Az h. [r e fihe Hl= fah -2 <0
using Seq fa face-of-imp-subset <f face-of S» by fastforce
show [= (fa-le-0 ‘H)yNn(Nhe{he H fCSN{z fah-z=
0y} {z. fah -z =20})
(is f = 2I)
proof
show f C 21
using «f face-of S» fa face-of-imp-subset by (force simp: * fa-le-0-def)
show 21 C f
apply (subst (2) fexp)
apply (clarsimp simp: * fa-le-0-def)
by (metis Inter-iff Seq fa mem-Collect-eq)
qed
qed blast
qged
define H' where H' = (Ah. {z. —(fa h) -2 < 0}) ‘H
have 3J. finite J A J C HU H' A f = affine hull f N J
proof (intro exl conjI)
let 27 = H U image (Ah. {z. —(fa h) - © < 0}) JO
show finite (2J::'n set set)
using <J0 C H» <finite H» finite-subset by fastforce
show 2J C H U H’
using «J0 C H» by (auto simp: H'-def)

have f = %]
proof
show f C (2]

unfolding J0 by (auto simp: fa’)
have Az j. [j € JO;VheH. x € i;VjeJ0. 0 < faj-x] = faj-2x=10
by (metis <JO C H» fa in-mono inf.absord2 inf.orderE mem-Collect-eq)
then show () 2J C f
unfolding J0 by (auto simp: fa')
qed
then show f = affine hull f N () 2J
by (simp add: Int-absorbl hull-subset)
qged
then have *x: 3n J. finite J A card J = n AN J C HU H' A f = affine
hull f N J
by blast
obtain J nJ where J: finite J card J = nJ J C H U H' and feq: f = affine
hull f 0 J
and minJ: Am J'. [finite J'; m < nJ; card J'=m; J'C HU H] = f

20

affine hull f N J’
using exists-least-iff [THEN iffD1, OF xx| by metis
have FF: f C (affine hull f n (N J') if J' C J for J’
proof —
have f # affine hull f N J'
using minJ
by (metis J finite-subset psubset-card-mono psubset-imp-subset psub-
set-subset-trans that)
then show ?thesis
by (metis Int-subset-iff Inter-Un-distrib feq hull-subset inf-sup-ord(2)
psubset] sup.absorbs that)
qed
have Ja. {z. a2 < 0}=hAN(heHANa=fahV (3h. W€ HANa=
—(fa A7)
if h € J for h
proof —
have h ¢ H U H'
using <J C H U H'» that by blast
then show ?thesis
proof
show ?%thesis if h € H
using that fa by blast
next
assume h € H'
then obtain A’ where h' € Hh = {z. 0 < fa b’ - z}
by (auto simp: H'-def)
then show ?thesis
by (force simp: introl: exl[where z=— (fa h')])
qed
qed
then obtain ga
where ga-h: Ah. h€ J = h={z. gah -z < 0}
and ga-fa: NAh. he J = he HANgah=fahV (3h'.h'e HAgah
— —(fa ")
by metis
have 3: hyperplane-cell A (rel-interior f)
proof —
have D: rel-interior f = {z € f.VheJ. ga h -z < 0}
proof (rule rel-interior-polyhedron-explicit [OF <finite J» feq])
show ga h # 0 N h={z. gah -z < 0} if h € J for h
using that fa ga-fa ga-h by force
qged (auto simp: FF)
have H: he€e H ANgah = fahif h € J for h
proof —
obtain z where z: z € rel-interior f
using 1 «f # {}» by force
then have z € f A 2z € S
using D «f face-of S» face-of-imp-subset by blast
then show ?thesis

21

using ga-fa [OF that]
by (smt (verit, del-insts) D InterE Seq fa inner-minus-left mem-Collect-eq
that z)
qed
then obtain K where K C H
and K: f =) (fa-le-0 “H)Nn (Nh € K. {z. fah -z = 0})
using J0 «JO C H) by blast
have E: rel-interior f = {z. Y¥h e H. fah-2 < 0)AN(NMhe K. fah- -z
=0)ANNVheJ gah-z<0)}
unfolding D by (simp add: K fa-le-0-def)
have relif: rel-interior f # {}
using 1 «f # {} by force
with F have disjnt J K
using H disjnt-iff by fastforce
define IFJK where IFJK = Mh. if h € J then {z. fa h - z < 0}
else if h € K then {z. fa h - z = 0}
else if rel-interior f C {x. fa h - ¢ = 0}
then {z. fa h - © = 0}
else {z. fa h - x < 0}
have relint-f: rel-interior f = (\(IFJK ‘ H)
proof
have A: False
if x: x € rel-interior f and y: y € rel-interior f and lessO: fa h - y < 0
and fa0: fah-z=0and he Hh¢ Jh¢ K forzhy
proof —
obtain ¢ where z € f >0
and e: A\t. [distz t < e;t € affine ull f] =t € f
using z by (force simp: mem-rel-interior-cball)
then have y # z
using fa0 lessO by force
define =’ where 2z’ = z + (¢ / norm(y — z)) *g (x — y)
have z € affine hull f N y € affine hull f
by (metis <z € f» hull-inc mem-rel-interior-cball y)
moreover have dist 1 ' < ¢
using 0 < &) <y # by (simp add: z'-def divide-simps dist-norm
norm-minus-commute)
ultimately have z’ € f
by (simp add: ¢ mem-affine-3-minus x'-def)
have z' € §
using «f face-of S» <z’ € f» face-of-imp-subset by auto
then have z' € h
using Seq that(5) by blast
then have 2’ € {z. fa h - < 0}
using fa that(5) by blast
moreover have ¢ / norm (y — z) * —(fa h - y) > 0
using <0 < &) «y # x> lessO by (simp add: field-split-simps)
ultimately show ?thesis
by (simp add: z'-def fa0 inner-diff-right inner-right-distrib)
qed

22

show rel-interior f C (\(IFJK ‘ H)
unfolding IFJK-def by (smt (verit, ccfo-SIG) A E H INT-I in-mono
mem-Collect-eq subsetl)
show ((IFJK ¢ H) C rel-interior f
using <K C H)» «disjnt J K>
apply (clarsimp simp add: ball-Un E H disjnt-iff IFJK-def)
apply (smt (verit, del-insts) Intl Int-Collect subsetD)
done
qed
obtain z where zrelf: z € rel-interior f
using relif by blast
moreover
have H: z € IFJK h = (¢ € IFJK h) = (hyperplane-side (fa h, 0) z =
hyperplane-side (fa h, 0) z) for h z
using zrelf by (auto simp: IFJK-def hyperplane-side-def sgn-if split:
if-split-asm)
then have z € (((IFJK ‘ H) = (z € (\(IFJK ‘ H)) = hyperplane-equiv
A z z for x
unfolding A-def Inter-iff hyperplane-equiv-def ball-simps using H by
blast
then have x € rel-interior f <— hyperplane-equiv A z x for z
using relint-f zrelf by presburger
ultimately show ¢thesis
by (metis equalityl hyperplane-cell mem-Collect-eq subset-iff)
qed
have 4: rel-interior f C S
by (meson face-of-imp-subset order-trans rel-interior-subset that(1))
show ?thesis
using 1 2 3 4 by blast
qed
have hyper2: (closure ¢ face-of S A aff-dim (closure ¢) = d) A rel-interior
(closure ¢) = ¢
if ¢: hyperplane-cell A ¢ and ¢ C S aff-dim ¢ = d for c
proof (intro conjI)
obtain J where J C Hand J: c= ((h € J. {z. (fah)-z< 0}) Nn(Nh
e (H—-J).{x. (fah)-z=20})
proof —
obtain z where 2: ¢ = {y. Vz € H. sgn (fax - y) = sgn (fa z - 2)}
using ¢ by (force simp: hyperplane-cell A-def hyperplane-equiv-def
hyperplane-side-def)
show thesis
proof
let 27 ={he€ H. sgn(fah-2)=—1}
have 1: fah -z < 0
if VheH. sgn (fa h -) = sgn (fa h - 2z) and h € H and sgn (fa h -
z)=—1forzh
using that by (metis sgn-1-neg)
have 2: sgn (fa h - 2) = — 1
if VheH. sgn (fah -) = sgn (fah - z) and h € H and fa h - x # 0

23

for z h
proof —
have [0 < fa h - z; 0 < fa h - 2] = False
using that fa by (smt (verit, del-insts) Inter-iff Seq <¢ C S
mem-Collect-eq subset-iff z)
then show ?thesis
by (metis that sgn-if sgn-zero-iff)

qed
have 3: sgn (fa h -) = sgn (fa h - 2)
ifhe HandVh.he HAsgn (fah-2)=—1—fah-2<0
and VheH — {he€ H.sgn (fah-2)=—1}. fah-z=10
for z h
using that 2 by (metis (mono-tags, lifting) Diff-iff mem-Collect-eq
sgn-negq)
show ¢c = (Nhe?]. {z. fah-z < 0}) N (NheH — ?J. {z. fah -z =
0})
unfolding z by (auto intro: 1 2 3)
qed auto
qed

have finite J
using <J C H» «(finite H> finite-subset by blast
show closure ¢ face-of S
proof —
have cc: closure ¢ = closure (\heJ. {z. fa h - © < 0}) N closure (he H
—J.Az. fah-z=0})
unfolding J
proof (rule closure-Int-conver)
show convex ((heJ. {z. fah -z < 0})
by (simp add: convez-INT convez-halfspace-It)
show convex (NheH — J. {z. fa h - z = 0})
by (simp add: convex-INT convex-hyperplane)
have o1: open (N heJ. {z. fa h - z < 0})
by (metis open-INT[OF «finite J>] open-halfspace-It)
have 02: openin (top-of-set (affine hull (YheH — J. {x. fa h - = =
o) (NheH — J.{z. fah -2 =0})
proof —
have affine (VheH — J. {n. fa h - n = 0})
using affine-hyperplane by auto
then show ?thesis
by (metis (no-types) affine-hull-eq openin-subtopology-self)
qed
show rel-interior (N heJ. {z. fa h - © < 0}) N rel-interior (VheH —
J Az fah-z=0}) #{}

by (metis nonempty-hyperplane-cell ¢ rel-interior-open o1 rel-interior-openin

02 J)

qed

have clo-im-J: closure * (Ah. {z. fa h -z < 0}) *J) = (Ah. {z. fa h - z
<0} *J

using «J C H» by (force simp: image-comp fa)

24

have cleq: closure (WheH — J. {z. fah - x = 0}) = (" heH — J. {z. fa
h+z=0})
by (intro closure-closed) (blast intro: closed-hyperplane)
have sx: (NheJ. {z. fah -z < 0}) N (NheH — J. {z. fah -z = 0})
face-of S
if (hed. {z. fah-z<0}) #{}
proof (cases J=H)
case True
have [simp]: (Nz€H. {za. fax - za < 0}) = H
using fa by auto
show ?thesis
using <polyhedron S» by (simp add: Seq True polyhedron-imp-convex
face-of-refl)
next

case Fulse
have sx: (N heJ. {n. fah-n < 0}) N (NheH — J. {z. fah -z = 0})

(NheH — J. SNA{z. fah-z=0}) (is ?L = ?R)
proof
show ?L C ?R
by clarsimp (smt (verit) Diffl Interl Seq fa mem-Collect-eq)
show R C ?L
using Fulse Seq <J C H» fa by blast
qed
show ?thesis
unfolding sx
proof (rule face-of-Inter)
show (Ah. SN {z. fah-2=20}) ‘(H - J) #{}
using False <J C H) by blast
show T face-of S
ifT: Te(Mh.SNn{z. fah-2=20}) ‘(H-J) for T
proof —
obtain h where h: T=SN{z. fah-z=0}and he Hh ¢ J
using T by auto
have S N {z. fa h - x = 0} face-of S
proof (rule face-of-Int-supporting-hyperplane-le)
show convezr S
by (simp add: assms(1) polyhedron-imp-conver)
show fa h -z < 0 if x € S for z
using that Seq fa <h € H» by auto
qed
then show ?thesis
using h by blast
qed
qed
qed
have «: AS. S € (Ah. {z. fah -z < 0}) *J = convex S N\ open S
using convez-halfspace-lt open-halfspace-lt by fastforce
show ?thesis

25

unfolding cc
apply (simp add: % closure-Inter-convez-open)
by (metis xx cleq clo-im-J image-image)
qed
show aff-dim (closure ¢) = int d
by (simp add: that)
show rel-interior (closure ¢) = ¢
by (metis <finite A> ¢ convez-rel-interior-closure hyperplane-cell-convex
hyperplane-cell-relative-interior)
qed
have rel-interior ‘ {f. f face-of S A aff-dim f = int d}
= {C. hyperplane-cell A C N C C S A aff-dim C = int d}
using hyperl hyper2 by fastforce
then show bij-betw (rel-interior) {f. f face-of S N aff-dim f = int d} {C.
hyperplane-cell A C N C C S A aff-dim C = int d}
unfolding bij-betw-def inj-on-def by (metis (mono-tags) hyper! mem-Collect-eq)

qed
show ?thesis
by (simp add: Euler-characteristic <finite A»)
qged
also have ... = 0
proof —
have A: hyperplane-cellcomplex A (— h) if h € H for h
proof (rule hyperplane-cellcomplex-mono [OF hyperplane-cell-cellcomplex])
have —h={z. fah-z2=0}Vv—-h={z. fah-2< 0}V —-—h={z0<
fah -z}
by (smt (verit, ccfo-SIG) Collect-cong Collect-neg-eq fa that)
then show hyperplane-cell {(fa h,0)} (— h)
by (simp add: hyperplane-cell-singleton fa that)
show {(fa h,0)} C A
by (simp add: A-def that)
qed
then have Ah. h € H = hyperplane-cellcomplex A h
using hyperplane-cellcomplez-Compl by fastforce
then have hyperplane-cellcomplex A S
by (simp add: Seq hyperplane-cellcomplez-Inter)
then have D: Euler-characteristic A (UNIV::'n set) =
Euler-characteristic A (V1 H) + Euler-characteristic A (— () H)
using Fuler-characteristic-cellcomplex-Un
by (metis Compl-partition Diff-cancel Diff-eq Seq «finite A disjnt-def hyper-
plane-cellcomplex-Compl)
have Euler-characteristic A UNIV = FEuler-characteristic {} (UNIV::'n set)
by (simp add: Euler-characterstic-invariant <finite A»)
then have E: Euler-characteristic A UNIV = (—1) ~ (DIM('n))
by (simp add: Euler-characteristic-cell)
have DD: Euler-characteristic A (| (uminus * J)) = (— 1) ~ DIM('n)
if J#{}JCH for J
proof —

26

define B where B = (Ah. (fa h,0::real)) * J
then have B C A
by (simp add: A-def image-mono that)
have 3z. y = —x if y € () (uminus * H) for y::'n — Weirdly, the assumption
is not used
by (metis add.inverse-inverse)
moreover have —z € (| (uminus ‘ H) <— x € interior S for z
proof —
have 1: interior S = {z € S.VheH. fah -z < 0}
using rel-interior-polyhedron-explicit [OF «finite H» - fa)
by (metis (no-types, lifting) inf-top-left Hsub Seq <affine hull S = UNIV»
rel-interior-interior)
have 2: Az y. [y € H;VheH. fa h - © < 0; — z € y] = False
by (smt (verit, best) fa inner-minus-right mem-Collect-eq)
show ?thesis
apply (simp add: 1)
by (smt (verit) 2 x fa Inter-iff Seq inner-minus-right mem-Collect-eq)
qed
ultimately have INT-Compl-H: (| (uminus ‘ H) = uminus ‘ interior S
by blast
obtain z where z: z € (| (uminus ‘ J)
using «J C H» () (uminus * H) = uminus ‘ interior S intS by fastforce
have (| (uminus ¢ J) = Collect (hyperplane-equiv B z) (is YL = ?R)
proof
show ?L C 7R
using fa «J C H» 2
by (fastforce simp: hyperplane-equiv-def hyperplane-side-def B-def set-eq-iff

show ?R C ?L
using z «J C H» apply (clarsimp simp add: hyperplane-equiv-def hyper-
plane-side-def B-def)
by (metis fa in-mono mem-Collect-eq sgn-le-0-iff)
qed
then have hyper-B: hyperplane-cell B ([(uminus ¢ J))
by (metis hyperplane-cell)
have Fuler-characteristic A (((uminus ‘ J)) = Euler-characteristic B ([
(uminus © J))
proof (rule Euler-characterstic-invariant [OF «<finite A»])
show finite B
using <B C A» «<finite A> finite-subset by blast
show hyperplane-cellcomplex A ([(uminus © J))
by (meson «B C A» hyper-B hyperplane-cell-cellcomplex hyperplane-cellcomplez-mono)
show hyperplane-cellcomplex B ([(uminus ¢ J))
by (simp add: hyper-B hyperplane-cell-cellcompler)

qed

also have ... = (— 1) " nat (aff-dim (| (uminus ‘ J)))
using Fuler-characteristic-cell hyper-B by blast

also have ... = (— 1) " DIM('n)

proof —

27

have affine hull (| (uminus * H) = UNIV
by (simp add: INT-Compl-H affine-hull-nonempty-interior intS inte-
rior-negations)
then have affine hull (| (uminus * J) = UNIV
by (metis Inf-superset-mono hull-mono subset-UNIV subset-antisym sub-
set-image-iff that(2))
with aff-dim-eq-full show ?thesis
by (metis nat-int)
qed
finally show ?thesis .
qed
have EE: T | T C uminus * H AN T#{}. (=1) ~(card T + 1) x Eu-
ler-characteristic A (7))
=0T | T Cuminus “HANT #{}. (1) “(card T + 1) % (— 1)~

DIM('n))
by (intro sum.cong [OF refl]) (fastforce simp: subset-image-iff introl: DD)
also have ... = (—1) ~ DIM('n)
proof —

have A: (Y y=1..card H. Y te{z € {T. T C uminus ‘H N'T # {}}. card
z=y}t (= 1) “(card t + 1))
= Te{T. T Cuminus “HANT #{}}. (= 1) (card T + 1))
proof (rule sum.group)
have AC. [C C uminus ‘ H; C # {}] = Suc 0 < card C A card C <
card H
by (meson <finite H> card-eq-0-iff finite-surj le-zero-eq not-less-eq-eq
surj-card-le)
then show card ‘{T. T C uminus ‘H AT # {}} C {1..card H}
by force
qged (auto simp: «<finite H»)

have (3>_n = Suc 0..card H. — (int (card {z. x C uminus ‘ H N x # {} A
card z = n}) * (— 1) " n))
=(_n=S8uc0..card H. (—1) ~ (Suc n) x (card H choose n))
proof (rule sum.cong [OF refl])
fix n
assume n € {Suc 0..card H}
then have {T. 7 C uminus ‘H AT # {} ANcard T =n} ={T.T C
uminus ‘ H A card T = n}
by auto
then have card{T. T C uminus ‘H AT # {} A card T = n} = card
(uminus < H) choose n
by (simp add: <finite H> n-subsets)

also have ... = card H choose n
by (metis card-image double-complement inj-on-inversel)
finally

show — (int (card {T. T C uminus ‘H AT # {} A card T = n}) x (— 1)
“n) = (= 1) " Sucn x int (card H choose n)
by simp
qed

28

also have ... = — (3" k = Suc 0..card H. (—1) "k * (card H choose k))
by (simp add: sum-negf)

also have ... =1 — (3" k=0..card H. (—1) "k * (card H choose k))
using atLeastSucAtMost-greater ThanAtMost by (simp add: sum.head [of 0])
also have ... =1 — 0 " card H
using binomial-ring [of —1 1:int card H] by (simp add: mult.commute
atLeast0AtMost)
also have ... = 1

using Seq <finite H> <S # UNIV) card-0-eq by auto
finally have C: (3. n = Suc 0..card H. — (int (card {z. z C uminus ‘ H A
z#{} Ncardz =n}) * (— 1) "n)) = (1:int) .

have O 7T | 7 C uminus ‘H AT # {}. (— 1) " (card T + 1)) = (1:int)
unfolding A [symmetric] by (simp add: C)
then show ?thesis
by (simp flip: sum-distrib-right power-Suc)
qed
finally have (37 | T C wminus * H N T#{}. (—1) " (card T + 1) *
Euler-characteristic A (N T))
= (—1) T DIM('n) .
then have FEuler-characteristic A (J (uminus * H)) = (—=1) ~ (DIM('n))
using Fuler-characteristic-inclusion-exclusion [OF «finite A»]
by (smt (verit) A Collect-cong «finite H» finite-imagel image-iff sum.cong)
then show ?thesis
using D FE by (simp add: uminus-Inf Seq)
qged
finally show ?thesis .
qed

1.6 Euler-Poincare relation for special (n — 1)-dimensional
polytope

lemma FEuler-Poincare-lemma:
fixes p :: 'n::euclidean-space set
assumes DIM('n) > 2 polytope p i € Basis and affp: affine hull p = {z. = - i
-
shows (> d = 0..DIM('n) — 1. (—=1) ~d * int (card {f. f face-of p A aff-dim f
=int d})) = 1
proof —
have aff-dim p = aff-dim {z. i - z = 1}
by (metis (no-types, lifting) Collect-cong aff-dim-affine-hull affp inner-commaute)
also have ... = int (DIM('n) — 1)
using aff-dim-hyperplane [of i 1] <i € Basis» by fastforce
finally have AP: aff-dim p = int (DIM('n) — 1) .
show ?thesis
proof (cases p = {})
case True
with AP show ?thesis by simp
next

29

case Fulse
define S where S = conic hull p
have 1: (conichullf)N{z.z-i=1}=fif fC{z.z-i=1}forf
using that
by (smt (verit, ccfu-threshold) affp conic-hull-Int-affine-hull hull-hull in-
ner-zero-left mem-Collect-eq)
obtain K where finite K and K: p = convex hull K
by (meson assms(2) polytope-def)
then have convez-cone hull K = conic hull (convezx hull K)
using False convez-cone-hull-separate-nonempty by auto
then have polyhedron S
using polyhedron-convez-cone-hull
by (simp add: S-def <polytope p» polyhedron-conic-hull-polytope)
then have convez S
by (simp add: polyhedron-imp-conver)
then have conic S
by (simp add: S-def conic-conic-hull)
then have 0 € §
by (simp add: False S-def)
have S # UNIV
proof
assume S = UNIV
then have conic hullp N {z. i = 1} =p
by (metis 1 affp hull-subset)
then have bounded {z. z - i = 1}
using S-def «S = UNIV» assms(2) polytope-imp-bounded by auto
then obtain B where B>0 and B: A\z.z € {z. 2 - i =1} = normz < B
using bounded-normE by blast
define z where z = (> b€ Basis. (if b=i then 1 else B+1) % b)
obtain j where j: j € Basis j#1
using «(DIM('n) > 2»
by (metis DIM-complex DIM-ge-SucO card-2-iff’ card-le-Suc0-iff-eq eu-
clidean-space-class. finite- Basis le-antisym)
have B+1 < |z - j]
using j by (simp add: z-def)
also have ... < norm x
using Basis-le-norm j by blast
finally have norm =z > B
by simp
moreover have z - { = 1
by (simp add: x-def «i € Basis»)
ultimately show Fulse
using B by force
qed
have § # {}
by (metis False S-def empty-subsetl equalityl hull-subset)
have Acz. [0 < ¢z ep,z# 0] = 0 <(c*rx) -1
by (metis (mono-tags) Int-Collect Int-iff affp hull-inc inner-commute in-
ner-scaleR-right mult.right-neutral)

30

then have doti-gt0: 0 < z - {if S: z € S and z # 0 for z
using that by (auto simp: S-def conic-hull-explicit)
have Aa. {a} face-of S = a =0
using <conic S» conic-contains-0 face-of-conic by blast
moreover have {0} face-of S
proof —
have Aabu. J[ae S;be S;a#bu<1;0<wu; (I —u)*gpa+u*gb
= (] = False
using conic-def euclidean-all-zero-iff inner-left-distrib scaleR-eq-0-iff
by (smt (verit, del-insts) doti-gt0 <conic S» <i € Basis))
then show ?thesis
by (auto simp: in-segment face-of-singleton extreme-point-of-def <0 € S»)
qed
ultimately have face-0: {f. f face-of S A (Ja. f = {a})} = {{0}}
by auto
have interior S # {}
proof
assume interior S = {}
then obtain a b where a # 0 and ab: S C {z. a - z = b}
by (metis <convex S empty-interior-subset-hyperplane)
have {z. z - i =1} C{z. a - z = b}
by (metis S-def ab affine-hyperplane affp hull-inc subset-eq subset-hull)
moreover have - {z. z - i = 1} C {z. a - © = b}
using aff-dim-hyperplane [of a b
by (metis AP <a # 0) aff-dim-eg-full-gen affine-hyperplane affp hull-subset
less-le-not-le subset-hull)
ultimately have S C {z. z - i = 1}
using ab by auto
with S # {}> show False
using <conic S» conic-contains-0 by fastforce

qed
then have (>_d = 0.DIM('n). (—1) ~d * int (card {f. f face-of S A aff-dim
f=intd}) =0

using Fuler-polyhedral-cone <S # UNIV)» <conic Sy <polyhedron S) by blast
then have 1 + (Y. d = 1..DIM('n). (=1) ~d * (card {f. f face-of S A aff-dim
f=dp) =0
by (simp add: sum.atLeast-Suc-atMost aff-dim-eq-0 face-0)
moreover have (> d = 1..DIM('n). (—1) ~d * (card {f. f face-of S A aff-dim

[= dp)
=—(.d=0..DIM('n) — 1. (—1) ~d * int (card {f. f face-of p A
aff-dim f = int d}))
proof —
have (3. d = 1..DIM('n). (—=1) ~d * (card {f. f face-of S A aff-dim f = d}))
= (>_>d = Suc 0..Suc (DIM('n)—1). (—1) ~d * (card {f. f face-of S A
aff-dim | = d})
by auto
also have ... = — (3. d = 0..DIM('n) — 1. (—1) ~d * card {f. f face-of S
A aff-dim f = 1 + int d})
unfolding sum.atLeast-Suc-atMost-Suc-shift by (simp add: sum-negf)

31

also have ... = — (3. d = 0..DIM('n) — 1. (—1) ~d * card {f. f face-of p
A aff-dim f = int d})
proof —
{ fix d
assume d < DIM('n) — Suc 0
have conic-face-p: (conic hull f) face-of S if f face-of p for f
proof (cases f={})
case Fulse
have {c*g z |cz. 0 < cAz € f} C{c*rpalcz. 0 <cAze€p}
using face-of-imp-subset that by blast
moreover
have convexr {c xg z |cz. 0 < c ANz € [}
by (metis (no-types) cone-hull-expl convex-cone-hull face-of-imp-convex
that)
moreover
have (Acz. caxpa=c*gpraz N0 <cAze€f)AN(Tcxz cbxgrb=c
spx N0 <cANzcf)
if Vaep. Vbep. (Fz€f. x € open-segment a b)) — a € f N b€ |
and 0 < caa€epl0<cbbep
and 0 < cx z € f and oseg: cx xg x € open-segment (ca xg a) (cb
*R b)
for ca achbbcrz
proof —
have ai: a -7 =1 and bi: b - i = 1
using affp hull-inc that(3,5) by fastforce+
have zi: z - i = 1
using affp that «f face-of p> face-of-imp-subset hull-subset by fastforce
show ?thesis
proof (cases cx xgp x = 0)
case True
then show ?thesis
using {0} face-of S» face-ofD <conic S» that
by (smt (verit, best) S-def conic-def hull-subset insertCI singletonD
subsetD)
next
case Fulse
then have cx # 0z # 0
by auto
obtain v where 0 < uu < 1 and u: ¢z *xg ¥ = (I — u) *g (ca *g
a) + u *gr (cb g b)
using oseg in-segment(2) by metis
show ?thesis
proof (cases z = a)
case True
then have wa: (cx — (1 — u) * ca) xg a = (u * ¢cb) *xg b
using u by (simp add: algebra-simps)
then have (cz — (1 — u) *x ca) ¥ 1 = u * cb x 1
by (metis ai bi inner-scaleR-left)
then have a=bV cb = 0

32

using ua (0 < w» by force
then show ?thesis
by (metis True scaleR-zero-left that(2) that(4) that(7))
next
case Fulse
show ?thesis
proof (cases z = b)
case True
then have ub: (cz — (u x ¢b)) *g b= ((I — u) * ca) xR a
using u by (simp add: algebra-simps)
then have (cx — (u * ¢b)) * 1 = (1 — u) x ca) * 1
by (metis ai bi inner-scaleR-left)
then have a=bV ca = 0
using (u < 1) ub by auto
then show ?thesis
using Fualse True that(4) that(7) by auto
next
case Fulse
have cz > 0
using <cx # 0> <0 < cxy by linarith
have Fulse if ca = 0
proof —
have cx = u * ¢b
by (metis add-0 bi inner-real-def inner-scaleR-left real-inner-1-right
scale-eq-0-iff that u xi)
then show Fulse
using «x # b <cx # 0> that u by force

qed
with <0 < ca)» have ca > 0
by force

have aff: © € affine hull p A a € affine hull p A b € affine hull p
using affp xi ai bi by blast
show ?thesis
proof (cases cb=0)
case True
have u" cx xg x = ((1 — u) * ca) *g a
using u by (simp add: True)
then have cx = ((I — u) * ca)
by (metis ai inner-scaleR-left mult.right-neutral i)
then show ?thesis
using True u’ <cx # 0 <ca > 0 <z € f> by auto
next
case Fulse
with <¢b > 0> have c¢b > 0
by linarith
{ have Fualse if a=b
proof —
have *: cx xg x = ((I — u) * ca + u * ¢b) *g b
using u that by (simp add: algebra-simps)

33

then have cx = ((1I — u) * ca + u * cb)
by (metis zi bi inner-scaleR-left mult.right-neutral)
with «x # b <cx # 0> * show Fulse
by force
qed
}
moreover
have cz xgp z /r cx = (((1 — u) * ca) *g a + (cb * u) *r b)
/R cT
using u by simp
then have zeq: x = ((I—u) * ca / cx) *g a + (cb* u [/ cx) %R b
by (simp add: <cx # 0) divide-inverse-commute scaleR-right-distrib)
then have proj: 1 = ((1—u) * ca / cz) + (cb * u / cx)
using ai bi zi by (simp add: inner-left-distrib)
then have eq: cx + ca x v = ca + cb *x u
using <cx > 0» by (simp add: field-simps)
have Ju>0. u < 1 ANz =(1 —u) *g a+ ux*gb
proof (intro exl conjI)
show 0 < inverse cx * u * cb
by (simp add: <0 < ¢by <0 < cx> <0 < w)
show inverse cx x u * cb < 1
using proj <0 < cay <0 < cx> <u < 1y by (simp add:
divide-simps)
show z = (1 — inverse cx x u % ¢b) xg a + (inverse cx * u *
cb) g b
using eq <cx # 0> by (simp add: xeq field-simps)
qed
ultimately show ?thesis
using that by (metis in-segment(2))
qed
qed
qed
qged
qed
ultimately show ?Zthesis
using that by (auto simp: S-def conic-hull-explicit face-of-def)
ged auto
moreover
have conic-hyperplane-eq: conic hull (f N {z. z-i=1})=f
if f face-of S 0 < aff-dim f for f
proof
show conic hull (f N {z. x-i=1}) Cf
by (metis <conic S» face-of-conic inf-lel subset-hull that(1))
have dcz’. z=c*xg2’' N0 <cAz'efnz'-i=1ifzx e fforx
proof (cases z=0)
case True
obtain y where y € fy # 0
by (metis <0 < aff-dim f> aff-dim-sing aff-dim-subset insertCI
linorder-not-le subset-iff)

34

then have y - 7 > 0
using «f face-of S» doti-gt0 face-of-imp-subset by blast
then have y /p (y- i) € fA(y /r(y-19) -i=1
using <conic S» <f face-of Sy <y € f> conic-def face-of-conic by fastforce
then show ?%thesis
using True by fastforce
next
case Fulse
then have z - 7 > 0
using «f face-of S» doti-gt0 face-of-imp-subset that by blast
then have z /p (z - i) e fA(z /g (z-1))-i=1
using <conic S» «f face-of Sy «x € f)> conic-def face-of-conic by fastforce
then show ?thesis
by (metis <0 < z - > divideR-right eucl-less-le-not-le)
qed
then show f C conic hull (f N {z. z-i=1})
by (auto simp: conic-hull-explicit)
qed

have conic-face-S: conic hull f face-of S
if f face-of S for f
by (metis <conic S» face-of-conic hull-same that)

have aff-1d: aff-dim (conic hull f) = aff-dim f + 1 (is ?lhs = ?rhs)
if f face-of p and f # {} for f
proof (rule order-antisym,)
have ?lhs < aff-dim(affine hull (insert 0 (affine hull f)))
proof (intro aff-dim-subset hull-minimal)
show f C affine hull insert 0 (affine hull f)
by (metis hull-insert hull-subset insert-subset)
show conic (affine hull insert 0 (affine hull f))
by (metis affine-hull-span-0 conic-span hull-inc insertl1)
qed
also have ... < ?rhs
by (simp add: aff-dim-insert)
finally show ?lhs < ?rhs .
have aff-dim f < aff-dim (conic hull f)
proof (intro aff-dim-psubset psubsetl)
show affine hull f C affine hull (conic hull f)
by (simp add: hull-mono hull-subset)
have 0 ¢ affine hull f
using affp face-of-imp-subset hull-mono that(1) by fastforce
moreover have 0 € affine hull (conic hull f)
by (simp add: <f # {}> hull-inc)
ultimately show affine hull f # affine hull (conic hull f)
by auto
qed
then show 2rhs < ?lhs
by simp

35

qed

have face-S-imp-face-p: N\f. f face-of S = fN{z. z-i= 1} face-of p
by (metis 1 S-def affp convex-affine-hull face-of-slice hull-subset)

have conic-eq-f: conichull f N {z. z-i=1}y=f
if f face-of p for f
by (metis 1 affp face-of-imp-subset hull-subset le-inf-iff that)

have dim-f-hyperplane: aff-dim (f N {z. z - i =1}) = int d
if f face-of S aff-dim f = 1 + int d for f
proof —
have conic f
using <conic Sy face-of-conic that(1) by blast
then have 0 € f
using conic-contains-0 that by force
moreover have - f C {0}
using subset-singletonD that(2) by fastforce
ultimately obtain y where y: y € fy # 0
by blast
then have y - 7 > 0
using doti-gt0 face-of-imp-subset that(1) by blast
have aff-dim (conic hull (f N {z. z - i = 1})) = aff-dim (f N {z. z - i
=1}) + 1
proof (rule aff-1d)
show f N {z. 2 -i= 1} face-of p
by (simp add: face-S-imp-face-p that(1))
have inverse(y - @) xg y € f
using <0 < y - ©» <conic Sy conic-mul face-of-conic that(1) y(1) by
fastforce
moreover have inverse(y - i) xg y € {z. z - i =1}
using <y - i > 0» by (simp add: field-simps)
ultimately show f N {z. 2z - i = 1} # {}
by blast
qed
then show ?thesis
by (simp add: conic-hyperplane-eq that)
qed
have card {f. f face-of S A aff-dim f = 1 + int d}
= card {f. f face-of p A aff-dim f = int d}
proof (intro bij-betw-same-card bij-betw-imagel)
show inj-on (\f. f N {z. z-i=1}){f. fface-of S A aff-dim f =1 +
int d}
by (smt (verit) conic-hyperplane-eq inj-on-def mem-Collect-eq of-nat-less-0-iff)

show (Af. fNn{z. z-i=1}) ‘{f. fface-of S A aff-dim f = 1 + int d}
= {f. f face-of p A aff-dim f = int d}
using aff-1d conic-eq-f conic-face-p
by (fastforce simp: image-iff face-S-imp-face-p dim-f-hyperplane)

36

qed
}
then show ?thesis
by force
qed
finally show ?thesis .
qed
ultimately show ?thesis
by auto
qged
qged

corollary Fuler-poincare-special:
fixes p :: 'n::euclidean-space set
assumes 2 < DIM('n) polytope p i € Basis and affp: affine hull p = {z. = - i
_
shows (>°d = 0..DIM('n) — 1. (—1) ~d * card {f. [face-of p A aff-dim f =
d}) =1
proof —
{ fix d
have eq: image((+) i) ‘ {f. f face-of p} N image((+) i) “{f. aff-dim f = int d}
= image((+) 7) ‘{f. f face-of p} N {f. aff-dim f = int d}
by (auto simp: aff-dim-translation-eq)
have card {f. f face-of p A aff-dim [= int d} = card (image((+) @) ‘{f. f
face-of p N aff-dim f = int d})
by (simp add: inj-on-image card-image)

also have ... = card (image((+) ©) “{f. f face-of p} N A{f. aff-dim f = int d})
by (simp add: Collect-conj-eq image-Int inj-on-image eq)
also have ... = card {f. f face-of (+) i ‘p A aff-dim f = int d}

by (simp add: Collect-conj-eq faces-of-translation)
finally have card {f. f face-of p A aff-dim f = int d} = card {f. f face-of (+)
i “p A aff-dim f = int d} .
}
then
have (3. d = 0.DIM('n) — 1. (—=1) ~d * card {f. f face-of p A aff-dim f = d})
=0O_d=0.DIM('n) — 1. (=1) " d x card {f. f face-of (+) i ‘p A aff-dim
f =intd})
by simp
also have ... = I
proof (rule Euler-Poincare-lemma)
have A\z. [i € Basis; z - i = 1] = Jy. y-i=0ANz =y + i
by (metis add-cancel-left-left eq-diff-eq inner-diff-left inner-same-Basis)
then show affine hull (+) ¢ ‘p={z. z-i=1}
using (i € Basis) unfolding affine-hull-translation affp by (auto simp:
algebra-simps)
qged (use assms polytope-translation-eq in auto)
finally show ?thesis .
qed

37

1.7 Now Euler-Poincare for a general full-dimensional poly-
tope

theorem FEuler-Poincare-full:
fixes p :: 'n::euclidean-space set
assumes polytope p aff-dim p = DIM('n)
shows (3" d = 0..DIM('n). (—1) ~d x (card {f. f face-of p A aff-dim f = d}))
=1
proof —
define augm:: 'n = 'n x real where augm = Az. (z,0)
define S where S = augm ‘p
obtain i::'n where i: i € Basis
by (meson SOME-Basis)
have bounded-linear augm
by (auto simp: augm-def bounded-linearI”)
then have polytope S
unfolding S-def using polytope-linear-image <polytope p» bounded-linear.linear
by blast
have face-pS: \F. F face-of p +— augm ‘ F face-of S
using S-def <bounded-linear augm> augm-def bounded-linear.linear face-of-linear-image
inj-on-def by blast
have aff-dim-eq[simp]: aff-dim (augm ‘ F) = aff-dim F for F
using <bounded-linear augm» aff-dim-injective-linear-image bounded-linear.linear

unfolding augm-def inj-on-def by blast
have x: {F. F face-of S A aff-dim F = int d} = (image augm) ‘{F. F face-of p
A aff-dim F = int d}
(is 2lhs = ?rhs) for d
proof
have A\G. [G face-of S; aff-dim G = int d]
= 3 F. F face-of p A\ aff-dim F = int d N G = augm ‘' F
by (metis face-pS S-def aff-dim-eq face-of-imp-subset subset-imageF)
then show 2lhs C ?rhs
by (auto simp: image-iff)
qed (auto simp: image-iff face-pS)
have ceqc: card {f. [face-of S N aff-dim f = int d} = card {f. [face-of p A
aff-dim f = int d} for d
unfolding *
by (rule card-image) (auto simp: inj-on-def augm-def)
have (3 d = 0..DIM('n x real) — 1. (= 1) ~d = int (card {f. f face-of S A
aff-dim f = int d})) = 1
proof (rule Euler-poincare-special)
show 2 < DIM('n x real)
by auto
have snd0: (a, b) € affine hull S = b = 0 for a b
using S-def <bounded-linear augm) affine-hull-linear-image augm-def by blast
moreover have Aa. (a, 0) € affine hull S
using S-def <bounded-linear augm) aff-dim-eq-full affine-hull-linear-image
assms(2) augm-def by blast
ultimately show affine hull S = {z. = - (0::'n, 1::real) = 0}

38

by auto
qed (auto simp: <polytope S Basis-prod-def)
then show ?thesis
by (simp add: ceqc)
qed

In particular, the Euler relation in 3 dimensions

corollary FEuler-relation:
fixes p :: 'n::euclidean-space set
assumes polytope p aff-dim p = 3 DIM('n) = 8
shows (card {v. v face-of p A aff-dim v = 0} + card {f. f face-of p N aff-dim f
= 2}) — card {e. e face-of p A aff-dim e =1} = 2
proof —
have Az. [z face-of p; aff-dimz = 3] = z=p
using assms by (metis face-of-aff-dim-lt less-irrefl polytope-imp-convez)
then have 3: {f. f face-of p A\ aff-dim f = 3} = {p}
using assms by (auto simp: face-of-refl polytope-imp-convex)
have (3. d = 0..53. (=1) ~d = int (card {f. f face-of p A aff-dim f = int d})) =
1
using Fuler-Poincare-full [of p] assms by simp
then show ?thesis
by (simp add: sum.atLeastO-atMost-Suc-shift numeral-3-eq-3 3)
qed

end

References

[1] I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discov-
ery. 1976.

[2] J. Lawrence. A short proof of Euler’s relation for convex polytopes.
Canadian Mathematical Bulletin, 40(4):471-474, 1997.

39

	Euler's Polyhedron Formula
	Cells of a hyperplane arrangement
	A cell complex is considered to be a union of such cells
	Euler characteristic
	Show that the characteristic is invariant w.r.t. hyperplane arrangement.
	Euler-type relation for full-dimensional proper polyhedral cones
	Euler-Poincare relation for special (n-1)-dimensional polytope
	Now Euler-Poincare for a general full-dimensional polytope

