
Euler’s Polyhedron Formula

Lawrence C. Paulson

March 17, 2025

Abstract

Euler stated in 1752 that every convex polyhedron satisfied the for-
mula V −E+F = 2 where V , E and F are the numbers of its vertices,
edges, and faces. For three dimensions, the well-known proof involves
removing one face and then flattening the remainder to form a planar
graph, which then is iteratively transformed to leave a single triangle.
The history of that proof is extensively discussed and elaborated by
Imre Lakatos [1], leaving one finally wondering whether the theorem
even holds. The formal proof provided here has been ported from HOL
Light, where it is credited to Lawrence [2]. The proof generalises Eu-
ler’s observation from solid polyhedra to convex polytopes of arbitrary
dimension.

1

Contents
1 Euler’s Polyhedron Formula 3

1.1 Cells of a hyperplane arrangement 3
1.2 A cell complex is considered to be a union of such cells 7
1.3 Euler characteristic . 10
1.4 Show that the characteristic is invariant w.r.t. hyperplane

arrangement. 12
1.5 Euler-type relation for full-dimensional proper polyhedral cones 17
1.6 Euler-Poincare relation for special (n−1)-dimensional polytope 29
1.7 Now Euler-Poincare for a general full-dimensional polytope . 38

Acknowledgements The author was supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council.

2

1 Euler’s Polyhedron Formula
One of the Famous 100 Theorems, ported from HOL Light

Cited source: Lawrence, J. (1997). A Short Proof of Euler’s Relation for
Convex Polytopes. Canadian Mathematical Bulletin, 40(4), 471–474.
theory Euler-Formula

imports
HOL−Analysis.Analysis

begin

Interpret which "side" of a hyperplane a point is on.
definition hyperplane-side

where hyperplane-side ≡ λ(a,b). λx. sgn (a · x − b)

Equivalence relation imposed by a hyperplane arrangement.
definition hyperplane-equiv
where hyperplane-equiv ≡ λA x y. ∀ h ∈ A. hyperplane-side h x = hyperplane-side

h y

lemma hyperplane-equiv-refl [iff]: hyperplane-equiv A x x
by (simp add: hyperplane-equiv-def)

lemma hyperplane-equiv-sym:
hyperplane-equiv A x y ←→ hyperplane-equiv A y x

by (auto simp: hyperplane-equiv-def)

lemma hyperplane-equiv-trans:
[[hyperplane-equiv A x y; hyperplane-equiv A y z]] =⇒ hyperplane-equiv A x z

by (auto simp: hyperplane-equiv-def)

lemma hyperplane-equiv-Un:
hyperplane-equiv (A ∪ B) x y ←→ hyperplane-equiv A x y ∧ hyperplane-equiv B

x y
by (meson Un-iff hyperplane-equiv-def)

1.1 Cells of a hyperplane arrangement
definition hyperplane-cell :: (′a::real-inner × real) set ⇒ ′a set ⇒ bool

where hyperplane-cell ≡ λA C . ∃ x. C = Collect (hyperplane-equiv A x)

lemma hyperplane-cell: hyperplane-cell A C ←→ (∃ x. C = {y. hyperplane-equiv
A x y})

by (simp add: hyperplane-cell-def)

lemma not-hyperplane-cell-empty [simp]: ¬ hyperplane-cell A {}
using hyperplane-cell by auto

lemma nonempty-hyperplane-cell: hyperplane-cell A C =⇒ (C 6= {})

3

by auto

lemma Union-hyperplane-cells:
⋃
{C . hyperplane-cell A C} = UNIV

using hyperplane-cell by blast

lemma disjoint-hyperplane-cells:
[[hyperplane-cell A C1 ; hyperplane-cell A C2 ; C1 6= C2]] =⇒ disjnt C1 C2

by (force simp: hyperplane-cell-def disjnt-iff hyperplane-equiv-def)

lemma disjoint-hyperplane-cells-eq:
[[hyperplane-cell A C1 ; hyperplane-cell A C2]] =⇒ (disjnt C1 C2 ←→ (C1 6=

C2))
using disjoint-hyperplane-cells by auto

lemma hyperplane-cell-empty [iff]: hyperplane-cell {} C ←→ C = UNIV
by (simp add: hyperplane-cell hyperplane-equiv-def)

lemma hyperplane-cell-singleton-cases:
assumes hyperplane-cell {(a,b)} C
shows C = {x. a · x = b} ∨ C = {x. a · x < b} ∨ C = {x. a · x > b}

proof −
obtain x where x: C = {y. hyperplane-side (a, b) x = hyperplane-side (a, b) y}

using assms by (auto simp: hyperplane-equiv-def hyperplane-cell)
then show ?thesis

by (auto simp: hyperplane-side-def sgn-if split: if-split-asm)
qed

lemma hyperplane-cell-singleton:
hyperplane-cell {(a,b)} C ←→
(if a = 0 then C = UNIV else C = {x. a · x = b} ∨ C = {x. a · x < b} ∨ C

= {x. a · x > b})
apply (simp add: hyperplane-cell-def hyperplane-equiv-def hyperplane-side-def

sgn-if split: if-split-asm)
by (smt (verit) Collect-cong gt-ex hyperplane-eq-Ex lt-ex)

lemma hyperplane-cell-Un:
hyperplane-cell (A ∪ B) C ←→

C 6= {} ∧
(∃C1 C2 . hyperplane-cell A C1 ∧ hyperplane-cell B C2 ∧ C = C1 ∩ C2)

by (auto simp: hyperplane-cell hyperplane-equiv-def)

lemma finite-hyperplane-cells:
finite A =⇒ finite {C . hyperplane-cell A C}

proof (induction rule: finite-induct)
case (insert p A)
obtain a b where peq: p = (a,b)

by fastforce
have Collect (hyperplane-cell {p}) ⊆ {{x. a · x = b},{x. a · x < b},{x. a · x >

b}}

4

using hyperplane-cell-singleton-cases
by (auto simp: peq)

then have ∗: finite (Collect (hyperplane-cell {p}))
by (simp add: finite-subset)

define C where C ≡ (
⋃

C1 ∈ {C . hyperplane-cell A C}.
⋃

C2 ∈ {C . hyper-
plane-cell {p} C}. {C1 ∩ C2})

have {a. hyperplane-cell (insert p A) a} ⊆ C
using hyperplane-cell-Un [of {p} A] by (auto simp: C-def)

moreover have finite C
using ∗ C-def insert.IH by blast

ultimately show ?case
using finite-subset by blast

qed auto

lemma finite-restrict-hyperplane-cells:
finite A =⇒ finite {C . hyperplane-cell A C ∧ P C}

by (simp add: finite-hyperplane-cells)

lemma finite-set-of-hyperplane-cells:
[[finite A;

∧
C . C ∈ C =⇒ hyperplane-cell A C]] =⇒ finite C

by (metis finite-hyperplane-cells finite-subset mem-Collect-eq subsetI)

lemma pairwise-disjoint-hyperplane-cells:
(
∧

C . C ∈ C =⇒ hyperplane-cell A C) =⇒ pairwise disjnt C
by (metis disjoint-hyperplane-cells pairwiseI)

lemma hyperplane-cell-Int-open-affine:
assumes finite A hyperplane-cell A C
obtains S T where open S affine T C = S ∩ T
using assms

proof (induction arbitrary: thesis C rule: finite-induct)
case empty
then show ?case

by auto
next

case (insert p A thesis C ′)
obtain a b where peq: p = (a,b)

by fastforce
obtain C C1 where C1 : hyperplane-cell {(a,b)} C1 and C : hyperplane-cell A

C
and C ′ 6= {} and C ′: C ′ = C1 ∩ C

by (metis hyperplane-cell-Un insert.prems(2) insert-is-Un peq)
then obtain S T where ST : open S affine T C = S ∩ T

by (meson insert.IH)
show ?case
proof (cases a=0)

case True
with insert.prems show ?thesis

by (metis C1 Int-commute ST ‹C ′ = C1 ∩ C › hyperplane-cell-singleton

5

inf-top.right-neutral)
next

case False
then consider C1 = {x. a · x = b} | C1 = {x. a · x < b} | C1 = {x. b < a

· x}
by (metis C1 hyperplane-cell-singleton)

then show ?thesis
proof cases

case 1
then show thesis
by (metis C ′ ST affine-Int affine-hyperplane inf-left-commute insert.prems(1))

next
case 2
with ST show thesis

by (metis Int-assoc C ′ insert.prems(1) open-Int open-halfspace-lt)
next

case 3
with ST show thesis

by (metis Int-assoc C ′ insert.prems(1) open-Int open-halfspace-gt)
qed

qed
qed

lemma hyperplane-cell-relatively-open:
assumes finite A hyperplane-cell A C
shows openin (subtopology euclidean (affine hull C)) C

proof −
obtain S T where open S affine T C = S ∩ T

by (meson assms hyperplane-cell-Int-open-affine)
show ?thesis
proof (cases S ∩ T = {})

case True
then show ?thesis

by (simp add: ‹C = S ∩ T ›)
next

case False
then have affine hull (S ∩ T) = T
by (metis ‹affine T › ‹open S› affine-hull-affine-Int-open hull-same inf-commute)
then show ?thesis

using ‹C = S ∩ T › ‹open S› openin-subtopology by fastforce
qed

qed

lemma hyperplane-cell-relative-interior :
[[finite A; hyperplane-cell A C]] =⇒ rel-interior C = C

by (simp add: hyperplane-cell-relatively-open rel-interior-openin)

lemma hyperplane-cell-convex:
assumes hyperplane-cell A C

6

shows convex C
proof −

obtain c where c: C = {y. hyperplane-equiv A c y}
by (meson assms hyperplane-cell)

have convex (
⋂

h∈A. {y. hyperplane-side h c = hyperplane-side h y})
proof (rule convex-INT)

fix h :: ′a × real
assume h ∈ A
obtain a b where heq: h = (a,b)

by fastforce
have [simp]: {y. ¬ a · c < a · y ∧ a · y = a · c} = {y. a · y = a · c}

{y. ¬ b < a · y ∧ a · y 6= b} = {y. b > a · y}
by auto

then show convex {y. hyperplane-side h c = hyperplane-side h y}
by (fastforce simp: heq hyperplane-side-def sgn-if convex-halfspace-gt con-

vex-halfspace-lt convex-hyperplane cong: conj-cong)
qed
with c show ?thesis

by (simp add: hyperplane-equiv-def INTER-eq)
qed

lemma hyperplane-cell-Inter :
assumes

∧
C . C ∈ C =⇒ hyperplane-cell A C

and C 6= {} and INT :
⋂
C 6= {}

shows hyperplane-cell A (
⋂
C)

proof −
have

⋂
C = {y. hyperplane-equiv A z y}

if z ∈
⋂
C for z

using assms that by (force simp: hyperplane-cell hyperplane-equiv-def)
with INT hyperplane-cell show ?thesis

by fastforce
qed

lemma hyperplane-cell-Int:
[[hyperplane-cell A S ; hyperplane-cell A T ; S ∩ T 6= {}]] =⇒ hyperplane-cell A

(S ∩ T)
by (metis hyperplane-cell-Un sup.idem)

1.2 A cell complex is considered to be a union of such cells
definition hyperplane-cellcomplex

where hyperplane-cellcomplex A S ≡
∃T . (∀C ∈ T . hyperplane-cell A C) ∧ S =

⋃
T

lemma hyperplane-cellcomplex-empty [simp]: hyperplane-cellcomplex A {}
using hyperplane-cellcomplex-def by auto

lemma hyperplane-cell-cellcomplex:

7

hyperplane-cell A C =⇒ hyperplane-cellcomplex A C
by (auto simp: hyperplane-cellcomplex-def)

lemma hyperplane-cellcomplex-Union:
assumes

∧
S . S ∈ C =⇒ hyperplane-cellcomplex A S

shows hyperplane-cellcomplex A (
⋃
C)

proof −
obtain F where F :

∧
S . S ∈ C =⇒ (∀C ∈ F S . hyperplane-cell A C) ∧ S =⋃

(F S)
by (metis assms hyperplane-cellcomplex-def)

show ?thesis
unfolding hyperplane-cellcomplex-def
using F by (fastforce intro: exI [where x=

⋃
(F ‘ C)])

qed

lemma hyperplane-cellcomplex-Un:
[[hyperplane-cellcomplex A S ; hyperplane-cellcomplex A T]]

=⇒ hyperplane-cellcomplex A (S ∪ T)
by (smt (verit) Un-iff Union-Un-distrib hyperplane-cellcomplex-def)

lemma hyperplane-cellcomplex-UNIV [simp]: hyperplane-cellcomplex A UNIV
by (metis Union-hyperplane-cells hyperplane-cellcomplex-def mem-Collect-eq)

lemma hyperplane-cellcomplex-Inter :
assumes

∧
S . S ∈ C =⇒ hyperplane-cellcomplex A S

shows hyperplane-cellcomplex A (
⋂
C)

proof (cases C = {})
case True
then show ?thesis

by simp
next

case False
obtain F where F :

∧
S . S ∈ C =⇒ (∀C ∈ F S . hyperplane-cell A C) ∧ S =⋃

(F S)
by (metis assms hyperplane-cellcomplex-def)

have ∗: C = (λS .
⋃
(F S)) ‘ C

using F by force
define U where U ≡

⋃
{T ∈ {

⋂
(g ‘ C) |g. ∀S∈C. g S ∈ F S}. T 6= {}}

have
⋂
C =

⋃
{
⋂
(g ‘ C) |g. ∀S∈C. g S ∈ F S}

using False F unfolding Inter-over-Union [symmetric]
by blast

also have . . . = U
unfolding U-def
by blast

finally have
⋂
C = U .

have hyperplane-cellcomplex A U
using False F unfolding U-def
apply (intro hyperplane-cellcomplex-Union hyperplane-cell-cellcomplex)
by (auto intro!: hyperplane-cell-Inter)

8

then show ?thesis
by (simp add: ‹

⋂
C = U ›)

qed

lemma hyperplane-cellcomplex-Int:
[[hyperplane-cellcomplex A S ; hyperplane-cellcomplex A T]]

=⇒ hyperplane-cellcomplex A (S ∩ T)
using hyperplane-cellcomplex-Inter [of {S ,T}] by force

lemma hyperplane-cellcomplex-Compl:
assumes hyperplane-cellcomplex A S
shows hyperplane-cellcomplex A (− S)

proof −
obtain C where C:

∧
C . C ∈ C =⇒ hyperplane-cell A C and S =

⋃
C

by (meson assms hyperplane-cellcomplex-def)
have hyperplane-cellcomplex A (

⋂
T ∈ C. −T)

proof (intro hyperplane-cellcomplex-Inter)
fix C0
assume C0 ∈ uminus ‘ C
then obtain C where C : C0 = −C C ∈ C

by auto
have ∗: −C =

⋃
{D. hyperplane-cell A D ∧ D 6= C} (is - = ?rhs)

proof
show − C ⊆ ?rhs

using hyperplane-cell by blast
show ?rhs ⊆ − C

by clarify (meson ‹C ∈ C› C disjnt-iff disjoint-hyperplane-cells)
qed
then show hyperplane-cellcomplex A C0
by (metis (no-types, lifting) C (1) hyperplane-cell-cellcomplex hyperplane-cellcomplex-Union

mem-Collect-eq)
qed
then show ?thesis

by (simp add: ‹S =
⋃
C› uminus-Sup)

qed

lemma hyperplane-cellcomplex-diff :
[[hyperplane-cellcomplex A S ; hyperplane-cellcomplex A T]]

=⇒ hyperplane-cellcomplex A (S − T)
using hyperplane-cellcomplex-Inter [of {S ,−T}]
by (force simp: Diff-eq hyperplane-cellcomplex-Compl)

lemma hyperplane-cellcomplex-mono:
assumes hyperplane-cellcomplex A S A ⊆ B
shows hyperplane-cellcomplex B S

proof −
obtain C where C:

∧
C . C ∈ C =⇒ hyperplane-cell A C and eq: S =

⋃
C

by (meson assms hyperplane-cellcomplex-def)
show ?thesis

9

unfolding eq
proof (intro hyperplane-cellcomplex-Union)

fix C
assume C ∈ C
have

∧
x. x ∈ C =⇒ ∃D ′. (∃D. D ′ = D ∩ C ∧ hyperplane-cell (B − A) D ∧

D ∩ C 6= {}) ∧ x ∈ D ′

unfolding hyperplane-cell-def by blast
then
have hyperplane-cellcomplex (A ∪ (B − A)) C

unfolding hyperplane-cellcomplex-def hyperplane-cell-Un
using C ‹C ∈ C› by (fastforce intro!: exI [where x= {D ∩ C |D. hyper-

plane-cell (B − A) D ∧ D ∩ C 6= {}}])
moreover have B = A ∪ (B − A)

using ‹A ⊆ B› by auto
ultimately show hyperplane-cellcomplex B C by simp

qed
qed

lemma finite-hyperplane-cellcomplexes:
assumes finite A
shows finite {C . hyperplane-cellcomplex A C}

proof −
have {C . hyperplane-cellcomplex A C} ⊆ image

⋃
{T . T ⊆ {C . hyperplane-cell

A C}}
by (force simp: hyperplane-cellcomplex-def subset-eq)

with finite-hyperplane-cells show ?thesis
by (metis assms finite-Collect-subsets finite-surj)

qed

lemma finite-restrict-hyperplane-cellcomplexes:
finite A =⇒ finite {C . hyperplane-cellcomplex A C ∧ P C}

by (simp add: finite-hyperplane-cellcomplexes)

lemma finite-set-of-hyperplane-cellcomplex:
assumes finite A

∧
C . C ∈ C =⇒ hyperplane-cellcomplex A C

shows finite C
by (metis assms finite-hyperplane-cellcomplexes mem-Collect-eq rev-finite-subset

subsetI)

lemma cell-subset-cellcomplex:
[[hyperplane-cell A C ; hyperplane-cellcomplex A S]] =⇒ C ⊆ S ←→ ∼ disjnt C S
by (smt (verit) Union-iff disjnt-iff disjnt-subset1 disjoint-hyperplane-cells-eq hy-

perplane-cellcomplex-def subsetI)

1.3 Euler characteristic
definition Euler-characteristic :: (′a::euclidean-space × real) set ⇒ ′a set ⇒ int

where Euler-characteristic A S ≡
(
∑

C | hyperplane-cell A C ∧ C ⊆ S . (−1) ^ nat (aff-dim C))

10

lemma Euler-characteristic-empty [simp]: Euler-characteristic A {} = 0
by (simp add: sum.neutral Euler-characteristic-def)

lemma Euler-characteristic-cell-Union:
assumes

∧
C . C ∈ C =⇒ hyperplane-cell A C

shows Euler-characteristic A (
⋃
C) = (

∑
C∈C. (− 1) ^ nat (aff-dim C))

proof −
have

∧
x. [[hyperplane-cell A x; x ⊆

⋃
C]] =⇒ x ∈ C

by (metis assms disjnt-Union1 disjnt-subset1 disjoint-hyperplane-cells-eq)
then have {C . hyperplane-cell A C ∧ C ⊆

⋃
C} = C

by (auto simp: assms)
then show ?thesis

by (auto simp: Euler-characteristic-def)
qed

lemma Euler-characteristic-cell:
hyperplane-cell A C =⇒ Euler-characteristic A C = (−1) ^ (nat(aff-dim C))

using Euler-characteristic-cell-Union [of {C}] by force

lemma Euler-characteristic-cellcomplex-Un:
assumes finite A hyperplane-cellcomplex A S

and AT : hyperplane-cellcomplex A T and disjnt S T
shows Euler-characteristic A (S ∪ T) =

Euler-characteristic A S + Euler-characteristic A T
proof −

have ∗: {C . hyperplane-cell A C ∧ C ⊆ S ∪ T} =
{C . hyperplane-cell A C ∧ C ⊆ S} ∪ {C . hyperplane-cell A C ∧ C ⊆ T}

using cell-subset-cellcomplex [OF - AT] by (auto simp: disjnt-iff)
have ∗∗: {C . hyperplane-cell A C ∧ C ⊆ S} ∩ {C . hyperplane-cell A C ∧ C ⊆

T} = {}
using assms cell-subset-cellcomplex disjnt-subset1 by fastforce

show ?thesis
unfolding Euler-characteristic-def
by (simp add: finite-restrict-hyperplane-cells assms ∗ ∗∗ flip: sum.union-disjoint)

qed

lemma Euler-characteristic-cellcomplex-Union:
assumes finite A

and C:
∧

C . C ∈ C =⇒ hyperplane-cellcomplex A C pairwise disjnt C
shows Euler-characteristic A (

⋃
C) = sum (Euler-characteristic A) C

proof −
have finite C

using assms finite-set-of-hyperplane-cellcomplex by blast
then show ?thesis

using C
proof (induction rule: finite-induct)

case empty
then show ?case

11

by auto
next

case (insert C C)
then obtain disjoint C disjnt C (

⋃
C)

by (metis disjnt-Union2 pairwise-insert)
with insert show ?case
by (simp add: Euler-characteristic-cellcomplex-Un hyperplane-cellcomplex-Union

‹finite A›)
qed

qed

lemma Euler-characteristic:
fixes A :: (′n::euclidean-space ∗ real) set
assumes finite A
shows Euler-characteristic A S =

(
∑

d = 0 ..DIM (′n). (−1) ^ d ∗ int (card {C . hyperplane-cell A C ∧ C ⊆
S ∧ aff-dim C = int d}))

(is - = ?rhs)
proof −

have
∧

T . [[hyperplane-cell A T ; T ⊆ S]] =⇒ aff-dim T ∈ {0 ..DIM (′n)}
by (metis atLeastAtMost-iff nle-le order .strict-iff-not aff-dim-negative-iff

nonempty-hyperplane-cell aff-dim-le-DIM)
then have ∗: aff-dim ‘ {C . hyperplane-cell A C ∧ C ⊆ S} ⊆ int ‘ {0 ..DIM (′n)}

by (auto simp: image-int-atLeastAtMost)
have Euler-characteristic A S = (

∑
y∈int ‘ {0 ..DIM (′n)}.∑

C∈{x. hyperplane-cell A x ∧ x ⊆ S ∧ aff-dim x = y}. (− 1) ^ nat y)
using sum.group [of {C . hyperplane-cell A C ∧ C ⊆ S} int ‘ {0 ..DIM (′n)}

aff-dim λC . (−1 ::int) ^ nat(aff-dim C), symmetric]
by (simp add: assms Euler-characteristic-def finite-restrict-hyperplane-cells ∗)

also have . . . = ?rhs
by (simp add: sum.reindex mult-of-nat-commute)

finally show ?thesis .
qed

1.4 Show that the characteristic is invariant w.r.t. hyper-
plane arrangement.

lemma hyperplane-cells-distinct-lemma:
{x. a · x = b} ∩ {x. a · x < b} = {} ∧

{x. a · x = b} ∩ {x. a · x > b} = {} ∧
{x. a · x < b} ∩ {x. a · x = b} = {} ∧
{x. a · x < b} ∩ {x. a · x > b} = {} ∧
{x. a · x > b} ∩ {x. a · x = b} = {} ∧
{x. a · x > b} ∩ {x. a · x < b} = {}

by auto

proposition Euler-characterstic-lemma:
assumes finite A and hyperplane-cellcomplex A S
shows Euler-characteristic (insert h A) S = Euler-characteristic A S

12

proof −
obtain C where C:

∧
C . C ∈ C =⇒ hyperplane-cell A C and S =

⋃
C

and pairwise disjnt C
by (meson assms hyperplane-cellcomplex-def pairwise-disjoint-hyperplane-cells)

obtain a b where h = (a,b)
by fastforce

have
∧

C . C ∈ C =⇒ hyperplane-cellcomplex A C ∧ hyperplane-cellcomplex
(insert (a,b) A) C

by (meson C hyperplane-cell-cellcomplex hyperplane-cellcomplex-mono sub-
set-insertI)

moreover
have sum (Euler-characteristic (insert (a,b) A)) C = sum (Euler-characteristic

A) C
proof (rule sum.cong [OF refl])

fix C
assume C ∈ C
have Euler-characteristic (insert (a, b) A) C = (−1) ^ nat(aff-dim C)
proof (cases hyperplane-cell (insert (a,b) A) C)

case True
then show ?thesis

using Euler-characteristic-cell by blast
next

case False
with C[OF ‹C ∈ C›] have a 6= 0

by (smt (verit, ccfv-threshold) hyperplane-cell-Un hyperplane-cell-empty
hyperplane-cell-singleton insert-is-Un sup-bot-left)

have convex C
using ‹hyperplane-cell A C › hyperplane-cell-convex by blast

define r where r ≡ (
∑

D∈{C ′ ∩ C |C ′. hyperplane-cell {(a, b)} C ′ ∧ C ′ ∩
C 6= {}}. (−1 ::int) ^ nat (aff-dim D))

have Euler-characteristic (insert (a, b) A) C
= (

∑
D | (D 6= {} ∧
(∃C1 C2 . hyperplane-cell {(a, b)} C1 ∧ hyperplane-cell A C2 ∧

D = C1 ∩ C2)) ∧ D ⊆ C .
(− 1) ^ nat (aff-dim D))

unfolding r-def Euler-characteristic-def insert-is-Un [of - A] hyperplane-cell-Un
..

also have . . . = r
unfolding r-def
apply (rule sum.cong [OF - refl])
using ‹hyperplane-cell A C › disjoint-hyperplane-cells disjnt-iff
by (smt (verit, ccfv-SIG) Collect-cong Int-iff disjoint-iff subsetD subsetI)

also have . . . = (−1) ^ nat(aff-dim C)
proof −

have C 6= {}
using ‹hyperplane-cell A C › by auto

show ?thesis
proof (cases C ⊆ {x. a · x < b} ∨ C ⊆ {x. a · x > b} ∨ C ⊆ {x. a · x =

b})

13

case Csub: True
with ‹C 6= {}› have r = sum (λc. (−1) ^ nat (aff-dim c)) {C}

unfolding r-def
apply (intro sum.cong [OF - refl])
by (auto simp: ‹a 6= 0 › hyperplane-cell-singleton)

also have . . . = (−1) ^ nat(aff-dim C)
by simp

finally show ?thesis .
next

case False
then obtain u v where uv: u ∈ C ¬ a · u < b v ∈ C ¬ a · v > b

by blast
have CInt-ne: C ∩ {x. a · x = b} 6= {}
proof (cases a · u = b ∨ a · v = b)

case True
with uv show ?thesis

by blast
next

case False
have a · v < a · u

using False uv by auto
define w where w ≡ v + ((b − a · v) / (a · u − a · v)) ∗R (u − v)
have ∗∗: v + a ∗R (u − v) = (1 − a) ∗R v + a ∗R u for a

by (simp add: algebra-simps)
have w ∈ C

unfolding w-def ∗∗
proof (intro convexD-alt)
qed (use ‹a · v < a · u› ‹convex C › uv in auto)
moreover have w ∈ {x. a · x = b}

using ‹a · v < a · u› by (simp add: w-def inner-add-right inner-diff-right)
ultimately show ?thesis

by blast
qed
have Cab: C ∩ {x. a · x < b} 6= {} ∧ C ∩ {x. b < a · x} 6= {}
proof −

obtain u v where u ∈ C a · u = b v ∈ C a · v 6= b u 6=v
using False ‹C ∩ {x. a · x = b} 6= {}› by blast

have openin (subtopology euclidean (affine hull C)) C
using ‹hyperplane-cell A C › ‹finite A› hyperplane-cell-relatively-open

by blast
then obtain ε where 0 < ε

and ε:
∧

x ′. [[x ′ ∈ affine hull C ; dist x ′ u < ε]] =⇒ x ′ ∈ C
by (meson ‹u ∈ C › openin-euclidean-subtopology-iff)

define ξ where ξ ≡ u − (ε / 2 / norm (v − u)) ∗R (v − u)
have ξ ∈ C
proof (rule ε)

show ξ ∈ affine hull C
by (simp add: ξ-def ‹u ∈ C › ‹v ∈ C › hull-inc mem-affine-3-minus2)

qed (use ξ-def ‹0 < ε› in force)

14

consider a · v < b | a · v > b
using ‹a · v 6= b› by linarith

then show ?thesis
proof cases

case 1
moreover have ξ ∈ {x. b < a · x}

using 1 ‹0 < ε› ‹a · u = b› divide-less-cancel
by (fastforce simp: ξ-def algebra-simps)

ultimately show ?thesis
using ‹v ∈ C › ‹ξ ∈ C › by blast

next
case 2
moreover have ξ ∈ {x. b > a · x}

using 2 ‹0 < ε› ‹a · u = b› divide-less-cancel
by (fastforce simp: ξ-def algebra-simps)

ultimately show ?thesis
using ‹v ∈ C › ‹ξ ∈ C › by blast

qed
qed
have r = (

∑
C∈{{x. a · x = b} ∩ C , {x. b < a · x} ∩ C , {x. a · x < b}

∩ C}.
(− 1) ^ nat (aff-dim C))

unfolding r-def
proof (intro sum.cong [OF - refl] equalityI)

show {{x. a · x = b} ∩ C , {x. b < a · x} ∩ C , {x. a · x < b} ∩ C}
⊆ {C ′ ∩ C |C ′. hyperplane-cell {(a, b)} C ′ ∧ C ′ ∩ C 6= {}}

apply clarsimp
using Cab Int-commute ‹C ∩ {x. a · x = b} 6= {}› hyper-

plane-cell-singleton ‹a 6= 0 ›
by metis

qed (auto simp: ‹a 6= 0 › hyperplane-cell-singleton)
also have . . . = (−1) ^ nat (aff-dim (C ∩ {x. a · x = b}))

+ (−1) ^ nat (aff-dim (C ∩ {x. b < a · x}))
+ (−1) ^ nat (aff-dim (C ∩ {x. a · x < b}))

using hyperplane-cells-distinct-lemma [of a b] Cab
by (auto simp: sum.insert-if Int-commute Int-left-commute)

also have . . . = (− 1) ^ nat (aff-dim C)
proof −

have ∗: aff-dim (C ∩ {x. a · x < b}) = aff-dim C ∧ aff-dim (C ∩ {x. a
· x > b}) = aff-dim C

by (metis Cab open-halfspace-lt open-halfspace-gt aff-dim-affine-hull
affine-hull-convex-Int-open[OF ‹convex C ›])

obtain S T where open S affine T and Ceq: C = S ∩ T
by (meson ‹hyperplane-cell A C › ‹finite A› hyperplane-cell-Int-open-affine)

have affine hull C = affine hull T
by (metis Ceq ‹C 6= {}› ‹affine T › ‹open S› affine-hull-affine-Int-open

inf-commute)
moreover
have T ∩ ({x. a · x = b} ∩ S) 6= {}

15

using Ceq ‹C ∩ {x. a · x = b} 6= {}› by blast
then have affine hull (C ∩ {x. a · x = b}) = affine hull (T ∩ {x. a · x

= b})
using affine-hull-affine-Int-open[of T ∩ {x. a · x = b} S]

by (simp add: Ceq Int-ac ‹affine T › ‹open S› affine-Int affine-hyperplane)
ultimately have aff-dim (affine hull C) = aff-dim(affine hull (C ∩ {x.

a · x = b})) + 1
using CInt-ne False Ceq
by (auto simp: aff-dim-affine-Int-hyperplane ‹affine T ›)

moreover have 0 ≤ aff-dim (C ∩ {x. a · x = b})
by (metis CInt-ne aff-dim-negative-iff linorder-not-le)

ultimately show ?thesis
by (simp add: ∗ nat-add-distrib)

qed
finally show ?thesis .

qed
qed
finally show Euler-characteristic (insert (a, b) A) C = (−1) ^ nat(aff-dim

C) .
qed
then show Euler-characteristic (insert (a, b) A) C = (Euler-characteristic A

C)
by (simp add: Euler-characteristic-cell C ‹C ∈ C›)

qed
ultimately show ?thesis

by (simp add: Euler-characteristic-cellcomplex-Union ‹S =
⋃
C› ‹disjoint C›

‹h = (a, b)› assms(1))
qed

lemma Euler-characterstic-invariant-aux:
assumes finite B finite A hyperplane-cellcomplex A S
shows Euler-characteristic (A ∪ B) S = Euler-characteristic A S
using assms
by (induction rule: finite-induct) (auto simp: Euler-characterstic-lemma hyper-

plane-cellcomplex-mono)

lemma Euler-characterstic-invariant:
assumes finite A finite B hyperplane-cellcomplex A S hyperplane-cellcomplex B

S
shows Euler-characteristic A S = Euler-characteristic B S
by (metis Euler-characterstic-invariant-aux assms sup-commute)

lemma Euler-characteristic-inclusion-exclusion:
assumes finite A finite S

∧
K . K ∈ S =⇒ hyperplane-cellcomplex A K

shows Euler-characteristic A (
⋃
S) = (

∑
T | T ⊆ S ∧ T 6= {}. (− 1) ^ (card

T + 1) ∗ Euler-characteristic A (
⋂
T))

proof −
interpret Incl-Excl hyperplane-cellcomplex A Euler-characteristic A

16

proof
show Euler-characteristic A (S ∪ T) = Euler-characteristic A S + Euler-characteristic

A T
if hyperplane-cellcomplex A S and hyperplane-cellcomplex A T and disjnt S T

for S T
using that Euler-characteristic-cellcomplex-Un assms(1) by blast

qed (use hyperplane-cellcomplex-Int hyperplane-cellcomplex-Un hyperplane-cellcomplex-diff
in auto)

show ?thesis
using restricted assms by blast

qed

1.5 Euler-type relation for full-dimensional proper polyhe-
dral cones

lemma Euler-polyhedral-cone:
fixes S :: ′n::euclidean-space set
assumes polyhedron S conic S and intS : interior S 6= {} and S 6= UNIV
shows (

∑
d = 0 ..DIM (′n). (− 1) ^ d ∗ int (card {f . f face-of S ∧ aff-dim f =

int d})) = 0 (is ?lhs = 0)
proof −

have [simp]: affine hull S = UNIV
by (simp add: affine-hull-nonempty-interior intS)

with ‹polyhedron S›
obtain H where finite H

and Seq: S =
⋂

H
and Hex:

∧
h. h∈H =⇒ ∃ a b. a 6=0 ∧ h = {x. a · x ≤ b}

and Hsub:
∧
G. G ⊂ H =⇒ S ⊂

⋂
G

by (fastforce simp: polyhedron-Int-affine-minimal)
have 0 ∈ S

using assms(2) conic-contains-0 intS interior-empty by blast
have ∗: ∃ a. a 6=0 ∧ h = {x. a · x ≤ 0} if h ∈ H for h
proof −

obtain a b where a 6=0 and ab: h = {x. a · x ≤ b}
using Hex [OF ‹h ∈ H ›] by blast

have 0 ∈
⋂

H
using Seq ‹0 ∈ S› by force

then have 0 ∈ h
using that by blast

consider b=0 | b < 0 | b > 0
by linarith

then
show ?thesis
proof cases

case 1
then show ?thesis

using ‹a 6= 0 › ab by blast
next

case 2

17

then show ?thesis
using ‹0 ∈ h› ab by auto

next
case 3
have S ⊂

⋂
(H − {h})

using Hsub [of H − {h}] that by auto
then obtain x where x: x ∈

⋂
(H − {h}) and x /∈ S

by auto
define ε where ε ≡ min (1/2) (b / (a · x))
have b < a · x

using ‹x /∈ S› ab x by (fastforce simp: ‹S =
⋂

H ›)
with 3 have 0 < a · x

by auto
with 3 have 0 < ε

by (simp add: ε-def)
have ε < 1

using ε-def by linarith
have ε ∗ (a · x) ≤ b

unfolding ε-def using ‹0 < a · x› pos-le-divide-eq by fastforce
have x = inverse ε ∗R ε ∗R x

using ‹0 < ε› by force
moreover
have ε ∗R x ∈ S
proof −

have ε ∗R x ∈ h
by (simp add: ‹ε ∗ (a · x) ≤ b› ab)

moreover have ε ∗R x ∈
⋂

(H − {h})
proof −

have ε ∗R x ∈ k if x ∈ k k ∈ H k 6= h for k
proof −

obtain a ′ b ′ where a ′6=0 k = {x. a ′ · x ≤ b ′}
using Hex ‹k ∈ H › by blast

have (0 ≤ a ′ · x =⇒ a ′ · ε ∗R x ≤ a ′ · x)
by (metis ‹ε < 1 › inner-scaleR-right order-less-le pth-1 real-scaleR-def

scaleR-right-mono)
moreover have (0 ≤ −(a ′ · x) =⇒ 0 ≤ −(a ′ · ε ∗R x))

using ‹0 < ε› mult-le-0-iff order-less-imp-le by auto
ultimately
have a ′ · x ≤ b ′ =⇒ a ′ · ε ∗R x ≤ b ′

by (smt (verit) InterD ‹0 ∈
⋂

H › ‹k = {x. a ′ · x ≤ b ′}› inner-zero-right
mem-Collect-eq that(2))

then show ?thesis
using ‹k = {x. a ′ · x ≤ b ′}› ‹x ∈ k› by fastforce

qed
with x show ?thesis

by blast
qed
ultimately show ?thesis

using Seq by blast

18

qed
with ‹conic S› have inverse ε ∗R ε ∗R x ∈ S
by (meson ‹0 < ε› conic-def inverse-nonnegative-iff-nonnegative order-less-le)
ultimately show ?thesis

using ‹x /∈ S› by presburger
qed

qed
then obtain fa where fa:

∧
h. h ∈ H =⇒ fa h 6= 0 ∧ h = {x. fa h · x ≤ 0}

by metis
define fa-le-0 where fa-le-0 ≡ λh. {x. fa h · x ≤ 0}
have fa ′:

∧
h. h ∈ H =⇒ fa-le-0 h = h

using fa fa-le-0-def by blast
define A where A ≡ (λh. (fa h,0 ::real)) ‘ H
have finite A

using ‹finite H › by (simp add: A-def)
then have ?lhs = Euler-characteristic A S
proof −
have [simp]: card {f . f face-of S ∧ aff-dim f = int d} = card {C . hyperplane-cell

A C ∧ C ⊆ S ∧ aff-dim C = int d}
if finite A and d ≤ card (Basis:: ′n set)
for d :: nat

proof (rule bij-betw-same-card)
have hyper1 : hyperplane-cell A (rel-interior f) ∧ rel-interior f ⊆ S
∧ aff-dim (rel-interior f) = d ∧ closure (rel-interior f) = f

if f face-of S aff-dim f = d for f
proof −

have 1 : closure(rel-interior f) = f
proof −

have closure(rel-interior f) = closure f
by (meson convex-closure-rel-interior face-of-imp-convex that(1))

also have . . . = f
by (meson assms(1) closure-closed face-of-polyhedron-polyhedron polyhe-

dron-imp-closed that(1))
finally show ?thesis .

qed
then have 2 : aff-dim (rel-interior f) = d

by (metis closure-aff-dim that(2))
have f 6= {}

using aff-dim-negative-iff [of f] by (simp add: that(2))
obtain J0 where J0 ⊆ H and J0 : f =

⋂
(fa-le-0 ‘ H) ∩ (

⋂
h ∈ J0 . {x.

fa h · x = 0})
proof (cases f = S)

case True
have S =

⋂
(fa-le-0 ‘ H)

using Seq fa by (auto simp: fa-le-0-def)
then show ?thesis

using True that by blast
next

case False

19

have fexp: f =
⋂
{S ∩ {x. fa h · x = 0} | h. h ∈ H ∧ f ⊆ S ∩ {x. fa h ·

x = 0}}
proof (rule face-of-polyhedron-explicit)

show S = affine hull S ∩
⋂

H
by (simp add: Seq hull-subset inf .absorb2)

qed (auto simp: False ‹f 6= {}› ‹f face-of S› ‹finite H › Hsub fa)
show ?thesis
proof

have ∗:
∧

x h. [[x ∈ f ; h ∈ H]] =⇒ fa h · x ≤ 0
using Seq fa face-of-imp-subset ‹f face-of S› by fastforce

show f =
⋂

(fa-le-0 ‘ H) ∩ (
⋂

h ∈ {h ∈ H . f ⊆ S ∩ {x. fa h · x =
0}}. {x. fa h · x = 0})

(is f = ?I)
proof

show f ⊆ ?I
using ‹f face-of S› fa face-of-imp-subset by (force simp: ∗ fa-le-0-def)
show ?I ⊆ f
apply (subst (2) fexp)
apply (clarsimp simp: ∗ fa-le-0-def)

by (metis Inter-iff Seq fa mem-Collect-eq)
qed

qed blast
qed
define H ′ where H ′ = (λh. {x. −(fa h) · x ≤ 0}) ‘ H
have ∃ J . finite J ∧ J ⊆ H ∪ H ′ ∧ f = affine hull f ∩

⋂
J

proof (intro exI conjI)
let ?J = H ∪ image (λh. {x. −(fa h) · x ≤ 0}) J0
show finite (?J :: ′n set set)

using ‹J0 ⊆ H › ‹finite H › finite-subset by fastforce
show ?J ⊆ H ∪ H ′

using ‹J0 ⊆ H › by (auto simp: H ′-def)
have f =

⋂
?J

proof
show f ⊆

⋂
?J

unfolding J0 by (auto simp: fa ′)
have

∧
x j. [[j ∈ J0 ; ∀ h∈H . x ∈ h; ∀ j∈J0 . 0 ≤ fa j · x]] =⇒ fa j · x = 0

by (metis ‹J0 ⊆ H › fa in-mono inf .absorb2 inf .orderE mem-Collect-eq)
then show

⋂
?J ⊆ f

unfolding J0 by (auto simp: fa ′)
qed
then show f = affine hull f ∩

⋂
?J

by (simp add: Int-absorb1 hull-subset)
qed
then have ∗∗: ∃n J . finite J ∧ card J = n ∧ J ⊆ H ∪ H ′ ∧ f = affine

hull f ∩
⋂

J
by blast

obtain J nJ where J : finite J card J = nJ J ⊆ H ∪ H ′ and feq: f = affine
hull f ∩

⋂
J

and minJ :
∧

m J ′. [[finite J ′; m < nJ ; card J ′ = m; J ′ ⊆ H ∪ H ′]] =⇒ f

20

6= affine hull f ∩
⋂

J ′

using exists-least-iff [THEN iffD1 , OF ∗∗] by metis
have FF : f ⊂ (affine hull f ∩

⋂
J ′) if J ′ ⊂ J for J ′

proof −
have f 6= affine hull f ∩

⋂
J ′

using minJ
by (metis J finite-subset psubset-card-mono psubset-imp-subset psub-

set-subset-trans that)
then show ?thesis

by (metis Int-subset-iff Inter-Un-distrib feq hull-subset inf-sup-ord(2)
psubsetI sup.absorb4 that)

qed
have ∃ a. {x. a · x ≤ 0} = h ∧ (h ∈ H ∧ a = fa h ∨ (∃ h ′. h ′ ∈ H ∧ a =

−(fa h ′)))
if h ∈ J for h

proof −
have h ∈ H ∪ H ′

using ‹J ⊆ H ∪ H ′› that by blast
then show ?thesis
proof

show ?thesis if h ∈ H
using that fa by blast

next
assume h ∈ H ′

then obtain h ′ where h ′ ∈ H h = {x. 0 ≤ fa h ′ · x}
by (auto simp: H ′-def)

then show ?thesis
by (force simp: intro!: exI [where x=− (fa h ′)])

qed
qed
then obtain ga

where ga-h:
∧

h. h ∈ J =⇒ h = {x. ga h · x ≤ 0}
and ga-fa:

∧
h. h ∈ J =⇒ h ∈ H ∧ ga h = fa h ∨ (∃ h ′. h ′ ∈ H ∧ ga h

= −(fa h ′))
by metis

have 3 : hyperplane-cell A (rel-interior f)
proof −

have D: rel-interior f = {x ∈ f . ∀ h∈J . ga h · x < 0}
proof (rule rel-interior-polyhedron-explicit [OF ‹finite J › feq])

show ga h 6= 0 ∧ h = {x. ga h · x ≤ 0} if h ∈ J for h
using that fa ga-fa ga-h by force

qed (auto simp: FF)
have H : h ∈ H ∧ ga h = fa h if h ∈ J for h
proof −

obtain z where z: z ∈ rel-interior f
using 1 ‹f 6= {}› by force

then have z ∈ f ∧ z ∈ S
using D ‹f face-of S› face-of-imp-subset by blast

then show ?thesis

21

using ga-fa [OF that]
by (smt (verit, del-insts) D InterE Seq fa inner-minus-left mem-Collect-eq

that z)
qed
then obtain K where K ⊆ H

and K : f =
⋂

(fa-le-0 ‘ H) ∩ (
⋂

h ∈ K . {x. fa h · x = 0})
using J0 ‹J0 ⊆ H › by blast

have E : rel-interior f = {x. (∀ h ∈ H . fa h · x ≤ 0) ∧ (∀ h ∈ K . fa h · x
= 0) ∧ (∀ h ∈ J . ga h · x < 0)}

unfolding D by (simp add: K fa-le-0-def)
have relif : rel-interior f 6= {}

using 1 ‹f 6= {}› by force
with E have disjnt J K

using H disjnt-iff by fastforce
define IFJK where IFJK ≡ λh. if h ∈ J then {x. fa h · x < 0}

else if h ∈ K then {x. fa h · x = 0}
else if rel-interior f ⊆ {x. fa h · x = 0}
then {x. fa h · x = 0}
else {x. fa h · x < 0}

have relint-f : rel-interior f =
⋂
(IFJK ‘ H)

proof
have A: False
if x: x ∈ rel-interior f and y: y ∈ rel-interior f and less0 : fa h · y < 0

and fa0 : fa h · x = 0 and h ∈ H h /∈ J h /∈ K for x h y
proof −

obtain ε where x ∈ f ε>0
and ε:

∧
t. [[dist x t ≤ ε; t ∈ affine hull f]] =⇒ t ∈ f

using x by (force simp: mem-rel-interior-cball)
then have y 6= x

using fa0 less0 by force
define x ′ where x ′ ≡ x + (ε / norm(y − x)) ∗R (x − y)
have x ∈ affine hull f ∧ y ∈ affine hull f

by (metis ‹x ∈ f › hull-inc mem-rel-interior-cball y)
moreover have dist x x ′ ≤ ε

using ‹0 < ε› ‹y 6= x› by (simp add: x ′-def divide-simps dist-norm
norm-minus-commute)

ultimately have x ′ ∈ f
by (simp add: ε mem-affine-3-minus x ′-def)

have x ′ ∈ S
using ‹f face-of S› ‹x ′ ∈ f › face-of-imp-subset by auto

then have x ′ ∈ h
using Seq that(5) by blast

then have x ′ ∈ {x. fa h · x ≤ 0}
using fa that(5) by blast

moreover have ε / norm (y − x) ∗ −(fa h · y) > 0
using ‹0 < ε› ‹y 6= x› less0 by (simp add: field-split-simps)

ultimately show ?thesis
by (simp add: x ′-def fa0 inner-diff-right inner-right-distrib)

qed

22

show rel-interior f ⊆
⋂
(IFJK ‘ H)

unfolding IFJK-def by (smt (verit, ccfv-SIG) A E H INT-I in-mono
mem-Collect-eq subsetI)

show
⋂
(IFJK ‘ H) ⊆ rel-interior f

using ‹K ⊆ H › ‹disjnt J K ›
apply (clarsimp simp add: ball-Un E H disjnt-iff IFJK-def)
apply (smt (verit, del-insts) IntI Int-Collect subsetD)
done

qed
obtain z where zrelf : z ∈ rel-interior f

using relif by blast
moreover
have H : z ∈ IFJK h =⇒ (x ∈ IFJK h) = (hyperplane-side (fa h, 0) z =

hyperplane-side (fa h, 0) x) for h x
using zrelf by (auto simp: IFJK-def hyperplane-side-def sgn-if split:

if-split-asm)
then have z ∈

⋂
(IFJK ‘ H) =⇒ (x ∈

⋂
(IFJK ‘ H)) = hyperplane-equiv

A z x for x
unfolding A-def Inter-iff hyperplane-equiv-def ball-simps using H by

blast
then have x ∈ rel-interior f ←→ hyperplane-equiv A z x for x

using relint-f zrelf by presburger
ultimately show ?thesis

by (metis equalityI hyperplane-cell mem-Collect-eq subset-iff)
qed
have 4 : rel-interior f ⊆ S

by (meson face-of-imp-subset order-trans rel-interior-subset that(1))
show ?thesis

using 1 2 3 4 by blast
qed
have hyper2 : (closure c face-of S ∧ aff-dim (closure c) = d) ∧ rel-interior

(closure c) = c
if c: hyperplane-cell A c and c ⊆ S aff-dim c = d for c

proof (intro conjI)
obtain J where J ⊆ H and J : c = (

⋂
h ∈ J . {x. (fa h) · x < 0}) ∩ (

⋂
h

∈ (H − J). {x. (fa h) · x = 0})
proof −

obtain z where z: c = {y. ∀ x ∈ H . sgn (fa x · y) = sgn (fa x · z)}
using c by (force simp: hyperplane-cell A-def hyperplane-equiv-def

hyperplane-side-def)
show thesis
proof

let ?J = {h ∈ H . sgn(fa h · z) = −1}
have 1 : fa h · x < 0

if ∀ h∈H . sgn (fa h · x) = sgn (fa h · z) and h ∈ H and sgn (fa h ·
z) = − 1 for x h

using that by (metis sgn-1-neg)
have 2 : sgn (fa h · z) = − 1

if ∀ h∈H . sgn (fa h · x) = sgn (fa h · z) and h ∈ H and fa h · x 6= 0

23

for x h
proof −

have [[0 < fa h · x; 0 < fa h · z]] =⇒ False
using that fa by (smt (verit, del-insts) Inter-iff Seq ‹c ⊆ S›

mem-Collect-eq subset-iff z)
then show ?thesis

by (metis that sgn-if sgn-zero-iff)
qed
have 3 : sgn (fa h · x) = sgn (fa h · z)

if h ∈ H and ∀ h. h ∈ H ∧ sgn (fa h · z) = − 1 −→ fa h · x < 0
and ∀ h∈H − {h ∈ H . sgn (fa h · z) = − 1}. fa h · x = 0

for x h
using that 2 by (metis (mono-tags, lifting) Diff-iff mem-Collect-eq

sgn-neg)
show c = (

⋂
h ∈?J . {x. fa h · x < 0}) ∩ (

⋂
h∈H − ?J . {x. fa h · x =

0})
unfolding z by (auto intro: 1 2 3)

qed auto
qed
have finite J

using ‹J ⊆ H › ‹finite H › finite-subset by blast
show closure c face-of S
proof −
have cc: closure c = closure (

⋂
h∈J . {x. fa h · x < 0}) ∩ closure (

⋂
h∈H

− J . {x. fa h · x = 0})
unfolding J

proof (rule closure-Int-convex)
show convex (

⋂
h∈J . {x. fa h · x < 0})

by (simp add: convex-INT convex-halfspace-lt)
show convex (

⋂
h∈H − J . {x. fa h · x = 0})

by (simp add: convex-INT convex-hyperplane)
have o1 : open (

⋂
h∈J . {x. fa h · x < 0})

by (metis open-INT [OF ‹finite J ›] open-halfspace-lt)
have o2 : openin (top-of-set (affine hull (

⋂
h∈H − J . {x. fa h · x =

0}))) (
⋂

h∈H − J . {x. fa h · x = 0})
proof −

have affine (
⋂

h∈H − J . {n. fa h · n = 0})
using affine-hyperplane by auto

then show ?thesis
by (metis (no-types) affine-hull-eq openin-subtopology-self)

qed
show rel-interior (

⋂
h∈J . {x. fa h · x < 0}) ∩ rel-interior (

⋂
h∈H −

J . {x. fa h · x = 0}) 6= {}
by (metis nonempty-hyperplane-cell c rel-interior-open o1 rel-interior-openin

o2 J)
qed
have clo-im-J : closure ‘ ((λh. {x. fa h · x < 0}) ‘ J) = (λh. {x. fa h · x

≤ 0}) ‘ J
using ‹J ⊆ H › by (force simp: image-comp fa)

24

have cleq: closure (
⋂

h∈H − J . {x. fa h · x = 0}) = (
⋂

h∈H − J . {x. fa
h · x = 0})

by (intro closure-closed) (blast intro: closed-hyperplane)
have ∗∗: (

⋂
h∈J . {x. fa h · x ≤ 0}) ∩ (

⋂
h∈H − J . {x. fa h · x = 0})

face-of S
if (

⋂
h∈J . {x. fa h · x < 0}) 6= {}

proof (cases J=H)
case True
have [simp]: (

⋂
x∈H . {xa. fa x · xa ≤ 0}) =

⋂
H

using fa by auto
show ?thesis

using ‹polyhedron S› by (simp add: Seq True polyhedron-imp-convex
face-of-refl)

next
case False
have ∗∗: (

⋂
h∈J . {n. fa h · n ≤ 0}) ∩ (

⋂
h∈H − J . {x. fa h · x = 0})

=
(
⋂

h∈H − J . S ∩ {x. fa h · x = 0}) (is ?L = ?R)
proof

show ?L ⊆ ?R
by clarsimp (smt (verit) DiffI InterI Seq fa mem-Collect-eq)

show ?R ⊆ ?L
using False Seq ‹J ⊆ H › fa by blast

qed
show ?thesis

unfolding ∗∗
proof (rule face-of-Inter)

show (λh. S ∩ {x. fa h · x = 0}) ‘ (H − J) 6= {}
using False ‹J ⊆ H › by blast

show T face-of S
if T : T ∈ (λh. S ∩ {x. fa h · x = 0}) ‘ (H − J) for T

proof −
obtain h where h: T = S ∩ {x. fa h · x = 0} and h ∈ H h /∈ J

using T by auto
have S ∩ {x. fa h · x = 0} face-of S
proof (rule face-of-Int-supporting-hyperplane-le)

show convex S
by (simp add: assms(1) polyhedron-imp-convex)

show fa h · x ≤ 0 if x ∈ S for x
using that Seq fa ‹h ∈ H › by auto

qed
then show ?thesis

using h by blast
qed

qed
qed
have ∗:

∧
S . S ∈ (λh. {x. fa h · x < 0}) ‘ J =⇒ convex S ∧ open S

using convex-halfspace-lt open-halfspace-lt by fastforce
show ?thesis

25

unfolding cc
apply (simp add: ∗ closure-Inter-convex-open)
by (metis ∗∗ cleq clo-im-J image-image)

qed
show aff-dim (closure c) = int d

by (simp add: that)
show rel-interior (closure c) = c

by (metis ‹finite A› c convex-rel-interior-closure hyperplane-cell-convex
hyperplane-cell-relative-interior)

qed
have rel-interior ‘ {f . f face-of S ∧ aff-dim f = int d}

= {C . hyperplane-cell A C ∧ C ⊆ S ∧ aff-dim C = int d}
using hyper1 hyper2 by fastforce

then show bij-betw (rel-interior) {f . f face-of S ∧ aff-dim f = int d} {C .
hyperplane-cell A C ∧ C ⊆ S ∧ aff-dim C = int d}

unfolding bij-betw-def inj-on-def by (metis (mono-tags) hyper1 mem-Collect-eq)

qed
show ?thesis

by (simp add: Euler-characteristic ‹finite A›)
qed
also have . . . = 0
proof −

have A: hyperplane-cellcomplex A (− h) if h ∈ H for h
proof (rule hyperplane-cellcomplex-mono [OF hyperplane-cell-cellcomplex])

have − h = {x. fa h · x = 0} ∨ − h = {x. fa h · x < 0} ∨ − h = {x. 0 <
fa h · x}

by (smt (verit, ccfv-SIG) Collect-cong Collect-neg-eq fa that)
then show hyperplane-cell {(fa h,0)} (− h)

by (simp add: hyperplane-cell-singleton fa that)
show {(fa h,0)} ⊆ A

by (simp add: A-def that)
qed
then have

∧
h. h ∈ H =⇒ hyperplane-cellcomplex A h

using hyperplane-cellcomplex-Compl by fastforce
then have hyperplane-cellcomplex A S

by (simp add: Seq hyperplane-cellcomplex-Inter)
then have D: Euler-characteristic A (UNIV :: ′n set) =

Euler-characteristic A (
⋂

H) + Euler-characteristic A (−
⋂

H)
using Euler-characteristic-cellcomplex-Un
by (metis Compl-partition Diff-cancel Diff-eq Seq ‹finite A› disjnt-def hyper-

plane-cellcomplex-Compl)
have Euler-characteristic A UNIV = Euler-characteristic {} (UNIV :: ′n set)

by (simp add: Euler-characterstic-invariant ‹finite A›)
then have E : Euler-characteristic A UNIV = (−1) ^ (DIM (′n))

by (simp add: Euler-characteristic-cell)
have DD: Euler-characteristic A (

⋂
(uminus ‘ J)) = (− 1) ^ DIM (′n)

if J 6= {} J ⊆ H for J
proof −

26

define B where B ≡ (λh. (fa h,0 ::real)) ‘ J
then have B ⊆ A

by (simp add: A-def image-mono that)
have ∃ x. y = −x if y ∈

⋂
(uminus ‘ H) for y:: ′n — Weirdly, the assumption

is not used
by (metis add.inverse-inverse)

moreover have −x ∈
⋂

(uminus ‘ H) ←→ x ∈ interior S for x
proof −

have 1 : interior S = {x ∈ S . ∀ h∈H . fa h · x < 0}
using rel-interior-polyhedron-explicit [OF ‹finite H › - fa]
by (metis (no-types, lifting) inf-top-left Hsub Seq ‹affine hull S = UNIV ›

rel-interior-interior)
have 2 :

∧
x y. [[y ∈ H ; ∀ h∈H . fa h · x < 0 ; − x ∈ y]] =⇒ False

by (smt (verit, best) fa inner-minus-right mem-Collect-eq)
show ?thesis

apply (simp add: 1)
by (smt (verit) 2 ∗ fa Inter-iff Seq inner-minus-right mem-Collect-eq)

qed
ultimately have INT-Compl-H :

⋂
(uminus ‘ H) = uminus ‘ interior S

by blast
obtain z where z: z ∈

⋂
(uminus ‘ J)

using ‹J ⊆ H › ‹
⋂

(uminus ‘ H) = uminus ‘ interior S› intS by fastforce
have

⋂
(uminus ‘ J) = Collect (hyperplane-equiv B z) (is ?L = ?R)

proof
show ?L ⊆ ?R

using fa ‹J ⊆ H › z
by (fastforce simp: hyperplane-equiv-def hyperplane-side-def B-def set-eq-iff

)
show ?R ⊆ ?L

using z ‹J ⊆ H › apply (clarsimp simp add: hyperplane-equiv-def hyper-
plane-side-def B-def)

by (metis fa in-mono mem-Collect-eq sgn-le-0-iff)
qed
then have hyper-B: hyperplane-cell B (

⋂
(uminus ‘ J))

by (metis hyperplane-cell)
have Euler-characteristic A (

⋂
(uminus ‘ J)) = Euler-characteristic B (

⋂
(uminus ‘ J))

proof (rule Euler-characterstic-invariant [OF ‹finite A›])
show finite B

using ‹B ⊆ A› ‹finite A› finite-subset by blast
show hyperplane-cellcomplex A (

⋂
(uminus ‘ J))

by (meson ‹B ⊆ A› hyper-B hyperplane-cell-cellcomplex hyperplane-cellcomplex-mono)
show hyperplane-cellcomplex B (

⋂
(uminus ‘ J))

by (simp add: hyper-B hyperplane-cell-cellcomplex)
qed
also have . . . = (− 1) ^ nat (aff-dim (

⋂
(uminus ‘ J)))

using Euler-characteristic-cell hyper-B by blast
also have . . . = (− 1) ^ DIM (′n)
proof −

27

have affine hull
⋂

(uminus ‘ H) = UNIV
by (simp add: INT-Compl-H affine-hull-nonempty-interior intS inte-

rior-negations)
then have affine hull

⋂
(uminus ‘ J) = UNIV

by (metis Inf-superset-mono hull-mono subset-UNIV subset-antisym sub-
set-image-iff that(2))

with aff-dim-eq-full show ?thesis
by (metis nat-int)

qed
finally show ?thesis .

qed
have EE : (

∑
T | T ⊆ uminus ‘ H ∧ T 6={}. (−1) ^ (card T + 1) ∗ Eu-

ler-characteristic A (
⋂
T))

= (
∑
T | T ⊆ uminus ‘ H ∧ T 6= {}. (−1) ^ (card T + 1) ∗ (− 1) ^

DIM (′n))
by (intro sum.cong [OF refl]) (fastforce simp: subset-image-iff intro!: DD)

also have . . . = (−1) ^ DIM (′n)
proof −

have A: (
∑

y = 1 ..card H .
∑

t∈{x ∈ {T . T ⊆ uminus ‘ H ∧ T 6= {}}. card
x = y}. (− 1) ^ (card t + 1))

= (
∑
T ∈{T . T ⊆ uminus ‘ H ∧ T 6= {}}. (− 1) ^ (card T + 1))

proof (rule sum.group)
have

∧
C . [[C ⊆ uminus ‘ H ; C 6= {}]] =⇒ Suc 0 ≤ card C ∧ card C ≤

card H
by (meson ‹finite H › card-eq-0-iff finite-surj le-zero-eq not-less-eq-eq

surj-card-le)
then show card ‘ {T . T ⊆ uminus ‘ H ∧ T 6= {}} ⊆ {1 ..card H}

by force
qed (auto simp: ‹finite H ›)

have (
∑

n = Suc 0 ..card H . − (int (card {x. x ⊆ uminus ‘ H ∧ x 6= {} ∧
card x = n}) ∗ (− 1) ^ n))

= (
∑

n = Suc 0 ..card H . (−1) ^ (Suc n) ∗ (card H choose n))
proof (rule sum.cong [OF refl])

fix n
assume n ∈ {Suc 0 ..card H}
then have {T . T ⊆ uminus ‘ H ∧ T 6= {} ∧ card T = n} = {T . T ⊆

uminus ‘ H ∧ card T = n}
by auto
then have card{T . T ⊆ uminus ‘ H ∧ T 6= {} ∧ card T = n} = card

(uminus ‘ H) choose n
by (simp add: ‹finite H › n-subsets)

also have . . . = card H choose n
by (metis card-image double-complement inj-on-inverseI)

finally
show − (int (card {T . T ⊆ uminus ‘ H ∧ T 6= {} ∧ card T = n}) ∗ (− 1)

^ n) = (− 1) ^ Suc n ∗ int (card H choose n)
by simp

qed

28

also have . . . = − (
∑

k = Suc 0 ..card H . (−1) ^ k ∗ (card H choose k))
by (simp add: sum-negf)

also have . . . = 1 − (
∑

k=0 ..card H . (−1) ^ k ∗ (card H choose k))
using atLeastSucAtMost-greaterThanAtMost by (simp add: sum.head [of 0])

also have . . . = 1 − 0 ^ card H
using binomial-ring [of −1 1 ::int card H] by (simp add: mult.commute

atLeast0AtMost)
also have . . . = 1

using Seq ‹finite H › ‹S 6= UNIV › card-0-eq by auto
finally have C : (

∑
n = Suc 0 ..card H . − (int (card {x. x ⊆ uminus ‘ H ∧

x 6= {} ∧ card x = n}) ∗ (− 1) ^ n)) = (1 ::int) .

have (
∑
T | T ⊆ uminus ‘ H ∧ T 6= {}. (− 1) ^ (card T + 1)) = (1 ::int)

unfolding A [symmetric] by (simp add: C)
then show ?thesis

by (simp flip: sum-distrib-right power-Suc)
qed
finally have (

∑
T | T ⊆ uminus ‘ H ∧ T 6={}. (−1) ^ (card T + 1) ∗

Euler-characteristic A (
⋂
T))

= (−1) ^ DIM (′n) .
then have Euler-characteristic A (

⋃
(uminus ‘ H)) = (−1) ^ (DIM (′n))

using Euler-characteristic-inclusion-exclusion [OF ‹finite A›]
by (smt (verit) A Collect-cong ‹finite H › finite-imageI image-iff sum.cong)

then show ?thesis
using D E by (simp add: uminus-Inf Seq)

qed
finally show ?thesis .

qed

1.6 Euler-Poincare relation for special (n − 1)-dimensional
polytope

lemma Euler-Poincare-lemma:
fixes p :: ′n::euclidean-space set
assumes DIM (′n) ≥ 2 polytope p i ∈ Basis and affp: affine hull p = {x. x · i

= 1}
shows (

∑
d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ int (card {f . f face-of p ∧ aff-dim f

= int d})) = 1
proof −

have aff-dim p = aff-dim {x. i · x = 1}
by (metis (no-types, lifting) Collect-cong aff-dim-affine-hull affp inner-commute)

also have ... = int (DIM (′n) − 1)
using aff-dim-hyperplane [of i 1] ‹i ∈ Basis› by fastforce

finally have AP: aff-dim p = int (DIM (′n) − 1) .
show ?thesis
proof (cases p = {})

case True
with AP show ?thesis by simp

next

29

case False
define S where S ≡ conic hull p
have 1 : (conic hull f) ∩ {x. x · i = 1} = f if f ⊆ {x. x · i = 1} for f

using that
by (smt (verit, ccfv-threshold) affp conic-hull-Int-affine-hull hull-hull in-

ner-zero-left mem-Collect-eq)
obtain K where finite K and K : p = convex hull K

by (meson assms(2) polytope-def)
then have convex-cone hull K = conic hull (convex hull K)

using False convex-cone-hull-separate-nonempty by auto
then have polyhedron S

using polyhedron-convex-cone-hull
by (simp add: S-def ‹polytope p› polyhedron-conic-hull-polytope)

then have convex S
by (simp add: polyhedron-imp-convex)

then have conic S
by (simp add: S-def conic-conic-hull)

then have 0 ∈ S
by (simp add: False S-def)

have S 6= UNIV
proof

assume S = UNIV
then have conic hull p ∩ {x. x·i = 1} = p

by (metis 1 affp hull-subset)
then have bounded {x. x · i = 1}

using S-def ‹S = UNIV › assms(2) polytope-imp-bounded by auto
then obtain B where B>0 and B:

∧
x. x ∈ {x. x · i = 1} =⇒ norm x ≤ B

using bounded-normE by blast
define x where x ≡ (

∑
b∈Basis. (if b=i then 1 else B+1) ∗R b)

obtain j where j: j ∈ Basis j 6=i
using ‹DIM (′n) ≥ 2 ›

by (metis DIM-complex DIM-ge-Suc0 card-2-iff ′ card-le-Suc0-iff-eq eu-
clidean-space-class.finite-Basis le-antisym)

have B+1 ≤ |x · j|
using j by (simp add: x-def)

also have . . . ≤ norm x
using Basis-le-norm j by blast

finally have norm x > B
by simp

moreover have x · i = 1
by (simp add: x-def ‹i ∈ Basis›)

ultimately show False
using B by force

qed
have S 6= {}

by (metis False S-def empty-subsetI equalityI hull-subset)
have

∧
c x. [[0 < c; x ∈ p; x 6= 0]] =⇒ 0 < (c ∗R x) · i

by (metis (mono-tags) Int-Collect Int-iff affp hull-inc inner-commute in-
ner-scaleR-right mult.right-neutral)

30

then have doti-gt0 : 0 < x · i if S : x ∈ S and x 6= 0 for x
using that by (auto simp: S-def conic-hull-explicit)

have
∧

a. {a} face-of S =⇒ a = 0
using ‹conic S› conic-contains-0 face-of-conic by blast

moreover have {0} face-of S
proof −

have
∧

a b u. [[a ∈ S ; b ∈ S ; a 6= b; u < 1 ; 0 < u; (1 − u) ∗R a + u ∗R b
= 0]] =⇒ False

using conic-def euclidean-all-zero-iff inner-left-distrib scaleR-eq-0-iff
by (smt (verit, del-insts) doti-gt0 ‹conic S› ‹i ∈ Basis›)

then show ?thesis
by (auto simp: in-segment face-of-singleton extreme-point-of-def ‹0 ∈ S›)

qed
ultimately have face-0 : {f . f face-of S ∧ (∃ a. f = {a})} = {{0}}

by auto
have interior S 6= {}
proof

assume interior S = {}
then obtain a b where a 6= 0 and ab: S ⊆ {x. a · x = b}

by (metis ‹convex S› empty-interior-subset-hyperplane)
have {x. x · i = 1} ⊆ {x. a · x = b}

by (metis S-def ab affine-hyperplane affp hull-inc subset-eq subset-hull)
moreover have ¬ {x. x · i = 1} ⊂ {x. a · x = b}

using aff-dim-hyperplane [of a b]
by (metis AP ‹a 6= 0 › aff-dim-eq-full-gen affine-hyperplane affp hull-subset

less-le-not-le subset-hull)
ultimately have S ⊆ {x. x · i = 1}

using ab by auto
with ‹S 6= {}› show False

using ‹conic S› conic-contains-0 by fastforce
qed
then have (

∑
d = 0 ..DIM (′n). (−1) ^ d ∗ int (card {f . f face-of S ∧ aff-dim

f = int d})) = 0
using Euler-polyhedral-cone ‹S 6= UNIV › ‹conic S› ‹polyhedron S› by blast

then have 1 + (
∑

d = 1 ..DIM (′n). (−1) ^ d ∗ (card {f . f face-of S ∧ aff-dim
f = d})) = 0

by (simp add: sum.atLeast-Suc-atMost aff-dim-eq-0 face-0)
moreover have (

∑
d = 1 ..DIM (′n). (−1) ^ d ∗ (card {f . f face-of S ∧ aff-dim

f = d}))
= − (

∑
d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ int (card {f . f face-of p ∧

aff-dim f = int d}))
proof −
have (

∑
d = 1 ..DIM (′n). (−1) ^ d ∗ (card {f . f face-of S ∧ aff-dim f = d}))

= (
∑

d = Suc 0 ..Suc (DIM (′n)−1). (−1) ^ d ∗ (card {f . f face-of S ∧
aff-dim f = d}))

by auto
also have ... = − (

∑
d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ card {f . f face-of S

∧ aff-dim f = 1 + int d})
unfolding sum.atLeast-Suc-atMost-Suc-shift by (simp add: sum-negf)

31

also have ... = − (
∑

d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ card {f . f face-of p
∧ aff-dim f = int d})

proof −
{ fix d

assume d ≤ DIM (′n) − Suc 0
have conic-face-p: (conic hull f) face-of S if f face-of p for f
proof (cases f={})

case False
have {c ∗R x |c x. 0 ≤ c ∧ x ∈ f } ⊆ {c ∗R x |c x. 0 ≤ c ∧ x ∈ p}

using face-of-imp-subset that by blast
moreover
have convex {c ∗R x |c x. 0 ≤ c ∧ x ∈ f }
by (metis (no-types) cone-hull-expl convex-cone-hull face-of-imp-convex

that)
moreover
have (∃ c x . ca ∗R a = c ∗R x ∧ 0 ≤ c ∧ x ∈ f) ∧ (∃ c x . cb ∗R b = c

∗R x ∧ 0 ≤ c ∧ x ∈ f)
if ∀ a∈p. ∀ b∈p. (∃ x∈f . x ∈ open-segment a b) −→ a ∈ f ∧ b ∈ f

and 0 ≤ ca a ∈ p 0 ≤ cb b ∈ p
and 0 ≤ cx x ∈ f and oseg: cx ∗R x ∈ open-segment (ca ∗R a) (cb

∗R b)
for ca a cb b cx x

proof −
have ai: a · i = 1 and bi: b · i = 1

using affp hull-inc that(3 ,5) by fastforce+
have xi: x · i = 1
using affp that ‹f face-of p› face-of-imp-subset hull-subset by fastforce
show ?thesis
proof (cases cx ∗R x = 0)

case True
then show ?thesis

using ‹{0} face-of S› face-ofD ‹conic S› that
by (smt (verit, best) S-def conic-def hull-subset insertCI singletonD

subsetD)
next

case False
then have cx 6= 0 x 6= 0

by auto
obtain u where 0 < u u < 1 and u: cx ∗R x = (1 − u) ∗R (ca ∗R

a) + u ∗R (cb ∗R b)
using oseg in-segment(2) by metis

show ?thesis
proof (cases x = a)

case True
then have ua: (cx − (1 − u) ∗ ca) ∗R a = (u ∗ cb) ∗R b

using u by (simp add: algebra-simps)
then have (cx − (1 − u) ∗ ca) ∗ 1 = u ∗ cb ∗ 1

by (metis ai bi inner-scaleR-left)
then have a=b ∨ cb = 0

32

using ua ‹0 < u› by force
then show ?thesis

by (metis True scaleR-zero-left that(2) that(4) that(7))
next

case False
show ?thesis
proof (cases x = b)

case True
then have ub: (cx − (u ∗ cb)) ∗R b = ((1 − u) ∗ ca) ∗R a

using u by (simp add: algebra-simps)
then have (cx − (u ∗ cb)) ∗ 1 = ((1 − u) ∗ ca) ∗ 1

by (metis ai bi inner-scaleR-left)
then have a=b ∨ ca = 0

using ‹u < 1 › ub by auto
then show ?thesis

using False True that(4) that(7) by auto
next

case False
have cx > 0

using ‹cx 6= 0 › ‹0 ≤ cx› by linarith
have False if ca = 0
proof −

have cx = u ∗ cb
by (metis add-0 bi inner-real-def inner-scaleR-left real-inner-1-right

scale-eq-0-iff that u xi)
then show False

using ‹x 6= b› ‹cx 6= 0 › that u by force
qed
with ‹0 ≤ ca› have ca > 0

by force
have aff : x ∈ affine hull p ∧ a ∈ affine hull p ∧ b ∈ affine hull p

using affp xi ai bi by blast
show ?thesis
proof (cases cb=0)

case True
have u ′: cx ∗R x = ((1 − u) ∗ ca) ∗R a

using u by (simp add: True)
then have cx = ((1 − u) ∗ ca)

by (metis ai inner-scaleR-left mult.right-neutral xi)
then show ?thesis

using True u ′ ‹cx 6= 0 › ‹ca ≥ 0 › ‹x ∈ f › by auto
next

case False
with ‹cb ≥ 0 › have cb > 0

by linarith
{ have False if a=b

proof −
have ∗: cx ∗R x = ((1 − u) ∗ ca + u ∗ cb) ∗R b

using u that by (simp add: algebra-simps)

33

then have cx = ((1 − u) ∗ ca + u ∗ cb)
by (metis xi bi inner-scaleR-left mult.right-neutral)

with ‹x 6= b› ‹cx 6= 0 › ∗ show False
by force

qed
}
moreover
have cx ∗R x /R cx = (((1 − u) ∗ ca) ∗R a + (cb ∗ u) ∗R b)

/R cx
using u by simp

then have xeq: x = ((1−u) ∗ ca / cx) ∗R a + (cb ∗ u / cx) ∗R b
by (simp add: ‹cx 6= 0 › divide-inverse-commute scaleR-right-distrib)

then have proj: 1 = ((1−u) ∗ ca / cx) + (cb ∗ u / cx)
using ai bi xi by (simp add: inner-left-distrib)

then have eq: cx + ca ∗ u = ca + cb ∗ u
using ‹cx > 0 › by (simp add: field-simps)

have ∃ u>0 . u < 1 ∧ x = (1 − u) ∗R a + u ∗R b
proof (intro exI conjI)

show 0 < inverse cx ∗ u ∗ cb
by (simp add: ‹0 < cb› ‹0 < cx› ‹0 < u›)

show inverse cx ∗ u ∗ cb < 1
using proj ‹0 < ca› ‹0 < cx› ‹u < 1 › by (simp add:

divide-simps)
show x = (1 − inverse cx ∗ u ∗ cb) ∗R a + (inverse cx ∗ u ∗

cb) ∗R b
using eq ‹cx 6= 0 › by (simp add: xeq field-simps)

qed
ultimately show ?thesis

using that by (metis in-segment(2))
qed

qed
qed

qed
qed
ultimately show ?thesis

using that by (auto simp: S-def conic-hull-explicit face-of-def)
qed auto
moreover
have conic-hyperplane-eq: conic hull (f ∩ {x. x · i = 1}) = f

if f face-of S 0 < aff-dim f for f
proof

show conic hull (f ∩ {x. x · i = 1}) ⊆ f
by (metis ‹conic S› face-of-conic inf-le1 subset-hull that(1))

have ∃ c x ′. x = c ∗R x ′ ∧ 0 ≤ c ∧ x ′ ∈ f ∧ x ′ · i = 1 if x ∈ f for x
proof (cases x=0)

case True
obtain y where y ∈ f y 6= 0

by (metis ‹0 < aff-dim f › aff-dim-sing aff-dim-subset insertCI
linorder-not-le subset-iff)

34

then have y · i > 0
using ‹f face-of S› doti-gt0 face-of-imp-subset by blast

then have y /R (y · i) ∈ f ∧ (y /R (y · i)) · i = 1
using ‹conic S› ‹f face-of S› ‹y ∈ f › conic-def face-of-conic by fastforce
then show ?thesis

using True by fastforce
next

case False
then have x · i > 0

using ‹f face-of S› doti-gt0 face-of-imp-subset that by blast
then have x /R (x · i) ∈ f ∧ (x /R (x · i)) · i = 1
using ‹conic S› ‹f face-of S› ‹x ∈ f › conic-def face-of-conic by fastforce
then show ?thesis

by (metis ‹0 < x · i› divideR-right eucl-less-le-not-le)
qed
then show f ⊆ conic hull (f ∩ {x. x · i = 1})

by (auto simp: conic-hull-explicit)
qed

have conic-face-S : conic hull f face-of S
if f face-of S for f
by (metis ‹conic S› face-of-conic hull-same that)

have aff-1d: aff-dim (conic hull f) = aff-dim f + 1 (is ?lhs = ?rhs)
if f face-of p and f 6= {} for f

proof (rule order-antisym)
have ?lhs ≤ aff-dim(affine hull (insert 0 (affine hull f)))
proof (intro aff-dim-subset hull-minimal)

show f ⊆ affine hull insert 0 (affine hull f)
by (metis hull-insert hull-subset insert-subset)

show conic (affine hull insert 0 (affine hull f))
by (metis affine-hull-span-0 conic-span hull-inc insertI1)

qed
also have . . . ≤ ?rhs

by (simp add: aff-dim-insert)
finally show ?lhs ≤ ?rhs .
have aff-dim f < aff-dim (conic hull f)
proof (intro aff-dim-psubset psubsetI)

show affine hull f ⊆ affine hull (conic hull f)
by (simp add: hull-mono hull-subset)

have 0 /∈ affine hull f
using affp face-of-imp-subset hull-mono that(1) by fastforce

moreover have 0 ∈ affine hull (conic hull f)
by (simp add: ‹f 6= {}› hull-inc)

ultimately show affine hull f 6= affine hull (conic hull f)
by auto

qed
then show ?rhs ≤ ?lhs

by simp

35

qed

have face-S-imp-face-p:
∧

f . f face-of S =⇒ f ∩ {x. x · i = 1} face-of p
by (metis 1 S-def affp convex-affine-hull face-of-slice hull-subset)

have conic-eq-f : conic hull f ∩ {x. x · i = 1} = f
if f face-of p for f
by (metis 1 affp face-of-imp-subset hull-subset le-inf-iff that)

have dim-f-hyperplane: aff-dim (f ∩ {x. x · i = 1}) = int d
if f face-of S aff-dim f = 1 + int d for f

proof −
have conic f

using ‹conic S› face-of-conic that(1) by blast
then have 0 ∈ f

using conic-contains-0 that by force
moreover have ¬ f ⊆ {0}

using subset-singletonD that(2) by fastforce
ultimately obtain y where y: y ∈ f y 6= 0

by blast
then have y · i > 0

using doti-gt0 face-of-imp-subset that(1) by blast
have aff-dim (conic hull (f ∩ {x. x · i = 1})) = aff-dim (f ∩ {x. x · i

= 1}) + 1
proof (rule aff-1d)

show f ∩ {x. x · i = 1} face-of p
by (simp add: face-S-imp-face-p that(1))

have inverse(y · i) ∗R y ∈ f
using ‹0 < y · i› ‹conic S› conic-mul face-of-conic that(1) y(1) by

fastforce
moreover have inverse(y · i) ∗R y ∈ {x. x · i = 1}

using ‹y · i > 0 › by (simp add: field-simps)
ultimately show f ∩ {x. x · i = 1} 6= {}

by blast
qed
then show ?thesis

by (simp add: conic-hyperplane-eq that)
qed
have card {f . f face-of S ∧ aff-dim f = 1 + int d}

= card {f . f face-of p ∧ aff-dim f = int d}
proof (intro bij-betw-same-card bij-betw-imageI)

show inj-on (λf . f ∩ {x. x · i = 1}) {f . f face-of S ∧ aff-dim f = 1 +
int d}

by (smt (verit) conic-hyperplane-eq inj-on-def mem-Collect-eq of-nat-less-0-iff)

show (λf . f ∩ {x. x · i = 1}) ‘ {f . f face-of S ∧ aff-dim f = 1 + int d}
= {f . f face-of p ∧ aff-dim f = int d}

using aff-1d conic-eq-f conic-face-p
by (fastforce simp: image-iff face-S-imp-face-p dim-f-hyperplane)

36

qed
}
then show ?thesis

by force
qed
finally show ?thesis .

qed
ultimately show ?thesis

by auto
qed

qed

corollary Euler-poincare-special:
fixes p :: ′n::euclidean-space set
assumes 2 ≤ DIM (′n) polytope p i ∈ Basis and affp: affine hull p = {x. x · i

= 0}
shows (

∑
d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ card {f . f face-of p ∧ aff-dim f =

d}) = 1
proof −

{ fix d
have eq: image((+) i) ‘ {f . f face-of p} ∩ image((+) i) ‘ {f . aff-dim f = int d}

= image((+) i) ‘ {f . f face-of p} ∩ {f . aff-dim f = int d}
by (auto simp: aff-dim-translation-eq)

have card {f . f face-of p ∧ aff-dim f = int d} = card (image((+) i) ‘ {f . f
face-of p ∧ aff-dim f = int d})

by (simp add: inj-on-image card-image)
also have . . . = card (image((+) i) ‘ {f . f face-of p} ∩ {f . aff-dim f = int d})

by (simp add: Collect-conj-eq image-Int inj-on-image eq)
also have . . . = card {f . f face-of (+) i ‘ p ∧ aff-dim f = int d}

by (simp add: Collect-conj-eq faces-of-translation)
finally have card {f . f face-of p ∧ aff-dim f = int d} = card {f . f face-of (+)

i ‘ p ∧ aff-dim f = int d} .
}
then
have (

∑
d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ card {f . f face-of p ∧ aff-dim f = d})

= (
∑

d = 0 ..DIM (′n) − 1 . (−1) ^ d ∗ card {f . f face-of (+) i ‘ p ∧ aff-dim
f = int d})

by simp
also have . . . = 1
proof (rule Euler-Poincare-lemma)

have
∧

x. [[i ∈ Basis; x · i = 1]] =⇒ ∃ y. y · i = 0 ∧ x = y + i
by (metis add-cancel-left-left eq-diff-eq inner-diff-left inner-same-Basis)

then show affine hull (+) i ‘ p = {x. x · i = 1}
using ‹i ∈ Basis› unfolding affine-hull-translation affp by (auto simp:

algebra-simps)
qed (use assms polytope-translation-eq in auto)
finally show ?thesis .

qed

37

1.7 Now Euler-Poincare for a general full-dimensional poly-
tope

theorem Euler-Poincare-full:
fixes p :: ′n::euclidean-space set
assumes polytope p aff-dim p = DIM (′n)
shows (

∑
d = 0 ..DIM (′n). (−1) ^ d ∗ (card {f . f face-of p ∧ aff-dim f = d}))

= 1
proof −

define augm:: ′n ⇒ ′n × real where augm ≡ λx. (x,0)
define S where S ≡ augm ‘ p
obtain i:: ′n where i: i ∈ Basis

by (meson SOME-Basis)
have bounded-linear augm

by (auto simp: augm-def bounded-linearI ′)
then have polytope S
unfolding S-def using polytope-linear-image ‹polytope p› bounded-linear .linear

by blast
have face-pS :

∧
F . F face-of p ←→ augm ‘ F face-of S

using S-def ‹bounded-linear augm› augm-def bounded-linear .linear face-of-linear-image
inj-on-def by blast

have aff-dim-eq[simp]: aff-dim (augm ‘ F) = aff-dim F for F
using ‹bounded-linear augm› aff-dim-injective-linear-image bounded-linear .linear

unfolding augm-def inj-on-def by blast
have ∗: {F . F face-of S ∧ aff-dim F = int d} = (image augm) ‘ {F . F face-of p
∧ aff-dim F = int d}

(is ?lhs = ?rhs) for d
proof

have
∧

G. [[G face-of S ; aff-dim G = int d]]
=⇒ ∃F . F face-of p ∧ aff-dim F = int d ∧ G = augm ‘ F

by (metis face-pS S-def aff-dim-eq face-of-imp-subset subset-imageE)
then show ?lhs ⊆ ?rhs

by (auto simp: image-iff)
qed (auto simp: image-iff face-pS)
have ceqc: card {f . f face-of S ∧ aff-dim f = int d} = card {f . f face-of p ∧

aff-dim f = int d} for d
unfolding ∗
by (rule card-image) (auto simp: inj-on-def augm-def)

have (
∑

d = 0 ..DIM (′n × real) − 1 . (− 1) ^ d ∗ int (card {f . f face-of S ∧
aff-dim f = int d})) = 1

proof (rule Euler-poincare-special)
show 2 ≤ DIM (′n × real)

by auto
have snd0 : (a, b) ∈ affine hull S =⇒ b = 0 for a b
using S-def ‹bounded-linear augm› affine-hull-linear-image augm-def by blast

moreover have
∧

a. (a, 0) ∈ affine hull S
using S-def ‹bounded-linear augm› aff-dim-eq-full affine-hull-linear-image

assms(2) augm-def by blast
ultimately show affine hull S = {x. x · (0 :: ′n, 1 ::real) = 0}

38

by auto
qed (auto simp: ‹polytope S› Basis-prod-def)
then show ?thesis

by (simp add: ceqc)
qed

In particular, the Euler relation in 3 dimensions
corollary Euler-relation:

fixes p :: ′n::euclidean-space set
assumes polytope p aff-dim p = 3 DIM (′n) = 3
shows (card {v. v face-of p ∧ aff-dim v = 0} + card {f . f face-of p ∧ aff-dim f

= 2}) − card {e. e face-of p ∧ aff-dim e = 1} = 2
proof −

have
∧

x. [[x face-of p; aff-dim x = 3]] =⇒ x = p
using assms by (metis face-of-aff-dim-lt less-irrefl polytope-imp-convex)

then have 3 : {f . f face-of p ∧ aff-dim f = 3} = {p}
using assms by (auto simp: face-of-refl polytope-imp-convex)

have (
∑

d = 0 ..3 . (−1) ^ d ∗ int (card {f . f face-of p ∧ aff-dim f = int d})) =
1

using Euler-Poincare-full [of p] assms by simp
then show ?thesis

by (simp add: sum.atLeast0-atMost-Suc-shift numeral-3-eq-3 3)
qed

end

References
[1] I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discov-

ery. 1976.

[2] J. Lawrence. A short proof of Euler’s relation for convex polytopes.
Canadian Mathematical Bulletin, 40(4):471–474, 1997.

39

	Euler's Polyhedron Formula
	Cells of a hyperplane arrangement
	A cell complex is considered to be a union of such cells
	Euler characteristic
	Show that the characteristic is invariant w.r.t. hyperplane arrangement.
	Euler-type relation for full-dimensional proper polyhedral cones
	Euler-Poincare relation for special (n-1)-dimensional polytope
	Now Euler-Poincare for a general full-dimensional polytope

