Euler's Polyhedron Formula

Lawrence C. Paulson

September 22, 2023

Abstract

Euler stated in 1752 that every convex polyhedron satisfied the formula $V-E+F=2$ where V, E and F are the numbers of its vertices, edges, and faces. For three dimensions, the well-known proof involves removing one face and then flattening the remainder to form a planar graph, which then is iteratively transformed to leave a single triangle. The history of that proof is extensively discussed and elaborated by Imre Lakatos [1], leaving one finally wondering whether the theorem even holds. The formal proof provided here has been ported from HOL Light, where it is credited to Lawrence [2]. The proof generalises Euler's observation from solid polyhedra to convex polytopes of arbitrary dimension.

Contents

1 Library Extras 3
2 Preliminaries 3
3 Conic sets and conic hull 6
4 Closure of conic hulls 11
5 Convex cones and corresponding hulls 15
5.1 Finitely generated cone is polyhedral, and hence closed 19
6 Inclusion-exclusion principle 22
6.1 Versions for unrestrictedly additive functions 24
6.2 a general "Moebius inversion" inclusion-exclusion principle. This "symmetric" form is from Ira Gessel: "Symmetric Inclusion- Exclusion" 26
7 Euler's Polyhedron Formula 28
7.1 Cells of a hyperplane arrangement 29
7.2 A cell complex is considered to be a union of such cells 33
7.3 Euler characteristic 36
7.4 Show that the characteristic is invariant w.r.t. hyperplane arrangement. 38
7.5 Euler-type relation for full-dimensional proper polyhedral cones 43
7.6 Euler-Poincare relation for special $(n-1)$-dimensional polytope 55
7.7 Now Euler-Poincare for a general full-dimensional polytope 63

Acknowledgements The author was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council.

1 Library Extras

For adding to the repository
theory Library-Extras imports
HOL-Analysis.Polytope

begin

2 Preliminaries

lemma Inter-over-Union:

$$
\bigcap\{\bigcup(\mathcal{F} x) \mid x . x \in S\}=\bigcup\{\bigcap(G \cdot S) \mid G . \forall x \in S . G x \in \mathcal{F} x\}
$$

proof -
have $\bigwedge x . \forall s \in S . \exists X \in \mathcal{F} s . x \in X \Longrightarrow \exists G .(\forall x \in S . G x \in \mathcal{F} x) \wedge(\forall s \in S . x \in$
$G s)$
by metis
then show ?thesis
by (auto simp flip: all-simps ex-simps)
qed
lemmas closure-Int-convex $=$ convex-closure-inter-two
lemmas span-not-UNIV-orthogonal $=$ span-not-univ-orthogonal
lemma convex-closure-rel-interior-Int:
assumes $\wedge S . S \in \mathcal{F} \Longrightarrow$ convex ($S::$ ' $n::$ euclidean-space set)
and $\bigcap\left(\right.$ rel-interior $\left.{ }^{\prime} \mathcal{F}\right) \neq\{ \}$
shows $\bigcap($ closure ' $\mathcal{F}) \subseteq$ closure $\left(\bigcap\left(\right.\right.$ rel-interior $\left.\left.{ }^{\prime} \mathcal{F}\right)\right)$
proof -
obtain x where $x: \forall S \in \mathcal{F} . x \in$ rel-interior S
using assms by auto
show ?thesis
proof
fix y
assume $y: y \in \bigcap$ (closure' \mathcal{F})
show $y \in$ closure $\left(\bigcap\left(\right.\right.$ rel-interior $\left.\left.{ }^{\prime} \mathcal{F}\right)\right)$
proof (cases $y=x$)
case True
with closure-subset x show ?thesis
by fastforce
next
case False
$\{\quad$ fix $\varepsilon::$ real
assume $e: \varepsilon>0$
define $e 1$ where $e 1=\min 1(\varepsilon / \operatorname{norm}(y-x))$
then have e1: e1>0e1 ≤ 1 e1 $* \operatorname{norm}(y-x) \leq \varepsilon$
using $\langle y \neq x\rangle\langle\varepsilon>0\rangle$ le-divide-eq[of e1 ε norm $(y-x)$]
by simp-all

```
            define z where z=y-e1 *R}(y-x
            {
                fix }
                    assume S\in\mathcal{F}
                        then have z\in rel-interior S
                    using rel-interior-closure-convex-shrink[of S x y e1] assms x y e1 z-def
                    by auto
            }
            then have *:z\in\bigcap(rel-interior '\mathcal{F})
                by auto
            have }\existsx\in\bigcap(rel-interior ' \mathcal{F}). dist x y \leq\varepsilon
                    using }\langley\not=x\ranglez\mathrm{ -def * e1 e dist-norm[of z y]
                    by force
            } then
            show ?thesis
                by (auto simp: closure-approachable-le)
            qed
    qed
qed
lemma closure-Inter-convex:
    fixes \mathcal{F :: ' n::euclidean-space set set}
    assumes }\S.S\in\mathcal{F}\Longrightarrow\mathrm{ convex S and @(rel-interior' 'F})\not={
    shows closure}(\bigcap\mathcal{F})=\bigcap(closure'\mathcal{F}
proof -
    have }\bigcap(\mathrm{ closure ' F})\leq\mathrm{ closure }(\bigcap(\mathrm{ rel-interior ' FF))
        by (meson assms convex-closure-rel-interior-Int)
    moreover
    have closure }(\bigcap(\mathrm{ rel-interior ' F}))\subseteq\mathrm{ closure }(\bigcap\mathcal{F}
        using rel-interior-inter-aux closure-mono[of \bigcap(rel-interior '\mathcal{F})\bigcap\mathcal{F}]
        by auto
    ultimately show ?thesis
        using closure-Int[of \mathcal{F] by blast}
qed
lemma closure-Inter-convex-open:
    (\S::'n::euclidean-space set. S G\mathcal{F}\Longrightarrow convex S ^ open S)
        closure}(\bigcap\mathcal{F})=(\mathrm{ if }\bigcap\mathcal{F}={} then {} else \bigcap(closure '\mathcal{F})
    by (simp add: closure-Inter-convex rel-interior-open)
lemma empty-interior-subset-hyperplane-aux:
    fixes S :: 'a::euclidean-space set
    assumes convex S 0 G S and empty-int: interior S={}
    shows \existsa b. a\not=0^S\subseteq{x.a\cdotx=b}
proof -
    have False if \a.a=0\vee(\forallb.\existsT\inS.a\cdotT\not=b)
    proof -
    have rel-int: rel-interior S }\not={
```

using assms rel－interior－eq－empty by auto
moreover
have $\operatorname{dim} S \neq \operatorname{dim}\left(U N I V::^{\prime} a\right.$ set $)$
by（metis aff－dim－zero affine－hull－UNIV $\langle 0 \in S\rangle$ dim－UNIV empty－int hull－inc rel－int rel－interior－interior）
then obtain a where $a \neq 0$ and $a:$ span $S \subseteq\{x . a \cdot x=0\}$
using lowdim－subset－hyperplane
by（metis dim－UNIV dim－subset－UNIV order－less－le）
have span UNIV $=$ span S
by（metis span－base span－not－UNIV－orthogonal that）
then have UNIV \subseteq affine hull S
by（simp add：$\langle 0 \in S\rangle$ hull－inc affine－hull－span－0）
ultimately show False
using «rel－interior $S \neq\{ \}$ 〉empty－int rel－interior－interior by blast
qed
then show？thesis
by blast
qed
lemma empty－interior－subset－hyperplane：
fixes S ：：＇$a::$ euclidean－space set
assumes convex S and int：interior $S=\{ \}$
obtains $a b$ where $a \neq 0 S \subseteq\{x . a \cdot x=b\}$
proof（cases $S=\{ \}$ ）
case True
then show？thesis
using that by blast
next
case False
then obtain u where $u \in S$
by blast
have $\exists a b$ ．$a \neq 0 \wedge(\lambda x . x-u)^{\prime} S \subseteq\{x . a \cdot x=b\}$
proof（rule empty－interior－subset－hyperplane－aux）
show convex $((\lambda x . x-u)$＇$S)$
using＜convex S 〉 by force
show $0 \in(\lambda x . x-u)$＇S
by（ simp add：$\langle u \in S\rangle)$
show interior $((\lambda x . x-u) \cdot S)=\{ \}$
by（simp add：int interior－translation－subtract）
qed
then obtain $a b$ where $a \neq 0$ and $a b:(\lambda x . x-u) \cdot S \subseteq\{x . a \cdot x=b\}$ by metis
then have $S \subseteq\{x . a \cdot x=b+(a \cdot u)\}$
using $a b$ by（auto simp：algebra－simps）
then show ？thesis
using $\langle a \neq 0$ 〉 that by auto
qed
lemma aff－dim－psubset：

```
    (affine hull S) \subset (affine hull T) \Longrightarrowaff-dim S < aff-dim T
    by (metis aff-dim-affine-hull aff-dim-empty aff-dim-subset affine-affine-hull affine-dim-equal
order-less-le)
lemma aff-dim-eq-full-gen:
    S\subseteqT\Longrightarrow(aff-dim S=aff-dim T\longleftrightarrow affine hull S = affine hull T)
    by (smt (verit, del-insts) aff-dim-affine-hull2 aff-dim-psubset hull-mono psubsetI)
lemma aff-dim-eq-full:
    fixes }S:: ' n::euclidean-space se
    shows aff-dim S = (DIM ('n)) \longleftrightarrow affine hull S = UNIV
    by (metis aff-dim-UNIV aff-dim-affine-hull affine-hull-UNIV)
```


3 Conic sets and conic hull

definition conic :: 'a::real-vector set \Rightarrow bool where conic $S \equiv \forall x c . x \in S \longrightarrow 0 \leq c \longrightarrow\left(c *_{R} x\right) \in S$
lemma conic $D: \llbracket$ conic $S ; x \in S ; 0 \leq c \rrbracket \Longrightarrow\left(c *_{R} x\right) \in S$
by (meson conic-def)
lemma subspace-imp-conic: subspace $S \Longrightarrow$ conic S
by (simp add: conic-def subspace-def)
lemma conic-empty [simp]: conic $\}$
using conic-def by blast
lemma conic-UNIV: conic UNIV
by (simp add: conic-def)
lemma conic-Inter: $(\bigwedge S . S \in \mathcal{F} \Longrightarrow \operatorname{conic} S) \Longrightarrow \operatorname{conic}(\bigcap \mathcal{F})$
by (simp add: conic-def)
lemma conic-linear-image:
\llbracket conic S; linear $f \rrbracket \Longrightarrow \operatorname{conic}\left(f^{\prime} S\right)$
by (smt (verit) conic-def image-iff linear.scaleR)
lemma conic-linear-image-eq:
\llbracket linear f; inj $f \rrbracket \Longrightarrow$ conic $\left(f^{\prime} S\right) \longleftrightarrow$ conic S
by (smt (verit) conic-def conic-linear-image inj-image-mem-iff linear-cmul)
lemma conic-mul: \llbracket conic $S ; x \in S ; 0 \leq c \rrbracket \Longrightarrow\left(c *_{R} x\right) \in S$
using conic-def by blast
lemma conic-conic-hull: conic(conic hull S)
by (metis (no-types, lifting) conic-Inter hull-def mem-Collect-eq)
lemma conic-hull-eq: (conic hull $S=S) \longleftrightarrow$ conic S
by (metis conic-conic-hull hull-same)

```
lemma conic-hull-UNIV [simp]: conic hull UNIV = UNIV
    by simp
lemma conic-negations: conic S \Longrightarrow conic (image uminus S)
    by (auto simp: conic-def image-iff)
lemma conic-span [iff]: conic(span S)
    by (simp add: subspace-imp-conic)
lemma conic-hull-explicit:
    conic hull S ={c**R x c x. 0 \leq c^ ^ x S S}
proof (rule hull-unique)
    show S\subseteq{c**R}x|cx.0\leqc\wedgex\inS
    by (metis (no-types) cone-hull-expl hull-subset)
    show conic {c**R}x|cx.0\leqc\wedgex\inS
    using mult-nonneg-nonneg by (force simp: conic-def)
qed (auto simp: conic-def)
lemma conic-hull-as-image:
    conic hull S = (\lambdaz. fst z *R snd z)'({0..} }\timesS
    by (force simp: conic-hull-explicit)
lemma conic-hull-linear-image:
    linear f \Longrightarrow conic hull f'S=f'(conic hull S)
    by (force simp: conic-hull-explicit image-iff set-eq-iff linear-scale)
lemma conic-hull-image-scale:
    assumes }\x.x\inS\Longrightarrow0<c
    shows conic hull ( }\lambdax.cx\mp@subsup{*}{R}{}x)'S=\mathrm{ conic hull }
proof
    show conic hull ( }\lambdax.cx\mp@subsup{*}{R}{}x)'S\subseteq\mathrm{ conic hull S
    proof (rule hull-minimal)
        show ( }\lambdax.c)x\mp@subsup{*}{R}{}x)'S\subseteq\mathrm{ conic hull S
        using assms conic-hull-explicit by fastforce
    qed (simp add: conic-conic-hull)
    show conic hull S\subseteq conic hull ( }\lambdax.cx\mp@subsup{*}{R}{}x)`
    proof (rule hull-minimal)
        { fix }
            assume }x\in
            then have x =inverse(cx)* *
                using assms by fastforce
            then have }x\in\mathrm{ conic hull ( }\lambdax.cx\mp@subsup{*}{R}{}x)'
                by (smt (verit, best) \langlex \inS\rangle assms conic-conic-hull conic-mul hull-inc
image-eqI inverse-nonpositive-iff-nonpositive)
            }
            then show S\subseteq conic hull ( }\lambdax.cx\mp@subsup{*}{R}{}x)'S\mathrm{ by auto
    qed (simp add: conic-conic-hull)
qed
```

```
lemma convex-conic-hull:
    assumes convex S
    shows convex (conic hull S)
proof -
    { fix cxd y and u :: real
        assume §: (0::real ) \leqcx\inS (0::real) \leqdy\inS 0 \lequu\leq1
    have }\exists\mp@subsup{c}{}{\prime\prime}\mp@subsup{x}{}{\prime\prime}.((1-u)*c)\mp@subsup{*}{R}{}x+(u*d)\mp@subsup{*}{R}{}y=\mp@subsup{c}{}{\prime\prime}\mp@subsup{*}{R}{}\mp@subsup{x}{}{\prime\prime}\wedge0\leq\mp@subsup{c}{}{\prime\prime}\wedge\mp@subsup{x}{}{\prime\prime
ES
    proof (cases (1-u)*c=0)
            case True
            with }\langle0\leqd\rangle\langley\inS\rangle\langle0\lequ
            show ?thesis by force
        next
            case False
            define }\xi\mathrm{ where }\xi\equiv(1-u)*c+u*
            have *: c*u\leqc
                by (simp add: § mult-left-le)
            have }\xi>
                using False § by (smt (verit, best) \xi-def split-mult-pos-le)
            then have **: c+d*u=\xi+c*u
                by (simp add: \xi-def mult.commute right-diff-distrib')
            show ?thesis
            proof (intro exI conjI)
                show 0\leq\xi
                    using <0 < \xi` by auto
                show ((1-u)*c)* *R}x+(u*d)*\mp@subsup{*}{R}{}y=\xi\mp@subsup{*}{R}{}(((1-u)*c/\xi)*\mp@subsup{*}{R}{}
+(u*d/\xi)*R
                    using }\langle\xi>0\rangle\mathrm{ by (simp add: algebra-simps diff-divide-distrib)
                show }((1-u)*c/\xi)\mp@subsup{*}{R}{}x+(u*d/\xi)\mp@subsup{*}{R}{}y\in
                    using <0<\xi>
                by (intro convexD [OF assms]) (auto simp: § field-split-simps ***)
            qed
    qed
    }
    then show ?thesis
        by (auto simp add: conic-hull-explicit convex-alt)
qed
lemma conic-halfspace-le: conic {x.a\cdotx\leq0}
    by (auto simp: conic-def mult-le-0-iff)
lemma conic-halfspace-ge: conic {x. a • x \geq0}
    by (auto simp: conic-def mult-le-0-iff)
lemma conic-hull-empty [simp]: conic hull {} = {}
    by (simp add: conic-hull-eq)
lemma conic-contains-0: conic }S\Longrightarrow(0\inS\longleftrightarrowS\not={}
```

```
    by (simp add: Convex.cone-def cone-contains-0 conic-def)
lemma conic-hull-eq-empty: conic hull S={}\longleftrightarrow(S={})
    using conic-hull-explicit by fastforce
lemma conic-sums:\llbracketconic S; conic T\rrbracket\Longrightarrow conic (\bigcupx\inS.\bigcupy\inT. {x+y})
    by (simp add: conic-def) (metis scaleR-right-distrib)
lemma conic-Times: \llbracketconic S; conic T\rrbracket \Longrightarrowconic (S 人 T)
    by (auto simp: conic-def)
lemma conic-Times-eq:
    conic}(S\timesT)\longleftrightarrowS={}\veeT={}\vee conic S\wedge conic T (is ?lhs = ?rhs
proof
    show ?lhs \Longrightarrow? ?rhs
        by (force simp: conic-def)
    show ?rhs \Longrightarrow?lhs
        by (force simp: conic-Times)
qed
lemma conic-hull-0 [simp]: conic hull {0} = {0}
    by (simp add: conic-hull-eq subspace-imp-conic)
lemma conic-hull-contains-0 [simp]: 0 conic hull S \longleftrightarrow(S\not={})
    by (simp add: conic-conic-hull conic-contains-0 conic-hull-eq-empty)
lemma conic-hull-eq-sing:
    conic hull S={x}\longleftrightarrowS={0}\wedgex=0
proof
    show conic hull S={x}\LongrightarrowS={0}\wedgex=0
        by (metis conic-conic-hull conic-contains-0 conic-def conic-hull-eq hull-inc in-
sert-not-empty singleton-iff)
qed simp
lemma conic-hull-Int-affine-hull:
    assumes T\subseteqS0 & affine hull S
    shows (conic hull T) \cap(affine hull S)}=
proof -
    have TaffS:T\subseteqaffine hull S
        using <T\subseteqS\rangle hull-subset by fastforce
    moreover
    {fix c x
        assume c * *R}x\in\mathrm{ affine hull S
            and 0}\leq
            and }x\in
    have c **R}x\in
    proof (cases c=1)
                case True
            then show ?thesis
```

```
        by (simp add:: <x \inT>)
    next
        case False
        then have x/R (1-c) = x+(c*inverse (1-c)) *R
        by (smt (verit, ccfv-SIG) diff-add-cancel mult.commute real-vector-affinity-eq
scaleR-collapse scaleR-scaleR)
    then have 0 = inverse (1-c)** c * R}x+(1-\operatorname{inverse}(1-c))\mp@subsup{*}{R}{}
        by (simp add: algebra-simps)
    then have 0 Gaffine hull S
        by (smt (verit) <c *R}x\in\mathrm{ affine hull S〉<x < T> affine-affine-hull TaffS
in-mono mem-affine)
    then show ?thesis
        using assms by auto
    qed }
then have conic hull T\cap affine hull S\subseteqT
    by (auto simp: conic-hull-explicit)
ultimately show ?thesis
    by (auto simp: hull-inc)
qed
lemma open-in-subset-relative-interior:
fixes S :: 'a::euclidean-space set
shows openin (top-of-set (affine hull T)) S\Longrightarrow(S\subseteqrel-interior T)}=(S\subseteqT
by (meson order.trans rel-interior-maximal rel-interior-subset)
lemma conic-hull-eq-span-affine-hull:
    fixes S :: 'a::euclidean-space set
    assumes 0}\in\mathrm{ rel-interior S
    shows conic hull S = span S ^ conic hull S = affine hull S
proof -
    obtain }\varepsilon\mathrm{ where }\varepsilon>0\mathrm{ and }\varepsilon:\mathrm{ cball }0\varepsilon\cap\mathrm{ affine hull S}\subseteq
    using assms mem-rel-interior-cball by blast
    have *: affine hull S = span S
        by (meson affine-hull-span-0 assms hull-inc mem-rel-interior-cball)
    moreover
    have conic hull S\subseteq span S
    by (simp add: hull-minimal span-superset)
    moreover
        {fix }
    assume x affine hull S
    have }x\in\mathrm{ conic hull S
    proof (cases x=0)
            case True
            then show ?thesis
                using <x \in affine hull }S\rangle\mathrm{ by auto
    next
        case False
```

```
        then have (\varepsilon/ norm x) ** }x\in\mathrm{ cball 0 }\varepsilon\cap\mathrm{ affine hull S
            using <0 < ह\rangle\langlex\in affine hull S\rangle* span-mul by fastforce
            then have (\varepsilon/ norm x) *R x\inS
                by (meson & subsetD)
            then have \existsc xa. x=c**R xa^0\leqc^xa\inS
            by (smt (verit, del-insts)<0<\varepsilon> divide-nonneg-nonneg eq-vector-fraction-iff
norm-eq-zero norm-ge-zero)
            then show ?thesis
                by (simp add: conic-hull-explicit)
    qed
    }
    then have affine hull S\subseteq conic hull S
    by auto
    ultimately show ?thesis
    by blast
qed
lemma conic-hull-eq-span:
    fixes S :: 'a::euclidean-space set
    assumes 0 f rel-interior S
    shows conic hull S = span S
    by (simp add: assms conic-hull-eq-span-affine-hull)
lemma conic-hull-eq-affine-hull:
    fixes S :: 'a::euclidean-space set
    assumes 0}\in\mathrm{ rel-interior S
    shows conic hull S = affine hull S
    using assms conic-hull-eq-span-affine-hull by blast
lemma conic-hull-eq-span-eq:
    fixes S :: 'a::euclidean-space set
    shows 0 \in rel-interior(conic hull S) \longleftrightarrow conic hull S = span S (is ?lhs = ?rhs)
proof
    show ?lhs \Longrightarrow? ?rhs
    by (metis conic-hull-eq-span conic-span hull-hull hull-minimal hull-subset span-eq)
    show ?rhs \Longrightarrow ?lhs
    by (metis rel-interior-affine subspace-affine subspace-span)
qed
```


4 Closure of conic hulls

proposition closedin-conic-hull:
fixes S :: 'a::euclidean-space set
assumes compact $T 0 \notin T T \subseteq S$
shows closedin (top-of-set (conic hull S)) (conic hull T)
proof -
have $* *$: compact $\left(\{0 ..\} \times T \cap\left(\lambda z\right.\right.$. fst $z *_{R}$ snd $\left.\left.z\right)-‘ K\right)$ (is compact ? L)
if $K \subseteq\left(\lambda z .(f s t z) *_{R}\right.$ snd $\left.z\right)$ ' $(\{0 .\} \times S$.$) compact K$ for K
proof -
obtain r where $r>0$ and $r: \bigwedge x . x \in K \Longrightarrow$ norm $x \leq r$
by（metis 〈compact K 〉 bounded－normE compact－imp－bounded）
show ？thesis
unfolding compact－eq－bounded－closed
proof
have bounded $(\{0 . . r / \operatorname{setdist}\{0\} T\} \times T)$
by（simp add：assms（1）bounded－Times compact－imp－bounded）
moreover
$\{$ fix $a b$
assume $a *_{R} b \in K$ and $b \in T$ and $0 \leq a$
have setdist $\{0\} T \neq 0$
using $\langle b \in T\rangle$ assms compact－imp－closed setdist－eq－0－closed by auto
then have $T 0$ ：setdist $\{0\} T>0$
using less－eq－real－def by fastforce
then have $a *$ setdist $\{0\} T \leq r$
by（smt（verit，ccfv－SIG）$\langle 0 \leq a\rangle\left\langle a *_{R} b \in K\right\rangle\langle b \in T\rangle$ dist－0－norm
mult－mono＇norm－scaleR r setdist－le－dist singletonI）
with $T 0\langle r>0\rangle$ have $a \leq r / \operatorname{setdist}\{0\} T$
by（simp add：divide－simps）
\}
then have $? L \subseteq(\{0 . . r / \operatorname{setdist}\{0\} T\} \times T)$ by auto
ultimately show bounded ？L
by（meson bounded－subset）
show closed？L
proof（rule continuous－closed－preimage）
show continuous－on $(\{0 .\} \times T).\left(\lambda z\right.$ ．fst $z *_{R}$ snd $\left.z\right)$
by（intro continuous－intros）
show closed $(\{0::$ real．．$\} \times T)$
by（simp add：assms（1）closed－Times compact－imp－closed）
show closed K
by（simp add：compact－imp－closed that（2））
qed
qed
qed
show ？thesis
unfolding conic－hull－as－image
proof（rule proper－map）
show compact $\left(\{0 ..\} \times T \cap\left(\lambda z . f s t z *_{R}\right.\right.$ snd $\left.\left.z\right)-‘ K\right)$（is compact ？$L$ ）
if $K \subseteq\left(\lambda z .(f s t z) *_{R}\right.$ snd $\left.z\right)$＇$(\{0 .\} \times S$.$) compact K$ for K
proof－
obtain r where $r>0$ and $r: \bigwedge x . x \in K \Longrightarrow$ norm $x \leq r$
by（metis 〈compact K 〉 bounded－normE compact－imp－bounded）
show ？thesis
unfolding compact－eq－bounded－closed
proof
have bounded（\｛0．．r／setdist $\{0\} T\} \times T$ ）
by（simp add：assms（1）bounded－Times compact－imp－bounded）
moreover
$\{$ fix $a b$

```
            assume a*R}b\inK\mathrm{ and b
            have setdist {0} T\not=0
            using <b \inT\rangle assms compact-imp-closed setdist-eq-0-closed by auto
            then have T0: setdist {0} T>0
            using less-eq-real-def by fastforce
            then have a* setdist {0} T\leqr
```



```
mult-mono' norm-scaleR r setdist-le-dist singletonI)
            with T0\langler>0\rangle have a\leqr/ setdist {0} T
                by (simp add: divide-simps)
            }
            then have ?L\subseteq({0..r / setdist {0}T} \times T) by auto
            ultimately show bounded ?L
                by (meson bounded-subset)
            show closed ?L
            proof (rule continuous-closed-preimage)
                show continuous-on ({0..} > T) (\lambdaz. fst z * R snd z)
                by (intro continuous-intros)
                    show closed ({0::real.. } }\timesT
                    by (simp add: assms(1) closed-Times compact-imp-closed)
                    show closed K
                    by (simp add: compact-imp-closed that(2))
            qed
        qed
    qed
    show (\lambdaz.fst z*R snd z)'({0::real..} }\timesT)\subseteq(\lambdaz.fst z**R snd z)'({0..}
S)
    using <T\subseteqS> by force
    qed auto
qed
lemma closed-conic-hull:
    fixes S :: 'a::euclidean-space set
    assumes 0 f rel-interior S \vee compact S \ 0 &S
    shows closed(conic hull S)
    using assms
proof
    assume 0 \in rel-interior S
    then show closed (conic hull S)
        by (simp add: conic-hull-eq-span)
next
    assume compact S^0\not\inS
    then have closedin (top-of-set UNIV) (conic hull S)
        using closedin-conic-hull by force
    then show closed (conic hull S)
        by simp
qed
lemma conic-closure:
```

fixes S :: 'a::euclidean-space set
shows conic $S \Longrightarrow$ conic (closure S)
by (meson Convex.cone-def cone-closure conic-def)
lemma closure-conic-hull:
fixes S :: 'a::euclidean-space set
assumes $0 \in$ rel-interior $S \vee$ bounded $S \wedge \sim(0 \in$ closure $S)$
shows closure $($ conic hull $S)=$ conic hull (closure S)
using assms
proof
assume $0 \in$ rel-interior S
then show closure (conic hull S) $=$ conic hull closure S
by (metis closed-affine-hull closure-closed closure-same-affine-hull closure-subset conic-hull-eq-affine-hull subsetD subset-rel-interior)
next
have $\bigwedge x . x \in$ conic hull closure $S \Longrightarrow x \in$ closure (conic hull S)
by (metis (no-types, opaque-lifting) closure-mono conic-closure conic-conic-hull subset-eq subset-hull)
moreover
assume bounded $S \wedge 0 \notin$ closure S
then have $\bigwedge x . x \in$ closure (conic hull $S) \Longrightarrow x \in$ conic hull closure S
by (metis closed-conic-hull closure-Un-frontier closure-closed closure-mono com-pact-closure hull-Un-subset le-sup-iff subsetD)
ultimately show closure (conic hull S) $=$ conic hull closure S
by blast
qed
lemma faces-of-linear-image:
\llbracket linear $f ; \operatorname{inj} f \rrbracket \Longrightarrow\left\{T . T\right.$ face-of $\left.\left(f^{\prime} S\right)\right\}=($ image $f)$ ' $\{T$. T face-of $S\}$
by (smt (verit) Collect-cong face-of-def face-of-linear-image setcompr-eq-image subset-imageE)
lemma face-of-conic:
assumes conic S face-of S
shows conic f
unfolding conic-def
proof (intro strip)
fix x and $c:$:real
assume $x \in f$ and $0 \leq c$
have $f: \bigwedge a b x . \llbracket a \in S ; b \in S ; x \in f ; x \in$ open-segment $a b \rrbracket \Longrightarrow a \in f \wedge b \in f$
using 〈f face-of S 〉 face-ofD by blast
show $c *_{R} x \in f$
proof (cases $x=0 \vee c=1$)
case True
then show ?thesis
using $\langle x \in f\rangle$ by auto
next
case False
with $\langle 0 \leq c\rangle$ obtain $d e$ where $d e: 0 \leq d 0 \leq e d<11<e d<e(d=c$ $\vee e=c$)
apply (simp add: neq-iff)
by (metis gt-ex less-eq-real-def order-less-le-trans zero-less-one)
then obtain [simp]: $c *_{R} x \in S e *_{R} x \in S\langle x \in S\rangle$
using $\langle x \in f\rangle$ assms conic-mul face-of-imp-subset by blast
have $x \in$ open-segment $\left(d *_{R} x\right)\left(e *_{R} x\right)$ if $c *_{R} x \notin f$
using de False that
apply (simp add: in-segment)
apply (rule exI [where $x=(1-d) /(e-d)])$
apply (simp add: field-simps)
by (smt (verit, del-insts) add-divide-distrib divide-self scaleR-collapse)
then show?thesis
using 〈conic $S\rangle f\left[\right.$ of $\left.d *_{R} x e *_{R} x x\right] d e\langle x \in f\rangle$
by (force simp: conic-def in-segment)
qed
qed
lemma extreme-point-of-conic:
assumes conic S and x : x extreme-point-of S
shows $x=0$
proof -
have $\{x\}$ face-of S
by (simp add: face-of-singleton x)
then have conic $\{x\}$
using assms(1) face-of-conic by blast
then show ?thesis
by (force simp: conic-def)
qed

5 Convex cones and corresponding hulls

definition convex-cone :: 'a::real-vector set \Rightarrow bool
where convex-cone $\equiv \lambda S . S \neq\{ \} \wedge$ convex $S \wedge$ conic S
lemma convex-cone-iff:
convex-cone $S \longleftrightarrow$

$$
0 \in S \wedge(\forall x \in S . \forall y \in S . x+y \in S) \wedge\left(\forall x \in S . \forall c \geq 0 . c *_{R} x \in S\right)
$$

by (metis cone-def conic-contains-0 conic-def convex-cone convex-cone-def)
lemma convex-cone-add: \llbracket convex-cone $S ; x \in S ; y \in S \rrbracket \Longrightarrow x+y \in S$
by (simp add: convex-cone-iff)
lemma convex-cone-scale $R: \llbracket$ convex-cone $S ; 0 \leq c ; x \in S \rrbracket \Longrightarrow c *_{R} x \in S$
by (simp add: convex-cone-iff)
lemma convex-cone-nonempty: convex-cone $S \Longrightarrow S \neq\{ \}$
by (simp add: convex-cone-def)

```
lemma convex-cone-linear-image:
    convex-cone S ^ linear f \Longrightarrow convex-cone(f'S)
    by (simp add: conic-linear-image convex-cone-def convex-linear-image)
lemma convex-cone-linear-image-eq:
    \llbracketlinear f; inj f\rrbracket\Longrightarrow(convex-cone(f'S)\longleftrightarrow convex-cone S)
    by (simp add: conic-linear-image-eq convex-cone-def)
lemma convex-cone-halfspace-ge: convex-cone {x.a\cdotx\geq0}
    by (simp add: convex-cone-iff inner-simps(2))
lemma convex-cone-halfspace-le:convex-cone {x.a\cdotx\leq0}
    by (simp add: convex-cone-iff inner-right-distrib mult-nonneg-nonpos)
lemma convex-cone-contains-0:convex-cone S 0 0 S
    using convex-cone-iff by blast
lemma convex-cone-Inter:
    (\bigwedgeS.S }S=\\mathrm{ convex-cone S) " convex-cone(\f)
    by (simp add: convex-cone-iff)
lemma convex-cone-convex-cone-hull: convex-cone(convex-cone hull S)
    by (metis (no-types, lifting) convex-cone-Inter hull-def mem-Collect-eq)
lemma convex-convex-cone-hull: convex(convex-cone hull S)
    by (meson convex-cone-convex-cone-hull convex-cone-def)
lemma conic-convex-cone-hull: conic(convex-cone hull S)
    by (metis convex-cone-convex-cone-hull convex-cone-def)
lemma convex-cone-hull-nonempty:convex-cone hull S\not={}
    by (simp add: convex-cone-convex-cone-hull convex-cone-nonempty)
lemma convex-cone-hull-contains-0: 0 \in convex-cone hull S
    by (simp add: convex-cone-contains-0 convex-cone-convex-cone-hull)
lemma convex-cone-hull-add:
    \llbracket x \in ~ c o n v e x - c o n e ~ h u l l ~ S ; y \in ~ c o n v e x - c o n e ~ h u l l ~ S \rrbracket \Longrightarrow x + y \in ~ c o n v e x - c o n e ~ h u l l ~
S
    by (simp add: convex-cone-add convex-cone-convex-cone-hull)
lemma convex-cone-hull-mul:
    \llbracket x \in ~ c o n v e x - c o n e ~ h u l l ~ S ; 0 \leq c \rrbracket \Longrightarrow ( c * ~ * R ~ x ) ~ \in ~ c o n v e x - c o n e ~ h u l l ~ S ~
    by (simp add: conic-convex-cone-hull conic-mul)
lemma convex-cone-sums:
    \llbracketconvex-cone S; convex-cone T\rrbracket\Longrightarrow convex-cone (\bigcupx\inS. \bigcupy \inT.{x+y})
    by (simp add: convex-cone-def conic-sums convex-sums)
```

```
lemma convex-cone-Times:
    \llbracketconvex-cone S; convex-cone T\rrbracket\Longrightarrow convex-cone(S 人 T)
    by (simp add: conic-Times convex-Times convex-cone-def)
lemma convex-cone-Times-D1: convex-cone (S\timesT)\Longrightarrow convex-cone S
    by (metis Times-empty conic-Times-eq convex-cone-def convex-convex-hull con-
vex-hull-Times hull-same times-eq-iff)
lemma convex-cone-Times-eq:
    convex-cone (S 人 T) \longleftrightarrow convex-cone S ^ convex-cone T
proof (cases S={}\veeT={})
    case True
    then show ?thesis
        by (auto dest: convex-cone-nonempty)
next
    case False
    then have convex-cone (S\timesT)\Longrightarrow convex-cone T
    by (metis conic-Times-eq convex-cone-def convex-convex-hull convex-hull-Times
hull-same times-eq-iff)
    then show ?thesis
        using convex-cone-Times convex-cone-Times-D1 by blast
qed
lemma convex-cone-hull-Un:
    convex-cone hull (S\cupT) =( \bigcupx\in convex-cone hull S. \bigcupy convex-cone hull
T. {x+y})
    (is ?lhs=?rhs)
proof
    show ?lhs \subseteq? ?rhs
    proof (rule hull-minimal)
        show S\cupT\subseteq(\bigcupx\inconvex-cone hull S. \bigcupy\inconvex-cone hull T. {x+y})
            apply (clarsimp simp: subset-iff)
            by (metis add-0 convex-cone-hull-contains-0 group-cancel.rule0 hull-inc)
        show convex-cone ( }\bigcupx\in\mathrm{ convex-cone hull S. \y convex-cone hull T. {x+y})
            by (simp add: convex-cone-convex-cone-hull convex-cone-sums)
    qed
next
    show ?rhs \subseteq?lhs
        by clarify (metis convex-cone-hull-add hull-mono le-sup-iff subsetD subsetI)
qed
lemma convex-cone-singleton [iff]: convex-cone {0}
    by (simp add: convex-cone-iff)
lemma convex-hull-subset-convex-cone-hull:
    convex hull S\subseteqconvex-cone hull S
    by (simp add: convex-convex-cone-hull hull-minimal hull-subset)
```

```
lemma conic-hull-subset-convex-cone-hull:
    conic hull S\subseteqconvex-cone hull S
    by (simp add: conic-convex-cone-hull hull-minimal hull-subset)
lemma subspace-imp-convex-cone: subspace S \Longrightarrow convex-cone S
    by (simp add: convex-cone-iff subspace-def)
lemma convex-cone-span: convex-cone(span S)
    by (simp add: subspace-imp-convex-cone)
lemma convex-cone-negations:
    convex-cone S\Longrightarrowconvex-cone (image uminus S)
    by (simp add: convex-cone-linear-image module-hom-uminus)
lemma subspace-convex-cone-symmetric:
    subspace S convex-cone S ^(\forallx\inS. -x \inS)
    by (smt (verit) convex-cone-iff scaleR-left.minus subspace-def subspace-neg)
lemma convex-cone-hull-separate-nonempty:
    assumes S\not={}
    shows convex-cone hull S = conic hull (convex hull S) (is ?lhs = ?rhs)
proof
    show ?lhs \subseteq?rhs
        by (simp add: assms conic-conic-hull conic-hull-eq-empty convex-cone-def con-
vex-conic-hull hull-inc hull-minimal subsetI)
    show ?rhs \subseteq?lhs
        by (simp add: conic-convex-cone-hull convex-hull-subset-convex-cone-hull sub-
set-hull)
qed
lemma convex-cone-hull-empty [simp]: convex-cone hull {} ={0}
    by (metis convex-cone-hull-contains-0 convex-cone-singleton hull-redundant hull-same)
lemma convex-cone-hull-separate:
    convex-cone hull S = insert 0 (conic hull (convex hull S))
    by (cases S={})(simp-all add: convex-cone-hull-separate-nonempty insert-absorb)
lemma convex-cone-hull-convex-hull-nonempty:
    S\not={}\Longrightarrow convex-cone hull S = (\bigcupx\in convex hull S. \bigcupc\in{0..}. {c**R x})
    by (force simp: convex-cone-hull-separate-nonempty conic-hull-as-image)
lemma convex-cone-hull-convex-hull:
    convex-cone hull S = insert O( \bigcupx convex hull S. \bigcupc\in{0..}. {c**R x})
    by (force simp: convex-cone-hull-separate conic-hull-as-image)
```

lemma convex-cone-hull-linear-image:
linear $f \Longrightarrow$ convex-cone hull $(f$ ' S) $=$ image f (convex-cone hull S)
by (metis (no-types, lifting) conic-hull-linear-image convex-cone-hull-separate convex-hull-linear-image image-insert linear-0)

5.1 Finitely generated cone is polyhedral, and hence closed

 proposition polyhedron-convex-cone-hull:fixes S :: 'a::euclidean-space set
assumes finite S
shows polyhedron(convex-cone hull S)
proof (cases $S=\{ \}$)
case True
then show? ?thesis
by (simp add: affine-imp-polyhedron)
next
case False
then have polyhedron(convex hull (insert 0 S))
by (simp add: assms polyhedron-convex-hull)
then obtain $F a b$ where finite F
and F : convex hull (insert $0 S$) $=\bigcap F$
and $a b: \wedge h . h \in F \Longrightarrow a h \neq 0 \wedge h=\{x . a h \cdot x \leq b h\}$
unfolding polyhedron-def by metis
then have $F \neq\{ \}$
by (metis bounded-convex-hull finite-imp-bounded Inf-empty assms finite-insert not-bounded-UNIV)
show ?thesis
unfolding polyhedron-def
proof (intro exI conjI)
show convex-cone hull $S=\bigcap\{h \in F . b h=0\}$ (is ?lhs $=$? $r h s$)
proof
show ?lhs \subseteq ?rhs
proof (rule hull-minimal) show $S \subseteq \bigcap\{h \in F . b h=0\}$ by (smt (verit, best) F InterE InterI hull-subset insert-subset mem-Collect-eq subset-eq) have $\wedge S . \llbracket S \in F ; b S=0 \rrbracket \Longrightarrow$ convex-cone S by (metis ab convex-cone-halfspace-le) then show convex-cone $(\bigcap\{h \in F . b h=0\})$
by (force intro: convex-cone-Inter)
qed
have $x \in$ convex-cone hull S if $x: \bigwedge h . \llbracket h \in F ; b h=0 \rrbracket \Longrightarrow x \in h$ for x
proof -
have $\exists t .0<t \wedge\left(t *_{R} x\right) \in h$ if $h \in F$ for h proof (cases b $h=0$)
case True
then show?thesis
by (metis x linordered-field-no-ub mult-1 scaleR-one that zero-less-mult-iff)

```
    next
        case False
    then have bh>0
                by (smt (verit, del-insts) F InterE ab hull-subset inner-zero-right
insert-subset mem-Collect-eq that)
    then have 0 \in interior {x.ah . x \leq b h}
        by (simp add: ab that)
    then have }0\in\mathrm{ interior h
        using ab that by auto
    then obtain }\varepsilon\mathrm{ where 0< & and }\varepsilon\mathrm{ : ball 0 }\subseteq\subseteq
        using mem-interior by blast
        show ?thesis
        proof (cases x=0)
            case True
            then show ?thesis
            using }\varepsilon<0<\varepsilon>\mathrm{ by auto
        next
            case False
            with }\varepsilon<0<\varepsilon\rangle\mathrm{ show ?thesis
            by (intro exI [where x=\varepsilon / (2 * norm x)]) (auto simp: divide-simps)
        qed
    qed
    then obtain t where t:\bigwedgeh.h\inF\Longrightarrow0<th\wedge(th**}x)\in
        by metis
    then have Inf (t'F) *R
            by (smt (verit) <F \not={}>\langlefinite F> field-simps(58) finite-imageI fi-
nite-less-Inf-iff image-iff image-is-empty)
    moreover have Inf (t'}F)\mp@subsup{*}{R}{}x/\mp@subsup{/}{R}{}\operatorname{Inf}(\mp@subsup{t}{}{\prime}F)\in\mathrm{ convex-cone hull S
    proof (rule conicD [OF conic-convex-cone-hull])
        have Inf (t'F) *R}x\in\bigcap
        proof clarify
            fix }
            assume h\inF
            have eq: Inf (t`F)**R x = (1-Inf(t`F)/th)*R 0 + (Inf(t`F)/
th)*}\mp@subsup{*}{R}{}th\mp@subsup{*}{R}{}
            using <h \inF`t by force
            show Inf (t'}F)\mp@subsup{*}{R}{}x\in
            unfolding eq
            proof (rule convexD-alt)
            have h={x.ah 和\leqbh}
            by (simp add: <h \inF>ab)
            then show convex h
                    by (metis convex-halfspace-le)
            show 0 \inh
                    by (metis F InterE <h G F> hull-subset insertCI subsetD)
            show th**}x\in
            by (simp add: <h \inF>t)
            show 0}\leq\operatorname{Inf}(t`F)/t
                by (metis }\langleF\not={}\rangle\langleh\inF\rangle\mathrm{ cINF-greatest divide-nonneg-pos
```

```
less-eq-real-def t)
                show Inf (t`F)/th\leq1
                        by (simp add:< finite F\rangle\langleh\inF\ranglecInf-le-finite t)
                qed
            qed
            moreover have convex hull (insert 0 S)\subseteq convex-cone hull S
                            by (simp add: convex-cone-hull-contains-0 convex-convex-cone-hull
hull-minimal hull-subset)
            ultimately show Inf (t'F)**R}x\in\mathrm{ convex-cone hull S
                    using F by blast
                show 0 \leqinverse (Inf (t'F))
            using t by (simp add: <F\not={}><finite F〉 finite-less-Inf-iff less-eq-real-def)
            qed
            ultimately show ?thesis
                by auto
            qed
            then show ?rhs \subseteq?lhs
                by auto
    qed
    show }\forallh\in{h\inF.bh=0}.\existsab.a\not=0\wedgeh={x.a\cdotx\leqb
        using ab by blast
    qed (auto simp:<finite F〉)
qed
lemma closed-convex-cone-hull:
    fixes S :: 'a::euclidean-space set
    shows finite S\Longrightarrow closed(convex-cone hull S)
    by (simp add: polyhedron-convex-cone-hull polyhedron-imp-closed)
lemma polyhedron-convex-cone-hull-polytope:
    fixes S ::'a::euclidean-space set
    shows polytope S \Longrightarrow polyhedron(convex-cone hull S)
    by (metis convex-cone-hull-separate hull-hull polyhedron-convex-cone-hull poly-
tope-def)
lemma polyhedron-conic-hull-polytope:
    fixes S :: 'a::euclidean-space set
    shows polytope S \Longrightarrow polyhedron(conic hull S)
    by (metis conic-hull-eq-empty convex-cone-hull-separate-nonempty hull-hull poly-
hedron-convex-cone-hull-polytope polyhedron-empty polytope-def)
lemma closed-conic-hull-strong:
    fixes S :: 'a::euclidean-space set
    shows 0\in rel-interior S}\vee polytope S\vee compact S ^~(0\inS)\Longrightarrowclosed(coni
hull S)
    using closed-conic-hull polyhedron-conic-hull-polytope polyhedron-imp-closed by
blast
```

end

6 Inclusion-exclusion principle

Inclusion-exclusion principle, the usual and generalized forms.

```
theory Inclusion-Exclusion
    imports Main
begin
lemma subset-insert-lemma:
    \(\{T . T \subseteq(\) insert a \(S) \wedge P T\}=\{T . T \subseteq S \wedge P T\} \cup\{\) insert a \(T \mid T . T \subseteq S\)
\(\wedge P(\) insert a \(T)\}(\) is \(? L=? R)\)
proof
    show ? \(L \subseteq\) ? \(R\)
        by (smt (verit) UnI1 UnI2 insert-Diff mem-Collect-eq subsetI subset-insert-iff)
qed blast
locale Incl-Excl \(=\)
    fixes \(P::\) 'a set \(\Rightarrow\) bool and \(f::\) 'a set \(\Rightarrow{ }^{\prime} b::\) ring-1
    assumes disj-add: \(\llbracket P S ; P T ;\) disjnt \(S T \rrbracket \Longrightarrow f(S \cup T)=f S+f T\)
        and empty: \(P\}\)
        and Int: \(\llbracket P S ; P T \rrbracket \Longrightarrow P(S \cap T)\)
        and Un: \(\llbracket P S ; P T \rrbracket \Longrightarrow P(S \cup T)\)
        and Diff: \(\llbracket P S ; P T \rrbracket \Longrightarrow P(S-T)\)
begin
lemma \(f\)-empty \([\operatorname{simp}]: f\{ \}=0\)
    using disj-add empty by fastforce
lemma \(f\)-Un-Int: \(\llbracket P S ; P T \rrbracket \Longrightarrow f(S \cup T)+f(S \cap T)=f S+f T\)
    by (smt (verit, ccfv-threshold) Groups.add-ac(2) Incl-Excl.Diff Incl-Excl.Int Incl-Excl-axioms
Int-Diff-Un Int-Diff-disjoint Int-absorb Un-Diff Un-Int-eq(2) disj-add disjnt-def
group-cancel.add2 sup-bot.right-neutral)
lemma restricted-indexed:
    assumes finite \(A\) and \(X: \wedge a . a \in A \Longrightarrow P(X a)\)
    shows \(f\left(\bigcup\left(X^{\prime} A\right)\right)=\left(\sum B \mid B \subseteq A \wedge B \neq\{ \} .(-1) \wedge(\operatorname{card} B+1) * f(\bigcap\right.\)
( \(\left.X^{\prime} B\right)\) ))
proof -
    have \(\llbracket\) finite \(A\); card \(A=n ; \forall a \in A . P(X a) \rrbracket\)
                                    \(\Longrightarrow f\left(\cup\left(X^{\prime} A\right)\right)=\left(\sum B \mid B \subseteq A \wedge B \neq\{ \} .(-1)^{\wedge}(\operatorname{card} B+1) *\right.\)
\(f(\cap(X \cdot B))\) for \(n X\) and \(A::{ }^{\prime} c\) set
    proof (induction \(n\) arbitrary: \(A X\) rule: less-induct)
        case (less n0 A0 X)
        show ?case
        proof (cases n0=0)
            case True
```

```
    with less show ?thesis
        by fastforce
    next
    case False
    with less.prems obtain A na where *: n0 = Suc n A0= insert a A a\not\inA
card A=n finite A
            by (metis card-Suc-eq-finite notO-implies-Suc)
    with less have P(Xa) by blast
    have APX:}\foralla\inA.P(Xa
        by (simp add:* less.prems)
    have PUXA: P(U(X'A))
        using \finite A\ APX
        by (induction) (auto simp: empty Un)
    have}f(\cup(X'AO))=f(Xa\cup\bigcup(X'A)
        by (simp add: *)
    also have .. = f(Xa) +f(U(X'A))-f(Xa\capU(X'A))
    using f-Un-Int add-diff-cancel PUXA <P(X a)` by metis
    also have ... =f(Xa)-(\sumB|B\subseteqA\wedgeB\not={}.(-1)^\operatorname{card B*f(\cap}
(X 'B)))+
    proof -
        have 1: f(\bigcupi\inA. X a\capXi)=(\sumB|B\subseteqA\wedgeB\not={}. (- 1) ^(card
B+1)*f(\capb\inB. Xa\capXb))
        using less.IH [of n A \lambdai. X a \cap X i] APX Int \langleP(X a)\rangle by (simp add: *)
        have 2: X a\cap U (X'A) =(\bigcupi\inA. X a \capXi)
            by auto
        have 3: f(U(X'A))=(\sumB|B\subseteqA\wedgeB\not={}.(-1) ^(card B+1)
* f(\cap(X'B)))
                using less.IH [of n A X] APX Int \langleP(X a)> by (simp add: *)
            show ?thesis
                unfolding 321
                by (simp add: sum-negf)
    qed
    also have ... = (\sumB|B\subseteqA0\wedgeB\not={}. (-1)^(card B + 1) *f(\cap(X
(B)))
    proof -
        have F: {insert a B |B. B\subseteqA}= insert a'Pow }A\wedge{B.B\subseteqA\wedgeB\not
{}} = Pow A- {{}}
            by auto
    have G:(\sumB\inPow A. (- 1) ^ card (insert a B)*f(X a \cap\cap (X'B)))
=(\sumB\inPow A. - ((- 1) ^ card B*f(Xa\cap\cap(X'B))))
    proof (rule sum.cong [OF refl])
        fix }
        assume B: B \in Pow A
        then have finite B
            using <finite A> finite-subset by auto
        show (- 1)^card (insert a B) *f(Xa\cap\cap (X'B))=-((- 1)^card
B*f(Xa\cap\cap(X'B))
        using B * by (auto simp add: card-insert-if 〈finite B`)
```

```
            qed
```



```
                using * by blast
            have inj: inj-on (insert a) (Pow A)
                using * inj-on-def by fastforce
            show ?thesis
                        apply (simp add: * subset-insert-lemma sum.union-disjoint disj sum-negf)
                apply (simp add: F G sum-negf sum.reindex [OF inj] o-def sum-diff *)
                done
            qed
            finally show ?thesis .
        qed
    qed
    then show ?thesis
    by (meson assms)
qed
lemma restricted:
    assumes finite }A\a.a\inA\LongrightarrowP
    shows f(\bigcupA)=(\sumB|B\subseteqA\wedgeB\not={}.(-1)^ (card B+1)*f(\capB))
    using restricted-indexed [of A \lambdax.x] assms by auto
end
```


6.1 Versions for unrestrictedly additive functions

```
lemma Incl-Excl-UN:
```

 fixes \(f::\) ' \(a\) set \(\Rightarrow\) ' \(b::\) ring-1
 assumes \(\wedge S T\). disjnt \(S T \Longrightarrow f(S \cup T)=f S+f T\) finite \(A\)
 shows \(f(\bigcup(G \cdot A))=\left(\sum B \mid B \subseteq A \wedge B \neq\{ \} .(-1) \wedge(\right.\) card \(B+1) * f(\bigcap\)
 $(G \cdot B)))$
proof -
interpret Incl-Excl λx. True f
by (simp add: Incl-Excl.intro assms(1))
show ?thesis
using restricted-indexed assms by blast
qed
lemma Incl-Excl-Union:
fixes $f::$ ' a set \Rightarrow ' $b::$ ring-1
assumes $\wedge S T$. disjnt $S T \Longrightarrow f(S \cup T)=f S+f T$ finite A
shows $f(\bigcup A)=\left(\sum B \mid B \subseteq A \wedge B \neq\{ \} .(-1) \wedge(\operatorname{card} B+1) * f(\cap B)\right)$
using Incl-Excl-UN[of $f A \lambda X$. X] assms by simp

The famous inclusion-exclusion formula for the cardinality of a union lemma int-card-UNION:
assumes finite $A \bigwedge K . K \in A \Longrightarrow$ finite K
shows $\operatorname{int}(\operatorname{card}(\bigcup A))=\left(\sum I \mid I \subseteq A \wedge I \neq\{ \} .(-1) \wedge(\operatorname{card} I+1) *\right.$ int $(\operatorname{card}(\bigcap I)))$
proof -

```
    interpret Incl-Excl finite int o card
    proof qed (auto simp add: card-Un-disjnt)
    show ?thesis
    using restricted assms by auto
qed
```

 A more conventional form
 lemma inclusion-exclusion:
assumes finite $A \bigwedge K . K \in A \Longrightarrow$ finite K
shows $\operatorname{int}(\operatorname{card}(\cup A))=$
($\sum n=1 . . \operatorname{card} A .(-1)^{\wedge}($ Suc $n) *\left(\sum B \mid B \subseteq A \wedge\right.$ card $B=n$. int (card
$(\cap B)))$) (is $-=? R)$
proof -
have fin: finite $\{I . I \subseteq A \wedge I \neq\{ \}\}$
by (simp add: assms)
have $\wedge k . \llbracket$ Suc $0 \leq k ; k \leq \operatorname{card} A \rrbracket \Longrightarrow \exists B \subseteq A . B \neq\{ \} \wedge k=\operatorname{card} B$
by (metis (mono-tags, lifting) Suc-le-D Zero-neq-Suc card-eq-0-iff obtain-subset-with-card-n)
with〈finite A 〉 finite-subset
have card-eq: card ' $\{I . I \subseteq A \wedge I \neq\{ \}\}=\{1 . . \operatorname{card} A\}$
using not-less-eq-eq card-mono by (fastforce simp: image-iff)
have $\operatorname{int}(\operatorname{card}(\bigcup A))$
$=\left(\sum y=1 . . \operatorname{card} A . \sum I \in\{x . x \subseteq A \wedge x \neq\{ \} \wedge \operatorname{card} x=y\} .-((-1) \wedge y\right.$

* int $(\operatorname{card}(\bigcap I))))$
by (simp add: int-card-UNION assms sum.image-gen [OF fin, where $g=$ card]
card-eq)
also have $\ldots=? R$
proof -
have $\{B . B \subseteq A \wedge B \neq\{ \} \wedge$ card $B=k\}=\{B . B \subseteq A \wedge \operatorname{card} B=k\}$
if Suc $0 \leq k$ and $k \leq \operatorname{card} A$ for k
using that by auto
then show ?thesis
by (clarsimp simp add: sum-negf simp flip: sum-distrib-left)
qed
finally show ?thesis.
qed
lemma card-UNION:
assumes finite A and $\bigwedge K . K \in A \Longrightarrow$ finite K
shows card $(\bigcup A)=\operatorname{nat}\left(\sum I \mid I \subseteq A \wedge I \neq\{ \}\right.$. (-1) ^(card $\left.I+1\right) *$ int
$(\operatorname{card}(\bigcap I)))$
by (simp only: flip: int-card-UNION [OF assms])
lemma card-UNION-nonneg:
assumes finite A and $\bigwedge K . K \in A \Longrightarrow$ finite K
shows $\left(\sum I \mid I \subseteq A \wedge I \neq\{ \} .(-1)^{\wedge}(\operatorname{card} I+1) * \operatorname{int}(\operatorname{card}(\bigcap I))\right) \geq 0$
using int-card-UNION [OF assms] by presburger

6.2 a general "Moebius inversion" inclusion-exclusion principle. This "symmetric" form is from Ira Gessel: "Symmetric Inclusion-Exclusion"

```
lemma sum-Un-eq:
    \llbracketS\capT={};S\cupT=U; finite U\rrbracket
        \Longrightarrow sumfS + sum fT}=\operatorname{sum}fU
    by (metis finite-Un sum.union-disjoint)
lemma card-adjust-lemma: \llbracketinj-on f S; x=y + card (f`}S)\rrbracket\Longrightarrowx=y+card 
    by (simp add: card-image)
lemma card-subsets-step:
    assumes finite Sx\not\inSU\subseteqS
    shows card {T.T\subseteq(insert x S)^U\subseteqT^odd(card T)}
        = card {T.T\subseteqS^U\subseteqT^odd(card T)}+\operatorname{card}{T.T\subseteqS\wedgeU\subseteqT
^even(card T)} ^
            card {T.T\subseteq(insert x S)^U\subseteqT^ even(card T)}
        = card {T.T\subseteqS^U\subseteqT^even(card T)}+\operatorname{card}{T.T\subseteqS\wedgeU\subseteqT
^odd(card T)}
proof -
    have inj: inj-on (insert x) {T.T\subseteqS\wedgePT} for P
        using assms by (auto simp: inj-on-def)
    have [simp]: finite {T.T\subseteqS\wedgePT} finite(insert x'{T.T\subseteqS\wedgePT})
for P
            using〈finite S> by auto
    have [simp]: disjnt {T.T\subseteqS\wedgePT} (insert x ' {T. T\subseteqS^Q T}) for PQ
    using assms by (auto simp: disjnt-iff)
    have eq: {T. T\subseteqS^U\subseteqT^PT}\cup insert x'{T.T\subseteqS^U\subseteqT^Q
T}
                ={T.T\subseteq insert x S^U\subseteqT^PT} (is ?L =?R)
    if }\A.A\subseteqS\LongrightarrowQ(\mathrm{ insert }xA)\longleftrightarrowPA\bigwedgeA.\negQA\longleftrightarrowPA for PQ
    proof
        show ?L\subseteq?R
            by (clarsimp simp: image-iff subset-iff) (meson subsetI that)
            show ?R\subseteq?L
            using <U\subseteqS\rangle
            by (clarsimp simp: image-iff) (smt (verit) insert-iff mk-disjoint-insert subset-iff
that)
    qed
    have [simp]: \A.A\subseteqS\Longrightarrow even (card (insert x A)) \longleftrightarrow odd (card A)
    by (metis 〈finite S\rangle\langlex }\not=S\rangle\mathrm{ card-insert-disjoint even-Suc finite-subset subsetD)
    show ?thesis
    by (intro conjI card-adjust-lemma [OF inj]; simp add: eq flip: card-Un-disjnt)
qed
lemma card-subsupersets-even-odd:
    assumes finite S U\subsetS
    shows card {T.T\subseteqS\wedgeU\subseteqT^even(card T)}
```

```
    = card {T.T\subseteqS\wedgeU\subseteqT^odd(card T)}
    using assms
proof (induction card S arbitrary:S rule:less-induct)
    case (less S)
    then obtain }x\mathrm{ where }x\not\inUx\in
        by blast
    then have }U:U\subseteqS-{x
        using less.prems(2) by blast
    let ?V = S-{x}
    show ?case
    using card-subsets-step [of ?V x U] less.prems U
    by (simp add: insert-absorb «x \inS`)
qed
lemma sum-alternating-cancels:
    assumes finite S card {x.x \inS\wedge even(fx)}=\operatorname{card {x. x }\inS\wedge odd(fx)}
    shows (\sumx\inS. (-1)^ fx)=(0::'b::ring-1)
proof -
    have (\sumx\inS. (-1) ^ fx)
        =(\sumx|x\inS\wedge even (fx).(-1)^ fx) + (\sumx| x\inS^odd (fx).(-1)
    f f
        by (rule sum-Un-eq [symmetric]; force simp:<{inite S`)
    also have ... = (0::'b::ring-1)
        by (simp add: minus-one-power-iff assms cong: conj-cong)
    finally show ?thesis.
qed
lemma inclusion-exclusion-symmetric:
    fixes }f:: 'a set => 'b::ring-1
```



```
        and finite S
    shows f S = (\sumT\in Pow S. (-1) ^ card T*gT)
proof -
    have (-1)^ card T*g T=(-1)^ card T * (\sumU|U\subseteqS^U\subseteqT.(-1)
card U*fU)
    if T\subseteqS for T
    proof -
    have [simp]: {U.U\subseteqS\wedgeU\subseteqT}= Pow T
        using that by auto
    show ?thesis
        using that by (simp add:<finite S> finite-subset §)
    qed
    then have (\sumT E Pow S. (-1) ^ card T * gT)
        =(\sumT\inPow S. (-1) ^ card T* (\sumU|U\in{U.U\subseteqS}^U\subseteqT.(-1)
    card U*fU))
    by simp
    also have ... = (\sumU\inPow S. (\sumT|T\subseteqS^U\subseteqT.(-1)^card T)* (-1)
card U*fU)
    unfolding sum-distrib-left
```

by（subst sum．swap－restrict；simp add：〈finite $S\rangle$ algebra－simps sum－distrib－right Pow－def）
also have $\ldots=\left(\sum U \in\right.$ Pow S ．if $U=S$ then $f S$ else 0$)$
proof－
have $[$ simp $]:\{T . T \subseteq S \wedge S \subseteq T\}=\{S\}$
by auto
show ？thesis
apply（rule sum．cong［OF refl］）
by（simp add：sum－alternating－cancels card－subsupersets－even－odd〈finite S 〉 flip：power－add）
qed
also have $\ldots=f S$
by（simp add：〈finite S 〉）
finally show ？thesis
by presburger
qed
The more typical non－symmetric version．
lemma inclusion－exclusion－mobius：
fixes $f::$＇a set \Rightarrow＇$b::$ ring－1
assumes §：$\wedge S$ ．finite $S \Longrightarrow g S=\operatorname{sum} f($ Pow $S)$ and finite S
shows $f S=\left(\sum T \in\right.$ Pow $S .(-1)^{\wedge}($ card $\left.S-\operatorname{card} T) * g T\right)($ is－$=? r h s)$
proof－
have $(-1) \wedge$ card $S * f S=\left(\sum T \in\right.$ Pow $\left.S .(-1) \wedge \operatorname{card} T * g T\right)$
by（rule inclusion－exclusion－symmetric；simp add：assms flip：power－add mult．assoc）
then have $\left((-1){ }^{\wedge} \operatorname{card} S *(-1) \wedge \operatorname{card} S\right) * f S=((-1) \wedge \operatorname{card} S) *$
（ $\sum T \in$ Pow $S .(-1) \wedge$ card $\left.T * g T\right)$
by（simp add：mult－ac）
then have $f S=\left(\sum T \in\right.$ Pow $S .(-1)^{\wedge}($ card $\left.S+\operatorname{card} T) * g T\right)$
by（simp add：sum－distrib－left flip：power－add mult．assoc）
also have $\ldots=$ ？rhs
by（simp add：〈finite S 〉card－mono neg－one－power－add－eq－neg－one－power－diff）
finally show ？thesis．
qed
end

7 Euler＇s Polyhedron Formula

One of the Famous 100 Theorems，ported from HOL Light
Cited source：Lawrence，J．（1997）．A Short Proof of Euler＇s Relation for Convex Polytopes．Canadian Mathematical Bulletin，40（4），471－474．

```
theory Euler-Formula
    imports
        HOL-Analysis.Analysis
        Library-Extras
        Inclusion-Exclusion
begin
```

Interpret which "side" of a hyperplane a point is on.

```
definition hyperplane-side
    where hyperplane-side \equiv\lambda(a,b). \lambdax. sgn ( }a\cdotx-b
```

Equivalence relation imposed by a hyperplane arrangement.
definition hyperplane-equiv
where hyperplane-equiv $\equiv \lambda A x y . \forall h \in A$. hyperplane-side $h x=$ hyperplane-side $h y$
lemma hyperplane-equiv-refl [iff]: hyperplane-equiv $A x x$
by (simp add: hyperplane-equiv-def)
lemma hyperplane-equiv-sym:
hyperplane-equiv $A x y \longleftrightarrow$ hyperplane-equiv $A y x$
by (auto simp: hyperplane-equiv-def)
lemma hyperplane-equiv-trans:
$\llbracket h y p e r p l a n e-e q u i v ~ A x y ;$ hyperplane-equiv $A y z \rrbracket \Longrightarrow$ hyperplane-equiv $A x z$
by (auto simp: hyperplane-equiv-def)
lemma hyperplane-equiv-Un:
hyperplane-equiv $(A \cup B) x y \longleftrightarrow$ hyperplane-equiv $A x y \wedge$ hyperplane-equiv B
$x y$
by (meson Un-iff hyperplane-equiv-def)

7.1 Cells of a hyperplane arrangement

definition hyperplane-cell :: ('a::real-inner \times real) set \Rightarrow 'a set \Rightarrow bool where hyperplane-cell $\equiv \lambda A C . \exists x . C=$ Collect (hyperplane-equiv $A x$)
lemma hyperplane-cell: hyperplane-cell $A C \nexists \exists x . C=\{y$. hyperplane-equiv $A x y\})$
by (simp add: hyperplane-cell-def)
lemma not-hyperplane-cell-empty $[$ simp $]: \neg$ hyperplane-cell $A\}$
using hyperplane-cell by auto
lemma nonempty-hyperplane-cell: hyperplane-cell $A C \Longrightarrow(C \neq\{ \})$
by auto
lemma Union-hyperplane-cells: $\bigcup\{C$. hyperplane-cell A $C\}=U N I V$
using hyperplane-cell by blast
lemma disjoint-hyperplane-cells:
$\llbracket h y p e r p l a n e-c e l l ~ A ~ C 1 ; ~ h y p e r p l a n e-c e l l ~ A C 2 ; C 1 \neq C 2 \rrbracket \Longrightarrow d i s j n t C 1 C 2$
by (force simp: hyperplane-cell-def disjnt-iff hyperplane-equiv-def)
lemma disjoint-hyperplane-cells-eq:
$\llbracket h y p e r p l a n e-c e l l ~ A ~ C 1 ; ~ h y p e r p l a n e-c e l l ~ A ~ C 2 \rrbracket \Longrightarrow(d i s j n t ~ C 1 ~ C 2 ~ \longleftrightarrow(C 1 \neq$ C2))
using disjoint-hyperplane-cells by auto
lemma hyperplane-cell-empty [iff]: hyperplane-cell \{\} $C \longleftrightarrow C=U N I V$
by (simp add: hyperplane-cell hyperplane-equiv-def)
lemma hyperplane-cell-singleton-cases:
assumes hyperplane-cell $\{(a, b)\} C$
shows $C=\{x . a \cdot x=b\} \vee C=\{x . a \cdot x<b\} \vee C=\{x . a \cdot x>b\}$
proof -
obtain x where $x: C=\{y$. hyperplane-side $(a, b) x=$ hyperplane-side $(a, b) y\}$ using assms by (auto simp: hyperplane-equiv-def hyperplane-cell)
then show ?thesis
by (auto simp: hyperplane-side-def sgn-if split: if-split-asm)
qed
lemma hyperplane-cell-singleton:
hyperplane-cell $\{(a, b)\} C \longleftrightarrow$
(if $a=0$ then $C=$ UNIV else $C=\{x . a \cdot x=b\} \vee C=\{x . a \cdot x<b\} \vee C$
$=\{x . a \cdot x>b\})$
apply (simp add: hyperplane-cell-def hyperplane-equiv-def hyperplane-side-def sgn-if split: if-split-asm)
by (smt (verit) Collect-cong gt-ex hyperplane-eq-Ex lt-ex)
lemma hyperplane-cell-Un:
hyperplane-cell $(A \cup B) C \longleftrightarrow$
$C \neq\{ \} \wedge$
(\exists C1 C2. hyperplane-cell $A C 1 \wedge$ hyperplane-cell B C2 $\wedge C=C 1 \cap C 2)$
by (auto simp: hyperplane-cell hyperplane-equiv-def)
lemma finite-hyperplane-cells:
finite $A \Longrightarrow$ finite $\{C$. hyperplane-cell $A C\}$
proof (induction rule: finite-induct)
case (insert p A)
obtain $a b$ where peq: $p=(a, b)$
by fastforce
have Collect (hyperplane-cell $\{p\}) \subseteq\{\{x . a \cdot x=b\},\{x . a \cdot x<b\},\{x . a \cdot x>$
b\}\}
using hyperplane-cell-singleton-cases
by (auto simp: peq)
then have $*$: finite (Collect (hyperplane-cell $\{p\}$))
by (simp add: finite-subset)
define \mathcal{C} where $\mathcal{C} \equiv(\bigcup C 1 \in\{C$. hyperplane-cell $A C\}$. $\cup C 2 \in\{C$. hyper-
plane-cell $\{p\} C\}$. $\{C 1 \cap C 2\})$
have $\{a$. hyperplane-cell (insert $p A) a\} \subseteq \mathcal{C}$
using hyperplane-cell-Un $[$ of $\{p\} A]$ by (auto simp: \mathcal{C}-def)
moreover have finite \mathcal{C}
using $* \mathcal{C}$-def insert.IH by blast

```
    ultimately show ?case
    using finite-subset by blast
qed auto
lemma finite-restrict-hyperplane-cells:
    finite }A\Longrightarrow\mathrm{ finite {C. hyperplane-cell }AC\wedgePC
    by (simp add: finite-hyperplane-cells)
lemma finite-set-of-hyperplane-cells:
```



```
    by (metis finite-hyperplane-cells finite-subset mem-Collect-eq subsetI)
lemma pairwise-disjoint-hyperplane-cells:
    (\bigwedgeC.C\in\mathcal{C}\Longrightarrow hyperplane-cell A C) \Longrightarrow pairwise disjnt \mathcal{C}
    by (metis disjoint-hyperplane-cells pairwiseI)
lemma hyperplane-cell-Int-open-affine:
    assumes finite A hyperplane-cell A C
    obtains ST where open S affine TC=S\capT
    using assms
proof (induction arbitrary: thesis C rule: finite-induct)
    case empty
    then show ?case
        by auto
next
    case (insert p A thesis C')
    obtain ab where peq: p=(a,b)
    by fastforce
    obtain C C1 where C1: hyperplane-cell {(a,b)}C1 and C: hyperplane-cell A
C
                    and C'}={{}\mathrm{ and }\mp@subsup{C}{}{\prime}:\mp@subsup{C}{}{\prime}=C1\cap
    by (metis hyperplane-cell-Un insert.prems(2) insert-is-Un peq)
    then obtain ST where ST: open S affine T C=S\capT
    by (meson insert.IH)
    show ?case
    proof (cases a=0)
    case True
    with insert.prems show ?thesis
                            by (metis C1 Int-commute ST <C' = C1 \cap C` hyperplane-cell-singleton
inf-top.right-neutral)
    next
    case False
    then consider C1 = {x.a\cdotx=b}|C1={x.a\cdotx<b}|C1={x.b<a
- x}
            by (metis C1 hyperplane-cell-singleton)
    then show ?thesis
    proof cases
            case 1
            then show thesis
```

```
        by (metis C'ST affine-Int affine-hyperplane inf-left-commute insert.prems(1))
        next
            case 2
            with ST show thesis
                by (metis Int-assoc C' insert.prems(1) open-Int open-halfspace-lt)
    next
            case 3
            with ST show thesis
                by (metis Int-assoc C' insert.prems(1) open-Int open-halfspace-gt)
    qed
    qed
qed
lemma hyperplane-cell-relatively-open:
    assumes finite A hyperplane-cell A C
    shows openin (subtopology euclidean (affine hull C)) C
proof -
    obtain S T where open S affine T C = S \cap T
        by (meson assms hyperplane-cell-Int-open-affine)
    show ?thesis
    proof (cases S\capT={})
        case True
        then show ?thesis
            by (simp add: <C =S\capT〉)
    next
        case False
        then have affine hull (S\capT)=T
        by (metis <affine T〉 <open S〉 affine-hull-affine-Int-open hull-same inf-commute)
        then show ?thesis
            using 〈C=S\capT〉<open S` openin-subtopology by fastforce
    qed
qed
lemma hyperplane-cell-relative-interior:
    |inite A; hyperplane-cell A C\rrbracket\Longrightarrow rel-interior C = C
    by (simp add: hyperplane-cell-relatively-open rel-interior-openin)
lemma hyperplane-cell-convex:
    assumes hyperplane-cell A C
    shows convex C
proof -
    obtain c where c:C={y. hyperplane-equiv A c y}
    by (meson assms hyperplane-cell)
    have convex ( }{h\inA.{y. hyperplane-side h c=hyperplane-side h y}
    proof (rule convex-INT)
        fix }h::'a\timesrea
        assume h\inA
        obtain ab where heq:}h=(a,b
            by fastforce
```

```
    have [simp]: {y.\nega\cdotc<a 友^a\cdoty=a\cdotc}={y.a\cdoty=a\cdotc}
                                    {y.\negb<a\cdoty^a\cdoty\not=b}={y.b>a\cdoty}
        by auto
    then show convex {y. hyperplane-side h c = hyperplane-side h y}
        by (fastforce simp: heq hyperplane-side-def sgn-if convex-halfspace-gt con-
vex-halfspace-lt convex-hyperplane cong: conj-cong)
    qed
    with c show ?thesis
    by (simp add: hyperplane-equiv-def INTER-eq)
qed
lemma hyperplane-cell-Inter:
    assumes }\C.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cell A C
        and}\mathcal{C}\not={}\mathrm{ and INT: }\cap\mathcal{C}\not={
    shows hyperplane-cell }A(\cap\mathcal{C}
proof -
    have \bigcap\mathcal{C}={y. hyperplane-equiv A z y}
        if z\in\bigcap\mathcal{C}\mathrm{ for z}
            using assms that by (force simp: hyperplane-cell hyperplane-equiv-def)
    with INT hyperplane-cell show ?thesis
        by fastforce
qed
lemma hyperplane-cell-Int:
    \llbrackethyperplane-cell A S; hyperplane-cell A T;S\capT\not={}\rrbracket\Longrightarrow hyperplane-cell A
(S\capT)
    by (metis hyperplane-cell-Un sup.idem)
```


7.2 A cell complex is considered to be a union of such cells

```
definition hyperplane-cellcomplex
where hyperplane-cellcomplex \(A S \equiv\)
\(\exists \mathcal{T} .(\forall C \in \mathcal{T}\). hyperplane-cell \(A C) \wedge S=\bigcup \mathcal{T}\)
lemma hyperplane-cellcomplex-empty [simp]: hyperplane-cellcomplex A \{\} using hyperplane-cellcomplex-def by auto
lemma hyperplane-cell-cellcomplex:
hyperplane-cell \(A C\) hyperplane-cellcomplex \(A C\)
by (auto simp: hyperplane-cellcomplex-def)
lemma hyperplane-cellcomplex-Union:
assumes \(\bigwedge S . S \in \mathcal{C} \Longrightarrow\) hyperplane-cellcomplex \(A S\)
shows hyperplane-cellcomplex \(A(\bigcup \mathcal{C})\)
proof -
obtain \(\mathcal{F}\) where \(\mathcal{F}: \wedge S . S \in \mathcal{C} \Longrightarrow(\forall C \in \mathcal{F} S\). hyperplane-cell \(A C) \wedge S=\) \(\bigcup(\mathcal{F} S)\)
by (metis assms hyperplane-cellcomplex-def)
```

```
    show ?thesis
    unfolding hyperplane-cellcomplex-def
    using \mathcal{F by (fastforce intro: exI [where }x=\bigcup(\mathcal{F}`\mathcal{C})])
qed
lemma hyperplane-cellcomplex-Un:
    \llbrackethyperplane-cellcomplex A S; hyperplane-cellcomplex A T\rrbracket
        hyperplane-cellcomplex A (S\cupT)
    by (smt (verit) Un-iff Union-Un-distrib hyperplane-cellcomplex-def)
lemma hyperplane-cellcomplex-UNIV [simp]: hyperplane-cellcomplex A UNIV
    by (metis Union-hyperplane-cells hyperplane-cellcomplex-def mem-Collect-eq)
lemma hyperplane-cellcomplex-Inter:
    assumes }\bigwedgeS.S\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cellcomplex A S
    shows hyperplane-cellcomplex A (\bigcap\mathcal{C})
proof (cases \mathcal{C }={})
    case True
    then show ?thesis
        by simp
next
    case False
    obtain \mathcal{F}\mathrm{ where }\mathcal{F}:\S.S\in\mathcal{C}\Longrightarrow(\forallC\in\mathcal{F}S. hyperplane-cell A C)}\wedgeS
U(\mathcal{F}S
    by (metis assms hyperplane-cellcomplex-def)
    have *: \mathcal{C}=(\lambdaS.\bigcup(\mathcal{F}S))'\mathcal{C}
    using \mathcal{F}}\mathrm{ by force
    define U where U\equiv\bigcup{T\in{\bigcap(g'\mathcal{C})|g.\forallS\in\mathcal{C}.gS\in\mathcal{F}S}.T\not={}}
    have }\cap\mathcal{C}=\bigcup{\bigcap(g'\mathcal{C})|g.\forallS\in\mathcal{C}.gS\in\mathcal{F}S
        using False \mathcal{F unfolding Inter-over-Union [symmetric]}
        by blast
    also have ... = U
        unfolding U-def
        by blast
    finally have }\cap\mathcal{C}=U
    have hyperplane-cellcomplex A U
        using False }\mathcal{F}\mathrm{ unfolding }U\mathrm{ -def
        apply (intro hyperplane-cellcomplex-Union hyperplane-cell-cellcomplex)
        by (auto intro!: hyperplane-cell-Inter)
    then show ?thesis
        by (simp add: <\bigcap\mathcal{C}=U`)
qed
lemma hyperplane-cellcomplex-Int:
    \llbrackethyperplane-cellcomplex A S; hyperplane-cellcomplex A T\rrbracket
        hyperplane-cellcomplex A(S\capT)
    using hyperplane-cellcomplex-Inter [of {S,T}] by force
lemma hyperplane-cellcomplex-Compl:
```

```
    assumes hyperplane-cellcomplex A S
    shows hyperplane-cellcomplex A (-S)
proof -
    obtain }\mathcal{C}\mathrm{ where }\mathcal{C}:\C.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cell A C and S=\C
    by (meson assms hyperplane-cellcomplex-def)
    have hyperplane-cellcomplex A (\bigcapT\in\mathcal{C}.-T)
    proof (intro hyperplane-cellcomplex-Inter)
        fix C0
        assume CO \inuminus ' }\mathcal{C
        then obtain C where C:C0}=-CC\in\mathcal{C
            by auto
    have *: -C=\bigcup{D. hyperplane-cell A D\wedgeD\not=C} (is - = ?rhs)
    proof
            show - C\subseteq?rhs
                using hyperplane-cell by blast
            show ?rhs \subseteq-C
                by clarify (meson }\langleC\in\mathcal{C}\rangle\mathcal{C}\mathrm{ disjnt-iff disjoint-hyperplane-cells)
    qed
    then show hyperplane-cellcomplex A CO
    by (metis (no-types, lifting) C(1) hyperplane-cell-cellcomplex hyperplane-cellcomplex-Union
mem-Collect-eq)
    qed
    then show ?thesis
    by (simp add: «S=\bigcup\mathcal{C}\rangleuminus-Sup)
qed
lemma hyperplane-cellcomplex-diff:
    \llbrackethyperplane-cellcomplex A S; hyperplane-cellcomplex A T\rrbracket
        hyperplane-cellcomplex A (S-T)
    using hyperplane-cellcomplex-Inter [of {S,-T}]
    by (force simp: Diff-eq hyperplane-cellcomplex-Compl)
lemma hyperplane-cellcomplex-mono:
    assumes hyperplane-cellcomplex A S A\subseteqB
    shows hyperplane-cellcomplex B S
proof -
    obtain \mathcal{C}\mathrm{ where }\mathcal{C}:\C.C\in\mathcal{C}\Longrightarrow hyperplane-cell A C and eq:S=\bigcup\mathcal{C}
    by (meson assms hyperplane-cellcomplex-def)
    show ?thesis
        unfolding eq
    proof (intro hyperplane-cellcomplex-Union)
        fix C
        assume C\in\mathcal{C}
    have }\x.x\inC\Longrightarrow\exists\mp@subsup{D}{}{\prime}.(\existsD.\mp@subsup{D}{}{\prime}=D\capC\wedge\mathrm{ hyperplane-cell }(B-A)D
D\capC\not={})\wedgex\in D'
        unfolding hyperplane-cell-def by blast
    then
    have hyperplane-cellcomplex ( }A\cup(B-A))
        unfolding hyperplane-cellcomplex-def hyperplane-cell-Un
```

```
            using \mathcal{C}\langleC \in\mathcal{C}\rangle by (fastforce intro!: exI [where x={D\capC|D. hyper-
plane-cell (B-A) D\wedgeD\capC\not={}}])
    moreover have }B=A\cup(B-A
            using }\langleA\subseteqB\rangle\mathrm{ by auto
    ultimately show hyperplane-cellcomplex B C by simp
    qed
qed
lemma finite-hyperplane-cellcomplexes:
    assumes finite A
    shows finite {C. hyperplane-cellcomplex A C}
proof -
    have {C. hyperplane-cellcomplex A C } \ image \bigcup{T.T\subseteq{C. hyperplane-cell
A C}}
    by (force simp: hyperplane-cellcomplex-def subset-eq)
    with finite-hyperplane-cells show ?thesis
    by (metis assms finite-Collect-subsets finite-surj)
qed
lemma finite-restrict-hyperplane-cellcomplexes:
    finite }A\Longrightarrow\mathrm{ finite {C. hyperplane-cellcomplex A C}\wedgePC
    by (simp add: finite-hyperplane-cellcomplexes)
lemma finite-set-of-hyperplane-cellcomplex:
    assumes finite }A\wedgeC.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cellcomplex A C
    shows finite \mathcal{C}
    by (metis assms finite-hyperplane-cellcomplexes mem-Collect-eq rev-finite-subset
subsetI)
lemma cell-subset-cellcomplex:
\(\llbracket h y p e r p l a n e-c e l l ~ A C\); hyperplane-cellcomplex \(A S \rrbracket \Longrightarrow C \subseteq S \longleftrightarrow \sim\) disjnt \(C S\) by (smt (verit) Union-iff disjnt-iff disjnt-subset1 disjoint-hyperplane-cells-eq hy-perplane-cellcomplex-def subsetI)
```


7.3 Euler characteristic

definition Euler-characteristic :: ('a::euclidean-space \times real) set \Rightarrow 'a set \Rightarrow int where Euler-characteristic $A S \equiv$ $\left(\sum C \mid\right.$ hyperplane-cell $A C \wedge C \subseteq S .(-1) \wedge$ nat $\left.(\operatorname{aff}-\operatorname{dim} C)\right)$
lemma Euler-characteristic-empty [simp]: Euler-characteristic $A\}=0$
by (simp add: sum.neutral Euler-characteristic-def)
lemma Euler-characteristic-cell-Union:
assumes $\bigwedge C . C \in \mathcal{C} \Longrightarrow$ hyperplane-cell $A C$
shows Euler-characteristic $A(\bigcup \mathcal{C})=\left(\sum C \in \mathcal{C} .(-1)\right.$ ^nat $\left.(\operatorname{aff}-\operatorname{dim} C)\right)$
proof -
have $\bigwedge x$. 【hyperplane-cell $A x ; x \subseteq \bigcup \mathcal{C} \rrbracket \Longrightarrow x \in \mathcal{C}$
by (metis assms disjnt-Union1 disjnt-subset1 disjoint-hyperplane-cells-eq)

```
    then have {C. hyperplane-cell A C\wedgeC\subseteq\bigcup\mathcal{C}}=\mathcal{C}
    by (auto simp: assms)
    then show ?thesis
    by (auto simp: Euler-characteristic-def)
qed
lemma Euler-characteristic-cell:
    hyperplane-cell A C\Longrightarrow Euler-characteristic A C= (-1)^(nat(aff-dim C))
    using Euler-characteristic-cell-Union [of {C}] by force
lemma Euler-characteristic-cellcomplex-Un:
    assumes finite A hyperplane-cellcomplex A S
    and AT: hyperplane-cellcomplex A T and disjnt S T
    shows Euler-characteristic A (S\cupT) =
        Euler-characteristic A S + Euler-characteristic A T
proof -
    have *: {C. hyperplane-cell A C\wedgeC\subseteqS\cupT}=
            {C. hyperplane-cell A C\wedgeC\subseteqS}\cup{C. hyperplane-cell A C^C\subseteqT}
    using cell-subset-cellcomplex [OF - AT] by (auto simp: disjnt-iff)
    have **: {C. hyperplane-cell A C^C\subseteqS}\cap{C. hyperplane-cell A C^C\subseteq
T} = {}
    using assms cell-subset-cellcomplex disjnt-subset1 by fastforce
    show ?thesis
    unfolding Euler-characteristic-def
    by (simp add: finite-restrict-hyperplane-cells assms * ** flip: sum.union-disjoint)
qed
lemma Euler-characteristic-cellcomplex-Union:
    assumes finite A
    and \mathcal{C}:\bigwedgeC.C\in\mathcal{C}\Longrightarrow hyperplane-cellcomplex A C pairwise disjnt }\mathcal{C
    shows Euler-characteristic A (\bigcup\mathcal{C})=sum(Euler-characteristic A)\mathcal{C}
proof -
    have finite \mathcal{C}
        using assms finite-set-of-hyperplane-cellcomplex by blast
    then show ?thesis
        using }\mathcal{C
    proof (induction rule: finite-induct)
        case empty
        then show ?case
            by auto
    next
        case (insert C C )
        then obtain disjoint \mathcal{C disjnt C ( }\cup\mathcal{C})
            by (metis disjnt-Union2 pairwise-insert)
    with insert show ?case
    by (simp add: Euler-characteristic-cellcomplex-Un hyperplane-cellcomplex-Union
<inite A>)
    qed
qed
```

```
lemma Euler-characteristic:
    fixes A :: (' }n::\mathrm{ euclidean-space * real) set
    assumes finite A
    shows Euler-characteristic A S=
        (\sumd=0..DIM('n). (-1)^d* int (card {C. hyperplane-cell A C ^C\subseteq
S^aff-dim C= int d}))
            (is - = ?rhs)
proof -
    have \T. \llbrackethyperplane-cell A T;T\subseteqS\rrbracket\Longrightarrowaff-dim T\in{0..DIM('n)}
        by (metis atLeastAtMost-iff nle-le order.strict-iff-not aff-dim-negative-iff
            nonempty-hyperplane-cell aff-dim-le-DIM)
    then have *: aff-dim' {C. hyperplane-cell A C^C\subseteqS}\subseteq int '{0..DIM('n)}
    by (auto simp: image-int-atLeastAtMost)
    have Euler-characteristic A S = (\sumy\inint'{0..DIM('n)}.
                \sumC\in{x. hyperplane-cell A x ^ x\subseteqS^aff-dim x=y}.(- 1) ^nat y)
            using sum.group [of {C. hyperplane-cell A C\wedgeC\subseteqS} int '{0..DIM('n)}
aff-dim \lambdaC. (-1::int) ^nat(aff-dim C), symmetric]
    by (simp add: assms Euler-characteristic-def finite-restrict-hyperplane-cells *)
    also have ... = ?rhs
    by (simp add: sum.reindex mult-of-nat-commute)
    finally show ?thesis.
qed
```


7.4 Show that the characteristic is invariant w.r.t. hyperplane arrangement.

lemma hyperplane-cells-distinct-lemma:
$\{x . a \cdot x=b\} \cap\{x . a \cdot x<b\}=\{ \} \wedge$
$\{x . a \cdot x=b\} \cap\{x . a \cdot x>b\}=\{ \} \wedge$
$\{x . a \cdot x<b\} \cap\{x . a \cdot x=b\}=\{ \} \wedge$
$\{x . a \cdot x<b\} \cap\{x . a \cdot x>b\}=\{ \} \wedge$
$\{x . a \cdot x>b\} \cap\{x . a \cdot x=b\}=\{ \} \wedge$
$\{x . a \cdot x>b\} \cap\{x . a \cdot x<b\}=\{ \}$
by auto
proposition Euler-characterstic-lemma:
assumes finite A and hyperplane-cellcomplex A S
shows Euler-characteristic (insert h A) S = Euler-characteristic A S
proof -
obtain \mathcal{C} where $\mathcal{C}: \bigwedge C . C \in \mathcal{C} \Longrightarrow$ hyperplane-cell $A C$ and $S=\bigcup \mathcal{C}$ and pairwise disjnt \mathcal{C}
by (meson assms hyperplane-cellcomplex-def pairwise-disjoint-hyperplane-cells)
obtain $a b$ where $h=(a, b)$
by fastforce
have $\wedge C . C \in \mathcal{C} \Longrightarrow$ hyperplane-cellcomplex $A C \wedge$ hyperplane-cellcomplex (insert $(a, b) A) C$
by (meson \mathcal{C} hyperplane-cell-cellcomplex hyperplane-cellcomplex-mono sub-set-insertI)

moreover

have sum（Euler－characteristic（insert（a，b）A）） $\mathcal{C}=$ sum（Euler－characteristic A） \mathcal{C}
proof (rule sum.cong [OF refl])
fix C
assume $C \in \mathcal{C}$
have Euler-characteristic (insert $(a, b) A) C=(-1)$ nat(aff-dim $C)$
proof (cases hyperplane-cell (insert (a,b) A) C)
case True
then show ?thesis
using Euler-characteristic-cell by blast
next
case False
with $\mathcal{C}[O F\langle C \in \mathcal{C}\rangle]$ have $a \neq 0$
by (smt (verit, ccfv-threshold) hyperplane-cell-Un hyperplane-cell-empty
hyperplane-cell-singleton insert-is-Un sup-bot-left)
have convex C
using 〈hyperplane-cell $A C$ 〉 hyperplane-cell-convex by blast
define r where $r \equiv\left(\sum D \in\left\{C^{\prime} \cap C \mid C^{\prime}\right.\right.$. hyperplane-cell $\{(a, b)\} C^{\prime} \wedge C^{\prime} \cap$
$C \neq\{ \}\} .(-1::$ int $){ }^{\wedge}$ nat (aff-dim D) $)$
have Euler-characteristic (insert (a, b) A) C

$$
=\left(\sum D \mid(D \neq\{ \} \wedge\right.
$$

（ \exists C1 C2．hyperplane－cell $\{(a, b)\} C 1 \wedge$ hyperplane－cell A C2 \wedge $D=C 1 \cap C 2)) \wedge D \subseteq C$ ． $(-1){ }^{\wedge}$ nat $\left.(\operatorname{aff}-\operatorname{dim} D)\right)$
unfolding r－def Euler－characteristic－def insert－is－Un［of－A］hyperplane－cell－Un
also have $\ldots=r$
unfolding r－def
apply（rule sum．cong［OF－refi］）
using 〈hyperplane－cell A C〉disjoint－hyperplane－cells disjnt－iff
by（smt（verit，ccfv－SIG）Collect－cong Int－iff disjoint－iff subsetD subsetI）
also have $\ldots=(-1)$ へ nat $(\operatorname{aff}-\operatorname{dim} C)$
proof－
have $C \neq\{ \}$
using 〈hyperplane－cell $A C$ by auto
show ？thesis
proof（cases $C \subseteq\{x . a \cdot x<b\} \vee C \subseteq\{x . a \cdot x>b\} \vee C \subseteq\{x . a \cdot x=$
b\})
case Csub：True
with $\langle C \neq\{ \}\rangle$ have $r=\operatorname{sum}\left(\lambda c .(-1)^{\wedge}\right.$ nat $\left.(\operatorname{aff}-\operatorname{dim} c)\right)\{C\}$
unfolding r－def
apply（intro sum．cong［OF－refl］）
by（auto simp：$\langle a \neq 0\rangle$ hyperplane－cell－singleton）
also have $\ldots=(-1)^{\wedge} \operatorname{nat}(\operatorname{aff}-\operatorname{dim} C)$
by simp
finally show ？thesis．
next
case False
then obtain $u v$ where $u v: u \in C \neg a \cdot u<b v \in C \neg a \cdot v>b$
by blast
have CInt-ne: $C \cap\{x . a \cdot x=b\} \neq\{ \}$
proof (cases $a \cdot u=b \vee a \cdot v=b$)
case True
with $u v$ show ?thesis
by blast
next
case False
have $a \cdot v<a \cdot u$
using False uv by auto
define w where $w \equiv v+((b-a \cdot v) /(a \cdot u-a \cdot v)) *_{R}(u-v)$
have $* *: v+a *_{R}(u-v)=(1-a) *_{R} v+a *_{R} u$ for a
by (simp add: algebra-simps)
have $w \in C$
unfolding w-def ${ }^{* *}$
proof (intro convexD-alt)
qed (use $\langle a \cdot v<a \cdot u\rangle\langle$ convex $C\rangle u v$ in auto)
moreover have $w \in\{x . a \cdot x=b\}$
using $\langle a \cdot v<a \cdot u\rangle$ by (simp add: w-def inner-add-right inner-diff-right)
ultimately show ?thesis
by blast
qed
have $C a b: C \cap\{x . a \cdot x<b\} \neq\{ \} \wedge C \cap\{x . b<a \cdot x\} \neq\{ \}$
proof -
obtain $u v$ where $u \in C a \cdot u=b v \in C a \cdot v \neq b u \neq v$ using False $\langle C \cap\{x . a \cdot x=b\} \neq\{ \}>$ by blast
have openin (subtopology euclidean (affine hull C)) C
using 〈hyperplane-cell $A C\rangle\langle$ inite $A\rangle$ hyperplane-cell-relatively-open
by blast
then obtain ε where $0<\varepsilon$
and $\varepsilon: \bigwedge x^{\prime} . \llbracket x^{\prime} \in$ affine hull C; dist $x^{\prime} u<\varepsilon \rrbracket \Longrightarrow x^{\prime} \in C$
by (meson $\langle u \in C\rangle$ openin-euclidean-subtopology-iff)
define ξ where $\xi \equiv u-(\varepsilon / 2 / \operatorname{norm}(v-u)) *_{R}(v-u)$
have $\xi \in C$
proof (rule ε)
show $\xi \in$ affine hull C
by (simp add: ξ-def $\langle u \in C\rangle\langle v \in C\rangle$ hull-inc mem-affine-3-minus2)
qed (use ξ-def $\langle 0<\varepsilon\rangle$ in force)
consider $a \cdot v<b \mid a \cdot v>b$
using $\langle a \cdot v \neq b\rangle$ by linarith
then show ?thesis
proof cases
case 1
moreover have $\xi \in\{x . b<a \cdot x\}$
using $1\langle 0<\varepsilon\rangle\langle a \cdot u=b\rangle$ divide-less-cancel
by (fastforce simp: ξ-def algebra-simps)
ultimately show ?thesis using $\langle v \in C\rangle\langle\xi \in C\rangle$ by blast

```
    next
            case 2
            moreover have }\xi\in{x.b>a\cdotx
                using 2 <0 < & <a \cdotu=b\rangledivide-less-cancel
                by (fastforce simp: \xi-def algebra-simps)
            ultimately show ?thesis
                using }\langlev\inC\rangle\langle\xi\inC\rangle\mathrm{ by blast
            qed
            qed
    have r=(\sumC\in{{x.a\cdotx=b}\capC,{x.b<a\cdotx}\capC,{x.a\cdotx<b}
\capC}.
                    (- 1)^nat (aff-dim C))
            unfolding r-def
            proof (intro sum.cong [OF - refl] equalityI)
            show {{x.a\cdotx=b}\capC,{x.b<a\cdotx}\capC,{x.a\cdotx<b}\capC}
                \subseteq \{ \{ C ^ { \prime } \cap C \| C ^ { \prime } . \text { .hyperplane-cell \{(a,b)\} C'^ C'} \cap C \neq \{ \} \}
            apply clarsimp
                using Cab Int-commute <C\cap {x.a\cdotx=b}\not={}> hyper-
plane-cell-singleton < }a\not=0\mathrm{ \
            by metis
            qed (auto simp: <a\not=0` hyperplane-cell-singleton)
            also have ... = (-1) ^ nat (aff-dim (C\cap {x.a\cdotx=b}))
                    +(-1) ~ nat (aff-dim (C\cap{x.b<a\cdotx}))
                        + (-1) ^nat (aff-dim (C\cap{x.a\cdotx<b}))
            using hyperplane-cells-distinct-lemma [of a b] Cab
            by (auto simp: sum.insert-if Int-commute Int-left-commute)
            also have ... = (- 1) ^ nat (aff-dim C)
            proof -
                            have *: aff-dim}(C\cap{x.a\cdotx<b})=aff-dim C\wedge\operatorname{aff-dim}(C\cap{x.
- x>b})}=aff-\operatorname{dim}
            by (metis Cab open-halfspace-lt open-halfspace-gt aff-dim-affine-hull
                affine-hull-convex-Int-open[OF <convex C`])
            obtain S T where open S affine T and Ceq: C=S\cap T
                    by (meson <hyperplane-cell A C><finite A〉 hyperplane-cell-Int-open-affine)
            have affine hull C=affine hull T
            by (metis Ceq <C \not={}\rangle\langleaffine T\rangle\langleopen S〉 affine-hull-affine-Int-open
inf-commute)
            moreover
            have}T\cap({x.a\cdotx=b}\capS)\not={
            using Ceq <C\cap{x.a\cdotx=b}}\not={}>\mathrm{ by blast
            then have affine hull (C\cap{x.a\cdotx=b})= affine hull (T\cap{x.a\cdotx
= b})
            using affine-hull-affine-Int-open[of T\cap{x.a\cdotx=b} S]
            by (simp add:Ceq Int-ac <affine T〉 <open S〉 affine-Int affine-hyperplane)
            ultimately have aff-dim (affine hull C) = aff-dim(affine hull ( C \cap {x.
a}\cdotx=b}))+
            using CInt-ne False Ceq
            by (auto simp: aff-dim-affine-Int-hyperplane <affine T〉)
            moreover have 0\leqaff-dim (C\cap{x.a\cdotx=b})
```

```
                by (metis CInt-ne aff-dim-negative-iff linorder-not-le)
                    ultimately show ?thesis
                        by (simp add: * nat-add-distrib)
                qed
                finally show ?thesis.
            qed
        qed
        finally show Euler-characteristic (insert (a,b) A) C=(-1) ^nat(aff-dim
C) .
    qed
    then show Euler-characteristic (insert (a,b) A) C=(Euler-characteristic A
C)
    by (simp add: Euler-characteristic-cell \mathcal{C}\langleC \in\mathcal{C}\rangle)
    qed
    ultimately show ?thesis
        by (simp add: Euler-characteristic-cellcomplex-Union 〈S = \bigcup \mathcal{C}\langledisjoint \mathcal{C}\rangle
<h = (a,b)> assms(1))
qed
lemma Euler-characterstic-invariant-aux:
    assumes finite B finite A hyperplane-cellcomplex A S
    shows Euler-characteristic (A\cupB)S=Euler-characteristic A S
    using assms
    by (induction rule: finite-induct) (auto simp: Euler-characterstic-lemma hyper-
plane-cellcomplex-mono)
lemma Euler-characterstic-invariant:
    assumes finite A finite B hyperplane-cellcomplex A S hyperplane-cellcomplex B
S
    shows Euler-characteristic A S = Euler-characteristic B S
    by (metis Euler-characterstic-invariant-aux assms sup-commute)
lemma Euler-characteristic-inclusion-exclusion:
    assumes finite A finite }\mathcal{S}\bigwedgeK.K\in\mathcal{S}\Longrightarrow\mathrm{ hyperplane-cellcomplex A K
    shows Euler-characteristic A (\bigcup\mathcal{S})=(\sum\mathcal{T}|\mathcal{T}\subseteq\mathcal{S}\wedge\mathcal{T}\not={}.(- 1) ^ (card
T}+1)*Euler-characteristic A (\bigcap\mathcal{T})
proof -
    interpret Incl-Excl hyperplane-cellcomplex A Euler-characteristic A
        proof
    show Euler-characteristic A (S\cupT)=Euler-characteristic A S + Euler-characteristic
A T
        if hyperplane-cellcomplex AS and hyperplane-cellcomplex A T and disjnt S T
for ST
        using that Euler-characteristic-cellcomplex-Un assms(1) by blast
    qed (use hyperplane-cellcomplex-Int hyperplane-cellcomplex-Un hyperplane-cellcomplex-diff
in auto)
    show ?thesis
        using restricted assms by blast
```


7.5 Euler-type relation for full-dimensional proper polyhedral cones

lemma Euler-polyhedral-cone:
fixes $S::$ ' $n::$ euclidean-space set
assumes polyhedron S conic S and intS: interior $S \neq\{ \}$ and $S \neq$ UNIV
shows $\left(\sum d=0 . . D I M(' n) .(-1)^{\wedge} d * \operatorname{int}\right.$ (card $\{f . f$ face-of $S \wedge$ aff-dim $f=$
int $d\}))=0($ is ?lhs $=0)$
proof -
have [simp]: affine hull $S=$ UNIV
by (simp add: affine-hull-nonempty-interior intS)
with 〈polyhedron S 〉
obtain H where finite H
and Seq: $S=\bigcap H$
and Hex: $\wedge h . h \in H \Longrightarrow \exists a b . a \neq 0 \wedge h=\{x . a \cdot x \leq b\}$
and Hsub: $\wedge \mathcal{G} . \mathcal{G} \subset H \Longrightarrow S \subset \bigcap \mathcal{G}$
by (fastforce simp: polyhedron-Int-affine-minimal)
have $0 \in S$
using assms(2) conic-contains-0 intS interior-empty by blast
have $*: \exists a . a \neq 0 \wedge h=\{x . a \cdot x \leq 0\}$ if $h \in H$ for h
proof -
obtain $a b$ where $a \neq 0$ and $a b: h=\{x . a \cdot x \leq b\}$
using Hex $[O F\langle h \in H\rangle]$ by blast
have $0 \in \bigcap H$
using $S e q<0 \in S\rangle$ by force
then have $0 \in h$
using that by blast
consider $b=0|b<0| b>0$
by linarith
then
show ?thesis
proof cases
case 1
then show ?thesis
using $\langle a \neq 0\rangle a b$ by blast
next
case 2
then show ?thesis
using $\langle 0 \in h\rangle a b$ by auto
next
case 3
have $S \subset \bigcap(H-\{h\})$
using Hsub [of $H-\{h\}$] that by auto
then obtain x where $x: x \in \bigcap(H-\{h\})$ and $x \notin S$
by auto
define ε where $\varepsilon \equiv \min (1 / 2)(b /(a \cdot x))$
have $b<a \cdot x$

```
    using }\langlex\not\inS\rangleabx\mathrm{ by (fastforce simp: }\langleS=\bigcapH\rangle
    with 3 have 0<a\cdotx
    by auto
    with 3 have 0<\varepsilon
    by (simp add: \varepsilon-def)
    have }\varepsilon<
    using }\varepsilon\mathrm{ -def by linarith
    have }\varepsilon*(a\cdotx)\leq
    unfolding \varepsilon-def using < O <a}\cdotx> pos-le-divide-eq by fastforc
    have x= inverse }\varepsilon\mp@subsup{*}{R}{}\varepsilon\mp@subsup{*}{R}{}
    using <0< < by force
    moreover
    have }\varepsilon\mp@subsup{*}{R}{}x\in
    proof -
    have }\varepsilon\mp@subsup{*}{R}{}x\in
        by (simp add: <\varepsilon* (a\cdotx)\leqb>ab)
    moreover have }\varepsilon\mp@subsup{*}{R}{}x\in\bigcap(H-{h}
    proof -
            have }\varepsilon\mp@subsup{*}{R}{}x\ink\mathrm{ if }x\inkk\inHk\not=h\mathrm{ for }
            proof -
                obtain a' b}\mp@subsup{b}{}{\prime}\mathrm{ where }\mp@subsup{a}{}{\prime}\not=0k={x.\mp@subsup{a}{}{\prime}\cdotx\leq\mp@subsup{b}{}{\prime}
                using Hex <k G H〉 by blast
            have (0\leqa' 
                by (metis }<<<1\rangle\mathrm{ inner-scaleR-right order-less-le pth-1 real-scaleR-def
scaleR-right-mono)
            moreover have (0\leq-(\mp@subsup{a}{}{\prime}\cdotx)\Longrightarrow0\leq-(\mp@subsup{a}{}{\prime}\cdot\varepsilon*\mp@subsup{*}{R}{}x))
                using <0<\varepsilon> mult-le-0-iff order-less-imp-le by auto
                    ultimately
                    have a'}\mp@subsup{a}{}{\prime}\cdotx\leq\mp@subsup{b}{}{\prime}\Longrightarrow\mp@subsup{a}{}{\prime}\cdot\varepsilon\mp@subsup{*}{R}{}x\leq\mp@subsup{b}{}{\prime
            by (smt (verit) InterD }\langle0\in\bigcapH\rangle\langlek={x.\mp@subsup{a}{}{\prime}\cdotx\leq\mp@subsup{b}{}{\prime}}\rangle\mathrm{ inner-zero-right
mem-Collect-eq that(2))
            then show ?thesis
                using <k={x. a' \cdotx\leq b}}\rangle\langlex\ink\rangle\mathrm{ by fastforce
            qed
            with x show ?thesis
                by blast
            qed
            ultimately show ?thesis
            using Seq by blast
qed
    with <conic S` have inverse \varepsilon*R}\varepsilon\mp@subsup{|}{R}{}x\in
    by (meson <0 < \varepsilon> conic-def inverse-nonnegative-iff-nonnegative order-less-le)
    ultimately show ?thesis
        using <x & S` by presburger
    qed
qed
then obtain fa where fa: \h. h\inH\Longrightarrowfah\not=0\wedgeh={x.fah \cdotx\leq0}
    by metis
define fa-le-0 where fa-le-0 \equiv\lambdah. {x.fa h | x \leq 0 }
```

```
have \(f a^{\prime}: \wedge h . h \in H \Longrightarrow\) fa-le-0 \(h=h\)
    using fa fa-le-0-def by blast
define \(A\) where \(A \equiv(\lambda h\). (fa h, \(0::\) real \()\) )' \(H\)
have finite \(A\)
    using 〈finite \(H\) 〉 by (simp add: A-def)
then have ?lhs \(=\) Euler-characteristic \(A S\)
proof -
    have [simp]: card \(\{f . f\) face-of \(S \wedge\) aff-dim \(f=\) int \(d\}=\) card \(\{C\). hyperplane-cell
\(A C \wedge C \subseteq S \wedge\) aff-dim \(C=\) int \(d\}\)
        if finite \(A\) and \(d \leq\) card (Basis::'n set)
        for \(d::\) nat
    proof (rule bij-betw-same-card)
        have hyper1: hyperplane-cell \(A\) (rel-interior \(f) \wedge\) rel-interior \(f \subseteq S\)
            \(\wedge \operatorname{aff}-\operatorname{dim}(\) rel-interior \(f)=d \wedge\) closure \((\) rel-interior \(f)=f\)
        if \(f\) face-of \(S\) aff-dim \(f=d\) for \(f\)
    proof -
            have 1: closure (rel-interior \(f\) ) \(=f\)
            proof -
                have closure (rel-interior \(f)=\) closure \(f\)
                    by (meson convex-closure-rel-interior face-of-imp-convex that(1))
                            also have \(\ldots=f\)
                            by (meson assms(1) closure-closed face-of-polyhedron-polyhedron polyhe-
dron-imp-closed that(1))
            finally show ?thesis.
        qed
        then have 2: aff-dim (rel-interior \(f)=d\)
            by (metis closure-aff-dim that(2))
            have \(f \neq\{ \}\)
                using aff-dim-negative-iff [of f] by (simp add: that(2))
            obtain \(J 0\) where \(J 0 \subseteq H\) and \(J 0: f=\bigcap\left(f a-l e-0{ }^{\prime} H\right) \cap(\bigcap h \in J 0 .\{x\).
fa \(h \cdot x=0\}\) )
            proof (cases \(f=S\) )
                case True
                have \(S=\bigcap(f a-l e-0\) ' \(H\) )
                    using Seq fa by (auto simp: fa-le-0-def)
                then show? ?hesis
                    using True that by blast
            next
                case False
                have fexp: \(f=\bigcap\{S \cap\{x . f a h \cdot x=0\} \mid h . h \in H \wedge f \subseteq S \cap\{x . f a h\).
\(x=0\}\}\)
            proof (rule face-of-polyhedron-explicit)
                        show \(S=\) affine hull \(S \cap \bigcap H\)
                        by (simp add: Seq hull-subset inf.absorb2)
            qed (auto simp: False \(\langle f \neq\{ \}\rangle\langle f\) face-of \(S\rangle\langle\) finite \(H\rangle H s u b\) fa)
            show ?thesis
            proof
            have \(*: \bigwedge x h . \llbracket x \in f ; h \in H \rrbracket \Longrightarrow f a h \cdot x \leq 0\)
                using Seq fa face-of-imp-subset 〈f face-of \(S\) 〉 by fastforce
```

show $f=\bigcap(f a-l e-0 \cdot H) \cap(\bigcap h \in\{h \in H . f \subseteq S \cap\{x . f a h \cdot x=$ $0\}\} .\{x . f a h \cdot x=0\})$

(is $f=? I$)

proof
show $f \subseteq$? I
using $\langle f$ face-of $S\rangle$ fa face-of-imp-subset by (force simp: * fa-le-0-def)
show ?I $\subseteq f$
apply (subst (2) fexp)
apply (clarsimp simp: * fa-le-0-def)
by (metis Inter-iff Seq fa mem-Collect-eq)

qed

qed blast
qed
define H^{\prime} where $H^{\prime}=(\lambda h .\{x .-(f a h) \cdot x \leq 0\})$ ' H
have $\exists J$. finite $J \wedge J \subseteq H \cup H^{\prime} \wedge f=$ affine hull $f \cap \cap J$
proof (intro exI conjI)
let ? $J=H \cup$ image $(\lambda h .\{x .-(f a h) \cdot x \leq 0\}) J 0$
show finite (? $J:: ' n$ set set)
using $\langle J 0 \subseteq H\rangle\langle$ finite H 〉finite-subset by fastforce
show ? $J \subseteq H \cup H^{\prime}$
using $\langle J 0 \subseteq H\rangle$ by (auto simp: H^{\prime}-def)
have $f=\bigcap$? J
proof
show $f \subseteq \bigcap$?J
unfolding $J 0$ by (auto simp: fa')
have $\bigwedge x j . \llbracket j \in J 0 ; \forall h \in H . x \in h ; \forall j \in J 0.0 \leq f a j \cdot x \rrbracket \Longrightarrow f a j \cdot x=0$
by (metis $\langle J 0 \subseteq H\rangle$ fa in-mono inf.absorb2 inf.orderE mem-Collect-eq)
then show \bigcap ? $J \subseteq f$
unfolding $J 0$ by (auto simp: fa')
qed
then show $f=$ affine hull $f \cap \bigcap$?J
by (simp add: Int-absorb1 hull-subset)
qed
then have $* *: \exists n J$. finite $J \wedge$ card $J=n \wedge J \subseteq H \cup H^{\prime} \wedge f=$ affine hull $f \cap \bigcap J$
by blast
obtain $J n J$ where J : finite J card $J=n J J \subseteq H \cup H^{\prime}$ and feq: $f=$ affine hull $f \cap \bigcap J$
and $\min J: \bigwedge m J^{\prime}$. \llbracket finite $J^{\prime} ; m<n J ;$ card $J^{\prime}=m ; J^{\prime} \subseteq H \cup H \rrbracket \Longrightarrow f$ \neq affine hull $f \cap \bigcap J^{\prime}$
using exists-least-iff [THEN iffD1, OF **] by metis
have FF: $f \subset\left(\right.$ affine hull $\left.f \cap \bigcap J^{\prime}\right)$ if $J^{\prime} \subset J$ for J^{\prime}
proof -
have $f \neq$ affine hull $f \cap \bigcap J^{\prime}$
using minJ
by (metis J finite-subset psubset-card-mono psubset-imp-subset psub-set-subset-trans that)
then show ?thesis
by (metis Int-subset-iff Inter-Un-distrib feq hull-subset inf-sup-ord(2)

```
psubsetI sup.absorb4 that)
    qed
    have \(\exists a .\{x . a \cdot x \leq 0\}=h \wedge\left(h \in H \wedge a=f a h \vee\left(\exists h^{\prime} . h^{\prime} \in H \wedge a=\right.\right.\)
\(\left.\left.-\left(f a h^{\prime}\right)\right)\right)\)
    if \(h \in J\) for \(h\)
    proof -
        have \(h \in H \cup H^{\prime}\)
            using \(\left\langle J \subseteq H \cup H^{\prime}\right\rangle\) that by blast
        then show? thesis
        proof
            show ?thesis if \(h \in H\)
            using that fa by blast
        next
            assume \(h \in H^{\prime}\)
            then obtain \(h^{\prime}\) where \(h^{\prime} \in H h=\left\{x .0 \leq f a h^{\prime} \cdot x\right\}\)
                by (auto simp: \(H^{\prime}\)-def)
                then show ?thesis
                    by (force simp: intro!: exI[where \(\left.\left.x=-\left(f a h^{\prime}\right)\right]\right)\)
        qed
    qed
    then obtain \(g a\)
        where ga-h: \(\bigwedge h . h \in J \Longrightarrow h=\{x\). ga \(h \cdot x \leq 0\}\)
            and \(g a-f a: \bigwedge h . h \in J \Longrightarrow h \in H \wedge g a h=\overline{f a} h \vee\left(\exists h^{\prime} . h^{\prime} \in H \wedge g a h\right.\)
\(\left.=-\left(f a h^{\prime}\right)\right)\)
        by metis
    have 3: hyperplane-cell \(A\) (rel-interior f)
    proof -
        have \(D\) : rel-interior \(f=\{x \in f . \forall h \in J . g a h \cdot x<0\}\)
        proof (rule rel-interior-polyhedron-explicit [OF〈finite J〉feq])
            show \(g a h \neq 0 \wedge h=\{x . g a h \cdot x \leq 0\}\) if \(h \in J\) for \(h\)
            using that fa ga-fa ga-h by force
        qed (auto simp: FF)
        have \(H: h \in H \wedge g a h=f a h\) if \(h \in J\) for \(h\)
        proof -
            obtain \(z\) where \(z: z \in\) rel-interior \(f\)
            using \(1\langle f \neq\{ \}\rangle\) by force
        then have \(z \in f \wedge z \in S\)
            using \(D<f\) face-of \(S\) 〉 face-of-imp-subset by blast
        then show ?thesis
            using ga-fa [OF that]
        by (smt (verit, del-insts) D InterE Seq fa inner-minus-left mem-Collect-eq
    that \(z\) )
        qed
        then obtain \(K\) where \(K \subseteq H\)
        and \(K: f=\bigcap(f a-l e-0 ' \bar{H}) \cap(\bigcap h \in K .\{x . f a h \cdot x=0\})\)
        using \(J 0\langle J 0 \subseteq H\rangle\) by blast
    have E: rel-interior \(f=\{x .(\forall h \in H . f a h \cdot x \leq 0) \wedge(\forall h \in K . f a h \cdot x\)
\(=0) \wedge(\forall h \in J . g a h \cdot x<0)\}\)
        unfolding \(D\) by (simp add: \(K\) fa-le- 0 -def)
```

```
    have relif: rel-interior f}\not={
        using 1<f \not={}` by force
        with E have disjnt J K
        using H disjnt-iff by fastforce
    define IFJK where IFJK \equiv\lambdah. if h\inJ then {x.fah•x<0}
            else if h\inK then {x.fah\cdotx=0}
                        else if rel-interior f\subseteq{x.fah\cdotx=0}
                        then {x.fah • x=0}
                            else {x.fa h • x < 0}
    have relint-f: rel-interior f}=\bigcap(IFJK`H
    proof
        have A: False
            if x:x\in rel-interior f and y:y\in rel-interior f and less0: fa h • y<0
            and fa0: fa h•x=0 and h\inHh\not\inJh\not\inK for xhy
    proof -
        obtain \varepsilon where x\inf \varepsilon>0
            and \varepsilon:\t.\llbracketdist x t\leq\varepsilon; t\in affine hull f\rrbracket\Longrightarrowt\inf
            using}x\mathrm{ by (force simp: mem-rel-interior-cball)
            then have }y\not=
            using fa0 less0 by force
            define }\mp@subsup{x}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}\equivx+(\varepsilon/\operatorname{norm}(y-x))*R(x-y
            have }x\in\mathrm{ affine hull f}\wedgey\in\mathrm{ affine hull f
                by (metis }\langlex\inf\rangle\mathrm{ hull-inc mem-rel-interior-cball y)
            moreover have dist x x'}\leq
                using <0< <><y\not=x\rangle by (simp add: x'-def divide-simps dist-norm
norm-minus-commute)
            ultimately have }\mp@subsup{x}{}{\prime}\in
                by (simp add: \varepsilon mem-affine-3-minus x'-def)
            have }\mp@subsup{x}{}{\prime}\in
                using <f face-of S\rangle\langle\mp@subsup{x}{}{\prime}\inf\rangle face-of-imp-subset by auto
            then have }\mp@subsup{x}{}{\prime}\in
                using Seq that(5) by blast
            then have }\mp@subsup{x}{}{\prime}\in{x.fah\cdotx\leq0
                using fa that(5) by blast
            moreover have \varepsilon/ norm (y-x)*-(fah | y)>0
                using }\langle0<\varepsilon\rangle\langley\not=x\rangle less0 by (simp add: field-split-simps
            ultimately show ?thesis
                by (simp add: x'-def fa0 inner-diff-right inner-right-distrib)
    qed
    show rel-interior f}\subseteq\bigcap(IFJK`H
        unfolding IFJK-def by (smt (verit, ccfv-SIG) A E H INT-I in-mono
mem-Collect-eq subsetI)
    show \bigcap(IFJK'H)\subseteq rel-interior f
            using <K\subseteqH\rangle\langledisjnt J K
            apply (clarsimp simp add: ball-Un E H disjnt-iff IFJK-def)
            apply (smt (verit, del-insts) IntI Int-Collect subsetD)
            done
    qed
    obtain z}\mathrm{ where zrelf:z f rel-interior f
```

using relif by blast
moreover
have $H: z \in I F J K h \Longrightarrow(x \in$ IFJK $h)=($ hyperplane-side $(f a h, 0) z=$ hyperplane-side $(f a h, 0) x)$ for $h x$
using zrelf by (auto simp: IFJK-def hyperplane-side-def sgn-if split:
if-split-asm)
then have $z \in \bigcap(I F J K ' H) \Longrightarrow\left(x \in \bigcap\left(I F J K^{\prime} H\right)\right)=$ hyperplane-equiv $A z x$ for x
unfolding A-def Inter-iff hyperplane-equiv-def ball-simps using H by blast
then have $x \in$ rel-interior $f \longleftrightarrow$ hyperplane-equiv $A z x$ for x
using relint-f zrelf by presburger
ultimately show ?thesis
by (metis equalityI hyperplane-cell mem-Collect-eq subset-iff)
qed
have 4: rel-interior $f \subseteq S$
by (meson face-of-imp-subset order-trans rel-interior-subset that(1))
show ?thesis
using 1234 by blast
qed
have hyper2: (closure c face-of $S \wedge$ aff-dim $($ closure $c)=d) \wedge$ rel-interior $($ closure $c)=c$
if c : hyperplane-cell $A c$ and $c \subseteq S$ aff-dim $c=d$ for c
proof (intro conjI)
obtain J where $J \subseteq H$ and $J: c=(\bigcap h \in J .\{x .(f a h) \cdot x<0\}) \cap(\bigcap h$ $\in(H-J) .\{x .($ fa $h) \cdot x=0\})$
proof -
obtain z where $z: c=\{y . \forall x \in H . \operatorname{sgn}(f a x \cdot y)=\operatorname{sgn}(f a x \cdot z)\}$
using c by (force simp: hyperplane-cell A-def hyperplane-equiv-def
hyperplane-side-def)
show thesis
proof
let ? $J=\{h \in H \cdot \operatorname{sgn}(f a h \cdot z)=-1\}$
have 1: fa $h \cdot x<0$
if $\forall h \in H . \operatorname{sgn}(f a h \cdot x)=\operatorname{sgn}(f a h \cdot z)$ and $h \in H$ and $\operatorname{sgn}(f a h \cdot$
$z)=-1$ for $x h$
using that by (metis sgn-1-neg)
have 2: $\operatorname{sgn}(f a h \cdot z)=-1$
if $\forall h \in H \cdot \operatorname{sgn}(f a h \cdot x)=\operatorname{sgn}(f a h \cdot z)$ and $h \in H$ and $f a h \cdot x \neq 0$
for $x h$
proof -
have $\llbracket 0<f a h \cdot x ; 0<f a h \cdot z \rrbracket \Longrightarrow$ False
using that fa by (smt (verit, del-insts) Inter-iff Seq $\langle c \subseteq S\rangle$
mem-Collect-eq subset-iff z)
then show? thesis
by (metis that sgn-if sgn-zero-iff)
qed
have 3: $\operatorname{sgn}(f a h \cdot x)=\operatorname{sgn}(f a h \cdot z)$
if $h \in H$ and $\forall h . h \in H \wedge \operatorname{sgn}(f a h \cdot z)=-1 \longrightarrow f a h \cdot x<0$

```
            and}\forallh\inH-{h\inH.\operatorname{sgn}(fah\cdotz)=-1}.fah\cdotx=
            for x h
                    using that 2 by (metis (mono-tags, lifting) Diff-iff mem-Collect-eq
sgn-neg)
```



```
0})
            unfolding z by (auto intro: 1 2 3)
            qed auto
            qed
            have finite J
            using <J\subseteqH\rangle\langlefinite H\rangle finite-subset by blast
            show closure c face-of S
            proof -
            have cc: closure c = closure ( \bigcaph\inJ. {x. fa h | x<0}) \cap closure (\bigcaph\inH
- J. {x.fah - x = 0})
            unfolding J
            proof (rule closure-Int-convex)
            show convex ( }\bigcaph\inJ.{x.fah\cdotx<0}
            by (simp add: convex-INT convex-halfspace-lt)
            show convex (\bigcaph\inH - J. {x.fah • x = 0})
            by (simp add: convex-INT convex-hyperplane)
            have o1: open (\bigcaph\inJ. {x.fa h • x<0 })
                    by (metis open-INT[OF<finite }J>]\mathrm{ open-halfspace-lt)
                    have o2: openin (top-of-set (affine hull (\bigcaph\inH-J.{x.fah . x=
0})))(\bigcaph\inH-J.{x.fah - x = 0})
            proof -
            have affine (\bigcaph\inH-J. {n. fa h • n=0})
                using affine-hyperplane by auto
                    then show ?thesis
                    by (metis (no-types) affine-hull-eq openin-subtopology-self)
            qed
            show rel-interior (\bigcaph\inJ. {x.fah 和<0}) \cap rel-interior (\bigcaph\inH -
J. {x.fah . x=0})}\not={
            by (metis nonempty-hyperplane-cell c rel-interior-open o1 rel-interior-openin
o2 J)
    qed
    have clo-im-J: closure' ((\lambdah. {x.fah | x < 0 })'J) = (\lambdah. {x. fa h | x
s0})'J
            using <J\subseteqH> by (force simp: image-comp fa)
```



```
h\cdotx=0})
            by (intro closure-closed) (blast intro: closed-hyperplane)
```



```
face-of S
    if (\bigcaph\inJ. {x.fah •x<0})}\not={
    proof (cases J=H)
            case True
            have [simp]:(\bigcapx\inH.{xa.fa x • xa \leq 0 }) =\bigcapH
                using fa by auto
```

```
        show ?thesis
                            using〈polyhedron S` by (simp add: Seq True polyhedron-imp-convex
face-of-refl)
        next
        case False
        have **:(\bigcaph\inJ.{n.fa h • n\leq0}) \cap (\bigcaph\inH-J.{x.fah • x=0})
=
        proof
            show ?L\subseteq?R
                by clarsimp (smt (verit) DiffI InterI Seq fa mem-Collect-eq)
            show ?R\subseteq?L
            using False Seq «J\subseteqH〉fa by blast
        qed
        show ?thesis
            unfolding **
        proof (rule face-of-Inter)
            show (\lambdah. S\cap{x.fah \cdot x=0})'(H-J)\not={}
            using False <J\subseteqH\rangle by blast
            show T face-of S
                if T:T\in(\lambdah.S\cap{x.fah\cdotx=0})'(H-J) for T
            proof -
                    obtain h where h:T=S\cap{x.fah • x=0} and h\inHh\not\inJ
                    using T by auto
            have S\cap{x.fah•x=0} face-of S
            proof (rule face-of-Int-supporting-hyperplane-le)
                    show convex S
                        by (simp add: assms(1) polyhedron-imp-convex)
                    show fa h • x \leq 0 if x\inS for x
                        using that Seq fa<h\inH\rangle by auto
            qed
            then show ?thesis
                using h by blast
            qed
        qed
    qed
    have *: \S. S \in (\lambdah. {x. fa h•x<0})' J\Longrightarrow convex S ^ open S
        using convex-halfspace-lt open-halfspace-lt by fastforce
    show ?thesis
        unfolding cc
        apply (simp add:* closure-Inter-convex-open)
        by (metis ** cleq clo-im-J image-image)
    qed
    show aff-dim (closure c) = int d
        by (simp add: that)
            show rel-interior (closure c) =c
        by (metis〈finite A〉c convex-rel-interior-closure hyperplane-cell-convex
hyperplane-cell-relative-interior)
    qed
```

```
    have rel-interior ' {f.f face-of S ^ aff-dim f=int d}
                ={C. hyperplane-cell A C\wedgeC\subseteqS\wedge aff-dim C= int d}
            using hyper1 hyper2 by fastforce
        then show bij-betw (rel-interior) {f.f face-of S ^aff-dim f=int d} {C.
hyperplane-cell A C ^C\subseteqS^aff-dim C= int d}
    unfolding bij-betw-def inj-on-def by (metis (mono-tags) hyper1 mem-Collect-eq)
    qed
    show ?thesis
        by (simp add: Euler-characteristic 〈finite A〉)
qed
also have ... = 0
proof -
    have A: hyperplane-cellcomplex A (-h) if h\inH for h
    proof (rule hyperplane-cellcomplex-mono [OF hyperplane-cell-cellcomplex])
        have - h={x.fah }\cdotx=0}\vee-h={x.fah\cdotx<0}\vee-h={x.0<
fa h • x}
            by (smt (verit, ccfv-SIG) Collect-cong Collect-neg-eq fa that)
            then show hyperplane-cell {(fa h,0)} (-h)
                by (simp add: hyperplane-cell-singleton fa that)
            show {(fa h,0)}\subseteqA
                by (simp add: A-def that)
    qed
    then have \}\.h\inH\Longrightarrow\mathrm{ hyperplane-cellcomplex A h
        using hyperplane-cellcomplex-Compl by fastforce
    then have hyperplane-cellcomplex A S
        by (simp add: Seq hyperplane-cellcomplex-Inter)
    then have D: Euler-characteristic A (UNIV ::'n set) =
                    Euler-characteristic A (\bigcapH)+ Euler-characteristic A (-\bigcapH)
        using Euler-characteristic-cellcomplex-Un
        by (metis Compl-partition Diff-cancel Diff-eq Seq〈finite A〉 disjnt-def hyper-
plane-cellcomplex-Compl)
    have Euler-characteristic A UNIV = Euler-characteristic {} (UNIV::'n set)
        by (simp add: Euler-characterstic-invariant <finite A〉)
    then have E: Euler-characteristic A UNIV = (-1)^ (DIM('n))
        by (simp add: Euler-characteristic-cell)
    have DD: Euler-characteristic A (\bigcap(uminus`J)) = (- 1) ^ DIM('n)
        if J\not={} J\subseteqH for J
    proof -
        define B where B}\equiv(\lambdah.(fa h,0::real))'J
        then have }B\subseteq
            by (simp add: A-def image-mono that)
    have }\existsx.y=-x\mathrm{ if }y\in\bigcap(uminus'H) for y::'n — Weirdly, the assumptio
is not used
            by (metis add.inverse-inverse)
    moreover have -x\in\bigcap(uminus' }H)\longleftrightarrowx\in\mathrm{ interior S for }
    proof -
            have 1: interior S = {x\inS.\forallh\inH. fah }|=x<0
                using rel-interior-polyhedron-explicit [OF〈finite H〉-fa]
```

```
        by (metis (no-types, lifting) inf-top-left Hsub Seq <affine hull S = UNIV`
rel-interior-interior)
        have 2: \x y.\llbrackety\inH;\forallh\inH.fah•x<0;-x\iny\rrbracket\Longrightarrow False
        by (smt (verit, best) fa inner-minus-right mem-Collect-eq)
        show ?thesis
            apply (simp add: 1)
            by (smt (verit) 2 * fa Inter-iff Seq inner-minus-right mem-Collect-eq)
    qed
    ultimately have INT-Compl-H:\bigcap(uminus' H)=uminus'interior S
        by blast
    obtain z}\mathrm{ where z:z \ (uminus ' J)
        using <J\subseteqH><\bigcap (uminus ' H) = uminus ' interior S` intS by fastforce
    have \bigcap(uminus' }J)=\mathrm{ Collect (hyperplane-equiv Bz)(is ?L = ?R)
    proof
        show ?L\subseteq?R
        using fa<J\subseteqH〉z
        by (fastforce simp: hyperplane-equiv-def hyperplane-side-def B-def set-eq-iff
)
    show ?R\subseteq?L
            using z<J\subseteqH〉 apply (clarsimp simp add: hyperplane-equiv-def hyper-
plane-side-def B-def)
            by (metis fa in-mono mem-Collect-eq sgn-le-0-iff)
    qed
    then have hyper-B: hyperplane-cell B(\cap (uminus' J))
        by (metis hyperplane-cell)
    have Euler-characteristic A (\bigcap(uminus' J)) = Euler-characteristic B (\bigcap
(uminus`J))
    proof (rule Euler-characterstic-invariant [OF〈finite A>])
        show finite B
            using <B\subseteqA\rangle\langlefinite A> finite-subset by blast
        show hyperplane-cellcomplex A (\cap (uminus'J))
        by (meson <B\subseteqA` hyper-B hyperplane-cell-cellcomplex hyperplane-cellcomplex-mono)
        show hyperplane-cellcomplex B(\bigcap (uminus` J))
            by (simp add: hyper-B hyperplane-cell-cellcomplex)
    qed
    also have ... = (- 1) ^ nat (aff-dim (\bigcap (uminus'J)))
        using Euler-characteristic-cell hyper-B by blast
    also have ... = (- 1) ^ DIM('n)
    proof -
        have affine hull \bigcap(uminus ' H)=UNIV
            by (simp add: INT-Compl-H affine-hull-nonempty-interior intS inte-
rior-negations)
        then have affine hull \bigcap (uminus ' J) = UNIV
            by (metis Inf-superset-mono hull-mono subset-UNIV subset-antisym sub-
set-image-iff that(2))
        with aff-dim-eq-full show ?thesis
            by (metis nat-int)
    qed
    finally show ?thesis .
```


qed

have $E E:\left(\sum \mathcal{T} \mid \mathcal{T} \subseteq\right.$ uminus＇$H \wedge \mathcal{T} \neq\{ \}$ ．$(-1)^{\wedge}($ card $\mathcal{T}+1) * E u$－ ler－characteristic $A(\cap \mathcal{T})$ ）

$$
=\left(\sum \mathcal{T} \mid \mathcal{T} \subseteq \text { uminus }{ }^{\prime} H \wedge \mathcal{T} \neq\{ \} .(-1)^{\wedge}(\operatorname{card} \mathcal{T}+1) *(-1)^{\wedge}\right.
$$

DIM（＇n））
by（intro sum．cong［OF refl］）（fastforce simp：subset－image－iff intro！：DD）
also have $\ldots=(-1)^{\wedge} \operatorname{DIM}(' n)$
proof－
have $A:\left(\sum y=1 .\right.$. card $H . \sum t \in\{x \in\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \}\}$ ．card $x=y\} .(-1) \wedge(\operatorname{card} t+1))$
$=\left(\sum \mathcal{T} \in\left\{\mathcal{T} . \mathcal{T} \subseteq\right.\right.$ uminus $\left.\left.^{\prime} H \wedge \mathcal{T} \neq\{ \}\right\} .(-1) \wedge(\operatorname{card} \mathcal{T}+1)\right)$
proof（rule sum．group）
have $\wedge C . \llbracket C \subseteq$ uminus＇$H ; C \neq\{ \} \rrbracket \Longrightarrow$ Suc $0 \leq \operatorname{card} C \wedge$ card $C \leq$ card H
by（meson 〈finite $H\rangle$ card－eq－0－iff finite－surj le－zero－eq not－less－eq－eq surj－card－le）
then show card＇$\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \}\} \subseteq\{1$ ．．card $H\}$ by force
qed（auto simp：〈finite H 〉）
have $\left(\sum n=\right.$ Suc 0．．card $H .-($ int（card $\{x . x \subseteq$ uminus＇$H \wedge x \neq\{ \} \wedge$ card $\left.\left.x=n\}) *(-1)^{\wedge} n\right)\right)$

$$
=\left(\sum n=\text { Suc 0..card H. }(-1) \uparrow(\text { Suc } n) *(\text { card H choose } n)\right)
$$

proof（rule sum．cong［OF refl］）
fix n
assume $n \in\{$ Suc 0．．card $H\}$
then have $\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \} \wedge \operatorname{card} \mathcal{T}=n\}=\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge$ card $\mathcal{T}=n\}$
by auto
then have $\operatorname{card}\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \} \wedge$ card $\mathcal{T}=n\}=$ card （uminus＇H ）choose n
by（simp add：＜finite $H\rangle n$－subsets）
also have $\ldots=$ card H choose n
by（metis card－image double－complement inj－on－inverseI） finally
show $-\left(\operatorname{int}\left(\operatorname{card}\left\{\mathcal{T} . \mathcal{T} \subseteq\right.\right.\right.$ uminus $\left.\left.^{\prime} H \wedge \mathcal{T} \neq\{ \} \wedge \operatorname{card} \mathcal{T}=n\right\}\right) *(-1)$ $\left.{ }^{\wedge} n\right)=(-1)$＾Suc $n *$ int（card H choose n ）
by simp
qed
also have $\ldots=-\left(\sum k=\right.$ Suc 0．．card $H .(-1)^{\wedge} k *($ card H choose $\left.k)\right)$ by（simp add：sum－negf）
also have $\ldots=1-\left(\sum k=0 .\right.$. card $H .(-1)^{\wedge} k *($ card H choose $\left.k)\right)$
using atLeastSucAtMost－greaterThanAtMost by（simp add：sum．head［of 0］）
also have $\ldots=1-0^{\wedge}$ card H
using binomial－ring［of－1 1 ：：int card H ］by（simp add：mult．commute atLeastOAtMost）
also have $\ldots=1$
using Seq〈finite $H\rangle\langle S \neq U N I V\rangle$ card－0－eq by auto
finally have $C:\left(\sum n=\right.$ Suc $0 .$. card $H .-($ int（card $\{x . x \subseteq u m i n u s$＇$H \wedge$

```
x\not={}^\operatorname{card}x=n})*(-1)^ n))=(1::int).
    have }(\sum\mathcal{T}|\mathcal{T}\subseteq\mathrm{ uminus ' }H\wedge\mathcal{T}\not={}.(-1)^(card \mathcal{T}+1))=(1::int
        unfolding A [symmetric] by (simp add: C)
    then show ?thesis
        by (simp flip: sum-distrib-right power-Suc)
    qed
        finally have ( }\sum\mathcal{T}|\mathcal{T}\subseteq\mathrm{ uminus ' }H\wedge\mathcal{T}\not={}.(-1)^(card \mathcal{T}+1)*
Euler-characteristic A (\bigcap\mathcal{T}))
            = (-1)^ DIM('n).
    then have Euler-characteristic A (U (uminus` H)) = (-1)^ (DIM ('n))
        using Euler-characteristic-inclusion-exclusion [OF<finite A〉]
        by (smt (verit) A Collect-cong〈finite H〉 finite-imageI image-iff sum.cong)
    then show ?thesis
        using D E by (simp add: uminus-Inf Seq)
    qed
    finally show ?thesis.
qed
```


7．6 Euler－Poincare relation for special $(n-1)$－dimensional polytope

lemma Euler－Poincare－lemma：
fixes $p::$＇$n::$ euclidean－space set
assumes $\operatorname{DIM}(' n) \geq 2$ polytope $p i \in$ Basis and affp：affine hull $p=\{x . x \cdot i$ $=1\}$
shows $\left(\sum d=0 . . D I M(' n)-1 .(-1) \wedge d * \operatorname{int}(\operatorname{card}\{f . f\right.$ face－of $p \wedge \operatorname{aff}-\operatorname{dim} f$
$=$ int $d\}))=1$
proof－
have $\operatorname{aff}-\operatorname{dim} p=\operatorname{aff}-\operatorname{dim}\{x . i \cdot x=1\}$
by（metis（no－types，lifting）Collect－cong aff－dim－affine－hull affp inner－commute）
also have $\ldots=\operatorname{int}(\operatorname{DIM}(' n)-1)$
using aff－dim－hyperplane［of i 1］$\langle i \in$ Basis〉 by fastforce
finally have $A P: \operatorname{aff}-\operatorname{dim} p=\operatorname{int}(D I M(' n)-1)$ ．
show ？thesis
proof（cases $p=\{ \}$ ）
case True
with $A P$ show ？thesis by simp
next
case False
define S where $S \equiv$ conic hull p
have 1：$($ conic hull $f) \cap\{x . x \cdot i=1\}=f$ if $f \subseteq\{x . x \cdot i=1\}$ for f using that
by（smt（verit，ccfv－threshold）affp conic－hull－Int－affine－hull hull－hull in－ ner－zero－left mem－Collect－eq）
obtain K where finite K and $K: p=$ convex hull K
by（meson assms（2）polytope－def）
then have convex－cone hull $K=$ conic hull（convex hull K）
using False convex－cone－hull－separate－nonempty by auto

```
    then have polyhedron \(S\)
    using polyhedron-convex-cone-hull
    by (simp add: S-def 〈polytope \(p\rangle\) polyhedron-conic-hull-polytope)
    then have convex \(S\)
    by (simp add: polyhedron-imp-convex)
    then have conic \(S\)
    by (simp add: S-def conic-conic-hull)
    then have \(0 \in S\)
        by (simp add: False \(S\)-def)
    have \(S \neq U N I V\)
    proof
        assume \(S=U N I V\)
    then have conic hull \(p \cap\{x . x \cdot i=1\}=p\)
        by (metis 1 affp hull-subset)
    then have bounded \(\{x . x \cdot i=1\}\)
        using \(S\)-def \(\langle S=U N I V\rangle \operatorname{assms}(2)\) polytope-imp-bounded by auto
    then obtain \(B\) where \(B>0\) and \(B: \bigwedge x . x \in\{x . x \cdot i=1\} \Longrightarrow\) norm \(x \leq B\)
        using bounded-normE by blast
    define \(x\) where \(x \equiv\left(\sum b \in\right.\) Basis. (if \(b=i\) then 1 else \(\left.B+1\right) *_{R} b\) )
    obtain \(j\) where \(j: j \in\) Basis \(j \neq i\)
        using \(\left\langle D I M\left({ }^{\prime} n\right) \geq\right.\) 2〉
            by (metis DIM-complex DIM-ge-Suc0 card-2-iff' card-le-Suc0-iff-eq eu-
clidean-space-class.finite-Basis le-antisym)
    have \(B+1 \leq|x \cdot j|\)
        using \(j\) by (simp add: \(x\)-def)
    also have \(\ldots \leq\) norm \(x\)
        using Basis-le-norm \(j\) by blast
    finally have norm \(x>B\)
        by \(\operatorname{simp}\)
    moreover have \(x \cdot i=1\)
        by (simp add: x-def \(\langle i \in\) Basis〉)
    ultimately show False
        using \(B\) by force
    qed
    have \(S \neq\{ \}\)
        by (metis False \(S\)-def empty-subsetI equalityI hull-subset)
    have \(\bigwedge c x . \llbracket 0<c ; x \in p ; x \neq 0 \rrbracket \Longrightarrow 0<\left(c *_{R} x\right) \cdot i\)
        by (metis (mono-tags) Int-Collect Int-iff affp hull-inc inner-commute in-
ner-scaleR-right mult.right-neutral)
    then have doti-gt \(0: 0<x \cdot i\) if \(S: x \in S\) and \(x \neq 0\) for \(x\)
        using that by (auto simp: S-def conic-hull-explicit)
    have \(\bigwedge a .\{a\}\) face-of \(S \Longrightarrow a=0\)
        using 〈conic \(S\) 〉conic-contains-0 face-of-conic by blast
    moreover have \(\{0\}\) face-of \(S\)
    proof -
        have \(\bigwedge a b u . \llbracket a \in S ; b \in S ; a \neq b ; u<1 ; 0<u ;(1-u) *_{R} a+u *_{R} b\)
\(=0 \rrbracket \Longrightarrow\) False
        using conic-def euclidean-all-zero-iff inner-left-distrib scaleR-eq-0-iff
        by (smt (verit, del-insts) doti-gt0 〈conic S〉〈i \(\in\) Basis〉)
```


then show ？thesis

by（auto simp：in－segment face－of－singleton extreme－point－of－def $\langle 0 \in S\rangle$ ）
qed
ultimately have face－ $0:\{f . f$ face－of $S \wedge(\exists a . f=\{a\})\}=\{\{0\}\}$
by auto
have interior $S \neq\{ \}$
proof
assume interior $S=\{ \}$
then obtain $a b$ where $a \neq 0$ and $a b: S \subseteq\{x . a \cdot x=b\}$
by（metis 〈convex $S\rangle$ empty－interior－subset－hyperplane）
have $\{x . x \cdot i=1\} \subseteq\{x . a \cdot x=b\}$
by（metis S－def ab affine－hyperplane affp hull－inc subset－eq subset－hull）
moreover have $\neg\{x . x \cdot i=1\} \subset\{x . a \cdot x=b\}$
using aff－dim－hyperplane［ $\left.\begin{array}{lll}\text { of } a & b\end{array}\right]$
by（metis $A P\langle a \neq 0\rangle$ aff－dim－eq－full－gen affine－hyperplane affp hull－subset less－le－not－le subset－hull）
ultimately have $S \subseteq\{x . x \cdot i=1\}$
using $a b$ by auto
with $\langle S \neq\{ \}\rangle$ show False
using 〈conic S 〉conic－contains－0 by fastforce
qed
then have $\left(\sum d=0 . . D I M(' n) .(-1) \wedge d * \operatorname{int}(\operatorname{card}\{f . f\right.$ face－of $S \wedge$ aff－dim $f=$ int $d\}))=0$
using Euler－polyhedral－cone $\langle S \neq$ UNIV〉〈conic $S\rangle\langle p o l y h e d r o n ~ S\rangle$ by blast
then have $1+\left(\sum d=1 . . D I M\left({ }^{\prime} n\right) .(-1)^{\wedge} d *(\right.$ card $\{f . f$ face－of $S \wedge$ aff－dim $f=d\}))=0$
by（simp add：sum．atLeast－Suc－atMost aff－dim－eq－0 face－0）
moreover have $\left(\sum d=1 . . D I M(' n) .(-1) \wedge d *(c a r d\{f . f\right.$ face－of $S \wedge$ aff－dim $f=d\})$ ）

$$
=-\left(\sum d=0 . . D I M\left({ }^{\prime} n\right)-1 .(-1)^{\wedge} d * \operatorname{int}(\text { card }\{f . f \text { face-of } p \wedge\right.
$$

$\operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}))$
proof－
have $\left(\sum d=1 . . D I M(' n) .(-1)^{\wedge} d *(\right.$ card $\left.\{f . f f a c e-o f S \wedge \operatorname{aff}-\operatorname{dim} f=d\})\right)$ $=\left(\sum d=\right.$ Suc 0．．Suc $(D I M(' n)-1) .(-1) \wedge d *($ card $\{f . f$ face－of $S \wedge$ $\operatorname{aff}-\operatorname{dim} f=d\})$ ）
by auto
also have $\ldots=-\left(\sum d=0 . . D I M(' n)-1 .(-1) \wedge d *\right.$ card $\{f . f$ face－of S $\wedge \operatorname{aff}-\operatorname{dim} f=1+\operatorname{int} d\})$
unfolding sum．atLeast－Suc－atMost－Suc－shift by（simp add：sum－negf）
also have $\ldots=-\left(\sum d=0 . . \operatorname{DIM}\left({ }^{\prime} n\right)-1 .(-1)^{\wedge} d *\right.$ card $\{f$ ．f face－of p $\wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\})$
proof－
$\{$ fix d
assume $d \leq \operatorname{DIM}\left({ }^{\prime} n\right)-$ Suc 0
have conic－face－p：（conic hull f）face－of S if f face－of p for f
proof（cases $f=\{ \}$ ）
case False
have $\left\{c *_{R} x \mid c x .0 \leq c \wedge x \in f\right\} \subseteq\left\{c *_{R} x \mid c x .0 \leq c \wedge x \in p\right\}$
using face－of－imp－subset that by blast

```
moreover
have convex {c**R}x|cx.0\leqc\wedgex\inf
    by (metis (no-types) cone-hull-expl convex-cone-hull face-of-imp-convex
that)
    moreover
    have (\existscx.ca**
* *}x\wedge0\leqc\wedgex\inf
        if }\foralla\inp.\forallb\inp.(\existsx\inf.x\in\mathrm{ open-segment }ab)\longrightarrowa\inf\wedgeb\in
        and 0\leqcaa 
        and}0\leqcxx\inf\mathrm{ and oseg: cx * *
*R b)
    for ca a cb b cx x
    proof -
```



```
        using affp hull-inc that(3,5) by fastforce+
    have xi:x - i=1
    using affp that <f face-of p〉 face-of-imp-subset hull-subset by fastforce
    show ?thesis
    proof (cases cx *R x = 0)
        case True
        then show ?thesis
                            using <{0} face-of S〉 face-ofD <conic S〉 that
                            by (smt (verit, best) S-def conic-def hull-subset insertCI singletonD
subsetD)
    next
        case False
        then have cx\not=0 x\not=0
            by auto
        obtain u where 0<uu< 1 and u:cx ** }x=(1-u)\mp@subsup{*}{R}{}(ca*\mp@subsup{*}{R}{
a)+u*R(cb*R b)
            using oseg in-segment(2) by metis
        show ?thesis
        proof (cases x =a)
            case True
            then have ua:(cx-(1-u)*ca)**R}a=(u*cb)\mp@subsup{*}{R}{}
                    using }u\mathrm{ by (simp add: algebra-simps)
            then have (cx-(1-u)*ca)*1=u*cb*1
                by (metis ai bi inner-scaleR-left)
            then have }a=b\veecb=
                    using ua<0<u` by force
            then show ?thesis
                    by (metis True scaleR-zero-left that(2) that(4) that(7))
        next
                case False
                show ?thesis
                proof (cases x = b)
                    case True
                    then have ub: (cx-(u*cb))**R}b=((1-u)*ca)**R
                    using u by (simp add: algebra-simps)
```

```
    then have }(cx-(u*cb))*1=((1-u)*ca)*
    by (metis ai bi inner-scaleR-left)
    then have }a=b\veeca=
    using <u< 1> ub by auto
    then show ?thesis
    using False True that(4) that(7) by auto
next
    case False
    have cx>0
        using <cx \not=0\rangle\langle0\leqcx\rangle by linarith
    have False if ca=0
    proof -
        have cx=u*cb
    by (metis add-0 bi inner-real-def inner-scaleR-left real-inner-1-right
scale-eq-0-iff that u xi)
            then show False
        using <x\not=b\rangle\langlecx\not=0\rangle that u by force
    qed
    with }\langle0\leqca\rangle\mathrm{ have }ca>
        by force
    have aff: }x\in\mathrm{ affine hull }p\wedgea\in\mathrm{ affine hull }p\wedgeb\in\mathrm{ affine hull p
    using affp xi ai bi by blast
    show ?thesis
    proof (cases cb=0)
        case True
        have }\mp@subsup{u}{}{\prime}:cx\mp@subsup{*}{R}{}x=((1-u)*ca)\mp@subsup{*}{R}{}
            using u by (simp add: True)
    then have cx=((1-u)*ca)
            by (metis ai inner-scaleR-left mult.right-neutral xi)
    then show ?thesis
            using True }\mp@subsup{u}{}{\prime}\langlecx\not=0\rangle\langleca\geq0\rangle\langlex\inf\rangle\mathrm{ by auto
next
    case False
    with <cb \geq0` have cb>0
            by linarith
    { have False if a=b
            proof -
            have *: cx * *}x=((1-u)*ca+u*cb)\mp@subsup{*}{R}{}
                using }u\mathrm{ that by (simp add: algebra-simps)
            then have cx = ((1-u)*ca+u*cb)
                by (metis xi bi inner-scaleR-left mult.right-neutral)
            with }\langlex\not=b\rangle\langlecx\not=0\rangle*\mathrm{ show False
                by force
            qed
    }
    moreover
        have cx *R }x/\mp@subsup{/}{R}{}cx=(((1-u)*ca)\mp@subsup{*}{R}{}a+(cb*u)\mp@subsup{*}{R}{}b
/R}c
        using u by simp
```

```
                            then have xeq: x=((1-u)*ca/cx)**R}a+(cb*u/cx)*R b
        by (simp add: <cx\not=0\rangle divide-inverse-commute scaleR-right-distrib)
            then have proj: 1 = ((1-u)* ca/cx) +(cb*u/cx)
                using ai bi xi by (simp add: inner-left-distrib)
                    then have eq: cx + ca*u=ca+cb*u
                    using {cx> 0\rangle by (simp add: field-simps)
                    have }\existsu>0.u<1\wedgex=(1-u)*Ra+u** 稆 b
                    proof (intro exI conjI)
                        show 0< inverse cx*u*cb
                            by (simp add: <0< cb\rangle\langle0<cx\rangle\langle0<u\rangle)
                        show inverse cx * u*cb<1
                        using proj }\langle0<ca\rangle\langle0<cx\rangle\langleu<1\rangle\mathrm{ by (simp add:
divide-simps)
                            show }x=(1-\mathrm{ inverse cx*u*cb)*R}\mp@subsup{*}{R}{}a+(\mathrm{ inverse cx *u*
cb) **R
                        using eq <cx \not=0` by (simp add: xeq field-simps)
                    qed
                    ultimately show ?thesis
                        using that by (metis in-segment(2))
                    qed
                qed
            qed
        qed
    qed
    ultimately show ?thesis
        using that by (auto simp: S-def conic-hull-explicit face-of-def)
    qed auto
    moreover
    have conic-hyperplane-eq: conic hull (f\cap{x.x \cdoti=1})=f
        if f face-of S 0<aff-dim f for f
    proof
    show conic hull ( }f\cap{x.x\cdoti=1})\subseteq
        by (metis 〈conic S> face-of-conic inf-le1 subset-hull that(1))
    have }\existsc\mp@subsup{x}{}{\prime}.x=c** \mp@subsup{x}{}{\prime}\wedge0\leqc\wedge \mp@subsup{x}{}{\prime}\inf\wedge\mp@subsup{x}{}{\prime}\cdoti=1\mathrm{ if }x\inf\mathrm{ for }
    proof (cases x=0)
        case True
        obtain }y\mathrm{ where }y\infy\not=
            by (metis <0 < aff-dim f> aff-dim-sing aff-dim-subset insertCI
linorder-not-le subset-iff)
    then have y.i>0
            using <f face-of S> doti-gt0 face-of-imp-subset by blast
    then have y/R(y\cdoti)\inf^(y/R(y\cdoti))\cdoti=1
    using 〈conic S\rangle\langlef face-of S\rangle\langley\inf\rangle conic-def face-of-conic by fastforce
    then show ?thesis
            using True by fastforce
    next
        case False
        then have x • i>0
            using <f face-of S〉 doti-gt0 face-of-imp-subset that by blast
```

```
    then have x/R (x • i) \inf^(x/R (x 位) \cdoti=1
    using <conic S\rangle\langlef face-of S\rangle\langlex\inf\rangle conic-def face-of-conic by fastforce
    then show ?thesis
        by (metis }<0<x\cdoti\rangle divideR-right eucl-less-le-not-le
    qed
    then show f\subseteq conic hull (f\cap{x.x\cdoti=1})
    by (auto simp: conic-hull-explicit)
qed
have conic-face-S: conic hull f face-of S
    if f face-of S for f
    by (metis 〈conic S` face-of-conic hull-same that)
have aff-1d: aff-dim (conic hull f)=aff-dim f+1 (is ?lhs = ?rhs)
    if f face-of p and f}\not={}\mathrm{ for }
proof (rule order-antisym)
    have ?lhs \leqaff-dim(affine hull (insert 0 (affine hull f)))
    proof (intro aff-dim-subset hull-minimal)
        show f\subseteqaffine hull insert 0 (affine hull f)
            by (metis hull-insert hull-subset insert-subset)
        show conic (affine hull insert 0 (affine hull f))
            by (metis affine-hull-span-0 conic-span hull-inc insertI1)
    qed
    also have ... \leq?rhs
        by (simp add: aff-dim-insert)
    finally show ?lhs \leq? ?rhs .
    have aff-dim f<aff-dim (conic hull f)
    proof (intro aff-dim-psubset psubsetI)
        show affine hull f\subseteqaffine hull (conic hull f)
            by (simp add: hull-mono hull-subset)
        have 0 & affine hull f
            using affp face-of-imp-subset hull-mono that(1) by fastforce
            moreover have 0 affine hull (conic hull f)
            by (simp add: <f \not= {}> hull-inc)
            ultimately show affine hull f = affine hull (conic hull f)
            by auto
    qed
    then show ?rhs \leq?lhs
        by simp
qed
have face-S-imp-face-p: \f.f face-of S\Longrightarrowf\cap{x.x •i=1} face-of p
    by (metis 1 S-def affp convex-affine-hull face-of-slice hull-subset)
have conic-eq-f:conic hull f \cap {x.x.i=1}=f
    if f face-of p for f
    by (metis 1 affp face-of-imp-subset hull-subset le-inf-iff that)
    have dim-f-hyperplane: aff-dim}(f\cap{x.x\cdoti=1})=int 
```

```
            if f face-of S aff-dim f=1 +int d for f
    proof -
            have conic f
            using 〈conic S〉 face-of-conic that(1) by blast
            then have 0\inf
            using conic-contains-0 that by force
            moreover have }\negf\subseteq{0
            using subset-singletonD that(2) by fastforce
            ultimately obtain }y\mathrm{ where y: y f f y}=
            by blast
            then have y - i>0
            using doti-gt0 face-of-imp-subset that(1) by blast
```



```
=1})}+
    proof (rule aff-1d)
            show }f\cap{x.x\cdoti=1} face-of 
                by (simp add: face-S-imp-face-p that(1))
            have inverse(y •i)*R}y\in
                using <0< < •i\rangle\langleconic S\rangle conic-mul face-of-conic that(1) y(1) by
fastforce
            moreover have inverse(y\cdoti)*R
                using }\langley\cdoti>0\rangle\mathrm{ by (simp add: field-simps)
            ultimately show }f\cap{x.x\cdoti=1}\not={
                by blast
            qed
            then show ?thesis
            by (simp add: conic-hyperplane-eq that)
    qed
    have card {f.f face-of S ^aff-\operatorname{dim}f=1+int d}
        = card {f.f face-of p}\wedge\mathrm{ aff-dim f= int d}
    proof (intro bij-betw-same-card bij-betw-imageI)
        show inj-on(\lambdaf.f\cap{x.x •i=1}){f.f face-of S ^aff-dim f=1+
int d}
            by (smt (verit) conic-hyperplane-eq inj-on-def mem-Collect-eq of-nat-less-0-iff)
            show ( }\lambdaf.f\cap{x.x\cdoti=1})'{f.f face-of S ^aff-dim f=1+ int d
={f.fface-of p\wedge aff-dim f=int d}
            using aff-1d conic-eq-f conic-face-p
            by (fastforce simp: image-iff face-S-imp-face-p dim-f-hyperplane)
            qed
        }
        then show ?thesis
            by force
        qed
        finally show ?thesis .
    qed
    ultimately show ?thesis
        by auto
qed
```

```
corollary Euler-poincare-special:
    fixes \(p\) :: ' \(n\) ::euclidean-space set
    assumes \(2 \leq \operatorname{DIM}(' n)\) polytope \(p i \in\) Basis and affp: affine hull \(p=\{x, x \cdot i\)
\(=0\}\)
    shows \(\left(\sum d=0 . . D I M(' n)-1 .(-1) \wedge d *\right.\) card \(\{f . f\) face-of \(p \wedge\) aff-dim \(f=\)
\(d\})=1\)
proof -
    \{ fix \(d\)
    have eq: \(\operatorname{image}((+) i) '\{f . f\) face-of \(p\} \cap \operatorname{image}((+) i) '\{f\).aff-dim \(f=\operatorname{int} d\}\)
                \(=\operatorname{image}((+) i) \cdot\{f\).f face-of \(p\} \cap\{f\).aff-dim \(f=\operatorname{int} d\}\)
        by (auto simp: aff-dim-translation-eq)
        have card \(\{f . f\) face-of \(p \wedge\) aff-dim \(f=\operatorname{int} d\}=\operatorname{card}(\operatorname{image}((+) i) '\{f . f\)
face-of \(p \wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\})\)
        by (simp add: inj-on-image card-image)
    also have \(\ldots=\operatorname{card}(\operatorname{image}((+) i) '\{f . f\) face-of \(p\} \cap\{f\). aff-dim \(f=\operatorname{int} d\})\)
        by (simp add: Collect-conj-eq image-Int inj-on-image eq)
    also have \(\ldots=\operatorname{card}\{f . f\) face-of \((+) i\) ' \(p \wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}\)
        by (simp add: Collect-conj-eq faces-of-translation)
    finally have card \(\{f . f\) face-of \(p \wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}=\operatorname{card}\{f . f\) face-of \((+)\)
\(i\) ' \(p \wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}\).
    \}
    then
    have \(\left(\sum d=0 . . D I M(' n)-1 .(-1) \wedge d * \operatorname{card}\{f . f\right.\) face-of \(\left.p \wedge \operatorname{aff}-\operatorname{dim} f=d\}\right)\)
        \(=\left(\sum d=0 . . D I M(' n)-1 .(-1) \wedge d *\right.\) card \(\left\{f . f f a c e-o f(+) i{ }^{\prime} p \wedge\right.\) aff-dim
\(f=\) int \(d\})\)
    by \(\operatorname{simp}\)
    also have \(\ldots=1\)
    proof (rule Euler-Poincare-lemma)
    have \(\bigwedge x . \llbracket i \in\) Basis; \(x \cdot i=1 \rrbracket \Longrightarrow \exists y . y \cdot i=0 \wedge x=y+i\)
            by (metis add-cancel-left-left eq-diff-eq inner-diff-left inner-same-Basis)
    then show affine hull ( + ) \(i\) ' \(p=\{x . x \cdot i=1\}\)
                using \(\langle i \in\) Basis \(\rangle\) unfolding affine-hull-translation affp by (auto simp:
algebra-simps)
    qed (use assms polytope-translation-eq in auto)
    finally show? thesis.
qed
```


7.7 Now Euler-Poincare for a general full-dimensional polytope

```
theorem Euler-Poincare-full:
    fixes \(p::\) ' \(n\) ::euclidean-space set
    assumes polytope \(p\) aff-dim \(p=\operatorname{DIM}\left({ }^{\prime} n\right)\)
    shows \(\left(\sum d=0 . . D I M(' n) .(-1)^{\wedge} d *(\right.\) card \(\{f . f\) face-of \(\left.p \wedge \operatorname{aff}-\operatorname{dim} f=d\})\right)\)
= 1
proof -
```

```
    define augm:: ' \(n \Rightarrow\) ' \(n \times\) real where augm \(\equiv \lambda x\). \((x, 0)\)
    define \(S\) where \(S \equiv\) augm' \(p\)
    obtain \(i:: ' n\) where \(i: i \in\) Basis
    by (meson SOME-Basis)
    have bounded-linear augm
    by (auto simp: augm-def bounded-linear \(I^{\prime}\) )
    then have polytope \(S\)
    unfolding \(S\)-def using polytope-linear-image 〈polytope \(p\rangle\) bounded-linear.linear
by blast
    have face-pS: \(\wedge F\). F face-of \(p \longleftrightarrow\) augm' \(F\) face-of \(S\)
    using \(S\)-def 〈bounded-linear augm〉 augm-def bounded-linear.linear face-of-linear-image
inj-on-def by blast
    have aff-dim-eq[simp]: aff-dim \((\operatorname{augm} ' F)=\operatorname{aff}\)-dim \(F\) for \(F\)
    using 〈bounded-linear augm〉 aff-dim-injective-linear-image bounded-linear.linear
    unfolding augm-def inj-on-def by blast
    have \(*:\{F . F\) face-of \(S \wedge \operatorname{aff}-\operatorname{dim} F=\) int \(d\}=(\) image augm \()\) ' \(\{F . F\) face-of \(p\)
\(\wedge\) aff-dim \(F=\) int \(d\}\)
            (is ? \(\mathrm{lh} s=\) ? \(r h s\) ) for \(d\)
    proof
    have \(\bigwedge G . \llbracket G\) face-of \(S\); aff-dim \(G=\) int \(d \rrbracket\)
                \(\Longrightarrow \exists F\). \(F\) face-of \(p \wedge\) aff-dim \(F=\) int \(d \wedge G=\operatorname{augm}\) ' \(F\)
            by (metis face-pS S-def aff-dim-eq face-of-imp-subset subset-imageE)
    then show? lhs \(\subseteq\) ? rhs
            by (auto simp: image-iff)
    qed (auto simp: image-iff face-pS)
    have ceqc: card \(\{f . f\) face-of \(S \wedge\) aff- \(\operatorname{dim} f=\) int \(d\}=\) card \(\{f . f\) face-of \(p \wedge\)
aff-dim \(f=\) int \(d\}\) for \(d\)
    unfolding \(*\)
    by (rule card-image) (auto simp: inj-on-def augm-def)
    have \(\left(\sum d=0 . . D I M(' n \times\right.\) real \()-1 .(-1) \wedge d *\) int (card \(\{f . f\) face-of \(S \wedge\)
\(\operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}))=1\)
    proof (rule Euler-poincare-special)
            show \(2 \leq \operatorname{DIM}\left({ }^{\prime} n \times\right.\) real \()\)
            by auto
            have snd0: \((a, b) \in\) affine hull \(S \Longrightarrow b=0\) for \(a b\)
            using \(S\)-def 〈bounded-linear augm〉 affine-hull-linear-image augm-def by blast
            moreover have \(\bigwedge a\). \((a, 0) \in\) affine hull \(S\)
            using \(S\)-def 〈bounded-linear augm〉 aff-dim-eq-full affine-hull-linear-image
\(\operatorname{assms}(2)\) augm-def by blast
    ultimately show affine hull \(S=\{x . x \cdot(0:: ' n, 1::\) real \()=0\}\)
            by auto
    qed (auto simp: 〈polytope \(S\) 〉Basis-prod-def)
    then show?thesis
        by (simp add: ceqc)
qed
```

In particular，the Euler relation in 3 dimensions
corollary Euler－relation：

```
    fixes p :: ' n::euclidean-space set
    assumes polytope p aff-\operatorname{dim}p=3 DIM('n)=3
    shows (card {v.v face-of p ^aff-dim v=0} + card {f.f face-of p ^aff-dim f
= 2}) - card {e. e face-of p^aff-dim e=1}=2
proof -
    have }\x.\llbracketx\mathrm{ face-of p;aff-dim x = 3\ # x=p
        using assms by (metis face-of-aff-dim-lt less-irrefl polytope-imp-convex)
    then have 3: {f.f face-of p}\wedge\mathrm{ aff-dim f=3}={p}
        using assms by (auto simp: face-of-refl polytope-imp-convex)
    have (\sumd=0..3. (-1)^d* int (card {f.fface-of p ^aff-dim f=int d}))=
1
    using Euler-Poincare-full [of p] assms by simp
    then show ?thesis
    by (simp add: sum.atLeastO-atMost-Suc-shift numeral-3-eq-3 3)
qed
end
```


References

[1] I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. 1976.
[2] J. Lawrence. A short proof of Euler's relation for convex polytopes. Canadian Mathematical Bulletin, 40(4):471-474, 1997.

