Fudoxus Reals

Ata Keskin

March 17, 2025

Abstract

In this project, we present a peculiar construction of the real num-
bers, called “Eudoxus reals”, using Isabelle/HOL. Similar to the clas-
sical method of Dedekind cuts, our approach starts from first princi-
ples. However, unlike Dedekind cuts, Eudoxus reals directly derive real
numbers from integers, bypassing the intermediate step of constructing
rational numbers.

This construction of the real numbers was first discovered by Stephen
Schanuel. Schanuel named his construction after the ancient Greek
philosopher Eudoxus, who developed a theory of magnitude and pro-
portion to explain the relations between the discrete and the contin-
uous. Our formalization is based on R.D. Arthan’s paper detailing
the construction [1]. For establishing the existence of multiplicative
inverses for positive slopes, we used the idea of finding a suitable rep-
resentative from Slawomir Kolodynaski’s construction on IsarMathLib
which is based on Zermelo-Fraenkel set theory.

Contents

1 Slopes 2
1.1 Bounded Functions 2
1.2 Properties of Slopes 3
1.3 Set Membership of Inf and Sup on Integers 11

2 Eudoxus Reals 13
2.1 Type Definitiono 13
2.2 Addition and Subtraction 15
2.3 Multiplication o oo 17
2.4 Orderingo 20
2.5 Multiplicative Inverse 30
2.6 Completeness 37

theory Slope
imports HOL.Archimedean-Field
begin

1 Slopes

1.1 Bounded Functions

definition bounded :: (‘a = int) = bool where
bounded f +— bdd-above ((Az. |f z|) ¢ UNIV)

lemma bounded!:
assumes Az. |[fz| < C
shows bounded f
unfolding bounded-def by (rule bdd-abovel2, force intro: assms)

lemma boundedE[elim):
assumes bounded f 3C. Vz. |[f2z2| < C)ANO < C = P
shows P
using assms unfolding bounded-def bdd-above-def by fastforce

lemma boundedFE-strict:
assumes bounded f 3C. Vz. |[fz] < C) N0 < C = P
shows P
by (meson bounded-def bdd-above-def assms boundedE gt-ex order.strict-transl)

lemma bounded-alt-def: bounded f <+— (3 C.V z. |f z| < C) using boundedl bound-
edFE by meson

lemma bounded-iff-finite-range: bounded f +— finite (range f)
proof

assume bounded f

then obtain C where bound: |z| < C if z € range f for z by blast

have range f C {z. 2 < C A —z < C} using abs-le-D1[OF bound] abs-le-D2[OF
bound] by blast

also have ... = {(=C)..C’} by force

finally show finite (range f) using finite-subset finite-atLeastAtMost-int by blast
next

assume finite (range f)

hence |f z| < maz (abs (Sup (range f))) (abs (Inf (range f))) for z

using cInf-lower|OF - bdd-below-finite, of f z range f] cSup-upper[OF - bdd-above-finite,
of f z range f] by force

thus bounded f by (rule boundedl)
qed

lemma bounded-constant:
shows bounded (A-. ¢)

by (rule boundedI[of - |c|], blast)

lemma bounded-add:
assumes bounded f bounded g
shows bounded (A\z. fz + g z)
proof —
obtain C-f C-g where |f z| < C-f |g 2| < C-g for z using assms by blast
hence |f z + ¢ 2| < C-f + C-g for z by (meson abs-triangle-ineq add-mono
dual-order.trans)
thus ?thesis by (blast intro: boundedI)
qed

lemma bounded-mult:

assumes bounded f bounded g

shows bounded (A\z. fz * g 2)
proof —

obtain C where bound: |f z| < C and C-nonneg: 0 < C for z using assms by
blast

obtain C’/ where bound”: |g z| < C’ for z using assms by blast

show ?thesis using mult-mono[OF bound bound’ C-nonneg abs-ge-zero] by (simp
only: boundedI[of Az. fz* gz C x C'] abs-mult)
qed

lemma bounded-mult-const:
assumes bounded f
shows bounded (A\z. ¢ x f 2)
by (rule bounded-mult[OF bounded-constant|of c] assms])

lemma bounded-uminus:
assumes bounded f
shows bounded (\x. — f x)
using bounded-mult-const|OF assms, of — 1] by simp

lemma bounded-comp:

assumes bounded f

shows bounded (f o g) and bounded (g o f)
proof —

show bounded (f o g) using assms boundedl comp-def boundedE by metis
next

have range (g o f) = g ‘ range f by fastforce

thus bounded (g o f) using assms by (fastforce simp: bounded-iff-finite-range)
qed

1.2 Properties of Slopes

definition slope :: (int = int) = bool where
slope f «— bounded (A(m, n). f (m + n) — (fm + fn))

lemma bounded-slopel:

assumes bounded f

shows slope f
proof —

obtain C where |f 2| < C for z using assms by blast

hence |[f (m +n) — (fm+ fn)| < C+ (C+ C) for mn

using abs-triangle-ineq/[of f (m + n) fm + fn] abs-triangle-ineq[of f m f n]

by (meson add-mono order-trans)

thus ?thesis unfolding slope-def by (fast intro: boundedlI)
qed

lemma slopeE[elim]:

assumes slope f

obtains C where Am n. |[f (m + n) — (fm + fn)] < C 0 < C using assms
unfolding slope-def by fastforce

lemma slope-add:

assumes slope f slope g

shows slope (A\z. fz + ¢ 2)
proof —

obtain C' where bound: |f (m + n) — (fm + fn)| < C for m n using assms
by fast

obtain C’ where bound” |g (m + n) — (g m + gn)| < C’ for m n using assms
by fast

have |f (m + 1) — (fm + fn) + g (m+n) — (gm + gn)| < C + C' for m
n using add-mono-thms-linordered-semiring(1) bound bound’ by fast

moreover have |[(Az. fz+gz) (m+n) — (2. fz+gz)m+ (Az. fz+ g
) n)| <|f (m+n) = (Fm+ fn)l + g (m+n) - (gm+ gn)| for m n by
linarith

ultimately have [(Az. fz +gz) (m +n) — (Ae. fz4+g2) m+ (Ae. fz+ g
z) n)] < C + C'for m n using order-trans by fast

thus slope (Az. f z + ¢ z) unfolding slope-def by (fast intro: boundedI)
qed

lemma slope-symmetric-bound:

assumes slope f

obtains C where Ap ¢. [pxfq—qgxfp| < (lpl+ gl +2)xC0 < C
proof —

obtain C where bound: |[f (m + n) — (fm + fn)| < C and C-nonneg: 0 < C
for m n using assms by fast

have +: |[f (p* q) —p*fq| < (Ip| + 1) * Cfor pq
proof (induction p rule: int-induct[where ?k=0])
case base
then show ?case using bound[of 0 0] by force
next
case (stepl p)
have |f ((p + 1) x q) — f (p * q¢) — f q| < C using bound[of p * q q] by
(auto simp: distrib-left mult.commute)
hence |f ((p + 1) xq) —fq—p=[fq < C+ (Ip| + 1) * C using step! by

fastforce
thus ?case using step! by (auto simp add: distrib-left mult.commute)
next
case (step2 p)
have [f ((p — 1) x q) + fq — [(p * q)| < C using bound[of p x ¢ — q q] by
(auto simp: mult.commute right-diff-distrib’)
hence |f (p — 1)*q)+fq—px*fq < C+ (|]p] + 1) * C using step2 by
force
hence |[f ((p — 1) * q) — (p — 1) * fq| < C + (|]p — 1|) * C using step2 by
(auto simp: mult.commute right-diff-distrib’)
thus ?case by (auto simp add: distrib-left mult.commute)
qed

have [p* fq— g fp| < (Ip| + |g] + 2) x C for p g
proof —
have [p x fq— g+ fpl <I|f (p*q) —p*fa +|f (¢*p) —qxfp| by
(fastforce simp: mult.commute)
also have ... < (|p| + 1) * C + (|¢| + 1) = C using *[of p q] *[of ¢ p] by
fastforce
also have ... = (|p| + |q| + 2) * C by algebra
finally show ?thesis .
qed
thus ?thesis using that C-nonneg by blast
qed

lemma slope-linear-bound:

assumes slope f

obtains A B where Vn. |fn| < Ax|n|]+ B0<A0<B
proof —

obtain C where bound: |px fq — g fp| < (|lp| + g + 2)« C0 < C for p
q using assms slope-symmetric-bound by blast

have |fp| < (C + |f1]) *|p| + & x C for p
proof —
have |p x f 1 — fp| < (I]p| + 8) * C using bound(1)[of - 1] by (simp add:
add.commute)
hence |fp — px f 1| < (|p| + 3) *x C by (subst abs-minus[of fp — p * f 1,
symmetric|, simp)
hence |fp| < (|p| + 3) * C + |p * f 1| using dual-order.trans abs-triangle-ineq2
diff-le-eq by fast
hence |[fp| < |p| * C 4+ 8 % C + |p| = |f 1| by (simp add: abs-mult int-distrib(2)
mult.commute)
hence |fp| < |p| * (C + |f1]) + 3 * C by (simp add: ring-class.ring-distribs(1))
thus ?thesis using mult.commute by metis
qed
thus ?thesis using that bound(2) by fastforce
qed

lemma slope-comp:

assumes slope f slope g
shows slope (f o g)
proof—
obtain C' where bound: |f (m + n) — (fm + fn)| < C for m n using assms
by fast
obtain C’ where bound”: |g (m + n) — (¢ m + g n)| < C' for m n using assms
by fast
obtain A B where f-linear-bound: |fn] < A x |n| + B0 < A 0 < B for n
using slope-linear-bound[OF assms(1)] by blast
{
fix mn
have |f (g (m + m) — (f (gm) + f (g m)| < (f (g (m + n)) — f (gm + g
W1 (om g n w7 (gmy 4 1 (3)| int) by fiarith
also have ... < |f (g (m + n)) — f (¢ m + g n)| + C using bound[of g m g
n] by auto
also have .. < |f (g (m +n)) — f(gm+gn) —flg(m+n) —(gm+yg
W)+ 1f (g (m +) — (gm + g m)| + C by fastforce
also have ... < |f (¢ (m + n) — (g m + g n))| + 2 = C using bound|of g (m
+n) —(gm+ gn) (gm+ gn)] by fastforce
also have ... < A x|g(m + n) — (g m + gn)] + B+ 2 x C using
f-linear-bound(1)[of g (m + n) — (g9 m + g n)] by linarith
also have ... < A x '+ B + 2 x C using mult-left-mono[OF bound’[of m
n], OF f-linear- bound(,@) by presburger
finally have |f (9 (m+n)) — (f (gm) +f(gn)| <A« C'"+ B+ 2xC
by blast
}
thus slope (f o g) unfolding comp-def slope-def by (fast intro: boundedI)
qed

lemma slope-scale: slope ((x) a) by (auto simp add: slope-def distrib-left intro:
boundedl)

lemma slope-zero: slope (A-. 0) using slope-scale[of 0] by (simp add: lambda-zero)
lemma slope-one: slope id using slope-scale[of 1] by (simp add: slope-def)
lemma slope-uminus: slope uminus using slope-scale[of —1] by (simp add: slope-def)
lemma slope-uminus”:

assumes slope f

shows slope (A\z. — f)

using slope-comp|OF slope-uminus assms] by (simp add: slope-def)
lemma slope-minus:

assumes slope f slope g

shows slope (A\z. fz — g z)

using slope-add[OF assms(1) slope-uminus’, OF assms(2)] by simp

lemma slope-comp-commudte:

assumes slope f slope g

shows bounded (Az. (fog) z— (gof) 2)
proof —

obtain C' where bound: |z x f (g z) — « (f2) < (z|+ gzl +2)«C0
< C for z using slope-symmetric- bound[OF assms()] by metis

obtain C' where bound”: |(fz) x (g2) — 2% g (f2)] < (|f2z| + |2| + 2) « C' 0
< C' for z using slope-symmetric-bound|OF assms(2)] by metis

obtain A B where f-lbound: |f 2| < A % |z| + B0 < A 0 < B for z using
slope-linear-bound[OF assms(1)] by blast

obtain A’ B’ where g-lbound: |g 2| < A’ x |z| + B’ 0 < A’ 0 < B’ for z using
slope-linear-bound[OF assms(2)] by blast

have combined-bound: |z x f (9 2) —zxg (f2)| < (2| + |g 2| + 2) « C + (|f
zl + |z| + 2) * C' for 2z
by (intro order-trans|OF - add-mono[OF bound(1) bound’(1)]]) (fastforce simp
add: mult.commutelof f z g 2])

{

fix z

define D F where D = (C + C'+ A’ C+ Ax C)and E = (2 + B') x
C+ (24 B)xC’

have E-nonneg: 0 < E unfolding E-def using g-lbound bound f-lbound bound’
by simp

have D-nonneg: 0 < D unfolding D-def using g-lbound bound f-lbound bound’
by simp

have (2] + g 2l + 2) % C + (f 2| + |o] + 2) x C" = |2] # (C + C") + |g 4
x C+|fz] * C'+ 2% C+ 2% C’'by algebra
hence [z] * |f (92) = g (f2)] < |2« (C + C) + |g2[« O+ [f2] » C" + 2
x C + 2 x C' using combined-bound right-diff-distrib abs-mult by metis
also have ... < |z| * (C + C') + (A’ x |z] + B)« C + |f2z| * C'+ 2% C +
2 % C' using mult-right-mono[OF g-lbound(1)[of z] bound(2)] by presburger
also have ... < |z| * (C + C') + (A" x |z| + B)) * C + (A * |2] + B) =
C'+ 2 x C+ 2 x C' using mult-right-mono[OF f-lbound(1)[of z] bound’(2)] by
presburger
alsohave ... = |z| x (C+ C'"+ A'«x C+ A« CY+ (2+B)xC+ (2 +
B) x C' by algebra
finally have *: |z| x |f (9 2) — g (f2)| < |2| * D + E unfolding D-def E-def
by presburger
have |f (92) —g (f2)| <D+ E+|f (90) — g (f0)
proof (cases z = 0)
case True
then show ?thesis using D-nonneg E-nonneg by fastforce
next
case Fulse
have |z| « |f (g 2) = g (f2)] < [2[* (D + E)
using mult-right-mono[OF Ints-nonzero-abs-gel [OF - False] E-nonney|
distrib-leftlof |z| D E]

by (simp add: Ints-def)
hence |f (9 2) — g (f2)| < D + E using False by simp
thus ?thesis by linarith
qed

thus ?thesis by (fastforce intro: boundedl)
qed

lemma int-set-infinitel:

assumes AC. C > 0 = IN>C. N € (A :: int set)

shows infinite A

by (meson assms abs-ge-zero abs-le-iff gt-ex le-cSup-finite linorder-not-less or-
der-less-le-trans)

lemma int-set-infiniteD:
assumes infinite (A :: int set) C > 0
obtains z where z € A C < |z]
proof —
{
assume asm: Vz € A. C > |7
let ?f = Az. (if z € A then z else (0::int))
have bounded: Vz € A. |?f z| < C using asm by fastforce
moreover have Vz € UNIV — A. |?f z| < C using assms by fastforce
ultimately have bounded ?f by (blast intro: boundedl)
hence Fulse using bounded-iff-finite-range assms by force

thus ?thesis using that by fastforce
qed

lemma bounded-odd:
fixes f :: int = int
assumes A\z. 2 < 0 = fz=—f (=2) An.n >0 = |fn| < C
shows bounded f
proof —
have |[fn| < C + |f 0| if n > 0 for n using assms by (metis abs-ge-zero
abs-of-nonneg add-increasing?2 le-add-same-cancel2 that zero-less-abs-iff)
hence |fn| < C + |f 0| for n using assms by (cases 0 < n) fastforce+
thus ?thesis by (rule boundedl)
qed

lemma slope-odd:
assumes A\z. 2 < 0 = fz=— f (— 2)
Amn.[m>0,n>0=|f(m+n) —(m+fn)]|<C
shows slope f
proof —
define C' where C' = C + |f 0|
have C > 0 using assms(2)[of 1 1] by simp
hence bound: |f (m +n) — (fm+ fn)| < C'if m>0n> 0 for mn
unfolding C'-def using assms(2) that

by (cases m = 0 V n = 0) (force, metis abs-ge-zero add-increasing?2 order-le-less)
{
fix mn
have |f (m +n) = (fm + fn)] < C”
proof (cases m > 0)
case m-nonneg: True
show “thesis
proof (cases n > 0)

case True
thus ?thesis using bound m-nonneg by fast
next
case Fulse
hence f-n: fn = — f (— n) using assms by simp

show ?thesis
proof (cases m + n > 0)
case True
have |f (m + 1) — (fm + fn) = |f (m+n+—n) — (f (m+n) +
(—=n))| using f-n by auto
thus ?thesis using bound|OF True] by (metis False neg-0-le-iff-le nle-le)
next
case False
hence f (m + n) = — f (= (m + n)) using assms by force
hence |f (m + n) — (fm + fn)| = |f (= (m +n) + m) — (f (— (m +
n)) + f m)| using f-n by force
thus ?thesis using m-nonneg bound[of — (m + n) m| False by simp

qged
qed
next
case m-neg: False
hence f-m: fm = — f (— m) using assms by simp

show ?thesis
proof (cases n > 0)
case True
show ?thesis
proof (cases m + n > 0)
case True
have |f (m + n) — (fm + fn)| = If (m+ 0+ —m) — (f (m +n) + f
(=m))| using f-m by force
thus %thesis using bound|OF True, of — m| m-neg by simp
next
case Fulse
hence f (m + n) = — f (— (m + n)) using assms by force
hencel|f (m + n) = (fm + fn)l =|f (= (m + n) + n) = (f (= (m +
n)) + f n)| using f-m by force
thus %thesis using bound|of — (m + n) n] True False by simp
qed
next
case Fulse
hence f-n: fn = — f (— n) using assms by simp

have f (m + n) = — f (— m + — n) using m-neg False assms by fastforce

hence |f (m + n) — (fm + fn)| = |- f (— m + —n) — (— f (~m) + —
f(= n))| using f-m f-n by argo
also have ... = |f (—m + —n) — (f (—=m) + f(—n))| by linarith
finally show ?thesis using bound[of — m — n] False m-neg by simp
qed
qed

thus ?thesis unfolding slope-def by (fast intro: boundedI)
qed

lemma slope-bounded-comp-right-abs:
assumes slope f bounded (f o abs)
shows bounded f
proof —
obtain B where Vz. |f |z|| < B and B-nonneg: 0 < B using assms by fastforce
hence B-bound: ¥z > 0. |f z| < B by (metis abs-of-nonneg)

obtain D where D-bound: |f (m + n) — (f m + fn)] < D and D-nonneg: 0 <
D for m n using assms by fast

have bound: |f (—m)| < |f 0| + B + D if m > 0 for m using D-bound[of —m
m] B-bound that by auto

have |f z| < |f 0| + B + D for z using B-bound B-nonneg D-nonneg bound|of
—z] by (cases z > 0) fastforce+

thus bounded [by (rule boundedl)
qed

corollary slope-finite-range-iff:

assumes slope f

shows finite (range f) «— finite (f < {0..}) (is ?lhs «— ?rhs)
proof (rule iff)

assume asm: ?rhs

have range (f o abs) = f “{0..} unfolding comp-def atLeast-def image-def by
(metis UNIV-I abs-ge-zero abs-of-nonneg mem-Collect-eq)

thus ?lhs using slope-bounded-comp-right-abs|OF assms] asm by (fastforce simp
add: bounded-iff-finite-range)
qed (metis image-subsetl rangel finite-subset)

lemma slope-positive-lower-bound:
assumes slope f infinite (f *{0..} N {0<..}) D > 0
obtains M where M > 0 Am. m >0 = (m+ 1)« D < f (m x M)
proof —
{
have D-nonneg: D > 0 using assms by force
obtain C' where C-bound: |f (m + n) — (fm + fn)| < C and C-nonneg: 0
< C for m n using assms by fast

10

obtain f-M where 2 x (C + D) < |f-M] f-M € (f * {0..} N {0<..}) using
mult-left-monolof C + D - 2] D-nonneg by (metis assms(2) abs-ge-zero abs-le-D1
int-set-infiniteD)
then obtain M where M-bound: 2 x (C + D) < |f M| 0 < f M and M-nonneg:
0 < M by blast

have neg-bound: (f (m x M + M) — (f (m x M) + f M)) > —C for m by
(metis C-bound abs-diff-le-iff minus-int-code(1,2))

hence neg-bound”: (f (m « M + M) — (f (m x M) + f M)) > —(C + D) for
m by (meson D-nonneg add-increasing2 minus-le-iff)

have x: m > 0 = f (mx M) > (m + 1) x (C + D) for m
proof (induction m rule: int-induct[where ?k=1])
case base
show ?case using M-bound by fastforce
next
case (stepl m)
have (m+ 1+ 1)*x(C+D)=(m+ 1)« (C+ D)+ 2% (C+ D)—(C
+ D) by algebra
also have ... < (m + 1)« (C + D) + f M + — (C 4+ D) using M-bound
by fastforce
also have ... < f (mx M) + f M + — (C + D) using step! by simp
alsohave ... < (f (m* M) + fM) + (f (m*x M + M) — (f (m*x M) + f
M)) using add-left-mono| OF neg-bound’] by blast
also have ... = f ((m + 1) x M) by (simp add: distrib-right)
finally show ?case by blast
next
case (step2 i)
then show ?case by linarith
qed

have x: f (m * M) > (m + 1) = D if m > 0 for m using *[OF that]
mult-left-monolof D C' + D m + 1] that C-nonneg D-nonneg by linarith
moreover have M # 0 using M-bound add1-zle-eq assms neg-bound by force
ultimately have 3M>0.Vm>0. (m + 1)« D < f (m * M) using M-nonneg
by force
}
thus ?thesis using that by blast
qed

1.3 Set Membership of Inf and Sup on Integers

lemma int-Inf-mem:

fixes S :: int set

assumes S # {} bdd-below S

shows Inf S € §
proof —

have nonneg: Inf ({0..} N A) € ({0..} N A) if asm: ({(0::int)..} N A) # {} for
A

11

proof —
have nat ‘ ({0..} N A) # {} using asm by blast
hence int (Inf (nat < ({0..} N A))) € int ‘nat < ({0..} N A) using wellorder-InfI|of
- nat ‘ ({0..} N A)] by fast
moreover have int ‘nat ‘ ({0..} N A) = {0..} N A by force
moreover have Inf ({0..} N A) = int (Inf (nat * ({0..} N A)))
using calculation by (intro cInf-eq-minimum) (argo, metis IntD2 Int-commute
atLeast-iff imagel le-nat-iff wellorder-Inf-lel)
ultimately show ?thesis by argo
qged
have s« Inf ({b..} N A) € ({b..} N A) if asm: ({(b:int)..} N A) # {} for A b
proof (cases b > 0)
case True
hence ({b..} N 4) = {0..} N ({b..} N A) by fastforce
thus ?thesis using asm nonneg by metis
next
case Fulse
hence partition: ({b..} N A) = ({0..} N A) U ({b..<0} N A) by fastforce
have bdd-below: bdd-below ({0..} N A) bdd-below ({b..<0} N A) by simp+
thus ?thesis
proof (cases ({0..} N A) # {} A ({b..<0} N A) # {})
case True
have finite: finite ({b..<0} N A) by blast
have (z :: int) < y = infz y = z for = y by (simp add: inf.order-iff)
have Inf ({b..} N A) = inf (Inf ({0..} N A)) (Inf ({b..<0} N A)) by (metis
cInf-union-distrib True bdd-below partition)
moreover have Inf ({b..<0} N A) € ({b..} N A) using Min-in[OF finite]
cInf-eq-Min| OF finite] True partition by simp
moreover have Inf ({0..} N A) € ({b..} N A) using nonneg True partition
by blast
moreover have inf (Inf ({0..} N A)) (Inf ({b..<0} N A4)) € {Inf ({0..}
N A), Inf ({b..<0} N A)} by (metis inf.commute inf.order-iff insertll insertI2
nle-le)
ultimately show ?thesis by force
next
case Fulse
hence ({b..} N 4) = ({0..} N 4) v ({b.} N A) = ({b..<0} N A) using
partition by auto
thus ?thesis using Min-in[of {b..} N A] cInf-eq-Min[of {b..} N A] by (metis
asm nonneyg finite-Int finite-atLeastLess Than-int)
qed
qed
obtain b where S = {b..} N S using assms unfolding bdd-below-def by blast
thus ?thesis using ** assms by metis
qed

lemma int-Sup-mem:

fixes S :: int set
assumes S # {} bdd-above S

12

shows Sup § € §
proof —
have Sup S = (— Inf (uminus ‘ S)) unfolding Inf-int-def image-comp by simp
moreover have bdd-below (uminus ¢ S) using assms unfolding bdd-below-def
bdd-above-def by (metis imageE neg-le-iff-le)
moreover have Inf (uminus ‘ S) € (uminus ‘ S) using int-Inf-mem assms by
stmp
ultimately show ¢thesis by force
qed

end

theory Fudozus
imports Slope
begin

2 FEudoxus Reals

2.1 Type Definition

Two slopes are said to be equivalent if their difference is bounded.

definition eudozus-rel :: (int = int) = (int = int) = bool (infix <~.> 50) where
f ~e g = slope f A slope g A bounded (An. fn — gn)

lemma eudozus-rel-equivp:

part-equivp eudorus-rel
proof (rule part-equivpl)

show Jz. z ~, = unfolding eudozus-rel-def slope-def bounded-def by fast

show symp (~.) unfolding eudozus-rel-def by (force intro: sympl dest: bounded-uminus
stmp: fun-Compl-def)

show transp (~.) wunfolding eudozus-rel-def by (force intro!: transpl dest:
bounded-add)
qed

We define the reals as the set of all equivalence classes of the relation (~).

quotient-type real = (int = int) / partial: eudoxus-rel
by (rule eudozus-rel-equivp)

lemma real-quot-type: quot-type (~.) Abs-real Rep-real
using Rep-real Abs-real-inverse Rep-real-inverse Rep-real-inject eudozus-rel-equivp

by (auto intro!: quot-type.intro)

lemma slope-refl: slope f = (f ~e f)
unfolding eudozus-rel-def by (fastforce simp add: bounded-constant)

declare slope-refl THEN iffD2, simp)

13

lemmas slope-refll = slope-refl| THEN iffD1]

lemma slope-induct[consumes 0, case-names slope]:
assumes Af. slope f = P (abs-real f)
shows P z
using assms by induct force

lemma abs-real-eq-iff: [~. g +— slope f A slope g A\ abs-real f = abs-real g
by (metis Quotient-real Quotient-rel slope-refl)

lemma abs-real-eql [intro]: f ~. g = abs-real f = abs-real g using abs-real-eq-iff
by blast

lemmas eudozus-rel-sym[sym] = Quotient-symp|OF Quotient-real, THEN sympD]
lemmas eudozus-rel-trans[trans| = Quotient-transp| OF Quotient-real, THEN transpD]

lemmas rep-real-abs-real-refl = Quotient-rep-abs| OF Quotient-real, OF slope-refl THEN
iff D1], intro!]
lemmas rep-real-iff = Quotient-rel-rep| OF Quotient-real, iff]

declare Quotient-abs-rep|OF Quotient-real, simp)
lemma slope-rep-real: slope (rep-real z) by simp

lemma eudozus-rell:
assumes slope f slope g An. n > N = |fn —gn|] < C
shows f ~, ¢

proof —
have C-nonneg: C > 0 using assms by force

obtain C-f where C-f: |[f (n + (—n)) — (fn+ f (—n))| < C-f0
n using assms by fast

IN

C-f for

obtain C-g where C-g: |[¢g (n + (—n)) — (gn+ g (— n))| < C-g 0 < C-g for
n using assms by fast

have bound: |[f (—n) — g (—n)| < |fn—gn|+|f0] +|g 0| + C-f + C-g for
n using C-f(1)[of n] C-g(1)[of n] by simp

define C’ where C' = Sup {|fn —gn||n.ne€ {0.max ON}} + C + |f 0| +
90| + C-f + Cug

have «: bdd-above {|f n — g n| |n. n € {0..max 0 N}} by simp

have Sup {|fn — gn| |n. n € {0..max O N}} € {|fn — g n| |n. n € {0..max 0
N}} using C-nonneg by (intro int-Sup-mem[OF - x|) auto

hence Sup-nonneg: Sup {|f n — g n| | n. n € {0..maz 0 N}} > 0 by fastforce

have *: [fn — gn| < Sup {|fn —gn||n ne{0.max 0N} + Cifn>0
for n unfolding C’-def using cSup-upper|OF -] that C-nonneg Sup-nonneg by

14

(cases n < N) (fastforce simp add: add.commute add-increasing? assms(3))+
{
fix n
have |[fn — gn| < C'
proof (cases n > 0)
case True
thus ?thesis unfolding C’-def using x C-f C-g by fastforce
next
case Fulse
hence — n > 0 by simp
hence |f (—n) — g (—n)| < Sup {|fn —gn||n ne{0.max 0N} + C
using *[of — n] by blast
hence |f (— (= n)) — g (= (— n))| < C’ unfolding C’-def using bound|of
— n] by linarith
thus “thesis by simp
qed
}
thus ?thesis using assms unfolding eudozus-rel-def by (auto intro: boundedI)
qed

2.2 Addition and Subtraction

We define addition, subtraction and the additive identity as follows.

instantiation real :: {zero, plus, minus, uminus}
begin

quotient-definition
0 :: real is abs-real (A-. 0) .

declare slope-zero[intro!, simp]

lemma zero-iff-bounded: f ~, (A-. 0) «— bounded f by (metis (no-types, lifting)
boundedE boundedI diff-zero eudozus-rel-def slope-zero bounded-slopel)

lemma zero-iff-bounded’: © = 0 <— bounded (rep-real z) by (metis (mono-tags)
abs-real-eq-iff id-apply rep-real-abs-real-refl rep-real-iff slope-zero zero-iff-bounded
zero-real-def)

lemma zero-def: 0 = abs-real (A-. 0) unfolding zero-real-def by simp
definition eudozus-plus :: (int = int) = (int = int) = (int = int) (infix]l +>
60) where

(f int = int) +e g = (A2. fz 4+ g 2)
declare slope-add[intro, simp]
quotient-definition

(+) :: (real = real = real) is (+.)

proof —
fix z2' yy assume z ~, 2’ y ~, ¥y’

15

hence rel-z: slope x slope ©’ bounded (A\z. x z — z' z) and rel-y: slope y slope y’
bounded (Az. y z — y' z) unfolding eudozus-rel-def by blast+

thus (z +. y) ~c (2’ +. y') unfolding eudozus-rel-def eudozus-plus-def by
(fastforce intro: back-subst[of bounded, OF bounded-add|OF rel-z(3) rel-y(3)]])
qed

lemmas eudozus-plus-cong = apply-rsp’|OF plus-real.rsp, THEN rel-funD, intro]

lemma abs-real-plus|simp]:
assumes slope f slope g
shows abs-real f + abs-real g = abs-real (f +. g)
using assms unfolding plus-real-def by auto

definition eudozus-uminus :: (int = int) = (int = int) (<—») where
—e (f it int = int) = (\z. — fx)

declare slope-uminus’[intro, simp)

quotient-definition

(uminus) :: (real = real) is —,
proof —

fix z 2’ assume z ~, z’

hence rel-z: slope x slope =’ bounded (Az. x z — z’ z) unfolding eudozus-rel-def
by blast+

thus —, = ~. —. 2’ unfolding eudozus-rel-def eudozus-uminus-def by (fastforce
intro: back-subst[of bounded, OF bounded-uminus[OF rel-z(3)]])
qged

lemmas eudozus-uminus-cong = apply-rsp’|OF uminus-real.rsp, simplified, intro]

lemma abs-real-uminus[simp):
assumes slope f
shows — abs-real f = abs-real (—. f)
using assms unfolding uminus-real-def by auto

definition z — (y::real) = 2 + — y
declare slope-minus[intro, simp]
lemma abs-real-minus|simpl:
assumes slope g slope f
shows abs-real g — abs-real f = abs-real (g +¢ (—e [))

using assms by (simp add: minus-real-def slope-refl eudozus-uminus-cong)

instance ..
end

The Eudoxus reals equipped with addition and negation specified as above
constitute an Abelian group.

16

instance real :: ab-group-add
proof
fix xy 2z :: real
show z + y + z = z + (y + 2) by (induct z, induct y, induct z) (simp add:
eudozus-plus-cong eudorus-plus-def add.assoc)
show z + y = y + z by (induct z, induct y) (simp add: eudozus-plus-def
add.commute)
show 0 + z = z by (induct z) (simp add: zero-real-def eudozus-plus-def)
show — z + z = 0 by (induct z) (simp add: eudoxus-uminus-cong, simp add:
zero-real-def eudozus-plus-def eudozus-uminus-def)
qed (simp add: minus-real-def)

2.3 Multiplication

We define multiplication as the composition of two slopes.

instantiation real :: {one, times}
begin

quotient-definition
1 :: real is abs-real id .

declare slope-one[intro!, simp)
lemma one-def: 1 = abs-real id unfolding one-real-def by simp

definition cudozus-times :: (int = int) = (int = int) = int = int (infix]l x>
60) where
freg="Ffoyg

declare slope-comp[intro, simp]
declare slope-scale[intro, simp)

quotient-definition

(%) == real = real = real is ()
proof —

fixzz' yy assume z ~, 'y ~. y’

hence rel-z: slope x slope ©’ bounded (M\z. x z — z' z) and rel-y: slope y slope y’
bounded (Az. y z — y' z) unfolding eudozus-rel-def by blast+

obtain C where z'-bound: |z’ (m + n) — (¢’ m + 2’ n)| < C for m n using
rel-x(2) unfolding slope-def by fastforce

obtain A B where z'-lin-bound: |z’ n| < A x|n|] + B0 < A 0 < B for n using
slope-linear-bound[OF rel-z(2)] by blast

obtain C’ where y-y’-bound: |y z — y’ z| < C' for z using rel-y(3) unfolding
slope-def by fastforce

have bounded (M\z. z' (y 2) — ' (y’ 2))

17

proof (rule boundedl)
fix z
have |2/ (y2) — 2’ (y' 2)| < |z’ (y z — y' 2)| + C using z’-bound[of y z — y’
zy’ z] by fastforce
also have ... < A x|y z — y' z| + B + C using z'-lin-bound by force
also have ... < A x C''+ B+ C using mult-left-mono[OF y-y'-bound z'-lin-bound(2)]
by fastforce
finally show |z’ (y z) — 2’ (y' 2)| < A x C' + B + C by blast
qed
hence bounded (\z. z (y z) — 2’ (y’ z)) using bounded-add]|OF bounded-comp(1)[OF
rel-x(3), of y]] by force
thus (z *. y) ~e (2’ *. y’) unfolding eudozus-rel-def eudozus-times-def using
rel-x rel-y by simp
qed

lemmas eudozus-times-cong = apply-rsp’|OF times-real.rsp, THEN rel-funD, in-
tro)
lemmas eudozus-rel-comp = eudoxus-times-conglunfolded eudozus-times-def)

lemma eudozus-times-commute:
assumes slope f slope g
shows (f *c g) ~e (g *c [)
unfolding eudozus-rel-def eudozus-times-def
using slope-comp slope-comp-commute assms by blast

lemma abs-real-times|simp]:
assumes slope f slope g
shows abs-real f x abs-real g = abs-real (f *. g)
using assms unfolding times-real-def by auto

instance ..
end

lemma neg-one-def: — 1 = abs-real (—. id) unfolding one-real-def by (simp add:
eudozus-uminus-def)
lemma slope-neg-onelintro, simp): slope (—. id) using slope-refl by blast

With the definitions provided above, the Eudoxus reals are a commutative
ring with unity.

instance real :: comm-ring-1
proof

fix zyz:: real

show z x y * 2 = z * (y * 2) by (induct z, induct y, induct z) (simp add:
eudozus-times-cong eudozus-times-def comp-assoc)

show z *x y = y * z by (induct z, induct y) (force simp add: slope-refl eu-
dozus-times-commute)

show [x z = x by (induct z) (simp add: one-real-def eudozus-times-def)

show (z + y) * z = x * z + y % z by (induct z, induct y, induct z) (simp add: eu-
dozus-times-cong eudozrus-plus-cong, simp add: eudozus-times-def eudoxus-plus-def

18

comp-def)

have —bounded (Az. z) by (metis add.inverse-inverse boundedE-strict less-irrefl
neg-less-0-iff-less zabs-def)

thus (0 :: real) # (1 :: real) using abs-real-eg-iff [of id A-. 0] unfolding one-real-def
zero-real-def eudoxus-rel-def by simp
qed

lemma real-of-nat:
of-nat n = abs-real ((x) (of-nat n))
proof (induction n)
case (
then show ?case by (simp add: zero-real-def)
next
case (Suc n)
then show ?Zcase by (simp add: one-real-def distrib-right eudoxus-plus-def)
qed

lemma real-of-int:

of-int z = abs-real ((x) z)
proof (induction z rule: int-induct[where ?k=0])

case base

then show ?case by (simp add: zero-real-def)
next

case (stepl 1)

then show ?case by (simp add: one-real-def distrib-right eudoxus-plus-def)
next

case (step2 i)

then show ?Zcase by (simp add: one-real-def eudozus-plus-def left-diff-distrib
eudozus-uminus-def)
qed

The Eudoxus reals are a ring of characteristic 0.

instance real :: ring-char-0
proof
show inj (An. of-nat n :: real)
proof (intro inj-onl)
fix © y assume (of-nat x :: real) = of-nat y
hence ((x) (int z)) ~. ((*) (int y)) unfolding abs-real-eq-iff real-of-nat using
slope-scale by blast
hence bounded (M\z. (int x — int y) * z) unfolding eudozus-rel-def by (simp
add: left-diff-distrib)
then obtain C' where bound: |(int z — int y) * z| < C and C-nonneg: 0 <
C for z by blast
hence |int x — int y| x |C + 1| < C using abs-mult by metis
hence x: |int z — int y| * (C + 1) < C using C-nonneg by force
thus = = y using order-trans| OF mult-right-mono *, of 1] C-nonneg by fastforce
qed
qed

19

2.4 Ordering

We call a slope positive, if it tends to infinity. Similarly, we call a slope
negative if it tends to negative infinity.

instantiation real :: {ord, abs, sgn}
begin

definition pos :: (int = int) = bool where
posf=NWC>0.dN.¥Vn> N.fn > ()

definition neg :: (int = int) = bool where
negf=WC2>0.3N.YVn>N.fn<-0C)

lemma pos-neg-exclusive: = (pos f A neg f) unfolding neg-def pos-def by (metis
int-one-le-iff-zero-less linorder-not-less nle-le uminus-int-code(1) zero-less-one-class.zero-le-one)

lemma pos-iff-neg-uminus: pos f = neg (—. f) unfolding neg-def pos-def eu-
dozus-uminus-def by simp

lemma neg-iff-pos-uminus: neg f = pos (—. f) unfolding neg-def pos-def eu-
dozus-uminus-def by fastforce

lemma pos-iff:
assumes slope f
shows pos f = infinite (f “{0..} N {0<..}) (is ?lhs = ?rhs)
proof (rule iffI)
assume pos: ?lhs
{
fix C assume C-nonneg: 0 < (C :: int)
hence 3z > 0. (C + 1) < fz by (metis add-increasing2 nle-le zero-less-one-class.zero-le-one
pos pos-def)
hence 3z > 0. C < fz A 0 < f z using C-nonneg by fastforce
hence IN>C. 2. N=f2 N0 < fz AN 0 < z by blast

thus ?rhs by (blast introl: int-set-infinitel)
next

assume infinite: ?rhs

then obtain D where D-bound: |f (m + n) — (fm + fn)] <D 0 < D for m
n using assms by (fastforce simp: slope-def elim: boundedE-strict)

obtain M where M-bound: Vm>0. (m + 1) * D < f (m x M) 0 < M using
slope-positive-lower-bound|OF assms infinite] D-bound(2) by blast

define g where g = (\z. f ((z div M) x M))
define £ where E = Sup ((abso f) ‘{z. 0 <z A z< M})

have E-bound: |f (z mod M)| < E for z

proof —
have (z mod M) € {z. 0 < z A z < M} by (simp add: M-bound(2))

20

hence |f (z mod M)| € (abs o f) ‘{z. 0 < z A z < M} by fastforce
thus |f (2 mod M)| < E unfolding E-def by (simp add: le-cSup-finite)
qed
hence E-nonneg: 0 < E by fastforce

have diff-bound: |fz — g z| < E + D for z
proof—
let ?d = z div M and ?r = z mod M
have z-is: z = ?d * M + ?r by presburger
hence |[fz — gz| =|f (9d *x M + ?r) — g (?d x M + ?r)| by argo

also have ... = |(f (2d«M + ?r) — (f (29d x M) + f2r)) + (f (2d x M) + f
r) — g (?d x M + ?r)| by auto
also have ... = |f or + (f (2dxM + ?r) — (f (9d x M) + f 9r))| unfolding

g-def by force
also have ... < |f ?r| + D using D-bound(1)[of ?d x M ?r] by linarith
also have ... < E + D using FE-bound by simp
finally show |f2z — g2| < E+ D.
qed

{

fix C assume C-nonneg: 0 < (C :: int)

define n where n = (E + D + C) div D
hence zero-less-n: n > 0 using D-bound(2) E-nonneg C-nonneg using pos-imp-zdiv-pos-iff
by fastforce

have E4+ C < E+ D+ C — (E+ D+ C) mod D using diff-strict-left-mono| OF
pos-mod-bound[OF D-bound(2)]] by simp
also have ... = n x D unfolding n-def using div-mod-decomp-int[of E + D
+ C D] by algebra
finally have «: (n + 1) * D > E + D + C by (simp add: add.commute
distrib-right)

have C < fmif m > nx M for m
proof —
let ?d = m div M and ?r = m mod M
have d-pos: ?d > 0 using zero-less-n M-bound that dual-order.trans pos-imp-zdiv-pos-iff
by fastforce
have n-le-d: ?d > n using zdiv-monol M-bound that by fastforce
have F + D + C < (9d + 1) = D using D-bound n-le-d by (intro x| THEN
order.strict-trans2]) simp
also have ... < g m unfolding g-def using M-bound d-pos by blast
finally have E + D+ C < gm.
hence |f m — g m| + C < g m using diff-bound|of m] by fastforce
thus ?thesis by fastforce
qed
hence IN. Vp>N. C < f p using addl-zle-eq by blast

}

thus ?lhs unfolding pos-def by blast
qed

21

lemma neg-iff:
assumes slope f
shows neg f = infinite (f < {0..} N {..<0}) (is ?lhs = ?rhs)
proof (rule iffI)
assume ?lhs
hence infinite ((— f) ‘< {0..} N {0<..}) using pos-iff[OF slope-uminus’|OF
assms|| unfolding neg-def pos-def by fastforce
moreover have inj (uminus :: int = int) by simp
moreover have (— f) ‘ {0..} N {0<..} = uminus ‘ (f * {0..} N {..<0}) by
fastforce
ultimately show ?rhs using finite-imageD by fastforce
next
assume ?rhs
moreover have inj (uminus :: int = int) by simp
moreover have f ‘{0..} N {..<0} = uminus ‘ ((— f) ‘{0..} N {0<..}) by force
ultimately have infinite ((— f) ‘{0..} N {0<..}) using finite-imageD by force
thus ?lhs using pos-iff [OF slope-uminus’|OF assms]] unfolding pos-def neg-def
by fastforce
qed

lemma pos-cong:
assumes f ~. ¢
shows pos f = pos g
proof —
{
fix r y assume asm: pos T T ~. y
fix D assume D: 0 < DVN.dp>N. -~ D
obtain C' where bounds: Vn. |z n — y n|
eudozus-rel-def by blast
obtain N where Vp>N. C 4+ D < z p using
add: pos-def)
hence Vp>N. |z p — y p| + D < z p by (metis add.commute add-left-mono
bounds(1) dual-order.trans)
hence Vp>N. D < y p by force
hence Fulse using D by blast
}
hence pos t = pos y if x ~. y for z y using that unfolding pos-def by metis
thus ?thesis by (metis assms eudozus-rel-equivp part-equivp-symp)
qed

b

<y
< C 0 < C using asm unfolding
D

bounds asm by (fastforce simp

lemma neg-cong:
assumes f ~. g
shows neg f = neg g
proof —
{
fix z y assume asm: neg x T ~¢ y
fix D assume D: 0 < DVN.dp>N.-—D>yp
obtain C where bounds: [t n — yn| < C 0 < C for n using asm unfolding

22

eudozus-rel-def by blast
obtain N where Vp>N. — (C + D) > z p using D bounds asm add-increasing2
unfolding neg-def by meson
hence Vp>N. — |z p — y p| — D > = p using bounds(1)[THEN le-imp-neg-le,
THEN diff-right-mono, THEN dual-order.trans] by simp
hence Vp>N. — D > y p by force
hence Fulse using D by blast
}
hence neg r = neg y if ~, y for = y using that unfolding neg-def by metis
thus ?thesis by (metis assms eudozus-rel-equivp part-equivp-symp)
qged

lemma pos-iff-nonneg-nonzero:

assumes slope f

shows pos f <— (- neg f) A (— bounded f) (is ?lhs +— %rhs)
proof (rule iffI)

assume pos: ?lhs

then obtain N where Vn>N. fn > 0 unfolding pos-def by (metis int-one-le-iff-zero-less
zero-less-one-class.zero-le-one)

hence f (maz N m) > 0 for m by simp

hence — neg f unfolding neg-def by (metis add.inverse-neutral dual-order.refl
linorder-not-le max.cobounded?)

thus ?rhs using pos unfolding pos-def bounded-def bdd-above-def by (metis
abs-ge-self dual-order.trans gt-ex imagel iso-tuple-UNIV-I order.strict-iff-not)
next

assume nonneg-nonzero: ?rhs

hence finite: finite (f < {0..} N {..<0}) using neg-iff assms by blast

moreover have unbounded: infinite (f ‘{0..}) using nonneg-nonzero bounded-iff-finite-range
slope-finite-range-iff assms by blast

ultimately have infinite (f *{0..} N {0..}) by (metis Compl-atLeast Diff-Diff-Int
Diff-eq Diff-infinite-finite)

moreover have f ‘{0..} N {0<..} = f“{0..} n{0..} — {0} by force

ultimately show ?lhs unfolding pos-iff[OF assms| by simp
qed

lemma neg-iff-nonpos-nonzero:
assumes slope f
shows neg f <— (= pos f) A (= bounded f)
unfolding pos-iff-nonneg-nonzero[OF assms] neg-iff-pos-uminus uminus-apply
eudozus-uminus-def pos-iff-nonneg-nonzero| OF slope-uminus’, OF assms]
by (force simp add: bounded-def bdd-above-def)

We define the sign of a slope to be id if it is positive, — d if it is negative
and A-. 0 otherwise.
definition eudozus-sgn :: (int = int) = (int = int) where

eudozus-sgn f = (if pos f then id else if neg f then —. id else (A-. 0))

lemma eudozus-sgn-iff:
assumes slope f

23

shows eudozus-sgn f = (A-. 0) <— bounded f
eudozus-sgn f = id +— pos f
eudozus-sgn f = (—. id) < neg f
using eudozus-sgn-def neg-one-def one-def zero-def assms neg-iff-nonpos-nonzero
pos-iff-nonneg-nonzero by auto

quotient-definition
(sgn :: real = real) is eudozus-sgn
unfolding eudoxus-sgn-def
using eudozus-uminus-cong neg-cong pos-cong slope-one slope-refl by fastforce

lemmas eudozus-sgn-cong = apply-rsp’|OF sgn-real.rsp, intro]

lemma eudozus-sgn-cong’[cong]:
assumes f ~. ¢
shows eudozus-sgn f = eudozus-sgn g
using assms eudoxus-sgn-def neg-cong pos-cong by presburger

lemma sgn-range: sgn (z :: real) € {—1, 0, 1} unfolding sgn-real-def zero-def
one-def neg-one-def eudozus-sgn-def by simp

lemma sgn-abs-real-zero-iff:

assumes slope f

shows sgn (abs-real f) = 0 «— (eudozus-sgn f = (A-. 0)) (is ?lhs <— ?rhs)

using eudozus-sgn-cong|OF rep-real-abs-real-refl, OF assms| abs-real-eql eudozus-sgn-def
neg-one-def one-def zero-def

by (auto simp add: sgn-real-def)

lemma sgn-zero-iff [simp]: sgn (z :: real) = 0 — z = 0
using eudozus-sgn-iff (1) sgn-abs-real-zero-iff zero-iff-bounded’ slope-refl
by (induct) (metis (mono-tags) rep-real-abs-real-refl rep-real-iff)

lemma sgn-zero[simp]: sgn (0 :: real) = 0 by simp

lemma sgn-abs-real-one-iff:

assumes slope f

shows sgn (abs-real f) = 1 +— pos f

using eudozus-sgn-cong|OF rep-real-abs-real-refl, OF assms] abs-real-eql eudozus-sgn-def
neg-one-def one-def zero-def

by (auto simp add: sgn-real-def)

lemmas sgn-pos = sgn-abs-real-one-iff[THEN iffD2, simp]

lemma sgn-one[simp|: sgn (1 :: real) = 1 by (subst one-def) (fastforce simp add:
pos-def iff: sgn-abs-real-one-iff)

lemma sgn-abs-real-neg-one-iff:

assumes slope f
shows sgn (abs-real f) = — 1 <— neg f

24

using eudozus-sgn-cong| OF rep-real-abs-real-refl, OF assms| abs-real-eql eudozus-sgn-def
neg-one-def one-def zero-def pos-neg-exclusive
by (auto simp add: sgn-real-def)

lemmas sgn-neg = sgn-abs-real-neg-one-iff THEN iffD2, simp]

lemma sgn-neg-one[simpl: sgn (— 1 :: real) = — 1 by (subst neg-one-def) (fastforce
stmp add: neg-def eudozus-uminus-def iff: sgn-abs-real-neg-one-iff)

lemma sgn-plus:
assumes sgn x = (1 :: real) sgn y = 1
shows sgn (z + y) = 1
proof —
have pos: pos (rep-real z) pos (rep-real y) using assms sgn-abs-real-one-iff[OF
slope-rep-real] by simp+
{
fix C :: int assume C-nonneg: C' > 0
then obtain N M where Vn>N. rep-real x n > C ¥V n>M. rep-real y n > C
using pos unfolding pos-def by presburger
hence Vn> max N M. (rep-real © +. rep-real y) n > C using C-nonneg
unfolding eudozus-plus-def by fastforce
hence AN.Vn > N. (rep-real x +. rep-real y) n > C by blast

thus ?thesis using pos-def by (simp add: eudozus-plus-cong plus-real-def)
qed

lemma sgn-times: sgn ((x :: real) * y) = sgn x * sgn y
proof (casesz =0V y = 0)
case Fulse
have x: [z # 0; pos (rep-real y)] = sgn ((z :: real) * y) = sgn = * sgn y for =
Y
proof (induct x rule: slope-induct, induct y rule: slope-induct)
case (slope y x)
hence pos-y: pos y using pos-cong by blast
show ?case
proof (cases pos x)
case pos-z: True
{
fix C :: int assume asm: C > 0
then obtain N where N:Vn > N. zn > C using pos-z unfolding pos-def
by blast
then obtain N’ where Vn> N'. y n > maz 0 N using pos-y unfolding
pos-def by (meson maz.coboundedl)
hence 3N’ Vn> N'. z (y n) > C using N by force
}
hence pos (z *. y) unfolding pos-def eudozus-times-def by simp
thus ?thesis using pos-z pos-y slope by (simp add: eudozus-times-def)
next
case -: Fulse

25

hence neg-z: neg = using slope by (metis abs-real-eql neg-iff-nonpos-nonzero
zero-def zero-iff-bounded)
{
fix C :: int assume C > 0
then obtain N where N:Vn > N. z n < — C using neg-z unfolding
neg-def by blast
then obtain N’ where Vn> N’. y n > max 0 N using pos-y unfolding
pos-def by (meson maz.coboundedl)
hence IN’. Vn> N'. z (y n) < —C using N by force
}
hence neg (z *. y) unfolding neg-def eudozus-times-def by simp
thus ?thesis using neg-x pos-y slope by (simp add: eudozus-times-def)
qed
qed
moreover have sgn ((z :: real) * y) = sgn x * sgn y if neg-z: neg (rep-real z)
and neg-y: neg (rep-real y) for z y
proof —
have pos-uminus-y: pos (rep-real (— y)) by (metis abs-real-eq-iff eudozus-uminus-cong
map-fun-apply neg-iff-pos-uminus neg-y pos-cong rep-real-abs-real-refl rep-real-iff
uminus-real-def)
moreover have z # 0 using neg-iff-nonpos-nonzero neg-z zero-iff-bounded’ by
fastforce
ultimately have sgn (— (z x y)) = — 1 using sgn-neg[OF slope-rep-real neg-z]
sgn-pos|OF slope-rep-real pos-uminus-y| * by fastforce
hence pos (rep-real (z * y)) by (metis eudoxus-uminus-cong map-fun-apply
pos-iff-neg-uminus sgn-abs-real-neg-one-iff slope-refl slope-rep-real uminus-real-def)
thus ?thesis using sgn-neg[OF slope-rep-real] sgn-pos|OF slope-rep-real] neg-z
neg-y by simp
qed
ultimately show ?thesis using False neg-iff-nonpos-nonzero| OF slope-rep-real]
zero-iff-bounded’
by (cases pos (rep-real) ; cases pos (rep-real y)) (fastforce simp add: mult.commute)+

qed (force)

lemma sgn-uminus: sgn (— (z :: real)) = — sgn x by (metis (mono-tags, lifting)
mult-minus] sgn-neg-one sgn-times)

lemma sgn-plus”:

assumes sgn x = (—1 :: real) sgn y = —1

shows sgn (z + y) = —1

using assms sgn-uminus|of x| sgn-uminus|of y] sgn-uminus[of x + y] sgn-plus|of
—z — Yy

by (simp add: equation-minus-iff)

lemma pos-dual-def:
assumes slope f
shows pos f = (VC > 0. 3N.Vn < N. fn < -0C)
proof—
have pos f = neg (f *e (— id)) by (metis abs-real-eq-iff abs-real-times add.inverse-inverse

26

assms eudozxus-times-commute mult-minus1-right neg-one-def sgn-abs-real-neg-one-iff
sgn-abs-real-one-iff sgn-uminus slope-neg-one)

also have ... = (VC > 0. IN.Vn > N. (f (— n)) < —C) unfolding neg-def
eudozus-times-def eudoxus-uminus-def by simp

alsohave ...= (VC > 0. 3N.Vn < N. fn < —C) by (metis add.inverse-inverse
minus-le-iff)

finally show ?thesis .
qed

lemma neg-dual-def:

assumes slope f

shows neg f = (VC > 0. AN.Yn < N. fn > C)

unfolding neg-iff-pos-uminus using assms by (subst pos-dual-def) (auto simp
add: eudozus-uminus-def)

lemma pos-representative:

assumes slope f pos f

obtains g where f ~. g An.n > N = gn>C
proof —

obtain N’ where N’: V2>N'. f z > maxz 0 C using assms unfolding pos-def
by (meson maz.coboundedl)

have x: I = abs-real (A\xz. © + N’ — N) slope (Az. © + N’ — N) unfolding
one-def by (intro abs-real-eql) (auto simp add: eudozus-rel-def slope-def introl:
boundedI)

hence abs-real f * 1 = abs-real (f *. (Az. z + N’ — N)) using abs-real-times|OF
assms(1) x(2)] by simp

hence [~¢ (f x« (Az. + N’ — N)) using assms x by (metis abs-real-eq-iff
eudozus-times-commute mult.right-neutral)

moreover have Vz>N. (f *. (Az. £ + N’ — N)) z > C unfolding eu-
dozus-times-def using N’ by simp

ultimately show “thesis using that by blast
qed

lemma pos-representative’:

assumes slope f pos f

obtains g where f ~. g An. gn>C = n>N
proof —

obtain N’ where Vz < N’ f2 < — (mazx 0 (— C) + 1) using assms
unfolding pos-dual-def[OF assms(1)] by (metis maz.cobounded! add-increasing2
zero-less-one-class.zero-le-one)

hence N:Vz < N'. fz < min 0 C by fastforce

have x: I = abs-real (A\z. + N’ — N) slope (Az. © + N’ — N) unfolding
one-def by (intro abs-real-eql) (auto simp add: eudozus-rel-def slope-def intro!:
boundedI)

hence abs-real f x 1 = abs-real (f *. (A\z. z + N’ — N)) using abs-real-times|OF
assms(1) x(2)] by simp

hence f ~. (f *c (Az. + N’ — N)) using assms * by (metis abs-real-eq-iff
eudozus-times-commute mult.right-neutral)

moreover have Vz2<N. (f %, (Az. £ + N’ — N)) 2z < C unfolding ecu-

27

dozus-times-def using N’ by simp
ultimately show ?thesis using that by (meson linorder-not-less)
qed

lemma neg-representative:

assumes slope f neg f

obtains g where f ~. g An.n > N = gn < - C
proof —

obtain N’ where V2>N'. f 2 < — maz 0 C using assms unfolding neg-def by
(meson maz.coboundedl)

hence N: Vz>N'. fz < min 0 (— C) by force

have *: 1 = abs-real (Az. © + N’ — N) slope (Az. © + N’ — N) unfolding
one-def by (intro abs-real-eql) (auto simp add: eudozus-rel-def slope-def introl:
boundedI)

hence abs-real f x 1 = abs-real (f *. (Az. z + N’ — N)) using abs-real-times|OF
assms(1) x(2)] by simp

hence f ~. (f *¢ (Az. x + N’ — N)) using assms * by (metis abs-real-eq-iff
eudozus-times-commute mult.right-neutral)

moreover have Vz>N. (f . (Az. © + N’ — N)) z < — C unfolding eu-
dozus-times-def using N' by simp

ultimately show %thesis using that by blast
qged

lemma neg-representative’:

assumes slope f neg f

obtains g where f ~. g An. gn < - C = n>N
proof —

obtain N’ where Vz < N'. fz > maz 0 (— C) + 1 using assms unfolding
neg-dual-def[OF assms(1)] by (metis maz.coboundedl add-increasing2 zero-less-one-class.zero-le-one)

hence N:Vz < N'. fz > maz 0 (— C) by fastforce

have x: I = abs-real (A\xz. + N’ — N) slope (Az. © + N’ — N) unfolding
one-def by (intro abs-real-eql) (auto simp add: eudozus-rel-def slope-def intro!:
boundedI)

hence abs-real f x 1 = abs-real (f *. (Az. x + N’ — N)) using abs-real-times[OF
assms(1) x(2)] by simp

hence f ~. (f *. (Az. + N’ — N)) using assms * by (metis abs-real-eq-iff
eudozus-times-commaute mult.right-neutral)

moreover have Vz < N. (f #. (Az. z + N’ — N)) z > — C unfolding eu-
dozus-times-def using N’ by simp

ultimately show ?thesis using that by (meson linorder-not-less)
qed

We call a real z less than another real y, if their difference is positive.

definition
x < (y:real) = sgn (y — z) = 1

definition
z<(yureal) =z <yVe=y

28

definition
abs-real: |z :: real| = (if 0 < x then x else — x)

instance ..
end

instance real :: linorder
proof

fix zy 2z :: real

show (z < y) = (z < y A = y < z) unfolding less-eq-real-def less-real-def using
sgn-times[of —1 x — y] by fastforce

show z < z unfolding less-eq-real-def by blast

show [z < y; y < 2] = z < z unfolding less-eq-real-def less-real-def using
sgn-plus by fastforce

show [z < y; y < z] = 2z = y unfolding less-eq-real-def less-real-def using
sgn-times[of —1 x — y] by fastforce

show z < y V y < z unfolding less-eg-real-def less-real-def using sgn-times|of
—1 z — y] sgn-range by force
qed

lemma real-lel:
assumes sgn (y —) € {0 :: real, 1}
shows z < y
using assms unfolding less-eq-real-def less-real-def by force

lemma real-lessI:
assumes sgn (y — z) = (1 :: real)
shows z < y
using assms unfolding less-real-def by blast

lemma abs-real-lel:
assumes slope f slope g N2. 2> N = fz > gz
shows abs-real f > abs-real g
proof —
{
assume abs-real f # abs-real g
hence abs-real (f +. —e g) # 0 by (metis abs-real-minus assms(1,2) eq-iff-diff-eq-0)
hence — bounded (f +. —e g) by (metis abs-real-eql zero-def zero-iff-bounded)
hence pos (f +. —c g) V neg (f +e —e g) using assms eudozus-plus-cong
eudozus-uminus-cong neg-iff-nonpos-nonzero slope-refl by auto
moreover
{
assume neg (f +e —¢ g)
then obtain N’ where (f +. — g) 2 < — 1 if z > N’ for 2z unfolding
neg-def by fastforce
hence f z < g z if z > N’ for z using that unfolding eudozus-plus-def
eudozus-uminus-def by fastforce
hence Fulse using assms by (metis linorder-not-less nle-le)

29

}

ultimately have abs-real f > abs-real g using assms by (fastforce intro:
real-lessl sgn-pos simp add: eudozus-plus-def eudozus-uminus-def)
}
thus ?thesis unfolding less-eq-real-def by argo
qed

lemma abs-real-lessI:
assumes slope fslope g Nz. 2> N = f2>9g2z2 NC. C >0 = 3z. fz>gz2
+ C
shows abs-real f > abs-real g
proof —
{
assume bounded (f +¢ —c g)
then obtain C where |fz — g 2| < C C > 0 for z unfolding eudozus-plus-def
eudozus-uminus-def by auto
moreover obtain z where fz > g z + (C + 1) using assms(4)[of C + 1]
calculation by auto
ultimately have Fulse by (metis abs-le-D1 add.commute dual-order.trans
le-diff-eq linorder-not-less zless-addl-eq)
}
moreover have abs-real f > abs-real g using assms abs-real-lel by blast
ultimately show ?thesis by (metis abs-real-minus assms(1,2) eq-iff-diff-eq-0
eudozus-plus-cong eudozus-sgn-iff (1) eudozus-uminus-cong order-le-imp-less-or-eq
sgn-abs-real-zero-iff sgn-zero slope-refl)
qed

lemma abs-real-lessD:
assumes slope f slope g abs-real f > abs-real g
obtains z where 2z > Nfz > g 2

proof —

{

assume IN.Vz>N. fz2< gz
then obtain N where f 2z < g z if 2 > N for z by fastforce
hence Fulse using assms abs-real-lel by (metis linorder-not-le)

thus ?thesis using that by fastforce
qed

2.5 Multiplicative Inverse

We now define the multiplicative inverse. We start by constructing a candi-
date for positive slopes first and then extend it to the entire domain using
the choice function Eps.

instantiation real :: {inverse}
begin

definition eudozus-pos-inverse :: (int = int) = (int = int) where
eudozus-pos-inverse f z = sgn z * Inf ({0..} N {n. fn > |z|})

30

lemma eudozus-pos-inverse:

assumes slope f pos f

obtains g where f ~. g slope (eudozus-pos-inverse g) eudozus-pos-inverse g *.
f ~e id
proof —

let %p = eudoxus-pos-inverse

obtain g where ¢: f ~. g g 2 > 0 = z > 1 for z using pos-representative’|OF
assms| by (metis gt-ex order-less-le-trans)

hence pos-g: pos g using assms pos-cong by blast

have slope-g: slope g using g unfolding eudozus-rel-def by simp

have 3n > 0. g n > |z| for z using pos-g unfolding pos-def by (metis abs-ge-self
order-less-imp-le zero-less-abs-iff)

hence nonempty-¢: {0..} N {n. |z| < g n} # {} for z by blast

have bdd-below-@: bdd-below ({0..} N {n. g n > |z|}) for z by simp

have ¢-bound: gn >z = % gz < nif 2z > 0n > 0 for n z unfolding eu-
dozus-pos-inverse-def using cInf-lower[OF - bdd-below-p, of n z| that abs-of-nonneg
zsgn-def by simp

hence p-bound”: %p gz >n = gn < zif 2 > 0 n > 0 for z n using that
linorder-not-less by blast

have p-mem: z > 0 = % g z € {0..} N {n. g n > |z|} for z unfolding
eudozus-pos-inverse-def using int-Inf-mem[OF nonempty-¢ bdd-below-p, of 2] by
stmp

obtain L where |g (I + (z — 1)) — (g1 + g (z — 1))| < L for z using slope-g
by fast

hence x: |gz — (g1 + g (2 — 1))| < L for z by simp

hence L: g2 < g (2 — 1)+ (L + g 1) for z using abs-le-D1 *[of z] by linarith

let 7y =Amn. (g(m+(=n) —(@gm+g(=n)) —(g(n+(=n) —(gn
+g9(=mn) +g0

obtain ¢ where c¢: |[g (m + (— n)) — (¢ m + ¢g (— n))| < ¢ for m n using
slope-g by fast

obtain ¢’ where ¢ |g (n + (— n)) — (g n + g (— n))| < ¢’ for n using slope-g
by fast

have |2y m | < |g (m + (- n) = (gm + g (=)| + |g (0 + (=) — (g n
+ g (— n))| + |g 0| for m n by linarith

hence *: |y m n| < ¢ + ¢’ + |g 0| for m n using c[of m n] ¢[of n] by linarith

define C where C = 2 x (¢ + ¢’ + |g 0])

have g (m — (n+p)) —(gm —(gn+gp)) = 2%y (m —n) p+ % mn for
m n p by (simp add: algebra-simps)

hence [g (m — (n +p)) —(gm — (gn+gp)| < (c+c +|g0]) + (c+ ¢
+ |g 0|) for m n p using x[of m — n p| x[of m n] by simp

hence *: |g (m — (n 4+ p)) — (gm — (g n + gp))| < C for m n p unfolding
C-def by (metis mult-2)

31

have C: g (m — (n+p)) <gm—(gn+gp)+ Cgm—(gn+gp)+ (- C)
< g (m — (n+ p)) for m n p using x[of m n p| abs-le-D1 abs-le-D2 by linarith+

have bounded: bounded h if bounded: bounded (g o h) for h :: 'a = int
proof (rule ccontr)
assume asm: - bounded h
obtain C where C: |g (h 2)| < C C > 0 for z using bounded by fastforce
obtain N where N: gz > C + 1 if z > N for z using C pos-g unfolding
pos-def by fastforce
obtain N'where N gz < — (C + 1) if 2 < N’ for 2z using C pos-g unfolding
pos-dual-def[OF slope-g] by (meson add-increasing2 linordered-nonzero-semiring-class. zero-le-one)
obtain z where |h z| > maz |N| |N’| using asm unfolding bounded-alt-def
by (meson lel)
hence h z € {.N'} U {N..} by fastforce
hence g (hz) € {.— (C + 1)} U{C + 1..} using N N’ by blast
hence |g (h 2)| > C + 1 by fastforce
thus Fulse using C(1)[of z] by simp
qed

define D where D = maz |- (C+ (L+g1)+ (L+g1)||C+ L+ g1
{

fix mn ::int

assume asm: m > 0n > 0

have g (%0 g m) > m using p-mem asm by simp

moreover have ?p g m > 1 using calculation g asm by simp

moreover have m > g (%p g m — 1) using asm calculation by (intro p-bound”)
auto

ultimately have m: m € {g (%0 gm — 1)<..g (% g m)} by simp

have g (%¢ g n) > n using ¢-mem asm by simp

moreover have ?p g n > 1 using calculation g asm by simp

moreover have n > g (%0 g n — 1) using asm calculation by (intro p-bound’)
auto

ultimately have n: n € {g (?p gn — 1)<..g (% g n)} by simp

have g (%0 g (m + n)) > m + n using p-mem asm by simp

moreover have %p g (m + n) > 1 using calculation g asm by simp

moreover have (m + n) > g (%p g (m + n) — 1) using asm calculation by
(intro p-bound’) auto

ultimately have m-n: m + n € {g (%0 g (m + n) — 1)<..g (%0 g (m + n))}
by simp

have x: g (%0 g (m +n)) = (g (Bpgm — 1)+ g (% gn—1))>0g (% g
(m+mn)—1)— (9 (% gm) + g (% gn)) < 0 using m-n m n by simp+

have g (%o g (m +n) — (o gm + %o gn)) < g (%o g(m+mn)) —(g9(%g

m) + g (% gn)) + C using C by blast
alsohave ... < g (%pg(m+mn) — 1) —g (% gm) —g(2pgn)+ (C+ L

32

+ g 1) using L by fastforce
finally have upper: g (0o g(m +n) — (o gm+ %0 gn)) < C+ L+ gl
using * by fastforce

have — (C+ (L+g1)+ (L+g1) <g(%g(m+n))—g(fogm-—1)
—g(%gn—1)—(C+(L+g1)+ (L+ g1)) using * by linarith

also have ... < g (%0 g (m + n)) — (9 (Zp gm) + g (%0 gn)) + (— C) using
L[THEN le-imp-neg-le, of ?p g m| L[THEN le-imp-neg-le, of ?¢ g n] by linarith

also have ... < g (%0 g (m + n) — (%0 g m + %0 g n)) using C by blast

finally have lower: — (C + (L+ g 1)+ (L+g1))<g (%0 g(m+n)—
(o gm + % gn)) .

have |g (%0 g (m + n) — (% g m + % g n))| < D using upper lower
unfolding D-def by simp
}
hence bounded (g o (A(m, n). 20 g (m +n) — (% gm + %p gn)) o (A(m, n).
(maxz 1 m, max 1 n))) by (intro boundedI[of - D]) auto
hence bounded ((AM(m, n). %0 g (m + n) — (% gm + %p g n)) o (A(m, n).
(maz 1 m, maz 1 n))) by (metis (mono-tags, lifting) bounded comp-assoc)
then obtain C where |((A(m, n). 2o g (m + n) — (2o gm + %o gn)) o (A\(m,
n). (maz 1 m, maz 1 n))) (m, n)| < C for m n by blast
hence |?%p g (m +n) — (%0 gm + ?2p gn)| < Cif m > 1 n> 1 for m n using
that| THEN maz-absorb2] by (metis (no-types, lifting) comp-apply prod.case)
hence slope: slope (2p g) by (intro slope-odd[of - C]) (auto simp add: eu-
dozus-pos-inverse-def)
moreover
{
obtain C where C: |g (%o gn — 1)+ 1) — (g (%pgn—1)+g1)|<C
for n using slope-g by fast
have C-bound: g (?p gn — 1) > g (% gn) — (|]g 1| + C) for n using C|of
n] by fastforce

fix n :: int
assume asm: n > 0
have upper: g (%p g n) > n using @-mem asm by simp
moreover have ?p g n > 1 using calculation g asm by simp
moreover have n > g (%p g n — 1) using calculation asm by (intro p-bound’)
auto
moreover have n > g (%p gn) — (|g 1| + C) using calculation C-bound|of
n] by force
ultimately have |g (?p gn) — n| < |g 1| + C by simp
}
hence id: g *. %0 g ~. id using slope-g slope by (intro eudozus-rell[of - - 1
lg 1] + C]) (auto simp add: eudozus-times-def)

ultimately show ?thesis using g that eudozus-rel-trans eudoxus-times-cong
slope-refll eudozus-times-commute[OF slope slope-g] by metis
qed

33

definition eudozus-inverse :: (int = int) = (int = int) where
eudozus-inverse f = (if — bounded f then SOME g. slope g A (g *c f) ~. id else
(A-. 0))

lemma
assumes slope f
shows slope-eudozus-inverse: slope (eudozus-inverse f) (is ?slope) and
eudozus-inverse-id: — bounded f = eudozus-inverse [. [~. id (is =
bounded f = ?id)
proof —
have «: [slope g; (g *¢ f) ~e id] = ?slope [slope g; (g *e [) ~e id; = bounded
f] = %id for ¢
unfolding eudozus-inverse-def using somel[where ?P=M\g. slope g A (g *. f)
~e id] by auto
{
assume pos: pos f
then obtain g where slope (eudozus-pos-inverse g) eudozus-pos-inverse g *.
| ~e id using eudozus-pos-inverse[OF assms| by blast
hence ?slope — bounded f = ?id using pos pos-iff-nonneg-nonzero[OF assms]
* by blast+

}

moreover

{

assume nonpos: — pos f
{
assume nonzero: - bounded f
hence uminus-f: slope (—. f) pos (—e f) using neg-iff-pos-uminus neg-iff-nonpos-nonzero
assms slope-refl nonpos by auto
then obtain g where ¢: slope (eudozus-pos-inverse g) eudozus-pos-inverse g
k¢ (—e f) ~e id using eudozus-pos-inverse by metis
hence —. (eudozus-pos-inverse g) %, f ~ id by (metis (full-types) uminus-f(1)
abs-real-eq-iff abs-real-times abs-real-uminus assms(1) eudozus-times-commute mi-
nus-mult-commute rel-funE uminus-real.rsp)
moreover have slope (—. (eudozus-pos-inverse g)) using uminus-f eu-
dozus-uminus-cong slope-refl g by presburger
ultimately have ?slope ?id using * nonzero by blast+
}
moreover have bounded f = ?slope unfolding eudozus-inverse-def by simp
ultimately have Zslope = bounded f = ?id by blast+
}
ultimately show Zslope — bounded f = ?id by blast+
qged

quotient-definition
(inverse :: real = real) is eudozus-inverse
proof —
fix z 2’ assume asm: T ~, 2’
hence slopes: slope x slope x’ unfolding eudozus-rel-def by blast+
show cudozus-inverse x ~, eudozrus-inverse ©’

34

proof (cases bounded x)
case True
hence bounded =’ by (meson asm eudozus-rel-sym eudozus-rel-trans zero-iff-bounded)
then show #“thesis unfolding eudozus-inverse-def using True slope-zero
slope-refl by auto
next
case Fulse
hence — bounded x’ by (meson asm eudozus-rel-sym eudozus-rel-trans zero-iff-bounded)
hence inverses: eudoxus-inverse x *., T ~, id eudozus-inverse ' x, T’ ~, id
using slopes eudozus-inverse-id False by blast+

have alt-inverse: eudozus-inverse x *. ' ~,. id
using inverses eudozus-times-cong|OF slope-refll, OF slope-eudoxus-inverse
asm, OF slopes(1)]
eudoxus-rel-sym eudozus-rel-trans by blast

have eudozus-inverse x ~, eudozus-inverse = *. (eudozus-inverse x’ %, ')
using eudozus-times-cong| OF slope-refll, OF slope-eudozus-inverse inverses(2)[THEN

eudozus-rel-sym], OF slopes(1)]

by (simp add: eudozus-times-def)

also have ... ~, eudozus-inverse ¢’ *, (eudozus-inverse x *. ')
using eudozus-times-commute| OF slope-eudozus-inverse(1,1), OF slopes,

THEN eudozus-times-cong, OF slope-refll, OF slopes(2)]

by (simp add: eudozus-times-def comp-assoc)

also have ... ~, eudozus-inverse ©’ x. id using alt-inverse eudozus-times-cong[OF

slope-refll] slope-eudozus-inverse slopes by blast

also have ... = eudozus-inverse z’' unfolding eudozus-times-def by simp
finally show ?thesis .
qed
qed
definition

x div (y::real) = inverse y * x

instance ..
end

lemmas eudozus-inverse-cong = apply-rsp’|OF inverse-real.rsp, intro]

lemma eudozus-inverse-abs|simp):

assumes slope f — bounded f

shows inverse (abs-real f) * abs-real f = 1

unfolding inverse-real-def using eudozus-inverse-id[OF assms]

by (metis abs-real-eql abs-real-times assms(1) eudozus-inverse-cong map-fun-apply
one-def rep-real-abs-real-refl slope-refl)

The Eudoxus reals are a field, with inverses defined as above.

instance real :: field
proof

35

fix z y :: real

show z # 0 = inverse x x x = 1 using eudozus-sgn-iff (1) sgn-abs-real-zero-iff
by (induct = rule: slope-induct) force

show z / y = z * inverse y unfolding divide-real-def by simp

show inverse (0 :: real) = 0 unfolding inverse-real-def eudozus-inverse-def
using zero-def zero-iff-bounded’ by auto
qed
instantiation real :: distrib-lattice
begin
definition

(inf :: real = real = real) = min

definition
(sup :: real = real = real) = maz

instance by standard (auto simp: inf-real-def sup-real-def maz-min-distrib2)
end

The ordering on the Eudoxus reals is linear.

instance real :: linordered-field
proof
fix zy 2z :: real
show z + z < z+ yifz <y
proof (cases © = y)
case False
hence z < y using that by simp
thus ?thesis
proof (induct z rule: slope-induct, induct y rule: slope-induct, induct z rule:
slope-induct)
case (slope h g f)
hence pos (g +. (— f)) unfolding less-real-def using sgn-abs-real-one-iff
by (force simp add: eudozus-plus-def eudorus-uminus-def)
thus ?case by (metis slope(4) less-real-def add-diff-cancel-left nless-le)
qed
qed (force)

show |z| = (if x < 0 then —x else z) by (metis abs-real less-eq-real-def not-less-iff-gr-or-eq)

show sgn © = (if x = 0 then 0 else if 0 < z then 1 else — 1) using sgn-range
sgn-zero-iff by (auto simp: less-real-def)

show [z < y; 0 < z] = z x & < z x y by (metis (no-types, lifting) diff-zero
less-real-def mult.right-neutral right-diff-distrib’ sgn-times)
qed

The Eudoxus reals fulfill the Archimedean property.

instance real :: archimedean-field
proof

36

fix = :: real
show 2. xz < of-int 2
proof (induct x rule: slope-induct)
case (slope y)
then obtain A B where linear-bound: |y z| < A% |z| + B0 < A 0 < B for
z using slope-linear-bound by blast
{
fix C assume C-nonneg: 0 < (C :: int)
{
fix z assume asm: z > B 4+ C
have y 2 + C < A * |2|] + B 4+ C using abs-le-D1 linear-bound by auto
also have ... < (A + 1) * |z| using C-nonneg linear-bound(2,3) asm by
(auto simp: distrib-right)
finally have y z + C < (A + 1) * z using add-nonneg-nonneg| OF C-nonneg
linear-bound(3)] abs-of-nonneg[of z] asm by linarith

hence IN. Vz > N. (((x) (A + 1)) +e¢ — y) = > C unfolding ecu-

doxus-plus-def eudoxus-uminus-def by fastforce

}

hence pos (((¥) (A + 1)) +. — y) unfolding pos-def by blast

hence pos (rep-real (of-int (A + 1) — abs-real y)) unfolding real-of-int us-
ing slope by (simp, subst pos-cong[OF rep-real-abs-real-refl]) (auto simp add: eu-
dozus-plus-def eudoxus-uminus-def)

hence abs-real y < of-int (A + 1) unfolding less-real-def by (metis sgn-pos
rep-real-abs-real-refl rep-real-iff slope-rep-real)

thus ?case unfolding less-eq-real-def by blast

qed

qed

2.6 Completeness

To show that the Eudoxus reals are complete, we first introduce the floor
function.

instantiation real :: floor-ceiling
begin

definition
(floor =z (real = int)) = (Az. (SOME z. of-int z < x A x < of-int z + 1))

instance
proof
fix = :: real
show of-int |z| < z A z < of-int (|z] + 1) using somel[of Az. of-int z < z A
x < of-int z + 1] floor-exists by (fastforce simp add: floor-real-def)
qed
end

lemma cudozus-dense-rational:
fixes z y :: real

37

assumes r < y

obtains m n where = < (of-int m / of-int n) (of-int m / of-int n) < yn > 0
proof —

obtain n :: int where n: inverse (y — z) < of-int n.n > 0 by (metis ex-less-of-int
antisym-convd dual-order.strict-trans of-int-less-iff)

hence *: inverse (of-int n) < y — x by (metis assms diff-gt-0-iff-gt inverse-inverse-eq
inverse-less-iff-less inverse-positive-iff-positive of-int-0-less-iff)

define m where m = floor (z * of-int n) + 1

{

assume y < of-int m / of-int n
hence inverse (of-int n) < of-int m / of-int n — x using * by linarith
hence =z < (of-int m — 1) / of-int n by (simp add: diff-divide-distrib in-
verse-eq-divide)
hence Fulse unfolding m-def using n(2) divide-le-eq linorder-not-less by

fastforce

}

moreover have z < of-int m / of-int n unfolding m-def by (meson n(2)
floor-correct mult-imp-less-div-pos of-int-pos)

ultimately show ?thesis using that n by fastforce
qed

The Eudoxus reals are a complete field.

lemma eudozus-complete:
assumes S # {} bdd-above S
obtains u :: real where As. s€ S = s<u Ay. (A\s.s€ S = s<y) = u
<y
proof (cases Ju € 5. Vs e S. s < u)
case Fulse
hence no-greatest-element: 3y € S. x < y if x € S for z using that by force
define u :: int = int where u = (Az. sgn z * Sup ((Az. |of-int |z| * z]) *9))

have bdd-above-u: bdd-above ((Az. |of-int |z| x z]) ¢S) for z by (intro bdd-above-image-mono[OF
- assms(2)] monol) (simp add: floor-mono mult.commute mult-right-mono)

have u-Sup-nonneg: z > 0 = |of-int z * s] < u z and
u-Sup-nonpos: z < 0 = — |of-int (— z) * s] > uzif se€ S for sz
unfolding u-def using cSup-upper[OF - bdd-above-u, of |of-int |z| * s| 2] that
abs-of-nonpos zsgn-def by force+

have u-mem: u z € (Az. sgn z * |of-int |z| x z]) ¢ S for z unfolding u-def
using int-Sup-mem[OF - bdd-above-u, of z| assms by auto

have slope: slope u
proof —
{
fix m n :: int assume asm: m > 0n > 0
obtain z-m where z-m: z-m € S u m = |of-int m * z-m]| using u-mem|[of
m| asm zsgn-def by auto
obtain z-n where z-n: z-n € S u n = |of-int n * x-n| using u-memof n]

38

asm zsgn-def by auto
obtain z-m-n where z-m-n: z-m-n € S u (m + n) = [of-int (m + n) *
z-m-n| using u-mem[of m + n| asm zsgn-def by auto

define z where z = max (maz z-m z-n) x-m-n
have z: z € S unfolding z-def using z-m z-n z-m-n by linarith

have z > z-m © > z-n © > z-m-n unfolding z-def by linarith+
hence um < |of-int m * 2] un < |of-int n x x| u (m + n) < |of-int (m +
unfolding z-m z-n z-m-n by (meson asm floor-less-cancel linorder-not-less
mult-le-cancel-left-pos of-int-0-less-iff add-pos-pos)+
hence um = |of-int m * x| un = [of-int n * z| u (m + n) = |of-int m x z
+ of-int n * x|
using u-Sup-nonneg[OF z(1), of m] u-Sup-nonneg[OF z(1), of n] u-Sup-nonneg| OF
z(1), of m + n] asm add-pos-pos|OF asm] by (force simp add: distrib-right)-+
moreover
{
fix a b :: real
have a — of-int |a] € {0..<1} using floor-less-one by fastforce
moreover have b — of-int |b| € {0..<1} using floor-less-one by fastforce
ultimately have (¢ — of-int |a]) + (b — of-int |b]) € {0..<2} unfolding
atLeastLessThan-def by simp
hence (a + b) — (of-int |a| + of-int |b]) € {0..<2} by (simp add:
diff-add-eq)
hence [a + b — (of-int |a] + of-int |b])| € {0..<2} by simp
hence |a + b] — (|a] + [b]) € {0..<2} by (metis floor-diff-of-int of-int-add)

ultimately have |u (m + n) — (u m + u n)| < 2 by (metis abs-of-nonneg
atLeastLess Than-iff nless-le)

}

moreover have u z = — u (— 2) for 2z unfolding u-def by simp
ultimately show ¢thesis using slope-odd by blast
qed

{

fix s assume s € §
then obtain y where y: s < y y € S using no-greatest-element by blast
then obtain m n :: int where x: s < (of-int m / of-int n) (of-int m / of-int
n) < y n > 0 using eudozus-dense-rational by blast
hence n-nonneg: n > 0 by simp
{
fix z :: int assume z-nonneg: z > 0
have z x m = |of-int (z x n) % (of-int m / of-int n) :: real| using *(3) by
stmp (auto simp only: of-int-mult[symmetric] floor-of-int)
also have ... < |of-int (z * n) * y| using *(2) by (meson floor-mono
mult-left-mono n-nonneg nless-le of-int-nonneg z-nonneg zero-le-mult-iff)
also have ... < u (z * n) using u-Sup-nonneg| OF y(2)] mult-nonneg-nonneg| OF
z-nonneg n-nonneg] by blast
finally have u (z x n) > 2z x m .

39

}

hence abs-real (u *. (x) n) > of-int m using slope unfolding real-of-int eu-
dozus-times-def by (intro abs-real-lel[where ?N=0)]) (auto simp add: mult.commute)

moreover have abs-real u * of-int n = abs-real (u *. (*) n) unfolding
real-of-int using slope by (simp add: eudozus-times-def comp-def)
ultimately have s < abs-real u using * by (metis lel mult-imp-div-pos-le
of-int-0-less-iff order-le-less-trans order-less-asym)
}
moreover
{
fix y assume asm: s < y if s € S for s
assume abs-real u > y
then obtain m n :: int where x: y < (of-int m / of-int n) (of-int m / of-int
n) < abs-real u n > 0 using eudozus-dense-rational by blast
hence of-int m < abs-real u * of-int n by (simp add: pos-divide-less-eq)
hence of-int m < abs-real (u *. (*) n) unfolding real-of-int using slope by
(simp add: eudozus-times-def comp-def)
moreover have slope (u *. (*) n) using slope by (simp add: eudozus-times-def)
ultimately obtain z where z: (u %, (¥) n) 2z > m % z z > 1 unfolding
real-of-int using abs-real-lessD by blast
hence *x: u (n * 2) > m x z by (simp add: eudozus-times-def comp-def)

obtain z where z: x € S u (n x z) = |of-int (n * 2) * 2| using u-mem[of n
% 2] zsgn-def[of n * z] mult-pos-pos|OF =(3), of 2] 2(2) by fastforce

have of-int (n * z) * x < of-int z * of-int n % y using asm[OF z(1)] using x*
z by auto

also have ... < of-int z x of-int m using * z by (simp add: mult.commute
pos-less-divide-eq)

finally have of-int (n * z) * © < of-int (m * z) by (simp add: mult.commute)

hence Fulse using *x by (metis floor-less-iff less-le-not-le z(2))

}

ultimately show ?thesis using that by force
qed blast

end

References

[1] R. D. Arthan. The Eudoxus real numbers. arXiv:math/0405454, 2004.

40

	Slopes
	Bounded Functions
	Properties of Slopes
	Set Membership of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Inf and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Sup on Integers

	Eudoxus Reals
	Type Definition
	Addition and Subtraction
	Multiplication
	Ordering
	Multiplicative Inverse
	Completeness

