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Abstract

Ergodic theory is the branch of mathematics that studies the be-
haviour of measure preserving transformations, in finite or infinite mea-
sure. It interacts both with probability theory (mainly through mea-
sure theory) and with geometry as a lot of interesting examples are
from geometric origin. We implement the first definitions and theo-
rems of ergodic theory, including notably Poincaré recurrence theo-
rem for finite measure preserving systems (together with the notion of
conservativity in general), induced maps, Kac’s theorem, Birkhoff the-
orem (arguably the most important theorem in ergodic theory), and
variations around it such as conservativity of the corresponding skew
product, or Atkinson lemma, and Kingman theorem. Using this mate-
rial, we formalize completely the proof of the main theorems of [GK15]
and [Gou18].
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1 SG Libary complements
theory SG-Library-Complement

imports HOL−Probability.Probability
begin

In this file are included many statements that were useful to me, but be-
long rather naturally to existing theories. In a perfect world, some of these
statements would get included into these files.
I tried to indicate to which of these classical theories the statements could
be added.
lemma compl-compl-eq-id [simp]:

UNIV − (UNIV − s) = s
by auto

notation sym-diff (infixl ‹∆› 70 )
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1.1 Set-Interval.thy

The next two lemmas belong naturally to Set_Interval.thy, next to UN_le_add_shift.
They are not trivially equivalent to the corresponding lemmas with large in-
equalities, due to the difference when n = 0.
lemma UN-le-eq-Un0-strict:
(
⋃

i<n+1 ::nat. M i) = (
⋃

i∈{1 ..<n+1}. M i) ∪ M 0 (is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix x assume x ∈ ?A
then obtain i where i: i<n+1 x ∈ M i by auto
show x ∈ ?B
proof(cases i)

case 0 with i show ?thesis by simp
next

case (Suc j) with i show ?thesis by auto
qed

qed
qed (auto)

I use repeatedly this one, but I could not find it directly
lemma union-insert-0 :
(
⋃

n::nat. A n) = A 0 ∪ (
⋃

n∈{1 ..}. A n)
by (metis UN-insert Un-insert-left sup-bot.left-neutral One-nat-def atLeast-0 atLeast-Suc-greaterThan
ivl-disj-un-singleton(1 ))

Next one could be close to sum.nat_group

lemma sum-arith-progression:
(
∑

r<(N ::nat). (
∑

i<a. f (i∗N+r))) = (
∑

j<a∗N . f j)
proof −

have ∗: (
∑

r<N . f (i∗N+r)) = (
∑

j ∈ {i∗N ..<i∗N + N}. f j) for i
by (rule sum.reindex-bij-betw, rule bij-betw-byWitness[where ?f ′ = λr . r−i∗N ],

auto)

have (
∑

r<N . (
∑

i<a. f (i∗N+r))) = (
∑

i<a. (
∑

r<N . f (i∗N+r)))
using sum.swap by auto

also have ... = (
∑

i<a. (
∑

j ∈ {i∗N ..<i∗N + N}. f j))
using ∗ by auto

also have ... = (
∑

j<a∗N . f j)
by (rule sum.nat-group)

finally show ?thesis by simp
qed

1.2 Miscellanous basic results
lemma ind-from-1 [case-names 1 Suc, consumes 1 ]:

assumes n > 0
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assumes P 1
and

∧
n. n > 0 =⇒ P n =⇒ P (Suc n)

shows P n
proof −

have (n = 0 ) ∨ P n
proof (induction n)

case 0 then show ?case by auto
next

case (Suc k)
consider Suc k = 1 | Suc k > 1 by linarith
then show ?case

apply (cases) using assms Suc.IH by auto
qed
then show ?thesis using ‹n > 0 › by auto

qed

This lemma is certainly available somewhere, but I couldn’t locate it
lemma tends-to-real-e:

fixes u::nat ⇒ real
assumes u −−−−→ l e>0
shows ∃N . ∀n>N . abs(u n −l) < e
by (metis assms dist-real-def le-less lim-sequentially)

lemma nat-mod-cong:
assumes a = b+(c::nat)

a mod n = b mod n
shows c mod n = 0

proof −
let ?k = a mod n
obtain a1 where a = a1∗n + ?k by (metis div-mult-mod-eq)
moreover obtain b1 where b = b1∗n + ?k using assms(2 ) by (metis div-mult-mod-eq)
ultimately have a1 ∗ n + ?k = b1 ∗ n + ?k + c using assms(1 ) by arith
then have c = (a1 − b1 ) ∗ n by (simp add: diff-mult-distrib)
then show ?thesis by simp

qed

lemma funpow-add ′: (f ^^ (m + n)) x = (f ^^ m) ((f ^^ n) x)
by (simp add: funpow-add)

The next two lemmas are not directly equivalent, since f might not be
injective.
lemma abs-Max-sum:

fixes A::real set
assumes finite A A 6= {}
shows abs(Max A) ≤ (

∑
a∈A. abs(a))

by (simp add: assms member-le-sum)

lemma abs-Max-sum2 :
fixes f ::- ⇒ real
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assumes finite A A 6= {}
shows abs(Max (f‘A)) ≤ (

∑
a∈A. abs(f a))

using assms by (induct rule: finite-ne-induct, auto)

1.3 Conditionally-Complete-Lattices.thy
lemma mono-cInf :

fixes f :: ′a::conditionally-complete-lattice ⇒ ′b::conditionally-complete-lattice
assumes mono f A 6= {} bdd-below A
shows f (Inf A) ≤ Inf (f‘A)

using assms by (simp add: cINF-greatest cInf-lower monoD)

lemma mono-bij-cInf :
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::conditionally-complete-linorder
assumes mono f bij f A 6= {} bdd-below A
shows f (Inf A) = Inf (f‘A)

proof −
have (inv f ) (Inf (f‘A)) ≤ Inf ((inv f )‘(f‘A))

apply (rule cInf-greatest, auto simp add: assms(3 ))
using mono-inv[OF assms(1 ) assms(2 )] assms by (simp add: mono-def bdd-below-image-mono

cInf-lower)
then have Inf (f‘A) ≤ f (Inf ((inv f )‘(f‘A)))

by (metis (no-types, lifting) assms(1 ) assms(2 ) mono-def bij-inv-eq-iff )
also have ... = f (Inf A)

using assms by (simp add: bij-is-inj)
finally show ?thesis using mono-cInf [OF assms(1 ) assms(3 ) assms(4 )] by auto

qed

1.4 Topological-spaces.thy
lemma open-less-abs [simp]:

open {x. (C ::real) < abs x}
proof −

have ∗: {x. C < abs x} = abs−‘{C<..} by auto
show ?thesis unfolding ∗ by (auto intro!: continuous-intros)

qed

lemma closed-le-abs [simp]:
closed {x. (C ::real) ≤ abs x}

proof −
have ∗: {x. C ≤ |x|} = abs−‘{C ..} by auto
show ?thesis unfolding ∗ by (auto intro!: continuous-intros)

qed

The next statements come from the same statements for true subsequences
lemma eventually-weak-subseq:

fixes u::nat ⇒ nat
assumes (λn. real(u n)) −−−−→ ∞ eventually P sequentially
shows eventually (λn. P (u n)) sequentially
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proof −
obtain N where ∗: ∀n≥N . P n using assms(2 ) unfolding eventually-sequentially

by auto
obtain M where ∀m≥M . ereal(u m) ≥ N using assms(1 ) by (meson Lim-PInfty)
then have

∧
m. m ≥ M =⇒ u m ≥ N by auto

then have
∧

m. m ≥ M =⇒ P(u m) using ‹∀n≥N . P n› by simp
then show ?thesis unfolding eventually-sequentially by auto

qed

lemma filterlim-weak-subseq:
fixes u::nat ⇒ nat
assumes (λn. real(u n)) −−−−→ ∞
shows LIM n sequentially. u n:> at-top

unfolding filterlim-iff by (metis assms eventually-weak-subseq)

lemma limit-along-weak-subseq:
fixes u::nat ⇒ nat and v::nat ⇒ -
assumes (λn. real(u n)) −−−−→ ∞ v −−−−→ l
shows (λ n. v(u n)) −−−−→ l

using filterlim-compose[of v, OF - filterlim-weak-subseq] assms by auto

lemma frontier-indist-le:
assumes x ∈ frontier {y. infdist y S ≤ r}
shows infdist x S = r

proof −
have infdist x S = r if H : ∀ e>0 . (∃ y. infdist y S ≤ r ∧ dist x y < e) ∧ (∃ z. ¬

infdist z S ≤ r ∧ dist x z < e)
proof −

have infdist x S < r + e if e > 0 for e
proof −

obtain y where infdist y S ≤ r dist x y < e
using H ‹e > 0 › by blast

then show ?thesis
by (metis add.commute add-mono-thms-linordered-field(3 ) infdist-triangle

le-less-trans)
qed
then have A: infdist x S ≤ r

by (meson field-le-epsilon order .order-iff-strict)
have r < infdist x S + e if e > 0 for e
proof −

obtain y where ¬(infdist y S ≤ r) dist x y < e
using H ‹e > 0 › by blast

then have r < infdist y S by auto
also have ... ≤ infdist x S + dist y x

by (rule infdist-triangle)
finally show ?thesis using ‹dist x y < e›

by (simp add: dist-commute)
qed

then have B: r ≤ infdist x S
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by (meson field-le-epsilon order .order-iff-strict)
show ?thesis using A B by auto

qed
then show ?thesis

using assms unfolding frontier-straddle by auto
qed

1.5 Limits

The next lemmas are not very natural, but I needed them several times
lemma tendsto-shift-1-over-n [tendsto-intros]:

fixes f ::nat ⇒ real
assumes (λn. f n / n) −−−−→ l
shows (λn. f (n+k) / n) −−−−→ l

proof −
have (1+k∗(1/n))∗ (f (n+k)/(n+k)) = f (n+k)/n if n>0 for n using that by

(auto simp add: divide-simps)
with eventually-mono[OF eventually-gt-at-top[of 0 ::nat] this]
have eventually (λn.(1+k∗(1/n))∗ (f (n+k)/(n+k)) = f (n+k)/n) sequentially

by auto
moreover have (λn. (1+k∗(1/n))∗ (f (n+k)/(n+k))) −−−−→ (1+real k∗0 ) ∗ l

by (intro tendsto-intros LIMSEQ-ignore-initial-segment assms)
ultimately show ?thesis using Lim-transform-eventually by auto

qed

lemma tendsto-shift-1-over-n ′ [tendsto-intros]:
fixes f ::nat ⇒ real
assumes (λn. f n / n) −−−−→ l
shows (λn. f (n−k) / n) −−−−→ l

proof −
have (1−k∗(1/(n+k)))∗ (f n/ n) = f n/(n+k) if n>0 for n using that by (auto

simp add: divide-simps)
with eventually-mono[OF eventually-gt-at-top[of 0 ::nat] this]
have eventually (λn. (1−k∗(1/(n+k)))∗ (f n/ n) = f n/(n+k)) sequentially

by auto
moreover have (λn. (1−k∗(1/(n+k)))∗ (f n/ n)) −−−−→ (1−real k∗0 ) ∗ l

by (intro tendsto-intros assms LIMSEQ-ignore-initial-segment)
ultimately have (λn. f n / (n+k)) −−−−→ l using Lim-transform-eventually

by auto
then have a: (λn. f (n−k)/(n−k+k)) −−−−→ l using seq-offset-neg by auto

have f (n−k)/(n−k+k) = f (n−k)/n if n>k for n
using that by auto

with eventually-mono[OF eventually-gt-at-top[of k] this]
have eventually (λn. f (n−k)/(n−k+k) = f (n−k)/n) sequentially

by auto
with Lim-transform-eventually[OF a this]
show ?thesis by auto

qed
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declare LIMSEQ-realpow-zero [tendsto-intros]

1.6 Topology-Euclidean-Space

A (more usable) variation around continuous_on_closure_sequentially.
The assumption that the spaces are metric spaces is definitely too strong,
but sufficient for most applications.
lemma continuous-on-closure-sequentially ′:

fixes f :: ′a::metric-space ⇒ ′b::metric-space
assumes continuous-on (closure C ) f∧

(n::nat). u n ∈ C
u −−−−→ l

shows (λn. f (u n)) −−−−→ f l
proof −

have l ∈ closure C unfolding closure-sequential using assms by auto
then show ?thesis
using ‹continuous-on (closure C ) f › unfolding comp-def continuous-on-closure-sequentially
using assms by auto

qed

1.7 Convexity
lemma convex-on-mean-ineq:

fixes f ::real ⇒ real
assumes convex-on A f x ∈ A y ∈ A
shows f ((x+y)/2 ) ≤ (f x + f y) / 2

using convex-onD[OF assms(1 ), of 1/2 x y] using assms by (auto simp add:
divide-simps)

lemma convex-on-closure:
fixes C :: ′a::real-normed-vector set
assumes convex C

convex-on C f
continuous-on (closure C ) f

shows convex-on (closure C ) f
proof (rule convex-onI )

show convex (closure C )
by (simp add: ‹convex C ›)

fix x y:: ′a and t::real
assume x ∈ closure C y ∈ closure C 0 < t t < 1
obtain u v::nat ⇒ ′a where ∗:

∧
n. u n ∈ C u −−−−→ x∧

n. v n ∈ C v −−−−→ y
using ‹x ∈ closure C › ‹y ∈ closure C › unfolding closure-sequential by blast

define w where w = (λn. (1−t) ∗R (u n) + t ∗R (v n))
have w n ∈ C for n
using ‹0 < t› ‹t< 1 › convexD[OF ‹convex C › ∗(1 )[of n] ∗(3 )[of n]] unfolding

w-def by auto
have w −−−−→ ((1−t) ∗R x + t ∗R y)
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unfolding w-def using ∗(2 ) ∗(4 ) by (intro tendsto-intros)

have ∗: f (w n) ≤ (1−t) ∗ f (u n) + t ∗ f (v n) for n
using ∗(1 ) ∗(3 ) ‹convex-on C f › ‹0<t› ‹t<1 › less-imp-le unfolding w-def
convex-on-alt by (simp add: add.commute)

have i: (λn. f (w n)) −−−−→ f ((1−t) ∗R x + t ∗R y)
by (rule continuous-on-closure-sequentially ′[OF assms(3 ) ‹

∧
n. w n ∈ C › ‹w

−−−−→ ((1−t) ∗R x + t ∗R y)›])
have ii: (λn. (1−t) ∗ f (u n) + t ∗ f (v n)) −−−−→ (1−t) ∗ f x + t ∗ f y

apply (intro tendsto-intros)
apply (rule continuous-on-closure-sequentially ′[OF assms(3 ) ‹

∧
n. u n ∈ C › ‹u

−−−−→ x›])
apply (rule continuous-on-closure-sequentially ′[OF assms(3 ) ‹

∧
n. v n ∈ C › ‹v

−−−−→ y›])
done

show f ((1 − t) ∗R x + t ∗R y) ≤ (1 − t) ∗ f x + t ∗ f y
apply (rule LIMSEQ-le[OF i ii]) using ∗ by auto

qed

lemma convex-on-norm [simp]:
convex-on UNIV (λ(x:: ′a::real-normed-vector). norm x)

using convex-on-dist[of UNIV 0 :: ′a] by auto

lemma continuous-abs-powr [continuous-intros]:
assumes p > 0
shows continuous-on UNIV (λ(x::real). |x| powr p)

apply (rule continuous-on-powr ′) using assms by (auto intro: continuous-intros)

lemma continuous-mult-sgn [continuous-intros]:
fixes f ::real ⇒ real
assumes continuous-on UNIV f f 0 = 0
shows continuous-on UNIV (λx. sgn x ∗ f x)

proof −
have ∗: continuous-on {0 ..} (λx. sgn x ∗ f x)
apply (subst continuous-on-cong[of {0 ..} {0 ..} - f ], auto simp add: sgn-real-def

assms(2 ))
by (rule continuous-on-subset[OF assms(1 )], auto)

have ∗∗: continuous-on {..0} (λx. sgn x ∗ f x)
apply (subst continuous-on-cong[of {..0} {..0} - λx. −f x], auto simp add:

sgn-real-def assms(2 ))
by (rule continuous-on-subset[of UNIV ], auto simp add: assms intro!: continu-

ous-intros)
show ?thesis
using continuous-on-closed-Un[OF - - ∗ ∗∗] apply (auto intro: continuous-intros)
using continuous-on-subset by fastforce

qed

lemma DERIV-abs-powr [derivative-intros]:
assumes p > (1 ::real)
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shows DERIV (λx. |x| powr p) x :> p ∗ sgn x ∗ |x| powr (p − 1 )
proof −

consider x = 0 | x>0 | x < 0 by linarith
then show ?thesis
proof (cases)

case 1
have continuous-on UNIV (λx. sgn x ∗ |x| powr (p − 1 ))

by (auto simp add: assms intro!:continuous-intros)
then have (λh. sgn h ∗ |h| powr (p−1 )) −0→ (λh. sgn h ∗ |h| powr (p−1 )) 0

using continuous-on-def by blast
moreover have |h| powr p / h = sgn h ∗ |h| powr (p−1 ) for h
proof −

have |h| powr p / h = sgn h ∗ |h| powr p / |h|
by (auto simp add: algebra-simps divide-simps sgn-real-def )

also have ... = sgn h ∗ |h| powr (p−1 )
using assms apply (cases h = 0 ) apply (auto)

by (metis abs-ge-zero powr-diff [symmetric] powr-one-gt-zero-iff times-divide-eq-right)
finally show ?thesis by simp

qed
ultimately have (λh. |h| powr p / h) −0→ 0 by auto
then show ?thesis unfolding DERIV-def by (auto simp add: ‹x = 0 ›)

next
case 2
have ∗: ∀ F y in nhds x. |y| powr p = y powr p

unfolding eventually-nhds apply (rule exI [of - {0<..}]) using ‹x > 0 › by
auto

show ?thesis
apply (subst DERIV-cong-ev[of - x - (λx. x powr p) - p ∗ x powr (p−1 )])
using ‹x > 0 › by (auto simp add: ∗ has-real-derivative-powr)

next
case 3
have ∗: ∀ F y in nhds x. |y| powr p = (−y) powr p

unfolding eventually-nhds apply (rule exI [of - {..<0}]) using ‹x < 0 › by
auto

show ?thesis
apply (subst DERIV-cong-ev[of - x - (λx. (−x) powr p) - p ∗ (− x) powr (p

− real 1 ) ∗ − 1 ])
using ‹x < 0 › apply (simp, simp add: ∗, simp)
apply (rule DERIV-fun-powr [of λy. −y −1 x p]) using ‹x < 0 › by (auto

simp add: derivative-intros)
qed

qed

lemma convex-abs-powr :
assumes p ≥ 1
shows convex-on UNIV (λx::real. |x| powr p)

proof (cases p = 1 )
case True
have convex-on UNIV (λx::real. norm x)

11



by (rule convex-on-norm)
moreover have |x| powr p = norm x for x using True by auto
ultimately show ?thesis by simp

next
case False
then have p > 1 using assms by auto
define g where g = (λx::real. p ∗ sgn x ∗ |x| powr (p − 1 ))
have ∗: DERIV (λx. |x| powr p) x :> g x for x

unfolding g-def using ‹p>1 › by (intro derivative-intros)
have ∗∗: g x ≤ g y if x ≤ y for x y
proof −

consider x ≥ 0 ∧ y ≥ 0 | x ≤ 0 ∧ y ≤ 0 | x < 0 ∧ y > 0 using ‹x ≤ y› by
linarith

then show ?thesis
proof (cases)

case 1
then show ?thesis unfolding g-def sgn-real-def using ‹p>1 › ‹x ≤ y› by

(auto simp add: powr-mono2 )
next

case 2
then show ?thesis unfolding g-def sgn-real-def using ‹p>1 › ‹x ≤ y› by

(auto simp add: powr-mono2 )
next

case 3
then have g x ≤ 0 0 ≤ g y unfolding g-def using ‹p > 1 › by auto
then show ?thesis by simp

qed
qed
show ?thesis

apply (rule convex-on-realI [of - - g]) using ∗ ∗∗ by auto
qed

lemma convex-powr :
assumes p ≥ 1
shows convex-on {0 ..} (λx::real. x powr p)

proof −
have convex-on {0 ..} (λx::real. |x| powr p)

using convex-abs-powr [OF ‹p ≥ 1 ›] convex-on-subset by auto
moreover have |x| powr p = x powr p if x ∈ {0 ..} for x using that by auto
ultimately show ?thesis by (simp add: convex-on-def )

qed

lemma convex-powr ′:
assumes p > 0 p ≤ 1
shows convex-on {0 ..} (λx::real. − (x powr p))

proof −
have convex-on {0<..} (λx::real. − (x powr p))

apply (rule convex-on-realI [of - - λx. −p ∗ x powr (p−1 )])
apply (auto intro!:derivative-intros simp add: has-real-derivative-powr)
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using ‹p > 0 › ‹p ≤ 1 › by (auto simp add: algebra-simps divide-simps powr-mono2 ′)
moreover have continuous-on {0 ..} (λx::real. − (x powr p))

by (rule continuous-on-minus, rule continuous-on-powr ′, auto simp add: ‹p >
0 › intro!: continuous-intros)

moreover have {(0 ::real)..} = closure {0<..} convex {(0 ::real)<..} by auto
ultimately show ?thesis using convex-on-closure by metis

qed

lemma convex-fx-plus-fy-ineq:
fixes f ::real ⇒ real
assumes convex-on {0 ..} f

x ≥ 0 y ≥ 0 f 0 = 0
shows f x + f y ≤ f (x+y)

proof −
have ∗: f a + f b ≤ f (a+b) if a ≥ 0 b ≥ a for a b
proof (cases a = 0 )

case False
then have a > 0 b > 0 using ‹b ≥ a› ‹a ≥ 0 › by auto
have (f 0 − f a) / (0 − a) ≤ (f 0 − f (a+b))/ (0 − (a+b))

apply (rule convex-on-slope-le[OF ‹convex-on {0 ..} f ›]) using ‹a > 0 › ‹b >
0 › by auto

also have ... ≤ (f b − f (a+b)) / (b − (a+b))
apply (rule convex-on-slope-le[OF ‹convex-on {0 ..} f ›]) using ‹a > 0 › ‹b >

0 › by auto
finally show ?thesis
using ‹a > 0 › ‹b > 0 › ‹f 0 = 0 › by (auto simp add: divide-simps algebra-simps)

qed (simp add: ‹f 0 = 0 ›)
then show ?thesis

using ‹x ≥ 0 › ‹y ≥ 0 › by (metis add.commute le-less not-le)
qed

lemma x-plus-y-p-le-xp-plus-yp:
fixes p x y::real
assumes p > 0 p ≤ 1 x ≥ 0 y ≥ 0
shows (x + y) powr p ≤ x powr p + y powr p

using convex-fx-plus-fy-ineq[OF convex-powr ′[OF ‹p > 0 › ‹p ≤ 1 ›] ‹x ≥ 0 › ‹y ≥
0 ›] by auto

1.8 Nonnegative-extended-real.thy
lemma x-plus-top-ennreal [simp]:

x + > = (>::ennreal)
by simp

lemma ennreal-ge-nat-imp-PInf :
fixes x::ennreal
assumes

∧
N . x ≥ of-nat N

shows x = ∞
using assms apply (cases x, auto) by (meson not-less reals-Archimedean2 )
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lemma ennreal-archimedean:
assumes x 6= (∞::ennreal)
shows ∃n::nat. x ≤ n
using assms ennreal-ge-nat-imp-PInf linear by blast

lemma e2ennreal-mult:
fixes a b::ereal
assumes a ≥ 0
shows e2ennreal(a ∗ b) = e2ennreal a ∗ e2ennreal b

by (metis assms e2ennreal-neg eq-onp-same-args ereal-mult-le-0-iff linear times-ennreal.abs-eq)

lemma e2ennreal-mult ′:
fixes a b::ereal
assumes b ≥ 0
shows e2ennreal(a ∗ b) = e2ennreal a ∗ e2ennreal b

using e2ennreal-mult[OF assms, of a] by (simp add: mult.commute)

lemma SUP-real-ennreal:
assumes A 6= {} bdd-above (f‘A)
shows (SUP a∈A. ennreal (f a)) = ennreal(SUP a∈A. f a)

apply (rule antisym, simp add: SUP-least assms(2 ) cSUP-upper ennreal-leI )
by (metis assms(1 ) ennreal-SUP ennreal-less-top le-less)

lemma e2ennreal-Liminf :
F 6= bot =⇒ e2ennreal (Liminf F f ) = Liminf F (λn. e2ennreal (f n))
by (rule Liminf-compose-continuous-mono[symmetric])

(auto simp: mono-def e2ennreal-mono continuous-on-e2ennreal)

lemma e2ennreal-eq-infty[simp]: 0 ≤ x =⇒ e2ennreal x = top ←→ x = ∞
by (cases x) (auto)

lemma ennreal-Inf-cmult:
assumes c>(0 ::real)
shows Inf {ennreal c ∗ x |x. P x} = ennreal c ∗ Inf {x. P x}

proof −
have (λx::ennreal. c ∗ x) (Inf {x::ennreal. P x}) = Inf ((λx::ennreal. c ∗

x)‘{x::ennreal. P x})
apply (rule mono-bij-Inf )
apply (simp add: monoI mult-left-mono)
apply (rule bij-betw-byWitness[of - λx. (x::ennreal) / c], auto simp add: assms)
apply (metis assms ennreal-lessI ennreal-neq-top mult.commute mult-divide-eq-ennreal

not-less-zero)
apply (metis assms divide-ennreal-def ennreal-less-zero-iff ennreal-neq-top less-irrefl

mult.assoc mult.left-commute mult-divide-eq-ennreal)
done

then show ?thesis by (simp only: setcompr-eq-image[symmetric])
qed
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lemma continuous-on-const-minus-ennreal:
fixes f :: ′a :: topological-space ⇒ ennreal
shows continuous-on A f =⇒ continuous-on A (λx. a − f x)
including ennreal.lifting

proof (transfer fixing: A; clarsimp)
fix f :: ′a ⇒ ereal and a :: ereal assume 0 ≤ a ∀ x. 0 ≤ f x and f : continuous-on

A f
then show continuous-on A (λx. max 0 (a − f x))
proof cases

assume ∃ r . a = ereal r
with f show ?thesis
by (auto simp: continuous-on-def minus-ereal-def ereal-Lim-uminus[symmetric]

intro!: tendsto-add-ereal-general tendsto-max)
next

assume @ r . a = ereal r
with ‹0 ≤ a› have a = ∞

by (cases a) auto
then show ?thesis

by (simp add: continuous-on-const)
qed

qed

lemma const-minus-Liminf-ennreal:
fixes a :: ennreal
shows F 6= bot =⇒ a − Liminf F f = Limsup F (λx. a − f x)

by (intro Limsup-compose-continuous-antimono[symmetric])
(auto simp: antimono-def ennreal-mono-minus continuous-on-id continuous-on-const-minus-ennreal)

lemma tendsto-cmult-ennreal [tendsto-intros]:
fixes c l::ennreal
assumes ¬(c = ∞ ∧ l = 0 )

(f −−−→ l) F
shows ((λx. c ∗ f x) −−−→ c ∗ l) F

by (cases c = 0 , insert assms, auto intro!: tendsto-intros)

1.9 Indicator-Function.thy

There is something weird with sum_mult_indicator: it is defined both in
Indicator.thy and BochnerIntegration.thy, with a different meaning. I am
surprised there is no name collision... Here, I am using the version from
BochnerIntegration.
lemma sum-indicator-eq-card2 :

assumes finite I
shows (

∑
i∈I . (indicator (P i) x)::nat) = card {i∈I . x ∈ P i}

using sum-mult-indicator [OF assms, of λy. 1 ::nat P λy. x]
unfolding card-eq-sum by auto

lemma disjoint-family-indicator-le-1 :
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assumes disjoint-family-on A I
shows (

∑
i∈ I . indicator (A i) x) ≤ (1 :: ′a:: {comm-monoid-add,zero-less-one})

proof (cases finite I )
case True
then have ∗: (

∑
i∈ I . indicator (A i) x) = ((indicator (

⋃
i∈I . A i) x):: ′a)

by (simp add: indicator-UN-disjoint[OF True assms(1 ), of x])
show ?thesis

unfolding ∗ unfolding indicator-def by (simp add: order-less-imp-le)
next

case False
then show ?thesis by (simp add: order-less-imp-le)

qed

1.10 sigma-algebra.thy
lemma algebra-intersection:

assumes algebra Ω A
algebra Ω B

shows algebra Ω (A ∩ B)
apply (subst algebra-iff-Un) using assms by (auto simp add: algebra-iff-Un)

lemma sigma-algebra-intersection:
assumes sigma-algebra Ω A

sigma-algebra Ω B
shows sigma-algebra Ω (A ∩ B)

apply (subst sigma-algebra-iff ) using assms by (auto simp add: sigma-algebra-iff
algebra-intersection)

lemma subalgebra-M-M [simp]:
subalgebra M M

by (simp add: subalgebra-def )

The next one is disjoint_family_Suc with inclusions reversed.
lemma disjoint-family-Suc2 :

assumes Suc:
∧

n. A (Suc n) ⊆ A n
shows disjoint-family (λi. A i − A (Suc i))

proof −
have A (m+n) ⊆ A n for m n
proof (induct m)

case 0 show ?case by simp
next

case (Suc m) then show ?case
by (metis Suc-eq-plus1 assms add.commute add.left-commute subset-trans)

qed
then have A m ⊆ A n if m > n for m n

by (metis that add.commute le-add-diff-inverse nat-less-le)
then show ?thesis

by (auto simp add: disjoint-family-on-def )
(metis insert-absorb insert-subset le-SucE le-antisym not-le-imp-less)
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qed

1.11 Measure-Space.thy
lemma AE-equal-sum:

assumes
∧

i. AE x in M . f i x = g i x
shows AE x in M . (

∑
i∈I . f i x) = (

∑
i∈I . g i x)

proof (cases)
assume finite I
have ∃A. A ∈ null-sets M ∧ (∀ x∈ (space M − A). f i x = g i x) for i

using assms(1 )[of i] by (metis (mono-tags, lifting) AE-E3 )
then obtain A where A:

∧
i. A i ∈ null-sets M ∧ (∀ x∈ (space M −A i). f i x

= g i x)
by metis

define B where B = (
⋃

i∈I . A i)
have B ∈ null-sets M using ‹finite I › A B-def by blast
then have AE x in M . x ∈ space M − B by (simp add: AE-not-in)
moreover
{

fix x assume x ∈ space M − B
then have

∧
i. i ∈ I =⇒ f i x = g i x unfolding B-def using A by auto

then have (
∑

i∈I . f i x) = (
∑

i∈I . g i x) by auto
}
ultimately show ?thesis by auto

qed (simp)

lemma emeasure-pos-unionE :
assumes

∧
(N ::nat). A N ∈ sets M

emeasure M (
⋃

N . A N ) > 0
shows ∃N . emeasure M (A N ) > 0

proof (rule ccontr)
assume ¬(∃N . emeasure M (A N ) > 0 )
then have

∧
N . A N ∈ null-sets M

using assms(1 ) by auto
then have (

⋃
N . A N ) ∈ null-sets M by auto

then show False using assms(2 ) by auto
qed

lemma (in prob-space) emeasure-intersection:
fixes e::nat ⇒ real
assumes [measurable]:

∧
n. U n ∈ sets M

and [simp]:
∧

n. 0 ≤ e n summable e
and ge:

∧
n. emeasure M (U n) ≥ 1 − (e n)

shows emeasure M (
⋂

n. U n) ≥ 1 − (
∑

n. e n)
proof −

define V where V = (λn. space M − (U n))
have [measurable]: V n ∈ sets M for n

unfolding V-def by auto
have ∗: emeasure M (V n) ≤ e n for n
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unfolding V-def using ge[of n] by (simp add: emeasure-eq-measure prob-compl
ennreal-leI )

have emeasure M (
⋃

n. V n) ≤ (
∑

n. emeasure M (V n))
by (rule emeasure-subadditive-countably, auto)

also have ... ≤ (
∑

n. ennreal (e n))
using ∗ by (intro suminf-le) auto

also have ... = ennreal (
∑

n. e n)
by (intro suminf-ennreal-eq) auto

finally have emeasure M (
⋃

n. V n) ≤ suminf e by simp
then have 1 − suminf e ≤ emeasure M (space M − (

⋃
n. V n))

by (simp add: emeasure-eq-measure prob-compl suminf-nonneg)
also have ... ≤ emeasure M (

⋂
n. U n)

by (rule emeasure-mono) (auto simp: V-def )
finally show ?thesis by simp

qed

lemma null-sym-diff-transitive:
assumes A ∆ B ∈ null-sets M B ∆ C ∈ null-sets M

and [measurable]: A ∈ sets M C ∈ sets M
shows A ∆ C ∈ null-sets M

proof −
have A ∆ B ∪ B ∆ C ∈ null-sets M using assms(1 ) assms(2 ) by auto
moreover have A ∆ C ⊆ A ∆ B ∪ B ∆ C by auto
ultimately show ?thesis by (meson null-sets-subset assms(3 ) assms(4 ) sets.Diff

sets.Un)
qed

lemma Delta-null-of-null-is-null:
assumes B ∈ sets M A ∆ B ∈ null-sets M A ∈ null-sets M
shows B ∈ null-sets M

proof −
have B ⊆ A ∪ (A ∆ B) by auto
then show ?thesis using assms by (meson null-sets.Un null-sets-subset)

qed

lemma Delta-null-same-emeasure:
assumes A ∆ B ∈ null-sets M and [measurable]: A ∈ sets M B ∈ sets M
shows emeasure M A = emeasure M B

proof −
have A = (A ∩ B) ∪ (A−B) by blast
moreover have A−B ∈ null-sets M using assms null-sets-subset by blast
ultimately have a: emeasure M A = emeasure M (A ∩ B) using emea-

sure-Un-null-set by (metis assms(2 ) assms(3 ) sets.Int)

have B = (A ∩ B) ∪ (B−A) by blast
moreover have B−A ∈ null-sets M using assms null-sets-subset by blast
ultimately have emeasure M B = emeasure M (A ∩ B) using emeasure-Un-null-set

by (metis assms(2 ) assms(3 ) sets.Int)
then show ?thesis using a by auto
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qed

lemma AE-upper-bound-inf-ereal:
fixes F G:: ′a ⇒ ereal
assumes

∧
e. (e::real) > 0 =⇒ AE x in M . F x ≤ G x + e

shows AE x in M . F x ≤ G x
proof −

have AE x in M . ∀n::nat. F x ≤ G x + ereal (1 / Suc n)
using assms by (auto simp: AE-all-countable)

then show ?thesis
proof (eventually-elim)

fix x assume x: ∀n::nat. F x ≤ G x + ereal (1 / Suc n)
show F x ≤ G x
proof (intro ereal-le-epsilon2 [of - G x] allI impI )

fix e :: real assume 0 < e
then obtain n where n: 1 / Suc n < e

by (blast elim: nat-approx-posE)
have F x ≤ G x + 1 / Suc n

using x by simp
also have . . . ≤ G x + e

using n by (intro add-mono ennreal-leI ) auto
finally show F x ≤ G x + ereal e .

qed
qed

qed

Egorov theorem asserts that, if a sequence of functions converges almost
everywhere to a limit, then the convergence is uniform on a subset of close
to full measure. The first step in the proof is the following lemma, often
useful by itself, asserting the same result for predicates: if a property Pnx
is eventually true for almost every x, then there exists N such that Pnx is
true for all n ≥ N and all x in a set of close to full measure.
lemma (in finite-measure) Egorov-lemma:

assumes [measurable]:
∧

n. (P n) ∈ measurable M (count-space UNIV )
and AE x in M . eventually (λn. P n x) sequentially

epsilon > 0
shows ∃U N . U ∈ sets M ∧ (∀n ≥ N . ∀ x ∈ U . P n x) ∧ emeasure M (space

M − U ) < epsilon
proof −

define K where K = (λn. {x ∈ space M . ∃ k≥n. ¬(P k x)})
have [measurable]: K n ∈ sets M for n

unfolding K-def by auto
have x /∈ (

⋂
n. K n) if eventually (λn. P n x) sequentially for x

unfolding K-def using that unfolding K-def eventually-sequentially by auto
then have AE x in M . x /∈ (

⋂
n. K n) using assms by auto

then have Z : 0 = emeasure M (
⋂

n. K n)
using AE-iff-measurable[of (

⋂
n. K n) M λx. x /∈ (

⋂
n. K n)] unfolding K-def

by auto
have ∗: (λn. emeasure M (K n)) −−−−→ 0
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unfolding Z apply (rule Lim-emeasure-decseq) using order-trans by (auto
simp add: K-def decseq-def )

have eventually (λn. emeasure M (K n) < epsilon) sequentially
by (rule order-tendstoD(2 )[OF ∗ ‹epsilon > 0 ›])

then obtain N where N :
∧

n. n ≥ N =⇒ emeasure M (K n) < epsilon
unfolding eventually-sequentially by auto

define U where U = space M − K N
have A [measurable]: U ∈ sets M unfolding U-def by auto
have space M − U = K N

unfolding U-def K-def by auto
then have B: emeasure M (space M − U ) < epsilon

using N by auto
have ∀n ≥ N . ∀ x ∈ U . P n x

unfolding U-def K-def by auto
then show ?thesis using A B by blast

qed

The next lemma asserts that, in an uncountable family of disjoint sets, then
there is one set with zero measure (and in fact uncountably many). It is
often applied to the boundaries of r-neighborhoods of a given set, to show
that one could choose r for which this boundary has zero measure (this
shows up often in relation with weak convergence).
lemma (in finite-measure) uncountable-disjoint-family-then-exists-zero-measure:

assumes [measurable]:
∧

i. i ∈ I =⇒ A i ∈ sets M
and uncountable I

disjoint-family-on A I
shows ∃ i∈I . measure M (A i) = 0

proof −
define f where f = (λ(r ::real). {i ∈ I . measure M (A i) > r})
have ∗: finite (f r) if r > 0 for r
proof −

obtain N ::nat where N : measure M (space M )/r ≤ N
using real-arch-simple by blast

have finite (f r) ∧ card (f r) ≤ N
proof (rule finite-if-finite-subsets-card-bdd)

fix G assume G: G ⊆ f r finite G
then have G ⊆ I unfolding f-def by auto
have card G ∗ r = (

∑
i ∈ G. r) by auto

also have ... ≤ (
∑

i ∈ G. measure M (A i))
apply (rule sum-mono) using G unfolding f-def by auto

also have ... = measure M (
⋃

i∈G. A i)
apply (rule finite-measure-finite-Union[symmetric])
using ‹finite G› ‹G ⊆ I › ‹disjoint-family-on A I › disjoint-family-on-mono

by auto
also have ... ≤ measure M (space M )

by (simp add: bounded-measure)
finally have card G ≤ measure M (space M )/r

using ‹r > 0 › by (simp add: divide-simps)
then show card G ≤ N using N by auto
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qed
then show ?thesis by simp

qed
have countable (

⋃
n. f (((1 ::real)/2 )^n))

by (rule countable-UN , auto intro!: countable-finite ∗)
then have I − (

⋃
n. f (((1 ::real)/2 )^n)) 6= {}

using assms(2 ) by (metis countable-empty uncountable-minus-countable)
then obtain i where i ∈ I i /∈ (

⋃
n. f ((1/2 )^n)) by auto

then have measure M (A i) ≤ (1 / 2 ) ^ n for n
unfolding f-def using linorder-not-le by auto

moreover have (λn. ((1 ::real) / 2 ) ^ n) −−−−→ 0
by (intro tendsto-intros, auto)

ultimately have measure M (A i) ≤ 0
using LIMSEQ-le-const by force

then have measure M (A i) = 0
by (simp add: measure-le-0-iff )

then show ?thesis using ‹i ∈ I › by auto
qed

The next statements are useful measurability statements.
lemma measurable-Inf [measurable]:

assumes [measurable]:
∧
(n::nat). P n ∈ measurable M (count-space UNIV )

shows (λx. Inf {n. P n x}) ∈ measurable M (count-space UNIV ) (is ?f ∈ -)
proof −

define A where A = (λn. (P n)−‘{True} ∩ space M − (
⋃

m<n. (P m)−‘{True}
∩ space M ))

have A-meas [measurable]: A n ∈ sets M for n unfolding A-def by measurable
define B where B = (λn. if n = 0 then (space M − (

⋃
n. A n)) else A (n−1 ))

show ?thesis
proof (rule measurable-piecewise-restrict2 [of B])

show B n ∈ sets M for n unfolding B-def by simp
show space M = (

⋃
n. B n)

unfolding B-def using sets.sets-into-space [OF A-meas] by auto
have ∗: ?f x = n if x ∈ A n for x n

apply (rule cInf-eq-minimum) using that unfolding A-def by auto
moreover have ∗∗: ?f x = (Inf ({}::nat set)) if x ∈ space M − (

⋃
n. A n)

for x
proof −

have ¬(P n x) for n
apply (induction n rule: nat-less-induct) using that unfolding A-def by

auto
then show ?thesis by simp

qed
ultimately have ∃ c. ∀ x ∈ B n. ?f x = c for n

apply (cases n = 0 ) unfolding B-def by auto
then show ∃ h ∈ measurable M (count-space UNIV ). ∀ x ∈ B n. ?f x = h x

for n
by fastforce

qed
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qed

lemma measurable-T-iter [measurable]:
fixes f :: ′a ⇒ nat
assumes [measurable]: T ∈ measurable M M

f ∈ measurable M (count-space UNIV )
shows (λx. (T^^(f x)) x) ∈ measurable M M

proof −
have [measurable]: (T^^n) ∈ measurable M M for n::nat

by (induction n, auto)
show ?thesis

by (rule measurable-compose-countable, auto)
qed

lemma measurable-infdist [measurable]:
(λx. infdist x S) ∈ borel-measurable borel

by (rule borel-measurable-continuous-onI , intro continuous-intros)

The next lemma shows that, in a sigma finite measure space, sets with large
measure can be approximated by sets with large but finite measure.
lemma (in sigma-finite-measure) approx-with-finite-emeasure:

assumes W-meas: W ∈ sets M
and W-inf : emeasure M W > C

obtains Z where Z ∈ sets M Z ⊆ W emeasure M Z < ∞ emeasure M Z > C
proof (cases emeasure M W = ∞)

case True
obtain r where r : C = ennreal r using W-inf by (cases C , auto)
obtain Z where Z ∈ sets M Z ⊆ W emeasure M Z < ∞ emeasure M Z > C

unfolding r using approx-PInf-emeasure-with-finite[OF W-meas True, of r ]
by auto

then show ?thesis using that by blast
next

case False
then have W ∈ sets M W ⊆ W emeasure M W < ∞ emeasure M W > C

using assms apply auto using top.not-eq-extremum by blast
then show ?thesis using that by blast

qed

1.12 Nonnegative-Lebesgue-Integration.thy

The next lemma is a variant of nn_integral_density, with the density on
the right instead of the left, as seems more common.
lemma nn-integral-densityR:

assumes [measurable]: f ∈ borel-measurable F g ∈ borel-measurable F
shows (

∫
+ x. f x ∗ g x ∂F) = (

∫
+ x. f x ∂(density F g))

proof −
have (

∫
+ x. f x ∗ g x ∂F) = (

∫
+ x. g x ∗ f x ∂F) by (simp add: mult.commute)

also have ... = (
∫

+ x. f x ∂(density F g))

22



by (rule nn-integral-density[symmetric], simp-all add: assms)
finally show ?thesis by simp

qed

lemma not-AE-zero-int-ennreal-E :
fixes f :: ′a ⇒ ennreal
assumes (

∫
+x. f x ∂M ) > 0

and [measurable]: f ∈ borel-measurable M
shows ∃A∈sets M . ∃ e::real>0 . emeasure M A > 0 ∧ (∀ x ∈ A. f x ≥ e)

proof (rule not-AE-zero-ennreal-E , auto simp add: assms)
assume ∗: AE x in M . f x = 0
have (

∫
+x. f x ∂M ) = (

∫
+x. 0 ∂M ) by (rule nn-integral-cong-AE , simp add:

∗)
then have (

∫
+x. f x ∂M ) = 0 by simp

then show False using assms by simp
qed

lemma (in finite-measure) nn-integral-bounded-eq-bound-then-AE :
assumes AE x in M . f x ≤ ennreal c (

∫
+x. f x ∂M ) = c ∗ emeasure M (space

M )
and [measurable]: f ∈ borel-measurable M

shows AE x in M . f x = c
proof (cases)

assume emeasure M (space M ) = 0
then show ?thesis by (rule emeasure-0-AE)

next
assume emeasure M (space M ) 6= 0
have fin: AE x in M . f x 6= top using assms by (auto simp: top-unique)
define g where g = (λx. c − f x)
have [measurable]: g ∈ borel-measurable M unfolding g-def by auto
have (

∫
+x. g x ∂M ) = (

∫
+x. c ∂M ) − (

∫
+x. f x ∂M )

unfolding g-def by (rule nn-integral-diff , auto simp add: assms ennreal-mult-eq-top-iff )
also have . . . = 0 using assms(2 ) by (auto simp: ennreal-mult-eq-top-iff )
finally have AE x in M . g x = 0

by (subst nn-integral-0-iff-AE [symmetric]) auto
then have AE x in M . c ≤ f x unfolding g-def using fin by (auto simp:

ennreal-minus-eq-0 )
then show ?thesis using assms(1 ) by auto

qed

lemma null-sets-density:
assumes [measurable]: h ∈ borel-measurable M

and AE x in M . h x 6= 0
shows null-sets (density M h) = null-sets M

proof −
have ∗: A ∈ sets M ∧ (AE x∈A in M . h x = 0 ) ←→ A ∈ null-sets M for A
proof (auto)

assume A ∈ sets M AE x∈A in M . h x = 0
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then show A ∈ null-sets M
unfolding AE-iff-null-sets[OF ‹A ∈ sets M ›] using assms(2 ) by auto

next
assume A ∈ null-sets M
then show AE x∈A in M . h x = 0

by (metis (mono-tags, lifting) AE-not-in eventually-mono)
qed
show ?thesis

apply (rule set-eqI )
unfolding null-sets-density-iff [OF ‹h ∈ borel-measurable M ›] using ∗ by auto

qed

The next proposition asserts that, if a function h is integrable, then its
integral on any set with small enough measure is small. The good conceptual
proof is by considering the distribution of the function h on R and looking
at its tails. However, there is a less conceptual but more direct proof, based
on dominated convergence and a proof by contradiction. This is the proof
we give below.
proposition integrable-small-integral-on-small-sets:

fixes h:: ′a ⇒ real
assumes [measurable]: integrable M h

and delta > 0
shows ∃ epsilon>(0 ::real). ∀U ∈ sets M . emeasure M U < epsilon −→ abs

(
∫

x∈U . h x ∂M ) < delta
proof (rule ccontr)

assume H : ¬ (∃ epsilon>0 . ∀U∈sets M . emeasure M U < ennreal epsilon −→
abs(set-lebesgue-integral M U h) < delta)
have ∃ f . ∀ epsilon∈{0<..}. f epsilon ∈sets M ∧ emeasure M (f epsilon) < ennreal

epsilon
∧ ¬(abs(set-lebesgue-integral M (f epsilon) h) < delta)

apply (rule bchoice) using H by auto
then obtain f ::real ⇒ ′a set where f :∧

epsilon. epsilon > 0 =⇒ f epsilon ∈sets M∧
epsilon. epsilon > 0 =⇒ emeasure M (f epsilon) < ennreal epsilon∧
epsilon. epsilon > 0 =⇒ ¬(abs(set-lebesgue-integral M (f epsilon) h)

< delta)
by blast

define A where A = (λn::nat. f ((1/2 )^n))
have [measurable]: A n ∈ sets M for n

unfolding A-def using f (1 ) by auto
have ∗: emeasure M (A n) < ennreal ((1/2 )^n) for n

unfolding A-def using f (2 ) by auto
have Large: ¬(abs(set-lebesgue-integral M (A n) h) < delta) for n

unfolding A-def using f (3 ) by auto

have S : summable (λn. Sigma-Algebra.measure M (A n))
apply (rule summable-comparison-test ′[of λn. (1/2 )^n 0 ])
apply (rule summable-geometric, auto)
apply (subst ennreal-le-iff [symmetric], simp)
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using less-imp-le[OF ∗] by (metis ∗ emeasure-eq-ennreal-measure top.extremum-strict)
have AE x in M . eventually (λn. x ∈ space M − A n) sequentially

apply (rule borel-cantelli-AE1 , auto simp add: S)
by (metis ∗ top.extremum-strict top.not-eq-extremum)

moreover have (λn. indicator (A n) x ∗ h x) −−−−→ 0
if eventually (λn. x ∈ space M − A n) sequentially for x

proof −
have eventually (λn. indicator (A n) x ∗ h x = 0 ) sequentially

apply (rule eventually-mono[OF that]) unfolding indicator-def by auto
then show ?thesis

unfolding eventually-sequentially using lim-explicit by force
qed
ultimately have A: AE x in M . ((λn. indicator (A n) x ∗ h x) −−−−→ 0 )

by auto
have I : integrable M (λx. abs(h x))

using ‹integrable M h› by auto
have L: (λn. abs (

∫
x. indicator (A n) x ∗ h x ∂M )) −−−−→ abs (

∫
x. 0 ∂M )

apply (intro tendsto-intros)
apply (rule integral-dominated-convergence[OF - - I A])
unfolding indicator-def by auto

have eventually (λn. abs (
∫

x. indicator (A n) x ∗ h x ∂M ) < delta) sequentially
apply (rule order-tendstoD[OF L]) using ‹delta > 0 › by auto

then show False
using Large by (auto simp: set-lebesgue-integral-def )

qed

We also give the version for nonnegative ennreal valued functions. It follows
from the previous one.
proposition small-nn-integral-on-small-sets:

fixes h:: ′a ⇒ ennreal
assumes [measurable]: h ∈ borel-measurable M

and delta > (0 ::real) (
∫

+x. h x ∂M ) 6= ∞
shows ∃ epsilon>(0 ::real). ∀U ∈ sets M . emeasure M U < epsilon −→ (

∫
+x∈U .

h x ∂M ) < delta
proof −

define f where f = (λx. enn2real(h x))
have AE x in M . h x 6= ∞

using assms by (metis nn-integral-PInf-AE)
then have ∗: AE x in M . ennreal (f x) = h x

unfolding f-def using ennreal-enn2real-if by auto
have ∗∗: (

∫
+x. ennreal (f x) ∂M ) 6= ∞

using nn-integral-cong-AE [OF ∗] assms by auto
have [measurable]: f ∈ borel-measurable M unfolding f-def by auto
have integrable M f

apply (rule integrableI-nonneg) using assms ∗ f-def ∗∗ apply auto
using top.not-eq-extremum by blast

obtain epsilon::real where H : epsilon > 0
∧

U . U ∈ sets M =⇒ emeasure M
U < epsilon =⇒ abs(

∫
x∈U . f x ∂M ) < delta

using integrable-small-integral-on-small-sets[OF ‹integrable M f › ‹delta > 0 ›]

25



by blast
have (

∫
+x∈U . h x ∂M ) < delta if [measurable]: U ∈ sets M emeasure M U <

epsilon for U
proof −

have (
∫

+x. indicator U x ∗ h x ∂M ) = (
∫

+x. ennreal(indicator U x ∗ f x)
∂M )

apply (rule nn-integral-cong-AE) using ∗ unfolding indicator-def by auto
also have ... = ennreal (

∫
x. indicator U x ∗ f x ∂M )

apply (rule nn-integral-eq-integral)
apply (rule Bochner-Integration.integrable-bound[OF ‹integrable M f ›])
unfolding indicator-def f-def by auto

also have ... < ennreal delta
apply (rule ennreal-lessI ) using H (2 )[OF that] by (auto simp: set-lebesgue-integral-def )
finally show ?thesis by (auto simp add: mult.commute)

qed
then show ?thesis using ‹epsilon > 0 › by auto

qed

1.13 Probability-measure.thy

The next lemmas ensure that, if sets have a probability close to 1, then their
intersection also does.
lemma (in prob-space) sum-measure-le-measure-inter :

assumes A ∈ sets M B ∈ sets M
shows prob A + prob B ≤ 1 + prob (A ∩ B)

proof −
have prob A + prob B = prob (A ∪ B) + prob (A ∩ B)

by (simp add: assms fmeasurable-eq-sets measure-Un3 )
also have ... ≤ 1 + prob (A ∩ B)

by auto
finally show ?thesis by simp

qed

lemma (in prob-space) sum-measure-le-measure-inter3 :
assumes [measurable]: A ∈ sets M B ∈ sets M C ∈ sets M
shows prob A + prob B + prob C ≤ 2 + prob (A ∩ B ∩ C )

using sum-measure-le-measure-inter [of B C ] sum-measure-le-measure-inter [of A B
∩ C ]
by (auto simp add: inf-assoc)

lemma (in prob-space) sum-measure-le-measure-Inter :
assumes [measurable]: finite I I 6= {}

∧
i. i ∈ I =⇒ A i ∈ sets M

shows (
∑

i∈I . prob (A i)) ≤ real(card I ) − 1 + prob (
⋂

i∈I . A i)
using assms proof (induct I rule: finite-ne-induct)

fix x F assume H : finite F F 6= {} x /∈ F
((
∧

i. i ∈ F =⇒ A i ∈ events) =⇒ (
∑

i∈F . prob (A i)) ≤ real (card F)
− 1 + prob (

⋂
(A ‘ F)))

and [measurable]: (
∧

i. i ∈ insert x F =⇒ A i ∈ events)
have (

⋂
x∈F . A x) ∈ events using ‹finite F› ‹F 6= {}› by auto
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have (
∑

i∈insert x F . prob (A i)) = (
∑

i∈F . prob (A i)) + prob (A x)
using H (1 ) H (3 ) by auto

also have ... ≤ real (card F)−1 + prob (
⋂

(A ‘ F)) + prob (A x)
using H (4 ) by auto

also have ... ≤ real (card F) + prob ((
⋂

(A ‘ F)) ∩ A x)
using sum-measure-le-measure-inter [OF ‹(

⋂
x∈F . A x) ∈ events›, of A x] by

auto
also have ... = real (card (insert x F)) − 1 + prob (

⋂
(A ‘ (insert x F)))

using H (1 ) H (2 ) unfolding card-insert-disjoint[OF ‹finite F› ‹x /∈ F›] by
(simp add: inf-commute)

finally show (
∑

i∈insert x F . prob (A i)) ≤ real (card (insert x F)) − 1 + prob
(
⋂
(A ‘ (insert x F)))
by simp

qed (auto)

A random variable gives a small mass to small neighborhoods of infinity.
lemma (in prob-space) random-variable-small-tails:

assumes alpha > 0 and [measurable]: f ∈ borel-measurable M
shows ∃ (C ::real). prob {x ∈ space M . abs(f x) ≥ C} < alpha ∧ C ≥ K

proof −
have ∗: (

⋂
(n::nat). {x∈space M . abs(f x) ≥ n}) = {}

apply auto
by (metis real-arch-simple add.right-neutral add-mono-thms-linordered-field(4 )

not-less zero-less-one)
have ∗∗: (λn. prob {x ∈ space M . abs(f x) ≥ n}) −−−−→ prob (

⋂
(n::nat). {x ∈

space M . abs(f x) ≥ n})
by (rule finite-Lim-measure-decseq, auto simp add: decseq-def )

have eventually (λn. prob {x ∈ space M . abs(f x) ≥ n} < alpha) sequentially
apply (rule order-tendstoD[OF - ‹alpha > 0 ›]) using ∗∗ unfolding ∗ by auto

then obtain N ::nat where N :
∧

n::nat. n ≥ N =⇒ prob {x ∈ space M . abs(f
x) ≥ n} < alpha

unfolding eventually-sequentially by blast
have ∃n::nat. n ≥ N ∧ n ≥ K

by (meson le-cases of-nat-le-iff order .trans real-arch-simple)
then obtain n::nat where n: n ≥ N n ≥ K by blast
show ?thesis

apply (rule exI [of - of-nat n]) using N n by auto
qed

1.14 Distribution-functions.thy

There is a locale called finite_borel_measure in distribution-functions.thy.
However, it only deals with real measures, and real weak convergence. I will
not need the weak convergence in more general settings, but still it seems
more natural to me to do the proofs in the natural settings. Let me in-
troduce the locale finite_borel_measure’ for this, although it would be
better to rename the locale in the library file.
locale finite-borel-measure ′= finite-measure M for M :: ( ′a::metric-space) measure
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+
assumes M-is-borel [simp, measurable-cong]: sets M = sets borel

begin

lemma space-eq-univ [simp]: space M = UNIV
using M-is-borel[THEN sets-eq-imp-space-eq] by simp

lemma measurable-finite-borel [simp]:
f ∈ borel-measurable borel =⇒ f ∈ borel-measurable M
by (rule borel-measurable-subalgebra[where N = borel]) auto

Any closed set can be slightly enlarged to obtain a set whose boundary has
0 measure.
lemma approx-closed-set-with-set-zero-measure-boundary:

assumes closed S epsilon > 0 S 6= {}
shows ∃ r . r < epsilon ∧ r > 0 ∧ measure M {x. infdist x S = r} = 0 ∧ measure

M {x. infdist x S ≤ r} < measure M S + epsilon
proof −

have [measurable]: S ∈ sets M
using ‹closed S› by auto

define T where T = (λr . {x. infdist x S ≤ r})
have [measurable]: T r ∈ sets borel for r

unfolding T-def by measurable
have ∗: (

⋂
n. T ((1/2 )^n)) = S

unfolding T-def proof (auto)
fix x assume ∗: ∀n. infdist x S ≤ (1 / 2 ) ^n
have infdist x S ≤ 0

apply (rule LIMSEQ-le-const[of λn. (1/2 )^n], intro tendsto-intros) using ∗
by auto

then show x ∈ S
using assms infdist-pos-not-in-closed by fastforce

qed
have A: ((1 ::real)/2 )^n ≤ (1/2 )^m if m ≤ n for m n::nat

using that by (simp add: power-decreasing)
have (λn. measure M (T ((1/2 )^n))) −−−−→ measure M S
unfolding ∗[symmetric] apply (rule finite-Lim-measure-decseq, auto simp add:

T-def decseq-def )
using A order .trans by blast

then have B: eventually (λn. measure M (T ((1/2 )^n)) < measure M S +
epsilon) sequentially

apply (rule order-tendstoD) using ‹epsilon > 0 › by simp
have C : eventually (λn. (1/2 )^n < epsilon) sequentially

by (rule order-tendstoD[OF - ‹epsilon > 0 ›], intro tendsto-intros, auto)
obtain n where n: (1/2 )^n < epsilon measure M (T ((1/2 )^n)) < measure M

S + epsilon
using eventually-conj[OF B C ] unfolding eventually-sequentially by auto

have ∃ r∈{0<..<(1/2 )^n}. measure M {x. infdist x S = r} = 0
apply (rule uncountable-disjoint-family-then-exists-zero-measure, auto simp add:

disjoint-family-on-def )
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using uncountable-open-interval by fastforce
then obtain r where r : r∈{0<..<(1/2 )^n} measure M {x. infdist x S = r} =

0
by blast

then have r2 : r > 0 r < epsilon using n by auto
have measure M {x. infdist x S ≤ r} ≤ measure M {x. infdist x S ≤ (1/2 )^n}

apply (rule finite-measure-mono) using r by auto
then have measure M {x. infdist x S ≤ r} < measure M S + epsilon

using n(2 ) unfolding T-def by auto
then show ?thesis

using r(2 ) r2 by auto
qed
end

sublocale finite-borel-measure ⊆ finite-borel-measure ′

by (standard, simp add: M-is-borel)

1.15 Weak-convergence.thy

Since weak convergence is not implemented as a topology, the fact that the
convergence of a sequence implies the convergence of a subsequence is not
automatic. We prove it in the lemma below..
lemma weak-conv-m-subseq:

assumes weak-conv-m M-seq M strict-mono r
shows weak-conv-m (λn. M-seq (r n)) M

using assms LIMSEQ-subseq-LIMSEQ unfolding weak-conv-m-def weak-conv-def
comp-def by auto

context
fixes µ :: nat ⇒ real measure

and M :: real measure
assumes µ:

∧
n. real-distribution (µ n)

assumes M : real-distribution M
assumes µ-to-M : weak-conv-m µ M

begin

The measure of a closed set behaves upper semicontinuously with respect to
weak convergence: if µn → µ, then lim supµn(F ) ≤ µ(F ) (and the inequality
can be strict, think of the situation where µ is a Dirac mass at 0 and F = {0},
but µn has a density so that µn({0}) = 0).
lemma closed-set-weak-conv-usc:

assumes closed S measure M S < l
shows eventually (λn. measure (µ n) S < l) sequentially

proof (cases S = {})
case True
then show ?thesis

using ‹measure M S < l› by auto
next
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case False
interpret real-distribution M using M by simp
define epsilon where epsilon = l − measure M S
have epsilon > 0 unfolding epsilon-def using assms(2 ) by auto
obtain r where r : r > 0 r < epsilon measure M {x. infdist x S = r} = 0

measure M {x. infdist x S ≤ r} < measure M S + epsilon
using approx-closed-set-with-set-zero-measure-boundary[OF ‹closed S› ‹epsilon

> 0 › ‹S 6= {}›] by blast
define T where T = {x. infdist x S ≤ r}
have [measurable]: T ∈ sets borel

unfolding T-def by auto
have S ⊆ T

unfolding T-def using ‹closed S› ‹r > 0 › by auto
have measure M T < l

using r(4 ) unfolding T-def epsilon-def by auto
have measure M (frontier T ) ≤ measure M {x. infdist x S = r}

apply (rule finite-measure-mono) unfolding T-def using frontier-indist-le by
auto

then have measure M (frontier T ) = 0
using ‹measure M {x. infdist x S = r} = 0 › by (auto simp add: measure-le-0-iff )

then have (λn. measure (µ n) T ) −−−−→ measure M T
using µ-to-M by (simp add: µ emeasure-eq-measure real-distribution-axioms

weak-conv-imp-continuity-set-conv)
then have ∗: eventually (λn. measure (µ n) T < l) sequentially

apply (rule order-tendstoD) using ‹measure M T < l› by simp
have ∗∗: measure (µ n) S ≤ measure (µ n) T for n

apply (rule finite-measure.finite-measure-mono)
using µ apply (simp add: finite-borel-measure.axioms(1 ) real-distribution.finite-borel-measure-M )
using ‹S ⊆ T › apply simp
by (simp add: µ real-distribution.events-eq-borel)

show ?thesis
apply (rule eventually-mono[OF ∗]) using ∗∗ le-less-trans by auto

qed

In the same way, the measure of an open set behaves lower semicontinuously
with respect to weak convergence: if µn → µ, then lim inf µn(U) ≥ µ(U) (and
the inequality can be strict). This follows from the same statement for closed
sets by passing to the complement.
lemma open-set-weak-conv-lsc:

assumes open S measure M S > l
shows eventually (λn. measure (µ n) S > l) sequentially

proof −
interpret real-distribution M

using M by auto
have [measurable]: S ∈ events using assms(1 ) by auto
have eventually (λn. measure (µ n) (UNIV − S) < 1 − l) sequentially

apply (rule closed-set-weak-conv-usc)
using assms prob-compl[of S ] by auto

moreover have measure (µ n) (UNIV − S) = 1 − measure (µ n) S for n
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proof −
interpret mu: real-distribution µ n

using µ by auto
have S ∈ mu.events using assms(1 ) by auto
then show ?thesis using mu.prob-compl[of S ] by auto

qed
ultimately show ?thesis by auto

qed

end

end

theory ME-Library-Complement
imports HOL−Analysis.Analysis

begin

1.16 The trivial measurable space

The trivial measurable space is the smallest possible σ-algebra, i.e. only the
empty set and everything.
definition trivial-measure :: ′a set ⇒ ′a measure where

trivial-measure X = sigma X {{}, X}

lemma space-trivial-measure [simp]: space (trivial-measure X) = X
by (simp add: trivial-measure-def )

lemma sets-trivial-measure: sets (trivial-measure X) = {{}, X}
by (simp add: trivial-measure-def sigma-algebra-trivial sigma-algebra.sigma-sets-eq)

lemma measurable-trivial-measure:
assumes f ∈ space M → X and f −‘ X ∩ space M ∈ sets M
shows f ∈ M →M trivial-measure X
using assms unfolding measurable-def by (auto simp: sets-trivial-measure)

lemma measurable-trivial-measure-iff :
f ∈ M →M trivial-measure X ←→ f ∈ space M → X ∧ f −‘ X ∩ space M ∈

sets M
unfolding measurable-def by (auto simp: sets-trivial-measure)

1.17 Pullback algebras

The pullback algebra f−1(Σ) of a σ-algebra (Ω,Σ) is the smallest σ-algebra
such that f is f−1(Σ)−−Σ-measurable.
definition (in sigma-algebra) pullback-algebra :: ( ′b ⇒ ′a) ⇒ ′b set ⇒ ′b set set
where

pullback-algebra f Ω ′ = sigma-sets Ω ′ {f −‘ A ∩ Ω ′ |A. A ∈ M}
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lemma pullback-algebra-minimal:
assumes f ∈ M →M N
shows sets.pullback-algebra N f (space M ) ⊆ sets M

proof
fix X assume X ∈ sets.pullback-algebra N f (space M )
thus X ∈ sets M

unfolding sets.pullback-algebra-def
by induction (use assms in ‹auto simp: measurable-def ›)

qed

lemma (in sigma-algebra) in-pullback-algebra: A ∈ M =⇒ f −‘ A ∩ Ω ′ ∈ pull-
back-algebra f Ω ′

unfolding pullback-algebra-def by (rule sigma-sets.Basic) auto

end

2 Subadditive and submultiplicative sequences
theory Fekete

imports HOL−Analysis.Multivariate-Analysis
begin

A real sequence is subadditive if un+m ≤ un + um. This implies the conver-
gence of un/n to Inf{un/n} ∈ [−∞,+∞), a useful result known as Fekete
lemma. We prove it below.
Taking logarithms, the same result applies to submultiplicative sequences.
We illustrate it with the definition of the spectral radius as the limit of
‖xn‖1/n, the convergence following from Fekete lemma.

2.1 Subadditive sequences

We define subadditive sequences, either from the start or eventually.
definition subadditive::(nat⇒real) ⇒ bool

where subadditive u = (∀m n. u (m+n) ≤ u m + u n)

lemma subadditiveI :
assumes

∧
m n. u (m+n) ≤ u m + u n

shows subadditive u
unfolding subadditive-def using assms by auto

lemma subadditiveD:
assumes subadditive u
shows u (m+n) ≤ u m + u n

using assms unfolding subadditive-def by auto

lemma subadditive-un-le-nu1 :
assumes subadditive u
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n > 0
shows u n ≤ n ∗ u 1

proof −
have ∗: n = 0 ∨ (u n ≤ n ∗ u 1 ) for n
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)
consider n = 0 | n > 0 by auto
then show ?case
proof (cases)

case 1
then show ?thesis by auto

next
case 2
then have u (Suc n) ≤ u n + u 1 using subadditiveD[OF assms(1 ), of n 1 ]

by auto
then show ?thesis using Suc.IH 2 by (auto simp add: algebra-simps)

qed
qed
show ?thesis using ∗[of n] ‹n > 0 › by auto

qed

definition eventually-subadditive::(nat⇒real) ⇒ nat ⇒ bool
where eventually-subadditive u N0 = (∀m>N0 . ∀n>N0 . u (m+n) ≤ u m + u

n)

lemma eventually-subadditiveI :
assumes

∧
m n. m > N0 =⇒ n > N0 =⇒ u (m+n) ≤ u m + u n

shows eventually-subadditive u N0
unfolding eventually-subadditive-def using assms by auto

lemma subadditive-imp-eventually-subadditive:
assumes subadditive u
shows eventually-subadditive u 0

using assms unfolding subadditive-def eventually-subadditive-def by auto

The main inequality that will lead to convergence is given in the next lemma:
given n, then eventually um/m is bounded by un/n, up to an arbitrarily
small error. This is proved by doing the euclidean division of m by n and
using the subadditivity. (the remainder in the euclidean division will give
the error term.)
lemma eventually-subadditive-ineq:

assumes eventually-subadditive u N0 e>0 n>N0
shows ∃N>N0 . ∀m≥N . u m/m < u n/n + e

proof −
have ineq-rec: u(a∗n+r) ≤ a ∗ u n + u r if n>N0 r>N0 for a n r
proof (induct a)
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case (Suc a)
have a∗n+r>N0 using ‹r>N0 › by simp
have u((Suc a)∗n+r) = u(a∗n+r+n) by (simp add: algebra-simps)
also have ... ≤ u(a∗n+r)+u n using assms ‹n>N0 › ‹a∗n+r>N0 › eventu-

ally-subadditive-def by blast
also have ... ≤ a∗u n + u r + u n by (simp add: Suc.hyps)
also have ... = (Suc a) ∗ u n + u r by (simp add: algebra-simps)
finally show ?case by simp

qed (simp)

have n>0 real n > 0 using ‹n>N0 › by auto
define C where C = Max {abs(u i) |i. i≤2∗n}
have ineq-C : abs(u i) ≤ C if i ≤ 2 ∗ n for i

unfolding C-def by (intro Max-ge, auto simp add: that)

have ineq-all-m: u m/m ≤ u n/n + 3∗C/m if m≥n for m
proof −

have real m>0 using ‹m≥n› ‹0 < real n› by linarith

obtain a0 r0 where r0<n m = a0∗n+r0
using ‹0 < n› mod-div-decomp mod-less-divisor by blast

define a where a = a0−1
define r where r = r0+n
have r<2∗n r≥n unfolding r-def by (auto simp add: ‹r0<n›)
have a0>0 using ‹m = a0∗n + r0 › ‹n ≤ m› ‹r0 < n› not-le by fastforce
then have m = a ∗ n + r using a-def r-def ‹m = a0∗n+r0 › mult-eq-if by

auto
then have real-eq: −r = real n ∗ a − m by simp

have r>N0 using ‹r≥n› ‹n>N0 › by simp
then have u m ≤ a ∗ u n + u r using ineq-rec ‹m = a∗n+r› ‹n>N0 › by

simp
then have n ∗ u m ≤ n ∗ (a ∗ u n + u r) using ‹real n>0 › by simp
then have n ∗ u m − m ∗ u n ≤ −r ∗ u n + n ∗ u r

unfolding real-eq by (simp add: algebra-simps)
also have ... ≤ r ∗ abs(u n) + n ∗ abs(u r)

apply (intro add-mono mult-left-mono) using real-0-le-add-iff by fastforce+
also have ... ≤ (2 ∗ n) ∗ C + n ∗ C

apply (intro add-mono mult-mono ineq-C ) using less-imp-le[OF ‹r < 2 ∗
n›] by auto

finally have n ∗ u m − m ∗ u n ≤ 3∗C∗n by auto
then show u m/m ≤ u n/n + 3∗C/m

using ‹0 < real n› ‹0 < real m› by (simp add: divide-simps mult.commute)
qed

obtain M ::nat where M : M ≥ 3 ∗ C / e using real-nat-ceiling-ge by auto
define N where N = M + n + N0 + 1
have N > 3 ∗ C / e N ≥ n N > N0 unfolding N-def using M by auto
have u m/m < u n/n + e if m ≥ N for m
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proof −
have 3 ∗ C / m < e

using that ‹N > 3 ∗ C / e› ‹e > 0 › apply (auto simp add: algebra-simps
divide-simps)

by (meson le-less-trans linorder-not-le mult-less-cancel-left-pos of-nat-less-iff )
then show ?thesis using ineq-all-m[of m] ‹n ≤ N › ‹N ≤ m› by auto

qed
then show ?thesis using ‹N0 < N › by blast

qed

From the inequality above, we deduce the convergence of un/n to its infi-
mum. As this infimum might be −∞, we formulate this convergence in the
extended reals. Then, we specialize it to the real situation, separating the
cases where un/n is bounded below or not.
lemma subadditive-converges-ereal ′:

assumes eventually-subadditive u N0
shows (λm. ereal(u m/m)) −−−−→ Inf {ereal(u n/n) | n. n>N0}

proof −
define v where v = (λm. ereal(u m/m))
define V where V = {v n | n. n>N0}
define l where l = Inf V

have
∧

t. t∈V =⇒ t≥l by (simp add: Inf-lower l-def )
then have v n ≥ l if n > N0 for n using V-def that by blast
then have lower : eventually (λn. a < v n) sequentially if a < l for a

by (meson that dual-order .strict-trans1 eventually-at-top-dense)

have upper : eventually (λn. a > v n) sequentially if a > l for a
proof −

obtain t where t∈V t<a by (metis ‹a>l› Inf-greatest l-def not-le)
then obtain e::real where e>0 t+e < a by (meson ereal-le-epsilon2 leD

le-less-linear)
obtain n where n>N0 t = u n/n using V-def v-def ‹t ∈ V › by blast
then have u n/n + e < a using ‹t+e < a› by simp
obtain N where ∀m≥N . u m/m < u n/n + e

using eventually-subadditive-ineq[OF assms] ‹0 < e› ‹N0 < n› by blast
then have u m/m < a if m ≥ N for m

using that ‹u n/n + e < a› less-ereal.simps(1 ) less-trans by blast
then have v m< a if m ≥ N for m using v-def that by blast
then show ?thesis using eventually-at-top-linorder by auto

qed
show ?thesis
using lower upper unfolding V-def l-def v-def by (simp add: order-tendsto-iff )

qed

lemma subadditive-converges-ereal:
assumes subadditive u
shows (λm. ereal(u m/m)) −−−−→ Inf {ereal(u n/n) | n. n>0}

by (rule subadditive-converges-ereal ′[OF subadditive-imp-eventually-subadditive[OF
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assms]])

lemma subadditive-converges-bounded ′:
assumes eventually-subadditive u N0

bdd-below {u n/n | n. n>N0}
shows (λn. u n/n) −−−−→ Inf {u n/n | n. n>N0}

proof−
have ∗: (λn. ereal(u n /n)) −−−−→ Inf {ereal(u n/n)|n. n > N0}

by (simp add: assms(1 ) subadditive-converges-ereal ′)
define V where V = {u n/n | n. n>N0}
have a: bdd-below V V 6={} by (auto simp add: V-def assms(2 ))
have Inf {ereal(t)| t. t∈V } = ereal(Inf V ) by (subst ereal-Inf ′[OF a], simp add:

Setcompr-eq-image)
moreover have {ereal(t)| t. t∈V } = {ereal(u n/n)|n. n > N0} using V-def by

blast
ultimately have Inf {ereal(u n/n)|n. n > N0} = ereal(Inf {u n/n |n. n >

N0}) using V-def by auto
then have (λn. ereal(u n /n)) −−−−→ ereal(Inf {u n/n | n. n>N0}) using ∗

by auto
then show ?thesis by simp

qed

lemma subadditive-converges-bounded:
assumes subadditive u

bdd-below {u n/n | n. n>0}
shows (λn. u n/n) −−−−→ Inf {u n/n | n. n>0}

by (rule subadditive-converges-bounded ′[OF subadditive-imp-eventually-subadditive[OF
assms(1 )] assms(2 )])

We reformulate the previous lemma in a more directly usable form, avoiding
the infimum.
lemma subadditive-converges-bounded ′′:

assumes subadditive u∧
n. n > 0 =⇒ u n ≥ n ∗ (a::real)

shows ∃ l. (λn. u n / n) −−−−→ l ∧ (∀n>0 . u n ≥ n ∗ l)
proof −

have B: bdd-below {u n/n | n. n>0}
apply (rule bdd-belowI [of - a]) using assms(2 )
apply (auto simp add: divide-simps)
apply (metis mult.commute mult-left-le-imp-le of-nat-0-less-iff )
done

define l where l = Inf {u n/n | n. n>0}
have ∗: u n / n ≥ l if n > 0 for n

unfolding l-def using that by (auto intro!: cInf-lower [OF - B])
show ?thesis

apply (rule exI [of - l], auto)
using subadditive-converges-bounded[OF assms(1 ) B] apply (simp add: l-def )
using ∗ by (simp add: divide-simps algebra-simps)

qed
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lemma subadditive-converges-unbounded ′:
assumes eventually-subadditive u N0

¬ (bdd-below {u n/n | n. n>N0})
shows (λn. ereal(u n/n)) −−−−→ −∞

proof −
have ∗: (λn. ereal(u n /n)) −−−−→ Inf {ereal(u n/n)|n. n > N0}

by (simp add: assms(1 ) subadditive-converges-ereal ′)
define V where V = {u n/n | n. n>N0}
then have ¬ bdd-below V using assms by simp
have Inf {ereal(t) | t. t∈V } = −∞

by (rule ereal-bot, metis (mono-tags, lifting) ‹¬ bdd-below V › bdd-below-def
leI Inf-lower2 ereal-less-eq(3 ) le-less mem-Collect-eq)

moreover have {ereal(t)| t. t∈V } = {ereal(u n/n)|n. n > N0} using V-def by
blast

ultimately have Inf {ereal(u n/n)|n. n > N0} = −∞ by auto
then show ?thesis using ∗ by simp

qed

lemma subadditive-converges-unbounded:
assumes subadditive u

¬ (bdd-below {u n/n | n. n>0})
shows (λn. ereal(u n/n)) −−−−→ −∞

by (rule subadditive-converges-unbounded ′[OF subadditive-imp-eventually-subadditive[OF
assms(1 )] assms(2 )])

2.2 Superadditive sequences

While most applications involve subadditive sequences, one sometimes en-
counters superadditive sequences. We reformulate quickly some of the above
results in this setting.
definition superadditive::(nat⇒real) ⇒ bool

where superadditive u = (∀m n. u (m+n) ≥ u m + u n)

lemma subadditive-of-superadditive:
assumes superadditive u
shows subadditive (λn. −u n)

using assms unfolding superadditive-def subadditive-def by (auto simp add: al-
gebra-simps)

lemma superadditive-un-ge-nu1 :
assumes superadditive u

n > 0
shows u n ≥ n ∗ u 1

using subadditive-un-le-nu1 [OF subadditive-of-superadditive[OF assms(1 )] assms(2 )]
by auto

lemma superadditive-converges-bounded ′′:
assumes superadditive u
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∧
n. n > 0 =⇒ u n ≤ n ∗ (a::real)

shows ∃ l. (λn. u n / n) −−−−→ l ∧ (∀n>0 . u n ≤ n ∗ l)
proof −

have ∃ l. (λn. −u n / n) −−−−→ l ∧ (∀n>0 . −u n ≥ n ∗ l)
apply (rule subadditive-converges-bounded ′′[OF subadditive-of-superadditive[OF

assms(1 )], of −a])
using assms(2 ) by auto

then obtain l where l: (λn. −u n / n) −−−−→ l (∀n>0 . −u n ≥ n ∗ l) by
blast

have (λn. −((−u n)/n)) −−−−→ −l
by (intro tendsto-intros l)

moreover have ∀n>0 . u n ≤ n ∗ (−l)
using l(2 ) by (auto simp add: algebra-simps) (metis minus-equation-iff neg-le-iff-le)

ultimately show ?thesis
by auto

qed

2.3 Almost additive sequences

One often encounters sequences which are both subadditive and superaddi-
tive, but only up to an additive constant. Adding or subtracting this con-
stant, one can make the sequence genuinely subadditive or superadditive,
and thus deduce results about its convergence, as follows. Such sequences
appear notably when dealing with quasimorphisms.
lemma almost-additive-converges:

fixes u::nat ⇒ real
assumes

∧
m n. abs(u(m+n) − u m − u n) ≤ C

shows convergent (λn. u n/n)
abs(u k − k ∗ lim (λn. u n / n)) ≤ C

proof −
have (abs (u 0 )) ≤ C using assms[of 0 0 ] by auto
then have C ≥ 0 by auto

define v where v = (λn. u n + C )
have subadditive v

unfolding subadditive-def v-def using assms by (auto simp add: algebra-simps
abs-diff-le-iff )

then have vle: v n ≤ n ∗ v 1 if n > 0 for n
using subadditive-un-le-nu1 that by auto

define w where w = (λn. u n − C )
have superadditive w

unfolding superadditive-def w-def using assms by (auto simp add: alge-
bra-simps abs-diff-le-iff )

then have wge: w n ≥ n ∗ w 1 if n > 0 for n
using superadditive-un-ge-nu1 that by auto

have I : v n ≥ w n for n
unfolding v-def w-def using ‹C ≥ 0 › by auto
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then have ∗: v n ≥ n ∗ w 1 if n > 0 for n using order-trans[OF wge[OF that]]
by auto

then obtain lv where lv: (λn. v n/n) −−−−→ lv
∧

n. n > 0 =⇒ v n ≥ n ∗ lv
using subadditive-converges-bounded ′′[OF ‹subadditive v› ∗] by auto

have ∗: w n ≤ n ∗ v 1 if n > 0 for n using order-trans[OF - vle[OF that]] I
by auto

then obtain lw where lw: (λn. w n/n) −−−−→ lw
∧

n. n > 0 =⇒ w n ≤ n ∗ lw
using superadditive-converges-bounded ′′[OF ‹superadditive w› ∗] by auto

have ∗: v n/n = w n /n + 2∗C∗(1/n) for n
unfolding v-def w-def by (auto simp add: algebra-simps divide-simps)

have (λn. w n /n + 2∗C∗(1/n)) −−−−→ lw + 2∗C∗0
by (intro tendsto-add tendsto-mult lim-1-over-n lw, auto)

then have lw = lv
unfolding ∗[symmetric] using lv(1 ) LIMSEQ-unique by auto

have ∗: u n/n = w n /n + C∗(1/n) for n
unfolding w-def by (auto simp add: algebra-simps divide-simps)

have (λn. u n /n) −−−−→ lw + C∗0
unfolding ∗ by (intro tendsto-add tendsto-mult lim-1-over-n lw, auto)

then have lu: convergent (λn. u n/n) lim (λn. u n/n) = lw
by (auto simp add: convergentI limI )

then show convergent (λn. u n/n) by simp

show abs(u k − k ∗ lim (λn. u n / n)) ≤ C
proof (cases k>0 )

case False
then show ?thesis using assms[of 0 0 ] by auto

next
case True
have u k − k ∗ lim (λn. u n/n) = v k − C − k ∗ lv unfolding lu(2 ) ‹lw =

lv› v-def by auto
also have ... ≥ −C using lv(2 )[OF True] by auto
finally have A: u k − k ∗ lim (λn. u n/n) ≥ − C by simp
have u k − k ∗ lim (λn. u n/n) = w k + C − k ∗ lw unfolding lu(2 ) w-def

by auto
also have ... ≤ C using lw(2 )[OF True] by auto
finally show ?thesis using A by auto

qed
qed

2.4 Submultiplicative sequences, application to the spectral
radius

In the same way as subadditive sequences, one may define submultiplicative
sequences. Essentially, a sequence is submultiplicative if its logarithm is
subadditive. A difference is that we allow a submultiplicative sequence to
take the value 0, as this shows up in applications. This implies that we have
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to distinguish in the proofs the situations where the value 0 is taken or not.
In the latter situation, we can use directly the results from the subadditive
case to deduce convergence. In the former situation, convergence to 0 is
obvious as the sequence vanishes eventually.
lemma submultiplicative-converges:

fixes u::nat⇒real
assumes

∧
n. u n ≥ 0∧

m n. u (m+n) ≤ u m ∗ u n
shows (λn. root n (u n))−−−−→ Inf {root n (u n) | n. n>0}

proof −
define v where v = (λ n. root n (u n))
define V where V = {v n | n. n>0}
then have V 6= {} by blast
have t ≥ 0 if t ∈ V for t using that V-def v-def assms(1 ) by auto
then have Inf V ≥ 0 by (simp add: ‹V 6= {}› cInf-greatest)
have bdd-below V by (meson ‹

∧
t. t ∈ V =⇒ 0 ≤ t› bdd-below-def )

show ?thesis
proof cases

assume ∃n. u n = 0
then obtain n where u n = 0 by auto
then have u m = 0 if m ≥ n for m by (metis that antisym-conv assms(1 )

assms(2 ) le-Suc-ex mult-zero-left)
then have ∗: v m = 0 if m ≥ n for m using v-def that by simp
then have v −−−−→ 0 using lim-explicit by force

have v (Suc n) ∈ V using V-def by blast
moreover have v (Suc n) = 0 using ∗ by auto
ultimately have Inf V ≤ 0 by (simp add: ‹bdd-below V › cInf-lower)
then have Inf V = 0 using ‹0 ≤ Inf V › by auto
then show ?thesis using V-def v-def ‹v −−−−→ 0 › by auto

next
assume ¬ (∃n. u n = 0 )
then have u n > 0 for n by (metis assms(1 ) less-eq-real-def )
define w where w n = ln (u n) for n
have express-vn: v n = exp(w n/n) if n>0 for n
proof −

have (exp(w n/n))^n = exp(n∗(w n/n)) by (metis exp-of-nat-mult)
also have ... = exp(w n) by (simp add: ‹0 < n›)
also have ... = u n by (simp add: ‹

∧
n. 0 < u n› w-def )

finally have exp(w n/n) = root n (u n) by (metis ‹0 < n› exp-ge-zero
real-root-power-cancel)

then show ?thesis unfolding v-def by simp
qed

have eventually-subadditive w 0
proof (rule eventually-subadditiveI )

fix m n
have w (m+n) = ln (u (m+n)) by (simp add: w-def )
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also have ... ≤ ln(u m ∗ u n)
by (meson ‹

∧
n. 0 < u n› assms(2 ) zero-less-mult-iff ln-le-cancel-iff )

also have ... = ln(u m) + ln(u n)
by (meson ‹

∧
n. 0 < u n› ln-mult-pos)

also have ... = w m + w n by (simp add: w-def )
finally show w (m+n) ≤ w m + w n.

qed

define l where l = Inf V
then have v n≥l if n > 0 for n

using V-def that by (metis (mono-tags, lifting) ‹bdd-below V › cInf-lower
mem-Collect-eq)

then have lower : eventually (λn. a < v n) sequentially if a < l for a
by (meson that dual-order .strict-trans1 eventually-at-top-dense)

have upper : eventually (λn. a > v n) sequentially if a > l for a
proof −

obtain t where t∈V t < a using ‹V 6= {}› cInf-lessD l-def ‹a>l› by blast
then have t > 0 using V-def ‹

∧
n. 0 < u n› v-def by auto

then have a/t > 1 using ‹t<a› by simp
define e where e = ln(a/t)/2

have e > 0 e < ln(a/t) unfolding e-def by (simp-all add: ‹1 < a / t›
ln-gt-zero)

then have exp(e) < a/t by (metis ‹1 < a / t› exp-less-cancel-iff exp-ln
less-trans zero-less-one)

obtain n where n>0 t = v n using V-def v-def ‹t ∈ V › by blast
with ‹0 < t› have v n ∗ exp(e) < a using ‹exp(e) < a/t›

by (auto simp add: field-simps)

obtain N where ∗: N>0
∧

m. m≥N =⇒ w m/m < w n/n + e
using eventually-subadditive-ineq[OF ‹eventually-subadditive w 0 ›] ‹0 < n›

‹e>0 › by blast
have v m < a if m ≥ N for m
proof −

have m>0 using that ‹N>0 › by simp
have w m/m < w n/n + e by (simp add: ‹N ≤ m› ∗)
then have exp(w m/m) < exp(w n/n + e) by simp
also have ... = exp(w n/n) ∗ exp(e) by (simp add: mult-exp-exp)
finally have v m < v n ∗ exp(e) using express-vn ‹m>0 › ‹n>0 › by simp
then show v m < a using ‹v n ∗ exp(e) < a› by simp

qed
then show ?thesis using eventually-at-top-linorder by auto

qed

show ?thesis
using lower upper unfolding v-def l-def V-def by (simp add: order-tendsto-iff )

qed
qed
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An important application of submultiplicativity is to prove the existence of
the spectral radius of a matrix, as the limit of ‖An‖1/n.
definition spectral-radius:: ′a::real-normed-algebra-1 ⇒ real

where spectral-radius x = Inf {root n (norm(x^n))| n. n>0}

lemma spectral-radius-aux:
fixes x:: ′a::real-normed-algebra-1
defines V ≡ {root n (norm(x^n))| n. n>0}
shows

∧
t. t∈V =⇒ t ≥ spectral-radius x∧

t. t∈V =⇒ t ≥ 0
bdd-below V
V 6= {}
Inf V ≥ 0

proof −
show V 6={} using V-def by blast
show ∗: t ≥ 0 if t ∈ V for t using that unfolding V-def using real-root-pos-pos-le

by auto
then show bdd-below V by (meson bdd-below-def )
then show Inf V ≥ 0 by (simp add: ‹V 6= {}› ∗ cInf-greatest)
show

∧
t. t∈V =⇒ t ≥ spectral-radius x by (metis (mono-tags, lifting) ‹bdd-below

V › assms cInf-lower spectral-radius-def )
qed

lemma spectral-radius-nonneg [simp]:
spectral-radius x ≥ 0

by (simp add: spectral-radius-aux(5 ) spectral-radius-def )

lemma spectral-radius-upper-bound [simp]:
(spectral-radius x)^n ≤ norm(x^n)

proof (cases)
assume ¬(n = 0 )
have root n (norm(x^n)) ≥ spectral-radius x

using spectral-radius-aux ‹n 6= 0 › by auto
then show ?thesis

by (metis ‹n 6= 0 › spectral-radius-nonneg norm-ge-zero not-gr0 power-mono
real-root-pow-pos2 )
qed (simp)

lemma spectral-radius-limit:
(λn. root n (norm(x^n))) −−−−→ spectral-radius x

proof −
have norm(x^(m+n)) ≤ norm(x^m) ∗ norm(x^n) for m n by (simp add:

power-add norm-mult-ineq)
then show ?thesis unfolding spectral-radius-def using submultiplicative-converges

by auto
qed

end
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3 Asymptotic densities
theory Asymptotic-Density

imports SG-Library-Complement
begin

The upper asymptotic density of a subset A of the integers is lim supCard(A∩
[0, n))/n ∈ [0, 1]. It measures how big a set of integers is, at some times. In
this paragraph, we establish the basic properties of this notion.
There is a corresponding notion of lower asymptotic density, with a liminf in-
stead of a limsup, measuring how big a set is at all times. The corresponding
properties are proved exactly in the same way.

3.1 Upper asymptotic densities

As limsups are only defined for sequences taking values in a complete lattice
(here the extended reals), we define it in the extended reals and then go
back to the reals. This is a little bit artificial, but it is not a real problem
as in the applications we will never come back to this definition.
definition upper-asymptotic-density::nat set ⇒ real
where upper-asymptotic-density A = real-of-ereal(limsup (λn. card(A ∩ {..<n})/n))

First basic property: the asymptotic density is between 0 and 1.
lemma upper-asymptotic-density-in-01 :

ereal(upper-asymptotic-density A) = limsup (λn. card(A ∩ {..<n})/n)
upper-asymptotic-density A ≤ 1
upper-asymptotic-density A ≥ 0

proof −
{

fix n::nat assume n>0
have card(A ∩ {..<n}) ≤ n by (metis card-lessThan Int-lower2 card-mono

finite-lessThan)
then have card(A ∩ {..<n}) / n ≤ ereal 1 using ‹n>0 › by auto

}
then have eventually (λn. card(A ∩ {..<n}) / n ≤ ereal 1 ) sequentially

by (simp add: eventually-at-top-dense)
then have a: limsup (λn. card(A ∩ {..<n})/n) ≤ 1 by (simp add: Limsup-const

Limsup-bounded)

have card(A ∩ {..<n}) / n ≥ ereal 0 for n by auto
then have liminf (λn. card(A ∩ {..<n})/n) ≥ 0 by (simp add: le-Liminf-iff

less-le-trans)
then have b: limsup (λn. card(A ∩ {..<n})/n) ≥ 0 by (meson Liminf-le-Limsup

order-trans sequentially-bot)

have abs(limsup (λn. card(A ∩ {..<n})/n)) 6= ∞ using a b by auto
then show ereal(upper-asymptotic-density A) = limsup (λn. card(A ∩ {..<n})/n)
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unfolding upper-asymptotic-density-def by auto
show upper-asymptotic-density A ≤ 1 upper-asymptotic-density A ≥ 0 unfolding

upper-asymptotic-density-def
using a b by (auto simp add: real-of-ereal-le-1 real-of-ereal-pos)

qed

The two next propositions give the usable characterization of the asymptotic
density, in terms of the eventual cardinality of A ∩ [0, n). Note that the
inequality is strict for one implication and large for the other.
proposition upper-asymptotic-densityD:

fixes l::real
assumes upper-asymptotic-density A < l
shows eventually (λn. card(A ∩ {..<n}) < l ∗ n) sequentially

proof −
have limsup (λn. card(A ∩ {..<n})/n) < l

using assms upper-asymptotic-density-in-01 (1 ) ereal-less-ereal-Ex by auto
then have eventually (λn. card(A ∩ {..<n})/n < ereal l) sequentially

using Limsup-lessD by blast
then have eventually (λn. card(A ∩ {..<n})/n < ereal l ∧ n > 0 ) sequentially

using eventually-gt-at-top eventually-conj by blast
moreover have card(A ∩ {..<n}) < l ∗ n if card(A ∩ {..<n})/n < ereal l ∧ n

> 0 for n
using that by (simp add: divide-less-eq)

ultimately show eventually (λn. card(A ∩ {..<n}) < l ∗ n) sequentially
by (simp add: eventually-mono)

qed

proposition upper-asymptotic-densityI :
fixes l::real
assumes eventually (λn. card(A ∩ {..<n}) ≤ l ∗ n) sequentially
shows upper-asymptotic-density A ≤ l

proof −
have eventually (λn. card(A ∩ {..<n}) ≤ l ∗ n ∧ n > 0 ) sequentially

using assms eventually-gt-at-top eventually-conj by blast
moreover have card(A ∩ {..<n})/n ≤ ereal l if card(A ∩ {..<n}) ≤ l ∗ n ∧ n

> 0 for n
using that by (simp add: divide-le-eq)

ultimately have eventually (λn. card(A ∩ {..<n})/n ≤ ereal l) sequentially
by (simp add: eventually-mono)

then have limsup (λn. card(A ∩ {..<n})/n) ≤ ereal l
by (simp add: Limsup-bounded)

then have ereal(upper-asymptotic-density A) ≤ ereal l
using upper-asymptotic-density-in-01 (1 ) by auto

then show ?thesis by (simp del: upper-asymptotic-density-in-01 )
qed

The following trivial lemma is useful to control the asymptotic density of
unions.
lemma lem-ge-sum:
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fixes l x y::real
assumes l>x+y
shows ∃ lx ly. l = lx + ly ∧ lx > x ∧ ly > y

proof −
define lx ly where lx = x + (l−(x+y))/2 and ly = y + (l−(x+y))/2
have l = lx + ly ∧ lx > x ∧ ly > y unfolding lx-def ly-def using assms by

auto
then show ?thesis by auto

qed

The asymptotic density of a union is bounded by the sum of the asymptotic
densities.
lemma upper-asymptotic-density-union:
upper-asymptotic-density (A ∪ B) ≤ upper-asymptotic-density A + upper-asymptotic-density

B
proof −

have upper-asymptotic-density (A ∪ B) ≤ l if H : l > upper-asymptotic-density
A + upper-asymptotic-density B for l

proof −
obtain lA lB where l: l = lA+lB and lA: lA > upper-asymptotic-density A

and lB: lB > upper-asymptotic-density B
using lem-ge-sum H by blast

{
fix n assume H : card (A ∩ {..<n}) < lA ∗ n ∧ card (B ∩ {..<n}) < lB ∗ n
have card((A∪B) ∩ {..<n}) ≤ card(A ∩ {..<n}) + card(B ∩ {..<n})

by (simp add: card-Un-le inf-sup-distrib2 )
also have ... ≤ l ∗ n using l H by (simp add: ring-class.ring-distribs(2 ))
finally have card ((A∪B) ∩ {..<n}) ≤ l ∗ n by simp

}
moreover have eventually (λn. card (A ∩ {..<n}) < lA ∗ n ∧ card (B ∩

{..<n}) < lB ∗ n) sequentially
using upper-asymptotic-densityD[OF lA] upper-asymptotic-densityD[OF lB]

eventually-conj by blast
ultimately have eventually (λn. card((A∪B) ∩ {..<n}) ≤ l ∗ n) sequentially

by (simp add: eventually-mono)
then show upper-asymptotic-density (A ∪ B) ≤ l using upper-asymptotic-densityI

by auto
qed
then show ?thesis by (meson dense not-le)

qed

It follows that the asymptotic density is an increasing function for inclusion.
lemma upper-asymptotic-density-subset:

assumes A ⊆ B
shows upper-asymptotic-density A ≤ upper-asymptotic-density B

proof −
have upper-asymptotic-density A ≤ l if l: l > upper-asymptotic-density B for l
proof −

have card(A ∩ {..<n}) ≤ card(B ∩ {..<n}) for n
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using assms by (metis Int-lower2 Int-mono card-mono finite-lessThan fi-
nite-subset inf .left-idem)

then have card(A ∩ {..<n}) ≤ l ∗ n if card(B ∩ {..<n}) < l ∗ n for n
using that by (meson lessThan-def less-imp-le of-nat-le-iff order-trans)

moreover have eventually (λn. card(B ∩ {..<n}) < l ∗ n) sequentially
using upper-asymptotic-densityD l by simp

ultimately have eventually (λn. card(A ∩ {..<n}) ≤ l ∗ n) sequentially
by (simp add: eventually-mono)

then show ?thesis using upper-asymptotic-densityI by auto
qed
then show ?thesis by (meson dense not-le)

qed

If a set has a density, then it is also its asymptotic density.
lemma upper-asymptotic-density-lim:

assumes (λn. card(A ∩ {..<n})/n) −−−−→ l
shows upper-asymptotic-density A = l

proof −
have (λn. ereal(card(A ∩ {..<n})/n)) −−−−→ l using assms by auto
then have limsup (λn. card(A ∩ {..<n})/n) = l

using sequentially-bot tendsto-iff-Liminf-eq-Limsup by blast
then show ?thesis unfolding upper-asymptotic-density-def by auto

qed

If two sets are equal up to something small, i.e. a set with zero upper density,
then they have the same upper density.
lemma upper-asymptotic-density-0-diff :

assumes A ⊆ B upper-asymptotic-density (B−A) = 0
shows upper-asymptotic-density A = upper-asymptotic-density B

proof −
have upper-asymptotic-density B ≤ upper-asymptotic-density A + upper-asymptotic-density

(B−A)
using upper-asymptotic-density-union[of A B−A] by (simp add: assms(1 )

sup.absorb2 )
then have upper-asymptotic-density B ≤ upper-asymptotic-density A

using assms(2 ) by simp
then show ?thesis using upper-asymptotic-density-subset[OF assms(1 )] by simp

qed

lemma upper-asymptotic-density-0-Delta:
assumes upper-asymptotic-density (A ∆ B) = 0
shows upper-asymptotic-density A = upper-asymptotic-density B

proof −
have A− (A∩B) ⊆ A ∆ B B− (A∩B) ⊆ A ∆ B

using assms(1 ) by (auto simp add: Diff-Int Un-infinite)
then have upper-asymptotic-density (A − (A∩B)) = 0

upper-asymptotic-density (B − (A∩B)) = 0
using upper-asymptotic-density-subset assms(1 ) upper-asymptotic-density-in-01 (3 )
by (metis inf .absorb-iff2 inf .orderE)+
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then have upper-asymptotic-density (A∩B) = upper-asymptotic-density A
upper-asymptotic-density (A∩B) = upper-asymptotic-density B

using upper-asymptotic-density-0-diff by auto
then show ?thesis by simp

qed

Finite sets have vanishing upper asymptotic density.
lemma upper-asymptotic-density-finite:

assumes finite A
shows upper-asymptotic-density A = 0

proof −
have (λn. card(A ∩ {..<n})/n) −−−−→ 0
proof (rule tendsto-sandwich[where ?f = λn. 0 and ?h = λ(n::nat). card A /

n])
have card(A ∩ {..<n})/n ≤ card A / n if n>0 for n

using that ‹finite A› by (simp add: card-mono divide-right-mono)
then show eventually (λn. card(A ∩ {..<n})/n ≤ card A / n) sequentially

by (simp add: eventually-at-top-dense)
have (λn. real (card A)∗ (1 / real n)) −−−−→ real(card A) ∗ 0

by (intro tendsto-intros)
then show (λn. real (card A) / real n) −−−−→ 0 by auto

qed (auto)
then show upper-asymptotic-density A = 0 using upper-asymptotic-density-lim

by auto
qed

In particular, bounded intervals have zero upper density.
lemma upper-asymptotic-density-bdd-interval [simp]:

upper-asymptotic-density {} = 0
upper-asymptotic-density {..N} = 0
upper-asymptotic-density {..<N} = 0
upper-asymptotic-density {n..N} = 0
upper-asymptotic-density {n..<N} = 0
upper-asymptotic-density {n<..N} = 0
upper-asymptotic-density {n<..<N} = 0

by (auto intro!: upper-asymptotic-density-finite)

The density of a finite union is bounded by the sum of the densities.
lemma upper-asymptotic-density-finite-Union:

assumes finite I
shows upper-asymptotic-density (

⋃
i∈I . A i) ≤ (

∑
i∈I . upper-asymptotic-density

(A i))
using assms apply (induction I rule: finite-induct)
using order-trans[OF upper-asymptotic-density-union] by auto

It is sometimes useful to compute the asymptotic density by shifting a little
bit the set: this only makes a finite difference that vanishes when divided by
n.
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lemma upper-asymptotic-density-shift:
fixes k::nat and l::int
shows ereal(upper-asymptotic-density A) = limsup (λn. card(A ∩ {k..nat(n+l)})

/ n)
proof −

define C where C = k+2∗nat(abs(l))+1
have ∗: (λn. C∗(1/n)) −−−−→ real C ∗ 0

by (intro tendsto-intros)
have l0 : limsup (λn. C/n) = 0

apply (rule lim-imp-Limsup, simp) using ∗ by (simp add: zero-ereal-def )

have card(A ∩ {k..nat(n+l)}) / n ≤ card (A ∩ {..<n})/n + C/n for n
proof −

have card(A ∩ {k..nat(n+l)}) ≤ card (A ∩ {..<n} ∪ {n..n + nat(abs(l))})
by (rule card-mono, auto)

also have ... ≤ card (A ∩ {..<n}) + card {n..n + nat(abs(l))}
by (rule card-Un-le)

also have ... ≤ card (A ∩ {..<n}) + real C
unfolding C-def by auto

finally have card(A ∩ {k..nat(n+l)}) / n ≤ (card (A ∩ {..<n}) + real C ) /n
by (simp add: divide-right-mono)

also have ... = card (A ∩ {..<n})/n + C/n
using add-divide-distrib by auto

finally show ?thesis
by auto

qed
then have limsup (λn. card(A ∩ {k..nat(n+l)}) / n) ≤ limsup (λn. card (A ∩
{..<n})/n + ereal(C/n))

by (simp add: Limsup-mono)
also have ... ≤ limsup (λn. card (A ∩ {..<n})/n) + limsup (λn. C/n)

by (rule ereal-limsup-add-mono)
finally have a: limsup (λn. card(A ∩ {k..nat(n+l)}) / n) ≤ limsup (λn. card

(A ∩ {..<n})/n)
using l0 by simp

have card (A ∩ {..<n}) / n ≤ card (A ∩ {k..nat(n+l)})/n + C/n for n
proof −

have card ({..<k} ∪ {n−nat(abs(l))..n + nat(abs(l))}) ≤ card {..<k} + card
{n−nat(abs(l))..n + nat(abs(l))}

by (rule card-Un-le)
also have ... ≤ k + 2∗nat(abs(l)) + 1 by auto
finally have ∗: card ({..<k} ∪ {n−nat(abs(l))..n + nat(abs(l))}) ≤ C unfold-

ing C-def by blast

have card(A ∩ {..<n}) ≤ card (A ∩ {k..nat(n+l)} ∪ ({..<k} ∪ {n−nat(abs(l))..n
+ nat(abs(l))}))

by (rule card-mono, auto)
also have ... ≤ card (A ∩ {k..nat(n+l)}) + card ({..<k} ∪ {n−nat(abs(l))..n

+ nat(abs(l))})
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by (rule card-Un-le)
also have ... ≤ card (A ∩ {k..nat(n+l)}) + C

using ∗ by auto
finally have card (A ∩ {..<n}) / n ≤ (card (A ∩ {k..nat(n+l)}) + real C )/n

by (simp add: divide-right-mono)
also have ... = card (A ∩ {k..nat(n+l)})/n + C/n

using add-divide-distrib by auto
finally show ?thesis

by auto
qed
then have limsup (λn. card(A ∩ {..<n}) / n) ≤ limsup (λn. card (A ∩ {k..nat(n+l)})/n

+ ereal(C/n))
by (simp add: Limsup-mono)

also have ... ≤ limsup (λn. card (A ∩ {k..nat(n+l)})/n) + limsup (λn. C/n)
by (rule ereal-limsup-add-mono)

finally have limsup (λn. card(A ∩ {..<n}) / n) ≤ limsup (λn. card (A ∩
{k..nat(n+l)})/n)

using l0 by simp
then have limsup (λn. card(A ∩ {..<n}) / n) = limsup (λn. card (A ∩ {k..nat(n+l)})/n)

using a by auto
then show ?thesis using upper-asymptotic-density-in-01 (1 ) by auto

qed

Upper asymptotic density is measurable.
lemma upper-asymptotic-density-meas [measurable]:

assumes [measurable]:
∧
(n::nat). Measurable.pred M (P n)

shows (λx. upper-asymptotic-density {n. P n x}) ∈ borel-measurable M
unfolding upper-asymptotic-density-def by auto

A finite union of sets with zero upper density still has zero upper density.
lemma upper-asymptotic-density-zero-union:

assumes upper-asymptotic-density A = 0 upper-asymptotic-density B = 0
shows upper-asymptotic-density (A ∪ B) = 0

using upper-asymptotic-density-in-01 (3 )[of A ∪ B] upper-asymptotic-density-union[of
A B] unfolding assms by auto

lemma upper-asymptotic-density-zero-finite-Union:
assumes finite I

∧
i. i ∈ I =⇒ upper-asymptotic-density (A i) = 0

shows upper-asymptotic-density (
⋃

i∈I . A i) = 0
using assms by (induction rule: finite-induct, auto intro!: upper-asymptotic-density-zero-union)

The union of sets with small asymptotic densities can have a large density:
think of An = [0, n], it has density 0, but the union of the An has density 1.
However, if one only wants a set which contains each An eventually, then one
can obtain a “union” that has essentially the same density as each An. This is
often used as a replacement for the diagonal argument in density arguments:
if for each n one can find a set An with good properties and a controlled
density, then their “union” will have the same properties (eventually) and a
controlled density.
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proposition upper-asymptotic-density-incseq-Union:
assumes

∧
(n::nat). upper-asymptotic-density (A n) ≤ l incseq A

shows ∃B. upper-asymptotic-density B ≤ l ∧ (∀n. ∃N . A n ∩ {N ..} ⊆ B)
proof −

have A: ∃N . ∀ j ≥ N . card (A k ∩ {..<j}) < (l + (1/2 )^k) ∗ j for k
proof −

have ∗: upper-asymptotic-density (A k) < l + (1/2 )^k using assms(1 )[of k]
by (metis add.right-neutral add-mono-thms-linordered-field(4 ) less-divide-eq-numeral1 (1 )

mult-zero-left zero-less-one zero-less-power)
show ?thesis
using upper-asymptotic-densityD[OF ∗] unfolding eventually-sequentially by

auto
qed
have ∃N . ∀ k. (∀ j ≥ N k. card (A k ∩ {..<j}) ≤ (l+(1/2 )^k) ∗ j) ∧ N (Suc k)

> N k
proof (rule dependent-nat-choice)

fix x k::nat
obtain N where N : ∀ j≥N . real (card (A (Suc k) ∩ {..<j})) ≤ (l + (1 / 2 )

^ Suc k) ∗ real j
using A[of Suc k] less-imp-le by auto

show ∃ y. (∀ j≥y. real (card (A(Suc k) ∩ {..<j})) ≤ (l + (1 / 2 ) ^ Suc k) ∗
real j) ∧ x < y

apply (rule exI [of - max x N + 1 ]) using N by auto
next

show ∃ x. ∀ j≥x. real (card ((A 0 ) ∩ {..<j})) ≤ (l + (1 / 2 ) ^ 0 ) ∗ real j
using A[of 0 ] less-imp-le by auto

qed

Here is the choice of the good waiting function N

then obtain N where N :
∧

k j. j ≥ N k =⇒ card (A k ∩ {..<j}) ≤ (l +
(1/2 )^k) ∗ j

∧
k. N (Suc k) > N k

by blast
then have strict-mono N by (simp add: strict-monoI-Suc)
have Nmono: N k < N l if k < l for k l

using N (2 ) by (simp add: lift-Suc-mono-less that)

We can now define the global bad set B.
define B where B = (

⋃
k. A k ∩ {N k..})

We will now show that it also has density at most l.
have Bcard: card (B ∩ {..<n}) ≤ (l+(1/2 )^k) ∗ n if N k ≤ n n < N (Suc k)

for n k
proof −

have {N j..<n} = {} if j ∈ {k<..} for j
using ‹n < N (Suc k)› that by (auto, meson ‹strict-mono N › less-trans

not-less-eq strict-mono-less)
then have ∗: (

⋃
j∈{k<..}. A j ∩ {N j..<n}) = {} by force

have B ∩ {..<n} = (
⋃

j. A j ∩ {N j..<n})
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unfolding B-def by auto
also have ... = (

⋃
j ∈ {..k}. A j ∩ {N j..<n}) ∪ (

⋃
j∈{k<..}. A j ∩ {N j..<n})

unfolding UN-Un [symmetric] by (rule arg-cong [of - - Union]) auto
also have ... = (

⋃
j ∈ {..k}. A j ∩ {N j..<n})

unfolding ∗ by simp
also have ... ⊆ (

⋃
j ∈ {..k}. A k ∩ {..<n})

using ‹incseq A› unfolding incseq-def by (auto intro!: UN-mono)
also have ... = A k ∩ {..<n}

by simp
finally have card (B ∩ {..<n}) ≤ card (A k ∩ {..<n})

by (rule card-mono[rotated], auto)
then show ?thesis

using N (1 )[OF ‹n ≥ N k›] by simp
qed
have eventually (λn. card (B ∩ {..<n}) ≤ a ∗ n) sequentially if l < a for a::real
proof −

have eventually (λk. (l+(1/2 )^k) < a) sequentially
apply (rule order-tendstoD[of - l+0 ], intro tendsto-intros) using that by auto

then obtain k where l + (1/2 )^k < a
unfolding eventually-sequentially by auto

have card (B ∩ {..<n}) ≤ a ∗ n if n ≥ N k + 1 for n
proof −

have n ≥ N k n ≥ 1 using that by auto
have {p. n ≥ N p} ⊆ {..n}

using ‹strict-mono N › dual-order .trans seq-suble by blast
then have ∗: finite {p. n ≥ N p} {p. n ≥ N p} 6= {}

using ‹n ≥ N k› finite-subset by auto
define m where m = Max {p. n ≥ N p}
have k ≤ m

unfolding m-def using Max-ge[OF ∗(1 ), of k] that by auto
have N m ≤ n

unfolding m-def using Max-in[OF ∗] by auto
have Suc m /∈ {p. n ≥ N p}

unfolding m-def using ∗ Max-ge Suc-n-not-le-n by blast
then have n < N (Suc m) by simp
have card (B ∩ {..<n}) ≤ (l+(1/2 )^m) ∗ n

using Bcard[OF ‹N m ≤ n› ‹n < N (Suc m)›] by simp
also have ... ≤ (l + (1/2 )^k) ∗ n
apply (rule mult-right-mono) using ‹k ≤ m› by (auto simp add: power-decreasing)
also have ... ≤ a ∗ n

using ‹l + (1/2 )^k < a› ‹n ≥ 1 › by auto
finally show ?thesis by auto

qed
then show ?thesis unfolding eventually-sequentially by auto

qed
then have upper-asymptotic-density B ≤ a if a > l for a

using upper-asymptotic-densityI that by auto
then have upper-asymptotic-density B ≤ l

by (meson dense not-le)
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moreover have ∃N . A n ∩ {N ..} ⊆ B for n
apply (rule exI [of - N n]) unfolding B-def by auto

ultimately show ?thesis by auto
qed

When the sequence of sets is not increasing, one can only obtain a set whose
density is bounded by the sum of the densities.
proposition upper-asymptotic-density-Union:

assumes summable (λn. upper-asymptotic-density (A n))
shows ∃B. upper-asymptotic-density B ≤ (

∑
n. upper-asymptotic-density (A n))

∧ (∀n. ∃N . A n ∩ {N ..} ⊆ B)
proof −

define C where C = (λn. (
⋃

i≤n. A i))
have C1 : incseq C

unfolding C-def incseq-def by fastforce
have C2 : upper-asymptotic-density (C k) ≤ (

∑
n. upper-asymptotic-density (A

n)) for k
proof −

have upper-asymptotic-density (C k) ≤ (
∑

i≤k. upper-asymptotic-density (A
i))

unfolding C-def by (rule upper-asymptotic-density-finite-Union, auto)
also have ... ≤ (

∑
i. upper-asymptotic-density (A i))

apply (rule sum-le-suminf [OF assms]) using upper-asymptotic-density-in-01
by auto

finally show ?thesis by simp
qed
obtain B where B: upper-asymptotic-density B ≤ (

∑
n. upper-asymptotic-density

(A n)) ∧
n. ∃N . C n ∩ {N ..} ⊆ B

using upper-asymptotic-density-incseq-Union[OF C2 C1 ] by blast
have ∃N . A n ∩ {N ..} ⊆ B for n

using B(2 )[of n] unfolding C-def by auto
then show ?thesis using B(1 ) by blast

qed

A particular case of the previous proposition, often useful, is when all sets
have density zero.
proposition upper-asymptotic-density-zero-Union:

assumes
∧

n::nat. upper-asymptotic-density (A n) = 0
shows ∃B. upper-asymptotic-density B = 0 ∧ (∀n. ∃N . A n ∩ {N ..} ⊆ B)

proof −
have ∃B. upper-asymptotic-density B ≤ (

∑
n. upper-asymptotic-density (A n))

∧ (∀n. ∃N . A n ∩ {N ..} ⊆ B)
apply (rule upper-asymptotic-density-Union) unfolding assms by auto

then obtain B where upper-asymptotic-density B ≤ 0
∧

n. ∃N . A n ∩ {N ..}
⊆ B

unfolding assms by auto
then show ?thesis

using upper-asymptotic-density-in-01 (3 )[of B] by auto
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qed

3.2 Lower asymptotic densities

The lower asymptotic density of a set of natural numbers is defined just
as its upper asymptotic density but using a liminf instead of a limsup. Its
properties are proved exactly in the same way.
definition lower-asymptotic-density::nat set ⇒ real
where lower-asymptotic-density A = real-of-ereal(liminf (λn. card(A ∩ {..<n})/n))

lemma lower-asymptotic-density-in-01 :
ereal(lower-asymptotic-density A) = liminf (λn. card(A ∩ {..<n})/n)
lower-asymptotic-density A ≤ 1
lower-asymptotic-density A ≥ 0

proof −
{

fix n::nat assume n>0
have card(A ∩ {..<n}) ≤ n by (metis card-lessThan Int-lower2 card-mono

finite-lessThan)
then have card(A ∩ {..<n}) / n ≤ ereal 1 using ‹n>0 › by auto

}
then have eventually (λn. card(A ∩ {..<n}) / n ≤ ereal 1 ) sequentially

by (simp add: eventually-at-top-dense)
then have limsup (λn. card(A ∩ {..<n})/n) ≤ 1 by (simp add: Limsup-const

Limsup-bounded)
then have a: liminf (λn. card(A ∩ {..<n})/n) ≤ 1

by (meson Liminf-le-Limsup less-le-trans not-le sequentially-bot)

have card(A ∩ {..<n}) / n ≥ ereal 0 for n by auto
then have b: liminf (λn. card(A ∩ {..<n})/n) ≥ 0 by (simp add: le-Liminf-iff

less-le-trans)

have abs(liminf (λn. card(A ∩ {..<n})/n)) 6= ∞ using a b by auto
then show ereal(lower-asymptotic-density A) = liminf (λn. card(A ∩ {..<n})/n)

unfolding lower-asymptotic-density-def by auto
show lower-asymptotic-density A ≤ 1 lower-asymptotic-density A ≥ 0 unfolding

lower-asymptotic-density-def
using a b by (auto simp add: real-of-ereal-le-1 real-of-ereal-pos)

qed

The lower asymptotic density is bounded by the upper one. When they
coincide, Card(A ∩ [0, n))/n converges to this common value.
lemma lower-asymptotic-density-le-upper :

lower-asymptotic-density A ≤ upper-asymptotic-density A
using lower-asymptotic-density-in-01 (1 ) upper-asymptotic-density-in-01 (1 )
by (metis (mono-tags, lifting) Liminf-le-Limsup ereal-less-eq(3 ) sequentially-bot)

lemma lower-asymptotic-density-eq-upper :
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assumes lower-asymptotic-density A = l upper-asymptotic-density A = l
shows (λn. card(A ∩ {..<n})/n) −−−−→ l

apply (rule limsup-le-liminf-real)
using upper-asymptotic-density-in-01 (1 )[of A] lower-asymptotic-density-in-01 (1 )[of
A] assms by auto

In particular, when a set has a zero upper density, or a lower density one,
then this implies the corresponding convergence of Card(A ∩ [0, n))/n.
lemma upper-asymptotic-density-zero-lim:

assumes upper-asymptotic-density A = 0
shows (λn. card(A ∩ {..<n})/n) −−−−→ 0

apply (rule lower-asymptotic-density-eq-upper)
using assms lower-asymptotic-density-le-upper [of A] lower-asymptotic-density-in-01 (3 )[of
A] by auto

lemma lower-asymptotic-density-one-lim:
assumes lower-asymptotic-density A = 1
shows (λn. card(A ∩ {..<n})/n) −−−−→ 1

apply (rule lower-asymptotic-density-eq-upper)
using assms lower-asymptotic-density-le-upper [of A] upper-asymptotic-density-in-01 (2 )[of
A] by auto

The lower asymptotic density of a set is 1 minus the upper asymptotic
density of its complement. Hence, most statements about one of them follow
from statements about the other one, although we will rather give direct
proofs as they are not more complicated.
lemma lower-upper-asymptotic-density-complement:

lower-asymptotic-density A = 1 − upper-asymptotic-density (UNIV − A)
proof −

{
fix n assume n>(0 ::nat)
have {..<n} ∩ UNIV − (UNIV − ({..<n} − (UNIV − A))) = {..<n} ∩ A

by blast
moreover have {..<n} ∩ UNIV ∩ (UNIV − ({..<n} − (UNIV − A))) =

(UNIV − A) ∩ {..<n}
by blast

ultimately have card (A ∩ {..<n}) = n − card((UNIV−A) ∩ {..<n})
by (metis (no-types) Int-commute card-Diff-subset-Int card-lessThan finite-Int

finite-lessThan inf-top-right)
then have card (A ∩ {..<n})/n = (real n − card((UNIV−A) ∩ {..<n})) / n

by (metis Int-lower2 card-lessThan card-mono finite-lessThan of-nat-diff )
then have card (A ∩ {..<n})/n = ereal 1 − card((UNIV−A) ∩ {..<n})/n

using ‹n>0 › by (simp add: diff-divide-distrib)
}
then have eventually (λn. card (A ∩ {..<n})/n = ereal 1 − card((UNIV−A)
∩ {..<n})/n) sequentially

by (simp add: eventually-at-top-dense)
then have liminf (λn. card (A ∩ {..<n})/n) = liminf (λn. ereal 1 − card((UNIV−A)
∩ {..<n})/n)
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by (rule Liminf-eq)
also have ... = ereal 1 − limsup (λn. card((UNIV−A) ∩ {..<n})/n)

by (rule liminf-ereal-cminus, simp)
finally show ?thesis unfolding lower-asymptotic-density-def
by (metis ereal-minus(1 ) real-of-ereal.simps(1 ) upper-asymptotic-density-in-01 (1 ))

qed

proposition lower-asymptotic-densityD:
fixes l::real
assumes lower-asymptotic-density A > l
shows eventually (λn. card(A ∩ {..<n}) > l ∗ n) sequentially

proof −
have ereal(lower-asymptotic-density A) > l using assms by auto
then have liminf (λn. card(A ∩ {..<n})/n) > l

using lower-asymptotic-density-in-01 (1 ) by auto
then have eventually (λn. card(A ∩ {..<n})/n > ereal l) sequentially

using less-LiminfD by blast
then have eventually (λn. card(A ∩ {..<n})/n > ereal l ∧ n > 0 ) sequentially

using eventually-gt-at-top eventually-conj by blast
moreover have card(A ∩ {..<n}) > l ∗ n if card(A ∩ {..<n})/n > ereal l ∧ n

> 0 for n
using that divide-le-eq ereal-less-eq(3 ) less-imp-of-nat-less not-less of-nat-eq-0-iff

by fastforce
ultimately show eventually (λn. card(A ∩ {..<n}) > l ∗ n) sequentially

by (simp add: eventually-mono)
qed

proposition lower-asymptotic-densityI :
fixes l::real
assumes eventually (λn. card(A ∩ {..<n}) ≥ l ∗ n) sequentially
shows lower-asymptotic-density A ≥ l

proof −
have eventually (λn. card(A ∩ {..<n}) ≥ l ∗ n ∧ n > 0 ) sequentially

using assms eventually-gt-at-top eventually-conj by blast
moreover have card(A ∩ {..<n})/n ≥ ereal l if card(A ∩ {..<n}) ≥ l ∗ n ∧ n

> 0 for n
using that by (meson ereal-less-eq(3 ) not-less of-nat-0-less-iff pos-divide-less-eq)

ultimately have eventually (λn. card(A ∩ {..<n})/n ≥ ereal l) sequentially
by (simp add: eventually-mono)

then have liminf (λn. card(A ∩ {..<n})/n) ≥ ereal l
by (simp add: Liminf-bounded)

then have ereal(lower-asymptotic-density A) ≥ ereal l
using lower-asymptotic-density-in-01 (1 ) by auto

then show ?thesis by auto
qed

One can control the asymptotic density of an intersection in terms of the
asymptotic density of each component
lemma lower-asymptotic-density-intersection:
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lower-asymptotic-density A + lower-asymptotic-density B ≤ lower-asymptotic-density
(A ∩ B) + 1
using upper-asymptotic-density-union[of UNIV − A UNIV − B]
unfolding lower-upper-asymptotic-density-complement by (auto simp add: alge-
bra-simps Diff-Int)

lemma lower-asymptotic-density-subset:
assumes A ⊆ B
shows lower-asymptotic-density A ≤ lower-asymptotic-density B

using upper-asymptotic-density-subset[of UNIV−B UNIV−A] assms
unfolding lower-upper-asymptotic-density-complement by auto

lemma lower-asymptotic-density-lim:
assumes (λn. card(A ∩ {..<n})/n) −−−−→ l
shows lower-asymptotic-density A = l

proof −
have (λn. ereal(card(A ∩ {..<n})/n)) −−−−→ l using assms by auto
then have liminf (λn. card(A ∩ {..<n})/n) = l

using sequentially-bot tendsto-iff-Liminf-eq-Limsup by blast
then show ?thesis unfolding lower-asymptotic-density-def by auto

qed

lemma lower-asymptotic-density-finite:
assumes finite A
shows lower-asymptotic-density A = 0

using lower-asymptotic-density-in-01 (3 ) upper-asymptotic-density-finite[OF assms]
lower-asymptotic-density-le-upper
by (metis antisym-conv)

In particular, bounded intervals have zero lower density.
lemma lower-asymptotic-density-bdd-interval [simp]:

lower-asymptotic-density {} = 0
lower-asymptotic-density {..N} = 0
lower-asymptotic-density {..<N} = 0
lower-asymptotic-density {n..N} = 0
lower-asymptotic-density {n..<N} = 0
lower-asymptotic-density {n<..N} = 0
lower-asymptotic-density {n<..<N} = 0

by (auto intro!: lower-asymptotic-density-finite)

Conversely, unbounded intervals have density 1.
lemma lower-asymptotic-density-infinite-interval [simp]:

lower-asymptotic-density {N ..} = 1
lower-asymptotic-density {N<..} = 1
lower-asymptotic-density UNIV = 1

proof −
have UNIV − {N ..} = {..<N} by auto
then show lower-asymptotic-density {N ..} = 1

by (auto simp add: lower-upper-asymptotic-density-complement)
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have UNIV − {N<..} = {..N} by auto
then show lower-asymptotic-density {N<..} = 1

by (auto simp add: lower-upper-asymptotic-density-complement)
show lower-asymptotic-density UNIV = 1

by (auto simp add: lower-upper-asymptotic-density-complement)
qed

lemma upper-asymptotic-density-infinite-interval [simp]:
upper-asymptotic-density {N ..} = 1
upper-asymptotic-density {N<..} = 1
upper-asymptotic-density UNIV = 1

by (metis antisym upper-asymptotic-density-in-01 (2 ) lower-asymptotic-density-infinite-interval
lower-asymptotic-density-le-upper)+

The intersection of sets with lower density one still has lower density one.
lemma lower-asymptotic-density-one-intersection:

assumes lower-asymptotic-density A = 1 lower-asymptotic-density B = 1
shows lower-asymptotic-density (A ∩ B) = 1

using lower-asymptotic-density-in-01 (2 )[of A ∩ B] lower-asymptotic-density-intersection[of
A B] unfolding assms by auto

lemma lower-asymptotic-density-one-finite-Intersection:
assumes finite I

∧
i. i ∈ I =⇒ lower-asymptotic-density (A i) = 1

shows lower-asymptotic-density (
⋂

i∈I . A i) = 1
using assms by (induction rule: finite-induct, auto intro!: lower-asymptotic-density-one-intersection)

As for the upper asymptotic density, there is a modification of the intersec-
tion, akin to the diagonal argument in this context, for which the “intersec-
tion” of sets with large lower density still has large lower density.
proposition lower-asymptotic-density-decseq-Inter :

assumes
∧
(n::nat). lower-asymptotic-density (A n) ≥ l decseq A

shows ∃B. lower-asymptotic-density B ≥ l ∧ (∀n. ∃N . B ∩ {N ..} ⊆ A n)
proof −

define C where C = (λn. UNIV − A n)
have ∗: upper-asymptotic-density (C n) ≤ 1 − l for n
using assms(1 )[of n] unfolding C-def lower-upper-asymptotic-density-complement[of

A n] by auto
have ∗∗: incseq C

using assms(2 ) unfolding C-def incseq-def decseq-def by auto
obtain D where D: upper-asymptotic-density D ≤ 1 − l

∧
n. ∃N . C n ∩ {N ..}

⊆ D
using upper-asymptotic-density-incseq-Union[OF ∗ ∗∗] by blast

define B where B = UNIV − D
have lower-asymptotic-density B ≥ l

using D(1 ) lower-upper-asymptotic-density-complement[of B] by (simp add:
double-diff B-def )

moreover have ∃N . B ∩ {N ..} ⊆ A n for n
using D(2 )[of n] unfolding B-def C-def by auto

ultimately show ?thesis by auto
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qed

In the same way, the modified intersection of sets of density 1 still has density
one, and is eventually contained in each of them.
proposition lower-asymptotic-density-one-Inter :

assumes
∧

n::nat. lower-asymptotic-density (A n) = 1
shows ∃B. lower-asymptotic-density B = 1 ∧ (∀n. ∃N . B ∩ {N ..} ⊆ A n)

proof −
define C where C = (λn. UNIV − A n)
have ∗: upper-asymptotic-density (C n) = 0 for n
using assms(1 )[of n] unfolding C-def lower-upper-asymptotic-density-complement[of

A n] by auto
obtain D where D: upper-asymptotic-density D = 0

∧
n. ∃N . C n ∩ {N ..} ⊆

D
using upper-asymptotic-density-zero-Union[OF ∗] by force

define B where B = UNIV − D
have lower-asymptotic-density B = 1

using D(1 ) lower-upper-asymptotic-density-complement[of B] by (simp add:
double-diff B-def )

moreover have ∃N . B ∩ {N ..} ⊆ A n for n
using D(2 )[of n] unfolding B-def C-def by auto

ultimately show ?thesis by auto
qed

Sets with density 1 play an important role in relation to Cesaro convergence
of nonnegative bounded sequences: such a sequence converges to 0 in Cesaro
average if and only if it converges to 0 along a set of density 1.
The proof is not hard. Since the Cesaro average tends to 0, then given
ε > 0 the proportion of times where un < ε tends to 1, i.e., the set Aε

of such good times has density 1. A modified intersection (as constructed
in Proposition lower_asymptotic_density_one_Inter) of these times has
density 1, and un tends to 0 along this set.
theorem cesaro-imp-density-one:

assumes
∧

n. u n ≥ (0 ::real) (λn. (
∑

i<n. u i)/n) −−−−→ 0
shows ∃A. lower-asymptotic-density A = 1 ∧ (λn. u n ∗ indicator A n) −−−−→

0
proof −

define B where B = (λe. {n. u n ≥ e})

Be is the set of bad times where un ≥ e. It has density 0 thanks to the
assumption of Cesaro convergence to 0.

have A: upper-asymptotic-density (B e) = 0 if e > 0 for e
proof −

have ∗: card (B e ∩ {..<n}) / n ≤ (1/e) ∗ ((
∑

i∈{..<n}. u i)/n) if n ≥ 1 for
n

proof −
have e ∗ card (B e ∩ {..<n}) = (

∑
i∈B e ∩ {..<n}. e) by auto
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also have ... ≤ (
∑

i∈B e ∩ {..<n}. u i)
apply (rule sum-mono) unfolding B-def by auto

also have ... ≤ (
∑

i∈{..<n}. u i)
apply (rule sum-mono2 ) using assms by auto

finally show ?thesis
using ‹e > 0 › ‹n ≥ 1 › by (auto simp add: divide-simps algebra-simps)

qed
have (λn. card (B e ∩ {..<n}) / n) −−−−→ 0
proof (rule tendsto-sandwich[of λ-. 0 - - λn. (1/e) ∗ ((

∑
i∈{..<n}. u i)/n)])

have (λn. (1/e) ∗ ((
∑

i∈{..<n}. u i)/n)) −−−−→ (1/e) ∗ 0
by (intro tendsto-intros assms)

then show (λn. (1/e) ∗ ((
∑

i∈{..<n}. u i)/n)) −−−−→ 0 by simp
show ∀ F n in sequentially. real (card (B e ∩ {..<n})) / real n ≤ 1 / e ∗

(sum u {..<n} / real n)
using ∗ unfolding eventually-sequentially by auto

qed (auto)
then show ?thesis

by (rule upper-asymptotic-density-lim)
qed
define C where C = (λn::nat. UNIV − B (((1 ::real)/2 )^n))
have lower-asymptotic-density (C n) = 1 for n

unfolding C-def lower-upper-asymptotic-density-complement by (simp add: A
double-diff )

then obtain A where A: lower-asymptotic-density A = 1
∧

n. ∃N . A ∩ {N ..}
⊆ C n

using lower-asymptotic-density-one-Inter by blast
have E : eventually (λn. u n ∗ indicator A n < e) sequentially if e > 0 for e
proof −

have eventually (λn. ((1 ::real)/2 )^n < e) sequentially
by (rule order-tendstoD[OF - ‹e > 0 ›], intro tendsto-intros, auto)

then obtain n where n: ((1 ::real)/2 )^n < e
unfolding eventually-sequentially by auto

obtain N where N : A ∩ {N ..} ⊆ C n
using A(2 ) by blast

have u k ∗ indicator A k < e if k ≥ N for k
proof (cases k ∈ A)

case True
then have k ∈ C n using N that by auto
then have u k < ((1 ::real)/2 )^n

unfolding C-def B-def by auto
then have u k < e

using n by auto
then show ?thesis

unfolding indicator-def using True by auto
next

case False
then show ?thesis

unfolding indicator-def using ‹e > 0 › by auto
qed
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then show ?thesis
unfolding eventually-sequentially by auto

qed
have (λn. u n ∗ indicator A n) −−−−→ 0

apply (rule order-tendstoI [OF - E ])
unfolding indicator-def using ‹

∧
n. u n ≥ 0 › by (simp add: less-le-trans)

then show ?thesis
using ‹lower-asymptotic-density A = 1 › by auto

qed

The proof of the reverse implication is more direct: in the Cesaro sum, just
bound the elements in A by a small ε, and the other ones by a uniform
bound, to get a bound which is o(n).
theorem density-one-imp-cesaro:

assumes
∧

n. u n ≥ (0 ::real)
∧

n. u n ≤ C
lower-asymptotic-density A = 1
(λn. u n ∗ indicator A n) −−−−→ 0

shows (λn. (
∑

i<n. u i)/n) −−−−→ 0
proof (rule order-tendstoI )

fix e::real assume e < 0
have (

∑
i<n. u i)/n ≥ 0 for n

using assms(1 ) by (simp add: sum-nonneg divide-simps)
then have (

∑
i<n. u i)/n > e for n

using ‹e < 0 › less-le-trans by auto
then show eventually (λn. (

∑
i<n. u i)/n > e) sequentially

unfolding eventually-sequentially by auto
next

fix e::real assume e > 0
have C ≥ 0 using ‹u 0 ≥ 0 › ‹u 0 ≤ C › by auto
have eventually (λn. u n ∗ indicator A n < e/4 ) sequentially

using order-tendstoD(2 )[OF assms(4 ), of e/4 ] ‹e>0 › by auto
then obtain N where N :

∧
k. k ≥ N =⇒ u k ∗ indicator A k < e/4

unfolding eventually-sequentially by auto
define B where B = UNIV − A
have ∗: upper-asymptotic-density B = 0

using assms unfolding B-def lower-upper-asymptotic-density-complement by
auto

have eventually (λn. card(B ∩ {..<n}) < (e/(4 ∗ (C+1 ))) ∗ n) sequentially
apply (rule upper-asymptotic-densityD) using ‹e > 0 › ‹C ≥ 0 › ∗ by auto

then obtain M where M :
∧

n. n ≥ M =⇒ card(B ∩ {..<n}) < (e/(4 ∗ (C+1 )))
∗ n

unfolding eventually-sequentially by auto

obtain P::nat where P: P ≥ 4 ∗ N ∗ C/e
using real-arch-simple by auto

define Q where Q = N + M + 1 + P

have (
∑

i<n. u i)/n < e if n ≥ Q for n
proof −
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have n: n ≥ N n ≥ M n ≥ P n ≥ 1
using ‹n ≥ Q› unfolding Q-def by auto

then have n2 : n ≥ 4 ∗ N ∗ C/e using P by auto
have (

∑
i<n. u i) ≤ (

∑
i∈{..<N} ∪ ({N ..<n} ∩ A) ∪ ({N ..<n} − A). u i)

by (rule sum-mono2 , auto simp add: assms)
also have ... = (

∑
i∈{..<N}. u i) + (

∑
i∈{N ..<n} ∩ A. u i) + (

∑
i∈{N ..<n}

− A. u i)
by (subst sum.union-disjoint, auto)+

also have ... = (
∑

i∈{..<N}. u i) + (
∑

i∈{N ..<n} ∩ A. u i ∗ indicator A i)
+ (

∑
i∈{N ..<n} − A. u i)

unfolding indicator-def by auto
also have ... ≤ (

∑
i∈{..<N}. u i) + (

∑
i∈{N ..<n}. u i ∗ indicator A i) +

(
∑

i∈ B ∩ {..<n}. u i)
apply (intro add-mono sum-mono2 ) unfolding B-def using assms by auto

also have ... ≤ (
∑

i∈{..<N}. C ) + (
∑

i∈{N ..<n}. e/4 ) + (
∑

i∈B ∩ {..<n}.
C )

apply (intro add-mono sum-mono) using assms less-imp-le[OF N ] by auto
also have ... = N ∗ C + (n−N ) ∗ e/4 + card(B ∩ {..<n}) ∗ C

by auto
also have ... ≤ n ∗ e/4 + n ∗ e/4 + (e/(4 ∗ (C+1 ))) ∗ n ∗ C

apply (intro add-mono)
using n2 ‹e > 0 › mult-right-mono[OF less-imp-le[OF M [OF ‹n ≥ M ›]] ‹C

≥ 0 ›] by (auto simp add: divide-simps)
also have ... ≤ n ∗ e ∗ 3/4

using ‹C ≥ 0 › ‹e > 0 › by (simp add: divide-simps algebra-simps)
also have ... < n ∗ e

using ‹n ≥ 1 › ‹e > 0 › by auto
finally show ?thesis

using ‹n ≥ 1 › by (simp add: divide-simps algebra-simps)
qed
then show eventually (λn. (

∑
i<n. u i)/n < e) sequentially

unfolding eventually-sequentially by auto
qed

end

4 Measure preserving or quasi-preserving maps
theory Measure-Preserving-Transformations

imports SG-Library-Complement
begin

Ergodic theory in general is the study of the properties of measure preserving
or quasi-preserving dynamical systems. In this section, we introduce the
basic definitions in this respect.

4.1 The different classes of transformations
definition quasi-measure-preserving:: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) set
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where quasi-measure-preserving M N
= {f ∈ measurable M N . ∀ A ∈ sets N . (f −‘ A ∩ space M ∈ null-sets M ) =

(A ∈ null-sets N )}

lemma quasi-measure-preservingI [intro]:
assumes f ∈ measurable M N∧

A. A ∈ sets N =⇒ (f −‘ A ∩ space M ∈ null-sets M ) = (A ∈ null-sets
N )

shows f ∈ quasi-measure-preserving M N
using assms unfolding quasi-measure-preserving-def by auto

lemma quasi-measure-preservingE :
assumes f ∈ quasi-measure-preserving M N
shows f ∈ measurable M N∧

A. A ∈ sets N =⇒ (f −‘ A ∩ space M ∈ null-sets M ) = (A ∈ null-sets N )
using assms unfolding quasi-measure-preserving-def by auto

lemma id-quasi-measure-preserving:
(λx. x) ∈ quasi-measure-preserving M M

unfolding quasi-measure-preserving-def by auto

lemma quasi-measure-preserving-composition:
assumes f ∈ quasi-measure-preserving M N

g ∈ quasi-measure-preserving N P
shows (λx. g(f x)) ∈ quasi-measure-preserving M P

proof (rule quasi-measure-preservingI )
have f-meas [measurable]: f ∈ measurable M N by (rule quasi-measure-preservingE(1 )[OF

assms(1 )])
have g-meas [measurable]: g ∈ measurable N P by (rule quasi-measure-preservingE(1 )[OF

assms(2 )])
then show [measurable]: (λx. g (f x)) ∈ measurable M P by auto

fix C assume [measurable]: C ∈ sets P
define B where B = g−‘C ∩ space N
have [measurable]: B ∈ sets N unfolding B-def by simp
have ∗: B ∈ null-sets N ←→ C ∈ null-sets P

unfolding B-def using quasi-measure-preservingE(2 )[OF assms(2 )] by simp

define A where A = f−‘B ∩ space M
have [measurable]: A ∈ sets M unfolding A-def by simp
have A ∈ null-sets M ←→ B ∈ null-sets N

unfolding A-def using quasi-measure-preservingE(2 )[OF assms(1 )] by simp

then have A ∈ null-sets M ←→ C ∈ null-sets P using ∗ by simp
moreover have A = (λx. g (f x)) −‘ C ∩ space M

by (auto simp add: A-def B-def ) (meson f-meas measurable-space)
ultimately show ((λx. g (f x)) −‘ C ∩ space M ∈ null-sets M ) ←→ C ∈

null-sets P by simp
qed
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lemma quasi-measure-preserving-comp:
assumes f ∈ quasi-measure-preserving M N

g ∈ quasi-measure-preserving N P
shows g o f ∈ quasi-measure-preserving M P

unfolding comp-def using assms quasi-measure-preserving-composition by blast

lemma quasi-measure-preserving-AE :
assumes f ∈ quasi-measure-preserving M N

AE x in N . P x
shows AE x in M . P (f x)

proof −
obtain A where

∧
x. x ∈ space N − A =⇒ P x A ∈ null-sets N

using AE-E3 [OF assms(2 )] by blast
define B where B = f−‘A ∩ space M
have B ∈ null-sets M

unfolding B-def using quasi-measure-preservingE(2 )[OF assms(1 )] ‹A ∈
null-sets N › by auto

moreover have x ∈ space M − B =⇒ P (f x) for x
using ‹

∧
x. x ∈ space N − A =⇒ P x› quasi-measure-preservingE(1 )[OF

assms(1 )]
unfolding B-def by (metis (no-types, lifting) Diff-iff IntI measurable-space

vimage-eq)
ultimately show ?thesis using AE-not-in AE-space by force

qed

lemma quasi-measure-preserving-AE ′:
assumes f ∈ quasi-measure-preserving M N

AE x in M . P (f x)
{x ∈ space N . P x} ∈ sets N

shows AE x in N . P x
proof −

have [measurable]: f ∈ measurable M N using quasi-measure-preservingE(1 )[OF
assms(1 )] by simp

define U where U = {x ∈ space N . ¬(P x)}
have [measurable]: U ∈ sets N unfolding U-def using assms(3 ) by auto
have f−‘U ∩ space M = {x ∈ space M . ¬(P (f x))}

unfolding U-def using ‹f ∈ measurable M N › by (auto, meson measur-
able-space)

also have ... ∈ null-sets M
apply (subst AE-iff-null[symmetric]) using assms by auto

finally have U ∈ null-sets N
using quasi-measure-preservingE(2 )[OF assms(1 ) ‹U ∈ sets N ›] by auto

then show ?thesis unfolding U-def using AE-iff-null by blast
qed

The push-forward under a quasi-measure preserving map f of a measure ab-
solutely continuous with respect to M is absolutely continuous with respect
to N .
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lemma quasi-measure-preserving-absolutely-continuous:
assumes f ∈ quasi-measure-preserving M N

u ∈ borel-measurable M
shows absolutely-continuous N (distr (density M u) N f )

proof −
have [measurable]: f ∈ measurable M N using quasi-measure-preservingE [OF

assms(1 )] by auto
have S ∈ null-sets (distr (density M u) N f ) if [measurable]: S ∈ null-sets N for

S
proof −

have [measurable]: S ∈ sets N using null-setsD2 [OF that] by auto
have ∗: AE x in N . x /∈ S

by (metis AE-not-in that)
have AE x in M . f x /∈ S

by (rule quasi-measure-preserving-AE [OF - ∗], simp add: assms)
then have ∗: AE x in M . indicator S (f x) ∗ u x = 0

by force

have emeasure (distr (density M u) N f ) S = (
∫

+x. indicator S x ∂(distr
(density M u) N f ))

by auto
also have ... = (

∫
+x. indicator S (f x) ∂(density M u))

by (rule nn-integral-distr , auto)
also have ... = (

∫
+x. indicator S (f x) ∗ u x ∂M )

by (rule nn-integral-densityR[symmetric], auto simp add: assms)
also have ... = (

∫
+x. 0 ∂M )

using ∗ by (rule nn-integral-cong-AE)
finally have emeasure (distr (density M u) N f ) S = 0 by auto
then show ?thesis by auto

qed
then show ?thesis unfolding absolutely-continuous-def by auto

qed

definition measure-preserving:: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) set
where measure-preserving M N

= {f ∈ measurable M N . (∀ A ∈ sets N . emeasure M (f−‘A ∩ space M )
= emeasure N A)}

lemma measure-preservingE :
assumes f ∈ measure-preserving M N
shows f ∈ measurable M N∧

A. A ∈ sets N =⇒ emeasure M (f−‘A ∩ space M ) = emeasure N A
using assms unfolding measure-preserving-def by auto

lemma measure-preservingI [intro]:
assumes f ∈ measurable M N∧

A. A ∈ sets N =⇒ emeasure M (f−‘A ∩ space M ) = emeasure N A
shows f ∈ measure-preserving M N

using assms unfolding measure-preserving-def by auto

64



lemma measure-preserving-distr :
assumes f ∈ measure-preserving M N
shows distr M N f = N

proof −
let ?N2 = distr M N f
have sets ?N2 = sets N by simp
moreover have emeasure ?N2 A = emeasure N A if A ∈ sets N for A
proof −

have emeasure ?N2 A = emeasure M (f−‘A ∩ space M )
using ‹A ∈ sets N › assms emeasure-distr measure-preservingE(1 )[OF assms]

by blast
then show emeasure ?N2 A = emeasure N A

using ‹A ∈ sets N › measure-preservingE(2 )[OF assms] by auto
qed
ultimately show ?thesis by (metis measure-eqI )

qed

lemma measure-preserving-distr ′:
assumes f ∈ measurable M N
shows f ∈ measure-preserving M (distr M N f )

proof (rule measure-preservingI )
show f ∈ measurable M (distr M N f ) using assms(1 ) by auto
show emeasure M (f−‘A ∩ space M ) = emeasure (distr M N f ) A if A ∈ sets

(distr M N f ) for A
using that emeasure-distr [OF assms] by auto

qed

lemma measure-preserving-preserves-nn-integral:
assumes T ∈ measure-preserving M N

f ∈ borel-measurable N
shows (

∫
+x. f x ∂N ) = (

∫
+x. f (T x) ∂M )

proof −
have (

∫
+x. f (T x) ∂M ) = (

∫
+y. f y ∂distr M N T )

using assms nn-integral-distr [of T M N f , OF measure-preservingE(1 )[OF
assms(1 )]] by simp

also have ... = (
∫

+y. f y ∂N )
using measure-preserving-distr [OF assms(1 )] by simp

finally show ?thesis by simp
qed

lemma measure-preserving-preserves-integral:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes T ∈ measure-preserving M N

and [measurable]: integrable N f
shows integrable M (λx. f (T x)) (

∫
x. f x ∂N ) = (

∫
x. f (T x) ∂M )

proof −
have a [measurable]: T ∈ measurable M N by (rule measure-preservingE(1 )[OF

assms(1 )])
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have b [measurable]: f ∈ borel-measurable N by simp
have distr M N T = N using measure-preserving-distr [OF assms(1 )] by simp
then have integrable (distr M N T ) f using assms(2 ) by simp
then show integrable M (λx. f (T x)) using integrable-distr-eq[OF a b] by simp

have (
∫

x. f (T x) ∂M ) = (
∫

y. f y ∂distr M N T ) using integral-distr [OF a b]
by simp

then show (
∫

x. f x ∂N ) = (
∫

x. f (T x) ∂M ) using ‹distr M N T = N › by
simp
qed

lemma measure-preserving-preserves-integral ′:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes T ∈ measure-preserving M N

and [measurable]: integrable M (λx. f (T x)) f ∈ borel-measurable N
shows integrable N f (

∫
x. f x ∂N ) = (

∫
x. f (T x) ∂M )

proof −
have a [measurable]: T ∈ measurable M N by (rule measure-preservingE(1 )[OF

assms(1 )])
have integrable M (λx. f (T x)) using assms(2 ) unfolding comp-def by auto
then have integrable (distr M N T ) f

using integrable-distr-eq[OF a assms(3 )] by simp
then show ∗: integrable N f using measure-preserving-distr [OF assms(1 )] by

simp

then show (
∫

x. f x ∂N ) = (
∫

x. f (T x) ∂M )
using measure-preserving-preserves-integral[OF assms(1 ) ∗] by simp

qed

lemma id-measure-preserving:
(λx. x) ∈ measure-preserving M M

unfolding measure-preserving-def by auto

lemma measure-preserving-is-quasi-measure-preserving:
assumes f ∈ measure-preserving M N
shows f ∈ quasi-measure-preserving M N

using assms unfolding measure-preserving-def quasi-measure-preserving-def ap-
ply auto
by (metis null-setsD1 null-setsI , metis measurable-sets null-setsD1 null-setsI )

lemma measure-preserving-composition:
assumes f ∈ measure-preserving M N

g ∈ measure-preserving N P
shows (λx. g(f x)) ∈ measure-preserving M P

proof (rule measure-preservingI )
have f [measurable]: f ∈ measurable M N by (rule measure-preservingE(1 )[OF

assms(1 )])
have g [measurable]: g ∈ measurable N P by (rule measure-preservingE(1 )[OF

assms(2 )])
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show [measurable]: (λx. g (f x)) ∈ measurable M P by auto

fix C assume [measurable]: C ∈ sets P
define B where B = g−‘C ∩ space N
have [measurable]: B ∈ sets N unfolding B-def by simp
have ∗: emeasure N B = emeasure P C

unfolding B-def using measure-preservingE(2 )[OF assms(2 )] by simp

define A where A = f−‘B ∩ space M
have [measurable]: A ∈ sets M unfolding A-def by simp
have emeasure M A = emeasure N B

unfolding A-def using measure-preservingE(2 )[OF assms(1 )] by simp

then have emeasure M A = emeasure P C using ∗ by simp
moreover have A = (λx. g(f x))−‘C ∩ space M

by (auto simp add: A-def B-def ) (meson f measurable-space)
ultimately show emeasure M ((λx. g(f x))−‘C ∩ space M ) = emeasure P C

by simp
qed

lemma measure-preserving-comp:
assumes f ∈ measure-preserving M N

g ∈ measure-preserving N P
shows g o f ∈ measure-preserving M P

unfolding o-def using measure-preserving-composition assms by blast

lemma measure-preserving-total-measure:
assumes f ∈ measure-preserving M N
shows emeasure M (space M ) = emeasure N (space N )

proof −
have f ∈ measurable M N by (rule measure-preservingE(1 )[OF assms(1 )])
then have f−‘(space N ) ∩ space M = space M by (meson Int-absorb1 measur-

able-space subsetI vimageI )
then show emeasure M (space M ) = emeasure N (space N )

by (metis (mono-tags, lifting) measure-preservingE(2 )[OF assms(1 )] sets.top)
qed

lemma measure-preserving-finite-measure:
assumes f ∈ measure-preserving M N
shows finite-measure M ←→ finite-measure N

using measure-preserving-total-measure[OF assms]
by (metis finite-measure.emeasure-finite finite-measureI infinity-ennreal-def )

lemma measure-preserving-prob-space:
assumes f ∈ measure-preserving M N
shows prob-space M ←→ prob-space N

using measure-preserving-total-measure[OF assms] by (metis prob-space.emeasure-space-1
prob-spaceI )
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locale qmpt = sigma-finite-measure +
fixes T
assumes Tqm: T ∈ quasi-measure-preserving M M

locale mpt = qmpt +
assumes Tm: T ∈ measure-preserving M M

locale fmpt = mpt + finite-measure

locale pmpt = fmpt + prob-space

lemma qmpt-I :
assumes sigma-finite-measure M

T ∈ measurable M M∧
A. A ∈ sets M =⇒ ((T−‘A ∩ space M ) ∈ null-sets M )←→ (A ∈ null-sets

M )
shows qmpt M T

unfolding qmpt-def qmpt-axioms-def quasi-measure-preserving-def
by (auto simp add: assms)

lemma mpt-I :
assumes sigma-finite-measure M

T ∈ measurable M M∧
A. A ∈ sets M =⇒ emeasure M (T−‘A ∩ space M ) = emeasure M A

shows mpt M T
proof −

have ∗: T ∈ measure-preserving M M
by (rule measure-preservingI [OF assms(2 ) assms(3 )])

then have ∗∗: T ∈ quasi-measure-preserving M M
using measure-preserving-is-quasi-measure-preserving by auto

show mpt M T
unfolding mpt-def qmpt-def qmpt-axioms-def mpt-axioms-def using ∗ ∗∗ assms(1 )

by auto
qed

lemma fmpt-I :
assumes finite-measure M

T ∈ measurable M M∧
A. A ∈ sets M =⇒ emeasure M (T−‘A ∩ space M ) = emeasure M A

shows fmpt M T
proof −

have ∗: T ∈ measure-preserving M M
by (rule measure-preservingI [OF assms(2 ) assms(3 )])

then have ∗∗: T ∈ quasi-measure-preserving M M
using measure-preserving-is-quasi-measure-preserving by auto

show fmpt M T
unfolding fmpt-def mpt-def qmpt-def mpt-axioms-def qmpt-axioms-def
using ∗ ∗∗ assms(1 ) finite-measure-def by auto

qed
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lemma pmpt-I :
assumes prob-space M

T ∈ measurable M M∧
A. A ∈ sets M =⇒ emeasure M (T−‘A ∩ space M ) = emeasure M A

shows pmpt M T
proof −

have ∗: T ∈ measure-preserving M M
by (rule measure-preservingI [OF assms(2 ) assms(3 )])

then have ∗∗: T ∈ quasi-measure-preserving M M
using measure-preserving-is-quasi-measure-preserving by auto

show pmpt M T
unfolding pmpt-def fmpt-def mpt-def qmpt-def mpt-axioms-def qmpt-axioms-def
using ∗ ∗∗ assms(1 ) prob-space-imp-sigma-finite prob-space.finite-measure by

auto
qed

4.2 Examples
lemma fmpt-null-space:

assumes emeasure M (space M ) = 0
T ∈ measurable M M

shows fmpt M T
apply (rule fmpt-I )
apply (auto simp add: assms finite-measureI )
apply (metis assms emeasure-eq-0 measurable-sets sets.sets-into-space sets.top)
done

lemma fmpt-empty-space:
assumes space M = {}
shows fmpt M T

by (rule fmpt-null-space, auto simp add: assms measurable-empty-iff )

Translations are measure-preserving
lemma mpt-translation:

fixes c :: ′a::euclidean-space
shows mpt lborel (λx. x + c)

proof (rule mpt-I , auto simp add: lborel.sigma-finite-measure-axioms)
fix A:: ′a set assume [measurable]: A ∈ sets borel
have emeasure lborel ((λx. x + c) −‘ A) = emeasure lborel ((((+))c)−‘A) by

(meson add.commute)
also have ... = emeasure lborel ((((+))c)−‘A ∩ space lborel) by simp
also have ... = emeasure (distr lborel borel ((+) c)) A by (rule emeasure-distr [symmetric],

auto)
also have ... = emeasure lborel A using lborel-distr-plus[of c] by simp
finally show emeasure lborel ((λx. x + c) −‘ A) = emeasure lborel A by simp

qed

Skew products are fibered maps of the form (x, y) 7→ (Tx, U(x, y)). If the
base map and the fiber maps all are measure preserving, so is the skew
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product.
lemma pair-measure-null-product:

assumes emeasure M (space M ) = 0
shows emeasure (M

⊗
M N ) (space (M

⊗
M N )) = 0

proof −
have (

∫
+x. (

∫
+y. indicator X (x,y) ∂N ) ∂M ) = 0 for X

proof −
have (

∫
+x. (

∫
+y. indicator X (x,y) ∂N ) ∂M ) = (

∫
+x. 0 ∂M )

by (intro nn-integral-cong-AE emeasure-0-AE [OF assms])
then show ?thesis by auto

qed
then have M

⊗
M N = measure-of (space M × space N )

{a × b | a b. a ∈ sets M ∧ b ∈ sets N}
(λX . 0 )

unfolding pair-measure-def by auto
then show ?thesis by (simp add: emeasure-sigma)

qed

lemma mpt-skew-product:
assumes mpt M T

AE x in M . mpt N (U x)
and [measurable]: (λ(x,y). U x y) ∈ measurable (M

⊗
M N ) N

shows mpt (M
⊗

M N ) (λ(x,y). (T x, U x y))
proof (cases)

assume H : emeasure M (space M ) = 0
then have ∗: emeasure (M

⊗
M N ) (space (M

⊗
M N )) = 0

using pair-measure-null-product by auto
have [measurable]: T ∈ measurable M M
using assms(1 ) unfolding mpt-def qmpt-def qmpt-axioms-def quasi-measure-preserving-def

by auto
then have [measurable]: (λ(x, y). (T x, U x y)) ∈ measurable (M

⊗
M N ) (M⊗

M N ) by auto
with fmpt-null-space[OF ∗] show ?thesis by (simp add: fmpt.axioms(1 ))

next
assume ¬(emeasure M (space M ) = 0 )
show ?thesis
proof (rule mpt-I )

have sigma-finite-measure M using assms(1 ) unfolding mpt-def qmpt-def by
auto

then interpret M : sigma-finite-measure M .

have ∃ p. ¬ almost-everywhere M p
by (metis (lifting) AE-E ‹emeasure M (space M ) 6= 0 › emeasure-eq-AE

emeasure-notin-sets)
then have ∃ x. mpt N (U x) using assms(2 ) ‹¬(emeasure M (space M ) = 0 )›

by (metis (full-types) ‹AE x in M . mpt N (U x)› eventually-mono)
then have sigma-finite-measure N unfolding mpt-def qmpt-def by auto
then interpret N : sigma-finite-measure N .
show sigma-finite-measure (M

⊗
M N )
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by (rule sigma-finite-pair-measure) standard+

have [measurable]: T ∈ measurable M M
using assms(1 ) unfolding mpt-def qmpt-def qmpt-axioms-def quasi-measure-preserving-def

by auto
show [measurable]: (λ(x, y). (T x, U x y)) ∈ measurable (M

⊗
M N ) (M

⊗
M

N ) by auto
have T ∈ measure-preserving M M using assms(1 ) by (simp add: mpt.Tm)

fix A assume [measurable]: A ∈ sets (M
⊗

M N )
then have [measurable]: (λ (x,y). (indicator A (x,y))::ennreal) ∈ borel-measurable

(M
⊗

M N ) by auto
then have [measurable]: (λx.

∫
+ y. indicator A (x, y) ∂N ) ∈ borel-measurable

M
by simp

define B where B = (λ(x, y). (T x, U x y)) −‘ A ∩ space (M
⊗

M N )
then have [measurable]: B ∈ sets (M

⊗
M N ) by auto

have (
∫

+y. indicator B (x,y) ∂N ) = (
∫

+y. indicator A (T x, y) ∂N ) if x ∈
space M mpt N (U x) for x

proof −
have T x ∈ space M by (meson ‹T ∈ measurable M M › ‹x ∈ space M ›

measurable-space)
then have 1 : (λy. (indicator A (T x , y))::ennreal) ∈ borel-measurable N

using ‹A ∈ sets (M
⊗

M N )› by auto
have 2 :

∧
y. ((indicator B (x, y))::ennreal) = indicator A (T x, U x y) ∗

indicator (space M ) x ∗ indicator (space N ) y
unfolding B-def by (simp add: indicator-def space-pair-measure)

have 3 : U x ∈ measure-preserving N N using assms(2 ) that(2 ) by (simp
add: mpt.Tm)

have (
∫

+y. indicator B (x,y) ∂N ) = (
∫

+y. indicator A (T x, U x y) ∂N )
using 2 by (intro nn-integral-cong-simp) (auto simp add: indicator-def ‹x

∈ space M ›)
also have ... = (

∫
+y. indicator A (T x, y) ∂N )

by (rule measure-preserving-preserves-nn-integral[OF 3 , symmetric], metis
1 )

finally show ?thesis by simp
qed
then have ∗: AE x in M . (

∫
+y. indicator B (x,y) ∂N ) = (

∫
+y. indicator A

(T x, y) ∂N )
using assms(2 ) by auto

have emeasure (M
⊗

M N ) B = (
∫

+ x. (
∫

+y. indicator B (x,y) ∂N ) ∂M )
using ‹B ∈ sets (M

⊗
M N )› ‹sigma-finite-measure N › sigma-finite-measure.emeasure-pair-measure

by fastforce
also have ... = (

∫
+ x. (

∫
+y. indicator A (T x, y) ∂N ) ∂M )

by (intro nn-integral-cong-AE ∗)
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also have ... = (
∫

+ x. (
∫

+y. indicator A (x, y) ∂N ) ∂M )
by (rule measure-preserving-preserves-nn-integral[OF ‹T ∈ measure-preserving

M M ›, symmetric]) auto
also have ... = emeasure (M

⊗
M N ) A

by (simp add: ‹sigma-finite-measure N › sigma-finite-measure.emeasure-pair-measure)
finally show emeasure (M

⊗
M N ) ((λ(x, y). (T x, U x y)) −‘ A ∩ space (M⊗

M N )) = emeasure (M
⊗

M N ) A
unfolding B-def by simp

qed
qed

lemma mpt-skew-product-real:
fixes f :: ′a ⇒ ′b::euclidean-space
assumes mpt M T and [measurable]: f ∈ borel-measurable M
shows mpt (M

⊗
M lborel) (λ(x,y). (T x, y + f x))

by (rule mpt-skew-product, auto simp add: mpt-translation assms(1 ))

4.3 Preimages restricted to spaceM

context qmpt begin

One is all the time lead to take the preimages of sets, and restrict them
to space M where the dynamics is living. We introduce a shortcut for this
notion.
definition vimage-restr :: ( ′a ⇒ ′a) ⇒ ′a set ⇒ ′a set (infixr ‹−−‘› 90 )
where

f −−‘ A ≡ f−‘ (A ∩ space M ) ∩ space M

lemma vrestr-eq [simp]:
a ∈ f−−‘ A ←→ a ∈ space M ∧ f a ∈ A ∩ space M

unfolding vimage-restr-def by auto

lemma vrestr-intersec [simp]:
f−−‘ (A ∩ B) = (f−−‘A) ∩ (f−−‘ B)

using vimage-restr-def by auto

lemma vrestr-union [simp]:
f−−‘ (A ∪ B) = f−−‘A ∪ f−−‘B

using vimage-restr-def by auto

lemma vrestr-difference [simp]:
f−−‘(A−B) = f−−‘A − f−−‘B

using vimage-restr-def by auto

lemma vrestr-inclusion:
A ⊆ B =⇒ f−−‘A ⊆ f−−‘B

using vimage-restr-def by auto

lemma vrestr-Union [simp]:
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f −−‘ (
⋃

A) = (
⋃

X∈A. f −−‘ X)
using vimage-restr-def by auto

lemma vrestr-UN [simp]:
f −−‘ (

⋃
x∈A. B x) = (

⋃
x∈A. f −−‘ B x)

using vimage-restr-def by auto

lemma vrestr-Inter [simp]:
assumes A 6= {}
shows f −−‘ (

⋂
A) = (

⋂
X∈A. f −−‘ X)

using vimage-restr-def assms by auto

lemma vrestr-INT [simp]:
assumes A 6= {}
shows f −−‘ (

⋂
x∈A. B x) = (

⋂
x∈A. f −−‘ B x)

using vimage-restr-def assms by auto

lemma vrestr-empty [simp]:
f−−‘{} = {}

using vimage-restr-def by auto

lemma vrestr-sym-diff [simp]:
f−−‘(A ∆ B) = (f−−‘A) ∆ (f−−‘B)

by auto

lemma vrestr-image:
assumes x ∈ f−−‘A
shows x ∈ space M f x ∈ space M f x ∈ A

using assms unfolding vimage-restr-def by auto

lemma vrestr-intersec-in-space:
assumes A ∈ sets M B ∈ sets M
shows A ∩ f−−‘B = A ∩ f−‘B

unfolding vimage-restr-def using assms sets.sets-into-space by auto

lemma vrestr-compose:
assumes g ∈ measurable M M
shows (λ x. f (g x))−−‘ A = g−−‘ (f−−‘ A)

proof −
define B where B = A ∩ space M
have (λ x. f (g x))−−‘ A = (λ x. f (g x)) −‘ B ∩ space M

using B-def vimage-restr-def by blast
moreover have (λ x. f (g x)) −‘ B ∩ space M = g−‘ (f−‘ B ∩ space M ) ∩ space

M
using measurable-space[OF ‹g ∈ measurable M M ›] by auto

moreover have g−‘ (f−‘ B ∩ space M ) ∩ space M = g−−‘ (f−−‘ A)
using B-def vimage-restr-def by simp

ultimately show ?thesis by auto
qed
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lemma vrestr-comp:
assumes g ∈ measurable M M
shows (f o g)−−‘ A = g−−‘ (f−−‘ A)

proof −
have f o g = (λ x. f (g x)) by auto
then have (f o g)−−‘ A = (λ x. f (g x))−−‘ A by auto
moreover have (λ x. f (g x))−−‘ A = g−−‘ (f−−‘ A) using vrestr-compose

assms by auto
ultimately show ?thesis by simp

qed

lemma vrestr-of-set:
assumes g ∈ measurable M M
shows A ∈ sets M =⇒ g−−‘A = g−‘A ∩ space M

by (simp add: vimage-restr-def )

lemma vrestr-meas [measurable (raw)]:
assumes g ∈ measurable M M

A ∈ sets M
shows g−−‘A ∈ sets M

using assms vimage-restr-def by auto

lemma vrestr-same-emeasure-f :
assumes f ∈ measure-preserving M M

A ∈ sets M
shows emeasure M (f−−‘A) = emeasure M A

by (metis (mono-tags, lifting) assms measure-preserving-def mem-Collect-eq sets.Int-space-eq2
vimage-restr-def )

lemma vrestr-same-measure-f :
assumes f ∈ measure-preserving M M

A ∈ sets M
shows measure M (f−−‘A) = measure M A

proof −
have measure M (f−−‘A) = enn2real (emeasure M (f−−‘A)) by (simp add:

Sigma-Algebra.measure-def )
also have ... = enn2real (emeasure M A) using vrestr-same-emeasure-f [OF

assms] by simp
also have ... = measure M A by (simp add: Sigma-Algebra.measure-def )
finally show measure M (f−−‘ A) = measure M A by simp

qed

4.4 Basic properties of qmpt
lemma T-meas [measurable (raw)]:

T ∈ measurable M M
by (rule quasi-measure-preservingE(1 )[OF Tqm])
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lemma Tn-quasi-measure-preserving:
T^^n ∈ quasi-measure-preserving M M

proof (induction n)
case 0
show ?case using id-quasi-measure-preserving by simp

next
case (Suc n)
then show ?case using Tqm quasi-measure-preserving-comp by (metis fun-

pow-Suc-right)
qed

lemma Tn-meas [measurable (raw)]:
T^^n ∈ measurable M M

by (rule quasi-measure-preservingE(1 )[OF Tn-quasi-measure-preserving])

lemma T-vrestr-meas [measurable]:
assumes A ∈ sets M
shows T−−‘ A ∈ sets M

(T^^n)−−‘ A ∈ sets M
by (auto simp add: vrestr-meas assms)

We state the next lemma both with T 0 and with id as sometimes the sim-
plifier simplifies T 0 to id before applying the first instance of the lemma.
lemma T-vrestr-0 [simp]:

assumes A ∈ sets M
shows (T^^0 )−−‘A = A

id−−‘A = A
using sets.sets-into-space[OF assms] by auto

lemma T-vrestr-composed:
assumes A ∈ sets M
shows (T^^n)−−‘ (T^^m)−−‘ A = (T^^(n+m))−−‘ A

T−−‘ (T^^m)−−‘ A = (T^^(m+1 ))−−‘ A
(T^^m)−−‘ T−−‘ A = (T^^(m+1 ))−−‘ A

proof −
show (T^^n)−−‘ (T^^m)−−‘ A = (T^^(n+m))−−‘ A

by (simp add: Tn-meas funpow-add add.commute vrestr-comp)
show T−−‘ (T^^m)−−‘ A = (T^^(m+1 ))−−‘ A

by (metis Suc-eq-plus1 T-meas funpow-Suc-right vrestr-comp)
show (T^^m)−−‘ T−−‘ A = (T^^(m+1 ))−−‘ A

by (simp add: Tn-meas vrestr-comp)
qed

In the next two lemmas, we give measurability statements that show up all
the time for the usual preimage.
lemma T-intersec-meas [measurable]:

assumes [measurable]: A ∈ sets M B ∈ sets M
shows A ∩ T−‘B ∈ sets M

A ∩ (T^^n)−‘B ∈ sets M
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T−‘A ∩ B ∈ sets M
(T^^n)−‘A ∩ B ∈ sets M
A ∩ (T ◦ T ^^ n) −‘ B ∈ sets M
(T ◦ T ^^ n) −‘ A ∩ B ∈ sets M

by (metis T-meas Tn-meas assms(1 ) assms(2 ) measurable-comp sets.Int inf-commute
vrestr-intersec-in-space vrestr-meas)+

lemma T-diff-meas [measurable]:
assumes [measurable]: A ∈ sets M B ∈ sets M
shows A − T−‘B ∈ sets M

A − (T^^n)−‘B ∈ sets M
proof −

have A − T−‘B = A ∩ space M − (T−‘B ∩ space M )
using sets.sets-into-space[OF assms(1 )] by auto

then show A − T−‘B ∈ sets M by auto
have A − (T^^n)−‘B = A ∩ space M − ((T^^n)−‘B ∩ space M )

using sets.sets-into-space[OF assms(1 )] by auto
then show A − (T^^n)−‘B ∈ sets M by auto

qed

lemma T-spaceM-stable [simp]:
assumes x ∈ space M
shows T x ∈ space M

(T^^n) x ∈ space M
proof −

show T x ∈ space M by (meson measurable-space T-meas measurable-def assms)
show (T^^n) x ∈ space M by (meson measurable-space Tn-meas measurable-def

assms)
qed

lemma T-quasi-preserves-null:
assumes A ∈ sets M
shows A ∈ null-sets M ←→ T−−‘ A ∈ null-sets M

A ∈ null-sets M ←→ (T^^n)−−‘ A ∈ null-sets M
using Tqm Tn-quasi-measure-preserving unfolding quasi-measure-preserving-def
by (auto simp add: assms vimage-restr-def )

lemma T-quasi-preserves:
assumes A ∈ sets M
shows emeasure M A = 0 ←→ emeasure M (T−−‘ A) = 0

emeasure M A = 0 ←→ emeasure M ((T^^n)−−‘ A) = 0
using T-quasi-preserves-null[OF assms] T-vrestr-meas assms by blast+

lemma T-quasi-preserves-null2 :
assumes A ∈ null-sets M
shows T−−‘ A ∈ null-sets M

(T^^n)−−‘ A ∈ null-sets M
using T-quasi-preserves-null[OF null-setsD2 [OF assms]] assms by auto
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lemma T-composition-borel [measurable]:
assumes f ∈ borel-measurable M
shows (λx. f (T x)) ∈ borel-measurable M (λx. f ((T^^k) x)) ∈ borel-measurable

M
using T-meas Tn-meas assms measurable-compose by auto

lemma T-AE-iterates:
assumes AE x in M . P x
shows AE x in M . ∀n. P ((T^^n) x)

proof −
have AE x in M . P ((T^^n) x) for n

by (rule quasi-measure-preserving-AE [OF Tn-quasi-measure-preserving[of n]
assms])

then show ?thesis unfolding AE-all-countable by simp
qed

lemma qmpt-power :
qmpt M (T^^n)

by (standard, simp add: Tn-quasi-measure-preserving)

lemma T-Tn-T-compose:
T ((T^^n) x) = (T^^(Suc n)) x
(T^^n) (T x) = (T^^(Suc n)) x

by (auto simp add: funpow-swap1 )

lemma (in qmpt) qmpt-density:
assumes [measurable]: h ∈ borel-measurable M

and AE x in M . h x 6= 0 AE x in M . h x 6= ∞
shows qmpt (density M h) T

proof −
interpret A: sigma-finite-measure density M h

apply (subst sigma-finite-iff-density-finite) using assms by auto
show ?thesis

apply (standard) apply (rule quasi-measure-preservingI )
unfolding null-sets-density[OF ‹h ∈ borel-measurable M › ‹AE x in M . h x 6=

0 ›] sets-density space-density
using quasi-measure-preservingE(2 )[OF Tqm] by auto

qed

end

4.5 Basic properties of mpt
context mpt
begin

lemma Tn-measure-preserving:
T^^n ∈ measure-preserving M M

proof (induction n)
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case (Suc n)
then show ?case using Tm measure-preserving-comp by (metis funpow-Suc-right)

qed (simp add: id-measure-preserving)

lemma T-integral-preserving:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes integrable M f
shows integrable M (λx. f (T x)) (

∫
x. f (T x) ∂M ) = (

∫
x. f x ∂M )

using measure-preserving-preserves-integral[OF Tm assms] by auto

lemma Tn-integral-preserving:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes integrable M f
shows integrable M (λx. f ((T^^n) x)) (

∫
x. f ((T^^n) x) ∂M ) = (

∫
x. f x ∂M )

using measure-preserving-preserves-integral[OF Tn-measure-preserving assms] by
auto

lemma T-nn-integral-preserving:
fixes f :: ′a ⇒ ennreal
assumes f ∈ borel-measurable M
shows (

∫
+x. f (T x) ∂M ) = (

∫
+x. f x ∂M )

using measure-preserving-preserves-nn-integral[OF Tm assms] by auto

lemma Tn-nn-integral-preserving:
fixes f :: ′a ⇒ ennreal
assumes f ∈ borel-measurable M
shows (

∫
+x. f ((T^^n) x) ∂M ) = (

∫
+x. f x ∂M )

using measure-preserving-preserves-nn-integral[OF Tn-measure-preserving assms(1 )]
by auto

lemma mpt-power :
mpt M (T^^n)

by (standard, simp-all add: Tn-quasi-measure-preserving Tn-measure-preserving)

lemma T-vrestr-same-emeasure:
assumes A ∈ sets M
shows emeasure M (T−−‘ A) = emeasure M A

emeasure M ((T ^^ n)−−‘A) = emeasure M A
by (auto simp add: vrestr-same-emeasure-f Tm Tn-measure-preserving assms)

lemma T-vrestr-same-measure:
assumes A ∈ sets M
shows measure M (T−−‘ A) = measure M A

measure M ((T ^^ n)−−‘A) = measure M A
by (auto simp add: vrestr-same-measure-f Tm Tn-measure-preserving assms)

lemma (in fmpt) fmpt-power :
fmpt M (T^^n)

by (standard, simp-all add: Tn-quasi-measure-preserving Tn-measure-preserving)
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end

4.6 Birkhoff sums

Birkhoff sums, obtained by summing a function along the orbit of a map,
are basic objects to be understood in ergodic theory.
context qmpt
begin

definition birkhoff-sum::( ′a ⇒ ′b::comm-monoid-add) ⇒ nat ⇒ ′a ⇒ ′b
where birkhoff-sum f n x = (

∑
i∈{..<n}. f ((T^^i)x))

lemma birkhoff-sum-meas [measurable]:
fixes f :: ′a ⇒ ′b::{second-countable-topology, topological-comm-monoid-add}
assumes f ∈ borel-measurable M
shows birkhoff-sum f n ∈ borel-measurable M

proof −
define F where F = (λi x. f ((T^^i)x))
have

∧
i. F i ∈ borel-measurable M using assms F-def by auto

then have (λx. (
∑

i<n. F i x)) ∈ borel-measurable M by measurable
then have (λx. birkhoff-sum f n x) ∈ borel-measurable M unfolding birkhoff-sum-def

F-def by auto
then show ?thesis by simp

qed

lemma birkhoff-sum-1 [simp]:
birkhoff-sum f 0 x = 0
birkhoff-sum f 1 x = f x
birkhoff-sum f (Suc 0 ) x = f x

unfolding birkhoff-sum-def by auto

lemma birkhoff-sum-cocycle:
birkhoff-sum f (n+m) x = birkhoff-sum f n x + birkhoff-sum f m ((T^^n)x)

proof −
have (

∑
i<m. f ((T ^^ i) ((T ^^ n) x))) = (

∑
i<m. f ((T ^^ (i+n)) x)) by

(simp add: funpow-add)
also have ... = (

∑
j∈{n..< m+n}. f ((T ^^j) x))

using atLeast0LessThan sum.shift-bounds-nat-ivl[where ?g = λj. f ((T^^j)x)
and ?k = n and ?m = 0 and ?n = m, symmetric]

add.commute add.left-neutral by auto
finally have ∗: birkhoff-sum f m ((T^^n)x) = (

∑
j∈{n..< m+n}. f ((T ^^j)

x)) unfolding birkhoff-sum-def by auto
have birkhoff-sum f (n+m) x = (

∑
i<n. f ((T^^i)x)) + (

∑
i∈{n..<m+n}.

f ((T^^i)x))
unfolding birkhoff-sum-def by (metis add.commute add.right-neutral atLeast0LessThan

le-add2 sum.atLeastLessThan-concat)
also have ... = birkhoff-sum f n x + (

∑
i∈{n..<m+n}. f ((T^^i)x)) unfolding
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birkhoff-sum-def by simp
finally show ?thesis using ∗ by simp

qed

lemma birkhoff-sum-mono:
fixes f g::- ⇒ real
assumes

∧
x. f x ≤ g x

shows birkhoff-sum f n x ≤ birkhoff-sum g n x
unfolding birkhoff-sum-def by (simp add: assms sum-mono)

lemma birkhoff-sum-abs:
fixes f ::- ⇒ ′b::real-normed-vector
shows norm(birkhoff-sum f n x) ≤ birkhoff-sum (λx. norm(f x)) n x

unfolding birkhoff-sum-def using norm-sum by auto

lemma birkhoff-sum-add:
birkhoff-sum (λx. f x + g x) n x = birkhoff-sum f n x + birkhoff-sum g n x

unfolding birkhoff-sum-def by (simp add: sum.distrib)

lemma birkhoff-sum-diff :
fixes f g::- ⇒ real
shows birkhoff-sum (λx. f x − g x) n x = birkhoff-sum f n x − birkhoff-sum g n

x
unfolding birkhoff-sum-def by (simp add: sum-subtractf )

lemma birkhoff-sum-cmult:
fixes f ::- ⇒ real
shows birkhoff-sum (λx. c ∗ f x) n x = c ∗ birkhoff-sum f n x

unfolding birkhoff-sum-def by (simp add: sum-distrib-left)

lemma skew-product-real-iterates:
fixes f :: ′a ⇒ real
shows ((λ(x,y). (T x, y + f x))^^n) (x,y) = ((T^^n) x, y + birkhoff-sum f n x)

apply (induction n)
apply (auto)
apply (metis (no-types, lifting) Suc-eq-plus1 birkhoff-sum-cocycle qmpt.birkhoff-sum-1 (2 )
qmpt-axioms)
done

end

lemma (in mpt) birkhoff-sum-integral:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: integrable M f
shows integrable M (birkhoff-sum f n) (

∫
x. birkhoff-sum f n x ∂M ) = n ∗R (

∫
x.

f x ∂M )
proof −

have a:
∧

k. integrable M (λx. f ((T^^k) x))
using Tn-integral-preserving(1 ) assms by blast
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then have integrable M (λx.
∑

k∈{..<n}. f ((T^^k) x)) by simp
then have integrable M (λx. birkhoff-sum f n x) unfolding birkhoff-sum-def by

auto
then show integrable M (birkhoff-sum f n) by simp

have b:
∧

k. (
∫

x. f ((T^^k)x) ∂M ) = (
∫

x. f x ∂M )
using Tn-integral-preserving(2 ) assms by blast

have (
∫

x. birkhoff-sum f n x ∂M ) = (
∫

x. (
∑

k∈{..<n}. f ((T^^k) x)) ∂M )
unfolding birkhoff-sum-def by blast

also have ... = (
∑

k∈{..<n}. (
∫

x. f ((T^^k) x) ∂M ))
by (rule Bochner-Integration.integral-sum, simp add: a)

also have ... = (
∑

k∈{..<n}. (
∫

x. f x ∂M )) using b by simp
also have ... = n ∗R (

∫
x. f x ∂M ) by (simp add: sum-constant-scaleR)

finally show (
∫

x. birkhoff-sum f n x ∂M ) = n ∗R (
∫

x. f x ∂M ) by simp
qed

lemma (in mpt) birkhoff-sum-nn-integral:
fixes f :: ′a ⇒ ennreal
assumes [measurable]: f ∈ borel-measurable M and pos:

∧
x. f x ≥ 0

shows (
∫

+x. birkhoff-sum f n x ∂M ) = n ∗ (
∫

+x. f x ∂M )
proof −

have [measurable]:
∧

k. (λx. f ((T^^k)x)) ∈ borel-measurable M by simp
have posk:

∧
k x. f ((T^^k)x) ≥ 0 using pos by simp

have b:
∧

k. (
∫

+x. f ((T^^k)x) ∂M ) = (
∫

+x. f x ∂M )
using Tn-nn-integral-preserving assms by blast

have (
∫

+x. birkhoff-sum f n x ∂M ) = (
∫

+x. (
∑

k∈{..<n}. f ((T^^k) x)) ∂M )
unfolding birkhoff-sum-def by blast

also have ... = (
∑

k∈{..<n}. (
∫

+x. f ((T^^k) x) ∂M ))
by (rule nn-integral-sum, auto simp add: posk)

also have ... = (
∑

k∈{..<n}. (
∫

+x. f x ∂M )) using b by simp
also have ... = n ∗ (

∫
+x. f x ∂M ) by simp

finally show (
∫

+x. birkhoff-sum f n x ∂M ) = n ∗ (
∫

+x. f x ∂M ) by simp
qed

4.7 Inverse map
context qmpt begin

definition
invertible-qmpt ≡ (bij T ∧ inv T ∈ measurable M M )

definition
Tinv ≡ inv T

lemma T-Tinv-of-set:
assumes invertible-qmpt

A ∈ sets M
shows T−‘(Tinv−‘A ∩ space M ) ∩ space M = A

using assms sets.sets-into-space unfolding Tinv-def invertible-qmpt-def
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apply (auto simp add: bij-betw-def )
using T-spaceM-stable(1 ) by blast

lemma Tinv-quasi-measure-preserving:
assumes invertible-qmpt
shows Tinv ∈ quasi-measure-preserving M M

proof (rule quasi-measure-preservingI , auto)
fix A assume [measurable]: A ∈ sets M Tinv −‘ A ∩ space M ∈ null-sets M
then have T−‘(Tinv −‘ A ∩ space M ) ∩ space M ∈ null-sets M

by (metis T-quasi-preserves-null2 (1 ) null-sets.Int-space-eq2 vimage-restr-def )
then show A ∈ null-sets M

using T-Tinv-of-set[OF assms ‹A ∈ sets M ›] by auto
next

show [measurable]: Tinv ∈ measurable M M
using assms unfolding Tinv-def invertible-qmpt-def by blast

fix A assume [measurable]: A ∈ sets M A ∈ null-sets M
then have T−‘(Tinv −‘ A ∩ space M ) ∩ space M ∈ null-sets M

using T-Tinv-of-set[OF assms ‹A ∈ sets M ›] by auto
moreover have [measurable]: Tinv−‘A ∩ space M ∈ sets M

by auto
ultimately show Tinv −‘ A ∩ space M ∈ null-sets M

using T-meas T-quasi-preserves-null(1 ) vrestr-of-set by presburger
qed

lemma Tinv-qmpt:
assumes invertible-qmpt
shows qmpt M Tinv

unfolding qmpt-def qmpt-axioms-def using Tinv-quasi-measure-preserving[OF assms]
by (simp add: sigma-finite-measure-axioms)

end

lemma (in mpt) Tinv-measure-preserving:
assumes invertible-qmpt
shows Tinv ∈ measure-preserving M M

proof (rule measure-preservingI )
show [measurable]: Tinv ∈ measurable M M

using assms unfolding Tinv-def invertible-qmpt-def by blast
fix A assume [measurable]: A ∈ sets M
have A = T−‘(Tinv −‘ A ∩ space M ) ∩ space M

using T-Tinv-of-set[OF assms ‹A ∈ sets M ›] by auto
then show emeasure M (Tinv −‘ A ∩ space M ) = emeasure M A

by (metis T-vrestr-same-emeasure(1 ) ‹A ∈ sets M › ‹Tinv ∈ M →M M › mea-
surable-sets sets.Int-space-eq2 vimage-restr-def )
qed

lemma (in mpt) Tinv-mpt:
assumes invertible-qmpt
shows mpt M Tinv

82



unfolding mpt-def mpt-axioms-def using Tinv-qmpt[OF assms] Tinv-measure-preserving[OF
assms] by auto

lemma (in fmpt) Tinv-fmpt:
assumes invertible-qmpt
shows fmpt M Tinv

unfolding fmpt-def using Tinv-mpt[OF assms] by (simp add: finite-measure-axioms)

lemma (in pmpt) Tinv-fmpt:
assumes invertible-qmpt
shows pmpt M Tinv

unfolding pmpt-def using Tinv-fmpt[OF assms] by (simp add: prob-space-axioms)

4.8 Factors

Factors of a system are quotients of this system, i.e., systems that can be ob-
tained by a projection, forgetting some part of the dynamics. It is sometimes
possible to transfer a result from a factor to the original system, making it
possible to prove theorems by reduction to a simpler situation.
The dual notion, extension, is equally important and useful. We only men-
tion factors below, as the results for extension readily follow by considering
the original system as a factor of its extension.
In this paragraph, we define factors both in the qmpt and mpt categories,
and prove their basic properties.
definition (in qmpt) qmpt-factor ::( ′a ⇒ ′b) ⇒ ( ′b measure) ⇒ ( ′b ⇒ ′b) ⇒ bool

where qmpt-factor proj M2 T2 =
((proj ∈ quasi-measure-preserving M M2 ) ∧ (AE x in M . proj (T x) = T2 (proj

x)) ∧ qmpt M2 T2 )

lemma (in qmpt) qmpt-factorE :
assumes qmpt-factor proj M2 T2
shows proj ∈ quasi-measure-preserving M M2

AE x in M . proj (T x) = T2 (proj x)
qmpt M2 T2

using assms unfolding qmpt-factor-def by auto

lemma (in qmpt) qmpt-factor-iterates:
assumes qmpt-factor proj M2 T2
shows AE x in M . ∀n. proj ((T^^n) x) = (T2^^n) (proj x)

proof −
have AE x in M . ∀n. proj (T ((T^^n) x)) = T2 (proj ((T^^n) x))

by (rule T-AE-iterates[OF qmpt-factorE(2 )[OF assms]])
moreover
{

fix x assume ∀n. proj (T ((T^^n) x)) = T2 (proj ((T^^n) x))
then have H : proj (T ((T^^n) x)) = T2 (proj ((T^^n) x)) for n by auto
have proj ((T^^n) x) = (T2^^n) (proj x) for n
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apply (induction n) using H by auto
then have ∀n. proj ((T^^n) x) = (T2^^n) (proj x) by auto

}
ultimately show ?thesis by fast

qed

lemma (in qmpt) qmpt-factorI :
assumes proj ∈ quasi-measure-preserving M M2

AE x in M . proj (T x) = T2 (proj x)
qmpt M2 T2

shows qmpt-factor proj M2 T2
using assms unfolding qmpt-factor-def by auto

When there is a quasi-measure-preserving projection, then the quotient map
automatically is quasi-measure-preserving. The same goes for measure-
preservation below.
lemma (in qmpt) qmpt-factorI ′:

assumes proj ∈ quasi-measure-preserving M M2
AE x in M . proj (T x) = T2 (proj x)
sigma-finite-measure M2
T2 ∈ measurable M2 M2

shows qmpt-factor proj M2 T2
proof −

have [measurable]: T ∈ measurable M M
T2 ∈ measurable M2 M2
proj ∈ measurable M M2

using assms(4 ) quasi-measure-preservingE(1 )[OF assms(1 )] by auto

have ∗: (T2 −‘ A ∩ space M2 ∈ null-sets M2 ) = (A ∈ null-sets M2 ) if A ∈ sets
M2 for A

proof −
obtain U where U :

∧
x. x ∈ space M − U =⇒ proj (T x) = T2 (proj x) U

∈ null-sets M
using AE-E3 [OF assms(2 )] by blast

then have [measurable]: U ∈ sets M by auto
have [measurable]: A ∈ sets M2 using that by simp
have e1 : (T−‘(proj−‘A ∩ space M )) ∩ space M = T−‘(proj−‘A) ∩ space M

using subset-eq by auto
have e2 : T−‘(proj−‘A) ∩ space M − U = proj−‘(T2−‘A) ∩ space M − U

using U (1 ) by auto
have e3 : proj−‘(T2−‘A) ∩ space M = proj−‘(T2−‘A ∩ space M2 ) ∩ space M

by (auto, meson ‹proj ∈ M →M M2 › measurable-space)

have A ∈ null-sets M2 ←→ proj−‘A ∩ space M ∈ null-sets M
using quasi-measure-preservingE(2 )[OF assms(1 )] by simp

also have ... ←→ (T−‘(proj−‘A ∩ space M )) ∩ space M ∈ null-sets M
by (rule quasi-measure-preservingE(2 )[OF Tqm, symmetric], auto)

also have ... ←→ T−‘(proj−‘A) ∩ space M ∈ null-sets M
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using e1 by simp
also have ... ←→ T−‘(proj−‘A) ∩ space M − U ∈ null-sets M

using emeasure-Diff-null-set[OF ‹U ∈ null-sets M ›] unfolding null-sets-def
by auto

also have ... ←→ proj−‘(T2−‘A) ∩ space M − U ∈ null-sets M
using e2 by simp

also have ... ←→ proj−‘(T2−‘A) ∩ space M ∈ null-sets M
using emeasure-Diff-null-set[OF ‹U ∈ null-sets M ›] unfolding null-sets-def

by auto
also have ... ←→ proj−‘(T2−‘A ∩ space M2 ) ∩ space M ∈ null-sets M

using e3 by simp
also have ... ←→ T2−‘A ∩ space M2 ∈ null-sets M2
using quasi-measure-preservingE(2 )[OF assms(1 ), of T2−‘A ∩ space M2 ] by

simp
finally show T2−‘A ∩ space M2 ∈ null-sets M2 ←→ A ∈ null-sets M2

by simp
qed
show ?thesis

by (intro qmpt-factorI qmpt-I ) (auto simp add: assms ∗)
qed

lemma qmpt-factor-compose:
assumes qmpt M1 T1

qmpt.qmpt-factor M1 T1 proj1 M2 T2
qmpt.qmpt-factor M2 T2 proj2 M3 T3

shows qmpt.qmpt-factor M1 T1 (proj2 o proj1 ) M3 T3
proof −

have ∗: proj1 ∈ quasi-measure-preserving M1 M2 =⇒ AE x in M2 . proj2 (T2
x) = T3 (proj2 x)

=⇒ (AE x in M1 . proj1 (T1 x) = T2 (proj1 x) −→ proj2 (T2 (proj1 x)) =
T3 (proj2 (proj1 x)))

proof −
assume AE y in M2 . proj2 (T2 y) = T3 (proj2 y)

proj1 ∈ quasi-measure-preserving M1 M2
then have AE x in M1 . proj2 (T2 (proj1 x)) = T3 (proj2 (proj1 x))

using quasi-measure-preserving-AE by auto
moreover
{

fix x assume proj2 (T2 (proj1 x)) = T3 (proj2 (proj1 x))
then have proj1 (T1 x) = T2 (proj1 x) −→ proj2 (T2 (proj1 x)) = T3

(proj2 (proj1 x))
by auto

}
ultimately show AE x in M1 . proj1 (T1 x) = T2 (proj1 x) −→ proj2 (T2

(proj1 x)) = T3 (proj2 (proj1 x))
by auto

qed

interpret I : qmpt M1 T1 using assms(1 ) by simp
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interpret J : qmpt M2 T2 using I .qmpt-factorE(3 )[OF assms(2 )] by simp
show I .qmpt-factor (proj2 o proj1 ) M3 T3

apply (rule I .qmpt-factorI )
using I .qmpt-factorE [OF assms(2 )] J .qmpt-factorE [OF assms(3 )]
by (auto simp add: quasi-measure-preserving-comp ∗)

qed

The left shift on natural integers is a very natural dynamical system, that
can be used to model many systems as we see below. For invertible systems,
one uses rather all the integers.
definition nat-left-shift::(nat ⇒ ′a) ⇒ (nat ⇒ ′a)

where nat-left-shift x = (λi. x (i+1 ))

lemma nat-left-shift-continuous [intro, continuous-intros]:
continuous-on UNIV nat-left-shift

by (rule continuous-on-coordinatewise-then-product, auto simp add: nat-left-shift-def )

lemma nat-left-shift-measurable [intro, measurable]:
nat-left-shift ∈ measurable borel borel

by (rule borel-measurable-continuous-onI , auto)

definition int-left-shift::(int ⇒ ′a) ⇒ (int ⇒ ′a)
where int-left-shift x = (λi. x (i+1 ))

definition int-right-shift::(int ⇒ ′a) ⇒ (int ⇒ ′a)
where int-right-shift x = (λi. x (i−1 ))

lemma int-shift-continuous [intro, continuous-intros]:
continuous-on UNIV int-left-shift
continuous-on UNIV int-right-shift

apply (rule continuous-on-coordinatewise-then-product, auto simp add: int-left-shift-def )
apply (rule continuous-on-coordinatewise-then-product, auto simp add: int-right-shift-def )
done

lemma int-shift-measurable [intro, measurable]:
int-left-shift ∈ measurable borel borel
int-right-shift ∈ measurable borel borel

by (rule borel-measurable-continuous-onI , auto)+

lemma int-shift-bij:
bij int-left-shift inv int-left-shift = int-right-shift
bij int-right-shift inv int-right-shift = int-left-shift

proof −
show bij int-left-shift

apply (rule bij-betw-byWitness[where ?f ′ = λx. (λi. x (i−1 ))]) unfolding
int-left-shift-def by auto

show inv int-left-shift = int-right-shift
apply (rule inv-equality)
unfolding int-left-shift-def int-right-shift-def by auto
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show bij int-right-shift
apply (rule bij-betw-byWitness[where ?f ′ = λx. (λi. x (i+1 ))]) unfolding

int-right-shift-def by auto
show inv int-right-shift = int-left-shift

apply (rule inv-equality)
unfolding int-left-shift-def int-right-shift-def by auto

qed

lemma (in qmpt) qmpt-factor-projection:
fixes f :: ′a ⇒ ( ′b::second-countable-topology)
assumes [measurable]: f ∈ borel-measurable M

and sigma-finite-measure (distr M borel (λx n. f ((T ^^ n) x)))
shows qmpt-factor (λx. (λn. f ((T^^n)x))) (distr M borel (λx. (λn. f ((T^^n)x))))

nat-left-shift
proof (rule qmpt-factorI ′)

have ∗ [measurable]: (λx. (λn. f ((T^^n)x))) ∈ borel-measurable M
using measurable-coordinatewise-then-product by measurable

show (λx n. f ((T ^^ n) x)) ∈ quasi-measure-preserving M (distr M borel (λx
n. f ((T ^^ n) x)))

by (rule measure-preserving-is-quasi-measure-preserving[OF measure-preserving-distr ′[OF
∗]])

have (λn. f ((T ^^ n) (T x))) = nat-left-shift (λn. f ((T ^^ n) x)) for x
unfolding nat-left-shift-def by (auto simp add: funpow-swap1 )

then show AE x in M . (λn. f ((T ^^ n) (T x))) = nat-left-shift (λn. f ((T ^^
n) x))

by simp
qed (auto simp add: assms(2 ))

Let us now define factors of measure-preserving transformations, in the same
way as above.
definition (in mpt) mpt-factor ::( ′a ⇒ ′b) ⇒ ( ′b measure) ⇒ ( ′b ⇒ ′b) ⇒ bool

where mpt-factor proj M2 T2 =
((proj ∈ measure-preserving M M2 ) ∧ (AE x in M . proj (T x) = T2 (proj x))

∧ mpt M2 T2 )

lemma (in mpt) mpt-factor-is-qmpt-factor :
assumes mpt-factor proj M2 T2
shows qmpt-factor proj M2 T2

using assms unfolding mpt-factor-def qmpt-factor-def
by (simp add: measure-preserving-is-quasi-measure-preserving mpt-def )

lemma (in mpt) mpt-factorE :
assumes mpt-factor proj M2 T2
shows proj ∈ measure-preserving M M2

AE x in M . proj (T x) = T2 (proj x)
mpt M2 T2

using assms unfolding mpt-factor-def by auto

lemma (in mpt) mpt-factorI :
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assumes proj ∈ measure-preserving M M2
AE x in M . proj (T x) = T2 (proj x)
mpt M2 T2

shows mpt-factor proj M2 T2
using assms unfolding mpt-factor-def by auto

When there is a measure-preserving projection commuting with the dynam-
ics, and the dynamics above preserves the measure, then so does the dynam-
ics below.
lemma (in mpt) mpt-factorI ′:

assumes proj ∈ measure-preserving M M2
AE x in M . proj (T x) = T2 (proj x)
sigma-finite-measure M2
T2 ∈ measurable M2 M2

shows mpt-factor proj M2 T2
proof −

have [measurable]: T ∈ measurable M M
T2 ∈ measurable M2 M2
proj ∈ measurable M M2

using assms(4 ) measure-preservingE(1 )[OF assms(1 )] by auto

have ∗: emeasure M2 (T2 −‘ A ∩ space M2 ) = emeasure M2 A if A ∈ sets M2
for A

proof −
obtain U where U :

∧
x. x ∈ space M − U =⇒ proj (T x) = T2 (proj x) U

∈ null-sets M
using AE-E3 [OF assms(2 )] by blast

then have [measurable]: U ∈ sets M by auto
have [measurable]: A ∈ sets M2 using that by simp
have e1 : (T−‘(proj−‘A ∩ space M )) ∩ space M = T−‘(proj−‘A) ∩ space M

using subset-eq by auto
have e2 : T−‘(proj−‘A) ∩ space M − U = proj−‘(T2−‘A) ∩ space M − U

using U (1 ) by auto
have e3 : proj−‘(T2−‘A) ∩ space M = proj−‘(T2−‘A ∩ space M2 ) ∩ space M

by (auto, meson ‹proj ∈ M →M M2 › measurable-space)

have emeasure M2 A = emeasure M (proj−‘A ∩ space M )
using measure-preservingE(2 )[OF assms(1 )] by simp

also have ... = emeasure M (T−‘(proj−‘A ∩ space M ) ∩ space M )
by (rule measure-preservingE(2 )[OF Tm, symmetric], auto)

also have ... = emeasure M (T−‘(proj−‘A) ∩ space M )
using e1 by simp

also have ... = emeasure M (T−‘(proj−‘A) ∩ space M − U )
using emeasure-Diff-null-set[OF ‹U ∈ null-sets M ›] by auto

also have ... = emeasure M (proj−‘(T2−‘A) ∩ space M − U )
using e2 by simp

also have ... = emeasure M (proj−‘(T2−‘A) ∩ space M )
using emeasure-Diff-null-set[OF ‹U ∈ null-sets M ›] by auto
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also have ... = emeasure M (proj−‘(T2−‘A ∩ space M2 ) ∩ space M )
using e3 by simp

also have ... = emeasure M2 (T2−‘A ∩ space M2 )
using measure-preservingE(2 )[OF assms(1 ), of T2−‘A ∩ space M2 ] by simp

finally show emeasure M2 (T2−‘A ∩ space M2 ) = emeasure M2 A
by simp

qed
show ?thesis

by (intro mpt-factorI mpt-I ) (auto simp add: assms ∗)
qed

lemma (in fmpt) mpt-factorI ′′:
assumes proj ∈ measure-preserving M M2

AE x in M . proj (T x) = T2 (proj x)
T2 ∈ measurable M2 M2

shows mpt-factor proj M2 T2
apply (rule mpt-factorI ′, auto simp add: assms)
using measure-preserving-finite-measure[OF assms(1 )] finite-measure-axioms finite-measure-def
by blast

lemma (in fmpt) fmpt-factor :
assumes mpt-factor proj M2 T2
shows fmpt M2 T2

unfolding fmpt-def using mpt-factorE(3 )[OF assms]
measure-preserving-finite-measure[OF mpt-factorE(1 )[OF assms]] finite-measure-axioms
by auto

lemma (in pmpt) pmpt-factor :
assumes mpt-factor proj M2 T2
shows pmpt M2 T2

unfolding pmpt-def using fmpt-factor [OF assms]
measure-preserving-prob-space[OF mpt-factorE(1 )[OF assms]] prob-space-axioms by
auto

lemma mpt-factor-compose:
assumes mpt M1 T1

mpt.mpt-factor M1 T1 proj1 M2 T2
mpt.mpt-factor M2 T2 proj2 M3 T3

shows mpt.mpt-factor M1 T1 (proj2 o proj1 ) M3 T3
proof −

have ∗: proj1 ∈ measure-preserving M1 M2 =⇒ AE x in M2 . proj2 (T2 x) =
T3 (proj2 x) =⇒

(AE x in M1 . proj1 (T1 x) = T2 (proj1 x) −→ proj2 (T2 (proj1 x)) = T3
(proj2 (proj1 x)))

proof −
assume AE y in M2 . proj2 (T2 y) = T3 (proj2 y)

proj1 ∈ measure-preserving M1 M2
then have AE x in M1 . proj2 (T2 (proj1 x)) = T3 (proj2 (proj1 x))
using quasi-measure-preserving-AE measure-preserving-is-quasi-measure-preserving
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by blast
moreover
{

fix x assume proj2 (T2 (proj1 x)) = T3 (proj2 (proj1 x))
then have proj1 (T1 x) = T2 (proj1 x) −→ proj2 (T2 (proj1 x)) = T3

(proj2 (proj1 x))
by auto

}
ultimately show AE x in M1 . proj1 (T1 x) = T2 (proj1 x) −→ proj2 (T2

(proj1 x)) = T3 (proj2 (proj1 x))
by auto

qed

interpret I : mpt M1 T1 using assms(1 ) by simp
interpret J : mpt M2 T2 using I .mpt-factorE(3 )[OF assms(2 )] by simp
show I .mpt-factor (proj2 o proj1 ) M3 T3

apply (rule I .mpt-factorI )
using I .mpt-factorE [OF assms(2 )] J .mpt-factorE [OF assms(3 )]
by (auto simp add: measure-preserving-comp ∗)

qed

Left shifts are naturally factors of finite measure preserving transformations.
lemma (in mpt) mpt-factor-projection:

fixes f :: ′a ⇒ ( ′b::second-countable-topology)
assumes [measurable]: f ∈ borel-measurable M

and sigma-finite-measure (distr M borel (λx n. f ((T ^^ n) x)))
shows mpt-factor (λx. (λn. f ((T^^n)x))) (distr M borel (λx. (λn. f ((T^^n)x))))

nat-left-shift
proof (rule mpt-factorI ′)

have ∗ [measurable]: (λx. (λn. f ((T^^n)x))) ∈ borel-measurable M
using measurable-coordinatewise-then-product by measurable

show (λx n. f ((T ^^ n) x)) ∈ measure-preserving M (distr M borel (λx n. f ((T
^^ n) x)))

by (rule measure-preserving-distr ′[OF ∗])
have (λn. f ((T ^^ n) (T x))) = nat-left-shift (λn. f ((T ^^ n) x)) for x

unfolding nat-left-shift-def by (auto simp add: funpow-swap1 )
then show AE x in M . (λn. f ((T ^^ n) (T x))) = nat-left-shift (λn. f ((T ^^

n) x))
by simp

qed (auto simp add: assms(2 ))

lemma (in fmpt) fmpt-factor-projection:
fixes f :: ′a ⇒ ( ′b::second-countable-topology)
assumes [measurable]: f ∈ borel-measurable M
shows mpt-factor (λx. (λn. f ((T^^n)x))) (distr M borel (λx. (λn. f ((T^^n)x))))

nat-left-shift
proof (rule mpt-factor-projection, simp add: assms)

have ∗ [measurable]: (λx. (λn. f ((T^^n)x))) ∈ borel-measurable M
using measurable-coordinatewise-then-product by measurable
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have ∗∗: (λx n. f ((T ^^ n) x)) ∈ measure-preserving M (distr M borel (λx n. f
((T ^^ n) x)))

by (rule measure-preserving-distr ′[OF ∗])
have a: finite-measure (distr M borel (λx n. f ((T ^^ n) x)))
using measure-preserving-finite-measure[OF ∗∗] finite-measure-axioms by blast

then show sigma-finite-measure (distr M borel (λx n. f ((T ^^ n) x)))
by (simp add: finite-measure-def )

qed

4.9 Natural extension

Many probability preserving dynamical systems are not invertible, while
invertibility is often useful in proofs. The notion of natural extension is
a solution to this problem: it shows that (essentially) any system has an
extension which is invertible.
This extension is constructed by considering the space of orbits indexed by
integer numbers, with the left shift acting on it. If one considers the orbits
starting from time −N (for some fixed N), then there is a natural measure
on this space: such an orbit is parameterized by its starting point at time
−N , hence one may use the original measure on this point. The invariance
of the measure ensures that these measures are compatible with each other.
Their projective limit (when N tends to infinity) is thus an invariant measure
on the bilateral shift. The shift with this measure is the desired extension
of the original system.
There is a difficulty in the above argument: one needs to make sure that
the projective limit of a system of compatible measures is well defined. This
requires some topological conditions on the measures (they should be inner
regular, i.e., the measure of any set should be approximated from below
by compact subsets – this is automatic on polish spaces). The existence of
projective limits is proved in Projective_Limits.thy under the (sufficient)
polish condition. We use this theory, so we need the underlying space to
be a polish space and the measure to be a Borel measure. This is almost
completely satisfactory.
What is not completely satisfactory is that the completion of a Borel measure
on a polish space (i.e., we add all subsets of sets of measure 0 into the sigma
algebra) does not fit into this setting, while this is an important framework
in dynamical systems. It would readily follow once Projective_Limits.thy
is extended to the more general inner regularity setting (the completion of
a Borel measure on a polish space is always inner regular).
locale polish-pmpt = pmpt M ::( ′a::polish-space measure) T for M T
+ assumes M-eq-borel: sets M = sets borel

begin

definition natural-extension-map
where natural-extension-map = (int-left-shift::((int ⇒ ′a) ⇒ (int ⇒ ′a)))
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definition natural-extension-measure::(int ⇒ ′a) measure
where natural-extension-measure =
projective-family.lim UNIV (λI . distr M (ΠM i∈I . borel) (λx. (λi∈I . (T^^(nat(i−

Min I ))) x))) (λi. borel)

definition natural-extension-proj::(int ⇒ ′a) ⇒ ′a
where natural-extension-proj = (λx. x 0 )

theorem natural-extension:
pmpt natural-extension-measure natural-extension-map
qmpt.invertible-qmpt natural-extension-measure natural-extension-map
mpt.mpt-factor natural-extension-measure natural-extension-map natural-extension-proj

M T
proof −

define P::int set ⇒ (int ⇒ ′a) measure where
P = (λI . distr M (ΠM i∈I . borel) (λx. (λi∈I . (T^^(nat(i− Min I ))) x)))

have [measurable]: (T^^n) ∈ measurable M borel for n
using M-eq-borel by auto

interpret polish-projective UNIV P
unfolding polish-projective-def projective-family-def
proof (auto)
show prob-space (P I ) if finite I for I unfolding P-def by (rule prob-space-distr ,

auto)
fix J H ::int set assume J ⊆ H finite H
then have H ∩ J = J by blast

have ((λf . restrict f J ) o (λx. (λi∈H . (T^^(nat(i− Min H ))) x))) x
= ((λx. (λi∈J . (T^^(nat(i− Min J ))) x)) o (T^^(nat(Min J − Min H ))))

x for x
proof −
have nat(i− Min H ) = nat(i− Min J ) + nat(Min J − Min H ) if i ∈ J for i
proof −

have finite J using ‹J ⊆ H › ‹finite H › finite-subset by auto
then have Min J ∈ J using Min-in ‹i ∈ J › by auto
then have Min J ∈ H using ‹J ⊆ H › by blast
then have Min H ≤ Min J using Min.coboundedI [OF ‹finite H ›] by auto
moreover have Min J ≤ i using Min.coboundedI [OF ‹finite J › ‹i ∈ J ›]

by auto
ultimately show ?thesis by auto

qed
then show ?thesis

unfolding comp-def by (auto simp add: ‹H ∩ J = J › funpow-add)
qed
then have ∗: (λf . restrict f J ) o (λx. (λi∈H . (T^^(nat(i− Min H ))) x))

= (λx. (λi∈J . (T^^(nat(i− Min J ))) x)) o (T^^(nat(Min J − Min H )))
by auto
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have distr (P H ) (PiM J (λ-. borel)) (λf . restrict f J )
= distr M (ΠM i∈J . borel) ((λf . restrict f J ) o (λx. (λi∈H . (T^^(nat(i−

Min H ))) x)))
unfolding P-def by (rule distr-distr , auto simp add: ‹J ⊆ H › measur-

able-restrict-subset)
also have ... = distr M (ΠM i∈J . borel) ((λx. (λi∈J . (T^^(nat(i− Min J )))

x)) o (T^^(nat(Min J − Min H ))))
using ∗ by auto

also have ... = distr (distr M M (T^^(nat(Min J − Min H )))) (ΠM i∈J .
borel) (λx. (λi∈J . (T^^(nat(i− Min J ))) x))

by (rule distr-distr [symmetric], auto)
also have ... = distr M (ΠM i∈J . borel) (λx. (λi∈J . (T^^(nat(i− Min J )))

x))
using measure-preserving-distr [OF Tn-measure-preserving] by auto

also have ... = P J
unfolding P-def by auto

finally show P J = distr (P H ) (PiM J (λ-. borel)) (λf . restrict f J )
by simp

qed

have S : sets (PiM UNIV (λ-. borel)) = sets (borel::(int ⇒ ′a) measure)
by (rule sets-PiM-equal-borel)

have natural-extension-measure = lim
unfolding natural-extension-measure-def P-def by simp

have measurable lim lim = measurable borel borel
by (rule measurable-cong-sets, auto simp add: S)

then have [measurable]: int-left-shift ∈ measurable lim lim int-right-shift ∈ mea-
surable lim lim

using int-shift-measurable by fast+
have [simp]: space lim = UNIV

unfolding space-lim space-PiM space-borel by auto

show pmpt natural-extension-measure natural-extension-map
proof (rule pmpt-I )

show prob-space natural-extension-measure
unfolding ‹natural-extension-measure = lim› by (simp add: P.prob-space-axioms)

show natural-extension-map ∈ measurable natural-extension-measure natu-
ral-extension-measure

unfolding natural-extension-map-def ‹natural-extension-measure = lim› by
simp

define E where E = {(ΠE i∈UNIV . X i) |X ::(int ⇒ ′a set). (∀ i. X i ∈ sets
borel) ∧ finite {i. X i 6= UNIV }}

have lim = distr lim lim int-left-shift
proof (rule measure-eqI-generator-eq[of E UNIV , where ?A = λ-. UNIV ])

show sets lim = sigma-sets UNIV E
unfolding E-def using sets-PiM-finite[of UNIV ::int set λ-. (borel:: ′a mea-

sure)]
by (simp add: PiE-def )
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moreover have sets (distr lim lim int-left-shift) = sets lim by auto
ultimately show sets (distr lim lim int-left-shift) = sigma-sets UNIV E by

simp

show emeasure lim UNIV 6= ∞ by (simp add: P.prob-space-axioms)
have UNIV = (ΠE i∈(UNIV ::int set). (UNIV :: ′a set)) by (simp add: PiE-def )
moreover have ... ∈ E unfolding E-def by auto
ultimately show range (λ(i::nat). (UNIV ::(int ⇒ ′a) set)) ⊆ E

by auto

show Int-stable E
proof (rule Int-stableI )

fix U V assume U ∈ E V ∈ E
then obtain X Y where H : U = (ΠE i∈UNIV . X i)

∧
i. X i ∈ sets borel

finite {i. X i 6= UNIV }
V = (ΠE i∈UNIV . Y i)

∧
i. Y i ∈ sets borel finite {i.

Y i 6= UNIV }
unfolding E-def by blast

define Z where Z = (λi. X i ∩ Y i)
have {i. Z i 6= UNIV } ⊆ {i. X i 6= UNIV } ∪ {i. Y i 6= UNIV }

unfolding Z-def by auto
then have finite {i. Z i 6= UNIV }

using H (3 ) H (6 ) finite-subset by auto
moreover have U ∩ V = (ΠE i∈UNIV . Z i)

unfolding Z-def using H (1 ) H (4 ) by auto
moreover have

∧
i. Z i ∈ sets borel

unfolding Z-def using H (2 ) H (5 ) by auto
ultimately show U ∩ V ∈ E

unfolding E-def by auto
qed

fix U assume U ∈ E
then obtain X where H [measurable]: U = (ΠE i∈UNIV . X i)

∧
i. X i ∈

sets borel finite {i. X i 6= UNIV }
unfolding E-def by blast

define I where I = {i. X i 6= UNIV }
have [simp]: finite I unfolding I-def using H (3 ) by auto
have [measurable]: (ΠE i∈I . X i) ∈ sets (PiM I (λi. borel)) using H (2 ) by

simp
have ∗: U = emb UNIV I (ΠE i∈I . X i)

unfolding H (1 ) I-def prod-emb-def space-borel apply (auto simp add:
PiE-def )

by (metis (mono-tags, lifting) PiE UNIV-I mem-Collect-eq restrict-Pi-cancel)
have emeasure lim U = emeasure lim (int-left-shift−‘U )
proof (cases I = {})

case True
then have U = UNIV unfolding H (1 ) I-def by auto
then show ?thesis by auto

next
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case False
have emeasure lim U = emeasure (P I ) (ΠE i∈I . X i)

unfolding ∗ by (rule emeasure-lim-emb, auto)
also have ... = emeasure M (((λx. (λi∈I . (T^^(nat(i− Min I ))) x)))−‘(ΠE

i∈I . X i) ∩ space M )
unfolding P-def by (rule emeasure-distr , auto)

finally have A: emeasure lim U = emeasure M (((λx. (λi∈I . (T^^(nat(i−
Min I ))) x)))−‘(ΠE i∈I . X i) ∩ space M )

by simp

have i: int-left-shift−‘U = (ΠE i∈UNIV . X (i−1 ))
unfolding H (1 ) apply (auto simp add: int-left-shift-def PiE-def )

by (metis PiE UNIV-I diff-add-cancel, metis Pi-mem add.commute
add-diff-cancel-left ′ iso-tuple-UNIV-I )

define Im where Im = {i. X (i−1 ) 6= UNIV }
have Im = (λi. i+1 )‘I

unfolding I-def Im-def using image-iff by (auto, fastforce)
then have [simp]: finite Im by auto
have ∗: int-left-shift−‘U = emb UNIV Im (ΠE i∈Im. X (i−1 ))

unfolding i Im-def prod-emb-def space-borel apply (auto simp add:
PiE-def )

by (metis (mono-tags, lifting) PiE UNIV-I mem-Collect-eq restrict-Pi-cancel)
have emeasure lim (int-left-shift−‘U ) = emeasure (P Im) (ΠE i∈Im. X

(i−1 ))
unfolding ∗ by (rule emeasure-lim-emb, auto)
also have ... = emeasure M (((λx. (λi∈Im. (T^^(nat(i− Min Im)))

x)))−‘(ΠE i∈Im. X (i−1 )) ∩ space M )
unfolding P-def by (rule emeasure-distr , auto)
finally have B: emeasure lim (int-left-shift−‘U ) = emeasure M (((λx.

(λi∈Im. (T^^(nat(i− Min Im))) x)))−‘(ΠE i∈Im. X (i−1 )) ∩ space M )
by simp

have Min Im = Min I + 1 unfolding ‹Im = (λi. i+1 )‘I ›
by (rule mono-Min-commute[symmetric], auto simp add: False monoI )

have ((λx. (λi∈Im. (T^^(nat(i− Min Im))) x)))−‘(ΠE i∈Im. X (i−1 )) =
((λx. (λi∈I . (T^^(nat(i− Min I ))) x)))−‘(ΠE i∈I . X i)

unfolding ‹Min Im = Min I + 1 › unfolding ‹Im = (λi. i+1 )‘I › by
(auto simp add: Pi-iff )

then show emeasure lim U = emeasure lim (int-left-shift −‘ U ) using A
B by auto

qed
also have ... = emeasure lim (int-left-shift−‘U ∩ space lim)

unfolding ‹space lim = UNIV › by auto
also have ... = emeasure (distr lim lim int-left-shift) U

apply (rule emeasure-distr [symmetric], auto) using ∗ by auto
finally show emeasure lim U = emeasure (distr lim lim int-left-shift) U

by simp
qed (auto)
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fix U assume U ∈ sets natural-extension-measure
then have [measurable]: U ∈ sets lim using ‹natural-extension-measure = lim›

by simp
have emeasure natural-extension-measure (natural-extension-map −‘ U ∩ space

natural-extension-measure)
= emeasure lim (int-left-shift−‘U ∩ space lim)

unfolding ‹natural-extension-measure = lim› natural-extension-map-def by
simp

also have ... = emeasure (distr lim lim int-left-shift) U
apply (rule emeasure-distr [symmetric], auto) using ‹U ∈ P.events› by auto

also have ... = emeasure lim U
using ‹lim = distr lim lim int-left-shift› by simp

also have ... = emeasure natural-extension-measure U
using ‹natural-extension-measure = lim› by simp

finally show emeasure natural-extension-measure (natural-extension-map −‘ U
∩ space natural-extension-measure)

= emeasure natural-extension-measure U
by simp

qed
then interpret I : pmpt natural-extension-measure natural-extension-map by

simp

show I .invertible-qmpt
unfolding I .invertible-qmpt-def unfolding natural-extension-map-def ‹natu-

ral-extension-measure = lim›
by (auto simp add: int-shift-bij)

show I .mpt-factor natural-extension-proj M T unfolding I .mpt-factor-def
proof (auto)

show mpt M T by (simp add: mpt-axioms)
show natural-extension-proj ∈ measure-preserving natural-extension-measure

M
unfolding ‹natural-extension-measure = lim›
proof

have ∗: measurable lim M = measurable borel borel
apply (rule measurable-cong-sets) using sets-PiM-equal-borel M-eq-borel by

auto
show natural-extension-proj ∈ measurable lim M

unfolding ∗ natural-extension-proj-def by auto

fix U assume [measurable]: U ∈ sets M
have ∗: (((λx. λi∈{0}. (T ^^ nat (i − Min {0})) x))−‘ ({0} →E U ) ∩ space

M ) = U
using sets.sets-into-space[OF ‹U ∈ sets M ›] by auto

have natural-extension-proj−‘U ∩ space lim = emb UNIV {0} (ΠE i∈{0}.
U )

unfolding ‹space lim = UNIV › natural-extension-proj-def prod-emb-def by
(auto simp add: PiE-iff )
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then have emeasure lim (natural-extension-proj−‘U ∩ space lim) = emeasure
lim (emb UNIV {0} (ΠE i∈{0}. U ))

by simp
also have ... = emeasure (P {0}) (ΠE i∈{0}. U )

apply (rule emeasure-lim-emb, auto) using ‹U ∈ sets M › M-eq-borel by
auto

also have ... = emeasure M (((λx. λi∈{0}. (T ^^ nat (i − Min {0})) x))−‘
({0} →E U ) ∩ space M )

unfolding P-def apply (rule emeasure-distr) using ‹U ∈ sets M › M-eq-borel
by auto

also have ... = emeasure M U
using ∗ by simp

finally show emeasure lim (natural-extension-proj−‘U ∩ space lim) = emea-
sure M U by simp

qed

define U ::(int ⇒ ′a) set where U = {x ∈ space (PiM {0 , 1} (λi. borel)). x
1 = T (x 0 )}

have ∗: ((λx. λi∈{0 , 1}. (T ^^ nat (i − Min {0 , 1})) x))−‘ U ∩ space M =
space M

unfolding U-def space-PiM space-borel by auto
have [measurable]: T ∈ measurable borel borel

using M-eq-borel by auto
have [measurable]: U ∈ sets (PiM {0 , 1} (λi. borel))

unfolding U-def by (rule measurable-equality-set, auto)
have emeasure natural-extension-measure (emb UNIV {0 , 1} U ) = emeasure

(P {0 , 1}) U
unfolding ‹natural-extension-measure = lim› by (rule emeasure-lim-emb,

auto)
also have ... = emeasure M (((λx. λi∈{0 , 1}. (T ^^ nat (i − Min {0 , 1}))

x))−‘ U ∩ space M )
unfolding P-def by (rule emeasure-distr , auto)

also have ... = emeasure M (space M )
using ∗ by simp

also have ... = 1 by (simp add: emeasure-space-1 )
finally have ∗: emeasure natural-extension-measure (emb UNIV {0 , 1} U ) =

1 by simp
have AE x in natural-extension-measure. x ∈ emb UNIV {0 , 1} U

apply (rule I .AE-prob-1 ) using ∗ by (simp add: I .emeasure-eq-measure)
moreover
{

fix x assume x ∈ emb UNIV {0 , 1} U
then have x 1 = T (x 0 ) unfolding prod-emb-def U-def by auto

then have natural-extension-proj (natural-extension-map x) = T (natural-extension-proj
x)

unfolding natural-extension-proj-def natural-extension-map-def int-left-shift-def
by auto

}
ultimately show AE x in natural-extension-measure.
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natural-extension-proj (natural-extension-map x) = T (natural-extension-proj
x)

by auto
qed

qed

end

end

5 Conservativity, recurrence
theory Recurrence

imports Measure-Preserving-Transformations
begin

A dynamical system is conservative if almost every point comes back close
to its starting point. This is always the case if the measure is finite, not
when it is infinite (think of the translation on Z). In conservative systems,
an important construction is the induced map: the first return map to a set
of finite measure. It is measure-preserving and conservative if the original
system is. This makes it possible to reduce statements about general con-
servative systems in infinite measure to statements about systems in finite
measure, and as such is extremely useful.

5.1 Definition of conservativity
locale conservative = qmpt +

assumes conservative:
∧

A. A ∈ sets M =⇒ emeasure M A > 0 =⇒ ∃n>0 .
emeasure M ((T^^n)−‘A ∩ A) >0

lemma conservativeI :
assumes qmpt M T∧

A. A ∈ sets M =⇒ emeasure M A > 0 =⇒ ∃n>0 . emeasure M ((T^^n)−‘A
∩ A) >0

shows conservative M T
unfolding conservative-def conservative-axioms-def using assms by auto

To prove conservativity, it is in fact sufficient to show that the preimages of
a set of positive measure intersect it, without any measure control. Indeed,
in a non-conservative system, one can construct a set which does not satisfy
this property.
lemma conservativeI2 :

assumes qmpt M T∧
A. A ∈ sets M =⇒ emeasure M A > 0 =⇒ ∃n>0 . (T^^n)−‘A ∩ A 6= {}

shows conservative M T
unfolding conservative-def conservative-axioms-def
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proof (auto simp add: assms)
interpret qmpt M T using assms by auto
fix A
assume A-meas [measurable]: A ∈ sets M and emeasure M A > 0
show ∃n>0 . 0 < emeasure M ((T ^^ n) −‘ A ∩ A)
proof (rule ccontr)

assume ¬ (∃n>0 . 0 < emeasure M ((T ^^ n) −‘ A ∩ A))
then have meas-0 : emeasure M ((T ^^ n) −‘ A ∩ A) = 0 if n>0 for n

by (metis zero-less-iff-neq-zero that)
define C where C = (

⋃
n. (T^^(Suc n))−‘A ∩ A)

have C-meas [measurable]: C ∈ sets M unfolding C-def by measurable
have emeasure M C = 0 unfolding C-def
by (intro emeasure-UN-eq-0 [of M , of λn. (T^^(Suc n))−‘A ∩ A, OF meas-0 ],

auto)

define A2 where A2 = A−C
then have A2-meas [measurable]: A2 ∈ sets M by simp
have ¬(∃n>0 . (T^^n)−‘A2 ∩ A2 6= {})
proof (rule ccontr , simp)

assume ∃n>0 . (T^^n)−‘A2 ∩ A2 6= {}
then obtain n where n: n > 0 (T^^n)−‘A2 ∩ A2 6= {} by auto
define m where m = n−1
have (T^^(m+1 ))−‘A2 ∩ A2 6= {} unfolding m-def using n by auto
then show False using C-def A2-def by auto

qed
then have emeasure M A2 = 0 using assms(2 )[OF A2-meas] by (meson

zero-less-iff-neq-zero)
then have emeasure M (C ∪ A2 ) = 0 using ‹emeasure M C = 0 › by (simp

add: emeasure-Un-null-set null-setsI )
moreover have A ⊆ C ∪ A2 unfolding A2-def by auto

ultimately have emeasure M A = 0 by (meson A2-meas C-meas emeasure-eq-0
sets.Un)

then show False using ‹emeasure M A > 0 › by auto
qed

qed

There is also a dual formulation, saying that conservativity follows from the
fact that a set disjoint from all its preimages has to be null.
lemma conservativeI3 :

assumes qmpt M T∧
A. A ∈ sets M =⇒ (∀n>0 . (T^^n)−‘A ∩ A = {}) =⇒ A ∈ null-sets M

shows conservative M T
proof (rule conservativeI2 [OF assms(1 )])

fix A assume A ∈ sets M 0 < emeasure M A
then have ¬(A ∈ null-sets M ) unfolding null-sets-def by auto
then show ∃n>0 . (T ^^ n) −‘ A ∩ A 6= {}

using assms(2 )[OF ‹A ∈ sets M ›] by auto
qed
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The inverse of a conservative map is still conservative
lemma (in conservative) conservative-Tinv:

assumes invertible-qmpt
shows conservative M Tinv

proof (rule conservativeI2 )
show qmpt M Tinv using Tinv-qmpt[OF assms].
have bij T using assms unfolding invertible-qmpt-def by auto
fix A assume [measurable]: A ∈ sets M and emeasure M A > 0
then obtain n where ∗: n>0 emeasure M ((T^^n)−‘A ∩ A) > 0

using conservative[OF ‹A ∈ sets M › ‹emeasure M A > 0 ›] by blast
have bij (T^^n) using bij-fn[OF ‹bij T ›] by auto
then have bij(inv (T^^n)) using bij-imp-bij-inv by auto
then have bij (Tinv^^n) unfolding Tinv-def using inv-fn[OF ‹bij T ›, of n]

by auto

have (T^^n)−‘A ∩ A 6= {} using ∗ by auto
then have (Tinv^^n)−‘((T^^n)−‘A ∩ A) 6= {}

using surj-vimage-empty[OF bij-is-surj[OF ‹bij (Tinv^^n)›]] by meson
then have ∗∗: (Tinv^^n)−‘((T^^n)−‘A) ∩ (Tinv^^n)−‘ A 6= {}

by auto

have (Tinv^^n)−‘((T^^n)−‘A) = ((T^^n) o (Tinv^^n))−‘A
by auto

moreover have (T^^n) o (Tinv^^n) = (λx. x)
unfolding Tinv-def using ‹bij T › fn-o-inv-fn-is-id by blast

ultimately have (Tinv^^n)−‘((T^^n)−‘A) = A by auto
then have (Tinv^^n)−‘ A ∩ A 6= {} using ∗∗ by auto
then show ∃n>0 . (Tinv ^^ n) −‘ A ∩ A 6= {} using ‹n>0 › by auto

qed

We introduce the locale of a conservative measure preserving map.
locale conservative-mpt = mpt + conservative

lemma conservative-mptI :
assumes mpt M T∧

A. A ∈ sets M =⇒ emeasure M A > 0 =⇒ ∃n>0 . (T^^n)−‘A ∩ A 6= {}
shows conservative-mpt M T

unfolding conservative-mpt-def
apply (auto simp add: assms(1 ), rule conservativeI2 )
using assms(1 ) by (auto simp add: mpt-def assms(2 ))

The fact that finite measure preserving transformations are conservative,
albeit easy, is extremely important. This result is known as Poincaré recur-
rence theorem.
sublocale fmpt ⊆ conservative-mpt
proof (rule conservative-mptI )

show mpt M T by (simp add: mpt-axioms)
fix A assume A-meas [measurable]: A ∈ sets M and emeasure M A > 0
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show ∃n>0 . (T^^n)−‘A ∩ A 6= {}
proof (rule ccontr)

assume ¬(∃n>0 . (T^^n)−‘A ∩ A 6= {})
then have disj: (T^^(Suc n))−−‘A ∩ A = {} for n unfolding vimage-restr-def

using zero-less-one by blast

define B where B = (λ n. (T^^n)−−‘A)
then have B-meas [measurable]: B n ∈ sets M for n by simp
have same: measure M (B n) = measure M A for n

by (simp add: B-def A-meas T-vrestr-same-measure(2 ))

have B n ∩ B m = {} if n > m for m n
proof −

have B n ∩ B m = (T^^m)−−‘ (B (n−m) ∩ A)
using B-def ‹m < n› A-meas vrestr-intersec T-vrestr-composed(1 ) by auto

moreover have B (n−m) ∩ A = {} unfolding B-def
by (metis disj ‹m < n› Suc-diff-Suc)

ultimately show ?thesis by simp
qed
then have disjoint-family B by (metis disjoint-family-on-def inf-sup-aci(1 )

less-linear)

have measure M A < e if e>0 for e::real
proof −

obtain N ::nat where N>0 (measure M (space M ))/e<N using ‹0 < e›
by (metis divide-less-0-iff reals-Archimedean2 less-eq-real-def measure-nonneg

not-gr0 not-le of-nat-0 )
then have (measure M (space M ))/N < e using ‹0 < e› ‹N>0 ›

by (metis bounded-measure div-0 le-less-trans measure-empty mult.commute
pos-divide-less-eq)

have ∗: disjoint-family-on B {..<N}
by (meson UNIV-I ‹disjoint-family B› disjoint-family-on-mono subsetI )

then have (
∑

i∈{..<N}. measure M (B i)) ≤ measure M (space M )
by (metis bounded-measure ‹

∧
n. B n ∈ sets M ›

image-subset-iff finite-lessThan finite-measure-finite-Union)
also have (

∑
i∈{..<N}. measure M (B i)) = (

∑
i∈{..<N}. measure M A)

using same by simp
also have ... = N ∗ (measure M A) by simp
finally have N ∗ (measure M A) ≤ measure M (space M ) by simp
then have measure M A ≤ (measure M (space M ))/N using ‹N>0 › by

(simp add: mult.commute mult-imp-le-div-pos)
then show measure M A < e using ‹(measure M (space M ))/N<e› by simp

qed
then have measure M A ≤ 0 using not-less by blast
then have measure M A = 0 by (simp add: measure-le-0-iff )
then have emeasure M A = 0 using emeasure-eq-measure by simp
then show False using ‹emeasure M A > 0 › by simp

qed
qed
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The following fact that powers of conservative maps are also conservative is
true, but nontrivial. It is proved as follows: consider a set A with positive
measure, take a time n1 such that A1 = T−n1A ∩ A has positive measure,
then a time n2 such that A2 = T−n2A1∩A has positive measure, and so on.
It follows that T−(ni+ni+1+···+nj)A ∩ A has positive measure for all i < j.
Then, one can find i < j such that ni + · · ·+ nj is a multiple of N .
proposition (in conservative) conservative-power :

conservative M (T^^n)
proof (unfold-locales)

show T ^^ n ∈ quasi-measure-preserving M M
by (auto simp add: Tn-quasi-measure-preserving)

fix A assume [measurable]: A ∈ sets M 0 < emeasure M A
define good-time where good-time = (λK . Inf {(i::nat). i > 0 ∧ emeasure M

((T^^i)−‘K ∩ A) > 0})
define next-good-set where next-good-set = (λK . (T^^(good-time K ))−‘K ∩ A)

have good-rec: ((good-time K > 0 ) ∧ (next-good-set K ⊆ A) ∧
(next-good-set K ∈ sets M ) ∧ (emeasure M (next-good-set K ) > 0 ))

if [measurable]: K ∈ sets M and K ⊆ A emeasure M K > 0 for K
proof −

have a: next-good-set K ∈ sets M next-good-set K ⊆ A
using next-good-set-def by simp-all

obtain k where k > 0 and posK : emeasure M ((T^^k)−‘K ∩ K ) > 0
using conservative[OF ‹K ∈ sets M ›, OF ‹emeasure M K > 0 ›] by auto

have ∗:(T^^k)−‘K ∩ K ⊆ (T^^k)−‘K ∩ A using ‹K ⊆ A› by auto
have posKA: emeasure M ((T^^k)−‘K ∩ A) > 0 using emeasure-mono[OF ∗,

of M ] posK by simp
let ?S = {(i::nat). i>0 ∧ emeasure M ((T^^i)−‘K ∩ A) > 0}
have k ∈ ?S using ‹k>0 › posKA by simp
then have ?S 6= {} by auto
then have Inf ?S ∈ ?S using Inf-nat-def1 [of ?S ] by simp
then have good-time K ∈ ?S using good-time-def by simp
then show (good-time K > 0 ) ∧ (next-good-set K ⊆ A) ∧

(next-good-set K ∈ sets M ) ∧ (emeasure M (next-good-set K ) > 0 )
using a next-good-set-def by auto

qed

define B where B = (λi. (next-good-set^^i) A)
define t where t = (λi. good-time (B i))
have good-B: (B i ⊆ A) ∧ (B i ∈ sets M ) ∧ (emeasure M (B i) > 0 ) for i
proof (induction i)

case 0
have B 0 = A using B-def by simp
then show ?case using ‹B 0 = A› ‹A ∈ sets M › ‹emeasure M A > 0 › by

simp
next

case (Suc i)
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moreover have B (i+1 ) = next-good-set (B i) using B-def by simp
ultimately show ?case using good-rec[of B i] by auto

qed
have t-pos:

∧
i. t i > 0 using t-def by (simp add: good-B good-rec)

define s where s = (λi k. (
∑

n ∈ {i..<i+k}. t n))
have B (i+k) ⊆ (T^^(s i k))−‘A ∩ A for i k
proof (induction k)

case 0
show ?case using s-def good-B[of i] by simp

next
case (Suc k)

have B(i+k+1 ) = (T^^(t (i+k)))−‘(B (i+k)) ∩ A using t-def B-def next-good-set-def
by simp

moreover have B(i+k) ⊆ (T^^(s i k))−‘A using Suc.IH by simp
ultimately have B(i+k+1 ) ⊆ (T^^(t (i+k)))−‘ (T^^(s i k))−‘A ∩ A by auto

then have B(i+k+1 ) ⊆ (T^^(t(i+k) + s i k))−‘A ∩ A by (simp add:
add.commute funpow-add vimage-comp)

moreover have t(i+k) + s i k = s i (k+1 ) using s-def by simp
ultimately show ?case by simp

qed
moreover have (T^^j)−‘A ∩ A ∈ sets M for j by simp
ultimately have ∗: emeasure M ((T^^(s i k))−‘A ∩ A) > 0 for i k

by (metis inf .orderE inf .strict-boundedE good-B emeasure-mono)

show ∃ k>0 . 0 < emeasure M (((T ^^ n) ^^ k) −‘ A ∩ A)
proof (cases)

assume n = 0
then have ((T ^^ n) ^^ 1 ) −‘ A = A by simp
then show ?thesis using ‹emeasure M A > 0 › by auto

next
assume ¬(n = 0 )
then have n > 0 by simp
define u where u = (λi. s 0 i mod n)
have range u ⊆ {..<n} by (simp add: ‹0 < n› image-subset-iff u-def )
then have finite (range u) using finite-nat-iff-bounded by auto
then have ∃ i j. (i<j) ∧ (u i = u j) by (metis finite-imageD infinite-UNIV-nat

injI less-linear)
then obtain i k where k>0 u i = u (i+k) using less-imp-add-positive by

blast
moreover have s 0 (i+k) = s 0 i + s i k unfolding s-def by (simp add:

sum.atLeastLessThan-concat)
ultimately have (s i k) mod n = 0 using u-def nat-mod-cong by metis
then obtain r where s i k = n ∗ r by auto
moreover have s i k > 0 unfolding s-def

using ‹k > 0 › t-pos sum-strict-mono[of {i..<i+k}, of λx. 0 , of λx. t x] by
simp

ultimately have r > 0 by simp
moreover have emeasure M ((T^^(n ∗ r))−‘A ∩ A) > 0 using ∗ ‹s i k = n
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∗ r› by metis
ultimately show ?thesis by (metis funpow-mult)

qed
qed

proposition (in conservative-mpt) conservative-mpt-power :
conservative-mpt M (T^^n)

using conservative-power mpt-power unfolding conservative-mpt-def by auto

The standard way to use conservativity is as follows: if a set is almost disjoint
from all its preimages, then it is null:
lemma (in conservative) ae-disjoint-then-null:

assumes A ∈ sets M∧
n. n > 0 =⇒ A ∩ (T^^n)−‘A ∈ null-sets M

shows A ∈ null-sets M
by (metis Int-commute assms(1 ) assms(2 ) conservative zero-less-iff-neq-zero null-setsD1
null-setsI )

lemma (in conservative) disjoint-then-null:
assumes A ∈ sets M∧

n. n > 0 =⇒ A ∩ (T^^n)−‘A = {}
shows A ∈ null-sets M

by (rule ae-disjoint-then-null, auto simp add: assms)

Conservativity is preserved by replacing the measure by an equivalent one.
lemma (in conservative) conservative-density:

assumes [measurable]: h ∈ borel-measurable M
and AE x in M . h x 6= 0 AE x in M . h x 6= ∞

shows conservative (density M h) T
proof −

interpret A: qmpt density M h T
by (rule qmpt-density[OF assms])

show ?thesis
apply (rule conservativeI3 ) apply (simp add: A.qmpt-axioms)
unfolding sets-density null-sets-density[OF assms(1 ) assms(2 )]
by (metis conservative emeasure-empty not-gr-zero null-setsI )

qed

context qmpt begin

We introduce the recurrent subset of A, i.e., the set of points of A that
return to A, and the infinitely recurrent subset, i.e., the set of points of A
that return infinitely often to A. In conservative systems, both coincide with
A almost everywhere.
definition recurrent-subset:: ′a set ⇒ ′a set

where recurrent-subset A = (
⋃

n ∈ {1 ..}. A ∩ (T^^n)−‘A)

definition recurrent-subset-infty:: ′a set ⇒ ′a set
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where recurrent-subset-infty A = A − (
⋃

n. (T^^n)−‘ (A − recurrent-subset
A))

lemma recurrent-subset-infty-inf-returns:
x ∈ recurrent-subset-infty A ←→ (x ∈ A ∧ infinite {n. (T^^n) x ∈ A})

proof
assume ∗: x ∈ recurrent-subset-infty A
have infinite {n. (T^^n) x ∈ A}
proof (rule ccontr)

assume ¬(infinite {n. (T^^n) x ∈ A})
then have F : finite {n. (T^^n) x ∈ A} by auto
have 0 ∈ {n. (T^^n) x ∈ A} using ∗ recurrent-subset-infty-def by auto
then have NE : {n. (T^^n) x ∈ A} 6= {} by blast
define N where N = Max {n. (T^^n) x ∈ A}
have N ∈ {n. (T^^n) x ∈ A} unfolding N-def using F NE using Max-in

by auto
then have (T^^N ) x ∈ A by auto
moreover have x /∈ (T^^N )−‘ (A − recurrent-subset A) using ∗ unfolding

recurrent-subset-infty-def by auto
ultimately have (T^^N ) x ∈ recurrent-subset A by auto
then have (T ^^ N ) x ∈ A ∧ (∃n. n ∈ {1 ..} ∧ (T ^^ n) ((T ^^ N ) x) ∈ A)

unfolding recurrent-subset-def by blast
then obtain n where n>0 (T^^n) ((T^^N ) x) ∈ A

by (metis atLeast-iff gr0I not-one-le-zero)
then have n+N ∈ {n. (T^^n) x ∈ A} by (simp add: funpow-add)
then show False unfolding N-def using ‹n>0 › F NE
by (metis Max-ge Nat.add-0-right add.commute nat-add-left-cancel-less not-le)

qed
then show x ∈ A ∧ infinite {n. (T^^n) x ∈ A} using ∗ recurrent-subset-infty-def

by auto
next

assume ∗: (x ∈ A ∧ infinite {n. (T ^^ n) x ∈ A})
{

fix n
obtain N where N>n (T^^N ) x ∈ A using ∗

using infinite-nat-iff-unbounded by force
define k where k = N−n
then have k>0 N = n+k using ‹N>n› by auto
then have (T^^k) ((T^^n) x) ∈ A
by (metis ‹(T ^^ N ) x ∈ A› ‹N = n + k› add.commute comp-def funpow-add)

then have (T^^ n) x /∈ A − recurrent-subset A
unfolding recurrent-subset-def using ‹k>0 › by auto

}
then show x ∈ recurrent-subset-infty A unfolding recurrent-subset-infty-def

using ∗ by auto
qed

lemma recurrent-subset-infty-series-infinite:
assumes x ∈ recurrent-subset-infty A
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shows (
∑

n. indicator A ((T^^n) x)) = (∞::ennreal)
proof (rule ennreal-ge-nat-imp-PInf )
have ∗: ¬ finite {n. (T^^n) x ∈ A} using recurrent-subset-infty-inf-returns assms

by auto
fix N ::nat
obtain F where F : finite F F ⊆ {n. (T^^n) x ∈ A} card F = N

using infinite-arbitrarily-large[OF ∗] by blast
have N = (

∑
n ∈ F . 1 ::ennreal)

using F(3 ) by auto
also have ... = (

∑
n ∈ F . (indicator A ((T^^n) x))::ennreal)

apply (rule sum.cong) using F(2 ) indicator-def by auto
also have ... ≤ (

∑
n. indicator A ((T^^n) x))

by (rule sum-le-suminf , auto simp add: F)
finally show N ≤ (

∑
n. (indicator A ((T^^n) x))::ennreal) by auto

qed

lemma recurrent-subset-infty-def ′:
recurrent-subset-infty A = (

⋂
m. (

⋃
n∈{m..}. A ∩ (T^^n)−‘A))

proof (auto)
fix x assume x: x ∈ recurrent-subset-infty A
then show x ∈ A unfolding recurrent-subset-infty-def by auto
fix N ::nat
show ∃n∈{N ..}. (T^^n) x ∈ A using recurrent-subset-infty-inf-returns x

using infinite-nat-iff-unbounded-le by auto
next

fix x assume x ∈ A ∀N . ∃n∈{N ..}. (T^^n) x ∈ A
then show x ∈ recurrent-subset-infty A

unfolding recurrent-subset-infty-inf-returns using infinite-nat-iff-unbounded-le
by auto
qed

lemma recurrent-subset-incl:
recurrent-subset A ⊆ A
recurrent-subset-infty A ⊆ A
recurrent-subset-infty A ⊆ recurrent-subset A

unfolding recurrent-subset-def recurrent-subset-infty-def ′ by (simp, simp, fast)

lemma recurrent-subset-meas [measurable]:
assumes [measurable]: A ∈ sets M
shows recurrent-subset A ∈ sets M

recurrent-subset-infty A ∈ sets M
unfolding recurrent-subset-def recurrent-subset-infty-def ′ by measurable

lemma recurrent-subset-rel-incl:
assumes A ⊆ B
shows recurrent-subset A ⊆ recurrent-subset B

recurrent-subset-infty A ⊆ recurrent-subset-infty B
proof −

show recurrent-subset A ⊆ recurrent-subset B
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unfolding recurrent-subset-def using assms by auto
show recurrent-subset-infty A ⊆ recurrent-subset-infty B

apply (auto, subst recurrent-subset-infty-inf-returns)
using assms recurrent-subset-incl(2 ) infinite-nat-iff-unbounded-le recurrent-subset-infty-inf-returns

by fastforce
qed

If a point belongs to the infinitely recurrent subset of A, then when they
return to A its iterates also belong to the infinitely recurrent subset.
lemma recurrent-subset-infty-returns:

assumes x ∈ recurrent-subset-infty A (T^^n) x ∈ A
shows (T^^n) x ∈ recurrent-subset-infty A

proof (subst recurrent-subset-infty-inf-returns, rule ccontr)
assume ¬ ((T ^^ n) x ∈ A ∧ infinite {k. (T ^^ k) ((T ^^ n) x) ∈ A})
then have 1 : finite {k. (T^^k) ((T^^n) x) ∈ A} using assms(2 ) by auto
have 0 ∈ {k. (T^^k) ((T^^n) x) ∈ A} using assms(2 ) by auto
then have 2 : {k. (T^^k) ((T^^n) x) ∈ A} 6= {} by blast
define M where M = Max {k. (T^^k) ((T^^n) x) ∈ A}
have M-prop:

∧
k. k > M =⇒ (T^^k) ((T^^n) x) /∈ A

unfolding M-def using 1 2 by auto
{

fix N assume ∗: (T^^N ) x ∈ A
have N ≤ n+M
proof (cases)

assume N ≤ n
then show ?thesis by auto

next
assume ¬(N ≤ n)
then have N > n by simp
define k where k = N−n
have N = n + k unfolding k-def using ‹N > n› by auto

then have (T^^k) ((T^^n)x) ∈ A using ∗ by (simp add: add.commute
funpow-add)

then have k ≤ M using M-prop using not-le by blast
then show ?thesis unfolding k-def by auto

qed
}
then have finite {N . (T^^N ) x ∈ A}

by (metis (no-types, lifting) infinite-nat-iff-unbounded mem-Collect-eq not-less)
moreover have infinite {N . (T^^N ) x ∈ A}

using recurrent-subset-infty-inf-returns assms(1 ) by auto
ultimately show False by auto

qed

lemma recurrent-subset-of-recurrent-subset:
recurrent-subset-infty(recurrent-subset-infty A) = recurrent-subset-infty A

proof
show recurrent-subset-infty (recurrent-subset-infty A) ⊆ recurrent-subset-infty A

using recurrent-subset-incl(2 )[of A] recurrent-subset-rel-incl(2 ) by auto
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show recurrent-subset-infty A ⊆ recurrent-subset-infty (recurrent-subset-infty A)
using recurrent-subset-infty-returns recurrent-subset-infty-inf-returns
by (metis (no-types, lifting) Collect-cong subsetI )

qed

The Poincare recurrence theorem states that almost every point of A returns
(infinitely often) to A, i.e., the recurrent and infinitely recurrent subsets of A
coincide almost everywhere with A. This is essentially trivial in conservative
systems, as it is a reformulation of the definition of conservativity. (What
is not trivial, and has been proved above, is that it is true in finite measure
preserving systems, i.e., finite measure preserving systems are automatically
conservative.)
theorem (in conservative) Poincare-recurrence-thm:

assumes [measurable]: A ∈ sets M
shows A − recurrent-subset A ∈ null-sets M

A − recurrent-subset-infty A ∈ null-sets M
A ∆ recurrent-subset A ∈ null-sets M
A ∆ recurrent-subset-infty A ∈ null-sets M
emeasure M (recurrent-subset A) = emeasure M A
emeasure M (recurrent-subset-infty A) = emeasure M A
AE x ∈ A in M . x ∈ recurrent-subset-infty A

proof −
define B where B = {x ∈ A. ∀ n∈{1 ..}. (T^^n) x ∈ (space M − A)}

have rs: recurrent-subset A = A − B
by (auto simp add: B-def recurrent-subset-def )

(meson Tn-meas assms measurable-space sets.sets-into-space subsetCE)
then have ∗: A − recurrent-subset A = B using B-def by blast
have B ∈ null-sets M

by (rule disjoint-then-null, auto simp add: B-def )
then show A − recurrent-subset A ∈ null-sets M using ∗ by simp

then have ∗: (
⋃

n. (T^^n)−−‘(A−recurrent-subset A)) ∈ null-sets M
using T-quasi-preserves-null2 (2 ) by blast

have recurrent-subset-infty A = recurrent-subset-infty A ∩ space M using sets.sets-into-space
by auto

also have ... = A ∩ space M − (
⋃

n. (T^^n)−‘(A−recurrent-subset A) ∩ space
M ) unfolding recurrent-subset-infty-def by blast

also have ... = A − (
⋃

n. (T^^n)−−‘(A−recurrent-subset A)) unfolding vim-
age-restr-def using sets.sets-into-space by auto

finally have ∗∗: recurrent-subset-infty A = A − (
⋃

n. (T ^^ n) −−‘ (A −
recurrent-subset A)) .

then have A − recurrent-subset-infty A ⊆ (
⋃

n. (T^^n)−−‘(A−recurrent-subset
A)) by auto

with ∗ ∗∗ show A − recurrent-subset-infty A ∈ null-sets M
by (simp add: Diff-Diff-Int null-set-Int1 )

have A ∆ recurrent-subset A = A − recurrent-subset A using recurrent-subset-incl(1 )[of
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A] by blast
then show A ∆ recurrent-subset A ∈ null-sets M using ‹A − recurrent-subset

A ∈ null-sets M › by auto
then show emeasure M (recurrent-subset A) = emeasure M A

by (rule Delta-null-same-emeasure[symmetric], auto)

have A ∆ recurrent-subset-infty A = A − recurrent-subset-infty A using recur-
rent-subset-incl(2 )[of A] by blast

then show A ∆ recurrent-subset-infty A ∈ null-sets M using ‹A − recur-
rent-subset-infty A ∈ null-sets M › by auto

then show emeasure M (recurrent-subset-infty A) = emeasure M A
by (rule Delta-null-same-emeasure[symmetric], auto)

show AE x∈A in M . x ∈ recurrent-subset-infty A
unfolding eventually-ae-filter
by (metis (no-types, lifting) DiffI ‹A − recurrent-subset-infty A ∈ null-sets M ›

mem-Collect-eq subsetI )
qed

A convenient way to use conservativity is given in the following theorem: if
T is conservative, then the series

∑
n f(T

nx) is infinite for almost every x
with fx > 0. When f is an indicator function, this is the fact that, starting
from B, one returns infinitely many times to B almost surely. The general
case follows by approximating f from below by constants time indicators.
theorem (in conservative) recurrence-series-infinite:

fixes f :: ′a ⇒ ennreal
assumes [measurable]: f ∈ borel-measurable M
shows AE x in M . f x > 0 −→ (

∑
n. f ((T^^n) x)) = ∞

proof −
have ∗: AE x in M . f x > epsilon −→ (

∑
n. f ((T^^n) x)) = > if epsilon > 0

for epsilon
proof −

define B where B = {x ∈ space M . f x > epsilon}
have [measurable]: B ∈ sets M unfolding B-def by auto
have (

∑
n. f ((T^^n) x)) = ∞ if x ∈ recurrent-subset-infty B for x

proof −
have ∞ = epsilon ∗ ∞ using ‹epsilon > 0 › ennreal-mult-top by auto
also have ... = epsilon ∗ (

∑
n. indicator B ((T^^n) x))

using recurrent-subset-infty-series-infinite[OF that] by simp
also have ... = (

∑
n. epsilon ∗ indicator B ((T^^n) x))

by auto
also have ... ≤ (

∑
n. f ((T^^n) x))

apply (rule suminf-le) unfolding indicator-def B-def by auto
finally show ?thesis

by (simp add: dual-order .antisym)
qed
moreover have AE x in M . f x > epsilon −→ x ∈ recurrent-subset-infty B

using Poincare-recurrence-thm(7 )[OF ‹B ∈ sets M ›] unfolding B-def by
auto
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ultimately show ?thesis by auto
qed
have ∃ u::(nat ⇒ ennreal). (∀n. u n > 0 ) ∧ u −−−−→ 0

by (meson approx-from-above-dense-linorder ex-gt-or-lt gr-implies-not-zero)
then obtain u::nat ⇒ ennreal where u:

∧
n. u n > 0 u −−−−→ 0

by auto
have AE x in M . (∀n::nat. (f x > u n −→ (

∑
n. f ((T^^n) x)) = >))

unfolding AE-all-countable using u by (auto intro!: ∗)
moreover have f x > 0 −→ (

∑
n. f ((T^^n) x)) = ∞ if (∀n::nat. (f x > u n

−→ (
∑

n. f ((T^^n) x)) = >)) for x
proof (auto)

assume f x > 0
obtain n where u n < f x

using order-tendstoD(2 )[OF u(2 ) ‹f x > 0 ›] eventually-False-sequentially
eventually-mono by blast

then show (
∑

n. f ((T^^n) x)) = > using that by auto
qed
ultimately show ?thesis by auto

qed

5.2 The first return time

The first return time to a set A under the dynamics T is the smallest integer
n such that Tn(x) ∈ A. The first return time is only well defined on the
recurrent subset of A, elsewhere we set it to 0 for definiteness. We can
partition A according to the value of the return time on it, thus defining the
return partition of A.
definition return-time-function:: ′a set ⇒ ( ′a ⇒ nat)

where return-time-function A x = (
if (x ∈ recurrent-subset A) then (Inf {n::nat∈{1 ..}. (T^^n) x ∈ A})
else 0 )

definition return-partition:: ′a set ⇒ nat ⇒ ′a set
where return-partition A k = A ∩ (T^^k)−−‘A − (

⋃
i∈{0<..<k}. (T^^i)−−‘A)

Basic properties of the return partition.
lemma return-partition-basics:

assumes A-meas [measurable]: A ∈ sets M
shows [measurable]: return-partition A n ∈ sets M

and disjoint-family (λn. return-partition A (n+1 ))
(
⋃

n. return-partition A (n+1 )) = recurrent-subset A
proof −

show return-partition A n ∈ sets M for n unfolding return-partition-def by
auto

define B where B = (λn. A ∩ (T^^(n+1 ))−−‘A)
have return-partition A (n+1 ) = B n −(

⋃
i∈{0 ..<n}. B i) for n

unfolding return-partition-def B-def by (auto) (auto simp add: less-Suc-eq-0-disj)
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then have ∗:
∧

n. return-partition A (n+1 ) = disjointed B n using disjointed-def [of
B] by simp
then show disjoint-family (λn. return-partition A (n+1 )) using disjoint-family-disjointed

by simp

have A ∩ (T^^n)−‘A = A ∩ (T^^n)−−‘A for n
using sets.sets-into-space[OF A-meas] by auto

then have recurrent-subset A = (
⋃

n∈ {1 ..}. A ∩ (T^^n)−−‘A) unfolding
recurrent-subset-def by simp
also have ... = (

⋃
n. B n) by (simp add: B-def atLeast-Suc-greaterThan greaterThan-0 )

also have ... = (
⋃

n. return-partition A (n+1 )) using ∗ UN-disjointed-eq[of B]
by simp

finally show (
⋃

n. return-partition A (n+1 )) = recurrent-subset A by simp
qed

Basic properties of the return time, relationship with the return partition.
lemma return-time0 :
(return-time-function A)−‘{0} = UNIV − recurrent-subset A

proof (auto)
fix x
assume ∗: x ∈ recurrent-subset A return-time-function A x = 0
define K where K = {n::nat∈{1 ..}. (T^^n) x ∈ A}
have ∗∗: return-time-function A x = Inf K

using K-def return-time-function-def ∗ by simp
have K 6= {} using K-def recurrent-subset-def ∗ by auto
moreover have 0 /∈ K using K-def by auto
ultimately have Inf K >0
by (metis (no-types, lifting) K-def One-nat-def atLeast-iff cInf-lessD mem-Collect-eq

neq0-conv not-le zero-less-Suc)
then have return-time-function A x > 0 using ∗∗ by simp
then show False using ∗ by simp

qed (auto simp add: return-time-function-def )

lemma return-time-n:
assumes [measurable]: A ∈ sets M
shows (return-time-function A)−‘{Suc n} = return-partition A (Suc n)

proof (auto)
fix x assume ∗: return-time-function A x = Suc n
then have rx: x ∈ recurrent-subset A using return-time-function-def by (auto,

meson Zero-not-Suc)
define K where K = {i∈{1 ..}. (T^^i) x ∈ A}
have return-time-function A x = Inf K using return-time-function-def rx K-def

by auto
then have Inf K = Suc n using ∗ by simp
moreover have K 6= {} using rx recurrent-subset-def K-def by auto
ultimately have Suc n ∈ K using Inf-nat-def1 [of K ] by simp
then have (T^^(Suc n))x ∈ A using K-def by auto
then have a: x ∈ A ∩ (T^^(Suc n))−−‘A

using rx recurrent-subset-incl[of A] sets.sets-into-space[OF assms] by auto
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have
∧

i. i∈{1 ..<Suc n} =⇒ i /∈ K using cInf-lower ‹Inf K = Suc n› by force
then have

∧
i. i∈{1 ..<Suc n} =⇒ x /∈ (T^^i)−−‘A using K-def by auto

then have x /∈ (
⋃

i∈{1 ..<Suc n}. (T^^i)−−‘A) by auto
then show x ∈ return-partition A (Suc n) using a return-partition-def by simp

next
fix x assume ∗: x ∈ return-partition A (Suc n)
then have a: x ∈ space M unfolding return-partition-def using vimage-restr-def

by blast
define K where K = {i::nat∈{1 ..}. (T^^i) x ∈ A}
have Inf K = Suc n

apply (rule cInf-eq-minimum) using ∗ by (auto simp add: a assms K-def
return-partition-def )

have x ∈ recurrent-subset A using ∗ return-partition-basics(3 )[OF assms] by
auto

then show return-time-function A x = Suc n
using return-time-function-def K-def ‹Inf K = Suc n› by auto

qed

The return time is measurable.
lemma return-time-function-meas [measurable]:

assumes [measurable]: A ∈ sets M
shows return-time-function A ∈ measurable M (count-space UNIV )

return-time-function A ∈ borel-measurable M
proof −

have (return-time-function A)−‘{n} ∩ space M ∈ sets M for n
proof (cases n = 0 )

case True
then show ?thesis using return-time0 recurrent-subset-meas[OF assms] by

auto
next

case False
show ?thesis
using return-time-n return-partition-basics(1 )[OF assms] not0-implies-Suc[OF

False] by auto
qed
then show return-time-function A ∈ measurable M (count-space UNIV )

by (simp add: measurable-count-space-eq2-countable assms)
then show return-time-function A ∈ borel-measurable M

using measurable-cong-sets sets-borel-eq-count-space by blast
qed

A close cousin of the return time and the return partition is the first entrance
set: we partition the space according to the first positive time where a point
enters A.
definition first-entrance-set:: ′a set ⇒ nat ⇒ ′a set

where first-entrance-set A n = (T^^n) −−‘ A − (
⋃

i<n. (T^^i)−−‘A)

lemma first-entrance-meas [measurable]:
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assumes [measurable]: A ∈ sets M
shows first-entrance-set A n ∈ sets M

unfolding first-entrance-set-def by measurable

lemma first-entrance-disjoint:
disjoint-family (first-entrance-set A)

proof −
have first-entrance-set A = disjointed (λi. (T^^i)−−‘A)

by (auto simp add: disjointed-def first-entrance-set-def )
then show ?thesis by (simp add: disjoint-family-disjointed)

qed

There is an important dynamical phenomenon: if a point has first entrance
time equal to n, then their preimages either have first entrance time equal
to n + 1 (these are the preimages not in A) or they belong to A and have
first return time equal to n + 1. When T preserves the measure, this gives
an inductive control on the measure of the first entrance set, that will be
used again and again in the proof of Kac’s Formula. We formulate these
(simple but extremely useful) facts now.
lemma first-entrance-rec:

assumes [measurable]: A ∈ sets M
shows first-entrance-set A (Suc n) = T−−‘(first-entrance-set A n) − A

proof −
have A0 : A = (T^^0 )−−‘A by auto
have first-entrance-set A n = (T^^n) −−‘ A − (

⋃
i<n. (T^^i)−−‘A)

using first-entrance-set-def by simp
then have T−−‘(first-entrance-set A n) = (T^^(n+1 ))−−‘A − (

⋃
i<n. (T^^(i+1 ))−−‘A)

using T-vrestr-composed(2 ) ‹A ∈ sets M › by simp
then have ∗: T−−‘(first-entrance-set A n) − A = (T^^(n+1 ))−−‘A − (A ∪

(
⋃

i<n. (T^^(i+1 ))−−‘A))
by blast

have (
⋃

i<n. (T^^(i+1 ))−−‘A) = (
⋃

j∈{1 ..<n+1}. (T^^j)−−‘A)
by (rule UN-le-add-shift-strict)

then have A ∪ (
⋃

i<n. (T^^(i+1 ))−−‘A) = (
⋃

j∈{0 ..<n+1}. (T^^j)−−‘A)
by (metis A0 Un-commute atLeast0LessThan UN-le-eq-Un0-strict)

then show ?thesis using ∗ first-entrance-set-def by auto
qed

lemma return-time-rec:
assumes A ∈ sets M
shows (return-time-function A)−‘{Suc n} = T−−‘(first-entrance-set A n) ∩ A

proof −
have return-partition A (Suc n) = T−−‘(first-entrance-set A n) ∩ A

unfolding return-partition-def first-entrance-set-def
by (auto simp add: T-vrestr-composed[OF assms]) (auto simp add: less-Suc-eq-0-disj)

then show ?thesis using return-time-n[OF assms] by simp
qed
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5.3 Local time controls

The local time is the time that an orbit spends in a given set. Local time
controls are basic to all the forthcoming developments.
definition local-time:: ′a set ⇒ nat ⇒ ′a ⇒ nat
where local-time A n x = card {i∈{..<n}. (T^^i) x ∈ A}

lemma local-time-birkhoff :
local-time A n x = birkhoff-sum (indicator A) n x

proof (induction n)
case 0
then show ?case unfolding local-time-def birkhoff-sum-def by simp

next
case (Suc n)
have local-time A (n+1 ) x = local-time A n x + indicator A ((T^^n) x)
proof (cases)

assume ∗: (T^^n) x ∈ A
then have {i∈{..<Suc n}. (T^^i) x ∈ A} = {i∈{..<n}. (T^^i) x ∈ A} ∪ {n}

by auto
then have card {i∈{..<Suc n}. (T^^i) x ∈ A} = card {i∈{..<n}. (T^^i) x ∈

A} + card {n}
using card-Un-disjoint by auto

then have local-time A (n+1 ) x = local-time A n x + 1 using local-time-def
by simp

moreover have indicator A ((T^^n)x) = (1 ::nat) using ∗ indicator-def by
auto

ultimately show ?thesis by simp
next

assume ∗: ¬((T^^n) x ∈ A)
then have {i∈{..<Suc n}. (T^^i) x ∈ A} = {i∈{..<n}. (T^^i) x ∈ A} using

less-Suc-eq by force
then have card {i∈{..<Suc n}. (T^^i) x ∈ A} = card {i∈{..<n}. (T^^i) x ∈

A}
by auto

then have local-time A (n+1 ) x = local-time A n x using local-time-def by
simp

moreover have indicator A ((T^^n)x) = (0 ::nat) using ∗ indicator-def by
auto

ultimately show ?thesis by simp
qed
then have local-time A (n+1 ) x = birkhoff-sum (indicator A) n x + indicator

A ((T^^n) x)
using Suc.IH by auto

moreover have birkhoff-sum (indicator A) (n+1 ) x = birkhoff-sum (indicator
A) n x + indicator A ((T^^n) x)

by (metis birkhoff-sum-cocycle[where ?n = n and ?m = 1 ] birkhoff-sum-1 (2 ))
ultimately have local-time A (n+1 ) x = birkhoff-sum (indicator A) (n+1 ) x

by metis
then show ?case by (metis Suc-eq-plus1 )
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qed

lemma local-time-meas [measurable]:
assumes [measurable]: A ∈ sets M
shows local-time A n ∈ borel-measurable M

unfolding local-time-birkhoff by auto

lemma local-time-cocycle:
local-time A n x + local-time A m ((T^^n)x) = local-time A (n+m) x

by (metis local-time-birkhoff birkhoff-sum-cocycle)

lemma local-time-incseq:
incseq (λn. local-time A n x)

using local-time-cocycle incseq-def by (metis le-iff-add)

lemma local-time-Suc:
local-time A (n+1 ) x = local-time A n x + indicator A ((T^^n)x)

by (metis local-time-birkhoff birkhoff-sum-cocycle birkhoff-sum-1 (2 ))

The local time is bounded by n: at most, one returns to A all the time!
lemma local-time-bound:

local-time A n x ≤ n
proof −

have card {i∈{..<n}. (T^^i) x ∈ A} ≤ card {..<n} by (rule card-mono, auto)
then show ?thesis unfolding local-time-def by auto

qed

The fact that local times are unbounded will be the main technical tool in
the proof of recurrence results or Kac formula below. In this direction, we
prove more and more general results in the lemmas below.
We show that, in T−n(A), the number of visits to A tends to infinity in
measure, when A has finite measure. In other words, the points in T−n(A)
with local time < k have a measure tending to 0 with k. The argument, by
induction on k, goes as follows.
Consider the last return to A before time n, say at time n− i. It lands in the
set Si with retun time i. We get T−nA ⊆

⋃
n<N T−(n−i)Si ∪ R, where the

union is disjoint and R is a set of measure µ(T−nA)−
∑

n<N µ(T−(n−i)Si) =
µ(A) −

∑
n<N µ(Si), which tends to 0 with N and that we may therefore

discard. A point with local time < k at time n in T−nA is then a point with
local time < k − 1 at time n − i in T−(n−i)Si ⊆ T−(n−i)A. Hence, we may
conclude by the induction assumption that this has small measure.
lemma (in conservative-mpt) local-time-unbounded1 :

assumes A-meas [measurable]: A ∈ sets M
and fin: emeasure M A < ∞

shows (λn. emeasure M {x ∈ (T^^n)−−‘A. local-time A n x < k}) −−−−→ 0
proof (induction k)

case 0
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have {x ∈ (T^^n)−−‘A. local-time A n x < 0} = {} for n by simp
then show ?case by simp

next
case (Suc k)
define K where K = (λp n. {x ∈ (T^^n)−−‘A. local-time A n x < p})
have K-meas [measurable]: K p n ∈ sets M for n p

unfolding K-def by measurable

show ?case
proof (rule tendsto-zero-ennreal)

fix e :: real assume 0 < e
define e2 where e2 = e/3
have e2 > 0 using e2-def ‹e>0 › by simp
have (

∑
n. emeasure M (return-partition A (n+1 ))) = emeasure M ((

⋃
n.

return-partition A (n + 1 )))
apply (rule suminf-emeasure) using return-partition-basics[OF A-meas] by

auto
also have ... = emeasure M (recurrent-subset A)

using return-partition-basics(3 )[OF A-meas] by simp
also have ... = emeasure M A
by (metis A-meas double-diff emeasure-Diff-null-set order-refl Poincare-recurrence-thm(1 )[OF

A-meas] recurrent-subset-incl(1 ))
finally have (

∑
n. emeasure M (return-partition A (n+1 ))) = emeasure M A

by simp
moreover have summable (λn. emeasure M (return-partition A (n+1 )))

by simp
ultimately have (λN . (

∑
n<N . emeasure M (return-partition A (n+1 ))))

−−−−→ emeasure M A
unfolding sums-def [symmetric] sums-iff by simp

then have (λN . (
∑

n<N . emeasure M (return-partition A (n+1 ))) + e2 )
−−−−→ emeasure M A + e2

by (intro tendsto-add) auto
moreover have emeasure M A < emeasure M A + e2

using ‹emeasure M A < ∞› ‹0 < e2 › by auto
ultimately have eventually (λN . (

∑
n<N . emeasure M (return-partition A

(n+1 ))) + e2 > emeasure M A) sequentially
by (simp add: order-tendsto-iff )

then obtain N where N>0 and largeM : (
∑

n<N . emeasure M (return-partition
A (n+1 ))) + e2 > emeasure M A

by (metis (no-types, lifting) add.commute add-Suc-right eventually-at-top-linorder
le-add2 zero-less-Suc)

have upper : emeasure M (K (Suc k) n) ≤ e2 + (
∑

i<N . emeasure M (K k
(n−i−1 ))) if n>N for n

proof −
define B where B = (λi. (T^^(n−i−1 ))−−‘(return-partition A (i+1 )))

have B-meas [measurable]: B i ∈ sets M for i unfolding B-def by measurable
have disj-B: disjoint-family-on B {..<N}
proof −
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have B i ∩ B j = {} if i∈{..<N} j∈{..<N} i < j for i j
proof −

have n > i n>j using ‹n>N › that by auto
let ?k = j−i
have x /∈ B i if x ∈ B j for x
proof −

have (T^^(n−j−1 )) x ∈ return-partition A (j+1 ) using B-def that by
auto

moreover have ?k>0 using ‹i < j› by simp
moreover have ?k < j+1 by simp

ultimately have (T^^(n−j−1 )) x /∈ (T^^?k)−−‘A using return-partition-def
by auto

then have x /∈ (T^^(n−j−1 ))−−‘ (T^^?k)−−‘A by auto
then have x /∈ (T^^(n−j−1 + ?k))−−‘A using T-vrestr-composed[OF

A-meas] by simp
then have x /∈ (T^^(n−i−1 ))−−‘A using ‹i<j› ‹n>j› by auto

then have x /∈ (T^^(n−i−1 ))−−‘ (return-partition A (i+1 )) using
return-partition-def by auto

then show x /∈ B i using B-def by auto
qed
then show B i ∩ B j = {} by auto

qed
then have

∧
i j. i∈{..<N} =⇒ j∈{..<N} =⇒ i 6= j =⇒ B i ∩ B j = {}

by (metis Int-commute linorder-neqE-nat)
then show ?thesis unfolding disjoint-family-on-def by auto

qed

have incl-B: B i ⊆ (T^^n)−−‘A if i ∈ {..<N} for i
proof −

have n > i using ‹n>N › that by auto
have B i ⊆ (T^^(n−i−1 ))−−‘ (T^^(i+1 ))−−‘ A

using B-def return-partition-def by auto
then show B i ⊆ (T^^n)−−‘A
using T-vrestr-composed(1 )[OF A-meas, of n−i−1 , of i+1 ] ‹n>i› by auto

qed

define R where R = (T^^n)−−‘A − (
⋃

i ∈ {..<N}. B i)
have [measurable]: R ∈ sets M unfolding R-def by measurable
have dec-n: (T^^n)−−‘A = R ∪ (

⋃
i ∈ {..<N}. B i) using R-def incl-B by

blast
have small-R: emeasure M R < e2
proof −

have R ∩ (
⋃

i ∈ {..<N}. B i) = {} using R-def by blast
then have emeasure M ((T^^n)−−‘A) = emeasure M R + emeasure M

(
⋃

i ∈ {..<N}. B i)
using plus-emeasure[of R, of M , of

⋃
i ∈ {..<N}. B i] dec-n by auto

moreover have emeasure M (
⋃

i ∈ {..<N}. B i) = (
∑

i ∈ {..<N}. emeasure
M (B i))

by (intro disj-B sum-emeasure[symmetric], auto)
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ultimately have emeasure M ((T^^n)−−‘A) = emeasure M R + (
∑

i ∈
{..<N}. emeasure M (B i))

by simp
moreover have emeasure M ((T^^n)−−‘A) = emeasure M A

using T-vrestr-same-emeasure(2 )[OF A-meas] by simp
moreover have

∧
i. emeasure M (B i) = emeasure M (return-partition A

(i+1 ))
using T-vrestr-same-emeasure(2 ) B-def return-partition-basics(1 )[OF

A-meas] by simp
ultimately have a: emeasure M A = emeasure M R + (

∑
i ∈ {..<N}.

emeasure M (return-partition A (i+1 )))
by simp

moreover have b: (
∑

i ∈ {..<N}. emeasure M (return-partition A (i+1 )))
6= ∞ using fin

by (simp add: a less-top)
ultimately show ?thesis

using largeM fin b by simp
qed

have K (Suc k) n ⊆ R ∪ (
⋃

i<N . K k (n−i−1 ))
proof

fix x assume a: x ∈ K (Suc k) n
show x ∈ R ∪ (

⋃
i<N . K k (n−i−1 ))

proof (cases)
assume ¬(x ∈ R)
have x ∈ (T^^n)−−‘A using a K-def by simp
then have x∈ (

⋃
i ∈ {..<N}. B i) using dec-n ‹¬(x ∈ R)› by simp

then obtain i where i∈{..<N} x ∈ B i by auto
then have n>i using ‹n>N › by auto
then have (T^^(n−i−1 )) x ∈ return-partition A (i+1 ) using B-def ‹x

∈ B i› by auto
then have i: (T^^(n−i−1 )) x ∈ A using return-partition-def by auto
then have indicator A ((T^^(n−i−1 )) x) = (1 ::nat) by auto
then have local-time A (n−i) x = local-time A (n−i−1 ) x + 1

by (metis Suc-diff-Suc Suc-eq-plus1 diff-diff-add local-time-Suc[of A, of
n−i−1 ] ‹n>i›)

then have local-time A (n−i) x > local-time A (n−i−1 ) x by simp
moreover have local-time A n x ≥ local-time A (n−i) x using lo-

cal-time-incseq
by (metis ‹i < n› le-add-diff-inverse2 less-or-eq-imp-le local-time-cocycle

le-iff-add)
ultimately have local-time A n x > local-time A (n−i−1 ) x by simp
moreover have local-time A n x < Suc k using a K-def by simp
ultimately have ∗: local-time A (n−i−1 ) x < k by simp

have x ∈ space M using ‹x ∈ (T^^n)−−‘A› by auto
then have x ∈ (T^^(n−i−1 ))−−‘A using i A-meas vimage-restr-def by

(metis IntI sets.Int-space-eq2 vimageI )
then have x ∈ K k (n−i−1 ) using ∗ K-def by blast
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then show ?thesis using ‹i∈{..<N}› by auto
qed (simp)

qed
then have emeasure M (K (Suc k) n) ≤ emeasure M (R ∪ (

⋃
i<N . K k

(n−i−1 )))
by (intro emeasure-mono, auto)

also have ... ≤ emeasure M R + emeasure M (
⋃

i<N . K k (n−i−1 ))
by (rule emeasure-subadditive, auto)

also have ... ≤ emeasure M R + (
∑

i<N . emeasure M (K k (n−i−1 )))
by (metis add-left-mono image-subset-iff emeasure-subadditive-finite[where

?A = λi. K k (n−i−1 ) and ?I = {..<N}, OF finite-lessThan[of N ]] K-meas)
also have ... ≤ e2 + (

∑
i<N . emeasure M (K k (n−i−1 )))

using small-R by (auto intro!: add-right-mono)
finally show emeasure M (K (Suc k) n) ≤ e2 + (

∑
i<N . emeasure M (K

k (n−i−1 ))) .
qed

have (λn. (
∑

i∈{..<N}. emeasure M (K k (n−i−1 )))) −−−−→ (
∑

i∈{..<N}.
0 )

apply (intro tendsto-intros seq-offset-neg) using Suc.IH K-def by simp
then have eventually (λn. (

∑
i∈{..<N}. emeasure M (K k (n−i−1 ))) < e2 )

sequentially
using ‹e2 > 0 › by (simp add: order-tendsto-iff )

then obtain N2 where N2bound:
∧

n. n > N2 =⇒ (
∑

i∈{..<N}. emeasure
M (K k (n−i−1 ))) < e2

by (meson eventually-at-top-dense)
define N3 where N3 = max N N2
have emeasure M (K (Suc k) n) < e if n > N3 for n
proof −

have n>N2 n > N using N3-def that by auto
then have emeasure M (K (Suc k) n) ≤ ennreal e2 + (

∑
i∈{..<N}. emeasure

M (K k (n−i−1 )))
using upper by simp

also have ... ≤ ennreal e2 + ennreal e2
using N2bound[OF ‹n > N2 ›] less-imp-le by auto

also have ... < e using e2-def ‹e > 0 ›
by (auto simp add: ennreal-plus[symmetric] simp del: ennreal-plus intro!:

ennreal-lessI )
ultimately show emeasure M (K (Suc k) n) < e using le-less-trans by blast

qed
then show ∀ F x in sequentially. emeasure M {xa ∈ (T ^^ x) −−‘ A. local-time

A x xa < Suc k} < ennreal e
unfolding K-def by (auto simp: eventually-at-top-dense intro!: exI [of - N3 ])

qed
qed

We deduce that local times to a set B also tend to infinity on T−nA if B
is related to A, i.e., if points in A have some iterate in B. This is clearly
a necessary condition for the lemmas to hold: otherwise, points of A that
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never visit B have a local time equal to B equal to 0, and so do all their
preimages.
The lemmas are readily reduced to the previous one on the local time to A,
since if one visits A then one visits B in finite time by assumption (uniformly
bounded in the first lemma, uniformly bounded on a set of large measure in
the second lemma).
lemma (in conservative-mpt) local-time-unbounded2 :

assumes A-meas [measurable]: A ∈ sets M
and fin: emeasure M A < ∞
and incl: A ⊆ (T^^i)−−‘B

shows (λn. emeasure M {x ∈ (T^^n)−−‘A. local-time B n x < k}) −−−−→ 0
proof −

have emeasure M {x ∈ (T^^n)−−‘A. local-time B n x < k} ≤ emeasure M {x
∈ (T^^n)−−‘A. local-time A n x < k + i}

if n > i for n
proof −

have local-time A n x ≤ local-time B n x + i for x
proof −

have local-time B n x ≥ local-time A (n−i) x
proof −

define KA where KA = {t ∈ {0 ..<n−i}. (T^^t) x ∈ A}
define KB where KB = {t ∈ {0 ..<n}. (T^^t) x ∈ B}
then have KB ⊆ {0 ..<n} by auto
then have finite KB using finite-lessThan[of n] finite-subset by auto
let ?g = λt. t + i
have

∧
t. t ∈ KA =⇒ ?g t ∈ KB

proof −
fix t assume t ∈ KA
then have (T^^t) x ∈ A using KA-def by simp
then have (T^^i) ((T^^t) x) ∈ B using incl by auto
then have (T^^(t+i)) x ∈ B by (simp add: funpow-add add.commute)
moreover have t+i < n using ‹t ∈ KA› KA-def ‹n > i› by auto
ultimately show ?g t ∈ KB unfolding KB-def by simp

qed
then have ?g‘KA ⊆ KB by auto
moreover have inj-on ?g KA by simp
ultimately have card KB ≥ card KA
using card-inj-on-le[where ?f = ?g and ?A = KA and ?B = KB] ‹finite

KB› by simp
then show ?thesis using KA-def KB-def local-time-def by simp

qed
moreover have i ≥ local-time A i ((T^^(n−i))x) using local-time-bound by

auto
ultimately show local-time B n x + i ≥ local-time A n x

using local-time-cocycle[where ?n = n−i and ?m = i and ?x = x and
?A = A] ‹n>i› by auto

qed
then have local-time B n x < k =⇒ local-time A n x < k + i for x
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by (meson add-le-cancel-right le-trans not-less)
then show ?thesis

by (intro emeasure-mono, auto)
qed
then have eventually (λn. emeasure M {x ∈ (T^^n)−−‘A. local-time B n x <

k}
≤ emeasure M {x ∈ (T^^n)−−‘A. local-time A n x < k + i})

sequentially
using eventually-at-top-dense by blast

from tendsto-sandwich[OF - this tendsto-const local-time-unbounded1 [OF A-meas
fin, of k+i]]

show ?thesis by auto
qed

lemma (in conservative-mpt) local-time-unbounded3 :
assumes A-meas[measurable]: A ∈ sets M

and B-meas[measurable]: B ∈ sets M
and fin: emeasure M A < ∞
and incl: A − (

⋃
i. (T^^i)−−‘B) ∈ null-sets M

shows (λn. emeasure M {x ∈ (T^^n)−−‘A. local-time B n x < k}) −−−−→ 0
proof −

define R where R = A − (
⋃

i. (T^^i)−−‘B)
have R-meas[measurable]: R ∈ sets M

by (simp add: A-meas B-meas T-vrestr-meas(2 )[OF B-meas] R-def count-
able-Un-Int(1 ) sets.Diff )

have emeasure M R = 0 using incl R-def by auto
define A2 where A2 = A − R
have A2-meas [measurable]: A2 ∈ sets M unfolding A2-def by auto
have meq: emeasure M A2 = emeasure M A using ‹emeasure M R = 0 ›

unfolding A2-def by (subst emeasure-Diff ) (auto simp: R-def )
then have A2-fin: emeasure M A2 < ∞ using fin by auto
define K where K = (λN . A2 ∩ (

⋃
i<N . (T^^i)−−‘B))

have K-meas [measurable]: K N ∈ sets M for N unfolding K-def by auto
have K-incl:

∧
N . K N ⊆ A using K-def A2-def by blast

have (
⋃

N . K N ) = A2 using A2-def R-def K-def by blast
moreover have incseq K unfolding K-def incseq-def by fastforce
ultimately have (λN . emeasure M (K N )) −−−−→ emeasure M A2 by (auto

intro: Lim-emeasure-incseq)
then have conv: (λN . emeasure M (K N )) −−−−→ emeasure M A using meq

by simp

define Bad where Bad = (λU n. {x ∈ (T^^n)−−‘U . local-time B n x < k})
define Bad0 where Bad0 = (λn. {x ∈ space M . local-time B n x < k})
have Bad0-meas [measurable]: Bad0 n ∈ sets M for n unfolding Bad0-def by

auto
have Bad-inter :

∧
U n. Bad U n = (T^^n)−−‘U ∩ Bad0 n unfolding Bad-def

Bad0-def by auto
have Bad-meas [measurable]:

∧
U n. U ∈ sets M =⇒ Bad U n ∈ sets M un-

folding Bad-def by auto
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show ?thesis
proof (rule tendsto-zero-ennreal)

fix e::real
assume e > 0
define e2 where e2 = e/3
then have e2 > 0 using ‹e>0 › by simp
then have ennreal e2 > 0 by simp
have (λN . emeasure M (K N ) + e2 ) −−−−→ emeasure M A + e2

using conv by (intro tendsto-add) auto
moreover have emeasure M A < emeasure M A + e2 using fin ‹e2 > 0 › by

simp
ultimately have eventually (λN . emeasure M (K N ) + e2 > emeasure M A)

sequentially
by (simp add: order-tendsto-iff )

then obtain N where N>0 and largeK : emeasure M (K N ) + e2 > emeasure
M A

by (metis (no-types, lifting) add.commute add-Suc-right eventually-at-top-linorder
le-add2 zero-less-Suc)

define S where S = A − (K N )
have S-meas [measurable]: S ∈ sets M using A-meas K-meas S-def by simp
have emeasure M A = emeasure M (K N ) + emeasure M S

by (metis Diff-disjoint Diff-partition plus-emeasure[OF K-meas[of N ], OF
S-meas] S-def K-incl[of N ])

then have S-small: emeasure M S < e2 using largeK fin by simp
have A-incl: A ⊆ S ∪ (

⋃
i<N . A2 ∩ (T^^i)−−‘B) using S-def K-def by auto

define L where L = (λi. A2 ∩ (T^^i)−−‘B)
have L-meas [measurable]: L i ∈ sets M for i unfolding L-def by auto
have

∧
i. L i ⊆ A2 using L-def by simp

then have L-fin: emeasure M (L i) < ∞ for i
using emeasure-mono[of L i A2 M ] A2-meas A2-fin by simp

have
∧

i. L i ⊆ (T^^i)−−‘B using L-def by auto
then have a:

∧
i. (λn. emeasure M (Bad (L i) n)) −−−−→ 0 unfolding Bad-def

using local-time-unbounded2 [OF L-meas, OF L-fin] by blast
have (λn. (

∑
i<N . emeasure M (Bad (L i) n))) −−−−→ 0 using tend-

sto-sum[OF a] by auto
then have eventually (λn. (

∑
i<N . emeasure M (Bad (L i) n)) < e2 ) sequen-

tially
using ‹ennreal e2 > 0 › order-tendsto-iff by metis

then obtain N2 where ∗:
∧

n. n > N2 =⇒ (
∑

i<N . emeasure M (Bad (L i)
n)) < e2

by (auto simp add: eventually-at-top-dense)

have emeasure M (Bad A n) < e if n > N2 for n
proof −

have emeasure M (Bad S n) ≤ emeasure M ((T^^n)−−‘S)
apply (rule emeasure-mono) unfolding Bad-def by auto

also have ... = emeasure M S using T-vrestr-same-emeasure(2 ) by simp

122



also have ... ≤ e2 using S-small by simp
finally have SBad-small: emeasure M (Bad S n) ≤ e2 by simp

have (T^^n)−−‘A ⊆ (T^^n)−−‘S ∪ (
⋃

i<N . (T^^n)−−‘(L i))
using A-incl unfolding L-def by fastforce

then have I : Bad A n ⊆ Bad S n ∪ (
⋃

i<N . Bad (L i) n) using Bad-inter
by force

have emeasure M (Bad A n) ≤ emeasure M (Bad S n ∪ (
⋃

i<N . Bad (L i)
n))

by (rule emeasure-mono[OF I ], measurable)
also have ... ≤ emeasure M (Bad S n) + emeasure M (

⋃
i<N . Bad (L i) n)

by (intro emeasure-subadditive countable-Un-Int(1 ), auto)
also have ... ≤ emeasure M (Bad S n) + (

∑
i<N . emeasure M (Bad (L i)

n))
by (simp add: add-left-mono image-subset-iff Bad-meas[OF L-meas]

emeasure-subadditive-finite[OF finite-lessThan[of N ], where ?A = λi.
Bad (L i) n])

also have ... ≤ ennreal e2 + ennreal e2
using SBad-small less-imp-le[OF ∗[OF ‹n > N2 ›]] by (rule add-mono)

also have ... < e using e2-def ‹e>0 › by (simp del: ennreal-plus add: en-
nreal-plus[symmetric] ennreal-lessI )

finally show emeasure M (Bad A n) < e by simp
qed
then show ∀ F x in sequentially. emeasure M {xa ∈ (T ^^ x) −−‘ A. local-time

B x xa < k} < e
unfolding eventually-at-top-dense Bad-def by auto

qed
qed

5.4 The induced map

The map induced by T on a set A is obtained by iterating T until one lands
again in A. (Outside of A, we take the identity for definiteness.) It has very
nice properties: if T is conservative, then the induced map TA also is. If T
is measure preserving, then so is TA. (In particular, even if T preserves an
infinite measure, TA is a probability preserving map if A has measure 1 –
this makes it possible to prove some statements in infinite measure by using
results in finite measure systems). If T is invertible, then so is TA. We prove
all these properties in this paragraph.
definition induced-map:: ′a set ⇒ ( ′a ⇒ ′a)

where induced-map A = (λ x. (T^^(return-time-function A x)) x)

The set A is stabilized by the induced map.
lemma induced-map-stabilizes-A:

x ∈ A ←→ induced-map A x ∈ A
proof

assume x ∈ A
show induced-map A x ∈ A

123



proof (cases x ∈ recurrent-subset A)
case False

then have induced-map A x = x using induced-map-def return-time-function-def
by simp

then show ?thesis using ‹x ∈ A› by simp
next

case True
define K where K = {n∈{1 ..}. (T^^n) x ∈ A}
have K 6= {} using True recurrent-subset-def K-def

by blast
moreover have return-time-function A x = Inf K

using return-time-function-def K-def True by simp
ultimately have return-time-function A x ∈ K using Inf-nat-def1 by simp
then show ?thesis

unfolding induced-map-def K-def by blast
qed

next
have induced-map A x = x if x /∈ A

using that
by (auto simp: induced-map-def return-time-function-def recurrent-subset-def )

then show induced-map A x ∈ A =⇒ x ∈ A
by fastforce

qed

lemma induced-map-iterates-stabilize-A:
assumes x ∈ A
shows ((induced-map A)^^n) x ∈ A

proof (induction n)
case 0
show ?case using ‹x ∈ A› by auto

next
case (Suc n)
have ((induced-map A)^^(Suc n)) x = (induced-map A) (((induced-map A)^^n)

x) by auto
then show ?case using Suc.IH induced-map-stabilizes-A by auto

qed

lemma induced-map-meas [measurable]:
assumes [measurable]: A ∈ sets M

shows induced-map A ∈ measurable M M
unfolding induced-map-def by auto

The iterates of the induced map are given by a power of the original map,
where the power is the Birkhoff sum (for the induced map) of the first return
time. This is obvious, but useful.
lemma induced-map-iterates:
((induced-map A)^^n) x = (T^^(

∑
i < n. return-time-function A ((induced-map

A ^^i) x))) x
proof (induction n)
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case 0
show ?case by auto

next
case (Suc n)
have ((induced-map A)^^(n+1 )) x = induced-map A (((induced-map A)^^n) x)

by (simp add: funpow-add)
also have ... = (T^^(return-time-function A (((induced-map A)^^n) x))) (((induced-map

A)^^n) x)
using induced-map-def by auto

also have ... = (T^^(return-time-function A (((induced-map A)^^n) x))) ((T^^(
∑

i
< n. return-time-function A ((induced-map A ^^i) x))) x)

using Suc.IH by auto
also have ... = (T^^(return-time-function A (((induced-map A)^^n) x) + (

∑
i

< n. return-time-function A ((induced-map A ^^i) x)))) x
by (simp add: funpow-add)

also have ... = (T^^(
∑

i < Suc n. return-time-function A ((induced-map A ^^i)
x))) x by (simp add: add.commute)

finally show ?case by simp
qed

lemma induced-map-stabilizes-recurrent-infty:
assumes x ∈ recurrent-subset-infty A
shows ((induced-map A)^^n) x ∈ recurrent-subset-infty A

proof −
have x ∈ A using assms(1 ) recurrent-subset-incl(2 ) by auto

define R where R = (
∑

i < n. return-time-function A ((induced-map A ^^i)
x))

have ∗: ((induced-map A)^^n) x = (T^^R) x unfolding R-def by (rule in-
duced-map-iterates)

moreover have ((induced-map A)^^n) x ∈ A
by (rule induced-map-iterates-stabilize-A, simp add: ‹x ∈ A›)

ultimately have (T^^R) x ∈ A by simp
then show ?thesis using recurrent-subset-infty-returns[OF assms] ∗ by auto

qed

If x ∈ A, then its successive returns to A are exactly given by the iterations
of the induced map.
lemma induced-map-returns:

assumes x ∈ A
shows ((T^^n) x ∈ A) ←→ (∃N≤n. n = (

∑
i<N . return-time-function A

((induced-map A ^^ i) x)))
proof

assume (T^^n) x ∈ A
have

∧
y. y ∈ A =⇒ (T^^n)y ∈ A =⇒ ∃N≤n. n = (

∑
i<N . return-time-function

A (((induced-map A)^^i) y)) for n
proof (induction n rule: nat-less-induct)

case (1 n)
show ∃N≤n. n = (

∑
i<N . return-time-function A (((induced-map A)^^i) y))
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proof (cases)
assume n = 0
then show ?thesis by auto

next
assume ¬(n = 0 )
then have n > 0 by simp
then have y-rec: y ∈ recurrent-subset A using ‹y ∈ A› ‹(T^^n) y ∈ A›

recurrent-subset-def by auto
then have ∗: return-time-function A y > 0 by (metis DiffE insert-iff neq0-conv

vimage-eq return-time0 )
define m where m = return-time-function A y
have m > 0 using ∗ m-def by simp
define K where K = {t ∈ {1 ..}. (T ^^ t) y ∈ A}
have n ∈ K unfolding K-def using ‹n > 0 › ‹(T^^n)y ∈ A› by simp
then have n ≥ Inf K by (simp add: cInf-lower)
moreover have m = Inf K unfolding m-def K-def return-time-function-def

using y-rec by simp
ultimately have n ≥ m by simp
define z where z = induced-map A y
have z ∈ A using ‹y ∈ A› induced-map-stabilizes-A z-def by simp
have z = (T^^m) y using induced-map-def y-rec z-def m-def by auto
then have (T^^(n−m)) z = (T^^n) y using ‹n ≥ m› funpow-add[of n−m

m T , symmetric]
by (metis comp-apply le-add-diff-inverse2 )

then have (T^^(n−m)) z ∈ A using ‹(T^^n) y ∈ A› by simp
moreover have n−m < n using ‹m > 0 › ‹n > 0 › by simp

ultimately obtain N0 where N0 ≤ n−m n−m = (
∑

i<N0 . return-time-function
A (((induced-map A)^^i) z))

using ‹z ∈ A› 1 .IH by blast
then have n−m = (

∑
i<N0 . return-time-function A (((induced-map A)^^i)

(induced-map A y)))
using z-def by auto

moreover have
∧

i. ((induced-map A)^^i) (induced-map A y) = ((induced-map
A)^^(i+1 )) y

by (metis Suc-eq-plus1 comp-apply funpow-Suc-right)
ultimately have n−m = (

∑
i<N0 . return-time-function A (((induced-map

A)^^(i+1 )) y))
by simp

then have n−m = (
∑

i ∈ {1 ..<N0+1}. return-time-function A (((induced-map
A)^^i) y))

using sum.shift-bounds-nat-ivl[of λi. return-time-function A (((induced-map
A)^^i) y), of 0 , of 1 , of N0 , symmetric]

atLeast0LessThan by auto
moreover have m = (

∑
i∈{0 ..<1}. return-time-function A (((induced-map

A)^^i) y)) using m-def by simp
ultimately have n = (

∑
i∈{0 ..<1}. return-time-function A (((induced-map

A)^^i) y))
+ (

∑
i ∈ {1 ..<N0+1}. return-time-function A (((induced-map A)^^i) y))

using ‹n ≥ m› by simp
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then have n = (
∑

i∈{0 ..<N0+1}. return-time-function A (((induced-map
A)^^i) y))

using le-add2 sum.atLeastLessThan-concat by blast
moreover have N0 + 1 ≤ n using ‹N0 ≤ n−m› ‹n − m < n› by linarith
ultimately show ?thesis by (metis atLeast0LessThan)

qed
qed
then show ∃N≤n. n = (

∑
i<N . return-time-function A ((induced-map A ^^ i)

x))
using ‹x ∈ A› ‹(T^^n) x ∈ A› by simp

next
assume ∃N≤n. n = (

∑
i<N . return-time-function A ((induced-map A ^^ i) x))

then obtain N where n = (
∑

i<N . return-time-function A ((induced-map A
^^ i) x)) by blast

then have (T^^n) x = ((induced-map A)^^N ) x using induced-map-iterates[of
N , of A, of x] by simp

then show (T^^n) x ∈ A using ‹x ∈ A› induced-map-iterates-stabilize-A by
auto
qed

If a map is conservative, then the induced map is still conservative. Note
that this statement is not true if one replaces the word "conservative" with
"qmpt": inducion only works well in conservative settings.
For instance, the right translation on Z is qmpt, but the induced map on
N (again the right translation) is not, since the measure of {0} is nonzero,
while its preimage, the empty set, has zero measure.
To prove conservativity, given a subset B of A, there exists some time n such
that T−nB ∩B has positive measure. But this time n corresponds to some
returns to A for the induced map, so T−nB∩B is included in

⋃
m T−m

A B∩B,
hence one of these sets must have positive measure.
The fact that the map is qmpt is then deduced from the conservativity.
proposition (in conservative) induced-map-conservative:

assumes A-meas: A ∈ sets M
shows conservative (restrict-space M A) (induced-map A)

proof
have sigma-finite-measure M by unfold-locales
then have sigma-finite-measure (restrict-space M A)

using sigma-finite-measure-restrict-space assms by auto
then show ∃Aa. countable Aa ∧ Aa ⊆ sets (restrict-space M A) ∧

⋃
Aa = space

(restrict-space M A)
∧ (∀ a∈Aa. emeasure (restrict-space M A) a 6=∞) using sigma-finite-measure-def

by auto

have imp:
∧

B. (B ∈ sets M ∧ B ⊆ A ∧ emeasure M B > 0 ) =⇒ (∃N>0 .
emeasure M (((induced-map A)^^N )−‘B ∩ B) > 0 )

proof −
fix B
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assume assm: B ∈ sets M ∧ B ⊆ A ∧ emeasure M B > 0
then have B ⊆ A by simp

have inc: (
⋃

n∈{1 ..}. (T^^n)−‘B ∩ B) ⊆ (
⋃

N∈{1 ..}. ((induced-map A)^^N )−‘
B ∩ B)

proof
fix x assume x ∈ (

⋃
n∈{1 ..}. (T^^n)−‘B ∩ B)

then obtain n where n∈{1 ..} and ∗: x ∈ (T^^n)−‘B ∩ B by auto
then have n > 0 by auto
have x ∈ A (T^^n) x ∈ A using ∗ ‹B ⊆ A› by auto

then obtain N where ∗∗: n = (
∑

i<N . return-time-function A ((induced-map
A ^^ i) x))

using induced-map-returns by auto
then have ((induced-map A)^^N ) x = (T^^n) x using induced-map-iterates[of

N , of A, of x] by simp
then have ((induced-map A)^^N ) x ∈ B using ∗ by simp
then have x ∈ ((induced-map A)^^N )−‘ B ∩ B using ∗ by simp
moreover have N > 0 using ∗∗ ‹n > 0 ›

by (metis leD lessThan-iff less-nat-zero-code neq0-conv sum.neutral-const
sum-mono)

ultimately show x ∈ (
⋃

N∈{1 ..}. ((induced-map A)^^N )−‘ B ∩ B) by auto
qed
have B-meas [measurable]: B ∈ sets M and B-pos: emeasure M B > 0 using

assm by auto
obtain n where n > 0 and pos: emeasure M ((T^^n)−‘B ∩ B) > 0

using conservative[OF B-meas, OF B-pos] by auto
then have n ∈ {1 ..} by auto

have itB-meas:
∧

i. ((induced-map A)^^i)−‘ B ∩ B ∈ sets M
using B-meas measurable-compose-n[OF induced-map-meas[OF A-meas]] by

(metis Int-assoc measurable-sets sets.Int sets.Int-space-eq1 )
then have (

⋃
i∈{1 ..}. ((induced-map A)^^i)−‘ B ∩ B) ∈ sets M by measurable

moreover have (T^^n)−‘B ∩ B ⊆ (
⋃

i∈{1 ..}. ((induced-map A)^^i)−‘ B ∩
B) using inc ‹n ∈ {1 ..}› by force

ultimately have emeasure M (
⋃

i∈{1 ..}. ((induced-map A)^^i)−‘ B ∩ B) >
0

by (metis (no-types, lifting) emeasure-eq-0 zero-less-iff-neq-zero pos)
then have emeasure M (

⋃
i∈{1 ..}. ((induced-map A)^^i)−‘ B ∩ B) 6= 0 by

simp
have ∃ i∈{1 ..}. emeasure M (((induced-map A)^^i)−‘ B ∩ B) 6= 0
proof (rule ccontr)

assume ¬(∃ i∈{1 ..}. emeasure M (((induced-map A)^^i)−‘ B ∩ B) 6= 0 )
then have a:

∧
i. i ∈ {1 ..} =⇒ ((induced-map A)^^i)−‘ B ∩ B ∈ null-sets

M
using itB-meas by auto

have (
⋃

i∈{1 ..}. ((induced-map A)^^i)−‘ B ∩ B) ∈ null-sets M
by (rule null-sets-UN ′, simp-all add: a)

then show False using ‹emeasure M (
⋃

i∈{1 ..}. ((induced-map A)^^i)−‘ B
∩ B) > 0 › by auto

qed
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then show ∃N>0 . emeasure M (((induced-map A)^^N )−‘ B ∩ B) > 0
by (simp add: Bex-def less-eq-Suc-le zero-less-iff-neq-zero)

qed

define K where K = {B. B ∈ sets M ∧ B ⊆ A}
have K-stable: (induced-map A)−‘B ∈ K if B ∈ K for B
proof −

have B-meas: B ∈ sets M and B ⊆ A using that unfolding K-def by auto
then have a: (induced-map A)−‘B ⊆ A using induced-map-stabilizes-A by

auto
then have (induced-map A)−‘B = (induced-map A)−‘B ∩ space M using

assms sets.sets-into-space by auto
then have (induced-map A)−‘B ∈ sets M using induced-map-meas[OF assms]

B-meas by (metis vrestr-meas vrestr-of-set)
then show (induced-map A)−‘B ∈ K unfolding K-def using a by auto

qed

define K0 where K0 = K ∩ (null-sets M )
have K0-stable: (induced-map A)−‘B ∈ K0 if B ∈ K0 for B
proof −

have B ∈ K using that unfolding K0-def by simp
then have a: (induced-map A)−‘B ⊆ A and b: (induced-map A)−‘B ∈ sets M

using K-stable unfolding K-def by auto
have B-meas [measurable]: B ∈ sets M using ‹B ∈ K › unfolding K-def by

simp
have B0 : B ∈ null-sets M using ‹B ∈ K0 › unfolding K0-def by simp

have (induced-map A)−‘B ⊆ (
⋃

n. (T^^n)−‘B) unfolding induced-map-def
by auto

then have (induced-map A)−‘B ⊆ (
⋃

n. (T^^n)−‘B ∩ space M )
using b sets.sets-into-space by simp blast

then have inc: (induced-map A)−‘B ⊆ (
⋃

n. (T^^n)−−‘B) unfolding vim-
age-restr-def

using sets.sets-into-space [OF B-meas] by simp

have (T^^n)−−‘B ∈ null-sets M for n using B0 T-quasi-preserves-null(2 )[OF
B-meas] by simp

then have (
⋃

n. (T^^n)−−‘B) ∈ null-sets M using null-sets-UN by auto
then have (induced-map A)−‘B ∈ null-sets M using null-sets-subset[OF - b

inc] by auto
then show (induced-map A)−‘B ∈ K0 unfolding K0-def K-def by (simp add:

a b)
qed

have ∗: D ∈ null-sets M ←→ D ∈ null-sets (restrict-space M A) if D∈K for D
using that unfolding K-def apply auto

apply (metis assms emeasure-restrict-space null-setsD1 null-setsI sets.Int-space-eq2
sets-restrict-space-iff )

by (metis assms emeasure-restrict-space null-setsD1 null-setsI sets.Int-space-eq2 )
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show induced-map A ∈ quasi-measure-preserving (restrict-space M A) (restrict-space
M A)

unfolding quasi-measure-preserving-def
proof (auto)

have induced-map A ∈ A → A using induced-map-stabilizes-A by auto
then show a: induced-map A ∈ measurable (restrict-space M A) (restrict-space

M A)
using measurable-restrict-space3 [where ?A = A and ?B = A and ?M = M

and ?N = M ] induced-map-meas[OF A-meas] by auto

fix B assume H : B ∈ sets (restrict-space M A)
induced-map A −‘B ∩ space (restrict-space M A) ∈ null-sets

(restrict-space M A)
then have B ∈ K unfolding K-def by (metis assms mem-Collect-eq sets.Int-space-eq2

sets-restrict-space-iff )
then have B-meas [measurable]: B ∈ sets M and B-incl: B ⊆ A unfolding

K-def by auto
have induced-map A −‘B ∈ K using K-stable ‹B ∈ K › by auto
then have B2-meas: induced-map A −‘B ∈ sets M and B2-incl: induced-map

A −‘B ⊆ A
unfolding K-def by auto

have induced-map A −‘ B = induced-map A −‘B ∩ space (restrict-space M A)
using B2-incl by (simp add: Int-absorb2 assms space-restrict-space)

then have induced-map A −‘ B ∈ null-sets (restrict-space M A) using H (2 )
by simp

then have induced-map A −‘ B ∈ K0 unfolding K0-def using ‹induced-map
A −‘B ∈ K › ∗ by auto

{
fix n
have ∗: ((induced-map A)^^(n+1 ))−‘B ∈ K0
proof (induction n)

case (Suc n)
have ((induced-map A)^^(Suc n+1 ))−‘B = (induced-map A)−‘(((induced-map

A)^^(n+1 ))−‘ B)
by (metis Suc-eq-plus1 funpow-Suc-right vimage-comp)

then show ?case by (metis Suc.IH K0-stable)
qed (auto simp add: ‹induced-map A −‘ B ∈ K0 ›)
have ∗∗: ((induced-map A)^^(n+1 ))−‘ B ∈ sets M using ∗ K0-def K-def by

auto
have ((induced-map A)^^(n+1 ))−‘ B ∩ B ∈ null-sets M

apply (rule null-sets-subset[of ((induced-map A)^^(n+1 ))−‘B])
using ∗ unfolding K0-def apply simp
using ∗∗ by auto

}
then have ((induced-map A)^^n)−‘ B ∩ B ∈ null-sets M if n>0 for n

using that by (metis Suc-eq-plus1 neq0-conv not0-implies-Suc)
then have B ∈ null-sets M using imp B-incl B-meas zero-less-iff-neq-zero

inf .strict-order-iff
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by (metis null-setsD1 null-setsI )
then show B ∈ null-sets (restrict-space M A) using ∗ ‹B ∈ K › by auto

next
fix B assume H : B ∈ sets (restrict-space M A)

B ∈ null-sets (restrict-space M A)
then have B ∈ K unfolding K-def by (metis assms mem-Collect-eq sets.Int-space-eq2

sets-restrict-space-iff )
then have B-meas [measurable]: B ∈ sets M and B-incl: B ⊆ A unfolding

K-def by auto
have B ∈ null-sets M using ∗ H (2 ) ‹B ∈ K › by simp
then have B ∈ K0 unfolding K0-def using ‹B ∈ K › by simp
then have inK : (induced-map A)−‘B ∈ K0 using K0-stable by auto
then have inA: (induced-map A)−‘B ⊆ A unfolding K0-def K-def by auto
then have (induced-map A)−‘B = (induced-map A)−‘B ∩ space (restrict-space

M A)
by (simp add: Int-absorb2 assms space-restrict-space2 )
then show induced-map A −‘ B ∩ space (restrict-space M A) ∈ null-sets

(restrict-space M A)
using ∗ inK unfolding K0-def by auto

qed

fix B
assume B-measA: B ∈ sets (restrict-space M A) and B-posA: 0 < emeasure

(restrict-space M A) B
then have B-meas: B ∈ sets M by (metis assms sets.Int-space-eq2 sets-restrict-space-iff )
have B-incl: B ⊆ A by (metis B-measA assms sets.Int-space-eq2 sets-restrict-space-iff )
then have B-pos: 0 < emeasure M B using B-posA by (simp add: assms emea-

sure-restrict-space)
obtain N where N>0 emeasure M (((induced-map A)^^N )−‘B ∩ B) > 0 using

imp B-meas B-incl B-pos by auto
then have emeasure (restrict-space M A) ((induced-map A ^^ N ) −‘ B ∩ B) >

0
using assms emeasure-restrict-space by (metis B-incl Int-lower2 sets.Int-space-eq2

subset-trans)
then show ∃n>0 . 0 < emeasure (restrict-space M A) ((induced-map A ^^ n)
−‘ B ∩ B)

using ‹N > 0 › by auto
qed

Now, we want to prove that, if a map is conservative and measure preserving,
then the induced map is also measure preserving. We first prove it for subsets
W of A of finite measure, the general case will readily follow.
The argument uses the fact that the preimage of the set of points with first
entrance time n is the union of the set of points with first entrance time n+1,
and the points of A with first return n + 1. Following the preimage of W
under this process, we will get the intersection of T−1

A W with the different
elements of the return partition, and the points in T−nW whose first n− 1
iterates do not meet A (and the measures of these sets add up to µ(W )).
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To conclude, it suffices to show that the measure of points in T−nW whose
first n − 1 iterates do not meet A tends to 0. This follows from our local
times estimates above.
lemma (in conservative-mpt) induced-map-measure-preserving-aux:

assumes A-meas [measurable]: A ∈ sets M
and W-meas [measurable]: W ∈ sets M
and incl: W ⊆ A
and fin: emeasure M W < ∞

shows emeasure M ((induced-map A)−−‘W ) = emeasure M W
proof −

have W ⊆ space M using W-meas
using sets.sets-into-space by blast

define BW where BW = (λn. (first-entrance-set A n) ∩ (T^^n)−−‘W )
define DW where DW = (λn. (return-time-function A)−‘ {n} ∩ (induced-map

A)−−‘W )

have
∧

n. DW n = (return-time-function A)−‘ {n} ∩ space M ∩ (induced-map
A)−−‘W

using DW-def by auto
then have DW-meas [measurable]:

∧
n. DW n ∈ sets M by auto

have disj-DW : disjoint-family (λn. DW n) using DW-def disjoint-family-on-def
by blast

then have disj-DW2 : disjoint-family (λn. DW (n+1 )) by (simp add: dis-
joint-family-on-def )

have (
⋃

n. DW n) = DW 0 ∪ (
⋃

n. DW (n+1 )) by (auto) (metis not0-implies-Suc)
moreover have (DW 0 ) ∩ (

⋃
n. DW (n+1 )) = {}

by (auto) (metis IntI Suc-neq-Zero UNIV-I empty-iff disj-DW disjoint-family-on-def )
ultimately have ∗: emeasure M (

⋃
n. DW n) = emeasure M (DW 0 ) + emeasure

M (
⋃

n. DW (n+1 ))
by (simp add: countable-Un-Int(1 ) plus-emeasure)

have DW 0 = (return-time-function A)−‘ {0} ∩ W
unfolding DW-def induced-map-def return-time-function-def

apply (auto simp add: return-time0 [of A]) using sets.sets-into-space[OF W-meas]
by auto

also have ... = W − recurrent-subset A using return-time0 by blast
also have ... ⊆ A − recurrent-subset A using incl by blast
finally have DW 0 ∈ null-sets M by (metis A-meas DW-meas null-sets-subset

Poincare-recurrence-thm(1 ))
then have emeasure M (DW 0 ) = 0 by auto
have (induced-map A)−−‘W = (

⋃
n. DW n) using DW-def by blast

then have emeasure M ((induced-map A)−−‘W ) = emeasure M (
⋃

n. DW n)
by simp

also have ... = emeasure M (
⋃

n. DW (n+1 )) using ∗ ‹emeasure M (DW 0 )
= 0 › by simp

also have ... = (
∑

n. emeasure M (DW (n+1 )))
apply (rule suminf-emeasure[symmetric]) using disj-DW2 by auto

finally have m: emeasure M ((induced-map A)−−‘W ) = (
∑

n. emeasure M
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(DW (n+1 ))) by simp
moreover have summable (λn. emeasure M (DW (n+1 ))) by simp
ultimately have lim: (λN . (

∑
n∈{..<N}. emeasure M (DW (n+1 )))) −−−−→

emeasure M ((induced-map A)−−‘W )
by (simp add: summable-LIMSEQ)

have BW-meas [measurable]:
∧

n. BW n ∈ sets M unfolding BW-def by simp
have ∗:

∧
n. T−−‘(BW n) − A = BW (n+1 )

proof −
fix n
have T−−‘(BW n) = T−−‘(first-entrance-set A n) ∩ (T^^(n+1 ))−−‘W

unfolding BW-def by (simp add: assms(2 ) T-vrestr-composed(2 ))
then have T−−‘(BW n) − A = (T−−‘(first-entrance-set A n) − A) ∩

(T^^(n+1 ))−−‘W
by blast

then have T−−‘(BW n) − A = first-entrance-set A (n+1 ) ∩ (T^^(n+1 ))−−‘W
using first-entrance-rec[OF A-meas] by simp

then show T−−‘(BW n) − A = BW (n+1 ) using BW-def by simp
qed

have ∗∗: DW (n+1 ) = T−−‘(BW n) ∩ A for n
proof −

have T−−‘(BW n) = T−−‘(first-entrance-set A n) ∩ (T^^(n+1 ))−−‘W
unfolding BW-def by (simp add: assms(2 ) T-vrestr-composed(2 ))
then have T−−‘(BW n) ∩ A = (T−−‘(first-entrance-set A n) ∩ A) ∩

(T^^(n+1 ))−−‘W
by blast
then have ∗: T−−‘(BW n) ∩ A = (return-time-function A)−‘{n+1} ∩

(T^^(n+1 ))−−‘W
using return-time-rec[OF A-meas] by simp

have DW (n+1 ) = (return-time-function A)−‘{n+1} ∩ (induced-map A)−‘W
using DW-def ‹W ⊆ space M › return-time-rec by auto

also have ... = (return-time-function A)−‘{n+1} ∩ (T^^(n+1 ))−‘W
by (auto simp add: induced-map-def )

also have ... = (return-time-function A)−‘{n+1} ∩ (T^^(n+1 ))−−‘W
using ‹W ⊆ space M › return-time-rec by auto

finally show DW (n+1 ) = T−−‘(BW n) ∩ A using ∗ by simp
qed

have emeasure M W = (
∑

n∈{..<N}. emeasure M (DW (n+1 ))) + emeasure
M (BW N ) for N

proof (induction N )
case 0
have BW 0 = W unfolding BW-def first-entrance-set-def using incl by auto
then show ?case by simp

next
case (Suc N )
have T−−‘(BW N ) = BW (N+1 ) ∪ DW (N+1 ) using ∗ ∗∗ by blast
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moreover have BW (N+1 ) ∩ DW (N+1 ) = {} using ∗ ∗∗ by blast
ultimately have emeasure M (T−−‘(BW N )) = emeasure M (BW (N+1 ))

+ emeasure M (DW (N+1 ))
using DW-meas BW-meas plus-emeasure[of BW (N+1 )] by simp

then have emeasure M (BW N ) = emeasure M (BW (N+1 )) + emeasure M
(DW (N+1 ))

using T-vrestr-same-emeasure(1 ) BW-meas by auto
then have (

∑
n∈{..<N}. emeasure M (DW (n+1 ))) + emeasure M (BW N )

= (
∑

n∈{..<N+1}. emeasure M (DW (n+1 ))) + emeasure M (BW
(N+1 ))

by (simp add: add.commute add.left-commute)
then show ?case using Suc.IH by simp

qed
moreover
have (λN . emeasure M (BW N )) −−−−→ 0
proof (rule tendsto-sandwich[of λ-. 0- - λN . emeasure M {x ∈ (T^^N )−−‘W .

local-time A N x < 1}])
have emeasure M (BW N ) ≤ emeasure M {x ∈ (T^^N )−−‘W . local-time A

N x < 1} for N
apply (rule emeasure-mono) unfolding BW-def local-time-def first-entrance-set-def

by auto
then show ∀ F n in sequentially. emeasure M (BW n) ≤ emeasure M {x ∈ (T

^^ n) −−‘ W . local-time A n x < 1}
by auto

have i: W ⊆ (T^^0 )−−‘A using incl by auto
show (λN . emeasure M {x ∈ (T ^^ N ) −−‘ W . local-time A N x < 1}) −−−−→

0
apply (rule local-time-unbounded2 [OF - - i]) using fin by auto

qed (auto)
then have (λN . (

∑
n∈{..<N}. emeasure M (DW (n+1 ))) + emeasure M (BW

N )) −−−−→ emeasure M (induced-map A −−‘ W ) + 0
using lim by (intro tendsto-add) auto

ultimately show ?thesis
by (auto intro: LIMSEQ-unique LIMSEQ-const-iff )

qed

lemma (in conservative-mpt) induced-map-measure-preserving:
assumes A-meas [measurable]: A ∈ sets M

and W-meas [measurable]: W ∈ sets M
shows emeasure M ((induced-map A)−−‘W ) = emeasure M W

proof −
define WA where WA = W ∩ A
have WA-meas [measurable]: WA ∈ sets M WA ⊆ A using WA-def by auto
have WAi-meas [measurable]: (induced-map A)−−‘WA ∈ sets M by simp
have a: emeasure M WA = emeasure M ((induced-map A)−−‘WA)
proof (cases)

assume emeasure M WA < ∞
then show ?thesis using induced-map-measure-preserving-aux[OF A-meas, OF

‹WA ∈ sets M ›, OF ‹WA ⊆ A›] by simp
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next
assume ¬(emeasure M WA < ∞)
then have emeasure M WA = ∞ by (simp add: less-top[symmetric])
{

fix C ::real
obtain Z where Z ∈ sets M Z ⊆ WA emeasure M Z < ∞ emeasure M Z >

C
by (blast intro: ‹emeasure M WA =∞› WA-meas approx-PInf-emeasure-with-finite)
have Z ⊆ A using ‹Z ⊆ WA› WA-def by simp
have C < emeasure M Z using ‹emeasure M Z > C › by simp
also have ... = emeasure M ((induced-map A)−−‘Z )

using induced-map-measure-preserving-aux[OF A-meas, OF ‹Z ∈ sets M ›,
OF ‹Z ⊆ A›] ‹emeasure M Z < ∞› by simp

also have ... ≤ emeasure M ((induced-map A)−−‘WA)
apply(rule emeasure-mono) using ‹Z ⊆ WA› vrestr-inclusion by auto

finally have emeasure M ((induced-map A)−−‘WA) > C by simp
}
then have emeasure M ((induced-map A)−−‘WA) = ∞

by (cases emeasure M ((induced-map A)−−‘WA)) auto
then show ?thesis using ‹emeasure M WA = ∞› by simp

qed
define WB where WB = W − WA
have WB-meas [measurable]: WB ∈ sets M unfolding WB-def by simp
have WBi-meas [measurable]: (induced-map A)−−‘WB ∈ sets M by simp
have WB ∩ A = {} unfolding WB-def WA-def by auto
moreover have id:

∧
x. x /∈ A =⇒ (induced-map A x) = x unfolding in-

duced-map-def return-time-function-def
apply (auto) using recurrent-subset-incl by auto

ultimately have (induced-map A)−−‘WB = WB
using induced-map-stabilizes-A sets.sets-into-space[OF WB-meas] apply auto
by (metis disjoint-iff-not-equal) fastforce+

then have b: emeasure M ((induced-map A)−−‘WB) = emeasure M WB by
simp

have W = WA ∪ WB WA ∩ WB = {} using WA-def WB-def by auto
have ∗: emeasure M W = emeasure M WA + emeasure M WB

by (subst ‹W = WA ∪ WB›, rule plus-emeasure[symmetric], auto simp add:
‹WA ∩ WB = {}›)

have W-AUB: (induced-map A)−−‘W = (induced-map A)−−‘WA ∪ (induced-map
A)−−‘WB

using ‹W = WA ∪ WB› by auto
have W-AIB: (induced-map A)−−‘WA ∩ (induced-map A)−−‘WB = {}

by (metis ‹WA ∩ WB = {}› vrestr-empty vrestr-intersec)
have emeasure M ((induced-map A)−−‘W ) = emeasure M ((induced-map A)−−‘WA)

+ emeasure M ((induced-map A)−−‘WB)
unfolding W-AUB by (rule plus-emeasure[symmetric]) (auto simp add: W-AIB)

then show ?thesis using a b ∗ by simp
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qed

We can now express the fact that induced maps preserve the measure.
theorem (in conservative-mpt) induced-map-conservative-mpt:

assumes A ∈ sets M
shows conservative-mpt (restrict-space M A) (induced-map A)

unfolding conservative-mpt-def
proof
show ∗: conservative (restrict-space M A) (induced-map A) using induced-map-conservative[OF

assms] by auto
show mpt (restrict-space M A) (induced-map A) unfolding mpt-def mpt-axioms-def
proof

show qmpt (restrict-space M A) (induced-map A) using ∗ conservative-def by
auto

then have meas: (induced-map A) ∈ measurable (restrict-space M A) (restrict-space
M A)

unfolding qmpt-def qmpt-axioms-def quasi-measure-preserving-def by auto
moreover have

∧
B. B ∈ sets (restrict-space M A) =⇒

emeasure (restrict-space M A) ((induced-map A) −‘B ∩ space (restrict-space
M A)) = emeasure (restrict-space M A) B

proof −
have s: space (restrict-space M A) = A using assms space-restrict-space2 by

auto
have i:

∧
D. D ∈ sets M ∧ D ⊆ A =⇒ emeasure (restrict-space M A) D =

emeasure M D
using assms by (simp add: emeasure-restrict-space)

have j:
∧

D. D ∈ sets (restrict-space M A) ←→ (D ∈ sets M ∧ D ⊆ A) using
assms

by (metis sets.Int-space-eq2 sets-restrict-space-iff )
fix B
assume a: B ∈ sets (restrict-space M A)
then have B-meas: B ∈ sets M using j by auto
then have first: emeasure (restrict-space M A) B = emeasure M B using i j

a by auto
have incl: (induced-map A) −‘B ⊆ A using j a induced-map-stabilizes-A

assms by auto
then have eq: (induced-map A) −‘B ∩ space (restrict-space M A) = (induced-map

A) −−‘B
unfolding vimage-restr-def s using assms sets.sets-into-space
by (metis a inf .orderE j meas measurable-sets s)
then have emeasure M B = emeasure M ((induced-map A) −‘B ∩ space

(restrict-space M A))
using induced-map-measure-preserving a j assms by auto

also have ... = emeasure (restrict-space M A) ((induced-map A) −‘B ∩ space
(restrict-space M A))

using incl eq B-meas induced-map-meas[OF assms] assms i j
by (metis emeasure-restrict-space inf .orderE s space-restrict-space)

finally show emeasure (restrict-space M A) ((induced-map A) −‘B ∩ space
(restrict-space M A))
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= emeasure (restrict-space M A) B
using first by auto

qed
ultimately show induced-map A ∈ measure-preserving (restrict-space M A)

(restrict-space M A)
unfolding measure-preserving-def by auto

qed
qed

theorem (in fmpt) induced-map-fmpt:
assumes A ∈ sets M
shows fmpt (restrict-space M A) (induced-map A)

unfolding fmpt-def
proof −
have conservative-mpt (restrict-space M A) (induced-map A) using induced-map-conservative-mpt[OF

assms] by simp
then have mpt (restrict-space M A) (induced-map A) using conservative-mpt-def

by auto
moreover have finite-measure (restrict-space M A) by (simp add: assms fi-

nite-measureI finite-measure-restrict-space)
ultimately show mpt (restrict-space M A) (induced-map A) ∧ finite-measure

(restrict-space M A) by simp
qed

It will be useful to reformulate the fact that the recurrent subset has full
measure in terms of the induced measure, to simplify the use of the induced
map later on.
lemma (in conservative) induced-map-recurrent-typical:

assumes A-meas [measurable]: A ∈ sets M
shows AE z in (restrict-space M A). z ∈ recurrent-subset A

AE z in (restrict-space M A). z ∈ recurrent-subset-infty A
proof −

have recurrent-subset A ∈ sets M using recurrent-subset-meas[OF A-meas] by
auto

then have rsA: recurrent-subset A ∈ sets (restrict-space M A)
using recurrent-subset-incl(1 )[of A]
by (metis (no-types, lifting) A-meas sets-restrict-space-iff space-restrict-space

space-restrict-space2 )

have emeasure (restrict-space M A) (space (restrict-space M A) − recurrent-subset
A) = emeasure (restrict-space M A) (A − recurrent-subset A)

by (metis (no-types, lifting) A-meas space-restrict-space2 )
also have ... = emeasure M (A − recurrent-subset A)

by (simp add: emeasure-restrict-space)
also have ... = 0 using Poincare-recurrence-thm[OF A-meas] by auto
finally have space (restrict-space M A) − recurrent-subset A ∈ null-sets (restrict-space

M A)
using rsA by blast

then show AE z in (restrict-space M A). z ∈ recurrent-subset A
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by (metis (no-types, lifting) DiffI eventually-ae-filter mem-Collect-eq subsetI )

have recurrent-subset-infty A ∈ sets M using recurrent-subset-meas[OF A-meas]
by auto

then have rsiA: recurrent-subset-infty A ∈ sets (restrict-space M A)
using recurrent-subset-incl(2 )[of A]
by (metis (no-types, lifting) A-meas sets-restrict-space-iff space-restrict-space

space-restrict-space2 )

have emeasure (restrict-space M A) (space (restrict-space M A) − recurrent-subset-infty
A) = emeasure (restrict-space M A) (A − recurrent-subset-infty A)

by (metis (no-types, lifting) A-meas space-restrict-space2 )
also have ... = emeasure M (A − recurrent-subset-infty A)

apply (rule emeasure-restrict-space) using A-meas by auto
also have ... = 0 using Poincare-recurrence-thm[OF A-meas] by auto
finally have space (restrict-space M A) − recurrent-subset-infty A ∈ null-sets

(restrict-space M A)
using rsiA by blast

then show AE z in (restrict-space M A). z ∈ recurrent-subset-infty A
by (metis (no-types, lifting) DiffI eventually-ae-filter mem-Collect-eq subsetI )

qed

5.5 Kac’s theorem, and variants

Kac’s theorem states that, for conservative maps, the integral of the return
time to a subset A is equal to the measure of the space if the dynamics is
ergodic, or of the space seen by A in the general case.
This result generalizes to any induced function, not just the return time,
that we define now.
definition induced-function:: ′a set ⇒ ( ′a ⇒ ′b::comm-monoid-add) ⇒ ( ′a ⇒ ′b)
where induced-function A f = (λx. (

∑
i∈{..< return-time-function A x}. f ((T^^i)

x)))

By definition, the induced function is supported on the recurrent subset of
A.
lemma induced-function-support:

fixes f :: ′a ⇒ ennreal
shows induced-function A f y = induced-function A f y ∗ indicator ((return-time-function

A)−‘{1 ..}) y
by (auto simp add: induced-function-def indicator-def not-less-eq-eq)

Basic measurability statements.
lemma induced-function-meas-ennreal [measurable]:

fixes f :: ′a ⇒ ennreal
assumes [measurable]: f ∈ borel-measurable M A ∈ sets M
shows induced-function A f ∈ borel-measurable M

unfolding induced-function-def by simp
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lemma induced-function-meas-real [measurable]:
fixes f :: ′a ⇒ real
assumes [measurable]: f ∈ borel-measurable M A ∈ sets M
shows induced-function A f ∈ borel-measurable M

unfolding induced-function-def by simp

The Birkhoff sums of the induced function for the induced map form a
subsequence of the original Birkhoff sums for the original map, corresponding
to the return times to A.
lemma (in conservative) induced-function-birkhoff-sum:

fixes f :: ′a ⇒ real
assumes A ∈ sets M
shows birkhoff-sum f (qmpt.birkhoff-sum (induced-map A) (return-time-function

A) n x) x
= qmpt.birkhoff-sum (induced-map A) (induced-function A f ) n x

proof −
interpret A: conservative restrict-space M A induced-map A by (rule induced-map-conservative[OF

assms])
define TA where TA = induced-map A
define phiA where phiA = return-time-function A
define R where R = (λn. A.birkhoff-sum phiA n x)
show ?thesis
proof (induction n)

case 0
show ?case using birkhoff-sum-1 (1 ) A.birkhoff-sum-1 (1 ) by auto

next
case (Suc n)
have (T^^(R n)) x = (TA^^n) x unfolding TA-def R-def A.birkhoff-sum-def

phiA-def by (rule induced-map-iterates[symmetric])
have R(n+1 ) = R n + phiA ((TA^^n) x)

unfolding R-def using A.birkhoff-sum-cocycle[where ?n = n and ?m = 1
and ?f = phiA] A.birkhoff-sum-1 (2 ) TA-def by auto

then have birkhoff-sum f (R (n+1 )) x = birkhoff-sum f (R n) x + birkhoff-sum
f (phiA ((TA^^n) x)) ((T^^(R n)) x)

using birkhoff-sum-cocycle[where ?n = R n and ?f = f ] by auto
also have ... = birkhoff-sum f (R n) x + birkhoff-sum f (phiA ((TA^^n) x))

((TA^^n) x)
using ‹(T^^(R n)) x = (TA^^n) x› by simp

also have ... = birkhoff-sum f (R n) x + (induced-function A f ) ((TA^^n) x)
unfolding induced-function-def birkhoff-sum-def phiA-def by simp

also have ... = A.birkhoff-sum (induced-function A f ) n x + (induced-function
A f ) ((TA^^n) x) using Suc.IH R-def phiA-def by auto

also have ... = A.birkhoff-sum (induced-function A f ) (n+1 ) x
using A.birkhoff-sum-cocycle[where ?n = n and ?m = 1 and ?f = in-

duced-function A f and ?x = x, symmetric]
A.birkhoff-sum-1 (2 )[where ?f = induced-function A f and ?x = (TA^^n) x]
unfolding TA-def by auto

finally show ?case unfolding R-def phiA-def by simp
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qed
qed

The next lemma is very simple (just a change of variables to reorder the
indices in the double sum). However, the proof I give is very tedious: infi-
nite sums on proper subsets are not handled well, hence I use integrals on
products of discrete spaces instead, and go back and forth between the two
notions – maybe there are better suited tools in the library, but I could not
locate them...
This is the main combinatorial tool used in the proof of Kac’s Formula.
lemma kac-series-aux:

fixes d:: nat ⇒ nat ⇒ ennreal
shows (

∑
n. (

∑
i≤n. d i n)) = (

∑
n. d 0 n) + (

∑
n. (

∑
i. d (i+1 ) (n+1+i)))

(is - = ?R)
proof −

define g where g = (λ(i,n). (i+(1 ::nat), n+1+i))
define U where U = {(i,n). (i>(0 ::nat)) ∧ (n≥i)}
have bij: bij-betw g UNIV U

by (rule bij-betw-byWitness[where ?f ′ = λ(i, n). (i−1 , n−i)], auto simp add:
g-def U-def )

define e where e = (λ (i,j). d i j)
have pos:

∧
x. e x ≥ 0 using e-def by auto

have (
∑

n. (
∑

i. d (i+1 ) (n+1+i))) = (
∑

n. (
∑

i. e(i+1 , n+1+i))) using
e-def by simp

also have ... =
∫

+n.
∫

+i. e (i+1 , n+1+i) ∂count-space UNIV ∂count-space
UNIV

using pos nn-integral-count-space-nat suminf-0-le by auto
also have ... = (

∫
+x. e (g x) ∂count-space UNIV )

unfolding g-def using nn-integral-snd-count-space[of λ(i,n). e(i+1 , n+1+i)]
by (auto simp add: prod.case-distrib)

also have ... = (
∫

+y ∈ U . e y ∂count-space UNIV )
using nn-integral-count-compose-bij[OF bij] by simp

finally have ∗: (
∑

n. (
∑

i. d (i+1 ) (n+1+i))) = (
∫

+y ∈ U . e y ∂count-space
UNIV )

by simp

define V where V = {((i::nat),(n::nat)). i = 0}
have i: e (i, n) ∗ indicator {0} i = e (i, n) ∗ indicator V (i, n) for i n

by (auto simp add: indicator-def V-def )
have d 0 n = (

∫
+i ∈ {0}. e (i, n) ∂count-space UNIV ) for n

proof −
have (

∫
+i ∈ {0}. e (i, n) ∂count-space UNIV ) = (

∫
+i. e (i, n) ∂count-space

{0})
using nn-integral-count-space-indicator [of - λi. e(i, n)] by simp

also have ... = e (0 , n)
using nn-integral-count-space-finite[where ?f = λi. e (i, n)] by simp

finally show ?thesis using e-def by simp
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qed
then have (

∑
n. d 0 n) = (

∑
n. (

∫
+i. e (i, n) ∗ indicator {0} i ∂count-space

UNIV ))
by simp

also have ... = (
∫

+n. (
∫

+i. e (i, n) ∗ indicator {0} i ∂count-space UNIV )
∂count-space UNIV )

by (simp add: nn-integral-count-space-nat)
also have ... = (

∫
+(i,n). e (i, n) ∗ indicator {0} i ∂count-space UNIV )

using nn-integral-snd-count-space[of λ (i,n). e(i,n) ∗ indicator {0} i] by auto
also have ... = (

∫
+(i,n). e (i, n) ∗ indicator V (i,n) ∂count-space UNIV )

by (metis i)
finally have (

∑
n. d 0 n) = (

∫
+y ∈ V . e y ∂count-space UNIV )

by (simp add: split-def )

then have ?R = (
∫

+y ∈ V . e y ∂count-space UNIV ) + (
∫

+y ∈ U . e y
∂count-space UNIV )

using ∗ by simp
also have ... = (

∫
+y ∈ V ∪ U . e y ∂count-space UNIV )

by (rule nn-integral-disjoint-pair-countspace[symmetric], auto simp add: U-def
V-def )

also have ... = (
∫

+(i, n). e (i, n) ∗ indicator {..n} i ∂count-space UNIV )
by (rule nn-integral-cong, auto simp add: indicator-def of-bool-def V-def U-def

pos, meson)
also have ... = (

∫
+n. (

∫
+i. e (i, n) ∗ indicator {..n} i ∂count-space UNIV )∂count-space

UNIV )
using nn-integral-snd-count-space[of λ(i,n). e(i,n) ∗ indicator {..n} i] by auto

also have ... = (
∑

n. (
∑

i. e (i, n) ∗ indicator {..n} i))
using pos nn-integral-count-space-nat suminf-0-le by auto

moreover have (
∑

i. e (i, n) ∗ indicator {..n} i) = (
∑

i≤n. e (i, n)) for n
proof −

have finite {..n} by simp
moreover have

∧
i. i /∈ {..n} =⇒ e (i,n) ∗ indicator {..n} i = 0 using

indicator-def by simp
then have (

∑
i. e (i,n) ∗ indicator {..n} i) = (

∑
i ∈ {..n} . e (i, n) ∗ indicator

{..n} i)
by (meson calculation suminf-finite)

moreover have
∧

i. i ∈ {..n} =⇒ e (i, n) ∗ indicator {..n} i = e (i, n) using
indicator-def by auto

ultimately show (
∑

i. e (i, n) ∗ indicator {..n} i) = (
∑

i≤n. e (i, n)) by
simp

qed
ultimately show ?thesis using e-def by simp

qed

end

context conservative-mpt begin

We prove Kac’s Formula (in the general form for induced functions) first
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for functions taking values in ennreal (to avoid all summabilities issues).
The result for real functions will follow by domination. First, we assume
additionally that f is bounded and has a support of finite measure, the
general case will follow readily by truncation.
The proof is again an instance of the fact that the preimage of the set of
points with first entrance time n is the union of the set of points with first
entrance time n + 1, and the points of A with first return n + 1. Keeping
track of the integral of f on the different parts that appear in this argument,
we will see that the integral of the induced function on the set of points with
return time at most n is equal to the integral of the function, up to an error
controlled by the measure of points in T−n(supp(f)) with local time 0. Local
time controls ensure that this contribution vanishes asymptotically.
lemma induced-function-nn-integral-aux:

fixes f :: ′a ⇒ ennreal
assumes A-meas [measurable]: A ∈ sets M

and f-meas [measurable]: f ∈ borel-measurable M
and f-bound:

∧
x. f x ≤ ennreal C 0 ≤ C

and f-supp: emeasure M {x ∈ space M . f x > 0} < ∞
shows (

∫
+y. induced-function A f y ∂M ) = (

∫
+ x ∈ (

⋃
n. (T^^n)−−‘A). f x

∂M )
proof −

define B where B = (λn. first-entrance-set A n)
have B-meas [measurable]:

∧
n. B n ∈ sets M by (simp add: B-def )

then have B2 [measurable]: (
⋃

n. B (n+1 )) ∈ sets M by measurable

have ∗: B = disjointed (λi. (T^^i)−−‘A)
by (auto simp add: B-def disjointed-def first-entrance-set-def )

then have disjoint-family B by (simp add: disjoint-family-disjointed)

have (
⋃

n. (T^^n)−−‘A) = (
⋃

n. disjointed (λi. (T^^i)−−‘A) n) by (simp add:
UN-disjointed-eq)

then have (
⋃

n. (T^^n)−−‘A) = (
⋃

n. B n) using ∗ by simp
then have (

⋃
n. (T^^n)−−‘A) = B 0 ∪ (

⋃
n. B (n+1 )) by (auto) (metis

not0-implies-Suc)
then have (

∫
+ x ∈ (

⋃
n. (T^^n)−−‘A). f x ∂M ) = (

∫
+ x ∈ (B 0 ∪ (

⋃
n. B

(n+1 ))). f x ∂M ) by simp
also have ... = (

∫
+ x ∈ B 0 . f x ∂M ) + (

∫
+ x ∈ (

⋃
n. B (n+1 )). f x ∂M )

proof (rule nn-integral-disjoint-pair)
show B 0 ∩ (

⋃
n. B (n+1 )) = {}

by (auto) (metis IntI Suc-neq-Zero UNIV-I empty-iff ‹disjoint-family B›
disjoint-family-on-def )

qed auto
finally have (

∫
+ x ∈ (

⋃
n. (T^^n)−−‘A). f x ∂M ) = (

∫
+ x ∈ B 0 . f x ∂M )

+ (
∫

+ x ∈ (
⋃

n. B (n+1 )). f x ∂M )
by simp

moreover have (
∫

+ x ∈ (
⋃

n. B (n+1 )). f x ∂M ) = (
∑

n. (
∫

+ x ∈ B (n+1 ).
f x ∂M ))
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apply (rule nn-integral-disjoint-family) using ‹disjoint-family B› by (auto simp
add: disjoint-family-on-def )

ultimately have Bdec: (
∫

+ x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M ) = (
∫

+ x ∈ B 0 .
f x ∂M ) + (

∑
n.

∫
+ x ∈ B (n+1 ). f x ∂M ) by simp

define D where D = (λn. (return-time-function A)−‘ {n+1})
then have disjoint-family D by (auto simp add: disjoint-family-on-def )
have ∗:

∧
n. D n = T−−‘(B n) ∩ A

using D-def B-def return-time-rec[OF assms(1 )] by simp
then have [measurable]:

∧
n. D n ∈ sets M by simp

have ∗∗:
∧

n. B (n+1 ) = T−−‘(B n) − A using first-entrance-rec[OF assms(1 )]
B-def by simp

have pos0 :
∧

i x. f ((T^^i)x) ≥ 0 using assms(3 ) by simp
have pos:

∧
i C x. f ((T^^i)x) ∗ indicator (C ) x ≥ 0 using assms(3 ) by simp

have mes0 [measurable]:
∧

i. (λx. f ((T^^i)x)) ∈ borel-measurable M by simp
then have [measurable]:

∧
i C . C ∈ sets M =⇒ (λx. f ((T^^i)x) ∗ indicator C

x) ∈ borel-measurable M by simp

have
∧

y. induced-function A f y = induced-function A f y ∗ indicator ((return-time-function
A)−‘{1 ..}) y

by (rule induced-function-support)
moreover have (return-time-function A)−‘{(1 ::nat)..} = (

⋃
n. D n)

by (auto simp add: D-def Suc-le-D)
ultimately have

∧
y. induced-function A f y = induced-function A f y ∗ indicator

(
⋃

n. D n) y by simp
then have (

∫
+y. induced-function A f y ∂M ) = (

∫
+y ∈ (

⋃
n. D n). in-

duced-function A f y ∂M ) by simp
also have ... = (

∑
n. (

∫
+y ∈ D n. induced-function A f y ∂M ))

apply (rule nn-integral-disjoint-family)
unfolding induced-function-def by (auto simp add: pos0 sum-nonneg ‹dis-

joint-family D›)
finally have a: (

∫
+y. induced-function A f y ∂M ) = (

∑
n. (

∫
+y ∈ D n. in-

duced-function A f y ∂M ))
by simp

define d where d = (λi n. (
∫

+y ∈ D n. f ((T^^i)y) ∂M ))

have (
∫

+y ∈ D n. induced-function A f y ∂M ) = (
∑

i∈{..n}. d i n) for n
proof −
have induced-function A f y ∗ indicator (D n) y = (

∑
i∈{..<n+1}. f ((T^^i)y)

∗ indicator (D n) y) for y
by (auto simp add: induced-function-def D-def indicator-def )

then have (
∫

+y ∈ D n. induced-function A f y ∂M ) = (
∑

i∈{..<n+1}. (
∫

+y
∈ D n. f ((T^^i)y) ∂M ))

using pos nn-integral-sum[of {..<n+1}, of λi y. f ((T^^i)y) ∗ indicator (D
n) y] by simp

also have ... = (
∑

i∈{..n}. (
∫

+y ∈ D n. f ((T^^i)y) ∂M ))
using lessThan-Suc-atMost by auto
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finally show ?thesis using d-def by simp
qed
then have induced-dec: (

∫
+y. induced-function A f y ∂M ) = (

∑
n. (

∑
i∈{..n}.

d i n))
using a by simp

have (
⋃

n∈{1 ..}. (return-time-function A)−‘ {n}) = UNIV − (return-time-function
A)−‘ {0} by auto

then have (
⋃

n∈{1 ..}. (return-time-function A)−‘ {n}) = recurrent-subset A
using return-time0 by auto

moreover have (
⋃

n. (return-time-function A)−‘ {n+1}) = (
⋃

n∈{1 ..}. (return-time-function
A)−‘ {n})

by (auto simp add: Suc-le-D)
ultimately have (

⋃
n. D n) = recurrent-subset A using D-def by simp

moreover have (
∫

+x ∈ A. f x ∂M ) = (
∫

+x ∈ recurrent-subset A. f x ∂M )
by (rule nn-integral-null-delta, auto simp add: Diff-mono Un-absorb2 recur-

rent-subset-incl(1 )[of A] Poincare-recurrence-thm(1 )[OF assms(1 )])
moreover have B 0 = A using B-def first-entrance-set-def by simp
ultimately have (

∫
+x ∈ B 0 . f x ∂M ) = (

∫
+x ∈ (

⋃
n. D n). f x ∂M ) by simp

also have ... = (
∑

n. (
∫

+x ∈ D n. f x ∂M ))
by (rule nn-integral-disjoint-family, auto simp add: ‹disjoint-family D›)

finally have B0dec: (
∫

+x ∈ B 0 . f x ∂M ) = (
∑

n. d 0 n) using d-def by simp

have ∗: (
∫

+x ∈ B n. f x ∂M ) = (
∑

i<k. (
∫

+x ∈ D(n+i). f ((T^^(i+1 ))x)
∂M )) + (

∫
+x ∈ B(n+k). f ((T^^k)x) ∂M ) for n k

proof (induction k)
case 0
show ?case by simp

next
case (Suc k)
have T−−‘(B(n+k)) = B(n+k+1 ) ∪ D(n+k) using ∗ ∗∗ by blast

have (
∫

+x ∈ B(n+k). f ((T^^k)x) ∂M ) = (
∫

+x. (λx. f ((T^^k)x) ∗ indicator
(B (n+k)) x)(T x) ∂M )

by (rule measure-preserving-preserves-nn-integral[OF Tm], auto simp add:
pos)

also have ... = (
∫

+x. f ((T^^(k+1 ))x) ∗ indicator (T−−‘(B (n+k))) x ∂M )
proof (rule nn-integral-cong-AE)

have (T^^k)(T x) = (T^^(k+1 ))x for x
using comp-eq-dest-lhs by (metis Suc-eq-plus1 funpow.simps(2 ) funpow-swap1 )
moreover have AE x in M . f ((T^^k)(T x)) ∗ indicator (B (n+k)) (T x) =

f ((T^^k)(T x)) ∗ indicator (T−−‘(B (n+k))) x
by (simp add: indicator-def ‹

∧
n. B n ∈ sets M ›)

ultimately show AE x in M . f ((T^^k)(T x)) ∗ indicator (B (n+k)) (T x)
= f ((T^^(k+1 ))x) ∗ indicator (T−−‘(B (n+k))) x

by simp
qed
also have ... = (

∫
+x ∈ B(n+k+1 ) ∪ D(n+k). f ((T^^(k+1 ))x) ∂M )

using ‹T−−‘(B(n+k)) = B(n+k+1 ) ∪ D(n+k)› by simp
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also have ... = (
∫

+x ∈ B(n+k+1 ). f ((T^^(k+1 ))x) ∂M ) + (
∫

+x ∈ D(n+k).
f ((T^^(k+1 ))x) ∂M )

proof (rule nn-integral-disjoint-pair [OF mes0 [of k+1 ]])
show B(n+k+1 ) ∩ D(n+k) = {} using ∗ ∗∗ by blast

qed (auto)
finally have (

∫
+x ∈ B(n+k). f ((T^^k)x) ∂M ) = (

∫
+x ∈ B(n+k+1 ). f ((T^^(k+1 ))x)

∂M ) + (
∫

+x ∈ D(n+k). f ((T^^(k+1 ))x) ∂M )
by simp

then show ?case by (simp add: Suc.IH add.commute add.left-commute)
qed

have a: (λk. (
∫

+x ∈ B(n+k). f ((T^^k)x) ∂M )) −−−−→ 0 for n
proof −

define W where W = {x ∈ space M . f x > 0} ∩ (T^^n)−−‘A
have emeasure M W ≤ emeasure M {x ∈ space M . f x > 0}

by (intro emeasure-mono, auto simp add: W-def )
then have W-fin: emeasure M W < ∞ using f-supp by auto
have W-meas [measurable]: W ∈ sets M unfolding W-def by simp
have W-incl: W ⊆ (T^^n)−−‘A unfolding W-def by simp

define V where V = (λk. {x ∈ (T^^k)−−‘W . local-time A k x = 0})
have V-meas [measurable]: V k ∈ sets M for k unfolding V-def by simp
have a: (

∫
+x ∈ B(n+k). f ((T^^k)x) ∂M ) ≤ C ∗ emeasure M (V k) for k

proof −
have f ((T^^k)x) ∗ indicator (B(n+k)) x = f ((T^^k)x) ∗ indicator (B(n+k)

∩ (T^^k)−−‘W ) x for x
proof (cases)

assume f ((T^^k)x) ∗ indicator (B(n+k)) x = 0
then show ?thesis by (simp add: indicator-def )

next
assume ¬(f ((T^^k)x) ∗ indicator (B(n+k)) x = 0 )
then have H : f ((T^^k)x) ∗ indicator (B(n+k)) x 6= 0 by simp

then have inB: x ∈ B(n+k) using H using indicator-simps(2 ) by fastforce
then have s: x ∈ space M using B-meas[of n+k] sets.sets-into-space by

blast
then have a: (T^^k)x ∈ space M by (metis measurable-space Tn-meas[of

k])

have f ((T^^k)x) > 0 using H by (simp add: le-neq-trans)
then have ∗: (T^^k)x ∈ {y ∈ space M . f y > 0} using a by simp

have (T^^(n+k))x ∈ A using inB B-def first-entrance-set-def by auto
then have (T^^n)((T^^k)x) ∈ A by (simp add: funpow-add)
then have (T^^k)x ∈ (T^^n)−−‘A using a by auto
then have (T^^k)x ∈ W using ∗ W-def by simp
then have x ∈ (T^^k)−−‘W using s a by simp
then have x ∈ (B(n+k) ∩ (T^^k)−−‘W ) using inB by simp
then show ?thesis by auto

qed
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then have ∗: (
∫

+x ∈ B(n+k). f ((T^^k)x) ∂M ) = (
∫

+x ∈ B(n+k) ∩
(T^^k)−−‘W . f ((T^^k)x) ∂M )

by simp
have B(n+k) ⊆ {x ∈ space M . local-time A k x = 0}

unfolding local-time-def B-def first-entrance-set-def by auto
then have B(n+k) ∩ (T^^k)−−‘W ⊆ V k unfolding V-def by blast
then have f ((T^^k)x) ∗ indicator (B(n+k) ∩ (T^^k)−−‘W ) x ≤ ennreal C

∗ indicator (V k) x for x
using f-bound by (auto split: split-indicator)
then have (

∫
+x ∈ B(n+k) ∩ (T^^k)−−‘W . f ((T^^k)x) ∂M ) ≤ (

∫
+x.

ennreal C ∗ indicator (V k) x ∂M )
by (simp add: nn-integral-mono)
also have ... = ennreal C ∗ emeasure M (V k) by (simp add: ‹0 ≤ C ›

nn-integral-cmult)
finally show (

∫
+x ∈ B(n+k). f ((T^^k)x) ∂M ) ≤ C ∗ emeasure M (V k)

using ∗ by simp
qed

have (λk. emeasure M (V k)) −−−−→ 0 unfolding V-def
using local-time-unbounded2 [OF W-meas, OF W-fin, OF W-incl, of 1 ] by

auto
from ennreal-tendsto-cmult[OF - this, of C ]
have t0 : (λk. C ∗ emeasure M (V k)) −−−−→ 0

by simp
from a show (λk. (

∫
+x ∈ B(n+k). f ((T^^k)x) ∂M )) −−−−→ 0

by (intro tendsto-sandwich[OF - - tendsto-const t0 ]) auto
qed
have b: (λk. (

∑
i<k.(

∫
+x ∈ D(n+i). f ((T^^(i+1 ))x) ∂M ))) −−−−→ (

∑
i. d

(i+1 ) (n+i)) for n
proof −

define e where e = (λi. d (i+1 ) (n+i))
then have (λk. (

∑
i<k. e i)) −−−−→ (

∑
i. e i)

by (intro summable-LIMSEQ) simp
then show (λk. (

∑
i<k.(

∫
+x ∈ D(n+i). f ((T^^(i+1 ))x) ∂M ))) −−−−→ (

∑
i.

d (i+1 ) (n+i))
using e-def d-def by simp

qed

have (λk. (
∑

i<k. (
∫

+x ∈ D(n+i). f ((T^^(i+1 ))x) ∂M )) + (
∫

+x ∈ B(n+k).
f ((T^^k)x) ∂M ))

−−−−→ (
∑

i. d (i+1 ) (n+i)) for n
using tendsto-add[OF b a] by simp

moreover have (λk. (
∑

i<k. (
∫

+x ∈ D(n+i). f ((T^^(i+1 ))x) ∂M )) + (
∫

+x
∈ B(n+k). f ((T^^k)x) ∂M ))

−−−−→ (
∫

+x ∈ B n. f x ∂M ) for n using ∗ by simp
ultimately have (

∫
+x ∈ B n. f x ∂M ) = (

∑
i. d (i+1 ) (n+i)) for n using

LIMSEQ-unique by blast
then have (

∑
n. (

∫
+x ∈ B (n+1 ). f x ∂M )) = (

∑
n. (

∑
i. d (i+1 ) (n+1+i)))

by simp
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then have (
∫

+ x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M ) = (
∑

n. d 0 n) + (
∑

n. (
∑

i.
d (i+1 ) (n+1+i)))

using Bdec B0dec by simp
then show ?thesis using induced-dec kac-series-aux by simp

qed

We remove the boundedness assumption on f and the finiteness assumption
on its support by truncation (both in space and on the values of f).
theorem induced-function-nn-integral:

fixes f :: ′a ⇒ ennreal
assumes A-meas [measurable]: A ∈ sets M

and f-meas [measurable]: f ∈ borel-measurable M
shows (

∫
+y. induced-function A f y ∂M ) = (

∫
+x ∈ (

⋃
n. (T^^n)−−‘A). f x

∂M )
proof −

obtain Y ::nat ⇒ ′a set where Y-meas:
∧

n. Y n ∈ sets M and Y-fin:
∧

n.
emeasure M (Y n) 6= ∞

and Y-full: (
⋃

n. Y n) = space M and Y-inc: incseq Y
by (meson range-subsetD sigma-finite-incseq)

define F where F = (λ(n::nat) x. min (f x) n ∗ indicator (Y n) x)
have mes [measurable]:

∧
n. (F n) ∈ borel-measurable M unfolding F-def using

assms(2 ) Y-meas by measurable
then have mes-rel [measurable]: (λx. F n x ∗ indicator (

⋃
n. (T^^n)−−‘A) x)

∈ borel-measurable M for n
by measurable

have bound:
∧

n x. F n x ≤ ennreal n by (simp add: F-def indicator-def en-
nreal-of-nat-eq-real-of-nat)

have
∧

n. {x ∈ space M . F n x > 0} ⊆ Y n unfolding F-def using not-le by
fastforce

then have le: emeasure M {x ∈ space M . F n x > 0} ≤ emeasure M (Y n) for
n by (metis emeasure-mono Y-meas)

have fin: emeasure M {x ∈ space M . F n x > 0} < ∞ for n
using Y-fin[of n] le[of n] by (simp add: less-top)

have ∗: (
∫

+y. induced-function A (F n) y ∂M ) = (
∫

+ x ∈ (
⋃

n. (T^^n)−−‘A).
(F n) x ∂M ) for n

by (rule induced-function-nn-integral-aux[OF A-meas mes bound - fin]) simp

have inc-Fx:
∧

x. incseq (λn. F n x) unfolding F-def incseq-def
proof (auto simp add: incseq-def )

fix x:: ′a and m n::nat
assume m ≤ n
then have min (f x) m ≤ min (f x) n using linear by fastforce
moreover have (indicator (Y m) x::ennreal) ≤ (indicator (Y n) x::ennreal)

using Y-inc
apply (auto simp add: incseq-def ) using ‹m ≤ n› by blast

ultimately show min (f x) m ∗ (indicator (Y m) x::ennreal) ≤ min (f x) n ∗
(indicator (Y n) x::ennreal)

by (auto split: split-indicator)
qed
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then have incseq (λn. F n x ∗ indicator (
⋃

n. (T^^n)−−‘A) x) for x
by (auto simp add: indicator-def incseq-def )

then have inc-rel: incseq (λn x. F n x ∗ indicator (
⋃

n. (T^^n)−−‘A) x) by
(auto simp add: incseq-def le-fun-def )

then have a: (SUP n. (
∫

+ x ∈ (
⋃

n. (T^^n)−−‘A). F n x ∂M ))
= (

∫
+ x. (SUP n. F n x ∗ indicator (

⋃
n. (T^^n)−−‘A) x) ∂M )

using nn-integral-monotone-convergence-SUP[OF inc-rel, OF mes-rel] by simp

have SUP-Fx: (SUP n. F n x) = f x if x ∈ space M for x
proof −

obtain N where x ∈ Y N using Y-full ‹x ∈ space M › by auto
have (SUP n. F n x) = (SUP n. inf (f x) (of-nat n))
proof (rule SUP-eq)

show ∃ j∈UNIV . F i x ≤ inf (f x) (of-nat j) for i
by (auto simp: F-def intro!: exI [of - i] split: split-indicator)

show ∃ i∈UNIV . inf (f x) (of-nat j) ≤ F i x for j
using ‹x ∈ Y N › ‹incseq Y ›[THEN monoD, of N max N j]
by (intro bexI [of - max N j])
(auto simp: F-def subset-eq not-le inf-min intro: min.coboundedI2 less-imp-le

split: split-indicator split-max)
qed
then show ?thesis

by (simp add: inf-SUP[symmetric] ennreal-SUP-of-nat-eq-top)
qed
then have (SUP n. F n x ∗ indicator (

⋃
n. (T^^n)−−‘A) x) = f x ∗ indicator

(
⋃

n. (T^^n)−−‘A) x
if x ∈ space M for x
by (auto simp add: indicator-def SUP-Fx that)

then have ∗∗: (SUP n. (
∫

+ x ∈ (
⋃

n. (T^^n)−−‘A). F n x ∂M )) = (
∫

+ x ∈
(
⋃

n. (T^^n)−−‘A). f x ∂M )
by (simp add: a cong: nn-integral-cong)

have incseq (λn. induced-function A (F n) x) for x
unfolding induced-function-def
using incseq-sumI2 [of {..<return-time-function A x}, of λi n. F n ((T^^i)x)]

inc-Fx by simp
then have incseq (λn. induced-function A (F n)) by (auto simp add: incseq-def

le-fun-def )
then have b: (SUP n. (

∫
+ x. induced-function A (F n) x ∂M )) = (

∫
+ x. (SUP

n. induced-function A (F n) x) ∂M )
by (rule nn-integral-monotone-convergence-SUP[symmetric]) (measurable)

have (SUP n. induced-function A (F n) x) = induced-function A f x if [simp]: x
∈ space M for x

proof −
have (SUP n. (

∑
i ∈{..<return-time-function A x}. F n ((T^^i)x)))

= (
∑

i ∈ {..<return-time-function A x}. f ((T^^i)x))
using ennreal-SUP-sum[OF inc-Fx, where ?I = {..<return-time-function A

x}] SUP-Fx by simp
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then show (SUP n. induced-function A (F n) x) = induced-function A f x
by (auto simp add: induced-function-def )

qed
then have (SUP n. (

∫
+ x. induced-function A (F n) x ∂M )) = (

∫
+ x. in-

duced-function A f x ∂M )
by (simp add: b cong: nn-integral-cong)

then show ?thesis using ∗ ∗∗ by simp
qed

Taking the constant function equal to 1 in the previous statement, we obtain
the usual Kac Formula.
theorem kac-formula-nonergodic:

assumes A-meas [measurable]: A ∈ sets M
shows (

∫
+y. return-time-function A y ∂M ) = emeasure M (

⋃
n. (T^^n)−−‘A)

proof −
define f where f = (λ(x:: ′a). 1 ::ennreal)
have

∧
x. induced-function A f x = return-time-function A x

unfolding induced-function-def f-def by (simp add:)
then have (

∫
+y. return-time-function A y ∂M ) = (

∫
+y. induced-function A f

y ∂M ) by auto
also have ... = (

∫
+ x ∈ (

⋃
n. (T^^n)−−‘A). f x ∂M )

by (rule induced-function-nn-integral) (auto simp add: f-def )
also have ... = emeasure M (

⋃
n. (T^^n)−−‘A) using f-def by auto

finally show ?thesis by simp
qed

lemma (in fmpt) return-time-integrable:
assumes A-meas [measurable]: A ∈ sets M
shows integrable M (return-time-function A)
by (rule integrableI-nonneg)
(auto simp add: kac-formula-nonergodic[OF assms] ennreal-of-nat-eq-real-of-nat[symmetric]

less-top[symmetric])

Now, we want to prove the same result but for real-valued integrable func-
tion. We first prove the statement for nonnegative functions by reducing to
the nonnegative extended reals, and then for general functions by difference.
lemma induced-function-integral-aux:

fixes f :: ′a ⇒ real
assumes A-meas [measurable]: A ∈ sets M

and f-int [measurable]: integrable M f
and f-pos:

∧
x. f x ≥ 0

shows integrable M (induced-function A f )
(
∫

y. induced-function A f y ∂M ) = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M )
proof −

show integrable M (induced-function A f )
proof (rule integrableI-nonneg)

show AE x in M . induced-function A f x ≥ 0 unfolding induced-function-def
by (simp add: f-pos sum-nonneg)
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have (
∫

+x. ennreal (induced-function A f x) ∂M ) = (
∫

+ x. induced-function
A (λx. ennreal(f x)) x ∂M )

unfolding induced-function-def by (auto simp: f-pos)
also have ... = (

∫
+ x ∈ (

⋃
n. (T^^n)−−‘A). f x ∂M )

by (rule induced-function-nn-integral, auto simp add: assms)
also have ... ≤ (

∫
+ x. f x ∂M )

using nn-set-integral-set-mono[where ?A = (
⋃

n. (T^^n)−−‘A) and ?B =
UNIV and ?f = λx. ennreal(f x)]

by auto
also have ... < ∞ using assms by (auto simp: less-top)
finally show (

∫
+ x. induced-function A f x ∂M ) < ∞ by simp

qed (simp)

have (
∫

+ x. (f x ∗ indicator (
⋃

n. (T^^n)−−‘A) x) ∂M ) = (
∫

+ x ∈ (
⋃

n.
(T^^n)−−‘A). f x ∂M )

by (auto split: split-indicator intro!: nn-integral-cong)
also have ... = (

∫
+ x. induced-function A (λx. ennreal(f x)) x ∂M )

by (rule induced-function-nn-integral[symmetric], auto simp add: assms)
also have ... = (

∫
+x. ennreal (induced-function A f x) ∂M ) unfolding in-

duced-function-def by (auto simp: f-pos)
finally have ∗: (

∫
+ x. (f x ∗ indicator (

⋃
n. (T^^n)−−‘A) x) ∂M ) = (

∫
+x.

ennreal (induced-function A f x) ∂M )
by simp

have (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M ) = (
∫

x. f x ∗ indicator (
⋃

n.
(T^^n)−−‘A) x ∂M )

by (simp add: mult.commute set-lebesgue-integral-def )
also have ... = enn2real (

∫
+ x. (f x ∗ indicator (

⋃
n. (T^^n)−−‘A) x) ∂M )

by (rule integral-eq-nn-integral, auto simp add: f-pos)
also have ... = enn2real (

∫
+x. ennreal (induced-function A f x) ∂M ) using ∗

by simp
also have ... = (

∫
x. induced-function A f x ∂M )

apply (rule integral-eq-nn-integral[symmetric])
unfolding induced-function-def by (auto simp add: f-pos sum-nonneg)

finally show (
∫

x. induced-function A f x ∂M ) = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A).
f x ∂M )

by simp
qed

Here is the general version of Kac’s Formula (for a general induced function,
starting from a real-valued integrable function).
theorem induced-function-integral-nonergodic:

fixes f :: ′a ⇒ real
assumes [measurable]: A ∈ sets M integrable M f
shows integrable M (induced-function A f )

(
∫

y. induced-function A f y ∂M ) = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M )
proof −

have U-meas [measurable]: (
⋃

n. (T^^n)−−‘A) ∈ sets M by measurable
define g where g = (λx. max (f x) 0 )
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have g-int [measurable]: integrable M g unfolding g-def using assms by auto
then have g-int2 : integrable M (induced-function A g)

using induced-function-integral-aux(1 ) g-def by auto
define h where h = (λx. max (−f x) 0 )
have h-int [measurable]: integrable M h unfolding h-def using assms by auto
then have h-int2 : integrable M (induced-function A h)

using induced-function-integral-aux(1 ) h-def by auto
have D1 : f = (λx. g x − h x) unfolding g-def h-def by auto
have D2 : induced-function A f = (λx. induced-function A g x − induced-function

A h x)
unfolding induced-function-def using D1 by (simp add: sum-subtractf )

then show integrable M (induced-function A f ) using g-int2 h-int2 by auto

have (
∫

x. induced-function A f x ∂M ) = (
∫

x. induced-function A g x − in-
duced-function A h x ∂M )

using D2 by simp
also have ... = (

∫
x. induced-function A g x ∂M ) − (

∫
x. induced-function A h

x ∂M )
using g-int2 h-int2 by auto

also have ... = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). g x ∂M ) − (
∫

x ∈ (
⋃

n. (T^^n)−−‘A).
h x ∂M )

using induced-function-integral-aux(2 ) g-def h-def g-int h-int by auto
also have ... = (

∫
x ∈ (

⋃
n. (T^^n)−−‘A). (g x − h x) ∂M )

apply (rule set-integral-diff (2 )[symmetric])
unfolding set-integrable-def
using g-int h-int integrable-mult-indicator [OF U-meas] by blast+

also have ... = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M )
using D1 by simp

finally show (
∫

x. induced-function A f x ∂M ) = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). f
x ∂M ) by simp
qed

We can reformulate the previous statement in terms of induced measure.
lemma induced-function-integral-restr-nonergodic:

fixes f :: ′a ⇒ real
assumes [measurable]: A ∈ sets M integrable M f
shows integrable (restrict-space M A) (induced-function A f )

(
∫

y. induced-function A f y ∂(restrict-space M A)) = (
∫

x ∈ (
⋃

n.
(T^^n)−−‘A). f x ∂M )
proof −
have [measurable]: integrable M (induced-function A f ) by (rule induced-function-integral-nonergodic(1 )[OF

assms])
then show integrable (restrict-space M A) (induced-function A f )
by (metis assms(1 ) integrable-mult-indicator integrable-restrict-space sets.Int-space-eq2 )

have (
∫

y. induced-function A f y ∂(restrict-space M A)) = (
∫

y ∈ A. induced-function
A f y ∂M )

by (simp add: integral-restrict-space set-lebesgue-integral-def )
also have ... = (

∫
y. induced-function A f y ∂M )

unfolding real-scaleR-def set-lebesgue-integral-def
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proof (rule Bochner-Integration.integral-cong [OF refl])
have induced-function A f y = 0 if y /∈ A for y unfolding induced-function-def
using that return-time0 [of A] recurrent-subset-incl(1 )[of A] return-time-function-def

by auto
then show

∧
x. indicator A x ∗ induced-function A f x = induced-function A f

x
unfolding indicator-def by auto

qed
also have ... = (

∫
x ∈ (

⋃
n. (T^^n)−−‘A). f x ∂M )

by (rule induced-function-integral-nonergodic(2 )[OF assms])
finally show (

∫
y. induced-function A f y ∂(restrict-space M A)) = (

∫
x ∈ (

⋃
n.

(T^^n)−−‘A). f x ∂M )
by simp

qed

end

end

6 The invariant sigma-algebra, Birkhoff theorem
theory Invariants

imports Recurrence HOL−Probability.Conditional-Expectation
begin

6.1 The sigma-algebra of invariant subsets

The invariant sigma-algebra of a qmpt is made of those sets that are invariant
under the dynamics. When the transformation is ergodic, it is made of sets
of zero or full measure. In general, the Birkhoff theorem is expressed in
terms of the conditional expectation of an integrable function with respect
to the invariant sigma-algebra.
context qmpt begin

We define the invariant sigma-algebra, as the sigma algebra of sets which are
invariant under the dynamics, i.e., they coincide with their preimage under
T .
definition Invariants where Invariants = sigma (space M ) {A ∈ sets M . T−‘A
∩ space M = A}

For this definition to make sense, we need to check that it really defines a
sigma-algebra: otherwise, the sigma operation would make garbage out of
it. This is the content of the next lemma.
lemma Invariants-sets: sets Invariants = {A ∈ sets M . T−‘A ∩ space M = A}
proof −

have sigma-algebra (space M ) {A ∈ sets M . T−‘A ∩ space M = A}
proof −
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define I where I = {A. T−‘A ∩ space M = A}
have i:

∧
A. A ∈ I =⇒ A ⊆ space M unfolding I-def by auto

have algebra (space M ) I
proof (subst algebra-iff-Un)

have a: I ⊆ Pow (space M ) using i by auto
have b: {} ∈ I unfolding I-def by auto
{

fix A assume ∗: A ∈ I
then have T−‘(space M − A) = T−‘(space M ) − T−‘A by auto
then have T−‘(space M − A) ∩ space M = T−‘(space M ) ∩ (space M ) −

T−‘A ∩ (space M ) by auto
also have ... = space M − A using ∗ I-def by (simp add: inf-absorb2

subsetI )
finally have space M − A ∈ I unfolding I-def by simp

}
then have c: (∀ a∈I . space M − a ∈ I ) by simp
have d: (∀ a∈I . ∀ b∈I . a ∪ b ∈ I ) unfolding I-def by auto
show I ⊆ Pow (space M ) ∧ {} ∈ I ∧ (∀ a∈I . space M − a ∈ I ) ∧ (∀ a∈I .

∀ b∈I . a ∪ b ∈ I )
using a b c d by blast

qed
moreover have (∀F . range F ⊆ I −→ (

⋃
i::nat. F i) ∈ I ) unfolding I-def

by auto
ultimately have sigma-algebra (space M ) I using sigma-algebra-iff by auto
moreover have sigma-algebra (space M ) (sets M ) using measure-space mea-

sure-space-def by auto
ultimately have sigma-algebra (space M ) (I ∩ (sets M )) using sigma-algebra-intersection

by auto
moreover have I ∩ sets M = {A ∈ sets M . T−‘A ∩ space M = A} unfolding

I-def by auto
ultimately show ?thesis by simp

qed
then show ?thesis unfolding Invariants-def using sigma-algebra.sets-measure-of-eq

by blast
qed

By definition, the invariant subalgebra is a subalgebra of the original algebra.
This is expressed in the following lemmas.
lemma Invariants-is-subalg: subalgebra M Invariants

unfolding subalgebra-def
using Invariants-sets Invariants-def by (simp add: space-measure-of-conv)

lemma Invariants-in-sets:
assumes A ∈ sets Invariants
shows A ∈ sets M

using Invariants-sets assms by blast

lemma Invariants-measurable-func:
assumes f ∈ measurable Invariants N
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shows f ∈ measurable M N
using Invariants-is-subalg measurable-from-subalg assms by auto

We give several trivial characterizations of invariant sets or functions.
lemma Invariants-vrestr :

assumes A ∈ sets Invariants
shows T−−‘A = A

using assms Invariants-sets Invariants-in-sets[OF assms] by auto

lemma Invariants-points:
assumes A ∈ sets Invariants x ∈ A
shows T x ∈ A

using assms Invariants-sets by auto

lemma Invariants-func-is-invariant:
fixes f ::- ⇒ ′b::t2-space
assumes f ∈ borel-measurable Invariants x ∈ space M
shows f (T x) = f x

proof −
have {f x} ∈ sets borel by simp
then have f−‘({f x}) ∩ space M ∈ Invariants using assms(1 )
by (metis (no-types, lifting) Invariants-def measurable-sets space-measure-of-conv)

moreover have x ∈ f−‘({f x}) ∩ space M using assms(2 ) by blast
ultimately have T x ∈ f−‘({f x}) ∩ space M by (rule Invariants-points)
then show ?thesis by simp

qed

lemma Invariants-func-is-invariant-n:
fixes f ::- ⇒ ′b::t2-space
assumes f ∈ borel-measurable Invariants x ∈ space M
shows f ((T^^n) x) = f x

by (induction n, auto simp add: assms Invariants-func-is-invariant)

lemma Invariants-func-charac:
assumes [measurable]: f ∈ measurable M N

and
∧

x. x ∈ space M =⇒ f (T x) = f x
shows f ∈ measurable Invariants N

proof (rule measurableI )
fix A assume A ∈ sets N
have space Invariants = space M using Invariants-is-subalg subalgebra-def by

force
show f −‘ A ∩ space Invariants ∈ sets Invariants

apply (subst Invariants-sets)
apply (auto simp add: assms ‹A ∈ sets N › ‹space Invariants = space M ›)
using ‹A ∈ sets N › assms(1 ) measurable-sets by blast

next
fix x assume x ∈ space Invariants
have space Invariants = space M using Invariants-is-subalg subalgebra-def by

force
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then show f x ∈ space N using assms(1 ) ‹x ∈ space Invariants› by (metis
measurable-space)
qed

lemma birkhoff-sum-of-invariants:
fixes f :: - ⇒ real
assumes f ∈ borel-measurable Invariants x ∈ space M
shows birkhoff-sum f n x = n ∗ f x

unfolding birkhoff-sum-def using Invariants-func-is-invariant-n[OF assms] by
auto

There are two possible definitions of the invariant sigma-algebra, competing
in the literature: one could also use the sets such that T−1A coincides with A
up to a measure 0 set. It turns out that this is equivalent to being invariant
(in our sense) up to a measure 0 set. Therefore, for all interesting purposes,
the two definitions would give the same results.
For the proof, we start from an almost invariant set, and build a genuinely
invariant set that coincides with it by adding or throwing away null parts.
proposition Invariants-quasi-Invariants-sets:

assumes [measurable]: A ∈ sets M
shows (∃B ∈ sets Invariants. A ∆ B ∈ null-sets M ) ←→ (T−−‘A ∆ A ∈

null-sets M )
proof

assume ∃B ∈ sets Invariants. A ∆ B ∈ null-sets M
then obtain B where B ∈ sets Invariants A ∆ B ∈ null-sets M by auto
then have [measurable]: B ∈ sets M using Invariants-in-sets by simp

have B = T−−‘ B using Invariants-vrestr ‹B ∈ sets Invariants› by simp
then have T−−‘A ∆ B = T−−‘(A ∆ B) by simp
moreover have T−−‘(A ∆ B) ∈ null-sets M

by (rule T-quasi-preserves-null2 (1 )[OF ‹A ∆ B ∈ null-sets M ›])
ultimately have T−−‘A ∆ B ∈ null-sets M by simp
then show T−−‘A ∆ A ∈ null-sets M

by (rule null-sym-diff-transitive) (auto simp add: ‹A ∆ B ∈ null-sets M ›
Un-commute)
next

assume H : T −−‘ A ∆ A ∈ null-sets M
have [measurable]:

∧
n. (T^^n)−−‘A ∈ sets M by simp

{
fix K assume [measurable]: K ∈ sets M and T−−‘K ∆ K ∈ null-sets M
fix n::nat
have (T^^n)−−‘K ∆ K ∈ null-sets M
proof (induction n)

case 0
have (T^^0 )−−‘ K = K using T-vrestr-0 by simp
then show ?case using Diff-cancel sup.idem by (metis null-sets.empty-sets)

next
case (Suc n)
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have T−−‘((T^^n)−−‘K ∆ K ) ∈ null-sets M
using Suc.IH T-quasi-preserves-null(1 )[of ((T^^n)−−‘K ∆ K )] by simp

then have ∗: (T^^(Suc n))−−‘K ∆ T−−‘K ∈ null-sets M using T-vrestr-composed(2 )[OF
‹K ∈ sets M ›] by simp

then show ?case
by (rule null-sym-diff-transitive, simp add: ‹T−−‘K ∆ K ∈ null-sets M ›

‹K ∈ sets M ›, measurable)
qed

} note ∗ = this

define C where C = (
⋂

n. (T^^n)−−‘A)
have [measurable]: C ∈ sets M unfolding C-def by simp
have C ∆ A ⊆ (

⋃
n. (T^^n)−−‘A ∆ A) unfolding C-def by auto

moreover have (
⋃

n. (T^^n)−−‘A ∆ A) ∈ null-sets M
using ∗ null-sets-UN assms ‹T −−‘ A ∆ A ∈ null-sets M › by auto

ultimately have CA: C ∆ A ∈ null-sets M by (meson ‹C ∈ sets M › assms
sets.Diff sets.Un null-sets-subset)

then have T−−‘(C ∆ A) ∈ null-sets M by (rule T-quasi-preserves-null2 (1 ))
then have T−−‘C ∆ T−−‘A ∈ null-sets M by simp
then have T−−‘C ∆ A ∈ null-sets M

by (rule null-sym-diff-transitive, auto simp add: H )
then have TCC : T−−‘C ∆ C ∈ null-sets M
apply (rule null-sym-diff-transitive) using CA by (auto simp add: Un-commute)

have C ⊆ (
⋂

n∈{1 ..}. (T^^n)−−‘A) unfolding C-def by auto
moreover have T−−‘C = (

⋂
n∈{1 ..}. (T^^n)−−‘A)

using T-vrestr-composed(2 )[OF assms] by (simp add: C-def atLeast-Suc-greaterThan
greaterThan-0 )

ultimately have C ⊆ T−−‘C by blast
then have (T^^0 )−−‘C ⊆ (T^^1 )−−‘C using T-vrestr-0 by auto
moreover have (T^^1 )−−‘C ⊆ (

⋃
n∈{1 ..}. (T^^n)−−‘C ) by auto

ultimately have (T^^0 )−−‘C ⊆ (
⋃

n∈{1 ..}. (T^^n)−−‘C ) by auto
then have (T^^0 )−−‘C ∪ (

⋃
n∈{1 ..}. (T^^n)−−‘C ) = (

⋃
n∈{1 ..}. (T^^n)−−‘C )

by auto
moreover have (

⋃
n. (T^^n)−−‘C ) = (T^^0 )−−‘C ∪ (

⋃
n∈{1 ..}. (T^^n)−−‘C )

by (rule union-insert-0 )
ultimately have C2 : (

⋃
n. (T^^n)−−‘C ) = (

⋃
n∈{1 ..}. (T^^n)−−‘C ) by

simp

define B where B = (
⋃

n. (T^^n)−−‘C )
have [measurable]: B ∈ sets M unfolding B-def by simp
have B ∆ C ⊆ (

⋃
n. (T^^n)−−‘C ∆ C ) unfolding B-def by auto

moreover have (
⋃

n. (T^^n)−−‘C ∆ C ) ∈ null-sets M
using ∗ null-sets-UN assms TCC by auto

ultimately have B ∆ C ∈ null-sets M by (meson ‹B ∈ sets M › ‹C ∈ sets M ›
assms sets.Diff sets.Un null-sets-subset)

then have B ∆ A ∈ null-sets M
by (rule null-sym-diff-transitive, auto simp add: CA)

then have a: A ∆ B ∈ null-sets M by (simp add: Un-commute)
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have T−−‘B = (
⋃

n∈{1 ..}. (T^^n)−−‘C )
using T-vrestr-composed(2 )[OF ‹C ∈ sets M ›] by (simp add: B-def atLeast-Suc-greaterThan

greaterThan-0 )
then have T−−‘B = B unfolding B-def using C2 by simp
then have B ∈ sets Invariants using Invariants-sets vimage-restr-def by auto

then show ∃B ∈ sets Invariants. A ∆ B ∈ null-sets M using a by blast
qed

In a conservative setting, it is enough to be included in its image or its preim-
age to be almost invariant: otherwise, since the difference set has disjoint
preimages, and is therefore null by conservativity.
lemma (in conservative) preimage-included-then-almost-invariant:

assumes [measurable]: A ∈ sets M and T−−‘A ⊆ A
shows A ∆ (T−−‘A) ∈ null-sets M

proof −
define B where B = A − T−−‘A
then have [measurable]: B ∈ sets M by simp
have (T^^(Suc n))−−‘A ⊆ (T^^n)−−‘A for n using T-vrestr-composed(3 )[OF

assms(1 )] vrestr-inclusion[OF assms(2 )] by auto
then have disjoint-family (λn. (T^^n)−−‘A − (T^^(Suc n))−−‘A) by (rule

disjoint-family-Suc2 [where ?A = λn. (T^^n)−−‘A])
moreover have (T^^n)−−‘A − (T^^(Suc n))−−‘A = (T^^n)−−‘B for n un-

folding B-def Suc-eq-plus1 using T-vrestr-composed(3 )[OF assms(1 )] by auto
ultimately have disjoint-family (λn. (T^^n)−−‘ B) by simp
then have

∧
n. n 6= 0 =⇒ ((T^^n)−−‘B) ∩ B = {} unfolding disjoint-family-on-def

by (metis UNIV-I T-vrestr-0 (1 )[OF ‹B ∈ sets M ›])
then have

∧
n. n > 0 =⇒ (T^^n)−‘B ∩ B = {} unfolding vimage-restr-def

by (simp add: Int-assoc)
then have B ∈ null-sets M using disjoint-then-null[OF ‹B ∈ sets M ›] Int-commute

by auto
then show ?thesis unfolding B-def using assms(2 ) by (simp add: Diff-mono

Un-absorb2 )
qed

lemma (in conservative) preimage-includes-then-almost-invariant:
assumes [measurable]: A ∈ sets M and A ⊆ T−−‘A
shows A ∆ (T−−‘A) ∈ null-sets M

proof −
define B where B = T−−‘A − A
then have [measurable]: B ∈ sets M by simp
have

∧
n. (T^^(Suc n))−−‘A ⊇ (T^^n)−−‘A using T-vrestr-composed(3 )[OF

assms(1 )] vrestr-inclusion[OF assms(2 )] by auto
then have disjoint-family (λn. (T^^(Suc n))−−‘A − (T^^n)−−‘A) by (rule

disjoint-family-Suc[where ?A = λn. (T^^n)−−‘A])
moreover have

∧
n. (T^^(Suc n))−−‘A − (T^^n)−−‘A = (T^^n)−−‘B un-

folding B-def Suc-eq-plus1 using T-vrestr-composed(3 )[OF assms(1 )] by auto
ultimately have disjoint-family (λn. (T^^n)−−‘ B) by simp
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then have
∧

n. n 6= 0 =⇒ ((T^^n)−−‘B) ∩ B = {} unfolding disjoint-family-on-def
by (metis UNIV-I T-vrestr-0 (1 )[OF ‹B ∈ sets M ›])

then have
∧

n. n > 0 =⇒ (T^^n)−‘B ∩ B = {} unfolding vimage-restr-def
by (simp add: Int-assoc)
then have B ∈ null-sets M using disjoint-then-null[OF ‹B ∈ sets M ›] Int-commute

by auto
then show ?thesis unfolding B-def using assms(2 ) by (simp add: Diff-mono

Un-absorb1 )
qed

The above properties for sets are also true for functions: if f and f ◦T coin-
cide almost everywhere, i.e., f is almost invariant, then f coincides almost
everywhere with a true invariant function.
The idea of the proof is straightforward: throw away the orbits on which
f is not really invariant (say this is the complement of the good set), and
replace it by 0 there. However, this does not work directly: the good set is
not invariant, some points may have a non-constant value of f on their orbit
but reach the good set eventually. One can however define g to be equal to
the eventual value of f along the orbit, if the orbit reaches the good set, and
0 elsewhere.
proposition Invariants-quasi-Invariants-functions:

fixes f ::- ⇒ ′b::{second-countable-topology, t2-space}
assumes f-meas [measurable]: f ∈ borel-measurable M
shows (∃ g ∈ borel-measurable Invariants. AE x in M . f x = g x) ←→ (AE x in

M . f (T x) = f x)
proof

assume ∃ g∈borel-measurable Invariants. AE x in M . f x = g x
then obtain g where g:g∈borel-measurable Invariants AE x in M . f x = g x by

blast
then have [measurable]: g ∈ borel-measurable M using Invariants-measurable-func

by auto
define A where A = {x ∈ space M . f x = g x}
have [measurable]: A ∈ sets M unfolding A-def by simp
define B where B = space M − A
have [measurable]: B ∈ sets M unfolding B-def by simp
moreover have AE x in M . x /∈ B unfolding B-def A-def using g(2 ) by auto
ultimately have B ∈ null-sets M using AE-iff-null-sets by blast
then have T−−‘B ∈ null-sets M by (rule T-quasi-preserves-null2 (1 ))
then have B ∪ T−−‘B ∈ null-sets M using ‹B ∈ null-sets M › by auto
then have AE x in M . x /∈ (B ∪ T−−‘B) using AE-iff-null-sets null-setsD2

by blast
then have i: AE x in M . x ∈ space M − (B ∪ T−−‘B) by auto
{

fix x assume ∗: x ∈ space M − (B ∪ T−−‘B)
then have x ∈ A unfolding B-def by blast
then have f x = g x unfolding A-def by blast
have T x ∈ A using ∗ B-def by auto
then have f (T x) = g(T x) unfolding A-def by blast
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moreover have g(T x) = g x
apply (rule Invariants-func-is-invariant) using ∗ by (auto simp add: assms

‹g∈borel-measurable Invariants›)
ultimately have f (T x) = f x using ‹f x = g x› by simp

}
then show AE x in M . f (T x) = f x using i by auto

next
assume ∗: AE x in M . f (T x) = f x

good_set is the set of points for which f is constant on their orbit. Here,
we define g = f . If a point ever enters good_set, then we take g to be the
value of f there. Otherwise, g takes an arbitrary value, say y0.

define good-set where good-set = {x ∈ space M . ∀n. f ((T^^(Suc n)) x) =
f ((T^^n) x)}

define good-time where good-time = (λx. Inf {n. (T^^n) x ∈ good-set})
have AE x in M . x ∈ good-set using T-AE-iterates[OF ∗] by (simp add:

good-set-def )
have [measurable]: good-set ∈ sets M unfolding good-set-def by auto
obtain y0 :: ′b where True by auto
define g where g = (λx. if (∃n. (T^^n) x ∈ good-set) then f ((T^^(good-time

x)) x) else y0 )
have [measurable]: good-time ∈ measurable M (count-space UNIV ) unfolding

good-time-def by measurable
have [measurable]: g ∈ borel-measurable M unfolding g-def by measurable

have f x = g x if x ∈ good-set for x
proof −

have a: 0 ∈ {n. (T^^n) x ∈ good-set} using that by simp
have good-time x = 0
unfolding good-time-def apply (intro cInf-eq-non-empty) using a by blast+

moreover have {n. (T^^n) x ∈ good-set} 6= {} using a by blast
ultimately show f x = g x unfolding g-def by auto

qed
then have AE x in M . f x = g x using ‹AE x in M . x ∈ good-set› by auto

have ∗: f ((T^^(Suc 0 )) x) = f ((T^^0 ) x) if x ∈ good-set for x
using that unfolding good-set-def by blast

have good-1 : T x ∈ good-set ∧ f (T x) = f x if x ∈ good-set for x
using ∗[OF that] that unfolding good-set-def apply (auto)
unfolding T-Tn-T-compose by blast

then have good-k:
∧

x. x ∈ good-set =⇒ (T^^k) x ∈ good-set ∧ f ((T^^k) x) =
f x for k

by (induction k, auto)

have g(T x) = g x if x ∈ space M for x
proof (cases)

assume ∗: ∃n. (T^^n) (T x) ∈ good-set
define n where n = Inf {n. (T^^n) (T x) ∈ good-set}

have (T^^n)(T x) ∈ good-set using ∗ Inf-nat-def1 by (metis empty-iff mem-Collect-eq
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n-def )
then have a: (T^^(n+1 )) x ∈ good-set by (metis Suc-eq-plus1 comp-eq-dest-lhs

funpow.simps(2 ) funpow-swap1 )
then have ∗∗: ∃m. (T^^m) x ∈ good-set by blast
define m where m = Inf {m. (T^^m) x ∈ good-set}
then have (T^^m) x ∈ good-set using ∗∗ Inf-nat-def1 by (metis empty-iff

mem-Collect-eq)
have n+1 ∈ {m. (T^^m) x ∈ good-set} using a by simp
then have m ≤ n+1 using m-def by (simp add: Inf-nat-def Least-le)
then obtain k where n+1 = m + k using le-iff-add by blast
have g x = f ((T^^m) x) unfolding g-def good-time-def using ∗∗ m-def by

simp
also have ... = f ((T^^k) ((T^^m) x)) using ‹(T^^m) x ∈ good-set› good-k by

simp
also have ... = f ((T^^(n+1 ))x) using ‹n+1 = m + k›[symmetric] funpow-add

by (metis add.commute comp-apply)
also have ... = f ((T^^n) (T x)) using funpow-Suc-right by (metis Suc-eq-plus1

comp-apply)
also have ... = g(T x) unfolding g-def good-time-def using ∗ n-def by simp
finally show g(T x) = g x by simp

next
assume ∗: ¬(∃n. (T^^n) (T x) ∈ good-set)
then have g(T x) = y0 unfolding g-def by simp
have ∗∗: ¬(∃n. (T^^(Suc n)) x ∈ good-set) using funpow-Suc-right ∗ by (metis

comp-apply)
have T x /∈ good-set using good-k ∗ by blast
then have x /∈ good-set using good-1 by auto
then have ¬(∃n. (T^^n) x ∈ good-set) using ∗∗ using good-1 by fastforce
then have g x = y0 unfolding g-def by simp
then show g(T x) = g x using ‹g(T x) = y0 › by simp

qed
then have g ∈ borel-measurable Invariants by (rule Invariants-func-charac[OF

‹g ∈ borel-measurable M ›])
then show ∃ g∈borel-measurable Invariants. AE x in M . f x = g x using ‹AE x

in M . f x = g x› by blast
qed

In a conservative setting, it suffices to have an almost everywhere inequal-
ity to get an almost everywhere equality, as the set where there is strict
inequality has 0 measure as its iterates are disjoint, by conservativity.
proposition (in conservative) AE-decreasing-then-invariant:

fixes f ::- ⇒ ′b::{linorder-topology, second-countable-topology}
assumes AE x in M . f (T x) ≤ f x

and [measurable]: f ∈ borel-measurable M
shows AE x in M . f (T x) = f x

proof −
obtain D:: ′b set where D: countable D (∀ x y. x < y −→ (∃ d ∈ D. x ≤ d ∧ d

< y))
using countable-separating-set-linorder2 by blast

160



define A where A = {x ∈ space M . f (T x) ≤ f x}
then have [measurable]: A ∈ sets M by simp
define B where B = {x ∈ space M . ∀n. f ((T^^(n+1 )) x) ≤ f ((T^^n)x)}
then have [measurable]: B ∈ sets M by simp

have space M − A ∈ null-sets M unfolding A-def using assms by (simp add:
assms(1 ) AE-iff-null-sets)
then have (

⋃
n. (T^^n)−−‘(space M − A)) ∈ null-sets M by (metis null-sets-UN

T-quasi-preserves-null2 (2 ))
moreover have space M − B = (

⋃
n. (T^^n)−−‘(space M − A))

unfolding B-def A-def by auto
ultimately have space M − B ∈ null-sets M by simp

have ∗: B = (
⋂

n. (T^^n)−−‘A)
unfolding B-def A-def by auto

then have T−−‘B = (
⋂

n. T−−‘ (T^^n)−−‘A) by auto
also have ... = (

⋂
n. (T^^(n+1 ))−−‘A) using T-vrestr-composed(2 )[OF ‹A ∈

sets M ›] by simp
also have ... ⊇ (

⋂
n. (T^^n)−−‘A) by blast

finally have B1 : B ⊆ T−−‘B using ∗ by simp
have B ⊆ A using ∗ T-vrestr-0 [OF ‹A ∈ sets M ›] by blast
then have B2 :

∧
x. x ∈ B =⇒ f (T x) ≤ f x unfolding A-def by auto

define C where C = (λt. {x ∈ B. f x ≤ t})
{

fix t
have C t = B ∩ f−‘{..t} ∩ space M unfolding C-def using sets.sets-into-space[OF

‹B ∈ sets M ›] by auto
then have [measurable]: C t ∈ sets M using assms(2 ) by simp
have C t ⊆ T−−‘(C t) using B1 unfolding C-def vimage-restr-def apply

auto using B2 order-trans by blast
then have T−−‘(C t) − C t ∈ null-sets M by (metis Diff-mono Un-absorb1

preimage-includes-then-almost-invariant[OF ‹C t ∈ sets M ›])
}
then have (

⋃
d∈D. T−−‘(C d) − C d) ∈ null-sets M using ‹countable D› by

(simp add: null-sets-UN ′)
then have (space M − B) ∪ (

⋃
d∈D. T−−‘(C d) − C d) ∈ null-sets M using

‹space M − B ∈ null-sets M › by auto
then have AE x in M . x /∈ (space M − B) ∪ (

⋃
d∈D. T−−‘(C d) − C d) using

AE-not-in by blast
moreover
{

fix x assume x: x ∈ space M x /∈ (space M − B) ∪ (
⋃

d∈D. T−−‘(C d) − C
d)

then have x ∈ B by simp
then have T x ∈ B using B1 by auto
have f (T x) = f x
proof (rule ccontr)
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assume f (T x) 6= f x
then have f (T x) < f x using B2 [OF ‹x ∈ B›] by simp
then obtain d where d: d ∈ D f (T x) ≤ d ∧ d < f x using D by auto
then have T x ∈ C d using ‹T x ∈ B› unfolding C-def by simp
then have x ∈ T−−‘(C d) using ‹x ∈ space M › by simp
then have x ∈ C d using x ‹d ∈ D› by simp
then have f x ≤ d unfolding C-def by simp
then show False using d by auto

qed
}
ultimately show ?thesis by auto

qed

proposition (in conservative) AE-increasing-then-invariant:
fixes f ::- ⇒ ′b::{linorder-topology, second-countable-topology}
assumes AE x in M . f (T x) ≥ f x

and [measurable]: f ∈ borel-measurable M
shows AE x in M . f (T x) = f x

proof −
obtain D:: ′b set where D: countable D (∀ x y. x < y −→ (∃ d ∈ D. x < d ∧ d
≤ y))

using countable-separating-set-linorder1 by blast

define A where A = {x ∈ space M . f (T x) ≥ f x}
then have [measurable]: A ∈ sets M by simp
define B where B = {x ∈ space M . ∀n. f ((T^^(n+1 )) x) ≥ f ((T^^n)x)}
then have [measurable]: B ∈ sets M by simp

have space M − A ∈ null-sets M unfolding A-def using assms by (simp add:
assms(1 ) AE-iff-null-sets)
then have (

⋃
n. (T^^n)−−‘(space M − A)) ∈ null-sets M by (metis null-sets-UN

T-quasi-preserves-null2 (2 ))
moreover have space M − B = (

⋃
n. (T^^n)−−‘(space M − A))

unfolding B-def A-def by auto
ultimately have space M − B ∈ null-sets M by simp

have ∗: B = (
⋂

n. (T^^n)−−‘A)
unfolding B-def A-def by auto

then have T−−‘B = (
⋂

n. T−−‘ (T^^n)−−‘A) by auto
also have ... = (

⋂
n. (T^^(n+1 ))−−‘A) using T-vrestr-composed(2 )[OF ‹A ∈

sets M ›] by simp
also have ... ⊇ (

⋂
n. (T^^n)−−‘A) by blast

finally have B1 : B ⊆ T−−‘B using ∗ by simp
have B ⊆ A using ∗ T-vrestr-0 [OF ‹A ∈ sets M ›] by blast
then have B2 :

∧
x. x ∈ B =⇒ f (T x) ≥ f x unfolding A-def by auto

define C where C = (λt. {x ∈ B. f x ≥ t})
{

fix t
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have C t = B ∩ f−‘{t..} ∩ space M unfolding C-def using sets.sets-into-space[OF
‹B ∈ sets M ›] by auto

then have [measurable]: C t ∈ sets M using assms(2 ) by simp
have C t ⊆ T−−‘(C t) using B1 unfolding C-def vimage-restr-def apply

auto using B2 order-trans by blast
then have T−−‘(C t) − C t ∈ null-sets M by (metis Diff-mono Un-absorb1

preimage-includes-then-almost-invariant[OF ‹C t ∈ sets M ›])
}
then have (

⋃
d∈D. T−−‘(C d) − C d) ∈ null-sets M using ‹countable D› by

(simp add: null-sets-UN ′)
then have (space M − B) ∪ (

⋃
d∈D. T−−‘(C d) − C d) ∈ null-sets M using

‹space M − B ∈ null-sets M › by auto
then have AE x in M . x /∈ (space M − B) ∪ (

⋃
d∈D. T−−‘(C d) − C d) using

AE-not-in by blast
moreover
{

fix x assume x: x ∈ space M x /∈ (space M − B) ∪ (
⋃

d∈D. T−−‘(C d) − C
d)

then have x ∈ B by simp
then have T x ∈ B using B1 by auto
have f (T x) = f x
proof (rule ccontr)

assume f (T x) 6= f x
then have f (T x) > f x using B2 [OF ‹x ∈ B›] by simp
then obtain d where d: d ∈ D f (T x) ≥ d ∧ d > f x using D by auto
then have T x ∈ C d using ‹T x ∈ B› unfolding C-def by simp
then have x ∈ T−−‘(C d) using ‹x ∈ space M › by simp
then have x ∈ C d using x ‹d ∈ D› by simp
then have f x ≥ d unfolding C-def by simp
then show False using d by auto

qed
}
ultimately show ?thesis by auto

qed

For an invertible map, the invariants of T and T−1 are the same.
lemma Invariants-Tinv:

assumes invertible-qmpt
shows qmpt.Invariants M Tinv = Invariants

proof −
interpret I : qmpt M Tinv using Tinv-qmpt[OF assms] by auto
have (T −‘ A ∩ space M = A) ←→ (Tinv −‘ A ∩ space M = A) if A ∈ sets M

for A
proof

assume T −‘ A ∩ space M = A
then show Tinv −‘ A ∩ space M = A

using assms that unfolding Tinv-def invertible-qmpt-def
apply auto
apply (metis IntE UNIV-I bij-def imageE inv-f-f vimageE)
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apply (metis I .T-spaceM-stable(1 ) Int-iff Tinv-def bij-inv-eq-iff vimageI )
done

next
assume Tinv −‘ A ∩ space M = A
then show T −‘ A ∩ space M = A

using assms that unfolding Tinv-def invertible-qmpt-def
apply auto
apply (metis IntE bij-def inv-f-f vimageE)

apply (metis T-Tinv-of-set T-meas Tinv-def assms qmpt.vrestr-of-set qmpt-axioms
vrestr-image(3 ))

done
qed
then have {A ∈ sets M . Tinv −‘ A ∩ space M = A} = {A ∈ sets M . T −‘ A
∩ space M = A}

by blast
then show ?thesis unfolding Invariants-def I .Invariants-def by auto

qed

end

sublocale fmpt ⊆ finite-measure-subalgebra M Invariants
unfolding finite-measure-subalgebra-def finite-measure-subalgebra-axioms-def
using Invariants-is-subalg by (simp add: finite-measureI )

context fmpt
begin

The conditional expectation with respect to the invariant sigma-algebra is
the same for f or f ◦ T , essentially by definition.
lemma Invariants-of-foTn:

fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows AE x in M . real-cond-exp M Invariants (f o (T^^n)) x = real-cond-exp

M Invariants f x
proof (rule real-cond-exp-charact)

fix A assume [measurable]: A ∈ sets Invariants
then have [measurable]: A ∈ sets M using Invariants-in-sets by blast
then have ind-meas [measurable]: ((indicator A)::( ′a ⇒ real)) ∈ borel-measurable

Invariants by auto

have set-lebesgue-integral M A (f ◦ (T^^n)) = (
∫

x. indicator A x ∗ f ((T^^n)
x) ∂M )

by (auto simp: comp-def set-lebesgue-integral-def )
also have ... = (

∫
x. indicator A ((T^^n) x) ∗ f ((T^^n) x) ∂M )

by (rule Bochner-Integration.integral-cong, auto simp add: Invariants-func-is-invariant-n[OF
ind-meas])

also have ... = (
∫

x. indicator A x ∗ f x ∂M )
apply (rule Tn-integral-preserving(2 )) using integrable-mult-indicator [OF ‹A

∈ sets M › assms] by auto
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also have ... = (
∫

x. indicator A x ∗ real-cond-exp M Invariants f x ∂M )
apply (rule real-cond-exp-intg(2 )[symmetric]) using integrable-mult-indicator [OF

‹A ∈ sets M › assms] by auto
also have ... = set-lebesgue-integral M A (real-cond-exp M Invariants f )

by (auto simp: set-lebesgue-integral-def )
finally show set-lebesgue-integral M A (f ◦ (T^^n)) = set-lebesgue-integral M A

(real-cond-exp M Invariants f )
by simp

qed (auto simp add: assms real-cond-exp-int Tn-integral-preserving(1 )[OF assms]
comp-def )

lemma Invariants-of-foT :
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows AE x in M . real-cond-exp M Invariants f x = real-cond-exp M Invariants

(f o T ) x
using Invariants-of-foTn[OF assms, where ?n = 1 ] by auto

lemma birkhoff-sum-Invariants:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows AE x in M . real-cond-exp M Invariants (birkhoff-sum f n) x = n ∗

real-cond-exp M Invariants f x
proof −

define F where F = (λi. f o (T^^i))
have [measurable]:

∧
i. F i ∈ borel-measurable M unfolding F-def by auto

have ∗: integrable M (F i) for i unfolding F-def
by (subst comp-def , rule Tn-integral-preserving(1 )[OF assms, of i])

have AE x in M . n ∗ real-cond-exp M Invariants f x = (
∑

i∈{..<n}. real-cond-exp
M Invariants f x) by auto

moreover have AE x in M . (
∑

i∈{..<n}. real-cond-exp M Invariants f x) =
(
∑

i∈{..<n}. real-cond-exp M Invariants (F i) x)
apply (rule AE-symmetric[OF AE-equal-sum]) unfolding F-def using Invari-

ants-of-foTn[OF assms] by simp
moreover have AE x in M . (

∑
i∈{..<n}. real-cond-exp M Invariants (F i) x)

= real-cond-exp M Invariants (λx.
∑

i∈{..<n}. F i x) x
by (rule AE-symmetric[OF real-cond-exp-sum [OF ∗]])

moreover have AE x in M . real-cond-exp M Invariants (λx.
∑

i∈{..<n}. F i
x) x = real-cond-exp M Invariants (birkhoff-sum f n) x

apply (rule real-cond-exp-cong) unfolding F-def using birkhoff-sum-def [symmetric]
by auto

ultimately show ?thesis by auto
qed

end
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6.2 Birkhoff theorem
6.2.1 Almost everywhere version of Birkhoff theorem

This paragraph is devoted to the proof of Birkhoff theorem, arguably the
most fundamental result of ergodic theory. This theorem asserts that Birkhoff
averages of an integrable function f converge almost surely, to the condi-
tional expectation of f with respect to the invariant sigma algebra.
This result implies for instance the strong law of large numbers (in proba-
bility theory).
There are numerous proofs of this statement, but none is really easy. We
follow the very efficient argument given in Katok-Hasselblatt. To help the
reader, here is the same proof informally. The first part of the proof is
formalized in birkhoff_lemma1, the second one in birkhoff_lemma, and
the conclusion in birkhoff_theorem.
Start with an integrable function g. let Gn(x) = maxk≤n Skg(x). Then
lim supSng/n ≤ 0 outside of A, the set where Gn tends to infinity. Moreover,
Gn+1 − Gn ◦ T is bounded by g, and tends to g on A. It follows from
the dominated convergence theorem that

∫
AGn+1 − Gn ◦ T →

∫
A g. As∫

AGn+1 −Gn ◦ T =
∫
AGn+1 −Gn ≥ 0, we obtain

∫
A g ≥ 0.

Apply now this result to the function g = f − E(f |I) − ε, where ε > 0
is fixed. Then

∫
A g = −εµ(A), then have µ(A) = 0. Thus, almost surely,

lim supSng/n ≤ 0, i.e., lim supSnf/n ≤ E(f |I) + ε. Letting ε tend to 0
gives lim supSnf/n ≤ E(f |I).
Applying the same result to −f gives Snf/n→ E(f |I).
context fmpt
begin

lemma birkhoff-aux1 :
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
defines A ≡ {x ∈ space M . limsup (λn. ereal(birkhoff-sum f n x)) = ∞}

shows A ∈ sets Invariants (
∫

x. f x ∗ indicator A x ∂M ) ≥ 0
proof −

let ?bsf = birkhoff-sum f
have [measurable]: A ∈ sets M unfolding A-def by simp
have Ainv: x ∈ A ←→ T x ∈ A if x ∈ space M for x
proof −

have ereal(?bsf (1 + n) x) = ereal(f x) + ereal(?bsf n (T x)) for n
unfolding birkhoff-sum-cocycle birkhoff-sum-1 by simp

moreover have limsup (λn. ereal(f x) + ereal(?bsf n (T x)))
= ereal(f x) + limsup(λn. ereal(?bsf n (T x)))

by (rule ereal-limsup-lim-add, auto)
moreover have limsup (λn. ereal(?bsf (n+1 ) x)) = limsup (λn. ereal(?bsf n

x)) using limsup-shift by simp
ultimately have limsup (λn. ereal(birkhoff-sum f n x)) = ereal(f x) + limsup
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(λn. ereal(?bsf n (T x))) by simp
then have limsup (λn. ereal(?bsf n x)) = ∞ ←→ limsup (λn. ereal(?bsf n (T

x))) = ∞ by simp
then show x ∈ A ←→ T x ∈ A using ‹x ∈ space M › A-def by simp

qed
then show A ∈ sets Invariants using assms(2 ) Invariants-sets by auto

define F where F = (λn x. MAX k ∈{0 ..n}. ?bsf k x)
have [measurable]:

∧
n. F n ∈ borel-measurable M unfolding F-def by measur-

able
have intFn: integrable M (F n) for n
unfolding F-def by (rule integrable-MAX , auto simp add: birkhoff-sum-integral(1 )[OF

assms(1 )])

have Frec: F (n+1 ) x − F n (T x) = max (−F n (T x)) (f x) for n x
proof −

have {0 ..n+1} = {0} ∪ {1 ..n+1} by auto
then have (λk. ?bsf k x) ‘ {0 ..n+1} = (λk. ?bsf k x) ‘ {0} ∪ (λk. ?bsf k x) ‘

{1 ..n+1} by blast
then have ∗: (λk. ?bsf k x) ‘ {0 ..n+1} = {0} ∪ (λk. ?bsf k x) ‘ {1 ..n+1}

using birkhoff-sum-1 (1 ) by simp
have b: F (n+1 ) x = max (Max {0}) (MAX k ∈{1 ..n+1}. ?bsf k x)

by (subst F-def , subst ∗, rule Max.union, auto)

have (λk. ?bsf k x) ‘ {1 ..n+1} = (λk. ?bsf (1+k) x) ‘ {0 ..n} using Suc-le-D
by fastforce

also have ... = (λk. f x + ?bsf k (T x)) ‘ {0 ..n}
by (subst birkhoff-sum-cocycle, subst birkhoff-sum-1 (2 ), auto)

finally have c: F (n+1 ) x = max 0 (MAX k ∈{0 ..n}. ?bsf k (T x) + f x)
using b by (simp add: add-ac)

have {f x + birkhoff-sum f k (T x) |k. k ∈{0 ..n}} = (+) (f x) ‘ {birkhoff-sum
f k (T x) |k. k ∈{0 ..n}} by blast

have (MAX k ∈{0 ..n}. ?bsf k (T x) + f x) = (MAX k ∈{0 ..n}. ?bsf k (T x))
+ f x

by (rule Max-add-commute) auto
also have ... = F n (T x) + f x unfolding F-def by simp
finally have (MAX k ∈{0 ..n}. ?bsf k (T x) + f x) = f x + F n (T x) by simp
then have F (n+1 ) x = max 0 (f x + F n (T x)) using c by simp
then show F (n+1 ) x − F n (T x) = max (−F n (T x)) (f x) by auto

qed

have a: abs((F (n+1 ) x − F n (T x)) ∗ indicator A x) ≤ abs(f x) for n x
proof −

have F (n+1 ) x −F n (T x) ≥ f x using Frec by simp
then have ∗: F (n+1 ) x −F n (T x) ≥ − abs(f x) by simp

have F n (T x) ≥ birkhoff-sum f 0 (T x)
unfolding F-def apply (rule Max-ge, simp) using atLeastAtMost-iff by blast
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then have F n (T x) ≥ 0 using birkhoff-sum-1 (1 ) by simp
then have −F n (T x) ≤ abs (f x) by simp
moreover have f x ≤ abs(f x) by simp
ultimately have F (n+1 ) x −F n (T x) ≤ abs(f x) using Frec by simp
then have abs(F (n+1 ) x − F n (T x)) ≤ abs(f x) using ∗ by simp

then show abs((F (n+1 ) x − F n (T x)) ∗ indicator A x) ≤ abs(f x) unfolding
indicator-def by auto

qed
have b: (λn. (F (n+1 ) x − F n (T x)) ∗ indicator A x) −−−−→ f x ∗ indicator

A x for x
proof (rule tendsto-eventually, cases)

assume x ∈ A
then have T x ∈ A using Ainv A-def by auto
then have limsup (λn. ereal(birkhoff-sum f n (T x))) > ereal(−f x) unfolding

A-def by simp
then obtain N where ereal(?bsf N (T x)) > ereal(−f x) using Limsup-obtain

by blast
then have ∗: ?bsf N (T x) > −f x by simp
{

fix n assume n≥N
then have ?bsf N (T x) ∈ (λk. ?bsf k (T x)) ‘ {0 ..n} by auto
then have F n (T x) ≥ ?bsf N (T x) unfolding F-def by simp
then have F n (T x) ≥ −f x using ∗ by simp
then have max (−F n (T x)) (f x) = f x by simp
then have F (n+1 ) x − F n (T x) = f x using Frec by simp
then have (F (n+1 ) x − F n (T x)) ∗ indicator A x = f x ∗ indicator A x

by simp
}
then show eventually (λn. (F (n+1 ) x − F n (T x)) ∗ indicator A x = f x ∗

indicator A x) sequentially
using eventually-sequentially by blast

next
assume ¬(x ∈ A)
then have indicator A x = (0 ::real) by simp
then show eventually (λn. (F (n+1 ) x − F n (T x)) ∗ indicator A x = f x ∗

indicator A x) sequentially by auto
qed
have lim: (λn. (

∫
x. (F (n+1 ) x − F n (T x)) ∗ indicator A x ∂M )) −−−−→

(
∫

x. f x ∗ indicator A x ∂M )
proof (rule integral-dominated-convergence[where ?w = (λx. abs(f x))])

show integrable M (λx. |f x|) using assms(1 ) by auto
show AE x in M . (λn. (F (n + 1 ) x − F n (T x)) ∗ indicator A x) −−−−→ f

x ∗ indicator A x using b by auto
show

∧
n. AE x in M . norm ((F (n + 1 ) x − F n (T x)) ∗ indicator A x) ≤

|f x| using a by auto
qed (simp-all)

have (
∫

x. (F (n+1 ) x − F n (T x)) ∗ indicator A x ∂M ) ≥ 0 for n
proof −
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have (
∫

x. F n (T x) ∗ indicator A x ∂M ) = (
∫

x. (λx. F n x ∗ indicator A x)
(T x) ∂M )

by (rule Bochner-Integration.integral-cong, auto simp add: Ainv indicator-def )
also have ... = (

∫
x. F n x ∗ indicator A x ∂M )

by (rule T-integral-preserving, auto simp add: intFn integrable-real-mult-indicator)
finally have i: (

∫
x. F n (T x) ∗ indicator A x ∂M ) = (

∫
x. F n x ∗ indicator

A x ∂M ) by simp

have (
∫

x. (F (n+1 ) x − F n (T x)) ∗ indicator A x ∂M ) = (
∫

x. F (n+1 ) x
∗ indicator A x − F n (T x) ∗ indicator A x ∂M )

by (simp add: mult.commute right-diff-distrib)
also have ... = (

∫
x. F (n+1 ) x ∗ indicator A x ∂M ) − (

∫
x. F n (T x) ∗

indicator A x ∂M )
by (rule Bochner-Integration.integral-diff , auto simp add: intFn integrable-real-mult-indicator

T-meas T-integral-preserving(1 ))
also have ... = (

∫
x. F (n+1 ) x ∗ indicator A x ∂M ) − (

∫
x. F n x ∗ indicator

A x ∂M )
using i by simp

also have ... = (
∫

x. F (n+1 ) x ∗ indicator A x − F n x ∗ indicator A x ∂M )
by (rule Bochner-Integration.integral-diff [symmetric], auto simp add: intFn

integrable-real-mult-indicator)
also have ... = (

∫
x. (F (n+1 ) x − F n x) ∗ indicator A x ∂M )

by (simp add: mult.commute right-diff-distrib)
finally have ∗: (

∫
x. (F (n+1 ) x − F n (T x)) ∗ indicator A x ∂M ) = (

∫
x.

(F (n+1 ) x − F n x) ∗ indicator A x ∂M )
by simp

have F n x ≤ F (n+1 ) x for x unfolding F-def by (rule Max-mono, auto)
then have (F (n+1 ) x − F n x) ∗ indicator A x ≥ 0 for x by simp
then have integralL M (λx. 0 ) ≤ integralL M (λx. (F (n+1 ) x − F n x) ∗

indicator A x)
by (auto simp add: intFn integrable-real-mult-indicator intro: integral-mono)

then have (
∫

x. (F (n+1 ) x − F n x) ∗ indicator A x ∂M ) ≥ 0 by simp
then show (

∫
x. (F (n+1 ) x − F n (T x)) ∗ indicator A x ∂M ) ≥ 0 using ∗

by simp
qed
then show (

∫
x. f x ∗ indicator A x ∂M ) ≥ 0 using lim by (simp add: LIM-

SEQ-le-const)
qed

lemma birkhoff-aux2 :
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows AE x in M . limsup (λn. ereal(birkhoff-sum f n x / n)) ≤ real-cond-exp M

Invariants f x
proof −

{
fix ε assume ε > (0 ::real)
define g where g = (λx. f x − real-cond-exp M Invariants f x − ε)
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then have intg: integrable M g using assms real-cond-exp-int(1 ) assms by
auto

define A where A = {x ∈ space M . limsup (λn. ereal(birkhoff-sum g n x)) =
∞}

have Ag: A ∈ sets Invariants (
∫

x. g x ∗ indicator A x ∂M ) ≥ 0
unfolding A-def by (rule birkhoff-aux1 [where ?f = g, OF intg])+

then have [measurable]: A ∈ sets M by (simp add: Invariants-in-sets)

have eq: (
∫

x. indicator A x ∗ real-cond-exp M Invariants f x ∂M ) = (
∫

x.
indicator A x ∗ f x ∂M )

proof (rule real-cond-exp-intg[where ?f = λx. (indicator A x)::real and ?g =
f ])

have (λx. indicator A x ∗ f x) = (λx. f x ∗ indicator A x) by auto
then show integrable M (λx. indicator A x ∗ f x)

using integrable-real-mult-indicator [OF ‹A ∈ sets M › assms] by simp
show indicator A ∈ borel-measurable Invariants using ‹A ∈ sets Invariants›

by measurable
qed (simp)

have 0 ≤ (
∫

x. g x ∗ indicator A x ∂M ) using Ag by simp
also have ... = (

∫
x. f x ∗ indicator A x − real-cond-exp M Invariants f x ∗

indicator A x − ε ∗ indicator A x ∂M )
unfolding g-def by (simp add: left-diff-distrib)

also have ... = (
∫

x. f x ∗ indicator A x ∂M ) − (
∫

x. real-cond-exp M Invariants
f x ∗ indicator A x ∂M ) − (

∫
x. ε ∗ indicator A x ∂M )

using assms real-cond-exp-int(1 )[OF assms] integrable-real-mult-indicator [OF
‹A ∈ sets M ›]

by (auto simp: simp del: integrable-mult-left-iff )
also have ... = − (

∫
x. ε ∗ indicator A x ∂M )

by (auto simp add: eq mult.commute)
also have ... = − ε ∗ measure M A by auto
finally have 0 ≤ − ε ∗ measure M A by simp
then have measure M A = 0 using ‹ε > 0 › by (simp add: measure-le-0-iff

mult-le-0-iff )
then have A ∈ null-sets M by (simp add: emeasure-eq-measure null-setsI )
then have AE x in M . x ∈ space M − A by (metis (no-types, lifting) AE-cong

Diff-iff AE-not-in)
moreover
{

fix x assume x ∈ space M − A
then have limsup (λn. ereal(birkhoff-sum g n x)) < ∞ unfolding A-def by

auto
then obtain C where C :

∧
n. birkhoff-sum g n x ≤ C using limsup-finite-then-bounded

by presburger
{

fix n::nat assume n > 0
have birkhoff-sum g n x = birkhoff-sum f n x − birkhoff-sum (real-cond-exp

M Invariants f ) n x − birkhoff-sum (λx. ε) n x
unfolding g-def using birkhoff-sum-add birkhoff-sum-diff by auto
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moreover have birkhoff-sum (real-cond-exp M Invariants f ) n x = n ∗
real-cond-exp M Invariants f x

using birkhoff-sum-of-invariants using ‹x ∈ space M − A› by auto
moreover have birkhoff-sum (λx. ε) n x = n ∗ ε unfolding birkhoff-sum-def

by auto
ultimately have birkhoff-sum g n x = birkhoff-sum f n x − n ∗ real-cond-exp

M Invariants f x − n ∗ ε
by simp

then have birkhoff-sum f n x = birkhoff-sum g n x + n ∗ real-cond-exp M
Invariants f x + n ∗ ε

by simp
then have birkhoff-sum f n x / n = birkhoff-sum g n x / n + real-cond-exp

M Invariants f x + ε
using ‹n > 0 › by (simp add: field-simps)

then have birkhoff-sum f n x / n ≤ C/n + real-cond-exp M Invariants f x
+ ε

using C [of n] ‹n > 0 › by (simp add: divide-right-mono)
then have ereal(birkhoff-sum f n x / n) ≤ ereal(C/n + real-cond-exp M

Invariants f x + ε)
by simp

}
then have eventually (λn. ereal(birkhoff-sum f n x / n) ≤ ereal(C/n +

real-cond-exp M Invariants f x + ε)) sequentially
by (simp add: eventually-at-top-dense)
then have b: limsup (λn. ereal(birkhoff-sum f n x / n)) ≤ limsup (λn.

ereal(C/n + real-cond-exp M Invariants f x + ε))
by (simp add: Limsup-mono)

have (λn. ereal(C∗(1/real n) + real-cond-exp M Invariants f x + ε)) −−−−→
ereal(C ∗ 0 + real-cond-exp M Invariants f x + ε)

by (intro tendsto-intros)
then have limsup (λn. ereal(C/real n + real-cond-exp M Invariants f x +

ε)) = real-cond-exp M Invariants f x + ε
using sequentially-bot tendsto-iff-Liminf-eq-Limsup by force
then have limsup (λn. ereal(birkhoff-sum f n x / n)) ≤ real-cond-exp M

Invariants f x + ε
using b by simp

}
ultimately have AE x in M . limsup (λn. ereal(birkhoff-sum f n x / n)) ≤

real-cond-exp M Invariants f x + ε
by auto

then have AE x in M . limsup (λn. ereal(birkhoff-sum f n x / n)) ≤ ereal(real-cond-exp
M Invariants f x) + ε

by auto
}
then show ?thesis

by (rule AE-upper-bound-inf-ereal)
qed
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theorem birkhoff-theorem-AE-nonergodic:
fixes f :: ′a ⇒ real
assumes integrable M f
shows AE x in M . (λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M Invariants

f x
proof −

{
fix x assume i: limsup (λn. ereal(birkhoff-sum f n x /n)) ≤ real-cond-exp M

Invariants f x
and ii: limsup (λn. ereal(birkhoff-sum (λx. −f x) n x / n)) ≤ real-cond-exp

M Invariants (λx. −f x) x
and iii: real-cond-exp M Invariants (λx. −f x) x = − real-cond-exp M

Invariants f x
have

∧
n. birkhoff-sum (λx. −f x) n x = − birkhoff-sum f n x

using birkhoff-sum-cmult[where ?c = −1 and ?f = f ] by auto
then have

∧
n. ereal(birkhoff-sum (λx. −f x) n x / n) = − ereal(birkhoff-sum

f n x / n) by auto
moreover have limsup (λn. − ereal(birkhoff-sum f n x / n)) = − liminf (λn.

ereal(birkhoff-sum f n x /n))
by (rule ereal-Limsup-uminus)

ultimately have −liminf (λn. ereal(birkhoff-sum f n x /n)) = limsup (λn.
ereal(birkhoff-sum (λx. −f x) n x / n))

by simp
then have −liminf (λn. ereal(birkhoff-sum f n x /n)) ≤ − real-cond-exp M

Invariants f x
using ii iii by simp

then have liminf (λn. ereal(birkhoff-sum f n x /n)) ≥ real-cond-exp M Invari-
ants f x

by (simp add: ereal-uminus-le-reorder)
then have (λn. birkhoff-sum f n x /n) −−−−→ real-cond-exp M Invariants f x

using i by (simp add: limsup-le-liminf-real)
} note ∗ = this
moreover have AE x in M . limsup (λn. ereal(birkhoff-sum f n x /n)) ≤ real-cond-exp

M Invariants f x
using birkhoff-aux2 assms by simp

moreover have AE x in M . limsup (λn. ereal(birkhoff-sum (λx. −f x) n x / n))
≤ real-cond-exp M Invariants (λx. −f x) x

using birkhoff-aux2 assms by simp
moreover have AE x in M . real-cond-exp M Invariants (λx. −f x) x = −

real-cond-exp M Invariants f x
using real-cond-exp-cmult[where ?c = −1 ] assms by force

ultimately show ?thesis by auto
qed

If a function f is integrable, then E(f ◦T − f |I) = E(f ◦T |I)−E(f |I) = 0.
Hence, Sn(f◦T−f)/n converges almost everywhere to 0, i.e., f(Tnx)/n→ 0.
It is remarkable (and sometimes useful) that this holds under the weaker
condition that f ◦ T − f is integrable (but not necessarily f), where this
naive argument fails.
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The reason is that the Birkhoff sum of f ◦T−f is f ◦Tn−f . If n is such that
x and Tn(x) belong to a set where f is bounded, it follows that this Birkhoff
sum is also bounded. Along such a sequence of times, Sn(f ◦T −f)/n tends
to 0. By Poincare recurrence theorem, there are such times for almost every
points. As it also converges to E(f ◦ T − f |I), it follows that this function
is almost everywhere 0. Then f(Tnx)/n = Sn(f ◦ Tn − f)/n − f/n tends
almost surely to E(f ◦ T − f |I) = 0.
lemma limit-foTn-over-n:

fixes f :: ′a ⇒ real
assumes [measurable]: f ∈ borel-measurable M

and integrable M (λx. f (T x) − f x)
shows AE x in M . real-cond-exp M Invariants (λx. f (T x) − f x) x = 0

AE x in M . (λn. f ((T^^n) x) / n) −−−−→ 0
proof −

define E ::nat ⇒ ′a set where E k = {x ∈ space M . |f x| ≤ k} for k
have [measurable]: E k ∈ sets M for k unfolding E-def by auto
have ∗: (

⋃
k. E k) = space M unfolding E-def by (auto simp add: real-arch-simple)

define F ::nat ⇒ ′a set where F k = recurrent-subset-infty (E k) for k
have [measurable]: F k ∈ sets M for k unfolding F-def by auto
have ∗∗: E k − F k ∈ null-sets M for k unfolding F-def using Poincare-recurrence-thm

by auto
have space M − (

⋃
k. F k) ∈ null-sets M

apply (rule null-sets-subset[of (
⋃

k. E k − F k)]) unfolding ∗[symmetric]
using ∗∗ by auto

with AE-not-in[OF this] have AE x in M . x ∈ (
⋃

k. F k) by auto
moreover have AE x in M . (λn. birkhoff-sum (λx. f (T x) − f x) n x / n)
−−−−→ real-cond-exp M Invariants (λx. f (T x) − f x) x

by (rule birkhoff-theorem-AE-nonergodic[OF assms(2 )])
moreover have real-cond-exp M Invariants (λx. f (T x) − f x) x = 0 ∧ (λn.

f ((T^^n) x) / n) −−−−→ 0
if H : (λn. birkhoff-sum (λx. f (T x) − f x) n x / n) −−−−→ real-cond-exp M

Invariants (λx. f (T x) − f x) x
x ∈ (

⋃
k. F k) for x

proof −
have f ((T^^n) x) = birkhoff-sum (λx. f (T x) − f x) n x + f x for n

unfolding birkhoff-sum-def by (induction n, auto)
then have f ((T^^n) x) / n = birkhoff-sum (λx. f (T x) − f x) n x / n + f x

∗ (1/n) for n
by (auto simp add: divide-simps)

moreover have (λn. birkhoff-sum (λx. f (T x) − f x) n x / n + f x ∗ (1/n))
−−−−→ real-cond-exp M Invariants (λx. f (T x) − f x) x + f x ∗ 0

by (intro tendsto-intros H (1 ))
ultimately have lim: (λn. f ((T^^n) x) / n) −−−−→ real-cond-exp M Invariants

(λx. f (T x) − f x) x
by auto

obtain k where x ∈ F k using H (2 ) by auto
then have infinite {n. (T^^n) x ∈ E k}
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unfolding F-def recurrent-subset-infty-inf-returns by auto
with infinite-enumerate[OF this] obtain r :: nat ⇒ nat

where r : strict-mono r
∧

n. r n ∈ {n. (T^^n) x ∈ E k}
by auto

have A: (λn. k ∗ (1/r n)) −−−−→ real k ∗ 0
apply (intro tendsto-intros)
using LIMSEQ-subseq-LIMSEQ[OF lim-1-over-n ‹strict-mono r›] unfolding

comp-def by auto
have B: |f ((T^^(r n)) x) / r n| ≤ k / (r n) for n

using r(2 ) unfolding E-def by (auto simp add: divide-simps)
have (λn. f ((T^^(r n)) x) / r n) −−−−→ 0

apply (rule tendsto-rabs-zero-cancel, rule tendsto-sandwich[of λn. 0 - - λn. k
∗ (1/r n)])

using A B by auto
moreover have (λn. f ((T^^(r n)) x) / r n) −−−−→ real-cond-exp M Invariants

(λx. f (T x) − f x) x
using LIMSEQ-subseq-LIMSEQ[OF lim ‹strict-mono r›] unfolding comp-def

by auto
ultimately have ∗: real-cond-exp M Invariants (λx. f (T x) − f x) x = 0

using LIMSEQ-unique by auto
then have (λn. f ((T^^n) x) / n) −−−−→ 0 using lim by auto
then show ?thesis using ∗ by auto

qed
ultimately show AE x in M . real-cond-exp M Invariants (λx. f (T x) − f x) x

= 0
AE x in M . (λn. f ((T^^n) x) / n) −−−−→ 0

by auto
qed

We specialize the previous statement to the case where f itself is integrable.
lemma limit-foTn-over-n ′:

fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows AE x in M . (λn. f ((T^^n) x) / n) −−−−→ 0

by (rule limit-foTn-over-n, simp, rule Bochner-Integration.integrable-diff )
(auto intro: assms T-integral-preserving(1 ))

It is often useful to show that a function is cohomologous to a nicer function,
i.e., to prove that a given f can be written as f = g + u− u ◦ T where g is
nicer than f . We show below that any integrable function is cohomologous
to a function which is arbitrarily close to E(f |I). This is an improved
version of Lemma 2.1 in [Benoist-Quint, Annals of maths, 2011]. Note that
the function g to which f is cohomologous is very nice (and, in particular,
integrable), but the transfer function is only measurable in this argument.
The fact that the control on conditional expectation is nevertheless preserved
throughout the argument follows from Lemma limit_foTn_over_n above.

We start with the lemma (and the proof) of [BQ2011]. It shows that, if a
function has a conditional expectation with respect to invariants which is
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positive, then it is cohomologous to a nonnegative function. The argument is
the clever remark that g = max(0, infn Snf) and u = min(0, infn Snf) work
(where these expressions are well defined as Snf tends to infinity thanks to
our assumption).
lemma cohomologous-approx-cond-exp-aux:

fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f

and AE x in M . real-cond-exp M Invariants f x > 0
shows ∃ u g. u ∈ borel-measurable M ∧ (integrable M g) ∧ (AE x in M . g x ≥

0 ∧ g x ≤ max 0 (f x)) ∧ (∀ x. f x = g x + u x − u (T x))
proof −

define h:: ′a ⇒ real where h = (λx. (INF n∈{1 ..}. birkhoff-sum f n x))
define u where u = (λx. min (h x) 0 )
define g where g = (λx. f x − u x + u (T x))
have [measurable]: h ∈ borel-measurable M u ∈ borel-measurable M g ∈ borel-measurable

M
unfolding g-def h-def u-def by auto

have f x = g x + u x − u (T x) for x unfolding g-def by auto
{

fix x assume H : real-cond-exp M Invariants f x > 0
(λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M Invariants f x

have eventually (λn. ereal(birkhoff-sum f n x / n) ∗ ereal n = ereal(birkhoff-sum
f n x)) sequentially

unfolding eventually-sequentially by (rule exI [of - 1 ], auto)
moreover have (λn. ereal(birkhoff-sum f n x / n) ∗ ereal n) −−−−→ ereal(real-cond-exp

M Invariants f x) ∗ ∞
apply (intro tendsto-intros) using H by auto

ultimately have (λn. ereal(birkhoff-sum f n x)) −−−−→ ereal(real-cond-exp M
Invariants f x) ∗ ∞

by (blast intro: Lim-transform-eventually)
then have (λn. ereal(birkhoff-sum f n x)) −−−−→ ∞

using H by auto
then have B: ∃C . ∀n. C ≤ birkhoff-sum f n x

by (intro liminf-finite-then-bounded-below, simp add: liminf-PInfty)

have h x ≤ f x
unfolding h-def apply (rule cInf-lower) using B by force+

have {birkhoff-sum f n (T x) |n. n ∈ {1 ..}} = {birkhoff-sum f (1+n) (x) − f
x |n. n ∈ {1 ..}}

unfolding birkhoff-sum-cocycle by auto
also have ... = {birkhoff-sum f n x − f x |n. n ∈ {2 ..}}
by (metis (no-types, opaque-lifting) Suc-1 Suc-eq-plus1-left Suc-le-D Suc-le-mono

atLeast-iff )
finally have ∗: {birkhoff-sum f n (T x) |n. n ∈ {1 ..}} = (λt. t − (f x))‘{birkhoff-sum

f n x |n. n ∈ {2 ..}}
by auto

have h(T x) = Inf {birkhoff-sum f n (T x) |n. n ∈ {1 ..}}
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unfolding h-def by (metis Setcompr-eq-image)
also have ... = (

d
t∈{birkhoff-sum f n x |n. n ∈ {2 ..}}. t − f x)

by (simp only: ∗)
also have ... = (λt. t − (f x)) (Inf {birkhoff-sum f n x |n. n ∈ {2 ..}})

using B by (auto intro!: monoI bijI mono-bij-cInf [symmetric])
finally have I : Inf {birkhoff-sum f n x |n. n ∈ {2 ..}} = f x + h (T x) by auto
have max 0 (h x) + u x = h x

unfolding u-def by auto
also have ... = Inf {birkhoff-sum f n x |n. n ∈ {1 ..}}

unfolding h-def by (metis Setcompr-eq-image)
also have ... = Inf ({birkhoff-sum f n x |n. n ∈ {1}} ∪ {birkhoff-sum f n x |n.

n ∈ {2 ..}})
by (auto intro!: arg-cong[of - - Inf ], metis One-nat-def Suc-1 antisym birkhoff-sum-1 (2 )

not-less-eq-eq, force)
also have Inf ({birkhoff-sum f n x |n. n ∈ {1}} ∪ {birkhoff-sum f n x |n. n ∈

{2 ..}})
= min (Inf {birkhoff-sum f n x |n. n ∈ {1}}) (Inf {birkhoff-sum f n x |n. n

∈ {2 ..}})
unfolding inf-min[symmetric] apply (intro cInf-union-distrib) using B by

auto
also have ... = min (f x) (f x + h (T x)) using I by auto
also have ... = f x + u (T x) unfolding u-def by auto
finally have max 0 (h x) = f x + u (T x) − u x by auto
then have g x = max 0 (h x) unfolding g-def by auto
then have g x ≥ 0 ∧ g x ≤ max 0 (f x) using ‹h x ≤ f x› by auto

}
then have ∗: AE x in M . g x ≥ 0 ∧ g x ≤ max 0 (f x)

using assms(2 ) birkhoff-theorem-AE-nonergodic[OF assms(1 )] by auto
moreover have integrable M g
apply (rule Bochner-Integration.integrable-bound[of - f ]) using ∗ by (auto simp

add: assms)
ultimately have u ∈ borel-measurable M ∧ integrable M g ∧ (AE x in M . 0 ≤

g x ∧ g x ≤ max 0 (f x)) ∧ (∀ x. f x = g x + u x − u (T x))
using ‹

∧
x. f x = g x + u x − u (T x)› ‹u ∈ borel-measurable M › by auto

then show ?thesis by blast
qed

To deduce the stronger version that f is cohomologous to an arbitrarily good
approximation of E(f |I), we apply the previous lemma twice, to control
successively the negative and the positive side. The sign control in the
conclusion of the previous lemma implies that the second step does not
spoil the first one.
lemma cohomologous-approx-cond-exp:

fixes f :: ′a ⇒ real and B:: ′a ⇒ real
assumes [measurable]: integrable M f B ∈ borel-measurable M

and AE x in M . B x > 0
shows ∃ g u. u ∈ borel-measurable M

∧ integrable M g
∧ (∀ x. f x = g x + u x − u (T x))
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∧ (AE x in M . abs(g x − real-cond-exp M Invariants f x) ≤ B x)
proof −

define C where C = (λx. min (B x) 1 )
have [measurable]: integrable M C

apply (rule Bochner-Integration.integrable-bound[of - λ-. (1 ::real)], auto)
unfolding C-def using assms(3 ) by auto

have C x ≤ B x for x unfolding C-def by auto
have AE x in M . C x > 0 unfolding C-def using assms(3 ) by auto
have AECI : AE x in M . real-cond-exp M Invariants C x > 0

by (intro real-cond-exp-gr-c ‹integrable M C › ‹AE x in M . C x > 0 ›)

define f1 where f1 = (λx. f x − real-cond-exp M Invariants f x)
have integrable M f1

unfolding f1-def by (intro Bochner-Integration.integrable-diff ‹integrable M f ›
real-cond-exp-int(1 ))

have AE x in M . real-cond-exp M Invariants f1 x = real-cond-exp M Invariants
f x − real-cond-exp M Invariants (real-cond-exp M Invariants f ) x

unfolding f1-def apply (rule real-cond-exp-diff ) by (intro Bochner-Integration.integrable-diff
‹integrable M f › ‹integrable M C › real-cond-exp-int(1 ))+

moreover have AE x in M . real-cond-exp M Invariants (real-cond-exp M In-
variants f ) x = real-cond-exp M Invariants f x

by (intro real-cond-exp-nested-subalg subalg ‹integrable M f ›, auto)
ultimately have AEf1 : AE x in M . real-cond-exp M Invariants f1 x = 0 by

auto

have A [measurable]: integrable M (λx. f1 x + C x)
by (intro Bochner-Integration.integrable-add ‹integrable M f1 › ‹integrable M

C ›)
have AE x in M . real-cond-exp M Invariants (λx. f1 x + C x) x = real-cond-exp

M Invariants f1 x + real-cond-exp M Invariants C x
by (intro real-cond-exp-add ‹integrable M f1 › ‹integrable M C ›)

then have B: AE x in M . real-cond-exp M Invariants (λx. f1 x + C x) x > 0
using AECI AEf1 by auto

obtain u2 g2 where H2 : u2 ∈ borel-measurable M integrable M g2 AE x in M .
g2 x ≥ 0 ∧ g2 x ≤ max 0 (f1 x + C x)

∧
x. f1 x + C x = g2 x + u2 x − u2 (T x)

using cohomologous-approx-cond-exp-aux[OF A B] by blast

define f2 where f2 = (λx. (g2 x − C x))
have ∗: u2 (T x) − u2 x = f2 x −f1 x for x unfolding f2-def using H2 (4 )[of

x] by auto
have AE x in M . f2 x ≥ − C x using H2 (3 ) unfolding f2-def by auto
have integrable M f2

unfolding f2-def by (intro Bochner-Integration.integrable-diff ‹integrable M
g2 › ‹integrable M C ›)

have AE x in M . real-cond-exp M Invariants (λx. u2 (T x) − u2 x) x = 0
proof (rule limit-foTn-over-n)

show integrable M (λx. u2 (T x) − u2 x)
unfolding ∗ by (intro Bochner-Integration.integrable-diff ‹integrable M f1 ›
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‹integrable M f2 ›)
qed (simp add: ‹u2 ∈ borel-measurable M ›)
then have AE x in M . real-cond-exp M Invariants (λx. f2 x − f1 x) x = 0

unfolding ∗ by simp
moreover have AE x in M . real-cond-exp M Invariants (λx. f2 x − f1 x) x =

real-cond-exp M Invariants f2 x − real-cond-exp M Invariants f1 x
by (intro real-cond-exp-diff ‹integrable M f2 › ‹integrable M f1 ›)

ultimately have AEf2 : AE x in M . real-cond-exp M Invariants f2 x = 0
using AEf1 by auto

have A [measurable]: integrable M (λx. C x − f2 x)
by (intro Bochner-Integration.integrable-diff ‹integrable M f2 › ‹integrable M

C ›)
have AE x in M . real-cond-exp M Invariants (λx. C x − f2 x) x = real-cond-exp

M Invariants C x − real-cond-exp M Invariants f2 x
by (intro real-cond-exp-diff ‹integrable M f2 › ‹integrable M C ›)

then have B: AE x in M . real-cond-exp M Invariants (λx. C x − f2 x) x > 0
using AECI AEf2 by auto

obtain u3 g3 where H3 : u3 ∈ borel-measurable M integrable M g3 AE x in M .
g3 x ≥ 0 ∧ g3 x ≤ max 0 (C x − f2 x)

∧
x. C x − f2 x = g3 x + u3 x − u3 (T x)

using cohomologous-approx-cond-exp-aux[OF A B] by blast

define f3 where f3 = (λx. C x − g3 x)
have AE x in M . f3 x ≥ min (C x) (f2 x) unfolding f3-def using H3 (3 ) by

auto
then have AE x in M . f3 x ≥ −C x using ‹AE x in M . f2 x ≥ − C x› ‹AE x

in M . C x > 0 › by auto
moreover have AE x in M . f3 x ≤ C x unfolding f3-def using H3 (3 ) by auto
ultimately have AE x in M . abs(f3 x) ≤ C x by auto
then have ∗: AE x in M . abs(f3 x) ≤ B x using order-trans[OF - ‹

∧
x. C x ≤

B x›] by auto

define g where g = (λx. f3 x + real-cond-exp M Invariants f x)
define u where u = (λx. u2 x − u3 x)
have AE x in M . abs (g x − real-cond-exp M Invariants f x) ≤ B x

unfolding g-def using ∗ by auto
moreover have f x = g x + u x − u(T x) for x

using H3 (4 )[of x] H2 (4 )[of x] unfolding u-def g-def f3-def f2-def f1-def by
auto

moreover have u ∈ borel-measurable M
unfolding u-def using ‹u2 ∈ borel-measurable M › ‹u3 ∈ borel-measurable M ›

by auto
moreover have integrable M g
unfolding g-def f3-def by (intro Bochner-Integration.integrable-add Bochner-Integration.integrable-diff
‹integrable M C › ‹integrable M g3 › ‹integrable M f › real-cond-exp-int(1 ))

ultimately show ?thesis by auto
qed
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6.2.2 L1 version of Birkhoff theorem

The L1 convergence in Birkhoff theorem follows from the almost everywhere
convergence and general considerations on L1 convergence (Scheffe’s lemma)
explained in AE_and_int_bound_implies_L1_conv2. This argument works
neatly for nonnegative functions, the general case reduces to this one by
taking the positive and negative parts of a given function.
One could also prove it by truncation: for bounded functions, the L1 con-
vergence follows from the boundedness and almost sure convergence. The
general case follows by density, but it is a little bit tedious to write as one
need to make sure that the conditional expectation of the truncation con-
verges to the conditional expectation of the original function. This is true
in L1 as the conditional expectation is a contraction in L1, it follows almost
everywhere after taking a subsequence. All in all, the argument based on
Scheffe’s lemma seems more economical.
lemma birkhoff-lemma-L1 :

fixes f :: ′a ⇒ real
assumes

∧
x. f x ≥ 0

and [measurable]: integrable M f
shows (λn.

∫
+x. norm(birkhoff-sum f n x / n − real-cond-exp M Invariants f

x) ∂M ) −−−−→ 0
proof (rule Scheffe-lemma2 )

show i: integrable M (real-cond-exp M Invariants f ) using assms by (simp add:
real-cond-exp-int(1 ))

show AE x in M . (λn. birkhoff-sum f n x / real n) −−−−→ real-cond-exp M
Invariants f x

using birkhoff-theorem-AE-nonergodic assms by simp
fix n
have [measurable]: (λx. ennreal |birkhoff-sum f n x|) ∈ borel-measurable M by

measurable
show [measurable]: (λx. birkhoff-sum f n x / real n) ∈ borel-measurable M by

measurable

have AE x in M . real-cond-exp M Invariants f x ≥ 0 using assms(1 ) real-cond-exp-pos
by simp

then have ∗: AE x in M . norm (real-cond-exp M Invariants f x) = real-cond-exp
M Invariants f x by auto

have ∗∗: (
∫

x. norm (real-cond-exp M Invariants f x) ∂M ) = (
∫

x. real-cond-exp
M Invariants f x ∂M )

apply (rule integral-cong-AE) using ∗ by auto

have (
∫

+x. ennreal (norm (real-cond-exp M Invariants f x)) ∂M ) = (
∫

x. norm
(real-cond-exp M Invariants f x) ∂M )

by (rule nn-integral-eq-integral) (auto simp add: i)
also have ... = (

∫
x. real-cond-exp M Invariants f x ∂M )

using ∗∗ by simp
also have ... = (

∫
x. f x ∂M )
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using real-cond-exp-int(2 ) assms(2 ) by auto
also have ... = (

∫
x. norm(f x) ∂M ) using assms by auto

also have ... = (
∫

+x. norm(f x) ∂M )
by (rule nn-integral-eq-integral[symmetric], auto simp add: assms(2 ))

finally have eq: (
∫

+ x. norm (real-cond-exp M Invariants f x) ∂M ) = (
∫

+ x.
norm(f x) ∂M ) by simp

{
fix x
have norm(birkhoff-sum f n x) ≤ birkhoff-sum (λx. norm(f x)) n x

using birkhoff-sum-abs by fastforce
then have norm(birkhoff-sum f n x) ≤ birkhoff-sum (λx. ennreal(norm(f x)))

n x
unfolding birkhoff-sum-def by auto

}
then have (

∫
+x. norm(birkhoff-sum f n x) ∂M ) ≤ (

∫
+x. birkhoff-sum (λx.

ennreal(norm(f x))) n x ∂M )
by (simp add: nn-integral-mono)

also have ... = n ∗ (
∫

+x. norm(f x) ∂M )
by (rule birkhoff-sum-nn-integral, auto)

also have ... = n ∗ (
∫

+ x. norm (real-cond-exp M Invariants f x) ∂M )
using eq by simp

finally have ∗: (
∫

+x. norm(birkhoff-sum f n x) ∂M ) ≤ n ∗ (
∫

+ x. norm
(real-cond-exp M Invariants f x) ∂M )

by simp

show (
∫

+ x. ennreal (norm (birkhoff-sum f n x / real n)) ∂M ) ≤ (
∫

+ x. norm
(real-cond-exp M Invariants f x) ∂M )

proof (cases)
assume n = 0
then show ?thesis by auto

next
assume ¬(n = 0 )
then have n > 0 by simp
then have 1/ennreal(real n) ≥ 0 by simp
have (

∫
+ x. ennreal (norm (birkhoff-sum f n x / real n)) ∂M ) = (

∫
+ x. ennreal

(norm (birkhoff-sum f n x)) / ennreal(real n) ∂M )
using ‹n > 0 › by (auto simp: divide-ennreal)

also have ... = (
∫

+ x. (1/ennreal(real n)) ∗ ennreal (norm (birkhoff-sum f n
x)) ∂M )

by (simp add: ‹0 < n› divide-ennreal-def mult.commute)
also have ... = (1/ennreal(real n) ∗ (

∫
+ x. ennreal (norm (birkhoff-sum f n

x)) ∂M ))
by (subst nn-integral-cmult) auto

also have ... ≤ (1/ennreal(real n)) ∗ (ennreal(real n) ∗ (
∫

+ x. norm (real-cond-exp
M Invariants f x) ∂M ))

using ∗ by (intro mult-mono) (auto simp: ennreal-of-nat-eq-real-of-nat)
also have ... = (

∫
+ x. norm (real-cond-exp M Invariants f x) ∂M )

using ‹n > 0 ›
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by (auto simp del: ennreal-1 simp add: ennreal-1 [symmetric] divide-ennreal
ennreal-mult[symmetric] mult.assoc[symmetric])

simp
finally show ?thesis by simp

qed
qed

theorem birkhoff-theorem-L1-nonergodic:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows (λn.

∫
+x. norm(birkhoff-sum f n x / n − real-cond-exp M Invariants f

x) ∂M ) −−−−→ 0
proof −

define g where g = (λx. max (f x) 0 )
have g-int [measurable]: integrable M g unfolding g-def using assms by auto
define h where h = (λx. max (−f x) 0 )
have h-int [measurable]: integrable M h unfolding h-def using assms by auto
have f = (λx. g x − h x) unfolding g-def h-def by auto
{

fix n::nat assume n > 0
have

∧
x. birkhoff-sum f n x = birkhoff-sum g n x − birkhoff-sum h n x using

birkhoff-sum-diff ‹f = (λx. g x − h x)› by auto
then have

∧
x. birkhoff-sum f n x / n = birkhoff-sum g n x / n − birkhoff-sum

h n x / n using ‹n > 0 › by (simp add: diff-divide-distrib)
moreover have AE x in M . real-cond-exp M Invariants g x − real-cond-exp M

Invariants h x = real-cond-exp M Invariants f x
using AE-symmetric[OF real-cond-exp-diff ] g-int h-int ‹f = (λx. g x − h x)›

by auto
ultimately have AE x in M . birkhoff-sum f n x / n − real-cond-exp M Invari-

ants f x =
(birkhoff-sum g n x / n − real-cond-exp M Invariants g x) − (birkhoff-sum

h n x / n − real-cond-exp M Invariants h x)
by auto

then have ∗: AE x in M . norm(birkhoff-sum f n x / n − real-cond-exp M
Invariants f x) ≤

norm(birkhoff-sum g n x / n − real-cond-exp M Invariants g x) + norm(birkhoff-sum
h n x / n − real-cond-exp M Invariants h x)

by auto
have (

∫
+ x. norm(birkhoff-sum f n x / n − real-cond-exp M Invariants f x)

∂M ) ≤
(
∫

+ x. ennreal(norm(birkhoff-sum g n x / n − real-cond-exp M Invariants g
x)) + norm(birkhoff-sum h n x / n − real-cond-exp M Invariants h x) ∂M )

apply (rule nn-integral-mono-AE) using ∗ by (simp add: ennreal-plus[symmetric]
del: ennreal-plus)

also have ... = (
∫

+ x. norm(birkhoff-sum g n x / n − real-cond-exp M Invari-
ants g x) ∂M ) + (

∫
+ x. norm(birkhoff-sum h n x / n − real-cond-exp M Invariants

h x) ∂M )
apply (rule nn-integral-add) apply auto using real-cond-exp-F-meas borel-measurable-cond-exp2

by measurable
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finally have (
∫

+ x. norm(birkhoff-sum f n x / n − real-cond-exp M Invariants
f x) ∂M ) ≤

(
∫

+ x. norm(birkhoff-sum g n x / n − real-cond-exp M Invariants g x) ∂M )
+ (

∫
+ x. norm(birkhoff-sum h n x / n − real-cond-exp M Invariants h x) ∂M )
by simp

}
then have ∗: eventually (λn. (

∫
+ x. norm(birkhoff-sum f n x / n − real-cond-exp

M Invariants f x) ∂M ) ≤
(
∫

+ x. norm(birkhoff-sum g n x / n − real-cond-exp M Invariants g x) ∂M )
+ (

∫
+ x. norm(birkhoff-sum h n x / n − real-cond-exp M Invariants h x) ∂M ))
sequentially

using eventually-at-top-dense by auto
have ∗∗: eventually (λn. (

∫
+ x. norm(birkhoff-sum f n x / n − real-cond-exp M

Invariants f x) ∂M ) ≥ 0 ) sequentially
by simp

have (λn. (
∫

+ x. norm(birkhoff-sum g n x / n − real-cond-exp M Invariants g
x) ∂M )) −−−−→ 0

apply (rule birkhoff-lemma-L1 , auto simp add: g-int) unfolding g-def by auto
moreover have (λn. (

∫
+ x. norm(birkhoff-sum h n x / n − real-cond-exp M

Invariants h x) ∂M )) −−−−→ 0
apply (rule birkhoff-lemma-L1 , auto simp add: h-int) unfolding h-def by auto

ultimately have (λn. (
∫

+ x. norm(birkhoff-sum g n x / n − real-cond-exp M
Invariants g x) ∂M ) + (

∫
+ x. norm(birkhoff-sum h n x / n − real-cond-exp M

Invariants h x) ∂M )) −−−−→ 0
using tendsto-add[of - 0 - - 0 ] by auto

then show ?thesis
using tendsto-sandwich[OF ∗∗ ∗] by auto

qed

6.2.3 Conservativity of skew products

The behaviour of skew-products of the form (x, y) 7→ (Tx, y+fx) is directly
related to Birkhoff theorem, as the iterates involve the Birkhoff sums in the
fiber. Birkhoff theorem implies that such a skew product is conservative
when the function f has vanishing conditional expectation.
To prove the theorem, assume by contradiction that a set A with positive
measure does not intersect its preimages. Replacing A with a smaller set C,
we can assume that C is bounded in the y-direction, by a constant N , and
also that all its nonempty vertical fibers, above the projection Cx, have a
measure bounded from below. Then, by Birkhoff theorem, for any r > 0,
most of the first n preimages of C are contained in the set {|y| ≤ rn+N},
of measure O(rn). Hence, they can not be disjoint if r < µ(C). To make
this argument rigorous, one should only consider the preimages whose x-
component belongs to a set Dx where the Birkhoff sums are small. This
condition has a positive measure if µ(Cx) + µ(Dx) > µ(M), which one can
ensure by taking Dx large enough.
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theorem (in fmpt) skew-product-conservative:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f

and AE x in M . real-cond-exp M Invariants f x = 0
shows conservative-mpt (M

⊗
M lborel) (λ(x,y). (T x, y + f x))

proof (rule conservative-mptI )
let ?TS = (λ(x,y). (T x, y + f x))
let ?MS = M

⊗
M (lborel::real measure)

have f-meas [measurable]: f ∈ borel-measurable M by auto
have mpt M T by (simp add: mpt-axioms)
with mpt-skew-product-real[OF this f-meas] show mpt ?MS ?TS by simp
then interpret TS : mpt ?MS ?TS by auto

fix A::( ′a × real) set
assume A1 [measurable]: A ∈ sets ?MS and A2 : emeasure ?MS A > 0
have A = (

⋃
N ::nat. A ∩ {(x,y). abs(y) ≤ N}) by (auto simp add: real-arch-simple)

then have ∗: emeasure ?MS (
⋃

N ::nat. A ∩ {(x,y). abs(y) ≤ N}) > 0
using A2 by simp

have space ?MS = space M × space (lborel::real measure) using space-pair-measure
by auto
then have A-inc: A ⊆ space M × space (lborel::real measure) using sets.sets-into-space[OF

A1 ] by auto

{
fix N ::nat
have {(x, y). abs(y) ≤ real N ∧ x ∈ space M} = space M × {−(real N )..(real

N )} by auto
then have {(x, y). |y| ≤ real N ∧ x ∈ space M} ∈ sets ?MS by auto
then have A ∩ {(x, y). |y| ≤ real N ∧ x ∈ space M} ∈ sets ?MS using A1

by auto
moreover have A ∩ {(x,y). abs(y) ≤ real N} = A ∩ {(x, y). |y| ≤ real N ∧

x ∈ space M}
using A-inc by blast

ultimately have A ∩ {(x,y). abs(y) ≤ real N} ∈ sets ?MS by auto
}
then have [measurable]:

∧
N ::nat. A ∩ {(x, y). |y| ≤ real N} ∈ sets (M

⊗
M

borel) by auto

have ∃N ::nat. emeasure ?MS (A ∩ {(x,y). abs(y) ≤ N}) > 0
apply (rule emeasure-pos-unionE) using ∗ by auto

then obtain N ::nat where N : emeasure ?MS (A ∩ {(x,y). abs(y) ≤ N}) > 0
by auto

define B where B = A ∩ {(x,y). abs(y) ≤ N}
have B-meas [measurable]: B ∈ sets (M

⊗
M lborel) unfolding B-def by auto

have 0 < emeasure (M
⊗

M lborel) B unfolding B-def using N by auto
also have ... = (

∫
+x. emeasure lborel (Pair x −‘ B) ∂M )
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apply (rule sigma-finite-measure.emeasure-pair-measure-alt)
using B-meas by (auto simp add: lborel.sigma-finite-measure-axioms)

finally have ∗: (
∫

+x. emeasure lborel (Pair x −‘ B) ∂M ) > 0 by simp

have ∃Cx∈sets M . ∃ e::real>0 . emeasure M Cx > 0 ∧ (∀ x ∈ Cx. emeasure lborel
(Pair x −‘ B) ≥ e)

by (rule not-AE-zero-int-ennreal-E , auto simp add: ∗)
then obtain Cx e where [measurable]: Cx ∈ sets M and Cxe: e>(0 ::real)

emeasure M Cx > 0
∧

x. x ∈ Cx =⇒ emeasure lborel (Pair x −‘ B) ≥ e
by blast

define C where C = B ∩ (Cx × (UNIV ::real set))
have C-meas [measurable]: C ∈ sets (M

⊗
M lborel) unfolding C-def using

B-meas by auto
have Cx-fibers:

∧
x. x ∈ Cx =⇒ emeasure lborel (Pair x −‘ C ) ≥ e using Cxe(3 )

C-def by auto

define c where c = (measure M Cx)/2
have c > 0 unfolding c-def using Cxe(2 ) by (simp add: emeasure-eq-measure)

We will apply Birkhoff theorem to show that most preimages of C at time
n are contained in a cylinder of height roughly rn, for some suitably small
r. How small r should be to get a contradiction can be determined at the
end of the proof. It turns out that the good condition is the following one –
this is by no means obvious now.

define r where r = (if measure M (space M ) = 0 then 1 else e ∗ c / (4 ∗
measure M (space M )))

have r > 0 using ‹e > 0 › ‹c > 0 › unfolding r-def
apply auto using measure-le-0-iff by fastforce

have pos: e∗c−2∗r∗measure M (space M ) > 0 using ‹e > 0 › ‹c > 0 › unfolding
r-def by auto

define Bgood where Bgood = {x ∈ space M . (λn. birkhoff-sum f n x / n) −−−−→
0}

have [measurable]: Bgood ∈ sets M unfolding Bgood-def by auto
have ∗: AE x in M . x ∈ Bgood unfolding Bgood-def using birkhoff-theorem-AE-nonergodic[OF

assms(1 )] assms(2 ) by auto
then have emeasure M Bgood = emeasure M (space M )

by (intro emeasure-eq-AE) auto

{
fix x assume x ∈ Bgood
then have x ∈ space M unfolding Bgood-def by auto
have (λn. birkhoff-sum f n x / n) −−−−→ 0 using ‹x ∈ Bgood› unfolding

Bgood-def by auto
moreover have 0 ∈ {−r<..<r} open {−r<..<r} using ‹r>0 › by auto
ultimately have eventually (λn. birkhoff-sum f n x / n ∈ {−r<..<r}) sequen-

tially
using topological-tendstoD by blast

then obtain n0 where n0 : n0>0
∧

n. n ≥ n0 =⇒ birkhoff-sum f n x / n ∈
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{−r<..<r}
using eventually-sequentially by (metis (mono-tags, lifting) le0 le-simps(3 )

neq0-conv)
{

fix n assume n ≥ n0
then have n>0 using ‹n0>0 › by auto
with n0 (2 )[OF ‹n ≥ n0 ›] have abs(birkhoff-sum f n x / n) ≤ r by auto

then have abs(birkhoff-sum f n x) ≤ r ∗ n using ‹n>0 › by (simp add:
divide-le-eq)

}
then have x ∈ (

⋃
n0 . {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum f n x) ≤ r

∗ n}) using ‹x ∈ space M › by blast
}
then have AE x in M . x /∈ space M − (

⋃
n0 . {x ∈ space M . ∀n∈{n0 ..}.

abs(birkhoff-sum f n x) ≤ r ∗ n})
using ∗ by auto

then have eqM : emeasure M (
⋃

n0 . {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum
f n x) ≤ r ∗ n}) = emeasure M (space M )

by (intro emeasure-eq-AE) auto

have (λn0 . emeasure M {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum f n x) ≤ r
∗ n} + c)

−−−−→ emeasure M (
⋃

n0 . {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum f
n x) ≤ r ∗ n}) + c

by (intro tendsto-intros Lim-emeasure-incseq) (auto simp add: incseq-def )
moreover have emeasure M (

⋃
n0 . {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum

f n x) ≤ r ∗ n}) + c > emeasure M (space M )
using eqM ‹c > 0 › emeasure-eq-measure by auto

ultimately have eventually (λn0 . emeasure M {x ∈ space M . ∀n∈{n0 ..}.
abs(birkhoff-sum f n x) ≤ r ∗ n} + c > emeasure M (space M )) sequentially

unfolding order-tendsto-iff by auto
then obtain n0 where n0 : emeasure M {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum

f n x) ≤ r ∗ n} + c > emeasure M (space M )
using eventually-sequentially by auto

define Dx where Dx = {x ∈ space M . ∀n∈{n0 ..}. abs(birkhoff-sum f n x) ≤ r
∗ n}

have Dx-meas [measurable]: Dx ∈ sets M unfolding Dx-def by auto
have emeasure M Dx + c ≥ emeasure M (space M ) using n0 Dx-def by auto

obtain n1 ::nat where n1 : n1 > max n0 ((measure M (space M ) ∗ 2 ∗ N +
e∗c∗n0 − e∗c) / (e∗c−2∗r∗measure M (space M )))

by (metis mult.commute mult.left-neutral numeral-One reals-Archimedean3
zero-less-numeral)

then have n1 > n0 by auto
have n1-ineq: n1 ∗ (e∗c−2∗r∗measure M (space M )) > (measure M (space M )
∗ 2 ∗ N + e∗c∗n0 − e∗c)

using n1 pos by (simp add: pos-divide-less-eq)
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define D where D = (λn. Dx × {−r∗n1−N ..r∗n1+N} ∩ (?TS^^n)−‘C )
have Dn-meas [measurable]: D n ∈ sets (M

⊗
M lborel) for n

unfolding D-def apply (rule TS .T-intersec-meas(2 )) using C-meas by auto

have emeasure ?MS (D n) ≥ e ∗ c if n ∈ {n0 ..n1} for n
proof −

have n ≥ n0 n ≤ n1 using that by auto
{

fix x assume [simp]: x ∈ space M

define F where F = {y ∈ {−r∗n1−N ..r∗n1+N}. y + birkhoff-sum f n x ∈
Pair ((T^^n)x) −‘C}

have [measurable]: F ∈ sets lborel unfolding F-def by measurable
{

fix y::real
have (?TS^^n)(x,y) = ((T^^n)x, y + birkhoff-sum f n x)

using skew-product-real-iterates by simp
then have (indicator C ((?TS^^n) (x,y))::ennreal) = indicator Cx ((T^^n)x)

∗ indicator (Pair ((T^^n)x) −‘C ) (y + birkhoff-sum f n x)
using C-def by (simp add: indicator-def )

moreover have (indicator (D n) (x, y)::ennreal) = indicator Dx x ∗ indicator
{−r∗n1−N ..r∗n1+N} y ∗ indicator C ((?TS^^n) (x,y))

unfolding D-def by (simp add: indicator-def )
ultimately have (indicator (D n) (x, y)::ennreal) = indicator Dx x ∗

indicator {−r∗n1−N ..r∗n1+N} y
∗ indicator Cx ((T^^n)x) ∗ indicator (Pair ((T^^n)x) −‘C ) (y +

birkhoff-sum f n x)
by (simp add: mult.assoc)

then have (indicator (D n) (x, y)::ennreal) = indicator (Dx ∩ (T^^n)−‘Cx)
x ∗ indicator F y

unfolding F-def by (simp add: indicator-def )
}
then have (

∫
+y. indicator (D n) (x, y) ∂lborel) = (

∫
+y. indicator (Dx ∩

(T^^n)−‘Cx) x ∗ indicator F y ∂lborel)
by auto

also have ... = indicator (Dx ∩ (T^^n)−‘Cx) x ∗ (
∫

+y. indicator F y ∂lborel)
by (rule nn-integral-cmult, auto)

also have ... = indicator (Dx ∩ (T^^n)−‘Cx) x ∗ emeasure lborel F using
‹F ∈ sets lborel› by auto

finally have A: (
∫

+y. indicator (D n) (x, y) ∂lborel) = indicator (Dx ∩
(T^^n)−‘Cx) x ∗ emeasure lborel F

by simp

have (
∫

+y. indicator (D n) (x, y) ∂lborel) ≥ ennreal e ∗ indicator (Dx ∩
(T^^n)−‘Cx) x

proof (cases)
assume indicator (Dx ∩ (T^^n)−‘Cx) x = (0 ::ennreal)
then show ?thesis by auto

next
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assume ¬(indicator (Dx ∩ (T^^n)−‘Cx) x = (0 ::ennreal))
then have x ∈ Dx ∩ (T^^n)−‘Cx by (simp add: indicator-eq-0-iff )
then have x ∈ Dx (T^^n) x ∈ Cx by auto
then have abs(birkhoff-sum f n x) ≤ r ∗ n using ‹n ∈ {n0 ..n1}› Dx-def

by auto
then have ∗: abs(birkhoff-sum f n x) ≤ r ∗ n1 using ‹n ≤ n1 › ‹r>0 ›

by (meson of-nat-le-iff order-trans mult-le-cancel-left-pos)

have F-expr : F = {−r∗n1−N ..r∗n1+N} ∩ (+)(birkhoff-sum f n x) −‘
(Pair ((T^^n)x) −‘C )

unfolding F-def by (auto simp add: add.commute)
have (Pair ((T^^n)x) −‘C ) ⊆ {real-of-int (− int N )..real N} unfolding

C-def B-def by auto
then have ((+)(birkhoff-sum f n x)) −‘ (Pair ((T^^n)x) −‘C ) ⊆ {−N−birkhoff-sum

f n x..N−birkhoff-sum f n x}
by auto

also have ... ⊆ {−r ∗ n1 − N .. r ∗ n1 + N} using ∗ by auto
finally have F = ((+)(birkhoff-sum f n x)) −‘ (Pair ((T^^n)x) −‘C )

unfolding F-expr by auto

then have emeasure lborel F = emeasure lborel ((+)(birkhoff-sum f n x) −‘
(Pair ((T^^n)x) −‘C )) by auto

also have ... = emeasure lborel (((+)(birkhoff-sum f n x) −‘ (Pair ((T^^n)x)
−‘C )) ∩ space lborel) by simp

also have ... = emeasure (distr lborel borel ((+) (birkhoff-sum f n x))) (Pair
((T^^n)x) −‘C )

apply (rule emeasure-distr [symmetric]) using C-meas by auto
also have ... = emeasure lborel (Pair ((T^^n)x) −‘C ) using lborel-distr-plus[of

birkhoff-sum f n x] by simp
also have ... ≥ e using Cx-fibers ‹(T^^n) x ∈ Cx› by auto
finally have emeasure lborel F ≥ e by auto
then show ?thesis using A by (simp add: indicator-def )

qed
}
moreover have emeasure ?MS (D n) = (

∫
+x. (

∫
+y. indicator (D n) (x, y)

∂lborel) ∂M )
using Dn-meas lborel.emeasure-pair-measure by blast

ultimately have emeasure ?MS (D n) ≥ (
∫

+x. ennreal e ∗ indicator (Dx ∩
(T ^^ n) −‘ Cx) x ∂M )

by (simp add: nn-integral-mono)
also have (

∫
+x. ennreal e ∗ indicator (Dx ∩ (T ^^ n) −‘ Cx) x ∂M ) = e ∗

(
∫

+x. indicator (Dx ∩ (T ^^ n) −‘ Cx) x ∂M )
apply (rule nn-integral-cmult) using ‹e>0 › by auto

also have ... = ennreal e ∗ emeasure M (Dx ∩ (T ^^ n) −‘ Cx) by simp
finally have ∗: emeasure ?MS (D n) ≥ ennreal e ∗ emeasure M (Dx ∩ (T ^^

n) −‘ Cx) by auto

have c + emeasure M (space M ) ≤ emeasure M Dx + emeasure M Cx
using ‹emeasure M Dx + c ≥ emeasure M (space M )› unfolding c-def
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by (auto simp: emeasure-eq-measure ennreal-plus[symmetric] simp del: en-
nreal-plus)

also have ... = emeasure M Dx + emeasure M ((T^^n)−−‘Cx)
by (simp add: T-vrestr-same-emeasure(2 ))

also have ... = emeasure M (Dx ∪ ((T^^n)−−‘Cx)) + emeasure M (Dx ∩
((T^^n)−−‘Cx))

by (rule emeasure-Un-Int, auto)
also have ... ≤ emeasure M (space M ) + emeasure M (Dx ∩ ((T^^n)−‘Cx))
proof −

have emeasure M (Dx ∪ ((T^^n)−−‘Cx)) ≤ emeasure M (space M )
by (rule emeasure-mono, auto simp add: sets.sets-into-space)

moreover have Dx ∩ ((T^^n)−−‘Cx) = Dx ∩ ((T^^n)−‘Cx)
by (simp add: vrestr-intersec-in-space)

ultimately show ?thesis by (metis add.commute add-left-mono)
qed
finally have emeasure M (Dx ∩ ((T^^n)−‘Cx)) ≥ c by (simp add: emea-

sure-eq-measure)
then have ennreal e ∗ emeasure M (Dx ∩ ((T^^n)−‘Cx)) ≥ ennreal e ∗ c

using ‹e > 0 ›
using mult-left-mono by fastforce

with ∗ show emeasure ?MS (D n) ≥ e ∗ c
using ‹0<c› ‹0<e› by (auto simp: ennreal-mult[symmetric])

qed

have ¬(disjoint-family-on D {n0 ..n1})
proof

assume D: disjoint-family-on D {n0 ..n1}
have emeasure lborel {−r∗n1−N ..r∗n1+N} = (r ∗ real n1 + real N ) − (− r

∗ real n1 − real N )
apply (rule emeasure-lborel-Icc) using ‹r>0 › by auto

then have ∗: emeasure lborel {−r∗n1−N ..r∗n1+N} = ennreal(2 ∗ r ∗ real n1
+ 2 ∗ real N )

by (auto simp: ac-simps)

have ennreal(e ∗ c) ∗ (real n1 − real n0 + 1 ) = ennreal(e∗c) ∗ card {n0 ..n1}
using ‹n1 > n0 › by (auto simp: ennreal-of-nat-eq-real-of-nat Suc-diff-le

ac-simps of-nat-diff )
also have ... = (

∑
n∈{n0 ..n1}. ennreal(e∗c))

by (simp add: ac-simps)
also have ... ≤ (

∑
n∈{n0 ..n1}. emeasure ?MS (D n))

using ‹
∧

n. n ∈ {n0 ..n1} =⇒ emeasure ?MS (D n) ≥ e ∗ c› by (meson
sum-mono)

also have ... = emeasure ?MS (
⋃

n∈{n0 ..n1}. D n)
apply (rule sum-emeasure) using Dn-meas by (auto simp add: D)

also have ... ≤ emeasure ?MS (space M × {−r∗n1−N ..r∗n1+N})
apply (rule emeasure-mono) unfolding D-def using sets.sets-into-space[OF

Dx-meas] by auto
also have ... = emeasure M (space M ) ∗ emeasure lborel {−r∗n1−N ..r∗n1+N}

by (rule sigma-finite-measure.emeasure-pair-measure-Times, auto simp add:
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lborel.sigma-finite-measure-axioms)
also have ... = emeasure M (space M ) ∗ ennreal(2 ∗ r ∗ real n1 + 2 ∗ real N )

using ∗ by auto
finally have ennreal(e ∗ c) ∗ (real n1− real n0+1 ) ≤ emeasure M (space M )

∗ ennreal(2 ∗ r ∗ real n1 + 2 ∗ real N ) by simp
then have e∗c ∗ (real n1− real n0 + 1 ) ≤ measure M (space M ) ∗ (2 ∗ r ∗

real n1 + 2 ∗ real N )
using ‹0<r› ‹0<e› ‹0<c› ‹n0 < n1 › emeasure-eq-measure by (auto simp:

ennreal-mult ′[symmetric] simp del: ennreal-plus)
then have 0 ≤ measure M (space M ) ∗ (2 ∗ r ∗ real n1 + 2 ∗ real N ) − e∗c

∗ (real n1− real n0 + 1 ) by auto
also have ... = (measure M (space M ) ∗ 2 ∗ N + e∗c∗n0 − e∗c) − n1 ∗

(e∗c−2∗r∗measure M (space M ))
by algebra

finally have n1 ∗ (e∗c−2∗r∗measure M (space M )) ≤ measure M (space M )
∗ 2 ∗ N + e∗c∗n0 − e∗c

by linarith
then show False using n1-ineq by auto

qed
then obtain n m where nm: n<m D m ∩ D n 6= {} unfolding disjoint-family-on-def

by (metis inf-sup-aci(1 ) linorder-cases)
define k where k = m−n
then have k>0 D (n+k) ∩ D n 6= {} using nm by auto
then have ((?TS^^(n+k))−‘A) ∩ ((?TS^^n)−‘A) 6= {} unfolding D-def C-def

B-def by auto
moreover have ((?TS^^(n+k))−‘A) ∩ ((?TS^^n)−‘A) = (?TS^^n)−‘(((?TS^^k)−‘A)
∩ A)

using funpow-add by (simp add: add.commute funpow-add set.compositionality)
ultimately have ((?TS^^k)−‘A) ∩ A 6= {} by auto
then show ∃ k>0 . ((?TS^^k)−‘A) ∩ A 6= {} using ‹k>0 › by auto

qed

6.2.4 Oscillations around the limit in Birkhoff theorem

In this paragraph, we prove that, in Birkhoff theorem with vanishing limit,
the Birkhoff sums are infinitely many times arbitrarily close to 0, both on
the positive and the negative side.
In the ergodic case, this statement implies for instance that if the Birkhoff
sums of an integrable function tend to infinity almost everywhere, then the
integral of the function can not vanish, it has to be strictly positive (while
Birkhoff theorem per se does not exclude the convergence to infinity, at a rate
slower than linear). This converts a qualitative information (convergence to
infinity at an unknown rate) to a quantitative information (linear conver-
gence to infinity). This result (sometimes known as Atkinson’s Lemma) has
been reinvented many times, for instance by Kesten and by Guivarch. It
plays an important role in the study of random products of matrices.
This is essentially a consequence of the conservativity of the corresponding
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skew-product, proved in skew_product_conservative. Indeed, this implies
that, starting from a small set X× [−e/2, e/2], the skew-product comes back
infinitely often to itself, which implies that the Birkhoff sums at these times
are bounded by e.
To show that the Birkhoff sums come back to [0, e] is a little bit more tricky.
Argue by contradiction, and induce on A × [0, e/2] where A is the set of
points where the Birkhoff sums don’t come back to [0, e]. Then the second
coordinate decreases strictly when one iterates the skew product, which is
not compatible with conservativity.
lemma birkhoff-sum-small-asymp-lemma:

assumes [measurable]: integrable M f
and AE x in M . real-cond-exp M Invariants f x = 0 e>(0 ::real)

shows AE x in M . infinite {n. birkhoff-sum f n x ∈ {0 ..e}}
proof −

have [measurable]: f ∈ borel-measurable M by auto
have [measurable]:

∧
N . {x ∈ space M . ∃N . ∀n∈{N ..}. birkhoff-sum f n x /∈

{0 ..e}} ∈ sets M by auto

{
fix N assume N>(0 ::nat)
define Ax where Ax = {x ∈ space M . ∀n∈{N ..}. birkhoff-sum f n x /∈ {0 ..e}}
then have [measurable]: Ax ∈ sets M by auto
define A where A = Ax × {0 ..e/2}
then have A-meas [measurable]: A ∈ sets (M

⊗
M lborel) by auto

define TN where TN = T^^N
interpret TN : fmpt M TN

unfolding TN-def using fmpt-power by auto
define fN where fN = birkhoff-sum f N
have TN .birkhoff-sum fN n x = birkhoff-sum f (n∗N ) x for n x
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)

have TN .birkhoff-sum fN (Suc n) x = TN .birkhoff-sum fN n x + fN ((TN^^n)
x)

using TN .birkhoff-sum-cocycle[of fN n 1 ] by auto
also have ... = birkhoff-sum f (n∗N ) x + birkhoff-sum f N ((TN^^n) x)

using Suc.IH fN-def by auto
also have ... = birkhoff-sum f (n∗N+N ) x unfolding TN-def
by (subst funpow-mult, subst mult.commute[of N n], rule birkhoff-sum-cocycle[of

f n∗N N x, symmetric])
finally show ?case by (simp add: add.commute)

qed
then have not0e:

∧
x n. x ∈ Ax =⇒ n 6= 0 =⇒ TN .birkhoff-sum fN n x /∈

{0 ..e} unfolding Ax-def by auto
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let ?TS = (λ(x,y). (T x, y + f x))
let ?MS = M

⊗
M (lborel::real measure)

interpret TS : conservative-mpt ?MS ?TS
by (rule skew-product-conservative, auto simp add: assms)

let ?TSN = (λ(x,y). (TN x, y + fN x))
have ∗:?TSN = ?TS^^N unfolding TN-def fN-def using skew-product-real-iterates

by auto
interpret TSN : conservative-mpt ?MS ?TSN

using ∗ TS .conservative-mpt-power by auto

define MA TA where MA = restrict-space ?MS A and TA = TSN .induced-map
A

interpret TA: conservative-mpt MA TA unfolding MA-def TA-def
by (rule TSN .induced-map-conservative-mpt, measurable)

have ∗:
∧

x y. snd (TA (x,y)) = snd (x,y) + TN .birkhoff-sum fN (TSN .return-time-function
A (x,y)) x

unfolding TA-def TSN .induced-map-def using TN .skew-product-real-iterates
Pair-def by auto

have [measurable]: snd ∈ borel-measurable ?MS by auto
then have [measurable]: snd ∈ borel-measurable MA unfolding MA-def using

measurable-restrict-space1 by blast

have AE z in MA. z ∈ TSN .recurrent-subset A
unfolding MA-def using TSN .induced-map-recurrent-typical(1 )[OF A-meas].
moreover
{

fix z assume z: z ∈ TSN .recurrent-subset A
define x y where x = fst z and y = snd z
then have z = (x,y) by simp
have z ∈ A using z TSN .recurrent-subset-incl(1 ) by auto
then have x ∈ Ax y ∈ {0 ..e/2} unfolding A-def x-def y-def by auto
define y2 where y2 = y + TN .birkhoff-sum fN (TSN .return-time-function

A (x,y)) x
have y2 = snd (TA z) unfolding y2-def using ∗ ‹z = (x, y)› by force

moreover have TA z ∈ A unfolding TA-def using ‹z ∈ A› TSN .induced-map-stabilizes-A
by auto

ultimately have y2 ∈ {0 ..e/2} unfolding A-def by auto

have TSN .return-time-function A (x,y) 6= 0
using ‹z = (x,y)› ‹z ∈ TSN .recurrent-subset A› TSN .return-time0 [of A] by

fast
then have TN .birkhoff-sum fN (TSN .return-time-function A (x,y)) x /∈ {0 ..e}

using not0e[OF ‹x ∈ Ax›] by auto
moreover have TN .birkhoff-sum fN (TSN .return-time-function A (x,y)) x

∈ {−e..e}
using ‹y ∈ {0 ..e/2}› ‹y2 ∈ {0 ..e/2}› y2-def by auto

ultimately have TN .birkhoff-sum fN (TSN .return-time-function A (x,y)) x
∈ {−e..<0}
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by auto
then have y2 < y using y2-def by auto
then have snd(TA z) < snd z unfolding y-def using ‹y2 = snd (TA z)›

by auto
}
ultimately have a: AE z in MA. snd(TA z) < snd z by auto
then have AE z in MA. snd(TA z) ≤ snd z by auto

then have AE z in MA. snd(TA z) = snd z using TA.AE-decreasing-then-invariant[of
snd] by auto

then have AE z in MA. False using a by auto
then have space MA ∈ null-sets MA by (simp add: AE-iff-null-sets)

then have emeasure MA A = 0 by (metis A-meas MA-def null-setsD1 space-restrict-space2 )
then have emeasure ?MS A = 0 unfolding MA-def
by (metis A-meas emeasure-restrict-space sets.sets-into-space sets.top space-restrict-space

space-restrict-space2 )
moreover have emeasure ?MS A = emeasure M Ax ∗ emeasure lborel {0 ..e/2}

unfolding A-def by (intro lborel.emeasure-pair-measure-Times) auto
ultimately have emeasure M {x ∈ space M . ∀n∈{N ..}. birkhoff-sum f n x /∈

{0 ..e}} = 0 using ‹e>0 › Ax-def by simp
then have {x ∈ space M . ∀n∈{N ..}. birkhoff-sum f n x /∈ {0 ..e}} ∈ null-sets

M by auto
}
then have (

⋃
N∈{0<..}. {x ∈ space M . ∀n∈{N ..}. birkhoff-sum f n x /∈ {0 ..e}})

∈ null-sets M by (auto simp: greaterThan-0 )
moreover have {x ∈ space M . ¬(infinite {n. birkhoff-sum f n x ∈ {0 ..e}})} ⊆

(
⋃

N∈{0<..}. {x ∈ space M . ∀n∈{N ..}. birkhoff-sum f n x /∈ {0 ..e}})
proof
fix x assume H : x ∈ {x ∈ space M . ¬(infinite {n. birkhoff-sum f n x ∈ {0 ..e}})}
then have x ∈ space M by auto
have ∗: finite {n. birkhoff-sum f n x ∈ {0 ..e}} using H by auto
then obtain N where

∧
n. n ≥ N =⇒ n /∈ {n. birkhoff-sum f n x ∈ {0 ..e}}

by (metis finite-nat-set-iff-bounded not-less)
then have x ∈ {x ∈ space M . ∀n∈{N+1 ..}. birkhoff-sum f n x /∈ {0 ..e}}

using ‹x ∈ space M › by auto
moreover have N+1>0 by auto
ultimately show x ∈ (

⋃
N∈{0<..}. {x ∈ space M . ∀n∈{N ..}. birkhoff-sum f

n x /∈ {0 ..e}}) by auto
qed
ultimately show ?thesis unfolding eventually-ae-filter by auto

qed

theorem birkhoff-sum-small-asymp-pos-nonergodic:
assumes [measurable]: integrable M f and e > (0 ::real)
shows AE x in M . infinite {n. birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invari-

ants f x .. n ∗ real-cond-exp M Invariants f x + e}}
proof −

define g where g = (λx. f x − real-cond-exp M Invariants f x)
have g-meas [measurable]: integrable M g unfolding g-def using real-cond-exp-int(1 )[OF

assms(1 )] assms(1 ) by auto
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have AE x in M . real-cond-exp M Invariants (real-cond-exp M Invariants f ) x =
real-cond-exp M Invariants f x

by (rule real-cond-exp-F-meas, auto simp add: real-cond-exp-int(1 )[OF assms(1 )])
then have ∗: AE x in M . real-cond-exp M Invariants g x = 0
unfolding g-def using real-cond-exp-diff [OF assms(1 ) real-cond-exp-int(1 )[OF

assms(1 )]] by auto
have AE x in M . infinite {n. birkhoff-sum g n x ∈ {0 ..e}}

by (rule birkhoff-sum-small-asymp-lemma, auto simp add: ‹e>0 › ∗ g-meas)
moreover
{

fix x assume x ∈ space M infinite {n. birkhoff-sum g n x ∈ {0 ..e}}
{

fix n assume H : birkhoff-sum g n x ∈ {0 ..e}
have birkhoff-sum g n x = birkhoff-sum f n x − birkhoff-sum (real-cond-exp

M Invariants f ) n x
unfolding g-def using birkhoff-sum-diff by auto

also have ... = birkhoff-sum f n x − n ∗ real-cond-exp M Invariants f x
using birkhoff-sum-of-invariants ‹x ∈ space M › by auto

finally have birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invariants f x .. n ∗
real-cond-exp M Invariants f x + e} using H by simp

}
then have {n. birkhoff-sum g n x ∈ {0 ..e}} ⊆ {n. birkhoff-sum f n x ∈ {n ∗

real-cond-exp M Invariants f x .. n ∗ real-cond-exp M Invariants f x + e}}
by auto

then have infinite {n. birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invariants f
x .. n ∗ real-cond-exp M Invariants f x + e}}

using ‹infinite {n. birkhoff-sum g n x ∈ {0 ..e}}› finite-subset by blast
}
ultimately show ?thesis by auto

qed

theorem birkhoff-sum-small-asymp-neg-nonergodic:
assumes [measurable]: integrable M f and e > (0 ::real)
shows AE x in M . infinite {n. birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invari-

ants f x − e .. n ∗ real-cond-exp M Invariants f x}}
proof −

define g where g = (λx. real-cond-exp M Invariants f x − f x)
have g-meas [measurable]: integrable M g unfolding g-def using real-cond-exp-int(1 )[OF

assms(1 )] assms(1 ) by auto
have AE x in M . real-cond-exp M Invariants (real-cond-exp M Invariants f ) x =

real-cond-exp M Invariants f x
by (rule real-cond-exp-F-meas, auto simp add: real-cond-exp-int(1 )[OF assms(1 )])

then have ∗: AE x in M . real-cond-exp M Invariants g x = 0
unfolding g-def using real-cond-exp-diff [OF real-cond-exp-int(1 )[OF assms(1 )]

assms(1 )] by auto
have AE x in M . infinite {n. birkhoff-sum g n x ∈ {0 ..e}}

by (rule birkhoff-sum-small-asymp-lemma, auto simp add: ‹e>0 › ∗ g-meas)
moreover
{
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fix x assume x ∈ space M infinite {n. birkhoff-sum g n x ∈ {0 ..e}}
{

fix n assume H : birkhoff-sum g n x ∈ {0 ..e}
have birkhoff-sum g n x = birkhoff-sum (real-cond-exp M Invariants f ) n x −

birkhoff-sum f n x
unfolding g-def using birkhoff-sum-diff by auto

also have ... = n ∗ real-cond-exp M Invariants f x − birkhoff-sum f n x
using birkhoff-sum-of-invariants ‹x ∈ space M › by auto

finally have birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invariants f x − e ..
n ∗ real-cond-exp M Invariants f x} using H by simp

}
then have {n. birkhoff-sum g n x ∈ {0 ..e}} ⊆ {n. birkhoff-sum f n x ∈ {n ∗

real-cond-exp M Invariants f x − e .. n ∗ real-cond-exp M Invariants f x}}
by auto

then have infinite {n. birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invariants f
x − e .. n ∗ real-cond-exp M Invariants f x}}

using ‹infinite {n. birkhoff-sum g n x ∈ {0 ..e}}› finite-subset by blast
}
ultimately show ?thesis by auto

qed

6.2.5 Conditional expectation for the induced map

Thanks to Birkhoff theorem, one can relate conditional expectations with
respect to the invariant sigma algebra, for a map and for a corresponding
induced map, as follows.
proposition Invariants-cond-exp-induced-map:

fixes f :: ′a ⇒ real
assumes [measurable]: A ∈ sets M integrable M f
defines MA ≡ restrict-space M A and TA ≡ induced-map A and fA ≡ in-

duced-function A f
shows AE x in MA. real-cond-exp MA (qmpt.Invariants MA TA) fA x

= real-cond-exp M Invariants f x ∗ real-cond-exp MA (qmpt.Invariants MA
TA) (return-time-function A) x
proof −
interpret A: fmpt MA TA unfolding MA-def TA-def by (rule induced-map-fmpt[OF

assms(1 )])

have integrable M fA unfolding fA-def using induced-function-integral-nonergodic(1 )
assms by auto

then have integrable MA fA unfolding MA-def
by (metis assms(1 ) integrable-mult-indicator integrable-restrict-space sets.Int-space-eq2 )

then have a: AE x in MA. (λn. A.birkhoff-sum fA n x / n) −−−−→ real-cond-exp
MA A.Invariants fA x

using A.birkhoff-theorem-AE-nonergodic by auto

have AE x in M . (λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M Invariants
f x

using birkhoff-theorem-AE-nonergodic assms(2 ) by auto
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then have b: AE x in MA. (λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M
Invariants f x

unfolding MA-def by (metis (mono-tags, lifting) AE-restrict-space-iff assms(1 )
eventually-mono sets.Int-space-eq2 )

define phiA where phiA = (λx. return-time-function A x)
have integrable M phiA unfolding phiA-def using return-time-integrable by

auto
then have integrable MA phiA unfolding MA-def
by (metis assms(1 ) integrable-mult-indicator integrable-restrict-space sets.Int-space-eq2 )
then have c: AE x in MA. (λn. A.birkhoff-sum (λx. real(phiA x)) n x / n)
−−−−→ real-cond-exp MA A.Invariants phiA x

using A.birkhoff-theorem-AE-nonergodic by auto

have A−recurrent-subset A ∈ null-sets M using Poincare-recurrence-thm(1 )[OF
assms(1 )] by auto

then have A − recurrent-subset A ∈ null-sets MA unfolding MA-def
by (metis Diff-subset assms(1 ) emeasure-restrict-space null-setsD1 null-setsD2

null-setsI sets.Int-space-eq2 sets-restrict-space-iff )
then have AE x in MA. x ∈ recurrent-subset A

by (simp add: AE-iff-null MA-def null-setsD2 set-diff-eq space-restrict-space2 )
moreover have

∧
x. x ∈ recurrent-subset A =⇒ phiA x > 0 unfolding phiA-def

using return-time0 by fastforce
ultimately have ∗: AE x in MA. phiA x > 0 by auto
have d: AE x in MA. real-cond-exp MA A.Invariants phiA x > 0

by (rule A.real-cond-exp-gr-c, auto simp add: ∗ ‹integrable MA phiA›)

{
fix x

assume A: (λn. A.birkhoff-sum fA n x / n) −−−−→ real-cond-exp MA A.Invariants
fA x

and B: (λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M Invariants f x
and C : (λn. A.birkhoff-sum (λx. real(phiA x)) n x / n) −−−−→ real-cond-exp

MA A.Invariants phiA x
and D: real-cond-exp MA A.Invariants phiA x > 0

define R where R = (λn. A.birkhoff-sum phiA n x)

have D2 : ereal(real-cond-exp MA A.Invariants phiA x) > 0 using D by simp
have

∧
n. real(R n)/ n = A.birkhoff-sum (λx. real(phiA x)) n x / n unfolding

R-def A.birkhoff-sum-def by auto
moreover have (λn. A.birkhoff-sum (λx. real(phiA x)) n x / n) −−−−→

real-cond-exp MA A.Invariants phiA x using C by auto
ultimately have Rnn: (λn. real(R n)/n) −−−−→ real-cond-exp MA A.Invariants

phiA x by presburger

have
∧

n. ereal(real(R n))/ n = ereal(A.birkhoff-sum (λx. real(phiA x)) n x /
n) unfolding R-def A.birkhoff-sum-def by auto

moreover have (λn. ereal(A.birkhoff-sum (λx. real(phiA x)) n x / n)) −−−−→
real-cond-exp MA A.Invariants phiA x using C by auto
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ultimately have i: (λn. ereal(real(R n))/n) −−−−→ real-cond-exp MA A.Invariants
phiA x by auto

have ii: (λn. real n) −−−−→ ∞ by (rule id-nat-ereal-tendsto-PInf )
have iii: (λn. ereal(real(R n))/n ∗ real n) −−−−→∞ using tendsto-mult-ereal-PInf [OF

i D2 ii] by simp
have

∧
n. n > 0 =⇒ ereal(real(R n))/n ∗ real n = R n by auto

then have eventually (λn. ereal(real(R n))/n ∗ real n = R n) sequentially
using eventually-at-top-dense by blast

then have (λn. real(R n)) −−−−→ ∞ using iii by (simp add: filterlim-cong)
then have (λn. birkhoff-sum f (R n) x / (R n)) −−−−→ real-cond-exp M

Invariants f x using limit-along-weak-subseq B by auto
then have l: (λn. (birkhoff-sum f (R n) x / (R n)) ∗ ((R n)/n)) −−−−→

real-cond-exp M Invariants f x ∗ real-cond-exp MA A.Invariants phiA x
by (rule tendsto-mult, simp add: Rnn)

obtain N where N :
∧

n. n > N =⇒ R n > 0 using ‹(λn. real(R n)) −−−−→
∞›

by (metis (full-types) eventually-at-top-dense filterlim-iff filterlim-weak-subseq)
then have

∧
n. n > N =⇒ (birkhoff-sum f (R n) x / (R n)) ∗ ((R n)/n) =

birkhoff-sum f (R n) x / n
by auto

then have eventually (λn. (birkhoff-sum f (R n) x / (R n)) ∗ ((R n)/n) =
birkhoff-sum f (R n) x / n) sequentially

by simp
with tendsto-cong[OF this] have main-limit: (λn. birkhoff-sum f (R n) x / n)

−−−−→ real-cond-exp M Invariants f x ∗ real-cond-exp MA A.Invariants phiA x
using l by auto

have
∧

n. birkhoff-sum f (R n) x = A.birkhoff-sum fA n x
unfolding R-def fA-def phiA-def TA-def using induced-function-birkhoff-sum[OF

assms(1 )] by simp
then have

∧
n. birkhoff-sum f (R n) x /n = A.birkhoff-sum fA n x / n by

simp
then have (λn. A.birkhoff-sum fA n x / n) −−−−→ real-cond-exp M Invariants

f x ∗ real-cond-exp MA A.Invariants phiA x
using main-limit by presburger

then have real-cond-exp MA A.Invariants fA x = real-cond-exp M Invariants
f x ∗ real-cond-exp MA A.Invariants phiA x

using A LIMSEQ-unique by auto
}
then show ?thesis using a b c d unfolding phiA-def by auto

qed

corollary Invariants-cond-exp-induced-map-0 :
fixes f :: ′a ⇒ real
assumes [measurable]: A ∈ sets M integrable M f and AE x in M . real-cond-exp

M Invariants f x = 0
defines MA ≡ restrict-space M A and TA ≡ induced-map A and fA ≡ in-

duced-function A f
shows AE x in MA. real-cond-exp MA (qmpt.Invariants MA TA) fA x = 0

proof −
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have AE x in MA. real-cond-exp M Invariants f x = 0 unfolding MA-def
apply (subst AE-restrict-space-iff ) using assms(3 ) by auto

then show ?thesis unfolding MA-def TA-def fA-def using Invariants-cond-exp-induced-map[OF
assms(1 ) assms(2 )]

by auto
qed

end
end

7 Ergodicity
theory Ergodicity

imports Invariants
begin

A transformation is ergodic if any invariant set has zero measure or full
measure. Ergodic transformations are, in a sense, extremal among measure
preserving transformations. Hence, any transformation can be seen as an
average of ergodic ones. This can be made precise by the notion of ergodic
decomposition, only valid on standard measure spaces.
Many statements get nicer in the ergodic case, hence we will reformulate
many of the previous results in this setting.

7.1 Ergodicity locales
locale ergodic-qmpt = qmpt +

assumes ergodic:
∧

A. A ∈ sets Invariants =⇒ (A ∈ null-sets M ∨ space M −
A ∈ null-sets M )

locale ergodic-mpt = mpt + ergodic-qmpt

locale ergodic-fmpt = ergodic-qmpt + fmpt

locale ergodic-pmpt = ergodic-qmpt + pmpt

locale ergodic-conservative = ergodic-qmpt + conservative

locale ergodic-conservative-mpt = ergodic-qmpt + conservative-mpt

sublocale ergodic-fmpt ⊆ ergodic-mpt
by unfold-locales

sublocale ergodic-pmpt ⊆ ergodic-fmpt
by unfold-locales

sublocale ergodic-fmpt ⊆ ergodic-conservative-mpt
by unfold-locales
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sublocale ergodic-conservative-mpt ⊆ ergodic-conservative
by unfold-locales

7.2 Behavior of sets in ergodic transformations

The main property of an ergodic transformation, essentially equivalent to
the definition, is that a set which is almost invariant under the dynamics is
null or conull.
lemma (in ergodic-qmpt) AE-equal-preimage-then-null-or-conull:

assumes [measurable]: A ∈ sets M and A ∆ T−−‘A ∈ null-sets M
shows A ∈ null-sets M ∨ space M − A ∈ null-sets M

proof −
obtain B where B: B ∈ sets Invariants A ∆ B ∈ null-sets M
by (metis Un-commute Invariants-quasi-Invariants-sets[OF assms(1 )] assms(2 ))

have [measurable]: B ∈ sets M using B(1 ) using Invariants-in-sets by blast
have ∗: B ∈ null-sets M ∨ space M − B ∈ null-sets M using ergodic B(1 ) by

blast
show ?thesis
proof (cases)

assume B ∈ null-sets M
then have A ∈ null-sets M by (metis Un-commute B(2 ) Delta-null-of-null-is-null[OF

assms(1 ), where ?A = B])
then show ?thesis by simp

next
assume ¬(B ∈ null-sets M )
then have i: space M − B ∈ null-sets M using ∗ by simp
have (space M − B) ∆ (space M − A) = A ∆ B
using sets.sets-into-space[OF ‹A ∈ sets M ›] sets.sets-into-space[OF ‹B ∈ sets

M ›] by blast
then have (space M − B) ∆ (space M − A) ∈ null-sets M using B(2 ) by

auto
then have space M − A ∈ null-sets M

using Delta-null-of-null-is-null[where ?A = space M − B and ?B = space
M − A] i by auto

then show ?thesis by simp
qed

qed

The inverse of an ergodic transformation is also ergodic.
lemma (in ergodic-qmpt) ergodic-Tinv:

assumes invertible-qmpt
shows ergodic-qmpt M Tinv

unfolding ergodic-qmpt-def ergodic-qmpt-axioms-def
proof

show qmpt M Tinv using Tinv-qmpt[OF assms] by simp
show ∀A. A ∈ sets (qmpt.Invariants M Tinv) −→ A ∈ null-sets M ∨ space M
− A ∈ null-sets M
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proof (intro allI impI )
fix A assume A ∈ sets (qmpt.Invariants M Tinv)
then have A ∈ sets Invariants using Invariants-Tinv[OF assms] by simp
then show A ∈ null-sets M ∨ space M − A ∈ null-sets M using ergodic by

auto
qed

qed

In the conservative case, instead of the almost invariance of a set, it suffices
to assume that the preimage is contained in the set, or contains the set, to
deduce that it is null or conull.
lemma (in ergodic-conservative) preimage-included-then-null-or-conull:

assumes A ∈ sets M T−−‘A ⊆ A
shows A ∈ null-sets M ∨ space M − A ∈ null-sets M

proof −
have A ∆ T−−‘A ∈ null-sets M using preimage-included-then-almost-invariant[OF

assms] by auto
then show ?thesis using AE-equal-preimage-then-null-or-conull assms(1 ) by

auto
qed

lemma (in ergodic-conservative) preimage-includes-then-null-or-conull:
assumes A ∈ sets M T−−‘A ⊇ A
shows A ∈ null-sets M ∨ space M − A ∈ null-sets M

proof −
have A ∆ T−−‘A ∈ null-sets M using preimage-includes-then-almost-invariant[OF

assms] by auto
then show ?thesis using AE-equal-preimage-then-null-or-conull assms(1 ) by

auto
qed

lemma (in ergodic-conservative) preimages-conull:
assumes [measurable]: A ∈ sets M and emeasure M A > 0
shows space M − (

⋃
n. (T^^n)−−‘A) ∈ null-sets M

space M ∆ (
⋃

n. (T^^n)−−‘A) ∈ null-sets M
proof −

define B where B = (
⋃

n. (T^^n)−−‘A)
then have [measurable]: B ∈ sets M by auto
have T−−‘B = (

⋃
n. (T^^(n+1 ))−−‘A) unfolding B-def using T-vrestr-composed(2 )

by auto
then have T−−‘B ⊆ B using B-def by blast
then have ∗: B ∈ null-sets M ∨ space M − B ∈ null-sets M

using preimage-included-then-null-or-conull by auto
have A ⊆ B unfolding B-def using T-vrestr-0 assms(1 ) by blast
then have emeasure M B > 0 using assms(2 )

by (metis ‹B ∈ sets M › emeasure-eq-0 zero-less-iff-neq-zero)
then have B /∈ null-sets M by auto
then have i: space M − B ∈ null-sets M using ∗ by auto
then show space M − (

⋃
n. (T^^n)−−‘A) ∈ null-sets M using B-def by auto
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have B ⊆ space M using sets.sets-into-space[OF ‹B ∈ sets M ›] by auto
then have space M ∆ B ∈ null-sets M using i by (simp add: Diff-mono

sup.absorb1 )
then show space M ∆ (

⋃
n. (T^^n)−−‘A) ∈ null-sets M using B-def by auto

qed

7.3 Behavior of functions in ergodic transformations

In the same way that invariant sets are null or conull, invariant functions are
almost everywhere constant in an ergodic transformation. For real functions,
one can consider the set where {fx ≥ d}, it has measure 0 or 1 depending
on d. Then f is almost surely equal to the maximal d such that this set has
measure 1. For functions taking values in a general space, the argument is
essentially the same, replacing intervals by a basis of the topology.
lemma (in ergodic-qmpt) Invariant-func-is-AE-constant:

fixes f ::-⇒ ′b::{second-countable-topology, t1-space}
assumes f ∈ borel-measurable Invariants
shows ∃ y. AE x in M . f x = y

proof (cases)
assume space M ∈ null-sets M
obtain y:: ′b where True by auto
have AE x in M . f x = y using ‹space M ∈ null-sets M › AE-I ′ by blast
then show ?thesis by auto

next
assume ∗: ¬(space M ∈ null-sets M )
obtain B:: ′b set set where B: countable B topological-basis B using ex-countable-basis

by auto
define C where C = {b ∈ B. space M − f−‘b ∈ null-sets M}
then have countable C using ‹countable B› by auto
define Y where Y =

⋂
C

have space M − f−‘Y = (
⋃

b∈ C . space M − f−‘b) unfolding Y-def by auto
moreover have

∧
b. b ∈ C =⇒ space M − f−‘b ∈ null-sets M unfolding C-def

by blast
ultimately have i: space M − f−‘Y ∈ null-sets M using ‹countable C › by

(metis null-sets-UN ′)
then have f−‘Y 6= {} using ∗ by auto
then have Y 6= {} by auto
then obtain y where y ∈ Y by auto
define D where D = {b ∈ B. y /∈b ∧ f−‘b ∩ space M ∈ null-sets M}
have countable D using ‹countable B› D-def by auto
{

fix z assume z 6= y
obtain U where U : open U z ∈ U y /∈ U

using t1-space[OF ‹z 6= y›] by blast
obtain V where V ∈ B V ⊆ U z ∈ V by (rule topological-basisE [OF ‹topo-

logical-basis B› ‹open U › ‹z ∈ U ›])
then have y /∈ V using U by blast
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then have V /∈ C using ‹y ∈ Y › Y-def by auto
then have space M − f−‘V ∩ space M /∈ null-sets M unfolding C-def using

‹V ∈ B›
by (metis (no-types, lifting) Diff-Int2 inf .idem mem-Collect-eq)

moreover have f−‘V ∩ space M ∈ sets Invariants
using measurable-sets[OF assms borel-open[OF topological-basis-open[OF B(2 )

‹V ∈ B›]]] subalgebra-def Invariants-is-subalg by metis
ultimately have f−‘V ∩ space M ∈ null-sets M using ergodic by auto
then have V ∈ D unfolding D-def using ‹V ∈ B› ‹y /∈ V › by auto
then have ∃ b ∈ D. z ∈ b using ‹z ∈ V › by auto

}
then have ∗:

⋃
D = UNIV − {y}

apply auto unfolding D-def by auto
have space M − f−‘{y} = f−‘(UNIV −{y}) ∩ space M by blast
also have ... = (

⋃
b∈D. f−‘b ∩ space M ) using ∗ by auto

also have ... ∈ null-sets M using D-def ‹countable D›
by (metis (no-types, lifting) mem-Collect-eq null-sets-UN ′)

finally have space M − f−‘{y} ∈ null-sets M by blast
with AE-not-in[OF this] have AE x in M . x ∈ f−‘{y} by auto
then show ?thesis by auto

qed

The same goes for functions which are only almost invariant, as they coindice
almost everywhere with genuine invariant functions.
lemma (in ergodic-qmpt) AE-Invariant-func-is-AE-constant:

fixes f ::- ⇒ ′b::{second-countable-topology, t2-space}
assumes f ∈ borel-measurable M AE x in M . f (T x) = f x
shows ∃ y. AE x in M . f x = y

proof −
obtain g where g: g ∈ borel-measurable Invariants AE x in M . f x = g x

using Invariants-quasi-Invariants-functions[OF assms(1 )] assms(2 ) by auto
then obtain y where y: AE x in M . g x = y using Invariant-func-is-AE-constant

by auto
have AE x in M . f x = y using g(2 ) y by auto
then show ?thesis by auto

qed

In conservative systems, it suffices to have an inequality between f and f ◦T ,
since such a function is almost invariant.
lemma (in ergodic-conservative) AE-decreasing-func-is-AE-constant:

fixes f ::- ⇒ ′b::{linorder-topology, second-countable-topology}
assumes AE x in M . f (T x) ≤ f x

and [measurable]: f ∈ borel-measurable M
shows ∃ y. AE x in M . f x = y

proof −
have AE x in M . f (T x) = f x using AE-decreasing-then-invariant[OF assms]

by auto
then show ?thesis using AE-Invariant-func-is-AE-constant[OF assms(2 )] by

auto
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qed

lemma (in ergodic-conservative) AE-increasing-func-is-AE-constant:
fixes f ::- ⇒ ′b::{linorder-topology, second-countable-topology}
assumes AE x in M . f (T x) ≥ f x

and [measurable]: f ∈ borel-measurable M
shows ∃ y. AE x in M . f x = y

proof −
have AE x in M . f (T x) = f x using AE-increasing-then-invariant[OF assms]

by auto
then show ?thesis using AE-Invariant-func-is-AE-constant[OF assms(2 )] by

auto
qed

When the function takes values in a Banach space, the value of the invariant
(hence constant) function can be recovered by integrating the function.
lemma (in ergodic-fmpt) Invariant-func-integral:

fixes f ::- ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: f ∈ borel-measurable Invariants
shows integrable M f

AE x in M . f x = (
∫

x. f x ∂M )/R (measure M (space M ))
proof −
have [measurable]: f ∈ borel-measurable M using assms Invariants-measurable-func

by blast
obtain y where y: AE x in M . f x = y using Invariant-func-is-AE-constant[OF

assms] by auto
moreover have integrable M (λx. y) by auto
ultimately show integrable M f by (subst integrable-cong-AE [where ?g = λx.

y], auto)

have (
∫

x. f x ∂M ) = (
∫

x. y ∂M ) by (subst integral-cong-AE [where ?g = λx.
y], auto simp add: y)

also have ... = measure M (space M ) ∗R y by auto
finally have ∗: (

∫
x. f x ∂M ) = measure M (space M ) ∗R y by simp

show AE x in M . f x = (
∫

x. f x ∂M )/R (measure M (space M ))
proof (cases)

assume emeasure M (space M ) = 0
then have space M ∈ null-sets M by auto
then show ?thesis using AE-I ′ by blast

next
assume ¬(emeasure M (space M ) = 0 )

then have measure M (space M ) > 0 using emeasure-eq-measure mea-
sure-le-0-iff by fastforce

then have y = (
∫

x. f x ∂M )/R (measure M (space M )) using ∗ by auto
then show ?thesis using y by auto

qed
qed

As the conditional expectation of a function and the original function have
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the same integral, it follows that the conditional expectation of a function
with respect to the invariant sigma algebra is given by the average of the
function.
lemma (in ergodic-fmpt) Invariants-cond-exp-is-integral-fmpt:

fixes f ::- ⇒ real
assumes integrable M f
shows AE x in M . real-cond-exp M Invariants f x = (

∫
x. f x ∂M ) / measure M

(space M )
proof −

have AE x in M . real-cond-exp M Invariants f x = (
∫

x. real-cond-exp M Invari-
ants f x ∂M )/R (measure M (space M ))

by (rule Invariant-func-integral(2 ), simp add: borel-measurable-cond-exp)
moreover have (

∫
x. real-cond-exp M Invariants f x ∂M ) = (

∫
x. f x ∂M )

by (simp add: assms real-cond-exp-int(2 ))
ultimately show ?thesis by (simp add: divide-real-def mult.commute)

qed

lemma (in ergodic-pmpt) Invariants-cond-exp-is-integral:
fixes f ::- ⇒ real
assumes integrable M f
shows AE x in M . real-cond-exp M Invariants f x = (

∫
x. f x ∂M )

by (metis div-by-1 prob-space Invariants-cond-exp-is-integral-fmpt[OF assms])

7.4 Kac formula

We reformulate the different versions of Kac formula. They simplify as, for
any set A with positive measure, the union

⋃
T−nA (which appears in all

these statements) almost coincides with the whole space.
lemma (in ergodic-conservative-mpt) local-time-unbounded:

assumes [measurable]: A ∈ sets M B ∈ sets M
and emeasure M A < ∞ emeasure M B > 0

shows (λn. emeasure M {x ∈ (T^^n)−−‘A. local-time B n x < k}) −−−−→ 0
proof (rule local-time-unbounded3 )

have A − (
⋃

i. (T ^^ i) −−‘ B) ∈ sets M by auto
moreover have A − (

⋃
i. (T ^^ i) −−‘ B) ⊆ space M − (

⋃
i. (T ^^ i) −−‘

B) using sets.sets-into-space[OF assms(1 )] by blast
ultimately show A − (

⋃
i. (T ^^ i) −−‘ B) ∈ null-sets M by (metis null-sets-subset

preimages-conull(1 )[OF assms(2 ) assms(4 )])
show emeasure M A < ∞ using assms(3 ) by simp

qed (simp-all add: assms)

theorem (in ergodic-conservative-mpt) kac-formula:
assumes [measurable]: A ∈ sets M and emeasure M A > 0
shows (

∫
+y. return-time-function A y ∂M ) = emeasure M (space M )

proof −
have a [measurable]: (

⋃
n. (T^^n)−−‘A) ∈ sets M by auto

then have space M = (
⋃

n. (T^^n)−−‘A) ∪ (space M − (
⋃

n. (T^^n)−−‘A))
using sets.sets-into-space by blast
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then have emeasure M (space M ) = emeasure M (
⋃

n. (T^^n)−−‘A)
by (metis a preimages-conull(1 )[OF assms] emeasure-Un-null-set)

moreover have (
∫

+y. return-time-function A y ∂M ) = emeasure M (
⋃

n.
(T^^n)−−‘A)

using kac-formula-nonergodic[OF assms(1 )] by simp
ultimately show ?thesis by simp

qed

lemma (in ergodic-conservative-mpt) induced-function-integral:
fixes f :: ′a ⇒ real
assumes [measurable]: A ∈ sets M integrable M f and emeasure M A > 0
shows integrable M (induced-function A f )

(
∫

y. induced-function A f y ∂M ) = (
∫

x. f x ∂M )
proof −

show integrable M (induced-function A f )
using induced-function-integral-nonergodic(1 )[OF assms(1 ) assms(2 )] by auto

have (
∫

y. induced-function A f y ∂M ) = (
∫

x ∈ (
⋃

n. (T^^n)−−‘A). f x ∂M )
using induced-function-integral-nonergodic(2 )[OF assms(1 ) assms(2 )] by auto

also have ... = (
∫

x ∈ space M . f x ∂M )
using set-integral-null-delta[OF assms(2 ), where ?A = space M and ?B =

(
⋃

n. (T^^n)−−‘A)]
preimages-conull(2 )[OF assms(1 ) assms(3 )] by auto

also have ... = (
∫

x. f x ∂M ) using set-integral-space[OF assms(2 )] by auto
finally show (

∫
y. induced-function A f y ∂M ) = (

∫
x. f x ∂M ) by simp

qed

lemma (in ergodic-conservative-mpt) induced-function-integral-restr :
fixes f :: ′a ⇒ real
assumes [measurable]: A ∈ sets M integrable M f and emeasure M A > 0
shows integrable (restrict-space M A) (induced-function A f )

(
∫

y. induced-function A f y ∂(restrict-space M A)) = (
∫

x. f x ∂M )
proof −

show integrable (restrict-space M A) (induced-function A f )
using induced-function-integral-restr-nonergodic(1 )[OF assms(1 ) assms(2 )] by

auto
have (

∫
y. induced-function A f y ∂(restrict-space M A)) = (

∫
x ∈ (

⋃
n. (T^^n)−−‘A).

f x ∂M )
using induced-function-integral-restr-nonergodic(2 )[OF assms(1 ) assms(2 )] by

auto
also have ... = (

∫
x ∈ space M . f x ∂M )

using set-integral-null-delta[OF assms(2 ), where ?A = space M and ?B =
(
⋃

n. (T^^n)−−‘A)]
preimages-conull(2 )[OF assms(1 ) assms(3 )] by auto

also have ... = (
∫

x. f x ∂M ) using set-integral-space[OF assms(2 )] by auto
finally show (

∫
y. induced-function A f y ∂(restrict-space M A)) = (

∫
x. f x

∂M ) by simp
qed
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7.5 Birkhoff theorem

The general versions of Birkhoff theorem are formulated in terms of condi-
tional expectations. In ergodic probability measure preserving transforma-
tions (the most common setting), they reduce to simpler versions that we
state now, as the conditional expectations are simply the averages of the
functions.
theorem (in ergodic-pmpt) birkhoff-theorem-AE :

fixes f :: ′a ⇒ real
assumes integrable M f
shows AE x in M . (λn. birkhoff-sum f n x / n) −−−−→ (

∫
x. f x ∂M )

proof −
have AE x in M . (λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M Invariants

f x
using birkhoff-theorem-AE-nonergodic[OF assms] by simp

moreover have AE x in M . real-cond-exp M Invariants f x = (
∫

x. f x ∂M )
using Invariants-cond-exp-is-integral[OF assms] by auto

ultimately show ?thesis by auto
qed

theorem (in ergodic-pmpt) birkhoff-theorem-L1 :
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f
shows (λn.

∫
+x. norm(birkhoff-sum f n x / n − (

∫
x. f x ∂M )) ∂M ) −−−−→ 0

proof −
{

fix n::nat
have AE x in M . real-cond-exp M Invariants f x = (

∫
x. f x ∂M )

using Invariants-cond-exp-is-integral[OF assms] by auto
then have ∗: AE x in M . norm(birkhoff-sum f n x / n − real-cond-exp M

Invariants f x)
= norm(birkhoff-sum f n x / n − (

∫
x. f x ∂M ))

by auto
have (

∫
+x. norm(birkhoff-sum f n x / n − real-cond-exp M Invariants f x)

∂M )
= (

∫
+x. norm(birkhoff-sum f n x / n − (

∫
x. f x ∂M )) ∂M )

apply (rule nn-integral-cong-AE) using ∗ by auto
}
moreover have (λn.

∫
+x. norm(birkhoff-sum f n x / n − real-cond-exp M

Invariants f x) ∂M ) −−−−→ 0
using birkhoff-theorem-L1-nonergodic[OF assms] by auto

ultimately show ?thesis by simp
qed

theorem (in ergodic-pmpt) birkhoff-sum-small-asymp-pos:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f and e>0
shows AE x in M . infinite {n. birkhoff-sum f n x ∈ {n ∗ (

∫
x. f x ∂M ) .. n ∗
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(
∫

x. f x ∂M ) + e}}
proof −
have AE x in M . infinite {n. birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invariants

f x .. n ∗ real-cond-exp M Invariants f x + e}}
using birkhoff-sum-small-asymp-pos-nonergodic[OF assms] by simp

moreover have AE x in M . real-cond-exp M Invariants f x = (
∫

x. f x ∂M )
using Invariants-cond-exp-is-integral[OF assms(1 )] by auto

ultimately show ?thesis by auto
qed

theorem (in ergodic-pmpt) birkhoff-sum-small-asymp-neg:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f and e>0
shows AE x in M . infinite {n. birkhoff-sum f n x ∈ {n ∗ (

∫
x. f x ∂M ) − e .. n

∗ (
∫

x. f x ∂M )}}
proof −
have AE x in M . infinite {n. birkhoff-sum f n x ∈ {n ∗ real-cond-exp M Invariants

f x − e .. n ∗ real-cond-exp M Invariants f x}}
using birkhoff-sum-small-asymp-neg-nonergodic[OF assms] by simp

moreover have AE x in M . real-cond-exp M Invariants f x = (
∫

x. f x ∂M )
using Invariants-cond-exp-is-integral[OF assms(1 )] by auto

ultimately show ?thesis by auto
qed

lemma (in ergodic-pmpt) birkhoff-positive-average:
fixes f :: ′a ⇒ real

assumes [measurable]: integrable M f and AE x in M . (λn. birkhoff-sum f n x)
−−−−→ ∞

shows (
∫

x. f x ∂M ) > 0
proof (rule ccontr)

assume ¬((
∫

x. f x ∂M ) > 0 )
then have ∗: (

∫
x. f x ∂M ) ≤ 0 by simp

have AE x in M . (λn. birkhoff-sum f n x) −−−−→ ∞ ∧ infinite {n. birkhoff-sum
f n x ∈ {n ∗ (

∫
x. f x ∂M ) − 1 .. n∗ (

∫
x. f x ∂M )}}

using assms(2 ) birkhoff-sum-small-asymp-neg[OF assms(1 )] by auto
then obtain x where x: (λn. birkhoff-sum f n x) −−−−→∞ infinite {n. birkhoff-sum

f n x ∈ {n ∗ (
∫

x. f x ∂M ) − 1 .. n∗ (
∫

x. f x ∂M )}}
using AE-False eventually-elim2 by blast

{
fix n assume birkhoff-sum f n x ∈ {n ∗ (

∫
x. f x ∂M ) − 1 .. n ∗ (

∫
x. f x ∂M )}

then have birkhoff-sum f n x ≤ n ∗ (
∫

x. f x ∂M ) by simp
also have ... ≤ 0 using ∗ by (simp add: mult-nonneg-nonpos)
finally have birkhoff-sum f n x ≤ 0 by simp

}
then have {n. birkhoff-sum f n x ∈ {n ∗ (

∫
x. f x ∂M ) − 1 .. n∗ (

∫
x. f x ∂M )}}

⊆ {n. birkhoff-sum f n x ≤ 0} by auto
then have inf : infinite {n. birkhoff-sum f n x ≤ 0} using x(2 ) finite-subset by

blast
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have 0 < (∞::ereal) by auto
then have eventually (λn. birkhoff-sum f n x > (0 ::ereal)) sequentially using

x(1 ) order-tendsto-iff by metis
then obtain N where

∧
n. n ≥ N =⇒ birkhoff-sum f n x > (0 ::ereal) by (meson

eventually-at-top-linorder)
then have

∧
n. n ≥ N =⇒ birkhoff-sum f n x > 0 by auto

then have {n. birkhoff-sum f n x ≤ 0} ⊆ {..<N} by (metis (mono-tags, lifting)
lessThan-iff linorder-not-less mem-Collect-eq subsetI )

then have finite {n. birkhoff-sum f n x ≤ 0} using finite-nat-iff-bounded by
blast

then show False using inf by simp
qed

lemma (in ergodic-pmpt) birkhoff-negative-average:
fixes f :: ′a ⇒ real

assumes [measurable]: integrable M f and AE x in M . (λn. birkhoff-sum f n x)
−−−−→ −∞

shows (
∫

x. f x ∂M ) < 0
proof (rule ccontr)

assume ¬((
∫

x. f x ∂M ) < 0 )
then have ∗: (

∫
x. f x ∂M ) ≥ 0 by simp

have AE x in M . (λn. birkhoff-sum f n x) −−−−→ −∞ ∧ infinite {n. birkhoff-sum
f n x ∈ {n ∗ (

∫
x. f x ∂M ) .. n∗ (

∫
x. f x ∂M ) + 1}}

using assms(2 ) birkhoff-sum-small-asymp-pos[OF assms(1 )] by auto
then obtain x where x: (λn. birkhoff-sum f n x) −−−−→ −∞ infinite {n.

birkhoff-sum f n x ∈ {n ∗ (
∫

x. f x ∂M ) .. n∗ (
∫

x. f x ∂M ) + 1}}
using AE-False eventually-elim2 by blast

{
fix n assume birkhoff-sum f n x ∈ {n ∗ (

∫
x. f x ∂M ) .. n ∗ (

∫
x. f x ∂M ) +

1}
then have birkhoff-sum f n x ≥ n ∗ (

∫
x. f x ∂M ) by simp

moreover have n ∗ (
∫

x. f x ∂M ) ≥ 0 using ∗ by simp
ultimately have birkhoff-sum f n x ≥ 0 by simp

}
then have {n. birkhoff-sum f n x ∈ {n ∗ (

∫
x. f x ∂M ) .. n∗ (

∫
x. f x ∂M ) +

1}} ⊆ {n. birkhoff-sum f n x ≥ 0} by auto
then have inf : infinite {n. birkhoff-sum f n x ≥ 0} using x(2 ) finite-subset by

blast

have 0 > (−∞::ereal) by auto
then have eventually (λn. birkhoff-sum f n x < (0 ::ereal)) sequentially using

x(1 ) order-tendsto-iff by metis
then obtain N where

∧
n. n ≥ N =⇒ birkhoff-sum f n x < (0 ::ereal) by (meson

eventually-at-top-linorder)
then have

∧
n. n ≥ N =⇒ birkhoff-sum f n x < 0 by auto

then have {n. birkhoff-sum f n x ≥ 0} ⊆ {..<N} by (metis (mono-tags, lifting)
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lessThan-iff linorder-not-less mem-Collect-eq subsetI )
then have finite {n. birkhoff-sum f n x ≥ 0} using finite-nat-iff-bounded by

blast

then show False using inf by simp
qed

lemma (in ergodic-pmpt) birkhoff-nonzero-average:
fixes f :: ′a ⇒ real

assumes [measurable]: integrable M f and AE x in M . (λn. abs(birkhoff-sum f n
x)) −−−−→ ∞

shows (
∫

x. f x ∂M ) 6= 0
proof (rule ccontr)

assume ¬((
∫

x. f x ∂M ) 6= 0 )
then have ∗: (

∫
x. f x ∂M ) = 0 by simp

have AE x in M . (λn. abs(birkhoff-sum f n x)) −−−−→∞ ∧ infinite {n. birkhoff-sum
f n x ∈ {0 .. 1}}

using assms(2 ) birkhoff-sum-small-asymp-pos[OF assms(1 )] ∗ by auto
then obtain x where x: (λn. abs(birkhoff-sum f n x)) −−−−→ ∞ infinite {n.

birkhoff-sum f n x ∈ {0 .. 1}}
using AE-False eventually-elim2 by blast

have 1 < (∞::ereal) by auto
then have eventually (λn. abs(birkhoff-sum f n x) > (1 ::ereal)) sequentially

using x(1 ) order-tendsto-iff by metis
then obtain N where

∧
n. n ≥ N =⇒ abs(birkhoff-sum f n x) > (1 ::ereal) by

(meson eventually-at-top-linorder)
then have ∗:

∧
n. n ≥ N =⇒ abs(birkhoff-sum f n x) > 1 by auto

have {n. birkhoff-sum f n x ∈ {0 ..1}} ⊆ {..<N} by (auto, metis (full-types) ∗
abs-of-nonneg not-less)

then have finite {n. birkhoff-sum f n x ∈ {0 ..1}} using finite-nat-iff-bounded
by blast

then show False using x(2 ) by simp
qed

end

8 The shift operator on an infinite product mea-
sure

theory Shift-Operator
imports Ergodicity ME-Library-Complement

begin

Let P be an an infinite product of i.i.d. instances of the distribution M.
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Then the shift operator is the map

T (x0, x1, x2, . . .) = T (x1, x2, . . .) .

In this section, we define this operator and show that it is ergodic using
Kolmogorov’s 0–1 law.
locale shift-operator-ergodic = prob-space +

fixes T :: (nat ⇒ ′a) ⇒ (nat ⇒ ′a) and P :: (nat ⇒ ′a) measure
defines T ≡ (λf . f ◦ Suc)
defines P ≡ PiM (UNIV :: nat set) (λ-. M )

begin

sublocale P: product-prob-space λ-. M UNIV
by unfold-locales

sublocale P: prob-space P
by (simp add: prob-space-PiM prob-space-axioms P-def )

lemma measurable-T [measurable]: T ∈ P →M P
unfolding P-def T-def o-def
by (rule measurable-abs-UNIV [OF measurable-compose[OF measurable-component-singleton]])

auto

The n-th tail algebra Tn is, in some sense, the algebra in which we forget all
information about all xi with i < n. We simply change the product algebra
of P by replacing the algebra for each i < n with the trivial algebra that
contains only the empty set and the entire space.
definition tail-algebra :: nat ⇒ (nat ⇒ ′a) measure

where tail-algebra n = PiM UNIV (λi. if i < n then trivial-measure (space M )
else M )

lemma tail-algebra-0 [simp]: tail-algebra 0 = P
by (simp add: tail-algebra-def P-def )

lemma space-tail-algebra [simp]: space (tail-algebra n) = PiE UNIV (λ-. space M )
by (simp add: tail-algebra-def space-PiM PiE-def Pi-def )

lemma measurable-P-component [measurable]: P.random-variable M (λf . f i)
unfolding P-def by measurable

lemma P-component [simp]: distr P M (λf . f i) = M
unfolding P-def by (subst P.PiM-component) auto

lemma indep-vars: P.indep-vars (λ-. M ) (λi f . f i) UNIV
by (subst P.indep-vars-iff-distr-eq-PiM )

(simp-all add: restrict-def distr-id2 P.PiM-component P-def )

The shift operator takes us from Tn to Tn+1 (it forgets the information about
one more variable):
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lemma measurable-T-tail: T ∈ tail-algebra (Suc n) →M tail-algebra n
unfolding T-def tail-algebra-def o-def
by (rule measurable-abs-UNIV [OF measurable-compose[OF measurable-component-singleton]])

simp-all

lemma measurable-funpow-T : T ^^ n ∈ tail-algebra (m + n) →M tail-algebra m
proof (induction n)

case (Suc n)
have (T ^^ n) ◦ T ∈ tail-algebra (m + Suc n) →M tail-algebra m

by (rule measurable-comp[OF - Suc]) (simp-all add: measurable-T-tail)
thus ?case by (simp add: o-def funpow-swap1 )

qed auto

lemma measurable-funpow-T ′: T ^^ n ∈ tail-algebra n →M P
using measurable-funpow-T [of n 0 ] by simp

The shift operator is clearly measure-preserving:
lemma measure-preserving: T ∈ measure-preserving P P
proof

fix A :: (nat ⇒ ′a) set assume A ∈ P.events
hence emeasure P (T −‘ A ∩ space P) = emeasure (distr P P T ) A

by (subst emeasure-distr) simp-all
also have distr P P T = P unfolding P-def T-def o-def
using distr-PiM-reindex[of UNIV λ-. M Suc UNIV ] by (simp add: prob-space-axioms

restrict-def )
finally show emeasure P (T −‘ A ∩ space P) = emeasure P A .

qed auto

sublocale fmpt P T
by unfold-locales
(use measure-preserving in ‹blast intro: measure-preserving-is-quasi-measure-preserving›)+

lemma indep-sets-vimage-algebra:
P.indep-sets (λi. sets (vimage-algebra (space P) (λf . f i) M )) UNIV
using indep-vars unfolding P.indep-vars-def sets-vimage-algebra by blast

We can now show that the tail algebra Tn is a subalgebra of the algebra
generated by the algebras induced by all the variables x i with i ≥ n:
lemma tail-algebra-subset:

sets (tail-algebra n) ⊆
sigma-sets (space P) (

⋃
i∈{n..}. sets (vimage-algebra (space P) (λf . f i) M ))

proof −
have sets (tail-algebra n) = sigma-sets (space P)

(prod-algebra UNIV (λi. if i < n then trivial-measure (space M ) else M ))
by (simp add: tail-algebra-def sets-PiM PiE-def Pi-def P-def space-PiM )

also have . . . ⊆ sigma-sets (space P) (
⋃

i∈{n..}. sets (vimage-algebra (space P)
(λf . f i) M ))
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proof (intro sigma-sets-mono subsetI )
fix C assume C ∈ prod-algebra UNIV (λi. if i < n then trivial-measure (space

M ) else M )
then obtain C ′

where C ′: C = PiE UNIV C ′

C ′ ∈ (Π i∈UNIV . sets (if i < n then trivial-measure (space M ) else
M ))

by (elim prod-algebraE-all)
have C ′-1 : C ′ i ∈ {{}, space M} if i < n for i

using C ′(2 ) that by (auto simp: Pi-def sets-trivial-measure split: if-splits)
have C ′-2 : C ′ i ∈ sets M if i ≥ n for i
proof −

from that have ¬(i < n)
by auto

with C ′(2 ) show ?thesis
by (force simp: Pi-def sets-trivial-measure split: if-splits)

qed
have C ′ i ∈ events for i

using C ′-1 [of i] C ′-2 [of i] by (cases i ≥ n) auto
hence C ∈ sets P

unfolding P-def C ′(1 ) by (intro sets-PiM-I-countable) auto
hence C ⊆ space P

using sets.sets-into-space by blast

show C ∈ sigma-sets (space P) (
⋃

i∈{n..}. sets (vimage-algebra (space P) (λf .
f i) M ))

proof (cases C = {})
case False
have C = (

⋂
i∈{n..}. (λf . f i) −‘ C ′ i) ∩ space P

proof (intro equalityI subsetI , goal-cases)
case (1 f )
hence f ∈ space P

using 1 ‹C ⊆ space P› by blast
thus ?case

using C ′ 1 by (auto simp: Pi-def sets-trivial-measure split: if-splits)
next

case (2 f )
hence f : f i ∈ C ′ i if i ≥ n for i

using that by auto
have f i ∈ C ′ i for i
proof (cases i ≥ n)

case True
thus ?thesis using C ′-2 [of i] f [of i] by auto

next
case False
thus ?thesis using C ′-1 [of i] C ′(1 ) ‹C 6= {}› 2

by (auto simp: P-def space-PiM )
qed
thus f ∈ C
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using C ′ by auto
qed

also have (
⋂

i∈{n..}. (λf . f i) −‘ C ′ i) ∩ space P =
(
⋂

i∈{n..}. (λf . f i) −‘ C ′ i ∩ space P)
by blast

also have . . . ∈ sigma-sets (space P) (
⋃

i∈{n..}. sets (vimage-algebra (space
P) (λf . f i) M ))

(is - ∈ ?rhs)
proof (intro sigma-sets-INTER, goal-cases)

fix i show (λf . f i) −‘ C ′ i ∩ space P ∈ ?rhs
proof (cases i ≥ n)

case False
hence C ′ i = {} ∨ C ′ i = space M

using C ′-1 [of i] by auto
thus ?thesis
proof

assume [simp]: C ′ i = space M
have space P ⊆ (λf . f i) −‘ C ′ i

by (auto simp: P-def space-PiM )
hence (λf . f i) −‘ C ′ i ∩ space P = space P

by blast
thus ?thesis using sigma-sets-top

by metis
qed (auto intro: sigma-sets.Empty)

next
case i: True
have (λf . f i) −‘ C ′ i ∩ space P ∈ sets (vimage-algebra (space P) (λf . f

i) M )
using C ′-2 [OF i] by (blast intro: in-vimage-algebra)

thus ?thesis using i by blast
qed

next
have C ⊆ space P if C ∈ sets (vimage-algebra (space P) (λf . f i) M ) for i

C
using sets.sets-into-space[OF that] by simp

thus (
⋃

i∈{n..}. sets (vimage-algebra (space P) (λf . f i) M )) ⊆ Pow (space
P)

by auto
qed auto

finally show ?thesis .
qed (auto simp: sigma-sets.Empty)

qed

finally show ?thesis .
qed

It now follows that the T -invariant events are a subset of the tail algebra
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induced by the variables:
lemma Invariants-subset-tail-algebra:

sets Invariants ⊆ P.tail-events (λi. sets (vimage-algebra (space P) (λf . f i) M ))
proof

fix A assume A: A ∈ sets Invariants
have A ′: A ∈ P.events

using A unfolding Invariants-sets by simp-all
show A ∈ P.tail-events (λi. sets (vimage-algebra (space P) (λf . f i) M ))

unfolding P.tail-events-def
proof safe

fix n :: nat
have vimage-restr T A = A

using A by (simp add: Invariants-vrestr)
hence A = vimage-restr (T ^^ n) A

using A ′ by (induction n) (simp-all add: vrestr-comp)
also have vimage-restr (T ^^ n) A = (T ^^ n) −‘ (A ∩ space P) ∩ space P

unfolding vimage-restr-def ..
also have A ∩ space P = A

using A ′ by simp
also have space P = space (tail-algebra n)

by (simp add: P-def space-PiM )
also have (T ^^ n) −‘ A ∩ space (tail-algebra n) ∈ sets (tail-algebra n)

by (rule measurable-sets[OF measurable-funpow-T ′ A ′])
also have sets (tail-algebra n) ⊆

sigma-sets (space P) (
⋃

i∈{n..}. sets (vimage-algebra (space P) (λf . f
i) M ))

by (rule tail-algebra-subset)
finally show A ∈ sigma-sets (space P)

(
⋃

i∈{n..}. sets (vimage-algebra (space P) (λf . f i) M )) .
qed

qed

A simple invocation of Kolmogorov’s 0–1 law now proves that T is indeed
ergodic:
sublocale ergodic-fmpt P T
proof

fix A assume A: A ∈ sets Invariants
have A ′: A ∈ P.events

using A unfolding Invariants-sets by simp-all
have sigma-algebra (space P) (sets (vimage-algebra (space P) (λf . f i) M )) for i

by (metis sets.sigma-algebra-axioms space-vimage-algebra)
hence P.prob A = 0 ∨ P.prob A = 1

using indep-sets-vimage-algebra
by (rule P.kolmogorov-0-1-law) (use A Invariants-subset-tail-algebra in blast)

thus A ∈ null-sets P ∨ space P − A ∈ null-sets P
by (rule disj-forward) (use A ′(1 ) P.prob-compl[of A] in ‹auto simp: P.emeasure-eq-measure›)

qed

end
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end

9 Subcocycles, subadditive ergodic theory
theory Kingman

imports Ergodicity Fekete
begin

Subadditive ergodic theory is the branch of ergodic theory devoted to the
study of subadditive cocycles (named subcocycles in what follows), i.e., func-
tions such that u(n+m,x) ≤ u(n, x) + u(m,Tnx) for all x and m,n.
For instance, Birkhoff sums are examples of such subadditive cocycles (in
fact, they are additive), but more interesting examples are genuinely subad-
ditive. The main result of the theory is Kingman’s theorem, asserting the
almost sure convergence of un/n (this is a generalization of Birkhoff theo-
rem). If the asymptotic average lim

∫
un/n (which exists by subadditivity

and Fekete lemma) is not −∞, then the convergence takes also place in L1.
We prove all this below.
context mpt
begin

9.1 Definition and basic properties
definition subcocycle::(nat ⇒ ′a ⇒ real) ⇒ bool

where subcocycle u = ((∀n. integrable M (u n)) ∧ (∀n m x. u (n+m) x ≤ u n
x + u m ((T^^n) x)))

lemma subcocycle-ineq:
assumes subcocycle u
shows u (n+m) x ≤ u n x + u m ((T^^n) x)

using assms unfolding subcocycle-def by blast

lemma subcocycle-0-nonneg:
assumes subcocycle u
shows u 0 x ≥ 0

proof −
have u (0+0 ) x ≤ u 0 x + u 0 ((T^^0 ) x)

using assms unfolding subcocycle-def by blast
then show ?thesis by auto

qed

lemma subcocycle-integrable:
assumes subcocycle u
shows integrable M (u n)

u n ∈ borel-measurable M
using assms unfolding subcocycle-def by auto
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lemma subcocycle-birkhoff :
assumes integrable M f
shows subcocycle (birkhoff-sum f )

unfolding subcocycle-def by (auto simp add: assms birkhoff-sum-integral(1 ) birkhoff-sum-cocycle)

The set of subcocycles is stable under addition, multiplication by positive
numbers, and max.
lemma subcocycle-add:

assumes subcocycle u subcocycle v
shows subcocycle (λn x. u n x + v n x)

unfolding subcocycle-def
proof (auto)

fix n
show integrable M (λx. u n x + v n x) using assms unfolding subcocycle-def

by simp
next

fix n m x
have u (n+m) x ≤ u n x + u m ((T ^^ n) x) using assms(1 ) subcocycle-def

by simp
moreover have v (n+m) x ≤ v n x + v m ((T ^^ n) x) using assms(2 )

subcocycle-def by simp
ultimately show u (n + m) x + v (n + m) x ≤ u n x + v n x + (u m ((T ^^

n) x) + v m ((T ^^ n) x))
by simp

qed

lemma subcocycle-cmult:
assumes subcocycle u c ≥ 0
shows subcocycle (λn x. c ∗ u n x)

using assms unfolding subcocycle-def by (auto, metis distrib-left mult-left-mono)

lemma subcocycle-max:
assumes subcocycle u subcocycle v
shows subcocycle (λn x. max (u n x) (v n x))

unfolding subcocycle-def proof (auto)
fix n
show integrable M (λx. max (u n x) (v n x)) using assms unfolding subcocy-

cle-def by auto
next

fix n m x
have u (n+m) x ≤ u n x + u m ((T^^n) x) using assms(1 ) unfolding subco-

cycle-def by auto
then show u (n + m) x ≤ max (u n x) (v n x) + max (u m ((T ^^ n) x)) (v

m ((T ^^ n) x))
by simp

next
fix n m x
have v (n+m) x ≤ v n x + v m ((T^^n) x) using assms(2 ) unfolding subco-
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cycle-def by auto
then show v (n + m) x ≤ max (u n x) (v n x) + max (u m ((T ^^ n) x)) (v

m ((T ^^ n) x))
by simp

qed

Applying inductively the subcocycle equation, it follows that a subcocycle
is bounded by the Birkhoff sum of the subcocycle at time 1.
lemma subcocycle-bounded-by-birkhoff1 :

assumes subcocycle u n > 0
shows u n x ≤ birkhoff-sum (u 1 ) n x

using ‹n > 0 › proof (induction rule: ind-from-1 )
case 1
show ?case by auto

next
case (Suc p)
have u (Suc p) x ≤ u p x + u 1 ((T^^p)x) using assms(1 ) subcocycle-def by

(metis Suc-eq-plus1 )
then show ?case using Suc birkhoff-sum-cocycle[where ?n = p and ?m = 1 ]

‹ p>0 › by (simp add: birkhoff-sum-def )
qed

It is often important to bound a cocycle un(x) by the Birkhoff sums of
uN/N . Compared to the trivial upper bound for u1, there are additional
boundary errors that make the estimate more cumbersome (but these terms
only come from a N -neighborhood of 0 and n, so they are negligible if N is
fixed and n tends to infinity.
lemma subcocycle-bounded-by-birkhoffN :

assumes subcocycle u n > 2∗N N>0
shows u n x ≤ birkhoff-sum (λx. u N x / real N ) (n − 2 ∗ N ) x

+ (
∑

i<N . |u 1 ((T ^^ i) x)|)
+ 2 ∗ (

∑
i<2∗N . |u 1 ((T ^^ (n − (2 ∗ N − i))) x)|)

proof −
have Iar : u (a∗N+r) x ≤ u r x + (

∑
i<a. u N ((T^^(i ∗ N + r))x)) for r a

proof (induction a)
case 0
then show ?case by auto

next
case (Suc a)
have u ((a+1 )∗N+r) x = u((a∗N+r) + N ) x
by (simp add: semiring-normalization-rules(2 ) semiring-normalization-rules(23 ))
also have ... ≤ u(a∗N+r) x + u N ((T^^(a∗N+r))x)

using assms(1 ) unfolding subcocycle-def by auto
also have ... ≤ u r x + (

∑
i<a. u N ((T^^(i ∗ N + r))x)) + u N ((T^^(a∗N+r))x)

using Suc.IH by auto
also have ... = u r x + (

∑
i<a+1 . u N ((T^^(i ∗ N + r))x))

by auto
finally show ?case by auto
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qed

have Ia: u (a∗N ) x ≤ (
∑

i<a. u N ((T^^(i ∗ N ))x)) if a>0 for a
using that proof (induction rule: ind-from-1 )

case 1
show ?case by auto

next
case (Suc a)
have u ((a+1 )∗N ) x = u((a∗N ) + N ) x
by (simp add: semiring-normalization-rules(2 ) semiring-normalization-rules(23 ))
also have ... ≤ u(a∗N ) x + u N ((T^^(a∗N ))x)

using assms(1 ) unfolding subcocycle-def by auto
also have ... ≤ (

∑
i<a. u N ((T^^(i ∗ N ))x)) + u N ((T^^(a∗N ))x)

using Suc by auto
also have ... = (

∑
i<a+1 . u N ((T^^(i ∗ N ))x))

by auto
finally show ?case by auto

qed

define E1 where E1 = (
∑

i<N . abs(u 1 ((T^^i)x)))
define E2 where E2 = (

∑
i<2∗N . abs(u 1 ((T^^(n−(2∗N−i))) x)))

have E2 ≥ 0 unfolding E2-def by auto

obtain a0 s0 where 0 : s0 < N n = a0 ∗ N + s0
using ‹0 < N › mod-div-decomp mod-less-divisor by blast

then have a0 ≥ 1 using ‹n > 2 ∗ N › ‹N>0 ›
by (metis Nat.add-0-right add.commute add-lessD1 add-mult-distrib comm-monoid-mult-class.mult-1

eq-imp-le
less-imp-add-positive less-imp-le-nat less-one linorder-neqE-nat mult.left-neutral

mult-not-zero not-add-less1 one-add-one)
define a s where a = a0−1 and s = s0+N
then have as: n = a ∗ N + s unfolding a-def s-def using ‹a0 ≥ 1 › 0 by

(simp add: mult-eq-if )
have s: s ≥ N s < 2∗N using 0 unfolding s-def by auto
have a: a∗N > n − 2∗N a∗N ≤ n − N using as s ‹n > 2∗N › by auto
then have (a∗N − (n−2∗N )) ≤ N using ‹n > 2∗N › by auto
have a∗N ≥ n − 2∗N using a by simp

{
fix r ::nat assume r < N
have a∗N+r > n − 2∗N using ‹n>2∗N › as s by auto

define tr where tr = n−(a∗N+r)
have tr > 0 unfolding tr-def using as s ‹r<N › by auto
then have ∗: n = (a∗N+r) + tr unfolding tr-def by auto

have birkhoff-sum (u 1 ) tr ((T^^(a∗N+r))x) = (
∑

i<tr . u 1 ((T^^(a∗N+r+i))x))
unfolding birkhoff-sum-def by (simp add: add.commute funpow-add)

also have ... = (
∑

i∈{a∗N+r ..<a∗N+r+tr}. u 1 ((T^^i) x))
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by (rule sum.reindex-bij-betw, rule bij-betw-byWitness[where ?f ′ = λi. i −
(a ∗ N + r)], auto)

also have ... ≤ (
∑

i∈{a∗N+r ..<a∗N+r+tr}. abs(u 1 ((T^^i) x)))
by (simp add: sum-mono)

also have ... ≤ (
∑

i∈{n−2∗N ..<n}. abs(u 1 ((T^^i) x)))
apply (rule sum-mono2 ) using as s ‹r<N › tr-def by auto

also have ... = E2 unfolding E2-def
apply (rule sum.reindex-bij-betw[symmetric], rule bij-betw-byWitness[where

?f ′ = λi. i − (n−2∗N )])
using ‹n > 2∗N › by auto

finally have A: birkhoff-sum (u 1 ) tr ((T^^(a∗N+r))x) ≤ E2 by simp

have u n x ≤ u (a∗N+r) x + u tr ((T^^(a∗N+r))x)
using assms(1 ) ∗ unfolding subcocycle-def by auto

also have ... ≤ u (a∗N+r) x + birkhoff-sum (u 1 ) tr ((T^^(a∗N+r))x)
using subcocycle-bounded-by-birkhoff1 [OF assms(1 )] ‹tr > 0 › by auto

finally have B: u n x ≤ u (a∗N+r) x + E2
using A by auto

have u (a∗N+r) x ≤ (
∑

i<N . abs(u 1 ((T^^i)x))) + (
∑

i<a. u N ((T^^(i∗N+r))x))
proof (cases r = 0 )

case True
then have a>0 using ‹a∗N+r > n − 2∗N › not-less by fastforce
have u(a∗N+r) x ≤ (

∑
i<a. u N ((T^^(i∗N+r))x)) using Ia[OF ‹a>0 ›]

True by auto
moreover have 0 ≤ (

∑
i<N . abs(u 1 ((T^^i)x))) by auto

ultimately show ?thesis by linarith
next

case False
then have I : u (a∗N+r) x ≤ u r x + (

∑
i<a. u N ((T^^(i ∗ N + r))x))

using Iar by auto
have u r x ≤ (

∑
i<r . u 1 ((T^^i)x))

using subcocycle-bounded-by-birkhoff1 [OF assms(1 )] False unfolding birkhoff-sum-def
by auto

also have ... ≤ (
∑

i<r . abs(u 1 ((T^^i)x)))
by (simp add: sum-mono)

also have ... ≤ (
∑

i<N . abs(u 1 ((T^^i)x)))
apply (rule sum-mono2 ) using ‹r<N › by auto

finally show ?thesis using I by auto
qed
then have u n x ≤ E1 + (

∑
i<a. u N ((T^^(i∗N+r))x)) + E2

unfolding E1-def using B by auto
} note ∗ = this

have I : u N ((T^^j) x) ≤ E2 if j∈{n−2∗N ..<a∗N} for j
proof −

have u N ((T^^j) x) ≤ (
∑

i<N . u 1 ((T^^i) ((T^^j)x)))
using subcocycle-bounded-by-birkhoff1 [OF assms(1 ) ‹N>0 ›] unfolding birkhoff-sum-def

by auto
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also have ... = (
∑

i<N . u 1 ((T^^(i+j))x)) by (simp add: funpow-add)
also have ... ≤ (

∑
i<N . abs(u 1 ((T^^(i+j))x))) by (rule sum-mono, auto)

also have ... = (
∑

k∈{j..<N+j}. abs(u 1 ((T^^k)x)))
by (rule sum.reindex-bij-betw, rule bij-betw-byWitness[where ?f ′ = λk. k−j],

auto)
also have ... ≤ (

∑
i∈{n−2∗N ..<n}. abs(u 1 ((T^^i) x)))

apply (rule sum-mono2 ) using ‹j∈{n−2∗N ..<a∗N}› ‹a∗N ≤ n − N › by
auto

also have ... = E2 unfolding E2-def
apply (rule sum.reindex-bij-betw[symmetric], rule bij-betw-byWitness[where

?f ′ = λi. i − (n−2∗N )])
using ‹n > 2∗N › by auto

finally show ?thesis by auto
qed
have (

∑
j<a∗N . u N ((T^^j) x)) − (

∑
j<n−2∗N . u N ((T^^j) x)) = (

∑
j∈{n−2∗N ..<a∗N}.

u N ((T^^j) x))
using sum.atLeastLessThan-concat[OF - ‹a∗N ≥ n − 2∗N ›, of 0 λj. u N

((T^^j) x), symmetric] atLeast0LessThan by simp
also have ... ≤ (

∑
j∈{n−2∗N ..<a∗N}. E2 ) by (rule sum-mono[OF I ])

also have ... = (a∗N − (n−2∗N )) ∗ E2 by simp
also have ... ≤ N ∗ E2 using ‹(a∗N − (n−2∗N )) ≤ N › ‹E2 ≥ 0 › by (simp

add: mult-right-mono)
finally have J : (

∑
j<a∗N . u N ((T^^j) x)) ≤ (

∑
j<n−2∗N . u N ((T^^j) x))

+ N ∗ E2 by auto

have N ∗ u n x = (
∑

r<N . u n x) by auto
also have ... ≤ (

∑
r<N . E1 + E2 + (

∑
i<a. u N ((T^^(i∗N+r))x)))

apply (rule sum-mono) using ∗ by fastforce
also have ... = (

∑
r<N . E1 + E2 ) + (

∑
r<N . (

∑
i<a. u N ((T^^(i∗N+r))x)))

by (rule sum.distrib)
also have ... = N∗ (E1 + E2 ) + (

∑
j<a∗N . u N ((T^^j) x))

using sum-arith-progression by auto
also have ... ≤ N ∗(E1+E2 ) + (

∑
j<n−2∗N . u N ((T^^j) x)) + N∗E2

using J by auto
also have ... = N ∗ (E1+E2 ) + N ∗ (

∑
j<n−2∗N . u N ((T^^j) x) / N ) + N

∗ E2
using ‹N>0 › by (simp add: sum-distrib-left)

also have ... = N∗(E1 + E2 + (
∑

j<n−2∗N . u N ((T^^j) x) / N ) + E2 )
by (simp add: distrib-left)

finally have u n x ≤ E1 + 2∗E2 + birkhoff-sum (λx. u N x / N ) (n−2∗N ) x
unfolding birkhoff-sum-def using ‹N>0 › by auto

then show ?thesis unfolding E1-def E2-def by auto
qed

Many natural cocycles are only defined almost everywhere, and then the
subadditivity property only makes sense almost everywhere. We will now
show that such an a.e.-subcocycle coincides almost everywhere with a gen-
uine subcocycle in the above sense. Then, all the results for subcocycles will
apply to such a.e.-subcocycles. (Usually, in ergodic theory, subcocycles only

219



satisfy the subadditivity property almost everywhere, but we have requested
it everywhere for simplicity in the proofs.)
The subcocycle will be defined in a recursive way. This means that is can
not be defined in a proof (since complicated function definitions are not
available inside proofs). Since it is defined in terms of u, then u has to be
available at the top level, which is most conveniently done using a context.
context

fixes u::nat ⇒ ′a ⇒ real
assumes H :

∧
m n. AE x in M . u (n+m) x ≤ u n x + u m ((T^^n) x)∧

n. integrable M (u n)
begin

private fun v :: nat ⇒ ′a ⇒ real where v n x = (
if n = 0 then max (u 0 x) 0
else if n = 1 then u 1 x
else min (u n x) (Min ((λk. v k x + v (n−k) ((T^^k) x))‘{0<..<n})))

private lemma v0 [simp]:
‹v 0 x = max (u 0 x) 0 ›
by simp

private lemma v1 [simp]:
‹v (Suc 0 ) x = u 1 x›
by simp

private lemma v2 [simp]:
‹v n x = min (u n x) (Min ((λk. v k x + v (n−k) ((T^^k) x))‘{0<..<n}))› if

‹n ≥ 2 ›
using that by (subst v.simps) (simp del: v.simps)

declare v.simps [simp del]

private lemma integrable-v:
integrable M (v n) for n

proof (induction n rule: nat-less-induct)
case (1 n)
consider n = 0 | n = 1 | n>1 by linarith
then show ?case
proof (cases)

assume n = 0
have v 0 x = max (u 0 x) 0 for x by simp
then show ?thesis using integrable-max[OF H (2 )[of 0 ]] ‹n = 0 › by auto

next
assume n = 1
have v 1 x = u 1 x for x by simp
then show ?thesis using H (2 )[of 1 ] ‹n = 1 › by auto

next
assume n > 1
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hence v n x = min (u n x) (MIN k ∈ {0<..<n}. v k x + v (n−k) ((T^^k) x))
for x

by simp
moreover have integrable M (λx. min (u n x) (MIN k ∈ {0<..<n}. v k x +

v (n−k) ((T^^k) x)))
apply (rule integrable-min)
apply (simp add: H (2 ))
apply (rule integrable-MIN , simp)
using ‹n >1 › apply auto[1 ]
apply (rule Bochner-Integration.integrable-add)
using 1 .IH apply auto[1 ]
apply (rule Tn-integral-preserving(1 ))
using 1 .IH by (metis ‹1 < n› diff-less greaterThanLessThan-iff max-0-1 (2 )

max-less-iff-conj)
ultimately show ?case by auto

qed
qed

private lemma u-eq-v-AE :
AE x in M . v n x = u n x for n

proof (induction n rule: nat-less-induct)
case (1 n)
consider n = 0 | n = 1 | n>1 by linarith
then show ?case
proof (cases)

assume n = 0
have AE x in M . u 0 x ≤ u 0 x + u 0 x using H (1 )[of 0 0 ] by auto
then have AE x in M . u 0 x ≥ 0 by auto
moreover have v 0 x = max (u 0 x) 0 for x by simp
ultimately show ?thesis using ‹n = 0 › by auto

next
assume n = 1
have v 1 x = u 1 x for x by simp
then show ?thesis using ‹n = 1 › by simp

next
assume n > 1
{

fix k assume k<n
then have AE x in M . v k x = u k x using 1 .IH by simp
with T-AE-iterates[OF this] have AE x in M . ∀ s. v k ((T^^s) x) = u k

((T^^s) x) by simp
} note ∗ = this
have AE x in M . ∀ k ∈ {..<n}. ∀ s. v k ((T^^s) x) = u k ((T^^s) x)

apply (rule AE-finite-allI ) using ∗ by simp-all
moreover have AE x in M . ∀ i j. u (i+j) x ≤ u i x + u j ((T^^i) x)

apply (subst AE-all-countable, intro allI )+ using H (1 ) by simp
moreover
{

fix x assume ∀ k ∈ {..<n}. ∀ s. v k ((T^^s) x) = u k ((T^^s) x)
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∀ i j. u (i+j) x ≤ u i x + u j ((T^^i) x)
then have Hx:

∧
k s. k < n =⇒ v k ((T^^s) x) = u k ((T^^s) x)∧

i j. u (i+j) x ≤ u i x + u j ((T^^i) x)
by auto

{
fix k assume k ∈ {0<..<n}
then have K : k<n n−k<n by auto

have u n x ≤ u k x + u (n−k) ((T^^k) x) using Hx(2 ) K by (metis
le-add-diff-inverse less-imp-le-nat)

also have ... = v k x + v (n−k) ((T^^k)x) using Hx(1 )[OF ‹k <n›, of 0 ]
Hx(1 )[OF ‹n−k <n›, of k] by auto

finally have u n x ≤ v k x + v (n−k) ((T^^k)x) by simp
}
then have ∗:

∧
z. z ∈ (λk. v k x + v (n−k) ((T^^k) x))‘{0<..<n} =⇒ u n

x ≤ z by blast
have u n x ≤ Min ((λk. v k x + v (n−k) ((T^^k) x))‘{0<..<n})

apply (rule Min.boundedI ) using ‹n>1 › ∗ by auto
moreover have v n x = min (u n x) (Min ((λk. v k x + v (n−k) ((T^^k)

x))‘{0<..<n}))
using ‹1<n› by auto

ultimately have v n x = u n x by auto
}
ultimately show ?thesis by auto

qed
qed

private lemma subcocycle-v:
v (n+m) x ≤ v n x + v m ((T^^n) x)

proof −
consider n = 0 | m = 0 | n>0 ∧ m >0 by auto
then show ?thesis
proof (cases)

case 1
then have v n x ≥ 0 by simp
then show ?thesis using ‹n = 0 › by auto

next
case 2
then have v m x ≥ 0 by simp
then show ?thesis using ‹m = 0 › by auto

next
case 3
then have n+m > 1 by simp
then have v (n+m) x = min (u(n+m) x) (Min ((λk. v k x + v ((n+m)−k)

((T^^k) x))‘{0<..<n+m})) by simp
also have ... ≤ Min ((λk. v k x + v ((n+m)−k) ((T^^k) x))‘{0<..<n+m})

by simp
also have ... ≤ v n x + v ((n+m)−n) ((T^^n) x)

apply (rule Min-le, simp)
by (metis (lifting) ‹0 < n ∧ 0 < m› add.commute greaterThanLessThan-iff
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image-iff less-add-same-cancel2 )
finally show ?thesis by simp

qed
qed

lemma subcocycle-AE-in-context:
∃w. subcocycle w ∧ (AE x in M . ∀n. w n x = u n x)

proof −
have subcocycle v using subcocycle-v integrable-v unfolding subcocycle-def by

auto
moreover have AE x in M . ∀n. v n x = u n x

by (subst AE-all-countable, intro allI , rule u-eq-v-AE)
ultimately show ?thesis by blast

qed

end

lemma subcocycle-AE :
fixes u::nat ⇒ ′a ⇒ real
assumes

∧
m n. AE x in M . u (n+m) x ≤ u n x + u m ((T^^n) x)∧

n. integrable M (u n)
shows ∃w. subcocycle w ∧ (AE x in M . ∀n. w n x = u n x)

using subcocycle-AE-in-context assms by blast

9.2 The asymptotic average

In this subsection, we define the asymptotic average of a subcocycle u, i.e.,
the limit of

∫
un(x)/n (the convergence follows from subadditivity of

∫
un)

and study its basic properties, especially in terms of operations on subcocy-
cles. In general, it can be −∞, so we define it in the extended reals.
definition subcocycle-avg-ereal::(nat ⇒ ′a ⇒ real) ⇒ ereal where

subcocycle-avg-ereal u = Inf {ereal((
∫

x. u n x ∂M ) / n) |n. n > 0}

lemma subcocycle-avg-finite:
subcocycle-avg-ereal u < ∞

unfolding subcocycle-avg-ereal-def using Inf-less-iff less-ereal.simps(4 ) by blast

lemma subcocycle-avg-subadditive:
assumes subcocycle u
shows subadditive (λn. (

∫
x. u n x ∂M ))

unfolding subadditive-def proof (intro allI )
have int-u [measurable]:

∧
n. integrable M (u n) using assms unfolding subco-

cycle-def by auto
fix m n
have (

∫
x. u (n+m) x ∂M ) ≤ (

∫
x. u n x + u m ((T^^n) x) ∂M )

apply (rule integral-mono)
using int-u apply (auto simp add: Tn-integral-preserving(1 ))
using assms unfolding subcocycle-def by auto
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also have ... ≤ (
∫

x. u n x ∂M ) + (
∫

x. u m ((T^^n) x) ∂M )
using int-u by (auto simp add: Tn-integral-preserving(1 ))

also have ... = (
∫

x. u n x ∂M ) + (
∫

x. u m x ∂M )
using int-u by (auto simp add: Tn-integral-preserving(2 ))

finally show (
∫

x. u (n+m) x ∂M ) ≤ (
∫

x. u n x ∂M ) + (
∫

x. u m x ∂M ) by
simp
qed

lemma subcocycle-int-tendsto-avg-ereal:
assumes subcocycle u
shows (λn. (

∫
x. u n x / n ∂M )) −−−−→ subcocycle-avg-ereal u

unfolding subcocycle-avg-ereal-def
using subadditive-converges-ereal[OF subcocycle-avg-subadditive[OF assms]] by auto

The average behaves well under addition, scalar multiplication and max,
trivially.
lemma subcocycle-avg-ereal-add:

assumes subcocycle u subcocycle v
shows subcocycle-avg-ereal (λn x. u n x + v n x) = subcocycle-avg-ereal u +

subcocycle-avg-ereal v
proof −

have int [simp]:
∧

n. integrable M (u n)
∧

n. integrable M (v n) using assms
unfolding subcocycle-def by auto

{
fix n
have (

∫
x. u n x / n ∂M ) + (

∫
x. v n x / n ∂M ) = (

∫
x. u n x / n + v n x /

n ∂M )
by (rule Bochner-Integration.integral-add[symmetric], auto)

also have ... = (
∫

x. (u n x + v n x) / n ∂M )
by (rule Bochner-Integration.integral-cong, auto simp add: add-divide-distrib)

finally have ereal (
∫

x. u n x / n ∂M ) + (
∫

x. v n x / n ∂M ) = (
∫

x. (u n x
+ v n x) / n ∂M )

by auto
}
moreover have (λn. ereal (

∫
x. u n x / n ∂M ) + (

∫
x. v n x / n ∂M ))

−−−−→ subcocycle-avg-ereal u + subcocycle-avg-ereal v
apply (intro tendsto-intros subcocycle-int-tendsto-avg-ereal[OF assms(1 )] sub-

cocycle-int-tendsto-avg-ereal[OF assms(2 )])
using subcocycle-avg-finite by auto

ultimately have (λn. (
∫

x. (u n x + v n x) / n ∂M )) −−−−→ subcocycle-avg-ereal
u + subcocycle-avg-ereal v

by auto
moreover have (λn. (

∫
x. (u n x + v n x) / n ∂M )) −−−−→ subcocycle-avg-ereal

(λn x. u n x + v n x)
by (rule subcocycle-int-tendsto-avg-ereal[OF subcocycle-add[OF assms]])

ultimately show ?thesis using LIMSEQ-unique by blast
qed

lemma subcocycle-avg-ereal-cmult:
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assumes subcocycle u c ≥ (0 ::real)
shows subcocycle-avg-ereal (λn x. c ∗ u n x) = c ∗ subcocycle-avg-ereal u

proof (cases c = 0 )
case True
have ∗: ereal (

∫
x. (c ∗ u n x) / n ∂M ) = 0 if n>0 for n

by (subst True, auto)
have (λn. ereal (

∫
x. (c ∗ u n x) / n ∂M )) −−−−→ 0

by (subst lim-explicit, metis ∗ less-le-trans zero-less-one)
moreover have (λn. ereal (

∫
x. (c ∗ u n x) / n ∂M )) −−−−→ subcocycle-avg-ereal

(λn x. c ∗ u n x)
using subcocycle-int-tendsto-avg-ereal[OF subcocycle-cmult[OF assms]] by auto

ultimately have subcocycle-avg-ereal (λn x. c ∗ u n x) = 0
using LIMSEQ-unique by blast

then show ?thesis using True by auto
next

case False
have int:

∧
n. integrable M (u n) using assms unfolding subcocycle-def by auto

have ereal (
∫

x. c ∗ u n x / n ∂M ) = c ∗ ereal (
∫

x. u n x / n ∂M ) for n by
auto

then have (λn. c ∗ ereal (
∫

x. u n x / n ∂M )) −−−−→ subcocycle-avg-ereal (λn
x. c ∗ u n x)

using subcocycle-int-tendsto-avg-ereal[OF subcocycle-cmult[OF assms]] by auto
moreover have (λn. c ∗ ereal (

∫
x. u n x / n ∂M )) −−−−→ c ∗ subcocy-

cle-avg-ereal u
apply (rule tendsto-mult-ereal) using False subcocycle-int-tendsto-avg-ereal[OF

assms(1 )] by auto
ultimately show ?thesis using LIMSEQ-unique by blast

qed

lemma subcocycle-avg-ereal-max:
assumes subcocycle u subcocycle v
shows subcocycle-avg-ereal (λn x. max (u n x) (v n x)) ≥ max (subcocycle-avg-ereal

u) (subcocycle-avg-ereal v)
proof (auto)

have int: integrable M (u n) integrable M (v n) for n using assms unfolding
subcocycle-def by auto

have int2 : integrable M (λx. max (u n x) (v n x)) for n using integrable-max
int by auto

have (
∫

x. u n x / n ∂M ) ≤ (
∫

x. max (u n x) (v n x) / n ∂M ) for n
apply (rule integral-mono) using int int2 by (auto simp add: divide-simps)

then show subcocycle-avg-ereal u ≤ subcocycle-avg-ereal (λn x . max (u n x) (v
n x))

using LIMSEQ-le[OF subcocycle-int-tendsto-avg-ereal[OF assms(1 )]
subcocycle-int-tendsto-avg-ereal[OF subcocycle-max[OF assms]]] by auto

have (
∫

x. v n x / n ∂M ) ≤ (
∫

x. max (u n x) (v n x) / n ∂M ) for n
apply (rule integral-mono) using int int2 by (auto simp add: divide-simps)

then show subcocycle-avg-ereal v ≤ subcocycle-avg-ereal (λn x. max (u n x) (v
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n x))
using LIMSEQ-le[OF subcocycle-int-tendsto-avg-ereal[OF assms(2 )]

subcocycle-int-tendsto-avg-ereal[OF subcocycle-max[OF assms]]] by auto
qed

For a Birkhoff sum, the average at each time is the same, equal to the average
of the function, so the asymptotic average is also equal to this common value.
lemma subcocycle-avg-ereal-birkhoff :

assumes integrable M u
shows subcocycle-avg-ereal (birkhoff-sum u) = (

∫
x. u x ∂M )

proof −
have ∗: ereal (

∫
x. (birkhoff-sum u n x) / n ∂M ) = (

∫
x. u x ∂M ) if n>0 for n

using birkhoff-sum-integral(2 )[OF assms] that by auto
have (λn. ereal (

∫
x. (birkhoff-sum u n x) / n ∂M )) −−−−→ (

∫
x. u x ∂M )

by (subst lim-explicit, metis ∗ less-le-trans zero-less-one)
moreover have (λn. ereal (

∫
x. (birkhoff-sum u n x) / n ∂M )) −−−−→ subcocy-

cle-avg-ereal (birkhoff-sum u)
using subcocycle-int-tendsto-avg-ereal[OF subcocycle-birkhoff [OF assms]] by

auto
ultimately show ?thesis using LIMSEQ-unique by blast

qed

In nice situations, where one can avoid the use of ereal, the following defi-
nition is more convenient. The kind of statements we are after is as follows:
if the ereal average is finite, then something holds, likely involving the real
average.
In particular, we show in this setting what we have proved above under this
new assumption: convergence (in real numbers) of the average to the asymp-
totic average, as well as good behavior under sum, scalar multiplication by
positive numbers, max, formula for Birkhoff sums.
definition subcocycle-avg::(nat ⇒ ′a ⇒ real) ⇒ real where

subcocycle-avg u = real-of-ereal(subcocycle-avg-ereal u)

lemma subcocycle-avg-real-ereal:
assumes subcocycle-avg-ereal u > − ∞
shows subcocycle-avg-ereal u = ereal(subcocycle-avg u)

unfolding subcocycle-avg-def using assms subcocycle-avg-finite[of u] ereal-real by
auto

lemma subcocycle-int-tendsto-avg:
assumes subcocycle u subcocycle-avg-ereal u > − ∞
shows (λn. (

∫
x. u n x / n ∂M )) −−−−→ subcocycle-avg u

using subcocycle-avg-real-ereal[OF assms(2 )] subcocycle-int-tendsto-avg-ereal[OF
assms(1 )] by auto

lemma subcocycle-avg-add:
assumes subcocycle u subcocycle v subcocycle-avg-ereal u > −∞ subcocycle-avg-ereal

v > − ∞
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shows subcocycle-avg-ereal (λn x. u n x + v n x) > −∞
subcocycle-avg (λn x. u n x + v n x) = subcocycle-avg u + subcocycle-avg v

using assms subcocycle-avg-finite real-of-ereal-add
unfolding subcocycle-avg-def subcocycle-avg-ereal-add[OF assms(1 ) assms(2 )] by
auto

lemma subcocycle-avg-cmult:
assumes subcocycle u c ≥ (0 ::real) subcocycle-avg-ereal u > − ∞
shows subcocycle-avg-ereal (λn x. c ∗ u n x) > − ∞

subcocycle-avg (λn x. c ∗ u n x) = c ∗ subcocycle-avg u
using assms subcocycle-avg-finite unfolding subcocycle-avg-def subcocycle-avg-ereal-cmult[OF
assms(1 ) assms(2 )] by auto

lemma subcocycle-avg-max:
assumes subcocycle u subcocycle v subcocycle-avg-ereal u > −∞ subcocycle-avg-ereal

v > − ∞
shows subcocycle-avg-ereal (λn x. max (u n x) (v n x)) > −∞

subcocycle-avg (λn x . max (u n x) (v n x)) ≥ max (subcocycle-avg u)
(subcocycle-avg v)
proof −

show ∗: subcocycle-avg-ereal (λn x. max (u n x) (v n x)) > − ∞
using assms(3 ) subcocycle-avg-ereal-max[OF assms(1 ) assms(2 )] by auto

have ereal (subcocycle-avg (λn x. max (u n x) (v n x))) ≥ max (ereal(subcocycle-avg
u)) (ereal(subcocycle-avg v))

using subcocycle-avg-real-ereal[OF assms(3 )] subcocycle-avg-real-ereal[OF assms(4 )]
subcocycle-avg-real-ereal[OF ∗] subcocycle-avg-ereal-max[OF assms(1 ) assms(2 )]

by auto
then show subcocycle-avg (λn x. max (u n x) (v n x)) ≥ max (subcocycle-avg u)

(subcocycle-avg v)
by auto

qed

lemma subcocycle-avg-birkhoff :
assumes integrable M u
shows subcocycle-avg-ereal (birkhoff-sum u) > − ∞

subcocycle-avg (birkhoff-sum u) = (
∫

x. u x ∂M )
unfolding subcocycle-avg-def subcocycle-avg-ereal-birkhoff [OF assms(1 )] by auto

end

9.3 Almost sure convergence of subcocycles

In this paragraph, we prove Kingman’s theorem, i.e., the almost sure con-
vergence of subcocycles. Their limit is almost surely invariant. There is no
really easy proof. The one we use below is arguably the simplest known one,
due to Steele (1989). The idea is to show that the limsup of the subcocycle
is bounded by the liminf (which is almost surely constant along trajecto-
ries), by using subadditivity along time intervals where the liminf is almost
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reached, of length at most N . For some points, the liminf takes a large time
> N to be reached. We neglect those times, introducing an additional error
that gets smaller with N , thanks to Birkhoff ergodic theorem applied to the
set of bad points. The error is most easily managed if the subcocycle is as-
sumed to be nonpositive, which one can assume in a first step. The general
case is reduced to this one by replacing un with un − Snu1 ≤ 0, and using
Birkhoff theorem to control Snu1.
context fmpt begin

First, as explained above, we prove the theorem for nonpositive subcocycles.
lemma kingman-theorem-AE-aux1 :

assumes subcocycle u∧
x. u 1 x ≤ 0

shows ∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧ (∀ x. g x < ∞) ∧ (AE
x in M . (λn. u n x / n) −−−−→ g x))
proof −

define l where l = (λx. liminf (λn. u n x / n))
have u-meas [measurable]:

∧
n. u n ∈ borel-measurable M using assms(1 ) un-

folding subcocycle-def by auto
have l-meas [measurable]: l ∈ borel-measurable M unfolding l-def by auto

{
fix x assume ∗: (λn. birkhoff-sum (u 1 ) n x / n) −−−−→ real-cond-exp M

Invariants (u 1 ) x
then have (λn. birkhoff-sum (u 1 ) n x / n) −−−−→ ereal(real-cond-exp M

Invariants (u 1 ) x)
by auto

then have a: liminf (λn. birkhoff-sum (u 1 ) n x / n) = ereal(real-cond-exp M
Invariants (u 1 ) x)

using lim-imp-Liminf by force

have ereal(u n x / n) ≤ ereal(birkhoff-sum (u 1 ) n x / n) if n>0 for n
using subcocycle-bounded-by-birkhoff1 [OF assms(1 ) that, of x] that by (simp

add: divide-right-mono)
with eventually-mono[OF eventually-gt-at-top[of 0 ] this]
have eventually (λn. ereal(u n x / n) ≤ ereal(birkhoff-sum (u 1 ) n x / n))

sequentially by auto
then have liminf (λn. u n x / n) ≤ liminf (λn. birkhoff-sum (u 1 ) n x / n)

by (simp add: Liminf-mono)
then have l x < ∞ unfolding l-def using a by auto

}
then have AE x in M . l x < ∞

using birkhoff-theorem-AE-nonergodic[of u 1 ] subcocycle-def assms(1 ) by auto

have l-dec: l x ≤ l (T x) for x
proof −

have l x = liminf (λn. ereal ((u (n+1 ) x)/(n+1 )))
unfolding l-def by (rule liminf-shift[of λn. ereal (u n x / real n), symmetric])
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also have ... ≤ liminf (λn. ereal((u 1 x)/(n+1 )) + ereal((u n (T x))/(n+1 )))
proof (rule Liminf-mono[OF eventuallyI ])

fix n
have u (1+n) x ≤ u 1 x + u n ((T^^1 ) x) using assms(1 ) unfolding

subcocycle-def by blast
then have u (n+1 ) x ≤ u 1 x + u n (T x) by auto
then have (u (n+1 ) x)/(n+1 ) ≤ (u 1 x)/(n+1 ) + (u n (T x))/(n+1 )

by (metis add-divide-distrib divide-right-mono of-nat-0-le-iff )
then show ereal ((u (n+1 ) x)/(n+1 )) ≤ ereal((u 1 x)/(n+1 )) + ereal((u n

(T x))/(n+1 )) by auto
qed
also have ... = 0 + liminf (λn. ereal((u n (T x))/(n+1 )))
proof (rule ereal-liminf-lim-add[of λn. ereal((u 1 x)/real(n+1 )) 0 λn. ereal((u

n (T x))/(n+1 ))])
have (λn. ereal((u 1 x)∗(1/real(n+1 )))) −−−−→ ereal((u 1 x) ∗ 0 )

by (intro tendsto-intros LIMSEQ-ignore-initial-segment)
then show (λn. ereal((u 1 x)/real(n+1 ))) −−−−→ 0 by (simp add: zero-ereal-def )
qed (simp)
also have ... = 1 ∗ liminf (λn. ereal((u n (T x))/(n+1 ))) by simp
also have ... = liminf (λn. (n+1 )/n ∗ ereal((u n (T x))/(n+1 )))
proof (rule ereal-liminf-lim-mult[symmetric])

have real (n+1 ) / real n = 1 + 1/real n if n>0 for n by (simp add:
divide-simps mult.commute that)

with eventually-mono[OF eventually-gt-at-top[of 0 ::nat] this]
have eventually (λn. real (n+1 ) / real n = 1 + 1/real n) sequentially by

simp
moreover have (λn. 1 + 1/real n) −−−−→ 1 + 0

by (intro tendsto-intros)
ultimately have (λn. real (n+1 ) / real n) −−−−→ 1 using Lim-transform-eventually

by (simp add: filterlim-cong)
then show (λn. ereal(real (n+1 ) / real n)) −−−−→ 1 by (simp add:

one-ereal-def )
qed (auto)
also have ... = l (T x) unfolding l-def by auto
finally show l x ≤ l (T x) by simp

qed
have AE x in M . l (T x) = l x

apply (rule AE-increasing-then-invariant) using l-dec by auto
then obtain g0 where g0 : g0 ∈ borel-measurable Invariants AE x in M . l x =

g0 x
using Invariants-quasi-Invariants-functions[OF l-meas] by auto

define g where g = (λx. if g0 x = ∞ then 0 else g0 x)
have g: g ∈ borel-measurable Invariants AE x in M . g x = l x

unfolding g-def using g0 (1 ) ‹AE x in M . l x = g0 x› ‹AE x in M . l x < ∞›
by auto
have [measurable]: g ∈ borel-measurable M using g(1 ) Invariants-measurable-func

by blast
have

∧
x. g x < ∞ unfolding g-def by auto
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define A where A = {x ∈ space M . l x < ∞ ∧ (∀n. l ((T^^n) x) = g ((T^^n)
x))}

have A-meas [measurable]: A ∈ sets M unfolding A-def by auto
have AE x in M . x ∈ A unfolding A-def using T-AE-iterates[OF g(2 )] ‹AE x

in M . l x < ∞› by auto
then have space M − A ∈ null-sets M by (simp add: AE-iff-null set-diff-eq)

have l-inv: l((T^^n) x) = l x if x ∈ A for x n
proof −

have l((T^^n) x) = g((T^^n) x) using ‹ x ∈ A › unfolding A-def by blast
also have ... = g x using g(1 ) A-def Invariants-func-is-invariant-n that by

blast
also have ... = g((T^^0 ) x) by auto
also have ... = l((T^^0 ) x) using ‹ x ∈ A › unfolding A-def by (metis

(mono-tags, lifting) mem-Collect-eq)
finally show ?thesis by auto

qed

define F where F = (λ K e x. real-of-ereal(max (l x) (−ereal K )) + e)
have F-meas [measurable]: F K e ∈ borel-measurable M for K e unfolding F-def

by auto
define B where B = (λN K e. {x ∈ A. ∃n∈{1 ..N}. u n x − n ∗ F K e x < 0})
have B-meas [measurable]: B N K e ∈ sets M for N K e unfolding B-def by

(measurable)
define I where I = (λN K e x. (indicator (− B N K e) x)::real)
have I-meas [measurable]: I N K e ∈ borel-measurable M for N K e unfolding

I-def by auto
have I-int: integrable M (I N K e) for N K e

unfolding I-def apply (subst Bochner-Integration.integrable-cong[where ?g =
indicator (space M − B N K e)::- ⇒ real], auto)

by (auto split: split-indicator simp: less-top[symmetric])

have main: AE x in M . limsup (λn. u n x / n) ≤ F K e x + abs(F K e x) ∗
ereal(real-cond-exp M Invariants (I N K e) x)

if N>(1 ::nat) K>(0 ::real) e>(0 ::real) for N K e
proof −

let ?B = B N K e and ?I = I N K e and ?F = F K e

define t where t = (λx. if x ∈ ?B then Min {n∈{1 ..N}. u n x − n ∗ ?F x <
0} else 1 )

have [measurable]: t ∈ measurable M (count-space UNIV ) unfolding t-def by
measurable

have t1 : t x ∈ {1 ..N} for x
proof (cases x ∈ ?B)

case False
then have t x = 1 by (simp add: t-def )
then show ?thesis using ‹N>1 ›by auto

next
case True
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let ?A = {n∈{1 ..N}. u n x − n ∗ ?F x < 0}
have t x = Min ?A using True by (simp add: t-def )
moreover have Min ?A ∈ ?A apply (rule Min-in, simp) using True B-def

by blast
ultimately show ?thesis by auto

qed

have bound1 : u (t x) x ≤ t x ∗ ?F x + birkhoff-sum ?I (t x) x ∗ abs(?F x) for
x

proof (cases x ∈ ?B)
case True
let ?A = {n∈{1 ..N}. u n x − n ∗ F K e x < 0}
have t x = Min ?A using True by (simp add: t-def )
moreover have Min ?A ∈ ?A apply (rule Min-in, simp) using True B-def

by blast
ultimately have u (t x) x ≤ (t x) ∗ ?F x by auto

moreover have 0 ≤ birkhoff-sum ?I (t x) x ∗ abs(?F x) unfolding
birkhoff-sum-def I-def by (simp add: sum-nonneg)

ultimately show ?thesis by auto
next

case False
then have 0 ≤ ?F x + ?I x ∗ abs(?F x) unfolding I-def by auto
then have u 1 x ≤ ?F x + ?I x ∗ abs(?F x) using assms(2 )[of x] by auto
moreover have t x = 1 unfolding t-def using False by auto
ultimately show ?thesis by auto

qed

define TB where TB = (λx. (T^^(t x)) x)
have [measurable]: TB ∈ measurable M M unfolding TB-def by auto
define S where S = (λn x. (

∑
i<n. t((TB^^i) x)))

have [measurable]: S n ∈ measurable M (count-space UNIV ) for n unfolding
S-def by measurable

have TB-pow: (TB^^n) x = (T^^(S n x)) x for n x
unfolding S-def TB-def
by (induction n, auto, metis (mono-tags, lifting) add.commute funpow-add

o-apply)

have uS : u (S n x) x ≤ (S n x) ∗ ?F x + birkhoff-sum ?I (S n x) x ∗ abs(?F
x) if x ∈ A n>0 for x n

using ‹n > 0 › proof (induction rule: ind-from-1 )
case 1
show ?case unfolding S-def using bound1 by auto

next
case (Suc n)

have ∗: ?F((TB^^n) x) = ?F x apply (subst TB-pow) unfolding F-def
using l-inv[OF ‹x∈A›] by auto

have ∗∗: S n x + t ((TB^^n) x) = S (Suc n) x unfolding S-def by auto
have u (S (Suc n) x) x = u (S n x + t((TB^^n) x)) x unfolding S-def by

auto
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also have ... ≤ u (S n x) x + u (t((TB^^n) x)) ((T^^(S n x)) x)
using assms(1 ) unfolding subcocycle-def by auto

also have ... ≤ u (S n x) x + u (t((TB^^n) x)) ((TB^^n) x)
using TB-pow by auto

also have ... ≤ (S n x) ∗ ?F x + birkhoff-sum ?I (S n x) x ∗ abs(?F x) +
t ((TB^^n) x) ∗ ?F ((TB^^n) x) + birkhoff-sum ?I (t ((TB^^n)

x)) ((TB^^n) x) ∗ abs(?F ((TB^^n) x))
using Suc bound1 [of ((TB^^n) x)] by auto

also have ... = (S n x) ∗ ?F x + birkhoff-sum ?I (S n x) x ∗ abs(?F x) +
t ((TB^^n) x) ∗ ?F x + birkhoff-sum ?I (t ((TB^^n) x)) ((T^^(S

n x)) x) ∗ abs(?F x)
using ∗ TB-pow by auto

also have ... = (real(S n x) + t ((TB^^n) x)) ∗ ?F x +
(birkhoff-sum ?I (S n x) x + birkhoff-sum ?I (t ((TB^^n) x))

((T^^(S n x)) x)) ∗ abs(?F x)
by (simp add: mult.commute ring-class.ring-distribs(1 ))

also have ... = (S n x + t ((TB^^n) x)) ∗ ?F x +
(birkhoff-sum ?I (S n x) x + birkhoff-sum ?I (t ((TB^^n) x))

((T^^(S n x)) x)) ∗ abs(?F x)
by simp

also have ... = (S (Suc n) x) ∗ ?F x + birkhoff-sum ?I (S (Suc n) x) x ∗
abs(?F x)

by (subst birkhoff-sum-cocycle[symmetric], subst ∗∗, subst ∗∗, simp)
finally show ?case by simp

qed

have un: u n x ≤ n ∗ ?F x + N ∗ abs(?F x) + birkhoff-sum ?I n x ∗ abs(?F
x) if x ∈ A n>N for x n

proof −
let ?A = {i. S i x > n}
let ?iA = Inf ?A
have n < (

∑
i<n + 1 . 1 ) by auto

also have ... ≤ S (n+1 ) x unfolding S-def apply (rule sum-mono) using
t1 by auto

finally have ?A 6= {} by blast
then have ?iA ∈ ?A by (meson Inf-nat-def1 )
moreover have 0 /∈ ?A unfolding S-def by auto
ultimately have ?iA 6= 0 by fastforce
define j where j = ?iA − 1
then have j < ?iA using ‹?iA 6= 0 › by auto
then have j /∈ ?A by (meson bdd-below-def cInf-lower le0 not-less)
then have S j x ≤ n by auto
define k where k = n − S j x
have n = S j x + k unfolding k-def using ‹S j x ≤ n› by auto
have n < S (j+1 ) x unfolding j-def using ‹?iA 6= 0 › ‹?iA ∈ ?A› by auto
also have ... = S j x + t((TB^^j) x) unfolding S-def by auto
also have ... ≤ S j x + N using t1 by auto
finally have k ≤ N unfolding k-def using ‹n > N › by auto
then have S j x > 0 unfolding k-def using ‹n > N › by auto
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then have j > 0 unfolding S-def using not-gr0 by fastforce

have birkhoff-sum ?I (S j x) x ≤ birkhoff-sum ?I n x
unfolding birkhoff-sum-def I-def using ‹S j x ≤ n›

by (metis finite-Collect-less-nat indicator-pos-le lessThan-def lessThan-subset-iff
sum-mono2 )

have u n x ≤ u (S j x) x
proof (cases k = 0 )

case True
show ?thesis using True unfolding k-def using ‹S j x ≤ n› by auto

next
case False
then have k > 0 by simp
have u k ((T^^(S j x)) x) ≤ birkhoff-sum (u 1 ) k ((T ^^ S j x) x)

using subcocycle-bounded-by-birkhoff1 [OF assms(1 ) ‹k>0 ›, of (T^^(S j
x)) x] by simp

also have ... ≤ 0 unfolding birkhoff-sum-def using sum-mono assms(2 )
by (simp add: sum-nonpos)

also have u n x ≤ u (S j x) x + u k ((T^^(S j x)) x)
apply (subst ‹n = S j x + k›) using assms(1 ) subcocycle-def by auto

ultimately show ?thesis by auto
qed
also have ... ≤ (S j x) ∗ ?F x + birkhoff-sum ?I (S j x) x ∗ abs(?F x)

using uS [OF ‹x ∈ A› ‹j>0 ›] by simp
also have ... ≤ (S j x) ∗ ?F x + birkhoff-sum ?I n x ∗ abs(?F x)

using ‹birkhoff-sum ?I (S j x) x ≤ birkhoff-sum ?I n x› by (simp add:
mult-right-mono)

also have ... = n ∗ ?F x − k ∗ ?F x + birkhoff-sum ?I n x ∗ abs(?F x)
by (metis ‹n = S j x + k› add-diff-cancel-right ′ le-add2 left-diff-distrib ′

of-nat-diff )
also have ... ≤ n ∗ ?F x + k ∗ abs(?F x) + birkhoff-sum ?I n x ∗ abs(?F x)

by (auto, metis abs-ge-minus-self abs-mult abs-of-nat)
also have ... ≤ n ∗ ?F x + N ∗ abs(?F x) + birkhoff-sum ?I n x ∗ abs(?F x)

using ‹k ≤ N › by (simp add: mult-right-mono)
finally show ?thesis by simp

qed

have limsup (λn. u n x / n) ≤ ?F x + limsup (λn. abs(?F x) ∗ ereal(birkhoff-sum
?I n x / n)) if x ∈ A for x

proof −
have (λn. ereal(?F x + N ∗ abs(?F x) ∗ (1 / n))) −−−−→ ereal(?F x + N ∗

abs (?F x) ∗ 0 )
by (intro tendsto-intros)

then have ∗: limsup (λn. ?F x + N ∗ abs(?F x)/n) = ?F x
using sequentially-bot tendsto-iff-Liminf-eq-Limsup by force

{
fix n assume n > N
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have u n x / real n ≤ ?F x + N ∗ abs(?F x) / n + abs(?F x) ∗ birkhoff-sum
?I n x / n

using un[OF ‹x ∈ A› ‹n > N ›] using ‹n>N › by (auto simp add:
divide-simps mult.commute)

then have ereal(u n x/n) ≤ ereal(?F x + N ∗ abs(?F x) / n) + abs(?F x)
∗ ereal(birkhoff-sum ?I n x / n)

by auto
}
then have eventually (λn. ereal(u n x / n) ≤ ereal(?F x + N ∗ abs(?F x) /

n) + abs(?F x) ∗ ereal(birkhoff-sum ?I n x / n)) sequentially
using eventually-mono[OF eventually-gt-at-top[of N ]] by auto

with Limsup-mono[OF this]
have limsup (λn. u n x / n) ≤ limsup (λn. ereal(?F x + N ∗ abs(?F x) / n)

+ abs(?F x) ∗ ereal(birkhoff-sum ?I n x / n))
by auto

also have ... ≤ limsup (λn. ?F x + N ∗ abs(?F x) / n) + limsup (λn. abs(?F
x) ∗ ereal(birkhoff-sum ?I n x / n))

by (rule ereal-limsup-add-mono)
also have ... = ?F x + limsup (λn. abs(?F x) ∗ ereal(birkhoff-sum ?I n x /

n))
using ∗ by auto

finally show ?thesis by auto
qed
then have ∗: AE x in M . limsup (λn. u n x / n) ≤ ?F x + limsup (λn. abs(?F

x) ∗ ereal(birkhoff-sum ?I n x / n))
using ‹AE x in M . x ∈ A› by auto

{
fix x assume H : (λn. birkhoff-sum ?I n x / n) −−−−→ real-cond-exp M

Invariants ?I x
have (λn. abs(?F x) ∗ ereal(birkhoff-sum ?I n x / n)) −−−−→ abs(?F x) ∗

ereal(real-cond-exp M Invariants ?I x)
by (rule tendsto-mult-ereal, auto simp add: H )

then have limsup (λn. abs(?F x) ∗ ereal(birkhoff-sum ?I n x / n)) = abs(?F
x) ∗ ereal(real-cond-exp M Invariants ?I x)

using sequentially-bot tendsto-iff-Liminf-eq-Limsup by blast
}
moreover have AE x in M . (λn. birkhoff-sum ?I n x / n) −−−−→ real-cond-exp

M Invariants ?I x
by (rule birkhoff-theorem-AE-nonergodic[OF I-int])

ultimately have AE x in M . limsup (λn. abs(?F x) ∗ ereal(birkhoff-sum ?I n
x / n)) = abs(?F x) ∗ ereal(real-cond-exp M Invariants ?I x)

by auto
then show ?thesis using ∗ by auto

qed

have bound2 : AE x in M . limsup (λn. u n x / n) ≤ F K e x if K > 0 e > 0 for
K e

proof −
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define C where C = (λN . A − B N K e)
have C-meas [measurable]:

∧
N . C N ∈ sets M unfolding C-def by auto

{
fix x assume x ∈ A
have F K e x > l x using ‹x ∈ A› ‹e > 0 › unfolding F-def A-def

by (cases l x, auto, metis add.commute ereal-max less-add-same-cancel2
max-less-iff-conj real-of-ereal.simps(1 ))

then have ∃n>0 . ereal(u n x / n) < F K e x unfolding l-def using
liminf-upper-bound by fastforce

then obtain n where n>0 ereal(u n x / n) < F K e x by auto
then have u n x − n ∗ F K e x < 0 by (simp add: divide-less-eq mult.commute)

then have x /∈ C n unfolding C-def B-def using ‹x ∈ A› ‹n>0 › by auto
then have x /∈ (

⋂
n. C n) by auto

}
then have (

⋂
n. C n) = {} unfolding C-def by auto

then have ∗: 0 = measure M (
⋂

n. C n) by auto
have (λn. measure M (C n)) −−−−→ 0

apply (subst ∗, rule finite-Lim-measure-decseq, auto) unfolding C-def B-def
decseq-def by auto

moreover have measure M (C n) = (
∫

x. norm(real-cond-exp M Invariants (I
n K e) x) ∂M ) for n

proof −
have ∗: AE x in M . 0 ≤ real-cond-exp M Invariants (I n K e) x

apply (rule real-cond-exp-pos, auto) unfolding I-def by auto

have measure M (C n) = (
∫

x. indicator (C n) x ∂M )
by auto

also have ... = (
∫

x. I n K e x ∂M )
apply (rule integral-cong-AE , auto)
unfolding C-def I-def indicator-def using ‹AE x in M . x ∈ A› by auto

also have ... = (
∫

x. real-cond-exp M Invariants (I n K e) x ∂M )
by (rule real-cond-exp-int(2 )[symmetric, OF I-int])

also have ... = (
∫

x. norm(real-cond-exp M Invariants (I n K e) x) ∂M )
apply (rule integral-cong-AE , auto) using ∗ by auto

finally show ?thesis by auto
qed
ultimately have ∗: (λn. (

∫
x. norm(real-cond-exp M Invariants (I n K e) x)

∂M )) −−−−→ 0 by simp

have ∃ r . strict-mono r ∧ (AE x in M . (λn. real-cond-exp M Invariants (I (r
n) K e) x) −−−−→ 0 )

apply (rule tendsto-L1-AE-subseq) using ∗ real-cond-exp-int[OF I-int] by
auto

then obtain r where strict-mono r AE x in M . (λn. real-cond-exp M Invariants
(I (r n) K e) x) −−−−→ 0

by auto
moreover have AE x in M . ∀N ∈ {1<..}. limsup (λn. u n x / n) ≤ F K e x

+ abs(F K e x) ∗ ereal(real-cond-exp M Invariants (I N K e) x)
apply (rule AE-ball-countable ′) using main[OF - ‹K>0 › ‹e>0 ›] by auto
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moreover
{

fix x assume H : (λn. real-cond-exp M Invariants (I (r n) K e) x) −−−−→ 0∧
N . N > 1 =⇒ limsup (λn. u n x / n) ≤ F K e x + abs(F K e

x) ∗ ereal(real-cond-exp M Invariants (I N K e) x)
have 1 : eventually (λN . limsup (λn. u n x / n) ≤ F K e x + abs(F K e x) ∗

ereal(real-cond-exp M Invariants (I (r N ) K e) x)) sequentially
apply (rule eventually-mono[OF eventually-gt-at-top[of 1 ] H (2 )])
using ‹strict-mono r› less-le-trans seq-suble by blast

have 2 : (λN . F K e x + (abs(F K e x) ∗ ereal(real-cond-exp M Invariants (I
(r N ) K e) x))) −−−−→ ereal(F K e x) + (abs(F K e x) ∗ ereal 0 )

by (intro tendsto-intros) (auto simp add: H (1 ))
have limsup (λn. u n x / n) ≤ F K e x

apply (rule LIMSEQ-le-const) using 1 2 by (auto simp add: eventu-
ally-at-top-linorder)

}
ultimately show AE x in M . limsup (λn. u n x / n) ≤ F K e x by auto

qed
have AE x in M . limsup (λn. u n x / n) ≤ real-of-ereal(max (l x) (−ereal K ))

if K>(0 ::nat) for K
apply (rule AE-upper-bound-inf-ereal) using bound2 ‹K>0 › unfolding F-def

by auto
then have AE x in M . ∀K∈{(0 ::nat)<..}. limsup (λn. u n x / n) ≤ real-of-ereal(max

(l x) (−ereal K ))
by (rule AE-ball-countable ′, auto)

moreover have (λn. u n x / n) −−−−→ l x
if H : ∀K∈{(0 ::nat)<..}. limsup (λn. u n x / n) ≤ real-of-ereal(max (l x) (−ereal

K )) for x
proof −

have limsup (λn. u n x / n) ≤ l x
proof (cases l x = ∞)

case False
then have (λK . real-of-ereal(max (l x) (−ereal K ))) −−−−→ l x

using ereal-truncation-real-bottom by auto
moreover have eventually (λK . limsup (λn. u n x / n) ≤ real-of-ereal(max

(l x) (−ereal K ))) sequentially
using H by (metis (no-types, lifting) eventually-at-top-linorder eventu-

ally-gt-at-top greaterThan-iff )
ultimately show limsup (λn. u n x / n) ≤ l x using Lim-bounded2 eventu-

ally-sequentially by auto
qed (simp)
then have limsup (λn. ereal (u n x / real n)) = l x

using Liminf-le-Limsup l-def eq-iff sequentially-bot by blast
then show (λn. u n x / n) −−−−→ l x

by (simp add: l-def tendsto-iff-Liminf-eq-Limsup)
qed
ultimately have AE x in M . (λn. u n x / n) −−−−→ l x by auto
then have AE x in M . (λn. u n x / n) −−−−→ g x using g(2 ) by auto
then show ∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧ (∀ x. g x < ∞) ∧
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(AE x in M . (λn. u n x / n) −−−−→ g x))
using g(1 ) ‹

∧
x. g x < ∞› by auto

qed

We deduce it for general subcocycles, by reducing to nonpositive subcocycles
by subtracting the Birkhoff sum of u1 (for which the convergence follows
from Birkhoff theorem).
theorem kingman-theorem-AE-aux2 :

assumes subcocycle u
shows ∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧ (∀ x. g x < ∞) ∧ (AE

x in M . (λn. u n x / n) −−−−→ g x))
proof −

define v where v = (λn x. u n x + birkhoff-sum (λx. − u 1 x) n x)
have subcocycle v unfolding v-def

apply (rule subcocycle-add[OF assms], rule subcocycle-birkhoff )
using assms unfolding subcocycle-def by auto

have ∃ (gv:: ′a⇒ereal). (gv∈borel-measurable Invariants ∧ (∀ x. gv x < ∞) ∧ (AE
x in M . (λn. v n x / n) −−−−→ gv x))

apply (rule kingman-theorem-AE-aux1 [OF ‹subcocycle v›]) unfolding v-def
by auto

then obtain gv where gv: gv ∈ borel-measurable Invariants AE x in M . (λn. v
n x / n) −−−−→ (gv x::ereal)

∧
x. gv x < ∞

by blast
define g where g = (λx. gv x + ereal(real-cond-exp M Invariants (u 1 ) x))
have g-meas: g ∈ borel-measurable Invariants unfolding g-def using gv(1 ) by

auto
have g-fin:

∧
x. g x < ∞ unfolding g-def using gv(3 ) by auto

have AE x in M . (λn. birkhoff-sum (u 1 ) n x / n) −−−−→ real-cond-exp M
Invariants (u 1 ) x

apply (rule birkhoff-theorem-AE-nonergodic) using assms unfolding subcocy-
cle-def by auto

moreover
{

fix x assume H : (λn. v n x / n) −−−−→ (gv x)
(λn. birkhoff-sum (u 1 ) n x / n) −−−−→ real-cond-exp M Invariants

(u 1 ) x
then have (λn. ereal(birkhoff-sum (u 1 ) n x / n)) −−−−→ ereal(real-cond-exp

M Invariants (u 1 ) x)
by auto

{
fix n
have u n x = v n x + birkhoff-sum (u 1 ) n x

unfolding v-def birkhoff-sum-def apply auto by (simp add: sum-negf )
then have u n x / n = v n x / n + birkhoff-sum (u 1 ) n x / n by (simp

add: add-divide-distrib)
then have ereal(u n x / n) = ereal(v n x / n) + ereal(birkhoff-sum (u 1 ) n

x / n)
by auto
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} note ∗ = this
have (λn. ereal(u n x / n)) −−−−→ g x unfolding ∗ g-def

apply (intro tendsto-intros) using H by auto
}
ultimately have AE x in M . (λn. ereal(u n x / n)) −−−−→ g x using gv(2 ) by

auto
then show ?thesis using g-meas g-fin by blast

qed

For applications, it is convenient to have a limit which is really measurable
with respect to the invariant sigma algebra and does not come from a hard
to use abstract existence statement. Hence we introduce the following def-
inition for the would-be limit – Kingman’s theorem shows that it is indeed
a limit.
We introduce the definition for any function, not only subcocycles, but it will
only be usable for subcocycles. We introduce an if clause in the definition
so that the limit is always measurable, even when u is not a subcocycle and
there is no convergence.
definition subcocycle-lim-ereal::(nat ⇒ ′a ⇒ real) ⇒ ( ′a ⇒ ereal)

where subcocycle-lim-ereal u = (
if (∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧
(∀ x. g x < ∞) ∧ (AE x in M . (λn. u n x / n) −−−−→ g x)))

then (SOME (g:: ′a⇒ereal). g∈borel-measurable Invariants ∧
(∀ x. g x < ∞) ∧ (AE x in M . (λn. u n x / n) −−−−→ g x))

else (λ-. 0 ))

definition subcocycle-lim::(nat ⇒ ′a ⇒ real) ⇒ ( ′a ⇒ real)
where subcocycle-lim u = (λx. real-of-ereal(subcocycle-lim-ereal u x))

lemma subcocycle-lim-meas-Inv [measurable]:
subcocycle-lim-ereal u ∈ borel-measurable Invariants
subcocycle-lim u ∈ borel-measurable Invariants

proof −
show subcocycle-lim-ereal u ∈ borel-measurable Invariants
proof (cases ∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧ (∀ x. g x < ∞) ∧

(AE x in M . (λn. u n x / n) −−−−→ g x)))
case True
then have subcocycle-lim-ereal u = (SOME (g:: ′a⇒ereal). g∈borel-measurable

Invariants ∧
(∀ x. g x < ∞) ∧ (AE x in M . (λn. u n x / n) −−−−→ g x))

unfolding subcocycle-lim-ereal-def by auto
then show ?thesis using someI-ex[OF True] by auto

next
case False
then have subcocycle-lim-ereal u = (λ-. 0 ) unfolding subcocycle-lim-ereal-def

by auto
then show ?thesis by auto

qed
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then show subcocycle-lim u ∈ borel-measurable Invariants unfolding subcocy-
cle-lim-def by auto
qed

lemma subcocycle-lim-meas [measurable]:
subcocycle-lim-ereal u ∈ borel-measurable M
subcocycle-lim u ∈ borel-measurable M

using subcocycle-lim-meas-Inv Invariants-measurable-func apply blast
using subcocycle-lim-meas-Inv Invariants-measurable-func by blast

lemma subcocycle-lim-ereal-not-PInf :
subcocycle-lim-ereal u x < ∞

proof (cases ∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧ (∀ x. g x < ∞) ∧
(AE x in M . (λn. u n x / n) −−−−→ g x)))

case True
then have subcocycle-lim-ereal u = (SOME (g:: ′a⇒ereal). g∈borel-measurable

Invariants ∧
(∀ x. g x < ∞) ∧ (AE x in M . (λn. u n x / n) −−−−→ g x))

unfolding subcocycle-lim-ereal-def by auto
then show ?thesis using someI-ex[OF True] by auto

next
case False
then have subcocycle-lim-ereal u = (λ-. 0 ) unfolding subcocycle-lim-ereal-def

by auto
then show ?thesis by auto

qed

We reformulate the subadditive ergodic theorem of Kingman with this defini-
tion. From this point on, the technical definition of subcocycle_lim_ereal
will never be used, only the following property will be relevant.
theorem kingman-theorem-AE-nonergodic-ereal:

assumes subcocycle u
shows AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

proof −
have ∗: ∃ (g:: ′a⇒ereal). (g∈borel-measurable Invariants ∧ (∀ x. g x < ∞) ∧ (AE

x in M . (λn. u n x / n) −−−−→ g x))
using kingman-theorem-AE-aux2 [OF assms] by auto

then have subcocycle-lim-ereal u = (SOME (g:: ′a⇒ereal). g∈borel-measurable
Invariants ∧

(∀ x. g x < ∞) ∧ (AE x in M . (λn. u n x / n) −−−−→ g x))
unfolding subcocycle-lim-ereal-def by auto

then show ?thesis using someI-ex[OF ∗] by auto
qed

The subcocycle limit behaves well under addition, multiplication by a pos-
itive scalar, max, and is simply the conditional expectation with respect to
invariants for Birkhoff sums, thanks to Birkhoff theorem.
lemma subcocycle-lim-ereal-add:

assumes subcocycle u subcocycle v
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shows AE x in M . subcocycle-lim-ereal (λn x. u n x + v n x) x = subcocy-
cle-lim-ereal u x + subcocycle-lim-ereal v x
proof −

have AE x in M . (λn. (u n x + v n x)/n) −−−−→ subcocycle-lim-ereal (λn x. u
n x + v n x) x

by (rule kingman-theorem-AE-nonergodic-ereal[OF subcocycle-add[OF assms]])
moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

by (rule kingman-theorem-AE-nonergodic-ereal[OF assms(1 )])
moreover have AE x in M . (λn. v n x / n) −−−−→ subcocycle-lim-ereal v x

by (rule kingman-theorem-AE-nonergodic-ereal[OF assms(2 )])
moreover
{

fix x assume H : (λn. (u n x + v n x)/n) −−−−→ subcocycle-lim-ereal (λn x. u
n x + v n x) x

(λn. u n x / n) −−−−→ subcocycle-lim-ereal u x
(λn. v n x / n) −−−−→ subcocycle-lim-ereal v x

have ∗: (u n x + v n x)/n = ereal (u n x / n) + (v n x / n) for n
by (simp add: add-divide-distrib)
have (λn. (u n x + v n x)/n) −−−−→ subcocycle-lim-ereal u x + subcocy-

cle-lim-ereal v x
unfolding ∗ apply (intro tendsto-intros H (2 ) H (3 )) using subcocycle-lim-ereal-not-PInf

by auto
then have subcocycle-lim-ereal (λn x . u n x + v n x) x = subcocycle-lim-ereal

u x + subcocycle-lim-ereal v x
using H (1 ) by (simp add: LIMSEQ-unique)

}
ultimately show ?thesis by auto

qed

lemma subcocycle-lim-ereal-cmult:
assumes subcocycle u c≥(0 ::real)
shows AE x in M . subcocycle-lim-ereal (λn x. c ∗ u n x) x = c ∗ subcocy-

cle-lim-ereal u x
proof −

have AE x in M . (λn. (c ∗ u n x)/n) −−−−→ subcocycle-lim-ereal (λn x. c ∗ u n
x) x

by (rule kingman-theorem-AE-nonergodic-ereal[OF subcocycle-cmult[OF assms]])
moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

by (rule kingman-theorem-AE-nonergodic-ereal[OF assms(1 )])
moreover
{

fix x assume H : (λn. (c ∗ u n x)/n) −−−−→ subcocycle-lim-ereal (λn x. c ∗ u
n x) x

(λn. u n x / n) −−−−→ subcocycle-lim-ereal u x
have (λn. c ∗ ereal (u n x / n)) −−−−→ c ∗ subcocycle-lim-ereal u x

by (rule tendsto-cmult-ereal[OF - H (2 )], auto)
then have subcocycle-lim-ereal (λn x. c ∗ u n x) x = c ∗ subcocycle-lim-ereal

u x
using H (1 ) by (simp add: LIMSEQ-unique)
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}
ultimately show ?thesis by auto

qed

lemma subcocycle-lim-ereal-max:
assumes subcocycle u subcocycle v
shows AE x in M . subcocycle-lim-ereal (λn x. max (u n x) (v n x)) x

= max (subcocycle-lim-ereal u x) (subcocycle-lim-ereal v x)
proof −

have AE x in M . (λn. max (u n x) (v n x) / n) −−−−→ subcocycle-lim-ereal (λn
x. max (u n x) (v n x)) x

by (rule kingman-theorem-AE-nonergodic-ereal[OF subcocycle-max[OF assms]])
moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

by (rule kingman-theorem-AE-nonergodic-ereal[OF assms(1 )])
moreover have AE x in M . (λn. v n x / n) −−−−→ subcocycle-lim-ereal v x

by (rule kingman-theorem-AE-nonergodic-ereal[OF assms(2 )])
moreover
{
fix x assume H : (λn. max (u n x) (v n x) / n) −−−−→ subcocycle-lim-ereal (λn

x. max (u n x) (v n x)) x
(λn. u n x / n) −−−−→ subcocycle-lim-ereal u x
(λn. v n x / n) −−−−→ subcocycle-lim-ereal v x

have (λn. max (ereal(u n x / n)) (ereal(v n x / n)))
−−−−→ max (subcocycle-lim-ereal u x) (subcocycle-lim-ereal v x)

apply (rule tendsto-max) using H by auto
moreover have max (ereal(u n x / n)) (ereal(v n x / n)) = max (u n x) (v n

x) / n for n
by (simp del: ereal-max add:ereal-max[symmetric] max-divide-distrib-right)

ultimately have (λn. max (u n x) (v n x) / n)
−−−−→ max (subcocycle-lim-ereal u x) (subcocycle-lim-ereal v x)

by auto
then have subcocycle-lim-ereal (λn x. max (u n x) (v n x)) x

= max (subcocycle-lim-ereal u x) (subcocycle-lim-ereal v x)
using H (1 ) by (simp add: LIMSEQ-unique)

}
ultimately show ?thesis by auto

qed

lemma subcocycle-lim-ereal-birkhoff :
assumes integrable M u
shows AE x in M . subcocycle-lim-ereal (birkhoff-sum u) x = ereal(real-cond-exp

M Invariants u x)
proof −

have AE x in M . (λn. birkhoff-sum u n x / n) −−−−→ real-cond-exp M Invariants
u x

by (rule birkhoff-theorem-AE-nonergodic[OF assms])
moreover have AE x in M . (λn. birkhoff-sum u n x / n) −−−−→ subcocy-

cle-lim-ereal (birkhoff-sum u) x
by (rule kingman-theorem-AE-nonergodic-ereal[OF subcocycle-birkhoff [OF assms]])
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moreover
{
fix x assume H : (λn. birkhoff-sum u n x / n) −−−−→ real-cond-exp M Invariants

u x
(λn. birkhoff-sum u n x / n) −−−−→ subcocycle-lim-ereal (birkhoff-sum

u) x
have (λn. birkhoff-sum u n x / n) −−−−→ ereal(real-cond-exp M Invariants u

x)
using H (1 ) by auto
then have subcocycle-lim-ereal (birkhoff-sum u) x = ereal(real-cond-exp M

Invariants u x)
using H (2 ) by (simp add: LIMSEQ-unique)

}
ultimately show ?thesis by auto

qed

9.4 L1 and a.e. convergence of subcocycles with finite asymp-
totic average

In this subsection, we show that the almost sure convergence in Kingman
theorem also takes place in L1 if the limit is integrable, i.e., if the asymptotic
average of the subcocycle is > −∞. To deduce it from the almost sure
convergence, we only need to show that there is no loss of mass, i.e., that
the integral of the limit is not strictly larger than the limit of the integrals
(thanks to Scheffe criterion). This follows from comparison to Birkhoff sums,
for which we know that the average of the limit is the same as the average
of the function.

First, we show that the subcocycle limit is bounded by the limit of the
Birkhoff sums of uN , i.e., its conditional expectation. This follows from
the fact that un is bounded by the Birkhoff sum of uN (up to negligible
boundary terms).
lemma subcocycle-lim-ereal-atmost-uN-invariants:

assumes subcocycle u N>(0 ::nat)
shows AE x in M . subcocycle-lim-ereal u x ≤ real-cond-exp M Invariants (λx. u

N x / N ) x
proof −

have AE x in M . (λn. u 1 ((T^^n) x) / n) −−−−→ 0
apply (rule limit-foTn-over-n ′) using assms(1 ) unfolding subcocycle-def by

auto
moreover have AE x in M . (λn. birkhoff-sum (λx. u N x/N ) n x / n) −−−−→

real-cond-exp M Invariants (λx. u N x / N ) x
apply (rule birkhoff-theorem-AE-nonergodic) using assms(1 ) unfolding sub-

cocycle-def by auto
moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

by (rule kingman-theorem-AE-nonergodic-ereal[OF assms(1 )])
moreover
{
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fix x assume H : (λn. u 1 ((T^^n) x) / n) −−−−→ 0
(λn. birkhoff-sum (λx. u N x/N ) n x / n) −−−−→ real-cond-exp M

Invariants (λx. u N x / N ) x
(λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

let ?f = λn. birkhoff-sum (λx. u N x / real N ) (n − 2 ∗ N ) x / n
+ (

∑
i<N . (1/n) ∗ |u 1 ((T ^^ i) x)|)

+ 2 ∗ (
∑

i<2∗N . |u 1 ((T ^^ (n − (2 ∗ N − i))) x)| / n)
{

fix n assume n≥2∗N+1
then have n > 2 ∗ N by simp
have u n x / n ≤ (birkhoff-sum (λx. u N x / real N ) (n − 2 ∗ N ) x

+ (
∑

i<N . |u 1 ((T ^^ i) x)|)
+ 2 ∗ (

∑
i<2∗N . |u 1 ((T ^^ (n − (2 ∗ N − i))) x)|)) / n

using subcocycle-bounded-by-birkhoffN [OF assms(1 ) ‹n>2∗N › ‹N>0 ›, of
x] ‹n>2∗N › by (simp add: divide-right-mono)

also have ... = ?f n
apply (subst add-divide-distrib)+ by (auto simp add: sum-divide-distrib[symmetric])
finally have u n x / n ≤ ?f n by simp
then have u n x / n ≤ ereal(?f n) by simp

}

have (λn. ?f n) −−−−→ real-cond-exp M Invariants (λx. u N x / N ) x +
(
∑

i<N . 0 ∗ |u 1 ((T ^^ i) x)|) + 2 ∗ (
∑

i<2∗N . 0 )
apply (intro tendsto-intros) using H (2 ) tendsto-norm[OF H (1 )] by auto

then have (λn. ereal(?f n)) −−−−→ real-cond-exp M Invariants (λx. u N x /
N ) x

by auto
with lim-mono[OF ‹

∧
n. n ≥ 2∗N+1 =⇒ u n x / n ≤ ereal(?f n)› H (3 ) this]

have subcocycle-lim-ereal u x ≤ real-cond-exp M Invariants (λx. u N x / N ) x
by simp

}
ultimately show ?thesis by auto

qed

To apply Scheffe criterion, we need to deal with nonnegative functions, or
equivalently with nonpositive functions after a change of sign. Hence, as
in the proof of the almost sure version of Kingman theorem above, we first
give the proof assuming that the subcocycle is nonpositive, and deduce the
general statement by adding a suitable Birkhoff sum.
lemma kingman-theorem-L1-aux:

assumes subcocycle u subcocycle-avg-ereal u > −∞
∧

x. u 1 x ≤ 0
shows AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x

integrable M (subcocycle-lim u)
(λn. (

∫
+x. abs(u n x / n − subcocycle-lim u x) ∂M )) −−−−→ 0

proof −
have int-u [measurable]:

∧
n. integrable M (u n) using assms(1 ) subcocycle-def

by auto
then have int-F [measurable]:

∧
n. integrable M (λx. − u n x/ n) by auto
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have F-pos: − u n x / n ≥ 0 for x n
proof (cases n > 0 )

case True
have u n x ≤ (

∑
i<n. u 1 ((T ^^ i) x))

using subcocycle-bounded-by-birkhoff1 [OF assms(1 ) ‹n>0 ›] unfolding birkhoff-sum-def
by simp

also have ... ≤ 0 using sum-mono[OF assms(3 )] by auto
finally have u n x ≤ 0 by simp
then have −u n x ≥ 0 by simp
with divide-nonneg-nonneg[OF this] show − u n x / n ≥ 0 using ‹n>0 › by

auto
qed (auto)

{
fix x assume ∗: (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x
have H : (λn. − u n x / n) −−−−→ − subcocycle-lim-ereal u x

using tendsto-cmult-ereal[OF - ∗, of −1 ] by auto
have liminf (λn. −u n x / n) = − subcocycle-lim-ereal u x

(λn. − u n x / n) −−−−→ − subcocycle-lim-ereal u x
− subcocycle-lim-ereal u x ≥ 0

using H apply (simp add: tendsto-iff-Liminf-eq-Limsup, simp)
apply (rule LIMSEQ-le-const[OF H ]) using F-pos by auto

}
then have AE-1 : AE x in M . liminf (λn. −u n x / n) = − subcocycle-lim-ereal

u x
AE x in M . (λn. − u n x / n) −−−−→ − subcocycle-lim-ereal u x
AE x in M . − subcocycle-lim-ereal u x ≥ 0

using kingman-theorem-AE-nonergodic-ereal[OF assms(1 )] by auto

have (
∫

+ x. −subcocycle-lim-ereal u x ∂M ) = (
∫

+ x. liminf (λn. −u n x / n)
∂M )

apply (rule nn-integral-cong-AE) using AE-1 (1 ) by auto
also have ... ≤ liminf (λn.

∫
+ x. −u n x / n ∂M )

apply (subst e2ennreal-Liminf )
apply (simp-all add: e2ennreal-ereal)
using F-pos by (intro nn-integral-liminf ) (simp add: int-F)

also have ... = − subcocycle-avg-ereal u
proof −

have (λn. (
∫

x. u n x / n ∂M )) −−−−→ subcocycle-avg-ereal u
by (rule subcocycle-int-tendsto-avg-ereal[OF assms(1 )])

with tendsto-cmult-ereal[OF - this, of −1 ]
have (λn. (

∫
x. − u n x / n ∂M )) −−−−→ − subcocycle-avg-ereal u by simp

then have − subcocycle-avg-ereal u = liminf (λn. (
∫

x. − u n x / n ∂M ))
by (simp add: tendsto-iff-Liminf-eq-Limsup)

moreover have (
∫

+ x. ennreal (−u n x / n) ∂M ) = ennreal(
∫

x. − u n x /
n ∂M ) for n

apply (rule nn-integral-eq-integral[OF int-F ]) using F-pos by auto
ultimately show ?thesis
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by (auto simp: e2ennreal-Liminf e2ennreal-ereal)
qed
finally have (

∫
+ x. −subcocycle-lim-ereal u x ∂M ) ≤ − subcocycle-avg-ereal u

by simp
also have . . . < ∞ using assms(2 )

by (cases subcocycle-avg-ereal u) (auto simp: e2ennreal-ereal e2ennreal-neg)
finally have ∗: (

∫
+ x. −subcocycle-lim-ereal u x ∂M ) < ∞ .

have AE x in M . e2ennreal (− subcocycle-lim-ereal u x) 6= ∞
apply (rule nn-integral-PInf-AE) using ∗ by auto

then have ∗∗: AE x in M . − subcocycle-lim-ereal u x 6= ∞
using AE-1 (3 ) by eventually-elim simp

{
fix x assume H : − subcocycle-lim-ereal u x 6= ∞

(λn. u n x / n) −−−−→ subcocycle-lim-ereal u x
− subcocycle-lim-ereal u x ≥ 0

then have 1 : abs(subcocycle-lim-ereal u x) 6= ∞ by auto
then have 2 : (λn. u n x / n) −−−−→ subcocycle-lim u x using H (2 ) unfolding

subcocycle-lim-def by auto
then have 3 : (λn. − (u n x / n)) −−−−→ − subcocycle-lim u x using tend-

sto-mult[OF - 2 , of λ-. −1 , of −1 ] by auto
have 4 : −subcocycle-lim u x ≥ 0 using H (3 ) unfolding subcocycle-lim-def by

auto

have abs(subcocycle-lim-ereal u x) 6= ∞
(λn. u n x / n) −−−−→ subcocycle-lim u x
(λn. − (u n x / n)) −−−−→ − subcocycle-lim u x
−subcocycle-lim u x ≥ 0

using 1 2 3 4 by auto
}
then have AE-2 : AE x in M . abs(subcocycle-lim-ereal u x) 6= ∞

AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x
AE x in M . (λn. − (u n x / n)) −−−−→ − subcocycle-lim u x
AE x in M . −subcocycle-lim u x ≥ 0

using kingman-theorem-AE-nonergodic-ereal[OF assms(1 )] ∗∗ AE-1 (3 ) by auto
then show AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x by simp

have (
∫

+x. abs(subcocycle-lim u x) ∂M ) = (
∫

+x. −subcocycle-lim-ereal u x ∂M )
apply (rule nn-integral-cong-AE)
using AE-2 unfolding subcocycle-lim-def abs-real-of-ereal
apply eventually-elim
by (auto simp: e2ennreal-ereal)

then have A: (
∫

+x. abs(subcocycle-lim u x) ∂M ) < ∞ using ∗ by auto
show int-Gr : integrable M (subcocycle-lim u)

apply (rule integrableI-bounded) using A by auto

have B: (λn. (
∫

+ x. norm((− u n x /n) − (−subcocycle-lim u x)) ∂M )) −−−−→
0

proof (rule Scheffe-lemma1 , auto simp add: int-Gr int-u AE-2 (2 ) AE-2 (3 ))
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{
fix n assume n>(0 ::nat)
have ∗: AE x in M . subcocycle-lim u x ≤ real-cond-exp M Invariants (λx. u

n x / n) x
using subcocycle-lim-ereal-atmost-uN-invariants[OF assms(1 ) ‹n>0 ›] AE-2 (1 )

unfolding subcocycle-lim-def by auto
have (

∫
x. subcocycle-lim u x ∂M ) ≤ (

∫
x. real-cond-exp M Invariants (λx. u

n x / n) x ∂M )
apply (rule integral-mono-AE [OF int-Gr - ∗], rule real-cond-exp-int(1 ))

using int-u by auto
also have ... = (

∫
x. u n x / n ∂M ) apply (rule real-cond-exp-int(2 )) using

int-u by auto
finally have A: (

∫
x. subcocycle-lim u x ∂M ) ≤ (

∫
x. u n x / n ∂M ) by auto

have (
∫

+x. abs(u n x) / n ∂M ) = (
∫

+x. − u n x / n ∂M )
apply (rule nn-integral-cong) using F-pos abs-of-nonneg by (intro arg-cong[where

f = ennreal]) fastforce
also have ... = (

∫
x. − u n x / n ∂M )

apply (rule nn-integral-eq-integral) using F-pos int-F by auto
also have ... ≤ (

∫
x. − subcocycle-lim u x ∂M ) using A by (auto intro!:

ennreal-leI )
also have ... = (

∫
+x. − subcocycle-lim u x ∂M )

apply (rule nn-integral-eq-integral[symmetric]) using int-Gr AE-2 (4 ) by
auto

also have ... = (
∫

+x. abs(subcocycle-lim u x) ∂M )
apply (rule nn-integral-cong-AE) using AE-2 (4 ) by auto

finally have (
∫

+x. abs(u n x) / n ∂M ) ≤ (
∫

+x. abs(subcocycle-lim u x)
∂M ) by simp

}
with eventually-mono[OF eventually-gt-at-top[of 0 ] this]
have eventually (λn. (

∫
+x. abs(u n x) / n ∂M ) ≤ (

∫
+x. abs(subcocycle-lim u

x) ∂M )) sequentially
by fastforce

then show limsup (λn.
∫

+ x. abs(u n x) / n ∂M ) ≤
∫

+ x. abs(subcocycle-lim
u x) ∂M

using Limsup-bounded by fastforce
qed
moreover have norm((− u n x /n) − (−subcocycle-lim u x)) = abs(u n x / n
− subcocycle-lim u x)

for n x by auto
ultimately show (λn.

∫
+ x. ennreal |u n x / real n − subcocycle-lim u x| ∂M )

−−−−→ 0
by auto

qed

We can then remove the nonpositivity assumption, by subtracting the Birkhoff
sums of u1 to a general subcocycle u.
theorem kingman-theorem-nonergodic:

assumes subcocycle u subcocycle-avg-ereal u > −∞
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shows AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x
integrable M (subcocycle-lim u)
(λn. (

∫
+x. abs(u n x / n − subcocycle-lim u x) ∂M )) −−−−→ 0

proof −
have [measurable]: u n ∈ borel-measurable M for n using assms(1 ) unfolding

subcocycle-def by auto
have int-u [measurable]: integrable M (u 1 ) using assms(1 ) subcocycle-def by

auto
define v where v = (λn x. u n x + birkhoff-sum (λx. − u 1 x) n x)
have [measurable]: v n ∈ borel-measurable M for n unfolding v-def by auto
define w where w = birkhoff-sum (u 1 )
have [measurable]: w n ∈ borel-measurable M for n unfolding w-def by auto
have subcocycle v unfolding v-def

apply (rule subcocycle-add[OF assms(1 )], rule subcocycle-birkhoff )
using assms unfolding subcocycle-def by auto

have subcocycle w unfolding w-def by (rule subcocycle-birkhoff [OF int-u])
have uvw: u n x = v n x + w n x for n x

unfolding v-def w-def birkhoff-sum-def by (auto simp add: sum-negf )
then have subcocycle-avg-ereal (λn x. u n x) = subcocycle-avg-ereal v + subco-

cycle-avg-ereal w
using subcocycle-avg-ereal-add[OF ‹subcocycle v› ‹subcocycle w›] by auto

then have subcocycle-avg-ereal u = subcocycle-avg-ereal v + subcocycle-avg-ereal
w

by auto
then have subcocycle-avg-ereal v > −∞

unfolding w-def using subcocycle-avg-ereal-birkhoff [OF int-u] assms(2 ) by
auto

have subcocycle-avg-ereal w > − ∞
unfolding w-def using subcocycle-avg-birkhoff [OF int-u] by auto

have
∧

x. v 1 x ≤ 0 unfolding v-def by auto
have v: AE x in M . (λn. v n x / n) −−−−→ subcocycle-lim v x

integrable M (subcocycle-lim v)
(λn. (

∫
+x. abs(v n x / n − subcocycle-lim v x) ∂M )) −−−−→ 0

using kingman-theorem-L1-aux[OF ‹subcocycle v› ‹subcocycle-avg-ereal v >
−∞› ‹

∧
x. v 1 x ≤ 0 ›] by auto

have w: AE x in M . (λn. w n x / n) −−−−→ subcocycle-lim w x
integrable M (subcocycle-lim w)
(λn. (

∫
+x. abs(w n x / n − subcocycle-lim w x) ∂M )) −−−−→ 0

proof −
show AE x in M . (λn. w n x / n) −−−−→ subcocycle-lim w x

unfolding w-def subcocycle-lim-def using subcocycle-lim-ereal-birkhoff [OF
int-u]

birkhoff-theorem-AE-nonergodic[OF int-u] by auto
show integrable M (subcocycle-lim w)

apply (subst integrable-cong-AE [where ?g = λx. real-cond-exp M Invariants
(u 1 ) x])

unfolding w-def subcocycle-lim-def
using subcocycle-lim-ereal-birkhoff [OF int-u] real-cond-exp-int(1 )[OF int-u]
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by auto
have (

∫
+x. abs(w n x / n − subcocycle-lim w x) ∂M )

= (
∫

+x. abs(birkhoff-sum (u 1 ) n x / n − real-cond-exp M Invariants (u
1 ) x) ∂M ) for n

apply (rule nn-integral-cong-AE)
unfolding w-def subcocycle-lim-def using subcocycle-lim-ereal-birkhoff [OF

int-u] by auto
then show (λn. (

∫
+x. abs(w n x / n − subcocycle-lim w x) ∂M )) −−−−→ 0

using birkhoff-theorem-L1-nonergodic[OF int-u] by auto
qed

{
fix x assume H : (λn. v n x / n) −−−−→ subcocycle-lim v x

(λn. w n x / n) −−−−→ subcocycle-lim w x
(λn. u n x / n) −−−−→ subcocycle-lim-ereal u x

then have (λn. v n x / n + w n x / n) −−−−→ subcocycle-lim v x + subcocycle-lim
w x

using tendsto-add[OF H (1 ) H (2 )] by simp
then have ∗: (λn. ereal(u n x / n)) −−−−→ ereal(subcocycle-lim v x + subco-

cycle-lim w x)
unfolding uvw by (simp add: add-divide-distrib)

then have subcocycle-lim-ereal u x = ereal(subcocycle-lim v x + subcocycle-lim
w x)

using H (3 ) LIMSEQ-unique by blast
then have ∗∗: subcocycle-lim u x = subcocycle-lim v x + subcocycle-lim w x

using subcocycle-lim-def by auto
have u n x / n − subcocycle-lim u x = v n x / n − subcocycle-lim v x + w n x

/ n − subcocycle-lim w x for n
apply (subst ∗∗, subst uvw) using add-divide-distrib add.commute by auto

then have (λn. u n x / n) −−−−→ subcocycle-lim u x
∧ subcocycle-lim u x = subcocycle-lim v x + subcocycle-lim w x
∧ (∀n. u n x / n − subcocycle-lim u x = v n x / n − subcocycle-lim v x

+ w n x / n − subcocycle-lim w x)
using ∗ ∗∗ by auto

}
then have AE : AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x

AE x in M . subcocycle-lim u x = subcocycle-lim v x + subcocycle-lim
w x

AE x in M . ∀n. u n x / n − subcocycle-lim u x = v n x / n −
subcocycle-lim v x + w n x / n − subcocycle-lim w x

using v(1 ) w(1 ) kingman-theorem-AE-nonergodic-ereal[OF assms(1 )] by auto
then show AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x by simp
show integrable M (subcocycle-lim u)

apply (subst integrable-cong-AE [where ?g = λx. subcocycle-lim v x + subco-
cycle-lim w x])

by (auto simp add: AE(2 ) v(2 ) w(2 ))

show (λn. (
∫

+x. abs(u n x / n − subcocycle-lim u x) ∂M )) −−−−→ 0
proof (rule tendsto-sandwich[where ?f = λ-. 0
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and ?h = λn. (
∫

+x. abs(v n x / n − subcocycle-lim v x) ∂M ) + (
∫

+x. abs(w
n x / n − subcocycle-lim w x) ∂M )], auto)

{
fix n
have (

∫
+x. abs(u n x / n − subcocycle-lim u x) ∂M )

= (
∫

+x. abs((v n x / n − subcocycle-lim v x) + (w n x / n − subcocycle-lim
w x)) ∂M )

apply (rule nn-integral-cong-AE) using AE(3 ) by auto
also have ... ≤ (

∫
+x. ennreal(abs(v n x / n − subcocycle-lim v x)) + abs(w

n x / n − subcocycle-lim w x) ∂M )
by (rule nn-integral-mono, auto simp add: ennreal-plus[symmetric] simp del:

ennreal-plus)
also have ... = (

∫
+x. abs(v n x / n − subcocycle-lim v x) ∂M ) + (

∫
+x.

abs(w n x / n − subcocycle-lim w x) ∂M )
by (rule nn-integral-add, auto, measurable)

finally have (
∫

+x. abs(u n x / n − subcocycle-lim u x) ∂M )
≤ (

∫
+x. abs(v n x / n − subcocycle-lim v x) ∂M ) + (

∫
+x. abs(w n x / n

− subcocycle-lim w x) ∂M )
using tendsto-sandwich by simp

}
then show eventually (λn. (

∫
+x. abs(u n x / n − subcocycle-lim u x) ∂M )

≤ (
∫

+x. abs(v n x / n − subcocycle-lim v x) ∂M ) + (
∫

+x. abs(w n x / n
− subcocycle-lim w x) ∂M )) sequentially

by auto

have (λn. (
∫

+x. abs(v n x / n − subcocycle-lim v x) ∂M ) + (
∫

+x. abs(w n x
/ n − subcocycle-lim w x) ∂M ))

−−−−→ 0 + 0
by (rule tendsto-add[OF v(3 ) w(3 )])

then show (λn. (
∫

+x. abs(v n x / n − subcocycle-lim v x) ∂M ) + (
∫

+x. abs(w
n x / n − subcocycle-lim w x) ∂M ))

−−−−→ 0
by simp

qed
qed

From the almost sure convergence, we can prove the basic properties of
the (real) subcocycle limit: relationship to the asymptotic average, behavior
under sum, multiplication, max, behavior for Birkhoff sums.
lemma subcocycle-lim-avg:

assumes subcocycle u subcocycle-avg-ereal u > −∞
shows (

∫
x. subcocycle-lim u x ∂M ) = subcocycle-avg u

proof −
have H : (λn. (

∫
+x. norm(u n x / n − subcocycle-lim u x) ∂M )) −−−−→ 0

integrable M (subcocycle-lim u)
using kingman-theorem-nonergodic[OF assms] by auto

have (λn. (
∫

x. u n x / n ∂M )) −−−−→ (
∫

x. subcocycle-lim u x ∂M )
apply (rule tendsto-L1-int[OF - H (2 ) H (1 )]) using subcocycle-integrable[OF

assms(1 )] by auto
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then have (λn. (
∫

x. u n x / n ∂M )) −−−−→ ereal (
∫

x. subcocycle-lim u x ∂M )
by auto

moreover have (λn. (
∫

x. u n x / n ∂M )) −−−−→ ereal (subcocycle-avg u)
using subcocycle-int-tendsto-avg[OF assms] by auto

ultimately show ?thesis using LIMSEQ-unique by blast
qed

lemma subcocycle-lim-real-ereal:
assumes subcocycle u subcocycle-avg-ereal u > −∞
shows AE x in M . subcocycle-lim-ereal u x = ereal(subcocycle-lim u x)

proof −
{

fix x assume H : (λn. u n x / n) −−−−→ subcocycle-lim-ereal u x
(λn. u n x / n) −−−−→ subcocycle-lim u x

then have (λn. u n x / n) −−−−→ ereal(subcocycle-lim u x) by auto
then have subcocycle-lim-ereal u x = ereal(subcocycle-lim u x)

using H (1 ) LIMSEQ-unique by blast
}
then show ?thesis
using kingman-theorem-AE-nonergodic-ereal[OF assms(1 )] kingman-theorem-nonergodic(1 )[OF

assms] by auto
qed

lemma subcocycle-lim-add:
assumes subcocycle u subcocycle v subcocycle-avg-ereal u > −∞ subcocycle-avg-ereal

v > −∞
shows subcocycle-avg-ereal (λn x. u n x + v n x) > − ∞

AE x in M . subcocycle-lim (λn x . u n x + v n x) x = subcocycle-lim u x +
subcocycle-lim v x
proof −

show ∗: subcocycle-avg-ereal (λn x. u n x + v n x) > − ∞
using subcocycle-avg-add[OF assms(1 ) assms(2 )] assms(3 ) assms(4 ) by auto

have AE x in M . (λn. (u n x + v n x)/n) −−−−→ subcocycle-lim (λn x. u n x +
v n x) x

by (rule kingman-theorem-nonergodic(1 )[OF subcocycle-add[OF assms(1 ) assms(2 )]
∗])

moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x
by (rule kingman-theorem-nonergodic[OF assms(1 ) assms(3 )])

moreover have AE x in M . (λn. v n x / n) −−−−→ subcocycle-lim v x
by (rule kingman-theorem-nonergodic[OF assms(2 ) assms(4 )])

moreover
{

fix x assume H : (λn. (u n x + v n x)/n) −−−−→ subcocycle-lim (λn x. u n x
+ v n x) x

(λn. u n x / n) −−−−→ subcocycle-lim u x
(λn. v n x / n) −−−−→ subcocycle-lim v x

have ∗: (u n x + v n x)/n = (u n x / n) + (v n x / n) for n
by (simp add: add-divide-distrib)

have (λn. (u n x + v n x)/n) −−−−→ subcocycle-lim u x + subcocycle-lim v x
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unfolding ∗ by (intro tendsto-intros H )
then have subcocycle-lim (λn x. u n x + v n x) x = subcocycle-lim u x +

subcocycle-lim v x
using H (1 ) by (simp add: LIMSEQ-unique)

}
ultimately show AE x in M . subcocycle-lim (λn x. u n x + v n x) x

= subcocycle-lim u x + subcocycle-lim v x
by auto

qed

lemma subcocycle-lim-cmult:
assumes subcocycle u subcocycle-avg-ereal u > −∞ c≥(0 ::real)
shows subcocycle-avg-ereal (λn x. c ∗ u n x) > − ∞

AE x in M . subcocycle-lim (λn x. c ∗ u n x) x = c ∗ subcocycle-lim u x
proof −

show ∗: subcocycle-avg-ereal (λn x. c ∗ u n x) > − ∞
using subcocycle-avg-cmult[OF assms(1 ) assms(3 )] assms(2 ) assms(3 ) by auto

have AE x in M . (λn. (c ∗ u n x)/n) −−−−→ subcocycle-lim (λn x . c ∗ u n x) x
by (rule kingman-theorem-nonergodic(1 )[OF subcocycle-cmult[OF assms(1 )

assms(3 )] ∗])
moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x

by (rule kingman-theorem-nonergodic(1 )[OF assms(1 ) assms(2 )])
moreover
{

fix x assume H : (λn. (c ∗ u n x)/n) −−−−→ subcocycle-lim (λn x. c ∗ u n x) x
(λn. u n x / n) −−−−→ subcocycle-lim u x

have (λn. c ∗ (u n x / n)) −−−−→ c ∗ subcocycle-lim u x
by (rule tendsto-mult[OF - H (2 )], auto)

then have subcocycle-lim (λn x. c ∗ u n x) x = c ∗ subcocycle-lim u x
using H (1 ) by (simp add: LIMSEQ-unique)

}
ultimately show AE x in M . subcocycle-lim (λn x. c ∗ u n x) x = c ∗ subcocy-

cle-lim u x by auto
qed

lemma subcocycle-lim-max:
assumes subcocycle u subcocycle v subcocycle-avg-ereal u > −∞ subcocycle-avg-ereal

v > −∞
shows subcocycle-avg-ereal (λn x. max (u n x) (v n x)) > − ∞

AE x in M . subcocycle-lim (λn x. max (u n x) (v n x)) x = max (subcocycle-lim
u x) (subcocycle-lim v x)
proof −

show ∗: subcocycle-avg-ereal (λn x. max (u n x) (v n x)) > − ∞
using subcocycle-avg-max(1 )[OF assms(1 ) assms(2 )] assms(3 ) assms(4 ) by

auto
have AE x in M . (λn. max (u n x) (v n x) / n) −−−−→ subcocycle-lim (λn x.

max (u n x) (v n x)) x
by (rule kingman-theorem-nonergodic[OF subcocycle-max[OF assms(1 ) assms(2 )]
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∗])
moreover have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x

by (rule kingman-theorem-nonergodic[OF assms(1 ) assms(3 )])
moreover have AE x in M . (λn. v n x / n) −−−−→ subcocycle-lim v x

by (rule kingman-theorem-nonergodic[OF assms(2 ) assms(4 )])
moreover
{

fix x assume H : (λn. max (u n x) (v n x) / n) −−−−→ subcocycle-lim (λn x.
max (u n x) (v n x)) x

(λn. u n x / n) −−−−→ subcocycle-lim u x
(λn. v n x / n) −−−−→ subcocycle-lim v x

have (λn. max (u n x / n) (v n x / n)) −−−−→ max (subcocycle-lim u x)
(subcocycle-lim v x)

apply (rule tendsto-max) using H by auto
moreover have max (u n x / n) (v n x / n) = max (u n x) (v n x) / n for n

by (simp add: max-divide-distrib-right)
ultimately have (λn. max (u n x) (v n x) / n) −−−−→ max (subcocycle-lim u

x) (subcocycle-lim v x)
by auto

then have subcocycle-lim (λn x. max (u n x) (v n x)) x = max (subcocycle-lim
u x) (subcocycle-lim v x)

using H (1 ) by (simp add: LIMSEQ-unique)
}
ultimately show AE x in M . subcocycle-lim (λn x. max (u n x) (v n x)) x

= max (subcocycle-lim u x) (subcocycle-lim v x) by auto
qed

lemma subcocycle-lim-birkhoff :
assumes integrable M u
shows subcocycle-avg-ereal (birkhoff-sum u) > −∞

AE x in M . subcocycle-lim (birkhoff-sum u) x = real-cond-exp M Invariants
u x
proof −

show ∗: subcocycle-avg-ereal (birkhoff-sum u) > −∞
using subcocycle-avg-birkhoff [OF assms] by auto

have AE x in M . (λn. birkhoff-sum u n x / n) −−−−→ real-cond-exp M Invariants
u x

by (rule birkhoff-theorem-AE-nonergodic[OF assms])
moreover have AE x in M . (λn. birkhoff-sum u n x / n) −−−−→ subcocycle-lim

(birkhoff-sum u) x
by (rule kingman-theorem-nonergodic(1 )[OF subcocycle-birkhoff [OF assms] ∗])

moreover
{
fix x assume H : (λn. birkhoff-sum u n x / n) −−−−→ real-cond-exp M Invariants

u x
(λn. birkhoff-sum u n x / n) −−−−→ subcocycle-lim (birkhoff-sum

u) x
then have subcocycle-lim (birkhoff-sum u) x = real-cond-exp M Invariants u x

using H (2 ) by (simp add: LIMSEQ-unique)
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}
ultimately show AE x in M . subcocycle-lim (birkhoff-sum u) x = real-cond-exp

M Invariants u x by auto
qed

9.5 Conditional expectations of subcocycles

In this subsection, we show that the conditional expectations of a subcocycle
(with respect to the invariant subalgebra) also converge, with the same limit
as the cocycle.
Note that the conditional expectation of a subcocycle u is still a subcocycle,
with the same average at each step so with the same asymptotic average.
Kingman theorem can be applied to it, and what we have to show is that the
limit of this subcocycle is the same as the limit of the original subcocycle.
When the asymptotic average is > −∞, both limits have the same integral,
and moreover the domination of the subcocycle by the Birkhoff sums of un
for fixed n (which converge to the conditional expectation of un) implies that
one limit is smaller than the other. Hence, they coincide almost everywhere.
The case when the asymptotic average is −∞ is deduced from the previous
one by truncation.

First, we prove the result when the asymptotic average with finite.
theorem kingman-theorem-nonergodic-invariant:

assumes subcocycle u subcocycle-avg-ereal u > −∞
shows AE x in M . (λn. real-cond-exp M Invariants (u n) x / n) −−−−→ subco-

cycle-lim u x
(λn. (

∫
+x. abs(real-cond-exp M Invariants (u n) x / n − subcocycle-lim u

x) ∂M )) −−−−→ 0
proof −
have int [simp]: integrable M (u n) for n using subcocycle-integrable[OF assms(1 )]

by auto
then have int2 : integrable M (real-cond-exp M Invariants (u n)) for n using

real-cond-exp-int by auto
{

fix n m
have u (n+m) x ≤ u n x + u m ((T^^n) x) for x

using subcocycle-ineq[OF assms(1 )] by auto
have AE x in M . real-cond-exp M Invariants (u (n+m)) x ≤ real-cond-exp M

Invariants (λx. u n x + u m ((T^^n) x)) x
apply (rule real-cond-exp-mono)
using subcocycle-ineq[OF assms(1 )] apply auto

by (rule Bochner-Integration.integrable-add, auto simp add: Tn-integral-preserving)
moreover have AE x in M . real-cond-exp M Invariants (λx. u n x + u m

((T^^n) x)) x
= real-cond-exp M Invariants (u n) x + real-cond-exp M Invariants

(λx. u m ((T^^n) x)) x
by (rule real-cond-exp-add, auto simp add: Tn-integral-preserving)
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moreover have AE x in M . real-cond-exp M Invariants (u m ◦ ((T^^n))) x =
real-cond-exp M Invariants (u m) x

by (rule Invariants-of-foTn, simp)
moreover have AE x in M . real-cond-exp M Invariants (u m) x = real-cond-exp

M Invariants (u m) ((T^^n) x)
using Invariants-func-is-invariant-n[symmetric, of real-cond-exp M Invariants

(u m)] by auto
ultimately have AE x in M . real-cond-exp M Invariants (u (n+m)) x
≤ real-cond-exp M Invariants (u n) x + real-cond-exp M Invariants (u m)

((T^^n) x)
unfolding o-def by auto

}
with subcocycle-AE [OF this int2 ]
obtain w where w: subcocycle w AE x in M . ∀n. w n x = real-cond-exp M

Invariants (u n) x
by blast

have [measurable]: integrable M (w n) for n using subcocycle-integrable[OF w(1 )]
by simp

{
fix n::nat
have (

∫
x. w n x / n ∂M ) = (

∫
x. real-cond-exp M Invariants (u n) x / n ∂M )

using w(2 ) by (intro integral-cong-AE) (auto simp: eventually-mono)
also have ... = (

∫
x. real-cond-exp M Invariants (u n) x ∂M ) / n

by (rule integral-divide-zero)
also have ... = (

∫
x. u n x ∂M ) / n

by (simp add: divide-simps real-cond-exp-int(2 )[OF int[of n]])
also have ... = (

∫
x. u n x / n ∂M )

by (rule integral-divide-zero[symmetric])
finally have ereal (

∫
x. w n x / n ∂M ) = ereal (

∫
x. u n x / n ∂M ) by simp

} note ∗ = this
have (λn. (

∫
x. u n x / n ∂M )) −−−−→ subcocycle-avg-ereal w

apply (rule Lim-transform-eventually[OF subcocycle-int-tendsto-avg-ereal[OF
w(1 )]])

using ∗ by auto
then have subcocycle-avg-ereal u = subcocycle-avg-ereal w

using subcocycle-int-tendsto-avg-ereal[OF assms(1 )] LIMSEQ-unique by auto
then have subcocycle-avg-ereal w > −∞ using assms(2 ) by simp
have subcocycle-avg u = subcocycle-avg w

using ‹subcocycle-avg-ereal u = subcocycle-avg-ereal w› unfolding subcocy-
cle-avg-def by simp

have AE x in M . N > 0 −→ subcocycle-lim-ereal u x ≤ real-cond-exp M Invariants
(λx. u N x / N ) x for N

by (cases N = 0 , auto simp add: subcocycle-lim-ereal-atmost-uN-invariants[OF
assms(1 )])

then have AE x in M . ∀N . N > 0 −→ subcocycle-lim-ereal u x ≤ real-cond-exp
M Invariants (λx. u N x / N ) x

by (simp add: AE-all-countable)
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moreover have AE x in M . subcocycle-lim-ereal u x = ereal(subcocycle-lim u x)
by (rule subcocycle-lim-real-ereal[OF assms])

moreover have AE x in M . (λN . u N x / N ) −−−−→ subcocycle-lim u x
using kingman-theorem-nonergodic[OF assms] by simp

moreover have AE x in M . (λN . w N x / N ) −−−−→ subcocycle-lim w x
using kingman-theorem-nonergodic[OF w(1 ) ‹subcocycle-avg-ereal w > −∞› ]

by simp
moreover have AE x in M . ∀n. w n x = real-cond-exp M Invariants (u n) x

using w(2 ) by simp
moreover have AE x in M . ∀n. real-cond-exp M Invariants (u n) x / n =

real-cond-exp M Invariants (λx. u n x / n) x
apply (subst AE-all-countable, intro allI ) using AE-symmetric[OF real-cond-exp-cdiv[OF

int]] by auto
moreover
{

fix x assume x: ∀N . N > 0 −→ subcocycle-lim-ereal u x ≤ real-cond-exp M
Invariants (λx. u N x / N ) x

subcocycle-lim-ereal u x = ereal(subcocycle-lim u x)
(λN . u N x / N ) −−−−→ subcocycle-lim u x
(λN . w N x / N ) −−−−→ subcocycle-lim w x
∀n. w n x = real-cond-exp M Invariants (u n) x
∀n. real-cond-exp M Invariants (u n) x / n = real-cond-exp M

Invariants (λx. u n x / n) x
{

fix N ::nat assume N≥1
have subcocycle-lim u x ≤ real-cond-exp M Invariants (λx. u N x / N ) x

using x(1 ) x(2 ) ‹N≥1 › by auto
also have ... = real-cond-exp M Invariants (u N ) x / N

using x(6 ) by simp
also have ... = w N x / N

using x(5 ) by simp
finally have subcocycle-lim u x ≤ w N x / N

by simp
} note ∗ = this
have subcocycle-lim u x ≤ subcocycle-lim w x

apply (rule LIMSEQ-le-const[OF x(4 )]) using ∗ by auto
}
ultimately have ∗: AE x in M . subcocycle-lim u x ≤ subcocycle-lim w x

by auto
have ∗∗: (

∫
x. subcocycle-lim u x ∂M ) = (

∫
x. subcocycle-lim w x ∂M )

using subcocycle-lim-avg[OF assms] subcocycle-lim-avg[OF w(1 ) ‹subcocycle-avg-ereal
w > −∞›]

‹subcocycle-avg u = subcocycle-avg w› by simp
have AE-eq: AE x in M . subcocycle-lim u x = subcocycle-lim w x

by (rule integral-ineq-eq-0-then-AE [OF ∗ kingman-theorem-nonergodic(2 )[OF
assms]

kingman-theorem-nonergodic(2 )[OF w(1 ) ‹subcocycle-avg-ereal w > −∞›]
∗∗])

moreover have AE x in M . (λn. w n x / n) −−−−→ subcocycle-lim w x

255



by (rule kingman-theorem-nonergodic(1 )[OF w(1 ) ‹subcocycle-avg-ereal w >
−∞›])

moreover have AE x in M . ∀n. w n x = real-cond-exp M Invariants (u n) x
using w(2 ) by auto

moreover
{

fix x assume H : subcocycle-lim u x = subcocycle-lim w x
(λn. w n x / n) −−−−→ subcocycle-lim w x
∀n. w n x = real-cond-exp M Invariants (u n) x

then have (λn. real-cond-exp M Invariants (u n) x / n) −−−−→ subcocycle-lim
u x

by auto
}
ultimately show AE x in M . (λn. real-cond-exp M Invariants (u n) x / n)
−−−−→ subcocycle-lim u x

by auto

{
fix n::nat
have AE x in M . subcocycle-lim u x = subcocycle-lim w x

using AE-eq by simp
moreover have AE x in M . w n x = real-cond-exp M Invariants (u n) x

using w(2 ) by auto
moreover
{

fix x assume H : subcocycle-lim u x = subcocycle-lim w x
w n x = real-cond-exp M Invariants (u n) x

then have ennreal |real-cond-exp M Invariants (u n) x / real n − subcocycle-lim
u x|

= ennreal |w n x / real n − subcocycle-lim w x|
by auto

}
ultimately have AE x in M . ennreal |real-cond-exp M Invariants (u n) x /

real n − subcocycle-lim u x|
= ennreal |w n x / real n − subcocycle-lim w x|

by auto
then have (

∫
+ x. ennreal |real-cond-exp M Invariants (u n) x / real n −

subcocycle-lim u x| ∂M )
= (

∫
+ x. ennreal |w n x / real n − subcocycle-lim w x| ∂M )

by (rule nn-integral-cong-AE)
}
moreover have (λn. (

∫
+ x. |w n x / real n − subcocycle-lim w x| ∂M )) −−−−→

0
by (rule kingman-theorem-nonergodic(3 )[OF w(1 ) ‹subcocycle-avg-ereal w >

−∞›])
ultimately show (λn. (

∫
+ x. |real-cond-exp M Invariants (u n) x / real n −

subcocycle-lim u x| ∂M )) −−−−→ 0
by auto

qed
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Then, we extend it by truncation to the general case, i.e., to the asymptotic
limit in extended reals.
theorem kingman-theorem-AE-nonergodic-invariant-ereal:

assumes subcocycle u
shows AE x in M . (λn. real-cond-exp M Invariants (u n) x / n) −−−−→ subco-

cycle-lim-ereal u x
proof −

have [simp]: subcocycle u using assms by simp
have int [simp]: integrable M (u n) for n using subcocycle-integrable[OF assms(1 )]

by auto

have limsup-ineq-K : AE x in M .
limsup (λn. real-cond-exp M Invariants (u n) x / n) ≤ max (subcocycle-lim-ereal

u x) (−real K ) for K ::nat
proof −

define v where v = (λ (n::nat) (x:: ′a). (−n ∗ real K ))
have [simp]: subcocycle v

unfolding v-def subcocycle-def by (auto simp add: algebra-simps)
have ereal (

∫
x. v n x / n ∂M ) = ereal(− real K ∗ measure M (space M )) if

n≥1 for n
unfolding v-def using that by simp

then have (λn. ereal (
∫

x. v n x / n ∂M )) −−−−→ ereal(− real K ∗ measure
M (space M ))

using lim-explicit by force
moreover have (λn. ereal (

∫
x. v n x / n ∂M )) −−−−→ subcocycle-avg-ereal v

using subcocycle-int-tendsto-avg-ereal[OF ‹subcocycle v›] by auto
ultimately have subcocycle-avg-ereal v = − real K ∗ measure M (space M )

using LIMSEQ-unique by blast
then have subcocycle-avg-ereal v > −∞

by auto

{
fix x assume H : (λn. v n x / n) −−−−→ subcocycle-lim-ereal v x
have ereal(v n x / n) = −real K if n≥1 for n

unfolding v-def using that by auto
then have (λn. ereal(v n x / n)) −−−−→ − real K

using lim-explicit by force
then have subcocycle-lim-ereal v x = −real K

using H LIMSEQ-unique by blast
}
then have AE x in M . subcocycle-lim-ereal v x = −real K

using kingman-theorem-AE-nonergodic-ereal[OF ‹subcocycle v›] by auto

define w where w = (λn x. max (u n x) (v n x))
have [simp]: subcocycle w

unfolding w-def by (rule subcocycle-max, auto)
have subcocycle-avg-ereal w ≥ subcocycle-avg-ereal v

unfolding w-def using subcocycle-avg-ereal-max by auto
then have subcocycle-avg-ereal w > −∞
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using ‹subcocycle-avg-ereal v > −∞› by auto

have ∗: AE x in M . real-cond-exp M Invariants (u n) x ≤ real-cond-exp M
Invariants (w n) x for n

apply (rule real-cond-exp-mono)
using subcocycle-integrable[OF assms, of n] subcocycle-integrable[OF ‹subco-

cycle w›, of n] apply auto
unfolding w-def by auto

have AE x in M . ∀n. real-cond-exp M Invariants (u n) x ≤ real-cond-exp M
Invariants (w n) x

apply (subst AE-all-countable) using ∗ by auto
moreover have AE x in M . (λn. real-cond-exp M Invariants (w n) x / n)

−−−−→ subcocycle-lim w x
apply (rule kingman-theorem-nonergodic-invariant(1 ))
using ‹subcocycle-avg-ereal w > −∞› by auto

moreover have AE x in M . subcocycle-lim-ereal w x = max (subcocycle-lim-ereal
u x) (subcocycle-lim-ereal v x)

unfolding w-def using subcocycle-lim-ereal-max by auto
moreover
{

fix x assume H : (λn. real-cond-exp M Invariants (w n) x / n) −−−−→
subcocycle-lim w x

subcocycle-lim-ereal w x = max (subcocycle-lim-ereal u x)
(subcocycle-lim-ereal v x)

subcocycle-lim-ereal v x = − real K
∀n. real-cond-exp M Invariants (u n) x ≤ real-cond-exp M

Invariants (w n) x
have subcocycle-lim-ereal w x > −∞

using H (2 ) H (3 )
by auto (metis MInfty-neq-ereal(1 ) ereal-infty-less-eq2 (2 ) max.cobounded2 )

then have subcocycle-lim-ereal w x = ereal(subcocycle-lim w x)
unfolding subcocycle-lim-def using subcocycle-lim-ereal-not-PInf [of w x ]

ereal-real by force
moreover have (λn. real-cond-exp M Invariants (w n) x / n) −−−−→

ereal(subcocycle-lim w x) using H (1 ) by auto
ultimately have (λn. real-cond-exp M Invariants (w n) x / n) −−−−→

subcocycle-lim-ereal w x by auto
then have ∗: limsup (λn. real-cond-exp M Invariants (w n) x / n) = subco-

cycle-lim-ereal w x
using tendsto-iff-Liminf-eq-Limsup trivial-limit-at-top-linorder by blast

have ereal(real-cond-exp M Invariants (u n) x / n) ≤ real-cond-exp M Invari-
ants (w n) x / n for n

using H (4 ) by (auto simp add: divide-simps)
then have eventually (λn. ereal(real-cond-exp M Invariants (u n) x / n) ≤

real-cond-exp M Invariants (w n) x / n) sequentially
by auto

then have limsup (λn. real-cond-exp M Invariants (u n) x / n) ≤ limsup
(λn. real-cond-exp M Invariants (w n) x / n)
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using Limsup-mono[of - - sequentially] by force
then have limsup (λn. real-cond-exp M Invariants (u n) x / n) ≤ max

(subcocycle-lim-ereal u x) (−real K )
using ∗ H (2 ) H (3 ) by auto

}
ultimately show ?thesis using ‹AE x in M . subcocycle-lim-ereal v x = −real

K › by auto
qed
have AE x in M . ∀K ::nat.

limsup (λn. real-cond-exp M Invariants (u n) x / n) ≤ max (subcocycle-lim-ereal
u x) (−real K )

apply (subst AE-all-countable) using limsup-ineq-K by auto

moreover have AE x in M . liminf (λn. real-cond-exp M Invariants (u n) x /
n) ≥ subcocycle-lim-ereal u x

proof −
have AE x in M . N > 0 −→ subcocycle-lim-ereal u x ≤ real-cond-exp M

Invariants (λx. u N x / N ) x for N
by (cases N = 0 , auto simp add: subcocycle-lim-ereal-atmost-uN-invariants[OF

assms(1 )])
then have AE x in M . ∀N . N > 0 −→ subcocycle-lim-ereal u x ≤ real-cond-exp

M Invariants (λx. u N x / N ) x
by (simp add: AE-all-countable)

moreover have AE x in M . ∀n. real-cond-exp M Invariants (λx. u n x / n) x
= real-cond-exp M Invariants (u n) x / n

apply (subst AE-all-countable, intro allI ) using real-cond-exp-cdiv by auto
moreover
{

fix x assume x: ∀N . N > 0 −→ subcocycle-lim-ereal u x ≤ real-cond-exp M
Invariants (λx. u N x / N ) x

∀n. real-cond-exp M Invariants (λx. u n x / n) x = real-cond-exp
M Invariants (u n) x / n

then have ∗: subcocycle-lim-ereal u x ≤ real-cond-exp M Invariants (u n) x
/ n if n ≥ 1 for n

using that by auto
have subcocycle-lim-ereal u x ≤ liminf (λn. real-cond-exp M Invariants (u n)

x / n)
apply (subst liminf-bounded-iff ) using ∗ less-le-trans by blast

}
ultimately show ?thesis by auto

qed

moreover
{

fix x assume H : ∀K ::nat. limsup (λn. real-cond-exp M Invariants (u n) x / n)
≤ max (subcocycle-lim-ereal u x) (−real K )

liminf (λn. real-cond-exp M Invariants (u n) x / n) ≥ subcocy-
cle-lim-ereal u x

have (λK ::nat. max (subcocycle-lim-ereal u x) (−real K )) −−−−→ subcocy-
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cle-lim-ereal u x
by (rule ereal-truncation-bottom)

with LIMSEQ-le-const[OF this]
have ∗: limsup (λn. real-cond-exp M Invariants (u n) x / n) ≤ subcocy-

cle-lim-ereal u x
using H (1 ) by auto

have (λn. real-cond-exp M Invariants (u n) x / n) −−−−→ subcocycle-lim-ereal
u x

apply (subst tendsto-iff-Liminf-eq-Limsup[OF trivial-limit-at-top-linorder ])
using H (2 ) ∗ Liminf-le-Limsup[OF trivial-limit-at-top-linorder , of (λn.

real-cond-exp M Invariants (u n) x / n)]
by auto

}
ultimately show ?thesis by auto

qed

end

9.6 Subcocycles in the ergodic case

In this subsection, we describe how all the previous results simplify in the
ergodic case. Indeed, subcocycle limits are almost surely constant, given by
the asymptotic average.
context ergodic-pmpt begin

lemma subcocycle-ergodic-lim-avg:
assumes subcocycle u
shows AE x in M . subcocycle-lim-ereal u x = subcocycle-avg-ereal u

AE x in M . subcocycle-lim u x = subcocycle-avg u
proof −

have I : integrable M (u N ) for N using subcocycle-integrable[OF assms]by auto
obtain c::ereal where c: AE x in M . subcocycle-lim-ereal u x = c

using Invariant-func-is-AE-constant[OF subcocycle-lim-meas-Inv(1 )] by blast
have c = subcocycle-avg-ereal u
proof (cases subcocycle-avg-ereal u = − ∞)

case True
{

fix N assume N > (0 ::nat)
have AE x in M . real-cond-exp M Invariants (λx. u N x / N ) x = (

∫
x. u N

x / N ∂M )
apply (rule Invariants-cond-exp-is-integral) using I by auto
moreover have AE x in M . subcocycle-lim-ereal u x ≤ real-cond-exp M

Invariants (λx. u N x / N ) x
using subcocycle-lim-ereal-atmost-uN-invariants[OF assms ‹N>0 ›] by simp

ultimately have AE x in M . c ≤ (
∫

x. u N x / N ∂M )
using c by force

then have c ≤ (
∫

x. u N x / N ∂M ) by auto
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}
then have ∀N≥1 . c ≤ (

∫
x. u N x / N ∂M ) by auto

with Lim-bounded2 [OF subcocycle-int-tendsto-avg-ereal[OF assms] this]
have c ≤ subcocycle-avg-ereal u by simp
then show ?thesis using True by auto

next
case False
then have fin: subcocycle-avg-ereal u > − ∞ by simp
obtain cr ::real where cr : AE x in M . subcocycle-lim u x = cr
using Invariant-func-is-AE-constant[OF subcocycle-lim-meas-Inv(2 )] by blast

have AE x in M . c = ereal cr using c cr subcocycle-lim-real-ereal[OF assms
fin] by force

then have c = ereal cr by auto
have subcocycle-avg u = (

∫
x. subcocycle-lim u x ∂M )

using subcocycle-lim-avg[OF assms fin] by auto
also have ... = (

∫
x. cr ∂M )

apply (rule integral-cong-AE) using cr by auto
also have ... = cr

by (simp add: prob-space.prob-space prob-space-axioms)
finally have ereal(subcocycle-avg u) = ereal cr by simp
then show ?thesis using ‹ c = ereal cr › subcocycle-avg-real-ereal[OF fin] by

auto
qed
then show AE x in M . subcocycle-lim-ereal u x = subcocycle-avg-ereal u using

c by auto
then show AE x in M . subcocycle-lim u x = subcocycle-avg u

unfolding subcocycle-lim-def subcocycle-avg-def by auto
qed

theorem kingman-theorem-AE-ereal:
assumes subcocycle u
shows AE x in M . (λn. u n x / n) −−−−→ subcocycle-avg-ereal u

using kingman-theorem-AE-nonergodic-ereal[OF assms] subcocycle-ergodic-lim-avg(1 )[OF
assms] by auto

theorem kingman-theorem:
assumes subcocycle u subcocycle-avg-ereal u > −∞
shows AE x in M . (λn. u n x / n) −−−−→ subcocycle-avg u

(λn. (
∫

+x. abs(u n x / n − subcocycle-avg u) ∂M )) −−−−→ 0
proof −

have ∗: AE x in M . subcocycle-lim u x = subcocycle-avg u
using subcocycle-ergodic-lim-avg(2 )[OF assms(1 )] by auto

then show AE x in M . (λn. u n x / n) −−−−→ subcocycle-avg u
using kingman-theorem-nonergodic(1 )[OF assms] by auto

have (
∫

+x. abs(u n x / n − subcocycle-avg u) ∂M ) = (
∫

+x. abs(u n x / n −
subcocycle-lim u x) ∂M ) for n

apply (rule nn-integral-cong-AE) using ∗ by auto
then show (λn. (

∫
+x. abs(u n x / n − subcocycle-avg u) ∂M )) −−−−→ 0

using kingman-theorem-nonergodic(3 )[OF assms] by auto
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qed

end

9.7 Subocycles for invertible maps

If T is invertible, then a subcocycle un for T gives rise to another subcocycle
for T−1. Intuitively, if u is subadditive along the time interval [0, n), then
it should also be subadditive along the time interval [−n, 0). This is true,
and formalized with the following statement.
proposition (in mpt) subcocycle-u-Tinv:

assumes subcocycle u
invertible-qmpt

shows mpt.subcocycle M Tinv (λn x. u n (((Tinv)^^n) x))
proof −

have bij: bij T using ‹invertible-qmpt› unfolding invertible-qmpt-def by auto
have int: integrable M (u n) for n

using subcocycle-integrable[OF assms(1 )] by simp
interpret I : mpt M Tinv using Tinv-mpt[OF assms(2 )] by simp
show I .subcocycle (λn x. u n (((Tinv)^^n) x)) unfolding I .subcocycle-def
proof(auto)

show integrable M (λx. u n ((Tinv ^^ n) x)) for n
using I .Tn-integral-preserving(1 )[OF int[of n]] by simp

fix n m::nat and x:: ′a
define y where y = (Tinv^^(m+n)) x
have (T^^m) y = (T^^m) ((Tinv^^m) ((Tinv^^n) x)) unfolding y-def by

(simp add: funpow-add)
then have ∗: (T^^m) y = (Tinv^^n) x

using fn-o-inv-fn-is-id[OF bij, of m] by (metis Tinv-def comp-def )
have u (n + m) ((Tinv ^^ (n + m)) x) = u (m+n) y

unfolding y-def by (simp add: add.commute[of n m])
also have ... ≤ u m y + u n ((T^^m) y)

using subcocycle-ineq[OF ‹subcocycle u›, of m n y] by simp
also have ... = u m ((Tinv^^(m+n)) x) + u n ((Tinv^^n) x)

using ∗ y-def by auto
finally show u (n + m) ((Tinv ^^ (n + m)) x) ≤ u n ((Tinv ^^ n) x) + u m

((Tinv ^^ m) ((Tinv ^^ n) x))
by (simp add: funpow-add)

qed
qed

The subcocycle averages for T and T−1 coincide.
proposition (in mpt) subcocycle-avg-ereal-Tinv:

assumes subcocycle u
invertible-qmpt

shows mpt.subcocycle-avg-ereal M (λn x. u n (((Tinv)^^n) x)) = subcocycle-avg-ereal
u
proof −
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have bij: bij T using ‹invertible-qmpt› unfolding invertible-qmpt-def by auto
have int: integrable M (u n) for n

using subcocycle-integrable[OF assms(1 )] by simp
interpret I : mpt M Tinv using Tinv-mpt[OF assms(2 )] by simp
have (λn. (

∫
x. u n (((Tinv)^^n) x) / n ∂M )) −−−−→ I .subcocycle-avg-ereal (λn

x. u n (((Tinv)^^n) x))
using I .subcocycle-int-tendsto-avg-ereal[OF subcocycle-u-Tinv[OF assms]] by

simp
moreover have (

∫
x. u n x / n ∂M ) = ereal (

∫
x. u n (((Tinv)^^n) x) / n ∂M )

for n
apply (simp)
apply (rule disjI2 )
apply (rule I .Tn-integral-preserving(2 )[symmetric])
apply (simp add: int)
done

ultimately have (λn. (
∫

x. u n x / n ∂M )) −−−−→ I .subcocycle-avg-ereal (λn
x. u n (((Tinv)^^n) x))

by presburger
moreover have (λn. (

∫
x. u n x / n ∂M )) −−−−→ subcocycle-avg-ereal u

using subcocycle-int-tendsto-avg-ereal[OF ‹subcocycle u›] by simp
ultimately show ?thesis

using LIMSEQ-unique by simp
qed

The asymptotic limit of the subcocycle is the same for T and T−1. This is
clear in the ergodic case, and follows from the ergodic decomposition in the
general case (on a standard probability space). We give a direct proof below
(on a general probability space) using the fact that the asymptotic limit
is the same for the subcocycle conditioned by the invariant sigma-algebra,
which is clearly the same for T and T−1 as it is constant along orbits.
proposition (in fmpt) subcocycle-lim-ereal-Tinv:

assumes subcocycle u
invertible-qmpt

shows AE x in M . fmpt.subcocycle-lim-ereal M Tinv (λn x. u n (((Tinv)^^n)
x)) x = subcocycle-lim-ereal u x
proof −

have bij: bij T using ‹invertible-qmpt› unfolding invertible-qmpt-def by auto
have int: integrable M (u n) for n

using subcocycle-integrable[OF assms(1 )] by simp
interpret I : fmpt M Tinv using Tinv-fmpt[OF assms(2 )] by simp
have ∗: AE x in M . real-cond-exp M I .Invariants (λ x. u n (((Tinv)^^n) x)) x

= real-cond-exp M I .Invariants (u n) x for n
using I .Invariants-of-foTn int unfolding o-def by simp

then have AE x in M . ∀n. real-cond-exp M I .Invariants (λ x. u n (((Tinv)^^n)
x)) x

= real-cond-exp M I .Invariants (u n) x
by (simp add: AE-all-countable)

moreover have AE x in M . (λn. real-cond-exp M Invariants (u n) x / n) −−−−→
subcocycle-lim-ereal u x
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using kingman-theorem-AE-nonergodic-invariant-ereal[OF ‹subcocycle u›] by
simp
moreover have AE x in M . (λn. real-cond-exp M I .Invariants (λ x. u n (((Tinv)^^n)

x)) x / n)
−−−−→ I .subcocycle-lim-ereal (λ n x. u n (((Tinv)^^n) x)) x

using I .kingman-theorem-AE-nonergodic-invariant-ereal[OF subcocycle-u-Tinv[OF
assms]] by simp

moreover
{

fix x assume H : ∀n. real-cond-exp M I .Invariants (λ x. u n (((Tinv)^^n) x))
x

= real-cond-exp M I .Invariants (u n) x
(λn. real-cond-exp M Invariants (u n) x / n) −−−−→ subcocy-

cle-lim-ereal u x
(λn. real-cond-exp M I .Invariants (λ x. u n (((Tinv)^^n) x)) x /

n)
−−−−→ I .subcocycle-lim-ereal (λ n x. u n (((Tinv)^^n) x)) x

have ereal(real-cond-exp M Invariants (u n) x / n)
= ereal(real-cond-exp M I .Invariants (λ x. u n (((Tinv)^^n) x)) x / n)

for n
using H (1 ) Invariants-Tinv[OF ‹invertible-qmpt›] by auto

then have (λn. real-cond-exp M Invariants (u n) x / n)
−−−−→ I .subcocycle-lim-ereal (λ n x. u n (((Tinv)^^n) x)) x

using H (3 ) by presburger
then have I .subcocycle-lim-ereal (λ n x . u n (((Tinv)^^n) x)) x = subcocy-

cle-lim-ereal u x
using H (2 ) LIMSEQ-unique by auto

}
ultimately show ?thesis by auto

qed

proposition (in fmpt) subcocycle-lim-Tinv:
assumes subcocycle u

invertible-qmpt
shows AE x in M . fmpt.subcocycle-lim M Tinv (λn x. u n (((Tinv)^^n) x)) x =

subcocycle-lim u x
proof −

interpret I : fmpt M Tinv using Tinv-fmpt[OF assms(2 )] by simp
show ?thesis

unfolding subcocycle-lim-def I .subcocycle-lim-def
using subcocycle-lim-ereal-Tinv[OF assms] by auto

qed

end

10 Gouezel-Karlsson
theory Gouezel-Karlsson

imports Asymptotic-Density Kingman
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begin

This section is devoted to the proof of the main ergodic result of the article
"Subadditive and multiplicative ergodic theorems" by Gouezel and Karls-
son [GK15]. It is a version of Kingman theorem ensuring that, for subad-
ditive cocycles, there are almost surely many times n where the cocycle is
nearly additive at all times between 0 and n.
This theorem is then used in this article to construct horofunctions char-
acterizing the behavior at infinity of compositions of semi-contractions. This
requires too many further notions to be implemented in current Isabelle/HOL,
but the main ergodic result is completely proved below, in Theorem Gouezel_Karlsson,
following the arguments in the paper (but in a slightly more general setting
here as we are not making any ergodicity assumption).
To simplify the exposition, the theorem is proved assuming that the limit of
the subcocycle vanishes almost everywhere, in the locale Gouezel_Karlsson_Kingman.
The final result is proved by an easy reduction to this case.
The main steps of the proof are as follows:

• assume first that the map is invertible, and consider the inverse map
and the corresponding inverse subcocycle. With combinatorial argu-
ments that only work for this inverse subcocycle, we control the density
of bad times given some allowed error d > 0, in a precise quantitative
way, in Lemmas upper_density_all_times and upper_density_large_k.
We put these estimates together in Lemma upper_density_delta.

• These estimates are then transfered to the original time direction and
the original subcocycle in Lemma upper_density_good_direction_invertible.
The fact that we have quantitative estimates in terms of asymptotic
densities is central here, just having some infiniteness statement would
not be enough.

• The invertibility assumption is removed in Lemma upper_density_good_direction
by using the result in the natural extension.

• Finally, the main result is deduced in Lemma infinite_AE (still as-
suming that the asymptotic limit vanishes almost everywhere), and in
full generality in Theorem Gouezel_Karlsson_Kingman.

lemma upper-density-eventually-measure:
fixes a::real
assumes [measurable]:

∧
n. {x ∈ space M . P x n} ∈ sets M

and emeasure M {x ∈ space M . upper-asymptotic-density {n. P x n} < a} > b
shows ∃N . emeasure M {x ∈ space M . ∀n ≥ N . card ({n. P x n} ∩ {..<n}) <

a ∗ n} > b
proof −

define G where G = {x ∈ space M . upper-asymptotic-density {n. P x n} < a}
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define H where H = (λN . {x ∈ space M . ∀n ≥ N . card ({n. P x n} ∩ {..<n})
< a ∗ n})

have [measurable]: G ∈ sets M
∧

N . H N ∈ sets M unfolding G-def H-def by
auto

have G ⊆ (
⋃

N . H N )
proof

fix x assume x ∈ G
then have x ∈ space M unfolding G-def by simp
have eventually (λn. card({n. P x n} ∩ {..<n}) < a ∗ n) sequentially

using ‹x ∈ G› unfolding G-def using upper-asymptotic-densityD by auto
then obtain N where

∧
n. n ≥ N =⇒ card({n. P x n} ∩ {..<n}) < a ∗ n

using eventually-sequentially by auto
then have x ∈ H N unfolding H-def using ‹x ∈ space M › by auto
then show x ∈ (

⋃
N . H N ) by blast

qed
have b < emeasure M G using assms(2 ) unfolding G-def by simp
also have ... ≤ emeasure M (

⋃
N . H N )

apply (rule emeasure-mono) using ‹G ⊆ (
⋃

N . H N )› by auto
finally have emeasure M (

⋃
N . H N ) > b by simp

moreover have (λN . emeasure M (H N )) −−−−→ emeasure M (
⋃

N . H N )
apply (rule Lim-emeasure-incseq) unfolding H-def incseq-def by auto

ultimately have eventually (λN . emeasure M (H N ) > b) sequentially
by (simp add: order-tendsto-iff )

then obtain N where emeasure M (H N ) > b
using eventually-False-sequentially eventually-mono by blast

then show ?thesis unfolding H-def by blast
qed

locale Gouezel-Karlsson-Kingman = pmpt +
fixes u::nat ⇒ ′a ⇒ real
assumes subu: subcocycle u

and subu-fin: subcocycle-avg-ereal u > −∞
and subu-0 : AE x in M . subcocycle-lim u x = 0

begin

lemma int-u [measurable]:
integrable M (u n)

using subu unfolding subcocycle-def by auto

Next lemma is Lemma 2.1 in [GK15].
lemma upper-density-all-times:

assumes d > (0 ::real)
shows ∃ c> (0 ::real).

emeasure M {x ∈ space M . upper-asymptotic-density {n. ∃ l ∈ {1 ..n}. u n
x − u (n−l) x ≤ − c ∗ l} < d} > 1 − d
proof −

define f where f = (λx. abs (u 1 x))
have [measurable]: f ∈ borel-measurable M unfolding f-def by auto
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define G where G = {x ∈ space M . (λn. birkhoff-sum f n x / n) −−−−→
real-cond-exp M Invariants f x

∧ (λn. u n x / n) −−−−→ 0}
have [measurable]: G ∈ sets M unfolding G-def by auto
have AE x in M . (λn. birkhoff-sum f n x / n) −−−−→ real-cond-exp M Invariants

f x
apply (rule birkhoff-theorem-AE-nonergodic) using subu unfolding f-def sub-

cocycle-def by auto
moreover have AE x in M . (λn. u n x / n) −−−−→ 0

using subu-0 kingman-theorem-nonergodic(1 )[OF subu subu-fin] by auto
ultimately have AE x in M . x ∈ G unfolding G-def by auto
then have emeasure M G = 1 by (simp add: emeasure-eq-1-AE)

define V where V = (λc x. {n. ∃ l ∈ {1 ..n}. u n x − u (n−l) x ≤ − c ∗ l})
define Good where Good = (λc. {x ∈ G. upper-asymptotic-density (V c x) <

d})
have [measurable]: Good c ∈ sets M for c unfolding Good-def V-def by auto

have I : upper-asymptotic-density (V c x) ≤ real-cond-exp M Invariants f x / c
if c>0 x ∈ G for c x

proof −
have [simp]: c>0 c 6= 0 c ≥ 0 using ‹c>0 › by auto
define U where U = (λn. abs(u 0 x) + birkhoff-sum f n x − c ∗ card (V c x

∩ {1 ..n}))
have main: u n x ≤ U n for n
proof (rule nat-less-induct)

fix n assume H : ∀m<n. u m x ≤ U m
consider n = 0 | n≥1 ∧ n /∈ V c x | n≥1 ∧ n ∈ V c x by linarith
then show u n x ≤ U n
proof (cases)

assume n = 0
then show ?thesis unfolding U-def by auto

next
assume A: n≥1 ∧ n /∈ V c x
then have n ≥ 1 by simp
then have n−1<n by simp

have {1 ..n} = {1 ..n−1} ∪ {n} using ‹1 ≤ n› atLeastLessThanSuc by auto
then have ∗: card (V c x ∩ {1 ..n}) = card (V c x ∩ {1 ..n−1}) using A

by auto
have u n x ≤ u (n−1 ) x + u 1 ((T^^(n−1 )) x)
using ‹n≥1 › subu unfolding subcocycle-def by (metis le-add-diff-inverse2 )
also have ... ≤ U (n−1 ) + f ((T^^(n−1 )) x) unfolding f-def using H

‹n−1<n› by auto
also have ... = abs(u 0 x) + birkhoff-sum f (n−1 ) x + f ((T^^(n−1 )) x)

− c ∗ card (V c x ∩ {1 ..n−1})
unfolding U-def by auto

also have ... = abs(u 0 x) + birkhoff-sum f n x − c ∗ card (V c x ∩ {1 ..n})
using ∗ birkhoff-sum-cocycle[of f n−1 1 x] ‹1 ≤ n› by auto

also have ... = U n unfolding U-def by simp
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finally show ?thesis by auto
next

assume B: n≥1 ∧ n ∈ V c x
then obtain l where l: l∈{1 ..n} u n x − u (n−l) x ≤ − c ∗ l unfolding

V-def by blast
then have n−l < n by simp
have m: − (r ∗ ra) − r ∗ rb = − (r ∗ (rb + ra)) for r ra rb::real

by (simp add: algebra-simps)

have card(V c x ∩ {1 ..n}) ≤ card ((V c x ∩ {1 ..n−l}) ∪ {n−l+1 ..n})
by (rule card-mono, auto)

also have ... ≤ card (V c x ∩ {1 ..n−l}) + card {n−l+1 ..n}
by (rule card-Un-le)

also have ... ≤ card (V c x ∩ {1 ..n−l}) + l by auto
finally have card(V c x ∩ {1 ..n}) ≤ card (V c x ∩ {1 ..n−l}) + real l by

auto
then have ∗: −c ∗ card (V c x ∩ {1 ..n−l}) − c ∗ l ≤ −c ∗ card(V c x ∩

{1 ..n})
using m by auto

have birkhoff-sum f ((n−l) + l) x = birkhoff-sum f (n−l) x + birkhoff-sum
f l ((T^^(n−l))x)

by (rule birkhoff-sum-cocycle)
moreover have birkhoff-sum f l ((T^^(n−l))x) ≥ 0

unfolding f-def birkhoff-sum-def using sum-nonneg by auto
ultimately have ∗∗: birkhoff-sum f (n−l) x ≤ birkhoff-sum f n x using

l(1 ) by auto

have u n x ≤ u (n−l) x − c ∗ l using l by simp
also have ... ≤ U (n−l) − c∗ l using H ‹n−l < n› by auto
also have ... = abs(u 0 x) + birkhoff-sum f (n−l) x − c ∗ card (V c x ∩

{1 ..n−l}) − c∗l
unfolding U-def by auto

also have ... ≤ abs(u 0 x) + birkhoff-sum f n x − c ∗ card (V c x ∩ {1 ..n})
using ∗ ∗∗ by simp

finally show ?thesis unfolding U-def by auto
qed

qed

have (λn. abs(u 0 x) ∗ (1/n) + birkhoff-sum f n x / n − u n x / n) −−−−→
abs(u 0 x) ∗ 0 + real-cond-exp M Invariants f x − 0

apply (intro tendsto-intros) using ‹x ∈ G› unfolding G-def by auto
moreover have (abs(u 0 x) + birkhoff-sum f n x − u n x)/n = abs(u 0 x) ∗

(1/n) + birkhoff-sum f n x / n − u n x / n for n
by (auto simp add: add-divide-distrib diff-divide-distrib)

ultimately have (λn. (abs(u 0 x) + birkhoff-sum f n x − u n x)/n) −−−−→
real-cond-exp M Invariants f x

by auto
then have a: limsup (λn. (abs(u 0 x) + birkhoff-sum f n x − u n x)/n) =
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real-cond-exp M Invariants f x
by (simp add: assms lim-imp-Limsup)

have c ∗ card (V c x ∩ {1 ..n})/n ≤ (abs(u 0 x) + birkhoff-sum f n x − u n
x)/n for n

using main[of n] unfolding U-def by (simp add: divide-right-mono)
then have limsup (λn. c ∗ card (V c x ∩ {1 ..n})/n) ≤ limsup (λn. (abs(u 0

x) + birkhoff-sum f n x − u n x)/n)
by (simp add: Limsup-mono)

then have b: limsup (λn. c ∗ card (V c x ∩ {1 ..n})/n) ≤ real-cond-exp M
Invariants f x

using a by simp

have ereal(upper-asymptotic-density (V c x)) = limsup (λn. card (V c x ∩
{1 ..n})/n)

using upper-asymptotic-density-shift[of V c x 1 0 ] by auto
also have ... = limsup (λn. ereal(1/c) ∗ ereal(c ∗ card (V c x ∩ {1 ..n})/n))

by auto
also have ... = (1/c) ∗ limsup (λn. c ∗ card (V c x ∩ {1 ..n})/n)

by (rule limsup-ereal-mult-left, auto)
also have ... ≤ ereal (1/c) ∗ real-cond-exp M Invariants f x

by (rule ereal-mult-left-mono[OF b], auto)
finally show upper-asymptotic-density (V c x) ≤ real-cond-exp M Invariants f

x / c
by auto

qed

{
fix r ::real
obtain c::nat where r / d < c using reals-Archimedean2 by auto
then have r/d < real c+1 by auto
then have r / (real c+1 ) < d using ‹d>0 › by (simp add: divide-less-eq

mult.commute)
then have ∃ c::nat. r / (real c+1 ) < d by auto

}
then have unG: (

⋃
c::nat. {x ∈ G. real-cond-exp M Invariants f x / (c+1 ) <

d}) = G
by auto

have ∗: r < d ∗ (real n + 1 ) if m ≤ n r < d ∗ (real m + 1 ) for m n r
proof −

have d ∗ (real m + 1 ) ≤ d ∗ (real n + 1 ) using ‹d>0 › ‹m ≤ n› by auto
then show ?thesis using ‹r < d ∗ (real m + 1 )› by auto

qed
have (λc. emeasure M {x ∈ G. real-cond-exp M Invariants f x / (real c+1 ) <

d})
−−−−→ emeasure M (

⋃
c::nat. {x ∈ G. real-cond-exp M Invariants f x /

(c+1 ) < d})
apply (rule Lim-emeasure-incseq) unfolding incseq-def by (auto simp add:
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divide-simps ∗)
then have (λc. emeasure M {x ∈ G. real-cond-exp M Invariants f x / (real c+1 )

< d}) −−−−→ emeasure M G
using unG by auto

then have (λc. emeasure M {x ∈ G. real-cond-exp M Invariants f x / (real c+1 )
< d}) −−−−→ 1

using ‹emeasure M G = 1 › by simp
then have eventually (λc. emeasure M {x ∈ G. real-cond-exp M Invariants f x

/ (real c+1 ) < d} > 1 − d) sequentially
apply (rule order-tendstoD)
apply (insert ‹0<d›, auto simp add: ennreal-1 [symmetric] ennreal-lessI simp

del: ennreal-1 )
done

then obtain c0 where c0 : emeasure M {x ∈ G. real-cond-exp M Invariants f x
/ (real c0+1 ) < d} > 1 − d

using eventually-sequentially by auto
define c where c = real c0 + 1
then have c > 0 by auto
have ∗: emeasure M {x ∈ G. real-cond-exp M Invariants f x / c < d} > 1 − d

unfolding c-def using c0 by auto
have {x ∈ G. real-cond-exp M Invariants f x / c < d} ⊆ {x ∈ space M . up-

per-asymptotic-density (V c x) < d}
apply auto
using G-def apply blast
using I [OF ‹c>0 ›] by fastforce

then have emeasure M {x ∈ G. real-cond-exp M Invariants f x / c < d} ≤
emeasure M {x ∈ space M . upper-asymptotic-density (V c x) < d}

apply (rule emeasure-mono) unfolding V-def by auto
then have emeasure M {x ∈ space M . upper-asymptotic-density (V c x) < d}

> 1 − d using ∗ by auto
then show ?thesis unfolding V-def using ‹c>0 › by auto

qed

Next lemma is Lemma 2.2 in [GK15].
lemma upper-density-large-k:

assumes d > (0 ::real) d ≤ 1
shows ∃ k::nat.

emeasure M {x ∈ space M . upper-asymptotic-density {n. ∃ l ∈ {k..n}. u n x
− u (n−l) x ≤ − d ∗ l} < d} > 1 − d
proof −

have [simp]: d>0 d 6= 0 d ≥ 0 using ‹d>0 › by auto
define rho where rho = d ∗ d ∗ d / 4
have [simp]: rho > 0 rho 6= 0 rho ≥ 0 unfolding rho-def using assms by auto

First step: choose a time scale s at which all the computations will be done.
the integral of us should be suitably small – how small precisely is given by
ρ.

have ennreal(
∫

x. abs(u n x / n) ∂M ) = (
∫

+x. abs(u n x /n − subcocycle-lim u
x) ∂M ) for n
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proof −
have ennreal(

∫
x. abs(u n x / n) ∂M ) = (

∫
+x. abs(u n x /n) ∂M )

apply (rule nn-integral-eq-integral[symmetric]) using int-u by auto
also have ... = (

∫
+x. abs(u n x /n − subcocycle-lim u x) ∂M )

apply (rule nn-integral-cong-AE) using subu-0 by auto
finally show ?thesis by simp

qed
moreover have (λn.

∫
+x. abs(u n x /n − subcocycle-lim u x) ∂M ) −−−−→ 0

by (rule kingman-theorem-nonergodic(3 )[OF subu subu-fin])
ultimately have (λn. ennreal(

∫
x. abs(u n x / n) ∂M )) −−−−→ 0

by auto
then have (λn. (

∫
x. abs(u n x / n) ∂M )) −−−−→ 0

by (simp add: ennreal-0 [symmetric] del: ennreal-0 )
then have eventually (λn. (

∫
x. abs(u n x / n) ∂M ) < rho) sequentially

by (rule order-tendstoD(2 ), auto)
then obtain s::nat where [simp]: s>0 and s-int: (

∫
x. abs(u s x / s) ∂M ) <

rho
by (metis (mono-tags, lifting) neq0-conv eventually-sequentially gr-implies-not0

linorder-not-le of-nat-0-eq-iff order-refl zero-neq-one)

Second step: a truncation argument, to decompose |u1| as a sum of a constant
(its contribution will be small if k is large at the end of the argument) and
of a function with small integral).

have (λn. (
∫

x. abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x) ≥ n} x ∂M ))
−−−−→ (

∫
x. 0 ∂M )

proof (rule integral-dominated-convergence[where ?w = λx. abs(u 1 x)])
show AE x in M . norm (abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x) ≥

n} x) ≤ abs(u 1 x) for n
unfolding indicator-def by auto

{
fix x
have abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x) ≥ n} x = (0 ::real) if

n > abs(u 1 x) for n::nat
unfolding indicator-def using that by auto

then have eventually (λn. abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x)
≥ n} x = 0 ) sequentially

by (metis (mono-tags, lifting) eventually-at-top-linorder reals-Archimedean2
less-le-trans of-nat-le-iff )

then have (λn. abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x) ≥ n} x)
−−−−→ 0

by (rule tendsto-eventually)
}
then show AE x in M . (λn. abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x)

≥ n} x) −−−−→ 0
by simp

qed (auto simp add: int-u)
then have eventually (λn. (

∫
x. abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1

x) ≥ n} x ∂M ) < rho) sequentially
by (rule order-tendstoD(2 ), auto)
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then obtain Knat::nat where Knat: Knat > 0 (
∫

x. abs(u 1 x) ∗ indicator {x
∈ space M . abs(u 1 x) ≥ Knat} x ∂M ) < rho

by (metis (mono-tags, lifting) eventually-sequentially gr-implies-not0 neq0-conv
linorder-not-le of-nat-0-eq-iff order-refl zero-neq-one)

define K where K = real Knat
then have [simp]: K ≥ 0 K>0 and K : (

∫
x. abs(u 1 x) ∗ indicator {x ∈ space

M . abs(u 1 x) ≥ K} x ∂M ) < rho
using Knat by auto

define F where F = (λx. abs(u 1 x) ∗ indicator {x. abs(u 1 x) ≥ K} x)
have int-F [measurable]: integrable M F

unfolding F-def apply (rule Bochner-Integration.integrable-bound[where ?f
= λx. abs(u 1 x)])

unfolding indicator-def by (auto simp add: int-u)
have (

∫
x. F x ∂M ) = (

∫
x. abs(u 1 x) ∗ indicator {x ∈ space M . abs(u 1 x) ≥

K} x ∂M )
apply (rule integral-cong-AE) unfolding F-def by (auto simp add: indica-

tor-def )
then have F-int: (

∫
x. F x ∂M ) < rho using K by auto

have F-pos: F x ≥ 0 for x unfolding F-def by auto
have u1-bound: abs(u 1 x) ≤ K + F x for x

unfolding F-def indicator-def apply (cases x ∈ {x ∈ space M . K ≤ |u 1 x|})
by auto

define F2 where F2 = (λx. F x + abs(u s x/s))
have int-F2 [measurable]: integrable M F2

unfolding F2-def using int-F int-u[of s] by auto
have F2-pos: F2 x ≥ 0 for x unfolding F2-def using F-pos by auto
have (

∫
x. F2 x ∂M ) = (

∫
x. F x ∂M ) + (

∫
x. abs(u s x/s) ∂M )

unfolding F2-def apply (rule Bochner-Integration.integral-add) using int-F
int-u by auto

then have F2-int: (
∫

x. F2 x ∂M ) < 2 ∗ rho
using F-int s-int by auto

We can now choose k, large enough. The reason for our choice will only
appear at the end of the proof.

define k where k = max (2 ∗ s + 1 ) (nat(ceiling((2 ∗ d ∗ s + 2 ∗ K ∗
s)/(d/2 ))))

have k > 2 ∗ s unfolding k-def by auto
have k ≥ (2 ∗ d ∗ s + 2 ∗ K ∗ s)/(d/2 )

unfolding k-def by linarith
then have (2 ∗ d ∗ s + 2 ∗ K ∗ s)/k ≤ d/2

using ‹k > 2 ∗ s› by (simp add: divide-simps mult.commute)

Third step: definition of a good set G where everything goes well.
define G where G = {x ∈ space M . (λn. u n x / n) −−−−→ 0

∧ (λn. birkhoff-sum (λx. abs(u s x / s)) n x / n) −−−−→
real-cond-exp M Invariants (λx. abs(u s x / s)) x

272



∧ (λn. birkhoff-sum F n x / n) −−−−→ real-cond-exp M Invariants
F x

∧ real-cond-exp M Invariants F x + real-cond-exp M Invariants
(λx. abs(u s x / s)) x = real-cond-exp M Invariants F2 x}

have [measurable]: G ∈ sets M unfolding G-def by auto
have AE x in M . (λn. u n x / n) −−−−→ 0

using kingman-theorem-nonergodic(1 )[OF subu subu-fin] subu-0 by auto
moreover have AE x in M .(λn. birkhoff-sum (λx. abs(u s x / s)) n x / n)
−−−−→ real-cond-exp M Invariants (λx. abs(u s x / s)) x

apply (rule birkhoff-theorem-AE-nonergodic) using int-u[of s] by auto
moreover have AE x in M . (λn. birkhoff-sum F n x / n) −−−−→ real-cond-exp

M Invariants F x
by (rule birkhoff-theorem-AE-nonergodic[OF int-F ])

moreover have AE x in M . real-cond-exp M Invariants F x + real-cond-exp M
Invariants (λx. abs(u s x / s)) x = real-cond-exp M Invariants F2 x

unfolding F2-def apply (rule AE-symmetric[OF real-cond-exp-add]) using
int-u[of s] int-F int-u[of s] by auto

ultimately have AE x in M . x ∈ G unfolding G-def by auto
then have emeasure M G = 1 by (simp add: emeasure-eq-1-AE)

Estimation of asymptotic densities of bad times, for points in G. There is
a trivial part, named U below, that has to be treated separately because it
creates problematic boundary effects.

define U where U = (λx. {n. ∃ l ∈ {n−s<..n}. u n x − u (n−l) x ≤ − d ∗ l})
define V where V = (λx. {n. ∃ l ∈ {k..n−s}. u n x − u (n−l) x ≤ − d ∗ l})

Trivial estimate for U(x): this set is finite for x ∈ G.
have densU : upper-asymptotic-density (U x) = 0 if x ∈ G for x
proof −

define C where C = Max {abs(u m x) |m. m<s} + d ∗ s
have ∗: U x ⊆ {n. u n x ≤ C − d ∗ n}
proof (auto)

fix n assume n ∈ U x
then obtain l where l: l∈ {n−s <..n} u n x − u (n−l) x ≤ − d ∗ l

unfolding U-def by auto
define m where m = n−l
have m < s unfolding m-def using l by auto
have u n x ≤ u m x − d ∗ l using l m-def by auto
also have ... ≤ abs(u m x) − d ∗ n + d ∗ m unfolding m-def using l

by (simp add: algebra-simps of-nat-diff )
also have ... ≤ Max {abs(u m x) |m. m<s} − d ∗ n + d ∗ m

using ‹m < s› apply (auto) by (rule Max-ge, auto)
also have ... ≤ Max {abs(u m x) |m. m<s} + d ∗ s − d ∗ n

using ‹m < s› ‹d>0 › by auto
finally show u n x ≤ C − d ∗ n

unfolding C-def by auto
qed
have eventually (λn. u n x / n > −d/2 ) sequentially
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apply (rule order-tendstoD(1 )) using ‹x ∈ G› ‹d>0 › unfolding G-def by
auto

then obtain N where N :
∧

n. n ≥ N =⇒ u n x / n > − d/2
using eventually-sequentially by auto

{
fix n assume ∗: u n x ≤ C − d ∗ n n > N
then have n ≥ N n > 0 by auto
have 2 ∗ u n x ≤ 2 ∗ C − 2 ∗ d ∗ n using ∗ by auto
moreover have 2 ∗ u n x ≥ − d ∗ n using N [OF ‹n ≥ N ›] ‹n > 0 › by

(simp add: divide-simps)
ultimately have − d ∗ n ≤ 2 ∗ C − 2 ∗ d ∗ n by auto
then have d ∗ n ≤ 2 ∗ C by auto

then have n ≤ 2 ∗ C / d using ‹d>0 › by (simp add: mult.commute
divide-simps)

}
then have {n. u n x ≤ C − d ∗ n} ⊆ {..max (nat (floor(2∗C/d))) N}

by (auto, meson le-max-iff-disj le-nat-floor not-le)
then have finite {n. u n x ≤ C − d ∗ n}

using finite-subset by blast
then have finite (U x) using ∗ finite-subset by blast
then show ?thesis using upper-asymptotic-density-finite by auto

qed

Main step: control of u along the sequence ns+t, with a term−(d/2)Card(V (x)∩
[1, ns + t]) on the right. Then, after averaging in t, Birkhoff theorem will
imply that Card(V (x) ∩ [1, n]) is suitably small.

define Z where Z = (λt n x. Max {u i x|i. i< s} + (
∑

i<n. abs(u s ((T^^(i
∗ s + t))x)))

+ birkhoff-sum F (n ∗ s + t) x − (d/2 ) ∗ card(V x ∩ {1 ..n ∗ s +
t}))

have Main: u (n ∗ s + t) x ≤ Z t n x if t < s for n x t
proof (rule nat-less-induct[where ?n = n])

fix n assume H : ∀m<n. u (m ∗ s + t) x ≤ Z t m x
consider n = 0 |n>0 ∧ V x ∩ {(n−1 ) ∗ s+t<..n ∗ s+t} = {}|n>0 ∧ V x ∩

{(n−1 ) ∗ s+t<..n ∗ s+t} 6= {} by auto
then show u (n ∗ s+t) x ≤ Z t n x
proof (cases)

assume n = 0
then have V x ∩ {1 ..n ∗ s + t} = {} unfolding V-def using ‹t<s› ‹k>2∗

s› by auto
then have ∗: card(V x ∩ {1 ..n ∗ s+t}) = 0 by simp
have ∗∗: 0 ≤ (

∑
i<t. F ((T ^^ i) x)) by (rule sum-nonneg, simp add: F-pos)

have u (n ∗ s + t) x = u t x using ‹n = 0 › by auto
also have ... ≤ Max {u i x|i. i< s} by (rule Max-ge, auto simp add: ‹t<s›)
also have ... ≤ Z t n x

unfolding Z-def birkhoff-sum-def using ‹n = 0 › ∗ ∗∗ by auto
finally show ?thesis by simp

next
assume A: n>0 ∧ V x ∩ {(n−1 ) ∗ s+t<..n ∗ s+t} = {}
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then have n≥1 by simp
have n ∗ s + t = (n−1 ) ∗ s + t + s using ‹n≥1 › by (simp add: add.commute

add.left-commute mult-eq-if )
have V x ∩ {1 ..n ∗ s + t} = V x ∩ {1 ..(n−1 ) ∗ s + t} ∪ V x ∩ {(n−1 ) ∗

s + t<..n ∗ s + t}
using ‹n≥1 › by (auto, simp add: mult-eq-if )

then have ∗: card(V x ∩ {1 ..n ∗ s+t}) = card(V x ∩ {1 ..(n−1 ) ∗ s+t})
using A by auto

have ∗∗: birkhoff-sum F ((n−1 ) ∗ s + t) x ≤ birkhoff-sum F (n ∗ s + t) x
unfolding birkhoff-sum-def apply (rule sum-mono2 )
using ‹n ∗ s+t = (n−1 ) ∗ s+t + s› F-pos by auto

have (
∑

i<n−1 . abs(u s ((T^^(i ∗ s+t))x))) + u s ((T^^((n−1 ) ∗ s+t)) x)
≤ (

∑
i<n−1 . abs(u s ((T^^(i ∗ s+t))x))) + abs(u s ((T^^((n−1 ) ∗ s+t))

x)) by auto
also have ... ≤ (

∑
i<n. abs(u s ((T^^(i∗ s+t))x)))

using ‹n≥1 › lessThan-Suc-atMost sum.lessThan-Suc[of λi. abs(u s ((T^^(i∗
s+t))x)) n−1 , symmetric] by auto

finally have ∗∗∗: (
∑

i<n−1 . abs(u s ((T^^(i∗ s+t))x))) + u s ((T^^((n−1 )
∗ s+t)) x) ≤ (

∑
i<n. abs(u s ((T^^(i∗ s+t))x)))

by simp

have u (n ∗ s+t) x = u ((n−1 ) ∗ s+t + s) x
using ‹n≥1 › by (simp add: add.commute add.left-commute mult-eq-if )

also have ... ≤ u ((n−1 ) ∗ s+t) x + u s ((T^^((n−1 ) ∗ s+t)) x)
using subcocycle-ineq[OF subu, of (n−1 ) ∗ s+t s x] by simp

also have ... ≤ Max {u i x|i. i< s} + (
∑

i<n−1 . abs(u s ((T^^(i∗ s+t))x)))
+ birkhoff-sum F ((n−1 ) ∗ s+t) x − (d/2 ) ∗ card(V x ∩ {1 ..(n−1 ) ∗ s+t})

+ u s ((T^^((n−1 ) ∗ s+t)) x)
using H ‹n≥1 › unfolding Z-def by auto

also have ... ≤ Max {u i x|i. i< s} + (
∑

i<n. abs(u s ((T^^(i∗ s+t))x)))
+ birkhoff-sum F (n ∗ s+t) x − (d/2 ) ∗ card(V x ∩ {1 ..n ∗ s+t})
using ∗ ∗∗ ∗∗∗ by auto

also have ... ≤ Z t n x unfolding Z-def by (auto simp add: divide-simps)
finally show ?thesis by simp

next
assume B: n>0 ∧ V x ∩ {(n−1 ) ∗ s+t<..n ∗ s+t} 6= {}
then have [simp]: n>0 n≥1 n 6= 0 by auto
obtain m where m: m ∈ V x ∩ {(n−1 ) ∗ s + t<..n ∗ s + t} using B by

blast
then obtain l where l: l ∈ {k..m−s} u m x − u (m−l) x ≤ − d ∗ l

unfolding V-def by auto
then have m−s>0 using ‹k>2∗ s› by auto
then have m−l ≥ s using l by auto
define p where p = (m−l−t) div s
have p1 : m−l ≥ p ∗ s + t
unfolding p-def using ‹m−l ≥ s› ‹s>t› minus-mod-eq-div-mult [symmetric,

of m − l − t s]
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by simp
have p2 : m−l < p∗ s + t + s

unfolding p-def using ‹m−l ≥ s› ‹s>t›
div-mult-mod-eq[of m−l−t s] mod-less-divisor [OF ‹s>0 ›, of m−l−t] by

linarith
then have l ≥ m − p ∗ s − t −s by auto
then have l ≥ (n−1 ) ∗ s + t −p ∗ s − t− s using m by auto

then have l + 2 ∗ s≥ (n ∗ s + t) − (p ∗ s+t) by (simp add: diff-mult-distrib)
have (p+1 ) ∗ s + t ≤ (n−1 ) ∗ s + t

using ‹k> 2 ∗ s› m l(1 ) p1 by (auto simp add: algebra-simps)
then have p+1 ≤ n−1

using ‹s>0 › by (meson add-le-cancel-right mult-le-cancel2 )
then have p ≤ n−1 p<n by auto
have (p∗ s + t) + k ≤ (n ∗ s + t)

using m l(1 ) p1 by (auto simp add: algebra-simps)
then have (1 ::real) ≤ ((n ∗ s + t) − (p∗ s + t)) / k

using ‹k > 2∗ s› by auto

have In: u (n ∗ s + t) x ≤ u m x + (
∑

i ∈ {(n−1 ) ∗ s + t..<n ∗ s + t}.
abs(u 1 ((T^^i) x)))

proof (cases m = n ∗ s + t)
case True
have (

∑
i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^i) x))) ≥ 0

by (rule sum-nonneg, auto)
then show ?thesis using True by auto

next
case False
then have m2 : n ∗ s + t − m >0 (n−1 ) ∗ s+t ≤ m using m by auto
have birkhoff-sum (u 1 ) (n ∗ s+t−m) ((T^^m) x) = (

∑
i<n ∗ s+t−m. u

1 ((T^^i)((T^^m) x)))
unfolding birkhoff-sum-def by auto

also have ... = (
∑

i<n ∗ s+t−m. u 1 ((T^^(i+m)) x))
by (simp add: funpow-add)

also have ... = (
∑

j ∈ {m..<n ∗ s+t}. u 1 ((T^^j) x))
by (rule sum.reindex-bij-betw, rule bij-betw-byWitness[where ?f ′ = λi. i

− m], auto)
also have ... ≤ (

∑
j ∈ {m..<n ∗ s+t}. abs(u 1 ((T^^j) x)))

by (rule sum-mono, auto)
also have ... ≤ (

∑
j ∈ {(n−1 ) ∗ s+t..<m}. abs(u 1 ((T^^j) x))) + (

∑
j

∈ {m..<n ∗ s+t}. abs(u 1 ((T^^j) x)))
by auto

also have ... = (
∑

j ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^j) x)))
apply (rule sum.atLeastLessThan-concat) using m2 by auto
finally have ∗: birkhoff-sum (u 1 ) (n ∗ s+t−m) ((T^^m) x) ≤ (

∑
j ∈

{(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^j) x)))
by auto

have u (n ∗ s+t) x ≤ u m x + u (n ∗ s+t−m) ((T^^m) x)
using subcocycle-ineq[OF subu, of m n ∗ s+t−m] m2 by auto
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also have ... ≤ u m x + birkhoff-sum (u 1 ) (n ∗ s+t−m) ((T^^m) x)
using subcocycle-bounded-by-birkhoff1 [OF subu ‹n ∗ s+t − m >0 ›, of

(T^^m)x] by simp
finally show ?thesis using ∗ by auto

qed

have Ip: u (m−l) x ≤ u (p∗ s+t) x + (
∑

i ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u
1 ((T^^i) x)))

proof (cases m−l = p∗ s+t)
case True
have (

∑
i ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^i) x))) ≥ 0

by (rule sum-nonneg, auto)
then show ?thesis using True by auto

next
case False
then have m−l − (p∗ s+t) > 0 using p1 by auto
have I : p ∗ s + t + (m − l − (p ∗ s + t)) = m − l using p1 by auto

have birkhoff-sum (u 1 ) (m−l − (p∗ s+t)) ((T^^(p∗ s+t)) x) = (
∑

i<m−l
− (p∗ s+t). u 1 ((T^^i) ((T^^(p∗ s+t)) x)))

unfolding birkhoff-sum-def by auto
also have ... = (

∑
i<m−l − (p∗ s+t). u 1 ((T^^(i+p∗ s+t)) x))

by (simp add: funpow-add)
also have ... = (

∑
j ∈ {p∗ s+t..<m−l}. u 1 ((T^^j) x))

by (rule sum.reindex-bij-betw, rule bij-betw-byWitness[where ?f ′ = λi. i
− (p∗ s+t)], auto)

also have ... ≤ (
∑

j ∈ {p∗ s+t..<m−l}. abs(u 1 ((T^^j) x)))
by (rule sum-mono, auto)

also have ... ≤ (
∑

j ∈ {p∗ s+t..<m−l}. abs(u 1 ((T^^j) x))) + (
∑

j ∈
{m−l..<(p+1 )∗ s+t}. abs(u 1 ((T^^j) x)))

by auto
also have ... = (

∑
j ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^j) x)))

apply (rule sum.atLeastLessThan-concat) using p1 p2 by auto
finally have ∗: birkhoff-sum (u 1 ) (m−l − (p∗ s+t)) ((T^^(p∗ s+t)) x)
≤ (

∑
j ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^j) x)))

by auto

have u (m−l) x ≤ u (p∗ s+t) x + u (m−l − (p∗ s+t)) ((T^^(p∗ s+t)) x)
using subcocycle-ineq[OF subu, of p∗ s+t m−l − (p∗ s+t) x] I by auto
also have ... ≤ u (p∗ s+t) x + birkhoff-sum (u 1 ) (m−l − (p∗ s+t))

((T^^(p∗ s+t)) x)
using subcocycle-bounded-by-birkhoff1 [OF subu ‹m−l − (p∗ s+t) > 0 ›, of

(T^^(p∗ s+t)) x] by simp
finally show ?thesis using ∗ by auto

qed

have (
∑

i ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^i) x))) ≤ (
∑

i ∈ {p∗
s+t..<(p+1 )∗ s+t}. K + F ((T^^i) x))

apply (rule sum-mono) using u1-bound by auto
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moreover have (
∑

i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^i) x))) ≤
(
∑

i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. K + F ((T^^i) x))
apply (rule sum-mono) using u1-bound by auto

ultimately have (
∑

i ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^i) x))) +
(
∑

i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^i) x)))
≤ (

∑
i ∈ {p∗ s+t..<(p+1 )∗ s+t}. K + F ((T^^i) x)) + (

∑
i ∈ {(n−1 ) ∗

s+t..<n ∗ s+t}. K + F ((T^^i) x))
by auto

also have ... = 2∗ K∗ s + (
∑

i ∈ {p∗ s+t..<(p+1 )∗ s+t}. F ((T^^i) x)) +
(
∑

i ∈{(n−1 ) ∗ s+t..<n ∗ s+t}. F ((T^^i) x))
by (auto simp add: mult-eq-if sum.distrib)

also have ... ≤ 2∗ K ∗ s + (
∑

i ∈ {p∗ s+t..<(n−1 ) ∗ s+t}. F ((T^^i) x))
+ (

∑
i ∈{(n−1 ) ∗ s+t..<n ∗ s+t}. F ((T^^i) x))
apply (auto, rule sum-mono2 ) using ‹(p+1 )∗ s+t≤(n−1 ) ∗ s+t› F-pos by

auto
also have ... = 2∗ K ∗ s + (

∑
i ∈ {p∗ s+t..<n ∗ s+t}. F ((T^^i) x))

apply (auto, rule sum.atLeastLessThan-concat) using ‹p≤n−1 › by auto
finally have A0 : (

∑
i ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^i) x))) +

(
∑

i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^i) x)))
≤ 2∗ K ∗ s + (

∑
i ∈ {p∗ s+t..<n ∗ s+t}. F ((T^^i) x))

by simp

have card(V x ∩ {p ∗ s + t<.. n ∗ s+t}) ≤ card {p ∗ s + t<.. n ∗ s+t} by
(rule card-mono, auto)

have 2 ∗ d ∗ s + 2 ∗ K ∗ s > 0 using ‹K>0 › ‹s>0 › ‹d>0 ›
by (metis add-pos-pos mult-2 mult-zero-left of-nat-0-less-iff pos-divide-less-eq

times-divide-eq-right)
then have 2 ∗ d ∗ s + 2 ∗ K ∗ s ≤ ((n ∗ s + t) − (p∗ s + t)) ∗ ((2 ∗ d ∗

s + 2 ∗ K ∗ s) / k)
using ‹1 ≤ ((n ∗ s + t) − (p∗ s + t)) / k› by (simp add: le-divide-eq-1

pos-le-divide-eq)
also have ... ≤ ((n ∗ s + t) − (p∗ s + t)) ∗ (d/2 )

apply (rule mult-left-mono) using ‹(2 ∗ d ∗ s + 2 ∗ K ∗ s)/k ≤ d/2 › by
auto

finally have 2 ∗ d ∗ s + 2 ∗ K ∗ s ≤ ((n ∗ s + t) − (p∗ s + t)) ∗ (d/2 )
by auto

then have −d ∗ ((n ∗ s+t) − (p∗ s+t)) + 2 ∗ d ∗ s + 2 ∗ K ∗ s ≤ −d ∗
((n ∗ s+t) − (p∗ s+t)) + ((n ∗ s + t) − (p∗ s + t)) ∗ (d/2 )

by linarith
also have ... = (−d/2 ) ∗ card {p ∗ s + t<.. n ∗ s+t}

by auto
also have ... ≤ (−d/2 ) ∗ card(V x ∩ {p ∗ s + t<.. n ∗ s+t})

using ‹card(V x ∩ {p ∗ s + t<.. n ∗ s+t}) ≤ card {p ∗ s + t<.. n ∗ s+t}›
by auto

finally have A1 : −d ∗ ((n ∗ s+t) − (p∗ s+t)) + 2 ∗ d ∗ s + 2 ∗ K ∗ s ≤
(−d/2 ) ∗ card(V x ∩ {p ∗ s + t<.. n ∗ s+t})

by simp

have V x ∩ {1 .. n ∗ s+t} = V x ∩ {1 ..p ∗ s + t} ∪ V x ∩ {p ∗ s + t<.. n
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∗ s+t}
using ‹p ∗ s + t + k ≤ n ∗ s + t› by auto

then have card (V x ∩ {1 .. n ∗ s+t}) = card(V x ∩ {1 ..p ∗ s + t} ∪ V x
∩ {p ∗ s + t<.. n ∗ s+t})

by auto
also have ... = card (V x ∩ {1 ..p ∗ s + t}) + card (V x ∩ {p ∗ s + t<.. n

∗ s+t})
by (rule card-Un-disjoint, auto)

finally have A2 : card (V x ∩ {1 ..p ∗ s + t}) + card (V x ∩ {p ∗ s + t<..
n ∗ s+t}) = card (V x ∩ {1 .. n ∗ s+t})

by simp

have A3 : (
∑

i<p. abs(u s ((T ^^ (i ∗ s + t)) x))) ≤ (
∑

i<n. abs(u s ((T
^^ (i ∗ s + t)) x)))

apply (rule sum-mono2 ) using ‹p≤n−1 › by auto

have A4 : birkhoff-sum F (p ∗ s + t) x + (
∑

i ∈ {p∗ s+t..<n ∗ s+t}. F
((T^^i) x)) = birkhoff-sum F (n ∗ s + t) x

unfolding birkhoff-sum-def apply (subst atLeast0LessThan[symmetric])+
apply (rule sum.atLeastLessThan-concat)

using ‹p≤n−1 › by auto

have u (n ∗ s+t) x ≤ u m x + (
∑

i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1
((T^^i) x)))

using In by simp
also have ... ≤ (u m x − u (m−l) x) + u (m−l) x + (

∑
i ∈ {(n−1 ) ∗

s+t..<n ∗ s+t}. abs(u 1 ((T^^i) x)))
by simp

also have ... ≤ − d ∗ l + u (p∗ s+t) x + (
∑

i ∈ {p∗ s+t..<(p+1 )∗ s+t}.
abs(u 1 ((T^^i) x))) + (

∑
i ∈ {(n−1 ) ∗ s+t..<n ∗ s+t}. abs(u 1 ((T^^i) x)))

using Ip l by auto
also have ... ≤ − d ∗ ((n ∗ s+t) − (p∗ s+t)) + 2∗d∗ s + u (p∗ s+t) x +

(
∑

i ∈ {p∗ s+t..<(p+1 )∗ s+t}. abs(u 1 ((T^^i) x))) + (
∑

i ∈ {(n−1 ) ∗ s+t..<n
∗ s+t}. abs(u 1 ((T^^i) x)))

using ‹l + 2∗ s≥ (n ∗ s+t) − (p∗ s+t)› apply (auto simp add: algebra-simps)
by (metis assms(1 ) distrib-left mult.commute mult-2 of-nat-add of-nat-le-iff

mult-le-cancel-left-pos)
also have ... ≤ −d ∗ ((n ∗ s+t) − (p∗ s+t)) + 2∗d∗ s + Z t p x + 2∗ K ∗

s + (
∑

i ∈ {p∗ s+t..<n ∗ s+t}. F ((T^^i) x))
using A0 H ‹p<n› by auto

also have ... ≤ Z t p x − d/2 ∗ card(V x ∩ {p ∗ s + t<.. n ∗ s+t}) + (
∑

i
∈ {p∗ s+t..<n ∗ s+t}. F ((T^^i) x))

using A1 by auto
also have ... = Max {u i x |i. i < s} + (

∑
i<p. abs(u s ((T ^^ (i ∗ s + t))

x))) + birkhoff-sum F (p ∗ s + t) x
− d / 2 ∗ card (V x ∩ {1 ..p ∗ s + t}) − d/2 ∗ card(V x ∩ {p ∗ s + t<..

n ∗ s+t}) + (
∑

i ∈ {p∗ s+t..<n ∗ s+t}. F ((T^^i) x))
unfolding Z-def by auto

also have ... ≤ Max {u i x |i. i < s} + (
∑

i<n. abs(u s ((T ^^ (i ∗ s + t))
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x)))
+ (birkhoff-sum F (p ∗ s + t) x + (

∑
i ∈ {p∗ s+t..<n ∗ s+t}. F ((T^^i)

x)))
− d/2 ∗ card (V x ∩ {1 ..p ∗ s + t}) − d/2 ∗ card(V x ∩ {p ∗ s + t<.. n

∗ s+t})
using A3 by auto

also have ... = Z t n x
unfolding Z-def using A2 A4 by (auto simp add: algebra-simps, metis

distrib-left of-nat-add)
finally show ?thesis by simp

qed
qed

have Main2 : (d/2 ) ∗ card(V x ∩ {1 ..n}) ≤ Max {u i x|i. i< s} + birkhoff-sum
(λx. abs(u s x/ s)) (n+2∗ s) x

+ birkhoff-sum F (n + 2 ∗ s) x + (1/s) ∗ (
∑

i< 2 ∗ s. abs(u (n+i) x)) for n
x

proof −
define N where N = (n div s) + 1
then have n ≤ N ∗ s

using ‹s > 0 › dividend-less-div-times less-or-eq-imp-le by auto
have N ∗ s ≤ n + s

by (auto simp add: N-def )
have eq-t: (d/2 ) ∗ card(V x ∩ {1 ..n}) ≤ abs(u(N∗ s+t) x) + (Max {u i x|i.

i< s} + birkhoff-sum F (n + 2∗ s) x)
+ (

∑
i<N . abs(u s ((T^^(i ∗ s+t))x)))

if t<s for t
proof −

have ∗: birkhoff-sum F (N ∗ s+t) x ≤ birkhoff-sum F (n+ 2∗ s) x
unfolding birkhoff-sum-def apply (rule sum-mono2 ) using F-pos ‹N ∗ s

≤ n + s› ‹t<s› by auto

have card(V x ∩ {1 ..n}) ≤ card(V x ∩ {1 ..N∗ s+t})
apply (rule card-mono) using ‹n ≤ N ∗ s› by auto

then have (d/2 ) ∗ card(V x ∩ {1 ..n}) ≤ (d/2 ) ∗ card(V x ∩ {1 ..N∗ s+t})
by auto

also have ... ≤ − u (N∗ s+t) x + Max {u i x|i. i< s} + (
∑

i<N . abs(u s
((T^^(i∗ s+t))x))) + birkhoff-sum F (N ∗ s+t) x

using Main[OF ‹t < s›, of N x] unfolding Z-def by auto
also have ... ≤ abs(u(N∗ s+t) x) + Max {u i x |i. i< s} + birkhoff-sum F

(n + 2∗ s) x + (
∑

i<N . abs(u s ((T^^(i∗ s+t))x)))
using ∗ by auto

finally show ?thesis by simp
qed

have (
∑

t<s. abs(u(N∗ s+t) x)) = (
∑

i∈{N∗ s..<N∗ s+s}. abs (u i x))
by (rule sum.reindex-bij-betw, rule bij-betw-byWitness[where ?f ′ = λi. i −

N∗ s], auto)
also have ... ≤ (

∑
i∈{n..<n + 2∗ s}. abs (u i x))
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apply (rule sum-mono2 ) using ‹n ≤ N ∗ s› ‹N ∗ s ≤ n + s› by auto
also have ... = (

∑
i<2∗ s. abs (u (n+i) x))

by (rule sum.reindex-bij-betw[symmetric], rule bij-betw-byWitness[where ?f ′

= λi. i − n], auto)
finally have ∗∗: (

∑
t<s. abs(u(N∗ s+t) x)) ≤ (

∑
i<2∗ s. abs (u (n+i) x))

by simp

have (
∑

t<s. (
∑

i<N . abs(u s ((T^^(i∗ s+t))x)))) = (
∑

i<N∗ s. abs(u s
((T^^i) x)))

by (rule sum-arith-progression)
also have ... ≤ (

∑
i<n + 2∗ s. abs(u s ((T^^i) x)))

apply (rule sum-mono2 ) using ‹N ∗ s ≤ n + s› by auto
finally have ∗∗∗: (

∑
t<s. (

∑
i<N . abs(u s ((T^^(i∗ s+t))x)))) ≤ s ∗ birkhoff-sum

(λx. abs(u s x/ s)) (n+2∗ s) x
unfolding birkhoff-sum-def using ‹s>0 › by (auto simp add: sum-divide-distrib[symmetric])

have ∗∗∗∗: s ∗ (
∑

i<n + 2∗ s. abs(u s ((T^^i) x)) /s) = (
∑

i<n + 2∗ s.
abs(u s ((T^^i) x)))

by (auto simp add: sum-divide-distrib[symmetric])

have s ∗ (d/2 ) ∗ card(V x ∩ {1 ..n}) = (
∑

t<s. (d/2 ) ∗ card(V x ∩ {1 ..n}))
by auto

also have ... ≤ (
∑

t<s. abs(u(N∗ s+t) x) + (Max {u i x |i. i< s} + birkhoff-sum
F (n + 2∗ s) x)

+ (
∑

i<N . abs(u s ((T^^(i∗ s+t))x))))
apply (rule sum-mono) using eq-t by auto

also have ... = (
∑

t<s. abs(u(N∗ s+t) x)) + (
∑

t<s. Max {u i x|i. i< s} +
birkhoff-sum F (n + 2∗ s) x) + (

∑
t<s. (

∑
i<N . abs(u s ((T^^(i∗ s+t))x))))

by (auto simp add: sum.distrib)
also have ... ≤ (

∑
i<2∗ s. abs (u (n+i) x)) + s ∗ (Max {u i x|i. i< s} +

birkhoff-sum F (n + 2∗ s) x) + s ∗ birkhoff-sum (λx. abs(u s x/ s)) (n+2∗ s) x
using ∗∗ ∗∗∗ by auto

also have ... = s ∗ ((1/s) ∗ (
∑

i<2∗ s. abs (u (n+i) x)) + Max {u i x|i. i<
s} + birkhoff-sum F (n + 2∗ s) x + birkhoff-sum (λx. abs(u s x/ s)) (n+2∗ s) x)

by (auto simp add: divide-simps mult.commute distrib-left)
finally show ?thesis

by auto
qed

have densV : upper-asymptotic-density (V x) ≤ (2/d) ∗ real-cond-exp M Invari-
ants F2 x if x ∈ G for x

proof −
have ∗: (λn. abs(u n x/n)) −−−−→ 0

apply (rule tendsto-rabs-zero) using ‹x∈G› unfolding G-def by auto

define Bound where Bound = (λn. (Max {u i x|i. i< s}∗(1/n) + birkhoff-sum
(λx. abs(u s x/ s)) (n+2∗ s) x / n

+ birkhoff-sum F (n + 2∗ s) x / n + (1/s) ∗ (
∑

i<2∗ s. abs(u (n+i) x) /
n)))
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have Bound −−−−→ (Max {u i x|i. i< s} ∗ 0 + real-cond-exp M Invariants
(λx. abs(u s x/s)) x

+ real-cond-exp M Invariants F x + (1/s) ∗ (
∑

i < 2 ∗ s. 0 ))
unfolding Bound-def apply (intro tendsto-intros)
using ‹x∈G› ∗ unfolding G-def by auto

moreover have real-cond-exp M Invariants (λx. abs(u s x/s)) x + real-cond-exp
M Invariants F x = real-cond-exp M Invariants F2 x

using ‹x ∈ G› unfolding G-def by auto
ultimately have B-conv: Bound −−−−→ real-cond-exp M Invariants F2 x by

simp

have ∗: (d/2 ) ∗ card(V x ∩ {1 ..n}) / n ≤ Bound n for n
proof −

have (d/2 ) ∗ card(V x ∩ {1 ..n}) / n ≤ (Max {u i x|i. i< s} + birkhoff-sum
(λx. abs(u s x/ s)) (n+2∗ s) x

+ birkhoff-sum F (n + 2∗ s) x + (1/s) ∗ (
∑

i<2∗ s. abs(u (n+i) x)))/n
using Main2 [of x n] using divide-right-mono of-nat-0-le-iff by blast

also have ... = Bound n
unfolding Bound-def by (auto simp add: add-divide-distrib sum-divide-distrib[symmetric])
finally show ?thesis by simp

qed

have ereal(d/2 ∗ upper-asymptotic-density (V x)) = ereal(d/2 ) ∗ ereal(upper-asymptotic-density
(V x))

by auto
also have ... = ereal (d/2 ) ∗ limsup(λn. card(V x ∩ {1 ..n}) / n)

using upper-asymptotic-density-shift[of V x 1 0 ] by auto
also have ... = limsup(λn. ereal (d/2 ) ∗ (card(V x ∩ {1 ..n}) / n))

by (rule limsup-ereal-mult-left[symmetric], auto)
also have ... ≤ limsup Bound

apply (rule Limsup-mono) using ∗ not-eventuallyD by auto
also have ... = ereal(real-cond-exp M Invariants F2 x)
using B-conv convergent-limsup-cl convergent-def convergent-real-imp-convergent-ereal

limI by force
finally have d/2 ∗ upper-asymptotic-density (V x) ≤ real-cond-exp M Invariants

F2 x
by auto

then show ?thesis
by (simp add: divide-simps mult.commute)

qed

define epsilon where epsilon = 2 ∗ rho / d
have [simp]: epsilon > 0 epsilon 6= 0 epsilon ≥ 0 unfolding epsilon-def by auto
have emeasure M {x∈space M . real-cond-exp M Invariants F2 x ≥ epsilon} ≤

(1/epsilon) ∗ (
∫

x. real-cond-exp M Invariants F2 x ∂M )
apply (intro integral-Markov-inequality real-cond-exp-pos real-cond-exp-int(1 ))
by (auto simp add: int-F2 F2-pos)

also have ... = (1/epsilon) ∗ (
∫

x. F2 x ∂M )
apply (intro arg-cong[where f = ennreal])
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by (simp, rule real-cond-exp-int(2 ), simp add: int-F2 )
also have ... < (1/epsilon) ∗ 2 ∗ rho

using F2-int by (intro ennreal-lessI ) (auto simp add: divide-simps)
also have ... = d

unfolding epsilon-def by auto
finally have ∗: emeasure M {x∈space M . real-cond-exp M Invariants F2 x ≥

epsilon} < d
by simp

define G2 where G2 = {x ∈ G. real-cond-exp M Invariants F2 x < epsilon}
have [measurable]: G2 ∈ sets M unfolding G2-def by simp
have 1 = emeasure M G

using ‹emeasure M G = 1 › by simp
also have ... ≤ emeasure M (G2 ∪ {x∈space M . real-cond-exp M Invariants F2

x ≥ epsilon})
apply (rule emeasure-mono) unfolding G2-def using sets.sets-into-space[OF

‹G ∈ sets M ›] by auto
also have ... ≤ emeasure M G2 + emeasure M {x∈space M . real-cond-exp M

Invariants F2 x ≥ epsilon}
by (rule emeasure-subadditive, auto)

also have ... < emeasure M G2 + d
using ∗ by auto

finally have 1 − d < emeasure M G2
using emeasure-eq-measure ‹d ≤ 1 › by (auto intro!: ennreal-less-iff [THEN

iffD2 ] simp del: ennreal-plus simp add: ennreal-plus[symmetric])

have upper-asymptotic-density {n. ∃ l ∈ {k..n}. u n x − u (n−l) x ≤ − d ∗ l}
< d

if x ∈ G2 for x
proof −

have x ∈ G using ‹x ∈ G2 › unfolding G2-def by auto
have {n. ∃ l ∈ {k..n}. u n x − u (n−l) x ≤ − d ∗ l} ⊆ U x ∪ V x

unfolding U-def V-def by fastforce
then have upper-asymptotic-density {n. ∃ l ∈ {k..n}. u n x − u (n−l) x ≤ −

d ∗ l} ≤ upper-asymptotic-density (U x ∪ V x)
by (rule upper-asymptotic-density-subset)

also have ... ≤ upper-asymptotic-density (U x) + upper-asymptotic-density (V
x)

by (rule upper-asymptotic-density-union)
also have ... ≤ (2/d) ∗ real-cond-exp M Invariants F2 x

using densU [OF ‹x ∈ G›] densV [OF ‹x ∈ G›] by auto
also have ... < (2/d) ∗ epsilon

using ‹x ∈ G2 › unfolding G2-def by (simp add: divide-simps)

This is where the choice of ρ at the beginning of the proof is relevant: we
choose it so that the above term is at most d.

also have ... = d unfolding epsilon-def rho-def by auto
finally show ?thesis by simp

qed
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then have G2 ⊆ {x ∈ space M . upper-asymptotic-density {n. ∃ l ∈ {k..n}. u n
x − u (n−l) x ≤ − d ∗ l} < d}

using sets.sets-into-space[OF ‹G2 ∈ sets M ›] by blast
then have emeasure M G2 ≤ emeasure M {x ∈ space M . upper-asymptotic-density
{n. ∃ l ∈ {k..n}. u n x − u (n−l) x ≤ − d ∗ l} < d}

by (rule emeasure-mono, auto)
then have emeasure M {x ∈ space M . upper-asymptotic-density {n. ∃ l ∈ {k..n}.

u n x − u (n−l) x ≤ − d ∗ l} < d} > 1 −d
using ‹emeasure M G2 > 1 − d› by auto

then show ?thesis by blast
qed

The two previous lemmas are put together in the following lemma, corre-
sponding to Lemma 2.3 in [GK15].
lemma upper-density-delta:

fixes d::real
assumes d > 0 d ≤ 1
shows ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

emeasure M {x ∈ space M . ∀ (N ::nat). card {n ∈{..<N}. ∃ l ∈ {1 ..n}. u n
x − u (n−l) x ≤ − delta l ∗ l} ≤ d ∗ N} > 1 − d
proof −

define d2 where d2 = d/2
have [simp]: d2 > 0 unfolding d2-def using assms by simp
then have ¬ d2 < 0 using not-less [of d2 0 ] by (simp add: less-le)
have d2/2 > 0 by simp
obtain c0 where c0 : c0> (0 ::real) emeasure M {x ∈ space M . upper-asymptotic-density
{n. ∃ l ∈ {1 ..n}. u n x − u (n−l) x ≤ − c0 ∗ l} < d2/2} > 1 − (d2/2 )

using upper-density-all-times[OF ‹d2/2 > 0 ›] by blast
have ∃N . emeasure M {x ∈ space M . ∀n ≥ N . card ({n. ∃ l ∈ {1 ..n}. u n x −

u (n−l) x ≤ − c0 ∗ l} ∩ {..<n}) < (d2/2 ) ∗ n} > 1 − (d2/2 )
apply (rule upper-density-eventually-measure) using c0 (2 ) by auto

then obtain N1 where N1 : emeasure M {x ∈ space M . ∀B ≥ N1 . card ({n.
∃ l ∈ {1 ..n}. u n x − u (n−l) x ≤ − c0 ∗ l} ∩ {..<B}) < (d2/2 ) ∗ B} > 1 −
(d2/2 )

by blast
define O1 where O1 = {x ∈ space M . ∀B ≥ N1 . card ({n. ∃ l ∈ {1 ..n}. u n x
− u (n−l) x ≤ − c0 ∗ l} ∩ {..<B}) < (d2/2 ) ∗ B}

have [measurable]: O1 ∈ sets M unfolding O1-def by auto
have emeasure M O1 > 1 − (d2/2 ) unfolding O1-def using N1 by auto

have ∗: ∃N . emeasure M {x ∈ space M . ∀B ≥ N . card({n. ∃ l ∈ {N ..n}. u n x
− u (n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B} > 1 − e

if e>0 e ≤ 1 for e::real
proof −

obtain k where k: emeasure M {x ∈ space M . upper-asymptotic-density {n.
∃ l ∈ {k..n}. u n x − u (n−l) x ≤ − e ∗ l} < e} > 1 − e

using upper-density-large-k[OF ‹e>0 › ‹e ≤ 1 ›] by blast
then obtain N0 where N0 : emeasure M {x ∈ space M . ∀B ≥ N0 . card({n.

∃ l ∈ {k..n}. u n x − u (n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B} > 1 − e
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using upper-density-eventually-measure[OF - k] by auto
define N where N = max k N0
have emeasure M {x ∈ space M . ∀B ≥ N0 . card({n. ∃ l ∈ {k..n}. u n x − u

(n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B}
≤ emeasure M {x ∈ space M . ∀B ≥ N . card({n. ∃ l ∈ {N ..n}. u n x −

u (n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B}
proof (rule emeasure-mono, auto)

fix x B assume H : x ∈ space M ∀B≥N0 . card ({n. ∃ l∈{k..n}. u n x − u (n
− l) x ≤ − (e ∗ real l)} ∩ {..<B}) < e ∗ B N ≤ B

have card({n. ∃ l ∈ {N ..n}. u n x − u (n−l) x ≤ − (e ∗ real l)} ∩ {..<B})
≤ card({n. ∃ l ∈ {k..n}. u n x − u (n−l) x ≤ −(e ∗ real l)} ∩ {..<B})

unfolding N-def by (rule card-mono, auto)
then have real(card({n. ∃ l ∈ {N ..n}. u n x − u (n−l) x ≤ − (e ∗ real l)} ∩

{..<B})) ≤ card({n. ∃ l ∈ {k..n}. u n x − u (n−l) x ≤ −(e ∗ real l)} ∩ {..<B})
by simp

also have ... < e ∗ B using H (2 ) ‹B≥N › unfolding N-def by auto
finally show card ({n. ∃ l∈{N ..n}. u n x − u (n − l) x ≤ − (e ∗ real l)} ∩

{..<B}) < e ∗ B
by auto

qed
then have emeasure M {x ∈ space M . ∀B ≥ N . card({n. ∃ l ∈ {N ..n}. u n x

− u (n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B} > 1 − e
using N0 by simp

then show ?thesis by auto
qed

define Ne where Ne = (λ(e::real). SOME N . emeasure M {x ∈ space M . ∀B
≥ N . card({n. ∃ l ∈ {N ..n}. u n x − u (n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B}
> 1 − e)

have Ne: emeasure M {x ∈ space M . ∀B ≥ Ne e. card({n. ∃ l ∈ {Ne e..n}. u n
x − u (n−l) x ≤ − e ∗ l} ∩ {..<B}) < e ∗ B} > 1 − e

if e>0 e ≤ 1 for e::real
unfolding Ne-def by (rule someI-ex[OF ∗[OF that]])
define eps where eps = (λ(n::nat). d2 ∗ (1/2 )^n)
have [simp]: eps n > 0 for n unfolding eps-def by auto
then have [simp]: eps n ≥ 0 for n by (rule less-imp-le)

have eps n ≤ (1 / 2 ) ∗ 1 for n
unfolding eps-def d2-def
using ‹d ≤ 1 › by (intro mult-mono power-le-one) auto

also have . . . < 1 by auto
finally have [simp]: eps n < 1 for n by simp
then have [simp]: eps n ≤ 1 for n by (rule less-imp-le)

have (λn. d2 ∗ (1/2 )^n) −−−−→ d2 ∗ 0
by (rule tendsto-mult, auto simp add: LIMSEQ-realpow-zero)

then have eps −−−−→ 0 unfolding eps-def by auto
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define Nf where Nf = (λN . (if (N = 0 ) then 0
else if (N = 1 ) then N1 + 1
else max (N1+1 ) (Max {Ne(eps n)|n. n ≤ N}) + N ))

have Nf N < Nf (N+1 ) for N
proof −

consider N = 0 | N = 1 | N>1 by fastforce
then show ?thesis
proof (cases)

assume N>1
have Max {Ne (eps n) |n. n ≤ N} ≤ Max {Ne (eps n) |n. n ≤ Suc N}

by (rule Max-mono, auto)
then show ?thesis unfolding Nf-def by auto

qed (auto simp add: Nf-def )
qed
then have strict-mono Nf

using strict-mono-Suc-iff by auto

define On where On = (λ(N ::nat).
(if (N = 1 ) then O1
else {x ∈ space M . ∀B ≥ Nf N . card({n. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x

≤ − (eps N ) ∗ l} ∩ {..<B}) < (eps N ) ∗ B}))
have [measurable]: On N ∈ sets M for N unfolding On-def by auto
have emeasure M (On N ) > 1 − eps N if N>0 for N
proof −

consider N = 1 | N>1 using ‹N>0 › by linarith
then show ?thesis
proof (cases)

case 1
then show ?thesis unfolding On-def eps-def using ‹emeasure M O1 > 1 −

(d2/2 )› by auto
next

case 2
have Ne (eps N ) ≤ Max {Ne(eps n)|n. n ≤ N}

by (rule Max.coboundedI , auto)
also have ... ≤ Nf N unfolding Nf-def using ‹N>1 › by auto
finally have Ne (eps N ) ≤ Nf N by simp
have 1 − eps N < emeasure M {x ∈ space M . ∀B ≥ Ne(eps N ). card({n.

∃ l ∈ {Ne(eps N )..n}. u n x − u (n−l) x ≤ − (eps N ) ∗ l} ∩ {..<B}) < (eps N )
∗ B}

by (rule Ne) simp-all
also have ... ≤ emeasure M {x ∈ space M . ∀B ≥ Nf N . card({n. ∃ l ∈ {Nf

N ..n}. u n x − u (n−l) x ≤ − (eps N ) ∗ l} ∩ {..<B}) < (eps N ) ∗ B}
proof (rule emeasure-mono, auto)

fix x n assume H : x ∈ space M
∀n≥Ne (eps N ). card ({n. ∃ l∈{Ne (eps N )..n}. u n x − u

(n − l) x ≤ − (eps N ∗ l)} ∩ {..<n}) < eps N ∗ n
Nf N ≤ n

have card({n. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N ∗ l)} ∩
{..<n}) ≤ card({n. ∃ l ∈ {Ne(eps N )..n}. u n x − u (n−l) x ≤ −(eps N ) ∗ l} ∩
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{..<n})
apply (rule card-mono) using ‹Ne (eps N ) ≤ Nf N › by auto

then have real(card({n. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N ∗
l)} ∩ {..<n})) ≤ card({n. ∃ l ∈ {Ne(eps N )..n}. u n x − u (n−l) x ≤ −(eps N )
∗ l} ∩ {..<n})

by simp
also have ... < (eps N ) ∗ n using H (2 ) ‹n ≥ Nf N › ‹Ne (eps N ) ≤ Nf N ›

by auto
finally show real (card ({n. ∃ l∈{Nf N ..n}. u n x − u (n − l) x ≤ − (eps

N ∗ l)} ∩ {..<n})) < eps N ∗ real n
by auto

qed
also have ... = emeasure M (On N )

unfolding On-def using ‹N>1 › by auto
finally show ?thesis by simp

qed
qed
then have ∗: emeasure M (On (N+1 )) > 1 − eps (N+1 ) for N by simp

define Ogood where Ogood = (
⋂

N . On (N+1 ))
have [measurable]: Ogood ∈ sets M unfolding Ogood-def by auto
have emeasure M Ogood ≥ 1 − (

∑
N . eps(N+1 ))

unfolding Ogood-def
apply (intro emeasure-intersection, auto)

using ∗ by (auto simp add: eps-def summable-mult summable-divide summable-geometric
less-imp-le)

moreover have (
∑

N . eps(N+1 )) = d2
unfolding eps-def apply (subst suminf-mult)

using sums-unique[OF power-half-series, symmetric] by (auto intro!: summable-divide
summable-geometric)

finally have emeasure M Ogood ≥ 1 − d2 by simp
then have emeasure M Ogood > 1 − d unfolding d2-def using ‹d>0 › ‹d ≤

1 ›
by (simp add: emeasure-eq-measure field-sum-of-halves ennreal-less-iff )

have Ogood-union: Ogood = (
⋃

(K ::nat). Ogood ∩ {x ∈ space M . ∀n ∈ {1 ..Nf
1}. ∀ l ∈ {1 ..n}. u n x − u (n−l) x > − (real K ∗ l)})

apply auto using sets.sets-into-space[OF ‹Ogood ∈ sets M ›] apply blast
proof −

fix x
define M where M = Max {abs(u n x − u (n−l) x)/l | n l. n ∈ {1 ..Nf 1} ∧

l ∈ {1 ..n}}
obtain N ::nat where N > M using reals-Archimedean2 by blast

have finite { (n, l) | n l. n ∈ {1 ..Nf 1} ∧ l ∈ {1 ..n}}
by (rule finite-subset[where ?B = {1 .. Nf 1} × {1 ..Nf 1}], auto)

moreover have {abs(u n x − u (n−l) x)/l | n l. n ∈ {1 ..Nf 1} ∧ l ∈ {1 ..n}}
= (λ (n, l). abs(u n x − u (n−l) x)/l)‘ { (n, l) | n l. n ∈ {1 ..Nf 1} ∧ l ∈

{1 ..n}}
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by auto
ultimately have fin: finite {abs(u n x − u (n−l) x)/l | n l. n ∈ {1 ..Nf 1} ∧

l ∈ {1 ..n}}
by auto

{
fix n l assume nl: n ∈ {1 ..Nf 1} ∧ l ∈ {1 ..n}
then have real l>0 by simp
have abs(u n x − u (n−l) x)/l ≤ M

unfolding M-def apply (rule Max-ge) using fin nl by auto
then have abs(u n x − u (n−l) x)/l < real N using ‹N>M › by simp

then have abs(u n x − u (n−l) x)< real N ∗ l using ‹0 < real l›
pos-divide-less-eq by blast

then have u n x − u (n−l) x > − (real N ∗ l) by simp
}
then have ∀n∈{Suc 0 ..Nf (Suc 0 )}. ∀ l∈{Suc 0 ..n}. − (real N ∗ real l) < u

n x − u (n − l) x
by auto

then show ∃N . ∀n∈{Suc 0 ..Nf (Suc 0 )}. ∀ l∈{Suc 0 ..n}. − (real N ∗ real l)
< u n x − u (n − l) x

by auto
qed
have (λK . emeasure M (Ogood ∩ {x ∈ space M . ∀n ∈ {1 ..Nf 1}. ∀ l ∈ {1 ..n}.

u n x − u (n−l) x > − (real K ∗ l)}))
−−−−→ emeasure M (

⋃
(K ::nat). Ogood ∩ {x ∈ space M . ∀n ∈ {1 ..Nf 1}. ∀ l

∈ {1 ..n}. u n x − u (n−l) x > − (real K ∗ l)})
apply (rule Lim-emeasure-incseq, auto)
unfolding incseq-def apply auto
proof −

fix m n x na l
assume m ≤ (n::nat) ∀n∈{Suc 0 ..Nf (Suc 0 )}. ∀ l∈{Suc 0 ..n}. − (real m ∗

real l) < u n x − u (n − l) x
Suc 0 ≤ l l ≤ na na ≤ Nf (Suc 0 )

then have − (real m ∗ real l) < u na x − u (na − l) x by auto
moreover have − (real n ∗ real l) ≤ − (real m ∗ real l) using ‹m ≤ n› by

(simp add: mult-mono)
ultimately show − (real n ∗ real l) < u na x − u (na − l) x by auto

qed
moreover have emeasure M (

⋃
(K ::nat). Ogood ∩ {x ∈ space M . ∀n ∈ {1 ..Nf

1}. ∀ l ∈ {1 ..n}. u n x − u (n−l) x > − (real K ∗ l)}) > 1 − d
using Ogood-union ‹emeasure M Ogood > 1 − d› by auto

ultimately have a: eventually (λK . emeasure M (Ogood ∩ {x ∈ space M . ∀n ∈
{1 ..Nf 1}. ∀ l ∈ {1 ..n}. u n x − u (n−l) x > − (real K ∗ l)}) > 1 − d) sequentially

by (rule order-tendstoD(1 ))
have b: eventually (λK . K ≥ max c0 d2 ) sequentially

using eventually-at-top-linorder nat-ceiling-le-eq by blast
have eventually (λK . K ≥ max c0 d2 ∧ emeasure M (Ogood ∩ {x ∈ space M .
∀n ∈ {1 ..Nf 1}. ∀ l ∈ {1 ..n}. u n x − u (n−l) x > − (real K ∗ l)}) > 1 − d)
sequentially

by (rule eventually-elim2 [OF a b], auto)
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then obtain K where K : K≥max c0 d2 emeasure M (Ogood ∩ {x ∈ space M .
∀n ∈ {1 ..Nf 1}. ∀ l ∈ {1 ..n}. u n x − u (n−l) x > − (real K ∗ l)}) > 1 − d

using eventually-False-sequentially eventually-elim2 by blast

define Og where Og = Ogood ∩ {x ∈ space M . ∀n ∈ {1 ..Nf 1}. ∀ l ∈ {1 ..n}.
u n x − u (n−l) x > − (real K ∗ l)}

have [measurable]: Og ∈ sets M unfolding Og-def by simp
have emeasure M Og > 1 − d unfolding Og-def using K by simp

have fin: finite {N . Nf N ≤ n} for n
using pseudo-inverse-finite-set[OF filterlim-subseq[OF ‹strict-mono Nf ›]] by

auto
define prev-N where prev-N = (λn. Max {N . Nf N ≤ n})
define delta where delta = (λl. if (prev-N l ≤ 1 ) then K else eps (prev-N l))
have ∀ l. delta l > 0

unfolding delta-def using ‹K≥max c0 d2 › ‹c0>0 › by auto

have LIM n sequentially. prev-N n :> at-top
unfolding prev-N-def apply (rule tendsto-at-top-pseudo-inverse2 )
using ‹strict-mono Nf › by (simp add: filterlim-subseq)

then have eventually (λl. prev-N l > 1 ) sequentially
by (simp add: filterlim-iff )

then have eventually (λl. delta l = eps(prev-N l)) sequentially
unfolding delta-def by (simp add: eventually-mono)

moreover have (λl. eps(prev-N l)) −−−−→ 0
by (rule filterlim-compose[OF ‹eps −−−−→ 0 › ‹LIM n sequentially. prev-N n :>

at-top›])
ultimately have delta −−−−→ 0 by (simp add: filterlim-cong)

have delta n ≤ K for n
proof −

have ∗: d2 ∗ (1 / 2 ) ^ prev-N n ≤ real K ∗ 1
apply (rule mult-mono ′) using ‹K ≥ max c0 d2 › ‹d2>0 › by (auto simp add:

power-le-one less-imp-le)
then show ?thesis unfolding delta-def apply auto unfolding eps-def using

∗ by auto
qed

define bad-times where bad-times = (λx. {n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u
(n−l) x ≤ − (c0 ∗ l)} ∪

(
⋃

N∈{2 ..}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x
≤ − (eps N ∗ l)}))

have card-bad-times: card (bad-times x ∩ {..<B}) ≤ d2 ∗ B if x ∈ Og for x B
proof −

have (
∑

N∈{..<B}. (1/(2 ::real))^N ) ≤ (
∑

N . (1/2 )^N )
by (rule sum-le-suminf , auto simp add: summable-geometric)

also have ... = 2 using suminf-geometric[of 1/(2 ::real)] by auto
finally have ∗: (

∑
N∈{..<B}. (1/(2 ::real))^N ) ≤ 2 by simp
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have (
∑

N ∈ {2 ..<B}. eps N ∗ B) ≤ (
∑

N ∈ {2 ..<B+2}. eps N ∗ B)
by (rule sum-mono2 , auto)

also have ... = (
∑

N∈{2 ..<B+2}. d2 ∗ (1/2 )^N ∗ B)
unfolding eps-def by auto

also have ... = (
∑

N∈{..<B}. d2 ∗ (1/2 )^(N+2 ) ∗ B)
by (rule sum.reindex-bij-betw[symmetric],rule bij-betw-byWitness[where ?f ′

= λi. i−2 ], auto)
also have ... = (

∑
N∈{..<B}. (d2 ∗ (1/4 ) ∗ B) ∗ (1/2 )^N )

by (auto, metis (lifting) mult.commute mult.left-commute)
also have ... = (d2 ∗ (1/4 ) ∗ B) ∗ (

∑
N∈{..<B}. (1/2 )^N )

by (rule sum-distrib-left[symmetric])
also have ... ≤ (d2 ∗ (1/4 ) ∗ B) ∗ 2

apply (rule mult-left-mono) using ∗ ‹d2 > 0 › apply auto
by (metis ‹0 < d2 › mult-eq-0-iff mult-le-0-iff not-le of-nat-eq-0-iff of-nat-le-0-iff )
finally have I : (

∑
N ∈ {2 ..<B}. eps N ∗ B) ≤ d2/2 ∗ B

by auto

have x ∈ On 1 using ‹x ∈ Og› unfolding Og-def Ogood-def by auto
then have x ∈ O1 unfolding On-def by auto
have B1 : real(card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗

l)} ∩ {..<B})) ≤ (d2/2 ) ∗ B for B
proof (cases B ≥ N1 )

case True
have card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗ l)} ∩

{..<B})
≤ card({n. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗ l)} ∩ {..<B})
by (rule card-mono, auto)

also have ... ≤ (d2/2 ) ∗ B
using ‹x ∈ O1 › unfolding O1-def using True by auto

finally show ?thesis by auto
next

case False
then have B < Nf 1 unfolding Nf-def by auto
then have {n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗ l)} ∩

{..<B} = {}
by auto

then have card ({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗
l)} ∩ {..<B}) = 0

by auto
also have ... ≤ (d2/2 ) ∗ B

using ‹¬ d2 < 0 › by simp
finally show ?thesis by simp

qed

have BN : real(card ({n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ −
(eps N ∗ l)} ∩ {..<B})) ≤ eps N ∗ B if N ≥ 2 for N B

proof −
have x ∈ On ((N−1 ) + 1 ) using ‹x ∈ Og› unfolding Og-def Ogood-def by

auto
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then have x ∈ On N using ‹N≥2 › by auto
show ?thesis
proof (cases B ≥ Nf N )

case True
have card ({n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N

∗ l)} ∩ {..<B}) ≤
card ({n. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N ∗ l)} ∩ {..<B})
by (rule card-mono, auto)

also have ... ≤ eps N ∗ B
using ‹x ∈ On N › ‹N≥2 › True unfolding On-def by auto

finally show ?thesis by simp
next

case False
then have {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N

∗ l)} ∩ {..<B} = {}
by auto

then have card ({n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ −
(eps N ∗ l)} ∩ {..<B}) = 0

by auto
also have ... ≤ eps N ∗ B

by (metis ‹
∧

n. 0 < eps n› le-less mult-eq-0-iff mult-pos-pos of-nat-0
of-nat-0-le-iff )

finally show ?thesis by simp
qed

qed

{
fix N assume N ≥ B
have Nf N ≥ B using seq-suble[OF ‹strict-mono Nf ›, of N ] ‹N ≥ B› by

simp
then have {Nf N ..} ∩ {..<B} = {} by auto
then have {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N

∗ l)} ∩ {..<B} = {} by auto
}
then have ∗: (

⋃
N∈{B..}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x

≤ − (eps N ∗ l)} ∩ {..<B}) = {}
by auto

have {2 ..} ⊆ {2 ..<B} ∪ {B..} by auto
then have (

⋃
N∈{2 ..}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤

− (eps N ∗ l)} ∩ {..<B})
⊆ (

⋃
N∈{2 ..<B}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ −

(eps N ∗ l)} ∩ {..<B})
∪ (

⋃
N∈{B..}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps

N ∗ l)} ∩ {..<B})
by auto

also have ... = (
⋃

N∈{2 ..<B}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u
(n−l) x ≤ − (eps N ∗ l)} ∩ {..<B})

using ∗ by auto
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finally have ∗: bad-times x ∩ {..<B} ⊆ {n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u
(n−l) x ≤ − (c0 ∗ l)} ∩ {..<B}

∪ (
⋃

N∈{2 ..<B}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤
− (eps N ∗ l)} ∩ {..<B})

unfolding bad-times-def by auto
have card(bad-times x ∩ {..<B}) ≤ card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u

(n−l) x ≤ − (c0 ∗ l)} ∩ {..<B}
∪ (

⋃
N∈{2 ..<B}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ −

(eps N ∗ l)} ∩ {..<B}))
by (rule card-mono[OF - ∗], auto)

also have ... ≤ card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗
l)} ∩ {..<B}) +

card (
⋃

N∈{2 ..<B}. {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤
− (eps N ∗ l)} ∩ {..<B})

by (rule card-Un-le)
also have ... ≤ card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗

l)} ∩ {..<B}) +
(
∑

N∈{2 ..<B}. card ({n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤
− (eps N ∗ l)} ∩ {..<B}))

by (simp del: UN-simps, rule card-UN-le, auto)
finally have real (card(bad-times x ∩ {..<B})) ≤

real(card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗ l)} ∩
{..<B})

+ (
∑

N∈{2 ..<B}. card ({n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l)
x ≤ − (eps N ∗ l)} ∩ {..<B})))

by (subst of-nat-le-iff , simp)
also have ... = real(card({n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ −

(c0 ∗ l)} ∩ {..<B}))
+ (

∑
N∈{2 ..<B}. real(card ({n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u

(n−l) x ≤ − (eps N ∗ l)} ∩ {..<B})))
by auto

also have ... ≤ (d2/2 ∗ B) + (
∑

N∈{2 ..<B}. real(card ({n ∈ {Nf N ..}. ∃ l
∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N ∗ l)} ∩ {..<B})))

using B1 by simp
also have ... ≤ (d2/2 ∗ B) + (

∑
N ∈ {2 ..<B}. eps N ∗ B)

apply (simp, rule sum-mono) using BN by auto
also have ... ≤ (d2/2 ∗ B) + (d2/2∗B)

using I by auto
finally show ?thesis by simp

qed

have ineq-on-Og: u n x − u (n−l) x > − delta l ∗ l if l ∈ {1 ..n} n /∈ bad-times
x x ∈ Og for n x l

proof −
consider n < Nf 1 | n ≥ Nf 1 ∧ prev-N l ≤ 1 | n ≥ Nf 1 ∧ prev-N l ≥ 2 by

linarith
then show ?thesis
proof (cases)

assume n < Nf 1
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then have {N . Nf N ≤ n} = {0}
apply auto using ‹strict-mono Nf › unfolding strict-mono-def
apply (metis le-trans less-Suc0 less-imp-le-nat linorder-neqE-nat not-less)
unfolding Nf-def by auto

then have prev-N n = 0 unfolding prev-N-def by auto
moreover have prev-N l ≤ prev-N n
unfolding prev-N-def apply (rule Max-mono) using ‹l ∈ {1 ..n}› fin apply

auto
unfolding Nf-def by auto

ultimately have prev-N l = 0 using ‹prev-N l ≤ prev-N n› by auto
then have delta l = K unfolding delta-def by auto
have 1 /∈ {N . Nf N ≤ n} using fin[of n]
by (metis (full-types) Max-ge ‹prev-N n = 0 › fin not-one-le-zero prev-N-def )

then have n < Nf 1 by auto
moreover have n ≥ 1 using ‹l ∈ {1 ..n}› by auto
ultimately have n ∈ {1 ..Nf 1} by auto
then have u n x − u (n−l) x > − (real K ∗ l) using ‹x ∈ Og› unfolding

Og-def using ‹l ∈ {1 ..n}› by auto
then show ?thesis using ‹delta l = K › by auto

next
assume H : n ≥ Nf 1 ∧ prev-N l ≤ 1
then have delta l = K unfolding delta-def by auto
have n /∈ {n ∈ {Nf 1 ..}. ∃ l∈{1 ..n}. u n x − u (n−l) x ≤ − (c0 ∗ l)}

using ‹n /∈ bad-times x› unfolding bad-times-def by auto
then have u n x − u (n−l) x > − (c0 ∗ l)

using H ‹l ∈ {1 ..n}› by force
moreover have − (c0 ∗ l) ≥ − (real K ∗ l) using K (1 ) by (simp add:

mult-mono)
ultimately show ?thesis using ‹delta l = K › by auto

next
assume H : n ≥ Nf 1 ∧ prev-N l ≥ 2
define N where N = prev-N l
have N ≥ 2 unfolding N-def using H by auto
have prev-N l ∈ {N . Nf N ≤ l}

unfolding prev-N-def apply (rule Max-in, auto simp add: fin)
unfolding Nf-def by auto

then have Nf N ≤ l unfolding N-def by auto
then have Nf N ≤ n using ‹l ∈ {1 ..n}› by auto
have n /∈ {n ∈ {Nf N ..}. ∃ l ∈ {Nf N ..n}. u n x − u (n−l) x ≤ − (eps N ∗

l)}
using ‹n /∈ bad-times x› ‹N≥2 › unfolding bad-times-def by auto

then have u n x − u (n−l) x > − (eps N ∗ l)
using ‹Nf N ≤ n› ‹Nf N ≤ l› ‹l ∈ {1 ..n}› by force

moreover have eps N = delta l unfolding delta-def N-def using H by auto
ultimately show ?thesis by auto

qed
qed

have Og ⊆ {x ∈ space M . ∀ (B::nat). card {n ∈{..<B}. ∃ l ∈ {1 ..n}. u n x − u
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(n−l) x ≤ − delta l ∗ l} ≤ d ∗ B}
proof (auto)

fix x assume x ∈ Og
then show x ∈ space M unfolding Og-def by auto

next
fix x B assume x ∈ Og
have ∗: {n. n < B ∧ (∃ l∈{Suc 0 ..n}. u n x − u (n − l) x ≤ − (delta l ∗ real

l))} ⊆ bad-times x ∩ {..<B}
using ineq-on-Og ‹x∈Og› by force

have card {n. n < B ∧ (∃ l∈{Suc 0 ..n}. u n x − u (n − l) x ≤ − (delta l ∗
real l))} ≤ card (bad-times x ∩ {..<B})

apply (rule card-mono, simp) using ∗ by auto
also have ... ≤ d2 ∗ B using card-bad-times ‹x ∈ Og› by auto
also have ... ≤ d ∗ B unfolding d2-def using ‹d>0 › by auto
finally show card {n. n < B ∧ (∃ l∈{Suc 0 ..n}. u n x − u (n − l) x ≤ −

(delta l ∗ real l))} ≤ d ∗ B
by simp

qed
then have emeasure M Og ≤ emeasure M {x ∈ space M . ∀ (B::nat). card {n
∈{..<B}. ∃ l ∈ {1 ..n}. u n x − u (n−l) x ≤ − delta l ∗ l} ≤ d ∗ B}

by (rule emeasure-mono, auto)
then have emeasure M {x ∈ space M . ∀ (B::nat). card {n ∈{..<B}. ∃ l ∈ {1 ..n}.

u n x − u (n−l) x ≤ − delta l ∗ l} ≤ d ∗ B} > 1−d
using ‹emeasure M Og > 1 − d› by auto

then show ?thesis using ‹delta −−−−→ 0 › ‹∀ l. delta l > 0 › by auto
qed

We go back to the natural time direction, by using the previous result for
the inverse map and the inverse subcocycle, and a change of variables argu-
ment. The price to pay is that the estimates we get are weaker: we have a
control on a set of upper asymptotic density close to 1, while having a set of
lower asymptotic density close to 1 as before would be stronger. This will
nevertheless be sufficient for our purposes below.
lemma upper-density-good-direction-invertible:

assumes invertible-qmpt
d>(0 ::real) d ≤ 1

shows ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧
emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n

x − u (n−l) ((T^^l) x) > − delta l ∗ l} ≥ 1−d} ≥ ennreal(1−d)
proof −

interpret I : Gouezel-Karlsson-Kingman M Tinv (λn x. u n ((Tinv^^n) x))
proof

show Tinv ∈ quasi-measure-preserving M M
using Tinv-qmpt[OF ‹invertible-qmpt›] unfolding qmpt-def qmpt-axioms-def

by simp
show Tinv ∈ measure-preserving M M
using Tinv-mpt[OF ‹invertible-qmpt›] unfolding mpt-def mpt-axioms-def by

simp
show mpt.subcocycle M Tinv (λn x. u n ((Tinv ^^ n) x))
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using subcocycle-u-Tinv[OF subu ‹invertible-qmpt›] by simp
show − ∞ < subcocycle-avg-ereal (λn x. u n ((Tinv ^^ n) x))

using subcocycle-avg-ereal-Tinv[OF subu ‹invertible-qmpt›] subu-fin by simp
show AE x in M . fmpt.subcocycle-lim M Tinv (λn x. u n ((Tinv ^^ n) x)) x =

0
using subcocycle-lim-Tinv[OF subu ‹invertible-qmpt›] subu-0 by auto

qed
have bij: bij T using ‹invertible-qmpt› unfolding invertible-qmpt-def by simp

define e where e = d ∗ d / 2
have e>0 e≤1 unfolding e-def using ‹d>0 › ‹d ≤ 1 ›

by (auto, meson less-imp-le mult-left-le one-le-numeral order-trans)
obtain delta::nat ⇒ real where d:

∧
l. delta l > 0

delta −−−−→ 0
emeasure M {x ∈ space M . ∀N .
card {n ∈ {..<N}. ∃ l∈{1 ..n}. u n ((Tinv ^^ n) x) − u (n − l) ((Tinv ^^

(n − l)) x) ≤ − delta l ∗ real l} ≤ e ∗ real N}
> 1−e

using I .upper-density-delta[OF ‹e>0 › ‹e≤1 ›] by blast

define S where S = {x ∈ space M . ∀N .
card {n ∈ {..<N}. ∃ l∈{1 ..n}. u n ((Tinv ^^ n) x) − u (n − l) ((Tinv ^^

(n − l)) x) ≤ − delta l ∗ real l} ≤ e ∗ real N}
have [measurable]: S ∈ sets M unfolding S-def by auto
have emeasure M S > 1 − e unfolding S-def using d(3 ) by simp

define Og where Og = (λn. {x ∈ space M . ∀ l∈{1 ..n}. u n ((Tinv ^^ n) x) −
u (n − l) ((Tinv ^^ (n − l)) x) > − delta l ∗ real l})

have [measurable]: Og n ∈ sets M for n unfolding Og-def by auto
define Pg where Pg = (λn. {x ∈ space M . ∀ l∈{1 ..n}. u n x − u (n − l) ((T^^l)

x) > − delta l ∗ real l})
have [measurable]: Pg n ∈ sets M for n unfolding Pg-def by auto

define Bad where Bad = (λi::nat. {x ∈ space M . ∀N≥i. card {n ∈ {..<N}. x
∈ Pg n} ≤ (1−d) ∗ real N})

have [measurable]: Bad i ∈ sets M for i unfolding Bad-def by auto
then have range Bad ⊆ sets M by auto
have incseq Bad

unfolding Bad-def incseq-def by auto
have inc: {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n x − u

(n−l) ((T^^l) x) > − delta l ∗ l} < 1−d}
⊆ (

⋃
i. Bad i)

proof
fix x assume H : x ∈ {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}.

u n x − u (n−l) ((T^^l) x) > − delta l ∗ l} < 1−d}
then have x ∈ space M by simp
define A where A = {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) > − delta

l ∗ l}
have upper-asymptotic-density A < 1−d using H unfolding A-def by simp
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then have ∃ i. ∀N≥i. card (A ∩ {..<N}) ≤ (1−d)∗ real N
using upper-asymptotic-densityD[of A 1−d] by (metis (no-types, lifting)

eventually-sequentially less-imp-le)
then obtain i where card (A ∩ {..<N}) ≤ (1−d)∗ real N if N≥i for N by

blast
moreover have A ∩ {..<N} = {n. n<N ∧ (∀ l ∈ {1 ..n}. u n x − u (n−l)

((T^^l) x) > − delta l ∗ l)} for N
unfolding A-def by auto

ultimately have x ∈ Bad i unfolding Bad-def Pg-def using ‹x ∈ space M ›
by auto

then show x ∈ (
⋃

i. Bad i) by blast
qed

have emeasure M (Og n) ≤ emeasure M (Pg n) for n
proof −

have ∗: (T^^n)−‘(Og n) ∩ space M ⊆ Pg n for n
proof

fix x assume x: x ∈ (T^^n)−‘(Og n) ∩ space M
define y where y = (T^^n) x
then have y ∈ Og n using x by auto
have y ∈ space M using sets.sets-into-space[OF ‹Og n ∈ sets M ›] ‹y ∈ Og

n› by auto
have x = (Tinv^^n) y

unfolding y-def Tinv-def using inv-fn-o-fn-is-id[OF bij, of n] by (metis
comp-apply)

{
fix l assume l ∈ {1 ..n}
have (T^^l) x = (T^^l) ((Tinv^^l) ((Tinv^^(n−l))y))

apply (subst ‹x = (Tinv^^n) y›) using funpow-add[of l n−l Tinv] ‹l ∈
{1 ..n}› by fastforce

then have ∗: (T^^l) x = (Tinv^^(n−l)) y
unfolding Tinv-def using fn-o-inv-fn-is-id[OF bij] by (metis comp-apply)
then have u n x − u (n−l) ((T^^l) x) = u n ((Tinv^^n) y) − u (n−l)

((Tinv^^(n−l)) y)
using ‹x = (Tinv^^n) y› by auto

also have ... > − delta l ∗ real l
using ‹y ∈ Og n› ‹l ∈ {1 ..n}› unfolding Og-def by auto

finally have u n x − u (n−l) ((T^^l) x) > − delta l ∗ real l by simp
}
then show x ∈ Pg n

unfolding Pg-def using x by auto
qed
have emeasure M (Og n) = emeasure M ((T^^n)−‘(Og n) ∩ space M )

using T-vrestr-same-emeasure(2 ) unfolding vimage-restr-def by auto
also have ... ≤ emeasure M (Pg n)

apply (rule emeasure-mono) using ∗ by auto
finally show ?thesis by simp

qed
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{
fix N ::nat assume N ≥ 1
have I : card {n∈{..<N}. x ∈ Og n} ≥ (1−e) ∗ real N if x ∈ S for x
proof −

have x ∈ space M using ‹x ∈ S› sets.sets-into-space[OF ‹S ∈ sets M ›] by
auto

have a: real (card {n. n < N ∧ (∃ l∈{Suc 0 ..n}. u n ((Tinv ^^ n) x) − u (n
− l) ((Tinv ^^ (n − l)) x) ≤ − (delta l ∗ real l))}) ≤ e ∗ real N

using ‹x ∈ S› unfolding S-def by auto
have ∗: {n. n < N} = {n. n < N ∧ (∃ l∈{Suc 0 ..n}. u n ((Tinv ^^ n) x) −

u (n − l) ((Tinv ^^ (n − l)) x) ≤ − (delta l ∗ real l))}
∪ {n. n < N ∧ x ∈ Og n} unfolding Og-def using ‹x ∈ space M ›

by (auto, meson atLeastAtMost-iff linorder-not-le)
have N = card {n. n < N} by auto
also have ... = card {n. n < N ∧ (∃ l∈{Suc 0 ..n}. u n ((Tinv ^^ n) x) − u

(n − l) ((Tinv ^^ (n − l)) x) ≤ − (delta l ∗ real l))}
+ card {n. n < N ∧ x ∈ Og n}

apply (subst ∗, rule card-Un-disjoint) unfolding Og-def by auto
ultimately have real N ≤ e ∗ real N + card {n. n < N ∧ x ∈ Og n}

using a by auto
then show ?thesis

by (auto simp add: algebra-simps)
qed

define m where m = measure M (Bad N )
have m ≥ 0 1−m ≥ 0 unfolding m-def by auto

have ∗: 1−e ≤ emeasure M S using ‹emeasure M S > 1 − e› by auto
have ennreal((1−e) ∗ ((1−e) ∗ real N )) = ennreal(1−e) ∗ ennreal((1−e) ∗

real N )
apply (rule ennreal-mult) using ‹e ≤ 1 › by auto

also have ... ≤ emeasure M S ∗ ennreal((1−e) ∗ real N )
using mult-right-mono[OF ∗] by simp

also have ... = (
∫

+ x∈S . ((1−e) ∗ real N ) ∂M )
by (metis ‹S ∈ events› mult.commute nn-integral-cmult-indicator)

also have ... ≤ (
∫

+x ∈ S . ennreal(card {n∈{..<N}. x ∈ Og n}) ∂M )
apply (rule nn-integral-mono) using I unfolding indicator-def by (simp)

also have ... ≤ (
∫

+x ∈ space M . ennreal(card {n∈{..<N}. x ∈ Og n}) ∂M )
by (rule nn-set-integral-set-mono, simp only: sets.sets-into-space[OF ‹S ∈ sets

M ›])
also have ... = (

∫
+x. ennreal(card {n∈{..<N}. x ∈ Og n}) ∂M )

by (rule nn-set-integral-space)
also have ... = (

∫
+x. ennreal (

∑
n∈{..<N}. ((indicator (Og n) x)::nat)) ∂M )

apply (rule nn-integral-cong) using sum-indicator-eq-card2 [of {..<N} Og]
by auto

also have ... = (
∫

+x. (
∑

n∈{..<N}. indicator (Og n) x) ∂M )
apply (rule nn-integral-cong, auto, simp only: sum-ennreal[symmetric])

by (metis ennreal-0 ennreal-eq-1 indicator-eq-1-iff indicator-simps(2 ) real-of-nat-indicator)
also have ... = (

∑
n ∈{..<N}. (

∫
+x. (indicator (Og n) x) ∂M ))
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by (rule nn-integral-sum, simp)
also have ... = (

∑
n ∈{..<N}. emeasure M (Og n))

by simp
also have ... ≤ (

∑
n ∈{..<N}. emeasure M (Pg n))

apply (rule sum-mono) using ‹
∧

n. emeasure M (Og n) ≤ emeasure M (Pg
n)› by simp

also have ... = (
∑

n ∈{..<N}. (
∫

+x. (indicator (Pg n) x) ∂M ))
by simp

also have ... = (
∫

+x. (
∑

n∈{..<N}. indicator (Pg n) x) ∂M )
by (rule nn-integral-sum[symmetric], simp)

also have ... = (
∫

+x. ennreal (
∑

n∈{..<N}. ((indicator (Pg n) x)::nat)) ∂M )
apply (rule nn-integral-cong, auto, simp only: sum-ennreal[symmetric])

by (metis ennreal-0 ennreal-eq-1 indicator-eq-1-iff indicator-simps(2 ) real-of-nat-indicator)
also have ... = (

∫
+x. ennreal(card {n∈{..<N}. x ∈ Pg n}) ∂M )

apply (rule nn-integral-cong) using sum-indicator-eq-card2 [of {..<N} Pg]
by auto

also have ... = (
∫

+x ∈ space M . ennreal(card {n∈{..<N}. x ∈ Pg n}) ∂M )
by (rule nn-set-integral-space[symmetric])

also have ... = (
∫

+x ∈ Bad N ∪ (space M − Bad N ). ennreal(card {n∈{..<N}.
x ∈ Pg n}) ∂M )

apply (rule nn-integral-cong) unfolding indicator-def by auto
also have ... = (

∫
+x ∈ Bad N . ennreal(card {n∈{..<N}. x ∈ Pg n}) ∂M )

+ (
∫

+x ∈ space M − Bad N . ennreal(card {n∈{..<N}. x ∈ Pg
n}) ∂M )

by (rule nn-integral-disjoint-pair , auto)
also have ... ≤ (

∫
+x ∈ Bad N . ennreal((1−d) ∗ real N ) ∂M ) + (

∫
+x ∈ space

M − Bad N . ennreal(real N ) ∂M )
apply (rule add-mono)
apply (rule nn-integral-mono, simp add: Bad-def indicator-def , auto)
apply (rule nn-integral-mono, simp add: indicator-def , auto)
using card-Collect-less-nat[of N ] card-mono[of {n. n < N}] by (simp add:

Collect-mono-iff )
also have ... = ennreal((1−d) ∗ real N ) ∗ emeasure M (Bad N ) + ennreal(real

N ) ∗ emeasure M (space M − Bad N )
by (simp add: nn-integral-cmult-indicator)

also have ... = ennreal((1−d) ∗ real N ) ∗ ennreal(m) + ennreal(real N ) ∗
ennreal(1−m)

unfolding m-def by (simp add: emeasure-eq-measure prob-compl)
also have ... = ennreal((1−d) ∗ real N ∗ m + real N ∗ (1−m))

using ‹m ≥ 0 › ‹1−m ≥ 0 › ‹d ≤ 1 › ennreal-plus ennreal-mult by auto
finally have ennreal((1−e) ∗ ((1−e) ∗ real N )) ≤ ennreal((1−d) ∗ real N ∗

m + real N ∗ (1−m))
by simp

moreover have (1−d) ∗ real N ∗ m + real N ∗ (1−m) ≥ 0
using ‹m ≥ 0 › ‹1−m ≥ 0 › ‹d ≤ 1 › by auto

ultimately have (1−e) ∗ ((1−e) ∗ real N ) ≤ (1−d) ∗ real N ∗ m + real N
∗ (1−m)

using ennreal-le-iff by auto
then have 0 ≤ (e ∗ 2 − d ∗ m − e ∗ e) ∗ real N
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by (auto simp add: algebra-simps)
then have 0 ≤ e ∗ 2 − d ∗ m − e ∗ e

using ‹N ≥ 1 › by (simp add: zero-le-mult-iff )
also have ... ≤ e ∗ 2 − d ∗ m

using ‹e > 0 › by auto
finally have m ≤ e ∗ 2 / d

using ‹d>0 › by (auto simp add: algebra-simps divide-simps)
then have m ≤ d

unfolding e-def using ‹d>0 › by (auto simp add: divide-simps)
then have emeasure M (Bad N ) ≤ d

unfolding m-def by (simp add: emeasure-eq-measure ennreal-leI )
}
then have emeasure M (

⋃
i. Bad i) ≤ d

using LIMSEQ-le-const2 [OF Lim-emeasure-incseq[OF ‹range Bad ⊆ sets M ›
‹incseq Bad›]] by auto

then have emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}.
u n x − u (n−l) ((T^^l) x) > − delta l ∗ l} < 1−d} ≤ d

using emeasure-mono[OF inc, of M ] by auto
then have ∗: measure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈
{1 ..n}. u n x − u (n−l) ((T^^l) x) > − delta l ∗ l} < 1−d} ≤ d

using emeasure-eq-measure ‹d>0 › by fastforce

have {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n x − u (n−l)
((T^^l) x) > − delta l ∗ l} ≥ 1−d}

= space M − {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n
x − u (n−l) ((T^^l) x) > − delta l ∗ l} < 1−d}

by auto
then have measure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}.

u n x − u (n−l) ((T^^l) x) > − delta l ∗ l} ≥ 1−d}
= measure M (space M − {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈

{1 ..n}. u n x − u (n−l) ((T^^l) x) > − delta l ∗ l} < 1−d})
by simp

also have ... = measure M (space M )
− measure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n x

− u (n−l) ((T^^l) x) > − delta l ∗ l} < 1−d}
by (rule measure-Diff , auto)

also have ... ≥ 1 − d
using ∗ prob-space by linarith

finally have emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈
{1 ..n}. u n x − u (n−l) ((T^^l) x) > − delta l ∗ l} ≥ 1−d} ≥ 1 − d

using emeasure-eq-measure by auto
then show ?thesis using d(1 ) d(2 ) by blast

qed

Now, we want to remove the invertibility assumption in the previous lemma.
The idea is to go to the natural extension of the system, use the result there
and project it back. However, if the system is not defined on a polish space,
there is no reason why it should have a natural extension, so we have first
to project the original system on a polish space on which the subcocycle is
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defined. This system is obtained by considering the joint distribution of the
subcocycle and all its iterates (this is indeed a polish system, as a space of
functions from N2 to R).
lemma upper-density-good-direction:

assumes d>(0 ::real) d ≤ 1
shows ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n
x − u (n−l) ((T^^l) x) > − delta l ∗ l} ≥ 1−d} ≥ ennreal(1−d)
proof −

define U where U = (λx. (λn. u n x))
define projJ where projJ = (λx. (λn. U ((T^^n)x)))
define MJ where MJ = (distr M borel (λx. (λn. U ((T^^n)x))))
define TJ ::(nat ⇒ nat ⇒ real)⇒ (nat ⇒ nat ⇒ real) where TJ = nat-left-shift
have ∗: mpt-factor projJ MJ TJ

unfolding projJ-def MJ-def TJ-def apply (rule fmpt-factor-projection)
unfolding U-def by (rule measurable-coordinatewise-then-product, simp)

interpret J : polish-pmpt MJ TJ
unfolding projJ-def polish-pmpt-def apply (auto)
apply (rule pmpt-factor) using ∗ apply simp
unfolding polish-pmpt-axioms-def MJ-def by auto

have [simp]: projJ ∈ measure-preserving M MJ using mpt-factorE(1 )[OF ∗] by
simp
then have [measurable]: projJ ∈ measurable M MJ by (simp add: measure-preservingE(1 ))

We define a subcocycle uJ in the projection corresponding to the original
subcocycle u above. (With the natural definition, it is only a subcocycle
almost everywhere.) We check that it shares most properties of u.

define uJ ::nat ⇒ (nat ⇒ nat ⇒ real) ⇒ real where uJ = (λn x. x 0 n)
have [measurable]: uJ n ∈ borel-measurable borel for n
unfolding uJ-def by (metis measurable-product-coordinates measurable-product-then-coordinatewise)

moreover have measurable borel borel = measurable MJ borel
apply (rule measurable-cong-sets) unfolding MJ-def by auto

ultimately have [measurable]: uJ n ∈ borel-measurable MJ for n by fast
have uJ-proj: u n x = uJ n (projJ x) for n x

unfolding uJ-def projJ-def U-def by auto
have uJ-int: integrable MJ (uJ n) for n
apply (rule measure-preserving-preserves-integral ′(1 )[OF ‹projJ ∈ measure-preserving

M MJ ›])
apply (subst uJ-proj[of n, symmetric]) using int-u[of n] by auto

have uJ-int2 : (
∫

x. uJ n x ∂MJ ) = (
∫

x. u n x ∂M ) for n
unfolding uJ-proj

apply (rule measure-preserving-preserves-integral ′(2 )[OF ‹projJ ∈ measure-preserving
M MJ ›])

apply (subst uJ-proj[of n, symmetric]) using int-u[of n] by auto
have uJ-AE : AE x in MJ . uJ (n+m) x ≤ uJ n x + uJ m ((TJ^^n) x) for m n
proof −
have AE x in M . uJ (n+m) (projJ x) ≤ uJ n (projJ x) + uJ m (projJ ((T^^n)

x))

300



unfolding uJ-proj[symmetric] using subcocycle-ineq[OF subu] by auto
moreover have AE x in M . projJ ((T^^n) x) = (TJ^^n) (projJ x)

using qmpt-factor-iterates[OF mpt-factor-is-qmpt-factor [OF ∗]] by auto
ultimately have ∗: AE x in M . uJ (n+m) (projJ x) ≤ uJ n (projJ x) + uJ m

((TJ^^n) (projJ x))
by auto

show ?thesis
apply (rule quasi-measure-preserving-AE ′[OF measure-preserving-is-quasi-measure-preserving[OF

‹projJ ∈ measure-preserving M MJ ›], OF ∗])
by auto

qed
have uJ-0 : AE x in MJ . (λn. uJ n x / n) −−−−→ 0
proof −

have AE x in M . (λn. u n x / n) −−−−→ subcocycle-lim u x
by (rule kingman-theorem-nonergodic(1 )[OF subu subu-fin])

moreover have AE x in M . subcocycle-lim u x = 0
using subu-0 by simp

ultimately have ∗: AE x in M . (λn. uJ n (projJ x) / n) −−−−→ 0
unfolding uJ-proj by auto

show ?thesis
apply (rule quasi-measure-preserving-AE ′[OF measure-preserving-is-quasi-measure-preserving[OF

‹projJ ∈ measure-preserving M MJ ›], OF ∗])
by auto

qed

Then, we go to the natural extension of TJ , to have an invertible system.
define MI where MI = J .natural-extension-measure
define TI where TI = J .natural-extension-map
define projI where projI = J .natural-extension-proj
interpret I : pmpt MI TI unfolding MI-def TI-def by (rule J .natural-extension(1 ))
have I .mpt-factor projI MJ TJ unfolding projI-def

using I .mpt-factorE(1 ) J .natural-extension(3 ) MI-def TI-def by auto
then have [simp]: projI ∈ measure-preserving MI MJ using I .mpt-factorE(1 )

by auto
then have [measurable]: projI ∈ measurable MI MJ by (simp add: measure-preservingE(1 ))
have I .invertible-qmpt

using J .natural-extension(2 ) MI-def TI-def by auto

We define a natural subcocycle uI there, and check its properties.
define uI where uI-proj: uI = (λn x. uJ n (projI x))
have [measurable]: uI n ∈ borel-measurable MI for n unfolding uI-proj by auto
have uI-int: integrable MI (uI n) for n

unfolding uI-proj by (rule measure-preserving-preserves-integral(1 )[OF ‹projI
∈ measure-preserving MI MJ › uJ-int])

have (
∫

x. uJ n x ∂MJ ) = (
∫

x. uI n x ∂MI ) for n
unfolding uI-proj by (rule measure-preserving-preserves-integral(2 )[OF ‹projI

∈ measure-preserving MI MJ › uJ-int])
then have uI-int2 : (

∫
x. uI n x ∂MI ) = (

∫
x. u n x ∂M ) for n

using uJ-int2 by simp
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have uI-AE : AE x in MI . uI (n+m) x ≤ uI n x + uI m (((TI )^^n) x) for m n
proof −

have AE x in MI . uJ (n+m) (projI x) ≤ uJ n (projI x) + uJ m (((TJ )^^n)
(projI x))

apply (rule quasi-measure-preserving-AE [OF measure-preserving-is-quasi-measure-preserving[OF
‹projI ∈ measure-preserving MI MJ ›]])

using uJ-AE by auto
moreover have AE x in MI . ((TJ )^^n) (projI x) = projI (((TI )^^n) x)
using I .qmpt-factor-iterates[OF I .mpt-factor-is-qmpt-factor [OF ‹I .mpt-factor

projI MJ TJ ›]]
by auto

ultimately show ?thesis unfolding uI-proj by auto
qed
have uI-0 : AE x in MI . (λn. uI n x / n) −−−−→ 0

unfolding uI-proj
apply (rule quasi-measure-preserving-AE [OF measure-preserving-is-quasi-measure-preserving[OF

‹projI ∈ measure-preserving MI MJ ›]])
using uJ-0 by simp

As uI is only a subcocycle almost everywhere, we correct it to get a genuine
subcocycle, to which we will apply Lemma upper_density_good_direction_invertible.

obtain vI where H : I .subcocycle vI AE x in MI . ∀n. vI n x = uI n x
using I .subcocycle-AE [OF uI-AE uI-int] by blast

have [measurable]:
∧

n. vI n ∈ borel-measurable MI
∧

n. integrable MI (vI n)
using I .subcocycle-integrable[OF H (1 )] by auto

have (
∫

x. vI n x ∂MI ) = (
∫

x. uI n x ∂MI ) for n
apply (rule integral-cong-AE) using H (2 ) by auto

then have (
∫

x. vI n x ∂MI ) = (
∫

x. u n x ∂M ) for n
using uI-int2 by simp

then have I .subcocycle-avg-ereal vI = subcocycle-avg-ereal u
unfolding I .subcocycle-avg-ereal-def subcocycle-avg-ereal-def by auto

then have vI-fin: I .subcocycle-avg-ereal vI > −∞ using subu-fin by simp
have AE x in MI . (λn. vI n x / n) −−−−→ 0

using uI-0 H (2 ) by auto
moreover have AE x in MI . (λn. vI n x / n) −−−−→ I .subcocycle-lim vI x

by (rule I .kingman-theorem-nonergodic(1 )[OF H (1 ) vI-fin])
ultimately have vI-0 : AE x in MI . I .subcocycle-lim vI x = 0

using LIMSEQ-unique by auto

interpret GKK : Gouezel-Karlsson-Kingman MI TI vI
apply standard
using H (1 ) vI-fin vI-0 by auto

obtain delta where delta:
∧

l. delta l > 0 delta −−−−→ 0
emeasure MI {x ∈ space MI . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta

l ∗ real l < vI n x − vI (n − l) ((TI ^^ l) x)} ≥ 1 − d } ≥ 1 − d
using GKK .upper-density-good-direction-invertible[OF ‹I .invertible-qmpt› ‹d>0 ›

‹d≤1 ›] by blast

Then, we need to go back to the original system, showing that the estimates
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for TI carry over. First, we go to TJ .
have BJ : emeasure MJ {x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}.
− delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d } ≥ 1 − d

proof −
have ∗: AE x in MI . uJ n (projI x) = vI n x for n

using uI-proj H (2 ) by auto
have ∗∗: AE x in MI . ∀n. uJ n (projI x) = vI n x

by (subst AE-all-countable, auto intro: ∗)
have AE x in MI . ∀m n. uJ n (projI ((TI^^m) x)) = vI n ((TI^^m) x)

by (rule I .T-AE-iterates[OF ∗∗])
then have AE x in MI . (∀m n. uJ n (projI ((TI^^m) x)) = vI n ((TI^^m)

x)) ∧ (∀n. projI ((TI^^n) x) = (TJ^^n) (projI x))
using I .qmpt-factor-iterates[OF I .mpt-factor-is-qmpt-factor [OF ‹I .mpt-factor

projI MJ TJ ›]] by auto
then obtain ZI where ZI :

∧
x. x ∈ space MI − ZI =⇒ (∀m n. uJ n (projI

((TI^^m) x)) = vI n ((TI^^m) x)) ∧ (∀n. projI ((TI^^n) x) = (TJ^^n) (projI
x))

ZI ∈ null-sets MI
using AE-E3 by blast

have ∗: uJ n (projI x) − uJ (n − l) ((TJ ^^ l) (projI x)) = vI n x − vI (n −
l) ((TI ^^ l) x) if x ∈ space MI − ZI for x n l

proof −
have (TI^^0 ) x = x (TJ^^0 ) (projI x) = (projI x) by auto
then show ?thesis using ZI (1 )[OF that] by metis

qed
have projI−‘{x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta

l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d} ∩ space MI − ZI
= {x ∈ space MI − ZI . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta

l ∗ real l < uJ n (projI x) − uJ (n − l) ((TJ ^^ l) (projI x))} ≥ 1 − d}
by (auto simp add: measurable-space[OF ‹projI ∈ measurable MI MJ ›])

also have ... = {x ∈ space MI − ZI . upper-asymptotic-density {n. ∀ l∈{1 ..n}.
− delta l ∗ real l < vI n x − vI (n − l) ((TI ^^ l) x)} ≥ 1 − d}

using ∗ by auto
also have ... = {x ∈ space MI . upper-asymptotic-density {n. ∀ l∈{1 ..n}. −

delta l ∗ real l < vI n x − vI (n − l) ((TI ^^ l) x)} ≥ 1 − d} − ZI
by auto

finally have ∗: projI−‘{x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}.
− delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d} ∩ space MI −
ZI

= {x ∈ space MI . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta l ∗ real l
< vI n x − vI (n − l) ((TI ^^ l) x)} ≥ 1 − d} − ZI

by simp

have emeasure MJ {x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}. −
delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d}

= emeasure MI (projI−‘{x ∈ space MJ . upper-asymptotic-density {n.
∀ l∈{1 ..n}. − delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d} ∩
space MI )
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by (rule measure-preservingE(2 )[symmetric], auto)
also have ... = emeasure MI ((projI−‘{x ∈ space MJ . upper-asymptotic-density

{n. ∀ l∈{1 ..n}. − delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d}
∩ space MI ) − ZI )

by (rule emeasure-Diff-null-set[OF ‹ZI ∈ null-sets MI ›, symmetric], measur-
able)

also have ... = emeasure MI ({x ∈ space MI . upper-asymptotic-density {n.
∀ l∈{1 ..n}. − delta l ∗ real l < vI n x − vI (n − l) ((TI ^^ l) x)} ≥ 1 − d} −
ZI )

using ∗ by simp
also have ... = emeasure MI {x ∈ space MI . upper-asymptotic-density {n.

∀ l∈{1 ..n}. − delta l ∗ real l < vI n x − vI (n − l) ((TI ^^ l) x)} ≥ 1 − d}
by (rule emeasure-Diff-null-set[OF ‹ZI ∈ null-sets MI ›], measurable)

also have ... ≥ 1−d
using delta(3 ) by simp

finally show ?thesis by simp
qed

Then, we go back to T with virtually the same argument.
have emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l∈{1 ..n}. −

delta l ∗ real l < u n x − u (n − l) ((T ^^ l) x)} ≥ 1 − d } ≥ 1 − d
proof −

obtain Z where Z :
∧

x. x ∈ space M − Z =⇒ (∀n. projJ ((T^^n) x) =
(TJ^^n) (projJ x))

Z ∈ null-sets M
using AE-E3 [OF qmpt-factor-iterates[OF mpt-factor-is-qmpt-factor [OF ‹mpt-factor

projJ MJ TJ ›]]] by blast

have ∗: uJ n (projJ x) − uJ (n − l) ((TJ ^^ l) (projJ x)) = u n x − u (n −
l) ((T^^ l) x) if x ∈ space M − Z for x n l

proof −
have (T^^0 ) x = x (TJ^^0 ) (projJ x) = (projJ x) by auto
then show ?thesis using Z (1 )[OF that] uJ-proj by metis

qed
have projJ−‘{x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta

l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d} ∩ space M − Z
= {x ∈ space M − Z . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta l

∗ real l < uJ n (projJ x) − uJ (n − l) ((TJ ^^ l) (projJ x))} ≥ 1 − d}
by (auto simp add: measurable-space[OF ‹projJ ∈ measurable M MJ ›])

also have ... = {x ∈ space M − Z . upper-asymptotic-density {n. ∀ l∈{1 ..n}.
− delta l ∗ real l < u n x − u (n − l) ((T ^^ l) x)} ≥ 1 − d}

using ∗ by auto
also have ... = {x ∈ space M . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta

l ∗ real l < u n x − u (n − l) ((T ^^ l) x)} ≥ 1 − d} − Z
by auto

finally have ∗: projJ−‘{x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}.
− delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d} ∩ space M − Z

= {x ∈ space M . upper-asymptotic-density {n. ∀ l∈{1 ..n}. − delta l ∗ real l
< u n x − u (n − l) ((T ^^ l) x)} ≥ 1 − d} − Z
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by simp

have emeasure MJ {x ∈ space MJ . upper-asymptotic-density {n. ∀ l∈{1 ..n}. −
delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d}

= emeasure M (projJ−‘{x ∈ space MJ . upper-asymptotic-density {n.
∀ l∈{1 ..n}. − delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 −
d} ∩ space M )

by (rule measure-preservingE(2 )[symmetric], auto)
also have ... = emeasure M ((projJ−‘{x ∈ space MJ . upper-asymptotic-density

{n. ∀ l∈{1 ..n}. − delta l ∗ real l < uJ n x − uJ (n − l) ((TJ ^^ l) x)} ≥ 1 − d}
∩ space M ) − Z )

by (rule emeasure-Diff-null-set[OF ‹Z ∈ null-sets M ›, symmetric], measurable)
also have ... = emeasure M ({x ∈ space M . upper-asymptotic-density {n.

∀ l∈{1 ..n}. − delta l ∗ real l < u n x − u (n − l) ((T ^^ l) x)} ≥ 1 − d} − Z )
using ∗ by simp
also have ... = emeasure M {x ∈ space M . upper-asymptotic-density {n.

∀ l∈{1 ..n}. − delta l ∗ real l < u n x − u (n − l) ((T ^^ l) x)} ≥ 1 − d}
by (rule emeasure-Diff-null-set[OF ‹Z ∈ null-sets M ›], measurable)

finally show ?thesis using BJ by simp
qed
then show ?thesis using delta(1 ) delta(2 ) by auto

qed

From the quantitative lemma above, we deduce the qualitative statement
we are after, still in the setting of the locale.
lemma infinite-AE :

shows AE x in M . ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧
(infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) > − delta l ∗ l})

proof −
have ∃ deltaf ::real ⇒ nat ⇒ real. ∀ d. ((d > 0 ∧ d ≤ 1 ) −→ ((∀ l. deltaf d l >

0 ) ∧ (deltaf d −−−−→ 0 ) ∧
emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n

x − u (n−l) ((T^^l) x) > − (deltaf d l) ∗ l} ≥ 1−d} ≥ ennreal(1−d)))
apply (subst choice-iff ′[symmetric]) using upper-density-good-direction by auto

then obtain deltaf ::real ⇒ nat ⇒ real where H :
∧

d. d > 0 ∧ d ≤1 =⇒ (∀ l.
deltaf d l > 0 ) ∧ (deltaf d −−−−→ 0 ) ∧

emeasure M {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n x
− u (n−l) ((T^^l) x) > − (deltaf d l) ∗ l} ≥ 1−d} ≥ ennreal(1−d)

by blast

define U where U = (λd. {x ∈ space M . upper-asymptotic-density {n. ∀ l ∈
{1 ..n}. u n x − u (n−l) ((T^^l) x) > − (deltaf d l) ∗ l} ≥ 1−d})

have [measurable]: U d ∈ sets M for d
unfolding U-def by auto

have ∗: emeasure M (U d) ≥ 1 − d if d>0 ∧ d≤ 1 for d
unfolding U-def using H that by auto

define V where V = (
⋃

n::nat. U (1/(n+2 )))
have [measurable]: V ∈ sets M

unfolding V-def by auto
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have a: emeasure M V ≥ 1 − 1 / (n + 2 ) for n::nat
proof −

have 1 − 1 / (n + 2 ) = 1 − 1 / (real n + 2 )
by auto

also have ... ≤ emeasure M (U (1/(real n+2 )))
using ∗[of 1 / (real n + 2 )] by auto

also have ... ≤ emeasure M V
apply (rule Measure-Space.emeasure-mono) unfolding V-def by auto

finally show ?thesis by simp
qed
have b: (λn::nat. 1 − 1 / (n + 2 )) −−−−→ ennreal(1 − 0 )

by (intro tendsto-intros LIMSEQ-ignore-initial-segment)
have emeasure M V ≥ 1 − 0

apply (rule Lim-bounded) using a b by auto
then have emeasure M V = 1

by (simp add: emeasure-ge-1-iff )
then have AE x in M . x ∈ V

by (simp add: emeasure-eq-measure prob-eq-1 )
moreover
{

fix x assume x ∈ V
then obtain n::nat where x ∈ U (1/(real n+2 )) unfolding V-def by blast
define d where d = 1/(real n + 2 )
have 0 < d d≤1 unfolding d-def by auto
have 0 < 1−d unfolding d-def by auto
also have ... ≤ upper-asymptotic-density {n. ∀ l ∈ {1 ..n}. u n x − u (n−l)

((T^^l) x) > − (deltaf d l) ∗ l}
using ‹x ∈ U (1/(real n+2 ))› unfolding U-def d-def by auto

finally have infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) > − (deltaf
d l) ∗ l}

using upper-asymptotic-density-finite by force
then have ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) > − delta l ∗ l})
using H ‹0 < d› ‹d≤1 › by auto

}
ultimately show ?thesis by auto

qed

end

Finally, we obtain the full statement, by reducing to the previous situation
where the asymptotic average vanishes.
theorem (in pmpt) Gouezel-Karlsson-Kingman:

assumes subcocycle u subcocycle-avg-ereal u > −∞
shows AE x in M . ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim
u x > − delta l ∗ l})
proof −

have [measurable]: integrable M (u n) u n ∈ borel-measurable M for n
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using subcocycle-integrable[OF assms(1 )] by auto

define v where v = birkhoff-sum (λx. −subcocycle-lim u x)
have int [measurable]: integrable M (λx. −subcocycle-lim u x)

using kingman-theorem-nonergodic(2 )[OF assms] by auto
have subcocycle v unfolding v-def

apply (rule subcocycle-birkhoff )
using assms ‹integrable M (λx. −subcocycle-lim u x)› unfolding subcocycle-def

by auto
have subcocycle-avg-ereal v > − ∞
unfolding v-def using subcocycle-avg-ereal-birkhoff [OF int] kingman-theorem-nonergodic(2 )[OF

assms] by auto
have AE x in M . subcocycle-lim v x = real-cond-exp M Invariants (λx. −subcocycle-lim

u x) x
unfolding v-def by (rule subcocycle-lim-birkhoff [OF int])

moreover have AE x in M . real-cond-exp M Invariants (λx. − subcocycle-lim u
x) x = − subcocycle-lim u x

by (rule real-cond-exp-F-meas[OF int], auto)
ultimately have AEv: AE x in M . subcocycle-lim v x = − subcocycle-lim u x

by auto

define w where w = (λn x. u n x + v n x)
have a: subcocycle w

unfolding w-def by (rule subcocycle-add[OF assms(1 ) ‹subcocycle v›])
have b: subcocycle-avg-ereal w > −∞

unfolding w-def by (rule subcocycle-avg-add(1 )[OF assms(1 ) ‹subcocycle v›
assms(2 ) ‹subcocycle-avg-ereal v > − ∞›])

have AE x in M . subcocycle-lim w x = subcocycle-lim u x + subcocycle-lim v x
unfolding w-def by (rule subcocycle-lim-add[OF assms(1 ) ‹subcocycle v› assms(2 )

‹subcocycle-avg-ereal v > − ∞›])
then have c: AE x in M . subcocycle-lim w x = 0

using AEv by auto

interpret Gouezel-Karlsson-Kingman M T w
proof qed (use a b c in auto)
have AE x in M . ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. w n x − w (n−l) ((T^^l) x) > − delta l ∗ l})
using infinite-AE by auto

moreover
{

fix x assume H : ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧
(infinite {n. ∀ l ∈ {1 ..n}. w n x − w (n−l) ((T^^l) x) > − delta l ∗ l})

x ∈ space M
have ∗: v n x = − n ∗ subcocycle-lim u x for n

unfolding v-def using birkhoff-sum-of-invariants[OF - ‹x ∈ space M ›] by
auto

have ∗∗: v n ((T^^l) x) = − n ∗ subcocycle-lim u x for n l
proof −

have v n ((T^^l) x) = − n ∗ subcocycle-lim u ((T^^l) x)
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unfolding v-def using birkhoff-sum-of-invariants[OF - T-spaceM-stable(2 )[OF
‹x ∈ space M ›]] by auto

also have ... = − n ∗ subcocycle-lim u x
using Invariants-func-is-invariant-n[OF subcocycle-lim-meas-Inv(2 ) ‹x ∈

space M ›] by auto
finally show ?thesis by simp

qed
have w n x − w (n−l) ((T^^l) x) = u n x − u (n−l) ((T^^l) x) − l ∗

subcocycle-lim u x if l ∈ {1 ..n} for n l
unfolding w-def using ∗[of n] ∗∗[of n−l l] that by (auto simp add: alge-

bra-simps)
then have ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim
u x > − delta l ∗ l})

using H (1 ) by auto
}
ultimately show ?thesis by auto

qed

The previous theorem only contains a lower bound. The corresponding
upper bound follows readily from Kingman’s theorem. The next statement
combines both upper and lower bounds.
theorem (in pmpt) Gouezel-Karlsson-Kingman ′:

assumes subcocycle u subcocycle-avg-ereal u > −∞
shows AE x in M . ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. abs(u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim
u x) < delta l ∗ l})
proof −

{
fix x assume x: ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim
u x > − delta l ∗ l})

(λl. u l x/l) −−−−→ subcocycle-lim u x
then obtain alpha::nat ⇒ real where a:

∧
l. alpha l > 0 alpha −−−−→ 0

infinite {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u
x > − alpha l ∗ l}

by auto
define delta::nat ⇒ real where delta = (λl. alpha l + norm(u l x / l −

subcocycle-lim u x))
{
fix n assume ∗: ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim

u x > − alpha l ∗ l
have H : x > −a =⇒ x < a =⇒ abs x < a for a x::real by simp
have abs(u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u x) < delta l ∗ l

if l∈{1 ..n} for l
proof (rule H )

have u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u x ≤ u l x − l ∗
subcocycle-lim u x

using assms(1 ) subcocycle-ineq[OF assms(1 ), of l n−l x] that by auto
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also have ... ≤ l ∗ norm(u l x/l − subcocycle-lim u x)
using that by (auto simp add: algebra-simps divide-simps)

also have ... < delta l ∗ l
unfolding delta-def using a(1 )[of l] that by auto

finally show u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u x < delta
l ∗ l by simp

have − (delta l ∗ l) ≤ −alpha l ∗ l
unfolding delta-def by (auto simp add: algebra-simps)

also have ... < u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u x
using ∗ that by auto

finally show u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u x > −(delta
l ∗ l)

by simp
qed
then have ∀ l ∈ {1 ..n}. abs(u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim

u x) < delta l ∗ l
by auto

}
then have {n. ∀ l ∈ {1 ..n}. u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim

u x > − alpha l ∗ l}
⊆ {n. ∀ l ∈ {1 ..n}. abs(u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim u

x) < delta l ∗ l}
by auto

then have infinite {n. ∀ l ∈ {1 ..n}. abs(u n x − u (n−l) ((T^^l) x) − l ∗
subcocycle-lim u x) < delta l ∗ l}

using a(3 ) finite-subset by blast
moreover have delta −−−−→ 0 + 0
unfolding delta-def using x(2 ) by (intro tendsto-intros a(2 ) tendsto-norm-zero

LIM-zero)
moreover have delta l > 0 for l unfolding delta-def using a(1 )[of l] by auto
ultimately have ∃ delta::nat⇒real. (∀ l. delta l > 0 ) ∧ (delta −−−−→ 0 ) ∧

(infinite {n. ∀ l ∈ {1 ..n}. abs(u n x − u (n−l) ((T^^l) x) − l ∗ subcocycle-lim
u x) < delta l ∗ l})

by auto
}
then show ?thesis
using Gouezel-Karlsson-Kingman[OF assms] kingman-theorem-nonergodic(1 )[OF

assms] by auto
qed

end

11 A theorem by Kohlberg and Neyman
theory Kohlberg-Neyman-Karlsson

imports Fekete
begin
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In this section, we prove a theorem due to Kohlberg and Neyman: given a
semicontraction T of a euclidean space, then Tn(0)/n converges when n→
∞. The proof we give is due to Karlsson. It mainly builds on subadditivity
ideas. The geometry of the space is essentially not relevant except at the
very end of the argument, where strict convexity comes into play.

We recall Fekete’s lemma: if a sequence is subadditive (i.e., un+m ≤ un+um),
then un/n converges to its infimum. It is proved in a different file, but we
recall the statement for self-containedness.
lemma fekete:

fixes u::nat ⇒ real
assumes

∧
n m. u (m+n) ≤ u m + u n

bdd-below {u n/n | n. n>0}
shows (λn. u n/n) −−−−→ Inf {u n/n | n. n>0}

apply (rule subadditive-converges-bounded) unfolding subadditive-def using assms
by auto

A real sequence tending to infinity has infinitely many high-scores, i.e., there
are infinitely many times where it is larger than all its previous values.
lemma high-scores:

fixes u::nat ⇒ real and i::nat
assumes u −−−−→ ∞
shows ∃n ≥ i. ∀ l ≤ n. u l ≤ u n

proof −
define M where M = Max {u l|l. l < i}
define n where n = Inf {m. u m > M}
have eventually (λm. u m > M ) sequentially

using assms by (simp add: filterlim-at-top-dense tendsto-PInfty-eq-at-top)
then have {m. u m > M} 6= {} by fastforce
then have n ∈ {m. u m > M} unfolding n-def using Inf-nat-def1 by metis
then have u n > M by simp
have n ≥ i
proof (rule ccontr)

assume ¬ i ≤ n
then have ∗: n < i by simp
have u n ≤ M unfolding M-def apply (rule Max-ge) using ∗ by auto
then show False using ‹u n > M › by auto

qed
moreover have u l ≤ u n if l ≤ n for l
proof (cases l = n)

case True
then show ?thesis by simp

next
case False
then have l < n using ‹l ≤ n› by auto
then have l /∈ {m. u m > M}

unfolding n-def by (meson bdd-below-def cInf-lower not-le zero-le)
then show ?thesis using ‹u n > M › by auto
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qed
ultimately show ?thesis by auto

qed

Hahn-Banach in euclidean spaces: given a vector u, there exists a unit norm
vector v such that 〈u, v〉 = ‖u‖ (and we put a minus sign as we will use it in
this form). This uses the fact that, in Isabelle/HOL, euclidean spaces have
positive dimension by definition.
lemma select-unit-norm:

fixes u:: ′a::euclidean-space
shows ∃ v. norm v = 1 ∧ v · u = − norm u

proof (cases u = 0 )
case True
then show ?thesis using norm-Basis nonempty-Basis by fastforce

next
case False
show ?thesis

apply (rule exI [of - −u/R norm u])
using False by (auto simp add: dot-square-norm power2-eq-square)

qed

We set up the assumption that we will use until the end of this file, in the
following locale: we fix a semicontraction T of a euclidean space. Our goal
will be to show that such a semicontraction has an asymptotic translation
vector.
locale Kohlberg-Neyman-Karlsson =

fixes T :: ′a::euclidean-space ⇒ ′a
assumes semicontract: dist (T x) (T y) ≤ dist x y

begin

The iterates of T are still semicontractions, by induction.
lemma semicontract-Tn:

dist ((T^^n) x) ((T^^n) y) ≤ dist x y
apply (induction n, auto) using semicontract order-trans by blast

The main quantity we will use is the distance from the origin to its image
under Tn. We denote it by un. The main point is that it is subadditive
by semicontraction, hence it converges to a limit A given by Inf{un/n},
thanks to Fekete Lemma.
definition u::nat ⇒ real

where u n = dist 0 ((T^^n) 0 )

definition A::real
where A = Inf {u n/n | n. n>0}

lemma Apos: A ≥ 0
unfolding A-def u-def by (rule cInf-greatest, auto)
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lemma Alim:(λn. u n/n) −−−−→ A
unfolding A-def proof (rule fekete)

show bdd-below {u n / real n |n. 0 < n}
unfolding u-def bdd-below-def by (rule exI [of - 0 ], auto)

fix m n
have u (m+n) = dist 0 ((T^^(m+n)) 0 )

unfolding u-def by simp
also have ... ≤ dist 0 ((T^^m) 0 ) + dist ((T^^m) 0 ) ((T^^(m+n)) 0 )

by (rule dist-triangle)
also have ... = dist 0 ((T^^m) 0 ) + dist ((T^^m) 0 ) ((T^^m) ((T^^n) 0 ))

by (auto simp add: funpow-add)
also have ... ≤ dist 0 ((T^^m) 0 ) + dist 0 ((T^^n) 0 )

using semicontract-Tn[of m] add-mono-thms-linordered-semiring(2 ) by blast
also have ... = u m + u n

unfolding u-def by auto
finally show u (m+n) ≤ u m + u n by auto

qed

The main fact to prove the existence of an asymptotic translation vector for
T is the following proposition: there exists a unit norm vector v such that
T `(0) is in the half-space at distance A` of the origin directed by v.
The idea of the proof is to find such a vector vi that works (with a small
error εi > 0) for times up to a time ni, and then take a limit by compactness
(or weak compactness, but since we are in finite dimension, compactness
works fine). Times ni are chosen to be large high scores of the sequence
un − (A− εi)n, which tends to infinity since un/n tends to A.
proposition half-space:
∃ v. norm v = 1 ∧ (∀ l. v · (T ^^ l) 0 ≤ − A ∗ l)

proof −
define eps::nat ⇒ real where eps = (λi. 1/of-nat (i+1 ))
have eps i > 0 for i unfolding eps-def by auto
have eps −−−−→ 0

unfolding eps-def using LIMSEQ-ignore-initial-segment[OF lim-1-over-n, of
1 ] by simp

have vi: ∃ vi. norm vi = 1 ∧ (∀ l ≤ i. vi · (T ^^ l) 0 ≤ (− A + eps i) ∗ l) for i
proof −

have L: (λn. ereal(u n − (A − eps i) ∗ n)) −−−−→ ∞
proof (rule Lim-transform-eventually)

have ereal ((u n/n − A) + eps i) ∗ ereal n = ereal(u n − (A − eps i) ∗ n)
if n ≥ 1 for n

using that by (auto simp add: divide-simps algebra-simps)
then show eventually (λn. ereal ((u n/n − A) + eps i) ∗ ereal n = ereal(u

n − (A − eps i) ∗ n)) sequentially
unfolding eventually-sequentially by auto

have (λn. (ereal ((u n/n − A) + eps i)) ∗ ereal n) −−−−→ (0 + eps i) ∗ ∞
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apply (intro tendsto-intros)
using ‹eps i > 0 › Alim by (auto simp add: LIM-zero)

then show (λn. ereal (u n / real n − A + eps i) ∗ ereal (real n)) −−−−→ ∞
using ‹eps i > 0 › by simp

qed
obtain n where n: n ≥ i

∧
l. l ≤ n =⇒ u l − (A − eps i) ∗ l ≤ u n − (A −

eps i) ∗ n
using high-scores[OF L, of i] by auto

obtain vi where vi: norm vi = 1 vi · ((T^^n) 0 ) = − norm ((T^^n) 0 )
using select-unit-norm by auto

have vi · (T ^^ l) 0 ≤ (− A + eps i) ∗ l if l ≤ i for l
proof −

have ∗: n = l + (n−l) using that ‹n ≥ i› by auto
have ∗∗: real (n−l) = real n − real l using that ‹n ≥ i› by auto
have vi · (T ^^ l) 0 = vi · ((T ^^ l) 0 − (T^^n) 0 ) + vi · ((T^^n) 0 )

by (simp add: inner-diff-right)
also have ... ≤ norm vi ∗ norm (((T ^^ l) 0 − (T^^n) 0 )) + vi · ((T^^n)

0 )
by (simp add: norm-cauchy-schwarz)

also have ... = dist ((T^^l)(0 )) ((T^^n) 0 ) − norm ((T^^n) 0 )
using vi by (auto simp add: dist-norm)

also have ... = dist ((T^^l)(0 )) ((T^^l) ((T^^(n−l)) 0 )) − norm ((T^^n)
0 )

by (metis ∗ funpow-add o-apply)
also have ... ≤ dist 0 ((T^^(n−l)) 0 ) − norm ((T^^n) 0 )

using semicontract-Tn[of l 0 (T^^(n−l)) 0 ] by auto
also have ... = u (n−l) − u n

unfolding u-def by auto
also have ... ≤ − (A − eps i) ∗ l

using n(2 )[of n−l] unfolding ∗∗ by (auto simp add: algebra-simps)
finally show ?thesis by auto

qed
then show ?thesis using vi(1 ) by auto

qed
have ∃V ::(nat ⇒ ′a). ∀ i. norm (V i) = 1 ∧ (∀ l≤i. V i · (T ^^ l) 0 ≤ (− A +

eps i) ∗ l)
apply (rule choice) using vi by auto

then obtain V ::nat ⇒ ′a where V :
∧

i. norm (V i) = 1
∧

l i. l ≤ i =⇒ V i ·
(T ^^ l) 0 ≤ (− A + eps i) ∗ l

by auto

have compact (sphere (0 :: ′a) 1 ) by simp
moreover have V i ∈ sphere 0 1 for i using V (1 ) by auto
ultimately have ∃ v ∈ sphere 0 1 . ∃ r . strict-mono r ∧ (V o r) −−−−→ v

using compact-eq-seq-compact-metric seq-compact-def by metis
then obtain v r where v: v ∈ sphere 0 1 strict-mono r (V o r) −−−−→ v

by auto
have v · (T ^^ l) 0 ≤ − A ∗ l for l
proof −
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have ∗: (λi. (−A + eps (r i)) ∗ l − V (r i) · (T ^^ l) 0 ) −−−−→ (−A + 0 ) ∗
l − v · (T ^^ l) 0

apply (intro tendsto-intros)
using ‹(V o r) −−−−→ v› ‹eps −−−−→ 0 › ‹strict-mono r› LIMSEQ-subseq-LIMSEQ

unfolding comp-def by auto
have eventually (λi. (−A + eps (r i)) ∗ l − V (r i) · (T ^^ l) 0 ≥ 0 )

sequentially
unfolding eventually-sequentially apply (rule exI [of - l])
using V (2 )[of l] seq-suble[OF ‹strict-mono r›] apply auto using le-trans by

blast
then have (−A + 0 ) ∗ l − v · (T ^^ l) 0 ≥ 0

using LIMSEQ-le-const[OF ∗, of 0 ] unfolding eventually-sequentially by
auto

then show ?thesis by auto
qed
then show ?thesis using ‹v ∈ sphere 0 1 › by auto

qed

We can now show the existence of an asymptotic translation vector for T .
It is the vector −v of the previous proposition: the point T `(0) is in the
half-space at distance A` of the origin directed by v, and has norm ∼ A`,
hence it has to be essentially −Av by strict convexity of the euclidean norm.
theorem KNK-thm:

convergent (λn. ((T^^n) 0 ) /R n)
proof −

obtain v where v: norm v = 1
∧

l. v · (T ^^ l) 0 ≤ − A ∗ l
using half-space by auto

have (λn. norm(((T^^n) 0 ) /R n + A ∗R v)^2 ) −−−−→ 0
proof (rule tendsto-sandwich[of λ-. 0 - - λn. (norm((T^^n) 0 ) /R n)^2 − A^2 ])

have norm(((T^^n) 0 ) /R n + A ∗R v)^2 ≤ (norm((T^^n) 0 ) /R n)^2 −
A^2 if n ≥ 1 for n

proof −
have norm(((T^^n) 0 ) /R n + A ∗R v)^2 = norm(((T^^n) 0 ) /R n)^2 +

A ∗ A ∗ (norm v)^2 + 2 ∗ A ∗ inverse n ∗ (v · (T^^n) 0 )
unfolding power2-norm-eq-inner by (auto simp add: inner-commute alge-

bra-simps)
also have ... ≤ norm(((T^^n) 0 ) /R n)^2 + A ∗ A ∗ (norm v)^2 + 2 ∗ A

∗ inverse n ∗ (−A ∗ n)
using mult-left-mono[OF v(2 )[of n] Apos] ‹n ≥ 1 › by (auto, auto simp add:

divide-simps)
also have ... = norm(((T^^n) 0 ) /R n)^2 − A ∗ A

using ‹n ≥ 1 › v(1 ) by auto
finally show ?thesis by (simp add: power2-eq-square)

qed
then show eventually (λn. norm ((T ^^ n) 0 /R real n + A ∗R v)^2 ≤ (norm

((T ^^ n) 0 ) /R real n)2 − A^2 ) sequentially
unfolding eventually-sequentially by auto

have (λn. (norm ((T ^^ n) 0 ) /R real n)^2 ) −−−−→ A2

apply (intro tendsto-intros)
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using Alim unfolding u-def by (auto simp add: divide-simps)
then show (λn. (norm ((T ^^ n) 0 ) /R real n)2 − A2) −−−−→ 0

by (simp add: LIM-zero)
qed (auto)
then have (λn. sqrt((norm(((T^^n) 0 ) /R n + A ∗R v))^2 )) −−−−→ sqrt 0

by (intro tendsto-intros)
then have (λn. norm((((T^^n) 0 ) /R n) − (− A ∗R v))) −−−−→ 0

by auto
then have (λn. ((T^^n) 0 ) /R n) −−−−→ − A ∗R v

using Lim-null tendsto-norm-zero-iff by blast
then show convergent (λn. ((T^^n) 0 ) /R n)

unfolding convergent-def by auto
qed

end

end

12 Transfer Operator
theory Transfer-Operator

imports Recurrence
begin

context qmpt begin

The map T acts on measures by push-forward. In particular, if fdµ is
absolutely continuous with respect to the reference measure µ, then its push-
forward T∗(fdµ) is absolutely continuous with respect to µ, and can therefore
be written as gdµ for some function g. The map f 7→ g, representing the
action of T on the level of densities, is called the transfer operator associated
to T and often denoted by T̂ .
We first define it on nonnegative functions, using Radon-Nikodym deriva-
tives. Then, we extend it to general real-valued functions by separating it
into positive and negative parts.
The theory presents many similarities with the theory of conditional expec-
tations. Indeed, it is possible to make a theory encompassing the two. When
the map is measure preserving, there is also a direct relationship: (T̂ f) ◦ T
is the conditional expectation of f with respect to T−1B where B is the
sigma-algebra. Instead of building a general theory, we copy the proofs for
conditional expectations and adapt them where needed.

12.1 The transfer operator on nonnegative functions
definition nn-transfer-operator :: ( ′a ⇒ ennreal) ⇒ ( ′a ⇒ ennreal)
where
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nn-transfer-operator f = (if f ∈ borel-measurable M then RN-deriv M (distr
(density M f ) M T )

else (λ-. 0 ))

lemma borel-measurable-nn-transfer-operator [measurable]:
nn-transfer-operator f ∈ borel-measurable M

unfolding nn-transfer-operator-def by auto

lemma borel-measurable-nn-transfer-operator-iterates [measurable]:
assumes [measurable]: f ∈ borel-measurable M
shows (nn-transfer-operator^^n) f ∈ borel-measurable M

by (cases n, auto)

The next lemma is arguably the most fundamental property of the transfer
operator: it is the adjoint of the composition by T . If one defined it as an
abstract adjoint, it would be defined on the dual of L∞, which is a large
unwieldy space. The point is that it can be defined on genuine functions,
using the push-forward point of view above. However, once we have this
property, we can forget completely about the definition, since this property
characterizes the transfer operator, as the second lemma below shows. From
this point on, we will only work with it, and forget completely about the
definition using Radon-Nikodym derivatives.
lemma nn-transfer-operator-intg:

assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows (

∫
+ x. f x ∗ nn-transfer-operator g x ∂M ) = (

∫
+ x. f (T x) ∗ g x ∂M )

proof −
have ∗: density M (RN-deriv M (distr (density M g) M T )) = distr (density M

g) M T
by (rule density-RN-deriv) (auto intro!: quasi-measure-preserving-absolutely-continuous

simp add: Tqm)
have (

∫
+ x. f x ∗ nn-transfer-operator g x ∂M ) = (

∫
+ x. f x ∂(density M

(RN-deriv M (distr (density M g) M T ))))
unfolding nn-transfer-operator-def by (simp add: nn-integral-densityR)

also have ... = (
∫

+ x. f x ∂(distr (density M g) M T ))
unfolding ∗ by simp

also have ... = (
∫

+ x. f (T x) ∂(density M g))
by (rule nn-integral-distr , auto)

also have ... = (
∫

+ x. f (T x) ∗ g x ∂M )
by (simp add: nn-integral-densityR)

finally show ?thesis by auto
qed

lemma nn-transfer-operator-intTn-g:
assumes f ∈ borel-measurable M g ∈ borel-measurable M
shows (

∫
+ x. f x ∗ (nn-transfer-operator^^n) g x ∂M ) = (

∫
+ x. f ((T^^n) x)

∗ g x ∂M )
proof −

have
∧

f g. f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (
∫

+ x. f x
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∗ (nn-transfer-operator^^n) g x ∂M ) = (
∫

+ x. f ((T^^n) x) ∗ g x ∂M ) for n
proof (induction n)

case (Suc n)
have [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M by fact+
have (

∫
+ x. f x ∗ (nn-transfer-operator ^^ Suc n) g x ∂M ) = (

∫
+ x. f x ∗

(nn-transfer-operator ((nn-transfer-operator^^n) g)) x ∂M )
apply (rule nn-integral-cong) using funpow.simps(2 ) unfolding comp-def

by auto
also have ... = (

∫
+ x. f (T x) ∗ (nn-transfer-operator^^n) g x ∂M )

by (rule nn-transfer-operator-intg, auto)
also have ... = (

∫
+ x. (λx. f (T x)) ((T^^n) x) ∗ g x ∂M )

by (rule Suc.IH , auto)
also have ... = (

∫
+ x. f ((T^^(Suc n)) x) ∗ g x ∂M )

apply (rule nn-integral-cong) using funpow.simps(2 ) unfolding comp-def
by auto

finally show ?case by auto
qed (simp)
then show ?thesis using assms by auto

qed

lemma nn-transfer-operator-intg-Tn:
assumes f ∈ borel-measurable M g ∈ borel-measurable M
shows (

∫
+ x. (nn-transfer-operator^^n) g x ∗ f x ∂M ) = (

∫
+ x. g x ∗ f ((T^^n)

x) ∂M )
using nn-transfer-operator-intTn-g[OF assms, of n] by (simp add: algebra-simps)

lemma nn-transfer-operator-charact:
assumes

∧
A. A ∈ sets M =⇒ (

∫
+ x. indicator A x ∗ g x ∂M ) = (

∫
+ x.

indicator A (T x) ∗ f x ∂M ) and
[measurable]: f ∈ borel-measurable M g ∈ borel-measurable M

shows AE x in M . nn-transfer-operator f x = g x
proof −

have ∗:set-nn-integral M A g = set-nn-integral M A (nn-transfer-operator f ) if
[measurable]: A ∈ sets M for A

proof −
have set-nn-integral M A g = (

∫
+ x. indicator A x ∗ g x ∂M )

using mult.commute by metis
also have ... = (

∫
+ x. indicator A (T x) ∗ f x ∂M )

using assms(1 ) by auto
also have ... = (

∫
+ x. indicator A x ∗ nn-transfer-operator f x ∂M )

by (rule nn-transfer-operator-intg[symmetric], auto)
finally show ?thesis

using mult.commute by (metis (no-types, lifting) nn-integral-cong)
qed
show ?thesis
by (rule sigma-finite-measure.density-unique2 , auto simp add: sigma-finite-measure-axioms

∗)
qed

When T is measure-preserving, T̂ (f ◦ T ) = f .
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lemma (in mpt) nn-transfer-operator-foT :
assumes [measurable]: f ∈ borel-measurable M
shows AE x in M . nn-transfer-operator (f o T ) x = f x

proof −
have ∗: (

∫
+ x. indicator A x ∗ f x ∂M ) = (

∫
+ x. indicator A (T x) ∗ f (T x)

∂M ) if [measurable]: A ∈ sets M for A
by (subst T-nn-integral-preserving[symmetric]) auto

show ?thesis
by (rule nn-transfer-operator-charact) (auto simp add: assms ∗)

qed

In general, one only has T̂ (f ◦ T · g) = f · T̂ g.
lemma nn-transfer-operator-foT-g:

assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-transfer-operator (λx. f (T x) ∗ g x) x = f x ∗ nn-transfer-operator

g x
proof −

have ∗: (
∫

+ x. indicator A x ∗ (f x ∗ nn-transfer-operator g x) ∂M ) = (
∫

+ x.
indicator A (T x) ∗ (f (T x) ∗ g x) ∂M )

if [measurable]: A ∈ sets M for A
by (simp add: mult.assoc[symmetric] nn-transfer-operator-intg)

show ?thesis
by (rule nn-transfer-operator-charact) (auto simp add: assms ∗)

qed

lemma nn-transfer-operator-cmult:
assumes [measurable]: g ∈ borel-measurable M
shows AE x in M . nn-transfer-operator (λx. c ∗ g x) x = c ∗ nn-transfer-operator

g x
apply (rule nn-transfer-operator-foT-g) using assms by auto

lemma nn-transfer-operator-zero:
AE x in M . nn-transfer-operator (λx. 0 ) x = 0

using nn-transfer-operator-cmult[of λx. 0 0 ] by auto

lemma nn-transfer-operator-sum:
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-transfer-operator (λx. f x + g x) x = nn-transfer-operator

f x + nn-transfer-operator g x
proof (rule nn-transfer-operator-charact)

fix A assume [measurable]: A ∈ sets M
have (

∫
+ x. indicator A x ∗ (nn-transfer-operator f x + nn-transfer-operator g

x) ∂M ) =
(
∫

+ x. indicator A x ∗ nn-transfer-operator f x + indicator A x ∗
nn-transfer-operator g x ∂M )

by (auto simp add: algebra-simps)
also have ... = (

∫
+x. indicator A x ∗ nn-transfer-operator f x ∂M ) + (

∫
+x.

indicator A x ∗ nn-transfer-operator g x ∂M )
by (rule nn-integral-add, auto)
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also have ... = (
∫

+x. indicator A (T x) ∗ f x ∂M ) + (
∫

+x. indicator A (T x)
∗ g x ∂M )

by (simp add: nn-transfer-operator-intg)
also have ... = (

∫
+x. indicator A (T x) ∗ f x + indicator A (T x) ∗ g x ∂M )

by (rule nn-integral-add[symmetric], auto)
also have ... = (

∫
+x. indicator A (T x) ∗ (f x + g x) ∂M )

by (auto simp add: algebra-simps)
finally show (

∫
+ x. indicator A x ∗ (nn-transfer-operator f x + nn-transfer-operator

g x) ∂M ) = (
∫

+x. indicator A (T x) ∗ (f x + g x) ∂M )
by simp

qed (auto simp add: assms)

lemma nn-transfer-operator-cong:
assumes AE x in M . f x = g x

and [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-transfer-operator f x = nn-transfer-operator g x

apply (rule nn-transfer-operator-charact)
apply (auto simp add: nn-transfer-operator-intg assms intro!: nn-integral-cong-AE)
using assms by auto

lemma nn-transfer-operator-mono:
assumes AE x in M . f x ≤ g x

and [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-transfer-operator f x ≤ nn-transfer-operator g x

proof −
define h where h = (λx. g x − f x)
have [measurable]: h ∈ borel-measurable M unfolding h-def by simp
have ∗: AE x in M . g x = f x + h x unfolding h-def using assms(1 ) by (auto

simp: ennreal-ineq-diff-add)
have AE x in M . nn-transfer-operator g x = nn-transfer-operator (λx. f x + h

x) x
by (rule nn-transfer-operator-cong) (auto simp add: ∗ assms)

moreover have AE x in M . nn-transfer-operator (λx. f x + h x) x = nn-transfer-operator
f x + nn-transfer-operator h x

by (rule nn-transfer-operator-sum) (auto simp add: assms)
ultimately have AE x in M . nn-transfer-operator g x = nn-transfer-operator f

x + nn-transfer-operator h x by auto
then show ?thesis by force

qed

12.2 The transfer operator on real functions

Once the transfer operator of positive functions is defined, the definition for
real-valued functions follows readily, by taking the difference of positive and
negative parts.
definition real-transfer-operator :: ( ′a ⇒ real) ⇒ ( ′a ⇒ real) where

real-transfer-operator f =
(λx. enn2real(nn-transfer-operator (λx. ennreal (f x)) x) − enn2real(nn-transfer-operator

(λx. ennreal (−f x)) x))
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lemma borel-measurable-transfer-operator [measurable]:
real-transfer-operator f ∈ borel-measurable M

unfolding real-transfer-operator-def by auto

lemma borel-measurable-transfer-operator-iterates [measurable]:
assumes [measurable]: f ∈ borel-measurable M
shows (real-transfer-operator^^n) f ∈ borel-measurable M

by (cases n, auto)

lemma real-transfer-operator-abs:
assumes [measurable]: f ∈ borel-measurable M
shows AE x in M . abs (real-transfer-operator f x) ≤ nn-transfer-operator (λx.

ennreal (abs(f x))) x
proof −

define fp where fp = (λx. ennreal (f x))
define fm where fm = (λx. ennreal (− f x))
have [measurable]: fp ∈ borel-measurable M fm ∈ borel-measurable M unfolding

fp-def fm-def by auto
have eq:

∧
x. ennreal |f x| = fp x + fm x unfolding fp-def fm-def by (simp add:

abs-real-def ennreal-neg)

{
fix x assume H : nn-transfer-operator (λx. fp x + fm x) x = nn-transfer-operator

fp x + nn-transfer-operator fm x
have |real-transfer-operator f x | ≤ |enn2real(nn-transfer-operator fp x)| +

|enn2real(nn-transfer-operator fm x)|
unfolding real-transfer-operator-def fp-def fm-def by (auto intro: abs-triangle-ineq4

simp del: enn2real-nonneg)
from ennreal-leI [OF this]

have abs(real-transfer-operator f x) ≤ nn-transfer-operator fp x + nn-transfer-operator
fm x

by simp (metis add.commute ennreal-enn2real le-iff-add not-le top-unique)
also have ... = nn-transfer-operator (λx. fp x + fm x) x using H by simp
finally have abs(real-transfer-operator f x) ≤ nn-transfer-operator (λx. fp x +

fm x) x by simp
}
moreover have AE x in M . nn-transfer-operator (λx. fp x + fm x) x =

nn-transfer-operator fp x + nn-transfer-operator fm x
by (rule nn-transfer-operator-sum) (auto simp add: fp-def fm-def )

ultimately have AE x in M . abs(real-transfer-operator f x) ≤ nn-transfer-operator
(λx. fp x + fm x) x

by auto
then show ?thesis using eq by simp

qed

The next lemma shows that the transfer operator as we have defined it
satisfies the basic duality relation

∫
T̂ f · g =

∫
f · g ◦ T . It follows from

the same relation for nonnegative functions, and splitting into positive and

320



negative parts.
Moreover, this relation characterizes the transfer operator. Hence, once this
lemma is proved, we will never come back to the original definition of the
transfer operator.
lemma real-transfer-operator-intg-fpos:

assumes integrable M (λx. f (T x) ∗ g x) and f-pos[simp]:
∧

x. f x ≥ 0 and
[measurable]: f ∈ borel-measurable M g ∈ borel-measurable M

shows integrable M (λx. f x ∗ real-transfer-operator g x)
(
∫

x. f x ∗ real-transfer-operator g x ∂M ) = (
∫

x. f (T x) ∗ g x ∂M )
proof −

define gp where gp = (λx. ennreal (g x))
define gm where gm = (λx. ennreal (− g x))
have [measurable]: gp ∈ borel-measurable M gm ∈ borel-measurable M unfolding

gp-def gm-def by auto
define h where h = (λx. ennreal(abs(g x)))
have hgpgm:

∧
x. h x = gp x + gm x unfolding gp-def gm-def h-def by (simp

add: abs-real-def ennreal-neg)
have [measurable]: h ∈ borel-measurable M unfolding h-def by simp
have pos[simp]:

∧
x. h x ≥ 0

∧
x. gp x ≥ 0

∧
x. gm x ≥ 0 unfolding h-def gp-def

gm-def by simp-all
have gp-real:

∧
x. enn2real(gp x) = max (g x) 0

unfolding gp-def by (simp add: max-def ennreal-neg)
have gm-real:

∧
x. enn2real(gm x) = max (−g x) 0

unfolding gm-def by (simp add: max-def ennreal-neg)

have (
∫

+ x. norm(f (T x) ∗ max (g x) 0 ) ∂M ) ≤ (
∫

+ x. norm(f (T x) ∗ g x)
∂M )

by (simp add: nn-integral-mono)
also have ... < ∞ using assms(1 ) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(f (T x) ∗ max (g x) 0 ) ∂M ) < ∞ by simp

then have int1 : integrable M (λx. f (T x) ∗ max (g x) 0 ) by (simp add:
integrableI-bounded)

have (
∫

+ x. norm(f (T x) ∗ max (−g x) 0 ) ∂M ) ≤ (
∫

+ x. norm(f (T x) ∗ g
x) ∂M )

by (simp add: nn-integral-mono)
also have ... < ∞ using assms(1 ) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(f (T x) ∗ max (−g x) 0 ) ∂M ) < ∞ by simp

then have int2 : integrable M (λx. f (T x) ∗ max (−g x) 0 ) by (simp add:
integrableI-bounded)

have (
∫

+x. f x ∗ nn-transfer-operator h x ∂M ) = (
∫

+x. f (T x) ∗ h x ∂M )
by (rule nn-transfer-operator-intg) auto

also have . . . =
∫

+ x. ennreal (f (T x) ∗ max (g x) 0 + f (T x) ∗ max (− g
x) 0 ) ∂M

unfolding h-def
by (intro nn-integral-cong)(auto simp: ennreal-mult[symmetric] abs-mult split:

split-max)
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also have ... < ∞
using Bochner-Integration.integrable-add[OF int1 int2 , THEN integrableD(2 )]

by (auto simp add: less-top)
finally have ∗: (

∫
+x. f x ∗ nn-transfer-operator h x ∂M ) < ∞ by simp

have (
∫

+x. norm(f x ∗ real-transfer-operator g x) ∂M ) = (
∫

+x. f x ∗ abs(real-transfer-operator
g x) ∂M )

by (simp add: abs-mult)
also have ... ≤ (

∫
+x. f x ∗ nn-transfer-operator h x ∂M )

proof (rule nn-integral-mono-AE)
{

fix x assume ∗: abs(real-transfer-operator g x) ≤ nn-transfer-operator h x
have ennreal (f x ∗ |real-transfer-operator g x|) = f x ∗ ennreal(|real-transfer-operator

g x|)
by (simp add: ennreal-mult)

also have ... ≤ f x ∗ nn-transfer-operator h x
using ∗ by (auto intro!: mult-left-mono)

finally have ennreal (f x ∗ |real-transfer-operator g x|) ≤ f x ∗ nn-transfer-operator
h x

by simp
}
then show AE x in M . ennreal (f x ∗ |real-transfer-operator g x|) ≤ f x ∗

nn-transfer-operator h x
using real-transfer-operator-abs[OF assms(4 )] h-def by auto

qed
finally have ∗∗: (

∫
+x. norm(f x ∗ real-transfer-operator g x) ∂M ) < ∞ using

∗ by auto
show integrable M (λx. f x ∗ real-transfer-operator g x)

using ∗∗ by (intro integrableI-bounded) auto

have (
∫

+x. f x ∗ nn-transfer-operator gp x ∂M ) ≤ (
∫

+x. f x ∗ nn-transfer-operator
h x ∂M )

proof (rule nn-integral-mono-AE)
have AE x in M . nn-transfer-operator gp x ≤ nn-transfer-operator h x

by (rule nn-transfer-operator-mono) (auto simp add: hgpgm)
then show AE x in M . f x ∗ nn-transfer-operator gp x ≤ f x ∗ nn-transfer-operator

h x
by (auto simp: mult-left-mono)

qed
then have a: (

∫
+x. f x ∗ nn-transfer-operator gp x ∂M ) < ∞

using ∗ by auto
have ennreal(norm(f x ∗ enn2real(nn-transfer-operator gp x))) ≤ f x ∗ nn-transfer-operator

gp x for x
by (auto simp add: ennreal-mult intro!: mult-left-mono)

(metis enn2real-ennreal enn2real-nonneg le-cases le-ennreal-iff )
then have (

∫
+x. norm(f x ∗ enn2real(nn-transfer-operator gp x)) ∂M ) ≤ (

∫
+x.

f x ∗ nn-transfer-operator gp x ∂M )
by (simp add: nn-integral-mono)

then have (
∫

+x. norm(f x ∗ enn2real(nn-transfer-operator gp x)) ∂M ) < ∞
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using a by auto
then have gp-int: integrable M (λx. f x ∗ enn2real(nn-transfer-operator gp x))

by (simp add: integrableI-bounded)
have gp-fin: AE x in M . f x ∗ nn-transfer-operator gp x 6= ∞

apply (rule nn-integral-PInf-AE) using a by auto

have (
∫

x. f x ∗ enn2real(nn-transfer-operator gp x) ∂M ) = enn2real (
∫

+ x. f
x ∗ enn2real(nn-transfer-operator gp x) ∂M )

by (rule integral-eq-nn-integral) auto
also have ... = enn2real(

∫
+ x. ennreal(f (T x) ∗ enn2real(gp x)) ∂M )

proof −
{

fix x assume f x ∗ nn-transfer-operator gp x 6= ∞
then have ennreal (f x ∗ enn2real (nn-transfer-operator gp x)) = ennreal (f

x) ∗ nn-transfer-operator gp x
by (auto simp add: ennreal-mult ennreal-mult-eq-top-iff less-top intro!:

ennreal-mult-left-cong)
}
then have AE x in M . ennreal (f x ∗ enn2real (nn-transfer-operator gp x)) =

ennreal (f x) ∗ nn-transfer-operator gp x
using gp-fin by auto

then have (
∫

+ x. f x ∗ enn2real(nn-transfer-operator gp x) ∂M ) = (
∫

+ x. f
x ∗ nn-transfer-operator gp x ∂M )

by (rule nn-integral-cong-AE)
also have ... = (

∫
+ x. f (T x) ∗ gp x ∂M )

by (rule nn-transfer-operator-intg) (auto simp add: gp-def )
also have ... = (

∫
+ x. ennreal(f (T x) ∗ enn2real(gp x)) ∂M )

by (rule nn-integral-cong-AE) (auto simp: ennreal-mult gp-def )
finally have (

∫
+ x. f x ∗ enn2real(nn-transfer-operator gp x) ∂M ) = (

∫
+ x.

ennreal(f (T x) ∗ enn2real(gp x)) ∂M ) by simp
then show ?thesis by simp

qed
also have ... = (

∫
x. f (T x) ∗ enn2real(gp x) ∂M )

by (rule integral-eq-nn-integral[symmetric]) (auto simp add: gp-def )
finally have gp-expr : (

∫
x. f x ∗ enn2real(nn-transfer-operator gp x) ∂M ) = (

∫
x. f (T x) ∗ enn2real(gp x) ∂M ) by simp

have (
∫

+x. f x ∗ nn-transfer-operator gm x ∂M ) ≤ (
∫

+x. f x ∗ nn-transfer-operator
h x ∂M )

proof (rule nn-integral-mono-AE)
have AE x in M . nn-transfer-operator gm x ≤ nn-transfer-operator h x

by (rule nn-transfer-operator-mono) (auto simp add: hgpgm)
then show AE x in M . f x ∗ nn-transfer-operator gm x ≤ f x ∗ nn-transfer-operator

h x
by (auto simp: mult-left-mono)

qed
then have a: (

∫
+x. f x ∗ nn-transfer-operator gm x ∂M ) < ∞

using ∗ by auto
have

∧
x. ennreal(norm(f x ∗ enn2real(nn-transfer-operator gm x))) ≤ f x ∗
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nn-transfer-operator gm x
by (auto simp add: ennreal-mult intro!: mult-left-mono)

(metis enn2real-ennreal enn2real-nonneg le-cases le-ennreal-iff )
then have (

∫
+x. norm(f x ∗ enn2real(nn-transfer-operator gm x)) ∂M ) ≤ (

∫
+x.

f x ∗ nn-transfer-operator gm x ∂M )
by (simp add: nn-integral-mono)

then have (
∫

+x. norm(f x ∗ enn2real(nn-transfer-operator gm x)) ∂M ) < ∞
using a by auto

then have gm-int: integrable M (λx. f x ∗ enn2real(nn-transfer-operator gm x))
by (simp add: integrableI-bounded)

have gm-fin: AE x in M . f x ∗ nn-transfer-operator gm x 6= ∞
apply (rule nn-integral-PInf-AE) using a by auto

have (
∫

x. f x ∗ enn2real(nn-transfer-operator gm x) ∂M ) = enn2real (
∫

+ x. f
x ∗ enn2real(nn-transfer-operator gm x) ∂M )

by (rule integral-eq-nn-integral) auto
also have ... = enn2real(

∫
+ x. ennreal(f (T x) ∗ enn2real(gm x)) ∂M )

proof −
{

fix x assume f x ∗ nn-transfer-operator gm x 6= ∞
then have ennreal (f x ∗ enn2real (nn-transfer-operator gm x)) = ennreal (f

x) ∗ nn-transfer-operator gm x
by (auto simp add: ennreal-mult ennreal-mult-eq-top-iff less-top intro!:

ennreal-mult-left-cong)
}
then have AE x in M . ennreal (f x ∗ enn2real (nn-transfer-operator gm x)) =

ennreal (f x) ∗ nn-transfer-operator gm x
using gm-fin by auto

then have (
∫

+ x. f x ∗ enn2real(nn-transfer-operator gm x) ∂M ) = (
∫

+ x. f
x ∗ nn-transfer-operator gm x ∂M )

by (rule nn-integral-cong-AE)
also have ... = (

∫
+ x. f (T x) ∗ gm x ∂M )

by (rule nn-transfer-operator-intg) (auto simp add: gm-def )
also have ... = (

∫
+ x. ennreal(f (T x) ∗ enn2real(gm x)) ∂M )

by (rule nn-integral-cong-AE) (auto simp: ennreal-mult gm-def )
finally have (

∫
+ x. f x ∗ enn2real(nn-transfer-operator gm x) ∂M ) = (

∫
+ x.

ennreal(f (T x) ∗ enn2real(gm x)) ∂M ) by simp
then show ?thesis by simp

qed
also have ... = (

∫
x. f (T x) ∗ enn2real(gm x) ∂M )

by (rule integral-eq-nn-integral[symmetric]) (auto simp add: gm-def )
finally have gm-expr : (

∫
x. f x ∗ enn2real(nn-transfer-operator gm x) ∂M ) =

(
∫

x. f (T x) ∗ enn2real(gm x) ∂M ) by simp

have (
∫

x. f x ∗ real-transfer-operator g x ∂M ) = (
∫

x. f x ∗ enn2real(nn-transfer-operator
gp x) − f x ∗ enn2real(nn-transfer-operator gm x) ∂M )

unfolding real-transfer-operator-def gp-def gm-def by (simp add: right-diff-distrib)
also have ... = (

∫
x. f x ∗ enn2real(nn-transfer-operator gp x) ∂M ) − (

∫
x. f

x ∗ enn2real(nn-transfer-operator gm x) ∂M )
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by (rule Bochner-Integration.integral-diff ) (simp-all add: gp-int gm-int)
also have ... = (

∫
x. f (T x) ∗ enn2real(gp x) ∂M ) − (

∫
x. f (T x) ∗ enn2real(gm

x) ∂M )
using gp-expr gm-expr by simp

also have ... = (
∫

x. f (T x) ∗ max (g x) 0 ∂M ) − (
∫

x. f (T x) ∗ max (−g
x) 0 ∂M )

using gp-real gm-real by simp
also have ... = (

∫
x. f (T x) ∗ max (g x) 0 − f (T x) ∗ max (−g x) 0 ∂M )

by (rule Bochner-Integration.integral-diff [symmetric]) (simp-all add: int1 int2 )
also have ... = (

∫
x. f (T x) ∗ g x ∂M )

by (metis (mono-tags, opaque-lifting) diff-0 diff-zero eq-iff max.cobounded2
max-def minus-minus neg-le-0-iff-le right-diff-distrib)

finally show (
∫

x. f x ∗ real-transfer-operator g x ∂M ) = (
∫

x. f (T x) ∗ g x
∂M )

by simp
qed

lemma real-transfer-operator-intg:
assumes integrable M (λx. f (T x) ∗ g x) and

[measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows integrable M (λx. f x ∗ real-transfer-operator g x)

(
∫

x. f x ∗ real-transfer-operator g x ∂M ) = (
∫

x. f (T x) ∗ g x ∂M )
proof −

define fp where fp = (λx. max (f x) 0 )
define fm where fm = (λx. max (−f x) 0 )
have [measurable]: fp ∈ borel-measurable M fm ∈ borel-measurable M

unfolding fp-def fm-def by simp-all

have (
∫

+ x. norm(fp (T x) ∗ g x) ∂M ) ≤ (
∫

+ x. norm(f (T x) ∗ g x) ∂M )
by (simp add: fp-def nn-integral-mono)

also have ... < ∞ using assms(1 ) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(fp (T x) ∗ g x) ∂M ) < ∞ by simp

then have intp: integrable M (λx. fp (T x) ∗ g x) by (simp add: integrableI-bounded)
moreover have

∧
x. fp x ≥ 0 unfolding fp-def by simp

ultimately have Rp: integrable M (λx. fp x ∗ real-transfer-operator g x)
(
∫

x. fp x ∗ real-transfer-operator g x ∂M ) = (
∫

x. fp (T x) ∗ g x ∂M )
using real-transfer-operator-intg-fpos by auto

have (
∫

+ x. norm(fm (T x) ∗ g x) ∂M ) ≤ (
∫

+ x. norm(f (T x) ∗ g x) ∂M )
by (simp add: fm-def nn-integral-mono)

also have ... < ∞ using assms(1 ) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(fm (T x) ∗ g x) ∂M ) < ∞ by simp

then have intm: integrable M (λx. fm (T x) ∗ g x) by (simp add: integrableI-bounded)
moreover have

∧
x. fm x ≥ 0 unfolding fm-def by simp

ultimately have Rm: integrable M (λx. fm x ∗ real-transfer-operator g x)
(
∫

x. fm x ∗ real-transfer-operator g x ∂M ) = (
∫

x. fm (T x) ∗ g x ∂M )
using real-transfer-operator-intg-fpos by auto

have integrable M (λx. fp x ∗ real-transfer-operator g x − fm x ∗ real-transfer-operator
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g x)
using Rp(1 ) Rm(1 ) integrable-diff by simp

moreover have ∗:
∧

x. f x ∗ real-transfer-operator g x = fp x ∗ real-transfer-operator
g x − fm x ∗ real-transfer-operator g x

unfolding fp-def fm-def by (simp add: max-def )
ultimately show integrable M (λx. f x ∗ real-transfer-operator g x)

by simp

have (
∫

x. f x ∗ real-transfer-operator g x ∂M ) = (
∫

x. fp x ∗ real-transfer-operator
g x − fm x ∗ real-transfer-operator g x ∂M )

using ∗ by simp
also have ... = (

∫
x. fp x ∗ real-transfer-operator g x ∂M ) − (

∫
x. fm x ∗

real-transfer-operator g x ∂M )
using Rp(1 ) Rm(1 ) by simp

also have ... = (
∫

x. fp (T x) ∗ g x ∂M ) − (
∫

x. fm (T x) ∗ g x ∂M )
using Rp(2 ) Rm(2 ) by simp

also have ... = (
∫

x. fp (T x) ∗ g x − fm (T x) ∗ g x ∂M )
using intm intp by simp

also have ... = (
∫

x. f (T x) ∗ g x ∂M )
unfolding fp-def fm-def by (metis (no-types, opaque-lifting) diff-0 diff-zero

max.commute
max-def minus-minus mult.commute neg-le-iff-le right-diff-distrib)

finally show (
∫

x. f x ∗ real-transfer-operator g x ∂M ) = (
∫

x. f (T x) ∗ g x
∂M ) by simp
qed

lemma real-transfer-operator-int [intro]:
assumes integrable M f
shows integrable M (real-transfer-operator f )

(
∫

x. real-transfer-operator f x ∂M ) = (
∫

x. f x ∂M )
using real-transfer-operator-intg[where ?f = λx. 1 and ?g = f ] assms by auto

lemma real-transfer-operator-charact:
assumes

∧
A. A ∈ sets M =⇒ (

∫
x. indicator A x ∗ g x ∂M ) = (

∫
x. indicator

A (T x) ∗ f x ∂M )
and [measurable]: integrable M f integrable M g

shows AE x in M . real-transfer-operator f x = g x
proof (rule AE-symmetric[OF density-unique-real])

fix A assume [measurable]: A ∈ sets M
have set-lebesgue-integral M A (real-transfer-operator f ) = (

∫
x. indicator A x ∗

real-transfer-operator f x ∂M )
unfolding set-lebesgue-integral-def by auto

also have ... = (
∫

x. indicator A (T x) ∗ f x ∂M )
apply (rule real-transfer-operator-intg, auto)
by (rule Bochner-Integration.integrable-bound[of - λx. abs(f x)], auto simp add:

assms indicator-def )
also have ... = set-lebesgue-integral M A g

unfolding set-lebesgue-integral-def using assms(1 )[OF ‹A ∈ sets M ›] by auto
finally show set-lebesgue-integral M A g = set-lebesgue-integral M A (real-transfer-operator
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f )
by simp

qed (auto simp add: assms real-transfer-operator-int)

lemma (in mpt) real-transfer-operator-foT :
assumes integrable M f
shows AE x in M . real-transfer-operator (f o T ) x = f x

proof −
have ∗: (

∫
x. indicator A x ∗ f x ∂M ) = (

∫
x. indicator A (T x) ∗ f (T x) ∂M )

if [measurable]: A ∈ sets M for A
apply (subst T-integral-preserving)

using integrable-real-mult-indicator [OF that assms] by (auto simp add: mult.commute)
show ?thesis

apply (rule real-transfer-operator-charact)
using assms ∗ by (auto simp add: comp-def T-integral-preserving)

qed

lemma real-transfer-operator-foT-g:
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M integrable

M (λx. f (T x) ∗ g x)
shows AE x in M . real-transfer-operator (λx. f (T x) ∗ g x) x = f x ∗ real-transfer-operator

g x
proof −

have ∗: (
∫

x. indicator A x ∗ (f x ∗ real-transfer-operator g x) ∂M ) = (
∫

x.
indicator A (T x) ∗ (f (T x) ∗ g x) ∂M )

if [measurable]: A ∈ sets M for A
apply (simp add: mult.assoc[symmetric])
apply (subst real-transfer-operator-intg)
apply (rule Bochner-Integration.integrable-bound[of - (λx. f (T x) ∗ g x)])
by (auto simp add: assms indicator-def )

show ?thesis
by (rule real-transfer-operator-charact) (auto simp add: assms ∗ intro!: real-transfer-operator-intg)

qed

lemma real-transfer-operator-add [intro]:
assumes [measurable]: integrable M f integrable M g
shows AE x in M . real-transfer-operator (λx. f x + g x) x = real-transfer-operator

f x + real-transfer-operator g x
proof (rule real-transfer-operator-charact)

have integrable M (real-transfer-operator f ) integrable M (real-transfer-operator
g)

using real-transfer-operator-int(1 ) assms by auto
then show integrable M (λx. real-transfer-operator f x + real-transfer-operator

g x)
by auto

fix A assume [measurable]: A ∈ sets M
have intAf : integrable M (λx. indicator A (T x) ∗ f x)

apply (rule Bochner-Integration.integrable-bound[OF assms(1 )]) unfolding

327



indicator-def by auto
have intAg: integrable M (λx. indicator A (T x) ∗ g x)

apply (rule Bochner-Integration.integrable-bound[OF assms(2 )]) unfolding
indicator-def by auto

have (
∫

x. indicator A x ∗ (real-transfer-operator f x + real-transfer-operator g
x)∂M )

= (
∫

x. indicator A x ∗ real-transfer-operator f x + indicator A x∗ real-transfer-operator
g x ∂M )

by (simp add: algebra-simps)
also have ... = (

∫
x. indicator A x ∗ real-transfer-operator f x ∂M ) + (

∫
x.

indicator A x ∗ real-transfer-operator g x ∂M )
apply (rule Bochner-Integration.integral-add)

using integrable-real-mult-indicator [OF ‹A ∈ sets M › real-transfer-operator-int(1 )[OF
assms(1 )]]

integrable-real-mult-indicator [OF ‹A ∈ sets M › real-transfer-operator-int(1 )[OF
assms(2 )]]

by (auto simp add: mult.commute)
also have ... = (

∫
x. indicator A (T x) ∗ f x ∂M ) + (

∫
x. indicator A (T x) ∗ g

x ∂M )
using real-transfer-operator-intg(2 ) assms ‹A ∈ sets M › intAf intAg by auto

also have ... = (
∫

x. indicator A (T x) ∗ f x + indicator A (T x) ∗ g x ∂M )
by (rule Bochner-Integration.integral-add[symmetric]) (auto simp add: assms

‹A ∈ sets M › intAf intAg)
also have ... =

∫
x. indicator A (T x) ∗ (f x + g x)∂M

by (simp add: algebra-simps)
finally show (

∫
x. indicator A x ∗ (real-transfer-operator f x + real-transfer-operator

g x)∂M ) =
∫

x. indicator A (T x) ∗ (f x + g x)∂M
by simp

qed (auto simp add: assms)

lemma real-transfer-operator-cong:
assumes ae: AE x in M . f x = g x and [measurable]: f ∈ borel-measurable M g
∈ borel-measurable M

shows AE x in M . real-transfer-operator f x = real-transfer-operator g x
proof −
have AE x in M . nn-transfer-operator (λx. ennreal (f x)) x = nn-transfer-operator

(λx. ennreal (g x)) x
apply (rule nn-transfer-operator-cong) using assms by auto

moreover have AE x in M . nn-transfer-operator (λx. ennreal (−f x)) x =
nn-transfer-operator (λx. ennreal(−g x)) x

apply (rule nn-transfer-operator-cong) using assms by auto
ultimately show AE x in M . real-transfer-operator f x = real-transfer-operator

g x
unfolding real-transfer-operator-def by auto

qed

lemma real-transfer-operator-cmult [intro, simp]:
fixes c::real
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assumes integrable M f
shows AE x in M . real-transfer-operator (λx. c ∗ f x) x = c ∗ real-transfer-operator

f x
by (rule real-transfer-operator-foT-g) (auto simp add: assms borel-measurable-integrable)

lemma real-transfer-operator-cdiv [intro, simp]:
fixes c::real
assumes integrable M f
shows AE x in M . real-transfer-operator (λx. f x / c) x = real-transfer-operator

f x / c
using real-transfer-operator-cmult[of - 1/c, OF assms] by (auto simp add: di-
vide-simps)

lemma real-transfer-operator-diff [intro, simp]:
assumes [measurable]: integrable M f integrable M g
shows AE x in M . real-transfer-operator (λx. f x − g x) x = real-transfer-operator

f x − real-transfer-operator g x
proof −
have AE x in M . real-transfer-operator (λx. f x + (− g x)) x = real-transfer-operator

f x + real-transfer-operator (λx. −g x) x
using real-transfer-operator-add[where ?f = f and ?g = λx. − g x] assms by

auto
moreover have AE x in M . real-transfer-operator (λx. −g x) x = − real-transfer-operator

g x
using real-transfer-operator-cmult[where ?f = g and ?c = −1 ] assms(2 ) by

auto
ultimately show ?thesis by auto

qed

lemma real-transfer-operator-pos [intro]:
assumes AE x in M . f x ≥ 0 and [measurable]: f ∈ borel-measurable M
shows AE x in M . real-transfer-operator f x ≥ 0

proof −
define g where g = (λx. max (f x) 0 )
have AE x in M . f x = g x using assms g-def by auto
then have ∗: AE x in M . real-transfer-operator f x = real-transfer-operator g x

using real-transfer-operator-cong g-def by auto

have
∧

x. g x ≥ 0 unfolding g-def by simp
then have (λx. ennreal(−g x)) = (λx. 0 )

by (simp add: ennreal-neg)
then have AE x in M . nn-transfer-operator (λx. ennreal(−g x)) x = 0

using nn-transfer-operator-zero by simp
then have AE x in M . real-transfer-operator g x = enn2real(nn-transfer-operator

(λx. ennreal (g x)) x)
unfolding real-transfer-operator-def by auto

then have AE x in M . real-transfer-operator g x ≥ 0 by auto
then show ?thesis using ∗ by auto

qed
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lemma real-transfer-operator-mono:
assumes AE x in M . f x ≤ g x and [measurable]: integrable M f integrable M g
shows AE x in M . real-transfer-operator f x ≤ real-transfer-operator g x

proof −
have AE x in M . real-transfer-operator g x − real-transfer-operator f x = real-transfer-operator

(λx. g x − f x) x
by (rule AE-symmetric[OF real-transfer-operator-diff ], auto simp add: assms)

moreover have AE x in M . real-transfer-operator (λx. g x − f x) x ≥ 0
by (rule real-transfer-operator-pos, auto simp add: assms(1 ))

ultimately have AE x in M . real-transfer-operator g x − real-transfer-operator
f x ≥ 0 by auto

then show ?thesis by auto
qed

lemma real-transfer-operator-sum [intro, simp]:
fixes f :: ′b ⇒ ′a ⇒ real
assumes [measurable]:

∧
i. integrable M (f i)

shows AE x in M . real-transfer-operator (λx.
∑

i∈I . f i x) x = (
∑

i∈I . real-transfer-operator
(f i) x)
proof (rule real-transfer-operator-charact)

fix A assume [measurable]: A ∈ sets M
have ∗: integrable M (λx. indicator A (T x) ∗ f i x) for i

apply (rule Bochner-Integration.integrable-bound[of - f i]) by (auto simp add:
assms indicator-def )

have ∗∗: integrable M (λx. indicator A x ∗ real-transfer-operator (f i) x) for i
apply (rule Bochner-Integration.integrable-bound[of - real-transfer-operator (f

i)]) by (auto simp add: assms indicator-def )
have inti: (

∫
x. indicator A (T x) ∗ f i x ∂M ) = (

∫
x. indicator A x ∗ real-transfer-operator

(f i) x ∂M ) for i
by (rule real-transfer-operator-intg(2 )[symmetric], auto simp add: ∗)

have (
∫

x. indicator A (T x) ∗ (
∑

i∈I . f i x)∂M ) = (
∫

x. (
∑

i∈I . indicator A
(T x) ∗ f i x)∂M )

by (simp add: sum-distrib-left)
also have ... = (

∑
i∈I . (

∫
x. indicator A (T x) ∗ f i x ∂M ))

by (rule Bochner-Integration.integral-sum, simp add: ∗)
also have ... = (

∑
i∈I . (

∫
x. indicator A x ∗ real-transfer-operator (f i) x ∂M ))

using inti by auto
also have ... = (

∫
x. (

∑
i∈I . indicator A x ∗ real-transfer-operator (f i) x)∂M )

by (rule Bochner-Integration.integral-sum[symmetric], simp add: ∗∗)
also have ... = (

∫
x. indicator A x ∗ (

∑
i∈I . real-transfer-operator (f i) x)∂M )

by (simp add: sum-distrib-left)
finally show (

∫
x. indicator A x ∗ (

∑
i∈I . real-transfer-operator (f i) x)∂M ) =

(
∫

x. indicator A (T x) ∗ (
∑

i∈I . f i x)∂M ) by auto
qed (auto simp add: assms real-transfer-operator-int(1 )[OF assms(1 )])
end
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12.3 Conservativity in terms of transfer operators

Conservativity amounts to the fact that
∑

f(Tnx) =∞ for almost every x
such that f(x) > 0, if f is nonnegative (see Lemma recurrent_series_infinite).
There is a dual formulation, in terms of transfer operators, asserting that∑

T̂nf(x) = ∞ for almost every x such that f(x) > 0. It is proved by
duality, reducing to the previous statement.
theorem (in conservative) recurrence-series-infinite-transfer-operator :

assumes [measurable]: f ∈ borel-measurable M
shows AE x in M . f x > 0 −→ (

∑
n. (nn-transfer-operator^^n) f x) = ∞

proof −
define A where A = {x ∈ space M . f x > 0}
have [measurable]: A ∈ sets M

unfolding A-def by auto
have K : emeasure M {x ∈ A. (

∑
n. (nn-transfer-operator^^n) f x) ≤ K} = 0

if K < ∞ for K
proof (rule ccontr)

assume emeasure M {x ∈ A. (
∑

n. (nn-transfer-operator^^n) f x) ≤ K} 6= 0
then have ∗: emeasure M {x ∈ A. (

∑
n. (nn-transfer-operator^^n) f x) ≤ K}

> 0
using not-gr-zero by blast

obtain B where B [measurable]: B ∈ sets M B ⊆ {x ∈ A. (
∑

n. (nn-transfer-operator^^n)
f x) ≤ K} emeasure M B < ∞ emeasure M B > 0

using approx-with-finite-emeasure[OF - ∗] by auto
have f x > 0 if x ∈ B for x

using B(2 ) that unfolding A-def by auto
moreover have AE x∈B in M . (

∑
n. indicator B ((T^^n) x)) = (∞::ennreal)

using recurrence-series-infinite[of indicator B] by (auto simp add: indica-
tor-def )

ultimately have PInf : AE x∈B in M . (
∑

n. indicator B ((T^^n) x)) ∗ f x =
>

unfolding ennreal-mult-eq-top-iff by fastforce

have (
∫

+x. indicator B x ∗ (
∑

n. (nn-transfer-operator^^n) f x) ∂M ) ≤ (
∫

+x.
indicator B x ∗ K ∂M )

apply (rule nn-integral-mono) using B(2 ) unfolding indicator-def by auto
also have ... = K ∗ emeasure M B

by (simp add: mult.commute nn-integral-cmult-indicator)
also have ... < ∞ using ‹K < ∞› B(3 )

using ennreal-mult-eq-top-iff top.not-eq-extremum by auto
finally have ∗: (

∫
+x. indicator B x ∗ (

∑
n. (nn-transfer-operator^^n) f x)

∂M ) < ∞ by auto

have (
∫

+x. indicator B x ∗ (
∑

n. (nn-transfer-operator^^n) f x) ∂M )
= (

∫
+x. (

∑
n. indicator B x ∗ (nn-transfer-operator^^n) f x) ∂M )

by auto
also have ... = (

∑
n. (

∫
+x. indicator B x ∗ (nn-transfer-operator^^n) f x

∂M ))
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by (rule nn-integral-suminf , auto)
also have ... = (

∑
n. (

∫
+x. indicator B ((T^^n) x) ∗ f x ∂M ))

using nn-transfer-operator-intTn-g by auto
also have ... = (

∫
+x. (

∑
n. indicator B ((T^^n) x) ∗ f x) ∂M )

by (rule nn-integral-suminf [symmetric], auto)
also have ... = (

∫
+x. (

∑
n. indicator B ((T^^n) x)) ∗ f x ∂M )

by auto
finally have ∗∗: (

∫
+x. (

∑
n. indicator B ((T^^n) x)) ∗ f x ∂M ) 6= ∞

using ∗ by simp
have AE x in M . (

∑
n. indicator B ((T^^n) x)) ∗ f x 6= ∞

by (rule nn-integral-noteq-infinite[OF - ∗∗], auto)
then have AE x∈B in M . False

using PInf by auto
then have emeasure M B = 0

by (smt AE-E B(1 ) Collect-mem-eq Collect-mono-iff dual-order .trans emea-
sure-eq-0 subsetD sets.sets-into-space)

then show False
using B by auto

qed
have L: {x ∈ A. (

∑
n. (nn-transfer-operator^^n) f x) ≤ K} ∈ null-sets M if K

< ∞ for K
using K [OF that] by auto

have P: AE x in M . x ∈ A −→ (
∑

n. (nn-transfer-operator^^n) f x) ≥ K if K
< ∞ for K

using AE-not-in[OF L[OF that]] by auto
have AE x in M . ∀N ::nat. (x ∈ A −→ (

∑
n. (nn-transfer-operator^^n) f x) ≥

of-nat N )
unfolding AE-all-countable by (auto simp add: of-nat-less-top intro!: P)

then have AE x in M . f x > 0 −→ (∀N ::nat. (
∑

n. (nn-transfer-operator^^n)
f x) ≥ of-nat N )

unfolding A-def by auto
then show AE x in M . 0 < f x −→ (

∑
n. (nn-transfer-operator ^^ n) f x) = ∞

using ennreal-ge-nat-imp-PInf by auto
qed

end

13 Normalizing sequences
theory Normalizing-Sequences

imports Transfer-Operator Asymptotic-Density
begin

In this file, we prove the main result in [Gou18]: in a conservative system, if
a renormalized sequence Snf/Bn converges in distribution towards a limit
which is not a Dirac mass at 0, then Bn can not grow exponentially fast.
We also prove the easier result that, in a probability preserving system,
normalizing sequences grow at most polynomially.
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13.1 Measure of the preimages of disjoint sets.

We start with a general result about conservative maps: If An are disjoint
sets, and P is a finite mass measure which is absolutely continuous with
respect to M , then T−nAn is most often small: P (T−nAn) tends to 0 in
Cesaro average. The proof is written in terms of densities and positive
transfer operators, so we first write it in ennreal.
theorem (in conservative) disjoint-sets-emeasure-Cesaro-tendsto-zero:

fixes P:: ′a measure and A::nat ⇒ ′a set
assumes [measurable]:

∧
n. A n ∈ sets M

and disjoint-family A
absolutely-continuous M P sets P = sets M
emeasure P (space M ) 6= ∞

shows (λn. (
∑

i<n. emeasure P (space M ∩ (T^^i)−‘(A i)))/n) −−−−→ 0
proof (rule order-tendstoI )

fix delta::ennreal assume delta > 0

have ∃ epsilon. epsilon 6= 0 ∧ epsilon 6= ∞ ∧ 4 ∗ epsilon < delta
apply (cases delta)

apply (rule exI [of - delta/5 ]) using ‹delta>0 › apply (auto simp add: en-
nreal-divide-eq-top-iff ennreal-divide-numeral numeral-mult-ennreal intro!: ennreal-lessI )

apply (rule exI [of - 1 ]) by auto
then obtain epsilon where epsilon 6= 0 epsilon 6= ∞ 4 ∗ epsilon < delta

by auto
then have epsilon > 0 using not-gr-zero by blast

define L::ennreal where L = (1/epsilon) ∗ (1+ emeasure P (space M ))
have L 6= ∞
unfolding L-def using assms(5 ) divide-ennreal-def ennreal-mult-eq-top-iff ‹ep-

silon 6= 0 › by auto
have L 6= 0

unfolding L-def using ‹epsilon 6= ∞› by (simp add: ennreal-divide-eq-top-iff )
have emeasure P (space M ) ≤ epsilon ∗ L unfolding L-def

using ‹epsilon 6= 0 › ‹epsilon 6= ∞› ‹emeasure P (space M ) 6= ∞›
apply (cases epsilon)
apply (metis (no-types, lifting) add.commute add.right-neutral add-left-mono

ennreal-divide-times infinity-ennreal-def mult.left-neutral mult-divide-eq-ennreal zero-le-one)
by simp

then have emeasure P (space M ) / L ≤ epsilon
using ‹L 6= 0 › ‹L 6=∞› by (metis divide-le-posI-ennreal mult.commute not-gr-zero)

then have c ∗ (emeasure P (space M )/L) ≤ c ∗ epsilon for c by (rule mult-left-mono,
simp)

We introduce the density of P .
define f where f = RN-deriv M P
have [measurable]: f ∈ borel-measurable M

unfolding f-def by auto
have [simp]: P = density M f
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unfolding f-def apply (rule density-RN-deriv[symmetric]) using assms by
auto

have space P = space M
by auto

interpret Pc: finite-measure P
apply standard unfolding ‹space P = space M › using assms(5 ) by auto

have ∗: AE x in P. eventually (λn. (
∑

i<n. (nn-transfer-operator^^i) f x) > L
∗ f x) sequentially

proof −
have AE x in M . f x 6= ∞

unfolding f-def apply (intro RN-deriv-finite Pc.sigma-finite-measure)
unfolding ‹space P = space M › using assms by auto

moreover have AE x in M . f x > 0 −→ (
∑

n. (nn-transfer-operator^^n) f x)
= ∞

using recurrence-series-infinite-transfer-operator by auto
ultimately have AE x in M . f x > 0 −→ ((

∑
n. (nn-transfer-operator^^n) f

x) = ∞ ∧ f x 6= ∞)
by auto

then have AEP: AE x in P. (
∑

n. (nn-transfer-operator^^n) f x) = ∞ ∧ f x
6= ∞

unfolding ‹P = density M f › using AE-density[of f M ] by auto
moreover have eventually (λn. (

∑
i<n. (nn-transfer-operator^^i) f x) > L ∗

f x) sequentially
if (

∑
n. (nn-transfer-operator^^n) f x) = ∞ ∧ f x 6= ∞ for x

proof −
have (λn. (

∑
i<n. (nn-transfer-operator^^i) f x)) −−−−→ (

∑
i. (nn-transfer-operator^^i)

f x)
by (simp add: summable-LIMSEQ)

moreover have (
∑

i. (nn-transfer-operator^^i) f x) > L ∗ f x
using that ‹L 6=∞› by (auto simp add: ennreal-mult-less-top top.not-eq-extremum)
ultimately show ?thesis

by (rule order-tendstoD(1 ))
qed
ultimately show ?thesis

by auto
qed
have ∃U N . U ∈ sets P ∧ (∀n ≥ N . ∀ x ∈ U . (

∑
i<n. (nn-transfer-operator^^i)

f x) > L ∗ f x) ∧ emeasure P (space P − U ) < epsilon
apply (rule Pc.Egorov-lemma[OF - ∗]) using ‹epsilon 6=0 › by (auto simp add:

zero-less-iff-neq-zero)
then obtain U N1 where [measurable]: U ∈ sets M and U : emeasure P (space

M − U ) < epsilon ∧
n x. n ≥ N1 =⇒ x ∈ U =⇒ L ∗ f x < (

∑
i<n.

(nn-transfer-operator^^i) f x)
unfolding ‹sets P = sets M › ‹space P = space M › by blast

have U ⊆ space M by (rule sets.sets-into-space, simp)

define K where K = N1 + 1
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have K ≥ N1 K ≥ 1 unfolding K-def by auto
have ∗: K ∗ emeasure P (space M ) / epsilon 6= ∞

using ‹emeasure P (space M ) 6= ∞› ‹epsilon 6= 0 › ennreal-divide-eq-top-iff
ennreal-mult-eq-top-iff by auto

obtain N2 ::nat where N2 : N2 ≥ K ∗ emeasure P (space M ) / epsilon
using ennreal-archimedean[OF ∗] by auto

define N where N = 2 ∗ K + N2
have (

∑
k∈{..<n}. emeasure P (space M ∩ (T^^k)−‘(A k))) / n < delta if n

≥ N for n
proof −
have n ≥ 2 ∗ K of-nat n ≥ ((of-nat N2 )::ennreal) using that unfolding N-def

by auto
then have n ≥ K ∗ emeasure P (space M ) / epsilon

using N2 order-trans by blast
then have K ∗ emeasure P (space M ) ≤ n ∗ epsilon

using ‹epsilon > 0 › ‹epsilon 6= ∞›
by (smt divide-ennreal-def divide-right-mono-ennreal ennreal-mult-divide-eq

ennreal-mult-eq-top-iff infinity-ennreal-def mult.commute not-le order-le-less)
have n ≥ 1 using ‹n ≥ 2 ∗ K › ‹K ≥ 1 › by auto

have ∗: ((
∑

k∈{K ..<n−K}. indicator (A k) ((T^^k) x))::ennreal) ≤ (
∑

i∈{K ..<n}.
indicator (A (i−j)) ((T^^(i−j)) x))

if j < K for j x
proof −
have (

∑
k ∈ {K ..<n−K}. indicator (A k) ((T^^k) x)) ≤ ((

∑
k∈{K−j..<n−j}.

indicator (A k) ((T^^k) x))::ennreal)
apply (rule sum-mono2 ) using ‹j < K › by auto

also have ... = (
∑

i∈{K ..<n}. indicator (A (i−j)) ((T^^(i−j)) x))
apply (rule sum.reindex-bij-betw[symmetric], rule bij-betw-byWitness[of -

λx. x+j]) using ‹j < K › by auto
finally show ?thesis by simp

qed

have L ∗ (
∑

k ∈ {K ..<n−K}. emeasure P (U ∩ (T^^k)−‘(A k))) = L ∗ (
∑

k ∈ {K ..<n−K}.(
∫

+x. indicator (U ∩ (T^^k)−‘(A k)) x ∂P))
by auto

also have ... = (
∑

k ∈ {K ..<n−K}. (
∫

+x. L ∗ indicator (U ∩ (T^^k)−‘(A
k)) x ∂P))

unfolding sum-distrib-left by (intro sum.cong nn-integral-cmult[symmetric],
auto)

also have ... = (
∑

k ∈ {K ..<n−K}. (
∫

+x. f x ∗ (L ∗ indicator (U ∩
(T^^k)−‘(A k)) x) ∂M ))

unfolding ‹P = density M f › by (intro sum.cong nn-integral-density, auto)
also have ... = (

∑
k ∈ {K ..<n−K}. (

∫
+x. f x ∗ L ∗ indicator U x ∗ indicator

(A k) ((T^^k) x) ∂M ))
by (intro sum.cong nn-integral-cong, auto simp add: algebra-simps indica-

tor-def )
also have ... ≤ (

∑
k ∈ {K ..<n−K}. (

∫
+x. (

∑
j ∈ {..<K}. (nn-transfer-operator^^j)

f x) ∗ indicator (A k) ((T^^k) x) ∂M ))
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apply (intro sum-mono nn-integral-mono)
using U (2 )[OF ‹K ≥ N1 ›] unfolding indicator-def using less-imp-le by

(auto simp add: algebra-simps)
also have ... = (

∫
+x. (

∑
k∈{K ..<n−K}. (

∑
j ∈ {..<K}. (nn-transfer-operator^^j)

f x ∗ indicator (A k) ((T^^k) x))) ∂M )
apply (subst nn-integral-sum, simp) unfolding sum-distrib-right by auto

also have ... = (
∫

+x. (
∑

j ∈ {..<K}. (
∑

k∈{K ..<n−K}. (nn-transfer-operator^^j)
f x ∗ indicator (A k) ((T^^k) x))) ∂M )

by (rule nn-integral-cong, rule sum.swap)
also have ... = (

∑
j ∈ {..<K}. (

∫
+x. (nn-transfer-operator^^j) f x ∗ (

∑
k∈{K ..<n−K}.

indicator (A k) ((T^^k) x)) ∂M ))
apply (subst nn-integral-sum, simp) unfolding sum-distrib-left by auto

also have ... ≤ (
∑

j ∈ {..<K}. (
∫

+x. (nn-transfer-operator^^j) f x ∗ (
∑

i∈{K ..<n}.
indicator (A (i−j)) ((T^^(i−j)) x)) ∂M ))

apply (rule sum-mono, rule nn-integral-mono) using ∗ by (auto simp add:
mult-left-mono)

also have ... = (
∑

i∈{K ..<n}. (
∑

j ∈ {..<K}. (
∫

+x. (nn-transfer-operator^^j)
f x ∗ indicator (A (i−j)) ((T^^(i−j)) x) ∂M )))

unfolding sum-distrib-left using sum.swap by (subst nn-integral-sum, auto)
also have ... = (

∑
i∈{K ..<n}. (

∑
j ∈ {..<K}. (

∫
+x. f x ∗ indicator (A (i−j))

((T^^(i−j)) ((T^^j) x)) ∂M )))
by (subst nn-transfer-operator-intg-Tn, auto)

also have ... = (
∑

i∈{K ..<n}. (
∫

+x. f x ∗ (
∑

j ∈ {..<K}. indicator (A (i−j))
((T^^(i−j)) ((T^^j) x))) ∂M ))

unfolding sum-distrib-left by (subst nn-integral-sum, auto)
also have ... = (

∑
i∈{K ..<n}. (

∫
+x. (

∑
j ∈ {..<K}. indicator (A (i−j))

((T^^((i−j)+j)) x)) ∂P))
unfolding ‹P = density M f › funpow-add comp-def apply (rule sum.cong,

simp) by (rule nn-integral-density[symmetric], auto)
also have ... = (

∑
i∈{K ..<n}. (

∫
+x. (

∑
j ∈ {..<K}. indicator (A (i−j))

((T^^i) x)) ∂P))
by auto

also have ... ≤ (
∑

i∈{K ..<n}. (
∫

+x. (1 ::ennreal) ∂P))
apply (rule sum-mono) apply (rule nn-integral-mono) apply (rule dis-

joint-family-indicator-le-1 )
using assms(2 ) apply (auto simp add: disjoint-family-on-def )
by (metis Int-iff diff-diff-cancel equals0D le-less le-trans)

also have ... ≤ n ∗ emeasure P (space M )
using assms(4 ) by (auto intro!: mult-right-mono)

finally have ∗: L ∗ (
∑

k ∈ {K ..<n−K}. emeasure P (U ∩ (T^^k)−‘(A k)))
≤ n ∗ emeasure P (space M )

by simp
have Ineq: (

∑
k ∈ {K ..<n−K}. emeasure P (U ∩ (T^^k)−‘(A k))) ≤ n ∗

emeasure P (space M ) / L
using divide-right-mono-ennreal[OF ∗, of L] ‹L 6= 0 ›

by (metis (no-types, lifting) ‹L 6=∞› ennreal-mult-divide-eq infinity-ennreal-def
mult.commute)

have I : {..<K} ∪ {K ..<n−K} ∪ {n−K ..<n} = {..<n} using ‹n ≥ 2 ∗ K ›
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by auto
have (

∑
k∈{..<n}. emeasure P (space M ∩ (T^^k)−‘(A k))) ≤ (

∑
k∈{..<n}.

emeasure P (U ∩ (T^^k)−‘(A k)) + epsilon)
proof (rule sum-mono)

fix k
have emeasure P (space M ∩ (T^^k)−‘(A k)) ≤ emeasure P ((U ∩ (T^^k)−‘(A

k)) ∪ (space M − U ))
by (rule emeasure-mono, auto)

also have ... ≤ emeasure P (U ∩ (T^^k)−‘(A k)) + emeasure P (space M
− U )

by (rule emeasure-subadditive, auto)
also have ... ≤ emeasure P (U ∩ (T^^k)−‘(A k)) + epsilon

using U (1 ) by auto
finally show emeasure P (space M ∩ (T ^^ k) −‘ A k) ≤ emeasure P (U ∩

(T ^^ k) −‘ A k) + epsilon
by simp

qed
also have ... = (

∑
k∈{..<K} ∪ {K ..<n−K} ∪ {n−K ..<n}. emeasure P (U

∩ (T^^k)−‘(A k))) + (
∑

k∈{..<n}. epsilon)
unfolding sum.distrib I by simp

also have ... = (
∑

k∈{..<K}. emeasure P (U ∩ (T^^k)−‘(A k))) + (
∑

k∈{K ..<n−K}.
emeasure P (U ∩ (T^^k)−‘(A k)))

+ (
∑

k∈{n−K ..<n}. emeasure P (U ∩ (T^^k)−‘(A k))) + n ∗
epsilon

apply (subst sum.union-disjoint) apply simp apply simp using ‹n ≥ 2 ∗
K ›

apply (simp add: ivl-disj-int-one(2 ) ivl-disj-un-one(2 ))
by (subst sum.union-disjoint, auto)

also have ... ≤ (
∑

k∈{..<K}. emeasure P (space M )) + n ∗ emeasure P (space
M ) / L + (

∑
k∈{n−K ..<n}. emeasure P (space M )) + n ∗ epsilon

apply (intro add-mono sum-mono Ineq emeasure-mono) using ‹U ⊆ space
M › by auto

also have ... = K ∗ emeasure P (space M ) + n ∗ emeasure P (space M )/L +
K ∗ emeasure P (space M ) + n ∗ epsilon

using ‹n ≥ 2 ∗ K › by auto
also have ... ≤ n ∗ epsilon + n ∗ epsilon + n ∗ epsilon + n ∗ epsilon

apply (intro add-mono)
using ‹K ∗ emeasure P (space M ) ≤ n ∗ epsilon› ‹of-nat n ∗ (emeasure P

(space M )/L) ≤ of-nat n ∗ epsilon›
ennreal-times-divide by auto

also have ... = n ∗ (4 ∗ epsilon)
by (metis (no-types, lifting) add.assoc distrib-right mult.left-commute mult-2

numeral-Bit0 )
also have ... < n ∗ delta

using ‹4 ∗ epsilon < delta› ‹n ≥ 1 ›
by (simp add: ennreal-mult-strict-left-mono ennreal-of-nat-eq-real-of-nat)

finally show ?thesis
apply (subst divide-less-ennreal)
using ‹n ≥ 1 › of-nat-less-top by (auto simp add: mult.commute)
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qed
then show eventually (λn. (

∑
k∈{..<n}. emeasure P (space M ∩ (T^^k)−‘(A

k))) / n < delta) sequentially
unfolding eventually-sequentially by auto

qed (simp)

We state the previous theorem using measures instead of emeasures. This
is clearly equivalent, but one has to play with ennreal carefully to prove it.
theorem (in conservative) disjoint-sets-measure-Cesaro-tendsto-zero:

fixes P:: ′a measure and A::nat ⇒ ′a set
assumes [measurable]:

∧
n. A n ∈ sets M

and disjoint-family A
absolutely-continuous M P sets P = sets M
emeasure P (space M ) 6= ∞

shows (λn. (
∑

i<n. measure P (space M ∩ (T^^i)−‘(A i)))/n) −−−−→ 0
proof −

have space P = space M
using assms(4 ) sets-eq-imp-space-eq by blast

moreover have emeasure P Q ≤ emeasure P (space P) for Q
by (simp add: emeasure-space)

ultimately have [simp]: emeasure P Q 6= > for Q
using ‹emeasure P (space M ) 6= ∞› neq-top-trans by auto

have ∗: ennreal ((
∑

i<n. measure P (space M ∩ (T^^i)−‘(A i)))/n) = (
∑

i<n.
emeasure P (space M ∩ (T^^i)−‘(A i)))/n if n > 0 for n

apply (subst divide-ennreal[symmetric])
apply (auto intro!: sum-nonneg that simp add: ennreal-of-nat-eq-real-of-nat[symmetric])
apply(subst sum-ennreal[symmetric], simp)
apply (subst emeasure-eq-ennreal-measure) by auto

have eventually (λn. ennreal ((
∑

i<n. measure P (space M ∩ (T^^i)−‘(A
i)))/n) = (

∑
i<n. emeasure P (space M ∩ (T^^i)−‘(A i)))/n) sequentially

unfolding eventually-sequentially apply (rule exI [of - 1 ]) using ∗ by auto
then have ∗: (λn. ennreal ((

∑
i<n. measure P (space M ∩ (T^^i)−‘(A i)))/n))

−−−−→ ennreal 0
using disjoint-sets-emeasure-Cesaro-tendsto-zero[OF assms] tendsto-cong by

force
show ?thesis

apply (subst tendsto-ennreal-iff [symmetric]) using ∗ apply auto
unfolding eventually-sequentially apply (rule exI [of - 1 ])
by (auto simp add: divide-simps intro!: sum-nonneg)

qed

As convergence to 0 in Cesaro mean is equivalent to convergence to 0 along
a density one sequence, we obtain the equivalent formulation of the previous
theorem.
theorem (in conservative) disjoint-sets-measure-density-one-tendsto-zero:

fixes P:: ′a measure and A::nat ⇒ ′a set
assumes [measurable]:

∧
n. A n ∈ sets M

and disjoint-family A
absolutely-continuous M P sets P = sets M
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emeasure P (space M ) 6= ∞
shows ∃B. lower-asymptotic-density B = 1 ∧ (λn. measure P (space M ∩

(T^^n)−‘(A n)) ∗ indicator B n) −−−−→ 0
by (rule cesaro-imp-density-one[OF - disjoint-sets-measure-Cesaro-tendsto-zero[OF
assms]], simp)

13.2 Normalizing sequences do not grow exponentially in
conservative systems

We prove the main result in [Gou18]: in a conservative system, if a renor-
malized sequence Snf/Bn converges in distribution towards a limit which
is not a Dirac mass at 0, then Bn can not grow exponentially fast. The
proof is expressed in the following locale. The main theorem is Theo-
rem subexponential_growth below. To prove it, we need several prelimi-
nary estimates.

We will use the fact that a real random variables which is not the Dirac
mass at 0 gives positive mass to a set separated away from 0.
lemma (in real-distribution) not-Dirac-0-imp-positive-mass-away-0 :

assumes prob {0} < 1
shows ∃ a. a > 0 ∧ prob {x. abs(x) > a} > 0

proof −
have 1 = prob UNIV

using prob-space by auto
also have ... = prob {0} + prob (UNIV −{0})

by (subst finite-measure-Union[symmetric], auto)
finally have 0 < prob (UNIV −{0})

using assms by auto
also have ... ≤ prob (

⋃
n::nat. {x. abs(x)>(1/2 )^n})

apply (rule finite-measure-mono)
by (auto, meson one-less-numeral-iff reals-power-lt-ex semiring-norm(76 ) zero-less-abs-iff )

finally have prob (
⋃

n::nat. {x. abs(x)>(1/2 )^n}) 6= 0
by simp

then have ∃n. prob {x. abs(x)>(1/2 )^n} 6= 0
using measure-countably-zero[of λn. {x. abs(x)>(1/2 )^n}] by force

then obtain N where N : prob {x. abs(x) > (1/2 )^N} 6= 0
by blast

show ?thesis
apply (rule exI [of - (1/2 )^N ]) using N by (auto simp add: zero-less-measure-iff )

qed

locale conservative-limit =
conservative M + PS : prob-space P + PZ : real-distribution Z

for M :: ′a measure and P:: ′a measure and Z ::real measure +
fixes f g:: ′a ⇒ real and B::nat ⇒ real
assumes PabsM : absolutely-continuous M P

and Bpos:
∧

n. B n > 0
and M [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M sets P
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= sets M
and non-trivial: PZ .prob {0} < 1
and conv: weak-conv-m (λn. distr P borel (λx. (g x + birkhoff-sum f n x) /

B n)) Z
begin

For measurability statements, we want every question about Z or P to
reduce to a question about Borel sets of M . We add in the next lemma all
the statements that are needed so that this happens automatically.
lemma PSZ [simp, measurable-cong]:

space P = space M
h ∈ borel-measurable P ←→ h ∈ borel-measurable M
A ∈ sets P ←→ A ∈ sets M

using M sets-eq-imp-space-eq real-distribution-def by auto

The first nontrivial upper bound is the following lemma, asserting that Bn+1

can not be much larger than maxBi for i ≤ n. This is proved by saying
that Sn+1f = f +(Snf) ◦T , and we know that Snf is not too large on a set
of very large measure, so the same goes for (Snf) ◦ T by a non-singularity
argument. Excepted that the measure P does not have to be nonsingular for
the map T , so one has to tweak a little bit this idea, using transfer operators
and conservativity. This is easier to do when the density of P is bounded
by 1, so we first give the proof under this assumption, and then we reduce
to this case by replacing M with M + P in the second lemma below.

First, let us prove the lemma assuming that the density h of P is bounded
by 1.
lemma upper-bound-C-aux:

assumes P = density M h
∧

x. h x ≤ 1
and [measurable]: h ∈ borel-measurable M

shows ∃C≥1 . ∀n. B (Suc n) ≤ C ∗ Max {B i|i. i ≤ n}
proof −

obtain a0 where a0 : a0 > 0 PZ .prob {x. abs(x) > a0} > 0
using PZ .not-Dirac-0-imp-positive-mass-away-0 [OF non-trivial] by blast

define a where a = a0/2
have a > 0 using ‹a0 > 0 › unfolding a-def by auto
define alpha where alpha = PZ .prob {x. abs (x) > a0}/4
have alpha > 0 unfolding alpha-def using a0 by auto
have PZ .prob {x. abs (x) > 2 ∗ a} > 3 ∗ alpha

using a0 unfolding a-def alpha-def by auto

First step: choose K such that, with probability 1−α, one has
∑

1≤k<K h(T kx) ≥
1. This follows directly from conservativity.

have ∃K . K ≥ 1 ∧ PS .prob {x ∈ space M . (
∑

i∈{1 ..<K}. h ((T^^i) x)) ≥ 1}
≥ 1 − alpha

proof −
have ∗: AE x in P. eventually (λn. (

∑
i<n. h ((T^^i) x)) > 2 ) sequentially
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proof −
have AE x in M . h x > 0 −→ (

∑
i. h ((T^^i) x)) = ∞

using recurrence-series-infinite by auto
then have AEP: AE x in P. (

∑
i. h ((T^^i) x)) = ∞

unfolding ‹P = density M h› using AE-density[of h M ] by auto
moreover have eventually (λn. (

∑
i<n. h ((T^^i) x)) > 2 ) sequentially

if (
∑

i. h ((T^^i) x)) = ∞ for x
proof −

have (λn. (
∑

i<n. h ((T^^i) x))) −−−−→ (
∑

i. h ((T^^i) x))
by (simp add: summable-LIMSEQ)

moreover have (
∑

i. h ((T^^i) x)) > 2
using that by auto

ultimately show ?thesis
by (rule order-tendstoD(1 ))

qed
ultimately show ?thesis

by auto
qed
have ∃U N . U ∈ sets P ∧ (∀n ≥ N . ∀ x ∈ U . (

∑
i<n. h ((T^^i) x)) > 2 ) ∧

emeasure P (space P − U ) < alpha
apply (rule PS .Egorov-lemma)

apply measurable using M (3 ) measurable-ident-sets apply blast
using ∗ ‹alpha > 0 › by auto

then obtain U N1 where [measurable]: U ∈ sets M and U : emeasure P (space
M − U ) < alpha ∧

n x. n ≥ N1 =⇒ x ∈ U =⇒ 2 < (
∑

i<n. h ((T^^i) x))
by auto

have U ⊆ space M by (rule sets.sets-into-space, simp)
define K where K = N1+1
then have K ≥ 1 by auto
have Ux: (

∑
i∈{1 ..<K}. h ((T^^i) x)) ≥ 1 if x ∈ U for x

proof −
have ∗: 1 < t if 2 < 1 + t for t::ennreal

apply (cases t) using that apply auto
by (metis ennreal-add-left-cancel-less ennreal-less-iff ennreal-numeral le-numeral-extra(1 )

numeral-One one-add-one)

have 2 < (
∑

i ∈ {..<K}. h ((T^^i) x))
apply (rule U (2 )) unfolding K-def using that by auto

also have ... = (
∑

i ∈ {0}. h ((T^^i) x)) + (
∑

i ∈ {1 ..<K}. h ((T^^i) x))
apply (subst sum.union-disjoint[symmetric]) apply simp apply simp apply

simp
apply (rule sum.cong) using ‹K ≥ 1 › by auto

also have ... = h x + (
∑

i ∈ {1 ..<K}. h ((T^^i) x))
by auto

also have ... ≤ 1 + (
∑

i ∈ {1 ..<K}. h ((T^^i) x))
using assms by auto

finally show ?thesis using less-imp-le[OF ∗] by auto
qed
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have PS .prob {x ∈ space M . (
∑

i∈{1 ..<K}. h ((T^^i) x)) ≥ 1} ≥ 1 − alpha
proof −

have PS .prob (space P − U ) < alpha
using U (1 ) by (simp add: PS .emeasure-eq-measure ennreal-less-iff )

then have 1 − alpha < PS .prob U
using PS .prob-compl by auto

also have ... ≤ PS .prob {x ∈ space M . (
∑

i∈{1 ..<K}. h ((T^^i) x)) ≥ 1}
apply (rule PS .finite-measure-mono) using Ux sets.sets-into-space[OF ‹U

∈ sets M ›] by auto
finally show ?thesis by simp

qed
then show ?thesis using ‹K ≥ 1 › by auto

qed
then obtain K where K : K ≥ 1 PS .prob {x ∈ space M . (

∑
i∈{1 ..<K}. h

((T^^i) x)) ≥ 1} ≥ 1 − alpha
by blast

Second step: obtain D which controls the tails of the K first Birkhoff sums
of f .

have ∃D. PS .prob {x ∈ space M . ∀ k < K . abs(g x + birkhoff-sum f k x −
g((T^^k) x)) ≤ D} ≥ 1 − alpha

proof −
have D: ∃D. PS .prob {x ∈ space P. abs(g x + birkhoff-sum f k x − g((T^^k)

x)) ≥ D} < alpha/K ∧ D ≥ 1 for k
apply (rule PS .random-variable-small-tails) using ‹K ≥ 1 › ‹alpha > 0 › by

auto
have ∃D. ∀ k. PS .prob {x ∈ space P. abs(g x + birkhoff-sum f k x − g((T^^k)

x)) ≥ D k} < alpha/K ∧ D k ≥ 1
apply (rule choice) using D by auto

then obtain D where D:
∧

k. PS .prob {x ∈ space P. abs(g x + birkhoff-sum
f k x − g((T^^k) x)) ≥ D k} < alpha/K

by blast
define D0 where D0 = Max (D‘{..K})
have PS .prob {x ∈ space M . ∀ k < K . abs(g x + birkhoff-sum f k x − g((T^^k)

x)) ≤ D0} ≥ 1 − alpha
proof −

have D1 : PS .prob {x ∈ space M . abs(g x + birkhoff-sum f k x − g((T^^k)
x)) ≥ D0} < alpha/K if k ≤ K for k

proof −
have D k ≤ D0

unfolding D0-def apply (rule Max-ge) using that by auto
have PS .prob {x ∈ space M . abs(g x + birkhoff-sum f k x − g((T^^k) x))

≥ D0}
≤ PS .prob {x ∈ space P. abs(g x + birkhoff-sum f k x − g((T^^k)

x)) ≥ D k}
apply (rule PS .finite-measure-mono) using ‹D k ≤ D0 › by auto

then show ?thesis using D[of k] by auto
qed
have PS .prob (

⋃
k∈ {..<K}. {x ∈ space M . abs(g x + birkhoff-sum f k x −
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g((T^^k) x)) ≥ D0}) ≤
(
∑

k ∈ {..<K}. PS .prob {x ∈ space M . abs(g x + birkhoff-sum f k x
− g((T^^k) x)) ≥ D0})

by (rule PS .finite-measure-subadditive-finite, auto)
also have ... ≤ (

∑
k ∈ {..<K}. alpha/K )

apply (rule sum-mono) using less-imp-le[OF D1 ] by auto
also have ... = alpha

using ‹K ≥ 1 › by auto
finally have PS .prob (

⋃
k∈ {..<K}. {x ∈ space M . abs(g x + birkhoff-sum f

k x − g((T^^k) x)) ≥ D0}) ≤ alpha
by simp

then have 1 − alpha ≤ 1 − PS .prob (
⋃

k∈ {..<K}. {x ∈ space M . abs(g x
+ birkhoff-sum f k x − g((T^^k) x)) ≥ D0})

by simp
also have ... = PS .prob (space P − (

⋃
k∈ {..<K}. {x ∈ space M . abs(g x +

birkhoff-sum f k x − g((T^^k) x)) ≥ D0}))
by (rule PS .prob-compl[symmetric], auto)

also have ... ≤ PS .prob {x ∈ space M . ∀ k < K . abs(g x + birkhoff-sum f k
x − g((T^^k) x)) ≤ D0}

by (rule PS .finite-measure-mono, auto)
finally show ?thesis by simp

qed
then show ?thesis by blast

qed
then obtain D where D: PS .prob {x ∈ space M . ∀ k < K . abs(g x + birkhoff-sum

f k x − g((T^^k) x)) ≤ D} ≥ 1 − alpha
by blast

Third step: obtain ε small enough so that, for any set U with probability
less than ε and for any k ≤ K, one has

∫
U T̂ kh < δ, where δ is very small.

define delta where delta = alpha/(2 ∗ K )
then have delta > 0 using ‹alpha > 0 › ‹K ≥ 1 › by auto
have ∃ epsilon > (0 ::real). ∀U ∈ sets P. ∀ k ≤ K . emeasure P U < epsilon −→

(
∫

+x∈U . ((nn-transfer-operator^^k) h) x ∂P) ≤ delta
proof −
have ∗: ∃ epsilon>(0 ::real). ∀U∈sets P. emeasure P U < epsilon −→ (

∫
+x∈U .

((nn-transfer-operator^^k) h) x ∂P) < delta
for k

proof (rule small-nn-integral-on-small-sets[OF - ‹0 < delta›])
have (

∫
+x. ((nn-transfer-operator^^k) h) x ∂P) = (

∫
+x. h x ∗ ((nn-transfer-operator^^k)

h) x ∂M )
unfolding ‹P = density M h› by (rule nn-integral-density, auto)

also have ... ≤ (
∫

+x. 1 ∗ ((nn-transfer-operator^^k) h) x ∂M )
apply (intro nn-integral-mono mult-right-mono) using assms(2 ) by auto

also have ... = (
∫

+x. 1 ∗ h x ∂M )
by (rule nn-transfer-operator-intTn-g, auto)

also have ... = emeasure P (space M )
using PS .emeasure-space-1 by (simp add: emeasure-density ‹P = density

M h›)
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also have ... < ∞
using PS .emeasure-space-1 by simp

finally show (
∫

+x. ((nn-transfer-operator^^k) h) x ∂P) 6= ∞
by auto

qed (simp)
have ∃ epsilon. ∀ k. epsilon k > (0 ::real) ∧ (∀U∈sets P. emeasure P U <

epsilon k −→ (
∫

+x∈U . ((nn-transfer-operator^^k) h) x ∂P) < delta)
apply (rule choice) using ∗ by blast

then obtain epsilon::nat ⇒ real where E :
∧

k. epsilon k > 0∧
k U . U ∈ sets P =⇒ emeasure P U < epsilon k =⇒

(
∫

+x∈U . ((nn-transfer-operator^^k) h) x ∂P) < delta
by blast

define epsilon0 where epsilon0 = Min (epsilon‘{..K})
have epsilon0 ∈ epsilon‘{..K} unfolding epsilon0-def by (rule Min-in, auto)
then have epsilon0 > 0 using E(1 ) by auto
have small-setint: (

∫
+x∈U . ((nn-transfer-operator^^k) h) x ∂P) ≤ delta

if k ≤ K U ∈ sets P emeasure P U < epsilon0 for k U
proof −

have ∗: epsilon0 ≤ epsilon k
unfolding epsilon0-def apply (rule Min-le) using ‹k ≤ K › by auto

show ?thesis
apply (rule less-imp-le[OF E(2 )[OF ‹U ∈ sets P›]])
using ennreal-leI [OF ∗] ‹emeasure P U < epsilon0 › by auto

qed
then show ?thesis using ‹epsilon0 > 0 › by auto

qed
then obtain epsilon::real where epsilon > 0 and

small-setint:
∧

k U . k ≤ K =⇒ U ∈ sets P =⇒ emeasure P U < epsilon =⇒
(
∫

+x∈U . ((nn-transfer-operator^^k) h) x ∂P) ≤ delta
by blast

Fourth step: obtain an index after which the convergence in distribution
ensures that the probability to be larger than 2a and to be very large is
comparable for (g + Snf)/Bn and for Z.

obtain C0 where PZ .prob {x. abs(x) ≥ C0} < epsilon C0 ≥ 1
using PZ .random-variable-small-tails[OF ‹epsilon > 0 ›, of λx. x] by auto

have A: eventually (λn. measure (distr P borel (λx. (g x + birkhoff-sum f n x) /
B n)) {x. abs (x) > 2 ∗ a} > 3 ∗ alpha) sequentially

apply (rule open-set-weak-conv-lsc[of - Z ])
by (auto simp add: PZ .real-distribution-axioms conv ‹PZ .prob {x. abs (x) > 2

∗ a} > 3 ∗ alpha›)
have B: eventually (λn. measure (distr P borel (λx. (g x + birkhoff-sum f n x)

/ B n)) {x. abs (x) ≥ C0} < epsilon) sequentially
apply (rule closed-set-weak-conv-usc[of - Z ])
by (auto simp add: PZ .real-distribution-axioms conv ‹PZ .prob {x. abs(x) ≥

C0} < epsilon›)
obtain N where N :

∧
n. n ≥ N =⇒ measure (distr P borel (λx. (g x +

birkhoff-sum f n x) / B n)) {x. abs (x) > 2 ∗ a} > 3 ∗ alpha∧
n. n ≥ N =⇒ measure (distr P borel (λx. (g x + birkhoff-sum f
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n x) / B n)) {x. abs (x) ≥ C0} < epsilon
using eventually-conj[OF A B] unfolding eventually-sequentially by blast

Fifth step: obtain a trivial control on Bn for n smaller than N .
define C1 where C1 = Max {B k/B 0 |k. k ≤ N+K+1}
define C where C = max (max C0 C1 ) (max (D / (a ∗ B 0 )) (C0/a))
have C ≥ 1 unfolding C-def using ‹C0 ≥ 1 › by auto

Now, we can put everything together. If n is large enough, we prove that
Bn+1 ≤ Cmaxi≤nBi, by contradiction.

have geK : B (Suc n) ≤ C ∗ Max {B i |i. i ≤ n} if n > N + K for n
proof (rule ccontr)

have Suc n ≥ N using that by auto
let ?h = (λx. (g x + birkhoff-sum f (Suc n) x) / B (Suc n))
have measure (distr P borel ?h) {x. abs (x) > 2 ∗ a}

= measure P (?h−‘ {x. abs (x) > 2 ∗ a} ∩ space P)
by (rule measure-distr , auto)

also have ... = measure P {x ∈ space M . abs(?h x) > 2 ∗ a}
by (rule HOL.cong[of measure P], auto)

finally have A: PS .prob {x ∈ space M . abs(?h x) > 2 ∗ a} > 3 ∗ alpha
using N (1 )[OF ‹Suc n ≥ N ›] by auto

have ∗: PS .prob {y ∈ space M . C0 ≤ |g y + birkhoff-sum f (Suc n − k) y| /
|B (Suc n − k)|} < epsilon

if k ∈ {1 ..<K} for k
proof −

have Suc n − k ≥ N using that ‹n > N + K › by auto
let ?h = (λx. (g x + birkhoff-sum f (Suc n−k) x) / B (Suc n−k))
have measure (distr P borel ?h) {x. abs (x) ≥ C0}

= measure P (?h−‘ {x. abs (x) ≥ C0} ∩ space P)
by (rule measure-distr , auto)

also have ... = measure P {x ∈ space M . abs(?h x) ≥ C0}
by (rule HOL.cong[of measure P], auto)

finally show ?thesis
using N (2 )[OF ‹Suc n − k ≥ N ›] by auto

qed
have P-le-epsilon: emeasure P {y ∈ space M . C0 ≤ |g y + birkhoff-sum f (Suc

n − k) y| / |B (Suc n − k)|} < ennreal epsilon
if k ∈ {1 ..<K} for k

using ∗[OF that] ‹epsilon > 0 › ennreal-lessI unfolding PS .emeasure-eq-measure
by auto

assume ¬(B (Suc n) ≤ C ∗ Max {B i |i. i ≤ n})
then have C ∗ Max {B i |i. i ≤ n} ≤ B (Suc n) by simp
moreover have C ∗ B 0 ≤ C ∗ Max {B i |i. i ≤ n}

apply (rule mult-left-mono, rule Max-ge) using ‹C ≥ 1 › by auto
ultimately have C ∗ B 0 ≤ B (Suc n)

by auto
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have (D / (a ∗ B 0 )) ∗ B 0 ≤ C ∗ B 0
apply (rule mult-right-mono) unfolding C-def using Bpos[of 0 ] by auto

then have (D / (a ∗ B 0 )) ∗ B 0 ≤ B (Suc n)
using ‹C ∗ B 0 ≤ B (Suc n)› by simp

then have D ≤ a ∗ B (Suc n)
using Bpos[of 0 ] ‹a > 0 › by (auto simp add: divide-simps algebra-simps)

define X where X = {x ∈ space M . abs((g x + birkhoff-sum f (Suc n) x)/B(Suc
n)) > 2 ∗ a}

∩ {x ∈ space M . ∀ k < K . abs(g x + birkhoff-sum f k x −
g((T^^k) x)) ≤ D}

∩ {x ∈ space M . (
∑

i∈{1 ..<K}. h ((T^^i) x)) ≥ 1}
have [measurable]: X ∈ sets M unfolding X-def by auto
have 3 ∗ alpha + (1−alpha) + (1−alpha) ≤

PS .prob {x ∈ space M . abs((g x + birkhoff-sum f (Suc n) x)/B(Suc n))
> 2 ∗ a}

+ PS .prob {x ∈ space M . ∀ k < K . abs(g x + birkhoff-sum f k x − g((T^^k)
x)) ≤ D}

+ PS .prob {x ∈ space M . (
∑

i∈{1 ..<K}. h ((T^^i) x)) ≥ 1}
using A D K (2 ) by auto

also have ... ≤ 2 + PS .prob X
unfolding X-def by (rule PS .sum-measure-le-measure-inter3 , auto)

finally have PS .prob X ≥ alpha by auto

have I : (λy. abs((g y + birkhoff-sum f (Suc n − k) y)/ B (Suc n − k)))
((T^^k) x) ≥ C0 if x ∈ X k ∈ {1 ..<K} for x k

proof −
have 2 ∗ a ∗ B(Suc n) ≤ abs(g x + birkhoff-sum f (Suc n) x)

using ‹x ∈ X› Bpos[of Suc n] unfolding X-def by (auto simp add:
divide-simps)

also have ... = abs(g((T^^k) x) + birkhoff-sum f (Suc n −k) ((T^^k) x) +
(g x + birkhoff-sum f k x − g((T^^k) x)))

using ‹n > N+K › ‹k ∈ {1 ..<K}› birkhoff-sum-cocycle[of f k Suc n − k x]
by auto

also have ... ≤ abs(g((T^^k) x) + birkhoff-sum f (Suc n −k) ((T^^k) x)) +
abs(g x + birkhoff-sum f k x − g((T^^k) x))

by auto
also have ... ≤ abs(g((T^^k) x) + birkhoff-sum f (Suc n −k) ((T^^k) x)) +

D
using ‹x ∈ X› ‹k ∈ {1 ..<K}› unfolding X-def by auto

also have ... ≤ abs(g((T^^k) x) + birkhoff-sum f (Suc n −k) ((T^^k) x)) +
a ∗ B (Suc n)

using ‹D ≤ a ∗ B (Suc n)› by simp
finally have ∗: a ∗ B (Suc n) ≤ abs(g((T^^k) x) + birkhoff-sum f (Suc n

−k) ((T^^k) x))
by simp

have (C0/a) ∗ B (Suc n − k) ≤ C ∗ B (Suc n − k)
apply (rule mult-right-mono) unfolding C-def using less-imp-le[OF Bpos]

by auto
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also have ... ≤ C ∗ Max {B i |i. i ≤ n}
apply (rule mult-left-mono, rule Max-ge) using ‹k ∈ {1 ..<K}› ‹C ≥ 1 ›

by auto
also have ... ≤ B (Suc n)

by fact
finally have C0 ∗ B (Suc n − k) ≤ a ∗ B (Suc n)

using ‹a>0 › by (simp add: divide-simps algebra-simps)
then have C0 ∗ B (Suc n − k) ≤ abs(g((T^^k) x) + birkhoff-sum f (Suc n

−k) ((T^^k) x))
using ∗ by auto

then show ?thesis
using Bpos[of Suc n − k] by (simp add: divide-simps)

qed
have J : 1 ≤ (

∑
k∈{1 ..<K}. (λy. h y ∗ indicator {y ∈ space M . abs((g y +

birkhoff-sum f (Suc n − k) y)/ B (Suc n − k)) ≥ C0} y) ((T^^k) x))
if x ∈ X for x

proof −
have x ∈ space M

using ‹x ∈ X› unfolding X-def by auto
have 1 ≤ (

∑
k ∈ {1 ..<K}. h ((T^^k) x))

using ‹x ∈ X› unfolding X-def by auto
also have ... = (

∑
k ∈ {1 ..<K}. h ((T^^k) x) ∗ indicator {y ∈ space M .

abs((g y + birkhoff-sum f (Suc n − k) y)/ B (Suc n − k)) ≥ C0} ((T^^k) x))
apply (rule sum.cong)
unfolding indicator-def using I [OF ‹x ∈ X›] T-spaceM-stable(2 )[OF ‹x ∈

space M ›] by auto
finally show ?thesis by simp

qed
have ennreal alpha ≤ emeasure P X

using ‹PS .prob X ≥ alpha› by (simp add: PS .emeasure-eq-measure)
also have ... = (

∫
+x. indicator X x ∂P)

by auto
also have ... ≤ (

∫
+x. (

∑
k∈{1 ..<K}. (λy. h y

∗ indicator {y ∈ space M . abs((g y + birkhoff-sum f (Suc n − k) y)/ B (Suc
n − k)) ≥ C0} y) ((T^^k) x)) ∂P)

apply (rule nn-integral-mono) using J unfolding indicator-def by fastforce
also have ... = (

∑
k∈{1 ..<K}. (

∫
+x. (λy. h y

∗ indicator {y ∈ space M . abs((g y + birkhoff-sum f (Suc n − k) y)/ B (Suc
n − k)) ≥ C0} y) ((T^^k) x) ∂P))

by (rule nn-integral-sum, auto)
also have ... = (

∑
k∈{1 ..<K}. (

∫
+x. (λy. h y

∗ indicator {y ∈ space M . abs((g y + birkhoff-sum f (Suc n − k) y)/ B (Suc
n − k)) ≥ C0} y) ((T^^k) x) ∗ h x ∂M ))

unfolding ‹P = density M h› by (auto intro!: sum.cong nn-integral-densityR[symmetric])
also have ... = (

∑
k∈{1 ..<K}. (

∫
+x. h x

∗ indicator {y ∈ space M . abs((g y + birkhoff-sum f (Suc n − k) y)/ B (Suc
n − k)) ≥ C0} x ∗ ((nn-transfer-operator^^k) h) x ∂M ))

by (auto intro!: sum.cong nn-transfer-operator-intTn-g[symmetric])
also have ... = (

∑
k∈{1 ..<K}. (

∫
+x.
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((nn-transfer-operator^^k) h) x ∗ indicator {y ∈ space M . abs((g y +
birkhoff-sum f (Suc n − k) y)/ B (Suc n − k)) ≥ C0} x ∂P))

unfolding ‹P = density M h› by (subst nn-integral-density, auto intro!:
sum.cong simp add: algebra-simps)

also have ... ≤ (
∑

k∈{1 ..<K}. ennreal delta)
by (rule sum-mono, rule small-setint, auto simp add: P-le-epsilon)

also have ... = ennreal (
∑

k∈{1 ..<K}. delta)
using less-imp-le[OF ‹delta > 0 ›] by (rule sum-ennreal)

finally have alpha ≤ (
∑

k∈{1 ..<K}. delta)
apply (subst ennreal-le-iff [symmetric]) using ‹delta > 0 › by auto

also have ... ≤ K ∗ delta
using ‹delta > 0 › by auto

finally show False
unfolding delta-def using ‹K ≥ 1 › ‹alpha > 0 › by (auto simp add: di-

vide-simps algebra-simps)
qed

If n is not large, we get the same bound in a trivial way, as there are only
finitely many cases to consider and we have adjusted the constant C so that
it works for all of them.

have leK : B (Suc n) ≤ C ∗ Max {B i |i. i ≤ n} if n ≤ N+K for n
proof −

have B (Suc n)/B 0 ≤ Max {B k/B 0 |k. k ≤ N+K+1}
apply (rule Max-ge, simp) using ‹n ≤ N+K › by auto

also have ... ≤ C unfolding C-def C1-def by auto
finally have B (Suc n) ≤ C ∗ B 0

using Bpos[of 0 ] by (simp add: divide-simps)
also have ... ≤ C ∗ Max {B i |i. i ≤ n}

apply (rule mult-left-mono) apply (rule Max-ge) using ‹C ≥ 1 › by auto
finally show ?thesis by simp

qed
have B (Suc n) ≤ C ∗ Max {B i |i. i ≤ n} for n

using geK [of n] leK [of n] by force
then show ?thesis

using ‹C ≥ 1 › by auto
qed

Then, we prove the lemma without further assumptions, reducing to the
previous case by replacing m with m+P . We do this at the level of densities
since the addition of measures is not defined in the library (and it would be
problematic as measures carry their sigma-algebra, so what should one do
when the sigma-algebras do not coincide?)
lemma upper-bound-C :
∃C≥1 . ∀n. B (Suc n) ≤ C ∗ Max {B i|i. i ≤ n}

proof −

We introduce the density of P , and show that it is almost everywhere finite.
define h where h = RN-deriv M P
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have [measurable]: h ∈ borel-measurable M
unfolding h-def by auto

have P [simp]: P = density M h
unfolding h-def apply (rule density-RN-deriv[symmetric]) using PabsM by

auto
have space P = space M

by auto
have ∗: AE x in M . h x 6= ∞

unfolding h-def apply (rule RN-deriv-finite)
using PS .sigma-finite-measure-axioms PabsM by auto

have ∗∗: null-sets (density M (λx. 1 + h x)) = null-sets M
by (rule null-sets-density, auto)

We introduce the new system with invariant measure M + P , given by the
density 1 + h.

interpret A: conservative density M (λx. 1 + h x) T
apply (rule conservative-density) using ∗ by auto

interpret B: conservative-limit T density M (λx. 1 + h x) P Z f g B
apply standard

using conv Bpos non-trivial absolutely-continuousI-density[OF ‹h ∈ borel-measurable
M ›]

unfolding absolutely-continuous-def ∗∗ by auto

We obtain the result by applying the result above to the new dynamical
system. We have to check the additional assumption that the density of
P with respect to the new measure M + P is bounded by 1. Since this
density if h/(1 + h), this is trivial modulo a computation in ennreal that is
not automated (yet?).

have z: 1 = ennreal 1 by auto
have Trivial: a = (1+a) ∗ (a/(1+a)) if a 6= > for a::ennreal

apply (cases a) apply auto unfolding z ennreal-plus-if apply (subst di-
vide-ennreal) apply simp apply simp

apply (subst ennreal-mult ′[symmetric]) using that by auto
have Trivial2 : a / (1+a) ≤ 1 for a::ennreal

apply (cases a) apply auto unfolding z ennreal-plus-if apply (subst di-
vide-ennreal) by auto

show ?thesis
apply (rule B.upper-bound-C-aux[of λx. h x/(1 + h x)])

using ∗ Trivial Trivial2 by (auto simp add: density-density-eq density-unique-iff )
qed

The second main upper bound is the following. Again, it proves that Bn+1 ≤
Lmaxi≤nBi, for some constant L, but with two differences. First, L only
depends on the distribution of Z (which is stronger). Second, this estimate
is only proved along a density 1 sequence of times (which is weaker). The
first point implies that this lemma will also apply to T j , with the same L,
which amounts to replacing L by L1/j , making it in practice arbitrarily close
to 1. The second point is problematic at first sight, but for the exceptional
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times we will use the bound of the previous lemma so this will not really
create problems.
For the proof, we split the sum Sn+1f as Snf + f ◦ Tn. If Bn+1 is much
larger than Bn, we deduce that Snf is much smaller than Sn+1f with large
probability, which means that f ◦ Tn is larger than anything that has been
seen before. Since preimages of distinct events have a measure that tends
to 0 along a density 1 subsequence, this can only happen along a density 0
subsequence.
lemma upper-bound-L:

fixes a::real and L::real and alpha::real
assumes a > 0 alpha > 0 L > 3

PZ .prob {x. abs (x) > 2 ∗ a} > 3 ∗ alpha
PZ .prob {x. abs (x) ≥ (L−1 ) ∗ a} < alpha

shows ∃A. lower-asymptotic-density A = 1 ∧ (∀n∈A. B (Suc n) ≤ L ∗ Max {B
i|i. i ≤ n})
proof −

define m where m = (λn. Max {B i|i. i ≤ n})
define K where K = (λn::nat. {x ∈ space M . abs(f x) ∈ {a ∗ L ∗ m n <..< a
∗ L ∗ m (Suc n)}})

have [measurable]: K n ∈ sets M for n
unfolding K-def by auto

have ∗: m n ≤ m p if n ≤ p for n p
unfolding m-def K-def using that by (auto intro!: Max-mono)

have K n ∩ K p = {} if n < p for n p
proof (auto simp add: K-def )

fix x assume |f x| < a ∗ L ∗ m (Suc n) a ∗ L ∗ m p < |f x|
moreover have a ∗ L ∗ m (Suc n) ≤ a ∗ L ∗ m p

using ∗[of Suc n p] that ‹a > 0 › ‹L > 3 › by auto
ultimately show False by auto

qed
then have disjoint-family K

unfolding disjoint-family-on-def using nat-neq-iff by auto

have ∃A0 . lower-asymptotic-density A0 = 1 ∧
(λn. measure P (space M ∩ (T^^n)−‘(K n)) ∗ indicator A0 n) −−−−→ 0

apply (rule disjoint-sets-measure-density-one-tendsto-zero) apply fact+
using PabsM by auto

then obtain A0 where A0 : lower-asymptotic-density A0 = 1 (λn. measure P
(space M ∩ (T^^n)−‘(K n)) ∗ indicator A0 n) −−−−→ 0

by blast
obtain N0 where N0 :

∧
n. n ≥ N0 =⇒ measure P (space M ∩ (T^^n)−‘(K

n)) ∗ indicator A0 n < alpha
using order-tendstoD(2 )[OF A0 (2 ) ‹alpha > 0 ›] unfolding eventually-sequentially

by blast

have A: eventually (λn. measure (distr P borel (λx. (g x + birkhoff-sum f n x) /
B n)) {x. abs (x) > 2 ∗ a} > 3 ∗ alpha) sequentially

apply (rule open-set-weak-conv-lsc[of - Z ])
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by (auto simp add: PZ .real-distribution-axioms conv assms)
have B: eventually (λn. measure (distr P borel (λx. (g x + birkhoff-sum f n x)

/ B n)) {x. abs (x) ≥ (L− 1 ) ∗ a} < alpha) sequentially
apply (rule closed-set-weak-conv-usc[of - Z ])
by (auto simp add: PZ .real-distribution-axioms conv assms)

obtain N where N :
∧

n. n ≥ N =⇒ measure (distr P borel (λx. (g x +
birkhoff-sum f n x) / B n)) {x. abs (x) > 2 ∗ a} > 3 ∗ alpha∧

n. n ≥ N =⇒ measure (distr P borel (λx. (g x + birkhoff-sum f
n x) / B n)) {x. abs (x) ≥ (L−1 ) ∗ a} < alpha

using eventually-conj[OF A B] unfolding eventually-sequentially by blast

have I : PS .prob {x ∈ space M . abs((g x + birkhoff-sum f n x) / B n) < (L−1 )
∗ a} > 1 − alpha if n ≥ N for n

proof −
let ?h = (λx. (g x + birkhoff-sum f n x) / B n)
have measure (distr P borel ?h) {x. abs (x) ≥ (L−1 ) ∗ a}

= measure P (?h−‘ {x. abs (x) ≥ (L−1 ) ∗ a} ∩ space P)
by (rule measure-distr , auto)

also have ... = measure P {x ∈ space M . abs(?h x) ≥ (L−1 ) ∗ a}
by (rule HOL.cong[of measure P], auto)

finally have A: PS .prob {x ∈ space M . abs(?h x) ≥ (L−1 ) ∗ a} < alpha
using N (2 )[OF that] by auto

have ∗: {x ∈ space M . abs(?h x) < (L−1 ) ∗ a} = space M − {x ∈ space M .
abs(?h x) ≥ (L−1 ) ∗ a}

by auto
show ?thesis

unfolding ∗ using A PS .prob-compl by auto
qed

have Main: PS .prob (space M ∩ (T^^n)−‘(K n)) > alpha if n ≥ N B (Suc n)
> L ∗ m n for n

proof −
have Suc n ≥ N using that by auto
let ?h = (λx. (g x + birkhoff-sum f (Suc n) x) / B (Suc n))
have measure (distr P borel ?h) {x. abs (x) > 2 ∗ a}

= measure P (?h−‘ {x. abs (x) > 2 ∗ a} ∩ space P)
by (rule measure-distr , auto)

also have ... = measure P {x ∈ space M . abs(?h x) > 2 ∗ a}
by (rule HOL.cong[of measure P], auto)

finally have A: PS .prob {x ∈ space M . abs(?h x) > 2 ∗ a} > 3 ∗ alpha
using N (1 )[OF ‹Suc n ≥ N ›] by auto

define X where X = {x ∈ space M . abs((g x + birkhoff-sum f n x) / B n) <
(L−1 ) ∗ a}

∩ {x ∈ space M . abs((g x + birkhoff-sum f (Suc n) x) / B
(Suc n)) < (L−1 ) ∗ a}

∩ {x ∈ space M . abs((g x + birkhoff-sum f (Suc n) x) / B
(Suc n)) > 2 ∗ a}

have (1 − alpha) + (1 − alpha) + 3 ∗ alpha <
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PS .prob {x ∈ space M . abs((g x + birkhoff-sum f n x) / B n) < (L−1 )
∗ a}

+ PS .prob {x ∈ space M . abs((g x + birkhoff-sum f (Suc n) x) / B (Suc
n)) < (L−1 ) ∗ a}

+ PS .prob {x ∈ space M . abs((g x + birkhoff-sum f (Suc n) x) / B (Suc
n)) > 2 ∗ a}

using A I [OF ‹n ≥ N ›] I [OF ‹Suc n ≥ N ›] by auto
also have ... ≤ 2 + PS .prob X

unfolding X-def by (rule PS .sum-measure-le-measure-inter3 , auto)
finally have PS .prob X > alpha by auto

have X ⊆ space M ∩ (T^^n)−‘(K n)
proof

have ∗: B i ≤ m n if i ≤ n for i
unfolding m-def by (rule Max-ge, auto simp add: that)

have ∗∗: B i ≤ B (Suc n) if i ≤ Suc n for i
proof (cases i ≤ n)

case True
have m n ≤ B (Suc n) / L

using ‹L ∗ m n < B (Suc n)› ‹L > 3 › by (simp add: divide-simps
algebra-simps)

also have ... ≤ B (Suc n)
using Bpos[of Suc n] ‹L > 3 › by (simp add: divide-simps algebra-simps)

finally show ?thesis using ∗[OF True] by simp
next

case False
then show ?thesis

using ‹i ≤ Suc n› le-SucE by blast
qed
have m (Suc n) = B (Suc n)

unfolding m-def by (rule Max-eqI , auto simp add: ∗∗)

fix x assume x ∈ X
then have abs (g x + birkhoff-sum f n x) < (L−1 ) ∗ a ∗ B n

unfolding X-def using Bpos[of n] by (auto simp add: algebra-simps di-
vide-simps)

also have ... ≤ L ∗ a ∗ m n
using ∗[of n] ‹L > 3 › ‹a > 0 › Bpos[of n] by (auto intro!: mult-mono)

also have ... ≤ a ∗ B (Suc n)
using ‹B (Suc n) > L ∗ m n› less-imp-le ‹a > 0 › by auto

finally have A: abs (g x + birkhoff-sum f n x) < a ∗ B (Suc n)
by simp

have B: abs(g x + birkhoff-sum f (Suc n) x) < (L−1 ) ∗ a ∗ B (Suc n)
using ‹x ∈ X› unfolding X-def using Bpos[of Suc n] by (auto simp add:

algebra-simps divide-simps)
have ∗: f ((T^^n) x) = (g x + birkhoff-sum f (Suc n) x) − (g x + birkhoff-sum

f n x)
apply (auto simp add: algebra-simps)
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by (metis add.commute birkhoff-sum-1 (2 ) birkhoff-sum-cocycle plus-1-eq-Suc)
have abs(f ((T^^n) x)) ≤ abs (g x + birkhoff-sum f (Suc n) x) + abs(g x +

birkhoff-sum f n x)
unfolding ∗ by simp

also have ... < (L−1 ) ∗ a ∗ B (Suc n) + a ∗ B (Suc n)
using A B by auto

also have ... = L ∗ a ∗ m (Suc n)
using ‹m (Suc n) = B (Suc n)› by (simp add: algebra-simps)

finally have Z1 : abs(f ((T^^n) x)) < L ∗ a ∗ m (Suc n)
by simp

have 2 ∗ a ∗ B (Suc n) < abs (g x + birkhoff-sum f (Suc n) x)
using ‹x ∈ X› unfolding X-def using Bpos[of Suc n] by (auto simp add:

algebra-simps divide-simps)
also have ... = abs(f ((T^^n) x) + (g x + birkhoff-sum f n x))

unfolding ∗ by auto
also have ... ≤ abs(f ((T^^n) x)) + abs (g x + birkhoff-sum f n x)

by auto
also have ... < abs(f ((T^^n) x)) + a ∗ B (Suc n)

using A by auto
finally have abs(f ((T^^n) x)) > a ∗ B (Suc n)

by simp
then have Z2 : abs(f ((T^^n) x)) > a ∗ L ∗ m n

using mult-strict-left-mono[OF ‹B (Suc n) > L ∗ m n› ‹a > 0 ›] by auto

show x ∈ space M ∩ (T ^^ n) −‘ K n
using Z1 Z2 ‹x ∈ X› unfolding K-def X-def by (auto simp add: alge-

bra-simps)
qed
have PS .prob X ≤ PS .prob (space M ∩ (T^^n)−‘(K n))

by (rule PS .finite-measure-mono, fact, auto)
then show alpha < PS .prob (space M ∩ (T ^^ n) −‘ K n)

using ‹alpha < PS .prob X› by simp
qed
define A where A = A0 ∩ {N + N0 ..}
have lower-asymptotic-density A = 1
unfolding A-def by (rule lower-asymptotic-density-one-intersection, fact, simp)

moreover have B (Suc n) ≤ L ∗ m n if n ∈ A for n
proof (rule ccontr)

assume ¬(B (Suc n) ≤ L ∗ m n)
then have L ∗ m n < B (Suc n) n ≥ N n ≥ N0

using ‹n ∈ A› unfolding A-def by auto
then have PS .prob (space M ∩ (T^^n)−‘(K n)) > alpha

using Main by auto
moreover have PS .prob (space M ∩ (T^^n)−‘(K n)) ∗ indicator A0 n < alpha

using N0 [OF ‹n ≥ N0 ›] by simp
moreover have indicator A0 n = (1 ::real)

using ‹n ∈ A› unfolding A-def indicator-def by auto
ultimately show False
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by simp
qed
ultimately show ?thesis

unfolding m-def by blast
qed

Now, we combine the two previous statements to prove the main theorem.
theorem subexponential-growth:
(λn. max 0 (ln (B n) /n)) −−−−→ 0

proof −
obtain a0 where a0 : a0 > 0 PZ .prob {x. abs (x) > a0} > 0

using PZ .not-Dirac-0-imp-positive-mass-away-0 [OF non-trivial] by blast
define a where a = a0/2
have a > 0 using ‹a0 > 0 › unfolding a-def by auto
define alpha where alpha = PZ .prob {x. abs (x) > a0}/4
have alpha > 0 unfolding alpha-def using a0 by auto
have PZ .prob {x. abs (x) > 2 ∗ a} > 3 ∗ alpha

using a0 unfolding a-def alpha-def by auto

obtain C0 where C0 : PZ .prob {x. abs(x) ≥ C0} < alpha C0 ≥ 3 ∗ a
using PZ .random-variable-small-tails[OF ‹alpha > 0 ›, of λx. x] by auto

define L where L = C0/a + 1
have PZ .prob {x. abs(x) ≥ (L−1 ) ∗ a} < alpha

unfolding L-def using C0 ‹a>0 › by auto
have L > 3

unfolding L-def using C0 ‹a > 0 › by (auto simp add: divide-simps)

obtain C where C :
∧

n. B (Suc n) ≤ C ∗ Max {B i|i. i ≤ n} C ≥ 1
using upper-bound-C by blast

have C2 : B n ≤ C ∗ Max {B i|i. i < n} if n > 0 for n
proof −

obtain m where m: n = Suc m
using ‹0 < n› gr0-implies-Suc by auto

have ∗: i ≤ m ←→ i < Suc m for i by auto
show ?thesis using C (1 )[of m] unfolding m ∗ by auto

qed

have Mainj: eventually (λn. ln (B n) / n ≤ (1+ln L)/j) sequentially if j > 0
for j::nat

proof −
have ∗: ∃A. lower-asymptotic-density A = 1 ∧ (∀n∈A. B (j ∗ Suc n + k) ≤

L ∗ Max {B (j ∗ i + k) |i. i ≤ n}) for k
proof −
interpret Tj0 : conservative M (T^^j) using conservative-power [of j] by auto
have ∗: g x + birkhoff-sum f k x + Tj0 .birkhoff-sum (λx. birkhoff-sum f j ((T

^^ k) x)) n x = g x + birkhoff-sum f (j ∗ n + k) x for x n
proof −

have birkhoff-sum f (j ∗ n + k) x = (
∑

i ∈ {..<k} ∪ {k..<j ∗ n + k}. f
((T ^^ i) x))
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unfolding birkhoff-sum-def by (rule sum.cong, auto)
also have ... = (

∑
i ∈ {..<k}. f ((T ^^ i) x)) + (

∑
i ∈ {k..<j ∗ n + k}. f

((T ^^ i) x))
by (auto intro!: sum.union-disjoint)

also have ... = birkhoff-sum f k x + (
∑

s<j.
∑

i<n. f ((T ^^ (i ∗ j + s))
((T^^k) x)))

apply (subst sum-arith-progression)
unfolding birkhoff-sum-def Tj0 .birkhoff-sum-def funpow-mult funpow-add ′[symmetric]

by (auto simp add: algebra-simps intro!: sum.reindex-bij-betw[symmetric]
bij-betw-byWitness[of - λa. a−k])

also have ... = birkhoff-sum f k x + Tj0 .birkhoff-sum (λx. birkhoff-sum f j
((T ^^ k) x)) n x

unfolding birkhoff-sum-def Tj0 .birkhoff-sum-def funpow-mult funpow-add ′[symmetric]
by (auto simp add: algebra-simps intro!: sum.swap)

finally show ?thesis by simp
qed
interpret Tj: conservative-limit T^^j M P Z λx. birkhoff-sum f j ((T^^k) x)

λx. g x + birkhoff-sum f k x λn. B (j ∗ n + k)
apply standard

using PabsM Bpos non-trivial conv ‹j>0 › unfolding ∗ by (auto intro!:
weak-conv-m-subseq strict-monoI )

show ?thesis
apply (rule Tj.upper-bound-L[OF ‹a > 0 › ‹alpha > 0 ›]) by fact+

qed
have ∃A. ∀ k. lower-asymptotic-density (A k) = 1 ∧ (∀n∈A k. B (j ∗ Suc n

+ k) ≤ L ∗ Max {B (j ∗ i + k) |i. i ≤ n})
apply (rule choice) using ∗ by auto

then obtain A where A:
∧

k. lower-asymptotic-density (A k) = 1
∧

k n. n ∈
A k =⇒ B (j ∗ Suc n + k) ≤ L ∗ Max {B (j ∗ i + k) |i. i ≤ n}

by blast
define Aj where Aj = (

⋂
k<j. A k)

have lower-asymptotic-density Aj = 1
unfolding Aj-def using A(1 ) by (simp add: lower-asymptotic-density-one-finite-Intersection)
define Bj where Bj = UNIV − Aj
have upper-asymptotic-density Bj = 0

using ‹lower-asymptotic-density Aj = 1 ›
unfolding Bj-def lower-upper-asymptotic-density-complement by simp

define M where M = (λn. Max {B p |p. p < (n+1 ) ∗ j})
have B 0 ≤ M n for n

unfolding M-def apply (rule Max-ge, auto, rule exI [of - 0 ]) using ‹j > 0 ›
by auto

then have Mpos: M n > 0 for n
by (metis Bpos not-le not-less-iff-gr-or-eq order .strict-trans)

have M-L: M (Suc n) ≤ L ∗ M n if n ∈ Aj for n
proof −

have ∗: B s ≤ L ∗ M n if s < (n+2 ) ∗ j for s
proof (cases s < (n+1 ) ∗ j)

case True
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have B s ≤ M n
unfolding M-def apply (rule Max-ge) using True by auto

also have ... ≤ L ∗ M n using ‹L > 3 › ‹M n > 0 › by auto
finally show ?thesis by simp

next
case False
then obtain k where k < j s = (n+1 ) ∗ j + k using ‹s < (n+2 ) ∗ j›

le-Suc-ex by force
then have B s = B (j ∗ Suc n + k) by (auto simp add: algebra-simps)
also have ... ≤ L ∗ Max {B (j ∗ i + k) |i. i ≤ n}

using A(2 )[of n k] ‹n ∈ Aj› unfolding Aj-def using ‹k < j› by auto
also have ... ≤ L ∗ Max {B a|a. a < (n+1 ) ∗ j}

apply (rule mult-left-mono, rule Max-mono) using ‹L>3 › proof (auto)
fix i assume i ≤ n show ∃ a. B (j ∗ i + k) = B a ∧ a < j + n ∗ j

apply (rule exI [of - j ∗ i + k]) using ‹k < j› ‹i ≤ n›
by (auto simp add: add-mono-thms-linordered-field(3 ) algebra-simps)

qed
finally show ?thesis unfolding M-def by auto

qed
show ?thesis

unfolding M-def apply (rule Max.boundedI )
using ∗ unfolding M-def using ‹j > 0 › by auto

qed
have M-C : M (Suc n) ≤ C^j ∗ M n for n
proof −

have I : Max {B s|s. s < (n+1 ) ∗ j + k} ≤ C^k ∗ M n for k
proof (induction k)

case 0
show ?case

apply (rule Max.boundedI ) unfolding M-def using ‹j > 0 › by auto
next

case (Suc k)
have ∗: B s ≤ C ∗ C ^ k ∗ M n if s < Suc (j + n ∗ j + k) for s
proof (cases s < j + n ∗ j + k)

case True
then have B s ≤ C^k ∗ M n using iffD1 [OF Max-le-iff , OF - - Suc.IH ]

by auto
also have ... ≤ C ∗ C^k ∗ M n using ‹C ≥ 1 › ‹M n > 0 › by auto
finally show ?thesis by simp

next
case False
then have s = j + n ∗ j + k using that by auto
then have B s ≤ C ∗ Max {B s|s. s < (n+1 ) ∗ j + k} using C2 [of s]

using ‹j > 0 › by auto
also have ... ≤ C ∗ C^k ∗ M n using Suc.IH ‹C ≥ 1 › by auto
finally show ?thesis by simp

qed
show ?case

apply (rule Max.boundedI ) using ‹j > 0 › ∗ by auto
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qed
show ?thesis using I [of j] unfolding M-def by (auto simp add: algebra-simps)
qed
have I : ln (M n) ≤ ln (M 0 ) + n ∗ ln L + card (Bj ∩ {..<n}) ∗ ln (C^j) for

n
proof (induction n)

case 0
show ?case by auto

next
case (Suc n)
show ?case
proof (cases n ∈ Bj)

case True
then have ∗: Bj ∩ {..<Suc n} = Bj ∩ {..<n} ∪ {n} by auto
have ∗∗: card (Bj ∩ {..<Suc n}) = card (Bj ∩ {..<n}) + card {n}

unfolding ∗ by (rule card-Un-disjoint, auto)

have ln (M (Suc n)) ≤ ln (C^j ∗ M n)
using M-C ‹

∧
n. 0 < M n› less-le-trans ln-le-cancel-iff by blast

also have ... = ln (M n) + ln (C^j)
using ‹C ≥ 1 › ‹0 < M n› ln-mult by auto

also have ... ≤ ln (M 0 ) + n ∗ ln L + card (Bj ∩ {..<n}) ∗ ln (C^j) + ln
(C^j)

using Suc.IH by auto
also have ... = ln (M 0 ) + n ∗ ln L + card (Bj ∩ {..<Suc n}) ∗ ln (C^j)

using ∗∗ by (auto simp add: algebra-simps)
also have ... ≤ ln (M 0 ) + (Suc n) ∗ ln L + card (Bj ∩ {..<Suc n}) ∗ ln

(C^j)
using ‹L > 3 › by auto

finally show ?thesis by auto
next

case False
have M (Suc n) ≤ L ∗ M n

apply (rule M-L) using False unfolding Bj-def by auto
then have ln (M (Suc n)) ≤ ln (L ∗ M n)

using ‹
∧

n. 0 < M n› less-le-trans ln-le-cancel-iff by blast
also have ... = ln (M n) + ln L

using ‹L > 3 › ‹0 < M n› ln-mult by auto
also have ... ≤ ln (M 0 ) + Suc n ∗ ln L + card (Bj ∩ {..<n}) ∗ ln (C^j)

using Suc.IH by (auto simp add: algebra-simps)
also have ... ≤ ln (M 0 ) + Suc n ∗ ln L + card (Bj ∩ {..<Suc n}) ∗ ln

(C^j)
using ‹C ≥ 1 › by (auto intro!: mult-right-mono card-mono)

finally show ?thesis by auto
qed

qed
have ln (M n)/n ≤ ln (M 0 )∗ (1/n) + ln L + (card (Bj ∩ {..<n})/n) ∗ ln

(C^j) if n≥1 for n
using that apply (auto simp add: algebra-simps divide-simps)
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by (metis (no-types, opaque-lifting) I add.assoc mult.commute mult-left-mono
of-nat-0-le-iff semiring-normalization-rules(34 ))

then have A: eventually (λn. ln (M n)/n ≤ ln (M 0 )∗ (1/n) + ln L + (card
(Bj ∩ {..<n})/n) ∗ ln (C^j)) sequentially

unfolding eventually-sequentially by blast

have ∗: (λn. ln (M 0 )∗(1/n) + ln L + (card (Bj ∩ {..<n})/n) ∗ ln (C^j))
−−−−→ ln (M 0 ) ∗ 0 + ln L + 0 ∗ln (C^j)

by (intro tendsto-intros upper-asymptotic-density-zero-lim, fact)
have B: eventually (λn. ln (M 0 )∗(1/n) + ln L + (card (Bj ∩ {..<n})/n) ∗

ln (C^j) < 1 + ln L) sequentially
by (rule order-tendstoD[OF ∗], auto)

have eventually (λn. ln (M n)/n < 1 + ln L) sequentially
using eventually-conj[OF A B] by (simp add: eventually-mono)

then obtain N where N :
∧

n. n ≥ N =⇒ ln (M n)/n < 1 + ln L
unfolding eventually-sequentially by blast

have ln (B p) / p ≤ (1+ln L) / j if p ≥ (N+1 ) ∗ j for p
proof −

define n where n = p div j
have n ≥ N+1 unfolding n-def using that

by (metis ‹0 < j› div-le-mono div-mult-self-is-m)
then have n ≥ N n ≥ 1 by auto
have ∗: p < (n+1 ) ∗ j n ∗ j ≤ p

unfolding n-def using ‹j > 0 › dividend-less-div-times by auto
have B p ≤ M n

unfolding M-def apply (rule Max-ge) using ∗ by auto
then have ln (B p) ≤ ln (M n)

using Bpos Mpos ln-le-cancel-iff by blast
also have ... ≤ n ∗ (1+ln L)
using N [OF ‹n ≥ N ›] ‹n ≥ 1 › by (auto simp add: divide-simps algebra-simps)
also have ... ≤ (p/j) ∗ (1+ln L)

apply (rule mult-right-mono) using ∗(2 ) ‹j > 0 › ‹L > 3 ›
apply (auto simp add: divide-simps algebra-simps)
using of-nat-mono by fastforce

finally show ?thesis
using ‹j > 0 › that by (simp add: algebra-simps divide-simps)

qed
then show eventually (λp. ln (B p) / p ≤ (1+ln L)/j) sequentially

unfolding eventually-sequentially by auto
qed
show (λn. max 0 (ln (B n) / real n)) −−−−→ 0
proof (rule order-tendstoI )

fix e::real assume e > 0
have ∗: (λj. (1+ln L) ∗ (1/j)) −−−−→ (1+ln L) ∗ 0

by (intro tendsto-intros)
have eventually (λj. (1+ln L) ∗ (1/j) < e) sequentially

apply (rule order-tendstoD[OF ∗]) using ‹e > 0 › by auto
then obtain j::nat where j: j > 0 (1+ln L) ∗ (1/j) < e

unfolding eventually-sequentially using add.right-neutral le-eq-less-or-eq by
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fastforce
show eventually (λn. max 0 (ln (B n) / real n) < e) sequentially

using Mainj[OF ‹j > 0 ›] j(2 ) ‹e > 0 › by (simp add: eventually-mono)
qed (simp add: max.strict-coboundedI1 )

qed

end

13.3 Normalizing sequences grow at most polynomially in
probability preserving systems

In probability preserving systems, normalizing sequences grow at most poly-
nomially. The proof, also given in [Gou18], is considerably easier than the
conservative case. We prove that Bn+1 ≤ CBn (more precisely, this only
holds if Bn+1 is large enough), by arguing that Sn+1f = Snf+f ◦Tn, where
f ◦ Tn is negligible if Bn+1 is large thanks to the measure preservation. We
also prove that B2n ≤ EBn, by writing S2nf = Snf + Snf ◦ Tn and ar-
guing that the two terms on the right have the same distribution. Finally,
combining these two estimates, the polynomial growth follows readily.
locale pmpt-limit =

pmpt M + PZ : real-distribution Z
for M :: ′a measure and Z ::real measure +

fixes f :: ′a ⇒ real and B::nat ⇒ real
assumes Bpos:

∧
n. B n > 0

and M [measurable]: f ∈ borel-measurable M
and non-trivial: PZ .prob {0} < 1
and conv: weak-conv-m (λn. distr P borel (λx. (birkhoff-sum f n x) / B n)) Z

begin

First, we prove that Bn+1 ≤ CBn if Bn+1 is large enough.
lemma upper-bound-CD:
∃C D. (∀n. B (Suc n) ≤ D ∨ B (Suc n) ≤ C ∗ B n) ∧ C ≥ 1

proof −
obtain a where a: a > 0 PZ .prob {x. abs (x) > a} > 0

using PZ .not-Dirac-0-imp-positive-mass-away-0 [OF non-trivial] by blast
define alpha where alpha = PZ .prob {x. abs (x) > a}/4
have alpha > 0 unfolding alpha-def using a by auto
have A: PZ .prob {x. abs (x) > a} > 3 ∗ alpha

using a unfolding alpha-def by auto

obtain C0 where C0 : PZ .prob {x. abs(x) ≥ C0} < alpha C0 ≥ a
using PZ .random-variable-small-tails[OF ‹alpha > 0 ›, of λx. x] by auto

have A: eventually (λn. measure (distr M borel (λx. (birkhoff-sum f n x) / B n))
{x. abs (x) > a} > 3 ∗ alpha) sequentially

apply (rule open-set-weak-conv-lsc[of - Z ])
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by (auto simp add: PZ .real-distribution-axioms conv A)
have B: eventually (λn. measure (distr M borel (λx. (birkhoff-sum f n x) / B n))
{x. abs (x) ≥ C0} < alpha) sequentially

apply (rule closed-set-weak-conv-usc[of - Z ])
by (auto simp add: PZ .real-distribution-axioms conv C0 )

obtain N where N :
∧

n. n ≥ N =⇒ measure (distr M borel (λx. (birkhoff-sum
f n x) / B n)) {x. abs x > a} > 3 ∗ alpha∧

n. n ≥ N =⇒ measure (distr M borel (λx. (birkhoff-sum f n x) /
B n)) {x. abs x ≥ C0} < alpha

using eventually-conj[OF A B] unfolding eventually-sequentially by blast

obtain Cf where Cf : prob {x ∈ space M . abs(f x) ≥ Cf } < alpha Cf ≥ 1
using random-variable-small-tails[OF ‹alpha > 0 › M ] by auto

have Main: B (Suc n) ≤ (2∗C0/a) ∗ B n if n ≥ N B (Suc n) ≥ 2 ∗ Cf /a for n
proof −

have Suc n ≥ N using that by auto
let ?h = (λx. (birkhoff-sum f (Suc n) x) / B (Suc n))
have measure (distr M borel ?h) {x. abs (x) > a}

= measure M (?h−‘ {x. abs (x) > a} ∩ space M )
by (rule measure-distr , auto)

also have ... = prob {x ∈ space M . abs(?h x) > a}
by (rule HOL.cong[of measure M ], auto)

finally have A: prob {x ∈ space M . abs(?h x) > a} > 3 ∗ alpha
using N (1 )[OF ‹Suc n ≥ N ›] by auto

let ?h = (λx. (birkhoff-sum f n x) / B n)
have measure (distr M borel ?h) {x. abs (x) ≥ C0}

= measure M (?h−‘ {x. abs (x) ≥ C0} ∩ space M )
by (rule measure-distr , auto)

also have ... = measure M {x ∈ space M . abs(?h x) ≥ C0}
by (rule HOL.cong[of measure M ], auto)

finally have B0 : prob {x ∈ space M . abs(?h x) ≥ C0} < alpha
using N (2 )[OF ‹n ≥ N ›] by auto

have ∗: {x ∈ space M . abs(?h x) < C0} = space M − {x ∈ space M . abs(?h
x) ≥ C0}

by auto
have B: prob {x ∈ space M . abs(?h x) < C0} > 1− alpha

unfolding ∗ using B0 prob-compl by auto

have prob {x ∈ space M . abs(f ((T^^n) x)) ≥ Cf } = prob ((T^^n)−‘{x ∈
space M . abs(f x) ≥ Cf } ∩ space M )

by (rule HOL.cong[of prob], auto)
also have ... = prob {x ∈ space M . abs(f x) ≥ Cf }

using T-vrestr-same-measure(2 )[of {x ∈ space M . abs(f x) ≥ Cf } n]
unfolding vimage-restr-def by auto

finally have C0 : prob {x ∈ space M . abs(f ((T^^n) x)) ≥ Cf } < alpha
using Cf by simp

have ∗: {x ∈ space M . abs(f ((T^^n) x)) < Cf } = space M − {x ∈ space M .
abs(f ((T^^n) x)) ≥ Cf }
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by auto
have C : prob {x ∈ space M . abs(f ((T^^n) x)) < Cf } > 1− alpha

unfolding ∗ using C0 prob-compl by auto

define X where X = {x ∈ space M . abs((birkhoff-sum f n x) / B n) < C0}
∩ {x ∈ space M . abs((birkhoff-sum f (Suc n) x) / B (Suc n))

> a}
∩ {x ∈ space M . abs(f ((T^^n) x)) < Cf }

have (1 − alpha) + 3 ∗ alpha + (1 − alpha) <
prob {x ∈ space M . abs((birkhoff-sum f n x) / B n) < C0}

+ prob {x ∈ space M . abs((birkhoff-sum f (Suc n) x) / B (Suc n)) > a}
+ prob {x ∈ space M . abs(f ((T^^n) x)) < Cf }

using A B C by auto
also have ... ≤ 2 + prob X

unfolding X-def by (rule sum-measure-le-measure-inter3 , auto)
finally have prob X > alpha by auto
then have X 6= {} using ‹alpha > 0 › by auto
then obtain x where x ∈ X by auto
have ∗: abs(birkhoff-sum f n x) ≤ C0 ∗ B n

abs(birkhoff-sum f (Suc n) x) ≥ a ∗ B (Suc n)
abs(f ((T^^n) x)) ≤ Cf

using ‹x ∈ X› Bpos[of n] Bpos[of Suc n] unfolding X-def by (auto simp
add: divide-simps)

have a ∗ B (Suc n) ≤ abs(birkhoff-sum f (Suc n) x)
using ∗ by simp

also have ... = abs(birkhoff-sum f n x + f ((T^^n) x))
by (metis Groups.add-ac(2 ) One-nat-def birkhoff-sum-1 (3 ) birkhoff-sum-cocycle

plus-1-eq-Suc)
also have ... ≤ C0 ∗ B n + Cf

using ∗ by auto
also have ... ≤ C0 ∗ B n + (a/2 ) ∗ B (Suc n)

using ‹B (Suc n) ≥ 2 ∗ Cf /a› ‹a > 0 › by (auto simp add: divide-simps
algebra-simps)

finally show B (Suc n) ≤ (2 ∗ C0/a) ∗ B n
using ‹a > 0 › by (auto simp add: divide-simps algebra-simps)

qed
define C1 where C1 = Max {B(Suc n)/B n |n. n ≤ N}
have ∗: B (Suc n) ≤ max ((2 ∗ C0/a)) C1 ∗ B n if B (Suc n) > 2 ∗ Cf /a for

n
proof (cases n > N )

case True
then show ?thesis

using Main[OF less-imp-le[OF ‹n > N ›] less-imp-le[OF that]] Bpos[of n]
by (meson max .cobounded1 order-trans mult-le-cancel-right-pos)

next
case False
then have n ≤ N by simp
have B(Suc n)/B n ≤ C1

unfolding C1-def apply (rule Max-ge) using ‹n ≤ N › by auto
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then have B (Suc n) ≤ C1 ∗ B n
using Bpos[of n] by (simp add: divide-simps)

then show ?thesis
using Bpos[of n] by (meson max.cobounded2 order-trans mult-le-cancel-right-pos)

qed
show ?thesis

apply (rule exI [of - max ((2 ∗ C0/a)) C1 ], rule exI [of - 2 ∗ Cf /a])
using ∗ linorder-not-less ‹C0 ≥ a› ‹a > 0 › by (auto intro!: max.coboundedI1 )

qed

Second, we prove that B2n ≤ EBn.
lemma upper-bound-E :
∃E . ∀n. B (2 ∗ n) ≤ E ∗ B n

proof −
obtain a where a: a > 0 PZ .prob {x. abs (x) > a} > 0

using PZ .not-Dirac-0-imp-positive-mass-away-0 [OF non-trivial] by blast
define alpha where alpha = PZ .prob {x. abs (x) > a}/4
have alpha > 0 unfolding alpha-def using a by auto
have A: PZ .prob {x. abs (x) > a} > 3 ∗ alpha

using a unfolding alpha-def by auto

obtain C0 where C0 : PZ .prob {x. abs(x) ≥ C0} < alpha C0 ≥ a
using PZ .random-variable-small-tails[OF ‹alpha > 0 ›, of λx. x] by auto

have A: eventually (λn. measure (distr M borel (λx. (birkhoff-sum f n x) / B n))
{x. abs (x) > a} > 3 ∗ alpha) sequentially

apply (rule open-set-weak-conv-lsc[of - Z ])
by (auto simp add: PZ .real-distribution-axioms conv A)

have B: eventually (λn. measure (distr M borel (λx. (birkhoff-sum f n x) / B n))
{x. abs (x) ≥ C0} < alpha) sequentially

apply (rule closed-set-weak-conv-usc[of - Z ])
by (auto simp add: PZ .real-distribution-axioms conv C0 )

obtain N where N :
∧

n. n ≥ N =⇒ measure (distr M borel (λx. (birkhoff-sum
f n x) / B n)) {x. abs x > a} > 3 ∗ alpha∧

n. n ≥ N =⇒ measure (distr M borel (λx. (birkhoff-sum f n x) /
B n)) {x. abs x ≥ C0} < alpha

using eventually-conj[OF A B] unfolding eventually-sequentially by blast

have Main: B (2 ∗ n) ≤ (2∗C0/a) ∗ B n if n ≥ N for n
proof −

have 2 ∗ n ≥ N using that by auto
let ?h = (λx. (birkhoff-sum f (2 ∗ n) x) / B (2 ∗ n))
have measure (distr M borel ?h) {x. abs (x) > a}

= measure M (?h−‘ {x. abs (x) > a} ∩ space M )
by (rule measure-distr , auto)

also have ... = prob {x ∈ space M . abs(?h x) > a}
by (rule HOL.cong[of measure M ], auto)

finally have A: prob {x ∈ space M . abs((birkhoff-sum f (2 ∗ n) x) / B (2 ∗
n)) > a} > 3 ∗ alpha

362



using N (1 )[OF ‹2 ∗ n ≥ N ›] by auto

let ?h = (λx. (birkhoff-sum f n x) / B n)
have measure (distr M borel ?h) {x. abs (x) ≥ C0}

= measure M (?h−‘ {x. abs (x) ≥ C0} ∩ space M )
by (rule measure-distr , auto)

also have ... = measure M {x ∈ space M . abs(?h x) ≥ C0}
by (rule HOL.cong[of measure M ], auto)

finally have B0 : prob {x ∈ space M . abs(?h x) ≥ C0} < alpha
using N (2 )[OF ‹n ≥ N ›] by auto

have ∗: {x ∈ space M . abs(?h x) < C0} = space M − {x ∈ space M . abs(?h
x) ≥ C0}

by auto
have B: prob {x ∈ space M . abs((birkhoff-sum f n x) / B n) < C0} > 1− alpha

unfolding ∗ using B0 prob-compl by auto

have prob {x ∈ space M . abs(?h ((T^^n) x)) < C0} = prob ((T^^n)−‘{x ∈
space M . abs(?h x) < C0} ∩ space M )

by (rule HOL.cong[of prob], auto)
also have ... = prob {x ∈ space M . abs(?h x) < C0}

using T-vrestr-same-measure(2 )[of {x ∈ space M . abs(?h x) < C0} n]
unfolding vimage-restr-def by auto

finally have C : prob {x ∈ space M . abs((birkhoff-sum f n ((T^^n) x)) / B n)
< C0} > 1− alpha

using B by simp

define X where X = {x ∈ space M . abs((birkhoff-sum f n x) / B n) < C0}
∩ {x ∈ space M . abs((birkhoff-sum f (2∗ n) x) / B (2∗ n))

> a}
∩ {x ∈ space M . abs((birkhoff-sum f n ((T^^n) x)) / B n) <

C0}
have (1 − alpha) + 3 ∗ alpha + (1 − alpha) <

prob {x ∈ space M . abs((birkhoff-sum f n x) / B n) < C0}
+ prob {x ∈ space M . abs((birkhoff-sum f (2∗ n) x) / B (2∗ n)) > a}
+ prob {x ∈ space M . abs((birkhoff-sum f n ((T^^n) x)) / B n) < C0}

using A B C by auto
also have ... ≤ 2 + prob X

unfolding X-def by (rule sum-measure-le-measure-inter3 , auto)
finally have prob X > alpha by auto
then have X 6= {} using ‹alpha > 0 › by auto
then obtain x where x ∈ X by auto
have ∗: abs(birkhoff-sum f n x) ≤ C0 ∗ B n

abs((birkhoff-sum f (2 ∗ n) x)) ≥ a ∗ B (2 ∗ n)
abs((birkhoff-sum f n ((T^^n) x))) ≤ C0 ∗ B n

using ‹x ∈ X› Bpos[of n] Bpos[of 2∗ n] unfolding X-def by (auto simp add:
divide-simps)

have a ∗ B (2 ∗ n) ≤ abs(birkhoff-sum f (2 ∗ n) x)
using ∗ by simp

also have ... = abs(birkhoff-sum f n x + birkhoff-sum f n ((T^^n) x))
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unfolding birkhoff-sum-cocycle[of f n n x , symmetric] by (simp add: mult-2 )
also have ... ≤ 2 ∗ C0 ∗ B n

using ∗ by auto
finally show B (2 ∗ n) ≤ (2 ∗ C0/a) ∗ B n

using ‹a > 0 › by (auto simp add: divide-simps algebra-simps)
qed
define C1 where C1 = Max {B(2 ∗ n)/B n |n. n ≤ N}
have ∗: B (2∗n) ≤ max ((2 ∗ C0/a)) C1 ∗ B n for n
proof (cases n > N )

case True
then show ?thesis

using Main[OF less-imp-le[OF ‹n > N ›]] Bpos[of n]
by (meson max .cobounded1 order-trans mult-le-cancel-right-pos)

next
case False
then have n ≤ N by simp
have B(2∗n)/B n ≤ C1

unfolding C1-def apply (rule Max-ge) using ‹n ≤ N › by auto
then have B (2∗n) ≤ C1 ∗ B n

using Bpos[of n] by (simp add: divide-simps)
then show ?thesis
using Bpos[of n] by (meson max.cobounded2 order-trans mult-le-cancel-right-pos)

qed
show ?thesis

apply (rule exI [of - max ((2 ∗ C0/a)) C1 ])
using ∗ by auto

qed

Finally, we combine the estimates in the two lemmas above to show that Bn

grows at most polynomially.
theorem polynomial-growth:
∃C K . ∀n>0 . B n ≤ C ∗ (real n)^K

proof −
obtain C D where C : C ≥ 1

∧
n. B (Suc n) ≤ D ∨ B (Suc n) ≤ C ∗ B n

using upper-bound-CD by blast
obtain E where E :

∧
n. B (2 ∗ n) ≤ E ∗ B n

using upper-bound-E by blast
have E ≥ 1 using E [of 0 ] Bpos[of 0 ] by auto

obtain k::nat where log 2 (max C E) ≤ k
using real-arch-simple[of log 2 (max C E)] by blast

then have max C E ≤ 2^k
by (meson less-log-of-power not-less one-less-numeral-iff semiring-norm(76 ))

then have C ≤ 2^k E ≤ 2^k
by auto

define P where P = max D (B 0 )
have P > 0 unfolding P-def using Bpos[of 0 ] by auto
have Main:

∧
n. n < 2^r =⇒ B n ≤ P ∗ 2^(2 ∗ k ∗ r) for r
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proof (induction r)
case 0
fix n::nat assume n < 2^0
then show B n ≤ P ∗ 2 ^ (2 ∗ k ∗ 0 )

unfolding P-def by auto
next

case (Suc r)
fix n::nat assume n < 2^(Suc r)
consider even n | B n ≤ D | odd n ∧ B n > D by linarith
then show B n ≤ P ∗ 2 ^ (2 ∗ k ∗ Suc r)
proof (cases)

case 1
then obtain m where m: n = 2 ∗ m by (rule evenE)
have m < 2^r

using ‹n < 2^(Suc r)› unfolding m by auto
then have ∗: B m ≤ P ∗ 2^(2 ∗ k ∗ r)

using Suc.IH by auto
have B n ≤ E ∗ B m

unfolding m using E by simp
also have ... ≤ 2^k ∗ B m

apply (rule mult-right-mono[OF - less-imp-le[OF Bpos[of m]]])
using ‹E ≤ 2^k› by simp

also have ... ≤ 2^k ∗ (P ∗ 2^(2 ∗ k ∗ r))
apply (rule mult-left-mono[OF ∗]) by auto

also have ... = P ∗ 2^(2 ∗ k ∗ r + k)
by (auto simp add: algebra-simps power-add)

also have ... ≤ P ∗ 2^(2 ∗ k ∗ Suc r)
apply (rule mult-left-mono) using ‹P > 0 › by auto

finally show ?thesis by simp
next

case 2
have D ≤ P ∗ 1

unfolding P-def by auto
also have ... ≤ P ∗ 2^(2 ∗ k ∗ Suc r)

by (rule mult-left-mono[OF - less-imp-le[OF ‹P > 0 ›]], auto)
finally show ?thesis using 2 by simp

next
case 3
then obtain m where m: n = 2 ∗ m + 1

using oddE by blast
have m < 2^r

using ‹n < 2^(Suc r)› unfolding m by auto
then have ∗: B m ≤ P ∗ 2^(2 ∗ k ∗ r)

using Suc.IH by auto
have B n > D using 3 by auto
then have B n ≤ C ∗ B (2 ∗ m)

unfolding m using C (2 )[of 2 ∗ m] by auto
also have ... ≤ C ∗ (E ∗ B m)

apply (rule mult-left-mono) using ‹C ≥ 1 › E [of m] by auto
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also have ... ≤ 2^k ∗ (2^k ∗ B m)
apply (intro mult-mono) using ‹C ≤ 2^k› ‹C ≥ 1 › ‹E ≥ 1 › ‹E ≤ 2^k›

Bpos[of m] by auto
also have ... ≤ 2^k ∗ (2^k ∗ (P ∗ 2^(2 ∗ k ∗ r)))

apply (intro mult-left-mono) using ∗ by auto
also have ... = P ∗ 2^(2 ∗ k ∗ Suc r)

using ‹P > 0 › by (simp add: algebra-simps divide-simps mult-2-right
power-add)

finally show ?thesis by simp
qed

qed
have I : B n ≤ (P ∗ 2^(2 ∗ k)) ∗ n^(2 ∗ k) if n > 0 for n
proof −

define r ::nat where r = nat(floor(log 2 (real n)))
have ∗: int r = floor(log 2 (real n))

unfolding r-def using ‹0 < n› by auto
have I : 2^r ≤ n ∧ n < 2^(r+1 )

using floor-log-nat-eq-powr-iff [OF - ‹n > 0 ›, of 2 r ] ∗ by auto
then have B n ≤ P ∗ 2^(2 ∗ k ∗ (r+1 ))

using Main[of n r+1 ] by auto
also have ... = (P ∗ 2^(2 ∗ k)) ∗ ((2^r)^(2∗k))

by (simp add: power-add power-mult[symmetric])
also have ... ≤ (P ∗ 2^(2 ∗ k)) ∗ n^(2 ∗ k)
apply (rule mult-left-mono) using I ‹P > 0 › by (auto simp add: power-mono)
finally show ?thesis by simp

qed
show ?thesis
proof (intro exI )

show ∀n>0 . B n ≤ P ∗ 2 ^ (2 ∗ k) ∗ real n ^ (2 ∗ k)
using I by auto

qed
qed

end

end
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