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Abstract

Ergodic theory is the branch of mathematics that studies the be-
haviour of measure preserving transformations, in finite or infinite mea-
sure. It interacts both with probability theory (mainly through mea-
sure theory) and with geometry as a lot of interesting examples are
from geometric origin. We implement the first definitions and theo-
rems of ergodic theory, including notably Poincaré recurrence theo-
rem for finite measure preserving systems (together with the notion of
conservativity in general), induced maps, Kac’s theorem, Birkhoff the-
orem (arguably the most important theorem in ergodic theory), and
variations around it such as conservativity of the corresponding skew
product, or Atkinson lemma, and Kingman theorem. Using this mate-
rial, we formalize completely the proof of the main theorems of [GK15]
and [Gouls].
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1 SG Libary complements

theory SG-Library-Complement
imports HOL— Probability. Probability
begin

In this file are included many statements that were useful to me, but be-
long rather naturally to existing theories. In a perfect world, some of these
statements would get included into these files.

I tried to indicate to which of these classical theories the statements could
be added.

lemma compl-compl-eg-id [simp]:
UNIV — (UNIV — s) = s
by auto

notation sym-diff (infixl <Ay 70)



1.1 Set-Interval.thy

The next two lemmas belong naturally to Set_Interval.thy, next to UN_le_add_shift.
They are not trivially equivalent to the corresponding lemmas with large in-
equalities, due to the difference when n = 0.

lemma UN-le-eq-Un0-strict:
(Ui<n+1:unat. M i) = (Jie{l.<n+1}. M i) U MO (is ?A = ?B)
proof
show ¢4 C ?B
proof
fix z assume z € 74
then obtain 7 where i: i<n+1 z € M i by auto
show z € ?B
proof (cases )
case ( with { show %thesis by simp
next
case (Suc j) with i show %thesis by auto
qed
qed
qed (auto)

I use repeatedly this one, but I could not find it directly

lemma union-insert-0:

(Unznat. An)=A0U (Une{l..}. An)
by (metis UN-insert Un-insert-left sup-bot.left-neutral One-nat-def atLeast-0 atLeast-Suc-greaterThan
ivl-disj-un-singleton(1))

Next one could be close to sum.nat_group

lemma sum-arith-progression:

> r<(N:unat). (> i<a. f (ixN+1))) = O_j<axN. fj)
proof —

have x: (3" r<N. f (ixN+r)) = (3 j € {ixN..<ixN + N}. fj) for i

by (rule sum.reindex-bij-betw, rule bij-betw-by Witnessjwhere 2f' = Ar. r—ixN]|,
auto)

have (3_r<N. (3 i<a. f (ixN+1))) = O i<a. (O_r<N. f (ixN+7)))
using sum.swap by auto

also have ... = (3 i<a. (3 j € {i*N..<ixN + N}. f§))
using * by auto
also have ... = (> j<axN. fj)

by (rule sum.nat-group)
finally show ?thesis by simp
qed

1.2 Miscellanous basic results

lemma ind-from-1 [case-names 1 Suc, consumes 1]:
assumes n > 0



assumes P 1
and An.n > 0 = P n = P (Sucn)
shows P n
proof —
have (n=0) VvV Pn
proof (induction n)
case 0 then show ?case by auto
next
case (Suc k)
consider Suc k = 1 | Suc k > 1 by linarith
then show ?case
apply (cases) using assms Suc.IH by auto
qed
then show “thesis using «n > 0> by auto
qed

This lemma is certainly available somewhere, but I couldn’t locate it

lemma tends-to-real-e:
fixes u:nat = real
assumes u —— [ e>0
shows IN.Vn>N. abs(un —I) < e
by (metis assms dist-real-def le-less lim-sequentially)

lemma nat-mod-cong:
assumes a = b+(c::nat)
a mod n = b mod n
shows ¢ mod n = 0
proof —
let 2k = a mod n
obtain a! where a = al*n + %k by (metis div-mult-mod-eq)
moreover obtain b1 where b = bl*n + %k using assms(2) by (metis div-mult-mod-eq)
ultimately have al * n + %k = b1 * n + ?k + c using assms(1) by arith
then have ¢ = (al — b1) * n by (simp add: diff-mult-distrid)
then show ?thesis by simp
qed

lemma funpow-add”: (f ~ " (m +n)) x=(f " m) (f " n) 2
by (simp add: funpow-add)

The next two lemmas are not directly equivalent, since f might not be
injective.
lemma abs-Maz-sum:

fixes A::real set

assumes finite A A # {}

shows abs(Maz A) < (3 a€A. abs(a))

by (simp add: assms member-le-sum)

lemma abs-Maz-sum2:
fixes f::- = real



assumes finite A A # {}
shows abs(Maz (f'A)) < (3 acA. abs(f a))
using assms by (induct rule: finite-ne-induct, auto)

1.3 Conditionally-Complete-Lattices.thy

lemma mono-cInf:
fixes f :: 'a::conditionally-complete-lattice = 'b::conditionally-complete-lattice
assumes mono f A # {} bdd-below A
shows f(Inf A) < Inf (f‘A)

using assms by (simp add: cINF-greatest cInf-lower monoD)

lemma mono-bij-cInf:
fixes [ :: ‘a::conditionally-complete-linorder = 'b::conditionally-complete-linorder
assumes mono f bij f A # {} bdd-below A
shows [ (Inf A) = Inf (f‘A)
proof —
have (inv f) (Inf (f*A)) < Inf ((inv f)(f*A))
apply (rule cInf-greatest, auto simp add: assms(3))
using mono-inv[OF assms(1) assms(2)] assms by (simp add: mono-def bdd-below-image-mono
cInf-lower)
then have Inf (f‘4) < f (Inf ((inv f)(f‘4)))
by (metis (no-types, lifting) assms(1) assms(2) mono-def bij-inv-eq-iff)
also have ... = f(Inf A)
using assms by (simp add: bij-is-inj)
finally show ?thesis using mono-cInf[OF assms(1) assms(3) assms(4)] by auto
qed

1.4 Topological-spaces.thy

lemma open-less-abs [simp]:

open {z. (C::real) < abs z}
proof —

have *: {z. C < abs z} = abs—{C<..} by auto

show ?thesis unfolding * by (auto intro!: continuous-intros)
qed

lemma closed-le-abs [simp]:

closed {z. (C::real) < abs x}
proof —

have «: {z. C < |z|} = abs—{C..} by auto

show ?thesis unfolding * by (auto introl: continuous-intros)
qed

The next statements come from the same statements for true subsequences

lemma eventually-weak-subseq:
fixes u::nat = nat
assumes (An. real(u n)) —— oo eventually P sequentially
shows eventually (An. P (u n)) sequentially



proof —

obtain N where x: Vn>N. P n using assms(2) unfolding eventually-sequentially

by auto

obtain M where V m>M. ereal(um) > N using assms(1) by (meson Lim-PInfty)

then have Am. m > M = um > N by auto
then have Am. m > M = P(u m) using <Vn>N. P n» by simp
then show ?thesis unfolding eventually-sequentially by auto

qed

lemma filterlim-weak-subseq:
fixes u::nat = nat
assumes (An. real(u n)) —— o
shows LIM n sequentially. u n:> at-top
unfolding filterlim-iff by (metis assms eventually-weak-subseq)

lemma limit-along-weak-subseq:
fixes u::nat = nat and v::nat = -
assumes (An. real(u n)) Sl l
shows (A n. v(u n)) —— 1
using filterlim-compose[of v, OF - filterlim-weak-subseq] assms by auto

lemma frontier-indist-le:
assumes z € frontier {y. infdist y S < r}
shows infdist ¢ S = r

proof —

have infdist t S = r if H: Ve>0. (3y. infdist y S < r Ndistzy < e) A (Fz. -

infdist z S < r A dist z z < e)
proof —
have infdist © S < r + eif e > 0 for e
proof —
obtain y where infdist y S < rdistx y < e
using H e > 0> by blast
then show ?thesis

by (metis add.commute add-mono-thms-linordered-field(3) infdist-triangle

le-less-trans)
qed
then have A: infdist ¢ S < r
by (meson field-le-epsilon order.order-iff-strict)
have r < infdist v S + e if e > 0 for e
proof —
obtain y where —(infdist y S < r) distzy < e
using H <e > 0) by blast
then have r < infdist y S by auto
also have ... < infdist x S + dist y z
by (rule infdist-triangle)
finally show ?thesis using <dist z y < e
by (simp add: dist-commute)
qed
then have B: r < infdist z S



by (meson field-le-epsilon order.order-iff-strict)
show ?thesis using A B by auto
qed
then show ?thesis
using assms unfolding frontier-straddle by auto
qed

1.5 Limits

The next lemmas are not very natural, but I needed them several times

lemma tendsto-shift-1-over-n [tendsto-intros|:
fixes f::nat = real
assumes (An. fn / n) —— 1
shows (An. f (n+k) / n) —— 1
proof —
have (1+kx(1/n))* (f(n+k)/(n+k)) = f(n+k)/n if n>0 for n using that by
(auto simp add: divide-simps)
with eventually-mono|OF eventually-gt-at-top[of 0::nat] this]
have eventually (An.(1+kx(1/n))* (f(n+k)/(n+k)) = f(n+k)/n) sequentially
by auto
moreover have (An. (1+kx(1/n))x (f(n+k)/(n+k))) —— (1+real kx0) = 1
by (intro tendsto-intros LIMSEQ-ignore-initial-segment assms)
ultimately show ¢thesis using Lim-transform-eventually by auto
qed

lemma tendsto-shift-1-over-n' [tendsto-intros]:
fixes f::nat = real
assumes (An. fn / n) —— 1
shows (An. f (n—k) / n) —— [
proof —
have (1—Fkx(1/(n+k)))x (fn/ n) = fn/(n+k) if n>0 for n using that by (auto
simp add: divide-simps)
with eventually-mono|OF eventually-gt-at-top[of 0::nat] this]
have eventually (An. (1—kx(1/(n+k)))* (f n/ n) = fn/(n+k)) sequentially
by auto
moreover have (An. (I —kx(1/(n+k)))* (fn/ n)) —— (1 —real kx0) * 1
by (intro tendsto-intros assms LIMSEQ-ignore-initial-segment)
ultimately have (An. fn / (n+k)) —— [ using Lim-transform-eventually
by auto
then have a: (An. f(n—k)/(n—k+k)) —— [ using seg-offset-neg by auto

have f(n—k)/(n—k+k) = f(n—k)/n if n>k for n
using that by auto

with eventually-mono|OF eventually-gt-at-toplof k] this]

have eventually (An. f(n—k)/(n—k+k) = f(n—k)/n) sequentially
by auto

with Lim-transform-eventually[OF a this)

show ?thesis by auto

qed



declare LIMSEQ-realpow-zero [tendsto-intros]

1.6 Topology-Euclidean-Space

A (more usable) variation around continuous_on_closure_sequentially.
The assumption that the spaces are metric spaces is definitely too strong,
but sufficient for most applications.

lemma continuous-on-closure-sequentially’:
fixes f::’a::metric-space = 'b::metric-space
assumes continuous-on (closure C) f
N(n:nat). un € C
u—->
shows (An. f (un)) —— f1
proof —
have [ € closure C unfolding closure-sequential using assms by auto
then show ?thesis
using <continuous-on (closure C) f» unfolding comp-def continuous-on-closure-sequentially
using assms by auto
qed

1.7 Convexity

lemma convez-on-mean-ineq:

fixes f::real = real

assumes convex-on A fr € Ay € A

shows f ((-+y)/2) < (fz + fy) / 2
using convez-onD[OF assms(1), of 1/2 z y] using assms by (auto simp add:
divide-simps)

lemma convex-on-closure:
fixes C :: 'a::real-normed-vector set
assumes conver C
convez-on C f
continuous-on (closure C) f
shows convez-on (closure C) f
proof (rule convex-onl)
show convex (closure C)
by (simp add: <convex C»)
fix z y::'a and t::real
assume z € closure C'y € closure C 0 < tt < 1
obtain u v::nat = ‘a where x: An. un€ Cu —— x
An.vne Cv——y
using <z € closure C» <y € closure C) unfolding closure-sequential by blast
define w where w = (An. (I1—t) *g (un) + t xg (v n))
have wn € C for n
using <0 < t» «t< 1> convexD][OF <convex C» x(1)[of n] *(3)[of n]] unfolding
w-def by auto
have w —— ((1—t) xg = + t *p y)



unfolding w-def using *(2) x(4) by (intro tendsto-intros)

have *: f(wn) < (I—t) * f(un) + t * f (vn) for n
using *(1) %(3) <convex-on C fr <0<t» «t<1» less-imp-le unfolding w-def
convez-on-alt by (simp add: add.commute)
have i: (An. f (wn)) —— f ({1 —t) *r ¢ + t *g ¥)
by (rule continuous-on-closure-sequentially’|OF assms(3) <An. wn € C» <w
S ((=t) #r @+ € y)))
have ii: (An. (1—t) * f(un) +t*f(vn) —— (I—t)xfz +t*fy
apply (intro tendsto-intros)
apply (rule continuous-on-closure-sequentially’|OF assms(8) <An. un € C) <u
— 2))
apply (rule continuous-on-closure-sequentially |OF assms(3) <An. vn € C» <w
— p))
done
show f (I —t)*grz+txry) < (I —t)xfz+txfy
apply (rule LIMSEQ-le[OF i ii]) using x by auto
qed

lemma convez-on-norm [simp]:
convex-on UNIV (A(z::'a::real-normed-vector). norm x)
using convez-on-dist[of UNIV 0::'a] by auto

lemma continuous-abs-powr [continuous-intros|:
assumes p > 0
shows continuous-on UNIV (X(z::real). |x| powr p)
apply (rule continuous-on-powr’) using assms by (auto intro: continuous-intros)

lemma continuous-mult-sgn [continuous-intros|:
fixes f::real = real
assumes continuous-on UNIV ff0 = 0
shows continuous-on UNIV (Az. sgn x * f 1)
proof —
have *: continuous-on {0..} (Az. sgn z * fz)
apply (subst continuous-on-conglof {0..} {0..} - f], auto simp add: sgn-real-def
assms(2))
by (rule continuous-on-subset[OF assms(1)], auto)
have xx: continuous-on {..0} (Az. sgn = = f x)
apply (subst continuous-on-conglof {..0} {..0} - Az. —f z], auto simp add:
sgn-real-def assms(2))
by (rule continuous-on-subset[of UNIV], auto simp add: assms introl: continu-
ous-intros)
show ?thesis
using continuous-on-closed-Un[OF - - x xx] apply (auto intro: continuous-intros)
using continuous-on-subset by fastforce
qed

lemma DERIV-abs-powr [derivative-intros]:
assumes p > (1::real)

10



shows DERIV (Az. |z| powr p) z :> p * sgn x * |z| powr (p — 1)
proof —
consider z = 0 | >0 | z < 0 by linarith
then show %thesis
proof (cases)
case I
have continuous-on UNIV (Az. sgn x * |z| powr (p — 1))
by (auto simp add: assms intro!:continuous-intros)
then have (Ah. sgn h * || powr (p—1)) —0— (Ah. sgn h x |h| powr (p—1)) 0
using continuous-on-def by blast
moreover have |h| powr p / h = sgn h = |h| powr (p—1) for h
proof —
have |h| powr p / h = sgn h * |h| powr p / |h]|
by (auto simp add: algebra-simps divide-simps sgn-real-def)
also have ... = sgn h * |h| powr (p—1)
using assms apply (cases h = 0) apply (auto)

by (metis abs-ge-zero powr-diff [symmetric] powr-one-gt-zero-iff times-divide-eq-right)

finally show ?thesis by simp
qed
ultimately have (Ah. |h| powr p / h) —0— 0 by auto
then show ?thesis unfolding DERIV-def by (auto simp add: <x = 0)
next
case 2
have x: V g y in nhds z. |y| powr p = y powr p
unfolding eventually-nhds apply (rule exI[of - {0<..}]) using <z > 0> by
auto
show ?thesis
apply (subst DERIV-cong-ev[of - = - (Az. x powr p) - p * z powr (p—1)])
using <z > 0» by (auto simp add: * has-real-derivative-powr)
next
case 3
have *: YV y in nhds z. |y| powr p = (—y) powr p
unfolding eventually-nhds apply (rule exI[of - {..<0}]) using <z < 0> by
auto
show ?thesis
apply (subst DERIV-cong-ev|of - x - (Az. (—z) powr p) - p x (— z) powr (p
— real 1) x — 1])
using <z < 0» apply (simp, simp add: *, simp)
apply (rule DERIV-fun-powr|of Ay. —y —1 x p]) using «x < 0> by (auto
stmp add: derivative-intros)
qed
qged

lemma convex-abs-powr:

assumes p > |

shows convez-on UNIV (Az::real. |z| powr p)
proof (cases p = 1)

case True

have convex-on UNIV (Az::real. norm x)

11



by (rule convex-on-norm)
moreover have |z| powr p = norm z for z using True by auto
ultimately show ?thesis by simp
next
case Fulse
then have p > 1 using assms by auto
define g where g = (A\z::real. p * sgn z * |z| powr (p — 1))
have *: DERIV (\z. |z| powr p) z :> g = for x
unfolding g-def using <p>1> by (intro derivative-intros)
have xx: gz < gyifz < yforzy
proof —
consider z > 0ANy>0|2<0ANy<0|z<0Ay>0using <z <y by
linarith
then show ?thesis
proof (cases)
case [
then show ?%thesis unfolding g-def sgn-real-def using «p>1> «x < 3 by
(auto simp add: powr-mono2)
next
case 2
then show ?¢thesis unfolding g-def sgn-real-def using <p>1> «x < 3 by
(auto simp add: powr-mono2)
next
case 3
then have g x < 0 0 < g y unfolding g¢-def using «p > 1) by auto
then show ?thesis by simp
qed
qed
show ?thesis
apply (rule convez-on-reall[of - - g]) using * xx by auto
qed

lemma convez-powr:
assumes p > |
shows convez-on {0..} (Az:real. © powr p)
proof —
have convez-on {0..} (Az::real. |z| powr p)
using convez-abs-powr[OF <p > 1)] convex-on-subset by auto
moreover have |z| powr p = z powr p if z € {0..} for = using that by auto
ultimately show %thesis by (simp add: convex-on-def)
qed

lemma convez-powr’:
assumes p > 0 p < 1
shows convez-on {0..} (Az::real. — (z powr p))
proof —
have convex-on {0<..} (Ax::real. — (z powr p))
apply (rule convez-on-reall[of - - Ax. —p * x powr (p—1)])
apply (auto introl:derivative-intros simp add: has-real-derivative-powr)

12



using <p > 0» «p < 1) by (auto simp add: algebra-simps divide-simps powr-mono2’)
moreover have continuous-on {0..} (Az:real. — (x powr p))
by (rule continuous-on-minus, rule continuous-on-powr’, auto simp add: <p >
0» introl: continuous-intros)
moreover have {(0::real)..} = closure {0<..} convex {(0:real)<..} by auto
ultimately show ¢thesis using convex-on-closure by metis
qed

lemma convex-fr-plus-fy-ineq:
fixes f::real = real
assumes convez-on {0..} f
z>0y>0f0=20
shows [z + [y < [ (s-+y)
proof —
have : fa+ fb < f (a+d)ifa>0b>aforabd
proof (cases a = 0)
case Fulse
then have ¢ > 0 b > 0 using <b > a» <a > 0> by auto
have (f0 — fa) / (0 — a) < (f0 — f (a+8))/ (0 — (a+b))
apply (rule convex-on-slope-le]OF <convez-on {0..} f>]) using <a > 0» <b >
0> by auto
also have ... < (fb — f (a+b)) / (b — (a+d))
apply (rule convex-on-slope-le]OF <convez-on {0..} f>]) using <a > 0» <b >
0> by auto
finally show ?thesis
using <a > 0» <b > 0> <f 0 = 0) by (auto simp add: divide-simps algebra-simps)
qed (simp add: <f 0 = 0»)
then show ?thesis
using <z > 0) <y > 0> by (metis add.commute le-less not-le)
qed

lemma z-plus-y-p-le-p-plus-yp:

fixes p x y::real

assumes p > 0p < 1zxz>0y >0

shows (z + y) powr p < z powr p + y powr p
using convez-fr-plus-fy-ineq[OF convez-powr|OF <p > 0) <p < D] <z > 0> <y >
0>] by auto

1.8 Nonnegative-extended-real.thy

lemma z-plus-top-ennreal [simp]:
z + T = (T:ennreal)
by simp

lemma ennreal-ge-nat-imp-Plnf:
fixes z::ennreal
assumes AN. z > of-nat N
shows z = oo
using assms apply (cases x, auto) by (meson not-less reals-Archimedean?2)
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lemma ennreal-archimedean:
assumes z # (oco::ennreal)
shows dn:nat. x < n
using assms ennreal-ge-nat-imp-PInf linear by blast

lemma e2ennreal-mult:
fixes a b::ereal
assumes a > 0
shows e2ennreal(a * b) = e2ennreal a x e2ennreal b
by (metis assms e2ennreal-neg eq-onp-same-args ereal-mult-le-0-iff linear times-ennreal.abs-eq)

lemma e2ennreal-mult”:
fixes a b::ereal
assumes b > ()
shows e2ennreal(a * b) = eZ2ennreal a * e2ennreal b
using eZennreal-mult[OF assms, of a] by (simp add: mult.commute)

lemma SUP-real-ennreal:

assumes A # {} bdd-above (f‘A)

shows (SUP a€A. ennreal (f a)) = ennreal(SUP a€A. f a)
apply (rule antisym, simp add: SUP-least assms(2) cSUP-upper ennreal-lel)
by (metis assms(1) ennreal-SUP ennreal-less-top le-less)

lemma e2ennreal-Liminf:
F # bot = eZennreal (Liminf F f) = Liminf F (An. e2ennreal (f n))
by (rule Liminf-compose-continuous-mono[symmetric|)
(auto simp: mono-def e2ennreal-mono continuous-on-e2ennreal)

lemma e2ennreal-eq-infty[simp|: 0 < © = eZennreal z = top +— x = ©
by (cases x) (auto)

lemma ennreal-Inf-cmult:
assumes ¢>(0::real)
shows Inf {ennreal ¢ * = |x. P z} = ennreal ¢ * Inf {x. P z}
proof —
have (Az:ennreal. ¢ x ) (Inf {z::ennreal. P z}) = Inf ((Az::ennreal. ¢ *
z) {x::ennreal. P z})
apply (rule mono-bij-Inf)
apply (simp add: monol mult-left-mono)
apply (rule bij-betw-by Witness|of - Ax. (z::ennreal) / c], auto simp add: assms)
apply (metis assms ennreal-lessI ennreal-neg-top mult.commute mult-divide-eq-ennreal
not-less-zero)
apply (metis assms divide-ennreal-def ennreal-less-zero-iff ennreal-neg-top less-irrefl
mult.assoc mult.left-commute mult-divide-eq-ennreal)
done
then show ?thesis by (simp only: setcompr-eq-image[symmetric])
qed
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lemma continuous-on-const-minus-ennreal:
fixes [ :: 'a :: topological-space = ennreal
shows continuous-on A f = continuous-on A (A\z. a — f )
including ennreal.lifting
proof (transfer fizing: A; clarsimp)
fix f :: '/a = ereal and a :: ereal assume 0 < aVz. 0 < fx and f: continuous-on
Af
then show continuous-on A (Az. maz 0 (a — f 1))
proof cases
assume 3r. a = ereal r
with f show ?2thesis
by (auto simp: continuous-on-def minus-ereal-def ereal-Lim-uminus|symmetric]
intro!: tendsto-add-ereal-general tendsto-maz)
next
assume 3 r. a = ereal r
with «0 < a)» have ¢ =
by (cases a) auto
then show ?thesis
by (simp add: continuous-on-const)
qed
qed

lemma const-minus-Liminf-ennreal:
fixes a :: ennreal
shows F # bot = a — Liminf F f = Limsup F (Az. a — f 1)
by (intro Limsup-compose-continuous-antimono|symmetric|)
(auto simp: antimono-def ennreal-mono-minus continuous-on-id continuous-on-const-minus-ennreal)

lemma tendsto-cmult-ennreal [tendsto-intros]:
fixes c [::ennreal
assumes (¢ = 0o Al = 0)
(F— ) F
shows ((\z. ¢ x fz) ——> cx ) F
by (cases ¢ = 0, insert assms, auto introl: tendsto-intros)

1.9 Indicator-Function.thy

There is something weird with sum_mult_indicator: it is defined both in
Indicator.thy and BochnerIntegration.thy, with a different meaning. I am
surprised there is no name collision... Here, I am using the version from
BochnerIntegration.

lemma sum-indicator-eq-card2:

assumes finite [

shows (3" i€l. (indicator (P i) z)::nat) = card {i€l. x € P i}
using sum-mult-indicator [OF assms, of Ay. 1:nat P \y. z]
unfolding card-eq-sum by auto

lemma disjoint-family-indicator-le-1:
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assumes disjoint-family-on A 1
shows (3 i€ I. indicator (A i) ) < (1::'a:: {comm-monoid-add,zero-less-one})
proof (cases finite I)
case True
then have *: (Y i€ I. indicator (A i) z) = ((indicator (|Ji€l. A i) z)::'a)
by (simp add: indicator- UN-disjoint| OF True assms(1), of z])
show ?thesis
unfolding * unfolding indicator-def by (simp add: order-less-imp-le)
next
case Fulse
then show %thesis by (simp add: order-less-imp-le)
qed

1.10 sigma-algebra.thy

lemma algebra-intersection:
assumes algebra Q) A
algebra Q B
shows algebra Q (A N B)
apply (subst algebra-iff-Un) using assms by (auto simp add: algebra-iff-Un)

lemma sigma-algebra-intersection:
assumes sigma-algebra Q0 A
sigma-algebra Q B
shows sigma-algebra Q0 (A N B)
apply (subst sigma-algebra-iff) using assms by (auto simp add: sigma-algebra-iff
algebra-intersection)

lemma subalgebra-M-M [simp]:
subalgebra M M
by (simp add: subalgebra-def)

The next one is disjoint_family_Suc with inclusions reversed.

lemma disjoint-family-Suc2:
assumes Suc: An. A (Sucn) C A
shows disjoint-family (Ai. A i — A
proof —
have A (m+n) C A n for mn
proof (induct m)
case 0 show ?Zcase by simp
next
case (Suc m) then show ?Zcase
by (metis Suc-eq-plusl assms add.commute add.left-commute subset-trans)
qed
then have A m C A nif m > n for mn
by (metis that add.commute le-add-diff-inverse nat-less-le)
then show ?thesis
by (auto simp add: disjoint-family-on-def)
(metis insert-absorb insert-subset le-SucE le-antisym not-le-imp-less)

(Suc 1))

16



qed

1.11 Measure-Space.thy

lemma AFE-equal-sum:
assumes \i. AExzin M. fiz=giz
shows AE ¢z in M. (3 i€l. fix) = (D i€l. gix)
proof (cases)
assume finite 1
have 3A. A € null-sets M N\ (Vz€ (space M — A). fixz = giz) for i
using assms(1)[of i| by (metis (mono-tags, lifting) AE-ES)
then obtain A where A: Ai. A i € null-sets M N (Vx€ (space M —A ). fix
=giz)
by metis
define B where B = (| Jiel. A 1)
have B € null-sets M using <finite Iy A B-def by blast
then have AE z in M. z € space M — B by (simp add: AE-not-in)
moreover
{
fix z assume z € space M — B
then have A\i. i € ] = fi 2 = g i  unfolding B-def using A by auto
then have (> i€l. fiz) = (3 i€l. g i z) by auto
}
ultimately show ?thesis by auto
qged (simp)

lemma emeasure-pos-unionk:
assumes A (N:nat). A N € sets M
emeasure M ((JN. A N) > 0
shows I N. emeasure M (A N) > 0
proof (rule ccontr)
assume (3 N. emeasure M (A N) > 0)
then have AN. A N € null-sets M
using assms(1) by auto
then have ((JN. A N) € null-sets M by auto
then show Fulse using assms(2) by auto
qed

lemma (in prob-space) emeasure-intersection:
fixes e::nat = real
assumes [measurable]: An. Un € sets M
and [simp]: An. 0 < e n summable e
and ge: An. emeasure M (Un) > 1 — (e n)
shows emeasure M (n. Un) > 1 — (D n. en)
proof —
define V where V = (An. space M — (U n))
have [measurable]: V n € sets M for n
unfolding V-def by auto
have *: emeasure M (V n) < e n for n
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unfolding V-def using ge[of n] by (simp add: emeasure-eqg-measure prob-compl
ennreal-lel)
have emeasure M ((Un. Vn) < (3 n. emeasure M (V n))
by (rule emeasure-subadditive-countably, auto)
also have ... < (> n. ennreal (e n))
using * by (intro suminf-le) auto
also have ... = ennreal (> n. e n)
by (intro suminf-ennreal-eq) auto
finally have emeasure M ((Jn. V n) < suminf e by simp
then have ! — suminf e < emeasure M (space M — ((Jn. V n))
by (simp add: emeasure-eq-measure prob-compl suminf-nonneg)
also have ... < emeasure M ((\n. U n)
by (rule emeasure-mono) (auto simp: V-def)
finally show ?thesis by simp
qed

lemma null-sym-diff-transitive:
assumes A A B € null-sets M B A C € null-sets M
and [measurable]: A € sets M C € sets M
shows A A C € null-sets M
proof —
have A A BU B A C € null-sets M using assms(1) assms(2) by auto
moreover have A A C C A A BU B A C by auto
ultimately show ?thesis by (meson null-sets-subset assms(3) assms(4) sets.Diff
sets.Un)
qged

lemma Delta-null-of-null-is-null:

assumes B € sets M A A B € null-sets M A € null-sets M

shows B € null-sets M
proof —

have B C AU (A A B) by auto

then show ?thesis using assms by (meson null-sets. Un null-sets-subset)
qed

lemma Delta-null-same-emeasure:
assumes A A B € null-sets M and [measurable]: A € sets M B € sets M
shows emeasure M A = emeasure M B
proof —
have A = (A N B) U (A—B) by blast
moreover have A—B € null-sets M using assms null-sets-subset by blast
ultimately have a: emeasure M A = emeasure M (A N B) using emea-
sure-Un-null-set by (metis assms(2) assms(3) sets.Int)

have B = (A N B) U (B—A) by blast

moreover have B—A € null-sets M using assms null-sets-subset by blast

ultimately have emeasure M B = emeasure M (A N B) using emeasure-Un-null-set
by (metis assms(2) assms(3) sets.Int)

then show ?thesis using a by auto
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qed

lemma A E-upper-bound-inf-ereal:
fixes F G::'a = ereal
assumes Ae. (exreal) > 0 = AEzin M. Fe < Gz + e
shows AEzin M. Fz < Gz
proof —
have AF z in M. Vn:nat. Fx < Gz + ereal (1 / Suc n)
using assms by (auto simp: AE-all-countable)
then show ?thesis
proof (eventually-elim)
fix x assume z: Vnunat. F o < Gz + ereal (1 / Suc n)
show Fz < Gz
proof (intro ereal-le-epsilon2[of - G x| alll impI)
fix e :: real assume 0 < e
then obtain n where n: 1 / Sucn < e
by (blast elim: nat-approz-posE)
have Fo < Gz + 1 / Sucn
using z by simp
alsohave ... < Gz + ¢
using n by (intro add-mono ennreal-lel) auto
finally show Fx < Gz + ereal e .
qed
qed
qed

Egorov theorem asserts that, if a sequence of functions converges almost
everywhere to a limit, then the convergence is uniform on a subset of close
to full measure. The first step in the proof is the following lemma, often
useful by itself, asserting the same result for predicates: if a property P,z
is eventually true for almost every z, then there exists N such that P,z is
true for all n > N and all z in a set of close to full measure.

lemma (in finite-measure) Egorov-lemma:
assumes [measurable]: An. (P n) € measurable M (count-space UNIV)
and AE z in M. eventually (An. P n ) sequentially
epsilon > 0
shows 3UN. U € sets M N (YVn > N. Yz € U. Pnx) A emeasure M (space
M — U) < epsilon
proof —
define K where K = (An. {z € space M. 3k>n. =(P k z)})
have [measurable]: K n € sets M for n
unfolding K-def by auto
have z ¢ (N n. K n) if eventually (An. P n z) sequentially for z
unfolding K-def using that unfolding K-def eventually-sequentially by auto
then have AF zin M. x ¢ ((\n. K n) using assms by auto
then have Z: 0 = emeasure M ((\n. K n)
using A E-iff-measurable[of (\n. Kn) M Az. z ¢ ((\n. K n)] unfolding K-def
by auto
have *: (An. emeasure M (K n)) —— 0
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unfolding Z apply (rule Lim-emeasure-decseq) using order-trans by (auto
stmp add: K-def decseq-def)
have eventually (An. emeasure M (K n) < epsilon) sequentially
by (rule order-tendstoD(2)[OF x <epsilon > 0)])
then obtain N where N: An. n > N = emeasure M (K n) < epsilon
unfolding eventually-sequentially by auto
define U where U = space M — K N
have A [measurable]: U € sets M unfolding U-def by auto
have space M — U =K N
unfolding U-def K-def by auto
then have B: emeasure M (space M — U) < epsilon
using N by auto
have Vn > N.Vz € U. Pnzx
unfolding U-def K-def by auto
then show ?thesis using A B by blast
qed

The next lemma asserts that, in an uncountable family of disjoint sets, then
there is one set with zero measure (and in fact uncountably many). It is
often applied to the boundaries of r-neighborhoods of a given set, to show
that one could choose r for which this boundary has zero measure (this
shows up often in relation with weak convergence).

lemma (in finite-measure) uncountable-disjoint-family-then-exists-zero-measure:
assumes [measurable]: Ni. i € I = A i € sets M
and uncountable I
disjoint-family-on A I
shows 3icl. measure M (A i) = 0
proof —
define f where f = (A(r::real). {i € I. measure M (A i) > r})
have x: finite (f r) if r > 0 for r
proof —
obtain N::nat where N: measure M (space M)/r < N
using real-arch-simple by blast
have finite (fr) A card (fr) < N
proof (rule finite-if-finite-subsets-card-bdd)
fix G assume G: G C fr finite G
then have G C I unfolding f-def by auto
have card G * r = (>_i € G. r) by auto
also have ... < (> € G. measure M (A 1))
apply (rule sum-mono) using G unfolding f-def by auto
also have ... = measure M (|Ji€G. A i)
apply (rule finite-measure-finite- Union[symmetric])
using <finite Gy <G C I <«disjoint-family-on A I disjoint-family-on-mono
by auto
also have ... < measure M (space M)
by (simp add: bounded-measure)
finally have card G < measure M (space M)/r
using «r > 0> by (simp add: divide-simps)
then show card G < N using N by auto
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qed
then show ?thesis by simp
qed
have countable (Un. f (((1::real)/2) "n))
by (rule countable-UN, auto introl: countable-finite x)
then have I — (Un. f (((1::real)/2)"n)) # {}
using assms(2) by (metis countable-empty uncountable-minus-countable)
then obtain ¢ where i € 17 ¢ (Un. f ((1/2) n)) by auto
then have measure M (A i) < (1 / 2) " n for n
unfolding f-def using linorder-not-le by auto
moreover have (An. ((1:real) / 2) "n) —— 0
by (intro tendsto-intros, auto)
ultimately have measure M (A i) < 0
using LIMSEQ-le-const by force
then have measure M (4 i) = 0
by (simp add: measure-le-0-iff)
then show ?thesis using «i € Iy by auto
qed

The next statements are useful measurability statements.

lemma measurable-Inf [measurable]:
assumes [measurable]: \(n::nat). P n € measurable M (count-space UNIV)
shows (Az. Inf {n. P n z}) € measurable M (count-space UNIV) (is ?f € -)
proof —
define A where A = (An. (P n)—{True} N space M — (U m<n. (P m)—{True}
N space M))
have A-meas [measurable]: A n € sets M for n unfolding A-def by measurable
define B where B = (An. if n = 0 then (space M — ((Jn. A n)) else A (n—1))
show ?thesis
proof (rule measurable-piecewise-restrict2[of B])
show B n € sets M for n unfolding B-def by simp
show space M = (|Jn. B n)
unfolding B-def using sets.sets-into-space [OF A-meas] by auto
have «: ?fr =nifz € Anfor xzn
apply (rule cInf-eg-minimum) using that unfolding A-def by auto
moreover have xx: ?f x = (Inf ({}::nat set)) if © € space M — (Un. A n)
for z
proof —
have —(P n z) for n
apply (induction n rule: nat-less-induct) using that unfolding A-def by
auto
then show ?thesis by simp
qed
ultimately have 3¢. Vz € Bn. ?%fx = c for n
apply (cases n = 0) unfolding B-def by auto
then show 3h € measurable M (count-space UNIV). ¥z € Bn. %fx = hz
for n
by fastforce
qed
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qed

lemma measurable-T-iter [measurable:
fixes f::'a = nat
assumes [measurable]: T € measurable M M
f € measurable M (count-space UNIV)
shows (Az. (T (fz)) z) € measurable M M
proof —
have [measurable]: (T~ "n) € measurable M M for n::nat
by (induction n, auto)
show ?thesis
by (rule measurable-compose-countable, auto)
qed

lemma measurable-infdist [measurable]:
(Az. infdist © S) € borel-measurable borel
by (rule borel-measurable-continuous-onl, intro continuous-intros)

The next lemma shows that, in a sigma finite measure space, sets with large
measure can be approximated by sets with large but finite measure.

lemma (in sigma-finite-measure) approx-with-finite-emeasure:
assumes W-meas: W € sets M
and W-inf: emeasure M W > C
obtains Z where Z € sets M Z C W emeasure M Z < oo emeasure M Z > C
proof (cases emeasure M W = o)
case True
obtain r where r: C = ennreal r using W-inf by (cases C, auto)
obtain Z where Z € sets M Z C W emeasure M Z < oo emeasure M Z > C
unfolding r using approz-PInf-emeasure-with-finitelOF W-meas True, of r]
by auto
then show “thesis using that by blast
next
case Fulse
then have W € sets M W C W emeasure M W < oo emeasure M W > C
using assms apply auto using top.not-eq-extremum by blast
then show ?thesis using that by blast
qged

1.12 Nonnegative-Lebesgue-Integration.thy

The next lemma is a variant of nn_integral_density, with the density on
the right instead of the left, as seems more common.

lemma nn-integral-densityR:
assumes [measurable]: f € borel-measurable F g € borel-measurable F
shows ([T z. fz x gz OF) = ([T z. fz d(density F g))

proof —
have ([T z. fe x gz OF) = ([T z. g % fz OF) by (simp add: mult.commute)
also have ... = ([ " z. fz d(density F g))

22



by (rule nn-integral-density[symmetric], simp-all add: assms)
finally show ?thesis by simp
qed

lemma not-AE-zero-int-ennreal-E:

fixes f::'a = ennreal

assumes ([ *z. fz OM) > 0

and [measurable]: f € borel-measurable M

shows 3 Aesets M. Jereal>0. emeasure M A > 0N (Vz € A. fz > e)
proof (rule not-AE-zero-ennreal-E, auto simp add: assms)

assume x: AExin M. fz =10

have ([ *z. fz OM) = ([ Tz. 0 OM) by (rule nn-integral-cong-AE, simp add:
*

)

then have ([ tz. fz OM) = 0 by simp

then show Fulse using assms by simp
qed

lemma (in finite-measure) nn-integral-bounded-eq-bound-then-AE:
assumes AE z in M. fz < ennreal ¢ ([ Ta. fo OM) = ¢ x emeasure M (space
M)
and [measurable]: f € borel-measurable M
shows AEzin M. fz = ¢
proof (cases)
assume emeasure M (space M) = 0
then show ?thesis by (rule emeasure-0-AF)
next
assume emeasure M (space M) # 0
have fin: AE z in M. f x # top using assms by (auto simp: top-unique)
define g where g = (\z. ¢ — f 1)
have [measurable]: g € borel-measurable M unfolding g-def by auto
have ([*z. gz OM) = ([ Tz. ¢ OM) — ([ Tz. fz OM)
unfolding g-def by (rule nn-integral-diff, auto simp add: assms ennreal-mult-eq-top-iff)
also have ... = 0 using assms(2) by (auto simp: ennreal-mult-eq-top-iff)
finally have AE zin M. gz = 0
by (subst nn-integral-0-iff-AE[symmetric]) auto
then have AE z in M. ¢ < f z unfolding g-def using fin by (auto simp:
ennreal-minus-eq-0)
then show %thesis using assms(1) by auto
qed

lemma null-sets-density:
assumes [measurable]: h € borel-measurable M
and AEzin M. hzx # 0
shows null-sets (density M h) = null-sets M
proof —
have #: A € sets M N (AE 2€A in M. hz = 0) +— A € null-sets M for A
proof (auto)
assume A € sets M AEz€Ain M. hz =0
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then show A € null-sets M
unfolding AFE-iff-null-sets|OF <A € sets M>] using assms(2) by auto
next
assume A € null-sets M
then show AE z€A in M. hz =0
by (metis (mono-tags, lifting) AE-not-in eventually-mono)
qed
show ?thesis
apply (rule set-eql)
unfolding null-sets-density-iff[OF <h € borel-measurable M>] using * by auto
qged

The next proposition asserts that, if a function h is integrable, then its
integral on any set with small enough measure is small. The good conceptual
proof is by considering the distribution of the function A on R and looking
at its tails. However, there is a less conceptual but more direct proof, based
on dominated convergence and a proof by contradiction. This is the proof
we give below.

proposition integrable-small-integral-on-small-sets:
fixes h::'a = real
assumes [measurable]: integrable M h
and delta > 0
shows Fepsilon>(0::real). VU € sets M. emeasure M U < epsilon — abs
(Jz€U. hz OM) < delta
proof (rule ccontr)
assume H: — (Jepsilon>0. V Uesets M. emeasure M U < ennreal epsilon —
abs(set-lebesgque-integral M U h) < delta)
have 3f. V epsilone{0<..}. f epsilon €sets M A emeasure M (f epsilon) < ennreal
epsilon
A —(abs(set-lebesgue-integral M (f epsilon) h) < delta)
apply (rule bchoice) using H by auto
then obtain f::real = 'a set where f:
Nepsilon. epsilon > 0 = f epsilon €sets M
Aepsilon. epsilon > 0 = emeasure M (f epsilon) < ennreal epsilon
Nepsilon. epsilon > 0 = —(abs(set-lebesgue-integral M (f epsilon) h)
< delta)
by blast
define 4 where A = (An:nat. f ((1/2)n))
have [measurable]: A n € sets M for n
unfolding A-def using f(1) by auto
have *: emeasure M (A n) < ennreal ((1/2) n) for n
unfolding A-def using f(2) by auto
have Large: —(abs(set-lebesgue-integral M (A n) h) < delta) for n
unfolding A-def using f(3) by auto

have S: summable (An. Sigma-Algebra.measure M (A n))
apply (rule summable-comparison-test’[of An. (1/2) n 0])
apply (rule summable-geometric, auto)
apply (subst ennreal-le-iff [symmetric], simp)
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using less-imp-le] OF x| by (metis * emeasure-eq-ennreal-measure top. extremum-strict)
have AFE z in M. eventually (An. x € space M — A n) sequentially
apply (rule borel-cantelli-AE1, auto simp add: S)
by (metis * top.extremum-strict top.not-eq-extremum)
moreover have (An. indicator (A n) z x h ) —— 0
if eventually (An. x € space M — A n) sequentially for x
proof —
have eventually (An. indicator (A n) z * h x = 0) sequentially
apply (rule eventually-mono|OF that]) unfolding indicator-def by auto
then show ?thesis
unfolding eventually-sequentially using lim-explicit by force
qed
ultimately have A: AE z in M. ((An. indicator (A n) x * h ) —— 0)
by auto
have I: integrable M (Az. abs(h z))
using <integrable M h) by auto
have L: (An. abs ([ z. indicator (A n) x * h x IM)) — abs ([ z. 0 OM)
apply (intro tendsto-intros)
apply (rule integral-dominated-convergence|OF - - I A])
unfolding indicator-def by auto
have eventually (An. abs ([ z. indicator (A n) z x hz OM) < delta) sequentially
apply (rule order-tendstoD[OF L]) using <delta > 0> by auto
then show Fulse
using Large by (auto simp: set-lebesque-integral-def)
qed

We also give the version for nonnegative ennreal valued functions. It follows
from the previous one.

proposition small-nn-integral-on-small-sets:
fixes h::'a = ennreal
assumes [measurable]: b € borel-measurable M
and delta > (0=real) ([ Tz. hx OM) # oo
shows 3 epsilon>(0::real). V U € sets M. emeasure M U < epsilon — ([ TzeU.
hx OM) < delta
proof —
define f where [ = (Az. enn2real(h z))
have AExin M. hz # oo
using assms by (metis nn-integral-PInf-AE)
then have x: AF z in M. ennreal (fz) = hz
unfolding f-def using ennreal-enn2real-if by auto
have xx: ([ *z. ennreal (f z) OM) # oo
using nn-integral-cong-AE[OF x| assms by auto
have [measurable]: f € borel-measurable M unfolding f-def by auto
have integrable M f
apply (rule integrableI-nonneg) using assms x f-def *x apply auto
using top.not-eq-extremum by blast
obtain epsilon::real where H: epsilon > 0 NU. U € sets M —> emeasure M
U < epsilon = abs([ z€U. fz OM) < delta
using integrable-small-integral-on-small-sets|OF <integrable M f> «delta > 0)]
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by blast
have ([ Tz€U. h x OM) < delta if [measurable]: U € sets M emeasure M U <
epsilon for U
proof —
have ([ *z. indicator Uz * h x OM) = ([ Tz. ennreal(indicator U z * f )
OM)
apply (rule nn-integral-cong-AE) using * unfolding indicator-def by auto
also have ... = ennreal ([ z. indicator Uz x fz OM)
apply (rule nn-integral-eg-integral)
apply (rule Bochner-Integration.integrable-bound|OF <integrable M f»])
unfolding indicator-def f-def by auto
also have ... < ennreal delta
apply (rule ennreal-lessI) using H(2)[OF that] by (auto simp: set-lebesgue-integral-def)
finally show ?thesis by (auto simp add: mult.commute)
qed
then show ?thesis using <epsilon > 0 by auto
qed

1.13 Probability-measure.thy

The next lemmas ensure that, if sets have a probability close to 1, then their
intersection also does.

lemma (in prob-space) sum-measure-le-measure-inter:
assumes A € sets M B € sets M
shows prob A + prob B < 1 + prob (A N B)
proof —
have prob A + prob B = prob (A U B) + prob (A N B)
by (simp add: assms fmeasurable-eg-sets measure-Un3)
also have ... < I + prob (A N B)
by auto
finally show ?thesis by simp
qed

lemma (in prob-space) sum-measure-le-measure-inters:
assumes [measurable]: A € sets M B € sets M C € sets M
shows prob A + prob B + prob C < 2 + prob (AN BN C)
using sum-measure-le-measure-inter|of B C| sum-measure-le-measure-inter[of A B
N C]
by (auto simp add: inf-assoc)

lemma (in prob-space) sum-measure-le-measure-Inter:

assumes [measurable]: finite [T # {} Ni.i € ] = A i€ sets M

shows (> i€l. prob (A i) < real(card I) — 1 + prob ((i€l. A i)
using assms proof (induct I rule: finite-ne-induct)

fix « F assume H: finite FF #{} 2 ¢ F

((Ni. i € F = A i € events) = (D>_i€F. prob (4 7)) < real (card F)
1+ prob (NV(A * F)))
and [measurable]: (\i. ¢ € insert ¢ F = A i € events)
have (" z€F. A z) € events using «finite F» «F # {}> by auto
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have (> icinsert x F. prob (A 7)) = (D (€F. prob (A 7)) + prob (A z)
using H(1) H(3) by auto
also have ... < real (card F)—1 + prob (( (4 ‘ F)) + prob (A z)
using H(/) by auto
also have ... < real (card F) + prob (N(A ‘F)) N A x)
using sum-measure-le-measure-inter[OF «((\z€F. A ) € events), of A z] by
auto
also have ... = real (card (insert x F)) — 1 + prob ([ (A ¢ (insert z F)))
using H(1) H(2) unfolding card-insert-disjoint[OF «finite F) «x ¢ F)] by
(simp add: inf-commute)
finally show (3 icinsert « F. prob (A ©)) < real (card (insert x F)) — 1 + prob
(N (A ¢ (insert z F)))
by simp
qed (auto)

A random variable gives a small mass to small neighborhoods of infinity.

lemma (in prob-space) random-variable-small-tails:
assumes alpha > 0 and [measurable]: f € borel-measurable M
shows 3 (C::real). prob {z € space M. abs(fz) > C} < alpha AN C > K
proof —
have x: () (n::nat). {z€space M. abs(f z) > n}) = {}
apply auto
by (metis real-arch-simple add.right-neutral add-mono-thms-linordered-field(4)
not-less zero-less-one)
have *x: (An. prob {z € space M. abs(f x) > n}) —— prob ([ (n::nat). {z €
space M. abs(f z) > n})
by (rule finite-Lim-measure-decseq, auto simp add: decseq-def)
have eventually (An. prob {z € space M. abs(f x) > n} < alpha) sequentially
apply (rule order-tendstoD[OF - <alpha > 0)]) using xx unfolding * by auto
then obtain N:nat where N: An:nat. n > N = prob {z € space M. abs(f
z) > n} < alpha
unfolding cventually-sequentially by blast
have dn:nat. n > N An> K
by (meson le-cases of-nat-le-iff order.trans real-arch-simple)
then obtain n::nat where n: n > N n > K by blast
show ?thesis
apply (rule exI[of - of-nat n]) using N n by auto
qed

1.14 Distribution-functions.thy

There is a locale called finite_borel_measure in distribution-functions.thy.
However, it only deals with real measures, and real weak convergence. I will

not need the weak convergence in more general settings, but still it seems
more natural to me to do the proofs in the natural settings. Let me in-
troduce the locale finite_borel_measure’ for this, although it would be
better to rename the locale in the library file.

locale finite-borel-measure’ = finite-measure M for M :: ('a::metric-space) measure
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Jr
assumes M-is-borel [simp, measurable-cong: sets M = sets borel
begin

lemma space-eg-univ [simp): space M = UNIV
using M-is-borel[ THEN sets-eq-imp-space-eq] by simp

lemma measurable-finite-borel [simpl:
f € borel-measurable borel =—> f € borel-measurable M
by (rule borel-measurable-subalgebra[where N = borel]) auto

Any closed set can be slightly enlarged to obtain a set whose boundary has
0 measure.

lemma approz-closed-set-with-set-zero-measure-boundary:
assumes closed S epsilon > 0 S # {}
shows 3. r < epsilon A r > 0 A measure M {z. infdist x S = r} = 0 N\ measure
M {z. infdist x S < r} < measure M S + epsilon
proof —
have [measurable]: S € sets M
using <closed S» by auto
define T where T = (Ar. {x. infdist S < r})
have [measurable]: T r € sets borel for r
unfolding T-def by measurable
have *: (Nn. T ((1/2) ™)) =S
unfolding T-def proof (auto)
fix x assume *: Vn. infdistx S < (1 / 2) ™n
have infdist x S < 0
apply (rule LIMSEQ-le-const[of An. (1/2) n], intro tendsto-intros) using x
by auto
then show z € S
using assms infdist-pos-not-in-closed by fastforce
qged
have A: ((1::real)/2)™n < (1/2) " m if m < n for m n:nat
using that by (simp add: power-decreasing)
have (An. measure M (T ((1/2) "n))) —— measure M S
unfolding x[symmetric] apply (rule finite-Lim-measure-decseq, auto simp add:
T-def decseq-def)
using A order.trans by blast
then have B: eventually (An. measure M (T ((1/2)™n)) < measure M S +
epsilon) sequentially
apply (rule order-tendstoD) using <epsilon > 0) by simp
have C: eventually (An. (1/2)"n < epsilon) sequentially
by (rule order-tendstoD[OF - <epsilon > 05], intro tendsto-intros, auto)
obtain n where n: (1/2) n < epsilon measure M (T ((1/2) n)) < measure M
S + epsilon
using eventually-conj|OF B C] unfolding eventually-sequentially by auto
have 3re{0<..<(1/2) n}. measure M {z. infdist x S = r} = 0
apply (rule uncountable-disjoint-family-then-exists-zero-measure, auto simp add:
disjoint-family-on-def)
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using uncountable-open-interval by fastforce
then obtain r where r: re{0<..<(1/2) ™n} measure M {z. infdist S = r} =
0
by blast
then have r2: r > 0 r < epsilon using n by auto
have measure M {xz. infdist z S < r} < measure M {z. infdist ¢ S < (1/2) "n}
apply (rule finite-measure-mono) using r by auto
then have measure M {z. infdist £ S < r} < measure M S + epsilon
using n(2) unfolding T-def by auto
then show ?thesis
using r(2) r2 by auto
qed
end

sublocale finite-borel-measure C finite-borel-measure’
by (standard, simp add: M-is-borel)

1.15 Weak-convergence.thy

Since weak convergence is not implemented as a topology, the fact that the
convergence of a sequence implies the convergence of a subsequence is not
automatic. We prove it in the lemma below..

lemma weak-conv-m-subseq:

assumes weak-conv-m M-seq M strict-mono r

shows weak-conv-m (An. M-seq (r n)) M
using assms LIMSEQ-subseq-LIMSE(Q unfolding weak-conv-m-def weak-conv-def
comp-def by auto

context
fixes p :: nat = real measure
and M :: real measure
assumes p: A\n. real-distribution (p n)
assumes M: real-distribution M
assumes p-to-M: weak-conv-m p M
begin

The measure of a closed set behaves upper semicontinuously with respect to
weak convergence: if y,, — g, then lim sup p, (F) < p(F') (and the inequality
can be strict, think of the situation where p is a Dirac mass at 0 and F' = {0},
but p, has a density so that pu,({0}) = 0).

lemma closed-set-weak-conv-usc:

assumes closed S measure M S < |

shows eventually (An. measure (u n) S < ) sequentially
proof (cases S = {})

case True

then show ?thesis

using <measure M S < Iy by auto

next
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case Fulse
interpret real-distribution M using M by simp
define epsilon where epsilon = | — measure M S
have epsilon > 0 unfolding epsilon-def using assms(2) by auto
obtain r where r: r > 0 r < epsilon measure M {z. infdist x S = r} = 0
measure M {x. infdist S < r} < measure M S + epsilon
using approz-closed-set-with-set-zero-measure-boundary[OF «<closed S» <epsilon
> 0y «S # {}»] by blast
define T where T = {z. infdist © S < r}
have [measurable]: T € sets borel
unfolding T-def by auto
have S C T
unfolding T-def using <closed S» <r > 0> by auto
have measure M T < [
using r(4) unfolding T-def epsilon-def by auto
have measure M (frontier T) < measure M {x. infdist z S = r}
apply (rule finite-measure-mono) unfolding T-def using frontier-indist-le by
auto
then have measure M (frontier T) = 0
using <measure M {x. infdist £ S = r} = 0> by (auto simp add: measure-le-0-iff)
then have (An. measure (u n) T) —— measure M T
using u-to-M by (simp add: p emeasure-eqg-measure real-distribution-azioms
weak-conv-imp-continuity-set-conv)
then have *: eventually (An. measure (u n) T < 1) sequentially
apply (rule order-tendstoD) using <measure M T < I» by simp
have #x: measure (1 n) S < measure (u n) T for n
apply (rule finite-measure.finite-measure-mono)
using p apply (simp add: finite-borel-measure.axioms(1) real-distribution.finite-borel-measure-M)
using «S C T apply simp
by (simp add: p real-distribution.events-eq-borel)
show ?thesis
apply (rule eventually-mono[OF x]) using *x le-less-trans by auto
qed

In the same way, the measure of an open set behaves lower semicontinuously
with respect to weak convergence: if yi,, — g, then lim inf i, (U) > p(U) (and
the inequality can be strict). This follows from the same statement for closed
sets by passing to the complement.

lemma open-set-weak-conv-lsc:
assumes open S measure M S > 1
shows eventually (An. measure (u n) S > 1) sequentially
proof —
interpret real-distribution M
using M by auto
have [measurable]: S € events using assms(1) by auto
have eventually (An. measure (u n) (UNIV — S) < 1 — 1) sequentially
apply (rule closed-set-weak-conv-usc)
using assms prob-compl|of S] by auto
moreover have measure (u n) (UNIV — S) = 1 — measure (u n) S for n
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proof —

interpret mu: real-distribution p n

using u by auto

have S € mu.events using assms(1) by auto

then show ?thesis using mu.prob-compl|of S| by auto
qed
ultimately show ?thesis by auto

qed

end
end

theory ME-Library-Complement
imports HOL— Analysis. Analysis
begin

1.16 The trivial measurable space

The trivial measurable space is the smallest possible o-algebra, i.e. only the
empty set and everything.

definition trivial-measure :: 'a set = 'a measure where
trivial-measure X = sigma X {{}, X}

lemma space-trivial-measure [simp): space (trivial-measure X) = X
by (simp add: trivial-measure-def)

lemma sets-trivial-measure: sets (trivial-measure X) = {{}, X}
by (simp add: trivial-measure-def sigma-algebra-trivial sigma-algebra.sigma-sets-eq)

lemma measurable-trivial-measure:
assumes f € space M — X and f —‘ X N space M € sets M
shows f € M —); trivial-measure X
using assms unfolding measurable-def by (auto simp: sets-trivial-measure)

lemma measurable-trivial-measure-iff:

f e M —y trivial-measure X <— f € space M — X N f —° X N space M €
sets M

unfolding measurable-def by (auto simp: sets-trivial-measure)

1.17 Pullback algebras

The pullback algebra f~1(X) of a o-algebra (£, ¥) is the smallest o-algebra
such that f is f~1(X) — —X-measurable.

definition (in sigma-algebra) pullback-algebra :: ('b = 'a) = 'b set = 'b set set
where
pullback-algebra f Q' = sigma-sets Q' {f —“ AN Q' |A. A e M}
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lemma pullback-algebra-minimal:
assumes f € M —y N
shows sets.pullback-algebra N f (space M) C sets M
proof
fix X assume X € sets.pullback-algebra N f (space M)
thus X € sets M
unfolding sets.pullback-algebra-def
by induction (use assms in <auto simp: measurable-def)
qed

lemma (in sigma-algebra) in-pullback-algebra: A € M = f —* A N Q' € pull-
back-algebra f Q'
unfolding pullback-algebra-def by (rule sigma-sets.Basic) auto

end

2 Subadditive and submultiplicative sequences

theory Fekete
imports HOL— Analysis. Multivariate- Analysis
begin

A real sequence is subadditive if up4m < Uy + Up,. This implies the conver-
gence of u,/n to Inf{u,/n} € [—0o,+00), a useful result known as Fekete
lemma. We prove it below.

Taking logarithms, the same result applies to submultiplicative sequences.
We illustrate it with the definition of the spectral radius as the limit of
|2"™||*/™, the convergence following from Fekete lemma.

2.1 Subadditive sequences

We define subadditive sequences, either from the start or eventually.

definition subadditive::(nat=-real) = bool
where subadditive u = (Vm n. u (m+n) < um+ un)

lemma subadditivel:
assumes Am n. u (m4+n) <um+ un
shows subadditive u

unfolding subadditive-def using assms by auto

lemma subadditiveD:
assumes subadditive u
shows u (m+n) <um+ un
using assms unfolding subadditive-def by auto

lemma subadditive-un-le-nul:
assumes subadditive u
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n > 0
shows un < n * u 1
proof —
have x: n =0V (un <n=x*u 1) for n
proof (induction n)
case (
then show ?case by auto
next
case (Suc n)
consider n = 0 | n > 0 by auto
then show ?case
proof (cases)
case I
then show ?thesis by auto
next
case 2
then have u (Suc n) < un + u I using subadditiveD[OF assms(1), of n 1]
by auto
then show %thesis using Suc.IH 2 by (auto simp add: algebra-simps)
qed
qged
show ?thesis using *[of n] <n > 0> by auto
qed

definition eventually-subadditive::(nat=-real) = nat = bool
where eventually-subadditive u NO = (Y m>N0. ¥V n>NO. u (m+n) < um + u
n)

lemma eventually-subadditivel :
assumes Amn. m > N0 = n > N0 = u (m+n) <um+ un
shows eventually-subadditive w NO

unfolding eventually-subadditive-def using assms by auto

lemma subadditive-imp-eventually-subadditive:
assumes subadditive u
shows eventually-subadditive u 0
using assms unfolding subadditive-def eventually-subadditive-def by auto

The main inequality that will lead to convergence is given in the next lemma:
given n, then eventually w,,/m is bounded by u,/n, up to an arbitrarily
small error. This is proved by doing the euclidean division of m by n and
using the subadditivity. (the remainder in the euclidean division will give
the error term.)

lemma eventually-subadditive-ineq:
assumes eventually-subadditive uw NO e>0 n>N0
shows AN>NO. Vm>N. um/m < un/n + e
proof —
have ineg-rec: u(axn+r) < ax un + ur if n>NO r>N0O for a n r
proof (induct a)
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case (Suc a)

have axn+r>N0 using <r>N0> by simp

have u((Suc a)xn+r) = u(axn+r+n) by (simp add: algebra-simps)

also have ... < u(axn+r)+u n using assms «n>N0) <axn+r>N0> eventu-
ally-subadditive-def by blast

also have ... < axun + u r + u n by (simp add: Suc.hyps)

also have ... = (Suc a) * un + u r by (simp add: algebra-simps)
finally show ?case by simp
qged (simp)

have n>0 real n > 0 using (n>N0) by auto
define C' where C = Maz {abs(u i) |i. i<2xn}
have ineg-C: abs(u i) < C if i < 2 % n for ¢
unfolding C-def by (intro Maz-ge, auto simp add: that)

have ineg-all-m: u m/m < u n/n + 3xC/m if m>n for m
proof —
have real m>0 using (m>n» <0 < real ny by linarith

obtain a0 r0 where r0<n m = a0*n+r0
using 0 < n» mod-div-decomp mod-less-divisor by blast

define a where a = a0—1

define r where r = r0+n

have r<2xn r>n unfolding r-def by (auto simp add: <r0<n»)

have a0>0 using <m = a0xn + 70> <n < my <r0 < m» not-le by fastforce

then have m = a * n + r using a-def r-def <m = aO0xn+7r0> mult-eq-if by
auto

then have real-eq: —r = real n * a — m by simp

have r>N0 using «r>n> «n>N0»> by simp
then have u m < a *x u n + u r using ineg-rec <m = axn+r> <n>N0> by
stmp
then have n x um < n x (a * un + u r) using <real n>0) by simp
thenhave nxum —m*xun<-rxun-+n*xur
unfolding real-eq by (simp add: algebra-simps)
also have ... < r x abs(u n) + n x abs(u r)
apply (intro add-mono mult-left-mono) using real-0-le-add-iff by fastforce+
also have ... < (2 xn) « C + nx*x C
apply (intro add-mono mult-mono ineq-C) using less-imp-le[OF «r < 2 x
w] by auto
finally have n x um — m *x un < 8xCxn by auto
then show u m/m < un/n + 3xC/m
using <0 < real n» <0 < real my by (simp add: divide-simps mult.commute)
qed

obtain M:nat where M: M > 3 x C / e using real-nat-ceiling-ge by auto
define N where N = M + n + NO + 1

have N > 8« C / e N > n N > NO unfolding N-def using M by auto
have u m/m < un/n + e if m > N for m
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proof —
have 3« C / m < e
using that <N > 3 « C' [/ e» <e > 0» apply (auto simp add: algebra-simps
divide-simps)
by (meson le-less-trans linorder-not-le mult-less-cancel-left-pos of-nat-less-iff)
then show %thesis using ineg-all-m[of m] «<n < N» <N < m) by auto
qed
then show ?thesis using «(NO < N» by blast
qed

From the inequality above, we deduce the convergence of w,/n to its infi-
mum. As this infimum might be —oco, we formulate this convergence in the
extended reals. Then, we specialize it to the real situation, separating the
cases where u,, /n is bounded below or not.

lemma subadditive-converges-ereal’:

assumes cventually-subadditive u NO

shows (Am. ereal(u m/m)) —— Inf {ereal(u n/n) | n. n>NO}
proof —

define v where v = (Am. ereal(u m/m))

define V where V = {vn | n. n>N0}

define [ where | = Inf V

have A\t. teV = t>1 by (simp add: Inf-lower [-def)

then have v n > [ if n > NO for n using V-def that by blast

then have lower: eventually (An. a < v n) sequentially if a < [ for a
by (meson that dual-order.strict-transl eventually-at-top-dense)

have upper: eventually (An. a > v n) sequentially if a > | for a
proof —
obtain ¢ where t€V t<a by (metis <a>1> Inf-greatest l-def not-le)
then obtain e:real where e>0 t+e < a by (meson ereal-le-epsilon2 leD
le-less-linear)
obtain n where n>N0 ¢t = u n/n using V-def v-def <t € V> by blast
then have v n/n + e < a using «t+e < a> by simp
obtain N where Vm>N. um/m < un/n + e
using eventually-subadditive-ineq| OF assms] <0 < e» «<NO < n» by blast
then have v m/m < a if m > N for m
using that <u n/n + e < a) less-ereal.simps(1) less-trans by blast
then have v m< a if m > N for m using v-def that by blast
then show ?thesis using eventually-at-top-linorder by auto
qed
show ?thesis
using lower upper unfolding V-def l-def v-def by (simp add: order-tendsto-iff)
qed

lemma subadditive-converges-ereal:
assumes subadditive u
shows (Am. ereal(u m/m)) —— Inf {ereal(u n/n) | n. n>0}
by (rule subadditive-converges-ereal | OF subadditive-imp-eventually-subadditive| OF
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assmsl])

lemma subadditive-converges-bounded’:

assumes cventually-subadditive u NO

bdd-below {u n/n | n. n>NO}

shows (An. u n/n) —— Inf {un/n | n. n>NO}
proof—

have *: (An. ereal(u n /n)) —— Inf {ereal(u n/n)|n. n > NO}

by (simp add: assms(1) subadditive-converges-ereal’)

define V where V = {u n/n | n. n>N0}

have a: bdd-below V VZ{} by (auto simp add: V-def assms(2))

have Inf {ereal(t)| t. t€ V} = ereal(Inf V') by (subst ereal-Inf'|OF a], simp add:
Setcompr-eq-image)

moreover have {ereal(t)| t. te V} = {ereal(u n/n)|n. n > NO} using V-def by
blast

ultimately have Inf {ereal(u n/n)|n. n > NO} = ereal(Inf {u n/n |n. n >
NO}) using V-def by auto

then have (An. ereal(u n /n)) —— ereal(Inf {u n/n | n. n>N0}) using *
by auto

then show ?thesis by simp
qed

lemma subadditive-converges-bounded:
assumes subadditive u
bdd-below {u n/n | n. n>0}
shows (An. u n/n) —— Inf {un/n| n. n>0}
by (rule subadditive-converges-bounded’| OF subadditive-imp-eventually-subadditive] OF
assms(1)] assms(2)])

We reformulate the previous lemma in a more directly usable form, avoiding
the infimum.

lemma subadditive-converges-bounded’":
assumes subadditive u
An.n> 0= un>nx* (a:real)
shows 3I. (An. un / n) —— I A (Vn>0. un>nxl)
proof —
have B: bdd-below {u n/n | n. n>0}
apply (rule bdd-belowl[of - a]) using assms(2)
apply (auto simp add: divide-simps)
apply (metis mult.commute mult-left-le-imp-le of-nat-0-less-iff)
done
define [ where | = Inf {u n/n | n. n>0}
have x: un / n > lif n > 0 for n
unfolding I-def using that by (auto introl: cInf-lower[OF - B])
show ?thesis
apply (rule exI[of - I], auto)
using subadditive-converges-bounded[OF assms(1) B] apply (simp add: I-def)
using * by (simp add: divide-simps algebra-simps)
qged
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lemma subadditive-converges-unbounded’:
assumes eventually-subadditive u NO
= (bdd-below {u n/n | n. n>NO})
shows (An. ereal(u n/n)) —— —o0
proof —
have x: (An. ereal(u n /n)) —— Inf {ereal(u n/n)|n. n > NO}
by (simp add: assms(1) subadditive-converges-ereal’)
define V where V = {u n/n | n. n>N0}
then have — bdd-below V using assms by simp
have Inf {ereal(t) | t. teV} = —0
by (rule ereal-bot, metis (mono-tags, lifting) <— bdd-below V> bdd-below-def
leI Inf-lower2 ereal-less-eq(3) le-less mem-Collect-eq)
moreover have {ereal(t)| t. te V} = {ereal(u n/n)|n. n > NO} using V-def by
blast
ultimately have Inf {ereal(u n/n)|n. n > NO} = —oco by auto
then show ?thesis using x by simp
qed

lemma subadditive-converges-unbounded:
assumes subadditive u
= (bdd-below {u n/n | n. n>0})
shows (An. ereal(u n/n)) —— —o0
by (rule subadditive-converges-unbounded’| OF subadditive-imp-eventually-subadditive] OF
assms(1)] assms(2)])

2.2 Superadditive sequences

While most applications involve subadditive sequences, one sometimes en-
counters superadditive sequences. We reformulate quickly some of the above
results in this setting.

definition superadditive::(nat=-real) = bool
where superadditive u = (Vm n. u (m+n) > um + u n)

lemma subadditive-of-superadditive:

assumes superadditive u

shows subadditive (An. —u n)
using assms unfolding superadditive-def subadditive-def by (auto simp add: al-
gebra-simps)

lemma superadditive-un-ge-nul:
assumes superadditive u
n > 0
shows un > n* u I
using subadditive-un-le-nul [OF subadditive-of-superadditive] OF assms(1)] assms(2)]
by auto

lemma superadditive-converges-bounded’":
assumes superadditive u
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An.n> 0= un <nx* (a:real)
shows 3. (An. un / n) —— LA (Vn>0. un <nxl)
proof —
have 3. (An. —un / n) —— I A (Vn>0. —un > n * )
apply (rule subadditive-converges-bounded''|OF subadditive-of-superadditive] OF
assms(1)], of —al)
using assms(2) by auto
then obtain [ where I: (An. —un / n) —— [ (Vn>0. —un > n % [) by
blast
have (An. —((—un)/n)) —— -1
by (intro tendsto-intros 1)
moreover have Vn>0. un < n * (—)
using [(2) by (auto simp add: algebra-simps) (metis minus-equation-iff neg-le-iff-le)
ultimately show ?thesis
by auto
qed

2.3 Almost additive sequences

One often encounters sequences which are both subadditive and superaddi-
tive, but only up to an additive constant. Adding or subtracting this con-
stant, one can make the sequence genuinely subadditive or superadditive,
and thus deduce results about its convergence, as follows. Such sequences
appear notably when dealing with quasimorphisms.

lemma almost-additive-converges:
fixes u:nat = real
assumes Am n. abs(u(m+n) — um — un) < C
shows convergent (An. u n/n)
abs(uk — k * lim (An. un / n)) < C
proof —
have (abs (u 0)) < C using assms[of 0 0] by auto
then have C > 0 by auto

define v where v = (An. un + ()
have subadditive v
unfolding subadditive-def v-def using assms by (auto simp add: algebra-simps
abs-diff-le-iff)
then have vie: vn <nxov 1 ifn > 0 for n
using subadditive-un-le-nul that by auto
define w where w = (An. un — C)
have superadditive w
unfolding superadditive-def w-def using assms by (auto simp add: alge-
bra-simps abs-diff-le-iff)
then have wge: wn > nx w1 if n > 0 for n
using superadditive-un-ge-nul that by auto

have I: vn > wn for n
unfolding v-def w-def using <C > 0> by auto
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then have x: v n > n *x w 1 if n > 0 for n using order-trans|OF wge[OF that]]
by auto
then obtain lv where lv: (An. vn/n) —— lWw An.n >0 = vn>nxl
using subadditive-converges-bounded''|OF <subadditive v» *] by auto
have x: wn < n x v 1 if n > 0 for n using order-trans|OF - vle[OF that]] 1
by auto
then obtain lw where lw: (An. wn/n) —— lw An.n> 0 = wn < nxlw
using superadditive-converges-bounded'|OF «superadditive w) *] by auto

have x: v n/n = wn /n + 2xCx(1/n) for n

unfolding v-def w-def by (auto simp add: algebra-simps divide-simps)
have (An. wn /n + 2xCx(1/n)) —— lw + 2+xCx0

by (intro tendsto-add tendsto-mult lim-1-over-n lw, auto)
then have lw = lv

unfolding *[symmetric] using lv(1) LIMSEQ-unique by auto

have *: u n/n = wn /n + Cx(1/n) for n

unfolding w-def by (auto simp add: algebra-simps divide-simps)
have (An. un /n) —— lw + Cx0

unfolding * by (intro tendsto-add tendsto-mult lim-1-over-n lw, auto)
then have lu: convergent (An. u n/n) lim (An. u n/n) = lw

by (auto simp add: convergentl liml)
then show convergent (An. u n/n) by simp

show abs(u k — k x lim (An. un / n)) < C
proof (cases k>0)
case False
then show ?%thesis using assms[of 0 0] by auto
next
case True
have u k — k x lim (An. un/n) = vk — C — k % lv unfolding u(2) «w =
lvy v-def by auto
also have ... > —C using w(2)[OF True] by auto
finally have A: u k — k x lim (An. un/n) > — C by simp
have u k — k « lim (An. u n/n) = wk + C — k * {w unfolding [u(2) w-def
by auto
also have ... < C using lw(2)[OF True] by auto
finally show ?thesis using A by auto
qed
qed

2.4 Submultiplicative sequences, application to the spectral
radius

In the same way as subadditive sequences, one may define submultiplicative
sequences. Essentially, a sequence is submultiplicative if its logarithm is
subadditive. A difference is that we allow a submultiplicative sequence to
take the value 0, as this shows up in applications. This implies that we have
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to distinguish in the proofs the situations where the value 0 is taken or not.
In the latter situation, we can use directly the results from the subadditive
case to deduce convergence. In the former situation, convergence to 0 is
obvious as the sequence vanishes eventually.

lemma submultiplicative-converges:
fixes u::nat=real
assumes An. un > 0
Amn.u (m+n) <umxun
shows (An. root n (u n))—— Inf {root n (v n) | n. n>0}
proof —
define v where v = (\ n. root n (u n))
define V where V = {vn | n. n>0}
then have V # {} by blast
have t > 0 if t € V for ¢ using that V-def v-def assms(1) by auto
then have Inf V > 0 by (simp add: <V # {}» cInf-greatest)
have bdd-below V by (meson «(A\t. t € V= 0 < t» bdd-below-def)

show ?thesis
proof cases
assume dn. un = 0
then obtain n where u n = 0 by auto
then have v m = 0 if m > n for m by (metis that antisym-conv assms(1)
assms(2) le-Suc-ex mult-zero-left)
then have *: v m = 0 if m > n for m using v-def that by simp
then have v —— 0 using lim-ezplicit by force

have v (Suc n) € V using V-def by blast
moreover have v (Suc n) = 0 using * by auto
ultimately have Inf V < 0 by (simp add: <bdd-below V' cInf-lower)
then have Inf V = 0 using <0 < Inf V» by auto
then show ?thesis using V-def v-def <v —— 0> by auto
next
assume - (In. un = 0)
then have v n > 0 for n by (metis assms(1) less-eq-real-def)
define w where wn = In (u n) for n
have ezpress-vn: v n = exp(w n/n) if n>0 for n

proof —
have (ezp(w n/n)) n = exp(nx(w n/n)) by (metis exp-of-nat-mult)
also have ... = exp(w n) by (simp add: <0 < n»)
also have ... = u n by (simp add: <An. 0 < u n> w-def)

finally have ezp(w n/n) = root n (u n) by (metis <0 < n» exp-ge-zero
real-root-power-cancel)
then show ?thesis unfolding v-def by simp
qed

have eventually-subadditive w 0
proof (rule eventually-subadditivel )
fix mn
have w (m+n) = In (v (m+n)) by (simp add: w-def)
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also have ... < In(um x u n)
by (meson <A\n. 0 < u n» assms(2) zero-less-mult-iff In-le-cancel-iff)
also have ... = In(u m) + In(u n)
by (meson <An. 0 < u ny In-mult-pos)
also have ... = w m + w n by (simp add: w-def)
finally show w (m+n) < wm + w n.
qed

define [ where | = Inf V
then have v n>lif n > 0 for n
using V-def that by (metis (mono-tags, lifting) <bdd-below V' cInf-lower
mem-Collect-eq)
then have lower: eventually (An. a < v n) sequentially if a < [ for a
by (meson that dual-order.strict-trans! eventually-at-top-dense)

have upper: eventually (An. a > v n) sequentially if a > [ for a
proof —
obtain ¢ where t€V t < a using «V # {}» cInf-lessD I-def <a>1> by blast
then have ¢ > 0 using V-def <An. 0 < u n)» v-def by auto
then have a/t > 1 using <t<a> by simp
define e where e = in(a/t)/2
have e > 0 e < In(a/t) unfolding e-def by (simp-all add: <1 < a / b
In-gt-zero)
then have exp(e) < a/t by (metis <1 < a / t» exp-less-cancel-iff exp-ln
less-trans zero-less-one)

obtain n where n>0t = v n using V-def v-def <t € V> by blast
with (0 < ¢» have v n * exp(e) < a using <exp(e) < a/t>
by (auto simp add: field-simps)

obtain N where x: N>0 Am. m>N = wm/m < wn/n + e

using eventually-subadditive-ineq[OF <eventually-subadditive w 0>] <0 < n»
<e>0> by blast

have v m < a if m > N for m

proof —
have m>(0 using that <N>0> by simp
have w m/m < wn/n + e by (simp add: <N < m) x)
then have ezp(w m/m) < exp(w n/n + e) by simp
also have ... = exp(w n/n) x exp(e) by (simp add: mult-exp-exp)
finally have v m < v n * exp(e) using ezpress-vn «<m>0> «n>0) by simp
then show v m < a using «v n * exp(e) < a> by simp

qed

then show ?thesis using eventually-at-top-linorder by auto

qed

show ?thesis
using lower upper unfolding v-def I-def V-def by (simp add: order-tendsto-iff)
qged
qed
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An important application of submultiplicativity is to prove the existence of
the spectral radius of a matrix, as the limit of || A™||*/™.

definition spectral-radius::’a::real-normed-algebra-1 = real
where spectral-radius x = Inf {root n (norm(z™n))| n. n>0}

lemma spectral-radius-auz:
fixes z::'a::real-normed-algebra-1
defines V = {root n (norm(z"n))| n. n>0}
shows At. te V = t > spectral-radius x
Nt teV = 1> 0
bdd-below V
V£ {}
InfV >0
proof —
show V#£{} using V-def by blast
show x: t > 0 if t € V for t using that unfolding V-def using real-root-pos-pos-le
by auto
then show bdd-below V by (meson bdd-below-def)
then show Inf V > 0 by (simp add: <V # {}» x cInf-greatest)
show At. t€ V = t > spectral-radius x by (metis (mono-tags, lifting) «<bdd-below
Vy assms cInf-lower spectral-radius-def)
qed

lemma spectral-radius-nonneg [simp):
spectral-radius © > 0
by (simp add: spectral-radius-auz(5) spectral-radius-def)

lemma spectral-radius-upper-bound [simp]:
(spectral-radius x) "n < norm(z"n)
proof (cases)
assume —(n = 0)
have root n (norm(z™n)) > spectral-radius x
using spectral-radius-aux <n # 0> by auto
then show ?thesis
by (metis <n # 0> spectral-radius-nonneg norm-ge-zero not-gr0 power-mono
real-root-pow-pos2)
qed (simp)

lemma spectral-radius-limit:

(An. root n (norm(z"n))) —— spectral-radius x
proof —

have norm(z(m+n)) < norm(z"m) * norm(z"n) for m n by (simp add:
power-add norm-mult-ineq)

then show ?thesis unfolding spectral-radius-def using submultiplicative-converges
by auto
qged

end
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3 Asymptotic densities

theory Asymptotic-Density
imports SG-Library-Complement
begin

The upper asymptotic density of a subset A of the integers is lim sup Card(AN
[0,n))/n € [0,1]. It measures how big a set of integers is, at some times. In
this paragraph, we establish the basic properties of this notion.

There is a corresponding notion of lower asymptotic density, with a liminf in-
stead of a limsup, measuring how big a set is at all times. The corresponding
properties are proved exactly in the same way.

3.1 Upper asymptotic densities

As limsups are only defined for sequences taking values in a complete lattice
(here the extended reals), we define it in the extended reals and then go
back to the reals. This is a little bit artificial, but it is not a real problem
as in the applications we will never come back to this definition.

definition upper-asymptotic-density::nat set = real
where upper-asymptotic-density A = real-of-ereal(limsup (An. card(A N {..<n})/n))

First basic property: the asymptotic density is between 0 and 1.

lemma upper-asymptotic-density-in-01:
ereal(upper-asymptotic-density A) = limsup (An. card(A N {..<n})/n)
upper-asymptotic-density A < 1
upper-asymptotic-density A > 0
proof —
{
fix n::nat assume n>0
have card(A N {..<n}) < n by (metis card-lessThan Int-lower2 card-mono
finite-lessThan)
then have card(A N {..<n}) / n < ereal 1 using n>0» by auto
}
then have eventually (An. card(A N {..<n}) / n < ereal 1) sequentially
by (simp add: eventually-at-top-dense)
then have a: limsup (An. card(A N {..<n})/n) < 1 by (simp add: Limsup-const
Limsup-bounded)

have card(A N {..<n}) / n > ereal 0 for n by auto

then have liminf (An. card(A N {..<n})/n) > 0 by (simp add: le-Liminf-iff
less-le-trans)

then have b: limsup (An. card(A N {..<n})/n) > 0 by (meson Liminf-le-Limsup
order-trans sequentially-bot)

have abs(limsup (An. card(A N {..<n})/n)) # oo using a b by auto
then show ereal(upper-asymptotic-density A) = limsup (An. card(AN{..<n})/n)
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unfolding upper-asymptotic-density-def by auto
show upper-asymptotic-density A < 1 upper-asymptotic-density A > 0 unfolding
upper-asymptotic-density-def
using a b by (auto simp add: real-of-ereal-le-1 real-of-ereal-pos)
qed

The two next propositions give the usable characterization of the asymptotic
density, in terms of the eventual cardinality of A N [0,n). Note that the
inequality is strict for one implication and large for the other.

proposition upper-asymptotic-densityD:
fixes [::real
assumes upper-asymptotic-density A < I
shows eventually (An. card(A N {..<n}) < I * n) sequentially
proof —
have limsup (An. card(A N {.<n})/n) < I
using assms upper-asymptotic-density-in-01(1) ereal-less-ereal-Ez by auto
then have eventually (An. card(A N {..<n})/n < ereal I) sequentially
using Limsup-lessD by blast
then have eventually (An. card(A N {..<n})/n < ereal I A n > 0) sequentially
using eventually-gt-at-top eventually-conj by blast
moreover have card(A N {..<n}) < I x nif card(A N {..<n})/n < ereal L A\ n
> ( for n
using that by (simp add: divide-less-eq)
ultimately show eventually (An. card(A N {..<n}) < I * n) sequentially
by (simp add: eventually-mono)
qed

proposition upper-asymptotic-densityl:
fixes [::real
assumes eventually (An. card(A N {..<n}) < 1 * n) sequentially
shows upper-asymptotic-density A < [
proof —
have eventually (An. card(A N {.<n}) < 1 xn A n > 0) sequentially
using assms eventually-gt-at-top eventually-conj by blast
moreover have card(A N {..<n})/n < ereal L if card(A N {.<n}) <lxn A n
> ( for n
using that by (simp add: divide-le-eq)
ultimately have eventually (An. card(A N {..<n})/n < ereal l) sequentially
by (simp add: eventually-mono)
then have limsup (An. card(A N {..<n})/n) < ereal |
by (simp add: Limsup-bounded)
then have ereal(upper-asymptotic-density A) < ereal |
using upper-asymptotic-density-in-01(1) by auto
then show ?thesis by (simp del: upper-asymptotic-density-in-01)
qged

The following trivial lemma is useful to control the asymptotic density of
unions.

lemma lem-ge-sum:
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fixes [ x y::real

assumes [>z+y

shows iz ly. =z +lyANlxe>axANly>y
proof —

define Iz ly where Iz = z + (I—(2z+y))/2 and ly = y + (I—(2z+y))/2

have | = Iz + Iy A lz > = A ly > y unfolding lz-def ly-def using assms by
auto

then show ?thesis by auto
qed

The asymptotic density of a union is bounded by the sum of the asymptotic
densities.

lemma upper-asymptotic-density-union:
upper-asymptotic-density (A U B) < upper-asymptotic-density A + upper-asymptotic-density
B
proof —
have upper-asymptotic-density (A U B) < 1 if H: | > upper-asymptotic-density
A + upper-asymptotic-density B for [
proof —
obtain /A IB where I: | = IA+IB and [A: [A > upper-asymptotic-density A
and [B: IB > upper-asymptotic-density B
using lem-ge-sum H by blast
{
fix n assume H: card (AN {..<n}) <IA*n A card (BN {..<n}) < B xn
have card((AUB) N {..<n}) < card(A N {..<n}) + card(B N {..<n})
by (simp add: card-Un-le inf-sup-distrib2)
also have ... < [ x n using [ H by (simp add: ring-class.ring-distribs(2))
finally have card ((AUB) N {..<n}) < I % n by simp
}
moreover have eventually (An. card (A N {.<n}) < IA x n A card (B N
{..<n}) < IB * n) sequentially
using upper-asymptotic-densityD[OF [A] upper-asymptotic-densityD|OF [B]
eventually-conj by blast
ultimately have eventually (An. card((AUB) N {..<n}) < I * n) sequentially
by (simp add: eventually-mono)
then show upper-asymptotic-density (A U B) < [ using upper-asymptotic-densityl
by auto
qed
then show ?thesis by (meson dense not-le)
qed

It follows that the asymptotic density is an increasing function for inclusion.

lemma upper-asymptotic-density-subset:
assumes A C B
shows upper-asymptotic-density A < upper-asymptotic-density B
proof —
have upper-asymptotic-density A < 1 if I: | > upper-asymptotic-density B for [
proof —
have card(A N {..<n}) < card(B N {..<n}) for n
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using assms by (metis Int-lower2 Int-mono card-mono finite-lessThan fi-
nite-subset inf.left-idem)
then have card(A N {.<n}) < 1% nif card(B N {..<n}) < I * n for n
using that by (meson lessThan-def less-imp-le of-nat-le-iff order-trans)
moreover have eventually (An. card(B N {..<n}) < I x n) sequentially
using upper-asymptotic-densityD | by simp
ultimately have eventually (An. card(A N {..<n}) <1 x n) sequentially
by (simp add: eventually-mono)
then show ?thesis using upper-asymptotic-densityl by auto
qged
then show ?thesis by (meson dense not-le)
qed

If a set has a density, then it is also its asymptotic density.

lemma upper-asymptotic-density-lim:

assumes (An. card(A N {..<n})/n) —— 1

shows upper-asymptotic-density A = [
proof —

have (An. ereal(card(A N {..<n})/n)) —— [ using assms by auto

then have limsup (An. card(A N {..<n})/n) =1

using sequentially-bot tendsto-iff-Liminf-eq-Limsup by blast

then show ?thesis unfolding upper-asymptotic-density-def by auto

qed

If two sets are equal up to something small, i.e. a set with zero upper density,
then they have the same upper density.

lemma upper-asymptotic-density-0-diff:

assumes A C B upper-asymptotic-density (B—A) = 0

shows upper-asymptotic-density A = upper-asymptotic-density B
proof —

have upper-asymptotic-density B < upper-asymptotic-density A + upper-asymptotic-density
(B-A)

using upper-asymptotic-density-union[of A B—A] by (simp add: assms(1)

sup.absorb2)

then have upper-asymptotic-density B < upper-asymptotic-density A

using assms(2) by simp

then show ?thesis using upper-asymptotic-density-subset| OF assms(1)] by simp

qed

lemma upper-asymptotic-density-0-Delta:
assumes upper-asymptotic-density (A A B) = 0
shows upper-asymptotic-density A = upper-asymptotic-density B
proof —
have A— (ANB) C AABB— (ANB)C AAB
using assms(1) by (auto simp add: Diff-Int Un-infinite)
then have upper-asymptotic-density (A — (ANB)) = 0
upper-asymptotic-density (B — (ANB)) = 0
using upper-asymptotic-density-subset assms(1) upper-asymptotic-density-in-01(3)
by (metis inf.absorb-iff2 inf.orderE)+
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then have upper-asymptotic-density (ANB) = upper-asymptotic-density A
upper-asymptotic-density (ANB) = upper-asymptotic-density B
using upper-asymptotic-density-0-diff by auto
then show ?thesis by simp
qed

Finite sets have vanishing upper asymptotic density.

lemma upper-asymptotic-density-finite:
assumes finite A
shows upper-asymptotic-density A = 0
proof —
have (An. card(A N {..<n})/n) —— 0
proof (rule tendsto-sandwich[where ?f = An. 0 and ?h = A(n::nat). card A /
)
have card(A N {..<n})/n < card A / n if n>0 for n
using that <finite A» by (simp add: card-mono divide-right-mono)
then show eventually (An. card(A N {..<n})/n < card A / n) sequentially
by (simp add: eventually-at-top-dense)
have (An. real (card A)x (1 / real n)) —— real(card A) x 0
by (intro tendsto-intros)
then show (An. real (card A) / real n) —— 0 by auto
qged (auto)
then show upper-asymptotic-density A = 0 using upper-asymptotic-density-lim
by auto
qed

In particular, bounded intervals have zero upper density.

lemma upper-asymptotic-density-bdd-interval [simp]:
upper-asymptotic-density {} = 0
upper-asymptotic-density {..N} = 0
upper-asymptotic-density {..<N} = 0
upper-asymptotic-density {n..N} = 0
upper-asymptotic-density {n..<N} = 0
upper-asymptotic-density {n<..N} = 0
upper-asymptotic-density {n<..<N} = 0

by (auto intro!: upper-asymptotic-density-finite)

The density of a finite union is bounded by the sum of the densities.

lemma upper-asymptotic-density-finite- Union:
assumes finite |
shows upper-asymptotic-density (| Ji€l. A i) < (. i€l. upper-asymptotic-density

(A4))
using assms apply (induction I rule: finite-induct)
using order-trans|OF upper-asymptotic-density-union| by auto

It is sometimes useful to compute the asymptotic density by shifting a little
bit the set: this only makes a finite difference that vanishes when divided by
n.
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lemma upper-asymptotic-density-shift:
fixes k::nat and [::int
shows ereal(upper-asymptotic-density A) = limsup (An. card(A N {k..nat(n+1)})
/ n)
proof —
define C where C' = k+2xnat(abs(l))+1
have x: (An. Cx(1/n)) —— real C x 0
by (intro tendsto-intros)
have [0: limsup (An. C/n) = 0
apply (rule lim-imp-Limsup, simp) using * by (simp add: zero-ereal-def)

have card(A N {k..nat(n+1)}) / n < card (AN {..<n})/n + C/n for n
proof —
have card(A N {k..nat(n+1)}) < card (A N {..<n} U {n..n + nat(adbs(l))})
by (rule card-mono, auto)
also have ... < card (A N {..<n}) + card {n..n + nat(abs(l))}
by (rule card-Un-le)
also have ... < card (A N {..<n}) + real C
unfolding C-def by auto
finally have card(A N {k..nat(n+1)}) / n < (card (A N {..<n}) + real C) /n
by (simp add: divide-right-mono)
also have ... = card (A N {..<n})/n + C/n
using add-divide-distrib by auto
finally show ?thesis
by auto
qged
then have limsup (An. card(A N {k..nat(n+0)}) / n) < limsup (An. card (A N
{..<n})/n + ereal(C/n))
by (simp add: Limsup-mono)
also have ... < limsup (An. card (A N {..<n})/n) + limsup (An. C/n)
by (rule ereal-limsup-add-mono)
finally have a: limsup (An. card(A N {k..nat(n+0)}) / n) < limsup (An. card
(AN {.<n})/n)

using [0 by simp

have card (A N {..<n}) / n < card (A N {k..nat(n+0)})/n + C/n for n
proof —
have card ({..<k} U {n—nat(abs(l))..n + nat(abs(l))}) < card {..<k} + card
{n—nat(abs(l))..n + nat(abs(l))}
by (rule card-Un-le)
also have ... < k + 2xnat(abs(l)) + 1 by auto
finally have *: card ({..<k} U {n—nat(abs(l))..n + nat(abs(l))}) < C unfold-
ing C-def by blast

have card(A N {..<n}) < card (AN {k..nat(n+1)} U ({..<k} U {n—nat(abs(l))..n
+ nat(abs(1))}))
by (rule card-mono, auto)

also have ... < card (A N {k..nat(n+10)}) + card ({..<k} U {n—nat(abs(l))..n
+ nat(abs(l))})
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by (rule card-Un-le)
also have ... < card (A N {k..nat(n+10)}) + C
using * by auto
finally have card (A N {..<n}) / n < (card (A N {k..nat(n+10)}) + real C)/n
by (simp add: divide-right-mono)
also have ... = card (A N {k..nat(n+0)})/n + C/n
using add-divide-distrib by auto
finally show ?thesis
by auto
qged
then have limsup (An. card(A N {..<n}) / n) < limsup (An. card (A N {k..nat(n+1)})/n
+ ereal(C/n))
by (simp add: Limsup-mono)
also have ... < limsup (An. card (A N {k..nat(n+10)})/n) + limsup (An. C/n)
by (rule ereal-limsup-add-mono)
finally have limsup (An. card(A N {..<n}) / n) < limsup (An. card (A N
{k..nat(n+10)})/n)
using [0 by simp
then have limsup (An. card(A N {..<n}) / n) = limsup (An. card (A N {k..nat(n+1)})/n)
using a by auto
then show ?thesis using upper-asymptotic-density-in-01 (1) by auto
qged

Upper asymptotic density is measurable.

lemma upper-asymptotic-density-meas [measurable]:

assumes [measurable]: \(n::nat). Measurable.pred M (P n)

shows (A\z. upper-asymptotic-density {n. P n z}) € borel-measurable M
unfolding upper-asymptotic-density-def by auto

A finite union of sets with zero upper density still has zero upper density.
lemma upper-asymptotic-density-zero-union:

assumes upper-asymptotic-density A = 0 upper-asymptotic-density B = 0

shows upper-asymptotic-density (A U B) = 0
using upper-asymptotic-density-in-01(3)[of A U B] upper-asymptotic-density-union|of
A B] unfolding assms by auto

lemma upper-asymptotic-density-zero-finite- Union:
assumes finite I \i. i € I = upper-asymptotic-density (A i) = 0
shows upper-asymptotic-density (|Ji€l. A i) = 0
using assms by (induction rule: finite-induct, auto introl: upper-asymptotic-density-zero-union)

The union of sets with small asymptotic densities can have a large density:
think of A,, = [0,n], it has density 0, but the union of the A, has density 1.
However, if one only wants a set which contains each A,, eventually, then one
can obtain a “union” that has essentially the same density as each A,,. This is
often used as a replacement for the diagonal argument in density arguments:
if for each n one can find a set A, with good properties and a controlled
density, then their “union” will have the same properties (eventually) and a
controlled density.
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proposition upper-asymptotic-density-incseq- Union:
assumes A (n::nat). upper-asymptotic-density (A n) < [ incseq A
shows 3 B. upper-asymptotic-density B < I A (Vn.IN. Ann {N..} C B)
proof —
have A: 3N.Vj > N. card (A kN {.<j}) < (4 (1/2)7k) = j for k
proof —
have x: upper-asymptotic-density (A k) < I+ (1/2) "k using assms(1)[of k|
by (metis add.right-neutral add-mono-thms-linordered-field(4) less-divide-eqg-numerall (1)
mult-zero-left zero-less-one zero-less-power)
show ?thesis
using upper-asymptotic-densityD| OF x| unfolding eventually-sequentially by
auto
qed
have IN. V. (Vj> Nk. card (A kN {.<j}) < (+(1/2)7k) = j) A N (Suc k)
> Nk
proof (rule dependent-nat-choice)
fix = k::nat
obtain N where N: Vj>N. real (card (A (Suc k) N {..<j})) < (I + (1 / 2)
~ Suc k) * real §
using A[of Suc k] less-imp-le by auto
show Jy. (Vj>y. real (card (A(Suc k) N {..<j})) < (I + (1 / 2) ~ Suc k) =
real j) N x < y
apply (rule exI[of - maz x N + 1]) using N by auto
next
show Jz. Vji>z. real (card (A 0) N {.<j})) < (@ + (L / 2) ~0) * real j
using A[of 0] less-imp-le by auto
qed

Here is the choice of the good waiting function N

then obtain N where N: A\kj. j > Nk = card (A kN {.<j}) < (I +
(1/2)7k) % j Nk N (Suc k) > N k
by blast
then have strict-mono N by (simp add: strict-monol-Suc)
have Nmono: Nk < NIlif k <[ for k!
using N(2) by (simp add: lift-Suc-mono-less that)

We can now define the global bad set B.
define B where B = ((Jk. A kN {NEk.})

We will now show that it also has density at most .

have Bcard: card (BN {.<n}) < (I4+(1/2)k) * nif Nk < nn < N (Suc k)
for n k
proof —
have {N j.<n} = {} if j € {k<..} for j
using (n < N (Suc k)» that by (auto, meson <strict-mono N» less-trans

not-less-eq strict-mono-less)
then have *: (| Jje{k<..}. A jN{Nj.<n}) = {} by force

have BN {.<n} = (Uj. AN {Nj.<n})
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unfolding B-def by auto
also have ... = (Jj e {.k}. Ajn{Nj.<n}) U (Uje{k<.}. AjNn{Nj..<n})
unfolding UN-Un [symmetric] by (rule arg-cong [of - - Union]) auto
also have ... = (Uj € {.k}. AjNn {Nj.<n})
unfolding * by simp
also have ... C (Jj € {..k}. A kn {.<n})
using <incseq A> unfolding incseg-def by (auto introl: UN-mono)
also have ... = A k N {..<n}
by simp
finally have card (B N {..<n}) < card (A k N {..<n})
by (rule card-monolrotated], auto)
then show ?thesis
using N(1)[OF «<n > N k] by simp
qed
have eventually (An. card (B N {..<n}) < a * n) sequentially if | < a for a::real
proof —
have eventually (Ak. (I4(1/2)7k) < a) sequentially
apply (rule order-tendstoD[of - I4+0], intro tendsto-intros) using that by auto
then obtain k where | + (1/2) 7k < a
unfolding eventually-sequentially by auto
have card (BN {..<n}) < axnifn> Nk + Ifor n
proof —
have n > N k n > 1 using that by auto
have {p. n > Np} C {..n}
using <strict-mono N> dual-order.trans seq-suble by blast
then have =: finite {p. n > N p} {p. n > N p} # {}
using (n > N k> finite-subset by auto
define m where m = Maz {p. n > N p}
have £t < m
unfolding m-def using Maz-ge|OF (1), of k| that by auto
have Nm < n
unfolding m-def using Maz-in[OF x| by auto
have Suc m ¢ {p. n > N p}
unfolding m-def using * Maz-ge Suc-n-not-le-n by blast
then have n < N (Suc m) by simp
have card (BN {..<n}) < (I4+(1/2)"m) x n
using Bcard[OF <N m < ny <n < N (Suc m))] by simp
also have ... < (I + (1/2)7k) x n
apply (rule mult-right-mono) using <k < m» by (auto simp add: power-decreasing)
also have ... < a x n
using <l + (1/2)7k < a» <n > 1) by auto
finally show ?thesis by auto
qed
then show ?thesis unfolding eventually-sequentially by auto
qed
then have upper-asymptotic-density B < a if a > [ for a
using upper-asymptotic-densityl that by auto
then have upper-asymptotic-density B < [
by (meson dense not-le)
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moreover have 3IN. A n N {N..} C B for n
apply (rule exI[of - N n]) unfolding B-def by auto
ultimately show #¢thesis by auto
qed

When the sequence of sets is not increasing, one can only obtain a set whose
density is bounded by the sum of the densities.

proposition upper-asymptotic-density- Union:
assumes summable (An. upper-asymptotic-density (A n))
shows 3 B. upper-asymptotic-density B < (> n. upper-asymptotic-density (A n))
A(Wn . AN. Ann{N.} C B)
proof —
define C' where C = (An. (|Ji<n. 4 1))
have C1: incseq C
unfolding C-def incseq-def by fastforce
have C2: upper-asymptotic-density (C k) < (3. n. upper-asymptotic-density (A
n)) for k
proof —
have upper-asymptotic-density (C k) < (> i<k. upper-asymptotic-density (A
)
unfolding C-def by (rule upper-asymptotic-density-finite-Union, auto)
also have ... < (D 4. upper-asymptotic-density (A i))
apply (rule sum-le-suminf[OF assms]) using upper-asymptotic-density-in-01
by auto
finally show ?thesis by simp
qed
obtain B where B: upper-asymptotic-density B < (> n. upper-asymptotic-density
(4 m))
An.IN. Cnn{N.} CB
using upper-asymptotic-density-incseq-Union| OF C2 C1] by blast
have IN. AnnN{N..} C Bfor n
using B(2)[of n| unfolding C-def by auto
then show ?thesis using B(1) by blast
qged

A particular case of the previous proposition, often useful, is when all sets
have density zero.

proposition upper-asymptotic-density-zero-Union:
assumes An:nat. upper-asymptotic-density (A n) = 0
shows 3 B. upper-asymptotic-density B= 0 A (Vn. 3N. Ann {N..} C B)
proof —
have 3 B. upper-asymptotic-density B < (>  n. upper-asymptotic-density (A n))
A(¥n IN. Ann{N.} CB)
apply (rule upper-asymptotic-density-Union) unfolding assms by auto
then obtain B where upper-asymptotic-density B < 0 An. 3N. A nn {N..}
cB
unfolding assms by auto
then show ?thesis
using upper-asymptotic-density-in-01(3)[of B] by auto
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qed

3.2 Lower asymptotic densities

The lower asymptotic density of a set of natural numbers is defined just
as its upper asymptotic density but using a liminf instead of a limsup. Its
properties are proved exactly in the same way.

definition lower-asymptotic-density::nat set = real
where lower-asymptotic-density A = real-of-ereal(liminf (An. card(A N {..<n})/n))

lemma lower-asymptotic-density-in-01:
ereal(lower-asymptotic-density A) = liminf (An. card(A N {..<n})/n)
lower-asymptotic-density A < 1
lower-asymptotic-density A > 0
proof —
{
fix n::nat assume n>0
have card(A N {..<n}) < n by (metis card-lessThan Int-lower2 card-mono
finite-lessThan)
then have card(A N {..<n}) / n < ereal I using <n>0> by auto
}
then have eventually (An. card(A N {..<n}) / n < ereal 1) sequentially
by (simp add: eventually-at-top-dense)
then have limsup (An. card(A N {..<n})/n) < 1 by (simp add: Limsup-const
Limsup-bounded)
then have a: liminf (An. card(A N {..<n})/n) < 1
by (meson Liminf-le-Limsup less-le-trans not-le sequentially-bot)

have card(A N {..<n}) / n > ereal 0 for n by auto
then have b: liminf (An. card(A N {..<n})/n) > 0 by (simp add: le-Liminf-iff
less-le-trans)

have abs(liminf (An. card(A N {..<n})/n)) # oo using a b by auto
then show ereal(lower-asymptotic-density A) = liminf (An. card(A N {..<n})/n)
unfolding lower-asymptotic-density-def by auto
show lower-asymptotic-density A < 1 lower-asymptotic-density A > 0 unfolding
lower-asymptotic-density-def
using a b by (auto simp add: real-of-ereal-le-1 real-of-ereal-pos)
qged

The lower asymptotic density is bounded by the upper one. When they
coincide, Card(AN[0,n))/n converges to this common value.

lemma lower-asymptotic-density-le-upper:
lower-asymptotic-density A < upper-asymptotic-density A
using lower-asymptotic-density-in-01 (1) upper-asymptotic-density-in-01(1)
by (metis (mono-tags, lifting) Liminf-le-Limsup ereal-less-eq(3) sequentially-bot)

lemma lower-asymptotic-density-eq-upper:
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assumes lower-asymptotic-density A = | upper-asymptotic-density A = [

shows (An. card(A N {..<n})/n) —— 1
apply (rule limsup-le-liminf-real)
using upper-asymptotic-density-in-01(1)[of A] lower-asymptotic-density-in-01(1)[of
A] assms by auto

In particular, when a set has a zero upper density, or a lower density one,
then this implies the corresponding convergence of Card(AN[0,n))/n.

lemma upper-asymptotic-density-zero-lim:
assumes upper-asymptotic-density A = 0
shows (An. card(A N {..<n})/n) —— 0
apply (rule lower-asymptotic-density-eq-upper)
using assms lower-asymptotic-density-le-upper|of A] lower-asymptotic-density-in-01(3)[of
A] by auto

lemma lower-asymptotic-density-one-lim:
assumes lower-asymptotic-density A = 1
shows (An. card(A N {..<n})/n) —— 1
apply (rule lower-asymptotic-density-eq-upper)
using assms lower-asymptotic-density-le-upper|of A] upper-asymptotic-density-in-01(2)]of
Al by auto

The lower asymptotic density of a set is 1 minus the upper asymptotic
density of its complement. Hence, most statements about one of them follow
from statements about the other one, although we will rather give direct
proofs as they are not more complicated.

lemma lower-upper-asymptotic-density-complement:
lower-asymptotic-density A = 1 — upper-asymptotic-density (UNIV — A)
proof —

{

fix n assume n>(0::nat)
have {.<n} N UNIV — (UNIV — ({.<n} — (UNIV — A4))) ={.<n} N 4
by blast
moreover have {..<n} N UNIV N (UNIV — ({.<n} — (UNIV — A))) =
(UNIV — A) n {..<n}
by blast
ultimately have card (A N {..<n}) = n — card((UNIV—A) N {..<n})
by (metis (no-types) Int-commute card-Diff-subset-Int card-lessThan finite-Int
finite-less Than inf-top-right)
then have card (A N {..<n})/n = (real n — card((UNIV—A4) N {..<n})) / n
by (metis Int-lower2 card-lessThan card-mono finite-lessThan of-nat-diff)
then have card (A N {..<n})/n = ereal 1 — card((UNIV—A) N {..<n})/n
using «n>0> by (simp add: diff-divide-distrib)
}

then have eventually (An. card (A N {..<n})/n = ereal 1 — card((UNIV—A)
N {..<n})/n) sequentially
by (simp add: eventually-at-top-dense)
then have liminf (An. card (AN {..<n})/n) = liminf (An. ereal 1 — card((UNIV—A)

N {..<n})/n)
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by (rule Liminf-eq)
also have ... = ereal 1 — limsup (An. card((UNIV—A) N {..<n})/n)
by (rule liminf-ereal-cminus, simp)
finally show ?thesis unfolding lower-asymptotic-density-def
by (metis ereal-minus(1) real-of-ereal.simps(1) upper-asymptotic-density-in-01(1))
qed

proposition lower-asymptotic-densityD:
fixes [::real
assumes lower-asymptotic-density A > [
shows eventually (An. card(A N {..<n}) > [ * n) sequentially
proof —
have ereal(lower-asymptotic-density A) > | using assms by auto
then have liminf (An. card(A N {..<n})/n) > 1
using lower-asymptotic-density-in-01(1) by auto
then have eventually (An. card(A N {..<n})/n > ereal l) sequentially
using less-LiminfD by blast
then have eventually (An. card(A N {..<n})/n > ereal | A n > 0) sequentially
using eventually-gt-at-top eventually-conj by blast
moreover have card(A N {..<n}) > 1 * n if card(A N {..<n})/n > ereal L A n
> (0 for n
using that divide-le-eq ereal-less-eq(8) less-imp-of-nat-less not-less of-nat-eq-0-iff
by fastforce
ultimately show eventually (An. card(A N {..<n}) > I % n) sequentially
by (simp add: eventually-mono)
qged

proposition lower-asymptotic-densityl:
fixes [::real
assumes eventually (An. card(A N {..<n}) > 1 * n) sequentially
shows lower-asymptotic-density A > [
proof —
have eventually (An. card(A N {.<n}) > 1% n A n > 0) sequentially
using assms eventually-gt-at-top eventually-conj by blast
moreover have card(4A N {..<n})/n > ereal | if card(A N {..<n}) > 1l*n A n
> ( for n
using that by (meson ereal-less-eq(3) not-less of-nat-0-less-iff pos-divide-less-eq)
ultimately have eventually (An. card(A N {..<n})/n > ereal 1) sequentially
by (simp add: eventually-mono)
then have liminf (An. card(A N {..<n})/n) > ereal |
by (simp add: Liminf-bounded)
then have ereal(lower-asymptotic-density A) > ereal |
using lower-asymptotic-density-in-01(1) by auto
then show ?thesis by auto
qed

One can control the asymptotic density of an intersection in terms of the
asymptotic density of each component

lemma lower-asymptotic-density-intersection:

95



lower-asymptotic-density A + lower-asymptotic-density B < lower-asymptotic-density
(AN B)+ 1
using upper-asymptotic-density-union[of UNIV — A UNIV — B]
unfolding lower-upper-asymptotic-density-complement by (auto simp add: alge-
bra-simps Diff-Int)

lemma lower-asymptotic-density-subset:

assumes A C B

shows lower-asymptotic-density A < lower-asymptotic-density B
using upper-asymptotic-density-subset[of UNIV—B UNIV —A] assms
unfolding lower-upper-asymptotic-density-complement by auto

lemma lower-asymptotic-density-lim:

assumes (An. card(A N {..<n})/n) —— 1

shows lower-asymptotic-density A = [
proof —

have (An. ereal(card(A N {..<n})/n)) —— [ using assms by auto

then have liminf (An. card(A N {.<n})/n) =1

using sequentially-bot tendsto-iff-Liminf-eq-Limsup by blast

then show ?thesis unfolding lower-asymptotic-density-def by auto

qed

lemma lower-asymptotic-density-finite:
assumes finite A
shows lower-asymptotic-density A = 0
using lower-asymptotic-density-in-01(3) upper-asymptotic-density-finite] OF assms]
lower-asymptotic-density-le-upper
by (metis antisym-conv)

In particular, bounded intervals have zero lower density.

lemma lower-asymptotic-density-bdd-interval [simp:
lower-asymptotic-density {} = 0
lower-asymptotic-density {..N} = 0
lower-asymptotic-density {..<N} = 0
lower-asymptotic-density {n..N} = 0
lower-asymptotic-density {n..<N} = 0
lower-asymptotic-density {n<..N} = 0
lower-asymptotic-density {n<..<N} = 0

by (auto intro!: lower-asymptotic-density-finite)

Conversely, unbounded intervals have density 1.

lemma lower-asymptotic-density-infinite-interval [simpl:
lower-asymptotic-density {N..} = 1
lower-asymptotic-density {N<..} = 1
lower-asymptotic-density UNIV = 1
proof —
have UNIV — {N..} = {..<N} by auto
then show lower-asymptotic-density {N..} = 1
by (auto simp add: lower-upper-asymptotic-density-complement)
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have UNIV — {N<..} = {..N} by auto
then show lower-asymptotic-density {N<..} = 1
by (auto simp add: lower-upper-asymptotic-density-complement)
show lower-asymptotic-density UNIV = 1
by (auto simp add: lower-upper-asymptotic-density-complement)
qed

lemma upper-asymptotic-density-infinite-interval [simp]:

upper-asymptotic-density {N..} = 1

upper-asymptotic-density {N<..} = 1

upper-asymptotic-density UNIV = 1
by (metis antisym upper-asymptotic-density-in-01(2) lower-asymptotic-density-infinite-interval
lower-asymptotic-density-le-upper)+

The intersection of sets with lower density one still has lower density one.

lemma lower-asymptotic-density-one-intersection:

assumes lower-asymptotic-density A = 1 lower-asymptotic-density B = 1

shows lower-asymptotic-density (A N B) = 1
using lower-asymptotic-density-in-01(2)[of A N B] lower-asymptotic-density-intersection|of
A B] unfolding assms by auto

lemma lower-asymptotic-density-one-finite-Intersection:
assumes finite I \i. i € I = lower-asymptotic-density (A i) = 1
shows lower-asymptotic-density ((i€l. A i) = 1
using assms by (induction rule: finite-induct, auto intro!: lower-asymptotic-density-one-intersection)

As for the upper asymptotic density, there is a modification of the intersec-
tion, akin to the diagonal argument in this context, for which the “intersec-
tion” of sets with large lower density still has large lower density.

proposition lower-asymptotic-density-decseq-Inter:
assumes A (n::nat). lower-asymptotic-density (A n) > 1 decseq A
shows 3 B. lower-asymptotic-density B > I A (Vn. AN. BN {N..} C A n)
proof —
define C where C = (An. UNIV — A n)
have *: upper-asymptotic-density (Cn) < 1 — [ for n
using assms(1)[of n] unfolding C-def lower-upper-asymptotic-density-complement|of
A n] by auto
have xx: incseq C
using assms(2) unfolding C-def incseq-def decseq-def by auto
obtain D where D: upper-asymptotic-density D < 1 — 1 An. IN. CnnN{N..}
cD
using upper-asymptotic-density-incseq-Union| OF * xx| by blast
define B where B = UNIV — D
have lower-asymptotic-density B > [
using D(1) lower-upper-asymptotic-density-complement[of B] by (simp add:
double-diff B-def)
moreover have 3N. BN {N..} C A n for n
using D(2)[of n] unfolding B-def C-def by auto
ultimately show #¢thesis by auto
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qed

In the same way, the modified intersection of sets of density 1 still has density
one, and is eventually contained in each of them.

proposition lower-asymptotic-density-one-Inter:
assumes An:nat. lower-asymptotic-density (A n) = 1
shows 3 B. lower-asymptotic-density B=1 A (Vn. 3IN. BN {N..} C A n)
proof —
define C where C = (An. UNIV — A n)
have «: upper-asymptotic-density (C n) = 0 for n
using assms(1)[of n] unfolding C-def lower-upper-asymptotic-density-complement|of
A n] by auto
obtain D where D: upper-asymptotic-density D = 0 An. 3IN. Cn N {N..} C
D
using upper-asymptotic-density-zero-Union| OF x| by force
define B where B = UNIV — D
have lower-asymptotic-density B = 1
using D(1) lower-upper-asymptotic-density-complement[of B] by (simp add:
double-diff B-def)
moreover have 3N. BN {N..} C A n for n
using D(2)[of n] unfolding B-def C-def by auto
ultimately show %thesis by auto
qed

Sets with density 1 play an important role in relation to Cesaro convergence
of nonnegative bounded sequences: such a sequence converges to 0 in Cesaro
average if and only if it converges to 0 along a set of density 1.

The proof is not hard. Since the Cesaro average tends to 0, then given
€ > 0 the proportion of times where u, < € tends to 1, i.e., the set A,
of such good times has density 1. A modified intersection (as constructed
in Proposition lower_asymptotic_density_one_Inter) of these times has
density 1, and u,, tends to 0 along this set.

theorem cesaro-imp-density-one:

assumes An. un > (0:zreal) (An. (O i<n. u i)/n) —— 0

shows 3 A. lower-asymptotic-density A = 1 N (An. u n * indicator A n) ——
0
proof —

define B where B = (\e. {n. un > e})

Be is the set of bad times where u,, > e. It has density 0 thanks to the
assumption of Cesaro convergence to 0.

have A: upper-asymptotic-density (B e) = 0 if e > 0 for e
proof —
have *: card (Ben {..<n}) / n < (1/e) x (> ie{..<n}. uwi)/n) if n > 1 for
n
proof —
have e x card (B en {..<n}) = (. i€B en {..<n}. e) by auto
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also have ... < (>ieB en {..<n}. u 7)
apply (rule sum-mono) unfolding B-def by auto
also have ... < (3 ie{..<n}. u )
apply (rule sum-mono2) using assms by auto
finally show ?thesis
using <e > 0) <n > 1) by (auto simp add: divide-simps algebra-simps)
qed
have (An. card (Ben {..<n}) / n) —— 0
proof (rule tendsto-sandwich[of A-. 0 - - An. (1/e) = (> ie{..<n}. u i)/n)])
have (An. (1/e) x ((O_ie{..<n}. wi)/n)) —— (1/e) % 0
by (intro tendsto-intros assms)
then show (An. (1/e) * ((O_ ie{..<n}. u i)/n)) —— 0 by simp
show V p n in sequentially. real (card (B e N {..<n})) [ realn < 1 [ e *
(sum u {..<n} / real n)
using * unfolding eventually-sequentially by auto
qed (auto)
then show ?thesis
by (rule upper-asymptotic-density-lim)
qed
define C where C = (An::nat. UNIV — B (((1:real)/2)™n))
have lower-asymptotic-density (C n) = 1 for n
unfolding C-def lower-upper-asymptotic-density-complement by (simp add: A
double-diff)
then obtain A where A: [ower-asymptotic-density A =1 An. IN. AN {N..}
CCn
using lower-asymptotic-density-one-Inter by blast
have E: eventually (An. u n * indicator A n < e) sequentially if e > 0 for e
proof —
have eventually (An. ((1::real)/2) n < e) sequentially
by (rule order-tendstoD[OF - <e > 0»], intro tendsto-intros, auto)
then obtain n where n: ((1::real)/2) ™n < e
unfolding eventually-sequentially by auto
obtain N where N: AN {N..} C Cn
using A(2) by blast
have u k * indicator A k < eif k > N for k
proof (cases k € A)
case True
then have k € C' n using N that by auto
then have u k < ((1::real)/2) ™n
unfolding C-def B-def by auto
then have u k < e
using n by auto
then show ?thesis
unfolding indicator-def using True by auto
next
case Fulse
then show ?thesis
unfolding indicator-def using <e > 0» by auto
qed
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then show ?thesis
unfolding cventually-sequentially by auto
qed
have (An. u n x indicator A n) —— 0
apply (rule order-tendstoI[OF - E))
unfolding indicator-def using «An. un > 0s by (simp add: less-le-trans)
then show ?thesis
using <lower-asymptotic-density A = 1> by auto
qed

The proof of the reverse implication is more direct: in the Cesaro sum, just
bound the elements in A by a small €, and the other ones by a uniform
bound, to get a bound which is o(n).

theorem density-one-imp-cesaro:
assumes An. un > (O:zreal) An. un < C
lower-asymptotic-density A = 1
(An. u n x indicator A n) —— 0
shows (An. (3 i<n. ui)/n) —— 0
proof (rule order-tendstol)
fix e::real assume e < 0
have (> i<n. ui)/n > 0 for n
using assms(1) by (simp add: sum-nonneg divide-simps)
then have (3 i<n. ui)/n > e for n
using <e < 0) less-le-trans by auto
then show eventually (An. (3 i<n. ui)/n > e) sequentially
unfolding eventually-sequentially by auto
next
fix e::real assume e > 0
have C' > 0 using <u 0 > 0y <u 0 < C» by auto
have eventually (An. u n x indicator A n < e/4) sequentially
using order-tendstoD(2)[OF assms(4), of e/4] <e>0» by auto
then obtain N where N: Ak. k > N = u k * indicator A k < e/4
unfolding cventually-sequentially by auto
define B where B = UNIV — A
have *: upper-asymptotic-density B = 0
using assms unfolding B-def lower-upper-asymptotic-density-complement by
auto
have eventually (An. card(B N {..<n}) < (e/(4 * (C+1))) * n) sequentially
apply (rule upper-asymptotic-densityD) using <e > 0) <C > 0» * by auto
then obtain M where M: An. n > M = card(BN {..<n}) < (e/(4 * (C+1)))
xn
unfolding eventually-sequentially by auto

obtain P:nat where P: P > / « N % C/e
using real-arch-simple by auto

define Q) where Q =N+ M + 1 + P

have (> i<n. ui)/n < eif n > @ for n
proof —
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have n:n > Nn>Mn>Pn>1
using <n > (> unfolding Q-def by auto
then have n2: n > 4 x N x C'/e using P by auto
have (> i<n. ui) < (> ie{.<N} U ({N..<n} N A) U ({N..<n} — A). u 7)
by (rule sum-mono2, auto simp add: assms)
also have ... = (3 ic{..<N}. ui) + (D ie{N..<n} N A. ui) + (3 ic{N..<n}
— A i)
by (subst sum.union-disjoint, auto)+
also have ... = (> ie{.<N}. ui) + (O ie{N..<n} N A. u i * indicator A i)
+ (X ie{N..<n} — A. ui)
unfolding indicator-def by auto
also have ... < (3_ie{.<N}. w i) + O ie{N..<n}. u i * indicator A i) +
(>ie Bn{..<n}. u i)
apply (intro add-mono sum-mono2) unfolding B-def using assms by auto
also have ... < (3 ie{..<N}. C) + (>_ie{N..<n}. e/4) + (>_ieB N {..<n}.
0)
apply (intro add-mono sum-mono) using assms less-imp-le[OF N] by auto
also have ... = N « C + (n—N) % e¢/4 + card(B N {..<n}) x C
by auto
also have ... <nxe/f + nxe/j + (e/(4 x (C+1))) xnx C
apply (intro add-mono)
using n2 <e > 0y mult-right-mono|OF less-imp-le[OF M[OF «n > M>]] «C
> 0)] by (auto simp add: divide-simps)
also have ... < nx*x ex 3/4
using <«C > 0y <e > 0> by (simp add: divide-simps algebra-simps)
also have ... < n x e
using (n > 1> <e > 0» by auto
finally show ?thesis
using «n > 1» by (simp add: divide-simps algebra-simps)
qed
then show eventually (An. (3 i<n. u i)/n < e) sequentially
unfolding eventually-sequentially by auto
qed

end

4 Measure preserving or quasi-preserving maps

theory Measure-Preserving-Transformations
imports SG-Library-Complement
begin

Ergodic theory in general is the study of the properties of measure preserving
or quasi-preserving dynamical systems. In this section, we introduce the
basic definitions in this respect.

4.1 The different classes of transformations

definition quasi-measure-preserving::’a measure = 'b measure = (‘a = 'b) set
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where quasi-measure-preserving M N
= {f € measurable M N.V A € sets N. (f —“ A N space M € null-sets M) =
(A € null-sets N)}

lemma quasi-measure-preservingl [introl:
assumes f € measurable M N
NA. A € sets N = (f —° A N space M € null-sets M) = (A € null-sets
N)
shows f € quasi-measure-preserving M N
using assms unfolding quasi-measure-preserving-def by auto

lemma quasi-measure-preservingF:
assumes [ € quasi-measure-preserving M N
shows f € measurable M N
NA. A € sets N = (f —“ A N space M € null-sets M) = (A € null-sets N)
using assms unfolding quasi-measure-preserving-def by auto

lemma id-quasi-measure-preserving:
(Az. z) € quasi-measure-preserving M M
unfolding quasi-measure-preserving-def by auto

lemma quasi-measure-preserving-composition:

assumes [ € quasi-measure-preserving M N

g € quasi-measure-preserving N P

shows (Az. ¢g(f z)) € quasi-measure-preserving M P
proof (rule quasi-measure-preservingl)

have f-meas [measurable]: f € measurable M N by (rule quasi-measure-preservingE(1)[OF
assms(1)])

have g-meas [measurable]: g € measurable N P by (rule quasi-measure-preservingE(1)[OF
assms(2)])

then show [measurable]: (Az. g (f z)) € measurable M P by auto

fix C' assume [measurable]: C € sets P
define B where B = g—‘C' N space N
have [measurable]: B € sets N unfolding B-def by simp
have x: B € null-sets N <— C € null-sets P
unfolding B-def using quasi-measure-preservingE(2)[OF assms(2)] by simp

define A where A = f—‘B N space M
have [measurable]: A € sets M unfolding A-def by simp
have A € null-sets M «+— B € null-sets N
unfolding A-def using quasi-measure-preservingE(2)[OF assms(1)] by simp

then have A € null-sets M +— C € null-sets P using * by simp
moreover have A = (A\z. g (fz)) —¢ C N space M
by (auto simp add: A-def B-def) (meson f-meas measurable-space)
ultimately show ((Az. ¢ (f z)) —° C N space M € null-sets M) +— C €
null-sets P by simp
qed
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lemma quasi-measure-preserving-comp:
assumes f € quasi-measure-preserving M N
g € quasi-measure-preserving N P
shows ¢ o f € quasi-measure-preserving M P
unfolding comp-def using assms quasi-measure-preserving-composition by blast

lemma quasi-measure-preserving-AE:
assumes f € quasi-measure-preserving M N
AEzin N. Pz
shows AE zin M. P (f z)
proof —
obtain A where Az. z € space N — A = Pz A € null-sets N
using AE-E3[OF assms(2)] by blast
define B where B = f—‘A N space M
have B € null-sets M
unfolding B-def using quasi-measure-preservingE(2)[OF assms(1)] <A €
null-sets N> by auto
moreover have z € space M — B = P (fz) for z
using «A\z. © € space N — A = P x> quasi-measure-preservingE(1)[OF
assms(1)]
unfolding B-def by (metis (no-types, lifting) Diff-iff Intl measurable-space
vimage-eq)
ultimately show ?thesis using A E-not-in AE-space by force
qed

lemma quasi-measure-preserving-AFE":
assumes [ € quasi-measure-preserving M N
AE zin M. P (f z)
{z € space N. P z} € sets N
shows AE zin N. Px
proof —
have [measurable]: f € measurable M N using quasi-measure-preservingE(1)[OF
assms(1)] by simp
define U where U = {z € space N. =(P z)}
have [measurable]: U € sets N unfolding U-def using assms(3) by auto
have f—‘U N space M = {z € space M. =(P (fz))}
unfolding U-def using <f € measurable M N» by (auto, meson measur-
able-space)
also have ... € null-sets M
apply (subst AE-iff-null[symmetric]) using assms by auto
finally have U € null-sets N
using quasi-measure-preservingE(2)[OF assms(1) «U € sets N»] by auto
then show ?thesis unfolding U-def using AFE-iff-null by blast
qed

The push-forward under a quasi-measure preserving map f of a measure ab-
solutely continuous with respect to M is absolutely continuous with respect
to V.
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lemma quasi-measure-preserving-absolutely-continuous:
assumes f € quasi-measure-preserving M N
u € borel-measurable M
shows absolutely-continuous N (distr (density M u) N f)
proof —
have [measurable]: f € measurable M N using quasi-measure-preservingE[OF
assms(1)] by auto
have S € null-sets (distr (density M u) N f) if [measurable]: S € null-sets N for
S
proof —
have [measurable]: S € sets N using null-setsD2[OF that] by auto
have x: AEzin N.z ¢ S
by (metis AE-not-in that)
have AFzin M. fz ¢ S
by (rule quasi-measure-preserving-AE[OF - x|, simp add: assms)
then have x: AF z in M. indicator S (fz) * ux = 0
by force

have emeasure (distr (density M u) N f) S = ([ T. indicator S z d(distr
(density M u) N f))

by auto
also have ... = ([ Tz. indicator S (f z) d(density M w))

by (rule nn-integral-distr, auto)
also have ... = ([ Tz. indicator S (f ) x u x M)

by (rule nn-integral-densityR[symmetric], auto simp add: assms)
also have ... = ([ Tz. 0 OM)

using * by (rule nn-integral-cong-AE)
finally have emeasure (distr (density M w) N f) S = 0 by auto
then show ?thesis by auto
qed
then show ?thesis unfolding absolutely-continuous-def by auto
qed

definition measure-preserving::'a measure = 'b measure = (‘a = 'b) set
where measure-preserving M N
= {f € measurable M N. (VY A € sets N. emeasure M (f—‘A N space M)
= emeasure N A)}

lemma measure-preservingb:
assumes f € measure-preserving M N
shows f € measurable M N
NA. A € sets N = emeasure M (f—‘A N space M) = emeasure N A
using assms unfolding measure-preserving-def by auto

lemma measure-preservingl [intro]:
assumes f € measurable M N
NA. A € sets N = emeasure M (f—‘A N space M) = emeasure N A
shows f € measure-preserving M N
using assms unfolding measure-preserving-def by auto
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lemma measure-preserving-distr:
assumes f € measure-preserving M N
shows distr M N f = N
proof —
let ?N2 = distr M N f
have sets ?N2 = sets N by simp
moreover have emeasure ?N2 A = emeasure N A if A € sets N for A
proof —
have emeasure N2 A = emeasure M (f—‘A N space M)
using (A4 € sets N> assms emeasure-distr measure-preservingE(1)[OF assms]
by blast
then show emeasure ?N2 A = emeasure N A
using (A € sets Ny measure-preservingE(2)[OF assms| by auto
qed
ultimately show ?thesis by (metis measure-eql)
qed

lemma measure-preserving-distr’:

assumes f € measurable M N

shows f € measure-preserving M (distr M N f)
proof (rule measure-preservingl)

show f € measurable M (distr M N f) using assms(1) by auto

show emeasure M (f—‘A N space M) = emeasure (distr M N f) A if A € sets
(distr M N f) for A

using that emeasure-distr[OF assms| by auto

qged

lemma measure-preserving-preserves-nn-integral:
assumes 1 € measure-preserving M N
f € borel-measurable N
shows ([ Tz. fz ON) = ([ Tz f (T z) OM)
proof —
have ([*z. f (Tz) OM) = ([ *y. fy ddistr M N T)
using assms nn- mtegml distr[of T M N f, OF measure-preservingE(1)[OF
assms(1)]] by simp
also have ... = ([ Ty. fy ON)
using measure-preserving-distr|OF assms(1)] by simp
finally show ?thesis by simp
qed

lemma measure-preserving-preserves-integral:

fixes f :: 'a = 'b::{banach, second-countable-topology}

assumes 1' € measure-preserving M N

and [measurable]: integmble Nf

shows integrable M (Mz. f(T z)) ([=. fz ON) = ([ z. f (T z) OM)
proof —

have a [measurable]: T € measurable M N by (rule measure-preservingE(1)[OF
assms(1)])
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have b [measurable]: f € borel-measurable N by simp

have distr M N T = N using measure-preserving-distr[OF assms(1)] by simp
then have integrable (distr M N T') f using assms(2) by simp

then show integrable M (Ax. f(T z)) using integrable-distr-eq|OF a b] by simp

have ([z. f (T z) OM) = ([ y. fy Odistr M N T) using integral-distr[OF a b]
by simp

then show ([z. fz ON) = ([=. f (T z) OM) using «distr M N T = N» by
stmp
qged

lemma measure-preserving-preserves-integral’:

fixes f :: 'a = 'b::{banach, second-countable-topology}

assumes 1 € measure-preserving M N

and [measurable]: integrable M ()\w f (T z)) f € borel-measurable N

shows integrable N f ([z. fz ON) = ([. f (T z) OM)
proof —

have a [measurable]: T € measurable M N by (rule measure-preservingE(1)[OF
assms(1)])

have integrable M (Az. f(T z)) using assms(2) unfolding comp-def by auto

then have integrable (distr M N T) f

using integrable-distr-eq[OF a assms(3)] by simp

then show x: integrable N f using measure-preserving-distr[OF assms(1)] by

simp

then show ([ z. fz ON) = ([=. f (T z) OM)
using measure-preserving-preserves-integral|OF assms(1) *| by simp
qed

lemma id-measure-preserving:
(Az. z) € measure-preserving M M
unfolding measure-preserving-def by auto

lemma measure-preserving-is-quasi-measure-preserving:
assumes f € measure-preserving M N
shows f € quasi-measure-preserving M N
using assms unfolding measure-preserving-def quasi-measure-preserving-def ap-
ply auto
by (metis null-setsD1 null-setsl, metis measurable-sets null-setsD1 null-setsI)

lemma measure-preserving-composition:

assumes f € measure-preserving M N

g € measure-preserving N P

shows (Az. g(f z)) € measure-preserving M P
proof (rule measure-preservingl)

have f [measurable]: f € measurable M N by (rule measure-preservingE(1)[OF
assms(1)])

have g [measurable]: g € measurable N P by (rule measure-preservingE(1)[OF
assms(2)])

66



show [measurable]: (Az. g (f z)) € measurable M P by auto

fix C' assume [measurable]: C' € sets P
define B where B = g—‘C' N space N
have [measurable]: B € sets N unfolding B-def by simp
have x: emeasure N B = emeasure P C
unfolding B-def using measure-preservingE(2)[OF assms(2)] by simp

define A where A = f—‘B N space M
have [measurable]: A € sets M unfolding A-def by simp
have emeasure M A = emeasure N B
unfolding A-def using measure-preservingE(2)[OF assms(1)] by simp

then have emeasure M A = emeasure P C using * by simp
moreover have A = (A\z. g(f z))—‘C N space M
by (auto simp add: A-def B-def) (meson f measurable-space)
ultimately show emeasure M ((Az. g(f z))—‘C N space M) = emeasure P C
by simp
qed

lemma measure-preserving-comp:
assumes f € measure-preserving M N
g € measure-preserving N P
shows ¢ o f € measure-preserving M P
unfolding o-def using measure-preserving-composition assms by blast

lemma measure-preserving-total-measure:

assumes [ € measure-preserving M N

shows emeasure M (space M) = emeasure N (space N)
proof —

have f € measurable M N by (rule measure-preservingE(1)[OF assms(1)])

then have f—space N) N space M = space M by (meson Int-absorbl measur-
able-space subsetl vimagel)

then show emeasure M (space M) = emeasure N (space N)

by (metis (mono-tags, lifting) measure-preservingE(2)[OF assms(1)] sets.top)

qed

lemma measure-preserving-finite-measure:
assumes [ € measure-preserving M N
shows finite-measure M +— finite-measure N
using measure-preserving-total-measure[ OF assms]
by (metis finite-measure.emeasure-finite finite-measurel infinity-ennreal-def)

lemma measure-preserving-prob-space:

assumes f € measure-preserving M N

shows prob-space M <— prob-space N
using measure-preserving-total-measure[ OF assms| by (metis prob-space.emeasure-space-1
prob-spacel )
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locale gmpt = sigma-finite-measure +
fixes T
assumes Tqm: T € quasi-measure-preserving M M

locale mpt = gmpt +
assumes Tm: T € measure-preserving M M

locale fmpt = mpt + finite-measure
locale pmpt = fmpt + prob-space

lemma gmpt-I:

assumes sigma-finite-measure M

T € measurable M M
NA. A € sets M = ((T—‘A N space M) € null-sets M) +— (A € null-sets

M)

shows qmpt M T
unfolding gmpt-def gmpt-axioms-def quasi-measure-preserving-def
by (auto simp add: assms)

lemma mpt-1:
assumes sigma-finite-measure M
T € measurable M M
NA. A € sets M = emeasure M (T—‘A N space M) = emeasure M A
shows mpt M T
proof —
have x: T € measure-preserving M M
by (rule measure-preservingl [OF assms(2) assms(3)])
then have sx: T € quasi-measure-preserving M M
using measure-preserving-is-quasi-measure-preserving by auto
show mpt M T
unfolding mpt-def gmpt-def gmpt-azioms-def mpt-axioms-def using * xx assms(1)
by auto
qed

lemma fmpt-I:
assumes finite-measure M
T € measurable M M
NA. A € sets M = emeasure M (T—‘A N space M) = emeasure M A
shows fmpt M T
proof —
have x: T € measure-preserving M M
by (rule measure-preservingl [OF assms(2) assms(3)])
then have *x: T € quasi-measure-preserving M M
using measure-preserving-is-quasi-measure-preserving by auto
show fmpt M T
unfolding fmpt-def mpt-def gmpt-def mpt-axioms-def gmpt-azioms-def
using * *x assms(1) finite-measure-def by auto
qed
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lemma pmpt-I:
assumes prob-space M
T € measurable M M
NA. A € sets M = emeasure M (T—*‘A N space M) = emeasure M A
shows pmpt M T
proof —
have x: T' € measure-preserving M M
by (rule measure-preservingl [OF assms(2) assms(3)])
then have xx: T € quasi-measure-preserving M M
using measure-preserving-is-quasi-measure-preserving by auto
show pmpt M T
unfolding pmpt-def fmpt-def mpt-def gmpt-def mpt-axioms-def gmpt-axioms-def
using * xx assms(1) prob-space-imp-sigma-finite prob-space.finite-measure by
auto
qed

4.2 Examples

lemma fmpt-null-space:

assumes emeasure M (space M) = 0

T € measurable M M

shows fmpt M T
apply (rule fmpt-I)
apply (auto simp add: assms finite-measurel)
apply (metis assms emeasure-eq-0 measurable-sets sets.sets-into-space sets.top)
done

lemma fmpt-empty-space:
assumes space M = {}
shows fmpt M T
by (rule fmpt-null-space, auto simp add: assms measurable-empty-iff)

Translations are measure-preserving

lemma mpt-translation:

fixes c :: 'a::euclidean-space

shows mpt lborel (\z. z + ¢)
proof (rule mpt-1, auto simp add: lborel.sigma-finite-measure-azioms)

fix A::'a set assume [measurable]: A € sets borel

have emeasure lborel (Az. z + ¢) —° A) = emeasure lborel ((((+))c)—‘A) by
(meson add.commute)

also have ... = emeasure lborel ((((+))c)— ‘A N space lborel) by simp

also have ... = emeasure (distr lborel borel ((+) ¢)) A by (rule emeasure-distr[symmetric],
auto)

also have ... = emeasure lborel A using lborel-distr-plus|of c] by simp

finally show emeasure lborel (A\x. z + ¢) —° A) = emeasure lborel A by simp
qed

Skew products are fibered maps of the form (z,y) — (Tz,U(x,y)). If the
base map and the fiber maps all are measure preserving, so is the skew
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product.

lemma pair-measure-null-product:
assumes emeasure M (space M) = 0
shows emeasure (M @ N) (space (M @ p N)) = 0
proof —
have ([ *z. ([ *y. indicator X (z,y) ON) OM) = 0 for X
proof —
have ([ *z. ([ ty. indicator X (z,y) ON) OM) = ([ Tz. 0 OM)
by (intro nn-integral-cong-AE emeasure-0-AE[OF assms])
then show ?thesis by auto
qed
then have M Q) py N = measure-of (space M x space N)
{axb|ab. acsets M ADbE sets N}
(\X. 0)
unfolding pair-measure-def by auto
then show %thesis by (simp add: emeasure-sigma)
qed

lemma mpt-skew-product:
assumes mpt M T
AE xin M. mpt N (U x)
and [measurable]: (M (z,y). Uz y) € measurable (M @y N) N
shows mpt (M @ u N) (). (T2, Uz y))
proof (cases)
assume H: emeasure M (space M) = 0
then have x: emeasure (M @ a N) (space (M @ N)) = 0
using pair-measure-null-product by auto
have [measurable]: T € measurable M M
using assms(1) unfolding mpt-def gmpt-def gmpt-azioms-def quasi-measure-preserving-def
by auto
then have [measurable]: (M, y). (T z, Uz y)) € measurable (M @ N) (M
& v N) by auto
with fmpt-null-space[OF x| show ?Zthesis by (simp add: fmpt.axioms(1))
next
assume —(emeasure M (space M) = 0)
show ?thesis
proof (rule mpt-I)
have sigma-finite-measure M using assms(1) unfolding mpt-def gmpt-def by
auto
then interpret M: sigma-finite-measure M .

have dp. = almost-everywhere M p
by (metis (lifting) AE-E <emeasure M (space M) # 0) emeasure-eq-AE
emeasure-notin-sets)
then have Jz. mpt N (U z) using assms(2) «—(emeasure M (space M) = 0)»
by (metis (full-types) <AE x in M. mpt N (U z)» eventually-mono)
then have sigma-finite-measure N unfolding mpt-def gmpt-def by auto
then interpret N: sigma-finite-measure N .
show sigma-finite-measure (M @ pr N)
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by (rule sigma-finite-pair-measure) standard+

have [measurable]: T € measurable M M

using assms(1) unfolding mpt-def gqmpt-def gqmpt-azioms-def quasi-measure-preserving-def
by auto

show [measurable]: (A(z, y). (T z, Uz y)) € measurable (M @ m N) (M @ um
N) by auto

have T € measure-preserving M M using assms(1) by (simp add: mpt.Tm)

fix A assume [measurable]: A € sets (M @ m N)

then have [measurable]: (A (z,y). (indicator A (z,y))::ennreal) € borel-measurable
(M @ v N) by auto

then have [measurable]: (\z. [T y. indicator A (z, y) ON) € borel-measurable
M

by simp

define B where B = (A(z, y). (Tz, Uz y)) —° AN space (M @ N)
then have [measurable]: B € sets (M @ p N) by auto

have ([ *y. indicator B (z,y) ON) = ([ *y. indicator A (T z, y) ON) if z €
space M mpt N (U z) for x
proof —
have T z € space M by (meson <T € measurable M M> <x € space M»
measurable-space)
then have 1: (\y. (indicator A (T z, y))::ennreal) € borel-measurable N
using <4 € sets (M @y N)» by auto
have 2: Ay. ((indicator B (z, y))::ennreal) = indicator A (T z, U z y) *
indicator (space M) x * indicator (space N) y
unfolding B-def by (simp add: indicator-def space-pair-measure)
have 3: U z € measure-preserving N N using assms(2) that(2) by (simp
add: mpt.Tm)

have ([ Ty. indicator B (z,y) ON) = ([ Ty. indicator A (T z, U z y) ON)
using 2 by (intro nn-integral-cong-simp) (auto simp add: indicator-def <x
€ space M»)
also have ... = ([ Ty. indicator A (T z, y) ON)
by (rule measure-preserving-preserves-nn-integral|OF 8, symmetric], metis

finally show ?thesis by simp
qed
then have x: AE z in M. ([ Ty. indicator B (z,y) ON) = ([ ty. indicator A
(T'z, y) ON)
using assms(2) by auto

have emeasure (M @ n N) B = ([T z. ([ Ty. indicator B (z,y) ON) OM)
using (B € sets (M @ ar N)» <sigma-finite-measure Ny sigma-finite-measure.emeasure-pair-measure
by fastforce
also have ... = ([T z. ([ ty. indicator A (T z, y) ON) OM)
by (intro nn-integral-cong-AE x)
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also have ... = ([ T z. ([ ty. indicator A (z, y) ON) OM)
by (rule measure-preserving-preserves-nn-integral|OF <T € measure-preserving

M M>, symmetric]) auto
also have ... = emeasure (M @ N) A
by (simp add: <sigma-finite-measure Ny sigma-finite-measure.emeasure-pair-measure)
finally show emeasure (M @ p N) (M (z, y). (T z, Uz y)) —° AN space (M

QR m N)) = emeasure (M @y N) A

unfolding B-def by simp
qed
qed

lemma mpt-skew-product-real:
fixes f::'a = 'b::euclidean-space
assumes mpt M T and [measurable]: f € borel-measurable M
shows mpt (M @ ar lborel) (A(z,y). (T z, y + fx))

by (rule mpt-skew-product, auto simp add: mpt-translation assms(1))

4.3 Preimages restricted to space M

context ¢gmpt begin

One is all the time lead to take the preimages of sets, and restrict them
to space M where the dynamics is living. We introduce a shortcut for this
notion.

definition vimage-restr :: (‘a = 'a) = 'a set = 'a set (infixr (——*% 90)

where
f——"A=f—*(AnN space M) N space M

lemma vrestr-eq [simpl:
a € f——“A<+— a€ space M N fa € AN space M
unfolding vimage-restr-def by auto

lemma vrestr-intersec [simp]:
f=="(ANB) = (f——"A)n(f--"B)

using vimage-restr-def by auto

lemma vrestr-union [simp):
f——“(AUuB)=f——‘AUf——‘B
using vimage-restr-def by auto

lemma vrestr-difference [simp]:
f-—{(A-B)=f——A - f——B
using vimage-restr-def by auto
lemma vrestr-inclusion:
ACB= f——‘AC f——‘B

using vimage-restr-def by auto

lemma vrestr-Union [simp:
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f—="(UA4) = (UXeA f——"X)

using vimage-restr-def by auto

lemma vrestr-UN [simp:
f——(Uz€A. Bz) = (JzcA. f —‘Bx)

using vimage-restr-def by auto

lemma vrestr-Inter [simp):

assumes A # {}

shows f —— ‘(N A4) = (NXed. f ——X)
using vimage-restr-def assms by auto

lemma vrestr-INT [simp]:

assumes A # {}

shows f ——‘(Nz€A. Bz) = (Nz€l. f ——‘Bx)
using vimage-restr-def assms by auto

lemma vrestr-empty [simpl:

—4=4

using vimage-restr-def by auto

lemma vrestr-sym-diff [simp]:
f=—(A A B) = (f——"4) A (f——"B)
by auto

lemma vrestr-image:

assumes z € f——‘A

shows x € space M fz € space M fx € A
using assms unfolding vimage-restr-def by auto

lemma vrestr-intersec-in-space:
assumes A € sets M B € sets M
shows AN f——‘B=AnNf-‘B
unfolding vimage-restr-def using assms sets.sets-into-space by auto

lemma vrestr-compose:
assumes g € measurable M M
shows (A z. f(gz))——‘ A =g——*“(f——*A)
proof —
define B where B = A N space M
have (A z. f(g2))——‘A = (A 2. f(gz)) — B N space M
using B-def vimage-restr-def by blast
moreover have (A z. f(g z)) —‘ B N space M = g—* (f—“ B N space M) N space
M
using measurable-space| OF <g € measurable M M>] by auto
moreover have g—* (f—‘ B N space M) N space M = g——" (f——"* A)
using B-def vimage-restr-def by simp
ultimately show ?thesis by auto
qed
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lemma vrestr-comp:
assumes g € measurable M M
shows (f 0 g)——* A = g——* (f——* )
proof —
have fo g = (A z. f(g z)) by auto
then have (fo g)——‘A = (A z. f(g z))——"* A by auto
moreover have (A z. f(g z))——‘ A = g——* (f——" A) using vrestr-compose
assms by auto
ultimately show “thesis by simp
qged

lemma vrestr-of-set:

assumes g € measurable M M

shows A € sets M = g——‘A = g— ‘A N space M
by (simp add: vimage-restr-def)

lemma vrestr-meas [measurable (raw)):
assumes g € measurable M M
A€ sets M
shows g—— ‘A € sets M
using assms vimage-restr-def by auto

lemma vrestr-same-emeasure-f:
assumes f € measure-preserving M M
A€ sets M
shows emeasure M (f——‘A) = emeasure M A
by (metis (mono-tags, lifting) assms measure-preserving-def mem-Collect-eq sets. Int-space-eq2
vimage-restr-def)

lemma vrestr-same-measure-f:
assumes [ € measure-preserving M M
A€ sets M
shows measure M (f——‘A) = measure M A
proof —
have measure M (f——‘A) = enn2real (emeasure M (f——*A)) by (simp add:
Sigma-Algebra.measure-def)

also have ... = enn2real (emeasure M A) using vrestr-same-emeasure-f[OF
assms] by simp
also have ... = measure M A by (simp add: Sigma-Algebra.measure-def)
finally show measure M (f——* A) = measure M A by simp
qged

4.4 Basic properties of qmpt

lemma T-meas [measurable (raw)]:
T € measurable M M
by (rule quasi-measure-preservingE(1)[OF Tqm])
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lemma Th-quasi-measure-preserving:
T "n € quasi-measure-preserving M M
proof (induction n)
case (
show ?case using id-quasi-measure-preserving by simp
next
case (Suc n)
then show ?case using Tgm quasi-measure-preserving-comp by (metis fun-
pow-Suc-right)
qged

lemma Th-meas [measurable (raw)]:
T "n € measurable M M
by (rule quasi-measure-preservingE(1)[OF Tn-quasi-measure-preserving))

lemma T-vrestr-meas [measurable]:
assumes A € sets M
shows T——‘A € sets M
(T""n)——*“A € sets M
by (auto simp add: vrestr-meas assms)

We state the next lemma both with 70 and with id as sometimes the sim-
plifier simplifies T to id before applying the first instance of the lemma.

lemma T-vrestr-0 [simp]:
assumes A € sets M
shows (T70)——‘A=A
id—— ‘A=A
using sets.sets-into-space[OF assms| by auto

lemma T-vrestr-composed:
assumes A € sets M
shows (T n)——“(T""m)——*A = (T " (n+m))——* A
T—(T7m)——"A=(T"(m+1))——“A
(T"m)—T—A=(T""(m+1))——*“A
proof —
show (T""n)——“(T""m)——“A = (T " (n+m))——“ A
by (simp add: Th-meas funpow-add add.commute vrestr-comp)
show T——* (T""m)——‘A = (T""(m+1))——*A
by (metis Suc-eq-plusl T-meas funpow-Suc-right vrestr-comp)
show (T m)——‘T——‘A=(T""(m+1))——‘A
by (simp add: Tn-meas vrestr-comp)
qed

In the next two lemmas, we give measurability statements that show up all
the time for the usual preimage.
lemma T-intersec-meas [measurable):

assumes [measurable]: A € sets M B € sets M

shows AN T—‘B € sets M
AN (T"7n)—‘B € sets M
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T—‘AN B € sets M
(T"n)—‘AN B € sets M
AN(ToT 7n)—‘Be€sets M
(ToT 7"n)—*AN B € sets M
by (metis T-meas Th-meas assms(1) assms(2) measurable-comp sets.Int inf-commute
vrestr-intersec-in-space vrestr-meas)—+

lemma T-diff-meas [measurable]:
assumes [measurable]: A € sets M B € sets M
shows A — T—‘B € sets M
A—(T"n)—‘B € sets M
proof —
have A — T—‘B = A N space M — (T—‘B N space M)
using sets.sets-into-space[OF assms(1)] by auto
then show A — T—‘B € sets M by auto
have A — (T""n)—‘B = AN space M — ((T""n)—‘B N space M)
using sets.sets-into-space[OF assms(1)] by auto
then show A — (7" n)—‘B € sets M by auto
qed

lemma T-spaceM-stable [simp]:
assumes z € space M
shows T z € space M
(T""n) z € space M
proof —
show T z € space M by (meson measurable-space T-meas measurable-def assms)
show (T n) z € space M by (meson measurable-space Tn-meas measurable-def
assms)
qed

lemma T-quasi-preserves-null:
assumes A € sets M
shows A € null-sets M +— T——°A € null-sets M
A € null-sets M +— (T"n)——"‘ A € null-sets M
using Tgm Th-quasi-measure-preserving unfolding quasi-measure-preserving-def
by (auto simp add: assms vimage-restr-def)

lemma T-quasi-preserves:
assumes A € sets M
shows emeasure M A = 0 <— emeasure M (T——‘A) = 0
emeasure M A = 0 <— emeasure M ((T" n)——*‘A) =0
using T-quasi-preserves-null|OF assms] T-vrestr-meas assms by blast+

lemma T-quasi-preserves-null2:
assumes A € null-sets M
shows T'——*‘ A € null-sets M
(T""n)——*A € null-sets M
using T-quasi-preserves-null|OF null-setsD2[OF assms]] assms by auto
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lemma T-composition-borel [measurable]:

assumes f € borel-measurable M

shows (Az. f(T z)) € borel-measurable M (Az. f((T" k) z)) € borel-measurable
M

using T-meas Th-meas assms measurable-compose by auto

lemma T-AE-iterates:

assumes AFE zin M. P x

shows AE zin M. Vn. P ((T"n) z)
proof —

have AE xin M. P ((T""n) z) for n

by (rule quasi-measure-preserving-AE[OF Tn-quasi-measure-preserving|of n]

assms|)

then show ?thesis unfolding AFE-all-countable by simp
qed

lemma gmpt-power:
gmpt M (T""n)
by (standard, simp add: Tn-quasi-measure-preserving)

lemma T-Th-T-compose:
T ((T"n)z)=(T"(Sucn))z
(T7n) (Tz) = (T (Sucn)) x
by (auto simp add: funpow-swapl)

lemma (in gmpt) gmpt-density:
assumes [measurable]: h € borel-measurable M
and AEzin M. hx # 0AE xzin M. h z #
shows gmpt (density M h) T
proof —
interpret A: sigma-finite-measure density M h
apply (subst sigma-finite-iff-density-finite) using assms by auto
show ?thesis
apply (standard) apply (rule quasi-measure-preservingl)
unfolding null-sets-density[OF <h € borel-measurable My <AE x in M. h x #
0>] sets-density space-density
using quasi-measure-preservingE(2)[OF Tqm] by auto
qged

end

4.5 Basic properties of mpt
context mpt

begin

lemma Th-measure-preserving:
T "n € measure-preserving M M
proof (induction n)
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case (Suc n)
then show ?case using Tm measure-preserving-comp by (metis funpow-Suc-right)
qed (simp add: id-measure-preserving)

lemma T-integral-preserving:

fixes [ :: 'a = 'b::{banach, second-countable-topology}

assumes integrable M f

shows integrable M (\z. f(T z)) ([ . f(T z) OM) = ([z. fz OM)
using measure-preserving- preserves integral|OF Tm assms] by auto

lemma Th-integral-preserving:

fixes f :: 'a = 'b::{banach, second-countable-topology}

assumes integrable M f

shows integrable M (Az. f((T""n) z)) ([z. f((T""n) z) OM) = ([ z. fz OM)
using measure-preserving-preserves-integral| OF Tn-measure-preservmg assms| by
auto

lemma T-nn-integral-preserving:
fixes [ :: 'a = ennreal
assumes f € borel-measurable M
shows ([ Tz. f(T z) OM) = ([ tz. fz OM)
using measure-preserving-preserves-nn-integral| OF Tm assms| by auto

lemma Th-nn-integral-preserving:

fixes f :: 'a = ennreal

assumes f € borel-measurable M

shows ([ *z. f((T""n) z) OM) = ([ Tz. fz OM)
using measure—preserm’ng—preserves nn-integral|OF Tn-measure-preserving assms(1)]
by auto

lemma mpt-power:
mpt M (T "n)
by (standard, simp-all add: Tn-quasi-measure-preserving Tn-measure-preserving)

lemma T-vrestr-same-emeasure:
assumes A € sets M
shows emeasure M (T——°A) = emeasure M A
emeasure M ((T " n)——‘A) = emeasure M A
by (auto simp add: vrestr-same-emeasure-f Tm Tn-measure-preserving assms)

lemma T-vrestr-same-measure:
assumes A € sets M
shows measure M (T——* A) = measure M A
measure M ((T 7" n)——‘A) = measure M A
by (auto simp add: vrestr-same-measure-f Tm Tn-measure-preserving assms)

lemma (in fmpt) fmpt-power:

fmpt M (T "n)
by (standard, simp-all add: Tn-quasi-measure-preserving Tn-measure-preserving)
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end

4.6 Birkhoff sums

Birkhoff sums, obtained by summing a function along the orbit of a map,
are basic objects to be understood in ergodic theory.

context gmpt
begin

definition birkhoff-sum::(‘a = 'b::comm-monoid-add) = nat = ‘a = b
where birkhoff-sum fn z = (> ie{..<n}. f(T"0)z))

lemma birkhoff-sum-meas [measurable]:
fixes f::'a = 'b::{second-countable-topology, topological-comm-monoid-add}
assumes f € borel-measurable M
shows birkhoff-sum f n € borel-measurable M
proof —
define F' where F = (Ai z. f((T"70)z))
have Ai. F i € borel-measurable M using assms F-def by auto
then have (A\z. (3 i<n. F i z)) € borel-measurable M by measurable
then have (\x. birkhoff-sum f n x) € borel-measurable M unfolding birkhoff-sum-def
F-def by auto
then show ?thesis by simp
qed

lemma birkhoff-sum-1 [simp]:
birkhoff-sum f 0z = 0
birkhoff-sum f 1z = fx
birkhoff-sum f (Suc 0) x = fz

unfolding birkhoff-sum-def by auto

lemma birkhoff-sum-cocycle:

birkhoff-sum f (n+m) x = birkhoff-sum fn x + birkhoff-sum fm ((T” n)z)
proof —

have (S i<m. £ (T 1) (T ) 2))) = (Si<m. f (T~ (i+n)) 1)) by
(simp add: funpow-add)

also have ... = (3 je{n..< m+n}. f (T 775) z))

using atLeastOLessThan sum.shift-bounds-nat-ivl[where 29 = N\j. f((T"j)x)
and % = n and ?m = 0 and ?n = m, symmeltric]
add.commute add.left-neutral by auto

finally have x: birkhoff-sum fm (T" n)z) = (O je{n.< m+n}. f (T 7))
z)) unfolding birkhoff-sum-def by auto

have birkhoff-sum f (n+m) z = (O i<n. f(T"9)z)) + O ie{n..<m+n}.
FU(T™7)x))

unfolding birkhoff-sum-def by (metis add.commute add.right-neutral atLeastOLess Than
le-add2 sum.atLeastLess Than-concat)

also have ... = birkhoff-sum fn x + (3. i€{n..<m+n}. f((T"%)z)) unfolding
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birkhoff-sum-def by simp
finally show ?thesis using * by simp
qed

lemma birkhoff-sum-mono:
fixes f g::- = real
assumes Az. fz < gz
shows birkhoff-sum fn x < birkhoff-sum g n x
unfolding birkhoff-sum-def by (simp add: assms sum-mono)

lemma birkhoff-sum-abs:

fixes f::- = 'b::real-normed-vector

shows norm(birkhoff-sum f n x) < birkhoff-sum (Az. norm(f z)) n x
unfolding birkhoff-sum-def using norm-sum by auto

lemma birkhoff-sum-add:
birkhoff-sum (\z. fx + g x) n x = birkhoff-sum f n x + birkhoff-sum g n x
unfolding birkhoff-sum-def by (simp add: sum.distrib)

lemma birkhoff-sum-diff:

fixes f g::- = real

shows birkhoff-sum (Az. fz — g x) n z = birkhoff-sum fn x — birkhoff-sum g n
x
unfolding birkhoff-sum-def by (simp add: sum-subtractf)

lemma birkhoff-sum-cmult:

fixes f::- = real

shows birkhoff-sum (Az. ¢ * fz) nx = ¢ x birkhoff-sum fn x
unfolding birkhoff-sum-def by (simp add: sum-distrib-left)

lemma skew-product-real-iterates:

fixes f::'a = real

shows ((A(z,y). (T z, y + fz)) " "n) (z,y) = ((T""n) z, y + birkhoff-sum fn z)
apply (induction n)
apply (auto)
apply (metis (no-types, lifting) Suc-eg-plus1 birkhoff-sum-cocycle gmpt.birkhoff-sum-1(2)
gmpt-axioms)
done

end

lemma (in mpt) birkhoff-sum-integral:

fixes f :: 'a = 'b::{banach, second-countable-topology}

assumes [measurable]: integrable M f

shows integrable M (birkhoff-sum fn) ([ z. birkhoff-sum fn z OM) = n xg ([ z.
fz OM)
proof —

have a: A\k. integrable M (A\z. f((T" k) z))

using Thn-integral-preserving(1) assms by blast
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then have integrable M (Az. Y ke{..<n}. f((T"7k) z)) by simp

then have integrable M (Az. birkhoff-sum f n z) unfolding birkhoff-sum-def by
auto

then show integrable M (birkhoff-sum f n) by simp

have b: Ak. ([ 2. f((T"k)z) OM) = ([ z. fz OM)
using Thn-integral-preserving(2) assms by blast
have ([ z. birkhoff-sum fn x OM) = ([ z. (X ke{..<n}. fF(T" k) z)) OM)
unfolding birkhoff-sum-def by blast
also have ... = (3" ke{.<n}. (Jz. f(T"7k) z) OM))
by (rule Bochner-Integration.integral-sum, simp add: a)
also have ... = (Y ke{..<n}. ([ z. fz OM)) using b by simp
also have ... = n *g ([ z. fz OM) by (simp add: sum-constant-scaleR)
finally show ([ z. birkhoff-sum fn z OM) = n xg ([ z. fz OM) by simp
qed

lemma (in mpt) birkhoff-sum-nn-integral:
fixes f :: 'a = ennreal
assumes [measurable]: f € borel-measurable M and pos: Nz. fz > 0
shows ([ *z. birkhoff-sum fn z OM) = n x ([ Ta. fz OM)
proof —
have [measurable]: Nk. (Az. f((T"k)z)) € borel-measurable M by simp
have posk: Nk z. f((T " k)z) > 0 using pos by simp
have b: Ak. ([ Tz. f((T"7k)z) OM) = ([ Y. fz OM)
using Thn-nn-integral-preserving assms by blast
have ([ *z. birkhoff-sum fn z OM) = ([ Tz (X ke{..<n}. f((T"7k) z)) OM)
unfolding birkhoff-sum-def by blast
also have ... = (3 ke{.<n}. ([ Tz f((T"k) z) OM))
by (rule nn-integral-sum, auto simp add: posk)
also have ... = (3" ke{..<n}. ([ Tz. fz OM)) using b by simp
also have ... = n x ([ tz. fz OM) by simp
finally show ([ Tx. birkhoff-sum fn z OM) = n * ([ tz. fz OM) by simp
qed

4.7 Inverse map

context ¢gmpt begin

definition
invertible-gmpt = (bij T A inv T € measurable M M)

definition
Tinv = itnv T

lemma T-Tinv-of-set:
assumes invertible-gmpt
A € sets M
shows T—{Tinv—‘A N space M) N space M = A
using assms sets.sets-into-space unfolding Tinv-def invertible-gmpt-def
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apply (auto simp add: bij-betw-def)
using T-spaceM-stable(1) by blast

lemma Tinv-quasi-measure-preserving:
assumes invertible-qgmpt
shows Tinv € quasi-measure-preserving M M
proof (rule quasi-measure-preservingl, auto)
fix A assume [measurable]: A € sets M Tinv —° A N space M € null-sets M
then have T—(Tinv —* A N space M) N space M € null-sets M
by (metis T-quasi-preserves-null2(1) null-sets.Int-space-eq2 vimage-restr-def)
then show A € null-sets M
using T-Tinv-of-set|OF assms <A € sets M>] by auto
next
show [measurable]: Tinv € measurable M M
using assms unfolding Tinv-def invertible-qgmpt-def by blast
fix A assume [measurable]: A € sets M A € null-sets M
then have T—{Tinv —* A N space M) N space M € null-sets M
using T-Tinv-of-set|OF assms <A € sets M>] by auto
moreover have [measurable]: Tinv—‘A N space M € sets M
by auto
ultimately show Tinv —‘ A N space M € null-sets M
using T-meas T-quasi-preserves-null(1) vrestr-of-set by presburger
qed

lemma Tinv-gmpt:

assumes invertible-gmpt

shows gmpt M Tinv
unfolding gmpt-def gmpt-azioms-def using Tinv-quasi-measure-preserving[OF assms]
by (simp add: sigma-finite-measure-azioms)

end

lemma (in mpt) Tinv-measure-preserving:
assumes invertible-qgmpt
shows Tinv € measure-preserving M M
proof (rule measure-preservingl)
show [measurable]: Tinv € measurable M M
using assms unfolding Tinv-def invertible-gmpt-def by blast
fix A assume [measurable]: A € sets M
have A = T—{Tinv —* A N space M) N space M
using T-Tinv-of-set|OF assms <A € sets M>| by auto
then show emeasure M (Tinv —“ A N space M) = emeasure M A
by (metis T-vrestr-same-emeasure(1) <A € sets My <Tinv € M —y M> mea-
surable-sets sets.Int-space-eq2 vimage-restr-def)
qed

lemma (in mpt) Tinv-mpt:

assumes invertible-gmpt
shows mpt M Tinv
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unfolding mpt-def mpt-axioms-def using Tinv-gmpt|OF assms] Tinv-measure-preserving| OF
assms] by auto

lemma (in fmpt) Tinv-fmpt:
assumes invertible-qgmpt
shows fmpt M Tinv
unfolding fmpt-def using Tinv-mpt|OF assms] by (simp add: finite-measure-axioms)

lemma (in pmpt) Tinv-fmpt:
assumes invertible-gmpt
shows pmpt M Tinv
unfolding pmpt-def using Tinv-fmpt[OF assms] by (simp add: prob-space-azioms)

4.8 Factors

Factors of a system are quotients of this system, i.e., systems that can be ob-
tained by a projection, forgetting some part of the dynamics. It is sometimes
possible to transfer a result from a factor to the original system, making it
possible to prove theorems by reduction to a simpler situation.

The dual notion, extension, is equally important and useful. We only men-
tion factors below, as the results for extension readily follow by considering
the original system as a factor of its extension.

In this paragraph, we define factors both in the qmpt and mpt categories,
and prove their basic properties.

definition (in gmpt) gmpt-factor::('a = 'b) = ('b measure) = ('b = 'b) = bool
where gmpt-factor proj M2 T2 =
((proj € quasi-measure-preserving M M2) AN (AE xz in M. proj (T z) = T2 (proj
z)) A gmpt M2 T2)

lemma (in gmpt) gmpt-factorE:
assumes gmpt-factor proj M2 T2
shows proj € quasi-measure-preserving M M2
AE zin M. proj (T z) = T2 (proj x)
qgmpt M2 T2
using assms unfolding gmpt-factor-def by auto

lemma (in gmpt) gmpt-factor-iterates:
assumes gmpt-factor proj M2 T2
shows AE z in M.V n. proj ((T"n) z) = (T2" n) (proj x)
proof —
have AE xin M. Vn. proj (T ((T""n) z)) = T2 (proj (T n) x))
by (rule T-AE-iterates|OF gmpt-factorE(2)[OF assms]])
moreover
{
fix x assume Vn. proj (T ((T""n) z)) = T2 (proj ((T" "n) z))
then have H: proj (T ((T""n) z)) = T2 (proj ((T""n) z)) for n by auto
have proj ((T""n) z) = (T2 "n) (proj z) for n
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apply (induction n) using H by auto
then have Vn. proj ((T" n) z) = (T2 n) (proj z) by auto
}
ultimately show ?thesis by fast
qed

lemma (in gmpt) gmpt-factorl:
assumes proj € quasi-measure-preserving M M2
AE z in M. proj (T z) = T2 (proj x)
gmpt M2 T2
shows gmpt-factor proj M2 T2
using assms unfolding qmpt-factor-def by auto

When there is a quasi-measure-preserving projection, then the quotient map
automatically is quasi-measure-preserving. The same goes for measure-
preservation below.

lemma (in gmpt) gmpt-factorl”:
assumes proj € quasi-measure-preserving M M2
AE z in M. proj (T z) = T2 (proj x)
sigma-finite-measure M2
T2 € measurable M2 M2
shows gmpt-factor proj M2 T2
proof —
have [measurable]: T € measurable M M
T2 € measurable M2 M2
proj € measurable M M2
using assms(4) quasi-measure-preservingE(1)[OF assms(1)] by auto

have *: (T2 —‘ A N space M2 € null-sets M2) = (A € null-sets M2) if A € sets
M2 for A
proof —
obtain U where U: Az. x € space M — U = proj (T z) = T2 (projz) U
€ null-sets M
using AE-E3[OF assms(2)] by blast

then have [measurable]: U € sets M by auto

have [measurable]: A € sets M2 using that by simp

have e1: (T—“proj—‘A N space M)) N space M = T—“(proj—‘A) N space M
using subset-eq by auto

have e2: T—(proj—‘A) N space M — U = proj—(T2—*A) N space M — U
using U(1) by auto

have e3: proj—(T2—‘A) N space M = proj—(T2—‘A N space M2) N space M
by (auto, meson <proj € M —p; M2) measurable-space)

have A € null-sets M2 <— proj— ‘A N space M € null-sets M
using quasi-measure-preservingl(2)[OF assms(1)] by simp
also have ... «— (T—proj—‘A N space M)) N space M € null-sets M
by (rule quasi-measure-preservingE(2)[OF Tqm, symmetric], auto)
also have ... «— T—{proj—‘A) N space M € null-sets M
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using el by simp
also have ... «— T—proj—‘A) N space M — U € null-sets M
using emeasure-Diff-null-set|OF <U € null-sets M»] unfolding null-sets-def
by auto
also have ... «— proj—(T2—‘A) N space M — U € null-sets M
using e2 by simp
also have ... «— proj— (T2—‘A) N space M € null-sets M
using emeasure-Diff-null-set|OF <U € null-sets M»] unfolding null-sets-def
by auto
also have ... +— proj—(T2—‘A N space M2) N space M € null-sets M
using e3 by simp
also have ... «+— T2—°‘A N space M2 € null-sets M2
using quasi-measure-preservingE (2)[OF assms(1), of T2—‘A N space M2] by
stmp
finally show T2—‘A N space M2 € null-sets M2 <— A € null-sets M2
by simp
qed
show ?thesis
by (intro gmpt-factorl gmpt-I) (auto simp add: assms %)
qed

lemma gmpt-factor-compose:
assumes gmpt M1 T1
gmpt.qgmpt-factor M1 T1 projl M2 T2
gmpt.qgmpt-factor M2 T2 proj2 M3 T3
shows gmpt.qgmpt-factor M1 T1 (proj2 o proj1) M3 T3
proof —
have x: projl € quasi-measure-preserving M1 M2 —> AFE z in M2. proj2 (T2
z) = T3 (proj2 x)
= (AE z in M1. projl (T1 z) = T2 (projl ) — proj2 (T2 (projl z)) =
T3 (proj2 (projl )))
proof —
assume AFE y in M2. proj2 (T2 y) = T3 (proj2 y)
projl € quasi-measure-preserving M1 M2
then have AFE z in M1. proj2 (T2 (projl z)) = T3 (proj2 (projl z))
using quasi-measure-preserving-AE by auto
moreover
{
fix z assume proj2 (T2 (projl z)) = T3 (proj2 (projl z))
then have proj! (T1 z) = T2 (projl ) — proj2 (T2 (projl z)) = T3
(proj2 (proji ))
by auto
}

ultimately show AE x in M1. projl (T1 z) = T2 (projl x) — proj2 (T2
(proji 7)) = T3 (proj2 (projl 7))
by auto
qed

interpret I: gmpt M1 T1 using assms(1) by simp
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interpret J: gqmpt M2 T2 using I.qmpt-factorE(3)[OF assms(2)] by simp
show I.gmpt-factor (proj2 o proj1) M3 T3
apply (rule I.qgmpt-factorl)
using I.gmpt-factorE[OF assms(2)] J.qmpt-factorE[OF assms(3)]
by (auto simp add: quasi-measure-preserving-comp *)
qed

The left shift on natural integers is a very natural dynamical system, that
can be used to model many systems as we see below. For invertible systems,
one uses rather all the integers.

definition nat-left-shift::(nat = 'a) = (nat = 'a)
where nat-left-shift x = (Mi. z (i+1))

lemma nat-left-shift-continuous [intro, continuous-intros|:
continuous-on UNIV nat-left-shift
by (rule continuous-on-coordinatewise-then-product, auto simp add: nat-left-shift-def)

lemma nat-left-shift-measurable [intro, measurable]:
nat-left-shift € measurable borel borel
by (rule borel-measurable-continuous-onl, auto)

definition int-left-shift::(int = 'a) = (int = 'a)
where int-left-shift © = (Ai. z (i+1))

definition int-right-shift::(int = 'a) = (int = 'a)
where int-right-shift = (A\i. x (i—1))

lemma int-shift-continuous [intro, continuous-intros|:

continuous-on UNIV int-left-shift

continuous-on UNIV int-right-shift
apply (rule continuous-on-coordinatewise-then-product, auto simp add: int-left-shift-def)
apply (rule continuous-on-coordinatewise-then-product, auto simp add: int-right-shift-def)
done

lemma int-shift-measurable [intro, measurable]:
int-left-shift € measurable borel borel
int-right-shift € measurable borel borel

by (rule borel-measurable-continuous-onl, auto)+

lemma int-shift-bij:
bij int-left-shift inv int-left-shift = int-right-shift
bij int-right-shift inv int-right-shift = int-left-shift
proof —
show bij int-left-shift
apply (rule bij-betw-byWitness|[where ?f' = Az. (Ai. z (i—1))]) unfolding
int-left-shift-def by auto
show inv int-left-shift = int-right-shift
apply (rule inv-equality)
unfolding int-left-shift-def int-right-shift-def by auto
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show bij int-right-shift
apply (rule bij-betw-by Witnessjwhere ?2f' = Az. (Ai. z (i+1))]) unfolding
int-right-shift-def by auto
show inv int-right-shift = int-left-shift
apply (rule inv-equality)
unfolding int-left-shift-def int-right-shift-def by auto
qed

lemma (in gmpt) gmpt-factor-projection:
fixes f::'a = ('b::second-countable-topology)
assumes [measurable]: f € borel-measurable M
and sigma-finite-measure (distr M borel (Azx n. f (T "~ n) z)))
shows gmpt-factor (Az. (An. f (T "n)x))) (distr M borel (Az. (An. f ((T" n)x))))
nat-left-shift
proof (rule gmpt-factorl”)
have * [measurable]: (Az. (An. f (T "n)x))) € borel-measurable M
using measurable-coordinatewise-then-product by measurable
show (Az n. f ((T ™" n) z)) € quasi-measure-preserving M (distr M borel (A\xz
n f (T~ n) o)
by (rule measure-preserving-is-quasi-measure-preserving| OF measure-preserving-distr'|OF
«]])
have (An. f (T " n) (T 2))) = nat-left-shift (An. f (T " n) z)) for z
unfolding nat-left-shift-def by (auto simp add: funpow-swapl)
then show AE zin M. (An. f (T " n) (T z))) = nat-left-shift (An. f (T ~
n) )
by simp
qed (auto simp add: assms(2))

Let us now define factors of measure-preserving transformations, in the same
way as above.

definition (in mpt) mpt-factor::('a = 'b) = ('b measure) = (b = 'b) = bool
where mpt-factor proj M2 T2 =
((proj € measure-preserving M M2) N (AE x in M. proj (T z) = T2 (proj z))
A mpt M2 T2)

lemma (in mpt) mpt-factor-is-qgmpt-factor:
assumes mpt-factor proj M2 T2
shows gmpt-factor proj M2 T2
using assms unfolding mpt-factor-def gmpt-factor-def
by (simp add: measure-preserving-is-quasi-measure-preserving mpt-def)

lemma (in mpt) mpt-factorE:
assumes mpt-factor proj M2 T2
shows proj € measure-preserving M M2
AE z in M. proj (T z) = T2 (proj x)
mpt M2 T2
using assms unfolding mpt-factor-def by auto

lemma (in mpt) mpt-factorI:
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assumes proj € measure-preserving M M2
AE z in M. proj (T z) = T2 (proj x)
mpt M2 T2
shows mpt-factor proj M2 T2
using assms unfolding mpt-factor-def by auto

When there is a measure-preserving projection commuting with the dynam-
ics, and the dynamics above preserves the measure, then so does the dynam-
ics below.

lemma (in mpt) mpt-factorl "
assumes proj € measure-preserving M M2
AE zin M. proj (T z) = T2 (proj x)
sigma-finite-measure M2
T2 € measurable M2 M2
shows mpt-factor proj M2 T2
proof —
have [measurable]: T € measurable M M
T2 € measurable M2 M2
proj € measurable M M2
using assms(4) measure-preservingl(1)[OF assms(1)] by auto

have x: emeasure M2 (T2 —‘ A N space M2) = emeasure M2 A if A € sets M2
for A
proof —
obtain U where U: Az. x € space M — U = proj (T z) = T2 (projz) U
€ null-sets M
using AE-E3[OF assms(2)] by blast

then have [measurable]: U € sets M by auto

have [measurable]: A € sets M2 using that by simp

have e1: (T—“proj—‘A N space M)) N space M = T—“(proj—°‘A) N space M
using subset-eq by auto

have e2: T—“proj—‘A) N space M — U = proj—(T2—‘A) N space M — U
using U(1) by auto

have e3: proj— (T2—‘A) N space M = proj—(T2—‘A N space M2) N space M
by (auto, meson <proj € M —y; M2) measurable-space)

have emeasure M2 A = emeasure M (proj— ‘A N space M)
using measure-preservingl(2)[OF assms(1)] by simp

also have ... = emeasure M (T—“(proj— ‘A N space M) N space M)
by (rule measure-preservingE(2)[OF Tm, symmetric|, auto)

also have ... = emeasure M (T— (proj—‘A) N space M)
using el by simp

also have ... = emeasure M (T—‘(proj—‘A) N space M — U)
using emeasure-Diff-null-set|OF <U € null-sets M>] by auto

also have ... = emeasure M (proj—(T2—*A) N space M — U)
using e2 by simp

also have ... = emeasure M (proj—(T2—‘A) N space M)

using emeasure-Diff-null-set[OF <U € null-sets M>] by auto
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also have ... = emeasure M (proj—(T2—‘A N space M2) N space M)
using e3 by simp
also have ... = emeasure M2 (T2—‘A N space M2)
using measure-preservingE (2)[OF assms(1), of T2—*‘A N space M2] by simp
finally show emeasure M2 (T2—‘A N space M2) = emeasure M2 A
by simp
qed
show ?thesis
by (intro mpt-factorl mpt-I) (auto simp add: assms *)
qged

lemma (in fmpt) mpt-factorl’"
assumes proj € measure-preserving M M2
AE z in M. proj (T z) = T2 (proj z)
T2 € measurable M2 M2
shows mpt-factor proj M2 T2
apply (rule mpt-factorl’, auto simp add: assms)
using measure-preserving-finite-measure| OF assms(1)] finite-measure-azioms finite-measure-def
by blast

lemma (in fmpt) fmpt-factor:

assumes mpt-factor proj M2 T2

shows fmpt M2 T2
unfolding fmpt-def using mpt-factorE(3)[OF assms]
measure-preserving-finite-measure] OF mpt-factorE(1)[OF assms]] finite-measure-azioms
by auto

lemma (in pmpt) pmpt-factor:

assumes mpt-factor proj M2 T2

shows pmpt M2 T2
unfolding pmpt-def using fmpt-factor|OF assms]
measure-preserving-prob-space| OF mpt-factorE(1)[OF assms|| prob-space-azioms by
auto

lemma mpt-factor-compose:
assumes mpt M1 T'1
mpt.mpt-factor M1 T1 projl M2 T2
mpt.mpt-factor M2 T2 proj2 M3 T3
shows mpt.mpt-factor M1 T1 (proj2 o proj1) M3 T8
proof —
have x: proj1 € measure-preserving M1 M2 — AFE z in M2. proj2 (T2 z) =
T3 (proj2 z) =
(AE z in M1. projl (T1 z) = T2 (projl z) — proj2 (T2 (projl x)) = T3
(proj2 (projl z)))
proof —
assume AFE y in M2. proj2 (T2 y) = T3 (proj2 y)
projl € measure-preserving M1 M2
then have AFE z in M1. proj2 (T2 (projl x)) = T3 (proj2 (projl z))
using quasi-measure-preserving-AE measure-preserving-is-quasi-measure-preserving
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by blast
moreover
{
fix z assume proj2 (T2 (projl z)) = T8 (proj2 (projl z))
then have projl (T1 z) = T2 (projl ) — proj2 (T2 (projl z)) = T3
(proj2 (projl x))
by auto
}

ultimately show AE z in MI. projl (T1 z) = T2 (projl z) — proj2 (T2
(proji 2)) = T3 (proj2 (proji 1))
by auto
qed

interpret I: mpt M1 T1 using assms(1) by simp
interpret J: mpt M2 T2 using I.mpt-factorE(3)[OF assms(2)] by simp
show I.mpt-factor (proj2 o projl) M3 T3
apply (rule I.mpt-factorl)
using I.mpt-factorE[OF assms(2)] J.mpt-factorE[OF assms(3)]
by (auto simp add: measure-preserving-comp *)
qed

Left shifts are naturally factors of finite measure preserving transformations.

lemma (in mpt) mpt-factor-projection:
fixes f::'a = ('b::second-countable-topology)
assumes [measurable]: f € borel-measurable M
and sigma-finite-measure (distr M borel (Az n. f ((T "~ n) z)))
shows mpt-factor (Az. (An. f (T "n)x))) (distr M borel (Az. (An. f ((T""n)z))))
nat-left-shift
proof (rule mpt-factorl’)
have * [measurable]: (Az. (An. f (T "n)x))) € borel-measurable M
using measurable-coordinatewise-then-product by measurable
show (Az n. f ((T 7" n) z)) € measure-preserving M (distr M borel (Az n. f ((T
" n) 1))
by (rule measure-preserving-distr’|OF x])
have (An. f (T "~ n) (T 2))) = nat-left-shift (An. f (T " n) z)) for z
unfolding nat-left-shift-def by (auto simp add: funpow-swapl)
then show AE zin M. (An. f (T " n) (T z))) = nat-left-shift (An. f (T ~
") z))
by simp
qed (auto simp add: assms(2))

lemma (in fmpt) fmpt-factor-projection:

fixes f::'a = ('b::second-countable-topology)

assumes [measurable]: f € borel-measurable M

shows mpt-factor (A\z. (An. f ((T""n)z))) (distr M borel (Ax. (An. f ((T " "n)z))))
nat-left-shift
proof (rule mpt-factor-projection, simp add: assms)

have * [measurable]: (Az. (An. f ((T""n)z))) € borel-measurable M

using measurable-coordinatewise-then-product by measurable
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have *x: Az n. f (T " n) z)) € measure-preserving M (distr M borel (Az n. f
(T ~n) 2)))
by (rule measure-preserving-distr'|OF x])
have a: finite-measure (distr M borel (Az n. f (T 7" n) z)))
using measure-preserving-finite-measure] OF xx] finite-measure-axioms by blast
then show sigma-finite-measure (distr M borel (Az n. f ((T """ n) x)))
by (simp add: finite-measure-def)
qed

4.9 Natural extension

Many probability preserving dynamical systems are not invertible, while
invertibility is often useful in proofs. The notion of natural extension is
a solution to this problem: it shows that (essentially) any system has an
extension which is invertible.

This extension is constructed by considering the space of orbits indexed by
integer numbers, with the left shift acting on it. If one considers the orbits
starting from time —N (for some fixed N), then there is a natural measure
on this space: such an orbit is parameterized by its starting point at time
— N, hence one may use the original measure on this point. The invariance
of the measure ensures that these measures are compatible with each other.
Their projective limit (when N tends to infinity) is thus an invariant measure
on the bilateral shift. The shift with this measure is the desired extension
of the original system.

There is a difficulty in the above argument: one needs to make sure that
the projective limit of a system of compatible measures is well defined. This
requires some topological conditions on the measures (they should be inner
regular, i.e., the measure of any set should be approximated from below
by compact subsets — this is automatic on polish spaces). The existence of
projective limits is proved in Projective_Limits.thy under the (sufficient)
polish condition. We use this theory, so we need the underlying space to
be a polish space and the measure to be a Borel measure. This is almost
completely satisfactory.

What is not completely satisfactory is that the completion of a Borel measure
on a polish space (i.e., we add all subsets of sets of measure 0 into the sigma
algebra) does not fit into this setting, while this is an important framework
in dynamical systems. It would readily follow once Projective_Limits.thy
is extended to the more general inner regularity setting (the completion of
a Borel measure on a polish space is always inner regular).
locale polish-pmpt = pmpt M::(’a::polish-space measure) T for M T

+ assumes M-eq-borel: sets M = sets borel
begin

definition natural-extension-map
where natural-extension-map = (int-left-shift::((int = 'a) = (int = 'a)))
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definition natural-extension-measure::(int = ’a) measure

where natural-extension-measure =

projective-family.lim UNIV (M. distr M (s ¢€1. borel) (Az. (Ai€l. (T (nat(i—
Min I))) z))) (Ai. borel)

definition natural-extension-proj::(int = 'a) = 'a
where natural-extension-proj = (Az. z 0)

theorem natural-extension:
pmpt natural-extension-measure natural-extension-map
gmpt.invertible-gmpt natural-extension-measure natural-extension-map
mpt.mpt-factor natural-extension-measure natural-extension-map natural-extension-proj
MT
proof —
define P::int set = (int = 'a) measure where
P = (M. distr M (I1p; i€l. borel) (Azx. (Ai€l. (T (nat(i— Min I))) z)))
have [measurable]: (T™ n) € measurable M borel for n
using M-eq-borel by auto

interpret polish-projective UNIV P
unfolding polish-projective-def projective-family-def
proof (auto)
show prob-space (P I) if finite I for I unfolding P-def by (rule prob-space-distr,
auto)
fix J H::int set assume J C H finite H
then have H N J = J by blast

have ((Af. restrict f J) o (Az. (Mi€eH. (T™ (nat(i— Min H))) z))) =
= ((Az. (Mied. (T (nat(i— Min J))) z)) o (T" (nat(Min J — Min H))))
z for x
proof —
have nat(i— Min H) = nat(i— Min J) + nat(Min J — Min H) if ¢ € J for i
proof —
have finite J using <J C H) «finite H» finite-subset by auto
then have Min J € J using Min-in <t € J» by auto
then have Min J € H using «J C H) by blast
then have Min H < Min J using Min.coboundedI[OF «finite H>] by auto
moreover have Min J < i using Min.coboundedI[OF «finite J» <i € J»]
by auto
ultimately show ?thesis by auto
qed
then show %thesis
unfolding comp-def by (auto simp add: <H N J = J» funpow-add)
qed
then have x: (Af. restrict f J) o (Ax. (Mi€H. (T (nat(i— Min H))) x))
= (Az. (MieJ. (T (nat(i— Min J))) x)) o (T" (nat(Min J — Min H)))
by auto
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have distr (P H) (Pips J (A-. borel)) (Af. restrict f J)
= distr M (I i€J. borel) ((Af. restrict fJ) o (Az. (Ai€H. (T (nat(i—
Min H))) 2)))
unfolding P-def by (rule distr-distr, auto simp add: <J C H»> measur-
able-restrict-subset)
also have ... = distr M (Il i€J. borel) (Az. (AieJ. (T~ (nat(i— Min J)))
z)) o (T™ (nat(Min J — Min H))))
using * by auto
also have ... = distr (distr M M (T (nat(Min J — Min H)))) (I i€J.
borel) (Ax. (AieJ. (T (nat(i— Min J))) z))
by (rule distr-distr[symmetric], auto)
also have ... = distr M (IIp; i€J. borel) (Az. (AieJ. (T (nat(i— Min J)))

7))
using measure-preserving-distr| OF Th-measure-preserving] by auto
also have ... = P J
unfolding P-def by auto
finally show P J = distr (P H) (Pips J (M- borel)) (Af. restrict f J)
by simp
qed

have S: sets (Pipy UNIV (A-. borel)) = sets (borel::(int = 'a) measure)
by (rule sets-PiM-equal-borel)
have natural-extension-measure = lim
unfolding natural-extension-measure-def P-def by simp
have measurable lim lim = measurable borel borel
by (rule measurable-cong-sets, auto simp add: S)
then have [measurable]: int-left-shift € measurable lim lim int-right-shift € mea-
surable lim lim
using int-shift-measurable by fast+
have [simp]: space lim = UNIV
unfolding space-lim space-PiM space-borel by auto

show pmpt natural-extension-measure natural-extension-map
proof (rule pmpt-I)
show prob-space natural-extension-measure
unfolding <natural-extension-measure = lim» by (simp add: P.prob-space-azioms)
show natural-extension-map € measurable natural-extension-measure natu-
ral-extension-measure
unfolding natural-extension-map-def <natural-extension-measure = lim> by
stmp

define E where E = {(Ilg i€ UNIV. X i) | X::(int = 'a set). (Vi. X i € sets
borel) A finite {i. X i # UNIV}}
have lim = distr lim lim int-left-shift
proof (rule measure-eql-generator-eq(of E UNIV, where YA = A-. UNIV])
show sets lim = sigma-sets UNIV E
unfolding E-def using sets-PiM-finite[of UNIV ::int set A-. (borel::'a mea-
sure)]
by (simp add: PiE-def)
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moreover have sets (distr lim lim int-left-shift) = sets lim by auto
ultimately show sets (distr lim lim int-left-shift) = sigma-sets UNIV E by
stmp

show emeasure lim UNIV # oo by (simp add: P.prob-space-azioms)
have UNIV = (Ilg i€(UNIV::int set). (UNIV::'a set)) by (simp add: PiE-def)
moreover have ... € F unfolding FE-def by auto
ultimately show range (A(i::nat). (UNIV::(int = 'a) set)) C E
by auto

show Int-stable E
proof (rule Int-stablel)
fix UVassume U EV e E
then obtain X Y where H: U = (Ilg i€ UNIV. X i) \i. X i € sets borel
finite {i. X i # UNIV}
V = (Ilg i€ UNIV. Y i) N\i. Y i € sets borel finite {i.
Y i # UNIV}
unfolding FE-def by blast
define Z where Z = (Ai. X i N Y1)
have {i. Zi # UNIV} C {i. Xi# UNIV} U {i. Yi # UNIV}
unfolding Z-def by auto
then have finite {i. Z i # UNIV}
using H(3) H(6) finite-subset by auto
moreover have U N V = (Ilg i€ UNIV. Z i)
unfolding Z-def using H(1) H(4) by auto
moreover have \i. Z i € sets borel
unfolding Z-def using H(2) H(5) by auto
ultimately show UN V € FE
unfolding E-def by auto
qed

fix U assume U € F
then obtain X where H [measurable]: U = (g i€ UNIV. X i) \i. X i €
sets borel finite {i. X i # UNIV}
unfolding E-def by blast
define I where I = {i. X i # UNIV}
have [simp]: finite I unfolding I-def using H(3) by auto
have [measurable]: (Ilg i€l. X ©) € sets (Pipr I (Ai. borel)) using H(2) by
stmp
have x: U = emb UNIV I (Il i€l. X i)
unfolding H(1) I-def prod-emb-def space-borel apply (auto simp add:
PiE-def)
by (metis (mono-tags, lifting) PiE UNIV-I mem-Collect-eq restrict-Pi-cancel)
have emeasure lim U = emeasure lim (int-left-shift—‘U)
proof (cases I = {})
case True
then have U = UNIV unfolding H(1) I-def by auto
then show ?thesis by auto
next
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case Fulse
have emeasure lim U = emeasure (P I) (Ilg i€l. X 7)
unfolding * by (rule emeasure-lim-emb, auto)
also have ... = emeasure M ((A\z. (Ni€l. (T (nat(i— Min I))) z)))—(Ilg
i€l. X i) N space M)
unfolding P-def by (rule emeasure-distr, auto)
finally have A: emeasure lim U = emeasure M (((Az. (Ai€l. (T (nat(i—
Min I))) z)))—(Ilg i€l. X i) N space M)
by simp

have i: int-left-shift— ‘U = (Ilg i€ UNIV. X (i—1))
unfolding H(1) apply (auto simp add: int-left-shift-def PiE-def)
by (metis PiE UNIV-I diff-add-cancel, metis Pi-mem add.commute
add-diff-cancel-left’ iso-tuple-UNIV-I)
define Im where Im = {i. X (i—1) # UNIV}
have Im = (\i. i+1)‘]
unfolding I-def Im-def using image-iff by (auto, fastforce)
then have [simp]: finite Im by auto
have x: int-left-shift— ‘U = emb UNIV Im (Ilg i€Im. X (i—1))
unfolding i Im-def prod-emb-def space-borel apply (auto simp add:
PiE-def)
by (metis (mono-tags, lifting) PiE UNIV-I mem-Collect-eq restrict-Pi-cancel)
have emeasure lim (int-left-shift—‘U) = emeasure (P Im) (g i€Im. X
(i-1))
unfolding * by (rule emeasure-lim-emb, auto)
also have ... = emeasure M (((Az. (Ai€Im. (T (nat(i— Min Im)))
x)))— (Mg i€elm. X (i—1)) N space M)
unfolding P-def by (rule emeasure-distr, auto)
finally have B: emeasure lim (int-left-shift—‘U) = emeasure M (((Az.
(AieIm. (T" (nat(i— Min Im))) z)))—(Ilg i€Im. X (i—1)) N space M)
by simp

have Min Im = Min I + 1 unfolding <Im = (\i. i+1)‘D
by (rule mono-Min-commute[symmetric], auto simp add: False monol)
have ((Az. (AieIm. (T" (nat(i— Min Im))) z)))— ‘(g i€Ilm. X (i—1)) =
((Az. (Aiel. (T (nat(i— Min I))) z)))— ‘Mg i€l. X i)
unfolding «Min Im = Min I + 1) unfolding «Im = (\i. i+1)‘D> by
(auto simp add: Pi-iff)

then show emeasure lim U = emeasure lim (int-left-shift —¢ U) using A
B by auto
qed
also have ... = emeasure lim (int-left-shift— ‘U N space lim)
unfolding <space lim = UNIV) by auto
also have ... = emeasure (distr lim lim int-left-shift) U

apply (rule emeasure-distr[symmetric], auto) using * by auto
finally show emeasure lim U = emeasure (distr lim lim int-left-shift) U
by simp
qed (auto)
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fix U assume U € sets natural-extension-measure
then have [measurable]: U € sets lim using <natural-extension-measure = lim»
by simp
have emeasure natural-extension-measure (natural-extension-map —* U N space
natural-extension-measure)
= emeasure lim (int-left-shift— ‘U N space lim)
unfolding <natural-extension-measure = lim» natural-extension-map-def by
stmp
also have ... = emeasure (distr lim lim int-left-shift) U
apply (rule emeasure-distr[symmetric], auto) using <U € P.events> by auto
also have ... = emeasure lim U
using <lim = distr lim lim int-left-shift> by simp
also have ... = emeasure natural-extension-measure U
using <natural-extension-measure = lim» by simp
finally show emeasure natural-extension-measure (natural-extension-map —* U
N space natural-extension-measure)
= emeasure natural-extension-measure U
by simp
qed
then interpret I: pmpt natural-extension-measure natural-ertension-map by
simp

show [I.invertible-gmpt
unfolding I.invertible-gmpt-def unfolding natural-extension-map-def <natu-
ral-extension-measure = lim»
by (auto simp add: int-shift-bij)

show I.mpt-factor natural-extension-proj M T unfolding I.mpt-factor-def
proof (auto)
show mpt M T by (simp add: mpt-axioms)
show natural-extension-proj € measure-preserving natural-extension-measure
M
unfolding <natural-extension-measure = lim»
proof
have *: measurable lim M = measurable borel borel
apply (rule measurable-cong-sets) using sets-PiM-equal-borel M-eq-borel by
auto
show natural-extension-proj € measurable lim M
unfolding * natural-extension-proj-def by auto

fix U assume [measurable]: U € sets M
have «: ((Az. Aie{0}. (T """ nat (i — Min {0})) 2))—* ({0} =g U) N space
M)=U
using sets.sets-into-space[OF «U € sets M»| by auto

have natural-extension-proj— ‘U N space lim = emb UNIV {0} (Il i€{0}.
U)

unfolding «space lim = UNIV» natural-extension-proj-def prod-emb-def by
(auto simp add: PiE-iff)
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then have emeasure lim (natural-extension-proj— ‘U N space lim) = emeasure
lim (emb UNIV {0} (Ilg i€{0}. U))
by simp
also have ... = emeasure (P {0}) (Ilg i€{0}. U)
apply (rule emeasure-lim-emb, auto) using <U € sets M» M-eq-borel by
auto
also have ... = emeasure M (((Az. Aie{0}. (T " nat (i — Min {0})) z))—°
({0} =g U) N space M)
unfolding P-def apply (rule emeasure-distr) using <U € sets M M-eq-borel
by auto
also have ... = emeasure M U
using * by simp
finally show emeasure lim (natural-extension-proj— ‘U N space lim) = emea-
sure M U by simp
qed

define U::(int = 'a) set where U = {x € space (Piy {0, 1} (Ni. borel)). =
1 =T (z0)}
have x: ((Az. A\i€{0, 1}. (T " nat (i — Min {0, 1})) 2))—*“ U N space M =
space M
unfolding U-def space-PiM space-borel by auto
have [measurable]: T € measurable borel borel
using M-eg-borel by auto
have [measurable]: U € sets (Pip {0, 1} (Xi. borel))
unfolding U-def by (rule measurable-equality-set, auto)
have emeasure natural-extension-measure (emb UNIV {0, 1} U) = emeasure
(P{0,1}) U
unfolding <natural-extension-measure = limy by (rule emeasure-lim-emb,
auto)
also have ... = emeasure M (((Az. Ai€{0, 1}. (T 7" nat (i — Min {0, 1}))
z))—* U N space M)
unfolding P-def by (rule emeasure-distr, auto)

also have ... = emeasure M (space M)
using * by simp
also have ... = 1 by (simp add: emeasure-space-1)

finally have *: emeasure natural-extension-measure (emb UNIV {0, 1} U) =
1 by simp
have AFE z in natural-extension-measure. x € emb UNIV {0, 1} U
apply (rule I.AE-prob-1) using x by (simp add: I.emeasure-eq-measure)
moreover
{
fix r assume z € emb UNIV {0, 1} U
then have z 1 = T (z 0) unfolding prod-emb-def U-def by auto
then have natural-extension-proj (natural-extension-map x) = T (natural-extension-proj
x)
unfolding natural-extension-proj-def natural-extension-map-def int-left-shift-def
by auto

}

ultimately show AF z in natural-extension-measure.
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natural-extension-proj (natural-extension-map x) = T (natural-extension-proj

x)
by auto
qed
qed

end

end

5 Conservativity, recurrence

theory Recurrence
imports Measure-Preserving- Transformations
begin

A dynamical system is conservative if almost every point comes back close
to its starting point. This is always the case if the measure is finite, not
when it is infinite (think of the translation on Z). In conservative systems,
an important construction is the induced map: the first return map to a set
of finite measure. It is measure-preserving and conservative if the original
system is. This makes it possible to reduce statements about general con-
servative systems in infinite measure to statements about systems in finite
measure, and as such is extremely useful.

5.1 Definition of conservativity

locale conservative = gmpt +
assumes conservative: NA. A € sets M = emeasure M A > 0 = In>0.
emeasure M ((T" n)—‘AN A) >0

lemma conservativel:
assumes gmpt M T
NA. A € sets M = emeasure M A > 0 = In>0. emeasure M ((T" n)—‘A
NnA >0
shows conservative M T
unfolding conservative-def conservative-axioms-def using assms by auto

To prove conservativity, it is in fact sufficient to show that the preimages of
a set of positive measure intersect it, without any measure control. Indeed,
in a non-conservative system, one can construct a set which does not satisfy
this property.
lemma conservativel2:
assumes gmpt M T
NA. A € sets M = emeasure M A > 0 = In>0. (T"n)—‘ANn A # {}

shows conservative M T
unfolding conservative-def conservative-axioms-def
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proof (auto simp add: assms)
interpret gmpt M T using assms by auto
fix A
assume A-meas [measurable]: A € sets M and emeasure M A > 0
show dn>0. 0 < emeasure M ((T "~ n) —“A N A)
proof (rule ccontr)
assume — (In>0. 0 < emeasure M ((T """ n) —* AN A))
then have meas-0: emeasure M (T ~ " n) —“ AN A) = 0 if n>0 for n
by (metis zero-less-iff-neq-zero that)
define C where C = (|Jn. (T7 (Suc n))—‘A N A)
have C-meas [measurable]: C' € sets M unfolding C-def by measurable
have emeasure M C = 0 unfolding C-def
by (intro emeasure-UN-eq-0[of M, of An. (T~ (Suc n))—‘A N A, OF meas-0],
auto)

define A2 where A2 = A-C
then have A2-meas [measurable]: A2 € sets M by simp
have —=(In>0. (T" n)—‘A2 N A2 # {})
proof (rule ccontr, simp)
assume In>0. (T n)—‘A2 N A2 # {}
then obtain n where n: n > 0 (T" n)—‘A2 N A2 # {} by auto
define m where m = n—1
have (T7(m+1))—‘A2 N A2 # {} unfolding m-def using n by auto
then show Fulse using C-def A2-def by auto
qed
then have emeasure M A2 = 0 using assms(2)[OF A2-meas] by (meson
zero-less-iff-neq-zero)
then have emeasure M (C' U A2) = 0 using <emeasure M C = 0» by (simp
add: emeasure-Un-null-set null-setsI)
moreover have A C C' U A2 unfolding A2-def by auto
ultimately have emeasure M A = 0 by (meson A2-meas C-meas emeasure-eq-0
sets.Un)
then show Fulse using <emeasure M A > 0 by auto
qed
qed

There is also a dual formulation, saying that conservativity follows from the
fact that a set disjoint from all its preimages has to be null.

lemma conservativel3:
assumes qmpt M T
NA. A ecsets M = (Vn>0. (T " n)—‘ANA={}) = A€ null-sets M
shows conservative M T
proof (rule conservativeI2|OF assms(1)])
fix A assume A € sets M 0 < emeasure M A
then have —(A4 € null-sets M) unfolding null-sets-def by auto
then show In>0. (T ""n) —“AN A # {}
using assms(2)[OF <A € sets M»] by auto
qed
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The inverse of a conservative map is still conservative

lemma (in conservative) conservative-Tinv:
assumes invertible-qgmpt
shows conservative M Tinv
proof (rule conservativel2)
show gmpt M Tinv using Tinv-gmpt[OF assms].
have by T using assms unfolding invertible-gmpt-def by auto
fix A assume [measurable]: A € sets M and emeasure M A > 0
then obtain n where *: n>0 emeasure M ((T" n)—‘AN A) > 0
using conservative|OF <A € sets My <emeasure M A > 0»] by blast
have bij (T "n) using bij-fn[OF <bij T»] by auto
then have bij(inv (T n)) using bij-imp-bij-inv by auto
then have bij (Tinv™ n) unfolding Tinv-def using inv-fn[OF <bij T, of n]
by auto

have (T7"n)—‘A N A # {} using * by auto
then have (Tinv™ n)—‘((T" n)—‘AN A4) # {}

using surj-vimage-empty| OF bij-is-surj|OF <bij (Tinv™ n)]] by meson
then have sx: (Tinv™ n)— (T " n)—‘4) N (Tinv""n)—*A # {}

by auto

have (Tinv™ n)— (T " "n)—‘A) = ((T""n) o (Tinv" n))—‘A
by auto
moreover have (T n) o (Tinv" n) = (A\z. z)
unfolding Tinv-def using «bij T» fn-o-inv-fn-is-id by blast
ultimately have (Tinv™ n)— (T n)—‘A) = A by auto
then have (Tinv™ n)—‘A N A # {} using *x by auto
then show 3n>0. (Tinv =" n) —° AN A # {} using <n>0) by auto
qed

We introduce the locale of a conservative measure preserving map.

locale conservative-mpt = mpt + conservative

lemma conservative-mptl:
assumes mpt M T
NA. A € sets M = emeasure M A > 0 = In>0. (T" n)—AN A #{}
shows conservative-mpt M T
unfolding conservative-mpt-def
apply (auto simp add: assms(1), rule conservativel2)
using assms(1) by (auto simp add: mpt-def assms(2))

The fact that finite measure preserving transformations are conservative,
albeit easy, is extremely important. This result is known as Poincaré recur-
rence theorem.

sublocale fmpt C conservative-mpt
proof (rule conservative-mptI)
show mpt M T by (simp add: mpt-azioms)
fix A assume A-meas [measurable]: A € sets M and emeasure M A > 0
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show In>0. (T " n)—‘AN A # {}
proof (rule ccontr)
assume ~(In>0. (T n)—‘AN A #{})
then have disj: (T~ (Suc n))——‘A N A = {} for n unfolding vimage-restr-def
using zero-less-one by blast

define B where B = (A n. (T n)——"‘A)
then have B-meas [measurable]: B n € sets M for n by simp
have same: measure M (B n) = measure M A for n

by (simp add: B-def A-meas T-vrestr-same-measure(2))

have Bn N Bm = {}if n > mfor mn
proof —
have Bn N Bm = (T""m)——*(B (n—m) N A)
using B-def «m < n» A-meas vrestr-intersec T-vrestr-composed(1) by auto
moreover have B (n—m) N A = {} unfolding B-def
by (metis disj «<m < n» Suc-diff-Suc)
ultimately show ¢thesis by simp
qed
then have disjoint-family B by (metis disjoint-family-on-def inf-sup-aci(1)
less-linear)

have measure M A < e if e>0 for e::real
proof —
obtain N::nat where N>0 (measure M (space M))/e<N using <0 < e
by (metis divide-less-0-iff reals- Archimedean?2 less-eq-real-def measure-nonneg
not-gr0 not-le of-nat-0)
then have (measure M (space M))/N < e using <0 < e» <N>0)
by (metis bounded-measure div-0 le-less-trans measure-empty mult.commute
pos-divide-less-eq)
have x: disjoint-family-on B {..<N}
by (meson UNIV-I «disjoint-family By disjoint-family-on-mono subsetl)
then have (3 ic{..<N}. measure M (B 7)) < measure M (space M)
by (metis bounded-measure <\n. B n € sets M»
image-subset-iff finite-lessThan finite-measure-finite-Union)
also have (> i€{..<N}. measure M (B i)) = (. i€{..<N}. measure M A)
using same by simp
also have ... = N x (measure M A) by simp
finally have N x (measure M A) < measure M (space M) by simp
then have measure M A < (measure M (space M))/N using (N>0) by
(simp add: mult.commute mult-imp-le-div-pos)
then show measure M A < e using «(measure M (space M))/N<e> by simp
qed
then have measure M A < 0 using not-less by blast
then have measure M A = 0 by (simp add: measure-le-0-iff)
then have emeasure M A = 0 using emeasure-eq-measure by simp
then show Fulse using <emeasure M A > 0> by simp
qged
qed
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The following fact that powers of conservative maps are also conservative is
true, but nontrivial. It is proved as follows: consider a set A with positive
measure, take a time n; such that A1 = T7™ AN A has positive measure,
then a time ng such that As = T~ ™ A1 N A has positive measure, and so on.
It follows that 77— (mit+nit1+-+m) A N A has positive measure for all i < j.
Then, one can find 7 < j such that n; 4+ -- -+ n; is a multiple of N.

proposition (in conservative) conservative-power:
conservative M (T "n)
proof (unfold-locales)
show T 7~ n € quasi-measure-preserving M M
by (auto simp add: Th-quasi-measure-preserving)

fix A assume [measurable]: A € sets M 0 < emeasure M A

define good-time where good-time = (AK. Inf{(i::nat). i > 0 A emeasure M
(TTH)—KnA) > 0})

define next-good-set where next-good-set = (AK. (T~ (good-time K))— ‘K N A)

have good-rec: ((good-time K > 0) A (next-good-set K C A) A
(next-good-set K € sets M) A (emeasure M (next-good-set K) > 0))
if [measurable]: K € sets M and K C A emeasure M K > 0 for K
proof —
have a: next-good-set K € sets M next-good-set K C A
using nezt-good-set-def by simp-all
obtain k where k > 0 and posK: emeasure M ((T" k)—'K N K) > 0
using conservative|OF <K € sets M», OF <emeasure M K > 0] by auto
have «:(T77k)—‘K N K C (T"k)—‘K N A using <K C A by auto
have posKA: emeasure M ((T"k)—‘K N A) > 0 using emeasure-mono[OF x,
of M] posK by simp
let 25 = {(i::nat). i>0 A emeasure M (T %)—‘K N A) > 0}
have k € 25 using k>0 posKA by simp
then have 25 # {} by auto
then have Inf 7S € 2S5 using Inf-nat-def1[of ?S] by simp
then have good-time K € 25 using good-time-def by simp
then show (good-time K > 0) A (next-good-set K C A) A
(next-good-set K € sets M) A (emeasure M (next-good-set K) > 0)
using a next-good-set-def by auto
qed

define B where B = (\i. (next-good-set”™ %) A)
define ¢t where t = (\i. good-time (B 1))
have good-B: (B i C A) A (B i € sets M) A (emeasure M (B i) > 0) for ¢
proof (induction 1)
case (
have B 0 = A using B-def by simp
then show Zcase using «(B 0 = A) <A € sets M» <emeasure M A > 0) by
stmp
next
case (Suc 17)
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moreover have B (i+1) = next-good-set (B i) using B-def by simp
ultimately show ?case using good-rec[of B i] by auto

qed

have t-pos: A\i. t i > 0 using t-def by (simp add: good-B good-rec)

define s where s = (Ai k. (O n € {i.<i+k}. t n))
have B (i+k) C (T (sik))—‘ANn Afor ik
proof (induction k)
case (
show ?case using s-def good-B[of i] by simp
next
case (Suc k)
have B(i+k+1) = (T (¢t (i+k)))— (B (i+k)) N A using t-def B-def next-good-set-def
by simp
moreover have B(i+k) C (T (s i k))— ‘A using Suc.IH by simp
ultimately have B(i+k+1) C (Tt (i+k)))—(T" (sik))— ‘AN A by auto
then have B(i+k+1) C (T (t(i+k) + s i k))—‘A N A by (simp add:
add.commute funpow-add vimage-comp)
moreover have t(i+k) + s i k = s i (k+1) using s-def by simp
ultimately show ?case by simp
qged
moreover have (T77j)—‘A N A € sets M for j by simp
ultimately have x: emeasure M ((T" (s i k))—‘A N A) > 0 for i k
by (metis inf.orderE inf.strict-boundedE good-B emeasure-mono)

show 3k>0. 0 < emeasure M (T " n) " k) = AN A)
proof (cases)
assume n = 0
then have ((T "~ n) 1) —‘A = A by simp
then show ?thesis using <emeasure M A > 0) by auto
next
assume —(n = 0)
then have n > 0 by simp
define u where u = (\i. s 0 i mod n)
have range u C {..<n} by (simp add: <0 < n) image-subset-iff u-def)
then have finite (range u) using finite-nat-iff-bounded by auto
then have 3¢ j. (i<j) A (ui = u j) by (metis finite-imageD infinite-UNIV-nat
ingI less-linear)
then obtain ¢ k where £>0 u i = u (i+k) using less-imp-add-positive by
blast
moreover have s 0 (i+k) = s 0 i + s i k unfolding s-def by (simp add:
sum.atLeastLess Than-concat)
ultimately have (s i k) mod n = 0 using u-def nat-mod-cong by metis
then obtain r» where s i Kk = n *x r by auto
moreover have s i k£ > 0 unfolding s-def
using <k > 0» t-pos sum-strict-monolof {i..<i+k}, of Az. 0, of Ax. t z] by
simp
ultimately have r > 0 by simp
moreover have emeasure M ((T" (n x r))—‘AN A) > 0 using x<sik=n
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x 7> by metis
ultimately show ?thesis by (metis funpow-mult)
qed
qed

proposition (in conservative-mpt) conservative-mpt-power:
conservative-mpt M (T~ n)
using conservative-power mpt-power unfolding conservative-mpt-def by auto

The standard way to use conservativity is as follows: if a set is almost disjoint
from all its preimages, then it is null:

lemma (in conservative) ae-disjoint-then-null:
assumes A € sets M
An.n>0= AN (T " n)—°‘A € null-sets M
shows A € null-sets M
by (metis Int-commute assms(1) assms(2) conservative zero-less-iff-neg-zero null-setsD1
null-setsI)

lemma (in conservative) disjoint-then-null:
assumes A € sets M
An.n>0= AN (T "n)—A4A={}
shows A € null-sets M
by (rule ae-disjoint-then-null, auto simp add: assms)

Conservativity is preserved by replacing the measure by an equivalent one.

lemma (in conservative) conservative-density:
assumes [measurable]: h € borel-measurable M
and AEzin M. hx #% 0AExin M. hz # oo
shows conservative (density M h) T
proof —
interpret A: gmpt density M h T
by (rule gmpt-density|OF assms])
show ?thesis
apply (rule conservativel3) apply (simp add: A.gmpt-azioms)
unfolding sets-density null-sets-density[OF assms(1) assms(2)]
by (metis conservative emeasure-empty not-gr-zero null-setsl)
qed

context ¢gmpt begin

We introduce the recurrent subset of A, i.e., the set of points of A that
return to A, and the infinitely recurrent subset, i.e., the set of points of A
that return infinitely often to A. In conservative systems, both coincide with
A almost everywhere.

definition recurrent-subset::’a set = 'a set
where recurrent-subset A = (Un € {1..}. AN (T"n)—"A)

definition recurrent-subset-infty::'a set = 'a set
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where recurrent-subset-infty A = A — (Un. (T n)—* (A — recurrent-subset

4))

lemma recurrent-subset-infty-inf-returns:
z € recurrent-subset-infty A «— (x € A A infinite {n. (T "n) z € A})
proof
assume *: x € recurrent-subset-infty A
have infinite {n. (T~ "n) z € A}
proof (rule ccontr)
assume —(infinite {n. (T" n) z € A})
then have F: finite {n. (T "n) z € A} by auto
have 0 € {n. (T"n) z € A} using * recurrent-subset-infty-def by auto
then have NE: {n. (T"n) z € A} # {} by blast
define N where N = Maz {n. (T ""n) z € A}
have N € {n. (T""n) z € A} unfolding N-def using F NE using Maz-in
by auto
then have (77 N) z € A by auto
moreover have z ¢ (T N)—* (A — recurrent-subset A) using * unfolding
recurrent-subset-infty-def by auto
ultimately have (T "N) z € recurrent-subset A by auto
then have (T " N)z € AAN(Bn.ne{1.} A(T 7"n) (T ""N)z) €A
unfolding recurrent-subset-def by blast
then obtain n where n>0 (7" n) (T""N) z) € A
by (metis atLeast-iff gr0I not-one-le-zero)
then have n+N € {n. (T""n) z € A} by (simp add: funpow-add)
then show Fulse unfolding N-def using «n>0> F NE
by (metis Maz-ge Nat.add-0-right add.commute nat-add-left-cancel-less not-le)
qed
then show z € A A infinite {n. (T" n) x € A} using x recurrent-subset-infty-def
by auto
next
assume *: (z € A A infinite {n. (T " " n) z € A})
{
fix n
obtain N where N>n (T "N) z € A using x
using infinite-nat-iff-unbounded by force
define k£ where k = N—n
then have k>0 N = n+k using «N>n» by auto
then have (T77k) ((T""n) z) € A
by (metis «(T "~ N) z € A <N = n + ks add.commute comp-def funpow-add)
then have (77" n) z ¢ A — recurrent-subset A
unfolding recurrent-subset-def using <k>0» by auto
}

then show z € recurrent-subset-infty A unfolding recurrent-subset-infty-def
using * by auto

qed

lemma recurrent-subset-infty-series-infinite:
assumes z € recurrent-subset-infty A
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shows (3" n. indicator A (T~ "n) x)) = (co::ennreal)
proof (rule ennreal-ge-nat-imp-PInf)
have *: = finite {n. (T n) z € A} using recurrent-subset-infty-inf-returns assms
by auto
fix N::nat
obtain F where F: finite F F C {n. (T" n) x € A} card F = N
using infinite-arbitrarily-large[OF x| by blast
have N = (3 n € F. 1::ennreal)
using F(3) by auto
also have ... = (3 n € F. (indicator A ((T""n) z))::ennreal)
apply (rule sum.cong) using F(2) indicator-def by auto
also have ... < (3 n. indicator A ((T""n) x))
by (rule sum-le-suminf, auto simp add: F)
finally show N < (3> n. (indicator A ((T""n) z))::ennreal) by auto
qed

lemma recurrent-subset-infty-def "
recurrent-subset-infty A = ((\m. (Une{m..}. AN (T n)—‘4))
proof (auto)
fix z assume z: x € recurrent-subset-infty A
then show z € A unfolding recurrent-subset-infty-def by auto
fix N:nat
show Ine{N..}. (T""n) z € A using recurrent-subset-infty-inf-returns
using infinite-nat-iff-unbounded-le by auto
next
fix r assume z € AVN. d3ne{N..}. (T"n)z € A
then show x € recurrent-subset-infty A
unfolding recurrent-subset-infty-inf-returns using infinite-nat-iff-unbounded-le
by auto
qed

lemma recurrent-subset-incl:
recurrent-subset A C A
recurrent-subset-infty A C A
recurrent-subset-infty A C recurrent-subset A
unfolding recurrent-subset-def recurrent-subset-infty-def’ by (simp, simp, fast)

lemma recurrent-subset-meas [measurable]:
assumes [measurable]: A € sets M
shows recurrent-subset A € sets M
recurrent-subset-infty A € sets M
unfolding recurrent-subset-def recurrent-subset-infty-def’ by measurable

lemma recurrent-subset-rel-incl:
assumes A C B
shows recurrent-subset A C recurrent-subset B
recurrent-subset-infty A C recurrent-subset-infty B
proof —
show recurrent-subset A C recurrent-subset B
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unfolding recurrent-subset-def using assms by auto
show recurrent-subset-infty A C recurrent-subset-infty B
apply (auto, subst recurrent-subset-infty-inf-returns)
using assms recurrent-subset-incl(2) infinite-nat-iff-unbounded-le recurrent-subset-infty-inf-returns
by fastforce
qed

If a point belongs to the infinitely recurrent subset of A, then when they
return to A its iterates also belong to the infinitely recurrent subset.

lemma recurrent-subset-infty-returns:
assumes z € recurrent-subset-infty A (T n) z € A
shows (77 "n) © € recurrent-subset-infty A
proof (subst recurrent-subset-infty-inf-returns, rule ccontr)
assume - ((T 7" n) z € A A infinite {k. (T "™ k) (T """ n) z) € A})
then have 1: finite {k. (T k) ((T""n) z) € A} using assms(2) by auto
have 0 € {k. (T"k) ((T""n) z) € A} using assms(2) by auto
then have 2: {k. (T" k) (T "n) z) € A} # {} by blast
define M where M = Mazx {k. (T" k) (T""n) z) € A}
have M-prop: ANk. k> M = (T"k) (T""n) z) ¢ A
unfolding M-def using I 2 by auto
{
fix N assume x: (T N) z € A
have N < n+M
proof (cases)
assume N < n
then show ?thesis by auto
next
assume —(N < n)
then have N > n by simp
define k£ where k. = N—n
have N = n + k unfolding k-def using <N > n) by auto
then have (T7k) ((T" "n)z) € A using * by (simp add: add.commute
funpow-add)
then have k < M using M-prop using not-le by blast
then show ?thesis unfolding k-def by auto
qed

then have finite {N. (T""N) z € A}
by (metis (no-types, lifting) infinite-nat-iff-unbounded mem-Collect-eq not-less)
moreover have infinite {N. (T""N) z € A}
using recurrent-subset-infty-inf-returns assms(1) by auto
ultimately show Fulse by auto
qed

lemma recurrent-subset-of-recurrent-subset:
recurrent-subset-infty(recurrent-subset-infty A) = recurrent-subset-infty A
proof
show recurrent-subset-infty (recurrent-subset-infty A) C recurrent-subset-infty A
using recurrent-subset-incl(2)[of A] recurrent-subset-rel-incl(2) by auto
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show recurrent-subset-infty A C recurrent-subset-infty (recurrent-subset-infty A)
using recurrent-subset-infty-returns recurrent-subset-infty-inf-returns
by (metis (no-types, lifting) Collect-cong subsetl)
qed

The Poincare recurrence theorem states that almost every point of A returns
(infinitely often) to A, i.e., the recurrent and infinitely recurrent subsets of A
coincide almost everywhere with A. This is essentially trivial in conservative
systems, as it is a reformulation of the definition of conservativity. (What
is not trivial, and has been proved above, is that it is true in finite measure
preserving systems, i.e., finite measure preserving systems are automatically
conservative. )

theorem (in conservative) Poincare-recurrence-thm:
assumes [measurable]: A € sets M
shows A — recurrent-subset A € null-sets M
A — recurrent-subset-infty A € null-sets M
A A recurrent-subset A € null-sets M
A A recurrent-subset-infty A € null-sets M
emeasure M (recurrent-subset A) = emeasure M A
emeasure M (recurrent-subset-infty A) = emeasure M A
AE xz € A in M. x € recurrent-subset-infty A
proof —
define B where B = {z € A.V ne{l..}. (T " "n) z € (space M — A)}

have rs: recurrent-subset A = A — B
by (auto simp add: B-def recurrent-subset-def)
(meson Tn-meas assms measurable-space sets.sets-into-space subsetCE)
then have x: A — recurrent-subset A = B using B-def by blast
have B € null-sets M
by (rule disjoint-then-null, auto simp add: B-def)
then show A — recurrent-subset A € null-sets M using * by simp

then have *: (Un. (T" n)—— (A—recurrent-subset A)) € null-sets M
using T-quasi-preserves-null2(2) by blast
have recurrent-subset-infty A = recurrent-subset-infty A N space M using sets.sets-into-space
by auto

also have ... = A N space M — (Jn. (T"n)—(A—recurrent-subset A) N space
M) unfolding recurrent-subset-infty-def by blast
also have ... = A — (Un. (T n)——(A—recurrent-subset A)) unfolding vim-

age-restr-def using sets.sets-into-space by auto
finally have sx: recurrent-subset-infty A = A — (Un. (T " n) ——“ (4 —
recurrent-subset A)) .
then have A — recurrent-subset-infty A C (Un. (T™ n)——(A—recurrent-subset
A)) by auto
with * xx show A — recurrent-subset-infty A € null-sets M
by (simp add: Diff-Diff-Int null-set-Int1)

have A A recurrent-subset A = A — recurrent-subset A using recurrent-subset-incl(1)[of
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A] by blast
then show A A recurrent-subset A € null-sets M using <A — recurrent-subset
A € null-sets M> by auto
then show emeasure M (recurrent-subset A) = emeasure M A
by (rule Delta-null-same-emeasure[symmetric], auto)

have A A recurrent-subset-infty A = A — recurrent-subset-infty A using recur-
rent-subset-incl(2)[of A] by blast
then show A A recurrent-subset-infty A € null-sets M using <A — recur-
rent-subset-infty A € null-sets M»> by auto
then show emeasure M (recurrent-subset-infty A) = emeasure M A
by (rule Delta-null-same-emeasure[symmetric], auto)

show AFE x€A in M. x € recurrent-subset-infty A
unfolding eventually-ae-filter
by (metis (no-types, lifting) DiffT <A — recurrent-subset-infty A € null-sets M>»
mem-Collect-eq subsetl)
qed

A convenient way to use conservativity is given in the following theorem: if
T is conservative, then the series ) f(T™x) is infinite for almost every z
with fo > 0. When f is an indicator function, this is the fact that, starting
from B, one returns infinitely many times to B almost surely. The general
case follows by approximating f from below by constants time indicators.

theorem (in conservative) recurrence-series-infinite:
fixes f::’a = ennreal
assumes [measurable]: f € borel-measurable M
shows AEzin M. fz>0— O n. f((T"n)z)) =0
proof —
have : AE z in M. fz > epsilon — O n. f ((T""n) z)) = T if epsilon > 0
for epsilon
proof —
define B where B = {z € space M. f z > epsilon}
have [measurable]: B € sets M unfolding B-def by auto
have (>_n. f ((T""n) z)) = oo if © € recurrent-subset-infty B for x
proof —
have co = epsilon * co using <epsilon > 0» ennreal-mult-top by auto

also have ... = epsilon * (> n. indicator B ((T""n) z))
using recurrent-subset-infty-series-infinite| OF that] by simp
also have ... = (> n. epsilon * indicator B ((T" n) z))
by auto

also have ... < O n. f (T""n) z))
apply (rule suminf-le) unfolding indicator-def B-def by auto
finally show ?thesis
by (simp add: dual-order.antisym)
qed
moreover have AE z in M. fx > epsilon — z € recurrent-subset-infty B
using Poincare-recurrence-thm(7)[OF <B € sets M»| unfolding B-def by
auto
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ultimately show ¢thesis by auto
qed
have Ju::(nat = ennreal). (VYn. un > 0) N u —— 0
by (meson approz-from-above-dense-linorder ex-gt-or-lt gr-implies-not-zero)
then obtain u::nat = ennreal where u: An. un > 0u —— 0
by auto
have AFE zin M. (Vnunat. (fz >un — Oon. f((T"n) z) =T))
unfolding AFE-all-countable using u by (auto introl: x)
moreover have fz > 0 — O n. f ((T""n) x)) = oo if (Vnunat. (fz > un
— O-n. f ((T"n)z))=T)) for =
proof (auto)
assume fz > 0
obtain n where un < fz
using order-tendstoD(2)[OF uw(2) «f x > 0)] eventually-False-sequentially
eventually-mono by blast
then show (> n. f ((T""n) z)) = T using that by auto
qed
ultimately show ?thesis by auto
qed

5.2 The first return time

The first return time to a set A under the dynamics T is the smallest integer
n such that T"(z) € A. The first return time is only well defined on the
recurrent subset of A, elsewhere we set it to 0 for definiteness. We can
partition A according to the value of the return time on it, thus defining the
return partition of A.

definition return-time-function::’a set = ('a = nat)
where return-time-function A z = (
if (z € recurrent-subset A) then (Inf {n:nate{1..}. (T "n) z € A})
else 0)

definition return-partition::'a set = nat = ’a set
where return-partition A k= AN (T k)——‘A — (Uie{0<..<k}. (T"%)——"‘A)

Basic properties of the return partition.

lemma return-partition-basics:

assumes A-meas [measurable]: A € sets M

shows [measurable]: return-partition A n € sets M

and disjoint-family (An. return-partition A (n+1))
(U n. return-partition A (n+1)) = recurrent-subset A

proof —

show return-partition A n € sets M for n unfolding return-partition-def by
auto

define B where B = (An. AN (T" (n+1))——"A)
have return-partition A (n+1) = Bn —(Ji€{0..<n}. B i) for n
unfolding return-partition-def B-def by (auto) (auto simp add: less-Suc-eq-0-disj)
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then have *: A\n. return-partition A (n+1) = disjointed B n using disjointed-def|of
B] by simp

then show disjoint-family (An. return-partition A (n+1)) using disjoint-family-disjointed
by simp

have AN (T n)—‘A= AN (T""n)——‘A for n
using sets.sets-into-space| OF A-meas] by auto

then have recurrent-subset A = (Jne {1..}. A N (T""n)——‘A) unfolding
recurrent-subset-def by simp

also have ... = ({Jn. B n) by (simp add: B-def atLeast-Suc-greaterThan greaterThan-0)

also have ... = (|Jn. return-partition A (n+1)) using * UN-disjointed-eq[of B]
by simp

finally show (|Jn. return-partition A (n+1)) = recurrent-subset A by simp
qed

Basic properties of the return time, relationship with the return partition.

lemma return-time0:

(return-time-function A)—{0} = UNIV — recurrent-subset A
proof (auto)

fix z

assume *: z € recurrent-subset A return-time-function A = 0

define K where K = {n:nate{1..}. (T""n) z € A}

have xx: return-time-function A ¢ = Inf K

using K-def return-time-function-def * by simp

have K # {} using K-def recurrent-subset-def * by auto

moreover have 0 ¢ K using K-def by auto

ultimately have Inf K >0

by (metis (no-types, lifting) K-def One-nat-def atLeast-iff cInf-lessD mem-Collect-eq
neq0-conv not-le zero-less-Suc)

then have return-time-function A x > 0 using xx by simp

then show Fulse using * by simp
qed (auto simp add: return-time-function-def)

lemma return-time-n:

assumes [measurable]: A € sets M

shows (return-time-function A)—{Suc n} = return-partition A (Suc n)
proof (auto)

fix z assume *: return-time-function A x = Suc n

then have rz: © € recurrent-subset A using return-time-function-def by (auto,
meson Zero-not-Suc)

define K where K = {ic{1..}. (T"7%) z € A}

have return-time-function A ¢ = Inf K using return-time-function-def rz K-def
by auto

then have Inf K = Suc n using * by simp

moreover have K # {} using rz recurrent-subset-def K-def by auto

ultimately have Suc n € K using Inf-nat-def1 [of K| by simp

then have (77 (Suc n))z € A using K-def by auto

then have a: v € AN (T (Suc n))——‘A

using rx recurrent-subset-incl[of A] sets.sets-into-space| OF assms] by auto
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have Ai. i€{1..<Suc n} = i ¢ K using cInf-lower <Inf K = Suc n» by force

then have Ai. ie{l..<Suc n} = = ¢ (T 7{)—— ‘A using K-def by auto

then have z ¢ (|Jie{1..<Suc n}. (T"7%)——*A) by auto

then show z € return-partition A (Suc n) using a return-partition-def by simp
next

fix z assume *: © € return-partition A (Suc n)

then have a: z € space M unfolding return-partition-def using vimage-restr-def
by blast

define K where K = {i:znate{1..}. (T %) z € A}

have Inf K = Suc n

apply (rule cInf-eq-minimum) using x by (auto simp add: a assms K-def

return-partition-def)

have x € recurrent-subset A using * return-partition-basics(3)[OF assms] by
auto
then show return-time-function A © = Suc n
using return-time-function-def K-def <Inf K = Suc n» by auto
qed

The return time is measurable.

lemma return-time-function-meas [measurablel:
assumes [measurable]: A € sets M
shows return-time-function A € measurable M (count-space UNIV)
return-time-function A € borel-measurable M
proof —
have (return-time-function A)—4{n} N space M € sets M for n
proof (cases n = 0)
case True
then show ?thesis using return-time0 recurrent-subset-meas|OF assms] by
auto
next
case Fulse
show ?thesis
using return-time-n return-partition-basics(1)[|OF assms] not0-implies-Suc[OF
False] by auto
qed
then show return-time-function A € measurable M (count-space UNIV')
by (simp add: measurable-count-space-eq2-countable assms)
then show return-time-function A € borel-measurable M
using measurable-cong-sets sets-borel-eq-count-space by blast
qed

A close cousin of the return time and the return partition is the first entrance
set: we partition the space according to the first positive time where a point
enters A.

definition first-entrance-set::’a set = nat = 'a set
where first-entrance-set A n = (T"n) ——*“A — (| i<n. (T77%)——‘A)

lemma first-entrance-meas [measurable:
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assumes [measurable]: A € sets M
shows first-entrance-set A n € sets M
unfolding first-entrance-set-def by measurable

lemma first-entrance-disjoint:
disjoint-family (first-entrance-set A)
proof —
have first-entrance-set A = disjointed (\i. (T~ %)——‘A)
by (auto simp add: disjointed-def first-entrance-set-def)
then show ?thesis by (simp add: disjoint-family-disjointed)
qged

There is an important dynamical phenomenon: if a point has first entrance
time equal to n, then their preimages either have first entrance time equal
to n + 1 (these are the preimages not in A) or they belong to A and have
first return time equal to n + 1. When T preserves the measure, this gives
an inductive control on the measure of the first entrance set, that will be
used again and again in the proof of Kac’s Formula. We formulate these
(simple but extremely useful) facts now.

lemma first-entrance-rec:
assumes [measurable]: A € sets M
shows first-entrance-set A (Suc n) = T——(first-entrance-set A n) — A
proof —
have A0: A = (T770)——‘A by auto
have first-entrance-set An = (T" n) ——‘A — (U i<n. (T"7%)——"A)
using first-entrance-set-def by simp
then have T—— (first-entrance-set An) = (T (n+1))——‘A — (U i<n. (T"(i+1))——"“A)
using T-vrestr-composed(2) <A € sets M» by simp
then have x: T——(first-entrance-set A n) — A = (T" (n+1))——‘A — (A U
(U i<n. (T™(i+1))——"A))
by blast
have (U i<n. (T7(i+1))——‘A) = (U je{1..<n+1}. (T775)——"¢A)
by (rule UN-le-add-shift-strict)
then have A U (| i<n. (T7(i+1))——*A) = (U je{0..<n+1}. (T"7j)——"“A)
by (metis A0 Un-commute atLeastOLessThan UN-le-eq-UnO-strict)
then show ?thesis using x first-entrance-set-def by auto
qed

lemma return-time-rec:

assumes A € sets M

shows (return-time-function A)—{Suc n} = T——first-entrance-set A n) N A
proof —

have return-partition A (Suc n) = T——(first-entrance-set A n) N A

unfolding return-partition-def first-entrance-set-def

by (auto simp add: T-vrestr-composed|OF assms]) (auto simp add: less-Suc-eq-0-disj)

then show ?thesis using return-time-n[OF assms| by simp
qed
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5.3 Local time controls

The local time is the time that an orbit spends in a given set. Local time
controls are basic to all the forthcoming developments.

definition local-time::'a set = nat = 'a = nat
where local-time A n x = card {ie{..<n}. (T" %) z € A}

lemma local-time-birkhoff:
local-time A n x = birkhoff-sum (indicator A) n x
proof (induction n)
case (
then show ?case unfolding local-time-def birkhoff-sum-def by simp
next
case (Suc n)
have local-time A (n+1) z = local-time A n © + indicator A ((T" "n) z)
proof (cases)
assume *x: (" n)z € A
then have {ic{..<Suc n}. (T7 %) z € A} = {ie{.<n}. (T77%) z € A} U {n}
by auto
then have card {ie{..<Suc n}. (T77%) z € A} = card {ie{..<n}. (T"7%) z €
A} + card {n}
using card-Un-disjoint by auto
then have local-time A (n+1) © = local-time A n x + 1 using local-time-def
by simp
moreover have indicator A ((T" n)z) = (1::nat) using * indicator-def by
auto
ultimately show ?thesis by simp
next
assume *: =((7"n) z € A)
then have {ie{..<Suc n}. (T77%) z € A} = {ie{..<n}. (T77%) x € A} using
less-Suc-eq by force
then have card {i€{..<Suc n}. (T"7%) z € A} = card {ic{.<n}. (T"7%) z €
43
by auto
then have local-time A (n+1) z = local-time A n z using local-time-def by
stmp
moreover have indicator A ((T" n)z) = (0::nat) using * indicator-def by
auto
ultimately show ¢thesis by simp
qed
then have local-time A (n+1) z = birkhoff-sum (indicator A) n x + indicator
A (T™n) o)
using Suc.IH by auto
moreover have birkhoff-sum (indicator A) (n+1) x = birkhoff-sum (indicator
A) n z + indicator A (T "n) z)
by (metis birkhoff-sum-cocycle[where ?n = n and ?m = 1] birkhoff-sum-1(2))
ultimately have local-time A (n+1) z = birkhoff-sum (indicator A) (n+1) z
by metis
then show ?case by (metis Suc-eq-plusl)
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qed

lemma local-time-meas [measurable]:
assumes [measurable]: A € sets M
shows local-time A n € borel-measurable M
unfolding local-time-birkhoff by auto

lemma local-time-cocycle:
local-time A n z + local-time A m ((T" n)z) = local-time A (n+m) x
by (metis local-time-birkhoff birkhoff-sum-cocycle)

lemma local-time-incseq:
incseq (An. local-time A n x)
using local-time-cocycle incseq-def by (metis le-iff-add)

lemma local-time-Suc:
local-time A (n+1) = = local-time A n x + indicator A (T~ "n)z)
by (metis local-time-birkhoff birkhoff-sum-cocycle birkhoff-sum-1(2))

The local time is bounded by n: at most, one returns to A all the time!

lemma local-time-bound:
local-time A nz < n

proof —
have card {ie{..<n}. (T77%) ¢z € A} < card {..<n} by (rule card-mono, auto)
then show ?thesis unfolding local-time-def by auto

qged

The fact that local times are unbounded will be the main technical tool in
the proof of recurrence results or Kac formula below. In this direction, we
prove more and more general results in the lemmas below.

We show that, in T7"(A), the number of visits to A tends to infinity in
measure, when A has finite measure. In other words, the points in 77" (A)
with local time < k have a measure tending to 0 with k. The argument, by
induction on k, goes as follows.

Consider the last return to A before time n, say at time n—1. It lands in the
set S; with retun time i. We get T7"A C |J,,.n T-("=98, U R, where the
union is disjoint and R is a set of measure pu(T"A) =3 _n (T~ =08,y =
p(A) = >, «n #(Si), which tends to 0 with N and that we may therefore
discard. A point with local time < k at time n in T~"A is then a point with
local time < k — 1 at time n — i in T-(®9 S, C T—(=9) A. Hence, we may
conclude by the induction assumption that this has small measure.

lemma (in conservative-mpt) local-time-unbounded! :
assumes A-meas [measurable]: A € sets M
and fin: emeasure M A < oo
shows (An. emeasure M {z € (T~ n)——‘A. local-time A n z < k}) —— 0
proof (induction k)
case (
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have {z € (T""n)——"‘A. local-time A n z < 0} = {} for n by simp
then show ?case by simp
next
case (Suc k)
define K where K = (Ap n. {z € (T" n)——"‘A. local-time A n z < p})
have K-meas [measurable]: K p n € sets M for n p
unfolding K-def by measurable

show Zcase
proof (rule tendsto-zero-ennreal)
fix e :: real assume 0 < e
define e2 where e¢2 = ¢/3
have e¢2 > 0 using e2-def (e>0> by simp
have (> n. emeasure M (return-partition A (n+1))) = emeasure M ((Jn.
return-partition A (n + 1)))
apply (rule suminf-emeasure) using return-partition-basics|OF A-meas] by
auto

also have ... = emeasure M (recurrent-subset A)
using return-partition-basics(3)[OF A-meas] by simp
also have ... = emeasure M A

by (metis A-meas double-diff emeasure-Diff-null-set order-refl Poincare-recurrence-thm(1)[OF
A-meas| recurrent-subset-incl(1))
finally have (> n. emeasure M (return-partition A (n+1))) = emeasure M A
by simp
moreover have summable (An. emeasure M (return-partition A (n+1)))
by simp
ultimately have (AN. (3_ n<N. emeasure M (return-partition A (n+1))))
——— emeasure M A
unfolding sums-def[symmetric] sums-iff by simp
then have (AN. (3. n<N. emeasure M (return-partition A (n+1))) + e2)
— emeasure M A + e2
by (intro tendsto-add) auto
moreover have emeasure M A < emeasure M A + €2
using <emeasure M A < ooy <0 < e2»> by auto
ultimately have eventually (AN. (3. n<N. emeasure M (return-partition A
(n+1))) + e2 > emeasure M A) sequentially
by (simp add: order-tendsto-iff)
then obtain N where N>0 and largeM: (3" n<N. emeasure M (return-partition
A (n+1))) + e2 > emeasure M A
by (metis (no-types, lifting) add.commute add-Suc-right eventually-at-top-linorder
le-add?2 zero-less-Suc)

have upper: emeasure M (K (Suc k) n) < e2 + (3 i<N. emeasure M (K k
(n—i—1))) if n>N for n
proof —
define B where B = (\i. (T" (n—i—1))—— (return-partition A (i+1)))
have B-meas [measurable]: B i € sets M for i unfolding B-def by measurable
have disj-B: disjoint-family-on B {..<N}
proof —
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have BiN Bj = {}if ie{..<N} je{.<N} i < jfor ij

proof —
have n > ¢ n>j using <n>N) that by auto
let %k = j—i
have z ¢ Biif x € B j for z
proof —

have (T"(n—j—1)) = € return-partition A (j+1) using B-def that by
auto
moreover have ?k>0 using i < j» by simp
moreover have %k < j+1 by simp
ultimately have (T (n—j—1)) x ¢ (T~ %k)—— ‘A using return-partition-def
by auto
then have z ¢ (T" (n—j—1))——"* (T~ %k)——‘A by auto
then have z ¢ (T" (n—j—1 + ?k))—— ‘A using T-vrestr-composed|OF
A-meas] by simp
then have z ¢ (T" (n—i—1))——‘A using «i<j> <n>5 by auto
then have z ¢ (T (n—i—1))——" (return-partition A (i+1)) using
return-partition-def by auto
then show z ¢ B i using B-def by auto
qed
then show B i N B j = {} by auto
qged
then have A\ij. ic{.<N} = je{.<N} = i#j= BinNn Bj={}
by (metis Int-commute linorder-neqE-nat)
then show ?thesis unfolding disjoint-family-on-def by auto
qed

have incl-B: Bi C (T n)——‘Aif i € {.<N} for ¢
proof —

have n > ¢ using (n>N)» that by auto

have B{ C (T (n—i—1))——‘(T"(i+1))——‘4A

using B-def return-partition-def by auto

then show B¢ C (7" n)——‘A

using T-vrestr-composed(1)[OF A-meas, of n—i—1, of i+1] «n>% by auto
qed

define R where R = (T n)—— ‘4 — (Ui € {.<N}. B1)

have [measurable]: R € sets M unfolding R-def by measurable

have dec-n: (T n)——‘A=RU (Ui € {..<N}. B i) using R-def incl-B by
blast

have small-R: emeasure M R < e2

proof —
have RN (|J¢ € {.<N}. B i) = {} using R-def by blast
then have emeasure M ((T~ n)——‘A) = emeasure M R + emeasure M

(Ui € {.<N}. Bi)
using plus-emeasure[of R, of M, of Ji € {..<N}. B i] dec-n by auto
moreover have emeasure M (|Ji € {.<N}. Bi) = ()i € {..<N}. emeasure

by (intro disj-B sum-emeasure[symmetric], auto)
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ultimately have emeasure M ((T" n)——‘A) = emeasure M R + (3. i €
{..<N}. emeasure M (B 7))
by simp
moreover have emeasure M ((T" n)——‘A) = emeasure M A
using T-vrestr-same-emeasure(2)[OF A-meas] by simp
moreover have Ai. emeasure M (B i) = emeasure M (return-partition A
(i+1))
using T-vrestr-same-emeasure(2) B-def return-partition-basics(1)[OF
A-meas] by simp
ultimately have a: emeasure M A = emeasure M R + (3,7 € {..<N}.
emeasure M (return-partition A (i+1)))
by simp
moreover have b: (> i € {.<N}. emeasure M (return-partition A (i+1)))
# oo using fin
by (simp add: a less-top)
ultimately show ?thesis
using largeM fin b by simp
qed

have K (Suc k) n C RU (Ji<N. Kk (n—i—1))
proof
fix z assume a: z € K (Suc k) n
show z € RU (Ji<N. Kk (n—i—1))
proof (cases)
assume —(z € R)
have z € (T""n)——‘A using a K-def by simp
then have z€ (|Ji € {..<N}. B i) using dec-n «—~(z € R)» by simp
then obtain ¢ where i€{..<N} z € B i by auto
then have n>17 using (n>N>» by auto
then have (77 (n—i—1)) z € return-partition A (i+1) using B-def <z
€ B i» by auto
then have i: (T" (n—i—1)) ¢ € A using return-partition-def by auto
then have indicator A ((T" (n—i—1)) z) = (1::nat) by auto
then have local-time A (n—i) z = local-time A (n—i—1) z + 1
by (metis Suc-diff-Suc Suc-eq-plus1 diff-diff-add local-time-Suc[of A, of
n—i—1] «n>i»)
then have local-time A (n—1%) x > local-time A (n—i—1) z by simp
moreover have local-time A n x > local-time A (n—i) z using lo-
cal-time-incseq
by (metis <i < ny le-add-diff-inverse2 less-or-eq-imp-le local-time-cocycle
le-iff-add)
ultimately have local-time A n x > local-time A (n—i—1) x by simp
moreover have local-time A n x < Suc k using a K-def by simp
ultimately have *: local-time A (n—i—1) = < k by simp

have = € space M using <z € (T~ n)—— ‘4> by auto

then have z € (T (n—i—1))——‘A using ¢ A-meas vimage-restr-def by
(metis Intl sets.Int-space-eq2 vimagel )

then have z € K k (n—i—1) using * K-def by blast
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then show ?thesis using <i€{..<N}» by auto
qed (simp)
qed
then have emeasure M (K (Suc k) n) < emeasure M (R U (|Ji<N. K k
(n—i—1)))
by (intro emeasure-mono, auto)
also have ... < emeasure M R + emeasure M (|Ji<N. K k (n—i—1))
by (rule emeasure-subadditive, auto)
also have ... < emeasure M R + (3" i<N. emeasure M (K k (n—i—1)))
by (metis add-left-mono image-subset-iff emeasure-subadditive-finite][where
?A = Xi. Kk (n—i—1) and ?I = {.<N}, OF finite-lessThan|of N]] K-meas)
also have ... < e2 + (D] i<N. emeasure M (K k (n—i—1)))
using small-R by (auto intro!: add-right-mono)
finally show emeasure M (K (Suc k) n) < e2 + (> i<N. emeasure M (K
k (n—i—1))) .
qed

have (An. (3 ie{..<N}. emeasure M (K k (n—i—1)))) —— (> ie{..<N}.
0)
apply (intro tendsto-intros seq-offset-neg) using Suc.IH K-def by simp
then have eventually (An. (3 i€{..<N}. emeasure M (K k (n—i—1))) < e2)
sequentially
using <e2 > 0» by (simp add: order-tendsto-iff)
then obtain N2 where N2bound: An. n > N2 = (Y. ie{..<N}. emeasure
M (Kk (n—i—1))) < e2
by (meson eventually-at-top-dense)
define N3 where N3 = max N N2
have emeasure M (K (Suc k) n) < e if n > N3 for n
proof —
have n>N2 n > N using N3-def that by auto
then have emeasure M (K (Suc k) n) < ennreal e2 + (> i€{..<N}. emeasure
M (K k (n—i—1)))
using upper by simp
also have ... < ennreal e2 + ennreal e2
using N2bound[OF «<n > N2)| less-imp-le by auto
also have ... < e using e2-def <e > O
by (auto simp add: ennreal-plus[symmetric] simp del: ennreal-plus intro!:
ennreal-less)
ultimately show emeasure M (K (Suc k) n) < e using le-less-trans by blast
qed
then show V p z in sequentially. emeasure M {za € (T "~ x) ——* A. local-time
Az za < Suc k} < ennreal e
unfolding K-def by (auto simp: eventually-at-top-dense introl: exI[of - N3])
qed
qed

We deduce that local times to a set B also tend to infinity on T "A if B
is related to A, i.e., if points in A have some iterate in B. This is clearly
a necessary condition for the lemmas to hold: otherwise, points of A that
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never visit B have a local time equal to B equal to 0, and so do all their
preimages.

The lemmas are readily reduced to the previous one on the local time to A,
since if one visits A then one visits B in finite time by assumption (uniformly
bounded in the first lemma, uniformly bounded on a set of large measure in
the second lemma).

lemma (in conservative-mpt) local-time-unbounded2:
assumes A-meas [measurable]: A € sets M
and fin: emeasure M A < oo
and incl: A C (T77%)——‘B
shows (An. emeasure M {z € (T~ n)——"‘A. local-time Bn x < k}) —— 0
proof —
have emeasure M {z € (T~ "n)——‘A. local-time B n z < k} < emeasure M {z
€ (T"n)——"“A. local-time A nz < k + i}
if n > i for n

proof —
have local-time A n x < local-time Bn z + i for z
proof —
have local-time B n x > local-time A (n—i) z
proof —

define KA where KA = {t € {0..<n—i}. (T"t) z € A}
define KB where KB = {t € {0..<n}. (T"t) z € B}
then have KB C {0..<n} by auto
then have finite KB using finite-lessThan[of n] finite-subset by auto
let 29 = M\t. t + i
have \t. t € KA = %gt € KB
proof —
fix ¢ assume t € KA
then have (T777t) z € A using KA-def by simp
then have (T77%) ((T77¢t) ) € B using incl by auto
then have (77 (t+4)) z € B by (simp add: funpow-add add.commute)
moreover have t+i < n using <t € KAy KA-def <n > 0> by auto
ultimately show ¢g ¢t € KB unfolding KB-def by simp
qged
then have ?¢‘KA C KB by auto
moreover have inj-on ?g KA by simp
ultimately have card KB > card KA
using card-inj-on-lefwhere ?f = ?g and YA = KA and ?B = KB| «finite
KB) by simp
then show ?thesis using KA-def KB-def local-time-def by simp
qed
moreover have i > local-time A ¢ (T~ (n—t))z) using local-time-bound by
auto
ultimately show local-time B n x + i > local-time A n x
using local-time-cocyclelwhere ?n = n—i and ?m = i and %z = = and
?A = A] «n>0 by auto
qed
then have local-time B n x < k = local-time A nx < k + i for z
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by (meson add-le-cancel-right le-trans not-less)
then show ?thesis
by (intro emeasure-mono, auto)
qed
then have eventually (An. emeasure M {x € (T" "n)——‘A. local-time B n z <
k}
< emeasure M {z € (T n)——"‘A. local-time A n z < k + i})
sequentially
using eventually-at-top-dense by blast
from tendsto-sandwich[OF - this tendsto-const local-time-unboundedl | OF A-meas
fin, of k+i]]
show ?thesis by auto
qed

lemma (in conservative-mpt) local-time-unbounded3:
assumes A-meas[measurable]: A € sets M
and B-meas|measurable]: B € sets M
and fin: emeasure M A < oo
and incl: A — (Ji. (T77%)——‘B) € null-sets M
shows (An. emeasure M {z € (T" n)——"‘A. local-time Bn x < k}) —— 0
proof —
define R where R = A — (J4. (T %)——‘B)
have R-meas[measurable]: R € sets M
by (simp add: A-meas B-meas T-vrestr-meas(2)[OF B-meas| R-def count-
able-Un-Int(1) sets.Diff)
have emeasure M R = 0 using incl R-def by auto
define A2 where A2 = A — R
have A2-meas [measurable]: A2 € sets M unfolding A2-def by auto
have meq: emeasure M A2 = emeasure M A using <emeasure M R = 0>
unfolding A2-def by (subst emeasure-Diff) (auto simp: R-def)
then have A2-fin: emeasure M A2 < oo using fin by auto
define K where K = (AN. A2 N (Ji<N. (T"7i)——"‘B))
have K-meas [measurable]: K N € sets M for N unfolding K-def by auto
have K-incl: AN. K N C A using K-def A2-def by blast
have ((JN. K N) = A2 using A2-def R-def K-def by blast
moreover have incseq K unfolding K-def incseq-def by fastforce
ultimately have (AN. emeasure M (K N)) ——— emeasure M A2 by (auto
intro: Lim-emeasure-incseq)
then have conv: (AN. emeasure M (K N)) ——— emeasure M A using meq
by simp

define Bad where Bad = (AU n. {z € (T" "n)——"‘U. local-time B n z < k})

define Bad0 where Bad0 = (An. {z € space M. local-time B n x < k})

have Bad0-meas [measurable]: Bad0 n € sets M for n unfolding Bad(0-def by
auto

have Bad-inter: AU n. Bad Un = (T" n)——‘U N Bad0 n unfolding Bad-def
Bad0-def by auto

have Bad-meas [measurable]: AU n. U € sets M = Bad U n € sets M un-
folding Bad-def by auto

121



show ?thesis
proof (rule tendsto-zero-ennreal)
fix e::real
assume e > (
define e¢2 where e¢2 = ¢/3
then have e2 > 0 using <e>0> by simp
then have ennreal e2 > 0 by simp
have (AN. emeasure M (K N) 4+ e2) —— emeasure M A + e2
using conv by (intro tendsto-add) auto
moreover have emeasure M A < emeasure M A + e2 using fin <e2 > 0» by
simp
ultimately have eventually (AN. emeasure M (K N) + e2 > emeasure M A)
sequentially
by (simp add: order-tendsto-iff)
then obtain N where N>0 and largeK: emeasure M (K N) + e2 > emeasure
MA
by (metis (no-types, lifting) add.commute add-Suc-right eventually-at-top-linorder
le-add?2 zero-less-Suc)
define S where S = A — (K N)
have S-meas [measurable]: S € sets M using A-meas K-meas S-def by simp
have emeasure M A = emeasure M (K N) + emeasure M S
by (metis Diff-disjoint Diff-partition plus-emeasure[OF K-meas|of N|, OF
S-meas] S-def K-incl[of NJ)
then have S-small: emeasure M S < e2 using largeK fin by simp
have A-incl: A C SU (|Ji<N. A2 N (T77%)——‘B) using S-def K-def by auto

define L where L = (Ai. A2 N (T 7%)——‘B)
have L-meas [measurable]: L i € sets M for i unfolding L-def by auto
have A\i. L i C A2 using L-def by simp
then have L-fin: emeasure M (L i) < oo for ¢
using emeasure-mono|of L i A2 M| A2-meas A2-fin by simp
have Ai. L i C (T"7%)—— ‘B using L-def by auto
then have a: Ai. (An. emeasure M (Bad (L i) n)) —— 0 unfolding Bad-def
using local-time-unbounded2[OF L-meas, OF L-fin] by blast
have (An. (> i<N. emeasure M (Bad (L i) n))) —— 0 using tend-
sto-sum[OF a] by auto
then have eventually (An. (3 i<N. emeasure M (Bad (L i) n)) < e2) sequen-
tially
using <ennreal e2 > 0) order-tendsto-iff by metis

then obtain N2 where *: An. n > N2 = (> i<N. emeasure M (Bad (L 17)
n)) < e2

by (auto simp add: eventually-at-top-dense)

have emeasure M (Bad A n) < e if n > N2 for n
proof —
have emeasure M (Bad S n) < emeasure M ((T" n)——"5)
apply (rule emeasure-mono) unfolding Bad-def by auto
also have ... = emeasure M S using T-vrestr-same-emeasure(2) by simp
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also have ... < e2 using S-small by simp
finally have SBad-small: emeasure M (Bad S n) < e2 by simp

have (T7n)——‘A C (T""n)—— S U (Ui<N. (T"n)——4L 7))
using A-incl unfolding L-def by fastforce
then have I: Bad A n C Bad Sn U (|Ji<N. Bad (L i) n) using Bad-inter
by force
have emeasure M (Bad A n) < emeasure M (Bad S n U (|Ji<N. Bad (L i)
n))

by (rule emeasure-mono[OF I], measurable)
also have ... < emeasure M (Bad S n) + emeasure M (|Ji<N. Bad (L i) n)
by (intro emeasure-subadditive countable-Un-Int(1), auto)
also have ... < emeasure M (Bad S n) + (3> i<N. emeasure M (Bad (L 1)
n))
by (simp add: add-left-mono image-subset-iff Bad-meas[OF L-meas)
emeasure-subadditive-finite| OF finite-lessThan[of N|, where ?4 = \i.
Bad (L i) n])
also have ... < ennreal e2 + ennreal e2
using SBad-small less-imp-le[OF *[OF «n > N2)]] by (rule add-mono)
also have ... < e using e2-def <e>0> by (simp del: ennreal-plus add: en-
nreal-plus[symmetric] ennreal-lessI)
finally show emeasure M (Bad A n) < e by simp
qed
then show Y p z in sequentially. emeasure M {xa € (T "~ x) ——* A. local-time
Bzza <k} <e
unfolding eventually-at-top-dense Bad-def by auto
qed
qed

5.4 The induced map

The map induced by 7" on a set A is obtained by iterating 1" until one lands
again in A. (Outside of A, we take the identity for definiteness.) It has very
nice properties: if 7' is conservative, then the induced map T4 also is. If T
is measure preserving, then so is T4. (In particular, even if T' preserves an
infinite measure, T4 is a probability preserving map if A has measure 1 —
this makes it possible to prove some statements in infinite measure by using
results in finite measure systems). If T' is invertible, then so is T4. We prove
all these properties in this paragraph.

definition induced-map::'a set = ('a = 'a)

where induced-map A = (A z. (T (return-time-function A z)) x)

The set A is stabilized by the induced map.

lemma induced-map-stabilizes-A:
z € A +— induced-map Az € A
proof
assume z € A
show induced-map A z € A
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proof (cases © € recurrent-subset A)
case Fulse
then have induced-map A © = z using induced-map-def return-time-function-def
by simp
then show ?thesis using «x € A» by simp
next
case True
define K where K = {ne{1..}. (T""n) z € A}
have K # {} using True recurrent-subset-def K-def
by blast
moreover have return-time-function A x = Inf K
using return-time-function-def K-def True by simp
ultimately have return-time-function A x € K using Inf-nat-defl by simp
then show ?thesis
unfolding induced-map-def K-def by blast
qged
next
have induced-map A x =z if z ¢ A
using that
by (auto simp: induced-map-def return-time-function-def recurrent-subset-def)
then show induced-map A x € A — z € A
by fastforce
qed

lemma induced-map-iterates-stabilize-A:

assumes z € A

shows ((induced-map A)""n) x € A
proof (induction n)

case ()

show ?case using <z € A by auto
next

case (Suc n)

have ((induced-map A) ™ (Suc n)) x = (induced-map A) (((induced-map A) " n)
z) by auto

then show ?case using Suc.IH induced-map-stabilizes-A by auto
qed

lemma induced-map-meas [measurable]:
assumes [measurable]: A € sets M
shows induced-map A € measurable M M
unfolding induced-map-def by auto

The iterates of the induced map are given by a power of the original map,
where the power is the Birkhoff sum (for the induced map) of the first return
time. This is obvious, but useful.

lemma induced-map-iterates:
((induced-map A)""n) x = (T7 (3. i < n. return-time-function A ((induced-map

proof (induction n)
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case (
show ?case by auto
next
case (Suc n)
have ((induced-map A)" (n+1)) x = induced-map A (((induced-map A) " n) x)
by (simp add: funpow-add)
also have ... = (T (return-time-function A (((induced-map A) " n) z))) (((induced-map
A)"n) z)
using induced-map-def by auto
also have ... = (T" (return-time-function A (((induced-map A)""n) x))) (T4
< n. return-time-function A ((induced-map A ~ %) x))) x)
using Suc.IH by auto
also have ... = (T7 (return-time-function A (((induced-map A) " "n) z) + (O 1
< n. return-time-function A ((induced-map A ~7%) x)))) =
by (simp add: funpow-add)
also have ... = (T7 (> i < Suc n. return-time-function A ((induced-map A ~ %)
x))) x by (simp add: add.commute)
finally show ?Zcase by simp
qed

lemma induced-map-stabilizes-recurrent-infty:

assumes x € recurrent-subset-infty A

shows ((induced-map A)™ n) x € recurrent-subset-infty A
proof —

have z € A using assms(1) recurrent-subset-incl(2) by auto

define R where R = (> i < n. return-time-function A ((induced-map A ~ %)
7))

have *: ((induced-map A)" n) © = (T R) z unfolding R-def by (rule in-
duced-map-iterates)

moreover have ((induced-map A)"n) z € A

by (rule induced-map-iterates-stabilize-A, simp add: <z € A»)

ultimately have (T""R) z € A by simp

then show %thesis using recurrent-subset-infty-returns|OF assms| x by auto
qed

If z € A, then its successive returns to A are exactly given by the iterations
of the induced map.

lemma induced-map-returns:
assumes z € A
shows ((T"n) z € A) +— (IN<n. n = (D] i<N. return-time-function A
((induced-map A ™ i) x)))
proof
assume (7" n) z € A
have A\y. y€ A= (T""n)y € A= IN<n.n= (> i<N. return-time-function
A (((induced-map A) %) y)) for n
proof (induction n rule: nat-less-induct)
case (1 n)
show IN<n. n = (3 i<N. return-time-function A (((induced-map A) %) y))
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proof (cases)
assume n = 0
then show ?thesis by auto
next
assume —(n = 0)
then have n > 0 by simp
then have y-rec: y € recurrent-subset A using <y € Ay «(T""n) y € A
recurrent-subset-def by auto
then have *: return-time-function A y > 0 by (metis DiffE insert-iff neq0-conv
vimage-eq return-time0)
define m where m = return-time-function A y
have m > 0 using x m-def by simp
define K where K = {t € {1..}. (T 7" t) y € A}
have n € K unfolding K-def using <n > 0» <«(T" "n)y € A> by simp
then have n > Inf K by (simp add: cInf-lower)
moreover have m = Inf K unfolding m-def K-def return-time-function-def
using y-rec by simp
ultimately have n > m by simp
define z where z = induced-map A y
have z € A using <y € Ay induced-map-stabilizes-A z-def by simp
have z = (T "m) y using induced-map-def y-rec z-def m-def by auto
then have (T (n—m)) z = (T~ n) y using n > m» funpow-add]of n—m
m T, symmetric]
by (metis comp-apply le-add-diff-inverse2)
then have (T7 (n—m)) z € A using «(T""n) y € A by simp
moreover have n—m < n using <m > 0» <n > 0) by simp
ultimately obtain N0 where NO < n—m n—m = (3 i<NO. return-time-function
A (((induced-map A)" %) 2))
using <z € A> 1.IH by blast
then have n—m = (> i<NO. return-time-function A (((induced-map A) %)
(induced-map A y)))
using z-def by auto
moreover have Ai. ((induced-map A) %) (induced-map A y) = ((induced-map
H+1)) y
by (metis Suc-eq-plus1 comp-apply funpow-Suc-right)
ultimately have n—m = (> i<NO0. return-time-function A (((induced-map
AHG+)) )
by simp
then have n—m = ()" i € {1..<NO+1}. return-time-function A (((induced-map
4)™) 9)
using sum.shift-bounds-nat-ivl[of N\i. return-time-function A (((induced-map
A)7T%) y), of 0, of 1, of NO, symmetric]
atLeastOLessThan by auto
moreover have m = (3 i€{0..<1}. return-time-function A (((induced-map
A)77%) y)) using m-def by simp
ultimately have n = (> i€{0..<1}. return-time-function A (((induced-map
H™0) y)
+ (0o € {1..<NO+1}. return-time-function A (((induced-map A)™ %) y))
using <n > m» by simp
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then have n = () i€{0..<NO+1}. return-time-function A (((induced-map
A)770) y)
using le-add?2 sum.atLeastLessThan-concat by blast
moreover have N0 4+ 1 < n using (N0 < n—m» <n — m < n» by linarith
ultimately show ?thesis by (metis atLeastOLessThan)

qed
qed
then show IN<n. n = (3 i<N. return-time-function A ((induced-map A ~ 1)
z))
using «x € A «((T""n) z € A> by simp
next

assume IN<n. n = (3 i<N. return-time-function A ((induced-map A " i) x))

then obtain N where n = (3 i<N. return-time-function A ((induced-map A
~74) z)) by blast

then have (77 n) x = ((induced-map A)""N) z using induced-map-iterates|of
N, of A, of z] by simp

then show (77 n) z € A using <z € A induced-map-iterates-stabilize-A by
auto
qed

If a map is conservative, then the induced map is still conservative. Note
that this statement is not true if one replaces the word "conservative' with
"gmpt": inducion only works well in conservative settings.

For instance, the right translation on Z is qmpt, but the induced map on
N (again the right translation) is not, since the measure of {0} is nonzero,
while its preimage, the empty set, has zero measure.

To prove conservativity, given a subset B of A, there exists some time n such
that T~ B N B has positive measure. But this time n corresponds to some
returns to A for the induced map, so T-"BNB is included in | J,,, Ty " BN B,
hence one of these sets must have positive measure.

The fact that the map is qmpt is then deduced from the conservativity.

proposition (in conservative) induced-map-conservative:

assumes A-meas: A € sets M

shows conservative (restrict-space M A) (induced-map A)
proof

have sigma-finite-measure M by unfold-locales

then have sigma-finite-measure (restrict-space M A)

using sigma-finite-measure-restrict-space assms by auto

then show 3 Aa. countable Aa N\ Aa C sets (restrict-space M A) A | Aa = space
(restrict-space M A)

A (V a€Aa. emeasure (restrict-space M A) a # co) using sigma-finite-measure-def
by auto

have imp: AB. (B € sets M N B C A A emeasure M B > 0) = (IN>0.
emeasure M (((induced-map A)""N)—‘B N B) > 0)
proof —
fix B
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assume assm: B € sets M N B C A A emeasure M B > 0
then have B C A by simp
have inc: (Jne{1..}. (T"n)—‘BN B) C (UNe{!..}. ((induced-map A) " "N)—*
BN B)
proof
fix z assume z € ((Jne{1..}. (T n)—‘BN B)
then obtain n where ne{1..} and x: z € (T" n)—‘B N B by auto
then have n > 0 by auto
have z € A (T""n) z € A using x «B C A by auto
then obtain N where sx: n = (> i<N. return-time-function A ((induced-map
using induced-map-returns by auto
then have ((induced-map A) " "N) z = (T n) z using induced-map-iterates|of
N, of A, of x] by simp
then have ((induced-map A)""N) z € B using * by simp
then have z € ((induced-map A)”""N)—*‘ B N B using * by simp
moreover have N > (0 using xx <n > 0»
by (metis leD lessThan-iff less-nat-zero-code neq0-conv sum.neutral-const
sum-mono)
ultimately show z € (|JNe&{1..}. ((induced-map A)""N)—‘ B N B) by auto
qed
have B-meas [measurable]: B € sets M and B-pos: emeasure M B > () using
assm by auto
obtain n where n > 0 and pos: emeasure M ((T™ n)—‘BN B) > 0
using conservativeOF B-meas, OF B-pos| by auto
then have n € {1..} by auto

have itB-meas: \i. ((induced-map A)"%)—‘ B N B € sets M
using B-meas measurable-compose-n|OF induced-map-meas|OF A-meas|] by
(metis Int-assoc measurable-sets sets.Int sets.Int-space-eql)
then have (| Ji€{1..}. ((induced-map A)""i)—‘ B N B) € sets M by measurable
moreover have (7" n)—‘B N B C (Jie{1..}. ((induced-map A)"%)—* B N
B) using inc <n € {I..}» by force
ultimately have emeasure M (|Ji€{1..}. ((induced-map A)"%)—‘ B N B) >
0
by (metis (no-types, lifting) emeasure-eq-0 zero-less-iff-neq-zero pos)
then have emeasure M (|Ji€{1..}. ((induced-map A)"i)—“ BN B) # 0 by
stmp
have Jie{1..}. emeasure M (((induced-map A)"i)—* B N B) # 0
proof (rule ccontr)
assume —~(3ie{1..}. emeasure M (((induced-map A)"{)—*B N B) # 0)
then have a: Ai. ¢ € {1..} = ((induced-map A)"7i)—‘ B N B € null-sets
M
using itB-meas by auto
have (|Jie{1..}. ((induced-map A)"i)—‘ B N B) € null-sets M
by (rule null-sets-UN’, simp-all add: a)
then show Fulse using <emeasure M (|Ji€{1..}. ((induced-map A)"i)—‘B
N B) > 0> by auto
qed
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then show I N>0. emeasure M (((induced-map A)""N)—* B N B) > 0
by (simp add: Bex-def less-eq-Suc-le zero-less-iff-neg-zero)
qed

define K where K = {B. B € sets M AN B C A}
have K-stable: (induced-map A)—‘B € K if B € K for B
proof —
have B-meas: B € sets M and B C A using that unfolding K-def by auto
then have a: (induced-map A)—‘B C A using induced-map-stabilizes-A by
auto
then have (induced-map A)—‘B = (induced-map A)—‘B N space M using
assms sets.sets-into-space by auto
then have (induced-map A)—‘B € sets M using induced-map-meas|OF assms]
B-meas by (metis vrestr-meas vrestr-of-set)
then show (induced-map A)—‘B € K unfolding K-def using a by auto
qged

define K0 where K0 = K N (null-sets M)
have K0-stable: (induced-map A)—‘B € K0 if B € K0 for B
proof —
have B € K using that unfolding K0-def by simp
then have a: (induced-map A)—‘B C A and b: (induced-map A)— ‘B € sets M
using K-stable unfolding K-def by auto
have B-meas [measurable]: B € sets M using <B € K) unfolding K-def by
stmp
have B0: B € null-sets M using <B € K0) unfolding K0-def by simp

have (induced-map A)—‘B C (Un. (T n)—‘B) unfolding induced-map-def
by auto
then have (induced-map A)—‘B C (Un. (T"n)—‘B N space M)
using b sets.sets-into-space by simp blast
then have inc: (induced-map A)—‘B C (Un. (T~ n)——‘B) unfolding vim-
age-restr-def
using sets.sets-into-space [OF B-meas] by simp

have (77 "n)—— ‘B € null-sets M for n using B0 T-quasi-preserves-null(2)[OF
B-meas| by simp

then have (Un. (T n)——‘B) € null-sets M using null-sets-UN by auto

then have (induced-map A)—‘B € null-sets M using null-sets-subset|OF - b
inc] by auto

then show (induced-map A)— ‘B € K0 unfolding K0-def K-def by (simp add:
ab)

qed

have *: D € null-sets M <— D € null-sets (restrict-space M A) if DeK for D
using that unfolding K-def apply auto

apply (metis assms emeasure-restrict-space null-setsD1 null-setsl sets.Int-space-eq2
sets-restrict-space-iff)

by (metis assms emeasure-restrict-space null-setsD1 null-setsl sets.Int-space-eq2)
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show induced-map A € quasi-measure-preserving (restrict-space M A) (restrict-space
M A)
unfolding quasi-measure-preserving-def
proof (auto)
have induced-map A € A — A using induced-map-stabilizes-A by auto
then show a: induced-map A € measurable (restrict-space M A) (restrict-space
M A)
using measurable-restrict-space3|where A = A and ?B = A and ?M = M
and ?N = M] induced-map-meas|OF A-meas] by auto

fix B assume H: B € sets (restrict-space M A)
induced-map A —‘B N space (restrict-space M A) € null-sets
(restrict-space M A)
then have B € K unfolding K-def by (metis assms mem-Collect-eq sets. Int-space-eq2
sets-restrict-space-iff)
then have B-meas [measurable]: B € sets M and B-incl: B C A unfolding
K-def by auto
have induced-map A —‘B € K using K-stable «<B € K» by auto
then have B2-meas: induced-map A —‘B € sets M and B2-incl: induced-map
A—-‘BCA
unfolding K-def by auto
have induced-map A —‘ B = induced-map A — ‘B N space (restrict-space M A)
using B2-incl by (simp add: Int-absorb2 assms space-restrict-space)
then have induced-map A —° B € null-sets (restrict-space M A) using H(2)
by simp
then have induced-map A —¢ B € K0 unfolding K0-def using <induced-map
A —‘B € K» x by auto
{
fix n
have x: ((induced-map A) " (n+1))—‘B € K0
proof (induction n)
case (Suc n)
have ((induced-map A) ™ (Suc n+1))— ‘B = (induced-map A)— (((induced-map
A n+ 1)~ B)
by (metis Suc-eq-plusi funpow-Suc-right vimage-comp)
then show Zcase by (metis Suc.IH K0-stable)
qed (auto simp add: <induced-map A —* B € K0»)
have sx: ((induced-map A) " (n+1))—* B € sets M using x K0-def K-def by
auto
have ((induced-map A) " (n+1))—* B N B € null-sets M
apply (rule null-sets-subset[of ((induced-map A)" (n+1))—‘B])
using * unfolding K0-def apply simp
using *x by auto
}
then have ((induced-map A)""n)—*‘ B N B € null-sets M if n>0 for n
using that by (metis Suc-eq-plusl neq0-conv not0-implies-Suc)
then have B € null-sets M using imp B-incl B-meas zero-less-iff-negq-zero
inf.strict-order-iff
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by (metis null-setsD1 null-setsI)
then show B € null-sets (restrict-space M A) using * (B € K) by auto
next
fix B assume H: B € sets (restrict-space M A)
B € null-sets (restrict-space M A)
then have B € K unfolding K-def by (metis assms mem-Collect-eq sets.Int-space-eq2
sets-restrict-space-iff)
then have B-meas [measurable]: B € sets M and B-incl: B C A unfolding
K-def by auto
have B € null-sets M using x H(2) <B € K» by simp
then have B € K0 unfolding K0-def using «B € K» by simp
then have inK: (induced-map A)—‘B € K0 using K0-stable by auto
then have inA: (induced-map A)—‘B C A unfolding K0-def K-def by auto
then have (induced-map A)— ‘B = (induced-map A)— ‘B N space (restrict-space
M A)
by (simp add: Int-absorb2 assms space-restrict-space2)
then show induced-map A —‘ B N space (restrict-space M A) € null-sets
(restrict-space M A)
using * inK unfolding K0-def by auto
qed

fix B
assume B-measA: B € sets (restrict-space M A) and B-posA: 0 < emeasure
(restrict-space M A) B
then have B-meas: B € sets M by (metis assms sets.Int-space-eq2 sets-restrict-space-iff)
have B-incl: B C A by (metis B-measA assms sets.Int-space-eq2 sets-restrict-space-iff)
then have B-pos: 0 < emeasure M B using B-posA by (simp add: assms emea-
sure-restrict-space)
obtain N where N>0 emeasure M (((induced-map A)” "N)—‘B N B) > 0 using
imp B-meas B-incl B-pos by auto
then have emeasure (restrict-space M A) ((induced-map A " N) —* B N B) >
0
using assms emeasure-restrict-space by (metis B-incl Int-lower2 sets.Int-space-eq2
subset-trans)
then show 3In>0. 0 < emeasure (restrict-space M A) ((induced-map A ~ n)
—‘BnN B)
using <N > 0» by auto
qged

Now, we want to prove that, if a map is conservative and measure preserving,
then the induced map is also measure preserving. We first prove it for subsets
W of A of finite measure, the general case will readily follow.

The argument uses the fact that the preimage of the set of points with first
entrance time n is the union of the set of points with first entrance time n+1,
and the points of A with first return n 4+ 1. Following the preimage of W
under this process, we will get the intersection of Tglw with the different
elements of the return partition, and the points in 7~"W whose first n — 1
iterates do not meet A (and the measures of these sets add up to u(W)).
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To conclude, it suffices to show that the measure of points in T~"W whose
first n — 1 iterates do not meet A tends to 0. This follows from our local
times estimates above.

lemma (in conservative-mpt) induced-map-measure-preserving-aux:
assumes A-meas [measurable]: A € sets M
and W-meas [measurable]: W € sets M
and incl: W C A
and fin: emeasure M W < oo
shows emeasure M ((induced-map A)—— ‘W) = emeasure M W
proof —
have W C space M using W-meas
using sets.sets-into-space by blast
define BW where BW = (An. (first-entrance-set A n) N (T~ n)—— ‘W)
define DW where DW = (An. (return-time-function A)—*{n} N (induced-map
A)——W)

have An. DW n = (return-time-function A)—‘{n} N space M N (induced-mayp

AW
using DW-def by auto

then have DW-meas [measurable]: An. DW n € sets M by auto

have disj-DW: disjoint-family (An. DW n) using DW-def disjoint-family-on-def
by blast

then have disj-DW2: disjoint-family (An. DW (n+1)) by (simp add: dis-
joint-family-on-def)

have (Jn. DWn)=DW 0 U (Un. DW (n+1)) by (auto) (metis not0-implies-Suc)
moreover have (DW 0) N (Jn. DW (n+1)) = {}
by (auto) (metis Intl Suc-neq-Zero UNIV-I empty-iff disj-DW disjoint-family-on-def)
ultimately have x: emeasure M (|Jn. DWn) = emeasure M (DW 0) + emeasure
M (Un. DW (n+1))
by (simp add: countable-Un-Int(1) plus-emeasure)

have DW 0 = (return-time-function A)—“ {0} N W
unfolding DW-def induced-map-def return-time-function-def

apply (auto simp add: return-time0[of A]) using sets.sets-into-space] OF W-meas)
by auto

also have ... = W — recurrent-subset A using return-time0 by blast

also have ... C A — recurrent-subset A using incl by blast

finally have DW 0 € null-sets M by (metis A-meas DW-meas null-sets-subset
Poincare-recurrence-thm(1))

then have emeasure M (DW 0) = 0 by auto

have (induced-map A)—— ‘W = ({Jn. DW n) using DW-def by blast

then have emeasure M ((induced-map A)—— ‘W) = emeasure M (|Jn. DW n)
by simp

also have ... = emeasure M (|Jn. DW (n+1)) using * <emeasure M (DW 0)
= 0) by simp
also have ... = (>_ n. emeasure M (DW (n+1)))

apply (rule suminf-emeasure[symmetric]) using disj-DW2 by auto
finally have m: emeasure M ((induced-map A)—— ‘W) = (3 n. emeasure M
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(DW (n+1))) by simp
moreover have summable (An. emeasure M (DW (n+1))) by simp
ultimately have lim: (AN. (3> ne{..<N}. emeasure M (DW (n+1)))) ——
emeasure M ((induced-map A)—— ‘W)
by (simp add: summable-LIMSEQ)

have BW-meas [measurable]: An. BW n € sets M unfolding BW-def by simp
have *: An. T——{(BWn) — A= BW (n+1)
proof —
fix n
have T——{BW n) = T——first-entrance-set A n) N (T" (n+1))— ‘W
unfolding BW-def by (simp add: assms(2) T-vrestr-composed(2))
then have T——{(BW n) — A = (T——(first-entrance-set A n) — A) N
(T (n+1))—— W
by blast
then have T——{BW n) — A = first-entrance-set A (n+1) N (T (n+1))—— ‘W
using first-entrance-rec|OF A-meas] by simp
then show T——(BW n) — A = BW (n+1) using BW-def by simp
qed

have s«x: DW (n+1) = T——YBWn) N A for n
proof —
have T——{BW n) = T——first-entrance-set A n) N (T (n+1))—— ‘W
unfolding BW-def by (simp add: assms(2) T-vrestr-composed(2))
then have T——{BW n) N A = (T——first-entrance-set A n) N A) N
(T (n+1))—W
by blast
then have x: T——{BW n) N A
(I (n+1))—W
using return-time-rec|OF A-meas] by simp

(return-time-function A)—{n+1} N

have DW (n+1) = (return-time-function A)—{n+1} N (induced-map A)— ‘W
using DW-def «W C space M) return-time-rec by auto

also have ... = (return-time-function A)—{n+1} N (T" (n+1))—‘W
by (auto simp add: induced-map-def)
also have ... = (return-time-function A)—{n+1} N (T" (n+1))—— ‘W

using «(W C space M» return-time-rec by auto
finally show DW (n+1) = T——9BW n) N A using * by simp
qed

have emeasure M W = (3 ne{..<N}. emeasure M (DW (n+1))) + emeasure
M (BW N) for N
proof (induction N)
case (
have BW 0 = W unfolding BW-def first-entrance-set-def using incl by auto
then show ?case by simp
next
case (Suc N)
have T——{BW N) = BW (N+1) U DW (N+1) using * ** by blast
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moreover have BW (N+1) N DW (N+1) = {} using x ** by blast
ultimately have emeasure M (T——(BW N)) = emeasure M (BW (N+1))
+ emeasure M (DW (N+1))
using DW-meas BW-meas plus-emeasure[of BW (N+1)] by simp
then have emeasure M (BW N) = emeasure M (BW (N+1)) + emeasure M
(DW (N+1))
using T-vrestr-same-emeasure(1) BW-meas by auto
then have (3 ne{..<N}. emeasure M (DW (n+1))) + emeasure M (BW N)
= (> ne{.<N+1}. emeasure M (DW (n+1))) + emeasure M (BW
(N+1))
by (simp add: add.commute add.left-commute)
then show ?case using Suc.IH by simp
qed
moreover
have (AN. emeasure M (BW N)) —— 0
proof (rule tendsto-sandwich[of A-. 0- - AN. emeasure M {z € (T""N)——‘W.
local-time A Nz < 1}])
have emeasure M (BW N) < emeasure M {x € (T N)——‘W. local-time A
Nz < 1} for N
apply (rule emeasure-mono) unfolding BW-def local-time-def first-entrance-set-def
by auto
then show V ¢ n in sequentially. emeasure M (BW n) < emeasure M {z € (T

T n) ——¢ W. local-time A nz < 1}
by auto
have i: W C (T770)——‘A using incl by auto
show (AN. emeasure M {x € (T =" N) ——* W. local-time A Nz < 1}) ——

0
apply (rule local-time-unbounded2|OF - - i]) using fin by auto
qed (auto)
then have (AN. (3 ne{..<N}. emeasure M (DW (n+1))) + emeasure M (BW
N)) —— emeasure M (induced-map A ——* W) + 0
using lim by (intro tendsto-add) auto
ultimately show ?thesis
by (auto intro: LIMSEQ-unique LIMSEQ-const-iff)
qed

lemma (in conservative-mpt) induced-map-measure-preserving:
assumes A-meas [measurable]: A € sets M
and W-meas [measurable]: W € sets M
shows emeasure M ((induced-map A)—— ‘W) = emeasure M W
proof —
define WA where WA = W N A
have WA-meas [measurable]: WA € sets M WA C A using WA-def by auto
have WAi-meas [measurable]: (induced-map A)—— ‘WA € sets M by simp
have a: emeasure M WA = emeasure M ((induced-map A)——‘WA)
proof (cases)
assume emeasure M WA < oo

then show ?thesis using induced-map-measure-preserving-aux|OF A-meas, OF
(WA € sets My, OF «WA C As] by simp
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next
assume —(emeasure M WA < o0)
then have emeasure M WA = oo by (simp add: less-top[symmetric])

{
fix C::real

obtain Z where Z ¢ sets M Z C WA emeasure M Z < oo emeasure M 7 >

by (blast intro: <emeasure M WA = ooy WA-meas approz-PInf-emeasure-with-finite)

have Z C A using «Z C WA» WA-def by simp
have C < emeasure M Z using <emeasure M Z > C» by simp
also have ... = emeasure M ((induced-map A)——*Z)
using induced-map-measure-preserving-aux|OF A-meas, OF <Z € sets M,
OF «Z C A»] <emeasure M Z < ooy by simp
also have ... < emeasure M ((induced-map A)—— ‘WA)
apply(rule emeasure-mono) using <Z C WA» wvrestr-inclusion by auto
finally have emeasure M ((induced-map A)—— ‘WA) > C by simp
}
then have emeasure M ((induced-map A)—— ‘WA) = oo
by (cases emeasure M ((induced-map A)——‘WA)) auto
then show %thesis using <emeasure M WA = ooy by simp
qged
define WB where WB = W — WA
have WB-meas [measurable]: WB € sets M unfolding WB-def by simp
have WBi-meas [measurable]: (induced-map A)——‘WB € sets M by simp
have WB N A = {} unfolding WB-def WA-def by auto
moreover have id: A\z. ¢ A = (induced-map A z) = z unfolding in-
duced-map-def return-time-function-def
apply (auto) using recurrent-subset-incl by auto
ultimately have (induced-map A)—— ‘WB = WB
using induced-map-stabilizes-A sets.sets-into-space[OF WB-meas] apply auto
by (metis disjoint-iff-not-equal) fastforce+
then have b: emeasure M ((induced-map A)——‘WB) = emeasure M WB by
simp

have W = WA U WB WA N WB = {} using WA-def WB-def by auto
have *: emeasure M W = emeasure M WA + emeasure M WB

by (subst «<W = WA U WBs, rule plus-emeasure[symmetric], auto simp add:
(WA N WB=1{})

have W-AUB: (induced-map A)—— ‘W = (induced-map A)—— ‘WA U (induced-map
A)——WB
using «W = WA U WB» by auto
have W-AIB: (induced-map A)—— ‘WA N (induced-map A)—— ‘WB = {}
by (metis < WA N WB = {}» vrestr-empty vrestr-intersec)

have emeasure M ((induced-map A)—— ‘W) = emeasure M ((induced-map A)—— ‘WA)

+ emeasure M ((induced-map A)—— ‘WB)
unfolding W-AUB by (rule plus-emeasure[symmetric]) (auto simp add: W-AIB)

then show ?thesis using a b * by simp
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qed

We can now express the fact that induced maps preserve the measure.

theorem (in conservative-mpt) induced-map-conservative-mpt:
assumes A € sets M
shows conservative-mpt (restrict-space M A) (induced-map A)
unfolding conservative-mpt-def
proof
show *: conservative (restrict-space M A) (induced-map A) using induced-map-conservative| OF
assms] by auto
show mpt (restrict-space M A) (induced-map A) unfolding mpt-def mpt-azioms-def
proof
show gmpt (restrict-space M A) (induced-map A) using * conservative-def by
auto
then have meas: (induced-map A) € measurable (restrict-space M A) (restrict-space
M A)
unfolding gmpt-def gmpt-azioms-def quasi-measure-preserving-def by auto
moreover have \B. B € sets (restrict-space M A) =
emeasure (restrict-space M A) ((induced-map A) —‘B N space (restrict-space
M A)) = emeasure (restrict-space M A) B
proof —
have s: space (restrict-space M A) = A using assms space-restrict-space2 by
auto
have i: AD. D € sets M AN D C A = emeasure (restrict-space M A) D =
emeasure M D
using assms by (simp add: emeasure-restrict-space)
have j: AD. D € sets (restrict-space M A) «— (D € sets M A D C A) using
assms
by (metis sets.Int-space-eq2 sets-restrict-space-iff)
fix B
assume a: B € sets (restrict-space M A)
then have B-meas: B € sets M using j by auto
then have first: emeasure (restrict-space M A) B = emeasure M B using i j
a by auto
have incl: (induced-map A) —‘B C A using j a induced-map-stabilizes-A
assms by auto
then have eq: (induced-map A) — ‘B N space (restrict-space M A) = (induced-map
A) ——‘B
unfolding vimage-restr-def s using assms sets.sets-into-space
by (metis a inf.orderE j meas measurable-sets )
then have emeasure M B = emeasure M ((induced-map A) —‘B N space
(restrict-space M A))
using induced-map-measure-preserving a j assms by auto
also have ... = emeasure (restrict-space M A) ((induced-map A) — ‘B N space
(restrict-space M A))
using incl eq B-meas induced-map-meas|OF assms| assms i j
by (metis emeasure-restrict-space inf.orderE s space-restrict-space)
finally show emeasure (restrict-space M A) ((induced-map A) —‘B N space
(restrict-space M A))

136



= emeasure (restrict-space M A) B
using first by auto

qed

ultimately show induced-map A € measure-preserving (restrict-space M A)
(restrict-space M A)

unfolding measure-preserving-def by auto
qed

qed

theorem (in fmpt) induced-map-fmpt:

assumes A € sets M

shows fmpt (restrict-space M A) (induced-map A)
unfolding fmpt-def
proof —

have conservative-mpt (restrict-space M A) (induced-map A) using induced-map-conservative-mpt| OF
assms| by simp

then have mpt (restrict-space M A) (induced-map A) using conservative-mpt-def
by auto

moreover have finite-measure (restrict-space M A) by (simp add: assms fi-
nite-measurel finite-measure-restrict-space)

ultimately show mpt (restrict-space M A) (induced-map A) A finite-measure
(restrict-space M A) by simp
qed

It will be useful to reformulate the fact that the recurrent subset has full
measure in terms of the induced measure, to simplify the use of the induced
map later on.

lemma (in conservative) induced-map-recurrent-typical:
assumes A-meas [measurable]: A € sets M
shows AFE z in (restrict-space M A). z € recurrent-subset A
AFE z in (restrict-space M A). z € recurrent-subset-infty A
proof —
have recurrent-subset A € sets M using recurrent-subset-meas|OF A-meas| by
auto
then have rsA: recurrent-subset A € sets (restrict-space M A)
using recurrent-subset-incl(1)[of A
by (metis (no-types, lifting) A-meas sets-restrict-space-iff space-restrict-space
space-restrict-space2)

have emeasure (restrict-space M A) (space (restrict-space M A) — recurrent-subset
A) = emeasure (restrict-space M A) (A — recurrent-subset A)
by (metis (no-types, lifting) A-meas space-restrict-space2)
also have ... = emeasure M (A — recurrent-subset A)
by (simp add: emeasure-restrict-space)
also have ... = 0 using Poincare-recurrence-thm|OF A-meas] by auto
finally have space (restrict-space M A) — recurrent-subset A € null-sets (restrict-space
M A)
using rsA by blast
then show AFE z in (restrict-space M A). z € recurrent-subset A
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by (metis (no-types, lifting) DiffI eventually-ae-filter mem-Collect-eq subsetl)

have recurrent-subset-infty A € sets M using recurrent-subset-meas| OF A-meas]
by auto
then have rsid: recurrent-subset-infty A € sets (restrict-space M A)
using recurrent-subset-incl(2)]of A]
by (metis (no-types, lifting) A-meas sets-restrict-space-iff space-restrict-space
space-restrict-space2)

have emeasure (restrict-space M A) (space (restrict-space M A) — recurrent-subset-infty
A) = emeasure (restrict-space M A) (A — recurrent-subset-infty A)
by (metis (no-types, lifting) A-meas space-restrict-space2)

also have ... = emeasure M (A — recurrent-subset-infty A)
apply (rule emeasure-restrict-space) using A-meas by auto
also have ... = 0 using Poincare-recurrence-thm|OF A-meas] by auto

finally have space (restrict-space M A) — recurrent-subset-infty A € null-sets
(restrict-space M A)
using rsiA by blast
then show AFE z in (restrict-space M A). z € recurrent-subset-infty A
by (metis (no-types, lifting) Diffl eventually-ae-filter mem-Collect-eq subsetl)
qed

5.5 Kac’s theorem, and variants

Kac’s theorem states that, for conservative maps, the integral of the return
time to a subset A is equal to the measure of the space if the dynamics is
ergodic, or of the space seen by A in the general case.

This result generalizes to any induced function, not just the return time,
that we define now.

definition induced-function::'a set = ('a = 'b::comm-monoid-add) = (‘a = 'b)
where induced-function A f = (Ax. (3 i€{..< return-time-function A z}. f((T~ %)

z)))

By definition, the induced function is supported on the recurrent subset of
A.

lemma induced-function-support:

fixes f::'a = ennreal

shows induced-function A fy = induced-function A fy x indicator ((return-time-function
A)-H{1.})y

by (auto simp add: induced-function-def indicator-def not-less-eq-eq)

Basic measurability statements.

lemma induced-function-meas-ennreal [measurable]:
fixes f::'a = ennreal
assumes [measurable]: f € borel-measurable M A € sets M
shows induced-function A f € borel-measurable M
unfolding induced-function-def by simp
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lemma induced-function-meas-real [measurable:
fixes f::'a = real
assumes [measurable]: f € borel-measurable M A € sets M
shows induced-function A f € borel-measurable M
unfolding induced-function-def by simp

The Birkhoff sums of the induced function for the induced map form a
subsequence of the original Birkhoff sums for the original map, corresponding
to the return times to A.

lemma (in conservative) induced-function-birkhoff-sum:
fixes f::'a = real
assumes A € sets M
shows birkhoff-sum f (gmpt.birkhoff-sum (induced-map A) (return-time-function
Ay nz)z
= gmpt.birkhoff-sum (induced-map A) (induced-function A f) n x
proof —
interpret A: conservative restrict-space M A induced-map A by (rule induced-map-conservative| OF
assms))
define TA where TA = induced-map A
define phiA where phiA = return-time-function A
define R where R = (An. A.birkhoff-sum phiA n x)
show ?thesis
proof (induction n)
case (
show ?case using birkhoff-sum-1(1) A.birkhoff-sum-1(1) by auto
next
case (Suc n)
have (T7 (R n)) z = (TA" n) z unfolding TA-def R-def A.birkhoff-sum-def
phiA-def by (rule induced-map-iterates[symmetric])
have R(n+1) = R n + phiA ((TA"n) x)
unfolding R-def using A.birkhoff-sum-cocyclelwhere %n = n and ?m = 1
and ¢f = phiA] A.birkhoff-sum-1(2) TA-def by auto
then have birkhoff-sum f (R (n+1)) z = birkhoff-sum f (R n) z + birkhoff-sum
f (phiA ((TA™"n) x)) (T"(R n)) z)
using birkhoff-sum-cocycle[where ?n = R n and ?f = f] by auto

also have ... = birkhoff-sum f (R n) = + birkhoff-sum f (phiA ((TA" "n) z))
(TA~n) =)
using (T (R n)) z = (TA "n) = by simp
also have ... = birkhoff-sum f (R n) x + (induced-function A f) ((TA™ ™n) x)
unfolding induced-function-def birkhoff-sum-def phiA-def by simp
also have ... = A.birkhoff-sum (induced-function A f) n x + (induced-function
A f) ((TA"n) z) using Suc.IH R-def phiA-def by auto
also have ... = A.birkhoff-sum (induced-function A f) (n+1) =

using A.birkhoff-sum-cocycle[where ?n = n and ?m = I and ?f = in-
duced-function A f and ?x = z, symmetric]
A.birkhoff-sum-1(2)[where ?f = induced-function A f and %z = (TA""n) 1]
unfolding TA-def by auto
finally show ?case unfolding R-def phiA-def by simp
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qed
qed

The next lemma is very simple (just a change of variables to reorder the
indices in the double sum). However, the proof I give is very tedious: infi-
nite sums on proper subsets are not handled well, hence I use integrals on
products of discrete spaces instead, and go back and forth between the two
notions — maybe there are better suited tools in the library, but I could not
locate them...

This is the main combinatorial tool used in the proof of Kac’s Formula.

lemma kac-series-auz:
fixes d:: nat = nat = ennreal
shows (3> n. (3 i<n. din))=O_n.d0n)+ O n. Ooi. d (i+1) (n+1+7)))
(is - = ?R)
proof —
define g where g = (A\(i,n). (i+(1::nat), nt+1+7))
define U where U = {(i,n). (i>(0::nat)) A (n>1)}
have bij: bij-betw g UNIV U
by (rule bij-betw-by Witness[where 2f' = A\(i, n). (i—1, n—1)], auto simp add:
g-def U-def)

define e where ¢ = (A (4,5). d i j)

have pos: Az. e z > 0 using e-def by auto

have 3" n. O i d (i+1) (n+1+7))) = O_n. O . e(i+1, nt+1+4%))) using
e-def by simp

also have ... = f+n. f"’i. e (i+1, n+1+1i) dcount-space UNIV Ocount-space
UNIV
using pos nn-integral-count-space-nat suminf-0-le by auto
also have ... = ([ *z. e (g z) dcount-space UNIV)

unfolding g-def using nn-integral-snd-count-spacelof \(i,n). e(i+1, nt+1+1)]
by (auto simp add: prod.case-distrib)
also have ... = ([ ty € U. e y dcount-space UNIV)
using nn-integral-count-compose-bij| OF bij] by simp
finally have *: (3 n. (3"4. d (i+1) (n+1+41i)) = ([ Ty € U. e y dcount-space
UNIV)
by simp

define V where V = {((i::nat),(n::nat)). i = 0}
have i: e (i, n) * indicator {0} i = e (i, n) * indicator V (i, n) for i n
by (auto simp add: indicator-def V-def)
have d 0 n = ([ i € {0}. e (i, n) dcount-space UNIV') for n
proof —
have ([ *i € {0}. e (i, n) count-space UNIV) = ([ *i. e (i, n) Ocount-space
{0})
using nn-integral-count-space-indicator[of - Ai. e(i, n)] by simp
also have ... = e (0, n)
using nn-integral-count-space-finitelwhere ?f = \i. e (i, n)] by simp
finally show ?thesis using e-def by simp
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qed
then have (3>"n. d 0n) = (X n. (J Ti. e (i, n) * indicator {0} i Ocount-space
UNIV))
by simp
also have ... = ([ Tn. ([ Ti. e (4, n) = indicator {0} i dcount-space UNIV)
dcount-space UNIV)
by (simp add: nn-integral-count-space-nat)

also have ... = ([ (i,n). e (i, n) = indicator {0} i count-space UNIV)
using nn-integral-snd-count-space[of A (i,n). e(i,n) * indicator {0} i] by auto
also have ... = ([ *(i,n). e (i, n) x indicator V (i,n) dcount-space UNIV')

by (metis 7)
finally have (3" n. d 0n) = ([ Ty € V. e y dcount-space UNIV)
by (simp add: split-def)

then have ?R = ([Ty € V. e y dcount-space UNIV) + ([Ty € U. ey
dcount-space UNIV)
using *x by simp
also have ... = ([ Ty € V U U. e y dcount-space UNIV)
by (rule nn-integral-disjoint-pair-countspace[symmetric|, auto simp add: U-def
V-def)
also have ... = ([ (¢, n). e (¢, n) * indicator {..n} i dcount-space UNIV)
by (rule nn-integral-cong, auto simp add: indicator-def of-bool-def V-def U-def
POS, meson)
also have ... = ([ Tn. ([ Ti. e (4, n) * indicator {..n} i dcount-space UNIV )8 count-space
UNIV)
using nn-integral-snd-count-space[of A(i,n). e(i,n) x indicator {..n} i] by auto
also have ... = (D n. (3_i. e (i, n) * indicator {..n} 1))
using pos nn-integral-count-space-nat suminf-0-le by auto
moreover have (> i. e (4, n) * indicator {..n} i) = (> i<n. e (i, n)) for n
proof —
have finite {..n} by simp
moreover have Ai. i ¢ {.n} = e (i,n) * indicator {.n} i = 0 using
indicator-def by simp
then have (> i. e (i,n) * indicator {..n} i) = (>_ i € {..n} . e (i, n) * indicator
by (meson calculation suminf-finite)
moreover have Ai. i € {.n} = e (i, n) % indicator {.n} i = e (i, n) using
indicator-def by auto
ultimately show (3> i. e (i, n) * indicator {.n} i) = (3>_i<n. e (i, n)) by
stmp
qed
ultimately show “thesis using e-def by simp
qed

end

context conservative-mpt begin

We prove Kac’s Formula (in the general form for induced functions) first
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for functions taking values in ennreal (to avoid all summabilities issues).
The result for real functions will follow by domination. First, we assume
additionally that f is bounded and has a support of finite measure, the
general case will follow readily by truncation.

The proof is again an instance of the fact that the preimage of the set of
points with first entrance time n is the union of the set of points with first
entrance time n + 1, and the points of A with first return n + 1. Keeping
track of the integral of f on the different parts that appear in this argument,
we will see that the integral of the induced function on the set of points with
return time at most n is equal to the integral of the function, up to an error
controlled by the measure of points in T~ (supp(f)) with local time 0. Local
time controls ensure that this contribution vanishes asymptotically.

lemma induced-function-nn-integral-auz:
fixes f::'a = ennreal
assumes A-meas [measurable]: A € sets M
and f-meas [measurable]: f € borel-measurable M
and f-bound: Nz. fz < ennreal C 0 < C
and f-supp: emeasure M {z € space M. fx > 0} < o0
shows ([ ty. induced-function A fy OM) = ([T z € (Un. (T n)——‘A). fz
M)
proof —
define B where B = (\n. first-entrance-set A n)
have B-meas [measurable]: An. B n € sets M by (simp add: B-def)
then have B2 [measurable]: (Jn. B (n+1)) € sets M by measurable

have x: B = disjointed (Ai. (T~ %)——‘A)
by (auto simp add: B-def disjointed-def first-entrance-set-def)
then have disjoint-family B by (simp add: disjoint-family-disjointed)

have (Un. (T7n)——“A) = (Un. disjointed (\i. (T"i)——*A) n) by (simp add:
UN-disjointed-eq)

then have (|Jn. (T" n)——‘A) = (U n. B n) using * by simp

then have (Jn. (T"n)——‘A) = B 0 U (Un. B (n+1)) by (auto) (metis
not0-implies-Suc)

then have ([T z € (Un. (T""n)——"A). fz OM) = ([T ze€ (B0OU Un. B
(n+1))). fz 8M) by simp
alsohave ... = ([T2e€ B0. fe OM) + (J T z € (Un. B (n+1)). fz OM)

proof (rule nn-integral-disjoint-pair)
show B0 N (Jn. B (n+1)) ={}
by (auto) (metis Intl Suc-neq-Zero UNIV-I empty-iff <disjoint-family B>
disjoint-family-on-def)
qed auto
finally have ([ " z € (Un. (T""n)——‘A). fz OM) = (/T z € B0. fz OM)
+ ([t z€ (Un B(n+1)). fz OM)
by simp
moreover have ([T z € (Jn. B (n+1)). fz OM) = (> n. (/T 2z € B (n+1).
[ OM))
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apply (rule nn-integral-disjoint-family) using <disjoint-family B> by (auto simp
add: disjoint-family-on-def)

ultimately have Bdec: ([T z € (Un. (T""n)——‘A). fz OM) = ([T z € BO.
fzOM)+ (X n [Tz € B (n+l1). foz OM) by simp

define D where D = (An. (return-time-function A)—‘{n+1})
then have disjoint-family D by (auto simp add: disjoint-family-on-def)
have x: An. Dn=T——{Bn)N A
using D-def B-def return-time-rec|OF assms(1)] by simp
then have [measurable]: An. D n € sets M by simp
have sx: An. B (n+1) = T——4B n) — A using first-entrance-rec|OF assms(1)]
B-def by simp

have pos0: A\i z. f((T"7%)z) > 0 using assms(3) by simp

have pos:\ i C z. f((T"%)z) * indicator (C) x > 0 using assms(3) by simp

have mes0 [measurable]: \ i. (A\z. f((T"%)z)) € borel-measurable M by simp

then have [measurable]: \ i C. C € sets M = (Az. f((T"7%)x) * indicator C
x) € borel-measurable M by simp

have Ay. induced-function A fy = induced-function A fy * indicator ((return-time-function
A)-H1.})y
by (rule induced-function-support)
moreover have (return-time-function A)—4{(1::nat)..} = (Un. D n)
by (auto simp add: D-def Suc-le-D)
ultimately have Ay. induced-function A fy = induced-function A fy * indicator
(Un. D n) y by simp
then have ([ Ty. induced-function A fy OM) = ([Ty € (Un. D n). in-
duced-function A fy OM) by simp
also have ... = (3" n. ([ Ty € D n. induced-function A fy OM))
apply (rule nn-integral-disjoint-family)
unfolding induced-function-def by (auto simp add: posO sum-nonneg <dis-
joint-family Dy)
finally have a: ([ ty. induced-function A fy OM) = > n. ([ Ty € D n. in-
duced-function A fy OM))
by simp

define d where d = (\in. ([ Ty € D n. f((T"i)y) OM))

have ([ *y € D n. induced-function A fy OM) = (> i€{..n}. din) for n
proof —
have induced-function A fy * indicator (D n) y = (. ie{.<n+1}. f((T"%)y)
* indicator (D n) y) for y
by (auto simp add: induced-function-def D-def indicator-def)
then have ([ Ty € D n. induced-function A fy OM) = (3 ie{..<n+1}. ([ Ty
& D n. f((Ti)y) OM))
using pos nn-integral-sumlof {..<n+1}, of i y. f((T"7%)y) * indicator (D
n) y] by simp
also have ... = (3-ie{.n}. ([ Ty € Dn. f((T"0)y) OM))
using lessThan-Suc-atMost by auto
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finally show %thesis using d-def by simp
qed
then have induced-dec: ([ Ty. induced-function A fy OM) = (3 n. (3 i€{..n}.
din))
using a by simp

have (|Jne{1..}. (return-time-function A)—*‘{n}) = UNIV — (return-time-function
A)—{0} by auto
then have (|Jne{1..}. (return-time-function A)—‘{n}) = recurrent-subset A
using return-time0 by auto
moreover have (| n. (return-time-function A)—‘{n+1}) = (Une{1..}. (return-time-function
A)—* {n})
by (auto simp add: Suc-le-D)
ultimately have (|Jn. D n) = recurrent-subset A using D-def by simp
moreover have ([ tz € A. fz OM) = ([ Tz € recurrent-subset A. fz OM)
by (rule nn-integral-null-delta, auto simp add: Diff-mono Un-absorb2 recur-
rent-subset-incl(1)[of A] Poincare-recurrence-thm(1)[OF assms(1)])
moreover have B 0 = A using B-def ﬁrst entrance-set-def by simp
ultimately have ([ Tz € B0. fa OM) = ([ Tz € (Un. Dn). fz OM) by simp
also have ... = (3" n. ([ Tz € D n. fac aM))
by (rule nn-z’ntegml-disjoz'nt-famz’ly, auto simp add: <disjoint-family D»)
finally have BOdec: ([ tz € B 0. fz M) = (3 n. d 0 n) using d-def by simp

have «: ([tz € Bn. fz OM) = (3 i<k. (f Tz € D(n+i). f((T™(i+1))z)
OM)) + ([ Tz € B(n+k). f(T"k)z) OM) for n k
proof (induction k)
case 0
show ?case by simp
next
case (Suc k)
have T——4B(n+k)) = B(n+k+1) U D(n+k) using * *x by blast

have ([ Tz € B(n+k). f((T" k)= = (f Tz ((T™7k)x) * indicator
(B (n+k)) )(T z) OM)
by (rule measure-preserving-preserves-nn-integral|OF Tm], auto simp add:
pos)
also have ... = ([ Tz. f((T"(k+1))z) * indicator (T——B (n+k))) z OM)
proof (rule nn-integral-cong-AE)
have (T7k)(T z) = (T (k+1))z for z
using comp-eq-dest-lhs by (metis Suc-eq-plusl funpow.simps(2) funpow-swapl)
moreover have AE z in M. f((T"k)(T z)) * indicator (B (n+k)) (T z) =
FUT™Tk)(T x)) = indicator (T——4B (n+k))) z
by (simp add: indicator-def «An. B n € sets M»)
ultimately show AE z in M. f((T"k)(T z)) = indicator (B (n+k)) (T x)
= f((T"(k+1))z) * indicator (T——4B (n+k))) z
by simp
qed
also have ... = ([ Tz € B(n+k+1) U D(n+k). f((T"™(k+1))z) OM)
using «T——(B(n+k)) = B(n+k+1) U D(n+k)> by simp
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also have ... = ([ *z € B(n+k+1). f(T"(k+1))z) OM) + ([ T2 € D(n+k).
T+ 1)) OM)
proof (rule nn-integral-disjoint-pair| OF mes0[of k+1]])
show B(n+k+1) N D(n+k) = {} using * *x by blast
ged (auto)
finally have ([ Tz € B(n+k). f((T"k)z) OM) = ([ Tz € B(n+k+1). f((T"(k+1))z)
OM) + ([ Tz € D(n+k). f((T™(k+1))z) OM)
by simp
then show ?case by (simp add: Suc.IH add.commute add.left-commute)
qged

have a: (Ak. ([ Tz € B(n+k). f((T"k)z) OM)) —— 0 for n
proof —
define W where W = {z € space M. fz > 0} N (T" n)——‘A
have emeasure M W < emeasure M {x € space M. fz > 0}
by (intro emeasure-mono, auto simp add: W-def)
then have W-fin: emeasure M W < oo using f-supp by auto
have W-meas [measurable]: W € sets M unfolding W-def by simp
have W-incl: W C (T n)—— ‘A unfolding W-def by simp

define V where V = (Ak. {z € (T"k)——‘W. local-time A k x = 0})
have V-meas [measurable]: V k € sets M for k unfolding V-def by simp
have a: ([ Tz € B(n+k). f((T" k)z) OM) < C * emeasure M (V k) for k
proof —
have f((T"k)x) * indicator (B(n+k)) z = f((T"k)x) * indicator (B(n+k)
N(T7k)—— ‘W) z for z
proof (cases)
assume f((T77k)x) * indicator (B(n+k)) z = 0
then show %thesis by (simp add: indicator-def)
next
assume —(f((T77k)z) * indicator (B(n+k)) x = 0)
then have H: f((T"k)z) * indicator (B(n+k)) z # 0 by simp
then have inB: © € B(n+k) using H using indicator-simps(2) by fastforce
then have s: z € space M using B-meas|of n+k| sets.sets-into-space by
blast
then have a: (T k)z € space M by (metis measurable-space Tn-meas|of
k)

have f((T"k)z) > 0 using H by (simp add: le-negq-trans)
then have *: (T k)z € {y € space M. fy > 0} using a by simp

have (T (n+k))z € A using inB B-def first-entrance-set-def by auto
then have (77 n)((T"k)z) € A by (simp add: funpow-add)
then have (T k)z € (T" n)——‘A using a by auto
then have (77 k)z € W using x W-def by simp
then have z € (T k)—— ‘W using s a by simp
then have z € (B(n+k) N (T k)—— ‘W) using inB by simp
then show ?thesis by auto
qed
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then have « ([ Tz € B(n+k). f(T"k)z) OM) = ([ Tz € B(n+k) N
(T™7k)——“W. f((T"k)z) OM)
by simp
have B(n+k) C {z € space M. local-time A kz = 0}
unfolding local-time-def B-def first-entrance-set-def by auto
then have B(n+k) N (T k)—— ‘W C V k unfolding V-def by blast
then have f((T"k)x) * indicator (B(n+k) N (T~ k)—— ‘W) z < ennreal C
* indicator (V k) z for z
using f-bound by (auto split: split-indicator)
then have ([*z € B(n+k) N (T k)——‘W. f(T""k)z) OM) < ([t
ennreal C * indicator (V' k) © OM)
by (simp add: nn-integral-mono)
also have ... = ennreal C * emeasure M (V k) by (simp add: <0 < C»
nn-integral-cmult)
finally show ([ *z € B(n+k). f((T"k)z) OM) < C = emeasure M (V k)
using * by simp
qed

have (Ak. emeasure M (V k)) —— 0 unfolding V-def
using local-time-unbounded2[OF W-meas, OF W-fin, OF W-incl, of 1] by
auto
from ennreal-tendsto-cmult| OF - this, of C]
have t0: (A\k. C x emeasure M (V k)) —— 0
by simp
from a show (Ak. ([ Tz € B(n+k). f((T" k)z) OM)) —— 0
by (intro tendsto-sandwich[OF - - tendsto-const t0]) auto
qed
have b: (Ak. (3 i<k.([ Tz € D(n+i). f(T™(i+1))z) OM))) —— (>_i. d
(i+1) (n+1i)) for n
proof —
define e where e = (\i. d (i+1) (n+1))
then have (\k. (O i<k. ed)) —— (D i. e i)
by (intro summable-LIMSEQ) simp
then show (Mk. (3 i<k.([ T2 € D(n+i). f(T™(i+1))z) OM))) —— (> 1.
d (i+1) (n+7))
using e-def d-def by simp
qged

have (\k. (3 i<k. ([ Tz € D(n+i). f((T"(i+1))z) OM)) + ([ Tz € B(n+k).
F((T™ %)) OM))
—— (Do d (i+1) (n+0)) for n
using tendsto-add[OF b a] by simp
moreover have (\k. (3} i<k. ([ Tz € D(n+i). f((T"(i+1))z) OM)) + ([ Tz
€ B(n+k). f((T"k)z) OM))
—— ([ T2z € Bn. fz OM) for n using * by simp
ultimately have ([ Tz € Bn. fz OM) = (}_i. d (i+1) (n+i)) for n using
LIMSEQ-unique by blast
bthep have (3" n. ([ Tz € B (n+1). fz OM)) = > n. (3oi. d (i+1) (n+1+1)))
y simp
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then have ([T z € (Un. (T"n)——"A). fz M) = (>_n.d0n)+ (> n. (>4
d (i+1) (n+1+17)))
using Bdec B0Odec by simp
then show ?thesis using induced-dec kac-series-aux by simp
qed

We remove the boundedness assumption on f and the finiteness assumption
on its support by truncation (both in space and on the values of f).

theorem induced-function-nn-integral:
fixes f::'a = ennreal
assumes A-meas [measurable]: A € sets M
and f-meas [measurable]: f € borel-measurable M
shows ([ Ty. induced-function A fy OM) = ([ Tz € (Un. (T""n)——‘A). fz
oM)
proof —
obtain Y:nat = ‘a set where Y-meas: \ n. Y n € sets M and Y-fin: An.
emeasure M (Y n) # oo
and Y-full: (Un. Y n) = space M and Y-inc: incseq Y
by (meson range-subsetD sigma-finite-incseq)
define F' where F = (A(n:nat) z. min (f ) n % indicator (Y n) z)
have mes [measurable]: An. (F n) € borel-measurable M unfolding F-def using
assms(2) Y-meas by measurable
then have mes-rel [measurable]: (Az. F' n x x indicator (Jn. (T™ n)——‘A) x)
€ borel-measurable M for n
by measurable
have bound: An z. F n z < ennreal n by (simp add: F-def indicator-def en-
nreal-of-nat-eg-real-of-nat)
have An. {z € space M. Fnz > 0} C Y n unfolding F-def using not-le by
fastforce
then have le: emeasure M {z € space M. Fnz > 0} < emeasure M (Y n) for
n by (metis emeasure-mono Y-meas)
have fin: emeasure M {x € space M. Fnz > 0} < o for n
using Y-fin[of n] le[of n] by (simp add: less-top)
have «: ([ Ty. induced-function A (Fn) y OM) = ([T z € (Un. (T "n)——‘A).
(Fn)z0M) for n
by (rule induced-function-nn-integral-auz| OF A-meas mes bound - fin]) simp

have inc-Fz: Nz. incseq (An. F n z) unfolding F-def incseq-def
proof (auto simp add: incseg-def)
fix z::'a and m n::nat
assume m < n
then have min (f ) m < min (f £) n using linear by fastforce
moreover have (indicator (Y m) z::ennreal) < (indicator (Y n) z::ennreal)
using Y-inc
apply (auto simp add: incseg-def) using «m < n» by blast
ultimately show min (f ) m * (indicator (Y m) z::ennreal) < min (f z) n *
(indicator (Y n) z::ennreal)
by (auto split: split-indicator)
qed
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then have incseq (An. F'n z x indicator ((Jn. (T~ n)——"‘A) z) for z
by (auto simp add: indicator-def incseq-def)
then have inc-rel: incseq (An z. F n z * indicator (Un. (T" n)——‘A) z) by
(auto simp add: incseq-def le-fun-def)
then have a: (SUP n. ([T z € (Un. (T""n)——*A). Fnz OM))
= ([ z. (SUP n. F nx * indicator (Jn. (T~ n)——*A) z) M)
using nn-integral-monotone-convergence-SUP[OF inc-rel, OF mes-rel] by simp

have SUP-Fz: (SUP n. Fnz) = fzif ¢ € space M for z
proof —
obtain N where z € Y N using Y-full <x € space M by auto
have (SUP n. F n x) = (SUP n. inf (f z) (of-nat n))
proof (rule SUP-eq)
show 3jeUNIV. F iz < inf (f x) (of-nat j) for i
by (auto simp: F-def introl: exI|of - i] split: split-indicator)
show 34€UNIV. inf (f z) (of-nat j) < F iz for j
using <z € Y N> ¢incseq Y[THEN monoD, of N maz N j]
by (intro bexI[of - maz N j])
(auto simp: F-def subset-eq not-le inf-min intro: min.coboundedI2 less-imp-le
split: split-indicator split-maz)
qed
then show ?thesis
by (simp add: inf-SUP[symmetric| ennreal-SUP-of-nat-eq-top)
qed
then have (SUP n. F n z * indicator (Jn. (T n)——"‘A) z) = fz * indicator
Un. (T n)——‘A) z
if z € space M for z
by (auto simp add: indicator-def SUP-Fz that)
then have xx: (SUP n. ([T z € (Un. (T"n)——‘A). Fnz OM)) = ([T z €
Un. (T7n)——¢A). fz OM)

by (simp add: a cong: nn-integral-cong)

have incseq (An. induced-function A (F n) z) for z
unfolding induced-function-def
using incseg-sumlI2|of {..<return-time-function A z}, of Xin. Fn (T 7%)z)]
inc-Fx by simp
then have incseq (An. induced-function A (F n)) by (auto simp add: incseg-def
le-fun-def)
then have b: (SUP n. ([ * z. induced-function A (F n) z OM)) = ([ * z. (SUP
n. induced-function A (F n) z) OM)
by (rule nn-integral-monotone-convergence-SUP|[symmetric]) (measurable)

have (SUP n. induced-function A (F n) z) = induced-function A f x if [simp]:
€ space M for z
proof —
have (SUP n. (3. i €{..<return-time-function A z}. F n ((T"%)z)))
= (> i € {..<return-time-function A z}. f (T"%)z))
using ennreal-SUP-sum[OF inc-Fz, where ?I = {..<return-time-function A
z}] SUP-Fz by simp
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then show (SUP n. induced-function A (F n) z) = induced-function A f x
by (auto simp add: induced-function-def)
qed
then have (SUP n. ([ z. induced-function A (F n) z OM)) = ([T z. in-
duced-function A fx OM)
by (simp add: b cong: nn-integral-cong)
then show ?thesis using x *x by simp
qed

Taking the constant function equal to 1 in the previous statement, we obtain
the usual Kac Formula.

theorem kac-formula-nonergodic:
assumes A-meas [measurable]: A € sets M
shows ([ Ty. return-time-function A y OM) = emeasure M ((Jn. (T™"n)——‘A)
proof —
define f where f = (A(z::'a). 1::ennreal)
have Az. induced-function A f x = return-time-function A x
unfolding induced-function-def f-def by (simp add:)
then have ([ Ty. return-time-function A y OM) = ([ Ty. induced-function A f
y OM) by auto
also have ... = ([T 2z € (Un. (T""n)——"‘A). fz OM)
by (rule induced-function-nn-integral) (auto simp add: f-def)
also have ... = emeasure M ((Jn. (T~ n)——‘A) using f-def by auto
finally show ?thesis by simp
qed

lemma (in fmpt) return-time-integrable:
assumes A-meas [measurable]: A € sets M
shows integrable M (return-time-function A)
by (rule integrableI-nonneg)
(auto simp add: kac-formula-nonergodic|OF assms] ennreal-of-nat-eq-real-of-nat[symmetric]
less-top[symmetric])

Now, we want to prove the same result but for real-valued integrable func-
tion. We first prove the statement for nonnegative functions by reducing to
the nonnegative extended reals, and then for general functions by difference.

lemma induced-function-integral-auz:
fixes f::'a = real
assumes A-meas [measurable]: A € sets M
and f-int [measurable]: integrable M f
and f-pos: N\z. fz > 0
shows integrable M (induced-function A f)
([ y. induced-function A fy OM) = ([ z € (Un. (T""n)——‘A). fz OM)
proof —
show integrable M (induced-function A f)
proof (rule integrableI-nonneg)
show AFE x in M. induced-function A fx > 0 unfolding induced-function-def
by (simp add: f-pos sum-nonneg)
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have ([ Tz. ennreal (induced-function A fz) OM) = ([ z. induced-function
A (Az. ennreal(f z)) © OM)
unfolding induced-function-def by (auto simp: f-pos)
also have ... = ([T z € (Un. (T""n)——"‘A). fz OM)
by (rule induced-function-nn-integral, auto simp add: assms)
also have ... < ([T z. fz OM)
using nn-set-integral-set-mono[where ?4 = ((Jn. (T" n)——‘A) and ?B =
UNIV and ?f = Az. ennreal(f )]
by auto
also have ... < co using assms by (auto simp: less-top)
finally show ([ * z. induced-function A f x dM) < oo by simp
qed (simp)

have ([ z. (f z x indicator (Jn. (T""n)——*A4) z) OM) = ([ z € (Un.
(T""n)——"A). fz OM)
by (auto split: split-indicator intro!: nn-integral-cong)

also have ... = ([ 1 2. induced-function A (Az. ennreal(f x)) © OM)
by (rule induced-function-nn-integral[symmetric], auto simp add: assms)
also have ... = ([ tz. ennreal (induced-function A f z) OM) unfolding in-

duced-function-def by (auto simp: f-pos)
finally have «: ([T z. (f z % indicator (Un. (T" n)——‘A) z) M) = ([ Tz
ennreal (induced-function A fx) OM)
by simp

have ([ z € (Un. (T""n)——=*A4). fz OM) = ([ =z [z * indicator (|Jn.
(T""n)——"A) z OM)
by (simp add: mult.commute set-lebesgue-integral-def)

also have ... = enn2real ([ z. (f z * indicator (Jn. (T" "n)——*A) z) OM)
by (rule integral-eg-nn-integral, auto simp add: f-pos)
also have ... = enn2real ([ Tz. ennreal (induced-function A f z) OM) using x
by simp
also have ... = ([ z. induced-function A fz OM)

apply (rule integral-eq-nn-integral[symmetric])
unfolding induced-function-def by (auto simp add: f-pos sum-nonneg)
finally show ([ . induced-function A fz OM) = ([ =z € (Un. (T" n)——"‘A).
fx OM)
by simp
qged

Here is the general version of Kac’s Formula (for a general induced function,
starting from a real-valued integrable function).

theorem induced-function-integral-nonergodic:

fixes f::'a = real

assumes [measurable]: A € sets M integrable M f

shows integrable M (induced-function A f)

(| y. induced-function A fy OM) = ([z € (Un. (T""n)——"A). fz OM)

proof —

have U-meas [measurable]: (Jn. (T" n)——‘A) € sets M by measurable

define g where g = (\z. maz (f z) 0)
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have g-int [measurable]: integrable M g unfolding g-def using assms by auto
then have g-int2: integrable M (induced-function A g)

using induced-function-integral-auz(1) g-def by auto
define h where h = (Az. maz (—fz) 0)
have h-int [measurable]: integrable M h unfolding h-def using assms by auto
then have h-int2: integrable M (induced-function A h)

using induced-function-integral-auz(1) h-def by auto
have D1: f = (Az. g x — h z) unfolding g-def h-def by auto
have D2: induced-function A f = (Az. induced-function A g x — induced-function

A hz)

unfolding induced-function-def using D1 by (simp add: sum-subtractf)

then show integrable M (induced-function A f) using g-int2 h-int2 by auto

have ([ z. induced-function A fx OM) = ([ z. induced-function A g © — in-
duced-function A h z OM)
using D2 by simp
also have ... = ([ z. induced-function A g x OM) — ([ z. induced-function A h
z OM)
using g-int2 h-int2 by auto
alsohave ... = ([z€ (Un. (T n)——‘A). gz dM) — (fz € (Un. (T"n)——"‘A).
hx OM)
using induced-function-integral-aux(2) g-def h-def g-int h-int by auto
also have ... = ([z € (Un. (T""n)——"4). (9= — hz) OM)
apply (rule set-integral-diff (2)[symmetric])
unfolding set-integrable-def
using g-int h-int integrable-mult-indicator[OF U-meas] by blast+
also have ... = ([z € (Un. (T""n)——*A). fz OM)
using D1 by simp
finally show ([ z. induced-function A fz OM) = ([z € (Un. (T""n)——"‘A). f
z OM) by simp
qed

We can reformulate the previous statement in terms of induced measure.

lemma induced-function-integral-restr-nonergodic:
fixes f::'a = real
assumes [measurable]: A € sets M integrable M f
shows integrable (restrict-space M A) (induced-function A f)
([ y. induced-function A f y O(restrict-space M A)) = ([ = € (Un.
(T""n)——"A). fz OM)
proof —
have [measurable]: integrable M (induced-function A f) by (rule induced-function-integral-nonergodic(1)[OF
assms])
then show integrable (restrict-space M A) (induced-function A f)
by (metis assms(1) integrable-mult-indicator integrable-restrict-space sets.Int-space-eq2)
have ([ y. induced-function A fy d(restrict-space M A)) = ([ y € A. induced-function
A fy OM)
by (simp add: integral-restrict-space set-lebesque-integral-def)
also have ... = ([ y. induced-function A fy OM)
unfolding real-scaleR-def set-lebesgue-integral-def
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proof (rule Bochner-Integration.integral-cong [OF refl])
have induced-function A fy = 0 if y ¢ A for y unfolding induced-function-def
using that return-time0[of A] recurrent-subset-incl(1)[of A] return-time-function-def
by auto
then show Az. indicator A x * induced-function A fx = induced-function A f
T
unfolding indicator-def by auto
qed
also have ... = ([ z € (Un. (T""n)——"A4). fz OM)
by (rule induced-function-integral-nonergodic(2)[OF assms])
finally show ([ y. induced-function A fy d(restrict-space M A)) = ([ z € (Un.
(T""n)——"A). fz OM)
by simp
qed

end

end

6 The invariant sigma-algebra, Birkhoff theorem

theory Invariants
imports Recurrence HOL— Probability. Conditional- Exzpectation
begin

6.1 The sigma-algebra of invariant subsets

The invariant sigma-algebra of a qmpt is made of those sets that are invariant
under the dynamics. When the transformation is ergodic, it is made of sets
of zero or full measure. In general, the Birkhoff theorem is expressed in
terms of the conditional expectation of an integrable function with respect
to the invariant sigma-algebra.

context gmpt begin

We define the invariant sigma-algebra, as the sigma algebra of sets which are
invariant under the dynamics, i.e., they coincide with their preimage under
T.

definition Invariants where Invariants = sigma (space M) {A € sets M. T—‘A
N space M = A}

For this definition to make sense, we need to check that it really defines a
sigma-algebra: otherwise, the sigma operation would make garbage out of
it. This is the content of the next lemma.

lemma Invariants-sets: sets Invariants = {A € sets M. T—‘A N space M = A}
proof —

have sigma-algebra (space M) {A € sets M. T—‘A N space M = A}

proof —
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define I where I = {A. T—‘A N space M = A}
have i: NA. A € I = A C space M unfolding I-def by auto
have algebra (space M) I
proof (subst algebra-iff-Un)
have a: I C Pow (space M) using i by auto
have b: {} € I unfolding I-def by auto
{
fix A assume x: A € |
then have T—(space M — A) = T—(space M) — T—*A by auto
then have T—‘(space M — A) N space M = T—“space M) N (space M) —
T—*A N (space M) by auto
also have ... = space M — A using x I-def by (simp add: inf-absorb2
subsetl)
finally have space M — A € I unfolding I-def by simp
}
then have c¢: (Va€l. space M — a € I) by simp
have d: (Va€l. Vbel. a U b € I) unfolding I-def by auto
show I C Pow (space M) N {} € I N (Ya€l. space M — a € I) A (Va€l.
Vbel. aU bel)
using a b ¢ d by blast
qed
moreover have (VF. range F C I — (|Ji::nat. F i) € I) unfolding I-def
by auto
ultimately have sigma-algebra (space M) I using sigma-algebra-iff by auto
moreover have sigma-algebra (space M) (sets M) using measure-space mea-
sure-space-def by auto
ultimately have sigma-algebra (space M) (I N (sets M)) using sigma-algebra-intersection
by auto
moreover have I N sets M = {A € sets M. T—‘A N space M = A} unfolding
I-def by auto
ultimately show ¢thesis by simp
qed
then show ?thesis unfolding Invariants-def using sigma-algebra.sets-measure-of-eq
by blast
qed

By definition, the invariant subalgebra is a subalgebra of the original algebra.
This is expressed in the following lemmas.

lemma Invariants-is-subalg: subalgebra M Invariants
unfolding subalgebra-def
using Invariants-sets Invariants-def by (simp add: space-measure-of-conv)

lemma Invariants-in-sets:
assumes A € sets Invariants
shows A € sets M

using Invariants-sets assms by blast

lemma Invariants-measurable-func:
assumes f € measurable Invariants N
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shows f € measurable M N
using Invariants-is-subalg measurable-from-subalg assms by auto

We give several trivial characterizations of invariant sets or functions.

lemma Invariants-vrestr:
assumes A € sets Invariants
shows T——‘A = A
using assms Invariants-sets Invariants-in-sets|OF assms| by auto

lemma Invariants-points:
assumes A € sets Invariants ¢ € A
shows Tz € A

using assms Invariants-sets by auto

lemma Invariants-func-is-invariant:
fixes f::- = 'b:t2-space
assumes [ € borel-measurable Invariants x € space M
shows [ (Tz) = fz

proof —
have {f z} € sets borel by simp
then have f—{f z}) N space M € Invariants using assms(1)
by (metis (no-types, lifting) Invariants-def measurable-sets space-measure-of-conv)
moreover have z € f—{{f z}) N space M using assms(2) by blast
ultimately have T z € f—({f z}) N space M by (rule Invariants-points)
then show ?thesis by simp

qed

lemma Invariants-func-is-invariant-n:
fixes f::- = 'b::t2-space
assumes f € borel-measurable Invariants x € space M
shows f ((T""™n) z) = fz
by (induction n, auto simp add: assms Invariants-func-is-invariant)

lemma Invariants-func-charac:
assumes [measurable]: f € measurable M N
and A\z. z € space M = f(Tz) = fx
shows f € measurable Invariants N
proof (rule measurablel)
fix A assume A € sets N
have space Invariants = space M using Invariants-is-subalg subalgebra-def by
force
show f —“ A N space Invariants € sets Invariants
apply (subst Invariants-sets)
apply (auto simp add: assms <A € sets N> <space Invariants = space M)
using <A € sets Ny assms(1) measurable-sets by blast
next
fix  assume z € space Invariants
have space Invariants = space M using Invariants-is-subalg subalgebra-def by
force
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then show [z € space N using assms(1) «x € space Invariants) by (metis
measurable-space)
qed

lemma birkhoff-sum-of-invariants:

fixes f:: - = real

assumes f € borel-measurable Invariants x € space M

shows birkhoff-sum fnx=nx fzx
unfolding birkhoff-sum-def using Invariants-func-is-invariant-n|OF assms] by
auto

There are two possible definitions of the invariant sigma-algebra, competing
in the literature: one could also use the sets such that 7~ A coincides with A
up to a measure 0 set. It turns out that this is equivalent to being invariant
(in our sense) up to a measure 0 set. Therefore, for all interesting purposes,
the two definitions would give the same results.

For the proof, we start from an almost invariant set, and build a genuinely
invariant set that coincides with it by adding or throwing away null parts.

proposition Invariants-quasi-Invariants-sets:
assumes [measurable]: A € sets M
shows (3B € sets Invariants. A A B € null-sets M) «— (T——‘A A A €
null-sets M)
proof
assume 3 B € sets Invariants. A A B € null-sets M
then obtain B where B € sets Invariants A A B € null-sets M by auto
then have [measurable]: B € sets M using Invariants-in-sets by simp

have B = T——‘ B using Invariants-vrestr <B € sets Invariants) by simp
then have T——‘A A B=T——4{A A B) by simp
moreover have T—— A A B) € null-sets M
by (rule T-quasi-preserves-null2(1)[OF <A A B € null-sets M>))
ultimately have T——‘A A B € null-sets M by simp
then show T——°‘A A A € null-sets M
by (rule null-sym-diff-transitive) (auto simp add: <A A B € null-sets M»
Un-commute)
next
assume H: T — ‘A A A € null-sets M
have [measurable]: An. (T™ n)——‘A € sets M by simp
{
fix K assume [measurable]: K € sets M and T—— ‘K A K € null-sets M
fix n:nat
have (T"n)——‘K A K € null-set