Analysing and Comparing Encodability Criteria for Process Calculi (Technical Report)

Kirstin Peters*
TU Dresden, Germany

Rob van Glabbeek NICTA[†], Sydney, Australia Computer Science and Engineering, UNSW, Sydney, Australia

August 05, 2015

Abstract

Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation) that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

In the following we present the Isabelle implementation of the underlying theory as well as all proofs of the results presented in the paper *Analysing and Comparing Encodability Criteria* as submitted to EXPRESS/SOS'15.

^{*}Supported by funding of the Excellence Initiative by the German Federal and State Governments (Institutional Strategy, measure 'support the best').

[†]NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.

Contents

1		ations	3
	1.1	Basic Conditions	3
	1.2	Preservation, Reflection, and Respection of Predicates	6
2	Pro	cess Calculi	11
	2.1	Reduction Semantics	11
		2.1.1 Observables or Barbs	13
3	Sim	ulation Relations	17
•	3.1	Simulation	17
	3.2	Contrasimulation	22
	3.3	Coupled Simulation	24
	3.4	Correspondence Simulation	25
	3.5	Bisimulation	30
	3.6	Step Closure of Relations	40
4	Enc	odings	46
5		elation between Source and Target Terms 5	
	5.1	Relations Induced by the Encoding Function	54
	5.2	Relations Induced by the Encoding and a Relation on Target Terms	77
	5.3	Relations Induced by the Encoding and Relations on Source Terms and Target Terms	120
6	Suc	cess Sensitiveness and Barbs	151
7	Div	ergence Reflection	155
8	Ope	Operational Correspondence	
	8.1	Trivial Operational Correspondence Results	156 158
	8.2	(Strong) Operational Completeness vs (Strong) Simulation	159
	8.3	Weak Operational Soundness vs Contrasimulation	167
	8.4	(Strong) Operational Soundness vs (Strong) Simulation	168
	8.5	Weak Operational Correspondence vs Correspondence Similarity	175
	8.6	(Strong) Operational Correspondence vs (Strong) Bisimilarity	181
9	Full	Abstraction	201
J	9.1	Trivial Full Abstraction Results	201
	9.1	Fully Abstract Encodings	$\frac{201}{203}$
	9.2	Full Abstraction w.r.t. Preorders	210
	9.4	Full Abstraction w.r.t. Equivalences	218
	$9.4 \\ 9.5$	Full Abstraction without Relating Translations to their Source Terms	$\frac{216}{228}$
10			
10		nbining Criteria	235
		Divergence Reflection and Success Sensitiveness	237
		Adding Operational Correspondence	238
	10.3	Full Abstraction and Operational Correspondence	271

```
{\bf theory} \ Relations \\ {\bf imports} \ Main \ HOL-Library. La TeX sugar \ HOL-Library. Optional Sugar \\ {\bf begin} \\
```

1 Relations

1.1 Basic Conditions

We recall the standard definitions for reflexivity, symmetry, transitivity, preoders, equivalence, and inverse relations.

```
abbreviation preorder Rel \equiv preorder-on UNIV Rel abbreviation equivalence Rel \equiv equiv \ UNIV \ Rel
```

A symmetric preorder is an equivalence.

```
lemma symm-preorder-is-equivalence:
fixes Rel :: ('a × 'a) set
assumes preorder Rel
and sym Rel
shows equivalence Rel
using assms
unfolding preorder-on-def equiv-def
by simp
```

The symmetric closure of a relation is the union of this relation and its inverse.

```
definition symcl :: ('a \times 'a) \ set \Rightarrow ('a \times 'a) \ set where symcl \ Rel = Rel \cup Rel^{-1}
```

For all (a, b) in R, the symmetric closure of R contains (a, b) as well as (b, a).

```
lemma elem\text{-}of\text{-}symcl:

fixes Rel :: ('a \times 'a) \ set

and a \ b :: 'a

assumes elem: (a, \ b) \in Rel

shows (a, \ b) \in symcl \ Rel

and (b, \ a) \in symcl \ Rel
```

by (auto simp add: elem symcl-def)

The symmetric closure of a relation is symmetric.

```
lemma sym-symcl:
  fixes Rel :: ('a × 'a) set
  shows sym (symcl Rel)
  by (simp add: symcl-def sym-Un-converse)
```

The reflexive and symmetric closure of a relation is equal to its symmetric and reflexive closure.

lemma refl-symm-closure-is-symm-refl-closure:

```
fixes Rel :: ('a \times 'a) \ set

shows symcl \ (Rel^{=}) = (symcl \ Rel)^{=}

by (auto \ simp \ add: \ symcl-def \ refl)
```

The symmetric closure of a reflexive relation is reflexive.

```
lemma refl-symcl-of-refl-rel:
fixes Rel :: ('a × 'a) set
and A :: 'a set
assumes refl-on A Rel
shows refl-on A (symcl Rel)
using assms
by (auto simp add: refl-on-def' symcl-def)
```

Accordingly, the reflexive, symmetric, and transitive closure of a relation is equal to its symmetric, reflexive, and transitive closure.

```
lemma refl-symm-trans-closure-is-symm-refl-trans-closure:
 fixes Rel :: ('a \times 'a) \ set
 shows (symcl\ (Rel^{=}))^{+} = (symcl\ Rel)^{*}
     using refl-symm-closure-is-symm-refl-closure[where Rel=Rel]
   by simp
The reflexive closure of a symmetric relation is symmetric.
lemma sym-reflcl-of-symm-rel:
 fixes Rel :: ('a \times 'a) \ set
 assumes sym Rel
 shows sym (Rel^{=})
     using assms
   by (simp add: sym-Id sym-Un)
The reflexive closure of a reflexive relation is the relation itself.
lemma reflcl-of-refl-rel:
 fixes Rel :: ('a \times 'a) \ set
 assumes refl Rel
 shows Rel^{=} = Rel
     using assms
     \mathbf{unfolding}\ \mathit{refl-on-def}
   by auto
The symmetric closure of a symmetric relation is the relation itself.
lemma symm-closure-of-symm-rel:
 fixes Rel :: ('a \times 'a) set
 assumes sym Rel
 shows symcl Rel = Rel
     using assms
     unfolding symcl-def sym-def
   by auto
The reflexive and transitive closure of a preorder Rel is Rel.
lemma rtrancl-of-preorder:
 fixes Rel :: ('a \times 'a) \ set
 assumes preorder Rel
 shows Rel^* = Rel
     using assms reflcl-of-refl-rel[of Rel] trancl-id[of Rel=] trancl-reflcl[of Rel]
     unfolding preorder-on-def
   by auto
The reflexive and transitive closure of a relation is a subset of its reflexive, symmetric, and transitive
closure.
{f lemma} refl-trans-closure-subset-of-refl-symm-trans-closure:
 fixes Rel :: ('a \times 'a) \ set
 shows Rel^* \subseteq (symcl\ (Rel^=))^+
proof clarify
 \mathbf{fix} \ a \ b
 assume (a, b) \in Rel^*
 hence (a, b) \in (symcl\ Rel)^*
     using in-rtrancl-UnI[of (a, b) Rel Rel<sup>-1</sup>]
   by (simp add: symcl-def)
 thus (a, b) \in (symcl (Rel^{=}))^{+}
     using refl-symm-trans-closure-is-symm-refl-trans-closure[of Rel]
   by simp
qed
```

If a preorder Rel satisfies the following two conditions, then its symmetric closure is transitive: (1) If (a, b) and (c, b) in Rel but not (a, c) in Rel, then (b, a) in Rel or (b, c) in Rel. (2) If (a, b) and (a, c) in Rel but not (b, c) in Rel, then (b, a) in Rel or (c, a) in Rel.

```
lemma symm-closure-of-preorder-is-trans:
 fixes Rel :: ('a \times 'a) set
 assumes condA: \forall a \ b \ c. \ (a, \ b) \in Rel \land (c, \ b) \in Rel \land (a, \ c) \notin Rel
                \longrightarrow (b, a) \in Rel \lor (b, c) \in Rel
     and condB: \forall a \ b \ c. \ (a, \ b) \in Rel \land (a, \ c) \in Rel \land (b, \ c) \notin Rel
                \longrightarrow (b, a) \in Rel \lor (c, a) \in Rel
     and reflR: refl Rel
     and trank: trans Rel
 shows trans (symcl Rel)
   unfolding trans-def
proof clarify
  \mathbf{fix} \ a \ b \ c
  have [(a, b) \in Rel; (b, c) \in Rel] \Longrightarrow (a, c) \in symcl\ Rel
 proof -
   assume (a, b) \in Rel and (b, c) \in Rel
   with tranR have (a, c) \in Rel
       unfolding trans-def
     by blast
   thus (a, c) \in symcl Rel
     by (simp add: symcl-def)
 qed
  moreover have [(a, b) \in Rel; (c, b) \in Rel; (a, c) \notin Rel] \Longrightarrow (a, c) \in symcl Rel
  proof -
   assume A1: (a, b) \in Rel \text{ and } A2: (c, b) \in Rel \text{ and } (a, c) \notin Rel
   with condA have (b, a) \in Rel \lor (b, c) \in Rel
     \mathbf{by} blast
   thus (a, c) \in symcl Rel
   proof auto
     assume (b, a) \in Rel
     with A2 \ tranR have (c, a) \in Rel
         unfolding trans-def
       bv blast
     thus (a, c) \in symcl Rel
       by (simp add: symcl-def)
   next
     assume (b, c) \in Rel
     with A1 tranR have (a, c) \in Rel
         unfolding trans-def
       by blast
     thus (a, c) \in symcl Rel
       by (simp add: symcl-def)
   qed
  qed
  moreover have [(b, a) \in Rel; (b, c) \in Rel; (a, c) \notin Rel] \Longrightarrow (a, c) \in symcl Rel
 proof -
   assume B1: (b, a) \in Rel and B2: (b, c) \in Rel and (a, c) \notin Rel
   with condB have (a, b) \in Rel \lor (c, b) \in Rel
     by blast
   thus (a, c) \in symcl Rel
   proof auto
     assume (a, b) \in Rel
     with B2 \ tranR have (a, c) \in Rel
         unfolding trans-def
       by blast
     thus (a, c) \in symcl Rel
       by (simp add: symcl-def)
     assume (c, b) \in Rel
     with B1 tranR have (c, a) \in Rel
         unfolding trans-def
       by blast
```

```
thus (a, c) \in symcl Rel
       by (simp add: symcl-def)
   qed
  qed
  moreover have [(b, a) \in Rel; (c, b) \in Rel] \Longrightarrow (a, c) \in symcl Rel
   assume (c, b) \in Rel and (b, a) \in Rel
    with tranR have (c, a) \in Rel
        unfolding trans-def
      bv blast
    thus (a, c) \in symcl Rel
      by (simp add: symcl-def)
  qed
  moreover assume (a, b) \in symcl \ Rel \ and \ (b, c) \in symcl \ Rel
  ultimately show (a, c) \in symcl Rel
   by (auto simp add: symcl-def)
qed
1.2
        Preservation, Reflection, and Respection of Predicates
A relation R preserves some predicate P if P(a) implies P(b) for all (a, b) in R.
abbreviation rel-preserves-pred :: ('a \times 'a) set \Rightarrow ('a \Rightarrow bool) \Rightarrow bool where
  rel-preserves-pred Rel Pred \equiv \forall a \ b. \ (a, b) \in Rel \land Pred \ a \longrightarrow Pred \ b
abbreviation rel-preserves-binary-pred :: ('a \times 'a) set \Rightarrow ('a \Rightarrow 'b \Rightarrow bool) \Rightarrow bool where
  rel-preserves-binary-pred Rel Pred \equiv \forall a \ b \ x. \ (a, b) \in Rel \land Pred \ a \ x \longrightarrow Pred \ b \ x
A relation R reflects some predicate P if P(b) implies P(a) for all (a, b) in R.
abbreviation rel-reflects-pred :: ('a \times 'a) set \Rightarrow ('a \Rightarrow bool) \Rightarrow bool where
  rel-reflects-pred Rel \ Pred \equiv \forall \ a \ b. \ (a, \ b) \in Rel \land Pred \ b \longrightarrow Pred \ a
abbreviation rel-reflects-binary-pred :: ('a \times 'a) set \Rightarrow ('a \Rightarrow 'b \Rightarrow bool) \Rightarrow bool where
  rel-reflects-binary-pred Rel Pred \equiv \forall a \ b \ x. \ (a, b) \in Rel \land Pred \ b \ x \longrightarrow Pred \ a \ x
A relation respects a predicate if it preserves and reflects it.
abbreviation rel-respects-pred :: ('a \times 'a) set \Rightarrow ('a \Rightarrow bool) \Rightarrow bool where
  rel-respects-pred Rel Pred \equiv rel-preserves-pred Rel Pred \wedge rel-reflects-pred Rel Pred
abbreviation rel-respects-binary-pred :: ('a \times 'a) set \Rightarrow ('a \Rightarrow 'b \Rightarrow bool) \Rightarrow bool where
  rel-respects-binary-pred Rel Pred \equiv
   rel-preserves-binary-pred Rel Pred \wedge rel-reflects-binary-pred Rel Pred
For symmetric relations preservation, reflection, and respection of predicates means the same.
\mathbf{lemma}\ symm\text{-}relation\text{-}impl\text{-}preservation\text{-}equals\text{-}reflection\text{:}}
  fixes Rel :: ('a \times 'a) set
   and Pred :: 'a \Rightarrow bool
  assumes symm: sym Rel
  shows rel-preserves-pred Rel Pred = rel-reflects-pred Rel Pred
    and rel-preserves-pred Rel Pred = rel-respects-pred Rel Pred
   and rel-reflects-pred Rel Pred = rel-respects-pred Rel Pred
      using symm
      unfolding sym-def
    by blast+
{\bf lemma}\ symm-relation-impl-preservation-equals-reflection-of-binary-predicates:
  fixes Rel :: ('a \times 'a) \ set
   and Pred :: 'a \Rightarrow 'b \Rightarrow bool
```

shows rel-preserves-binary-pred Rel Pred = rel-reflects-binary-pred Rel Pred

assumes symm: sym Rel

```
and rel-preserves-binary-pred Rel Pred = rel-respects-binary-pred Rel Pred
   and rel-reflects-binary-pred Rel Pred = rel-respects-binary-pred Rel Pred
     using symm
     unfolding sym-def
   by blast+
If a relation preserves a predicate then so does its reflexive or/and transitive closure.
lemma preservation-and-closures:
  fixes Rel :: ('a \times 'a) set
   and Pred :: 'a \Rightarrow bool
 assumes preservation: rel-preserves-pred Rel Pred
 shows rel-preserves-pred (Rel<sup>=</sup>) Pred
   and rel-preserves-pred (Rel<sup>+</sup>) Pred
   and rel-preserves-pred (Rel*) Pred
proof -
  from preservation show A: rel-preserves-pred (Rel=) Pred
   by (auto simp add: refl)
  have B: \bigwedge Rel. rel-preserves-pred Rel Pred \Longrightarrow rel-preserves-pred (Rel<sup>+</sup>) Pred
  proof clarify
   \mathbf{fix} \ Rel \ a \ b
   assume (a, b) \in Rel^+ and rel-preserves-pred Rel Pred and Pred a
   thus Pred b
     by (induct, blast+)
 qed
  with preservation show rel-preserves-pred (Rel<sup>+</sup>) Pred
  from preservation A B[where Rel=Rel=] show rel-preserves-pred (Rel*) Pred
     using trancl-reflcl[of Rel]
   by blast
qed
{\bf lemma}\ preservation \hbox{-} of \hbox{-} binary \hbox{-} predicates \hbox{-} and \hbox{-} closures \hbox{:}
 fixes Rel :: ('a \times 'a) set
   and Pred :: 'a \Rightarrow 'b \Rightarrow bool
  assumes preservation: rel-preserves-binary-pred Rel Pred
  shows rel-preserves-binary-pred (Rel=) Pred
   and rel-preserves-binary-pred (Rel<sup>+</sup>) Pred
   and rel-preserves-binary-pred (Rel*) Pred
proof -
  from preservation show A: rel-preserves-binary-pred (Rel=) Pred
   by (auto simp add: refl)
  have B: \bigwedge Rel. rel-preserves-binary-pred Rel Pred
          \implies rel-preserves-binary-pred (Rel<sup>+</sup>) Pred
  proof clarify
   \mathbf{fix} \ Rel \ a \ b \ x
   assume (a, b) \in Rel^+ and rel-preserves-binary-pred Rel Pred and Pred a x
   thus Pred\ b\ x
     by (induct, blast+)
  with preservation show rel-preserves-binary-pred (Rel<sup>+</sup>) Pred
  from preservation A B[where Rel=Rel=]
  show rel-preserves-binary-pred (Rel*) Pred
     using trancl-reflct[of Rel]
   by fast
qed
If a relation reflects a predicate then so does its reflexive or/and transitive closure.
lemma reflection-and-closures:
  fixes Rel :: ('a \times 'a) \ set
```

```
and Pred :: 'a \Rightarrow bool
  assumes reflection: rel-reflects-pred Rel Pred
 shows rel-reflects-pred (Rel<sup>=</sup>) Pred
   and rel-reflects-pred (Rel^+) Pred
   and rel-reflects-pred (Rel*) Pred
proof -
  from reflection show A: rel-reflects-pred (Rel^{=}) Pred
   by (auto simp add: refl)
  have B: \bigwedge Rel. rel-reflects-pred Rel Pred \Longrightarrow rel-reflects-pred (Rel<sup>+</sup>) Pred
  proof clarify
   fix Rel a b
   assume (a, b) \in Rel^+ and rel-reflects-pred Rel Pred and Pred b
   thus Pred a
     by (induct, blast+)
 qed
  with reflection show rel-reflects-pred (Rel<sup>+</sup>) Pred
   by blast
  from reflection A B[where Rel=Rel=] show rel-reflects-pred (Rel*) Pred
     using trancl-reflct[of Rel]
   by fast
qed
\mathbf{lemma}\ reflection\text{-}of\text{-}binary\text{-}predicates\text{-}and\text{-}closures\text{:}
  fixes Rel :: ('a \times 'a) \ set
   and Pred :: 'a \Rightarrow 'b \Rightarrow bool
  assumes reflection: rel-reflects-binary-pred Rel Pred
  shows rel-reflects-binary-pred (Rel^{=}) Pred
   and rel-reflects-binary-pred (Rel<sup>+</sup>) Pred
   and rel-reflects-binary-pred (Rel*) Pred
proof -
  from reflection show A: rel-reflects-binary-pred (Rel^{\pm}) Pred
   by (auto simp add: refl)
  have B: \bigwedge Rel. rel-reflects-binary-pred Rel Pred \implies rel-reflects-binary-pred (Rel<sup>+</sup>) Pred
  proof clarify
   \mathbf{fix} \ Rel \ a \ b \ x
   assume (a, b) \in Rel^+ and rel-reflects-binary-pred Rel Pred and Pred b x
   thus Pred a x
     by (induct, blast+)
  qed
  with reflection show rel-reflects-binary-pred (Rel<sup>+</sup>) Pred
   by blast
  from reflection A B[where Rel=Rel=]
  show rel-reflects-binary-pred (Rel*) Pred
     using trancl-reflct[of Rel]
   by fast
qed
If a relation respects a predicate then so does its reflexive, symmetric, or/and transitive closure.
lemma respection-and-closures:
  fixes Rel :: ('a \times 'a) set
   and Pred :: 'a \Rightarrow bool
  assumes respection: rel-respects-pred Rel Pred
  shows rel-respects-pred (Rel^{=}) Pred
   and rel-respects-pred (symcl Rel) Pred
   and rel-respects-pred (Rel<sup>+</sup>) Pred
   and rel-respects-pred (symcl (Rel=)) Pred
   and rel-respects-pred (Rel*) Pred
   and rel-respects-pred ((symcl\ (Rel^{=}))^{+}) Pred
proof -
  from respection show A: rel-respects-pred (Rel^{=}) Pred
     using preservation-and-closures(1)[where Rel=Rel and Pred=Pred]
```

```
reflection-and-closures(1)[where Rel=Rel and Pred=Pred]
   by blast
 have B: \bigwedge Rel. rel-respects-pred Rel Pred \Longrightarrow rel-respects-pred (symcl Rel) Pred
 proof
   fix Rel
   assume B1: rel-respects-pred Rel Pred
   show rel-preserves-pred (symcl Rel) Pred
   proof clarify
     \mathbf{fix} \ a \ b
     assume (a, b) \in symcl Rel
     hence (a, b) \in Rel \lor (b, a) \in Rel
       by (simp add: symcl-def)
     moreover assume Pred a
     ultimately show Pred b
        using B1
       by blast
   qed
 next
   fix Rel :: ('a \times 'a) set
   and Pred :: 'a \Rightarrow bool
   assume B2: rel-respects-pred Rel Pred
   show rel-reflects-pred (symcl Rel) Pred
   proof clarify
     \mathbf{fix} \ a \ b
     assume (a, b) \in symcl Rel
     hence (a, b) \in Rel \lor (b, a) \in Rel
       by (simp add: symcl-def)
     moreover assume Pred b
     ultimately show Pred a
        using B2
       by blast
   ged
 qed
 from respection B[where Rel=Rel] show rel-respects-pred (symcl Rel) Pred
 have C: \bigwedge Rel. \ rel-respects-pred \ Rel \ Pred \Longrightarrow rel-respects-pred \ (Rel^+) \ Pred
 proof -
   \mathbf{fix} \ Rel
   assume rel-respects-pred Rel Pred
   thus rel-respects-pred (Rel<sup>+</sup>) Pred
       using preservation-and-closures(2)[where Rel=Rel and Pred=Pred]
            reflection-and-closures(2)[where Rel=Rel and Pred=Pred]
     by blast
 qed
 from respection C[where Rel=Rel] show rel-respects-pred (Rel^+) Pred
   by blast
 from A B[where Rel=Rel=] show rel-respects-pred (symcl (Rel=)) Pred
   by blast
 from A C[where Rel=Rel=] show rel-respects-pred (Rel^*) Pred
     using trancl-reflct[of Rel]
 from A B[where Rel=Rel=] C[where Rel=symcl (Rel=)]
 show rel-respects-pred ((symcl\ (Rel^{=}))^{+}) Pred
   by blast
qed
lemma respection-of-binary-predicates-and-closures:
 fixes Rel :: ('a \times 'a) set
   and Pred :: 'a \Rightarrow 'b \Rightarrow bool
 assumes respection: rel-respects-binary-pred Rel Pred
 shows rel-respects-binary-pred (Rel^{=}) Pred
```

```
and rel-respects-binary-pred (symcl Rel) Pred
   and rel-respects-binary-pred (Rel<sup>+</sup>) Pred
   and rel-respects-binary-pred (symcl (Rel^{=})) Pred
   and rel-respects-binary-pred (Rel*) Pred
   and rel-respects-binary-pred ((symcl\ (Rel^{=}))^{+}) Pred
proof -
 from respection show A: rel-respects-binary-pred (Rel^{=}) Pred
     using preservation-of-binary-predicates-and-closures(1)[where Rel=Rel and Pred=Pred]
          reflection-of-binary-predicates-and-closures(1)[where Rel=Rel and Pred=Pred]
   by blast
 have B: \bigwedge Rel. rel-respects-binary-pred Rel Pred \Longrightarrow rel-respects-binary-pred (symcl Rel) Pred
 proof
   \mathbf{fix} \ Rel
   assume B1: rel-respects-binary-pred Rel Pred
   show rel-preserves-binary-pred (symcl Rel) Pred
   proof clarify
     \mathbf{fix} \ a \ b \ x
     assume (a, b) \in symcl Rel
     hence (a, b) \in Rel \lor (b, a) \in Rel
      by (simp add: symcl-def)
     moreover assume Pred a x
     ultimately show Pred \ b \ x
        using B1
      by blast
   qed
 \mathbf{next}
   assume B2: rel-respects-binary-pred Rel Pred
   show rel-reflects-binary-pred (symcl Rel) Pred
   proof clarify
     \mathbf{fix} \ a \ b \ x
     assume (a, b) \in symcl Rel
     hence (a, b) \in Rel \vee (b, a) \in Rel
      by (simp add: symcl-def)
     moreover assume Pred \ b \ x
     ultimately show Pred a x
        using B2
      by blast
   qed
 qed
 from respection B[where Rel=Rel] show rel-respects-binary-pred (symcl Rel) Pred
 have C: \land Rel. \ rel-respects-binary-pred \ Rel \ Pred \implies rel-respects-binary-pred \ (Rel^+) \ Pred
 proof -
   \mathbf{fix} \ Rel
   assume rel-respects-binary-pred Rel Pred
   thus rel-respects-binary-pred (Rel<sup>+</sup>) Pred
      using preservation-of-binary-predicates-and-closures(2)[where Rel=Rel and Pred=Pred]
            reflection-of-binary-predicates-and-closures(2)[where Rel=Rel and Pred=Pred]
     by blast
 qed
 from respection C[where Rel=Rel] show rel-respects-binary-pred (Rel^+) Pred
   by blast
 from A B[where Rel=Rel=]
 show rel-respects-binary-pred (symcl (Rel^{\pm})) Pred
   by blast
 from A C[where Rel=Rel=]
 show rel-respects-binary-pred (Rel*) Pred
     using trancl-reflcl[of Rel]
   by fast
 from A B[where Rel=Rel=] C[where Rel=symcl (Rel=)]
```

```
show rel-respects-binary-pred ((symcl (Rel=))+) Pred
by blast
qed
end
theory ProcessCalculi
imports Relations
begin
```

2 Process Calculi

A process calculus is given by a set of process terms (syntax) and a relation on terms (semantics). We consider reduction as well as labelled variants of the semantics.

2.1 Reduction Semantics

A set of process terms and a relation on pairs of terms (called reduction semantics) define a process calculus.

```
record 'proc processCalculus = Reductions :: 'proc \Rightarrow 'proc \Rightarrow bool

A pair of the reduction relation is called a (reduction) step.

abbreviation step :: 'proc \Rightarrow 'proc processCalculus \Rightarrow 'proc \Rightarrow bool (\leftarrow \mapsto - \rightarrow [70, 70, 70] \ 80)

where
P \mapsto Cal \ Q \equiv Reductions \ Cal \ P \ Q
```

We use * to indicate the reflexive and transitive closure of the reduction relation.

```
primrec nSteps

:: 'proc \Rightarrow 'proc processCalculus \Rightarrow nat <math>\Rightarrow 'proc \Rightarrow bool

(\leftarrow \mapsto-- \rightarrow [70, 70, 70, 70] 80)

where

P \mapsto Cal^0 Q = (P = Q) \mid

P \mapsto Cal^{Suc \ n} Q = (\exists P'. \ P \mapsto Cal^n \ P' \land P' \mapsto Cal \ Q)

definition steps

:: 'proc \Rightarrow 'proc processCalculus \Rightarrow 'proc \Rightarrow bool

(\leftarrow \mapsto-* \rightarrow [70, 70, 70] 80)

where

P \mapsto Cal^* Q \equiv \exists n. \ P \mapsto Cal^n \ Q
```

A process is divergent, if it can perform an infinite sequence of steps.

```
definition divergent

:: 'proc \Rightarrow 'proc processCalculus \Rightarrow bool

(\leftarrow \mapsto -\omega \rightarrow [70, 70] \ 80)

where

P \longmapsto (Cal)\omega \equiv \forall P'. \ P \longmapsto Cal \ast P' \longrightarrow (\exists P''. \ P' \longmapsto Cal \ P'')
```

Each term can perform an (empty) sequence of steps to itself.

```
lemma steps-refl:
fixes Cal :: 'proc \ processCalculus
and P :: 'proc
shows P \longmapsto Cal * P
proof -
have P \longmapsto Cal^0 \ P
by simp
hence \exists \ n. \ P \longmapsto Cal^n \ P
```

```
by blast
  thus P \longmapsto Cal * P
   by (simp add: steps-def)
A single step is a sequence of steps of length one.
lemma step-to-steps:
  \mathbf{fixes} \ \mathit{Cal} \ :: \ 'proc \ \mathit{processCalculus}
   and P P' :: 'proc
  assumes step: P \longmapsto Cal P'
  shows P \longmapsto Cal * P'
proof -
  from step have P \longmapsto Cal^1 P'
   by simp
  thus ?thesis
   unfolding steps-def
   by blast
qed
If there is a sequence of steps from P to Q and from Q to R, then there is also a sequence of steps
from P to R.
lemma nSteps-add:
  {f fixes} \ {\it Cal} \ :: 'proc \ process {\it Calculus}
   and n1 \ n2 :: nat
  shows \forall P \ Q \ R. \ P \longmapsto Cal^{n1} \ Q \land Q \longmapsto Cal^{n2} \ R \longrightarrow P \longmapsto Cal^{(n1 + n2)} \ R
proof (induct n2, simp)
  case (Suc\ n)
  assume IH: \forall P \ Q \ R. \ P \longmapsto Cal^{n1} \ Q \land Q \longmapsto Cal^n \ R \longrightarrow P \longmapsto Cal^{(n1+n)} \ R
  show ?case
  proof clarify
   fix P Q R
   assume Q \longmapsto Cal^{Suc\ n}\ R
    from this obtain Q' where A1: Q \longrightarrow Cal^n Q' and A2: Q' \longmapsto Cal R
     by auto
   assume P \longmapsto Cal^{n_1} Q
    with A1 IH have P \longmapsto Cal^{(n1 + n)} O'
     by blast
    with A2 show P \longmapsto Cal^{(n1 + Suc \ n)} R
     by auto
  \mathbf{qed}
qed
lemma steps-add:
  {f fixes} \ {\it Cal} \ :: 'proc \ process {\it Calculus}
   and P Q R :: 'proc
  assumes A1: P \longmapsto Cal * Q
     and A2: Q \longmapsto Cal * R
  shows P \longmapsto Cal * R
proof -
  from A1 obtain n1 where P \longmapsto Cal^{n1} Q
    by (auto simp add: steps-def)
  moreover from A2 obtain n2 where Q \longmapsto Cal^{n2} R
    by (auto simp add: steps-def)
  ultimately have P \longmapsto Cal^{(n1 + n2)} R
   using nSteps-add[where Cal=Cal]
   \mathbf{by} blast
  thus P \longmapsto Cal * R
   by (simp add: steps-def, blast)
qed
```

2.1.1 Observables or Barbs

abbreviation rel-respects-barb-set

We assume a predicate that tests terms for some kind of observables. At this point we do not limit or restrict the kind of observables used for a calculus nor the method to check them.

```
record ('proc, 'barbs) calculusWithBarbs =
  Calculus :: 'proc processCalculus
  HasBarb :: 'proc \Rightarrow 'barbs \Rightarrow bool ( \leftarrow \downarrow \rightarrow [70, 70] 80)
abbreviation hasBarb
  :: 'proc \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \Rightarrow bool
   (\leftarrow \downarrow < \rightarrow) [70, 70, 70] 80)
  where
  P \downarrow < CWB > a \equiv HasBarb\ CWB\ P\ a
A term reaches a barb if it can evolve to a term that has this barb.
{\bf abbreviation}\ \mathit{reachesBarb}
  :: 'proc \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \Rightarrow bool
   (\leftarrow \downarrow < -> \rightarrow [70, 70, 70] 80)
  where
  P \Downarrow < CWB > a \equiv \exists P'. P \longmapsto (Calculus CWB) * P' \land P' \downarrow < CWB > a
A relation R preserves barbs if whenever (P, Q) in R and P has a barb then also Q has this barb.
abbreviation rel-preserves-barb-set
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \ set \Rightarrow bool
  where
  rel	ext{-}preserves	ext{-}barb	ext{-}set\ Rel\ CWB\ Barbs\ \equiv
   rel-preserves-binary-pred Rel (\lambda P a. a \in Barbs \wedge P \downarrow < CWB > a)
abbreviation rel-preserves-barbs
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool
  where
  rel-preserves-barbs Rel\ CWB \equiv rel-preserves-binary-pred Rel\ (HasBarb\ CWB)
lemma preservation-of-barbs-and-set-of-barbs:
  fixes Rel :: ('proc \times 'proc) set
    and CWB :: ('proc, 'barbs) calculusWithBarbs
  shows rel-preserves-barbs Rel CWB = (\forall Barbs. rel-preserves-barb-set Rel CWB Barbs)
    by blast
A relation R reflects barbs if whenever (P, Q) in R and Q has a barb then also P has this barb.
abbreviation rel-reflects-barb-set
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \ set \Rightarrow bool
  where
  rel-reflects-barb-set\ Rel\ CWB\ Barbs \equiv
   rel-reflects-binary-pred Rel (\lambda P a. a \in Barbs \land P \downarrow < CWB > a)
{f abbreviation} rel	ext{-}reflects	ext{-}barbs
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool
  where
  rel-reflects-barbs Rel\ CWB \equiv rel-reflects-binary-pred Rel\ (HasBarb\ CWB)
lemma reflection-of-barbs-and-set-of-barbs:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  shows rel-reflects-barbs Rel\ CWB = (\forall\ Barbs.\ rel-reflects-barb-set Rel\ CWB\ Barbs)
    by blast
A relation respects barbs if it preserves and reflects barbs.
```

```
:: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \ set \Rightarrow bool
 where
 rel-respects-barb-set Rel CWB Barbs \equiv
  rel-preserves-barb-set Rel CWB Barbs \land rel-reflects-barb-set Rel CWB Barbs
{f abbreviation} rel	ext{-}respects	ext{-}barbs
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculusWithBarbs \Rightarrow bool
 where
 rel-respects-barbs Rel\ CWB \equiv rel-preserves-barbs Rel\ CWB \land rel-reflects-barbs Rel\ CWB
lemma respection-of-barbs-and-set-of-barbs:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 shows rel-respects-barbs Rel CWB = (\forall Barbs. rel-respects-barb-set Rel CWB Barbs)
   by blast
If a relation preserves barbs then so does its reflexive or/and transitive closure.
lemma preservation-of-barbs-and-closures:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes preservation: rel-preserves-barbs Rel CWB
 shows rel-preserves-barbs (Rel<sup>=</sup>) CWB
   and rel-preserves-barbs (Rel<sup>+</sup>) CWB
   and rel-preserves-barbs (Rel*) CWB
     using preservation
          preservation-of-binary-predicates-and-closures where Rel=Rel and Pred=HasBarb CWB
   by blast+
If a relation reflects barbs then so does its reflexive or/and transitive closure.
lemma reflection-of-barbs-and-closures:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes reflection: rel-reflects-barbs Rel CWB
 shows rel-reflects-barbs (Rel=) CWB
   and rel-reflects-barbs (Rel<sup>+</sup>) CWB
   and rel-reflects-barbs (Rel*) CWB
     using reflection
          reflection-of-binary-predicates-and-closures[where Rel=Rel and Pred=HasBarb CWB]
   by blast+
If a relation respects barbs then so does its reflexive, symmetric, or/and transitive closure.
lemma respection-of-barbs-and-closures:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes respection: rel-respects-barbs Rel CWB
 shows rel-respects-barbs (Rel^{\pm}) CWB
   and rel-respects-barbs (symcl Rel) CWB
   and rel-respects-barbs (Rel<sup>+</sup>) CWB
   and rel-respects-barbs (symcl (Rel<sup>=</sup>)) CWB
   and rel-respects-barbs (Rel*) CWB
   and rel-respects-barbs ((symcl\ (Rel^{=}))^{+})\ CWB
proof -
 from respection show rel-respects-barbs (Rel=) CWB
     using respection-of-binary-predicates-and-closures(1)[where Rel=Rel and Pred=HasBarb CWB]
   \mathbf{by} blast
 from respection show rel-respects-barbs (symcl Rel) CWB
     using respection-of-binary-predicates-and-closures(2) [where Rel=Rel and Pred=HasBarb\ CWB]
   by blast
next
```

```
from respection show rel-respects-barbs (Rel<sup>+</sup>) CWB
     using respection-of-binary-predicates-and-closures(3)[where Rel=Rel and Pred=HasBarb CWB]
   by blast
next
  from respection show rel-respects-barbs (symcl (Rel=)) CWB
     using respection-of-binary-predicates-and-closures(4)[where Rel=Rel and Pred=HasBarb CWB]
   by blast
next
  from respection show rel-respects-barbs (Rel*) CWB
     using respection-of-binary-predicates-and-closures(5)[where Rel=Rel and Pred=HasBarb CWB]
   by blast
next
  from respection show rel-respects-barbs ((symcl\ (Rel^{=}))^{+}) CWB
     \textbf{using} \ \textit{respection-of-binary-predicates-and-closures} (6) [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \ \textit{Pred} = \textit{HasBarb} \ \textit{CWB}]
   by blast
qed
A relation R weakly preserves barbs if it preserves reachability of barbs, i.e., if (P, Q) in R and P
reaches a barb then also Q has to reach this barb.
abbreviation rel-weakly-preserves-barb-set
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \ set \Rightarrow bool
  where
  rel-weakly-preserves-barb-set Rel CWB Barbs \equiv
  rel-preserves-binary-pred Rel (\lambda P a. a \in Barbs \wedge P \Downarrow < CWB > a)
abbreviation rel-weakly-preserves-barbs
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool
  where
  rel-weakly-preserves-barbs Rel CWB \equiv rel-preserves-binary-pred Rel (\lambda P a. P \Downarrow < CWB > a)
lemma weak-preservation-of-barbs-and-set-of-barbs:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  shows rel-weakly-preserves-barbs Rel CWB
        = (\forall Barbs. rel-weakly-preserves-barb-set Rel CWB Barbs)
   by blast
A relation R weakly reflects barbs if it reflects reachability of barbs, i.e., if (P, Q) in R and Q reaches
a barb then also P has to reach this barb.
{\bf abbreviation}\ \textit{rel-weakly-reflects-barb-set}
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \ set \Rightarrow bool
  where
  rel-weakly-reflects-barb-set Rel CWB Barbs \equiv
  rel-reflects-binary-pred Rel (\lambda P a. a \in Barbs \wedge P \Downarrow < CWB > a)
abbreviation rel-weakly-reflects-barbs
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool
  where
  rel-weakly-reflects-barbs Rel CWB \equiv rel-reflects-binary-pred Rel (\lambda P a. P \Downarrow < CWB > a)
{\bf lemma}\ \textit{weak-reflection-of-barbs-and-set-of-barbs}:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 shows rel-weakly-reflects-barbs Rel CWB = (\forall Barbs. rel-weakly-reflects-barb-set Rel CWB Barbs)
   by blast
A relation weakly respects barbs if it weakly preserves and weakly reflects barbs.
abbreviation rel-weakly-respects-barb-set
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow 'barbs \ set \Rightarrow bool
  where
```

```
rel-weakly-respects-barb-set Rel CWB Barbs \equiv
   rel-weakly-preserves-barb-set Rel CWB Barbs \land rel-weakly-reflects-barb-set Rel CWB Barbs
abbreviation rel-weakly-respects-barbs
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculusWithBarbs \Rightarrow bool
 where
  rel-weakly-respects-barbs Rel\ CWB \equiv
  rel-weakly-preserves-barbs Rel CWB \land rel-weakly-reflects-barbs Rel CWB
lemma weak-respection-of-barbs-and-set-of-barbs:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  shows rel-weakly-respects-barbs Rel CWB = (\forall Barbs. rel-weakly-respects-barb-set Rel CWB Barbs)
   by blast
If a relation weakly preserves barbs then so does its reflexive or/and transitive closure.
\mathbf{lemma}\ \textit{weak-preservation-of-barbs-and-closures}:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes preservation: rel-weakly-preserves-barbs Rel CWB
  shows rel-weakly-preserves-barbs (Rel^{=}) CWB
   and rel-weakly-preserves-barbs (Rel<sup>+</sup>) CWB
   and rel-weakly-preserves-barbs (Rel*) CWB
     \textbf{using} \ \textit{preservation preservation-of-binary-predicates-and-closures} [\textbf{where} \ \textit{Rel} = \textit{Rel}
                       and Pred = \lambda P \ a. \ P \Downarrow \langle CWB \rangle a
   by blast+
If a relation weakly reflects barbs then so does its reflexive or/and transitive closure.
lemma weak-reflection-of-barbs-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes reflection: rel-weakly-reflects-barbs Rel CWB
  shows rel-weakly-reflects-barbs (Rel^{=}) CWB
   and rel-weakly-reflects-barbs (Rel<sup>+</sup>) CWB
   and rel-weakly-reflects-barbs (Rel*) CWB
     using reflection reflection-of-binary-predicates-and-closures where Rel=Rel
                     and Pred = \lambda P \ a. \ P \Downarrow < CWB > a
   by blast+
If a relation weakly respects barbs then so does its reflexive, symmetric, or/and transitive closure.
lemma weak-respection-of-barbs-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes respection: rel-weakly-respects-barbs Rel CWB
  shows rel-weakly-respects-barbs (Rel^{=}) CWB
   and rel-weakly-respects-barbs (symcl Rel) CWB
   and rel-weakly-respects-barbs (Rel<sup>+</sup>) CWB
   and rel-weakly-respects-barbs (symcl (Rel<sup>=</sup>)) CWB
   and rel-weakly-respects-barbs (Rel*) CWB
   and rel-weakly-respects-barbs ((symcl\ (Rel^{=}))^{+})\ CWB
proof -
  from respection show rel-weakly-respects-barbs (Rel<sup>=</sup>) CWB
     using respection-of-binary-predicates-and-closures (1) [where Rel=Rel
            and Pred = \lambda P \ a. \ P \Downarrow \langle CWB \rangle a]
   \mathbf{by} blast
\mathbf{next}
  from respection show rel-weakly-respects-barbs (symcl Rel) CWB
     using respection-of-binary-predicates-and-closures (2) [where Rel=Rel
            and Pred = \lambda P \ a. \ P \Downarrow < CWB > a
   by blast
```

```
next
  from respection show rel-weakly-respects-barbs (Rel^+) CWB
     using respection-of-binary-predicates-and-closures (3) [where Rel=Rel
             and Pred = \lambda P \ a. \ P \Downarrow \langle CWB \rangle a]
   by blast
next
  from respection show rel-weakly-respects-barbs (symcl (Rel=)) CWB
     using respection-of-binary-predicates-and-closures (4) [where Rel=Rel
             and Pred = \lambda P \ a. \ P \Downarrow \langle CWB \rangle a
   \mathbf{by} blast
next
  from respection show rel-weakly-respects-barbs (Rel*) CWB
     using respection-of-binary-predicates-and-closures(5)[where Rel=Rel
             and Pred = \lambda P \ a. \ P \Downarrow \langle CWB \rangle a
   by blast
  from respection show rel-weakly-respects-barbs ((symcl\ (Rel^{=}))^{+}) CWB
     using respection-of-binary-predicates-and-closures(6)[where Rel=Rel
             and Pred = \lambda P \ a. \ P \Downarrow \langle CWB \rangle a]
   \mathbf{by} blast
qed
end
theory SimulationRelations
 imports ProcessCalculi
begin
```

3 Simulation Relations

Simulation relations are a special kind of property on relations on processes. They usually require that steps are (strongly or weakly) preserved and/or reflected modulo the relation. We consider different kinds of simulation relations.

3.1 Simulation

A weak reduction simulation is relation R such that if (P, Q) in R and P evolves to some P' then there exists some Q' such that Q evolves to Q' and (P', Q') in R.

```
abbreviation weak-reduction-simulation
:: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool
where
weak-reduction-simulation \ Rel \ Cal \equiv
\forall P \ Q \ P'. \ (P, \ Q) \in Rel \land P \longmapsto Cal* \ P' \longrightarrow (\exists \ Q'. \ Q \longmapsto Cal* \ Q' \land (P', \ Q') \in Rel)
```

A weak barbed simulation is weak reduction simulation that weakly preserves barbs.

```
 \begin{array}{l} \textbf{abbreviation} \ \ weak\text{-}barbed\text{-}simulation \\ \ \ :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculusWithBarbs \Rightarrow bool \\ \textbf{where} \\ \ weak\text{-}barbed\text{-}simulation \ Rel \ CWB \equiv \\ \ weak\text{-}reduction\text{-}simulation \ Rel \ (Calculus \ CWB) \wedge rel\text{-}weakly\text{-}preserves\text{-}barbs \ Rel \ CWB \end{array}
```

The reflexive and/or transitive closure of a weak simulation is a weak simulation.

```
lemma weak-reduction-simulation-and-closures:

fixes Rel :: ('proc \times 'proc) \ set

and Cal :: 'proc \ processCalculus

assumes simulation: \ weak-reduction-simulation \ (Rel^=) \ Cal

shows weak-reduction-simulation \ (Rel^+) \ Cal

and weak-reduction-simulation \ (Rel^*) \ Cal
```

```
proof -
 from simulation show A: weak-reduction-simulation (Rel^{=}) Cal
   by (auto simp add: refl, blast)
 have B: \bigwedge Rel. weak-reduction-simulation Rel Cal \Longrightarrow weak-reduction-simulation (Rel<sup>+</sup>) Cal
 proof clarify
   fix Rel\ P\ Q\ P'
   assume B1: weak-reduction-simulation Rel Cal
   assume (P, Q) \in Rel^+ and P \longmapsto Cal * P'
   thus \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^+
   proof (induct arbitrary: P')
     \mathbf{fix}\ Q\ P'
     assume (P, Q) \in Rel \text{ and } P \longmapsto Cal * P'
     with B1 obtain Q' where Q \longmapsto Cal * Q' and (P', Q') \in Rel
     thus \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^+
      by auto
   next
     case (step Q R P')
     assume \bigwedge P'. P \longmapsto Cal * P' \Longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^+)
       and P \longmapsto Cal * P'
     from this obtain Q' where B2: Q \longmapsto Cal* Q' and B3: (P', Q') \in Rel^+
      by blast
     assume (Q, R) \in Rel
     with B1 B2 obtain R' where B4: R \mapsto Cal* R' and B5: (Q', R') \in Rel^+
     from B3 B5 have (P', R') \in Rel^+
     from B4 this show \exists R'. R \longmapsto Cal * R' \land (P', R') \in Rel^+
       by blast
   qed
 qed
 with simulation show weak-reduction-simulation (Rel<sup>+</sup>) Cal
   by blast
 from simulation A B[where Rel=Rel=]
 show weak-reduction-simulation (Rel^*) Cal
     using trancl-reflcl[of Rel]
   by fast
qed
lemma weak-barbed-simulation-and-closures:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes simulation: weak-barbed-simulation Rel CWB
 shows weak-barbed-simulation (Rel^{=}) CWB
   and weak-barbed-simulation (Rel^+) CWB
   and weak-barbed-simulation (Rel*) CWB
proof -
 from simulation show weak-barbed-simulation (Rel^{=}) CWB
     using weak-reduction-simulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB]
          weak-preservation-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
   by blast
next
 from simulation show weak-barbed-simulation (Rel<sup>+</sup>) CWB
     using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Calculus CWB]
          weak-preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
   by blast
 from simulation show weak-barbed-simulation (Rel*) CWB
     using weak-reduction-simulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
          weak-preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
```

qed

In the case of a simulation weak preservation of barbs can be replaced by the weaker condition that whenever (P, Q) in the relation and P has a barb then Q have to be able to reach this barb.

```
abbreviation weak-barbed-preservation-cond
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculusWithBarbs \Rightarrow bool
  where
  weak-barbed-preservation-cond Rel CWB \equiv \forall P \ Q \ a. \ (P, \ Q) \in Rel \land P \downarrow < CWB > a \longrightarrow Q \downarrow < CWB > a
lemma weak-preservation-of-barbs:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes preservation: rel-weakly-preserves-barbs Rel CWB
  shows weak-barbed-preservation-cond Rel CWB
proof clarify
  fix P Q a
  have P \longmapsto (Calculus\ CWB) * P
   by (simp add: steps-refl)
  moreover assume P \downarrow < CWB > a
  ultimately have P \Downarrow < CWB > a
   by blast
  moreover assume (P, Q) \in Rel
  ultimately show Q \Downarrow < CWB > a
   using preservation
   by blast
qed
lemma simulation-impl-equality-of-preservation-of-barbs-conditions:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes simulation: weak-reduction-simulation Rel (Calculus CWB)
  shows rel-weakly-preserves-barbs Rel CWB = weak-barbed-preservation-cond Rel CWB
proof
  assume rel-weakly-preserves-barbs Rel CWB
  thus weak-barbed-preservation-cond Rel CWB
     using weak-preservation-of-barbs[where Rel=Rel and CWB=CWB]
   \mathbf{by} blast
next
  assume condition: weak-barbed-preservation-cond Rel CWB
  show rel-weakly-preserves-barbs Rel CWB
  proof clarify
   fix P Q a P'
   assume (P, Q) \in Rel \text{ and } P \longmapsto (Calculus \ CWB) * P'
   with simulation obtain Q' where A1: Q \longmapsto (Calculus \ CWB) * Q' and A2: (P', Q') \in Rel
     by blast
   assume P' \downarrow < CWB > a
   with A2 condition obtain Q'' where A3: Q' \longmapsto (Calculus\ CWB) * Q'' and A4: Q'' \downarrow < CWB > a
   from A1 A3 have Q \longmapsto (Calculus \ CWB) * Q''
     by (rule steps-add)
   with A4 show Q \Downarrow < CWB > a
     by blast
  qed
qed
A strong reduction simulation is relation R such that for each pair (P, Q) in R and each step of P to
some P' there exists some Q' such that there is a step of Q to Q' and (P', Q') in R.
abbreviation strong-reduction-simulation :: ('proc \times 'proc) set \Rightarrow 'proc \ processCalculus <math>\Rightarrow bool
  where
  strong-reduction-simulation Rel\ Cal \equiv
```

```
\forall P \ Q \ P'. \ (P, \ Q) \in Rel \land P \longmapsto Cal \ P' \longrightarrow (\exists \ Q'. \ Q \longmapsto Cal \ Q' \land (P', \ Q') \in Rel)
```

A strong barbed simulation is strong reduction simulation that preserves barbs.

 $:: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool$

 ${f abbreviation}\ strong\mbox{-}barbed\mbox{-}simulation$

```
where
  strong-barbed-simulation Rel CWB \equiv
  strong-reduction-simulation Rel (Calculus CWB) \wedge rel-preserves-barbs Rel CWB
A strong strong simulation is also a weak simulation.
{\bf lemma}\ strong-impl-weak-reduction-simulation:
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
 assumes simulation: strong-reduction-simulation Rel Cal
 {\bf shows}\ weak\text{-}reduction\text{-}simulation\ Rel\ Cal
proof clarify
  \mathbf{fix} \ P \ Q \ P'
  assume A1: (P, Q) \in Rel
 assume P \longmapsto Cal * P'
  from this obtain n where P \longmapsto Cal^n P'
   by (auto simp add: steps-def)
  thus \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel
  proof (induct n arbitrary: P')
   case \theta
   assume P \longmapsto Cal^0 P'
   hence P = P'
     by (simp add: steps-refl)
   moreover have Q \longmapsto Cal * Q
     by (rule steps-refl)
   ultimately show \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel
       using A1
     by blast
  next
   case (Suc n P'')
   assume P \longmapsto Cal^{Suc\ n}\ P^{\prime\prime}
   from this obtain P' where A2: P \longmapsto Cal^n P' and A3: P' \longmapsto Cal P''
     by auto
   assume \bigwedge P'. P \longmapsto Cal^n P' \Longrightarrow \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel
   with A2 obtain Q' where A4: Q \longmapsto Cal * Q' and A5: (P', Q') \in Rel
     by blast
    from simulation A5 A3 obtain Q'' where A6: Q' \mapsto Cal \ Q'' and A7: (P'', \ Q'') \in Rel
     by blast
   from A4 A6 have Q \longmapsto Cal * Q''
       using steps-add[where P=Q and Q=Q' and R=Q'']
     by (simp add: step-to-steps)
   with A7 show \exists Q'. Q \longmapsto Cal * Q' \land (P'', Q') \in Rel
     by blast
  qed
qed
\mathbf{lemma}\ strong-barbed-simulation-impl-weak-preservation-of-barbs:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes simulation: strong-barbed-simulation Rel CWB
  shows rel-weakly-preserves-barbs Rel CWB
proof clarify
  fix P Q a P'
 assume (P, Q) \in Rel \text{ and } P \longmapsto (Calculus \ CWB) * P'
  with simulation obtain Q' where A1: Q \longmapsto (Calculus\ CWB) * Q' and A2: (P', Q') \in Rel
     using strong-impl-weak-reduction-simulation where Rel=Rel and Cal=Calculus CWB
```

```
by blast
  assume P' \downarrow < CWB > a
  with simulation A2 have Q' \downarrow < CWB > a
  with A1 show Q \Downarrow < CWB > a
   by blast
qed
lemma strong-impl-weak-barbed-simulation:
  fixes Rel :: ('proc \times 'proc) set
   {\bf and}\ \mathit{CWB} :: (\textit{'proc}, \textit{'barbs})\ \mathit{calculusWithBarbs}
  assumes simulation: strong-barbed-simulation Rel CWB
  shows weak-barbed-simulation Rel CWB
     using simulation
           strong-impl-weak-reduction-simulation[where Rel=Rel and Cal=Calculus CWB]
           strong-barbed-simulation-impl-weak-preservation-of-barbs [where Rel=Rel and CWB=CWB]
   by blast
The reflexive and/or transitive closure of a strong simulation is a strong simulation.
lemma strong-reduction-simulation-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
  assumes simulation: strong-reduction-simulation Rel Cal
  shows strong-reduction-simulation (Rel^{=}) Cal
   and strong-reduction-simulation (Rel<sup>+</sup>) Cal
   and strong-reduction-simulation (Rel*) Cal
proof -
  from simulation show A: strong-reduction-simulation (Rel^{=}) Cal
   by (auto simp add: refl, blast)
  have B: \bigwedge Rel. strong-reduction-simulation Rel Cal
          \implies strong-reduction-simulation (Rel<sup>+</sup>) Cal
 proof clarify
   fix Rel P Q P'
   assume B1: strong-reduction-simulation Rel Cal
   assume (P, Q) \in Rel^+ and P \longmapsto Cal P'
   thus \exists Q'. Q \longmapsto Cal Q' \land (P', Q') \in Rel^+
   proof (induct arbitrary: P')
     fix QP'
     assume (P, Q) \in Rel \text{ and } P \longmapsto Cal P'
     with B1 obtain Q' where Q \longmapsto Cal \ Q' and (P', \ Q') \in Rel
     thus \exists Q'. Q \longmapsto Cal Q' \land (P', Q') \in Rel^+
       by auto
   \mathbf{next}
     case (step Q R P')
     assume \bigwedge P'. P \longmapsto Cal \ P' \Longrightarrow (\exists \ Q'. \ Q \longmapsto Cal \ Q' \land (P', \ Q') \in Rel^+)
        and P \longmapsto Cal P'
     from this obtain Q' where B2: Q \longrightarrow Cal \ Q' and B3: (P', Q') \in Rel^+
       by blast
     assume (Q, R) \in Rel
     with B1 B2 obtain R' where B4: R \mapsto Cal R' and B5: (Q', R') \in Rel^+
       by blast
     from B3 B5 have (P', R') \in Rel^+
       by simp
     with B4 show \exists R'. R \longmapsto Cal R' \land (P', R') \in Rel^+
       by blast
   qed
  qed
  with simulation show strong-reduction-simulation (Rel^+) Cal
  from simulation A B[where Rel=Rel=]
```

```
show strong-reduction-simulation (Rel*) Cal
     using trancl-reflct[of Rel]
   by fast
qed
\mathbf{lemma}\ strong\text{-}barbed\text{-}simulation\text{-}and\text{-}closures:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes simulation: strong-barbed-simulation Rel CWB
 shows strong-barbed-simulation (Rel^{=}) CWB
   and strong-barbed-simulation (Rel^+) CWB
   and strong-barbed-simulation (Rel*) CWB
proof -
 from simulation show strong-barbed-simulation (Rel<sup>=</sup>) CWB
     using strong-reduction-simulation-and-closures (1) where Rel=Rel and Cal=Calculus\ CWB
          preservation-of-barbs-and-closures(1) [where Rel=Rel and CWB=CWB]
   by blast
next
 from simulation show strong-barbed-simulation (Rel<sup>+</sup>) CWB
     using strong-reduction-simulation-and-closures(2) [where Rel=Rel and Cal=Calculus\ CWB]
          preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
   by blast
next
 from simulation show strong-barbed-simulation (Rel*) CWB
     using strong-reduction-simulation-and-closures (3) [where Rel=Rel and Cal=Calculus\ CWB]
          preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
qed
3.2
       Contrasimulation
A weak reduction contrasimulation is relation R such that if (P, Q) in R and P evolves to some P'
then there exists some Q' such that Q evolves to Q' and (Q', P') in R.
abbreviation weak-reduction-contrasimulation
   :: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool
 where
 weak-reduction-contrasimulation Rel\ Cal \equiv
  \forall P \ Q \ P'. \ (P, \ Q) \in Rel \ \land \ P \longmapsto Cal* \ P' \longrightarrow (\exists \ Q'. \ Q \longmapsto Cal* \ Q' \ \land \ (Q', \ P') \in Rel)
A weak barbed contrasimulation is weak reduction contrasimulation that weakly preserves barbs.
{f abbreviation} weak-barbed-contrasimulation
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool
 where
 weak-barbed-contrasimulation Rel\ CWB \equiv
  weak-reduction-contrasimulation Rel (Calculus CWB) \land rel-weakly-preserves-barbs Rel CWB
The reflexive and/or transitive closure of a weak contrasimulation is a weak contrasimulation.
{\bf lemma}\ weak-reduction-contrasimulation-and-closures:
 fixes Rel :: ('proc \times 'proc) set
   and Cal:: 'proc processCalculus
 assumes contrasimulation: weak-reduction-contrasimulation Rel Cal
```

shows weak-reduction-contrasimulation (Rel⁼) Cal and weak-reduction-contrasimulation (Rel⁺) Cal and weak-reduction-contrasimulation (Rel^{*}) Cal

have B: $\bigwedge Rel$. weak-reduction-contrasimulation Rel Cal \implies weak-reduction-contrasimulation (Rel⁺) Cal

by (auto simp add: refl, blast)

from contrasimulation **show** A: weak-reduction-contrasimulation (Rel^{\pm}) Cal

proof -

```
proof clarify
   fix Rel P Q P'
   assume B1: weak-reduction-contrasimulation Rel Cal
   assume (P, Q) \in Rel^+ and P \longmapsto Cal * P'
   thus \exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel^+
   proof (induct arbitrary: P')
     fix QP'
     assume (P, Q) \in Rel \text{ and } P \longmapsto Cal * P'
     with B1 obtain Q' where Q \longmapsto Cal * Q' and (Q', P') \in Rel
     thus \exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel^+
       by auto
   next
     case (step Q R P')
     assume \bigwedge P'. P \longmapsto Cal * P' \Longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel^+)
       and P \longmapsto Cal * P'
     from this obtain Q' where B2: Q \longmapsto Cal* Q' and B3: (Q', P') \in Rel^+
       by blast
     assume (Q, R) \in Rel
     with B1 B2 obtain R' where B4: R \mapsto Cal * R' and B5: (R', Q') \in Rel^+
     from B5 B3 have (R', P') \in Rel^+
       by simp
     with B4 show \exists R'. R \longmapsto Cal * R' \land (R', P') \in Rel^+
       by blast
   qed
  qed
  with contrasimulation show weak-reduction-contrasimulation (Rel<sup>+</sup>) Cal
  from contrasimulation A B[where Rel=Rel=]
  show weak-reduction-contrasimulation (Rel^*) Cal
     using trancl-reflct[of Rel]
   by fast
qed
{\bf lemma}\ weak-barbed-contrasimulation-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes contrasimulation: weak-barbed-contrasimulation Rel CWB
 shows weak-barbed-contrasimulation (Rel^{\pm}) CWB
   and weak-barbed-contrasimulation (Rel^+) CWB
   and weak-barbed-contrasimulation (Rel*) CWB
proof -
  from contrasimulation show weak-barbed-contrasimulation (Rel<sup>=</sup>) CWB
     using weak-reduction-contrasimulation-and-closures (1) [where Rel=Rel and Cal=Calculus\ CWB]
          weak-preservation-of-barbs-and-closures(1) where Rel=Rel and CWB=CWB
   by blast
next
  from contrasimulation show weak-barbed-contrasimulation (Rel<sup>+</sup>) CWB
     \textbf{using} \ \textit{weak-reduction-contrasimulation-and-closures} (2) [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \ \textit{Cal} = \textit{Calculus} \ \textit{CWB}]
          weak-preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
   by blast
next
  from contrasimulation show weak-barbed-contrasimulation (Rel*) CWB
     using weak-reduction-contrasimulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
          weak-preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
qed
```

3.3 Coupled Simulation

A weak reduction coupled simulation is relation R such that if (P, Q) in R and P evolves to some P' then there exists some Q' such that Q evolves to Q' and (P', Q') in R and there exists some Q' such that Q evolves to Q' and (Q', P') in R.

```
abbreviation weak-reduction-coupled-simulation
   :: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool
  where
  weak-reduction-coupled-simulation Rel\ Cal \equiv
  \forall P \ Q \ P'. \ (P, \ Q) \in Rel \land P \longmapsto Cal * P'
   \longrightarrow (\exists \ Q'. \ Q \longmapsto Cal* \ Q' \land (P', \ Q') \in Rel) \land (\exists \ Q'. \ Q \longmapsto Cal* \ Q' \land (Q', \ P') \in Rel)
A weak barbed coupled simulation is weak reduction coupled simulation that weakly preserves barbs.
abbreviation weak-barbed-coupled-simulation
   :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculus With Barbs \Rightarrow bool
  where
  weak-barbed-coupled-simulation Rel\ CWB \equiv
   weak-reduction-coupled-simulation Rel (Calculus CWB) \land rel-weakly-preserves-barbs Rel CWB
A weak coupled simulation combines the conditions on a weak simulation and a weak contrasimulation.
{\bf lemma}\ weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation:
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
  shows weak-reduction-coupled-simulation Rel Cal
        = (weak\text{-}reduction\text{-}simulation Rel Cal} \land weak\text{-}reduction\text{-}contrasimulation Rel Cal})
   by blast
{\bf lemma}\ weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  shows weak-barbed-coupled-simulation Rel CWB
        = (weak\text{-}barbed\text{-}simulation Rel CWB \land weak\text{-}barbed\text{-}contrasimulation Rel CWB})
   by blast
The reflexive and/or transitive closure of a weak coupled simulation is a weak coupled simulation.
{\bf lemma}\ weak-reduction\text{-}coupled\text{-}simulation\text{-}and\text{-}closures:}
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
  assumes coupled Simulation: weak-reduction-coupled-simulation Rel Cal
  shows weak-reduction-coupled-simulation (Rel^{\pm}) Cal
   and weak-reduction-coupled-simulation (Rel<sup>+</sup>) Cal
   and weak-reduction-coupled-simulation (Rel*) Cal
     using weak-reduction-simulation-and-closures[where Rel=Rel and Cal=Cal]
           weak-reduction-contrasimulation-and-closures[where Rel=Rel and Cal=Cal]
          weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation [where Rel=Rel]
            and Cal = Cal
           coupled Simulation
   by auto
lemma weak-barbed-coupled-simulation-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes coupledSimulation: weak-barbed-coupled-simulation Rel CWB
  shows weak-barbed-coupled-simulation (Rel^{\pm}) CWB
   and weak-barbed-coupled-simulation (Rel<sup>+</sup>) CWB
   and weak-barbed-coupled-simulation (Rel*) CWB
proof -
```

from coupledSimulation show weak-barbed-coupled-simulation (Rel⁼) CWB using weak-reduction-coupled-simulation-and-closures(1)[where Rel=Rel

```
and Cal=Calculus CWB
         weak-preservation-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
   by blast
next
 from coupledSimulation show weak-barbed-coupled-simulation (Rel<sup>+</sup>) CWB
    using weak-reduction-coupled-simulation-and-closures (2) [where Rel=Rel
          and Cal = Calculus \ CWB
         weak-preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
   bv blast
next
 from coupledSimulation show weak-barbed-coupled-simulation (Rel*) CWB
    using weak-reduction-coupled-simulation-and-closures (3) [where Rel=Rel
          and Cal=Calculus CWB
         weak-preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
qed
```

3.4 Correspondence Simulation

A weak reduction correspondence simulation is relation R such that (1) if (P, Q) in R and P evolves to some P' then there exists some Q' such that Q evolves to Q' and (P', Q') in R, and (2) if (P, Q) in R and P evolves to some P' then there exists some P" and Q" such that P evolves to P" and Q' evolves to Q" and (P", Q") in Rel.

A weak barbed correspondence simulation is weak reduction correspondence simulation that weakly respects barbs.

```
 \begin{array}{l} \textbf{abbreviation} \ \ weak-barbed\text{-}correspondence\text{-}simulation \\ :: ('proc \times 'proc) \ set \Rightarrow ('proc, 'barbs) \ calculusWithBarbs \Rightarrow bool \\ \textbf{where} \\ weak-barbed\text{-}correspondence\text{-}simulation \ Rel \ CWB \equiv \\ weak\text{-}reduction\text{-}correspondence\text{-}simulation \ Rel \ (Calculus \ CWB) \\ \land \ rel\text{-}weakly\text{-}respects\text{-}barbs \ Rel \ CWB \end{array}
```

For each weak correspondence simulation R there exists a weak coupled simulation that contains all pairs of R in both directions.

```
inductive-set cSim-cs :: ('proc \times 'proc) set \Rightarrow 'proc processCalculus \Rightarrow ('proc \times 'proc) set
   for Rel :: ('proc \times 'proc) set
   and Cal:: 'proc processCalculus
  where
  left: [Q \mapsto Cal * Q'; (P', Q') \in Rel] \Longrightarrow (P', Q) \in cSim\text{-}cs Rel Cal |
  right: [P \longmapsto Cal * P'; (Q, P) \in Rel] \Longrightarrow (P', Q) \in cSim-cs Rel Cal |
  trans: [(P, Q) \in cSim\text{-}cs \ Rel \ Cal; (Q, R) \in cSim\text{-}cs \ Rel \ Cal] \Longrightarrow (P, R) \in cSim\text{-}cs \ Rel \ Cal
{f lemma}\ weak-reduction-correspondence-simulation-impl-coupled-simulation:
  fixes Rel :: ('proc \times 'proc) set
    and Cal :: 'proc processCalculus
  assumes corrSim: weak-reduction-correspondence-simulation Rel Cal
  shows weak-reduction-coupled-simulation (cSim-cs Rel Cal) Cal
    and \forall P \ Q. \ (P, \ Q) \in Rel \longrightarrow (P, \ Q) \in cSim\text{-}cs \ Rel \ Cal \land (Q, \ P) \in cSim\text{-}cs \ Rel \ Cal
proof -
  show weak-reduction-coupled-simulation (cSim-cs Rel Cal) Cal
  proof (rule allI, rule allI, rule allI, rule impI, erule conjE)
```

```
fix P Q P'
   assume (P, Q) \in cSim\text{-}cs \ Rel \ Cal \ and \ P \longmapsto Cal * P'
   thus (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in cSim\text{-}cs Rel Cal)
          \land \ (\exists \ Q'. \ Q \longmapsto Cal* \ Q' \land \ (Q', \ P') \in \mathit{cSim\text{-}cs} \ \mathit{Rel} \ \mathit{Cal})
   proof (induct arbitrary: P')
      case (left Q Q' P)
      assume (P, Q') \in Rel \text{ and } P \longmapsto Cal * P'
      with corrSim obtain Q'' where A1: Q' \longrightarrow Cal * Q'' and A2: (P', Q'') \in Rel
       bv blast
      assume A3: Q \longmapsto Cal * Q'
      from this A1 have A4: Q \longmapsto Cal * Q''
        by (rule steps-add[where P=Q and Q=Q' and R=Q''])
      have Q'' \longmapsto Cal * Q''
       by (rule steps-refl)
      with A2 have A5: (Q'', P') \in cSim\text{-}cs Rel Cal
       by (simp add: cSim-cs.right)
      from A1 A2 have (P', Q') \in cSim\text{-}cs Rel Cal
       by (rule\ cSim\text{-}cs.left)
      with A4 A5 A3 show ?case
       by blast
   next
      case (right P P' Q P'')
      assume P \longmapsto Cal * P' and P' \longmapsto Cal * P''
      hence B1: P \longmapsto Cal * P''
       by (rule steps-add[where P=P and Q=P' and R=P''])
      assume B2: (Q, P) \in Rel
      with corrSim B1 obtain Q''' P''' where B3: Q \longmapsto Cal * Q''' and B4: P'' \longmapsto Cal * P'''
                                      and B5: (Q''', P''') \in Rel
       by blast
      from B4 B5 have B6: (Q''', P'') \in cSim\text{-}cs Rel Cal
       by (rule\ cSim\text{-}cs.left)
      have B7: Q \longmapsto Cal * Q
       by (rule steps-refl)
      from B1 B2 have (P'', Q) \in cSim\text{-}cs Rel Cal
       by (rule\ cSim\text{-}cs.right)
      with B3 B6 B7 show ?case
       by blast
    next
      case (trans P Q R P')
      assume P \longmapsto Cal * P'
        and \bigwedge P'. P \longmapsto Cal * P' \Longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in cSim\text{-}cs \ Rel \ Cal)
                                    \land (\exists Q'. \ Q \longmapsto Cal * \ Q' \land (Q', P') \in cSim\text{-}cs \ Rel \ Cal)
      from this obtain Q1 Q2 where C1: Q \mapsto Cal * Q1 and C2: (Q1, P') \in cSim\text{-}cs \ Rel \ Cal
                            and C3: Q \longmapsto Cal * Q2 and C4: (P', Q2) \in cSim\text{-}cs Rel Cal
       by blast
      assume C5: \land Q'. Q \longmapsto Cal * Q' \Longrightarrow (\exists R'. R \longmapsto Cal * R' \land (Q', R') \in cSim\text{-}cs \ Rel \ Cal)
                                        \land (\exists R'. R \longmapsto Cal * R' \land (R', Q') \in cSim\text{-}cs Rel Cal)
      with C1 obtain R1 where C6: R \mapsto Cal*R1 and C7: (R1, Q1) \in cSim\text{-}cs Rel Cal
       by blast
      from C7 C2 have C8: (R1, P') \in cSim\text{-}cs Rel Cal
       by (rule\ cSim\text{-}cs.trans)
      from C3 C5 obtain R2 where C9: R \longmapsto Cal* R2 and C10: (Q2, R2) \in cSim\text{-}cs Rel Cal
       by blast
      from C4 C10 have (P', R2) \in cSim\text{-}cs Rel Cal
        by (rule cSim-cs.trans)
      with C6 C8 C9 show ?case
        by blast
    qed
  qed
next
  show \forall P \ Q. \ (P, \ Q) \in Rel \longrightarrow (P, \ Q) \in cSim\text{-}cs \ Rel \ Cal \land (Q, \ P) \in cSim\text{-}cs \ Rel \ Cal
```

```
proof clarify
   \mathbf{fix} \ P \ Q
   have Q \longmapsto Cal * Q
     by (rule steps-refl)
   moreover assume (P, Q) \in Rel
   ultimately show (P, Q) \in cSim\text{-}cs \ Rel \ Cal \land (Q, P) \in cSim\text{-}cs \ Rel \ Cal
     by (simp add: cSim-cs.left cSim-cs.right)
  qed
qed
{\bf lemma}\ weak-barbed-correspondence-simulation-impl-coupled-simulation:
  fixes Rel :: ('proc \times 'proc) set
    {\bf and}\ \mathit{CWB} :: (\textit{'proc}, \textit{'barbs})\ \mathit{calculusWithBarbs}
  assumes corrSim: weak-barbed-correspondence-simulation Rel CWB
  shows weak-barbed-coupled-simulation (cSim-cs Rel (Calculus CWB)) CWB
   and \forall P \ Q. \ (P, \ Q) \in Rel \longrightarrow (P, \ Q) \in cSim\text{-}cs \ Rel \ (Calculus \ CWB)
                              \land (Q, P) \in cSim\text{-}cs \ Rel \ (Calculus \ CWB)
  show weak-barbed-coupled-simulation (cSim-cs Rel (Calculus CWB)) CWB
  proof
    from corrSim
   show weak-reduction-coupled-simulation (cSim-cs Rel (Calculus CWB)) (Calculus CWB)
     using weak-reduction-correspondence-simulation-impl-coupled-simulation (1) where Rel=Rel
           and Cal=Calculus CWB
   by blast
  \mathbf{next}
   show rel-weakly-preserves-barbs (cSim-cs Rel (Calculus CWB)) CWB
    proof clarify
     fix P Q a P'
     assume (P, Q) \in cSim\text{-}cs \ Rel \ (Calculus \ CWB) \ and \ P \longmapsto (Calculus \ CWB) * P' \ and \ P' \downarrow < CWB > a
     thus Q \Downarrow < CWB > a
     proof (induct arbitrary: P')
       case (left Q Q' P P')
       assume (P, Q') \in Rel \text{ and } P \longmapsto (Calculus \ CWB) * P' \text{ and } P' \downarrow < CWB > a
        with corrSim obtain Q'' where A1: Q' \longmapsto (Calculus \ CWB) * Q'' and A2: Q'' \downarrow < CWB > a
         by blast
       assume Q \longmapsto (Calculus \ CWB) * Q'
        from this A1 have Q \longmapsto (Calculus \ CWB) * Q''
         by (rule steps-add)
        with A2 show Q \Downarrow < CWB > a
         by blast
     next
       case (right P P' Q P'')
       assume (Q, P) \in Rel
       moreover assume P \longmapsto (Calculus \ CWB) * P' and P' \longmapsto (Calculus \ CWB) * P''
       hence P \longmapsto (Calculus\ CWB)*P''
         by (rule steps-add)
       moreover assume P'' \downarrow < CWB > a
       ultimately show Q \Downarrow < CWB > a
           using corrSim
         by blast
     next
       case (trans P Q R P')
       assume \land P'. P \longmapsto (Calculus\ CWB) * P' \Longrightarrow P' \downarrow < CWB > a \Longrightarrow Q \downarrow < CWB > a
          and P \longmapsto (Calculus\ CWB) * P' and P' \downarrow < CWB > a
          and \bigwedge Q'. Q \longmapsto (Calculus\ CWB) * Q' \Longrightarrow Q' \downarrow < CWB > a \Longrightarrow R \downarrow < CWB > a
        thus R \Downarrow < CWB > a
         \mathbf{by} blast
     qed
    qed
  qed
```

```
next
  from corrSim show \forall P \ Q. \ (P, \ Q) \in Rel \longrightarrow (P, \ Q) \in cSim\text{-}cs \ Rel \ (Calculus \ CWB)
                                            \land (Q, P) \in cSim\text{-}cs \ Rel \ (Calculus \ CWB)
      using weak-reduction-correspondence-simulation-impl-coupled-simulation (2) [where Rel=Rel
            and Cal = Calculus \ CWB
   by blast
qed
lemma reduction-correspondence-simulation-condition-trans:
  fixes Cal :: 'proc processCalculus
   and P Q R :: 'proc
   and Rel :: ('proc × 'proc) set
  \textbf{assumes} \ A1\colon \forall \ Q'. \ Q \longmapsto Cal* \ Q' \longrightarrow (\exists \ P'' \ Q''. \ P \longmapsto Cal* \ P'' \land \ Q' \longmapsto Cal* \ Q'' \land \ (P'', \ Q'') \in Rel)
      and A2: \forall R'. R \longmapsto Cal * R' \longrightarrow (\exists Q'' R''. Q \longmapsto Cal * Q'' \land R' \longmapsto Cal * R'' \land (Q'', R'') \in Rel)
      and A3: weak-reduction-simulation Rel Cal
      and A4: trans Rel
  shows \forall R'. R \longmapsto Cal * R' \longrightarrow (\exists P'' R''. P \longmapsto Cal * P'' \land R' \longmapsto Cal * R'' \land (P'', R'') \in Rel)
proof clarify
  \mathbf{fix} R'
  assume R \longmapsto Cal * R'
  with A2 obtain Q''R'' where A5: Q \longmapsto Cal*Q'' and A6: R' \longmapsto Cal*R''
                         and A7: (Q'', R'') \in Rel
   bv blast
  from A1 A5 obtain P''' Q''' where A8: P \longmapsto Cal * P''' and A9: Q'' \longmapsto Cal * Q'''
                              and A10: (P''', Q''') \in Rel
   by blast
  from A3 A7 A9 obtain R''' where A11: R'' \mapsto Cal * R''' and A12: (Q''', R''') \in Rel
   by blast
  from A6\ A11 have A13:\ R' \longmapsto Cal*\ R'''
   by (rule steps-add[where P=R' and Q=R'' and R=R'''])
  from A4 A10 A12 have (P''', R''') \in Rel
      unfolding trans-def
   bv blast
  with A8 A13 show \exists P'' R''. P \longmapsto Cal * P'' \land R' \longmapsto Cal * R'' \land (P'', R'') \in Rel
   by blast
qed
The reflexive and/or transitive closure of a weak correspondence simulation is a weak correspondence
simulation.
\mathbf{lemma}\ \textit{weak-reduction-correspondence-simulation-and-closures}:
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
  assumes corrSim: weak-reduction-correspondence-simulation Rel Cal
  shows weak-reduction-correspondence-simulation (Rel^{\pm}) Cal
   and weak-reduction-correspondence-simulation (Rel<sup>+</sup>) Cal
   and weak-reduction-correspondence-simulation (Rel*) Cal
proof -
  show A: weak-reduction-correspondence-simulation (Rel^{=}) Cal
  proof
    from corrSim show weak-reduction-simulation (Rel^{=}) Cal
        using weak-reduction-simulation-and-closures(1)[where Rel=Rel and Cal=Cal]
      by blast
  next
    show \forall P \ Q \ Q' . \ (P, \ Q) \in Rel^{=} \land \ Q \longmapsto Cal * \ Q'
          \longrightarrow (\exists P'' \ Q''. \ P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^{=})
   proof clarify
      fix P Q Q'
      assume (P, Q) \in Rel^= and A1: Q \longmapsto Cal * Q'
      \mathbf{moreover\ have}\ P = Q \Longrightarrow \exists\ P^{\prime\prime\prime}\ Q^{\prime\prime}.\ P \longmapsto Cal*\ P^{\prime\prime} \land\ Q^{\prime} \longmapsto Cal*\ Q^{\prime\prime} \land\ (P^{\prime\prime},\ Q^{\prime\prime}) \in Rel^=
      proof -
```

```
assume P = Q
     moreover have Q' \longmapsto Cal * Q'
       by (rule steps-refl)
     ultimately show \exists P'' \ Q''. P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^=
          using A1 refl
       by blast
   qed
   moreover
   have (P, Q) \in Rel \Longrightarrow \exists P'' Q''. P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^{=}
   proof -
     assume (P, Q) \in Rel
     with corrSim\ A1 obtain P''\ Q'' where P \longmapsto Cal*\ P'' and Q' \longmapsto Cal*\ Q''
                                     and (P'', Q'') \in Rel
       bv blast
      thus \exists P'' \ Q''. P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^=
       by auto
   \mathbf{qed}
   ultimately show \exists P'' \ Q''. P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^=
 qed
qed
have B: \bigwedge Rel. weak-reduction-correspondence-simulation Rel Cal
           \Rightarrow weak-reduction-correspondence-simulation (Rel<sup>+</sup>) Cal
proof
 \mathbf{fix} \ Rel
 assume weak-reduction-correspondence-simulation Rel Cal
 thus weak-reduction-simulation (Rel^+) Cal
      using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal]
   by blast
\mathbf{next}
 fix Rel
 assume B1: weak-reduction-correspondence-simulation Rel Cal
 \mathbf{show} \ \forall P \ Q \ Q'. \ (P, \ Q) \in Rel^+ \ \land \ Q \longmapsto Cal \ast \ Q'
        \longrightarrow (\exists P'' \ Q''. \ P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^+)
 proof clarify
   fix P Q Q
   assume (P, Q) \in Rel^+ and Q \longmapsto Cal * Q'
   thus \exists P'' \ Q''. P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^+
   proof (induct arbitrary: Q')
     fix Q Q'
     assume (P, Q) \in Rel \text{ and } Q \longmapsto Cal * Q'
     with B1 obtain P'' Q'' where B2: P \longrightarrow Cal * P'' and B3: Q' \longmapsto Cal * Q''
                             and B4: (P'', Q'') \in Rel
       by blast
     from B4 have (P'', Q'') \in Rel^+
     with B2 B3 show \exists P'' Q''. P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^+
       by blast
   \mathbf{next}
     case (step Q R R')
     assume \bigwedge Q'. Q \longmapsto Cal * Q'
              \Longrightarrow \exists P'' \ Q''. \ P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel^+
     moreover assume (Q, R) \in Rel
     with B1
     have \bigwedge R'. R \longmapsto Cal * R' \Longrightarrow \exists Q'' R''. Q \longmapsto Cal * Q'' \land R' \longmapsto Cal * R'' \land (Q'', R'') \in Rel^+
       by blast
      moreover from B1 have weak-reduction-simulation (Rel^+) Cal
          using weak-reduction-simulation-and-closures(2) where Rel=Rel and Cal=Cal
       by blast
     moreover have trans (Rel^+)
          using trans-trancl[of Rel]
```

```
by blast
      moreover assume R \longmapsto Cal * R'
      ultimately show \exists P'' R''. P \longmapsto Cal * P'' \land R' \longmapsto Cal * R'' \land (P'', R'') \in Rel^+
          using reduction-correspondence-simulation-condition-trans[where Rel=Rel^+]
        by blast
     \mathbf{qed}
   qed
 qed
 from corrSim B[where Rel=Rel] show weak-reduction-correspondence-simulation (Rel<sup>+</sup>) Cal
 from A B[where Rel=Rel=]
 show weak-reduction-correspondence-simulation (Rel^*) Cal
     using trancl-reflct[of Rel]
   \mathbf{by} auto
qed
\mathbf{lemma}\ weak\text{-}barbed\text{-}correspondence\text{-}simulation\text{-}and\text{-}closures:}
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes corrSim: weak-barbed-correspondence-simulation Rel CWB
 shows weak-barbed-correspondence-simulation (Rel^{\pm}) CWB
   and weak-barbed-correspondence-simulation (Rel<sup>+</sup>) CWB
   and weak-barbed-correspondence-simulation (Rel^*) CWB
proof -
 from corrSim show weak-barbed-correspondence-simulation (Rel<sup>=</sup>) CWB
     using weak-reduction-correspondence-simulation-and-closures (1) [where Rel=Rel
            and Cal = Calculus \ CWB
          weak-respection-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
   by fast
next
 from corrSim show weak-barbed-correspondence-simulation (Rel<sup>+</sup>) CWB
     using weak-reduction-correspondence-simulation-and-closures(2)[where Rel=Rel
           and Cal = Calculus \ CWB
          weak-respection-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
next
 from corrSim show weak-barbed-correspondence-simulation (Rel*) CWB
     using weak-reduction-correspondence-simulation-and-closures(3)[where Rel=Rel
           and Cal = Calculus \ CWB
          weak-respection-of-barbs-and-closures(5)[where Rel=Rel and CWB=CWB]
   by blast
qed
```

3.5 Bisimulation

A weak reduction bisimulation is relation R such that (1) if (P, Q) in R and P evolves to some P' then there exists some Q' such that Q evolves to Q' and (P', Q') in R, and (2) if (P, Q) in R and Q evolves to some Q' then there exists some P' such that P evolves to P' and (P', Q') in R.

A weak barbed bisimulation is weak reduction bisimulation that weakly respects barbs.

```
abbreviation weak-barbed-bisimulation :: ('proc \times 'proc) \text{ set} \Rightarrow ('proc, 'barbs) \text{ calculus With Barbs} \Rightarrow bool
```

```
where weak-barbed-bisimulation Rel\ CWB \equiv
```

A symetric weak simulation is a weak bisimulation. lemma symm-weak-reduction-simulation-is-bisimulation:

fixes $Rel :: ('proc \times 'proc) set$

```
and Cal :: 'proc processCalculus
  assumes sym Rel
     and weak-reduction-simulation Rel Cal
 shows weak-reduction-bisimulation Rel Cal
     using assms symD[of Rel]
   by blast
\mathbf{lemma}\ symm\text{-}weak\text{-}barbed\text{-}simulation\text{-}is\text{-}bisimulation:}
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) \ calculus With Barbs
 assumes sym Rel
     and weak-barbed-simulation Rel Cal
  shows weak-barbed-bisimulation Rel Cal
     using assms \ symD[of \ Rel]
   by blast
If a relation as well as its inverse are weak simulations, then this relation is a weak bisimulation.
\mathbf{lemma}\ \textit{weak-reduction-simulations-impl-bisimulation}:
  fixes Rel :: ('proc \times 'proc) set
   {\bf and} \ {\it Cal} :: {\it 'proc processCalculus}
  assumes sim: weak-reduction-simulation Rel Cal
     and simInv: weak-reduction-simulation (Rel^{-1}) Cal
  shows weak-reduction-bisimulation Rel Cal
proof auto
  fix P Q P'
 assume (P, Q) \in Rel and P \longmapsto Cal * P'
  with sim show \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel
   by simp
\mathbf{next}
  fix P Q Q'
 assume (P, Q) \in Rel
 hence (Q, P) \in Rel^{-1}
   by simp
  moreover assume Q \longmapsto Cal * Q'
  ultimately obtain P' where A1: P \longrightarrow Cal* P' and A2: (Q', P') \in Rel^{-1}
     using simInv
   by blast
  from A2 have (P', Q') \in Rel
   by induct
  with A1 show \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel
   by blast
qed
\mathbf{lemma}\ weak\text{-}reduction\text{-}bisimulations\text{-}impl\text{-}inverse\text{-}is\text{-}simulation}:
 fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
 assumes bisim: weak-reduction-bisimulation Rel Cal
 shows weak-reduction-simulation (Rel^{-1}) Cal
proof clarify
 fix P Q P'
 assume (Q, P) \in Rel
 \mathbf{moreover} \ \mathbf{assume} \ P \longmapsto Cal \ast \ P'
  ultimately obtain Q' where A1: Q \longrightarrow Cal * Q' and A2: (Q', P') \in Rel
     using bisim
   by blast
```

```
from A2 have (P', Q') \in Rel^{-1}
   by simp
 with A1 show \exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^{-1}
   by blast
qed
\mathbf{lemma}\ \textit{weak-reduction-simulations-iff-bisimulation}:
 fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
 shows (weak-reduction-simulation Rel Cal \wedge weak-reduction-simulation (Rel<sup>-1</sup>) Cal)
       = weak-reduction-bisimulation Rel Cal
     using weak-reduction-simulations-impl-bisimulation[where Rel=Rel and Cal=Cal]
          weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel and Cal=Cal]
   by blast
lemma weak-barbed-simulations-iff-bisimulation:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 shows (weak-barbed-simulation Rel CWB \land weak-barbed-simulation (Rel<sup>-1</sup>) CWB)
       = weak-barbed-bisimulation Rel CWB
proof (rule iffI, erule conjE)
 assume sim: weak-barbed-simulation Rel CWB
    and rev: weak-barbed-simulation (Rel^{-1}) CWB
 hence weak-reduction-bisimulation Rel (Calculus CWB)
     using weak-reduction-simulations-impl-bisimulation[where Rel=Rel and Cal=Calculus CWB]
   by blast
 moreover from sim have rel-weakly-preserves-barbs Rel CWB
   by simp
 moreover from rev have rel-weakly-reflects-barbs Rel CWB
   by simp
 ultimately show weak-barbed-bisimulation Rel CWB
   by blast
next
 assume bisim: weak-barbed-bisimulation Rel CWB
 hence weak-barbed-simulation Rel CWB
   bv blast
 moreover from bisim have weak-reduction-simulation (Rel^{-1}) (Calculus\ CWB)
     using weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel]
   by simp
 moreover from bisim have rel-weakly-reflects-barbs Rel CWB
 hence rel-weakly-preserves-barbs (Rel^{-1}) CWB
 ultimately show weak-barbed-simulation Rel CWB \wedge weak-barbed-simulation (Rel<sup>-1</sup>) CWB
   by blast
qed
A weak bisimulation is a weak correspondence simulation.
{\bf lemma}\ weak-reduction-bisimulation-is-correspondence-simulation:
 fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
 assumes bisim: weak-reduction-bisimulation Rel Cal
 shows weak-reduction-correspondence-simulation Rel Cal
 from bisim show weak-reduction-simulation Rel Cal
   by blast
 show \forall P \ Q \ Q'. (P, \ Q) \in Rel \land Q \longmapsto Cal * Q'
       \longrightarrow (\exists P'' \ Q''. \ P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel)
 proof clarify
   fix P Q Q'
```

```
assume (P, Q) \in Rel \text{ and } Q \longmapsto Cal * Q'
   with bisim obtain P' where P \longmapsto Cal * P' and (P', Q') \in Rel
     by blast
   moreover have Q' \longmapsto Cal * Q'
     by (rule steps-refl)
   ultimately show (\exists P'' \ Q''. \ P \longmapsto Cal * P'' \land Q' \longmapsto Cal * Q'' \land (P'', Q'') \in Rel)
     by blast
  qed
qed
{f lemma}\ weak-barbed-bisimulation-is-correspondence-simulation:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes bisim: weak-barbed-bisimulation Rel CWB
  shows weak-barbed-correspondence-simulation Rel CWB
     using bisim weak-reduction-bisimulation-is-correspondence-simulation where Rel=Rel
                and Cal = Calculus \ CWB
   by blast
The reflexive, symmetric, and/or transitive closure of a weak bisimulation is a weak bisimulation.
lemma weak-reduction-bisimulation-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
  assumes bisim: weak-reduction-bisimulation Rel Cal
  shows weak-reduction-bisimulation (Rel^{\pm}) Cal
   and weak-reduction-bisimulation (symcl Rel) Cal
   and weak-reduction-bisimulation (Rel^+) Cal
   and weak-reduction-bisimulation (symcl (Rel^{=})) Cal
   and weak-reduction-bisimulation (Rel*) Cal
   and weak-reduction-bisimulation ((symcl\ (Rel^{=}))^{+}) Cal
proof -
  from bisim show A: weak-reduction-bisimulation (Rel^{=}) Cal
   by (auto simp add: refl, blast+)
  have B: \bigwedge Rel. weak-reduction-bisimulation Rel Cal
          \implies weak-reduction-bisimulation (symcl Rel) Cal
   by (auto simp add: symcl-def, blast+)
  from bisim B[where Rel=Rel] show weak-reduction-bisimulation (symcl Rel) Cal
   by blast
  have C: \land Rel. weak-reduction-bisimulation Rel Cal
          \implies weak-reduction-bisimulation (Rel<sup>+</sup>) Cal
 proof
   fix Rel
   assume weak-reduction-bisimulation Rel Cal
   thus weak-reduction-simulation (Rel<sup>+</sup>) Cal
       using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal]
     by blast
  next
   fix Rel
   assume C1: weak-reduction-bisimulation Rel Cal
   show \forall P \ Q \ Q'. \ (P, \ Q) \in Rel^+ \land Q \longmapsto Cal * Q'
         \longrightarrow (\exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel^+)
   proof clarify
     fix P Q Q'
     assume (P, Q) \in Rel^+ and Q \longmapsto Cal * Q'
     thus \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel^+
     proof (induct arbitrary: Q')
       fix Q Q'
       assume (P, Q) \in Rel \text{ and } Q \longmapsto Cal * Q'
       with C1 obtain P' where P \longmapsto Cal * P' and (P', Q') \in Rel
       thus \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel^+
```

```
by auto
    next
      case (step Q R R')
      assume (Q, R) \in Rel \text{ and } R \longmapsto Cal * R'
      with C1 obtain Q' where C2: Q \mapsto Cal * Q' and C3: (Q', R') \in Rel^+
      assume \bigwedge Q'. Q \longmapsto Cal * Q' \Longrightarrow \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel^+
      with C2 obtain P' where C4: P \longmapsto Cal * P' and C5: (P', Q') \in Rel^+
      from C5 C3 have (P', R') \in Rel^+
        by simp
      with C4 show \exists P'. P \longmapsto Cal * P' \land (P', R') \in Rel^+
        by blast
    qed
   qed
 qed
 from bisim\ C[where Rel=Rel] show weak-reduction-bisimulation\ (Rel^+)\ Cal
   by blast
 from A B[where Rel=Rel=] show weak-reduction-bisimulation (symcl (Rel=)) Cal
 from A C[where Rel=Rel=] show weak-reduction-bisimulation (Rel*) Cal
    using trancl-reflct[of Rel]
   by auto
 from A B[where Rel=Rel=] C[where Rel=symcl (Rel=)]
 show weak-reduction-bisimulation ((symcl\ (Rel^{=}))^{+}) Cal
   by blast
qed
{\bf lemma}\ weak\text{-}barbed\text{-}bisimulation\text{-}and\text{-}closures:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes bisim: weak-barbed-bisimulation Rel CWB
 shows weak-barbed-bisimulation (Rel^{=}) CWB
   and weak-barbed-bisimulation (symcl Rel) CWB
   and weak-barbed-bisimulation (Rel<sup>+</sup>) CWB
   and weak-barbed-bisimulation (symcl (Rel^{=})) CWB
   and weak-barbed-bisimulation (Rel*) CWB
   and weak-barbed-bisimulation ((symcl\ (Rel^{=}))^{+}) CWB
proof -
 from bisim show weak-barbed-bisimulation (Rel=) CWB
    using weak-reduction-bisimulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB]
          weak-respection-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
   by fast
next
 from bisim show weak-barbed-bisimulation (symcl Rel) CWB
     using weak-reduction-bisimulation-and-closures(2)[where Rel=Rel and Cal=Calculus\ CWB]
          weak-respection-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show weak-barbed-bisimulation (Rel^+) CWB
    using weak-reduction-bisimulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
          weak-respection-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show weak-barbed-bisimulation (symcl (Rel=)) CWB
    using weak-reduction-bisimulation-and-closures(4)[where Rel=Rel and Cal=Calculus CWB]
          weak-respection-of-barbs-and-closures(4)[where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show weak-barbed-bisimulation (Rel*) CWB
    using weak-reduction-bisimulation-and-closures (5) [where Rel=Rel and Cal=Calculus\ CWB]
```

```
weak-respection-of-barbs-and-closures (5) [\textbf{where} \ Rel=Rel \ \textbf{and} \ CWB=CWB] \\ \textbf{by} \ blast \\ \textbf{next} \\ \textbf{from} \ bisim \ \textbf{show} \ weak-barbed-bisimulation} \ ((symcl \ (Rel^=))^+) \ CWB \\ \textbf{using} \ weak-reduction-bisimulation-and-closures} (6) [\textbf{where} \ Rel=Rel \ \textbf{and} \ Cal=Calculus \ CWB] \\ weak-respection-of-barbs-and-closures} (6) [\textbf{where} \ Rel=Rel \ \textbf{and} \ CWB=CWB] \\ \textbf{by} \ blast \\ \textbf{qed}
```

A strong reduction bisimulation is relation R such that (1) if (P, Q) in R and P' is a derivative of P then there exists some Q' such that Q' is a derivative of Q and (P', Q') in R, and (2) if (P, Q) in R and Q' is a derivative of Q then there exists some P' such that P' is a derivative of P and (P', Q') in R

```
abbreviation strong-reduction-bisimulation :: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool where strong-reduction-bisimulation Rel Cal \equiv (\forall P \ Q \ P'. \ (P, \ Q) \in Rel \land P \longmapsto Cal \ P' \longrightarrow (\exists \ Q'. \ Q \longmapsto Cal \ Q' \land (P', \ Q') \in Rel)) \land (\forall P \ Q \ Q'. \ (P, \ Q) \in Rel \land Q \longmapsto Cal \ Q' \longrightarrow (\exists \ P'. \ P \longmapsto Cal \ P' \land (P', \ Q') \in Rel))
```

A strong barbed bisimulation is strong reduction bisimulation that respects barbs.

```
abbreviation strong-barbed-bisimulation 
 :: ('proc × 'proc) set \Rightarrow ('proc, 'barbs) calculus With Barbs \Rightarrow bool 
 where 
 strong-barbed-bisimulation Rel CWB \equiv 
 strong-reduction-bisimulation Rel (Calculus CWB) \wedge rel-respects-barbs Rel CWB
```

A symetric strong simulation is a strong bisimulation.

```
lemma symm-strong-reduction-simulation-is-bisimulation:
fixes Rel :: ('proc × 'proc) set
and Cal :: 'proc processCalculus
assumes sym Rel
and strong-reduction-simulation Rel Cal
shows strong-reduction-bisimulation Rel Cal
using assms symD[of Rel]
by blast
```

lemma symm-strong-barbed-simulation: fixes $Rel :: ('proc \times 'proc)$ set

```
and CWB:: ('proc, 'barbs) calculusWithBarbs
assumes sym Rel
and strong-barbed-simulation Rel CWB
shows strong-barbed-bisimulation Rel CWB
using assms symD[of Rel]
by blast
```

If a relation as well as its inverse are strong simulations, then this relation is a strong bisimulation.

 ${\bf lemma}\ strong\text{-}reduction\text{-}simulations\text{-}impl\text{-}bisimulation:}$

```
fixes Rel :: ('proc \times 'proc) \ set and Cal :: 'proc \ processCalculus assumes sim : \ strong\ reduction\ -simulation \ Rel \ Cal and simInv : \ strong\ -reduction\ -simulation \ (Rel^{-1}) \ Cal shows strong\ -reduction\ -bisimulation \ Rel \ Cal proof auto fix P\ Q\ P' assume (P,\ Q) \in Rel and P \longmapsto Cal\ P' with sim\ show \exists\ Q'.\ Q \longmapsto Cal\ Q' \land (P',\ Q') \in Rel by simp next
```

```
fix P Q Q'
  assume (P, Q) \in Rel
  hence (Q, P) \in Rel^{-1}
   by simp
  moreover assume Q \longmapsto Cal \ Q'
  ultimately obtain P' where A1: P \longmapsto Cal P' and A2: (Q', P') \in Rel^{-1}
     using simInv
   by blast
  from A2 have (P', Q') \in Rel
    by induct
  with A1 show \exists P'. P \longmapsto Cal P' \land (P', Q') \in Rel
    by blast
qed
{\bf lemma}\ strong\text{-}reduction\text{-}bisimulations\text{-}impl\text{-}inverse\text{-}is\text{-}simulation\text{:}}
  fixes Rel :: ('proc \times 'proc) set
   and Cal: 'proc processCalculus
  {\bf assumes}\ bisim:\ strong-reduction-bisimulation\ Rel\ Cal
  shows strong-reduction-simulation (Rel^{-1}) Cal
proof clarify
  fix P Q P'
  assume (Q, P) \in Rel
  \mathbf{moreover} \ \mathbf{assume} \ P \longmapsto Cal \ P'
  ultimately obtain Q' where A1: Q \longrightarrow Cal Q' and A2: (Q', P') \in Rel
     using bisim
    by blast
  from A2 have (P', Q') \in Rel^{-1}
  with A1 show \exists Q'. Q \longmapsto Cal Q' \land (P', Q') \in Rel^{-1}
   by blast
qed
{\bf lemma}\ strong\text{-}reduction\text{-}simulations\text{-}iff\text{-}bisimulation:}
  fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
  shows (strong-reduction-simulation Rel Cal \wedge strong-reduction-simulation (Rel<sup>-1</sup>) Cal)
         = strong\text{-}reduction\text{-}bisimulation Rel Cal
     \textbf{using} \ \textit{strong-reduction-simulations-impl-bisimulation} [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \ \textit{Cal} = \textit{Cal}]
           strong-reduction-bisimulations-impl-inverse-is-simulation [where Rel=Rel]
   by blast
\mathbf{lemma}\ strong\text{-}barbed\text{-}simulations\text{-}iff\text{-}bisimulation:}
  fixes Rel :: ('proc \times 'proc) set
    and CWB :: ('proc, 'barbs) calculusWithBarbs
  shows (strong-barbed-simulation Rel CWB \wedge strong-barbed-simulation (Rel<sup>-1</sup>) CWB)
         = strong-barbed-bisimulation Rel CWB
proof (rule iffI, erule conjE)
  assume sim: strong-barbed-simulation Rel CWB
    and rev: strong-barbed-simulation (Rel^{-1}) CWB
  hence strong-reduction-bisimulation Rel (Calculus CWB)
     \textbf{using } \textit{strong-reduction-simulations-impl-bisimulation} [\textbf{where } \textit{Rel} = \textit{Rel } \textbf{and } \textit{Cal} = \textit{Calculus } \textit{CWB}]
   by blast
  moreover from sim have rel-preserves-barbs Rel CWB
   bv simp
  moreover from rev have rel-reflects-barbs Rel CWB
  ultimately show strong-barbed-bisimulation Rel CWB
    by blast
  assume bisim: strong-barbed-bisimulation Rel CWB
  hence strong-barbed-simulation Rel CWB
```

```
by blast
  moreover from bisim have strong-reduction-simulation (Rel^{-1}) (Calculus CWB)
     using strong-reduction-bisimulations-impl-inverse-is-simulation [where Rel = Rel]
  moreover from bisim have rel-reflects-barbs Rel CWB
   by blast
 hence rel-preserves-barbs (Rel^{-1}) CWB
   by simp
  ultimately
  show strong-barbed-simulation Rel CWB \wedge strong-barbed-simulation (Rel<sup>-1</sup>) CWB
   by blast
qed
A strong bisimulation is a weak bisimulation.
{f lemma}\ strong-impl-weak-reduction-bisimulation:
 fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
 assumes bisim: strong-reduction-bisimulation Rel Cal
 shows weak-reduction-bisimulation Rel Cal
proof
  from bisim show weak-reduction-simulation Rel Cal
     using strong-impl-weak-reduction-simulation[where Rel=Rel and Cal=Cal]
   by blast
\mathbf{next}
  \mathbf{show} \ \forall P \ Q \ Q'. \ (P, \ Q) \in Rel \land \ Q \longmapsto Cal \ast \ Q' \longrightarrow (\exists P'. \ P \longmapsto Cal \ast \ P' \land (P', \ Q') \in Rel)
  proof clarify
   fix P O O'
   assume A1: (P, Q) \in Rel
   assume Q \longmapsto Cal * Q'
   from this obtain n where Q \longmapsto Cal^n Q'
     by (auto simp add: steps-def)
   thus \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel
   proof (induct n arbitrary: Q')
     assume Q \longmapsto Cal^{\theta} Q'
     hence Q = Q'
       by (simp add: steps-refl)
     moreover have P \longmapsto Cal * P
       by (rule steps-refl)
     ultimately show \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel
         using A1
       by blast
   next
     case (Suc n Q'')
     assume Q \longmapsto Cal^{Suc\ n}\ Q^{\prime\prime}
     from this obtain Q' where A2: Q \longmapsto Cal^n Q' and A3: Q' \longmapsto Cal Q''
     assume \bigwedge Q'. Q \longmapsto Cal^n Q' \Longrightarrow \exists P'. P \longmapsto Cal * P' \land (P', Q') \in Rel
     with A2 obtain P' where A4: P \mapsto Cal * P' and A5: (P', Q') \in Rel
     from bisim A5 A3 obtain P" where A6: P' \longmapsto Cal P" and A7: (P", Q") \in Rel
       by blast
     from A4 A6 have P \longmapsto Cal * P''
         using steps-add[where P=P and Q=P' and R=P'']
       by (simp add: step-to-steps)
     with A7 show \exists P'. P \longmapsto Cal * P' \land (P', Q'') \in Rel
       by blast
   qed
  qed
qed
```

```
lemma strong-barbed-bisimulation-impl-weak-respection-of-barbs:
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes bisim: strong-barbed-bisimulation Rel CWB
 shows rel-weakly-respects-barbs Rel CWB
proof
 from bisim show rel-weakly-preserves-barbs Rel CWB
     using stronq-barbed-simulation-impl-weak-preservation-of-barbs[where Rel=Rel and CWB=CWB]
next
 show rel-weakly-reflects-barbs Rel CWB
 proof clarify
   fix P Q a Q
   assume (P, Q) \in Rel and Q \longmapsto (Calculus CWB)* Q'
   with bisim obtain P' where A1: P \longmapsto (Calculus\ CWB) * P' and A2: (P', Q') \in Rel
       \mathbf{using}\ strong\text{-}impl\text{-}weak\text{-}reduction\text{-}bisimulation}[\mathbf{where}\ Rel = Rel\ \mathbf{and}\ Cal = Calculus\ CWB]
     by blast
   assume Q' \downarrow < CWB > a
   with bisim A2 have P' \downarrow < CWB > a
     bv blast
   with A1 show P \Downarrow < CWB > a
     by blast
 qed
\mathbf{qed}
\mathbf{lemma}\ strong\text{-}impl\text{-}weak\text{-}barbed\text{-}bisimulation:}
 fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
 assumes bisim: strong-barbed-bisimulation Rel CWB
 shows weak-barbed-bisimulation Rel CWB
     using bisim
          strong-impl-weak-reduction-bisimulation[where Rel=Rel and Cal=Calculus CWB]
          strong-barbed-bisimulation-impl-weak-respection-of-barbs [where Rel=Rel and CWB=CWB]
   by blast
The reflexive, symmetric, and/or transitive closure of a strong bisimulation is a strong bisimulation.
{\bf lemma}\ strong-reduction-bisimulation-and-closures:
 fixes Rel :: ('proc \times 'proc) set
   and Cal :: 'proc processCalculus
 assumes bisim: strong-reduction-bisimulation Rel Cal
 shows strong-reduction-bisimulation (Rel^{\pm}) Cal
   and strong-reduction-bisimulation (symcl Rel) Cal
   and strong-reduction-bisimulation (Rel^+) Cal
   and strong-reduction-bisimulation (symcl (Rel^{=})) Cal
   and strong-reduction-bisimulation (Rel*) Cal
   and strong-reduction-bisimulation ((symcl (Rel^{=}))^{+}) Cal
proof -
 from bisim show A: strong-reduction-bisimulation (Rel^{\pm}) Cal
   by (auto simp add: refl, blast+)
 have B: \bigwedge Rel. strong-reduction-bisimulation Rel Cal
         \implies strong-reduction-bisimulation (symcl Rel) Cal
   by (auto simp add: symcl-def, blast+)
 from bisim B[where Rel=Rel] show strong-reduction-bisimulation (symcl Rel) Cal
 have C: \bigwedge Rel. strong-reduction-bisimulation Rel Cal
          \Rightarrow strong-reduction-bisimulation (Rel<sup>+</sup>) Cal
 proof
   fix Rel
   assume strong-reduction-bisimulation Rel Cal
   thus strong-reduction-simulation (Rel^+) Cal
```

```
using stronq-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal]
     bv blast
  next
   \mathbf{fix} \ Rel
   assume C1: strong-reduction-bisimulation Rel Cal
   show \forall P \ Q \ Q'. \ (P, \ Q) \in Rel^+ \land Q \longmapsto Cal \ Q'
         \longrightarrow (\exists P'. P \longmapsto Cal P' \land (P', Q') \in Rel^+)
   proof clarify
     \mathbf{fix} \ P \ Q \ Q'
     assume (P, Q) \in Rel^+ and Q \longmapsto Cal Q'
     thus \exists P'. P \longmapsto Cal P' \land (P', Q') \in Rel^+
     proof (induct arbitrary: Q')
       fix Q Q'
       assume (P, Q) \in Rel \text{ and } Q \longmapsto Cal Q'
       with C1 obtain P' where P \longmapsto Cal P' and (P', Q') \in Rel
       thus \exists P'. P \longmapsto Cal P' \land (P', Q') \in Rel^+
        by auto
     next
       case (step Q R R')
       assume (Q, R) \in Rel \text{ and } R \longmapsto Cal R'
       with C1 obtain Q' where C2: Q \longrightarrow Cal\ Q' and C3: (Q', R') \in Rel^+
       assume \land Q'. Q \longmapsto Cal \ Q' \Longrightarrow \exists P'. P \longmapsto Cal \ P' \land (P', \ Q') \in Rel^+
       with C2 obtain P' where C4: P \mapsto Cal P' and C5: (P', Q') \in Rel^+
         by blast
       from C5 C3 have (P', R') \in Rel^+
         by simp
       with C4 show \exists P'. P \longmapsto Cal P' \land (P', R') \in Rel^+
         by blast
     qed
   ged
  qed
  from bisim C[where Rel=Rel] show strong-reduction-bisimulation (Rel^+) Cal
   by blast
  from A B[where Rel=Rel=]
  show strong-reduction-bisimulation (symcl (Rel^{=})) Cal
   by blast
  from A C[where Rel=Rel=]
  show strong-reduction-bisimulation (Rel^*) Cal
     using trancl-reflct[of Rel]
  from A B[where Rel=Rel=] C[where Rel=symcl (Rel=)]
  show strong-reduction-bisimulation ((symcl\ (Rel^{=}))^{+}) Cal
   \mathbf{by} blast
qed
{\bf lemma}\ strong-barbed-bisimulation-and-closures:
  fixes Rel :: ('proc \times 'proc) set
   and CWB :: ('proc, 'barbs) calculusWithBarbs
  assumes bisim: strong-barbed-bisimulation Rel CWB
  shows strong-barbed-bisimulation (Rel^{=}) CWB
   and strong-barbed-bisimulation (symcl Rel) CWB
   and strong-barbed-bisimulation (Rel<sup>+</sup>) CWB
   and strong-barbed-bisimulation (symcl (Rel^{=})) CWB
   and strong-barbed-bisimulation (Rel*) CWB
   and strong-barbed-bisimulation ((symcl\ (Rel^{=}))^{+})\ CWB
proof -
  from bisim show strong-barbed-bisimulation (Rel^{\pm}) CWB
     using strong-reduction-bisimulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB]
          respection-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
```

```
by fast
next
 from bisim show strong-barbed-bisimulation (symcl Rel) CWB
    using strong-reduction-bisimulation-and-closures(2) [where Rel=Rel and Cal=Calculus\ CWB]
          respection-of-barbs-and-closures(2) [where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show strong-barbed-bisimulation (Rel^+) CWB
    using stronq-reduction-bisimulation-and-closures(3)[where Rel=Rel and Cal=Calculus\ CWB]
          respection-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show strong-barbed-bisimulation (symcl (Rel^{\pm})) CWB
    \textbf{using} \ \textit{strong-reduction-bisimulation-and-closures} (4) [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \ \textit{Cal} = \textit{Calculus} \ \textit{CWB}]
          respection-of-barbs-and-closures(4) [where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show strong-barbed-bisimulation (Rel*) CWB
    using stronq-reduction-bisimulation-and-closures(5)[where Rel=Rel and Cal=Calculus\ CWB]
          respection-of-barbs-and-closures(5)[where Rel=Rel and CWB=CWB]
   by blast
next
 from bisim show strong-barbed-bisimulation ((symcl (Rel^{=}))^{+}) CWB
    using strong-reduction-bisimulation-and-closures (6) [where Rel=Rel and Cal=Calculus CWB]
         respection-of-barbs-and-closures(6) [where Rel=Rel and CWB=CWB]
   by blast
qed
       Step Closure of Relations
```

3.6

The step closure of a relation on process terms is the transitive closure of the union of the relation and the inverse of the reduction relation of the respective calculus.

```
inductive-set stepsClosure :: ('a \times 'a) \ set \Rightarrow 'a \ processCalculus \Rightarrow ('a \times 'a) \ set
    for Rel :: ('a \times 'a) set
    and Cal: 'a\ processCalculus
  where
  rel: (P, Q) \in Rel \Longrightarrow (P, Q) \in stepsClosure Rel Cal
  steps: P \longmapsto Cal * P' \Longrightarrow (P', P) \in stepsClosure Rel Cal
  trans: [(P, Q) \in stepsClosure Rel Cal; (Q, R) \in stepsClosure Rel Cal]
           \implies (P, R) \in stepsClosure Rel Cal
abbreviation stepsClosureInfix ::
    'a \Rightarrow ('a \times 'a) \text{ set} \Rightarrow 'a \text{ processCalculus} \Rightarrow 'a \Rightarrow bool (<-R \mapsto <-,->-> [75, 75, 75, 75] 80)
  where
  P \ \mathcal{R} \mapsto \langle Rel, Cal \rangle \ Q \equiv (P, Q) \in stepsClosure \ Rel \ Cal
Applying the steps closure twice does not change the relation.
{f lemma}\ steps-closure-of-steps-closure:
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a processCalculus
  shows stepsClosure (stepsClosure Rel Cal) Cal = stepsClosure Rel Cal
proof auto
  \mathbf{fix} \ P \ Q
  assume P \mathcal{R} \mapsto \langle stepsClosure \ Rel \ Cal, Cal \rangle Q
  thus P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
  proof induct
    case (rel\ P\ Q)
    assume P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
    thus P \mathrel{\mathcal{R}} \mapsto \langle Rel, Cal \rangle Q
      by simp
```

```
next
    case (steps P P')
    assume P \longmapsto Cal * P'
    thus P' \mathcal{R} \mapsto <Rel, Cal>P
      by (rule stepsClosure.steps)
  next
    case (trans P Q R)
    assume P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q and Q \mathcal{R} \mapsto \langle Rel, Cal \rangle R
    thus P \mathcal{R} \mapsto \langle Rel, Cal \rangle R
      by (rule stepsClosure.trans)
  qed
next
  \mathbf{fix} \ P \ Q
  assume P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
  thus P \mathrel{\mathcal{R}} \mapsto < stepsClosure \mathrel{Rel} \mathrel{Cal}, \mathrel{Cal} > \mathrel{Q}
    by (rule stepsClosure.rel)
qed
The steps closure is a preorder.
lemma stepsClosure-refl:
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a processCalculus
  shows refl (stepsClosure Rel Cal)
    unfolding refl-on-def
proof auto
  \mathbf{fix} P
  have P \longmapsto Cal * P
    by (rule steps-refl)
  thus P \mathrel{\mathcal{R}} \mapsto \langle Rel, Cal \rangle P
    by (rule stepsClosure.steps)
\mathbf{qed}
lemma refl-trans-closure-of-rel-impl-steps-closure:
  fixes Rel :: ('a \times 'a) \ set
    {\bf and} \ {\it Cal} :: {\it 'a processCalculus}
    and P Q :: 'a
  assumes (P, Q) \in Rel^*
  shows P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
    using assms
proof induct
  show P \mathrel{\mathcal{R}} \mapsto \langle Rel, Cal \rangle P
      using stepsClosure-refl[of Rel Cal]
      unfolding refl-on-def
    by simp
next
  case (step \ Q \ R)
  assume (Q, R) \in Rel \text{ and } P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
  thus P \mathcal{R} \mapsto \langle Rel, Cal \rangle R
      \mathbf{using}\ stepsClosure.rel[of\ Q\ R\ Rel\ Cal]\ stepsClosure.trans[of\ P\ Q\ Rel\ Cal\ R]
    by blast
\mathbf{qed}
The steps closure of a relation is always a weak reduction simulation.
{f lemma} steps-closure-is-weak-reduction-simulation:
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a processCalculus
  shows weak-reduction-simulation (stepsClosure Rel Cal) Cal
proof clarify
  fix P Q P'
  assume P \mathrel{\mathcal{R}} \mapsto \langle Rel, Cal \rangle Q and P \longmapsto Cal \ast P'
```

```
thus \exists Q'. Q \longmapsto Cal * Q' \land P' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
  proof (induct arbitrary: P')
    case (rel\ P\ Q)
    assume P \longmapsto Cal * P'
    hence P' \mathcal{R} \mapsto \langle Rel, Cal \rangle P
       by (rule stepsClosure.steps)
    moreover assume (P, Q) \in Rel
    hence P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
       by (simp add: stepsClosure.rel)
    ultimately have P' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
       by (rule stepsClosure.trans)
    thus \exists Q'. Q \longmapsto Cal * Q' \land P' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
         using steps-refl[where Cal = Cal and P = Q]
       by blast
  next
    case (steps P P' P'')
    assume P \longmapsto Cal * P' and P' \longmapsto Cal * P''
    hence P \longmapsto Cal * P''
       by (rule steps-add)
    moreover have P'' \mathcal{R} \mapsto \langle Rel, Cal \rangle P''
         using stepsClosure-reft[where Rel=Rel and Cal=Cal]
         unfolding refl-on-def
       by simp
    ultimately show \exists Q'. P \longmapsto Cal * Q' \land P'' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
       by blast
  \mathbf{next}
    case (trans P Q R)
    assume P \longmapsto Cal * P'
        and \land P'. P \longmapsto Cal * P' \Longrightarrow \exists Q'. Q \longmapsto Cal * Q' \land P' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
    from this obtain Q' where A1: Q \longmapsto Cal * Q' and A2: P' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
    assume \bigwedge Q'. Q \longmapsto Cal * Q' \Longrightarrow \exists R'. R \longmapsto Cal * R' \land Q' \mathcal{R} \mapsto \langle Rel, Cal \rangle R'
    with A1 obtain R' where A3: R \longmapsto Cal * R' and A4: Q' \mathcal{R} \mapsto \langle Rel, Cal \rangle R'
      by blast
    from A2 A4 have P' \mathcal{R} \mapsto \langle Rel, Cal \rangle R'
      by (rule stepsClosure.trans)
    with A3 show \exists R'. R \longmapsto Cal * R' \land P' \mathcal{R} \mapsto \langle Rel, Cal \rangle R'
       by blast
  qed
qed
{\bf lemma}\ inverse-contrasimulation-impl-reverse-pair-in-steps-closure:
```

If Rel is a weak simulation and its inverse is a weak contrasimulation, then the steps closure of Rel is a contrasimulation.

```
fixes Rel :: ('a \times 'a) \ set
   and Cal :: 'a processCalculus
   and P Q :: 'a
  assumes con: weak-reduction-contrasimulation (Rel^{-1}) Cal
     and pair: (P, Q) \in Rel
 shows Q \mathrel{\mathcal{R}} \mapsto \langle Rel, Cal \rangle P
proof -
  from pair have (Q, P) \in Rel^{-1}
   by simp
  moreover have Q \longmapsto Cal * Q
   by (rule steps-refl)
  ultimately obtain P' where A1: P \longmapsto Cal * P' and A2: (P', Q) \in Rel^{-1}
     using con
   bv blast
  from A2 have Q \mathcal{R} \mapsto \langle Rel, Cal \rangle P'
   by (simp add: stepsClosure.rel)
```

```
moreover from A1 have P' \mathcal{R} \mapsto \langle Rel, Cal \rangle P
    by (rule stepsClosure.steps)
  ultimately show Q \mathcal{R} \mapsto \langle Rel, Cal \rangle P
    by (rule stepsClosure.trans)
qed
{\bf lemma}\ simulation-and-inverse-contrasimulation-impl-steps-closure-is-contrasimulation:
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a processCalculus
  assumes sim: weak-reduction-simulation Rel Cal
      and con: weak-reduction-contrasimulation (Rel^{-1}) Cal
  shows weak-reduction-contrasimulation (stepsClosure Rel Cal) Cal
proof clarify
  \mathbf{fix} \ P \ Q \ P'
  assume P \mathrel{\mathcal{R}} \mapsto <Rel, Cal> Q and P \longmapsto Cal* P'
  thus \exists Q'. Q \longmapsto Cal * Q' \land Q' \mathcal{R} \mapsto \langle Rel, Cal \rangle P'
  proof (induct arbitrary: P')
    case (rel\ P\ Q)
    assume (P, Q) \in Rel \text{ and } P \longmapsto Cal * P'
    with sim obtain Q' where A1: Q \longrightarrow Cal* Q' and A2: (P', Q') \in Rel
      by blast
    from A2 con have Q' \mathcal{R} \mapsto \langle Rel, Cal \rangle P'
        using inverse-contrasimulation-impl-reverse-pair-in-steps-closure [where Rel=Rel]
    with A1 show \exists Q'. Q \longmapsto Cal * Q' \land Q' \mathcal{R} \mapsto <Rel, Cal > P'
      by blast
    case (steps P P' P'')
    assume P \longmapsto Cal * P' and P' \longmapsto Cal * P''
    hence P \longmapsto Cal * P''
      by (rule steps-add)
    thus \exists Q'. P \longmapsto Cal * Q' \land Q' \mathcal{R} \mapsto \langle Rel, Cal \rangle P''
        using stepsClosure-refl[where Rel=Rel and Cal=Cal]
        unfolding refl-on-def
      by blast
  \mathbf{next}
    case (trans P Q R)
    assume \land P'. P \longmapsto Cal * P' \Longrightarrow \exists Q'. Q \longmapsto Cal * Q' \land Q' \mathcal{R} \mapsto <Rel, Cal > P'
       and P \longmapsto Cal * P'
    from this obtain Q' where A1: Q \longrightarrow Cal* Q' and A2: Q' \mathcal{R} \mapsto \langle Rel, Cal \rangle P'
      by blast
    assume \land Q'. Q \longmapsto Cal * Q' \Longrightarrow \exists R'. R \longmapsto Cal * R' \land R' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
    with A1 obtain R' where A3: R \mapsto Cal * R' and A4: R' \mathcal{R} \mapsto \langle Rel, Cal \rangle Q'
      by blast
    from A4 A2 have R' \mathcal{R} \mapsto \langle Rel, Cal \rangle P'
     by (rule stepsClosure.trans)
    with A3 show \exists R'. R \longmapsto Cal * R' \land R' \mathcal{R} \mapsto \langle Rel, Cal \rangle P'
      \mathbf{by} blast
  qed
qed
Accordingly, if Rel is a weak simulation and its inverse is a weak contrasimulation, then the steps
closure of Rel is a coupled simulation.
{\bf lemma}\ simulation - and - inverse-contrasimulation - impl-steps-closure-is-coupled-simulation:
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a \ processCalculus
  assumes sim: weak-reduction-simulation Rel Cal
      and con: weak-reduction-contrasimulation (Rel^{-1}) Cal
  shows weak-reduction-coupled-simulation (stepsClosure Rel Cal) Cal
      using sim con simulation-and-inverse-contrasimulation-impl-steps-closure-is-contrasimulation
```

If the relation that is closed under steps is a (contra)simulation, then we can conclude from a pair in the closure on a pair in the original relation.

```
\mathbf{lemma}\ steps Closure\text{-}simulation\text{-}impl\text{-}refl\text{-}trans\text{-}closure\text{-}of\text{-}Rel\text{:}}
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a processCalculus
    and P Q :: 'a
  assumes A1: P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
      and A2: weak-reduction-simulation Rel Cal
  shows \exists Q'. Q \longmapsto Cal * Q' \land (P, Q') \in Rel^*
proof -
  have \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^*)
    using A1
  proof induct
    case (rel\ P\ Q)
    assume (P, Q) \in Rel
    with A2 have \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel)
    thus \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^*)
      by blast
  \mathbf{next}
    case (steps P P')
    assume A: P \longmapsto Cal * P'
    show \forall P''. P' \longmapsto Cal * P'' \longrightarrow (\exists Q'. P \longmapsto Cal * Q' \land (P'', Q') \in Rel^*)
    proof clarify
      fix P''
      assume P' \longmapsto Cal * P''
      with A have P \longmapsto Cal * P''
        by (rule steps-add)
      moreover have (P'', P'') \in Rel^*
        by simp
      ultimately show \exists Q'. P \longmapsto Cal * Q' \land (P'', Q') \in Rel^*
         by blast
    qed
  next
    case (trans P Q R)
    assume A1: \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^*)
       and A2: \forall Q'. Q \longmapsto Cal * Q' \longrightarrow (\exists R'. R \longmapsto Cal * R' \land (Q', R') \in Rel^*)
    show \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists R'. R \longmapsto Cal * R' \land (P', R') \in Rel^*)
    proof clarify
      fix P'
      assume P \longmapsto Cal * P'
      with A1 obtain Q' where A3: Q \longmapsto Cal * Q' and A4: (P', Q') \in Rel^*
        by blast
      from A2 A3 obtain R' where A5: R \longmapsto Cal * R' and A6: (Q', R') \in Rel^*
        by blast
      from A \not A A B have (P', R') \in Rel^*
        by simp
      with A5 show \exists R'. R \longmapsto Cal * R' \land (P', R') \in Rel^*
        by blast
    qed
  qed
  moreover have P \longmapsto Cal * P
    by (rule steps-refl)
  ultimately show ?thesis
    by blast
qed
```

```
lemma stepsClosure-contrasimulation-impl-refl-trans-closure-of-Rel:
  fixes Rel :: ('a \times 'a) set
    and Cal :: 'a processCalculus
    and P Q :: 'a
  assumes A1: P \mathcal{R} \mapsto \langle Rel, Cal \rangle Q
      and A2: weak-reduction-contrasimulation Rel Cal
  shows \exists Q'. Q \longmapsto Cal * Q' \land (Q', P) \in Rel^*
  have \forall P'.\ P \longmapsto Cal *\ P' \longrightarrow (\exists\ Q'.\ Q \longmapsto Cal *\ Q' \land (Q',\ P') \in Rel^*)
    using A1
  proof induct
    case (rel P Q)
    assume (P, Q) \in Rel
    with A2 have \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel)
      by blast
    thus \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel^*)
      by blast
  \mathbf{next}
    case (steps P P')
    assume A: P \longmapsto Cal * P'
    show \forall P''. P' \longmapsto Cal * P'' \longrightarrow (\exists Q'. P \longmapsto Cal * Q' \land (Q', P'') \in Rel^*)
    proof clarify
      fix P''
      assume P' \longmapsto Cal * P''
      with A have P \longmapsto Cal * P''
        by (rule steps-add)
      moreover have (P'', P'') \in Rel^*
        by simp
      ultimately show \exists Q'. P \longmapsto Cal * Q' \land (Q', P'') \in Rel^*
        by blast
    qed
  next
    case (trans P Q R)
   assume A1: \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel^*)
       and A2: \forall Q'. Q \longmapsto Cal * Q' \longrightarrow (\exists R'. R \longmapsto Cal * R' \land (R', Q') \in Rel^*)
    show \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists R'. R \longmapsto Cal * R' \land (R', P') \in Rel^*)
    proof clarify
      fix P'
      assume P \longmapsto Cal * P'
      with A1 obtain Q' where A3: Q \longmapsto Cal * Q' and A4: (Q', P') \in Rel^*
      from A2 A3 obtain R' where A5: R \longmapsto Cal * R' and A6: (R', Q') \in Rel^*
      from A \not A A B have (R', P') \in Rel^*
        by simp
      with A5 show \exists R'. R \longmapsto Cal * R' \land (R', P') \in Rel^*
        by blast
   qed
  qed
  moreover have P \longmapsto Cal * P
   by (rule steps-refl)
  ultimately show ?thesis
    by blast
qed
\mathbf{lemma}\ steps Closure-contrasimulation-of-inverse-impl-refl-trans-closure-of-Rel:
  fixes Rel :: ('a \times 'a) \ set
    and Cal :: 'a processCalculus
    and P Q :: 'a
  assumes A1: P \mathcal{R} \mapsto \langle Rel^{-1}, Cal \rangle Q
      and A2: weak-reduction-contrasimulation (Rel<sup>-1</sup>) Cal
```

```
shows \exists Q'. Q \longmapsto Cal * Q' \land (P, Q') \in Rel^*
proof -
  have \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^*)
    using A1
  proof induct
    case (rel\ P\ Q)
    assume (P, Q) \in Rel^{-1}
    with A2 have \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (Q', P') \in Rel^{-1})
    thus \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^*)
      by blast
  \mathbf{next}
    case (steps P P')
    assume A: P \longmapsto Cal * P'
    show \forall P''. P' \longmapsto Cal * P'' \longrightarrow (\exists Q'. P \longmapsto Cal * Q' \land (P'', Q') \in Rel^*)
    proof clarify
      fix P''
      assume P' \longmapsto Cal * P''
      with A have P \longmapsto Cal * P''
        by (rule steps-add)
      moreover have (P'', P'') \in Rel^*
        by simp
      ultimately show \exists Q'. P \longmapsto Cal * Q' \land (P'', Q') \in Rel^*
        by blast
    qed
  \mathbf{next}
    case (trans P Q R)
    assume A1: \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists Q'. Q \longmapsto Cal * Q' \land (P', Q') \in Rel^*)
       and A2: \forall Q'. Q \longrightarrow Cal * Q' \longrightarrow (\exists R'. R \longmapsto Cal * R' \land (Q', R') \in Rel^*)
    show \forall P'. P \longmapsto Cal * P' \longrightarrow (\exists R'. R \longmapsto Cal * R' \land (P', R') \in Rel^*)
    proof clarify
      fix P'
      assume P \longmapsto Cal * P'
      with A1 obtain Q' where A3: Q \longmapsto Cal * Q' and A4: (P', Q') \in Rel^*
        by blast
      from A3 A2 obtain R' where A5: R \longmapsto Cal * R' and A6: (Q', R') \in Rel^*
        by blast
      from A4 A6 have (P', R') \in Rel^*
        by simp
      with A5 show \exists R'. R \longmapsto Cal * R' \land (P', R') \in Rel^*
        by blast
    qed
  qed
  moreover have P \longmapsto Cal * P
    by (rule steps-refl)
  ultimately show ?thesis
    by blast
\mathbf{qed}
end
theory Encodings
  imports ProcessCalculi
begin
```

4 Encodings

In the simplest case an encoding from a source into a target language is a mapping from source into target terms. Encodability criteria describe properties on such mappings. To analyse encodability criteria we map them on conditions on relations between source and target terms. More precisely, we

consider relations on pairs of the disjoint union of source and target terms. We denote this disjoint union of source and target terms by Proc.

```
datatype ('procS, 'procT) Proc =
  SourceTerm 'procS |
  TargetTerm \ 'procT
definition STCal
    :: 'procS \ process Calculus \Rightarrow 'procT \ process Calculus
        \Rightarrow (('procS, 'procT) \ Proc) \ processCalculus
  where
  STCal\ Source\ Target \equiv
   (Reductions = \lambda P P'.
   (\exists SP\ SP'.\ P = SourceTerm\ SP \land P' = SourceTerm\ SP' \land Reductions\ Source\ SP\ SP') \lor
   (\exists TP \ TP'. \ P = TargetTerm \ TP \land P' = TargetTerm \ TP' \land Reductions \ Target \ TP \ TP'))
definition STCalWB
    :: ('procS, 'barbs) \ calculus With Barbs \Rightarrow ('procT, 'barbs) \ calculus With Barbs
        \Rightarrow (('procS, 'procT) \ Proc, 'barbs) \ calculus With Barbs
  where
  STCalWB \ Source \ Target \equiv
   (Calculus = STCal (calculus With Barbs. Calculus Source) (calculus With Barbs. Calculus Target),
   HasBarb = \lambda P \ a. \ (\exists SP. \ P = SourceTerm \ SP \land (calculusWithBarbs.HasBarb \ Source) \ SP \ a) \lor
                     (\exists TP. P = TargetTerm TP \land (calculusWithBarbs.HasBarb Target) TP a))
An encoding consists of a source language, a target language, and a mapping from source into target
terms.
locale encoding =
  \mathbf{fixes}\ Source:: 'procS\ processCalculus
    and Target :: 'procT processCalculus
    and Enc :: 'procS \Rightarrow 'procT
begin
abbreviation enc :: 'procS \Rightarrow 'procT (\langle [-] \rangle [65] ?0) where
  [S] \equiv Enc S
abbreviation is Source :: ('procS, 'procT) Proc \Rightarrow bool \ (\leftarrow \in ProcS \rightarrow [70] \ 80) where
  P \in ProcS \equiv (\exists S. P = SourceTerm S)
abbreviation isTarget :: ('procS, 'procT) \ Proc \Rightarrow bool \ (\langle \cdot \in ProcT \rangle \ [70] \ 80) where
  P \in ProcT \equiv (\exists T. P = TargetTerm T)
abbreviation getSource
   "":" procS \Rightarrow ("procS, "procT) Proc \Rightarrow bool (<- \in S \rightarrow [70, 70] 80)
  where
  S \in S P \equiv (P = SourceTerm S)
abbreviation getTarget
    "":" proc T \Rightarrow ("proc S, "proc T) Proc \Rightarrow bool ( \leftarrow \in T \rightarrow \lceil 70, \ 70 \rceil \ 80)
  where
  T \in T P \equiv (P = TargetTerm \ T)
A step of a term in Proc is either a source term step or a target term step.
abbreviation stepST
   :: ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool (\leftarrow \rightarrow ST \rightarrow \lceil 70, \ 70 \rceil \ 80)
  where
  P \longmapsto ST P' \equiv
   (\exists S \ S'. \ S \in S \ P \land S' \in S \ P' \land S \longmapsto Source \ S') \lor (\exists T \ T'. \ T \in T \ P \land T' \in T \ P' \land T \longmapsto Target \ T')
\mathbf{lemma}\ step ST\text{-}STCal\text{-}step \colon
  fixes P P' :: ('procS, 'procT) Proc
```

```
shows P \longmapsto (STCal\ Source\ Target)\ P' = P \longmapsto ST\ P'
    by (simp add: STCal-def)
lemma STStep-step:
  fixes S :: 'procS
    and T :: 'procT
    and P' :: ('procS, 'procT) \ Proc
  shows SourceTerm\ S \longmapsto ST\ P' = (\exists\ S'.\ S' \in S\ P' \land\ S \longmapsto Source\ S')
    and TargetTerm\ T \longmapsto ST\ P' = (\exists\ T'.\ T' \in T\ P' \land\ T \longmapsto Target\ T')
    by blast+
lemma STCal-step:
  fixes S :: 'procS
    and T :: 'procT
    and P' :: ('procS, 'procT) \ Proc
  shows SourceTerm\ S \longmapsto (STCal\ Source\ Target)\ P' = (\exists\ S'.\ S' \in S\ P' \land S \longmapsto Source\ S')
    and TargetTerm\ T \longmapsto (STCal\ Source\ Target)\ P' = (\exists\ T'.\ T' \in T\ P' \land\ T \longmapsto Target\ T')
    by (simp \ add: STCal\text{-}def)+
A sequence of steps of a term in Proc is either a sequence of source term steps or a sequence of target
term steps.
abbreviation stepsST
   :: ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool (\leftarrow \longrightarrow ST* \rightarrow [70, 70] \ 80)
  where
  P \longmapsto ST * P' \equiv
   (\exists S \ S'. \ S \in S \ P \land S' \in S \ P' \land S \longmapsto Source* \ S') \lor (\exists T \ T'. \ T \in T \ P \land T' \in T \ P' \land T \longmapsto Target* \ T')
lemma STSteps-steps:
  fixes S :: 'procS
   and T :: 'procT
    and P' :: ('procS, 'procT) \ Proc
  shows SourceTerm\ S \longmapsto ST *\ P' = (\exists\ S'.\ S' \in S\ P' \land\ S \longmapsto Source *\ S')
    and TargetTerm \ T \longmapsto ST * P' = (\exists \ T'. \ T' \in T \ P' \land T \longmapsto Target * T')
    by blast+
lemma STCal-steps:
  fixes S :: 'procS
    and T :: 'procT
    and P' :: ('procS, 'procT) \ Proc
  shows SourceTerm\ S \longmapsto (STCal\ Source\ Target) *\ P' = (\exists\ S'.\ S' \in S\ P' \land\ S \longmapsto Source *\ S')
    and TargetTerm\ T \longmapsto (STCal\ Source\ Target) *\ P' = (\exists\ T'.\ T' \in T\ P' \land\ T \longmapsto Target *\ T')
proof auto
  assume Source Term S \longmapsto (STCal\ Source\ Target) * P'
  from this obtain n where SourceTerm\ S \longmapsto (STCal\ Source\ Target)^n\ P'
    by (auto simp add: steps-def)
  thus \exists S'. S' \in S P' \land S \longmapsto Source * S'
  proof (induct n arbitrary: P')
    case \theta
    assume SourceTerm\ S \longmapsto (STCal\ Source\ Target)^{\theta}\ P'
    hence S \in SP'
      by simp
    moreover have S \longmapsto Source * S
      by (rule steps-refl)
    ultimately show \exists S'. S' \in S P' \land S \longmapsto Source * S'
     by blast
  \mathbf{next}
    case (Suc n P'')
    assume SourceTerm\ S \longmapsto (STCal\ Source\ Target)^{Suc\ n}\ P''
    from this obtain P' where A1: Source Term S \longmapsto (STCal\ Source\ Target)^n\ P'
                          and A2: P' \longmapsto (STCal\ Source\ Target)\ P''
```

```
assume \land P'. Source Term S \mapsto (STCal\ Source\ Target)^n P' \Longrightarrow ∃ S'. S' ∈ S P' \land S \mapsto Source* S'
   with A1 obtain S' where A3: S' \in SP' and A4: S \longmapsto Source * S'
     by blast
   from A2 A3 obtain S'' where A5: S'' \in SP'' and A6: S' \longmapsto Source S''
       using STCal-step(1)[where S=S' and P'=P'']
     by blast
   from A4 A6 have S \longrightarrow Source * S''
       using step-to-steps[where Cal=Source and P=S' and P'=S'']
     by (simp\ add:\ steps-add[where Cal=Source\ and P=S\ and Q=S'\ and R=S''])
   with A5 show \exists S''. S'' \in S P'' \land S \longmapsto Source * S''
     by blast
  qed
next
 \mathbf{fix} \ S'
 assume S \longmapsto Source * S'
  from this obtain n where S \longmapsto Source^n S'
   by (auto simp add: steps-def)
  thus SourceTerm\ S \longmapsto (STCal\ Source\ Target)*\ (SourceTerm\ S')
  proof (induct n arbitrary: S')
   case \theta
   assume S \longmapsto Source^{\theta} S'
   hence S = S'
     by auto
   thus SourceTerm\ S \longmapsto (STCal\ Source\ Target)*\ (SourceTerm\ S')
     by (simp add: steps-refl)
   case (Suc n S'')
   assume S \longmapsto Source^{Suc\ n}\ S^{\prime\prime}
   from this obtain S' where B1: S \longmapsto Source^n S' and B2: S' \longmapsto Source S''
   assume \land S'. S \mapsto Source^n S' \Longrightarrow Source Term S \mapsto (STCal\ Source\ Target) * (Source Term\ S')
   with B1 have Source Term S \longmapsto (STCal\ Source\ Target)* (Source\ Term\ S')
   moreover from B2 have SourceTerm\ S' \longmapsto (STCal\ Source\ Target)*\ (SourceTerm\ S'')
       using step-to-steps where Cal=STCal Source Target and P=SourceTerm S'
     by (simp add: STCal-def)
   ultimately show Source Term S \longmapsto (STCal\ Source\ Target)* (Source\ Term\ S'')
     by (rule steps-add)
  qed
next
  assume TargetTerm T \longmapsto (STCal\ Source\ Target) * P'
  from this obtain n where TargetTerm\ T \longmapsto (STCal\ Source\ Target)^n\ P'
   by (auto simp add: steps-def)
  thus \exists T'. T' \in TP' \land T \longmapsto Target * T'
  proof (induct n arbitrary: P')
   case \theta
   assume TargetTerm\ T \longmapsto (STCal\ Source\ Target)^{\theta}\ P'
   hence T \in TP'
     by simp
   moreover have T \longmapsto Target * T
     by (rule steps-refl)
   ultimately show \exists T'. T' \in TP' \land T \longmapsto Target * T'
     by blast
  \mathbf{next}
   case (Suc n P'')
   assume TargetTerm\ T \longmapsto (STCal\ Source\ Target)^{Suc\ n}\ P''
   from this obtain P' where A1: TargetTerm\ T \longmapsto (STCal\ Source\ Target)^n\ P'
                       and A2: P' \longmapsto (STCal\ Source\ Target)\ P''
     by auto
```

```
assume \bigwedge P'. TargetTerm T \longmapsto (STCal\ Source\ Target)^n\ P' \Longrightarrow \exists\ T'.\ T' \in T\ P' \land\ T \longmapsto Target*\ T'
   with A1 obtain T' where A3: T' \in T P' and A4: T \mapsto Target* T'
   from A2 A3 obtain T" where A5: T'' \in T P" and A6: T' \longmapsto Target T"
       using STCal-step(2)[where T=T' and P'=P'']
     by blast
   from A4\ A6 have T \longmapsto Target*\ T''
      using step-to-steps[where Cal=Target and P=T' and P'=T'']
     by (simp\ add:\ steps-add[where Cal=Target\ and P=T\ and Q=T'\ and R=T''])
   with A5 show \exists T''. T'' \in TP'' \land T \longmapsto Target* T''
     by blast
  qed
next
 fix T'
 assume T \longmapsto Target * T'
  from this obtain n where T \longmapsto Target^n T'
   by (auto simp add: steps-def)
  thus TargetTerm\ T \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T')
  proof (induct n arbitrary: T')
   case \theta
   assume T \longmapsto Target^{\theta} T'
   hence T = T'
     by auto
   thus TargetTerm \ T \longmapsto (STCal \ Source \ Target) * (TargetTerm \ T')
     by (simp add: steps-refl)
 \mathbf{next}
   case (Suc n T'')
   assume T \longmapsto Target^{Suc\ n}\ T^{\prime\prime}
   from this obtain T' where B1: T \longmapsto Target^n T' and B2: T' \longmapsto Target T''
     by auto
   assume \bigwedge T'. T \longmapsto Target^n T' \Longrightarrow TargetTerm T \longmapsto (STCal\ Source\ Target) * (TargetTerm\ T')
   with B1 have TargetTerm\ T \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T')
     by blast
   moreover from B2 have TargetTerm\ T' \longrightarrow (STCal\ Source\ Target)* (TargetTerm\ T'')
       using step-to-steps[where Cal=STCal\ Source\ Target\ and\ P=TargetTerm\ T']
     by (simp add: STCal-def)
   ultimately show TargetTerm\ T \longmapsto (STCal\ Source\ Target) * (TargetTerm\ T'')
     by (rule steps-add)
 qed
qed
lemma stepsST-STCal-steps:
 fixes P P' :: ('procS, 'procT) Proc
  shows P \longmapsto (STCal\ Source\ Target) * P' = P \longmapsto ST * P'
proof (cases P)
 case (SourceTerm SP)
 assume SP \in SP
 thus P \longmapsto (STCal\ Source\ Target) * P' = P \longmapsto ST * P'
     using STCal-steps(1)[where S=SP and P'=P'] STSteps-steps(1)[where S=SP and P'=P']
   by blast
next
  case (TargetTerm TP)
 assume TP \in TP
 thus P \longmapsto (STCal\ Source\ Target) * P' = P \longmapsto ST * P'
     using STCal-steps(2)[where T=TP and P'=P'] STSteps-steps(2)[where T=TP and P'=P']
   by blast
qed
lemma stepsST-refl:
 fixes P :: ('procS, 'procT) \ Proc
```

```
shows P \longmapsto ST * P
    by (cases P, simp-all add: steps-refl)
lemma stepsST-add:
  fixes P \ Q \ R :: ('procS, 'procT) \ Proc
  assumes A1: P \longmapsto ST * Q
     and A2: Q \longmapsto ST * R
  shows P \longmapsto ST * R
proof -
  from A1 have P \longmapsto (STCal\ Source\ Target) * Q
    by (simp add: stepsST-STCal-steps)
  moreover from A2 have Q \longmapsto (STCal\ Source\ Target) * R
   by (simp add: stepsST-STCal-steps)
  ultimately have P \longmapsto (STCal\ Source\ Target)*R
   by (rule\ steps-add)
  thus P \longmapsto ST * R
    by (simp add: stepsST-STCal-steps)
qed
A divergent term of Proc is either a divergent source term or a divergent target term.
abbreviation divergentST
   :: ('procS, 'procT) \ Proc \Rightarrow bool (\leftarrow \longrightarrow ST\omega \rightarrow [70] \ 80)
  P \longmapsto ST\omega \equiv (\exists S. \ S \in S \ P \land S \longmapsto (Source)\omega) \lor (\exists \ T. \ T \in T \ P \land \ T \longmapsto (Target)\omega)
lemma STCal-divergent:
  \mathbf{fixes}\ S\ ::\ 'procS
    and T :: 'procT
  shows Source Term S \longmapsto (STCal\ Source\ Target)\omega = S \longmapsto (Source)\omega
   and TargetTerm\ T \longmapsto (STCal\ Source\ Target)\omega = T \longmapsto (Target)\omega
     using STCal-steps
   by (auto simp add: STCal-def divergent-def)
lemma divergentST-STCal-divergent:
  fixes P :: ('procS, 'procT) \ Proc
  shows P \longmapsto (STCal\ Source\ Target)\omega = P \longmapsto ST\omega
proof (cases P)
  case (SourceTerm SP)
  assume SP \in SP
  thus P \longmapsto (STCal\ Source\ Target)\omega = P \longmapsto ST\omega
      using STCal-divergent(1)
   by simp
next
  case (TargetTerm\ TP)
  assume TP \in TP
  thus P \longmapsto (STCal\ Source\ Target)\omega = P \longmapsto ST\omega
     using STCal-divergent(2)
   by simp
Similar to relations we define what it means for an encoding to preserve, reflect, or respect a predicate.
An encoding preserves some predicate P if P(S) implies P(enc S) for all source terms S.
abbreviation enc-preserves-pred :: (('procS, 'procT) \ Proc \Rightarrow bool) \Rightarrow bool where
  enc-preserves-pred Pred \equiv \forall S. \ Pred \ (SourceTerm \ S) \longrightarrow Pred \ (TargetTerm \ ([S]))
abbreviation enc-preserves-binary-pred
   :: (('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool) \Rightarrow bool
  where
  enc-preserves-binary-pred Pred \equiv \forall S \ x. \ Pred \ (Source Term \ S) \ x \longrightarrow Pred \ (Target Term \ ([S])) \ x
An encoding reflects some predicate P if P(S) implies P(enc S) for all source terms S.
```

```
abbreviation enc-reflects-pred :: (('procS, 'procT) \ Proc \Rightarrow bool) \Rightarrow bool where
  enc\text{-reflects-pred } Pred \equiv \forall S. \ Pred \ (TargetTerm \ (\llbracket S \rrbracket)) \longrightarrow Pred \ (SourceTerm \ S)
abbreviation enc-reflects-binary-pred
   :: (('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool) \Rightarrow bool
  where
  enc\text{-reflects-binary-pred } Pred \equiv \forall S \ x. \ Pred \ (TargetTerm \ (\llbracket S \rrbracket)) \ x \longrightarrow Pred \ (SourceTerm \ S) \ x
An encoding respects a predicate if it preserves and reflects it.
abbreviation enc-respects-pred :: (('procS, 'procT) \ Proc \Rightarrow bool) \Rightarrow bool where
  enc-respects-pred Pred \equiv enc-preserves-pred Pred \land enc-reflects-pred Pred
abbreviation enc-respects-binary-pred
   :: (('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool) \Rightarrow bool
  where
  enc\text{-}respects\text{-}binary\text{-}pred\ Pred\ \equiv
  enc-preserves-binary-pred Pred \land enc-reflects-binary-pred Pred
end
To compare source terms and target terms w.r.t. their barbs or observables we assume that each
languages defines its own predicate for the existence of barbs.
locale encoding-wrt-barbs =
  encoding Source Target Enc
  for Source :: 'procS processCalculus
  and Target :: 'procT processCalculus
              :: 'procS \Rightarrow 'procT +
  and Enc
 \mathbf{fixes}~\mathit{SWB} :: ('\mathit{procS},~'\mathit{barbs})~\mathit{calculusWithBarbs}
   and TWB :: ('procT, 'barbs) \ calculus With Barbs
  assumes calS: calculus With Barbs. Calculus SWB = Source
     and calT: calculus With Barbs. Calculus TWB = Target
begin
lemma STCalWB-STCal:
  shows Calculus (STCalWB SWB TWB) = STCal Source Target
     unfolding STCalWB-def using calS calT
   by auto
We say a term P of Proc has some barbs a if either P is a source term that has barb a or P is a target
term that has the barb b. For simplicity we assume that the sets of barbs is large enough to contain
all barbs of the source terms, the target terms, and all barbs they might have in common.
abbreviation hasBarbST
   :: ('procS, 'procT) \ Proc \Rightarrow 'barbs \Rightarrow bool (\langle -\downarrow -\rangle \ [70, 70] \ 80)
 where
  P \downarrow .a \equiv (\exists S. \ S \in S \ P \land S \downarrow < SWB > a) \lor (\exists T. \ T \in T \ P \land T \downarrow < TWB > a)
lemma STCalWB-hasBarbST:
  fixes P :: ('procS, 'procT) \ Proc
   and a :: 'barbs
```

```
lemma preservation-of-barbs-in-barbed-encoding:

fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) set

and PQ :: ('procS, 'procT) \ Proc

and a :: 'barbs

assumes preservation: rel-preserves-barbs Rel \ (STCalWB \ SWB \ TWB)

and rel: \ (P, \ Q) \in Rel

and barb: \ P \downarrow .a

shows Q \downarrow .a
```

shows $P \downarrow < STCalWB SWB TWB > a = P \downarrow .a$

by (simp add: STCalWB-def)

```
using preservation rel barb
   by (simp add: STCalWB-def)
lemma reflection-of-barbs-in-barbed-encoding:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and P \ Q :: ('procS, 'procT) \ Proc
   and a :: barbs
  assumes reflection: rel-reflects-barbs Rel (STCalWB SWB TWB)
     and rel:
                      (P, Q) \in Rel
     and barb:
                       Q\downarrow .a
  shows P \downarrow .a
     using reflection rel barb
   by (simp add: STCalWB-def)
lemma respection-of-barbs-in-barbed-encoding:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and P \ Q :: ('procS, 'procT) \ Proc
   and a :: 'barbs
  assumes respection: rel-respects-barbs Rel (STCalWB SWB TWB)
     and rel:
                     (P, Q) \in Rel
 shows P \downarrow .a = Q \downarrow .a
     using preservation-of-barbs-in-barbed-encoding where Rel=Rel and P=P and Q=Q and a=a
           reflection-of-barbs-in-barbed-encoding where Rel=Rel and P=P and Q=Q and a=a
           respection rel
   by blast
A term P of Proc reaches a barb a if either P is a source term that reaches a or P is a target term
that reaches a.
abbreviation reachesBarbST
   :: ('procS, 'procT) \ Proc \Rightarrow 'barbs \Rightarrow bool (\leftarrow \Downarrow \rightarrow [70, 70] \ 80)
  where
  P \Downarrow a \equiv (\exists S. \ S \in S \ P \land S \Downarrow < SWB > a) \lor (\exists T. \ T \in T \ P \land T \Downarrow < TWB > a)
lemma STCalWB-reachesBarbST:
  fixes P :: ('procS, 'procT) \ Proc
   and a :: 'barbs
 shows P \Downarrow \langle STCalWB \ SWB \ TWB \rangle a = P \Downarrow .a
proof -
  have \forall S. \ Source Term \ S \Downarrow < STCalWB \ SWB \ TWB > a = Source Term \ S \Downarrow .a
     using STCal-steps(1)
   by (auto simp add: STCalWB-def calS calT)
  moreover have \forall T. TargetTerm T \Downarrow \langle STCalWB SWB TWB \rangle a = TargetTerm T \Downarrow .a
     using STCal-steps(2)
   \mathbf{by} \ (auto \ simp \ add: \ STCalWB\text{-}def \ calS \ calT)
  ultimately show P \Downarrow < STCalWB \ SWB \ TWB > a = P \Downarrow .a
   by (cases\ P,\ simp+)
lemma weak-preservation-of-barbs-in-barbed-encoding:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and P \ Q :: ('procS, 'procT) \ Proc
   and a :: 'barbs
  assumes preservation: rel-weakly-preserves-barbs Rel (STCalWB SWB TWB)
     and rel:
                       (P, Q) \in Rel
     and barb:
                        P \Downarrow .a
 shows Q \Downarrow .a
proof -
  from barb have P \Downarrow < STCalWB SWB TWB > a
   by (simp\ add:\ STCalWB-reachesBarbST)
  with preservation rel have Q \Downarrow <STCalWB SWB TWB > a
```

```
by blast
  thus Q \Downarrow .a
   by (simp\ add:\ STCalWB-reachesBarbST)
lemma weak-reflection-of-barbs-in-barbed-encoding:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and P \ Q :: ('procS, 'procT) \ Proc
   and a :: 'barbs
  assumes reflection: rel-weakly-reflects-barbs Rel (STCalWB SWB TWB)
                     (P, Q) \in Rel
     and rel:
     and barb:
                      Q \Downarrow .a
 shows P \Downarrow .a
proof -
  from barb have Q \Downarrow < STCalWB SWB TWB > a
   by (simp\ add:\ STCalWB-reachesBarbST)
  with reflection rel have P \Downarrow < STCalWB \ SWB \ TWB > a
   \mathbf{by} blast
 thus P \Downarrow .a
   by (simp\ add:\ STCalWB-reachesBarbST)
lemma weak-respection-of-barbs-in-barbed-encoding:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and P \ Q :: ('procS, 'procT) \ Proc
   and a :: 'barbs
  assumes respection: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
                     (P, Q) \in Rel
 shows P \Downarrow .a = Q \Downarrow .a
proof (rule iffI)
 assume P \Downarrow .a
  with respection rel show Q \Downarrow a
     using weak-preservation-of-barbs-in-barbed-encoding[where Rel=Rel]
   by blast
next
 assume Q \Downarrow .a
  with respection rel show P \Downarrow a
     using weak-reflection-of-barbs-in-barbed-encoding[where Rel=Rel]
   by blast
qed
end
end
theory Source Target Relation
 imports Encodings SimulationRelations
begin
```

5 Relation between Source and Target Terms

5.1 Relations Induced by the Encoding Function

We map encodability criteria on conditions of relations between source and target terms. The encoding function itself induces such relations. To analyse the preservation of source term behaviours we use relations that contain the pairs (S, enc S) for all source terms S.

```
inductive-set (in encoding) indRelR

:: ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) set

where

encR: (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in indRelR
```

```
abbreviation (in encoding) indRelRinfix ::
    (\textit{'procS}, \textit{'procT}) \; \textit{Proc} \Rightarrow (\textit{'procS}, \textit{'procT}) \; \textit{Proc} \Rightarrow \textit{bool} \; (\textit{``-R} \llbracket \cdot \rrbracket R \rightarrow [\textit{75}, \textit{75}] \; \textit{80})
  where
  P \mathcal{R}[\cdot]R Q \equiv (P, Q) \in indRelR
inductive-set (in encoding) indRelRPO
    :: ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
  where
  encR:
            (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelRPO
  source: (SourceTerm\ S,\ SourceTerm\ S) \in indRelRPO
  target: (TargetTerm \ T, \ TargetTerm \ T) \in indRelRPO
  trans: [(P, Q) \in indRelRPO; (Q, R) \in indRelRPO] \Longrightarrow (P, R) \in indRelRPO
\textbf{abbreviation} \ (\textbf{in} \ \textit{encoding}) \ \textit{indRelRPOinfix} ::
    ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool \ (\langle - \leq \llbracket \cdot \rrbracket R \rightarrow \lceil 75, 75 \rceil \ 80)
  where
  P \lesssim \llbracket \cdot \rrbracket R \ Q \equiv (P, \ Q) \in indRelRPO
lemma (in encoding) indRelRPO-refl:
  shows refl indRelRPO
    unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \lesssim [\cdot]R P
  proof (cases P)
    case (SourceTerm SP)
    assume SP \in SP
    thus P \lesssim [\![\cdot]\!] R P
      by (simp add: indRelRPO.source)
    case (TargetTerm TP)
    assume TP \in TP
    thus P \lesssim [\![\cdot]\!] R P
      by (simp add: indRelRPO.target)
  qed
qed
lemma (in encoding) indRelRPO-is-preorder:
  shows preorder indRelRPO
    unfolding preorder-on-def
proof
  show refl indRelRPO
    by (rule indRelRPO-refl)
next
  show trans indRelRPO
    unfolding trans-def
  proof clarify
    \mathbf{fix}\ P\ Q\ R
    assume P \lesssim [\![\cdot]\!] R Q and Q \lesssim [\![\cdot]\!] R R
    thus P \lesssim [\![\cdot]\!] R R
      by (rule indRelRPO.trans)
  qed
qed
lemma (in encoding) refl-trans-closure-of-indRelR:
  shows indRelRPO = indRelR^*
proof auto
  fix P Q
  assume P \lesssim [\![\cdot]\!] R \ Q
  thus (P, Q) \in indRelR^*
```

```
proof induct
   case (encR S)
   show (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in indRelR^*
       using indRelR.encR[of S]
     by simp
 next
   case (source S)
   show (Source Term S, Source Term S) \in indRelR^*
     bv simp
 \mathbf{next}
   case (target \ T)
   show (TargetTerm\ T,\ TargetTerm\ T) \in indRelR^*
     by simp
  next
   case (trans P Q R)
   assume (P, Q) \in indRelR^* and (Q, R) \in indRelR^*
   thus (P, R) \in indRelR^*
     by simp
  qed
next
  \mathbf{fix} \ P \ Q
 assume (P, Q) \in indRelR^*
  thus P \lesssim [\![\cdot]\!] R Q
  proof induct
   show P \lesssim [\cdot]R P
       using indRelRPO-refl
       unfolding refl-on-def
     by simp
  \mathbf{next}
   case (step Q R)
   assume P \lesssim [\![\cdot]\!] R \ Q
   moreover assume Q \mathcal{R}[\cdot]R R
   hence Q \lesssim \|\cdot\| R R
     by (induct, simp add: indRelRPO.encR)
   ultimately show P \lesssim \|\cdot\| R R
     by (rule indRelRPO.trans)
 qed
qed
```

The relation indRelR is the smallest relation that relates all source terms and their literal translations. Thus there exists a relation that relates source terms and their literal translations and satisfies some predicate on its pairs iff the predicate holds for the pairs of indRelR.

```
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelR-impl-exists-source-target-relation:
  fixes PredA :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set \Rightarrow bool
    and PredB :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  shows PredA \ indRelR \Longrightarrow \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land PredA \ Rel
    and \forall (P, Q) \in indRelR. PredB(P, Q)
          \implies \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. \ PredB \ (P, Q))
  have A: \forall S. \ Source Term \ S \ \mathcal{R}[\![\cdot]\!]R \ Target Term \ ([\![S]\!])
    by (simp\ add:\ indRelR.encR)
  thus PredA \ indRelR \Longrightarrow \exists \ Rel. \ (\forall \ S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land PredA \ Rel
    by blast
  with A show \forall (P, Q) \in indRelR. PredB(P, Q)
     \Rightarrow \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. \ PredB \ (P, Q))
    by blast
qed
lemma (in encoding) source-target-relation-impl-indRelR:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
```

```
and Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes encRel: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
     and condRel: \forall (P, Q) \in Rel. Pred (P, Q)
  shows \forall (P, Q) \in indRelR. Pred (P, Q)
proof clarify
  \mathbf{fix} \ P \ Q
  assume P \mathcal{R}[\cdot]R Q
  with encRRel have (P, Q) \in Rel
   by (auto simp add: indRelR.simps)
  with condRel show Pred (P, Q)
    by simp
qed
lemma (in encoding) indRelR-iff-exists-source-target-relation:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  shows (\forall (P, Q) \in indRelR. Pred (P, Q))
         = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. \ Pred \ (P, Q)))
     using indRelR-impl-exists-source-target-relation(2)[where PredB=Pred]
           source-target-relation-impl-indRelR[where Pred=Pred]
   by blast
lemma (in encoding) indRelR-modulo-pred-impl-indRelRPO-modulo-pred:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes reflCond: \forall P. Pred (P, P)
     and transCond: \forall P \ Q \ R. \ Pred \ (P, \ Q) \land Pred \ (Q, \ R) \longrightarrow Pred \ (P, \ R)
  shows (\forall (P, Q) \in indRelR. Pred (P, Q)) = (\forall (P, Q) \in indRelRPO. Pred (P, Q))
proof auto
  \mathbf{fix} \ P \ Q
  assume A: \forall x \in indRelR. Pred x
  assume P \lesssim [\![\cdot]\!]R Q
  thus Pred\ (P,\ Q)
  proof induct
   case (encR S)
   have SourceTerm\ S\ \mathcal{R}[\cdot]R\ TargetTerm\ ([S])
     by (simp add: indRelR.encR)
    with A show Pred (SourceTerm S, TargetTerm (\llbracket S \rrbracket))
     \mathbf{by} simp
  \mathbf{next}
    case (source S)
   from reflCond show Pred (SourceTerm S, SourceTerm S)
     by simp
   case (target T)
   from reflCond show Pred (TargetTerm T, TargetTerm T)
     by simp
  \mathbf{next}
   case (trans P Q R)
   assume Pred\ (P,\ Q) and Pred\ (Q,\ R)
   with transCond show Pred (P, R)
     by blast
  qed
next
  \mathbf{fix} \ P \ Q
  assume \forall x \in indRelRPO. Pred x and P \mathcal{R}[\cdot]R Q
  thus Pred\ (P,\ Q)
    by (auto simp add: indRelRPO.encR indRelR.simps)
qed
lemma (in encoding) indRelRPO-iff-exists-source-target-relation:
  \mathbf{fixes}\ \mathit{Pred}\ ::\ (('\mathit{procS},\ '\mathit{proc}T)\ \mathit{Proc}\ \times\ ('\mathit{procS},\ '\mathit{proc}T)\ \mathit{Proc}) \ \Rightarrow\ \mathit{bool}
  shows (\forall (P, Q) \in indRelRPO. Pred (P, Q)) = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
```

```
\land (\forall (P, Q) \in Rel. \ Pred \ (P, Q)) \land preorder \ Rel)
proof (rule iffI)
  have \forall S. Source Term S \leq \llbracket \cdot \rrbracket R Target Term (\llbracket S \rrbracket)
   by (simp add: indRelRPO.encR)
  moreover have preorder indRelRPO
     using indRelRPO-is-preorder
   by blast
  moreover assume \forall (P, Q) \in indRelRPO. Pred (P, Q)
  ultimately show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel)
                  \land (\forall (P, Q) \in Rel. \ Pred (P, Q)) \land preorder \ Rel
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall (P, Q) \in Rel. \ Pred \ (P, Q)) \land preorder \ Rel
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                       and A2: \forall (P, Q) \in Rel. \ Pred (P, Q) \ and \ A3: \ preorder \ Rel
   \mathbf{by} blast
  show \forall (P, Q) \in indRelRPO. Pred (P, Q)
  proof clarify
   \mathbf{fix} \ P \ Q
   assume P \lesssim [\cdot]R Q
   hence (P, Q) \in Rel
   proof induct
     case (encR S)
     from A1 show (SourceTerm S, TargetTerm ([S])) \in Rel
       by simp
   next
     case (source S)
     from A3 show (SourceTerm S, SourceTerm S) \in Rel
         unfolding preorder-on-def refl-on-def
       by simp
   next
     case (target \ T)
     from A3 show (TargetTerm T, TargetTerm T) \in Rel
         unfolding preorder-on-def refl-on-def
       by simp
   next
     case (trans P Q R)
     assume (P, Q) \in Rel and (Q, R) \in Rel
     with A3 show (P, R) \in Rel
         {\bf unfolding} \ preorder-on-def \ trans-def
       \mathbf{by} blast
   qed
    with A2 show Pred(P, Q)
     \mathbf{by} \ simp
  qed
qed
An encoding preserves, reflects, or respects a predicate iff indRelR preserves, reflects, or respects this
predicate.
lemma (in encoding) enc-satisfies-pred-impl-indRelR-satisfies-pred:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes encCond: \forall S. Pred (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket))
  shows \forall (P, Q) \in indRelR. Pred (P, Q)
    by (auto simp add: encCond indRelR.simps)
lemma (in encoding) indRelR-satisfies-pred-impl-enc-satisfies-pred:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes relCond: \forall (P, Q) \in indRelR. Pred (P, Q)
  shows \forall S. Pred (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket))
```

```
using relCond indRelR.encR
   by simp
lemma (in encoding) enc-satisfies-pred-iff-indRelR-satisfies-pred:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  shows (\forall S. Pred (SourceTerm S, TargetTerm ([S]))) = (\forall (P, Q) \in indRelR. Pred (P, Q))
     using enc-satisfies-pred-impl-indRelR-satisfies-pred[where Pred=Pred]
           indRelR-satisfies-pred-impl-enc-satisfies-pred[where Pred=Pred]
   by blast
lemma (in encoding) enc-satisfies-binary-pred-iff-indRelR-satisfies-binary-pred:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow 'b \Rightarrow bool
  shows (\forall S \ a. \ Pred \ (Source Term \ S, \ Target Term \ (\llbracket S \rrbracket)) \ a) = (\forall (P, Q) \in ind Rel R. \ \forall a. \ Pred \ (P, Q) \ a)
     \mathbf{using}\ enc\text{-}satisfies\text{-}pred\text{-}iff\text{-}indRelR\text{-}satisfies\text{-}pred
   by simp
lemma (in encoding) enc-preserves-pred-iff-indRelR-preserves-pred:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
  shows enc-preserves-pred Pred = rel-preserves-pred indRelR Pred
     using enc-satisfies-pred-iff-indRelR-satisfies-pred [where Pred = \lambda(P, Q). Pred P \longrightarrow Pred Q]
   \mathbf{by} blast
lemma (in encoding) enc-preserves-binary-pred-iff-indRelR-preserves-binary-pred:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows enc-preserves-binary-pred Pred = rel-preserves-binary-pred indRelR Pred
     \mathbf{using}\ enc\text{-}satisfies\text{-}binary\text{-}pred\text{-}iff\text{-}indRelR\text{-}satisfies\text{-}binary\text{-}pred[\mathbf{where}
            Pred = \lambda(P, Q) \ a. \ Pred \ P \ a \longrightarrow Pred \ Q \ a
   by blast
lemma (in encoding) enc-preserves-pred-iff-indRelRPO-preserves-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-preserves-pred Pred = rel-preserves-pred indRelRPO Pred
     using enc-preserves-pred-iff-indRelR-preserves-pred[where Pred=Pred]
           indRelR-modulo-pred-impl-indRelRPO-modulo-pred[\mathbf{where}]
            Pred = \lambda(P, Q). \ Pred \ P \longrightarrow Pred \ Q
   by blast
lemma (in encoding) enc-reflects-pred-iff-indRelR-reflects-pred:
 fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
  shows enc-reflects-pred Pred = rel-reflects-pred indRelR Pred
     using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=\lambda(P, Q). Pred\ Q \longrightarrow Pred\ P]
   by blast
lemma (in encoding) enc-reflects-binary-pred-iff-indRelR-reflects-binary-pred:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows enc-reflects-binary-pred Pred = rel-reflects-binary-pred indRelR Pred
     using enc-satisfies-binary-pred-iff-indRelR-satisfies-binary-pred[where
            Pred = \lambda(P, Q) \ a. \ Pred \ Q \ a \longrightarrow Pred \ P \ a
   by blast
lemma (in encoding) enc-reflects-pred-iff-indRelRPO-reflects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-reflects-pred Pred = rel-reflects-pred indRelRPO Pred
     using enc-reflects-pred-iff-indRelR-reflects-pred[where Pred=Pred]
           indRelR-modulo-pred-impl-indRelRPO-modulo-pred[where
            Pred = \lambda(P, Q). \ Pred \ Q \longrightarrow Pred \ P
   by blast
lemma (in encoding) enc-respects-pred-iff-indRelR-respects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
```

shows enc-respects-pred Pred = rel-respects-pred indRelR Pred

```
using enc-preserves-pred-iff-indRelR-preserves-pred[where Pred=Pred]
            enc-reflects-pred-iff-indRelR-reflects-pred[where Pred=Pred]
    by blast
lemma (in encoding) enc-respects-binary-pred-iff-indRelR-respects-binary-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow 'b \Rightarrow bool
  shows enc-respects-binary-pred Pred = rel-respects-binary-pred indRelR Pred
      \mathbf{using}\ \mathit{enc-preserves-binary-pred-iff-indRelR-preserves-binary-pred}[\mathbf{where}\ \mathit{Pred} = \mathit{Pred}]
            enc-reflects-binary-pred-iff-indRelR-reflects-binary-pred[where Pred=Pred]
    by blast
lemma (in encoding) enc-respects-pred-iff-indRelRPO-respects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-respects-pred Pred = rel-respects-pred indRelRPO Pred
      using enc-respects-pred-iff-indRelR-respects-pred[where Pred=Pred]
            indRelR-modulo-pred-impl-indRelRPO-modulo-pred[where Pred = \lambda(P, Q). Pred Q = Pred P]
    apply simp by blast
Accordingly an encoding preserves, reflects, or respects a predicate iff there exists a relation that
relates source terms with their literal translations and preserves, reflects, or respects this predicate.
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ enc\text{-}satisfies\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}satisfies\text{-}pred\text{:}}
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  shows (\forall S. Pred (SourceTerm S, TargetTerm ([\![S]\!])))
         = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. \ Pred \ (P, Q)))
    and [\forall P \ Q \ R. \ Pred \ (P, \ Q) \land Pred \ (Q, \ R) \longrightarrow Pred \ (P, \ R); \ \forall P. \ Pred \ (P, \ P)] \Longrightarrow
         (\forall S. \ Pred \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket))) = (\exists \ Rel. \ (\forall \ S.
         (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P,\ Q) \in Rel.\ Pred\ (P,\ Q)) \land preorder\ Rel)
proof -
  show (\forall S. Pred (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)))
        = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. \ Pred \ (P, Q)))
      using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=Pred]
            indRelR-iff-exists-source-target-relation[where Pred=Pred]
    by simp
next
  have (\forall S. \ Pred \ (Source Term \ S, \ Target Term \ (\llbracket S \rrbracket))) = (\forall (P, Q) \in ind Rel R. \ Pred \ (P, Q))
      using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=Pred]
    \mathbf{bv} simp
  moreover assume \forall P \ Q \ R. \ Pred \ (P, \ Q) \land Pred \ (Q, \ R) \longrightarrow Pred \ (P, \ R) and \forall P. \ Pred \ (P, \ P)
  hence (\forall (P, Q) \in indRelR. \ Pred \ (P, Q)) = (\forall (P, Q) \in indRelRPO. \ Pred \ (P, Q))
      using indRelR-modulo-pred-impl-indRelRPO-modulo-pred[where Pred=Pred]
    by blast
  ultimately show (\forall S. \ Pred \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket))) = (\exists \ Rel.
   (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. Pred (P, Q)) \land preorder Rel)
      using indRelRPO-iff-exists-source-target-relation[where Pred=Pred]
    \mathbf{by} \ simp
qed
lemma (in encoding) enc-preserves-pred-iff-source-target-rel-preserves-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-preserves-pred Pred
         = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-preserves-pred \ Rel \ Pred)
    and enc-preserves-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
         \land rel-preserves-pred Rel Pred \land preorder Rel)
proof -
  have A1: enc-preserves-pred Pred
            = (\forall S. (\lambda(P, Q). Pred P \longrightarrow Pred Q) (SourceTerm S, TargetTerm ([S])))
    by blast
  moreover have A2: \bigwedge Rel. rel-preserves-pred Rel Pred
                     = (\forall (P, Q) \in Rel. (\lambda(P, Q). Pred P \longrightarrow Pred Q) (P, Q))
    by blast
```

```
ultimately show enc-preserves-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                   ∧ rel-preserves-pred Rel Pred)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
             Pred = \lambda(P, Q). \ Pred \ P \longrightarrow Pred \ Q
    by simp
  from A1 A2 show enc-preserves-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                   \land rel-preserves-pred Rel Pred \land preorder Rel)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(2)[where
             Pred = \lambda(P, Q). Pred P \longrightarrow Pred Q
    by simp
qed
lemma (in encoding) enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow 'b \Rightarrow bool
  shows enc-preserves-binary-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         ∧ rel-preserves-binary-pred Rel Pred)
proof -
  have enc-preserves-binary-pred Pred
        = (\forall S. (\lambda(P, Q). \forall a. Pred\ P\ a \longrightarrow Pred\ Q\ a)\ (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)))
  moreover have \bigwedge Rel. rel-preserves-binary-pred Rel Pred
                 = (\forall (P, Q) \in Rel. (\lambda(P, Q). \forall a. Pred\ P\ a \longrightarrow Pred\ Q\ a)\ (P, Q))
    by blast
  ultimately show enc-preserves-binary-pred Pred = (\exists Rel. (\forall S.
                   (Source Term S, Target Term (\llbracket S \rrbracket)) \in Rel) \land rel-preserves-binary-pred Rel Pred)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
             Pred = \lambda(P, Q). \ \forall \ a. \ Pred \ P \ a \longrightarrow Pred \ Q \ a
    \mathbf{by} \ simp
qed
lemma (in encoding) enc-reflects-pred-iff-source-target-rel-reflects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  {\bf shows}\ enc\text{-}reflects\text{-}pred\ Pred
         = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-reflects-pred \ Rel \ Pred)
    and enc-reflects-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
         \land rel-reflects-pred Rel Pred \land preorder Rel)
proof -
  have A1: enc-reflects-pred Pred
        = (\forall S. (\lambda(P, Q). Pred Q \longrightarrow Pred P) (SourceTerm S, TargetTerm ([S])))
  moreover have A2: \land Rel. \ rel-reflects-pred \ Rel \ Pred
                     = (\forall (P, Q) \in Rel. (\lambda(P, Q). Pred Q \longrightarrow Pred P) (P, Q))
    \mathbf{by} blast
  ultimately show enc-reflects-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                   ∧ rel-reflects-pred Rel Pred)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
             Pred = \lambda(P, Q). \ Pred \ Q \longrightarrow Pred \ P
    by simp
  from A1 A2 show enc-reflects-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                   \land rel-reflects-pred Rel Pred \land preorder Rel)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(2)[where
             Pred = \lambda(P, Q). \ Pred \ Q \longrightarrow Pred \ P
    by simp
qed
lemma (in encoding) enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows enc-reflects-binary-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land rel-reflects-binary-pred Rel Pred)
proof -
  have enc-reflects-binary-pred Pred
```

```
= (\forall S. (\lambda(P, Q), \forall a. Pred Q a \longrightarrow Pred P a) (SourceTerm S, TargetTerm ([S])))
   by blast
  moreover have \bigwedge Rel. rel-reflects-binary-pred Rel Pred
                  = (\forall (P, Q) \in Rel. (\lambda(P, Q). \forall a. Pred Q a \longrightarrow Pred P a) (P, Q))
    by blast
  ultimately show enc-reflects-binary-pred Pred = (\exists Rel. (\forall S.
                   (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in Rel) \land rel-reflects-binary-pred\ Rel\ Pred)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
             Pred = \lambda(P, Q). \ \forall \ a. \ Pred \ Q \ a \longrightarrow Pred \ P \ a]
    \mathbf{by} \ simp
qed
lemma (in encoding) enc-respects-pred-iff-source-target-rel-respects-pred-encR:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-respects-pred Pred
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel Pred)
    and enc-respects-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
         \land rel-respects-pred Rel Pred \land preorder Rel)
proof -
  have A1: enc-respects-pred Pred
            = (\forall S. (\lambda(P, Q). Pred P = Pred Q) (SourceTerm S, TargetTerm ([S])))
    by blast
  moreover
  have A2: \land Rel. \ rel-respects-pred \ Rel \ Pred = (\forall (P, Q) \in Rel. \ (\lambda(P, Q). \ Pred \ P = Pred \ Q) \ (P, Q))
    by blast
  ultimately show enc-respects-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                   ∧ rel-respects-pred Rel Pred)
      \mathbf{using}\ \mathit{enc\text{-}satisfies\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}satisfies\text{-}pred(1)} [\mathbf{where}
             Pred = \lambda(P, Q). Pred P = Pred Q
    by simp
  from A1 A2 show enc-respects-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                   \land rel-respects-pred Rel Pred \land preorder Rel)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(2)[where
             Pred = \lambda(P, Q). Pred P = Pred Q
    by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ enc\text{-}respects\text{-}binary\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}respects\text{-}binary\text{-}pred\text{-}encR};
 fixes Pred :: ('procS, 'procT) Proc \Rightarrow 'b \Rightarrow bool
  shows enc-respects-binary-pred Pred = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         ∧ rel-respects-binary-pred Rel Pred)
proof -
  have enc-respects-binary-pred Pred
        = (\forall S. (\lambda(P, Q). \forall a. Pred\ P\ a = Pred\ Q\ a)\ (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)))
    by blast
  moreover have \bigwedge Rel. rel-respects-binary-pred Rel Pred
                 = (\forall (P, Q) \in Rel. (\lambda(P, Q). \forall a. Pred P a = Pred Q a) (P, Q))
    by blast
  ultimately show enc-respects-binary-pred Pred = (\exists Rel. (\forall S.
                   (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-binary-pred\ Rel\ Pred)
      using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
             Pred = \lambda(P, Q). \ \forall \ a. \ Pred \ P \ a = Pred \ Q \ a]
    by simp
qed
To analyse the reflection of source term behaviours we use relations that contain the pairs (enc S, S)
for all source terms S.
inductive-set (in encoding) indRelL
    :: ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
  where
```

```
encL: (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in indRelL
abbreviation (in encoding) indRelLinfix ::
    ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool \ (\leftarrow \mathcal{R}[\cdot]L \rightarrow [75, 75] \ 80)
  where
  P \mathcal{R}[\cdot]L Q \equiv (P, Q) \in indRelL
inductive-set (in encoding) indRelLPO
   :: ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
  where
           (TargetTerm ([\![S]\!]), SourceTerm S) \in indRelLPO
  encL:
  source: (SourceTerm\ S,\ SourceTerm\ S) \in indRelLPO
  target: (TargetTerm\ T,\ TargetTerm\ T) \in indRelLPO
  trans: [(P, Q) \in indRelLPO; (Q, R) \in indRelLPO] \implies (P, R) \in indRelLPO
abbreviation (in encoding) indRelLPOinfix ::
    ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool \ (\leftarrow \lesssim \llbracket \cdot \rrbracket L \rightarrow \lceil 75, \ 75 \rceil \ 80)
  where
  P \lesssim \|\cdot\| L \ Q \equiv (P, \ Q) \in indRelLPO
lemma (in encoding) indRelLPO-refl:
  shows refl indRelLPO
   unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \lesssim \llbracket \cdot \rrbracket L P
  proof (cases P)
   case (SourceTerm SP)
   assume SP \in SP
   thus P \lesssim \|\cdot\| L P
      by (simp add: indRelLPO.source)
  next
   case (TargetTerm TP)
   assume TP \in TP
   thus P \lesssim [\cdot]L P
      by (simp add: indRelLPO.target)
  qed
qed
lemma (in encoding) indRelLPO-is-preorder:
  shows preorder indRelLPO
    unfolding preorder-on-def
proof
  show refl indRelLPO
   by (rule indRelLPO-refl)
next
  show trans indRelLPO
   unfolding trans-def
  proof clarify
   \mathbf{fix}\ P\ Q\ R
   assume P \lesssim \llbracket \cdot \rrbracket L \ Q and Q \lesssim \llbracket \cdot \rrbracket L \ R
   thus P \lesssim ||\cdot|| L R
      by (rule indRelLPO.trans)
  qed
qed
lemma (in encoding) refl-trans-closure-of-indRelL:
  shows indRelLPO = indRelL^*
proof auto
 \mathbf{fix}\ P\ Q
  assume P \lesssim [\cdot]L Q
```

```
thus (P, Q) \in indRelL^*
  proof induct
   case (encL\ S)
   show (TargetTerm ([S]), SourceTerm S) \in indRelL^*
       using indRelL.encL[of S]
     by simp
  \mathbf{next}
    case (source S)
   show (Source Term S, Source Term S) \in indRelL^*
     by simp
  next
    case (target \ T)
   show (TargetTerm\ T,\ TargetTerm\ T) \in indRelL^*
     by simp
  next
    case (trans P Q R)
   assume (P, Q) \in indRelL^* and (Q, R) \in indRelL^*
   thus (P, R) \in indRelL^*
     by simp
  qed
next
  fix P Q
  assume (P, Q) \in indRelL^*
  thus P \lesssim [\cdot]L Q
  proof induct
   show P \lesssim \llbracket \cdot \rrbracket L P
       \mathbf{using}\ ind RelLPO\text{-}refl
       unfolding refl-on-def
     \mathbf{by} \ simp
  \mathbf{next}
    case (step Q R)
   assume P \lesssim \|\cdot\| L Q
   moreover assume Q \mathcal{R} \llbracket \cdot \rrbracket L R
   hence Q \lesssim \|\cdot\| L R
     by (induct, simp add: indRelLPO.encL)
    ultimately show P \lesssim \|\cdot\| L R
     \mathbf{by}\ (simp\ add:\ indRelLPO.trans[of\ P\ Q\ R])
  qed
qed
```

The relations indRelR and indRelL are dual. indRelR preserves some predicate iff indRelL reflects it. indRelR reflects some predicate iff indRelL reflects it. indRelR respects some predicate iff indRelL does.

```
lemma (in encoding) indRelR-preserves-pred-iff-indRelL-reflects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows rel-preserves-pred indRelR Pred = rel-reflects-pred indRelL Pred
  assume preservation: rel-preserves-pred indRelR Pred
  show rel-reflects-pred indRelL Pred
  proof clarify
   \mathbf{fix} \ P \ Q
   assume P \mathcal{R}[\cdot]L Q
   from this obtain S where S \in S Q and [S] \in T P
     by (induct, blast)
   hence Q \mathcal{R} \llbracket \cdot \rrbracket R P
     by (simp add: indRelR.encR)
   moreover assume Pred Q
   ultimately show Pred P
       using preservation
     by blast
```

```
qed
next
  assume reflection: rel-reflects-pred indRelL Pred
 show rel-preserves-pred indRelR Pred
  proof clarify
   \mathbf{fix} \ P \ Q
   assume P \mathcal{R}[\cdot]R Q
   from this obtain S where S \in S P and [S] \in T Q
     by (induct, blast)
   hence Q \mathcal{R}[\cdot]L P
     by (simp add: indRelL.encL)
   moreover assume Pred\ P
   ultimately show Pred Q
       using reflection
     by blast
 qed
qed
lemma (in encoding) indRelR-preserves-binary-pred-iff-indRelL-reflects-binary-pred:
 fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
 shows rel-preserves-binary-pred indRelR Pred = rel-reflects-binary-pred indRelL Pred
proof
  assume preservation: rel-preserves-binary-pred indRelR Pred
 show rel-reflects-binary-pred indRelL Pred
 proof clarify
   \mathbf{fix} \ P \ Q \ x
   assume P \mathcal{R}[\cdot]L Q
   from this obtain S where S \in S Q and [S] \in T P
     \mathbf{by}\ (induct,\ blast)
   hence Q \mathcal{R}[\cdot]R P
     by (simp add: indRelR.encR)
   moreover assume Pred\ Q\ x
   ultimately show Pred P x
       using preservation
     by blast
 qed
next
  assume reflection: rel-reflects-binary-pred indRelL Pred
  show rel-preserves-binary-pred indRelR Pred
 proof clarify
   \mathbf{fix} \ P \ Q \ x
   assume P \mathcal{R}[\cdot]R Q
   from this obtain S where S \in S P and [S] \in T Q
     by (induct, blast)
   hence Q \mathcal{R}[\cdot]L P
     by (simp add: indRelL.encL)
   moreover assume Pred P x
   ultimately show Pred \ Q \ x
       using reflection
     by blast
 qed
qed
lemma (in encoding) indRelR-reflects-pred-iff-indRelL-preserves-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows rel-reflects-pred indRelR Pred = rel-preserves-pred indRelL Pred
  assume reflection: rel-reflects-pred indRelR Pred
  show rel-preserves-pred indRelL Pred
  proof clarify
   \mathbf{fix} \ P \ Q
```

```
assume P \mathcal{R}[\cdot]L Q
   from this obtain S where S \in S Q and [S] \in T P
     by (induct, blast)
   hence Q \mathcal{R}[\cdot]R P
     by (simp add: indRelR.encR)
   moreover assume Pred P
   ultimately show Pred Q
       using reflection
     bv blast
 qed
next
  assume preservation: rel-preserves-pred indRelL Pred
  show rel-reflects-pred indRelR Pred
  proof clarify
   fix P Q
   assume P \mathcal{R}[\cdot]R Q
   from this obtain S where S \in S P and [S] \in T Q
     by (induct, blast)
   hence Q \mathcal{R}[\cdot]L P
     by (simp add: indRelL.encL)
   moreover assume Pred Q
   ultimately show Pred P
       using preservation
     by blast
 qed
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelR-reflects-binary-pred-iff-ind RelL-preserves-binary-pred:
 fixes Pred :: ('procS, 'procT) Proc \Rightarrow 'b \Rightarrow bool
  shows rel-reflects-binary-pred indRelR Pred = rel-preserves-binary-pred indRelL Pred
  assume reflection: rel-reflects-binary-pred indRelR Pred
  show rel-preserves-binary-pred indRelL Pred
  proof clarify
   fix P Q x
   assume P \mathcal{R}[\cdot]L Q
   from this obtain S where S \in S Q and [S] \in T P
     \mathbf{by}\ (induct,\ blast)
   hence Q \mathcal{R}[\cdot]R P
     by (simp add: indRelR.encR)
   \mathbf{moreover} \ \mathbf{assume} \ \mathit{Pred} \ \mathit{P} \ \mathit{x}
   ultimately show Pred \ Q \ x
       using reflection
     \mathbf{by} blast
 qed
 assume preservation: rel-preserves-binary-pred indRelL Pred
 show rel-reflects-binary-pred indRelR Pred
  proof clarify
   \mathbf{fix}\ P\ Q\ x
   assume P \mathcal{R}[\cdot]R Q
   from this obtain S where S \in S P and [\![S]\!] \in T Q
     by (induct, blast)
   hence Q \mathcal{R}[\cdot]L P
     by (simp add: indRelL.encL)
   moreover assume Pred\ Q\ x
   ultimately show Pred P x
       using preservation
     \mathbf{by} blast
 qed
qed
```

```
lemma (in encoding) indRelR-respects-pred-iff-indRelL-respects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows rel-respects-pred indRelR Pred = rel-respects-pred indRelL Pred
     using indRelR-preserves-pred-iff-indRelL-reflects-pred[where Pred=Pred]
           indRelR-reflects-pred-iff-indRelL-preserves-pred[where Pred=Pred]
   by blast
lemma (in encoding) indRelR-respects-binary-pred-iff-indRelL-respects-binary-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow 'b \Rightarrow bool
  shows rel-respects-binary-pred indRelR Pred = rel-respects-binary-pred indRelL Pred
      using indRelR-preserves-binary-pred-iff-indRelL-reflects-binary-pred[where Pred=Pred]
           indRelR-reflects-binary-pred-iff-indRelL-preserves-binary-pred[\mathbf{where}\ Pred = Pred]
   by blast
lemma (in encoding) indRelR-cond-preservation-iff-indRelL-cond-reflection:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel) \land rel-preserves-pred Rel Pred)
         = (\exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-reflects-pred \ Rel \ Pred)
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-preserves-pred Rel Pred
  then obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
                   and A2: rel-preserves-pred Rel Pred
   by blast
  from A1 have \forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel^{-1}
    by simp
  moreover from A2 have rel-reflects-pred (Rel^{-1}) Pred
    by simp
  ultimately show \exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-reflects-pred \ Rel \ Pred
    by blast
next
  assume \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-reflects-pred Rel Pred
  then obtain Rel where B1: \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel
                   and B2: rel-reflects-pred Rel Pred
   by blast
  from B1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel^{-1}
   by simp
  moreover from B2 have rel-preserves-pred (Rel^{-1}) Pred
   by blast
  ultimately
  show \exists Rel. (\forall S. (Source Term S, Target Term (<math>\llbracket S \rrbracket)) \in Rel) \land rel-preserves-pred Rel Pred
    by blast
qed
lemma (in encoding) indRelR-cond-binary-preservation-iff-indRelL-cond-binary-reflection:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-preserves-binary-pred Rel Pred)
        = (\exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
           \land rel-reflects-binary-pred Rel Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-preserves-binary-pred Rel Pred
  then obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
                   and A2: rel-preserves-binary-pred Rel Pred
   by blast
  from A1 have \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel^{-1}
  moreover from A2 have rel-reflects-binary-pred (Rel^{-1}) Pred
   by simp
  ultimately
  show \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-reflects-binary-pred Rel Pred
   by blast
```

```
assume \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-reflects-binary-pred Rel Pred
  then obtain Rel where B1: \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel
                   and B2: rel-reflects-binary-pred Rel Pred
   by blast
  from B1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel^{-1}
   by simp
  moreover from B2 have rel-preserves-binary-pred (Rel^{-1}) Pred
    by simp
  ultimately
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-preserves-binary-pred Rel Pred
    by blast
qed
lemma (in encoding) indRelR-cond-reflection-iff-indRelL-cond-preservation:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel) \land rel-reflects-pred Rel Pred)
         = (\exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-preserves-pred \ Rel \ Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel) \land rel-reflects-pred Rel Pred
  then obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                   and A2: rel-reflects-pred Rel Pred
   by blast
  from A1 have \forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel^{-1}
    by simp
  moreover from A2 have rel-preserves-pred (Rel^{-1}) Pred
   by blast
  ultimately
  show \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-preserves-pred Rel Pred
    by blast
  assume \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-preserves-pred Rel Pred
  then obtain Rel where B1: \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel
                   and B2: rel-preserves-pred Rel Pred
   by blast
  from B1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel^{-1}
   by simp
  moreover from B2 have rel-reflects-pred (Rel^{-1}) Pred
   by simp
  ultimately
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel) \land rel-reflects-pred Rel Pred
    by blast
qed
lemma (in encoding) indRelR-cond-binary-reflection-iff-indRelL-cond-binary-preservation:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-reflects-binary-pred Rel Pred)
         = (\exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
            ∧ rel-preserves-binary-pred Rel Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-reflects-binary-pred Rel Pred
  then obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
                   and A2: rel-reflects-binary-pred Rel Pred
   by blast
  from A1 have \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel^{-1}
  moreover from A2 have rel-preserves-binary-pred (Rel^{-1}) Pred
   by blast
  ultimately
  show \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-preserves-binary-pred Rel Pred
   by blast
```

next

```
assume \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-preserves-binary-pred Rel Pred
  then obtain Rel where B1: \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel
                    and B2: rel-preserves-binary-pred Rel Pred
    by blast
  from B1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel^{-1}
    by simp
  moreover from B2 have rel-reflects-binary-pred (Rel^{-1}) Pred
    by simp
  ultimately
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel) \land rel-reflects-binary-pred Rel Pred
    by blast
qed
lemma (in encoding) indRelR-cond-respection-iff-indRelL-cond-respection:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred \ Rel \ Pred)
         = (\exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-respects-pred \ Rel \ Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel Pred
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                         and A2: rel-respects-pred Rel Pred
    by blast
  from A1 have \forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in \{(a, b), (b, a) \in Rel\}
    by simp
  moreover from A2 have rel-respects-pred \{(a, b), (b, a) \in Rel\} Pred
    by blast
  ultimately show \exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-respects-pred \ Rel \ Pred
    by blast
\mathbf{next}
  assume \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-respects-pred Rel Pred
  from this obtain Rel where A1: \forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
                         and A2: rel-respects-pred Rel Pred
    \mathbf{by} blast
  from A1 have \forall S. (SourceTerm S, TargetTerm ([S]]) \in \{(a, b), (b, a) \in Rel\}
    by simp
  moreover from A2 have rel-respects-pred \{(a, b), (b, a) \in Rel\} Pred
    by blast
  ultimately show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred \ Rel \ Pred
    by blast
qed
lemma (in encoding) indRelR-cond-binary-respection-iff-indRelL-cond-binary-respection:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow 'b \Rightarrow bool
  shows (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-binary-pred \ Rel \ Pred)
         = (\exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel))
            ∧ rel-respects-binary-pred Rel Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-binary-pred Rel Pred
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                         and A2: rel-respects-binary-pred Rel Pred
   by blast
  from A1 have \forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in \{(a, b), (b, a) \in Rel\}
  moreover from A2 have rel-respects-binary-pred \{(a, b), (b, a) \in Rel\} Pred
    \mathbf{by} blast
  ultimately
  show \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-respects-binary-pred Rel Pred
    by blast
next
  assume \exists Rel. (\forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-respects-binary-pred Rel Pred
```

next

```
from this obtain Rel where A1: \forall S. (TargetTerm ([S]), SourceTerm S) \in Rel
                      and A2: rel-respects-binary-pred Rel Pred
   by blast
  from A1 have \forall S. (SourceTerm S, TargetTerm ([\![S]\!])) \in \{(a, b), (b, a) \in Rel\}
   by simp
  moreover from A2 have rel-respects-binary-pred \{(a, b), (b, a) \in Rel\} Pred
   \mathbf{by} blast
  ultimately
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-binary-pred Rel Pred
   by blast
qed
An encoding preserves, reflects, or respects a predicate iff indRelL reflects, preserves, or respects this
predicate.
lemma (in encoding) enc-preserves-pred-iff-indRelL-reflects-pred:
 fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-preserves-pred Pred = rel-reflects-pred indRelL Pred
     using enc-preserves-pred-iff-indRelR-preserves-pred[where Pred=Pred]
          indRelR-preserves-pred-iff-indRelL-reflects-pred[where Pred=Pred]
   by blast
lemma (in encoding) enc-reflects-pred-iff-indRelL-preserves-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-reflects-pred Pred = rel-preserves-pred indRelL Pred
     using enc-reflects-pred-iff-indRelR-reflects-pred[where Pred=Pred]
          indRelR-reflects-pred-iff-indRelL-preserves-pred[where Pred=Pred]
   by blast
lemma (in encoding) enc-respects-pred-iff-indRelL-respects-pred:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
  shows enc-respects-pred Pred = rel-respects-pred indRelL Pred
     using enc-preserves-pred-iff-indRelL-reflects-pred[where Pred=Pred]
          enc-reflects-pred-iff-indRelL-preserves-pred[where Pred=Pred]
   by blast
An encoding preserves, reflects, or respects a predicate iff there exists a relation, namely indRelL, that
relates literal translations with their source terms and reflects, preserves, or respects this predicate.
lemma (in encoding) enc-preserves-pred-iff-source-target-rel-reflects-pred:
 fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
  shows enc-preserves-pred Pred
        = (\exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-reflects-pred \ Rel \ Pred)
     using enc-preserves-pred-iff-source-target-rel-preserves-pred[where Pred=Pred]
          indRelR-cond-preservation-iff-indRelL-cond-reflection[where Pred=Pred]
   by simp
lemma (in encoding) enc-reflects-pred-iff-source-target-rel-preserves-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-reflects-pred Pred
        = (\exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-preserves-pred \ Rel \ Pred)
     using enc-reflects-pred-iff-source-target-rel-reflects-pred [where Pred=Pred]
          indRelR-cond-reflection-iff-indRelL-cond-preservation[where Pred=Pred]
   \mathbf{bv} simp
lemma (in encoding) enc-respects-pred-iff-source-target-rel-respects-pred-encL:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-respects-pred Pred
        = (\exists Rel. \ (\forall S. \ (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel) \land rel-respects-pred \ Rel \ Pred)
     using enc-respects-pred-iff-source-target-rel-respects-pred-encR[where Pred=Pred]
          indRelR-cond-respection-iff-indRelL-cond-respection[where Pred=Pred]
   by simp
```

To analyse the respection of source term behaviours we use relations that contain both kind of pairs: (S, enc S) as well as (enc S, S) for all source terms S.

```
inductive-set (in encoding) indRel
    :: ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
  where
  encR: (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRel\ |
  encL: (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in indRel
abbreviation (in encoding) indRelInfix ::
    ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool \ (\leftarrow \mathcal{R}[\![\cdot]\!] \rightarrow [75, 75] \ 80)
  where
  P \mathcal{R} \llbracket \cdot \rrbracket Q \equiv (P, Q) \in indRel
lemma (in encoding) indRel-symm:
  shows sym indRel
      unfolding sym-def
    by (auto simp add: indRel.simps indRel.encR indRel.encL)
inductive-set (in encoding) indRelEQ
    :: ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
  where
            (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelEQ
  encR:
           (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in indRelEQ
  encL:
  target: (TargetTerm \ T, \ TargetTerm \ T) \in indRelEQ
  trans: [(P, Q) \in indRelEQ; (Q, R) \in indRelEQ] \Longrightarrow (P, R) \in indRelEQ
abbreviation (in encoding) indRelEQinfix ::
    ('procS, 'procT) \ Proc \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool \ (\leftarrow \sim [\![\cdot]\!] \rightarrow [75, 75] \ 80)
  P \sim \llbracket \cdot \rrbracket \ Q \equiv (P, Q) \in indRelEQ
lemma (in encoding) indRelEQ-reft:
  shows refl indRelEQ
    unfolding refl-on-def
proof auto
  fix P
  show P \sim \llbracket \cdot \rrbracket P
  proof (cases P)
    case (SourceTerm SP)
    assume SP \in SP
    moreover have Source Term SP \sim \llbracket \cdot \rrbracket Target Term (\llbracket SP \rrbracket)
      by (rule\ indRelEQ.encR)
    moreover have TargetTerm (\llbracket SP \rrbracket) \sim \llbracket \cdot \rrbracket SourceTerm SP
      by (rule indRelEQ.encL)
    ultimately show P \sim \llbracket \cdot \rrbracket P
      by (simp\ add:\ indRelEQ.trans[\mathbf{where}\ P=SourceTerm\ SP\ \mathbf{and}\ Q=TargetTerm\ (\llbracket SP \rrbracket)])
    case (TargetTerm TP)
    assume TP \in TP
    thus P \sim \llbracket \cdot \rrbracket P
      by (simp add: indRelEQ.target)
  qed
\mathbf{qed}
lemma (in encoding) indRelEQ-is-preorder:
  shows preorder indRelEQ
    unfolding preorder-on-def
proof
  show refl indRelEQ
    by (rule\ indRelEQ-refl)
```

```
next
  show trans indRelEQ
    unfolding trans-def
  proof clarify
    fix P Q R
    assume P \sim \llbracket \cdot \rrbracket \ Q and Q \sim \llbracket \cdot \rrbracket \ R
    thus P \sim \llbracket \cdot \rrbracket R
      by (rule indRelEQ.trans)
  qed
\mathbf{qed}
lemma (in encoding) indRelEQ-symm:
  shows sym indRelEQ
    unfolding sym-def
proof clarify
  \mathbf{fix} \ P \ Q
  assume P \sim \llbracket \cdot \rrbracket \ Q
  thus Q \sim \llbracket \cdot \rrbracket P
  proof induct
    case (encR S)
    show TargetTerm (\llbracket S \rrbracket) \sim \llbracket \cdot \rrbracket SourceTerm S
      by (rule indRelEQ.encL)
    case (encL\ S)
    show SourceTerm\ S \sim \llbracket \cdot \rrbracket \ TargetTerm\ (\llbracket S \rrbracket)
      by (rule\ indRelEQ.encR)
    case (target T)
    show TargetTerm\ T \sim \llbracket \cdot \rrbracket TargetTerm\ T
      by (rule indRelEQ.target)
    case (trans P Q R)
    assume R \sim \llbracket \cdot \rrbracket \ Q and Q \sim \llbracket \cdot \rrbracket \ P
    thus R \sim \llbracket \cdot \rrbracket P
      by (rule indRelEQ.trans)
  qed
qed
lemma (in encoding) indRelEQ-is-equivalence:
  {f shows} equivalence indRelEQ
      using indRelEQ-is-preorder indRelEQ-symm
      unfolding equiv-def preorder-on-def
    by blast
lemma (in encoding) refl-trans-closure-of-indRel:
  shows indRelEQ = indRel^*
proof auto
  fix P Q
  assume P \sim \llbracket \cdot \rrbracket \ Q
  thus (P, Q) \in indRel^*
  proof induct
    case (encR S)
    show (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in indRel^*
        using indRel.encR[of S]
      by simp
  \mathbf{next}
    case (encL\ S)
    show (TargetTerm ([S]), SourceTerm S) \in indRel^*
        using indRel.encL[of S]
      \mathbf{by} \ simp
  \mathbf{next}
```

```
case (target T)
   show (TargetTerm\ T,\ TargetTerm\ T) \in indRel^*
     by simp
  next
   case (trans P Q R)
   assume (P, Q) \in indRel^* and (Q, R) \in indRel^*
   thus (P, R) \in indRel^*
     by simp
 qed
\mathbf{next}
  \mathbf{fix} \ P \ Q
 assume (P, Q) \in indRel^*
  thus P \sim \llbracket \cdot \rrbracket \ Q
  proof induct
   show P \sim \llbracket \cdot \rrbracket P
       using indRelEQ-refl
       unfolding refl-on-def
     \mathbf{by} \ simp
  next
   case (step \ Q \ R)
   assume P \sim \llbracket \cdot \rrbracket \ Q
   moreover assume Q \mathcal{R}[\![\cdot]\!] R
   hence Q \sim \llbracket \cdot \rrbracket R
     by (induct, simp-all add: indRelEQ.encR indRelEQ.encL)
   ultimately show P \sim \llbracket \cdot \rrbracket R
     by (rule indRelEQ.trans)
 qed
qed
lemma (in encoding) refl-symm-trans-closure-of-indRel:
 shows indRelEQ = (symcl\ (indRel^{=}))^{+}
proof -
 have (symcl\ (indRel^{=}))^{+} = (symcl\ indRel)^{*}
   \textbf{by} \ (\textit{rule refl-symm-trans-closure-is-symm-refl-trans-closure} [\textbf{where} \ \textit{Rel} = \textit{indRel}])
  moreover have symcl\ indRel = indRel
   by (simp add: indRel-symm symm-closure-of-symm-rel[where Rel=indRel])
  ultimately show indRelEQ = (symcl\ (indRel^{=}))^{+}
   by (simp add: refl-trans-closure-of-indRel)
qed
lemma (in encoding) symm-closure-of-indRelR:
  shows indRel = symcl indRelR
   and indRelEQ = (symcl\ (indRelR^{=}))^{+}
proof -
 show indRel = symcl indRelR
 proof auto
   fix P Q
   assume P \mathcal{R}[\cdot] Q
   thus (P, Q) \in symcl \ indRelR
     by (induct, simp-all add: symcl-def indRelR.encR)
  next
   \mathbf{fix} \ P \ Q
   assume (P, Q) \in symcl \ indRelR
   thus P \mathcal{R}[\![\cdot]\!] Q
     by (auto simp add: symcl-def indRelR.simps indRel.encR indRel.encL)
  qed
  thus indRelEQ = (symcl\ (indRelR^{=}))^{+}
     using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelR]
           refl-trans-closure-of-indRel
   \mathbf{by} \ simp
qed
```

```
lemma (in encoding) symm-closure-of-indRelL:
 shows indRel = symcl indRelL
   and indRelEQ = (symcl\ (indRelL^{=}))^{+}
proof -
 show indRel = symcl indRel L
 proof auto
   fix P Q
   assume P \mathcal{R}[\cdot] Q
   thus (P, Q) \in symcl\ indRelL
    \mathbf{by}\ (induct,\ simp-all\ add:\ symcl-def\ indRelL.encL)
 next
   \mathbf{fix} \ P \ Q
   assume (P, Q) \in symcl \ indRelL
   thus P \mathcal{R}[\cdot] Q
     by (auto simp add: symcl-def indRelL.simps indRel.encR indRel.encL)
 qed
 thus indRelEQ = (symcl\ (indRelL^{=}))^{+}
     using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelL]
          refl-trans-closure-of-indRel
   by simp
qed
The relation indRel is a combination of indRelL and indRelR. indRel respects a predicate iff indRelR
(or indRelL) respects it.
lemma (in encoding) indRel-respects-pred-iff-indRelR-respects-pred:
 fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
 shows rel-respects-pred indRel Pred = rel-respects-pred indRelR Pred
proof
 assume respection: rel-respects-pred indRel Pred
 show rel-respects-pred indRelR Pred
 proof auto
   \mathbf{fix} \ P \ Q
   assume P \mathcal{R}[\cdot]R Q
   from this obtain S where S \in S P and [S] \in T Q
     by (induct, blast)
   hence P \mathcal{R}[\![\cdot]\!] Q
     by (simp add: indRel.encR)
   moreover assume Pred P
   ultimately show Pred Q
      using respection
     by blast
 next
   fix P Q
   assume P \mathcal{R}[\cdot]R Q
   from this obtain S where S \in S P and [S] \in T Q
     by (induct, blast)
   hence P \mathcal{R}[\cdot] Q
     by (simp add: indRel.encR)
   moreover assume Pred\ Q
   ultimately show Pred P
       using respection
     by blast
 qed
next
 assume \ rel-respects-pred \ indRelR \ Pred
 thus rel-respects-pred indRel Pred
     using symm-closure-of-indRelR(1)
          respection-and-closures(2)[where Rel=indRelR and Pred=Pred]
   by blast
```

```
qed
```

```
lemma (in encoding) indRel-respects-binary-pred-iff-indRelR-respects-binary-pred:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows rel-respects-binary-pred indRel Pred = rel-respects-binary-pred indRelR Pred
proof
  assume respection: rel-respects-binary-pred indRel Pred
  show rel-respects-binary-pred indRelR Pred
  proof auto
   \mathbf{fix} \ P \ Q \ x
   assume P \mathcal{R}[\![\cdot]\!]R Q
    from this obtain S where S \in S P and [S] \in T Q
      by (induct, blast)
   hence P \mathcal{R}[\cdot] Q
      by (simp add: indRel.encR)
   moreover assume Pred P x
    ultimately show Pred \ Q \ x
        using respection
      by blast
  next
   fix P Q x
   assume P \mathcal{R}[\cdot]R Q
    from this obtain S where S \in S P and [S] \in T Q
      by (induct, blast)
    hence P \mathcal{R} \llbracket \cdot \rrbracket Q
      by (simp\ add:\ indRel.encR)
   moreover assume Pred\ Q\ x
    ultimately show Pred P x
        using respection
      by blast
  qed
next
  assume rel-respects-binary-pred indRelR Pred
  thus rel-respects-binary-pred indRel Pred
      using symm-closure-of-indRelR(1)
            respection-of-binary-predicates-and-closures(2)[where Rel=indRelR and Pred=Pred]
   by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind Rel-cond\text{-}respection\text{-}iff\text{-}ind RelR\text{-}cond\text{-}respection\text{:}}
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows (\exists Rel.
          (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
          ∧ rel-respects-pred Rel Pred)
         = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred \ Rel \ Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
          \land (TargetTerm ([S]), SourceTerm S) \in Rel) \land rel-respects-pred Rel Pred
  {\bf from}\ this\ {\bf obtain}\ Rel
    where \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
   and rel-respects-pred Rel Pred
   by blast
  thus \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred \ Rel \ Pred
   by blast
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel Pred
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                         and A2: rel-respects-pred Rel Pred
  from A1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in symcl\ Rel
                \land (TargetTerm ([S]), SourceTerm S) \in symcl Rel
```

```
by (simp add: symcl-def)
  moreover from A2 have rel-respects-pred (symcl Rel) Pred
      using respection-and-closures(2)[where Rel=Rel and Pred=Pred]
    by blast
  ultimately
  show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
        \land rel-respects-pred Rel Pred
    by blast
qed
lemma (in encoding) indRel-cond-binary-respection-iff-indRelR-cond-binary-respection:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  shows (\exists Rel.
          (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
          \land \ \mathit{rel-respects-binary-pred} \ \mathit{Rel} \ \mathit{Pred})
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land rel-respects-binary-pred Rel Pred)
proof
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel
          \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel) \land rel-respects-binary-pred Rel Pred
  from this obtain Rel
    where \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
   and rel-respects-binary-pred Rel Pred
  thus \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-binary-pred \ Rel \ Pred
    by blast
  assume \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-binary-pred \ Rel \ Pred
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                        and A2: rel-respects-binary-pred Rel Pred
  from A1 have \forall S. (Source Term S, Target Term (\llbracket S \rrbracket)) \in symcl Rel
                \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in symcl Rel
   by (simp add: symcl-def)
  moreover from A2 have rel-respects-binary-pred (symcl Rel) Pred
      using respection-of-binary-predicates-and-closures(2) [where Rel=Rel and Pred=Pred]
    by blast
  ultimately
  show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
        ∧ rel-respects-binary-pred Rel Pred
    by blast
qed
An encoding respects a predicate iff indRel respects this predicate.
lemma (in encoding) enc-respects-pred-iff-indRel-respects-pred:
  fixes Pred :: ('procS, 'procT) Proc \Rightarrow bool
  shows enc-respects-pred Pred = rel-respects-pred indRel Pred
      using enc-respects-pred-iff-indRelR-respects-pred[where Pred=Pred]
            indRel-respects-pred-iff-indRelR-respects-pred[where Pred=Pred]
    by simp
An encoding respects a predicate iff there exists a relation, namely indRel, that relates source terms
and their literal translations in both directions and respects this predicate.
lemma (in encoding) enc-respects-pred-iff-source-target-rel-respects-pred-encRL:
  fixes Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
  shows enc-respects-pred Pred
        = (\exists Rel.
            (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
            ∧ rel-respects-pred Rel Pred)
      using enc-respects-pred-iff-source-target-rel-respects-pred-encR[where Pred=Pred]
```

5.2 Relations Induced by the Encoding and a Relation on Target Terms

Some encodability like e.g. operational correspondence are defined w.r.t. a relation on target terms. To analyse such criteria we include the respective target term relation in the considered relation on the disjoint union of source and target terms.

```
inductive-set (in encoding) indRelRT
   :: ('procT \times 'procT) \ set \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for TRel :: ('procT \times 'procT) set
  where
  encR:
          (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelRT\ TRel\ |
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelRT TRel
abbreviation (in encoding) indRelRTinfix
   :: ('procS, 'procT) \ Proc \Rightarrow ('procT \times 'procT) \ set \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool
      where
  P \mathcal{R}[\cdot]RT < TRel > Q \equiv (P, Q) \in indRelRT TRel
inductive-set (in encoding) indRelRTPO
   :: ('procT \times 'procT) \ set \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for TRel :: ('procT \times 'procT) set
  where
           (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelRTPO\ TRel\ |
  encR:
  source: (SourceTerm\ S,\ SourceTerm\ S) \in indRelRTPO\ TRel\ |
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelRTPO TRel
  trans: [(P, Q) \in indRelRTPO \ TRel; (Q, R) \in indRelRTPO \ TRel] \Longrightarrow (P, R) \in indRelRTPO \ TRel
abbreviation (in encoding) indRelRTPOinfix
   :: ('procS, 'procT) \ Proc \Rightarrow ('procT \times 'procT) \ set \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool
      (\langle - \lesssim \llbracket \cdot \rrbracket RT < - \rangle \rightarrow [75, 75, 75] 80)
  where
  P \lesssim [\cdot]RT < TRel > Q \equiv (P, Q) \in indRelRTPO TRel
lemma (in encoding) indRelRTPO-refl:
  fixes TRel :: ('procT \times 'procT) set
  assumes refl: refl TRel
  shows refl (indRelRTPO TRel)
   unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \lesssim \|\cdot\|RT < TRel > P
  proof (cases P)
   case (SourceTerm SP)
   assume SP \in SP
   thus P \lesssim [\cdot]RT < TRel > P
     by (simp add: indRelRTPO.source)
   case (TargetTerm TP)
   assume TP \in TP
   with refl show P \lesssim \|\cdot\|RT < TRel > P
       unfolding refl-on-def
     by (simp add: indRelRTPO.target)
 qed
qed
lemma (in encoding) refl-trans-closure-of-indRelRT:
```

fixes $TRel :: ('procT \times 'procT) set$

```
assumes refl: refl TRel
 shows indRelRTPO TRel = (indRelRT TRel)^*
proof auto
 fix P Q
 assume P \lesssim [\![\cdot]\!]RT < TRel > Q
 thus (P, Q) \in (indRelRT \ TRel)^*
 proof induct
   case (encR S)
   show (SourceTerm S, TargetTerm ([S])) \in (indRelRT TRel)*
      using indRelRT.encR[of\ S\ TRel]
     by simp
 next
   case (source S)
   show (SourceTerm S, SourceTerm S) \in (indRelRT TRel)*
     by simp
 next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (indRelRT\ TRel)^*
      using indRelRT.target[of T1 T2 TRel]
     by simp
 \mathbf{next}
   case (trans P Q R)
   assume (P, Q) \in (indRelRT\ TRel)^* and (Q, R) \in (indRelRT\ TRel)^*
   thus (P, R) \in (indRelRT \ TRel)^*
     by simp
 qed
next
 \mathbf{fix} \ P \ Q
 assume (P, Q) \in (indRelRT \ TRel)^*
 thus P \lesssim \|\cdot\|RT < TRel > Q
 {f proof}\ induct
   from refl show P \lesssim [\![\cdot]\!]RT < TRel > P
       using indRelRTPO-refl[of TRel]
       unfolding refl-on-def
     by simp
 next
   case (step \ Q \ R)
   assume P \lesssim [\cdot]RT < TRel > Q
   moreover assume Q \mathcal{R}[\cdot]RT < TRel > R
   hence Q \leq \|\cdot\|RT < TRel > R
     by (induct, simp-all add: indRelRTPO.encR indRelRTPO.target)
   ultimately show P \lesssim [\cdot]RT < TRel > R
     by (rule indRelRTPO.trans)
 qed
qed
lemma (in encoding) indRelRTPO-is-preorder:
 fixes TRel :: ('procT \times 'procT) set
 assumes reflT: refl\ TRel
 shows preorder (indRelRTPO TRel)
   unfolding preorder-on-def
proof
 from reflT show refl (indRelRTPO TRel)
   by (rule indRelRTPO-refl)
\mathbf{next}
 show trans (indRelRTPO TRel)
   unfolding trans-def
 proof clarify
   \mathbf{fix}\ P\ Q\ R
   assume P \lesssim [\![\cdot]\!]RT < TRel > Q and Q \lesssim [\![\cdot]\!]RT < TRel > R
```

```
thus P \lesssim \llbracket \cdot \rrbracket RT < TRel > R
       using indRelRTPO.trans
     \mathbf{by} blast
  qed
qed
lemma (in encoding) transitive-closure-of-TRel-to-indRelRTPO:
  fixes TRel :: ('procT \times 'procT) set
    and TP TQ :: 'procT
  shows (TP, TQ) \in TRel^+ \Longrightarrow TargetTerm \ TP \lesssim ||\cdot||RT < TRel > TargetTerm \ TQ
proof -
  assume (TP, TQ) \in TRel^+
  thus TargetTerm\ TP \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm\ TQ
  proof induct
   \mathbf{fix} \ TQ
   assume (TP, TQ) \in TRel
    thus TargetTerm\ TP \lesssim [\![\cdot]\!]RT < TRel > TargetTerm\ TQ
     by (rule indRelRTPO.target)
  next
    case (step TQ TR)
    assume TargetTerm\ TP \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm\ TQ
   moreover assume (TQ, TR) \in TRel
    hence TargetTerm\ TQ \leq \llbracket \cdot \rrbracket RT < TRel > TargetTerm\ TR
     by (simp add: indRelRTPO.target)
    ultimately show TargetTerm\ TP \lesssim [\![\cdot]\!]RT < TRel > TargetTerm\ TR
     by (rule indRelRTPO.trans)
  qed
qed
```

The relation indRelRT is the smallest relation that relates all source terms and their literal translations and contains TRel. Thus there exists a relation that relates source terms and their literal translations and satisfies some predicate on its pairs iff the predicate holds for the pairs of indRelR.

```
lemma (in encoding) indRelR-modulo-pred-impl-indRelRT-modulo-pred:
 fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
 shows (\forall (P, Q) \in indRelR. Pred (P, Q)) = (\forall TRel. (\forall (TP, TQ) \in TRel.)
        Pred\ (TargetTerm\ TP,\ TargetTerm\ TQ)) \longleftrightarrow (\forall\ (P,\ Q) \in indRelRT\ TRel.\ Pred\ (P,\ Q)))
proof (rule iffI)
 assume A: \forall (P, Q) \in indRelR. Pred (P, Q)
 show \forall TRel. (\forall (TP, TQ) \in TRel. Pred (TargetTerm TP, TargetTerm TQ))
       = (\forall (P, Q) \in indRelRT\ TRel.\ Pred\ (P, Q))
 proof (rule allI, rule iffI)
   \mathbf{fix} TRel
   assume \forall (TP, TQ) \in TRel. \ Pred \ (TargetTerm \ TP, \ TargetTerm \ TQ)
   with A show \forall (P, Q) \in indRelRT\ TRel.\ Pred\ (P, Q)
     by (auto simp add: indRelR.encR indRelRT.simps)
 next
   \mathbf{fix} \ TRel
   assume \forall (P, Q) \in indRelRT\ TRel.\ Pred\ (P, Q)
   thus \forall (TP, TQ) \in TRel. \ Pred \ (TargetTerm \ TP, \ TargetTerm \ TQ)
     by (auto simp add: indRelRT.target)
 qed
next
 assume \forall TRel. (\forall (TP, TQ) \in TRel. Pred (TargetTerm TP, TargetTerm TQ))
         \longleftrightarrow (\forall (P, Q) \in indRelRT\ TRel.\ Pred\ (P, Q))
 hence B: \bigwedge TRel. (\forall (TP, TQ) \in TRel. Pred (TargetTerm TP, TargetTerm TQ))
           \longleftrightarrow (\forall (P, Q) \in indRelRT \ TRel. \ Pred \ (P, Q))
   bv blast
 have \bigwedge S. Pred (SourceTerm S, TargetTerm (\llbracket S \rrbracket))
     using B[of \{\}]
   by (simp add: indRelRT.simps)
```

```
thus \forall (P, Q) \in indRelR. Pred (P, Q)
   by (auto simp add: indRelR.simps)
qed
lemma (in encoding) indRelRT-iff-exists-source-target-relation:
 fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
 shows (\forall TRel. (\forall (TP, TQ) \in TRel. Pred (TargetTerm TP, TargetTerm TQ))
         \longleftrightarrow (\forall (P, Q) \in indRelRT\ TRel.\ Pred\ (P, Q)))
        = (\exists Rel. \ (\forall S. \ (SourceTerm S, TargetTerm ([S])) \in Rel) \land (\forall (P, Q) \in Rel. \ Pred (P, Q)))
     using indRelR-iff-exists-source-target-relation[where Pred=Pred]
           indRelR-modulo-pred-impl-indRelRT-modulo-pred[where Pred=Pred]
   by simp
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelRT-modulo-pred-impl-ind RelRTPO-modulo-pred:
  fixes TRel :: ('procT \times 'procT) set
   and Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes reflCond: \forall P. Pred (P, P)
     and transCond: \forall P \ Q \ R. Pred \ (P, \ Q) \land Pred \ (Q, \ R) \longrightarrow Pred \ (P, \ R)
  shows (\forall (P, Q) \in indRelRT\ TRel.\ Pred\ (P, Q)) = (\forall (P, Q) \in indRelRTPO\ TRel.\ Pred\ (P, Q))
proof auto
  \mathbf{fix} P Q
  assume A: \forall x \in indRelRT\ TRel.\ Pred\ x
  assume P \lesssim [\![\cdot]\!]RT < TRel > Q
  thus Pred\ (P,\ Q)
  proof induct
   case (encR S)
   have Source Term S \mathcal{R}[\![\cdot]\!]RT < TRel > Target Term ([\![S]\!])
     by (simp add: indRelRT.encR)
   with A show Pred (SourceTerm S, TargetTerm (\llbracket S \rrbracket))
     by simp
  next
   case (source S)
   from reflCond show Pred (SourceTerm S, SourceTerm S)
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   hence TargetTerm\ T1\ \mathcal{R}[\![\cdot]\!]RT < TRel > TargetTerm\ T2
     by (simp add: indRelRT.target)
   with A show Pred (TargetTerm T1, TargetTerm T2)
     by simp
  next
   case (trans P Q R)
   assume Pred (P, Q) and Pred (Q, R)
   with transCond show Pred (P, R)
     by blast
 qed
next
  \mathbf{fix} \ P \ Q
 assume \forall x \in indRelRTPO\ TRel.\ Pred\ x\ and\ P\ \mathcal{R}[\cdot]RT < TRel > Q
  thus Pred\ (P,\ Q)
   by (auto simp add: indRelRTPO.encR indRelRTPO.target indRelRT.simps)
qed
lemma (in encoding) indRelR-modulo-pred-impl-indRelRTPO-modulo-pred:
  fixes Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes \forall P. Pred (P, P)
     and \forall P \ Q \ R. \ Pred \ (P, \ Q) \ \land \ Pred \ (Q, \ R) \longrightarrow Pred \ (P, \ R)
 shows (\forall (P, Q) \in indRelR. Pred (P, Q))
        = (\forall TRel. \ (\forall (TP, TQ) \in TRel. \ Pred \ (TargetTerm \ TP, TargetTerm \ TQ))
           \longleftrightarrow (\forall (P, Q) \in indRelRTPO \ TRel. \ Pred \ (P, Q)))
```

```
proof -
  have (\forall (P, Q) \in indRelR. Pred (P, Q)) = (\forall TRel. (\forall (TP, TQ) \in TRel.)
       Pred\ (TargetTerm\ TP,\ TargetTerm\ TQ)) \longleftrightarrow (\forall (P,\ Q) \in indRelRT\ TRel.\ Pred\ (P,\ Q)))
     using indRelR-modulo-pred-impl-indRelRT-modulo-pred[where Pred=Pred]
   by simp
 moreover
  have \forall TRel. \ (\forall (P, Q) \in indRelRT \ TRel. \ Pred \ (P, Q)) = (\forall (P, Q) \in indRelRTPO \ TRel. \ Pred \ (P, Q))
     using assms indRelRT-modulo-pred-impl-indRelRTPO-modulo-pred[where Pred = Pred]
   bv blast
  ultimately show ?thesis
   by simp
The relation indRelLT includes TRel and relates literal translations and their source terms.
inductive-set (in encoding) indRelLT
   :: ('procT \times 'procT) \ set \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for TRel :: ('procT \times 'procT) set
  where
           (TargetTerm ([S]), SourceTerm S) \in indRelLT TRel
  encL:
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelLT TRel
abbreviation (in encoding) indRelLTinfix
   :: ('procS, 'procT) \ Proc \Rightarrow ('procT \times 'procT) \ set \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool
      (\leftarrow \mathcal{R}[\cdot]LT < \rightarrow [75, 75, 75] 80)
  where
  P \mathcal{R}[\cdot]LT < TRel > Q \equiv (P, Q) \in indRelLT TRel
inductive-set (in encoding) indRelLTPO
   :: ('procT \times 'procT) \ set \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for TRel :: ('procT \times 'procT) set
  where
          (TargetTerm ([S]), SourceTerm S) \in indRelLTPO TRel
  encL:
  source: (SourceTerm\ S,\ SourceTerm\ S) \in indRelLTPO\ TRel\ |
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelLTPO TRel
  trans: [(P, Q) \in indRelLTPO \ TRel; (Q, R) \in indRelLTPO \ TRel] \Longrightarrow (P, R) \in indRelLTPO \ TRel
abbreviation (in encoding) indRelLTPOinfix
   :: ('procS, 'procT) \ Proc \Rightarrow ('procT \times 'procT) \ set \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool
      (\langle - \lesssim \llbracket \cdot \rrbracket LT < - \rangle \rightarrow \lceil 75, 75, 75 \rceil 80)
  P \lesssim \|\cdot\| LT < TRel > Q \equiv (P, Q) \in indRelLTPO TRel
lemma (in encoding) indRelLTPO-refl:
  fixes TRel :: ('procT \times 'procT) set
  assumes refl: refl TRel
 shows refl (indRelLTPO TRel)
   unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \lesssim \llbracket \cdot \rrbracket LT < TRel > P
  proof (cases P)
   case (SourceTerm SP)
   assume SP \in SP
   thus P \leq \|\cdot\| LT < TRel > P
     by (simp add: indRelLTPO.source)
 \mathbf{next}
   case (TargetTerm TP)
   assume TP \in TP
   with refl show P \lesssim [\cdot]LT < TRel > P
       using indRelLTPO.target[of TP TP TRel]
       unfolding refl-on-def
```

```
by simp
 qed
qed
lemma (in encoding) refl-trans-closure-of-indRelLT:
 fixes TRel :: ('procT \times 'procT) set
 assumes refl: refl TRel
 shows indRelLTPO\ TRel = (indRelLT\ TRel)^*
proof auto
 \mathbf{fix}\ P\ Q
  assume P \lesssim ||\cdot|| LT < TRel > Q
  thus (P, Q) \in (indRelLT\ TRel)^*
  proof induct
   case (encL S)
   show (TargetTerm ([S]), SourceTerm S) \in (indRelLT TRel)*
       using indRelLT.encL[of\ S\ TRel]
     \mathbf{by} simp
  \mathbf{next}
   case (source S)
   show (SourceTerm S, SourceTerm S) \in (indRelLT TRel)*
     by simp
 next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (indRelLT\ TRel)^*
       using indRelLT.target[of T1 T2 TRel]
     by simp
 \mathbf{next}
   case (trans P Q R)
   assume (P, Q) \in (indRelLT\ TRel)^* and (Q, R) \in (indRelLT\ TRel)^*
   thus (P, R) \in (indRelLT\ TRel)^*
     bv simp
 qed
next
 assume (P, Q) \in (indRelLT\ TRel)^*
  thus P \lesssim \llbracket \cdot \rrbracket LT < TRel > Q
 proof induct
   from refl show P \lesssim ||\cdot|| LT < TRel > P
       using indRelLTPO-refl[of TRel]
       \mathbf{unfolding}\ \mathit{refl-on-def}
     by simp
  next
   case (step \ Q \ R)
   assume P \lesssim [\cdot]LT < TRel > Q
   moreover assume Q \mathcal{R}[\cdot]LT < TRel > R
   hence Q \lesssim [\cdot] LT < TRel > R
     by (induct, simp-all add: indRelLTPO.encL indRelLTPO.target)
   ultimately show P \lesssim [\cdot]LT < TRel > R
     by (rule indRelLTPO.trans)
 qed
qed
inductive-set (in encoding) indRelT
   :: ('procT \times 'procT) \ set \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for TRel :: ('procT \times 'procT) set
  where
           (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelT\ TRel\ |
  encR:
         (TargetTerm ([S]), SourceTerm S) \in indRelT TRel
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in indRelT \ TRel
```

```
abbreviation (in encoding) indRelTinfix
    :: ('procS, 'procT) \ Proc \Rightarrow ('procT \times 'procT) \ set \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool
       (\langle -\mathcal{R}[\![\cdot]\!] T < - \rangle - \rangle [75, 75, 75] 80)
  where
  P \mathcal{R}[\cdot] T < TRel > Q \equiv (P, Q) \in indRel T TRel
lemma (in encoding) indRelT-symm:
  fixes TRel :: ('procT \times 'procT) set
  assumes symm: sym TRel
  shows sym (indRelT TRel)
    unfolding sym-def
proof clarify
  \mathbf{fix} \ P \ Q
  assume (P, Q) \in indRelT\ TRel
  thus (Q, P) \in indRelT\ TRel
      using symm
      unfolding sym-def
   by (induct, simp-all add: indRelT.encL indRelT.encR indRelT.target)
inductive-set (in encoding) indRelTEQ
    :: ('procT \times 'procT) \ set \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for TRel :: ('procT \times 'procT) set
  where
  encR:
            (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelTEQ\ TRel\ \rrbracket
  encL: (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in indRelTEQ TRel \rrbracket
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelTEQ TRel
  trans: [(P, Q) \in indRelTEQ \ TRel; (Q, R) \in indRelTEQ \ TRel] \Longrightarrow (P, R) \in indRelTEQ \ TRel
abbreviation (in encoding) indRelTEQinfix
    :: ('procS, 'procT) \ Proc \Rightarrow ('procT \times 'procT) \ set \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool
       (\langle - \sim \llbracket \cdot \rrbracket T < - \rangle - \uparrow [75, 75, 75] 80)
  where
  P \sim \llbracket \cdot \rrbracket T < TRel > Q \equiv (P, Q) \in indRelTEQ TRel
lemma (in encoding) indRelTEQ-refl:
  fixes TRel :: ('procT \times 'procT) set
  assumes refl: refl TRel
  shows refl (indRelTEQ TRel)
   unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \sim \llbracket \cdot \rrbracket T < TRel > P
  proof (cases P)
    case (SourceTerm SP)
   assume SP \in SP
   moreover have Source Term SP \sim \llbracket \cdot \rrbracket T < TRel > Target Term (\llbracket SP \rrbracket)
     by (rule\ indRelTEQ.encR)
    moreover have TargetTerm ([SP]) \sim [\cdot] T < TRel > SourceTerm SP
     by (rule\ indRelTEQ.encL)
    ultimately show P \sim [\![\cdot]\!] T < TRel > P
      by (simp\ add:\ indRelTEQ.trans[\mathbf{where}\ P=SourceTerm\ SP\ \mathbf{and}\ Q=TargetTerm\ (\llbracket SP \rrbracket)])
    case (TargetTerm TP)
   assume TP \in TP
   with refl show P \sim [\![\cdot]\!] T < TRel > P
        unfolding refl-on-def
      by (simp add: indRelTEQ.target)
  qed
qed
```

```
lemma (in encoding) indRelTEQ-symm:
 \mathbf{fixes} \ TRel :: ('procT \times 'procT) \ set
 assumes symm: sym TRel
 shows sym (indRelTEQ TRel)
   unfolding sym-def
proof clarify
 \mathbf{fix} \ P \ Q
 assume P \sim [\![\cdot]\!] T < TRel > Q
 thus Q \sim [\![\cdot]\!] T < TRel > P
  proof induct
   case (encR S)
   show TargetTerm ([S]) \sim [\cdot] T < TRel > SourceTerm S
     by (rule indRelTEQ.encL)
  \mathbf{next}
   case (encL\ S)
   show Source Term S \sim \llbracket \cdot \rrbracket T < TRel > Target Term (\llbracket S \rrbracket)
     by (rule\ indRelTEQ.encR)
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   with symm show TargetTerm T2 \sim \|\cdot\| T < TRel > TargetTerm T1
       unfolding sym-def
     by (simp add: indRelTEQ.target)
  next
   case (trans P Q R)
   assume R \sim \llbracket \cdot \rrbracket \, T < TRel > \, Q and Q \sim \llbracket \cdot \rrbracket \, T < TRel > \, P
   thus R \sim \llbracket \cdot \rrbracket T < TRel > P
     \mathbf{by}\ (\mathit{rule}\ indRelTEQ.trans)
  qed
qed
lemma (in encoding) refl-trans-closure-of-indRelT:
  fixes TRel :: ('procT \times 'procT) set
 assumes refl: refl TRel
 shows indRelTEQ\ TRel = (indRelT\ TRel)^*
proof auto
 \mathbf{fix} \ P \ Q
  assume P \sim [\![\cdot]\!] T < TRel > Q
  thus (P, Q) \in (indRelT\ TRel)^*
  proof induct
   case (encR S)
   show (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in (indRelT\ TRel)^*
       using indRelT.encR[of\ S\ TRel]
     by simp
 \mathbf{next}
   case (encL S)
   show (TargetTerm ([S]), SourceTerm S) \in (indRelT TRel)*
       using indRelT.encL[of\ S\ TRel]
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (indRelT\ TRel)^*
       using indRelT.target[of T1 T2 TRel]
     by simp
  \mathbf{next}
   case (trans P Q R)
   assume (P, Q) \in (indRelT\ TRel)^* and (Q, R) \in (indRelT\ TRel)^*
   thus (P, R) \in (indRelT\ TRel)^*
     \mathbf{by} \ simp
  qed
```

```
next
 \mathbf{fix} \ P \ Q
 assume (P, Q) \in (indRelT\ TRel)^*
 thus P \sim \llbracket \cdot \rrbracket T < TRel > Q
 proof induct
   from refl show P \sim \llbracket \cdot \rrbracket T < TRel > P
       using indRelTEQ-refl[of TRel]
       unfolding refl-on-def
     by simp
 \mathbf{next}
   case (step Q R)
   assume P \sim [\![\cdot]\!] T < TRel > Q
   moreover assume Q \mathcal{R}[\cdot] T < TRel > R
   hence Q \sim [\![\cdot]\!] T < TRel > R
     by (induct, simp-all add: indRelTEQ.encR indRelTEQ.encL indRelTEQ.target)
   ultimately show P \sim \llbracket \cdot \rrbracket T < TRel > R
     by (rule indRelTEQ.trans)
 qed
qed
lemma (in encoding) refl-symm-trans-closure-of-indRelT:
 fixes TRel :: ('procT \times 'procT) set
  assumes refl: refl TRel
     and symm: sym TRel
 shows indRelTEQ TRel = (symcl ((indRelT TRel)^{=}))^{+}
proof -
  have (symcl\ ((indRelT\ TRel)^{=}))^{+} = (symcl\ (indRelT\ TRel))^{*}
   by (rule refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelT TRel])
  moreover from symm have symcl (indRelT TRel) = indRelT TRel
     using indRelT-symm[where TRel = TRel] symm-closure-of-symm-rel[where Rel = indRelT TRel]
  ultimately show indRelTEQ\ TRel = (symcl\ ((indRelT\ TRel)^{=}))^{+}
     using refl refl-trans-closure-of-indRelT[where TRel=TRel]
   by simp
qed
lemma (in encoding) symm-closure-of-indRelRT:
 fixes TRel :: ('procT \times 'procT) set
  assumes refl: refl TRel
     and symm: sym TRel
 shows indRelT TRel = symcl (indRelRT TRel)
   and indRelTEQ\ TRel = (symcl\ ((indRelRT\ TRel)^{=}))^{+}
proof -
  show indRelT TRel = symcl (indRelRT TRel)
 proof auto
   \mathbf{fix} P Q
   assume P \mathcal{R}[\cdot] T < TRel > Q
   thus (P, Q) \in symcl (indRelRT TRel)
     by (induct, simp-all add: symcl-def indRelRT.encR indRelRT.target)
  next
   \mathbf{fix} \ P \ Q
   assume (P, Q) \in symcl (indRelRT TRel)
   thus P \mathcal{R}[\![\cdot]\!] T < TRel > Q
   proof (auto simp add: symcl-def indRelRT.simps)
     show SourceTerm S \ \mathcal{R} \llbracket \cdot \rrbracket \ T < TRel > TargetTerm \ (\llbracket S \rrbracket)
       by (rule\ indRelT.encR)
   next
     fix T1 T2
     assume (T1, T2) \in TRel
     thus TargetTerm\ T1\ \mathcal{R}[\![\cdot]\!]\ T < TRel > \ TargetTerm\ T2
```

```
by (rule indRelT.target)
   next
     \mathbf{fix} \ S
     show TargetTerm ([S]) \mathcal{R}[\cdot] T < TRel > SourceTerm S
       by (rule\ indRelT.encL)
   next
     fix T1 T2
     assume (T1, T2) \in TRel
     with symm show TargetTerm T2 \mathbb{R}[\cdot] T < TRel> TargetTerm T1
         unfolding sym-def
       by (simp add: indRelT.target)
   qed
 qed
  with refl show indRelTEQ TRel = (symcl\ ((indRelRT\ TRel)^{=}))^{+}
     using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelRT TRel]
           refl-trans-closure-of-indRelT
   by simp
qed
lemma (in encoding) symm-closure-of-indRelLT:
 fixes TRel :: ('procT \times 'procT) set
 assumes refl: refl TRel
     and symm: sym TRel
 shows indRelT TRel = symcl (indRelLT TRel)
   and indRelTEQ\ TRel = (symcl\ ((indRelLT\ TRel)^{=}))^{+}
proof -
  show indRelT TRel = symcl (indRelLT TRel)
 proof auto
   fix P Q
   assume P \mathcal{R}[\![\cdot]\!] T < TRel > Q
   thus (P, Q) \in symcl (indRelLT TRel)
     by (induct, simp-all add: symcl-def indRelLT.encL indRelLT.target)
  next
   \mathbf{fix} P Q
   \mathbf{assume}\ (P,\ Q) \in \mathit{symcl}\ (\mathit{indRelLT}\ \mathit{TRel})
   thus P \mathcal{R}[\cdot] T < TRel > Q
   proof (auto simp add: symcl-def indRelLT.simps)
     show Source Term S \ \mathcal{R} \llbracket \cdot \rrbracket T < TRel > Target Term (\llbracket S \rrbracket)
       by (rule indRelT.encR)
   next
     fix T1 T2
     assume (T1, T2) \in TRel
     thus TargetTerm\ T1\ \mathcal{R}[\![\cdot]\!]T < TRel > TargetTerm\ T2
       by (rule indRelT.target)
   next
     \mathbf{fix} \ S
     show TargetTerm (\llbracket S \rrbracket) \mathcal{R} \llbracket \cdot \rrbracket T < TRel > SourceTerm S
       by (rule\ indRelT.encL)
   next
     fix T1 T2
     assume (T1, T2) \in TRel
     with symm show TargetTerm T2 \mathbb{R}[\cdot] T<TRel> TargetTerm T1
         unfolding sym-def
       by (simp add: indRelT.target)
   qed
  qed
  with refl show indRelTEQ\ TRel = (symcl\ ((indRelLT\ TRel)^{=}))^{+}
     using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelLT TRel]
           refl-trans-closure-of-indRelT
   by simp
```

qed

If the relations indRelRT, indRelLT, or indRelT contain a pair of target terms, then this pair is also related by the considered target term relation.

```
lemma (in encoding) indRelRT-to-TRel:
 fixes TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes rel: TargetTerm TP \mathbb{R}[\cdot]RT < TRel > TargetTerm TQ
 shows (TP, TQ) \in TRel
     using rel
   by (simp add: indRelRT.simps)
lemma (in encoding) indRelLT-to-TRel:
 fixes TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes rel: TargetTerm TP \mathbb{R}[\cdot]LT < TRel > TargetTerm TQ
 shows (TP, TQ) \in TRel
     using rel
   by (simp add: indRelLT.simps)
lemma (in encoding) indRelT-to-TRel:
 fixes TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes rel: TargetTerm TP \ \mathcal{R}[\cdot]T < TRel > TargetTerm \ TQ
 shows (TP, TQ) \in TRel
     using rel
   by (simp add: indRelT.simps)
```

If the preorders indRelRTPO, indRelLTPO, or the equivalence indRelTEQ contain a pair of terms, then the pair of target terms that is related to these two terms is also related by the reflexive and transitive closure of the considered target term relation.

```
lemma (in encoding) indRelRTPO-to-TRel:
  fixes TRel :: ('procT \times 'procT) set
    and P \ Q :: ('procS, 'procT) \ Proc
  assumes rel: P \lesssim \llbracket \cdot \rrbracket RT < TRel > Q
  shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow SP = SQ
    and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ
           \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    and \forall TP \ SQ. \ TP \in TP \land SQ \in SQ \longrightarrow False
    and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
proof -
  have reftTRel: \forall S. (\llbracket S \rrbracket, \llbracket S \rrbracket) \in TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \}
  from rel show \forall SP SQ. SP \in SP \land SQ \in SQ \longrightarrow SP = SQ
              and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ
                     \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
              and \forall TP \ SQ. \ TP \in T \ P \land SQ \in S \ Q \longrightarrow False
              and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
  proof induct
    case (encR S)
    show \forall SP \ SQ. \ SP \in S \ Source Term \ S \land SQ \in S \ Target Term \ (\llbracket S \rrbracket) \longrightarrow SP = SQ
     and \forall TP \ SQ. \ TP \in T \ Source Term \ S \land SQ \in S \ Target Term \ (\llbracket S \rrbracket) \longrightarrow False
     and \forall TP \ TQ. \ TP \in T \ Source Term \ S \land TQ \in T \ Target Term \ (\llbracket S \rrbracket) \longrightarrow (TP, TQ) \in TRel^+
    from reflTRel show \forall SP \ TQ. \ SP \in S \ SourceTerm \ S \land \ TQ \in T \ TargetTerm \ (\llbracket S \rrbracket)
                            \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
       by blast
  \mathbf{next}
    case (source S)
    show \forall SP \ SQ. \ SP \in S \ SourceTerm \ S \land SQ \in S \ SourceTerm \ S \longrightarrow SP = SQ
```

```
by simp
 show \forall SP \ TQ. \ SP \in S \ Source Term \ S \land \ TQ \in T \ Source Term \ S
          \to ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
  and \forall TP \ SQ. \ TP \in T \ SourceTerm \ S \land SQ \in S \ SourceTerm \ S \longrightarrow False
  and \forall TP \ TQ. \ TP \in T \ Source Term \ S \land TQ \in T \ Source Term \ S \longrightarrow (TP, TQ) \in TRel^+
   by simp-all
\mathbf{next}
 case (target T1 T2)
 show \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow SP = SQ
  and \forall SP \ TQ. \ SP \in S \ TargetTerm \ T1 \land TQ \in T \ TargetTerm \ T2
        \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in (TRel \cup \{(T1, \ T2). \ \exists S. \ T1 = \llbracket S \rrbracket \land \ T2 = \llbracket S \rrbracket \})^+
  and \forall TP \ SQ. \ TP \in T \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow False
   by simp-all
 assume (T1, T2) \in TRel
 thus \forall TP \ TQ. \ TP \in T \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2 \longrightarrow (TP, \ TQ) \in TRel^+
   by simp
next
 case (trans P Q R)
 assume A1: \forall SP SQ. SP \inS P \wedge SQ \inS Q \longrightarrow SP = SQ
     and A2: \forall SP \ TQ. \ SP \in SP \land TQ \in TQ
               \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and A3: \forall TP \ SQ. \ TP \in T \ P \land SQ \in S \ Q \longrightarrow False
     and A_4: \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
     and A5: \forall SQ SR. SQ \in SQ \land SR \in SR \longrightarrow SQ = SR
     and A6: \forall SQ \ TR. \ SQ \in S \ Q \land TR \in T \ R
              \longrightarrow ([SQ], TR) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and A7: \forall TQ SR. TQ \in TQ \land SR \in SR \longrightarrow False
     and A8: \forall TQ TR. TQ \in TQ \land TR \in TR \longrightarrow (TQ, TR) \in TRel^+
 show \forall SP SR. SP \in SP \land SR \in SR \longrightarrow SP = SR
 proof (cases Q)
   case (SourceTerm SQ)
   assume SQ \in SQ
   with A1 A5 show \forall SP SR. SP \in SP \land SR \in SR \longrightarrow SP = SR
     by blast
 next
   case (TargetTerm TQ)
   assume TQ \in TQ
   with A7 show ?thesis
     by blast
 show \forall SP \ TR. \ SP \in SP \land TR \in TR
        \longrightarrow ([SP], TR) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
 proof (cases Q)
   case (SourceTerm SQ)
   assume SQ \in SQ
   with A1 A6 show ?thesis
     by blast
 next
   case (TargetTerm TQ)
   assume A9: TQ \in TQ
   show \forall SP \ TR. \ SP \in SP \land TR \in TR
           \longrightarrow (\llbracket SP \rrbracket, \ TR) \in (TRel \cup \{(T1, \ T2). \ \exists S. \ T1 = \llbracket S \rrbracket \land \ T2 = \llbracket S \rrbracket \})^+
   proof clarify
     \mathbf{fix} SP TR
     assume SP \in SP
      with A2 A9 have ([SP], TQ) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
      moreover assume TR \in T R
      with A8 A9 have (TQ, TR) \in TRel^+
        by simp
      hence (TQ, TR) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
```

```
proof induct
          fix T2
          assume (TQ, T2) \in TRel
          thus (TQ, T2) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
            by blast
        next
          case (step T2 T3)
          assume (TQ, T2) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
          moreover assume (T2, T3) \in TRel
          hence (T2, T3) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
            by blast
          ultimately show (TQ, T3) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
            by simp
        qed
        ultimately show (\llbracket SP \rrbracket, TR) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
          by simp
      qed
    qed
    show \forall TP SR. TP \in T P \wedge SR \inS R \longrightarrow False
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A3 show ?thesis
        by blast
    \mathbf{next}
      case (TargetTerm TQ)
      assume TQ \in TQ
      with A7 show ?thesis
        by blast
    qed
    show \forall TP \ TR. \ TP \in T \ P \land TR \in T \ R \longrightarrow (TP, TR) \in TRel^+
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A3 show ?thesis
        by blast
    next
      case (TargetTerm TQ)
      assume TQ \in TQ
      with A4 A8 show \forall TP TR. TP \in T P \wedge TR \in T R \longrightarrow (TP, TR) \in TRel<sup>+</sup>
        by auto
    qed
  qed
qed
lemma (in encoding) indRelLTPO-to-TRel:
  fixes TRel :: ('procT \times 'procT) set
    and P Q :: ('procS, 'procT) Proc
  assumes rel: P \lesssim ||\cdot|| LT < TRel > Q
  shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow SP = SQ
    and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ \longrightarrow False
    and \forall TP SQ. TP \in TP \land SQ \in SQ
         \longrightarrow (TP, \llbracket SQ \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
    and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
proof -
  have reftTRel: \forall S. (\llbracket S \rrbracket, \llbracket S \rrbracket) \in TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \}
  from rel show \forall SP SQ. SP \in SP \land SQ \in SQ \longrightarrow SP = SQ
            and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ \longrightarrow False
            and \forall TP SQ. TP \in TP \land SQ \in SQ
                 \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
```

```
and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
proof induct
  case (encL\ S)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land SQ \in S \ SourceTerm \ S \longrightarrow SP = SQ
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S \longrightarrow False
   and \forall TP \ TQ. \ TP \in T \ TargetTerm \ (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S \longrightarrow (TP, \ TQ) \in TRel^+
    by simp-all
  from reflTRel show \forall TP SQ. TP \in T TargetTerm (\llbracket S \rrbracket) \land SQ \inS SourceTerm S
                        \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    bv blast
next
  case (source S)
  show \forall SP \ SQ. \ SP \in S \ Source Term \ S \land SQ \in S \ Source Term \ S \longrightarrow SP = SQ
  show \forall SP \ TQ. \ SP \in S \ Source Term \ S \land \ TQ \in T \ Source Term \ S \longrightarrow False
   and \forall TP \ SQ. \ TP \in T \ SourceTerm \ S \land SQ \in S \ SourceTerm \ S
           \to (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
   and \forall TP \ TQ. \ TP \in T \ Source Term \ S \land TQ \in T \ Source Term \ S \longrightarrow (TP, TQ) \in TRel^+
    by simp-all
next
  case (target T1 T2)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \ \land \ SQ \in S \ TargetTerm \ T2 \longrightarrow SP = SQ
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ T1 \land TQ \in T \ TargetTerm \ T2 \longrightarrow False
   and \forall TP SQ. TP \in T TargetTerm T1 \land SQ \in S TargetTerm T2
         \longrightarrow (TP, \llbracket SQ \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
    by simp-all
  assume (T1, T2) \in TRel
  thus \forall TP \ TQ. \ TP \in T \ TargetTerm \ T1 \land TQ \in T \ TargetTerm \ T2 \longrightarrow (TP, \ TQ) \in TRel^+
    by simp
next
  case (trans P Q R)
  assume A1: \forall SP SQ. SP \in SP \land SQ \in SQ \longrightarrow SP = SQ
     and A2: \forall SP \ TQ. \ SP \in SP \land TQ \in TQ \longrightarrow False
     and A3: \forall TP SQ. TP \in TP \land SQ \in SQ
                 \to (\mathit{TP}, \, [\![SQ]\!]) \in (\mathit{TRel} \, \cup \, \{(\mathit{T1}, \, \mathit{T2}). \, \exists \, \mathit{S}. \, \mathit{T1} \, = [\![S]\!] \, \land \, \mathit{T2} \, = [\![S]\!]\})^+
     and A_4: \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
     and A5: \forall SQ SR. SQ \in SQ \land SR \in SR \longrightarrow SQ = SR
     and A6: \forall SQ \ TR. \ SQ \in S \ Q \land \ TR \in T \ R \longrightarrow False
     and A7: \forall TQ SR. TQ \in T Q \land SR \in S R
               \longrightarrow (TQ, [SR]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and A8: \forall TQ TR. TQ \in TQ \land TR \in TR \longrightarrow (TQ, TR) \in TRel^+
  show \forall SP SR. SP \in SP \land SR \in SR \longrightarrow SP = SR
  proof (cases Q)
    case (SourceTerm SQ)
    assume SQ \in SQ
    with A1 A5 show \forall SP SR. SP \in SP \land SR \in SR \longrightarrow SP = SR
      by blast
  next
    case (TargetTerm TQ)
    assume TQ \in TQ
    with A2 show ?thesis
      by blast
  qed
  show \forall SP \ TR. \ SP \in SP \land TR \in TR \longrightarrow False
  proof (cases Q)
    case (SourceTerm SQ)
    assume SQ \in SQ
    with A6 show ?thesis
      by blast
  next
    case (TargetTerm TQ)
```

```
assume TQ \in TQ
      with A2 show ?thesis
        by blast
    qed
    show \forall TP SR. TP \in T P \land SR \inS R
          \longrightarrow (TP, \llbracket SR \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A3 A5 show \forall TP SR. TP \in T P \wedge SR \in S R
                       \longrightarrow (TP, [SR]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    next
      case (TargetTerm TQ)
      assume A9: TQ \in TQ
      show \forall TP SR. TP \in T P \land SR \in S R
            \longrightarrow (TP, \llbracket SR \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
      proof clarify
        \mathbf{fix} TP SR
        assume TP \in TP
        with A4 A9 have (TP, TQ) \in TRel^+
          by simp
        hence (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
        proof induct
          fix T2
          assume (TP, T2) \in TRel
          thus (TP, T2) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
            by blast
        \mathbf{next}
          case (step T2 T3)
          assume (TP, T2) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
          moreover assume (T2, T3) \in TRel
          hence (T2, T3) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
            by blast
          ultimately show (TP, T3) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
            \mathbf{by} \ simp
        \mathbf{qed}
        moreover assume SR \in SR
        with A7 A9 have (TQ, [SR]) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
        ultimately show (TP, \llbracket SR \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
          by simp
     qed
    \mathbf{qed}
    show \forall TP TR. TP \in TP \land TR \in TR \longrightarrow (TP, TR) \in TRel^+
    proof (cases Q)
     case (SourceTerm SQ)
      assume SQ \in SQ
      with A6 show ?thesis
        by blast
      case (TargetTerm TQ)
      assume TQ \in TQ
      with A4 A8 show \forall TP TR. TP \in T P \wedge TR \in T R \longrightarrow (TP, TR) \in TRel<sup>+</sup>
        by auto
    qed
  qed
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ indRelTEQ\text{-}to\text{-}TRel:
  fixes TRel :: ('procT \times 'procT) set
```

```
and P Q :: ('procS, 'procT) Proc
  assumes rel: P \sim \llbracket \cdot \rrbracket T < TRel > Q
  shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ
            \to ([SP], [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ
          \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    and \forall TP SQ. TP \in TP \land SQ \in SQ
          \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ
            \to (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
proof -
  have reflTRel: \forall S. (\llbracket S \rrbracket, \llbracket S \rrbracket) \in TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket\}
    by auto
  from rel show \forall SP SQ. SP \in SP \land SQ \in SQ
                   \longrightarrow ([SP], [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
             and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ
                    \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
             and \forall TP SQ. TP \in TP \land SQ \in SQ
                     \rightarrow (TP, \llbracket SQ \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
             and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ
                   \longrightarrow (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
  proof induct
    case (encR S)
    show \forall SP \ SQ. \ SP \in S \ Source Term \ S \land SQ \in S \ Target Term \ (\llbracket S \rrbracket)
           \longrightarrow ([SP], [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and \forall TP \ SQ. \ TP \in T \ SourceTerm \ S \land SQ \in S \ TargetTerm \ (\llbracket S \rrbracket)
           \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and \forall TP \ TQ. \ TP \in T \ Source Term \ S \land TQ \in T \ Target Term \ ([S])
           \longrightarrow (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
      by simp+
    from reflTRel show \forall SP\ TQ.\ SP \in S\ SourceTerm\ S \land TQ \in T\ TargetTerm\ (\llbracket S \rrbracket)
                           \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
      by blast
  next
    case (encL\ S)
    show \forall SP \ SQ. \ SP \in S \ TargetTerm ([S]) \land SQ \in S \ SourceTerm \ S
            \longrightarrow ([SP], [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and \forall SP \ TQ. \ SP \in S \ TargetTerm (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S
           \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
     and \forall TP \ TQ. \ TP \in T \ TargetTerm (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S
           \longrightarrow (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    from reflTRel show \forall TP SQ. TP \in T TargetTerm ([S]) \land SQ \inS SourceTerm S
                          \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
      by blast
  next
    case (target T1 T2)
    show \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2
             \to ([\![SP]\!], [\![SQ]\!]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [\![S]\!] \land T2 = [\![S]\!]\})^+
     and \forall SP \ TQ. \ SP \in S \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2
             \to ([\![SP]\!], \ TQ) \in (TRel \cup \{(T1, \ T2). \ \exists S. \ T1 = [\![S]\!] \land \ T2 = [\![S]\!]\})^+
     and \forall TP \ SQ. \ TP \in T \ TargetTerm \ T1 \ \land \ SQ \in S \ TargetTerm \ T2
           \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
      by simp+
    assume (T1, T2) \in TRel
    thus \forall TP \ TQ. \ TP \in T \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2
           \longrightarrow (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
      by blast
  \mathbf{next}
    case (trans P Q R)
    assume A1: \forall SP \ SQ. \ SP \in SP \land SQ \in SQ
```

```
\longrightarrow ([SP], [SQ]) \in (TRel \cup \{(T1, T2), \exists S. T1 = [S] \land T2 = [S]\})^+
       and A2: \forall SP \ TQ. \ SP \in SP \ \land \ TQ \in TQ
                 \longrightarrow ([SP], TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
       and A3: \forall TP SQ. TP \in TP \land SQ \in SQ
                 \longrightarrow (TP, [SQ]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
       and A_4: \forall TP TQ. TP \in TP \land TQ \in TQ
                 \longrightarrow (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
       and A5: \forall SQ SR. SQ \in S Q \land SR \in S R
                 \longrightarrow (\llbracket SQ \rrbracket, \llbracket SR \rrbracket) \in (TRel \cup \{(T1, T2), \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
       and A6: \forall SQ \ TR. \ SQ \in S \ Q \land \ TR \in T \ R
                 \longrightarrow ([SQ], TR) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
       and A7: \forall TQ SR. TQ \in TQ \land SR \in SR
                 \longrightarrow (TQ, [SR]) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
       and A8: \forall TQ TR. TQ \in T Q \land TR \in T R
                 \longrightarrow (TQ, TR) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
    show \forall SP SR. SP \in SP \land SR \in SR
           \longrightarrow (\llbracket SP \rrbracket, \llbracket SR \rrbracket) \in (TRel \cup \{(T1, T2). \exists S. T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A1 A5 show ?thesis
        by auto
    next
      case (TargetTerm TQ)
      assume TQ \in TQ
      with A2 A7 show ?thesis
        by auto
    qed
     \mathbf{show} \ \forall SP \ TR. \ SP \in S \ P \land \ TR \in T \ R \longrightarrow (\llbracket SP \rrbracket, \ TR) \in (TRel \cup \{(T1, \ T2). \ \exists \ S. \ T1 = \llbracket S \rrbracket \land \ T2 = \{T, T2\}\}
[S]
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A1 A6 show ?thesis
        by auto
    next
      case (TargetTerm TQ)
      \mathbf{assume}\ TQ \in \! T\ Q
      with A2 A8 show ?thesis
        by auto
    qed
    show \forall TP \ SR. \ TP \in T \ P \land SR \in S \ R \longrightarrow (TP, \llbracket SR \rrbracket) \in (TRel \cup \{(T1, T2). \ \exists \ S. \ T1 = \llbracket S \rrbracket \land \ T2 = T2 \}
[S]
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A3 A5 show ?thesis
        by auto
    next
      case (TargetTerm TQ)
      assume TQ \in TQ
      with A4 A7 show ?thesis
        by auto
   show \forall TP \ TR. \ TP \in TP \land TR \in TR \longrightarrow (TP, TR) \in (TRel \cup \{(T1, T2), \exists S. \ T1 = \llbracket S \rrbracket \land T2 = \llbracket S \rrbracket \})^+
    proof (cases Q)
      case (SourceTerm SQ)
      assume SQ \in SQ
      with A3 A6 show ?thesis
        by auto
    next
```

```
case (TargetTerm TQ)
     assume TQ \in TQ
     with A4 A8 show ?thesis
      by auto
   qed
 qed
qed
lemma (in encoding) trans-closure-of-TRel-refl-cond:
 fixes TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes (TP, TQ) \in (TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\})^+
 shows (TP, TQ) \in TRel^*
   using assms
proof induct
 fix TQ
 assume (TP, TQ) \in TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\}
 thus (TP, TQ) \in TRel^*
   by auto
next
 case (step \ TQ \ TR)
 assume (TP, TQ) \in TRel^*
 moreover assume (TQ, TR) \in TRel \cup \{(T1, T2). \exists S. T1 = [S] \land T2 = [S]\}
 hence (TQ, TR) \in TRel^*
   \mathbf{by} blast
 ultimately show (TP, TR) \in TRel^*
   by simp
qed
Note that if indRelRTPO relates a source term S to a target term T, then the translation of S is equal
to T or indRelRTPO also relates the translation of S to T.
lemma (in encoding) indRelRTPO-relates-source-target:
 fixes TRel :: ('procT \times 'procT) set
   and S
            :: 'procS
             :: 'procT
   and T
 assumes pair: SourceTerm S \lesssim ||\cdot||RT < TRel > TargetTerm T
 shows (TargetTerm ([\![S]\!]), TargetTerm T) \in (indRelRTPO TRel)^{=}
proof -
 from pair have ([S], T) \in TRel^*
     using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
   by simp
 hence [S] = T \vee ([S], T) \in TRel^+
     using rtrancl-eq-or-trancl[of [S] T TRel]
 moreover have [S] = T \Longrightarrow (TargetTerm ([S]), TargetTerm T) \in (indRelRTPO TRel)^{=}
   by simp
 moreover
 have (\llbracket S \rrbracket, T) \in TRel^+ \Longrightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in (indRelRTPO TRel)^=
     using transitive-closure-of-TRel-to-indRelRTPO[where TRel=TRel]
 ultimately show (TargetTerm ([S]), TargetTerm T) \in (indRelRTPO TRel)^{=}
   \mathbf{by} blast
qed
If indRelRTPO, indRelLTPO, or indRelTPO preserves barbs then so does the corresponding target
term relation.
lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-preserves-barbs:
 fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes preservation: rel-preserves-barbs Rel (STCalWB SWB TWB)
```

```
and targetInRel: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
 shows rel-preserves-barbs TRel TWB
proof clarify
 fix TP TQ a
 assume (TP, TQ) \in TRel
 with targetInRel have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   \mathbf{by} blast
 moreover assume TP \downarrow < TWB > a
 hence TargetTerm TP \downarrow .a
   \mathbf{by} \ simp
 ultimately have TargetTerm TQ \downarrow .a
     using preservation preservation-of-barbs-in-barbed-encoding [where Rel=Rel]
   bv blast
 thus TQ\downarrow < TWB > a
   by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelRTPO\text{-}impl\text{-}TRel\text{-}preserves\text{-}barbs:}
 fixes TRel :: ('procT \times 'procT) set
 assumes preservation: rel-preserves-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
 shows rel-preserves-barbs TRel TWB
     using preservation
          rel-with-target-impl-TRel-preserves-barbs[where Rel=indRelRTPO TRel and TRel=TRel]
   by (simp add: indRelRTPO.target)
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-preserves-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes preservation: rel-preserves-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
 shows rel-preserves-barbs TRel TWB
     using preservation
          rel-with-target-impl-TRel-preserves-barbs[where Rel=indRelLTPO TRel and TRel=TRel]
   by (simp add: indRelLTPO.target)
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-preserves-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes preservation: rel-preserves-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
 shows rel-preserves-barbs TRel TWB
     using preservation
          rel-with-target-impl-TRel-preserves-barbs [where Rel=indRelTEQ TRel and TRel=TRel]
   by (simp add: indRelTEQ.target)
lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-weakly-preserves-barbs:
 fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes preservation: rel-weakly-preserves-barbs Rel (STCalWB SWB TWB)
     and targetInRel: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
 shows rel-weakly-preserves-barbs TRel TWB
proof clarify
 fix TP TQ a TP'
 assume (TP, TQ) \in TRel
 with targetInRel have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
 moreover assume TP \longmapsto (Calculus \ TWB) * TP' and TP' \downarrow < TWB > a
 hence TargetTerm TP \Downarrow .a
   by blast
 ultimately have TargetTerm TQ \Downarrow .a
     using preservation weak-preservation-of-barbs-in-barbed-encoding [where Rel=Rel]
   by blast
 thus TQ \Downarrow < TWB > a
   \mathbf{by} \ simp
qed
```

```
lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-weakly-preserves-barbs:
    fixes TRel :: ('procT \times 'procT) set
    assumes preservation: rel-weakly-preserves-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
    shows rel-weakly-preserves-barbs TRel TWB
          using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
                                              Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
       by (simp add: indRelRTPO.target)
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-weakly-preserves-barbs:
   \mathbf{fixes} \ TRel :: ('procT \times 'procT) \ set
    assumes preservation: rel-weakly-preserves-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
    shows rel-weakly-preserves-barbs TRel TWB
          \textbf{using} \ \textit{preservation} \ \textit{rel-with-target-impl-TRel-weakly-preserves-barbs} [\textbf{where} \ \textbf{where} \ \textbf{wh
                                              Rel=indRelLTPO \ TRel \ and \ TRel=TRel
       by (simp add: indRelLTPO.target)
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelTEQ\text{-}impl\text{-}TRel\text{-}weakly\text{-}preserves\text{-}barbs:}
    fixes TRel :: ('procT \times 'procT) set
    assumes preservation: rel-weakly-preserves-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
    shows rel-weakly-preserves-barbs TRel TWB
          using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
                                              Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
       by (simp add: indRelTEQ.target)
If indRelRTPO, indRelLTPO, or indRelTPO reflects barbs then so does the corresponding target term
relation.
lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-reflects-barbs:
    fixes TRel :: ('procT \times 'procT) set
       and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
    assumes reflection: rel-reflects-barbs Rel (STCalWB SWB TWB)
          and targetInRel: \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
   shows rel-reflects-barbs TRel TWB
proof clarify
    fix TP TQ a
    assume (TP, TQ) \in TRel
    with targetInRel have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
       by blast
    moreover assume TQ\downarrow < TWB > a
    hence TargetTerm \ TQ \downarrow .a
       by simp
    ultimately have TargetTerm\ TP \downarrow .a
          using reflection reflection-of-barbs-in-barbed-encoding [where Rel=Rel]
       \mathbf{by} blast
    thus TP \downarrow < TWB > a
       by simp
qed
lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-reflects-barbs:
    fixes TRel :: ('procT \times 'procT) set
    assumes reflection: rel-reflects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
    shows rel-reflects-barbs TRel TWB
          using reflection
                     rel-with-target-impl-TRel-reflects-barbs[where Rel=indRelRTPO TRel and TRel=TRel]
       by (simp add: indRelRTPO.target)
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-reflects-barbs:
    fixes TRel :: ('procT \times 'procT) set
    assumes reflection: rel-reflects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
    shows rel-reflects-barbs TRel TWB
```

```
using reflection
          rel-with-target-impl-TRel-reflects-barbs[where Rel=indRelLTPO TRel and TRel=TRel]
   by (simp add: indRelLTPO.target)
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-reflects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes reflection: rel-reflects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
 shows rel-reflects-barbs TRel TWB
     using reflection
          rel-with-target-impl-TRel-reflects-barbs[where Rel=indRelTEQ TRel and TRel=TRel]
   by (simp add: indRelTEQ.target)
lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-weakly-reflects-barbs:
 fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes reflection: rel-weakly-reflects-barbs Rel (STCalWB SWB TWB)
     and targetInRel: \ \forall \ T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
 shows rel-weakly-reflects-barbs TRel TWB
proof clarify
 fix TP TQ a TQ'
 assume (TP, TQ) \in TRel
 with targetInRel have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
 moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > a
 hence TargetTerm TQ \Downarrow .a
   by blast
 ultimately have TargetTerm TP \Downarrow .a
     using reflection weak-reflection-of-barbs-in-barbed-encoding [where Rel=Rel]
   \mathbf{by} blast
 thus TP \Downarrow < TWB > a
   by simp
qed
lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-weakly-reflects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes reflection: rel-weakly-reflects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
 shows rel-weakly-reflects-barbs TRel TWB
     \textbf{using} \ \textit{reflection} \ \textit{rel-with-target-impl-TRel-weakly-reflects-barbs} [\textbf{where} \\
                    Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
   by (simp add: indRelRTPO.target)
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-weakly-reflects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes reflection: rel-weakly-reflects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
 shows rel-weakly-reflects-barbs TRel TWB
     \mathbf{using}\ reflection\ rel-with-target-impl-TRel-weakly-reflects-barbs[\mathbf{where}]
                    Rel=indRelLTPO\ TRel\ and\ TRel=TRel
   by (simp add: indRelLTPO.target)
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelTEQ\text{-}impl\text{-}TRel\text{-}weakly\text{-}reflects\text{-}barbs:}
 fixes TRel :: ('procT \times 'procT) set
 assumes reflection: rel-weakly-reflects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
 shows rel-weakly-reflects-barbs TRel TWB
     \mathbf{using}\ reflection\ rel-with-target-impl-TRel-weakly-reflects-barbs[\mathbf{where}
                    Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
   by (simp add: indRelTEQ.target)
If indRelRTPO, indRelLTPO, or indRelTPO respects barbs then so does the corresponding target
term relation.
```

 $\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ ind RelRTPO\text{-}impl\text{-}TRel\text{-}respects\text{-}barbs\text{:}}$

```
fixes TRel :: ('procT \times 'procT) set
 assumes respection: rel-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
 shows rel-respects-barbs TRel TWB
    using respection indRelRTPO-impl-TRel-preserves-barbs[where TRel=TRel]
          indRelRTPO-impl-TRel-reflects-barbs[where TRel=TRel]
   by blast
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-respects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes respection: rel-respects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
 shows rel-respects-barbs TRel TWB
     using respection indRelLTPO-impl-TRel-preserves-barbs[where TRel-TRel]
          indRelLTPO-impl-TRel-reflects-barbs[where TRel-TRel]
   by blast
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-respects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes respection: rel-respects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
 shows rel-respects-barbs TRel TWB
    using respection indRelTEQ-impl-TRel-preserves-barbs[where TRel-TRel]
          indRelTEQ-impl-TRel-reflects-barbs[where TRel-TRel]
   by blast
lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-weakly-respects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes respection: rel-weakly-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
 shows rel-weakly-respects-barbs TRel TWB
    using respection indRelRTPO-impl-TRel-weakly-preserves-barbs[where TRel-TRel-
          indRelRTPO-impl-TRel-weakly-reflects-barbs[where TRel=TRel]
   by blast
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-weakly-respects-barbs:
 fixes TRel :: ('procT \times 'procT) set
 assumes respection: rel-weakly-respects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
 shows rel-weakly-respects-barbs TRel TWB
    using respection indRelLTPO-impl-TRel-weakly-preserves-barbs [where TRel=TRel]
         indRelLTPO-impl-TRel-weakly-reflects-barbs[\mathbf{where} TRel=TRel]
   by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelTEQ\text{-}impl\text{-}TRel\text{-}weakly\text{-}respects\text{-}barbs:}
 fixes TRel :: ('procT \times 'procT) set
 assumes respection: rel-weakly-respects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
 shows rel-weakly-respects-barbs TRel TWB
    using respection indRelTEQ-impl-TRel-weakly-preserves-barbs[where TRel-TRel]
          indRelTEQ-impl-TRel-weakly-reflects-barbs[where TRel=TRel]
   by blast
If indRelRTPO, indRelLTPO, or indRelTEQ is a simulation then so is the corresponding target term
relation.
lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-simulation:
 fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes sim: weak-reduction-simulation Rel (STCal Source Target)
    and target: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
    and trel: \forall T1 \ T2. (TargetTerm \ T1, TargetTerm \ T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
 shows weak-reduction-simulation (TRel^+) Target
proof clarify
 fix TP TQ TP'
 assume (TP, TQ) \in TRel^+ and TP \longmapsto Target * TP'
 thus \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel^+
```

```
proof (induct arbitrary: TP')
   fix TQ TP'
   assume (TP, TQ) \in TRel
   with target have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TP \longmapsto Target * TP'
   hence TargetTerm TP \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TP')
     by (simp add: STCal-steps)
   ultimately obtain Q' where A2: TargetTerm TQ \longrightarrow (STCal\ Source\ Target) * Q'
                       and A3: (TargetTerm\ TP',\ Q') \in Rel
       using sim
     by blast
   from A2 obtain TQ' where A4: TQ \mapsto Target* TQ' and A5: TQ' \in TQ'
     by (auto simp add: STCal-steps)
   from A3 \ A5 \ trel have (TP', TQ') \in TRel^+
   with A4 show \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel^+
     by blast
  next
   case (step \ TQ \ TR)
   assume TP \longmapsto Target * TP'
      and \bigwedge TP'. TP \longmapsto Target* TP' \Longrightarrow \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel^+
   from this obtain TQ' where B1: TQ \mapsto Target* TQ' and B2: (TP', TQ') \in TRel^+
     by blast
   assume (TQ, TR) \in TRel
   with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
   moreover from B1 have TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
     by (simp add: STCal-steps)
   ultimately obtain R' where B3: TargetTerm TR \longmapsto (STCal\ Source\ Target) * R'
                       and B4: (TargetTerm\ TQ',\ R') \in Rel
       using sim
     bv blast
   from B3 obtain TR' where B5: TR' \in TR' and B6: TR \longmapsto Target * TR'
     by (auto simp add: STCal-steps)
   from B4 B5 trel have (TQ', TR') \in TRel^+
     by simp
   with B2 have (TP', TR') \in TRel^+
   with B6 show \exists TR'. TR \longmapsto Target* TR' \land (TP', TR') \in TRel^+
     by blast
  qed
qed
lemma (in encoding) indRelRTPO-impl-TRel-is-weak-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
  shows weak-reduction-simulation (TRel^+) Target
     using sim\ indRelRTPO.target[where TRel=TRel]\ indRelRTPO-to-TRel(4)[where TRel=TRel]
          rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}simulation\mbox{[}\mathbf{where}
           Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: weak-reduction-simulation (indRelLTPO TRel) (STCal Source Target)
  shows weak-reduction-simulation (TRel^+) Target
     using sim\ indRelLTPO.target[where TRel=TRel]\ indRelLTPO-to-TRel(4)[where TRel=TRel]
          rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}simulation\mbox{[}\mathbf{where}
           Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
   by blast
```

```
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ rel-with-target-impl-transC-TRel-is-weak-reduction-simulation-rev:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes sim: weak-reduction-simulation (Rel^{-1}) (STCal\ Source\ Target)
     and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
     and trel: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
 shows weak-reduction-simulation ((TRel^+)^{-1}) Target
proof clarify
  fix TP TQ TP'
  assume (TQ, TP) \in TRel^+
  moreover assume TP \longmapsto Target * TP'
  ultimately show \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in (TRel^+)^{-1}
 proof (induct arbitrary: TP')
   fix TP TP'
   assume (TQ, TP) \in TRel
   with target have (TargetTerm TP, TargetTerm TQ) \in Rel^{-1}
     by simp
   moreover assume TP \longmapsto Target * TP'
   hence TargetTerm\ TP \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TP')
     by (simp add: STCal-steps)
   ultimately obtain Q' where A2: TargetTerm TQ \longmapsto (STCal\ Source\ Target)* Q'
                        and A3: (TargetTerm\ TP',\ Q') \in Rel^{-1}
       using sim
     by blast
   from A2 obtain TQ' where A4: TQ \longmapsto Target* TQ' and A5: TQ' \in TQ'
     by (auto simp add: STCal-steps(2))
   from A3 A5 trel have (TP', TQ') \in (TRel^+)^{-1}
   with A4 show \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in (TRel^+)^{-1}
     by blast
  next
   case (step TR TP TP')
   assume TP \longmapsto Target * TP'
   hence TargetTerm\ TP \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TP')
     by (simp add: STCal-steps)
   moreover assume (TR, TP) \in TRel
   with target have (TargetTerm\ TP,\ TargetTerm\ TR) \in Rel^{-1}
     by simp
   ultimately obtain R' where B1: TargetTerm\ TR \longmapsto (STCal\ Source\ Target)*\ R'
                        and B2: (TargetTerm\ TP',\ R') \in Rel^{-1}
       using sim
     by blast
   from B1 obtain TR' where B3: TR' \in TR' and B4: TR \longmapsto Target * TR'
     by (auto simp add: STCal-steps)
   assume \bigwedge TR'. TR \longmapsto Target*\ TR' \Longrightarrow \exists\ TQ'.\ TQ \longmapsto Target*\ TQ' \land (TR',\ TQ') \in (TRel^+)^{-1}
   with B4 obtain TQ' where B5: TQ \mapsto Target* TQ' and B6: (TR', TQ') \in (TRel^+)^{-1}
     by blast
   from B6 have (TQ', TR') \in TRel^+
     by simp
   moreover from B2 B3 trel have (TR', TP') \in TRel^+
     by simp
   ultimately have (TP', TQ') \in (TRel^+)^{-1}
   with B5 show \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in (TRel^+)^{-1}
     by blast
  qed
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}simulation\text{-}rev:}
  fixes TRel :: ('procT \times 'procT) set
```

```
assumes sim: weak-reduction-simulation ((indRelRTPO TRel)<sup>-1</sup>) (STCal Source Target)
 shows weak-reduction-simulation ((TRel^+)^{-1}) Target
     using sim\ indRelRTPO.target[where TRel=TRel]\ indRelRTPO-to-TRel(4)[where TRel=TRel]
          rel-with-target-impl-trans C-TRel-is-weak-reduction-simulation-rev [where
           Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-simulation-rev:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: weak-reduction-simulation ((indRelLTPO TRel)<sup>-1</sup>) (STCal Source Target)
  shows weak-reduction-simulation ((TRel^+)^{-1}) Target
     using sim\ indRelLTPO.target[where TRel=TRel]\ indRelLTPO-to-TRel(4)[where TRel=TRel]
          rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}simulation\mbox{-}rev[\mathbf{where}
           Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
   by blast
\textbf{lemma (in } encoding) \ rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes sim: weak-reduction-simulation Rel (STCal Source Target)
     and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
     and trel: \forall T1 \ T2. (TargetTerm \ T1, TargetTerm \ T2) \in Rel \longrightarrow (T1, T2) \in TRel^*
 shows weak-reduction-simulation (TRel*) Target
proof clarify
  fix TP TQ TP'
  assume (TP, TQ) \in TRel^* and TP \longmapsto Target * TP'
  thus \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel^*
  proof (induct arbitrary: TP')
   fix TP'
   assume TP \longmapsto Target * TP'
   moreover have (TP', TP') \in TRel^*
     \mathbf{bv} simp
   ultimately show \exists TQ'. TP \longmapsto Target* TQ' \land (TP', TQ') \in TRel^*
     by blast
 \mathbf{next}
   case (step \ TQ \ TR)
   assume TP \longmapsto Target * TP'
      and \bigwedge TP'. TP \longmapsto Target* TP' \Longrightarrow \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel^*
   from this obtain TQ' where B1: TQ \longrightarrow Target* TQ' and B2: (TP', TQ') \in TRel^*
     by blast
   assume (TQ, TR) \in TRel
   with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
     by simp
   moreover from B1 have TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
     by (simp add: STCal-steps)
   ultimately obtain R' where B3: TargetTerm TR \longmapsto (STCal\ Source\ Target) * R'
                       and B4: (TargetTerm TQ', R') \in Rel
       using sim
     by blast
   from B3 obtain TR' where B5: TR' \in TR' and B6: TR \longmapsto Target * TR'
     by (auto simp add: STCal-steps)
   from B4 B5 trel have (TQ', TR') \in TRel^*
     by simp
   with B2 have (TP', TR') \in TRel^*
     bv simp
   with B6 show \exists TR'. TR \longmapsto Target* TR' \land (TP', TR') \in TRel^*
     by blast
  qed
qed
```

 $\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}simulation}:$

```
fixes TRel :: ('procT \times 'procT) set
 assumes sim: weak-reduction-simulation (indRelTEQ TRel) (STCal Source Target)
 shows weak-reduction-simulation (TRel*) Target
     using sim\ indRelTEQ.target[where TRel=TRel]\ indRelTEQ-to-TRel(4)[where TRel=TRel]
          trans-closure-of-TRel-refl-cond
          Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) rel-with-target-impl-transC-TRel-is-strong-reduction-simulation:
 fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes sim:
                  strong-reduction-simulation Rel (STCal Source Target)
     and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
     and trel: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
 shows strong-reduction-simulation (TRel^+) Target
proof clarify
 fix TP TQ TP'
 assume (TP, TQ) \in TRel^+ and TP \longmapsto Target TP'
 thus \exists TQ'. TQ \longmapsto Target TQ' \land (TP', TQ') \in TRel^+
 proof (induct arbitrary: TP')
   fix TQ TP'
   assume (TP, TQ) \in TRel
   with target have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto Target TP'
   hence TargetTerm TP \longmapsto (STCal\ Source\ Target) (TargetTerm\ TP')
     by (simp add: STCal-step)
   ultimately obtain Q' where A2: TargetTerm TQ \longmapsto (STCal\ Source\ Target)\ Q'
                      and A3: (TargetTerm\ TP',\ Q') \in Rel
      using sim
    by blast
   from A2 obtain TQ' where A4: TQ \longmapsto Target \ TQ' and A5: TQ' \in T \ Q'
    by (auto simp add: STCal-step)
   from A3 \ A5 \ trel have (TP', TQ') \in TRel^+
     by simp
   with A4 show \exists TQ'. TQ \longmapsto Target TQ' \land (TP', TQ') \in TRel^+
     by blast
 next
   case (step \ TQ \ TR)
   assume TP \longmapsto Target TP'
     and \bigwedge TP'. TP \longmapsto Target \ TP' \Longrightarrow \exists \ TQ'. \ TQ \longmapsto Target \ TQ' \land (TP', TQ') \in TRel^+
   from this obtain TQ' where B1: TQ \mapsto Target TQ' and B2: (TP', TQ') \in TRel^+
     by blast
   assume (TQ, TR) \in TRel
   with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
     by simp
   moreover from B1 have TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)\ (TargetTerm\ TQ')
     by (simp add: STCal-step)
   ultimately obtain R' where B3: TargetTerm\ TR \longmapsto (STCal\ Source\ Target)\ R'
                      and B4: (TargetTerm TQ', R') \in Rel
      using sim
     by blast
   from B3 obtain TR' where B5: TR' \in TR' and B6: TR \longmapsto Target TR'
     by (auto simp add: STCal-step)
   from B4 B5 trel have (TQ', TR') \in TRel^+
     by simp
   with B2 have (TP', TR') \in TRel^+
   with B6 show \exists TR'. TR \longmapsto Target TR' \land (TP', TR') \in TRel^+
     by blast
```

```
qed
\mathbf{lemma} (in encoding) indRelRTPO-impl-TRel-is-strong-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
 shows strong-reduction-simulation (TRel^+) Target
     using sim\ indRelRTPO.target[where TRel=TRel]\ indRelRTPO-to-TRel(4)[where TRel=TRel]
          rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}strong\mbox{-}reduction\mbox{-}simulation\mbox{[}\mathbf{where}
           Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) indRelLTPO-impl-TRel-is-strong-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: strong-reduction-simulation (indRelLTPO TRel) (STCal Source Target)
  shows strong-reduction-simulation (TRel^+) Target
     \mathbf{using} \ \mathit{sim} \ \mathit{indRelLTPO.target} [\mathbf{where} \ \mathit{TRel} = \mathit{TRel}] \ \mathit{indRelLTPO-to-TRel}(4) [\mathbf{where} \ \mathit{TRel} = \mathit{TRel}]
          rel-with-target-impl-trans C-TRel-is-strong-reduction-simulation [ {\bf where} \\
           Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) rel-with-target-impl-transC-TRel-is-strong-reduction-simulation-rev:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
                    strong-reduction-simulation (Rel^{-1}) (STCal\ Source\ Target)
  assumes sim:
     and target: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
     and trel: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
  shows strong-reduction-simulation ((TRel^+)^{-1}) Target
proof clarify
  fix TP TQ TP'
  assume (TQ, TP) \in TRel^+
  moreover assume TP \longmapsto Target TP'
  ultimately show \exists TQ'. TQ \longmapsto Target TQ' \land (TP', TQ') \in (TRel^+)^{-1}
 proof (induct arbitrary: TP')
   fix TP TP'
   assume (TQ, TP) \in TRel
   with target have (TargetTerm TP, TargetTerm TQ) \in Rel^{-1}
   moreover assume TP \longmapsto Target TP'
   hence TargetTerm TP \longmapsto (STCal\ Source\ Target) (TargetTerm\ TP')
     by (simp add: STCal-step)
   ultimately obtain Q' where A2: TargetTerm TQ \longmapsto (STCal\ Source\ Target)\ Q'
                       and A3: (TargetTerm\ TP',\ Q') \in Rel^{-1}
       using sim
     by blast
   from A2 obtain TQ' where A4: TQ \longmapsto Target TQ' and A5: TQ' \in TQ'
     by (auto simp add: STCal-step(2))
   from A3 A5 trel have (TP', TQ') \in (TRel^+)^{-1}
     by simp
   with A4 show \exists TQ'. TQ \longmapsto Target TQ' \land (TP', TQ') \in (TRel^+)^{-1}
     by blast
  next
   case (step TP TR TR')
   assume (TP, TR) \in TRel
   with target have (TargetTerm\ TP,\ TargetTerm\ TR) \in Rel
     by simp
   moreover assume TR \longmapsto Target TR'
   hence TargetTerm TR \longmapsto (STCal\ Source\ Target) (TargetTerm\ TR')
     by (simp add: STCal-step)
   ultimately obtain P' where B1: TargetTerm TP \longmapsto (STCal\ Source\ Target)\ P'
                        and B2: (P', TargetTerm TR') \in Rel
```

qed

```
using sim
     by blast
   from B1 obtain TP' where B3: TP' \in TP' and B4: TP \longmapsto Target TP'
     by (auto simp add: STCal-step)
   assume \land TP'. TP \mapsto Target \ TP' \Longrightarrow \exists \ TQ'. \ TQ \mapsto Target \ TQ' \land (TP', \ TQ') \in (TRel^+)^{-1}
   with B4 obtain TQ' where B5: TQ \mapsto Target TQ' and B6: (TP', TQ') \in (TRel^+)^{-1}
     by blast
   from B2 B3 trel have (TP', TR') \in TRel^+
     bv simp
   with B6 have (TR', TQ') \in (TRel^+)^{-1}
     by simp
   with B5 show \exists TQ'. TQ \longmapsto Target TQ' \land (TR', TQ') \in (TRel^+)^{-1}
     by blast
 qed
qed
lemma (in encoding) indRelRTPO-impl-TRel-is-strong-reduction-simulation-rev:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: strong-reduction-simulation ((indRelRTPO TRel)^{-1}) (STCal Source Target)
  shows strong-reduction-simulation ((TRel^+)^{-1}) Target
     using sim\ indRelRTPO.target[where TRel=TRel]\ indRelRTPO-to-TRel(4)[where TRel=TRel]
           rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}strong\mbox{-}reduction\mbox{-}simulation\mbox{-}rev[\mathbf{where}]
            Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
   by blast
\textbf{lemma (in } encoding) \ ind RelLTPO-impl-TRel-is-strong-reduction-simulation-rev:
  fixes TRel :: ('procT \times 'procT) set
  assumes sim: strong-reduction-simulation ((indRelLTPO\ TRel)^{-1}) (STCal Source Target)
  shows strong-reduction-simulation ((TRel^+)^{-1}) Target
     using sim\ indRelLTPO.target[where TRel=TRel]\ indRelLTPO-to-TRel(4)[where TRel=TRel]
           rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}strong\mbox{-}reduction\mbox{-}simulation\mbox{-}rev[\mathbf{where}
            Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) rel-with-target-impl-reftC-transC-TRel-is-strong-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
                    strong-reduction-simulation Rel (STCal Source Target)
  assumes sim:
     and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
     and trel: \forall T1 \ T2. (TargetTerm T1, TargetTerm T2) \in Rel
                 \longrightarrow (T1, T2) \in TRel^*
 shows strong-reduction-simulation (TRel*) Target
proof clarify
  fix TP TQ TP'
  assume (TP, TQ) \in TRel^* and TP \longmapsto Target TP'
  thus \exists TQ'. TQ \longmapsto Target TQ' \land (TP', TQ') \in TRel^*
  proof (induct arbitrary: TP')
   fix TP'
   assume TP \longmapsto Target TP'
   moreover have (TP', TP') \in TRel^*
     by simp
   ultimately show \exists TQ'. TP \longmapsto Target TQ' \land (TP', TQ') \in TRel^*
     by blast
 \mathbf{next}
   case (step TQ TR TP')
   assume TP \longmapsto Target TP'
      and \bigwedge TP'. TP \longmapsto Target \ TP' \Longrightarrow \exists \ TQ'. \ TQ \longmapsto Target \ TQ' \land (TP', \ TQ') \in TRel^*
   from this obtain TQ' where B1: TQ \longmapsto Target TQ' and B2: (TP', TQ') \in TRel^*
     by blast
   assume (TQ, TR) \in TRel
   with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
```

```
by simp
   moreover from B1 have TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)\ (TargetTerm\ TQ')
     by (simp add: STCal-step)
   ultimately obtain R' where B3: TargetTerm TR \longmapsto (STCal\ Source\ Target)\ R'
                       and B4: (TargetTerm TQ', R') \in Rel
       using sim
     by blast
   from B3 obtain TR' where B5: TR' \in TR' and B6: TR \longmapsto Target TR'
     by (auto simp add: STCal-step)
   from B4 B5 trel have (TQ', TR') \in TRel^*
     by simp
   with B2 have (TP', TR') \in TRel^*
     by simp
   with B6 show \exists TR'. TR \longmapsto Target TR' \land (TP', TR') \in TRel^*
     by blast
 qed
qed
lemma (in encoding) indRelTEQ-impl-TRel-is-strong-reduction-simulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: strong-reduction-simulation (indRelTEQ TRel) (STCal Source Target)
 shows strong-reduction-simulation (TRel*) Target
     using sim\ indRelTEQ.target[where TRel=TRel]\ indRelTEQ.to-TRel(4)[where TRel=TRel]
          trans-closure-of-TRel-refl-cond
          rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}refl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}strong\mbox{-}reduction\mbox{-}simulation\mbox{[}\mathbf{where}
           Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
   by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}barbed\text{-}simulation}:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: weak-barbed-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
 shows weak-barbed-simulation (TRel^+) TWB
proof
 from sim show weak-reduction-simulation (TRel^+) (Calculus TWB)
     using indRelRTPO-impl-TRel-is-weak-reduction-simulation[where TRel-TRel]
   by (simp add: STCalWB-def calS calT)
next
 from sim show rel-weakly-preserves-barbs (TRel<sup>+</sup>) TWB
     using indRelRTPO-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
          weak-preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-simulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: weak-barbed-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
 shows weak-barbed-simulation (TRel^+) TWB
proof
 from sim show weak-reduction-simulation (TRel<sup>+</sup>) (Calculus TWB)
     \mathbf{using} \ ind RelLTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}simulation} [\mathbf{where} \ TRel\text{=}TRel]
   by (simp add: STCalWB-def calS calT)
next
 from sim show rel-weakly-preserves-barbs (TRel<sup>+</sup>) TWB
     using indRelLTPO-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
          weak-preservation-of-barbs-and-closures(2)[where Rel = TRel and CWB = TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-simulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: weak-barbed-simulation (indRelTEQ TRel) (STCalWB SWB TWB)
```

```
shows weak-barbed-simulation (TRel*) TWB
proof
 from sim show weak-reduction-simulation (TRel*) (Calculus TWB)
     using indRelTEQ-impl-TRel-is-weak-reduction-simulation[where TRel-TRel]
   by (simp \ add: STCalWB-def \ calS \ calT)
next
 from sim show rel-weakly-preserves-barbs (TRel*) TWB
    using indRelTEQ-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
         weak-preservation-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-is-strong-barbed-simulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: strong-barbed-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
 shows strong-barbed-simulation (TRel^+) TWB
proof
 from sim show strong-reduction-simulation (TRel^+) (Calculus\ TWB)
     using indRelRTPO-impl-TRel-is-strong-reduction-simulation[where TRel-TRel]
   by (simp add: STCalWB-def calS calT)
next
 from sim show rel-preserves-barbs (TRel<sup>+</sup>) TWB
    \mathbf{using} \ ind RelRTPO\text{-}impl\text{-}TRel\text{-}preserves\text{-}barbs[\mathbf{where} \ TRel\text{=}TRel]
         preservation-of-barbs-and-closures(2) [where Rel = TRel and CWB = TWB]
   by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelLTPO\text{-}impl\text{-}TRel\text{-}is\text{-}strong\text{-}barbed\text{-}simulation}:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: strong-barbed-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
 shows strong-barbed-simulation (TRel^+) TWB
proof
 from sim refl show strong-reduction-simulation (TRel^+) (Calculus TWB)
     using indRelLTPO-impl-TRel-is-strong-reduction-simulation[where TRel-TRel]
   by (simp\ add:\ STCalWB-def\ calS\ calT)
next
 from sim show rel-preserves-barbs (TRel<sup>+</sup>) TWB
    using indRelLTPO-impl-TRel-preserves-barbs[where TRel=TRel]
         preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-strong-barbed-simulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes sim: strong-barbed-simulation (indRelTEQ TRel) (STCalWB SWB TWB)
 shows strong-barbed-simulation (TRel*) TWB
proof
 from sim refl show strong-reduction-simulation (TRel*) (Calculus TWB)
     using indRelTEQ-impl-TRel-is-strong-reduction-simulation[where TRel=TRel]
   by (simp \ add: STCalWB-def \ calS \ calT)
next
 from sim show rel-preserves-barbs (TRel*) TWB
    using indRelTEQ-impl-TRel-preserves-barbs[where TRel=TRel]
         preservation-of-barbs-and-closures(3) [where Rel = TRel and CWB = TWB]
   by blast
qed
```

If indRelRTPO, indRelLTPO, or indRelTEQ is a contrasimulation then so is the corresponding target term relation.

lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-contrasimulation:

```
fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes conSim: weak-reduction-contrasimulation Rel (STCal Source Target)
     and target: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
     and trel: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
 shows weak-reduction-contrasimulation (TRel^+) Target
proof clarify
 fix TP TQ TP'
 assume (TP, TQ) \in TRel^+ and TP \longmapsto Target * TP'
 thus \exists TQ'. TQ \longmapsto Target* TQ' \land (TQ', TP') \in TRel^+
 proof (induct arbitrary: TP')
   fix TQ TP'
   assume (TP, TQ) \in TRel
   with target have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TP \longmapsto Target * TP'
   hence TargetTerm\ TP \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TP')
    by (simp add: STCal-steps)
   ultimately obtain Q' where A2: TargetTerm TQ \longrightarrow (STCal\ Source\ Target)* Q'
                      and A3: (Q', TargetTerm TP') \in Rel
      using conSim
     by blast
   from A2 obtain TQ' where A4: TQ \mapsto Target* TQ' and A5: TQ' \in TQ'
     by (auto simp add: STCal-steps)
   from A3 A5 trel have (TQ', TP') \in TRel^+
     by simp
   with A4 show \exists TQ'. TQ \longmapsto Target* TQ' \land (TQ', TP') \in TRel^+
     by blast
 \mathbf{next}
   case (step TQ TR)
   assume TP \longmapsto Target * TP'
     and \bigwedge TP'. TP \longmapsto Target* TP' \Longrightarrow \exists TQ'. TQ \longmapsto Target* TQ' \land (TQ', TP') \in TRel^+
   from this obtain TQ' where B1: TQ \longmapsto Target* TQ' and B2: (TQ', TP') \in TRel^+
     by blast
   assume (TQ, TR) \in TRel
   with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
    by simp
   moreover from B1 have TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
     by (simp add: STCal-steps)
   ultimately obtain R' where B3: TargetTerm\ TR \longmapsto (STCal\ Source\ Target)*\ R'
                      and B4: (R', TargetTerm TQ') \in Rel
      using conSim
     by blast
   from B3 obtain TR' where B5: TR' \in TR' and B6: TR \longmapsto Target * TR'
     by (auto simp add: STCal-steps)
   from B4 B5 trel have (TR', TQ') \in TRel^+
    by simp
   from this B2 have (TR', TP') \in TRel^+
     by simp
   with B6 show \exists TR'. TR \longmapsto Target* TR' \land (TR', TP') \in TRel^+
     by blast
 qed
qed
lemma (in encoding) indRelRTPO-impl-TRel-is-weak-reduction-contrasimulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes conSim: weak-reduction-contrasimulation (indRelRTPO TRel) (STCal Source Target)
 shows weak-reduction-contrasimulation (TRel^+) Target
     using conSim\ indRelRTPO.target[where TRel=TRel]\ indRelRTPO-to-TRel(4)[where TRel=TRel]
          Rel = indRelRTPO \ TRel \ and \ TRel = TRel
```

```
by blast
```

```
lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-contrasimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes conSim: weak-reduction-contrasimulation (indRelLTPO TRel) (STCal Source Target)
  shows weak-reduction-contrasimulation (TRel^+) Target
     \mathbf{using} \ conSim \ indRelLTPO.target[\mathbf{where} \ TRel = TRel] \ indRelLTPO-to-TRel(4)[\mathbf{where} \ TRel = TRel]
           rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{-}C\mbox{-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}contrasimulation} [where
            Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
   by blast
\mathbf{lemma} (in encoding) rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-contrasimulation:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes conSim: weak-reduction-contrasimulation Rel (STCal Source Target)
     and target: \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
     and trel: \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^*
 shows weak-reduction-contrasimulation (TRel^*) Target
proof clarify
 fix TP TQ TP'
  assume (TP, TQ) \in TRel^* and TP \longmapsto Target * TP'
  thus \exists TQ'. TQ \longmapsto Target* TQ' \land (TQ', TP') \in TRel^*
  proof (induct arbitrary: TP')
   fix TP'
   assume TP \longmapsto Target * TP'
   moreover have (TP', TP') \in TRel^*
   ultimately show \exists TQ'. TP \longmapsto Target* TQ' \land (TQ', TP') \in TRel^*
     \mathbf{by} blast
  next
   case (step \ TQ \ TR)
   assume TP \longmapsto Target * TP'
      and \bigwedge TP'. TP \longmapsto Target* TP' \Longrightarrow \exists TQ'. TQ \longmapsto Target* TQ' \land (TQ', TP') \in TRel^*
   from this obtain TQ' where B1: TQ \longmapsto Target* TQ' and B2: (TQ', TP') \in TRel^*
     by blast
   assume (TQ, TR) \in TRel
   with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
   moreover from B1 have TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
     by (simp add: STCal-steps)
   ultimately obtain R' where B3: TargetTerm\ TR \longmapsto (STCal\ Source\ Target)*\ R'
                         and B4: (R', TargetTerm TQ') \in Rel
       using conSim
     by blast
   from B3 obtain TR' where B5: TR' \in TR' and B6: TR \longmapsto Target * TR'
     by (auto simp add: STCal-steps)
   from B4 B5 trel have (TR', TQ') \in TRel^*
     by simp
   from this B2 have (TR', TP') \in TRel^*
   with B6 show \exists TR'. TR \longmapsto Target* TR' \land (TR', TP') \in TRel^*
     by blast
  qed
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}contrasimulation}:
  fixes TRel :: ('procT \times 'procT) set
  assumes conSim: weak-reduction-contrasimulation (indRelTEQ TRel) (STCal Source Target)
  shows weak-reduction-contrasimulation (TRel^*) Target
     \mathbf{using} \ conSim \ indRelTEQ.target[\mathbf{where} \ TRel = TRel] \ indRelTEQ-to-TRel(4)[\mathbf{where} \ TRel = TRel]
           trans-closure-of-TRel-refl-cond
```

```
Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
   by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}barbed\text{-}contrasimulation}:
 fixes TRel :: ('procT \times 'procT) set
 assumes conSim: weak-barbed-contrasimulation (indRelRTPO TRel) (STCalWB SWB TWB)
 shows weak-barbed-contrasimulation (TRel^+) TWB
proof
 from conSim show weak-reduction-contrasimulation (TRel<sup>+</sup>) (Calculus TWB)
     using indRelRTPO-impl-TRel-is-weak-reduction-contrasimulation [where TRel=TRel]
   by (simp add: STCalWB-def calS calT)
next
 from conSim show rel-weakly-preserves-barbs (TRel<sup>+</sup>) TWB
     using indRelRTPO-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
          weak-preservation-of-barbs-and-closures(2)[where Rel = TRel and CWB = TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-contrasimulation:
 fixes TRel :: ('procT \times 'procT) set
 {\bf assumes}\ con Sim:\ weak-barbed-contrasimulation\ (ind RelLTPO\ TRel)\ (STCalWB\ SWB\ TWB)
 shows weak-barbed-contrasimulation (TRel^+) TWB
proof
 from conSim show weak-reduction-contrasimulation (TRel<sup>+</sup>) (Calculus TWB)
     \textbf{using} \ ind RelLTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}contrasimulation} [\textbf{where} \ TRel\text{-}TRel]
   by (simp\ add:\ STCalWB-def\ calS\ calT)
next
 from conSim show rel-weakly-preserves-barbs (TRel<sup>+</sup>) TWB
     using indRelLTPO-impl-TRel-weakly-preserves-barbs[where TRel-TRel]
          weak-preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-contrasimulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes conSim: weak-barbed-contrasimulation (indRelTEQ TRel) (STCalWB SWB TWB)
 shows weak-barbed-contrasimulation (TRel^*) TWB
proof
 from conSim show weak-reduction-contrasimulation (TRel*) (Calculus TWB)
     \mathbf{using}\ indRelTEQ-impl-TRel-is-weak-reduction-contrasimulation[\mathbf{where}\ TRel-TRel]
   by (simp add: STCalWB-def calS calT)
next
 from conSim show rel-weakly-preserves-barbs (TRel*) TWB
     using indRelTEQ-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
          weak-preservation-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
   by blast
qed
If indRelRTPO, indRelLTPO, or indRelTEQ is a coupled simulation then so is the corresponding
target term relation.
lemma (in encoding) indRelRTPO-impl-TRel-is-weak-reduction-coupled-simulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes couSim: weak-reduction-coupled-simulation (indRelRTPO TRel) (STCal Source Target)
 shows weak-reduction-coupled-simulation (TRel^+) Target
     {\bf using} \ couSim \ weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation
          refl\ indRelRTPO-impl-TRel-is-weak-reduction-simulation[\mathbf{where}\ TRel-TRel]
          indRelRTPO-impl-TRel-is-weak-reduction-contrasimulation[\mathbf{where} TRel-TRel]
   bv blast
```

rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-contrasimulation [where

```
lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-coupled-simulation:
   fixes TRel :: ('procT \times 'procT) set
   assumes couSim: weak-reduction-coupled-simulation (indRelLTPO TRel) (STCal Source Target)
   shows weak-reduction-coupled-simulation (TRel^+) Target
         \mathbf{using}\ couSim\ weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation
                   refl\ indRelLTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}simulation}[\mathbf{where}\ TRel=TRel]
                   indRelLTPO-impl-TRel-is-weak-reduction-contrasimulation[\mathbf{where} TRel=TRel]
      by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}coupled\text{-}simulation\text{:}}
   fixes TRel :: ('procT \times 'procT) set
   assumes couSim: weak-reduction-coupled-simulation (indRelTEQ TRel) (STCal Source Target)
   shows weak-reduction-coupled-simulation (TRel*) Target
         {\bf using} \ couSim \ weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation
                   refl\ indRelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}simulation} [\mathbf{where}\ TRel\text{-}TRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-}IRel\text{-
                   indRelTEQ-impl-TRel-is-weak-reduction-contrasimulation[\mathbf{where} TRel=TRel]
      by blast
\textbf{lemma (in } encoding\text{-}wrt\text{-}barbs) \ ind RelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}barbed\text{-}coupled\text{-}simulation:}
   fixes TRel :: ('procT \times 'procT) set
   assumes couSim: weak-barbed-coupled-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
   shows weak-barbed-coupled-simulation (TRel^+) TWB
         {f using}\ couSim\ weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation
                   refl\ indRelRTPO-impl-TRel-is-weak-barbed-simulation[where TRel=TRel]
                   indRelRTPO-impl-TRel-is-weak-barbed-contrasimulation[\mathbf{where} TRel=TRel]
      by blast
\textbf{lemma (in } \textit{encoding-wrt-barbs) } \textit{indRelLTPO-impl-TRel-is-weak-barbed-coupled-simulation}:
   fixes TRel :: ('procT \times 'procT) set
   assumes couSim: weak-barbed-coupled-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
   shows weak-barbed-coupled-simulation (TRel^+) TWB
         using couSim weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation
                   refl\ indRelLTPO-impl-TRel-is-weak-barbed-simulation[ where TRel=TRel]
                   indRelLTPO-impl-TRel-is-weak-barbed-contrasimulation[\mathbf{where} TRel-TRel]
      by blast
{\bf lemma~(in~\it encoding-wrt-barbs)~indRelTEQ-impl-TRel-is-weak-barbed-coupled-simulation:}
   fixes TRel :: ('procT \times 'procT) set
   assumes couSim: weak-barbed-coupled-simulation (indRelTEQ TRel) (STCalWB SWB TWB)
   shows weak-barbed-coupled-simulation (TRel^*) TWB
         using couSim weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation
                   refl\ indRelTEQ-impl-TRel-is-weak-barbed-simulation[where TRel=TRel]
                   indRelTEQ-impl-TRel-is-weak-barbed-contrasimulation[\mathbf{where} TRel=TRel]
      by blast
If indRelRTPO, indRelLTPO, or indRelTEQ is a correspondence simulation then so is the correspond-
ing target term relation.
lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-correspondence-simulation:
   fixes TRel :: ('procT \times 'procT) set
      and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   assumes corSim: weak-reduction-correspondence-simulation Rel (STCal Source Target)
         and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
         and trel: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
   shows weak-reduction-correspondence-simulation (TRel^+) Target
   from corSim target trel have A: weak-reduction-simulation (TRel<sup>+</sup>) Target
         using rel-with-target-impl-transC-TRel-is-weak-reduction-simulation [where TRel=TRel
                    and Rel=Rel
      by blast
   moreover have \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^+ \land Q \longmapsto Target* \ Q'
```

```
\longrightarrow (\exists P'' \ Q''. \ P \longmapsto Target * P'' \land Q' \longmapsto Target * Q'' \land (P'', Q'') \in TRel^+)
proof clarify
 fix TP TQ TQ'
 assume (TP, TQ) \in TRel^+ and TQ \longmapsto Target * TQ'
 thus \exists TP'' TQ''. TP \longmapsto Target* TP'' \land TQ' \longmapsto Target* TQ'' \land (TP'', TQ'') \in TRel^+
 proof (induct arbitrary: TQ')
   fix TQ TQ'
   assume (TP, TQ) \in TRel
   with target have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto Target * TQ'
   hence TargetTerm TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
     by (simp add: STCal-steps)
   ultimately obtain P'' Q'' where A2: TargetTerm\ TP \longmapsto (STCal\ Source\ Target)*\ P''
     and A3: TargetTerm TQ' \longmapsto (STCal\ Source\ Target) * Q'' and A4: (P'', Q'') \in Rel
       using corSim
     by blast
   from A2 obtain TP'' where A5: TP \longmapsto Target* TP'' and A6: TP'' \in TP''
     by (auto simp add: STCal-steps)
   from A3 obtain TQ'' where A7: TQ' \longmapsto Target* TQ'' and A8: TQ'' \in TQ''
     by (auto simp add: STCal-steps)
   from A4 A6 A8 trel have (TP'', TQ'') \in TRel^+
     by blast
   with A5 A7
   show \exists TP'' TQ''. TP \longmapsto Target* TP'' \land TQ' \longmapsto Target* TQ'' \land (TP'', TQ'') \in TRel^+
     by blast
 next
   case (step TQ TR TR')
   \mathbf{assume} \ \bigwedge TQ'. \ TQ \longmapsto Target* \ TQ' \Longrightarrow \exists \ TP'' \ TQ''. \ TP \longmapsto Target* \ TP'' \ \land \ TQ' \longmapsto Target* \ TQ''
           \land (TP'', TQ'') \in TRel^+
   moreover assume (TQ, TR) \in TRel
   hence \bigwedge TR'. TR \longmapsto Target * TR'
           \rightarrow (\exists TQ'' TR''. TQ \longmapsto Target* TQ'' \land TR' \longmapsto Target* TR'' \land (TQ'', TR'') \in TRel^+)
   proof clarify
     fix TR'
     assume (TQ, TR) \in TRel
     with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
     moreover assume TR \longmapsto Target * TR'
     hence TargetTerm TR \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TR')
       by (simp add: STCal-steps)
     ultimately obtain Q''R'' where B1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)*\ Q''
      and B2: TargetTerm\ TR' \longmapsto (STCal\ Source\ Target) * R'' and B3: (Q'', R'') \in Rel
         using corSim
       by blast
     from B1 obtain TQ'' where B4: TQ'' \in TQ'' and B5: TQ \longmapsto Target * TQ''
       by (auto simp add: STCal-steps)
     from B2 obtain TR'' where B6: TR'' \in TR'' and B7: TR' \longmapsto Target * TR''
       by (auto simp add: STCal-steps)
     from B3 B4 B6 trel have (TQ'', TR'') \in TRel^+
       by simp
     with B5 B7
     show \exists TQ'' TR''. TQ \longmapsto Target * TQ'' \land TR' \longmapsto Target * TR'' \land (TQ'', TR'') \in TRel^+
       by blast
   qed
   moreover have trans (TRel^+)
     by simp
   moreover assume TR \longmapsto Target * TR'
   ultimately
   show \exists TP'' TR''. TP \longmapsto Target* TP'' \land TR' \longmapsto Target* TR'' \land (TP'', TR'') \in TRel^+
     using A reduction-correspondence-simulation-condition-trans[where Rel=TRel^+
```

```
and Cal = Target
                   by blast
         qed
     qed
     ultimately show ?thesis
         by simp
qed
lemma (in encoding) indRelRTPO-impl-TRel-is-weak-reduction-correspondence-simulation:
     fixes TRel :: ('procT \times 'procT) set
     assumes cSim: weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
     shows weak-reduction-correspondence-simulation (TRel^+) Target
              using cSim\ indRelRTPO.target[where TRel=TRel]\ indRelRTPO-to-TRel(4)[where TRel=TRel]
                             rel-with-target-impl-trans \ C-TRel-is-weak-reduction-correspondence-simulation [ {\bf where} \ A - {\bf vector} \ A - {\bf vecto
                                   Rel = indRelRTPO \ TRel \ and \ TRel = TRel
          by blast
\textbf{lemma (in } encoding) \ ind \textit{RelLTPO-impl-TRel-is-weak-reduction-correspondence-simulation:}
     fixes TRel :: ('procT \times 'procT) set
     assumes cSim: weak-reduction-correspondence-simulation (indRelLTPO TRel) (STCal Source Target)
     shows weak-reduction-correspondence-simulation (TRel^+) Target
              \mathbf{using}\ cSim\ indRelLTPO.target[\mathbf{where}\ TRel = TRel]\ indRelLTPO-to-TRel(4)[\mathbf{where}\ TRel = TRel]
                             rel-with-target-impl-transC-TRel-is-weak-reduction-correspondence-simulation [\mathbf{where}]
                                   Rel=indRelLTPO \ TRel \ and \ TRel=TRel
         by blast
lemma (in encoding)
     rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-correspondence-simulation:
     fixes TRel :: ('procT \times 'procT) set
          and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
     assumes corSim: weak-reduction-correspondence-simulation Rel (STCal Source Target)
              and target: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
              and trel: \forall T1 \ T2. (TargetTerm \ T1, TargetTerm \ T2) \in Rel \longrightarrow (T1, T2) \in TRel^*
     shows weak-reduction-correspondence-simulation (TRel^*) Target
proof -
     from corSim target trel have A: weak-reduction-simulation (TRel*) Target
              \textbf{using} \ \textit{rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-simulation} \\ [\textbf{where} \ \textit{TRel} = \textit{TRel} \\ [\textbf{TRel} \ \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} \\ [\textbf{TRel} \ \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} \\ [\textbf{TRel} \ \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} \\ [\textbf{TRel} \ \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} \\ [\textbf{TRel} \ \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} = \textit{TRel} \\ [\textbf{TRel} \ \textit{TRel} = \textit{TRel} 
                                and Rel=Rel
         by blast
     moreover have \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^* \land Q \longmapsto Target * Q' \longrightarrow
          (\exists P'' \ Q''. \ P \longmapsto Target* \ P'' \land \ Q' \longmapsto Target* \ Q'' \land (P'', \ Q'') \in TRel^*)
     proof clarify
         fix TP TQ TQ'
         assume (TP, TQ) \in TRel^* and TQ \longmapsto Target * TQ'
         thus \exists TP'' TQ''. TP \longmapsto Target * TP'' \land TQ' \longmapsto Target * TQ'' \land (TP'', TQ'') \in TRel^*
          proof (induct arbitrary: TQ')
              fix TQ'
              assume TP \longmapsto Target * TQ'
              moreover have TQ' \longmapsto Target * TQ'
                   by (simp add: steps-refl)
              moreover have (TQ', TQ') \in TRel^*
               ultimately show \exists TP'' TQ''. TP \longmapsto Target* TP'' \land TQ' \longmapsto Target* TQ'' \land (TP'', TQ'') \in TRel^*
                   by blast
              case (step TQ TR TR')
              assume \bigwedge TQ'. TQ \longmapsto Target* TQ' \Longrightarrow \exists TP'' TQ''. TP \longmapsto Target* TP'' \land TQ' \longmapsto Target* TQ''
                                  \land (TP'', TQ'') \in TRel^*
              moreover assume (TQ, TR) \in TRel
              with corSim have \bigwedge TR'. TR \longmapsto Target* TR' \Longrightarrow \exists TQ'' TR''. TQ \longmapsto Target* TQ''
                                                          \land TR' \longmapsto Target * TR'' \land (TQ'', TR'') \in TRel^*
```

```
proof clarify
       \mathbf{fix} \ TR'
       assume (TQ, TR) \in TRel
       with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
         by simp
       moreover assume TR \longmapsto Target * TR'
       hence TargetTerm TR \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TR')
         by (simp add: STCal-steps)
       ultimately obtain Q''R'' where B1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)*\ Q''
        and B2: TargetTerm\ TR' \longmapsto (STCal\ Source\ Target) * R'' and B3: (Q'', R'') \in Rel
          using corSim
         by blast
       from B1 obtain TQ'' where B_4: TQ'' \in TQ'' and B_5: TQ \longmapsto Target * TQ''
         by (auto simp add: STCal-steps)
       from B2 obtain TR'' where B6: TR'' \in TR'' and B7: TR' \longmapsto Target * TR''
         by (auto simp add: STCal-steps)
       from B3 B4 B6 trel have (TQ'', TR'') \in TRel^*
         by simp
       with B5 B7
       show \exists TQ'' TR''. TQ \longmapsto Target* TQ'' \land TR' \longmapsto Target* TR'' \land (TQ'', TR'') \in TRel^*
         \mathbf{by} blast
     qed
     moreover assume TR \longmapsto Target * TR'
     moreover have trans (TRel^*)
         using trans-rtrancl[of TRel]
       by simp
     ultimately show \exists TP'' TR''. TP \longmapsto Target* TP'' \land TR' \longmapsto Target* TR'' \land (TP'', TR'') \in TRel^*
       using A reduction-correspondence-simulation-condition-trans[where Rel=TRel^*
              and Cal = Target
       by blast
   qed
  ged
 ultimately show ?thesis
   by simp
qed
{\bf lemma~(in~\it encoding)~\it indRelTEQ-impl-TRel-is-weak-reduction-correspondence-simulation:}
  fixes TRel :: ('procT \times 'procT) set
 assumes corSim: weak-reduction-correspondence-simulation (indRelTEQ TRel) (STCal Source Target)
  shows weak-reduction-correspondence-simulation (TRel^*) Target
     \mathbf{using} \ \mathit{corSim} \ \mathit{indRelTEQ.target}[\mathbf{where} \ \mathit{TRel} = \mathit{TRel}] \ \mathit{indRelTEQ-to-TRel}(4)[\mathbf{where} \ \mathit{TRel} = \mathit{TRel}]
           trans-closure-of-TRel-refl-cond
          rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-correspondence-simulation
             where Rel=indRelTEQ TRel and TRel=TRel]
   by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}barbed\text{-}correspondence\text{-}simulation} :
  fixes TRel :: ('procT \times 'procT) set
 assumes corSim: weak-barbed-correspondence-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
  shows weak-barbed-correspondence-simulation (TRel^+) TWB
  from corSim show weak-reduction-correspondence-simulation (TRel<sup>+</sup>) (Calculus TWB)
     \textbf{using} \ ind \textit{RelRTPO-impl-TRel-is-weak-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
   by (simp add: STCalWB-def calS calT)
  from corSim show rel-weakly-respects-barbs (TRel<sup>+</sup>) TWB
     using indRelRTPO-impl-TRel-weakly-respects-barbs[where TRel=TRel]
           weak-respection-of-barbs-and-closures(3)[where Rel = TRel and CWB = TWB]
   by blast
qed
```

```
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-correspondence-simulation:
  fixes TRel :: ('procT \times 'procT) set
 assumes corSim: weak-barbed-correspondence-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
 shows weak-barbed-correspondence-simulation (TRel^+) TWB
proof
  from corSim show weak-reduction-correspondence-simulation (TRel<sup>+</sup>) (Calculus TWB)
     \textbf{using} \ ind \textit{RelLTPO-impl-TRel-is-weak-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
   by (simp add: STCalWB-def calS calT)
next
  from corSim show rel-weakly-respects-barbs (TRel<sup>+</sup>) TWB
     using indRelLTPO-impl-TRel-weakly-respects-barbs[where TRel=TRel]
          weak-respection-of-barbs-and-closures(3)[where Rel = TRel and CWB = TWB]
   by blast
\mathbf{qed}
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-correspondence-simulation:
  fixes TRel :: ('procT \times 'procT) set
 assumes corSim: weak-barbed-correspondence-simulation (indRelTEQ TRel) (STCalWB SWB TWB)
 shows weak-barbed-correspondence-simulation (TRel^*) TWB
proof
  from corSim show weak-reduction-correspondence-simulation (TRel*) (Calculus TWB)
     \textbf{using} \ indRelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}correspondence\text{-}simulation} [\textbf{where} \ TRel\text{-}TRel]
   by (simp \ add: STCalWB-def \ calS \ calT)
next
  from corSim show rel-weakly-respects-barbs (TRel*) TWB
     using indRelTEQ-impl-TRel-weakly-respects-barbs[where TRel=TRel]
          weak-respection-of-barbs-and-closures (5) [where Rel = TRel and CWB = TWB]
   by blast
qed
If indRelRTPO, indRelLTPO, or indRelTEQ is a bisimulation then so is the corresponding target
term relation.
\textbf{lemma (in } encoding) \ rel-with-target-impl-transC-TRel-is-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes bisim: weak-reduction-bisimulation Rel (STCal Source Target)
     and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
     and trel: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
 shows weak-reduction-bisimulation (TRel^+) Target
proof
  from bisim target trel show weak-reduction-simulation (TRel<sup>+</sup>) Target
     \textbf{using} \ \textit{rel-with-target-impl-transC-TRel-is-weak-reduction-simulation} \\ [\textbf{where} \ \textit{TRel} = \textit{TRel} \\ ]
           and Rel=Rel
   \mathbf{by} blast
next
  show \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^+ \land Q \longmapsto Target* \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target* \ P' \land (P', \ Q') \in TRel^+)
  proof clarify
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel^+ and TQ \longmapsto Target * TQ'
   thus \exists TP'. TP \longmapsto Target* TP' \land (TP', TQ') \in TRel^+
   proof (induct arbitrary: TQ')
     fix TQ TQ'
     assume (TP, TQ) \in TRel
     with target have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
       by simp
     moreover assume TQ \longmapsto Target * TQ'
     hence TargetTerm TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
       by (simp add: STCal-steps)
     ultimately obtain P' where A2: TargetTerm\ TP \longmapsto (STCal\ Source\ Target)*\ P'
                         and A3: (P', TargetTerm TQ') \in Rel
```

```
using bisim
       by blast
     from A2 obtain TP' where A4: TP \longmapsto Target* TP' and A5: TP' \in TP'
       by (auto simp add: STCal-steps)
     from A3 A5 trel have (TP', TQ') \in TRel^+
       by simp
     with A4 show \exists TP'. TP \longmapsto Target* TP' \land (TP', TQ') \in TRel^+
       by blast
   next
     case (step TQ TR TR')
     assume (TQ, TR) \in TRel
     with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
       by simp
     moreover assume TR \longmapsto Target * TR'
     hence TargetTerm TR \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TR')
       by (simp add: STCal-steps)
     ultimately obtain Q' where B1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)* Q'
                          and B2: (Q', TargetTerm TR') \in Rel
         using bisim
       by blast
     from B1 obtain TQ' where B3: TQ' \in T Q' and B4: TQ \longmapsto Target * TQ'
       by (auto simp add: STCal-steps)
     assume \land TQ'. TQ \longrightarrow Target*\ TQ' \Longrightarrow \exists\ TP'.\ TP \longrightarrow Target*\ TP' \land (TP',\ TQ') ∈ TRel^+
     with B4 obtain TP' where B5: TP \mapsto Target* TP' and B6: (TP', TQ') \in TRel^+
       by blast
     from B2 B3 trel have (TQ', TR') \in TRel^+
       by simp
     with B6 have (TP', TR') \in TRel^+
     with B5 show \exists TP'. TP \longmapsto Target* TP' \land (TP', TR') \in TRel^+
       by blast
   ged
 qed
qed
lemma (in encoding) indRelRTPO-impl-TRel-is-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
  shows weak-reduction-bisimulation (TRel^+) Target
     \textbf{using} \ bisim \ indRelRTPO.target[\textbf{where} \ TRel = TRel] \ indRelRTPO-to-TRel(4)[\textbf{where} \ TRel = TRel]
           rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}bisimulation\mbox{[}\mathbf{where}
           Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: weak-reduction-bisimulation (indRelLTPO TRel) (STCal Source Target)
  shows weak-reduction-bisimulation (TRel^+) Target
     \textbf{using} \ bisim \ indRelLTPO.target[\textbf{where} \ TRel = TRel] \ indRelLTPO-to-TRel(4)[\textbf{where} \ TRel = TRel]
           rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}bisimulation [\mathbf{where}]
           Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
   bv blast
lemma (in encoding) rel-with-target-impl-reftC-transC-TRel-is-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes bisim: weak-reduction-bisimulation Rel (STCal Source Target)
     and target: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
     and trel: \forall T1 \ T2. (TargetTerm \ T1, TargetTerm \ T2) \in Rel \longrightarrow (T1, T2) \in TRel^*
  shows weak-reduction-bisimulation (TRel*) Target
proof
```

```
from bisim target trel show weak-reduction-simulation (TRel*) Target
     using rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-simulation [where TRel=TRel
           and Rel=Rel
   by blast
next
  show \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^* \land Q \longmapsto Target* \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target* \ P' \land (P', \ Q') \in TRel^*)
  proof clarify
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel^* and TQ \longmapsto Target * TQ'
   thus \exists TP'. TP \longmapsto Target* TP' \land (TP', TQ') \in TRel^*
   proof (induct arbitrary: TQ')
     fix TQ'
     assume TP \longmapsto Target * TQ'
     moreover have (TQ', TQ') \in TRel^*
       by simp
     ultimately show \exists TP'. TP \longmapsto Target* TP' \land (TP', TQ') \in TRel^*
       by blast
   next
     case (step TQ TR TR')
     assume (TQ, TR) \in TRel
     with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
       by simp
     moreover assume TR \longmapsto Target * TR'
     hence TargetTerm\ TR \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TR')
       by (simp add: STCal-steps)
     ultimately obtain Q' where B1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)* Q'
                         and B2: (Q', TargetTerm TR') \in Rel
         using bisim
       by blast
     from B1 obtain TQ' where B3: TQ' \in T Q' and B4: TQ \longmapsto Target * TQ'
       by (auto simp add: STCal-steps)
     assume \bigwedge TQ'. TQ \longmapsto Target* TQ' \Longrightarrow \exists TP'. TP \longmapsto Target* TP' \land (TP', TQ') \in TRel^*
     with B4 obtain TP' where B5: TP \longrightarrow Target*\ TP' and B6: (TP', TQ') \in TRel^*
       by blast
     from B2 B3 trel have (TQ', TR') \in TRel^*
       by simp
     with B6 have (TP', TR') \in TRel^*
       by simp
     with B5 show \exists TP'. TP \longmapsto Target* TP' \land (TP', TR') \in TRel^*
       by blast
   qed
  qed
qed
lemma (in encoding) indRelTEQ-impl-TRel-is-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
 assumes bisim: weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
  shows weak-reduction-bisimulation (TRel^*) Target
     using bisim\ indRelTEQ.target[where TRel=TRel]\ indRelTEQ.to-TRel(4)[where TRel=TRel]
          trans-closure-of-TRel-refl-cond
          rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}refl\mbox{-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}weak\mbox{-}reduction\mbox{-}bisimulation [\mathbf{where}]
           Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
   by blast
lemma (in encoding) rel-with-target-impl-transC-TRel-is-strong-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes bisim: strong-reduction-bisimulation Rel (STCal Source Target)
     and target: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
     and trel: \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
  shows strong-reduction-bisimulation (TRel^+) Target
```

```
proof
  from bisim target trel show strong-reduction-simulation (TRel<sup>+</sup>) Target
     \textbf{using} \ \textit{rel-with-target-impl-transC-TRel-is-strong-reduction-simulation} [\textbf{where} \ \textit{Rel} = \textit{Rel}
            and TRel = TRel
   by blast
next
  show \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^+ \land Q \longmapsto Target \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target \ P' \land (P', \ Q') \in TRel^+)
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel^+ and TQ \longmapsto Target TQ'
   thus \exists TP'. TP \longmapsto Target TP' \land (TP', TQ') \in TRel^+
   proof (induct arbitrary: TQ')
     fix TQ TQ'
     assume (TP, TQ) \in TRel
     with target have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
       by simp
     moreover assume TQ \longmapsto Target \ TQ'
     hence TargetTerm TQ \longmapsto (STCal\ Source\ Target) (TargetTerm\ TQ')
       by (simp add: STCal-step)
     ultimately obtain P' where A2: TargetTerm\ TP \longmapsto (STCal\ Source\ Target)\ P'
                         and A3: (P', TargetTerm TQ') \in Rel
         using bisim
       by blast
     from A2 obtain TP' where A4: TP \longmapsto Target TP' and A5: TP' \in TP'
       by (auto simp add: STCal-step)
     from A3 A5 trel have (TP', TQ') \in TRel^+
     with A4 show \exists TP'. TP \longmapsto Target TP' \land (TP', TQ') \in TRel^+
       by blast
   next
     case (step TQ TR TR')
     assume (TQ, TR) \in TRel
     with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
       by simp
     moreover assume TR \longmapsto Target TR'
     hence TargetTerm TR \longmapsto (STCal\ Source\ Target) (TargetTerm\ TR')
       by (simp add: STCal-step)
     ultimately obtain Q' where B1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)\ Q'
                         and B2: (Q', TargetTerm TR') \in Rel
         using bisim
       by blast
     from B1 obtain TQ' where B3: TQ' \in T Q' and B4: TQ \longmapsto Target TQ'
       by (auto simp add: STCal-step)
     assume \bigwedge TQ'. TQ \longmapsto Target \ TQ' \Longrightarrow \exists \ TP'. TP \longmapsto Target \ TP' \land (TP', \ TQ') \in TRel^+
     with B4 obtain TP' where B5: TP \longrightarrow Target TP' and B6: (TP', TQ') \in TRel^+
       by blast
     from B2 B3 trel have (TQ', TR') \in TRel^+
       by simp
     with B6 have (TP', TR') \in TRel^+
     with B5 show \exists TP'. TP \longmapsto Target TP' \land (TP', TR') \in TRel^+
       by blast
   qed
 qed
ged
lemma (in encoding) indRelRTPO-impl-TRel-is-strong-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
  shows strong-reduction-bisimulation (TRel^+) Target
     \textbf{using} \ bisim \ indRelRTPO.target[\textbf{where} \ TRel = TRel] \ indRelRTPO-to-TRel(4)[\textbf{where} \ TRel = TRel]
```

```
Rel=indRelRTPO\ TRel\ and\ TRel=TRel]
        by blast
lemma (in encoding) indRelLTPO-impl-TRel-is-strong-reduction-bisimulation:
    fixes TRel :: ('procT \times 'procT) set
    assumes bisim: strong-reduction-bisimulation (indRelLTPO TRel) (STCal Source Target)
    shows strong-reduction-bisimulation (TRel^+) Target
            using bisim\ indRelLTPO.tarqet[where TRel=TRel]\ indRelLTPO-to-TRel(4)[where TRel=TRel]
                        rel-with-target-impl-trans C-TRel-is-strong-reduction-bisimulation [ {\bf where}
                          Rel=indRelLTPO\ TRel\ and\ TRel=TRel]
        by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ \textit{rel-with-target-impl-reflC-transC-TRel-is-strong-reduction-bisimulation}: \\
    fixes TRel :: ('procT \times 'procT) set
        and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
    assumes bisim: strong-reduction-bisimulation Rel (STCal Source Target)
            and target: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
            and trel: \forall T1 \ T2. (TargetTerm \ T1, TargetTerm \ T2) \in Rel \longrightarrow (T1, T2) \in TRel^*
    shows strong-reduction-bisimulation (TRel*) Target
proof
    from bisim target trel show strong-reduction-simulation (TRel*) Target
            \textbf{using} \ \textit{rel-with-target-impl-reflC-transC-TRel-is-strong-reduction-simulation} \big[ \textbf{where} \ \textit{Rel} = \textit{Rel} \\ \textbf{Rel} = \textbf{Rel} \\ \textbf{
                            and TRel = TRel
        by blast
\mathbf{next}
    show \forall P \ Q' \ (P, \ Q) \in TRel^* \land Q \longmapsto Target \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target \ P' \land (P', \ Q') \in TRel^*)
    proof clarify
        fix TP TQ TQ'
        assume (TP, TQ) \in TRel^* and TQ \longmapsto Target TQ'
        thus \exists TP'. TP \longmapsto Target TP' \land (TP', TQ') \in TRel^*
        proof (induct arbitrary: TQ')
            fix TQ'
            assume TP \longmapsto Target \ TQ'
            thus \exists TP'. TP \longmapsto Target TP' \land (TP', TQ') \in TRel^*
                by blast
        next
            case (step TQ TR TR')
            assume (TQ, TR) \in TRel
            with target have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
                by simp
            moreover assume TR \longmapsto Target TR'
            hence TargetTerm\ TR \longmapsto (STCal\ Source\ Target)\ (TargetTerm\ TR')
                by (simp add: STCal-step)
            ultimately obtain Q' where B1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)\ Q'
                                                          and B2: (Q', TargetTerm TR') \in Rel
                    using bisim
                by blast
            from B1 obtain TQ' where B3: TQ' \in T Q' and B4: TQ \mapsto Target TQ'
                by (auto simp add: STCal-step)
            assume \bigwedge TQ'. TQ \longmapsto Target \ TQ' \Longrightarrow \exists \ TP'. TP \longmapsto Target \ TP' \land (TP', \ TQ') \in TRel^*
            with B4 obtain TP' where B5: TP \longmapsto Target TP' and B6: (TP', TQ') \in TRel^*
                by blast
            from B2 B3 trel have (TQ', TR') \in TRel^*
                by simp
            with B6 have (TP', TR') \in TRel^*
            with B5 show \exists TP'. TP \longmapsto Target TP' \land (TP', TR') \in TRel^*
                by blast
        \mathbf{qed}
    qed
```

rel-with-target-impl-trans C-TRel-is-strong-reduction-bisimulation [where

```
qed
```

```
lemma (in encoding) indRelTEQ-impl-TRel-is-strong-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) \ set
  assumes bisim: strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
  shows strong-reduction-bisimulation (TRel^*) Target
     using bisim\ indRelTEQ.target[where TRel=TRel]\ indRelTEQ.to-TRel(4)[where TRel=TRel]
           trans-closure-of-TRel-refl-cond
           rel\mbox{-}with\mbox{-}target\mbox{-}impl\mbox{-}refl\mbox{C-}trans\mbox{C-}TRel\mbox{-}is\mbox{-}strong\mbox{-}reduction\mbox{-}bisimulation\mbox{[}\mathbf{where}
           Rel=indRelTEQ\ TRel\ and\ TRel=TRel]
   by blast
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}barbed\text{-}bisimulation}:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: weak-barbed-bisimulation (indRelRTPO TRel) (STCalWB SWB TWB)
  shows weak-barbed-bisimulation (TRel^+) TWB
proof
  from bisim show weak-reduction-bisimulation (TRel^+) (Calculus TWB)
     using indRelRTPO-impl-TRel-is-weak-reduction-bisimulation[where TRel-TRel]
   by (simp add: STCalWB-def calS calT)
next
  from bisim show rel-weakly-respects-barbs (TRel^+) TWB
     \mathbf{using} \ ind RelRTPO\text{-}impl\text{-}TRel\text{-}weakly\text{-}respects\text{-}barbs[\mathbf{where} \ TRel\text{-}TRel]
           weak-respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
   by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelLTPO\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}barbed\text{-}bisimulation}:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: weak-barbed-bisimulation (indRelLTPO TRel) (STCalWB SWB TWB)
 shows weak-barbed-bisimulation (TRel^+) TWB
proof
  from bisim show weak-reduction-bisimulation (TRel<sup>+</sup>) (Calculus TWB)
     using indRelLTPO-impl-TRel-is-weak-reduction-bisimulation[\mathbf{where} TRel=TRel]
   by (simp add: STCalWB-def calS calT)
\mathbf{next}
  from bisim show rel-weakly-respects-barbs (TRel<sup>+</sup>) TWB
     using indRelLTPO-impl-TRel-weakly-respects-barbs[where TRel=TRel]
           weak-respection-of-barbs-and-closures(3)[where Rel = TRel and CWB = TWB]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: weak-barbed-bisimulation (indRelTEQ TRel) (STCalWB SWB TWB)
 shows weak-barbed-bisimulation (TRel*) TWB
proof
  from bisim show weak-reduction-bisimulation (TRel*) (Calculus TWB)
     \mathbf{using} \ indRelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}weak\text{-}reduction\text{-}bisimulation}[\mathbf{where} \ TRel\text{=}TRel]
   by (simp \ add: STCalWB-def \ calS \ calT)
next
  from bisim show rel-weakly-respects-barbs (TRel*) TWB
     using indRelTEQ-impl-TRel-weakly-respects-barbs[where TRel=TRel]
           weak-respection-of-barbs-and-closures(5)[where Rel=TRel and CWB=TWB]
   by blast
qed
\mathbf{lemma} (in encoding\text{-}wrt\text{-}barbs) indRelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}strong\text{-}barbed\text{-}bisimulation}:
  fixes TRel :: ('procT \times 'procT) set
  assumes bisim: strong-barbed-bisimulation (indRelRTPO TRel) (STCalWB SWB TWB)
  shows strong-barbed-bisimulation (TRel^+) TWB
```

```
proof
 from bisim show strong-reduction-bisimulation (TRel<sup>+</sup>) (Calculus TWB)
     using indRelRTPO-impl-TRel-is-strong-reduction-bisimulation[where TRel-TRel]
   by (simp add: STCalWB-def calS calT)
next
 from bisim show rel-respects-barbs (TRel<sup>+</sup>) TWB
     using indRelRTPO-impl-TRel-respects-barbs[where TRel=TRel]
          respection-of-barbs-and-closures(3) [where Rel=TRel and CWB=TWB]
   bv blast
\mathbf{qed}
lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-strong-barbed-bisimulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes bisim: strong-barbed-bisimulation (indRelLTPO TRel) (STCalWB SWB TWB)
 shows strong-barbed-bisimulation (TRel^+) TWB
proof
 from bisim refl show strong-reduction-bisimulation (TRel<sup>+</sup>) (Calculus TWB)
     \mathbf{using} \ ind RelLTPO\text{-}impl\text{-}TRel\text{-}is\text{-}strong\text{-}reduction\text{-}bisimulation} [\mathbf{where} \ TRel\text{-}TRel]
   by (simp add: STCalWB-def calS calT)
 from bisim show rel-respects-barbs (TRel<sup>+</sup>) TWB
     using indRelLTPO-impl-TRel-respects-barbs[where TRel=TRel]
          respection-of-barbs-and-closures(3) [where Rel=TRel and CWB=TWB]
   by blast
\mathbf{qed}
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelTEQ\text{-}impl\text{-}TRel\text{-}is\text{-}strong\text{-}barbed\text{-}bisimulation} \colon
 fixes TRel :: ('procT \times 'procT) set
 assumes bisim: strong-barbed-bisimulation (indRelTEQ TRel) (STCalWB SWB TWB)
 shows strong-barbed-bisimulation (TRel*) TWB
proof
 from bisim refl show strong-reduction-bisimulation (TRel*) (Calculus TWB)
     using indRelTEQ-impl-TRel-is-strong-reduction-bisimulation[where TRel-TRel]
   by (simp add: STCalWB-def calS calT)
next
 from bisim show rel-respects-barbs (TRel*) TWB
     using indRelTEQ-impl-TRel-respects-barbs[where TRel=TRel]
          respection-of-barbs-and-closures(5) [where Rel=TRel and CWB=TWB]
   by blast
qed
```

5.3 Relations Induced by the Encoding and Relations on Source Terms and Target Terms

Some encodability like e.g. full abstraction are defined w.r.t. a relation on source terms and a relation on target terms. To analyse such criteria we include these two relations in the considered relation on the disjoint union of source and target terms.

```
inductive-set (in encoding) indRelRST

:: ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
\Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set

for SRel :: ('procS \times 'procS) \ set
and TRel :: ('procT \times 'procT) \ set
where
encR: \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in indRelRST \ SRel \ TRel \ |
source: \ (S1, \ S2) \in SRel \implies (SourceTerm \ S1, \ SourceTerm \ S2) \in indRelRST \ SRel \ TRel \ |
target: \ (T1, \ T2) \in TRel \implies (TargetTerm \ T1, \ TargetTerm \ T2) \in indRelRST \ SRel \ TRel

abbreviation (in encoding) indRelRSTinfix
:: \ ('procS, 'procT) \ Proc \Rightarrow \ ('procS \times 'procS) \ set \Rightarrow \ ('procT \times 'procT) \ set
\Rightarrow \ ('procS, 'procT) \ Proc \Rightarrow \ bool \ (\cdot - \mathcal{R}\llbracket \cdot \rrbracket R< \cdot, -> -> \ \lceil 75, \ 75, \ 75, \ 75, \ 75 \rceil \ 80)
```

```
where
  P \mathcal{R}[\cdot]R < SRel, TRel > Q \equiv (P, Q) \in indRelRST SRel TRel
inductive-set (in encoding) indRelRSTPO
    :: ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
        \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  where
  encR:
           (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelRSTPO\ SRel\ TRel\ |
  source: (S1, S2) \in SRel \Longrightarrow (SourceTerm S1, SourceTerm S2) \in indRelRSTPO SRel TRel |
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelRSTPO SRel TRel
  trans: [(P, Q) \in indRelRSTPO SRel TRel; (Q, R) \in indRelRSTPO SRel TRel]
           \implies (P, R) \in indRelRSTPO SRel TRel
abbreviation (in encoding) indRelRSTPOinfix ::
    ('procS, 'procT) \ Proc \Rightarrow ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
    \Rightarrow ('procS, 'procT) Proc \Rightarrow bool (\langle - \leq \llbracket \cdot \rrbracket R < -, - \rangle \rightarrow [75, 75, 75, 75] 80)
  where
  P \leq \llbracket \cdot \rrbracket R < SRel, TRel > Q \equiv (P, Q) \in indRelRSTPO SRel TRel
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelRSTPO\text{-}refl:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
  assumes reflS: refl SRel
     and reflT: refl TRel
  shows refl (indRelRSTPO SRel TRel)
    unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > P
  proof (cases P)
   case (SourceTerm SP)
   assume SP \in SP
    with reflS show P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > P
        unfolding refl-on-def
     by (simp add: indRelRSTPO.source)
    case (TargetTerm TP)
   assume TP \in TP
   with reflT show P \leq ||\cdot||R < SRel, TRel > P
        unfolding refl-on-def
     by (simp add: indRelRSTPO.target)
  qed
qed
lemma (in encoding) indRelRSTPO-trans:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  shows trans (indRelRSTPO SRel TRel)
   unfolding trans-def
proof clarify
  \mathbf{fix} \ P \ Q \ R
  assume P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q and Q \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > R
  thus P \lesssim [\![\cdot]\!]R < SRel, TRel > R
    by (rule indRelRSTPO.trans)
qed
lemma (in encoding) refl-trans-closure-of-indRelRST:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
```

```
assumes reflS: refl SRel
     and reflT: refl TRel
 shows indRelRSTPO SRel TRel = (indRelRST SRel TRel)^*
proof auto
  \mathbf{fix} \ P \ Q
 assume P \leq [\cdot]R < SRel, TRel > Q
  thus (P, Q) \in (indRelRST \ SRel \ TRel)^*
  proof induct
   case (encR S)
   show (Source Term S, Target Term ([S])) \in (indRelRST SRel TRel)*
       using indRelRST.encR[of\ S\ SRel\ TRel]
  next
   case (source S1 S2)
   assume (S1, S2) \in SRel
   thus (SourceTerm S1, SourceTerm S2) \in (indRelRST SRel TRel)*
       using indRelRST.source[of S1 S2 SRel TRel]
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (indRelRST\ SRel\ TRel)^*
      using indRelRST.target[of T1 T2 TRel SRel]
     by simp
  next
   case (trans P Q R)
   assume (P, Q) \in (indRelRST \ SRel \ TRel)^* and (Q, R) \in (indRelRST \ SRel \ TRel)^*
   thus (P, R) \in (indRelRST \ SRel \ TRel)^*
     by simp
  qed
next
 \mathbf{fix} \ P \ Q
 assume (P, Q) \in (indRelRST \ SRel \ TRel)^*
  thus P \lesssim ||\cdot|| R < SRel, TRel > Q
  proof induct
   from reflS reflT show P \lesssim ||\cdot||R < SRel, TRel > P
       using indRelRSTPO-refl[of SRel TRel]
       unfolding refl-on-def
     by simp
  next
   case (step \ Q \ R)
   assume P \lesssim \|\cdot\| R < SRel, TRel > Q
   moreover assume Q \mathcal{R}[\cdot]R < SRel, TRel > R
   hence Q \lesssim [\cdot]R < SRel, TRel > R
     by (induct, simp-all add: indRelRSTPO.intros)
   ultimately show P \lesssim [\cdot] R < SRel, TRel > R
     by (rule indRelRSTPO.trans)
 qed
qed
inductive-set (in encoding) indRelLST
   :: ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
       \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  where
  encL: (TargetTerm ([S]), SourceTerm S) \in indRelLST SRel TRel |
  source: (S1, S2) \in SRel \Longrightarrow (SourceTerm S1, SourceTerm S2) \in indRelLST SRel TRel
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelLST SRel TRel
```

abbreviation (in encoding) indRelLSTinfix

```
:: ('procS, 'procT) \ Proc \Rightarrow ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
        \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool \ (\leftarrow \mathcal{R}[\cdot]]L \leftarrow \rightarrow [75, 75, 75, 75] \ 80)
  where
  P \mathcal{R}[\cdot]L < SRel, TRel > Q \equiv (P, Q) \in indRelLST SRel TRel
inductive-set (in encoding) indRelLSTPO
    :: ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
        \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  where
  encL: (TargetTerm ([S]), SourceTerm S) \in indRelLSTPO SRel TRel
  source: (S1, S2) \in SRel \Longrightarrow (SourceTerm S1, SourceTerm S2) \in indRelLSTPO SRel TRel
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelLSTPO SRel TRel
  trans: [(P, Q) \in indRelLSTPO \ SRel \ TRel; (Q, R) \in indRelLSTPO \ SRel \ TRel]
          \implies (P, R) \in indRelLSTPO SRel TRel
abbreviation (in encoding) indRelLSTPOinfix
    :: ('procS, 'procT) \ Proc \Rightarrow ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
        \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool ( <- \lesssim [\cdot]] L <-,-> \rightarrow [75, 75, 75, 75] \ 80)
  where
  P \leq \|\cdot\| L < SRel, TRel > Q \equiv (P, Q) \in indRelLSTPO SRel TRel
lemma (in encoding) indRelLSTPO-refl:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
  assumes reflS: refl SRel
     and reflT: refl TRel
  shows refl (indRelLSTPO SRel TRel)
    unfolding refl-on-def
proof auto
  \mathbf{fix} P
  show P \lesssim \llbracket \cdot \rrbracket L < SRel, TRel > P
  proof (cases P)
    case (SourceTerm SP)
   assume SP \in SP
    with reflS show P \lesssim [\cdot]L < SRel, TRel > P
       unfolding refl-on-def
     by (simp add: indRelLSTPO.source)
    case (TargetTerm TP)
   assume TP \in TP
   with reflT show P \lesssim [\cdot]L < SRel, TRel > P
        unfolding refl-on-def
     by (simp add: indRelLSTPO.target)
  qed
qed
lemma (in encoding) indRelLSTPO-trans:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  \mathbf{shows}\ trans\ (indRelLSTPO\ SRel\ TRel)
   unfolding trans-def
proof clarify
  fix P Q R
  assume P \lesssim \llbracket \cdot \rrbracket L < SRel, TRel > Q and Q \lesssim \llbracket \cdot \rrbracket L < SRel, TRel > R
  thus P \lesssim ||\cdot|| L < SRel, TRel > R
    by (rule indRelLSTPO.trans)
qed
lemma (in encoding) refl-trans-closure-of-indRelLST:
```

```
fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes reflS: refl SRel
     and reflT: refl TRel
 shows indRelLSTPO SRel TRel = (indRelLST SRel TRel)^*
proof auto
 fix P Q
 assume P \lesssim [\cdot] L < SRel, TRel > Q
 thus (P, Q) \in (indRelLST\ SRel\ TRel)^*
 \mathbf{proof}\ induct
   case (encL\ S)
   show (TargetTerm ([S]), SourceTerm S) \in (indRelLST SRel TRel)*
       using indRelLST.encL[of\ S\ SRel\ TRel]
     by simp
  next
   case (source S1 S2)
   assume (S1, S2) \in SRel
   thus (SourceTerm\ S1,\ SourceTerm\ S2) \in (indRelLST\ SRel\ TRel)^*
       using indRelLST.source[of S1 S2 SRel TRel]
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (indRelLST\ SRel\ TRel)^*
       using indRelLST.target[of T1 T2 TRel SRel]
     by simp
  next
   case (trans P Q R)
   assume (P, Q) \in (indRelLST \ SRel \ TRel)^* and (Q, R) \in (indRelLST \ SRel \ TRel)^*
   thus (P, R) \in (indRelLST\ SRel\ TRel)^*
     by simp
 qed
next
  \mathbf{fix} \ P \ Q
 assume (P, Q) \in (indRelLST\ SRel\ TRel)^*
  thus P \lesssim \llbracket \cdot \rrbracket L < SRel, TRel > Q
  proof induct
   from reflS reflT show P \lesssim [\![\cdot]\!] L < SRel, TRel > P
       using indRelLSTPO-refl[of SRel TRel]
       unfolding refl-on-def
     by simp
  \mathbf{next}
   case (step Q R)
   assume P \lesssim \llbracket \cdot \rrbracket L < SRel, TRel > Q
   moreover assume Q \mathcal{R}[\cdot]L < SRel, TRel > R
   hence Q \lesssim \|\cdot\| L < SRel, TRel > R
     by (induct, simp-all add: indRelLSTPO.intros)
   ultimately show P \leq \|\cdot\| L < SRel, TRel > R
     by (rule indRelLSTPO.trans)
  qed
qed
inductive-set (in encoding) indRelST
   :: ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
       \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  where
          (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelST\ SRel\ TRel\ \rfloor
  encR:
  encL: (TargetTerm ([\![S]\!]), SourceTerm S) \in indRelST SRel TRel
  source: (S1, S2) \in SRel \Longrightarrow (SourceTerm S1, SourceTerm S2) \in indRelST SRel TRel
```

```
abbreviation (in encoding) indRelSTinfix
   :: ('procS, 'procT) \ Proc \Rightarrow ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
       \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool (\leftarrow \mathcal{R}[\cdot] < -, -> \rightarrow [75, 75, 75, 75] \ 80)
  where
  P \mathcal{R}[\cdot] < SRel, TRel > Q \equiv (P, Q) \in indRelST SRel TRel
lemma (in encoding) indRelST-summ:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT') set
  assumes symmS: sym SRel
     and symmT: sym TRel
 shows sym (indRelST SRel TRel)
   unfolding sym-def
proof clarify
 \mathbf{fix} \ P \ Q
  assume (P, Q) \in indRelST \ SRel \ TRel
  thus (Q, P) \in indRelST \ SRel \ TRel
  proof induct
   case (encR S)
   show (TargetTerm ([\![S]\!]), SourceTerm S) \in indRelST SRel TRel
     by (rule indRelST.encL)
  \mathbf{next}
   case (encL\ S)
   show (Source Term S, Target Term (\llbracket S \rrbracket)) \in indRelST SRel TRel
     by (rule indRelST.encR)
  next
   case (source S1 S2)
   assume (S1, S2) \in SRel
   with symmS show (SourceTerm S2, SourceTerm S1) \in indRelST SRel TRel
       unfolding sym-def
     by (simp add: indRelST.source)
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   with symmT show (TargetTerm\ T2,\ TargetTerm\ T1) \in indRelST\ SRel\ TRel
       unfolding sym-def
     by (simp add: indRelST.target)
 qed
qed
inductive-set (in encoding) indRelSTEQ
   :: ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
       \Rightarrow ((('procS, 'procT) \ Proc) \times (('procS, 'procT) \ Proc)) \ set
   for SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  where
           (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in indRelSTEQ\ SRel\ TRel\ |
  encR:
           (TargetTerm ([S]), SourceTerm S) \in indRelSTEQ SRel TRel
  source: (S1, S2) \in SRel \Longrightarrow (SourceTerm S1, SourceTerm S2) \in indRelSTEQ SRel TRel
  target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelSTEQ SRel TRel
  trans: [(P, Q) \in indRelSTEQ \ SRel \ TRel; (Q, R) \in indRelSTEQ \ SRel \ TRel]
          \implies (P, R) \in indRelSTEQ SRel TRel
{\bf abbreviation} \ ({\bf in} \ encoding) \ ind RelSTEQ in fix
   :: ('procS, 'procT) \ Proc \Rightarrow ('procS \times 'procS) \ set \Rightarrow ('procT \times 'procT) \ set
       \Rightarrow ('procS, 'procT) \ Proc \Rightarrow bool (\langle - \sim \llbracket \cdot \rrbracket < -, - \rangle - \sim \lceil 75, 75, 75, 75 \rceil \ 80)
  P \sim [\cdot] < SRel, TRel > Q \equiv (P, Q) \in indRelSTEQ SRel TRel
```

 $target: (T1, T2) \in TRel \Longrightarrow (TargetTerm T1, TargetTerm T2) \in indRelST SRel TRel$

```
lemma (in encoding) indRelSTEQ-reft:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes reflT: refl TRel
 shows refl (indRelSTEQ SRel TRel)
   unfolding refl-on-def
proof auto
 \mathbf{fix} P
 show P \sim [\cdot] < SRel, TRel > P
  proof (cases P)
   case (SourceTerm SP)
   assume SP \in SP
   moreover have SourceTerm\ SP \sim \llbracket \cdot \rrbracket < SRel, TRel > TargetTerm\ (\llbracket SP \rrbracket)
     by (rule indRelSTEQ.encR)
   moreover have TargetTerm ([SP]) \sim [\cdot] < SRel, TRel > SourceTerm SP
     by (rule\ indRelSTEQ.encL)
   ultimately show P \sim [\![\cdot]\!] < SRel, TRel > P
     by (simp\ add:\ indRelSTEQ.trans[where P=SourceTerm\ SP\ and Q=TargetTerm\ ([\![SP]\!])]
   case (TargetTerm TP)
   assume TP \in TP
   with reflT show P \sim [\cdot] < SRel, TRel > P
       unfolding refl-on-def
     by (simp add: indRelSTEQ.target)
 qed
qed
lemma (in encoding) indRelSTEQ-symm:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes symmS: sym SRel
     and symmT: sym TRel
  shows sym (indRelSTEQ SRel TRel)
   unfolding sym-def
proof clarify
  \mathbf{fix} \ P \ Q
 assume P \sim [\![\cdot]\!] < SRel, TRel > Q
  thus Q \sim \llbracket \cdot \rrbracket < SRel, TRel > P
  proof induct
   case (encR S)
   show TargetTerm ([S]) \sim [\cdot] < SRel, TRel > SourceTerm S
     by (rule indRelSTEQ.encL)
  next
   case (encL\ S)
   \mathbf{show}\ SourceTerm\ S\ \sim \llbracket \cdot \rrbracket < SRel, TRel >\ TargetTerm\ (\llbracket S \rrbracket)
     by (rule\ indRelSTEQ.encR)
  next
   case (source S1 S2)
   assume (S1, S2) \in SRel
   with symmS show SourceTerm S2 \sim [\cdot] < SRel, TRel > SourceTerm S1
       unfolding sym-def
     by (simp add: indRelSTEQ.source)
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   with symmT show TargetTerm T2 \sim [\cdot] < SRel, TRel > TargetTerm T1
       unfolding sym-def
     by (simp add: indRelSTEQ.target)
  \mathbf{next}
   case (trans P Q R)
   assume R \sim [\cdot] < SRel, TRel > Q and Q \sim [\cdot] < SRel, TRel > P
```

```
thus R \sim [\cdot] < SRel, TRel > P
     by (rule indRelSTEQ.trans)
 qed
qed
lemma (in encoding) indRelSTEQ-trans:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 shows trans (indRelSTEQ SRel TRel)
   unfolding trans-def
proof clarify
  \mathbf{fix} \ P \ Q \ R
 \mathbf{assume}\ P \sim [\![\cdot]\!] < \! \mathit{SRel}, \mathit{TRel} \! > \ Q \ \mathbf{and} \ \ Q \sim [\![\cdot]\!] < \! \mathit{SRel}, \mathit{TRel} \! > \ R
 thus P \sim [\![\cdot]\!] < SRel, TRel > R
   by (rule\ indRelSTEQ.trans)
qed
lemma (in encoding) refl-trans-closure-of-indRelST:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes reflT: refl TRel
 shows indRelSTEQ SRel TRel = (indRelST SRel TRel)^*
proof auto
 \mathbf{fix} \ P \ Q
 assume P \sim [\cdot] < SRel, TRel > Q
  thus (P, Q) \in (indRelST \ SRel \ TRel)^*
  proof induct
   case (encR S)
   show (SourceTerm S, TargetTerm ([\![S]\!])) \in (indRelST SRel TRel)*
       using indRelST.encR[of\ S\ SRel\ TRel]
     by simp
  next
   case (encL\ S)
   show (TargetTerm ([S]), SourceTerm S) \in (indRelST SRel TRel)*
       using indRelST.encL[of\ S\ SRel\ TRel]
     by simp
  next
   case (source S1 S2)
   assume (S1, S2) \in SRel
   thus (SourceTerm S1, SourceTerm S2) \in (indRelST SRel TRel)*
       using indRelST.source[of S1 S2 SRel TRel]
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (indRelST\ SRel\ TRel)^*
       using indRelST.target[of T1 T2 TRel SRel]
     by simp
  \mathbf{next}
   case (trans P Q R)
   assume (P, Q) \in (indRelST\ SRel\ TRel)^* and (Q, R) \in (indRelST\ SRel\ TRel)^*
   thus (P, R) \in (indRelST \ SRel \ TRel)^*
     by simp
 qed
next
 \mathbf{fix}\ P\ Q
  assume (P, Q) \in (indRelST \ SRel \ TRel)^*
  thus P \sim \llbracket \cdot \rrbracket < SRel, TRel > Q
  proof induct
   from reflT show P \sim [\cdot] < SRel, TRel > P
       using indRelSTEQ-refl[of TRel SRel]
```

```
unfolding refl-on-def
     \mathbf{by} simp
 \mathbf{next}
   case (step Q R)
   assume P \sim [\cdot] < SRel, TRel > Q
   moreover assume Q \mathcal{R}[\![\cdot]\!] < SRel, TRel > R
   hence Q \sim [\cdot] < SRel, TRel > R
     by (induct, simp-all add: indRelSTEQ.intros)
   ultimately show P \sim [\cdot] < SRel, TRel > R
     by (rule indRelSTEQ.trans)
 qed
qed
lemma (in encoding) refl-symm-trans-closure-of-indRelST:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes reflT: refl TRel
     and symmS: sym SRel
     and symmT: sym TRel
 shows indRelSTEQ SRel TRel = (symcl ((indRelST SRel TRel)=))+
proof -
 have (symcl\ ((indRelST\ SRel\ TRel)^{=}))^{+} = (symcl\ (indRelST\ SRel\ TRel))^{*}
   by (rule refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelST SRel TRel])
 moreover from symmS symmT have symcl (indRelST SRel TRel) = indRelST SRel TRel
     using indRelST-symm[where SRel=SRel and TRel=TRel]
          symm-closure-of-symm-rel[where Rel=indRelST SRel TRel]
 ultimately show indRelSTEQ SRel TRel = (symcl ((indRelST SRel TRel)=))+
     using reflT refl-trans-closure-of-indRelST[where SRel=SRel and TRel=TRel]
   by simp
qed
lemma (in encoding) symm-closure-of-indRelRST:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes reflT: refl TRel
     and symmS: sym SRel
     and symmT: sym TRel
 shows indRelST SRel TRel = symcl (indRelRST SRel TRel)
   and indRelSTEQ\ SRel\ TRel = (symcl\ ((indRelRST\ SRel\ TRel)^{=}))^{+}
proof -
 show indRelST SRel TRel = symcl (indRelRST SRel TRel)
 proof auto
   \mathbf{fix} \ P \ Q
   assume P \mathcal{R}[\cdot] < SRel, TRel > Q
   thus (P, Q) \in symcl (indRelRST SRel TRel)
     by (induct, simp-all add: symcl-def indRelRST.intros)
 \mathbf{next}
   \mathbf{fix} \ P \ Q
   assume (P, Q) \in symcl (indRelRST SRel TRel)
   thus P \mathcal{R}[\cdot] < SRel, TRel > Q
   proof (auto simp add: symcl-def indRelRST.simps)
     show Source Term S \mathcal{R}[\cdot] < SRel, TRel > Target Term ([S])
      by (rule\ indRelST.encR)
   next
     fix S1 S2
     assume (S1, S2) \in SRel
     thus Source Term S1 \mathcal{R}[\cdot] < SRel, TRel > Source Term S2
      by (rule indRelST.source)
   next
```

```
fix T1 T2
     assume (T1, T2) \in TRel
     thus TargetTerm\ T1\ \mathcal{R}[\cdot] < SRel, TRel > TargetTerm\ T2
       by (rule indRelST.target)
   next
     \mathbf{fix} \ S
     show TargetTerm ([\![S]\!]) \mathcal{R}[\![\cdot]\!] < SRel, TRel > SourceTerm S
       by (rule indRelST.encL)
   next
     fix S1 S2
     assume (S1, S2) \in SRel
     with symmS show SourceTerm S2 \mathbb{R}[\cdot] < SRel, TRel > SourceTerm S1
         unfolding sym-def
       by (simp add: indRelST.source)
   next
     fix T1 T2
     assume (T1, T2) \in TRel
     with symmT show (TargetTerm\ T2,\ TargetTerm\ T1) \in indRelST\ SRel\ TRel
        unfolding sym-def
       by (simp add: indRelST.target)
   qed
  qed
  with reflT show indRelSTEQ SRel TRel = (symcl\ ((indRelRST\ SRel\ TRel)^{=}))^{+}
     \textbf{using} \ \textit{refl-symm-trans-closure-is-symm-refl-trans-closure} [\textbf{where} \ \textit{Rel} = indRelRST \ SRel \ TRel]
          refl-trans-closure-of-indRelST
   by simp
qed
lemma (in encoding) symm-closure-of-indRelLST:
  fixes SRel :: ('procS \times 'procS) \ set
   and TRel :: ('procT \times 'procT) set
  assumes reflT: refl TRel
     and symmS: sym SRel
     and symmT: sym TRel
 shows indRelST SRel TRel = symcl (indRelLST SRel TRel)
   and indRelSTEQ SRel TRel = (symcl ((indRelLST SRel TRel)^{=}))^{+}
proof -
  show indRelST SRel TRel = symcl (indRelLST SRel TRel)
  proof auto
   \mathbf{fix} \ P \ Q
   assume P \mathcal{R}[\cdot] < SRel, TRel > Q
   thus (P, Q) \in symcl (indRelLST SRel TRel)
     by (induct, simp-all add: symcl-def indRelLST.intros)
  next
   fix P Q
   assume (P, Q) \in symcl (indRelLST SRel TRel)
   thus P \mathcal{R}[\cdot] < SRel, TRel > Q
   {\bf proof} \ (auto \ simp \ add: \ symcl-def \ indRelLST.simps)
     \mathbf{fix} \ S
     show Source Term S \mathcal{R}[\cdot] < SRel, TRel > Target Term ([S])
       by (rule indRelST.encR)
   next
     fix S1 S2
     assume (S1, S2) \in SRel
     thus SourceTerm\ S1\ \mathcal{R}[\cdot] < SRel, TRel > SourceTerm\ S2
       by (rule indRelST.source)
   next
     fix T1 T2
     assume (T1, T2) \in TRel
     thus TargetTerm\ T1\ \mathcal{R}[\cdot] < SRel, TRel > TargetTerm\ T2
       by (rule indRelST.target)
```

```
next
     \mathbf{fix} \ S
     show TargetTerm ([S]) \mathcal{R}[\cdot] < SRel, TRel > SourceTerm S
      by (rule\ indRelST.encL)
   next
     fix S1 S2
     assume (S1, S2) \in SRel
     with symmS show SourceTerm S2 \mathbb{R}[\cdot] < SRel, TRel > SourceTerm S1
        unfolding sym-def
      by (simp add: indRelST.source)
   \mathbf{next}
     fix T1 T2
     assume (T1, T2) \in TRel
     with symmT show TargetTerm T2 \mathcal{R}[\cdot] < SRel, TRel > TargetTerm T1
        unfolding sym-def
      by (simp add: indRelST.target)
   qed
 qed
 with reflT show indRelSTEQ SRel TRel = (symcl\ ((indRelLST\ SRel\ TRel)^{=}))^{+}
     using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelLST SRel TRel]
          refl-trans-closure-of-indRelST
   \mathbf{by} \ simp
qed
lemma (in encoding) symm-trans-closure-of-indRelRSTPO:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes symmS: sym SRel
     and symmT: sym TRel
 shows indRelSTEQ SRel TRel = (symcl (indRelRSTPO SRel TRel))^+
proof auto
 \mathbf{fix} \ P \ Q
 assume P \sim [\cdot] < SRel, TRel > Q
 thus (P, Q) \in (symcl (indRelRSTPO SRel TRel))^+
 proof induct
   case (encR S)
   show (Source Term S, Target Term (\llbracket S \rrbracket)) \in (symcl (indRelRSTPO SRel TRel))<sup>+</sup>
      using indRelRSTPO.encR[of\ S\ SRel\ TRel]
      unfolding symcl-def
     by auto
 next
   case (encL\ S)
   show (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in (symcl (indRelRSTPO SRel TRel))^+
      using indRelRSTPO.encR[of\ S\ SRel\ TRel]
      unfolding symcl-def
     by auto
 \mathbf{next}
   case (source S1 S2)
   assume (S1, S2) \in SRel
   thus (SourceTerm\ S1,\ SourceTerm\ S2) \in (symcl\ (indRelRSTPO\ SRel\ TRel))^+
       using indRelRSTPO.source[of S1 S2 SRel TRel]
       unfolding symcl-def
     by auto
 next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (symcl\ (indRelRSTPO\ SRel\ TRel))^+
      using indRelRSTPO.target[of T1 T2 TRel SRel]
      unfolding symcl-def
     by auto
 \mathbf{next}
```

```
case (trans P Q R)
   assume (P, Q) \in (symcl (indRelRSTPO SRel TRel))^+
      and (Q, R) \in (symcl\ (indRelRSTPO\ SRel\ TRel))^+
   thus (P, R) \in (symcl\ (indRelRSTPO\ SRel\ TRel))^+
     by simp
 \mathbf{qed}
next
 fix P Q
 assume (P, Q) \in (symcl (indRelRSTPO SRel TRel))^+
 thus P \sim \llbracket \cdot \rrbracket < SRel, TRel > Q
  proof induct
   \mathbf{fix} \ Q
   assume (P, Q) \in symcl (indRelRSTPO SRel TRel)
   thus P \sim [\![\cdot]\!] < SRel, TRel > Q
   proof (cases P \leq [\cdot] R < SRel, TRel > Q, simp-all add: symcl-def)
     assume P \lesssim [\cdot]R < SRel, TRel > Q
     thus P \sim [\cdot] < SRel, TRel > Q
     proof induct
       case (encR S)
       show Source Term S \sim \llbracket \cdot \rrbracket < SRel, TRel > Target Term (\llbracket S \rrbracket)
         by (rule indRelSTEQ.encR)
     next
       case (source S1 S2)
       assume (S1, S2) \in SRel
       thus SourceTerm\ S1 \sim [\cdot] < SRel, TRel > SourceTerm\ S2
         by (rule indRelSTEQ.source)
       case (target T1 T2)
       assume (T1, T2) \in TRel
       thus TargetTerm\ T1 \sim [\cdot] < SRel, TRel > TargetTerm\ T2
         by (rule indRelSTEQ.target)
     next
       case (trans P Q R)
       assume P \sim [\![\cdot]\!] < SRel, TRel > Q and Q \sim [\![\cdot]\!] < SRel, TRel > R
       thus P \sim [\cdot] < SRel, TRel > R
         by (rule indRelSTEQ.trans)
     qed
   next
     assume Q \lesssim [\cdot]R < SRel, TRel > P
     thus P \sim \llbracket \cdot \rrbracket < SRel, TRel > Q
     proof induct
       case (encR S)
       show TargetTerm ([S]) \sim [\cdot] < SRel, TRel > SourceTerm S
         by (rule indRelSTEQ.encL)
     \mathbf{next}
       case (source S1 S2)
       assume (S1, S2) \in SRel
       with symmS show SourceTerm S2 \sim [\cdot] < SRel, TRel > SourceTerm S1
           unfolding sym-def
         by (simp add: indRelSTEQ.source)
     next
       case (target T1 T2)
       assume (T1, T2) \in TRel
       with symmT show TargetTerm T2 \sim [\cdot] < SRel, TRel > TargetTerm T1
           unfolding sym-def
         by (simp add: indRelSTEQ.target)
     next
       case (trans P Q R)
       assume R \sim [\![\cdot]\!] < SRel, TRel > Q and Q \sim [\![\cdot]\!] < SRel, TRel > P
       thus R \sim [\cdot] < SRel, TRel > P
         by (rule indRelSTEQ.trans)
```

```
qed
   qed
  \mathbf{next}
   case (step \ Q \ R)
   assume P \sim [\cdot] < SRel, TRel > Q
   moreover assume (Q, R) \in symcl (indRelRSTPO SRel TRel)
   hence Q \sim [\cdot] < SRel, TRel > R
   proof (auto simp add: symcl-def)
     assume Q \leq \|\cdot\| R < SRel, TRel > R
     thus Q \sim [\![\cdot]\!] < SRel, TRel > R
     proof (induct, simp add: indRelSTEQ.encR, simp add: indRelSTEQ.source,
           simp add: indRelSTEQ.target)
       case (trans P Q R)
       assume P \sim \llbracket \cdot \rrbracket < SRel, TRel > Q and Q \sim \llbracket \cdot \rrbracket < SRel, TRel > R
       thus P \sim [\![\cdot]\!] < SRel, TRel > R
        by (rule indRelSTEQ.trans)
     qed
   next
     assume R \leq \|\cdot\| R < SRel, TRel > Q
     hence R \sim [\cdot] < SRel, TRel > Q
     proof (induct, simp add: indRelSTEQ.encR, simp add: indRelSTEQ.source,
           simp add: indRelSTEQ.target)
       case (trans P Q R)
       assume P \sim [\cdot] < SRel, TRel > Q and Q \sim [\cdot] < SRel, TRel > R
       thus P \sim [\![\cdot]\!] < SRel, TRel > R
        by (rule indRelSTEQ.trans)
     with symmS symmT show Q \sim [\cdot] < SRel, TRel > R
        using indRelSTEQ-symm[of SRel TRel]
        unfolding sym-def
       by blast
   qed
   ultimately show P \sim [\![\cdot]\!] < SRel, TRel > R
     by (rule indRelSTEQ.trans)
  qed
\mathbf{qed}
lemma (in encoding) symm-trans-closure-of-indRelLSTPO:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes symmS: sym SRel
     and symmT: sym TRel
 shows indRelSTEQ SRel TRel = (symcl (indRelLSTPO SRel TRel))^+
proof auto
 fix P Q
 assume P \sim [\cdot] < SRel, TRel > Q
  thus (P, Q) \in (symcl (indRelLSTPO SRel TRel))^+
  proof induct
   case (encR S)
   show (SourceTerm S, TargetTerm ([S])) \in (symcl (indRelLSTPO SRel TRel))<sup>+</sup>
       using indRelLSTPO.encL[of S SRel TRel]
       unfolding symcl-def
     by blast
  next
   case (encL S)
   show (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in (symcl (indRelLSTPO SRel TRel))<sup>+</sup>
       using indRelLSTPO.encL[of\ S\ SRel\ TRel]
       unfolding symcl-def
     \mathbf{by} blast
 \mathbf{next}
   case (source S1 S2)
```

```
assume (S1, S2) \in SRel
   thus (SourceTerm S1, SourceTerm S2) \in (symcl (indRelLSTPO SRel TRel))+
       using indRelLSTPO.source[of S1 S2 SRel TRel]
       unfolding symcl-def
     by blast
 next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   thus (TargetTerm\ T1,\ TargetTerm\ T2) \in (symcl\ (indRelLSTPO\ SRel\ TRel))^+
       using indRelLSTPO.target[of T1 T2 TRel SRel]
       unfolding symcl-def
     by blast
 next
   case (trans P Q R)
   assume (P, Q) \in (symcl (indRelLSTPO SRel TRel))^+
      and (Q, R) \in (symcl\ (indRelLSTPO\ SRel\ TRel))^+
   thus (P, R) \in (symcl (indRelLSTPO SRel TRel))^+
     by simp
 qed
next
 \mathbf{fix} \ P \ Q
 assume (P, Q) \in (symcl (indRelLSTPO SRel TRel))^+
 thus P \sim [\cdot] < SRel, TRel > Q
 proof induct
   \mathbf{fix} \ Q
   assume (P, Q) \in symcl (indRelLSTPO SRel TRel)
   thus P \sim [\cdot] < SRel, TRel > Q
     unfolding symcl-def
   proof auto
     assume P \lesssim [\cdot] L < SRel, TRel > Q
     thus P \sim [\cdot] < SRel, TRel > Q
     proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
           simp add: indRelSTEQ.target)
       case (trans P Q R)
      assume P \sim [\![\cdot]\!] < SRel, TRel > Q and Q \sim [\![\cdot]\!] < SRel, TRel > R
       thus P \sim [\cdot] < SRel, TRel > R
        by (rule indRelSTEQ.trans)
     qed
   next
     assume Q \lesssim [\cdot]L < SRel, TRel > P
     hence Q \sim [\cdot] < SRel, TRel > P
     proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
           simp add: indRelSTEQ.target)
      case (trans P Q R)
      assume P \sim [\![\cdot]\!] < SRel, TRel > Q and Q \sim [\![\cdot]\!] < SRel, TRel > R
      thus P \sim [\![\cdot]\!] < SRel, TRel > R
        by (rule indRelSTEQ.trans)
     qed
     with symmS symmT show P \sim [\cdot] < SRel, TRel > Q
        using indRelSTEQ-symm[of SRel TRel]
        unfolding sym-def
       by blast
   qed
 \mathbf{next}
   case (step \ Q \ R)
   assume P \sim [\cdot] < SRel, TRel > Q
   moreover assume (Q, R) \in symcl (indRelLSTPO SRel TRel)
   hence Q \sim [\cdot] < SRel, TRel > R
     unfolding symcl-def
   proof auto
     assume Q \lesssim [\cdot] L < SRel, TRel > R
```

```
thus Q \sim [\cdot] < SRel, TRel > R
     proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
           simp add: indRelSTEQ.target)
       case (trans P Q R)
       assume P \sim [\![\cdot]\!] < SRel, TRel > Q and Q \sim [\![\cdot]\!] < SRel, TRel > R
       thus P \sim [\![\cdot]\!] < SRel, TRel > R
        by (rule indRelSTEQ.trans)
     qed
   next
     assume R \leq \|\cdot\| L < SRel, TRel > Q
     hence R \sim [\![\cdot]\!] < SRel, TRel > Q
     proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
           simp add: indRelSTEQ.target)
       case (trans P Q R)
       assume P \sim [\cdot] < SRel, TRel > Q and Q \sim [\cdot] < SRel, TRel > R
       thus P \sim [\![\cdot]\!] < SRel, TRel > R
        by (rule indRelSTEQ.trans)
     qed
     with symmS \ symmT \ show \ Q \sim [\cdot] < SRel, TRel > R
        using indRelSTEQ-symm[of SRel TRel]
        unfolding sym-def
       by blast
   qed
   ultimately show P \sim [\cdot] < SRel, TRel > R
     by (rule indRelSTEQ.trans)
  qed
qed
```

If the relations indRelRST, indRelLST, or indRelST contain a pair of target terms, then this pair is also related by the considered target term relation. Similarly a pair of source terms is related by the considered source term relation.

```
lemma (in encoding) indRelRST-to-SRel:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and SP SQ :: 'procS
 assumes rel: Source Term SP \mathbb{R}[\cdot]R < SRel, TRel > Source Term SQ
 shows (SP, SQ) \in SRel
     using rel
   by (simp add: indRelRST.simps)
lemma (in encoding) indRelRST-to-TRel:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes rel: TargetTerm TP \mathbb{R}[\cdot]R < SRel, TRel > TargetTerm TQ
 shows (TP, TQ) \in TRel
     using rel
   by (simp add: indRelRST.simps)
lemma (in encoding) indRelLST-to-SRel:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and SP SQ :: 'procS
 assumes rel: SourceTerm SP \mathbb{R}[\cdot]L < SRel, TRel > SourceTerm SQ
 shows (SP, SQ) \in SRel
     using rel
   by (simp add: indRelLST.simps)
lemma (in encoding) indRelLST-to-TRel:
 fixes SRel :: ('procS \times 'procS) set
```

```
and TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes rel: TargetTerm TP \mathbb{R}[\cdot]L < SRel, TRel > TargetTerm TQ
 shows (TP, TQ) \in TRel
     using rel
   by (simp add: indRelLST.simps)
lemma (in encoding) indRelST-to-SRel:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and SP SQ :: 'procS
 assumes rel: SourceTerm SP \mathbb{R}[\cdot] < SRel, TRel > SourceTerm SQ
 shows (SP, SQ) \in SRel
     using rel
   by (simp add: indRelST.simps)
lemma (in encoding) indRelST-to-TRel:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and TP TQ :: 'procT
 assumes rel: TargetTerm TP \mathcal{R}[\cdot] < SRel, TRel > TargetTerm TQ
 shows (TP, TQ) \in TRel
     using rel
   by (simp add: indRelST.simps)
```

If the relations indRelRSTPO or indRelLSTPO contain a pair of target terms, then this pair is also related by the transitive closure of the considered target term relation. Similarly a pair of source terms is related by the transitive closure of the source term relation. A pair of a source and a target term results from the combination of pairs in the source relation, the target relation, and the encoding function. Note that, because of the symmetry, no similar condition holds for indRelSTEQ.

```
lemma (in encoding) indRelRSTPO-to-SRel-and-TRel:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
    and P Q :: ('procS, 'procT) Proc
  assumes P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q
  shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (SP, SQ) \in SRel^+
    and \forall SP \ TQ. \ SP \in SP \land \ TQ \in TQ \longrightarrow (\exists S. \ (SP, \ S) \in SRel^* \land (\llbracket S \rrbracket, \ TQ) \in TRel^*)
    and \forall TP \ SQ. \ TP \in TP \land SQ \in SQ \longrightarrow False
    and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
       using assms
proof induct
  case (encR S)
  show \forall SP \ SQ. \ SP \in S \ Source Term \ S \land SQ \in S \ Target Term \ ([S]]) \longrightarrow (SP, SQ) \in SRel^+
   and \forall TP \ SQ. \ TP \in T \ Source Term \ S \land SQ \in S \ Target Term \ (\llbracket S \rrbracket) \longrightarrow False
   and \forall TP \ TQ. \ TP \in T \ Source Term \ S \land TQ \in T \ Target Term \ (\llbracket S \rrbracket) \longrightarrow (TP, TQ) \in TRel^+
    by simp+
  have (S, S) \in SRel^*
    by simp
  moreover have (\llbracket S \rrbracket, \llbracket S \rrbracket) \in TRel^*
    by simp
  ultimately show \forall SP \ TQ. \ SP \in S \ Source Term \ S \land TQ \in T \ Target Term \ (\llbracket S \rrbracket) \longrightarrow
                      (\exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TQ) \in TRel^*)
    by blast
next
  case (source S1 S2)
  assume (S1, S2) \in SRel
  thus \forall SP \ SQ. \ SP \in S \ Source Term \ S1 \land SQ \in S \ Source Term \ S2 \longrightarrow (SP, SQ) \in SRel^+
  show \forall SP \ TQ. \ SP \in S \ Source Term \ S1 \ \land \ TQ \in T \ Source Term \ S2 \longrightarrow
         (\exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TQ) \in TRel^*)
```

```
and \forall TP \ SQ. \ TP \in T \ Source Term \ S1 \land SQ \in S \ Source Term \ S2 \longrightarrow False
   and \forall TP \ TQ. \ TP \in T \ Source Term \ S1 \ \land \ TQ \in T \ Source Term \ S2 \longrightarrow (TP, \ TQ) \in TRel^+
   by simp+
next
  case (target T1 T2)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow (SP, SQ) \in SRel^+
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2
        \longrightarrow (\exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TQ) \in TRel^*)
   and \forall TP SQ. TP \in T TargetTerm T1 \land SQ \in S TargetTerm T2 \longrightarrow False
   by simp+
  assume (T1, T2) \in TRel
  thus \forall TP \ TQ. \ TP \in T \ TargetTerm \ T1 \land TQ \in T \ TargetTerm \ T2 \longrightarrow (TP, TQ) \in TRel^+
    by simp
next
  case (trans P Q R)
  assume A1: \forall SP SQ. SP \in SP \land SQ \in SQ \longrightarrow (SP, SQ) \in SRel^+
     and A2: \forall SP \ TQ. \ SP \in SP \land \ TQ \in TQ \longrightarrow (\exists S. \ (SP, \ S) \in SRel^* \land (\llbracket S \rrbracket, \ TQ) \in TRel^*)
     and A3: \forall TP SQ. TP \in TP \land SQ \in SQ \longrightarrow False
     and A_4: \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
     and A5: \forall SQ SR. SQ \in S Q \land SR \in S R \longrightarrow (SQ, SR) \in SRel^+
     and A6: \forall SQ \ TR. \ SQ \in S \ Q \land \ TR \in T \ R \longrightarrow (\exists S. \ (SQ, S) \in SRel^* \land (\llbracket S \rrbracket, \ TR) \in TRel^*)
     and A7: \forall TQ SR. TQ \in T Q \land SR \in S R \longrightarrow False
     and A8: \forall TQ \ TR. \ TQ \in T \ Q \land TR \in T \ R \longrightarrow (TQ, TR) \in TRel^+
  show \forall SP \ SR. \ SP \in SP \land SR \in SR \longrightarrow (SP, SR) \in SRel^+
  proof clarify
    fix SP SR
    assume A9: SP \in SP and A10: SR \in SR
    show (SP, SR) \in SRel^+
    proof (cases Q)
      case (SourceTerm SQ)
      assume A11: SQ \in SQ
      with A1 A9 have (SP, SQ) \in SRel^+
        by simp
      moreover from A5 A10 A11 have (SQ, SR) \in SRel^+
        by simp
      ultimately show (SP, SR) \in SRel^+
        by simp
    next
      case (TargetTerm TQ)
      assume TQ \in TQ
      with A7 A10 show (SP, SR) \in SRel^+
        by blast
    qed
  qed
  show \forall SP \ TR. \ SP \in SP \land TR \in TR
        \longrightarrow (\exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TR) \in TRel^*)
  proof clarify
    \mathbf{fix}\ \mathit{SP}\ \mathit{TR}
    assume A9: SP \in SP and A10: TR \in TR
    show \exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TR) \in TRel^*
    proof (cases Q)
      case (SourceTerm SQ)
      assume A11: SQ \in SQ
      with A6 A10 obtain S where A12: (SQ, S) \in SRel^*
                             and A13: ([S], TR) \in TRel^*
        by blast
      from A1 A9 A11 have (SP, SQ) \in SRel^*
        by simp
      from this A12 have (SP, S) \in SRel^*
        by simp
      with A13 show \exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TR) \in TRel^*
```

```
by blast
   next
     case (TargetTerm TQ)
     assume A11: TQ \in TQ
     with A2 A9 obtain S where A12: (SP, S) \in SRel^*
                        and A13: ([S], TQ) \in TRel^*
      by blast
     from A8 \ A10 \ A11 \ \text{have} \ (TQ, TR) \in TRel^*
      by simp
     with A13 have ([S], TR) \in TRel^*
       by simp
     with A12 show \exists S. (SP, S) \in SRel^* \land (\llbracket S \rrbracket, TR) \in TRel^*
       by blast
   qed
  qed
  show \forall TP SR. TP \in T P \wedge SR \inS R \longrightarrow False
 proof clarify
   \mathbf{fix}\ TP\ SR
   assume A9: TP \in TP and A10: SR \in SR
   show False
   proof (cases Q)
     case (SourceTerm SQ)
     assume SQ \in SQ
     with A3 A9 show False
      by blast
   \mathbf{next}
     case (TargetTerm TQ)
     assume TQ \in TQ
     with A7 A10 show False
       by blast
   qed
  ged
 show \forall TP TR. TP \in T P \wedge TR \in T R \longrightarrow (TP, TR) \in TRel<sup>+</sup>
  proof clarify
   fix TP TR
   assume A9: TP \in TP and A10: TR \in TR
   show (TP, TR) \in TRel^+
   proof (cases Q)
     case (SourceTerm SQ)
     assume SQ \in SQ
     with A3 A9 show (TP, TR) \in TRel^+
       by blast
   next
     case (TargetTerm TQ)
     assume A11: TQ \in T Q
     with A4 A9 have (TP, TQ) \in TRel^+
      by simp
     moreover from A8 \ A10 \ A11 \ \text{have} \ (TQ, \ TR) \in TRel^+
      by simp
     ultimately show (TP, TR) \in TRel^+
      by simp
   \mathbf{qed}
 qed
qed
lemma (in encoding) indRelLSTPO-to-SRel-and-TRel:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and P Q :: ('procS, 'procT) Proc
 assumes P \lesssim [\![\cdot]\!] L < SRel, TRel > Q
 shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (SP, SQ) \in SRel^+
```

```
and \forall SP \ TQ. \ SP \in SP \land TQ \in TQ \longrightarrow False
    and \forall TP \ SQ. \ TP \in T \ P \land SQ \in S \ Q \longrightarrow (\exists S. \ (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SQ) \in SRel^*)
    and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
      using assms
proof induct
  case (encL\ S)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land SQ \in S \ SourceTerm \ S \longrightarrow (SP, SQ) \in SRel^+
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S \longrightarrow False
   and \forall TP \ TQ. \ TP \in T \ TargetTerm \ (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S \longrightarrow (TP, TQ) \in TRel^+
    by simp+
  have (\llbracket S \rrbracket, \llbracket S \rrbracket) \in TRel^*
    by simp
  moreover have (S, S) \in SRel^*
    by simp
  ultimately show \forall TP \ SQ. \ TP \in T \ TargetTerm \ (\llbracket S \rrbracket) \land SQ \in S \ SourceTerm \ S \longrightarrow
                     (\exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SQ) \in SRel^*)
    by blast
next
  case (source S1 S2)
  assume (S1, S2) \in SRel
  thus \forall SP \ SQ. \ SP \in S \ Source Term \ S1 \ \land \ SQ \in S \ Source Term \ S2 \longrightarrow (SP, SQ) \in SRel^+
    by simp
  show \forall SP \ TQ. \ SP \in S \ Source Term \ S1 \ \land \ TQ \in T \ Source Term \ S2 \longrightarrow False
   and \forall TP SQ. TP \in T Source Term S1 \land SQ \in S Source Term S2
         \longrightarrow (\exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SQ) \in SRel^*)
   and \forall TP \ TQ. \ TP \in T \ Source Term \ S1 \land TQ \in T \ Source Term \ S2 \longrightarrow (TP, TQ) \in TRel^+
    by simp+
next
  case (target T1 T2)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow (SP, SQ) \in SRel^+
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2 \longrightarrow False
   and \forall TP \ SQ. \ TP \in T \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2
          \rightarrow (\exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SQ) \in SRel^*)
    by simp+
  assume (T1, T2) \in TRel
  thus \forall TP \ TQ. \ TP \in T \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2 \longrightarrow (TP, \ TQ) \in TRel^+
    by simp
next
  case (trans P Q R)
  assume A1: \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (SP, SQ) \in SRel^+
     and A2: \forall SP \ TQ. \ SP \in SP \land \ TQ \in TQ \longrightarrow False
     and A3: \forall TP SQ. TP \in T P \land SQ \inS Q
                  \rightarrow (\exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SQ) \in SRel^*)
     and A_4: \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel^+
     and A5: \forall SQ SR. SQ \in S Q \land SR \in S R \longrightarrow (SQ, SR) \in SRel^+
     and A6: \forall SQ \ TR. \ SQ \in S \ Q \land \ TR \in T \ R \longrightarrow False
     and A7: \forall TQ \ SR. \ TQ \in T \ Q \land SR \in S \ R \longrightarrow (\exists S. \ (TQ, \llbracket S \rrbracket) \in TRel^* \land (S, SR) \in SRel^*)
     and A8: \forall TQ \ TR. \ TQ \in T \ Q \land TR \in T \ R \longrightarrow (TQ, \ TR) \in TRel^+
  show \forall SP \ SR. \ SP \in S \ P \land SR \in S \ R \longrightarrow (SP, SR) \in SRel^+
  proof clarify
    \mathbf{fix} \ SP \ SR
    assume A9: SP \in SP and A10: SR \in SR
    show (SP, SR) \in SRel^+
    proof (cases Q)
      case (SourceTerm SQ)
      assume A11: SQ \in SQ
      with A1 A9 have (SP, SQ) \in SRel^+
        by simp
      moreover from A5 A10 A11 have (SQ, SR) \in SRel^+
         by simp
      ultimately show (SP, SR) \in SRel^+
```

```
by simp
 next
   case (TargetTerm TQ)
   assume TQ \in TQ
   with A2 A9 show (SP, SR) \in SRel^+
     by blast
 qed
qed
show \forall SP \ TR. \ SP \in SP \land TR \in TR \longrightarrow False
proof clarify
 \mathbf{fix} SP TR
 assume A9: SP \in SP and A10: TR \in TR
 show False
 proof (cases Q)
   case (SourceTerm SQ)
   assume SQ \in SQ
   with A6 A10 show False
     \mathbf{by} blast
 next
   case (TargetTerm TQ)
   assume TQ \in TQ
   with A2 A9 show False
     by blast
 qed
\mathbf{qed}
show \forall TP \ SR. \ TP \in TP \land SR \in SR \longrightarrow (\exists S. \ (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SR) \in SRel^*)
proof clarify
 \mathbf{fix} TP SR
 assume A9: TP \in TP and A10: SR \in SR
 show \exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SR) \in SRel^*
 proof (cases Q)
   case (SourceTerm SQ)
   assume A11: SQ \in SQ
   with A3 A9 obtain S where A12: (TP, [S]) \in TRel^* and A13: (S, SQ) \in SRel^*
     by blast
   from A5 \ A10 \ A11 \ \text{have} \ (SQ, SR) \in SRel^*
     by simp
   with A13 have (S, SR) \in SRel^*
     by simp
   with A12 show \exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SR) \in SRel^*
     by blast
 next
   case (TargetTerm TQ)
   assume A11: TQ \in TQ
   with A7 A10 obtain S where A12: (TQ, \llbracket S \rrbracket) \in TRel^* and A13: (S, SR) \in SRel^*
     by blast
   from A4 A9 A11 have (TP, TQ) \in TRel^*
     by simp
   from this A12 have (TP, [S]) \in TRel^*
   with A13 show \exists S. (TP, \llbracket S \rrbracket) \in TRel^* \land (S, SR) \in SRel^*
     \mathbf{by} blast
 qed
qed
show \forall TP TR. TP \in TP \land TR \in TR \longrightarrow (TP, TR) \in TRel^+
proof clarify
 \mathbf{fix} TP TR
 assume A9: TP \in TP and A10: TR \in TR
 show (TP, TR) \in TRel^+
 proof (cases Q)
   case (SourceTerm SQ)
```

```
assume SQ \in SQ
     with A6 \ A10 \ \text{show} \ (TP, TR) \in TRel^+
      by blast
   next
     case (TargetTerm TQ)
     assume A11: TQ \in TQ
     with A4 A9 have (TP, TQ) \in TRel^+
     moreover from A8 \ A10 \ A11 \ have (TQ, TR) \in TRel^+
      by simp
     ultimately show (TP, TR) \in TRel^+
      by simp
   qed
 qed
qed
If indRelRSTPO, indRelLSTPO, or indRelSTPO preserves barbs then so do the corresponding source
term and target term relations.
lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-preserves-barbs:
 fixes SRel :: ('procS \times 'procS) \ set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes preservation: rel-preserves-barbs Rel (STCalWB SWB TWB)
     and sourceInRel: \forall S1 \ S2. \ (S1, S2) \in SRel \longrightarrow (SourceTerm \ S1, \ SourceTerm \ S2) \in Rel
 shows rel-preserves-barbs SRel SWB
proof clarify
 fix SP SQ a
 assume (SP, SQ) \in SRel
 with sourceInRel have (SourceTerm SP, SourceTerm SQ) \in Rel
   \mathbf{by} blast
 moreover assume SP \downarrow < SWB > a
 hence SourceTerm SP \downarrow .a
   by simp
 ultimately have SourceTerm SQ \downarrow .a
     using preservation preservation-of-barbs-in-barbed-encoding [where Rel=Rel]
   \mathbf{by} blast
 thus SQ\downarrow < SWB > a
   \mathbf{by} \ simp
qed
lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-preserve-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes preservation: rel-preserves-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
 shows rel-preserves-barbs SRel SWB
   and rel-preserves-barbs TRel TWB
proof -
 show rel-preserves-barbs SRel SWB
     using preservation rel-with-source-impl-SRel-preserves-barbs where
                     Rel=indRelRSTPO SRel TRel and SRel=SRel]
   by (simp add: indRelRSTPO.source)
next
 show rel-preserves-barbs TRel TWB
     using preservation rel-with-target-impl-TRel-preserves-barbs where
                     Rel=indRelRSTPO\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelRSTPO.target)
qed
lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-preserve-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
```

```
assumes preservation: rel-preserves-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
 shows rel-preserves-barbs SRel SWB
   and rel-preserves-barbs TRel\ TWB
proof -
 show rel-preserves-barbs SRel SWB
    using preservation rel-with-source-impl-SRel-preserves-barbs[where
                     Rel=indRelLSTPO SRel TRel and SRel=SRel]
   by (simp add: indRelLSTPO.source)
next
 show rel-preserves-barbs TRel TWB
    using preservation rel-with-target-impl-TRel-preserves-barbs where
                     Rel=indRelLSTPO\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelLSTPO.target)
\mathbf{qed}
lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and-TRel-preserve-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes preservation: rel-preserves-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
 shows rel-preserves-barbs SRel SWB
   and rel-preserves-barbs TRel TWB
proof -
 show rel-preserves-barbs SRel SWB
    using preservation rel-with-source-impl-SRel-preserves-barbs[where
                     Rel=indRelSTEQ SRel TRel and SRel=SRel]
   by (simp add: indRelSTEQ.source)
 show rel-preserves-barbs TRel TWB
    {\bf using} \ preservation \ rel-with-target-impl-TRel-preserves-barbs [{\bf where}
                     Rel=indRelSTEQ\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelSTEQ.target)
ged
lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-weakly-preserves-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes preservation: rel-weakly-preserves-barbs Rel (STCalWB SWB TWB)
    and sourceInRel: \forall S1 \ S2. \ (S1, S2) \in SRel \longrightarrow (SourceTerm \ S1, \ SourceTerm \ S2) \in Rel
 shows rel-weakly-preserves-barbs SRel SWB
proof clarify
 fix SP SQ a SP'
 assume (SP, SQ) \in SRel
 with sourceInRel have (SourceTerm SP, SourceTerm SQ) \in Rel
 moreover assume SP \longmapsto (Calculus SWB) * SP' and SP' \downarrow < SWB > a
 hence SourceTerm SP \Downarrow .a
   by blast
 ultimately have SourceTerm SQ \Downarrow .a
     using preservation weak-preservation-of-barbs-in-barbed-encoding [where Rel=Rel]
   by blast
 thus SQ \Downarrow \langle SWB \rangle a
   by simp
qed
lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-weakly-preserve-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes preservation: rel-weakly-preserves-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
 shows rel-weakly-preserves-barbs SRel SWB
   and rel-weakly-preserves-barbs TRel TWB
proof -
```

```
show rel-weakly-preserves-barbs SRel SWB
    using preservation rel-with-source-impl-SRel-weakly-preserves-barbs [where
                     Rel=indRelRSTPO\ SRel\ TRel\ and\ SRel=SRel]
   by (simp add: indRelRSTPO.source)
next
 show rel-weakly-preserves-barbs TRel TWB
    using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
                    Rel=indRelRSTPO SRel TRel and TRel=TRel]
   by (simp add: indRelRSTPO.target)
\mathbf{qed}
lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-weakly-preserve-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes preservation: rel-weakly-preserves-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
 shows rel-weakly-preserves-barbs SRel SWB
   and rel-weakly-preserves-barbs TRel TWB
proof -
 show rel-weakly-preserves-barbs SRel SWB
    using preservation rel-with-source-impl-SRel-weakly-preserves-barbs [where
                    Rel=indRelLSTPO SRel TRel and SRel=SRel]
   by (simp add: indRelLSTPO.source)
next
 show rel-weakly-preserves-barbs TRel TWB
    using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
                     Rel=indRelLSTPO\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelLSTPO.target)
qed
lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and-TRel-weakly-preserve-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes preservation: rel-weakly-preserves-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
 shows rel-weakly-preserves-barbs SRel SWB
   and rel-weakly-preserves-barbs TRel TWB
proof -
 show rel-weakly-preserves-barbs SRel SWB
    \textbf{using} \ \textit{preservation} \ \textit{rel-with-source-impl-SRel-weakly-preserves-barbs} [\textbf{where} \\
                     Rel=indRelSTEQ SRel TRel and SRel=SRel]
   by (simp add: indRelSTEQ.source)
next
 show rel-weakly-preserves-barbs TRel TWB
    using preservation rel-with-target-impl-TRel-weakly-preserves-barbs [where
                     Rel=indRelSTEQ\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelSTEQ.target)
qed
If indRelRSTPO, indRelLSTPO, or indRelSTPO reflects barbs then so do the corresponding source
term and target term relations.
lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-reflects-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes reflection: rel-reflects-barbs Rel (STCalWB SWB TWB)
    and sourceInRel: \forall S1 \ S2. \ (S1, S2) \in SRel \longrightarrow (SourceTerm \ S1, SourceTerm \ S2) \in Rel
 shows rel-reflects-barbs SRel SWB
proof clarify
 fix SP SQ a
 assume (SP, SQ) \in SRel
 with sourceInRel have (SourceTerm SP, SourceTerm SQ) \in Rel
   by blast
```

```
moreover assume SQ\downarrow < SWB > a
  hence SourceTerm SQ \downarrow .a
   by simp
 ultimately have SourceTerm SP \downarrow .a
     using reflection reflection-of-barbs-in-barbed-encoding [where Rel=Rel]
  thus SP \downarrow < SWB > a
   by simp
qed
lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-reflect-barbs:
 \mathbf{fixes}\ \mathit{SRel} :: ('\mathit{procS} \times '\mathit{procS})\ \mathit{set}
   and TRel :: ('procT \times 'procT) set
  assumes reflection: rel-reflects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
  shows rel-reflects-barbs SRel SWB
   and rel-reflects-barbs TRel TWB
proof -
  show rel-reflects-barbs SRel SWB
     \mathbf{using}\ reflection\ rel-with-source-impl-SRel-reflects-barbs[\mathbf{where}]
                     Rel=indRelRSTPO SRel TRel and SRel=SRel]
   by (simp add: indRelRSTPO.source)
next
  show rel-reflects-barbs TRel TWB
     using reflection rel-with-target-impl-TRel-reflects-barbs[where
                     Rel=indRelRSTPO\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelRSTPO.target)
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelLSTPO\text{-}impl\text{-}SRel\text{-}and\text{-}TRel\text{-}reflect\text{-}barbs:}
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes reflection: rel-reflects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
  shows rel-reflects-barbs SRel SWB
   and rel-reflects-barbs TRel TWB
proof -
  show rel-reflects-barbs SRel SWB
     \mathbf{using} \ \mathit{reflection} \ \mathit{rel-with-source-impl-SRel-reflects-barbs} [\mathbf{where}
                     Rel=indRelLSTPO\ SRel\ TRel\ and\ SRel=SRel]
   by (simp add: indRelLSTPO.source)
  show rel-reflects-barbs TRel TWB
     using reflection rel-with-target-impl-TRel-reflects-barbs[where
                     Rel=indRelLSTPO\ SRel\ TRel\ and\ TRel=TRel]
   by (simp add: indRelLSTPO.target)
qed
lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and-TRel-reflect-barbs:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes reflection: rel-reflects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
  shows rel-reflects-barbs SRel SWB
   and rel-reflects-barbs TRel TWB
proof -
  show rel-reflects-barbs SRel SWB
     \mathbf{using}\ reflection\ rel-with-source-impl-SRel-reflects-barbs[\mathbf{where}]
                     Rel=indRelSTEQ\ SRel\ TRel\ and\ SRel=SRel]
   by (simp add: indRelSTEQ.source)
next
  show rel-reflects-barbs TRel TWB
     \mathbf{using}\ \mathit{reflection}\ \mathit{rel-with-target-impl-TRel-reflects-barbs}[\mathbf{where}
                     Rel=indRelSTEQ\ SRel\ TRel\ and\ TRel=TRel]
```

```
by (simp add: indRelSTEQ.target)
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ rel\text{-}with\text{-}source\text{-}impl\text{-}SRel\text{-}weakly\text{-}reflects\text{-}barbs\text{:}}
  fixes SRel :: ('procS \times 'procS) set
    and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes reflection: rel-weakly-reflects-barbs Rel (STCalWB SWB TWB)
     and sourceInRel: \forall S1 \ S2. \ (S1, S2) \in SRel \longrightarrow (SourceTerm \ S1, SourceTerm \ S2) \in Rel
  shows rel-weakly-reflects-barbs SRel SWB
proof clarify
  fix SP SQ a SQ'
  assume (SP, SQ) \in SRel
  with sourceInRel have (SourceTerm SP, SourceTerm SQ) \in Rel
  moreover assume SQ \longmapsto (Calculus SWB) * SQ' and SQ' \downarrow < SWB > a
  hence SourceTerm SQ \Downarrow .a
   by blast
  ultimately have SourceTerm SP \Downarrow .a
      using reflection weak-reflection-of-barbs-in-barbed-encoding [where Rel=Rel]
   bv blast
  thus SP \Downarrow < SWB > a
    by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ ind RelRSTPO\text{-}impl\text{-}SRel\text{-}and\text{-}TRel\text{-}weakly\text{-}reflect\text{-}barbs:}
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
  assumes reflection: rel-weakly-reflects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
  shows rel-weakly-reflects-barbs SRel SWB
    and rel-weakly-reflects-barbs TRel TWB
proof -
  show rel-weakly-reflects-barbs SRel SWB
     \mathbf{using}\ reflection\ rel-with-source-impl-SRel-weakly-reflects-barbs [\mathbf{where}
                       Rel=indRelRSTPO\ SRel\ TRel\ and\ SRel=SRel]
   by (simp add: indRelRSTPO.source)
next
  show rel-weakly-reflects-barbs TRel TWB
     \textbf{using} \ \textit{reflection} \ \textit{rel-with-target-impl-TRel-weakly-reflects-barbs} [\textbf{where} \\
                         Rel=indRelRSTPO\ SRel\ TRel\ and\ TRel=TRel]
    by (simp add: indRelRSTPO.target)
qed
lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-weakly-reflect-barbs:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
  assumes reflection: rel-weakly-reflects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
  shows rel-weakly-reflects-barbs SRel SWB
   and rel-weakly-reflects-barbs TRel TWB
proof -
  show rel-weakly-reflects-barbs SRel SWB
     \mathbf{using}\ reflection\ rel-with-source-impl-SRel-weakly-reflects-barbs [\mathbf{where}
                       Rel=indRelLSTPO\ SRel\ TRel\ and\ SRel=SRel]
   by (simp add: indRelLSTPO.source)
next
  show rel-weakly-reflects-barbs TRel TWB
     \textbf{using} \ \textit{reflection} \ \textit{rel-with-target-impl-TRel-weakly-reflects-barbs} [\textbf{where} \\
                       Rel=indRelLSTPO\ SRel\ TRel\ and\ TRel=TRel]
    by (simp add: indRelLSTPO.target)
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelSTEQ\text{-}impl\text{-}SRel\text{-}and\text{-}TRel\text{-}weakly\text{-}reflect\text{-}barbs:}
```

```
fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes reflection: rel-weakly-reflects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
 shows rel-weakly-reflects-barbs SRel SWB
   and rel-weakly-reflects-barbs TRel TWB
proof -
 show rel-weakly-reflects-barbs SRel SWB
    \mathbf{using}\ reflection\ rel-with-source-impl-SRel-weakly-reflects-barbs [\mathbf{where}
                   Rel=indRelSTEQ SRel TRel and SRel=SRel]
   by (simp add: indRelSTEQ.source)
next
 show rel-weakly-reflects-barbs TRel TWB
    \mathbf{using}\ reflection\ rel-with-target-impl-TRel-weakly-reflects-barbs[\mathbf{where}]
                   Rel = indRelSTEQ \ SRel \ TRel \ and \ TRel = TRel
   by (simp add: indRelSTEQ.target)
qed
If indRelRSTPO, indRelLSTPO, or indRelSTPO respects barbs then so do the corresponding source
term and target term relations.
lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-respect-barbs:
 fixes SRel :: ('procS \times 'procS) \ set
   and TRel :: ('procT \times 'procT) set
 assumes respection: rel-respects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
 shows rel-respects-barbs SRel SWB
   and rel-respects-barbs TRel TWB
proof -
 {\bf show}\ \textit{rel-respects-barbs}\ \textit{SRel}\ \textit{SWB}
    using respection
         indRelRSTPO-impl-SRel-and-TRel-preserve-barbs(1) [where SRel=SRel and TRel=TRel]
         indRelRSTPO-impl-SRel-and-TRel-reflect-barbs(1) [where SRel=SRel and TRel=TRel]
   by blast
next
 show rel-respects-barbs TRel TWB
    using respection
         indRelRSTPO-impl-SRel-and-TRel-preserve-barbs(2)[where SRel=SRel and TRel=TRel]
         indRelRSTPO-impl-SRel-and-TRel-reflect-barbs(2)[where SRel=SRel and TRel=TRel]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-respect-barbs:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes respection: rel-respects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
 shows rel-respects-barbs SRel SWB
   and rel-respects-barbs TRel TWB
proof -
 show rel-respects-barbs SRel SWB
    using respection
         indRelLSTPO-impl-SRel-and-TRel-preserve-barbs(1) [where SRel=SRel and TRel=TRel]
         indRelLSTPO-impl-SRel-and-TRel-reflect-barbs(1)[where SRel-SRel and TRel-TRel]
   by blast
\mathbf{next}
 show rel-respects-barbs TRel TWB
    using respection
         indRelLSTPO-impl-SRel-and-TRel-preserve-barbs(2)[where SRel=SRel and TRel=TRel]
         indRelLSTPO-impl-SRel-and-TRel-reflect-barbs(2)[where SRel-SRel and TRel-TRel]
   by blast
qed
lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and-TRel-respect-barbs:
```

```
fixes SRel :: ('procS \times 'procS) set
          and TRel :: ('procT \times 'procT) set
     assumes respection: rel-respects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
     shows rel-respects-barbs SRel SWB
         and rel-respects-barbs TRel TWB
proof -
     show rel-respects-barbs SRel SWB
              using respection
                             indRelSTEQ-impl-SRel-and-TRel-preserve-barbs(1)[where SRel-SRel and TRel-TRel]
                             indRelSTEQ-impl-SRel-and-TRel-reflect-barbs(1)[where SRel-SRel and TRel-TRel]
          by blast
next
     show rel-respects-barbs TRel TWB
              using respection
                             indRelSTEQ-impl-SRel-and-TRel-preserve-barbs(2)[where SRel-SRel and TRel-TRel]
                             indRelSTEQ-impl-SRel-and-TRel-reflect-barbs(2)[where SRel-SRel and TRel-TRel]
         by blast
qed
lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-weakly-respect-barbs:
     fixes SRel :: ('procS \times 'procS) set
         and TRel :: ('procT \times 'procT) set
     assumes respection: rel-weakly-respects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
     shows rel-weakly-respects-barbs SRel SWB
          and rel-weakly-respects-barbs TRel TWB
proof -
     show rel-weakly-respects-barbs SRel SWB
              \textbf{using} \ \textit{respection} \ ind \textit{RelRSTPO-impl-SRel-and-TRel-weakly-preserve-barbs} (1) [\textbf{where} \ \textit{SRel} = \textit{SRel} = \textit{SRel} + \textit{SR
                                                          and TRel = TRel
                             indRelRSTPO-impl-SRel-and-TRel-weakly-reflect-barbs(1)[where SRel=SRel
                                  and TRel = TRel
          by blast
next
     show rel-weakly-respects-barbs TRel TWB
              using respection indRelRSTPO-impl-SRel-and-TRel-weakly-preserve-barbs (2) [where SRel=SRel
                                                          and TRel = TRel
                             ind RelRSTPO-impl-SRel-and-TRel-weakly-reflect-barbs (2) [\textbf{where} \ SRel=SRel-Arthough SRel-Arthough SRel-Artho
                                  and TRel = TRel
          by blast
qed
lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-weakly-respect-barbs:
     fixes SRel :: ('procS \times 'procS) set
          and TRel :: ('procT \times 'procT) set
     assumes respection: rel-weakly-respects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
     shows rel-weakly-respects-barbs SRel SWB
         and rel-weakly-respects-barbs TRel TWB
proof -
     show rel-weakly-respects-barbs SRel SWB
              \textbf{using} \ \textit{respection} \ ind \textit{RelLSTPO-impl-SRel-and-TRel-weakly-preserve-barbs} (1) \\ [\textbf{where} \ \textit{SRel} = \textit{SRel} \\ ]
                                                          and TRel = TRel
                             indRelLSTPO-impl-SRel-and-TRel-weakly-reflect-barbs(1)[where SRel-SRel
                                  and TRel = TRel
         by blast
next
     show rel-weakly-respects-barbs TRel TWB
              and TRel = TRel
                             indRelLSTPO-impl-SRel-and-TRel-weakly-reflect-barbs(2)[where SRel=SRel
                                  and TRel = TRel
         by blast
```

```
qed
```

```
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ indRelSTEQ\text{-}impl\text{-}SRel\text{-}and\text{-}TRel\text{-}weakly\text{-}respect\text{-}barbs:}
  fixes SRel :: ('procS \times 'procS) \ set
   and TRel :: ('procT \times 'procT) set
  assumes respection: rel-weakly-respects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
 shows rel-weakly-respects-barbs SRel SWB
   and rel-weakly-respects-barbs TRel TWB
proof -
  show rel-weakly-respects-barbs SRel SWB
     using respection indRelSTEQ-impl-SRel-and-TRel-weakly-preserve-barbs(1)[where SRel-SRel
                      and TRel = TRel
           indRelSTEQ-impl-SRel-and-TRel-weakly-reflect-barbs(1)[where SRel=SRel
            and TRel = TRel
   by blast
next
  show rel-weakly-respects-barbs TRel TWB
     \textbf{using} \ respection \ ind RelSTEQ-impl-SRel- and -TRel-weakly-preserve-barbs (2) [\textbf{where} \ SRel=SRel] \\
                      and TRel = TRel
           indRelSTEQ-impl-SRel-and-TRel-weakly-reflect-barbs(2)[where SRel=SRel
            and TRel = TRel
   by blast
qed
If TRel is reflexive then ind relRTPO is a subrelation of indRelTEQ. If SRel is reflexive then indRel-
RTPO is a subrelation of indRelRTPO. Moreover, indRelRSTPO is a subrelation of indRelSTEQ.
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ ind RelRTPO\text{-}to\text{-}ind RelTEQ:
  fixes TRel :: ('procT \times 'procT) set
   and P \ Q :: ('procS, 'procT) \ Proc
 assumes rel: P \lesssim [\![\cdot]\!]RT < TRel > Q
     and reflT: refl TRel
 shows P \sim [\![\cdot]\!] T < TRel > Q
   using rel
proof induct
  case (encR S)
 show Source Term S \sim \llbracket \cdot \rrbracket T < TRel > Target Term (\llbracket S \rrbracket)
   by (rule\ indRelTEQ.encR)
next
  case (source S)
  from reflT show SourceTerm S \sim [\![\cdot]\!] T < TRel > SourceTerm S
     using indRelTEQ-refl[of TRel]
     unfolding refl-on-def
   by simp
next
  case (target T1 T2)
 assume (T1, T2) \in TRel
  thus TargetTerm\ T1 \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm\ T2
   by (rule indRelTEQ.target)
\mathbf{next}
  case (trans TP TQ TR)
 assume TP \sim \llbracket \cdot \rrbracket T < TRel > TQ and TQ \sim \llbracket \cdot \rrbracket T < TRel > TR
 thus TP \sim \llbracket \cdot \rrbracket T < TRel > TR
   by (rule indRelTEQ.trans)
lemma (in encoding) indRelRTPO-to-indRelRSTPO:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and P Q :: ('procS, 'procT) Proc
  assumes rel: P \lesssim ||RT < TRel> Q
```

```
and reflS: refl SRel
 \mathbf{shows}\ P \lesssim \llbracket \cdot \rrbracket R {<} \mathit{SRel}, \mathit{TRel} {>}\ Q
   using rel
proof induct
 case (encR S)
 show Source Term S \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Target Term (\llbracket S \rrbracket)
   by (rule indRelRSTPO.encR)
  case (source S)
 from reflS show SourceTerm S \leq \|\cdot\| R < SRel, TRel > SourceTerm S
     unfolding refl-on-def
   by (simp add: indRelRSTPO.source)
next
  case (target T1 T2)
 assume (T1, T2) \in TRel
  thus TargetTerm\ T1 \leq [\![\cdot]\!]R < SRel, TRel > TargetTerm\ T2
   \mathbf{by}\ (\mathit{rule}\ \mathit{indRelRSTPO}.target)
next
  case (trans P Q R)
 assume P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q and Q \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > R
 thus P \lesssim [\cdot]R < SRel, TRel > R
   by (rule indRelRSTPO.trans)
qed
lemma (in encoding) indRelRSTPO-to-indRelSTEQ:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and P Q :: ('procS, 'procT) Proc
  assumes rel: P \leq \|\cdot\| R < SRel, TRel > Q
 shows P \sim [\cdot] < SRel, TRel > Q
   using rel
proof induct
  case (encR S)
 show Source Term S \sim [\![\cdot]\!] < SRel, TRel > Target Term ([\![S]\!])
   by (rule indRelSTEQ.encR)
next
  case (source S1 S2)
 assume (S1, S2) \in SRel
  thus Source Term S1 \sim [\cdot] < SRel, TRel > Source Term S2
   by (rule indRelSTEQ.source)
\mathbf{next}
  case (target T1 T2)
 assume (T1, T2) \in TRel
 thus TargetTerm\ T1 \sim [\cdot] < SRel, TRel > TargetTerm\ T2
   by (rule indRelSTEQ.target)
next
 case (trans P Q R)
 assume P \sim [\![\cdot]\!] < SRel, TRel > Q and Q \sim [\![\cdot]\!] < SRel, TRel > R
 thus P \sim \llbracket \cdot \rrbracket < SRel, TRel > R
   by (rule\ indRelSTEQ.trans)
If indRelRTPO is a bisimulation and SRel is a reflexive bisimulation then also indRelRSTPO is a
bisimulation.
\textbf{lemma (in } encoding) \ ind RelRTPO-weak-reduction-bisimulation-impl-ind RelRSTPO-bisimulation:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes bisimT: weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     and bisimS: weak-reduction-bisimulation SRel Source
     and reflS: refl SRel
```

```
shows weak-reduction-bisimulation (indRelRSTPO SRel TRel) (STCal Source Target)
proof auto
 fix P Q P'
  assume P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q and P \longmapsto (STCal\ Source\ Target) * P'
  thus \exists Q'. Q \longmapsto (STCal\ Source\ Target) * Q' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
  proof (induct arbitrary: P')
   case (encR S)
   have Source Term S \lesssim \llbracket \cdot \rrbracket RT < TRel > Target Term (\llbracket S \rrbracket)
     by (rule indRelRTPO.encR)
   moreover assume SourceTerm\ S \longmapsto (STCal\ Source\ Target) *\ P'
   ultimately obtain Q' where A1: TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)*\ Q'
                          and A2: P' \lesssim ||RT < TRel> Q'
        using bisimT
     by blast
   from reflS A2 have P' \lesssim [\cdot]R < SRel, TRel > Q'
     by (simp add: indRelRTPO-to-indRelRSTPO)
   with A1 show \exists Q'. TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal Source Target)* Q' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
     by blast
  next
   case (source S1 S2)
   assume SourceTerm S1 \longmapsto (STCal\ Source\ Target) * P'
   from this obtain S1' where B1: S1' \inS P' and B2: S1 \longmapstoSource* S1'
     by (auto simp add: STCal-steps(1))
   assume (S1, S2) \in SRel
   with B2 bisimS obtain S2' where B3: S2 \longrightarrow Source* S2' and B4: (S1', S2') \in SRel
     by blast
   from B3 have SourceTerm S2 \longmapsto (STCal Source Target)* (SourceTerm S2')
     by (simp \ add: STCal\text{-}steps(1))
   moreover from B1 B4 have P' \leq ||\cdot|| R < SRel, TRel > Source Term S2'
     by (simp add: indRelRSTPO.source)
   ultimately show \exists Q'. Source Term S2 \longmapsto (STCal\ Source\ Target) * Q' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
     by blast
  \mathbf{next}
   case (target T1 T2)
   assume (T1, T2) \in TRel
   hence TargetTerm\ T1 \lesssim [\cdot]RT < TRel > TargetTerm\ T2
     by (rule indRelRTPO.target)
   moreover assume TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)*\ P'
   ultimately obtain Q' where C1: TargetTerm T2 \longmapsto (STCal\ Source\ Target) * Q'
                          and C2: P' \lesssim [\cdot]RT < TRel > Q'
       using bisimT
     by blast
   from reflS C2 have P' \leq ||\cdot||R < SRel, TRel > Q'
     by (simp add: indRelRTPO-to-indRelRSTPO)
   with C1 show \exists Q'. TargetTerm T2 \longmapsto (STCal\ Source\ Target)*\ Q' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
     by blast
  next
   case (trans P Q R)
   assume P \longmapsto (STCal\ Source\ Target) * P'
      and \bigwedge P'. P \longmapsto (STCal\ Source\ Target) * P'
             \Rightarrow \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) * Q' \land P' \leq \llbracket \cdot \rrbracket R < SRel, TRel > Q'
   from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target) * Q' and D2: P' \leq [\![\cdot]\!]R < SRel, TRel > Q'
     by blast
   assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target) * Q'
           \implies \exists R'. R \longmapsto (STCal \ Source \ Target) * R' \land Q' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > R'
   with D1 obtain R' where D3: R \longmapsto (STCal\ Source\ Target) * R' and D4: Q' \lesssim \|\cdot\| R < SRel, TRel > R'
   from D2 D4 have P' \leq ||\cdot||R < SRel, TRel > R'
     by (rule\ indRelRSTPO.trans)
   with D3 show \exists R'. R \longmapsto (STCal\ Source\ Target) * R' \land P' \lesssim [\![\cdot]\!]R < SRel, TRel > R'
     by blast
```

```
qed
\mathbf{next}
  fix P Q Q'
  \mathbf{assume}\ P \lesssim \llbracket \cdot \rrbracket R < SRel, TRel >\ Q\ \mathbf{and}\ \ Q \longmapsto (STCal\ Source\ Target) *\ Q'
  thus \exists P'. P \longmapsto (STCal \ Source \ Target) * P' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
  proof (induct arbitrary: Q')
    case (encR S)
    have Source Term S \lesssim \llbracket \cdot \rrbracket RT < TRel > Target Term (\llbracket S \rrbracket)
      by (rule indRelRTPO.encR)
    moreover assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* Q'
    ultimately obtain P' where E1: SourceTerm\ S \longmapsto (STCal\ Source\ Target) *\ P'
                           and E2: P' \lesssim [\cdot]RT < TRel > Q'
        using bisimT
      by blast
    from reflS E2 have P' \lesssim [\cdot]R < SRel, TRel > Q'
      by (simp add: indRelRTPO-to-indRelRSTPO)
    with E1 show \exists P'. Source Term S \longmapsto (STCal\ Source\ Target) * P' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
      by blast
  next
    case (source S1 S2)
    assume SourceTerm S2 \longmapsto (STCal\ Source\ Target) * Q'
    from this obtain S2' where F1: S2' \in S Q' and F2: S2 \longrightarrow Source* S2'
      by (auto simp add: STCal-steps(1))
    assume (S1, S2) \in SRel
    with F2 bisimS obtain S1' where F3: S1 \longrightarrow Source* S1' and F4: (S1', S2') \in SRel
      by blast
    from F3 have SourceTerm S1 \longmapsto (STCal Source Target)* (SourceTerm S1')
      by (simp \ add: STCal\text{-}steps(1))
    moreover from F1 F4 have SourceTerm S1' \leq \|\cdot\|R \leq SRel, TRel > Q'
      by (simp add: indRelRSTPO.source)
    ultimately show \exists P'. Source Term S1 \longmapsto (STCal Source Target)* P' \land P' \leq \llbracket \cdot \rrbracket R < SRel, TRel > Q'
      by blast
  \mathbf{next}
    case (target T1 T2)
    assume (T1, T2) \in TRel
    hence TargetTerm\ T1 \lesssim [\cdot]RT < TRel > TargetTerm\ T2
      by (rule indRelRTPO.target)
    moreover assume TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)*\ Q'
    ultimately obtain P' where G1: TargetTerm T1 \longmapsto (STCal Source Target)* P'
                           and G2: P' \lesssim [\cdot]RT < TRel > Q'
        using bisimT
      by blast
    from reflS G2 have P' \leq \|\cdot\| R < SRel, TRel > Q'
      by (simp add: indRelRTPO-to-indRelRSTPO)
    with G1 show \exists P'. TargetTerm T1 \longmapsto (STCal Source Target)* P' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
      by blast
  next
    case (trans P Q R R')
    assume R \longmapsto (STCal\ Source\ Target) * R'
       and \bigwedge R'. R \longmapsto (STCal\ Source\ Target) * R'
              \Rightarrow \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) * Q' \land Q' \leq \llbracket \cdot \rrbracket R < SRel, TRel > R'
    from this obtain Q' where H1: Q \longmapsto (STCal\ Source\ Target) * Q' and H2: Q' \lesssim \|\cdot\| R < SRel, TRel > R'
      by blast
    assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target) * Q'
            \Longrightarrow \exists P'. P \longmapsto (STCal \ Source \ Target) * P' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
    with H1 obtain P' where H3: P \longmapsto (STCal\ Source\ Target) * P' and H4: P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > Q'
    from H4 H2 have P' \leq ||\cdot||R < SRel, TRel > R'
      \mathbf{by}\ (\mathit{rule}\ indRelRSTPO.trans)
    with H3 show \exists P'. P \longmapsto (STCal\ Source\ Target) * P' \land P' \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > R'
      by blast
```

```
qed
qed
end
theory SuccessSensitiveness
imports SourceTargetRelation
begin
```

6 Success Sensitiveness and Barbs

To compare the abstract behavior of two terms, often some notion of success or successful termination is used. Daniele Gorla assumes a constant process (similar to the empty process) that represents successful termination in order to compare the behavior of source terms with their literal translations. Then an encoding is success sensitive if, for all source terms S, S reaches success iff the translation of S reaches success. Successful termination can be considered as some special kind of barb. Accordingly we generalize successful termination to the respection of an arbitrary subset of barbs. An encoding respects a set of barbs if, for every source term S and all considered barbs a, S reaches a iff the translation of S reaches a.

```
abbreviation (in encoding-wrt-barbs) enc-weakly-preserves-barb-set :: 'barbs set \Rightarrow bool where
  enc-weakly-preserves-barb-set Barbs \equiv enc-preserves-binary-pred (\lambda P \ a. \ a \in Barbs \land P \Downarrow a)
abbreviation (in encoding-wrt-barbs) enc-weakly-preserves-barbs :: bool where
  enc\text{-}weakly\text{-}preserves\text{-}barbs \equiv enc\text{-}preserves\text{-}binary\text{-}pred \ (\lambda P\ a.\ P \Downarrow .a)
lemma (in encoding-wrt-barbs) enc-weakly-preserves-barbs-and-barb-set:
  shows enc-weakly-preserves-barbs = (\forall Barbs. \ enc-weakly-preserves-barb-set Barbs)
    by blast
abbreviation (in encoding-wrt-barbs) enc-weakly-reflects-barb-set :: 'barbs set \Rightarrow bool where
  enc-weakly-reflects-barb-set\ Barbs \equiv enc-reflects-binary-pred\ (\lambda P\ a.\ a \in Barbs \land P \Downarrow .a)
abbreviation (in encoding-wrt-barbs) enc-weakly-reflects-barbs :: bool where
  enc\text{-}weakly\text{-}reflects\text{-}barbs \equiv enc\text{-}reflects\text{-}binary\text{-}pred \ (\lambda P\ a.\ P \Downarrow .a)
lemma (in encoding-wrt-barbs) enc-weakly-reflects-barbs-and-barb-set:
  shows enc-weakly-reflects-barbs = (\forall Barbs. \ enc-weakly-reflects-barb-set Barbs)
    by blast
abbreviation (in encoding-wrt-barbs) enc-weakly-respects-barb-set :: 'barbs set \Rightarrow bool where
  enc-weakly-respects-barb-set Barbs \equiv
   enc-weakly-preserves-barb-set Barbs \wedge enc-weakly-reflects-barb-set Barbs
abbreviation (in encoding-wrt-barbs) enc-weakly-respects-barbs :: bool where
  enc\text{-}weakly\text{-}respects\text{-}barbs \equiv enc\text{-}weakly\text{-}preserves\text{-}barbs \land enc\text{-}weakly\text{-}reflects\text{-}barbs
lemma (in encoding-wrt-barbs) enc-weakly-respects-barbs-and-barb-set:
  shows enc-weakly-respects-barbs = (\forall Barbs. \ enc-weakly-respects-barb-set Barbs)
proof -
  have (\forall Barbs. enc-weakly-respects-barb-set Barbs)
        = (\forall Barbs. \ (\forall S \ x. \ x \in Barbs \land S \Downarrow < SWB > x \longrightarrow \llbracket S \rrbracket \Downarrow < TWB > x)
          \land (\forall S \ x. \ x \in Barbs \land \llbracket S \rrbracket \Downarrow < TWB > x \longrightarrow S \Downarrow < SWB > x))
    by simp
  hence (\forall Barbs. enc-weakly-respects-barb-set Barbs)
        = ((\forall Barbs. enc-weakly-preserves-barb-set Barbs)
            \land (\forall Barbs. \ enc\text{-}weakly\text{-}reflects\text{-}barb\text{-}set \ Barbs))
    apply simp by fast
  thus ?thesis
    apply simp by blast
```

qed

An encoding strongly respects some set of barbs if, for every source term S and all considered barbs a, S has a iff the translation of S has a. abbreviation (in encoding-wrt-barbs) enc-preserves-barb-set :: 'barbs set \Rightarrow bool where enc-preserves-barb-set $Barbs \equiv enc$ -preserves-binary-pred ($\lambda P \ a. \ a \in Barbs \land P \downarrow .a$) abbreviation (in encoding-wrt-barbs) enc-preserves-barbs :: bool where enc-preserves-barbs $\equiv enc$ -preserves-binary-pred ($\lambda P \ a. \ P \downarrow .a$) **lemma** (in encoding-wrt-barbs) enc-preserves-barbs-and-barb-set: **shows** enc-preserves-barbs = $(\forall Barbs. \ enc$ -preserves-barb-set Barbs)by blast abbreviation (in encoding-wrt-barbs) enc-reflects-barb-set :: 'barbs set \Rightarrow bool where enc-reflects-barb-set $Barbs \equiv enc$ -reflects-binary-pred ($\lambda P \ a. \ a \in Barbs \land P \downarrow .a$) abbreviation (in encoding-wrt-barbs) enc-reflects-barbs :: bool where $enc\text{-reflects-barbs} \equiv enc\text{-reflects-binary-pred} \ (\lambda P \ a. \ P \downarrow .a)$ **lemma** (in encoding-wrt-barbs) enc-reflects-barbs-and-barb-set: **shows** $enc\text{-reflects-barbs} = (\forall Barbs. enc\text{-reflects-barb-set } Barbs)$ **by** blast abbreviation (in encoding-wrt-barbs) enc-respects-barb-set :: 'barbs set \Rightarrow bool where enc-respects-barb-set $Barbs \equiv enc$ -preserves-barb-set $Barbs \wedge enc$ -reflects-barb-set Barbsabbreviation (in encoding-wrt-barbs) enc-respects-barbs :: bool where enc-respects-barbs $\equiv enc$ -preserves-barbs $\land enc$ -reflects-barbs $\mathbf{lemma} \ (\mathbf{in} \ \mathit{encoding\text{-}wrt\text{-}barbs}) \ \mathit{enc\text{-}respects\text{-}barbs\text{-}and\text{-}barb\text{-}set} \colon$ **shows** $enc\text{-}respects\text{-}barbs = (\forall Barbs. enc\text{-}respects\text{-}barb\text{-}set Barbs)$ proof **have** $(\forall Barbs. enc-respects-barb-set Barbs)$ $= ((\forall Barbs. enc-preserves-barb-set Barbs))$ $\land (\forall Barbs. \ enc\text{-reflects-barb-set} \ Barbs))$ apply simp by fast thus ?thesis apply simp by blast qed An encoding (weakly) preserves barbs iff (1) there exists a relation, like indRelR, that relates source terms and their literal translations and preserves (reachability/) existence of barbs, or (2) there exists a relation, like indRelL, that relates literal translations and their source terms and reflects (reachability/)existence of barbs. lemma (in encoding-wrt-barbs) enc-weakly-preserves-barb-set-iff-source-target-rel: fixes Barbs :: 'barbs set and $TRel :: ('procT \times 'procT) set$ shows enc-weakly-preserves-barb-set Barbs $= (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)$ \land rel-weakly-preserves-barb-set Rel (STCalWB SWB TWB) Barbs) $\textbf{using} \ enc\text{-}preserves\text{-}binary\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}preserves\text{-}binary\text{-}pred\text{-}[\textbf{where}]$ $Pred = \lambda P \ a. \ a \in Barbs \land P \Downarrow \langle STCalWB \ SWB \ TWB > a \mid STCalWB \ reaches BarbST$ by simp**lemma** (in encoding-wrt-barbs) enc-weakly-preserves-barbs-iff-source-target-rel:

shows enc-weakly-preserves-barbs

 $= (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel) \land rel-weakly-preserves-barbs Rel (STCalWB SWB TWB))$

 $\textbf{using} \ enc\text{-}preserves\text{-}binary\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}preserves\text{-}binary\text{-}pred\text{[}\textbf{where}$

```
Pred = \lambda P \ a. \ P \Downarrow \langle STCalWB \ SWB \ TWB > a \mid STCalWB - reaches BarbST
   by simp
lemma (in encoding-wrt-barbs) enc-preserves-barb-set-iff-source-target-rel:
  fixes Barbs :: 'barbs set
  shows enc-preserves-barb-set Barbs
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land rel-preserves-barb-set Rel (STCalWB SWB TWB) Barbs)
     \mathbf{using}\ enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred [\mathbf{where}
            Pred = \lambda P \ a. \ a \in Barbs \land P \downarrow < STCalWB \ SWB \ TWB > a] \ STCalWB-hasBarbST
   by simp
lemma (in encoding-wrt-barbs) enc-preserves-barbs-iff-source-target-rel:
  shows enc-preserves-barbs
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land rel-preserves-barbs Rel (STCalWB SWB TWB))
     using enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred[where
            Pred = \lambda P \ a. \ P \downarrow < STCalWB \ SWB \ TWB > a] \ STCalWB-hasBarbST
   by simp
An encoding (weakly) reflects barbs iff (1) there exists a relation, like indRelR, that relates source
terms and their literal translations and reflects (reachability/) existence of barbs, or (2) there exists a
relation, like indRelL, that relates literal translations and their source terms and preserves (reachabil-
ity/)existence of barbs.
lemma (in encoding-wrt-barbs) enc-weakly-reflects-barb-set-iff-source-target-rel:
  fixes Barbs :: 'barbs set
  shows enc-weakly-reflects-barb-set Barbs
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land rel-weakly-reflects-barb-set Rel (STCalWB SWB TWB) Barbs)
     \mathbf{using}\ \mathit{enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred} [\mathbf{where}\ \mathit{var}]
            Pred = \lambda P \ a. \ a \in Barbs \land P \Downarrow \langle STCalWB \ SWB \ TWB > a] \ STCalWB-reachesBarbST
   by simp
lemma (in encoding-wrt-barbs) enc-weakly-reflects-barbs-iff-source-target-rel:
  shows enc-weakly-reflects-barbs
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land rel-weakly-reflects-barbs Rel (STCalWB SWB TWB))
     using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred[where
            Pred = \lambda P \ a. \ P \Downarrow \langle STCalWB \ SWB \ TWB \rangle a \mid STCalWB - reaches BarbST
   by simp
lemma (in encoding-wrt-barbs) enc-reflects-barb-set-iff-source-target-rel:
  fixes Barbs :: 'barbs set
  shows enc-reflects-barb-set Barbs
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           ∧ rel-reflects-barb-set Rel (STCalWB SWB TWB) Barbs)
     using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred[where
            Pred = \lambda P \ a. \ a \in Barbs \land P \downarrow < STCalWB \ SWB \ TWB > a] \ STCalWB-hasBarbST
   by simp
lemma (in encoding-wrt-barbs) enc-reflects-barbs-iff-source-target-rel:
  shows enc-reflects-barbs
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land rel-reflects-barbs Rel (STCalWB SWB TWB))
     using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred[where
            Pred = \lambda P \ a. \ P \downarrow < STCalWB \ SWB \ TWB > a \mid STCalWB - hasBarbST
   by simp
```

An encoding (weakly) respects barbs iff (1) there exists a relation, like indRelR, that relates source terms and their literal translations and respects (reachability/)existence of barbs, or (2) there exists a

relation, like indRelL, that relates literal translations and their source terms and respects (reachability/)existence of barbs, or (3) there exists a relation, like indRel, that relates source terms and their literal translations in both directions and respects (reachability/)existence of barbs.

lemma (in encoding-wrt-barbs) enc-weakly-respects-barb-set-iff-source-target-rel:

```
fixes Barbs :: 'barbs set
  shows enc-weakly-respects-barb-set Barbs
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
             \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) Barbs)
      \textbf{using} \ enc\text{-}respects\text{-}binary\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}respects\text{-}binary\text{-}pred\text{-}encR}[\textbf{where}]
              Pred = \lambda P \ a. \ a \in Barbs \land P \Downarrow \langle STCalWB \ SWB \ TWB > a | STCalWB-reachesBarbST
    by simp
lemma (in encoding-wrt-barbs) enc-weakly-respects-barbs-iff-source-target-rel:
  shows enc-weakly-respects-barbs
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB))
      using enc-respects-binary-pred-iff-source-target-rel-respects-binary-pred-encR[where
              Pred = \lambda P \ a. \ P \Downarrow \langle STCalWB \ SWB \ TWB > a \mid STCalWB \ reaches BarbST
    by simp
lemma (in encoding-wrt-barbs) enc-respects-barb-set-iff-source-target-rel:
  fixes Barbs :: 'barbs set
  shows enc-respects-barb-set Barbs
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
            \land rel-respects-barb-set Rel (STCalWB SWB TWB) Barbs)
      \textbf{using} \ enc\text{-}respects\text{-}binary\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}respects\text{-}binary\text{-}pred\text{-}encR} [\textbf{where}]
             Pred = \lambda P \ a. \ a \in Barbs \land P \downarrow < STCalWB \ SWB \ TWB > a] \ STCalWB-hasBarbST
    by simp
lemma (in encoding-wrt-barbs) enc-respects-barbs-iff-source-target-rel:
  shows enc-respects-barbs
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land rel\text{-}respects\text{-}barbs\ Rel\ (STCalWB\ SWB\ TWB))
      \textbf{using} \ enc\text{-}respects\text{-}binary\text{-}pred\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}respects\text{-}binary\text{-}pred\text{-}encR} [\textbf{where}]
              Pred = \lambda P \ a. \ P \downarrow < STCalWB \ SWB \ TWB > a \ STCalWB - has BarbST
    by simp
Accordingly an encoding is success sensitive iff there exists such a relation between source and target
terms that weakly respects the barb success.
lemma (in encoding-wrt-barbs) success-sensitive-cond:
  fixes success :: 'barbs
  shows enc-weakly-respects-barb-set \{success\} = (\forall S. S \Downarrow < SWB > success \longleftrightarrow \llbracket S \rrbracket \Downarrow < TWB > success)
    by auto
{\bf lemma~(in~\it encoding-wrt-barbs)~\it success-sensitive-iff-source-target-rel-weakly-respects-success:}
  fixes success :: 'barbs
  shows enc-weakly-respects-barb-set {success}
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
             \land rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set Rel (STCalWB SWB TWB) \{success\})
    by (rule enc-weakly-respects-barb-set-iff-source-target-rel[where Barbs=\{success\}])+
\textbf{lemma (in } encoding\text{-}wrt\text{-}barbs) \ success\text{-}sensitive\text{-}iff\text{-}source\text{-}target\text{-}rel\text{-}respects\text{-}success\text{:}}
  fixes success :: 'barbs
  shows enc-respects-barb-set {success}
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success})
    by (rule\ enc-respects-barb-set-iff-source-target-rel[\mathbf{where}\ Barbs=\{success\}])
end
theory DivergenceReflection
```

7 Divergence Reflection

Divergence reflection forbids for encodings that introduce loops of internal actions. Thus they determine the practicability of encodings in particular with respect to implementations. An encoding reflects divergence if each loop in a target term result from the translation of a divergent source term.

```
abbreviation (in encoding) enc-preserves-divergence :: bool where
  enc-preserves-divergence \equiv enc-preserves-pred (\lambda P. P \longrightarrow ST\omega)
lemma (in encoding) divergence-preservation-cond:
  shows enc-preserves-divergence = (\forall S. \ S \longmapsto (Source)\omega \longrightarrow [S] \longmapsto (Target)\omega)
    by simp
abbreviation (in encoding) enc-reflects-divergence :: bool where
  enc\text{-reflects-divergence} \equiv enc\text{-reflects-pred} \ (\lambda P. \ P \longmapsto ST\omega)
lemma (in encoding) divergence-reflection-cond:
  shows enc-reflects-divergence = (\forall S. [S] \longmapsto (Target)\omega \longrightarrow S \longmapsto (Source)\omega)
    by simp
abbreviation rel-preserves-divergence
    :: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool
  where
  rel-preserves-divergence Rel Cal \equiv rel-preserves-pred Rel (\lambda P. P \longmapsto (Cal)\omega)
abbreviation rel-reflects-divergence
   :: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool
  where
  rel-reflects-divergence Rel Cal \equiv rel-reflects-pred Rel (\lambda P. P \longmapsto (Cal)\omega)
Apart from divergence reflection we consider divergence respection. An encoding respects divergence
if each divergent source term is translated into a divergent target term and each divergent target term
result from the translation of a divergent source term.
abbreviation (in encoding) enc-respects-divergence :: bool where
  enc\text{-}respects\text{-}divergence \equiv enc\text{-}respects\text{-}pred (\lambda P.\ P \longmapsto ST\omega)
lemma (in encoding) divergence-respection-cond:
  shows enc-respects-divergence = (\forall S. [S] \mapsto (Target)\omega \longleftrightarrow S \mapsto (Source)\omega)
    by auto
abbreviation rel-respects-divergence
    :: ('proc \times 'proc) \ set \Rightarrow 'proc \ processCalculus \Rightarrow bool
```

An encoding preserves divergence iff (1) there exists a relation that relates source terms and their literal translations and preserves divergence, or (2) there exists a relation that relates literal translations and their source terms and reflects divergence.

```
lemma (in encoding) divergence-preservation-iff-source-target-rel-preserves-divergence: shows <math>enc-preserves-divergence = (\exists \ Rel. \ (\forall \ S. \ (Source\ Term\ S,\ Target\ Term\ (\llbracket S\rrbracket)) \in Rel) \\ \land \ rel-preserves-divergence\ Rel\ (STCal\ Source\ Target)) using enc-preserves-pred-iff-source-target-rel-preserves-pred(1)[where Pred = \lambda P.\ P \longmapsto ST\omega] divergentST-STCal-divergent by simp
```

rel-respects-divergence $Rel\ Cal \equiv rel$ -respects-pred $Rel\ (\lambda P.\ P \longmapsto (Cal)\omega)$

```
lemma (in encoding) divergence-preservation-iff-source-target-rel-reflects-divergence: shows <math>enc-preserves-divergence = (\exists \ Rel. \ (\forall \ S. \ (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel) \\ \land \ rel-reflects-divergence \ Rel \ (STCal \ Source \ Target)) using enc-preserves-pred-iff-source-target-rel-reflects-pred(1)[where Pred = \lambda P. \ P \longmapsto ST\omega] divergentST-STCal-divergent by simp
```

An encoding reflects divergence iff (1) there exists a relation that relates source terms and their literal translations and reflects divergence, or (2) there exists a relation that relates literal translations and their source terms and preserves divergence.

```
 \begin{array}{l} \textbf{lemma (in } encoding) \ divergence-reflection-iff-source-target-rel-reflects-divergence: } \\ \textbf{shows } enc-reflects-divergence \\ &= (\exists \ Rel. \ (\forall \ S. \ (Source\ Term\ S, \ Target\ Term\ (\llbracket S \rrbracket)) \in Rel) \\ & \land \ rel-reflects-divergence \ Rel\ (STCal\ Source\ Target)) \\ \textbf{using } enc-reflects-pred-iff-source-target-rel-reflects-pred [\textbf{where } Pred=\lambda P.\ P \longmapsto ST\omega] \\ & divergentST-STCal-divergent \\ \textbf{by } simp \\ \\ \textbf{lemma (in } encoding) \ divergence-reflection-iff-source-target-rel-preserves-divergence: \\ \textbf{shows } enc-reflects-divergence \\ &= (\exists \ Rel. \ (\forall \ S.\ (Target\ Term\ (\llbracket S \rrbracket), \ Source\ Term\ S) \in Rel) \\ & \land \ rel-preserves-divergence \ Rel\ (STCal\ Source\ Target)) \\ \textbf{using } enc-reflects-pred-iff-source-target-rel-preserves-pred [\textbf{where } Pred=\lambda P.\ P \longmapsto ST\omega] \\ & \ divergentST-STCal-divergent \\ \textbf{by } simp \\ \end{array}
```

An encoding respects divergence iff there exists a relation that relates source terms and their literal translations in both directions and respects divergence.

```
lemma (in encoding) divergence-respection-iff-source-target-rel-respects-divergence:
  shows enc-respects-divergence = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land rel-respects-divergence Rel (STCal Source Target))
  and enc-respects-divergence = (\exists Rel.
         (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
         \land rel-respects-divergence Rel (STCal Source Target))
proof -
  show enc-respects-divergence = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
        \land rel-respects-divergence Rel (STCal Source Target))
      using enc-respects-pred-iff-source-target-rel-respects-pred-encR[where Pred=\lambda P.\ P \longmapsto ST\omega]
            divergent ST-STCal-divergent
   by simp
next
  show enc-respects-divergence = (\exists Rel.
        (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
        \land rel-respects-divergence Rel (STCal Source Target))
      using enc-respects-pred-iff-source-target-rel-respects-pred-encRL[where Pred=\lambda P.\ P \longmapsto ST\omega]
            divergent ST-STCal-divergent
   by simp
qed
theory Operational Correspondence
  imports Source Target Relation
begin
```

8 Operational Correspondence

We consider different variants of operational correspondence. This criterion consists of a completeness and a soundness condition and is often defined with respect to a relation TRel on target terms.

Operational completeness modulo TRel ensures that an encoding preserves source term behaviour modulo TRel by requiring that each sequence of source term steps can be mimicked by its translation such that the respective derivatives are related by TRel.

```
abbreviation (in encoding) operational-complete :: ('procT × 'procT) set \Rightarrow bool where operational-complete TRel \equiv \forall S S'. S \longmapsto Source* S' \longrightarrow (\exists T. [S] \longmapsto Target* T \land ([S'], T) \in TRel)
```

We call an encoding strongly operational complete modulo TRel if each source term step has to be mimicked by single target term step of its translation.

```
abbreviation (in encoding) strongly-operational-complete :: ('procT × 'procT) set \Rightarrow bool where strongly-operational-complete TRel \equiv \forall S S'. S \longmapsto Source S' \longrightarrow (\exists T. \llbracket S \rrbracket \longmapsto Target T \land (\llbracket S' \rrbracket, T) \in TRel)
```

Operational soundness ensures that the encoding does not introduce new behaviour. An encoding is weakly operational sound modulo TRel if each sequence of target term steps is part of the translation of a sequence of source term steps such that the derivatives are related by TRel. It allows for intermediate states on the translation of source term step that are not the result of translating a source term.

```
abbreviation (in encoding) weakly-operational-sound :: ('procT × 'procT) set \Rightarrow bool where weakly-operational-sound TRel \equiv \forall S \ T. \ [\![S]\!] \longmapsto Target* \ T \longrightarrow (\exists S' \ T'. \ S \longmapsto Source* \ S' \wedge \ T \longmapsto Target* \ T' \wedge ([\![S']\!], \ T') \in TRel)
```

And encoding is operational sound modulo TRel if each sequence of target term steps is the translation of a sequence of source term steps such that the derivatives are related by TRel. This criterion does not allow for intermediate states, i.e., does not allow to a reach target term from an encoded source term that is not related by TRel to the translation of a source term.

```
abbreviation (in encoding) operational-sound :: ('procT × 'procT) set \Rightarrow bool where operational-sound TRel \equiv \forall S \ T. [S] \longmapsto Target* T \longrightarrow (\exists S'. S \longmapsto Source* S' \land ([S'], T) \in TRel)
```

Strong operational soundness modulo TRel is a stricter variant of operational soundness, where a single target term step has to be mapped on a single source term step.

```
abbreviation (in encoding) strongly-operational-sound :: ('procT × 'procT) set \Rightarrow bool where strongly-operational-sound TRel \equiv \forall S \ T. \ [\![S]\!] \longmapsto Target \ T \longrightarrow (\exists S'. \ S \longmapsto Source \ S' \land ([\![S']\!], \ T) \in TRel)
```

An encoding is weakly operational corresponding modulo TRel if it is operational complete and weakly operational sound modulo TRel.

```
abbreviation (in encoding) weakly-operational-corresponding <math>:: ('procT \times 'procT) \ set \Rightarrow bool where weakly-operational-corresponding \ TRel \equiv operational-complete \ TRel \land weakly-operational-sound \ TRel
```

Operational correspondence modulo is the combination of operational completeness and operational soundness modulo TRel.

```
abbreviation (in encoding) operational-corresponding :: ('procT \times 'procT) set \Rightarrow bool where operational-corresponding TRel \equiv operational-complete TRel \wedge operational-sound TRel
```

An encoding is strongly operational corresponding modulo TRel if it is strongly operational complete and strongly operational sound modulo TRel.

```
abbreviation (in encoding) strongly-operational-corresponding <math>:: ('procT \times 'procT) \ set \Rightarrow bool where strongly-operational-corresponding \ TRel \equiv strongly-operational-complete \ TRel \wedge strongly-operational-sound \ TRel
```

8.1 Trivial Operational Correspondence Results

Every encoding is (weakly) operational corresponding modulo the all relation on target terms.

```
lemma (in encoding) operational-correspondence-modulo-all-relation:
  shows operational-complete \{(T1, T2), True\}
    and weakly-operational-sound \{(T1, T2), True\}
   and operational-sound \{(T1, T2). True\}
      using steps-refl[where Cal=Source] steps-refl[where Cal=Target]
    by blast+
lemma all-relation-is-weak-reduction-bisimulation:
  fixes Cal :: 'a processCalculus
  shows weak-reduction-bisimulation \{(a, b). True\} Cal
      using steps-refl[where Cal = Cal]
    \mathbf{bv} blast
lemma (in encoding) operational-correspondence-modulo-some-target-relation:
  shows \exists TRel. weakly-operational-corresponding TRel
    and \exists TRel. operational-corresponding TRel
   and \exists TRel. weakly-operational-corresponding TRel <math>\land weak-reduction-bisimulation TRel Target
   and \exists TRel. operational-corresponding TRel \land weak-reduction-bisimulation TRel Target
      using operational-correspondence-modulo-all-relation
            all-relation-is-weak-reduction-bisimulation [where Cal = Target]
    by blast+
Strong operational correspondence requires that source can perform a step iff their translations can
perform a step.
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ strong-operational-correspondence-modulo-some-target-relation:
  shows (\exists TRel. strongly-operational-corresponding TRel)
         = (\forall S. (\exists S'. S \longmapsto Source S') \longleftrightarrow (\exists T. \llbracket S \rrbracket \longmapsto Target T))
   and (\exists TRel. strongly-operational-corresponding TRel
          \land weak-reduction-bisimulation TRel Target)
         = (\forall S. (\exists S'. S \longrightarrow Source S') \longleftrightarrow (\exists T. [S] \longmapsto Target T))
  have A1: \exists TRel. strongly-operational-corresponding TRel
            \Longrightarrow \forall S. (\exists S'. S \longmapsto Source S') \longleftrightarrow (\exists T. [S] \longmapsto Target T)
  moreover have A2: \forall S. (\exists S'. S \longmapsto Source S') \longleftrightarrow (\exists T. [S] \longmapsto Target T)
                     \implies \exists \ TRel. \ strongly-operational-corresponding \ TRel
                          \land \ weak\text{-}reduction\text{-}bisimulation \ TRel \ Target
    assume \forall S. (\exists S'. S \longmapsto Source S') \longleftrightarrow (\exists T. \llbracket S \rrbracket \longmapsto Target T)
   hence strongly-operational-corresponding \{(T1, T2), True\}
      by simp
    thus \exists TRel. strongly-operational-corresponding TRel
          \land weak-reduction-bisimulation TRel Target
        using all-relation-is-weak-reduction-bisimulation [where Cal=Target]
      by blast
  ultimately show (\exists TRel. strongly-operational-corresponding TRel
                   \land weak-reduction-bisimulation TRel Target)
                   = (\forall S. (\exists S'. S \longrightarrow Source S') \longleftrightarrow (\exists T. [S] \longmapsto Target T))
   by blast
  from A1 A2 show (\exists TRel. strongly-operational-corresponding TRel)
                   = (\forall S. (\exists S'. S \longmapsto Source S') \longleftrightarrow (\exists T. \llbracket S \rrbracket \longmapsto Target T))
    by blast
qed
```

8.2 (Strong) Operational Completeness vs (Strong) Simulation

An encoding is operational complete modulo a weak simulation on target terms TRel iff there is a relation, like indRelRTPO, that relates at least all source terms to their literal translations, includes TRel, and is a weak simulation.

```
lemma (in encoding) weak-reduction-simulation-impl-OCom:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and TRel :: ('procT \times 'procT) set
  assumes A1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
     and A2: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
     and A3: weak-reduction-simulation Rel (STCal Source Target)
 shows operational-complete (TRel*)
proof clarify
  fix SS'
  from A1 have (SourceTerm S, TargetTerm ([S])) \in Rel
   by simp
  moreover assume S \longmapsto Source * S'
  hence Source Term S \longmapsto (STCal\ Source\ Target)* (Source Term\ S')
   by (simp \ add: STCal\text{-}steps(1))
  ultimately obtain Q' where A5: TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* Q'
                      and A6: (SourceTerm S', Q' \in Rel
     using A3
   by blast
  from A5 obtain T where A7: T \in T Q' and A8: [S] \longmapsto Target* T
   by (auto simp add: STCal-steps(2))
  from A2 A6 A7 have ([S'], T) \in TRel^*
   by simp
  with A8 show \exists T. [S] \longmapsto Target* T \land ([S'], T) \in TRel^*
   by blast
\mathbf{qed}
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ OCom\text{-}iff\text{-}indRelRTPO\text{-}is\text{-}weak\text{-}reduction\text{-}simulation}:
  fixes TRel :: ('procT \times 'procT) set
  shows (operational-complete (TRel*)
        \land weak-reduction-simulation (TRel<sup>+</sup>) Target)
        = weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
  assume oc: operational-complete (TRel*)
    and sim: weak-reduction-simulation (TRel^+) Target
  show weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
  proof clarify
   fix P Q P'
   assume P \leq \|\cdot\|RT < TRel > Q and P \longmapsto (STCal\ Source\ Target) * P'
   thus \exists Q'. Q \longmapsto (STCal \ Source \ Target) * Q' \land P' \leq \llbracket \cdot \rrbracket RT < TRel > Q'
   proof (induct arbitrary: P')
     case (encR S)
     assume SourceTerm\ S \longmapsto (STCal\ Source\ Target) * P'
     from this obtain S' where A1: S' \inS P' and A2: S \longmapstoSource* S'
       by (auto simp add: STCal-steps(1))
     from oc A2 obtain T where A3: [S] \longmapsto Target* T and A4: ([S], T) \in TRel*
       by blast
     from A3 have TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
       by (simp \ add: STCal\text{-}steps(2))
     moreover have P' \leq ||\cdot||RT < TRel > TargetTerm\ T
     proof -
       from A4 have [S'] = T \lor ([S'], T) \in TRel^+
           using rtrancl-eq-or-trancl[of \llbracket S' \rrbracket T TRel]
       moreover from A1 have A5: P' \leq [\cdot]RT < TRel > TargetTerm ([S'])
         by (simp add: indRelRTPO.encR)
```

```
hence [S'] = T \Longrightarrow P' \lesssim [\cdot]RT < TRel > TargetTerm T
     by simp
   moreover have ([S'], T) \in TRel^+ \Longrightarrow P' \lesssim []RT < TRel > TargetTerm T
   proof -
     assume ([S'], T \in TRel^+
     hence TargetTerm ([S']) \lesssim [\cdot]RT < TRel > TargetTerm T
     proof induct
       \mathbf{fix} \ T
       assume ([S'], T) \in TRel
       thus TargetTerm ([S']) \lesssim [-]RT < TRel > TargetTerm T
        by (rule indRelRTPO.target)
       case (step \ TQ \ TR)
       assume TargetTerm ([S]) \lesssim [\cdot]RT < TRel > TargetTerm TQ
       moreover assume (TQ, TR) \in TRel
       hence TargetTerm\ TQ \leq \|\cdot\|RT < TRel > TargetTerm\ TR
        by (rule indRelRTPO.target)
       ultimately show TargetTerm ([S']) \leq [-]RT < TRel > TargetTerm TR
        by (rule indRelRTPO.trans)
     qed
     with A5 show P' \lesssim ||\cdot|| RT < TRel > TargetTerm T
       by (rule indRelRTPO.trans)
   ultimately show P' \lesssim \|\cdot\| RT < TRel > TargetTerm T
     by blast
 qed
 ultimately
 show \exists Q'. TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* Q' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'
   by blast
next
 case (source S)
 then obtain S' where B1: S' \in SP'
   by (auto simp add: STCal-steps(1))
 hence P' \lesssim [\![\cdot]\!]RT < TRel > P'
   by (simp add: indRelRTPO.source)
 with source show \exists Q'. Source Term S \longmapsto (STCal\ Source\ Target) * Q' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'
   by blast
next
 case (target T1 T2)
 assume TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)*\ P'
 from this obtain T1' where C1: T1' \in T P' and C2: T1 \longmapsto Target* T1'
   by (auto simp add: STCal-steps(2))
 assume (T1, T2) \in TRel
 hence (T1, T2) \in TRel^+
   by simp
 with C2 sim obtain T2' where C3: T2 \longmapsto Target* T2'
                        and C4: (T1', T2') \in TRel^+
   by blast
 from C3 have TargetTerm T2 \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T2')
   by (simp \ add: STCal\text{-}steps(2))
 moreover from C4 have TargetTerm\ T1' \lesssim []RT < TRel > TargetTerm\ T2'
 proof induct
   fix T2'
   assume (T1', T2') \in TRel
   thus TargetTerm\ T1' \leq [\cdot]RT < TRel > TargetTerm\ T2'
     by (rule indRelRTPO.target)
 next
   case (step \ TQ \ TR)
   assume TargetTerm\ T1' \lesssim [\cdot]RT < TRel > TargetTerm\ TQ
   moreover assume (TQ, TR) \in TRel
   hence TargetTerm\ TQ \lesssim [\![\cdot]\!]RT < TRel > TargetTerm\ TR
```

```
by (rule indRelRTPO.target)
       ultimately show TargetTerm\ T1' \leq [\![\cdot]\!]RT < TRel > TargetTerm\ TR
         by (rule indRelRTPO.trans)
     qed
      with C1 have P' \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm T2'
      ultimately show \exists Q'. TargetTerm T2 \longmapsto (STCal\ Source\ Target) * Q' \land P' \leq \llbracket \cdot \rrbracket RT < TRel > Q'
       by blast
   next
     case (trans P Q R)
     assume P \longmapsto (STCal\ Source\ Target) * P'
        and \bigwedge P'. P \longmapsto (STCal\ Source\ Target) * P'
              \implies \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) * Q' \land P' \leq \llbracket \cdot \rrbracket RT < TRel > Q'
     from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target)* Q'
                           and D2: P' \lesssim ||RT < TRel> Q'
     assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target) * Q'
             \implies \exists R'. R \longmapsto (STCal \ Source \ Target) * R' \land Q' \lesssim \llbracket \cdot \rrbracket RT < TRel > R'
      with D1 obtain R' where D3: R \longmapsto (STCal\ Source\ Target) * R'
                         and D_4: Q' \lesssim [\cdot]RT < TRel > R'
       bv blast
     from D2 D4 have P' \lesssim \|\cdot\|RT < TRel > R'
       by (rule indRelRTPO.trans)
      with D3 show \exists R'. R \longmapsto (STCal\ Source\ Target) * R' \land P' \lesssim [\cdot]RT < TRel > R'
       by blast
    qed
  qed
next
  have \forall S. \ Source Term \ S \leq [\![\cdot]\!]RT < TRel > \ Target Term \ ([\![S]\!])
   by (simp add: indRelRTPO.encR)
  moreover have \forall S \ T. \ Source Term \ S \lesssim [\![\cdot]\!]RT < TRel > Target Term \ T \longrightarrow ([\![S]\!], \ T) \in TRel^*
      using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
   by simp
  moreover assume sim: weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
  ultimately have operational-complete (TRel^*)
     using weak-reduction-simulation-impl-OCom[where Rel=indRelRTPO TRel and TRel=TRel]
    by simp
  moreover from sim have weak-reduction-simulation (TRel<sup>+</sup>) Target
     using indRelRTPO-impl-TRel-is-weak-reduction-simulation[where TRel-TRel]
  ultimately show operational-complete (TRel*)
                  \land weak-reduction-simulation (TRel<sup>+</sup>) Target
    by simp
qed
lemma (in encoding) OCom-iff-weak-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (operational-complete (TRel^*)
        \land weak-reduction-simulation (TRel<sup>+</sup>) Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
           \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
           \land weak-reduction-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
  have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
    by (simp add: indRelRTPO.encR)
  moreover have \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow TargetTerm \ T1 \leq [\cdot]RT < TRel > TargetTerm \ T2
    \mathbf{by}\ (simp\ add:\ indRelRTPO.target)
  moreover have \forall T1 \ T2. \ TargetTerm \ T1 \leq [\![\cdot]\!]RT < TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
```

```
by simp
  moreover have \forall S \ T. \ Source Term \ S \lesssim [\![\cdot]\!]RT < TRel > Target Term \ T \longrightarrow ([\![S]\!], \ T) \in TRel^*
     using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
   by simp
  moreover assume operational-complete (TRel^*)
             and weak-reduction-simulation (TRel<sup>+</sup>) Target
  hence weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
     using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel = TRel]
   bv simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                  \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
                 \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                 \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                 \land weak-reduction-simulation Rel (STCal Source Target)
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         \land weak-reduction-simulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   and A2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   and A3: \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
   and A_4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
   and A5: weak-reduction-simulation Rel (STCal Source Target)
  from A1 A4 A5 have operational-complete (TRel*)
     using weak-reduction-simulation-impl-OCom[where Rel=Rel and TRel=TRel]
   by simp
  moreover from A2 A3 A5 have weak-reduction-simulation (TRel<sup>+</sup>) Target
     using rel-with-target-impl-transC-TRel-is-weak-reduction-simulation[where Rel=Rel and
            TRel = TRel
   by simp
  ultimately show operational-complete (TRel*)
                 \land weak-reduction-simulation (TRel<sup>+</sup>) Target
   by simp
qed
An encoding is strong operational complete modulo a strong simulation on target terms TRel iff
there is a relation, like indRelRTPO, that relates at least all source terms to their literal translations,
includes TRel, and is a strong simulation.
lemma (in encoding) strong-reduction-simulation-impl-SOCom:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and TRel :: ('procT \times 'procT) set
  assumes A1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
     and A2: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([\![S]\!], \ T) \in TRel^*
     and A3: strong-reduction-simulation Rel (STCal Source Target)
  shows strongly-operational-complete (TRel^*)
proof clarify
 fix S S'
  from A1 have (SourceTerm\ S,\ TargetTerm\ (\llbracket S \rrbracket)) \in Rel
   by simp
  moreover assume S \longmapsto Source S'
  hence Source Term S \longmapsto (STCal\ Source\ Target)\ (Source\ Term\ S')
   by (simp\ add:\ STCal\text{-}step(1))
  ultimately obtain Q' where A5: TargetTerm([S]) \longmapsto (STCal\ Source\ Target)\ Q'
                       and A6: (SourceTerm S', Q' \in Rel
     using A3
```

by blast

```
from A5 obtain T where A7: T \in T Q' and A8: [S] \longmapsto Target T
   by (auto simp add: STCal-step(2))
  from A2 A6 A7 have ([S'], T) \in TRel^*
   by simp
  with A8 show \exists T. [S] \longmapsto Target T \land ([S'], T) \in TRel^*
   by blast
qed
lemma (in encoding) SOCom-iff-indRelRTPO-is-strong-reduction-simulation:
 fixes TRel :: ('procT \times 'procT) set
 shows (strongly-operational-complete (TRel^*)
        \land strong-reduction-simulation (TRel<sup>+</sup>) Target)
        = strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
  assume soc: strongly-operational-complete (TRel^*)
    and sim: strong-reduction-simulation (TRel^+) Target
  show strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
  proof clarify
   fix P Q P^{\prime}
   assume P \lesssim \llbracket \cdot \rrbracket RT < TRel > Q and P \longmapsto (STCal\ Source\ Target)\ P'
   thus \exists Q'. Q \longmapsto (STCal \ Source \ Target) \ Q' \land P' \leq \llbracket \cdot \rrbracket RT < TRel > Q'
   proof (induct arbitrary: P')
     case (encR S)
     assume SourceTerm\ S \longmapsto (STCal\ Source\ Target)\ P'
     from this obtain S' where A1: S' \inS P' and A2: S \longrightarrowSource S'
       by (auto simp add: STCal-step(1))
     from soc A2 obtain T where A3: [S] \longmapsto Target\ T and A4: ([S], T) \in TRel^*
       by blast
     from A3 have TargetTerm ([S]) \longmapsto (STCal\ Source\ Target) (TargetTerm\ T)
       by (simp \ add: STCal\text{-}step(2))
     moreover have P' \leq \|\cdot\| RT < TRel > TargetTerm T
     proof -
       from A4 have [S'] = T \vee ([S'], T) \in TRel^+
           using rtrancl-eq-or-trancl[of \llbracket S' \rrbracket T TRel]
         by blast
       moreover from A1 have A5: P' \lesssim [\cdot]RT < TRel > TargetTerm ([S'])
         by (simp add: indRelRTPO.encR)
       hence [S'] = T \Longrightarrow P' \lesssim [\cdot]RT < TRel > TargetTerm T
       moreover have (\llbracket S \rrbracket, T) \in TRel^+ \Longrightarrow P' \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm T
       proof -
         assume ([S'], T) \in TRel^+
         hence TargetTerm ([S']) \leq [-]RT < TRel > TargetTerm T
         proof induct
           \mathbf{fix} \ TQ
           assume ([S'], TQ) \in TRel
           thus TargetTerm ([S']) \lesssim [\cdot]RT < TRel > TargetTerm TQ
             by (rule indRelRTPO.target)
         \mathbf{next}
           case (step \ TQ \ TR)
           assume TargetTerm (\llbracket S' \rrbracket) \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm TQ
           moreover assume (TQ, TR) \in TRel
           hence TargetTerm\ TQ \lesssim \llbracket \cdot \rrbracket RT < TRel >\ TargetTerm\ TR
             by (rule indRelRTPO.target)
           ultimately show TargetTerm ([S']) \leq [-]RT < TRel > TargetTerm TR
             by (rule indRelRTPO.trans)
         with A5 show P' \lesssim ||\cdot|| RT < TRel > TargetTerm T
           by (rule indRelRTPO.trans)
       ultimately show P' \lesssim [\cdot]RT < TRel > TargetTerm T
```

```
by blast
  qed
  ultimately
  show \exists Q'. TargetTerm(\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)\ Q' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'
   by blast
next
  case (source S)
  then obtain S' where B1: S' \in SP'
   by (auto simp add: STCal-step(1))
  hence P' \lesssim \|\cdot\| RT < TRel > P'
    by (simp add: indRelRTPO.source)
  with source show \exists Q'. Source Term S \longmapsto (STCal\ Source\ Target)\ Q' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'
    by blast
next
  case (target T1 T2)
  assume TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)\ P'
  from this obtain T1' where C1: T1' \in T P' and C2: T1 \longmapsto Target T1'
   by (auto simp add: STCal-step(2))
  assume (T1, T2) \in TRel
  hence (T1, T2) \in TRel^+
   by simp
  with C2 \ sim obtain T2' where C3: T2 \longmapsto Target \ T2' and C4: (T1', T2') \in TRel^+
   by blast
  from C3 have TargetTerm T2 \longmapsto (STCal\ Source\ Target) (TargetTerm T2')
    by (simp \ add: STCal\text{-}step(2))
  moreover from C_4 have TargetTerm\ T1' \lesssim [\cdot]RT < TRel > TargetTerm\ T2'
  proof induct
   fix T2'
   assume (T1', T2') \in TRel
   thus TargetTerm\ T1' \lesssim [\![\cdot]\!]RT < TRel > TargetTerm\ T2'
      by (rule indRelRTPO.target)
  next
    case (step TQ TR)
   assume TargetTerm\ T1' \lesssim \llbracket \cdot \rrbracket RT < TRel >\ TargetTerm\ TQ
   moreover assume (TQ, TR) \in TRel
    hence TargetTerm\ TQ \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm\ TR
      by (rule indRelRTPO.target)
    ultimately show TargetTerm\ T1' \leq [\![\cdot]\!]RT < TRel > TargetTerm\ TR
      by (rule indRelRTPO.trans)
  qed
  with C1 have P' \leq ||\cdot||RT < TRel > TargetTerm T2'
  ultimately show \exists Q'. TargetTerm T2 \longmapsto (STCal\ Source\ Target)\ Q' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'
    by blast
next
  case (trans P Q R)
  assume P \longmapsto (STCal\ Source\ Target)\ P'
     and \bigwedge P'. P \longmapsto (STCal\ Source\ Target)\ P'
          \implies \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) \ Q' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'
  from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target)\ Q'
                       and D2: P' \lesssim [\cdot]RT < TRel > Q'
    by blast
  assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target)\ Q'
          \implies \exists R'. R \longmapsto (STCal \ Source \ Target) \ R' \land Q' \leq \llbracket \cdot \rrbracket RT < TRel > R'
  with D1 obtain R' where D3: R \longmapsto (STCal\ Source\ Target)\ R'
                      and D_4: Q' \lesssim [\cdot]RT < TRel > R'
   by blast
  from D2 D4 have P' \lesssim \|\cdot\|RT < TRel > R'
    by (rule indRelRTPO.trans)
  with D3 show \exists R'. R \longmapsto (STCal\ Source\ Target)\ R' \land P' \lesssim \llbracket \cdot \rrbracket RT < TRel > R'
   by blast
```

```
qed
  qed
next
  have \forall S. Source Term S \leq \llbracket \cdot \rrbracket RT < TRel > Target Term (\llbracket S \rrbracket)
    by (simp add: indRelRTPO.encR)
  moreover have \forall S \ T. \ Source Term \ S \lesssim [\![\cdot]\!]RT < TRel > \ Target Term \ T \longrightarrow ([\![S]\!], \ T) \in TRel^*
      using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
  moreover assume sim: strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
  ultimately have strongly-operational-complete (TRel*)
      using strong-reduction-simulation-impl-SOCom[where Rel = indRelRTPO TRel and TRel = TRel]
  moreover from sim have strong-reduction-simulation (TRel<sup>+</sup>) Target
      using indRelRTPO-impl-TRel-is-strong-reduction-simulation[where TRel=TRel]
    by simp
  ultimately show strongly-operational-complete (TRel*)
                  \land strong-reduction-simulation (TRel<sup>+</sup>) Target
   by simp
qed
lemma (in encoding) SOCom-iff-strong-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (strongly-operational-complete (TRel^*)
         \land strong-reduction-simulation (TRel<sup>+</sup>) Target)
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
            \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
            \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
            \land strong-reduction-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
  have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
   by (simp add: indRelRTPO.encR)
  moreover have \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow TargetTerm \ T1 \lesssim [\![\cdot]\!]RT < TRel > TargetTerm \ T2
   by (simp add: indRelRTPO.target)
  moreover have \forall T1 \ T2. TargetTerm T1 \leq \|\cdot\|RT \leq TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
      \mathbf{using} \ indRelRTPO\text{-}to\text{-}TRel(4)[\mathbf{where} \ TRel = TRel]
    by simp
  moreover have \forall S \ T. \ SourceTerm \ S \lesssim [\cdot] RT < TRel > TargetTerm \ T \longrightarrow ([S], \ T) \in TRel^*
      using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
  moreover assume strongly-operational-complete (TRel*)
             and strong-reduction-simulation (TRel^+) Target
  hence strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
      using SOCom-iff-indRelRTPO-is-strong-reduction-simulation[where TRel=TRel]
    by simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                  \land strong-reduction-simulation Rel (STCal Source Target)
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         \land strong-reduction-simulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   and A2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   and A3: \forall T1 \ T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
   and A4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
```

```
and A5: strong-reduction-simulation Rel (STCal Source Target)
       by blast
    from A1 A4 A5 have strongly-operational-complete (TRel*)
           using strong-reduction-simulation-impl-SOCom[where Rel=Rel and TRel=TRel]
       by simp
    moreover from A2 A3 A5 have strong-reduction-simulation (TRel<sup>+</sup>) Target
           \textbf{using} \ \textit{rel-with-target-impl-transC-TRel-is-strong-reduction-simulation} \\ [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] 
                         TRel = TRel
       bv simp
    ultimately show strongly-operational-complete (TRel*)
                                    \land strong-reduction-simulation (TRel<sup>+</sup>) Target
       by simp
qed
lemma (in encoding) target-relation-from-source-target-relation:
    fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
    assumes stre: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
                                 \longrightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel^{=}
   shows \exists TRel. (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                       \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
proof -
    define TRel where TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
    from TRel-def have \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
    moreover from TRel-def
    have \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
       by blast
   {f moreover\ from\ stre\ TRel-def}
    have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
       by blast
    ultimately show ?thesis
       by blast
qed
lemma (in encoding) SOCom-modulo-TRel-iff-strong-reduction-simulation:
    shows (\exists TRel. strongly-operational-complete (<math>TRel^*)
                 \land strong-reduction-simulation (TRel<sup>+</sup>) Target)
                 = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                     \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (TargetTerm \ (\llbracket S \rrbracket), \ TargetTerm \ T) \in Rel^=)
                     \land strong-reduction-simulation Rel (STCal Source Target))
proof (rule iffI)
    assume \exists TRel. strongly-operational-complete (<math>TRel^*)
                   \land strong-reduction-simulation (TRel<sup>+</sup>) Target
    from this obtain TRel where strongly-operational-complete (TRel^*)
                                                 and strong-reduction-simulation (TRel^+) Target
       by blast
    hence strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
           using SOCom-iff-indRelRTPO-is-strong-reduction-simulation[where TRel = TRel]
       by simp
    moreover have \forall S. Source Term S \leq [\![\cdot]\!]RT < TRel > Target Term ([\![S]\!])
       by (simp add: indRelRTPO.encR)
    moreover have \forall S \ T. \ SourceTerm \ S \lesssim \llbracket \cdot \rrbracket RT < TRel > \ TargetTerm \ T
                                   \rightarrow (TargetTerm ([S]), TargetTerm T) \in (indRelRTPO TRel)^{=}
           \mathbf{using} \ indRelRTPO\text{-}relates\text{-}source\text{-}target[\mathbf{where} \ TRel=TRel]
       by simp
    ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                                    \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
                                            \longrightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel^{=})
                                    \land strong-reduction-simulation Rel (STCal Source Target)
       by blast
```

```
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (TargetTerm \ (\llbracket S \rrbracket), \ TargetTerm \ T) \in Rel^=)
          \land strong-reduction-simulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                         and A2: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
                                  \longrightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel^{=})
                         and A3: strong-reduction-simulation Rel (STCal Source Target)
    bv blast
  from A2 obtain TRel where \forall T1 \ T2. \ (T1, T2) \in TRel \longrightarrow (TargetTerm \ T1, TargetTerm \ T2) \in Rel
   and \forall T1\ T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
   and \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([S], \ T) \in TRel^*
      using target-relation-from-source-target-relation[where Rel=Rel]
    bv blast
  with A1 A3 have strongly-operational-complete (TRel*)
                   \land strong-reduction-simulation (TRel<sup>+</sup>) Target
      using SOCom-iff-strong-reduction-simulation[where TRel = TRel]
    \mathbf{by} blast
  thus \exists TRel. strongly-operational-complete (TRel^*)
        \land strong-reduction-simulation (TRel<sup>+</sup>) Target
    by blast
qed
```

8.3 Weak Operational Soundness vs Contrasimulation

If the inverse of a relation that includes TRel and relates source terms and their literal translations is a contrasimulation, then the encoding is weakly operational sound.

```
lemma (in encoding) weak-reduction-contrasimulation-impl-WOSou:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and TRel :: ('procT \times 'procT) set
  assumes A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
     and A2: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([\![S]\!], \ T) \in TRel^*
     and A3: weak-reduction-contrasimulation (Rel^{-1}) (STCal Source Target)
 shows weakly-operational-sound (TRel*)
proof clarify
 \mathbf{fix}\ S\ T
  from A1 have (TargetTerm ([S]), SourceTerm S) \in Rel^{-1}
   by simp
  moreover assume [S] \longmapsto Target * T
  hence TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
   by (simp \ add: STCal\text{-}steps(2))
  ultimately obtain Q' where A5: Source Term <math>S \longmapsto (STCal\ Source\ Target) * Q'
                       and A6: (Q', TargetTerm T) \in Rel^{-1}
     using A3
   \mathbf{by} blast
  from A5 obtain S' where A7: S' \in S Q' and A8: S \longmapsto Source * S'
   by (auto simp add: STCal-steps(1))
  have Q' \longmapsto (STCal\ Source\ Target) * Q'
   by (simp add: steps-refl)
  with A6 A3 obtain P'' where A9: TargetTerm T \longmapsto (STCal\ Source\ Target) * P''
                       and A10: (P'', Q') \in Rel^{-1}
   by blast
  from A9 obtain T' where A11: T' \in T P" and A12: T \mapsto Target * T'
   by (auto simp add: STCal-steps(2))
  from A10 have (Q', P'') \in Rel
   by induct
  with A2 A7 A11 have ([S'], T') \in TRel^*
  with A8 A12 show \exists S' \ T'. \ S \longmapsto Source* \ S' \land \ T \longmapsto Target* \ T' \land (\llbracket S' \rrbracket, \ T') \in TRel^*
   by blast
```

8.4 (Strong) Operational Soundness vs (Strong) Simulation

An encoding is operational sound modulo a relation TRel whose inverse is a weak reduction simulation on target terms iff there is a relation, like indRelRTPO, that relates at least all source terms to their literal translations, includes TRel, and whose inverse is a weak simulation.

```
lemma (in encoding) weak-reduction-simulation-impl-OSou:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and TRel :: ('procT \times 'procT) set
  assumes A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
     and A2: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([S], \ T) \in TRel^*
     and A3: weak-reduction-simulation (Rel^{-1}) (STCal Source Target)
 shows operational-sound (TRel^*)
proof clarify
 fix S T
  from A1 have (TargetTerm ([S]), SourceTerm S) \in Rel^{-1}
  moreover assume \llbracket S \rrbracket \longmapsto Target * T
  hence TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
   by (simp \ add: STCal\text{-}steps(2))
  ultimately obtain Q' where A5: Source Term <math>S \longmapsto (STCal\ Source\ Target) * Q'
                       and A6: (TargetTerm\ T,\ Q') \in Rel^{-1}
     using A3
   by blast
  from A5 obtain S' where A7: S' \inS Q' and A8: S \longmapstoSource* S'
   by (auto simp add: STCal-steps(1))
  from A6 have (Q', TargetTerm T) \in Rel
   by induct
 with A2\ A7 have ([S'],\ T) \in\ TRel^*
   by simp
  with A8 show \exists S'. S \longmapsto Source * S' \land (\llbracket S' \rrbracket, T) \in TRel^*
   by blast
qed
\textbf{lemma (in } encoding) \ OSou-iff-inverse-of-indRelRTPO-is-weak-reduction-simulation:
 fixes TRel :: ('procT \times 'procT) set
  shows (operational-sound (TRel^*)
        \land weak-reduction-simulation ((TRel<sup>+</sup>)<sup>-1</sup>) Target)
        = weak-reduction-simulation ((indRelRTPO TRel)<sup>-1</sup>) (STCal Source Target)
proof (rule iffI, erule conjE)
  assume os: operational-sound (TRel^*)
    and sim: weak-reduction-simulation ((TRel^+)^{-1}) Target
  show weak-reduction-simulation ((indRelRTPO TRel)^{-1}) (STCal Source Target)
  proof clarify
   fix P Q P'
   assume Q \lesssim \llbracket \cdot \rrbracket RT < TRel > P and P \longmapsto (STCal\ Source\ Target) * P'
   thus \exists Q'. Q \longmapsto (STCal\ Source\ Target) * Q' \land (P', Q') \in (indRelRTPO\ TRel)^{-1}
   proof (induct arbitrary: P')
     case (encR S)
     assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* P'
     from this obtain T where A1: T \in T P' and A2: [S] \longmapsto Target* T
       by (auto simp add: STCal-steps(2))
     from os A2 obtain S' where A3: S \longrightarrow Source * S' and A4: ([S'], T) \in TRel^*
       by blast
     from A3 have SourceTerm S \longmapsto (STCal\ Source\ Target)* (SourceTerm\ S')
       by (simp \ add: STCal\text{-}steps(1))
     moreover have SourceTerm\ S' \lesssim [\cdot]RT < TRel > P'
     proof -
       from A_4 have \llbracket S' \rrbracket = T \vee (\llbracket S' \rrbracket, T) \in TRel^+
```

```
using rtrancl-eq-or-trancl[of \llbracket S' \rrbracket T TRel]
     by blast
   moreover have A5: SourceTerm S' \leq [\cdot]RT < TRel > TargetTerm ([S'])
     by (simp add: indRelRTPO.encR)
   with A1 have [S'] = T \Longrightarrow SourceTerm\ S' \lesssim [\cdot]RT < TRel > P'
     bv simp
   moreover have ([S'], T \in TRel^+ \Longrightarrow SourceTerm S' \lesssim []RT < TRel > P'
   proof -
     assume ([S'], T) \in TRel^+
     hence TargetTerm ([S']) \leq [-]RT < TRel > TargetTerm T
       by (rule transitive-closure-of-TRel-to-indRelRTPO)
     with A5 have SourceTerm S' \lesssim [\![\cdot]\!]RT < TRel > TargetTerm\ T
       by (rule indRelRTPO.trans)
     with A1 show SourceTerm S' \lesssim \|\cdot\|RT < TRel > P'
       by simp
   ultimately show SourceTerm S' \lesssim [\![\cdot]\!]RT < TRel > P'
     by blast
 qed
 hence (P', SourceTerm S') \in (indRelRTPO TRel)^{-1}
   by simp
 ultimately
 show \exists Q'. Source Term S \longmapsto (STCal \ Source \ Target) * Q' \land (P', Q') \in (indRelRTPO \ TRel)^{-1}
   by blast
\mathbf{next}
 case (source S)
 then obtain S' where B1: S' \in SP'
   by (auto simp add: STCal-steps(1))
 hence (P', P') \in (indRelRTPO\ TRel)^{-1}
   by (simp add: indRelRTPO.source)
 show \exists Q'. Source Term S \longmapsto (STCal \ Source \ Target) * Q' \land (P', Q') \in (indRelRTPO \ TRel)^{-1}
   by blast
\mathbf{next}
 case (target T1 T2)
 assume TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)*\ P'
 from this obtain T2' where C1: T2' \in TP' and C2: T2 \longmapsto Target * T2'
   by (auto simp add: STCal-steps(2))
 assume (T1, T2) \in TRel
 hence (T2, T1) \in (TRel^+)^{-1}
   by simp
  with C2 sim obtain T1' where C3: T1 \longmapsto Target* T1' and C4: (T2', T1') \in (TRel^+)^{-1}
 from C3 have TargetTerm T1 \longmapsto (STCal Source Target)* (TargetTerm T1')
   by (simp \ add: STCal\text{-}steps(2))
 moreover from C4 have (T1', T2') \in TRel^+
   by induct
 hence TargetTerm\ T1' \leq [\cdot]RT < TRel > TargetTerm\ T2'
   by (rule transitive-closure-of-TRel-to-indRelRTPO)
  with C1 have (P', TargetTerm\ T1') \in (indRelRTPO\ TRel)^{-1}
   by simp
 ultimately
 show \exists Q'. TargetTerm T1 \longmapsto (STCal\ Source\ Target)* Q' \land (P', Q') \in (indRelRTPO\ TRel)^{-1}
   by blast
next
 case (trans P Q R R')
 assume R \longmapsto (STCal\ Source\ Target) * R'
    and \bigwedge R'. R \longmapsto (STCal\ Source\ Target) * R'
         \implies \exists \ Q'. \ Q \longmapsto (STCal \ Source \ Target) * \ Q' \land (R', \ Q') \in (indRelRTPO \ TRel)^{-1}
 from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target)* Q'
                     and D2: (R', Q') \in (indRelRTPO\ TRel)^{-1}
```

```
by blast
      assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target) * Q'
                \Rightarrow \exists P'. P \longmapsto (STCal \ Source \ Target) * P' \land (Q', P') \in (indRelRTPO \ TRel)^{-1}
      with D1 obtain P' where D3: P \longmapsto (STCal\ Source\ Target) * P'
                         and D_4: (Q', P') \in (indRelRTPO\ TRel)^{-1}
       by blast
      from D4 D2 have (R', P') \in (indRelRTPO \ TRel)^{-1}
       by (simp add: indRelRTPO.trans[where P=P' and Q=Q' and R=R'])
      with D3 show \exists P'. P \longmapsto (STCal\ Source\ Target) * P' \land (R', P') \in (indRelRTPO\ TRel)^{-1}
        by blast
    qed
  qed
next
  have \forall S. \ Source Term \ S \leq [\![\cdot]\!]RT < TRel > \ Target Term \ ([\![S]\!])
   by (simp add: indRelRTPO.encR)
  moreover have \forall S T. SourceTerm S \leq [\cdot]RT < TRel > TargetTerm T \longrightarrow ([S], T) \in TRel^*
      using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
   by simp
  moreover
  assume sim: weak-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal Source Target)
  ultimately have operational-sound (TRel*)
      \mathbf{using}\ \mathit{weak-reduction-simulation-impl-OSou}[\mathbf{where}\ \mathit{Rel} = \mathit{indRelRTPO}\ \mathit{TRel}\ \mathbf{and}\ \mathit{TRel} = \mathit{TRel}]
  moreover from sim have weak-reduction-simulation ((TRel^+)^{-1}) Target
      using indRelRTPO-impl-TRel-is-weak-reduction-simulation-rev[where TRel=TRel]
    by simp
  ultimately show operational-sound (TRel^*) \wedge weak-reduction-simulation ((TRel^+)^{-1}) Target
    by simp
qed
lemma (in encoding) OSou-iff-weak-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (operational-sound (TRel*)
         \land weak-reduction-simulation ((TRel<sup>+</sup>)<sup>-1</sup>) Target)
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
            \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
            \land \ (\forall \, S \, \, T. \, \, (SourceTerm \, \, S, \, \, TargetTerm \, \, T) \, \in \, Rel \, \longrightarrow \, (\llbracket S \rrbracket, \, \, T) \, \in \, TRel^*)
            \land weak-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target))
proof (rule iffI, erule conjE)
  have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
    by (simp add: indRelRTPO.encR)
  moreover have \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow TargetTerm \ T1 \leq ||\cdot||RT < TRel > TargetTerm \ T2
    by (simp add: indRelRTPO.target)
  moreover have \forall T1 \ T2. TargetTerm T1 \leq \|\cdot\|RT \leq TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
      using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by simp
  moreover have \forall S \ T. \ Source Term \ S \lesssim [\![\cdot]\!]RT < TRel > \ Target Term \ T \longrightarrow ([\![S]\!], \ T) \in TRel^*
      using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
   by simp
  moreover assume operational-sound (TRel*)
             and weak-reduction-simulation ((TRel^+)^{-1}) Target
  hence weak-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal Source Target)
      \textbf{using} \ OSou\text{-}iff\text{-}inverse\text{-}of\text{-}indRelRTPO\text{-}is\text{-}weak\text{-}reduction\text{-}simulation} \\ [\textbf{where} \ TRel = TRel]
    bv simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                   \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
                   \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                   \land weak-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
   by blast
```

```
next
    assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                   \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                   \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                   \land weak-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
    from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
       and A2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
       and A3: \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
       and A4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
       and A5: weak-reduction-simulation (Rel^{-1}) (STCal Source Target)
    from A1 A4 A5 have operational-sound (TRel*)
           using weak-reduction-simulation-impl-OSou[where Rel=Rel and TRel=TRel]
        by simp
    moreover from A2\ A3\ A5 have weak-reduction-simulation ((TRel^+)^{-1}) Target
           \textbf{using} \ \textit{rel-with-target-impl-transC-TRel-is-weak-reduction-simulation-rev} \\ [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} 
                          TRel = TRel
       by simp
    ultimately show operational-sound (TRel^*) \wedge weak-reduction-simulation ((TRel^+)^{-1}) Target
        by simp
qed
An encoding is strongly operational sound modulo a relation TRel whose inverse is a strong reduction
simulation on target terms iff there is a relation, like indRelRTPO, that relates at least all source
terms to their literal translations, includes TRel, and whose inverse is a strong simulation.
lemma (in encoding) strong-reduction-simulation-impl-SOSou:
    fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
       and TRel :: ('procT \times 'procT) set
    assumes A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
           and A2: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([\![S]\!], \ T) \in TRel^*
           and A3: strong-reduction-simulation (Rel^{-1}) (STCal Source Target)
    shows strongly-operational-sound (TRel^*)
proof clarify
    \mathbf{fix} \ S \ T
    from A1 have (TargetTerm ([S]), SourceTerm S) \in Rel^{-1}
    moreover assume [S] \longmapsto Target T
    hence TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target) (TargetTerm\ T)
       by (simp\ add:\ STCal\text{-}step(2))
    ultimately obtain Q' where A5: SourceTerm S \longrightarrow (STCal\ Source\ Target)\ Q'
                                                 and A6: (TargetTerm\ T,\ Q') \in Rel^{-1}
           using A3
        by blast
    from A5 obtain S' where A7: S' \inS Q' and A8: S \longmapstoSource S'
       by (auto simp add: STCal-step(1))
    from A6 have (Q', TargetTerm T) \in Rel
        by induct
    with A2 A7 have ([S'], T) \in TRel^*
       by simp
    with A8 show \exists S'. S \longmapsto Source S' \land (\llbracket S' \rrbracket, T) \in TRel^*
qed
```

lemma (in encoding) SOSou-iff-inverse-of-indRelRTPO-is-strong-reduction-simulation:

fixes $TRel :: ('procT \times 'procT) \text{ set}$ shows $(strongly-operational-sound (TRel^*)$

```
assume os: strongly-operational-sound (TRel^*)
  and sim: strong-reduction-simulation ((TRel^+)^{-1}) Target
show strong-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal Source Target)
proof clarify
 fix P Q P'
 assume Q \lesssim [\cdot]RT < TRel > P
 moreover assume P \longmapsto (STCal\ Source\ Target)\ P'
 show \exists Q'. Q \longmapsto (STCal \ Source \ Target) \ Q' \land (P', Q') \in (indRelRTPO \ TRel)^{-1}
 proof (induct arbitrary: P')
   case (encR S)
   assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target) P'
   from this obtain T where A1: T \in T P' and A2: [S] \longmapsto Target T
     by (auto simp add: STCal-step(2))
   from os A2 obtain S' where A3: S \longrightarrow Source S' and A4: ([S'], T) \in TRel^*
     by blast
   from A3 have Source Term S \longmapsto (STCal\ Source\ Target)\ (Source\ Term\ S')
     by (simp \ add: STCal\text{-}step(1))
   moreover have SourceTerm\ S' \lesssim [\![\cdot]\!]RT < TRel > P'
   proof -
     from A4 have [S'] = T \vee ([S'], T) \in TRel^+
        using rtrancl-eq-or-trancl[of [S'] T TRel]
     moreover have A5: Source Term S' \leq [\![\cdot]\!]RT < TRel > Target Term ([\![S']\!])
      by (simp add: indRelRTPO.encR)
     with A1 have [S'] = T \Longrightarrow SourceTerm S' \lesssim [\cdot]RT < TRel > P'
     moreover have ([S'], T) \in TRel^+ \Longrightarrow SourceTerm S' \leq [-]RT < TRel > P'
     proof -
      assume ([S'], T) \in TRel^+
      hence TargetTerm ([S]) \leq [\cdot]RT < TRel > TargetTerm T
        by (rule transitive-closure-of-TRel-to-indRelRTPO)
      with A5 have SourceTerm S' \leq \|\cdot\|RT < TRel > TargetTerm T
        by (rule indRelRTPO.trans)
      with A1 show SourceTerm S' \lesssim [\cdot]RT < TRel > P'
        \mathbf{by} \ simp
     qed
     ultimately show SourceTerm S' \lesssim [\![\cdot]\!]RT < TRel > P'
      by blast
   qed
   hence (P', SourceTerm S') \in (indRelRTPO TRel)^{-1}
     by simp
   ultimately
   show \exists Q'. Source Term S \longmapsto (STCal Source Target) Q' \land (P', Q') \in (indRelRTPO TRel)^{-1}
     by blast
 next
   case (source S)
   then obtain S' where B1: S' \in SP'
     by (auto simp add: STCal-step(1))
   hence (P', P') \in (indRelRTPO\ TRel)^{-1}
     by (simp add: indRelRTPO.source)
   with source
   show \exists Q'. Source Term S \longmapsto (STCal \ Source \ Target) \ Q' \land (P', Q') \in (indRelRTPO \ TRel)^{-1}
     by blast
 next
   case (target T1 T2)
   assume TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)\ P'
   from this obtain T2' where C1: T2' \in T P' and C2: T2 \longmapsto Target T2'
     by (auto simp add: STCal-step(2))
   assume (T1, T2) \in TRel
   hence (T2, T1) \in (TRel^+)^{-1}
```

```
by simp
     with C2 \ sim obtain T1' where C3: T1 \longmapsto Target \ T1' and C4: (T2', T1') \in (TRel^+)^{-1}
       by blast
     from C3 have TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)\ (TargetTerm\ T1')
       by (simp\ add:\ STCal\text{-}step(2))
     moreover from C_4 have (T1', T2') \in TRel^+
       by induct
     hence TargetTerm\ T1' \lesssim \|\cdot\|RT < TRel > TargetTerm\ T2'
       by (rule transitive-closure-of-TRel-to-indRelRTPO)
     with C1 have (P', TargetTerm\ T1') \in (indRelRTPO\ TRel)^{-1}
       by simp
     ultimately
     show \exists Q'. TargetTerm T1 \longmapsto (STCal Source Target) Q' \land (P', Q') \in (indRelRTPO\ TRel)^{-1}
       by blast
    next
     case (trans P Q R R')
     assume R \longmapsto (STCal\ Source\ Target)\ R'
        and \bigwedge R'. R \longmapsto (STCal\ Source\ Target)\ R'
             \implies \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) \ Q' \land (R', Q') \in (indRelRTPO \ TRel)^{-1}
     from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target)\ Q'
                          and D2: (R', Q') \in (indRelRTPO\ TRel)^{-1}
       by blast
     assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target)\ Q'
             \Rightarrow \exists P'. P \longmapsto (STCal\ Source\ Target)\ P' \land (Q', P') \in (indRelRTPO\ TRel)^{-1}
     with D1 obtain P' where D3: P \longmapsto (STCal\ Source\ Target)\ P'
                        and D_4: (Q', P') \in (indRelRTPO\ TRel)^{-1}
       by blast
     from D4 D2 have (R', P') \in (indRelRTPO\ TRel)^{-1}
       by (simp add: indRelRTPO.trans[where P=P' and Q=Q' and R=R'])
     with D3 show \exists P'. P \longmapsto (STCal\ Source\ Target)\ P' \land (R',P') \in (indRelRTPO\ TRel)^{-1}
       by blast
   ged
  qed
next
  have \forall S. Source Term S \leq \llbracket \cdot \rrbracket RT < TRel > Target Term (\llbracket S \rrbracket)
   by (simp add: indRelRTPO.encR)
  moreover have \forall S \ T. \ SourceTerm \ S \lesssim [\cdot] RT < TRel > TargetTerm \ T \longrightarrow ([S], \ T) \in TRel^*
     \mathbf{using} \ ind RelRTPO-to-TRel(2) [\mathbf{where} \ TRel=TRel] \ trans-closure-of-TRel-refl-cond
    by simp
  moreover
  assume sim: strong-reduction-simulation ((indRelRTPO TRel)<sup>-1</sup>) (STCal Source Target)
  ultimately have strongly-operational-sound (TRel*)
      using strong-reduction-simulation-impl-SOSou[where Rel = indRelRTPO TRel and TRel = TRel]
  moreover from sim have strong-reduction-simulation ((TRel^+)^{-1}) Target
     \textbf{using} \ ind RelRTPO\text{-}impl\text{-}TRel\text{-}is\text{-}strong\text{-}reduction\text{-}simulation\text{-}rev[\textbf{where} \ TRel\text{-}TRel]}
    by simp
  ultimately
  show strongly-operational-sound (TRel^*) \wedge strong-reduction-simulation ((TRel^+)^{-1}) Target
    by simp
qed
lemma (in encoding) SOSou-iff-strong-reduction-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (strongly-operational-sound (TRel^*) \wedge strong-reduction-simulation ((TRel^+)<sup>-1</sup>) Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
           \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
           \land strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target))
proof (rule iffI, erule conjE)
```

```
by (simp add: indRelRTPO.encR)
    moreover have \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow TargetTerm \ T1 \leq ||\cdot||RT < TRel > TargetTerm \ T2
       by (simp add: indRelRTPO.target)
    moreover have \forall T1 \ T2. TargetTerm T1 \leq \|\cdot\|RT \leq TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
          using indRelRTPO-to-TRel(4)[where TRel = TRel]
       by simp
    moreover have \forall S \ T. \ Source Term \ S \lesssim \llbracket \cdot \rrbracket RT < TRel > \ Target Term \ T \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
          using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
    moreover assume strongly-operational-sound (TRel^*)
                         and strong-reduction-simulation ((TRel^+)^{-1}) Target
    hence strong-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal\ Source\ Target)
          \textbf{using } SOSou\text{-}iff\text{-}inverse\text{-}of\text{-}indRelRTPO\text{-}is\text{-}strong\text{-}reduction\text{-}simulation} [\textbf{where } TRel = TRel]
       by simp
    ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                                  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                                  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                                  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                                  \land strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
       \mathbf{by} blast
next
    assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                  \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
                  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                  \land strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
    from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
       and A2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
       and A3: \forall T1 \ T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
       and A_4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
       and A5: strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
       \mathbf{by} blast
    from A1 A4 A5 have strongly-operational-sound (TRel*)
          using strong-reduction-simulation-impl-SOSou[where Rel=Rel and TRel=TRel]
    moreover from A2 A3 A5 have strong-reduction-simulation ((TRel^+)^{-1}) Target
          \textbf{using} \ \textit{rel-with-target-impl-transC-TRel-is-strong-reduction-simulation-rev} \\ [\textbf{where} \ \textit{Rel} = \textit{Rel} \ \textbf{and} \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and} ] \\ [\textbf{where} \ \textit{Rel} = \texttt{Rel} \ \textbf{and
                        TRel = TRel
       by simp
   ultimately
    show strongly-operational-sound (TRel^*) \wedge strong-reduction-simulation ((TRel^+)^{-1}) Target
       by simp
qed
lemma (in encoding) SOSou-modulo-TRel-iff-strong-reduction-simulation:
    shows (\exists TRel. strongly-operational-sound (<math>TRel^*)
                \land strong-reduction-simulation ((TRel<sup>+</sup>)<sup>-1</sup>) Target)
                = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
                    \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (TargetTerm \ (\llbracket S \rrbracket), \ TargetTerm \ T) \in Rel^{=})
                    \land strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target))
proof (rule iffI)
    assume \exists TRel. strongly-operational-sound <math>(TRel^*)
                  \land strong-reduction-simulation ((TRel<sup>+</sup>)<sup>-1</sup>) Target
    from this obtain TRel where strongly-operational-sound (TRel^*)
                                              and strong-reduction-simulation ((TRel^+)^{-1}) Target
    hence strong-reduction-simulation ((indRelRTPO TRel)<sup>-1</sup>) (STCal Source Target)
          using SOSou-iff-inverse-of-indRelRTPO-is-strong-reduction-simulation[where TRel = TRel]
       by simp
    moreover have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
```

have $\forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel$

```
by (simp add: indRelRTPO.encR)
  moreover have \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in indRelRTPO \ TRel
                   \rightarrow (TargetTerm ([S]), TargetTerm T) \in (indRelRTPO TRel)^{=}
     using indRelRTPO-relates-source-target[where TRel=TRel]
    by simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
                      \longrightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel^{=})
                  \land strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
             \longrightarrow (TargetTerm ([\![S]\!]), TargetTerm T) \in Rel^{=})
          \land strong-reduction-simulation (Rel<sup>-1</sup>) (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and A2: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
              \rightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel^{=})
   and A3: strong-reduction-simulation (Rel^{-1}) (STCal Source Target)
   by blast
  from A2 obtain TRel where \forall T1 \ T2. \ (T1, T2) \in TRel \longrightarrow (TargetTerm \ T1, TargetTerm \ T2) \in Rel
  and \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
   and \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([S], \ T) \in TRel^*
     using target-relation-from-source-target-relation[where Rel=Rel]
   by blast
  with A1 A3
  have strongly-operational-sound (TRel^*) \wedge strong-reduction-simulation ((TRel^+)^{-1}) Target
     using SOSou-iff-strong-reduction-simulation[where TRel = TRel]
  thus \exists TRel. strongly-operational-sound (TRel^*) \land strong-reduction-simulation ((TRel^+)^{-1}) Target
    by blast
qed
```

8.5 Weak Operational Correspondence vs Correspondence Similarity

If there exists a relation that relates at least all source terms and their literal translations, includes TRel, and is a correspondence simulation then the encoding is weakly operational corresponding w.r.t. TRel.

```
lemma (in encoding) weak-reduction-correspondence-simulation-impl-WOC:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and TRel :: ('procT \times 'procT) set
  assumes enc: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
     and tRel: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
     and cs: weak-reduction-correspondence-simulation Rel (STCal Source Target)
  shows weakly-operational-corresponding (TRel^*)
proof
  from enc tRel cs show operational-complete (TRel*)
     using weak-reduction-simulation-impl-OCom[where TRel = TRel]
   by simp
  show weakly-operational-sound (TRel^*)
  proof clarify
   \mathbf{fix} \ S \ T
   from enc have (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
     by simp
   moreover assume [S] \longmapsto Target * T
   hence TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
     by (simp \ add: STCal\text{-}steps(2))
   ultimately obtain P' Q' where A1: SourceTerm S \longmapsto (STCal\ Source\ Target) * P'
    and A2: TargetTerm T \longmapsto (STCal\ Source\ Target) * Q' and A3: (P', Q') \in Rel
```

```
using cs by blast from A1 obtain S' where A4\colon S'\in S P' and A5\colon S\longmapsto Source* S' by (auto\ simp\ add\colon STCal\text{-}steps(1)) from A2 obtain T' where A6\colon T'\in T Q' and A7\colon T\longmapsto Target* T' by (auto\ simp\colon STCal\text{-}steps(2)) from tRel\ A3\ A4\ A6\ have\ (\llbracket S'\rrbracket,\ T')\in TRel^* by simp with A5\ A7\ \text{show}\ \exists\ S'\ T'.\ S\longmapsto Source* S'\land\ T\longmapsto Target* T'\land\ (\llbracket S'\rrbracket,\ T')\in TRel^* by blast qed qed
```

An encoding is weakly operational corresponding w.r.t. a correspondence simulation on target terms TRel iff there exists a relation, like indRelRTPO, that relates at least all source terms and their literal translations, includes TRel, and is a correspondence simulation.

```
translations, includes TRel, and is a correspondence simulation.
lemma (in encoding) WOC-iff-indRelRTPO-is-reduction-correspondence-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (weakly-operational-corresponding (TRel^*)
         \land weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target)
         = weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
  assume woc: weakly-operational-corresponding (TRel^*)
     and csi: weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target
  show weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
  proof
    from woc csi show sim: weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
        using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel = TRel]
      by simp
    \mathbf{show} \ \forall \ P \ Q \ Q'. \ P \lesssim \llbracket \cdot \rrbracket RT < TRel > \ Q \ \land \ Q \longmapsto (STCal \ Source \ Target) * \ Q'
          \longrightarrow (\exists P'' \ Q''. \ P \longmapsto (STCal \ Source \ Target) * P'' \land Q' \longmapsto (STCal \ Source \ Target) * Q''
          \land P'' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q'' )
    proof clarify
      \mathbf{fix} P Q Q
      \mathbf{assume}\ P \lesssim \llbracket \cdot \rrbracket RT < TRel >\ Q\ \mathbf{and}\ \ Q \ \longmapsto (STCal\ Source\ Target) *\ Q'
      thus \exists P'' \ Q''. P \longmapsto (STCal \ Source \ Target) * P'' \land Q' \longmapsto (STCal \ Source \ Target) * Q''
            \land P'' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q''
      proof (induct arbitrary: Q')
        case (encR S)
        assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* Q'
        from this obtain T where A1: T \in T Q' and A2: [S] \longmapsto Target* T
          by (auto simp add: STCal-steps(2))
        from A2 woc obtain S' T' where A3: S \longmapsto Source* S' and A4: T \longmapsto Target* T'
                                   and A5: (\llbracket S' \rrbracket, T') \in TRel^*
        from A3 have SourceTerm S \longmapsto (STCal\ Source\ Target) * (SourceTerm\ S')
          by (simp\ add:\ STCal\text{-}steps(1))
        moreover from A4 have TargetTerm\ T \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T')
          by (simp\ add:\ STCal\text{-}steps(2))
        moreover have SourceTerm\ S' \leq [\![\cdot]\!]RT < TRel > TargetTerm\ T'
        proof -
          have A6: SourceTerm S' \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm (\llbracket S' \rrbracket)
            by (rule indRelRTPO.encR)
          from A5 have [S'] = T' \vee ([S'], T') \in TRel^+
              \mathbf{using}\ \mathit{rtrancl-eq\text{-}or\text{-}trancl}[\mathit{of}\ \llbracket S' \rrbracket\ \mathit{T'}\ \mathit{TRel}]
          moreover from A6 have [S'] = T' \Longrightarrow Source Term S' \lesssim [-]RT < TRel > Target Term T'
            by simp
          moreover have (\llbracket S \rrbracket, T') \in TRel^+ \Longrightarrow SourceTerm\ S' \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm\ T'
          proof -
```

```
assume ([S'], T') \in TRel^+
      hence TargetTerm ([S]) \leq [\cdot]RT < TRel > TargetTerm T'
        by (simp add: transitive-closure-of-TRel-to-indRelRTPO[where TRel=TRel])
      with A6 show SourceTerm S' \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm T'
        by (rule indRelRTPO.trans)
   qed
    ultimately show SourceTerm\ S' \lesssim [\![\cdot]\!]RT < TRel > TargetTerm\ T'
      by blast
  qed
  ultimately show \exists P'' \ Q''. SourceTerm S \longmapsto (STCal \ Source \ Target) * P''
                   \land Q' \longmapsto (STCal\ Source\ Target) * Q'' \land P'' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q''
    by blast
next
  case (source S)
 assume B1: Source Term S \longmapsto (STCal\ Source\ Target) * Q'
  moreover have Q' \longmapsto (STCal\ Source\ Target) * Q'
    by (rule steps-refl)
  moreover from B1 obtain S' where S' \in S Q'
    by (auto simp add: STCal-steps(1))
  hence Q' \lesssim [\cdot]RT < TRel > Q'
    by (simp add: indRelRTPO.source)
  ultimately show \exists P'' \ Q''. SourceTerm S \longmapsto (STCal \ Source \ Target) * P''
                   \land Q' \longmapsto (STCal\ Source\ Target) * Q'' \land P'' \leq \llbracket \cdot \rrbracket RT < TRel > Q''
    by blast
\mathbf{next}
  case (target T1 T2)
  assume TargetTerm T2 \longmapsto (STCal\ Source\ Target)* Q'
  from this obtain T2' where C1: T2' \in T Q' and C2: T2 \longmapsto Target * T2'
    by (auto simp add: STCal-steps(2))
  assume (T1, T2) \in TRel
  hence (T1, T2) \in TRel^+
    by simp
  with C2\ csi\ obtain T1'\ T2'' where C3\colon T1\ \longmapsto Target*\ T1' and C4\colon T2'\ \longmapsto Target*\ T2''
                                and C5: (T1', T2'') \in TRel^+
    by blast
  from C3 have TargetTerm T1 \longmapsto (STCal Source Target)* (TargetTerm T1')
    by (simp \ add: STCal\text{-}steps(2))
 moreover from C1 C4 have Q' \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T2'')
    by (simp \ add: STCal\text{-}steps(2))
 moreover from C5 have TargetTerm\ T1' \lesssim [] RT < TRel > (TargetTerm\ T2'')
    by (simp add: transitive-closure-of-TRel-to-indRelRTPO)
  ultimately show \exists P'' \ Q''. TargetTerm T1 \longmapsto (STCal \ Source \ Target) * P''
                   \land Q' \longmapsto (STCal\ Source\ Target) * Q'' \land P'' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q''
   \mathbf{by} blast
next
  case (trans P Q R R')
 assume R \longmapsto (STCal\ Source\ Target) * R'
     and \bigwedge R'. R \longmapsto (STCal\ Source\ Target) * R' \Longrightarrow \exists\ Q''\ R''. Q \longmapsto (STCal\ Source\ Target) * Q''
          \land \ R' \longmapsto (STCal \ Source \ Target) \ast \ R'' \land \ Q'' \lesssim \llbracket \cdot \rrbracket RT < TRel > \ R''
     \mathbf{and} \  \, \bigwedge Q'. \  \, Q \longmapsto (\mathit{STCal} \  \, \mathit{Source} \  \, \mathit{Target}) \ast \  \, Q' \Longrightarrow \exists \, P'' \  \, Q''. \  \, P \longmapsto (\mathit{STCal} \  \, \mathit{Source} \  \, \mathit{Target}) \ast \, P''
          \land Q' \longmapsto (STCal\ Source\ Target) * Q'' \land P'' \lesssim \llbracket \cdot \rrbracket RT < TRel > Q''
  moreover have trans (indRelRTPO TRel)
      using indRelRTPO.trans
      unfolding trans-def
    by blast
  ultimately show ?case
      using sim reduction-correspondence-simulation-condition-trans where P=P and
             Rel=indRelRTPO\ TRel\ and\ Cal=STCal\ Source\ Target\ and\ Q=Q\ and\ R=R
    \mathbf{by} blast
qed
```

```
qed
  qed
next
  assume csi: weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
  show weakly-operational-corresponding (TRel^*)
        \land weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target
  proof
    have \forall S. Source Term S \leq [\![\cdot]\!]RT < TRel > Target Term ([\![S]\!])
      by (simp add: indRelRTPO.encR)
    moreover have \forall S \ T. \ Source Term \ S \lesssim \llbracket \cdot \rrbracket RT < TRel > \ Target Term \ T \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
        using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
    ultimately show weakly-operational-corresponding (TRel*)
        using weak-reduction-correspondence-simulation-impl-WOC[where Rel=indRelRTPO TRel and
               TRel = TRel | csi
      by simp
  \mathbf{next}
    from csi show weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target
        \textbf{using} \ ind \textit{RelRTPO-impl-TRel-is-weak-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
      by simp
  qed
qed
lemma (in encoding) WOC-iff-reduction-correspondence-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (weakly-operational-corresponding (TRel^*)
         \land weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target)
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
            \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
            \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
            \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
            \land weak-reduction-correspondence-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
  have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
    by (simp add: indRelRTPO.encR)
  moreover have \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow TargetTerm \ T1 \lesssim [\cdot]RT < TRel > TargetTerm \ T2
    by (simp add: indRelRTPO.target)
  moreover have \forall T1 \ T2. TargetTerm \ T1 \leq \|\cdot\|RT < TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
      using indRelRTPO-to-TRel(4)[where TRel = TRel]
  moreover have \forall S \ T. \ Source Term \ S \lesssim \llbracket \cdot \rrbracket RT < TRel > \ Target Term \ T \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
       \textbf{using} \ ind \textit{RelRTPO-to-TRel}(2) \\ [\textbf{where} \ \textit{TRel} = \textit{TRel}] \ \textit{trans-closure-of-TRel-refl-cond} \\ 
    by simp
  moreover assume weakly-operational-corresponding (TRel^*)
              and weak-reduction-correspondence-simulation (TRel^+) Target
  hence weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
      using WOC-iff-indRelRTPO-is-reduction-correspondence-simulation[where TRel=TRel]
    by simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                   \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
                   \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                   \land weak-reduction-correspondence-simulation Rel (STCal Source Target)
    \mathbf{by} blast
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
          \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
          \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
          \land \ (\forall \, S \, \, T. \, \, (SourceTerm \, \, S, \, \, TargetTerm \, \, T) \, \in \, Rel \, \longrightarrow \, (\llbracket S \rrbracket, \, \, T) \, \in \, TRel^*)
          \land \ weak\text{-}reduction\text{-}correspondence\text{-}simulation \ Rel\ (STCal\ Source\ Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
```

```
and A2: \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
  and A3: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
  and A_4: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
   and A5: weak-reduction-correspondence-simulation Rel (STCal Source Target)
  from A1 A4 A5 have weakly-operational-corresponding (TRel*)
     using weak-reduction-correspondence-simulation-impl-WOC[where Rel = Rel and TRel = TRel]
  moreover from A2 A3 A5 have weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target
     \textbf{using} \ \textit{rel-with-target-impl-trans} C-TRel-\textit{is-weak-reduction-correspondence-simulation}
   by simp
  ultimately show weakly-operational-corresponding (TRel*)
                 \land weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target
   by simp
qed
{f lemma} rel	entiresize includes	entropy TRel	entropy modulo	entropy preorder:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and TRel :: ('procT \times 'procT) set
 assumes transT: trans TRel
 shows ((\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+))
        = (TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\})
proof (rule iffI, erule conjE)
  assume \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
    and \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
  with transT show TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
     using trancl-id[of TRel]
   \mathbf{by} blast
\mathbf{next}
  assume A: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  hence \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   by simp
  moreover from transT A
  have \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
     using trancl-id[of TRel]
   by blast
  ultimately show (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
                 \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
   by simp
qed
lemma (in encoding) WOC-wrt-preorder-iff-reduction-correspondence-simulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (weakly-operational-corresponding TRel \land preorder \ TRel
        \land weak-reduction-correspondence-simulation TRel Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
           \land preorder Rel
           \land weak-reduction-correspondence-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE, erule conjE)
  assume A1: operational-complete TRel and A2: weakly-operational-sound TRel
    and A3: preorder TRel and A4: weak-reduction-correspondence-simulation TRel Target
  from A3 have A5: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  with A3 have TRel^* = TRel
     using trancl-id[of TRel] reflcl-trancl[of TRel]
     unfolding preorder-on-def refl-on-def
```

```
by auto
  with A1 A2 have weakly-operational-corresponding (TRel*)
   by simp
  moreover from A4 A5 have weak-reduction-correspondence-simulation (TRel<sup>+</sup>) Target
   by simp
 ultimately
  have weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
     \textbf{using} \ \textit{WOC-iff-indRelRTPO-is-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
   bv blast
  moreover have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in indRelRTPO\ TRel
   by (simp add: indRelRTPO.encR)
  moreover
  have TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in indRelRTPO TRel\}
  proof auto
   \mathbf{fix} \ TP \ TQ
   assume (TP, TQ) \in TRel
   thus TargetTerm\ TP \lesssim ||\cdot||RT < TRel > TargetTerm\ TQ
     by (rule indRelRTPO.target)
  next
   fix TP TO
   assume TargetTerm\ TP \leq ||\cdot||RT < TRel > TargetTerm\ TQ
   with A3 show (TP, TQ) \in TRel
       using indRelRTPO-to-TRel(4)[where TRel=TRel] trancl-id[of TRel]
       unfolding preorder-on-def
     by blast
  qed
  moreover from A3
  have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in ind RelRTPO \ TRel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^+
     using indRelRTPO-to-TRel(2)[where TRel=TRel] reflcl-trancl[of TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
     unfolding preorder-on-def refl-on-def
   by blast
  with A3 have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in ind Rel RTPO \ TRel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   bv blast
  moreover from A3 have refl (indRelRTPO TRel)
     using indRelRTPO-refl[of TRel]
     unfolding preorder-on-def
   by simp
  moreover have trans (indRelRTPO TRel)
     using indRelRTPO.trans
     unfolding trans-def
   bv blast
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                 \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                 \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
                 \land preorder Rel
                 \land weak-reduction-correspondence-simulation Rel (STCal Source Target)
     unfolding preorder-on-def
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land preorder Rel
         \land weak-reduction-correspondence-simulation Rel (STCal Source Target)
  from this obtain Rel where B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and B2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and B3: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel \ and \ B4: \ preorder \ Rel
  and B5: weak-reduction-correspondence-simulation Rel (STCal Source Target)
```

```
by blast
 from B2 B4 have B6: refl TRel
    unfolding preorder-on-def refl-on-def
   by blast
 from B2 B4 have B7: trans TRel
    unfolding trans-def preorder-on-def
   by blast
 hence B8: TRel^+ = TRel
    using trancl-id[of TRel]
   by simp
 with B6 have TRel^* = TRel
    using reflcl-trancl[of TRel]
    unfolding refl-on-def
   by blast
 with B1 B3 B5 have weakly-operational-corresponding TRel
    using weak-reduction-correspondence-simulation-impl-WOC[where Rel=Rel and TRel=TRel]
   by simp
 moreover from B6 B7 have preorder TRel
    unfolding preorder-on-def
   by blast
 moreover from B2 B5 B7 B8 have weak-reduction-correspondence-simulation TRel Target
    using rel-includes-TRel-modulo-preorder[where Rel=Rel and TRel=TRel]
         rel-with-target-impl-transC-TRel-is-weak-reduction-correspondence-simulation [where
            Rel = Rel \text{ and } TRel = TRel
    by fast
 ultimately show weakly-operational-corresponding TRel \land preorder \ TRel
              \land weak-reduction-correspondence-simulation TRel Target
   by blast
qed
```

8.6 (Strong) Operational Correspondence vs (Strong) Bisimilarity

An encoding is operational corresponding w.r.t a weak bisimulation on target terms TRel iff there exists a relation, like indRelRTPO, that relates at least all source terms and their literal translations, includes TRel, and is a weak bisimulation. Thus this variant of operational correspondence ensures that source terms and their translations are weak bisimilar.

```
lemma (in encoding) OC-iff-indRelRTPO-is-weak-reduction-bisimulation:
 fixes TRel :: ('procT \times 'procT) set
 shows (operational-corresponding (TRel^*)
        \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target)
        = weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
 assume ocorr: operational-corresponding (TRel^*)
    and bisim: weak-reduction-bisimulation (TRel^+) Target
 hence weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
     using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel=TRel]
   by simp
 moreover from bisim have weak-reduction-simulation ((TRel^+)^{-1}) Target
     using weak-reduction-bisimulations-impl-inverse-is-simulation [where Rel=TRel^+]
 with ocorr have weak-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal Source Target)
     \textbf{using} \ OSou\text{-}iff\text{-}inverse\text{-}of\text{-}indRelRTPO\text{-}is\text{-}weak\text{-}reduction\text{-}simulation} [\textbf{where} \ TRel = TRel]
   by simp
 ultimately show weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     \mathbf{using}\ \mathit{weak-reduction-simulations-impl-bisimulation}[\mathbf{where}\ \mathit{Rel} = \mathit{indRelRTPO}\ \mathit{TRel}]
   by simp
next
 assume bisim: weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
 hence operational-complete (TRel^*) \wedge weak-reduction-simulation (TRel^+) Target
     using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel = TRel]
```

```
moreover from bisim
  have weak-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal Source Target)
      \textbf{using} \ \textit{weak-reduction-bisimulations-impl-inverse-is-simulation} \\ [\textbf{where} \ \textit{Rel} = \textit{indRelRTPO} \ \textit{TRel}]
    by simp
  hence operational-sound (TRel^*) \wedge weak-reduction-simulation ((TRel^+)^{-1}) Target
      \textbf{using} \ OSou\text{-}iff\text{-}inverse\text{-}of\text{-}indRelRTPO\text{-}is\text{-}weak\text{-}reduction\text{-}simulation} [\textbf{where} \ TRel = TRel]
  ultimately show operational-corresponding (TRel^*) \wedge weak-reduction-bisimulation (TRel^+) Target
      using weak-reduction-simulations-impl-bisimulation[where Rel=TRel^+]
    by simp
qed
lemma (in encoding) OC-iff-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (operational-corresponding (TRel^*) \wedge weak-reduction-bisimulation (TRel^+) Target)
         = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
            \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
            \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
            \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
            ∧ weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
  have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
    by (simp add: indRelRTPO.encR)
  moreover have \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow TargetTerm \ T1 \leq ||\cdot||RT < TRel > TargetTerm \ T2
    by (simp add: indRelRTPO.target)
  moreover have \forall T1 \ T2. TargetTerm \ T1 \leq \mathbb{I} \cdot \mathbb{R}T < TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
      using indRelRTPO-to-TRel(4)[where TRel=TRel]
  moreover have \forall S \ T. \ Source Term \ S \lesssim [\![\cdot]\!]RT < TRel > Target Term \ T \longrightarrow ([\![S]\!], \ T) \in TRel^*
      using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
    bv simp
  moreover assume operational-corresponding (TRel*)
             and weak-reduction-bisimulation (TRel<sup>+</sup>) Target
  hence weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
      using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel=TRel]
    by simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                  ∧ weak-reduction-bisimulation Rel (STCal Source Target)
    \mathbf{by} blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         \land weak-reduction-bisimulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   and A2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   and A3: \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
   and A_4: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
   and A5: weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence operational-complete (TRel^*)
         \land weak-reduction-simulation (TRel<sup>+</sup>) Target
      using OCom-iff-weak-reduction-simulation[where TRel = TRel]
    by blast
  moreover from A5 have weak-reduction-simulation (Rel^{-1}) (STCal\ Source\ Target)
      using weak-reduction-bisimulations-impl-inverse-is-simulation [where Rel=Rel]
```

by simp

```
by simp
  with A1 A2 A3 A4 have operational-sound (TRel*)
                      \land weak-reduction-simulation ((TRel<sup>+</sup>)<sup>-1</sup>) Target
     using OSou-iff-weak-reduction-simulation [where TRel = TRel]
   by blast
  ultimately show operational-corresponding (TRel^*)
                \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
     using weak-reduction-simulations-impl-bisimulation[where Rel = TRel^+]
   by simp
\mathbf{qed}
lemma (in encoding) OC-wrt-preorder-iff-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (operational-corresponding TRel \land preorder \ TRel
        \land weak-reduction-bisimulation TRel Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land preorder Rel
          \land weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE, erule conjE)
  assume A1: operational-complete TRel and A2: operational-sound TRel
    and A3:preorder TRel and A4: weak-reduction-bisimulation TRel Target
  from A3 have A5: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   \mathbf{by} blast
  with A3 have TRel^* = TRel
     using reflcl-trancl[of TRel]
     unfolding preorder-on-def refl-on-def
   by blast
  with A1 A2 have operational-corresponding (TRel*)
   by simp
  moreover from A4 A5 have weak-reduction-bisimulation (TRel<sup>+</sup>) Target
   by simp
  ultimately
  have weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel = TRel]
   by blast
  moreover have \forall S. Source Term S \leq [\![\cdot]\!]RT < TRel > Target Term ([\![S]\!])
   by (simp add: indRelRTPO.encR)
  have TRel = \{(T1, T2). TargetTerm T1 \leq []RT < TRel > TargetTerm T2\}
 proof auto
   fix TP TQ
   assume (TP, TQ) \in TRel
   thus TargetTerm\ TP \lesssim ||\cdot||RT < TRel > TargetTerm\ TQ
     by (rule indRelRTPO.target)
  next
   \mathbf{fix} \ TP \ TQ
   assume TargetTerm\ TP \leq \|\cdot\|RT < TRel > TargetTerm\ TQ
   with A3 show (TP, TQ) \in TRel
       using indRelRTPO-to-TRel(4)[where TRel=TRel] trancl-id[of TRel]
       unfolding preorder-on-def
     by blast
  qed
  moreover from A3
  have \forall S \ T. \ Source Term \ S \lesssim \llbracket \cdot \rrbracket RT < TRel > \ Target Term \ T \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^+
     using indRelRTPO-to-TRel(2)[where TRel = TRel] reflect-trancl[of TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
     unfolding preorder-on-def refl-on-def
```

```
by auto
with A3 have \forall S \ T. \ Source Term \ S \lesssim [\cdot] RT < TRel > Target Term \ T \longrightarrow ([S], T) \in TRel
   using trancl-id[of TRel]
   unfolding preorder-on-def
  by blast
moreover from A3 have refl (indRelRTPO TRel)
   unfolding preorder-on-def
  by (simp add: indRelRTPO-refl)
moreover have trans (indRelRTPO TRel)
   using indRelRTPO.trans
   unfolding trans-def
ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
                \land preorder Rel
                \land weak-reduction-bisimulation Rel (STCal Source Target)
   unfolding preorder-on-def
 by blast
assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land preorder Rel
       \land weak-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
 and B2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
 and B3: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel \ \text{and} \ B4: \ preorder \ Rel
 and B5: weak-reduction-bisimulation Rel (STCal Source Target)
 by blast
from B2 B4 have B6: refl TRel
   unfolding preorder-on-def refl-on-def
 by blast
from B2 B4 have B7: trans TRel
   unfolding trans-def preorder-on-def
  by blast
hence B8: TRel^+ = TRel
   using trancl-id[of TRel]
  by simp
with B6 have B9: TRel^* = TRel
   using reflcl-trancl[of TRel]
   unfolding refl-on-def
 by blast
with B3 have \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
moreover from B2 B8 have \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
and \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
 by auto
ultimately have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
 \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
 \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
 \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
 \land weak-reduction-bisimulation Rel (STCal Source Target)
   using B1 B5
  by blast
hence operational\text{-}corresponding ( TRel^*)
      \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
    using OC-iff-weak-reduction-bisimulation[where TRel=TRel]
with B8 B9 have operational-corresponding TRel \wedge weak-reduction-bisimulation TRel Target
 by simp
```

```
moreover from B6 B7 have preorder TRel
     unfolding preorder-on-def
   by blast
  ultimately show operational-corresponding TRel \wedge preorder \ TRel
                 \land weak-reduction-bisimulation TRel Target
   by blast
qed
lemma (in encoding) OC-wrt-equivalence-iff-indRelTEQ-weak-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes eqT: equivalence TRel
  shows (operational-corresponding TRel \land weak-reduction-bisimulation TRel Target) \longleftrightarrow
        weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
  assume oc: operational-corresponding TRel and bisimT: weak-reduction-bisimulation TRel Target
  show weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
  proof auto
   fix P Q P'
   assume P \sim \llbracket \cdot \rrbracket T < TRel > Q and P \longmapsto (STCal\ Source\ Target) * P'
   thus \exists Q'. Q \longmapsto (STCal \ Source \ Target) * Q' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
   proof (induct arbitrary: P')
     case (encR S)
     assume SourceTerm\ S \longmapsto (STCal\ Source\ Target) * P'
     from this obtain S' where A1: S \longrightarrow Source * S' and A2: S' \in SP'
       by (auto simp add: STCal-steps(1))
     from A1 oc obtain T where A3: [S] \mapsto Target* T and A4: ([S'], T) \in TRel
     from A3 have TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
       by (simp \ add: STCal\text{-}steps(2))
     moreover have P' \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm T
     proof -
       from A2 have P' \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm (\llbracket S' \rrbracket)
         by (simp add: indRelTEQ.encR)
       moreover from A4 have TargetTerm ([S']) \sim [-]T < TRel > TargetTerm T
         by (rule indRelTEQ.target)
       ultimately show P' \sim [\![\cdot]\!] T < TRel > TargetTerm T
         by (rule indRelTEQ.trans)
     ultimately show \exists Q'. TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* Q' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
       by blast
   next
     case (encL\ S)
     assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* P'
     from this obtain T where B1: [S] \longmapsto Target* T and B2: T \in T P'
       by (auto simp add: STCal-steps(2))
     from B1 oc obtain S' where B3: S \longrightarrow Source* S' and B4: ([S'], T) \in TRel
       by blast
     from B3 have Source Term S \longmapsto (STCal\ Source\ Target)* (Source\ Term\ S')
       by (simp \ add: STCal\text{-}steps(1))
     moreover have P' \sim [\![\cdot]\!] T < TRel > Source Term S'
     proof -
       from B4\ eqT have (T, [S']) \in TRel
           unfolding equiv-def sym-def
         by blast
       with B2 have P' \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm (\llbracket S' \rrbracket)
         by (simp add: indRelTEQ.target)
       moreover have TargetTerm ([S']) \sim [\cdot] T < TRel > SourceTerm S'
         by (rule\ indRelTEQ.encL)
       ultimately show P' \sim \llbracket \cdot \rrbracket T < TRel > Source Term S'
         by (rule indRelTEQ.trans)
     qed
```

```
ultimately show \exists Q'. Source Term S \longmapsto (STCal\ Source\ Target) * Q' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
     by blast
 next
   case (target T1 T2)
   assume TargetTerm\ T1 \longmapsto (STCal\ Source\ Target) * P'
   from this obtain T1' where C1: T1 \longmapsto Target* T1' and C2: T1' \in T P'
     by (auto simp add: STCal-steps(2))
   assume (T1, T2) \in TRel
   with C1 bisimT obtain T2' where C3: T2 \longmapsto Target* T2' and C4: (T1', T2') \in TRel
   from C3 have TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T2')
      by (simp \ add: STCal\text{-}steps(2))
   moreover from C2 C4 have P' \sim [\![\cdot]\!] T < TRel > TargetTerm T2'
      by (simp add: indRelTEQ.target)
   ultimately show \exists Q'. Target Term T2 \longmapsto (STCal\ Source\ Target) * Q' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
     by blast
 next
   case (trans P Q R)
   assume P \longmapsto (STCal\ Source\ Target) * P'
      and \bigwedge P'. P \longmapsto (STCal\ Source\ Target) * P'
              \Rightarrow \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) * Q' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
   from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target) * Q' and D2: P' \sim [\cdot]] T < TRel > Q'
   \mathbf{assume} \  \, \bigwedge Q'. \  \, Q \longmapsto (STCal \ Source \ Target) \ast \  \, Q'
            \Longrightarrow \exists \, R'. \ R \longmapsto (\mathit{STCal \ Source \ Target}) \ast \ R' \, \land \ Q' \sim \llbracket \cdot \rrbracket \, T < \mathit{TRel} > \, R'
   with D1 obtain R' where D3: R \longmapsto (STCal\ Source\ Target) * R' and D4: Q' \sim \mathbb{I} \cdot \mathbb{I} T < TRel > R'
   from D2 D4 have P' \sim [\cdot] T < TRel > R'
      by (rule indRelTEQ.trans)
   with D3 show \exists R'. R \longmapsto (STCal\ Source\ Target) * R' \land P' \sim \llbracket \cdot \rrbracket T < TRel > R'
      by blast
 qed
\mathbf{next}
 fix P Q Q'
 assume P \sim \llbracket \cdot \rrbracket T < TRel > Q and Q \longmapsto (STCal\ Source\ Target) * Q'
 thus \exists P'. P \longmapsto (STCal\ Source\ Target) * P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
 proof (induct arbitrary: Q')
   case (encR S)
   assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* Q'
   from this obtain T where E1: [S] \longmapsto Target* T and E2: T \in T Q'
      by (auto simp add: STCal-steps(2))
   from E1 oc obtain S' where E3: S \longrightarrow Source * S' and E4: ([S'], T) \in TRel
      by blast
   from E3 have SourceTerm S \longmapsto (STCal\ Source\ Target)* (SourceTerm\ S')
      by (simp\ add:\ STCal\text{-}steps(1))
   moreover have SourceTerm\ S' \sim [\![\cdot]\!]T < TRel > Q'
   proof -
      have Source Term S' \sim [\![\cdot]\!] T < TRel > Target Term ([\![S']\!])
       by (rule\ indRelTEQ.encR)
      moreover from E2 E4 have TargetTerm ([S']) \sim [\cdot] T < TRel > Q'
       by (simp add: indRelTEQ.target)
      ultimately show SourceTerm S' \sim [\![ \cdot ]\!] T < TRel > Q'
       by (rule indRelTEQ.trans)
   qed
   ultimately show \exists P'. Source Term S \longmapsto (STCal\ Source\ Target) * P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
     by blast
 next
   case (encL S)
   assume SourceTerm\ S \longmapsto (STCal\ Source\ Target) *\ Q'
   from this obtain S' where F1: S \longrightarrow Source* S' and F2: S' \in S Q'
      by (auto simp add: STCal-steps(1))
```

```
from F1 oc obtain T where F3: [S] \longmapsto Target* T and F4: ([S'], T) \in TRel
     by blast
   from F3 have TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
     by (simp \ add: STCal\text{-}steps(2))
   moreover have TargetTerm\ T \sim [\![\cdot]\!]T < TRel > Q'
   proof -
     from F4 \ eqT have (T, [S']) \in TRel
          unfolding equiv-def sym-def
       bv blast
     hence TargetTerm\ T \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm\ (\llbracket S' \rrbracket)
       by (rule indRelTEQ.target)
     moreover from F2 have TargetTerm ([S']) \sim [\cdot] T < TRel > Q'
       by (simp add: indRelTEQ.encL)
     ultimately show TargetTerm T \sim [\![\cdot]\!] T < TRel > Q'
       \mathbf{by}\ (\mathit{rule}\ indRelTEQ.trans)
   ultimately show \exists P'. TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)* P' \wedge P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
     by blast
 next
   case (target T1 T2)
   assume TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)*\ Q'
   from this obtain T2' where G1: T2 \longmapsto Target* T2' and G2: T2' \in T Q'
     by (auto simp add: STCal-steps(2))
   assume (T1, T2) \in TRel
   with G1 bisimT obtain T1' where G3: T1 \longmapsto Target* T1' and G4: (T1', T2') \in TRel
     by blast
   from G3 have TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T1')
     by (simp\ add:\ STCal\text{-}steps(2))
   moreover from G2 G4 have TargetTerm T1' \sim \llbracket \cdot \rrbracket T < TRel > Q'
     by (simp add: indRelTEQ.target)
    ultimately show \exists P'. TargetTerm T1 \longmapsto (STCal\ Source\ Target) * P' \land P' \sim \|\cdot\| T < TRel > Q'
     by blast
 next
   case (trans P Q R R')
   assume R \longmapsto (STCal\ Source\ Target) * R'
      and \bigwedge R'. R \longmapsto (STCal\ Source\ Target) * R'
            \implies \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) * Q' \land Q' \sim \llbracket \cdot \rrbracket \ T < TRel > R'
   from this obtain Q' where H1: Q \longmapsto (STCal\ Source\ Target)*\ Q' and H2: Q' \sim [\![\cdot]\!]T < TRel > R'
     by blast
   assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target) * Q'
           \implies \exists P'. P \longmapsto (STCal \ Source \ Target) * P' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
   with H1 obtain P' where H3: P \longmapsto (STCal\ Source\ Target) * P' and H4: P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
     by blast
   from H_4 H_2 have P' \sim [\cdot] T < TRel > R'
     by (rule indRelTEQ.trans)
    with H3 show \exists P'. P \longmapsto (STCal\ Source\ Target) * P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > R'
     by blast
 qed
qed
assume bisim: weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
have operational-corresponding TRel
proof auto
 fix SS'
 have Source Term S \sim \llbracket \cdot \rrbracket T < TRel > Target Term (\llbracket S \rrbracket)
   by (rule\ indRelTEQ.encR)
 \mathbf{moreover} \ \mathbf{assume} \ S \longmapsto Source * \ S'
 hence Source Term S \longmapsto (STCal\ Source\ Target)* (Source\ Term\ S')
   by (simp \ add: STCal\text{-}steps(1))
 ultimately obtain Q' where I1: TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)*\ Q'
                        and I2: SourceTerm S' \sim \llbracket \cdot \rrbracket T < TRel > Q'
```

```
using bisim
     by blast
   from I1 obtain T where I3: [S] \mapsto Target* T and I4: T \in T Q'
     by (auto simp add: STCal-steps(2))
   from eqT have TRel^* = TRel
       using reflcl-trancl[of TRel] trancl-id[of TRel]
       unfolding equiv-def refl-on-def
     by auto
   with I2 I4 have ([S'], T) \in TRel
       using indRelTEQ-to-TRel(2)[where TRel = TRel]
            trans-closure-of-TRel-refl-cond[where TRel=TRel]
   with I3 show \exists T. [S] \longmapsto Target* T \land ([S], T) \in TRel
     by blast
 next
   fix S T
   have Source Term S \sim [\![\cdot]\!] T < TRel > Target Term ([\![S]\!])
     by (rule\ indRelTEQ.encR)
   moreover assume [S] \longmapsto Target* T
   hence TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
     by (simp\ add:\ STCal\text{-}steps(2))
   ultimately obtain Q' where J1: Source Term <math>S \longmapsto (STCal\ Source\ Target) * Q'
                       and J2: Q' \sim [\cdot] T < TRel > TargetTerm T
       using bisim
     by blast
   from J1 obtain S' where J3: S \longmapsto Source * S' and J4: S' \in S Q'
     by (auto simp add: STCal-steps(1))
   from eqT have TRel^* = TRel
       using reflcl-trancl[of TRel] trancl-id[of TRel]
       unfolding equiv-def refl-on-def
     by auto
   with J2 J4 have ([S'], T) \in TRel
       using indRelTEQ-to-TRel(2)[where TRel = TRel]
            trans-closure-of-TRel-refl-cond[where TRel=TRel]
   with J3 show \exists S'. S \longmapsto Source * S' \land (\llbracket S' \rrbracket, T) \in TRel
     by blast
 qed
 moreover have weak-reduction-bisimulation TRel Target
 proof -
   from eqT have TRel^* = TRel
       using reflcl-trancl[of TRel] trancl-id[of TRel]
       unfolding equiv-def refl-on-def
     by auto
   with bisim show weak-reduction-bisimulation TRel Target
       using indRelTEQ-impl-TRel-is-weak-reduction-bisimulation[where TRel-TRel]
     by simp
 qed
 ultimately show operational-corresponding TRel \land weak-reduction-bisimulation TRel Target
   by simp
qed
lemma (in encoding) OC-wrt-equivalence-iff-weak-reduction-bisimulation:
 fixes TRel :: ('procT \times 'procT) set
 assumes eqT: equivalence TRel
 shows (operational-corresponding TRel \land weak-reduction-bisimulation TRel Target) \longleftrightarrow (\exists Rel.
       (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land trans Rel \land weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
 assume oc: operational-corresponding TRel and bisimT: weak-reduction-bisimulation TRel Target
```

```
from eqT have rt: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding equiv-def refl-on-def
   by auto
 \mathbf{have} \ \forall S. \ SourceTerm \ S \sim \llbracket \cdot \rrbracket \ T < TRel > \ TargetTerm \ (\llbracket S \rrbracket) \land \ TargetTerm \ (\llbracket S \rrbracket) \sim \llbracket \cdot \rrbracket \ T < TRel > \ SourceTerm \ S
   by (simp add: indRelTEQ.encR indRelTEQ.encL)
  moreover from rt have TRel = \{(T1, T2). TargetTerm T1 \sim [\cdot] | T < TRel > TargetTerm T2 \}
     using indRelTEQ-to-TRel(4)[where TRel = TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   \mathbf{by}\ (auto\ simp\ add:\ indRelTEQ.target)
  moreover have trans (indRelTEQ TRel)
     using indRelTEQ.trans[where TRel=TRel]
     unfolding trans-def
   by blast
  moreover from eqT oc bisimT
  have weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
     \textbf{using} \ \ OC\text{-}wrt\text{-}equivalence\text{-}iff\text{-}indRelTEQ\text{-}weak\text{-}reduction\text{-}bisimulation} [\textbf{where} \ \ TRel = TRel]
   by blast
  ultimately
  show \exists Rel. \ (\forall S. \ (SourceTerm \ S. \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), SourceTerm \ S) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel\}
       \land weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
               \land (TargetTerm ([S]), SourceTerm S) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel\}
         \land weak-reduction-bisimulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                               \land (TargetTerm ([S]), SourceTerm S) \in Rel
  and A2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\} and A3: trans Rel
  and A4: weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  have operational-corresponding TRel
  proof auto
   fix SS'
   from A1 have (SourceTerm S, TargetTerm ([S])) \in Rel
   moreover assume S \longmapsto Source * S'
   hence Source Term S \longmapsto (STCal\ Source\ Target)* (Source\ Term\ S')
     by (simp \ add: STCal\text{-}steps(1))
   ultimately obtain Q' where B1: TargetTerm ([S]) \longrightarrow (STCal\ Source\ Target)* <math>Q'
                        and B2: (Source Term S', Q' \in Rel
       using A4
     by blast
   from B1 obtain T where B3: [S] \mapsto Target* T and B4: T \in T Q'
     by (auto simp add: STCal-steps(2))
   from A1 have (TargetTerm (\llbracket S' \rrbracket), SourceTerm S') \in Rel
     by simp
   with B2 A3 have (TargetTerm ([S]), Q') \in Rel
       unfolding trans-def
     by blast
   with B4 A2 have ([S'], T) \in TRel
   with B3 show \exists T. [S] \longmapsto Target* T \land ([S], T) \in TRel
     by blast
  next
   fix S T
   from A1 have (SourceTerm S, TargetTerm ([S])) \in Rel
   moreover assume [S] \longmapsto Target* T
```

```
hence TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)* (TargetTerm\ T)
    by (simp \ add: STCal\text{-}steps(2))
   ultimately obtain P' where C1: Source Term <math>S \longmapsto (STCal\ Source\ Target) * P'
                      and C2: (P', TargetTerm T) \in Rel
      using A4
    by blast
   from C1 obtain S' where C3: S \longrightarrow Source* S' and C4: S' \in SP'
    by (auto simp add: STCal-steps(1))
   from A1 C4 have (TargetTerm ([S']), P') \in Rel
   from A3 this C2 have (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel
      unfolding trans-def
    by blast
   with A2 have ([S'], T) \in TRel
    by simp
   with C3 show \exists S'. S \longmapsto Source * S' \land (\llbracket S' \rrbracket, T) \in TRel
    by blast
 qed
 moreover have weak-reduction-bisimulation TRel Target
 proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with A2 have (TargetTerm TP, TargetTerm TQ) \in Rel
    by simp
   moreover assume TP \longmapsto Target * TP'
   hence TargetTerm TP \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TP')
    by (simp \ add: STCal\text{-}steps(2))
   ultimately obtain Q' where D1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)* Q'
                      and D2: (TargetTerm TP', Q') \in Rel
      using A4
    by blast
   from D1 obtain TQ' where D3: TQ \mapsto Target* TQ' and D4: TQ' \in TQ'
    by (auto simp add: STCal-steps(2))
   from A2 D2 D4 have (TP', TQ') \in TRel
   with D3 show \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel
    by blast
 next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with A2 have (TargetTerm TP, TargetTerm TQ) \in Rel
   moreover assume TQ \longmapsto Target * TQ'
   hence TargetTerm\ TQ \longmapsto (STCal\ Source\ Target)* (TargetTerm\ TQ')
    by (simp \ add: STCal\text{-}steps(2))
   ultimately obtain P' where E1: TargetTerm TP \longmapsto (STCal\ Source\ Target)*P'
                      and E2: (P', TargetTerm TQ') \in Rel
      using A4
    by blast
   from E1 obtain TP' where E3: TP \longmapsto Target* TP' and E4: TP' \in TP'
    by (auto simp add: STCal-steps(2))
   from A2 E2 E4 have (TP', TQ') \in TRel
    by simp
   with E3 show \exists TP'. TP \longmapsto Target* TP' \land (TP', TQ') \in TRel
    by blast
 \mathbf{qed}
 ultimately show operational-corresponding TRel \wedge weak-reduction-bisimulation TRel Target
   by simp
qed
```

An encoding is strong operational corresponding w.r.t a strong bisimulation on target terms TRel iff

there exists a relation, like indRelRTPO, that relates at least all source terms and their literal translations, includes TRel, and is a strong bisimulation. Thus this variant of operational correspondence ensures that source terms and their translations are strong bisimilar.

```
lemma (in encoding) SOC-iff-indRelRTPO-is-strong-reduction-bisimulation:
 fixes TRel :: ('procT \times 'procT) set
 shows (strongly-operational-corresponding (TRel^*)
        \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target)
        = strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
  assume ocorr: strongly-operational-corresponding (TRel^*)
    and bisim: strong-reduction-bisimulation (TRel<sup>+</sup>) Target
  hence strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
     using SOCom-iff-indRelRTPO-is-strong-reduction-simulation[where TRel=TRel]
   by simp
  moreover from bisim have strong-reduction-simulation ((TRel^+)^{-1}) Target
     using strong-reduction-bisimulations-impl-inverse-is-simulation [where Rel=TRel^+]
   by simp
  with ocorr
  have strong-reduction-simulation ((indRelRTPO TRel)<sup>-1</sup>) (STCal Source Target)
     \textbf{using } SOSou\text{-}iff\text{-}inverse\text{-}of\text{-}indRelRTPO\text{-}is\text{-}strong\text{-}reduction\text{-}simulation} [\textbf{where } TRel = TRel]
   bv simp
  ultimately show strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     using strong-reduction-simulations-impl-bisimulation[where Rel=indRelRTPO TRel]
   by simp
next
  assume bisim: strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
  hence strongly-operational-complete (TRel^*) \wedge strong-reduction-simulation (TRel^+) Target
     using SOCom-iff-indRelRTPO-is-strong-reduction-simulation[where TRel = TRel]
   by simp
  moreover from bisim
  have strong-reduction-simulation ((indRelRTPO\ TRel)^{-1}) (STCal Source Target)
     using stronq-reduction-bisimulations-impl-inverse-is-simulation [where Rel = indRelRTPO\ TRel]
   by simp
  hence strongly-operational-sound (TRel^*) \wedge strong-reduction-simulation ((TRel^+)^{-1}) Target
     \textbf{using } SOSou\text{-}iff\text{-}inverse\text{-}of\text{-}indRelRTPO\text{-}is\text{-}strong\text{-}reduction\text{-}simulation} [\textbf{where } TRel = TRel]
   bv simp
  ultimately show strongly-operational-corresponding (TRel*)
                 \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target
     using strong-reduction-simulations-impl-bisimulation[where Rel=TRel^+]
   by simp
qed
lemma (in encoding) SOC-iff-strong-reduction-bisimulation:
 fixes TRel :: ('procT \times 'procT) set
  shows (strongly-operational-corresponding (TRel^*)
        \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
           \land (\forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
           \land strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
  have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
   by (simp add: indRelRTPO.encR)
  moreover have \forall T1 T2. (T1, T2) \in TRel \longrightarrow TargetTerm T1 \lesssim \llbracket \cdot \rrbracket RT < TRel > TargetTerm T2
   by (simp add: indRelRTPO.target)
  moreover have \forall T1 \ T2. TargetTerm T1 \leq \|\cdot\|RT \leq TRel > TargetTerm \ T2 \longrightarrow (T1, T2) \in TRel^+
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by simp
  moreover have \forall S \ T. \ SourceTerm \ S \lesssim [\cdot] RT < TRel > TargetTerm \ T \longrightarrow ([S], \ T) \in TRel^*
```

```
by simp
  moreover assume strongly-operational-corresponding (TRel^*)
             and strong-reduction-bisimulation (TRel^+) Target
  hence strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]
   by simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                 \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                 \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
                 \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
                 \land strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         ∧ strong-reduction-bisimulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and A2: \forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel
  and A3: \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
  and A_4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([\![S]\!], \ T) \in TRel^*
  and A5: strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence strongly-operational-complete (TRel^*)
        \land strong-reduction-simulation (TRel<sup>+</sup>) Target
     using SOCom-iff-strong-reduction-simulation[where TRel = TRel]
  moreover from A5 have strong-reduction-simulation (Rel^{-1}) (STCal Source Target)
     using strong-reduction-bisimulations-impl-inverse-is-simulation [where Rel = Rel]
   bv simp
  with A1 A2 A3 A4 have strongly-operational-sound (TRel*)
                       \land strong-reduction-simulation ((TRel<sup>+</sup>)<sup>-1</sup>) Target
     using SOSou-iff-strong-reduction-simulation [where TRel = TRel]
   bv blast
  ultimately show strongly-operational-corresponding (TRel^*)
                 \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target
     using strong-reduction-simulations-impl-bisimulation [where Rel=TRel^+]
   by simp
qed
lemma (in encoding) SOC-wrt-preorder-iff-strong-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  shows (strongly-operational-corresponding TRel \land preorder TRel
        \land strong-reduction-bisimulation TRel Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
           \land preorder Rel
           \land strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE, erule conjE)
  assume A1: strongly-operational-complete TRel and A2: strongly-operational-sound TRel
    and A3:preorder TRel and A4: strong-reduction-bisimulation TRel Target
  from A3 have A5: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  with A3 have TRel^* = TRel
     using reflcl-trancl[of TRel]
     unfolding preorder-on-def refl-on-def
```

using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond

```
by blast
  with A1 A2 have strongly-operational-corresponding (TRel*)
   by simp
  moreover from A4 A5 have strong-reduction-bisimulation (TRel^+) Target
   by simp
 ultimately
  have strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]
   bv blast
  moreover have \forall S. (SourceTerm S, TargetTerm ([S])) \in indRelRTPO TRel
   by (simp add: indRelRTPO.encR)
  moreover
  have TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in indRelRTPO TRel\}
 proof auto
   \mathbf{fix} \ TP \ TQ
   assume (TP, TQ) \in TRel
   thus TargetTerm\ TP \lesssim ||\cdot||RT < TRel > TargetTerm\ TQ
     by (rule indRelRTPO.target)
  next
   fix TP TO
   assume TargetTerm\ TP \leq ||\cdot||RT < TRel > TargetTerm\ TQ
   with A3 show (TP, TQ) \in TRel
       using indRelRTPO-to-TRel(4)[where TRel=TRel] trancl-id[of TRel]
       unfolding preorder-on-def
     by blast
  qed
  moreover from A3
  have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in ind RelRTPO \ TRel \longrightarrow ([S], \ T) \in TRel^+
     using indRelRTPO-to-TRel(2)[where TRel=TRel] reflcl-trancl[of TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
     unfolding preorder-on-def refl-on-def
   bv blast
  with A3 have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in ind Rel RTPO \ TRel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  moreover from A3 have refl (indRelRTPO TRel)
     unfolding preorder-on-def
   by (simp add: indRelRTPO-refl)
  moreover have trans (indRelRTPO TRel)
     using indRelRTPO.trans
     unfolding trans-def
   by blast
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                 \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                 \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
                \land preorder Rel
                 \land strong-reduction-bisimulation Rel (STCal Source Target)
     unfolding preorder-on-def
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land preorder Rel
         \land strong-reduction-bisimulation Rel (STCal Source Target)
  from this obtain Rel where B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and B2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
  and B3: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel \ and \ B4: \ preorder \ Rel
  and B5: strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
```

```
from B2 B4 have B6: refl TRel
     unfolding preorder-on-def refl-on-def
   by blast
  from B2 B4 have B7: trans TRel
     unfolding trans-def preorder-on-def
   \mathbf{by} blast
 hence B8: TRel^+ = TRel
   by (rule trancl-id)
  with B6 have B9: TRel^* = TRel
     using reflcl-trancl[of TRel]
     unfolding refl-on-def
  with B3 have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
   by simp
  moreover from B2 B8 have \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
  and \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
   by auto
  ultimately have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
   \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
   \land strong-reduction-bisimulation Rel (STCal Source Target)
     using B1 B5
   by blast
  hence strongly-operational-corresponding (TRel^*) \wedge strong-reduction-bisimulation (TRel^+) Target
     using SOC-iff-strong-reduction-bisimulation[where TRel = TRel]
   by simp
  with B8 B9
  have strongly-operational-corresponding TRel \wedge strong-reduction-bisimulation TRel Target
  moreover from B6 B7 have preorder TRel
     unfolding preorder-on-def
   by blast
  ultimately show strongly-operational-corresponding TRel \wedge preorder \ TRel
                  \land strong-reduction-bisimulation TRel Target
   by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ SOC\text{-}wrt\text{-}TRel\text{-}iff\text{-}strong\text{-}reduction\text{-}bisimulation}:
  shows (\exists TRel. strongly-operational-corresponding (<math>TRel^*)
        \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
               \longrightarrow (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel^{=})
           \land strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI)
  assume \exists TRel. strongly-operational-corresponding (<math>TRel^*)
         \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target
  from this obtain TRel where strongly-operational-corresponding (TRel*)
                        and strong-reduction-bisimulation (TRel^+) Target
   by blast
  hence strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
     using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]
   bv simp
  moreover have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in indRelRTPO\ TRel
   by (simp add: indRelRTPO.encR)
  moreover have \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in (indRelRTPO \ TRel)
                 \longrightarrow (TargetTerm ([S]), TargetTerm T) \in (indRelRTPO TRel)^{=}
     using indRelRTPO-relates-source-target[where TRel=TRel]
   by simp
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
```

```
\land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (TargetTerm \ ([S]), \ TargetTerm \ T) \in Rel^{=})
   \land strong-reduction-bisimulation Rel (STCal Source Target)
   \mathbf{by} blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (TargetTerm \ (\llbracket S \rrbracket), \ TargetTerm \ T) \in Rel^=)
   \land strong-reduction-bisimulation Rel (STCal Source Target)
  from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                        and A2: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel
                                 \longrightarrow (TargetTerm ([\![S]\!]), TargetTerm T) \in Rel^{=}
                        and A3: strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
  from A2 obtain TRel where \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
   and \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
   and \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([\![S]\!], \ T) \in TRel^*
     using target-relation-from-source-target-relation[where Rel=Rel]
   by blast
  with A1 A3 have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
                  \land (\forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+)
                  \land \ (\forall \, S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow ([\![S]\!], \ T) \in TRel^*)
                  \land strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence strongly-operational-corresponding (TRel^*)
         \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target
     using SOC-iff-strong-reduction-bisimulation [where TRel = TRel]
  thus \exists TRel. strongly-operational-corresponding (TRel^*)
        \land strong-reduction-bisimulation (TRel<sup>+</sup>) Target
    by blast
qed
\textbf{lemma (in } encoding) \ SOC-wrt-equivalence-iff-indRelTEQ-strong-reduction-bisimulation:
  fixes TRel :: ('procT \times 'procT) set
  assumes eqT: equivalence TRel
  shows (strongly-operational-corresponding TRel \wedge strong-reduction-bisimulation TRel \ Target)
         \longleftrightarrow strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
                     strongly-operational-corresponding TRel
  assume oc:
    and bisimT: strong-reduction-bisimulation TRel Target
  show strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
  proof auto
   fix P Q P'
   assume P \sim [\![\cdot]\!] T < TRel > Q and P \longmapsto (STCal\ Source\ Target)\ P'
   thus \exists Q'. Q \longmapsto (STCal \ Source \ Target) \ Q' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
    proof (induct arbitrary: P')
     case (encR S)
     assume SourceTerm\ S \longmapsto (STCal\ Source\ Target)\ P'
     from this obtain S' where A1: S \longrightarrow Source S' and A2: S' \in SP'
       by (auto simp add: STCal-step(1))
     from A1 oc obtain T where A3: [S] \mapsto Target\ T and A4: ([S], T) \in TRel
       by blast
     from A3 have TargetTerm ([S]) \longmapsto (STCal\ Source\ Target) (TargetTerm\ T)
       by (simp\ add:\ STCal\text{-}step(2))
     moreover have P' \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm T
     proof -
        from A2 have P' \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm (\llbracket S' \rrbracket)
         by (simp\ add:\ indRelTEQ.encR)
       moreover from A4 have TargetTerm ([S']) \sim [-] T < TRel > TargetTerm T
         \mathbf{by} (rule indRelTEQ.target)
        ultimately show P' \sim [\![\cdot]\!] T < TRel > TargetTerm T
```

```
by (rule indRelTEQ.trans)
   qed
   ultimately show \exists Q'. TargetTerm ([S]) \longmapsto (STCal Source Target) Q' \land P' \sim [\cdot] T < TRel > Q'
 next
   \mathbf{case}\ (\mathit{encL}\ S)
   assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target) P'
   from this obtain T where B1: [S] \mapsto Target T and B2: T \in T P'
     by (auto simp add: STCal-step(2))
   from B1 oc obtain S' where B3: S \longrightarrow Source S' and B4: ([S'], T) \in TRel
      by blast
   from B3 have SourceTerm S \longmapsto (STCal\ Source\ Target)\ (SourceTerm\ S')
      by (simp \ add: STCal\text{-}step(1))
   moreover have P' \sim [\cdot] T < TRel > Source Term S'
   proof -
      from B \neq eq T have (T, [S']) \in TRel
          unfolding equiv-def sym-def
        by blast
      with B2 have P' \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm (\llbracket S' \rrbracket)
        by (simp add: indRelTEQ.target)
      \mathbf{moreover} \ \mathbf{have} \ \mathit{TargetTerm} \ ([\![S']\!]) \sim [\![\cdot]\!] \mathit{T} < \mathit{TRel} > \mathit{SourceTerm} \ \mathit{S'}
        by (rule indRelTEQ.encL)
      ultimately show P' \sim [\![\cdot]\!] T < TRel > Source Term S'
        by (rule indRelTEQ.trans)
   qed
   ultimately show \exists Q'. Source Term S \longmapsto (STCal\ Source\ Target)\ Q' \land P' \sim \llbracket \cdot \rrbracket\ T < TRel > Q'
      by blast
 next
   case (target T1 T2)
   assume TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)\ P'
   from this obtain T1' where C1: T1 \longmapsto Target T1' and C2: T1' \in T P'
     by (auto simp add: STCal-step(2))
   assume (T1, T2) \in TRel
   with C1 bisimT obtain T2' where C3: T2 \mapsto Target T2' and C4: (T1', T2') \in TRel
     by blast
   from C3 have TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)\ (TargetTerm\ T2')
     by (simp \ add: STCal\text{-}step(2))
    moreover from C2 C4 have P' \sim [\![\cdot]\!] T < TRel > TargetTerm T2'
     by (simp add: indRelTEQ.target)
   ultimately show \exists Q'. TargetTerm T2 \longmapsto (STCal\ Source\ Target)\ Q' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
      by blast
 next
   case (trans P Q R)
   \mathbf{assume}\ P \longmapsto (STCal\ Source\ Target)\ P'
      and \bigwedge P'. P \longmapsto (STCal\ Source\ Target)\ P'
            \implies \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) \ Q' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
   from this obtain Q' where D1: Q \longmapsto (STCal\ Source\ Target)\ Q' and D2: P' \sim \mathbb{R} T < TRel > Q'
     by blast
   assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target)\ Q'
            \implies \exists R'. R \longmapsto (STCal \ Source \ Target) \ R' \land Q' \sim \llbracket \cdot \rrbracket \ T < TRel > R'
   with D1 obtain R' where D3: R \mapsto (STCal\ Source\ Target)\ R' and D4: Q' \sim [\cdot] T < TRel > R'
     \mathbf{by} blast
   from D2 D4 have P' \sim [\![\cdot]\!] T < TRel > R'
     by (rule indRelTEQ.trans)
    with D3 show \exists R'. R \longmapsto (STCal\ Source\ Target)\ R' \land P' \sim \llbracket \cdot \rrbracket T < TRel > R'
      by blast
 qed
next
 assume P \sim \llbracket \cdot \rrbracket T < TRel > Q and Q \longmapsto (STCal\ Source\ Target)\ Q'
 thus \exists P'. P \longmapsto (STCal\ Source\ Target)\ P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
```

```
proof (induct arbitrary: Q')
  case (encR S)
  assume TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target) Q'
  from this obtain T where E1: [S] \mapsto Target \ T \ and \ E2: \ T \in T \ Q'
   by (auto simp add: STCal-step(2))
  from E1 oc obtain S' where E3: S \longrightarrow Source S' and E4: ([S], T) \in TRel
   by blast
  from E3 have SourceTerm S \longmapsto (STCal\ Source\ Target)\ (SourceTerm\ S')
    by (simp\ add:\ STCal\text{-}step(1))
  moreover have SourceTerm\ S' \sim [\![\cdot]\!]T < TRel > Q'
  proof -
    have Source Term\ S' \sim \llbracket \cdot \rrbracket T < TRel > Target Term\ (\llbracket S' \rrbracket)
     by (rule indRelTEQ.encR)
   moreover from E2 E4 have TargetTerm ([S']) \sim [\cdot] T < TRel > Q'
     by (simp add: indRelTEQ.target)
    ultimately show SourceTerm\ S' \sim \llbracket \cdot \rrbracket\ T < TRel >\ Q'
     by (rule indRelTEQ.trans)
  ultimately show \exists P'. Source Term S \longmapsto (STCal\ Source\ Target)\ P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
   by blast
next
  case (encL\ S)
  assume SourceTerm\ S \longmapsto (STCal\ Source\ Target)\ Q'
  from this obtain S' where F1: S \longrightarrow Source S' and F2: S' \in S Q'
    by (auto simp add: STCal-step(1))
  from F1 oc obtain T where F3: [S] \mapsto Target T \text{ and } F_4: ([S'], T) \in TRel
  from F3 have TargetTerm ([\![S]\!]) \longmapsto (STCal Source Target) (TargetTerm T)
    by (simp \ add: STCal\text{-}step(2))
  moreover have TargetTerm\ T \sim [\![\cdot]\!]T < TRel > Q'
    from F \not= eqT have (T, \llbracket S' \rrbracket) \in TRel
        unfolding equiv-def sym-def
     by blast
    hence TargetTerm\ T \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm\ (\llbracket S' \rrbracket)
     by (rule indRelTEQ.target)
    moreover from F2 have TargetTerm ([S']) \sim [\cdot] T < TRel > Q'
     by (simp add: indRelTEQ.encL)
    ultimately show \mathit{TargetTerm}\ T \sim \llbracket \cdot \rrbracket \, T < \mathit{TRel} > \ Q'
     by (rule indRelTEQ.trans)
  qed
  ultimately show \exists P'. TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal Source Target) P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
    by blast
next
  case (target T1 T2)
  assume TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)\ Q'
  from this obtain T2' where G1: T2 \longrightarrow Target T2' and G2: T2' \in TQ'
   by (auto simp add: STCal-step(2))
  assume (T1, T2) \in TRel
  with G1 bisimT obtain T1' where G3: T1 \longmapsto Target T1' and G4: (T1', T2') \in TRel
  from G3 have TargetTerm T1 \longmapsto (STCal\ Source\ Target) (TargetTerm T1')
   by (simp\ add:\ STCal\text{-}step(2))
  moreover from G2 G4 have TargetTerm T1' \sim \llbracket \cdot \rrbracket T < TRel > Q'
    by (simp add: indRelTEQ.target)
  ultimately show \exists P'. TargetTerm T1 \longmapsto (STCal\ Source\ Target)\ P' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
    by blast
next
  case (trans P Q R R')
  assume R \longmapsto (STCal\ Source\ Target)\ R'
    and \bigwedge R'. R \longmapsto (STCal\ Source\ Target)\ R'
```

```
\implies \exists Q'. \ Q \longmapsto (STCal \ Source \ Target) \ Q' \land Q' \sim \llbracket \cdot \rrbracket \ T < TRel > R'
     from this obtain Q' where H1: Q \longmapsto (STCal\ Source\ Target)\ Q' and H2: Q' \sim [\cdot] T < TRel > R'
        by blast
     assume \bigwedge Q'. Q \longmapsto (STCal\ Source\ Target)\ Q'
              \implies \exists P'. P \longmapsto (STCal \ Source \ Target) \ P' \land P' \sim \llbracket \cdot \rrbracket \ T < TRel > Q'
     with H1 obtain P' where H3: P \longmapsto (STCal\ Source\ Target)\ P' and H_4\colon P' \sim \llbracket \cdot \rrbracket T < TRel > Q'
       by blast
     from H4 H2 have P' \sim [\![\cdot]\!] T < TRel > R'
       by (rule indRelTEQ.trans)
     with H3 show \exists P'. P \longmapsto (STCal\ Source\ Target)\ P' \land P' \sim \llbracket \cdot \rrbracket T < TRel > R'
        by blast
    qed
  qed
next
  assume bisim: strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
  have strongly-operational-corresponding TRel
  proof auto
   fix SS'
   have Source Term S \sim [\![\cdot]\!] T < TRel > Target Term ([\![S]\!])
     by (rule indRelTEQ.encR)
    moreover assume S \longmapsto Source S'
   hence Source Term S \longmapsto (STCal\ Source\ Target)\ (Source\ Term\ S')
     by (simp \ add: STCal\text{-}step(1))
    ultimately obtain Q' where I1: TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target)\ Q'
                          and I2: SourceTerm S' \sim \llbracket \cdot \rrbracket T < TRel > Q'
        using bisim
     by blast
    from I1 obtain T where I3: [S] \mapsto Target T and I4: T \in T Q'
     by (auto simp\ add: STCal-step(2))
    from eqT have TRel^* = TRel
        using reflcl-trancl[of TRel] trancl-id[of TRel]
        unfolding equiv-def refl-on-def
     by auto
    with I2 I4 have ([S'], T) \in TRel
        using indRelTEQ-to-TRel(2)[where TRel=TRel]
              trans-closure-of-TRel-refl-cond[where TRel=TRel]
     by simp
    with I3 show \exists T. [S] \longmapsto Target T \land ([S'], T) \in TRel
     by blast
  next
   fix S T
   have Source Term \ S \sim [\![\cdot]\!] T < TRel > Target Term \ ([\![S]\!])
     by (rule indRelTEQ.encR)
   moreover assume [S] \longmapsto Target T
   \mathbf{hence} \ \mathit{TargetTerm} \ ([\![S]\!]) \longmapsto \! (\mathit{STCal} \ \mathit{Source} \ \mathit{Target}) \ (\mathit{TargetTerm} \ \mathit{T})
      by (simp \ add: STCal\text{-}step(2))
    ultimately obtain Q' where J1: SourceTerm S \longmapsto (STCal\ Source\ Target)\ Q'
                          and J2: Q' \sim [\cdot] T < TRel > TargetTerm T
        using bisim
     by blast
    from J1 obtain S' where J3: S \longmapsto Source S' and J4: S' \in S Q'
     by (auto simp add: STCal-step(1))
    from eqT have TRel^* = TRel
        using reflcl-trancl[of TRel] trancl-id[of TRel]
        unfolding equiv-def refl-on-def
     by auto
    with J2 J4 have ([S'], T) \in TRel
        using indRelTEQ-to-TRel(2)[where TRel=TRel]
              trans-closure-of-TRel-refl-cond[where TRel=TRel]
     by blast
    with J3 show \exists S'. S \longmapsto Source S' \land (\llbracket S' \rrbracket, T) \in TRel
```

```
by blast
   qed
   moreover have strong-reduction-bisimulation TRel Target
   proof -
      from eqT have TRel^* = TRel
            using reflcl-trancl[of TRel] trancl-id[of TRel]
            unfolding equiv-def refl-on-def
      with bisim show strong-reduction-bisimulation TRel Target
            using indRelTEQ-impl-TRel-is-strong-reduction-bisimulation[where TRel-TRel]
         by simp
   qed
   ultimately
   show strongly-operational-corresponding TRel \wedge strong-reduction-bisimulation TRel Target
      by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ SOC\text{-}wrt\text{-}equivalence\text{-}iff\text{-}strong\text{-}reduction\text{-}bisimulation:}
   fixes TRel :: ('procT \times 'procT) set
   assumes eqT: equivalence TRel
   \mathbf{shows} \ (strongly\text{-}operational\text{-}corresponding} \ TRel \ \land \ strong\text{-}reduction\text{-}bisimulation} \ TRel \ Target)
              \longleftrightarrow (\exists Rel.
              (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
             \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
              \land trans Rel \land strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
   assume oc:
                                strongly-operational-corresponding TRel
       and bisimT: strong-reduction-bisimulation TRel Target
   from eqT have rt: TRel^* = TRel
         using reflcl-trancl[of TRel] trancl-id[of TRel]
         unfolding equiv-def refl-on-def
      by auto
   \mathbf{have} \ \forall \, S. \ Source Term \ S \sim \llbracket \cdot \rrbracket \ T < TRel > \ Target Term \ (\llbracket S \rrbracket) \ \land \ Target Term \ (\llbracket S \rrbracket) \sim \llbracket \cdot \rrbracket \ T < TRel > \ Source Term \ S > Target Term \ S > Targe
      by (simp add: indRelTEQ.encR indRelTEQ.encL)
   moreover from rt have TRel = \{(T1, T2), TargetTerm\ T1 \sim [\cdot] \mid T < TRel > TargetTerm\ T2\}
         using indRelTEQ-to-TRel(4)[where TRel = TRel]
                  trans-closure-of-TRel-refl-cond[where TRel=TRel]
      by (auto simp add: indRelTEQ.target)
   moreover have trans (indRelTEQ TRel)
         using indRelTEQ.trans[where TRel=TRel]
         \mathbf{unfolding}\ \mathit{trans-def}
      by blast
   moreover from eqT oc bisimT
   have strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
         \textbf{using } SOC\text{-}wrt\text{-}equivalence\text{-}iff\text{-}indRelTEQ\text{-}strong\text{-}reduction\text{-}bisimulation} [\textbf{where } TRel = TRel]
      by blast
   ultimately
   show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
            \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel\}
            \land strong-reduction-bisimulation Rel (STCal Source Target)
      by blast
next
   assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel
                          \land (TargetTerm ([S]), SourceTerm S) \in Rel)
               \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel\}
               \land strong-reduction-bisimulation Rel (STCal Source Target)
   from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                                                    \land (TargetTerm ([S]), SourceTerm S) \in Rel
    and A2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} and A3: trans Rel
    and A4: strong-reduction-bisimulation Rel (STCal Source Target)
     by blast
```

```
have strongly-operational-corresponding TRel
proof auto
 fix SS'
 from A1 have (SourceTerm S, TargetTerm ([S])) \in Rel
   by simp
 moreover assume S \longmapsto Source S'
 hence SourceTerm\ S \longmapsto (STCal\ Source\ Target)\ (SourceTerm\ S')
   by (simp \ add: STCal\text{-}step(1))
 ultimately obtain Q' where B1: TargetTerm ([S]) \longmapsto (STCal\ Source\ Target) Q'
                     and B2: (SourceTerm S', Q' \in Rel
     using A4
   by blast
 from B1 obtain T where B3: [S] \mapsto Target T \text{ and } B_4 \colon T \in T Q'
   by (auto simp add: STCal-step(2))
 from A1 have (TargetTerm ([S]), SourceTerm S') \in Rel
 with B2 A3 have (TargetTerm ([S']), Q') \in Rel
     unfolding trans-def
   by blast
 with B4 A2 have ([S'], T) \in TRel
   by simp
 with B3 show \exists T. [S] \longmapsto Target T \land ([S], T) \in TRel
   by blast
next
 fix S T
 from A1 have (SourceTerm S, TargetTerm ([S])) \in Rel
 moreover assume [S] \longmapsto Target T
 hence TargetTerm (\llbracket S \rrbracket) \longmapsto (STCal\ Source\ Target) (TargetTerm\ T)
   by (simp\ add:\ STCal\text{-}step(2))
 ultimately obtain P' where C1: SourceTerm S \longrightarrow (STCal\ Source\ Target)\ P'
                     and C2: (P', TargetTerm T) \in Rel
     using A4
   by blast
 from C1 obtain S' where C3: S \longrightarrow Source S' and C4: S' \in S P'
   by (auto simp add: STCal-step(1))
 from A1 C4 have (TargetTerm ([S']), P') \in Rel
   by simp
 from A3 this C2 have (TargetTerm (\llbracket S \rrbracket), TargetTerm T) \in Rel
     unfolding trans-def
   by blast
 with A2 have ([S'], T) \in TRel
 with C3 show \exists S'. S \longmapsto Source S' \land (\llbracket S' \rrbracket, T) \in TRel
   by blast
qed
moreover have strong-reduction-bisimulation TRel Target
proof auto
 fix TP TQ TP'
 assume (TP, TQ) \in TRel
 with A2 have (TargetTerm TP, TargetTerm TQ) \in Rel
   by simp
 moreover assume TP \longmapsto Target TP'
 hence TargetTerm\ TP \longmapsto (STCal\ Source\ Target)\ (TargetTerm\ TP')
   by (simp\ add:\ STCal\text{-}step(2))
 ultimately obtain Q' where D1: TargetTerm TQ \longmapsto (STCal\ Source\ Target)\ Q'
                     and D2: (TargetTerm TP', Q') \in Rel
     using A4
   by blast
 from D1 obtain TQ' where D3: TQ \mapsto Target TQ' and D4: TQ' \in TQ'
   by (auto simp add: STCal-step(2))
```

```
from A2 D2 D4 have (TP', TQ') \in TRel
    by simp
   with D3 show \exists TQ'. TQ \longmapsto Target TQ' \land (TP', TQ') \in TRel
     by blast
 \mathbf{next}
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with A2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
    bv simp
   moreover assume TQ \longmapsto Target \ TQ'
   hence TargetTerm TQ \longmapsto (STCal\ Source\ Target) (TargetTerm\ TQ')
     by (simp \ add: STCal\text{-}step(2))
   ultimately obtain P' where E1: TargetTerm TP \longmapsto (STCal\ Source\ Target)\ P'
                      and E2: (P', TargetTerm TQ') \in Rel
      using A_4
     by blast
   from E1 obtain TP' where E3: TP \mapsto Target \ TP' and E4: TP' \in TP'
    by (auto simp add: STCal-step(2))
   from A2 E2 E4 have (TP', TQ') \in TRel
   with E3 show \exists TP'. TP \longmapsto Target TP' \land (TP', TQ') \in TRel
     by blast
 qed
 ultimately
 show strongly-operational-corresponding TRel \wedge strong-reduction-bisimulation TRel Target
   by simp
qed
end
theory FullAbstraction
 imports Source Target Relation
begin
```

9 Full Abstraction

An encoding is fully abstract w.r.t. some source term relation SRel and some target term relation TRel if two source terms S1 and S2 form a pair (S1, S2) in SRel iff their literal translations form a pair (enc S1, enc S2) in TRel.

```
abbreviation (in encoding) fully-abstract

:: ('procS × 'procS) set \Rightarrow ('procT × 'procT) set \Rightarrow bool

where

fully-abstract SRel TRel \equiv \forall S1 \ S2. \ (S1, S2) \in SRel \longleftrightarrow (\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel
```

9.1 Trivial Full Abstraction Results

We start with some trivial full abstraction results. Each injective encoding is fully abstract w.r.t. to the identity relation on the source and the identity relation on the target.

```
lemma (in encoding) inj-enc-is-fully-abstract-wrt-identities: assumes injectivity: \forall S1 \ S2. [S1] = [S2] \longrightarrow S1 = S2 shows fully-abstract \{(S1, S2), S1 = S2\} \{(T1, T2), T1 = T2\} by (auto simp add: injectivity)
```

Each encoding is fully abstract w.r.t. the empty relation on the source and the target.

```
 \begin{array}{l} \textbf{lemma (in } \textit{encoding) fully-abstract-wrt-empty-relation:} \\ \textbf{shows } \textit{fully-abstract } \left\{\right\} \\ \textbf{by } \textit{auto} \end{array}
```

Similarly, each encoding is fully abstract w.r.t. the all-relation on the source and the target.

```
lemma (in encoding) fully-abstract-wrt-all-relation:
shows fully-abstract \{(S1, S2). True\} \{(T1, T2). True\}
by auto
```

If the encoding is injective then for each source term relation RelS there exists a target term relation RelT such that the encoding is fully abstract w.r.t. RelS and RelT.

```
lemma (in encoding) fully-abstract-wrt-source-relation: fixes <math>RelS :: ('procS \times 'procS) \ set assumes injectivity: \forall S1 \ S2. \ \llbracket S1 \rrbracket = \llbracket S2 \rrbracket \longrightarrow S1 = S2 shows \exists \ RelT. \ fully-abstract \ RelS \ RelT proof - define RelT where RelT = \{(T1, T2). \ \exists \ S1 \ S2. \ (S1, S2) \in RelS \land T1 = \llbracket S1 \rrbracket \land T2 = \llbracket S2 \rrbracket \} with injectivity have fully-abstract \ RelS \ RelT by blast thus \exists \ RelT. \ fully-abstract \ RelS \ RelT by blast qed
```

If all source terms that are translated to the same target term are related by a trans source term relation RelS, then there exists a target term relation RelT such that the encoding is fully abstract w.r.t. RelS and RelT.

```
lemma (in encoding) fully-abstract-wrt-trans-source-relation:
  fixes RelS :: ('procS \times 'procS) set
 assumes encRelS: \forall S1 \ S2. \ \llbracket S1 \rrbracket = \llbracket S2 \rrbracket \longrightarrow (S1, S2) \in RelS
     and transS: trans RelS
  shows \exists RelT. fully-abstract RelS RelT
proof -
  define RelT where RelT = \{(T1, T2), \exists S1 \ S2, (S1, S2) \in RelS \land T1 = [S1] \land T2 = [S2]\}
 have fully-abstract RelS RelT
  proof auto
   fix S1 S2
   assume (S1, S2) \in RelS
   with RelT-def show ([S1], [S2]) \in RelT
     by blast
  next
   fix S1 S2
   assume ([S1], [S2]) \in RelT
   with RelT-def obtain S1'S2' where A1: (S1', S2') \in RelS and A2: [S1] = [S1']
                           and A3: [S2] = [S2']
     by blast
   from A2 \ encRelS have (S1, S1') \in RelS
     by simp
   from this A1 transS have (S1, S2') \in RelS
       unfolding trans-def
     by blast
   moreover from A3 \ encRelS have (S2', S2) \in RelS
     by simp
   ultimately show (S1, S2) \in RelS
       using transS
       unfolding trans-def
     \mathbf{by} blast
  qed
  thus \exists RelT. fully-abstract RelS RelT
   by blast
\mathbf{qed}
lemma (in encoding) fully-abstract-wrt-trans-closure-of-source-relation:
  fixes RelS :: ('procS \times 'procS) \ set
  assumes encRelS: \forall S1 \ S2. \ [S1] = [S2] \longrightarrow (S1, S2) \in RelS^+
  shows \exists RelT. fully-abstract (RelS^+) RelT
```

```
\begin{array}{l} \textbf{using} \ encRelS \ trans-trancl[of \ RelS]\\ fully-abstract-wrt-trans-source-relation[\textbf{where} \ RelS=RelS^+]\\ \textbf{by} \ blast \end{array}
```

For every encoding and every target term relation RelT there exists a source term relation RelS such that the encoding is fully abstract w.r.t. RelS and RelT.

```
lemma (in encoding) fully-abstract-wrt-target-relation: fixes <math>RelT:: ('procT \times 'procT) set shows \exists RelS. fully-abstract RelS RelT proof - define RelS where RelS = \{(S1, S2). (\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in RelT\} hence fully-abstract RelS RelT by simp thus \exists RelS. fully-abstract RelS RelT by blast qed
```

9.2 Fully Abstract Encodings

Thus, as long as we can choose one of the two relations, full abstraction is trivial. For fixed source and target term relations encodings are not trivially fully abstract. For all encodings and relations SRel and TRel we can construct a relation on the disjunctive union of source and target terms, whose reduction to source terms is SRel and whose reduction to target terms is TRel. But full abstraction ensures that each trans relation that relates source terms and their literal translations in both directions includes SRel iff it includes TRel restricted to translated source terms.

```
lemma (in encoding) full-abstraction-and-trans-relation-contains-SRel-impl-TRel:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     and encR:
                  \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
                  SRel = \{(S1, S2), (SourceTerm S1, SourceTerm S2) \in Rel\}
     and trans: trans (Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\})
 shows \forall S1 \ S2. \ (\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel \longleftrightarrow (TargetTerm (\llbracket S1 \rrbracket), TargetTerm (\llbracket S2 \rrbracket)) \in Rel
proof auto
  fix S1 S2
  define Rel' where Rel' = Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\}
  hence (TargetTerm ([S1]), SourceTerm S1) \in Rel'
   by simp
  moreover assume ([S1], [S2]) \in TRel
  with fullAbs have (S1, S2) \in SRel
   \mathbf{bv} simp
  with srel Rel'-def have (SourceTerm S1, SourceTerm S2) \in Rel'
   by simp
  moreover from encR Rel'-def have (SourceTerm S2, TargetTerm ([S2])) \in Rel'
   by simp
  ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
     using trans Rel'-def
     unfolding trans-def
   by blast
next
  define Rel' where Rel' = Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\}
  from encR Rel'-def have (SourceTerm S1, TargetTerm ([S1])) \in Rel'
  moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
  with Rel'-def have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel'
   by simp
  moreover from Rel'-def have (TargetTerm ([S2]), SourceTerm S2) \in Rel'
```

```
by simp
 ultimately have (SourceTerm S1, SourceTerm S2) \in Rel
     using trans Rel'-def
     unfolding trans-def
   by blast
 with srel have (S1, S2) \in SRel
   by simp
 with fullAbs show ([S1], [S2]) \in TRel
   by simp
qed
lemma (in encoding) full-abstraction-and-trans-relation-contains-TRel-impl-SRel:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes fullAbs: fully-abstract SRel TRel
     and encR: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
     and trel: \forall S1 \ S2. (\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel \longleftrightarrow (TargetTerm (\llbracket S1 \rrbracket), TargetTerm (\llbracket S2 \rrbracket)) \in Rel
     and trans: trans (Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\})
 shows SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
proof auto
 fix S1 S2
 define Rel' where Rel' = Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\}
 from encR Rel'-def have (SourceTerm S1, TargetTerm ([S1])) \in Rel'
 moreover assume (S1, S2) \in SRel
 with fullAbs have ([S1], [S2]) \in TRel
   by simp
 with trel Rel'-def have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel'
 moreover from Rel'-def have (TargetTerm ([S2]), SourceTerm S2) \in Rel'
   bv simp
 ultimately show (SourceTerm S1, SourceTerm S2) \in Rel
     using trans Rel'-def
     unfolding trans-def
   by blast
next
 fix S1 S2
 define Rel' where Rel' = Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\}
 hence (TargetTerm ([S1]), SourceTerm S1) \in Rel'
   by simp
 moreover assume (SourceTerm S1, SourceTerm S2) \in Rel
 with Rel'-def have (SourceTerm S1, SourceTerm S2) \in Rel'
   by simp
 moreover from encR Rel'-def have (SourceTerm S2, TargetTerm ([S2])) \in Rel'
 ultimately have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
     using trans Rel'-def
     unfolding trans-def
   by blast
 with trel have ([S1], [S2]) \in TRel
   by simp
 with fullAbs show (S1, S2) \in SRel
   by simp
qed
lemma (in encoding) full-abstraction-impl-trans-relation-contains-SRel-iff-TRel:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes full Abs: fully-abstract SRel TRel
```

```
\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
      and trans: trans (Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\})
  shows (\forall S1 \ S2. (\llbracket S1 \rrbracket, \llbracket S2 \rrbracket)) \in TRel \longleftrightarrow (TargetTerm (\llbracket S1 \rrbracket), TargetTerm (\llbracket S2 \rrbracket)) \in Rel)
         \longleftrightarrow (SRel = {(S1, S2). (Source Term S1, Source Term S2) \in Rel})
proof
  \mathbf{assume} \ \forall \ S1 \ S2. \ ((\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel) = ((TargetTerm \ (\llbracket S1 \rrbracket), \ TargetTerm \ (\llbracket S2 \rrbracket)) \in Rel)
  thus SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
      \textbf{using} \ assms \ full-abstraction-and-trans-relation-contains-TRel-impl-SRel [\textbf{where}]
            SRel = SRel \text{ and } TRel = TRel
    by blast
next
  assume SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
  thus \forall S1 \ S2. \ (\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel \longleftrightarrow (TargetTerm (\llbracket S1 \rrbracket), TargetTerm (\llbracket S2 \rrbracket)) \in Rel
      \textbf{using} \ assms \ full-abstraction-and-trans-relation-contains-SRel-impl-TRel [\textbf{where}]
            SRel = SRel \text{ and } TRel = TRel
    by blast
qed
lemma (in encoding) full-abstraction-impl-trans-relation-contains-SRel-iff-TRel-encRL:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
    and SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
                      \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
      and encR:
      and encL:
                       \forall S. (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
      and trans: trans Rel
  shows (\forall S1 \ S2. ([S1], [S2]) \in TRel \longleftrightarrow (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel)
         \longleftrightarrow (SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel})
proof -
  from encL have Rel \cup \{(P, Q). \exists S. [S] \in T \ P \land S \in S \ Q\} = Rel
    by auto
  with fullAbs encR trans show ?thesis
      using full-abstraction-impl-trans-relation-contains-SRel-iff-TRel[ where Rel=Rel
            and SRel=SRel and TRel=TRel
    by simp
qed
source terms is sym (4) SRel is trans iff TRel reduced to translated source terms is trans
lemma (in encoding) full-abstraction-impl-SRel-iff-TRel-is-refl:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
```

Full abstraction ensures that SRel and TRel satisfy the same basic properties that can be defined on their pairs. In particular: (1) SRel is refl iff TRel reduced to translated source terms is refl (2) if the encoding is surjective then SRel is refl iff TRel is refl (3) SRel is sym iff TRel reduced to translated

```
assumes fullAbs: fully-abstract SRel TRel
  shows refl SRel \longleftrightarrow (\forall S. (\llbracket S \rrbracket, \llbracket S \rrbracket) \in TRel)
      unfolding refl-on-def
    by (simp add: fullAbs)
lemma (in encoding) full-abstraction-and-surjectivity-impl-SRel-iff-TRel-is-reft:
  \mathbf{fixes}\ SRel :: ('procS \times 'procS)\ set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
      and surj: \forall T. \exists S. T = [S]
  shows refl\ SRel \longleftrightarrow refl\ TRel
proof
  assume reflS: refl SRel
  show refl TRel
    unfolding refl-on-def
  proof auto
```

```
\mathbf{fix} \ T
   from surj obtain S where T = [S]
     by blast
    moreover from reflS have (S, S) \in SRel
       unfolding refl-on-def
     by simp
    with fullAbs have ([S], [S]) \in TRel
     by simp
    ultimately show (T, T) \in TRel
     by simp
  qed
next
  assume refl TRel
  \mathbf{with}\ \mathit{fullAbs}\ \mathbf{show}\ \mathit{refl}\ \mathit{SRel}
     unfolding refl-on-def
    by simp
qed
lemma (in encoding) full-abstraction-impl-SRel-iff-TRel-is-sym:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
  shows sym\ SRel \longleftrightarrow sym\ \{(T1,\ T2).\ \exists\ S1\ S2.\ T1=\llbracket S1 \rrbracket \land\ T2=\llbracket S2 \rrbracket \land\ (T1,\ T2)\in\ TRel\}
     unfolding sym-def
   by (simp add: fullAbs, blast)
lemma (in encoding) full-abstraction-and-surjectivity-impl-SRel-iff-TRel-is-sym:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     and surj:
                   \forall T. \exists S. T = [S]
  shows sym \ SRel \longleftrightarrow sym \ TRel
     using fullAbs surj
           full-abstraction-impl-SRel-iff-TRel-is-sym[where SRel=SRel and TRel=TRel]
    by auto
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ \mathit{full-abstraction-impl-SRel-iff-TRel-is-trans} :
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
  shows trans \ SRel \longleftrightarrow trans \ \{(T1,\ T2),\ \exists \ S1\ S2,\ T1 = \llbracket S1 \rrbracket \land \ T2 = \llbracket S2 \rrbracket \land (T1,\ T2) \in TRel \}
      unfolding trans-def
   by (simp add: fullAbs, blast)
lemma (in encoding) full-abstraction-and-surjectivity-impl-SRel-iff-TRel-is-trans:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     and surj: \forall T. \exists S. T = [\![S]\!]
  \mathbf{shows} \ \mathit{trans} \ \mathit{SRel} \longleftrightarrow \mathit{trans} \ \mathit{TRel}
     using fullAbs surj
           full-abstraction-impl-SRel-iff-TRel-is-trans[where SRel=SRel and TRel=TRel]
   by auto
Similarly, a fully abstract encoding that respects a predicate ensures the this predicate is preserved,
reflected, or respected by SRel iff it is preserved, reflected, or respected by TRel.
lemma (in encoding) full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-preserve:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and Pred :: ('procS, 'procT) \ Proc \Rightarrow bool
```

```
assumes fullAbs: fully-abstract SRel TRel
      and encP: enc-respects-pred Pred
  shows rel-preserves-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
         \longleftrightarrow rel-preserves-pred \{(P, Q), \exists SP \ SQ, \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} Pred
proof
  assume presS: rel-preserves-pred \{(P, Q). \exists SP \ SQ. \ SP \in S \ P \land SQ \in S \ Q \land (SP, SQ) \in SRel\} Pred
  show rel-preserves-pred \{(P, Q). \exists SP \ SQ. \ \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} Pred
  proof clarify
    fix SP SQ
    assume Pred\ (TargetTerm\ (\llbracket SP \rrbracket))
    with encP have Pred (SourceTerm SP)
    moreover assume ([SP], [SQ]) \in TRel
    with fullAbs have (SP, SQ) \in SRel
      by simp
    ultimately have Pred (SourceTerm SQ)
        using presS
      by blast
    with encP show Pred (TargetTerm (\llbracket SQ \rrbracket))
      by simp
  qed
next
  assume presT:
    rel-preserves-pred \{(P, Q), \exists SP \ SQ, \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} Pred
  show rel-preserves-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
  proof clarify
    fix SP SQ
    assume Pred (SourceTerm SP)
    with encP have Pred (TargetTerm ([SP]))
      by simp
    moreover assume (SP, SQ) \in SRel
    with fullAbs have ([SP], [SQ]) \in TRel
      bv simp
    ultimately have Pred\ (TargetTerm\ ([SQ]))
        using presT
      by blast
    with encP show Pred (SourceTerm SQ)
      by simp
  qed
qed
lemma (in encoding) full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff-TRel-preserve:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
    and Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  assumes fullAbs: fully-abstract SRel TRel
      and encP: enc-respects-binary-pred Pred
  shows rel-preserves-binary-pred \{(P, Q), \exists SP \ SQ, \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} Pred
         \longleftrightarrow \textit{rel-preserves-binary-pred}
              \{(P, Q). \exists SP \ SQ. \ \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} \ Pred
proof
  assume presS:
    rel-preserves-binary-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
  show rel-preserves-binary-pred
        \{(P, Q). \exists SP \ SQ. \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} \ Pred \}
  proof clarify
    fix x SP SQ
    assume Pred\ (TargetTerm\ (\llbracket SP \rrbracket))\ x
    with encP have Pred (SourceTerm SP) x
      by simp
    moreover assume ([SP], [SQ]) \in TRel
```

```
with fullAbs have (SP, SQ) \in SRel
     by simp
    ultimately have Pred (Source Term SQ) x
        using presS
      by blast
    with encP show Pred (TargetTerm ([SQ])) x
      by simp
  qed
next
  assume presT:
    rel-preserves-binary-pred \{(P, Q). \exists SP SQ. \llbracket SP \rrbracket \in T P \land \llbracket SQ \rrbracket \in T Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel\} Pred
  show rel-preserves-binary-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
  proof clarify
    fix x SP SQ
    assume Pred (SourceTerm SP) x
    with encP have Pred (TargetTerm ([SP])) x
     by simp
    moreover assume (SP, SQ) \in SRel
    with fullAbs have ([SP], [SQ]) \in TRel
    ultimately have Pred\ (TargetTerm\ (\llbracket SQ \rrbracket))\ x
        using presT
      by blast
    with encP show Pred (SourceTerm SQ) x
      by simp
  qed
qed
lemma (in encoding) full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-reflects:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
    and Pred :: ('procS, 'procT) Proc \Rightarrow bool
  assumes fullAbs: fully-abstract SRel TRel
     and encP: enc-respects-pred Pred
  shows rel-reflects-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
         \longleftrightarrow rel-reflects-pred \ \{(P,\ Q).\ \exists\ SP\ SQ.\ \llbracket SP\rrbracket \in T\ P\ \land\ \llbracket SQ\rrbracket \in T\ Q\ \land\ (\llbracket SP\rrbracket,\ \llbracket SQ\rrbracket) \in TRel\}\ Pred
proof
  assume reflS: rel-reflects-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} Pred
  show rel-reflects-pred \{(P, Q), \exists SP \ SQ, \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} Pred
  proof clarify
   fix SP SQ
    assume Pred\ (TargetTerm\ (\llbracket SQ \rrbracket))
    with encP have Pred (SourceTerm SQ)
      by simp
    moreover assume ([SP], [SQ]) \in TRel
    with fullAbs have (SP, SQ) \in SRel
     by simp
    ultimately have Pred (SourceTerm SP)
        using reflS
     by blast
    with encP show Pred (TargetTerm ([SP]))
      by simp
  qed
next
  assume reflT:
    rel-reflects-pred \ \{(P,\ Q).\ \exists\ SP\ SQ.\ \llbracket SP\rrbracket \in T\ P\ \land\ \llbracket SQ\rrbracket \in T\ Q\ \land\ (\llbracket SP\rrbracket,\ \llbracket SQ\rrbracket) \in\ TRel\}\ Pred
  show rel-reflects-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
  proof clarify
    \mathbf{fix} \ SP \ SQ
    assume Pred (SourceTerm SQ)
    with encP have Pred (TargetTerm ([SQ]))
```

```
by simp
    moreover assume (SP, SQ) \in SRel
    with fullAbs have ([SP], [SQ]) \in TRel
      by simp
    ultimately have Pred\ (TargetTerm\ (\llbracket SP \rrbracket))
        using reflT
      by blast
    with encP show Pred (SourceTerm SP)
      by simp
  qed
qed
lemma (in encoding) full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff-TRel-reflects:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
    and Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
  assumes fullAbs: fully-abstract SRel TRel
      and encP: enc-respects-binary-pred Pred
  shows rel-reflects-binary-pred \{(P, Q). \exists SP \ SQ. \ SP \in S \ P \land SQ \in S \ Q \land (SP, SQ) \in SRel\} Pred
         \longleftrightarrow rel-reflects-binary-pred
             \{(P, Q). \exists SP \ SQ. \ \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} \ Pred
proof
  assume reflS:
    rel-reflects-binary-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
  show rel-reflects-binary-pred
        \{(P,\ Q).\ \exists\, SP\ SQ.\ \llbracket SP\rrbracket\in T\ P\ \wedge\ \llbracket SQ\rrbracket\in T\ Q\ \wedge\ (\llbracket SP\rrbracket,\ \llbracket SQ\rrbracket)\in\ TRel\}\ Pred
  proof clarify
    fix x SP SQ
    assume Pred\ (TargetTerm\ (\llbracket SQ \rrbracket))\ x
    with encP have Pred (SourceTerm SQ) x
     bv simp
    moreover assume ([SP], [SQ]) \in TRel
    with fullAbs have (SP, SQ) \in SRel
     by simp
    ultimately have Pred (SourceTerm SP) x
        using reflS
      by blast
    with encP show Pred (TargetTerm (\llbracket SP \rrbracket)) x
      by simp
  qed
next
  assume reflT:
    rel-reflects-binary-pred \{(P, Q), \exists SP \ SQ, \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} Pred
  show rel-reflects-binary-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
  proof clarify
    fix x SP SQ
    assume Pred (Source Term SQ) x
    with encP have Pred (TargetTerm ([SQ])) x
     by simp
    moreover assume (SP, SQ) \in SRel
    with fullAbs have ([SP], [SQ]) \in TRel
     by simp
    ultimately have Pred\ (TargetTerm\ (\llbracket SP \rrbracket))\ x
        using reflT
      by blast
    with encP show Pred (SourceTerm SP) x
      by simp
  qed
qed
```

lemma (in encoding) full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-respects:

```
fixes SRel :: ('procS \times 'procS) set
           and TRel :: ('procT \times 'procT) set
          and Pred :: ('procS, 'procT) Proc \Rightarrow bool
      {\bf assumes}\ full Abs:\ fully-abstract\ SRel\ TRel
                                                               enc-respects-pred Pred
                and encP:
      shows rel-respects-pred \{(P, Q). \exists SP \ SQ. \ SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} \ Pred
                         \longleftrightarrow \textit{rel-respects-pred} \ \{(P,\ Q).\ \exists\ SP\ SQ.\ \llbracket SP\rrbracket \in T\ P\ \land\ \llbracket SQ\rrbracket \in T\ Q\ \land\ (\llbracket SP\rrbracket,\ \llbracket SQ\rrbracket) \in \textit{TRel}\}\ \textit{Pred}
                \textbf{using} \ assms \ full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-preserve [\textbf{where}] \\
                                                        SRel=SRel and TRel=TRel and Pred=Pred
                                 full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-reflects [where
                                       SRel = SRel \text{ and } TRel = TRel \text{ and } Pred = Pred
           by auto
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff-TRel-respects:
      fixes SRel :: ('procS \times 'procS) \ set
           and TRel :: ('procT \times 'procT) set
          and Pred :: ('procS, 'procT) \ Proc \Rightarrow 'b \Rightarrow bool
      assumes fullAbs: fully-abstract SRel TRel
                and encP: enc-respects-binary-pred Pred
      shows rel-respects-binary-pred \{(P, Q), \exists SP \ SQ, SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel\} Pred
                         \longleftrightarrow rel-respects-binary-pred
                                    \{(P, Q). \exists SP \ SQ. \ \llbracket SP \rrbracket \in T \ P \land \llbracket SQ \rrbracket \in T \ Q \land (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel \} \ Pred
                \textbf{using} \ \textit{assms full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff-TRel-preserve} \\ \textbf{[where} \ \textit{assms full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff-TRel-preserve]} \\ \textbf{(where} \ \textit{(where} \ \textit{
                                                        SRel = SRel \text{ and } TRel = TRel \text{ and } Pred = Pred
                                 full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff-TRel-reflects [ {f where} ]
                                       SRel = SRel \text{ and } TRel = TRel \text{ and } Pred = Pred
           by auto
```

9.3 Full Abstraction w.r.t. Preorders

If there however exists a trans relation Rel that relates source terms and their literal translations in both directions, then the encoding is fully abstract with respect to the reduction of Rel to source terms and the reduction of Rel to target terms.

```
lemma (in encoding) trans-source-target-relation-impl-full-abstraction:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes enc: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
               \land (TargetTerm ([\![S]\!]), SourceTerm S) \in Rel
     and trans: trans Rel
 shows fully-abstract \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
        \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
proof auto
 fix S1 S2
 assume (SourceTerm S1, SourceTerm S2) \in Rel
 with enc trans show (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
     unfolding trans-def
   by blast
next
 fix S1 S2
 assume (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
 with enc trans show (Source Term S1, Source Term S2) \in Rel
     unfolding trans-def
   by blast
qed
lemma (in encoding) source-target-relation-impl-full-abstraction-wrt-trans-closures:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes enc: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
             \land (TargetTerm ([S]), SourceTerm S) \in Rel
 shows fully-abstract \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel^+\}
        \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel^+\}
```

```
proof auto
 fix S1 S2
 from enc have (TargetTerm ([S1]), SourceTerm S1) \in Rel^+
   by blast
 moreover assume (SourceTerm S1, SourceTerm S2) \in Rel^+
 ultimately have (TargetTerm ([S1]), SourceTerm S2) \in Rel^+
   by simp
 moreover from enc have (SourceTerm S2, TargetTerm ([S2])) \in Rel^+
   bv blast
 ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel^+
   by simp
next
 fix S1 S2
 from enc have (SourceTerm S1, TargetTerm ([S1])) \in Rel^+
   by blast
 moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel^+
 ultimately have (SourceTerm S1, TargetTerm ([S2])) \in Rel^+
   by simp
 moreover from enc have (TargetTerm ([S2]), SourceTerm S2) \in Rel^+
 ultimately show (SourceTerm S1, SourceTerm S2) \in Rel^+
   by simp
qed
lemma (in encoding) quasi-trans-source-target-relation-impl-full-abstraction:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes enc: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
              \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
    and srel: SRel = \{(S1, S2), (SourceTerm S1, SourceTerm S2) \in Rel\}
    and trel: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
    and trans: \forall P \ Q \ R. \ (P, \ Q) \in Rel \land (Q, \ R) \in Rel \land ((P \in ProcS \land Q \in ProcT))
              \lor (P \in ProcT \land Q \in ProcS)) \longrightarrow (P, R) \in Rel
 shows fully-abstract SRel TRel
proof auto
 fix S1 S2
 from enc have (TargetTerm ([S1]), SourceTerm S1) \in Rel
 moreover assume (S1, S2) \in SRel
 with srel have (SourceTerm S1, SourceTerm S2) \in Rel
 ultimately have (TargetTerm ([S1]), SourceTerm S2) \in Rel
    using trans
   by blast
 moreover from enc have (SourceTerm S2, TargetTerm ([S2])) \in Rel
   by simp
 ultimately have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
    using trans
   by blast
 with trel show ([S1], [S2]) \in TRel
   by simp
next
 fix S1 S2
 from enc have (SourceTerm S1, TargetTerm ([S1])) \in Rel
   by simp
 moreover assume ([S1], [S2]) \in TRel
 with trel have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
 ultimately have (SourceTerm\ S1,\ TargetTerm\ ([S2])) \in Rel
    using trans
```

```
by blast
  moreover from enc have (TargetTerm ([S2]), SourceTerm S2) \in Rel
   by simp
  ultimately have (SourceTerm S1, SourceTerm S2) \in Rel
     using trans
   \mathbf{by} blast
  with srel show (S1, S2) \in SRel
   by simp
qed
If an encoding is fully abstract w.r.t. SRel and TRel, then we can conclude from a pair in indRelRTPO
or indRelSTEQ on a pair in TRel and SRel.
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and P \ Q :: ('procS, 'procT) \ Proc
  assumes fullAbs: fully-abstract SRel TRel
     and rel:
                   P \lesssim \|\cdot\| R < SRel, TRel > Q
  shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel^+
   and \forall SP \ TQ. \ SP \in SP \land \ TQ \in TQ \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel^*
proof -
  have fullAbsT: \forall S1\ S2.\ (S1,\ S2) \in SRel^+ \longrightarrow (\llbracket S1 \rrbracket,\ \llbracket S2 \rrbracket) \in TRel^+
  proof clarify
   fix S1 S2
   assume (S1, S2) \in SRel^+
   thus ([S1], [S2]) \in TRel^+
   proof induct
     fix S2
     assume (S1, S2) \in SRel
     with fullAbs show ([S1], [S2]) \in TRel^+
       by simp
     case (step S2 S3)
     assume ([S1], [S2]) \in TRel^+
     moreover assume (S2, S3) \in SRel
     with fullAbs have ([S2], [S3]) \in TRel^+
       by simp
     ultimately show ([S1], [S3]) \in TRel^+
       by simp
   qed
  qed
  with rel show \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel^+
     using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
   by simp
  show \forall SP \ TQ. \ SP \in S \ P \land \ TQ \in T \ Q \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel^*
  proof clarify
   \mathbf{fix} \ SP \ TQ
   assume SP \in SP and TQ \in TQ
   with rel obtain S where A1: (SP, S) \in SRel^*
                      and A2: (\llbracket S \rrbracket, TQ) \in TRel^*
       using indRelRSTPO-to-SRel-and-TRel(2)[where SRel-SRel and TRel-TRel]
     by blast
   from A1 have SP = S \vee (SP, S) \in SRel^+
       using rtrancl-eq-or-trancl[of SP S SRel]
     by blast
   with fullAbsT have ([SP], [S]) \in TRel^*
     by fast
   from this A2 show ([SP], TQ) \in TRel^*
     by simp
```

qed

```
qed
```

```
lemma (in encoding) full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel:
  fixes SRel :: ('procS \times 'procS) set
    and TRel :: ('procT \times 'procT) set
    and P Q :: ('procS, 'procT) Proc
  assumes fA:
                           fully-abstract SRel TRel
       and transT: trans TRel
       and reflS: refl SRel
       and rel: P \sim [\cdot] < SRel, TRel > Q
  shows \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (SP, SQ) \in SRel
     and \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
    and \forall \mathit{SP}\ \mathit{TQ}.\ \mathit{SP} \in \!\!\!\mathit{S}\ \mathit{P}\ \land\ \mathit{TQ} \in \!\!\!\mathit{T}\ \mathit{Q} \longrightarrow ([\![\mathit{SP}]\!],\ \mathit{TQ}) \in \mathit{TRel}
    and \forall TP \ SQ. \ TP \in T \ P \land SQ \in S \ Q \longrightarrow (TP, \llbracket SQ \rrbracket) \in TRel
    and \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel
       using rel
proof induct
  case (encR S)
  show \forall SP \ SQ. \ SP \in S \ Source Term \ S \land SQ \in S \ Target Term \ (\llbracket S \rrbracket) \longrightarrow (SP, SQ) \in SRel
   and \forall SP \ SQ. \ SP \in S \ Source Term \ S \land SQ \in S \ Target Term \ (\llbracket S \rrbracket) \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
   \mathbf{and}\ \forall\ TP\ SQ.\ TP\in T\ Source Term\ S\ \land\ SQ\in S\ Target Term\ ([\![S]\!])\ \longrightarrow\ (TP,\ [\![SQ]\!])\in\ TRel
   and \forall TP \ TQ. \ TP \in T \ Source Term \ S \land TQ \in T \ Target Term \ (\llbracket S \rrbracket) \longrightarrow (TP, TQ) \in TRel
    by simp+
  from reftS fA show \forall SP \ TQ. \ SP \in S \ Source Term \ S \land \ TQ \in T \ Target Term \ (\llbracket S \rrbracket) \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel
       unfolding refl-on-def
    by simp
next
  case (encL\ S)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land SQ \in S \ SourceTerm \ S \longrightarrow (SP, SQ) \in SRel
   and \forall SP \ SQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land SQ \in S \ SourceTerm \ S \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ (\llbracket S \rrbracket) \land \ TQ \in T \ SourceTerm \ S \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel
   and \forall TP \ TQ. \ TP \in T \ TargetTerm \ (\llbracket S \rrbracket) \land TQ \in T \ SourceTerm \ S \longrightarrow (TP, TQ) \in TRel
    by simp+
  with reflS fA show \forall TP SQ. TP \in T TargetTerm (||S||) \land SQ \inS SourceTerm S \longrightarrow (TP, ||SQ||) \in TRel
       unfolding refl-on-def
    by simp
next
  case (source S1 S2)
  show \forall SP \ TQ. \ SP \in S \ Source Term \ S1 \ \land \ TQ \in T \ Source Term \ S2 \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel
   and \forall TP \ SQ. \ TP \in T \ Source Term \ S1 \land SQ \in S \ Source Term \ S2 \longrightarrow (TP, \lceil SQ \rceil) \in TRel
   and \forall TP \ TQ. \ TP \in T \ Source Term \ S1 \ \land \ TQ \in T \ Source Term \ S2 \longrightarrow (TP, \ TQ) \in TRel
    by simp+
  assume (S1, S2) \in SRel
  thus \forall SP \ SQ. \ SP \in S \ Source Term \ S1 \ \land \ SQ \in S \ Source Term \ S2 \longrightarrow (SP, SQ) \in SRel
  with fA show \forall SP \ SQ. \ SP \in S \ Source Term \ S1 \land SQ \in S \ Source Term \ S2 \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
    by simp
next
  case (target T1 T2)
  show \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow (SP, SQ) \in SRel
   and \forall SP \ SQ. \ SP \in S \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
   and \forall SP \ TQ. \ SP \in S \ TargetTerm \ T1 \land TQ \in T \ TargetTerm \ T2 \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel
   and \forall TP \ SQ. \ TP \in T \ TargetTerm \ T1 \land SQ \in S \ TargetTerm \ T2 \longrightarrow (TP, [SQ]) \in TRel
    by simp+
  assume (T1, T2) \in TRel
  thus \forall TP \ TQ. \ TP \in T \ TargetTerm \ T1 \ \land \ TQ \in T \ TargetTerm \ T2 \longrightarrow (TP, \ TQ) \in TRel
     by simp
next
  case (trans P Q R)
  assume A1: \forall SP \ SQ. \ SP \in SP \land SQ \in SQ \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
      and A2: \forall SP \ TQ. \ SP \in SP \land \ TQ \in TQ \longrightarrow (\llbracket SP \rrbracket, \ TQ) \in TRel
```

```
and A3: \forall TP SQ. TP \in TP \land SQ \in SQ \longrightarrow (TP, [SQ]) \in TRel
  and A_4: \forall TP \ TQ. \ TP \in TP \land TQ \in TQ \longrightarrow (TP, TQ) \in TRel
  and A5: \forall SQ \ SR. \ SQ \in S \ Q \land SR \in S \ R \longrightarrow (\llbracket SQ \rrbracket, \llbracket SR \rrbracket) \in TRel
  and A6: \forall SQ \ TR. \ SQ \in S \ Q \land \ TR \in T \ R \longrightarrow (\llbracket SQ \rrbracket, \ TR) \in TRel
  and A7: \forall TQ SR. TQ \in T Q \land SR \in S R \longrightarrow (TQ, \llbracket SR \rrbracket) \in TRel
  and A8: \forall TQ \ TR. \ TQ \in T \ Q \land TR \in T \ R \longrightarrow (TQ, TR) \in TRel
show \forall SP \ SR. \ SP \in S \ P \land SR \in S \ R \longrightarrow (\llbracket SP \rrbracket, \llbracket SR \rrbracket) \in TRel
proof clarify
 \mathbf{fix} \ SP \ SR
 assume A9: SP \in SP and A10: SR \in SR
 show ([SP], [SR]) \in TRel
 proof (cases Q)
   case (SourceTerm SQ)
   assume A11: SQ \in SQ
   with A1 A9 have ([SP], [SQ]) \in TRel
     by blast
   moreover from A5 \ A10 \ A11 \ \text{have} ([SQ], [SR]) \in TRel
     by blast
   ultimately show ([SP], [SR]) \in TRel
       using transT
       unfolding trans-def
     by blast
 next
   case (TargetTerm TQ)
   assume A11: TQ \in TQ
   with A2 A9 have ([SP], TQ) \in TRel
     by blast
   moreover from A7 A10 A11 have (TQ, [SR]) \in TRel
     by blast
   ultimately show ([SP], [SR]) \in TRel
       using transT
       unfolding trans-def
     by blast
 qed
qed
with fA show \forall SP SR. SP \in SP \land SR \in SR \longrightarrow (SP, SR) \in SRel
 by simp
show \forall SP \ TR. \ SP \in SP \land TR \in TR \longrightarrow (\llbracket SP \rrbracket, \ TR) \in TRel
proof clarify
 \mathbf{fix} SP TR
 assume A9: SP \in SP and A10: TR \in TR
 show ([SP], TR) \in TRel
 proof (cases Q)
   case (SourceTerm SQ)
   assume A11: SQ \in SQ
   with A1 A9 have ([SP], [SQ]) \in TRel
     by blast
   moreover from A6 \ A10 \ A11 \ \text{have} ([SQ], TR) \in TRel
     by blast
   ultimately show ([SP], TR) \in TRel
       using transT
       unfolding trans-def
     by blast
 next
   case (TargetTerm TQ)
   assume A11: TQ \in T Q
   with A2 A9 have ([SP], TQ) \in TRel
     by blast
   moreover from A8 A10 A11 have (TQ, TR) \in TRel
     by blast
   ultimately show ([SP], TR) \in TRel
```

```
using transT
      unfolding trans-def
     by blast
 qed
qed
show \forall TP SR. TP \in T P \wedge SR \inS R \longrightarrow (TP, [SR]) \in TRel
proof clarify
 fix TP SR
 assume A9: TP \in TP and A10: SR \in SR
 show (TP, [SR]) \in TRel
 proof (cases Q)
   case (SourceTerm SQ)
   assume A11: SQ \in SQ
   with A3 A9 have (TP, [SQ]) \in TRel
    by blast
   moreover from A5 A10 A11 have ([SQ], [SR]) \in TRel
    by blast
   ultimately show (\mathit{TP}, \llbracket \mathit{SR} \rrbracket) \in \mathit{TRel}
      using transT
      unfolding trans-def
    by blast
 next
   case (TargetTerm TQ)
   assume A11: TQ \in TQ
   with A4 A9 have (TP, TQ) \in TRel
    by blast
   moreover from A7 A10 A11 have (TQ, [SR]) \in TRel
     by blast
   ultimately show (TP, [SR]) \in TRel
      using transT
      unfolding trans-def
    bv blast
 qed
qed
show \forall TP \ TR. \ TP \in T \ P \land TR \in T \ R \longrightarrow (TP, TR) \in TRel
proof clarify
 \mathbf{fix} \ TP \ TR
 assume A9: TP \in TP and A10: TR \in TR
 show (TP, TR) \in TRel
 proof (cases Q)
   case (SourceTerm SQ)
   assume A11: SQ \in SQ
   with A3 A9 have (TP, [SQ]) \in TRel
    by blast
   moreover from A6 \ A10 \ A11 \ \text{have} ([SQ], TR) \in TRel
    by blast
   ultimately show (TP, TR) \in TRel
      using transT
      \mathbf{unfolding}\ \mathit{trans-def}
    by blast
   case (TargetTerm TQ)
   assume A11: TQ \in T Q
   with A4 A9 have (TP, TQ) \in TRel
    by blast
   moreover from A8 A10 A11 have (TQ, TR) \in TRel
     by blast
   ultimately show (TP, TR) \in TRel
      using transT
      \mathbf{unfolding}\ \mathit{trans-def}
    by blast
```

```
qed
qed
qed
```

If an encoding is fully abstract w.r.t. a preorder SRel on the source and a trans relation TRel on the target, then there exists a trans relation, namely indRelSTEQ, that relates source terms and their literal translations in both direction such that its reductions to source terms is SRel and its reduction to target terms is TRel.

```
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ full-abstraction\text{-}wrt\text{-}preorders\text{-}impl\text{-}trans\text{-}source\text{-}target\text{-}relation\text{:}}
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     and reflS: refl SRel
     and transT: trans\ TRel
  shows \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel
                   \land (TargetTerm ([S]), SourceTerm S) \in Rel)
               \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
               \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
               \land trans Rel
proof -
  have \forall S. \ Source Term \ S \sim \llbracket \cdot \rrbracket < SRel, TRel > \ Target Term \ (\llbracket S \rrbracket)
       \land TargetTerm ([S]) \sim [\cdot] < SRel, TRel > SourceTerm S
     using indRelSTEQ.encR[where SRel=SRel and TRel=TRel]
           indRelSTEQ.encL[where SRel=SRel and TRel=TRel]
   by blast
  moreover have SRel = \{(S1, S2). SourceTerm S1 \sim \mathbb{I} \mid SRel, TRel > SourceTerm S2\}
  proof auto
   fix S1 S2
   assume (S1, S2) \in SRel
   thus Source Term S1 \sim [\cdot] < SRel, TRel > Source Term S2
     by (rule\ indRelSTEQ.source[where SRel=SRel\ and TRel=TRel])
  next
   fix S1 S2
   assume SourceTerm\ S1 \sim [\cdot] < SRel, TRel > SourceTerm\ S2
   with fullAbs reflS transT show (S1, S2) \in SRel
       \mathbf{using}\ full-abstraction\text{-}wrt\text{-}preorders\text{-}impl\text{-}indRelSTEQ\text{-}to\text{-}SRel\text{-}and\text{-}TRel(1)} [\mathbf{where}\ SRel\text{=}SRel
               and TRel = TRel
     by blast
  qed
  moreover have TRel = \{(T1, T2), TargetTerm T1 \sim [\cdot] | SRel, TRel > TargetTerm T2 \}
  proof auto
   fix T1 T2
   assume (T1, T2) \in TRel
   thus TargetTerm\ T1 \sim [\cdot] < SRel, TRel > TargetTerm\ T2
     by (rule\ indRelSTEQ.target[where SRel=SRel\ and TRel=TRel])
  next
   fix T1 T2
   assume TargetTerm\ T1 \sim [\![\cdot]\!] < SRel, TRel > TargetTerm\ T2
   with fullAbs reflS transT show (T1, T2) \in TRel
       using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(5)[where SRel=SRel
               and TRel = TRel
     \mathbf{by} blast
  qed
  moreover have trans (indRelSTEQ SRel TRel)
     using indRelSTEQ.trans[where SRel=SRel and TRel=TRel]
     unfolding trans-def
   by blast
  ultimately show ?thesis
   by blast
qed
```

Thus an encoding is fully abstract w.r.t. a preorder SRel on the source and a trans relation TRel on the target iff there exists a trans relation that relates source terms and their literal translations in both directions and whose reduction to source/target terms is SRel/TRel.

```
theorem (in encoding) fully-abstract-wrt-preorders-iff-source-target-relation-is-trans:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 shows (fully-abstract SRel TRel \land refl SRel \land trans TRel) =
        (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                    \land (TargetTerm ([S]), SourceTerm S) \in Rel)
              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
              \wedge trans Rel)
proof (rule iffI)
 assume fully-abstract SRel TRel \land refl SRel \land trans TRel
 thus \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \ \land \ (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
              \wedge trans Rel
     \textbf{using} \ full-abstraction-wrt-preorders-impl-trans-source-target-relation} [\textbf{where} \ SRel = SRel
            and TRel = TRel
   by blast
next
 assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel
               \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
              \land trans Rel
 from this obtain Rel
   where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
     and A2: SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
     and A3: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} and A4: trans Rel
   by blast
 hence fully-abstract SRel TRel
     using trans-source-target-relation-impl-full-abstraction[where Rel=Rel]
   by blast
 moreover have refl SRel
   unfolding refl-on-def
 proof auto
   \mathbf{fix} \ S
   from A1 have (SourceTerm S, TargetTerm ([S])) \in Rel
     by blast
   moreover from A1 have (TargetTerm ([S]), SourceTerm S) \in Rel
     bv blast
   ultimately have (SourceTerm\ S,\ SourceTerm\ S) \in Rel
       using A4
       unfolding trans-def
     by blast
   with A2 show (S, S) \in SRel
     by blast
 qed
 moreover from A3 A4 have trans TRel
     unfolding trans-def
   by blast
 ultimately show fully-abstract SRel TRel \wedge refl SRel \wedge trans TRel
   by blast
qed
```

9.4 Full Abstraction w.r.t. Equivalences

If there exists a relation Rel that relates source terms and their literal translations and whose sym closure is trans, then the encoding is fully abstract with respect to the reduction of the sym closure of Rel to source/target terms.

```
lemma (in encoding) source-target-relation-with-trans-symcl-impl-full-abstraction:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
 assumes enc: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
    and trans: trans (symcl Rel)
 shows fully-abstract \{(S1, S2), (SourceTerm S1, SourceTerm S2) \in symcl Rel\}
        \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in symcl Rel\}
proof auto
 fix S1 S2
 from enc have (Target Term ([S1]), Source Term S1) \in symcl Rel
   by (simp add: symcl-def)
 moreover assume (SourceTerm S1, SourceTerm S2) \in symcl Rel
 moreover from enc have (SourceTerm S2, TargetTerm ([S2])) \in symcl Rel
   by (simp add: symcl-def)
 ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) \in symcl\ Rel
    using trans
    unfolding trans-def
   by blast
next
 fix S1 S2
 from enc have (SourceTerm S1, TargetTerm ([S1])) \in symcl Rel
   by (simp add: symcl-def)
 moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) \in symcl\ Rel
 moreover from enc have (TargetTerm ([S2]), SourceTerm S2) \in symcl Rel
   by (simp add: symcl-def)
 ultimately show (SourceTerm S1, SourceTerm S2) \in symcl Rel
    using trans
    unfolding trans-def
   by blast
qed
```

If an encoding is fully abstract w.r.t. the equivalences SRel and TRel, then there exists a preorder, namely indRelRSTPO, that relates source terms and their literal translations such that its reductions to source terms is SRel and its reduction to target terms is TRel.

```
lemma (in encoding) fully-abstract-wrt-equivalences-impl-symcl-source-target-relation-is-preorder:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     and reflT: refl TRel
     and symmT: sym TRel
     and transT: trans TRel
 shows \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in symcl Rel\}
              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in symcl Rel\}
              \land preorder (symcl Rel)
proof -
  from fullAbs reflT have reflS: refl SRel
     unfolding refl-on-def
   by auto
  from fullAbs symmT have symmS: sym SRel
     unfolding sym-def
   by auto
  from fullAbs transT have transS: trans SRel
     unfolding trans-def
   by blast
  have \forall S. \ Source Term \ S \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > \ Target Term \ (\llbracket S \rrbracket)
```

```
using indRelRSTPO.encR[where SRel=SRel and TRel=TRel]
 by blast
moreover
have SRel = \{(S1, S2), (SourceTerm S1, SourceTerm S2) \in symcl (indRelRSTPO SRel TRel)\}
proof auto
 fix S1 S2
 assume (S1, S2) \in SRel
 thus (SourceTerm S1, SourceTerm S2) \in symcl (indRelRSTPO SRel TRel)
   by (simp add: symcl-def indRelRSTPO.source[where SRel=SRel and TRel=TRel])
next
 fix S1 S2
 assume (SourceTerm S1, SourceTerm S2) \in symcl (indRelRSTPO SRel TRel)
 moreover from transS
 have SourceTerm S1 \lesssim []R<SRel,TRel> SourceTerm S2 \Longrightarrow (S1, S2) \in SRel
     using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
          trancl-id[of\ SRel]
   by blast
 moreover from symmS transS
 have SourceTerm\ S2 \le \mathbb{R} \cdot \mathbb{R} < SRel, TRel > SourceTerm\ S1 \Longrightarrow (S1, S2) \in SRel
     using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
          trancl-id[of SRel]
    unfolding sym-def
   by blast
 ultimately show (S1, S2) \in SRel
   by (auto simp add: symcl-def)
qed
moreover
have TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in symcl (indRelRSTPO SRel TRel)\}
proof auto
 fix T1 T2
 assume (T1, T2) \in TRel
 thus (TargetTerm\ T1,\ TargetTerm\ T2) \in symcl\ (indRelRSTPO\ SRel\ TRel)
   by (simp add: symcl-def indRelRSTPO.target[where SRel=SRel and TRel=TRel])
next
 fix T1 T2
 assume (TargetTerm\ T1, TargetTerm\ T2) \in symcl\ (indRelRSTPO\ SRel\ TRel)
 moreover from transT
 have TargetTerm\ T1 \lesssim []R < SRel, TRel > TargetTerm\ T2 \Longrightarrow (T1, T2) \in TRel
     using indRelRSTPO-to-SRel-and-TRel(4)[where SRel-SRel and TRel-TRel]
          trancl-id[of TRel]
   by blast
 moreover from symmT transT
 \mathbf{have} \ \mathit{TargetTerm} \ \mathit{T2} \, \lesssim \hspace{-0.5mm} \llbracket \cdot \rrbracket \mathit{R} < \! \mathit{SRel}, \mathit{TRel} \! > \, \mathit{TargetTerm} \ \mathit{T1} \, \Longrightarrow \, (\mathit{T1}, \ \mathit{T2}) \in \, \mathit{TRel}
     using indRelRSTPO-to-SRel-and-TRel(4)[where SRel-SRel and TRel-TRel]
          trancl-id[of TRel]
    unfolding sym-def
   by blast
 ultimately show (T1, T2) \in TRel
   by (auto simp add: symcl-def)
moreover have refl (symcl (indRelRSTPO SRel TRel))
 unfolding refl-on-def
proof auto
 \mathbf{fix} P
 show (P, P) \in symcl (indRelRSTPO SRel TRel)
 proof (cases P)
   case (SourceTerm SP)
   assume SP \in SP
   with reflS show (P, P) \in symcl (indRelRSTPO SRel TRel)
      unfolding refl-on-def
    by (simp add: symcl-def indRelRSTPO.source)
```

```
next
   case (TargetTerm TP)
   assume TP \in TP
   with reflT show (P, P) \in symcl (indRelRSTPO SRel TRel)
      unfolding refl-on-def
     by (simp add: symcl-def indRelRSTPO.target)
 qed
qed
moreover have trans (symcl (indRelRSTPO SRel TRel))
proof -
 have \forall P \ Q \ R. \ P \leq \|\cdot\| R < SRel, TRel > Q \land R \leq \|\cdot\| R < SRel, TRel > Q \land (P, R) \notin (indRelRSTPO \ SRel \ TRel)
       \longrightarrow Q \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > P \lor Q \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > R
 proof clarify
   fix P Q R
   assume A1: P \lesssim \|\cdot\| R < SRel, TRel > Q and A2: R \lesssim \|\cdot\| R < SRel, TRel > Q
      and A3: (P, R) \notin (indRelRSTPO \ SRel \ TRel) and A4: (Q, R) \notin (indRelRSTPO \ SRel \ TRel)
   show Q \lesssim [\cdot]R < SRel, TRel > P
   proof (cases P)
     case (SourceTerm SP)
     assume A5: SP \in SP
     show Q \lesssim [\cdot]R < SRel, TRel > P
     proof (cases Q)
      case (SourceTerm SQ)
      assume A6: SQ \in SQ
      with transS A1 A5 have (SP, SQ) \in SRel
          using indRelRSTPO-to-SRel-and-TRel(1)[where SRel-SRel and TRel-TRel]
               trancl-id[of SRel]
        by blast
      with symmS A5 A6 show Q \lesssim ||\cdot||R < SRel, TRel > P
          unfolding sym-def
        by (simp add: indRelRSTPO.source)
     next
      case (TargetTerm TQ)
      assume A6: TQ \in TQ
      show Q \lesssim \|\cdot\| R < SRel, TRel > P
      proof (cases R)
        case (SourceTerm SR)
        assume A7: SR \in SR
        with fullAbs A2 A6 have ([SR], TQ) \in TRel^*
            using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)[where SRel=SRel
                  and TRel = TRel | trancl-id[of TRel = | reflcl-of-refl-rel[of TRel] |
                 trancl-reflcl[of TRel]
            unfolding trans-def
          bv blast
        with transT reflT have ([SR], TQ) \in TRel
            using trancl-id[of TRel=] reflcl-of-refl-rel[of TRel] trancl-reflcl[of TRel]
          by auto
        with symmT have (TQ, [SR]) \in TRel
            unfolding sym-def
          by simp
        moreover from fullAbs A1 A5 A6 have ([SP], TQ) \in TRel^*
            using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)[where SRel=SRel
                  and TRel = TRel
            unfolding trans-def
          by blast
        with transT reflT have ([SP], TQ) \in TRel
            using trancl-id[of TRel<sup>=</sup>] reflcl-of-refl-rel[of TRel] trancl-reflcl[of TRel]
          by auto
        ultimately have ([SP], [SR]) \in TRel
            using transT
            unfolding trans-def
```

```
by blast
       with fullAbs have (SP, SR) \in SRel
        by simp
       with A3 A5 A7 show ?thesis
        by (simp add: indRelRSTPO.source)
       case (TargetTerm TR)
       assume A7: TR \in TR
       with transT A2 A6 have (TR, TQ) \in TRel
          using indRelRSTPO-to-SRel-and-TRel(4)[where SRel-SRel and TRel-TRel]
               trancl-id[of TRel]
       with symmT have (TQ, TR) \in TRel
          unfolding sym-def
        by simp
       with A4 A6 A7 show ?thesis
        by (simp add: indRelRSTPO.target)
     qed
   qed
   case (TargetTerm TP)
   assume A5: TP \in TP
   show Q \lesssim [\cdot]R < SRel, TRel > P
   proof (cases Q)
     case (SourceTerm SQ)
     assume SQ \in SQ
     with A1 A5 show ?thesis
         using indRelRSTPO-to-SRel-and-TRel(3)[where SRel-SRel and TRel-TRel]
       by blast
   next
     case (TargetTerm\ TQ)
     assume A6: TQ \in TQ
     with transT A1 A5 have (TP, TQ) \in TRel
        using indRelRSTPO-to-SRel-and-TRel(4)[where SRel=SRel and TRel=TRel]
              trancl-id[of\ TRel]
       by blast
     with symmT have (TQ, TP) \in TRel
        unfolding sym-def
       by simp
     with A5 A6 show Q \lesssim ||\cdot||R < SRel, TRel > P
       by (simp add: indRelRSTPO.target)
 qed
qed
moreover
have \forall P \ Q \ R. \ P \leq [\![\cdot]\!]R < SRel, TRel > Q \land P \leq [\![\cdot]\!]R < SRel, TRel > R \land (Q, R) \notin (indRelRSTPO\ SRel\ TRel)
     \longrightarrow Q \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > P \lor R \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > P
proof clarify
 \mathbf{fix}\ P\ Q\ R
 assume A1: P \lesssim \|\cdot\| R < SRel, TRel > Q and A2: P \lesssim \|\cdot\| R < SRel, TRel > R
    and A3: (Q, R) \notin (indRelRSTPO\ SRel\ TRel) and A4: (R, P) \notin (indRelRSTPO\ SRel\ TRel)
 show Q \lesssim [\cdot]R < SRel, TRel > P
 proof (cases P)
   case (SourceTerm SP)
   assume A5: SP \in SP
   show Q \lesssim [\cdot]R < SRel, TRel > P
   proof (cases Q)
     case (SourceTerm SQ)
     assume A6: SQ \in SQ
     with transS A1 A5 have (SP, SQ) \in SRel
        using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
```

```
trancl-id[of SRel]
     by blast
   with symmS A5 A6 show Q \lesssim \llbracket \cdot \rrbracket R < SRel, TRel > P
      unfolding sym-def
     by (simp add: indRelRSTPO.source)
 \mathbf{next}
   case (TargetTerm TQ)
   assume A6: TQ \in TQ
   show Q \leq \|\cdot\| R < SRel, TRel > P
   proof (cases R)
     case (SourceTerm\ SR)
     assume A7: SR \in SR
     with transS A2 A5 have (SP, SR) \in SRel
        using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
             trancl-id[of\ SRel]
      by blast
     with symmS have (SR, SP) \in SRel
        unfolding sym-def
      by simp
     with A4 A5 A7 show ?thesis
      by (simp add: indRelRSTPO.source)
   next
     case (TargetTerm\ TR)
     from fullAbs A1 A5 A6 have ([SP], TQ) \in TRel^*
        using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)[where SRel-SRel and
              TRel = TRel
        unfolding trans-def
      by blast
     with transT reflT have ([SP], TQ) \in TRel
        \mathbf{using} \ \mathit{trancl-id}[\mathit{of} \ \mathit{TRel}^=] \ \mathit{reflcl-of-refl-rel}[\mathit{of} \ \mathit{TRel}] \ \mathit{trancl-reflcl}[\mathit{of} \ \mathit{TRel}]
     with symmT have (TQ, [SP]) \in TRel
        unfolding sym-def
      by simp
     moreover assume A7: TR \in TR
     with fullAbs A2 A5 have ([SP], TR) \in TRel^*
        using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2) [where SRel=SRel and
               TRel = TRel
        unfolding trans-def
      by blast
     with transT reflT have ([SP], TR) \in TRel
        using trancl-id[of TRel<sup>=</sup>] reflcl-of-refl-rel[of TRel] trancl-reflcl[of TRel]
      by auto
     ultimately have (TQ, TR) \in TRel
        using transT
        unfolding trans-def
      by blast
     with A3 A6 A7 show ?thesis
      by (simp add: indRelRSTPO.target)
   qed
 qed
next
 case (TargetTerm TP)
 assume A5: TP \in TP
 show Q \lesssim [\cdot]R < SRel, TRel > P
 proof (cases Q)
   case (SourceTerm SQ)
   assume SQ \in SQ
   with A1 A5 show ?thesis
      using indRelRSTPO-to-SRel-and-TRel(3)[where SRel-SRel and TRel-TRel]
     by blast
```

```
next
        case (TargetTerm TQ)
        assume A6: TQ \in TQ
        with transT \ A1 \ A5 \ have (TP, TQ) \in TRel
            using indRelRSTPO-to-SRel-and-TRel(4)[where SRel-SRel and TRel-TRel]
                 trancl-id[of\ TRel]
          by blast
        with symmT have (TQ, TP) \in TRel
           unfolding sym-def
          by simp
        with A5 A6 show Q \lesssim [\cdot]R < SRel, TRel > P
          by (simp add: indRelRSTPO.target)
      qed
     qed
   qed
   moreover from reflS reflT have refl (indRelRSTPO SRel TRel)
       using indRelRSTPO-refl[where SRel=SRel and TRel=TRel]
     by blast
   moreover have trans (indRelRSTPO SRel TRel)
      using indRelRSTPO.trans[where SRel=SRel and TRel=TRel]
      unfolding trans-def
     by blast
   ultimately show trans (symcl (indRelRSTPO SRel TRel))
      using symm-closure-of-preorder-is-trans[where Rel=indRelRSTPO SRel TRel]
     by blast
 qed
 ultimately show ?thesis
     unfolding preorder-on-def
   by blast
qed
lemma (in encoding) fully-abstract-impl-symcl-source-target-relation-is-preorder:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes fullAbs: fully-abstract ((symcl\ (SRel^{=}))^{+})\ ((symcl\ (TRel^{=}))^{+})
 shows \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
             \land ((symcl\ (SRel^{=}))^{+}) = \{(S1, S2).\ (SourceTerm\ S1, SourceTerm\ S2) \in symcl\ Rel\}
             \land ((symcl\ (TRel^{=}))^{+}) = \{(T1,\ T2).\ (TargetTerm\ T1,\ TargetTerm\ T2) \in symcl\ Rel\}
             \land preorder (symcl Rel)
proof -
 have refl ((symcl\ (TRel^{=}))^{+})
     using refl-symm-trans-closure-is-symm-refl-trans-closure[of TRel]
          refl-rtrancl[of TRel]
     unfolding sym-def refl-on-def
   by auto
 moreover have sym ((symcl (TRel^{=}))^{+})
     using sym-symcl[of TRel^{=}] sym-trancl[of symcl (TRel^{=})]
   by simp
 moreover have trans ((symcl (TRel^{=}))^{+})
   by simp
 ultimately show ?thesis
     \textbf{using} \ fully-abstract-wrt-equivalences-impl-symcl-source-target-relation-is-preorder [\textbf{where}]
           SRel=(symcl\ (SRel^{=}))^{+}\ and\ TRel=(symcl\ (TRel^{=}))^{+}]\ fullAbs
          refl-symm-closure-is-symm-refl-closure
     unfolding preorder-on-def
   by blast
qed
lemma (in encoding) fully-abstract-wrt-preorders-impl-source-target-relation-is-trans:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
```

```
assumes fullAbs: fully-abstract SRel TRel
  shows \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
               \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
               \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
               \land ((refl SRel \land trans TRel)
                  \longleftrightarrow trans \ (Rel \cup \{(P, Q). \ \exists S. \ \llbracket S \rrbracket \in T \ P \land S \in S \ Q\}))
proof -
  define Rel where Rel = (indRelSTEQ\ SRel\ TRel) - (\{(P,\ Q),\ \exists\ S.\ [S] \in T\ P \land S \in S\ Q\}
                \cup \{(P, Q). \exists S1 \ S2. \ S1 \in S \ P \land S2 \in S \ Q \land (S1, S2) \notin SRel\}
                \cup \{(P, Q). \exists T1 \ T2. \ T1 \in T \ P \land T2 \in T \ Q \land (T1, T2) \notin TRel\}\}
  from Rel-def have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
    by (simp\ add:\ indRelSTEQ.encR[where SRel=SRel\ and TRel=TRel])
  moreover from Rel-def have SRel = \{(S1, S2), (Source Term S1, Source Term S2) \in Rel\}
  proof auto
   fix S1 S2
   assume (S1, S2) \in SRel
   thus Source Term S1 \sim [-] < SRel, TRel > Source Term S2
     by (simp add: indRelSTEQ.source[where SRel=SRel and TRel=TRel])
  moreover from Rel-def have TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  proof auto
   fix T1 T2
   assume (T1, T2) \in TRel
   thus TargetTerm\ T1 \sim [\cdot] < SRel, TRel > TargetTerm\ T2
     by (simp add: indRelSTEQ.target[where SRel=SRel and TRel=TRel])
  qed
  moreover
  have (refl\ SRel\ \land\ trans\ TRel) \longleftrightarrow trans\ (Rel\ \cup\ \{(P,\ Q).\ \exists\ S.\ \llbracket S \rrbracket \in T\ P\ \land\ S \in S\ Q\})
  proof (rule iffI, erule conjE)
    assume reflS: refl SRel and transT: trans TRel
   have Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\} = indRelSTEQ SRel TRel
   proof (auto simp add: Rel-def)
     \mathbf{fix} \ S
     \mathbf{show} \ \mathit{TargetTerm} \ ([\![S]\!]) \sim [\![\cdot]\!] < \! \mathit{SRel}, \mathit{TRel} \! > \mathit{SourceTerm} \ \mathit{S}
       by (rule\ indRelSTEQ.encL)
    next
     fix S1 S2
     assume SourceTerm\ S1 \sim \llbracket \cdot \rrbracket < SRel, TRel > SourceTerm\ S2
     with fullAbs reflS transT have (S1, S2) \in SRel
         using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(1) [where
               SRel = SRel \text{ and } TRel = TRel
       by blast
     moreover assume (S1, S2) \notin SRel
     ultimately show False
       by simp
   next
     fix T1 T2
     assume TargetTerm\ T1 \sim [\cdot] < SRel, TRel > TargetTerm\ T2
     with fullAbs reflS transT have (T1, T2) \in TRel
         \mathbf{using}\ \mathit{full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-\mathit{and-TRel}(5)} [\mathbf{where}
               SRel = SRel \text{ and } TRel = TRel
       by blast
     moreover assume (T1, T2) \notin TRel
      ultimately show False
       by simp
    qed
    thus trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T P \land S \in S Q\})
       using indRelSTEQ-trans[where SRel=SRel and TRel=TRel]
        unfolding trans-def
     \mathbf{by} blast
  \mathbf{next}
```

```
assume transR: trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\})
   show refl\ SRel\ \land\ trans\ TRel
     unfolding trans-def refl-on-def
   proof auto
     \mathbf{fix} \ S
     from Rel-def have (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \cup \{(P, Q), \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\}
       by (simp add: indRelSTEQ.encR)
     moreover have (TargetTerm ([\![S]\!]), SourceTerm S) \in Rel \cup \{(P, Q). \exists S. [\![S]\!] \in T P \land S \in S Q\}
       bv simp
     ultimately have (SourceTerm\ S,\ SourceTerm\ S) \in Rel
         using transR
         unfolding trans-def
       by blast
     with Rel-def show (S, S) \in SRel
       by simp
   next
     fix TP TQ TR
     assume (TP, TQ) \in TRel
     with Rel-def have (TargetTerm TP, TargetTerm TQ) \in Rel \cup {(P, Q). \exists S. [S] \in T P \land S \in S Q}
       by (simp add: indRelSTEQ.target)
     moreover assume (TQ, TR) \in TRel
     with Rel-def have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel \cup \{(P,\ Q),\ \exists\ S.\ [S] \in T\ P \land S \in S\ Q\}
       by (simp add: indRelSTEQ.target)
     ultimately have (TargetTerm\ TP,\ TargetTerm\ TR) \in Rel
         using transR
         unfolding trans-def
       by blast
     with Rel-def show (TP, TR) \in TRel
       by simp
   qed
  ged
  ultimately show ?thesis
   by blast
qed
lemma (in encoding) fully-abstract-wrt-preorders-impl-source-target-relation-is-trans-B:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     and reflT: refl TRel
     and transT: trans TRel
 shows \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
              \land trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\})
proof -
  define Rel where Rel = (indRelSTEQ\ SRel\ TRel) - \{(P,\ Q),\ \exists\ S.\ [S] \in T\ P \land S \in S\ Q\}
  from fullAbs reflT have reflS: refl SRel
     unfolding refl-on-def
   by auto
  from Rel-def have \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by (simp add: indRelSTEQ.encR[where SRel=SRel and TRel=TRel])
  moreover from Rel-def have SRel = \{(S1, S2), (Source Term S1, Source Term S2) \in Rel\}
  proof auto
   fix S1 S2
   assume (S1, S2) \in SRel
   thus Source Term S1 \sim [\cdot] < SRel, TRel > Source Term S2
     by (simp\ add:\ indRelSTEQ.source[where SRel=SRel\ and TRel=TRel])
  next
   fix S1 S2
   assume SourceTerm\ S1 \sim [\![\cdot]\!] < SRel, TRel > SourceTerm\ S2
```

```
with fullAbs transT reflS show (S1, S2) \in SRel
       using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(1) [where SRel=SRel
            and TRel = TRel
     by blast
 qed
 moreover from Rel-def have TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
 proof auto
   fix T1 T2
   assume (T1, T2) \in TRel
   thus TargetTerm\ T1 \sim [\cdot] < SRel, TRel > TargetTerm\ T2
     by (simp add: indRelSTEQ.target[where SRel=SRel and TRel=TRel])
   fix T1 T2
   assume TargetTerm\ T1 \sim [\![\cdot]\!] < SRel, TRel > TargetTerm\ T2
   with fullAbs\ transT\ reflS\ show\ (T1,\ T2) \in TRel
       using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(5)[where SRel=SRel
            and TRel = TRel
     by blast
 qed
 moreover from Rel-def have Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\} = indRelSTEQ SRel TRel
   by (auto simp add: indRelSTEQ.encL)
 hence trans\ (Rel\ \cup\ \{(P,\ Q).\ \exists\ S.\ [\![S]\!]\in T\ P\ \wedge\ S\in S\ Q\})
     using indRelSTEQ.trans[where SRel=SRel and TRel=TRel]
     unfolding trans-def
   by auto
 ultimately show ?thesis
   by blast
qed
Thus an encoding is fully abstract w.r.t. an equivalence SRel on the source and an equivalence TRel on
the target iff there exists a relation that relates source terms and their literal translations, whose sym
closure is a preorder such that the reduction of this sym closure to source/target terms is SRel/TRel.
lemma (in encoding) fully-abstract-wrt-equivalences-iff-symcl-source-target-relation-is-preorder:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 shows (fully-abstract SRel TRel \land equivalence TRel) =
       (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
             \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in symcl Rel\}
             \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in symcl Rel\}
             \land preorder (symcl Rel))
proof (rule iffI)
 assume fully-abstract SRel TRel \land equivalence TRel
 thus \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel)
             \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in symcl Rel\}
             \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in symcl Rel\}
             \land preorder (symcl Rel)
     \textbf{using} \ fully-abstract-wrt-equivalences-impl-symcl-source-target-relation-is-preorder [\textbf{where}]
           SRel = SRel \text{ and } TRel = TRel
     \mathbf{unfolding}\ \mathit{equiv-def}
   \mathbf{by} blast
next
 assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
             \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in symcl Rel\}
             \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in symcl Rel\}
             \land preorder (symcl Rel)
 from this obtain Rel
              \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   where
     and
              SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in symcl Rel\}
     and A1: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in symcl Rel\}
     and A2: preorder (symcl Rel)
```

```
by blast
  hence A5: fully-abstract SRel TRel
     using source-target-relation-with-trans-symcl-impl-full-abstraction[where Rel=Rel]
     unfolding preorder-on-def
   by blast
  moreover have equivalence TRel
   unfolding trans-def equiv-def sym-def refl-on-def
 proof auto
   \mathbf{fix} \ T
   from A1 A2 show (T, T) \in TRel
       unfolding preorder-on-def refl-on-def
  next
   fix T1 T2
   assume (T1, T2) \in TRel
   with A1 show (T2, T1) \in TRel
     by (auto simp add: symcl-def)
 \mathbf{next}
   fix T1 T2 T3
   assume (T1, T2) \in TRel and (T2, T3) \in TRel
   with A1 A2 show (T1, T3) \in TRel
       unfolding trans-def preorder-on-def
     by blast
  qed
  ultimately show fully-abstract SRel TRel \land equivalence TRel
   by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ fully-abstract-iff-symcl-source-target-relation-is-preorder:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  shows fully-abstract ((symcl\ (SRel^{=}))^{+})\ ((symcl\ (TRel^{=}))^{+}) =
        (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
              \land (symcl\ (SRel^{=}))^{+} = \{(S1, S2).\ (SourceTerm\ S1, SourceTerm\ S2) \in symcl\ Rel\}
              \land (symcl (TRel=))+ = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in symcl Rel}
              \land preorder (symcl Rel))
proof (rule iffI)
  assume fully-abstract ((symcl\ (SRel^{=}))^{+})\ ((symcl\ (TRel^{=}))^{+})
  thus \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel)
              \land (symcl\ (SRel^{=}))^{+} = \{(S1, S2).\ (SourceTerm\ S1, SourceTerm\ S2) \in symcl\ Rel\}
              \land (symcl\ (TRel^{=}))^{+} = \{(T1,\ T2).\ (TargetTerm\ T1,\ TargetTerm\ T2) \in symcl\ Rel\}
              \land preorder (symcl Rel)
     using fully-abstract-impl-symcl-source-target-relation-is-preorder[where SRel=SRel and
            TRel = TRel
   by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
              \land (symcl\ (SRel^{=}))^{+} = \{(S1, S2).\ (SourceTerm\ S1, SourceTerm\ S2) \in symcl\ Rel\}
              \land (symcl\ (TRel^{=}))^{+} = \{(T1,\ T2).\ (TargetTerm\ T1,\ TargetTerm\ T2) \in symcl\ Rel\}
              \land preorder (symcl Rel)
  from this obtain Rel
   where
               \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
              (symcl\ (SRel^{=}))^{+} = \{(S1, S2).\ (SourceTerm\ S1, SourceTerm\ S2) \in symcl\ Rel\}
     and
     and A1: (symcl\ (TRel^{\pm}))^{+} = \{(T1,\ T2).\ (TargetTerm\ T1,\ TargetTerm\ T2) \in symcl\ Rel\}
     and A2: preorder (symcl Rel)
   by blast
  thus fully-abstract ((symcl\ (SRel^{=}))^{+})\ ((symcl\ (TRel^{=}))^{+})
     using source-target-relation-with-trans-symcl-impl-full-abstraction[where Rel=Rel]
     unfolding preorder-on-def
   by blast
qed
```

9.5 Full Abstraction without Relating Translations to their Source Terms

Let Rel be the result of removing from indRelSTEQ all pairs of two source or two target terms that are not contained in SRel or TRel. Then a fully abstract encoding ensures that Rel is trans iff SRel is refl and TRel is trans.

```
lemma (in encoding) full-abstraction-impl-indRelSTEQ-is-trans:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
   and Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes fullAbs: fully-abstract SRel TRel
                   Rel = ((indRelSTEQ SRel TRel))
     and rel:
                  -\{(P, Q). (P \in ProcS \land Q \in ProcS) \lor (P \in ProcT \land Q \in ProcT)\})
                  \cup \{(P, Q). (\exists SP SQ. SP \in SP \land SQ \in SQ \land (SP, SQ) \in SRel)\}
                      \vee (\exists TP \ TQ. \ TP \in T \ P \land TQ \in T \ Q \land (TP, TQ) \in TRel) \}
  shows (refl\ SRel\ \land\ trans\ TRel) = trans\ Rel
   unfolding trans-def
proof auto
  fix P Q R
  assume A1: refl SRel and A2: \forall x \ y. \ (x, \ y) \in TRel \longrightarrow (\forall z. \ (y, \ z) \in TRel \longrightarrow (x, \ z) \in TRel)
    and A3: (P, Q) \in Rel and A4: (Q, R) \in Rel
  from fullAbs rel have A5: \forall SP SQ. (SourceTerm SP, SourceTerm SQ) \in Rel \longrightarrow (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
   by simp
  from rel have A6: \forall TP\ TQ. (TargetTerm TP, TargetTerm TQ) \in Rel \longrightarrow (TP, TQ) \in TRel
   by simp
  have A7: \forall SP\ TQ.\ (Source\ Term\ SP,\ Target\ Term\ TQ) \in Rel \longrightarrow (\llbracket SP \rrbracket,\ TQ) \in TRel
  proof clarify
   fix SP TQ
   assume (SourceTerm SP, TargetTerm TQ) \in Rel
   with rel have Source Term SP \sim \llbracket \cdot \rrbracket < SRel, TRel > Target Term TQ
   with A1 A2 fullAbs show ([SP], TQ) \in TRel
       using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(3) [where
             SRel = SRel \text{ and } TRel = TRel
       unfolding trans-def
     \mathbf{by} blast
  have A8: \forall TP \ SQ. \ (Target Term \ TP, \ Source Term \ SQ) \in Rel \longrightarrow (TP, [SQ]) \in TRel
 proof clarify
   fix TP SQ
   assume (TargetTerm\ TP, SourceTerm\ SQ) \in Rel
   with rel have TargetTerm TP \sim [\cdot] < SRel, TRel > SourceTerm SQ
     by simp
   with A1 A2 fullAbs show (TP, [SQ]) \in TRel
       using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(4) [where
             SRel = SRel \text{ and } TRel = TRel
       unfolding trans-def
     by blast
  qed
  show (P, R) \in Rel
  proof (cases P)
   case (SourceTerm SP)
   assume A9: SP \in SP
   show (P, R) \in Rel
   proof (cases Q)
     case (SourceTerm SQ)
     assume A10: SQ \in SQ
     with A3 A5 A9 have A11: ([SP], [SQ]) \in TRel
       by simp
     show (P, R) \in Rel
     proof (cases R)
```

```
case (Source Term SR)
    assume A12: SR \in SR
    with A4 A5 A10 have ([SQ], [SR]) \in TRel
    with A2 A11 have ([SP], [SR]) \in TRel
      by blast
    with fullAbs have (SP, SR) \in SRel
      by simp
    with rel A9 A12 show (P, R) \in Rel
      by simp
   \mathbf{next}
    case (TargetTerm\ TR)
    assume A12: TR \in T R
    from A9 have P \sim [\![\cdot]\!] < SRel, TRel > TargetTerm ([\![SP]\!])
      by (simp add: indRelSTEQ.encR)
    moreover from A \neq A ? A 10 A 12 have ([SQ], TR) \in TRel
      by simp
    with A2 \ A11 \ \text{have} ([SP], TR) \in TRel
      by blast
    with A12 have TargetTerm ([SP]) \sim [\cdot] < SRel, TRel > R
      by (simp add: indRelSTEQ.target)
    ultimately have P \sim [\cdot] < SRel, TRel > R
      by (rule indRelSTEQ.trans)
    with rel A9 A12 show (P, R) \in Rel
      by simp
   qed
 next
   case (TargetTerm TQ)
   assume A10: TQ \in TQ
   with A3 A7 A9 have A11: ([SP], TQ) \in TRel
    by simp
   show (P, R) \in Rel
   proof (cases R)
    case (SourceTerm SR)
    assume A12: SR \in SR
    with A4 A8 A10 have (TQ, [SR]) \in TRel
      by simp
    with A2 A11 have ([SP], [SR]) \in TRel
      by blast
    with fullAbs have (SP, SR) \in SRel
      by simp
    with rel A9 A12 show (P, R) \in Rel
      by simp
   next
    case (TargetTerm\ TR)
    assume A12: TR \in T R
    from A9 have P \sim [\cdot] < SRel, TRel > TargetTerm ([SP])
      by (simp add: indRelSTEQ.encR)
    moreover from A4 A6 A10 A12 have (TQ, TR) \in TRel
      by simp
    with A2 A11 have ([SP], TR) \in TRel
      by blast
    with A12 have TargetTerm ([SP]) \sim [\cdot] < SRel, TRel > R
      by (simp add: indRelSTEQ.target)
    ultimately have P \sim [\cdot] < SRel, TRel > R
      by (rule indRelSTEQ.trans)
    with A9 \ A12 \ rel \ \mathbf{show} \ (P, R) \in Rel
      by simp
   qed
 qed
\mathbf{next}
```

```
case (TargetTerm TP)
assume A9: TP \in TP
show (P, R) \in Rel
proof (cases Q)
 case (SourceTerm SQ)
 assume A10: SQ \in SQ
 with A3 A8 A9 have A11: (TP, [SQ]) \in TRel
   by simp
 show (P, R) \in Rel
 proof (cases R)
   case (SourceTerm SR)
   assume A12: SR \in SR
   with A4 A5 A10 have ([SQ], [SR]) \in TRel
     by simp
   with A2 A11 have (TP, [SR]) \in TRel
     by blast
   with A9 have P \sim [\![\cdot]\!] < SRel, TRel > TargetTerm ([\![SR]\!])
     by (simp add: indRelSTEQ.target)
   moreover from A12 have TargetTerm ([SR]) \sim [\cdot] < SRel, TRel > R
     by (simp add: indRelSTEQ.encL)
   ultimately have P \sim \llbracket \cdot \rrbracket < SRel, TRel > R
     by (rule indRelSTEQ.trans)
   with rel A9 A12 show (P, R) \in Rel
     by simp
 \mathbf{next}
   \mathbf{case}\ (\mathit{TargetTerm}\ \mathit{TR})
   assume A12: TR \in T R
   with A4 A7 A10 have ([SQ], TR) \in TRel
     by simp
   with A2\ A11\ \text{have}\ (TP,\ TR)\in TRel
     by blast
   with rel A9 A12 show (P, R) \in Rel
     by simp
 qed
next
 case (TargetTerm TQ)
 assume A10: TQ \in TQ
 with A3\ A6\ A9 have A11: (TP, TQ) \in TRel
   by simp
 show (P, R) \in Rel
 proof (cases R)
   case (Source Term SR)
   assume A12: SR \in SR
   with A4 A8 A10 have (TQ, [SR]) \in TRel
     by simp
   with A2 A11 have (TP, [SR]) \in TRel
     by blast
   with A9 have P \sim [\![\cdot]\!] < SRel, TRel > TargetTerm ([\![SR]\!])
     by (simp add: indRelSTEQ.target)
   moreover from A12 have TargetTerm ([SR]) \sim [\cdot] < SRel, TRel > R
     by (simp add: indRelSTEQ.encL)
   ultimately have P \sim [\cdot] < SRel, TRel > R
     by (rule indRelSTEQ.trans)
   with rel A9 A12 show (P, R) \in Rel
     by simp
 \mathbf{next}
   case (TargetTerm\ TR)
   assume A12: TR \in T R
   with A4 A6 A10 have (TQ, TR) \in TRel
     by simp
   with A2 A11 have (TP, TR) \in TRel
```

```
by blast
       with A9 \ A12 \ rel \ \mathbf{show} \ (P, R) \in Rel
         by simp
     qed
   qed
  qed
next
  assume B: \forall x \ y. \ (x, \ y) \in Rel \longrightarrow (\forall z. \ (y, \ z) \in Rel \longrightarrow (x, \ z) \in Rel)
  thus refl SRel
    unfolding refl-on-def
  proof auto
    \mathbf{fix} \ S
    from rel have (SourceTerm S, TargetTerm ([S])) \in Rel
     by (simp add: indRelSTEQ.encR)
   moreover from rel have (TargetTerm ([S]), SourceTerm S) \in Rel
     by (simp add: indRelSTEQ.encL)
    ultimately have (SourceTerm\ S,\ SourceTerm\ S) \in Rel
       using B
     by blast
    with rel show (S, S) \in SRel
     \mathbf{by} \ simp
  qed
next
  \mathbf{fix} TP TQ TR
  assume \forall x \ y. \ (x, \ y) \in Rel \longrightarrow (\forall z. \ (y, \ z) \in Rel \longrightarrow (x, \ z) \in Rel)
  \mathbf{moreover} \ \mathbf{assume} \ (\mathit{TP}, \ \mathit{TQ}) \in \mathit{TRel}
  with rel have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   by simp
  moreover assume (TQ, TR) \in TRel
  with rel have (TargetTerm\ TQ,\ TargetTerm\ TR) \in Rel
  ultimately have (TargetTerm\ TP,\ TargetTerm\ TR) \in Rel
   by blast
  with rel show (TP, TR) \in TRel
    by simp
\mathbf{qed}
```

Whenever an encoding induces a trans relation that includes SRel and TRel and relates source terms to their literal translations in both directions, the encoding is fully abstract w.r.t. SRel and TRel.

```
lemma (in encoding) trans-source-target-relation-impl-fully-abstract:
 fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
   and SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes enc: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
               \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
     and srel: SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
     and trel: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
     and trans: trans Rel
 shows fully-abstract SRel TRel
proof auto
 fix S1 S2
 assume (S1, S2) \in SRel
 with srel have (SourceTerm S1, SourceTerm S2) \in Rel
 with enc trans have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
     unfolding trans-def
   by blast
 with trel show ([S1], [S2]) \in TRel
   by simp
\mathbf{next}
```

```
fix S1 S2
assume ([S1], [S2]) \in TRel
with trel have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
by simp
with enc trans have (SourceTerm S1, SourceTerm S2) \in Rel
unfolding trans-def
by blast
with srel show (S1, S2) \in SRel
by simp
qed
```

Assume TRel is a preorder. Then an encoding is fully abstract w.r.t. SRel and TRel iff there exists a relation that relates add least all source terms to their literal translations, includes SRel and TRel, and whose union with the relation that relates exactly all literal translations to their source terms is trans.

```
lemma (in encoding) source-target-relation-with-trans-impl-full-abstraction:
  fixes Rel :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set
  assumes enc: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
     and trans: trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\})
  shows fully-abstract \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
         \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
proof auto
  fix S1 S2
  define Rel' where Rel' = Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\}
  from Rel'-def have (TargetTerm ([S1]), SourceTerm S1) \in Rel'
  moreover assume (Source Term S1, Source Term S2) \in Rel
  with Rel'-def have (SourceTerm S1, SourceTerm S2) \in Rel'
   by simp
  moreover from enc Rel'-def have (SourceTerm S2, TargetTerm ([S2])) \in Rel'
   by simp
  ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
     using trans Rel'-def
     unfolding trans-def
   by blast
next
  fix S1 S2
  define Rel' where Rel' = Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\}
  from enc Rel'-def have (SourceTerm S1, TargetTerm ([S1])) \in Rel'
   by simp
  moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel
  with Rel'-def have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel'
   bv simp
  moreover from Rel'-def have (TargetTerm ([S2]), SourceTerm S2) \in Rel'
   by simp
  ultimately show (SourceTerm S1, SourceTerm S2) \in Rel
     using trans Rel'-def
     unfolding trans-def
   by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ fully-abstract-wrt-preorders-iff-source-target-relation-is-transB:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes preord: preorder TRel
  shows fully-abstract SRel\ TRel =
       (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
              \land trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T P \land S \in S Q\}))
```

```
proof (rule iffI)
    assume fully-abstract SRel TRel
    with preord show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                              \land \ SRel = \{(S1, \, S2). \ (SourceTerm \ S1, \, SourceTerm \ S2) \in Rel\}
                              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                              \land trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T P \land S \in S Q\})
           \textbf{using} \ \textit{fully-abstract-wrt-preorders-impl-source-target-relation-is-trans} [\textbf{where} \ \textit{SRel} = \textit{SRel} \\ 
                      and TRel = TRel
           unfolding preorder-on-def refl-on-def
       by auto
next
    assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                              \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
                              \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                              \land trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\})
    from this obtain Rel
       where \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
           and SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
           and TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
           and trans (Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\})
       \mathbf{by} blast
    thus fully-abstract SRel TRel
           using source-target-relation-with-trans-impl-full-abstraction[where Rel=Rel]
       by blast
qed
The same holds if to obtain transitivity the union may contain additional pairs that do neither relate
two source nor two target terms.
lemma (in encoding) fully-abstract-wrt-preorders-iff-source-target-relation-union-is-trans:
    fixes SRel :: ('procS \times 'procS) set
       and TRel :: ('procT \times 'procT) set
    shows (fully-abstract SRel TRel \land refl SRel \land trans TRel) =
                 (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                  \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
                  \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                  \land (\exists Rel'. (\forall (P, Q) \in Rel'. P \in ProcS \longleftrightarrow Q \in ProcT)
                        \land trans \ (Rel \cup \{(P, Q). \ \exists S. \ \llbracket S \rrbracket \in T \ P \land S \in S \ Q \} \cup Rel')))
proof (rule iffI, (erule conjE)+)
    assume fully-abstract SRel TRel and refl SRel and trans TRel
    from this obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
                                              and A2: SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
                                              and A3: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                                              and A4: trans (Rel \cup {(P, Q). \exists S. [S] \in T P \land S \in S Q})
           \textbf{using} \ fully-abstract-wrt-preorders-impl-source-target-relation-is-trans[\textbf{where} \ SRel = SRel
                      and TRel = TRel
       by blast
    have \forall (P, Q) \in \{\}. P \in ProcS \longleftrightarrow Q \in ProcT
    moreover from A4 have trans (Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\} \cup \{\})
           unfolding trans-def
    ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                                   \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
                                   \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
                                   \land (\exists Rel'. (\forall (P, Q) \in Rel'. P \in ProcS \longleftrightarrow Q \in ProcT)
                                         \land trans \ (Rel \cup \{(P, Q). \ \exists S. \ \llbracket S \rrbracket \in T \ P \ \land \ S \in S \ Q\} \cup Rel'))
           using A1 A2 A3
       bv blast
next
    assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
```

```
\land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\exists Rel'. (\forall (P, Q) \in Rel'. P \in ProcS \longleftrightarrow Q \in ProcT)
          \land trans (Rel \cup \{(P, Q). \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\} \cup Rel'))
from this obtain Rel Rel'
 where B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   and B2: SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
   and B3: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
   and B4: \forall (P, Q) \in Rel'. P \in ProcS \longleftrightarrow Q \in ProcT
   and B5: trans (Rel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\} \cup Rel')
 by blast
have fully-abstract SRel TRel
proof auto
 fix S1 S2
 have (TargetTerm ([S1]), SourceTerm S1) \in Rel \cup \{(P, Q), \exists S. [S] \in T P \land S \in S Q\} \cup Rel'
   by simp
 moreover assume (S1, S2) \in SRel
 with B2 have (SourceTerm S1, SourceTerm S2) \in Rel \cup \{(P, Q). \exists S. [S] \in T \ P \land S \in S \ Q\} \cup Rel'
   by simp
 moreover from B1
 have (Source\ Term\ S2,\ Target\ Term\ (\llbracket S2 \rrbracket)) \in Rel \cup \{(P,\ Q),\ \exists\ S.\ \llbracket S \rrbracket \in T\ P \land S \in S\ Q\} \cup Rel'
   by simp
 ultimately have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel \cup Rel'
     using B5
     unfolding trans-def
   by blast
 with B3 B4 show ([S1], [S2]) \in TRel
   by blast
next
 fix S1 S2
 from B1
 have (Source\ Term\ S1,\ Target\ Term\ ([S1])) \in Rel \cup \{(P,\ Q),\ \exists\ S.\ [S] \in T\ P \land S \in S\ Q\} \cup Rel'
   by simp
 moreover assume ([S1], [S2]) \in TRel
 have (TargetTerm ([S1]), TargetTerm ([S2])) \in Rel \cup \{(P, Q), \exists S. [S] \in T \ P \land S \in S \ Q\} \cup Rel'
   by simp
 moreover
 have (TargetTerm ([S2]), SourceTerm S2) \in Rel \cup \{(P, Q), \exists S. [S] \in T P \land S \in S Q\} \cup Rel'
 ultimately have (SourceTerm S1, SourceTerm S2) \in Rel \cup Rel'
     using B5
     unfolding trans-def
   by blast
 with B2\ B4 show (S1, S2) \in SRel
   by blast
qed
moreover have refl SRel
 unfolding refl-on-def
proof auto
 \mathbf{fix} \ S
 from B1 have (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \cup \{(P, Q), \exists S, \llbracket S \rrbracket \in T \ P \land S \in S \ Q\} \cup Rel'
   by simp
 moreover
 have (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel \cup \{(P, Q), \exists S. \llbracket S \rrbracket \in T \ P \land S \in S \ Q\} \cup Rel'
 ultimately have (SourceTerm S, SourceTerm S) \in Rel \cup Rel'
     using B5
     unfolding trans-def
   by blast
 with B2\ B4 show (S, S) \in SRel
```

```
by blast
 qed
 moreover have trans TRel
   unfolding trans-def
 proof clarify
   fix TP TQ TR
   assume (TP, TQ) \in TRel and (TQ, TR) \in TRel
   with B3 B4 B5 show (TP, TR) \in TRel
      unfolding trans-def
    by blast
 qed
 ultimately show fully-abstract SRel TRel \land refl SRel \land trans TRel
qed
theory CombinedCriteria
 {\bf imports}\ Divergence Reflection\ Success Sensitiveness\ Full Abstraction\ Operational Correspondence
begin
```

10 Combining Criteria

So far we considered the effect of single criteria on encodings. Often the quality of an encoding is prescribed by a set of different criteria. In the following we analyse the combined effect of criteria. This way we can compare criteria as well as identify side effects that result from combinations of criteria. We start with some technical lemmata. To combine the effect of different criteria we combine the conditions they induce. If their effect can be described by a predicate on the pairs of the relation, as in the case of success sensitiveness or divergence reflection, combining the effects is simple.

```
lemma (in encoding) criterion-iff-source-target-relation-impl-indRelR:
  fixes Cond :: ('procS \Rightarrow 'procT) \Rightarrow bool
   and Pred :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set \Rightarrow bool
  assumes Cond enc = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land Pred Rel)
  shows Cond enc = (\exists Rel'. Pred (indRelR \cup Rel'))
proof (rule iffI)
  assume Cond enc
  with assms obtain Rel where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \text{ and } A2: Pred Rel
  from A1 have Rel = indRelR \cup (Rel - indRelR)
   by (auto simp add: indRelR.simps)
  with A2 have Pred\ (indRelR \cup (Rel - indRelR))
   by simp
  thus \exists Rel'. Pred (indRelR \cup Rel')
   by blast
  assume \exists Rel'. Pred (indRelR \cup Rel')
  from this obtain Rel' where Pred (indRelR \cup Rel')
  moreover have \forall S. (SourceTerm S, TargetTerm ([S])) \in (indRelR \cup Rel')
   by (simp add: indRelR.encR)
  ultimately show Cond enc
     using assms
   by blast
ged
lemma (in encoding) combine-conditions-on-pairs-of-relations:
  fixes RelA RelB :: (('procS, 'procT) Proc \times ('procS, 'procT) Proc) set
   and CondA \ CondB :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes \forall (P, Q) \in RelA. CondA(P, Q)
     and \forall (P, Q) \in RelB. \ CondB \ (P, Q)
```

```
shows (\forall (P, Q) \in RelA \cap RelB. CondA (P, Q)) \land (\forall (P, Q) \in RelA \cap RelB. CondB (P, Q))
      using assms
    by blast
lemma (in encoding) combine-conditions-on-sets-of-relations:
  fixes Rel Rel A :: (('proc S, 'proc T) Proc \times ('proc S, 'proc T) Proc) set
                     :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set \Rightarrow bool
    and Cond
    and CondA
                     :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes \forall (P, Q) \in RelA. CondA(P, Q)
      and Cond Rel \wedge Rel \subseteq RelA
  shows Cond Rel \land (\forall (P, Q) \in Rel. CondA (P, Q))
      using assms
    by blast
lemma (in encoding) combine-conditions-on-sets-and-pairs-of-relations:
  fixes Rel\ RelA\ RelB :: (('procS, 'procT)\ Proc\ \times ('procS, 'procT)\ Proc)\ set
    and Cond
                          :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \ set \Rightarrow bool
    and CondA \ CondB \ :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes \forall (P, Q) \in RelA. \ CondA \ (P, Q)
      and \forall (P, Q) \in RelB. \ CondB \ (P, Q)
      \mathbf{and}\ \mathit{Cond}\ \mathit{Rel} \wedge \mathit{Rel} \subseteq \mathit{RelA} \wedge \mathit{Rel} \subseteq \mathit{RelB}
  shows Cond \ Rel \land (\forall (P, Q) \in Rel. \ CondA \ (P, Q)) \land (\forall (P, Q) \in Rel. \ CondB \ (P, Q))
      using assms
    \mathbf{by} blast
```

We mapped several criteria on conditions on relations that relate at least all source terms and their literal translations. The following lemmata help us to combine such conditions by switching to the witness indRelR.

```
lemma (in encoding) combine-conditions-on-relations-indRelR:
  fixes RelA RelB :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) set
                          :: ((\textit{'procS}, \textit{'procT}) \textit{ Proc} \times (\textit{'procS}, \textit{'procT}) \textit{ Proc}) \textit{ set} \Rightarrow \textit{bool}
    and Cond
    and CondA \ CondB :: (('procS, 'procT) \ Proc \times ('procS, 'procT) \ Proc) \Rightarrow bool
  assumes A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in RelA
      and A2: \forall (P, Q) \in RelA. CondA (P, Q)
      and A3: \forall S. (SourceTerm S, TargetTerm ([S])) \in RelB
      and A4: \forall (P, Q) \in RelB. CondB(P, Q)
  shows \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land (\forall (P, Q) \in Rel. \ CondA \ (P, Q))
          \land (\forall (P, Q) \in Rel. CondB(P, Q))
    and Cond \ indRelR \Longrightarrow (\exists \ Rel. \ (\forall \ S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel)
         \land \ (\forall (P,\ Q) \in Rel.\ CondA\ (P,\ Q)) \ \land \ (\forall (P,\ Q) \in Rel.\ CondB\ (P,\ Q)) \ \land \ Cond\ Rel)
proof
  have A5: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in indRelR
    by (simp add: indRelR.encR)
  moreover have A6: indRelR \subseteq RelA
  proof clarify
    \mathbf{fix} \ P \ Q
    assume (P, Q) \in indRelR
    from this A1 show (P, Q) \in RelA
      by (induct, simp)
  qed
  moreover have A7: indRelR \subseteq RelB
  proof clarify
    \mathbf{fix} \ P \ Q
    assume (P, Q) \in indRelR
    from this A3 show (P, Q) \in RelB
      by (induct, simp)
  qed
  ultimately show \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                    \land \ (\forall \, (P, \, Q) \in \mathit{Rel.} \, \mathit{CondA} \, (P, \, Q)) \, \land \, (\forall \, (P, \, Q) \in \mathit{Rel.} \, \mathit{CondB} \, (P, \, Q))
      using combine-conditions-on-sets-and-pairs-of-relations[where RelA=RelA and RelB=RelB
```

```
and CondA=CondA and CondB=CondB and Rel=indRelR
            and Cond = \lambda R. \ \forall S. \ (Source Term \ S, \ Target Term \ ([S])) \in R] \ A2 \ A4
    by blast
  from A2 A4 A5 A6 A7
  show Cond indRelR \Longrightarrow (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
        \land (\forall (P, Q) \in Rel. \ CondA \ (P, Q)) \land (\forall (P, Q) \in Rel. \ CondB \ (P, Q)) \land Cond \ Rel)
      using combine-conditions-on-sets-and-pairs-of-relations[where RelA=RelA and RelB=RelB
            and CondA=CondA and CondB=CondB and Rel=indRelR
            and Cond = \lambda R. \ \forall S. \ (Source Term \ S, \ Target Term \ ([S])) \in R \land Cond \ R]
    by blast
qed
lemma (in encoding) indRelR-cond-respects-predA-and-reflects-predB:
  fixes PredA \ PredB :: ('procS, 'procT) \ Proc \Rightarrow bool
  shows ((\exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel PredA)
          \land (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel) \land rel-reflects-pred Rel PredB))
         = (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred \ Rel \ PredA
            \land rel-reflects-pred Rel PredB)
proof (rule iffI, erule conjE)
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel PredA
  from this obtain RelA where A1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in RelA
                           and A2: rel-respects-pred RelA PredA
    by blast
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-reflects-pred Rel PredB
  from this obtain RelB where A3: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in RelB
                           and A4: rel-reflects-pred RelB PredB
  from A2 have \forall (P, Q) \in RelA. PredA P \longleftrightarrow PredA Q
    by blast
  moreover from A4 have \forall (P, Q) \in RelB. PredB Q \longrightarrow PredB P
    by blast
  ultimately have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                   \land (\forall (P, Q) \in Rel. \ PredA \ P = PredA \ Q) \land (\forall (P, Q) \in Rel. \ PredB \ Q \longrightarrow PredB \ P)
      using combine-conditions-on-relations-indRelR(1)[where RelA=RelA and RelB=RelB and
            CondA = \lambda(P, Q). PredA \ P \longleftrightarrow PredA \ Q \ and \ CondB = \lambda(P, Q). PredB \ Q \longrightarrow PredB \ P \mid A1 \ A3
    by simp
  thus \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred \ Rel \ PredA
        \land rel-reflects-pred Rel PredB
    by blast
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel PredA
          ∧ rel-reflects-pred Rel PredB
  thus (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel) \land rel-respects-pred Rel PredA) \land
        (\exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel) \land rel-reflects-pred \ Rel \ PredB)
    by blast
qed
```

10.1 Divergence Reflection and Success Sensitiveness

We combine results on divergence reflection and success sensitiveness to analyse their combined effect on an encoding function. An encoding is success sensitive and reflects divergence iff there exists a relation that relates source terms and their literal translations that reflects divergence and respects success.

```
 \begin{array}{l} \textbf{lemma (in } \textit{encoding-wrt-barbs)} \ \textit{WSS-DR-iff-source-target-rel:} \\ \textbf{fixes } \textit{success} :: '\textit{barbs} \\ \textbf{shows (enc-weakly-respects-barb-set } \{\textit{success}\} \land \textit{enc-reflects-divergence}) \\ = (\exists \textit{Rel.} \ (\forall \textit{S. (SourceTerm S, TargetTerm ([\![S]\!])}) \in \textit{Rel}) \\ \land \textit{rel-weakly-respects-barb-set Rel (STCalWB SWB TWB)} \{\textit{success}\} \\ \land \textit{rel-reflects-divergence Rel (STCal Source Target)}) \\ \textbf{proof } - \\ \end{array}
```

```
have \forall Rel. rel-reflects-divergence Rel (STCal Source Target)
       = rel-reflects-pred Rel divergentST
   by (simp add: divergentST-STCal-divergent)
  moreover have \forall Rel. (rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) \{success\}
                = rel\text{-}respects\text{-}pred Rel (\lambda P. P \Downarrow .success))
   by (simp\ add:\ STCalWB-reachesBarbST)
  ultimately show (enc-weakly-respects-barb-set \{success\} \land enc-reflects-divergence\}
   = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
      ∧ rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
      ∧ rel-reflects-divergence Rel (STCal Source Target))
     using success-sensitive-iff-source-target-rel-weakly-respects-success(1)
           divergence-reflection-iff-source-target-rel-reflects-divergence
           indRelR-cond-respects-predA-and-reflects-predB[where]
             PredA = \lambda P. P \Downarrow .success \text{ and } PredB = divergentST
   by simp
qed
lemma (in encoding-wrt-barbs) SS-DR-iff-source-target-rel:
  fixes success :: 'barbs
  shows (enc-respects-barb-set \{success\} \land enc-reflects-divergence)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
           \land rel-reflects-divergence Rel (STCal Source Target))
proof -
  have \forall Rel. rel-reflects-divergence Rel (STCal Source Target)
       = rel-reflects-pred Rel divergentST
   by (simp add: divergentST-STCal-divergent)
  moreover have \forall Rel. (rel-respects-barb-set Rel (STCalWB SWB TWB) \{success\}
                = rel\text{-}respects\text{-}pred Rel (\lambda P. P \downarrow .success))
   by (simp add: STCalWB-hasBarbST)
  ultimately show (enc-respects-barb-set \{success\} \land enc-reflects-divergence\}
   = (\exists Rel. (\forall S. (SourceTerm S. TargetTerm ([S])) \in Rel)
      \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
      \land rel-reflects-divergence Rel (STCal Source Target))
     using success-sensitive-iff-source-target-rel-respects-success(1)
           divergence \hbox{-} reflection \hbox{-} iff\hbox{-} source \hbox{-} target\hbox{-} reflects\hbox{-} divergence
           indRelR\text{-}cond\text{-}respects\text{-}predA\text{-}and\text{-}reflects\text{-}predB[\mathbf{where}]
             PredA = \lambda P. \ P \downarrow .success \ and \ PredB = divergentST
   by simp
qed
```

10.2 Adding Operational Correspondence

The effect of operational correspondence includes conditions (TRel is included, transitivity) that require a witness like indRelRTPO. In order to combine operational correspondence with success sensitiveness, we show that if the encoding and TRel (weakly) respects barbs than indRelRTPO (weakly) respects barbs. Since success is only a specific kind of barbs, the same holds for success sensitiveness.

```
lemma (in encoding\text{-}wrt\text{-}barbs) enc\text{-}and\text{-}TRel\text{-}impl\text{-}indRelRTPO\text{-}weakly\text{-}respects\text{-}success}: fixes success :: 'barbs and TRel :: ('procT \times 'procT) set assumes encRS: enc\text{-}weakly\text{-}respects\text{-}barb\text{-}set \{success\} and trelPS: rel\text{-}weakly\text{-}preserves\text{-}barb\text{-}set TRel TWB \{success\} and trelRS: rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set TRel TWB \{success\} shows rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set (indRelRTPO\ TRel) (STCalWB\ SWB\ TWB) \{success\} proof auto fix PQP' assume P \lesssim [\cdot]RT < TRel > Q and P \longmapsto (Calculus\ (STCalWB\ SWB\ TWB))* P' and P' \downarrow < STCalWB\ SWB\ TWB > success thus Q \downarrow < STCalWB\ SWB\ TWB > success proof (induct\ arbitrary:\ P')
```

```
case (encR S)
  assume SourceTerm S \mapsto (Calculus (STCalWB SWB TWB)) * P' and P' \downarrow < STCalWB SWB TWB > success
   hence S \Downarrow <SWB>success
       using STCalWB-reachesBarbST
     by blast
   with encRS have [S] \Downarrow < TWB > success
     by simp
   thus TargetTerm ([S])\Downarrow < STCalWB SWB TWB > success
       using STCalWB-reachesBarbST
     bv blast
 \mathbf{next}
   case (source S)
  assume SourceTerm\ S \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) *\ P' and P' \downarrow < STCalWB\ SWB\ TWB > success
   thus SourceTerm S \Downarrow < STCalWB SWB TWB > success
     by blast
 next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T1 \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) *\ P'
              and P' \downarrow < STCalWB SWB TWB > success
   hence T1 \Downarrow < TWB > success
       \mathbf{using}\ STCalWB\text{-}reachesBarbST
     by blast
   ultimately have T2 \Downarrow < TWB > success
       using trelPS
     by simp
   thus TargetTerm\ T2 \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     \mathbf{by} blast
 next
   case (trans P Q R)
   assume P \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * P' and P' \downarrow < STCalWB\ SWB\ TWB > success
      and \bigwedge P'. P \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * P' \Longrightarrow P' \downarrow \langle STCalWB\ SWB\ TWB \rangle success
           \implies Q \Downarrow < STCalWB \ SWB \ TWB > success
   hence Q \Downarrow < STCalWB \ SWB \ TWB > success
     \mathbf{by} \ simp
  moreover assume \bigwedge Q'. Q \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * Q' \Longrightarrow Q' \downarrow < STCalWB\ SWB\ TWB > success
                   \implies R \Downarrow < STCalWB \ SWB \ TWB > success
   ultimately show R \Downarrow <STCalWB \ SWB \ TWB>success
     by blast
 qed
next
 fix P Q Q'
 assume P \leq ||\cdot||RT < TRel > Q and Q \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * Q'
    and Q' \downarrow < STCalWB \ SWB \ TWB > success
 thus P \Downarrow < STCalWB \ SWB \ TWB > success
 proof (induct arbitrary: Q')
   case (encR S)
   assume TargetTerm (\llbracket S \rrbracket) \longmapsto (Calculus (STCalWB SWB TWB))* Q'
      and Q' \downarrow < STCalWB \ SWB \ TWB > success
   hence [S] \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
   with encRS have S \Downarrow < SWB > success
   thus SourceTerm S \Downarrow < STCalWB SWB TWB > success
       using STCalWB-reachesBarbST
     by blast
 \mathbf{next}
   case (source S)
  assume SourceTerm\ S \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) *\ Q' and Q' \downarrow < STCalWB\ SWB\ TWB > success
```

```
thus SourceTerm S \Downarrow < STCalWB SWB TWB > success
     bv blast
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T2 \longmapsto (Calculus\ (STCalWB\ SWB\ TWB))*\ Q'
              and Q' \downarrow < STCalWB SWB TWB > success
   hence T2 \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     bv blast
   ultimately have T1 \Downarrow < TWB > success
       using trelRS
     by blast
  thus TargetTerm\ T1 \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
  next
   case (trans P Q R R')
   assume R \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * R' and R' \downarrow < STCalWB\ SWB\ TWB > success
      and \bigwedge R'. R \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * R' \Longrightarrow R' \downarrow < STCalWB\ SWB\ TWB > success
            \Rightarrow Q \Downarrow < STCalWB SWB TWB > success
   hence Q \Downarrow <STCalWB\ SWB\ TWB>success
     by simp
  moreover assume \bigwedge Q'. Q \longmapsto (Calculus (STCalWB SWB TWB)) * Q' \Longrightarrow Q' \downarrow \langle STCalWB SWB TWB \rangle success
                   \implies P \Downarrow < STCalWB \ SWB \ TWB > success
   ultimately show P \Downarrow < STCalWB SWB TWB > success
     by blast
 qed
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ enc\text{-}and\text{-}TRel\text{-}impl\text{-}indRelRTPO\text{-}weakly\text{-}respects\text{-}barbs:}
  fixes TRel :: ('procT \times 'procT) set
 assumes encRS: enc-weakly-respects-barbs
     and trelPS: rel-weakly-preserves-barbs TRel TWB
     and trelRS: rel-weakly-reflects-barbs TRel TWB
 shows rel-weakly-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
proof auto
  fix P Q x P'
  assume P \leq [\![\cdot]\!]RT < TRel > Q and P \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * P'
    and P' \downarrow < STCalWB SWB TWB > x
  thus Q \Downarrow < STCalWB \ SWB \ TWB > x
  proof (induct arbitrary: P')
   case (encR S)
   assume SourceTerm\ S \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) *\ P' and P' \downarrow < STCalWB\ SWB\ TWB > x
   hence S \Downarrow \langle SWB \rangle x
       using STCalWB-reachesBarbST
     by blast
   with encRS have [S] \Downarrow < TWB > x
     by simp
   thus TargetTerm ([S])\Downarrow < STCalWB SWB TWB > x
       using STCalWB-reachesBarbST
     by blast
  \mathbf{next}
   case (source S)
   assume SourceTerm\ S \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) *\ P' and P' \downarrow < STCalWB\ SWB\ TWB > x
   thus SourceTerm S \Downarrow < STCalWB SWB TWB > x
     by blast
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T1 \longmapsto (Calculus\ (STCalWB\ SWB\ TWB))*\ P'
```

```
and P' \downarrow < STCalWB \ SWB \ TWB > x
   hence T1 \Downarrow < TWB > x
       \mathbf{using}\ STCalWB\text{-}reachesBarbST
     by blast
   ultimately have T2 \Downarrow < TWB > x
       using trelPS
     \mathbf{by} \ simp
   thus TargetTerm\ T2 \Downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-reachesBarbST
     bv blast
  next
   case (trans P Q R)
   assume P \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * P' and P' \downarrow < STCalWB\ SWB\ TWB > x
      and \bigwedge P'. P \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * P' \Longrightarrow P' \downarrow < STCalWB\ SWB\ TWB > x
           \implies Q \Downarrow < STCalWB \ SWB \ TWB > x
   hence Q \Downarrow < STCalWB \ SWB \ TWB > x
     by simp
   moreover assume \bigwedge Q'. Q \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * Q' \Longrightarrow Q' \downarrow < STCalWB\ SWB\ TWB > x
                   \implies R \Downarrow < STCalWB \ SWB \ TWB > x
   ultimately show R \Downarrow < STCalWB \ SWB \ TWB > x
     by blast
 qed
next
 fix P Q x Q'
 assume P \leq \llbracket \cdot \rrbracket RT < TRel > Q and Q \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * Q'
    and Q' \downarrow < STCalWB \ SWB \ TWB > x
  thus P \Downarrow < STCalWB \ SWB \ TWB > x
  proof (induct arbitrary: Q')
   case (encR S)
   assume TargetTerm (\llbracket S \rrbracket) \longmapsto (Calculus (STCalWB SWB TWB))* Q'
      and Q' \downarrow < STCalWB \ SWB \ TWB > x
   hence [S] \Downarrow < TWB > x
       using STCalWB-reachesBarbST
     \mathbf{by} blast
   with encRS have S \Downarrow < SWB > x
       by simp
   thus SourceTerm S \Downarrow < STCalWB SWB TWB > x
       using STCalWB-reachesBarbST
     by blast
   case (source S)
   assume SourceTerm S \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * Q' and Q' \downarrow < STCalWB\ SWB\ TWB > x
   thus SourceTerm S \Downarrow < STCalWB SWB TWB > x
     by blast
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   \mathbf{moreover} \ \mathbf{assume} \ \mathit{TargetTerm} \ \mathit{T2} \ \longmapsto \! (\mathit{Calculus} \ (\mathit{STCalWB} \ \mathit{SWB} \ \mathit{TWB})) \ast \ \mathit{Q'}
               and Q' \downarrow < STCalWB SWB TWB > x
   hence T2 \Downarrow < TWB > x
       using STCalWB-reachesBarbST
     by blast
   ultimately have T1 \Downarrow < TWB > x
       using trelRS
     by blast
  thus TargetTerm\ T1 \Downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-reachesBarbST
     \mathbf{by}\ blast
  next
   case (trans P Q R R')
   assume R \longmapsto (Calculus (STCalWB SWB TWB)) * R' and R' \downarrow < STCalWB SWB TWB > x
```

```
and \bigwedge R'. R \longmapsto (Calculus\ (STCalWB\ SWB\ TWB)) * R' \Longrightarrow R' \downarrow \langle STCalWB\ SWB\ TWB \rangle x
           \implies Q \Downarrow < STCalWB \ SWB \ TWB > x
   hence Q \Downarrow <STCalWB\ SWB\ TWB>x
     by simp
   moreover assume \bigwedge Q'. Q \longmapsto (Calculus (STCalWB SWB TWB)) * Q' \Longrightarrow Q' \downarrow < STCalWB SWB TWB > x
                  \implies P \Downarrow < STCalWB \ SWB \ TWB > x
   ultimately show P \Downarrow < STCalWB \ SWB \ TWB > x
     by blast
 aed
qed
lemma (in encoding-wrt-barbs) enc-and-TRel-impl-indRelRTPO-respects-success:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  assumes encRS: enc-respects-barb-set \{success\}
     and trelPS: rel-preserves-barb-set TRel TWB {success}
     and trelRS: rel-reflects-barb-set TRel TWB {success}
 shows rel-respects-barb-set (indRelRTPO TRel) (STCalWB SWB TWB) {success}
proof auto
  \mathbf{fix} \ P \ Q
 assume P \leq \|\cdot\|RT < TRel > Q and P \downarrow < STCalWB SWB TWB > success
  thus Q\downarrow < STCalWB\ SWB\ TWB > success
  proof induct
   case (encR S)
   assume SourceTerm S \downarrow < STCalWB SWB TWB > success
   hence S\downarrow < SWB > success
       using STCalWB-hasBarbST
     by blast
   with encRS have [S] \downarrow < TWB > success
     by simp
   thus TargetTerm ([S])\downarrow < STCalWB SWB TWB > success
       using STCalWB-hasBarbST
     by blast
  next
   case (source S)
   assume SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > success
   thus SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > success
     by simp
 \mathbf{next}
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T1 \downarrow < STCalWB\ SWB\ TWB > success
   hence T1 \downarrow < TWB > success
       using STCalWB-hasBarbST
     by blast
   ultimately have T2\downarrow < TWB > success
       using trelPS
     by simp
   thus TargetTerm\ T2 \downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-hasBarbST
     by blast
  \mathbf{next}
   case (trans P Q R)
   assume P \downarrow < STCalWB SWB TWB > success
      and P \downarrow < STCalWB SWB TWB > success \implies Q \downarrow < STCalWB SWB TWB > success
      and Q\downarrow < STCalWB\ SWB\ TWB>success \implies R\downarrow < STCalWB\ SWB\ TWB>success
   thus R\downarrow < STCalWB\ SWB\ TWB > success
     by simp
  qed
next
 \mathbf{fix} \ P \ Q
```

```
assume P \leq \llbracket \cdot \rrbracket RT < TRel > Q and Q \downarrow < STCalWB SWB TWB > success
  thus P \downarrow < STCalWB SWB TWB > success
  proof induct
   case (encR S)
   assume TargetTerm ([S])\downarrow < STCalWB SWB TWB > success
   hence [S] \downarrow < TWB > success
       using STCalWB-hasBarbST
     by blast
   with encRS have S \downarrow < SWB > success
       by simp
   thus SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > success
       using STCalWB-hasBarbST
     by blast
  \mathbf{next}
   case (source S)
   assume SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > success
   thus SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > success
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T2 \downarrow < STCalWB\ SWB\ TWB > success
   hence T2\downarrow < TWB > success
       using STCalWB-hasBarbST
     by blast
   ultimately have T1 \downarrow < TWB > success
       using trelRS
     by blast
  thus TargetTerm\ T1 \downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-hasBarbST
     by blast
  next
   case (trans P Q R)
   assume R\downarrow < STCalWB\ SWB\ TWB > success
      and R\downarrow < STCalWB\ SWB\ TWB> success \implies Q\downarrow < STCalWB\ SWB\ TWB> success
      and Q \downarrow < STCalWB \ SWB \ TWB > success \implies P \downarrow < STCalWB \ SWB \ TWB > success
   thus P\downarrow <STCalWB\ SWB\ TWB>success
     by simp
 qed
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ enc\text{-}and\text{-}TRel\text{-}impl\text{-}indRelRTPO\text{-}respects\text{-}barbs:}
 fixes TRel :: ('procT \times 'procT) set
 assumes encRS: enc-respects-barbs
     and trelPS: rel-preserves-barbs TRel TWB
     and trelRS: rel-reflects-barbs TRel TWB
 shows rel-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
proof auto
  fix P Q x
  assume P \lesssim \|\cdot\|RT < TRel > Q and P \downarrow < STCalWB\ SWB\ TWB > x
  thus Q \downarrow < STCalWB SWB TWB > x
  proof induct
   case (encR S)
   assume SourceTerm S \downarrow < STCalWB SWB TWB > x
   hence S\downarrow < SWB > x
       using STCalWB-hasBarbST
     by blast
   with encRS have [S]\downarrow < TWB > x
     by simp
   thus TargetTerm ([\![S]\!])\downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-hasBarbST
```

```
by blast
 next
   case (source S)
   assume SourceTerm S \downarrow < STCalWB SWB TWB > x
   thus SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > x
     \mathbf{by} \ simp
  \mathbf{next}
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T1 \downarrow < STCalWB\ SWB\ TWB > x
   hence T1 \downarrow < TWB > x
       using STCalWB-hasBarbST
     by blast
   ultimately have T2\downarrow < TWB > x
       \mathbf{using}\ \mathit{trelPS}
     by simp
   thus TargetTerm\ T2 \downarrow < STCalWB\ SWB\ TWB > x
       \mathbf{using}\ STCalWB\text{-}hasBarbST
     by blast
  next
   case (trans P Q R)
   assume P\downarrow < STCalWB\ SWB\ TWB>x
      and P \downarrow < STCalWB \ SWB \ TWB > x \implies Q \downarrow < STCalWB \ SWB \ TWB > x
      and Q\downarrow < STCalWB SWB TWB>x \implies R\downarrow < STCalWB SWB TWB>x
   thus R\downarrow < STCalWB\ SWB\ TWB>x
     by simp
  qed
next
 \mathbf{fix}\ P\ Q\ x
 assume P \lesssim \|\cdot\|RT < TRel > Q and Q \downarrow < STCalWB\ SWB\ TWB > x
  thus P \downarrow < STCalWB SWB TWB > x
  proof induct
   case (encR S)
   assume TargetTerm ([S])\downarrow < STCalWB SWB TWB > x
   hence [S] \downarrow < TWB > x
       using STCalWB-hasBarbST
     by blast
   with encRS have S\downarrow < SWB > x
       by simp
   thus SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > x
       using STCalWB-hasBarbST
     by blast
  next
   case (source S)
   assume SourceTerm S \downarrow < STCalWB SWB TWB > x
   thus SourceTerm \ S \downarrow < STCalWB \ SWB \ TWB > x
     by simp
 \mathbf{next}
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T2\downarrow < STCalWB\ SWB\ TWB>x
   hence T2 \downarrow < TWB > x
       using STCalWB-hasBarbST
     by blast
   ultimately have T1 \downarrow < TWB > x
       using trelRS
     by blast
  thus TargetTerm\ T1 \downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-hasBarbST
     \mathbf{by} blast
 \mathbf{next}
```

```
case (trans\ P\ Q\ R)

assume R\downarrow < STCalWB\ SWB\ TWB>x

and R\downarrow < STCalWB\ SWB\ TWB>x \implies Q\downarrow < STCalWB\ SWB\ TWB>x

and Q\downarrow < STCalWB\ SWB\ TWB>x

thus P\downarrow < STCalWB\ SWB\ TWB>x

by simp

qed

qed
```

An encoding is success sensitive and operational corresponding w.r.t. a bisimulation TRel that respects success iff there exists a bisimulation that includes TRel and respects success. The same holds if we consider not only success sensitiveness but barb sensitiveness in general.

```
lemma (in encoding-wrt-barbs) OC-SS-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (operational-corresponding (TRel^*)
         \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
         \land enc-weakly-respects-barb-set {success}
         \land rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set TRel TWB \{success\})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
           \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
           \land weak-reduction-bisimulation Rel (STCal Source Target)
           \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def have B2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   by (simp add: indRelRTPO.target)
  from Rel-def have B3: \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel<sup>+</sup>
   by (simp\ add:\ indRelRTPO-to-TRel(4)[where TRel=TRel])
  from Rel-def have B4: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
     using indRelRTPO-to-TRel(2)[where TRel = TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume operational-complete (TRel*)
    and operational-sound (TRel^*)
    and weak-reduction-simulation (TRel^+) Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^+ \land Q \longmapsto Target * Q'
          \longrightarrow (\exists P'. P \longmapsto Target * P' \land (P', Q') \in TRel^+)
  with Rel-def have B5: weak-reduction-bisimulation Rel (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel = TRel]
  from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
           and success=success]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
       \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
       \land weak-reduction-bisimulation Rel (STCal Source Target)
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 by blast
```

```
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         \land weak-reduction-bisimulation Rel (STCal Source Target)
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
  from this obtain Rel where C1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and C2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
  and C3: \forall T1 \ T2. (TargetTerm \ T1, TargetTerm \ T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
  and C_4: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
  and C5: weak-reduction-bisimulation Rel (STCal Source Target)
  and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
   \land weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence operational-corresponding (TRel*)
       \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
     using OC-iff-weak-reduction-bisimulation[where TRel = TRel]
   by auto
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using C1 C6 by blast
  hence enc-weakly-respects-barb-set {success}
     {\bf using} \ success-sensitive\ -iff-source\ -target\ -rel-weakly\ -respects\ -success
   by auto
  moreover have rel-weakly-respects-barb-set TRel TWB {success}
 proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto (Calculus\ TWB)*\ TP' and TP' \downarrow < TWB > success
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TQ \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
  next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
    ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TP \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
```

```
ultimately show operational-corresponding (TRel*)
  \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
  \land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
   by fast
qed
lemma (in encoding-wrt-barbs) OC-SS-RB-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (operational-corresponding (TRel^*)
         \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
         \land enc-weakly-respects-barbs \land enc-weakly-respects-barb-set {success}
         \land rel-weakly-respects-barbs TRel TWB \land rel-weakly-respects-barb-set TRel TWB {success})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
           \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
           \land \ weak\text{-}reduction\text{-}bisimulation \ Rel \ (STCal \ Source \ Target)
           ∧ rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
           \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: rel-weakly-preserves-barbs TRel TWB and A6: rel-weakly-reflects-barbs TRel TWB
    and A7: enc-weakly-preserves-barbs and A8: enc-weakly-reflects-barbs
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def have B2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   by (simp add: indRelRTPO.target)
  from Rel-def have B3: \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel<sup>+</sup>
   by (simp\ add:\ indRelRTPO-to-TRel(4)[where TRel=TRel])
  from Rel-def have B4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
     using indRelRTPO-to-TRel(2)[where TRel = TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume operational-complete (TRel*)
    and operational-sound (TRel*)
    and weak-reduction-simulation (TRel<sup>+</sup>) Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel^+ \land Q \longmapsto Target* \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target* \ P' \land (P', \ Q') \in TRel^+)
  with Rel-def have B5: weak-reduction-bisimulation Rel (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel = TRel]
  from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
           and success=success]
   by blast
  from Rel-def A5 A6 A7 A8 have B7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-barbs[where TRel=TRel]
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
       \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
       \land weak-reduction-bisimulation Rel (STCal Source Target)
       \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
```

```
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         \land weak-reduction-bisimulation Rel (STCal Source Target)
         ∧ rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
  from this obtain Rel where C: (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         ∧ weak-reduction-bisimulation Rel (STCal Source Target)
         ∧ rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by auto
  hence C1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by simp
  from C have C2: \forall T1 \ T2. \ (T1, T2) \in TRel \longrightarrow (TargetTerm \ T1, TargetTerm \ T2) \in Rel
   by simp
  from C have C3: \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel^+
   by simp
  from C have C_4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow ([S], \ T) \in TRel^*
  from C have C5: weak-reduction-bisimulation Rel (STCal Source Target)
   by simp
  from C have C7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
   apply (rule\ conjE) apply (erule\ conjE)+ by blast
  from C have C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule conjE) apply (erule conjE)+ by blast
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
  \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
   \land weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence operational-corresponding (TRel^*)
       \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
     using OC-iff-weak-reduction-bisimulation[where TRel = TRel]
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using C1 C6 by blast
  hence enc-weakly-respects-barb-set {success}
     {\bf using} \ success-sensitive-iff\text{-}source\text{-}target\text{-}rel\text{-}weakly\text{-}respects\text{-}success
   by auto
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
                \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
   apply (rule exI) using C1 C7 by blast
  hence enc-weakly-respects-barbs
     using enc-weakly-respects-barbs-iff-source-target-rel
   by auto
  moreover have rel-weakly-respects-barb-set TRel TWB {success}
  proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto (Calculus\ TWB) * TP' and TP' \downarrow < TWB > success
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
```

```
by blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
      using C6
     by blast
   thus TQ \Downarrow < TWB > success
      using STCalWB-reachesBarbST
     by blast
 next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
      using STCalWB-reachesBarbST
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
      using C6
     by blast
   thus TP \Downarrow < TWB > success
      using STCalWB-reachesBarbST
     \mathbf{by} blast
 qed
 moreover have rel-weakly-respects-barbs TRel TWB
 proof auto
   fix TP TQ x TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto (Calculus \ TWB) * TP' and TP' \downarrow < TWB > x
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > x
      using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > x
      using C7
     by blast
   thus TQ \Downarrow < TWB > x
      using STCalWB-reachesBarbST
     by blast
   fix TP TQ x TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > x
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > x
      using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > x
      using C7
     by blast
   thus TP \Downarrow < TWB > x
      using STCalWB-reachesBarbST
     by blast
 ultimately show operational-corresponding (TRel*)
  \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
  \land enc-weakly-respects-barbs \land enc-weakly-respects-barb-set {success}
  \land rel-weakly-respects-barbs TRel TWB \land rel-weakly-respects-barb-set TRel TWB \{success\}
   by fast
qed
```

```
lemma (in encoding-wrt-barbs) OC-SS-wrt-preorder-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (operational-corresponding TRel \wedge preorder TRel \wedge weak-reduction-bisimulation TRel Target
         \land enc-weakly-respects-barb-set {success}
         \land rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set TRel TWB \{success\})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
           \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
           \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: preorder TRel
  from A5 have A6: TRel^+ = TRel
     using trancl-id[of TRel] preorder-on-def
   by blast
  from A5 have A7: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding refl-on-def preorder-on-def
   by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A6 have B2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A7 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume operational-complete TRel and operational-sound TRel
    and weak-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in \mathit{TRel} \ \land \ Q \longmapsto \mathit{Target} \ast \ Q' \longrightarrow (\exists P'. \ P \longmapsto \mathit{Target} \ast \ P' \ \land \ (P', \ Q') \in \mathit{TRel})
  with Rel-def A6 A7 have B4: weak-reduction-bisimulation Rel (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel=TRel]
   by simp
  from Rel-def A5 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel=TRel]
     unfolding preorder-on-def
   by blast
  from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
           and success=success]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
```

```
from this obtain Rel where C1: (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  and C2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
  and C4: weak-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
  and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  \land (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel})
  \land (\forall S \ T. \ (Source\ Term\ S,\ Target\ Term\ T) \in Rel \longrightarrow (\llbracket S \rrbracket,\ T) \in TRel) \land preorder\ Rel
  \land weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence operational-corresponding TRel \wedge preorder TRel \wedge weak-reduction-bisimulation TRel Target
     using OC-wrt-preorder-iff-weak-reduction-bisimulation [where TRel = TRel]
   by simp
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
              \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using C1 C6 by blast
  hence enc-weakly-respects-barb-set {success}
     {f using}\ success-sensitive-iff-source-target-rel-weakly-respects-success
   by simp
  moreover have rel-weakly-respects-barb-set TRel TWB {success}
  proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TP \longmapsto (Calculus\ TWB) * TP' and TP' \downarrow < TWB > success
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TQ \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
  next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     \mathbf{by} blast
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
      using C6
     by blast
   thus TP \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
  qed
  ultimately show operational-corresponding TRel \wedge preorder \ TRel
  \land weak-reduction-bisimulation TRel Target
  \land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
   by fast
qed
lemma (in encoding-wrt-barbs) OC-SS-RB-wrt-preorder-iff-source-target-rel:
 \mathbf{fixes}\ \mathit{success} :: \ 'barbs
   and TRel :: ('procT \times 'procT) set
```

```
shows (operational-corresponding TRel \wedge preorder TRel \wedge weak-reduction-bisimulation TRel Target
         \land enc-weakly-respects-barbs \land rel-weakly-respects-barbs TRel TWB
        \land enc-weakly-respects-barb-set {success}
        \land rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set TRel TWB \{success\})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
          ∧ rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
          \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
 assume A1: rel-weakly-preserves-barbs TRel TWB and A2: rel-weakly-reflects-barbs TRel TWB
    and A3: enc-weakly-preserves-barbs and A4: enc-weakly-reflects-barbs
    and A5: preorder TRel
 from A5 have A6: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   \mathbf{by} blast
 from A5 have A7: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding preorder-on-def refl-on-def
   by auto
 define Rel where Rel = indRelRTPO TRel
 hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
 from Rel-def A6 have B2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
 from Rel-def A7 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel = TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
 assume operational-complete TRel and operational-sound TRel
    and weak-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel \land Q \longmapsto Target* \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target* \ P' \land (P', \ Q') \in TRel)
 with Rel-def A6 A7 have B4: weak-reduction-bisimulation Rel (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel=TRel]
   by simp
 from Rel-def A5 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel=TRel]
     unfolding preorder-on-def
 from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-barbs[where TRel=TRel]
   by blast
 hence B7: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by blast
 show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
      \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
       \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
 assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
        \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
        \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
        \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
        ∧ rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
        \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
```

```
from this obtain Rel where C1: (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
and C2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
and C3: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
and C4: weak-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
 by auto
from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
\land (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel})
\land (\forall S \ T. \ (Source\ Term\ S,\ Target\ Term\ T) \in Rel \longrightarrow (\llbracket S \rrbracket,\ T) \in TRel) \land preorder\ Rel
\land weak-reduction-bisimulation Rel (STCal Source Target)
 by blast
hence operational-corresponding TRel \wedge preorder TRel \wedge weak-reduction-bisimulation TRel Target
   using OC-wrt-preorder-iff-weak-reduction-bisimulation [where TRel = TRel]
moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
            \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
 apply (rule exI) using C1 C6 by blast
{f hence}\ enc	encweakly	encsets-barbs
   using enc-weakly-respects-barbs-iff-source-target-rel
 by simp
moreover hence enc-weakly-respects-barb-set {success}
 by simp
moreover have rel-weakly-respects-barbs TRel TWB
proof auto
 fix TP TQ x TP'
 assume (TP, TQ) \in TRel
 with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   by simp
 moreover assume TP \longmapsto (Calculus \ TWB) * TP' and TP' \downarrow < TWB > x
 hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > x
     using STCalWB-reachesBarbST
   by blast
 ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > x
     using C6
   by blast
 thus TQ \Downarrow < TWB > x
    using STCalWB-reachesBarbST
   by blast
next
 fix TP TQ x TQ'
 assume (TP, TQ) \in TRel
 with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   by simp
 moreover assume TQ \longmapsto (Calculus \ TWB) * TQ' and TQ' \downarrow < TWB > x
 hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > x
     using STCalWB-reachesBarbST
   by blast
 ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > x
     using C6
   by blast
 thus TP \Downarrow < TWB > x
     using STCalWB-reachesBarbST
   \mathbf{by} blast
qed
moreover hence rel-weakly-respects-barb-set TRel TWB {success}
 by blast
ultimately show operational-corresponding TRel \wedge preorder \ TRel
\land weak-reduction-bisimulation TRel Target
\land enc-weakly-respects-barbs \land rel-weakly-respects-barbs TRel TWB
\land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
 by fast
```

qed

An encoding is success sensitive and weakly operational corresponding w.r.t. a correspondence simulation TRel that respects success iff there exists a correspondence simulation that includes TRel and respects success. The same holds if we consider not only success sensitiveness but barb sensitiveness in general.

```
lemma (in encoding-wrt-barbs) WOC-SS-wrt-preorder-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (weakly-operational-corresponding TRel \wedge preorder \ TRel
         \land weak-reduction-correspondence-simulation TRel Target
         \land enc-weakly-respects-barb-set {success}
         \land rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set TRel TWB \{success\})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
          \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: preorder TRel
  from A5 have A6: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  from A5 A6 have A7: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding preorder-on-def refl-on-def
   by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A6 have B2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A7 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel = TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume operational-complete TRel and weakly-operational-sound TRel
    and weak-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. (P, \ Q) \in TRel \land Q \longmapsto Target* Q'
         \longrightarrow (\exists P'' \ Q''. \ P \longmapsto Target* \ P'' \land Q' \longmapsto Target* \ Q'' \land (P'', Q'') \in TRel)
  with Rel-def A6 A7 have B4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
     \textbf{using} \ \textit{WOC-iff-indRelRTPO-is-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
   by simp
  from Rel-def A5 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel = TRel]
     unfolding preorder-on-def
   by blast
  from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
          and success=success]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
```

```
\land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 by blast
next
 assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
        \land TRel = \{ (T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel \}
        \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
        \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
        ∧ rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
 from this obtain Rel where C1: (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  and C2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
  and C4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
  and C5: preorder Rel and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by auto
 from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
  \land (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel})
  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel) \land preorder \ Rel
  \land weak-reduction-correspondence-simulation Rel (STCal Source Target)
   by blast
 hence weakly-operational-corresponding TRel \wedge preorder TRel
        \land weak-reduction-correspondence-simulation TRel Target
     using WOC-wrt-preorder-iff-reduction-correspondence-simulation [where TRel = TRel]
   by simp
 moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
               \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using C1 C6 by blast
 hence enc-weakly-respects-barb-set {success}
     {\bf using} \ success-sensitive\ -iff-source\ -target\ -rel\ -weakly\ -respects\ -success
   by simp
 moreover have rel-weakly-respects-barb-set TRel TWB {success}
 proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto (Calculus\ TWB)*\ TP' and TP' \downarrow < TWB > success
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
      using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
      using C6
     by blast
   thus TQ \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
 next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
      using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TP \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
```

```
ultimately show weakly-operational-corresponding TRel \land preorder \ TRel
  \land weak-reduction-correspondence-simulation TRel Target
  \land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
   by fast
qed
lemma (in encoding-wrt-barbs) WOC-SS-RB-wrt-preorder-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (weakly-operational-corresponding TRel \wedge preorder \ TRel
        \land weak-reduction-correspondence-simulation TRel Target
        \land enc-weakly-respects-barbs \land enc-weakly-respects-barb-set {success}
        \land rel-weakly-respects-barbs TRel TWB \land rel-weakly-respects-barb-set TRel TWB \{success\})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land \ weak\text{-}reduction\text{-}correspondence\text{-}simulation\ Rel\ (STCal\ Source\ Target)\ \land\ preorder\ Rel
          ∧ rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
           \land rel\text{-}weakly\text{-}respects\text{-}barb\text{-}set Rel (STCalWB SWB TWB) \{success\})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: preorder TRel
    and A1': rel-weakly-preserves-barbs TRel TWB and A2': rel-weakly-reflects-barbs TRel TWB
    and A3': enc-weakly-preserves-barbs and A4': enc-weakly-reflects-barbs
  from A5 have A6: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   bv blast
  from A5 A6 have A7: TRel^* = TRel
     \mathbf{using}\ \mathit{reflcl-trancl}[\mathit{of}\ \mathit{TRel}]\ \mathit{trancl-id}[\mathit{of}\ \mathit{TRel}]
     unfolding preorder-on-def refl-on-def
   by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A6 have B2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A7 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume operational-complete TRel and weakly-operational-sound TRel
    and weak-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel \land Q \longmapsto Target* \ Q'
          \rightarrow (\exists P'' \ Q''. \ P \longmapsto Target* \ P'' \land \ Q' \longmapsto Target* \ Q'' \land (P'', \ Q'') \in TRel)
  with Rel-def A6 A7 have B4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
     \textbf{using} \ \textit{WOC-iff-indRelRTPO-is-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
   bv simp
  from Rel-def A5 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel=TRel]
     unfolding preorder-on-def
  from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
          and success=success]
   by blast
```

```
from Rel-def A1' A2' A3' A4' have B7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-barbs[where TRel=TRel]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
       \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
         \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
  from this obtain Rel where C1: (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
  and C2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: (\forall S \ T. (SourceTerm \ S, TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
  and C4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
  and C5: preorder Rel and C7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  \land (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel})
  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel) \land preorder \ Rel
   \land weak-reduction-correspondence-simulation Rel (STCal Source Target)
   by blast
  hence weakly-operational-corresponding TRel \wedge preorder \ TRel
        \land weak-reduction-correspondence-simulation TRel Target
     using WOC-wrt-preorder-iff-reduction-correspondence-simulation [where TRel = TRel]
   bv simp
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
               \land rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
   apply (rule exI) using C1 C7 by blast
  hence D1: enc-weakly-respects-barbs
     \mathbf{using}\ enc\ weakly\ respects\ barbs\ iff\ source\ target\ rel
   by simp
  moreover from D1 have enc-weakly-respects-barb-set {success}
   by simp
  moreover have D2: rel-weakly-respects-barbs TRel TWB
  proof auto
   fix TP TQ x TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto (Calculus\ TWB) * TP' and TP' \downarrow < TWB > x
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > x
       \mathbf{using}\ STCalWB\text{-}reachesBarbST
     by blast
    ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > x
       using C7
     by blast
   thus TQ \Downarrow < TWB > x
       \mathbf{using}\ STCalWB\text{-}reachesBarbST
     by blast
  next
   fix TP TQ x TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
```

```
moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > x
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > x
      using C7
     by blast
   thus TP \Downarrow < TWB > x
      \mathbf{using}\ STCalWB\text{-}reachesBarbST
     by blast
 qed
 moreover from D2 have rel-weakly-respects-barb-set TRel TWB {success}
 ultimately show weakly-operational-corresponding TRel \wedge preorder \ TRel
  \land \ weak\text{-}reduction\text{-}correspondence\text{-}simulation\ TRel\ Target
  \land enc-weakly-respects-barbs \land enc-weakly-respects-barb-set {success}
  \land rel-weakly-respects-barbs TRel TWB \land rel-weakly-respects-barb-set TRel TWB \{success\}
   by fast
qed
```

An encoding is strongly success sensitive and strongly operational corresponding w.r.t. a strong bisimulation TRel that strongly respects success iff there exists a strong bisimulation that includes TRel and strongly respects success. The same holds if we consider not only strong success sensitiveness but strong barb sensitiveness in general.

```
\mathbf{lemma} \ (\mathbf{in} \ encoding\text{-}wrt\text{-}barbs) \ SOC\text{-}SS\text{-}wrt\text{-}preorder\text{-}iff\text{-}source\text{-}target\text{-}rel:}
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (strongly-operational-corresponding TRel \wedge preorder TRel
         \land \ strong\text{-}reduction\text{-}bisimulation \ TRel \ Target
         \land enc-respects-barb-set {success} \land rel-respects-barb-set TRel TWB {success})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
           \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
           \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
           \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-preserves-barb-set TRel TWB {success}
    and A2: rel-reflects-barb-set TRel TWB {success}
    and A3: enc-preserves-barb-set {success} and A4: enc-reflects-barb-set {success}
    and A5: preorder TRel
  from A5 have A6: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  from A5 A6 have A7: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding preorder-on-def refl-on-def
   by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A6 have B2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A7 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel = TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
  assume strongly-operational-complete TRel and strongly-operational-sound TRel
    and strong-reduction-simulation TRel Target
```

```
and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel \land Q \longmapsto Target \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target \ P' \land (P', \ Q') \in TRel)
  with Rel-def A6 A7 have B4: strong-reduction-bisimulation Rel (STCal Source Target)
     using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]
   by simp
  from Rel-def A5 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel = TRel]
     unfolding preorder-on-def
   by blast
  from Rel-def A1 A2 A3 A4 have B6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
     \textbf{using} \ \textit{enc-and-TRel-impl-indRelRTPO-respects-success} [\textbf{where} \ \textit{TRel} = \textit{TRel} \ \textbf{and} \ \textit{success} = \textit{success}]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
       \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
         \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
  from this obtain Rel where C1: (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  and C2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
  and C4: strong-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
  and C6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  \land (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel})
  \land (\forall S \ T. \ (Source\ Term\ S,\ Target\ Term\ T) \in Rel \longrightarrow (\llbracket S \rrbracket,\ T) \in TRel) \land preorder\ Rel
   \land strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence strongly-operational-corresponding TRel \wedge preorder TRel
        \land strong-reduction-bisimulation TRel Target
     \textbf{using} \ SOC\text{-}wrt\text{-}preorder\text{-}iff\text{-}strong\text{-}reduction\text{-}bisimulation} [\textbf{where} \ TRel = TRel]
   by simp
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using C1 C6 by blast
  hence enc-respects-barb-set {success}
     using success-sensitive-iff-source-target-rel-respects-success
   by simp
  moreover have rel-respects-barb-set TRel TWB {success}
  proof auto
   \mathbf{fix} \ TP \ TQ
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TP \downarrow < TWB > success
   hence TargetTerm\ TP \downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-hasBarbST
     by blast
    ultimately have TargetTerm\ TQ \downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TQ\downarrow < TWB > success
       using STCalWB-hasBarbST
     \mathbf{by} blast
  \mathbf{next}
```

```
\mathbf{fix} \ TP \ TQ
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ\downarrow < TWB > success
   hence TargetTerm\ TQ\downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-hasBarbST
     by blast
   ultimately have TargetTerm\ TP \downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TP \downarrow < TWB > success
       using STCalWB-hasBarbST
     \mathbf{by} blast
  qed
  ultimately show strongly-operational-corresponding TRel \land preorder\ TRel
  \land strong-reduction-bisimulation TRel Target
  \land\ enc\text{-}respects\text{-}barb\text{-}set\ \{success\}\ \land\ rel\text{-}respects\text{-}barb\text{-}set\ TRel\ TWB\ \{success\}
   by fast
qed
lemma (in encoding-wrt-barbs) SOC-SS-RB-wrt-preorder-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel :: ('procT \times 'procT) set
  shows (strongly-operational-corresponding TRel \land preorder TRel
         \land strong-reduction-bisimulation TRel Target
         \land\ enc\text{-}respects\text{-}barbs\ \land\ rel\text{-}respects\text{-}barbs\ TRel\ TWB
         \land enc-respects-barb-set {success} \land rel-respects-barb-set TRel TWB {success})
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
          ∧ rel-respects-barbs Rel (STCalWB SWB TWB)
          \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
  assume A1: rel-preserves-barbs TRel TWB and A2: rel-reflects-barbs TRel TWB
    and A3: enc-preserves-barbs and A4: enc-reflects-barbs
    and A5: preorder TRel
  from A5 have A6: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   \mathbf{by} blast
  from A5 have A7: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding preorder-on-def refl-on-def
   by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A6 have B2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A7 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume strongly-operational-complete TRel and strongly-operational-sound TRel
    and strong-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel \land Q \longmapsto Target \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target \ P' \land (P', \ Q') \in TRel)
  with Rel-def A6 A7 have B4: strong-reduction-bisimulation Rel (STCal Source Target)
     using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]
```

```
by simp
  from Rel-def A5 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel = TRel]
     unfolding preorder-on-def
   by blast
  from Rel-def A1 A2 A3 A4 have B6: rel-respects-barbs Rel (STCalWB SWB TWB)
     using enc-and-TRel-impl-indRelRTPO-respects-barbs[where TRel=TRel]
  hence B7: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
       \land rel-respects-barbs Rel (STCalWB SWB TWB)
       \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
   apply (rule exI) using B1 B2 B3 B4 B5 B6 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
         ∧ rel-respects-barbs Rel (STCalWB SWB TWB)
         \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
  from this obtain Rel where C1: (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
  and C2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
  and C4: strong-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
  and C6: rel-respects-barbs Rel (STCalWB SWB TWB)
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
  \land (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel})
   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel) \land preorder \ Rel
   \land strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence strongly-operational-corresponding TRel \wedge preorder TRel
        \land strong-reduction-bisimulation TRel Target
     using SOC-wrt-preorder-iff-strong-reduction-bisimulation [where TRel = TRel]
   by simp
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
               ∧ rel-respects-barbs Rel (STCalWB SWB TWB)
   apply (rule exI) using C1 C6 by blast
  hence enc-respects-barbs
     using enc-respects-barbs-iff-source-target-rel
   by simp
  moreover hence enc-respects-barb-set {success}
   by simp
  moreover have rel-respects-barbs TRel TWB
  proof auto
   fix TP TQ x
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TP \downarrow < TWB > x
   hence TargetTerm\ TP \downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-hasBarbST
   ultimately have TargetTerm\ TQ \downarrow < STCalWB\ SWB\ TWB > x
       using C6
     \mathbf{by} blast
   thus TQ\downarrow < TWB > x
```

```
using STCalWB-hasBarbST
     bv blast
  next
   fix TP TQ x
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TQ\downarrow < TWB > x
   hence TargetTerm\ TQ \downarrow < STCalWB\ SWB\ TWB > x
       using STCalWB-hasBarbST
     by blast
   ultimately have TargetTerm\ TP \downarrow < STCalWB\ SWB\ TWB > x
       using C6
     by blast
   thus TP \downarrow < TWB > x
       using STCalWB-hasBarbST
     by blast
  qed
  moreover hence rel-respects-barb-set TRel TWB {success}
  ultimately show strongly-operational-corresponding TRel \wedge preorder \ TRel
  \land strong-reduction-bisimulation TRel Target
  \land\ enc\text{-}respects\text{-}barbs\ \land\ rel\text{-}respects\text{-}barbs\ TRel\ TWB
  \land enc-respects-barb-set {success} \land rel-respects-barb-set TRel TWB {success}
   by fast
qed
Next we also add divergence reflection to operational correspondence and success sensitiveness.
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ enc\text{-}and\text{-}TRelimpl\text{-}indRelRTPO\text{-}reflect\text{-}divergence} :
  fixes TRel :: ('procT \times 'procT) set
  assumes encRD: enc-reflects-divergence
     and trelRD: rel-reflects-divergence TRel Target
 shows rel-reflects-divergence (indRelRTPO TRel) (STCal Source Target)
proof auto
  \mathbf{fix} \ P \ Q
  assume P \lesssim \llbracket \cdot \rrbracket RT < TRel > Q and Q \longmapsto (STCal\ Source\ Target)\omega
  thus P \longmapsto (STCal\ Source\ Target)\omega
  proof induct
   case (encR S)
   assume TargetTerm ([S]) \longmapsto (STCal\ Source\ Target)\omega
   hence [S] \longmapsto (Target)\omega
     by (simp\ add:\ STCal\text{-}divergent(2))
   with encRD have S \longmapsto (Source)\omega
   thus SourceTerm\ S \longmapsto (STCal\ Source\ Target)\omega
     by (simp \ add: STCal-divergent(1))
  next
   case (source S)
   assume SourceTerm\ S \longmapsto (STCal\ Source\ Target)\omega
   thus Source Term \ S \longmapsto (STCal \ Source \ Target)\omega
     by simp
  next
   case (target T1 T2)
   assume (T1, T2) \in TRel
   moreover assume TargetTerm\ T2 \longmapsto (STCal\ Source\ Target)\omega
   hence T2 \longmapsto (Target)\omega
     by (simp \ add: STCal-divergent(2))
   ultimately have T1 \longmapsto (Target)\omega
       using trelRD
     by blast
   thus TargetTerm\ T1 \longmapsto (STCal\ Source\ Target)\omega
```

```
by (simp\ add:\ STCal\text{-}divergent(2))
 next
   case (trans P Q R)
   assume R \longmapsto (STCal\ Source\ Target)\omega
      and R \longmapsto (STCal\ Source\ Target)\omega \Longrightarrow Q \longmapsto (STCal\ Source\ Target)\omega
      and Q \longmapsto (STCal\ Source\ Target)\omega \Longrightarrow P \longmapsto (STCal\ Source\ Target)\omega
   thus P \longmapsto (STCal\ Source\ Target)\omega
     by simp
 aed
qed
lemma (in encoding-wrt-barbs) OC-SS-DR-iff-source-target-rel:
 fixes success :: 'barbs
                :: ('procT \times 'procT) \ set
   and TRel
 shows (operational-corresponding (TRel^*)
         \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
         \land enc-weakly-respects-barb-set {success}
         \land rel-weakly-respects-barb-set TRel TWB {success}
         \land enc-reflects-divergence \land rel-reflects-divergence TRel Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
           \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
           \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
           \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
           ∧ weak-reduction-bisimulation Rel (STCal Source Target)
           \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
           \land rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
 assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
 define Rel where Rel = indRelRTPO TRel
 hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
 from Rel-def have B2: \forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel
   by (simp add: indRelRTPO.target)
 from Rel-def have B3: \forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+
   by (simp\ add:\ indRelRTPO-to-TRel(4)[where TRel=TRel])
 from Rel-def have B4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
 assume operational-complete (TRel^*)
    and operational-sound (TRel*)
    and weak-reduction-simulation (TRel^+) Target
    and \forall P \ Q \ Q' \ (P, \ Q) \in TRel^+ \land Q \longmapsto Target \ast Q'
           \rightarrow (\exists P'. P \longmapsto Target * P' \land (P', Q') \in TRel^+)
 with Rel-def have B5: weak-reduction-bisimulation Rel (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel = TRel]
 from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
           and success=success]
 from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
     using enc-and-TRelimpl-indRelRTPO-reflect-divergence [where TRel = TRel]
   by blast
 show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
       \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
```

```
\land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
       ∧ weak-reduction-bisimulation Rel (STCal Source Target)
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
       \land rel-reflects-divergence Rel (STCal Source Target)
   apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
         \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
         \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
         ∧ weak-reduction-bisimulation Rel (STCal Source Target)
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
         \land rel-reflects-divergence Rel (STCal Source Target)
  from this obtain Rel where C1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and C2: \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
  and C3: \forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
  and C_4: \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
  and C5: weak-reduction-bisimulation Rel (STCal Source Target)
  and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
  and C7: rel-reflects-divergence Rel (STCal Source Target)
   bv auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
  \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
  \land (\forall T1 \ T2. \ (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+)
  \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
   \land weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence operational-corresponding (TRel^*)
       \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
     using OC-iff-weak-reduction-bisimulation[where TRel = TRel]
   by auto
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
                \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
                \land rel-reflects-divergence Rel (STCal Source Target)
   apply (rule exI) using C1 C6 C7 by blast
  hence enc-weakly-respects-barb-set \{success\} \land enc-reflects-divergence
     using WSS-DR-iff-source-target-rel
   by auto
  moreover have rel-weakly-respects-barb-set TRel TWB {success}
  proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \longmapsto (Calculus\ TWB)*\ TP' and TP' \downarrow < TWB > success
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
    ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TQ \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
  next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
```

```
using STCalWB-reachesBarbST
     bv blast
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TP \Downarrow < TWB > success
      using STCalWB-reachesBarbST
 qed
 moreover from C2 C7 have rel-reflects-divergence TRel Target
     using STCal-divergent(2)
 ultimately show operational-corresponding (TRel*)
  \land weak-reduction-bisimulation (TRel<sup>+</sup>) Target
  \land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
  \land enc-reflects-divergence \land rel-reflects-divergence TRel Target
   by fast
qed
lemma (in encoding-wrt-barbs) WOC-SS-DR-wrt-preorder-iff-source-target-rel:
 fixes success :: 'barbs
               :: ('procT \times 'procT) \ set
   and TRel
 shows (weakly-operational-corresponding TRel \land preorder \ TRel
        \land weak-reduction-correspondence-simulation TRel Target
        \land enc-weakly-respects-barb-set {success}
        \land rel-weakly-respects-barb-set TRel TWB {success}
        \land enc-reflects-divergence \land rel-reflects-divergence TRel Target)
       = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
          ∧ rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
          \land rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
 assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
    and A7: preorder TRel
 from A7 have A8: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   \mathbf{by} blast
 from A7 have A9: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding preorder-on-def refl-on-def
   by auto
 define Rel where Rel = indRelRTPO TRel
 hence B1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by (simp add: indRelRTPO.encR)
 from Rel-def A8 have B2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
 from Rel-def A9 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
          trans-closure-of-TRel-refl-cond[where TRel=TRel]
 assume operational-complete TRel and weakly-operational-sound TRel and preorder TRel
    and weak-reduction-simulation TRel Target
    and \forall P \ Q \ Q' . \ (P, \ Q) \in TRel \land Q \longmapsto Target * Q'
```

```
\longrightarrow (\exists P'' \ Q''. \ P \longmapsto Target * P'' \land Q' \longmapsto Target * Q'' \land (P'', Q'') \in TRel)
with Rel-def A8 A9 have B4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
   \textbf{using} \ \textit{WOC-iff-indRelRTPO-is-reduction-correspondence-simulation} [\textbf{where} \ \textit{TRel} = \textit{TRel}]
 by simp
from Rel-def A7 have B5: preorder Rel
   using indRelRTPO-is-preorder[where TRel = TRel]
   unfolding preorder-on-def
 by simp
from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
   using enc-and-TRel-impl-indRelRTPO-weakly-respects-success[where TRel=TRel
         and success=success]
from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
   using enc-and-TRelimpl-indRelRTPO-reflect-divergence [where TRel = TRel]
 by blast
show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
     \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
     \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
     \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     \land rel-reflects-divergence Rel (STCal Source Target)
 apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land weak-reduction-correspondence-simulation Rel (STCal Source Target) \land preorder Rel
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
       \land rel-reflects-divergence Rel (STCal Source Target)
from this obtain Rel where C1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
and C2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
and C3: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel
and C4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
and C5: preorder Rel and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
and C7: rel-reflects-divergence Rel (STCal Source Target)
 by auto
from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
\land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
\land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel) \land preorder \ Rel
\land weak-reduction-correspondence-simulation Rel (STCal Source Target)
 by blast
hence weakly-operational-corresponding TRel \wedge preorder TRel
      \land weak-reduction-correspondence-simulation TRel Target
   using WOC-wrt-preorder-iff-reduction-correspondence-simulation [where TRel = TRel]
 by simp
moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
             \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
             \land rel-reflects-divergence Rel (STCal Source Target)
 apply (rule exI) using C1 C6 C7 by blast
hence enc-weakly-respects-barb-set {success} \land enc-reflects-divergence
   using WSS-DR-iff-source-target-rel
 bv simp
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
 fix TP TQ TP'
 assume (TP, TQ) \in TRel
 with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
 moreover assume TP \longmapsto (Calculus\ TWB) * TP' and TP' \downarrow < TWB > success
 hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
     using STCalWB-reachesBarbST
```

```
bv blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TQ \Downarrow < TWB > success
      using STCalWB-reachesBarbST
     by blast
  next
   fix TP TO TO'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TP \Downarrow < TWB > success
      using STCalWB-reachesBarbST
     \mathbf{by} blast
  qed
  moreover from C2 C7 have rel-reflects-divergence TRel Target
     using STCal-divergent(2)
   by blast
  ultimately
  show weakly-operational-corresponding TRel \land preorder \ TRel
  \land \ weak\text{-}reduction\text{-}correspondence\text{-}simulation\ TRel\ Target
  \land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
  \land enc-reflects-divergence \land rel-reflects-divergence TRel Target
   by fast
qed
lemma (in encoding-wrt-barbs) OC-SS-DR-wrt-preorder-iff-source-target-rel:
  fixes success :: 'barbs
   and TRel
                :: ('procT \times 'procT) \ set
  shows (operational-corresponding TRel \land preorder\ TRel \land weak-reduction-bisimulation\ TRel\ Target
        \land enc-weakly-respects-barb-set {success}
        \land rel-weakly-respects-barb-set TRel TWB {success}
        \land enc-reflects-divergence \land rel-reflects-divergence TRel Target)
        = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
          \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
          \land rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
  assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
    and A2: rel-weakly-reflects-barb-set TRel TWB {success}
    and A3: enc-weakly-preserves-barb-set {success}
    and A4: enc-weakly-reflects-barb-set {success}
    and A5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
    and A7: preorder TRel
  from A7 have A8: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  from A7 have A9: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding preorder-on-def refl-on-def
```

```
by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A8 have B2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A9 have B3: \forall S T. (SourceTerm S, TargetTerm T) \in Rel \longrightarrow (\llbracket S \rrbracket, T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume operational-complete TRel and operational-sound TRel and preorder TRel
    and weak-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel \land Q \longmapsto Target* \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target* \ P' \land (P', \ Q') \in TRel)
  with Rel-def A8 A9 have B4: weak-reduction-bisimulation Rel (STCal Source Target)
     using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel = TRel]
   by simp
  from Rel-def A7 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel=TRel]
     unfolding preorder-on-def
   by simp
  from Rel-def A1 A2 A3 A4 have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-weakly-respects-success where TRel=TRel
          and success=success]
  from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
     using enc-and-TRelimpl-indRelRTPO-reflect-divergence [where TRel = TRel]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
       \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
       \land rel-reflects-divergence Rel (STCal Source Target)
   apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land weak-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
         \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
         \land rel-reflects-divergence Rel (STCal Source Target)
  from this obtain Rel where C1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and C2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel
  and C4: weak-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
  and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
  and C7: rel-reflects-divergence Rel (STCal Source Target)
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
   \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
  \land (\forall S \ T. \ (Source\ Term\ S,\ Target\ Term\ T) \in Rel \longrightarrow (\llbracket S \rrbracket,\ T) \in TRel) \land preorder\ Rel
   \land weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  hence operational-corresponding TRel \wedge preorder TRel \wedge weak-reduction-bisimulation TRel Target
     using OC-wrt-preorder-iff-weak-reduction-bisimulation[where TRel = TRel]
  moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
               \land rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
               \land rel-reflects-divergence Rel (STCal Source Target)
   apply (rule\ exI) using C1 C6 C7 by blast
```

```
hence enc-weakly-respects-barb-set {success} \land enc-reflects-divergence
     using WSS-DR-iff-source-target-rel
   by simp
 moreover have rel-weakly-respects-barb-set TRel TWB {success}
 proof auto
   fix TP TQ TP'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     bv simp
   moreover assume TP \longmapsto (Calculus\ TWB) * TP' and TP' \downarrow < TWB > success
   hence TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TQ \Downarrow < TWB > success
       \mathbf{using}\ STCalWB\text{-}reachesBarbST
     by blast
 next
   fix TP TQ TQ'
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
     by simp
   moreover assume TQ \longmapsto (Calculus\ TWB) * TQ' and TQ' \downarrow < TWB > success
   hence TargetTerm\ TQ \Downarrow < STCalWB\ SWB\ TWB > success
       using STCalWB-reachesBarbST
     by blast
   ultimately have TargetTerm\ TP \Downarrow < STCalWB\ SWB\ TWB > success
       using C6
     by blast
   thus TP \Downarrow < TWB > success
       using STCalWB-reachesBarbST
     by blast
 qed
 moreover from C2 C7 have rel-reflects-divergence TRel Target
     using STCal-divergent(2)
   by blast
 ultimately
 show operational-corresponding TRel \wedge preorder TRel \wedge weak-reduction-bisimulation TRel Target
  \land enc-weakly-respects-barb-set {success} \land rel-weakly-respects-barb-set TRel TWB {success}
  \land enc-reflects-divergence \land rel-reflects-divergence TRel Target
   by fast
qed
lemma (in encoding-wrt-barbs) SOC-SS-DR-wrt-preorder-iff-source-target-rel:
 fixes success :: 'barbs
                :: ('procT \times 'procT) \ set
   and TRel
 shows (strongly-operational-corresponding TRel \land preorder TRel
        \land strong-reduction-bisimulation TRel Target
        \land enc-respects-barb-set {success} \land rel-respects-barb-set TRel TWB {success}
        \land enc-reflects-divergence \land rel-reflects-divergence TRel Target)
       = (\exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
          \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
          \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
          \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
          \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
          \land rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
 assume A1: rel-preserves-barb-set TRel TWB {success}
    and A2: rel-reflects-barb-set TRel TWB {success}
```

```
and A3: enc-preserves-barb-set {success} and A4: enc-reflects-barb-set {success}
    and A5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
    and A7: preorder TRel
 from A7 have A8: TRel^+ = TRel
     using trancl-id[of TRel]
     unfolding preorder-on-def
   by blast
  from A7 have A9: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     {\bf unfolding} \ preorder-on-def \ refl-on-def
   by auto
  define Rel where Rel = indRelRTPO TRel
  hence B1: \forall S. (SourceTerm S, TargetTerm ([S])) \in Rel
   by (simp add: indRelRTPO.encR)
  from Rel-def A8 have B2: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     using indRelRTPO-to-TRel(4)[where TRel = TRel]
   by (auto simp add: indRelRTPO.target)
  from Rel-def A9 have B3: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel
     using indRelRTPO-to-TRel(2)[where TRel=TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by simp
  assume strongly-operational-complete TRel and strongly-operational-sound TRel
    and preorder TRel and strong-reduction-simulation TRel Target
    and \forall P \ Q \ Q'. \ (P, \ Q) \in TRel \land Q \longmapsto Target \ Q' \longrightarrow (\exists P'. \ P \longmapsto Target \ P' \land (P', \ Q') \in TRel)
  with Rel-def A8 A9 have B4: strong-reduction-bisimulation Rel (STCal Source Target)
     using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]
  from Rel-def A7 have B5: preorder Rel
     using indRelRTPO-is-preorder[where TRel=TRel]
     unfolding preorder-on-def
  from Rel-def A1 A2 A3 A4 have B6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
     using enc-and-TRel-impl-indRelRTPO-respects-success[where TRel-TRel and success=success]
   \mathbf{by} blast
  from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
     using enc-and-TRelimpl-indRelRTPO-reflect-divergence [where TRel = TRel]
   by blast
  show \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
       \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
       \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
       \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
       \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
       \land rel-reflects-divergence Rel (STCal Source Target)
   apply (rule exI) using B1 B2 B3 B4 B5 B6 B7 by blast
next
  assume \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
         \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
         \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel)
         \land strong-reduction-bisimulation Rel (STCal Source Target) \land preorder Rel
         \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
         \land rel-reflects-divergence Rel (STCal Source Target)
  from this obtain Rel where C1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
  and C2: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and C3: \forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel
  and C4: strong-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
  and C6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
  and C7: rel-reflects-divergence Rel (STCal Source Target)
   by auto
  from C1 C2 C3 C4 C5 have \exists Rel.(\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel)
   \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
   \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel) \land preorder \ Rel
```

```
\land strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
 hence strongly-operational-corresponding TRel \wedge preorder \ TRel
       \land strong-reduction-bisimulation TRel Target
     using SOC-wrt-preorder-iff-strong-reduction-bisimulation[where TRel = TRel]
   by simp
 moreover have \exists Rel. (\forall S. (SourceTerm S, TargetTerm (<math>\llbracket S \rrbracket)) \in Rel)
              \land rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
              ∧ rel-reflects-divergence Rel (STCal Source Target)
   apply (rule exI) using C1 C6 C7 by blast
 hence enc-respects-barb-set \{success\} \land enc-reflects-divergence
     using SS-DR-iff-source-target-rel
   by simp
 moreover have rel-respects-barb-set TRel TWB {success}
 proof auto
   fix TP TQ
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TP \downarrow < TWB > success
   hence TargetTerm\ TP \downarrow < STCalWB\ SWB\ TWB > success
      using STCalWB-hasBarbST
     by blast
   ultimately have TargetTerm\ TQ \downarrow < STCalWB\ SWB\ TWB > success
      using C6
     by blast
   thus TQ\downarrow < TWB > success
      using STCalWB-hasBarbST
     by blast
 next
   \mathbf{fix} TP TQ
   assume (TP, TQ) \in TRel
   with C2 have (TargetTerm\ TP,\ TargetTerm\ TQ) \in Rel
   moreover assume TQ\downarrow < TWB > success
   hence TargetTerm\ TQ\downarrow < STCalWB\ SWB\ TWB > success
      using STCalWB-hasBarbST
     by blast
   ultimately have TargetTerm\ TP \downarrow < STCalWB\ SWB\ TWB > success
      using C6
     by blast
   thus TP \downarrow < TWB > success
      using STCalWB-hasBarbST
     by blast
 qed
 moreover from C2 C7 have rel-reflects-divergence TRel Target
     using STCal-divergent(2)
   by blast
 ultimately show strongly-operational-corresponding TRel \wedge preorder \ TRel
  \land \ strong\text{-}reduction\text{-}bisimulation \ TRel \ Target
  \land enc-respects-barb-set {success} \land rel-respects-barb-set TRel TWB {success}
  \land enc-reflects-divergence \land rel-reflects-divergence TRel Target
   by fast
qed
```

10.3 Full Abstraction and Operational Correspondence

To combine full abstraction and operational correspondence we consider a symmetric version of the induced relation and assume that the relations SRel and TRel are equivalences. Then an encoding is fully abstract w.r.t. SRel and TRel and operationally corresponding w.r.t. TRel such that TRel is a

bisimulation iff the induced relation contains both SRel and TRel and is a transitive bisimulation.

```
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ FS-OC\text{-}modulo\text{-}equivalences\text{-}iff\text{-}source\text{-}target\text{-}relation}:
   fixes SRel :: ('procS \times 'procS) set
      and TRel :: ('procT \times 'procT) set
   assumes eqS: equivalence SRel
         and eqT: equivalence TRel
   shows fully-abstract SRel TRel
             \land operational-corresponding TRel \land weak-reduction-bisimulation TRel Target
              \longleftrightarrow (\exists Rel.
             (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
             \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
             \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
             \land trans Rel \land weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE)
   assume A1: fully-abstract SRel TRel and A2: operational-corresponding TRel
       and A3: weak-reduction-bisimulation TRel Target
   from eqT have A4: TRel^* = TRel
         using reflcl-trancl[of TRel] trancl-id[of TRel]
         unfolding equiv-def refl-on-def
      by auto
   have A5:
    \forall S. \ Source Term \ S \sim \llbracket \cdot \rrbracket \ T < TRel > \ Target Term \ (\llbracket S \rrbracket) \ \land \ Target Term \ (\llbracket S \rrbracket) \sim \llbracket \cdot \rrbracket \ T < TRel > \ Source Term \ S > Source Term \ S >
     by (simp add: indRelTEQ.encR indRelTEQ.encL)
   moreover from A4 have A6: TRel = \{(T1, T2), TargetTerm T1 \sim \mathbb{I} \mid T < TRel > TargetTerm T2\}
         using indRelTEQ-to-TRel(4)[where TRel = TRel]
                  trans-closure-of-TRel-refl-cond[where TRel=TRel]
     by (auto simp add: indRelTEQ.target)
   moreover have A7: trans (indRelTEQ TRel)
         using indRelTEQ.trans[where TRel=TRel]
         unfolding trans-def
     by blast
   moreover have SRel = \{(S1, S2). SourceTerm S1 \sim [\cdot] | T < TRel > SourceTerm S2 \}
      from A6 have \forall S1 \ S2. ((\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel) = TargetTerm (\llbracket S1 \rrbracket) \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm (\llbracket S2 \rrbracket)
         by blast
     moreover have indRelTEQ\ TRel \cup \{(P,\ Q).\ \exists\ S.\ \llbracket S \rrbracket \in T\ P\ \land\ S \in S\ Q\} = indRelTEQ\ TRel
         by (auto simp add: indRelTEQ.encL)
      with A7 have trans (indRelTEQ TRel \cup {(P, Q). \exists S. \llbracket S \rrbracket \in T P \land S \in S Q})
            unfolding trans-def
         by blast
      ultimately show SRel = \{(S1, S2). SourceTerm S1 \sim [\cdot] \mid T < TRel > SourceTerm S2\}
            using A1 A5 full-abstraction-and-trans-relation-contains-TRel-impl-SRel where
                              SRel=SRel and TRel=TRel and Rel=indRelTEQ TRel
         \mathbf{by} blast
   qed
   moreover from eqT A2 A3 have weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
         using OC-wrt-equivalence-iff-indRelTEQ-weak-reduction-bisimulation[where TRel = TRel]
     \mathbf{by} blast
   ultimately
   show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
             \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
             \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
             \land trans Rel \land weak-reduction-bisimulation Rel (STCal Source Target)
      by blast
next
   assume
    \exists Rel. (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
     \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
     \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\}
     \land trans Rel \land weak-reduction-bisimulation Rel (STCal Source Target)
```

```
from this obtain Rel where
      B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
  and B2: SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
  and B3: TRel = \{(T1, T2), (TargetTerm T1, TargetTerm T2) \in Rel\}
  and B4: trans Rel and B5: weak-reduction-bisimulation Rel (STCal Source Target)
   by blast
  from B1 B2 B3 B4 have fully-abstract SRel TRel
     using trans-source-target-relation-impl-fully-abstract|where Rel=Rel and SRel=SRel
           and TRel = TRel
   by blast
  moreover have operational-corresponding TRel \wedge weak-reduction-bisimulation TRel \ Target
  proof -
   from eqT have C1: TRel^+ = TRel
       using trancl-id[of TRel]
       unfolding equiv-def
     by blast
   from eqT have C2: TRel^* = TRel
       using reflcl-trancl[of TRel] trancl-id[of TRel]
       unfolding equiv-def refl-on-def
     by auto
   from B1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
     by simp
   moreover from B3 have \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
     by simp
   moreover from B3 C1 have \forall T1 T2. (TargetTerm T1, TargetTerm T2) \in Rel \longrightarrow (T1, T2) \in TRel<sup>+</sup>
   moreover have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
   proof clarify
     \mathbf{fix} \ S \ T
     from B1 have (TargetTerm ([S]), SourceTerm S) \in Rel
     moreover assume (SourceTerm S, TargetTerm T) \in Rel
     ultimately have (TargetTerm ([S]), TargetTerm T) \in Rel
         using B4
         unfolding trans-def
       by blast
     with B3 C2 show ([S], T) \in TRel^*
       by simp
   qed
   ultimately have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
    \land (\forall T1 \ T2. \ (T1, \ T2) \in TRel \longrightarrow (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel)
    \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
    \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
    \land weak-reduction-bisimulation Rel (STCal Source Target)
          using B5
        by blast
   with C1 C2 show operational-corresponding TRel \wedge weak-reduction-bisimulation TRel Target
       using OC-iff-weak-reduction-bisimulation [where TRel = TRel]
  ultimately show fully-abstract SRel TRel \wedge operational-corresponding TRel
                 \land weak-reduction-bisimulation TRel Target
   by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ \mathit{FA-SOC-modulo-equivalences-iff-source-target-relation}:
 \mathbf{fixes} \ \mathit{SRel} :: ('\mathit{procS} \times '\mathit{procS}) \ \mathit{set}
   and TRel :: ('procT \times 'procT) set
  assumes eqS: equivalence SRel
     and eqT: equivalence TRel
  shows fully-abstract SRel\ TRel\ \land\ strongly-operational-corresponding\ TRel
```

```
\land strong-reduction-bisimulation TRel Target \longleftrightarrow (\exists Rel.
        (\forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel)
        \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
        \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel
        \land strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE)
  assume A1: fully-abstract SRel TRel and A2: strongly-operational-corresponding TRel
    and A3: strong-reduction-bisimulation TRel Target
  from eqT have A4: TRel^* = TRel
     using reflcl-trancl[of TRel] trancl-id[of TRel]
     unfolding equiv-def refl-on-def
   by auto
  have A5:
  \forall S. \ Source Term \ S \sim \llbracket \cdot \rrbracket \ T < TRel > \ Target Term \ (\llbracket S \rrbracket) \ \land \ Target Term \ (\llbracket S \rrbracket) \sim \llbracket \cdot \rrbracket \ T < TRel > \ Source Term \ S
   by (simp add: indRelTEQ.encR indRelTEQ.encL)
  moreover from A4 have A6: TRel = \{(T1, T2). TargetTerm T1 \sim [\cdot] | T < TRel > TargetTerm T2 \}
     using indRelTEQ-to-TRel(4)[where TRel = TRel]
           trans-closure-of-TRel-refl-cond[where TRel=TRel]
   by (auto simp add: indRelTEQ.target)
  moreover have A7: trans (indRelTEQ TRel)
     using indRelTEQ.trans[where TRel=TRel]
     unfolding trans-def
   by blast
  moreover have SRel = \{(S1, S2). SourceTerm S1 \sim [\cdot] | T < TRel > SourceTerm S2\}
 proof -
   from A6 have \forall S1 \ S2. \ ((\llbracket S1 \rrbracket, \llbracket S2 \rrbracket) \in TRel) = TargetTerm \ (\llbracket S1 \rrbracket) \sim \llbracket \cdot \rrbracket T < TRel > TargetTerm \ (\llbracket S2 \rrbracket)
   moreover have indRelTEQ TRel \cup \{(P, Q). \exists S. [S] \in T P \land S \in S Q\} = indRelTEQ TRel
     by (auto simp add: indRelTEQ.encL)
   with A7 have trans (indRelTEQ TRel \cup {(P, Q). \exists S. \llbracket S \rrbracket \in T P \land S \in S Q})
       unfolding trans-def
     by blast
   ultimately show SRel = \{(S1, S2). SourceTerm S1 \sim [\cdot] | T < TRel > SourceTerm S2 \}
       using A1 A5 full-abstraction-and-trans-relation-contains-TRel-impl-SRel [where
                   SRel=SRel and TRel=TRel and Rel=indRelTEQ TRel
     by blast
 qed
  moreover from eqT A2 A3 have strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
     using SOC-wrt-equivalence-iff-indRelTEQ-strong-reduction-bisimulation[where TRel = TRel]
   by blast
  ultimately
  show \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \land (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
        \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
        \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel\}
        \land strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
next
  assume
  \exists Rel. \ (\forall S. \ (SourceTerm \ S, \ TargetTerm \ (\llbracket S \rrbracket)) \in Rel \ \land \ (TargetTerm \ (\llbracket S \rrbracket), \ SourceTerm \ S) \in Rel)
   \land SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
   \land TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} \land trans Rel\}
   \land strong-reduction-bisimulation Rel (STCal Source Target)
  from this obtain Rel where
      B1: \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel \land (TargetTerm (\llbracket S \rrbracket), SourceTerm S) \in Rel
  and B2: SRel = \{(S1, S2). (SourceTerm S1, SourceTerm S2) \in Rel\}
  and B3: TRel = \{(T1, T2). (TargetTerm T1, TargetTerm T2) \in Rel\} and B4: trans Rel
  and B5: strong-reduction-bisimulation Rel (STCal Source Target)
   by blast
  from B1 B2 B3 B4 have fully-abstract SRel TRel
     \textbf{using} \ trans-source-target-relation-impl-fully-abstract} [\textbf{where} \ Rel = Rel \ \textbf{and} \ SRel = SRel
           and TRel = TRel
```

```
by blast
  moreover
  have strongly-operational-corresponding TRel \wedge strong-reduction-bisimulation TRel Target
  proof -
   from eqT have C1: TRel^+ = TRel
       using trancl-id[of TRel]
       unfolding equiv-def refl-on-def
     by blast
   from eqT have C2: TRel^* = TRel
       \mathbf{using}\ \mathit{reflcl-trancl}[\mathit{of}\ \mathit{TRel}]\ \mathit{trancl-id}[\mathit{of}\ \mathit{TRel}]
       unfolding equiv-def refl-on-def
   from B1 have \forall S. (SourceTerm S, TargetTerm (\llbracket S \rrbracket)) \in Rel
     by simp
   moreover from B3 have \forall T1 T2. (T1, T2) \in TRel \longrightarrow (TargetTerm T1, TargetTerm T2) \in Rel
     by simp
   moreover from B3 C1
   have \forall T1 \ T2. (TargetTerm \ T1, \ TargetTerm \ T2) \in Rel \longrightarrow (T1, \ T2) \in TRel^+
   moreover have \forall S \ T. \ (Source Term \ S, \ Target Term \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*
   proof clarify
     \mathbf{fix} \ S \ T
     from B1 have (TargetTerm ([S]), SourceTerm S) \in Rel
     moreover assume (SourceTerm\ S,\ TargetTerm\ T) \in\ Rel
     ultimately have (TargetTerm ([S]), TargetTerm T) \in Rel
         using B4
         unfolding trans-def
       by blast
     with B3 C2 show ([S], T) \in TRel^*
       by simp
   qed
   ultimately have \exists Rel. (\forall S. (SourceTerm S, TargetTerm ([S])) \in Rel)
    \land (\forall T1\ T2.\ (T1,\ T2) \in TRel \longrightarrow (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel)
    \land (\forall T1\ T2.\ (TargetTerm\ T1,\ TargetTerm\ T2) \in Rel \longrightarrow (T1,\ T2) \in TRel^+)
    \land (\forall S \ T. \ (SourceTerm \ S, \ TargetTerm \ T) \in Rel \longrightarrow (\llbracket S \rrbracket, \ T) \in TRel^*)
    \land strong-reduction-bisimulation Rel (STCal Source Target)
          using B5
        by blast
   with C1 C2
   {f show} strongly-operational-corresponding TRel \wedge strong-reduction-bisimulation TRel Target
       using SOC-iff-strong-reduction-bisimulation[where TRel=TRel]
     by auto
  ultimately show fully-abstract SRel TRel \wedge strongly-operational-corresponding TRel
                 \land strong-reduction-bisimulation TRel Target
   by simp
qed
An encoding that is fully abstract w.r.t. the equivalences SRel and TRel and operationally corre-
sponding w.r.t. TRel ensures that SRel is a bisimulation iff TRel is a bisimulation.
lemma (in encoding) FA-and-OC-and-TRel-impl-SRel-bisimulation:
  fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     {\bf and}\ op Com:\ operational\text{-}complete\ TRel
     and opSou: operational-sound TRel
     and symmT: sym TRel
     and transT: trans TRel
     and bisimT: weak-reduction-bisimulation TRel Target
```

```
shows weak-reduction-bisimulation SRel Source
proof auto
  fix SP SQ SP'
  assume SP \longmapsto Source * SP'
  with opCom obtain TP' where A1: [SP] \longmapsto Target* TP' and A2: ([SP'], TP') \in TRel
   by blast
  assume (SP, SQ) \in SRel
  with fullAbs have ([SP], [SQ]) \in TRel
   bv simp
  with bisimT\ A1 obtain TQ' where A3: [SQ] \longmapsto Target*\ TQ' and A4: (TP', TQ') \in TRel
  from A3 opSou obtain SQ' where A5: SQ \longmapsto Source* SQ' and A6: (\lceil SQ' \rceil, TQ') \in TRel
   by blast
  from A2\ A4\ A6\ symmT\ transT\ {\bf have}\ (\llbracket SP \rrbracket, \llbracket SQ \rrbracket) \in TRel
     unfolding trans-def sym-def
  with fullAbs A5 show \exists SQ'. SQ \longmapsto Source* SQ' \land (SP', SQ') \in SRel
   by blast
next
  fix SP SQ SQ'
  assume SQ \longmapsto Source * SQ'
  with opCom obtain TQ' where B1: [SQ] \longrightarrow Target* TQ' and B2: ([SQ'], TQ') \in TRel
  assume (SP, SQ) \in SRel
  with fullAbs have ([SP], [SQ]) \in TRel
  with bisimT\ B1 obtain TP' where B3: [SP] \longmapsto Target*\ TP' and B4: (TP',\ TQ') \in TRel
  from B3 opSou obtain SP' where B5: SP \longmapsto Source* SP' and B6: (\llbracket SP' \rrbracket, TP') \in TRel
   by blast
  from B2 B4 B6 symmT transT have ([SP'], [SQ']) \in TRel
     unfolding trans-def sym-def
   by blast
  with fullAbs B5 show \exists SP'. SP \longmapsto Source* SP' \land (SP', SQ') \in SRel
   by blast
\mathbf{qed}
\mathbf{lemma} \ (\mathbf{in} \ encoding) \ \mathit{FA-and-SOC-and-TRel-impl-SRel-strong-bisimulation}:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
  assumes fullAbs: fully-abstract SRel TRel
     {\bf and} \ op Com: \ strongly-operational-complete \ TRel
     and opSou: strongly-operational-sound TRel
     and symmT: sym TRel
     and transT: trans TRel
     and bisimT: strong-reduction-bisimulation TRel Target
 shows strong-reduction-bisimulation SRel Source
proof auto
  fix SP SQ SP'
  assume SP \longmapsto Source SP'
  with opCom obtain TP' where A1: [SP] \longrightarrow Target TP' and A2: ([SP'], TP') \in TRel
   by blast
  assume (SP, SQ) \in SRel
  with fullAbs have ([SP], [SQ]) \in TRel
   bv simp
  with bisimT A1 obtain TQ' where A3: [SQ] \longrightarrow Target TQ' and A4: (TP', TQ') \in TRel
  from A3 opSou obtain SQ' where A5: SQ \longrightarrow Source SQ' and A6: ([SQ'], TQ') \in TRel
  from A2\ A4\ A6\ symmT\ transT\ {\bf have}\ (\llbracket SP' \rrbracket,\ \llbracket SQ' \rrbracket) \in\ TRel
     unfolding trans-def sym-def
```

```
with fullAbs A5 show \exists SQ'. SQ \longmapsto Source SQ' \land (SP', SQ') \in SRel
   by blast
next
 fix SP SQ SQ'
 assume SQ \longmapsto Source SQ'
 with opCom obtain TQ' where B1: [SQ] \longmapsto Target TQ' and B2: ([SQ'], TQ') \in TRel
 assume (SP, SQ) \in SRel
 with fullAbs have ([SP], [SQ]) \in TRel
   by simp
 with bisimT\ B1 obtain TP' where B3: [SP] \longmapsto Target\ TP' and B4: (TP',\ TQ') \in TRel
 from B3 opSou obtain SP' where B5: SP \longrightarrow Source SP' and B6: ([SP'], TP') \in TRel
   by blast
 from B2\ B4\ B6\ symmT\ transT\ have\ ([SP'], [SQ']) \in TRel
     unfolding trans-def sym-def
   by blast
 with fullAbs B5 show \exists SP'. SP \longmapsto Source SP' \land (SP', SQ') \in SRel
   by blast
\mathbf{qed}
lemma (in encoding) FA-and-OC-impl-SRel-iff-TRel-bisimulation:
 fixes SRel :: ('procS \times 'procS) set
   and TRel :: ('procT \times 'procT) set
 assumes fullAbs: fully-abstract SRel TRel
     and opCor: operational-corresponding TRel
     and symmT: sym TRel
     {\bf and} \ trans T: \ trans \ TRel
     and surj:
                 \forall T. \exists S. T = [S]
 shows weak-reduction-bisimulation SRel Source \longleftrightarrow weak-reduction-bisimulation TRel Target
proof
 assume bisimS: weak-reduction-bisimulation SRel Source
 have weak-reduction-simulation TRel Target
 proof clarify
   fix TP TQ TP'
   from surj have \exists S. TP = [\![S]\!]
     by simp
   from this obtain SP where A1: [SP] = TP
     by blast
   from surj have \exists S. TQ = [S]
     by simp
   from this obtain SQ where A2: [SQ] = TQ
     by blast
   assume TP \longmapsto Target * TP'
   with opCor A1 obtain SP' where A3: SP \longrightarrow Source* SP' and A4: ([SP'], TP') \in TRel
     by blast
   assume (TP, TQ) \in TRel
   with fullAbs A1 A2 have (SP, SQ) \in SRel
   with bisimS A3 obtain SQ' where A5: SQ \mapsto Source * SQ' and A6: (SP', SQ') \in SRel
     by blast
   from opCor A2 A5 obtain TQ' where A7: TQ \mapsto Target* TQ' and A8: ([SQ'], TQ') \in TRel
   from symmT A4 have (TP', [SP']) \in TRel
      \mathbf{unfolding}\ \mathit{sym-def}
     by simp
   moreover from fullAbs\ A6 have (\llbracket SP \rrbracket, \llbracket SQ' \rrbracket) \in TRel
     by simp
   ultimately have (TP', TQ') \in TRel
      using transT A8
```

```
unfolding trans-def by blast with A7 show \exists TQ'. TQ \longmapsto Target* TQ' \land (TP', TQ') \in TRel by blast qed with symmT show weak-reduction-bisimulation TRel Target using symm-weak-reduction-simulation-is-bisimulation [where Rel = TRel and Cal = Target] by blast next assume weak-reduction-bisimulation TRel Target with fullAbs opCor symmT transT show weak-reduction-bisimulation SRel Source using FA-and-OC-and-TRel-impl-SRel-bisimulation [where SRel = SRel and TRel = TRel] by blast qed
```