Analysing and Comparing Encodability Criteria for Process Calculi
(Technical Report)

Rob van Glabbeek
NICTA! Sydney, Australia
Computer Science and Engineering, UNSW, Sydney, Australia

Kirstin Peters*
TU Dresden, Germany

August 05, 2015

Abstract

Encodings or the proof of their absence are the main way to compare process calculi. To analyse
the quality of encodings and to rule out trivial or meaningless encodings, they are augmented
with quality criteria. There exists a bunch of different criteria and different variants of criteria
in order to reason in different settings. This leads to incomparable results. Moreover it is not
always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this
setting. We show how to formally reason about and compare encodability criteria by mapping them
on requirements on a relation between source and target terms that is induced by the encoding
function. In particular we analyse the common criteria full abstraction, operational correspondence,
divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature
of the simulation relation (coupled simulation versus bisimulation) that is induced by different
variants of operational correspondence. This way we reduce the problem of analysing or comparing
encodability criteria to the better understood problem of comparing relations on processes.

In the following we present the Isabelle implementation of the underlying theory as well as all proofs

of the results presented in the paper Analysing and Comparing Encodability Criteria as submitted to
EXPRESS/SOS’15.

*Supported by funding of the Excellence Initiative by the German Federal and State Governments (Institutional
Strategy, measure ‘support the best’).

TNICTA is funded by the Australian Government through the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence Program.

Contents

1 Relations 3
1.1 Basic Conditions e e 3
1.2 Preservation, Reflection, and Respection of Predicates 6

2 Process Calculi 11
2.1 Reduction Semantics 11

2.1.1 Observablesor Barbs. 13

3 Simulation Relations 17
3.1 Simulation L e 17
3.2 Contrasimulation 22
3.3 Coupled Simulation Lo 24
3.4 Correspondence Simulation 25
3.5 Bisimulation. 30
3.6 Step Closure of Relations e 40

4 Encodings 46

5 Relation between Source and Target Terms 54
5.1 Relations Induced by the Encoding Function 54
5.2 Relations Induced by the Encoding and a Relation on Target Terms 77

5.3 Relations Induced by the Encoding and Relations on Source Terms and Target Terms 120

6 Success Sensitiveness and Barbs 151
7 Divergence Reflection 155
8 Operational Correspondence 156
8.1 Trivial Operational Correspondence Results 158
8.2 (Strong) Operational Completeness vs (Strong) Simulation 159
8.3 Weak Operational Soundness vs Contrasimulation 167
8.4 (Strong) Operational Soundness vs (Strong) Simulation 168
8.5 Weak Operational Correspondence vs Correspondence Similarity 175
8.6 (Strong) Operational Correspondence vs (Strong) Bisimilarity 181
9 Full Abstraction 201
9.1 'Trivial Full Abstraction Results, 201
9.2 Fully Abstract Encodings 203
9.3 Full Abstraction w.r.t. Preorders 210
9.4 Full Abstraction w.r.t. Equivalences, 218
9.5 Full Abstraction without Relating Translations to their Source Terms 228
10 Combining Criteria 235
10.1 Divergence Reflection and Success Sensitiveness 237
10.2 Adding Operational Correspondence, 238
10.3 Full Abstraction and Operational Correspondence 271

theory Relations
imports Main HOL— Library.LaTeXsugar HOL— Library. OptionalSugar
begin

1 Relations
1.1 Basic Conditions

We recall the standard definitions for reflexivity, symmetry, transitivity, preoders, equivalence, and
inverse relations.

abbreviation preorder Rel = preorder-on UNIV Rel
abbreviation equivalence Rel = equiv UNIV Rel

A symmetric preorder is an equivalence.

lemma symm-preorder-is-equivalence:
fixes Rel :: (a x 'a) set
assumes preorder Rel
and sym Rel
shows equivalence Rel
using assms
unfolding preorder-on-def equiv-def
by simp

The symmetric closure of a relation is the union of this relation and its inverse.

definition symcl :: ('a x ‘a) set = (‘a X 'a) set where
symcl Rel = Rel U Rel™!

For all (a, b) in R, the symmetric closure of R contains (a, b) as well as (b, a).

lemma elem-of-symcl:
fixes Rel :: ("a x 'a) set
and a b :: 'a
assumes elem: (a, b) € Rel
shows (a, b) € symcl Rel
and (b, a) € symcl Rel
by (auto simp add: elem symcl-def)

The symmetric closure of a relation is symmetric.

lemma sym-symcl:
fixes Rel :: (a x 'a) set
shows sym (symcl Rel)
by (simp add: symcl-def sym-Un-converse)

The reflexive and symmetric closure of a relation is equal to its symmetric and reflexive closure.

lemma refl-symm-closure-is-symm-refi-closure:
fixes Rel :: (a x 'a) set
shows symcl (Rel™) = (symcl Rel)=
by (auto simp add: symcl-def refl)

The symmetric closure of a reflexive relation is reflexive.

lemma refi-symcl-of-refi-rel:
fixes Rel :: ('a x 'a) set
and A :: a set
assumes refi-on A Rel
shows refl-on A (symcl Rel)
using assms
by (auto simp add: refl-on-def’ symcl-def)

Accordingly, the reflexive, symmetric, and transitive closure of a relation is equal to its symmetric,
reflexive, and transitive closure.

lemma refi-symm-trans-closure-is-symm-refi-trans-closure:
fixes Rel :: ('a x 'a) set
shows (symcl (Rel™))T = (symcl Rel)*
using refl-symm-closure-is-symm-refi-closure[where Rel=Rel]
by simp

The reflexive closure of a symmetric relation is symmetric.

lemma sym-reficl-of-symm-rel:
fixes Rel :: ('a x 'a) set
assumes sym Rel
shows sym (Rel™)
using assms
by (simp add: sym-Id sym-Un)

The reflexive closure of a reflexive relation is the relation itself.

lemma reficl-of-refi-rel:
fixes Rel :: ("a x 'a) set
assumes refl Rel
shows Rel= = Rel
using assms
unfolding refi-on-def
by auto

The symmetric closure of a symmetric relation is the relation itself.

lemma symm-closure-of-symm-rel:
fixes Rel :: ("a x 'a) set
assumes sym Rel
shows symcl Rel = Rel
using assms
unfolding symcl-def sym-def
by auto

The reflexive and transitive closure of a preorder Rel is Rel.

lemma rtrancl-of-preorder:
fixes Rel :: ("a x 'a) set
assumes preorder Rel
shows Rel* = Rel
using assms reflcl-of-refl-rellof Rel] trancl-id[of Rel™| trancl-reficl[of Rel]
unfolding preorder-on-def
by auto

The reflexive and transitive closure of a relation is a subset of its reflexive, symmetric, and transtive
closure.

lemma refl-trans-closure-subset-of-refl-symm-trans-closure:
fixes Rel :: (a x 'a) set
shows Rel* C (symcl (Rel™))t
proof clarify
fix a b
assume (a, b) € Rel*
hence (a, b) € (symcl Rel)*
using in-rtrancl-Unl[of (a, b) Rel Rel™!]
by (simp add: symcl-def)
thus (a, b) € (symcl (Rel™))*"
using refl-symm-trans-closure-is-symm-refl-trans-closure[of Rel]
by simp
qed

If a preorder Rel satisfies the following two conditions, then its symmetric closure is transitive: (1) If
(a, b) and (c, b) in Rel but not (a, c¢) in Rel, then (b, a) in Rel or (b, ¢) in Rel. (2) If (a, b) and (a,
c¢) in Rel but not (b, ¢) in Rel, then (b, a) in Rel or (c, a) in Rel.

lemma symm-closure-of-preorder-is-trans:
fixes Rel :: ('a x 'a) set
assumes condAd: Va b c. (a, b) € Rel A (¢, b) € Rel A (a, ¢) ¢ Rel
— (b, a) € Rel V (b, ¢) € Rel
and condB: VYa b c. (a, b) € Rel A (a, ¢) € Rel A (b, ¢) ¢ Rel
— (b, a) € Rel V (¢, a) € Rel
and reflR: refl Rel
and tranR: trans Rel
shows trans (symcl Rel)
unfolding trans-def
proof clarify
fixabec
have [(a, b) € Rel; (b, ¢) € Rel] = (a, c¢) € symcl Rel
proof —
assume (a, b) € Rel and (b, ¢) € Rel
with tranR have (a, ¢) € Rel
unfolding trans-def
by blast
thus (a, ¢) € symcl Rel
by (simp add: symcl-def)
qged
moreover have [(a, b) € Rel; (¢, b) € Rel; (a, ¢) ¢ Rel] = (a, ¢) € symcl Rel
proof —
assume AI: (a, b) € Rel and A2: (¢, b) € Rel and (a, ¢) ¢ Rel
with condA have (b, a) € Rel V (b, ¢) € Rel
by blast
thus (a, ¢) € symcl Rel
proof auto
assume (b, a) € Rel
with A2 tranR have (c, a) € Rel
unfolding trans-def
by blast
thus (a, ¢) € symcl Rel
by (simp add: symcl-def)
next
assume (b, ¢) € Rel
with A1 tranR have (a, ¢) € Rel
unfolding trans-def
by blast
thus (a, ¢) € symcl Rel
by (simp add: symcl-def)
qed
qed
moreover have [(b, a) € Rel; (b, ¢) € Rel; (a, ¢) ¢ Rel] = (a, ¢) € symcl Rel
proof —
assume B1: (b, a) € Rel and B2: (b, ¢) € Rel and (a, ¢) ¢ Rel
with condB have (a, b) € Rel V (¢, b) € Rel
by blast
thus (a, ¢) € symcl Rel
proof auto
assume (a, b) € Rel
with B2 tranR have (a, ¢) € Rel
unfolding trans-def
by blast
thus (a, ¢) € symcl Rel
by (simp add: symcl-def)
next
assume (¢, b) € Rel
with BI tranR have (¢, a) € Rel
unfolding trans-def
by blast

thus (a, ¢) € symcl Rel
by (simp add: symcl-def)
qed
qged
moreover have [(b, a) € Rel; (¢, b) € Rel] = (a, ¢) € symcl Rel
proof —
assume (c, b) € Rel and (b, a) € Rel
with tranR have (¢, a) € Rel
unfolding trans-def
by blast
thus (a, ¢) € symcl Rel
by (simp add: symcl-def)
qed
moreover assume (a, b) € symcl Rel and (b, ¢) € symcl Rel
ultimately show (a, ¢) € symcl Rel
by (auto simp add: symcl-def)
qed

1.2 Preservation, Reflection, and Respection of Predicates

A relation R preserves some predicate P if P(a) implies P(b) for all (a, b) in R.

abbreviation rel-preserves-pred :: (‘a x 'a) set = (‘a = bool) = bool where
rel-preserves-pred Rel Pred =V a b. (a, b) € Rel A Pred a — Pred b

abbreviation rel-preserves-binary-pred :: (a x 'a) set = (‘a = 'b = bool) = bool where
rel-preserves-binary-pred Rel Pred =V a b z. (a, b) € Rel A Pred a + — Pred b x

A relation R reflects some predicate P if P(b) implies P(a) for all (a, b) in R.

abbreviation rel-reflects-pred :: (‘a x 'a) set = (‘a = bool) = bool where
rel-reflects-pred Rel Pred =V a b. (a, b) € Rel A Pred b — Pred a

abbreviation rel-reflects-binary-pred :: (‘a x 'a) set = (‘a = 'b = bool) = bool where
rel-reflects-binary-pred Rel Pred =V a b z. (a, b) € Rel A Pred b x — Pred a x

A relation respects a predicate if it preserves and reflects it.

abbreviation rel-respects-pred :: (‘a x 'a) set = (‘a = bool) = bool where
rel-respects-pred Rel Pred = rel-preserves-pred Rel Pred N rel-reflects-pred Rel Pred

abbreviation rel-respects-binary-pred :: (a x 'a) set = ('a = 'b = bool) = bool where
rel-respects-binary-pred Rel Pred =
rel-preserves-binary-pred Rel Pred N rel-reflects-binary-pred Rel Pred

For symmetric relations preservation, reflection, and respection of predicates means the same.

lemma symm-relation-impl-preservation-equals-reflection:
fixes Rel :: ('a x 'a) set
and Pred :: 'a = bool
assumes symm: sym Rel
shows rel-preserves-pred Rel Pred = rel-reflects-pred Rel Pred
and rel-preserves-pred Rel Pred = rel-respects-pred Rel Pred
and rel-reflects-pred Rel Pred = rel-respects-pred Rel Pred
using symm
unfolding sym-def
by blast+

lemma symm-relation-impl-preservation-equals-reflection-of-binary-predicates:
fixes Rel : ('a x 'a) set
and Pred :: 'a = 'b = bool
assumes symm: sym Rel
shows rel-preserves-binary-pred Rel Pred = rel-reflects-binary-pred Rel Pred

and rel-preserves-binary-pred Rel Pred = rel-respects-binary-pred Rel Pred
and rel-reflects-binary-pred Rel Pred = rel-respects-binary-pred Rel Pred
using symm
unfolding sym-def
by blast+

If a relation preserves a predicate then so does its reflexive or/and transitive closure.

lemma preservation-and-closures:
fixes Rel : ('a x 'a) set
and Pred :: 'a = bool
assumes preservation: rel-preserves-pred Rel Pred
shows rel-preserves-pred (Rel=) Pred
and rel-preserves-pred (Rel™) Pred
and rel-preserves-pred (Rel*) Pred
proof —
from preservation show A: rel-preserves-pred (Rel™) Pred
by (auto simp add: refl)
have B: A\Rel. rel-preserves-pred Rel Pred = rel-preserves-pred (Relt) Pred
proof clarify
fix Rel a b
assume (a, b) € Relt and rel-preserves-pred Rel Pred and Pred a
thus Pred b
by (induct, blast+)
qged
with preservation show rel-preserves-pred (Rel™) Pred
by blast
from preservation A Blwhere Rel=Rel™] show rel-preserves-pred (Rel*) Pred
using trancl-reficl[of Rel]
by blast
qed

lemma preservation-of-binary-predicates-and-closures:
fixes Rel :: ('a x 'a) set
and Pred :: 'a = 'b = bool
assumes preservation: rel-preserves-binary-pred Rel Pred
shows rel-preserves-binary-pred (Rel=) Pred
and rel-preserves-binary-pred (Rel™) Pred
and rel-preserves-binary-pred (Rel*) Pred
proof —
from preservation show A: rel-preserves-binary-pred (Rel=) Pred
by (auto simp add: refl)
have B: ARel. rel-preserves-binary-pred Rel Pred
= rel-preserves-binary-pred (Rel™) Pred
proof clarify
fix Rel a b x
assume (a, b) € Rel™ and rel-preserves-binary-pred Rel Pred and Pred a
thus Pred b x
by (induct, blast+)
ged
with preservation show rel-preserves-binary-pred (Rel™) Pred
by blast
from preservation A Blwhere Rel=Rel™]
show rel-preserves-binary-pred (Rel*) Pred
using trancl-reflcl[of Rel]
by fast
qed

If a relation reflects a predicate then so does its reflexive or/and transitive closure.

lemma reflection-and-closures:
fixes Rel : ('a x 'a) set

and Pred :: 'a = bool
assumes refiection: rel-reflects-pred Rel Pred
shows rel-reflects-pred (Rel™) Pred
and rel-reflects-pred (Rel™) Pred
and rel-reflects-pred (Rel*) Pred
proof —
from reflection show A: rel-reflects-pred (Rel=) Pred
by (auto simp add: refl)
have B: A\Rel. rel-reflects-pred Rel Pred = rel-reflects-pred (Rel™) Pred
proof clarify
fix Rel a b
assume (a, b) € Relt and rel-reflects-pred Rel Pred and Pred b
thus Pred a
by (induct, blast+)
qged
with reflection show rel-reflects-pred (Rel™) Pred
by blast
from reflection A Blwhere Rel=Rel~™] show rel-reflects-pred (Rel*) Pred
using trancl-reflcl[of Rel]
by fast
qed

lemma reflection-of-binary-predicates-and-closures:
fixes Rel :: ('a x 'a) set
and Pred :: 'a = 'b = bool
assumes reflection: rel-reflects-binary-pred Rel Pred
shows rel-reflects-binary-pred (Rel=) Pred
and rel-reflects-binary-pred (Rel™) Pred
and rel-reflects-binary-pred (Rel*) Pred
proof —
from reflection show A: rel-reflects-binary-pred (Rel=) Pred
by (auto simp add: refl)
have B: A Rel. rel-reflects-binary-pred Rel Pred = rel-reflects-binary-pred (Rel™) Pred
proof clarify
fix Rel a b x
assume (a, b) € Relt and rel-reflects-binary-pred Rel Pred and Pred b x
thus Pred a z
by (induct, blast+)
qed
with reflection show rel-reflects-binary-pred (Rel™) Pred
by blast
from reflection A Blwhere Rel=Rel™]
show rel-reflects-binary-pred (Rel*) Pred
using trancl-reflcl[of Rel]
by fast
qed

If a relation respects a predicate then so does its reflexive, symmetric, or/and transitive closure.

lemma respection-and-closures:
fixes Rel : ('a x 'a) set
and Pred :: 'a = bool
assumes respection: rel-respects-pred Rel Pred
shows rel-respects-pred (Rel=) Pred
and rel-respects-pred (symcl Rel) Pred
and rel-respects-pred (Rel™) Pred
and rel-respects-pred (symcl (Rel=)) Pred
and rel-respects-pred (Rel*) Pred
and rel-respects-pred ((symcl (Rel=))") Pred
proof —
from respection show A: rel-respects-pred (Rel™) Pred
using preservation-and-closures(1)[where Rel=Rel and Pred=Pred)

reflection-and-closures(1)[where Rel=Rel and Pred=Pred]
by blast
have B: A\ Rel. rel-respects-pred Rel Pred = rel-respects-pred (symcl Rel) Pred
proof
fix Rel
assume B1: rel-respects-pred Rel Pred
show rel-preserves-pred (symcl Rel) Pred
proof clarify
fix a b
assume (a, b) € symcl Rel
hence (a, b) € Rel V (b, a) € Rel
by (simp add: symcl-def)
moreover assume Pred a
ultimately show Pred b
using BI
by blast
qed
next
fix Rel :: (‘a x 'a) set
and Pred :: 'a = bool
assume B2: rel-respects-pred Rel Pred
show rel-reflects-pred (symcl Rel) Pred
proof clarify
fix a b
assume (a, b) € symcl Rel
hence (a, b) € Rel V (b, a) € Rel
by (simp add: symcl-def)
moreover assume Pred b
ultimately show Pred a
using B2
by blast
qed
qed
from respection Blwhere Rel=Rel| show rel-respects-pred (symcl Rel) Pred
by blast
have C: /\Rel. rel-respects-pred Rel Pred = rel-respects-pred (Rel™) Pred
proof —
fix Rel
assume rel-respects-pred Rel Pred
thus rel-respects-pred (Rel™) Pred
using preservation-and-closures(2)[where Rel=Rel and Pred=Pred)
reflection-and-closures(2)[where Rel=Rel and Pred=Pred)]
by blast
qed
from respection C|where Rel=Rel] show rel-respects-pred (Rel™) Pred
by blast
from A B|where Rel=Rel=] show rel-respects-pred (symcl (Rel™)) Pred
by blast
from A C[where Rel=Rel=] show rel-respects-pred (Rel*) Pred
using trancl-reflcl[of Rel]
by fast
from A Blwhere Rel=Rel~] C[where Rel=symcl (Rel~)]
show rel-respects-pred ((symcl (Rel=))™) Pred
by blast
qed

lemma respection-of-binary-predicates-and-closures:
fixes Rel :: ('a x 'a) set
and Pred :: 'a = 'b = bool
assumes respection: rel-respects-binary-pred Rel Pred
shows rel-respects-binary-pred (Rel=) Pred

and rel-respects-binary-pred (symcl Rel) Pred
and rel-respects-binary-pred (Rel™) Pred
and rel-respects-binary-pred (symcl (Rel=)) Pred
and rel-respects-binary-pred (Rel*) Pred
and rel-respects-binary-pred ((symcl (Rel=))") Pred
proof —
from respection show A: rel-respects-binary-pred (Rel=) Pred
using preservation-of-binary-predicates-and-closures(1)[where Rel=Rel and Pred=Pred)]
reflection-of-binary-predicates-and-closures(1)[where Rel=Rel and Pred=Pred)
by blast
have B: ARel. rel-respects-binary-pred Rel Pred = rel-respects-binary-pred (symcl Rel) Pred
proof
fix Rel
assume B1: rel-respects-binary-pred Rel Pred
show rel-preserves-binary-pred (symcl Rel) Pred
proof clarify
fixabax
assume (a, b) € symcl Rel
hence (a, b) € Rel V (b, a) € Rel
by (simp add: symcl-def)
moreover assume Pred a z
ultimately show Pred b z
using BI
by blast
qed
next
fix Rel
assume B2: rel-respects-binary-pred Rel Pred
show rel-reflects-binary-pred (symcl Rel) Pred
proof clarify
fixabzx
assume (a, b) € symcl Rel
hence (a, b) € Rel V (b, a) € Rel
by (simp add: symcl-def)
moreover assume Pred b z
ultimately show Pred a x
using B2
by blast
qed
qed
from respection B[where Rel=Rel| show rel-respects-binary-pred (symcl Rel) Pred
by blast
have C: A\ Rel. rel-respects-binary-pred Rel Pred = rel-respects-binary-pred (Rel™) Pred
proof —
fix Rel
assume rel-respects-binary-pred Rel Pred
thus rel-respects-binary-pred (Rel™) Pred
using preservation-of-binary-predicates-and-closures(2)[where Rel=Rel and Pred=Pred]
reflection-of-binary-predicates-and-closures(2)[where Rel=Rel and Pred=Pred)
by blast
qed
from respection C|where Rel=Rel] show rel-respects-binary-pred (Rel™) Pred
by blast
from A Blwhere Rel=Rel~]
show rel-respects-binary-pred (symcl (Rel=)) Pred
by blast
from A C[where Rel=Rel™]
show rel-respects-binary-pred (Rel*) Pred
using trancl-reflcl[of Rel]
by fast
from A Blwhere Rel=Rel~] C[where Rel=symcl (Rel™)]

10

show rel-respects-binary-pred ((symcl (Rel=))") Pred
by blast
qed

end

theory ProcessCalculi
imports Relations

begin

2 Process Calculi

A process calculus is given by a set of process terms (syntax) and a relation on terms (semantics). We
consider reduction as well as labelled variants of the semantics.

2.1 Reduction Semantics

A set of process terms and a relation on pairs of terms (called reduction semantics) define a process
calculus.

record ’proc processCalculus =
Reductions :: 'proc = 'proc = bool

A pair of the reduction relation is called a (reduction) step.

abbreviation step :: 'proc = 'proc processCalculus = "proc = bool
(t- - = [70, 70, 70] 80)
where
P —Cal Q = Reductions Cal P Q

We use * to indicate the reflexive and transitive closure of the reduction relation.

primrec nSteps
22 'proc = 'proc processCalculus = nat = "proc = bool
(t- - = [70, 70, 70, 70] 80)
where
P—CalQ =(P=Q))|
P +——CalSU¢ ™ Q = (3P P —Cal™ P' A P’ —Cal Q)

definition steps
2 'proc = 'proc processCalculus = "proc = bool
(<- —=x - [70, 70, 70] 80)
where
P+—Calx Q=3n. Pr—Cal™ Q

A process is divergent, if it can perform an infinite sequence of steps.

definition divergent
2 'proc = proc processCalculus = bool
(¢ s> [70, 70] 80)
where
P+—(Cal)w =V P P+—Calx P — (3P”. P'+—Cal P")

Each term can perform an (empty) sequence of steps to itself.

lemma steps-refi:
fixes Cal :: 'proc processCalculus
and P :: 'proc
shows P —— Calx P
proof —
have P —Call P
by simp
hence In. P ——Cal™ P

11

by blast
thus P —— Calx P
by (simp add: steps-def)
qed

A single step is a sequence of steps of length one.

lemma step-to-steps:
fixes Cal :: 'proc processCalculus
and P P’ :: 'proc
assumes step: P — Cal P’
shows P —Calx P’
proof —
from step have P —Call P’
by simp
thus ?thesis
unfolding steps-def
by blast
qed

If there is a sequence of steps from P to Q and from Q to R, then there is also a sequence of steps
from P to R.

lemma nSteps-add:
fixes Cal :: 'proc processCalculus
and n! n2 : nat
shows VP Q R. P —Cal™ Q A Q —Cal™® R — P ——Cal(?! +12) R
proof (induct n2, simp)
case (Suc n)
assume [H: VP Q R. P —Cal™ Q A Q —Cal® R — P —sCal(nd + 1) R
show ?Zcase
proof clarify
fix PQR
assume (@ — Calouc " R
from this obtain Q' where Al: Q ——Cal™ Q' and A2: Q' —Cal R
by auto
assume P —Cal™ Q
with A1 IH have P —sCal(™l + 1)
by blast
with A2 show P —sCal(n! + Sucn) p
by auto
qed
qed

lemma steps-add:
fixes Cal :: 'proc processCalculus
and P Q R :: 'proc
assumes A7: P —Calx Q
and A2: Q —Calx R
shows P —Calx R
proof —
from Al obtain n! where P —Cal™ Q
by (auto simp add: steps-def)
moreover from A2 obtain n2 where) —Cal™ R
by (auto simp add: steps-def)
ultimately have P s Cal(?! +12) R
using nSteps-add|where Cal=Cal]
by blast
thus P —Calx R
by (simp add: steps-def, blast)
qed

12

2.1.1 Observables or Barbs

We assume a predicate that tests terms for some kind of observables. At this point we do not limit or
restrict the kind of observables used for a calculus nor the method to check them.

record ('proc, 'barbs) calculusWithBarbs =
Calculus :: "proc processCalculus

HasBarb :: 'proc = 'barbs = bool (<-}-» [70, 70] 80)

abbreviation hasBarb
2 'proc = ('proc, 'barbs) calculus WithBarbs = 'barbs = bool
(t-b<->-» [70, 70, 70] 80)
where
P|l<CWB>a = HasBarb CWB P a

A term reaches a barb if it can evolve to a term that has this barb.

abbreviation reachesBarb
i "proc = ('proc, 'barbs) calculus WithBarbs = 'barbs = bool
(«-Y<->- [70, 70, 70] 80)
where
P|<CWB>a = 3 P'. P +——(Calculus CWB)x P’ AN P'l<CWB>a

A relation R preserves barbs if whenever (P, Q) in R and P has a barb then also Q has this barb.

abbreviation rel-preserves-barb-set
2 ('proc x 'proc) set = (’proc, 'barbs) calculus WithBarbs = 'barbs set = bool
where
rel-preserves-barb-set Rel CWB Barbs =
rel-preserves-binary-pred Rel (AP a. a € Barbs AN P{<CWB>a)

abbreviation rel-preserves-barbs
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
rel-preserves-barbs Rel CWB = rel-preserves-binary-pred Rel (HasBarb CWB)

lemma preservation-of-barbs-and-set-of-barbs:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
shows rel-preserves-barbs Rel CWB = (¥ Barbs. rel-preserves-barb-set Rel CWB Barbs)
by blast

A relation R reflects barbs if whenever (P, Q) in R and Q has a barb then also P has this barb.

abbreviation rel-reflects-barb-set
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = 'barbs set = bool
where
rel-reflects-barb-set Rel CWB Barbs =
rel-reflects-binary-pred Rel (AP a. a € Barbs A Pl<CWDB>a)

abbreviation rel-reflects-barbs
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
rel-reflects-barbs Rel CWB = rel-reflects-binary-pred Rel (HasBarb CWB)

lemma reflection-of-barbs-and-set-of-barbs:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
shows rel-reflects-barbs Rel CWB = (V¥ Barbs. rel-reflects-barb-set Rel CWB Barbs)
by blast

A relation respects barbs if it preserves and reflects barbs.

abbreviation rel-respects-barb-set

13

o ("proc x 'proc) set = ('proc, 'barbs) calculusWithBarbs = 'barbs set = bool
where
rel-respects-barb-set Rel CWB Barbs =

rel-preserves-barb-set Rel CWB Barbs A rel-reflects-barb-set Rel CWB Barbs

abbreviation rel-respects-barbs
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
rel-respects-barbs Rel CWB = rel-preserves-barbs Rel CWB A rel-reflects-barbs Rel CWB

lemma respection-of-barbs-and-set-of-barbs:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
shows rel-respects-barbs Rel CWB = (V Barbs. rel-respects-barb-set Rel CWB Barbs)
by blast

If a relation preserves barbs then so does its reflexive or/and transitive closure.

lemma preservation-of-barbs-and-closures:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, "barbs) calculus WithBarbs
assumes preservation: rel-preserves-barbs Rel CWB
shows rel-preserves-barbs (Rel=) CWB
and rel-preserves-barbs (Rel™) CWB
and rel-preserves-barbs (Rel*) CWB
using preservation
preservation-of-binary-predicates-and-closures|[where Rel=Rel and Pred=HasBarb CWDB]
by blast+

If a relation reflects barbs then so does its reflexive or/and transitive closure.

lemma reflection-of-barbs-and-closures:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes reflection: rel-reflects-barbs Rel CWB
shows rel-reflects-barbs (Rel=) CWB
and rel-reflects-barbs (Rel™) CWB
and rel-reflects-barbs (Rel*) CWB
using reflection
reflection-of-binary-predicates-and-closures[where Rel=Rel and Pred=HasBarb CWB|
by blast+

If a relation respects barbs then so does its reflexive, symmetric, or/and transitive closure.

lemma respection-of-barbs-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes respection: rel-respects-barbs Rel CWB
shows rel-respects-barbs (Rel=) CWB
and rel-respects-barbs (symcl Rel) CWB
and rel-respects-barbs (Rel™) CWB
and rel-respects-barbs (symcl (Rel=™)) CWB
and rel-respects-barbs (Rel*) CWB
and rel-respects-barbs ((symcl (Rel=))*) CWB
proof —
from respection show rel-respects-barbs (Rel=) CWB
using respection-of-binary-predicates-and-closures(1)[where Rel=Rel and Pred=HasBarb CWB]
by blast
next
from respection show rel-respects-barbs (symcl Rel) CWB
using respection-of-binary-predicates-and-closures(2)[where Rel=Rel and Pred=HasBarb CWB]
by blast
next

14

from respection show rel-respects-barbs (Relt) CWB
using respection-of-binary-predicates-and-closures(3)[where Rel=Rel and Pred=HasBarb CWB]
by blast
next
from respection show rel-respects-barbs (symcl (Rel™)) CWB
using respection-of-binary-predicates-and-closures(4)[where Rel=Rel and Pred=HasBarb CWB]
by blast
next
from respection show rel-respects-barbs (Rel*) CWB
using respection-of-binary-predicates-and-closures(5)[where Rel=Rel and Pred=HasBarb CWB]
by blast
next
from respection show rel-respects-barbs ((symcl (Rel=))") CWB
using respection-of-binary-predicates-and-closures(6)[where Rel=Rel and Pred=HasBarb CWB]
by blast
qed

A relation R weakly preserves barbs if it preserves reachability of barbs, i.e., if (P, Q) in R and P
reaches a barb then also Q has to reach this barb.

abbreviation rel-weakly-preserves-barb-set
2 ("proc x 'proc) set = (’proc, 'barbs) calculus WithBarbs = 'barbs set = bool
where
rel-weakly-preserves-barb-set Rel CWB Barbs =
rel-preserves-binary-pred Rel (AP a. a € Barbs AN Pl<CWB>a)

abbreviation rel-weakly-preserves-barbs
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
rel-weakly-preserves-barbs Rel CWB = rel-preserves-binary-pred Rel (AP a. Py<CWDB>a)

lemma weak-preservation-of-barbs-and-set-of-barbs:
fixes Rel :: ('proc x 'proc) set
and CWB :: ("proc, 'barbs) calculus WithBarbs
shows rel-weakly-preserves-barbs Rel CWB
= (V Barbs. rel-weakly-preserves-barb-set Rel CWB Barbs)
by blast

A relation R weakly reflects barbs if it reflects reachability of barbs, i.e., if (P, Q) in R and Q reaches
a barb then also P has to reach this barb.

abbreviation rel-weakly-reflects-barb-set
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = 'barbs set = bool
where
rel-weakly-reflects-barb-set Rel CWB Barbs =
rel-reflects-binary-pred Rel (AP a. a € Barbs N P{<CWB>a)

abbreviation rel-weakly-reflects-barbs
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
rel-weakly-reflects-barbs Rel CWB = rel-reflects-binary-pred Rel (AP a. Py<CWB>a)

lemma weak-refiection-of-barbs-and-set-of-barbs:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
shows rel-weakly-reflects-barbs Rel CWB = (V¥ Barbs. rel-weakly-reflects-barb-set Rel CWB Barbs)
by blast

A relation weakly respects barbs if it weakly preserves and weakly reflects barbs.

abbreviation rel-weakly-respects-barb-set
o ("proc x 'proc) set = ('proc, 'barbs) calculusWithBarbs = 'barbs set = bool
where

15

rel-weakly-respects-barb-set Rel CWB Barbs =
rel-weakly-preserves-barb-set Rel CWB Barbs A rel-weakly-reflects-barb-set Rel CWB Barbs

abbreviation rel-weakly-respects-barbs
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
rel-weakly-respects-barbs Rel CWB =
rel-weakly-preserves-barbs Rel CWB A rel-weakly-reflects-barbs Rel CWB

lemma weak-respection-of-barbs-and-set-of-barbs:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
shows rel-weakly-respects-barbs Rel CWB = (¥ Barbs. rel-weakly-respects-barb-set Rel CWB Barbs)
by blast

If a relation weakly preserves barbs then so does its reflexive or/and transitive closure.

lemma weak-preservation-of-barbs-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes preservation: rel-weakly-preserves-barbs Rel CWB
shows rel-weakly-preserves-barbs (Rel=) CWB
and rel-weakly-preserves-barbs (Rel™) CWB
and rel-weakly-preserves-barbs (Rel*) CWB
using preservation preservation-of-binary-predicates-and-closures[where Rel=Rel
and Pred=AP a. P{<CWB>a]
by blast+

If a relation weakly reflects barbs then so does its reflexive or/and transitive closure.

lemma weak-reflection-of-barbs-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes reflection: rel-weakly-reflects-barbs Rel CWB
shows rel-weakly-reflects-barbs (Rel=) CWB
and rel-weakly-reflects-barbs (Rel™) CWB
and rel-weakly-reflects-barbs (Rel*) CWB
using reflection reflection-of-binary-predicates-and-closuresjwhere Rel=Rel
and Pred=MAP a. Py{<CWB>a]
by blast+

If a relation weakly respects barbs then so does its reflexive, symmetric, or/and transitive closure.

lemma weak-respection-of-barbs-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes respection: rel-weakly-respects-barbs Rel CWB
shows rel-weakly-respects-barbs (Rel=) CWB
and rel-weakly-respects-barbs (symcl Rel) CWB
and rel-weakly-respects-barbs (Rel™) CWB
and rel-weakly-respects-barbs (symcl (Rel=)) CWB
and rel-weakly-respects-barbs (Rel*) CWB
and rel-weakly-respects-barbs ((symcl (Rel=))*) CWB
proof —
from respection show rel-weakly-respects-barbs (Rel=) CWB
using respection-of-binary-predicates-and-closures(1)[where Rel=Rel
and Pred=AP a. P{<CWB>a]
by blast
next
from respection show rel-weakly-respects-barbs (symcl Rel) CWB
using respection-of-binary-predicates-and-closures(2)[where Rel=Rel
and Pred=AP a. P{<CWB>a]
by blast

16

next
from respection show rel-weakly-respects-barbs (Rel™) CWB
using respection-of-binary-predicates-and-closures(3)[where Rel=Rel
and Pred=MAP a. P{<CWB>a]
by blast
next
from respection show rel-weakly-respects-barbs (symcl (Rel=)) CWB
using respection-of-binary-predicates-and-closures(4)[where Rel=Rel
and Pred=AP a. P{<CWB>a]
by blast
next
from respection show rel-weakly-respects-barbs (Rel*) CWB
using respection-of-binary-predicates-and-closures(5)[where Rel=Rel
and Pred=AP a. Pl<CWB>ad]
by blast
next
from respection show rel-weakly-respects-barbs ((symcl (Rel=))*) CWB
using respection-of-binary-predicates-and-closures(6)[where Rel=Rel
and Pred=AP a. Pl<CWB>d]
by blast
qed

end

theory SimulationRelations
imports ProcessCalculi

begin

3 Simulation Relations

Simulation relations are a special kind of property on relations on processes. They usually require that
steps are (strongly or weakly) preserved and/or reflected modulo the relation. We consider different
kinds of simulation relations.

3.1 Simulation

A weak reduction simulation is relation R such that if (P, Q) in R and P evolves to some P’ then there
exists some Q’ such that Q evolves to Q" and (P’, Q’) in R.

abbreviation weak-reduction-simulation
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
weak-reduction-simulation Rel Cal =
VP QP.(P,Q) € Rl N P——Calx P' — (3Q". Q@ —Calx Q" AN (P, Q) € Rel)

A weak barbed simulation is weak reduction simulation that weakly preserves barbs.

abbreviation weak-barbed-simulation
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
weak-barbed-simulation Rel CWB =
weak-reduction-simulation Rel (Calculus CWB) A rel-weakly-preserves-barbs Rel CWB

The reflexive and/or transitive closure of a weak simulation is a weak simulation.

lemma weak-reduction-simulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes simulation: weak-reduction-simulation Rel Cal
shows weak-reduction-simulation (Rel=) Cal
and weak-reduction-simulation (Rel™) Cal
and weak-reduction-simulation (Rel*) Cal

17

proof —
from simulation show A: weak-reduction-simulation (Rel=) Cal
by (auto simp add: refl, blast)
have B: \Rel. weak-reduction-simulation Rel Cal = weak-reduction-simulation (Rel™) Cal
proof clarify
fix Rel P Q P’
assume B1: weak-reduction-simulation Rel Cal
assume (P,)) € Relt and P — Calx P’
thus 3Q". Q —Calx Q' A (P', Q') € Rel™
proof (induct arbitrary: P’)
fix Q P’
assume (P, @) € Rel and P — Calx P’
with B! obtain Q' where Q — Calx Q' and (P’, Q') € Rel
by blast
thus 3Q". Q —Calx Q' A (P', Q') € Rel*
by auto
next
case (step Q R P’)
assume AP’. P —Calx P/ = (3Q". Q —Calx Q' A (P’, Q') € Rel™)
and P — Calx P’
from this obtain Q' where B2: Q — Calx Q' and B3: (P’, Q') € Rel™
by blast
assume (@, R) € Rel
with BI B2 obtain R’ where B/: R — Calx R’ and B5: (Q', R') € Rel®
by blast
from B3 B5 have (P’, R') € Rel™
by simp
from B/ this show IR’ R —Calx R' A (P', R') € Rel™
by blast
qed
qged
with simulation show weak-reduction-simulation (Rel™) Cal
by blast
from simulation A Blwhere Rel=Rel~|
show weak-reduction-simulation (Rel*) Cal
using trancl-reficl[of Rel]
by fast
qed

lemma weak-barbed-simulation-and-closures:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes simulation: weak-barbed-simulation Rel CWB
shows weak-barbed-simulation (Rel=) CWB
and weak-barbed-simulation (Rel™) CWB
and weak-barbed-simulation (Rel*) CWB
proof —
from simulation show weak-barbed-simulation (Rel=) CWB
using weak-reduction-simulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB]
weak-preservation-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
by blast
next
from simulation show weak-barbed-simulation (Rel™) CWB
using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Calculus CWB]
weak-preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
by blast
next
from simulation show weak-barbed-simulation (Rel*) CWB
using weak-reduction-simulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
weak-preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
by blast

18

qed

In the case of a simulation weak preservation of barbs can be replaced by the weaker condition that
whenever (P, Q) in the relation and P has a barb then Q have to be able to reach this barb.

abbreviation weak-barbed-preservation-cond
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
weak-barbed-preservation-cond Rel CWB =V P Q a. (P, Q) € Rel N Pl<CWB>a — QU<CWB>a

lemma weak-preservation-of-barbs:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes preservation: rel-weakly-preserves-barbs Rel CWB
shows weak-barbed-preservation-cond Rel CWB
proof clarify
fix PQa
have P —(Calculus CWB)x P
by (simp add: steps-refl)
moreover assume P|<CWB>a
ultimately have P|<CWB>a
by blast
moreover assume (P, Q) € Rel
ultimately show QJ<CWB>a
using preservation
by blast
qed

lemma simulation-impl-equality-of-preservation-of-barbs-conditions:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes simulation: weak-reduction-simulation Rel (Calculus CWB)
shows rel-weakly-preserves-barbs Rel CWB = weak-barbed-preservation-cond Rel CWB
proof
assume rel-weakly-preserves-barbs Rel CWB
thus weak-barbed-preservation-cond Rel CWB
using weak-preservation-of-barbsjwhere Rel=Rel and CWB=CWB]
by blast
next
assume condition: weak-barbed-preservation-cond Rel CWB
show rel-weakly-preserves-barbs Rel CWB
proof clarify
fix PQaP
assume (P, @) € Rel and P ——(Calculus CWB)* P’
with simulation obtain @’ where A1: @ —(Calculus CWB)x Q' and A2: (P’, Q') € Rel
by blast
assume P'|<CWB>a
with A2 condition obtain Q' where A3: Q' ——(Calculus CWB)x Q" and Aj: Q""|<CWB>a
by blast
from A1 A3 have @ ——(Calculus CWB)x Q"
by (rule steps-add)
with A4 show QJ<CWB>a
by blast
qged
qed

A strong reduction simulation is relation R such that for each pair (P, Q) in R and each step of P to
some P’ there exists some Q' such that there is a step of Q to Q’ and (P’, Q’) in R.

abbreviation strong-reduction-simulation :: (‘proc x 'proc) set = 'proc processCalculus = bool
where
strong-reduction-simulation Rel Cal =

19

YP QP (P,Q) € RlAP+—CalP' — (3Q". Q —Cal Q' A (P’, Q') € Rel)

A strong barbed simulation is strong reduction simulation that preserves barbs.

abbreviation strong-barbed-simulation
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
strong-barbed-simulation Rel CWB =
strong-reduction-simulation Rel (Calculus CWB) A rel-preserves-barbs Rel CWDB

A strong strong simulation is also a weak simulation.

lemma strong-impl-weak-reduction-simulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes simulation: strong-reduction-simulation Rel Cal
shows weak-reduction-simulation Rel Cal
proof clarify
fix PQP'
assume AI: (P, Q) € Rel
assume P —— Calx P’
from this obtain n where P —— Cal™ P’
by (auto simp add: steps-def)
thus 3Q". Q —Calx Q' A (P, Q") € Rel
proof (induct n arbitrary: P’)

case (
assume P —Cal? P’
hence P = P’

by (simp add: steps-refl)

moreover have @) — Calx @
by (rule steps-refl)

ultimately show 3 Q. @ — Calx Q' A (P’, Q') € Rel

using A1
by blast
next

case (Suc n P")

assume P —(Calouc ™ p

from this obtain P’ where A2: P —— Cal™P’ and A3: P' —Cal P"
by auto

assume AP’ P+—Cal™ P/ = 3Q". Q@ —Calx Q' A (P’, Q') € Rel

with A2 obtain Q' where A4: Q —— Calx Q' and A5: (P’, Q) € Rel
by blast

from simulation A5 A3 obtain Q" where A6: Q' ——Cal Q" and A7: (P", Q") € Rel
by blast

from A4 A6 have Q — Calx Q"'

using steps-add[where P=Q and Q=Q' and R=Q"

by (simp add: step-to-steps)

with A7 show 3Q". Q —Calx Q' A (P", Q') € Rel
by blast

qed
qed

lemma strong-barbed-simulation-impl-weak-preservation-of-barbs:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes simulation: strong-barbed-simulation Rel CWB
shows rel-weakly-preserves-barbs Rel CWB
proof clarify
fix PQaP
assume (P, Q) € Rel and P ——(Calculus CWB)* P’
with simulation obtain Q' where A1: Q —(Calculus CWB)x Q' and A2: (P, Q') € Rel
using strong-impl-weak-reduction-simulation[where Rel=Rel and Cal=Calculus CWB|

20

by blast
assume P’'|<CWB>a
with simulation A2 have Q'|<CWB>a
by blast
with A7 show Ql<CWB>a
by blast
qed

lemma strong-impl-weak-barbed-simulation:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes simulation: strong-barbed-simulation Rel CWB
shows weak-barbed-simulation Rel CWB
using simulation
strong-impl-weak-reduction-simulation[where Rel=Rel and Cal=Calculus CWB]
strong-barbed-simulation-impl-weak-preservation-of-barbsjwhere Rel=Rel and CWB=CWB]|
by blast

The reflexive and/or transitive closure of a strong simulation is a strong simulation.

lemma strong-reduction-simulation-and-closures:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
assumes simulation: strong-reduction-simulation Rel Cal
shows strong-reduction-simulation (Rel=) Cal
and strong-reduction-simulation (Rel™) Cal
and strong-reduction-simulation (Rel*) Cal
proof —
from simulation show A: strong-reduction-simulation (Rel=) Cal
by (auto simp add: refl, blast)
have B: \Rel. strong-reduction-simulation Rel Cal
= strong-reduction-simulation (Rel™) Cal
proof clarify
fix Rel P Q P’
assume B1: strong-reduction-simulation Rel Cal
assume (P, Q) € Rel™ and P —Cal P’
thus 3Q". Q —Cal Q' A (P’, Q') € Rel™
proof (induct arbitrary: P’)
fix Q P’
assume (P, Q) € Rel and P ——Cal P’
with B! obtain @’ where Q —Cal Q' and (P’, Q') € Rel
by blast
thus 3Q". Q —Cal Q' A (P’, Q') € Rel™
by auto
next
case (step Q R P’)
assume AP’ P+——Cal P'= (3Q". Q —Cal Q' A (P', Q') € Rel™)
and P —Cal P’
from this obtain Q' where B2: Q — Cal Q' and B3: (P’, Q') € Rel™
by blast
assume (Q, R) € Rel
with BI B2 obtain R’ where Bj: R —Cal R’ and B5: (Q', R) € Rel™
by blast
from B3 B5 have (P’, R) € Rel™
by simp
with B/ show 3R’ R ——Cal R’ A (P', R’) € Rel™
by blast
qed
qged
with simulation show strong-reduction-simulation (Rel™) Cal
by blast
from simulation A Blwhere Rel=Rel~]

21

show strong-reduction-simulation (Rel*) Cal
using trancl-reficl[of Rel]
by fast
qed

lemma strong-barbed-simulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, "barbs) calculus WithBarbs
assumes simulation: strong-barbed-simulation Rel CWB
shows strong-barbed-simulation (Rel=) CWB
and strong-barbed-simulation (Rel™) CWB
and strong-barbed-simulation (Rel*) CWB
proof —
from simulation show strong-barbed-simulation (Rel=) CWB
using strong-reduction-simulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB]
preservation-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
by blast
next
from simulation show strong-barbed-simulation (Rel™) CWB
using strong-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Calculus CWB]
preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
by blast
next
from simulation show strong-barbed-simulation (Rel*) CWB
using strong-reduction-simulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
by blast
qed

3.2 Contrasimulation

A weak reduction contrasimulation is relation R such that if (P, Q) in R and P evolves to some P’
then there exists some Q’ such that Q evolves to Q” and (Q’, P’) in R.

abbreviation weak-reduction-contrasimulation
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
weak-reduction-contrasimulation Rel Cal =
VP QP.(P,Q) € Rl N P—Calx P — (3Q". Q —Calx Q' A (Q', P") € Rel)

A weak barbed contrasimulation is weak reduction contrasimulation that weakly preserves barbs.

abbreviation weak-barbed-contrasimulation
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
weak-barbed-contrasimulation Rel CWB =
weak-reduction-contrasimulation Rel (Calculus CWB) A rel-weakly-preserves-barbs Rel CWB

The reflexive and/or transitive closure of a weak contrasimulation is a weak contrasimulation.

lemma weak-reduction-contrasimulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes contrasimulation: weak-reduction-contrasimulation Rel Cal
shows weak-reduction-contrasimulation (Rel=) Cal
and weak-reduction-contrasimulation (Rel™) Cal
and weak-reduction-contrasimulation (Rel*) Cal
proof —
from contrasimulation show A: weak-reduction-contrasimulation (Rel=) Cal
by (auto simp add: refl, blast)
have B: ARel. weak-reduction-contrasimulation Rel Cal
= weak-reduction-contrasimulation (Rel™) Cal

22

proof clarify
fix Rel P Q P’
assume B1: weak-reduction-contrasimulation Rel Cal
assume (P, Q) € Rel™ and P —— Cal* P’
thus 3Q". Q —Calx Q' A (Q', P') € Rel™
proof (induct arbitrary: P’)
fix Q P’
assume (P, Q) € Rel and P ——Calx P’
with B! obtain Q' where Q —— Calx Q' and (Q’, P') € Rel
by blast
thus 3Q". Q —Calx Q' A (Q’, P') € Rel™
by auto
next
case (step Q R P’)
assume A\P". P +—Calx P' = (3Q". Q —Calx Q" N (Q', P) € Rel™)
and P — Calx P’
from this obtain Q' where B2: Q — Calx Q' and B3: (Q’, P’) € Rel™
by blast
assume (@, R) € Rel
with B! B2 obtain R’ where B/: R —Calx R’ and B5: (R, Q') € Rel™
by blast
from B5 B3 have (R’, P’) € Rel™
by simp
with B4 show 3R’ R ——Calx R’ A (R, P') € Rel*
by blast
qed
qged
with contrasimulation show weak-reduction-contrasimulation (Rel™) Cal
by blast
from contrasimulation A B[where Rel=Rel~|
show weak-reduction-contrasimulation (Rel*) Cal
using trancl-reficl[of Rel]
by fast
qed

lemma weak-barbed-contrasimulation-and-closures:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes contrasimulation: weak-barbed-contrasimulation Rel CWB
shows weak-barbed-contrasimulation (Rel=) CWB
and weak-barbed-contrasimulation (Relt) CWB
and weak-barbed-contrasimulation (Rel*) CWB
proof —
from contrasimulation show weak-barbed-contrasimulation (Rel=) CWB
using weak-reduction-contrasimulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB|
weak-preservation-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
by blast
next
from contrasimulation show weak-barbed-contrasimulation (Relt) CWB
using weak-reduction-contrasimulation-and-closures(2)[where Rel=Rel and Cal=Calculus CWB]
weak-preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
by blast
next
from contrasimulation show weak-barbed-contrasimulation (Rel*) CWB
using weak-reduction-contrasimulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWDB]
weak-preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]|
by blast
qed

23

3.3 Coupled Simulation

A weak reduction coupled simulation is relation R such that if (P, Q) in R and P evolves to some P’
then there exists some Q’ such that Q evolves to Q’ and (P’, Q’) in R and there exits some Q’ such
that Q evolves to Q' and (Q’, P’) in R.

abbreviation weak-reduction-coupled-simulation
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
weak-reduction-coupled-simulation Rel Cal =
VP QP.(P,Q) € Rel AN P+——Calx P’
— (3Q". Q@ —Calx Q' N (P, Q") € Rel) A (3 Q. @ —Calx Q' A (Q', P") € Rel)

A weak barbed coupled simulation is weak reduction coupled simulation that weakly preserves barbs.

abbreviation weak-barbed-coupled-simulation
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
weak-barbed-coupled-simulation Rel CWB =
weak-reduction-coupled-simulation Rel (Calculus CWB) A rel-weakly-preserves-barbs Rel CWB

A weak coupled simulation combines the conditions on a weak simulation and a weak contrasimulation.

lemma weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
shows weak-reduction-coupled-simulation Rel Cal
= (weak-reduction-simulation Rel Cal N\ weak-reduction-contrasimulation Rel Cal)
by blast

lemma weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
shows weak-barbed-coupled-simulation Rel CWB
= (weak-barbed-simulation Rel CWB A weak-barbed-contrasimulation Rel CWB)
by blast

The reflexive and/or transitive closure of a weak coupled simulation is a weak coupled simulation.

lemma weak-reduction-coupled-simulation-and-closures:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
assumes coupledSimulation: weak-reduction-coupled-simulation Rel Cal
shows weak-reduction-coupled-simulation (Rel=) Cal
and weak-reduction-coupled-simulation (Rel*) Cal
and weak-reduction-coupled-simulation (Rel*) Cal
using weak-reduction-simulation-and-closuresjwhere Rel=Rel and Cal=Cal]
weak-reduction-contrasimulation-and-closuresjwhere Rel=Rel and Cal=Cal]
weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation[where Rel=Rel
and Cal=Cll]
coupledSimulation
by auto

lemma weak-barbed-coupled-simulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes coupledSimulation: weak-barbed-coupled-simulation Rel CWB
shows weak-barbed-coupled-simulation (Rel=) CWB
and weak-barbed-coupled-simulation (Relt) CWB
and weak-barbed-coupled-simulation (Rel*) CWB
proof —
from coupledSimulation show weak-barbed-coupled-simulation (Rel=) CWB
using weak-reduction-coupled-simulation-and-closures(1)[where Rel=Rel

24

and Cal=Calculus CWB|
weak-preservation-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
by blast
next
from coupledSimulation show weak-barbed-coupled-simulation (Relt) CWB
using weak-reduction-coupled-simulation-and-closures(2)[where Rel=Rel
and Cal=Calculus CWB|
weak-preservation-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]|
by blast
next
from coupledSimulation show weak-barbed-coupled-simulation (Rel*) CWB
using weak-reduction-coupled-simulation-and-closures(3)[where Rel=Rel
and Cal=Calculus CWB]
weak-preservation-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
by blast
qed

3.4 Correspondence Simulation

A weak reduction correspondence simulation is relation R such that (1) if (P, Q) in R and P evolves
to some P’ then there exists some Q’ such that Q evolves to Q' and (P’, Q') in R, and (2) if (P, Q)
in R and P evolves to some P’ then there exists some P” and Q” such that P evolves to P” and Q’
evolves to Q” and (P”, Q”) in Rel.

abbreviation weak-reduction-correspondence-simulation
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
weak-reduction-correspondence-simulation Rel Cal =
(VPQP'.(P,Q) € Rl N P—Calx P — (3Q". Q —Calx Q' N (P, Q') € Rel))
ANNVPQQ. (P, Q) € Rel N Q —Calx Q'
— (3P Q". P —Calx P" N Q' —Calx Q" N (P, Q") € Rel))

A weak barbed correspondence simulation is weak reduction correspondence simulation that weakly
respects barbs.

abbreviation weak-barbed-correspondence-simulation
2 ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
weak-barbed-correspondence-simulation Rel CWB =
weak-reduction-correspondence-simulation Rel (Calculus CWB)
A rel-weakly-respects-barbs Rel CWB

For each weak correspondence simulation R there exists a weak coupled simulation that contains all
pairs of R in both directions.

inductive-set cSim-cs :: (‘proc x ‘proc) set = 'proc processCalculus = ('proc x 'proc) set
for Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
where
left: [Q —Calx Q'; (P', Q') € Rel] = (P’, Q) € cSim-cs Rel Cal |
right: [P — Calx P’ (Q, P) € Rel] = (P’, Q) € ¢Sim-cs Rel Cal |
trans: [(P, Q) € cSim-cs Rel Cal; (@, R) € ¢Sim-cs Rel Cal] = (P, R) € cSim-cs Rel Cal

lemma weak-reduction-correspondence-simulation-impl-coupled-simulation:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
assumes corrSim: weak-reduction-correspondence-simulation Rel Cal
shows weak-reduction-coupled-simulation (cSim-cs Rel Cal) Cal
and VP Q. (P, Q) € Rel — (P, Q) € cSim-cs Rel Cal A (Q, P) € c¢Sim-cs Rel Cal
proof —
show weak-reduction-coupled-simulation (cSim-cs Rel Cal) Cal
proof (rule alll, rule alll, rule alll, rule impl, erule conjE)

25

fix P Q P’
assume (P, Q) € c¢Sim-cs Rel Cal and P — Calx P’
thus (3Q". Q —Calx Q' N (P, Q') € ¢Sim-cs Rel Cal)
A(FQ. Qr—Calx Q' N (Q, P') € cSim-cs Rel Cal)
proof (induct arbitrary: P’)
case (left Q@ Q' P)
assume (P, Q") € Rel and P ——Cal*x P’
with corrSim obtain Q' where A1: Q' —Calx Q" and A2: (P', Q") € Rel
by blast
assume A3: Q — Calx Q'
from this A1 have A/: Q —Calx Q"
by (rule steps-add[where P=@ and @=Q' and R=Q'")
have Q' ——Calx Q"
by (rule steps-refl)
with A2 have A5: (Q”, P') € c¢Sim-cs Rel Cal
by (simp add: cSim-cs.right)
from A1 A2 have (P/, Q') € c¢Sim-cs Rel Cal
by (rule cSim-cs.left)
with A4 A5 A3 show ?case
by blast
next
case (right P P’ Q P")
assume P —— Calx P’ and P’ —— Calx P"
hence B1: P —Calx P”
by (rule steps-add[where P=P and Q=P’and R=P")
assume B2: (Q, P) € Rel
with corrSim BI obtain Q' P'" where B3: Q —Calx Q""" and B4: P' ——Calx P'""’
and B5: (Q', P"") € Rel
by blast
from B/ B5 have B6: (Q"', P") € ¢Sim-cs Rel Cal
by (rule cSim-cs.left)
have B7: Q — Calx @
by (rule steps-refl)
from B! B2 have (P", Q) € ¢Sim-cs Rel Cal
by (rule c¢Sim-cs.right)
with B3 B6 B7 show ?Zcase
by blast
next
case (trans P Q R P’)
assume P —— Calx P’
and AP P +—Calx P! = (3Q". Q —Calx Q' N (P’, Q') € ¢Sim-cs Rel Cal)
AEFQ. Qr—Calx Q' A (Q, P') € cSim-cs Rel Cal)
from this obtain Q1 Q2 where C1: Q — Calx Q1 and C2: (Q1, P’) € ¢Sim-cs Rel Cal
and C3: Q —Calx Q2 and C4: (P', Q2) € cSim-cs Rel Cal
by blast
assume C5: AQ'. Q —Calx Q' = (3R’. R+—Calx R’ N (Q', R’) € ¢Sim-cs Rel Cal)
A (3R R+—Calx R' A (R, Q') € cSim-cs Rel Cal)
with C1 obtain R1 where C6: R ——Calx R1 and C7: (R1, Q1) € ¢Sim-cs Rel Cal
by blast
from C7 C2 have C8: (R1, P') € c¢Sim-cs Rel Cal
by (rule ¢Sim-cs.trans)
from C3 C5 obtain R2 where C9: R — Calx R2 and C10: (Q2, R2) € cSim-cs Rel Cal
by blast
from C/ C10 have (P’, R2) € cSim-cs Rel Cal
by (rule cSim-cs.trans)
with C6 C8 C9 show Zcase
by blast
qed
qged
next
show VP Q. (P, Q) € Rel — (P, Q) € cSim-cs Rel Cal A (Q, P) € c¢Sim-cs Rel Cal

26

proof clarify
fix P Q
have @ — Calx Q
by (rule steps-refl)
moreover assume (P, @) € Rel
ultimately show (P, Q) € c¢Sim-cs Rel Cal A (Q, P) € ¢Sim-cs Rel Cal
by (simp add: cSim-cs.left cSim-cs.right)
qed
qed

lemma weak-barbed-correspondence-simulation-impl-coupled-simulation:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes corrSim: weak-barbed-correspondence-simulation Rel CWB
shows weak-barbed-coupled-simulation (cSim-cs Rel (Calculus CWB)) CWB
and VP Q. (P, Q) € Rel — (P, Q) € cSim-cs Rel (Calculus CWB)
A (Q, P) € cSim-cs Rel (Calculus CWB)
proof —
show weak-barbed-coupled-simulation (cSim-cs Rel (Calculus CWB)) CWB
proof
from corrSim
show weak-reduction-coupled-simulation (cSim-cs Rel (Calculus CWB)) (Calculus CWB)
using weak-reduction-correspondence-simulation-impl-coupled-simulation(1)[where Rel=Rel
and Cal=Calculus CWB]
by blast
next
show rel-weakly-preserves-barbs (¢Sim-cs Rel (Calculus CWB)) CWB
proof clarify
fix P QaP’
assume (P, Q) € c¢Sim-cs Rel (Calculus CWB) and P ——(Calculus CWB)* P’ and P'|<CWB>a
thus QU< CWB>a
proof (induct arbitrary: P’)
case (left Q Q' P P
assume (P, Q') € Rel and P ——(Calculus CWB)* P’ and P'|<CWB>a
with corrSim obtain Q' where A1: Q' —(Calculus CWB)x Q" and A2: Q"|<CWB>a
by blast
assume @ —(Calculus CWB)x Q'
from this A1 have @ ——(Calculus CWB)x Q"
by (rule steps-add)
with A2 show QI<CWB>a
by blast
next
case (right P P’ Q P”)
assume (Q, P) € Rel
moreover assume P —(Calculus CWB)+ P’ and P’ —(Calculus CWB)x P
hence P —(Calculus CWB)x P”
by (rule steps-add)
moreover assume P''|<CWB>a
ultimately show Q|<CWB>a
using corrSim
by blast
next
case (trans P Q R P’)
assume AP’. P ——(Calculus CWB)* P’ = P'|<CWB>a = QI<CWB>a
and P +——(Calculus CWB)x P’ and P'l<CWB>a
and AQ'. Q —(Calculus CWB)x Q' = Q'|<CWB>a = R|<CWB>a
thus R|<CWB>a
by blast
qed
qed
qed

27

next
from corrSim show VP Q. (P, Q) € Rel — (P, Q) € cSim-cs Rel (Calculus CWB)
A (Q, P) € cSim-cs Rel (Calculus CWB)
using weak-reduction-correspondence-simulation-impl-coupled-simulation(2)[where Rel=Rel
and Cal=Calculus CWB|
by blast
qed

lemma reduction-correspondence-simulation-condition-trans:
fixes Cal :: 'proc processCalculus
and P Q R :: 'proc
and Rel :: ('proc x 'proc) set
assumes A1:V Q' Q —Calx Q' — (3P Q". P—Calx P" AN Q' —Calx Q" N (P", Q") € Rel)
and A2: VR R+—Calx R' — (3Q"” R”. @ —Calx Q" N R’ —Calx R"" N (Q”, R") € Rel)
and A3: weak-reduction-simulation Rel Cal
and A4: trans Rel
shows VR'. R —Calx R’ — (3P" R". P ——Calx P"" N R' — Calx R" N (P"'; R") € Rel)
proof clarify
fix R’
assume R ——Calx R’
with A2 obtain Q" R’ where A5: Q — Calx Q" and A6: R’ — Calx R
and A7: (Q", R"”) € Rel
by blast
from A1 A5 obtain P’ Q' where A8: P —— Calx P and A9: Q" —— Calx Q'
and A10: (P, Q") € Rel
by blast
from A3 A7 A9 obtain R’ where A11: R” +——Calx R and A12: (Q", R"") € Rel
by blast
from A6 A11 have A13: R’ —Calx R
by (rule steps-add|where P=R’ and Q=R' and R=R'"))
from A/ A10 A12 have (P"', R"") € Rel
unfolding trans-def
by blast
with A8 A13 show 3P" R”. P —Calx P AN R’ —Calx R"" A (P", R"") € Rel
by blast
qed

The reflexive and/or transitive closure of a weak correspondence simulation is a weak correspondence
simulation.

lemma weak-reduction-correspondence-simulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes corrSim: weak-reduction-correspondence-simulation Rel Cal
shows weak-reduction-correspondence-simulation (Rel=) Cal
and weak-reduction-correspondence-simulation (Rel™) Cal
and weak-reduction-correspondence-simulation (Rel*) Cal
proof —
show A: weak-reduction-correspondence-simulation (Rel=) Cal
proof
from corrSim show weak-reduction-simulation (Rel=) Cal
using weak-reduction-simulation-and-closures(1)[where Rel=Rel and Cal=Cal)
by blast
next
show VP Q Q. (P, Q) € Rel= A Q —Calx Q'
— (3P Q". P —Calx P" AN Q' +—Calx Q" N (P, Q") € Rel7)
proof clarify
fix P Q Q'
assume (P, Q) € Rel= and Al: Q —Calx Q'
moreover have P = Q = 3P"” Q". P +——Calx P" AN Q' +——Calx Q" N (P, Q") € Rel™
proof —

28

assume P = ()
moreover have Q' —— Calx Q'
by (rule steps-refl)
ultimately show 3P Q”. P —Calx P A Q' —Calx Q" N (P, Q") € Rel™
using A1 refl
by blast
qed
moreover
have (P, Q) € Rel = 3P" Q”. P +——Calx P" N Q' —Calx Q" N (P", Q") € Rel™
proof —
assume (P, Q) € Rel
with corrSim A1 obtain P Q" where P ——Calx P” and Q' —— Calx Q"
and (P, Q") € Rel
by blast
thus 3P Q". P —Calx P N Q' +—Calx Q" N (P, Q") € Rel™
by auto
qed
ultimately show I3 P" Q”. P —Calx P"" AN Q' —Calx Q" N (P, Q") € Rel™
by auto
qed
qged
have B: A Rel. weak-reduction-correspondence-simulation Rel Cal
= weak-reduction-correspondence-simulation (Relt) Cal
proof
fix Rel
assume weak-reduction-correspondence-simulation Rel Cal
thus weak-reduction-simulation (Rel™) Cal
using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal)
by blast
next
fix Rel
assume B1: weak-reduction-correspondence-simulation Rel Cal
show VP Q Q' (P, Q) € Rel™ A Q —Calx Q'
— (AP Q". P+——Calx P" N Q' ——Calx Q" N (P, Q") € Rel™)
proof clarify
fix P Q Q'
assume (P, Q) € Rel™ and Q — Calx Q'
thus 3P Q". P ——Calx P"" N Q' ——Calx Q" N (P, Q") € Rel™
proof (induct arbitrary: Q")
fix Q Q'
assume (P, Q) € Rel and Q — Calx Q'
with Bl obtain P Q" where B2: P —Calx P and B3: Q' ——Calx Q"
and B4: (P", Q") € Rel
by blast
from B/ have (P, Q") € Rel™
by simp
with B2 B3 show 3P Q". P —Calx P" N Q' ——Calx Q" N (P", Q") € Rel™
by blast
next
case (step Q@ R R’)
assume AQ’. Q —Calx Q'
= JP"” Q". P+—Calx P" AN Q' —Calx Q" N (P", Q") € Rel™
moreover assume (Q, R) € Rel
with BI
have AR’ R +——Calx R’ = 3Q" R". Q —Calx Q" N R’ —Calx R" N (Q", R") € Rel™
by blast
moreover from Bl have weak-reduction-simulation (Rel™) Cal
using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal]
by blast
moreover have trans (Rel™t)
using trans-trancl[of Rel]

29

by blast
moreover assume R — Calx R’
ultimately show 3 P” R”. P —Calx P"” N R’ —Calx R" A (P", R") € Rel™
using reduction-correspondence-simulation-condition-trans[where Rel=Rel™|
by blast
qed
qed
qed
from corrSim B|where Rel=Rel] show weak-reduction-correspondence-simulation (Rel™) Cal
by blast
from A Blwhere Rel=Rel~]
show weak-reduction-correspondence-simulation (Rel*) Cal
using trancl-reflcl[of Rel]
by auto
qed

lemma weak-barbed-correspondence-simulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes corrSim: weak-barbed-correspondence-simulation Rel CWDB
shows weak-barbed-correspondence-simulation (Rel=) CWB
and weak-barbed-correspondence-simulation (Rel™) CWB
and weak-barbed-correspondence-simulation (Rel*) CWB
proof —
from corrSim show weak-barbed-correspondence-simulation (Rel=) CWB
using weak-reduction-correspondence-simulation-and-closures(1)[where Rel=Rel
and Cal=Calculus CWB]
weak-respection-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
by fast
next
from corrSim show weak-barbed-correspondence-simulation (Rel™) CWB
using weak-reduction-correspondence-simulation-and-closures(2)[where Rel=Rel
and Cal=Calculus CWB|
weak-respection-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
by blast
next
from corrSim show weak-barbed-correspondence-simulation (Rel*) CWB
using weak-reduction-correspondence-simulation-and-closures(3)[where Rel=Rel
and Cal=Calculus CWB|
weak-respection-of-barbs-and-closures(5)[where Rel=Rel and CWB=CWB]|
by blast
qed

3.5 Bisimulation

A weak reduction bisimulation is relation R such that (1) if (P, Q) in R and P evolves to some P’
then there exists some Q’ such that Q evolves to Q" and (P’, Q’) in R, and (2) if (P, Q) in R and Q
evolves to some Q' then there exists some P’ such that P evolves to P’ and (P’, Q’) in R.

abbreviation weak-reduction-bisimulation
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
weak-reduction-bisimulation Rel Cal =
(VP QP'.(P,Q) € Rl N P—Calx P! — (3Q". Q —Calx Q' N (P, Q) € Rel))
ANANVPQQ.(P,Q) € Rl N Q+—Calx Q' — (AP’. P—Calx P' N (P’, Q') € Rel))

A weak barbed bisimulation is weak reduction bisimulation that weakly respects barbs.

abbreviation weak-barbed-bisimulation
o ("proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
weak-barbed-bisimulation Rel CWB =

30

weak-reduction-bisimulation Rel (Calculus CWB) A rel-weakly-respects-barbs Rel CWB

A symetric weak simulation is a weak bisimulation.

lemma symm-weak-reduction-simulation-is-bisimulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes sym Rel
and weak-reduction-simulation Rel Cal
shows weak-reduction-bisimulation Rel Cal
using assms symD[of Rel]
by blast

lemma symm-weak-barbed-simulation-is-bisimulation:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes sym Rel
and weak-barbed-simulation Rel Cal
shows weak-barbed-bisimulation Rel Cal
using assms symD[of Rel]
by blast

If a relation as well as its inverse are weak simulations, then this relation is a weak bisimulation.

lemma weak-reduction-simulations-impl-bisimulation:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
assumes sim: weak-reduction-simulation Rel Cal
and simInv: weak-reduction-simulation (Rel™') Cal
shows weak-reduction-bisimulation Rel Cal
proof auto
fix PQP'
assume (P, Q) € Rel and P — Calx P’
with sim show 3Q’. Q —Calx Q' A (P’, Q') € Rel
by simp
next
fix P Q Q'
assume (P, @
hence (@, P)
by simp
moreover assume Q — Calx Q'
ultimately obtain P’ where A1: P ——Calx P'and A2: (Q’, P') € Rel™!
using siminv
by blast
from A2 have (P’, Q') € Rel
by induct
with A7 show 3P’ P +——Calx P' A (P’, Q') € Rel
by blast
qed

) € Rel
€ Rel™!

lemma weak-reduction-bisimulations-impl-inverse-is-simulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes bisim: weak-reduction-bisimulation Rel Cal
shows weak-reduction-simulation (Rel™') Cal
proof clarify
fix PQP'
assume (@, P) € Rel
moreover assume P — Calx P’
ultimately obtain @’ where A1: Q — Calx Q' and A2: (Q’, P') € Rel
using bisim
by blast

31

from A2 have (P’, Q') € Rel™!
by simp
with A1 show 3Q’. Q —Calx Q' A (P’, Q') € Rel™!
by blast
qed

lemma weak-reduction-simulations-iff-bisimulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
shows (weak-reduction-simulation Rel Cal A weak-reduction-simulation (Rel=*) Cal)
= weak-reduction-bisimulation Rel Cal
using weak-reduction-simulations-impl-bisimulation[where Rel=Rel and Cal=Cal]
weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel and Cal=Cal]
by blast

lemma weak-barbed-simulations-iff-bisimulation:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, "barbs) calculus WithBarbs
shows (weak-barbed-simulation Rel CWB A weak-barbed-simulation (Rel™') CWB)
= weak-barbed-bisimulation Rel CWB
proof (rule iffI, erule conjE)
assume sim: weak-barbed-simulation Rel CWB
and rev: weak-barbed-simulation (Rel™') CWB
hence weak-reduction-bisimulation Rel (Calculus CWB)
using weak-reduction-simulations-impl-bisimulation[where Rel=Rel and Cal=Calculus CWB]
by blast
moreover from sim have rel-weakly-preserves-barbs Rel CWB
by simp
moreover from rev have rel-weakly-reflects-barbs Rel CWB
by simp
ultimately show weak-barbed-bisimulation Rel CWB
by blast
next
assume bisim: weak-barbed-bisimulation Rel CWB
hence weak-barbed-simulation Rel CWB
by blast
moreover from bisim have weak-reduction-simulation (Rel=') (Calculus CWB)
using weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel]
by simp
moreover from bisim have rel-weakly-reflects-barbs Rel CWB
by blast
hence rel-weakly-preserves-barbs (Rel=') CWB
by simp
ultimately show weak-barbed-simulation Rel CWB A weak-barbed-simulation (Rel~*) CWB
by blast
qed

A weak bisimulation is a weak correspondence simulation.

lemma weak-reduction-bisimulation-is-correspondence-simulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes bisim: weak-reduction-bisimulation Rel Cal
shows weak-reduction-correspondence-simulation Rel Cal
proof
from bisim show weak-reduction-simulation Rel Cal
by blast
next
show VP Q Q. (P, Q) € Rel A Q —Calx Q'
— (3P" Q". P+——Calx P" N Q' +—Calx Q" N (P", Q") € Rel)
proof clarify
fix P Q Q'

32

assume (P, @) € Rel and Q —— Calx Q'

with bisim obtain P’ where P —— Calx P’ and (P’, Q') € Rel
by blast

moreover have Q' —— Calx Q'
by (rule steps-refl)

ultimately show (3P Q”. P ——Calx P AN Q' ——Calx Q" N (P”, Q") € Rel)
by blast

qed
qed

lemma weak-barbed-bisimulation-is-correspondence-simulation:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes bisim: weak-barbed-bisimulation Rel CWB
shows weak-barbed-correspondence-simulation Rel CWB
using bisim weak-reduction-bisimulation-is-correspondence-simulation[where Rel=Rel
and Cal=Calculus CWB]
by blast

The reflexive, symmetric, and/or transitive closure of a weak bisimulation is a weak bisimulation.

lemma weak-reduction-bisimulation-and-closures:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
assumes bisim: weak-reduction-bisimulation Rel Cal
shows weak-reduction-bisimulation (Rel=) Cal
and weak-reduction-bisimulation (symcl Rel) Cal
and weak-reduction-bisimulation (Rel™) Cal
and weak-reduction-bisimulation (symcl (Rel=™)) Cal
and weak-reduction-bisimulation (Rel*) Cal
and weak-reduction-bisimulation ((symcl (Rel=))") Cal
proof —
from bisim show A: weak-reduction-bisimulation (Rel=) Cal
by (auto simp add: refl, blast+)
have B: A Rel. weak-reduction-bisimulation Rel Cal
= weak-reduction-bisimulation (symcl Rel) Cal
by (auto simp add: symcl-def, blast+)
from bisim Blwhere Rel=Rel] show weak-reduction-bisimulation (symcl Rel) Cal
by blast
have C: ARel. weak-reduction-bisimulation Rel Cal
= weak-reduction-bisimulation (Rel™) Cal
proof
fix Rel
assume weak-reduction-bisimulation Rel Cal
thus weak-reduction-simulation (Rel™) Cal
using weak-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal)
by blast
next
fix Rel
assume C1: weak-reduction-bisimulation Rel Cal
show VP Q Q' (P, Q) € Rel™ A Q —Calx Q'
— (3P P+——Calx P' A (P', Q') € Rel™)
proof clarify
fix PQ Q'
assume (P, Q) € Rel™ and Q — Calx Q'
thus 3P". P ——Calx P' A (P’, Q') € Rel™
proof (induct arbitrary: Q)
fix Q Q'
assume (P,) € Rel and Q —— Calx Q'
with C! obtain P’ where P —— Calx P’ and (P’, Q') € Rel
by blast
thus 3P". P +——Calx P' A (P', Q) € Rel™t

33

by auto
next
case (step Q R R
assume (@, R) € Rel and R — Calx R’
with C1 obtain Q' where C2: Q —Calx Q' and C3: (Q’, R) € Rel™
by blast
assume A\Q'. Q —Calx Q' = IP’. P —Calx P' A (P’, Q') € Rel™
with C2 obtain P’ where C/: P —Calx P’ and C5: (P’, Q') € Rel™
by blast
from C5 C3 have (P’, R') € Rel™
by simp
with C4 show 3P’ P —Calx P' A (P, R') € Rel™
by blast
qed
qed
qed
from bisim C|where Rel=Rel] show weak-reduction-bisimulation (Rel™) Cal
by blast
from A B|where Rel=Rel~] show weak-reduction-bisimulation (symecl (Rel™)) Cal
by blast
from A C[where Rel=Rel=] show weak-reduction-bisimulation (Rel*) Cal
using trancl-reflcl[of Rel]
by auto
from A Blwhere Rel=Rel=] C[where Rel=symcl (Rel™)]
show weak-reduction-bisimulation ((symcl (Rel=))") Cal
by blast
qed

lemma weak-barbed-bisimulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes bisim: weak-barbed-bisimulation Rel CWB
shows weak-barbed-bisimulation (Rel=) CWB
and weak-barbed-bisimulation (symcl Rel) CWB
and weak-barbed-bisimulation (Relt) CWB
and weak-barbed-bisimulation (symcl (Rel=)) CWB
and weak-barbed-bisimulation (Rel*) CWB
and weak-barbed-bisimulation ((symcl (Rel=))*t) CWB
proof —
from bisim show weak-barbed-bisimulation (Rel=) CWB
using weak-reduction-bisimulation-and-closures(1)[where Rel=Rel and Cal=Calculus CWB]
weak-respection-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]
by fast
next
from bisim show weak-barbed-bisimulation (symcl Rel) CWB
using weak-reduction-bisimulation-and-closures(2)where Rel=Rel and Cal=Calculus CWB]
weak-respection-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show weak-barbed-bisimulation (Rel*) CWB
using weak-reduction-bisimulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
weak-respection-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show weak-barbed-bisimulation (symcl (Rel=)) CWB
using weak-reduction-bisimulation-and-closures(4)[where Rel=Rel and Cal=Calculus CWB]
weak-respection-of-barbs-and-closures(4)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show weak-barbed-bisimulation (Rel*) CWB
using weak-reduction-bisimulation-and-closures(5)[where Rel=Rel and Cal=Calculus CWB]

34

weak-respection-of-barbs-and-closures(5)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show weak-barbed-bisimulation ((symcl (Rel=))") CWB
using weak-reduction-bisimulation-and-closures(6)[where Rel=Rel and Cal=Calculus CWDB]
weak-respection-of-barbs-and-closures(6)[where Rel=Rel and CWB=CWB]
by blast
qed

A strong reduction bisimulation is relation R such that (1) if (P, Q) in R and P’ is a derivative of P
then there exists some Q’ such that Q’ is a derivative of Q and (P’, Q’) in R, and (2) if (P, Q) in R
and Q’ is a derivative of Q then there exists some P’ such that P’ is a derivative of P and (P’, Q’) in
R.

abbreviation strong-reduction-bisimulation
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
strong-reduction-bisimulation Rel Cal =
(VP QP.(P,Q) € Rl AN P+—CalP'— (3Q". Q@ +—Cal Q' N (P’, Q) € Rel))
ANNVPQQ"(P,Q) € Rel N Q —Cal Q' — (IP'. P—Cal P' A (P’, Q) € Rel))

A strong barbed bisimulation is strong reduction bisimulation that respects barbs.

abbreviation strong-barbed-bisimulation
i ('proc x 'proc) set = ('proc, 'barbs) calculus WithBarbs = bool
where
strong-barbed-bisimulation Rel CWB =
strong-reduction-bisimulation Rel (Calculus CWB) A rel-respects-barbs Rel CWB

A symetric strong simulation is a strong bisimulation.

lemma symm-strong-reduction-simulation-is-bisimulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes sym Rel
and strong-reduction-simulation Rel Cal
shows strong-reduction-bisimulation Rel Cal
using assms symD[of Rel]
by blast

lemma symm-strong-barbed-simulation-is-bisimulation:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes sym Rel
and strong-barbed-simulation Rel CWB
shows strong-barbed-bisimulation Rel CWB
using assms symD[of Rel]
by blast

If a relation as well as its inverse are strong simulations, then this relation is a strong bisimulation.

lemma strong-reduction-simulations-impl-bisimulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes sim: strong-reduction-simulation Rel Cal
and simInv: strong-reduction-simulation (Rel™') Cal
shows strong-reduction-bisimulation Rel Cal
proof auto
fix PQP
assume (P, Q) € Rel and P —Cal P’
with sim show 3 Q" Q —Cal Q' N (P', Q') € Rel
by simp
next

35

fix P Q Q'

assume (P, Q) € Rel

hence (Q, P) € Rel™?
by simp

moreover assume @ — Cal Q'

ultimately obtain P’ where A1: P —Cal P’ and A2: (Q’, P') € Rel™!

using siminv

by blast

from A2 have (P’, Q') € Rel
by induct

with A7 show 3P’ P+—Cal P' A (P', Q') € Rel
by blast

qed

lemma strong-reduction-bisimulations-impl-inverse-is-simulation:
fixes Rel :: ("proc x 'proc) set
and Cal :: 'proc processCalculus
assumes bisim: strong-reduction-bisimulation Rel Cal
shows strong-reduction-simulation (Rel~1) Cal
proof clarify
fix PQP'
assume (Q, P) € Rel
moreover assume P —— Cal P’
ultimately obtain @’ where Al: Q —Cal Q' and A2: (Q’, P') € Rel
using bisim
by blast
from A2 have (P’, Q') € Rel™!
by simp
with A1 show 3Q". Q ——Cal Q' A (P', Q") € Rel™!
by blast
qed

lemma strong-reduction-simulations-iff-bisimulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
shows (strong-reduction-simulation Rel Cal A strong-reduction-simulation (Rel=') Cal)
= strong-reduction-bisimulation Rel Cal
using strong-reduction-simulations-impl-bisimulation[where Rel=Rel and Cal=Cal]
strong-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel]
by blast

lemma strong-barbed-simulations-iff-bisimulation:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
shows (strong-barbed-simulation Rel CWB A strong-barbed-simulation (Rel~) CWB)
= strong-barbed-bisimulation Rel CWB
proof (rule iffI, erule conjE)
assume sim: strong-barbed-simulation Rel CWB
and rev: strong-barbed-simulation (Rel™') CWB
hence strong-reduction-bisimulation Rel (Calculus CWB)
using strong-reduction-simulations-impl-bisimulation[where Rel=Rel and Cal=Calculus CWB]
by blast
moreover from sim have rel-preserves-barbs Rel CWB
by simp
moreover from rev have rel-reflects-barbs Rel CWB
by simp
ultimately show strong-barbed-bisimulation Rel CWB
by blast
next
assume bisim: strong-barbed-bisimulation Rel CWB
hence strong-barbed-simulation Rel CWB

36

by blast

moreover from bisim have strong-reduction-simulation (Rel™') (Calculus CWB)

using strong-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel)

by simp

moreover from bisim have rel-reflects-barbs Rel CWB
by blast

hence rel-preserves-barbs (Rel™') CWB
by simp

ultimately

show strong-barbed-simulation Rel CWB A strong-barbed-simulation (Rel=) CWB
by blast

qed

A strong bisimulation is a weak bisimulation.

lemma strong-impl-weak-reduction-bisimulation:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes bisim: strong-reduction-bisimulation Rel Cal
shows weak-reduction-bisimulation Rel Cal
proof
from bisim show weak-reduction-simulation Rel Cal
using strong-impl-weak-reduction-simulation[where Rel=Rel and Cal=Cal]
by blast
next
show VP Q Q. (P, Q) € Rel N Q —Calx Q' —> (IP’. P ——Calx P’ A (P, Q') € Rel)
proof clarify
fix PQ Q'
assume A7: (P, Q) € Rel
assume —— Cal*x Q'
from this obtain n where Q —— Cal™ Q'
by (auto simp add: steps-def)
thus 3P’. P ——Calx P' A (P’, Q') € Rel
proof (induct n arbitrary: Q’)

case (
assume Q —Cal? Q'
hence Q = Q'

by (simp add: steps-refl)

moreover have P —Calx P
by (rule steps-refl)

ultimately show 3 P’. P ——Calx P’ A (P, Q') € Rel

using A1
by blast
next

case (Suc n Q")

assume Q —s Caluc ™ Q"'

from this obtain Q' where A2: Q —— Cal™Q’ and A3: Q' —Cal Q"
by auto

assume A\Q’. Q —Cal™ Q' = IP’. P ——Calx P' A (P’, Q') € Rel

with A2 obtain P’ where A/: P —Calx P’ and A5: (P’, Q') € Rel
by blast

from bisim A5 A8 obtain P’ where A6: P’ —Cal P and A7: (P", Q") € Rel
by blast

from A/ A6 have P — Calx P

using steps-add[where P=P and Q=P'and R=P"

by (simp add: step-to-steps)

with A7 show 3P’. P ——Calx P’ A (P', Q") € Rel
by blast

qed
qed
qed

37

lemma strong-barbed-bisimulation-impl-weak-respection-of-barbs:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculusWithBarbs
assumes bisim: strong-barbed-bisimulation Rel CWB
shows rel-weakly-respects-barbs Rel CWB
proof
from bisim show rel-weakly-preserves-barbs Rel CWB
using strong-barbed-simulation-impl-weak-preservation-of-barbs[where Rel=Rel and CWB=CWB]
by blast
next
show rel-weakly-reflects-barbs Rel CWB
proof clarify
fix P QaQ
assume (P, Q) € Rel and Q ——(Calculus CWB)* Q'
with bisim obtain P’ where A1: P —(Calculus CWB)x P’ and A2: (P’, Q') € Rel
using strong-impl-weak-reduction-bisimulation[where Rel=Rel and Cal=Calculus CWB]
by blast
assume Q'|<CWB>a
with bisim A2 have P'|<CWB>a
by blast
with A1 show Pl<CWDB>a
by blast
qed
qed

lemma strong-impl-weak-barbed-bisimulation:
fixes Rel :: ('proc x 'proc) set
and CWB :: ('proc, 'barbs) calculus WithBarbs
assumes bisim: strong-barbed-bisimulation Rel CWB
shows weak-barbed-bisimulation Rel CWB
using bisim
strong-impl-weak-reduction-bisimulation[where Rel=Rel and Cal=Calculus CWB]
strong-barbed-bisimulation-impl-weak-respection-of-barbs[where Rel=Rel and CWB=CWB]
by blast

The reflexive, symmetric, and/or transitive closure of a strong bisimulation is a strong bisimulation.

lemma strong-reduction-bisimulation-and-closures:
fixes Rel :: ('proc x 'proc) set
and Cal :: 'proc processCalculus
assumes bisim: strong-reduction-bisimulation Rel Cal
shows strong-reduction-bisimulation (Rel™) Cal
and strong-reduction-bisimulation (symcl Rel) Cal
and strong-reduction-bisimulation (Rel™) Cal
and strong-reduction-bisimulation (symcl (Rel=™)) Cal
and strong-reduction-bisimulation (Rel*) Cal
and strong-reduction-bisimulation ((symcl (Rel=))") Cal
proof —
from bisim show A: strong-reduction-bisimulation (Rel=) Cal
by (auto simp add: refl, blast+)
have B: /\Rel. strong-reduction-bisimulation Rel Cal
= strong-reduction-bisimulation (symcl Rel) Cal
by (auto simp add: symcl-def, blast+)
from bisim Blwhere Rel=Rel| show strong-reduction-bisimulation (symcl Rel) Cal
by blast
have C: ARel. strong-reduction-bisimulation Rel Cal
= strong-reduction-bisimulation (Rel™) Cal
proof
fix Rel
assume strong-reduction-bisimulation Rel Cal
thus strong-reduction-simulation (Rel™) Cal

38

using strong-reduction-simulation-and-closures(2)[where Rel=Rel and Cal=Cal)
by blast
next
fix Rel
assume C1: strong-reduction-bisimulation Rel Cal
show VP Q Q' (P, Q) € Rel™ A Q —Cal Q'
— (AP". P+~——Cal P' A (P, Q') € Rel™)
proof clarify
fix P Q Q'
assume (P, Q) € Rel™ and Q —Cal Q'
thus 3P". P +——Cal P' A (P', Q') € Rel™
proof (induct arbitrary: Q")
fix Q Q'
assume (P, Q) € Rel and Q —Cal Q'
with C! obtain P’ where P — Cal P’ and (P’, Q') € Rel
by blast
thus 3P’ P ——Cal P' A (P’, Q') € Rel™
by auto
next
case (step Q R R
assume (@, R) € Rel and R — Cal R’
with C1 obtain Q' where C2: Q —Cal Q' and C3: (Q’, R') € Rel™
by blast
assume AQ'. Q —Cal Q' = IP". P+——Cal P' A (P’, Q') € Rel™
with C2 obtain P’ where C/: P —Cal P’ and C5: (P', Q') € Rel*
by blast
from C5 C3 have (P’, R') € Rel™
by simp
with C4 show 3P". P —Cal P' A (P’, R') € Rel™
by blast
qged
qed
qed
from bisim C[where Rel=Rel] show strong-reduction-bisimulation (Rel™) Cal
by blast
from A Blwhere Rel=Rel™]
show strong-reduction-bisimulation (symcl (Rel=)) Cal
by blast
from A C[where Rel=Rel~|
show strong-reduction-bisimulation (Rel*) Cal
using trancl-reflcl[of Rel]
by auto
from A Blwhere Rel=Rel=] C[where Rel=symcl (Rel™)]
show strong-reduction-bisimulation ((symcl (Rel=))") Cal
by blast
qed

lemma strong-barbed-bisimulation-and-closures:
fixes Rel :: ("proc x 'proc) set
and CWB :: ('proc, "barbs) calculus WithBarbs
assumes bisim: strong-barbed-bisimulation Rel CWB
shows strong-barbed-bisimulation (Rel=) CWB
and strong-barbed-bisimulation (symcl Rel) CWB
and strong-barbed-bisimulation (Relt) CWB
and strong-barbed-bisimulation (symcl (Rel=)) CWB
and strong-barbed-bisimulation (Rel*) CWB
and strong-barbed-bisimulation ((symcl (Rel=))") CWB
proof —
from bisim show strong-barbed-bisimulation (Rel=) CWB
using strong-reduction-bisimulation-and-closures(1)where Rel=Rel and Cal=Calculus CWB]
respection-of-barbs-and-closures(1)[where Rel=Rel and CWB=CWB]

39

by fast
next
from bisim show strong-barbed-bisimulation (symcl Rel) CWB
using strong-reduction-bisimulation-and-closures(2)where Rel=Rel and Cal=Calculus CWB]
respection-of-barbs-and-closures(2)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show strong-barbed-bisimulation (Rel™) CWB
using strong-reduction-bisimulation-and-closures(3)[where Rel=Rel and Cal=Calculus CWB]
respection-of-barbs-and-closures(3)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show strong-barbed-bisimulation (symcl (Rel=)) CWB
using strong-reduction-bisimulation-and-closures(4)[where Rel=Rel and Cal=Calculus CWB]
respection-of-barbs-and-closures(4)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show strong-barbed-bisimulation (Rel*) CWB
using strong-reduction-bisimulation-and-closures(5)[where Rel=Rel and Cal=Calculus CWB]
respection-of-barbs-and-closures(5)[where Rel=Rel and CWB=CWB]
by blast
next
from bisim show strong-barbed-bisimulation ((symcl (Rel=))") CWB
using strong-reduction-bisimulation-and-closures(6)[where Rel=Rel and Cal=Calculus CWB|
respection-of-barbs-and-closures(6)[where Rel=Rel and CWB=CWB]
by blast
qed

3.6 Step Closure of Relations

The step closure of a relation on process terms is the transitive closure of the union of the relation
and the inverse of the reduction relation of the respective calculus.

inductive-set stepsClosure :: ('a x 'a) set = 'a processCalculus = ('a x 'a) set
for Rel :: ('a x 'a) set
and Cal :: 'a processCalculus
where
rel: (P, Q) € Rel = (P, Q) € stepsClosure Rel Cal |
steps: P —Calx P! = (P', P) € stepsClosure Rel Cal |
trans: [(P, Q) € stepsClosure Rel Cal; (Q, R) € stepsClosure Rel Cal]
= (P, R) € stepsClosure Rel Cal

abbreviation stepsClosurelnfix ::
'a = (a x 'a) set = 'a processCalculus = 'a = bool («- R—><-,-> - [75, 75, 75, 75] 80)
where
P R—<Rel,Cal> Q = (P, Q) € stepsClosure Rel Cal

Applying the steps closure twice does not change the relation.

lemma steps-closure-of-steps-closure:
fixes Rel :: (a x 'a) set
and Cal :: 'a processCalculus
shows stepsClosure (stepsClosure Rel Cal) Cal = stepsClosure Rel Cal
proof auto
fix P Q
assume P R—<stepsClosure Rel Cal,Cal> @
thus P R—<Rel,Cal> @
proof induct
case (rel P Q)
assume P R—<Rel,Cal> @
thus P R—<Rel,Cal> @Q
by simp

40

next
case (steps P P’)
assume P —— Calx P’
thus P’ R—<Rel,Cal> P
by (rule stepsClosure.steps)
next
case (trans P Q R)
assume P R—<Rel,Cal> @) and Q R—<Rel,Cal> R
thus P R—<Rel,Cal> R
by (rule stepsClosure.trans)
qged
next
fix P Q
assume P R—<Rel,Cal> Q
thus P R—<stepsClosure Rel Cal,Cal> @
by (rule stepsClosure.rel)
qed

The steps closure is a preorder.

lemma stepsClosure-refi:
fixes Rel :: (a x 'a) set
and Cal :: 'a processCalculus
shows refl (stepsClosure Rel Cal)
unfolding refi-on-def
proof auto
fix P
have P —— Calx P
by (rule steps-refl)
thus P R—<Rel,Cal> P
by (rule stepsClosure.steps)
qed

lemma refi-trans-closure-of-rel-impl-steps-closure:
fixes Rel :: ("a x 'a) set
and Cal :: 'a processCalculus
and P QQ :: 'a
assumes (P,)) € Rel*
shows P R—<Rel,Cal> @
using assms
proof induct
show P R—<Rel,Cal> P
using stepsClosure-refl[of Rel Call
unfolding refi-on-def
by simp
next
case (step Q R)
assume (@, R) € Rel and P R—<Rel,Cal> Q
thus P R—<Rel,Cal> R
using stepsClosure.rel[of Q R Rel Cal] stepsClosure.trans[of P @ Rel Cal R]
by blast
qed

The steps closure of a relation is always a weak reduction simulation.

lemma steps-closure-is-weak-reduction-simulation:
fixes Rel :: (a x 'a) set
and Cal :: 'a processCalculus
shows weak-reduction-simulation (stepsClosure Rel Cal) Cal
proof clarify
fix PQP'
assume P R—<Rel,Cal> Q and P — Cal*x P’

41

thus 3Q". Q@ —Calx Q' AN P’ R—~<Rel,Cal> Q'
proof (induct arbitrary: P’
case (rel P Q)
assume P —— Calx P’
hence P’ R—<Rel,Cal> P
by (rule stepsClosure.steps)
moreover assume (P, Q) € Rel
hence P R—<Rel,Cal> @Q
by (simp add: stepsClosure.rel)
ultimately have P’ R—<Rel,Cal> Q
by (rule stepsClosure.trans)
thus 3Q’. Q —Calx Q' N P’ R—~<Rel,Cal> Q'
using steps-refl[where Cal=Cal and P=Q)
by blast
next
case (steps P P’ P")
assume P ——Calx P’ and P’ —— Calx P
hence P ——Calx P"
by (rule steps-add)
moreover have P’ R—<Rel,Cal> P
using stepsClosure-refiwhere Rel=Rel and Cal=Cal]
unfolding refi-on-def
by simp
ultimately show 3Q’. P —Calx Q' N P" R—~<Rel,Cal> Q'
by blast
next
case (trans P Q R)
assume P ——Calx P’
and AP’ P —Calx P' = 3Q". Q —Calx Q' N P' R—<Rel,Cal> Q'
from this obtain Q' where A1: Q — Calx Q' and A2: P' R—~<Rel,Cal> Q'
by blast
assume AQ'". Q —Calx Q' = IR’ R+~—Calx R' N Q' R—<Rel,Cal> R’
with A1 obtain R’ where A3: R —— Calx R’ and A4: Q' R—<Rel,Cal> R’
by blast
from A2 A4 have P’ R—<Rel,Cal> R’
by (rule stepsClosure.trans)
with A% show IR’ R ——Calx R’ AN P’ R—~<Rel,Cal> R’
by blast
qed
qed

If Rel is a weak simulation and its inverse is a weak contrasimulation, then the steps closure of Rel is
a contrasimulation.

lemma inverse-contrasimulation-impl-reverse-pair-in-steps-closure:
fixes Rel :: (a x 'a) set
and Cal :: 'a processCalculus
and P Q :: 'a
assumes con: weak-reduction-contrasimulation (Rel™!) Cal
and pair: (P, Q) € Rel
shows @ R—<Rel,Cal> P
proof —
from pair have (Q, P) € Rel™!
by simp
moreover have @ — Calx @
by (rule steps-refl)
ultimately obtain P’ where A1: P — Calx P’ and A2: (P’,) € Rel™!
using con
by blast
from A2 have Q R—<Rel,Cal> P’
by (simp add: stepsClosure.rel)

42

moreover from A have P’ R—<Rel,Cal> P
by (rule stepsClosure.steps)
ultimately show @ R—<Rel,Cal> P
by (rule stepsClosure.trans)
qed

lemma simulation-and-inverse-contrasimulation-impl-steps-closure-is-contrasimulation:
fixes Rel :: ('a x 'a) set
and Cal :: 'a processCalculus
assumes sim: weak-reduction-simulation Rel Cal
and con: weak-reduction-contrasimulation (Rel™') Cal
shows weak-reduction-contrasimulation (stepsClosure Rel Cal) Cal
proof clarify
fix PQP'
assume P R—<Rel,Cal> Q and P — Calx P’
thus 3Q". Q — Calx Q' N Q' R—~<Rel,Cal> P’
proof (induct arbitrary: P’)
case (rel P Q)
assume (P, Q) € Rel and P ——Calx P’
with sim obtain @’ where A1: Q —Calx Q' and A2: (P’, Q') € Rel
by blast
from A2 con have Q' R—<Rel,Cal> P’
using inverse-contrasimulation-impl-reverse-pair-in-steps-closurelwhere Rel=Rel|
by blast
with A1 show 3Q’. Q —Calx Q' N Q' R—~<Rel,Cal> P’
by blast
next
case (steps P P’ P")
assume P —— Calx P’ and P’ +——Calx P"
hence P ——Calx P"
by (rule steps-add)
thus 3Q’". P —Calx Q' N Q' R—~<Rel,Cal> P
using stepsClosure-refi[where Rel=Rel and Cal=Clal|
unfolding refi-on-def
by blast
next
case (trans P Q R)
assume AP’. P +—Calx P! = 3 Q" Q —Calx Q' N Q' R—<Rel,Cal> P’
and P ——Calx P’
from this obtain Q' where A1: Q —Calx Q' and A2: Q' R—<Rel,Cal> P’
by blast
assume AQ' Q —Calx Q' = IR’. R +—Calx R’ N R’ R—<Rel,Cal> Q'
with A7 obtain R’ where A3: R ——Calx R’ and Aj: R’ R—<Rel,Cal> Q'
by blast
from A/ A2 have R’ R—<Rel,Cal> P’
by (rule stepsClosure.trans)
with A% show IR’ R ——Calx R’ A R' R—~<Rel,Cal> P’
by blast
qed
qed

Accordingly, if Rel is a weak simulation and its inverse is a weak contrasimulation, then the steps
closure of Rel is a coupled simulation.

lemma simulation-and-inverse-contrasimulation-impl-steps-closure-is-coupled-simulation:
fixes Rel :: ("a x 'a) set
and Cal :: 'a processCalculus
assumes sim: weak-reduction-simulation Rel Cal
and con: weak-reduction-contrasimulation (Rel=*) Cal
shows weak-reduction-coupled-simulation (stepsClosure Rel Cal) Cal
using sim con simulation-and-inverse-contrasimulation-impl-steps-closure-is-contrasimulation

43

steps-closure-is-weak-reduction-simulation|where Rel=Rel and Cal=Cal]
by simp

If the relation that is closed under steps is a (contra)simulation, then we can conlude from a pair in
the closure on a pair in the original relation.

lemma stepsClosure-simulation-impl-refl-trans-closure-of-Rel:
fixes Rel :: ("a x 'a) set
and Cal :: 'a processCalculus
and P Q :: 'a
assumes A1: P R—<Rel,Cal> Q
and A2: weak-reduction-simulation Rel Cal
shows 3Q". Q —Calx Q' A (P, Q') € Rel*
proof —
have VP’ P +—Calx P! — (3 Q" Q —Calx Q' A (P’, Q") € Rel*)
using A1
proof induct
case (rel P Q)
assume (P, Q) € Rel
with A2 have VP'. P —Calx P' — (3Q". Q@ —Calx Q' A (P’, Q') € Rel)
by blast
thus VP’ P —Calx P — (3 Q" Q —Calx Q' A (P’, Q') € Rel*)
by blast
next
case (steps P P’)
assume A: P —— Calx P’
show V P". P’ +—Calx P — (3 Q. P —Calx Q' A (P", Q") € Rel*)
proof clarify
fix P
assume P’ +—— Calx P’
with A have P —— Calx P”
by (rule steps-add)
moreover have (P’/, P") € Rel*
by simp
ultimately show 3 Q". P —Calx Q' A (P", Q') € Rel*
by blast
qed
next
case (trans P Q R)
assume AI1: VP P+—Calx P — (3Q". Q@ —Calx Q' A (" Q') € Rel*)
and 42:V Q' Q —Calx Q' — (3R’ R +—Calx R' N (Q', R') € Rel*)
show VP’. P ——Calx P’ — (3R’. R —Calx R’ N (P', R') € Rel*)
proof clarify
fix P’
assume P — Calx P’
with A1 obtain Q' where A3: Q — Calx Q' and A4: (P’, Q') € Rel*
by blast
from A2 A3 obtain R’ where A5: R —Calx R’ and A6: (Q’, R) € Rel*
by blast
from A4 A6 have (P’, R’) € Rel*
by simp
with A5 show 3R’ R +——Calx R’ A (P', R’) € Rel*
by blast
qed
qged
moreover have P —— Calx P
by (rule steps-refl)
ultimately show ?Zthesis
by blast
qed

44

lemma stepsClosure-contrasimulation-impl-refi-trans-closure-of-Rel:
fixes Rel :: ('a x 'a) set
and Cal :: 'a processCalculus
and P Q :: 'a
assumes Al: P R—<Rel,Cal> Q
and A2: weak-reduction-contrasimulation Rel Cal
shows 3Q". Q@ —Calx Q' A (Q', P) € Rel*
proof —
have VP’ P +—Calx P! — (3 Q" Q —Calx Q' A (Q', P") € Rel*)
using A1
proof induct
case (rel P Q)
assume (P, Q) € Rel
with A2 have VP'. P —Calx P' — (3Q". Q@ —Calx Q' A (Q’, P’) € Rel)
by blast
thus VP P+—Calx P' — (3Q". Q@ —Calx Q' A (Q', P") € Rel*)
by blast
next
case (steps P P’)
assume A: P — Calx P’
show V P". P ——Calx P"" — (3Q’". P ——Calx Q' A (Q', P"") € Rel*)
proof clarify
fix P"
assume P’ +—— Calx P"'
with A have P —— Calx P"
by (rule steps-add)
moreover have (P’/, P") € Rel*
by simp
ultimately show 3 Q". P —Calx Q' A (Q’, P") € Rel*
by blast
ged
next
case (trans P Q R)
assume A71: VP P+—Calx P’ — (3Q". Q —Calx Q' N (Q', P') € Rel*)
and A2:VQ'. Q —Calx Q' — (3R’. R+—Calx R' A (R’, Q) € Rel*)
show VP’. P —Calx P’ — (3R’. R —Calx R’ A (R', P') € Rel*)
proof clarify
fix P’
assume P —— Calx P’
with A1 obtain Q' where A3: Q — Calx Q' and A4: (Q', P’) € Rel*
by blast
from A2 A3 obtain R’ where A5: R —Calx R’ and A6: (R’, Q') € Rel*
by blast
from A4 A6 have (R’, P’) € Rel*
by simp
with A5 show 3R’ R +——Calx R’ A (R', P’) € Rel*
by blast
qed
qed
moreover have P —— Calx P
by (rule steps-refl)
ultimately show ?thesis
by blast
qed

lemma stepsClosure-contrasimulation-of-inverse-impl-refi-trans-closure-of-Rel:
fixes Rel :: ('a x 'a) set
and Cal :: 'a processCalculus
and P Q :: 'a
assumes A1: P R—<Rel™!,Cal> Q
and A2: weak-reduction-contrasimulation (Rel™1) Cal

45

shows 3Q". Q —Calx Q' A (P, Q') € Rel*
proof —
have VP’ P —Calx P — (3 Q" Q —Calx Q' A (P’, Q") € Rel*)
using A1
proof induct
case (rel P Q)
assume (P, Q) € Rel™!
with A2 have VP". P +——Calx P' — (3Q". Q —Calx Q' A (Q', P') € Rel™%)
by blast
thus VP’ P —Calx P — (3 Q" Q —Cualx Q' A (P’, Q') € Rel*)
by blast
next
case (steps P P’)
assume A: P ——Calx P’
show Y P". P+ Calx P"" — (3Q". P —Calx Q' A (P", Q') € Rel*)
proof clarify
fix P
assume P’ +—— Calx P’
with A have P —— Calx P”
by (rule steps-add)
moreover have (P’ P") € Rel*
by simp
ultimately show 3 Q". P —Calx Q' A (P", Q') € Rel*
by blast
qed
next
case (trans P Q R)
assume AI1: VP P+—Calx P — (3Q". Q@ —Calx Q' A (" Q') € Rel)
and 42:V Q' Q —Calx Q' — (3R’ R +—Calx R' N (Q', R') € Rel*)
show VP’. P ——Calx P’ — (3R’. R —Calx R’ N (P', R') € Rel*)
proof clarify
fix P’
assume P — Calx P’
with A1 obtain Q' where A3: Q — Calx Q' and A4: (P’, Q') € Rel*
by blast
from A3 A2 obtain R’ where A5: R —Calx R’ and A6: (Q’, R) € Rel*
by blast
from A4 A6 have (P’, R’) € Rel*
by simp
with A5 show 3R’ R ——Calx R’ A (P', R’) € Rel*
by blast
qed
qed
moreover have P —— Calx P
by (rule steps-refl)
ultimately show ?Zthesis
by blast
qed

end

theory FEncodings
imports ProcessCalculi

begin

4 Encodings
In the simplest case an encoding from a source into a target language is a mapping from source into

target terms. Encodability criteria describe properties on such mappings. To analyse encodability
criteria we map them on conditions on relations between source and target terms. More precisely, we

46

consider relations on pairs of the disjoint union of source and target terms. We denote this disjoint
union of source and target terms by Proc.

datatype ('procS, 'procT) Proc =
SourceTerm "procS |
TargetTerm "procT

definition STCal
:: 'procS processCalculus = 'procT processCalculus
= (('procS, 'procT) Proc) processCalculus

where

STCal Source Target =

(Reductions = AP P'.

(3SP SP’. P = SourceTerm SP A P’ = SourceTerm SP’' A Reductions Source SP SP’) v
(3TP TP'. P = TargetTerm TP N P’ = TargetTerm TP’ A Reductions Target TP TP')|

definition STCalWB
:w ("procS, 'barbs) calculus WithBarbs = ('procT, 'barbs) calculus WithBarbs
= (('procS, 'procT) Proc, 'barbs) calculus WithBarbs
where
STCalWB Source Target =
(Calculus = STCal (calculus WithBarbs. Calculus Source) (calculus WithBarbs. Calculus Target),
HasBarb = AP a. (3SP. P = SourceTerm SP A (calculusWithBarbs. HasBarb Source) SP a) V
(3TP. P = TargetTerm TP A (calculus WithBarbs. HasBarb Target) TP a)))

An encoding consists of a source language, a target language, and a mapping from source into target
terms.

locale encoding =
fixes Source :: "procS processCalculus
and Target :: "procT processCalculus
and Enc :: 'procS = 'procT
begin

abbreviation enc :: ‘procS = 'procT («[-]» [65] 70) where
[S] = Enc S

abbreviation isSource :: ('procS, 'procT) Proc = bool («- € ProcS» [70] 80) where
P € ProcS = (35. P = SourceTerm S)

abbreviation isTarget :: ('procS, 'procT) Proc = bool (- € ProcT» [70] 80) where
P € ProcT = (AT. P = TargetTerm T)

abbreviation getSource
i 'proeS = ('procS, 'procT) Proc = bool (¢- €S - [70, 70] 80)
where
S €S P = (P = SourceTerm S)

abbreviation getTarget
i 'procT = ('procS, 'procT) Proc = bool (v- €T -» [70, 70] 80)
where
T €T P = (P = TargetTerm T)

A step of a term in Proc is either a source term step or a target term step.

abbreviation stepST
i (procS, 'procT) Proc = ('procS, 'procT) Proc = bool (x- —ST -» [70, 70] 80)
where
P+—STP' =
(358.85eSPANS €SP 'ANSv+——Source S"V(3TT.TeTPANT €T P'ANT —Target T')

lemma stepST-STCal-step:
fixes P P’ :: ('procS, "procT) Proc

47

shows P ——(STCal Source Target) P' = P —ST P’
by (simp add: STCal-def)

lemma STStep-step:
fixes S :: 'procS
and T : 'procT
and P’ :: (‘procS, 'procT) Proc
shows SourceTerm S —ST P’ = (35" S’ €S P' A S —Source S’)
and TargetTerm T —ST P'= (3T T' €T P' A T —Target T')
by blast+

lemma STCal-step:
fixes S :: 'procS
and T : 'procT
and P’ :: (‘procS, 'procT) Proc
shows SourceTerm S —(STCal Source Target) P' = (385'. 8" €S P’ A S ——Source S”)
and TargetTerm T ——(STCal Source Target) P’ = (3T'. T' €T P' AN T — Target T")
by (simp add: STCal-def)+

A sequence of steps of a term in Proc is either a sequence of source term steps or a sequence of target
term steps.

abbreviation stepsST
2 ("procS, 'procT) Proc = ('procS, 'procT) Proc = bool (<- —STx* - [70, 70] 80)
where
P+—STx P’ =
(358.8eSPAS €SP NS +—Sourcex SV (3TT.TeTPANT €T P'NT+—Targetx T')

lemma STSteps-steps:
fixes S :: 'procS
and T : 'procT
and P’ :: (‘procS, 'procT) Proc
shows SourceTerm S —STx P’ = (35". 8’ €S P' A S —Sourcex S
and TargetTerm T — ST« P'= (3T T' €T P' AN T — Targetx T')
by blast+

lemma STCal-steps:
fixes S :: 'procS
and T : 'procT
and P’ :: ('procS, 'procT) Proc
shows SourceTerm S ——(STCal Source Target)x P' = (35'. 8§’ €S P’ A § — Sourcex S’)
and TargetTerm T ——(STCal Source Target)x P'= (3T'. T' €T P' N T —— Targetx T')
proof auto
assume SourceTerm S —(STCal Source Target)x P’
from this obtain n where SourceTerm S ——(STCal Source Target)™ P’
by (auto simp add: steps-def)
thus 35’ S’ €S P’ A S —Sourcex S’
proof (induct n arbitrary: P’)
case 0
assume SourceTerm S —(STCal Source Target)? P’
hence S €S P’
by simp
moreover have S — Sourcex S
by (rule steps-refl)
ultimately show 35’. S’ €S P’ A S —Sourcex S’
by blast
next
case (Suc n P”)
assume SourceTerm S ——(STCal Source Target)
from this obtain P’ where A1: SourceTerm S ——(STCal Source Target)™ P’
and A2: P' —(STCal Source Target) P”

Suc n p

48

by auto

assume AP’ SourceTerm S —(STCal Source Target)” P! = 35'. §' €S P' A § —Sourcex S’

with A7 obtain S’ where A3: S’ €S P’ and A4: S —Sourcex S’
by blast
from A2 A3 obtain S’ where A5: S €S P and A6: S’ —Source S"’
using STCal-step(1)[where S=S’and P'=P"/
by blast
from A/ A6 have S —Sourcex S
using step-to-steps[where Cal=Source and P=S" and P'=S"
by (simp add: steps-add|where Cal=Source and P=S and Q=S'and R=S"")
with A5 show 35". 8" €S P"" AN § —>Sourcex S
by blast
qed
next
fix S’
assume S —Sourcex S’
from this obtain n where S —— Source™ S’
by (auto simp add: steps-def)
thus SourceTerm S ——(STCal Source Target)x (SourceTerm S”)
proof (induct n arbitrary: S’)

case (
assume S —Source S’
hence § = §’

by auto

thus SourceTerm S ——(STCal Source Target)* (SourceTerm S’)
by (simp add: steps-refl)
next
case (Suc n S”)
assume 5 —SourceSUc ™ 5"
from this obtain S’ where B1: S — Source™ S’ and B2: S’ — Source 5"
by auto
assume AS’. § —Source™ S’ = SourceTerm S —(STCal Source Target)x (SourceTerm S’)
with BI have SourceTerm S ——(STCal Source Target)x (SourceTerm S')
by blast
moreover from B2 have SourceTerm S’ ——(STCal Source Target)x (SourceTerm S")
using step-to-stepslwhere Cal=STCal Source Target and P=SourceTerm S|
by (simp add: STCal-def)
ultimately show SourceTerm S ——(STCal Source Target)* (SourceTerm S
by (rule steps-add)
qged
next
assume TargetTerm T ——(STCal Source Target)x P’
from this obtain n where TargetTerm T ——(STCal Source Target)™ P’
by (auto simp add: steps-def)
thus 37'. T' €T P' AN T — Targetx T'
proof (induct n arbitrary: P’)
case (
assume TargetTerm T —s(STCal Source Target)? P’
hence T €T P’
by simp
moreover have T —— Targetx T
by (rule steps-refl)
ultimately show 37'. T' €T P' A T —— Targetx T’
by blast
next
case (Suc n P”)
assume TargetTerm T ——(STCal Source Target)guc npr
from this obtain P’ where A1: TargetTerm T ——(STCal Source Target)™ P’
and A2: P'——(STCal Source Target) P"
by auto

49

assume AP’ TargetTerm T —(STCal Source Target)® P’ = 3T'. T' €T P' A T > Targetx T’
with A7 obtain T’/ where A3: T' €T P'and A4: T —— Targetx T’
by blast
from A2 A3 obtain T' where A5: T" €T P” and AG: T' — Target T"'
using STCal-step(2)where T=T' and P'=P"/
by blast
from A/ A6 have T —— Targetx T"
using step-to-steps[where Cal=Target and P=T' and P'=T"]
by (simp add: steps-add|where Cal=Target and P=T and Q=T'and R=T"))
with A5 show 3T". T" €T P" N T — Targetx T"
by blast
qed

next

fix T’

assume T —— Targetx T’

from this obtain n where T —— Target™ T’

by (auto simp add: steps-def)

thus TargetTerm T ——(STCal Source Target)* (TargetTerm T)
proof (induct n arbitrary: T")

case (
assume T —s Target! T’
hence T = T’

by auto

thus TargetTerm T ——(STCal Source Target)x (TargetTerm T")
by (simp add: steps-refl)
next
case (Sucn T")
assume T —3 TargetoUc ™ T
from this obtain T’ where B1: T ——Target™ T' and B2: T' — Target T"
by auto
assume AT’ T ——Target™ T' = TargetTerm T ——(STCal Source Target)* (TargetTerm T
with BI have TargetTerm T ——(STCal Source Target)x (TargetTerm T)
by blast
moreover from B2 have TargetTerm T'+——(STCal Source Target)* (TargetTerm T")
using step-to-stepslwhere Cal=STCal Source Target and P=TargetTerm T']
by (simp add: STCal-def)
ultimately show TargetTerm T ——(STCal Source Target)x (TargetTerm T'")
by (rule steps-add)
qged

qed

lemma stepsST-STCal-steps:

fixes P P’ :: ('procS, 'procT) Proc
shows P ——(STCal Source Target)x P' = P — ST« P’

proof (cases P)

case (SourceTerm SP)
assume SP €S P
thus P ——(STCal Source Target)x P' = P —ST* P’
using STCal-steps(1)[where S=SP and P'=P’] STSteps-steps(1)[where S=SP and P'=P’
by blast

next

case (TargetTerm TP)
assume TP €T P
thus P —(STCal Source Target)x P’ = P —STx P’
using STCal-steps(2)where T=TP and P'=P’] STSteps-steps(2)[where T=TP and P'=P’]
by blast

qed

lemma stepsST-refi:

fixes P :: ('procS, 'procT) Proc

50

shows P —STx P
by (cases P, simp-all add: steps-refl)

lemma stepsST-add:
fixes P Q R :: ('procS, 'procT) Proc
assumes Al: P —STx @
and A2: Q —STx R
shows P —STx R
proof —
from A1 have P ——(STCal Source Target)x Q
by (simp add: stepsST-STCal-steps)
moreover from A2 have Q —(STCal Source Target)* R
by (simp add: stepsST-STCal-steps)
ultimately have P —(STCal Source Target)x R
by (rule steps-add)
thus P —STx R
by (simp add: stepsST-STCal-steps)
qed

A divergent term of Proc is either a divergent source term or a divergent target term.

abbreviation divergentST
2 ("procS, 'procT) Proc = bool (<- —STw> [70] 80)
where

P+—STw=(35.5€SPAS—(Source)w) v (3T. T €T P AN T +—(Target)w)

lemma STCal-divergent:
fixes S :: 'procS
and T : 'procT
shows SourceTerm S —(STCal Source Target)w = S —(Source)w
and TargetTerm T ——(STCal Source Target)w = T ——(Target)w
using ST Cal-steps
by (auto simp add: STCal-def divergent-def)

lemma divergentST-STCal-divergent:
fixes P :: ('procS, 'procT) Proc
shows P ——(STCal Source Target)w = P —STw
proof (cases P)
case (SourceTerm SP)
assume SP €S P
thus P —(STCal Source Target)w = P —STw
using STCal-divergent(1)
by simp
next
case (TargetTerm TP)
assume TP €T P
thus P —(STCal Source Target)w = P —STw
using STCal-divergent(2)
by simp
qed

Similar to relations we define what it means for an encoding to preserve, reflect, or respect a predicate.
An encoding preserves some predicate P if P(S) implies P(enc S) for all source terms S.

abbreviation enc-preserves-pred :: (('procS, 'procT) Proc = bool) = bool where
enc-preserves-pred Pred =V S. Pred (SourceTerm S) — Pred (TargetTerm ([S]))

abbreviation enc-preserves-binary-pred
:: (("procS, "procT) Proc = 'b = bool) = bool
where

enc-preserves-binary-pred Pred =V S x. Pred (SourceTerm S) & — Pred (TargetTerm ([S])) z

An encoding reflects some predicate P if P(S) implies P(enc S) for all source terms S.

o1

abbreviation enc-reflects-pred :: (('procS, 'procT) Proc = bool) = bool where
enc-reflects-pred Pred =V S. Pred (TargetTerm ([S])) — Pred (SourceTerm S)

abbreviation enc-reflects-binary-pred
2 (("procS, "procT) Proc = 'b = bool) = bool
where
enc-reflects-binary-pred Pred =V S x. Pred (TargetTerm ([S])) * — Pred (SourceTerm S)

An encoding respects a predicate if it preserves and reflects it.

abbreviation enc-respects-pred :: (('procS, 'procT) Proc = bool) = bool where
enc-respects-pred Pred = enc-preserves-pred Pred N enc-reflects-pred Pred

abbreviation enc-respects-binary-pred
i (('procS, 'procT) Proc = 'b = bool) = bool
where
enc-respects-binary-pred Pred =
enc-preserves-binary-pred Pred A enc-reflects-binary-pred Pred

end

To compare source terms and target terms w.r.t. their barbs or observables we assume that each
languages defines its own predicate for the existence of barbs.

locale encoding-wrt-barbs =

encoding Source Target Enc

for Source :: 'procS processCalculus

and Target :: "procT processCalculus

and Enc :: 'procS = 'procT +

fixes SWB :: ('procS, 'barbs) calculus WithBarbs

and TWB :: ('procT, 'barbs) calculusWithBarbs
assumes calS: calculus WithBarbs. Calculus SWB = Source
and calT: calculus WithBarbs. Calculus TWB = Target

begin

lemma STCalWB-STCal:
shows Cualculus (STCalWB SWB TWB) = STCal Source Target
unfolding STCalWB-def using calS calT
by auto

We say a term P of Proc has some barbs a if either P is a source term that has barb a or P is a target
term that has the barb b. For simplicity we assume that the sets of barbs is large enough to contain
all barbs of the source terms, the target terms, and all barbs they might have in common.

abbreviation hasBarbST
2 ("procS, 'procT) Proc = 'barbs = bool (<-|.-» [70, 70] 80)
where
Pla=(35. 8 €SP A Sl<SWB>a)V (3T. T €T P A TL<TWB>a)

lemma STCalWB-hasBarbST:
fixes P :: ('procS, 'procT) Proc
and a :: 'barbs
shows P|<STCalWB SWB TWB>a = P|.a
by (simp add: STCalWB-def)

lemma preservation-of-barbs-in-barbed-encoding:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and P Q :: ('procS, 'procT) Proc
and a :: 'barbs
assumes preservation: rel-preserves-barbs Rel (STCalWB SWB TWB)
and rel: (P, Q) € Rel
and barbd: Pl.a
shows Ql.a

52

using preservation rel barb

by (simp add: STCalWB-def)

lemma reflection-of-barbs-in-barbed-encoding:
fixes Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
and P @ :: ('procS, 'procT) Proc
and a :: 'barbs
assumes reflection: rel-reflects-barbs Rel (STCalWB SWB TWB)
and rel: (P, Q) € Rel
and barb: Ql.a
shows P|.a
using refiection rel barb
by (simp add: STCalWB-def)

lemma respection-of-barbs-in-barbed-encoding:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and P @ :: ('procS, 'procT) Proc

and a :: 'barbs
assumes respection: rel-respects-barbs Rel (STCalWB SWB TWB)
and rel: (P, Q) € Rel

shows Pl.a = Ql.a
using preservation-of-barbs-in-barbed-encoding[where Rel=Rel and P=P and Q=@ and a=da]
reflection-of-barbs-in-barbed-encodinglwhere Rel=Rel and P=P and Q=@ and a=a|
respection rel
by blast

A term P of Proc reaches a barb a if either P is a source term that reaches a or P is a target term
that reaches a.

abbreviation reachesBarbST
i ("procS, 'procT) Proc = 'barbs = bool (<-|.-» [70, 70] 80)
where
Pl.a=(35.Se€SPASI<SWB>a)V (3T. TeTP A T|<TWB>a)

lemma STCalWB-reachesBarbST:
fixes P :: ('procS, 'procT) Proc
and a :: ‘barbs
shows Pl <STCalWB SWB TWB>a = Pl.a
proof —
have V S. SourceTerm S| <STCalWB SWB TWB>a = SourceTerm Sl.a
using STCal-steps(1)
by (auto simp add: STCalWB-def calS calT)
moreover have V T. TargetTerm T{<STCalWB SWB TWB>a = TargetTerm Tl .a
using STCal-steps(2)
by (auto simp add: STCalWB-def calS calT)
ultimately show P{<STCalWB SWB TWB>a = Pll.a
by (cases P, simp+)
qed

lemma weak-preservation-of-barbs-in-barbed-encoding:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and P Q :: ('procS, 'procT) Proc

and a :: 'barbs
assumes preservation: rel-weakly-preserves-barbs Rel (STCalWB SWB TWB)
and rel: (P, Q) € Rel
and barb: Pl.a
shows Ql.a
proof —

from barb have P{<STCalWB SWB TWB>a
by (simp add: STCalWB-reachesBarbST)
with preservation rel have QU<STCalWB SWB TWB>a

93

by blast
thus Ql.a
by (simp add: STCalWB-reachesBarbST)
qed

lemma weak-reflection-of-barbs-in-barbed-encoding:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and P Q :: ('procS, 'procT) Proc

and a :: 'barbs
assumes reflection: rel-weakly-reflects-barbs Rel (STCalWB SWB TWB)
and rel: (P, Q) € Rel
and barb: Ql.a
shows Pll.a
proof —

from barb have QU<STCalWB SWB TWB>a
by (simp add: STCalWB-reachesBarbST)
with reflection rel have P <STCalWB SWB TWB>a
by blast
thus Pl.a
by (simp add: STCalWB-reachesBarbST)
qed

lemma weak-respection-of-barbs-in-barbed-encoding:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and P Q :: ('procS, 'procT) Proc

and a :: 'barbs
assumes respection: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
and rel: (P, Q) € Rel

shows Pll.a = Ql.a
proof (rule iffT)
assume Pl.a
with respection rel show Q| .a
using weak-preservation-of-barbs-in-barbed-encoding|where Rel=Rel|
by blast
next
assume Qll.a
with respection rel show Pll.a
using weak-reflection-of-barbs-in-barbed-encodinglwhere Rel=Rel]
by blast
qed

end

end
theory SourceTargetRelation

imports Encodings SimulationRelations
begin

5 Relation between Source and Target Terms

5.1 Relations Induced by the Encoding Function

We map encodability criteria on conditions of relations between source and target terms. The encoding
function itself induces such relations. To analyse the preservation of source term behaviours we use
relations that contain the pairs (S, enc S) for all source terms S.

inductive-set (in encoding) indRelR
= ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelR

54

abbreviation (in encoding) indRelRinfiz :
("procS, 'procT) Proc = ('procS, 'procT) Proc = bool (- R[-]R -» [75, 75] 80)
where
P R[JR Q = (P, Q) € indRelR

inductive-set (in encoding) indRelRPO
2 ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelRPO |
source: (SourceTerm S, SourceTerm S) € indRelRPO |
target: (TargetTerm T, TargetTerm T) € indRelRPO |
trans: [(P, Q) € indRelRPO; (Q, R) € indRelRPO] = (P, R) € indRelRPO

abbreviation (in encoding) indRelRPOinfiz ::
("procS, 'procT) Proc = ('procS, 'procT) Proc = bool (- <[-]JR - [75, 75] 80)
where
P <[IR Q = (P, Q) € indRelRPO

lemma (in encoding) indRelRPO-refl:
shows refl indRelRPO
unfolding refi-on-def
proof auto
fix P
show P <[-]R P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
thus P <[-]R P
by (simp add: indRelRPO.source)
next
case (TargetTerm TP)
assume TP €T P
thus P <[]R P
by (simp add: indRelRPO.target)
qed
qed

lemma (in encoding) indRelRPO-is-preorder:
shows preorder indRelRPO
unfolding preorder-on-def
proof
show refl indRelRPO
by (rule indRelRPO-refl)
next
show trans indRelRPO
unfolding trans-def
proof clarify
fix PQR
assume P <[]JR Q and Q <[]R R
thus P <[]R R
by (rule indRelRPO.trans)
qged
qed

lemma (in encoding) refl-trans-closure-of-indRelR:
shows indRelRPO = indRelR*
proof auto
fix P Q
assume P S[|R @
thus (P, Q) € indRelR*

95

proof induct
case (encR S)
show (SourceTerm S, TargetTerm ([S])) € indRelR*
using indRelR.encR[of S]
by simp
next
case (source S)
show (SourceTerm S, SourceTerm S) € indRelR*
by simp
next
case (target T)
show (TargetTerm T, TargetTerm T) € indRelR*
by simp
next
case (trans P @Q R)
assume (P, Q) € indRelR* and (Q, R) € indRelR*
thus (P, R) € indRelR*
by simp
qed
next
fix P Q
assume (P, Q) € indRelR*
thus P <[']R @
proof induct
show P <[]R P
using indRelRPO-refl
unfolding refi-on-def
by simp
next
case (step Q R)
assume P <[]R @
moreover assume @ R[-|R R
hence @ <[]R R
by (induct, simp add: indRelRPO.encR)
ultimately show P <[-]R R
by (rule indRelRPO.trans)
qged
qed

The relation indRelR is the smallest relation that relates all source terms and their literal translations.
Thus there exists a relation that relates source terms and their literal translations and satisfies some
predicate on its pairs iff the predicate holds for the pairs of indRelR.

lemma (in encoding) indRelR-impl-exists-source-target-relation:
fixes PredA :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set = bool
and PredB : (("procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
shows PredA indRelR =—> I Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel) A PredA Rel
and V (P, Q) € indRelR. PredB (P, Q)
= JRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V(P, Q) € Rel. PredB (P, Q))
proof —
have A: V S. SourceTerm S R[-]R TargetTerm ([S])
by (simp add: indRelR.encR)
thus PredA indRelR = 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A PredA Rel
by blast
with A show V (P, Q) € indRelR. PredB (P, Q)
= JRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V(P, Q) € Rel. PredB (P, Q))
by blast
qed

lemma (in encoding) source-target-relation-impl-indRelR:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set

o6

and Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
assumes encRRel: V. S. (SourceTerm S, TargetTerm ([S])) € Rel
and condRel: ¥ (P, Q) € Rel. Pred (P, Q)
shows V (P, Q) € indRelR. Pred (P, Q)
proof clarify
fix P Q
assume P R[]R Q
with encRRel have (P, Q) € Rel
by (auto simp add: indRelR.simps)
with condRel show Pred (P, Q)
by simp
qed

lemma (in encoding) indRelR-iff-exists-source-target-relation:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
shows (V (P, Q) € indRelR. Pred (P, Q))
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V (P, Q) € Rel. Pred (P, Q)))
using indRelR-impl-exists-source-target-relation(2)[where PredB=Pred]
source-target-relation-impl-indRelR[where Pred=Pred)]
by blast

lemma (in encoding) indRelR-modulo-pred-impl-indRelRPO-modulo-pred:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
assumes refiCond: ¥V P. Pred (P, P)
and transCond: VP Q R. Pred (P, Q) A Pred (Q, R) — Pred (P, R)
shows (V (P, Q) € indRelR. Pred (P, Q)) = (V(P, @) € indRelRPO. Pred (P, Q))
proof auto
fix P Q
assume A: Vz € indRelR. Pred
assume P <[-]R @
thus Pred (P, Q)
proof induct
case (encR S)
have SourceTerm S R[-]R TargetTerm ([S])
by (simp add: indRelR.encR)
with A show Pred (SourceTerm S, TargetTerm ([S]))
by simp
next
case (source S)
from reflCond show Pred (SourceTerm S, SourceTerm S)
by simp
next
case (target T)
from reflCond show Pred (TargetTerm T, TargetTerm T)
by simp
next
case (trans P Q R)
assume Pred (P, Q) and Pred (Q, R)
with transCond show Pred (P, R)
by blast
qed
next
fix P Q
assume YV € indRelRPO. Pred x and P R[-]R Q
thus Pred (P, Q)
by (auto simp add: indRelRPO.encR indRelR.simps)
qed

lemma (in encoding) indRelRP O-iff-exists-source-target-relation:

fixes Pred :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
shows (V (P, Q) € indRelRPO. Pred (P, Q)) = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)

o7

A (V(P, Q) € Rel. Pred (P, Q)) A preorder Rel)
proof (rule iffT)
have V S. SourceTerm S <[-]R TargetTerm ([S])
by (simp add: indRelRPO.encR)
moreover have preorder indRelRPO
using indRelRPO-is-preorder
by blast
moreover assume V (P, Q) € indRelRPO. Pred (P, Q)
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (V(P, Q) € Rel. Pred (P, Q)) A preorder Rel
by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (V(P, Q) € Rel. Pred (P, Q)) A preorder Rel
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: V(P, Q) € Rel. Pred (P, Q) and A3: preorder Rel
by blast
show V (P, Q) € indRelRPO. Pred (P, Q)
proof clarify
fix P Q)
assume P S[|R @
hence (P, Q) € Rel
proof induct
case (encR S)
from A1 show (SourceTerm S, TargetTerm ([S])) € Rel
by simp
next
case (source S)
from A3 show (SourceTerm S, SourceTerm S) € Rel
unfolding preorder-on-def refl-on-def
by simp
next
case (target T)
from A3 show (TargetTerm T, TargetTerm T) € Rel
unfolding preorder-on-def refl-on-def
by simp
next
case (trans P Q R)
assume (P, @) € Rel and (Q, R) € Rel
with A3 show (P, R) € Rel
unfolding preorder-on-def trans-def
by blast
qed
with A2 show Pred (P, Q)
by simp
qed
qed

An encoding preserves, reflects, or respects a predicate iff indRelR preserves, reflects, or respects this
predicate.

lemma (in encoding) enc-satisfies-pred-impl-indRelR-satisfies-pred:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
assumes encCond: ¥ S. Pred (SourceTerm S, TargetTerm ([S]))
shows V (P, Q) € indRelR. Pred (P, Q)
by (auto simp add: encCond indRelR.simps)

lemma (in encoding) indRelR-satisfies-pred-impl-enc-satisfies-pred:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
assumes relCond: V (P, Q) € indRelR. Pred (P, Q)
shows V S. Pred (SourceTerm S, TargetTerm ([S]))

o8

using relCond indRelR.encR
by simp

lemma (in encoding) enc-satisfies-pred-iff-indRelR-satisfies-pred:
fixes Pred :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
shows (V S. Pred (SourceTerm S, TargetTerm ([S]))) = (V(P, Q) € indRelR. Pred (P, @Q))
using enc-satisfies-pred-impl-indRelR-satisfies-pred[where Pred=Pred)]
indRelR-satisfies-pred-impl-enc-satisfies-pred[where Pred=Pred)
by blast

lemma (in encoding) enc-satisfies-binary-pred-iff-indRelR-satisfies-binary-pred:
fixes Pred :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) = 'b = bool
shows (VS a. Pred (SourceTerm S, TargetTerm ([S])) a) = (V(P, Q) € indRelR. ¥V a. Pred (P, Q) a)
using enc-satisfies-pred-iff-indRelR-satisfies-pred
by simp

lemma (in encoding) enc-preserves-pred-iff-indRelR-preserves-pred:
fixes Pred :: ('procS, 'procT) Proc = bool
shows enc-preserves-pred Pred = rel-preserves-pred indRelR Pred
using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=A(P, Q). Pred P — Pred Q)]
by blast

lemma (in encoding) enc-preserves-binary-pred-iff-indRelR-preserves-binary-pred:
fixes Pred :: ('procS, 'procT) Proc = b = bool
shows enc-preserves-binary-pred Pred = rel-preserves-binary-pred indRelR Pred
using enc-satisfies-binary-pred-iff-indRelR-satisfies-binary-pred[where
Pred=\(P, Q) a. Pred P a — Pred Q q]
by blast

lemma (in encoding) enc-preserves-pred-iff-indRelRPO-preserves-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-preserves-pred Pred = rel-preserves-pred indRelRPO Pred
using enc-preserves-pred-iff-indRelR-preserves-pred[where Pred=Pred)]
indRelR-modulo-pred-impl-indRelR PO-modulo-pred[where
Pred=X\(P, Q). Pred P — Pred Q)]
by blast

lemma (in encoding) enc-reflects-pred-iff-indRelR-reflects-pred:
fixes Pred :: ('procS, 'procT) Proc = bool
shows enc-reflects-pred Pred = rel-reflects-pred indRelR Pred
using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=A(P, Q). Pred) — Pred P]
by blast

lemma (in encoding) enc-reflects-binary-pred-iff-indRelR-reflects-binary-pred:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows enc-reflects-binary-pred Pred = rel-reflects-binary-pred indRelR Pred
using enc-satisfies-binary-pred-iff-indRelR-satisfies-binary-pred[where
Pred=XA(P, @) a. Pred Q@ a — Pred P q
by blast

lemma (in encoding) enc-reflects-pred-iff-indRelRPO-reflects-pred:
fixes Pred :: ('procS, 'procT) Proc = bool
shows enc-reflects-pred Pred = rel-reflects-pred indRelRPO Pred
using enc-reflects-pred-iff-indRelR-reflects-pred[where Pred=Pred]
indRelR-modulo-pred-impl-indRelR PO-modulo-pred[where
Pred=X\(P, Q). Pred Q — Pred P]
by blast

lemma (in encoding) enc-respects-pred-iff-indRelR-respects-pred:

fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-respects-pred Pred = rel-respects-pred indRelR Pred

99

using enc-preserves-pred-iff-indRelR-preserves-pred[where Pred=Pred)]
enc-reflects-pred-iff-indRelR-reflects-pred[where Pred=Pred]
by blast

lemma (in encoding) enc-respects-binary-pred-iff-indRelR-respects-binary-pred:
fixes Pred :: ("procS, 'procT) Proc = 'b = bool
shows enc-respects-binary-pred Pred = rel-respects-binary-pred indRelR Pred
using enc-preserves-binary-pred-iff-indRelR-preserves-binary-pred[where Pred=Pred]
enc-reflects-binary-pred-iff-indRelR-reflects-binary-pred[where Pred=Pred]
by blast

lemma (in encoding) enc-respects-pred-iff-indRelRPO-respects-pred:
fixes Pred :: ('procS, 'procT) Proc = bool
shows enc-respects-pred Pred = rel-respects-pred indRelRPO Pred
using enc-respects-pred-iff-indRelR-respects-pred[where Pred=Pred)
indRelR-modulo-pred-impl-indRelR PO-modulo-pred[where Pred=\(P, Q). Pred Q = Pred P)]
apply simp by blast

Accordingly an encoding preserves, reflects, or respects a predicate iff there exists a relation that
relates source terms with their literal translations and preserves, reflects, or respects this predicate.

lemma (in encoding) enc-satisfies-pred-iff-source-target-satisfies-pred:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
shows (V S. Pred (SourceTerm S, TargetTerm ([S])))
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V(P, Q) € Rel. Pred (P, Q)))
and [VP Q R. Pred (P, Q) A\ Pred (Q, R) — Pred (P, R); VP. Pred (P, P)] =
(VS. Pred (SourceTerm S, TargetTerm ([S]))) = (3 Rel. (V S.
(SourceTerm S, TargetTerm ([S])) € Rel) A (VY (P, Q) € Rel. Pred (P, Q)) A preorder Rel)
proof —
show (V. S. Pred (SourceTerm S, TargetTerm ([S])))
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V(P, Q) € Rel. Pred (P, Q)))
using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=Pred)]
indRelR-iff-exists-source-target-relation[where Pred=Pred)]
by simp
next
have (V.S. Pred (SourceTerm S, TargetTerm ([S]))) = (V(P, Q) € indRelR. Pred (P, Q))
using enc-satisfies-pred-iff-indRelR-satisfies-pred[where Pred=Pred)]
by simp
moreover assume VP Q R. Pred (P, Q) A Pred (Q, R) — Pred (P, R) and V P. Pred (P, P)
hence (V (P, Q) € indRelR. Pred (P, Q)) = (V(P, Q) € indRelRPO. Pred (P, Q))
using indRelR-modulo-pred-impl-indRelR PO-modulo-pred[where Pred=Pred)
by blast
ultimately show (V S. Pred (SourceTerm S, TargetTerm ([S]))) = (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V (P, Q) € Rel. Pred (P, Q)) A preorder Rel)
using indRelRPO-iff-exists-source-target-relation[where Pred=Pred]
by simp
qed

lemma (in encoding) enc-preserves-pred-iff-source-target-rel-preserves-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-preserves-pred Pred
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-pred Rel Pred)
and enc-preserves-pred Pred = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-pred Rel Pred A preorder Rel)
proof —
have A1: enc-preserves-pred Pred
= (VS. (A\(P, Q). Pred P — Pred Q) (SourceTerm S, TargetTerm ([S])))
by blast
moreover have A2: A\Rel. rel-preserves-pred Rel Pred
= (V(P, Q) € Rel. (A(P, Q). Pred P — Pred Q) (P, Q))
by blast

60

ultimately show enc-preserves-pred Pred = (3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-pred Rel Pred)
using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
Pred=X\(P, Q). Pred P — Pred Q)]
by simp
from A1 A2 show enc-preserves-pred Pred = (3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-pred Rel Pred A preorder Rel)
using enc-satisfies-pred-iff-source-target-satisfies-pred(2)[where
Pred=X\(P, Q). Pred P — Pred Q)]
by simp
qed

lemma (in encoding) enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred:
fixes Pred :: ("procS, 'procT) Proc = 'b = bool
shows enc-preserves-binary-pred Pred = (3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-binary-pred Rel Pred)
proof —
have enc-preserves-binary-pred Pred
= (VS. (A(P, Q). Va. Pred Pa — Pred Q a) (SourceTerm S, TargetTerm ([S])))
by blast
moreover have ARel. rel-preserves-binary-pred Rel Pred
= (V(P, Q) € Rel. (A(P, Q). Ya. Pred Pa — Pred Q a) (P, Q))
by blast
ultimately show enc-preserves-binary-pred Pred = (3 Rel. (V¥ S.
(SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-binary-pred Rel Pred)
using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
Pred=\(P, Q). Va. Pred P a — Pred @ d]
by simp
qed

lemma (in encoding) enc-reflects-pred-iff-source-target-rel-reflects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-reflects-pred Pred
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel Pred)
and enc-reflects-pred Pred = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-pred Rel Pred A preorder Rel)
proof —
have A1: enc-reflects-pred Pred
= (VS. (\(P, Q). Pred @ — Pred P) (SourceTerm S, TargetTerm ([S])))
by blast
moreover have A2: A\Rel. rel-reflects-pred Rel Pred
= (V(P, Q) € Rel. (\(P, Q). Pred @ — Pred P) (P, Q))
by blast
ultimately show enc-reflects-pred Pred = (3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-pred Rel Pred)
using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
Pred=X\(P, Q). Pred Q — Pred P]
by simp
from A1 A2 show enc-reflects-pred Pred = (3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-pred Rel Pred N preorder Rel)
using enc-satisfies-pred-iff-source-target-satisfies-pred(2)[where
Pred=X\(P, Q). Pred Q — Pred P]
by simp
qed

lemma (in encoding) enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows enc-reflects-binary-pred Pred = (3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-binary-pred Rel Pred)
proof —
have enc-reflects-binary-pred Pred

61

= (VS. (\(P, Q). Va. Pred Q a —> Pred P a) (SourceTerm S, TargetTerm ([S])))

by blast

moreover have A Rel. rel-reflects-binary-pred Rel Pred
= (V(P, Q) € Rel. (A(P, Q). Ya. Pred Q a — Pred P a) (P, Q))

by blast

ultimately show enc-reflects-binary-pred Pred = (3 Rel. (V S.
(SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-binary-pred Rel Pred)
using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
Pred=X\(P, Q). Va. Pred Q a — Pred P a]
by simp
qed

lemma (in encoding) enc-respects-pred-iff-source-target-rel-respects-pred-encR:
fixes Pred :: ('procS, 'procT) Proc = bool
shows enc-respects-pred Pred
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred)
and enc-respects-pred Pred = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-pred Rel Pred A preorder Rel)
proof —
have A1: enc-respects-pred Pred
= (VS. (A(P, Q). Pred P = Pred Q) (SourceTerm S, TargetTerm ([S])))
by blast
moreover
have A2: ARel. rel-respects-pred Rel Pred = (¥ (P, Q) € Rel. (A\(P, Q). Pred P = Pred Q) (P, Q))
by blast
ultimately show enc-respects-pred Pred = (3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-pred Rel Pred)
using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
Pred=X\(P, Q). Pred P = Pred Q]
by simp
from A1 A2 show enc-respects-pred Pred = (3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-pred Rel Pred A preorder Rel)
using enc-satisfies-pred-iff-source-target-satisfies-pred(2)[where
Pred=\(P, Q). Pred P = Pred Q]
by simp
qed

lemma (in encoding) enc-respects-binary-pred-iff-source-target-rel-respects-binary-pred-encR:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows enc-respects-binary-pred Pred = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-binary-pred Rel Pred)
proof —
have enc-respects-binary-pred Pred
= (VS. (AP, Q). Va. Pred P a = Pred Q a) (SourceTerm S, TargetTerm ([S])))
by blast
moreover have A\ Rel. rel-respects-binary-pred Rel Pred
= (V(P, Q) € Rel. (\(P, Q). Ya. Pred Pa= Pred Q a) (P, Q))
by blast
ultimately show enc-respects-binary-pred Pred = (3 Rel. (V S.
(SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-binary-pred Rel Pred)
using enc-satisfies-pred-iff-source-target-satisfies-pred(1)[where
Pred=X\(P, Q). Y a. Pred P a = Pred Q a]
by simp
qed

To analyse the reflection of source term behaviours we use relations that contain the pairs (enc S, S)
for all source terms S.

inductive-set (in encoding) indRelL
= (("procS, "procT) Proc) x (("procS, 'procT) Proc)) set
where

62

encL: (TargetTerm ([S]), SourceTerm S) € indRelL

abbreviation (in encoding) indRelLinfiz :
("procS, 'procT) Proc = ('procS, 'procT) Proc = bool («- R[-]L -» [75, 75] 80)
where
P R[]L Q = (P, Q) € indRelL

inductive-set (in encoding) indRelLPO
2 ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
where
encL: (TargetTerm ([S]), SourceTerm S) € indRelLPO |
source: (SourceTerm S, SourceTerm S) € indRelLPO |
target: (TargetTerm T, TargetTerm T) € indRelLPO |
trans: [(P, Q) € indRelLPO; (Q, R) € indRelLPO] = (P, R) € indRelLPO

abbreviation (in encoding) indRelLPOinfiz ::
("procS, 'procT) Proc = ('procS, 'procT) Proc = bool («- S[-]L - [75, 75] 80)
where
P <[IL Q = (P, Q) € indRelLPO

lemma (in encoding) indRelLPO-refi:
shows refl indRelLPO
unfolding refl-on-def
proof auto
fix P
show P <[]L P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
thus P <[-]L P
by (simp add: indRelLPO.source)
next
case (TargetTerm TP)
assume TP €T P
thus P <[-]L P
by (simp add: indRelLPO.target)
qged
qed

lemma (in encoding) indRelLPO-is-preorder:
shows preorder indRelLPO
unfolding preorder-on-def
proof
show refl indRelLPO
by (rule indRelLPO-refl)
next
show trans indRelLPO
unfolding trans-def
proof clarify
fix PQR
assume P <[]L Q and Q <[]L R
thus P <[']L R
by (rule indRelLPO.trans)
qed
qed

lemma (in encoding) refl-trans-closure-of-indRelL:
shows indRelLPO = indRelL*

proof auto
fix P Q
assume P <[-]L Q

63

thus (P, Q) € indRelL*
proof induct
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € indRelL*
using indRelL.encL[of S]
by simp
next
case (source S)
show (SourceTerm S, SourceTerm S) € indRelL*
by simp
next
case (target T)
show (TargetTerm T, TargetTerm T) € indRelL*
by simp
next
case (trans P Q R)
assume (P, Q) € indRell* and (Q, R) € indRelL*
thus (P, R) € indRelL*
by simp
qged
next
fix P Q
assume (P, Q) € indRelL*
thus P <[]L Q
proof induct
show P <[-]L P
using indRelLPO-refl
unfolding refi-on-def
by simp
next
case (step Q R)
assume P <[]L @
moreover assume @ R[-]L R
hence Q <[']L R
by (induct, simp add: indRelLPO.encL)
ultimately show P <[]L R
by (simp add: indRelLPO.trans[of P Q R])
qged
qed

The relations indRelR and indRelL. are dual. indRelR preserves some predicate iff indRellL reflects it.
indRelR reflects some predicate iff indRelLL reflects it. indRelR respects some predicate iff indRelL
does.

lemma (in encoding) indRelR-preserves-pred-iff-indRelL-reflects-pred:
fixes Pred :: ('procS, 'procT) Proc = bool
shows rel-preserves-pred indRelR Pred = rel-reflects-pred indRell. Pred
proof
assume preservation: rel-preserves-pred indRelR Pred
show rel-reflects-pred indRell, Pred
proof clarify
fix P Q)
assume P R[]L Q
from this obtain S where S €S Q and [S] €T P
by (induct, blast)
hence Q R[-]R P
by (simp add: indRelR.encR)
moreover assume Pred ()
ultimately show Pred P
using preservation
by blast

64

qged
next
assume reflection: rel-reflects-pred indRelL Pred
show rel-preserves-pred indRelR Pred
proof clarify
fix P Q
assume P R[]R Q
from this obtain S where S €S P and [S] €T Q
by (induct, blast)
hence Q R[-]L P
by (simp add: indRelL.encL)
moreover assume Pred P
ultimately show Pred)
using reflection
by blast
qed
qed

lemma (in encoding) indRelR-preserves-binary-pred-iff-indRelL-reflects-binary-pred:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows rel-preserves-binary-pred indRelR Pred = rel-reflects-binary-pred indRell Pred
proof
assume preservation: rel-preserves-binary-pred indRelR Pred
show rel-reflects-binary-pred indRell, Pred
proof clarify
fix PQx
assume P R[]L Q
from this obtain S where S €S Q and [S] €T P
by (induct, blast)
hence Q R[-]R P
by (simp add: indRelR.encR)
moreover assume Pred @ x
ultimately show Pred P x
using preservation
by blast
qed
next
assume reflection: rel-reflects-binary-pred indRell. Pred
show rel-preserves-binary-pred indRelR Pred
proof clarify
fix PQx
assume P R[-]R Q
from this obtain S where S €S P and [S] €T @
by (induct, blast)
hence Q R[-]L P
by (simp add: indRelL.encL)
moreover assume Pred P x
ultimately show Pred @ x
using refiection
by blast
qed
qed

lemma (in encoding) indRelR-reflects-pred-iff-indRelL-preserves-pred:

fixes Pred :: ('procS, 'procT) Proc = bool

shows rel-reflects-pred indRelR Pred = rel-preserves-pred indRell. Pred
proof

assume reflection: rel-reflects-pred indRelR Pred

show rel-preserves-pred indRell. Pred

proof clarify

fix P Q

65

assume P R[-]L Q
from this obtain S where S €S Q and [S] €T P
by (induct, blast)
hence Q R[-]R P
by (simp add: indRelR.encR)
moreover assume Pred P
ultimately show Pred ()
using reflection
by blast
qged
next
assume preservation: rel-preserves-pred indRell, Pred
show rel-reflects-pred indRelR Pred
proof clarify
fix P Q)
assume P R[]R Q
from this obtain S where S €S P and [S] €T @
by (induct, blast)
hence Q R[-]L P
by (simp add: indRelL.encL)
moreover assume Pred ()
ultimately show Pred P
using preservation
by blast
qed
qed

lemma (in encoding) indRelR-reflects-binary-pred-iff-indRelL-preserves-binary-pred:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows rel-reflects-binary-pred indRelR Pred = rel-preserves-binary-pred indRell, Pred
proof
assume reflection: rel-reflects-binary-pred indRelR Pred
show rel-preserves-binary-pred indRelL. Pred
proof clarify
fix PQx
assume P R[]L @
from this obtain S where S €S @ and [S] €T P
by (induct, blast)
hence Q R[-]R P
by (simp add: indRelR.encR)
moreover assume Pred P z
ultimately show Pred Q z
using reflection
by blast
qed
next
assume preservation: rel-preserves-binary-pred indRell Pred
show rel-reflects-binary-pred indRelR Pred
proof clarify
fix PQx
assume P R[-]R Q
from this obtain S where S €S P and [S] €T @
by (induct, blast)
hence @ R[-]L P
by (simp add: indRelL.encL)
moreover assume Pred Q)
ultimately show Pred P x
using preservation
by blast
qged
qed

66

lemma (in encoding) indRelR-respects-pred-iff-indRelL-respects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows rel-respects-pred indRelR Pred = rel-respects-pred indRelL Pred
using indRelR-preserves-pred-iff-indRelL-reflects-pred[where Pred=Pred)
indRelR-reflects-pred-iff-indRelL-preserves-pred[where Pred=Pred)]
by blast

lemma (in encoding) indRelR-respects-binary-pred-iff-indRelL-respects-binary-pred:
fixes Pred :: ("procS, 'procT) Proc ='b = bool
shows rel-respects-binary-pred indRelR Pred = rel-respects-binary-pred indRell, Pred
using indRelR-preserves-binary-pred-iff-indRelL-reflects-binary-pred[where Pred=Pred]
indRelR-reflects-binary-pred-iff-indRelL-preserves-binary-pred[where Pred=Pred)]
by blast

lemma (in encoding) indRelR-cond-preservation-iff-indRelL-cond-reflection:
fixes Pred :: ("procS, 'procT) Proc = bool
shows (J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-pred Rel Pred)
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-reflects-pred Rel Pred)
proof
assume 3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-pred Rel Pred
then obtain Rel where A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-preserves-pred Rel Pred
by blast
from A1 have V S. (TargetTerm ([S]), SourceTerm S) € Rel™!
by simp
moreover from A2 have rel-reflects-pred (Rel™') Pred
by simp
ultimately show 3 Rel. (V. S. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-reflects-pred Rel Pred
by blast
next
assume 3 Rel. (¥ S. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-reflects-pred Rel Pred
then obtain Rel where B1:V S. (TargetTerm ([S]), SourceTerm S) € Rel
and B2: rel-reflects-pred Rel Pred
by blast
from B1 have V S. (SourceTerm S, TargetTerm ([S])) € Rel™*
by simp
moreover from B2 have rel-preserves-pred (Rel™') Pred
by blast
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-pred Rel Pred
by blast
qed

lemma (in encoding) indRelR-cond-binary-preservation-iff-indRelL-cond-binary-reflection:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows (F Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-binary-pred Rel Pred)
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-reflects-binary-pred Rel Pred)
proof
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-binary-pred Rel Pred
then obtain Rel where A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-preserves-binary-pred Rel Pred
by blast
from A1 have V S. (TargetTerm ([S]), SourceTerm S) € Rel™!
by simp
moreover from A2 have rel-reflects-binary-pred (Rel=') Pred
by simp
ultimately
show J Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-reflects-binary-pred Rel Pred
by blast

67

next
assume J Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-reflects-binary-pred Rel Pred
then obtain Rel where BI: V S. (TargetTerm ([S]), SourceTerm S) € Rel
and B2: rel-reflects-binary-pred Rel Pred
by blast
from B have V S. (SourceTerm S, TargetTerm ([S])) € Rel™*
by simp
moreover from B2 have rel-preserves-binary-pred (Rel=') Pred
by simp
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-preserves-binary-pred Rel Pred
by blast
qed

lemma (in encoding) indRelR-cond-reflection-iff-indRelL-cond-preservation:
fixes Pred :: ("procS, 'procT) Proc = bool
shows (F Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel Pred)
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-preserves-pred Rel Pred)
proof
assume J Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel Pred
then obtain Rel where A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-reflects-pred Rel Pred
by blast
from A1 have V S. (TargetTerm ([S]), SourceTerm S) € Rel™!
by simp
moreover from A2 have rel-preserves-pred (Rel™') Pred
by blast
ultimately
show I Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-preserves-pred Rel Pred
by blast
next
assume 3 Rel. (¥ S. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-preserves-pred Rel Pred
then obtain Rel where B1:V S. (TargetTerm ([S]), SourceTerm S) € Rel
and B2: rel-preserves-pred Rel Pred
by blast
from B1 have V S. (SourceTerm S, TargetTerm ([S])) € Rel™*
by simp
moreover from B2 have rel-reflects-pred (Rel™') Pred
by simp
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel Pred
by blast
qed

lemma (in encoding) indRelR-cond-binary-reflection-iff-indRelL-cond-binary-preservation:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows (F Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-binary-pred Rel Pred)
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-preserves-binary-pred Rel Pred)
proof
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-binary-pred Rel Pred
then obtain Rel where A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-reflects-binary-pred Rel Pred
by blast
from A1 have V S. (TargetTerm ([S]), SourceTerm S) € Rel™!
by simp
moreover from A2 have rel-preserves-binary-pred (Rel™') Pred
by blast
ultimately
show J Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-preserves-binary-pred Rel Pred
by blast

68

next
assume J Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-preserves-binary-pred Rel Pred
then obtain Rel where BI: V S. (TargetTerm ([S]), SourceTerm S) € Rel
and B2: rel-preserves-binary-pred Rel Pred
by blast
from B have V S. (SourceTerm S, TargetTerm ([S])) € Rel™*
by simp
moreover from B2 have rel-reflects-binary-pred (Rel™') Pred
by simp
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-binary-pred Rel Pred
by blast
qed

lemma (in encoding) indRelR-cond-respection-iff-indRelL-cond-respection:
fixes Pred :: ("procS, 'procT) Proc = bool
shows (I Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred)
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-pred Rel Pred)
proof
assume J Rel. (V' S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred
from this obtain Rel where A1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-respects-pred Rel Pred
by blast
from A1 have VS. (TargetTerm ([S]), SourceTerm S) € {(a, b). (b, a) € Rel}
by simp
moreover from A2 have rel-respects-pred {(a, b). (b, a) € Rel} Pred
by blast
ultimately show 3 Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-pred Rel Pred
by blast
next
assume 3 Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-pred Rel Pred
from this obtain Rel where A1:V S. (TargetTerm ([S]), SourceTerm S) € Rel
and A2: rel-respects-pred Rel Pred
by blast
from A1 have VS. (SourceTerm S, TargetTerm ([S])) € {(a, b). (b, a) € Rel}
by simp
moreover from A2 have rel-respects-pred {(a, b). (b, a) € Rel} Pred
by blast
ultimately show 3 Rel. (Vv S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred
by blast
qed

lemma (in encoding) indRelR-cond-binary-respection-iff-indRelL-cond-binary-respection:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows (J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-binary-pred Rel Pred)
= (3 Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-binary-pred Rel Pred)
proof
assume 3 Rel. (V' S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-binary-pred Rel Pred
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-respects-binary-pred Rel Pred
by blast
from A1 have V S. (TargetTerm ([S]), SourceTerm S) € {(a, b). (b, a) € Rel}
by simp
moreover from A2 have rel-respects-binary-pred {(a, b). (b, a) € Rel} Pred
by blast
ultimately
show J Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-binary-pred Rel Pred
by blast
next
assume J Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-binary-pred Rel Pred

69

from this obtain Rel where A1: YV S. (TargetTerm ([S]), SourceTerm S) € Rel
and A2: rel-respects-binary-pred Rel Pred

by blast

from A1 have V S. (SourceTerm S, TargetTerm ([S])) € {(a, b). (b, a) € Rel}
by simp

moreover from A2 have rel-respects-binary-pred {(a, b). (b, a) € Rel} Pred
by blast

ultimately

show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-binary-pred Rel Pred
by blast

qed

An encoding preserves, reflects, or respects a predicate iff indRelL: reflects, preserves, or respects this
predicate.

lemma (in encoding) enc-preserves-pred-iff-indRelL-reflects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-preserves-pred Pred = rel-reflects-pred indRell. Pred
using enc-preserves-pred-iff-indRelR-preserves-pred[where Pred=Pred)]
indRelR-preserves-pred-iff-indRelL-reflects-pred[where Pred=Pred]
by blast

lemma (in encoding) enc-reflects-pred-iff-indRelL-preserves-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-reflects-pred Pred = rel-preserves-pred indRell. Pred
using enc-reflects-pred-iff-indRelR-reflects-pred[where Pred=Pred]
indRelR-reflects-pred-iff-indRelL-preserves-pred[where Pred=Pred)]
by blast

lemma (in encoding) enc-respects-pred-iff-indRelL-respects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-respects-pred Pred = rel-respects-pred indRell. Pred
using enc-preserves-pred-iff-indRelL-reflects-pred[where Pred=Pred)]
enc-reflects-pred-iff-indRelL-preserves-pred[where Pred=Pred)
by blast

An encoding preserves, reflects, or respects a predicate iff there exists a relation, namely indRelL, that
relates literal translations with their source terms and reflects, preserves, or respects this predicate.

lemma (in encoding) enc-preserves-pred-iff-source-target-rel-reflects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-preserves-pred Pred
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-reflects-pred Rel Pred)
using enc-preserves-pred-iff-source-target-rel-preserves-pred[where Pred=Pred]
indRelR-cond-preservation-iff-indRelL-cond-reflection[where Pred=Pred]
by simp

lemma (in encoding) enc-reflects-pred-iff-source-target-rel-preserves-pred:
fixes Pred :: ('procS, 'procT) Proc = bool
shows enc-reflects-pred Pred
= (3 Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-preserves-pred Rel Pred)
using enc-reflects-pred-iff-source-target-rel-reflects-pred[where Pred=Pred)]
indRelR-cond-reflection-iff-indRelL-cond-preservation[where Pred=Pred]
by simp

lemma (in encoding) enc-respects-pred-iff-source-target-rel-respects-pred-encL:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-respects-pred Pred
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-pred Rel Pred)
using enc-respects-pred-iff-source-target-rel-respects-pred-encR[where Pred=Pred]
indRelR-cond-respection-iff-indRelL-cond-respection|where Pred=Pred)
by simp

70

To analyse the respection of source term behaviours we use relations that contain both kind of pairs:
(S, enc S) as well as (enc S, S) for all source terms S.

inductive-set (in encoding) indRel
= ((("procS, "procT) Proc) x (('procS, 'procT) Proc)) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRel |
encL: (TargetTerm ([S]), SourceTerm S) € indRel

abbreviation (in encoding) indRellnfiz ::
("procS, 'procT) Proc = ('procS, 'procT) Proc = bool («- R[] - [75, 75] 80)
where
PRI Q= (P, Q) € indRel

lemma (in encoding) indRel-symm:
shows sym indRel
unfolding sym-def
by (auto simp add: indRel.simps indRel.encR indRel.encL)

inductive-set (in encoding) indRelEQ
= ((("procS, "procT) Proc) x (('procS, 'procT) Proc)) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelEQ |
encL: (TargetTerm ([S]), SourceTerm S) € indRelEQ |
target: (TargetTerm T, TargetTerm T) € indRelEQ |
trans: [(P, Q) € indRelEQ; (Q, R) € indRelEQ] = (P, R) € indRelEQ

abbreviation (in encoding) indRelEQinfix ::
("procS, 'procT) Proc = ('procS, 'procT) Proc = bool («- ~[-] -» [75, 75] 80)
where
P ~[] Q = (P, Q) € indRelEQ

lemma (in encoding) indRelEQ-refl:
shows refl indRelEQ
unfolding refi-on-def
proof auto
fix P
show P ~[-] P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
moreover have SourceTerm SP ~[-] TargetTerm ([SP])
by (rule indRelEQ.encR)
moreover have TargetTerm ([SP]) ~[] SourceTerm SP
by (rule indRelEQ.encL)
ultimately show P ~[] P
by (simp add: indRelEQ.transjwhere P=SourceTerm SP and Q= TargetTerm ([SP])])
next
case (TargetTerm TP)
assume TP €T P
thus P ~[-] P
by (simp add: indRelEQ.target)
qed
qed

lemma (in encoding) indRelEQ-is-preorder:
shows preorder indRelEQ)
unfolding preorder-on-def
proof
show refl indRelEQ
by (rule indRelEQ-refl)

71

next
show trans indRelEQ
unfolding trans-def
proof clarify
fix PQR
assume P ~[-] Q and @ ~[-] R
thus P ~[-] R
by (rule indRelEQ.trans)
qed
qed

lemma (in encoding) indRelEQ-symm:
shows sym indRelEQ
unfolding sym-def
proof clarify
fix P Q
assume P ~[-] Q
thus Q ~[-] P
proof induct
case (encR 9)
show TargetTerm ([S]) ~[] SourceTerm S
by (rule indRelEQ.encL)
next
case (encL S)
show SourceTerm S ~[-] TargetTerm ([S])
by (rule indRelEQ.encR)
next
case (target T)
show TargetTerm T ~[-] TargetTerm T
by (rule indRelEQ.target)
next
case (trans P Q R)
assume R ~[-] Q and @ ~[-] P
thus R ~[-] P
by (rule indRelEQ).trans)
qed
qed

lemma (in encoding) indRelEQ-is-equivalence:
shows equivalence indRelEQ
using indRelEQ-is-preorder indRelEQ-symm
unfolding equiv-def preorder-on-def
by blast

lemma (in encoding) refl-trans-closure-of-indRel:
shows indRelEQ = indRel*
proof auto
fix P Q
assume P ~[-] Q
thus (P, Q) € indRel*
proof induct
case (encR 9)
show (SourceTerm S, TargetTerm ([S])) € indRel*
using indRel.encR[of S|
by simp
next
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € indRel*
using indRel.encL{of S|
by simp
next

72

case (target T)
show (TargetTerm T, TargetTerm T) € indRel*
by simp
next
case (trans P Q R)
assume (P, Q) € indRel* and (Q, R) € indRel*
thus (P, R) € indRel*
by simp
qed
next
fix P Q
assume (P, Q) € indRel*
thus P ~[] @
proof induct
show P ~[-] P
using indRelEQ-refl
unfolding refl-on-def
by simp
next
case (step Q R)
assume P ~[-] @
moreover assume @ R[] R
hence Q ~[-] R
by (induct, simp-all add: indRelEQ.encR indRelEQ.encl)
ultimately show P ~[-] R
by (rule indRelEQ.trans)
qged
qed

lemma (in encoding) refl-symm-trans-closure-of-indRel:
shows indRelEQ = (symcl (indRel=))"
proof —
have (symcl (indRel=))" = (symcl indRel)*
by (rule refl-symm-trans-closure-is-symme-refl-trans-closure[where Rel=indRel])
moreover have symcl indRel = indRel
by (simp add: indRel-symm symm-closure-of-symm-rel[where Rel=indRel])
ultimately show indRelEQ = (symcl (indRel™))™
by (simp add: refl-trans-closure-of-indRel)
qed

lemma (in encoding) symm-closure-of-indRelR:
shows indRel = symcl indRelR
and indRelEQ = (symcl (indRelR™))™
proof —
show indRel = symcl indRelR
proof auto
fix P Q)
assume P R[] @
thus (P, Q) € symcl indRelR
by (induct, simp-all add: symcl-def indRelR.encR)

next
fix P Q)
assume (P, Q) € symcl indRelR
thus P R[] @

by (auto simp add: symcl-def indRelR.simps indRel.encR indRel.encL)
qed
thus indRelEQ = (symcl (indRelR=))™
using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelR)
refi-trans-closure-of-indRel
by simp
qed

73

lemma (in encoding) symm-closure-of-indRelL:
shows indRel = symcl indRelL
and indRelEQ = (symcl (indRellL ™))"
proof —
show indRel = symcl indRelL
proof auto
fix P Q
assume P R[] Q
thus (P, Q) € symcl indRelL
by (induct, simp-all add: symcl-def indRelL.encL)

next
fix P Q
assume (P, Q) € symcl indRelL
thus P R[] @
by (auto simp add: symcl-def indRelL.simps indRel.encR indRel.encL)
qed

thus indRelEQ = (symecl (indRelL=))*
using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelL]
refi-trans-closure-of-indRel
by simp
qed

The relation indRel is a combination of indRelL and indRelR. indRel respects a predicate iff indRelR
(or indRelL)) respects it.

lemma (in encoding) indRel-respects-pred-iff-indRelR-respects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows rel-respects-pred indRel Pred = rel-respects-pred indRelR Pred
proof
assume respection: rel-respects-pred indRel Pred
show rel-respects-pred indRelR Pred
proof auto
fix P Q
assume P R[]R Q
from this obtain S where S €S P and [S] €T @
by (induct, blast)
hence P R[] @
by (simp add: indRel.encR)
moreover assume Pred P
ultimately show Pred)
using respection
by blast
next
fix P Q
assume P R[]R Q
from this obtain S where S €S P and [S] €T Q
by (induct, blast)
hence P R[] @
by (simp add: indRel.encR)
moreover assume Pred ()
ultimately show Pred P
using respection
by blast
qged
next
assume rel-respects-pred indRelR Pred
thus rel-respects-pred indRel Pred
using symm-closure-of-indRelR(1)
respection-and-closures(2)[where Rel=indRelR and Pred=Pred)
by blast

74

qed

lemma (in encoding) indRel-respects-binary-pred-iff-indRelR-respects-binary-pred:
fixes Pred :: ('procS, 'procT) Proc = 'b = bool
shows rel-respects-binary-pred indRel Pred = rel-respects-binary-pred indRelR Pred
proof
assume respection: rel-respects-binary-pred indRel Pred
show rel-respects-binary-pred indRelR Pred
proof auto
fix PQx
assume P R[]R Q
from this obtain S where S €S P and [S] €T Q
by (induct, blast)
hence P R[] @
by (simp add: indRel.encR)
moreover assume Pred P x
ultimately show Pred Q) x
using respection
by blast
next
fix PQx
assume P R[]R Q
from this obtain S where S €S P and [S] €T Q
by (induct, blast)
hence P R[] @
by (simp add: indRel.encR)
moreover assume Pred @ x
ultimately show Pred P x
using respection
by blast
qged
next
assume rel-respects-binary-pred indRelR Pred
thus rel-respects-binary-pred indRel Pred
using symm-closure-of-indRelR(1)
respection-of-binary-predicates-and-closures(2)[where Rel=indRelR and Pred=Pred]
by blast
qed

lemma (in encoding) indRel-cond-respection-iff-indRelR-cond-respection:
fixes Pred :: ('procS, 'procT) Proc = bool
shows (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-pred Rel Pred)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred)
proof
assume 3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-pred Rel Pred
from this obtain Rel
where V S. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel
and rel-respects-pred Rel Pred
by blast
thus 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred
by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel Pred
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-respects-pred Rel Pred
by blast
from A1 have VS. (SourceTerm S, TargetTerm ([S])) € symcl Rel
A (TargetTerm ([S]), SourceTerm S) € symcl Rel

75

by (simp add: symcl-def)
moreover from A2 have rel-respects-pred (symcl Rel) Pred
using respection-and-closures(2)[where Rel=Rel and Pred=Pred)
by blast
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-pred Rel Pred
by blast
qed

lemma (in encoding) indRel-cond-binary-respection-iff-ind RelR-cond-binary-respection:
fixes Pred :: ("procS, 'procT) Proc = 'b = bool
shows (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-binary-pred Rel Pred)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-binary-pred Rel Pred)
proof
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel) A rel-respects-binary-pred Rel Pred
from this obtain Rel
where V S. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel
and rel-respects-binary-pred Rel Pred
by blast
thus 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-binary-pred Rel Pred
by blast
next
assume 3 Rel. (V' S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-binary-pred Rel Pred
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: rel-respects-binary-pred Rel Pred
by blast
from A1 have V S. (SourceTerm S, TargetTerm ([S])) € symcl Rel
A (TargetTerm ([S]), SourceTerm S) € symcl Rel
by (simp add: symcl-def)
moreover from A2 have rel-respects-binary-pred (symcl Rel) Pred
using respection-of-binary-predicates-and-closures(2)[where Rel=Rel and Pred=Pred)
by blast
ultimately
show I Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-binary-pred Rel Pred
by blast
qed

An encoding respects a predicate iff indRel respects this predicate.

lemma (in encoding) enc-respects-pred-iff-indRel-respects-pred:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-respects-pred Pred = rel-respects-pred indRel Pred
using enc-respects-pred-iff-indRelR-respects-pred[where Pred=Pred)
indRel-respects-pred-iff-indRelR-respects-pred[where Pred=Pred)]
by simp

An encoding respects a predicate iff there exists a relation, namely indRel, that relates source terms
and their literal translations in both directions and respects this predicate.

lemma (in encoding) enc-respects-pred-iff-source-target-rel-respects-pred-encRL:
fixes Pred :: ("procS, 'procT) Proc = bool
shows enc-respects-pred Pred
= (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-pred Rel Pred)
using enc-respects-pred-iff-source-target-rel-respects-pred-encR[where Pred=Pred]

76

indRel-cond-respection-iff-ind RelR-cond-respection[where Pred=Pred)
by simp

5.2 Relations Induced by the Encoding and a Relation on Target Terms

Some encodability like e.g. operational correspondence are defined w.r.t. a relation on target terms.
To analyse such criteria we include the respective target term relation in the considered relation on
the disjoint union of source and target terms.

inductive-set (in encoding) indRelRT
2 ("procT x 'procT) set = ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelRT TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelRT TRel

abbreviation (in encoding) indRelRTinfix
2 ("procS, 'procT) Proc = ('procT x 'procT) set = ('procS, 'procT) Proc = bool
(- R[JRT<-> - [75, 75, 75] 80)
where
P R[JRT<TRel> Q = (P, Q) € indRelRT TRel

inductive-set (in encoding) indRelRTPO
= ("procT x 'procT) set = ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel |
source: (SourceTerm S, SourceTerm S) € indRelRTPO TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelRTPO TRel |
trans: [(P, Q) € indRelRTPO TRel; (Q, R) € indRelRTPO TRel] = (P, R) € indRelRTPO TRel

abbreviation (in encoding) indRelRTPOinfix
2 ("procS, 'procT) Proc = (‘procT x 'procT) set = ('procS, 'procT) Proc = bool
(«- <[IRT<-> - [75, 75, 75] 80)
where
P <[JRT<TRel> Q = (P, Q) € indRelRTPO TRel

lemma (in encoding) indRelRTPO-refl:
fixes TRel :: ("procT x 'procT) set
assumes refl: refl TRel
shows refl (indRelRTPO TRel)
unfolding refl-on-def
proof auto
fix P
show P S[-JRT<TRel> P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
thus P <[JRT<TRel> P
by (simp add: indRelRTPO.source)
next
case (TargetTerm TP)
assume TP €T P
with refl show P <[JRT<TRel> P
unfolding refi-on-def
by (simp add: indRelRTPO.target)
qed
qed

lemma (in encoding) refi-trans-closure-of-indRelRT:
fixes TRel :: ("procT x 'procT) set

7

assumes refil: refl TRel
shows indRelRTPO TRel = (indRelRT TRel)*
proof auto
fix P Q
assume P S[JRT<TRel> Q
thus (P, Q) € (indRelRT TRel)*
proof induct
case (encR S)
show (SourceTerm S, TargetTerm ([S])) € (indRelRT TRel)*
using indRelRT.encR[of S TRel
by simp
next
case (source S)
show (SourceTerm S, SourceTerm S) € (indRelRT TRel)*
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (indRelRT TRel)*
using indRelRT .target[of T1 T2 TRel]
by simp
next
case (trans P Q) R)
assume (P, Q) € (indRelRT TRel)* and (Q, R) € (indRelRT TRel)*
thus (P, R) € (indRelRT TRel)*
by simp
qged
next
fix P Q
assume (P, Q) € (indRelRT TRel)*
thus P <[JRT<TRel> Q
proof induct
from refl show P <[JRT<TRel> P
using indRelRTPO-refl[of TRel|
unfolding refi-on-def
by simp
next
case (step Q R)
assume P <[JRT<TRel> Q
moreover assume @ R[-JRT<TRel> R
hence Q <[JRT<TRel> R
by (induct, simp-all add: indRelRTPO.encR indRelRTPO.target)
ultimately show P <[-JRT<TRel> R
by (rule indRelRTPO.trans)
qed
qed

lemma (in encoding) indRelRTPO-is-preorder:
fixes TRel :: ("procT x 'procT) set
assumes reflT: refl TRel
shows preorder (indRelRTPO TRel)
unfolding preorder-on-def
proof
from reflT show refl (indRelRTPO TRel)
by (rule indRelRTPO-refl)
next
show trans (indRelRTPO TRel)
unfolding trans-def
proof clarify
fix PQR
assume P <[JRT<TRel> @ and Q <[JRT<TRel> R

78

thus P <[JRT<TRel> R
using indRelRTPO.trans
by blast
qged
qed

lemma (in encoding) transitive-closure-of-TRel-to-indRelRTPO:
fixes TRel :: (‘procT X 'procT) set
and TP TQ :: 'procT
shows (TP, TQ) € TRel™ = TargetTerm TP <[JRT<TRel> TargetTerm TQ
proof —
assume (TP, TQ) € TRel™
thus TargetTerm TP <[JRT<TRel> TargetTerm TQ
proof induct
fix TQ
assume (TP, TQ) € TRel
thus TargetTerm TP <[-JRT<TRel> TargetTerm TQ
by (rule indRelRTPO.target)
next
case (step TQ TR)
assume TargetTerm TP <[-JRT<TRel> TargetTerm TQ
moreover assume (7Q, TR) € TRel
hence TargetTerm TQ <[JRT<TRel> TargetTerm TR
by (simp add: indRelRTPO.target)
ultimately show TargetTerm TP S[JRT<TRel> TargetTerm TR
by (rule indRelRTPO.trans)
qged
qed

The relation indRelRT is the smallest relation that relates all source terms and their literal translations
and contains TRel. Thus there exists a relation that relates source terms and their literal translations
and satisfies some predicate on its pairs iff the predicate holds for the pairs of indRelR.

lemma (in encoding) indRelR-modulo-pred-impl-indRelRT-modulo-pred:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
shows (V (P, Q) € indRelR. Pred (P, Q)) = (VTRel. (V(TP, TQ) € TRel.
Pred (TargetTerm TP, TargetTerm TQ)) +— (V(P, Q) € indRelRT TRel. Pred (P, Q)))
proof (rule iff])
assume A: V (P, Q) € indRelR. Pred (P, Q)
show V TRel. (V (TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ))
= (V(P, Q) € indRelRT TRel. Pred (P, Q))
proof (rule alll, rule iffT)
fix TRel
assume YV (TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ)
with A show V (P, Q) € indRelRT TRel. Pred (P, Q)
by (auto simp add: indRelR.encR indRelRT.simps)
next
fix TRel
assume Y (P, Q) € indRelRT TRel. Pred (P, Q)
thus V (TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ)
by (auto simp add: indRelRT .target)
qged
next
assume Y TRel. (V(TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ))
> (V(P, Q) € indRelRT TRel. Pred (P, Q))
hence B: ATRel. (VY (TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ))
+—— (V(P, Q) € indRelRT TRel. Pred (P, Q))
by blast
have A\S. Pred (SourceTerm S, TargetTerm ([S]))
using Blof {}]
by (simp add: indRelRT .simps)

79

thus V (P, Q) € indRelR. Pred (P, Q)
by (auto simp add: indRelR.simps)
qed

lemma (in encoding) indRelRT-iff-exists-source-target-relation:

fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool

shows (V TRel. (V(TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ))
«—— (V(P, Q) € indRelRT TRel. Pred (P, Q)))
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V (P, Q) € Rel. Pred (P, Q)))

using indRelR-iff-exists-source-target-relation[where Pred=Pred]
indRelR-modulo-pred-impl-indRelRT-modulo-pred[where Pred=Pred)]
by simp

lemma (in encoding) indRelRT-modulo-pred-impl-indRelRTPO-modulo-pred:
fixes TRel :: ("procT x 'procT) set
and Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
assumes refilCond: ¥ P. Pred (P, P)
and transCond: Y P Q R. Pred (P, @) A Pred (Q, R) — Pred (P, R)
shows (V (P, Q) € indRelRT TRel. Pred (P, Q)) = (V(P, Q) € indRelRTPO TRel. Pred (P, Q))
proof auto
fix P Q
assume A: Vz € indRelRT TRel. Pred z
assume P <[JRT<TRel> Q
thus Pred (P, Q)
proof induct
case (encR 9)
have SourceTerm S R[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRT.encR)
with A show Pred (SourceTerm S, TargetTerm ([S]))
by simp
next
case (source S)
from reflCond show Pred (SourceTerm S, SourceTerm S)
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
hence TargetTerm T1 R[-JRT<TRel> TargetTerm T2
by (simp add: indRelRT .target)
with A show Pred (TargetTerm T1, TargetTerm T2)
by simp
next
case (trans P Q R)
assume Pred (P, @) and Pred (Q, R)
with transCond show Pred (P, R)
by blast
qged
next
fix P Q
assume Vz € indRelRTPO TRel. Pred x and P R[-JRT<TRel> Q
thus Pred (P, Q)
by (auto simp add: indRelRTPO.encR indRelRTPO.target indRelRT .simps)
qed

lemma (in encoding) indRelR-modulo-pred-impl-indRelRTPO-modulo-pred:
fixes Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) = bool
assumes V P. Pred (P, P)
and VP Q R. Pred (P, Q) A Pred (Q, R) — Pred (P, R)
shows (V (P, Q) € indRelR. Pred (P, Q))
= (VTRel. (V(TP, TQ) € TRel. Pred (TargetTerm TP, TargetTerm TQ))
+— (V(P, Q) € indRelRTPO TRel. Pred (P, Q)))

80

proof —
have (V (P, Q)cindRelR. Pred (P, Q)) = (VY TRel. (V(TP, TQ) € TRel.
Pred (TargetTerm TP, TargetTerm TQ)) <— (VY (P, Q) € indRelRT TRel. Pred (P, Q)))
using indRelR-modulo-pred-impl-indRelRT-modulo-pred[where Pred=Pred]
by simp
moreover
have V TRel. (V (P, Q)€indRelRT TRel. Pred (P, Q)) = (V(P, Q)€indRelRTPO TRel. Pred (P, Q))
using assms indRelRT-modulo-pred-impl-indRelRTPO-modulo-pred[where Pred=Pred)]
by blast
ultimately show ?thesis
by simp
qed

The relation indRelLL'T includes TRel and relates literal translations and their source terms.

inductive-set (in encoding) indRelLT
= ("procT x 'procT) set = ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for TRel :: ("procT x 'procT) set
where
encL: (TargetTerm ([S]), SourceTerm S) € indRelLT TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRellLT TRel

abbreviation (in encoding) indRelLTinfix
2 ("procS, 'procT) Proc = (‘procT x 'procT) set = ('procS, 'procT) Proc = bool
(t- R[JLT<-> - [75, 75, 75] 80)
where
P R[JLT<TRel> Q = (P, Q) € indRelLT TRel

inductive-set (in encoding) indRelLTPO
i ("procT x 'procT) set = ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for TRel :: ("procT x 'procT) set
where
encL: (TargetTerm ([S]), SourceTerm S) € indRelLTPO TRel |
source: (SourceTerm S, SourceTerm S) € indRelLTPO TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelLTPO TRel |
trans: [(P, @) € indRelLTPO TRel; (Q, R) € indRelLTPO TRel] = (P, R) € indRelLTPO TRel

abbreviation (in encoding) indRelLTPOinfix
i ("procS, 'procT) Proc = ('procT x 'procT) set = ('procS, 'procT) Proc = bool
(«- S[]LT<-> - [75, 75, 75] 80)
where
P <[]JLT<TRel> Q = (P, Q) € indRelLTPO TRel

lemma (in encoding) indRelLTPO-refi:
fixes TRel :: ("procT x 'procT) set
assumes refi: refl TRel
shows refl (indRelLTPO TRel)
unfolding refi-on-def
proof auto
fix P
show P <[]LT<TRel> P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
thus P <[JLT<TRel> P
by (simp add: indRelLTPO.source)
next
case (TargetTerm TP)
assume TP €T P
with refl show P <S[-JLT<TRel> P
using indRelLTPO.target[of TP TP TRel]
unfolding refi-on-def

81

by simp
qed
qed

lemma (in encoding) refi-trans-closure-of-indRelLT:
fixes TRel :: ("procT x 'procT) set
assumes refi: refl TRel
shows indRelLTPO TRel = (indRelLT TRel)*
proof auto
fix P Q
assume P S[-JLT<TRel> @
thus (P, Q) € (indRelLT TRel)*
proof induct
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € (indRelLT TRel)*
using indRelLT.encL[of S TRel]
by simp
next
case (source S)
show (SourceTerm S, SourceTerm S) € (indRelLT TRel)*
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (indRelLT TRel)*
using indRelLT .target[of T1 T2 TRel]
by simp
next
case (trans P Q) R)
assume (P, Q) € (indRelLT TRel)* and (Q, R) € (indRelLT TRel)*
thus (P, R) € (indRelLT TRel)*
by simp
qed
next
fix P Q
assume (P, Q) € (indRelLT TRel)*
thus P S[JLT<TRel> @
proof induct
from refl show P <[-JLT<TRel> P
using indRelLTPO-refl[of TRel]
unfolding refi-on-def
by simp
next
case (step Q R)
assume P S[JLT<TRel> Q
moreover assume @ R[-JLT<TRel> R
hence Q <[JLT<TRel> R
by (induct, simp-all add: indRelLTPO.encL indRelLTPO.target)
ultimately show P <[-]LT<TRel> R
by (rule indRelLTPO.trans)
qed
qed

inductive-set (in encoding) indRelT
i ("procT x 'procT) set = ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelT TRel |
encL: (TargetTerm ([S]), SourceTerm S) € indRelT TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelT TRel

82

abbreviation (in encoding) indRelTinfix
2 ("procS, 'procT) Proc = (‘procT x 'procT) set = ('procS, 'procT) Proc = bool
(- R[]T<-> - [75, 75, 75] 80)
where
P R[JT<TRel> Q = (P, Q) € indRelT TRel

lemma (in encoding) indRelT-symm:
fixes TRel :: ("procT x 'procT) set
assumes symm: sym TRel
shows sym (indRelT TRel)
unfolding sym-def
proof clarify
fix P Q
assume (P, Q) € indRelT TRel
thus (Q, P) € indRelT TRel
using symm
unfolding sym-def
by (induct, simp-all add: indRelT.encL indRelT.encR indRelT .larget)
qed

inductive-set (in encoding) indRelTEQ
= ("procT x 'procT) set = ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelTEQ TRel |
encL: (TargetTerm ([S]), SourceTerm S) € indRelTEQ TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelTEQ TRel |
trans: [(P, Q) € indRelTEQ TRel; (Q, R) € indRelTEQ TRel] = (P, R) € indRelTEQ TRel

abbreviation (in encoding) indRelTEQinfix
2 ("procS, 'procT) Proc = (‘procT x 'procT) set = ('procS, 'procT) Proc = bool
(- ~[]T<-> - [75, 75, 75) 80)
where
P ~[]T<TRel> Q = (P, Q) € indRelTEQ TRel

lemma (in encoding) indRel TEQ-refl:
fixes TRel :: ("procT x 'procT) set
assumes refl: refl TRel
shows refl (indRelTEQ TRel)
unfolding refl-on-def
proof auto
fix P
show P ~[-]T<TRel> P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
moreover have SourceTerm SP ~[-| T<TRel> TargetTerm ([SP])
by (rule indRelTEQ.encR)
moreover have TargetTerm ([SP]) ~[-]T<TRel> SourceTerm SP
by (rule indRelTEQ.encL)
ultimately show P ~[-]T<TRel> P
by (simp add: indRelTEQ.transjwhere P=SourceTerm SP and Q= TargetTerm ([SP])])
next
case (TargetTerm TP)
assume TP €T P
with refl show P ~[|T<TRel> P
unfolding refi-on-def
by (simp add: indRel TEQ.target)
qged
qed

83

lemma (in encoding) indRelTEQ-symm:
fixes TRel :: ("procT x 'procT) set
assumes symm: sym TRel
shows sym (indRelTEQ TRel)
unfolding sym-def
proof clarify
fix P Q
assume P ~[-|T<TRel> Q
thus Q ~[]T<TRel> P
proof induct
case (encR S)
show TargetTerm ([S]) ~[-]T<TRel> SourceTerm S
by (rule indRelTEQ.encL)
next
case (encL S)
show SourceTerm S ~[-]T<TRel> TargetTerm ([S])
by (rule indRelTEQ.encR)
next
case (target T1 T2)
assume (71, T2) € TRel
with symm show TargetTerm T2 ~[-]T<TRel> TargetTerm T1
unfolding sym-def
by (simp add: indRelTEQ.target)
next
case (trans P Q R)
assume R ~[-]T<TRel> @ and Q ~[-]T<TRel> P
thus R ~[-]T<TRel> P
by (rule indRelTEQ.trans)
qed
qed

lemma (in encoding) refl-trans-closure-of-indRelT:
fixes TRel :: ("procT x 'procT) set
assumes refi: refl TRel
shows indRelTEQ) TRel = (indRelT TRel)*
proof auto
fix P Q
assume P ~[-]T<TRel> Q
thus (P, Q) € (indRelT TRel)*
proof induct
case (encR 9)
show (SourceTerm S, TargetTerm ([S])) € (indRelT TRel)*
using indRelT.encR|of S TRel]
by simp
next
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € (indRelT TRel)*
using indRelT.encL[of S TRel]
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (indRelT TRel)*
using indRelT .target[of T1 T2 TRel]
by simp
next
case (trans P Q R)
assume (P, Q) € (indRelT TRel)* and (Q, R) € (indRelT TRel)*
thus (P, R) € (indRelT TRel)*
by simp
qed

84

next
fix P Q
assume (P, Q) € (indRelT TRel)*
thus P ~[-]T<TRel> Q
proof induct
from refl show P ~[-]T<TRel> P
using indRelTEQ-refl[of TRel]
unfolding refi-on-def
by simp
next
case (step Q R)
assume P ~[|T<TRel> @
moreover assume @ R[-|T<TRel> R
hence Q ~[-]T<TRel> R
by (induct, simp-all add: indRelTEQ.encR indRelTEQ.encL indRelTEQ.target)
ultimately show P ~[-]T<TRel> R
by (rule indRelTEQ.trans)
qed
qed

lemma (in encoding) refl-symm-trans-closure-of-indRelT:
fixes TRel :: ("procT x 'procT) set
assumes refi: refl TRel
and symm: sym TRel
shows indRelTEQ TRel = (symcl ((indRelT TRel)=))"
proof —
have (symcl ((indRelT TRel)=))" = (symcl (indRelT TRel))*
by (rule refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelT TRel))
moreover from symm have symcl (indRelT TRel) = indRelT TRel
using indRelT-symm|[where TRel=TRel| symm-closure-of-symm-rel[where Rel=indRelT TRel]
by blast
ultimately show indRelTEQ TRel = (symecl ((indRelT TRel)™))™
using refl refl-trans-closure-of-indRelT[where TRel=TRel]
by simp
qed

lemma (in encoding) symm-closure-of-indRelRT":
fixes TRel :: ("procT x 'procT) set
assumes refi: refl TRel
and symm: sym TRel
shows indRelT TRel = symcl (indRelRT TRel)
and indRelTEQ TRel = (symcl ((indRelRT TRel)=))"
proof —
show indRelT TRel = symcl (indRelRT TRel)
proof auto
fix P Q
assume P R[-]T<TRel> Q
thus (P, Q) € symcl (indRelRT TRel)
by (induct, simp-all add: symcl-def indRelRT.encR indRelRT .target)
next
fix P Q
assume (P, Q) € symcl (indRelRT TRel)
thus P R[]T<TRel> Q
proof (auto simp add: symcl-def indRelRT .simps)
fix S
show SourceTerm S R[-]T<TRel> TargetTerm ([S])
by (rule indRelT.encR)
next
fix T1 T2
assume (T1, T2) € TRel
thus TargetTerm T1 R[-]T<TRel> TargetTerm T2

85

by (rule indRelT.target)
next
fix S
show TargetTerm ([S]) R[] T<TRel> SourceTerm S
by (rule indRelT.enclL)
next
fix T1 T2
assume (11, T2) € TRel
with symm show TargetTerm T2 R[] T<TRel> TargetTerm T1
unfolding sym-def
by (simp add: indRelT .target)
qed
qed
with refl show indRelTEQ TRel = (symcl ((indRelRT TRel)=))™
using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelRT TRel]
refi-trans-closure-of-indRelT
by simp
qed

lemma (in encoding) symm-closure-of-indRelLT:
fixes TRel :: ("procT x 'procT) set
assumes refl: refl TRel
and symm: sym TRel
shows indRelT TRel = symcl (indRelLT TRel)
and indRelTEQ TRel = (symcl ((indRelLT TRel)=))"
proof —
show indRelT TRel = symcl (indRelLT TRel)
proof auto
fix P Q
assume P R[]T<TRel> Q
thus (P, Q) € symcl (indRelLT TRel)
by (induct, simp-all add: symcl-def indRelLT.encL indRelLT .target)
next
fix P Q
assume (P, Q) € symcl (indRelLT TRel)
thus P R[-]JT<TRel> Q
proof (auto simp add: symcl-def indRelL T .simps)
fix S
show SourceTerm S R[-]T<TRel> TargetTerm ([S])
by (rule indRelT.encR)
next
fix T1 T2
assume (T1, T2) € TRel
thus TargetTerm T1 R[-|T<TRel> TargetTerm T2
by (rule indRelT.target)
next
fix S
show TargetTerm ([S]) R[-]T<TRel> SourceTerm S
by (rule indRelT.encL)
next
fix T1 T2
assume (71, T2) € TRel
with symm show TargetTerm T2 R[] T<TRel> TargetTerm T1
unfolding sym-def
by (simp add: indRelT .target)
qed
qed
with refl show indRelTEQ TRel = (symcl ((indRelLT TRel)=))™"
using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelLT TRel)
refi-trans-closure-of-indRelT
by simp

86

qed

If the relations indRelRT, indRelLT, or indRelT contain a pair of target terms, then this pair is also
related by the considered target term relation.

lemma (in encoding) indRelRT-to-TRel:
fixes TRel :: ('procT x 'procT) set
and TP TQ :: 'procT
assumes rel: TargetTerm TP R[-JRT<TRel> TargetTerm TQ
shows (TP, TQ) € TRel
using rel
by (simp add: indRelRT.simps)

lemma (in encoding) indRelLT-to-TRel:
fixes TRel :: (‘procT x ’procT) set
and TP TQ :: 'procT
assumes rel: TargetTerm TP R[-JLT<TRel> TargetTerm TQ
shows (TP, TQ) € TRel
using rel
by (simp add: indRelLT.simps)

lemma (in encoding) indRelT-to-TRel:
fixes TRel :: ('procT x 'procT) set
and TP T(Q :: 'procT
assumes rel: TargetTerm TP R[-]T<TRel> TargetTerm TQ
shows (TP, TQ) € TRel
using rel
by (simp add: indRelT .simps)

If the preorders indRelRTPO, indRelLTPO, or the equivalence indRelTEQ contain a pair of terms,
then the pair of target terms that is related to these two terms is also related by the reflexive and
transitive closure of the considered target term relation.

lemma (in encoding) indRelRTPO-to-TRel:
fixes TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes rel: P S[-JRT<TRel> @
shows VSP SQ. SP €S P A SQ €S Q — SP = 5Q
and VSP TQ. SP €SP A TQ €T Q
— ([SP], TQ) € (TRel U {(T1, T2).35. T1 =[S] A T2 = [S]}H)*
and VTP SQ. TP €T P N SQ €S () — False
and VTP TQ. TP €T P A TQ €T Q —» (TP, TQ) € TRel*
proof —
have refilTRel: ¥ S. ([S], [S]) € TRel U {(T1, T2).3S5. T1 = [S] A T2 = [S]}
by auto
from rel show VSP SQ. SP €SP AN SQ €S Q — SP = 5Q
and VSP TQ. SP €SP A TQ €T Q
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
and VTP SQ. TP €T P AN SQ €S Q — Fulse
and VTP TQ. TP €T P A TQ €T Q —s (TP, TQ) € TRel*
proof induct
case (encR S)
show V SP SQ. SP €S SourceTerm S A SQ €S TargetTerm ([S]) — SP = SQ
and VTP SQ. TP €T SourceTerm S A SQ €8S TargetTerm ([S]) — False
and VTP TQ. TP €T SourceTerm S A TQ €T TargetTerm ([S]) — (TP, TQ) € TRel*
by simp-all
from reflTRel show V SP TQ. SP €S SourceTerm S A TQ €T TargetTerm ([S])
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
by blast
next
case (source S)
show V SP SQ. SP €5 SourceTerm S N SQ €S SourceTerm S — SP = 5Q

87

by simp
show V SP TQ. SP €S SourceTerm S N TQ €T SourceTerm S
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
and VTP SQ. TP €T SourceTerm S N SQ €S SourceTerm S — Fulse
and VTP TQ. TP €T SourceTerm S A TQ €T SourceTerm S — (TP, TQ) € TRel™
by simp-all
next
case (target T1 T2)
show V SP SQ. SP €8 TargetTerm T1 N SQ €S TargetTerm T2 — SP = SQ
and VSP TQ. SP €8S TargetTerm T1 N TQ €T TargetTerm T2
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*
and VTP SQ. TP €T TargetTerm T1 N SQ €S TargetTerm T2 — Fualse
by simp-all
assume (71, T2) € TRel
thus VTP TQ. TP €T TargetTerm T1 N TQ €T TargetTerm T2 — (TP, TQ) € TRel*
by simp
next
case (trans P Q R)
assume A71:VSP 5Q. SP €SP A SQ €S Q — SP=5Q
and A2: VSP TQ. SP €SP ANTQ€eTQ
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
and A3: VTP SQ. TP €T P AN SQ €S Q — Fualse
and A/: VTP TQ. TP €T P A TQ €T Q —> (TP, TQ) € TRel*
and A5:VSQ SR. SQ €S QAN SReSR— S5Q=SR
and A6:VSQ TR. SQ €S QN TR €T R
— ([SQ], TR) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and A7:VTQ SR. TQ €T Q N SR €S R — False
and A8:VTQ TR. TQ €T QAN TR €T R — (TQ, TR) € TRel™
show VSP SR. SP €S PN SReSR — SP = SR
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A1 A5 show VSP SR. SP €SP AN SReSR — SP = SR
by blast
next
case (TargetTerm TQ)
assume TQ €T @
with A7 show ?Zthesis
by blast
qed
show VSP TR. SP €SP AN TRE€TR
— ([SP], TR) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]}H)™*
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A1 A6 show ?Zthesis
by blast
next
case (TargetTerm TQ)
assume A9: TQ €T @
show VSP TR. SP €S PN TR E€TR
— ([SP], TR) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})™"
proof clarify
fix SP TR
assume SP €S P
with A2 A9 have ([SP], TQ) € (TRel U {(T1, T2).35. T1 = [S] A T2 =[S]}H)T
by simp
moreover assume TR €T R
with A8 A9 have (TQ, TR) € TRel™
by simp
hence (TQ, TR) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 =[S]})™

88

proof induct
fix T2
assume (7Q, T2) € TRel
thus (TQ, T2) € (TRel U {(T1, T2).3S. T1 =[S] A T2 = [S]})*
by blast
next
case (step T2 T3)
assume (7Q, T2) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})™"
moreover assume (T2, T8) € TRel
hence (T2, T3) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})™"
by blast
ultimately show (TQ, T3) € (TRel U {(T1, T2).35. T1 = [S] A T2 = [S]})T
by simp
qed
ultimately show ([SP], TR) € (TRel U {(T1, T2). 3S. T1 = [S] A T2 = [S]})*
by simp
qed
qed
show VTP SR. TP €T P N SR €S R — False
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A3 show ?Zthesis
by blast
next
case (TargetTerm TQ)
assume 7Q €T @
with A7 show ?Zthesis
by blast
qed
show VTP TR. TP €T P AN TR €T R — (TP, TR) € TRel™
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A% show ?Zthesis
by blast
next
case (TargetTerm TQ)
assume TQ €T @
with A4 A8 show VTP TR. TP €T P AN TR €T R — (TP, TR) € TRel*
by auto
qged
qed
qed

lemma (in encoding) indRelLTPO-to-TRel:
fixes TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes rel: P S[JLT<TRel> Q
shows VSP SQ. SP €SP AN SQ €S Q — SP=5Q
and VSP TQ. SP €SP N TQ €T () — False
and VTP SQ. TP €T P A 8Q €5 O
— (TP, [SQ]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and VTP TQ. TP €T P A TQ €T Q —» (TP, TQ) € TRel*
proof —
have refilTRel: V S. ([S], [S]) € TRel U {(T1, T2).3S5. T1 = [S] A T2 = [S]}
by auto
from rel show V.SP 5Q. SP €SP A SQ €5 Q — SP = 5Q
and VSP TQ. SP €SP AN TQ €T Q — False
and VTP SQ. TP €T P A SQ €5 Q
— (TP, [SQ]) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})*

89

and VTP TQ. TP eT PN TQ €T Q — (TP, TQ) € TRel*
proof induct
case (encL S)
show V SP SQ. SP €S TargetTerm ([S]) A SQ €S SourceTerm S — SP = SQ
and VSP TQ. SP €S TargetTerm ([S]) A TQ €T SourceTerm S — False
and VTP TQ. TP €T TargetTerm ([S]) A TQ €T SourceTerm S — (TP, TQ) € TRel™
by simp-all
from reflTRel show ¥V TP SQ. TP €T TargetTerm ([S]) A SQ €8S SourceTerm S
— (TP, [SQ]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
by blast
next
case (source S)
show V SP SQ. SP €S SourceTerm S N SQ €S SourceTerm S — SP = SQ
by simp
show V SP TQ. SP €85 SourceTerm S N TQ €T SourceTerm S — Fulse
and VTP SQ. TP €T SourceTerm S N SQ €5 SourceTerm S
— (TP, [9Q]) € (TRel U {(T1, T2).38. T1 =[S] A T2 = [S]})*
and VTP TQ. TP €T SourceTerm S A TQ €T SourceTerm S — (TP, TQ) € TRel™
by simp-all
next
case (target T1 T2)
show V SP SQ). SP €8 TargetTerm T1 AN SQ €8 TargetTerm T2 — SP = SQ
and VSP TQ. SP €S TargetTerm T1 N TQ €T TargetTerm T2 — False
and VTP SQ. TP €T TargetTerm T1 N SQ €S TargetTerm T2
— (TP, [SQ]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
by simp-all
assume (71, T2) € TRel
thus VTP TQ. TP €T TargetTerm T1 AN TQ €T TargetTerm T2 — (TP, TQ) € TRel™
by simp
next
case (trans P Q R)
assume A1:VSP SQ. SP €SP A SQ €S Q — SP =38Q
and A2: VSP TQ. SP €SP AN TQ €T @ — False
and A3: VTP SQ. TP €T P AN SQ €5 Q
— (TP, [9Q]) € (TRel U {(T1, T2).38. T1 =[S] A T2 = [S]})*
and A/: VTP TQ. TP €T P A TQ €T Q —» (TP, TQ) € TRel*
and A5:VSQ SR. SQ €S QN SReSR — SQ = SR
and A6: VSQ TR. SQ €S Q@ N TR €T R — False
and A7:VTQ SR. TQ €T Q@ N SR €S R
— (TQ, [SR]) € (TRel U {(T1, T2).38. T1 =[S] A T2 =[S]}H)*
and A8:VTQ TR. TQ €T Q AN TR €T R — (TQ, TR) € TRel™
show VSP SR. SP €SP AN SReSR — SP=SR
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A1 A5 show VSP SR. SP €S P AN SR SR — SP = SR
by blast
next
case (TargetTerm TQ)
assume TQ €T Q
with A2 show ?Zthesis
by blast
qed
show VSP TR. SP €S P AN TR €T R — Faulse
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A6 show ?thesis
by blast
next
case (TargetTerm TQ)

90

assume 7Q €T @
with A2 show ?Zthesis
by blast
qed
show VTP SR. TP €T P AN SR €S R
— (TP, [SR]) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})™"
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 Q
with A3 A5 show VTP SR. TP €T P AN SR €S R
— (TP, [SR]) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})™"
by blast
next
case (TargetTerm TQ)
assume A9: TQ €T Q
show VTP SR. TP €T P AN SR €S R
— (TP, [SR]) € (TRel U {(T1, T2).35. T1 =[S] A T2 =[S]})T
proof clarify
fix TP SR
assume TP €T P
with 44 A9 have (TP, TQ) € TRel™
by simp
hence (TP, TQ) € (TRel U {(T1, T2).35. T1 = [S] A T2 = [S]})T
proof induct
fix T2
assume (TP, T2) € TRel
thus (TP, T2) € (TRel U {(T1, T2).35. T1 = [S] A T2 = [S]})*"
by blast
next
case (step T2 T3)
assume (TP, T2) € (TRel U {(T1, T2).35. T1 =[S] A T2 = [S]})*
moreover assume (T2, T3) € TRel
hence (T2, T3) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})"
by blast
ultimately show (TP, T3) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})™*
by simp
qed
moreover assume SR €S R
with A7 A9 have (TQ, [SR]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]}H)T
by simp
ultimately show (TP, [SR]) € (TRel U {(T1, T2). 3S. T1 = [S] A T2 = [S]}H)T
by simp
qed
qed
show VTP TR. TP €T P AN TR €T R — (TP, TR) € TRel™
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A6 show ?Zthesis
by blast
next
case (TargetTerm TQ)
assume TQ €T @
with A4 A8 show VTP TR. TP €T P AN TR €T R — (TP, TR) € TRel*
by auto
qed
qed
qed

lemma (in encoding) indRelTEQ-to-TRel:
fixes TRel :: ("procT x 'procT) set

91

and P Q :: ('procS, 'procT) Proc
assumes rel: P ~[]T<TRel> Q
shows VSP SQ. SP €SP N SQ €5 Q
— ([SP], [SQ]) € (TRel U {(T1, T2). 3S5. T1 =[S] A T2 = [S]})*
and VSP TQ. SP €SP A TQ €T Q
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and VTP SQ. TP €T P N SQ €5 Q
— (TP, [SQ]) € (TRel U {(T1, T2).38. T1 = [S] A T2 = [S]})*
and VTP TQ. TP €T P A TQ €T Q
— (TP, TQ) € (TRel U {(T1, T2).35. T1 = [S] A T2 = [S]})*T
proof —
have reflTRel: V S. ([S], [S]) € TRel U {(T1, T2).3S5. T1 = [S] A T2 = [S]}
by auto
from rel show V.SP SQ. SP €S P A 5Q €S @
— ([SP], [9Q]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and VSP TQ. SP €SP A TQ €T Q
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*
and VTP SQ. TP €T P N SQ €5 Q
— (TP, [SQ]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*T
and VTP TQ. TP €T P A TQ €T Q
— (TP, TQ) € (TRel U {(T1, T2).35. T1 = [S] A T2 = [S]})*T
proof induct
case (encR S)
show V SP 5Q. SP €8S SourceTerm S A SQ €8 TargetTerm ([S])
— ([SP], [9Q]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and VTP SQ. TP €T SourceTerm S A SQ €8S TargetTerm ([S])
— (TP, [SQ]) € (TRel U {(T1, T2).35. T1 =[S] A T2 = [S]})*
and VTP TQ. TP €T SourceTerm S A TQ €T TargetTerm ([S])
— (TP, TQ) € (TRel U {(T1, T2). 3S. T1 = [S] A T2 = [S]})*
by simp+
from refiTRel show ¥V SP TQ. SP €S SourceTerm S A TQ €T TargetTerm ([S])
— ([SP], TQ) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*
by blast
next
case (encL S)
show V SP SQ. SP €S TargetTerm ([S]) A SQ €S SourceTerm S
— ([SP], [9Q]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and VSP TQ. SP €8S TargetTerm ([S]) A TQ €T SourceTerm S
— ([SP], TQ) € (TRel U {(T1, T2).38. T1 =[S] A T2 = [S]})*
and VTP TQ. TP €T TargetTerm ([S]) A TQ €T SourceTerm S
— (TP, TQ) € (TRel U {(T1, T2).3S5. T1 = [S] A T2 = [S]})*T
by simp+
from refiTRel show ¥ TP SQ. TP €T TargetTerm ([S]) A SQ €S SourceTerm S
TP, [SQ]) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]}H)™*
by blast
next
case (target T1 T2)
show V SP 5Q. SP €8 TargetTerm T1 A SQ €S TargetTerm T2
— ([SP], [9Q]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and VSP TQ. SP €S TargetTerm T1 N TQ €T TargetTerm T2
— ([SP], TQ) € (TRel U {(T1, T2).38. T1 =[S] A T2 = [S]}H)*
and VTP SQ. TP €T TargetTerm T1 AN SQ €S TargetTerm T2
— (TP, [SQ]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
by simp+
assume (71, T2) € TRel
thus VTP TQ. TP €T TargetTerm T1 N TQ €T TargetTerm T2
— (TP, TQ) € (TRel U {(T1, T2).35. T1 = [S] A T2 = [S]})*"
by blast
next
case (trans P Q R)
assume A1: VSP SQ. SP €SP N SQ €S Q

92

— ([SP], [SQ]) € (TRel U {(T1, T2).35. T1 =[S] A T2 =[S]}H)T
and A2: VSP TQ. SP €SP ANTQ€eTQ
— ([SP], TQ) € (TRel U {(T1, T2).38. T1 =[S] A T2 = [S]})*
and A3: VTP SQ. TP €T P N SQ €5 Q
— (TP, [SQ]) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})*
and A/: VTP TQ. TP €T P A TQ €T Q
— (TP, TQ) € (TRel U {(T1, T2). 3S. T1 = [S] A T2 = [S]})*
and A45:VSQ SR. SQ €S Q N SRESR
— ([SQ], [SR]) € (TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]})*
and A6:VSQ TR. SQ €S QAN TR eTR
— ([SQ], TR) € (TRel U {(T1, T2).3S5. T1 =[S] A T2 = [S]})T
and A7:VTQ SR. TQ €T Q@ N SR €S R
— (TQ, [SR]) € (TRel U {(T1, T2).38. T1 =[S] A T2 = [S]})*
and A8:VTQ TR. TQ €T QAN TR €T R
— (TQ, TR) € (TRel U {(T1, T2).35. T1 =[S] A T2 = [S]})*T
show VSP SR. SP €SP AN SReSR
— ([SP], [SR]) € (TRel U {(T1, T2).3S. T1 =[S] A T2 = [S]})™"
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 Q
with A1 A5 show ?Zthesis
by auto
next
case (TargetTerm TQ)
assume TQ €T @
with A2 A7 show ?thesis
by auto
qed
show VSP TR. SP €S P AN TR €T R — ([SP], TR) € (TRel U {(T1, T2).38. T1 = [S] A T2 =
[S1H*
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A1 A6 show ?Zthesis
by auto
next
case (TargetTerm TQ)
assume 7Q €T @
with A2 A8 show ?Zthesis
by auto
qed
show VTP SR. TP €T P A SR €S R — (TP, [SR]) € (TRel U {(T1, T2).3S. T1 = [S] A T2 =
[S1H)*
proof (cases Q)
case (SourceTerm SQ)
assume S@Q €5 @
with A3 A5 show ?thesis
by auto
next
case (TargetTerm TQ)
assume T7Q €T @
with A4 A7 show ?thesis
by auto
qed
show VTP TR. TP €T P A TR €T R —> (TP, TR) € (TRel U {(T1, T2). 3S. T1 = [S] A T2 = [S]})*+
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 Q
with A8 A6 show ?thesis
by auto
next

93

case (TargetTerm TQ)
assume T7Q €T @
with A4 A8 show ?thesis
by auto
qed
qged
qed

lemma (in encoding) trans-closure-of-TRel-refl-cond:
fixes TRel :: ('procT x 'procT) set
and TP TQ :: 'procT
assumes (TP, TQ) € (TRel U {(T1, T2).3S. T1 =[S] A T2 = [S]})T
shows (TP, TQ) € TRel*
using assms
proof induct
fix TQ
assume (TP, TQ) € TRel U {(T1, T2).3S. T1 = [S] A T2 = [S]}
thus (TP, TQ) € TRel*
by auto
next
case (step TQ TR)
assume (TP, TQ) € TRel*
moreover assume (TQ, TR) € TRel U {(T1, T2).35. T1 = [S] A T2 = [S]}
hence (TQ, TR) € TRel*
by blast
ultimately show (TP, TR) € TRel*
by simp
qed

Note that if indRelRTPO relates a source term S to a target term T, then the translation of S is equal
to T or indRelRTPO also relates the translation of S to T.

lemma (in encoding) indRelRTPO-relates-source-target:
fixes TRel :: ("procT x 'procT) set
and S :: ‘procS
and T :: 'procT
assumes pair: SourceTerm S S[JRT<TRel> TargetTerm T
shows (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)~
proof —
from pair have ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
hence [S] = T Vv ([S], T) € TRel*
using rtrancl-eq-or-trancl[of [S] T TRel]
by blast
moreover have [S] = T = (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)=
by simp
moreover
have ([S], T) € TRelt = (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)=
using transitive-closure-of-TRel-to-indRelRTPO[where TRel=TRel]
by simp
ultimately show (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)~
by blast
qed

If indRelRTPO, indRelLTPO, or indRelTPO preserves barbs then so does the corresponding target
term relation.

lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-preserves-barbs:
fixes TRel :: ('procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes preservation: rel-preserves-barbs Rel (STCalWB SWB TWB)

94

and targetInRel: ¥ T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
shows rel-preserves-barbs TRel TWB
proof clarify
fix TP TQ a
assume (TP, TQ) € TRel
with targetInRel have (TargetTerm TP, TargetTerm TQ) € Rel
by blast
moreover assume TP|<TWB>a
hence TargetTerm TP|.a
by simp
ultimately have TargetTerm TQl.a
using preservation preservation-of-barbs-in-barbed-encodinglwhere Rel=Rel]
by blast
thus TQI<TWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-preserves-barbs:
fixes TRel :: ("procT x 'procT) set
assumes preservation: rel-preserves-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
shows rel-preserves-barbs TRel TWB
using preservation
rel-with-target-impl- TRel-preserves-barbs[where Rel=indRelRTPO TRel and TRel=TRel]
by (simp add: indRelRTPO.target)

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-preserves-barbs:
fixes TRel :: ("procT x 'procT) set
assumes preservation: rel-preserves-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
shows rel-preserves-barbs TRel TWB
using preservation
rel-with-target-impl- TRel-preserves-barbs[where Rel=indRelLTPO TRel and TRel=TRel]
by (simp add: indRelLTPO.target)

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-preserves-barbs:
fixes TRel :: ('procT x 'procT) set
assumes preservation: rel-preserves-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
shows rel-preserves-barbs TRel TWB
using preservation
rel-with-target-impl- TRel-preserves-barbs[where Rel=indRelTEQ TRel and TRel=TRel]
by (simp add: indRelTEQ.target)

lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-weakly-preserves-barbs:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes preservation: rel-weakly-preserves-barbs Rel (STCalWB SWB TWB)
and targetInRel: ¥ T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
shows rel-weakly-preserves-barbs TRel TWB
proof clarify
fix TP TQ a TP’
assume (TP, TQ) € TRel
with targetInRel have (TargetTerm TP, TargetTerm TQ) € Rel
by blast
moreover assume TP ——(Calculus TWB)x TP’ and TP'|<TWB>a
hence TargetTerm TPl .a
by blast
ultimately have TargetTerm TQl.a
using preservation weak-preservation-of-barbs-in-barbed-encoding[where Rel=Rel)
by blast
thus TQI<TWB>a
by simp
qed

95

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-weakly-preserves-barbs:
fixes TRel :: ('procT x 'procT) set
assumes preservation: rel-weakly-preserves-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
shows rel-weakly-preserves-barbs TRel TWB
using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
Rel=indRelRTPO TRel and TRel=TRel]
by (simp add: indRelRTPO.target)

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-weakly-preserves-barbs:
fixes TRel :: ("procT x 'procT) set
assumes preservation: rel-weakly-preserves-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
shows rel-weakly-preserves-barbs TRel TWB
using preservation rel-with-target-impl- TRel-weakly-preserves-barbs[where
Rel=indRelLTPO TRel and TRel=TRel]
by (simp add: indRelLTPO.target)

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-weakly-preserves-barbs:
fixes TRel :: ("procT x 'procT) set
assumes preservation: rel-weakly-preserves-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
shows rel-weakly-preserves-barbs TRel TWB
using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
Rel=indRelTEQ TRel and TRel=TRel]
by (simp add: indRelTEQ.target)

If indRelRTPO, indRelLTPO, or indRel TPO reflects barbs then so does the corresponding target term
relation.

lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-reflects-barbs:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes reflection: rel-reflects-barbs Rel (STCalWB SWB TWB)
and targetInRel: ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
shows rel-reflects-barbs TRel TWB
proof clarify
fix TP TQ a
assume (TP, TQ) € TRel
with targetInRel have (TargetTerm TP, TargetTerm TQ) € Rel
by blast
moreover assume TQl<TWB>a
hence TargetTerm TQl.a
by simp
ultimately have TargetTerm TP|.a
using reflection reflection-of-barbs-in-barbed-encoding[where Rel=Rel]
by blast
thus TP|<TWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-reflects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes reflection: rel-reflects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
shows rel-reflects-barbs TRel TWB
using reflection
rel-with-target-impl- TRel-reflects-barbs|where Rel=indRelRTPO TRel and TRel=TRel)
by (simp add: indRelRTPO.target)

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-reflects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes reflection: rel-reflects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
shows rel-reflects-barbs TRel TWB

96

using refiection
rel-with-target-impl- TRel-reflects-barbsjwhere Rel=indRelLTPO TRel and TRel=TRel|
by (simp add: indRelLTPO.target)

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-reflects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes reflection: rel-reflects-barbs (indRelTEQ TRel) (STCalWB SWB TWDB)
shows rel-reflects-barbs TRel TWB
using reflection
rel-with-target-impl- T Rel-reflects-barbs[where Rel=indRelTEQ TRel and TRel=TRel]
by (simp add: indRelTEQ.target)

lemma (in encoding-wrt-barbs) rel-with-target-impl-TRel-weakly-reflects-barbs:
fixes TRel :: ('procT x 'procT) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes reflection: rel-weakly-reflects-barbs Rel (STCalWB SWB TWB)
and targetInRel: ¥ T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
shows rel-weakly-reflects-barbs TRel TWB
proof clarify
fix TP TQ a TQ'
assume (TP, TQ) € TRel
with targetInRel have (TargetTerm TP, TargetTerm TQ) € Rel
by blast
moreover assume TQ —(Calculus TWB)x TQ' and TQ'|<TWB>a
hence TargetTerm TQ\.a
by blast
ultimately have TargetTerm TPJ.a
using reflection weak-reflection-of-barbs-in-barbed-encoding[where Rel=Rel]
by blast
thus TPy<TWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-weakly-reflects-barbs:
fixes TRel :: ('procT x 'procT) set
assumes reflection: rel-weakly-reflects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
shows rel-weakly-reflects-barbs TRel TWB
using reflection rel-with-target-impl- T Rel-weakly-reflects-barbs[where
Rel=indRelRTPO TRel and TRel=TRel]
by (simp add: indRelRTPO.target)

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-weakly-reflects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes reflection: rel-weakly-reflects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
shows rel-weakly-reflects-barbs TRel TWB
using reflection rel-with-target-impl-TRel-weakly-reflects-barbs[where
Rel=indRelLTPO TRel and TRel=TRel]
by (simp add: indRelLTPO.target)

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-weakly-reflects-barbs:
fixes TRel :: ('procT x 'procT) set
assumes reflection: rel-weakly-reflects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
shows rel-weakly-reflects-barbs TRel TWB
using reflection rel-with-target-impl- T Rel-weakly-reflects-barbs[where
Rel=indRelTEQ TRel and TRel=TRel]
by (simp add: indRelTEQ.target)

If indRelRTPO, indRelLTPO, or indRelTPO respects barbs then so does the corresponding target
term relation.

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-respects-barbs:

97

fixes TRel :: ("procT x 'procT) set
assumes respection: rel-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
shows rel-respects-barbs TRel TWB
using respection indRelRTPO-impl-TRel-preserves-barbsjwhere TRel=TRel]
indRelRTPO-impl-TRel-reflects-barbs[where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-respects-barbs:
fixes TRel :: ('procT x 'procT) set
assumes respection: rel-respects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
shows rel-respects-barbs TRel TWB
using respection indRelLTPO-impl-TRel-preserves-barbs|where TRel=TRel]
indRelLTPO-impl-TRel-reflects-barbs[where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-respects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes respection: rel-respects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
shows rel-respects-barbs TRel TWB
using respection indRel TEQ-impl-TRel-preserves-barbs[where TRel=TRel]
indRelTEQ-impl-TRel-reflects-barbsjwhere TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-weakly-respects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes respection: rel-weakly-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
shows rel-weakly-respects-barbs TRel TWB
using respection indRelRTPO-impl-TRel-weakly-preserves-barbs|where TRel=TRel]
indRelRTPO-impl- T Rel-weakly-reflects-barbs|where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-weakly-respects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes respection: rel-weakly-respects-barbs (indRelLTPO TRel) (STCalWB SWB TWB)
shows rel-weakly-respects-barbs TRel TWB
using respection indRelLTPO-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
indRelLTPO-impl-TRel-weakly-reflects-barbs[where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-weakly-respects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes respection: rel-weakly-respects-barbs (indRelTEQ TRel) (STCalWB SWB TWB)
shows rel-weakly-respects-barbs TRel TWB
using respection indRel TEQ-impl-TRel-weakly-preserves-barbs[where TRel=TRel)
indRelTEQ-impl- TRel-weakly-reflects-barbs|[where TRel=TRel)
by blast

If indRelRTPO, indRelLTPO, or indRelTEQ is a simulation then so is the corresponding target term
relation.

lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-simulation:
fixes TRel :: ('procT x 'procT) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes sim: weak-reduction-simulation Rel (STCal Source Target)
and target: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows weak-reduction-simulation (TRel™) Target
proof clarify
fix TP TQ TP’
assume (TP, TQ) € TRelt and TP —— Targetx TP’
thus 3 T7Q’. TQ — Targetx TQ' A (TP', TQ') € TRel™

98

proof (induct arbitrary: TP’
fix TQ TP'
assume (TP, TQ) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP — Targetx TP’
hence TargetTerm TP ——(STCal Source Target)* (TargetTerm TP’)
by (simp add: STCal-steps)
ultimately obtain Q' where A2: TargetTerm TQ ——(STCal Source Target)x Q'
and A3: (TargetTerm TP', Q') € Rel
using sim
by blast
from A2 obtain TQ’ where Aj: TQ —— Targetx TQ' and A5: TQ' €T Q'
by (auto simp add: STCal-steps)
from A8 A5 trel have (TP, TQ') € TRel™
by simp
with A4 show 3TQ". TQ —— Targetx TQ' N (TP', TQ") € TRel™
by blast
next
case (step TQ TR)
assume TP —— Targetx TP’
and ATP'. TP — Targetx TP' = 3TQ’. TQ — Targetx TQ' A (TP', TQ') € TRel™
from this obtain TQ’ where BI: TQ —— Targetx TQ' and B2: (TP’, TQ') € TRel™
by blast
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover from BI have TargetTerm TQ ——(STCal Source Target)x (TargetTerm TQ')
by (simp add: STCal-steps)
ultimately obtain R’ where B3: TargetTerm TR ——(STCal Source Target)x R’
and B4: (TargetTerm TQ', R') € Rel
using sim
by blast
from B3 obtain TR’ where B5: TR’ € T R’ and B6: TR — Targetx TR’
by (auto simp add: STCal-steps)
from Bj B5 trel have (TQ', TR') € TRel*
by simp
with B2 have (TP', TR') € TRel*
by simp
with B6 show 3 TR’. TR — Targetx TR' A (TP', TR') € TRel™
by blast
qged
qed

lemma (in encoding) indRelRTPO-impl- TRel-is-weak-reduction-simulation:

fixes TRel :: ('procT x 'procT) set

assumes sim: weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)

shows weak-reduction-simulation (TRel™) Target

using sim indRelRTPO.target[where TRel=TRel| indRelRTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-weak-reduction-simulation|where
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRelLTPO-impl- TRel-is-weak-reduction-simulation:

fixes TRel :: ("procT x 'procT) set

assumes sim: weak-reduction-simulation (indRelLTPO TRel) (STCal Source Target)

shows weak-reduction-simulation (TRel™) Target

using sim indRelLTPO.target(where TRel=TRel] indRelLTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-weak-reduction-simulation[where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

99

lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-simulation-rev:
fixes TRel :: ('procT x 'procT) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes sim: weak-reduction-simulation (Rel=') (STCal Source Target)
and target: ¥ T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*t
shows weak-reduction-simulation ((TRel*)™1) Target
proof clarify
fix TP TQ TP’
assume (7Q, TP) € TRel™
moreover assume 1P —— Targetx TP’
ultimately show 3 TQ'. TQ — Targetx TQ' A (TP', TQ") € (TRelt)™!
proof (induct arbitrary: TP
fix TP TP’
assume (7Q, TP) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel™!
by simp
moreover assume 1P — Targetx TP’
hence TargetTerm TP ——(STCal Source Target)x (TargetTerm TP’)
by (simp add: STCal-steps)
ultimately obtain Q' where A2: TargetTerm TQ ——(STCal Source Target)x Q'
and A3: (TargetTerm TP', Q') € Rel™*
using sim
by blast
from A2 obtain TQ' where Aj: TQ —— Targetx TQ and A5: TQ' €T Q'
by (auto simp add: STCal-steps(2))
from A3 A5 trel have (TP', TQ') € (TRel™)™!
by simp
with A/ show 3 TQ'. TQ —— Targetx TQ' A (TP', TQ") € (TRelt)™!
by blast
next
case (step TR TP TP’)
assume TP —— Targetx TP’
hence TargetTerm TP ——(STCal Source Target)x (TargetTerm TP’)
by (simp add: STCal-steps)
moreover assume (TR, TP) € TRel
with target have (TargetTerm TP, TargetTerm TR) € Rel™!
by simp
ultimately obtain R’ where B1: TargetTerm TR ——(STCal Source Target)x R’
and B2: (TargetTerm TP', R') € Rel™!
using sim
by blast
from Bl obtain TR’ where B3: TR’ €T R’ and Bj: TR —— Targetx TR’
by (auto simp add: STCal-steps)
assume /TR’ TR — Targetx TR' = 3 TQ'. TQ — Targetx TQ' A (TR, TQ') € (TRel™)~!
with B/ obtain TQ’ where B5: TQ — Targetx TQ' and B6: (TR', TQ') € (TRelt)™!
by blast
from B6 have (TQ’, TR') € TRel*
by simp
moreover from B2 B3 trel have (TR’, TP’) € TRel"
by simp
ultimately have (TP’, TQ') € (TRel*)™!
by simp
with B5 show 3 TQ'. TQ — Targets TQ' A (TP', TQ") € (TRelt)™!
by blast
qed
qed

lemma (in encoding) indRelRTPO-impl- TRel-is-weak-reduction-simulation-rev:
fixes TRel :: ("procT x 'procT) set

100

assumes sim: weak-reduction-simulation ((indRelRTPO TRel)™') (STCal Source Target)
shows weak-reduction-simulation ((TRel*)™1) Target
using sim indRelRTPO.target[where TRel=TRel| indRelRTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-transC- TRel-is-weak-reduction-simulation-revjwhere
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRelLTPO-impl- TRel-is-weak-reduction-simulation-rev:

fixes TRel :: ('procT x 'procT) set

assumes sim: weak-reduction-simulation ((indRelLTPO TRel)™') (STCal Source Target)

shows weak-reduction-simulation ((TRel™)™') Target

using sim indRelLTPO.target[where TRel=TRel| indRelLTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-transC- TRel-is-weak-reduction-simulation-revjwhere
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-reflC-transC- T Rel-is-weak-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes sim: weak-reduction-simulation Rel (STCal Source Target)
and target: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows weak-reduction-simulation (TRel*) Target
proof clarify
fix TP TQ TP’
assume (TP, TQ) € TRel* and TP —— Targetx TP’
thus 3TQ’. TQ — Targetx TQ' N (TP', TQ') € TRel*
proof (induct arbitrary: TP’
fix TP’
assume TP — Targetx TP’
moreover have (TP’, TP') € TRel*
by simp
ultimately show 3 TQ’. TP —— Targetx TQ' N (TP', TQ') € TRel*
by blast
next
case (step TQ TR)
assume TP —— Targetx TP’
and ATP'. TP —Targetx TP' — 3 TQ'. TQ —— Targetx TQ' N (TP', TQ') € TRel*
from this obtain TQ' where BI: TQ — Target« TQ' and B2: (TP’, TQ') € TRel*
by blast
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover from BI have TargetTerm TQ ——(STCal Source Target)x (TargetTerm TQ')
by (simp add: STCal-steps)
ultimately obtain R’ where B3: TargetTerm TR ——(STCal Source Target)x R’
and B/: (TargetTerm TQ', R') € Rel
using sim
by blast
from B3 obtain TR’ where B5: TR’ € T R’ and B6: TR —— Targetx TR’
by (auto simp add: STCal-steps)
from B/ B5 trel have (TQ’, TR') € TRel*
by simp
with B2 have (TP', TR') € TRel*
by simp
with B6 show 3 TR'. TR — Targetx TR’ A (TP’, TR') € TRel*
by blast
qged
qed

lemma (in encoding) indRelTEQ-impl-TRel-is-weak-reduction-simulation:

101

fixes TRel :: ("procT x 'procT) set

assumes sim: weak-reduction-simulation (indRelTEQ TRel) (STCal Source Target)

shows weak-reduction-simulation (TRel*) Target

using sim indRelTEQ.target[where TRel=TRel] indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of- TRel-refl-cond
rel-with-target-impl-reflC-trans C- T Rel-is-weak-reduction-simulation[where
Rel=indRelTEQ TRel and TRel=TRel
by blast

lemma (in encoding) rel-with-target-impl-transC-TRel-is-strong-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes sim: strong-reduction-simulation Rel (STCal Source Target)
and target: YV T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel —s (T1, T2) € TRel*
shows strong-reduction-simulation (TRel™) Target
proof clarify
fix TP TQ TP’
assume (TP, TQ) € TRel* and TP s Target TP’
thus 37Q". TQ — Target TQ' N (TP', TQ') € TRel™
proof (induct arbitrary: TP’
fix TQ TP’
assume (TP, TQ) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP —— Target TP’
hence TargetTerm TP ——(STCal Source Target) (TargetTerm TP’)
by (simp add: STCal-step)
ultimately obtain Q' where A2: TargetTerm TQ ——(STCal Source Target) Q'
and A3: (TargetTerm TP', Q') € Rel
using sim
by blast
from A2 obtain TQ' where Aj: TQ — Target TQ' and A5: TQ' €T Q'
by (auto simp add: STCal-step)
from A3 A5 trel have (TP’, TQ') € TRel®
by simp
with 44 show 3TQ". TQ —— Target TQ' A (TP', TQ') € TRel™
by blast
next
case (step TQ TR)
assume TP —— Target TP’
and \TP'. TP — Target TP' = 3 TQ'. TQ — Target TQ' N (TP', TQ') € TRel™
from this obtain TQ’ where BI: TQ —— Target TQ' and B2: (TP', TQ') € TRel™
by blast
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover from BI have TargetTerm TQ ——(STCal Source Target) (TargetTerm TQ')
by (simp add: STCal-step)
ultimately obtain R’ where B3: TargetTerm TR ——(STCal Source Target) R’
and B/: (TargetTerm TQ', R') € Rel
using sim
by blast
from B3 obtain TR’ where B5: TR’ €T R’ and B6: TR — Target TR’
by (auto simp add: STCal-step)
from B4 B5 trel have (TQ’, TR') € TRel™

by simp

with B2 have (TP’, TR') € TRel*
by simp

with B6 show 3 TR'. TR — Target TR’ A (TP’, TR') € TRel™
by blast

102

qged
qed

lemma (in encoding) indRelRTPO-impl- TRel-is-strong-reduction-simulation:

fixes TRel :: ("procT x 'procT) set

assumes sim: strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)

shows strong-reduction-simulation (TRel™) Target

using sim indRelRTPO.target[where TRel=TRel] indRelRTPO-to-TRel(4)where TRel=TRel]
rel-with-target-impl-trans C- TRel-is-strong-reduction-simulation[where
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRelLTPO-impl-TRel-is-strong-reduction-simulation:

fixes TRel :: ('procT x 'procT) set

assumes sim: strong-reduction-simulation (indRelLTPO TRel) (STCal Source Target)

shows strong-reduction-simulation (TRel™) Target

using sim indRelLTPO.target[where TRel=TRel] indRelLTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-strong-reduction-simulation|where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-transC-TRel-is-strong-reduction-simulation-rev:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes sim: strong-reduction-simulation (Rel~') (STCal Source Target)
and target: ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel"
shows strong-reduction-simulation ((TRel™)™') Target
proof clarify
fix TP TQ TP’
assume (TQ, TP) € TRel*
moreover assume TP —— Target TP’
ultimately show 3 TQ'. TQ — Target TQ' A (TP', TQ') € (TRel™)™!
proof (induct arbitrary: TP')
fix TP TP’
assume (7Q, TP) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel™!
by simp
moreover assume 1P — Target TP’
hence TargetTerm TP ——(STCal Source Target) (TargetTerm TP’)
by (simp add: STCal-step)
ultimately obtain Q' where A2: TargetTerm TQ ——(STCal Source Target) Q'
and AS3: (TargetTerm TP, Q') € Rel™!
using sim
by blast
from A2 obtain TQ’ where Aj: TQ —— Target TQ' and A5: TQ' €T Q'
by (auto simp add: STCal-step(2))
from A3 A5 trel have (TP, TQ') € (TRel*)™!
by simp
with A/ show 3 TQ'. TQ —— Target TQ' A (TP', TQ") € (TRelt)™!
by blast
next
case (step TP TR TR')
assume (TP, TR) € TRel
with target have (TargetTerm TP, TargetTerm TR) € Rel
by simp
moreover assume TR — Target TR’
hence TargetTerm TR ——(STCal Source Target) (TargetTerm TR')
by (simp add: STCal-step)
ultimately obtain P’ where B1: TargetTerm TP ——(STCal Source Target) P’
and B2: (P', TargetTerm TR') € Rel

103

using sim
by blast
from BI obtain TP’ where B3: TP' €T P’ and B4: TP — Target TP’
by (auto simp add: STCal-step)
assume \TP’. TP — Target TP' = 3 TQ'. TQ — Target TQ' A (TP', TQ') € (TRel*)™!
with B/ obtain TQ’ where B5: TQ — Target TQ' and B6: (TP', TQ') € (TRel™)™*
by blast
from B2 B3 trel have (TP’, TR’) € TRel™
by simp
with B6 have (TR’, TQ') € (TRel™)™!
by simp
with B5 show 3 TQ'. TQ — Target TQ' A (TR', TQ') € (TRel™)™!
by blast
qed
qed

lemma (in encoding) indRelRTPO-impl-TRel-is-strong-reduction-simulation-rev:

fixes TRel :: ("procT x 'procT) set

assumes sim: strong-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)

shows strong-reduction-simulation ((TRel™)™1) Target

using sim indRelRTPO.target[where TRel=TRel| indRelRTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-strong-reduction-simulation-rev)where
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRelLTPO-impl-TRel-is-strong-reduction-simulation-rev:

fixes TRel :: ("procT x 'procT) set

assumes sim: strong-reduction-simulation ((indRelLTPO TRel)™') (STCal Source Target)

shows strong-reduction-simulation ((TRel™)~') Target

using sim indRelLTPO.target(where TRel=TRel| indRelLTPO-to-TRel(4)[where TRel=TRel|
rel-with-target-impl-transC- TRel-is-strong-reduction-simulation-rev)where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-reflC-transC- T Rel-is-strong-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes sim: strong-reduction-simulation Rel (STCal Source Target)
and target: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel
— (T1, T2) € TRel*
shows strong-reduction-simulation (TRel*) Target
proof clarify
fix TP TQ TP’
assume (TP, TQ) € TRel* and TP — Target TP’
thus 37Q’. TQ — Target TQ' A (TP', TQ') € TRel*
proof (induct arbitrary: TP
fix TP’
assume TP —— Target TP’
moreover have (TP’, TP') € TRel*
by simp
ultimately show 3 TQ’. TP — Target TQ' N (TP’, TQ') € TRel*
by blast
next
case (step TQ TR TP’)
assume TP —— Target TP’
and A\TP'. TP —Target TP' = 3 TQ'. TQ > Target TQ' N (TP’, TQ') € TRel*
from this obtain TQ' where BI: TQ — Target TQ' and B2: (TP’, TQ') € TRel*
by blast
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel

104

by simp

moreover from BI have TargetTerm TQ ——(STCal Source Target) (TargetTerm TQ’)
by (simp add: STCal-step)

ultimately obtain R’ where B3: TargetTerm TR ——(STCal Source Target) R’

and B4: (TargetTerm TQ', R') € Rel
using sim

by blast

from B3 obtain TR’ where B5: TR’ €T R’ and B6: TR —— Target TR’
by (auto simp add: STCal-step)

from B4 B5 trel have (TQ’, TR') € TRel*
by simp

with B2 have (TP’, TR') € TRel*
by simp

with B6 show 3 TR'. TR — Target TR’ A (TP', TR') € TRel*
by blast

qed
qed

lemma (in encoding) indRelTEQ-impl-TRel-is-strong-reduction-simulation:

fixes TRel :: ("procT x 'procT) set

assumes sim: strong-reduction-simulation (indRelTEQ TRel) (STCal Source Target)

shows strong-reduction-simulation (TRel*) Target

using sim indRelTEQ.target[where TRel=TRel] indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of-TRel-refi-cond
rel-with-target-impl-reflC-transC- T Rel-is-strong-reduction-simulation[where
Rel=indRelTEQ TRel and TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-is-weak-barbed-simulation:
fixes TRel :: ("procT x 'procT) set
assumes sim: weak-barbed-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-simulation (TRel™) TWB
proof
from sim show weak-reduction-simulation (TRel™) (Calculus TWB)
using indRelRTPO-impl-TRel-is-weak-reduction-simulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from sim show rel-weakly-preserves-barbs (TRel*) TWB
using indRelRTPO-impl-TRel-weakly-preserves-barbs|where TRel=TRel]
weak-preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]|
by blast
qed

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-simulation:
fixes TRel :: ("procT x 'procT) set
assumes sim: weak-barbed-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-simulation (TRelt) TWB
proof
from sim show weak-reduction-simulation (TRel™) (Calculus TWB)
using indRelLTPO-impl-TRel-is-weak-reduction-simulation[where TRel=TRel)
by (simp add: STCalWB-def calS calT')
next
from sim show rel-weakly-preserves-barbs (TRel™) TWB
using indRelLTPO-impl- TRel-weakly-preserves-barbsjwhere TRel=TRel]
weak-preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]|
by blast
qed

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-simulation:

fixes TRel :: ("procT x 'procT) set
assumes sim: weak-barbed-simulation (indRelTEQ TRel) (STCalWB SWB TWB)

105

shows weak-barbed-simulation (TRel*) TWB
proof
from sim show weak-reduction-simulation (TRel*) (Calculus TWDB)
using indRelTEQ-impl- TRel-is-weak-reduction-simulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from sim show rel-weakly-preserves-barbs (TRel*) TWDB
using indRelTEQ-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
weak-preservation-of-barbs-and-closures(8)[where Rel=TRel and CWB=TWB]|
by blast
qed

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-is-strong-barbed-simulation:
fixes TRel :: ('procT x 'procT) set
assumes sim: strong-barbed-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows strong-barbed-simulation (TRelt) TWB
proof
from sim show strong-reduction-simulation (TRel™) (Calculus TWB)
using indRelRTPO-impl-TRel-is-strong-reduction-simulation[where TRel=TRel|
by (simp add: STCalWB-def calS calT)
next
from sim show rel-preserves-barbs (TRel*) TWB
using indRelRTPO-impl-TRel-preserves-barbsjwhere TRel=TRel]
preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-strong-barbed-simulation:
fixes TRel :: ("procT x 'procT) set
assumes sim: strong-barbed-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows strong-barbed-simulation (TRel*) TWB
proof
from sim refl show strong-reduction-simulation (TRel™) (Calculus TWB)
using indRelLTPO-impl-TRel-is-strong-reduction-simulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT')
next
from sim show rel-preserves-barbs (TRel™) TWB
using indRelLTPO-impl-TRel-preserves-barbsjwhere TRel=TRel]
preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-strong-barbed-simulation:
fixes TRel :: ("procT x 'procT) set
assumes sim: strong-barbed-simulation (indRelTEQ TRel) (STCalWB SWB TWB)
shows strong-barbed-simulation (TRel*) TWB
proof
from sim refl show strong-reduction-simulation (TRel*) (Calculus TWB)
using indRel TEQ-impl- TRel-is-strong-reduction-simulation|where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from sim show rel-preserves-barbs (TRel*) TWB
using indRelTEQ-impl-TRel-preserves-barbs[where TRel=TRel]
preservation-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
by blast
qed

If indRelRTPO, indRelLTPO, or indRelTEQ is a contrasimulation then so is the corresponding target
term relation.

lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-contrasimulation:

106

fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes conSim: weak-reduction-contrasimulation Rel (STCal Source Target)
and target: ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
shows weak-reduction-contrasimulation (TRel™) Target
proof clarify
fix TP TQ TP’
assume (TP, TQ) € TRelt and TP — Targetx TP’
thus 3 T7Q’". TQ — Targetx TQ' A (TQ', TP') € TRel™
proof (induct arbitrary: TP')
fix TQ TP’
assume (TP, TQ) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP —— Targetx TP’
hence TargetTerm TP ——(STCal Source Target)x (TargetTerm TP’)
by (simp add: STCal-steps)
ultimately obtain Q' where A2: TargetTerm TQ ——(STCal Source Target)x Q'
and A3: (Q', TargetTerm TP’) € Rel
using conSim
by blast
from A2 obtain TQ’ where Aj: TQ —— Targetx TQ' and A5: TQ' €T Q'
by (auto simp add: STCal-steps)
from A3 A5 trel have (TQ’, TP') € TRel*
by simp
with 44 show 3TQ". TQ —— Targetx TQ' A (TQ', TP') € TRel™
by blast
next
case (step TQ TR)
assume TP —— Targetx TP’
and ATP'. TP — Targetx TP' = 3TQ’'. TQ — Targetx TQ' A (TQ', TP') € TRel™
from this obtain TQ’ where BI: TQ —— Targetx TQ' and B2: (TQ’, TP') € TRel™
by blast
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover from BI have TargetTerm TQ ——(STCal Source Target)x (TargetTerm TQ')
by (simp add: STCal-steps)
ultimately obtain R’ where B3: TargetTerm TR ——(STCal Source Target)x R’
and B/: (R', TargetTerm TQ') € Rel
using conSim
by blast
from B3 obtain TR’ where B5: TR’ €T R’ and B6: TR —— Targetx TR’
by (auto simp add: STCal-steps)
from B/ B5 trel have (TR’, TQ') € TRel*
by simp
from this B2 have (TR’, TP') € TRel™
by simp
with B6 show 3 TR’. TR — Targetx TR' A (TR’, TP') € TRel™
by blast
qed
qed

lemma (in encoding) indRelRTPO-impl-TRel-is-weak-reduction-contrasimulation:
fixes TRel :: ('procT x 'procT) set
assumes conSim: weak-reduction-contrasimulation (indRelRTPO TRel) (STCal Source Target)
shows weak-reduction-contrasimulation (TRel™) Target
using conSim indRelRTPO.target[where TRel=TRel] indRelRTPO-to-TRel(4)where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-weak-reduction-contrasimulation[where
Rel=indRelRTPO TRel and TRel=TRel]

107

by blast

lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-contrasimulation:

fixes TRel :: ('procT x 'procT) set

assumes conSim: weak-reduction-contrasimulation (indRelLTPO TRel) (STCal Source Target)

shows weak-reduction-contrasimulation (TRel™) Target

using conSim indRelLTPO.target[where TRel=TRel] indRelLTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-trans C- TRel-is-weak-reduction-contrasimulation[where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-contrasimulation:
fixes TRel :: ('procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes conSim: weak-reduction-contrasimulation Rel (STCal Source Target)
and target: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows weak-reduction-contrasimulation (TRel*) Target
proof clarify
fix TP TQ TP’
assume (TP, TQ) € TRel* and TP —— Targetx TP’
thus 3TQ’. TQ — Targetx TQ' N (TQ', TP') € TRel*
proof (induct arbitrary: TP
fix TP’
assume TP —— Targetx TP’
moreover have (TP’, TP') € TRel*
by simp
ultimately show 3 TQ’. TP —— Targetx TQ' N (TQ’, TP') € TRel*
by blast
next
case (step TQ TR)
assume TP —— Targetx TP’
and ATP'. TP —Targetx TP' — 3 TQ'. TQ —— Targetx TQ' N (TQ', TP') € TRel*
from this obtain TQ' where BI: TQ — Targetx TQ' and B2: (TQ’, TP') € TRel*
by blast
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover from BI have TargetTerm TQ ——(STCal Source Target)x (TargetTerm TQ')
by (simp add: STCal-steps)
ultimately obtain R’ where B3: TargetTerm TR ——(STCal Source Target)x R’
and B4: (R’, TargetTerm TQ') € Rel
using conSim
by blast
from B3 obtain TR’ where B5: TR’ € T R’ and B6: TR —— Targetx TR’
by (auto simp add: STCal-steps)
from B4 B5 trel have (TR', TQ') € TRel*
by simp
from this B2 have (TR’, TP') € TRel*
by simp
with B6 show 3 TR’. TR — Targetx TR’ A (TR’, TP') € TRel*
by blast
qged
qed

lemma (in encoding) indRelTEQ-impl-TRel-is-weak-reduction-contrasimulation:
fixes TRel :: ("procT x 'procT) set
assumes conSim: weak-reduction-contrasimulation (indRelTEQ TRel) (STCal Source Target)
shows weak-reduction-contrasimulation (TRel*) Target
using conSim indRelTEQ.target|where TRel=TRel| indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of-TRel-refi-cond

108

rel-with-target-impl-reflC-trans C- T Rel-is-weak-reduction-contrasimulation[where
Rel=indRelTEQ TRel and TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelRTP O-impl-TRel-is-weak-barbed-contrasimulation:
fixes TRel :: ("procT x 'procT) set
assumes conSim: weak-barbed-contrasimulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-contrasimulation (TRelt) TWB
proof
from conSim show weak-reduction-contrasimulation (TRel™) (Calculus TWB)
using indRelRTPO-impl- TRel-is-weak-reduction-contrasimulation|where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from conSim show rel-weakly-preserves-barbs (TRelt) TWB
using indRelRTPO-impl-TRel-weakly-preserves-barbs[where TRel=TRel]
weak-preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]|
by blast
qed

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-contrasimulation:
fixes TRel :: ("procT x 'procT) set
assumes conSim: weak-barbed-contrasimulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-contrasimulation (TRelt) TWB
proof
from conSim show weak-reduction-contrasimulation (TRel™) (Calculus TWB)
using indRelLTPO-impl-TRel-is-weak-reduction-contrasimulation[where TRel=TRel)
by (simp add: STCalWB-def calS calT)
next
from conSim show rel-weakly-preserves-barbs (TRel™) TWB
using indRelLTPO-impl-TRel-weakly-preserves-barbsjwhere TRel=TRel]
weak-preservation-of-barbs-and-closures(2)[where Rel=TRel and CWB=TWB]|
by blast
qed

lemma (in encoding-wrt-barbs) indRel TEQ-impl- T Rel-is-weak-barbed-contrasimulation:
fixes TRel :: ("procT x 'procT) set
assumes conSim: weak-barbed-contrasimulation (indRelTEQ TRel) (STCalWB SWB TWB)
shows weak-barbed-contrasimulation (TRel*) TWB
proof
from conSim show weak-reduction-contrasimulation (TRel*) (Calculus TWB)
using indRelTEQ-impl- TRel-is-weak-reduction-contrasimulation[where TRel=TRel)
by (simp add: STCalWB-def calS calT)
next
from conSim show rel-weakly-preserves-barbs (TRel*) TWB
using indRelTEQ-impl- TRel-weakly-preserves-barbs[where TRel=TRel]
weak-preservation-of-barbs-and-closures(8)[where Rel=TRel and CWB=TWB]|
by blast
qed

If indRelRTPO, indRelLTPO, or indRelTEQ is a coupled simulation then so is the corresponding
target term relation.

lemma (in encoding) indRelRTPO-impl- TRel-is-weak-reduction-coupled-simulation:

fixes TRel :: ("procT x 'procT) set

assumes couSim: weak-reduction-coupled-simulation (indRelRTPO TRel) (STCal Source Target)

shows weak-reduction-coupled-simulation (TRel™) Target

using couSim weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation
refl indRelRTPO-impl- TRel-is-weak-reduction-simulation[where TRel=TRel]
indRelRTPO-impl-TRel-is-weak-reduction-contrasimulation|where TRel=TRel]
by blast

109

lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-coupled-simulation:

fixes TRel :: ("procT x 'procT) set

assumes couSim: weak-reduction-coupled-simulation (indRelLTPO TRel) (STCal Source Target)

shows weak-reduction-coupled-simulation (TRel™) Target

using couSim weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation
refl indRelLTP O-impl-TRel-is-weak-reduction-simulation[where TRel=TRel]
indRelLTPO-impl-TRel-is-weak-reduction-contrasimulation|where TRel=TRel]
by blast

lemma (in encoding) indRelTEQ-impl-TRel-is-weak-reduction-coupled-simulation:

fixes TRel :: ("procT x 'procT) set

assumes couSim: weak-reduction-coupled-simulation (indRelTEQ TRel) (STCal Source Target)

shows weak-reduction-coupled-simulation (TRel*) Target

using couSim weak-reduction-coupled-simulation-versus-simulation-and-contrasimulation
refl indRel TEQ-impl-TRel-is-weak-reduction-simulation[where TRel=TRel]
indRel TEQ-impl- TRel-is-weak-reduction-contrasimulation[where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelRTPO-impl- TRel-is-weak-barbed-coupled-simulation:
fixes TRel :: ("procT x 'procT) set
assumes couSim: weak-barbed-coupled-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-coupled-simulation (TRel™) TWB
using couSim weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation
refl indRelRTPO-impl- TRel-is-weak-barbed-simulation|where TRel=TRel]
indRelRTPO-impl- T Rel-is-weak-barbed-contrasimulation[where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-coupled-simulation:
fixes TRel :: ("procT x 'procT) set
assumes couSim: weak-barbed-coupled-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-coupled-simulation (TRel™) TWB
using couSim weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation
refl indRelLTPO-impl-TRel-is-weak-barbed-simulation[where TRel=TRel)]
indRelLTPO-impl- T Rel-is-weak-barbed-contrasimulation[where TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-coupled-simulation:

fixes TRel :: ("procT x 'procT) set

assumes couSim: weak-barbed-coupled-simulation (indRelTEQ TRel) (STCalWB SWB TWB)

shows weak-barbed-coupled-simulation (TRel*) TWB

using couSim weak-barbed-coupled-simulation-versus-simulation-and-contrasimulation
refl indRel TEQ-impl-TRel-is-weak-barbed-simulation[where TRel=TRel]
indRel TEQ-impl- T Rel-is-weak-barbed-contrasimulation|where TRel=TRel]
by blast

If indRelRTPO, indRelLTPO, or indRelTEQ is a correspondence simulation then so is the correspond-
ing target term relation.

lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes corSim: weak-reduction-correspondence-simulation Rel (STCal Source Target)
and target: YV T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel —s (T1, T2) € TRel*
shows weak-reduction-correspondence-simulation (TRel™) Target
proof —
from corSim target trel have A: weak-reduction-simulation (TRel™) Target
using rel-with-target-impl-transC- TRel-is-weak-reduction-simulation[where TRel=TRel
and Rel=Rel]
by blast
moreover have VP Q Q. (P, Q) € TRel™ A Q — Targetx Q'

110

— (AP Q". P ——Targetx P" A Q' — Targetx Q" N (P", Q") € TRel™)
proof clarify
fix TP TQ TQ'
assume (TP, TQ) € TRel™ and TQ — Targetx TQ’
thus 3 TP TQ". TP — Targetx TP N TQ' — Targetx TQ" N (TP, TQ") € TRel*
proof (induct arbitrary: TQ')
fix TQ TQ'
assume (TP, TQ) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel
by blast
moreover assume 1'Q — Targetx TQ'
hence TargetTerm TQ ——(STCal Source Target)x (TargetTerm TQ')
by (simp add: STCal-steps)
ultimately obtain P Q' where A2: TargetTerm TP ——(STCal Source Target)x P’
and A3: TargetTerm TQ' ——(STCal Source Target)x Q' and A4: (P, Q') € Rel
using corSim
by blast
from A2 obtain TP' where A5: TP —— Targetx TP" and A6: TP €T P"
by (auto simp add: STCal-steps)
from A3 obtain TQ' where A7: TQ' — Targetx TQ' and A8: TQ" €T Q"
by (auto simp add: STCal-steps)
from A4 A6 A8 trel have (TP, TQ') € TRel*
by blast
with A5 A7
show 3 TP" TQ". TP —Targetx TP" N TQ' — Targetx TQ" N (TP, TQ") € TRel*
by blast
next
case (step TQ TR TR’
assume A\TQ'. TQ — Targetx TQ'— ATP" TQ". TP — Targetx TP" N TQ' — Targetx TQ"
A (TP", TQ") € TRel*
moreover assume (TQ, TR) € TRel
hence ATR'. TR — Targetx TR’
— (3TQ" TR". TQ — Targetx TQ" N TR' — Targetx TR” N (TQ", TR') € TRel™)
proof clarify
fix TR’
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover assume TR —— Targetx TR’
hence TargetTerm TR ——(STCal Source Target)x (TargetTerm TR
by (simp add: STCal-steps)
ultimately obtain Q"' R" where B1: TargetTerm TQ ——(STCal Source Target)x Q"
and B2: TargetTerm TR' ——(STCal Source Target)x R and B3: (Q”, R") € Rel
using corSim
by blast
from B obtain TQ" where Bj: TQ" €T Q" and B5: TQ — Targetx TQ"
by (auto simp add: STCal-steps)
from B2 obtain TR’ where B6: TR €T R" and B7: TR' — Target+ TR"
by (auto simp add: STCal-steps)
from B3 B4 B6 trel have (TQ'", TR') € TRel™
by simp
with B5 B7
show 3 TQ" TR". TQ — Targetx TQ" N TR' — Targetx TR A (TQ", TR') € TRel™
by blast
qed
moreover have trans (TRel™)
by simp
moreover assume TR — Targetx TR’
ultimately
show 3 TP TR". TP — Targetx TP" AN TR' — Targetx TR" A (TP, TR') € TRel™
using A reduction-correspondence-simulation-condition-trans|where Rel=TRel*

111

and Cal="Target)
by blast
qed
qged
ultimately show ?thesis
by simp
qed

lemma (in encoding) indRelRTPO-impl- TRel-is-weak-reduction-correspondence-simulation:

fixes TRel :: ("procT x 'procT) set

assumes cSim: weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)

shows weak-reduction-correspondence-simulation (TRel™) Target
using c¢Sim indRelRTPO.target[where TRel=TRel] indRelRTPO-to-TRel(4)[where TRel=TRel]

rel-with-target-impl-trans C- TRel-is-weak-reduction-correspondence-simulation[where
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRelLTPO-impl-TRel-is-weak-reduction-correspondence-simulation:

fixes TRel :: ("procT x 'procT) set

assumes cSim: weak-reduction-correspondence-simulation (indRelLTPO TRel) (STCal Source Target)
shows weak-reduction-correspondence-simulation (TRel™) Target

using ¢Sim indRelLTPO.target[where TRel=TRel| indRelLTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-weak-reduction-correspondence-simulation|where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding)
rel-with-target-impl-reflC-trans C- T Rel-is-weak-reduction-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes corSim: weak-reduction-correspondence-simulation Rel (STCal Source Target)
and target: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows weak-reduction-correspondence-simulation (TRel*) Target
proof —
from corSim target trel have A: weak-reduction-simulation (TRel*) Target
using rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-simulation[where TRel=TRel
and Rel=Rel]
by blast
moreover have VP Q Q' (P, Q) € TRel* A Q — Targetx Q' —
(3P" Q". P —sTargetx P N Q' — Targetx Q" N (P", Q') € TRel*)
proof clarify
fix TP TQ TQ'
assume (TP, TQ) € TRel* and TQ — Targetx TQ'
thus 3TP" TQ". TP — Targetx TP N TQ' — Targetx TQ" N (TP", TQ") € TRel*
proof (induct arbitrary: TQ')
fix TQ'
assume TP —— Targetx TQ'
moreover have TQ’ — Targetx TQ'
by (simp add: steps-refl)
moreover have (7Q’, TQ') € TRel*
by simp
ultimately show 3 TP TQ'". TP s Targetx TP'' N TQ' — Targetx TQ" N (TP", TQ'") € TRel*
by blast
next
case (step TQ TR TR')
assume ATQ'. TQ — Targetx TQ'— I TP TQ". TP — Targetx TP" N TQ' — Targetx TQ"
A (TP, TQ'") € TRel*
moreover assume (TQ, TR) € TRel
with corSim have ATR'. TR — Targetx TR' — 3TQ" TR". TQ —— Targetx TQ"
A TR' —Targetx TR” A (TQ', TR") € TRel*

112

proof clarify
fix TR’
assume (7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover assume TR —— Targetx TR’
hence TargetTerm TR ——(STCal Source Target)x (TargetTerm TR
by (simp add: STCal-steps)
ultimately obtain Q' R” where BI: TargetTerm TQ ——(STCal Source Target)x Q"
and B2: TargetTerm TR' ——(STCal Source Target)x R and B3: (Q”, R") € Rel
using corSim
by blast
from B obtain TQ" where B/: TQ" €T Q" and B5: TQ — Targetx TQ"
by (auto simp add: STCal-steps)
from B2 obtain TR’ where B6: TR €T R” and B7: TR' — Targetx TR"
by (auto simp add: STCal-steps)
from B3 B4 BG trel have (TQ"”, TR') € TRel*
by simp
with B5 B7
show 37Q"” TR". TQ — Targetx TQ" N TR' — Targetx TR" A (TQ", TR'") € TRel*
by blast
qed
moreover assume TR —— Targetx TR’
moreover have trans (TRel*)
using trans-rtrancl[of TRel]
by simp
ultimately show 3 TP TR". TP —— Target+ TP N TR’ — Target+ TR N (TP, TR') € TRel*
using A reduction-correspondence-simulation-condition-trans|where Rel=TRel*
and Cal="Target)
by blast
ged
qged
ultimately show ?Zthesis
by simp
qed

lemma (in encoding) indRelTEQ-impl-TRel-is-weak-reduction-correspondence-simulation:

fixes TRel :: ("procT x 'procT) set

assumes corSim: weak-reduction-correspondence-simulation (indRelTEQ TRel) (STCal Source Target)

shows weak-reduction-correspondence-simulation (TRel*) Target

using corSim indRelTEQ.target[where TRel=TRel] indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of-TRel-refi-cond
rel-with-target-impl-reflC-trans C- T Rel-is-weak-reduction-correspondence-simulation|
where Rel=indRelTEQ TRel and TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-is-weak-barbed- correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
assumes corSim: weak-barbed-correspondence-simulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-correspondence-simulation (TRel*) TWB
proof
from corSim show weak-reduction-correspondence-simulation (TRelt) (Calculus TWB)
using indRelRTPO-impl-TRel-is-weak-reduction-correspondence-simulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from corSim show rel-weakly-respects-barbs (TRel™) TWB
using indRelRTPO-impl-TRel-weakly-respects-barbs[where TRel=TRel]
weak-respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
by blast
qed

113

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
assumes corSim: weak-barbed-correspondence-simulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-correspondence-simulation (TRel™) TWB
proof
from corSim show weak-reduction-correspondence-simulation (TRelt) (Calculus TWB)
using indRelLTPO-impl-TRel-is-weak-reduction-correspondence-simulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from corSim show rel-weakly-respects-barbs (TRel™) TWB
using indRelLTPO-impl- TRel-weakly-respects-barbs[where TRel=TRel]
weak-respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
assumes corSim: weak-barbed-correspondence-simulation (indRelTEQ TRel) (STCalWB SWB TWDB)
shows weak-barbed-correspondence-simulation (TRel*) TWB
proof
from corSim show weak-reduction-correspondence-simulation (TRel*) (Calculus TWB)
using indRelTEQ-impl- T Rel-is-weak-reduction-correspondence-simulation|where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from corSim show rel-weakly-respects-barbs (TRel*) TWB
using indRelTEQ-impl- TRel-weakly-respects-barbs[where TRel=TRel]
weak-respection-of-barbs-and-closures(5)[where Rel=TRel and CWB=TWB]
by blast
qed

If indRelRTPO, indRelLTPO, or indRelTEQ is a bisimulation then so is the corresponding target
term relation.

lemma (in encoding) rel-with-target-impl-transC-TRel-is-weak-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes bisim: weak-reduction-bisimulation Rel (STCal Source Target)
and target: ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel "
shows weak-reduction-bisimulation (TRel™) Target
proof
from bisim target trel show weak-reduction-simulation (TRel™) Target
using rel-with-target-impl-transC-TRel-is-weak-reduction-simulation[where TRel=TRel
and Rel=Rel]
by blast
next
show VP Q Q. (P, Q) € TRel™ N Q — Targetx Q' — (3 P'. P —Targetx P' A (P', Q') € TRel™)
proof clarify
fix TP TQ TQ'
assume (TP, TQ) € TRel™ and TQ — Targetx TQ'
thus 3 TP'. TP — Targetx TP' A (TP', TQ') € TRel™
proof (induct arbitrary: TQ')
fix TQ TQ'
assume (TP, TQ) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 1'Q — Targetx TQ'
hence TargetTerm TQ —(STCal Source Target)* (TargetTerm TQ’)
by (simp add: STCal-steps)
ultimately obtain P’ where A2: TargetTerm TP ——(STCal Source Target)x P’
and A3: (P’, TargetTerm TQ') € Rel

114

using bisim
by blast
from A2 obtain TP’ where Aj: TP — Target+ TP' and A5: TP' €T P’
by (auto simp add: STCal-steps)
from A3 A5 trel have (TP', TQ') € TRel™
by simp
with A4 show 3 TP’'. TP — Targetx TP' A (TP', TQ') € TRel™
by blast
next
case (step TQ TR TR')
assume (TQ, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover assume TR — Targetx TR’
hence TargetTerm TR ——(STCal Source Target)x (TargetTerm TR')
by (simp add: STCal-steps)
ultimately obtain @’ where BI: TargetTerm TQ ——(STCal Source Target)x Q'
and B2: (Q’, TargetTerm TR') € Rel
using bisim
by blast
from B1 obtain TQ’ where B3: TQ' €T Q' and Bj: TQ —— Targetx TQ'
by (auto simp add: STCal-steps)
assume A\TQ' TQ — Targetx TQ' => I TP'. TP —Targetx TP' A (TP', TQ') € TRel™
with B/ obtain TP’ where B5: TP —— Targetx TP’ and B6: (TP', TQ') € TRel™
by blast
from B2 B3 trel have (TQ', TR') € TRel™*
by simp
with B6 have (TP’, TR') € TRel™®
by simp
with B5 show 3 TP'. TP — Targetx TP' A (TP’, TR') € TRel™*
by blast
qed
qed
qed

lemma (in encoding) indRelRTPO-impl- T Rel-is-weak-reduction-bisimulation:

fixes TRel :: ("procT x 'procT) set

assumes bisim: weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)

shows weak-reduction-bisimulation (TRel™) Target

using bisim indRelRTPO.target{where TRel=TRel] indRelRTPO-to-TRel(4)[where TRel=TRel|
rel-with-target-impl-transC- TRel-is-weak-reduction-bisimulation|where
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRelLTPO-impl- TRel-is-weak-reduction-bisimulation:

fixes TRel :: ('procT x 'procT) set

assumes bisim: weak-reduction-bisimulation (indRelLTPO TRel) (STCal Source Target)

shows weak-reduction-bisimulation (TRel™) Target

using bisim indRelLTPO.target(where TRel=TRel] indRelLTPO-to-TRel(4)where TRel=TRel]
rel-with-target-impl-trans C- T Rel-is-weak-reduction-bisimulation[where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-reflC-transC-TRel-is-weak-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes bisim: weak-reduction-bisimulation Rel (STCal Source Target)
and target: ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows weak-reduction-bisimulation (TRel*) Target
proof

115

from bisim target trel show weak-reduction-simulation (TRel*) Target
using rel-with-target-impl-reflC-trans C- T Rel-is-weak-reduction-simulation[where TRel=TRel
and Rel=Rel]
by blast
next
show VP Q Q. (P, Q) € TRel* A Q — Targetx Q' — (3 P’. P —Targetx P' A (P’, Q") € TRel*)
proof clarify
fix TP TQ TQ'
assume (TP, TQ) € TRel* and TQ — Targetx TQ'
thus 3 TP'. TP —Targetx TP' A (TP’, TQ') € TRel*
proof (induct arbitrary: TQ')
fix TQ'
assume TP —— Targetx TQ'
moreover have (TQ’, TQ') € TRel*
by simp
ultimately show 3 TP'. TP —— Targetx TP' A (TP, TQ') € TRel*
by blast
next
case (step TQ TR TR')
assume (T7Q, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover assume TR —— Targetx TR’
hence TargetTerm TR ——(STCal Source Target)* (TargetTerm TR
by (simp add: STCal-steps)
ultimately obtain Q' where BI: TargetTerm TQ ——(STCal Source Target)x Q'
and B2: (Q’', TargetTerm TR') € Rel
using bisim
by blast
from B obtain TQ’ where B3: TQ' €T Q' and Bj: TQ —— Targetx TQ'
by (auto simp add: STCal-steps)
assume A\TQ’. TQ — Targetx TQ' = ITP'. TP — Targetx TP' A (TP', TQ") € TRel*
with B4 obtain TP’ where B5: TP —— Targetx TP’ and B6: (TP', TQ') € TRel*
by blast
from B2 B3 trel have (TQ’, TR') € TRel*
by simp
with B6 have (TP’, TR') € TRel*
by simp
with B5 show 3 TP'. TP — Targetx TP' A (TP', TR') € TRel*
by blast
qed
qged
qed

lemma (in encoding) indRelTEQ-impl-TRel-is-weak-reduction-bisimulation:

fixes TRel :: ('procT x 'procT) set

assumes bisim: weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)

shows weak-reduction-bisimulation (TRel*) Target

using bisim indRelTEQ.target[where TRel=TRel] indRelTEQ-to-TRel(4)where TRel=TRel]
trans-closure-of-TRel-refl-cond
rel-with-target-impl-reflC-transC- TRel-is-weak-reduction-bisimulation[where
Rel=indRelTEQ TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-transC-TRel-is-strong-reduction-bisimulation:
fixes TRel :: ('procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes bisim: strong-reduction-bisimulation Rel (STCal Source Target)
and target: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows strong-reduction-bisimulation (TRelt) Target

116

proof
from bisim target trel show strong-reduction-simulation (TRel™) Target
using rel-with-target-impl-transC- TRel-is-strong-reduction-simulation[where Rel=Rel
and TRel=TRel]
by blast
next
show VP Q Q' (P, Q) € TRel™ A Q — Target Q' — (3P'. P — Target P’ A (P', Q") € TRel™)
proof clarify
fix TP TQ TQ'
assume (TP, TQ) € TRelt and TQ —— Target TQ’
thus 3 TP'. TP — Target TP' A (TP’, TQ') € TRel™
proof (induct arbitrary: TQ')
fix TQ TQ'
assume (TP, TQ) € TRel
with target have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 1'Q) — Target TQ’
hence TargetTerm TQ —(STCal Source Target) (TargetTerm TQ’)
by (simp add: STCal-step)
ultimately obtain P’ where A2: TargetTerm TP ——(STCal Source Target) P’
and A3: (P’, TargetTerm TQ') € Rel
using bisim
by blast
from A2 obtain TP’ where Aj: TP — Target TP’ and A5: TP' €T P’
by (auto simp add: STCal-step)
from A3 A5 trel have (TP', TQ') € TRel™
by simp
with A4 show 3 TP’. TP — Target TP’ N (TP, TQ') € TRel™
by blast
next
case (step TQ TR TR')
assume (TQ, TR) € TRel
with target have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
moreover assume TR — Target TR’
hence TargetTerm TR ——(STCal Source Target) (TargetTerm TR')
by (simp add: STCal-step)
ultimately obtain @’ where BI: TargetTerm TQ ——(STCal Source Target) Q'
and B2: (Q', TargetTerm TR') € Rel
using bisim
by blast
from B1 obtain TQ’ where B3: TQ' €T Q' and Bj: TQ —— Target TQ'
by (auto simp add: STCal-step)
assume A\TQ' TQ — Target TQ' = I TP'. TP — Target TP' A (TP', TQ') € TRel™
with B/ obtain TP’ where B5: TP ——Target TP' and B6: (TP', TQ') € TRel™
by blast
from B2 BS3 trel have (TQ', TR') € TRel™
by simp
with B6 have (TP’, TR') € TRel®
by simp
with B5 show 3 TP'. TP — Target TP' A (TP', TR') € TRel™
by blast
qed
qed
qed

lemma (in encoding) indRelRTPO-impl- TRel-is-strong-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes bisim: strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
shows strong-reduction-bisimulation (TRelt) Target
using bisim indRelRTPO.target{where TRel=TRel] indRelRTPO-to-TRel(4)[where TRel=TRel]

117

rel-with-target-impl-trans C- T Rel-is-strong-reduction-bisimulation[where
Rel=indRelRTPO TRel and TRel=TRel]
by blast

lemma (in encoding) indRellLTPO-impl-TRel-is-strong-reduction-bisimulation:

fixes TRel :: ("procT x 'procT) set

assumes bisim: strong-reduction-bisimulation (indRelLTPO TRel) (STCal Source Target)

shows strong-reduction-bisimulation (TRel™) Target

using bisim indRelLTPO.target(where TRel=TRel] indRelLTPO-to-TRel(4)[where TRel=TRel]
rel-with-target-impl-transC- TRel-is-strong-reduction-bisimulation|where
Rel=indRelLTPO TRel and TRel=TRel]
by blast

lemma (in encoding) rel-with-target-impl-reflC-transC- T Rel-is-strong-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes bisim: strong-reduction-bisimulation Rel (STCal Source Target)
and target: ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and trel: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
shows strong-reduction-bisimulation (TRel*) Target
proof
from bisim target trel show strong-reduction-simulation (TRel*) Target
using rel-with-target-impl-reflC-trans C-TRel-is-strong-reduction-simulation[where Rel=Rel
and TRel=TRel]
by blast
next
show VP Q Q. (P, Q) € TRel* N Q — Target Q' — (I P’". P —Target P’ A (P', Q') € TRel*)
proof clarify
fix TP TQ TQ'
assume (TP, TQ) € TRel* and TQ — Target TQ'
thus 3 TP'. TP —Target TP' A (TP', TQ') € TRel*
proof (induct arbitrary: TQ')
fix TQ'
assume TP —— Target TQ'
thus 3 TP'. TP — Target TP’ A (TP', TQ') € TRel*
by blast
next
case (step TQ TR TR')
assume (T7Q, TR) € TRel
with target have (TargetTerm T'Q, TargetTerm TR) € Rel
by simp
moreover assume TR — Target TR’
hence TargetTerm TR ——(STCal Source Target) (TargetTerm TR')
by (simp add: STCal-step)
ultimately obtain Q' where BI: TargetTerm TQ ——(STCal Source Target) Q'
and B2: (Q’', TargetTerm TR') € Rel
using bisim
by blast
from B1 obtain TQ’' where B3: TQ' €T Q' and Bj: TQ —— Target TQ'
by (auto simp add: STCal-step)
assume A\TQ'. TQ — Target TQ' = I TP'. TP — Target TP’ A (TP’, TQ') € TRel*
with B/ obtain TP’ where B5: TP —— Target TP’ and B6: (TP', TQ') € TRel*
by blast
from B2 B3 trel have (TQ', TR') € TRel*
by simp
with B¢ have (TP', TR') € TRel*
by simp
with B5 show 3 TP'. TP — Target TP’ A (TP’, TR') € TRel*
by blast
qed
qed

118

qed

lemma (in encoding) indRelTEQ-impl-TRel-is-strong-reduction-bisimulation:

fixes TRel :: ('procT x 'procT) set

assumes bisim: strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)

shows strong-reduction-bisimulation (TRel*) Target

using bisim indRelTEQ.target[where TRel=TRel| indRelTEQ-to-TRel(4) where TRel=TRel]
trans-closure-of-TRel-refi-cond
rel-with-target-impl-reflC-transC- TRel-is-strong-reduction-bisimulation[where
Rel=indRelTEQ TRel and TRel=TRel]
by blast

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-is-weak-barbed-bisimulation:
fixes TRel :: ('procT x 'procT) set
assumes bisim: weak-barbed-bisimulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-bisimulation (TRel™) TWB
proof
from bisim show weak-reduction-bisimulation (TRel™) (Calculus TWB)
using indRelRTPO-impl-TRel-is-weak-reduction-bisimulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from bisim show rel-weakly-respects-barbs (TRelt) TWB
using indRelRTPO-impl-TRel-weakly-respects-barbs[where TRel=TRel]
weak-respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]|
by blast
qed

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-weak-barbed-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes bisim: weak-barbed-bisimulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows weak-barbed-bisimulation (TRel™) TWB
proof
from bisim show weak-reduction-bisimulation (TRel™) (Calculus TWB)
using indRelLTPO-impl-TRel-is-weak-reduction-bisimulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT')
next
from bisim show rel-weakly-respects-barbs (TRel™) TWB
using indRelLTPO-impl-TRel-weakly-respects-barbs[where TRel=TRel]
weak-respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-weak-barbed-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes bisim: weak-barbed-bisimulation (indRelTEQ TRel) (STCalWB SWB TWB)
shows weak-barbed-bisimulation (TRel*) TWB
proof
from bisim show weak-reduction-bisimulation (TRel*) (Calculus TWB)
using indRel TEQ-impl- T Rel-is-weak-reduction-bisimulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from bisim show rel-weakly-respects-barbs (TRel*) TWB
using indRelTEQ-impl-TRel-weakly-respects-barbs[where TRel=TRel]
weak-respection-of-barbs-and-closures(5)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelRTPO-impl-TRel-is-strong-barbed-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes bisim: strong-barbed-bisimulation (indRelRTPO TRel) (STCalWB SWB TWB)
shows strong-barbed-bisimulation (TRel™) TWB

119

proof
from bisim show strong-reduction-bisimulation (TRel™) (Calculus TWB)
using indRelRTPO-impl-TRel-is-strong-reduction-bisimulation[where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from bisim show rel-respects-barbs (TRel*) TWB
using indRelRTPO-impl-TRel-respects-barbs[where TRel=TRel|
respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelLTPO-impl-TRel-is-strong-barbed-bisimulation:
fixes TRel :: ('procT x 'procT) set
assumes bisim: strong-barbed-bisimulation (indRelLTPO TRel) (STCalWB SWB TWB)
shows strong-barbed-bisimulation (TRel™) TWB
proof
from bisim refl show strong-reduction-bisimulation (TRel™) (Calculus TWB)
using indRelLTPO-impl-TRel-is-strong-reduction-bisimulation[where TRel=TRel)
by (simp add: STCalWB-def calS calT')
next
from bisim show rel-respects-barbs (TRel™) TWB
using indRelLTPO-impl-TRel-respects-barbs[where TRel=TRel]
respection-of-barbs-and-closures(3)[where Rel=TRel and CWB=TWB]
by blast
qed

lemma (in encoding-wrt-barbs) indRelTEQ-impl-TRel-is-strong-barbed-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes bisim: strong-barbed-bisimulation (indRelTEQ TRel) (STCalWB SWB TWB)
shows strong-barbed-bisimulation (TRel*) TWB
proof
from bisim refl show strong-reduction-bisimulation (TRel*) (Calculus TWB)
using indRelTEQ-impl- TRel-is-strong-reduction-bisimulation|where TRel=TRel]
by (simp add: STCalWB-def calS calT)
next
from bisim show rel-respects-barbs (TRel*) TWB
using indRelTEQ-impl-TRel-respects-barbsjwhere TRel=TRel]
respection-of-barbs-and-closures(5)[where Rel=TRel and CWB=TWB]
by blast
qed

5.3 Relations Induced by the Encoding and Relations on Source Terms and Target
Terms

Some encodability like e.g. full abstraction are defined w.r.t. a relation on source terms and a relation
on target terms. To analyse such criteria we include these two relations in the considered relation on
the disjoint union of source and target terms.

inductive-set (in encoding) indRelRST
i ('procS x 'procS) set = (‘procT x 'procT) set
= ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set

for SRel :: ("procS x 'procS) set

and TRel :: ('procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelRST SRel TRel |
source: (S1, S2) € SRel = (SourceTerm S1, SourceTerm S2) € indRelRST SRel TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelRST SRel TRel

abbreviation (in encoding) indRelRS Tinfix

2 ("procS, 'procT) Proc = ('procS x 'procS) set = (‘procT x 'procT) set
= ('procS, 'procT) Proc = bool (- R[-JR<-,-> - [75, 75, 75, 75] 80)

120

where
P R[-JR<SRel,TRel> Q = (P, Q) € indRelRST SRel TRel

inductive-set (in encoding) indRelRSTPO
i ("procS x 'procS) set = ('procT x 'procT) set
= ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set

for SRel :: ('procS x 'procS) set

and TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelRSTPO SRel TRel |
source: (S1, S2) € SRel = (SourceTerm S1, SourceTerm S2) € indRelRSTPO SRel TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelRSTPO SRel TRel |
trans: [(P, Q) € indRelRSTPO SRel TRel; (Q, R) € indRelRSTPO SRel TRel]

= (P, R) € indRelRSTPO SRel TRel

abbreviation (in encoding) indRelRSTPOinfix ::
("procS, 'procT) Proc = ('procS x 'procS) set = ('procT x 'procT) set
= ('procS, 'procT) Proc = bool («- <[-JR<-,-> -» [75, 75, 75, 75] 80)
where
P <[JR<SRel,TRel> @ = (P, Q) € indRelRSTPO SRel TRel

lemma (in encoding) indRelRSTPO-refi:
fixes SRel :: ('procS x ’procS) set
and TRel :: ("procT x 'procT) set
assumes reflS: refl SRel
and refiT: refl TRel
shows refl (indRelRSTPO SRel TRel)
unfolding refi-on-def
proof auto
fix P
show P <[-JR<SRel,TRel> P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
with reflS show P S[-JR<SRel,TRel> P
unfolding refi-on-def
by (simp add: indRelRSTPO.source)
next
case (TargetTerm TP)
assume TP €T P
with refiT show P <[-JR<SRel,TRel> P
unfolding refi-on-def
by (simp add: indRelRSTPO.target)
qed
qed

lemma (in encoding) indRelRSTPO-trans:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
shows trans (indRelRSTPO SRel TRel)
unfolding trans-def
proof clarify
fix PQR
assume P S[JR<SRel,TRel> Q and Q S[-JR<SRel,TRel> R
thus P <[-]JR<SRel,TRel> R
by (rule indRelRSTPO.trans)
qed

lemma (in encoding) refl-trans-closure-of-indRelRST:

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set

121

assumes reflS: refl SRel
and refiT: refl TRel
shows indRelRSTPO SRel TRel = (indRelRST SRel TRel)*
proof auto
fix P Q
assume P S[-JR<SRel, TRel> @
thus (P, Q) € (indRelRST SRel TRel)*
proof induct
case (encR 9)
show (SourceTerm S, TargetTerm ([S])) € (indRelRST SRel TRel)*
using indRelRST.encR|of S SRel TRel]
by simp
next
case (source S1 52)
assume (51, S2) € SRel
thus (SourceTerm S1, SourceTerm S2) € (indRelRST SRel TRel)*
using indRelRST.source[of S1 S2 SRel TRel]
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (indRelRST SRel TRel)*
using indRelRST .target[of T1 T2 TRel SRel]
by simp
next
case (trans P Q R)
assume (P, Q) € (indRelRST SRel TRel)* and (Q, R) € (indRelRST SRel TRel)*
thus (P, R) € (indRelRST SRel TRel)*
by simp
qed
next
fix P Q
assume (P, Q) € (indRelRST SRel TRel)*
thus P <[-]JR<SRel, TRel> Q
proof induct
from reflS reflT show P <[JR<SRel, TRel> P
using indRelRSTPO-refl[of SRel TRel]
unfolding refi-on-def
by simp
next
case (step Q R)
assume P <[JR<SRel, TRel> Q
moreover assume Q R[JR<SRel,TRel> R
hence @ <[JR<SRel,TRel> R
by (induct, simp-all add: indRelRSTPO.intros)
ultimately show P <[-JR<SRel,TRel> R
by (rule indRelRSTPO.trans)
qed
qed

inductive-set (in encoding) indRelLST
o ("procS x 'procS) set = ('procT x 'procT) set
= ((("procS, 'procT) Proc) x (('procS, 'procT) Proc)) set

for SRel :: ("procS x 'procS) set

and TRel :: ("procT x 'procT) set
where
encL: (TargetTerm ([S]), SourceTerm S) € indRelLST SRel TRel |
source: (S1, S2) € SRel = (SourceTerm S1, SourceTerm S2) € indRelLST SRel TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelLST SRel TRel

abbreviation (in encoding) indRelLSTinfix

122

2 ("procS, 'procT) Proc = ('procS x 'procS) set = ('procT x 'procT) set
= ('procS, 'procT) Proc = bool (- R[-]L<-,-> - [75, 75, 75, 75] 80)
where
P R[-JL<SRel,TRel> Q = (P, Q) € indRelLST SRel TRel

inductive-set (in encoding) indRelLSTPO
i ('procS x 'procS) set = (‘procT x 'procT) set
= ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set

for SRel :: ("procS x 'procS) set

and TRel :: ("procT x 'procT) set
where
encL: (TargetTerm ([S]), SourceTerm S) € indRelLSTPO SRel TRel |
source: (S1, S2) € SRel = (SourceTerm S1, SourceTerm S2) € indRelLSTPO SRel TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelLSTPO SRel TRel |
trans: [(P, Q) € indRelLSTPO SRel TRel; (Q, R) € indRelLSTPO SRel TRel]

= (P, R) € indRelLSTPO SRel TRel

abbreviation (in encoding) indRelLSTPOinfix
2 ("procS, 'procT) Proc = (‘procS x 'procS) set = ('procT x 'procT) set
= ('procS, 'procT) Proc = bool («- S[-]L<-,-> - [75, 75, 75, 75] 80)
where
P <[]L<SRel,TRel> Q = (P, Q) € indRelLSTPO SRel TRel

lemma (in encoding) indRelLSTPO-refl:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflS: refl SRel
and refiT: refl TRel
shows refl (indRelLSTPO SRel TRel)
unfolding refi-on-def
proof auto
fix P
show P <[-]L<SRel,TRel> P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
with reflS show P <[-]L<SRel, TRel> P
unfolding refi-on-def
by (simp add: indRelLSTPO.source)
next
case (TargetTerm TP)
assume TP €T P
with refiT show P <[-]JL<SRel,TRel> P
unfolding refi-on-def
by (simp add: indRelLSTPO.target)
qed
qed

lemma (in encoding) indRelLSTPO-trans:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
shows trans (indRelLSTPO SRel TRel)
unfolding trans-def
proof clarify
fix PQR
assume P S[-JL<SRel,TRel> @ and @ <[]L<SRel,TRel> R
thus P <[]L<SRel, TRel> R
by (rule indRelLSTPO.trans)
qed

lemma (in encoding) refl-trans-closure-of-indRelLST":

123

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflS: refl SRel
and refiT: refl TRel
shows indRelLSTPO SRel TRel = (indRelLST SRel TRel)*
proof auto
fix P Q
assume P S[-]L<SRel,TRel> Q
thus (P, Q) € (indRelLST SRel TRel)*
proof induct
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € (indRelLST SRel TRel)*
using indRelLST .encL]of S SRel TRel]
by simp
next
case (source S1 S2)
assume (51, S2) € SRel
thus (SourceTerm S1, SourceTerm S2) € (indRelLST SRel TRel)*
using indRelLST.source[of S1 S2 SRel TRel)
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (indRelLST SRel TRel)*
using indRelLST .target[of T1 T2 TRel SRel]
by simp
next
case (trans P Q) R)
assume (P, Q) € (indRelLST SRel TRel)* and (Q, R) € (indRelLST SRel TRel)*
thus (P, R) € (indRelLST SRel TRel)*
by simp
qged
next
fix P Q
assume (P, Q) € (indRelLST SRel TRel)*
thus P <[-JL<SRel,TRel> Q
proof induct
from reflS reflT show P <[-JL<SRel,TRel> P
using indRelLSTPO-refl[of SRel TRel]
unfolding refi-on-def
by simp
next
case (step Q R)
assume P S[-]L<SRel, TRel> Q
moreover assume @ R[-|L<SRel,TRel> R
hence Q S[-]L<SRel,TRel> R
by (induct, simp-all add: indRelLSTPO.intros)
ultimately show P <[-]L<SRel,TRel> R
by (rule indRelLSTPO.trans)
qed
qed

inductive-set (in encoding) indRelST
= ("procS x 'procS) set = ('procT x 'procT) set
= ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set
for SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelST SRel TRel |
encL: (TargetTerm ([S]), SourceTerm S) € indRelST SRel TRel |
source: (S1, S2) € SRel = (SourceTerm S1, SourceTerm S2) € indRelST SRel TRel |

124

target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelST SRel TRel

abbreviation (in encoding) indRelSTinfix
2 ("procS, 'procT) Proc = ('procS x 'procS) set = (procT x 'procT) set
= ('procS, 'procT) Proc = bool («- R[-|<-,-> - [75, 75, 75, 75] 80)
where
P R[-]<SRel, TRel> Q = (P, Q) € indRelST SRel TRel

lemma (in encoding) indRelST-symm:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes symm.S: sym SRel
and symmT: sym TRel
shows sym (indRelST SRel TRel)
unfolding sym-def
proof clarify
fix P Q
assume (P, Q) € indRelST SRel TRel
thus (@, P) € indRelST SRel TRel
proof induct
case (encR 9)
show (TargetTerm ([S]), SourceTerm S) € indRelST SRel TRel
by (rule indRelST.encL)
next
case (encL S)
show (SourceTerm S, TargetTerm ([S])) € indRelST SRel TRel
by (rule indRelST.encR)
next
case (source S1 S2)
assume (51, S2) € SRel
with symmS show (SourceTerm S2, SourceTerm S1) € indRelST SRel TRel
unfolding sym-def
by (simp add: indRelST.source)
next
case (target T1 T2)
assume (71, T2) € TRel
with symmT show (TargetTerm T2, TargetTerm T1) € indRelST SRel TRel
unfolding sym-def
by (simp add: indRelST .target)
qed
qed

inductive-set (in encoding) indRelSTEQ
= ("procS x 'procS) set = ('procT x 'procT) set
= ((('procS, 'procT) Proc) x (('procS, 'procT) Proc)) set

for SRel :: (‘procS x 'procS) set

and TRel :: ("procT x 'procT) set
where
encR: (SourceTerm S, TargetTerm ([S])) € indRelSTEQ SRel TRel |
encL: (TargetTerm ([S]), SourceTerm S) € indRelSTEQ SRel TRel |
source: (S1, S2) € SRel = (SourceTerm S1, SourceTerm S2) € indRelSTEQ SRel TRel |
target: (T1, T2) € TRel = (TargetTerm T1, TargetTerm T2) € indRelSTEQ SRel TRel |
trans: [(P, Q) € indRelSTEQ SRel TRel; (Q, R) € indRelSTEQ SRel TRel]

— (P, R) € indRelSTEQ SRel TRel

abbreviation (in encoding) indRelSTEQinfix
o ("procS, 'procT) Proc = (‘procS x 'procS) set = ('procT x 'procT) set
= ('procS, 'procT) Proc = bool (- ~[-]<-,-> - [75, 75, 75, 15] 80)
where

P ~[]<SRel,TRel> Q = (P, Q) € indRelSTEQ SRel TRel

125

lemma (in encoding) indRelSTEQ-refl:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes refiT: refl TRel
shows refl (indRelSTEQ SRel TRel)
unfolding refi-on-def
proof auto
fix P
show P ~[-]<SRel,TRel> P
proof (cases P)
case (SourceTerm SP)
assume SP €S P
moreover have SourceTerm SP ~[-]|<SRel,TRel> TargetTerm ([SP])
by (rule indRelSTEQ.encR)
moreover have TargetTerm ([SP]) ~[-]<SRel,TRel> SourceTerm SP
by (rule indRelSTEQ.encL)
ultimately show P ~[-]<SRel, TRel> P
by (simp add: indRelSTEQ.trans[where P==SourceTerm SP and Q= TargetTerm ([SP])])
next
case (TargetTerm TP)
assume TP €T P
with reflT show P ~[-]<SRel,TRel> P
unfolding refi-on-def
by (simp add: indRelSTEQ.target)
qed
qed

lemma (in encoding) indRelSTEQ-symm:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes symm.S: sym SRel
and symmT: sym TRel
shows sym (indRelSTEQ SRel TRel)
unfolding sym-def
proof clarify
fix P Q
assume P ~[-]<SRel,TRel> @
thus @ ~[-]<SRel,TRel> P
proof induct
case (encR S)
show TargetTerm ([S]) ~[-]<SRel, TRel> SourceTerm S
by (rule indRelSTEQ.encL)
next
case (encL S)
show SourceTerm S ~[-]<SRel,TRel> TargetTerm ([S])
by (rule indRelSTEQ.encR)
next
case (source S1 S2)
assume (51, S2) € SRel
with symmS show SourceTerm S2 ~[-]<SRel, TRel> SourceTerm S1
unfolding sym-def
by (simp add: indRelSTEQ.source)
next
case (target T1 T2)
assume (71, T2) € TRel
with symmT show TargetTerm T2 ~[-]<SRel, TRel> TargetTerm T1
unfolding sym-def
by (simp add: indRelSTEQ.target)
next
case (trans P Q R)
assume R ~[-]<SRel,TRel> @ and @ ~[-]<SRel,TRel> P

126

thus R ~[-]<SRel,TRel> P
by (rule indRelSTEQ.trans)
qed
qed

lemma (in encoding) indRelSTEQ-trans:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
shows trans (indRelSTEQ SRel TRel)
unfolding trans-def
proof clarify
fix PQR
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed

lemma (in encoding) refl-trans-closure-of-indRelST:
fixes SRel :: ('procS x ’procS) set
and TRel :: ("procT x 'procT) set
assumes reflT: refl TRel
shows indRelSTEQ SRel TRel = (indRelST SRel TRel)*
proof auto
fix P Q
assume P ~[-]<SRel,TRel> Q
thus (P, Q) € (indRelST SRel TRel)*
proof induct
case (encR S)
show (SourceTerm S, TargetTerm ([S])) € (indRelST SRel TRel)*
using indRelST.encR[of S SRel TRel]
by simp
next
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € (indRelST SRel TRel)*
using indRelST.encL[of S SRel TRel]
by simp
next
case (source S1 S2)
assume (51, S2) € SRel
thus (SourceTerm S1, SourceTerm S2) € (indRelST SRel TRel)*
using indRelST.source[of S1 S2 SRel TRel)
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (indRelST SRel TRel)*
using indRelST .target[of T1 T2 TRel SRel]
by simp
next
case (trans P Q) R)
assume (P, Q) € (indRelST SRel TRel)* and (Q, R) € (indRelST SRel TRel)*
thus (P, R) € (indRelST SRel TRel)*
by simp
qed
next
fix P Q
assume (P, Q) € (indRelST SRel TRel)*
thus P ~[-]<SRel,TRel> @
proof induct
from reflT show P ~[-]<SRel,TRel> P
using indRelSTEQ-refl[of TRel SRel]

127

unfolding refl-on-def
by simp
next
case (step Q R)
assume P ~[-]<SRel,TRel> Q
moreover assume) R[-]<SRel,TRel> R
hence @ ~[-]<SRel,TRel> R
by (induct, simp-all add: indRelSTEQ.intros)
ultimately show P ~[-]<SRel, TRel> R
by (rule indRelSTEQ.trans)
qged
qed

lemma (in encoding) refl-symm-trans-closure-of-indRelST"
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes refiT: refl TRel
and symmS: sym SRel
and symmT: sym TRel
shows indRelSTEQ SRel TRel = (symcl ((indRelST SRel TRel)=))*"
proof —
have (symcl ((indRelST SRel TRel)=))*t = (symcl (indRelST SRel TRel))*
by (rule refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelST SRel TRel])
moreover from symmS symmT have symcl (indRelST SRel TRel) = indRelST SRel TRel
using indRelST-symm|where SRel=SRel and TRel=TRel]
symm-closure-of-symm-rel[where Rel=indRelST SRel TRel)
by blast
ultimately show indRelSTEQ SRel TRel = (symcl ((indRelST SRel TRel)=))*
using reflT refl-trans-closure-of-indRelST[where SRel=SRel and TRel=TRel]
by simp
qed

lemma (in encoding) symm-closure-of-indRelRST:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes refiT: refl TRel
and symmS: sym SRel
and symmT: sym TRel
shows indRelST SRel TRel = symcl (indRelRST SRel TRel)
and indRelSTEQ SRel TRel = (symcl ((indRelRST SRel TRel)=))"
proof —
show indRelST SRel TRel = symcl (indRelRST SRel TRel)
proof auto
fix P Q
assume P R[-]<SRel,TRel> Q
thus (P, Q) € symcl (indRelRST SRel TRel)
by (induct, simp-all add: symcl-def indRelRST .intros)
next
fix P Q
assume (P, Q) € symcl (indRelRST SRel TRel)
thus P R[]<SRel,TRel> Q
proof (auto simp add: symcl-def indRelRST.simps)
fix S
show SourceTerm S R[-]<SRel,TRel> TargetTerm ([S])
by (rule indRelST.encR)
next
fix S1 52
assume (S1, S2) € SRel
thus SourceTerm S1 R[-]<SRel, TRel> SourceTerm S2
by (rule indRelST.source)
next

128

fix T1 T2
assume (11, T2) € TRel
thus TargetTerm T1 R[-]<SRel,TRel> TargetTerm T2
by (rule indRelST .target)
next
fix S
show TargetTerm ([S]) R[-]<SRel,TRel> SourceTerm S
by (rule indRelST.encL)
next
fix 51 52
assume (S1, S2) € SRel
with symmsS show SourceTerm S2 R[-]<SRel, TRel> SourceTerm S1
unfolding sym-def
by (simp add: indRelST.source)
next
fix T1 T2
assume (T1, T2) € TRel
with symmT show (TargetTerm T2, TargetTerm T1) € indRelST SRel TRel
unfolding sym-def
by (simp add: indRelST .target)
qed
qed
with reflT show indRelSTEQ SRel TRel = (symcl ((indRelRST SRel TRel)=))"
using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelRST SRel TRel)
refi-trans-closure-of-indRelST
by simp
qed

lemma (in encoding) symm-closure-of-indRelLST:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflT: refl TRel
and symmsS: sym SRel
and symmT: sym TRel
shows indRelST SRel TRel = symcl (indRelLST SRel TRel)
and indRelSTEQ SRel TRel = (symcl ((indRelLST SRel TRel)=))"
proof —
show indRelST SRel TRel = symcl (indRelLST SRel TRel)
proof auto
fix P Q
assume P R[-J<SRel, TRel> Q
thus (P, Q) € symcl (indRelLST SRel TRel)
by (induct, simp-all add: symcl-def indRelLST .intros)
next
fix P Q
assume (P, Q) € symcl (indRelLST SRel TRel)
thus P R[-]<SRel,TRel> Q
proof (auto simp add: symcl-def indRelLST.simps)
fix S
show SourceTerm S R[-]<SRel,TRel> TargetTerm ([S])
by (rule indRelST.encR)
next
fix 51 52
assume (S1, S2) € SRel
thus SourceTerm S1 R[-]<SRel,TRel> SourceTerm S2
by (rule indRelST.source)
next
fix T1 T2
assume (T1, T2) € TRel
thus TargetTerm T1 R[-]<SRel,TRel> TargetTerm T2
by (rule indRelST .target)

129

next
fix S
show TargetTerm ([S]) R[-]<SRel,TRel> SourceTerm S
by (rule indRelST.encL)
next
fix S1 52
assume (S1, S2) € SRel
with symmS show SourceTerm S2 R[-|<SRel, TRel> SourceTerm S1
unfolding sym-def
by (simp add: indRelST.source)
next
fix T1 T2
assume (11, T2) € TRel
with symmT show TargetTerm T2 R[-]<SRel,TRel> TargetTerm T1
unfolding sym-def
by (simp add: indRelST.target)
qed
qed
with reflT show indRelSTEQ SRel TRel = (symcl ((indRelLST SRel TRel)=))*
using refl-symm-trans-closure-is-symm-refl-trans-closure[where Rel=indRelLST SRel TRel]
refi-trans-closure-of-indRelST
by simp
qed

lemma (in encoding) symm-trans-closure-of-indRelRSTPO:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes symmS: sym SRel
and symmT: sym TRel
shows indRelSTEQ SRel TRel = (symcl (indRelRSTPO SRel TRel))*
proof auto
fix P Q
assume P ~[-]<SRel,TRel> @
thus (P, Q) € (symcl (indRelRSTPO SRel TRel))*
proof induct
case (encR 9)
show (SourceTerm S, TargetTerm ([S])) € (symcl (indRelRSTPO SRel TRel))™
using indRelRSTPO.encR[of S SRel TRel]
unfolding symcl-def
by auto
next
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € (symcl (indRelRSTPO SRel TRel))™
using indRelRSTPO.encR[of S SRel TRel]
unfolding symcl-def
by auto
next
case (source S1 S2)
assume (51, S2) € SRel
thus (SourceTerm S1, SourceTerm S2) € (symecl (indRelRSTPO SRel TRel))™
using indRelRSTPO.source[of S1 S2 SRel TRel]
unfolding symcl-def
by auto
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (symcl (indRelRSTPO SRel TRel))™
using indRelRSTPO.target[of T1 T2 TRel SRel]
unfolding symcl-def
by auto
next

130

case (trans P Q R)
assume (P, Q) € (symcl (indRelRSTPO SRel TRel))™
and (Q, R) € (symcl (indRelRSTPO SRel TRel))*
thus (P, R) € (symcl (indRelRSTPO SRel TRel))™"
by simp
qged
next
fix P Q
assume (P, Q) € (symcl (indRelRSTPO SRel TRel))™"
thus P ~[-]<SRel,TRel> @
proof induct
fix @
assume (P, Q) € symcl (indRelRSTPO SRel TRel)
thus P ~[-]<SRel,TRel> Q
proof (cases P S[JR<SRel, TRel> @Q, simp-all add: symcl-def)
assume P S[-JR<SRel, TRel> Q
thus P ~[]<SRel, TRel> Q
proof induct
case (encR S)
show SourceTerm S ~[-]<SRel,TRel> TargetTerm ([S])
by (rule indRelSTEQ.encR)
next
case (source S1 52)
assume (51, S2) € SRel
thus SourceTerm S1 ~[-]<SRel,TRel> SourceTerm S2
by (rule indRelSTEQ.source)
next
case (target T1 T2)
assume (11, T2) € TRel
thus TargetTerm T1 ~[-]<SRel,TRel> TargetTerm T2
by (rule indRelSTEQ.target)
next
case (trans P Q R)
assume P ~[-]<SRel,TRel> Q and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
next
assume @ <[JR<SRel,TRel> P
thus P ~[-]<SRel,TRel> Q
proof induct
case (encR S)
show TargetTerm ([S]) ~[-]<SRel,TRel> SourceTerm S
by (rule indRelSTEQ.encL)
next
case (source S1 52)
assume (S1, S2) € SRel
with symmS show SourceTerm S2 ~[-]<SRel,TRel> SourceTerm S1
unfolding sym-def
by (simp add: indRelSTEQ.source)
next
case (target T1 T2)
assume (71, T2) € TRel
with symmT show TargetTerm T2 ~[-]<SRel,TRel> TargetTerm T1
unfolding sym-def
by (simp add: indRelSTEQ.target)
next
case (trans P Q R)
assume R ~[-]<SRel,TRel> @ and @ ~[-]<SRel,TRel> P
thus R ~[-]<SRel,TRel> P
by (rule indRelSTEQ.trans)

131

qed
qed
next
case (step Q R)
assume P ~[-]<SRel,TRel> Q
moreover assume (Q, R) € symcl (indRelRSTPO SRel TRel)
hence @ ~[-]<SRel,TRel> R
proof (auto simp add: symcl-def)
assume @ S[-JR<SRel,TRel> R
thus Q ~[-]<SRel,TRel> R
proof (induct, simp add: indRelSTEQ.encR, simp add: indRelSTEQ.source,
simp add: indRelSTEQ.target)
case (trans P Q) R)
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
next
assume R S[-JR<SRel,TRel> Q
hence R ~[-]<SRel, TRel> Q
proof (induct, simp add: indRelSTEQ.encR, simp add: indRelSTEQ.source,
simp add: indRelSTEQ.target)
case (trans P Q R)
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
with symmS symmT show @ ~[-]<SRel,TRel> R
using indRelSTEQ-symm][of SRel TRel]
unfolding sym-def
by blast
qed
ultimately show P ~[-]<SRel, TRel> R
by (rule indRelSTEQ.trans)
qed
qed

lemma (in encoding) symm-trans-closure-of-indRelLSTPO:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes symm.S: sym SRel
and symmT: sym TRel
shows indRelSTEQ SRel TRel = (symcl (indRelLSTPO SRel TRel))™
proof auto
fix P Q
assume P ~[-]<SRel,TRel> Q
thus (P, Q) € (symcl (indRelLSTPO SRel TRel))*
proof induct
case (encR S)
show (SourceTerm S, TargetTerm ([S])) € (symecl (indRelLSTPO SRel TRel))™
using indRelLSTPO.encL[of S SRel TRel]
unfolding symcl-def
by blast
next
case (encL S)
show (TargetTerm ([S]), SourceTerm S) € (symecl (indRelLSTPO SRel TRel))™
using indRelLSTPO.encL[of S SRel TRel]
unfolding symcl-def
by blast
next
case (source S1 S2)

132

assume (51, S2) € SRel
thus (SourceTerm S1, SourceTerm S2) € (symcl (indRelLSTPO SRel TRel))™
using indRelLSTPO.source[of S1 S2 SRel TRel]
unfolding symcl-def
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € (symcl (indRelLSTPO SRel TRel))™
using indRelLSTPO.target[of T1 T2 TRel SRel]
unfolding symcl-def
by blast
next
case (trans P @ R)
assume (P, Q) € (symcl (indRelLSTPO SRel TRel))*"
and (Q, R) € (symcl (indRelLSTPO SRel TRel))*
thus (P, R) € (symecl (indRelLSTPO SRel TRel))™
by simp
qed
next
fix P Q
assume (P, Q) € (symcl (indRelLSTPO SRel TRel))*
thus P ~[-]<SRel,TRel> Q
proof induct
fix Q
assume (P, Q) € symcl (indRelLSTPO SRel TRel)
thus P ~[-]<SRel,TRel> @
unfolding symcl-def
proof auto
assume P S[-]L<SRel,TRel> Q
thus P ~[-]<SRel,TRel> @
proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
simp add: indRelSTEQ.target)
case (trans P Q R)
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
next
assume @ <[]L<SRel,TRel> P
hence @ ~[-]<SRel,TRel> P
proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
stmp add: indRelSTEQ.target)
case (trans P Q R)
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
with symmsS symmT show P ~[-]<SRel, TRel> Q
using indRelSTEQ-symm[of SRel TRel]
unfolding sym-def
by blast
qed
next
case (step Q R)
assume P ~[-]<SRel,TRel> @
moreover assume (Q, R) € symcl (indRelLSTPO SRel TRel)
hence @ ~[-]<SRel,TRel> R
unfolding symcl-def
proof auto
assume @ S[]L<SRel,TRel> R

133

thus Q ~[-]<SRel,TRel> R
proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
simp add: indRelSTEQ.target)
case (trans P Q R)
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
next
assume R <[]L<SRel, TRel> Q
hence R ~[-]<SRel, TRel> Q
proof (induct, simp add: indRelSTEQ.encL, simp add: indRelSTEQ.source,
stmp add: indRelSTEQ.target)
case (trans P Q R)
assume P ~[-]<SRel,TRel> @ and @ ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed
with symmS symmT show @Q ~[-]<SRel,TRel> R
using indRelSTEQ-symm]|of SRel TRel]
unfolding sym-def
by blast
qed
ultimately show P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qged
qed

If the relations indRelRST, indRelL.ST, or indRelST contain a pair of target terms, then this pair is
also related by the considered target term relation. Similarly a pair of source terms is related by the
considered source term relation.

lemma (in encoding) indRelRST-to-SRel:

fixes SRel :: ('procS x 'procS) set

and TRel :: (‘procT x 'procT) set

and SP SQ :: 'procS
assumes rel: SourceTerm SP R[-JR<SRel, TRel> SourceTerm SQ
shows (SP, SQ) € SRel

using rel
by (simp add: indRelRST .simps)

lemma (in encoding) indRelRST-to-TRel:

fixes SRel :: (‘procS x 'procS) set

and TRel :: (‘procT x 'procT) set

and TP TQ :: 'procT
assumes rel: TargetTerm TP R[-JR<SRel, TRel> TargetTerm TQ
shows (TP, TQ) € TRel

using rel
by (simp add: indRelRST.simps)

lemma (in encoding) indRelLST-to-SRel:

fixes SRel :: ('procS x 'procS) set

and TRel :: ('procT x 'procT) set

and SP SQ :: 'procS
assumes rel: SourceTerm SP R[-]L<SRel, TRel> SourceTerm SQ
shows (SP, 5Q) € SRel

using rel
by (simp add: indRelLST.simps)

lemma (in encoding) indRelLST-to-TRel:
fixes SRel :: ('procS x 'procS) set

134

and TRel :: ("procT x 'procT) set
and TP TQ :: 'procT
assumes rel: TargetTerm TP R[-]L<SRel, TRel> TargetTerm TQ
shows (TP, TQ) € TRel
using rel
by (simp add: indRelLST.simps)

lemma (in encoding) indRelST-to-SRel:

fixes SRel :: (‘procS x 'procS) set

and TRel :: ("procT x 'procT) set

and SP SQ :: 'procS
assumes rel: SourceTerm SP R[-]<SRel, TRel> SourceTerm SQ
shows (SP, SQ) € SRel

using rel
by (simp add: indRelST.simps)

lemma (in encoding) indRelST-to-TRel:

fixes SRel :: ('procS x 'procS) set

and TRel :: (‘procT x 'procT) set

and TP TQ :: 'procT
assumes rel: TargetTerm TP R[-]<SRel,TRel> TargetTerm TQ
shows (TP, TQ) € TRel

using rel
by (simp add: indRelST.simps)

If the relations indRelRSTPO or indRelLSTPO contain a pair of target terms, then this pair is also
related by the transitive closure of the considered target term relation. Similarly a pair of source
terms is related by the transitive closure of the source term relation. A pair of a source and a target
term results from the combination of pairs in the source relation, the target relation, and the encoding
function. Note that, because of the symmetry, no similar condition holds for indRelSTEQ.

lemma (in encoding) indRelRSTPO-to-SRel-and-TRel:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes P <[-JR<SRel,TRel> Q
shows VSP SQ. SP €S P A SQ €S Q — (SP, SQ) € SRel™
and VSP TQ. SP €SP A TQ €T Q —» (3S. (SP, S) € SRel* A ([S], TQ) € TRel*)
and VTP SQ. TP €T P N S5Q €S Q — Fualse
and VTP TQ. TP €T P A TQ €T Q — (TP, TQ) € TRel*
using assms
proof induct
case (encR 5)
show V SP 5Q. SP €S SourceTerm S A SQ €S TargetTerm ([S]) — (SP, SQ) € SRel™
and VTP SQ. TP €T SourceTerm S N SQ €S TargetTerm ([S]) — False
and VTP TQ. TP €T SourceTerm S N TQ €T TargetTerm ([S]) — (TP, TQ) € TRel™
by simp+
have (5, S) € SRel*
by simp
moreover have ([S], [S]) € TRel*
by simp
ultimately show VSP TQ. SP €S SourceTerm S A TQ €T TargetTerm ([S]) —
(35. (SP, S) € SRel* A ([S], TQ) € TRel*)
by blast
next
case (source S1 S2)
assume (51, S2) € SRel
thus VSP 5Q. SP €8 SourceTerm S1 A SQ €S SourceTerm S2 — (SP, SQ) € SRel™
by simp
show V SP TQ. SP €8S SourceTerm S1 N TQ €T SourceTerm S2 —
(35. (SP, S) € SRel* A ([S], TQ) € TRel*)

135

and VTP SQ. TP €T SourceTerm S1 N SQ €85 SourceTerm S2 — Fulse
and VTP TQ. TP €T SourceTerm S1 A TQ €T SourceTerm S2 — (TP, TQ) € TRel™
by simp+
next
case (target T1 T2)
show V SP 5Q. SP €8S TargetTerm T1 A SQ €8S TargetTerm T2 — (SP, SQ) € SRel™*
and VSP TQ. SP €S TargetTerm T1 N TQ €T TargetTerm T2
— (38. (SP, S) € SRel* A ([S], TQ) € TRel*)
and VTP SQ. TP €T TargetTerm T1 AN SQ €8 TargetTerm T2 — False
by simp+
assume (71, T2) € TRel
thus V TP TQ. TP €T TargetTerm T1 N TQ €T TargetTerm T2 —s (TP, TQ) € TRel™
by simp
next
case (trans P Q R)
assume A1: VSP SQ. SP €SP A SQ €S Q — (SP, SQ) € SRel™
and A2: VSP TQ. SP €SP ANTQeT @ — (35. (SP, S) € SRel* A ([S], TQ) € TRel*)
and A3: VTP SQ. TP €T P N SQ €S Q — False
and A4: VTP TQ. TP T PANTQ €T Q — (TP, TQ) € TRel™*
and A5:VSQ SR. SQ €S Q A SR €S R — (5Q, SR) € SRel™
and A6:VSQ TR. SQ €S QAN TR TR — (35.(5Q, S) € SRel* A ([S], TR) € TRel*)
and A7:VTQ SR. TQ €T Q@ N SR €S R — False
and A8:VTQ TR. TQ €T Q A TR €T R —» (TQ, TR) € TRel*
show V SP SR. SP €S P A SR €S R — (SP, SR) € SRel™
proof clarify
fix SP SR
assume A9: SP €S P and A10: SR €S R
show (SP, SR) € SRel*
proof (cases Q)
case (SourceTerm SQ)
assume Al1: SQ €5 Q
with A1 A9 have (SP, SQ) € SRel*
by simp
moreover from A5 A10 A11 have (SQ, SR) € SRel*t
by simp
ultimately show (SP, SR) € SRel™
by simp
next
case (TargetTerm TQ)
assume TQ €T Q
with A7 A10 show (SP, SR) € SRel™
by blast
qed
qed
show VSP TR. SP €S PN TR TR
— (3S. (SP, S) € SRel* A ([S], TR) € TRel*)
proof clarify
fix SP TR
assume A9: SP €S P and A10: TR €T R
show 35. (SP, S) € SRel* A ([S], TR) € TRel*
proof (cases Q)
case (SourceTerm SQ)
assume Al11: SQ €5 Q
with A6 A10 obtain S where A12: (SQ, S) € SRel*
and A13: ([S], TR) € TRel*
by blast
from A1 A9 A11 have (SP, SQ) € SRel*
by simp
from this A12 have (SP, S) € SRel*
by simp
with A13 show 35. (SP, S) € SRel* A ([S], TR) € TRel*

136

by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A2 A9 obtain S where A12: (SP, S) € SRel*
and A13: ([S], TQ) € TRel*
by blast
from A8 A10 A11 have (TQ, TR) € TRel*
by simp
with A13 have ([S], TR) € TRel*
by simp
with A12 show 35. (SP, S) € SRel* A ([S], TR) € TRel*
by blast
qed
qged
show VTP SR. TP €T P AN SR €S R — Fulse
proof clarify
fix TP SR
assume A9: TP €T P and A10: SR €S R
show Fulse
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A% A9 show Fulse
by blast
next
case (TargetTerm TQ)
assume 7Q €T @
with A7 A10 show Fulse
by blast
ged
qged
show VTP TR. TP €T P AN TR €T R — (TP, TR) € TRel™
proof clarify
fix TP TR
assume A9: TP €T P and A10: TR €T R
show (TP, TR) € TRel™
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A8 A9 show (TP, TR) € TRel™
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A4 A9 have (TP, TQ) € TRel"
by simp
moreover from A8 A10 A11 have (TQ, TR) € TRel™
by simp
ultimately show (TP, TR) € TRel*
by simp
qed
qged
qed

lemma (in encoding) indRelLSTPO-to-SRel-and-TRel:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes P <[-]L<SRel, TRel> Q
shows VSP SQ. SP €S P A SQ €S Q — (SP, SQ) € SRel™

137

and VSP TQ. SP €SP AN TQ €T Q — False
and VTP SQ. TP €T P AN SQ €S Q — (3S. (TP, [S]) € TRel* A (S, SQ) € SRel*)
and VTP TQ. TP €T PANTQE€eT Q — (TP, TQ) € TRel™
using assms
proof induct
case (encL S)
show V SP 5Q. SP €S TargetTerm ([S]) A SQ €S SourceTerm S — (SP, SQ) € SRel™
and VY SP TQ. SP €8 TargetTerm ([S]) A TQ €T SourceTerm S — False
and VTP TQ. TP €T TargetTerm ([S]) A TQ €T SourceTerm S — (TP, TQ) € TRel™
by simp+
have ([S], [S]) € TRel*
by simp
moreover have (5, S) € SRel*
by simp
ultimately show V TP SQ. TP €T TargetTerm ([S]) A SQ €S SourceTerm S —
(3S. (TP, [S]) € TRel* A (S, SQ) € SRel*)
by blast
next
case (source S1 52)
assume (51, S2) € SRel
thus V SP SQ. SP €8 SourceTerm S1 A SQ €8 SourceTerm S2 — (SP, SQ) € SRel™
by simp
show V SP TQ. SP €S SourceTerm S1 N TQ €T SourceTerm S2 — False
and VTP SQ. TP €T SourceTerm S1 N SQ €S SourceTerm S2
— (3S. (TP, [S]) € TRel* A (S, SQ) € SRel*)
and VTP TQ. TP €T SourceTerm S1 A TQ €T SourceTerm S2 — (TP, TQ) € TRel™
by simp+
next
case (target T1 T2)
show V SP 5Q. SP €S TargetTerm T1 A SQ €S TargetTerm T2 — (SP, SQ) € SRel™
and VSP TQ. SP €8 TargetTerm T1 N TQ €T TargetTerm T2 — False
and VTP SQ. TP €T TargetTerm T1 N SQ €S TargetTerm T2
— (38. (TP, [S]) € TRel* A (S, SQ) € SRel*)
by simp+
assume (11, T2) € TRel
thus VTP TQ. TP €T TargetTerm T1 N TQ €T TargetTerm T2 — (TP, TQ) € TRel*
by simp
next
case (trans P Q R)
assume A1: VSP SQ. SP €SP A SQ €S Q — (SP, SQ) € SRel™
and A2: VSP TQ. SP €SP AN TQ €T Q — False
and A3: VTP SQ. TP €T P AN SQ €5 Q
— (3S. (TP, [S]) € TRel* A (S, SQ) € SRel*)
and A4: VTP TQ. TP €T PANTQ €T Q — (TP, TQ) € TRel*
and A5:VSQ SR. SQ €S Q A SR €S R — (5Q, SR) € SRel™
and A6:VSQ TR. SQ €S Q N TR €T R — Fulse

and A7:VTQ SR. TQ €T Q A SR €S R — (3. (TQ, [S]) € TRel* A (S, SR) € SRel*)

and A8: VTQ TR. TQ €T Q A TR €T R — (TQ, TR) € TRel*
show VSP SR. SP €S P A SR €S R — (SP, SR) € SRel™
proof clarify
fix SP SR
assume A9: SP €S P and A10: SR €S R
show (SP, SR) € SRel*
proof (cases Q)
case (SourceTerm SQ)
assume A11: SQ €S Q
with A1 A9 have (SP, SQ) € SRel*
by simp
moreover from A5 A10 A11 have (5Q, SR) € SRel™
by simp
ultimately show (SP, SR) € SRel™

138

by simp
next
case (TargetTerm TQ)
assume TQ €T @
with 42 A9 show (SP, SR) € SRel™
by blast
qed
qed
show VSP TR. SP €S P AN TR €T R — Fulse
proof clarify
fix SP TR
assume A9: SP €S P and A10: TR €T R
show Fulse
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 @
with A6 A10 show Fulse
by blast
next
case (TargetTerm TQ)
assume 7Q €T @
with A2 A9 show Fulse
by blast
qed
qed
show VTP SR. TP €T P AN SR €S R — (35. (TP, [S]) € TRel* A (S, SR) € SRel*)
proof clarify
fix TP SR
assume A9: TP €T P and A10: SR €S R
show 3S. (TP, [S]) € TRel* A (S, SR) € SRel*
proof (cases Q)
case (SourceTerm SQ)
assume Al1: SQ €S Q
with A% A9 obtain S where A12: (TP, [S]) € TRel* and A13: (S, SQ) € SRel*
by blast
from A5 A10 A11 have (5Q, SR) € SRel*
by simp
with A13 have (S, SR) € SRel*
by simp
with A12 show 3S. (TP, [S]) € TRel* A (S, SR) € SRel*
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A7 A10 obtain S where A12: (TQ, [S]) € TRel* and A13: (S, SR) € SRel*
by blast
from A/ A9 A1l have (TP, TQ) € TRel*
by simp
from this A12 have (TP, [S]) € TRel*
by simp
with A13 show 3S. (TP, [S]) € TRel* A (S, SR) € SRel*
by blast
qed
qed
show VTP TR. TP €T P AN TR €T R — (TP, TR) € TRel*™
proof clarify
fix TP TR
assume A9: TP €T P and A10: TR €TR
show (TP, TR) € TRel™
proof (cases Q)
case (SourceTerm SQ)

139

assume SQ €5 @
with A6 A10 show (TP, TR) € TRel™
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with 44 A9 have (TP, TQ) € TRel™
by simp
moreover from A8 A10 A11 have (TQ, TR) € TRel*
by simp
ultimately show (TP, TR) € TRel™
by simp
qed
qed
qed

If indRelRSTPO, indRelLSTPO, or indRelSTPO preserves barbs then so do the corresponding source
term and target term relations.

lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-preserves-barbs:
fixes SRel :: ('procS x 'procS) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes preservation: rel-preserves-barbs Rel (STCalWB SWB TWB)
and sourcelnRel: ¥V S1 52. (S1, S2) € SRel — (SourceTerm S1, SourceTerm S2) € Rel
shows rel-preserves-barbs SRel SWB
proof clarify
fix SP SQ a
assume (SP, SQ) € SRel
with sourceInRel have (SourceTerm SP, SourceTerm SQ) € Rel
by blast
moreover assume SPl<SWB>aq
hence SourceTerm SP|.a
by simp
ultimately have SourceTerm SQ|.a
using preservation preservation-of-barbs-in-barbed-encodinglwhere Rel=Rel]
by blast
thus SQl<SWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-preserve-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes preservation: rel-preserves-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-preserves-barbs SRel SWB
and rel-preserves-barbs TRel TWB
proof —
show rel-preserves-barbs SRel SWB
using preservation rel-with-source-impl-SRel-preserves-barbs|where
Rel=indRelRSTPO SRel TRel and SRel=SRel]
by (simp add: indRelRSTPO.source)
next
show rel-preserves-barbs TRel TWB
using preservation rel-with-target-impl- TRel-preserves-barbs[where
Rel=indRelRSTPO SRel TRel and TRel=TRel]
by (simp add: indRelRSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and- TRel-preserve-barbs:

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set

140

assumes preservation: rel-preserves-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-preserves-barbs SRel SWB
and rel-preserves-barbs TRel TWB
proof —
show rel-preserves-barbs SRel SWB
using preservation rel-with-source-impl-SRel-preserves-barbs[where
Rel=indRelLSTPO SRel TRel and SRel=SRel]
by (simp add: indRelLSTPO.source)
next
show rel-preserves-barbs TRel TWB
using preservation rel-with-target-impl-TRel-preserves-barbs[where
Rel=indRelLSTPO SRel TRel and TRel=TRel]
by (simp add: indRelLSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and-TRel-preserve-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes preservation: rel-preserves-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
shows rel-preserves-barbs SRel SWB
and rel-preserves-barbs TRel TWB
proof —
show rel-preserves-barbs SRel SWB
using preservation rel-with-source-impl-SRel-preserves-barbs|where
Rel=indRelSTEQ SRel TRel and SRel=SRel]
by (simp add: indRelSTEQ.source)
next
show rel-preserves-barbs TRel TWB
using preservation rel-with-target-impl- TRel-preserves-barbs[where
Rel=indRelSTEQ SRel TRel and TRel=TRel|
by (simp add: indRelSTEQ.target)
qed

lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-weakly-preserves-barbs:
fixes SRel :: ('procS x 'procS) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes preservation: rel-weakly-preserves-barbs Rel (STCalWB SWB TWB)
and sourcelnRel: ¥V S1 52. (S1, S2) € SRel — (SourceTerm S1, SourceTerm S2) € Rel
shows rel-weakly-preserves-barbs SRel SWB
proof clarify
fix SP SQ a SP’
assume (SP, SQ) € SRel
with sourceInRel have (SourceTerm SP, SourceTerm SQ) € Rel
by blast
moreover assume SP —(Calculus SWB)+ SP’ and SP'|<SWB>a
hence SourceTerm SP|.a
by blast
ultimately have SourceTerm SQ|.a
using preservation weak-preservation-of-barbs-in-barbed-encoding[where Rel=Rel]
by blast
thus SQU<SWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and- T Rel-weakly-preserve-barbs:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes preservation: rel-weakly-preserves-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-preserves-barbs SRel SWB
and rel-weakly-preserves-barbs TRel TWB
proof —

141

show rel-weakly-preserves-barbs SRel SWB
using preservation rel-with-source-impl-SRel-weakly-preserves-barbs[where
Rel=indRelRSTPO SRel TRel and SRel=SRel]
by (simp add: indRelRSTPO.source)
next
show rel-weakly-preserves-barbs TRel TWB
using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
Rel=indRelRSTPO SRel TRel and TRel=TRel|
by (simp add: indRelRSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelLSTP O-impl-SRel-and- T Rel-weakly-preserve-barbs:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes preservation: rel-weakly-preserves-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-preserves-barbs SRel SWB
and rel-weakly-preserves-barbs TRel TWB
proof —
show rel-weakly-preserves-barbs SRel SWB
using preservation rel-with-source-impl-SRel-weakly-preserves-barbs[where
Rel=indRelLSTPO SRel TRel and SRel=SRel]
by (simp add: indRelLSTPO.source)
next
show rel-weakly-preserves-barbs TRel TWB
using preservation rel-with-target-impl- TRel-weakly-preserves-barbs[where
Rel=indRelLSTPO SRel TRel and TRel=TRel]
by (simp add: indRelLSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and- T Rel-weakly-preserve-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
assumes preservation: rel-weakly-preserves-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-preserves-barbs SRel SWB
and rel-weakly-preserves-barbs TRel TWDB
proof —
show rel-weakly-preserves-barbs SRel SWB
using preservation rel-with-source-impl-SRel-weakly-preserves-barbs[where
Rel=indRelSTEQ SRel TRel and SRel=SRel|
by (simp add: indRelSTEQ.source)
next
show rel-weakly-preserves-barbs TRel TWB
using preservation rel-with-target-impl-TRel-weakly-preserves-barbs[where
Rel=indRelSTEQ SRel TRel and TRel=TRel]
by (simp add: indRelSTEQ.target)
qed

If indRelRSTPO, indRelLSTPO, or indRelSTPO reflects barbs then so do the corresponding source

term and target term relations.

lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-reflects-barbs:
fixes SRel :: ("procS x 'procS) set
and Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes reflection: rel-reflects-barbs Rel (STCalWB SWB TWB)
and sourcelnRel: ¥V S1 52. (S1, S2) € SRel — (SourceTerm S1, SourceTerm S2) € Rel
shows rel-reflects-barbs SRel SWB
proof clarify
fix SP SQ a
assume (SP, SQ) € SRel
with sourceInRel have (SourceTerm SP, SourceTerm SQ) € Rel
by blast

142

moreover assume SQ|<SWB>a
hence SourceTerm SQ|.a
by simp
ultimately have SourceTerm SP|.a
using reflection reflection-of-barbs-in-barbed-encoding[where Rel=Rel]
by blast
thus SP|<SWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and- TRel-reflect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflection: rel-reflects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-reflects-barbs SRel SWB
and rel-reflects-barbs TRel TWB
proof —
show rel-reflects-barbs SRel SWB
using reflection rel-with-source-impl-SRel-reflects-barbs[where
Rel=indRelRSTPO SRel TRel and SRel=SRel]
by (simp add: indRelRSTPO.source)
next
show rel-reflects-barbs TRel TWB
using reflection rel-with-target-impl-TRel-reflects-barbs[where
Rel=indRelRSTPO SRel TRel and TRel=TRel]
by (simp add: indRelRSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-reflect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflection: rel-reflects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-reflects-barbs SRel SWB
and rel-reflects-barbs TRel TWB
proof —
show rel-reflects-barbs SRel SWB
using reflection rel-with-source-impl-SRel-reflects-barbs[where
Rel=indRelLSTPO SRel TRel and SRel=SRel]
by (simp add: indRelLSTPO.source)
next
show rel-reflects-barbs TRel TWB
using reflection rel-with-target-impl-TRel-reflects-barbs|where
Rel=indRelLSTPO SRel TRel and TRel=TRel]
by (simp add: indRelLSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and- TRel-reflect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflection: rel-reflects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
shows rel-reflects-barbs SRel SWB
and rel-reflects-barbs TRel TWB
proof —
show rel-reflects-barbs SRel SWB
using reflection rel-with-source-impl-SRel-reflects-barbs[where
Rel=indRelSTEQ SRel TRel and SRel=SRel]
by (simp add: indRelSTEQ.source)
next
show rel-reflects-barbs TRel TWB
using reflection rel-with-target-impl- TRel-reflects-barbs|where
Rel=indRelSTEQ SRel TRel and TRel=TRel]

143

by (simp add: indRelSTEQ.target)
qed

lemma (in encoding-wrt-barbs) rel-with-source-impl-SRel-weakly-reflects-barbs:
fixes SRel :: ("procS x 'procS) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes reflection: rel-weakly-reflects-barbs Rel (STCalWB SWB TWB)
and sourcelnRel: V51 52. (S1, S2) € SRel — (SourceTerm S1, SourceTerm S2) € Rel
shows rel-weakly-reflects-barbs SRel SWB
proof clarify
fix SP SQ a SQ’
assume (SP, SQ) € SRel
with sourceInRel have (SourceTerm SP, SourceTerm SQ) € Rel
by blast
moreover assume SQ ——(Calculus SWB)* SQ' and SQ'|<SWB>a
hence SourceTerm SQI.a
by blast
ultimately have SourceTerm SPl}.a
using reflection weak-reflection-of-barbs-in-barbed-encoding[where Rel=Rel)
by blast
thus SPJ<SWB>a
by simp
qed

lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and- TRel-weakly-reflect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflection: rel-weakly-reflects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-reflects-barbs SRel SWB
and rel-weakly-reflects-barbs TRel TWB
proof —
show rel-weakly-reflects-barbs SRel SWB
using reflection rel-with-source-impl-SRel-weakly-reflects-barbs[where
Rel=indRelRSTPO SRel TRel and SRel=SRel]
by (simp add: indRelRSTPO.source)
next
show rel-weakly-reflects-barbs TRel TWB
using reflection rel-with-target-impl- T Rel-weakly-reflects-barbs[where
Rel=indRelRSTPO SRel TRel and TRel=TRel]
by (simp add: indRelRSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and- T Rel-weakly-reflect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflection: rel-weakly-reflects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-reflects-barbs SRel SWB
and rel-weakly-reflects-barbs TRel TWB
proof —
show rel-weakly-reflects-barbs SRel SWB
using reflection rel-with-source-impl-SRel-weakly-reflects-barbs|where
Rel=indRelLSTPO SRel TRel and SRel=SRel]
by (simp add: indRelLSTPO.source)
next
show rel-weakly-reflects-barbs TRel TWB
using reflection rel-with-target-impl- TRel-weakly-reflects-barbs[where
Rel=indRelLSTPO SRel TRel and TRel=TRel]
by (simp add: indRelLSTPO.target)
qed

lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and-TRel-weakly-reflect-barbs:

144

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes reflection: rel-weakly-reflects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-reflects-barbs SRel SWB
and rel-weakly-reflects-barbs TRel TWB
proof —
show rel-weakly-reflects-barbs SRel SWB
using reflection rel-with-source-impl-SRel-weakly-reflects-barbs|where
Rel=indRelSTEQ SRel TRel and SRel=SRel]
by (simp add: indRelSTEQ.source)
next
show rel-weakly-reflects-barbs TRel TWB
using reflection rel-with-target-impl- TRel-weakly-reflects-barbs[where
Rel=indRelSTEQ SRel TRel and TRel=TRel|
by (simp add: indRelSTEQ.target)
qed

If indRelRSTPO, indRelLSTPO, or indRelSTPO respects barbs then so do the corresponding source
term and target term relations.

lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and-TRel-respect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes respection: rel-respects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-respects-barbs SRel SWB
and rel-respects-barbs TRel TWB
proof —
show rel-respects-barbs SRel SWB
using respection
indRelRSTPO-impl-SRel-and- TRel-preserve-barbs(1)[where SRel=SRel and TRel=TRel]
indRelRSTPO-impl-SRel-and- TRel-reflect-barbs(1)[where SRel=SRel and TRel=TRel|
by blast
next
show rel-respects-barbs TRel TWB
using respection
indRelRSTPO-impl-SRel-and-TRel-preserve-barbs(2)where SRel=SRel and TRel=TRel)
indRelRSTPO-impl-SRel-and- TRel-reflect-barbs(2)[where SRel=SRel and TRel=TRel|
by blast
qed

lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-respect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes respection: rel-respects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-respects-barbs SRel SWB
and rel-respects-barbs TRel TWB
proof —
show rel-respects-barbs SRel SWB
using respection
indRelLSTPO-impl-SRel-and- TRel-preserve-barbs(1)[where SRel=SRel and TRel=TRel]
indRelLSTPO-impl-SRel-and- TRel-reflect-barbs(1)[where SRel=SRel and TRel=TRel]
by blast
next
show rel-respects-barbs TRel TWB
using respection
indRelLSTPO-impl-SRel-and- TRel-preserve-barbs(2)[where SRel=SRel and TRel=TRel]
indRelLSTPO-impl-SRel-and-TRel-reflect-barbs(2)where SRel=SRel and TRel=TRel]
by blast
qed

lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and- TRel-respect-barbs:

145

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes respection: rel-respects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
shows rel-respects-barbs SRel SWB
and rel-respects-barbs TRel TWB
proof —
show rel-respects-barbs SRel SWB
using respection
indRelSTEQ-impl-SRel-and- TRel-preserve-barbs(1)[where SRel=SRel and TRel=TRel]
indRelSTEQ-impl-SRel-and-TRel-reflect-barbs(1)[where SRel=SRel and TRel=TRel]
by blast
next
show rel-respects-barbs TRel TWB
using respection
indRelSTEQ-impl-SRel-and- TRel-preserve-barbs(2)[where SRel=SRel and TRel=TRel]
indRelSTEQ-impl-SRel-and-TRel-reflect-barbs(2)[where SRel=SRel and TRel=TRel]
by blast
qed

lemma (in encoding-wrt-barbs) indRelRSTPO-impl-SRel-and- TRel-weakly-respect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes respection: rel-weakly-respects-barbs (indRelRSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-respects-barbs SRel SWB
and rel-weakly-respects-barbs TRel TWB
proof —
show rel-weakly-respects-barbs SRel SWB
using respection indRelRSTPO-impl-SRel-and- TRel-weakly-preserve-barbs(1)[where SRel=SRel
and TRel=TRel]
indRelRSTPO-impl-SRel-and- T Rel-weakly-reflect-barbs(1)[where SRel=SRel
and TRel=TRel]
by blast
next
show rel-weakly-respects-barbs TRel TWB
using respection indRelRSTPO-impl-SRel-and- TRel-weakly-preserve-barbs(2)[where SRel=SRel
and TRel=TRel]
indRelRSTPO-impl-SRel-and- TRel-weakly-reflect-barbs(2)[where SRel=SRel
and TRel=TRel]
by blast
qed

lemma (in encoding-wrt-barbs) indRelLSTPO-impl-SRel-and-TRel-weakly-respect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes respection: rel-weakly-respects-barbs (indRelLSTPO SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-respects-barbs SRel SWB
and rel-weakly-respects-barbs TRel TWB
proof —
show rel-weakly-respects-barbs SRel SWB
using respection indRelLSTPO-impl-SRel-and-TRel-weakly-preserve-barbs(1)[where SRel=SRel
and TRel=TRel]
indRelLSTPO-impl-SRel-and- TRel-weakly-reflect-barbs(1)[where SRel=SRel
and TRel=TRel]
by blast
next
show rel-weakly-respects-barbs TRel TWB
using respection indRelLSTPO-impl-SRel-and- T Rel-weakly-preserve-barbs(2)[where SRel=SRel
and TRel=TRel]
indRelLS TP O-impl-SRel-and- TRel-weakly-reflect-barbs(2)[where SRel=SRel
and TRel=TRel]
by blast

146

qed

lemma (in encoding-wrt-barbs) indRelSTEQ-impl-SRel-and- T Rel-weakly-respect-barbs:
fixes SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
assumes respection: rel-weakly-respects-barbs (indRelSTEQ SRel TRel) (STCalWB SWB TWB)
shows rel-weakly-respects-barbs SRel SWB
and rel-weakly-respects-barbs TRel TWB
proof —
show rel-weakly-respects-barbs SRel SWB
using respection indRelSTEQ-impl-SRel-and-TRel-weakly-preserve-barbs(1)[where SRel=SRel
and TRel=TRel]
indRelS TEQ-impl-SRel-and- TRel-weakly-reflect-barbs(1)[where SRel=SRel
and TRel=TRel]
by blast
next
show rel-weakly-respects-barbs TRel TWB
using respection indRelSTEQ-impl-SRel-and-TRel-weakly-preserve-barbs(2)[where SRel=SRel
and TRel=TRel]
indRelSTEQ-impl-SRel-and- TRel-weakly-reflect-barbs(2)[where SRel=SRel
and TRel=TRel]
by blast
qed

If TRel is reflexive then ind relRTPO is a subrelation of indRelTEQ. If SRel is reflexive then indRel-
RTPO is a subrelation of indRelRTPO. Moreover, indRelRSTPO is a subrelation of indRelSTEQ.

lemma (in encoding) indRelRTPO-to-indRelTEQ:
fixes TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes rel: P S[JRT<TRel> Q
and refiT: refl TRel
shows P ~[-]T<TRel> @
using rel
proof induct
case (encR S)
show SourceTerm S ~[-]T<TRel> TargetTerm ([S])
by (rule indRelTEQ.encR)
next
case (source S)
from refiT show SourceTerm S ~[-]T<TRel> SourceTerm S
using indRelTEQ-refl[of TRel)
unfolding refi-on-def
by simp
next
case (target T1 T2)
assume (11, T2) € TRel
thus TargetTerm T1 ~[]T<TRel> TargetTerm T2
by (rule indRelTEQ.target)
next
case (trans TP TQ TR)
assume TP ~[]T<TRel> TQ and TQ ~[]T<TRel> TR
thus TP ~[]T<TRel> TR
by (rule indRelTEQ.trans)
qed

lemma (in encoding) indRelRTPO-to-indRelRSTPO:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes rel: P S[JRT<TRel> @

147

and reflS: refl SRel
shows P <[-JR<SRel,TRel> Q
using rel
proof induct
case (encR 5)
show SourceTerm S S[-JR<SRel, TRel> TargetTerm ([S])
by (rule indRelRSTPO.encR)
next
case (source S)
from reflS show SourceTerm S <S[-JR<SRel,TRel> SourceTerm S
unfolding refi-on-def
by (simp add: indRelRSTPO.source)
next
case (target T1 T2)
assume (71, T2) € TRel
thus TargetTerm T1 S[JR<SRel,TRel> TargetTerm T2
by (rule indRelRSTPO.target)
next
case (trans P Q R)
assume P S[-JR<SRel,TRel> Q and Q S[JR<SRel,TRel> R
thus P S[-]JR<SRel, TRel> R
by (rule indRelRSTPO.trans)
qed

lemma (in encoding) indRelRSTPO-to-indRelSTEQ:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and P @ :: ('procS, 'procT) Proc
assumes rel: P S[JR<SRel, TRel> Q
shows P ~[-]<SRel,TRel> Q
using rel
proof induct
case (encR S)
show SourceTerm S ~[-]<SRel, TRel> TargetTerm ([S])
by (rule indRelSTEQ.encR)
next
case (source S1 S2)
assume (S1, S2) € SRel
thus SourceTerm S1 ~[-]<SRel, TRel> SourceTerm S2
by (rule indRelSTEQ.source)
next
case (target T1 T2)
assume (71, T2) € TRel
thus TargetTerm T1 ~[-]<SRel,TRel> TargetTerm T2
by (rule indRelSTEQ.target)
next
case (trans P Q R)
assume P ~[-]<SRel,TRel> @ and Q ~[-]<SRel,TRel> R
thus P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
qed

If indRelRTPO is a bisimulation and SRel is a reflexive bisimulation then also indRelRSTPO is a
bisimulation.

lemma (in encoding) indRelRTPO-weak-reduction-bisimulation-impl-indRelRSTPO-bisimulation:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes bisimT: weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
and bisimS: weak-reduction-bisimulation SRel Source
and reflS: refl SRel

148

shows weak-reduction-bisimulation (indRelRSTPO SRel TRel) (STCal Source Target)
proof auto
fix PQP
assume P <[JR<SRel,TRel> Q and P ——(STCal Source Target)x P’
thus 3 Q. Q —(STCal Source Target)x Q' N P" S[JR<SRel, TRel> Q'
proof (induct arbitrary: P’)
case (encR S)
have SourceTerm S <[JRT<TRel> TargetTerm ([S])
by (rule indRelRTPO.encR)
moreover assume SourceTerm S —(STCal Source Target)* P’
ultimately obtain Q' where A1: TargetTerm ([S]) — (ST Cal Source Target)x Q'
and A2: P/ <[JRT<TRel> Q'
using bisimT
by blast
from reflS A2 have P’ <[JR<SRel, TRel> Q'
by (simp add: indRelRTPO-to-indRelRSTPO)
with A1 show 3 Q' TargetTerm ([S]) —(STCal Source Target)x Q' N P' <[-JR<SRel, TRel> Q'
by blast
next
case (source S1 S2)
assume SourceTerm S1 ——(STCal Source Target)x P’
from this obtain S1’ where B1: S1’ €S P’ and B2: S1 —— Sourcex S1'
by (auto simp add: STCal-steps(1))
assume (51, S2) € SRel
with B2 bisimS obtain 52’ where B3: S2 —Sourcex S2’ and B4: (S1', 52) € SRel
by blast
from B3 have SourceTerm S2 —(STCal Source Target)x (SourceTerm S27)
by (simp add: STCal-steps(1))
moreover from Bl B4 have P’ <[JR<SRel,TRel> SourceTerm S2’
by (simp add: indRelRSTPO.source)
ultimately show 3 Q’. SourceTerm S2 ——(STCal Source Target)x Q' N P’ S[JR<SRel, TRel> Q'
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
hence TargetTerm T1 S[JRT<TRel> TargetTerm T2
by (rule indRelRTPO.target)
moreover assume TargetTerm T1 ——(STCal Source Target)x P’
ultimately obtain Q' where C1: TargetTerm T2 ——(STCal Source Target)x Q'
and C2: P’ <[JRT<TRel> Q'
using bisimT
by blast
from reflS C2 have P’ <[JR<SRel,TRel> Q'
by (simp add: indRelRTPO-to-indRelRSTPO)
with C1 show 3 Q'. TargetTerm T2 —(STCal Source Target)x Q' N P’ S[JR<SRel, TRel> Q'
by blast
next
case (trans P Q R)
assume P ——(STCal Source Target)x P’
and AP'. P —(STCal Source Target)x P’
= 3 Q. Q —(STCal Source Target)x Q' N P’ <[JR<SRel,TRel> Q'
from this obtain Q' where DI: Q ——(STCal Source Target)x Q' and D2: P’ <[-JR<SRel, TRel> Q'
by blast
assume A\Q’. Q ——(STCal Source Target)x Q'
= 3R’ R —(STCal Source Target)x R’ A Q' <[-JR<SRel,TRel> R’
with D1 obtain R’ where D3: R —(STCal Source Target)x R’ and D/: Q' <[JR<SRel,TRel> R’
by blast
from D2 Dj have P’ <[-JR<SRel,TRel> R’
by (rule indRelRSTPO.trans)
with D3 show 3 R’. R ——(STCal Source Target)x R’ AN P’ <[JR<SRel, TRel> R’
by blast

149

qged
next
fix PQ Q'
assume P <[JR<SRel,TRel> Q and Q ——(STCal Source Target)x Q'
thus 3 P’. P —(STCal Source Target)x P’ A P’ S[-JR<SRel, TRel> Q'
proof (induct arbitrary: Q)
case (encR S)
have SourceTerm S <[JRT<TRel> TargetTerm ([S])
by (rule indRelRTPO.encR)
moreover assume TargetTerm ([S]) —(STCal Source Target)x Q'
ultimately obtain P’ where E1: SourceTerm S ——(STCal Source Target)* P’
and E2: P’ S[[JRT<TRel> Q'
using bisimT
by blast
from reflS E2 have P’ <[-JR<SRel, TRel> Q'
by (simp add: indRelRTPO-to-indRelRSTPO)
with E1 show 3 P’. SourceTerm S —(STCal Source Target)x P’ A P’ S[-JR<SRel, TRel> Q'
by blast
next
case (source S1 S2)
assume SourceTerm S2 ——(STCal Source Target)x Q'
from this obtain S2’ where F1: 52’ €S Q' and F2: S2 —— Sourcex S2’
by (auto simp add: STCal-steps(1))
assume (51, S2) € SRel
with F2 bisimS obtain S1’ where F3: S1 —Sourcex S1’ and F/: (517, S2') € SRel
by blast
from F'3 have SourceTerm S1 ——(STCal Source Target)x (SourceTerm S1”)
by (simp add: STCal-steps(1))
moreover from FI Fj have SourceTerm S1' S[-JR<SRel, TRel> Q'
by (simp add: indRelRSTPO.source)
ultimately show 3 P'. SourceTerm S1 ——(STCal Source Target)x P' N P' S[-JR<SRel, TRel> Q'
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
hence TargetTerm T1 S[JRT<TRel> TargetTerm T2
by (rule indRelRTPO.target)
moreover assume TargetTerm T2 —(STCal Source Target)x Q'
ultimately obtain P’ where GI: TargetTerm T1 ——(STCal Source Target)x P’
and G2: P’ <[JRT<TRel> Q'
using bisimT
by blast
from reflS G2 have P’ <[-JR<SRel,TRel> Q'
by (simp add: indRelRTPO-to-indRelRSTPO)
with GI show 3 P’. TargetTerm T1 ——(STCal Source Target)x P’ A P’ S[-JR<SRel, TRel> Q'
by blast
next
case (trans P Q@ R R)
assume R ——(STCal Source Target)x R’
and AR’ R +——(STCal Source Target)x R’
= 3 Q. Q —(STCal Source Target)x Q' N Q' <[JR<SRel,TRel> R’
from this obtain Q' where HI: Q ——(STCal Source Target)x Q' and H2: Q' S[-JR<SRel,TRel> R’
by blast
assume A\Q’. Q ——(STCal Source Target)x Q'
= 3P’ P ——(STCal Source Target)x P' N P’ <[-JR<SRel,TRel> Q'
with HI obtain P’ where H3: P —(STCal Source Target)x P’ and H4: P’ <[JR<SRel,TRel> Q'
by blast
from Hj H2 have P’ <[-JR<SRel,TRel> R’
by (rule indRelRSTPO.trans)
with H3 show 3 P". P ——(STCal Source Target)x P’ A P’ <[-JR<SRel,TRel> R’
by blast

150

qged
qed

end

theory SuccessSensitiveness
imports SourceTargetRelation

begin

6 Success Sensitiveness and Barbs

To compare the abstract behavior of two terms, often some notion of success or successful termination
is used. Daniele Gorla assumes a constant process (similar to the empty process) that represents
successful termination in order to compare the behavior of source terms with their literal translations.
Then an encoding is success sensitive if, for all source terms S, S reaches success iff the translation of
S reaches success. Successful termination can be considered as some special kind of barb. Accordingly
we generalize successful termination to the respection of an arbitrary subset of barbs. An encoding
respects a set of barbs if, for every source term S and all considered barbs a, S reaches a iff the

translation of S reaches a.

abbreviation (in encoding-wrt-barbs) enc-weakly-preserves-barb-set :: 'barbs set = bool where
enc-weakly-preserves-barb-set Barbs = enc-preserves-binary-pred (AP a. a € Barbs A Pll.a)

abbreviation (in encoding-wrt-barbs) enc-weakly-preserves-barbs :: bool where
enc-weakly-preserves-barbs = enc-preserves-binary-pred (AP a. Pl.a)

lemma (in encoding-wrt-barbs) enc-weakly-preserves-barbs-and-barb-set:
shows enc-weakly-preserves-barbs = (V¥ Barbs. enc-weakly-preserves-barb-set Barbs)
by blast

abbreviation (in encoding-wrt-barbs) enc-weakly-reflects-barb-set :: 'barbs set = bool where
enc-weakly-reflects-barb-set Barbs = enc-reflects-binary-pred (AP a. a € Barbs A Pll.a)

abbreviation (in encoding-wrt-barbs) enc-weakly-reflects-barbs :: bool where
enc-weakly-reflects-barbs = enc-reflects-binary-pred (AP a. Pl.a)

lemma (in encoding-wrt-barbs) enc-weakly-reflects-barbs-and-barb-set:
shows enc-weakly-reflects-barbs = (¥ Barbs. enc-weakly-reflects-barb-set Barbs)
by blast

abbreviation (in encoding-wrt-barbs) enc-weakly-respects-barb-set :: 'barbs set = bool where
enc-weakly-respects-barb-set Barbs =
enc-weakly-preserves-barb-set Barbs A enc-weakly-reflects-barb-set Barbs

abbreviation (in encoding-wrt-barbs) enc-weakly-respects-barbs :: bool where
enc-weakly-respects-barbs = enc-weakly-preserves-barbs N\ enc-weakly-reflects-barbs

lemma (in encoding-wrt-barbs) enc-weakly-respects-barbs-and-barb-set:
shows enc-weakly-respects-barbs = (¥ Barbs. enc-weakly-respects-barb-set Barbs)
proof —
have (V Barbs. enc-weakly-respects-barb-set Barbs)
= (VBarbs. (VS z. z € Barbs A SY<SWB>z — [S[I<TWB>xz)
A (VS z. x € Barbs A [SJU<TWB>x — S|<SWB>z))
by simp
hence (V Barbs. enc-weakly-respects-barb-set Barbs)
= ((V Barbs. enc-weakly-preserves-barb-set Barbs)
A (V Barbs. enc-weakly-reflects-barb-set Barbs))
apply simp by fast
thus “thesis
apply simp by blast

151

qed

An encoding strongly respects some set of barbs if, for every source term S and all considered barbs
a, S has a iff the translation of S has a.

abbreviation (in encoding-wrt-barbs) enc-preserves-barb-set :: 'barbs set = bool where
enc-preserves-barb-set Barbs = enc-preserves-binary-pred (AP a. a € Barbs A P|.a)

abbreviation (in encoding-wrt-barbs) enc-preserves-barbs :: bool where
enc-preserves-barbs = enc-preserves-binary-pred (AP a. Pl.a)

lemma (in encoding-wrt-barbs) enc-preserves-barbs-and-barb-set:
shows enc-preserves-barbs = (V¥ Barbs. enc-preserves-barb-set Barbs)
by blast

abbreviation (in encoding-wrt-barbs) enc-reflects-barb-set :: 'barbs set = bool where
enc-reflects-barb-set Barbs = enc-reflects-binary-pred (AP a. a € Barbs A P|.a)

abbreviation (in encoding-wrt-barbs) enc-reflects-barbs :: bool where
enc-reflects-barbs = enc-reflects-binary-pred (AP a. Pl.a)

lemma (in encoding-wrt-barbs) enc-reflects-barbs-and-barb-set:
shows enc-reflects-barbs = (¥ Barbs. enc-reflects-barb-set Barbs)
by blast

abbreviation (in encoding-wrt-barbs) enc-respects-barb-set :: 'barbs set = bool where
enc-respects-barb-set Barbs = enc-preserves-barb-set Barbs N enc-reflects-barb-set Barbs

abbreviation (in encoding-wrt-barbs) enc-respects-barbs :: bool where
enc-respects-barbs = enc-preserves-barbs N enc-reflects-barbs

lemma (in encoding-wrt-barbs) enc-respects-barbs-and-barb-set:
shows enc-respects-barbs = (¥ Barbs. enc-respects-barb-set Barbs)
proof —
have (V Barbs. enc-respects-barb-set Barbs)
= ((V Barbs. enc-preserves-barb-set Barbs)
A (V Barbs. enc-reflects-barb-set Barbs))
apply simp by fast
thus ?thesis
apply simp by blast
qed

An encoding (weakly) preserves barbs iff (1) there exists a relation, like indRelR, that relates source
terms and their literal translations and preserves (reachability/)existence of barbs, or (2) there exists
a relation, like indRelL, that relates literal translations and their source terms and reflects (reachabil-
ity /)existence of barbs.

lemma (in encoding-wrt-barbs) enc-weakly-preserves-barb-set-iff-source-target-rel:
fixes Barbs :: 'barbs set
and TRel :: ("procT x 'procT) set
shows enc-weakly-preserves-barb-set Barbs
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-preserves-barb-set Rel (STCalWB SWB TWB) Barbs)
using enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred[where
Pred=AP a. a € Barbs N Py<STCalWB SWB TWB>a] STCalWB-reachesBarbST
by simp

lemma (in encoding-wrt-barbs) enc-weakly-preserves-barbs-iff-source-target-rel:
shows enc-weakly-preserves-barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-preserves-barbs Rel (STCalWB SWB TWB))
using enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred[where

152

Pred=AP a. Py<STCalWB SWB TWB>a] STCalWB-reachesBarbST
by simp

lemma (in encoding-wrt-barbs) enc-preserves-barb-set-iff-source-target-rel:
fixes Barbs :: 'barbs set
shows enc-preserves-barb-set Barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-barb-set Rel (STCalWB SWB TWB) Barbs)
using enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-pred[where
Pred=AP a. a € Barbs N P} <STCalWB SWB TWB>a] STCalWB-hasBarbST
by simp

lemma (in encoding-wrt-barbs) enc-preserves-barbs-iff-source-target-rel:
shows enc-preserves-barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-barbs Rel (STCalWB SWB TWB))
using enc-preserves-binary-pred-iff-source-target-rel-preserves-binary-predwhere
Pred=AP a. PL<STCalWB SWB TWB>a| STCalWB-hasBarbST
by simp

An encoding (weakly) reflects barbs iff (1) there exists a relation, like indRelR, that relates source
terms and their literal translations and reflects (reachability /)existence of barbs, or (2) there exists a
relation, like indRelL, that relates literal translations and their source terms and preserves (reachabil-
ity /)existence of barbs.

lemma (in encoding-wrt-barbs) enc-weakly-reflects-barb-set-iff-source-target-rel:
fixes Barbs :: 'barbs set
shows enc-weakly-refiects-barb-set Barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-reflects-barb-set Rel (STCalWB SWB TWB) Barbs)
using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred [where
Pred=MAP a. a € Barbs A Py<STCalWB SWB TWB>a] STCalWB-reachesBarbST
by simp

lemma (in encoding-wrt-barbs) enc-weakly-reflects-barbs-iff-source-target-rel:
shows enc-weakly-reflects-barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-reflects-barbs Rel (STCalWB SWB TWB))
using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred[where
Pred=AP a. P}<STCalWB SWB TWB>a] STCalWB-reachesBarbST
by simp

lemma (in encoding-wrt-barbs) enc-reflects-barb-set-iff-source-target-rel:
fixes Barbs :: 'barbs set
shows enc-reflects-barb-set Barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-barb-set Rel (STCalWB SWB TWB) Barbs)
using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-pred[where
Pred=MAP a. a € Barbs A Pl<STCalWB SWB TWB>a] STCalWB-hasBarbST
by simp

lemma (in encoding-wrt-barbs) enc-reflects-barbs-iff-source-target-rel:
shows enc-reflects-barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-barbs Rel (STCalWB SWB TWB))
using enc-reflects-binary-pred-iff-source-target-rel-reflects-binary-predwhere
Pred=AP a. P} <STCalWB SWB TWB>a| STCalWB-hasBarbST
by simp

An encoding (weakly) respects barbs iff (1) there exists a relation, like indRelR, that relates source
terms and their literal translations and respects (reachability/)existence of barbs, or (2) there exists a

153

relation, like indRelL, that relates literal translations and their source terms and respects (reachabil-
ity /)existence of barbs, or (3) there exists a relation, like indRel, that relates source terms and their
literal translations in both directions and respects (reachability/)existence of barbs.

lemma (in encoding-wrt-barbs) enc-weakly-respects-barb-set-iff-source-target-rel:
fixes Barbs :: 'barbs set
shows enc-weakly-respects-barb-set Barbs
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) Barbs)
using enc-respects-binary-pred-iff-source-target-rel-respects-binary-pred-encR[where
Pred=AP a. a € Barbs N Py<STCalWB SWB TWB>a] STCalWB-reachesBarbST
by simp

lemma (in encoding-wrt-barbs) enc-weakly-respects-barbs-iff-source-target-rel:
shows enc-weakly-respects-barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB))
using enc-respects-binary-pred-iff-source-target-rel-respects-binary-pred-encR[where
Pred=AP a. Py<STCalWB SWB TWB>a] STCalWB-reachesBarbST
by simp

lemma (in encoding-wrt-barbs) enc-respects-barb-set-iff-source-target-rel:
fixes Barbs :: 'barbs set
shows enc-respects-barb-set Barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barb-set Rel (STCalWB SWB TWB) Barbs)
using enc-respects-binary-pred-iff-source-target-rel-respects-binary-pred-encR[where
Pred=AP a. a € Barbs A P}<STCalWB SWB TWB>a] STCalWB-hasBarbST
by simp

lemma (in encoding-wrt-barbs) enc-respects-barbs-iff-source-target-rel:
shows enc-respects-barbs
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barbs Rel (STCalWB SWB TWB))
using enc-respects-binary-pred-iff-source-target-rel-respects-binary-pred-encR[where
Pred=AP a. P} <STCalWB SWB TWB>a| STCalWB-hasBarbST
by simp

Accordingly an encoding is success sensitive iff there exists such a relation between source and target
terms that weakly respects the barb success.

lemma (in encoding-wrt-barbs) success-sensitive-cond:
fixes success :: 'barbs
shows enc-weakly-respects-barb-set {success} = (V.S. SU<SWB>success «— [SJ< TWB>success)
by auto

lemma (in encoding-wrt-barbs) success-sensitive-iff-source-target-rel-weakly-respects-success:
fixes success :: 'barbs
shows enc-weakly-respects-barb-set {success}
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
by (rule enc-weakly-respects-barb-set-iff-source-target-rel[where Barbs={success}])+

lemma (in encoding-wrt-barbs) success-sensitive-iff-source-target-rel-respects-success:
fixes success :: 'barbs
shows enc-respects-barb-set {success}
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success})
by (rule enc-respects-barb-set-iff-source-target-rel[where Barbs={success}])

end
theory DivergenceReflection

154

imports SourceTargetRelation
begin

7 Divergence Reflection

Divergence reflection forbids for encodings that introduce loops of internal actions. Thus they de-
termine the practicability of encodings in particular with respect to implementations. An encoding
reflects divergence if each loop in a target term result from the translation of a divergent source term.

abbreviation (in encoding) enc-preserves-divergence :: bool where
enc-preserves-divergence = enc-preserves-pred (AP. P ——STw)

lemma (in encoding) divergence-preservation-cond:
shows enc-preserves-divergence = (¥ S. S —(Source)w — [S] —(Target)w)
by simp

abbreviation (in encoding) enc-reflects-divergence :: bool where
enc-reflects-divergence = enc-reflects-pred (AP. P —STw)

lemma (in encoding) divergence-reflection-cond:
shows enc-reflects-divergence = (V' S. [S] —(Target)w — S —(Source)w)
by simp

abbreviation rel-preserves-divergence
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
rel-preserves-divergence Rel Cal = rel-preserves-pred Rel (A\P. P ——(Cal)w)

abbreviation rel-reflects-divergence
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
rel-reflects-divergence Rel Cal = rel-reflects-pred Rel (AP. P ——(Cal)w)

Apart from divergence reflection we consider divergence respection. An encoding respects divergence
if each divergent source term is translated into a divergent target term and each divergent target term
result from the translation of a divergent source term.

abbreviation (in encoding) enc-respects-divergence :: bool where
enc-respects-divergence = enc-respects-pred (AP. P —STw)

lemma (in encoding) divergence-respection-cond:
shows enc-respects-divergence = (V S. [S] —(Target)w <— S —(Source)w)
by auto

abbreviation rel-respects-divergence
2 ("proc x 'proc) set = 'proc processCalculus = bool
where
rel-respects-divergence Rel Cal = rel-respects-pred Rel (AP. P ——(Cal)w)

An encoding preserves divergence iff (1) there exists a relation that relates source terms and their literal
translations and preserves divergence, or (2) there exists a relation that relates literal translations and
their source terms and reflects divergence.

lemma (in encoding) divergence-preservation-iff-source-target-rel-preserves-divergence:
shows enc-preserves-divergence
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-preserves-divergence Rel (STCal Source Target))
using enc-preserves-pred-iff-source-target-rel-preserves-pred(1)[where Pred=AP. P —STw)|
divergentST-STCal-divergent
by simp

155

lemma (in encoding) divergence-preservation-iff-source-target-rel-reflects-divergence:
shows enc-preserves-divergence
= (3 Rel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-reflects-divergence Rel (STCal Source Target))
using enc-preserves-pred-iff-source-target-rel-reflects-pred(1)[where Pred=AP. P —STuw]
divergentST-ST Cal-divergent
by simp

An encoding reflects divergence iff (1) there exists a relation that relates source terms and their literal
translations and reflects divergence, or (2) there exists a relation that relates literal translations and
their source terms and preserves divergence.

lemma (in encoding) divergence-reflection-iff-source-target-rel-reflects-divergence:
shows enc-refiects-divergence
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-reflects-divergence Rel (STCal Source Target))
using enc-reflects-pred-iff-source-target-rel-reflects-pred[where Pred=AP. P ——STw]
divergentST-STCal-divergent
by simp

lemma (in encoding) divergence-reflection-iff-source-target-rel-preserves-divergence:
shows enc-reflects-divergence
= (FRel. (VS. (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-preserves-divergence Rel (STCal Source Target))
using enc-reflects-pred-iff-source-target-rel-preserves-pred[where Pred=AP. P —— STw)]
divergentST-STCal-divergent
by simp

An encoding respects divergence iff there exists a relation that relates source terms and their literal
translations in both directions and respects divergence.

lemma (in encoding) divergence-respection-iff-source-target-rel-respects-divergence:
shows enc-respects-divergence = (3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-divergence Rel (STCal Source Target))
and enc-respects-divergence = (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-divergence Rel (STCal Source Target))
proof —
show enc-respects-divergence = (3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-divergence Rel (STCal Source Target))
using enc-respects-pred-iff-source-target-rel-respects-pred-encR|where Pred=AP. P —STuw]
divergentST-STCal-divergent
by simp
next
show enc-respects-divergence = (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A rel-respects-divergence Rel (STCal Source Target))
using enc-respects-pred-iff-source-target-rel-respects-pred-encRL[where Pred=AP. P —STw]
divergentST-STCal-divergent
by simp
qed

end
theory OperationalCorrespondence

imports SourceTargetRelation
begin

8 Operational Correspondence

We consider different variants of operational correspondence. This criterion consists of a completeness
and a soundness condition and is often defined with respect to a relation TRel on target terms.

156

Operational completeness modulo TRel ensures that an encoding preserves source term behaviour
modulo TRel by requiring that each sequence of source term steps can be mimicked by its translation
such that the respective derivatives are related by TRel.

abbreviation (in encoding) operational-complete :: ("procT x 'procT) set = bool where
operational-complete TRel =
VS S S +——Sourcex S — (3T. [S] — Targetx T A ([S'], T) € TRel)

We call an encoding strongly operational complete modulo TRel if each source term step has to be
mimicked by single target term step of its translation.

abbreviation (in encoding) strongly-operational-complete :: ('procT x 'procT) set = bool where
strongly-operational-complete TRel =
VS S Sv+——Source S" — (3T. [S] — Target T A ([S], T) € TRel)

Operational soundness ensures that the encoding does not introduce new behaviour. An encoding is
weakly operational sound modulo TRel if each sequence of target term steps is part of the translation of
a sequence of source term steps such that the derivatives are related by TRel. It allows for intermediate
states on the translation of source term step that are not the result of translating a source term.

abbreviation (in encoding) weakly-operational-sound :: ("procT x 'procT) set = bool where

weakly-operational-sound TRel =
VS T.[S] —Targetx T — (38’ T'. S —>Sourcex S" N T —— Targetx T' A ([S7], T') € TRel)

And encoding is operational sound modulo TRel if each sequence of target term steps is the translation
of a sequence of source term steps such that the derivatives are related by TRel. This criterion does
not allow for intermediate states, i.e., does not allow to a reach target term from an encoded source
term that is not related by TRel to the translation of a source term.

abbreviation (in encoding) operational-sound :: ("procT X 'procT) set = bool where
operational-sound TRel =V S T. [S] — Targetx T — (35’ S —Sourcex S’ A ([S'], T) € TRel)

Strong operational soundness modulo TRel is a stricter variant of operational soundness, where a
single target term step has to be mapped on a single source term step.

abbreviation (in encoding) strongly-operational-sound :: ("procT X 'procT) set = bool where
strongly-operational-sound TRel =
VS T.[S] —Target T — (35'. S —Source S" A ([S'], T) € TRel)

An encoding is weakly operational corresponding modulo TRel if it is operational complete and weakly
operational sound modulo TRel.

abbreviation (in encoding) weakly-operational-corresponding
= ("procT x 'procT) set = bool
where
weakly-operational-corresponding TRel =
operational-complete TRel N\ weakly-operational-sound TRel

Operational correspondence modulo is the combination of operational completeness and operational
soundness modulo TRel.

abbreviation (in encoding) operational-corresponding :: ('procT x 'procT) set = bool where
operational-corresponding TRel = operational-complete TRel A operational-sound TRel

An encoding is strongly operational corresponding modulo TRel if it is strongly operational complete
and strongly operational sound modulo TRel.

abbreviation (in encoding) strongly-operational-corresponding
2 ("procT x 'procT) set = bool
where
strongly-operational-corresponding TRel =
strongly-operational-complete TRel A strongly-operational-sound TRel

157

8.1 Trivial Operational Correspondence Results

Every encoding is (weakly) operational corresponding modulo the all relation on target terms.

lemma (in encoding) operational-correspondence-modulo-all-relation:
shows operational-complete {(T1, T2). True}
and weakly-operational-sound {(T1, T2). True}
and operational-sound {(T1, T2). True}
using steps-refl[where Cal==Source] steps-refllwhere Cal=Target)
by blast+

lemma all-relation-is-weak-reduction-bisimulation:
fixes Cal :: 'a processCalculus
shows weak-reduction-bisimulation {(a, b). True} Cal
using steps-refiwhere Cal=Cal]
by blast

lemma (in encoding) operational-correspondence-modulo-some-target-relation:
shows 3 TRel. weakly-operational-corresponding TRel
and 3 TRel. operational-corresponding TRel
and 3 TRel. weakly-operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target
and J TRel. operational-corresponding TRel A weak-reduction-bisimulation TRel Target
using operational-correspondence-modulo-all-relation
all-relation-is-weak-reduction-bisimulation[where Cal=Target]
by blast+

Strong operational correspondence requires that source can perform a step iff their translations can
perform a step.

lemma (in encoding) strong-operational-correspondence-modulo-some-target-relation:
shows (3 TRel. strongly-operational-corresponding TRel)
= (vVS. (35" S +—Source §") «— (I T. [S] — Target T))
and (3 TRel. strongly-operational-corresponding TRel
A weak-reduction-bisimulation TRel Target)
= (VS. (38" S —Source S') +— (3 T. [S] — Target T))
proof —
have A1: 3 TRel. strongly-operational-corresponding TRel
= VS. (35" S —Source S') «— (3 T. [S] — Target T)
by blast
moreover have A2:VS. (35" § —Source S') +— (3 T. [S] — Target T)
= J TRel. strongly-operational-corresponding TRel
A weak-reduction-bisimulation TRel Target
proof —
assume VS. (35" S ——Source ') «— (3 T. [S] — Target T)
hence strongly-operational-corresponding {(T1, T2). True}
by simp
thus 3 TRel. strongly-operational-corresponding TRel
A weak-reduction-bisimulation TRel Target
using all-relation-is-weak-reduction-bisimulation[where Cal=Target)
by blast
qged
ultimately show (3 TRel. strongly-operational-corresponding TRel
A weak-reduction-bisimulation TRel Target)
= (VS. (35" S ——Source S) «— (3T. [S] — Target T))
by blast
from A1 A2 show (3 TRel. strongly-operational-corresponding TRel)
= (VS. (35" S —Source S') «— (3 T. [S] — Target T))
by blast
qed

158

8.2 (Strong) Operational Completeness vs (Strong) Simulation

An encoding is operational complete modulo a weak simulation on target terms TRel iff there is a
relation, like indRelRTPO, that relates at least all source terms to their literal translations, includes
TRel, and is a weak simulation.

lemma (in encoding) weak-reduction-simulation-impl-OCom:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ('procT x 'procT) set
assumes A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A3: weak-reduction-simulation Rel (STCal Source Target)
shows operational-complete (TRel*)
proof clarify
fix § 5’
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume S —Sourcex S’
hence SourceTerm S —(STCal Source Target)x (SourceTerm S”)
by (simp add: STCal-steps(1))
ultimately obtain Q' where A5: TargetTerm ([S]) —— (ST Cal Source Target)x Q'
and A6: (SourceTerm S', Q') € Rel
using A3
by blast
from A5 obtain T where A7: T €T Q' and A8: [S] — Targetx T
by (auto simp add: STCal-steps(2))
from A2 A6 A7 have ([S]], T) € TRel*
by simp
with A8 show 3 T. [S] — Targetx T A ([S], T) € TRel*
by blast
qed

lemma (in encoding) OCom-iff-indRelRTPO-is-weak-reduction-simulation:
fixes TRel :: ('procT x 'procT) set
shows (operational-complete (TRel*)
A weak-reduction-simulation (TRel™) Target)
= weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume oc: operational-complete (TRel*)
and sim: weak-reduction-simulation (TRel™) Target
show weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
proof clarify
fix P Q P’
assume P <[JRT<TRel> @ and P ——(STCal Source Target)x P’
thus 3 Q. Q —(STCal Source Target)x Q' N P’ S[-JRT<TRel> Q'
proof (induct arbitrary: P’)
case (encR S)
assume SourceTerm S —(STCal Source Target)x P’
from this obtain S’ where A1: S’ €S P’ and A2: S —Sourcex S’
by (auto simp add: STCal-steps(1))
from oc A2 obtain T where A3: [S] — Targetx T and A4: ([S’], T) € TRel*
by blast
from A3 have TargetTerm ([S]) —(STCal Source Target)* (TargetTerm T)
by (simp add: STCal-steps(2))
moreover have P’ <[-|RT<TRel> TargetTerm T
proof —
from A/ have [S] = T Vv ([S'], T) € TRel*
using rtrancl-eq-or-tranclof [S] T TRel]
by blast
moreover from A1 have A5: P’ S[JRT<TRel> TargetTerm ([S'])
by (simp add: indRelRTPO.encR)

159

hence [S] = T = P’ <[JRT<TRel> TargetTerm T
by simp
moreover have ([S'], T) € TRelt = P’ <[|RT<TRel> TargetTerm T
proof —
assume ([S], T) € TRel*
hence TargetTerm ([S']) S[-JRT<TRel> TargetTerm T
proof induct
fix T
assume ([S’], T) € TRel
thus TargetTerm ([S]) S[JRT<TRel> TargetTerm T
by (rule indRelRTPO.target)
next
case (step TQ TR)
assume TargetTerm ([S]) S[JRT<TRel> TargetTerm TQ
moreover assume (TQ, TR) € TRel
hence TargetTerm TQ <[JRT<TRel> TargetTerm TR
by (rule indRelRTPO.target)
ultimately show TargetTerm ([S']) S[-JRT<TRel> TargetTerm TR
by (rule indRelRTPO.trans)
qged
with A5 show P’ S[-|RT<TRel> TargetTerm T
by (rule indRelRTPO.trans)
qed
ultimately show P’ <[-|RT<TRel> TargetTerm T
by blast
qed
ultimately
show 3 Q’. TargetTerm ([S]) —=(STCal Source Target)x Q' A P' <[JRT<TRel> Q'
by blast
next
case (source S)
then obtain S’ where BI: S’ €S P’
by (auto simp add: STCal-steps(1))
hence P’ <[JRT<TRel> P’
by (simp add: indRelRTPO.source)
with source show 3 Q'. SourceTerm S ——(STCal Source Target)x Q' A P’ <[JRT<TRel> Q'
by blast
next
case (target T1 T2)
assume TargetTerm T1 ——(STCal Source Target)x P’
from this obtain T1’ where C1: T1' €T P'and C2: T1 —— Targetx T1'
by (auto simp add: STCal-steps(2))
assume (T1, T2) € TRel
hence (T1, T2) € TRel™
by simp
with C2 sim obtain T2’ where C3: T2 —— Targetx T2'
and C4: (T1', T2') € TRel*
by blast
from C3 have TargetTerm T2 —(STCal Source Target)x (TargetTerm T2')
by (simp add: STCal-steps(2))
moreover from C/ have TargetTerm T1' S[-JRT<TRel> TargetTerm T2’
proof induct
fix T2’
assume (T1', T2') € TRel
thus TargetTerm T1' <[JRT<TRel> TargetTerm T2’
by (rule indRelRTPO.target)
next
case (step TQ TR)
assume TargetTerm T1' S[-JRT<TRel> TargetTerm TQ
moreover assume (T7Q, TR) € TRel
hence TargetTerm TQ <[-JRT<TRel> TargetTerm TR

160

by (rule indRelRTPO.target)
ultimately show TargetTerm T1' <[-]RT<TRel> TargetTerm TR
by (rule indRelRTPO.trans)
qed
with C1 have P’ S[-JRT<TRel> TargetTerm T2’
by simp
ultimately show 3 Q'. TargetTerm T2 ——(STCal Source Target)x Q' AN P’ <[JRT<TRel> Q'
by blast
next
case (trans P Q R)
assume P ——(STCal Source Target)x P’
and AP’ P —(STCal Source Target)* P’
= 3Q". Q —(STCal Source Target)x Q' AN P’ <[JRT<TRel> Q'
from this obtain Q' where D1: Q ——(STCal Source Target)x Q'
and D2: P’ <[JRT<TRel> Q'
by blast
assume AQ'. Q —(STCal Source Target)x Q'
= JR’. R ——(STCal Source Target)x R' A Q' <[JRT<TRel> R’
with D1 obtain R’ where D3: R ——(STCal Source Target)x R’
and Dj: Q' <[JRT<TRel> R’
by blast
from D2 D4 have P’ S[-|RT<TRel> R’
by (rule indRelRTPO.trans)
with D3 show 3 R’. R ——(STCal Source Target)x R’ A P’ <[JRT<TRel> R’
by blast
qed
qged
next
have V S. SourceTerm S S[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover have V.S T. SourceTerm S S[-JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume sim: weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
ultimately have operational-complete (TRel*)
using weak-reduction-simulation-impl-OCom[where Rel=indRelRTPO TRel and TRel=TRel]
by simp
moreover from sim have weak-reduction-simulation (TRelt) Target
using indRelRTPO-impl-TRel-is-weak-reduction-simulation[where TRel=TRel]
by simp
ultimately show operational-complete (TRel*)
A weak-reduction-simulation (TRel™) Target
by simp
qed

lemma (in encoding) OCom-iff-weak-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
shows (operational-complete (TRel*)
A weak-reduction-simulation (TRelt) Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(NYT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have VT1 T2. (T1, T2) € TRel — TargetTerm T1 S[-JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 S[JRT<TRel> TargetTerm T2 — (T1, T2) € TRelt
using indRelRTPO-to-TRel(4)[where TRel=TRel]

161

by simp
moreover have V.S T. SourceTerm S S[JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume operational-complete (TRel*)
and weak-reduction-simulation (TRel™) Target
hence weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTLI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
N (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-simulation Rel (STCal Source Target)
by blast
next
assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-simulation Rel (STCal Source Target)
from this obtain Rel where A1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
and A/: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A5: weak-reduction-simulation Rel (STCal Source Target)
by blast
from A1 A4 A5 have operational-complete (TRel*)
using weak-reduction-simulation-impl-OCom|[where Rel=Rel and TRel=TRel|
by simp
moreover from A2 A3 A5 have weak-reduction-simulation (TRelt) Target
using rel-with-target-impl-transC-TRel-is-weak-reduction-simulation[where Rel=Rel and
TRel=TRel]
by simp
ultimately show operational-complete (TRel*)
A weak-reduction-simulation (TRel™) Target
by simp
qed

An encoding is strong operational complete modulo a strong simulation on target terms TRel iff
there is a relation, like indRelRTPO, that relates at least all source terms to their literal translations,
includes TRel, and is a strong simulation.

lemma (in encoding) strong-reduction-simulation-impl-SOCom:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ("procT x 'procT) set
assumes A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A3: strong-reduction-simulation Rel (STCal Source Target)
shows strongly-operational-complete (TRel*)
proof clarify
fix § 5’
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume S —Source S’
hence SourceTerm S —(STCal Source Target) (SourceTerm S”)
by (simp add: STCal-step(1))
ultimately obtain Q' where A5: TargetTerm ([S]) — (ST Cal Source Target) Q'
and A6: (SourceTerm S', Q') € Rel
using A3
by blast

162

from A5 obtain T where A7: T €T Q' and A8: [S] — Target T
by (auto simp add: STCal-step(2))
from A2 A6 A7 have ([S]], T) € TRel*
by simp
with A8 show 3 T. [S] — Target T A ([S'], T) € TRel*
by blast
qed

lemma (in encoding) SOCom-iff-indRelRTPO-is-strong-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
shows (strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target)
= strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume soc: strongly-operational-complete (TRel*)
and sim: strong-reduction-simulation (TRel™) Target
show strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
proof clarify
fix PQP
assume P <[JRT<TRel> @ and P —(STCal Source Target) P’
thus 3 Q. Q —(STCal Source Target) Q' N P’ S[-JRT<TRel> Q'
proof (induct arbitrary: P’)
case (encR S)
assume SourceTerm S ——(STCal Source Target) P’
from this obtain S’ where A1: S’ €S P’ and A2: S —Source S’
by (auto simp add: STCal-step(1))
from soc A2 obtain T where A3: [S] — Target T and A4: ([S'], T) € TRel*
by blast
from A3 have TargetTerm ([S]) — (ST Cal Source Target) (TargetTerm T)
by (simp add: STCal-step(2))
moreover have P’ <[-JRT<TRel> TargetTerm T
proof —
from A4 have [S'] = T v ([S'], T) € TRel™
using rtrancl-eq-or-trancl[of [S'] T TRel]
by blast
moreover from Al have A5: P’ S[[JRT<TRel> TargetTerm ([S'])
by (simp add: indRelRTPO.encR)
hence [S] = T = P’ <[JRT<TRel> TargetTerm T
by simp
moreover have ([S7], T) € TRelt — P’ <[[|RT<TRel> TargetTerm T
proof —
assume ([S], T) € TRel™
hence TargetTerm ([S']) S[JRT<TRel> TargetTerm T
proof induct
fix TQ
assume ([S7], TQ) € TRel
thus TargetTerm ([S]) S[JRT<TRel> TargetTerm TQ
by (rule indRelRTPO.target)
next
case (step TQ TR)
assume TargetTerm ([S]) S[JRT<TRel> TargetTerm TQ
moreover assume (TQ, TR) € TRel
hence TargetTerm TQ <[JRT<TRel> TargetTerm TR
by (rule indRelRTPO.target)
ultimately show TargetTerm ([S']) S['JRT<TRel> TargetTerm TR
by (rule indRelRTPO.trans)
qed
with A5 show P’ <[JRT<TRel> TargetTerm T
by (rule indRelRTPO.trans)
qed
ultimately show P’ <[|RT<TRel> TargetTerm T

163

by blast
qed
ultimately
show 3 Q’. TargetTerm ([S]) —(STCal Source Target) Q' A P’ S[[JRT<TRel> Q'
by blast
next
case (source S)
then obtain S’ where B1: 5’ €S P’
by (auto simp add: STCal-step(1))
hence P’ <[JRT<TRel> P’
by (simp add: indRelRTPO.source)
with source show 3 Q'. SourceTerm S ——(STCal Source Target) Q' A P’ S[[JRT<TRel> Q'
by blast
next
case (target T1 T2)
assume TargetTerm T1 ——(STCal Source Target) P’
from this obtain T1’ where C1: T1' €T P'and C2: T1 —— Target T1’
by (auto simp add: STCal-step(2))
assume (71, T2) € TRel
hence (T1, T2) € TRel*
by simp
with C2 sim obtain T2’ where C3: T2 — Target T2' and C4: (T1', T2') € TRel*
by blast
from C3 have TargetTerm T2 ——(STCal Source Target) (TargetTerm T2")
by (simp add: STCal-step(2))
moreover from Cj have TargetTerm T1' S[-JRT<TRel> TargetTerm T2’
proof induct
fix T2’
assume (71, T2') € TRel
thus TargetTerm T1' S[JRT<TRel> TargetTerm T2’
by (rule indRelRTPO.target)
next
case (step TQ TR)
assume TargetTerm T1' <[JRT<TRel> TargetTerm TQ
moreover assume (TQ, TR) € TRel
hence TargetTerm TQ <[-JRT<TRel> TargetTerm TR
by (rule indRelRTPO.target)
ultimately show TargetTerm T1' <[-]RT<TRel> TargetTerm TR
by (rule indRelRTPO.trans)
qed
with CI have P’ <[JRT<TRel> TargetTerm T2’
by simp
ultimately show 3 Q'. TargetTerm T2 —(STCal Source Target) Q' N P’ S[JRT<TRel> Q'
by blast
next
case (trans P Q R)
assume P ——(STCal Source Target) P’
and AP’ P ——(STCal Source Target) P’
= 3 Q" Q —(STCal Source Target) Q' N P’ S[-JRT<TRel> Q'
from this obtain Q' where D1: Q ——(STCal Source Target) Q'
and D2: P’ <[]RT<TRel> Q'
by blast
assume A\Q'. Q ——(STCal Source Target) Q'
= IR’ R +—(STCal Source Target) R’ N Q' S[-JRT<TRel> R’
with DI obtain R’ where D8: R ——(STCal Source Target) R’
and D4: Q' S[JRT<TRel> R’
by blast
from D2 D4 have P’ <[JRT<TRel> R’
by (rule indRelRTPO.trans)
with D8 show 3 R’. R ——(STCal Source Target) R' A P' S[-JRT<TRel> R’
by blast

164

qed
qed
next
have V S. SourceTerm S S[JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover have V.S T. SourceTerm S S[-|JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume sim: strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
ultimately have strongly-operational-complete (TRel*)
using strong-reduction-simulation-impl-SOCom[where Rel=indRelRTPO TRel and TRel=TRel]
by simp
moreover from sim have strong-reduction-simulation (TRel™) Target
using indRelRTPO-impl-TRel-is-strong-reduction-simulation[where TRel=TRel|
by simp
ultimately show strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target
by simp
qed

lemma (in encoding) SOCom-iff-strong-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
shows (strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have V T1 T2. (T1, T2) € TRel — TargetTerm T1 <[JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 S[JRT<TRel> TargetTerm T2 — (T1, T2) € TRel™
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by simp
moreover have V.S T. SourceTerm S S[-|JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume strongly-operational-complete (TRel*)
and strong-reduction-simulation (TRel™) Target
hence strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
using SOCom-iff-indRelRTPO-is-strong-reduction-simulation[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-simulation Rel (STCal Source Target)
by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-simulation Rel (STCal Source Target)
from this obtain Rel where A1: VYV S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3:VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
and A4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*

165

and A5: strong-reduction-simulation Rel (STCal Source Target)
by blast
from A1 A} A5 have strongly-operational-complete (TRel*)
using strong-reduction-simulation-impl-SOCom|where Rel=Rel and TRel=TRel]
by simp
moreover from A2 A3 A5 have strong-reduction-simulation (TRel™) Target
using rel-with-target-impl-transC-TRel-is-strong-reduction-simulation[where Rel=Rel and
TRel=TRel]
by simp
ultimately show strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target
by simp
qed

lemma (in encoding) target-relation-from-source-target-relation:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes stre: V.S T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel™
shows 3 TRel. (VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
proof —
define TRel where TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
from TRel-def have ¥V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by simp
moreover from TRel-def
have V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
by blast
moreover from stre TRel-def
have VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
by blast
ultimately show ?thesis
by blast
qed

lemma (in encoding) SOCom-modulo-TRel-iff-strong-reduction-simulation:
shows (3 TRel. strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-simulation Rel (STCal Source Target))
proof (rule iff)
assume 3 TRel. strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target
from this obtain TRel where strongly-operational-complete (TRel*)
and strong-reduction-simulation (TRel™) Target
by blast
hence strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
using SOCom-iff-indRelRTP O-is-strong-reduction-simulation[where TRel=TRel]
by simp
moreover have V. S. SourceTerm S <[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover have VS T. SourceTerm S <[JRT<TRel> TargetTerm T
— (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)=
using indRelRTPO-relates-source-target[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-simulation Rel (STCal Source Target)
by blast

166

next
assume J Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-simulation Rel (STCal Source Target)
from this obtain Rel where A1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: (VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel™)
and A3: strong-reduction-simulation Rel (STCal Source Target)
by blast
from A2 obtain TRel where V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
and VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
using target-relation-from-source-target-relation[where Rel=Rel]
by blast
with A1 A3 have strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target
using SOCom-iff-strong-reduction-simulation[where TRel=TRel]
by blast
thus 3 TRel. strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target
by blast
qed

8.3 Weak Operational Soundness vs Contrasimulation

If the inverse of a relation that includes TRel and relates source terms and their literal translations is
a contrasimulation, then the encoding is weakly operational sound.

lemma (in encoding) weak-reduction-contrasimulation-impl- WOSou:
fixes Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ("procT x 'procT) set
assumes A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A3: weak-reduction-contrasimulation (Rel=') (STCal Source Target)
shows weakly-operational-sound (TRel*)
proof clarify
fix ST
from A1 have (TargetTerm ([S]), SourceTerm S) € Rel™*
by simp
moreover assume [S] — Targetx T
hence TargetTerm ([S]) —(STCal Source Target)x (TargetTerm T)
by (simp add: STCal-steps(2))
ultimately obtain Q' where A5: SourceTerm S ——(STCal Source Target)x Q'
and A6: (Q', TargetTerm T) € Rel™!
using A3
by blast
from A5 obtain S’ where A7: S’ €S Q' and A8: S —— Sourcex S’
by (auto simp add: STCal-steps(1))
have Q' ——(STCal Source Target)x Q'
by (simp add: steps-refl)
with A6 A3 obtain P" where A9: TargetTerm T ——(STCal Source Target)x P
and A10: (P", Q) € Rel™!
by blast
from A9 obtain T’/ where A11: T' €T P"” and A12: T — Targetx T’
by (auto simp add: STCal-steps(2))
from A10 have (Q’, P") € Rel
by induct
with A2 A7 A11 have ([S'], T') € TRel*
by simp
with A8 A12 show 35’ T'. S ——Sourcex S’ A T — Targetx T' A ([S’], T') € TRel*
by blast

167

qed

8.4 (Strong) Operational Soundness vs (Strong) Simulation

An encoding is operational sound modulo a relation TRel whose inverse is a weak reduction simulation
on target terms iff there is a relation, like indRelRTPO, that relates at least all source terms to their
literal translations, includes TRel, and whose inverse is a weak simulation.

lemma (in encoding) weak-reduction-simulation-impl-OSou:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ("procT x 'procT) set
assumes A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A3: weak-reduction-simulation (Rel™) (STCal Source Target)
shows operational-sound (TRel*)
proof clarify
fix ST
from A1 have (TargetTerm ([S]), SourceTerm S) € Rel™!
by simp
moreover assume [S] — Targetx T
hence TargetTerm ([S]) —(STCal Source Target)x (TargetTerm T)
by (simp add: STCal-steps(2))
ultimately obtain @’ where A5: SourceTerm S ——(STCal Source Target)x Q'
and A6: (TargetTerm T, Q') € Rel™!
using A3
by blast
from A5 obtain S’ where A7: S’ €S Q' and A8: S —— Sourcex S’
by (auto simp add: STCal-steps(1))
from A6 have (Q’, TargetTerm T) € Rel
by induct
with A2 A7 have ([S'], T) € TRel*
by simp
with A8 show 35’ S ——Sourcex S’ A ([S'], T) € TRel*
by blast
qed

lemma (in encoding) OSou-iff-inverse-of-indRelRTPO-is-weak-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
shows (operational-sound (TRel*)
A weak-reduction-simulation ((TRel™)™1) Target)
= weak-reduction-simulation ((indRelRTPO TRel)™') (STCal Source Target)
proof (rule iffI, erule conjE)
assume os: operational-sound (TRel*)
and sim: weak-reduction-simulation ((TRel™)™1) Target
show weak-reduction-simulation ((indRelRTPO TRel)™') (STCal Source Target)
proof clarify
fix P Q P’
assume @ S[JRT<TRel> P and P ——(STCal Source Target)x P’
thus 3 Q". Q —(STCal Source Target)x Q' A (P', Q') € (indRelRTPO TRel)~!
proof (induct arbitrary: P’)
case (encR S)
assume TargetTerm ([S]) —(STCal Source Target)x P’
from this obtain T where A1: T €T P’ and A2: [S] — Targetx T
by (auto simp add: STCal-steps(2))
from os A2 obtain S’ where A3: S ——Sourcex S'and A4: ([S'], T) € TRel*
by blast
from A3 have SourceTerm S ——(STCal Source Target)x (SourceTerm S’)
by (simp add: STCal-steps(1))
moreover have SourceTerm S’ S[-JRT<TRel> P’
proof —
from A/ have [S] = T Vv ([S'], T) € TRel*

168

using rtrancl-eq-or-tranclof [S] T TRel]
by blast
moreover have A5: SourceTerm S’ S[-JRT<TRel> TargetTerm ([S'])
by (simp add: indRelRTPO.encR)
with A7 have [S] = T = SourceTerm S’ S[-JRT<TRel> P’
by simp
moreover have ([S'], T) € TRelt —> SourceTerm S’ <[-JRT<TRel> P’
proof —
assume ([S], T) € TRel™
hence TargetTerm ([S']) S[JRT<TRel> TargetTerm T
by (rule transitive-closure-of-TRel-to-indRelRTPO)
with A5 have SourceTerm S’ S[-|RT<TRel> TargetTerm T
by (rule indRelRTPO.trans)
with A1 show SourceTerm S’ <[-JRT< TRel> P’
by simp
qed
ultimately show SourceTerm S’ <[-JRT<TRel> P’
by blast
qed
hence (P’, SourceTerm S') € (indRelRTPO TRel)~!
by simp
ultimately
show 3 Q. SourceTerm S —(STCal Source Target)x Q' A (P', Q") € (indRelRTPO TRel)™*
by blast
next
case (source S)
then obtain S’ where BI: S’ €S P’
by (auto simp add: STCal-steps(1))
hence (P’, P) € (indRelRTPO TRel)~!
by (simp add: indRelRTPO.source)
with source
show 3 Q’. SourceTerm S ——(STCal Source Target)x Q' A (P', Q') € (indRelRTPO TRel)™!
by blast
next
case (target T1 T2)
assume TargetTerm T2 —(STCal Source Target)x P’
from this obtain T2’ where C1: T2’ €T P’ and C2: T2 — Targetx T2’
by (auto simp add: STCal-steps(2))
assume (T1, T2) € TRel
hence (T2, T1) € (TRel™)™!
by simp
with C2 sim obtain T1’ where C3: T1 — Targetx T1'and C4: (T2, T1') € (TRel*)™!
by blast
from C3 have TargetTerm T1 ——(STCal Source Target)x (TargetTerm T1')
by (simp add: STCal-steps(2))
moreover from C/ have (T1', T2') € TRel™
by induct
hence TargetTerm T1' <[JRT<TRel> TargetTerm T2'
by (rule transitive-closure-of-TRel-to-indRelRTPO)
with C1 have (P’, TargetTerm T1') € (indRelRTPO TRel)™!
by simp
ultimately
show 3 Q’. TargetTerm T1 ——(STCal Source Target)x Q' A (P', Q') € (indRelRTPO TRel)™*
by blast
next
case (trans P Q@ R R
assume R ——(STCal Source Target)x R’
and AR’ R —(STCal Source Target)x R’
= 3Q". Q ——(STCal Source Target)x Q' A (R', Q') € (indRelRTPO TRel)~!
from this obtain @’ where D1: Q ——(STCal Source Target)x Q'
and D2: (R, Q') € (indRelRTPO TRel)~!

169

by blast
assume AQ’. Q —(STCal Source Target)x Q'
= 3P’". P —(STCal Source Target)x P' A (Q', P') € (indRelRTPO TRel)~!
with D1 obtain P’ where D3: P ——(STCal Source Target)x P’
and Dj: (Q', P) € (indRelRTPO TRel)~!
by blast
from D/ D2 have (R’, P') € (indRelRTPO TRel)™ !
by (simp add: indRelRTPO.trans[where P=P’ and Q=Q' and R=R/])
with D3 show 3 P’. P ——(STCal Source Target)x P’ A (R, P') € (indRelRTPO TRel)~!
by blast
qed
qed
next
have V S. SourceTerm S S[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover have VS T. SourceTerm S S[JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover
assume sim: weak-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)
ultimately have operational-sound (TRel*)
using weak-reduction-simulation-impl-OSou[where Rel=indRelRTPO TRel and TRel=TRel]
by simp
moreover from sim have weak-reduction-simulation ((TRel™)™1) Target
using indRelRTPO-impl-TRel-is-weak-reduction-simulation-rev)where TRel=TRel]
by simp
ultimately show operational-sound (TRel*) A weak-reduction-simulation ((TRel™)™1) Target
by simp
qed

lemma (in encoding) OSou-iff-weak-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
shows (operational-sound (TRel*)
A weak-reduction-simulation ((TRelt)™1) Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-simulation (Rel=1) (STCal Source Target))
proof (rule iffI, erule conjE)
have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have VT1 T2. (T1, T2) € TRel — TargetTerm T1 S[JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 <[JRT<TRel> TargetTerm T2 — (T1, T2) € TRelt
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by simp
moreover have V.S T. SourceTerm S S[-|RT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume operational-sound (TRel*)
and weak-reduction-simulation ((TRelt)™) Target
hence weak-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)
using OSou-iff-inverse-of-indRel RTPO-is-weak-reduction-simulation[where TRel=TRel]
by simp
ultimately show 3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-simulation (Rel™') (STCal Source Target)
by blast

170

next
assume J Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(YT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-simulation (Rel™") (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
and A4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A5: weak-reduction-simulation (Rel™') (STCal Source Target)
by blast
from A1 A4 A5 have operational-sound (TRel*)
using weak-reduction-simulation-impl-OSou[where Rel=Rel and TRel=TRel]
by simp
moreover from A2 A3 A5 have weak-reduction-simulation ((TRel™)™1) Target
using rel-with-target-impl-transC- T Rel-is-weak-reduction-simulation-rev[where Rel=Rel and
TRel=TRel]
by simp
ultimately show operational-sound (TRel*) A weak-reduction-simulation ((TRel™)™1) Target
by simp
qed

An encoding is strongly operational sound modulo a relation TRel whose inverse is a strong reduction
simulation on target terms iff there is a relation, like indRelRTPO, that relates at least all source
terms to their literal translations, includes TRel, and whose inverse is a strong simulation.

lemma (in encoding) strong-reduction-simulation-impl-SOSou:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ("procT x 'procT) set
assumes A1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A3: strong-reduction-simulation (Rel™") (STCal Source Target)
shows strongly-operational-sound (TRel*)
proof clarify
fix ST
from A1 have (TargetTerm ([S]), SourceTerm S) € Rel™!
by simp
moreover assume [S] — Target T
hence TargetTerm ([S]) —(STCal Source Target) (TargetTerm T')
by (simp add: STCal-step(2))
ultimately obtain @’ where A5: SourceTerm S —(STCal Source Target) Q'
and A6: (TargetTerm T, Q') € Rel™!
using A3
by blast
from A5 obtain S’ where A7: S’ €S Q' and A8: S —Source S’
by (auto simp add: STCal-step(1))
from A6 have (Q’, TargetTerm T) € Rel
by induct
with A2 A7 have ([S'], T) € TRel*
by simp
with A8 show 35’. S ——Source S" A ([S'], T) € TRel*
by blast
qed

lemma (in encoding) SOSou-iff-inverse-of-indRelRTPO-is-strong-reduction-simulation:
fixes TRel :: ('procT x 'procT) set
shows (strongly-operational-sound (TRel*)
A strong-reduction-simulation ((TRel™)™') Target)
= strong-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)
proof (rule iffI, erule conjE)

171

assume os: strongly-operational-sound (TRel*)
and sim: strong-reduction-simulation ((TRel*)™1) Target
show strong-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)
proof clarify
fix PQ P
assume @ S[-JRT<TRel> P
moreover assume P ——(STCal Source Target) P’
ultimately
show 3 Q". Q —(STCal Source Target) Q' A (P’, Q') € (indRelRTPO TRel)~!
proof (induct arbitrary: P’)
case (encR S)
assume TargetTerm ([S]) —(STCal Source Target) P’
from this obtain T where A1: T €T P’ and A2: [S] — Target T
by (auto simp add: STCal-step(2))
from os A2 obtain S’ where A3: S —Source S" and A4: ([S'], T) € TRel*
by blast
from A3 have SourceTerm S —(STCal Source Target) (SourceTerm S’)
by (simp add: STCal-step(1))
moreover have SourceTerm S’ S[-JRT<TRel> P’
proof —
from A/ have [S] = T Vv ([S'], T) € TRel*
using rtrancl-eq-or-tranclof [S] T TRel]
by blast
moreover have A5: SourceTerm S' S[-JRT<TRel> TargetTerm ([S'])
by (simp add: indRelRTPO.encR)
with A1 have [S] = T = SourceTerm S’ <[JRT<TRel> P’
by simp
moreover have ([S'], T) € TRelt = SourceTerm S’ <[-JRT<TRel> P’
proof —
assume ([S7], T) € TRel™
hence TargetTerm ([S']) S[-JRT<TRel> TargetTerm T
by (rule transitive-closure-of-TRel-to-indRelRTPO)
with A5 have SourceTerm S’ S[-|RT<TRel> TargetTerm T
by (rule indRelRTPO.trans)
with A1 show SourceTerm S’ <[-JRT< TRel> P’
by simp
qed
ultimately show SourceTerm S’ S[-JRT<TRel> P’
by blast
qed
hence (P’, SourceTerm S') € (indRelRTPO TRel)~!
by simp
ultimately
show 3 Q. SourceTerm S —(STCal Source Target) Q' A (P’, Q') € (indRelRTPO TRel)™!
by blast
next
case (source S)
then obtain S’ where BI: S’ €S P’
by (auto simp add: STCal-step(1))
hence (P’, P') € (indRelRTPO TRel)~!
by (simp add: indRelRTPO.source)
with source
show 3 Q’. SourceTerm S +—(STCal Source Target) Q' A (P', Q') € (indRelRTPO TRel)™*
by blast
next
case (target T1 T2)
assume TargetTerm T2 —(STCal Source Target) P’
from this obtain T2’ where C1: T2’ €T P’ and C2: T2 — Target T2’
by (auto simp add: STCal-step(2))
assume (T1, T2) € TRel
hence (T2, T1) € (TRel™)~!

172

by simp
with C2 sim obtain T1’ where C3: T1 —— Target T1' and C4: (T2', T1') € (TRelt)™!
by blast
from C3 have TargetTerm T1 —(STCal Source Target) (TargetTerm T1")
by (simp add: STCal-step(2))
moreover from Cj have (T1', T2') € TRel*
by induct
hence TargetTerm T1' <[-JRT<TRel> TargetTerm T2’
by (rule transitive-closure-of-TRel-to-indRelRTPO)
with C1 have (P’, TargetTerm T1') € (indRelRTPO TRel)~*
by simp
ultimately
show 3 Q'. TargetTerm T1 ——(STCal Source Target) Q' A (P', Q") € (indRelRTPO TRel)™!
by blast
next
case (trans P Q R R
assume R ——(STCal Source Target) R’
and AR’ R —(STCal Source Target) R’
= 3Q". Q —(STCal Source Target) Q' A (R, Q') € (indRelRTPO TRel)~!
from this obtain Q' where DI: Q ——(STCal Source Target) Q'
and D2: (R, Q') € (indRelRTPO TRel)~!
by blast
assume A\Q’. Q —(STCal Source Target) Q'
= JP". P —(STCal Source Target) P' A (Q’, P') € (indRelRTPO TRel)™*
with DI obtain P’ where D3: P ——(STCal Source Target) P’
and DJj: (Q', P') € (indRelRTPO TRel)~!
by blast
from D/ D2 have (R’, P') € (indRelRTPO TRel)™*
by (simp add: indRelRTPO.trans[where P=P’ and Q=Q' and R=R'])
with D3 show 3 P’. P ——(STCal Source Target) P' A (R', P') € (indRelRTPO TRel)~*
by blast
qed
qed
next
have V S. SourceTerm S S[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover have V.S T. SourceTerm S S[-|RT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover
assume sim: strong-reduction-simulation ((indRelRTPO TRel)~1) (STCal Source Target)
ultimately have strongly-operational-sound (TRel*)
using strong-reduction-simulation-impl-SOSou[where Rel=indRelRTPO TRel and TRel=TRel|
by simp
moreover from sim have strong-reduction-simulation ((TRel™)~') Target
using indRelRTPO-impl-TRel-is-strong-reduction-simulation-rev)where TRel=TRel]
by simp
ultimately
show strongly-operational-sound (TRel*) A strong-reduction-simulation ((TRel™)™') Target
by simp
qed

lemma (in encoding) SOSou-iff-strong-reduction-simulation:
fixes TRel :: ("procT x 'procT) set
shows (strongly-operational-sound (TRel*) A strong-reduction-simulation ((TRel™)™') Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-simulation (Rel=') (STCal Source Target))
proof (rule iffI, erule conjE)

173

have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have V11 T2. (T1, T2) € TRel — TargetTerm T1 S[-JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 S[JRT<TRel> TargetTerm T2 — (T1, T2) € TRel™
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by simp
moreover have V.S T. SourceTerm S S[-|RT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume strongly-operational-sound (TRel*)
and strong-reduction-simulation ((TRel™)~') Target
hence strong-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)
using SOSou-iff-inverse-of-indRelRTP O-is-strong-reduction-simulation|[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
N (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-simulation (Rel™') (STCal Source Target)
by blast
next
assume J Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-simulation (Rel™') (STCal Source Target)
from this obtain Rel where A1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™*
and A4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A5: strong-reduction-simulation (Rel™') (STCal Source Target)
by blast
from A1 A4 A5 have strongly-operational-sound (TRel*)
using strong-reduction-simulation-impl-SOSou[where Rel=Rel and TRel=TRel|
by simp
moreover from A2 A3 A5 have strong-reduction-simulation ((TRel™)™!) Target
using rel-with-target-impl-transC-TRel-is-strong-reduction-simulation-rev[where Rel=Rel and
TRel=TRel]
by simp
ultimately
show strongly-operational-sound (TRel*) A strong-reduction-simulation ((TRel™)™!) Target
by simp
qed

lemma (in encoding) SOSou-modulo-TRel-iff-strong-reduction-simulation:
shows (3 TRel. strongly-operational-sound (TRel*)
A strong-reduction-simulation ((TRel™)™1) Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-simulation (Rel™') (STCal Source Target))
proof (rule iffI)
assume 3 TRel. strongly-operational-sound (TRel*)
A strong-reduction-simulation ((TRel™)™') Target
from this obtain TRel where strongly-operational-sound (TRel*)
and strong-reduction-simulation ((TRel™)™') Target
by blast
hence strong-reduction-simulation ((indRelRTPO TRel)™t) (STCal Source Target)
using SOSou-iff-inverse-of-indRelRTP O-is-strong-reduction-simulation[where TRel=TRel)
by simp
moreover have V5. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel

174

by (simp add: indRelRTPO.encR)
moreover have VS T. (SourceTerm S, TargetTerm T) € indRelRTPO TRel
— (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)=
using indRelRTPO-relates-source-target[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-simulation (Rel™') (STCal Source Target)
by blast
next
assume 3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-simulation (Rel™') (STCal Source Target)
from this obtain Rel where A1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: (VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel™)
and A3: strong-reduction-simulation (Rel=') (STCal Source Target)
by blast
from A2 obtain TRel where V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
and VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
using target-relation-from-source-target-relation[where Rel=Rel]
by blast
with A1 A8
have strongly-operational-sound (TRel*) A strong-reduction-simulation ((TRel™)™1) Target
using SOSou-iff-strong-reduction-simulation|where TRel=TRel]
by blast
thus 3 TRel. strongly-operational-sound (TRel*) A strong-reduction-simulation ((TRel™)~™') Target
by blast
qed

8.5 Weak Operational Correspondence vs Correspondence Similarity

If there exists a relation that relates at least all source terms and their literal translations, includes
TRel, and is a correspondence simulation then the encoding is weakly operational corresponding w.r.t.
TRel.

lemma (in encoding) weak-reduction-correspondence-simulation-impl-WOC"
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ("procT x 'procT) set
assumes enc: VS. (SourceTerm S, TargetTerm ([S])) € Rel
and tRel: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
and cs: weak-reduction-correspondence-simulation Rel (STCal Source Target)
shows weakly-operational-corresponding (TRel*)
proof
from enc tRel cs show operational-complete (TRel*)
using weak-reduction-simulation-impl-OCom[where TRel=TRel]
by simp
next
show weakly-operational-sound (TRel*)
proof clarify
fix ST
from enc have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume [S] — Targetx T
hence TargetTerm ([S]) —(STCal Source Target)x (TargetTerm T)
by (simp add: STCal-steps(2))
ultimately obtain P’ Q' where A1: SourceTerm S ——(STCal Source Target)x P’
and A2: TargetTerm T ——(STCal Source Target)x Q' and A3: (P', Q') € Rel

175

using cs

by blast

from A1 obtain S’ where Aj: S’ €S P’ and A5: S —Sourcex S’
by (auto simp add: STCal-steps(1))

from A2 obtain T’/ where A6: T' €T Q' and A7: T — Targetx T’
by (auto simp: STCal-steps(2))

from tRel A3 A} A6 have ([S'], T') € TRel*
by simp

with A5 A7 show 35’ T'. S —Sourcex S' A T +—— Targetx T' A ([S'], T') € TRel*
by blast

qged
qed

An encoding is weakly operational corresponding w.r.t. a correspondence simulation on target terms
TRel iff there exists a relation, like indRelRTPO, that relates at least all source terms and their literal
translations, includes TRel, and is a correspondence simulation.

lemma (in encoding) WOC-iff-indRelRTPO-is-reduction-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
shows (weakly-operational-corresponding (TRel*)
A weak-reduction-correspondence-simulation (TRel™) Target)
= weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume woc: weakly-operational-corresponding (TRel*)
and csi: weak-reduction-correspondence-simulation (TRel™) Target
show weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
proof
from woc csi show sim: weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel=TRel)
by simp
show VP Q Q' P S[JRT<TRel> Q N Q —(STCal Source Target)x Q'
— (3P Q". P —(STCal Source Target)x P N Q' ——(STCal Source Target)* Q"
A P" <[JRT<TRel> Q")
proof clarify
fix P Q Q'
assume P S[JRT<TRel> Q and Q ——(STCal Source Target)x Q'
thus 3P Q. P —(STCal Source Target)x P" AN Q' ——(STCal Source Target)x Q"
A P" S[JRT<TRel> Q"
proof (induct arbitrary: Q)
case (encR S)
assume TargetTerm ([S]) —(STCal Source Target)x Q'
from this obtain T where A1: T €T Q' and A2: [S] — Targetx T
by (auto simp add: STCal-steps(2))
from A2 woc obtain S’ T’ where A3: S —Sourcex S’ and A4: T — Targetx T’
and A5: ([S], T') € TRel*
by blast
from A3 have SourceTerm S ——(STCal Source Target)* (SourceTerm S)
by (simp add: STCal-steps(1))
moreover from A4 have TargetTerm T —(STCal Source Target)x (TargetTerm T')
by (simp add: STCal-steps(2))
moreover have SourceTerm S’ S[JRT<TRel> TargetTerm T’
proof —
have A6: SourceTerm S’ <[JRT<TRel> TargetTerm ([S])
by (rule indRelRTPO.encR)
from A5 have [S] = T’V ([S'], T') € TRel™
using rtrancl-eq-or-trancl|of [S'] T' TRel]

by blast
moreover from A¢ have [S] = T’/ = SourceTerm S’ S[-]RT<TRel> TargetTerm T’
by simp
moreover have ([S7], T') € TRelt = SourceTerm S’ <[-JRT<TRel> TargetTerm T’
proof —

176

assume ([S], T') € TRel*
hence TargetTerm ([S']) S['JRT<TRel> TargetTerm T’
by (simp add: transitive-closure-of- TRel-to-indRelRTPO[where TRel=TRel|)
with A6 show SourceTerm S’ S[-JRT<TRel> TargetTerm T’
by (rule indRelRTPO.trans)
qged
ultimately show SourceTerm S’ <[-|JRT<TRel> TargetTerm T’
by blast
qed
ultimately show 3P Q. SourceTerm S —(STCal Source Target)x P"
A Q' —(STCal Source Target)x Q" N P" <[JRT<TRel> Q"
using A1
by blast
next
case (source S)
assume B1: SourceTerm S —(STCal Source Target)x Q'
moreover have Q' ——(STCal Source Target)x Q'
by (rule steps-refl)
moreover from B obtain S’ where S’ €S Q’
by (auto simp add: STCal-steps(1))
hence Q' <[JRT<TRel> Q'
by (simp add: indRelRTPO.source)
ultimately show 3 P Q". SourceTerm S —(STCal Source Target)x P’
A Q' ——(STCal Source Target)x Q" N P" <[JRT<TRel> Q"
by blast
next
case (target T1 T2)
assume TargetTerm T2 ——(STCal Source Target)x Q'
from this obtain T2’ where C1: T2' €T Q' and C2: T2 — Targetx T2’
by (auto simp add: STCal-steps(2))
assume (71, T2) € TRel
hence (T1, T2) € TRel*
by simp
with C2 csi obtain T1' T2' where C3: T1 —— Target+ T1' and C/4: T2' — Targetx T2
and C5: (T1', T2") € TRel™*
by blast
from C% have TargetTerm T1 ——(STCal Source Target)* (TargetTerm T1')
by (simp add: STCal-steps(2))
moreover from C1 C4 have Q' ——(STCal Source Target)* (TargetTerm T2'"
by (simp add: STCal-steps(2))
moreover from C5 have TargetTerm T1' S[JRT<TRel> (TargetTerm T2")
by (simp add: transitive-closure-of-TRel-to-indRelRTPO)
ultimately show 3P Q". TargetTerm T1 ——(STCal Source Target)x P’
A Q' ——(STCal Source Target)x Q"' N P" <[JRT<TRel> Q"
by blast
next
case (trans P Q R R’)
assume R ——(STCal Source Target)x R’
and AR’ R ——(STCal Source Target)x R’ = 3 Q" R". Q ——(STCal Source Target)x Q"'
A R'+——(STCal Source Target)x R" A Q" S[JRT<TRel> R"
and AQ'. Q —(STCal Source Target)x Q' = I P Q". P —(STCal Source Target)x P"
A Q' ——(STCal Source Target)x Q"' N P" <[JRT<TRel> Q"
moreover have trans (indRelRTPO TRel)
using indRelRTPO.trans
unfolding trans-def
by blast
ultimately show Zcase
using sim reduction-correspondence-simulation-condition-trans[where P=P and
Rel=indRelRTPO TRel and Cal=STCal Source Target and Q=@ and R=R]
by blast
qed

177

qed
qed
next
assume csi: weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
show weakly-operational-corresponding (TRel*)
A weak-reduction-correspondence-simulation (TRelt) Target
proof
have VS. SourceTerm S S[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover have VS T. SourceTerm S S[-JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
ultimately show weakly-operational-corresponding (TRel*)
using weak-reduction-correspondence-simulation-impl- WOC|where Rel=indRelRTPO TRel and
TRel=TRel] csi
by simp
next
from csi show weak-reduction-correspondence-simulation (TRel™) Target
using indRelRTPO-impl-TRel-is-weak-reduction-correspondence-simulation[where TRel=TRel]
by simp
qged
qed

lemma (in encoding) WOC-iff-reduction-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
shows (weakly-operational-corresponding (TRel*)
A weak-reduction-correspondence-simulation (TRel™) Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
AN (YT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-correspondence-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have VT1 T2. (T1, T2) € TRel — TargetTerm T1 <[JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 S[JRT<TRel> TargetTerm T2 — (T1, T2) € TRelt
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by simp
moreover have V.S T. SourceTerm S S[-JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume weakly-operational-corresponding (TRel™)
and weak-reduction-correspondence-simulation (TRel™) Target
hence weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
using WOC-iff-indRelRTPO-is-reduction-correspondence-simulation[where TRel=TRel
by simp
ultimately show 3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
N (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-correspondence-simulation Rel (STCal Source Target)
by blast
next
assume 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(YT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
N weak-reduction-correspondence-simulation Rel (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel

178

and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
and A4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A5: weak-reduction-correspondence-simulation Rel (STCal Source Target)
by blast
from A1 A4 A5 have weakly-operational-corresponding (TRel*)
using weak-reduction-correspondence-simulation-impl- WOC[where Rel=Rel and TRel=TRel]
by simp
moreover from A2 A3 A5 have weak-reduction-correspondence-simulation (TRel™) Target
using rel-with-target-impl-transC-TRel-is-weak-reduction-correspondence-simulation
by simp
ultimately show weakly-operational-corresponding (TRel*)
N weak-reduction-correspondence-simulation (TRel™) Target
by simp
qed

lemma rel-includes- T Rel-modulo-preorder:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and TRel :: ("procT x 'procT) set
assumes transT: trans TRel
shows ((VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™))
= (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
proof (rule iffI, erule conjE)
assume V' T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
with transT show TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using trancl-id[of TRel]
by blast
next
assume A: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
hence VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by simp
moreover from transT A
have V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™*
using trancl-id[of TRel]
by blast
ultimately show (V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
N (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
by simp
qed

lemma (in encoding) WOC-wrt-preorder-iff-reduction-correspondence-simulation:
fixes TRel :: ("procT x 'procT) set
shows (weakly-operational-corresponding TRel N preorder TRel
A weak-reduction-correspondence-simulation TRel Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A weak-reduction-correspondence-simulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE, erule conjE)
assume A1: operational-complete TRel and A2: weakly-operational-sound TRel
and A3:preorder TRel and A4: weak-reduction-correspondence-simulation TRel Target
from A3 have A5: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
with A8 have TRel* = TRel
using trancl-id[of TRel] reficl-trancl[of TRel]
unfolding preorder-on-def refl-on-def

179

by auto
with A1 A2 have weakly-operational-corresponding (TRel*)
by simp
moreover from A4 A5 have weak-reduction-correspondence-simulation (TRel™) Target
by simp
ultimately
have weak-reduction-correspondence-simulation (indRelRTPO TRel) (STCal Source Target)
using WOC-iff-indRelRTPO-is-reduction-correspondence-simulation[where TRel=TRel]
by blast
moreover have V5. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover
have TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € indRelRTPO TRel}
proof auto
fix TP TQ
assume (TP, TQ) € TRel
thus TargetTerm TP <[-JRT<TRel> TargetTerm TQ
by (rule indRelRTPO.target)
next
fix TP TQ
assume TargetTerm TP <[-JRT<TRel> TargetTerm TQ
with A3 show (TP, TQ) € TRel
using indRelRTPO-to-TRel(4)[where TRel=TRel| trancl-id[of TRel]
unfolding preorder-on-def
by blast
qged
moreover from A8
have VS T. (SourceTerm S, TargetTerm T) € indRelRTPO TRel — ([S], T) € TRel™
using indRelRTPO-to-TRel(2)[where TRel=TRel| reflcl-trancl[of TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel)
unfolding preorder-on-def refi-on-def
by blast
with A3 have VS T. (SourceTerm S, TargetTerm T) € indRelRTPO TRel — ([S], T) € TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
moreover from A3 have refl (indRelRTPO TRel)
using indRelRTPO-refl[of TRel]
unfolding preorder-on-def
by simp
moreover have trans (indRelRTPO TRel)
using indRelRTPO.trans
unfolding trans-def
by blast
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A weak-reduction-correspondence-simulation Rel (STCal Source Target)
unfolding preorder-on-def
by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A weak-reduction-correspondence-simulation Rel (STCal Source Target)
from this obtain Rel where B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel and B4: preorder Rel
and B5: weak-reduction-correspondence-simulation Rel (STCal Source Target)

180

by blast
from B2 B/ have B6: refl TRel
unfolding preorder-on-def refl-on-def
by blast
from B2 B/ have B7: trans TRel
unfolding trans-def preorder-on-def
by blast
hence BS: TRelt = TRel
using trancl-id[of TRel]
by simp
with B6 have TRel* = TRel
using reflcl-trancl[of TRel]
unfolding refi-on-def
by blast
with B! B3 B5 have weakly-operational-corresponding TRel
using weak-reduction-correspondence-simulation-impl-WOC|where Rel=Rel and TRel=TRel]
by simp
moreover from B6 B7 have preorder TRel
unfolding preorder-on-def
by blast
moreover from B2 B5 B7 B8 have weak-reduction-correspondence-simulation TRel Target
using rel-includes-TRel-modulo-preorder[where Rel=Rel and TRel=TRel)
rel-with-target-impl-trans C- T Rel-is-weak-reduction-correspondence-simulation|where
Rel=Rel and TRel=TRel|
by fast
ultimately show weakly-operational-corresponding TRel A preorder TRel
A weak-reduction-correspondence-simulation TRel Target
by blast
qed

8.6 (Strong) Operational Correspondence vs (Strong) Bisimilarity

An encoding is operational corresponding w.r.t a weak bisimulation on target terms TRel iff there
exists a relation, like indRelRTPO, that relates at least all source terms and their literal translations,
includes TRel, and is a weak bisimulation. Thus this variant of operational correspondence ensures
that source terms and their translations are weak bisimilar.

lemma (in encoding) OC-iff-indRelRTPO-is-weak-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
shows (operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target)
= weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume ocorr: operational-corresponding (TRel*)
and bisim: weak-reduction-bisimulation (TRel™) Target
hence weak-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel=TRel]
by simp
moreover from bisim have weak-reduction-simulation ((TRel*)™1) Target
using weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=TRel™]
by simp
with ocorr have weak-reduction-simulation ((indRelRTPO TRel)~™') (STCal Source Target)
using OSou-iff-inverse-of-indRelRTP O-is-weak-reduction-simulation[where TRel=TRel]
by simp
ultimately show weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using weak-reduction-simulations-impl-bisimulation[where Rel=indRelRTPO TRel|
by simp
next
assume bisim: weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
hence operational-complete (TRel*) N\ weak-reduction-simulation (TRelt) Target
using OCom-iff-indRelRTPO-is-weak-reduction-simulation[where TRel=TRel]

181

by simp
moreover from bisim
have weak-reduction-simulation ((indRelRTPO TRel)~1) (STCal Source Target)
using weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=indRelRTPO TRel]
by simp
hence operational-sound (TRel*) A weak-reduction-simulation ((TRel™)™1) Target
using OSou-iff-inverse-of-indRelRT P O-is-weak-reduction-simulation[where TRel=TRel|
by simp
ultimately show operational-corresponding (TRel*) A weak-reduction-bisimulation (TRel™) Target
using weak-reduction-simulations-impl-bisimulation[where Rel=TRel™]
by simp
qed

lemma (in encoding) OC-iff-weak-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
shows (operational-corresponding (TRel*) A weak-reduction-bisimulation (TRel™) Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have V11 T2. (T1, T2) € TRel — TargetTerm T1 S[-JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 S[JRT<TRel> TargetTerm T2 —s (T1, T2) € TRelt
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by simp
moreover have V.S T. SourceTerm S S[-JRT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume operational-corresponding (TRel*)
and weak-reduction-bisimulation (TRel™) Target
hence weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation|where TRel=TRel)
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
AN (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
N weak-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3: YV T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
and A4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A5: weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-complete (TRel*)
A weak-reduction-simulation (TRel™) Target
using OCom-iff-weak-reduction-simulation[where TRel=TRel]
by blast
moreover from A5 have weak-reduction-simulation (Rel™1) (STCal Source Target)
using weak-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel]

182

by simp
with A1 A2 A3 A4 have operational-sound (TRel*)
A weak-reduction-simulation ((TRel™)™1) Target
using OSou-iff-weak-reduction-simulation[where TRel=TRel]
by blast
ultimately show operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
using weak-reduction-simulations-impl-bisimulation[where Rel=TRel™]
by simp
qed

lemma (in encoding) OC-wrt-preorder-iff-weak-reduction-bisimulation:
fixes TRel :: ('procT x 'procT) set
shows (operational-corresponding TRel N preorder TRel
A weak-reduction-bisimulation TRel Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
N weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE, erule conjF)
assume A1: operational-complete TRel and A2: operational-sound TRel
and A3:preorder TRel and A4: weak-reduction-bisimulation TRel Target
from A3 have A5: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
with A8 have TRel* = TRel
using reflcl-trancl[of TRel]
unfolding preorder-on-def refl-on-def
by blast
with A1 A2 have operational-corresponding (TRel*)
by simp
moreover from A4 A5 have weak-reduction-bisimulation (TRelt) Target
by simp
ultimately
have weak-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation|where TRel=TRel]
by blast
moreover have V5. SourceTerm S S[-JRT<TRel> TargetTerm ([S])
by (simp add: indRelRTPO.encR)
moreover
have TRel = {(T1, T2). TargetTerm T1 S[-JRT<TRel> TargetTerm T2}
proof auto
fix TP TQ
assume (TP, TQ) € TRel
thus TargetTerm TP S[JRT<TRel> TargetTerm TQ
by (rule indRelRTPO.target)
next
fix TP TQ
assume TargetTerm TP <[-JRT<TRel> TargetTerm TQ
with A3 show (TP, TQ) € TRel
using indRelRTPO-to-TRel(4)[where TRel=TRel| trancl-id[of TRel]
unfolding preorder-on-def
by blast
qed
moreover from A3
have VS T. SourceTerm S <[-|RT<TRel> TargetTerm T — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel| reficl-trancl[of TRel)
trans-closure-of-TRel-refl-cond[where TRel=TRel)
unfolding preorder-on-def refl-on-def

183

by auto
with A% have V.S T. SourceTerm S S[JRT<TRel> TargetTerm T — ([S], T) € TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
moreover from A3 have refl (indRelRTPO TRel)
unfolding preorder-on-def
by (simp add: indRelRTPO-refl)
moreover have trans (indRelRTPO TRel)
using indRelRTPO.trans
unfolding trans-def
by blast
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A weak-reduction-bisimulation Rel (STCal Source Target)
unfolding preorder-on-def
by blast
next
assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A weak-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel and B4: preorder Rel
and B5: weak-reduction-bisimulation Rel (STCal Source Target)
by blast
from B2 B/ have B6: refl TRel
unfolding preorder-on-def refi-on-def
by blast
from B2 B/ have B7: trans TRel
unfolding trans-def preorder-on-def
by blast
hence BS: TRelt = TRel
using trancl-id[of TRel]
by simp
with B6 have B9: TRel* = TRel
using reficl-trancl[of TRel]
unfolding refi-on-def
by blast
with B3 have VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
by simp
moreover from B2 B8 have VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
by auto
ultimately have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
using BI B5
by blast
hence operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
using OC-iff-weak-reduction-bisimulation|where TRel=TRel]
by simp
with B8 B9 have operational-corresponding TRel N weak-reduction-bisimulation TRel Target
by simp

184

moreover from B6 B7 have preorder TRel
unfolding preorder-on-def
by blast
ultimately show operational-corresponding TRel A preorder TRel
A weak-reduction-bisimulation TRel Target
by blast
qed

lemma (in encoding) OC-wrt-equivalence-iff-indRelTEQ-weak-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes eqT: equivalence TRel
shows (operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target) <—
weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume oc: operational-corresponding TRel and bisimT: weak-reduction-bisimulation TRel Target
show weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
proof auto
fix P Q P’
assume P ~[-]T<TRel> @ and P ——(STCal Source Target)x P’
thus 3 Q. Q@ —(STCal Source Target)x Q' N P’ ~[]T<TRel> Q'
proof (induct arbitrary: P’)
case (encR S)
assume SourceTerm S —(STCal Source Target)x P’
from this obtain S’ where A1: S —Sourcex S’ and A2: S’ €S P’
by (auto simp add: STCal-steps(1))
from A1 oc obtain T where A3: [S] — Targetx T and A4: ([S'], T) € TRel
by blast
from A3 have TargetTerm ([S]) —(STCal Source Target)* (TargetTerm T)
by (simp add: STCal-steps(2))
moreover have P’ ~[-|T<TRel> TargetTerm T
proof —
from A2 have P’ ~[-]T<TRel> TargetTerm ([S'])
by (simp add: indRelTEQ.encR)
moreover from A4 have TargetTerm ([S']) ~[]T<TRel> TargetTerm T
by (rule indRelTEQ.target)
ultimately show P’ ~[-]T<TRel> TargetTerm T
by (rule indRelTEQ.trans)
qed
ultimately show 3 Q'. TargetTerm ([S]) — (ST Cal Source Target)x Q' A P’ ~[-]T<TRel> Q'
by blast
next
case (encL S)
assume TargetTerm ([S]) —(STCal Source Target)* P’
from this obtain T where BI: [S] — Target« T and B2: T €T P’
by (auto simp add: STCal-steps(2))
from BI oc obtain S’ where B3: S ——Sourcex S’ and B4: ([S'], T) € TRel
by blast
from B3 have SourceTerm S ——(STCal Source Target)x (SourceTerm S”)
by (simp add: STCal-steps(1))
moreover have P’ ~[-] T<TRel> SourceTerm S’
proof —
from B/ eqT have (T, [S]) € TRel
unfolding equiv-def sym-def
by blast
with B2 have P’ ~[-]T<TRel> TargetTerm ([S])
by (simp add: indRelTEQ.target)
moreover have TargetTerm ([S']) ~[-]T<TRel> SourceTerm S’
by (rule indRelTEQ.encL)
ultimately show P’ ~[-]T<TRel> SourceTerm S’
by (rule indRelTEQ.trans)
qed

185

ultimately show 3 Q’. SourceTerm S ——(STCal Source Target)x Q' AN P’ ~[-]T<TRel> Q'
by blast
next
case (target T1 T2)
assume TargetTerm T1 ——(STCal Source Target)x P’
from this obtain T1’ where C1: T1 —— Targetx T1'and C2: T1' €T P’
by (auto simp add: STCal-steps(2))
assume (11, T2) € TRel
with CT1 bisimT obtain T2’ where C3: T2 —— Targetx T2 and C/: (T1', T2') € TRel
by blast
from C% have TargetTerm T2 ——(STCal Source Target)* (TargetTerm T2')
by (simp add: STCal-steps(2))
moreover from C2 C4 have P’ ~[|T<TRel> TargetTerm T2’
by (simp add: indRel TEQ.target)
ultimately show 3 Q'. TargetTerm T2 —(STCal Source Target)x Q' N P’ ~[-]T<TRel> Q'
by blast
next
case (trans P Q R)
assume P ——(STCal Source Target)x P’
and AP’ P —(STCal Source Target)x P’
= 3Q" Q —(STCal Source Target)x Q' AN P’ ~[]T<TRel> Q'
from this obtain @’ where D1: Q ——(STCal Source Target)x Q' and D2: P’ ~[-]T<TRel> Q'
by blast
assume AQ’. Q —(STCal Source Target)x Q'
= 3R’ R —(STCal Source Target)x R’ A Q' ~[]T<TRel> R’
with DI obtain R’ where D8: R —(STCal Source Target)x R’ and D4: Q' ~[-]T<TRel> R’
by blast
from D2 D4 have P’ ~[-|T<TRel> R’
by (rule indRelTEQ.trans)
with D3 show 3R’ R ——(STCal Source Target)x R' N P’ ~[-]T<TRel> R’
by blast
qed
next
fix P Q Q'
assume P ~[]T<TRel> Q and Q —(STCal Source Target)x Q'
thus 3 P’. P —(STCal Source Target)x P' A P’ ~[-]T<TRel> Q'
proof (induct arbitrary: Q)
case (encR S)
assume TargetTerm ([S]) —(STCal Source Target)x Q'
from this obtain T where EI: [S] — Targetx T and E2: T €T Q'
by (auto simp add: STCal-steps(2))
from E1 oc obtain S’ where E3: S ——Sourcex S’ and E4: ([S'], T) € TRel
by blast
from E3 have SourceTerm S ——(STCal Source Target)x (SourceTerm S’)
by (simp add: STCal-steps(1))
moreover have SourceTerm S’ ~[-]T<TRel> Q'
proof —
have SourceTerm S’ ~[-]T<TRel> TargetTerm ([S'])
by (rule indRelTEQ.encR)
moreover from E2 E/ have TargetTerm ([S']) ~[-]T<TRel> Q'
by (simp add: indRelTEQ.target)
ultimately show SourceTerm S’ ~[-]T<TRel> Q'
by (rule indRelTEQ.trans)
qed
ultimately show 3 P’. SourceTerm S ——(STCal Source Target)x P’ N P’ ~[-]T<TRel> Q'
by blast
next
case (encL S)
assume SourceTerm S —(STCal Source Target)x Q'
from this obtain S’ where F1: S — Sourcex S’ and F2: §' €S Q'
by (auto simp add: STCal-steps(1))

186

from F'1 oc obtain T where F3: [S] — Targetx T and F4: ([S], T) € TRel
by blast
from F3 have TargetTerm ([S]) —(STCal Source Target)* (TargetTerm T)
by (simp add: STCal-steps(2))
moreover have TargetTerm T ~[-]T<TRel> Q'
proof —
from F4 eqT have (T, [S]) € TRel
unfolding equiv-def sym-def
by blast
hence TargetTerm T ~[-]T<TRel> TargetTerm ([S'])
by (rule indRelTEQ.target)
moreover from F2 have TargetTerm ([S']) ~[-]T<TRel> Q'
by (simp add: indRelTEQ.encL)
ultimately show TargetTerm T ~[-]T<TRel> Q’
by (rule indRelTEQ.trans)
qed
ultimately show 3 P’. TargetTerm ([S]) —(STCal Source Target)x P’ AN P’ ~[-]T<TRel> Q'
by blast
next
case (target T1 T2)
assume TargetTerm T2 ——(STCal Source Target)x Q'
from this obtain T2’ where G1: T2 — Targetx T2' and G2: T2' €T Q'
by (auto simp add: STCal-steps(2))
assume (11, T2) € TRel
with G1 bisimT obtain T1' where G3: T1 — Targetx T1' and G4: (T1', T2') € TRel
by blast
from G3 have TargetTerm T1 ——(STCal Source Target)x (TargetTerm T1)
by (simp add: STCal-steps(2))
moreover from G2 G/ have TargetTerm T1' ~[-]T<TRel> Q'
by (simp add: indRel TEQ.target)
ultimately show 3 P’. TargetTerm T1 ——(STCal Source Target)x P’ A P’ ~[-]T<TRel> Q'
by blast
next
case (trans P Q@ R R
assume R ——(STCal Source Target)x R’
and AR’ R ——(STCal Source Target)x R’
= 3 Q. Q —(STCal Source Target)x Q' N Q' ~[]T<TRel> R’
from this obtain Q' where HI: @ ——(STCal Source Target)x Q' and H2: Q' ~[]T<TRel> R’
by blast
assume AQ’. Q —(STCal Source Target)x Q'
= 3P’ P ——(STCal Source Target)x P' N P’ ~[-]T<TRel> Q'
with H1 obtain P’ where H3: P ——(STCal Source Target)x P’ and Hj: P’ ~[-]T<TRel> Q'
by blast
from Hj H2 have P’ ~[-]T<TRel> R’
by (rule indRelTEQ.trans)
with H3 show 3 P’. P ——(STCal Source Target)x P' A P' ~[-]T<TRel> R’
by blast
qed
qed
next
assume bisim: weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
have operational-corresponding TRel
proof auto
fix § 5’
have SourceTerm S ~[-]T<TRel> TargetTerm ([S])
by (rule indRelTEQ.encR)
moreover assume S —sSourcex S’
hence SourceTerm S ——(STCal Source Target)* (SourceTerm S’)
by (simp add: STCal-steps(1))
ultimately obtain Q' where I1: TargetTerm ([S]) —(STCal Source Target)* Q'
and I12: SourceTerm S’ ~[-|T<TRel> Q'

187

using bisim
by blast
from /1 obtain T where I3: [S] — Targetx T and Ij: T €T Q’
by (auto simp add: STCal-steps(2))
from eqT have TRel* = TRel
using reficl-trancl[of TRel| trancl-id[of TRel]
unfolding equiv-def refl-on-def
by auto
with 72 I/ have ([S7], T) € TRel
using indRelTEQ-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel|
by simp
with 13 show 3 T. [S] — Targetx T A ([S'], T) € TRel
by blast
next
fix ST
have SourceTerm S ~[-]T<TRel> TargetTerm ([S])
by (rule indRelTEQ.encR)
moreover assume [S] — Targetx T
hence TargetTerm ([S]) —(STCal Source Target)x (TargetTerm T)
by (simp add: STCal-steps(2))
ultimately obtain Q' where JI: SourceTerm S ——(STCal Source Target)x Q'
and J2: Q' ~[]T<TRel> TargetTerm T
using bisim
by blast
from JI obtain S’ where J3: S ——Sourcex S’ and J4: S’ €S Q'
by (auto simp add: STCal-steps(1))
from eqT have TRel* = TRel
using reficl-trancl[of TRel] trancl-id[of TRel
unfolding equiv-def refl-on-def
by auto
with J2 J/ have ([S], T) € TRel
using indRelTEQ-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by blast
with J3 show 35'. S —Sourcex S’ A ([S'], T) € TRel
by blast
qged
moreover have weak-reduction-bisimulation TRel Target
proof —
from eqT have TRel* = TRel
using reflcl-trancl[of TRel| trancl-id[of TRel]
unfolding equiv-def refi-on-def
by auto
with bisim show weak-reduction-bisimulation TRel Target
using indRelTEQ-impl-TRel-is-weak-reduction-bisimulation[where TRel=TRel]
by simp
qed
ultimately show operational-corresponding TRel N weak-reduction-bisimulation TRel Target
by simp
qed

lemma (in encoding) OC-wrt-equivalence-iff-weak-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes eqT: equivalence TRel
shows (operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target) <— (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel N\ weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
assume oc: operational-corresponding TRel and bisimT: weak-reduction-bisimulation TRel Target

188

from eqT have rt: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding equiv-def refl-on-def
by auto
have V S. SourceTerm S ~[-]T<TRel> TargetTerm ([S]) A TargetTerm ([S]) ~[]T<TRel> SourceTerm S
by (simp add: indRelTEQ.encR indRelTEQ.encL)
moreover from 7t have TRel = {(T1, T2). TargetTerm T1 ~[-]T<TRel> TargetTerm T2}
using indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by (auto simp add: indRelTEQ.target)
moreover have trans (indRelTEQ TRel)
using indRelTEQ.transjwhere TRel=TRel]
unfolding trans-def
by blast
moreover from eqT oc bisimT
have weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
using OC-wrt-equivalence-iff-indRel TEQ-weak-reduction-bisimulation[where TRel=TRel]
by blast
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
A weak-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume J Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
N weak-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel
and A2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} and A3: trans Rel
and A/: weak-reduction-bisimulation Rel (STCal Source Target)
by blast
have operational-corresponding TRel
proof auto
fix § 5’
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume S —Sourcex S’
hence SourceTerm S ——(STCal Source Target)* (SourceTerm S')
by (simp add: STCal-steps(1))
ultimately obtain Q' where BI: TargetTerm ([S]) —(STCal Source Target)x Q'
and B2: (SourceTerm S', Q') € Rel
using A/
by blast
from B! obtain T where B3: [S] —Targetx T and B4: T €T Q'
by (auto simp add: STCal-steps(2))
from A1 have (TargetTerm ([S']), SourceTerm S’) € Rel
by simp
with B2 A8 have (TargetTerm ([S']), Q') € Rel
unfolding trans-def
by blast
with Bf A2 have ([S], T) € TRel
by simp
with B3 show 3 T. [S] — Targetx T A ([S'], T) € TRel
by blast
next
fix ST
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume [S] — Targetx T

189

hence TargetTerm ([S]) —(STCal Source Target)x (TargetTerm T)
by (simp add: STCal-steps(2))
ultimately obtain P’ where C1: SourceTerm S +——(STCal Source Target)x P’
and C2: (P', TargetTerm T) € Rel
using A4
by blast
from C1 obtain S’ where C3: S ——Sourcex S'and C4: S’ €S P’
by (auto simp add: STCal-steps(1))
from A1 C/ have (TargetTerm ([S']), P') € Rel
by simp
from A3 this C2 have (TargetTerm ([S']), TargetTerm T) € Rel
unfolding trans-def
by blast
with A2 have ([S'], T) € TRel
by simp
with C3% show 35’ § —Sourcex S’ A ([S'], T) € TRel
by blast
qed
moreover have weak-reduction-bisimulation TRel Target
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with A2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP —— Targetx TP’
hence TargetTerm TP ——(STCal Source Target)x (TargetTerm TP’)
by (simp add: STCal-steps(2))
ultimately obtain Q' where D1: TargetTerm TQ ——(STCal Source Target)x Q'
and D2: (TargetTerm TP', Q') € Rel
using A4
by blast
from DI obtain TQ' where D3: TQ —— Targetx TQ' and Dj: TQ' €T Q'
by (auto simp add: STCal-steps(2))
from A2 D2 D/ have (TP, TQ') € TRel
by simp
with D3 show 3 TQ'. TQ — Targetx TQ' N (TP', TQ') € TRel
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with A2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 1TQ) — Targetx TQ'
hence TargetTerm TQ ——(STCal Source Target)x (TargetTerm TQ')
by (simp add: STCal-steps(2))
ultimately obtain P’ where E1: TargetTerm TP ——(STCal Source Target)x P’
and E2: (P', TargetTerm TQ') € Rel
using A4
by blast
from FE1 obtain TP’ where E3: TP —— Targetx TP’ and E/: TP' €T P’
by (auto simp add: STCal-steps(2))
from A2 E2 E} have (TP', TQ') € TRel
by simp
with F3 show 3 TP’. TP —— Targetx TP’ A (TP’, TQ') € TRel
by blast
qed
ultimately show operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target
by simp
qed

An encoding is strong operational corresponding w.r.t a strong bisimulation on target terms TRel iff

190

there exists a relation, like indRelRTPO, that relates at least all source terms and their literal trans-
lations, includes TRel, and is a strong bisimulation. Thus this variant of operational correspondence
ensures that source terms and their translations are strong bisimilar.

lemma (in encoding) SOC-iff-indRelRTP O-is-strong-reduction-bisimulation:
fixes TRel :: ('procT x 'procT) set
shows (strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRelt) Target)
= strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume ocorr: strongly-operational-corresponding (TRel*)
and bisim: strong-reduction-bisimulation (TRel™) Target
hence strong-reduction-simulation (indRelRTPO TRel) (STCal Source Target)
using SOCom-iff-indRelRTP O-is-strong-reduction-simulation[where TRel=TRel]
by simp
moreover from bisim have strong-reduction-simulation ((TRel™)~1) Target
using strong-reduction-bisimulations-impl-inverse-is-simulation[where Rel=TRel™]
by simp
with ocorr
have strong-reduction-simulation ((indRelRTPO TRel)~1) (STCal Source Target)
using SOSou-iff-inverse-of-indRelRTP O-is-strong-reduction-simulation|[where TRel=TRel]
by simp
ultimately show strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using strong-reduction-simulations-impl-bisimulation[where Rel=indRelRTPO TRel]
by simp
next
assume bisim: strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
hence strongly-operational-complete (TRel*) A strong-reduction-simulation (TRel™) Target
using SOCom-iff-indRelRTP O-is-strong-reduction-simulation[where TRel=TRel]
by simp
moreover from bisim
have strong-reduction-simulation ((indRelRTPO TRel)~') (STCal Source Target)
using strong-reduction-bisimulations-impl-inverse-is-simulation[where Rel=indRelRTPO TRel]
by simp
hence strongly-operational-sound (TRel*) A strong-reduction-simulation ((TRel™)™') Target
using SOSou-iff-inverse-of-indRelRTP O-is-strong-reduction-simulation[where TRel=TRel|
by simp
ultimately show strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRel™) Target
using strong-reduction-simulations-impl-bisimulation[where Rel=TRel"]
by simp
qed

lemma (in encoding) SOC-iff-strong-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
shows (strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRelt) Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
have V S. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have VT1 T2. (T1, T2) € TRel — TargetTerm T1 S[JRT<TRel> TargetTerm T2
by (simp add: indRelRTPO.target)
moreover have V T1 T2. TargetTerm T1 <[JRT<TRel> TargetTerm T2 — (T1, T2) € TRel™
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by simp
moreover have VS T. SourceTerm S S[-JRT<TRel> TargetTerm T — ([S], T) € TRel*

191

using indRelRTPO-to-TRel(2)[where TRel=TRel] trans-closure-of-TRel-refl-cond
by simp
moreover assume strongly-operational-corresponding (TRel*)
and strong-reduction-bisimulation (TRel™) Target
hence strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using SOC-iff-indRelRTP O-is-strong-reduction-bisimulation[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and A3:VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
and A4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and A5: strong-reduction-bisimulation Rel (STCal Source Target)
by blast
hence strongly-operational-complete (TRel*)
A strong-reduction-simulation (TRel™) Target
using SOCom-iff-strong-reduction-simulation[where TRel=TRel]
by blast
moreover from A5 have strong-reduction-simulation (Rel™') (STCal Source Target)
using strong-reduction-bisimulations-impl-inverse-is-simulation[where Rel=Rel)
by simp
with A1 A2 A8 AJ have strongly-operational-sound (TRel*)
A strong-reduction-simulation ((TRel™)~!) Target
using SOSou-iff-strong-reduction-simulation|[where TRel=TRel]
by blast
ultimately show strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRel™) Target
using strong-reduction-simulations-impl-bisimulation[where Rel=TRel™]
by simp
qed

lemma (in encoding) SOC-wrt-preorder-iff-strong-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
shows (strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE, erule conjE)
assume A1: strongly-operational-complete TRel and A2: strongly-operational-sound TRel
and A3:preorder TRel and A4: strong-reduction-bisimulation TRel Target
from A3 have A5: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
with A% have TRel* = TRel
using reflcl-trancl[of TRel]
unfolding preorder-on-def refl-on-def

192

by blast
with A1 A2 have strongly-operational-corresponding (TRel*)
by simp
moreover from A4 A5 have strong-reduction-bisimulation (TRel™) Target
by simp
ultimately
have strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel)
by blast
moreover have V5. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover
have TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € indRelRTPO TRel}
proof auto
fix TP TQ
assume (TP, TQ) € TRel
thus TargetTerm TP <[-JRT<TRel> TargetTerm TQ
by (rule indRelRTPO.target)
next
fix TP TQ
assume TargetTerm TP <[-JRT<TRel> TargetTerm TQ
with A3 show (TP, TQ) € TRel
using indRelRTPO-to-TRel(4)[where TRel=TRel| trancl-id[of TRel]
unfolding preorder-on-def
by blast
qged
moreover from A8
have VS T. (SourceTerm S, TargetTerm T) € indRelRTPO TRel — ([S], T) € TRel™
using indRelRTPO-to-TRel(2)[where TRel=TRel| reflcl-trancl[of TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel)
unfolding preorder-on-def refi-on-def
by blast
with A3 have VS T. (SourceTerm S, TargetTerm T) € indRelRTPO TRel — ([S], T) € TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
moreover from A3 have refl (indRelRTPO TRel)
unfolding preorder-on-def
by (simp add: indRelRTPO-refl)
moreover have trans (indRelRTPO TRel)
using indRelRTPO.trans
unfolding trans-def
by blast
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
unfolding preorder-on-def
by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A preorder Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel and B4: preorder Rel
and B5: strong-reduction-bisimulation Rel (STCal Source Target)
by blast

193

from B2 B/ have B6: refl TRel
unfolding preorder-on-def refl-on-def
by blast
from B2 Bj have B7: trans TRel
unfolding trans-def preorder-on-def
by blast
hence BS: TRelt = TRel
by (rule trancl-id)
with B6 have B9: TRel* = TRel
using reficl-trancl[of TRel]
unfolding refi-on-def
by blast
with B3 have VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
by simp
moreover from B2 B8 have V T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
by auto
ultimately have 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(YT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-bisimulation Rel (STCal Source Target)
using B! B5
by blast
hence strongly-operational-corresponding (TRel*) A strong-reduction-bisimulation (TRel™) Target
using SOC-iff-strong-reduction-bisimulation[where TRel=TRel]
by simp
with B§ B9
have strongly-operational-corresponding TRel N strong-reduction-bisimulation TRel Target
by simp
moreover from B6 B7 have preorder TRel
unfolding preorder-on-def
by blast
ultimately show strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
by blast
qed

lemma (in encoding) SOC-wrt-TRel-iff-strong-reduction-bisimulation:
shows (3 TRel. strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRel™) Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel~)
A strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffT)
assume 3 TRel. strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRel™) Target
from this obtain TRel where strongly-operational-corresponding (TRel*)
and strong-reduction-bisimulation (TRel™) Target
by blast
hence strong-reduction-bisimulation (indRelRTPO TRel) (STCal Source Target)
using SOC-iff-indRelRTP O-is-strong-reduction-bisimulation[where TRel=TRel]
by simp
moreover have VS. (SourceTerm S, TargetTerm ([S])) € indRelRTPO TRel
by (simp add: indRelRTPO.encR)
moreover have VS T. (SourceTerm S, TargetTerm T) € (indRelRTPO TRel)
— (TargetTerm ([S]), TargetTerm T) € (indRelRTPO TRel)=
using indRelRTPO-relates-source-target[where TRel=TRel]
by simp
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)

194

AN (VS T. (SourceTerm S, TargetTerm T) € Rel — (TargetTerm ([S]), TargetTerm T) € Rel~)
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — (TargetTerm ([S]), TargetTerm T) € Rel™)
A strong-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: VS T. (SourceTerm S, TargetTerm T) € Rel
— (TargetTerm ([S]), TargetTerm T) € Rel~
and AS3: strong-reduction-bisimulation Rel (STCal Source Target)
by blast
from A2 obtain TRel where VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and V' T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™*
and VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
using target-relation-from-source-target-relation[where Rel=Rel]
by blast
with A1 A3 have JRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(NYT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
hence strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRelt) Target
using SOC-iff-strong-reduction-bisimulation[where TRel=TRel]
by simp
thus 3 TRel. strongly-operational-corresponding (TRel*)
A strong-reduction-bisimulation (TRel™) Target
by blast
qed

lemma (in encoding) SOC-wrt-equivalence-iff-indRel TEQ-strong-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes eqT': equivalence TRel
shows (strongly-operational-corresponding TRel N strong-reduction-bisimulation TRel Target)
+— strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
proof (rule iffI, erule conjE)
assume oc: strongly-operational-corresponding TRel
and bisimT': strong-reduction-bisimulation TRel Target
show strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
proof auto
fix PQ P
assume P ~[-]T<TRel> @ and P ——(STCal Source Target) P’
thus 3 Q. Q@ —(STCal Source Target) Q' N P’ ~[-]T<TRel> Q'
proof (induct arbitrary: P’
case (encR)
assume SourceTerm S —(STCal Source Target) P’
from this obtain S’ where A1: S ——Source S" and A2: S’ €S P’
by (auto simp add: STCal-step(1))
from A1 oc obtain T where A3: [S] — Target T and A4: ([S], T) € TRel
by blast
from A3 have TargetTerm ([S]) —(STCal Source Target) (TargetTerm T)
by (simp add: STCal-step(2))
moreover have P’ ~[-]T<TRel> TargetTerm T
proof —
from A2 have P’ ~[-]T<TRel> TargetTerm ([ST])
by (simp add: indRelTEQ.encR)
moreover from A4 have TargetTerm ([S']) ~[-]T<TRel> TargetTerm T
by (rule indRelTEQ.target)
ultimately show P’ ~[-]T<TRel> TargetTerm T

195

by (rule indRelTEQ.trans)
qed
ultimately show 3 Q'. TargetTerm ([S]) —(STCal Source Target) Q' A P’ ~[-]T<TRel> Q'
by blast
next
case (encL S)
assume TargetTerm ([S]) —(STCal Source Target) P’
from this obtain T where BI: [S] — Target T and B2: T €T P’
by (auto simp add: STCal-step(2))
from BI oc obtain S’ where B3: S ——Source S’ and B/: ([S'], T) € TRel
by blast
from B3 have SourceTerm S ——(STCal Source Target) (SourceTerm S')
by (simp add: STCal-step(1))
moreover have P’ ~[-| T<TRel> SourceTerm S’
proof —
from B/ eqT have (T, [S]) € TRel
unfolding equiv-def sym-def
by blast
with B2 have P’ ~[-]T<TRel> TargetTerm ([S])
by (simp add: indRel TEQ.target)
moreover have TargetTerm ([S']) ~[-]T<TRel> SourceTerm S’
by (rule indRelTEQ.encL)
ultimately show P’ ~[-]T<TRel> SourceTerm S’
by (rule indRelTEQ.trans)
qed
ultimately show 3 Q'. SourceTerm S +——(STCal Source Target) Q' AN P’ ~[-]T<TRel> Q'
by blast
next
case (target T1 T2)
assume TargetTerm T1 —(STCal Source Target) P’
from this obtain T1’ where C1: T1 —— Target T1' and C2: T1' €T P’
by (auto simp add: STCal-step(2))
assume (T1, T2) € TRel
with C1 bisimT obtain T2’ where C3: T2 — Target T2' and C4: (T1', T2') € TRel
by blast
from C3 have TargetTerm T2 ——(STCal Source Target) (TargetTerm T2')
by (simp add: STCal-step(2))
moreover from C2 C4 have P’ ~[-|T<TRel> TargetTerm T2’
by (simp add: indRelTEQ.target)
ultimately show 3 Q'. TargetTerm T2 ——(STCal Source Target) Q' N P’ ~[-]T<TRel> Q'
by blast
next
case (trans P Q R)
assume P ——(STCal Source Target) P’
and AP’ P —(STCal Source Target) P’
= 3 Q. Q —(STCal Source Target) Q' N P’ ~[-]T<TRel> Q'

from this obtain Q' where DI: Q ——(STCal Source Target) @’ and D2: P’ ~[-]T<TRel> Q'

by blast
assume A\Q'. Q —(STCal Source Target) Q'
= JR’. R ——(STCal Source Target) R' N Q' ~[-]T<TRel> R’
with DI obtain R’ where D8: R ——(STCal Source Target) R’ and Dj: Q' ~[-]T<TRel> R’
by blast
from D2 Dj have P’ ~[|T<TRel> R’
by (rule indRelTEQ.trans)
with D8 show 3R’ R ——(STCal Source Target) R’ A P' ~[-]T<TRel> R’
by blast
qed
next
fix P Q Q'
assume P ~[]T<TRel> @ and Q —(STCal Source Target) Q'
thus 3P". P —(STCal Source Target) P' N P’ ~[-]T<TRel> Q'

196

proof (induct arbitrary: Q)
case (encR S)
assume TargetTerm ([S]) —(STCal Source Target) Q'
from this obtain T where EI: [S] — Target T and E2: T €T Q'
by (auto simp add: STCal-step(2))
from E1 oc obtain S’ where E3: S ——Source S" and E4: ([S'], T) € TRel
by blast
from E$ have SourceTerm S ——(STCal Source Target) (SourceTerm S’)
by (simp add: STCal-step(1))
moreover have SourceTerm S’ ~[-]T<TRel> Q'
proof —
have SourceTerm S’ ~[-]T<TRel> TargetTerm ([S'])
by (rule indRelTEQ.encR)
moreover from E2 E/ have TargetTerm ([S]) ~[]T<TRel> Q'
by (simp add: indRelTEQ.target)
ultimately show SourceTerm S’ ~[-]T<TRel> Q'
by (rule indRelTEQ.trans)
qed
ultimately show 3 P’. SourceTerm S ——(STCal Source Target) P’ N P’ ~[-]T<TRel> Q'
by blast
next
case (encL S)
assume SourceTerm S —(STCal Source Target) Q'
from this obtain S’ where F1: S ——Source S’ and F2: S’ €S Q'
by (auto simp add: STCal-step(1))
from F1 oc obtain T where F3: [S] — Target T and F4: ([S'], T) € TRel
by blast
from F'3 have TargetTerm ([S]) —(STCal Source Target) (TargetTerm T')
by (simp add: STCal-step(2))
moreover have TargetTerm T ~[-]T<TRel> Q'
proof —
from Fj eqT have (T, [S']) € TRel
unfolding equiv-def sym-def
by blast
hence TargetTerm T ~[-]T<TRel> TargetTerm ([S'])
by (rule indRelTEQ.target)
moreover from F2 have TargetTerm ([S']) ~[-]T<TRel> Q'
by (simp add: indRelTEQ.encL)
ultimately show TargetTerm T ~[-]T<TRel> Q’
by (rule indRelTEQ.trans)
qed
ultimately show 3 P’. TargetTerm ([S]) —(STCal Source Target) P' AN P' ~[]T<TRel> Q'
by blast
next
case (target T1 T2)
assume TargetTerm T2 —(STCal Source Target) Q'
from this obtain T2’ where GI1: T2 —— Target T2 and G2: T2' €T Q’
by (auto simp add: STCal-step(2))
assume (T1, T2) € TRel
with G1 bisimT obtain T1’ where G3: T1 —Target T1' and G4: (T1', T2') € TRel
by blast
from G3 have TargetTerm T1 ——(STCal Source Target) (TargetTerm T1')
by (simp add: STCal-step(2))
moreover from G2 G4 have TargetTerm T1' ~[-]T<TRel> Q'
by (simp add: indRelTEQ.target)
ultimately show 3 P’. TargetTerm T1 ——(STCal Source Target) P’ AN P’ ~[-]T<TRel> Q'
by blast
next
case (trans P Q R R
assume R ——(STCal Source Target) R’
and AR’ R ——(STCal Source Target) R’

197

= 3 Q. Q —(STCal Source Target) Q' N Q' ~[-]T<TRel> R’
from this obtain Q' where HI: Q —(STCal Source Target) Q' and H2: Q' ~[-]T<TRel> R’
by blast
assume A Q' Q —(STCal Source Target) Q'
= 3P’ P ——(STCal Source Target) P' N P’ ~[]T<TRel> Q'
with HI obtain P’ where H3: P ——(STCal Source Target) P’ and H4: P' ~[-]T<TRel> Q'
by blast
from Hj H2 have P’ ~[-]T<TRel> R’
by (rule indRelTEQ.trans)
with H3 show 3 P’. P ——(STCal Source Target) P' N P! ~[]T<TRel> R’
by blast
qed
qed
next
assume bisim: strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
have strongly-operational-corresponding TRel
proof auto
fix § 5’
have SourceTerm S ~[-]T<TRel> TargetTerm ([S])
by (rule indRelTEQ.encR)
moreover assume S — Source S’
hence SourceTerm S ——(STCal Source Target) (SourceTerm S’)
by (simp add: STCal-step(1))
ultimately obtain Q' where I1: TargetTerm ([S]) —(STCal Source Target) Q'
and 12: SourceTerm S’ ~[-|T<TRel> Q'
using bisim
by blast
from 1 obtain T where 13: [S] — Target T and I4: T €T Q'
by (auto simp add: STCal-step(2))
from eqT have TRel* = TRel
using reflcl-trancl[of TRel| trancl-id[of TRel]
unfolding equiv-def refi-on-def
by auto
with 12 I have ([S'], T) € TRel
using indRelTEQ-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by simp
with I3 show 3 T. [S] —Target T A ([S], T) € TRel
by blast
next
fix ST
have SourceTerm S ~[-]T<TRel> TargetTerm ([S])
by (rule indRelTEQ.encR)
moreover assume [S] — Target T
hence TargetTerm ([S]) — (ST Cal Source Target) (TargetTerm T)
by (simp add: STCal-step(2))
ultimately obtain Q' where JI: SourceTerm S ——(STCal Source Target) Q'
and J2: Q' ~[]T<TRel> TargetTerm T
using bisim
by blast
from JI obtain S’ where J3: S —Source S’ and J4: S’ €S Q'
by (auto simp add: STCal-step(1))
from eqT have TRel* = TRel
using reficl-trancl[of TRel| trancl-id[of TRel]
unfolding equiv-def refl-on-def
by auto
with J2 J4 have ([S], T) € TRel
using indRelTEQ-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel|
by blast
with J3 show 35'. § ——Source S" A ([S'], T) € TRel

198

by blast
qed
moreover have strong-reduction-bisimulation TRel Target
proof —
from eqT have TRel* = TRel
using reficl-trancl[of TRel| trancl-id[of TRel]
unfolding equiv-def refl-on-def
by auto
with bisim show strong-reduction-bisimulation TRel Target
using indRelTEQ-impl-TRel-is-strong-reduction-bisimulation[where TRel=TRel)
by simp
qed
ultimately
show strongly-operational-corresponding TRel A strong-reduction-bisimulation TRel Target
by simp
qed

lemma (in encoding) SOC-wrt-equivalence-iff-strong-reduction-bisimulation:
fixes TRel :: ("procT x 'procT) set
assumes eqT": equivalence TRel
shows (strongly-operational-corresponding TRel N strong-reduction-bisimulation TRel Target)
<— (I Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel A strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE)
assume oc: strongly-operational-corresponding TRel
and bisimT: strong-reduction-bisimulation TRel Target
from eqT have rt: TRel* = TRel
using reflcl-trancl[of TRel] trancl-id[of TRel]
unfolding equiv-def refl-on-def
by auto
have V S. SourceTerm S ~[-]T<TRel> TargetTerm ([S]) A TargetTerm ([S]) ~[-]T<TRel> SourceTerm S
by (simp add: indRelTEQ.encR indRelTEQ.encL)
moreover from rt have TRel = {(T1, T2). TargetTerm T1 ~[-]T<TRel> TargetTerm T2}
using indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by (auto simp add: indRelTEQ.target)
moreover have trans (indRelTEQ TRel)
using indRelTEQ.trans[where TRel=TRel]
unfolding trans-def
by blast
moreover from eqT oc bisimT
have strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
using SOC-wrt-equivalence-iff-indRel TEQ-strong-reduction-bisimulation[where TRel=TRel]
by blast
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume J Rel. (V' S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel
and A2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} and A3: trans Rel
and A/: strong-reduction-bisimulation Rel (STCal Source Target)
by blast

199

have strongly-operational-corresponding TRel
proof auto
fix § 5’
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume S — Source S’
hence SourceTerm S ——(STCal Source Target) (SourceTerm S')
by (simp add: STCal-step(1))
ultimately obtain Q' where BI: TargetTerm ([S]) —(STCal Source Target) Q'
and B2: (SourceTerm S', Q') € Rel
using A4
by blast
from B! obtain T where B3: [S] —Target T and B/: T €T Q'
by (auto simp add: STCal-step(2))
from A1 have (TargetTerm ([S']), SourceTerm S’) € Rel
by simp
with B2 A8 have (TargetTerm ([S']), Q') € Rel
unfolding trans-def
by blast
with B/ A2 have ([S]], T) € TRel
by simp
with B3 show 3 T. [S] —Target T A ([S7], T) € TRel
by blast
next
fix ST
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover assume [S] — Target T
hence TargetTerm ([S]) — (ST Cal Source Target) (TargetTerm T)
by (simp add: STCal-step(2))
ultimately obtain P’ where C1: SourceTerm S ——(STCal Source Target) P’
and C2: (P’, TargetTerm T) € Rel
using A/
by blast
from C1 obtain S’ where C3: S ——Source S’ and C/: S’ €S P’
by (auto simp add: STCal-step(1))
from A1 Cj have (TargetTerm ([S’]), P') € Rel
by simp
from A3 this C2 have (TargetTerm ([S']), TargetTerm T) € Rel
unfolding trans-def
by blast
with A2 have ([S'], T) € TRel
by simp
with C3 show 35'. § —Source S' A ([S'], T) € TRel
by blast
qed
moreover have strong-reduction-bisimulation TRel Target
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with A2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP —— Target TP’
hence TargetTerm TP ——(STCal Source Target) (TargetTerm TP’)
by (simp add: STCal-step(2))
ultimately obtain Q' where D1: TargetTerm TQ ——(STCal Source Target) Q'
and D2: (TargetTerm TP', Q') € Rel
using A4
by blast
from DI obtain TQ' where D3: TQ —— Target TQ' and D4: TQ' €T Q'
by (auto simp add: STCal-step(2))

200

from A2 D2 Dj have (TP', TQ') € TRel
by simp
with D3 show 3 TQ'. TQ — Target TQ' A (TP, TQ") € TRel
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with A2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 1Q — Target TQ'
hence TargetTerm TQ ——(STCal Source Target) (TargetTerm TQ')
by (simp add: STCal-step(2))
ultimately obtain P’ where E1: TargetTerm TP ——(STCal Source Target) P’
and E2: (P’, TargetTerm TQ') € Rel
using A4
by blast
from FE1 obtain TP’ where E3: TP — Target TP' and E4: TP' €T P’
by (auto simp add: STCal-step(2))
from A2 E2 Ej have (TP’, TQ') € TRel
by simp
with F3 show 3 TP’'. TP —— Target TP’ A (TP', TQ') € TRel
by blast
qged
ultimately
show strongly-operational-corresponding TRel A strong-reduction-bisimulation TRel Target
by simp
qed

end

theory FullAbstraction
imports SourceTargetRelation

begin

9 Full Abstraction

An encoding is fully abstract w.r.t. some source term relation SRel and some target term relation
TRel if two source terms S1 and S2 form a pair (S1, S2) in SRel iff their literal translations form a
pair (enc S1, enc S2) in TRel.

abbreviation (in encoding) fully-abstract
: ("procS x 'procS) set = ('procT x 'procT) set = bool
where
fully-abstract SRel TRel =V S1 52. (S1, S2) € SRel «— ([S1], [S2]) € TRel

9.1 Trivial Full Abstraction Results
We start with some trivial full abstraction results. Each injective encoding is fully abstract w.r.t. to
the identity relation on the source and the identity relation on the target.

lemma (in encoding) inj-enc-is-fully-abstract-wrt-identities:
assumes injectivity: ¥V .S1 S2. [S1] = [S2] — S1 = 52
shows fully-abstract {(S1, S2). S1 = S2} {(T1, T2). T1 = T2}
by (auto simp add: injectivity)

Each encoding is fully abstract w.r.t. the empty relation on the source and the target.

lemma (in encoding) fully-abstract-wrt-empty-relation:
shows fully-abstract {} {}
by auto

Similarly, each encoding is fully abstract w.r.t. the all-relation on the source and the target.

201

lemma (in encoding) fully-abstract-wrt-all-relation:
shows fully-abstract {(S1, S2). True} {(T1, T2). True}
by auto

If the encoding is injective then for each source term relation RelS there exists a target term relation
RelT such that the encoding is fully abstract w.r.t. RelS and RelT.

lemma (in encoding) fully-abstract-wrt-source-relation:
fixes RelS :: (‘procS x 'procS) set
assumes injectivity: ¥V .S1 S2. [S1] = [S2] — S1 = 52
shows J RelT. fully-abstract RelS RelT
proof —
define RelT where RelT = {(T1, T2). 351 52. (51, S2) € RelS N T1 = [S1] A T2 = [S2]}
with injectivity have fully-abstract RelS RelT
by blast
thus 3 RelT. fully-abstract RelS RelT
by blast
qed

If all source terms that are translated to the same target term are related by a trans source term
relation RelS, then there exists a target term relation RelT such that the encoding is fully abstract
w.r.t. RelS and RelT.

lemma (in encoding) fully-abstract-wrt-trans-source-relation:
fixes RelS :: ('procS x 'procS) set
assumes encRelS: V S1 52. [S1] = [S2] — (S1, S2) € RelS
and transS: trans RelS
shows J RelT. fully-abstract RelS RelT
proof —
define RelT where RelT = {(T1, T2). 351 S2. (S1, S2) € RelS A T1 = [S1] A T2 = [52]}
have fully-abstract RelS RelT
proof auto
fix S1 52
assume (S1, S2) € RelS
with RelT-def show ([S1], [S2]) € RelT
by blast
next
fix S1 .52
assume ([S1], [S2]) € RelT
with RelT-def obtain S1’ 52’ where A1: (S1', S2') € RelS and A2: [S1] = [S1]
and A3: [S2] = [52]]
by blast
from A2 encRelS have (S1, S1') € RelS
by simp
from this A1 transS have (51, S2') € RelS
unfolding trans-def
by blast
moreover from A3 encRelS have (52', 52) € RelS
by simp
ultimately show (51, S2) € RelS
using transS
unfolding trans-def
by blast
qged
thus 3 RelT'. fully-abstract RelS RelT
by blast
qed

lemma (in encoding) fully-abstract-wrt-trans-closure-of-source-relation:
fixes RelS :: ('procS x 'procS) set
assumes encRelS: V S1 52. [S1] = [S2] — (S1, S2) € RelS™
shows 3 RelT. fully-abstract (RelS*) RelT

202

using encRelS trans-tranclof RelS|
fully-abstract-wrt-trans-source-relation|where RelS=RelST)
by blast

For every encoding and every target term relation RelT there exists a source term relation RelS such
that the encoding is fully abstract w.r.t. RelS and RelT.

lemma (in encoding) fully-abstract-wrt-target-relation:
fixes RelT :: ('procT x 'procT) set
shows 3 RelS. fully-abstract RelS RelT
proof —
define RelS where RelS = {(S51, S2). ([S1], [S2]) € RelT}
hence fully-abstract RelS RelT
by simp
thus 3 RelS. fully-abstract RelS RelT
by blast
qed

9.2 Fully Abstract Encodings

Thus, as long as we can choose one of the two relations, full abstraction is trivial. For fixed source and
target term relations encodings are not trivially fully abstract. For all encodings and relations SRel and
TRel we can construct a relation on the disjunctive union of source and target terms, whose reduction
to source terms is SRel and whose reduction to target terms is TRel. But full abstraction ensures that
each trans relation that relates source terms and their literal translations in both directions includes
SRel iff it includes TRel restricted to translated source terms.

lemma (in encoding) full-abstraction-and-trans-relation-contains-SRel-impl-TRel:
fixes Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
and SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and encR: VYV S. (SourceTerm S, TargetTerm ([S])) € Rel
and srel: SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
and trans: trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
shows V S1 52. ([S1], [S2]) € TRel <— (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
proof auto
fix S1 .52
define Rel’ where Rel’ = Rel U {(P, Q). 3S. [S] €T P A S €S Q}
hence (TargetTerm ([S1]), SourceTerm S1) € Rel’
by simp
moreover assume ([S1], [S2]) € TRel
with fullAbs have (S1, 52) € SRel
by simp
with srel Rel’-def have (SourceTerm S1, SourceTerm S2) € Rel’
by simp
moreover from encR Rel’-def have (SourceTerm S2, TargetTerm ([S2])) € Rel’
by simp
ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
using trans Rel’-def
unfolding trans-def
by blast
next
fix S1 .52
define Rel’ where Rel’ = Rel U {(P, Q). 3S.[S] €T P A S €S Q}
from encR Rel’-def have (SourceTerm S1, TargetTerm ([S1])) € Rel’
by simp
moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
with Rel’-def have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel’
by simp
moreover from Rel’-def have (TargetTerm ([S2]), SourceTerm S2) € Rel’

203

by simp
ultimately have (SourceTerm S1, SourceTerm S2) € Rel
using trans Rel’-def
unfolding trans-def
by blast
with srel have (51, S2) € SRel
by simp
with fullAbs show ([S1], [S2]) € TRel
by simp
qed

lemma (in encoding) full-abstraction-and-trans-relation-contains-TRel-impl-SRel:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and SRel :: ('procS x ’procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and encR: VYV S. (SourceTerm S, TargetTerm ([S])) € Rel
and trel: VS152. ([S1], [S2]) € TRel «— (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
and trans: trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
shows SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
proof auto
fix 51 52
define Rel’ where Rel’ = Rel U {(P, Q). 3S.[S] €T P A S €S Q}
from encR Rel’-def have (SourceTerm S1, TargetTerm ([S1])) € Rel’
by simp
moreover assume (51, S2) € SRel
with fullAbs have ([S1], [S2]) € TRel
by simp
with trel Rel’-def have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel’
by simp
moreover from Rel’-def have (TargetTerm ([S2]), SourceTerm S2) € Rel’
by simp
ultimately show (SourceTerm S1, SourceTerm S2) € Rel
using trans Rel’-def
unfolding trans-def
by blast
next
fix 51 .52
define Rel’ where Rel’ = Rel U {(P, Q). 35.[S] €T P A S €S Q}
hence (TargetTerm ([S1]), SourceTerm S1) € Rel’
by simp
moreover assume (SourceTerm S1, SourceTerm S2) € Rel
with Rel’-def have (SourceTerm S1, SourceTerm S2) € Rel’
by simp
moreover from encR Rel’-def have (SourceTerm S2, TargetTerm ([S2])) € Rel’
by simp
ultimately have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
using trans Rel’-def
unfolding trans-def
by blast
with trel have ([S1], [S2]) € TRel
by simp
with fullAbs show (S1, S2) € SRel
by simp
qed

lemma (in encoding) full-abstraction-impl-trans-relation-contains-SRel-iff- TRel:
fixes Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
and SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel

204

and encR: VYV S. (SourceTerm S, TargetTerm ([S])) € Rel
and trans: trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
shows (V51 52. ([S1], [S2]) € TRel «— (TargetTerm ([S1]), TargetTerm ([S2])) € Rel)
+—— (SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel})
proof
assume YV S1 S2. (([S1], [S2]) € TRel) = ((TargetTerm ([S1]), TargetTerm ([S2])) € Rel)
thus SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
using assms full-abstraction-and-trans-relation-contains- TRel-impl-SRel[where
SRel=SRel and TRel=TRel]
by blast
next
assume SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
thus V S1 S2. ([S1], [S2]) € TRel «+— (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
using assms full-abstraction-and-trans-relation-contains-SRel-impl- TRel[where
SRel=SRel and TRel=TRel]
by blast
qed

lemma (in encoding) full-abstraction-impl-trans-relation-contains-SRel-iff-TRel-encRL:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and encR: VS. (SourceTerm S, TargetTerm ([S])) € Rel
and encL: VS. (TargetTerm ([S]), SourceTerm S) € Rel
and trans: trans Rel
shows (V S1 52. ([S1], [S2]) € TRel <— (TargetTerm ([S1]), TargetTerm ([S2])) € Rel)
> (SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel})
proof —
from encL have Rel U {(P, Q). 3S. [S] €T P A S €S Q} = Rel
by auto
with fullAbs encR trans show ?thesis
using full-abstraction-impl-trans-relation-contains-SRel-iff-TRel[where Rel=Rel
and SRel=SRel and TRel=TRel]
by simp
qed

Full abstraction ensures that SRel and TRel satisfy the same basic properties that can be defined on
their pairs. In particular: (1) SRel is refl iff TRel reduced to translated source terms is refl (2) if the
encoding is surjective then SRel is refl iff TRel is refl (3) SRel is sym iff TRel reduced to translated
source terms is sym (4) SRel is trans iff TRel reduced to translated source terms is trans

lemma (in encoding) full-abstraction-impl-SRel-iff- TRel-is-refl:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
shows refl SRel «+— (V.S. ([S], [S]) € TRel)
unfolding refi-on-def
by (simp add: fullAbs)

lemma (in encoding) full-abstraction-and-surjectivity-impl-SRel-iff- TRel-is-refl:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and surj: VT.3S. T =1[9]
shows refl SRel <— refl TRel
proof
assume refiS: refl SRel
show refl TRel
unfolding refi-on-def
proof auto

205

fix T
from surj obtain S where T = [9]
by blast
moreover from reflS have (S5, S) € SRel
unfolding refi-on-def
by simp
with fullAbs have ([S], [S]) € TRel
by simp
ultimately show (T, T) € TRel
by simp
qged
next
assume refl TRel
with fullAbs show refl SRel
unfolding refi-on-def
by simp
qed

lemma (in encoding) full-abstraction-impl-SRel-iff-TRel-is-sym:
fixes SRel :: (‘procS x 'procS) set
and TRel :: ('procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
shows sym SRel «— sym {(T1, T2). 351 52. T1 = [S1] A T2 = [S2] A (T1, T2) € TRel}
unfolding sym-def
by (simp add: fullAbs, blast)

lemma (in encoding) full-abstraction-and-surjectivity-impl-SRel-iff- TRel-is-sym:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and surj: VT.3S. T =1[9]
shows sym SRel <— sym TRel
using fullAbs surj
full-abstraction-impl-SRel-iff- TRel-is-sym[where SRel=SRel and TRel=TRel]
by auto

lemma (in encoding) full-abstraction-impl-SRel-iff- TRel-is-trans:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
shows trans SRel «— trans {(T1, T2). 351 S2. T1 = [S1] A T2 = [S2] A (T1, T2) € TRel}
unfolding trans-def
by (simp add: fullAbs, blast)

lemma (in encoding) full-abstraction-and-surjectivity-impl-SRel-iff- TRel-is-trans:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and surj: VT.3S. T =[9]
shows trans SRel <— trans TRel
using fullAbs surj
full-abstraction-impl-SRel-iff- TRel-is-trans[where SRel=SRel and TRel=TRel]
by auto

Similarly, a fully abstract encoding that respects a predicate ensures the this predicate is preserved,
reflected, or respected by SRel iff it is preserved, reflected, or respected by TRel.

lemma (in encoding) full-abstraction-and-enc-respects-pred-impl-SRel-iff- TRel-preserve:
fixes SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
and Pred :: ('procS, 'procT) Proc = bool

206

assumes fullAbs: fully-abstract SRel TRel
and encP: enc-respects-pred Pred
shows rel-preserves-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q A (SP, SQ) € SRel} Pred
«— rel-preserves-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof
assume presS: rel-preserves-pred {(P, @). 3SP SQ. SP €S P AN SQ €S Q AN (SP, SQ) € SRel} Pred
show rel-preserves-pred {(P, Q). 35P SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof clarify
fix SP SQ
assume Pred (TargetTerm ([SP]))
with encP have Pred (SourceTerm SP)
by simp
moreover assume ([SP], [SQ]) € TRel
with fullAbs have (SP, SQ) € SRel
by simp
ultimately have Pred (SourceTerm SQ)
using presS
by blast
with encP show Pred (TargetTerm ([SQ]))
by simp
qged
next
assume presT:
rel-preserves-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
show rel-preserves-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q A (SP, SQ) € SRel} Pred
proof clarify
fix SP SQ
assume Pred (SourceTerm SP)
with encP have Pred (TargetTerm ([SP]))
by simp
moreover assume (SP, SQ) € SRel
with fullAbs have ([SP], [SQ]) € TRel
by simp
ultimately have Pred (TargetTerm ([SQ]))
using presT
by blast
with encP show Pred (SourceTerm SQ)
by simp
qed
qed

lemma (in encoding) full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff- TRel-preserve:

fixes SRel :: ('procS x 'procS) set

and TRel :: ("procT x 'procT) set

and Pred :: ('procS, 'procT) Proc = 'b = bool
assumes fullAbs: fully-abstract SRel TRel

and encP: enc-respects-binary-pred Pred
shows rel-preserves-binary-pred {(P, Q). ISP SQ. SP €S P N SQ €S Q A (SP, SQ) € SRel} Pred
<— rel-preserves-binary-pred
{(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof

assume presS:

rel-preserves-binary-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q N (SP, SQ) € SRel} Pred
show rel-preserves-binary-pred

{(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred

proof clarify

fix z SP SQ

assume Pred (TargetTerm ([SP])) z

with encP have Pred (SourceTerm SP) z

by simp
moreover assume ([SP], [SQ]) € TRel

207

with fullAbs have (SP, SQ) € SRel
by simp
ultimately have Pred (SourceTerm SQ) z
using presS
by blast
with encP show Pred (TargetTerm ([SQ])) z
by simp
qed
next
assume presT:
rel-preserves-binary-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
show rel-preserves-binary-pred {(P, Q). 3SP SQ. SP €S P AN SQ €S Q N (SP, SQ) € SRel} Pred
proof clarify
fix £ SP SQ
assume Pred (SourceTerm SP) x
with encP have Pred (TargetTerm ([SP])) =
by simp
moreover assume (SP, SQ) € SRel
with fullAbs have ([SP], [SQ]) € TRel
by simp
ultimately have Pred (TargetTerm ([SQ])) z
using presT
by blast
with encP show Pred (SourceTerm SQ)
by simp
qged
qed

lemma (in encoding) full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-reflects:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and Pred :: ('procS, 'procT) Proc = bool
assumes fullAbs: fully-abstract SRel TRel
and encP: enc-respects-pred Pred
shows rel-reflects-pred {(P, @). 3SP SQ. SP €S P A 5Q €S Q A (SP, SQ) € SRel} Pred
< rel-reflects-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof
assume reflS: rel-reflects-pred {(P, @). 3SP SQ. SP €S P AN SQ €S Q N (SP, SQ) € SRel} Pred
show rel-reflects-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof clarify
fix SP SQ
assume Pred (TargetTerm ([SQ]))
with encP have Pred (SourceTerm SQ)
by simp
moreover assume ([SP], [SQ]) € TRel
with fullAbs have (SP, SQ) € SRel
by simp
ultimately have Pred (SourceTerm SP)
using reflS
by blast
with encP show Pred (TargetTerm ([SP]))
by simp
qged
next
assume reflT":
rel-reflects-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
show rel-reflects-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q N (SP, SQ) € SRel} Pred
proof clarify
fix SP SQ
assume Pred (SourceTerm SQ)
with encP have Pred (TargetTerm ([SQ]))

208

by simp

moreover assume (SP, SQ) € SRel

with fullAbs have ([SP], [SQ]) € TRel
by simp

ultimately have Pred (TargetTerm ([SP]))

using refiT

by blast

with encP show Pred (SourceTerm SP)
by simp

qged
qed

lemma (in encoding) full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff- TRel-reflects:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and Pred :: ('procS, 'procT) Proc = 'b = bool
assumes fullAbs: fully-abstract SRel TRel
and encP: enc-respects-binary-pred Pred
shows rel-reflects-binary-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q A (SP, SQ) € SRel} Pred
+— rel-reflects-binary-pred
{(P, Q). 3SP SQ.[SP] €T P A[SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof
assume refiS:
rel-reflects-binary-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q A (SP, SQ) € SRel} Pred
show rel-reflects-binary-pred
{(P, @).3SP SQ.[SP] €T P A[SQ] €T Q A ([SP], [SQ]) € TRel} Pred
proof clarify
fix x SP SQ
assume Pred (TargetTerm ([SQ])) =
with encP have Pred (SourceTerm SQ) x
by simp
moreover assume ([SP], [SQ]) € TRel
with fullAbs have (SP, SQ) € SRel
by simp
ultimately have Pred (SourceTerm SP) x
using reflS
by blast
with encP show Pred (TargetTerm ([SP]))
by simp
qed
next
assume refiT":
rel-reflects-binary-pred {(P, Q). 3SP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
show rel-reflects-binary-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q N (SP, SQ) € SRel} Pred
proof clarify
fix £ SP SQ
assume Pred (SourceTerm SQ) x
with encP have Pred (TargetTerm ([SQ])) z
by simp
moreover assume (SP, SQ) € SRel
with fullAbs have ([SP], [SQ]) € TRel
by simp
ultimately have Pred (TargetTerm ([SP])) =
using refiT
by blast
with encP show Pred (SourceTerm SP) x
by simp
qged
qed

lemma (in encoding) full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-respects:

209

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and Pred :: ('procS, 'procT) Proc = bool
assumes fullAbs: fully-abstract SRel TRel
and encP: enc-respects-pred Pred
shows rel-respects-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q N (SP, SQ) € SRel} Pred
+— rel-respects-pred {(P, Q). ISP SQ. [SP] €T P A [SQ] €T Q A ([SP], [SQ]) € TRel} Pred
using assms full-abstraction-and-enc-respects-pred-impl-SRel-iff- TRel-preserve[where
SRel=SRel and TRel=TRel and Pred=Pred]
full-abstraction-and-enc-respects-pred-impl-SRel-iff-TRel-reflects|where
SRel=SRel and TRel=TRel and Pred=Pred]
by auto

lemma (in encoding) full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff- TRel-respects:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
and Pred :: ('procS, 'procT) Proc = 'b = bool
assumes fullAbs: fully-abstract SRel TRel
and encP: enc-respects-binary-pred Pred
shows rel-respects-binary-pred {(P, Q). 3SP SQ. SP €S P A SQ €S Q A (SP, SQ) € SRel} Pred
< rel-respects-binary-pred
{(P, Q). 3SP SQ.[SP] €T P A[SQ] €T Q A ([SP], [SQ]) € TRel} Pred
using assms full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff- TRel-preservelwhere
SRel=SRel and TRel=TRel and Pred=Pred]
full-abstraction-and-enc-respects-binary-pred-impl-SRel-iff- TRel-reflects|where
SRel=SRel and TRel=TRel and Pred=Pred]
by auto

9.3 Full Abstraction w.r.t. Preorders

If there however exists a trans relation Rel that relates source terms and their literal translations in
both directions, then the encoding is fully abstract with respect to the reduction of Rel to source
terms and the reduction of Rel to target terms.

lemma (in encoding) trans-source-target-relation-impl-full-abstraction:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes enc: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel
and trans: trans Rel
shows fully-abstract {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
{(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
proof auto
fix S1 52
assume (SourceTerm S1, SourceTerm S2) € Rel
with enc trans show (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
unfolding trans-def
by blast
next
fix S1 52
assume (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
with enc trans show (SourceTerm S1, SourceTerm S2) € Rel
unfolding trans-def
by blast
qed

lemma (in encoding) source-target-relation-impl-full-abstraction-wri-trans-closures:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes enc: VS. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel
shows fully-abstract {(S1, S2). (SourceTerm S1, SourceTerm S2) € Relt}
{(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel™}

210

proof auto
fix 51 52
from enc have (TargetTerm ([S1]), SourceTerm S1) € Rel™
by blast
moreover assume (SourceTerm S1, SourceTerm S2) € Rel™
ultimately have (TargetTerm ([S1]), SourceTerm S2) € Rel™
by simp
moreover from enc have (SourceTerm S2, TargetTerm ([S2])) € Rel™
by blast
ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) € Rel™
by simp
next
fix 51 52
from enc have (SourceTerm S1, TargetTerm ([S1])) € Rel™
by blast
moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) € Rel™
ultimately have (SourceTerm S1, TargetTerm ([S2])) € Rel™
by simp
moreover from enc have (TargetTerm ([S2]), SourceTerm S2) € Rel™
by blast
ultimately show (SourceTerm S1, SourceTerm S2) € Rel™
by simp
qed

lemma (in encoding) quasi-trans-source-target-relation-impl-full-abstraction:
fixes Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
and SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes enc: VS. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel
and srel: SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
and trel: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and trans: VP Q R. (P, Q) € Rel A (Q, R) € Rel A ((P € ProcS N Q € ProcT)
V (P € ProcT N Q € ProcS)) — (P, R) € Rel
shows fully-abstract SRel TRel
proof auto
fix 51 52
from enc have (TargetTerm ([S1]), SourceTerm S1) € Rel
by simp
moreover assume (S1, S2) € SRel
with srel have (SourceTerm S1, SourceTerm S2) € Rel
by simp
ultimately have (TargetTerm ([S1]), SourceTerm S2) € Rel
using trans
by blast
moreover from enc have (SourceTerm S2, TargetTerm ([S2])) € Rel
by simp
ultimately have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
using trans
by blast
with trel show ([S1], [S2]) € TRel
by simp
next
fix 51 52
from enc have (SourceTerm S1, TargetTerm ([S1])) € Rel
by simp
moreover assume ([S1], [S2]) € TRel
with trel have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
by simp
ultimately have (SourceTerm S1, TargetTerm ([S2])) € Rel
using trans

211

by blast

moreover from enc have (TargetTerm ([S2]), SourceTerm S2) € Rel
by simp

ultimately have (SourceTerm S1, SourceTerm S2) € Rel

using trans

by blast

with srel show (51, S2) € SRel
by simp

qed

If an encoding is fully abstract w.r.t. SRel and TRel, then we can conclude from a pair in indRelRTPO
or indRelSTEQ on a pair in TRel and SRel.

lemma (in encoding) full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel:
fixes SRel :: ('procS x ’procS) set
and TRel :: ("procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes fullAbs: fully-abstract SRel TRel
and rel: P <[-JR<SRel,TRel> Q
shows VSP SQ. SP €S P A SQ €S Q@ — ([SP], [SQ]) € TRel™
and VSP TQ. SP €S P A TQ €T Q —» ([SP], TQ) € TRel*
proof —
have fullAbsT: Y/ S1 S2. (S1, S2) € SRel* — ([S1], [S2]) € TRel*
proof clarify
fix 51 52
assume (51, 52) € SRel™
thus ([S1], [S2]) € TRel*
proof induct
fix 52
assume (S1, S2) € SRel
with fullAbs show ([S1], [S2]) € TRel™
by simp
next
case (step S2 S3)
assume ([S1], [S2]) € TRel*
moreover assume (52, S3) € SRel
with fullAbs have ([S2], [S3]) € TRel™
by simp
ultimately show ([S1], [S3]) € TRel*
by simp
qed
qed
with rel show VSP SQ. SP €S P A SQ €S Q@ — ([SP], [SQ]) € TRel*
using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
by simp
show VSP TQ. SP €SP AN TQ eT Q@ — ([SP], TQ) € TRel*
proof clarify
fix SP TQ
assume SP €S Pand TQ €T @
with rel obtain S where A1: (SP, S) € SRel*
and A2: ([S], TQ) € TRel*
using indRelRSTPO-to-SRel-and-TRel(2)[where SRel=SRel and TRel=TRel]
by blast
from A1 have SP = S V (SP, S) € SRel*
using rtrancl-eg-or-trancl[of SP S SRel]
by blast
with fullAbsT have ([SP], [S]) € TRel*
by fast
from this A2 show ([SP], TQ) € TRel*
by simp
qed

212

qed
lemma (in encoding) full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel:

fixes SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
and P Q :: ('procS, 'procT) Proc
assumes fA: fully-abstract SRel TRel
and transT: trans TRel

and reflS: refl SRel
and rel: P ~[]<SRel,TRel> @

shows V SP SQ. SP €S P A SQ €8 Q —» (SP, SQ) € SRel
and VSP SQ. SP €S P A 8Q €S Q — ([SP], [SQ]) € TRel
and VSP TQ. SP €SP A TQ €T Q —» ([SP], TQ) € TRel
and VTP SQ. TP €T P A SQ €S Q —» (TP, [SQ]) € TRel
and VTP TQ. TP €T P A TQ €T Q —s (TP, TQ) € TRel

using rel
proof induct
case (encR S)
show V SP §Q. SP €5 SourceTerm S A SQ €S TargetTerm ([S]) — (SP, SQ) € SRel
and V SP 5Q. SP €8S SourceTerm S A SQ €8 TargetTerm ([S]) — ([SP], [SQ]) € TRel
— (TP, [SQ]) € TRel

and VTP SQ. TP €T SourceTerm S N SQ €8S TargetTerm ([S])
and VTP TQ. TP €T SourceTerm S N TQ €T TargetTerm ([S]) — (TP, TQ) € TRel

by simp+
from refiS fA show V SP TQ. SP €8 SourceTerm S N TQ €T TargetTerm ([S]) — ([SP], TQ) € TRel

unfolding refi-on-def

by simp
next
case (encL S)
show V SP §Q. SP €S TargetTerm ([S]) A SQ €S SourceTerm S — (SP, SQ) € SRel
and V SP 5Q. SP €S TargetTerm ([S]) A SQ €S SourceTerm S — ([SP], [SQ]) € TRel
and VSP TQ. SP €S TargetTerm ([S]) A TQ €T SourceTerm S — ([SP], TQ) € TRel
and VTP TQ. TP €T TargetTerm ([S]) A TQ €T SourceTerm S — (TP, TQ) € TRel

by simp+
with reflS fA show ¥V TP SQ. TP €T TargetTerm ([S]) A SQ €S SourceTerm S — (TP, [SQ]) € TRel

unfolding refi-on-def
by simp
next
case (source S1 S2)
show V SP TQ. SP €8 SourceTerm S1 A TQ €T SourceTerm S2 — ([SP], TQ) € TRel
and VTP SQ. TP €T SourceTerm S1 A SQ €8 SourceTerm S2 — (TP, [SQ]) € TRel
and VTP TQ. TP €T SourceTerm S1 N TQ €T SourceTerm S2 — (TP, TQ) € TRel

by simp+

assume (S1, S2) € SRel
thus V.SP SQ. SP €8S SourceTerm S1 N SQ €S SourceTerm S2 — (SP, SQ) € SRel

by simp
with fA show V SP SQ. SP €S SourceTerm S1 N SQ €85 SourceTerm S2 — ([SP], [SQ]) € TRel

by simp
next
case (target T1 T2)
show V.SP SQ. SP €S TargetTerm T1 A SQ €S TargetTerm T2 — (SP, SQ) € SRel
and YV SP 5Q. SP €8S TargetTerm T1 N SQ €S TargetTerm T2 — ([SP], [SQ]) € TRel
and VY SP TQ. SP €8 TargetTerm T1 A TQ €T TargetTerm T2 — ([SP], TQ) € TRel
and VTP SQ. TP €T TargetTerm T1 A SQ €S TargetTerm T2 — (TP, [SQ]) € TRel

by simp+
assume (71, T2) € TRel
thus VTP TQ. TP €T TargetTerm T1 N TQ €T TargetTerm T2 — (TP, TQ) € TRel
by simp
next

case (trans P Q R)
assume AI1: VSP SQ. SP €SP A SQ €S Q@ — ([SP], [SQ]) € TRel

and A2:VSP TQ. SP €SP A TQ €T Q —s ([SP], TQ) € TRel

213

and A3: VTP SQ. TP €T P AN SQ €S Q — (TP, [SQ]) € TRel
and A4: VTP TQ. TP €T P A TQ €T Q —» (TP, TQ) € TRel
and A5:VSQ SR. SQ €S Q AN SR €S R — ([SQ], [SR]) € TRel
and A6:VSQ TR. SQ €S QAN TR TR — ([9Q], TR) € TRel
and A7:VTQ SR. TQ €T Q AN SR €S R — (TQ, [SR]) € TRel
and A8: VTQ TR. TQ €T Q A TR €T R —» (TQ, TR) € TRel
show V SP SR. SP €S P A SR €S R — ([SP], [SR]) € TRel
proof clarify
fix SP SR
assume A9: SP €S P and A10: SR €S R
show ([SP], [SR]) € TRel
proof (cases Q)
case (SourceTerm SQ)
assume A11: SQ €5 Q
with A1 A9 have ([SP], [SQ]) € TRel
by blast
moreover from A5 A10 A11 have ([SQ], [SR]) € TRel
by blast
ultimately show ([SP], [SR]) € TRel
using transT
unfolding trans-def
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A2 A9 have ([SP], TQ) € TRel
by blast
moreover from A7 A10 A11 have (TQ, [SR]) € TRel
by blast
ultimately show ([SP], [SR]) € TRel
using transT
unfolding trans-def
by blast
qed
qed
with fA show VSP SR. SP €S P A SR €S R — (SP, SR) € SRel
by simp
show VSP TR. SP €S P AN TR €T R — ([SP], TR) € TRel
proof clarify
fix SP TR
assume A9: SP €S P and A10: TR €T R
show ([SP], TR) € TRel
proof (cases Q)
case (SourceTerm SQ)
assume A11: SQ €S @
with A1 A9 have ([SP], [SQ]) € TRel
by blast
moreover from A6 A10 A11 have ([SQ], TR) € TRel
by blast
ultimately show ([SP], TR) € TRel
using transT
unfolding trans-def
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A2 A9 have ([SP], TQ) € TRel
by blast
moreover from A8 A10 A11 have (TQ, TR) € TRel
by blast
ultimately show ([SP], TR) € TRel

214

using transT
unfolding trans-def
by blast
qed
qged
show VTP SR. TP €T P A SR €S R — (TP, [SR]) € TRel
proof clarify
fix TP SR
assume A9: TP €T P and A10: SR €S R
show (TP, [SR]) € TRel
proof (cases Q)
case (SourceTerm SQ)
assume A11: SQ €S Q
with A% A9 have (TP, [SQ]) € TRel
by blast
moreover from A5 A10 A11 have ([SQ], [SR]) € TRel
by blast
ultimately show (TP, [SR]) € TRel
using transT
unfolding trans-def
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A4 A9 have (TP, TQ) € TRel
by blast
moreover from A7 A10 A11 have (TQ, [SR]) € TRel
by blast
ultimately show (TP, [SR]) € TRel
using transT
unfolding trans-def
by blast
qed
qed
show VTP TR. TP €T PN TR €T R — (TP, TR) € TRel
proof clarify
fix TP TR
assume A9: TP €T P and A10: TR €T R
show (TP, TR) € TRel
proof (cases Q)
case (SourceTerm SQ)
assume Al11: SQ €5 Q
with A% A9 have (TP, [SQ]) € TRel
by blast
moreover from A6 A10 A11 have ([SQ], TR) € TRel
by blast
ultimately show (TP, TR) € TRel
using transT
unfolding trans-def
by blast
next
case (TargetTerm TQ)
assume A11: TQ €T Q
with A/ A9 have (TP, TQ) € TRel
by blast
moreover from A8 A10 A11 have (T(Q, TR) € TRel
by blast
ultimately show (TP, TR) € TRel
using transT
unfolding trans-def
by blast

215

qed
qed
qed

If an encoding is fully abstract w.r.t. a preorder SRel on the source and a trans relation TRel on the
target, then there exists a trans relation, namely indRelSTEQ, that relates source terms and their
literal translations in both direction such that its reductions to source terms is SRel and its reduction
to target terms is TRel.

lemma (in encoding) full-abstraction-wrt-preorders-impl-trans-source-target-relation:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and reflS: refl SRel
and transT: trans TRel
shows 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel
proof —
have V S. SourceTerm S ~[-]<SRel,TRel> TargetTerm ([S])
A TargetTerm ([S]) ~[-]<SRel, TRel> SourceTerm S
using indRelSTEQ.encR[where SRel=SRel and TRel=TRel]
indRelSTEQ.encL[where SRel=SRel and TRel=TRel]
by blast
moreover have SRel = {(S1, S2). SourceTerm S1 ~[-]<SRel, TRel> SourceTerm S2}
proof auto
fix 51 52
assume (S1, S2) € SRel
thus SourceTerm S1 ~[-]<SRel, TRel> SourceTerm S2
by (rule indRelSTEQ.sourcelwhere SRel=SRel and TRel=TRel))
next
fix 51 52
assume SourceTerm S1 ~[-]<SRel, TRel> SourceTerm S2
with fullAbs reflS transT show (S1, S2) € SRel
using full-abstraction-wrt-preorders-impl-ind RelSTEQ-to-SRel-and-TRel(1)[where SRel=SRel
and TRel=TRel]
by blast
qged
moreover have TRel = {(T1, T2). TargetTerm T1 ~[-]<SRel,TRel> TargetTerm T2}
proof auto
fix T1 T2
assume (71, T2) € TRel
thus TargetTerm T1 ~[-]<SRel, TRel> TargetTerm T2
by (rule indRelSTEQ.target[where SRel=SRel and TRel=TRel])
next
fix T1 T2
assume TargetTerm T1 ~[-]<SRel, TRel> TargetTerm T2
with fullAbs reflS transT show (T1, T2) € TRel
using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(5)[where SRel=SRel
and TRel=TRel]
by blast
qed
moreover have trans (indRelSTEQ SRel TRel)
using indRelSTEQ.trans[where SRel=SRel and TRel=TRel]
unfolding trans-def
by blast
ultimately show ?Zthesis
by blast
qed

216

Thus an encoding is fully abstract w.r.t. a preorder SRel on the source and a trans relation TRel on
the target iff there exists a trans relation that relates source terms and their literal translations in
both directions and whose reduction to source/target terms is SRel/TRel.

theorem (in encoding) fully-abstract-wrt-preorders-iff-source-target-relation-is-trans:
fixes SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
shows (fully-abstract SRel TRel A refl SRel A trans TRel) =
(FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel)
proof (rule iffT)
assume fully-abstract SRel TRel N refl SRel N trans TRel
thus 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel
using full-abstraction-wrt-preorders-impl-trans-source-target-relation[where SRel=SRel
and TRel=TRel]
by blast
next
assume 3 Rel. (V' S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel
from this obtain Rel
where A1: VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel
and A2: SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
and A3: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} and A4: trans Rel
by blast
hence fully-abstract SRel TRel
using trans-source-target-relation-impl-full-abstraction[where Rel=Rel|
by blast
moreover have refl SRel
unfolding refi-on-def
proof auto

fix S
from A1 have (SourceTerm S, TargetTerm ([S])) € Rel
by blast
moreover from A1 have (TargetTerm ([S]), SourceTerm S) € Rel
by blast
ultimately have (SourceTerm S, SourceTerm S) € Rel
using A/
unfolding trans-def
by blast
with A2 show (S, S) € SRel
by blast
qed

moreover from A3 A/ have trans TRel
unfolding trans-def
by blast
ultimately show fully-abstract SRel TRel N refl SRel N trans TRel
by blast
qed

217

9.4 Full Abstraction w.r.t. Equivalences

If there exists a relation Rel that relates source terms and their literal translations and whose sym
closure is trans, then the encoding is fully abstract with respect to the reduction of the sym closure
of Rel to source/target terms.

lemma (in encoding) source-target-relation-with-trans-symcl-impl-full-abstraction:
fixes Rel :: (("procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes enc: VS. (SourceTerm S, TargetTerm ([S])) € Rel
and trans: trans (symcl Rel)
shows fully-abstract {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
{(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
proof auto
fix 5152
from enc have (TargetTerm ([S1]), SourceTerm S1) € symcl Rel
by (simp add: symcl-def)
moreover assume (SourceTerm S1, SourceTerm S2) € symcl Rel
moreover from enc have (SourceTerm S2, TargetTerm ([S2])) € symcl Rel
by (simp add: symcl-def)
ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) € symcl Rel
using trans
unfolding trans-def
by blast
next
fix 5152
from enc have (SourceTerm S1, TargetTerm ([S1])) € symcl Rel
by (simp add: symcl-def)
moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) € symcl Rel
moreover from enc have (TargetTerm ([S2]), SourceTerm S2) € symcl Rel
by (simp add: symcl-def)
ultimately show (SourceTerm S1, SourceTerm S2) € symcl Rel
using trans
unfolding trans-def
by blast
qed

If an encoding is fully abstract w.r.t. the equivalences SRel and TRel, then there exists a preorder,
namely indRelRSTPO, that relates source terms and their literal translations such that its reductions
to source terms is SRel and its reduction to target terms is TRel.

lemma (in encoding) fully-abstract-wri-equivalences-impl-symcl-source-target-relation-is-preorder:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and refiT: refl TRel
and symmT: sym TRel
and transT: trans TRel
shows I Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel)
proof —
from fullAbs refiT have reflS: refl SRel
unfolding refi-on-def
by auto
from fullAbs symmT have symmS: sym SRel
unfolding sym-def
by auto
from fullAbs transT have transS: trans SRel
unfolding trans-def
by blast
have V S. SourceTerm S S[-JR<SRel, TRel> TargetTerm ([S])

218

using indRelRSTPO.encR[where SRel=SRel and TRel=TRel]
by blast
moreover
have SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symecl (indRelRSTPO SRel TRel)}
proof auto
fix 51 52
assume (51, S2) € SRel
thus (SourceTerm S1, SourceTerm S2) € symcl (indRelRSTPO SRel TRel)
by (simp add: symcl-def indRelRSTPO.source[where SRel=SRel and TRel=TRel))
next
fix 51 52
assume (SourceTerm S1, SourceTerm S2) € symcl (indRelRSTPO SRel TRel)
moreover from transS
have SourceTerm S1 <[-JR<SRel,TRel> SourceTerm S2 = (51, S2) € SRel
using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
trancl-id[of SRel]
by blast
moreover from symmsS transS
have SourceTerm S2 <[-JR<SRel,TRel> SourceTerm S1 = (51, S2) € SRel
using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
trancl-id[of SRel]
unfolding sym-def
by blast
ultimately show (51, 52) € SRel
by (auto simp add: symcl-def)
qged
moreover
have TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl (indRelRSTPO SRel TRel)}
proof auto
fix T1 T2
assume (71, T2) € TRel
thus (TargetTerm T1, TargetTerm T2) € symcl (indRelRSTPO SRel TRel)
by (simp add: symcl-def indRelRSTPO.target/where SRel=SRel and TRel=TRel])
next
fix T1 T2
assume (TargetTerm T1, TargetTerm T2) € symcl (indRelRSTPO SRel TRel)
moreover from transT
have TargetTerm T1 <[JR<SRel,TRel> TargetTerm T2 = (T1, T2) € TRel
using indRelRSTPO-to-SRel-and-TRel(4)[where SRel=SRel and TRel=TRel]
trancl-id[of TRel]
by blast
moreover from symmT transT
have TargetTerm T2 <[JR<SRel,TRel> TargetTerm T1 = (T1, T2) € TRel
using indRelRSTPO-to-SRel-and-TRel(4)[where SRel=SRel and TRel=TRel]
trancl-id[of TRel]
unfolding sym-def
by blast
ultimately show (T1, T2) € TRel
by (auto simp add: symcl-def)
qed
moreover have refl (symcl (indRelRSTPO SRel TRel))
unfolding refi-on-def
proof auto
fix P
show (P, P) € symcl (indRelRSTPO SRel TRel)
proof (cases P)
case (SourceTerm SP)
assume SP €S P
with reflS show (P, P) € symcl (indRelRSTPO SRel TRel)
unfolding refl-on-def
by (simp add: symcl-def indRelRSTPO.source)

219

next
case (TargetTerm TP)
assume TP €T P
with reflT show (P, P) € symcl (indRelRSTPO SRel TRel)
unfolding refi-on-def
by (simp add: symcl-def indRelRSTPO.target)
qed
qed
moreover have trans (symcl (indRelRSTPO SRel TRel))
proof —
have VP Q R. P <[JR<SRel,TRel> Q A R <[]R<SRel,TRel> Q A (P, R) ¢ (indRelRSTPO SRel TRel)
— Q S[JR<SRel,TRel> P Vv Q <[]JR<SRel,TRel> R
proof clarify
fix PQR
assume Al: P S[-JR<SRel,TRel> @ and A2: R S[-JR<SRel,TRel> @
and A3: (P, R) ¢ (indRelRSTPO SRel TRel) and A/4: (Q, R) ¢ (indRelRSTPO SRel TRel)
show @ <[JR<SRel,TRel> P
proof (cases P)
case (SourceTerm SP)
assume A5: SP €S P
show @ <[JR<SRel,TRel> P
proof (cases Q)
case (SourceTerm SQ)
assume A6: SQ €5 Q
with transS A1 A5 have (SP, SQ) € SRel
using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
trancl-id|of SRel]
by blast
with symmS A5 A6 show Q <[JR<SRel,TRel> P
unfolding sym-def
by (simp add: indRelRSTPO.source)
next
case (TargetTerm TQ)
assume A6: TQ €T @
show @ <[-JR<SRel,TRel> P
proof (cases R)
case (SourceTerm SR)
assume A7: SR €S R
with fulldbs A2 A6 have ([SR], TQ) € TRel*
using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)where SRel=SRel
and TRel=TRel] trancl-id[of TRel™] reficl-of-refl-rel[of TRel]
trancl-reficlof TRel]
unfolding trans-def
by blast
with transT reflT have ([SR], TQ) € TRel
using trancl-id|of TRel™] reflcl-of-refl-rel[of TRel] trancl-reficl|of TRel)
by auto
with symmT have (TQ, [SR]) € TRel
unfolding sym-def
by simp
moreover from fullAbs A1 A5 A6 have ([SP], TQ) € TRel*
using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)[where SRel=SRel
and TRel=TRel]
unfolding trans-def
by blast
with transT reflT have ([SP], TQ) € TRel
using trancl-id[of TRel™] reflcl-of-refl-rel[of TRel] trancl-reficl|of TRel)
by auto
ultimately have ([SP], [SR]) € TRel
using transT
unfolding trans-def

220

by blast
with fullAbs have (SP, SR) € SRel
by simp
with A3 A5 A7 show ?thesis
by (simp add: indRelRSTPO.source)
next
case (TargetTerm TR)
assume A7: TR €T R
with transT A2 A6 have (TR, TQ) € TRel
using indRelRSTPO-to-SRel-and-TRel(4)[where SRel=SRel and TRel=TRel]
trancl-id[of TRel]
by blast
with symmT have (TQ, TR) € TRel
unfolding sym-def
by simp
with A4 A6 A7 show ?thesis
by (simp add: indRelRSTPO.target)
qed
qed
next
case (TargetTerm TP)
assume A5: TP €T P
show @ <[]R<SRel,TRel> P
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 Q
with A1 A5 show ?thesis
using indRelRSTPO-to-SRel-and-TRel(3)[where SRel=SRel and TRel=TRel]
by blast
next
case (TargetTerm TQ)
assume A6: TQ €T @
with transT A1 A5 have (TP, TQ) € TRel
using indRelRSTPO-to-SRel-and-TRel(4)[where SRel=SRel and TRel=TRel]
trancl-id[of TRel]
by blast
with symmT have (TQ, TP) € TRel
unfolding sym-def
by simp
with A5 A6 show @ <[]JR<SRel,TRel> P
by (simp add: indRelRSTPO.target)
qed
qed
qed
moreover
have VP Q R. P <[JR<SRel,TRel> Q A P <[JR<SRel,TRel> R A (Q, R) ¢ (indRelRSTPO SRel TRel)
—+ Q <[]R<SRel,TRel> P v R <[]R<SRel,TRel> P
proof clarify
fix PQR
assume A1: P <[-JR<SRel,TRel> @Q and A2: P <[JR<SRel,TRel> R
and A3: (Q, R) ¢ (indRelRSTPO SRel TRel) and A4: (R, P) ¢ (indRelRSTPO SRel TRel)
show @ <[-JR<SRel,TRel> P
proof (cases P)
case (SourceTerm SP)
assume A5: SP €S P
show @ <[]R<SRel,TRel> P
proof (cases Q)
case (SourceTerm SQ)
assume A6: SQ €5 Q
with transS A1 A5 have (SP, SQ) € SRel
using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]

221

trancl-id[of SRel)]
by blast
with symmS A5 A6 show Q <[-JR<SRel,TRel> P
unfolding sym-def
by (simp add: indRelRSTPO.source)
next
case (TargetTerm TQ)
assume A6: TQ €T @
show @ <[-JR<SRel,TRel> P
proof (cases R)
case (SourceTerm SR)
assume A7: SR €S R
with transS A2 A5 have (SP, SR) € SRel
using indRelRSTPO-to-SRel-and-TRel(1)[where SRel=SRel and TRel=TRel]
trancl-id[of SRel]
by blast
with symmS have (SR, SP) € SRel
unfolding sym-def
by simp
with A4 A5 A7 show ?thesis
by (simp add: indRelRSTPO.source)
next
case (TargetTerm TR)
from fullAbs A1 A5 A6 have ([SP], TQ) € TRel*
using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)[where SRel=SRel and
TRel=TRel]
unfolding trans-def
by blast
with transT reflT have ([SP], TQ) € TRel
using trancl-id|of TRel™] reflcl-of-refl-rel[of TRel] trancl-reficl|of TRel)
by auto
with symmT have (TQ, [SP]) € TRel
unfolding sym-def
by simp
moreover assume A7: TR €T R
with fullAbs A2 A5 have ([SP], TR) € TRel*
using full-abstraction-impl-indRelRSTPO-to-SRel-and-TRel(2)[where SRel=SRel and
TRel="TRel]
unfolding trans-def
by blast
with transT reflT have ([SP], TR) € TRel
using trancl-id[of TRel™] reficl-of-refl-rel[of TRel] trancl-reficl|of TRel)
by auto
ultimately have (TQ, TR) € TRel
using transT
unfolding trans-def
by blast
with A8 A6 A7 show ?thesis
by (simp add: indRelRSTPO.target)
qed
qed
next
case (TargetTerm TP)
assume A5: TP €T P
show @ <[]R<SRel,TRel> P
proof (cases Q)
case (SourceTerm SQ)
assume SQ €5 Q
with A1 A5 show ?%thesis
using indRelRSTPO-to-SRel-and-TRel(3)[where SRel=SRel and TRel=TRel]
by blast

222

next
case (TargetTerm TQ)
assume A6: TQ €T Q
with transT A1 A5 have (TP, TQ) € TRel
using indRelRSTPO-to-SRel-and-TRel(4)[where SRel=SRel and TRel=TRel]
trancl-id[of TRel]
by blast
with symmT have (TQ, TP) € TRel
unfolding sym-def
by simp
with A5 A6 show @ S[-]JR<SRel,TRel> P
by (simp add: indRelRSTPO.target)
qed
qed
qed
moreover from reflS reflT have refl (indRelRSTPO SRel TRel)
using indRelRSTPO-refllwhere SRel=SRel and TRel=TRel]
by blast
moreover have trans (indRelRSTPO SRel TRel)
using indRelRSTPO.trans[where SRel=SRel and TRel=TRel]
unfolding trans-def
by blast
ultimately show trans (symcl (indRelRSTPO SRel TRel))
using symm-closure-of-preorder-is-transjwhere Rel=indRelRSTPO SRel TRel)
by blast
qged
ultimately show ?thesis
unfolding preorder-on-def
by blast
qed

lemma (in encoding) fully-abstract-impl-symcl-source-target-relation-is-preorder:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract ((symel (SRel=))") ((symcl (TRel=))™)
shows 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A ((symel (SRel=))*) = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A ((symel (TRel=))") = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel)
proof —
have refl ((symcl (TRel=))™)
using refl-symm-trans-closure-is-symm-refl-trans-closure[of TRel]
refl-rtrancl[of TRel]
unfolding sym-def refi-on-def
by auto
moreover have sym ((symcl (TRel=))™)
using sym-symcl[of TRel=]| sym-trancl[of symcl (TRel~)]
by simp
moreover have trans ((symcl (TRel=))")
by simp
ultimately show ?Zthesis
using fully-abstract-wrt-equivalences-impl-symcl-source-target-relation-is-preorder[where
SRel=(symcl (SRel=))"™ and TRel=(symcl (TRel=))"] fullAbs
refl-symm-closure-is-symm-refi-closure
unfolding preorder-on-def
by blast
qed

lemma (in encoding) fully-abstract-wrt-preorders-impl-source-target-relation-is-trans:

fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set

223

assumes fullAbs: fully-abstract SRel TRel
shows 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A ((refl SRel N trans TRel)
> trans (Rel U {(P, Q). 3S. [S] €T P A S €5 Q}))
proof —
define Rel where Rel = (indRelSTEQ SRel TRel) — ({(P, Q). 3S. [S] €T P A S €S Q}
U{(P, Q). 351 52. 51 €eSPANS2eSQNA(S1,52)¢ SRel}
U{(P, Q).3T1 T2. T1 €T P AT2 €T QA (T1, T2) ¢ TRel})
from Rel-def have ¥V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelSTEQ.encR[where SRel=SRel and TRel=TRel))
moreover from Rel-def have SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
proof auto
fix 51 52
assume (S1, S2) € SRel
thus SourceTerm S1 ~[-]<SRel, TRel> SourceTerm S2
by (simp add: indRelSTEQ.source[where SRel=SRel and TRel=TRel])
qed
moreover from Rel-def have TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
proof auto
fix T1 T2
assume (71, T2) € TRel
thus TargetTerm T1 ~[-]<SRel,TRel> TargetTerm T2
by (simp add: indRelSTEQ.target[where SRel=SRel and TRel=TRel))
qged
moreover
have (refl SRel A trans TRel) <— trans (Rel U {(P, Q). 35. [S] €T P A S €S Q})
proof (rule iffI, erule conjE)
assume reflS: refl SRel and transT: trans TRel
have Rel U {(P, Q). 35.[S] €T P AN S €S Q} = indRelSTEQ SRel TRel
proof (auto simp add: Rel-def)
fix S
show TargetTerm ([S]) ~[-]<SRel,TRel> SourceTerm S
by (rule indRelSTEQ.encL)
next
fix 51 52
assume SourceTerm S1 ~[-]<SRel,TRel> SourceTerm S2
with fullAbs reflS transT have (S1, S2) € SRel
using full-abstraction-wrt-preorders-impl-ind RelSTEQ-to-SRel-and-TRel(1)[where
SRel=SRel and TRel=TRel]
by blast
moreover assume (S1, 52) ¢ SRel
ultimately show Fulse
by simp
next
fix T1 T2
assume TargetTerm T1 ~[-]<SRel,TRel> TargetTerm T2
with fullAbs reflS transT have (T1, T2) € TRel
using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(5)[where
SRel=SRel and TRel=TRel]
by blast
moreover assume (71, T2) ¢ TRel
ultimately show Fulse
by simp
qed
thus trans (Rel U {(P, Q). 3S. [S] €T P A S €5 Q})
using indRelSTEQ-trans[where SRel=SRel and TRel=TRel]
unfolding trans-def
by blast
next

224

assume transR: trans (Rel U {(P, Q). 3S. [S] €T P A S €5 Q})
show refl SRel N trans TRel
unfolding trans-def refl-on-def
proof auto
fix S
from Rel-def have (SourceTerm S, TargetTerm ([S])) € Rel U {(P, Q). 3S.[S] €T P A S €S Q}
by (simp add: indRelSTEQ.encR)
moreover have (TargetTerm ([S]), SourceTerm S) € Rel U {(P, Q). 35. [S] €T P A S €S Q}
by simp
ultimately have (SourceTerm S, SourceTerm S) € Rel
using transR
unfolding trans-def
by blast
with Rel-def show (S, S) € SRel
by simp
next
fix TP TQ TR
assume (TP, TQ) € TRel
with Rel-def have (TargetTerm TP, TargetTerm TQ) € Rel U {(P, Q). 3S.[S] €T P N S €5 Q}
by (simp add: indRelSTEQ.target)
moreover assume (TQ, TR) € TRel
with Rel-def have (TargetTerm TQ, TargetTerm TR) € Rel U {(P, Q). 3S5.[S] €T P A S €S Q}
by (simp add: indRelSTEQ.target)
ultimately have (TargetTerm TP, TargetTerm TR) € Rel
using transR
unfolding trans-def
by blast
with Rel-def show (TP, TR) € TRel
by simp
qed
qged
ultimately show ?thesis
by blast
qed

lemma (in encoding) fully-abstract-wrt-preorders-impl-source-target-relation-is-trans-B:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and reflT: refl TRel
and transT: trans TRel
shows J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
proof —
define Rel where Rel = (indRelSTEQ SRel TRel) — {(P, Q). 3S. [S] €T P A S €S @}
from fullAbs reflT have refiS: refl SRel
unfolding refi-on-def
by auto
from Rel-def have V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelSTEQ.encR[where SRel=SRel and TRel=TRel))
moreover from Rel-def have SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
proof auto
fix 51 52
assume (51, S2) € SRel
thus SourceTerm S1 ~[-]<SRel,TRel> SourceTerm S2
by (simp add: indRelSTEQ.source[where SRel=SRel and TRel=TRel])
next
fix 51 52
assume SourceTerm S1 ~[-]<SRel, TRel> SourceTerm S2

225

with fullAbs transT reflS show (S1, S2) € SRel
using full-abstraction-wrt-preorders-impl-ind RelSTEQ-to-SRel-and-TRel(1)[where SRel=SRel
and TRel=TRel]
by blast
qged
moreover from Rel-def have TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
proof auto
fix T1 T2
assume (71, T2) € TRel
thus TargetTerm T1 ~[-]<SRel, TRel> TargetTerm T2
by (simp add: indRelSTEQ.target[where SRel=SRel and TRel=TRel])
next
fix T1 T2
assume TargetTerm T1 ~[-]<SRel, TRel> TargetTerm T2
with fullAbs transT refiS show (T1, T2) € TRel
using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(5)[where SRel=SRel
and TRel=TRel]
by blast
qed
moreover from Rel-def have Rel U {(P, Q). 3S5.[S] €T P A S €S Q} = indRelSTEQ SRel TRel
by (auto simp add: indRelSTEQ.encL)
hence trans (Rel U {(P, Q). 3S.[S] €T P A S €S Q})
using indRelSTEQ.trans[where SRel=SRel and TRel=TRel]
unfolding trans-def
by auto
ultimately show ?thesis
by blast
qed

Thus an encoding is fully abstract w.r.t. an equivalence SRel on the source and an equivalence TRel on
the target iff there exists a relation that relates source terms and their literal translations, whose sym
closure is a preorder such that the reduction of this sym closure to source/target terms is SRel/TRel.

lemma (in encoding) fully-abstract-wrt-equivalences-iff-symcl-source-target-relation-is-preorder:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
shows (fully-abstract SRel TRel N equivalence TRel) =
(3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S51, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel))
proof (rule iffI)
assume fully-abstract SRel TRel A equivalence TRel
thus 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel)
using fully-abstract-wrt-equivalences-impl-symcl-source-target-relation-is-preorder[where
SRel=SRel and TRel=TRel]
unfolding equiv-def
by blast
next
assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel)
from this obtain Rel
where VS. (SourceTerm S, TargetTerm ([S])) € Rel
and SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € symcl Rel}
and A1: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
and A2: preorder (symcl Rel)

226

by blast
hence A5: fully-abstract SRel TRel
using source-target-relation-with-trans-symcl-impl-full-abstraction[where Rel=Rel]
unfolding preorder-on-def
by blast
moreover have equivalence TRel
unfolding trans-def equiv-def sym-def refl-on-def
proof auto
fix T
from A1 A2 show (T, T) € TRel
unfolding preorder-on-def refl-on-def
by blast
next
fix T1 T2
assume (71, T2) € TRel
with A1 show (T2, T1) € TRel
by (auto simp add: symcl-def)
next
fix T1 T2 T3
assume (71, T2) € TRel and (T2, T3) € TRel
with A1 A2 show (T1, T38) € TRel
unfolding trans-def preorder-on-def
by blast
qed
ultimately show fully-abstract SRel TRel A equivalence TRel
by blast
qed

lemma (in encoding) fully-abstract-iff-symcl-source-target-relation-is-preorder:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
shows fully-abstract ((symcl (SRel=))T) ((symcl (TRel™))") =
(3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (symel (SRel™))t = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A (symel (TRel=))" = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel))
proof (rule iffI)
assume fully-abstract ((symcl (SRel=))") ((symcl (TRel™))™)
thus 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (symel (SRel=))t = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A (symel (TRel=))T = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel)
using fully-abstract-impl-symcl-source-target-relation-is-preorder[where SRel=SRel and
TRel=TRel]
by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A (symel (SRel™))t = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
A (symel (TRel=))" = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
A preorder (symcl Rel)
from this obtain Rel
where VS. (SourceTerm S, TargetTerm ([S])) € Rel
and (symcl (SRel™))" = {(S1, S2). (SourceTerm S1, SourceTerm S2) € symcl Rel}
and A1: (symcl (TRel™))" = {(T1, T2). (TargetTerm T1, TargetTerm T2) € symcl Rel}
and A2: preorder (symcl Rel)
by blast
thus fully-abstract ((symcl (SRel=))") ((symcl (TRel™))™)
using source-target-relation-with-trans-symcl-impl-full-abstraction[where Rel=Rel]
unfolding preorder-on-def
by blast
qed

227

9.5 Full Abstraction without Relating Translations to their Source Terms

Let Rel be the result of removing from indRelSTEQ all pairs of two source or two target terms that
are not contained in SRel or TRel. Then a fully abstract encoding ensures that Rel is trans iff SRel
is refl and TRel is trans.

lemma (in encoding) full-abstraction-impl-indRelSTEQ-is-trans:
fixes SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
and Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes fullAbs: fully-abstract SRel TRel
and rel: Rel = ((indRelSTEQ SRel TRel)
—{(P, Q). (P € ProcS N Q € ProcS) V (P € ProcT A Q € ProcT)})
U{(P, Q). (3SP SQ. SP €SP A SQ S QA (SP, SQ) € SRel)
V@EATPTQ. TP €T P A TQ €T Q A (TP, TQ) € TRel)}
shows (refl SRel A trans TRel) = trans Rel
unfolding trans-def
proof auto
fix PQR
assume A7: refl SRel and A2:Vz y. (z, y) € TRel — (V2. (y, 2) € TRel — (x, z) € TRel)
and A3: (P, Q) € Rel and A4: (Q, R) € Rel
from fullAbs rel have A5: VYV SP SQ. (SourceTerm SP, SourceTerm SQ) € Rel — ([SP], [SQ]) € TRel
by simp
from rel have A6: VY TP TQ. (TargetTerm TP, TargetTerm TQ) € Rel — (TP, TQ) € TRel
by simp
have A7: V¥V SP TQ. (SourceTerm SP, TargetTerm TQ) € Rel — ([SP], TQ) € TRel
proof clarify
fix SP TQ
assume (SourceTerm SP, TargetTerm T(Q) € Rel
with rel have SourceTerm SP ~[-]<SRel,TRel> TargetTerm TQ
by simp
with A1 A2 fullAbs show ([SP], TQ) € TRel
using full-abstraction-wrt-preorders-impl-indRelSTEQ-to-SRel-and-TRel(3)[where
SRel=SRel and TRel=TRel]
unfolding trans-def
by blast
qed
have A8: VTP SQ. (TargetTerm TP, SourceTerm SQ) € Rel — (TP, [SQ]) € TRel
proof clarify
fix TP SQ
assume (TargetTerm TP, SourceTerm SQ) € Rel
with rel have TargetTerm TP ~[-]<SRel,TRel> SourceTerm SQ
by simp
with A1 A2 fullAbs show (TP, [SQ]) € TRel
using full-abstraction-wrt-preorders-impl-ind RelSTEQ-to-SRel-and- TRel(4) [where
SRel=SRel and TRel=TRel]
unfolding trans-def
by blast
qed
show (P, R) € Rel
proof (cases P)
case (SourceTerm SP)
assume A9: SP €S P
show (P, R) € Rel
proof (cases Q)
case (SourceTerm SQ)
assume A10: SQ €5 Q
with A3 A5 A9 have A11: ([SP], [SQ]) € TRel
by simp
show (P, R) € Rel
proof (cases R)

228

case (SourceTerm SR)
assume A12: SR €S R
with A4 A5 A10 have ([SQ], [SR]) € TRel
by simp
with A2 A11 have ([SP], [SR]) € TRel
by blast
with fullAbs have (SP, SR) € SRel
by simp
with rel A9 A12 show (P, R) € Rel
by simp
next
case (TargetTerm TR)
assume A12: TR €T R
from A9 have P ~[-]<SRel,TRel> TargetTerm ([SP])
by (simp add: indRelSTEQ.encR)
moreover from A/ A7 A10 A12 have ([SQ], TR) € TRel
by simp
with A2 A11 have ([SP], TR) € TRel
by blast
with A12 have TargetTerm ([SP]) ~[-]<SRel,TRel> R
by (simp add: indRelSTEQ.target)
ultimately have P ~[-]<SRel, TRel> R
by (rule indRelSTEQ.trans)
with rel A9 A12 show (P, R) € Rel
by simp
qed
next
case (TargetTerm TQ)
assume A10: TQ €T Q
with A3 A7 A9 have A11: ([SP], TQ) € TRel
by simp
show (P, R) € Rel
proof (cases R)
case (SourceTerm SR)
assume A12: SR €S R
with A4 A8 A10 have (TQ, [SR]) € TRel
by simp
with A2 A11 have ([SP], [SR]) € TRel
by blast
with fullAbs have (SP, SR) € SRel
by simp
with rel A9 A12 show (P, R) € Rel
by simp
next
case (TargetTerm TR)
assume A12: TR €T R
from A9 have P ~[-]<SRel,TRel> TargetTerm ([SP])
by (simp add: indRelSTEQ.encR)
moreover from A/ A6 A10 A12 have (TQ, TR) € TRel
by simp
with A2 A11 have ([SP], TR) € TRel
by blast
with A12 have TargetTerm ([SP]) ~[]<SRel,TRel> R
by (simp add: indRelSTEQ.target)
ultimately have P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
with A9 A12 rel show (P, R) € Rel
by simp
qed
qed
next

229

case (TargetTerm TP)
assume A9: TP €T P
show (P, R) € Rel
proof (cases Q)
case (SourceTerm SQ)
assume A10: SQ €S Q
with A8 A8 A9 have A11: (TP, [SQ]) € TRel
by simp
show (P, R) € Rel
proof (cases R)
case (SourceTerm SR)
assume A12: SR €S R
with A4 A5 A10 have ([SQ], [SR]) € TRel
by simp
with A2 A11 have (TP, [SR]) € TRel
by blast
with A9 have P ~[-]<SRel,TRel> TargetTerm ([SR])
by (simp add: indRelSTEQ.target)
moreover from A12 have TargetTerm ([SR]) ~[-]<SRel,TRel> R
by (simp add: indRelSTEQ.encL)
ultimately have P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
with rel A9 A12 show (P, R) € Rel
by simp
next
case (TargetTerm TR)
assume A12: TR €T R
with 44 A7 A10 have ([SQ], TR) € TRel
by simp
with A2 A11 have (TP, TR) € TRel
by blast
with rel A9 A12 show (P, R) € Rel
by simp
qed
next
case (TargetTerm TQ)
assume A10: TQ €T Q
with A3 A6 A9 have A11: (TP, TQ) € TRel
by simp
show (P, R) € Rel
proof (cases R)
case (SourceTerm SR)
assume A12: SR €S R
with 44 A8 A10 have (TQ, [SR]) € TRel
by simp
with A2 A11 have (TP, [SR]) € TRel
by blast
with A9 have P ~[-]<SRel,TRel> TargetTerm ([SR])
by (simp add: indRelSTEQ.target)
moreover from A12 have TargetTerm ([SR]) ~[-]<SRel,TRel> R
by (simp add: indRelSTEQ.encL)
ultimately have P ~[-]<SRel,TRel> R
by (rule indRelSTEQ.trans)
with rel A9 A12 show (P, R) € Rel
by simp
next
case (TargetTerm TR)
assume A12: TR €T R
with A/ A6 A10 have (TQ, TR) € TRel
by simp
with A2 A11 have (TP, TR) € TRel

230

by blast
with A9 A12 rel show (P, R) € Rel
by simp
qed
qed
qged
next
assume B:Vz y. (z, y) € Rel — (V2. (y, z) € Rel — (x, z) € Rel)
thus refl SRel
unfolding refi-on-def
proof auto
fix S
from rel have (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelSTEQ.encR)
moreover from rel have (TargetTerm ([S]), SourceTerm S) € Rel
by (simp add: indRelSTEQ.encL)
ultimately have (SourceTerm S, SourceTerm S) € Rel
using B
by blast
with rel show (S, S) € SRel
by simp
qed
next
fix TP TQ TR
assume Vz y. (z, y) € Rel — (V2. (y, 2) € Rel — (z, 2) € Rel)
moreover assume (TP, TQ) € TRel
with rel have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume (TQ, TR) € TRel
with rel have (TargetTerm TQ, TargetTerm TR) € Rel
by simp
ultimately have (TargetTerm TP, TargetTerm TR) € Rel
by blast
with rel show (TP, TR) € TRel
by simp
qed

Whenever an encoding induces a trans relation that includes SRel and TRel and relates source terms
to their literal translations in both directions, the encoding is fully abstract w.r.t. SRel and TRel.

lemma (in encoding) trans-source-target-relation-impl-fully-abstract:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
and SRel :: ('procS x 'procS) set
and TRel :: ('procT x 'procT) set
assumes enc: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
A (TargetTerm ([S]), SourceTerm S) € Rel
and srel: SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
and trel: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and trans: trans Rel
shows fully-abstract SRel TRel
proof auto
fix 51 52
assume (51, S2) € SRel
with srel have (SourceTerm S1, SourceTerm S2) € Rel
by simp
with enc trans have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
unfolding trans-def
by blast
with trel show ([S1], [S2]) € TRel
by simp
next

231

fix 51 52

assume ([S1], [S2]) € TRel

with trel have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
by simp

with enc trans have (SourceTerm S1, SourceTerm S2) € Rel

unfolding trans-def

by blast

with srel show (51, S2) € SRel
by simp

qed

Assume TRel is a preorder. Then an encoding is fully abstract w.r.t. SRel and TRel iff there exists
a relation that relates add least all source terms to their literal translations, includes SRel and TRel,
and whose union with the relation that relates exactly all literal translations to their source terms is
trans.

lemma (in encoding) source-target-relation-with-trans-impl-full-abstraction:
fixes Rel :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set
assumes enc: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
and trans: trans (Rel U {(P, Q). 3S. [S] €T P A S €5 Q})
shows fully-abstract {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
{(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
proof auto
fix S1 .52
define Rel’ where Rel’ = Rel U {(P, Q). 3S.[S] €T P A S €S Q}
from Rel’-def have (TargetTerm ([S1]), SourceTerm S1) € Rel’
by simp
moreover assume (SourceTerm S1, SourceTerm S2) € Rel
with Rel’-def have (SourceTerm S1, SourceTerm S2) € Rel’
by simp
moreover from enc Rel’-def have (SourceTerm S2, TargetTerm ([S2])) € Rel’
by simp
ultimately show (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
using trans Rel’-def
unfolding trans-def
by blast
next
fix S1.52
define Rel’ where Rel’ = Rel U {(P, Q). 3S.[S] €T P A S €S Q}
from enc Rel’-def have (SourceTerm S1, TargetTerm ([S1])) € Rel’
by simp
moreover assume (TargetTerm ([S1]), TargetTerm ([S2])) € Rel
with Rel’-def have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel’
by simp
moreover from Rel’-def have (TargetTerm ([S2]), SourceTerm S2) € Rel’
by simp
ultimately show (SourceTerm S1, SourceTerm S2) € Rel
using trans Rel’-def
unfolding trans-def
by blast
qed

lemma (in encoding) fully-abstract-writ-preorders-iff-source-target-relation-is-transB:
fixes SRel :: ('procS x ’procS) set
and TRel :: ("procT x 'procT) set
assumes preord: preorder TRel
shows fully-abstract SRel TRel =
(FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q}))

232

proof (rule iffT)
assume fully-abstract SRel TRel
with preord show 3 Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
using fully-abstract-wrt-preorders-impl-source-target-relation-is-trans[where SRel=SRel
and TRel=TRel
unfolding preorder-on-def refl-on-def
by auto
next
assume 3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
from this obtain Rel
where V S. (SourceTerm S, TargetTerm ([S])) € Rel
and SRel = {(S51, S2). (SourceTerm S1, SourceTerm S2) € Rel}
and TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q})
by blast
thus fully-abstract SRel TRel
using source-target-relation-with-trans-impl-full-abstraction[where Rel=Rel|
by blast
qed

The same holds if to obtain transitivity the union may contain additional pairs that do neither relate
two source nor two target terms.

lemma (in encoding) fully-abstract-wrt-preorders-iff-source-target-relation-union-is-trans:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
shows (fully-abstract SRel TRel A refl SRel A trans TRel) =
(I Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (3Rel’. (V(P, Q) € Rel’. P € ProcS +— @ € ProcT)
A trans (Rel U {(P, Q). 3S5.[S] €T P A S €S Q} U Rel"))
proof (rule iffI, (erule conjE)+)
assume fully-abstract SRel TRel and refl SRel and trans TRel
from this obtain Rel where A1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and A2: SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
and A3: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and A4: trans (Rel U {(P, Q). 3S.[S] €T P A S €S Q})
using fully-abstract-wrt-preorders-impl-source-target-relation-is-trans[where SRel=SRel
and TRel=TRel]
by blast
have V (P, Q) € {}. P € ProcS <— Q € ProcT
by simp
moreover from Aj have trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q} U{})
unfolding trans-def
by blast
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (FRel’. (V(P, Q) € Rel’. P € ProcS «— @ € ProcT)
A trans (Rel U {(P, Q). 3S. [S] €T P A S €S Q} U Rel’))
using A1 A2 A3
by blast
next

assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)

233

A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
N TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (3Rel’. (V(P, Q) € Rel'. P € ProcS «— @Q € ProcT)
A trans (Rel U {(P, Q). 3S5. [S] €T P A S €S Q} U Rel’))
from this obtain Rel Rel’
where B1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
and B2: SRel = {(51, 52). (SourceTerm S1, SourceTerm S2) € Rel}
and B3: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and B4: V(P, Q) € Rel’. P € ProcS +— Q € ProcT
and B5: trans (Rel U {(P, Q). 3S5.[S] €T P A S €S Q} U Rel’)
by blast
have fully-abstract SRel TRel
proof auto
fix 51 .52
have (TargetTerm ([S1]), SourceTerm S1) € Rel U {(P, Q). 3S. [S] €T P A S €S Q} U Rel’
by simp
moreover assume (S1, S2) € SRel
with B2 have (SourceTerm S1, SourceTerm S2) € Rel U {(P, Q). 3S5. [S] €T P A S €S Q} U Rel’
by simp
moreover from B1
have (SourceTerm S2, TargetTerm ([S2])) € Rel U {(P, Q). 3S. [S] €T P A S €S Q} U Rel’
by simp
ultimately have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel U Rel’
using BS
unfolding trans-def
by blast
with B3 B4 show ([S1], [S2]) € TRel
by blast
next
fix S1 .52
from B1
have (SourceTerm S1, TargetTerm ([S1])) € Rel U {(P, Q). 3S. [S] €T P A S €S Q} U Rel’
by simp
moreover assume ([S1], [S2]) € TRel
with B3
have (TargetTerm ([S1]), TargetTerm ([S2])) € Rel U {(P, Q). 3S. [S] €T P AN S €S Q} U Rel’
by simp
moreover
have (TargetTerm ([S2]), SourceTerm S2) € Rel U {(P, Q). 3S5. [S] €T P A S €S Q} U Rel’
by simp
ultimately have (SourceTerm S1, SourceTerm S2) € Rel U Rel’
using B5
unfolding trans-def
by blast
with B2 B4 show (S1, S2) € SRel
by blast
qged
moreover have refl SRel
unfolding refi-on-def
proof auto
fix S
from B1 have (SourceTerm S, TargetTerm ([S])) € Rel U {(P, Q). 3S. [S] €T P A S €S Q} U Rel’
by simp
moreover
have (TargetTerm ([S]), SourceTerm S) € Rel U {(P, Q). 3S5. [S] €T P AN S €S Q} U Rel’
by simp
ultimately have (SourceTerm S, SourceTerm S) € Rel U Rel’
using B5
unfolding trans-def
by blast
with B2 B4 show (S, S) € SRel

234

by blast
qed
moreover have trans TRel
unfolding trans-def
proof clarify
fix TP TQ TR
assume (TP, TQ) € TRel and (TQ, TR) € TRel
with B3 B4 B5 show (TP, TR) € TRel
unfolding trans-def
by blast
qged
ultimately show fully-abstract SRel TRel A refl SRel N trans TRel
by blast
qed

end
theory CombinedCriteria

imports DivergenceReflection SuccessSensitiveness FullAbstraction OperationalCorrespondence
begin

10 Combining Criteria

So far we considered the effect of single criteria on encodings. Often the quality of an encoding is
prescribed by a set of different criteria. In the following we analyse the combined effect of criteria.
This way we can compare criteria as well as identify side effects that result from combinations of
criteria. We start with some technical lemmata. To combine the effect of different criteria we combine
the conditions they induce. If their effect can be described by a predicate on the pairs of the relation,
as in the case of success sensitiveness or divergence reflection, combining the effects is simple.

lemma (in encoding) criterion-iff-source-target-relation-impl-indRelR:
fixes Cond :: ('procS = "procT) = bool
and Pred :: (('procS, 'procT) Proc x ('procS, 'procT) Proc) set = bool
assumes Cond enc = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A Pred Rel)
shows Cond enc = (3 Rel’. Pred (indRelR U Rel’))
proof (rule iffI)
assume Cond enc
with assms obtain Rel where A1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel and A2: Pred Rel
by blast
from A1 have Rel = indRelR U (Rel — indRelR)
by (auto simp add: indRelR.simps)
with A2 have Pred (indRelR U (Rel — indRelR))
by simp
thus 3 Rel’. Pred (indRelR U Rel’)
by blast
next
assume 3 Rel’. Pred (indRelR U Rel’)
from this obtain Rel’ where Pred (indRelR U Rel’)
by blast
moreover have V. S. (SourceTerm S, TargetTerm ([S])) € (indRelR U Rel’)
by (simp add: indRelR.encR)
ultimately show Cond enc
using assms
by blast
qed

lemma (in encoding) combine-conditions-on-pairs-of-relations:
fixes RelA RelB :: (('procS, 'procT) Proc x('procS, 'procT) Proc) set
and CondA CondB :: (('procS, 'procT) Proc X('procS, 'procT) Proc) = bool
assumes V (P, @) € RelA. CondA (P, Q)
and V (P, Q) € RelB. CondB (P, Q)

235

shows (V (P, Q) € RelA N RelB. CondA (P, Q)) N (V(P, Q) € RelA N RelB. CondB (P, Q))
using assms
by blast

lemma (in encoding) combine-conditions-on-sets-of-relations:
fixes Rel RelA :: (('procS, 'procT) Proc x('procS, 'procT) Proc) set
and Cond :: (("procS, 'procT) Proc x('procS, 'procT) Proc) set = bool
and CondA :: ((procS, 'procT) Proc x('procS, 'procT) Proc) = bool
assumes V (P, @) € RelA. CondA (P, Q)
and Cond Rel A Rel C RelA
shows Cond Rel A (¥ (P, Q) € Rel. CondA (P, Q))
using assms
by blast

lemma (in encoding) combine-conditions-on-sets-and-pairs-of-relations:
fixes Rel RelA RelB :: ((procS, "procT) Proc x('procS, 'procT) Proc) set
and Cond 2 (("procS, 'procT) Proc x('procS, 'procT) Proc) set = bool
and CondA CondB :: (('procS, 'procT) Proc x('procS, 'procT) Proc) = bool
assumes V (P, @) € RelA. CondA (P, Q)
and VY (P, Q) € RelB. CondB (P, Q)
and Cond Rel N Rel C RelA N Rel C RelB
shows Cond Rel A (¥ (P, Q) € Rel. CondA (P, Q)) A (Y (P, Q) € Rel. CondB (P, Q))
using assms
by blast

We mapped several criteria on conditions on relations that relate at least all source terms and their
literal translations. The following lemmata help us to combine such conditions by switching to the
witness indRelR.

lemma (in encoding) combine-conditions-on-relations-indRelR:
fixes RelA RelB :: (('procS, 'procT) Proc x('procS, 'procT) Proc) set
and Cond 2 (("'procS, 'procT) Proc x('procS, 'procT) Proc) set = bool
and CondA CondB :: (('procS, 'procT) Proc x('procS, 'procT) Proc) = bool
assumes A1: VS. (SourceTerm S, TargetTerm ([S])) € RelA
and A2: YV (P, Q) € RelA. CondA (P, Q)
and A3:VS. (SourceTerm S, TargetTerm ([S])) € RelB
and A/: V (P, Q) € RelB. CondB (P, Q)
shows I Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A (V(P, Q) € Rel. CondA (P, Q))
A (V(P, Q) € Rel. CondB (P, Q))
and Cond indRelR = (3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel)
A (V(P, Q) € Rel. CondA (P, Q)) A (VY(P, Q) € Rel. CondB (P, Q)) N Cond Rel)
proof —
have A5:VS. (SourceTerm S, TargetTerm ([S])) € indRelR
by (simp add: indRelR.encR)
moreover have A6: indRelR C RelA
proof clarify
fix P Q
assume (P, Q) € indRelR
from this A1 show (P, Q) € RelA
by (induct, simp)
qed
moreover have A7: indRelR C RelB
proof clarify
fix P Q
assume (P, Q) € indRelR
from this A3 show (P, Q) € RelB
by (induct, simp)
qged
ultimately show 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (V(P, Q) € Rel. CondA (P, Q) N (Y(P, Q) € Rel. CondB (P, Q))

using combine-conditions-on-sets-and-pairs-of-relations[where RelA=RelA and RelB=RelB

236

and CondA=CondA and CondB=CondB and Rel=indRelR
and Cond=AR.VS. (SourceTerm S, TargetTerm ([S])) € R] A2 A4
by blast
from A2 A A5 A6 A7
show Cond indRelR = (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (V(P, Q) € Rel. CondA (P, Q)) N (V(P, Q) € Rel. CondB (P, Q)) N Cond Rel)
using combine-conditions-on-sets-and-pairs-of-relations[where RelA=RelA and RelB=RelB
and CondA=CondA and CondB=CondB and Rel=indRelR
and Cond=MAR.V S. (SourceTerm S, TargetTerm ([S])) € R A Cond R]
by blast
qed

lemma (in encoding) indRelR-cond-respects-predA-and-reflects-predB:
fixes PredA PredB :: ('procS, 'procT) Proc = bool
shows ((3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel PredA)
A (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel PredB))
= (Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel PredA
A rel-reflects-pred Rel PredB)
proof (rule iffI, erule conjE)
assume J Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel PredA
from this obtain Reld where A1:VS. (SourceTerm S, TargetTerm ([S])) € RelA
and A2: rel-respects-pred RelA PredA
by blast
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel PredB
from this obtain RelB where A3: V S. (SourceTerm S, TargetTerm ([S])) € RelB
and A4: rel-reflects-pred RelB PredB
by blast
from A2 have V (P, Q) € RelA. PredA P <+— PredA Q
by blast
moreover from A/ have V (P, Q) € RelB. PredB Q — PredB P
by blast
ultimately have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (V(P, Q)€Rel. PredA P = PredA Q) N (Y (P, Q)€Rel. PredB Q —> PredB P)
using combine-conditions-on-relations-indRelR(1)[where RelA=RelA and RelB=RelB and
CondA=X\(P, Q). PredA P +— PredA @ and CondB=\(P, Q). PredB Q — PredB P] A1 A3
by simp
thus 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel PredA
A rel-reflects-pred Rel PredB
by blast
next
assume 3 Rel. (V S. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel PredA
A rel-reflects-pred Rel PredB
thus (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-respects-pred Rel PredA) N
(FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel) A rel-reflects-pred Rel PredB)
by blast
qed

10.1 Divergence Reflection and Success Sensitiveness

We combine results on divergence reflection and success sensitiveness to analyse their combined effect
on an encoding function. An encoding is success sensitive and reflects divergence iff there exists a
relation that relates source terms and their literal translations that reflects divergence and respects
success.

lemma (in encoding-wrt-barbs) WSS-DR-iff-source-target-rel:
fixes success :: 'barbs
shows (enc-weakly-respects-barb-set {success} N enc-reflects-divergence)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
proof —

237

have V Rel. rel-reflects-divergence Rel (STCal Source Target)
= rel-reflects-pred Rel divergentST
by (simp add: divergentST-STCal-divergent)
moreover have V Rel. (rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
= rel-respects-pred Rel (AP. P|.success))
by (simp add: STCalWB-reachesBarbST)
ultimately show (enc-weakly-respects-barb-set {success} N enc-reflects-divergence)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
using success-sensitive-iff-source-target-rel-weakly-respects-success(1)
divergence-reflection-iff-source-target-rel-refiects-divergence
indRelR-cond-respects-predA-and-reflects-pred Blwhere
PredA=\P. P|.success and PredB=divergentST]
by simp
qed

lemma (in encoding-wrt-barbs) SS-DR-iff-source-target-rel:
fixes success :: 'barbs
shows (enc-respects-barb-set {success} N enc-reflects-divergence)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
proof —
have V Rel. rel-reflects-divergence Rel (STCal Source Target)
= rel-reflects-pred Rel divergentST
by (simp add: divergentST-STCal-divergent)
moreover have V Rel. (rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
= rel-respects-pred Rel (AP. PJ.success))
by (simp add: STCalWB-hasBarbST)
ultimately show (enc-respects-barb-set {success} N enc-reflects-divergence)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
using success-sensitive-iff-source-target-rel-respects-success(1)
divergence-reflection-iff-source-target-rel-reflects-divergence
indRelR-cond-respects-predA-and-reflects-pred Blwhere
PredA=\P. P].success and PredB=divergentST]
by simp
qed

10.2 Adding Operational Correspondence

The effect of operational correspondence includes conditions (TRel is included, transitivity) that re-
quire a witness like indRelRTPO. In order to combine operational correspondence with success sensi-
tiveness, we show that if the encoding and TRel (weakly) respects barbs than indRelRTPO (weakly)
respects barbs. Since success is only a specific kind of barbs, the same holds for success sensitiveness.

lemma (in encoding-wrt-barbs) enc-and-TRel-impl-indRelRTPO-weakly-respects-success:
fixes success :: 'barbs
and TRel :: ('procT x ’procT) set
assumes encRS: enc-weakly-respects-barb-set {success}
and trelPS: rel-weakly-preserves-barb-set TRel TWB {success}
and trelRS: rel-weakly-reflects-barb-set TRel TWB {success}
shows rel-weakly-respects-barb-set (indRelRTPO TRel) (STCalWB SWB TWB) {success}
proof auto
fix PQP'
assume P S[-JRT<TRel> @ and P ——(Calculus (STCalWB SWB TWB))* P’
and P'|<STCalWB SWB TWB>success
thus QU<STCalWB SWB TWB>success
proof (induct arbitrary: P’

238

case (encR S)
assume SourceTerm S —(Calculus (STCalWB SWB TWB))x P’ and P'|<STCalWB SWB TWB> success
hence S| <SWB>success
using STCalWB-reachesBarbST
by blast
with encRS have [S]{<TWB>success
by simp
thus TargetTerm ([S])<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
next
case (source S)
assume SourceTerm S —(Calculus (STCalWB SWB TWB))x P’ and P'|<STCalWB SWB TWB> success
thus SourceTerm S{<STCalWB SWB TWB>success
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T1 ——(Calculus (STCalWB SWB TWB))x P’
and P'|<STCalWB SWB TWB>success
hence T1|<TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have T2\ <TWB> success
using trelPS
by simp
thus TargetTerm T2} <STCalWB SWB TWDB>success
using STCalWB-reachesBarbST
by blast
next
case (trans P Q R)
assume P ——(Calculus (STCalWB SWB TWB))x P’ and P'|<STCalWB SWB TWB>success
and AP’ P —(Calculus (STCalWB SWB TWB))x P' = P'|<STCalWB SWB TWB> success
= QI<STCalWB SWB TWB>success
hence QU<STCalWB SWB TWB>success
by simp
moreover assume A\ Q. Q —(Calculus (STCalWB SWB TWB))*x Q' = Q'\<STCalWB SWB TWB>success
= R{<STCalWB SWB TWB>success
ultimately show R{<STCalWB SWB TWB>success
by blast
qed
next
fix PQ Q'
assume P S[JRT<TRel> @Q and Q ——(Calculus (STCalWB SWB TWB))x Q'
and Q'|<STCalWB SWB TWB>success
thus Py<STCalWB SWB TWB>success
proof (induct arbitrary: Q)
case (encR 5)
assume TargetTerm ([S]) —(Calculus (STCalWB SWB TWB))x Q'
and Q'|<STCalWB SWB TWB>success
hence [S]}<TWB>success
using STCalWB-reachesBarbST
by blast
with encRS have S| <SWB>success
by simp
thus SourceTerm S{<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
next
case (source S)
assume SourceTerm S —(Calculus (STCalWB SWB TWB))x Q' and Q'\<STCalWB SWB TWB> success

239

thus SourceTerm S{<STCalWB SWB TWB>success
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T2 —(Calculus (STCalWB SWB TWB))x Q'
and Q'|<STCalWB SWB TWB> success
hence T2\ <TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have T1|<TWB>success
using trelRS
by blast
thus TargetTerm T1<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
next
case (trans P Q@ R R)
assume R ——(Calculus (STCalWB SWB TWB))x R’ and R'|<STCalWB SWB TWB>success
and AR’ R +——(Calculus (STCalWB SWB TWB))x R' = R'|<STCalWB SWB TWB>success
= QUI<STCalWB SWB TWB>success
hence QU<STCalWB SWB TWB>success
by simp
moreover assume A\ Q’. Q —(Calculus (STCalWB SWB TWB))x Q' = Q'|<STCalWB SWB TWB> success
= PU<STCalWB SWB TWB>success
ultimately show Py<STCalWB SWB TWB>success
by blast
qed
qed

lemma (in encoding-wrt-barbs) enc-and-TRel-impl-ind RelRTPO-weakly-respects-barbs:
fixes TRel :: ("procT x 'procT) set
assumes encRS: enc-weakly-respects-barbs
and trelPS: rel-weakly-preserves-barbs TRel TWB
and trelRS: rel-weakly-reflects-barbs TRel TWB
shows rel-weakly-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
proof auto
fix PQz P’
assume P <[JRT<TRel> @ and P —(Calculus (STCalWB SWB TWB))x P’
and P'|<STCalWB SWB TWB>z
thus QI <STCalWB SWB TWB>x
proof (induct arbitrary: P’
case (encR S)
assume SourceTerm S ——(Calculus (STCalWB SWB TWB))x P’ and P'|<STCalWB SWB TWB>z
hence S|<SWB>z
using STCalWB-reachesBarbST
by blast
with encRS have [S|U<TWB>z
by simp
thus TargetTerm ([S])<STCalWB SWB TWB>z
using STCalWB-reachesBarbST
by blast
next
case (source S)
assume SourceTerm S ——(Calculus (STCalWB SWB TWB))x P’ and P'|<STCalWB SWB TWB>z
thus SourceTerm S{<STCalWB SWB TWB>zx
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T1 ——(Calculus (STCalWB SWB TWB))* P’

240

and P'|<STCalWB SWB TWB>z
hence T1|<TWB>x
using STCalWB-reachesBarbST
by blast
ultimately have T2|<TWB>z
using trelPS
by simp
thus TargetTerm T2Yy<STCalWB SWB TWB>z
using STCalWB-reachesBarbST
by blast
next
case (trans P Q R)
assume P ——(Calculus (STCalWB SWB TWB))x P’ and P'|<STCalWB SWB TWB>z
and AP’ P —(Calculus (STCalWB SWB TWB))x P' = P'|<STCalWB SWB TWB>x
— QI<STCalWB SWB TWB>zx
hence QU<STCalWB SWB TWB>zx
by simp
moreover assume A\Q’. Q —(Calculus (STCalWB SWB TWB))x Q' = Q'}<STCalWB SWB TWB>z
= R{<STCalWB SWB TWB>z
ultimately show R|<STCalWB SWB TWB>z
by blast
qed
next
fix PQz Q'
assume P S[JRT<TRel> @ and Q —(Calculus (STCalWB SWB TWB))x Q'
and Q'|<STCalWB SWB TWB>zx
thus Pl<STCalWB SWB TWB>z
proof (induct arbitrary: Q)
case (encR S)
assume TargetTerm ([S]) —(Calculus (STCalWB SWB TWB))x Q'
and Q'|<STCalWB SWB TWB>x
hence [S]Y<TWB>z
using STCalWB-reachesBarbST
by blast
with encRS have S|<SWB>z
by simp
thus SourceTerm S{}<STCalWB SWB TWB>zx
using STCalWB-reachesBarbST
by blast
next
case (source S)
assume SourceTerm S ——(Calculus (STCalWB SWB TWB))x Q' and Q'|<STCalWB SWB TWB>zx
thus SourceTerm S|<STCalWB SWB TWB>x
by blast
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T2 —(Calculus (STCalWB SWB TWB))x Q'
and Q'|<STCalWB SWB TWB>xzx
hence T2<TWB>x
using STCalWB-reachesBarbST
by blast
ultimately have TI1|<TWB>zx
using trelRS
by blast
thus TargetTerm T1)<STCalWB SWB TWB>zx
using STCalWB-reachesBarbST
by blast
next
case (trans P Q R R
assume R ——(Calculus (STCalWB SWB TWB))x R’ and R'|<STCalWB SWB TWB>z

241

and AR’ R —(Calculus (STCalWB SWB TWB))x R’ = R'|<STCalWB SWB TWB>zx
= QU<STCalWB SWB TWB>z

hence QJ<STCalWB SWB TWB>x
by simp

moreover assume \Q’. Q —(Calculus (STCalWB SWB TWB))x Q' = Q'|<STCalWB SWB TWB>z

= P|<STCalWB SWB TWB>z

ultimately show P|<STCalWB SWB TWB>zx

by blast
qed
qed

lemma (in encoding-wrt-barbs) enc-and-TRel-impl-indRelRTPO-respects-success:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
assumes encRS: enc-respects-barb-set {success}
and trelPS: rel-preserves-barb-set TRel TWB {success}
and trelRS: rel-reflects-barb-set TRel TWB {success}
shows rel-respects-barb-set (indRelRTPO TRel) (STCalWB SWB TWB) {success}
proof auto
fix P Q
assume P S[JRT<TRel> @ and P|<STCalWB SWB TWB>success
thus Q[<STCalWB SWB TWB>success
proof induct
case (encR S)
assume SourceTerm S|<STCalWB SWB TWB>success
hence S|<SWB>success
using STCalWB-hasBarbST
by blast
with encRS have [S]|<TWB>success
by simp
thus TargetTerm ([S]){<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
next
case (source S)
assume SourceTerm S|<STCalWB SWB TWB>success
thus SourceTerm S|<STCalWB SWB TWB>success
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T1]|<STCalWB SWB TWB>success
hence T1|<TWB>success
using STCalWB-hasBarbST
by blast
ultimately have T2|<TWB>success
using trelPS
by simp
thus TargetTerm T2]<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
next
case (trans P Q R)
assume P|<STCalWB SWB TWB>success
and Pl<STCalWB SWB TWB>success = Ql<STCalWB SWB TWB>success
and QL<STCalWB SWB TWB>success => R]<STCalWB SWB TWB>success
thus R|<STCalWB SWB TWB>success
by simp
qged
next
fix P Q

242

assume P S[[JRT<TRel> @ and Ql<STCalWB SWB TWB> success
thus P|<STCalWB SWB TWB>success
proof induct
case (encR S)
assume TargetTerm ([S])4<STCalWB SWB TWB>success
hence [S]|<TWB>success
using STCalWB-hasBarbST
by blast
with encRS have S|<SWB>success
by simp
thus SourceTerm S|<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
next
case (source S)
assume SourceTerm S| <STCalWB SWB TWB>success
thus SourceTerm S|<STCalWB SWB TWB>success
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T2]|<STCalWB SWB TWB>success
hence T2|<TWB>success
using STCalWB-hasBarbST
by blast
ultimately have T1|<TWB>success
using trelRS
by blast
thus TargetTerm T1]<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
next
case (trans P Q R)
assume R|<STCalWB SWB TWB>success
and R|<STCalWB SWB TWB>success = QL<STCalWB SWB TWB>success
and QI<STCalWB SWB TWB>success => Pl<STCalWB SWB TWB>success
thus P|<STCalWB SWB TWB>success
by simp
qed
qed

lemma (in encoding-wrt-barbs) enc-and-TRel-impl-indRel RTPO-respects-barbs:
fixes TRel :: ('procT x 'procT) set
assumes encRS: enc-respects-barbs
and trelPS: rel-preserves-barbs TRel TWB
and trelRS: rel-reflects-barbs TRel TWB
shows rel-respects-barbs (indRelRTPO TRel) (STCalWB SWB TWB)
proof auto
fix PQzx
assume P <[JRT<TRel> @ and Pl<STCalWB SWB TWB>z
thus Ql<STCalWB SWB TWB>z
proof induct
case (encR 5)
assume SourceTerm S| <STCalWB SWB TWB>x
hence S|<SWB>z
using STCalWB-hasBarbST
by blast
with encRS have [S]|<TWB>z
by simp
thus TargetTerm ([S])4<STCalWB SWB TWB>x
using STCalWB-hasBarbST

243

by blast
next
case (source S)
assume SourceTerm S|<STCalWB SWB TWB>z
thus SourceTerm S|<STCalWB SWB TWB>z
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T1]<STCalWB SWB TWB>z
hence T1|<TWB>x
using STCalWB-hasBarbST
by blast
ultimately have T2|<TWB>z
using trelPS
by simp
thus TargetTerm T2]<STCalWB SWB TWB>z
using STCalWB-hasBarbST
by blast
next
case (trans P Q R)
assume P|<STCalWB SWB TWB>zx
and P|<STCalWB SWB TWB>z = Ql<STCalWB SWB TWB>z
and Q[<STCalWB SWB TWB>x = R|<STCalWB SWB TWB>z
thus R|<STCalWB SWB TWB>x
by simp
qged
next
fix PQzx
assume P S[JRT<TRel> @ and Q|<STCalWB SWB TWB>x
thus P|<STCalWB SWB TWB>z
proof induct
case (encR S)
assume TargetTerm ([S])4<STCalWB SWB TWB>x
hence [S]}<TWB>z
using STCalWB-hasBarbST
by blast
with encRS have S|<SWB>z
by simp
thus SourceTerm S|<STCalWB SWB TWB>zx
using STCalWB-hasBarbST
by blast
next
case (source S)
assume SourceTerm S|<STCalWB SWB TWB>zx
thus SourceTerm S|<STCalWB SWB TWB>z
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T2]<STCalWB SWB TWB>z
hence T2|<TWB>zx
using STCalWB-hasBarbST
by blast
ultimately have T1|<TWB>x
using trelRS
by blast
thus TargetTerm T1]<STCalWB SWB TWB>z
using STCalWB-hasBarbST
by blast
next

244

case (trans P Q R)

assume R|<STCalWB SWB TWB>zx
and R|<STCalWB SWB TWB>z — QJ<STCalWB SWB TWB>z
and Ql<STCalWB SWB TWB>x = P|l<STCalWB SWB TWB>z

thus P|<STCalWB SWB TWB>z
by simp

qed
qed

An encoding is success sensitive and operational corresponding w.r.t. a bisimulation TRel that respects
success iff there exists a bisimultion that includes TRel and respects success. The same holds if we
consider not only success sensitiveness but barb sensitiveness in general.

lemma (in encoding-wrt-barbs) OC-SS-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
N (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume A1I: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A/: enc-weakly-reflects-barb-set {success}
define Rel where Rel = indRelRTPO TRel
hence BI1: YV S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def have B2: YV T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by (simp add: indRelRTPO.target)
from Rel-def have B3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
by (simp add: indRelRTPO-to-TRel(4)[where TRel=TRel])
from Rel-def have B4: V.S T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by simp
assume operational-complete (TRel*)
and operational-sound (TRel*)
and weak-reduction-simulation (TRel™) Target
and VP Q Q. (P, Q) € TRelt A Q — Targetx Q'
— (3P P —Targetx P' A (P, Q') € TRel™)
with Rel-def have B5: weak-reduction-bisimulation Rel (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation|where TRel=TRel]
by simp
from Rel-def A1 A2 A3 A have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-successiwhere TRel=TRel
and success=success]
by blast
show T Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(YT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel —s (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using B! B2 B3 B/ B5 B6 by blast

245

next
assume J Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)

AN(YT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)

A (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)

AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)

A weak-reduction-bisimulation Rel (STCal Source Target)

A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
from this obtain Rel where C1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and C2:VTI! T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and C3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
and C4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and C5: weak-reduction-bisimulation Rel (STCal Source Target)
and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}

by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
using OC-iff-weak-reduction-bisimulation|where TRel=TRel]
by auto
moreover have 3 Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using C1 C6 by blast
hence enc-weakly-respects-barb-set {success}
using success-sensitive-iff-source-target-rel-weakly-respects-success
by auto
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)* TP’ and TP'|<TWB>success
hence TargetTerm TP{<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQI<STCalWB SWB TWB>success
using C6
by blast
thus TQ|<TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7Q —(Calculus TWB)x TQ' and TQ'\<TWB>success
hence TargetTerm TQU<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TPl<STCalWB SWB TWB>success
using C6
by blast
thus TP|<TWB>success
using STCalWB-reachesBarbST
by blast

246

qged
ultimately show operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
A enc-weakly-respects-barb-set {success} A rel-weakly-respects-barb-set TRel TWB {success}
by fast
qed

lemma (in encoding-wrt-barbs) OC-SS-RB-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
A enc-weakly-respects-barbs N enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barbs TRel TWB A rel-weakly-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTL T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
N (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume AI: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A/: enc-weakly-reflects-barb-set {success}
and AS5: rel-weakly-preserves-barbs TRel TWB and AG: rel-weakly-reflects-barbs TRel TWB
and A7: enc-weakly-preserves-barbs and AS8: enc-weakly-reflects-barbs
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def have B2: VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by (simp add: indRelRTPO.target)
from Rel-def have B3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
by (simp add: indRelRTPO-to-TRel(4)[where TRel=TRel])
from Rel-def have B4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by simp
assume operational-complete (TRel*)
and operational-sound (TRel*)
and weak-reduction-simulation (TRel™) Target
and VP Q Q. (P, Q) € TRelt A Q — Targetx Q' — (I P'. P ——Targetx P' A (P', Q') € TRel™)
with Rel-def have B5: weak-reduction-bisimulation Rel (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel=TRel]
by simp
from Rel-def A1 A2 A3 AJ have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-successiwhere TRel=TRel
and success=success]
by blast
from Rel-def A5 A6 A7 A8 have B7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
using enc-and-TRel-impl-indRelRTP O-weakly-respects-barbs[where TRel=TRel|
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVT? T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using B! B2 B3 B B5 B6 B7 by blast

247

next
assume J Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
AN(YT1 T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VT1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
from this obtain Rel where C: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
N weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
by auto
hence C1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by simp
from C have C2:VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by simp
from C have C3:V T1 T2. (TurgetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
by simp
from C have C/: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
by simp
from C have C5: weak-reduction-bisimulation Rel (STCal Source Target)
by simp
from C have C7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
apply (rule conjE) apply (erule conjE)+ by blast
from C have C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule conjE) apply (erule conjE)+ by blast
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
using OC-iff-weak-reduction-bisimulation|where TRel=TRel]
by auto
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using C1 C6 by blast
hence enc-weakly-respects-barb-set {success}
using success-sensitive-iff-source-target-rel-weakly-respects-success
by auto
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
apply (rule exI) using C1 C7 by blast
hence enc-weakly-respects-barbs
using enc-weakly-respects-barbs-iff-source-target-rel
by auto
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)* TP’ and TP'|<TWB>success
hence TargetTerm TPl<STCalWB SWB TWB>success
using STCalWB-reachesBarbST

248

by blast
ultimately have TargetTerm TQU<STCalWB SWB TWB>success
using C6
by blast
thus TQI<TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7Q —(Calculus TWB)x TQ' and TQ'|<TWB>success
hence TargetTerm TQU<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP|<STCalWB SWB TWB>success
using C6
by blast
thus TP|<TWB>success
using STCalWB-reachesBarbST
by blast
qged
moreover have rel-weakly-respects-barbs TRel TWB
proof auto
fix TP TQ = TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)x TP’ and TP'|<TWDB>z
hence TargetTerm TP <STCalWB SWB TWB>x
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQU<STCalWB SWB TWB>zx
using C7
by blast
thus TQI<TWB>z
using STCalWB-reachesBarbST
by blast
next
fix TP TQ z TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 1'Q —(Calculus TWB)x TQ' and TQ'|<TWB>z
hence TargetTerm TQU<STCalWB SWB TWB>z
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP{<STCalWB SWB TWB>z
using C7
by blast
thus TP<TWB>zx
using STCalWB-reachesBarbST
by blast
qed
ultimately show operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
A enc-weakly-respects-barbs A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barbs TRel TWB A rel-weakly-respects-barb-set TRel TWB {success}
by fast
qed

249

lemma (in encoding-wrt-barbs) OC-SS-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (operational-corresponding TRel N preorder TRel N weak-reduction-bisimulation TRel Target
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A4: enc-weakly-reflects-barb-set {success}
and AS5: preorder TRel
from A5 have A6: TRelt = TRel
using trancl-id[of TRel] preorder-on-def
by blast
from A5 have A7: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding refi-on-def preorder-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A6 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A7 have B3: V.S T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by simp
assume operational-complete TRel and operational-sound TRel
and weak-reduction-simulation TRel Target
and VP Q Q. (P, Q) € TRel A Q — Targetx Q' — (3 P". P —Targetx P' A (P’, Q) € TRel)
with Rel-def A6 A7 have B/: weak-reduction-bisimulation Rel (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation[where TRel=TRel
by simp
from Rel-def A5 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel)
unfolding preorder-on-def
by blast
from Rel-def A1 A2 A3 A have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and- TRel-impl-indRelRTP O-weakly-respects-successiwhere TRel=TRel
and success=success]
by blast
show T Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using Bl B2 B3 Bj B5 B6 by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
N weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}

250

from this obtain Rel where C1: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
and C/: weak-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
by auto
from C1 C2 C3 C4 C5 have I Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
N weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-corresponding TRel N preorder TRel N\ weak-reduction-bisimulation TRel Target
using OC-wrt-preorder-iff-weak-reduction-bisimulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using C1 C6 by blast
hence enc-weakly-respects-barb-set {success}
using success-sensitive-iff-source-target-rel-weakly-respects-success
by simp
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)+* TP’ and TP'|<TWB>success
hence TargetTerm TPl<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQI<STCalWB SWB TWB>success
using C6
by blast
thus TQJ<TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7Q ——(Calculus TWB)x TQ' and TQ'|<TWB> success
hence TargetTerm TQU<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP <STCalWB SWB TWB>success
using C6
by blast
thus TP|<TWB>success
using STCalWB-reachesBarbST
by blast
qed
ultimately show operational-corresponding TRel A preorder TRel
A weak-reduction-bisimulation TRel Target
A enc-weakly-respects-barb-set {success} A rel-weakly-respects-barb-set TRel TWB {success}
by fast
qed

lemma (in encoding-wrt-barbs) OC-SS-RB-wrt-preorder-iff-source-target-rel:

fixes success :: 'barbs
and TRel :: ('procT x 'procT) set

251

shows (operational-corresponding TRel A preorder TRel N weak-reduction-bisimulation TRel Target
A enc-weakly-respects-barbs A rel-weakly-respects-barbs TRel TWDB
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
N weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume A1: rel-weakly-preserves-barbs TRel TWB and A2: rel-weakly-reflects-barbs TRel TWB
and A3: enc-weakly-preserves-barbs and Aj: enc-weakly-reflects-barbs
and AJ5: preorder TRel
from A5 have A6: TRel™ = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A5 have A7: TRel* = TRel
using reficl-trancl[of TRel] trancl-id[of TRel]
unfolding preorder-on-def refi-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence BI1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A6 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A7 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by simp
assume operational-complete TRel and operational-sound TRel
and weak-reduction-simulation TRel Target
and VP Q Q. (P, Q) € TRel A Q — Targetx Q' — (3 P'. P —Targetx P' A (P’, Q") € TRel)
with Rel-def A6 A7 have Bj: weak-reduction-bisimulation Rel (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation|where TRel=TRel]
by simp
from Rel-def A5 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel]
unfolding preorder-on-def
by blast
from Rel-def A1 A2 A3 A4 have BG: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
using enc-and-TRel-impl-indRelRTP O-weakly-respects-barbs[where TRel=TRel]
by blast
hence B7: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using Bl B2 B3 B/ B5 B6 B7 by blast
next
assume 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}

252

from this obtain Rel where C1: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
and C/: weak-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
by auto
from C1 C2 C3 C4 C5 have I Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
N weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-corresponding TRel N preorder TRel N\ weak-reduction-bisimulation TRel Target
using OC-wrt-preorder-iff-weak-reduction-bisimulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
apply (rule exI) using C1 C6 by blast
hence enc-weakly-respects-barbs
using enc-weakly-respects-barbs-iff-source-target-rel
by simp
moreover hence enc-weakly-respects-barb-set {success}
by simp
moreover have rel-weakly-respects-barbs TRel TWB
proof auto
fix TP TQ = TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)* TP’ and TP'|<TWB>x
hence TargetTerm TP{<STCalWB SWB TWB>x
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQI<STCalWB SWB TWB>x
using C6
by blast
thus TQU<TWB>zx
using STCalWB-reachesBarbST
by blast
next
fix TP TQ z TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7'Q —(Calculus TWB)x TQ' and TQ'|<TWB>z
hence TargetTerm TQU<STCalWB SWB TWB>z
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP|<STCalWB SWB TWB>x
using C6
by blast
thus TPy<TWB>zx
using STCalWB-reachesBarbST
by blast
qed
moreover hence rel-weakly-respects-barb-set TRel TWB {success}
by blast
ultimately show operational-corresponding TRel N preorder TRel
A weak-reduction-bisimulation TRel Target
A enc-weakly-respects-barbs A rel-weakly-respects-barbs TRel TWB
A enc-weakly-respects-barb-set {success} A rel-weakly-respects-barb-set TRel TWB {success}
by fast

253

qed

An encoding is success sensitive and weakly operational corresponding w.r.t. a correspondence sim-
ulation TRel that respects success iff there exists a correspondence simultion that includes TRel and
respects success. The same holds if we consider not only success sensitiveness but barb sensitiveness
in general.

lemma (in encoding-wrt-barbs) WOC-SS-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (weakly-operational-corresponding TRel N preorder TRel
A weak-reduction-correspondence-simulation TRel Target
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume A1I: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A/: enc-weakly-reflects-barb-set {success}
and AS5: preorder TRel
from A5 have A6: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A5 A6 have A7: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding preorder-on-def refl-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A6 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A7 have B3: V.S T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by simp
assume operational-complete TRel and weakly-operational-sound TRel
and weak-reduction-simulation TRel Target
and VP Q Q" (P, Q) € TRel N Q —> Targetx Q'
— (3P Q". P —Targetx P AN Q' — Targetx Q" N (P", Q") € TRel)
with Rel-def A6 A7 have B/: weak-reduction-correspondence-simulation Rel (STCal Source Target)
using WOC-iff-indRelRTPO-is-reduction-correspondence-simulation[where TRel=TRel)
by simp
from Rel-def A5 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel)
unfolding preorder-on-def
by blast
from Rel-def A1 A2 A3 A have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-successiwhere TRel=TRel
and success=success]
by blast
show T Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)

254

A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using BI B2 B3 Bj B5 B6 by blast

next

assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
from this obtain Rel where C1: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
and C4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
and C5: preorder Rel and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
A weak-reduction-correspondence-simulation Rel (STCal Source Target)
by blast
hence weakly-operational-corresponding TRel N\ preorder TRel
A weak-reduction-correspondence-simulation TRel Target
using WOC-wrt-preorder-iff-reduction-correspondence-simulation[where TRel=TRel]
by simp
moreover have 3 Rel. (V5. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using C1 C6 by blast
hence enc-weakly-respects-barb-set {success}
using success-sensitive-iff-source-target-rel-weakly-respects-success
by simp
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)* TP’ and TP'|<TWB>success
hence TargetTerm TP{<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQI<STCalWB SWB TWB>success
using C6
by blast
thus TQ|<TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7Q —(Calculus TWB)x TQ' and TQ'\<TWB>success
hence TargetTerm TQU<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TPl<STCalWB SWB TWB>success
using C6
by blast
thus TP|<TWB>success
using STCalWB-reachesBarbST
by blast

255

qged
ultimately show weakly-operational-corresponding TRel A preorder TRel
A weak-reduction-correspondence-simulation TRel Target
A enc-weakly-respects-barb-set {success} A rel-weakly-respects-barb-set TRel TWB {success}
by fast
qed

lemma (in encoding-wrt-barbs) WOC-SS-RB-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (weakly-operational-corresponding TRel N preorder TRel
A weak-reduction-correspondence-simulation TRel Target
A enc-weakly-respects-barbs N enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barbs TRel TWB A rel-weakly-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume A1I: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A/: enc-weakly-reflects-barb-set {success}
and AS5: preorder TRel
and A1': rel-weakly-preserves-barbs TRel TWB and A2': rel-weakly-reflects-barbs TRel TWB
and A3’ enc-weakly-preserves-barbs and A4’ enc-weakly-reflects-barbs
from A5 have A6: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A5 A6 have A7: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding preorder-on-def refl-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1: VY S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A6 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A7 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by simp
assume operational-complete TRel and weakly-operational-sound TRel
and weak-reduction-simulation TRel Target
and VP Q Q" (P, Q) € TRel N Q — Targetx Q'
— (3P Q". P —Targetx P N Q' — Targetx Q" N (P", Q") € TRel)
with Rel-def A6 A7 have B/: weak-reduction-correspondence-simulation Rel (STCal Source Target)
using WOC-iff-indRelRTP O-is-reduction-correspondence-simulation[where TRel=TRel]
by simp
from Rel-def A5 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel)
unfolding preorder-on-def
by blast
from Rel-def A1 A2 A3 AJ have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-success[where TRel=TRel
and success=success]
by blast

256

from Rel-def A1’ A2' A3’ A}’ have B7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
using enc-and-TRel-impl-indRelRTPO-weakly-respects-barbsjwhere TRel=TRel]
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using B! B2 B3 B4 B5 B6 B7 by blast
next
assume 3 Rel. (¥ S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
from this obtain Rel where C1: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C8: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
and C4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
and C5: preorder Rel and C7: rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
by auto
from C1 C2 C3 C4 C5 have I Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
A weak-reduction-correspondence-simulation Rel (STCal Source Target)
by blast
hence weakly-operational-corresponding TRel N\ preorder TRel
A weak-reduction-correspondence-simulation TRel Target
using WOC-wrt-preorder-iff-reduction-correspondence-simulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barbs Rel (STCalWB SWB TWB)
apply (rule exl) using C1 C7 by blast
hence D1: enc-weakly-respects-barbs
using enc-weakly-respects-barbs-iff-source-target-rel
by simp
moreover from DI have enc-weakly-respects-barb-set {success}
by simp
moreover have D2: rel-weakly-respects-barbs TRel TWB
proof auto
fix TP TQ = TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)x TP’ and TP'|<TWB>z
hence TargetTerm TP{<STCalWB SWB TWB>z
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQU<STCalWB SWB TWB>zx
using C7
by blast
thus TQI<TWB>z
using STCalWB-reachesBarbST
by blast
next
fix TP TQ z TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp

257

moreover assume 7'Q —(Calculus TWB)x TQ' and TQ'|<TWB>z
hence TargetTerm TQU<STCalWB SWB TWB>z
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP|<STCalWB SWB TWB>zx
using C7
by blast
thus TP<TWB>z
using STCalWB-reachesBarbST
by blast
qged
moreover from D2 have rel-weakly-respects-barb-set TRel TWB {success}
by blast
ultimately show weakly-operational-corresponding TRel N preorder TRel
A weak-reduction-correspondence-simulation TRel Target
A enc-weakly-respects-barbs N enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barbs TRel TWB A rel-weakly-respects-barb-set TRel TWB {success}
by fast
qed

An encoding is strongly success sensitive and strongly operational corresponding w.r.t. a strong
bisimulation TRel that strongly respects success iff there exists a strong bisimultion that includes TRel
and strongly respects success. The same holds if we consider not only strong success sensitiveness but
strong barb sensitiveness in general.

lemma (in encoding-wrt-barbs) SOC-SS-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
A enc-respects-barb-set {success} N rel-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume AI: rel-preserves-barb-set TRel TWB {success}
and A2: rel-reflects-barb-set TRel TWB {success}
and A3: enc-preserves-barb-set {success} and A4: enc-reflects-barb-set {success}
and AS5: preorder TRel
from A5 have A6: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A5 A6 have A7: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding preorder-on-def refl-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A6 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A7 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by simp
assume strongly-operational-complete TRel and strongly-operational-sound TRel
and strong-reduction-simulation TRel Target

258

and VP Q Q" (P, Q) € TRel N Q —>Target Q' — (I P’. P —Target P’ A (P’, Q') € TRel)
with Rel-def A6 A7 have Bj: strong-reduction-bisimulation Rel (STCal Source Target)
using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel)
by simp
from Rel-def A5 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel]
unfolding preorder-on-def
by blast
from Rel-def A1 A2 A3 AJ have BG6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-respects-success[where TRel=TRel and success=success]
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using Bl B2 B3 Bj B5 B6 by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
from this obtain Rel where C1: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
and CY4: strong-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
hence strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
using SOC-wrt-preorder-iff-strong-reduction-bisimulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using C1 C6 by blast
hence enc-respects-barb-set {success}
using success-sensitive-iff-source-target-rel-respects-success
by simp
moreover have rel-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP|<TWB>success
hence TargetTerm TPl<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
ultimately have TargetTerm TQl<STCalWB SWB TWB> success
using C6
by blast
thus TQ|<TWB>success
using STCalWB-hasBarbST
by blast
next

259

fix TP TQ
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TQ|<TWB>success
hence TargetTerm TQl<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
ultimately have TargetTerm TP|<STCalWB SWB TWB> success
using C6
by blast
thus TP|<TWB>success
using STCalWB-hasBarbST
by blast
qged
ultimately show strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
A enc-respects-barb-set {success} N rel-respects-barb-set TRel TWB {success}
by fast
qed

lemma (in encoding-wrt-barbs) SOC-SS-RB-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
A enc-respects-barbs N\ rel-respects-barbs TRel TWB
A enc-respects-barb-set {success} A rel-respects-barb-set TRel TWB {success})
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barbs Rel (STCalWB SWB TWB)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success})
proof (rule iffI, (erule conjE)+)
assume A1: rel-preserves-barbs TRel TWB and A2: rel-reflects-barbs TRel TWB
and A3: enc-preserves-barbs and A/ : enc-reflects-barbs
and AS5: preorder TRel
from A5 have A6: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A5 have A7: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding preorder-on-def refl-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A6 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A7 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel)
by simp
assume strongly-operational-complete TRel and strongly-operational-sound TRel
and strong-reduction-simulation TRel Target
andVP Q Q" (P, Q) € TRel N Q —Target Q' — (I P’". P —Target P’ N (P’, Q') € TRel)
with Rel-def A6 A7 have B/: strong-reduction-bisimulation Rel (STCal Source Target)
using SOC-iff-indRelRTPO-is-strong-reduction-bisimulation[where TRel=TRel]

260

by simp
from Rel-def A5 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel)
unfolding preorder-on-def
by blast
from Rel-def A1 A2 A3 A4 have BG: rel-respects-barbs Rel (STCalWB SWB TWB)
using enc-and-TRel-impl-indRelRTPO-respects-barbsjwhere TRel=TRel]
by blast
hence B7: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barbs Rel (STCalWB SWB TWB)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
apply (rule exI) using Bl B2 B3 Bj B5 B6 by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barbs Rel (STCalWB SWB TWB)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
from this obtain Rel where C1: (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
and C4: strong-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-respects-barbs Rel (STCalWB SWB TWB)
by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A (TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel})
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
hence strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
using SOC-wrt-preorder-iff-strong-reduction-bisimulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barbs Rel (STCalWB SWB TWB)
apply (rule exI) using C1 C6 by blast
hence enc-respects-barbs
using enc-respects-barbs-iff-source-target-rel
by simp
moreover hence enc-respects-barb-set {success}
by simp
moreover have rel-respects-barbs TRel TWB
proof auto
fix TP TQ z
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP|<TWB>x
hence TargetTerm TPl<STCalWB SWB TWB>x
using STCalWB-hasBarbST
by blast
ultimately have TargetTerm TQl<STCalWB SWB TWB>zx
using C6
by blast
thus TQI<TWB>z

261

using STCalWB-hasBarbST
by blast
next
fix TP TQ x
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm T(Q) € Rel
by simp
moreover assume TQ.<TWB>z
hence TargetTerm TQl<STCalWB SWB TWB>z
using STCalWB-hasBarbST
by blast
ultimately have TargetTerm TPl <STCalWB SWB TWB>z
using C6
by blast
thus TP <TWB>z
using STCalWB-hasBarbST
by blast
qed
moreover hence rel-respects-barb-set TRel TWB {success}
by blast
ultimately show strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
A enc-respects-barbs A rel-respects-barbs TRel TWB
A enc-respects-barb-set {success} A rel-respects-barb-set TRel TWB {success}
by fast
qed

Next we also add divergence reflection to operational correspondence and success sensitiveness.

lemma (in encoding) enc-and-TRelimpl-indRelRTPO-reflect-divergence:
fixes TRel :: ("procT x 'procT) set
assumes encRD: enc-reflects-divergence
and trelRD: rel-reflects-divergence TRel Target
shows rel-reflects-divergence (indRelRTPO TRel) (STCal Source Target)
proof auto
fix P Q
assume P <[JRT<TRel> @ and Q —(STCal Source Target)w
thus P —(STCal Source Target)w
proof induct
case (encR S)
assume TargetTerm ([S]) —(STCal Source Target)w
hence [S] —(Target)w
by (simp add: STCal-divergent(2))
with encRD have S —(Source)w
by simp
thus SourceTerm S ——(STCal Source Target)w
by (simp add: STCal-divergent(1))
next
case (source S)
assume SourceTerm S ——(STCal Source Target)w
thus SourceTerm S ——(STCal Source Target)w
by simp
next
case (target T1 T2)
assume (71, T2) € TRel
moreover assume TargetTerm T2 —(STCal Source Target)w
hence T2 —(Target)w
by (simp add: STCal-divergent(2))
ultimately have T1 ——(Target)w
using trelRD
by blast
thus TargetTerm T1 ——(STCal Source Target)w

262

by (simp add: STCal-divergent(2))
next
case (trans P @ R)
assume R ——(STCal Source Target)w
and R +——(STCal Source Target)w = Q ——(STCal Source Target)w
and @ ——(STCal Source Target)w => P +——(STCal Source Target)w
thus P ——(STCal Source Target)w
by simp
qed
qed

lemma (in encoding-wrt-barbs) OC-SS-DR-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWB {success}
A enc-reflects-divergence N rel-reflects-divergence TRel Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
N weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
assume A1I: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A/: enc-weakly-reflects-barb-set {success}
and AS5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def have B2: YV T1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by (simp add: indRelRTPO.target)
from Rel-def have B3: ¥V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
by (simp add: indRelRTPO-to-TRel(4)[where TRel=TRel])
from Rel-def have B4: V.S T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel)
by simp
assume operational-complete (TRel*)
and operational-sound (TRel*)
and weak-reduction-simulation (TRel™) Target
and VP Q Q" (P, Q) € TRel™ N Q — Targetx Q'
— (3P’ P —Targetx P' A (P, Q') € TRel™)
with Rel-def have B5: weak-reduction-bisimulation Rel (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation|where TRel=TRel)
by simp
from Rel-def A1 A2 A3 A have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-successiwhere TRel=TRel
and success=success|
by blast
from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
using enc-and-TRelimpl-indRelRTPO-reflect-divergencelwhere TRel=TRel|
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNT? T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)

263

AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exI) using Bl B2 B3 B/ B5 B6 B7 by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
from this obtain Rel where C1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and C2:VTI! T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
and C3:V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
and C4: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
and C5: weak-reduction-bisimulation Rel (STCal Source Target)
and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
and C7: rel-reflects-divergence Rel (STCal Source Target)
by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNVTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel —s (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
N weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
using OC-iff-weak-reduction-bisimulation|where TRel=TRel]
by auto
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exl) using C1 C6 C7 by blast
hence enc-weakly-respects-barb-set {success} A enc-reflects-divergence
using WSS-DR-iff-source-target-rel
by auto
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)* TP’ and TP'|<TWB>success
hence TargetTerm TP{<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQI<STCalWB SWB TWB>success
using C6
by blast
thus TQU<TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7'Q —(Calculus TWB)x TQ' and TQ'|<TWDB>success
hence TargetTerm TQU<STCalWB SWB TWB>success

264

using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP <STCalWB SWB TWB>success
using C6
by blast
thus TP|<TWB>success
using STCalWB-reachesBarbST
by blast
qed
moreover from C2 C7 have rel-reflects-divergence TRel Target
using ST Cal-divergent(2)
by blast
ultimately show operational-corresponding (TRel*)
A weak-reduction-bisimulation (TRel™) Target
A enc-weakly-respects-barb-set {success} N rel-weakly-respects-barb-set TRel TWB {success}
A enc-reflects-divergence N\ rel-reflects-divergence TRel Target
by fast
qed

lemma (in encoding-wrt-barbs) WOC-SS-DR-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: ('procT x 'procT) set
shows (weakly-operational-corresponding TRel N preorder TRel
A weak-reduction-correspondence-simulation TRel Target
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWDB {success}
A enc-reflects-divergence A rel-reflects-divergence TRel Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)

A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel

A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A4: enc-weakly-reflects-barb-set {success}
and AS5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
and A7: preorder TRel
from A7 have A8: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A7 have A9: TRel* = TRel
using reflcl-trancl[of TRel] trancl-id[of TRel]
unfolding preorder-on-def refl-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1:VS. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A8 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)

from Rel-def A9 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel

using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel)
by simp
assume operational-complete TRel and weakly-operational-sound TRel and preorder TRel
and weak-reduction-simulation TRel Target

and VP Q Q. (P, Q) € TRel A Q — Targetx Q'

265

— (3P Q". P —>Targetx P AN Q' — Targetx Q" N (P", Q") € TRel)
with Rel-def A8 A9 have B/: weak-reduction-correspondence-simulation Rel (STCal Source Target)
using WOC-iff-indRelRTPO-is-reduction-correspondence-simulation[where TRel=TRel)
by simp
from Rel-def A7 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel]
unfolding preorder-on-def
by simp
from Rel-def A1 A2 A3 AJ have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-successiwhere TRel=TRel
and success=success]
by blast
from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
using enc-and- TRelimpl-indRelRTPO-reflect-divergencelwhere TRel=TRel|
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exI) using Bl B2 B3 B/ B5 B6 B7 by blast
next
assume J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-correspondence-simulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
from this obtain Rel where C1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
and C4: weak-reduction-correspondence-simulation Rel (STCal Source Target)
and C5: preorder Rel and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
and C7: rel-reflects-divergence Rel (STCal Source Target)
by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
N weak-reduction-correspondence-simulation Rel (STCal Source Target)
by blast
hence weakly-operational-corresponding TRel N preorder TRel
A weak-reduction-correspondence-simulation TRel Target
using WOC-wrt-preorder-iff-reduction-correspondence-simulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exI) using C1 C6 C7 by blast
hence enc-weakly-respects-barb-set {success} N enc-reflects-divergence
using WSS-DR-iff-source-target-rel
by simp
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)* TP’ and TP'|<TWB>success
hence TargetTerm TPl<STCalWB SWB TWB>success
using STCalWB-reachesBarbST

266

by blast
ultimately have TargetTerm TQU<STCalWB SWB TWB>success
using C6
by blast
thus TQ|<TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7Q —(Calculus TWB)x TQ' and TQ'|<TWB>success
hence TargetTerm TQU<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TP|<STCalWB SWB TWB>success
using C6
by blast
thus TP <TWB>success
using STCalWB-reachesBarbST
by blast
qged
moreover from C2 C7 have rel-refiects-divergence TRel Target
using STCal-divergent(2)
by blast
ultimately
show weakly-operational-corresponding TRel N\ preorder TRel
A weak-reduction-correspondence-simulation TRel Target
A enc-weakly-respects-barb-set {success} A rel-weakly-respects-barb-set TRel TWB {success}
A enc-reflects-divergence N\ rel-reflects-divergence TRel Target
by fast
qed

lemma (in encoding-wrt-barbs) OC-SS-DR-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: (‘procT x 'procT) set
shows (operational-corresponding TRel N preorder TRel N weak-reduction-bisimulation TRel Target
A enc-weakly-respects-barb-set {success}
A rel-weakly-respects-barb-set TRel TWB {success}
A enc-reflects-divergence N rel-reflects-divergence TRel Target)
= (3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
N weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
assume A1: rel-weakly-preserves-barb-set TRel TWB {success}
and A2: rel-weakly-reflects-barb-set TRel TWB {success}
and A3: enc-weakly-preserves-barb-set {success}
and A/: enc-weakly-reflects-barb-set {success}
and AS5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
and A7: preorder TRel
from A7 have A8: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A7 have A9: TRel* = TRel
using reficl-tranclof TRel] trancl-id[of TRel]
unfolding preorder-on-def refl-on-def

267

by auto
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A8 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A9 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel)
by simp
assume operational-complete TRel and operational-sound TRel and preorder TRel
and weak-reduction-simulation TRel Target
and VP Q Q. (P, Q) € TRel A Q — Targetx Q' — (3 P'. P —Targetx P' A (P’, Q) € TRel)
with Rel-def A8 A9 have Bj: weak-reduction-bisimulation Rel (STCal Source Target)
using OC-iff-indRelRTPO-is-weak-reduction-bisimulation|where TRel=TRel]
by simp
from Rel-def A7 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel)
unfolding preorder-on-def
by simp
from Rel-def A1 A2 A3 Aj have B6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTP O-weakly-respects-success[where TRel=TRel
and success=success]
by blast
from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
using enc-and-TRelimpl-indRelRTPO-reflect-divergencelwhere TRel=TRel]
by blast
show T Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exl) using B! B2 B3 B4 B5 B6 B7 by blast
next
assume 3 Rel. (V. S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
N weak-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
from this obtain Rel where C1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
and C/: weak-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
and C7: rel-reflects-divergence Rel (STCal Source Target)
by auto
from C1 C2 C3 C4 C5 have I Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel
A weak-reduction-bisimulation Rel (STCal Source Target)
by blast
hence operational-corresponding TRel N preorder TRel N\ weak-reduction-bisimulation TRel Target
using OC-wrt-preorder-iff-weak-reduction-bisimulation[where TRel=TRel]
by simp
moreover have 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-weakly-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exI) using C1 C6 C7 by blast

268

hence enc-weakly-respects-barb-set {success} N enc-reflects-divergence
using WSS-DR-iff-source-target-rel
by simp
moreover have rel-weakly-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ TP’
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TP ——(Calculus TWB)+* TP’ and TP'|<TWB>success
hence TargetTerm TP{<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TQU<STCalWB SWB TWB>success
using C6
by blast
thus TQ| < TWB>success
using STCalWB-reachesBarbST
by blast
next
fix TP TQ TQ'
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 7Q —(Calculus TWB)x TQ' and TQ'\<TWB>success
hence TargetTerm TQU<STCalWB SWB TWB>success
using STCalWB-reachesBarbST
by blast
ultimately have TargetTerm TPl<STCalWB SWB TWB>success
using C6
by blast
thus TP|<TWB>success
using STCalWB-reachesBarbST
by blast
qed
moreover from C2 C7 have rel-reflects-divergence TRel Target
using ST Cal-divergent(2)
by blast
ultimately
show operational-corresponding TRel N\ preorder TRel N\ weak-reduction-bisimulation TRel Target
A enc-weakly-respects-barb-set {success} A rel-weakly-respects-barb-set TRel TWB {success}
A enc-reflects-divergence N\ rel-reflects-divergence TRel Target
by fast
qed

lemma (in encoding-wrt-barbs) SOC-SS-DR-wrt-preorder-iff-source-target-rel:
fixes success :: 'barbs
and TRel :: (‘procT x 'procT) set
shows (strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
A enc-respects-barb-set {success} N rel-respects-barb-set TRel TWB {success}
A enc-reflects-divergence A rel-reflects-divergence TRel Target)
= (FRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target))
proof (rule iffI, (erule conjE)+)
assume A1: rel-preserves-barb-set TRel TWB {success}
and A2: rel-reflects-barb-set TRel TWB {success}

269

and A3: enc-preserves-barb-set {success} and A4: enc-reflects-barb-set {success}
and AS5: rel-reflects-divergence TRel Target and A6: enc-reflects-divergence
and A7: preorder TRel
from A7 have A8: TRelt = TRel
using trancl-id[of TRel]
unfolding preorder-on-def
by blast
from A7 have A9: TRel* = TRel
using reficl-trancl[of TRel] trancl-id[of TRel)
unfolding preorder-on-def refl-on-def
by auto
define Rel where Rel = indRelRTPO TRel
hence B1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
by (simp add: indRelRTPO.encR)
from Rel-def A8 have B2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
using indRelRTPO-to-TRel(4)[where TRel=TRel]
by (auto simp add: indRelRTPO.target)
from Rel-def A9 have B3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
using indRelRTPO-to-TRel(2)[where TRel=TRel]
trans-closure-of- TRel-refl-cond[where TRel=TRel]
by simp
assume strongly-operational-complete TRel and strongly-operational-sound TRel
and preorder TRel and strong-reduction-simulation TRel Target
and VP Q Q. (P, Q) € TRel A Q — Target Q' — (3 P’. P — Target P’ A (P’, Q') € TRel)
with Rel-def A8 A9 have BJ: strong-reduction-bisimulation Rel (STCal Source Target)
using SOC-iff-indRelRTP O-is-strong-reduction-bisimulation[where TRel=TRel]
by simp
from Rel-def A7 have B5: preorder Rel
using indRelRTPO-is-preorder[where TRel=TRel]
unfolding preorder-on-def
by simp
from Rel-def A1 A2 A3 Aj have B6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
using enc-and-TRel-impl-indRelRTPO-respects-success[where TRel=TRel and success=success]
by blast
from Rel-def A5 A6 have B7: rel-reflects-divergence Rel (STCal Source Target)
using enc-and-TRelimpl-indRelRTPO-reflect-divergencelwhere TRel=TRel|
by blast
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exI) using B! B2 B3 B/ B5 B6 B7 by blast
next
assume 3 Rel. (V.S. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel)
A strong-reduction-bisimulation Rel (STCal Source Target) A preorder Rel
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
from this obtain Rel where C1:V S. (SourceTerm S, TargetTerm ([S])) € Rel
and C2: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and C3: VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel
and C4: strong-reduction-bisimulation Rel (STCal Source Target) and C5: preorder Rel
and C6: rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
and C7: rel-reflects-divergence Rel (STCal Source Target)
by auto
from C1 C2 C3 C4 C5 have J Rel.(VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel) A preorder Rel

270

A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
hence strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
using SOC-wrt-preorder-iff-strong-reduction-bisimulation[where TRel=TRel]
by simp
moreover have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
A rel-respects-barb-set Rel (STCalWB SWB TWB) {success}
A rel-reflects-divergence Rel (STCal Source Target)
apply (rule exI) using C1 C6 C7 by blast
hence enc-respects-barb-set {success} N enc-reflects-divergence
using SS-DR-iff-source-target-rel
by simp
moreover have rel-respects-barb-set TRel TWB {success}
proof auto
fix TP TQ
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume 1TP|<TWB>success
hence TargetTerm TPl<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
ultimately have TargetTerm TQl<STCalWB SWB TWB> success
using C6
by blast
thus TQ|<TWB>success
using STCalWB-hasBarbST
by blast
next
fix TP TQ
assume (TP, TQ) € TRel
with C2 have (TargetTerm TP, TargetTerm TQ) € Rel
by simp
moreover assume TQl<TWB>success
hence TargetTerm TQl<STCalWB SWB TWB>success
using STCalWB-hasBarbST
by blast
ultimately have TargetTerm TP|<STCalWB SWB TWB>success
using C6
by blast
thus TPl <TWB>success
using STCalWB-hasBarbST
by blast
qed
moreover from C2 C7 have rel-reflects-divergence TRel Target
using STCal-divergent(2)
by blast
ultimately show strongly-operational-corresponding TRel N preorder TRel
A strong-reduction-bisimulation TRel Target
A enc-respects-barb-set {success} A rel-respects-barb-set TRel TWB {success}
A enc-reflects-divergence N\ rel-reflects-divergence TRel Target
by fast
qed

10.3 Full Abstraction and Operational Correspondence

To combine full abstraction and operational correspondence we consider a symmetric version of the
induced relation and assume that the relations SRel and TRel are equivalences. Then an encoding is
fully abstract w.r.t. SRel and TRel and operationally corresponding w.r.t. TRel such that TRel is a

271

bisimulation iff the induced relation contains both SRel and TRel and is a transitive bisimulation.

lemma (in encoding) F'S-OC-modulo-equivalences-iff-source-target-relation:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes eqS: equivalence SRel
and eqT: equivalence TRel
shows fully-abstract SRel TRel
A operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target
+— (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel N\ weak-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE)
assume A1: fully-abstract SRel TRel and A2: operational-corresponding TRel
and A3: weak-reduction-bisimulation TRel Target
from eqT have Aj: TRel* = TRel
using reflcl-trancl[of TRel| trancl-id[of TRel
unfolding equiv-def refl-on-def
by auto
have A5:
vV S. SourceTerm S ~[-] T<TRel> TargetTerm ([S]) A TargetTerm ([S]) ~[-]T<TRel> SourceTerm S
by (simp add: indRelTEQ.encR indRelTEQ.encL)
moreover from A4 have A6: TRel = {(T1, T2). TargetTerm T1 ~[-]T<TRel> TargetTerm T2}
using indRelTEQ-to-TRel(4)[where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by (auto simp add: indRelTEQ.target)
moreover have A7: trans (indRelTEQ TRel)
using indRelTEQ.transjwhere TRel=TRel]
unfolding trans-def
by blast
moreover have SRel = {(S1, S2). SourceTerm S1 ~[-]T<TRel> SourceTerm S2}
proof —
from A6 have V.51 52. (([S1], [S2]) € TRel) = TargetTerm ([S1]) ~[-]T<TRel> TargetTerm ([S2])
by blast
moreover have indRelTEQ TRel U {(P, Q). 35.[S] €T P A S €S Q} = indRelTEQ TRel
by (auto simp add: indRelTEQ.encL)
with A7 have trans (indRelTEQ TRel U {(P, Q). 35. [S] €T P A S €S Q})
unfolding trans-def
by blast
ultimately show SRel = {(S1, S2). SourceTerm S1 ~[-]T<TRel> SourceTerm S2}
using A1 A5 full-abstraction-and-trans-relation-contains- TRel-impl-SRel[where
SRel=SRel and TRel=TRel and Rel=indRelTEQ TRel]
by blast
qed
moreover from eqT A2 A3 have weak-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
using OC-wrt-equivalence-iff-indRel TEQ-weak-reduction-bisimulation[where TRel=TRel]
by blast
ultimately
show I Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel N\ weak-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume
JRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
A trans Rel N\ weak-reduction-bisimulation Rel (STCal Source Target)

272

from this obtain Rel where
B1:VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel
and B2: SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
and BS3: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel}
and BY: trans Rel and B5: weak-reduction-bisimulation Rel (STCal Source Target)
by blast
from B1 B2 B3 Bj have fully-abstract SRel TRel
using trans-source-target-relation-impl-fully-abstract{where Rel=Rel and SRel=SRel
and TRel=TRel]
by blast
moreover have operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target
proof —
from eqT have C1: TRelt = TRel
using trancl-id|of TRel]
unfolding equiv-def
by blast
from eqT have C2: TRel* = TRel
using reficl-trancl[of TRel| trancl-id[of TRel)
unfolding equiv-def refl-on-def
by auto
from B! have V S. (SourceTerm S, TargetTerm ([S])) € Rel
by simp
moreover from B3 have VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by simp
moreover from B3 C1 have V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel*
by simp
moreover have V.S T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
proof clarify
fix ST
from B! have (TargetTerm ([S]), SourceTerm S) € Rel
by simp
moreover assume (SourceTerm S, TargetTerm T) € Rel
ultimately have (TargetTerm ([S]), TargetTerm T) € Rel
using B4
unfolding trans-def
by blast
with B3 C2 show ([S], T) € TRel*
by simp
qed
ultimately have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (Y T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
AN (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A weak-reduction-bisimulation Rel (STCal Source Target)
using B5
by blast
with C1 C2 show operational-corresponding TRel N\ weak-reduction-bisimulation TRel Target
using OC-iff-weak-reduction-bisimulation|where TRel=TRel]
by auto
qed
ultimately show fully-abstract SRel TRel A operational-corresponding TRel
A weak-reduction-bisimulation TRel Target
by simp
qed

lemma (in encoding) FA-SOC-modulo-equivalences-iff-source-target-relation:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes eqS: equivalence SRel
and eqT: equivalence TRel
shows fully-abstract SRel TRel N strongly-operational-corresponding TRel

273

A strong-reduction-bisimulation TRel Target <— (3 Rel.
(VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
A strong-reduction-bisimulation Rel (STCal Source Target))
proof (rule iffI, erule conjE, erule conjE)
assume A1: fully-abstract SRel TRel and A2: strongly-operational-corresponding TRel
and A3: strong-reduction-bisimulation TRel Target
from eqT have Aj: TRel* = TRel
using reficl-trancl[of TRel] trancl-id[of TRel]
unfolding equiv-def refl-on-def
by auto
have A5:
vV S. SourceTerm S ~[-]T<TRel> TargetTerm ([S]) A TargetTerm ([S]) ~[-]T<TRel> SourceTerm S
by (simp add: indRelTEQ.encR indRelTEQ.encL)
moreover from A/ have A6: TRel = {(T1, T2). TargetTerm T1 ~[-]T<TRel> TargetTerm T2}
using indRelTEQ-to-TRel(4)where TRel=TRel]
trans-closure-of-TRel-refl-cond[where TRel=TRel]
by (auto simp add: indRelTEQ.target)
moreover have A7: trans (indRelTEQ TRel)
using indRelTEQ.transjwhere TRel=TRel]
unfolding trans-def
by blast
moreover have SRel = {(S1, S2). SourceTerm S1 ~[-]T<TRel> SourceTerm S2}
proof —
from A6 have V S1 S2. (([S1], [S2]) € TRel) = TargetTerm ([S1]) ~[-]T<TRel> TargetTerm ([S2])
by blast
moreover have indRelTEQ TRel U {(P, Q). 35. [S] €T P AN S €5 Q} = indRelTEQ TRel
by (auto simp add: indRelTEQ.encL)
with A7 have trans (indRelTEQ TRel U {(P, Q). 3S. [S] €T P A S €S Q})
unfolding trans-def
by blast
ultimately show SRel = {(S1, S2). SourceTerm S1 ~[-]T<TRel> SourceTerm S2}
using A1 A5 full-abstraction-and-trans-relation-contains- TRel-impl-SRel[where
SRel=SRel and TRel=TRel and Rel=indRelTEQ TRel)
by blast
qged
moreover from eqT A2 A3 have strong-reduction-bisimulation (indRelTEQ TRel) (STCal Source Target)
using SOC-wrt-equivalence-iff-indRel TEQ-strong-reduction-bisimulation[where TRel=TRel]
by blast
ultimately
show J Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
by blast
next
assume
JRel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel)
A SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
A TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} A trans Rel
A strong-reduction-bisimulation Rel (STCal Source Target)
from this obtain Rel where
B1: Y S. (SourceTerm S, TargetTerm ([S])) € Rel A (TargetTerm ([S]), SourceTerm S) € Rel
and B2: SRel = {(S1, 52). (SourceTerm S1, SourceTerm S2) € Rel}
and B3: TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) € Rel} and B/: trans Rel
and B5: strong-reduction-bisimulation Rel (STCal Source Target)
by blast
from B1 B2 B3 Bj have fully-abstract SRel TRel
using trans-source-target-relation-impl-fully-abstract[where Rel=Rel and SRel=SRel
and TRel=TRel

274

by blast
moreover
have strongly-operational-corresponding TRel N strong-reduction-bisimulation TRel Target
proof —
from eqT have C1: TRelt = TRel
using trancl-id[of TRel]
unfolding equiv-def refl-on-def
by blast
from eqT have C2: TRel* = TRel
using reflcl-trancl[of TRel| trancl-id[of TRel]
unfolding equiv-def refl-on-def

by auto

from B! have VS. (SourceTerm S, TargetTerm ([S])) € Rel
by simp

moreover from B3 have VT1 T2. (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel
by simp

moreover from B3 (1
have V T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™
by simp
moreover have V.S T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*
proof clarify
fix ST
from BI have (TargetTerm ([S]), SourceTerm S) € Rel
by simp
moreover assume (SourceTerm S, TargetTerm T) € Rel
ultimately have (TargetTerm ([S]), TargetTerm T) € Rel
using B/
unfolding trans-def
by blast
with B3 C2 show ([S], T) € TRel*
by simp
qed
ultimately have 3 Rel. (VS. (SourceTerm S, TargetTerm ([S])) € Rel)
ANNTI T2 (T1, T2) € TRel — (TargetTerm T1, TargetTerm T2) € Rel)
A (VY T1 T2. (TargetTerm T1, TargetTerm T2) € Rel — (T1, T2) € TRel™)
A (VS T. (SourceTerm S, TargetTerm T) € Rel — ([S], T) € TRel*)
A strong-reduction-bisimulation Rel (STCal Source Target)
using BS
by blast
with C1 C2
show strongly-operational-corresponding TRel A strong-reduction-bisimulation TRel Target
using SOC-iff-strong-reduction-bisimulation[where TRel=TRel]
by auto
qed
ultimately show fully-abstract SRel TRel N strongly-operational-corresponding TRel
A strong-reduction-bisimulation TRel Target
by simp
qed

An encoding that is fully abstract w.r.t. the equivalences SRel and TRel and operationally corre-
sponding w.r.t. TRel ensures that SRel is a bisimulation iff TRel is a bisimulation.

lemma (in encoding) FA-and-OC-and-TRel-impl-SRel-bisimulation:
fixes SRel :: ('procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and opCom: operational-complete TRel
and opSou: operational-sound TRel
and symmT: sym TRel
and transT: trans TRel
and bisimT: weak-reduction-bisimulation TRel Target

275

shows weak-reduction-bisimulation SRel Source
proof auto
fix SP SQ SP’
assume SP —— Sourcex SP’
with opCom obtain TP’ where A1: [SP] — Target+ TP’ and A2: ([SP'], TP’) € TRel
by blast
assume (SP, SQ) € SRel
with fullAbs have ([SP], [SQ]) € TRel
by simp
with bisimT A1 obtain TQ’ where A3: [SQ] — Targetx TQ' and A4: (TP', TQ') € TRel
by blast
from A3 opSou obtain SQ’ where A5: SQ —— Sourcex SQ" and A6: ([SQ], TQ') € TRel
by blast
from A2 A4 A6 symmT transT have ([SP'], [SQ']) € TRel
unfolding trans-def sym-def
by blast
with fullAbs A5 show 35Q’. SQ —— Sourcex SQ' A (SP’, SQ’) € SRel
by blast
next
fix SP SQ SQ'
assume SQ —— Sourcex SQ’
with opCom obtain TQ' where BI: [SQ] — Target+ TQ' and B2: ([SQ'], TQ') € TRel
by blast
assume (SP, SQ) € SRel
with fullAbs have ([SP], [SQ]) € TRel
by simp
with bisimT B1 obtain TP’ where B3: [SP] — Target« TP' and Bj: (TP’', TQ") € TRel
by blast
from B3 opSou obtain SP’ where B5: SP —Sourcex SP' and B6: ([SP'], TP') € TRel
by blast
from B2 B4 B6 symmT transT have ([SP’], [SQ']) € TRel
unfolding trans-def sym-def
by blast
with fullAbs B5 show 3 SP’. SP —— Sourcex SP’ N\ (SP’, SQ’) € SRel
by blast
qed

lemma (in encoding) FA-and-SOC-and-TRel-impl-SRel-strong-bisimulation:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and opCom: strongly-operational-complete TRel
and opSou: strongly-operational-sound TRel
and symmT: sym TRel
and transT: trans TRel
and bisimT: strong-reduction-bisimulation TRel Target
shows strong-reduction-bisimulation SRel Source
proof auto
fix SP SQ SP’
assume SP —— Source SP’
with opCom obtain TP’ where A1: [SP] — Target TP’ and A2: ([SP'], TP') € TRel
by blast
assume (SP, SQ) € SRel
with fullAbs have ([SP], [SQ]) € TRel
by simp
with bisimT A1 obtain TQ’ where A3: [SQ] — Target TQ' and A4: (TP’, TQ') € TRel
by blast
from A3 opSou obtain SQ’ where A5: SQ — Source SQ' and A6: ([SQ'], TQ') € TRel
by blast
from A2 A4 A6 symmT transT have ([SP'], [SQ']) € TRel
unfolding trans-def sym-def

276

by blast

with fullAbs A5 show 35Q". SQ —Source SQ' A (SP’, SQ’) € SRel
by blast

next

fix SP SQ SQ’

assume SQ —— Source SQ’

with opCom obtain TQ' where BI: [SQ] — Target TQ' and B2: ([SQ], TQ') € TRel
by blast

assume (SP, SQ) € SRel

with fullAbs have ([SP], [SQ]) € TRel
by simp

with bisimT B1 obtain TP’ where B3: [SP] — Target TP’ and B4: (TP', TQ') € TRel
by blast

from B3 opSou obtain SP’ where B5: SP — Source SP’ and B6: ([SP’], TP') € TRel
by blast

from B2 B4 B6 symmT transT have ([SP’], [SQ']) € TRel

unfolding trans-def sym-def

by blast

with fullAbs B5 show 3 SP’. SP —— Source SP' A (SP’, SQ’) € SRel
by blast

qed

lemma (in encoding) FA-and-OC-impl-SRel-iff-TRel-bisimulation:
fixes SRel :: ("procS x 'procS) set
and TRel :: ("procT x 'procT) set
assumes fullAbs: fully-abstract SRel TRel
and opCor: operational-corresponding TRel
and symmT: sym TRel
and transT: trans TRel
and surj: VT.3S. T =[9]
shows weak-reduction-bisimulation SRel Source +— weak-reduction-bisimulation TRel Target
proof
assume bisimS: weak-reduction-bisimulation SRel Source
have weak-reduction-simulation TRel Target
proof clarify
fix TP TQ TP’
from surj have 35. TP = [9]
by simp
from this obtain SP where A1: [SP] = TP
by blast
from surj have 35. TQ = [9]
by simp
from this obtain SQ where A2: [SQ] = TQ
by blast
assume TP —— Targetx TP’
with opCor A1 obtain SP’ where A3: SP ——Sourcex SP’ and A4: ([SP’], TP') € TRel
by blast
assume (TP, TQ) € TRel
with fullAbs A1 A2 have (SP, SQ) € SRel

by simp

with bisimS A3 obtain SQ’ where A5: SQ —— Sourcex SQ" and A6: (SP’, SQ") € SRel
by blast

from opCor A2 A5 obtain TQ' where A7: TQ — Targetx TQ' and A8: ([SQ'], TQ') € TRel
by blast

from symmT A4 have (TP, [SP']) € TRel
unfolding sym-def
by simp
moreover from fullAbs A6 have ([SP'], [SQ]) € TRel
by simp
ultimately have (TP’, TQ') € TRel
using transT A8

277

unfolding trans-def
by blast
with A7 show 3 TQ'. TQ — Targetx TQ' AN (TP', TQ') € TRel
by blast
qged
with symmT show weak-reduction-bisimulation TRel Target
using symm-weak-reduction-simulation-is-bisimulation[where Rel=TRel and Cal=Target]
by blast
next
assume weak-reduction-bisimulation TRel Target
with fullAbs opCor symmT transT show weak-reduction-bisimulation SRel Source
using FA-and-OC-and-TRel-impl-SRel-bisimulation[where SRel=SRel and TRel=TRel|
by blast
qed

end

278

	Relations
	Basic Conditions
	Preservation, Reflection, and Respection of Predicates

	Process Calculi
	Reduction Semantics
	Observables or Barbs

	Simulation Relations
	Simulation
	Contrasimulation
	Coupled Simulation
	Correspondence Simulation
	Bisimulation
	Step Closure of Relations

	Encodings
	Relation between Source and Target Terms
	Relations Induced by the Encoding Function
	Relations Induced by the Encoding and a Relation on Target Terms
	Relations Induced by the Encoding and Relations on Source Terms and Target Terms

	Success Sensitiveness and Barbs
	Divergence Reflection
	Operational Correspondence
	Trivial Operational Correspondence Results
	(Strong) Operational Completeness vs (Strong) Simulation
	Weak Operational Soundness vs Contrasimulation
	(Strong) Operational Soundness vs (Strong) Simulation
	Weak Operational Correspondence vs Correspondence Similarity
	(Strong) Operational Correspondence vs (Strong) Bisimilarity

	Full Abstraction
	Trivial Full Abstraction Results
	Fully Abstract Encodings
	Full Abstraction w.r.t. Preorders
	Full Abstraction w.r.t. Equivalences
	Full Abstraction without Relating Translations to their Source Terms

	Combining Criteria
	Divergence Reflection and Success Sensitiveness
	Adding Operational Correspondence
	Full Abstraction and Operational Correspondence

