
Elimination of Repeated Factors Algorithm

Katharina Kreuzer, Manuel Eberl

November 13, 2023

Abstract

This article formalises the Elimination of Repeated Factors (ERF)
Algorithm. This is an algorithm to find the square-free part of polyno-
mials over perfect fields. Notably, this encompasses all fields of char-
acteristic 0 and all finite fields.

For fields with characteristic 0, the ERF algorithm proceeds sim-
ilarly to the classical Yun algorithm (formalized in [3, File Square_
Free_Factorization.thy]). However, for fields with non-zero char-
acteristic p, Yun’s algorithm can fail because the derivative of a non-
zero polynomial can be 0. The ERF algorithm detects this case and
therefore also works in this more general setting.

To state the ERF Algorithm in this general form, we build on the
entry on perfect fields [1]. We show that the ERF algorithm is correct
and returns a list of pairwise coprime square-free polynomials whose
product is the input polynomial. Indeed, through this, the ERF algo-
rithm also yields executable code for calculating the square-free part
of a polynomial (denoted by the function radical).

The definition and proof of the ERF have been taken from Algo-
rithm 1 in [2].

1

Contents
1 Auxiliary Lemmas 3

1.1 Lemmas for the radical of polynomials 4
1.2 More on square-free polynomials 5

2 Elimination of Repeated Factors Algorithm 10

3 Code Generation for ERF and Example 14
3.1 Example for the code generation with GF(2) 17

2

theory ERF_Library
imports
Mason_Stothers.Mason_Stothers
Berlekamp_Zassenhaus.Berlekamp_Type_Based
Perfect_Fields.Perfect_Fields

begin

hide_const (open) Formal_Power_Series.radical

1 Auxiliary Lemmas

If all factors are monic, the product is monic as well (i.e. the normalization
is itself).
lemma normalize_prod_monics:

assumes "∀ x∈A. monic x"
shows "normalize (

∏
x∈A. x^(e x)) = (

∏
x∈A. x^(e x))"

〈proof 〉

All primes are monic.
lemma prime_monic:

fixes p :: "'a :: {euclidean_ring_gcd,field} poly"
assumes "p 6=0" "prime p" shows "monic p"
〈proof 〉

If we know the factorization of a polynomial, we can explicitly characterize
the derivative of said polynomial.
lemma pderiv_exp_prod_monic:
assumes "p = prod_mset fs"
shows "pderiv p = (sum (λ fi. let ei = count fs fi in

Polynomial.smult (of_nat ei) (pderiv fi) * fi^(ei-1) * prod (λ fj.
fj^(count fs fj))

((set_mset fs) - {fi})) (set_mset fs))"
〈proof 〉

Any element that divides a prime is either congruent to the prime (i.e. p
dvd c) or a unit itself. Careful: This does not mean that p = c since there
could be another unit u such that p = u ∗ c.
lemma prime_factors_prime:

assumes "c dvd p" "prime p"
shows "is_unit c ∨ p dvd c"
〈proof 〉

A prime polynomial has degree greater than zero. This is clear since any
polynomial of degree 0 is constant and thus also a unit.

3

lemma prime_degree_gt_zero:
fixes p::"'a::{idom_divide,semidom_divide_unit_factor,field} poly"
assumes "prime p"
shows "degree p > 0"
〈proof 〉

This lemma helps to reason that if a sum is zero, under some conditions we
can follow that the summands must also be zero.
lemma one_summand_zero:

fixes a2::"'a ::field poly"
assumes "Polynomial.smult a1 a2 + b = 0""c dvd b" "¬ c dvd a2"
shows "a1 = 0"
〈proof 〉

1.1 Lemmas for the radical of polynomials

Properties of the function radical. Note: The radical polynomial in algebra
denotes something else. Here, radical denotes the square-free and monic
part of a polynomial (i.e. the product of all prime factors). This notion
corresponds to radical ideals generated by square-free polynomials.
lemma squarefree_radical [intro]: "f 6= 0 =⇒ squarefree (radical f)"
〈proof 〉

lemma (in normalization_semidom_multiplicative) normalize_prod:
"normalize (

∏
x∈A. f (x :: 'b) :: 'a) = (

∏
x∈A. normalize (f x))"

〈proof 〉

lemma normalize_radical [simp]:
fixes f :: "'a :: factorial_semiring_multiplicative"
shows "normalize (radical f) = radical f"
〈proof 〉

lemma radical_of_squarefree:
assumes "squarefree f"
shows "normalize (radical f) = normalize f"

〈proof 〉

A constant polynomial has no primes in its prime factorization and its radical
is 1.
lemma prime_factorization_degree0:

fixes f :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize,field}
poly"

assumes "degree f = 0"
shows "prime_factorization f = {#}"
〈proof 〉

4

lemma prime_factors_degree0:
fixes f :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize,field}

poly"
assumes "degree f = 0" "f 6=0"
shows "prime_factors f = {}"
〈proof 〉

lemma radical_degree0:
fixes f :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize,field}

poly"
assumes "degree f = 0" "f 6=0"
shows "radical f = 1"
〈proof 〉

A polynomial is square-free iff its normalization is also square-free.
lemma squarefree_normalize:
"squarefree f ←→ squarefree (normalize f)"
〈proof 〉

Important: The zeros of a polynomial are also zeros of its radical and vice
versa.
lemma same_zeros_radical: "(poly f a = 0) = (poly (radical f) a = 0)"
〈proof 〉

1.2 More on square-free polynomials

We need to relate two different versions of the definition of a square-free
polynomial (i.e. the functions squarefree and square_free). Over fields,
they differ only in their behavior at 0.)
lemma squarefree_square_free:

fixes x :: "'a :: {field} poly"
assumes "x 6= 0"
shows "squarefree x = square_free x"
〈proof 〉

lemma (in comm_monoid_mult) prod_list_distinct_conv_prod_set:
"distinct xs =⇒ prod_list (map (f :: 'b ⇒ 'a) xs) = prod f (set xs)"
〈proof 〉

lemma (in comm_monoid_mult) interv_prod_list_conv_prod_set_nat:
"prod_list (map (f :: nat ⇒ 'a) [m..<n]) = prod f (set [m..<n])"
〈proof 〉

lemma (in comm_monoid_mult) prod_list_prod_nth:
"prod_list (xs :: 'a list) = (

∏
i = 0 ..< length xs. xs ! i)"

〈proof 〉

5

lemma squarefree_mult_imp_coprime [dest]:
assumes "squarefree (x * y)"
shows "coprime x y"

〈proof 〉

end

theory ERF_Perfect_Field_Factorization

imports ERF_Library

begin

Here we subsume properties of the factorization of a polynomial and its
derivative in perfect fields. There are two main examples for perfect fields:
fields with characteristic 0 and finite fields (i.e. Fq[x] where q = pn, n ∈ N
and p prime). For fields with characteristic 0, most of the lemmas below
become trivial. But in the case of finite fields we get interesting results.
Since fields are not instantiated with gcd, we need the additional type class
constraint field_gcd.
locale perfect_field_poly_factorization =

fixes e :: "'e :: {perfect_field, field_gcd} itself"
and f :: "'e poly"
and p :: nat

assumes p_def: "p = CHAR('e)"
and deg: "degree f 6= 0"

begin

Definitions to shorten the terms.
definition fm where "fm = normalize f"
definition fac where "fac = prime_factorization fm"
definition fac_set where "fac_set = prime_factors fm"
definition ex where "ex = (λp. multiplicity p fm)"

The split of all prime factors into P1 and P2 only affects fields with prime
characteristic. For fields with characteristic 0, P2 is always empty.
definition P1 where "P1 = {f∈fac_set. ¬ p dvd ex f}"
definition P2 where "P2 = {f∈fac_set. p dvd ex f}"

Assumptions on the degree of f rewritten.
lemma deg_f_gr_0[simp]: "degree f > 0" 〈proof 〉
lemma f_nonzero[simp]: "f 6=0" 〈proof 〉
lemma fm_nonzero: "fm 6= 0" 〈proof 〉

Lemmas on fac_set, P1 and P2. P1 and P2 are a partition of fac_set.
lemma fac_set_nonempty[simp]: "fac_set 6= {}" 〈proof 〉

6

lemma fac_set_P1_P2: "fac_set = P1 ∪ P2"
〈proof 〉

lemma P1_P2_intersect[simp]: "P1 ∩ P2 = {}"
〈proof 〉

lemma finites[simp]: "finite fac_set" "finite P1" "finite P2"
〈proof 〉

All elements of fac_set (and thus of P1 and P2) are monic, irreducible, prime
and prime elements.
lemma fac_set_prime[simp]: "prime x" if "x∈fac_set"
〈proof 〉

lemma P1_prime[simp]: "prime x" if "x∈P1"
〈proof 〉

lemma P2_prime[simp]: "prime x" if "x∈P2"
〈proof 〉

lemma fac_set_monic[simp]: "monic x" if "x∈fac_set"
〈proof 〉

lemma P1_monic[simp]: "monic x" if "x∈P1"
〈proof 〉

lemma P2_monic[simp]: "monic x" if "x∈P2"
〈proof 〉

lemma fac_set_prime_elem[simp]: "prime_elem x" if "x∈fac_set"
〈proof 〉

lemma P1_prime_elem[simp]: "prime_elem x" if "x∈P1"
〈proof 〉

lemma P2_prime_elem[simp]: "prime_elem x" if "x∈P2"
〈proof 〉

lemma fac_set_irreducible[simp]: "irreducible x" if "x∈fac_set"
〈proof 〉

lemma P1_irreducible[simp]: "irreducible x" if "x∈P1"
〈proof 〉

lemma P2_irreducible[simp]: "irreducible x" if "x∈P2"
〈proof 〉

All prime factors are nonzero. Also the derivative of a prime factor is
nonzero. The exponent of a prime factor is also nonzero.
lemma nonzero[simp]: "fj 6= 0" if "fj∈ fac_set"
〈proof 〉

lemma nonzero_deriv[simp]: "pderiv fj 6= 0" if "fj∈ fac_set"
〈proof 〉

7

lemma P1_ex_nonzero: "of_nat (ex x) 6= (0:: 'e)" if "x∈P1"
〈proof 〉

A prime factor and its derivative are coprime. Also elements of P1 and P2
are coprime.
lemma deriv_coprime: "algebraic_semidom_class.coprime x (pderiv x)"

if "x∈fac_set" for x 〈proof 〉

lemma P1_P2_coprime: "algebraic_semidom_class.coprime x (
∏

f∈P2. f^ex
f)" if "x∈P1"
〈proof 〉

lemma P1_ex_P2_coprime: "algebraic_semidom_class.coprime (x^ex x) (
∏

f∈P2.
f^ex f)" if "x∈P1"
〈proof 〉

We now come to the interesting factorizations of the normalization of a poly-
nomial. It can be represented in Isabelle as the multi-set product prod_mset
of the multi-set of its prime factors, or as a product of prime factors to the
power of its multiplicity. We can also split the product into two parts: The
prime factors with exponent divisible by the cardinality of the finite field p
(= the set P2) and those not divisible by p (= the set P1).
lemma f_fac: "fm = prod_mset fac"
〈proof 〉

lemma fm_P1_P2: "fm = (
∏

fj∈P1. fj^(ex fj)) * (
∏

fj∈P2. fj^(ex fj))"
〈proof 〉

We now want to look at the derivative and its explicit form. The problem
for polynomials over fields with prime characteristic is that for prime factors
with exponent divisible by the characteristic, the exponent as a field element
equals 0 and cancels out the respective term, i.e.: In a finite field Fpn [x],
if f = gp where g is a prime polynomial and p is the cardinality, then
f ′ = p · gp−1 = 0. This has nasty side effects in the elimination of repeated
factors (ERF) algorithm. As all summands with a derivative of a factor in
P2 cancel out, we can also write the derivative as a sum over all derivatives
over P1 only.
definition deriv_part where
"deriv_part = (λy. Polynomial.smult (of_nat (ex y)) (pderiv y * y ^

(ex y - Suc 0) *
(
∏

fj∈fac_set - {y}. fj ^ ex fj)))"

definition deriv_monic where
"deriv_monic = (λy. pderiv y * y ^ (ex y - Suc 0) * (

∏
fj∈fac_set -

{y}. fj ^ ex fj))"

8

lemma pderiv_fm: "pderiv fm = (
∑

f∈fac_set. deriv_part f)"
〈proof 〉

lemma sumP2_deriv_zero: "(
∑

f∈P2. deriv_part f) = 0"
〈proof 〉

lemma pderiv_fm': "pderiv fm = (
∑

f∈P1. deriv_part f)"
〈proof 〉

definition deriv_P1 where
"deriv_P1 = (λy. Polynomial.smult (of_nat (ex y)) (pderiv y * y ^ (ex

y - Suc 0) *
(
∏

fj∈P1 - {y}. fj ^ ex fj)))"

lemma pderiv_fm'': "pderiv fm = (
∏

f∈P2. f^ex f) * (
∑

x∈P1. deriv_P1
x)"
〈proof 〉

Some properties that fei
i for prime factors fi divides the summands of the

derivative or not.
lemma ex_min_1_power_dvd_P1: "x ^ (ex x - 1) dvd deriv_part a" if "x∈P1"
"a∈P1" for x a
〈proof 〉

lemma ex_power_dvd_P2: "x ^ ex x dvd deriv_part a" if "x∈P2" "a∈P1" 〈proof 〉

lemma ex_power_not_dvd: "¬ y^ex y dvd deriv_monic y" if "y∈fac_set"
〈proof 〉

lemma P1_ex_power_not_dvd: "¬ y^ex y dvd deriv_part y" if "y∈P1"
〈proof 〉

lemma P1_ex_power_not_dvd': "¬ y^ex y dvd deriv_P1 y" if "y∈P1"
〈proof 〉

If the derivative of the normalized polynomial fm is zero, then all prime
factors have an exponent divisible by the cardinality p.
lemma pderiv0_p_dvd_count: "p dvd ex fj" if "fj∈fac_set" "pderiv fm =
0"
〈proof 〉

Properties on the multiplicity (i.e. the exponents) of prime factors in the
factorization of the derivative.
lemma mult_fm[simp]: "count fac x = ex x" if "x∈fac_set"
〈proof 〉

lemma mult_deriv1: "multiplicity x (pderiv fm) = ex x - 1"

9

if "x∈P1" "pderiv fm 6= 0" for x
〈proof 〉

lemma mult_deriv: "multiplicity x (pderiv fm) ≥ (if p dvd ex x then
ex x else ex x - 1)"

if "x∈fac_set" "pderiv fm 6= 0"
〈proof 〉

end
end

theory ERF_Algorithm
imports
ERF_Perfect_Field_Factorization

begin

2 Elimination of Repeated Factors Algorithm

This file contains the elimnation of repeated factors (ERF) algorithm for
polynomials over perfect fields. This algorithm does not only work over
fields with characteristic 0 like the classical Yun Algorithm but also for
example over finite fields with prime characteristic (i.e. Fq[x] for q = pn,
n ∈ N and p prime). Intuitively, the ERF algorithm proceeds similarly
to the classical Yun algorithm, taking the gcd of the polynomial and its
derivative and thus eliminating repeated factors iteratively. However, if we
work over finite characteristic, prime factors with exponent divisible by the
characteristic p are cancelled out since p ≡ 0. Therefore, we separate prime
factors with exponent divisible by the characteristic from the rest and treat
them seperately in the ERF algorithm.

Since we use the gcd, we need the additional type constraint field_gcd.
context
assumes "SORT_CONSTRAINT('e::{perfect_field, field_gcd})"
begin

The funtion ERF_step describes the main body of the ERF algorithm. Let
us walk through the algorithm step by step.

• A polynomial of degree 0 is constant and thus there is nothing to do.

• We only consider the monic part of our polynomial f using the normalize
function.

• u is the gcd of the monic f and its derivative.

10

• u = 1 iff f is already square-free. If the characteristic is zero, this
property is already fulfilled. Otherwise we continue and denote the
(prime) characteristic by p.

• If u 6= 1, we split f in a part v and w. v is already square-free and
contains all prime factors with exponent not divisible by p.

• w contains all prime factors with exponent divisible by p. Thus we
can take the p-th root of w (by using the inverse Frobenius homomor-
phism inv_frob_poly) and obtain z (which we will further reduce in
an iterative step).

definition ERF_step ::"'e poly ⇒ _" where
"ERF_step f = (if degree f = 0 then None else (let

f_mono = normalize f;
u = gcd f_mono (pderiv f_mono);
n = degree f

in (if u = 1 then None else let
v = f_mono div u;
w = u div gcd u (v^n);
z = inv_frob_poly w
in Some (v, z)

)
))"

lemma ERF_step_0 [simp]: "ERF_step 0 = None"
〈proof 〉

lemma ERF_step_const: "degree f = 0 =⇒ ERF_step f = None"
〈proof 〉

For the correctness proof of the local.ERF_step algorithm, we need to show
that u, v and w have the correct form.

Let f =
∏

i f
ei
i where we assume f to be monic and fi are the prime factors

with exponents ei. Let furthermore P1 = {fi. p - ei} and P2 = {fi. p | ei}.
Then we have

u =
∏

fi∈P1

fei−1
i ·

∏
fi∈P2

fei
i

.
lemma u_characterization :

fixes f::"'e poly"
assumes "degree f 6= 0"
and u_def: "u = gcd (normalize f) (pderiv (normalize f))"
shows "u = (let fm' = normalize f in

(
∏

fj∈prime_factors fm'. let ej = multiplicity fj fm'
in

(if CHAR('e) dvd ej then fj ^ ej else fj ^(ej-1))))"
(is ?u)

11

and "u = (let fm' = normalize f; P1 = {f∈prime_factors fm'. ¬ CHAR('e)
dvd multiplicity f fm'};

P2 = {f∈prime_factors fm'. CHAR('e) dvd multiplicity f
fm'} in

(
∏

fj∈P1. fj^(multiplicity fj fm' -1)) * (
∏

fj∈P2. fj^(multiplicity
fj fm')))"
(is ?u')
〈proof 〉

Continuing our calculations, we get:

v =
∏

fi∈P1

fi

Therefore, v is already square-free and v’s prime factors are exactly P1.
lemma v_characterization:
assumes "ERF_step f = Some (v,z)"
shows "v = (let fm = normalize f in fm div (gcd fm (pderiv fm)))" (is
?a)
and "v =

∏
{x∈prime_factors (normalize f). ¬ CHAR('e) dvd multiplicity

x (normalize f)}" (is ?b)
and "prime_factors v = {x∈prime_factors (normalize f). ¬ CHAR('e) dvd
multiplicity x (normalize f)}"(is ?c)
and "squarefree v"(is ?d)
〈proof 〉

For the definition of w, we only want to get the prime factors in P2. There-
fore, we kick out all prime factors in P1 from f by calculating this gcd.

gcd(u, vdeg f) =
∏

fi∈P1

fei−1
i

lemma gcd_u_v:
assumes "ERF_step f = Some (v,z)"
shows "let fm = normalize f; u = gcd fm (pderiv fm);
P1 = {x∈prime_factors fm. ¬ CHAR('e) dvd multiplicity x fm} in

gcd u (v^(degree f)) = (
∏

fj∈P1. fj ^(multiplicity fj fm -1))"
〈proof 〉

Finally, we can calculate

w =
∏

fi∈P2

f
p·(ei/p)
i

and
z = p
√

w =
∏

fi∈P2

f
ei/p
i

Now, we can show the correctness of the local.ERF_step function. These
properties comprise:

12

• prime factors of f are either in v or in z

• v is already square-free

• z is non-zero and the p-th power of z divides f (important for the
termination of the ERF)

lemma ERF_step_correct:
assumes "ERF_step f = Some (v, z)"
shows "radical f = v * radical z"

"squarefree v"
"z ^ CHAR('e) dvd f"
"z 6=0"
"CHAR('e) = 0 =⇒ z = 1"

〈proof 〉

If the algorithm stops, then the input was already square-free or zero.
lemma ERF_step_correct_None:

assumes "ERF_step f = None"
shows "degree f = 0 ∨ radical f = normalize f"

"f 6=0 =⇒ squarefree f"
〈proof 〉

The degree of z is less than the degree of f . This guarantees the termination
of ERF.
lemma degree_ERF_step_less [termination_simp]:

assumes "ERF_step f = Some (v, z)"
shows "degree z < degree f"

〈proof 〉

lemma is_measure_degree [measure_function]: "is_measure Polynomial.degree"
〈proof 〉

Finally, we state the full ERF algorithm. We show correctness as well.
fun ERF ::"'e poly ⇒ 'e poly list" where
"ERF f = (

case ERF_step f of
None ⇒ if degree f = 0 then [] else [normalize f]

| Some (v, z) ⇒ v # ERF z)"

lemmas [simp del] = ERF.simps

lemma ERF_0 [simp]: "ERF 0 = []"
〈proof 〉

lemma ERF_const [simp]:
assumes "degree f = 0"

13

shows "ERF f = []"
〈proof 〉

theorem ERF_correct:
assumes "f 6= 0"
shows "prod_list (ERF f) = radical f"

"g ∈ set (ERF f) =⇒ squarefree g"
〈proof 〉

It is also easy to see that any two polynomials in the list returned by
local.ERF are coprime.
lemma ERF_pairwise_coprime: "sorted_wrt coprime (ERF p)"
〈proof 〉

We can also compute the radical of a polynomial with the ERF algorithm
by simply multiplying together the individual parts we found.
lemma radical_code [code_unfold]: "radical f = (if f = 0 then 0 else
prod_list (ERF f))"
〈proof 〉

With this, the ERF algorithm can also serve as an executable test for the
square-freeness of a polynomial (especially over a finite field):
lemma squarefree_poly_code [code_unfold]:

fixes p :: "'a :: field_gcd poly"
shows "squarefree p ←→ p 6= 0 ∧ Polynomial.degree p = Polynomial.degree

(radical p)"
〈proof 〉

end

end

theory ERF_Code_Fixes
imports Berlekamp_Zassenhaus.Finite_Field
Perfect_Fields.Perfect_Fields

begin

3 Code Generation for ERF and Example
lemma inverse_mod_ring_altdef:

fixes x :: "'p :: prime_card mod_ring"
defines "x' ≡ Rep_mod_ring x"
shows "Rep_mod_ring (inverse x) = fst (bezout_coefficients x' CARD('p))

mod CARD('p)"
〈proof 〉

lemmas inverse_mod_ring_code' [code] =
inverse_mod_ring_altdef [where 'p = "'p :: {prime_card, card_UNIV}"]

14

lemma divide_mod_ring_code' [code]:
"x / (y :: 'p :: {prime_card, card_UNIV} mod_ring) = x * inverse y"
〈proof 〉

instantiation mod_ring :: ("{finite, card_UNIV}") card_UNIV
begin
definition "card_UNIV = Phantom('a mod_ring) (of_phantom (card_UNIV ::
'a card_UNIV))"
definition "finite_UNIV = Phantom('a mod_ring) True"
instance
〈proof 〉

end

lemmas of_int_mod_ring_code [code] =
of_int_mod_ring.rep_eq[where ?'a = "'a :: {finite, card_UNIV}"]

lemmas plus_mod_ring_code [code] =
plus_mod_ring.rep_eq[where ?'a = "'a :: {finite, card_UNIV}"]

lemmas minus_mod_ring_code [code] =
minus_mod_ring.rep_eq[where ?'a = "'a :: {finite, card_UNIV}"]

lemmas uminus_mod_ring_code [code] =
uminus_mod_ring.rep_eq[where ?'a = "'a :: {finite, card_UNIV}"]

lemmas times_mod_ring_code [code] =
times_mod_ring.rep_eq[where ?'a = "'a :: {finite, card_UNIV}"]

lemmas inverse_mod_ring_code [code] =
inverse_mod_ring_def[where ?'a = "'a :: {prime_card, finite, card_UNIV}"]

lemmas divide_mod_ring_code [code] =
divide_mod_ring_def[where ?'a = "'a :: {prime_card, finite, card_UNIV}"]

lemma card_UNIV_code:
"card (UNIV :: 'a :: card_UNIV set) = of_phantom (card_UNIV :: ('a,

nat) phantom)"
〈proof 〉

〈ML〉

class semiring_char_code = semiring_1 +
fixes semiring_char_code :: "('a, nat) phantom"
assumes semiring_char_code_correct: "semiring_char_code = Phantom('a)

CHAR('a)"

instantiation mod_ring :: ("{finite,nontriv,card_UNIV}") semiring_char_code

15

begin
definition semiring_char_code_mod_ring :: "('a mod_ring, nat) phantom"
where
"semiring_char_code_mod_ring = Phantom('a mod_ring) (of_phantom (card_UNIV

:: ('a, nat) phantom))"
instance
〈proof 〉

end

instantiation poly :: ("{semiring_char_code, comm_semiring_1}") semiring_char_code
begin
definition
"semiring_char_code_poly =

Phantom('a poly) (of_phantom (semiring_char_code :: ('a, nat) phantom))"
instance
〈proof 〉

end

instantiation fps :: ("{semiring_char_code, comm_semiring_1}") semiring_char_code
begin
definition
"semiring_char_code_fps =

Phantom('a fps) (of_phantom (semiring_char_code :: ('a, nat) phantom))"
instance
〈proof 〉

end

instantiation fls :: ("{semiring_char_code, comm_semiring_1}") semiring_char_code
begin
definition
"semiring_char_code_fls =

Phantom('a fls) (of_phantom (semiring_char_code :: ('a, nat) phantom))"
instance
〈proof 〉

end

lemma semiring_char_code [code]:
"semiring_char x =

(if x = TYPE('a :: semiring_char_code) then
of_phantom (semiring_char_code :: ('a, nat) phantom) else
Code.abort STR ''semiring_char'' (λ_. semiring_char x))"

〈proof 〉

end

theory ERF_Code_Test
imports

16

"HOL-Library.Code_Target_Numeral"
ERF_Algorithm
ERF_Code_Fixes

begin

hide_const (open) Formal_Power_Series.radical
notation (output) Abs_mod_ring ("_")

3.1 Example for the code generation with GF(2)

type_synonym gf2 = "bool mod_ring"

definition x where "x = [:0, 1:]"
definition p :: "gf2 poly"

where "p = x^16 + x^15 + x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4
+ x^2 + x + 1"

value "ERF p"
value "radical p"

end

References

[1] M. Eberl and K. Kreuzer. Perfect fields. Archive of Formal Proofs,
November 2023. https://isa-afp.org/entries/Perfect_Fields.html,
Formal proof development.

[2] M. Scott. Factoring polynomials over finite fields, May 2019.
https://carleton.ca/math/wp-content/uploads/
Factoring-Polynomials-over-Finite-Fields_Melissa-Scott.pdf.

[3] R. Thiemann and A. Yamada. Polynomial factorization. Archive of
Formal Proofs, January 2016.
https://isa-afp.org/entries/Polynomial_Factorization.html, Formal
proof development.

17

https://isa-afp.org/entries/Perfect_Fields.html
https://carleton.ca/math/wp-content/uploads/Factoring-Polynomials-over-Finite-Fields_Melissa-Scott.pdf
https://carleton.ca/math/wp-content/uploads/Factoring-Polynomials-over-Finite-Fields_Melissa-Scott.pdf
https://isa-afp.org/entries/Polynomial_Factorization.html

	Auxiliary Lemmas
	Lemmas for the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 radical of polynomials
	More on square-free polynomials

	Elimination of Repeated Factors Algorithm
	Code Generation for ERF and Example
	Example for the code generation with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GF2

