
Elimination of Repeated Factors Algorithm

Katharina Kreuzer, Manuel Eberl

March 17, 2025

Abstract

This article formalises the Elimination of Repeated Factors (ERF)
Algorithm. This is an algorithm to find the square-free part of polyno-
mials over perfect fields. Notably, this encompasses all fields of char-
acteristic 0 and all finite fields.

For fields with characteristic 0, the ERF algorithm proceeds sim-
ilarly to the classical Yun algorithm (formalized in [3, File Square_
Free_Factorization.thy]). However, for fields with non-zero char-
acteristic p, Yun’s algorithm can fail because the derivative of a non-
zero polynomial can be 0. The ERF algorithm detects this case and
therefore also works in this more general setting.

To state the ERF Algorithm in this general form, we build on
the entry on perfect fields [1]. We show that the ERF algorithm is
correct and returns a list of pairwise coprime square-free polynomials
whose product is the input polynomial. Indeed, through this, the ERF
algorithm also yields executable code for calculating the square-free
part of a polynomial (denoted by the function radical).

The definition and proof of the ERF have been taken from Algo-
rithm 1 in [2].

1

Contents
1 Auxiliary Lemmas 3

1.1 Lemmas for the radical of polynomials 4
1.2 More on square-free polynomials 6

2 Elimination of Repeated Factors Algorithm 16

3 Code Generation for ERF and Example 33
3.1 Example for the code generation with GF(2) 36

2

theory ERF_Library
imports

Mason_Stothers.Mason_Stothers
Berlekamp_Zassenhaus.Berlekamp_Type_Based
Perfect_Fields.Perfect_Fields

begin

hide_const (open) Formal_Power_Series.radical

1 Auxiliary Lemmas

If all factors are monic, the product is monic as well (i.e. the normalization
is itself).
lemma normalize_prod_monics:

assumes "∀ x∈A. monic x"
shows "normalize (

∏
x∈A. x^(e x)) = (

∏
x∈A. x^(e x))"

by (simp add: assms monic_power monic_prod normalize_monic)

All primes are monic.
lemma prime_monic:

fixes p :: "’a :: {euclidean_ring_gcd,field} poly"
assumes "p 6=0" "prime p" shows "monic p"
using normalize_prime[OF assms(2)] monic_normalize[OF assms(1)] by auto

If we know the factorization of a polynomial, we can explicitly characterize
the derivative of said polynomial.
lemma pderiv_exp_prod_monic:
assumes "p = prod_mset fs"
shows "pderiv p = (sum (λ fi. let ei = count fs fi in

Polynomial.smult (of_nat ei) (pderiv fi) * fi^(ei-1) * prod (λ fj.
fj^(count fs fj))

((set_mset fs) - {fi})) (set_mset fs))"
proof -

have pderiv_fi: "pderiv (fi ^ count fs fi) =
Polynomial.smult (of_nat (count fs fi)) (pderiv fi * (fi ^ (count

fs fi - Suc 0)))"
if "fi ∈# fs" for fi

proof -
obtain i where i: "Suc i = count fs fi" by (metis ‹fi ∈# fs› in_countE)
show ?thesis unfolding i[symmetric] by (subst pderiv_power_Suc) (auto

simp add: algebra_simps)
qed
show ?thesis unfolding assms prod_mset_multiplicity pderiv_prod sum_distrib_left

Let_def

3

by (rule sum.cong[OF refl]) (auto simp add: algebra_simps pderiv_fi)
qed

Any element that divides a prime is either congruent to the prime (i.e. p
dvd c) or a unit itself. Careful: This does not mean that p = c since there
could be another unit u such that p = u ∗ c.
lemma prime_factors_prime:

assumes "c dvd p" "prime p"
shows "is_unit c ∨ p dvd c"
using assms unfolding normalization_semidom_class.prime_def
by (meson prime_elemD2)

A prime polynomial has degree greater than zero. This is clear since any
polynomial of degree 0 is constant and thus also a unit.
lemma prime_degree_gt_zero:

fixes p::"’a::{idom_divide,semidom_divide_unit_factor,field} poly"
assumes "prime p"
shows "degree p > 0"
using assms by fastforce

This lemma helps to reason that if a sum is zero, under some conditions we
can follow that the summands must also be zero.
lemma one_summand_zero:

fixes a2::"’a ::field poly"
assumes "Polynomial.smult a1 a2 + b = 0""c dvd b" "¬ c dvd a2"
shows "a1 = 0"
by (metis assms dvd_0_right dvd_add_triv_right_iff dvd_smult_cancel

dvd_trans)

1.1 Lemmas for the radical of polynomials

Properties of the function radical. Note: The radical polynomial in algebra
denotes something else. Here, radical denotes the square-free and monic
part of a polynomial (i.e. the product of all prime factors). This notion
corresponds to radical ideals generated by square-free polynomials.
lemma squarefree_radical [intro]: "f 6= 0 =⇒ squarefree (radical f)"

by (simp add: in_prime_factors_iff multiplicity_radical_prime squarefree_factorial_semiring’)

lemma (in normalization_semidom_multiplicative) normalize_prod:
"normalize (

∏
x∈A. f (x :: ’b) :: ’a) = (

∏
x∈A. normalize (f x))"

by (induction A rule: infinite_finite_induct) (auto simp: normalize_mult)

lemma normalize_radical [simp]:
fixes f :: "’a :: factorial_semiring_multiplicative"
shows "normalize (radical f) = radical f"

4

by (auto simp: radical_def normalize_prod in_prime_factors_iff normalize_prime
intro!: prod.cong)

lemma radical_of_squarefree:
assumes "squarefree f"
shows "normalize (radical f) = normalize f"

proof -
from assms have [simp]: "f 6= 0"

by auto
have "normalize (

∏
(prime_factorization f)) = normalize f"

by (intro prod_mset_prime_factorization_weak) auto
also have "prime_factorization f = mset_set (prime_factors f)"

using assms
by (intro multiset_eqI)

(auto simp: count_prime_factorization count_mset_set’ squarefree_factorial_semiring’
in_prime_factors_iff not_dvd_imp_multiplicity_0)

also have "prod_mset (mset_set (prime_factors f)) = radical f"
by (simp add: radical_def prod_unfold_prod_mset)

finally show ?thesis
by simp

qed

A constant polynomial has no primes in its prime factorization and its radical
is 1.
lemma prime_factorization_degree0:

fixes f :: "’a :: {factorial_ring_gcd,semiring_gcd_mult_normalize,field}
poly"

assumes "degree f = 0"
shows "prime_factorization f = {#}"
by (simp add: assms prime_factorization_empty_iff)

lemma prime_factors_degree0:
fixes f :: "’a :: {factorial_ring_gcd,semiring_gcd_mult_normalize,field}

poly"
assumes "degree f = 0" "f 6=0"
shows "prime_factors f = {}"
using prime_factorization_degree0 assms by auto

lemma radical_degree0:
fixes f :: "’a :: {factorial_ring_gcd,semiring_gcd_mult_normalize,field}

poly"
assumes "degree f = 0" "f 6=0"
shows "radical f = 1"
by (simp add: assms is_unit_iff_degree)

A polynomial is square-free iff its normalization is also square-free.
lemma squarefree_normalize:

"squarefree f ←→ squarefree (normalize f)"

5

by (simp add: squarefree_def)

Important: The zeros of a polynomial are also zeros of its radical and vice
versa.
lemma same_zeros_radical: "(poly f a = 0) = (poly (radical f) a = 0)"
proof (cases "f = 0")

case True show ?thesis unfolding True radical_def by auto
next

case False
have fin: "finite (prime_factors f)" by simp
have f: "f = unit_factor f * prod_mset (prime_factorization f)"

by (metis False in_prime_factors_imp_prime normalize_prime normalized_prod_msetI

prod_mset_prime_factorization_weak unit_factor_mult_normalize)
have "poly (unit_factor f) a 6=0" using False poly_zero by fastforce
moreover have "((

∏
p∈#prime_factorization f. poly p a) = 0)=((

∏
k∈prime_factors

f. poly k a) = 0)"
by (subst prod_mset_zero_iff,subst prod_zero_iff[OF fin]) auto

ultimately have "(poly f a = 0) = (poly (
∏

(prime_factors f)) a = 0)"

by (subst f, subst poly_prod, subst poly_mult, subst poly_hom.hom_prod_mset)
auto

then show ?thesis unfolding radical_def using False by auto
qed

1.2 More on square-free polynomials

We need to relate two different versions of the definition of a square-free
polynomial (i.e. the functions squarefree and square_free). Over fields,
they differ only in their behavior at 0.)
lemma squarefree_square_free:

fixes x :: "’a :: {field} poly"
assumes "x 6= 0"
shows "squarefree x = square_free x"
using assms unfolding squarefree_def square_free_def proof (safe, goal_cases)
case (1 q)
have "q dvd 1" using 1(2,4) by (metis power2_eq_square)
then have "degree q = 0" using poly_dvd_1[of q] by auto
then show ?case using 1(3) by auto

next
case (2 y)
then have "degree y = 0" by (metis bot_nat_0.not_eq_extremum power2_eq_square)
have "y 6=0" using 2(2,4) by fastforce
show ?case using is_unit_iff_degree[OF ‹y 6=0›] ‹degree y = 0› by auto

qed

lemma (in comm_monoid_mult) prod_list_distinct_conv_prod_set:
"distinct xs =⇒ prod_list (map (f :: ’b ⇒ ’a) xs) = prod f (set xs)"

6

by (simp add: local.prod.distinct_set_conv_list)

lemma (in comm_monoid_mult) interv_prod_list_conv_prod_set_nat:
"prod_list (map (f :: nat ⇒ ’a) [m..<n]) = prod f (set [m..<n])"
by (metis distinct_upt local.prod.distinct_set_conv_list)

lemma (in comm_monoid_mult) prod_list_prod_nth:
"prod_list (xs :: ’a list) = (

∏
i = 0 ..< length xs. xs ! i)"

using interv_prod_list_conv_prod_set_nat [of "(!) xs" 0 "length xs"]
by (simp add: map_nth)

lemma squarefree_mult_imp_coprime [dest]:
assumes "squarefree (x * y)"
shows "coprime x y"

proof (rule coprimeI)
fix d assume "d dvd x" "d dvd y"
hence "d ^ 2 dvd x * y"

by (simp add: mult_dvd_mono power2_eq_square)
thus "d dvd 1"

using assms unfolding squarefree_def by blast
qed

end

theory ERF_Perfect_Field_Factorization

imports ERF_Library

begin

Here we subsume properties of the factorization of a polynomial and its
derivative in perfect fields. There are two main examples for perfect fields:
fields with characteristic 0 and finite fields (i.e. Fq[x] where q = pn, n ∈ N
and p prime). For fields with characteristic 0, most of the lemmas below
become trivial. But in the case of finite fields we get interesting results.
Since fields are not instantiated with gcd, we need the additional type class
constraint field_gcd.
locale perfect_field_poly_factorization =

fixes e :: "’e :: {perfect_field, field_gcd} itself"
and f :: "’e poly"
and p :: nat

assumes p_def: "p = CHAR(’e)"
and deg: "degree f 6= 0"

begin

Definitions to shorten the terms.
definition fm where "fm = normalize f"

7

definition fac where "fac = prime_factorization fm"
definition fac_set where "fac_set = prime_factors fm"
definition ex where "ex = (λp. multiplicity p fm)"

The split of all prime factors into P1 and P2 only affects fields with prime
characteristic. For fields with characteristic 0, P2 is always empty.
definition P1 where "P1 = {f∈fac_set. ¬ p dvd ex f}"
definition P2 where "P2 = {f∈fac_set. p dvd ex f}"

Assumptions on the degree of f rewritten.
lemma deg_f_gr_0[simp]: "degree f > 0" using deg by auto
lemma f_nonzero[simp]: "f 6=0" using deg degree_0 by blast
lemma fm_nonzero: "fm 6= 0" using deg_f_gr_0 fm_def by auto

Lemmas on fac_set, P1 and P2. P1 and P2 are a partition of fac_set.
lemma fac_set_nonempty[simp]: "fac_set 6= {}" unfolding fac_set_def

by (metis deg_f_gr_0 degree_0 degree_1 degree_normalize fm_def
nat_less_le prod_mset.empty prod_mset_prime_factorization_weak
set_mset_eq_empty_iff)

lemma fac_set_P1_P2: "fac_set = P1 ∪ P2"
unfolding P1_def P2_def by auto

lemma P1_P2_intersect[simp]: "P1 ∩ P2 = {}"
unfolding P1_def P2_def by auto

lemma finites[simp]: "finite fac_set" "finite P1" "finite P2"
unfolding P1_def P2_def fac_set_def by auto

All elements of fac_set (and thus of P1 and P2) are monic, irreducible, prime
and prime elements.
lemma fac_set_prime[simp]: "prime x" if "x∈fac_set"

using fac_set_def that by blast

lemma P1_prime[simp]: "prime x" if "x∈P1"
using P1_def fac_set_prime that by blast

lemma P2_prime[simp]: "prime x" if "x∈P2"
using P2_def fac_set_prime that by blast

lemma fac_set_monic[simp]: "monic x" if "x∈fac_set"
using fac_set_def that by (metis in_prime_factors_imp_prime

monic_normalize normalize_prime not_prime_0)
lemma P1_monic[simp]: "monic x" if "x∈P1"

using P1_def fac_set_monic that by blast
lemma P2_monic[simp]: "monic x" if "x∈P2"

using P2_def fac_set_monic that by blast

lemma fac_set_prime_elem[simp]: "prime_elem x" if "x∈fac_set"

8

using fac_set_def that in_prime_factors_imp_prime by blast
lemma P1_prime_elem[simp]: "prime_elem x" if "x∈P1"

using P1_def fac_set_prime that by blast
lemma P2_prime_elem[simp]: "prime_elem x" if "x∈P2"

using P2_def fac_set_prime that by blast

lemma fac_set_irreducible[simp]: "irreducible x" if "x∈fac_set"
using fac_set_def that fac_set_prime_elem by auto

lemma P1_irreducible[simp]: "irreducible x" if "x∈P1"
using P1_def fac_set_prime that by blast

lemma P2_irreducible[simp]: "irreducible x" if "x∈P2"
using P2_def fac_set_prime that by blast

All prime factors are nonzero. Also the derivative of a prime factor is
nonzero. The exponent of a prime factor is also nonzero.
lemma nonzero[simp]: "fj 6= 0" if "fj∈ fac_set"

using fac_set_def that zero_not_in_prime_factors by blast

lemma nonzero_deriv[simp]: "pderiv fj 6= 0" if "fj∈ fac_set"
by (intro irreducible_imp_pderiv_nonzero)

(use that fac_set_def in_prime_factors_imp_prime in ‹auto›)

lemma P1_ex_nonzero: "of_nat (ex x) 6= (0:: ’e)" if "x∈P1"
using that P1_def p_def by (simp add: of_nat_eq_0_iff_char_dvd)

A prime factor and its derivative are coprime. Also elements of P1 and P2
are coprime.
lemma deriv_coprime: "algebraic_semidom_class.coprime x (pderiv x)"

if "x∈fac_set" for x using irreducible_imp_separable that
using fac_set_def in_prime_factors_imp_prime by blast

lemma P1_P2_coprime: "algebraic_semidom_class.coprime x (
∏

f∈P2. f^ex
f)" if "x∈P1"

by (smt (verit) P1_def P2_def as_ufd.prime_elem_iff_irreducible fac_set_def

in_prime_factors_imp_prime irreducible_dvd_prod mem_Collect_eq
normalization_semidom_class.prime_def prime_dvd_power prime_imp_coprime

primes_dvd_imp_eq that)

lemma P1_ex_P2_coprime: "algebraic_semidom_class.coprime (x^ex x) (
∏

f∈P2.
f^ex f)" if "x∈P1"

using P1_P2_coprime by (simp add: that)

We now come to the interesting factorizations of the normalization of a poly-
nomial. It can be represented in Isabelle as the multi-set product prod_mset
of the multi-set of its prime factors, or as a product of prime factors to the
power of its multiplicity. We can also split the product into two parts: The

9

prime factors with exponent divisible by the cardinality of the finite field p
(= the set P2) and those not divisible by p (= the set P1).
lemma f_fac: "fm = prod_mset fac"

by (metis deg_f_gr_0 bot_nat_0.extremum_strict degree_0 fac_def fm_def
in_prime_factors_iff

normalize_eq_0_iff normalize_prime normalized_prod_msetI prod_mset_prime_factorization_weak)

lemma fm_P1_P2: "fm = (
∏

fj∈P1. fj^(ex fj)) * (
∏

fj∈P2. fj^(ex fj))"
proof -

have *: "fm = (
∏

fj∈fac_set. fj^(ex fj))" unfolding f_fac unfolding
fac_def fac_set_def

by (smt (verit, best) count_prime_factorization_prime ex_def in_prime_factors_imp_prime

prod.cong prod_mset_multiplicity)
show ?thesis unfolding * using fac_set_P1_P2

prod.union_disjoint[OF finites(2) finites(3) P1_P2_intersect] by
auto
qed

We now want to look at the derivative and its explicit form. The problem
for polynomials over fields with prime characteristic is that for prime factors
with exponent divisible by the characteristic, the exponent as a field element
equals 0 and cancels out the respective term, i.e.: In a finite field Fpn [x],
if f = gp where g is a prime polynomial and p is the cardinality, then
f ′ = p · gp−1 = 0. This has nasty side effects in the elimination of repeated
factors (ERF) algorithm. As all summands with a derivative of a factor in
P2 cancel out, we can also write the derivative as a sum over all derivatives
over P1 only.
definition deriv_part where

"deriv_part = (λy. Polynomial.smult (of_nat (ex y)) (pderiv y * y ^
(ex y - Suc 0) *

(
∏

fj∈fac_set - {y}. fj ^ ex fj)))"

definition deriv_monic where
"deriv_monic = (λy. pderiv y * y ^ (ex y - Suc 0) * (

∏
fj∈fac_set -

{y}. fj ^ ex fj))"

lemma pderiv_fm: "pderiv fm = (
∑

f∈fac_set. deriv_part f)"
unfolding deriv_part_def pderiv_exp_prod_monic[OF f_fac] Let_def fac_set_def

fac_def ex_def
count_prime_factorization by (intro sum.cong, simp)
(smt (verit) DiffD1 One_nat_def in_prime_factors_iff mult_smult_left

prod.cong)

lemma sumP2_deriv_zero: "(
∑

f∈P2. deriv_part f) = 0"
unfolding deriv_part_def unfolding P2_def
by (intro sum.neutral, use P2_def p_def of_nat_eq_0_iff_char_dvd in

‹auto›)

10

lemma pderiv_fm’: "pderiv fm = (
∑

f∈P1. deriv_part f)"
by (subst pderiv_fm, subst fac_set_P1_P2,

subst sum.union_disjoint[OF finites(2) finites(3) P1_P2_intersect])
(use sumP2_deriv_zero in ‹auto›)

definition deriv_P1 where
"deriv_P1 = (λy. Polynomial.smult (of_nat (ex y)) (pderiv y * y ^ (ex

y - Suc 0) *
(
∏

fj∈P1 - {y}. fj ^ ex fj)))"

lemma pderiv_fm’’: "pderiv fm = (
∏

f∈P2. f^ex f) * (
∑

x∈P1. deriv_P1
x)"
proof (subst pderiv_fm’, subst sum_distrib_left, intro sum.cong, safe,
goal_cases)

case (1 x)
have *: "fac_set -{x} = P2 ∪ (P1-{x})" unfolding fac_set_P1_P2

using 1 P1_P2_intersect by blast
have **: "P2 ∩ (P1 - {x}) = {}" using 1 P1_P2_intersect by blast
have "(

∏
fj∈fac_set - {x}. fj ^ ex fj) = (

∏
f∈P2. f ^ ex f) * (

∏
fj∈P1

- {x}. fj ^ ex fj)"
unfolding * by (intro prod.union_disjoint, auto simp add: **)

then show ?case unfolding deriv_part_def deriv_P1_def by (auto simp
add: algebra_simps)
qed

Some properties that fei
i for prime factors fi divides the summands of the

derivative or not.
lemma ex_min_1_power_dvd_P1: "x ^ (ex x - 1) dvd deriv_part a" if "x∈P1"
"a∈P1" for x a
proof (cases "x = a")

case True
then show ?thesis unfolding deriv_part_def

by (intro dvd_smult,subst dvd_mult2,subst dvd_mult) auto
next

case False
then have "x ^ (ex x - 1) dvd (

∏
fj∈fac_set - {a}. fj ^ ex fj)"

by (metis (no_types, lifting) Num.of_nat_simps(1) P1_def P1_ex_nonzero
dvd_prod dvd_triv_right

finite_Diff finites(1) insertE insert_Diff mem_Collect_eq power_eq_if
that(1) that(2))

then show ?thesis unfolding deriv_part_def by (intro dvd_smult, subst
dvd_mult) auto
qed

lemma ex_power_dvd_P2: "x ^ ex x dvd deriv_part a" if "x∈P2" "a∈P1"
unfolding deriv_part_def

by (intro dvd_smult, intro dvd_mult) (use P1_def P2_def that(1) that(2)
in ‹auto›)

11

lemma ex_power_not_dvd: "¬ y^ex y dvd deriv_monic y" if "y∈fac_set"

proof
assume "y^ex y dvd deriv_monic y"
then have "y * (y^(ex y-1)) dvd (pderiv y * (

∏
fj∈fac_set - {y}. fj

^ ex fj)) * (y^(ex y-1))"
unfolding deriv_monic_def
by (metis (no_types, lifting) count_prime_factorization_prime ex_def

fac_set_def
in_prime_factors_imp_prime more_arith_simps(11) mult.commute not_in_iff

numeral_nat(7)
power_eq_if that)

then have *: "y dvd pderiv y * (
∏

fj∈fac_set - {y}. fj ^ ex fj)"
unfolding dvd_mult_cancel_right dvd_smult_cancel by auto

then have "y dvd (
∏

fj∈fac_set - {y}. fj ^ ex fj)"
using deriv_coprime[THEN coprime_dvd_mult_right_iff] ‹y∈fac_set›

by auto
then obtain fj where fj_def: "y dvd fj ^ ex fj" "fj∈fac_set - {y}"

using prime_dvd_prod_iff
by (metis (no_types, lifting) finites(1) ‹y ∈ fac_set› fac_set_def

finite_Diff
in_prime_factors_iff)

then have "y dvd fj" using prime_dvd_power
by (metis fac_set_def in_prime_factors_imp_prime that)

then have "coprime y fj" using fj_def(2)
by (metis Diff_iff Diff_not_in fac_set_prime primes_dvd_imp_eq that)

then show False by (metis ‹y dvd fj› coprimeE dvd_refl fac_set_def
in_prime_factors_imp_prime

not_prime_unit that)
qed

lemma P1_ex_power_not_dvd: "¬ y^ex y dvd deriv_part y" if "y∈P1"
proof

assume ass: "y^ex y dvd deriv_part y"
have "y^ex y dvd deriv_monic y"

using P1_ex_nonzero ass dvd_smult_iff that unfolding deriv_part_def
deriv_monic_def by blast

then show False using ex_power_not_dvd that unfolding P1_def by auto
qed

lemma P1_ex_power_not_dvd’: "¬ y^ex y dvd deriv_P1 y" if "y∈P1"
proof

assume "y^ex y dvd deriv_P1 y"
then have ass: "y^ex y dvd pderiv y * y ^ (ex y - Suc 0) * (

∏
fj∈P1

- {y}. fj ^ ex fj)"
using P1_ex_nonzero dvd_smult_iff that unfolding deriv_P1_def by

blast

12

then have "y * (y^(ex y-1)) dvd (pderiv y * (
∏

fj∈P1 - {y}. fj ^ ex
fj)) * (y^(ex y-1))"

by (metis (no_types, lifting) Num.of_nat_simps(1) P1_ex_nonzero more_arith_simps(11)

mult.commute numeral_nat(7) power_eq_if that)
then have *: "y dvd pderiv y * (

∏
fj∈P1 - {y}. fj ^ ex fj)"

unfolding dvd_mult_cancel_right dvd_smult_cancel by auto
then have "y dvd (

∏
fj∈P1 - {y}. fj ^ ex fj)"

using deriv_coprime[THEN coprime_dvd_mult_right_iff] ‹y∈P1› fac_set_P1_P2
by blast

then obtain fj where fj_def: "y dvd fj ^ ex fj" "fj∈P1 - {y}" us-
ing prime_dvd_prod_iff

by (metis (no_types, lifting) P1_def finites(2) ‹y ∈ P1› fac_set_def
finite_Diff

in_prime_factors_iff mem_Collect_eq)
then have "y dvd fj" using prime_dvd_power

by (metis UnCI fac_set_P1_P2 fac_set_def in_prime_factors_iff that)
then show False

by (metis DiffD1 Diff_not_in P1_prime fj_def(2) primes_dvd_imp_eq
that)
qed

If the derivative of the normalized polynomial fm is zero, then all prime
factors have an exponent divisible by the cardinality p.
lemma pderiv0_p_dvd_count: "p dvd ex fj" if "fj∈fac_set" "pderiv fm =
0"
proof -

have "(
∑

f∈fac_set. deriv_part f) = 0" using pderiv_fm ‹pderiv fm
= 0› by auto

then have zero: "Polynomial.smult (of_nat (ex fj)) (deriv_monic fj)
+ (

∑
f∈fac_set-{fj}. deriv_part f) = 0"

unfolding deriv_part_def deriv_monic_def
by (metis (no_types, lifting) finites(1) sum.remove that(1))

have dvd: "fj ^ ex fj dvd (
∑

f∈fac_set - {fj}. deriv_part f)"
unfolding deriv_part_def
by (intro dvd_sum,intro dvd_smult,intro dvd_mult)

(use finites(1) that(1) in ‹blast›)
have nondvd: "¬ fj ^ ex fj dvd deriv_monic fj"

using ex_power_not_dvd[OF ‹fj∈fac_set›] unfolding deriv_monic_def
by auto

have "of_nat (ex fj) = (0::’e)" by (rule one_summand_zero[OF zero dvd
nondvd])

then show ?thesis using p_def of_nat_eq_0_iff_char_dvd by blast
qed

Properties on the multiplicity (i.e. the exponents) of prime factors in the
factorization of the derivative.
lemma mult_fm[simp]: "count fac x = ex x" if "x∈fac_set"

by (simp add: count_prime_factorization_prime ex_def fac_def that)

13

lemma mult_deriv1: "multiplicity x (pderiv fm) = ex x - 1"
if "x∈P1" "pderiv fm 6= 0" for x

proof (subst multiplicity_eq_Max[OF that(2)])
show "¬ is_unit x" using that(1) using P1_def fac_set_def not_prime_unit

by blast
then have fin: "finite {n. x ^ n dvd pderiv fm}"

using is_unit_iff_infinite_divisor_powers that(2) by blast
show "Max {n. x ^ n dvd pderiv fm} = ex x - 1"
proof (subst Max_eq_iff, goal_cases)

case 2 then show ?case by (metis empty_Collect_eq one_dvd power_0)
next

case 3
have dvd: "x ^(ex x-1) dvd pderiv fm" unfolding pderiv_fm’ by(intro

dvd_sum)
(use ex_min_1_power_dvd_P1[OF ‹x∈P1›] in ‹auto›)

have not :"¬ x^ex x dvd pderiv fm"
proof

assume ass: "x ^ ex x dvd pderiv fm"
have coprime: "algebraic_semidom_class.coprime (x^ex x) (

∏
f∈P2.

f ^ ex f)"
using P1_ex_P2_coprime that(1) by auto

then have "x ^ ex x dvd (
∑

y∈P1. deriv_P1 y)"
using ass coprime_dvd_mult_right_iff[OF coprime] unfolding pderiv_fm’’

by auto
also have "(

∑
y∈P1. deriv_P1 y) = deriv_P1 x + (

∑
y∈P1-{x}. deriv_P1

y)"
by (intro sum.remove, auto simp add: that)

also have " . . . = deriv_P1 x + (x^ex x) * (
∑

y∈P1 - {x}. Polynomial.smult
(of_nat (ex y))

(pderiv y * y ^ (ex y - Suc 0) * (
∏

fj∈(P1 - {x})- {y}. fj ^ ex
fj)))"

proof -
have *: "(pderiv xa * xa ^ (ex xa - Suc 0) * (

∏
fj∈P1 - {xa}.

fj ^ ex fj)) =
(x ^ ex x * (pderiv xa * xa ^ (ex xa - Suc 0) * (

∏
fj∈P1 -

{x} - {xa}. fj ^ ex fj)))"
if "xa∈P1-{x}" for xa

proof -
have "x∈P1-{xa}" using that ‹x∈P1› by auto
have fin: "finite (P1 - {xa})" by auto
show ?thesis by (subst prod.remove[OF fin ‹x∈P1-{xa}›])

(smt (verit, del_insts) Diff_insert2 Groups.mult_ac(3) insert_commute)
qed
show ?thesis unfolding deriv_P1_def by (auto simp add: sum_distrib_left

*)
qed
finally have "x ^ ex x dvd deriv_P1 x + (x^ex x) * (

∑
y∈P1 - {x}.

Polynomial.smult (of_nat (ex y))

14

(pderiv y * y ^ (ex y - Suc 0) * (
∏

fj∈(P1 - {x})- {y}. fj ^ ex
fj)))" by auto

then have "x ^ ex x dvd deriv_P1 x" using dvd_add_times_triv_right_iff
by (simp add: dvd_add_left_iff)

then show False using P1_ex_power_not_dvd’[OF that(1)] by auto
qed
then have less: "a ≤ ex x - 1" if "a∈{n. x ^ n dvd pderiv fm}" for

a
by (metis IntI Int_Collect Suc_pred’ algebraic_semidom_class.unit_imp_dvd

bot_nat_0.not_eq_extremum is_unit_power_iff not_less_eq_eq power_le_dvd
that)

show ?case using dvd less by auto
qed (use fin in ‹auto›)

qed

lemma mult_deriv: "multiplicity x (pderiv fm) ≥ (if p dvd ex x then
ex x else ex x - 1)"

if "x∈fac_set" "pderiv fm 6= 0"
proof (subst multiplicity_eq_Max[OF that(2)])

show "¬ is_unit x" using that(1) using fac_set_def not_prime_unit by
blast

then have fin: "finite {n. x ^ n dvd pderiv fm}"
using is_unit_iff_infinite_divisor_powers that(2) by blast

show "Max {n. x ^ n dvd pderiv fm} ≥ (if p dvd ex x then ex x else
ex x - 1)"

proof (split if_splits, safe, goal_cases)
case 1
then have "x∈P2" unfolding P2_def using that by auto
have dvd: "x ^ ex x dvd pderiv fm" unfolding pderiv_fm’ by(intro

dvd_sum)
(use ‹x ∈ P2› ex_power_dvd_P2 in ‹blast›)

then show ?case by (intro Max_ge, auto simp add: fin)
next

case 2
then have "x∈P1" unfolding P1_def using that by auto
have dvd: "x ^(ex x-1) dvd pderiv fm" unfolding pderiv_fm’ by(intro

dvd_sum)
(use ‹x ∈ P1› ex_min_1_power_dvd_P1 in ‹blast›)

then show ?case by (intro Max_ge, auto simp add: fin)
qed

qed

end
end

theory ERF_Algorithm
imports

15

ERF_Perfect_Field_Factorization
begin

2 Elimination of Repeated Factors Algorithm

This file contains the elimnation of repeated factors (ERF) algorithm for
polynomials over perfect fields. This algorithm does not only work over
fields with characteristic 0 like the classical Yun Algorithm but also for
example over finite fields with prime characteristic (i.e. Fq[x] for q = pn,
n ∈ N and p prime). Intuitively, the ERF algorithm proceeds similarly
to the classical Yun algorithm, taking the gcd of the polynomial and its
derivative and thus eliminating repeated factors iteratively. However, if we
work over finite characteristic, prime factors with exponent divisible by the
characteristic p are cancelled out since p ≡ 0. Therefore, we separate prime
factors with exponent divisible by the characteristic from the rest and treat
them seperately in the ERF algorithm.

Since we use the gcd, we need the additional type constraint field_gcd.
context
assumes "SORT_CONSTRAINT(’e::{perfect_field, field_gcd})"
begin

The funtion ERF_step describes the main body of the ERF algorithm. Let
us walk through the algorithm step by step.

• A polynomial of degree 0 is constant and thus there is nothing to do.

• We only consider the monic part of our polynomial f using the normalize
function.

• u is the gcd of the monic f and its derivative.

• u = 1 iff f is already square-free. If the characteristic is zero, this
property is already fulfilled. Otherwise we continue and denote the
(prime) characteristic by p.

• If u 6= 1, we split f in a part v and w. v is already square-free and
contains all prime factors with exponent not divisible by p.

• w contains all prime factors with exponent divisible by p. Thus we
can take the p-th root of w (by using the inverse Frobenius homomor-
phism inv_frob_poly) and obtain z (which we will further reduce in
an iterative step).

definition ERF_step ::"’e poly ⇒ _" where
"ERF_step f = (if degree f = 0 then None else (let

16

f_mono = normalize f;
u = gcd f_mono (pderiv f_mono);
n = degree f

in (if u = 1 then None else let
v = f_mono div u;
w = u div gcd u (v^n);
z = inv_frob_poly w
in Some (v, z)

)
))"

lemma ERF_step_0 [simp]: "ERF_step 0 = None"
unfolding ERF_step_def by auto

lemma ERF_step_const: "degree f = 0 =⇒ ERF_step f = None"
unfolding ERF_step_def by auto

For the correctness proof of the local.ERF_step algorithm, we need to show
that u, v and w have the correct form.

Let f =
∏

i f
ei
i where we assume f to be monic and fi are the prime factors

with exponents ei. Let furthermore P1 = {fi. p - ei} and P2 = {fi. p | ei}.
Then we have

u =
∏

fi∈P1

fei−1
i ·

∏
fi∈P2

fei
i

.
lemma u_characterization :

fixes f::"’e poly"
assumes "degree f 6= 0"
and u_def: "u = gcd (normalize f) (pderiv (normalize f))"
shows "u = (let fm’ = normalize f in

(
∏

fj∈prime_factors fm’. let ej = multiplicity fj fm’
in

(if CHAR(’e) dvd ej then fj ^ ej else fj ^(ej-1))))"
(is ?u)

and "u = (let fm’ = normalize f; P1 = {f∈prime_factors fm’. ¬ CHAR(’e)
dvd multiplicity f fm’};

P2 = {f∈prime_factors fm’. CHAR(’e) dvd multiplicity f
fm’} in

(
∏

fj∈P1. fj^(multiplicity fj fm’ -1)) * (
∏

fj∈P2. fj^(multiplicity
fj fm’)))"
(is ?u’)
proof -

define p where "p = CHAR(’e)"
— Here we import the lemmas on the factorization of polynomials over a finite

field
interpret perfect_field_poly_factorization "TYPE(’e)" f p
proof

show "degree f 6= 0" using assms by auto

17

qed (auto simp add: p_def)

have "u =(
∏

fj∈fac_set. let ej = ex fj in (if p dvd ej then fj ^ ej
else fj ^(ej-1)))"

if "pderiv fm = 0"
proof -

have "u = fm" unfolding u_def ‹pderiv fm = 0› using fm_def that by
auto

moreover have "fm = (
∏

fj∈fac_set. let ej = ex fj in (if p dvd ej
then fj ^ ej else

fj ^(ej-1)))"
using pderiv0_p_dvd_count[OF _ that] unfolding Let_def f_fac prod_mset_multiplicity
by (intro prod.cong) (simp add:fac_set_def fac_def, auto)

ultimately show ?thesis by auto
qed

moreover have "u =(
∏

fj∈fac_set. let ej = ex fj in (if p dvd ej then
fj ^ ej else fj ^(ej-1)))"

if "pderiv fm 6= 0"
unfolding u_def fm_def[symmetric] proof (subst gcd_eq_factorial’, goal_cases)

case 3
let ?prod_pow = "(

∏
p∈prime_factors fm ∩ prime_factors (pderiv fm).

p ^ min (multiplicity p fm) (multiplicity p (pderiv fm)))"
have norm: "normalize ?prod_pow = ?prod_pow" by (intro normalize_prod_monics)

(metis Int_iff dvd_0_left_iff in_prime_factors_iff monic_normalize
normalize_prime)

have subset: "prime_factors fm ∩ prime_factors (pderiv fm) ⊆ fac_set"

unfolding fac_set_def by auto
show ?case unfolding norm proof (subst prod.mono_neutral_left[OF

_ subset], goal_cases)
case 2
have "i ∈# prime_factorization (pderiv fm)" if "i ∈ fac_set" "ei

= count fac i"
"i ^ min ei (multiplicity i (pderiv fm)) 6= 1" for i ei

proof (intro prime_factorsI)
have "min ei (multiplicity i (pderiv fm)) 6= 0" using that(3)

by (metis power_0)
then have "multiplicity i (pderiv fm) ≥ 1" by simp
then show "i dvd pderiv fm"

using not_dvd_imp_multiplicity_0 by fastforce
show "pderiv fm 6= 0" "prime i" using ‹pderiv fm 6= 0› ‹i ∈ fac_set›

unfolding fac_set_def by auto
qed
then show ?case using mult_fm unfolding fac_set_def Let_def us-

ing ex_def by fastforce
next

case 3

18

have "x ^ min (multiplicity x fm) (multiplicity x (pderiv fm)) =
x ^ multiplicity x fm"

if "x ∈ fac_set" "p dvd multiplicity x fm" for x
using ‹pderiv fm 6= 0› ex_def mult_deriv that(1) that(2) by fastforce

moreover have "x ^ min (multiplicity x fm) (multiplicity x (pderiv
fm)) =

x ^ (multiplicity x fm - Suc 0)" if "x ∈ fac_set" "¬ p dvd multiplicity
x fm" for x

using P1_def ‹pderiv fm 6= 0› ex_def mult_deriv1 that(1) that(2)
by auto

ultimately show ?case by (intro prod.cong, simp, unfold Let_def,
auto simp add: ex_def mult_deriv[OF _ ‹pderiv fm 6= 0›])

qed (auto simp add: fac_set_def)
qed (auto simp add: fm_nonzero that)

ultimately have u: "u =(
∏

fj∈fac_set. let ej = ex fj in (if p dvd ej
then fj ^ ej else fj ^(ej-1)))"

by blast
then have u’: "u = (

∏
fj∈P1. fj^(ex fj -1)) * (

∏
fj∈P2. fj^(ex fj))"

unfolding Let_def by (smt (verit) P1_def P2_def P1_P2_intersect fac_set_P1_P2

finites(2) finites(3) mem_Collect_eq prod.cong prod.union_disjoint)

show ?u using u unfolding ex_def fm_def fac_set_def unfolding Let_def
p_def by auto

show ?u’ using u’ unfolding local.P1_def local.P2_def
unfolding p_def ex_def fm_def Let_def fac_set_def by auto

qed

Continuing our calculations, we get:

v =
∏

fi∈P1

fi

Therefore, v is already square-free and v’s prime factors are exactly P1.
lemma v_characterization:
assumes "ERF_step f = Some (v,z)"
shows "v = (let fm = normalize f in fm div (gcd fm (pderiv fm)))" (is
?a)
and "v =

∏
{x∈prime_factors (normalize f). ¬ CHAR(’e) dvd multiplicity

x (normalize f)}" (is ?b)
and "prime_factors v = {x∈prime_factors (normalize f). ¬ CHAR(’e) dvd
multiplicity x (normalize f)}"(is ?c)
and "squarefree v"(is ?d)
proof -

define p where "p = CHAR(’e)"
have [simp]: "degree f 6= 0" using assms unfolding ERF_step_def by

(metis not_None_eq)

19

interpret perfect_field_poly_factorization "TYPE(’e)" f p
proof (unfold_locales)

show "p = CHAR(’e)" by (rule p_def)
show "degree f 6= 0" by auto

qed

define u where "u = gcd fm (pderiv fm)"
have u_def’: "u = gcd (normalize f) (pderiv (normalize f))" unfold-

ing u_def fm_def by auto
have u: "u =(

∏
fj∈fac_set. let ej = ex fj in (if p dvd ej then fj

^ ej else fj ^(ej-1)))"
using u_characterization[OF ‹degree f 6= 0›] u_def
unfolding fm_def Let_def fac_set_def ex_def p_def
by blast

have u’: "u = (
∏

fj∈P1. fj^(ex fj -1)) * (
∏

fj∈P2. fj^(ex fj))"
using u_characterization(2)[OF ‹degree f 6= 0› u_def’] unfolding fm_def[symmetric]

Let_def
fac_set_def[symmetric] ex_def[symmetric] p_def[symmetric]

using P1_def P2_def ex_def by presburger

have v_def: "v = fm div u" unfolding fm_def u_def using assms unfold-
ing ERF_step_def

by (auto split: if_splits simp add: Let_def)
then show ?a unfolding u_def fm_def Let_def by auto

have v: "v =
∏

P1"
proof -

have "v = ((
∏

fj∈P1. fj^(ex fj)) * (
∏

fj∈P2. fj^(ex fj))) div u"

unfolding v_def fm_P1_P2 by auto
also have " . . . = (

∏
fj∈P1. fj^(ex fj)) div (

∏
fj∈P1. fj^(ex fj-1))"

unfolding u Let_def
by (metis (no_types, lifting) fm_nonzero div_div_div_same dvd_triv_right

fm_P1_P2 mult_not_zero
nonzero_mult_div_cancel_right semiring_gcd_class.gcd_dvd1 u u’ u_def)

also have " . . . =
∏

P1"
proof -

have *: "(
∏

fj∈P1. fj^(ex fj)) = (
∏

P1) * (
∏

fj∈P1. fj^(ex fj-1))"
by (smt P1_def dvd_0_right mem_Collect_eq power_eq_if prod.cong

prod.distrib)
show ?thesis unfolding * by auto

qed
finally show ?thesis by auto

qed
then show ?b unfolding P1_def fac_set_def fm_def ex_def unfolding p_def

by auto

have prime_factors_v: "prime_factors v = P1" unfolding v

20

proof (subst prime_factors_prod[OF finites(2)], goal_cases)
case 1
then show ?case using fac_set_P1_P2 nonzero by blast

next
case 2
have prime: "prime x" if "x∈P1" for x using P1_def fac_set_def that

by blast
have "

⋃
(prime_factors ‘ P1) = P1" using prime[THEN prime_prime_factors]

by auto
then show ?case by simp

qed
then show ?c unfolding P1_def fac_set_def ex_def fm_def unfolding p_def

by auto

show "squarefree v" proof (subst squarefree_factorial_semiring’, safe,
goal_cases)

case (2 p)
have "0 /∈ (λx. x) ‘ P1" using prime_factors_v P1_prime_elem by fastforce
moreover have "prime_elem p" using "2" in_prime_factors_imp_prime

by blast
moreover have "sum (multiplicity p) P1 = 1"

by (metis "2" finites(2) calculation(2) in_prime_factors_imp_prime
multiplicity_prime

prime_factors_v prime_multiplicity_other sum_eq_1_iff)
ultimately show ?case using 2 unfolding prime_factors_v unfolding

v
by (subst prime_elem_multiplicity_prod_distrib) auto

qed (simp add: v P1_def)
qed

For the definition of w, we only want to get the prime factors in P2. There-
fore, we kick out all prime factors in P1 from f by calculating this gcd.

gcd(u, vdeg f) =
∏

fi∈P1

fei−1
i

lemma gcd_u_v:
assumes "ERF_step f = Some (v,z)"
shows "let fm = normalize f; u = gcd fm (pderiv fm);
P1 = {x∈prime_factors fm. ¬ CHAR(’e) dvd multiplicity x fm} in

gcd u (v^(degree f)) = (
∏

fj∈P1. fj ^(multiplicity fj fm -1))"
proof -

define p where "p = CHAR(’e)"
have [simp]: "degree f 6= 0" using assms unfolding ERF_step_def by

(metis not_None_eq)

— We import the lemmas on factorization, the characterizations of u and v
interpret perfect_field_poly_factorization "TYPE(’e)" f p
proof

21

show "p = CHAR(’e)" by (rule p_def)
show "degree f 6= 0" by auto

qed

define u where "u = gcd (normalize f) (pderiv (normalize f))"
have u’: "u = (

∏
fj∈P1. fj^(ex fj -1)) * (

∏
fj∈P2. fj^(ex fj))"

using u_characterization(2)[OF ‹degree f 6= 0› u_def] unfolding fm_def[symmetric]
Let_def

fac_set_def[symmetric] ex_def[symmetric] p_def[symmetric]
using P1_def P2_def ex_def by presburger

have v: "v =
∏

P1" using v_characterization(2)[OF assms] unfolding
P1_def fac_set_def fm_def ex_def

using p_def by auto
have prime_factors_v: "prime_factors v = P1" using v_characterization(3)[OF

assms]
unfolding P1_def fac_set_def ex_def fm_def using p_def by auto

have v_def: "v = fm div u" unfolding fm_def u_def using assms unfold-
ing ERF_step_def

by (auto split: if_splits simp add: Let_def)

have "gcd u (v^(degree f)) = (
∏

fj∈P1. fj ^(multiplicity fj fm -1))"
unfolding u’ v

proof (subst gcd_mult_left_right_cancel, goal_cases)
case 1
then show ?case by (simp add: P1_P2_coprime prod_coprime_left)

next
case 2
have nonzero1: "(

∏
fj∈P1. fj ^ (ex fj - 1)) 6= 0" using ex_def by

auto
have nonzero2: "

∏
P1 ^ (degree f) 6= 0" using prime_factors_v v v_def

by fastforce
have null: "0 /∈ (λfj. fj ^ (ex fj - Suc 0)) ‘ P1" using prime_factors_v

nonzero1 by force
have null’: "0 /∈ (λx. x) ‘ P1" using prime_factors_v P1_irreducible

by blast
have P1: "prime_factors (

∏
fj∈P1. fj ^ (ex fj - Suc 0)) ∩ prime_factors

(
∏

P1 ^ (degree f)) =
{x∈P1. ex x > 1}"

proof (subst prime_factors_prod[OF finites(2) null],
subst prime_factors_power[OF deg_f_gr_0],
subst prime_factors_prod[OF finites(2) null’],
unfold comp_def, safe, goal_cases)

case (1 x xa xb) then show ?case by (metis dvd_trans in_prime_factors_iff
prime_factors_v)

next
case (2 x xa xb)
then have "x = xa"

by (metis in_prime_factors_iff prime_dvd_power prime_factors_v
primes_dvd_imp_eq)

22

then have "x ∈# prime_factorization (x ^ (ex x - 1))" using 2 by
auto

then show ?case
by (metis gr0I in_prime_factors_iff not_prime_unit power_0 zero_less_diff)

next
case (3 x) then show ?case
by (smt (verit) One_nat_def Totient.prime_factors_power dvd_refl

image_ident
in_prime_factors_iff mem_simps(8) null’ prime_factors_v zero_less_diff)

next
case (4 x) then show ?case
by (metis dvd_refl in_prime_factors_iff mem_simps(8) not_prime_0

prime_factors_v)
qed
have n: "ex fj ≤ degree f" if "fj∈P1" for fj
proof -

have "fj 6= 0" using that unfolding P1_def by auto
have "degree (fj ^ multiplicity fj fm) ≤ degree f"

using divides_degree[OF multiplicity_dvd] fm_nonzero
by (subst degree_normalize[of f, symmetric], unfold fm_def[symmetric])

auto
then have "degree fj * ex fj ≤ degree f" by (subst degree_power_eq[OF

‹fj 6=0›, symmetric],
unfold ex_def)

then show ?thesis
by (metis Missing_Polynomial.is_unit_field_poly ‹fj 6= 0› bot_nat_0.not_eq_extremum

dual_order.trans dvd_imp_le dvd_triv_right empty_iff in_prime_factors_iff

linordered_semiring_strict_class.mult_pos_pos prime_factorization_1
prime_factors_v

semiring_norm(160) set_mset_empty that)
qed
then have min: "min (ex x - Suc 0) (degree f) = ex x -1" if "x∈P1"

for x using n[OF that] by auto
have mult1: "multiplicity g (

∏
fj∈P1. fj ^ (ex fj - Suc 0)) = ex

g -1" if "g∈P1" for g
proof -

have "prime_elem g" using in_prime_factors_imp_prime prime_factors_v
that by blast

have "multiplicity g (
∏

fj∈P1. fj ^ (ex fj - Suc 0)) =
multiplicity g (g^(ex g -1) * (

∏
fj∈P1-{g}. fj ^ (ex fj -

Suc 0)))"
by (subst prod.remove[OF finites(2) ‹g∈P1›], auto)

also have " . . . = multiplicity g ((
∏

fj∈P1-{g}. fj ^ (ex fj - Suc
0)) * g^(ex g -1))"

by (auto simp add: algebra_simps)
also have " . . . = multiplicity g (g^(ex g -1))"

23

proof (intro multiplicity_prime_elem_times_other[OF ‹prime_elem
g›], rule ccontr, safe)

assume ass: "g dvd (
∏

fj∈P1 - {g}. fj ^ (ex fj - Suc 0))"
have "irreducible g" using ‹prime_elem g› by blast
obtain a where "a∈P1-{g}" "g dvd a ^ (ex a -1)"

using irreducible_dvd_prod[OF ‹irreducible g› ass]
by (metis dvd_1_left nat_dvd_1_iff_1)

then have "g dvd a" by (meson ‹prime_elem g› prime_elem_dvd_power)
then show False
by (metis DiffD1 DiffD2 ‹a ∈ P1 - {g}› in_prime_factors_imp_prime

insertI1
prime_factors_v primes_dvd_imp_eq that)

qed
also have " . . . = ex g -1" by (metis image_ident in_prime_factors_imp_prime

multiplicity_same_power not_prime_unit null’ prime_factors_v that)
finally show ?thesis by blast

qed
have mult2: "multiplicity g (

∏
P1 ^ (degree f)) = (degree f)" if "g∈P1"

for g
proof -

have "
∏

P1 6=0" unfolding P1_def
using P1_def in_prime_factors_iff prime_factors_v that v by simp
have "prime_elem g" using in_prime_factors_imp_prime prime_factors_v

that by blast
have "multiplicity g (

∏
P1 ^ (degree f)) = (degree f) * (multiplicity

g (
∏

P1))"
by (subst prime_elem_multiplicity_power_distrib[OF ‹prime_elem

g› ‹
∏

P1 6=0›], auto)
also have " . . . = (degree f) * multiplicity g (g *

∏
(P1-{g}))" by

(metis finites(2) prod.remove that)
also have " . . . = (degree f) * multiplicity g (

∏
(P1-{g}) * g)" by

(auto simp add: algebra_simps)
also have " . . . = (degree f)"
proof (subst multiplicity_prime_elem_times_other[OF ‹prime_elem

g›])
show "¬ g dvd

∏
(P1 - {g})" by (metis DiffD1 DiffD2 ‹prime_elem

g›
as_ufd.prime_elem_iff_irreducible in_prime_factors_imp_prime

irreducible_dvd_prod
prime_factors_v primes_dvd_imp_eq singletonI that)

show "(degree f) * multiplicity g g = (degree f)"
by (auto simp add: multiplicity_prime[OF ‹prime_elem g›])

qed
finally show ?thesis by blast

qed
have split: "(

∏
x∈{x ∈ P1. Suc 0 < ex x}. x ^ (ex x - Suc 0)) =

(
∏

fj∈P1. fj ^ (ex fj - Suc 0))"
proof -

24

have *: "ex x 6= 0" if "x∈P1" for x by (metis P1_ex_nonzero of_nat_0
that)

have "Suc 0 < ex x" if "x∈P1" "ex x 6= Suc 0" for x using *[OF that(1)]
that(2) by auto

then have union: "P1 = {x∈P1. 1 < ex x} ∪ {x∈P1. ex x = 1}" by
auto

show ?thesis by (subst (2) union, subst prod.union_disjoint) auto

qed
show ?case by (subst gcd_eq_factorial’[OF nonzero1 nonzero2],subst

normalize_prod_monics)
(auto simp add: P1 mult1 mult2 min normalize_prod_monics split,

auto simp add: ex_def)
qed
then show ?thesis unfolding Let_def u_def P1_def fm_def ex_def fac_set_def

using p_def by auto
qed

Finally, we can calculate

w =
∏

fi∈P2

f
p·(ei/p)
i

and
z = p
√
w =

∏
fi∈P2

f
ei/p
i

Now, we can show the correctness of the local.ERF_step function. These
properties comprise:

• prime factors of f are either in v or in z

• v is already square-free

• z is non-zero and the p-th power of z divides f (important for the
termination of the ERF)

lemma ERF_step_correct:
assumes "ERF_step f = Some (v, z)"
shows "radical f = v * radical z"

"squarefree v"
"z ^ CHAR(’e) dvd f"
"z 6=0"
"CHAR(’e) = 0 =⇒ z = 1"

proof -
define p where "p = CHAR(’e)"

have [simp]: "degree f 6= 0" using assms unfolding ERF_step_def by
(metis not_None_eq)

25

interpret perfect_field_poly_factorization "TYPE(’e)" f p
proof (unfold_locales)

show "p = CHAR(’e)" by (rule p_def)
show "degree f 6= 0" by auto

qed

define u where "u = gcd fm (pderiv fm)"
define n where "n = degree f"
define w where "w = u div (gcd u (v^n))"
have u_def’: "u = gcd (normalize f) (pderiv (normalize f))" unfold-

ing u_def fm_def by auto

have u: "u =(
∏

fj∈fac_set. let ej = ex fj in (if p dvd ej then fj
^ ej else fj ^(ej-1)))"

using u_characterization[OF ‹degree f 6= 0›] u_def
unfolding fm_def Let_def fac_set_def ex_def p_def
by blast

have u’: "u = (
∏

fj∈P1. fj^(ex fj -1)) * (
∏

fj∈P2. fj^(ex fj))"
using u_characterization(2)[OF ‹degree f 6= 0› u_def’] unfolding fm_def[symmetric]

Let_def
fac_set_def[symmetric] ex_def[symmetric] p_def[symmetric]

using P1_def P2_def ex_def by presburger

have v_def: "v = fm div u" unfolding fm_def u_def using assms unfold-
ing ERF_step_def

by (auto split: if_splits simp add: Let_def)
have v: "v =

∏
P1" using v_characterization(2)[OF assms] unfolding

P1_def fac_set_def fm_def ex_def
using p_def by auto

have prime_factors_v: "prime_factors v = P1"
using v_characterization(3)[OF assms] unfolding P1_def fac_set_def

fm_def ex_def
using p_def by auto

show "squarefree v" by (rule v_characterization(4)[OF assms])

have gcd_u_v: "gcd u (v^n) = (
∏

fj∈P1. fj ^(ex fj -1))" using gcd_u_v[OF
assms]

unfolding Let_def u_def fm_def P1_def fac_set_def ex_def using p_def
n_def by force

have w: "w = (
∏

fj∈P2. fj^(ex fj))" unfolding w_def gcd_u_v unfold-
ing u’

by (metis (no_types, lifting) fm_nonzero gcd_eq_0_iff gcd_u_v nonzero_mult_div_cancel_left
u_def)

26

have w_power: "w = (
∏

fj∈P2. fj^(ex fj div p))^p"
proof -

have w: "w = (
∏

fj∈P2. fj^((ex fj div p)*p))" unfolding w P2_def
by auto

show ?thesis unfolding w by (auto simp add: power_mult prod_power_distrib[symmetric])
qed

have z_def: "z = inv_frob_poly w"
unfolding p_def w_def u_def fm_def n_def using assms unfolding ERF_step_def
by (auto simp add: Let_def split: if_splits)

show "CHAR(’e) = 0 =⇒ z = 1"
by (auto simp: z_def p_def w_power)

have z: "z = (
∏

x∈P2. x ^(ex x div p))"
by (cases "p = 0") (auto simp: z_def p_def w_power inv_frob_poly_power’)

have zw: "z^CHAR(’e) = w" unfolding w_power z p_def[symmetric] by auto

show "z ^ CHAR(’e) dvd f" unfolding zw w
by (metis (full_types) dvd_mult_right dvd_normalize_iff dvd_refl fm_P1_P2

fm_def)

show "z 6=0" by (simp add: fac_set_P1_P2 z)

have prime_factors_z: "
∏

(prime_factors z) =
∏

P2" unfolding z
proof (subst prime_factors_prod)

show "finite P2" by auto
show "0 /∈ (λx. x ^ (ex x div p)) ‘ P2" using fac_set_P1_P2 by force
have pos: "0 < ex x div p" if "x∈P2" for x
by (metis (no_types, lifting) P2_def count_prime_factorization_prime

dvd_div_eq_0_iff
ex_def fac_set_def gr0I in_prime_factors_imp_prime mem_Collect_eq

not_in_iff that)
have "prime_factors (x ^ (ex x div p)) = {x}" if "x∈P2" for x

unfolding prime_factors_power[OF pos[OF that]] using that by (simp
add: prime_prime_factors)

then have *: "(
⋃

x∈P2. prime_factors (x ^ (ex x div p))) = P2" by
auto

show "
∏

(
⋃

((prime_factors ◦ (λx. x ^ (ex x div p))) ‘ P2)) =
∏

P2"

unfolding comp_def * by auto
qed

show "radical f = v * radical z"
proof -

have factors: "prime_factors f = fac_set" unfolding fac_set_def fm_def
by auto

27

have "
∏

(prime_factors f) =
∏

P1 *
∏

P2" unfolding factors fac_set_P1_P2

by (subst prod.union_disjoint, auto)
also have " . . . = v *

∏
(prime_factors z)" unfolding v using ‹z 6=0›

prime_factors_z by auto
finally have "

∏
(prime_factors f) = v *

∏
(prime_factors z)" by auto

then show ?thesis unfolding radical_def using ‹z 6=0› f_nonzero by
auto

qed

qed

If the algorithm stops, then the input was already square-free or zero.
lemma ERF_step_correct_None:

assumes "ERF_step f = None"
shows "degree f = 0 ∨ radical f = normalize f"

"f 6=0 =⇒ squarefree f"
proof -

define p where "p = CHAR(’e)"
define fm’ where "fm’ = normalize f"
define u where "u = gcd fm’ (pderiv fm’)"
have or: "degree f = 0 ∨ u = 1" using assms unfolding ERF_step_def

by (smt (verit, best) option.simps(3) u_def fm’_def)
have rad: "radical f = normalize f" if "u =1" "degree f 6=0"
proof -

interpret perfect_field_poly_factorization "TYPE(’e)" f p
proof (unfold_locales)

show "p = CHAR(’e)" by (rule p_def)
show "degree f 6= 0" using that(2) by auto

qed
have u_def’: "u = gcd (normalize f) (pderiv (normalize f))" unfold-

ing u_def fm’_def by auto
have u’: "u = (

∏
fj∈P1. fj^(ex fj -1)) * (

∏
fj∈P2. fj^(ex fj))"

using u_characterization(2)[OF ‹degree f 6= 0› u_def’] unfolding
fm_def[symmetric] Let_def

fac_set_def[symmetric] ex_def[symmetric] p_def[symmetric]
using P1_def P2_def ex_def by presburger

have P2_1: "(
∏

fj∈P2. fj^(ex fj)) = 1" using u’ ‹u=1›
by (smt (verit, best) class_cring.finprod_all1 dvd_def dvd_mult2 dvd_prod

dvd_refl
dvd_triv_right ex_power_not_dvd perfect_field_poly_factorization.P2_def

perfect_field_poly_factorization_axioms finites(3) idom_class.unit_imp_dvd
mem_Collect_eq)

then have "P2 = {}"
by (smt (verit, ccfv_threshold) Collect_cong Collect_mem_eq UnCI dvd_prodI

empty_iff
ex_power_not_dvd fac_set_P1_P2 finites(3) idom_class.unit_imp_dvd)

28

moreover have mult: "multiplicity fj fm = 1" if "fj∈P1" for fj
by (metis (no_types, lifting) One_nat_def P1_ex_power_not_dvd Suc_pred

P2_1 ‹u = 1› algebraic_semidom_class.unit_imp_dvd dvd_prod dvd_refl

perfect_field_poly_factorization.ex_def perfect_field_poly_factorization_axioms
finites(2)

gr0I is_unit_power_iff mult_1_right that u’)
ultimately have "fm =

∏
P1" unfolding fm_P1_P2 ‹(

∏
fj∈P2. fj ^ ex

fj) = 1› unfolding ex_def
by (subst mult_1_right, intro prod.cong, simp) (auto simp add: mult)

also have " . . . = radical f"
by (metis P1_P2_intersect ‹P2 = {}› f_nonzero fac_set_P1_P2 fac_set_def

finites(2) finites(3)
fm_def one_neq_zero prime_factorization_1 prime_factorization_normalize

prod.union_disjoint
radical_1 radical_def set_mset_empty verit_prod_simplify(2))

finally show ?thesis unfolding fm_def by auto
qed
show *: "degree f = 0 ∨ radical f = normalize f" using or rad by auto
show "squarefree f" if "f 6= 0"
proof -

from ‹f 6= 0› and * have "radical f = normalize f"
by (metis Missing_Polynomial_Factorial.is_unit_field_poly normalize_1_iff

radical_unit)
thus "squarefree f"

using ‹f 6= 0› squarefree_normalize squarefree_radical by metis
qed

qed

The degree of z is less than the degree of f . This guarantees the termination
of ERF.
lemma degree_ERF_step_less [termination_simp]:

assumes "ERF_step f = Some (v, z)"
shows "degree z < degree f"

proof -
define u where "u = gcd f (pderiv (normalize f))"
define w where "w = u div gcd u (v ^ degree f)"
from assms have "degree f > 0"

by (auto split: if_splits simp: Let_def u_def w_def ERF_step_def)

have "z 6= 0"
using assms ERF_step_correct(4) by blast

have le: "degree z * CHAR(’e) ≤ degree f"
using divides_degree[OF ERF_step_correct(3)[OF assms]] ‹degree f >

0›
unfolding degree_power_eq[OF ‹z 6= 0›] by auto

29

show ?thesis
proof (cases "CHAR(’e) = 0")

case True
thus ?thesis

using ERF_step_correct(5)[OF assms] ‹degree f > 0› by auto
next

case False
hence "CHAR(’e) > 1"

by (metis CHAR_nonzero less_one nat_neq_iff of_nat_1 of_nat_CHAR
zero_neq_one)

show ?thesis
proof (cases "degree z = 0")

case False
hence "degree z * 1 < degree z * CHAR(’e)"

by (intro mult_less_mono2) (use ‹CHAR(’e) > 1› in auto)
also have " . . . ≤ degree f"

by (rule le)
finally show ?thesis

by simp
qed (use ‹degree f > 0› in auto)

qed
qed

lemma is_measure_degree [measure_function]: "is_measure Polynomial.degree"
by (rule is_measure_trivial)

Finally, we state the full ERF algorithm. We show correctness as well.
fun ERF ::"’e poly ⇒ ’e poly list" where

"ERF f = (
case ERF_step f of

None ⇒ if degree f = 0 then [] else [normalize f]
| Some (v, z) ⇒ v # ERF z)"

lemmas [simp del] = ERF.simps

lemma ERF_0 [simp]: "ERF 0 = []"
by (auto simp add: ERF.simps)

lemma ERF_const [simp]:
assumes "degree f = 0"
shows "ERF f = []"
by (auto simp add: ERF_step_const[OF assms] assms ERF.simps)

theorem ERF_correct:
assumes "f 6= 0"
shows "prod_list (ERF f) = radical f"

"g ∈ set (ERF f) =⇒ squarefree g"
proof -

30

show "prod_list (ERF f) = radical f"
using assms proof (induction f rule: ERF.induct)
case (1 f) then show ?case proof (cases "ERF_step f")

case None
have "prod_list (ERF f) = (if degree f = 0 then 1 else normalize

f)"
using None by (auto simp: ERF.simps)

moreover have "radical f = 1" if "degree f = 0" using radical_degree0[OF
that ‹f 6=0›]

by simp
moreover have "radical f = normalize f" if "degree f 6= 0"

using ERF_step_correct_None[OF None] that by auto
ultimately show ?thesis by auto

next
case (Some a)
obtain v z where vz: "(v,z) = a" by (metis surj_pair)
then have Some’: "ERF_step f = Some (v,z)" using Some by auto
have "prod_list (ERF f) = v * prod_list(ERF z)"

by (auto simp add: Some’ ERF.simps)
also have " . . . = v * radical z"

by (subst 1)(auto simp add: Some vz[symmetric] ERF_step_correct(4)[OF
Some’])

also have " . . . = radical f" using ERF_step_correct(1)[OF Some’,
symmetric] by auto

finally show ?thesis by auto
qed

qed

show "g ∈ set (ERF f) =⇒ squarefree g"
using assms proof (induction f rule: ERF.induct)
case (1 f) then show ?case proof (cases "ERF_step f")

case None
have "set (ERF f) = (if degree f = 0 then {} else {normalize f})"

using None by (auto simp: ERF.simps)
moreover have "degree f 6= 0" by (metis "1.prems"(1) calculation

emptyE)
moreover have "squarefree (normalize f)" if "degree f 6= 0"

using ERF_step_correct_None(2)[OF None] that squarefree_normalize

"1"(3) by blast
ultimately show ?thesis using 1 by auto

next
case (Some a)
obtain v z where vz: "(v,z) = a" by (metis surj_pair)
then have Some’: "ERF_step f = Some (v,z)" using Some by auto
have "set (ERF f) = {v} ∪ set (ERF z)"

by (auto simp add: Some’ ERF.simps)
moreover have "squarefree g" if "g∈{v}" using ERF_step_correct(2)[OF

Some’]

31

that by auto
moreover have "squarefree g" if "g∈set (ERF z)"

using 1 ERF_step_correct(4)[OF Some’] that Some’ by blast
ultimately show ?thesis using 1(2) by blast

qed
qed

qed

It is also easy to see that any two polynomials in the list returned by
local.ERF are coprime.
lemma ERF_pairwise_coprime: "sorted_wrt coprime (ERF p)"
proof (cases "p = 0")

case [simp]: False
show ?thesis

unfolding sorted_wrt_iff_nth_less
proof safe

fix i j :: nat
assume ij: "i < j" "j < length (ERF p)"
have "(

∏
k∈{i,j}. ERF p ! k) dvd (

∏
k<length (ERF p). ERF p ! k)"

by (rule prod_dvd_prod_subset) (use ij in auto)
also have " . . . = prod_list (ERF p)"

by (simp add: prod_list_prod_nth atLeast0LessThan)
also have " . . . = radical p"

by (simp add: ERF_correct)
finally have "ERF p ! i * ERF p ! j dvd radical p"

using ij by simp
hence "squarefree (ERF p ! i * ERF p ! j)"

using False squarefree_mono by blast
thus "coprime (ERF p ! i) (ERF p ! j)"

by blast
qed

qed auto

We can also compute the radical of a polynomial with the ERF algorithm
by simply multiplying together the individual parts we found.
lemma radical_code [code_unfold]: "radical f = (if f = 0 then 0 else
prod_list (ERF f))"

using ERF_correct(1)[of f] by simp

With this, the ERF algorithm can also serve as an executable test for the
square-freeness of a polynomial (especially over a finite field):
lemma squarefree_poly_code [code_unfold]:

fixes p :: "’a :: field_gcd poly"
shows "squarefree p ←→ p 6= 0 ∧ Polynomial.degree p = Polynomial.degree

(radical p)"
proof

assume *: "p 6= 0 ∧ Polynomial.degree p = Polynomial.degree (radical
p)"

32

have "p dvd radical p"
by (rule dvd_euclidean_size_eq_imp_dvd) (use * in ‹auto simp: euclidean_size_poly_def›)

thus "squarefree p"
using * squarefree_mono squarefree_radical by blast

next
assume "squarefree p"
have "Polynomial.degree (radical p) = Polynomial.degree (normalize (radical

p))"
by auto

also have "normalize (radical p) = normalize p"
using ‹squarefree p› radical_of_squarefree by blast

finally show "p 6= 0 ∧ Polynomial.degree p = Polynomial.degree (radical
p)"

using ‹squarefree p› by auto
qed

end

end

theory ERF_Code_Fixes
imports Berlekamp_Zassenhaus.Finite_Field
Perfect_Fields.Perfect_Fields

begin

3 Code Generation for ERF and Example
lemma inverse_mod_ring_altdef:

fixes x :: "’p :: prime_card mod_ring"
defines "x’ ≡ Rep_mod_ring x"
shows "Rep_mod_ring (inverse x) = fst (bezout_coefficients x’ CARD(’p))

mod CARD(’p)"
proof (cases "x’ = 0")

case False
define y where "y = fst (bezout_coefficients x’ CARD(’p))"
define z where "z = fst (bezout_coefficients x’ CARD(’p))"
define p where "p = CARD(’p)"
from False have "coprime x’ p"

by (metis Rep_mod_ring_mod algebraic_semidom_class.coprime_commute

dvd_imp_mod_0 prime_card_int prime_imp_coprime p_def assms)
have "[x’ * (y mod p) = x’ * y] (mod p)"

by (intro cong_mult cong_refl) auto
also have "x’ * y = x’ * y + 0"

by simp
also have "[x’ * y + 0 = x’ * y + z * p] (mod p)"

by (intro cong_add cong_refl) (auto simp: cong_def)
also have "[x’ * y + z * p = gcd x’ p] (mod p)"

by (metis bezout_coefficients_fst_snd cong_def mod_mult_self2 mult.commute

33

y_def z_def p_def)
also have "gcd x’ p = 1"

using ‹coprime x’ p› by auto
finally have "(x’ * (y mod p)) mod p = 1"

by (simp add: cong_def p_def)
thus ?thesis

unfolding p_def y_def x’_def
by (metis Rep_mod_ring_inverse inverse_unique of_int_mod_ring.rep_eq

one_mod_ring.rep_eq times_mod_ring.rep_eq)
next

case True
hence "x = 0"

by (metis Rep_mod_ring_inverse x’_def zero_mod_ring_def)
thus ?thesis unfolding True

by (auto simp: x’_def bezout_coefficients_left_0 inverse_mod_ring_def
zero_mod_ring.rep_eq)
qed

lemmas inverse_mod_ring_code’ [code] =
inverse_mod_ring_altdef [where ’p = "’p :: {prime_card, card_UNIV}"]

lemma divide_mod_ring_code’ [code]:
"x / (y :: ’p :: {prime_card, card_UNIV} mod_ring) = x * inverse y"
by (fact divide_inverse)

instantiation mod_ring :: ("{finite, card_UNIV}") card_UNIV
begin
definition "card_UNIV = Phantom(’a mod_ring) (of_phantom (card_UNIV ::
’a card_UNIV))"
definition "finite_UNIV = Phantom(’a mod_ring) True"
instance

by intro_classes
(simp_all add: finite_UNIV_mod_ring_def finite_UNIV card_UNIV_mod_ring_def

card_UNIV)
end

lemmas of_int_mod_ring_code [code] =
of_int_mod_ring.rep_eq[where ?’a = "’a :: {finite, card_UNIV}"]

lemmas plus_mod_ring_code [code] =
plus_mod_ring.rep_eq[where ?’a = "’a :: {finite, card_UNIV}"]

lemmas minus_mod_ring_code [code] =
minus_mod_ring.rep_eq[where ?’a = "’a :: {finite, card_UNIV}"]

lemmas uminus_mod_ring_code [code] =
uminus_mod_ring.rep_eq[where ?’a = "’a :: {finite, card_UNIV}"]

lemmas times_mod_ring_code [code] =

34

times_mod_ring.rep_eq[where ?’a = "’a :: {finite, card_UNIV}"]

lemmas inverse_mod_ring_code [code] =
inverse_mod_ring_def[where ?’a = "’a :: {prime_card, finite, card_UNIV}"]

lemmas divide_mod_ring_code [code] =
divide_mod_ring_def[where ?’a = "’a :: {prime_card, finite, card_UNIV}"]

lemma card_UNIV_code:
"card (UNIV :: ’a :: card_UNIV set) = of_phantom (card_UNIV :: (’a,

nat) phantom)"
by (simp add: card_UNIV)

setup ‹
Code_Preproc.map_pre (fn ctxt =>

ctxt addsimprocs
[Simplifier.make_simproc context

{name = "card_UNIV",
kind = Simproc,
lhss = [term ‹card UNIV›],
proc = fn _ => fn _ => fn ct =>
SOME @{thm card_UNIV_code [THEN eq_reflection]},

identifier = []}])
›

class semiring_char_code = semiring_1 +
fixes semiring_char_code :: "(’a, nat) phantom"
assumes semiring_char_code_correct: "semiring_char_code = Phantom(’a)

CHAR(’a)"

instantiation mod_ring :: ("{finite,nontriv,card_UNIV}") semiring_char_code
begin
definition semiring_char_code_mod_ring :: "(’a mod_ring, nat) phantom"
where

"semiring_char_code_mod_ring = Phantom(’a mod_ring) (of_phantom (card_UNIV
:: (’a, nat) phantom))"
instance

by standard (auto simp: semiring_char_code_mod_ring_def card_UNIV)
end

instantiation poly :: ("{semiring_char_code, comm_semiring_1}") semiring_char_code
begin
definition

"semiring_char_code_poly =
Phantom(’a poly) (of_phantom (semiring_char_code :: (’a, nat) phantom))"

instance
by standard (auto simp: semiring_char_code_poly_def semiring_char_code_correct)

end

35

instantiation fps :: ("{semiring_char_code, comm_semiring_1}") semiring_char_code
begin
definition

"semiring_char_code_fps =
Phantom(’a fps) (of_phantom (semiring_char_code :: (’a, nat) phantom))"

instance
by standard (auto simp: semiring_char_code_fps_def semiring_char_code_correct)

end

instantiation fls :: ("{semiring_char_code, comm_semiring_1}") semiring_char_code
begin
definition

"semiring_char_code_fls =
Phantom(’a fls) (of_phantom (semiring_char_code :: (’a, nat) phantom))"

instance
by standard (auto simp: semiring_char_code_fls_def semiring_char_code_correct)

end

lemma semiring_char_code [code]:
"semiring_char x =

(if x = TYPE(’a :: semiring_char_code) then
of_phantom (semiring_char_code :: (’a, nat) phantom) else
Code.abort STR ’’semiring_char’’ (λ_. semiring_char x))"

by (auto simp: semiring_char_code_correct)

end

theory ERF_Code_Test
imports

"HOL-Library.Code_Target_Numeral"
ERF_Algorithm
ERF_Code_Fixes

begin

hide_const (open) Formal_Power_Series.radical
notation (output) Abs_mod_ring (‹_›)

3.1 Example for the code generation with GF(2)

type_synonym gf2 = "bool mod_ring"

definition x where "x = [:0, 1:]"
definition p :: "gf2 poly"

where "p = x^16 + x^15 + x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4
+ x^2 + x + 1"

36

value "ERF p"
value "radical p"

end

References

[1] M. Eberl and K. Kreuzer. Perfect fields. Archive of Formal Proofs,
November 2023. https://isa-afp.org/entries/Perfect_Fields.html,
Formal proof development.

[2] M. Scott. Factoring polynomials over finite fields, May 2019.
https://carleton.ca/math/wp-content/uploads/
Factoring-Polynomials-over-Finite-Fields_Melissa-Scott.pdf.

[3] R. Thiemann and A. Yamada. Polynomial factorization. Archive of
Formal Proofs, January 2016.
https://isa-afp.org/entries/Polynomial_Factorization.html, Formal
proof development.

37

https://isa-afp.org/entries/Perfect_Fields.html
https://carleton.ca/math/wp-content/uploads/Factoring-Polynomials-over-Finite-Fields_Melissa-Scott.pdf
https://carleton.ca/math/wp-content/uploads/Factoring-Polynomials-over-Finite-Fields_Melissa-Scott.pdf
https://isa-afp.org/entries/Polynomial_Factorization.html

	Auxiliary Lemmas
	Lemmas for the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 radical of polynomials
	More on square-free polynomials

	Elimination of Repeated Factors Algorithm
	Code Generation for ERF and Example
	Example for the code generation with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GF2

