
A Verified Efficient Implementation of the Weighted
Path Order∗

René Thiemann and Elias Wenninger

University of Innsbruck

March 17, 2025

Abstract

The Weighted Path Order (WPO) of Yamada is a powerful tech-
nique for proving termination [3, 4, 5]. In a previous AFP entry [2],
the WPO was defined and properties of WPO have been formally ver-
ified. However, the implementation of WPO was naive, leading to an
exponential runtime in the worst case.

Therefore, in this AFP entry we provide a poly-time implementa-
tion of WPO. The implementation is based on memoization. Since
WPO generalizes the recursive path order (RPO) [1], we also easily
derive an efficient implementation of RPO.

Contents
1 Indexed Terms 2

2 Memoized Functions on Lists 5
2.1 Congruence Rules . 7
2.2 Connection to Original Functions 9

3 An Approximation of WPO 14

4 A Memoized Implementation of WPO 19

5 An Unbounded Variant of RPO 26

6 A Memoized Implementation of RPO 29
∗This research was supported by the Austrian Science Fund (FWF) project I 5943.

1

1 Indexed Terms
We provide a method to index all subterms of a term by numbers.
theory Indexed-Term

imports
First-Order-Terms.Subterm-and-Context

begin

type-synonym index = int
type-synonym (′f , ′v) indexed-term = ((′f × (′f , ′v)term × index), (′v × (′f , ′v)term
× index)) term

fun index-term-aux :: index ⇒ (′f , ′v) term ⇒ index × (′f , ′v) indexed-term
and index-term-aux-list :: index ⇒ (′f , ′v) term list ⇒ index × (′f , ′v) in-

dexed-term list
where

index-term-aux i (Var v) = (i + 1 , Var (v,Var v, i))
| index-term-aux i (Fun f ts) = (case index-term-aux-list i ts of (j, ss) ⇒ (j + 1 ,

Fun (f ,Fun f ts,j) ss))
| index-term-aux-list i [] = (i,[])
| index-term-aux-list i (t # ts) = (case index-term-aux i t of (j,s) ⇒ map-prod

id (Cons s) (index-term-aux-list j ts))

definition index-term :: (′f , ′v) term ⇒ (′f , ′v) indexed-term
where

index-term t = snd (index-term-aux 0 t)

fun unindex :: (′f , ′v) indexed-term ⇒ (′f , ′v) term
where

unindex (Var (v,-)) = Var v
| unindex (Fun (f ,-) ts) = Fun f (map unindex ts)

fun stored :: (′f , ′v) indexed-term ⇒ (′f , ′v) term
where

stored (Var (v,(s,-))) = s
| stored (Fun (f ,(s,-)) ts) = s

fun name-of :: (′a × ′b) ⇒ ′a
where

name-of (a,-) = a

fun index :: (′f , ′v) indexed-term ⇒ index
where

index (Var (-,(-,i))) = i
| index (Fun (-,(-,i)) -) = i

definition index-term-prop f s = (∀ u. s D u −→ f (index u) = Some (unindex
u) ∧ stored u = unindex u)

2

lemma index-term-aux: fixes t :: (′f , ′v)term and ts :: (′f , ′v)term list
shows index-term-aux i t = (j,s) =⇒ unindex s = t ∧ i < j ∧ (∃ f . dom f = {i

..< j} ∧ index-term-prop f s)
and index-term-aux-list i ts = (j,ss) =⇒ map unindex ss = ts ∧ i ≤ j ∧
(∃ f . dom f = {i ..< j} ∧ Ball (set ss) (index-term-prop f))

proof (induct i t and i ts arbitrary: j s and j ss rule: index-term-aux-index-term-aux-list.induct)
case (1 i v)
then show ?case by (auto intro!: exI [of - (λ -. None)(i := Some (Var v))] split:

if-splits simp: index-term-prop-def supteq-var-imp-eq)
next

case (2 i g ts j s)
obtain k ss where rec: index-term-aux-list i ts = (k,ss) by force
from 2 (2)[unfolded index-term-aux.simps rec split]
have j: j = k + 1 and s: s = Fun (g, Fun g ts, k) ss by auto
from 2 (1)[OF rec] obtain f where fss: map unindex ss = ts and

ik: i ≤ k and f : dom f = {i..<k}
∧

s. s ∈ set ss =⇒ index-term-prop f s
by auto

have set: {i..< k + 1} = insert k {i..<k} using ik by auto
define h where h = f (k := Some (Fun g ts))
show ?case unfolding s unindex.simps fss j set index-term-prop-def
proof (intro conjI exI [of - h] refl allI)

show i < k + 1 using ik by simp
show dom h = insert k {i..<k} using ik f (1) unfolding h-def by auto
fix u
show Fun (g, Fun g ts, k) ss D u −→ h (index u) = Some (unindex u) ∧ stored

u = unindex u
proof (cases u = Fun (g, Fun g ts, k) ss)

case True
thus ?thesis by (auto simp: fss h-def index-term-prop-def)

next
case False
show ?thesis
proof (intro impI)

assume Fun (g, Fun g ts, k) ss D u
with False obtain si where si ∈ set ss and si D u

by (metis Fun-supt suptI)
from f (2)[unfolded index-term-prop-def , rule-format, OF this] f (1) ik
show h (index u) = Some (unindex u) ∧ stored u = unindex u unfolding

h-def by auto
qed

qed
qed

next
case (4 i t ts j sss)
obtain k s where rec1 : index-term-aux i t = (k,s) by force
with 4 (3) obtain ss where rec2 : index-term-aux-list k ts = (j,ss) and sss: sss

= s # ss
by (cases index-term-aux-list k ts, auto)

3

from 4 (1)[OF rec1] obtain f where fs: unindex s = t and ik: i < k and f :
dom f = {i..<k}

index-term-prop f s by auto
from 4 (2)[unfolded rec1 , OF refl rec2] obtain g where fss: map unindex ss =

ts and kj: k ≤ j
and g: dom g = {k..<j}

∧
si. si ∈ set ss =⇒ index-term-prop g si

by auto
define h where h = (λ n. if n ∈ {i..<k} then f n else g n)
show ?case unfolding sss list.simps fs fss
proof (intro conjI exI [of - h] refl allI ballI)
have dom h = {i ..< k} ∪ {k ..< j} unfolding h-def using f (1) g(1) by force
also have . . . = {i ..< j} using ik kj by auto
finally show dom h = {i..<j} by auto
show i ≤ j using ik kj by auto
fix si
assume si: si ∈ insert s (set ss)
show index-term-prop h si
proof (cases si = s)

case True
from f show ?thesis unfolding True h-def index-term-prop-def by auto

next
case False
with si have si: si ∈ set ss by auto
have disj: {i..<k} ∩ {k..<j} = {} by auto
from g(1) g(2)[OF si]
show ?thesis unfolding index-term-prop-def h-def using disj

by (metis disjoint-iff domI)
qed

qed
qed auto

lemma index-term-index-unindex: ∃ f . ∀ t. index-term s D t −→ f (index t) =
unindex t ∧ stored t = unindex t
proof −

obtain t i where aux: index-term-aux 0 s = (i,t) by force
from index-term-aux(1)[OF this] show ?thesis unfolding index-term-def aux

index-term-prop-def by force
qed

lemma unindex-index-term[simp]: unindex (index-term s) = s
proof −

obtain t i where aux: index-term-aux 0 s = (i,t) by force
from index-term-aux(1)[OF this] show ?thesis unfolding index-term-def aux

by force
qed

end

4

2 Memoized Functions on Lists
We define memoized version of lexicographic comparison of lists, multiset
comparison of lists, filter on lists, etc.
theory List-Memo-Functions

imports
Indexed-Term
Knuth-Bendix-Order .Lexicographic-Extension
Weighted-Path-Order .Multiset-Extension2-Impl
HOL−Library.Mapping

begin

definition valid-memory :: (′a ⇒ ′b) ⇒ (′i ⇒ ′a) ⇒ (′i, ′b) mapping ⇒ bool
where

valid-memory f ind mem = (∀ i b. Mapping.lookup mem i = Some b −→ f (ind
i) = b)

definition memoize-fun where memoize-fun impl f g ind A =
((∀ x m p m ′. valid-memory f ind m −→ impl m x = (p,m ′) −→ x ∈ A −→

p = f (g x) ∧ valid-memory f ind m ′))

lemma memoize-funD: assumes memoize-fun impl f g ind A
shows valid-memory f ind m =⇒ impl m x = (p,m ′) =⇒ x ∈ A =⇒ p = f (g

x) ∧ valid-memory f ind m ′

using assms unfolding memoize-fun-def by auto

lemma memoize-funI : assumes
∧

m x p m ′. valid-memory f ind m =⇒ impl m
x = (p,m ′) =⇒ x ∈ A =⇒ p = f (g x) ∧ valid-memory f ind m ′

shows memoize-fun impl f g ind A
using assms unfolding memoize-fun-def by auto

lemma memoize-fun-pairI : assumes
∧

m x y p m ′. valid-memory f ind m =⇒
impl m (x,y) = (p,m ′) =⇒ x ∈ A =⇒ y ∈ B =⇒ p = f (g x, h y) ∧ valid-memory
f ind m ′

shows memoize-fun impl f (map-prod g h) ind (A × B)
using assms unfolding memoize-fun-def by auto

lemma memoize-fun-mono: assumes memoize-fun impl f g ind B
and A ⊆ B

shows memoize-fun impl f g ind A
using assms unfolding memoize-fun-def by blast

fun filter-mem :: (′a ⇒ ′b) ⇒ (′m ⇒ ′b ⇒ ′c × ′m) ⇒ (′c ⇒ bool) ⇒ ′m ⇒ ′a
list ⇒ (′a list × ′m)

where
filter-mem pre f post mem [] = ([], mem)

5

| filter-mem pre f post mem (x # xs) = (case f mem (pre x) of
(c,mem ′) ⇒ case filter-mem pre f post mem ′ xs of
(ys, mem ′′) ⇒ (if post c then (x # ys, mem ′′) else (ys, mem ′′)))

fun forall-mem :: (′a ⇒ ′b) ⇒ (′m ⇒ ′b ⇒ ′c × ′m) ⇒ (′c ⇒ bool) ⇒ ′m ⇒ ′a
list ⇒ bool × ′m

where
forall-mem pre f post mem [] = (True, mem)
| forall-mem pre f post mem (x # xs) = (case f mem (pre x) of (c, mem ′)
⇒ if post c then forall-mem pre f post mem ′ xs else (False, mem ′))

fun exists-mem :: (′a ⇒ ′b) ⇒ (′m ⇒ ′b ⇒ (′c × ′m)) ⇒ (′c ⇒ bool) ⇒ ′m ⇒ ′a
list ⇒ (bool × ′m)

where
exists-mem pre f post mem [] = (False, mem)
| exists-mem pre f post mem (x # xs) = (case f mem (pre x) of (c, mem ′)
⇒ if post c then (True, mem ′) else exists-mem pre f post mem ′ xs)

type-synonym term-rel-mem = (index × index, bool × bool) mapping
type-synonym ′a term-rel-mem-type = term-rel-mem ⇒ ′a × ′a ⇒ (bool × bool)
× term-rel-mem

fun lex-ext-unbounded-mem :: ′a term-rel-mem-type ⇒ term-rel-mem ⇒ ′a list ⇒
′a list ⇒ (bool × bool) × term-rel-mem

where lex-ext-unbounded-mem f mem [] [] = ((False, True), mem) |
lex-ext-unbounded-mem f mem (- # -) [] = ((True, True), mem) |
lex-ext-unbounded-mem f mem [] (- # -) = ((False, False), mem) |
lex-ext-unbounded-mem f mem (a # as) (b # bs) =
(let (sns-res, mem-new) = f mem (a,b) in
(case sns-res of
(True, -) ⇒ ((True, True), mem-new)
| (False, True) ⇒ lex-ext-unbounded-mem f mem-new as bs
| (False, False) ⇒ ((False, False), mem-new)
)

)

lemma filter-mem-len: filter-mem pre f post mem xs = (ys,mem ′) =⇒ length ys ≤
length xs

by (induction xs arbitrary: mem ys mem ′; force split: prod.splits if-splits)

lemma filter-mem-len2 : (ys,mem ′) = filter-mem mem pre f post xs =⇒ length ys
≤ length xs

using filter-mem-len[of mem pre f post xs ys mem ′] by auto

lemma filter-mem-set: filter-mem pre f post mem xs = (ys,mem ′) =⇒ set ys ⊆ set
xs

by (induction xs arbitrary: mem ys mem ′, auto split: prod.splits if-splits) blast

function mul-ext-mem :: ′a term-rel-mem-type ⇒ term-rel-mem ⇒ ′a list ⇒ ′a

6

list ⇒ (bool × bool) × term-rel-mem
and mul-ext-dom-mem :: ′a term-rel-mem-type ⇒ term-rel-mem ⇒ ′a list ⇒ ′a

list ⇒ ′a ⇒ ′a list ⇒ (bool × bool) × term-rel-mem
where

mul-ext-mem f mem [] [] = ((False, True), mem)
| mul-ext-mem f mem [] (v # va) = ((False, False), mem)
| mul-ext-mem f mem (v # va) [] = ((True, True), mem)
| mul-ext-mem f mem (v # va) (y # ys) = mul-ext-dom-mem f mem (v # va) []

y ys
| mul-ext-dom-mem f mem [] xs y ys = ((False, False), mem)
| mul-ext-dom-mem f mem (x # xsa) xs y ys =

(case f mem (x,y) of (sns-res, mem-new-1) ⇒
(case sns-res of
(True, -) ⇒ (case

(filter-mem (Pair x) f (λ p. ¬ fst p) mem-new-1 ys)
of (ys-new, mem-new-2) ⇒ case

mul-ext-mem f mem-new-2 (xsa @ xs) ys-new of (tmp-res, mem-new-3)
⇒

if snd tmp-res
then ((True, True), mem-new-3)
else mul-ext-dom-mem f mem-new-3 xsa (x # xs) y ys)

| (False, True) ⇒ (case mul-ext-mem f mem-new-1 (xsa @ xs) ys of
(sns-res-a, mem-new-2) ⇒ case mul-ext-dom-mem f mem-new-2 xsa (x

xs) y ys of
(sns-res-b, mem-new-3) ⇒
(or2 sns-res-a sns-res-b, mem-new-3))

| (False, False) ⇒ mul-ext-dom-mem f mem-new-1 xsa (x # xs) y ys))
by pat-completeness auto

termination by (relation measures [
(λ input. case input of Inl (-, -, xs, ys) ⇒ length ys | Inr (-, -, xs, xs ′, y, ys) ⇒

length ys),
(λ input. case input of Inl (-, -, xs, ys) ⇒ 0 | Inr (-, -, xs, xs ′, y, ys) ⇒ Suc

(length xs))
])

(auto dest: filter-mem-len2)

2.1 Congruence Rules
lemma filter-mem-cong[fundef-cong]:

assumes
∧

m x. x ∈ set xs =⇒ f m (pre x) = g m (pre x)
shows filter-mem pre f post mem xs = filter-mem pre g post mem xs
using assms by (induct xs arbitrary: mem, auto split: prod.splits)

lemma forall-mem-cong[fundef-cong]:
assumes

∧
m x. x ∈ set xs =⇒ f m (pre x) = g m (pre x)

shows forall-mem pre f post mem xs = forall-mem pre g post mem xs
using assms by (induct xs arbitrary: mem, auto split: prod.splits)

7

lemma exists-mem-cong[fundef-cong]:
assumes

∧
m x. x ∈ set xs =⇒ f m (pre x) = g m (pre x)

shows exists-mem pre f post mem xs = exists-mem pre g post mem xs
using assms by (induct xs arbitrary: mem, auto split: prod.splits)

lemma lex-ext-unbounded-mem-cong[fundef-cong]:
assumes

∧
x y m. x ∈ set xs =⇒ y ∈ set ys =⇒ f m (x,y) = g m (x,y)

shows lex-ext-unbounded-mem f m xs ys = lex-ext-unbounded-mem g m xs ys
using assms
by (induct f m xs ys rule: lex-ext-unbounded-mem.induct,

auto split: prod.splits bool.splits)

lemma mul-ext-mem-cong[fundef-cong]:
assumes

∧
x y m. x ∈ set xs =⇒ y ∈ set ys =⇒ f m (x,y) = g m (x,y)

shows mul-ext-mem f m xs ys = mul-ext-mem g m xs ys
proof −

have (
∧

x ′ y ′ m. x ′ ∈ set xs =⇒ y ′ ∈ set ys =⇒ f m (x ′,y ′) = g m (x ′, y ′)) =⇒
mul-ext-mem f m xs ys = mul-ext-mem g m xs ys

(
∧

x ′ y ′ m. x ′ ∈ set (xs @ xs ′) =⇒ y ′ ∈ set (y # ys) =⇒ f m (x ′, y ′) = g m
(x ′, y ′)) =⇒

mul-ext-dom-mem f m xs xs ′ y ys = mul-ext-dom-mem g m xs xs ′ y ys for
xs ′ y
proof (induct g m xs ys and g m xs xs ′ y ys rule: mul-ext-mem-mul-ext-dom-mem.induct)

case (6 g m x xs xs ′ y ys)
note IHs = 6 (1−5)
note fg = 6 (6)
note [simp del] = mul-ext-mem.simps mul-ext-dom-mem.simps
note [simp] = mul-ext-dom-mem.simps(2)[of - m x xs xs ′ y ys]
from fg have fgx[simp]: f m (x, y) = g m (x, y) by simp
obtain a1 b1 m1 where r1 [simp]: g m (x, y) = ((a1 ,b1),m1) by (cases g m

(x,y), auto)
note IHs = IHs(1−5)[OF r1 [symmetric] refl]
show ?case
proof (cases a1)

case True
hence a1 = True by auto
note IHs = IHs(1−2)[OF this]
let ?rec = filter-mem (Pair x) g (λ p. ¬ fst p) m1 ys
let ?recf = filter-mem (Pair x) f (λ p. ¬ fst p) m1 ys
have [simp]: ?recf = ?rec

by (rule filter-mem-cong, insert fg, auto)
obtain zs m2 where rec: ?rec = (zs,m2) by fastforce
from filter-mem-set[OF rec] have sub: set zs ⊆ set ys by auto
note IHs = IHs(1−2)[OF rec[symmetric]]
have IH1 [simp]: mul-ext-mem f m2 (xs @ xs ′) zs = mul-ext-mem g m2 (xs

@ xs ′) zs
by (rule IHs(1), rule fg) (insert sub, auto)

obtain p3 m3 where rec2 [simp]: mul-ext-mem g m2 (xs @ xs ′) zs = (p3 ,m3)

8

by fastforce
note IHs(2)[OF rec2 [symmetric] - fg]
thus ?thesis using True by (simp add: rec)

next
case False
hence a1 = False by simp
note IHs = IHs(3−)[OF this]
show ?thesis
proof (cases b1)

case True
hence b1 = True by simp
note IHs = IHs(1−2)[OF this]
have [simp]: mul-ext-mem f m1 (xs @ xs ′) ys = mul-ext-mem g m1 (xs @

xs ′) ys
by (rule IHs(1)[OF fg], auto)

obtain p2 m2 where rec1 [simp]: mul-ext-mem g m1 (xs @ xs ′) ys = (p2 ,m2)
by fastforce

have [simp]: mul-ext-dom-mem f m2 xs (x # xs ′) y ys = mul-ext-dom-mem
g m2 xs (x # xs ′) y ys

by (rule IHs(2)[OF rec1 [symmetric] fg], auto)
show ?thesis using False True by simp

next
case b1 : False
hence b1 = False by simp
note IHs = IHs(3)[OF this fg]
have [simp]: mul-ext-dom-mem f m1 xs (x # xs ′) y ys = mul-ext-dom-mem

g m1 xs (x # xs ′) y ys
by (rule IHs, auto)

show ?thesis using False b1 by auto
qed

qed
qed auto
with assms show ?thesis by auto

qed

2.2 Connection to Original Functions
lemma filter-mem: assumes valid-memory fun ind mem1

filter-mem f fun-mem h mem1 xs = (ys, mem2)
memoize-fun fun-mem fun g ind (f ‘ set xs)

shows ys = filter (λy. h (fun (g (f y)))) xs ∧ valid-memory fun ind mem2
using assms

proof (induct xs arbitrary: mem1 ys mem2)
case (Cons x xs mem1 ys mem ′)
note res = Cons(3)
note mem1 = Cons(2)
note fun-mems = Cons(4)
obtain p mem2 where fm: fun-mem mem1 (f x) = (p, mem2) by force
from memoize-funD[OF fun-mems mem1 fm]

9

have p: p = fun (g (f x)) and mem2 : valid-memory fun ind mem2 by auto
note res = res[unfolded filter-mem.simps fm split]
obtain zs mem3 where rec: filter-mem f fun-mem h mem2 xs = (zs, mem3) by

force
note res = res[unfolded rec split]
from Cons(1)[OF mem2 rec memoize-fun-mono[OF fun-mems]]
have mem3 : valid-memory fun ind mem3 and zs: zs = filter (λy. h (fun (g (f

y)))) xs by auto
from mem3 res
show ?case unfolding zs p by auto

qed auto

lemma forall-mem: assumes valid-memory fun ind m
and forall-mem f fun-mem h m xs = (b, m ′)
and memoize-fun fun-mem fun g ind (f ‘ set xs)

shows b = Ball (set xs) (λs. h (fun (g (f s)))) ∧ valid-memory fun ind m ′

using assms
proof (induct xs arbitrary: m b m ′)

case (Cons x xs m b m ′)
obtain b1 m1 where x: fun-mem m (f x) = (b1 ,m1) by force
note res = Cons(3)[unfolded forall-mem.simps x map-prod-simp split]
note mem = Cons(2)
from memoize-funD[OF Cons(4) mem x]
have b1 : b1 = fun (g (f x)) and m1 : valid-memory fun ind m1 by auto
obtain b2 m2 where rec: forall-mem f fun-mem h m1 xs = (b2 ,m2) by fastforce
from Cons(1)[OF m1 rec memoize-fun-mono[OF Cons(4)]]
have IH : b2 = Ball (set xs) (λs. h (fun (g (f s)))) and m2 : valid-memory fun

ind m2 by auto
show ?case using res rec IH m2 b1 m1 by (auto split: if-splits)

qed auto

lemma exists-mem: assumes valid-memory fun ind m
and exists-mem f fun-mem h m xs = (b, m ′)
and memoize-fun fun-mem fun g ind (f ‘ set xs)

shows b = Bex (set xs) (λs. h (fun (g (f s)))) ∧ valid-memory fun ind m ′

using assms
proof (induct xs arbitrary: m b m ′)

case (Cons x xs m b m ′)
obtain b1 m1 where x: fun-mem m (f x) = (b1 ,m1) by force
note res = Cons(3)[unfolded exists-mem.simps x map-prod-simp split]
note mem = Cons(2)
from memoize-funD[OF Cons(4) mem x]
have b1 : b1 = fun (g (f x)) and m1 : valid-memory fun ind m1 by auto
obtain b2 m2 where rec: exists-mem f fun-mem h m1 xs = (b2 ,m2) by fastforce
from Cons(1)[OF m1 rec memoize-fun-mono[OF Cons(4)]]
have IH : b2 = Bex (set xs) (λs. h (fun (g (f s)))) and m2 : valid-memory fun

ind m2 by auto
show ?case using res rec IH m2 b1 m1 by (auto split: if-splits)

qed auto

10

lemma lex-ext-unbounded-mem: assumes rel-pair = (λ(s, t). rel s t)
shows valid-memory rel-pair ind mem =⇒ lex-ext-unbounded-mem rel-mem mem

xs ys = (p, mem ′)
=⇒ memoize-fun rel-mem rel-pair (map-prod g h) ind (set xs × set ys)
=⇒ p = lex-ext-unbounded rel (map g xs) (map h ys) ∧ valid-memory rel-pair ind

mem ′

proof (induct rel-mem mem xs ys arbitrary: p mem ′ rule: lex-ext-unbounded-mem.induct)
case (4 rel-mem mem x xs y ys)
note lex-ext-unbounded.simps[simp]
note IH = 4 (1)[OF refl - refl]
obtain s ns mem1 where impl: rel-mem mem (x, y) = ((s,ns), mem1) by (cases

rel-mem mem (x, y), auto)
have rel: rel (g x) (h y) = (s,ns) and mem1 : valid-memory rel-pair ind mem1

using memoize-funD[OF 4 (4 ,2) impl] assms impl unfolding assms o-def by
auto

note res = 4 (3)[unfolded lex-ext-unbounded-mem.simps Let-def impl split]
have rel-pair : lex-ext-unbounded rel (map g (x # xs)) (map h (y # ys)) = (

if s then (True, True) else if ns then lex-ext-unbounded rel (map g xs) (map
h ys) else (False, False))

unfolding lex-ext-unbounded.simps list.simps Let-def split rel by simp
show ?case
proof (cases s ∨ ¬ ns)

case True
thus ?thesis using res rel-pair mem1 by auto

next
case False
obtain p2 mem2 where rec: lex-ext-unbounded-mem rel-mem mem1 xs ys =

(p2 , mem2) by fastforce
from False have s = False ns = True by auto
from IH [unfolded impl, OF refl this mem1 rec memoize-fun-mono[OF 4 (4)]]
have mem2 : valid-memory rel-pair ind mem2 and p2 : p2 = lex-ext-unbounded

rel (map g xs) (map h ys) by auto
show ?thesis unfolding rel-pair using res rec False mem2 p2 by (auto split:

if-splits)
qed

qed (auto simp: lex-ext-unbounded.simps)

lemma mul-ext-mem: assumes rel-pair = (λ(s, t). rel s t)
shows valid-memory rel-pair ind mem =⇒ mul-ext-mem rel-mem mem xs ys =

(p, mem ′)
=⇒ memoize-fun rel-mem rel-pair (map-prod g h) ind (set xs × set ys)
=⇒ p = mul-ext-impl rel (map g xs) (map h ys) ∧ valid-memory rel-pair ind

mem ′ (is ?A =⇒ ?B =⇒ ?C =⇒ ?D)
proof −

have ?A =⇒ ?B =⇒ ?C =⇒ ?D
valid-memory rel-pair ind mem =⇒ mul-ext-dom-mem rel-mem mem xs xs ′ y ys

= (p, mem ′)
=⇒ memoize-fun rel-mem rel-pair (map-prod g h) ind (set (xs @ xs ′) × set (y #

11

ys))
=⇒ p = mul-ex-dom rel (map g xs) (map g xs ′) (h y) (map h ys) ∧ valid-memory

rel-pair ind mem ′

for xs ′ y
proof (induct rel-mem mem xs ys and rel-mem mem xs xs ′ y ys arbitrary: p

mem ′ and p mem ′ rule: mul-ext-mem-mul-ext-dom-mem.induct)
case (6 sns mem x xs ys d zs pair mem ′)
note IHs = 6 (1−5)
note mem = 6 (6)
note res = 6 (7)
note memo = 6 (8)
let ?Sns = λ x. rel-pair (map-prod g h x)
let ?xd = rel-pair (g x, h d)
obtain p1 mem1 where sns: sns mem (x,d) = (p1 , mem1) by fastforce
note IHs = IHs[OF sns[symmetric]]
from memoize-funD[OF memo mem sns]
have p1 : p1 = ?xd and mem1 : valid-memory rel-pair ind mem1 by auto
note sns = sns[unfolded p1]
note res = res[unfolded mul-ext-dom-mem.simps sns split]
have rel: rel (g x) (h d) = ?xd unfolding assms by auto
define wp where wp = mul-ex-dom rel (map g (x # xs)) (map g ys) (h d)

(map h zs)
note wp = wp-def [unfolded list.simps, unfolded mul-ex-dom.simps rel]
consider (1) b where ?xd = (True,b) | (2) ?xd = (False,True) | (3) ?xd =

(False,False)
by (cases ?xd, auto)

hence valid-memory rel-pair ind mem ′ ∧ pair = wp
proof cases

case (1 b)
let ?pre = Pair x
let ?post = (λ p. ¬ fst p)
from 1 p1 have (True, b) = p1 by auto
note IHs = IHs(1−2)[OF this, OF refl]
obtain p2 mem2 where filter : filter-mem ?pre sns ?post mem1 zs = (p2 ,

mem2) by force
obtain p3 mem3 where rec1 : mul-ext-mem sns mem2 (xs @ ys) p2 =

(p3 ,mem3) by fastforce
obtain p4 mem4 where rec2 : mul-ext-dom-mem sns mem3 xs (x # ys) d zs

= (p4 , mem4) by fastforce
note res = res[unfolded 1 split[of - - mem1], unfolded Let-def split, simplified,

unfolded filter rec1 split rec2]
note wp = wp[unfolded 1 split bool.simps]
{

fix z
assume z ∈ set zs
hence (x,z) ∈ set ((x # xs) @ ys) × set (d # zs) by auto
from memoize-funD[OF memo - - this]

have valid-memory rel-pair ind m =⇒ sns m (x, z) = (p, m ′) =⇒ p =
rel-pair (map-prod g h (x, z)) ∧ valid-memory rel-pair ind m ′

12

for m p m ′ by auto
}
hence memoize-fun sns rel-pair (map-prod g h) ind (Pair x ‘ set zs)

by (intro memoize-funI , blast)
from filter-mem[OF mem1 filter , of map-prod g h,

OF this]
have mem2 : valid-memory rel-pair ind mem2 and p2 : p2 = filter (λy. ¬ fst

(rel-pair (g x, h y))) zs
by auto

have filter (λy. ¬ fst (rel (g x) y)) (map h zs) = map h p2 unfolding p2
assms split

by (induct zs, auto)
note wp = wp[unfolded this]
note IHs = IHs[OF filter [symmetric]]
from IHs(1)[OF mem2 rec1 memoize-fun-mono[OF memo]] p2
have mem3 : valid-memory rel-pair ind mem3

and p3 : p3 = mul-ext-impl rel (map g xs @ map g ys) (map h p2)
by auto

note wp = wp[folded p3]
show ?thesis
proof (cases snd p3)

case True
thus ?thesis using res wp mem3 by auto

next
case False
with IHs(2)[OF rec1 [symmetric] False mem3 rec2 memoize-fun-mono[OF

memo]] wp res
show ?thesis by auto

qed
next

case 2
note wp = wp[unfolded 2 split bool.simps]
obtain p2 mem2 where rec2 : mul-ext-mem sns mem1 (xs @ ys) zs = (p2 ,

mem2) by fastforce
obtain p3 mem3 where rec3 : mul-ext-dom-mem sns mem2 xs (x # ys) d zs

= (p3 , mem3) by fastforce
from 2 p1 have (False, True) = p1 by auto
note IHs = IHs(3−4)[OF this refl refl, unfolded rec2]
from IHs(1)[OF mem1 refl memoize-fun-mono[OF memo]]
have mem2 : valid-memory rel-pair ind mem2 and p2 : p2 = mul-ext-impl rel

(map g (xs @ ys)) (map h zs)
by auto

from IHs(2)[OF refl mem2 rec3 memoize-fun-mono[OF memo]]
have mem3 : valid-memory rel-pair ind mem3 and p3 : p3 = mul-ex-dom rel

(map g xs) (map g (x # ys)) (h d) (map h zs) by auto
from wp res[unfolded Let-def split 2 bool.simps rec2 rec3]
show ?thesis using mem3 p2 p3 by auto

next
case 3

13

obtain p2 mem2 where rec2 : mul-ext-dom-mem sns mem1 xs (x # ys) d zs
= (p2 ,mem2) by fastforce

from 3 p1 have (False, False) = p1 by auto
from IHs(5)[OF this refl refl mem1 rec2 memoize-fun-mono[OF memo]]
have mem2 : valid-memory rel-pair ind mem2 and p2 : p2 = mul-ex-dom rel

(map g xs) (map g (x # ys)) (h d) (map h zs)
by auto

have wp = p2 unfolding wp 3 using p2 by simp
with mem2 show ?thesis using p2 res 3 rec2 by auto

qed
thus ?case unfolding wp-def by blast

qed auto
thus ?A =⇒ ?B =⇒ ?C =⇒ ?D by blast

qed

end

3 An Approximation of WPO
We define an approximation of WPO.

It replaces the bounded lexicographic comparison by an unbounded one.
Hence, no runtime check on lenghts are required anymore, but instead the
arities of the inputs have to be bounded via an assumption.

Moreover, instead of checking that terms are strictly or non-strictly de-
creasing w.r.t. the algebra (i.e., the input reduction pair), we just demand
that there are sufficient criteria to ensure a strict- or non-strict decrease.
theory WPO-Approx
imports

Weighted-Path-Order .WPO
begin

definition compare-bools :: bool × bool ⇒ bool × bool ⇒ bool
where

compare-bools p1 p2 ←→ (fst p1 −→ fst p2) ∧ (snd p1 −→ snd p2)

notation compare-bools (‹(-/ ≤cb -)› [51 , 51] 50)

lemma lex-ext-unbounded-cb:
assumes

∧
i. i < length xs =⇒ i < length ys =⇒ f (xs ! i) (ys ! i) ≤cb g (xs !

i) (ys ! i)
shows lex-ext-unbounded f xs ys ≤cb lex-ext-unbounded g xs ys
unfolding compare-bools-def
by (rule lex-ext-unbounded-mono,
insert assms[unfolded compare-bools-def], auto)

lemma mul-ext-cb:
assumes

∧
x y. x ∈ set xs =⇒ y ∈ set ys =⇒ f x y ≤cb g x y

14

shows mul-ext f xs ys ≤cb mul-ext g xs ys
unfolding compare-bools-def
by (intro conjI impI ; rule mul-ext-mono) (insert assms, auto simp: compare-bools-def)

context
fixes pr :: (′f × nat ⇒ ′f × nat ⇒ bool × bool)

and prl :: ′f × nat ⇒ bool
and ssimple :: bool
and large :: ′f × nat ⇒ bool
and cS cNS :: (′f , ′v)term ⇒ (′f , ′v)term ⇒ bool — sufficient criteria
and σ :: ′f status
and c :: ′f × nat ⇒ order-tag

begin

fun wpo-ub :: (′f , ′v) term ⇒ (′f , ′v) term ⇒ bool × bool
where

wpo-ub s t = (if cS s t then (True, True) else if cNS s t then (case s of
Var x ⇒ (False,
(case t of

Var y ⇒ x = y
| Fun g ts ⇒ status σ (g, length ts) = [] ∧ prl (g, length ts)))

| Fun f ss ⇒
let ff = (f , length ss); sf = status σ ff in

if (∃ i ∈ set sf . snd (wpo-ub (ss ! i) t)) then (True, True)
else
(case t of

Var - ⇒ (False, ssimple ∧ large ff)
| Fun g ts ⇒

let gg = (g, length ts); sg = status σ gg in
(case pr ff gg of (prs, prns) ⇒

if prns ∧ (∀ j ∈ set sg. fst (wpo-ub s (ts ! j))) then
if prs then (True, True)
else

let ss ′ = map (λ i. ss ! i) sf ;
ts ′ = map (λ i. ts ! i) sg;
cf = c ff ;
cg = c gg in

if cf = Lex ∧ cg = Lex then lex-ext-unbounded wpo-ub ss ′ ts ′

else if cf = Mul ∧ cg = Mul then mul-ext wpo-ub ss ′ ts ′

else if ts ′ = [] then (ss ′ 6= [], True) else (False, False)
else (False, False)))

) else (False, False))

declare wpo-ub.simps [simp del]

abbreviation wpo-orig n S NS ≡ wpo.wpo n S NS pr prl σ c ssimple large

soundness of approximation: local.wpo-ub can be simulated by local.wpo-orig
if the arities are small (usually the length of the status of f is smaller than
the arity of f).

15

lemma wpo-ub:
assumes

∧
si tj. s D si =⇒ t D tj =⇒ (cS si tj, cNS si tj) ≤cb ((si, tj) ∈ S ,

(si, tj) ∈ NS)
and

∧
f . f ∈ funas-term t =⇒ length (status σ f) ≤ n

shows wpo-ub s t ≤cb wpo-orig n S NS s t
using assms

proof (induct s t rule: wpo.wpo.induct [of S NS σ - n pr prl c ssimple large])
case (1 s t)
note IH = 1 (1−4)
note cb = 1 (5)
note n = 1 (6)
note cbd = compare-bools-def
note simps = wpo-ub.simps[of s t] wpo.wpo.simps[of n S NS pr prl σ c ssimple

large s t]
let ?wpo = wpo-orig n S NS
let ?cb = λ s t. (cS s t, cNS s t) ≤cb ((s, t) ∈ S , (s, t) ∈ NS)
let ?goal = λ s t. wpo-ub s t ≤cb ?wpo s t
from cb[of s t] have cb-st: ?cb s t by auto
show ?case
proof (cases (s,t) ∈ S ∨ ¬ cNS s t)

case True
with cb-st show ?thesis unfolding simps unfolding cbd by auto

next
case False
with cb-st have ∗: (s,t) /∈ S (s,t) ∈ NS ((s,t) /∈ S) = True ((s, t) ∈ S) = False

((s,t) ∈ NS) = True cS s t = False cNS s t = True
unfolding cbd by auto

note simps = simps[unfolded ∗ if-False if-True]
note IH = IH [OF ∗(1−2)]
show ?thesis
proof (cases s)

case (Var x) note s = this
show ?thesis
proof (cases t)

case (Var y) note t = this
show ?thesis unfolding simps unfolding s t cbd by simp

next
case (Fun g ts) note t = this
show ?thesis unfolding simps unfolding s t cbd by auto

qed
next

case s: (Fun f ss)
let ?f = (f ,length ss)
let ?sf = status σ ?f
let ?s = Fun f ss
note IH = IH [OF s]
show ?thesis
proof (cases (∃ i ∈ set ?sf . snd (?wpo (ss ! i) t)))

16

case True
then show ?thesis unfolding simps using True ∗ unfolding s cbd by auto

next
case False
{

fix i
assume i: i ∈ set ?sf
from status-aux[OF i]
have ?goal (ss ! i) t

by (intro IH (1)[OF i cb n], auto simp: s)
}

with False have sub: (∃ i ∈ set ?sf . snd (wpo-ub (ss ! i) t)) = False
unfolding cbd by auto

note IH = IH (2−4)[OF False]
show ?thesis
proof (cases wpo-ub s t = (False,False))

case True
then show ?thesis unfolding cbd by auto

next
case False note noFF = this
note False = False[unfolded simps ∗ Let-def , unfolded s term.simps sub,

simplified]
show ?thesis
proof (cases t)

case t: (Var y)
from False[unfolded t, simplified]
show ?thesis unfolding s t unfolding cbd

using ∗ s simps sub t by auto
next

case t: (Fun g ts)
let ?g = (g,length ts)
let ?sg = status σ ?g
let ?t = Fun g ts
obtain ps pns where p: pr ?f ?g = (ps, pns) by force
note IH = IH [OF t p[symmetric]]
note False = False[unfolded t p split term.simps]
from False have pns: pns = True by (cases pns, auto)
{

fix j
assume j: j ∈ set ?sg
from status-aux[OF j]
have cb: ?goal s (ts ! j)

by (intro IH (1)[OF j cb n], auto simp: t)
from j False have fst (wpo-ub s (ts ! j)) unfolding s by (auto split:

if-splits)
with cb have fst (?wpo s (ts ! j)) unfolding cbd by auto

}
then have cond: pns ∧ (∀ j ∈ set ?sg. fst (?wpo s (ts ! j))) using pns

by auto

17

note IH = IH (2−3)[OF cond]
from cond have cond: (pns ∧ (∀ j ∈ set ?sg. fst (?wpo ?s (ts ! j)))) =

True unfolding s by simp
note simps = simps[unfolded ∗ Let-def , unfolded s t term.simps if-False

if-True sub[unfolded t] p split cond]
show ?thesis
proof (cases ps)

case True
then show ?thesis unfolding s t unfolding simps cbd by auto

next
case False
note IH = IH [OF this refl refl refl refl]
let ?msf = map ((!) ss) ?sf
let ?msg = map ((!) ts) ?sg
have set-msf : set ?msf ⊆ set ss using status[of σ f length ss]

unfolding set-conv-nth by force
have set-msg: set ?msg ⊆ set ts using status[of σ g length ts]

unfolding set-conv-nth by force
{

fix i
assume i < length ?msf
then have ?msf ! i ∈ set ?msf unfolding set-conv-nth by blast
with set-msf have ?msf ! i ∈ set ss by auto

} note msf = this
{

fix i
assume i < length ?msg
then have ?msg ! i ∈ set ?msg unfolding set-conv-nth by blast
with set-msg have ?msg ! i ∈ set ts by auto

} note msg = this
show ?thesis
proof (cases c ?f = Lex ∧ c ?g = Lex)

case Lex: True
note IH = IH (1)[OF Lex - - cb n, unfolded s t length-map]
from n[of ?g, unfolded t] have length (?msg) ≤ n by auto
then have ub: lex-ext-unbounded ?wpo ?msf ?msg =

lex-ext ?wpo n ?msf ?msg
unfolding lex-ext-unbounded-iff lex-ext-iff by auto

from Lex False simps noFF
have wpo-ub: wpo-ub s t = lex-ext-unbounded wpo-ub ?msf ?msg

unfolding s t using False by (auto split: if-splits)
also have . . . ≤cb lex-ext-unbounded ?wpo ?msf ?msg

by (rule lex-ext-unbounded-cb, rule IH) (insert msf msg, auto)
finally show ?thesis unfolding ub s t simps(2) cbd using Lex by

auto
next

case nLex: False
show ?thesis
proof (cases c ?f = Mul ∧ c ?g = Mul)

18

case Mul: True
note IH = IH (2)[OF nLex Mul - - cb n, unfolded s t]
from Mul nLex False simps noFF
have wpo-ub: wpo-ub s t = mul-ext wpo-ub ?msf ?msg

unfolding s t using False by (auto split: if-splits)
also have . . . ≤cb mul-ext ?wpo ?msf ?msg

by (rule mul-ext-cb, rule IH) (insert set-msf set-msg, auto)
finally show ?thesis unfolding s t simps(2) cbd using nLex Mul

by auto
next

case nMul: False
thus ?thesis unfolding s t simps cbd using nLex nMul noFF False

by auto
qed

qed
qed

qed
qed

qed
qed

qed
qed

end
end

4 A Memoized Implementation of WPO
theory WPO-Mem-Impl

imports
WPO-Approx
Indexed-Term
List-Memo-Functions

begin

context
fixes pr :: (′f × nat ⇒ ′f × nat ⇒ bool × bool)

and prl :: ′f × nat ⇒ bool
and ssimple :: bool
and large :: ′f × nat ⇒ bool
and cS cNS :: (′f , ′v)term ⇒ (′f , ′v)term ⇒ bool
and σ :: ′f status
and c :: ′f × nat ⇒ order-tag

begin

The main implementation working on indexed terms
fun

wpo-mem :: ((′f , ′v) indexed-term) term-rel-mem-type and
wpo-main :: ((′f , ′v) indexed-term) term-rel-mem-type

19

where
wpo-mem mem (s,t) =
(let

i = index s;
j = index t

in
(case Mapping.lookup mem (i,j) of

Some res ⇒ (res, mem)
| None ⇒ case wpo-main mem (s,t)

of (res, mem-new) ⇒ (res, Mapping.update (i,j) res mem-new)))
| wpo-main mem (s,t) = (let fs = stored s; ft = stored t in

if cS fs ft then ((True, True), mem)
else if cNS fs ft then (
case s of
Var x ⇒ ((False,
(case t of

Var y ⇒ name-of x = name-of y
| Fun g ts ⇒ status σ (name-of g, length ts) = [] ∧ prl (name-of g, length

ts))), mem)
| Fun f ss ⇒

let ff = (name-of f , length ss); sf = status σ ff ; ss ′ = map (λ i. ss ! i) sf in
(case exists-mem (λ s ′. (s ′,t)) wpo-mem snd mem ss ′ of
(wpo-result, mem-out-1) ⇒

if wpo-result then ((True, True), mem-out-1)
else
(case t of

Var - ⇒ ((False, ssimple ∧ large ff), mem-out-1)
| Fun g ts ⇒

let gg = (name-of g, length ts); sg = status σ gg; ts ′ = map (λ i. ts !
i) sg in

(case pr ff gg of (prs, prns) ⇒
if prns then
(case forall-mem (λ t ′. (s,t ′)) wpo-mem fst mem-out-1 ts ′ of
(wpo-result, mem-out-2) ⇒
if wpo-result then

if prs then ((True, True), mem-out-2)
else

let cf = c ff ; cg = c gg in
if cf = Lex ∧ cg = Lex then lex-ext-unbounded-mem wpo-mem

mem-out-2 ss ′ ts ′

else if cf = Mul ∧ cg = Mul then mul-ext-mem wpo-mem
mem-out-2 ss ′ ts ′

else if ts ′ = [] then ((ss ′ 6= [], True), mem-out-2)
else ((False, False), mem-out-2)

else ((False, False), mem-out-2)) else ((False,False), mem-out-1))
)

)
) else ((False, False), mem))

20

declare wpo-mem.simps[simp del]
declare wpo-main.simps[simp del]

And the wrapper that computes the indexed terms and initializes the
memory.
definition wpo-mem-impl :: (′f , ′v) term ⇒ (′f , ′v) term ⇒ (bool × bool)

where
wpo-mem-impl s t = fst (wpo-mem Mapping.empty (index-term s, index-term

t))

Soundness of the implementation
lemma wpo-mem: fixes rli rri :: index ⇒ (′f , ′v)term

assumes
wpoub: wpoub = wpo-ub pr prl ssimple large cS cNS σ c
and wpo: wpo = (λ (s,t). wpoub s t)
and ri: ri = map-prod rli rri
and

∧
si. fst st D si =⇒ rli (index si) = unindex si ∧ stored si = unindex si

and
∧

ti. snd st D ti =⇒ rri (index ti) = unindex ti ∧ stored ti = unindex ti
and valid-memory wpo ri m

shows wpo-mem m st = (p,m ′) =⇒ p = wpo (map-prod unindex unindex st) ∧
valid-memory wpo ri m ′

wpo-main m st = (p,m ′) =⇒ p = wpo (map-prod unindex unindex st) ∧
valid-memory wpo ri m ′

using assms(4−)
proof (induct m st and m st arbitrary: p m ′ and p m ′ rule: wpo-mem-wpo-main.induct)

case (1 m s t)
note IH = 1 (1)
note revi = 1 (3 ,4)[unfolded fst-conv snd-conv]
note mem = 1 (5)
note res = 1 (2)[unfolded wpo wpo-mem.simps Let-def]
have ri: ri (index s, index t) = (unindex s, unindex t)

unfolding ri using revi(1)[of s] revi(2)[of t] by auto
show ?case
proof (cases Mapping.lookup m (index s, index t))

case (Some q)
note res = res[unfolded Some option.simps]
from res have id: p = q m ′ = m by auto
from mem[unfolded valid-memory-def , rule-format, OF Some]
have wpo (ri (index s, index t)) = q by auto
with ri show ?thesis unfolding id using mem by auto

next
case None
note res = res[unfolded None option.simps]
obtain res2 mem2 where rec: wpo-main m (s, t) = (res2 , mem2) by fastforce
have res2 : res2 = wpo (unindex s, unindex t) and mem: valid-memory wpo ri

mem2
using IH [OF refl refl None rec revi mem] by auto

from res[unfolded rec split]
have p: p = res2 and m ′: m ′ = Mapping.update (index s, index t) res2 mem2

by auto

21

show ?thesis unfolding p res2 m ′ using mem ri
by (auto simp add: valid-memory-def lookup-update ′)

qed
next

case (2 m s t)
let ?s = unindex s
let ?t = unindex t
note revi = 2 (6 ,7)[unfolded fst-conv snd-conv]
from revi(1)[of s] revi(2)[of t]
have stored: stored s = unindex s stored t = unindex t by auto
note IHs = 2 (1−4)[OF stored[symmetric]]
note mem = 2 (8)
note res = 2 (5)[unfolded wpo-main.simps Let-def stored]
have wpo-st: wpo (unindex s, unindex t) = wpoub (unindex s) (unindex t) for s

t
unfolding wpo by simp

note wpo = this[of s t,unfolded wpoub wpo-ub.simps[of - - - - - - - - ?s ?t], folded
wpoub]

show ?case
proof (cases s)

case (Var xi)
then obtain x i where s: s = Var (x,i) by (cases xi, auto)
thus ?thesis using res mem wpo by (cases t, auto)

next
case (Fun fi ss)
then obtain f i where s: s = Fun (f ,i) ss by (cases fi, auto)
let ?Sta = status σ (f , length ss)
note res = res[unfolded s term.simps name-of .simps, folded s]
note wpo = wpo[unfolded s unindex.simps term.simps, folded unindex.simps[of

- i], folded s,
unfolded length-map Let-def]

show ?thesis
proof (rule ccontr)

assume neg: ¬ ?thesis
from neg res mem wpo s have ncS : ¬ cS ?s ?t by auto
from neg res mem wpo s ncS have cNS : cNS ?s ?t by (auto split: if-splits)
have id: map-prod unindex unindex (s,t) = (unindex s, unindex t) for s t ::

(′f , ′v)indexed-term by auto
define sss where sss = map ((!) ss) ?Sta
note IHs = IHs[OF ncS cNS s refl refl refl, unfolded name-of .simps, unfolded

id fst-conv snd-conv, folded sss-def]
from ncS cNS have id: cS ?s ?t = False cNS ?s ?t = True by auto
note res = res[unfolded id if-True if-False, folded sss-def]
have sss: (map ((!) (map unindex ss)) ?Sta) = map unindex sss

unfolding sss-def by (auto dest: set-status-nth[OF refl])
note wpo = wpo[unfolded id if-True if-False]

have sss-sub: set sss ⊆ set ss unfolding sss-def by (auto dest: set-status-nth[OF
refl])

let ?cond1 ′ = Bex (set sss) (λs. snd (wpoub (unindex s) (unindex t)))

22

let ?cond1 ′′ = Bex (set ?Sta) (λi. snd (wpoub (map unindex ss ! i) (unindex
t)))

have ?cond1 ′′ = ?cond1 ′ unfolding sss-def
using set-status-nth[OF refl, of - σ f ss] by simp

note wpo = wpo[unfolded this sss]
let ?cond1 = exists-mem (λ s ′. (s ′,t)) wpo-mem snd m sss
obtain b1 m1 where cond1 : ?cond1 = (b1 ,m1) by fastforce
{

fix si
assume si: si ∈ set sss
have wpo-mem m (si, t) = (p, m ′) =⇒
valid-memory wpo ri m =⇒ p = wpo (unindex si, unindex t) ∧ valid-memory

wpo ri m ′

for m p m ′

by (intro IHs(1)[OF si - revi, of m p m ′], insert sss-sub s si, auto)
}
hence memoize-fun wpo-mem wpo (map-prod unindex unindex) ri ((λs ′. (s ′,

t)) ‘ set sss)
by (intro memoize-funI , auto)

from exists-mem[OF mem cond1 this]
have cond1 ′: ?cond1 ′ = b1 and mem1 : valid-memory wpo ri m1

unfolding wpo-st[symmetric] by auto
note IHs = IHs(2−)[OF cond1 [symmetric]]
note res = res[unfolded cond1 split]
note wpo = wpo[unfolded cond1 ′]
from neg res wpo mem1 have b1 : ¬ b1 by auto
note IHs = IHs[OF this]
from b1 have b1 : b1 = False by simp
note res = res[unfolded b1 if-False]
note wpo = wpo[unfolded b1 if-False]
show False
proof (cases t)

case (Var yj)
with neg res wpo mem1 show ?thesis by (cases yj, auto)

next
case (Fun gj ts)
then obtain g j where t: t = Fun (g,j) ts by (cases gj, auto)
let ?f = (f , length ss) let ?g = (g, length ts)
obtain prs prns where pr : pr ?f ?g = (prs, prns) by force
let ?sta = (status σ (g, length ts))
define tss where tss = map ((!) ts) ?sta
have tss: (map ((!) (map unindex ts)) ?sta) = map unindex tss

unfolding tss-def by (auto dest: set-status-nth[OF refl])
have tss-sub: set tss ⊆ set ts unfolding tss-def by (auto dest: set-status-nth[OF

refl])
note res = res[unfolded t term.simps name-of .simps pr split, folded tss-def]
note wpo = wpo[unfolded t unindex.simps term.simps length-map pr split,

folded unindex.simps[of - j], folded t, unfolded tss]
from neg res mem1 wpo have prns: prns by (auto split: if-splits)

23

note IHs = IHs[OF t refl refl, unfolded name-of .simps, OF refl pr [symmetric],
folded tss-def , OF prns]

have prns: (prns ∧ b) = b prns = True for b using prns by auto
note res = res[unfolded prns if-True]
note wpo = wpo[unfolded prns(1)]
let ?cond2 = forall-mem (λ t ′. (s,t ′)) wpo-mem fst m1 tss
let ?cond2 ′′ = Ball (set ?sta) (λj. fst (wpoub ?s (map unindex ts ! j)))
let ?cond2 ′ = Ball (set tss) (λt. fst (wpoub ?s (unindex t)))
have ?cond2 ′′ = ?cond2 ′ unfolding tss-def

using set-status-nth[OF refl, of - σ g ts] by simp
note wpo = wpo[unfolded this]
obtain b2 m2 where cond2 : ?cond2 = (b2 ,m2) by force
{

fix ti
assume ti: ti ∈ set tss
have wpo-mem m (s, ti) = (p, m ′) =⇒

valid-memory wpo ri m =⇒ p = wpo (unindex s, unindex ti) ∧ valid-memory
wpo ri m ′

for m p m ′

by (intro IHs(1)[OF ti - revi, of m p m ′], insert tss-sub t ti, auto)
}
hence memoize-fun wpo-mem wpo (map-prod unindex unindex) ri (Pair s ‘

set tss)
by (intro memoize-funI , auto)

from forall-mem[OF mem1 cond2 this]
have cond2 ′: ?cond2 ′ = b2 and mem2 : valid-memory wpo ri m2

unfolding wpo-st[symmetric] by auto
note wpo = wpo[unfolded cond2 ′]
note res = res[unfolded cond2 split]
from neg res wpo mem2 have b2 : b2 by (auto split: if-splits)
with neg res wpo mem2 have prs: ¬ prs by (auto split: if-splits)
note IHs = IHs(2−)[OF cond2 [symmetric] b2 prs refl refl]
from b2 prs have id: b2 = True prs = False by auto
note res = res[unfolded id if-True if-False, folded sss-def tss-def]
note wpo = wpo[unfolded id if-True if-False]
let ?is-lex = c ?f = Lex ∧ c ?g = Lex
show False
proof (cases ?is-lex)

case True
note IH = IHs(1)[OF True]
from True have lex: ?is-lex = True by auto
note res = res[unfolded lex if-True]
note wpo = wpo[unfolded lex if-True]
have memo: memoize-fun wpo-mem wpo (map-prod unindex unindex) ri

(set sss × set tss)
apply (rule memoize-fun-pairI)
apply (rule IH)

apply force
apply force

24

apply force
subgoal by (rule revi, insert sss-sub, auto simp: s)
subgoal by (rule revi, insert tss-sub, auto simp: t)
by auto

have p = lex-ext-unbounded wpoub (map unindex sss) (map unindex tss)
∧ valid-memory wpo ri m ′

by (rule lex-ext-unbounded-mem[OF assms(2) mem2 res memo])
with res wpo neg
show ?thesis by auto

next
case False
note IH = IHs(2)[OF False]
from False have lex: ?is-lex = False by auto
note res = res[unfolded lex if-False]
note wpo = wpo[unfolded lex if-False]
let ?is-mul = c (f , length ss) = Mul ∧ c (g, length ts) = Mul
show False
proof (cases ?is-mul)

case True
note IH = IH [OF True]
from True have mul: ?is-mul = True by auto
note res = res[unfolded mul if-True]
note wpo = wpo[unfolded mul if-True]
have memo: memoize-fun wpo-mem wpo (map-prod unindex unindex) ri

(set sss × set tss)
apply (rule memoize-fun-pairI)
apply (rule IH)

apply force
apply force

apply force
subgoal by (rule revi, insert sss-sub, auto simp: s)
subgoal by (rule revi, insert tss-sub, auto simp: t)
by auto
have p = mul-ext-impl wpoub (map unindex sss) (map unindex tss) ∧

valid-memory wpo ri m ′

using mul-ext-mem(1)[OF assms(2) mem2 res memo] by auto
with res wpo neg
show ?thesis unfolding mul-ext-code by auto

next
case False
from False have mul: ?is-mul = False by auto
note res = res[unfolded mul if-False]
note wpo = wpo[unfolded mul if-False]
from res wpo neg mem2 show False by (auto split: if-splits)

qed
qed

qed
qed

qed

25

qed

declare [[code drop: wpo-ub]]

lemma wpo-ub-memoized-code[code]:
wpo-ub pr prl ssimple large cS cNS σ c s t = wpo-mem-impl s t

proof −
let ?s = index-term s
let ?t = index-term t
let ?m = Mapping.empty :: term-rel-mem
have m: valid-memory (λ(s, t). wpo-ub pr prl ssimple large cS cNS σ c s t)

(map-prod rl rr) ?m for rl rr
unfolding valid-memory-def by auto

from index-term-index-unindex[of s] obtain f where f : ∀ tE index-term s. f
(index t) = unindex t ∧ stored t = unindex t by auto

from index-term-index-unindex[of t] obtain g where g: ∀ sE index-term t. g
(index s) = unindex s ∧ stored s = unindex s by auto

obtain p m where res: wpo-mem ?m (?s,?t) = (p,m) by fastforce
hence impl: wpo-mem-impl s t = p unfolding wpo-mem-impl-def by simp
also have ... = wpo-ub pr prl ssimple large cS cNS σ c (unindex (index-term

s)) (unindex (index-term t))
by (rule wpo-mem(1)[THEN conjunct1 , OF refl refl refl - - m res, unfolded

map-prod-simp split fst-conv snd-conv, of f g])
(insert f g, auto)

finally show ?thesis by simp
qed
end
end

5 An Unbounded Variant of RPO
We define an unbounded version of RPO in the sense that lexicographic
comparisons do not require a length check. This unbounded version of RPO
is equivalent to the original RPO provided that the arities of the function
symbols are below the bound that is used for lexicographic comparisons.
theory RPO-Unbounded

imports
Weighted-Path-Order .RPO

begin

fun rpo-unbounded :: (′f × nat ⇒ ′f × nat ⇒ bool × bool) × (′f × nat ⇒ bool)
⇒ (′f × nat ⇒ order-tag) ⇒ (′f , ′v)term ⇒ (′f , ′v)term ⇒ bool × bool where
rpo-unbounded - - (Var x) (Var y) = (False, x = y)
| rpo-unbounded pr - (Var x) (Fun g ts) = (False, ts = [] ∧ snd pr (g,0))
| rpo-unbounded pr c (Fun f ss) (Var y) =

(let con = ∃ s ∈ set ss. snd (rpo-unbounded pr c s (Var y)) in (con,con))
| rpo-unbounded pr c (Fun f ss) (Fun g ts) = (

if ∃ s ∈ set ss. snd (rpo-unbounded pr c s (Fun g ts))

26

then (True,True)
else (case (fst pr) (f ,length ss) (g,length ts) of (prs,prns) ⇒

if prns ∧ (∀ t ∈ set ts. fst (rpo-unbounded pr c (Fun f ss) t))
then if prs

then (True,True)
else if c (f ,length ss) = c (g,length ts)

then if c (f ,length ss) = Mul
then mul-ext (rpo-unbounded pr c) ss ts
else lex-ext-unbounded (rpo-unbounded pr c) ss ts

else (length ss 6= 0 ∧ length ts = 0 , length ts = 0)
else (False,False)))

lemma rpo-to-rpo-unbounded:
assumes ∀ f i. (f , i) ∈ funas-term s ∪ funas-term t −→ i ≤ n (is ?b s t)
shows rpo pr prl c n s t = rpo-unbounded (pr ,prl) c s t (is ?e s t)

proof −
let ?p = λ s t. ?b s t −→ ?e s t
let ?pr = (pr ,prl)
{

have ?p s t
proof (induct rule: rpo.induct[of - pr prl c n])

case (3 f ss y)
show ?case
proof (intro impI)

assume ?b (Fun f ss) (Var y)
then have

∧
s. s ∈ set ss =⇒ ?b s (Var y) by auto

with 3 show ?e (Fun f ss) (Var y) by simp
qed

next
case (4 f ss g ts) note IH = this
show ?case
proof (intro impI)

assume ?b (Fun f ss) (Fun g ts)
then have bs:

∧
s. s ∈ set ss =⇒ ?b s (Fun g ts)

and bt:
∧

t. t ∈ set ts =⇒ ?b (Fun f ss) t
and ss: length ss ≤ n and ts: length ts ≤ n by auto

with 4 (1) have s:
∧

s. s ∈ set ss =⇒ ?e s (Fun g ts) by simp
show ?e (Fun f ss) (Fun g ts)
proof (cases ∃ s ∈ set ss. snd (rpo pr prl c n s (Fun g ts)))

case True with s show ?thesis by simp
next

case False note oFalse = this
with s have oFalse2 : ¬ (∃ s ∈ set ss. snd (rpo-unbounded ?pr c s (Fun g

ts)))
by simp

obtain prns prs where Hsns: pr (f ,length ss) (g,length ts) = (prs, prns)
by force

with bt 4 (2)[OF oFalse]
have t:

∧
t. t ∈ set ts =⇒ ?e (Fun f ss) t by force

27

show ?thesis
proof (cases prns ∧ (∀ t∈set ts. fst (rpo pr prl c n (Fun f ss) t)))

case False
show ?thesis
proof (cases prns)

case False then show ?thesis by (simp add: oFalse oFalse2 Hsns)
next

case True
with False have Hf1 : ¬ (∀ t∈set ts. fst (rpo pr prl c n (Fun f ss) t))

by simp
with t have Hf2 : ¬ (∀ t∈set ts. fst (rpo-unbounded ?pr c (Fun f ss) t))

by auto
show ?thesis by (simp add: oFalse oFalse2 Hf1 Hf2)

qed
next

case True
then have prns: prns and Hts: ∀ t∈set ts. fst (rpo pr prl c n (Fun f ss)

t) by auto
from Hts and t have Hts2 : ∀ t∈set ts. fst (rpo-unbounded ?pr c (Fun f

ss) t) by auto
show ?thesis
proof (cases prs)
case True then show ?thesis by (simp add: oFalse oFalse2 Hsns prns

Hts Hts2)
next

case False note prs = this
show ?thesis
proof (cases c (f ,length ss) = c (g,length ts))

case False then show ?thesis
by (cases c (f ,length ss), simp-all add: oFalse oFalse2 Hsns prns

Hts Hts2)
next

case True note cfg = this
show ?thesis
proof (cases c (f ,length ss))

case Mul note cf = this
with cfg have cg: c (g,length ts) = Mul by simp
{

fix x y
assume x-in-ss: x ∈ set ss and y-in-ts: y ∈ set ts
have rpo pr prl c n x y = rpo-unbounded ?pr c x y

by (rule 4 (4)[OF oFalse Hsns[symmetric] refl - prs - conjI [OF
cf cg] x-in-ss y-in-ts, rule-format],

insert prns Hts bs[OF x-in-ss] bt[OF y-in-ts] cf cg, auto)
}
with mul-ext-cong[of ss ss ts ts]
have mul-ext (rpo pr prl c n) ss ts = mul-ext (rpo-unbounded ?pr

c) ss ts
by metis

28

then show ?thesis
by (simp add: oFalse oFalse2 Hsns prns Hts Hts2 cf cg)

next
case Lex note cf = this
then have ncf : c (f ,length ss) 6= Mul by simp
from cf cfg have cg: c (g,length ts) = Lex by simp
{

fix i
assume iss: i < length ss and its: i < length ts
from nth-mem-mset[OF iss] and in-multiset-in-set
have in-ss: ss ! i ∈ set ss by force
from nth-mem-mset[OF its] and in-multiset-in-set
have in-ts: ts ! i ∈ set ts by force
from 4 (3)[OF oFalse Hsns[symmetric] refl - prs conjI [OF cf cg]

iss its]
prns Hts bs[OF in-ss] bt[OF in-ts]

have rpo pr prl c n (ss ! i) (ts ! i) = rpo-unbounded ?pr c (ss ! i)
(ts ! i)

by simp
}
with lex-ext-cong[of ss ss n n ts ts]
have lex-ext (rpo pr prl c n) n ss ts
= lex-ext (rpo-unbounded ?pr c) n ss ts by metis
then have lex-ext (rpo pr prl c n) n ss ts = lex-ext-unbounded

(rpo-unbounded ?pr c) ss ts
by (simp add: lex-ext-to-lex-ext-unbounded[OF ss ts, of rpo-unbounded

?pr c])
then show ?thesis

by (simp add: oFalse oFalse2 Hsns prns prs Hts Hts2 cf cg)
qed

qed
qed

qed
qed

qed
qed auto

}
then show ?thesis using assms by simp

qed

end

6 A Memoized Implementation of RPO
We derive a memoized RPO implementation from the memoized WPO im-
plementation
theory RPO-Mem-Impl

imports

29

RPO-Unbounded
WPO-Mem-Impl

begin

definition rpo-mem :: (′f × nat ⇒ ′f × nat ⇒ bool × bool) × (′f × nat ⇒ bool)
⇒ (′f × nat ⇒ order-tag) ⇒ - where
[code del]: rpo-mem pr c mem st =
wpo-mem (fst pr) (snd pr) False (λ -. False) (λ - -. False) (λ - -. True) full-status

c mem st

definition rpo-main :: (′f × nat ⇒ ′f × nat ⇒ bool × bool) × (′f × nat ⇒ bool)

⇒ (′f × nat ⇒ order-tag) ⇒ - where
[code del]: rpo-main pr c mem st =
wpo-main (fst pr) (snd pr) False (λ -. False) (λ - -. False) (λ - -. True) full-status

c mem st

lemma rpo-mem-code[code]: rpo-mem pr c mem (s,t) =
(let

i = index s;
j = index t

in
(case Mapping.lookup mem (i,j) of

Some res ⇒ (res, mem)
| None ⇒ case rpo-main pr c mem (s,t)

of (res, mem-new) ⇒ (res, Mapping.update (i,j) res mem-new)))
unfolding rpo-mem-def rpo-main-def wpo-mem.simps ..

lemma rpo-main-code[code]: rpo-main pr c mem (s,t) = (case s of
Var x ⇒ ((False,
(case t of

Var y ⇒ name-of x = name-of y
| Fun g ts ⇒ ts = [] ∧ snd pr (name-of g, 0))), mem)

| Fun f ss ⇒
let ff = (name-of f , length ss) in
(case exists-mem (λ s ′. (s ′,t)) (rpo-mem pr c) snd mem ss of
(sub-result, mem-out-1) ⇒

if sub-result then ((True, True), mem-out-1)
else
(case t of

Var - ⇒ ((False, False), mem-out-1)
| Fun g ts ⇒

let gg = (name-of g, length ts) in
(case fst pr ff gg of (prs, prns) ⇒

if prns then
(case forall-mem (λ t ′. (s,t ′)) (rpo-mem pr c) fst mem-out-1 ts of
(sub-result, mem-out-2) ⇒
if sub-result then

if prs then ((True, True), mem-out-2)

30

else
let cf = c ff ; cg = c gg in
if cf = Lex ∧ cg = Lex then lex-ext-unbounded-mem (rpo-mem

pr c) mem-out-2 ss ts
else if cf = Mul ∧ cg = Mul then mul-ext-mem (rpo-mem pr

c) mem-out-2 ss ts
else if ts = [] then ((ss 6= [], True), mem-out-2)
else ((False, False), mem-out-2)

else ((False, False), mem-out-2)) else ((False,False), mem-out-1))
)

)
)

unfolding rpo-main-def rpo-mem-def wpo-main.simps Let-def if-False if-True
unfolding rpo-main-def [symmetric] rpo-mem-def [symmetric]
by (cases s; cases t, auto simp: map-nth split: prod.splits)

declare [[code drop: rpo-unbounded]]

lemma rpo-unbounded-memoized-code[code]: rpo-unbounded pr c s t = fst (rpo-mem
pr c Mapping.empty (index-term s, index-term t))
unfolding rpo-mem-def wpo-mem-impl-def [symmetric] wpo-ub-memoized-code[symmetric]

proof (induct pr c s t rule: rpo-unbounded.induct)
case (1 pr c x y)
then show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - - - - - - - -

Var x Var y]
by simp

next
case (2 pr c x g ts)
then show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - - - - - - - -

Var x Fun g ts] term.simps
by auto

next
case (3 pr c f ss y)
then show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - - - - - - - -

Fun f ss Var y] term.simps
Let-def by (auto simp: set-conv-nth)

next
case (4 pr c f ss g ts)
obtain prs prns where pr : fst pr (f , length ss) (g, length ts) = (prs,prns) by

force
show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - - - - - - - - Fun f

ss Fun g ts] term.simps
if-False Let-def if-True pr split

proof (rule sym, intro if-cong[OF - refl if-cong[OF - if-cong[OF refl refl] refl]],
goal-cases)

case 1
show ?case using 4 (1) by (auto simp: set-conv-nth)

next
case 2

31

show ?case using 4 (2)[unfolded pr , OF 2 refl] by (auto simp: set-conv-nth)
next

case 3
note IH = 4 (3−)[unfolded pr , OF 3 (1) refl 3 (2−3)]
let ?cf = c (f , length ss)
let ?cg = c (g, length ts)
consider (Lex) ?cf = Lex ?cg = Lex | (Mul) ?cf = Mul ?cg = Mul | (Diff)

?cf 6= ?cg
by (cases ?cf ; cases ?cg, auto)

thus ?case
proof cases

case Lex
hence ?cf = ?cg and ?cf 6= Mul by auto
note IH = IH (2)[OF this]
from Lex have id: (?cf = Lex ∧ ?cg = Lex) = True (?cf = ?cg) = True (?cf

= Mul) = False by auto
show ?thesis unfolding id if-True if-False using IH

by (intro lex-ext-unbounded-cong, auto intro: nth-equalityI)
next

case Mul
hence ?cf = ?cg and ?cf = Mul by auto
note IH = IH (1)[OF this]
from Mul have id: (?cf = Lex ∧ ?cg = Lex) = False (?cf = Mul ∧ ?cg =

Mul) = True
(?cf = ?cg) = True (?cf = Mul) = True by auto

show ?thesis unfolding id(1−3) if-True if-False unfolding id(4) if-True
using IH

by (intro mul-ext-cong[OF arg-cong[of - - mset] arg-cong[of - - mset]])
(auto intro: nth-equalityI)

qed auto
qed

qed

end

References
[1] N. Dershowitz. Termination of rewriting. J. Symb. Comput.,

3(1/2):69–116, 1987.

[2] C. Sternagel, R. Thiemann, and A. Yamada. A formalization of weighted
path orders and recursive path orders. Archive of Formal Proofs, Septem-
ber 2021. https://isa-afp.org/entries/Weighted_Path_Order.html, For-
mal proof development.

[3] R. Thiemann, J. Schöpf, C. Sternagel, and A. Yamada. Certifying the
weighted path order (invited talk). In Z. M. Ariola, editor, 5th Inter-
national Conference on Formal Structures for Computation and Deduc-

32

https://isa-afp.org/entries/Weighted_Path_Order.html

tion, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Confer-
ence), volume 167 of LIPIcs, pages 4:1–4:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[4] A. Yamada, K. Kusakari, and T. Sakabe. Unifying the Knuth-Bendix,
recursive path and polynomial orders. In R. Peña and T. Schrijvers, edi-
tors, 15th International Symposium on Principles and Practice of Declar-
ative Programming, PPDP ’13, Madrid, Spain, September 16-18, 2013,
pages 181–192. ACM, 2013.

[5] A. Yamada, K. Kusakari, and T. Sakabe. A unified ordering for termi-
nation proving. Sci. Comput. Program., 111:110–134, 2015.

33

	Indexed Terms
	Memoized Functions on Lists
	Congruence Rules
	Connection to Original Functions

	An Approximation of WPO
	A Memoized Implementation of WPO
	An Unbounded Variant of RPO
	A Memoized Implementation of RPO

