
Efficient Mergesort

Christian Sternagel

March 17, 2025

Abstract

We provide a formalization of the mergesort algorithm as used in
GHC’s Data.List module, proving correctness and stability. Further-
more, experimental data suggests that generated (Haskell-)code for
this algorithm is much faster than for previous algorithms available in
the Isabelle distribution.

theory Efficient-Sort
imports HOL−Library.Multiset

begin

1 GHC Version of Mergesort

In the following we show that the mergesort implementation used in GHC
(see http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.
html#sort) is a correct and stable sorting algorithm. Furthermore, experi-
mental data suggests that generated code for this implementation is much
more efficient than for the implementation provided by HOL−Library.Multiset.
A high-level overview of an older version of this formalization as well as
some experimental data is to be found in [1].

1.1 Definition of Natural Mergesort
context

fixes key :: ′a ⇒ ′k::linorder
begin

Split a list into chunks of ascending and descending parts, where descending
parts are reversed on the fly. Thus, the result is a list of sorted lists.
fun sequences :: ′a list ⇒ ′a list list

and asc :: ′a ⇒ (′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list
and desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list
where

sequences (a # b # xs) =

1

http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.html#sort
http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.html#sort

(if key a > key b then desc b [a] xs else asc b ((#) a) xs)
| sequences [x] = [[x]]
| sequences [] = []
| asc a as (b # bs) =

(if key a ≤ key b then asc b (λys. as (a # ys)) bs
else as [a] # sequences (b # bs))

| asc a as [] = [as [a]]
| desc a as (b # bs) =

(if key a > key b then desc b (a # as) bs
else (a # as) # sequences (b # bs))

| desc a as [] = [a # as]

fun merge :: ′a list ⇒ ′a list ⇒ ′a list
where

merge (a # as) (b # bs) =
(if key a > key b then b # merge (a # as) bs else a # merge as (b # bs))

| merge [] bs = bs
| merge as [] = as

fun merge-pairs :: ′a list list ⇒ ′a list list
where

merge-pairs (a # b # xs) = merge a b # merge-pairs xs
| merge-pairs xs = xs

lemma length-merge [simp]:
length (merge xs ys) = length xs + length ys
〈proof 〉

lemma length-merge-pairs [simp]:
length (merge-pairs xs) = (1 + length xs) div 2
〈proof 〉

fun merge-all :: ′a list list ⇒ ′a list
where

merge-all [] = []
| merge-all [x] = x
| merge-all xs = merge-all (merge-pairs xs)

fun msort-key :: ′a list ⇒ ′a list
where

msort-key xs = merge-all (sequences xs)

1.2 The Functional Argument of local.asc

f is a function that only adds some prefix to a given list.
definition ascP f = (∀ xs. f xs = f [] @ xs)

lemma ascP-Cons [simp]: ascP ((#) x) 〈proof 〉

2

lemma ascP-comp-append-Cons [simp]:
ascP (λxs. f [] @ x # xs)
〈proof 〉

lemma ascP-f-Cons:
assumes ascP f
shows f (x # xs) = f [] @ x # xs
〈proof 〉

lemma ascP-comp-Cons [simp]:
assumes ascP f
shows ascP (λys. f (x # ys))
〈proof 〉

lemma ascP-f-singleton:
assumes ascP f
shows f [x] = f [] @ [x]
〈proof 〉

1.3 Facts about Lengths
lemma

shows length-sequences: length (sequences xs) ≤ length xs
and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
and length-desc: length (desc a xs ys) ≤ 1 + length ys
〈proof 〉

lemma length-concat-merge-pairs [simp]:
length (concat (merge-pairs xss)) = length (concat xss)
〈proof 〉

1.4 Functional Correctness
lemma mset-merge [simp]:

mset (merge xs ys) = mset xs + mset ys
〈proof 〉

lemma set-merge [simp]:
set (merge xs ys) = set xs ∪ set ys
〈proof 〉

lemma mset-concat-merge-pairs [simp]:
mset (concat (merge-pairs xs)) = mset (concat xs)
〈proof 〉

lemma set-concat-merge-pairs [simp]:
set (concat (merge-pairs xs)) = set (concat xs)
〈proof 〉

lemma mset-merge-all [simp]:

3

mset (merge-all xs) = mset (concat xs)
〈proof 〉

lemma set-merge-all [simp]:
set (merge-all xs) = set (concat xs)
〈proof 〉

lemma
shows mset-seqeuences [simp]: mset (concat (sequences xs)) = mset xs

and mset-asc: ascP f =⇒ mset (concat (asc x f ys)) = {#x#} + mset (f [])
+ mset ys

and mset-desc: mset (concat (desc x xs ys)) = {#x#} + mset xs + mset ys
〈proof 〉

lemma mset-msort-key:
mset (msort-key xs) = mset xs
〈proof 〉

lemma sorted-merge [simp]:
assumes sorted (map key xs) and sorted (map key ys)
shows sorted (map key (merge xs ys))
〈proof 〉

lemma sorted-merge-pairs [simp]:
assumes ∀ x∈set xs. sorted (map key x)
shows ∀ x∈set (merge-pairs xs). sorted (map key x)
〈proof 〉

lemma sorted-merge-all:
assumes ∀ x∈set xs. sorted (map key x)
shows sorted (map key (merge-all xs))
〈proof 〉

lemma
shows sorted-sequences: ∀ x ∈ set (sequences xs). sorted (map key x)

and sorted-asc: ascP f =⇒ sorted (map key (f [])) =⇒ ∀ x∈set (f []). key x ≤
key a =⇒ ∀ x∈set (asc a f ys). sorted (map key x)

and sorted-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒ ∀ x∈set
(desc a xs ys). sorted (map key x)
〈proof 〉

lemma sorted-msort-key:
sorted (map key (msort-key xs))
〈proof 〉

1.5 Stability
lemma

shows filter-by-key-sequences [simp]: [y←concat (sequences xs). key y = k] =

4

[y←xs. key y = k]
and filter-by-key-asc: ascP f =⇒ [y←concat (asc a f ys). key y = k] = [y←f

[a] @ ys. key y = k]
and filter-by-key-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒

[y←concat (desc a xs ys). key y = k] = [y←a # xs @ ys. key y = k]
〈proof 〉

lemma filter-by-key-merge-is-append [simp]:
assumes sorted (map key xs)
shows [y←merge xs ys. key y = k] = [y←xs. key y = k] @ [y←ys. key y = k]
〈proof 〉

lemma filter-by-key-merge-pairs [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←concat (merge-pairs xss). key y = k] = [y←concat xss. key y = k]
〈proof 〉

lemma filter-by-key-merge-all [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←merge-all xss. key y = k] = [y←concat xss. key y = k]
〈proof 〉

lemma filter-by-key-merge-all-sequences [simp]:
[x←merge-all (sequences xs) . key x = k] = [x←xs . key x = k]
〈proof 〉

lemma msort-key-stable:
[x←msort-key xs. key x = k] = [x←xs. key x = k]
〈proof 〉

lemma sort-key-msort-key-conv:
sort-key key = msort-key
〈proof 〉

end

Replace existing code equations for sort-key by msort-key.
declare sort-key-by-quicksort-code [code del]
declare sort-key-msort-key-conv [code]

end

theory Mergesort-Complexity
imports

Efficient-Sort
Complex-Main

begin

5

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
〈proof 〉

2 Counting the Number of Comparisons
context

fixes key :: ′a ⇒ ′k::linorder
begin

fun c-merge :: ′a list ⇒ ′a list ⇒ nat
where

c-merge (x # xs) (y # ys) =
1 + (if key y < key x then c-merge (x # xs) ys else c-merge xs (y # ys))

| c-merge [] ys = 0
| c-merge xs [] = 0

fun c-merge-pairs :: ′a list list ⇒ nat
where

c-merge-pairs (xs # ys # zss) = c-merge xs ys + c-merge-pairs zss
| c-merge-pairs [] = 0
| c-merge-pairs [x] = 0

fun c-merge-all :: ′a list list ⇒ nat
where

c-merge-all [] = 0
| c-merge-all [x] = 0
| c-merge-all xss = c-merge-pairs xss + c-merge-all (merge-pairs key xss)

fun c-sequences :: ′a list ⇒ nat
and c-asc :: ′a ⇒ ′a list ⇒ nat
and c-desc :: ′a ⇒ ′a list ⇒ nat
where

c-sequences (x # y # zs) = 1 + (if key y < key x then c-desc y zs else c-asc y
zs)
| c-sequences [] = 0
| c-sequences [x] = 0
| c-asc x (y # ys) = 1 + (if ¬ key y < key x then c-asc y ys else c-sequences (y

ys))
| c-asc x [] = 0
| c-desc x (y # ys) = 1 + (if key y < key x then c-desc y ys else c-sequences (y

ys))
| c-desc x [] = 0

fun c-msort :: ′a list ⇒ nat
where

c-msort xs = c-sequences xs + c-merge-all (sequences key xs)

lemma c-merge:

6

c-merge xs ys ≤ length xs + length ys
〈proof 〉

lemma c-merge-pairs:
c-merge-pairs xss ≤ length (concat xss)
〈proof 〉

lemma c-merge-all:
c-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e
〈proof 〉

lemma
shows c-sequences: c-sequences xs ≤ length xs − 1

and c-asc: c-asc x ys ≤ length ys
and c-desc: c-desc x ys ≤ length ys
〈proof 〉

lemma
shows length-concat-sequences [simp]: length (concat (sequences key xs)) = length

xs
and length-concat-asc: ascP f =⇒ length (concat (asc key a f ys)) = 1 + length

(f []) + length ys
and length-concat-desc: length (concat (desc key a xs ys)) = 1 + length xs +

length ys
〈proof 〉

lemma
shows sequences-ne: xs 6= [] =⇒ sequences key xs 6= []

and asc-ne: ascP f =⇒ asc key a f ys 6= []
and desc-ne: desc key a xs ys 6= []
〈proof 〉

lemma c-msort:
assumes [simp]: length xs = n
shows c-msort xs ≤ n + n ∗ dlog 2 ne
〈proof 〉

end

end

theory Natural-Mergesort
imports HOL−Data-Structures.Sorting

begin

2.1 Auxiliary Results
lemma C-merge-adj ′:

7

C-merge-adj xss ≤ length (concat xss)
〈proof 〉

lemma length-concat-merge-adj:
length (concat (merge-adj xss)) = length (concat xss)
〈proof 〉

lemma C-merge-all ′:
C-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e
〈proof 〉

2.2 Definition of Natural Mergesort

Partition input into ascending and descending subsequences. (The latter are
reverted on the fly.)
fun runs :: (′a::linorder) list ⇒ ′a list list and

asc :: ′a ⇒ (′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list and
desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list

where
runs (a # b # xs) = (if a > b then desc b [a] xs else asc b ((#) a) xs)
| runs [x] = [[x]]
| runs [] = []
| asc a as (b # bs) = (if ¬ a > b then asc b (as ◦ (#) a) bs else as [a] # runs

(b # bs))
| asc a as [] = [as [a]]
| desc a as (b # bs) = (if a > b then desc b (a # as) bs else (a # as) # runs (b

bs))
| desc a as [] = [a # as]

definition nmsort :: (′a::linorder) list ⇒ ′a list
where

nmsort xs = merge-all (runs xs)

2.3 Functional Correctness
definition ascP f = (∀ xs ys. f (xs @ ys) = f xs @ ys)

lemma ascP-Cons [simp]: ascP ((#) x) 〈proof 〉

lemma ascP-comp-Cons [simp]: ascP f =⇒ ascP (f ◦ (#) x)
〈proof 〉

lemma ascP-simp [simp]:
assumes ascP f
shows f [x] = f [] @ [x]
〈proof 〉

lemma
shows mset-runs:

∑
(image-mset mset (mset (runs xs))) = mset xs

8

and mset-asc: ascP f =⇒
∑

(image-mset mset (mset (asc x f ys))) = {#x#}
+ mset (f []) + mset ys

and mset-desc:
∑

(image-mset mset (mset (desc x xs ys))) = {#x#} + mset
xs + mset ys
〈proof 〉

lemma mset-nmsort:
mset (nmsort xs) = mset xs
〈proof 〉

lemma
shows sorted-runs: ∀ x∈set (runs xs). sorted x

and sorted-asc: ascP f =⇒ sorted (f []) =⇒ ∀ x∈set (f []). x ≤ a =⇒ ∀ x∈set
(asc a f ys). sorted x

and sorted-desc: sorted xs =⇒ ∀ x∈set xs. a ≤ x =⇒ ∀ x∈set (desc a xs ys).
sorted x
〈proof 〉

lemma sorted-nmsort:
sorted (nmsort xs)
〈proof 〉

2.4 Running Time Analysis
fun C-runs :: (′a::linorder) list ⇒ nat and

C-asc :: (′a::linorder) ⇒ ′a list ⇒ nat and
C-desc :: (′a::linorder) ⇒ ′a list ⇒ nat

where
C-runs (a # b # xs) = 1 + (if a > b then C-desc b xs else C-asc b xs)
| C-runs xs = 0
| C-asc a (b # bs) = 1 + (if ¬ a > b then C-asc b bs else C-runs (b # bs))
| C-asc a [] = 0
| C-desc a (b # bs) = 1 + (if a > b then C-desc b bs else C-runs (b # bs))
| C-desc a [] = 0

fun C-nmsort :: (′a::linorder) list ⇒ nat
where

C-nmsort xs = C-runs xs + C-merge-all (runs xs)

lemma
fixes a :: ′a::linorder and xs ys :: ′a list
shows C-runs: C-runs xs ≤ length xs − 1

and C-asc: C-asc a ys ≤ length ys
and C-desc: C-desc a ys ≤ length ys
〈proof 〉

lemma
shows length-runs: length (runs xs) ≤ length xs

and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys

9

and length-desc: length (desc a xs ys) ≤ 1 + length ys
〈proof 〉

lemma
shows length-concat-runs [simp]: length (concat (runs xs)) = length xs

and length-concat-asc: ascP f =⇒ length (concat (asc a f ys)) = 1 + length (f
[]) + length ys

and length-concat-desc: length (concat (desc a xs ys)) = 1 + length xs + length
ys
〈proof 〉

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
〈proof 〉

lemma
shows runs-ne: xs 6= [] =⇒ runs xs 6= []

and ascP f =⇒ asc a f ys 6= []
and desc a xs ys 6= []
〈proof 〉

lemma C-nmsort:
assumes [simp]: length xs = n
shows C-nmsort xs ≤ n + n ∗ dlog 2 ne
〈proof 〉

end

References

[1] Christian Sternagel. Proof pearl - a mechanized proof of GHC’s
mergesort. Journal of Automated Reasoning, 2012. doi:10.1007/
s10817-012-9260-7.

10

http://dx.doi.org/10.1007/s10817-012-9260-7
http://dx.doi.org/10.1007/s10817-012-9260-7

	GHC Version of Mergesort
	Definition of Natural Mergesort
	The Functional Argument of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.asc
	Facts about Lengths
	Functional Correctness
	Stability

	Counting the Number of Comparisons
	Auxiliary Results
	Definition of Natural Mergesort
	Functional Correctness
	Running Time Analysis

	Bibliography

