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Abstract

We provide a formalization of the mergesort algorithm as used in
GHC’s Data.List module, proving correctness and stability. Further-
more, experimental data suggests that generated (Haskell-)code for
this algorithm is much faster than for previous algorithms available in
the Isabelle distribution.

theory Efficient-Sort
imports HOL−Library.Multiset

begin

1 GHC Version of Mergesort

In the following we show that the mergesort implementation used in GHC
(see http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.
html#sort) is a correct and stable sorting algorithm. Furthermore, experi-
mental data suggests that generated code for this implementation is much
more efficient than for the implementation provided by HOL−Library.Multiset.
A high-level overview of an older version of this formalization as well as
some experimental data is to be found in [1].

1.1 Definition of Natural Mergesort
context

fixes key :: ′a ⇒ ′k::linorder
begin

Split a list into chunks of ascending and descending parts, where descending
parts are reversed on the fly. Thus, the result is a list of sorted lists.
fun sequences :: ′a list ⇒ ′a list list

and asc :: ′a ⇒ ( ′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list
and desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list
where

sequences (a # b # xs) =
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(if key a > key b then desc b [a] xs else asc b ((#) a) xs)
| sequences [x] = [[x]]
| sequences [] = []
| asc a as (b # bs) =

(if key a ≤ key b then asc b (λys. as (a # ys)) bs
else as [a] # sequences (b # bs))

| asc a as [] = [as [a]]
| desc a as (b # bs) =

(if key a > key b then desc b (a # as) bs
else (a # as) # sequences (b # bs))

| desc a as [] = [a # as]

fun merge :: ′a list ⇒ ′a list ⇒ ′a list
where

merge (a # as) (b # bs) =
(if key a > key b then b # merge (a # as) bs else a # merge as (b # bs))

| merge [] bs = bs
| merge as [] = as

fun merge-pairs :: ′a list list ⇒ ′a list list
where

merge-pairs (a # b # xs) = merge a b # merge-pairs xs
| merge-pairs xs = xs

lemma length-merge [simp]:
length (merge xs ys) = length xs + length ys
〈proof 〉

lemma length-merge-pairs [simp]:
length (merge-pairs xs) = (1 + length xs) div 2
〈proof 〉

fun merge-all :: ′a list list ⇒ ′a list
where

merge-all [] = []
| merge-all [x] = x
| merge-all xs = merge-all (merge-pairs xs)

fun msort-key :: ′a list ⇒ ′a list
where

msort-key xs = merge-all (sequences xs)

1.2 The Functional Argument of local.asc

f is a function that only adds some prefix to a given list.
definition ascP f = (∀ xs. f xs = f [] @ xs)

lemma ascP-Cons [simp]: ascP ((#) x) 〈proof 〉
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lemma ascP-comp-append-Cons [simp]:
ascP (λxs. f [] @ x # xs)
〈proof 〉

lemma ascP-f-Cons:
assumes ascP f
shows f (x # xs) = f [] @ x # xs
〈proof 〉

lemma ascP-comp-Cons [simp]:
assumes ascP f
shows ascP (λys. f (x # ys))
〈proof 〉

lemma ascP-f-singleton:
assumes ascP f
shows f [x] = f [] @ [x]
〈proof 〉

1.3 Facts about Lengths
lemma

shows length-sequences: length (sequences xs) ≤ length xs
and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
and length-desc: length (desc a xs ys) ≤ 1 + length ys
〈proof 〉

lemma length-concat-merge-pairs [simp]:
length (concat (merge-pairs xss)) = length (concat xss)
〈proof 〉

1.4 Functional Correctness
lemma mset-merge [simp]:

mset (merge xs ys) = mset xs + mset ys
〈proof 〉

lemma set-merge [simp]:
set (merge xs ys) = set xs ∪ set ys
〈proof 〉

lemma mset-concat-merge-pairs [simp]:
mset (concat (merge-pairs xs)) = mset (concat xs)
〈proof 〉

lemma set-concat-merge-pairs [simp]:
set (concat (merge-pairs xs)) = set (concat xs)
〈proof 〉

lemma mset-merge-all [simp]:
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mset (merge-all xs) = mset (concat xs)
〈proof 〉

lemma set-merge-all [simp]:
set (merge-all xs) = set (concat xs)
〈proof 〉

lemma
shows mset-seqeuences [simp]: mset (concat (sequences xs)) = mset xs

and mset-asc: ascP f =⇒ mset (concat (asc x f ys)) = {#x#} + mset (f [])
+ mset ys

and mset-desc: mset (concat (desc x xs ys)) = {#x#} + mset xs + mset ys
〈proof 〉

lemma mset-msort-key:
mset (msort-key xs) = mset xs
〈proof 〉

lemma sorted-merge [simp]:
assumes sorted (map key xs) and sorted (map key ys)
shows sorted (map key (merge xs ys))
〈proof 〉

lemma sorted-merge-pairs [simp]:
assumes ∀ x∈set xs. sorted (map key x)
shows ∀ x∈set (merge-pairs xs). sorted (map key x)
〈proof 〉

lemma sorted-merge-all:
assumes ∀ x∈set xs. sorted (map key x)
shows sorted (map key (merge-all xs))
〈proof 〉

lemma
shows sorted-sequences: ∀ x ∈ set (sequences xs). sorted (map key x)

and sorted-asc: ascP f =⇒ sorted (map key (f [])) =⇒ ∀ x∈set (f []). key x ≤
key a =⇒ ∀ x∈set (asc a f ys). sorted (map key x)

and sorted-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒ ∀ x∈set
(desc a xs ys). sorted (map key x)
〈proof 〉

lemma sorted-msort-key:
sorted (map key (msort-key xs))
〈proof 〉

1.5 Stability
lemma

shows filter-by-key-sequences [simp]: [y←concat (sequences xs). key y = k] =
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[y←xs. key y = k]
and filter-by-key-asc: ascP f =⇒ [y←concat (asc a f ys). key y = k] = [y←f

[a] @ ys. key y = k]
and filter-by-key-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒

[y←concat (desc a xs ys). key y = k] = [y←a # xs @ ys. key y = k]
〈proof 〉

lemma filter-by-key-merge-is-append [simp]:
assumes sorted (map key xs)
shows [y←merge xs ys. key y = k] = [y←xs. key y = k] @ [y←ys. key y = k]
〈proof 〉

lemma filter-by-key-merge-pairs [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←concat (merge-pairs xss). key y = k] = [y←concat xss. key y = k]
〈proof 〉

lemma filter-by-key-merge-all [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←merge-all xss. key y = k] = [y←concat xss. key y = k]
〈proof 〉

lemma filter-by-key-merge-all-sequences [simp]:
[x←merge-all (sequences xs) . key x = k] = [x←xs . key x = k]
〈proof 〉

lemma msort-key-stable:
[x←msort-key xs. key x = k] = [x←xs. key x = k]
〈proof 〉

lemma sort-key-msort-key-conv:
sort-key key = msort-key
〈proof 〉

end

Replace existing code equations for sort-key by msort-key.
declare sort-key-by-quicksort-code [code del]
declare sort-key-msort-key-conv [code]

end

theory Mergesort-Complexity
imports

Efficient-Sort
Complex-Main

begin
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lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
〈proof 〉

2 Counting the Number of Comparisons
context

fixes key :: ′a ⇒ ′k::linorder
begin

fun c-merge :: ′a list ⇒ ′a list ⇒ nat
where

c-merge (x # xs) (y # ys) =
1 + (if key y < key x then c-merge (x # xs) ys else c-merge xs (y # ys))

| c-merge [] ys = 0
| c-merge xs [] = 0

fun c-merge-pairs :: ′a list list ⇒ nat
where

c-merge-pairs (xs # ys # zss) = c-merge xs ys + c-merge-pairs zss
| c-merge-pairs [] = 0
| c-merge-pairs [x] = 0

fun c-merge-all :: ′a list list ⇒ nat
where

c-merge-all [] = 0
| c-merge-all [x] = 0
| c-merge-all xss = c-merge-pairs xss + c-merge-all (merge-pairs key xss)

fun c-sequences :: ′a list ⇒ nat
and c-asc :: ′a ⇒ ′a list ⇒ nat
and c-desc :: ′a ⇒ ′a list ⇒ nat
where

c-sequences (x # y # zs) = 1 + (if key y < key x then c-desc y zs else c-asc y
zs)
| c-sequences [] = 0
| c-sequences [x] = 0
| c-asc x (y # ys) = 1 + (if ¬ key y < key x then c-asc y ys else c-sequences (y

# ys))
| c-asc x [] = 0
| c-desc x (y # ys) = 1 + (if key y < key x then c-desc y ys else c-sequences (y

# ys))
| c-desc x [] = 0

fun c-msort :: ′a list ⇒ nat
where

c-msort xs = c-sequences xs + c-merge-all (sequences key xs)

lemma c-merge:
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c-merge xs ys ≤ length xs + length ys
〈proof 〉

lemma c-merge-pairs:
c-merge-pairs xss ≤ length (concat xss)
〈proof 〉

lemma c-merge-all:
c-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e
〈proof 〉

lemma
shows c-sequences: c-sequences xs ≤ length xs − 1

and c-asc: c-asc x ys ≤ length ys
and c-desc: c-desc x ys ≤ length ys
〈proof 〉

lemma
shows length-concat-sequences [simp]: length (concat (sequences key xs)) = length

xs
and length-concat-asc: ascP f =⇒ length (concat (asc key a f ys)) = 1 + length

(f []) + length ys
and length-concat-desc: length (concat (desc key a xs ys)) = 1 + length xs +

length ys
〈proof 〉

lemma
shows sequences-ne: xs 6= [] =⇒ sequences key xs 6= []

and asc-ne: ascP f =⇒ asc key a f ys 6= []
and desc-ne: desc key a xs ys 6= []
〈proof 〉

lemma c-msort:
assumes [simp]: length xs = n
shows c-msort xs ≤ n + n ∗ dlog 2 ne
〈proof 〉

end

end

theory Natural-Mergesort
imports HOL−Data-Structures.Sorting

begin

2.1 Auxiliary Results
lemma C-merge-adj ′:
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C-merge-adj xss ≤ length (concat xss)
〈proof 〉

lemma length-concat-merge-adj:
length (concat (merge-adj xss)) = length (concat xss)
〈proof 〉

lemma C-merge-all ′:
C-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e
〈proof 〉

2.2 Definition of Natural Mergesort

Partition input into ascending and descending subsequences. (The latter are
reverted on the fly.)
fun runs :: ( ′a::linorder) list ⇒ ′a list list and

asc :: ′a ⇒ ( ′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list and
desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list

where
runs (a # b # xs) = (if a > b then desc b [a] xs else asc b ((#) a) xs)
| runs [x] = [[x]]
| runs [] = []
| asc a as (b # bs) = (if ¬ a > b then asc b (as ◦ (#) a) bs else as [a] # runs

(b # bs))
| asc a as [] = [as [a]]
| desc a as (b # bs) = (if a > b then desc b (a # as) bs else (a # as) # runs (b

# bs))
| desc a as [] = [a # as]

definition nmsort :: ( ′a::linorder) list ⇒ ′a list
where

nmsort xs = merge-all (runs xs)

2.3 Functional Correctness
definition ascP f = (∀ xs ys. f (xs @ ys) = f xs @ ys)

lemma ascP-Cons [simp]: ascP ((#) x) 〈proof 〉

lemma ascP-comp-Cons [simp]: ascP f =⇒ ascP (f ◦ (#) x)
〈proof 〉

lemma ascP-simp [simp]:
assumes ascP f
shows f [x] = f [] @ [x]
〈proof 〉

lemma
shows mset-runs:

∑
# (image-mset mset (mset (runs xs))) = mset xs
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and mset-asc: ascP f =⇒
∑

# (image-mset mset (mset (asc x f ys))) = {#x#}
+ mset (f []) + mset ys

and mset-desc:
∑

# (image-mset mset (mset (desc x xs ys))) = {#x#} + mset
xs + mset ys
〈proof 〉

lemma mset-nmsort:
mset (nmsort xs) = mset xs
〈proof 〉

lemma
shows sorted-runs: ∀ x∈set (runs xs). sorted x

and sorted-asc: ascP f =⇒ sorted (f []) =⇒ ∀ x∈set (f []). x ≤ a =⇒ ∀ x∈set
(asc a f ys). sorted x

and sorted-desc: sorted xs =⇒ ∀ x∈set xs. a ≤ x =⇒ ∀ x∈set (desc a xs ys).
sorted x
〈proof 〉

lemma sorted-nmsort:
sorted (nmsort xs)
〈proof 〉

2.4 Running Time Analysis
fun C-runs :: ( ′a::linorder) list ⇒ nat and

C-asc :: ( ′a::linorder) ⇒ ′a list ⇒ nat and
C-desc :: ( ′a::linorder) ⇒ ′a list ⇒ nat

where
C-runs (a # b # xs) = 1 + (if a > b then C-desc b xs else C-asc b xs)
| C-runs xs = 0
| C-asc a (b # bs) = 1 + (if ¬ a > b then C-asc b bs else C-runs (b # bs))
| C-asc a [] = 0
| C-desc a (b # bs) = 1 + (if a > b then C-desc b bs else C-runs (b # bs))
| C-desc a [] = 0

fun C-nmsort :: ( ′a::linorder) list ⇒ nat
where

C-nmsort xs = C-runs xs + C-merge-all (runs xs)

lemma
fixes a :: ′a::linorder and xs ys :: ′a list
shows C-runs: C-runs xs ≤ length xs − 1

and C-asc: C-asc a ys ≤ length ys
and C-desc: C-desc a ys ≤ length ys
〈proof 〉

lemma
shows length-runs: length (runs xs) ≤ length xs

and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
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and length-desc: length (desc a xs ys) ≤ 1 + length ys
〈proof 〉

lemma
shows length-concat-runs [simp]: length (concat (runs xs)) = length xs

and length-concat-asc: ascP f =⇒ length (concat (asc a f ys)) = 1 + length (f
[]) + length ys

and length-concat-desc: length (concat (desc a xs ys)) = 1 + length xs + length
ys
〈proof 〉

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
〈proof 〉

lemma
shows runs-ne: xs 6= [] =⇒ runs xs 6= []

and ascP f =⇒ asc a f ys 6= []
and desc a xs ys 6= []
〈proof 〉

lemma C-nmsort:
assumes [simp]: length xs = n
shows C-nmsort xs ≤ n + n ∗ dlog 2 ne
〈proof 〉

end
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