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Abstract

We provide a formalization of the mergesort algorithm as used in
GHC’s Data.List module, proving correctness and stability. Further-
more, experimental data suggests that generated (Haskell-)code for
this algorithm is much faster than for previous algorithms available in
the Isabelle distribution.

theory Efficient-Sort
imports HOL−Library.Multiset

begin

1 GHC Version of Mergesort

In the following we show that the mergesort implementation used in GHC
(see http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.
html#sort) is a correct and stable sorting algorithm. Furthermore, experi-
mental data suggests that generated code for this implementation is much
more efficient than for the implementation provided by HOL−Library.Multiset.
A high-level overview of an older version of this formalization as well as
some experimental data is to be found in [1].

1.1 Definition of Natural Mergesort
context

fixes key :: ′a ⇒ ′k::linorder
begin

Split a list into chunks of ascending and descending parts, where descending
parts are reversed on the fly. Thus, the result is a list of sorted lists.
fun sequences :: ′a list ⇒ ′a list list

and asc :: ′a ⇒ ( ′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list
and desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list
where

sequences (a # b # xs) =
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(if key a > key b then desc b [a] xs else asc b ((#) a) xs)
| sequences [x] = [[x]]
| sequences [] = []
| asc a as (b # bs) =

(if key a ≤ key b then asc b (λys. as (a # ys)) bs
else as [a] # sequences (b # bs))

| asc a as [] = [as [a]]
| desc a as (b # bs) =

(if key a > key b then desc b (a # as) bs
else (a # as) # sequences (b # bs))

| desc a as [] = [a # as]

fun merge :: ′a list ⇒ ′a list ⇒ ′a list
where

merge (a # as) (b # bs) =
(if key a > key b then b # merge (a # as) bs else a # merge as (b # bs))

| merge [] bs = bs
| merge as [] = as

fun merge-pairs :: ′a list list ⇒ ′a list list
where

merge-pairs (a # b # xs) = merge a b # merge-pairs xs
| merge-pairs xs = xs

lemma length-merge [simp]:
length (merge xs ys) = length xs + length ys
by (induct xs ys rule: merge.induct) simp-all

lemma length-merge-pairs [simp]:
length (merge-pairs xs) = (1 + length xs) div 2
by (induct xs rule: merge-pairs.induct) simp-all

fun merge-all :: ′a list list ⇒ ′a list
where

merge-all [] = []
| merge-all [x] = x
| merge-all xs = merge-all (merge-pairs xs)

fun msort-key :: ′a list ⇒ ′a list
where

msort-key xs = merge-all (sequences xs)

1.2 The Functional Argument of local.asc

f is a function that only adds some prefix to a given list.
definition ascP f = (∀ xs. f xs = f [] @ xs)

lemma ascP-Cons [simp]: ascP ((#) x) by (simp add: ascP-def )
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lemma ascP-comp-append-Cons [simp]:
ascP (λxs. f [] @ x # xs)
by (auto simp: ascP-def )

lemma ascP-f-Cons:
assumes ascP f
shows f (x # xs) = f [] @ x # xs
using ‹ascP f › [unfolded ascP-def , THEN spec, of x # xs] .

lemma ascP-comp-Cons [simp]:
assumes ascP f
shows ascP (λys. f (x # ys))

proof (unfold ascP-def , intro allI )
fix xs show f (x # xs) = f [x] @ xs

using assms by (simp add: ascP-f-Cons)
qed

lemma ascP-f-singleton:
assumes ascP f
shows f [x] = f [] @ [x]
by (rule ascP-f-Cons [OF assms])

1.3 Facts about Lengths
lemma

shows length-sequences: length (sequences xs) ≤ length xs
and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
and length-desc: length (desc a xs ys) ≤ 1 + length ys

by (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct) auto

lemma length-concat-merge-pairs [simp]:
length (concat (merge-pairs xss)) = length (concat xss)
by (induct xss rule: merge-pairs.induct) simp-all

1.4 Functional Correctness
lemma mset-merge [simp]:

mset (merge xs ys) = mset xs + mset ys
by (induct xs ys rule: merge.induct) simp-all

lemma set-merge [simp]:
set (merge xs ys) = set xs ∪ set ys
by (simp flip: set-mset-mset)

lemma mset-concat-merge-pairs [simp]:
mset (concat (merge-pairs xs)) = mset (concat xs)
by (induct xs rule: merge-pairs.induct) auto

lemma set-concat-merge-pairs [simp]:
set (concat (merge-pairs xs)) = set (concat xs)
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by (simp flip: set-mset-mset)

lemma mset-merge-all [simp]:
mset (merge-all xs) = mset (concat xs)
by (induct xs rule: merge-all.induct) simp-all

lemma set-merge-all [simp]:
set (merge-all xs) = set (concat xs)
by (simp flip: set-mset-mset)

lemma
shows mset-seqeuences [simp]: mset (concat (sequences xs)) = mset xs

and mset-asc: ascP f =⇒ mset (concat (asc x f ys)) = {#x#} + mset (f [])
+ mset ys

and mset-desc: mset (concat (desc x xs ys)) = {#x#} + mset xs + mset ys
by (induct xs and x f ys and x xs ys rule: sequences-asc-desc.induct)
(auto simp: ascP-f-singleton)

lemma mset-msort-key:
mset (msort-key xs) = mset xs
by (auto)

lemma sorted-merge [simp]:
assumes sorted (map key xs) and sorted (map key ys)
shows sorted (map key (merge xs ys))
using assms by (induct xs ys rule: merge.induct) (auto)

lemma sorted-merge-pairs [simp]:
assumes ∀ x∈set xs. sorted (map key x)
shows ∀ x∈set (merge-pairs xs). sorted (map key x)
using assms by (induct xs rule: merge-pairs.induct) simp-all

lemma sorted-merge-all:
assumes ∀ x∈set xs. sorted (map key x)
shows sorted (map key (merge-all xs))
using assms by (induct xs rule: merge-all.induct) simp-all

lemma
shows sorted-sequences: ∀ x ∈ set (sequences xs). sorted (map key x)

and sorted-asc: ascP f =⇒ sorted (map key (f [])) =⇒ ∀ x∈set (f []). key x ≤
key a =⇒ ∀ x∈set (asc a f ys). sorted (map key x)

and sorted-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒ ∀ x∈set
(desc a xs ys). sorted (map key x)

by (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct)
(auto simp: ascP-f-singleton sorted-append not-less dest: order-trans, fastforce)

lemma sorted-msort-key:
sorted (map key (msort-key xs))
by (unfold msort-key.simps) (intro sorted-merge-all sorted-sequences)
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1.5 Stability
lemma

shows filter-by-key-sequences [simp]: [y←concat (sequences xs). key y = k] =
[y←xs. key y = k]

and filter-by-key-asc: ascP f =⇒ [y←concat (asc a f ys). key y = k] = [y←f
[a] @ ys. key y = k]

and filter-by-key-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒
[y←concat (desc a xs ys). key y = k] = [y←a # xs @ ys. key y = k]
proof (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct)

case (4 a f b bs)
then show ?case

by (auto simp: o-def ascP-f-Cons [where f = f ])
next

case (6 a as b bs)
then show ?case
proof (cases key b < key a)

case True
with 6 have [y←concat (desc b (a # as) bs). key y = k] = [y←b # (a # as)

@ bs. key y = k]
by (auto simp: less-le order-trans)

then show ?thesis
using True and 6
by (cases key a = k, cases key b = k)
(auto simp: Cons-eq-append-conv intro!: filter-False)

qed auto
qed auto

lemma filter-by-key-merge-is-append [simp]:
assumes sorted (map key xs)
shows [y←merge xs ys. key y = k] = [y←xs. key y = k] @ [y←ys. key y = k]
using assms
by (induct xs ys rule: merge.induct) (auto simp: Cons-eq-append-conv leD intro!:

filter-False)

lemma filter-by-key-merge-pairs [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←concat (merge-pairs xss). key y = k] = [y←concat xss. key y = k]
using assms by (induct xss rule: merge-pairs.induct) simp-all

lemma filter-by-key-merge-all [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←merge-all xss. key y = k] = [y←concat xss. key y = k]
using assms by (induct xss rule: merge-all.induct) simp-all

lemma filter-by-key-merge-all-sequences [simp]:
[x←merge-all (sequences xs) . key x = k] = [x←xs . key x = k]
using sorted-sequences [of xs] by simp

lemma msort-key-stable:
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[x←msort-key xs. key x = k] = [x←xs. key x = k]
by auto

lemma sort-key-msort-key-conv:
sort-key key = msort-key
using msort-key-stable [of key x for x]
by (intro ext properties-for-sort-key mset-msort-key sorted-msort-key)
(metis (mono-tags, lifting) filter-cong)

end

Replace existing code equations for sort-key by msort-key.
declare sort-key-by-quicksort-code [code del]
declare sort-key-msort-key-conv [code]

end

theory Mergesort-Complexity
imports

Efficient-Sort
Complex-Main

begin

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
by auto

2 Counting the Number of Comparisons
context

fixes key :: ′a ⇒ ′k::linorder
begin

fun c-merge :: ′a list ⇒ ′a list ⇒ nat
where

c-merge (x # xs) (y # ys) =
1 + (if key y < key x then c-merge (x # xs) ys else c-merge xs (y # ys))

| c-merge [] ys = 0
| c-merge xs [] = 0

fun c-merge-pairs :: ′a list list ⇒ nat
where

c-merge-pairs (xs # ys # zss) = c-merge xs ys + c-merge-pairs zss
| c-merge-pairs [] = 0
| c-merge-pairs [x] = 0

fun c-merge-all :: ′a list list ⇒ nat
where
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c-merge-all [] = 0
| c-merge-all [x] = 0
| c-merge-all xss = c-merge-pairs xss + c-merge-all (merge-pairs key xss)

fun c-sequences :: ′a list ⇒ nat
and c-asc :: ′a ⇒ ′a list ⇒ nat
and c-desc :: ′a ⇒ ′a list ⇒ nat
where

c-sequences (x # y # zs) = 1 + (if key y < key x then c-desc y zs else c-asc y
zs)
| c-sequences [] = 0
| c-sequences [x] = 0
| c-asc x (y # ys) = 1 + (if ¬ key y < key x then c-asc y ys else c-sequences (y

# ys))
| c-asc x [] = 0
| c-desc x (y # ys) = 1 + (if key y < key x then c-desc y ys else c-sequences (y

# ys))
| c-desc x [] = 0

fun c-msort :: ′a list ⇒ nat
where

c-msort xs = c-sequences xs + c-merge-all (sequences key xs)

lemma c-merge:
c-merge xs ys ≤ length xs + length ys
by (induct xs ys rule: c-merge.induct) simp-all

lemma c-merge-pairs:
c-merge-pairs xss ≤ length (concat xss)

proof (induct xss rule: c-merge-pairs.induct)
case (1 xs ys zss)
then show ?case using c-merge [of xs ys] by simp

qed simp-all

lemma c-merge-all:
c-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e

proof (induction xss rule: c-merge-all.induct)
case (3 xs ys zss)
let ?clen = λxs. length (concat xs)
let ?xss = xs # ys # zss
let ?xss2 = merge-pairs key ?xss

have ∗: dlog 2 (real n + 2 )e = dlog 2 (Suc n div 2 + 1 )e + 1 for n :: nat
using ceiling-log2-div2 [of n + 2 ] by (simp add: algebra-simps)

have c-merge-all ?xss = c-merge-pairs ?xss + c-merge-all ?xss2 by simp
also have . . . ≤ ?clen ?xss + c-merge-all ?xss2

using c-merge [of xs ys] and c-merge-pairs [of ?xss] by auto
also have . . . ≤ ?clen ?xss + ?clen ?xss2 ∗ dlog 2 (length ?xss2 )e
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using 3 .IH by simp
also have . . . ≤ ?clen ?xss ∗ dlog 2 (length ?xss)e

by (auto simp: ∗ algebra-simps)
finally show ?case by simp

qed simp-all

lemma
shows c-sequences: c-sequences xs ≤ length xs − 1

and c-asc: c-asc x ys ≤ length ys
and c-desc: c-desc x ys ≤ length ys

by (induct xs and x ys and x ys rule: c-sequences-c-asc-c-desc.induct) simp-all

lemma
shows length-concat-sequences [simp]: length (concat (sequences key xs)) = length

xs
and length-concat-asc: ascP f =⇒ length (concat (asc key a f ys)) = 1 + length

(f []) + length ys
and length-concat-desc: length (concat (desc key a xs ys)) = 1 + length xs +

length ys
by (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct)
(auto simp: ascP-f-singleton)

lemma
shows sequences-ne: xs 6= [] =⇒ sequences key xs 6= []

and asc-ne: ascP f =⇒ asc key a f ys 6= []
and desc-ne: desc key a xs ys 6= []

by (induct xs and a f ys and a xs ys taking: key rule: sequences-asc-desc.induct)
simp-all

lemma c-msort:
assumes [simp]: length xs = n
shows c-msort xs ≤ n + n ∗ dlog 2 ne

proof −
have [simp]: xs = [] ←→ length xs = 0 by blast
have int (c-merge-all (sequences key xs)) ≤ int n ∗ dlog 2 (length (sequences key

xs))e
using c-merge-all [of sequences key xs] by simp

also have . . . ≤ int n ∗ dlog 2 ne
using length-sequences [of key xs]
by (cases n) (auto intro!: sequences-ne mult-mono ceiling-mono log2-mono)

finally have int (c-merge-all (sequences key xs)) ≤ int n ∗ dlog 2 ne .
moreover have c-sequences xs ≤ n using c-sequences [of xs] by auto
ultimately show ?thesis by (auto intro: add-mono)

qed

end

end
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theory Natural-Mergesort
imports HOL−Data-Structures.Sorting

begin

2.1 Auxiliary Results
lemma C-merge-adj ′:

C-merge-adj xss ≤ length (concat xss)
proof (induct xss rule: C-merge-adj.induct)

case (3 xs ys zss)
then show ?case using C-merge-ub [of xs ys] by simp

qed simp-all

lemma length-concat-merge-adj:
length (concat (merge-adj xss)) = length (concat xss)
by (induct xss rule: merge-adj.induct) (simp-all add: length-merge)

lemma C-merge-all ′:
C-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e

proof (induction xss rule: C-merge-all.induct)
case (3 xs ys zss)
let ?xss = xs # ys # zss
let ?m = length (concat ?xss)

have ∗: dlog 2 (real n + 2 )e = dlog 2 (Suc n div 2 + 1 )e + 1 for n :: nat
using ceiling-log2-div2 [of n + 2 ] by (simp add: algebra-simps)

have C-merge-all ?xss = C-merge-adj ?xss + C-merge-all (merge-adj ?xss) by
simp

also have . . . ≤ ?m + C-merge-all (merge-adj ?xss)
using C-merge-adj ′ [of ?xss] by auto

also have . . . ≤ ?m + length (concat (merge-adj ?xss)) ∗ dlog 2 (length (merge-adj
?xss))e

using 3 .IH by simp
also have . . . = ?m + ?m ∗ dlog 2 (length (merge-adj ?xss))e

by (simp only: length-concat-merge-adj)
also have . . . ≤ ?m ∗ dlog 2 (length ?xss)e

by (auto simp: ∗ algebra-simps)
finally show ?case by simp

qed simp-all

2.2 Definition of Natural Mergesort

Partition input into ascending and descending subsequences. (The latter are
reverted on the fly.)
fun runs :: ( ′a::linorder) list ⇒ ′a list list and

asc :: ′a ⇒ ( ′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list and
desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list
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where
runs (a # b # xs) = (if a > b then desc b [a] xs else asc b ((#) a) xs)
| runs [x] = [[x]]
| runs [] = []
| asc a as (b # bs) = (if ¬ a > b then asc b (as ◦ (#) a) bs else as [a] # runs

(b # bs))
| asc a as [] = [as [a]]
| desc a as (b # bs) = (if a > b then desc b (a # as) bs else (a # as) # runs (b

# bs))
| desc a as [] = [a # as]

definition nmsort :: ( ′a::linorder) list ⇒ ′a list
where

nmsort xs = merge-all (runs xs)

2.3 Functional Correctness
definition ascP f = (∀ xs ys. f (xs @ ys) = f xs @ ys)

lemma ascP-Cons [simp]: ascP ((#) x) by (simp add: ascP-def )

lemma ascP-comp-Cons [simp]: ascP f =⇒ ascP (f ◦ (#) x)
by (auto simp: ascP-def simp flip: append-Cons)

lemma ascP-simp [simp]:
assumes ascP f
shows f [x] = f [] @ [x]
using assms [unfolded ascP-def , THEN spec, THEN spec, of [] [x]] by simp

lemma
shows mset-runs:

∑
# (image-mset mset (mset (runs xs))) = mset xs

and mset-asc: ascP f =⇒
∑

# (image-mset mset (mset (asc x f ys))) = {#x#}
+ mset (f []) + mset ys

and mset-desc:
∑

# (image-mset mset (mset (desc x xs ys))) = {#x#} + mset
xs + mset ys

by (induct xs and x f ys and x xs ys rule: runs-asc-desc.induct) auto

lemma mset-nmsort:
mset (nmsort xs) = mset xs
by (auto simp: mset-merge-all nmsort-def mset-runs)

lemma
shows sorted-runs: ∀ x∈set (runs xs). sorted x

and sorted-asc: ascP f =⇒ sorted (f []) =⇒ ∀ x∈set (f []). x ≤ a =⇒ ∀ x∈set
(asc a f ys). sorted x

and sorted-desc: sorted xs =⇒ ∀ x∈set xs. a ≤ x =⇒ ∀ x∈set (desc a xs ys).
sorted x

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct)
(auto simp: sorted-append not-less dest: order-trans, fastforce)
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lemma sorted-nmsort:
sorted (nmsort xs)
by (auto intro: sorted-merge-all simp: nmsort-def sorted-runs)

2.4 Running Time Analysis
fun C-runs :: ( ′a::linorder) list ⇒ nat and

C-asc :: ( ′a::linorder) ⇒ ′a list ⇒ nat and
C-desc :: ( ′a::linorder) ⇒ ′a list ⇒ nat

where
C-runs (a # b # xs) = 1 + (if a > b then C-desc b xs else C-asc b xs)
| C-runs xs = 0
| C-asc a (b # bs) = 1 + (if ¬ a > b then C-asc b bs else C-runs (b # bs))
| C-asc a [] = 0
| C-desc a (b # bs) = 1 + (if a > b then C-desc b bs else C-runs (b # bs))
| C-desc a [] = 0

fun C-nmsort :: ( ′a::linorder) list ⇒ nat
where

C-nmsort xs = C-runs xs + C-merge-all (runs xs)

lemma
fixes a :: ′a::linorder and xs ys :: ′a list
shows C-runs: C-runs xs ≤ length xs − 1

and C-asc: C-asc a ys ≤ length ys
and C-desc: C-desc a ys ≤ length ys

by (induct xs and a ys and a ys rule: C-runs-C-asc-C-desc.induct) auto

lemma
shows length-runs: length (runs xs) ≤ length xs

and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
and length-desc: length (desc a xs ys) ≤ 1 + length ys

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct) auto

lemma
shows length-concat-runs [simp]: length (concat (runs xs)) = length xs

and length-concat-asc: ascP f =⇒ length (concat (asc a f ys)) = 1 + length (f
[]) + length ys

and length-concat-desc: length (concat (desc a xs ys)) = 1 + length xs + length
ys

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct) auto

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
by auto

lemma
shows runs-ne: xs 6= [] =⇒ runs xs 6= []
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and ascP f =⇒ asc a f ys 6= []
and desc a xs ys 6= []

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct) simp-all

lemma C-nmsort:
assumes [simp]: length xs = n
shows C-nmsort xs ≤ n + n ∗ dlog 2 ne

proof −
have [simp]: xs = [] ←→ length xs = 0 by blast
have int (C-merge-all (runs xs)) ≤ int n ∗ dlog 2 (length (runs xs))e

using C-merge-all ′ [of runs xs] by simp
also have . . . ≤ int n ∗ dlog 2 ne

using length-runs [of xs]
by (cases n) (auto intro!: runs-ne mult-mono ceiling-mono log2-mono)

finally have int (C-merge-all (runs xs)) ≤ int n ∗ dlog 2 ne .
moreover have C-runs xs ≤ n using C-runs [of xs] by auto
ultimately show ?thesis by (auto intro: add-mono)

qed

end
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