
Efficient Mergesort

Christian Sternagel

March 17, 2025

Abstract

We provide a formalization of the mergesort algorithm as used in
GHC’s Data.List module, proving correctness and stability. Further-
more, experimental data suggests that generated (Haskell-)code for
this algorithm is much faster than for previous algorithms available in
the Isabelle distribution.

theory Efficient-Sort
imports HOL−Library.Multiset

begin

1 GHC Version of Mergesort

In the following we show that the mergesort implementation used in GHC
(see http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.
html#sort) is a correct and stable sorting algorithm. Furthermore, experi-
mental data suggests that generated code for this implementation is much
more efficient than for the implementation provided by HOL−Library.Multiset.
A high-level overview of an older version of this formalization as well as
some experimental data is to be found in [1].

1.1 Definition of Natural Mergesort
context

fixes key :: ′a ⇒ ′k::linorder
begin

Split a list into chunks of ascending and descending parts, where descending
parts are reversed on the fly. Thus, the result is a list of sorted lists.
fun sequences :: ′a list ⇒ ′a list list

and asc :: ′a ⇒ (′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list
and desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list
where

sequences (a # b # xs) =

1

http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.html#sort
http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.html#sort

(if key a > key b then desc b [a] xs else asc b ((#) a) xs)
| sequences [x] = [[x]]
| sequences [] = []
| asc a as (b # bs) =

(if key a ≤ key b then asc b (λys. as (a # ys)) bs
else as [a] # sequences (b # bs))

| asc a as [] = [as [a]]
| desc a as (b # bs) =

(if key a > key b then desc b (a # as) bs
else (a # as) # sequences (b # bs))

| desc a as [] = [a # as]

fun merge :: ′a list ⇒ ′a list ⇒ ′a list
where

merge (a # as) (b # bs) =
(if key a > key b then b # merge (a # as) bs else a # merge as (b # bs))

| merge [] bs = bs
| merge as [] = as

fun merge-pairs :: ′a list list ⇒ ′a list list
where

merge-pairs (a # b # xs) = merge a b # merge-pairs xs
| merge-pairs xs = xs

lemma length-merge [simp]:
length (merge xs ys) = length xs + length ys
by (induct xs ys rule: merge.induct) simp-all

lemma length-merge-pairs [simp]:
length (merge-pairs xs) = (1 + length xs) div 2
by (induct xs rule: merge-pairs.induct) simp-all

fun merge-all :: ′a list list ⇒ ′a list
where

merge-all [] = []
| merge-all [x] = x
| merge-all xs = merge-all (merge-pairs xs)

fun msort-key :: ′a list ⇒ ′a list
where

msort-key xs = merge-all (sequences xs)

1.2 The Functional Argument of local.asc

f is a function that only adds some prefix to a given list.
definition ascP f = (∀ xs. f xs = f [] @ xs)

lemma ascP-Cons [simp]: ascP ((#) x) by (simp add: ascP-def)

2

lemma ascP-comp-append-Cons [simp]:
ascP (λxs. f [] @ x # xs)
by (auto simp: ascP-def)

lemma ascP-f-Cons:
assumes ascP f
shows f (x # xs) = f [] @ x # xs
using ‹ascP f › [unfolded ascP-def , THEN spec, of x # xs] .

lemma ascP-comp-Cons [simp]:
assumes ascP f
shows ascP (λys. f (x # ys))

proof (unfold ascP-def , intro allI)
fix xs show f (x # xs) = f [x] @ xs

using assms by (simp add: ascP-f-Cons)
qed

lemma ascP-f-singleton:
assumes ascP f
shows f [x] = f [] @ [x]
by (rule ascP-f-Cons [OF assms])

1.3 Facts about Lengths
lemma

shows length-sequences: length (sequences xs) ≤ length xs
and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
and length-desc: length (desc a xs ys) ≤ 1 + length ys

by (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct) auto

lemma length-concat-merge-pairs [simp]:
length (concat (merge-pairs xss)) = length (concat xss)
by (induct xss rule: merge-pairs.induct) simp-all

1.4 Functional Correctness
lemma mset-merge [simp]:

mset (merge xs ys) = mset xs + mset ys
by (induct xs ys rule: merge.induct) simp-all

lemma set-merge [simp]:
set (merge xs ys) = set xs ∪ set ys
by (simp flip: set-mset-mset)

lemma mset-concat-merge-pairs [simp]:
mset (concat (merge-pairs xs)) = mset (concat xs)
by (induct xs rule: merge-pairs.induct) auto

lemma set-concat-merge-pairs [simp]:
set (concat (merge-pairs xs)) = set (concat xs)

3

by (simp flip: set-mset-mset)

lemma mset-merge-all [simp]:
mset (merge-all xs) = mset (concat xs)
by (induct xs rule: merge-all.induct) simp-all

lemma set-merge-all [simp]:
set (merge-all xs) = set (concat xs)
by (simp flip: set-mset-mset)

lemma
shows mset-seqeuences [simp]: mset (concat (sequences xs)) = mset xs

and mset-asc: ascP f =⇒ mset (concat (asc x f ys)) = {#x#} + mset (f [])
+ mset ys

and mset-desc: mset (concat (desc x xs ys)) = {#x#} + mset xs + mset ys
by (induct xs and x f ys and x xs ys rule: sequences-asc-desc.induct)
(auto simp: ascP-f-singleton)

lemma mset-msort-key:
mset (msort-key xs) = mset xs
by (auto)

lemma sorted-merge [simp]:
assumes sorted (map key xs) and sorted (map key ys)
shows sorted (map key (merge xs ys))
using assms by (induct xs ys rule: merge.induct) (auto)

lemma sorted-merge-pairs [simp]:
assumes ∀ x∈set xs. sorted (map key x)
shows ∀ x∈set (merge-pairs xs). sorted (map key x)
using assms by (induct xs rule: merge-pairs.induct) simp-all

lemma sorted-merge-all:
assumes ∀ x∈set xs. sorted (map key x)
shows sorted (map key (merge-all xs))
using assms by (induct xs rule: merge-all.induct) simp-all

lemma
shows sorted-sequences: ∀ x ∈ set (sequences xs). sorted (map key x)

and sorted-asc: ascP f =⇒ sorted (map key (f [])) =⇒ ∀ x∈set (f []). key x ≤
key a =⇒ ∀ x∈set (asc a f ys). sorted (map key x)

and sorted-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒ ∀ x∈set
(desc a xs ys). sorted (map key x)

by (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct)
(auto simp: ascP-f-singleton sorted-append not-less dest: order-trans, fastforce)

lemma sorted-msort-key:
sorted (map key (msort-key xs))
by (unfold msort-key.simps) (intro sorted-merge-all sorted-sequences)

4

1.5 Stability
lemma

shows filter-by-key-sequences [simp]: [y←concat (sequences xs). key y = k] =
[y←xs. key y = k]

and filter-by-key-asc: ascP f =⇒ [y←concat (asc a f ys). key y = k] = [y←f
[a] @ ys. key y = k]

and filter-by-key-desc: sorted (map key xs) =⇒ ∀ x∈set xs. key a ≤ key x =⇒
[y←concat (desc a xs ys). key y = k] = [y←a # xs @ ys. key y = k]
proof (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct)

case (4 a f b bs)
then show ?case

by (auto simp: o-def ascP-f-Cons [where f = f])
next

case (6 a as b bs)
then show ?case
proof (cases key b < key a)

case True
with 6 have [y←concat (desc b (a # as) bs). key y = k] = [y←b # (a # as)

@ bs. key y = k]
by (auto simp: less-le order-trans)

then show ?thesis
using True and 6
by (cases key a = k, cases key b = k)
(auto simp: Cons-eq-append-conv intro!: filter-False)

qed auto
qed auto

lemma filter-by-key-merge-is-append [simp]:
assumes sorted (map key xs)
shows [y←merge xs ys. key y = k] = [y←xs. key y = k] @ [y←ys. key y = k]
using assms
by (induct xs ys rule: merge.induct) (auto simp: Cons-eq-append-conv leD intro!:

filter-False)

lemma filter-by-key-merge-pairs [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←concat (merge-pairs xss). key y = k] = [y←concat xss. key y = k]
using assms by (induct xss rule: merge-pairs.induct) simp-all

lemma filter-by-key-merge-all [simp]:
assumes ∀ xs∈set xss. sorted (map key xs)
shows [y←merge-all xss. key y = k] = [y←concat xss. key y = k]
using assms by (induct xss rule: merge-all.induct) simp-all

lemma filter-by-key-merge-all-sequences [simp]:
[x←merge-all (sequences xs) . key x = k] = [x←xs . key x = k]
using sorted-sequences [of xs] by simp

lemma msort-key-stable:

5

[x←msort-key xs. key x = k] = [x←xs. key x = k]
by auto

lemma sort-key-msort-key-conv:
sort-key key = msort-key
using msort-key-stable [of key x for x]
by (intro ext properties-for-sort-key mset-msort-key sorted-msort-key)
(metis (mono-tags, lifting) filter-cong)

end

Replace existing code equations for sort-key by msort-key.
declare sort-key-by-quicksort-code [code del]
declare sort-key-msort-key-conv [code]

end

theory Mergesort-Complexity
imports

Efficient-Sort
Complex-Main

begin

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
by auto

2 Counting the Number of Comparisons
context

fixes key :: ′a ⇒ ′k::linorder
begin

fun c-merge :: ′a list ⇒ ′a list ⇒ nat
where

c-merge (x # xs) (y # ys) =
1 + (if key y < key x then c-merge (x # xs) ys else c-merge xs (y # ys))

| c-merge [] ys = 0
| c-merge xs [] = 0

fun c-merge-pairs :: ′a list list ⇒ nat
where

c-merge-pairs (xs # ys # zss) = c-merge xs ys + c-merge-pairs zss
| c-merge-pairs [] = 0
| c-merge-pairs [x] = 0

fun c-merge-all :: ′a list list ⇒ nat
where

6

c-merge-all [] = 0
| c-merge-all [x] = 0
| c-merge-all xss = c-merge-pairs xss + c-merge-all (merge-pairs key xss)

fun c-sequences :: ′a list ⇒ nat
and c-asc :: ′a ⇒ ′a list ⇒ nat
and c-desc :: ′a ⇒ ′a list ⇒ nat
where

c-sequences (x # y # zs) = 1 + (if key y < key x then c-desc y zs else c-asc y
zs)
| c-sequences [] = 0
| c-sequences [x] = 0
| c-asc x (y # ys) = 1 + (if ¬ key y < key x then c-asc y ys else c-sequences (y

ys))
| c-asc x [] = 0
| c-desc x (y # ys) = 1 + (if key y < key x then c-desc y ys else c-sequences (y

ys))
| c-desc x [] = 0

fun c-msort :: ′a list ⇒ nat
where

c-msort xs = c-sequences xs + c-merge-all (sequences key xs)

lemma c-merge:
c-merge xs ys ≤ length xs + length ys
by (induct xs ys rule: c-merge.induct) simp-all

lemma c-merge-pairs:
c-merge-pairs xss ≤ length (concat xss)

proof (induct xss rule: c-merge-pairs.induct)
case (1 xs ys zss)
then show ?case using c-merge [of xs ys] by simp

qed simp-all

lemma c-merge-all:
c-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e

proof (induction xss rule: c-merge-all.induct)
case (3 xs ys zss)
let ?clen = λxs. length (concat xs)
let ?xss = xs # ys # zss
let ?xss2 = merge-pairs key ?xss

have ∗: dlog 2 (real n + 2)e = dlog 2 (Suc n div 2 + 1)e + 1 for n :: nat
using ceiling-log2-div2 [of n + 2] by (simp add: algebra-simps)

have c-merge-all ?xss = c-merge-pairs ?xss + c-merge-all ?xss2 by simp
also have . . . ≤ ?clen ?xss + c-merge-all ?xss2

using c-merge [of xs ys] and c-merge-pairs [of ?xss] by auto
also have . . . ≤ ?clen ?xss + ?clen ?xss2 ∗ dlog 2 (length ?xss2)e

7

using 3 .IH by simp
also have . . . ≤ ?clen ?xss ∗ dlog 2 (length ?xss)e

by (auto simp: ∗ algebra-simps)
finally show ?case by simp

qed simp-all

lemma
shows c-sequences: c-sequences xs ≤ length xs − 1

and c-asc: c-asc x ys ≤ length ys
and c-desc: c-desc x ys ≤ length ys

by (induct xs and x ys and x ys rule: c-sequences-c-asc-c-desc.induct) simp-all

lemma
shows length-concat-sequences [simp]: length (concat (sequences key xs)) = length

xs
and length-concat-asc: ascP f =⇒ length (concat (asc key a f ys)) = 1 + length

(f []) + length ys
and length-concat-desc: length (concat (desc key a xs ys)) = 1 + length xs +

length ys
by (induct xs and a f ys and a xs ys rule: sequences-asc-desc.induct)
(auto simp: ascP-f-singleton)

lemma
shows sequences-ne: xs 6= [] =⇒ sequences key xs 6= []

and asc-ne: ascP f =⇒ asc key a f ys 6= []
and desc-ne: desc key a xs ys 6= []

by (induct xs and a f ys and a xs ys taking: key rule: sequences-asc-desc.induct)
simp-all

lemma c-msort:
assumes [simp]: length xs = n
shows c-msort xs ≤ n + n ∗ dlog 2 ne

proof −
have [simp]: xs = [] ←→ length xs = 0 by blast
have int (c-merge-all (sequences key xs)) ≤ int n ∗ dlog 2 (length (sequences key

xs))e
using c-merge-all [of sequences key xs] by simp

also have . . . ≤ int n ∗ dlog 2 ne
using length-sequences [of key xs]
by (cases n) (auto intro!: sequences-ne mult-mono ceiling-mono log2-mono)

finally have int (c-merge-all (sequences key xs)) ≤ int n ∗ dlog 2 ne .
moreover have c-sequences xs ≤ n using c-sequences [of xs] by auto
ultimately show ?thesis by (auto intro: add-mono)

qed

end

end

8

theory Natural-Mergesort
imports HOL−Data-Structures.Sorting

begin

2.1 Auxiliary Results
lemma C-merge-adj ′:

C-merge-adj xss ≤ length (concat xss)
proof (induct xss rule: C-merge-adj.induct)

case (3 xs ys zss)
then show ?case using C-merge-ub [of xs ys] by simp

qed simp-all

lemma length-concat-merge-adj:
length (concat (merge-adj xss)) = length (concat xss)
by (induct xss rule: merge-adj.induct) (simp-all add: length-merge)

lemma C-merge-all ′:
C-merge-all xss ≤ length (concat xss) ∗ dlog 2 (length xss)e

proof (induction xss rule: C-merge-all.induct)
case (3 xs ys zss)
let ?xss = xs # ys # zss
let ?m = length (concat ?xss)

have ∗: dlog 2 (real n + 2)e = dlog 2 (Suc n div 2 + 1)e + 1 for n :: nat
using ceiling-log2-div2 [of n + 2] by (simp add: algebra-simps)

have C-merge-all ?xss = C-merge-adj ?xss + C-merge-all (merge-adj ?xss) by
simp

also have . . . ≤ ?m + C-merge-all (merge-adj ?xss)
using C-merge-adj ′ [of ?xss] by auto

also have . . . ≤ ?m + length (concat (merge-adj ?xss)) ∗ dlog 2 (length (merge-adj
?xss))e

using 3 .IH by simp
also have . . . = ?m + ?m ∗ dlog 2 (length (merge-adj ?xss))e

by (simp only: length-concat-merge-adj)
also have . . . ≤ ?m ∗ dlog 2 (length ?xss)e

by (auto simp: ∗ algebra-simps)
finally show ?case by simp

qed simp-all

2.2 Definition of Natural Mergesort

Partition input into ascending and descending subsequences. (The latter are
reverted on the fly.)
fun runs :: (′a::linorder) list ⇒ ′a list list and

asc :: ′a ⇒ (′a list ⇒ ′a list) ⇒ ′a list ⇒ ′a list list and
desc :: ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list list

9

where
runs (a # b # xs) = (if a > b then desc b [a] xs else asc b ((#) a) xs)
| runs [x] = [[x]]
| runs [] = []
| asc a as (b # bs) = (if ¬ a > b then asc b (as ◦ (#) a) bs else as [a] # runs

(b # bs))
| asc a as [] = [as [a]]
| desc a as (b # bs) = (if a > b then desc b (a # as) bs else (a # as) # runs (b

bs))
| desc a as [] = [a # as]

definition nmsort :: (′a::linorder) list ⇒ ′a list
where

nmsort xs = merge-all (runs xs)

2.3 Functional Correctness
definition ascP f = (∀ xs ys. f (xs @ ys) = f xs @ ys)

lemma ascP-Cons [simp]: ascP ((#) x) by (simp add: ascP-def)

lemma ascP-comp-Cons [simp]: ascP f =⇒ ascP (f ◦ (#) x)
by (auto simp: ascP-def simp flip: append-Cons)

lemma ascP-simp [simp]:
assumes ascP f
shows f [x] = f [] @ [x]
using assms [unfolded ascP-def , THEN spec, THEN spec, of [] [x]] by simp

lemma
shows mset-runs:

∑
(image-mset mset (mset (runs xs))) = mset xs

and mset-asc: ascP f =⇒
∑

(image-mset mset (mset (asc x f ys))) = {#x#}
+ mset (f []) + mset ys

and mset-desc:
∑

(image-mset mset (mset (desc x xs ys))) = {#x#} + mset
xs + mset ys

by (induct xs and x f ys and x xs ys rule: runs-asc-desc.induct) auto

lemma mset-nmsort:
mset (nmsort xs) = mset xs
by (auto simp: mset-merge-all nmsort-def mset-runs)

lemma
shows sorted-runs: ∀ x∈set (runs xs). sorted x

and sorted-asc: ascP f =⇒ sorted (f []) =⇒ ∀ x∈set (f []). x ≤ a =⇒ ∀ x∈set
(asc a f ys). sorted x

and sorted-desc: sorted xs =⇒ ∀ x∈set xs. a ≤ x =⇒ ∀ x∈set (desc a xs ys).
sorted x

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct)
(auto simp: sorted-append not-less dest: order-trans, fastforce)

10

lemma sorted-nmsort:
sorted (nmsort xs)
by (auto intro: sorted-merge-all simp: nmsort-def sorted-runs)

2.4 Running Time Analysis
fun C-runs :: (′a::linorder) list ⇒ nat and

C-asc :: (′a::linorder) ⇒ ′a list ⇒ nat and
C-desc :: (′a::linorder) ⇒ ′a list ⇒ nat

where
C-runs (a # b # xs) = 1 + (if a > b then C-desc b xs else C-asc b xs)
| C-runs xs = 0
| C-asc a (b # bs) = 1 + (if ¬ a > b then C-asc b bs else C-runs (b # bs))
| C-asc a [] = 0
| C-desc a (b # bs) = 1 + (if a > b then C-desc b bs else C-runs (b # bs))
| C-desc a [] = 0

fun C-nmsort :: (′a::linorder) list ⇒ nat
where

C-nmsort xs = C-runs xs + C-merge-all (runs xs)

lemma
fixes a :: ′a::linorder and xs ys :: ′a list
shows C-runs: C-runs xs ≤ length xs − 1

and C-asc: C-asc a ys ≤ length ys
and C-desc: C-desc a ys ≤ length ys

by (induct xs and a ys and a ys rule: C-runs-C-asc-C-desc.induct) auto

lemma
shows length-runs: length (runs xs) ≤ length xs

and length-asc: ascP f =⇒ length (asc a f ys) ≤ 1 + length ys
and length-desc: length (desc a xs ys) ≤ 1 + length ys

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct) auto

lemma
shows length-concat-runs [simp]: length (concat (runs xs)) = length xs

and length-concat-asc: ascP f =⇒ length (concat (asc a f ys)) = 1 + length (f
[]) + length ys

and length-concat-desc: length (concat (desc a xs ys)) = 1 + length xs + length
ys

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct) auto

lemma log2-mono:
x > 0 =⇒ x ≤ y =⇒ log 2 x ≤ log 2 y
by auto

lemma
shows runs-ne: xs 6= [] =⇒ runs xs 6= []

11

and ascP f =⇒ asc a f ys 6= []
and desc a xs ys 6= []

by (induct xs and a f ys and a xs ys rule: runs-asc-desc.induct) simp-all

lemma C-nmsort:
assumes [simp]: length xs = n
shows C-nmsort xs ≤ n + n ∗ dlog 2 ne

proof −
have [simp]: xs = [] ←→ length xs = 0 by blast
have int (C-merge-all (runs xs)) ≤ int n ∗ dlog 2 (length (runs xs))e

using C-merge-all ′ [of runs xs] by simp
also have . . . ≤ int n ∗ dlog 2 ne

using length-runs [of xs]
by (cases n) (auto intro!: runs-ne mult-mono ceiling-mono log2-mono)

finally have int (C-merge-all (runs xs)) ≤ int n ∗ dlog 2 ne .
moreover have C-runs xs ≤ n using C-runs [of xs] by auto
ultimately show ?thesis by (auto intro: add-mono)

qed

end

References

[1] Christian Sternagel. Proof pearl - a mechanized proof of GHC’s
mergesort. Journal of Automated Reasoning, 2012. doi:10.1007/
s10817-012-9260-7.

12

http://dx.doi.org/10.1007/s10817-012-9260-7
http://dx.doi.org/10.1007/s10817-012-9260-7

	GHC Version of Mergesort
	Definition of Natural Mergesort
	The Functional Argument of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.asc
	Facts about Lengths
	Functional Correctness
	Stability

	Counting the Number of Comparisons
	Auxiliary Results
	Definition of Natural Mergesort
	Functional Correctness
	Running Time Analysis

	Bibliography

