Earley

Martin Rau

September 13, 2023

Abstract

In 1968 Earley [1] introduced his parsing algorithm capable of parsing all context-free grammars in cubic space and time. This entry contains a formalization of an executable Earley parser. We base our development on Jones' [2] extensive paper proof of Earley's recognizer and the formalization of context-free grammars and derivations of Obua [4] [3]. We implement and prove correct a functional recognizer modeling Earley's original imperative implementation and extend it with the necessary data structures to enable the construction of parse trees following the work of Scott [5]. We then develop a functional algorithm that builds a single parse tree and prove its correctness. Finally, we generalize this approach to an algorithm for a complete parse forest and prove soundness.

Contents

1 Slightly adjusted content from AFP/LocalLexing 2
2 Adjusted content from AFP/LocalLexing 5
3 Adjusted content from AFP/LocalLexing 7
4 Additional derivation lemmas 9
5 Slices 12
6 Earley recognizer 14
6.1 Earley items 14
6.2 Well-formedness 15
6.3 Soundness 16
6.4 Completeness 18
6.5 Correctness 21
6.6 Finiteness 22
7 Earley recognizer 23
7.1 Earley fixpoint 23
7.2 Monotonicity and Absorption 24
7.3 Soundness 28
7.4 Completeness 29
7.5 Correctness 34
8 Earley recognizer 34
8.1 List auxilaries 34
8.2 Definitions 36
8.3 Bin lemmas 38
8.4 Well-formed bins 48
8.5 Soundness 60
8.6 Completeness 66
8.7 Correctness 86
9 Earley parser 87
9.1 Pointer lemmas 87
9.2 Common Definitions 99
9.3 foldl lemmas 101
9.4 Parse tree 103
9.5 those, map, map option lemmas 117
9.6 Parse trees 121
10 Epsilon productions 145
11 Example 1: Addition 147
12 Example 2: Cyclic reduction pointers 148theory Limit
imports Main
begin
1 Slightly adjusted content from AFP/LocalLex- ing
fun funpower :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a \Rightarrow^{\prime} a\right)$ wherefunpower f $0 x=x$
\mid funpower f (Suc $n) x=f($ funpower $f n x)$
definition natUnion $::($ nat \Rightarrow 'a set $) \Rightarrow$ 'a set where
natUnion $f=\bigcup\{f n \mid n$. True $\}$
definition limit $::\left({ }^{\prime}\right.$ a set $\Rightarrow{ }^{\prime}$ a set $) \Rightarrow$ 'a set \Rightarrow 'a set where
limit $f x=$ natUnion (λ n. funpower $f n x$)

```
definition setmonotone :: ('a set \(\Rightarrow{ }^{\prime}\) a set) \(\Rightarrow\) bool where
    setmonotone \(f=(\forall X . X \subseteq f X)\)
lemma subset-setmonotone: setmonotone \(f \Longrightarrow X \subseteq f X\)
    by ( \(\operatorname{simp}\) add: setmonotone-def)
lemma funpower-id [simp]: funpower id \(n=i d\)
    by (rule ext, induct \(n\), simp-all)
lemma limit-id [simp]: limit id \(=\) id
    by (rule ext, auto simp add: limit-def natUnion-def)
definition chain \(::\left(\right.\) nat \(\Rightarrow{ }^{\prime}\) a set \() \Rightarrow\) bool
where
    chain \(C=(\forall i . C i \subseteq C(i+1))\)
definition continuous \(::(\) 'a set \(\Rightarrow\) 'b set) \(\Rightarrow\) bool
where
    continuous \(f=(\forall C\). chain \(C \longrightarrow(\) chain \((f o C) \wedge f(\) natUnion \(C)=\) natUnion
\((f \circ C))\) )
lemma natUnion-upperbound:
    \((\bigwedge n . f n \subseteq G) \Longrightarrow(\) natUnion \(f) \subseteq G\)
by (auto simp add: natUnion-def)
lemma funpower-upperbound:
    \((\bigwedge I . I \subseteq G \Longrightarrow f I \subseteq G) \Longrightarrow I \subseteq G \Longrightarrow\) funpower \(f n I \subseteq G\)
proof (induct \(n\) )
    case 0 thus ?case by simp
next
    case (Suc \(n\) ) thus ?case by simp
qed
lemma limit-upperbound:
    \((\bigwedge I . I \subseteq G \Longrightarrow f I \subseteq G) \Longrightarrow I \subseteq G \Longrightarrow \operatorname{limit} f I \subseteq G\)
by (simp add: funpower-upperbound limit-def natUnion-upperbound)
lemma elem-limit-simp: \(x \in \operatorname{limit} f X=(\exists n . x \in\) funpower \(f n X)\)
by (auto simp add: limit-def natUnion-def)
definition pointwise :: ('a set \(\Rightarrow\) 'b set) \(\Rightarrow\) bool where
    pointwise \(f=(\forall X . f X=\bigcup\{f\{x\} \mid x . x \in X\})\)
lemma natUnion-elem: \(x \in f n \Longrightarrow x \in\) natUnion \(f\)
using natUnion-def by fastforce
lemma limit-elem: \(x \in\) funpower \(f n X \Longrightarrow x \in \operatorname{limit} f X\)
by (simp add: limit-def natUnion-elem)
```

```
definition pointbase :: ('a set }=>\mathrm{ 'b set) }=>\mathrm{ ''a set }=>\mathrm{ 'b set where
    pointbase FI=\bigcup {FX|X. finite X ^X\subseteqI}
definition pointbased :: ('a set }=>\mathrm{ 'b set) }=>\mathrm{ bool where
    pointbased f}=(\existsF.f=\mathrm{ pointbase F}
lemma chain-implies-mono: chain C mono C
by (simp add: chain-def mono-iff-le-Suc)
lemma setmonotone-implies-chain-funpower:
    assumes setmonotone: setmonotone f
    shows chain ( }\lambda\mathrm{ n.funpower f n I)
by (simp add: chain-def setmonotone subset-setmonotone)
lemma natUnion-subset:(\bigwedgen.\exists m.fn\subseteqgm)\Longrightarrow natUnion f\subseteqnatUnion g
    by (meson natUnion-elem natUnion-upperbound subset-iff)
lemma natUnion-eq[case-names Subset Superset]:
    (\bigwedgen.\existsm.fn\subseteqgm)\Longrightarrow(\bigwedgen.\existsm.gn\subseteqfm)\LongrightarrownatUnion }f=n=natUnio
g
by (simp add: natUnion-subset subset-antisym)
lemma natUnion-shift[symmetric]:
    assumes chain: chain C
    shows natUnion C = natUnion ( }\lambda\mathrm{ n. C ( n +m))
proof (induct rule: natUnion-eq)
    case (Subset n)
        show ?case using chain chain-implies-mono le-add1 mono-def by blast
next
    case (Superset n)
        show ?case by blast
qed
definition regular :: ('a set }=>\mp@subsup{|}{}{\prime}\mathrm{ 'a set) }=>\mathrm{ bool
where
    regular f}=(\mathrm{ setmonotone f ^ continuous f)
lemma regular-fixpoint:
    assumes regular: regular f
    shows f(limit fI)= limit fI
proof -
    have setmonotone: setmonotone f using regular regular-def by blast
    have continuous: continuous f using regular regular-def by blast
    let ?C = \lambda n. funpower f n I
    have chain: chain ?C
    by (simp add: setmonotone setmonotone-implies-chain-funpower)
    have f(limit fI) =f(natUnion ?C)
    using limit-def by metis
```

```
    also have f(natUnion ?C) = natUnion (f o ?C)
    by (metis continuous continuous-def chain)
    also have natUnion (fo?C) = natUnion ( }\lambda\mathrm{ n.f(funpower f n I))
    by (meson comp-apply)
    also have natUnion (\lambdan.f(funpower f n I )) = natUnion (\lambda n.?C (n+1))
        by simp
    also have natUnion (\lambda n. ? }C(n+1))=natUnion ?C 
    by (metis (no-types, lifting) Limit.chain-def chain natUnion-eq)
    finally show ?thesis by (simp add: limit-def)
qed
lemma fix-is-fix-of-limit:
    assumes fixpoint: fI=I
    shows limit f I=I
proof -
    have funpower: \ n. funpower f n I = I
    proof -
        fix n :: nat
        from fixpoint show funpower f n I=I
            by (induct n, auto)
    qed
    show ?thesis by (simp add: limit-def funpower natUnion-def)
qed
lemma limit-is-idempotent: regular f \Longrightarrowlimit f(limit fI)=limit f I
by (simp add: fix-is-fix-of-limit regular-fixpoint)
```



```
where
    mk-regular1 P FI=I\cup{Fqx|qx.x\inI\wedgePqx}
```



```
#'a set where
    mk-regular2 P F I = I\cup{Fqxy|qxy.x\inI^y\inI^Pqxy}
end
theory CFG
    imports Main
begin
```


2 Adjusted content from AFP/LocalLexing

type-synonym 'a rule $=$ ' $a \times$ ' a list
type-synonym 'a rules $=$ 'a rule list
type-synonym 'a sentence $=$ 'a list
datatype ' $a c f g=$
$\operatorname{CFG}\left(\mathfrak{N}:{ }^{\prime} a \operatorname{list}\right)\left(\mathfrak{T}:{ }^{\prime} a \operatorname{list}\right)\left(\mathfrak{R}:{ }^{\prime} a\right.$ rules $)\left(\mathfrak{S}:{ }^{\prime} a\right)$
definition disjunct-symbols :: 'a cfg \Rightarrow bool where
disjunct-symbols $\mathcal{G} \equiv \operatorname{set}(\mathfrak{N} \mathcal{G}) \cap \operatorname{set}(\mathfrak{T} \mathcal{G})=\{ \}$
definition valid-startsymbol :: 'a cfg \Rightarrow bool where valid-startsymbol $\mathcal{G} \equiv \mathfrak{S} \mathcal{G} \in \operatorname{set}(\mathfrak{N} \mathcal{G})$
definition valid-rules :: 'a cfg \Rightarrow bool where
valid-rules $\mathcal{G} \equiv \forall(N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G}) . N \in \operatorname{set}(\mathfrak{N} \mathcal{G}) \wedge(\forall s \in \operatorname{set} \alpha . s \in \operatorname{set}(\mathfrak{N}$
$\mathcal{G}) \cup \operatorname{set}(\mathfrak{T} \mathcal{G}))$
definition distinct-rules :: 'a cfg \Rightarrow bool where
distinct-rules $\mathcal{G} \equiv \operatorname{distinct}(\mathfrak{R} \mathcal{G})$
definition $w f-\mathcal{G}$:: 'a cfg \Rightarrow bool where
wf-G $\mathcal{G} \equiv$ disjunct-symbols $\mathcal{G} \wedge$ valid-startsymbol $\mathcal{G} \wedge$ valid-rules $\mathcal{G} \wedge$ distinct-rules \mathcal{G}
lemmas wf-G-defs $=w f-\mathcal{G}$-def valid-rules-def valid-startsymbol-def disjunct-symbols-def distinct-rules-def
definition is-terminal :: 'a cfg $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where is-terminal $\mathcal{G} x \equiv x \in \operatorname{set}(\mathfrak{T} \mathcal{G})$
definition is-nonterminal :: 'a cfg $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where is-nonterminal $\mathcal{G} x \equiv x \in \operatorname{set}(\mathfrak{N} \mathcal{G})$
definition is-symbol :: 'a cfg $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where
is-symbol $\mathcal{G} x \equiv$ is-terminal $\mathcal{G} x \vee$ is-nonterminal $\mathcal{G} x$
definition $w f$-sentence $::$ 'a cfg \Rightarrow 'a sentence \Rightarrow bool where wf-sentence $\mathcal{G} \omega \equiv \forall x \in$ set ω. is-symbol $\mathcal{G} x$
lemma is-nonterminal-startsymbol:
wf-G $\mathcal{G} \Longrightarrow$ is-nonterminal $\mathcal{G}(\mathfrak{S} \mathcal{G})$
by (simp add: is-nonterminal-def wf-G-defs)
definition is-word $::$ 'a cfg \Rightarrow 'a sentence \Rightarrow bool where
is-word $\mathcal{G} \omega \equiv \forall x \in$ set ω. is-terminal $\mathcal{G} x$
definition derives1 :: ' a cfg \Rightarrow 'a sentence \Rightarrow ' a sentence \Rightarrow bool where derives1 $\mathcal{G} u v \equiv \exists$ x y $N \alpha$.

$$
\begin{aligned}
& u=x @[N] @ y \wedge \\
& v=x @ \alpha @ y \wedge \\
& (N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G})
\end{aligned}
$$

definition derivations1 :: 'a cfg \Rightarrow ('a sentence \times 'a sentence) set where derivations1 $\mathcal{G} \equiv\{(u, v) \mid u v$. derives1 $\mathcal{G} u v\}$
definition derivations :: 'a cfg \Rightarrow ('a sentence \times 'a sentence) set where derivations $\mathcal{G} \equiv($ derivations $1 \mathcal{G}){ }^{\wedge} *$
definition derives :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a sentence \Rightarrow bool where derives $\mathcal{G} u v \equiv((u, v) \in$ derivations $\mathcal{G})$

end

theory Derivations

imports

$C F G$
begin

3 Adjusted content from AFP/LocalLexing

type-synonym 'a derivation $=(n a t \times$ 'a rule $)$ list
lemma is-word-empty: is-word \mathcal{G} [] by (auto simp add: is-word-def)
lemma derives1-implies-derives[simp]:
derives1 \mathcal{G} a $b \Longrightarrow$ derives $\mathcal{G} a b$
by (auto simp add: derives-def derivations-def derivations1-def)
lemma derives-trans:
derives $\mathcal{G} a b \Longrightarrow$ derives $\mathcal{G} b c \Longrightarrow$ derives $\mathcal{G} a c$
by (auto simp add: derives-def derivations-def)
lemma derives1-eq-derivations1:
derives1 \mathcal{G} x $y=((x, y) \in$ derivations1 $\mathcal{G})$
by (simp add: derivations1-def)
lemma derives-induct[consumes 1, case-names Base Step]:
assumes derives: derives \mathcal{G} a b
assumes $P a$: $P a$
assumes induct: $\bigwedge y z$. derives \mathcal{G} a $y \Longrightarrow$ derives1 $\mathcal{G} y z \Longrightarrow P y \Longrightarrow P z$
shows $P b$
proof -
note rtrancl-lemma $=$ rtrancl-induct $[$ where $a=a$ and $b=b$ and $r=$ deriva-
tions1 \mathcal{G} and $P=P$]
from derives $P a$ induct rtrancl-lemma show $P b$
by (metis derives-def derivations-def derives1-eq-derivations1)
qed
definition Derives1 :: 'a cfg \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a rule \Rightarrow 'a sentence \Rightarrow bool where
Derives1 G u irv $\overline{\mathcal{G}} \exists \mathrm{x} y \mathrm{~N}$.

$$
\begin{aligned}
& u=x @[N] @ y \wedge \\
& v=x @ \alpha @ y \wedge \\
& (N, \alpha) \in \operatorname{set}(\Re \mathcal{G}) \wedge r=(N, \alpha) \wedge i=\text { length } x
\end{aligned}
$$

```
lemma Derives1-split:
    Derives1 G u irv\Longrightarrow\exists x y.u=x@ [fstr]@y ^v=x@ (snd r)@y^
length x = i
    by (metis Derives1-def fst-conv snd-conv)
lemma Derives1-implies-derives1: Derives1 G u irv\Longrightarrowderives1 \mathcal{G uv}
    by (auto simp add: Derives1-def derives1-def)
```



```
    by (auto simp add: Derives1-def derives1-def)
fun Derivation :: 'a cfg }=>\mp@subsup{'}{}{\prime}a\mathrm{ sentence }=>\mathrm{ ' 'a derivation }=>\mp@subsup{}{}{\prime}\mathrm{ 'a sentence }=>\mathrm{ bool
where
    Derivation - a [] b= (a=b)
| Derivation \mathcal{G a (d#D) b = (\exists x. Derives1 G a (fst d) (snd d) x}\wedge Derivation \mathcal{G}
x D b)
```



```
proof (induct D arbitrary: a b)
    case Nil thus ?case
        by (simp add: derives-def derivations-def)
next
    case (Cons d D)
    note ihyps=this
    from ihyps have }\existsx.\mathrm{ Derives1 GG (fst d) (snd d) x}\wedge Derivation \mathcal{G x D b by
auto
```



```
b by blast
    with Derives1-implies-derives1 have d1: derives \mathcal{G a x by fastforce}
    from ihyps xb have d2:derives \mathcal{G x b by simp}
    show derives \mathcal{G a b by (rule derives-trans[OF d1 d2])}
qed
lemma Derivation-Derives1: Derivation G a S y \LongrightarrowDerives1 G y irz\Longrightarrow
Derivation \mathcal{G a (S@[(i,r)])z}
proof (induct S arbitrary: a y z i r)
    case Nil thus ?case by simp
next
    case (Cons s S) thus ?case
        by (metis Derivation.simps(2) append-Cons)
qed
```



```
proof (induct rule: derives-induct)
    case Base
    show ?case by (rule exI[where x=[]], simp)
next
    case (Step y z)
```

note ihyps $=$ this
from ihyps obtain D where ay: Derivation \mathcal{G} a D by blast
from ihyps derives1-implies-Derives1 obtain ir where yz: Derives1 \mathcal{G} y ir z by blast
from Derivation-Derives1 [OF ay yz] show ?case by auto
qed
lemma rule-nonterminal-type $[$ simp $]:$ wf-G $\mathcal{G} \Longrightarrow(N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G}) \Longrightarrow i s$-nonterminal $\mathcal{G} N$
by (auto simp add: is-nonterminal-def wf-G-defs)
lemma Derives1-rule $[$ elim]: Derives1 \mathcal{G} a ir $b \Longrightarrow r \in \operatorname{set}(\mathfrak{R} \mathcal{G})$ using Derives1-def by metis
lemma is-terminal-nonterminal: wf-G $\mathcal{G} \Longrightarrow$ is-terminal $\mathcal{G} x \Longrightarrow$ is-nonterminal $\mathcal{G} x \Longrightarrow$ False
by (auto simp: wf-G-defs disjoint-iff is-nonterminal-def is-terminal-def)
lemma is-word-is-terminal: $i<$ length $u \Longrightarrow$ is-word $\mathcal{G} u \Longrightarrow$ is-terminal $\mathcal{G}(u$! i)
using is-word-def by force
lemma Derivation-append: Derivation $\mathcal{G} a(D @ E) c=(\exists$ b. Derivation \mathcal{G} a D b \wedge Derivation \mathcal{G} b Ec)
by (induct D arbitrary: a $c E$) auto
lemma Derivation-implies-append:
Derivation \mathcal{G} a $D b \Longrightarrow$ Derivation $\mathcal{G} b E c \Longrightarrow$ Derivation $\mathcal{G} a(D @ E) c$ using Derivation-append by blast

4 Additional derivation lemmas

```
lemma Derives1-prepend:
    assumes Derives1 G uirv
    shows Derives1 G (w@u) \((i+\) length \(w) r(w @ v)\)
proof -
    obtain \(x\) y \(N \alpha\) where \(*\) :
        \(u=x @[N] @ y v=x @ \alpha @ y\)
        \((N, \alpha) \in \operatorname{set}(\mathfrak{R}) r=(N, \alpha) i=\) length \(x\)
        using assms Derives1-def by (smt (verit))
    hence \(w @ u=w @ x @[N] @ y w @ v=w @ x @ \alpha @ y\)
        by auto
    thus ?thesis
        unfolding Derives1-def using *
        apply (rule-tac exI \([\) where \(x=w @ x]\) )
        apply (rule-tac exI [where \(x=y]\) )
        by \(\operatorname{simp}\)
qed
```

lemma Derivation-prepend:
Derivation $\mathcal{G} b D b^{\prime} \Longrightarrow$ Derivation $\mathcal{G}(a @ b)(\operatorname{map}(\lambda(i, r) .(i+$ length $a, r)) D)$ ($a @ b^{\prime}$)
using Derives1-prepend by (induction D arbitrary: b b') (auto, fast)
lemma Derives1-append:
assumes Derives1 G uirv
shows Derives1 G (u@w) ir (v@w)
proof -
obtain x y $N \alpha$ where *:
$u=x @[N] @ y v=x @ \alpha @ y$ $(N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G}) r=(N, \alpha) i=$ length x
using assms Derives1-def by (smt (verit))
hence $u @ w=x @[N] @ y @ w v @ w=x @ \alpha @ y @ w$
by auto
thus ?thesis
unfolding Derives1-def using *
apply (rule-tac exI[where $x=x]$)
apply (rule-tac exI [where $x=y @ w]$)
by blast
qed
lemma Derivation-append':
Derivation \mathcal{G} a $D a^{\prime} \Longrightarrow$ Derivation $\mathcal{G}(a @ b) D\left(a^{\prime} @ b\right)$
using Derives1-append by (induction D arbitrary: a a a^{\prime} (auto, fast)
lemma Derivation-append-rewrite:
assumes Derivation $\mathcal{G} a D(b @ c @ d)$ Derivation $\mathcal{G} c E c^{\prime}$
shows $\exists F$. Derivation $\mathcal{G} a F\left(b @ c^{\prime} @ d\right)$
using assms Derivation-append' Derivation-prepend Derivation-implies-append
by fast
lemma derives1-if-valid-rule:
$(N, \alpha) \in \operatorname{set}(\Re \mathcal{G}) \Longrightarrow$ derives1 $\mathcal{G}[N] \alpha$
unfolding derives1-def
apply (rule-tac exI [where $x=[]]$)
apply (rule-tac exI [where $x=[]]$)
by simp
lemma derives-if-valid-rule:
$(N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G}) \Longrightarrow$ derives $\mathcal{G}[N] \alpha$
using derives1-if-valid-rule by fastforce
lemma Derivation-from-empty:
Derivation \mathcal{G} [] $D a \Longrightarrow a=$ []
by (cases D) (auto simp: Derives1-def)
lemma Derivation-concat-split:
Derivation $\mathcal{G}(a @ b) D c \Longrightarrow \exists E F a^{\prime} b^{\prime}$. Derivation $\mathcal{G} a E a^{\prime} \wedge$ Derivation $\mathcal{G} b$

```
F b
    c=\mp@subsup{a}{}{\prime}@ b}\mp@subsup{b}{}{\prime}\wedge length E\leq length D ^ length F \leq length D
proof (induction D arbitrary: a b)
    case Nil
    thus ?case
    by (metis Derivation.simps(1) order-refl)
next
    case (Cons d D)
    then obtain ab where *: Derives1 \mathcal{G (a@b) (fst d) (snd d) ab Derivation \mathcal{G ab}}\mathbf{|}\mathrm{ (forlol}
D c
    by auto
    then obtain x y N \alpha where #:
        a@b=x@ [N]@yab=x@ @@y (N,\alpha)\inset (\Re\mathcal{G}) snd d = (N,\alpha) fst d
= length }
    using * unfolding Derives1-def by blast
    show ?case
    proof (cases length a length x)
    case True
    hence ab-def:
            a= take (length a) x
            b = drop (length a) x @ [N] @ y
            ab= take (length a) x@ drop (length a) x@ < @ y
            using #(1,2) True by (metis append-eq-append-conv-if)+
    then obtain EF a' b' where IH:
            Derivation \mathcal{G (take (length a) x) E a'}
            Derivation \mathcal{G (drop (length a) x @ \alpha @ y) F b}
            c= a' @ b
            length E < length D
            length F}\leq\mathrm{ length D
            using Cons *(2) by blast
    have Derives1 G b (fst d - length a) (snd d) (drop (length a) x@ @ @ y)
    unfolding Derives1-def using *(1) #(3-5) ab-def(2) by (metis length-drop)
    hence Derivation \mathcal{G b ((fst d - length a, snd d) #F) b}
            using IH(2) by force
    moreover have Derivation \mathcal{G a E a'}
            using}IH(1) ab-def(1) by fastforc
    ultimately show ?thesis
            using}IH(3-5) by fastforc
    next
    case False
    hence a-def:a=x @ [N] @ take (length a - length x - 1) y
            using #(1) append-eq-conv-conj[of a b x @ [N] @ y] take-all-iff take-append
            by (metis append-Cons append-Nil diff-is-0-eq le-cases take-Cons')
    hence b-def: b = drop (length a - length x - 1) y
        using #(1) by (metis List.append.assoc append-take-drop-id same-append-eq)
    have ab=x@ @ @ take (length a - length x - 1) y@ drop (length a - length
x-1) y
        using #(2) by force
    then obtain E F a' b
```

```
    Derivation \mathcal{G (x@ @ @ take (length a - length x - 1) y) E a'}
    Derivation \mathcal{G (drop (length a length x - 1) y)F b}
    c=\mp@subsup{a}{}{\prime}@ 殒
    length E < length D
    length F}\leqlength 
    using Cons.IH[of x @ \alpha @ take (length a - length x - 1) y drop (length a
- length x - 1) y]*(2) by auto
    have Derives1 G a (fst d) (snd d) (x@ @ @ take (length a - length x - 1) y)
        unfolding Derives1-def using #(3-5) a-def by blast
    hence Derivation \mathcal{G a ((fst d, snd d) # E) a'}
        using IH(1) by fastforce
    moreover have Derivation \mathcal{G b F b}
        using b-def IH(2) by blast
    ultimately show ?thesis
        using}IH(3-5) by fastforc
    qed
qed
lemma Derivation-S 1:
```



```
    shows \exists\alpha E. Derivation \mathcal{G }\alphaE\omega^(\mathfrak{S G},\alpha)\in\operatorname{set}(\mathfrak{R}\mathcal{G})
proof (cases D)
    case Nil
    thus ?thesis
        using assms is-nonterminal-startsymbol is-terminal-nonterminal by (metis
Derivation.simps(1) is-word-def list.set-intros(1))
next
    case (Cons d D)
    then obtain \alpha where Derives1 \mathcal{G [S G] (fst d) (snd d) \alpha Derivation \mathcal{G \alpha D \omega}}\mathbf{|}\mathrm{ (s)}
        using assms by auto
    hence (\mathfrak{S G},\alpha)\in\operatorname{set}(\Re\mathcal{G})
        unfolding Derives1-def
    by (metis List.append.right-neutral List.list.discI append-eq-Cons-conv append-is-Nil-conv
nth-Cons-0 self-append-conv2)
    thus ?thesis
        using <Derivation \mathcal{G }
qed
end
theory Earley
    imports
        Derivations
begin
```


5 Slices

```
fun slice \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) 'a list \(\Rightarrow{ }^{\prime} a\) list where
slice - - [] = []
| slice - \(0(x \# x s)=[]\)
```

```
| slice 0 (Suc b) (x#xs) = x # slice 0 b xs
| slice (Suc a) (Suc b) (x#xs)= slice a b xs
lemma slice-drop-take:
    slice a b xs = drop a (take b xs)
    by (induction a b xs rule: slice.induct) auto
lemma slice-append-aux:
    Suc b \leqc\Longrightarrow slice (Suc b) c (x# xs) = slice b (c-1) xs
    using Suc-le-D by fastforce
lemma slice-concat:
    a\leqb\Longrightarrowb\leqc\Longrightarrow slice a b xs @ slice b c xs= slice a c xs
proof (induction a b xs arbitrary: c rule: slice.induct)
    case (3 b x xs)
    then show ?case
            using Suc-le-D by(fastforce simp: slice-append-aux)
qed (auto simp: slice-append-aux)
lemma slice-concat-Ex:
    a\leqc\Longrightarrow slice a c xs=ys@ zs \Longrightarrow \existsb.ys= slice a b xs ^zs=slice b c xs ^
a\leqb^b\leqc
proof (induction a c xs arbitrary:ys zs rule: slice.induct)
    case (3 b x xs)
    show ?case
    proof (cases ys)
        case Nil
        then obtain zs' where x# slice 0 b xs = x # zs'}\mp@subsup{s}{}{\prime}x#z\mp@subsup{s}{}{\prime}=z
            using 3.prems(2) by auto
        thus ?thesis
                using Nil by force
    next
        case (Cons y ys')
        then obtain ys' where x # slice 0 b xs =x # ys' @ zs x # ys'= ys
            using 3.prems(2) by auto
        thus ?thesis
                using 3.IH[of ys'zs] by force
    qed
next
    case (4 a b x xs)
    thus ?case
        by (auto, metis slice.simps(4)Suc-le-mono)
qed auto
lemma slice-nth:
    a< length xs \Longrightarrow slice a (a+1) xs=[xs!a]
    unfolding slice-drop-take
    by (metis Cons-nth-drop-Suc One-nat-def diff-add-inverse drop-take take-Suc-Cons
take-eq-Nil)
```

```
lemma slice-append-nth:
    \(a \leq b \Longrightarrow b<\) length \(x s \Longrightarrow\) slice \(a b x s @[x s!b]=\) slice \(a(b+1) x s\)
    by (metis le-add1 slice-concat slice-nth)
lemma slice-empty:
    \(b \leq a \Longrightarrow\) slice \(a b x s=[]\)
    by (simp add: slice-drop-take)
lemma slice-id[simp]:
    slice 0 (length \(x s\) ) \(x s=x s\)
    by (simp add: slice-drop-take)
lemma slice-singleton:
    \(b \leq\) length \(x s \Longrightarrow[x]=\) slice \(a b x s \Longrightarrow b=a+1\)
    by (induction a b xs rule: slice.induct) (auto simp: slice-drop-take)
```


6 Earley recognizer

6.1 Earley items

definition rule-head $::$ ' a rule \Rightarrow ' a where
rule-head $\equiv f s t$
definition rule-body $::$ ' a rule \Rightarrow 'a list where
rule-body \equiv snd
datatype 'a item $=$
Item (item-rule: 'a rule) (item-dot : nat) (item-origin : nat) (item-end : nat)
definition item-rule-head $::$ ' a item \Rightarrow ' a where
item-rule-head $x \equiv$ rule-head (item-rule x)
definition item-rule-body :: 'a item \Rightarrow 'a sentence where item-rule-body $x \equiv$ rule-body (item-rule x)
definition item- α :: ' a item \Rightarrow 'a sentence where item- $\alpha x \equiv$ take (item-dot x) (item-rule-body x)
definition item- β :: 'a item \Rightarrow 'a sentence where item- $\beta x \equiv$ drop (item-dot x) (item-rule-body x)
definition is-complete $::$ 'a item \Rightarrow bool where is-complete $x \equiv$ item-dot $x \geq$ length (item-rule-body x)
definition next-symbol :: 'a item \Rightarrow 'a option where
next-symbol $x \equiv$ if is-complete x then None else Some (item-rule-body $x!$ item-dot x)
lemmas item-defs $=$ item-rule-head-def item-rule-body-def item- α-def item- β-def rule-head-def rule-body-def
definition is-finished :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a item \Rightarrow bool where
is-finished $\mathcal{G} \omega x \equiv$
item-rule-head $x=\mathfrak{S} \mathcal{G} \wedge$
item-origin $x=0 \wedge$
item-end $x=$ length $\omega \wedge$
is-complete x
definition recognizing :: 'a item set $\Rightarrow{ }^{\prime} a c f g \Rightarrow$ 'a sentence \Rightarrow bool where
recognizing $I \mathcal{G} \omega \equiv \exists x \in I$. is-finished $\mathcal{G} \omega x$
inductive-set Earley $::$ ' $a c f g \Rightarrow$ ' a sentence \Rightarrow ' a item set
for $\mathcal{G}::$ 'a cfg and ω :: 'a sentence where
Init: $r \in \operatorname{set}(\mathfrak{R} \mathcal{G}) \Longrightarrow f s t r=\mathfrak{S} \mathcal{G} \Longrightarrow$ Item r $000 \in$ Earley $\mathcal{G} \omega$
|Scan: $x=$ Item rbij $\Longrightarrow x \in$ Earley $\mathcal{G} \omega \Longrightarrow$
$\omega!j=a \Longrightarrow j<$ length $\omega \Longrightarrow$ next-symbol $x=$ Some $a \Longrightarrow$ Item $r(b+1) i(j+1) \in$ Earley $\mathcal{G} \omega$
\mid Predict: $x=$ Item $r b i j \Longrightarrow x \in$ Earley $\mathcal{G} \omega \Longrightarrow$
$r^{\prime} \in \operatorname{set}(\Re \mathcal{G}) \Longrightarrow$ next-symbol $x=$ Some (rule-head $\left.r^{\prime}\right) \Longrightarrow$ Item $r^{\prime} 0 j j \in$ Earley $\mathcal{G} \omega$
| Complete: $x=$ Item $r_{x} b_{x} i j \Longrightarrow x \in$ Earley $\mathcal{G} \omega \Longrightarrow y=$ Item $r_{y} b_{y} j k \Longrightarrow$ $y \in$ Earley $\mathcal{G} \omega \Longrightarrow$ is-complete $y \Longrightarrow$ next-symbol $x=$ Some (item-rule-head y) \Longrightarrow
Item $r_{x}\left(b_{x}+1\right) i k \in$ Earley $\mathcal{G} \omega$

6.2 Well-formedness

definition wf-item :: 'a cfg \Rightarrow 'a sentence $=>$ 'a item \Rightarrow bool where
wf-item $\mathcal{G} \omega x \equiv$
item-rule $x \in \operatorname{set}(\mathfrak{R} \mathcal{G}) \wedge$
item-dot $x \leq$ length (item-rule-body $x) \wedge$
item-origin $x \leq$ item-end $x \wedge$
item-end $x \leq$ length ω
lemma wf-Init:
assumes $r \in \operatorname{set}(\mathfrak{R} \mathcal{G})$ fst $r=\mathfrak{S} \mathcal{G}$
shows wf-item $\mathcal{G} \omega$ (Itemr 000)
using assms unfolding wf-item-def by simp
lemma wf-Scan:
assumes $x=$ Item $r b i j w f$-item $\mathcal{G} \omega x \omega!j=a j<$ length ω next-symbol $x=$
Some a
shows wf-item $\mathcal{G} \omega($ Item $r(b+1) i(j+1))$
using assms unfolding wf-item-def by (auto simp: item-defs is-complete-def next-symbol-def split: if-splits)
lemma wf-Predict:

```
    assumes \(x=\) Item \(r b i j w f\)-item \(\mathcal{G} \omega x r^{\prime} \in \operatorname{set}(\mathfrak{R} \mathcal{G})\) next-symbol \(x=\) Some
```

(rule-head r^{\prime})
shows wf-item $\mathcal{G} \omega$ (Item $r^{\prime} 0 j j$)
using assms unfolding wf-item-def by simp
lemma $w f$-Complete:
assumes $x=$ Item $r_{x} b_{x} i j w f$-item $\mathcal{G} \omega x y=$ Item $r_{y} b_{y} j k w f$-item $\mathcal{G} \omega y$
assumes is-complete y next-symbol $x=$ Some (item-rule-head y)
shows wf-item $\mathcal{G} \omega$ (Item $\left.r_{x}\left(b_{x}+1\right) i k\right)$
using assms unfolding wf-item-def is-complete-def next-symbol-def item-rule-body-def
by (auto split: if-splits)
lemma wf-Earley:
assumes $x \in$ Earley $\mathcal{G} \omega$
shows wf-item $\mathcal{G} \omega x$
using assms wf-Init wf-Scan wf-Predict wf-Complete
by (induction rule: Earley.induct) fast+

6.3 Soundness

definition sound-item :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a item \Rightarrow bool where sound-item $\mathcal{G} \omega x \equiv$ derives \mathcal{G} [item-rule-head x] (slice (item-origin x) (item-end x) ω @ item- βx)
lemma sound-Init:
assumes $r \in \operatorname{set}(\mathfrak{R} \mathcal{G})$ fst $r=\mathfrak{S} \mathcal{G}$
shows sound-item $\mathcal{G} \omega$ (Item r 000)
proof -
let $? x=$ Item r 000
have (item-rule-head ? x, item- β ? x) $\in \operatorname{set}(\mathfrak{R} \mathcal{G})$
using $\operatorname{assms}(1)$ by (simp add: item-defs)
hence derives \mathcal{G} [item-rule-head ?x] (item- β ? x)
using derives-if-valid-rule by metis
thus sound-item $\mathcal{G} \omega$? x
unfolding sound-item-def by (simp add: slice-empty)
qed
lemma sound-Scan:
assumes $x=$ Item $r b i j w f$-item $\mathcal{G} \omega x$ sound-item $\mathcal{G} \omega x$
assumes $\omega!j=a j<$ length ω next-symbol $x=$ Some a
shows sound-item $\mathcal{G} \omega$ (Item $r(b+1) i(j+1))$
proof -
define x^{\prime} where $[$ simp $]: x^{\prime}=$ Item $r(b+1) i(j+1)$
obtain item- β^{\prime} where $*:$ item- $\beta x=a \#$ item- β^{\prime} item- $\beta x^{\prime}=$ item- β^{\prime}
using assms $(1,6)$ apply (auto simp: item-defs next-symbol-def is-complete-def
split: if-splits)
by (metis Cons-nth-drop-Suc leI)
have slice $i j \omega @$ item- $\beta x=$ slice $i(j+1) \omega$ @ item- β^{\prime}
using $* \operatorname{assms}(1,2,4,5)$ by (auto simp: slice-append-nth wf-item-def)
moreover have derives \mathcal{G} [item-rule-head x] (slice ij ω @ item- β x)
using $\operatorname{assms}(1,3)$ sound-item-def by force
ultimately show ?thesis
using assms(1) * by (auto simp: item-defs sound-item-def)
qed
lemma sound-Predict:
assumes $x=$ Item rbijwf-item $\mathcal{G} \omega x$ sound-item $\mathcal{G} \omega x$
assumes $r^{\prime} \in \operatorname{set}(\Re \mathcal{G})$ next-symbol $x=$ Some (rule-head r^{\prime})
shows sound-item $\mathcal{G} \omega$ (Item $r^{\prime} 0 j j$)
using assms by (auto simp: sound-item-def derives-if-valid-rule slice-empty item-defs)
lemma sound-Complete:
assumes $x=$ Item $r_{x} b_{x} i j$ wf-item $\mathcal{G} \omega x$ sound-item $\mathcal{G} \omega x$
assumes $y=$ Item $r_{y} b_{y} j k w f$-item $\mathcal{G} \omega$ y sound-item $\mathcal{G} \omega y$
assumes is-complete y next-symbol $x=$ Some (item-rule-head y)
shows sound-item $\mathcal{G} \omega$ (Item $\left.r_{x}\left(b_{x}+1\right) i k\right)$
proof -
have derives \mathcal{G} [item-rule-head y] (slice $j k \omega$) using $\operatorname{assms}(4,6,7)$ by (auto simp: sound-item-def is-complete-def item-defs)
then obtain E where E : Derivation \mathcal{G} [item-rule-head $y] E($ slice $j k \omega)$
using derives-implies-Derivation by blast
have derives $\mathcal{G}[$ item-rule-head $x]$ (slice ij ω @ item- βx)
using $\operatorname{assms}(1,3,4)$ by (auto simp: sound-item-def)
moreover have 0: item- $\beta x=$ (item-rule-head y) \#tl (item- βx) using assms(8) apply (auto simp: next-symbol-def is-complete-def item-defs split: if-splits)
by (metis drop-eq-Nil hd-drop-conv-nth leI list.collapse)
ultimately obtain D where D :
Derivation \mathcal{G} [item-rule-head $x] D$ (slice ij ω @ [item-rule-head $y]$ @ (tl (item- β
x)))
using derives-implies-Derivation by (metis append-Cons append-Nil)
obtain F where F :
Derivation \mathcal{G} [item-rule-head x] F (slice $i j \omega @$ slice $j k \omega @ t l($ item- $\beta x)$)
using Derivation-append-rewrite $D E$ by blast
moreover have $i \leq j$
using $\operatorname{assms}(1,2) w f$-item-def by force
moreover have $j \leq k$
using $\operatorname{assms}(4,5)$ wf-item-def by force
ultimately have derives \mathcal{G} [item-rule-head x] (slice ik ω @ tl (item- βx)) by (metis Derivation-implies-derives append.assoc slice-concat)
thus sound-item $\mathcal{G} \omega$ (Item $\left.r_{x}\left(b_{x}+1\right) i k\right)$
using $\operatorname{assms}(1,4)$ by (auto simp: sound-item-def item-defs drop-Suc tl-drop)
qed
lemma sound-Earley:
assumes $x \in$ Earley $\mathcal{G} \omega$ wf-item $\mathcal{G} \omega x$
shows sound-item $\mathcal{G} \omega x$

```
    using assms
proof (induction rule: Earley.induct)
    case (Init r)
    thus ?case
        using sound-Init by blast
next
    case (Scan x rbija)
    thus?case
        using wf-Earley sound-Scan by fast
next
    case (Predict x r b i j r')
    thus ?case
        using wf-Earley sound-Predict by blast
next
    case (Complete x r r b bxij y ry by k)
    thus ?case
        using wf-Earley sound-Complete by metis
qed
theorem soundness-Earley:
    assumes recognizing (Earley \mathcal{G \omega)\mathcal{G}\omega}\mp@code{|}\mathrm{ )}
    shows derives \mathcal{G [S G}]\omega
proof -
    obtain x where x:x\inEarley \mathcal{G }\omega\mathrm{ is-finished G }\omegax
        using assms recognizing-def by blast
    hence sound-item \mathcal{G }\omegax
        using wf-Earley sound-Earley by blast
    thus ?thesis
        unfolding sound-item-def using x by (auto simp: is-finished-def is-complete-def
item-defs)
qed
```


6.4 Completeness

definition partially-completed $::$ nat $\Rightarrow{ }^{\prime} a c f g \Rightarrow{ }^{\prime} a$ sentence $\Rightarrow{ }^{\prime} a$ item set $\Rightarrow ~^{\prime}{ }^{\prime} a$ derivation \Rightarrow bool $) \Rightarrow$ bool where

```
    partially-completed \(k \mathcal{G} \omega E P \equiv \forall r b i^{\prime} i j x a D\).
        \(i \leq j \wedge j \leq k \wedge k \leq\) length \(\omega \wedge\)
        \(x=\) Item rbis \(i^{\prime} i \wedge x \in E \wedge\) next-symbol \(x=\) Some \(a \wedge\)
        Derivation \(\mathcal{G}[a] D(\) slice \(i j \omega) \wedge P D \longrightarrow\)
        Item \(r(b+1) i^{\prime} j \in E\)
lemma partially-completed-upto:
    assumes \(j \leq k k \leq\) length \(\omega\)
    assumes \(x=\operatorname{Item}(N, \alpha) d i j x \in I \forall x \in I\).wf-item \(\mathcal{G} \omega x\)
    assumes Derivation \(\mathcal{G}\) (item- \(\beta\) x) \(D\) (slice jk \(\omega\) )
    assumes partially-completed \(k \mathcal{G} \omega I\left(\lambda D^{\prime}\right.\). length \(D^{\prime} \leq\) length \(\left.D\right)\)
    shows Item \((N, \alpha)\) (length \(\alpha) i k \in I\)
    using assms
```

proof (induction item- β x arbitrary: $d i j k N \alpha x D$)
case Nil
have item- $\alpha x=\alpha$
using $\operatorname{Nil}(1,4)$ unfolding item- α-def item- β-def item-rule-body-def rule-body-def
by simp
hence $x=\operatorname{Item}(N, \alpha)($ length $\alpha) i j$
using Nil.hyps Nil.prems(3-5) unfolding wf-item-def item-defs by auto
have Derivation \mathcal{G} [] $D($ slice $j k \omega)$
using Nil.hyps Nil.prems(6) by auto
hence slice $j k \omega=[]$
using Derivation-from-empty by blast
hence $j=k$
unfolding slice-drop-take using Nil.prems $(1,2)$ by simp
thus ?case
using $\langle x=\operatorname{Item}(N, \alpha)($ length $\alpha) i j\rangle$ Nil.prems(4) by blast
next
case (Cons b bs)
obtain $j^{\prime} E F$ where *:
Derivation $\mathcal{G}[b] E\left(\right.$ slice $\left.j j^{\prime} \omega\right)$
Derivation \mathcal{G} bs $F\left(\right.$ slice $\left.j^{\prime} k \omega\right)$
$j \leq j^{\prime} j^{\prime} \leq k$ length $E \leq$ length D length $F \leq$ length D
using Derivation-concat-split[of $\mathcal{G}[b]$ bs D slice $j k \omega]$ slice-concat-Ex
using Cons.hyps(2) Cons.prems (1,6)
by (smt (verit, ccfv-threshold) Cons-eq-appendI append-self-conv2)
have next-symbol $x=$ Some b
using Cons.hyps(2) unfolding item-defs(4) next-symbol-def is-complete-def
by (auto, metis nth-via-drop)
hence $\operatorname{Item}(N, \alpha)(d+1) i j^{\prime} \in I$
using Cons.prems(7) unfolding partially-completed-def
using Cons.prems $(2,3,4) *(1,3-5)$ by blast
moreover have partially-completed $k \mathcal{G} \omega I\left(\lambda D^{\prime}\right.$. length $D^{\prime} \leq$ length $\left.F\right)$
using Cons.prems(7) $*(6)$ unfolding partially-completed-def by fastforce
moreover have $b s=i$ tem- β (Item $\left.(N, \alpha)(d+1) i j^{\prime}\right)$
using Cons.hyps(2) Cons.prems(3) unfolding item-defs(4) item-rule-body-def
by (auto, metis List.list.sel(3) drop-Suc drop-tl)
ultimately show ?case
using Cons.hyps(1) *(2,4) Cons.prems(2,3,5) wf-item-def by blast
qed
lemma partially-completed-Earley-k:
assumes $w f-\mathcal{G} \mathcal{G}$
shows partially-completed $k \mathcal{G} \omega$ (Earley $\mathcal{G} \omega)$ (λ-. True)
unfolding partially-completed-def
proof (standard, standard, standard, standard, standard, standard, standard, standard, standard)
fix $r b i^{\prime} i j x a D$
assume

$$
i \leq j \wedge j \leq k \wedge k \leq \text { length } \omega \wedge
$$

```
    \(x=\) Item \(r b i^{\prime} i \wedge x \in\) Earley \(\mathcal{G} \omega \wedge\)
    next-symbol \(x=\) Some \(a \wedge\)
    Derivation \(\mathcal{G}[a] D(\) slice ij \(\omega) \wedge\) True
    thus Item \(r(b+1) i^{\prime} j \in\) Earley \(\mathcal{G} \omega\)
    proof (induction length \(D\) arbitrary: rbi'ijx a \(D\) rule: nat-less-induct)
    case 1
    show ?case
    proof cases
    assume \(D=[]\)
    hence \([a]=\) slice \(i j \omega\)
        using 1.prems by force
    moreover have \(j \leq\) length \(\omega\)
        using le-trans 1.prems by blast
    ultimately have \(j=i+1\)
        using slice-singleton by metis
    hence \(i<\) length \(\omega\)
        using \(\langle j \leq\) length \(\omega\rangle\) discrete by blast
    hence \(\omega!i=a\)
        using slice-nth \(\langle[a]=\) slice \(i j \omega\rangle\langle j=i+1\rangle\) by fastforce
    hence Item \(r(b+1) i^{\prime} j \in\) Earley \(\mathcal{G} \omega\)
        using Earley.Scan 1.prems \(\langle i<\) length \(\omega\rangle\langle j=i+1\rangle\) by metis
    thus ?thesis
        by \((\operatorname{simp}\) add: \(<j=i+1\rangle)\)
    next
    assume \(\neg D=[]\)
    then obtain \(d D^{\prime}\) where \(D=d \# D^{\prime}\)
        by (meson List.list.exhaust)
    then obtain \(\alpha\) where \(*\) : Derives1 \(\mathcal{G}[a](f s t d)(s n d d) \alpha\) Derivation \(\mathcal{G} \alpha D^{\prime}\)
(slice \(i j \omega\) )
            using 1.prems by auto
    hence rule: \((a, \alpha) \in \operatorname{set}(\Re \mathcal{G})\) fst \(d=0\) snd \(d=(a, \alpha)\)
        using *(1) unfolding Derives1-def by (simp add: Cons-eq-append-conv)+
    show ?thesis
    proof cases
        assume is-terminal \(\mathcal{G}\) a
        have is-nonterminal \(\mathcal{G} a\)
            using rule by (simp add: assms)
        thus ?thesis
            using «is-terminal \(\mathcal{G}\) a〉is-terminal-nonterminal by (metis assms)
    next
        assume \(\neg\) is-terminal \(\mathcal{G} a\)
        define \(y\) where \(y\)-def: \(y=\operatorname{Item}(a, \alpha) 0 i i\)
        have length \(D^{\prime}<\) length \(D\)
            using \(\left\langle D=d \# D^{\prime}\right\rangle\) by fastforce
        hence partially-completed \(k \mathcal{G} \omega(\) Earley \(\mathcal{G} \omega)\left(\lambda E\right.\). length \(E \leq\) length \(\left.D^{\prime}\right)\)
        unfolding partially-completed-def using 1. hyps order-le-less-trans by (smt
(verit, best))
    hence partially-completed \(j \mathcal{G} \omega(\) Earley \(\mathcal{G} \omega)\left(\lambda E\right.\). length \(E \leq\) length \(\left.D^{\prime}\right)\)
        unfolding partially-completed-def using 1.prems by force
```

```
            moreover have Derivation \(\mathcal{G}\left(\right.\) item- \(\beta\) y) \(D^{\prime}\) (slice ij \(\omega\) )
                using \(*\) (2) by (auto simp: item-defs \(y\)-def)
            moreover have \(y \in\) Earley \(\mathcal{G} \omega\)
                using \(y\)-def 1.prems rule by (auto simp: item-defs Earley.Predict)
            moreover have \(j \leq\) length \(\omega\)
                using 1.prems by simp
            ultimately have Item \((a, \alpha)\) (length \(\alpha\) ) \(i j \in\) Earley \(\mathcal{G} \omega\)
                using partially-completed-upto 1.prems wf-Earley \(y\)-def by metis
            moreover have \(x: x=\) Item \(r b i^{\prime} i x \in\) Earley \(\mathcal{G} \omega\)
                using 1.prems by blast+
            moreover have next-symbol \(x=\) Some a
                    using 1.prems by linarith
            ultimately show ?thesis
                    using Earley.Complete \([\) OF \(x]\) by (auto simp: is-complete-def item-defs)
        qed
    qed
    qed
qed
lemma partially-completed-Earley:
    \(w f-\mathcal{G} \mathcal{G} \Longrightarrow\) partially-completed (length \(\omega) \mathcal{G} \omega(\) Earley \(\mathcal{G} \omega)(\lambda\)-. True)
    by (simp add: partially-completed-Earley-k)
theorem completeness-Earley:
    assumes derives \(\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega\) is-word \(\mathcal{G} \omega\) wf- \(\mathcal{G} \mathcal{G}\)
    shows recognizing (Earley \(\mathcal{G} \omega) \mathcal{G} \omega\)
proof -
    obtain \(\alpha D\) where \(*:(\mathfrak{S} \mathcal{G}, \alpha) \in \operatorname{set}(\Re \mathcal{G})\) Derivation \(\mathcal{G} \alpha D \omega\)
        using Derivation- \(\mathfrak{S} 1\) assms derives-implies-Derivation by metis
    define \(x\) where \(x\)-def: \(x=\operatorname{Item}(\mathfrak{S} \mathcal{G}, \alpha) 000\)
    have partially-completed (length \(\omega\) ) \(\mathcal{G} \omega\) (Earley \(\mathcal{G} \omega\) ) ( \(\lambda\)-. True)
        using assms(3) partially-completed-Earley by blast
    hence 0 : partially-completed (length \(\omega\) ) \(\mathcal{G} \omega(\) Earley \(\mathcal{G} \omega)\left(\lambda D^{\prime}\right.\). length \(D^{\prime} \leq\)
length \(D\) )
    unfolding partially-completed-def by blast
    have 1: \(x \in\) Earley \(\mathcal{G} \omega\)
        using \(x\)-def Earley.Init \(*(1)\) by fastforce
    have 2: Derivation \(\mathcal{G}(\) item- \(\beta\) x) \(D(\) slice \(0(\) length \(\omega) \omega)\)
        using *(2) \(x\)-def by (simp add: item-defs)
    have Item \((\mathfrak{S} \mathcal{G}, \alpha)(\) length \(\alpha) 0(\) length \(\omega) \in\) Earley \(\mathcal{G} \omega\)
    using partially-completed-upto[OF---2 2] wf-Earley \(1 x\)-def by auto
    then show ?thesis
    unfolding recognizing-def is-finished-def by (auto simp: is-complete-def item-defs,
force)
qed
```


6.5 Correctness

theorem correctness-Earley:
assumes $w f-\mathcal{G} \mathcal{G}$ is－word $\mathcal{G} \omega$
shows recognizing（Earley $\mathcal{G} \omega) \mathcal{G} \omega \longleftrightarrow$ derives $\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega$ using assms soundness－Earley completeness－Earley by blast

6．6 Finiteness

lemma finiteness－empty：
set $(\mathfrak{R} \mathcal{G})=\{ \} \Longrightarrow$ finite $\{x \mid x$ wf－item $\mathcal{G} \omega x\}$
unfolding wf－item－def by simp
fun item－intro ：：＇a rule \times nat \times nat \times nat \Rightarrow＇a item where item－intro（rule，dot，origin，ends）$=$ Item rule dot origin ends
lemma finiteness－nonempty：
assumes set $(\mathfrak{R} \mathcal{G}) \neq\{ \}$
shows finite $\{x \mid x$ wf－item $\mathcal{G} \omega x\}$
proof－
define M where $M=\operatorname{Max}\{$ length（rule－body $r) \mid r . r \in \operatorname{set}(\mathfrak{R} \mathcal{G})\}$
define $T o p$ where Top $=($ set $(\mathfrak{R} \mathcal{G}) \times\{0 . . M\} \times\{0 . . l e n g t h \omega\} \times\{0 . . l e n g t h$
$\omega\}$ ）
hence finite Top
using finite－cartesian－product finite by blast
have inj－on item－intro Top
unfolding Top－def inj－on－def by simp
hence finite（item－intro＇Top）
using finite－image－iff 〈finite Top〉 by auto
have $\{x \mid x$ ．wfitem $\mathcal{G} \omega x\} \subseteq$ item－intro＇Top
proof standard
fix x
assume $x \in\{x \mid x$ ．wf－item $\mathcal{G} \omega x\}$
then obtain rule dot origin endp where $*: x=$ Item rule dot origin endp rule $\in \operatorname{set}(\mathfrak{R})$ dot \leq length（item－rule－body $x)$ origin \leq length ω endp \leq
length ω
unfolding wfitem－def using item．exhaust－sel le－trans by blast
hence length（rule－body rule）$\in\{$ length（rule－body $r) \mid r . r \in \operatorname{set}(\mathfrak{R} \mathcal{G})\}$ using $*(1,2)$ item－rule－body－def by blast
moreover have finite $\{$ length（rule－body $r) \mid r . r \in \operatorname{set}(\mathfrak{R} \mathcal{G})\}$
using finite finite－image－set $[$ of $\lambda x . x \in \operatorname{set}(\mathfrak{R} \mathcal{G})]$ by fastforce
ultimately have $M \geq$ length（rule－body rule）
unfolding M－def by simp
hence $\operatorname{dot} \leq M$
using $*(1,3)$ item－rule－body－def by（metis item．sel（1）le－trans）
hence（rule，dot，origin，endp）\in Top
using $*(2,4,5)$ unfolding Top－def by simp
thus $x \in$ item－intro＇Top
using $*(1)$ by force
qed
thus ？thesis
using 〈finite（item－intro＇Top）〉 rev－finite－subset by auto

qed

lemma finiteness-UNIV-wf-item:
finite $\{x \mid x$.wf-item $\mathcal{G} \omega x\}$
using finiteness-empty finiteness-nonempty by fastforce

```
theorem finiteness-Earley:
    finite (Earley G \omega)
    using finiteness-UNIV-wf-item wf-Earley rev-finite-subset by (metis mem-Collect-eq
subsetI)
end
theory Earley-Fixpoint
    imports
        Earley
        Limit
begin
```


7 Earley recognizer

7.1 Earley fixpoint

definition init-item $::$ 'a rule \Rightarrow nat \Rightarrow 'a item where init-item rk F Item r $0 k k$
definition inc-item $::$ ' a item $\Rightarrow n a t \Rightarrow$ 'a item where
inc-item $x k$ Item (item-rule $x)($ item-dot $x+1)($ item-origin $x) k$
definition bin :: 'a item set \Rightarrow nat \Rightarrow 'a item set where
bin $I k \equiv\{x . x \in I \wedge$ item-end $x=k\}$
definition Init $_{F}::{ }^{\prime} a \operatorname{cfg} \Rightarrow{ }^{\prime} a$ item set where
Init $_{F} \mathcal{G} \equiv\{$ init-item $r 0 \mid r . r \in \operatorname{set}(\mathfrak{R} \mathcal{G}) \wedge f$ st $r=(\mathfrak{S} \mathcal{G})\}$
definition $S_{\text {San }}^{F}::$ nat $\Rightarrow{ }^{\prime} a$ sentence \Rightarrow 'a item set $\Rightarrow{ }^{\prime} a$ item set where
Scan $_{F} k \omega I \equiv\{$ inc-item $x(k+1) \mid x a$.
$x \in \operatorname{bin} I k \wedge$
$\omega!k=a \wedge$
$k<$ length $\omega \wedge$
next-symbol $x=$ Some $a\}$
definition Predict $F_{F}::$ nat $\Rightarrow{ }^{\prime} a$ cfg $\Rightarrow{ }^{\prime} a$ item set $\Rightarrow{ }^{\prime} a$ item set where
Predict $_{F} k \mathcal{G} I \equiv\{$ init-item $r k \mid r x$.
$r \in \operatorname{set}(\Re \mathcal{G}) \wedge$
$x \in \operatorname{bin} I k \wedge$
next-symbol $x=$ Some (rule-head $r)\}$
definition Complete ${ }_{F}$:: nat \Rightarrow 'a item set $\Rightarrow{ }^{\prime} a$ item set where
Complete $_{F} k I \equiv\{$ inc-item $x k \mid x y$.

```
x\in\operatorname{bin I (item-origin y)}^
y\in\operatorname{bin}Ik\wedge
is-complete y ^
next-symbol x = Some (item-rule-head y) }
```

definition Earley ${ }_{F}$-bin-step $::$ nat $\Rightarrow{ }^{\prime} a$ cfg \Rightarrow 'a sentence $\Rightarrow{ }^{\prime} a$ item set $\Rightarrow{ }^{\prime} a$ item set where

Earley $_{F}$-bin-step $k \mathcal{G} \omega I \equiv I \cup$ Scan $_{F} k \omega I \cup$ Complete $_{F} k I \cup$ Predict $_{F} k \mathcal{G} I$
definition Earley ${ }_{F}$-bin $::$ nat $\Rightarrow{ }^{\prime} a$ cfg \Rightarrow 'a sentence \Rightarrow ' a item set \Rightarrow 'a item set where

Earley ${ }_{F}$-bin $k \mathcal{G} \omega I \equiv \operatorname{limit}\left(\right.$ Earley $_{F}$-bin-step $\left.k \mathcal{G} \omega\right) I$
fun Earley y_{F}-bins :: nat $\Rightarrow{ }^{\prime} a c f g \Rightarrow{ }^{\prime} a$ sentence \Rightarrow ' a item set where
Earley ${ }_{F}$-bins $0 \mathcal{G} \omega=$ Earley $_{F}$-bin $0 \mathcal{G} \omega\left(\right.$ Init $\left._{F} \mathcal{G}\right)$
| Earley ${ }_{F}$-bins $($ Suc $n) \mathcal{G} \omega=$ Earley $_{F}$-bin $($ Suc $n) \mathcal{G} \omega\left(\right.$ Earley ${ }_{F}$-bins $\left.n \mathcal{G} \omega\right)$
definition Earley ${ }_{F}::$ ' $a c f g \Rightarrow$ 'a sentence \Rightarrow ' a item set where
Earley $_{F} \mathcal{G} \omega \equiv$ Earley $_{F}$-bins (length ω) $\mathcal{G} \omega$

7.2 Monotonicity and Absorption

lemma Earley y_{F}-bin-step-empty:
Earley $_{F}$-bin-step $k \mathcal{G} \omega\}=\{ \}$
unfolding Earley ${ }_{F}$-bin-step-def Scan $_{F}$-def Complete ${ }_{F}$-def Predict $_{F}$-def bin-def by blast
lemma Earley ${ }_{F}$-bin-step-setmonotone:

by (simp add: Un-assoc Earley ${ }_{F}$-bin-step-def setmonotone-def)
lemma Earley ${ }_{F}$-bin-step-continuous:
continuous (Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega$)
unfolding continuous-def
proof (standard, standard, standard)
fix C :: nat $\Rightarrow{ }^{\prime}$ a item set
assume chain C
thus chain $\left(\right.$ Earley $_{F}$-bin-step $\left.k \mathcal{G} \omega \circ C\right)$
unfolding chain-def Earley F_{F}-bin-step-def by (auto simp: $S_{c a n_{F} \text {-def } \text { Predict }_{F} \text {-def }}$
Complete $_{F}$-def bin-def subset-eq)
next
fix C :: nat \Rightarrow 'a item set
assume *: chain C
show Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega($ natUnion $C)=$ natUnion $\left(\right.$ Earley $_{F}$-bin-step $k \mathcal{G}$ $\omega \circ C$)
unfolding natUnion-def
proof standard
show Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega(\bigcup\{C n \mid n$. True $\}) \subseteq \bigcup\left\{\left(\right.\right.$ Earley $_{F}$-bin-step k $\mathcal{G} \omega \circ C) n \mid n$. True $\}$

```
    proof standard
    fix \(x\)
    assume \#: \(x \in\) Earley \(_{F}\)-bin-step \(k \mathcal{G} \omega(\bigcup\{C n \mid n\). True \(\})\)
    show \(x \in \bigcup\left\{\left(\right.\right.\) Earley \(_{F}\)-bin-step \(\left.k \mathcal{G} \omega \circ C\right) n \mid n\). True \(\}\)
    proof (cases \(x \in\) Complete \(_{F} k(\bigcup\{C n \mid n\). True \(\})\) )
        case True
        then show ?thesis
            using \(*\) unfolding chain-def Earley \({ }_{F}\)-bin-step-def Complete \({ }_{F}\)-def bin-def
        proof clarsimp
            fix \(y\) :: 'a item and \(z::\) ' \(a\) item and \(n::\) nat and \(m\) :: nat
            assume a1: is-complete \(z\)
            assume a2: item-end \(y=\) item-origin \(z\)
            assume \(a 3: y \in C n\)
            assume \(a 4: z \in C m\)
            assume a5: next-symbol \(y=\) Some (item-rule-head \(z\) )
            assume \(\forall i\). \(C i \subseteq C\) (Suc \(i\) )
            hence f6: \(\bigwedge n m\). \(\neg n \leq m \vee C n \subseteq C m\)
                by (meson lift-Suc-mono-le)
            hence \(f 7\) : \(\bigwedge n\). \(\neg m \leq n \vee z \in C n\)
                using a\& by blast
            have \(\exists n \geq m . y \in C n\)
                using \(f 6\) a3 by (meson le-sup-iff subset-eq sup-ge1)
            thus \(\exists I\).
                                    \((\exists n . I=C n \cup\)
                                    \(S_{\text {can }}^{F}(\) item-end \(z) \omega(C n) \cup\)
                                    \(\{\) inc-item \(i\) (item-end \(z) \mid i\).
                                    \(i \in C n \wedge\)
                            ( \(\exists\) j.
                                    item-end \(i=\) item-origin \(j \wedge\)
                                    \(j \in C n \wedge\)
                                    item-end \(j=\) item-end \(z \wedge\)
                                    is-complete \(j \wedge\)
                                    next-symbol \(i=\) Some (item-rule-head \(j))\} \cup\)
                                    Predict \(_{F}(\) item-end \(\left.z) \mathcal{G}(C n)\right)\)
                \(\wedge\) inc-item \(y(\) item-end \(z) \in I\)
            using \(f^{7}\) a5 a2 a1 by blast
        qed
    next
        case False
        thus ?thesis
        using \# Un-iff by (auto simp: Earley \(F_{F}\)-bin-step-def Scan \(_{F}\)-def Predict F \(_{F}\)-def
bin-def; blast)
            qed
        qed
    next
    show \(\bigcup\left\{\left(\right.\right.\) Earley \(_{F}\)-bin-step \(\left.k \mathcal{G} \omega \circ C\right) n \mid n\). True \(\} \subseteq\) Earley \(_{F}\)-bin-step \(k \mathcal{G} \omega\)
\((\bigcup\{C n \mid n\). True \(\}\) )
    unfolding Earley \({ }_{F}\)-bin-step-def
    using * by (auto simp: Scan \({ }_{F}\)-def Predict \(_{F}\)-def Complete \({ }_{F}\)-def chain-def
```

```
bin-def,metis+)
    qed
qed
lemma EarleyF-bin-step-regular:
    regular (Earley }\mp@subsup{F}{F}{-bin-step k\mathcal{G}\omega)
    by (simp add: EarleyF-bin-step-continuous EarleyF-bin-step-setmonotone regu-
lar-def)
lemma Earley 
    Earley 
    by (simp add: EarleyF-bin-def Earley F-bin-step-regular limit-is-idempotent)
lemma Scan F-bin-absorb:
    Scan F}k\omega(bin I k)= Scan F k | I
    unfolding Scan F-def bin-def by simp
lemma Predict}\mp@subsup{F}{F}{-bin-absorb:
    Predict}\mp@subsup{F}{F}{k\mathcal{G}}(\mathrm{ bin I k) = PredictF}k\mp@code{G I
    unfolding Predict}\mp@subsup{F}{F}{}-def bin-def by simp
lemma Scan}\mp@subsup{F}{F}{-Un:
    Scan}\mp@subsup{F}{F}{k}\omega(I\cupJ)=\mp@subsup{S}{can}{F
    unfolding ScanF-def bin-def by blast
lemma Predict}\mp@subsup{F}{F}{}-Un
    Predict F}k\mathcal{G}(I\cupJ)=\mp@subsup{\mathrm{ Predict F}}{F}{}\mathcal{G}I\cup\mp@subsup{\mathrm{ Predict }}{F}{}k\mathcal{G}
    unfolding Predict F
lemma Scan }\mp@subsup{F}{F}{-sub-mono:
    I\subseteqJ\LongrightarrowScan}\mp@subsup{\mp@code{F}}{}{k}\omegaI\subseteq\mp@subsup{Scan}{F}{}k\omega
    unfolding Scan F-def bin-def by blast
lemma Predict}\mp@subsup{}{F}{}\mathrm{ -sub-mono:
    I\subseteqJ\Longrightarrow\mp@subsup{Predict }{F}{}k\mathcal{G}I\subseteq\mp@subsup{\mathrm{ Predict }}{F}{}k\mathcal{G}J
    unfolding Predict}\mp@subsup{F}{F}{}-def bin-def by blas
lemma Complete}\mp@subsup{\mp@code{F}}{F}{}\mathrm{ -sub-mono:
    I\subseteqJ\Longrightarrow\mp@subsup{Complete }{F}{}kI\subseteq\mp@subsup{\mathrm{ Complete }}{F}{}kJ
    unfolding CompleteF-def bin-def by blast
lemma EarleyF-bin-step-sub-mono:
    I\subseteqJ\Longrightarrow EarleyF-bin-step k\mathcal{G}\omegaI\subseteq Earley F-bin-step k \mathcal{G }\omegaJ
    unfolding EarleyF-bin-step-def using ScanF-sub-mono Predict F
plete}\mp@subsup{F}{F}{}\mathrm{ -sub-mono by (metis sup.mono)
lemma funpower-sub-mono:
    I\subseteqJ\Longrightarrowfunpower (EarleyF-bin-step k\mathcal{G}\omega)nI\subseteqfunpower (Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-step
k\mathcal{G}\omega) nJ
```

```
    by (induction n) (auto simp: Earley F-bin-step-sub-mono)
lemma Earley }\mp@subsup{y}{F}{-bin-sub-mono:
    I\subseteqJ\Longrightarrow\mp@subsup{Earley }{F}{}\mathrm{ -bin }k\mathcal{G}\omegaI\subseteq\mp@subsup{\mathrm{ Earley }}{F}{}-bin k\mathcal{G}\omegaJ
proof standard
    fix }
```



```
    then obtain n where }x\in\mathrm{ funpower (Earley }\mp@subsup{F}{F}{-bin-step k \mathcal{G }\omega\mathrm{ ) n I}
        unfolding EarleyF-bin-def limit-def natUnion-def by blast
    hence }x\in\mathrm{ funpower (Earley F-bin-step k G }\omega\mathrm{ ) nJ
        using \langleI\subseteqJ` funpower-sub-mono by blast
    thus }x\in\mp@subsup{\mathrm{ Earley }}{F}{}-bin k\mathcal{G}\omega
        unfolding EarleyF-bin-def limit-def natUnion-def by blast
qed
lemma Scan F-Earley }\mp@subsup{F}{F}{-bin-step-mono:
    Scan F}k\omegaI\subseteq\mp@subsup{Earley }{F}{F}\mathrm{ -bin-step k G }\omega
    using Earley F-bin-step-def by blast
lemma Predict }\mp@subsup{F}{F}{-Earley }\mp@subsup{F}{F}{-bin-step-mono:
    \mp@subsup{Predict F}{F}{k}\mathcal{G}I\subseteq\mp@subsup{\mathrm{ Earley F}}{F}{}\mathrm{ -bin-step k G }\omegaI
    using Earley F-bin-step-def by blast
lemma Complete F-Earley F-bin-step-mono:
    Complete }\mp@subsup{F}{F}{}kI\subseteq\mp@subsup{\mathrm{ EarleyF}}{F}{}\mathrm{ -bin-step k G }\omega
    using EarleyF-bin-step-def by blast
lemma EarleyF-bin-step-EarleyF-bin-mono:
    Earley }\mp@subsup{F}{F}{-bin-step k\mathcal{G}\omegaI\subseteq\mp@subsup{EArley F}{F}{-bin k G }\omegaI
proof -
    have Earley }\mp@subsup{F}{F}{-bin-step k\mathcal{G}\omegaI\subseteq funpower (Earley F-bin-step k \mathcal{G w) 1 I}
        by simp
    thus ?thesis
        by (metis EarleyF-bin-def limit-elem subset-eq)
qed
lemma Scan }\mp@subsup{F}{F}{-EarleyF-bin-mono:
    Scan 
    using Scan }\mp@subsup{F}{F}{-EarleyF}\mp@subsup{F}{F}{-bin-step-mono EarleyF-bin-step-EarleyF}\mp@subsup{F}{F}{}-bin-mono by force
lemma Predict }\mp@subsup{F}{F}{}\mathrm{ -Earley }\mp@subsup{F}{F}{-bin-mono:
    Predict }\mp@subsup{F}{F}{k\mathcal{G}I\subseteq\mp@subsup{\mathrm{ Earley }}{F}{-bin k\mathcal{G}\omegaI}
    using Predict}\mp@subsup{F}{F}{-EarleyF}\mp@subsup{F}{F}{-bin-step-mono Earley F
force
lemma Complete}\mp@subsup{F}{F}{}-\mp@subsup{E}{\mathrm{ Earley }}{F
    Complete }\mp@subsup{F}{F}{k}I\subseteq\mp@subsup{\mathrm{ Earley }}{F}{}-bin k\mathcal{G}\omega
    using Complete}\mp@subsup{F}{F}{}-\mp@subsup{E}{\mathrm{ EarleyF}}{F}\mathrm{ -bin-step-mono Earley F-bin-step-EarleyF-bin-mono by
force
```

```
lemma Earley 
    I\subseteq\mp@subsup{Earley }{F}{-bin k G }\omegaI
    using Earley F-bin-step-Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-mono Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-step-def by blast
lemma Init }\mp@subsup{F}{F}{}\mathrm{ -sub-Earley F-bins:
    Init }\mp@subsup{F}{F}{\mathcal{G}\subseteq\mp@subsup{E}{\mathrm{ Earley }}{F}\mathrm{ -bins n G }\omega
    by (induction n) (use Earley }\mp@subsup{\mp@code{F}}{\mathrm{ -bin-mono in fastforce)+}}{\mathrm{ -}
```


7.3 Soundness

lemma Init $_{F}$-sub-Earley:
Init $_{F} \mathcal{G} \subseteq$ Earley $\mathcal{G} \omega$
unfolding Init $_{F}$-def init-item-def using Init by blast
lemma Scan $_{F}$-sub-Earley:
assumes $I \subseteq$ Earley $\mathcal{G} \omega$
shows $\operatorname{Scan}_{F} k \omega I \subseteq$ Earley $\mathcal{G} \omega$
unfolding Scan $_{F}$-def inc-item-def bin-def using assms Scan
by (smt (verit, ccfv-SIG) item.exhaust-sel mem-Collect-eq subsetD subsetI)
lemma Predict ${ }_{F}$-sub-Earley:
assumes $I \subseteq$ Earley $\mathcal{G} \omega$
shows Predict ${ }_{F} k \mathcal{G} I \subseteq$ Earley $\mathcal{G} \omega$
unfolding Predict ${ }_{F}$-def init-item-def bin-def using assms Predict
using item.exhaust-sel by blast
lemma Complete ${ }_{F}$-sub-Earley:
assumes $I \subseteq$ Earley $\mathcal{G} \omega$
shows Complete $_{F} k I \subseteq$ Earley $\mathcal{G} \omega$
unfolding Complete ${ }_{F}$-def inc-item-def bin-def using assms Complete
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq subset-eq)
lemma Earley ${ }_{F}$-bin-step-sub-Earley:
assumes $I \subseteq$ Earley $\mathcal{G} \omega$
shows Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega I \subseteq$ Earley $\mathcal{G} \omega$
unfolding Earley F_{F}-bin-step-def using assms Complete ${ }_{F}$-sub-Earley Predict ${ }_{F}$-sub-Earley
Scan $_{F}$-sub-Earley by (metis le-supI)
lemma Earley ${ }_{F}$-bin-sub-Earley:
assumes $I \subseteq$ Earley $\mathcal{G} \omega$
shows Earley ${ }_{F}$-bin $k \mathcal{G} \omega I \subseteq$ Earley $\mathcal{G} \omega$
using assms Earley ${ }_{F}$-bin-step-sub-Earley by (metis Earley F_{F}-bin-def limit-upperbound)
lemma Earley ${ }_{F}$-bins-sub-Earley:
shows Earley $_{F}$-bins $n \mathcal{G} \omega \subseteq$ Earley $\mathcal{G} \omega$
by (induction n) (auto simp: Earley ${ }_{F}$-bin-sub-Earley Init $_{F}$-sub-Earley)
lemma Earley ${ }_{F}$-sub-Earley:

```
shows Earley F}\mathcal{G}\omega\subseteq\mathrm{ Earley G }
```

by (simp add: Earley F_{F}-bins-sub-Earley Earley y_{F}-def)
theorem soundness-Earley ${ }_{F}$:
assumes recognizing (Earley $\left.{ }_{F} \mathcal{G} \omega\right) \mathcal{G} \omega$
shows derives $\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega$
using soundness-Earley Earley ${ }_{F}$-sub-Earley assms recognizing-def by (metis subsetD)

7.4 Completeness

definition prev-symbol $::$ ' a item \Rightarrow ' a option where prev-symbol $x \equiv$ if item-dot $x=0$ then None else Some (item-rule-body x ! (item-dot $x-1)$)
definition base :: 'a sentence \Rightarrow 'a item set \Rightarrow nat \Rightarrow 'a item set where
base $\omega I k \equiv\{x . x \in I \wedge$ item-end $x=k \wedge k>0 \wedge$ prev-symbol $x=$ Some $(\omega!(k-1))\}$
lemma Earley ${ }_{F}$-bin-sub-Earley F_{F}-bin:
assumes Init $_{F} \mathcal{G} \subseteq I$
assumes $\forall k^{\prime}<k$. bin $($ Earley $\mathcal{G} \omega) k^{\prime} \subseteq I$
assumes base ω (Earley $\mathcal{G} \omega) k \subseteq I$
shows $\operatorname{bin}($ Earley $\mathcal{G} \omega) k \subseteq \operatorname{bin}\left(\right.$ Earley $\left._{F}-\operatorname{bin} k \mathcal{G} \omega I\right) k$
proof standard
fix x
assume $*: x \in \operatorname{bin}($ Earley $\mathcal{G} \omega) k$
hence $x \in$ Earley $\mathcal{G} \omega$
using bin-def by blast
thus $x \in \operatorname{bin}\left(\right.$ Earley $_{F}-$ bin $\left.k \mathcal{G} \omega I\right) k$ using assms *
proof (induction rule: Earley.induct)
case (Init r)
thus ?case
unfolding Init $_{F}$-def init-item-def bin-def using Earley ${ }_{F}$-bin-mono by fast
next
case (Scan xrbija)
have $j+1=k$
using Scan.prems(4) bin-def by (metis (mono-tags, lifting) CollectD item.sel(4))
have prev-symbol (Item $r(b+1) i(j+1))=$ Some $(\omega!(k-1))$
using Scan.hyps $(1,3,5)\langle j+1=k\rangle$ by (auto simp: next-symbol-def prev-symbol-def
item-rule-body-def split: if-splits)
hence Item $r(b+1) i(j+1) \in$ base $\omega($ Earley $\mathcal{G} \omega) k$
unfolding base-def using Scan.prems(4) bin-def by fastforce
hence Item $r(b+1) i(j+1) \in I$
using Scan.prems(3) by blast
hence Item $r(b+1) i(j+1) \in$ Earley $_{F}-$ bin $^{k} \mathcal{G} \omega I$
using Earley ${ }_{F}$-bin-mono by blast
thus ?case
using $\langle j+1=k\rangle$ bin-def by fastforce
next
case (Predict x rbijr)
have $j=k$
using Predict.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
hence $x \in \operatorname{bin}($ Earley $\mathcal{G} \omega) k$
using Predict.hyps $(1,2)$ bin-def by fastforce
hence $x \in \operatorname{bin}\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right) k$
using Predict.IH Predict.prems(1-3) by blast
hence Item $r^{\prime} 0 j j \in$ Predict $_{F} k \mathcal{G}\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right)$
unfolding Predict $_{F}$-def init-item-def using $\operatorname{Predict.hyps}(1,3,4)\langle j=k\rangle$ by blast
hence Item $r^{\prime} 0 j j \in$ Earley $_{F}$-bin-step $k \mathcal{G} \omega\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right)$ using Predict $_{F}$-Earley ${ }_{F}$-bin-step-mono by blast
hence Item $r^{\prime} 0 j j \in$ Earley $_{F}$-bin $k \mathcal{G} \omega I$
using EarleyF-bin-idem EarleyF-bin-step-Earley F_{F}-bin-mono by blast
thus ?case
by (simp add: $\langle j=k\rangle$ bin-def)
next
case (Complete $x r_{x} b_{x}$ ij y $r_{y} b_{y} l$)
have $l=k$
using Complete.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
hence $y \in \operatorname{bin}($ Earley $\mathcal{G} \omega) l$
using Complete.hyps $(3,4)$ bin-def by fastforce
hence $0: y \in \operatorname{bin}\left(\right.$ Earley $\left._{F}-b i n k \mathcal{G} \omega I\right) k$
using Complete.IH(2) Complete.prems $(1-3)\langle l=k\rangle$ by blast
have 1: $x \in \operatorname{bin}\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right)$ (item-origin y)
proof (cases $j=k$)
case True
hence $x \in \operatorname{bin}($ Earley $\mathcal{G} \omega) k$
using Complete.hyps (1,2) bin-def by fastforce
hence $x \in \operatorname{bin}\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right) k$
using Complete.IH(1) Complete.prems(1-3) by blast
thus ?thesis
using Complete.hyps(3) True by simp
next
case False
hence $j<k$
using $\langle l=k\rangle$ wf-Earley wf-item-def Complete.hyps $(3,4)$ by force
moreover have $x \in \operatorname{bin}(E a r l e y \mathcal{G} \omega) j$
using Complete.hyps $(1,2)$ bin-def by force
ultimately have $x \in I$
using Complete.prems(2) by blast
hence $x \in \operatorname{bin}\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right) j$
using Complete.hyps(1) Earley ${ }_{F}$-bin-mono bin-def by fastforce
thus ?thesis
using Complete.hyps(3) by simp

qed

have Item $r_{x}\left(b_{x}+1\right) i k \in$ Complete $_{F} k\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right)$
unfolding Complete ${ }_{F}$-def inc-item-def using 01 Complete.hyps $(1,5,6)$ by force
hence Item $r_{x}\left(b_{x}+1\right) i k \in$ Earley $_{F}$-bin-step $k \mathcal{G} \omega\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right)$ unfolding Earley ${ }_{F}$-bin-step-def by blast
hence Item $r_{x}\left(b_{x}+1\right) i k \in$ Earley $_{F}$-bin $k \mathcal{G} \omega I$
using Earley y_{F}-bin-idem Earley y_{F}-bin-step-Earley ${ }_{F}$-bin-mono by blast
thus ?case
using bin-def $\langle l=k\rangle$ by fastforce
qed
qed
lemma Earley-base-sub-Earley ${ }_{F}$-bin:
assumes Init $_{F} \mathcal{G} \subseteq I$
assumes $\forall k^{\prime}<k$. bin $($ Earley $\mathcal{G} \omega) k^{\prime} \subseteq I$
assumes base $\omega($ Earley $\mathcal{G} \omega) k \subseteq I$
assumes wf-G \mathcal{G} is-word $\mathcal{G} \omega$
shows base $\omega($ Earley $\mathcal{G} \omega)(k+1) \subseteq \operatorname{bin}^{\left(\text {Earley }_{F}-\operatorname{bin} k \mathcal{G} \omega I\right)(k+1) ~}$
proof standard
fix x
assume $*: x \in$ base ω (Earley $\mathcal{G} \omega)(k+1)$
hence $x \in$ Earley $\mathcal{G} \omega$
using base-def by blast
thus $x \in \operatorname{bin}\left(\right.$ Earley $\left._{F}-\operatorname{bin} k \mathcal{G} \omega I\right)(k+1)$
using assms *
proof (induction rule: Earley.induct)
case (Init r)
have $k=0$
using Init.prems(6) unfolding base-def by simp
hence False
using Init.prems(6) unfolding base-def by simp
thus ?case
by blast
next
case (Scan xrbija)
have $j=k$
using Scan.prems(6) base-def by (metis (mono-tags, lifting) CollectD add-right-cancel
item.sel(4))
hence $x \in \operatorname{bin}\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right) k$
using Earley F_{F}-bin-sub-Earley ${ }_{F}$-bin Scan.prems Scan.hyps (1,2) bin-def
by (metis (mono-tags, lifting) CollectI item.sel(4) subsetD)
hence Item $r(b+1) i(j+1) \in \operatorname{Scan}_{F} k \omega\left(\right.$ Earley $_{F}-$ bin $\left.k \mathcal{G} \omega I\right)$
unfolding Scan $_{F}$-def inc-item-def using Scan.hyps $\langle j=k\rangle$ by force
hence Item $r(b+1) i(j+1) \in$ Earley $_{F}$-bin-step $k \mathcal{G} \omega\left(\right.$ Earley $_{F}$-bin $\left.k \mathcal{G} \omega I\right)$
using Scan $_{F}$-Earley ${ }_{F}$-bin-step-mono by blast
hence Item $r(b+1) i(j+1) \in$ Earley $_{F}$-bin $k \mathcal{G} \omega I$
using Earley ${ }_{F}$-bin-idem Earley ${ }_{F}$-bin-step-Earley F_{F}-bin-mono by blast
thus ?case

```
    using <j = k` bin-def by fastforce
    next
    case (Predict x rbij r')
    have False
        using Predict.prems(6) unfolding base-def by (auto simp: prev-symbol-def)
    thus ?case
        by blast
    next
    case (Complete x r rx b i i j y ry b byl)
    have l-1 < length \omega
        using Complete.prems(6) base-def wf-Earley wf-item-def
    by (metis (mono-tags, lifting) CollectD add.right-neutral add-Suc-right add-diff-cancel-right'
item.sel(4) less-eq-Suc-le plus-1-eq-Suc)
    hence is-terminal \mathcal{G ( }\omega!(l-1))
        using Complete.prems(5) is-word-is-terminal by blast
    moreover have is-nonterminal \mathcal{G (item-rule-head y)}
        using Complete.hyps(3,4) Complete.prems(4) wf-Earley wf-item-def
    by (metis item-rule-head-def prod.collapse rule-head-def rule-nonterminal-type)
    moreover have prev-symbol (Item r}\mp@subsup{r}{x}{}(\mp@subsup{b}{x}{}+1)il)=next-symbol x
        using Complete.hyps(1,6)
    by (auto simp: next-symbol-def prev-symbol-def is-complete-def item-rule-body-def
split: if-splits)
    moreover have prev-symbol (Item rex (bx+1) il)=Some (\omega!(l-1))
        using Complete.prems(6) base-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
    ultimately have False
        using Complete.hyps(6) Complete.prems(4) is-terminal-nonterminal by fast-
force
    thus ?case
        by blast
    qed
qed
lemma Earley F-bin-k-sub-EarleyF-bins:
    assumes wf-\mathcal{G G}}\mathrm{ is-word }\mathcal{G}\omegak\leq
    shows bin (Earley \mathcal{G }\omega)k\subseteq\mp@subsup{E}{\mathrm{ Earley F-bins n G }\omega}{}|=\mp@code{l}
    using assms
proof (induction n arbitrary: k)
    case 0
    have bin (Earley \mathcal{G }\omega)0\subseteq\operatorname{bin}(\mp@subsup{\mathrm{ Earley }}{F}{}-\operatorname{bin 0\mathcal{G}}\omega(\mp@subsup{\mathrm{ Init }}{F}{}\mathcal{G}))0
    using EarleyF-bin-sub-Earley F-bin base-def by fastforce
    thus ?case
        unfolding bin-def using 0.prems(3) by auto
next
    case (Suc n)
    show ?case
    proof (cases k\leqn)
    case True
    thus ?thesis
```

using Suc Earley ${ }_{F}$-bin-mono by force
next
case False
hence $k=n+1$
using Suc.prems(3) by force
have $0: \forall k^{\prime}<k$. bin $($ Earley $\mathcal{G} \omega) k^{\prime} \subseteq$ Earley $_{F}$-bins $n \mathcal{G} \omega$
using Suc by simp
moreover have base ω (Earley $\mathcal{G} \omega) k \subseteq$ Earley $_{F}$-bins $n \mathcal{G} \omega$
proof -
have $\forall k^{\prime}<k-1$. bin $($ Earley $\mathcal{G} \omega) k^{\prime} \subseteq$ Earley $_{F}$-bins $n \mathcal{G} \omega$
using $S u c\langle k=n+1\rangle$ by auto
moreover have base $\omega($ Earley $\mathcal{G} \omega)(k-1) \subseteq$ Earley $_{F}$-bins $n \mathcal{G} \omega$
using 0 bin-def base-def False $\langle k=n+1\rangle$
by (smt (verit) Suc-eq-plus1 diff-Suc-1 linorder-not-less mem-Collect-eq subsetD subsetI)
ultimately have base $\omega($ Earley $\mathcal{G} \omega) k \subseteq \operatorname{bin}\left(\right.$ Earley $_{F}-$ bin $n \mathcal{G} \omega$ (Earley ${ }_{F}$-bins $n \mathcal{G} \omega)$) k
using Suc.prems $(1,2)$ Earley-base-sub-Earley ${ }_{F}$-bin $\langle k=n+1\rangle$ Init $_{F}$-sub-Earley ${ }_{F}$-bins by (metis add-diff-cancel-right')
hence base $\omega($ Earley $\mathcal{G} \omega) k \subseteq$ bin $\left(\right.$ Earley ${ }_{F}$-bins $\left.n \mathcal{G} \omega\right) k$
by (metis EarleyF-bins.elims EarleyF-bin-idem)
thus ?thesis
using bin-def by blast
qed
ultimately have $\operatorname{bin}($ Earley $\mathcal{G} \omega) k \subseteq \operatorname{bin}\left(\right.$ Earley $_{F}$-bin $k \mathcal{G} \omega$ (Earley ${ }_{F}$-bins $n \mathcal{G} \omega)$) k
using Earley F_{F}-bin-sub-Earley y_{F}-bin Init $_{F}$-sub-Earley F_{F}-bins by metis
thus ?thesis
using Earley ${ }_{F}$-bins.simps(2) $\langle k=n+1\rangle$ bin-def by auto
qed
qed
lemma Earley-sub-Earley ${ }_{F}$:
assumes wf-G \mathcal{G} is-word $\mathcal{G} \omega$
shows Earley $\mathcal{G} \omega \subseteq$ Earley $_{F} \mathcal{G} \omega$
proof -
have $\forall k \leq$ length ω. bin $($ Earley $\mathcal{G} \omega) k \subseteq$ Earley $_{F} \mathcal{G} \omega$
by (simp add: Earley F_{F}-bin-k-sub-Earley ${ }_{F}$-bins Earley F $_{F}$-def assms)
thus ?thesis
using wf-Earley wf-item-def bin-def by blast
qed
theorem completeness-Earley ${ }_{F}$:
assumes derives $\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega$ is-word $\mathcal{G} \omega w f-\mathcal{G} \mathcal{G}$
shows recognizing $\left(\right.$ Earley $\left._{F} \mathcal{G} \omega\right) \mathcal{G} \omega$
using assms Earley-sub-Earley F_{F} Earley F_{F}-sub-Earley completeness-Earley by (metis subset-antisym)

7.5 Correctness

```
theorem Earley-eq-Earley F
    assumes wf-\mathcal{G G}
    shows Earley \mathcal{G }\omega=\mp@subsup{\mathrm{ Earley }}{F}{}\mathcal{G}\omega
    using Earley-sub-Earley F Earley F-sub-Earley assms by blast
theorem correctness-Earley F
    assumes wf-\mathcal{G G}}\mathrm{ is-word }\mathcal{G}
    shows recognizing (Earley }\mathcal{F}\mathcal{G}\omega)\mathcal{G}\omega\longleftrightarrow\mathrm{ derives }\mathcal{G}[\mathfrak{S}\mathcal{G}]
    using assms Earley-eq-Earley F correctness-Earley by fastforce
end
theory Earley-Recognizer
    imports
        Earley-Fixpoint
begin
```


8 Earley recognizer

8.1 List auxilaries

fun filter-with-index' $::$ nat $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} a$ list $\Rightarrow\left({ }^{\prime} a \times n a t\right)$ list where filter-with-index' - - [] = []
\mid filter-with-index' $i P(x \# x s)=($ if $P x$ then (x, i) \# filter-with-index ${ }^{\prime}(i+1) P$ xs else filter-with-index $\left.{ }^{\prime}(i+1) P x s\right)$
definition filter-with-index :: (${ }^{\prime} a \Rightarrow$ bool $) \Rightarrow{ }^{\prime} a$ list $\Rightarrow\left({ }^{\prime} a \times n a t\right)$ list where filter-with-index P xs $=$ filter-with-index 10 P xs
lemma filter-with-index'-P:
$(x, n) \in \operatorname{set}($ filter-with-index' $i P x s) \Longrightarrow P x$
by (induction xs arbitrary: i) (auto split: if-splits)
lemma filter-with-index-P:
$(x, n) \in \operatorname{set}($ filter-with-index $P x s) \Longrightarrow P x$ by (metis filter-with-index'-P filter-with-index-def)
lemma filter-with-index'-cong-filter:
map fst (filter-with-index' i P xs) $=$ filter P xs
by (induction xs arbitrary: i) auto
lemma filter-with-index-cong-filter:
map fst (filter-with-index P xs) $=$ filter P xs
by (simp add: filter-with-index'-cong-filter filter-with-index-def)
lemma size-index-filter-with-index':
$(x, n) \in \operatorname{set}($ filter-with-index' $i P x s) \Longrightarrow n \geq i$

```
    by (induction xs arbitrary: i) (auto simp: Suc-leD split: if-splits)
```

lemma index-filter-with-index'-lt-length: $(x, n) \in \operatorname{set}$ (filter-with-index' i P xs $) \Longrightarrow n-i<$ length $x s$
by (induction xs arbitrary: i)(auto simp: less-Suc-eq-0-disj split: if-splits; metis Suc-diff-Suc leI)+
lemma index-filter-with-index-lt-length:
$(x, n) \in \operatorname{set}$ (filter-with-index P xs) $\Longrightarrow n<$ length $x s$
by (metis filter-with-index-def index-filter-with-index'-lt-length minus-nat.diff-0)
lemma filter-with-index'-nth:
$(x, n) \in \operatorname{set}($ filter-with-index' $i P x s) \Longrightarrow x s!(n-i)=x$
proof (induction xs arbitrary: i)
case (Cons y xs)
show ? case
proof (cases $x=y$)
case True
thus ?thesis
using Cons by (auto simp: nth-Cons' split: if-splits)
next
case False
hence $(x, n) \in \operatorname{set}\left(\right.$ filter-with-index $\left.{ }^{\prime}(i+1) P x s\right)$
using Cons.prems by (cases xs) (auto split: if-splits)
hence $n \geq i+1$ xs ! $(n-i-1)=x$
by (auto simp: size-index-filter-with-index ${ }^{\prime}$ Cons.IH)
thus ?thesis by simp
qed
qed simp
lemma filter-with-index-nth:
$(x, n) \in \operatorname{set}(f i l t e r-w i t h-i n d e x P x s) \Longrightarrow x s!n=x$
by (metis diff-zero filter-with-index'-nth filter-with-index-def)
lemma filter-with-index-nonempty:
$x \in$ set $x s \Longrightarrow P x \Longrightarrow$ filter-with-index P xs $\neq[]$
by (metis filter-empty-conv filter-with-index-cong-filter list.map(1))
lemma filter-with-index'-Ex-first:
$\left(\exists x i x s^{\prime}\right.$. filter-with-index $\left.{ }^{\prime} n P x s=(x, i) \# x s^{\prime}\right) \longleftrightarrow(\exists x \in$ set $x s$. $P x)$ by (induction xs arbitrary: n) auto
lemma filter-with-index-Ex-first:
$\left(\exists x i x s^{\prime}\right.$. filter-with-index $\left.P x s=(x, i) \# x s^{\prime}\right) \longleftrightarrow(\exists x \in$ set xs. $P x)$
using filter-with-index'-Ex-first filter-with-index-def by metis

8.2 Definitions

```
datatype pointer =
    Null
    | Pre nat - pre
    |PreRed nat }\times\mathrm{ nat }\times\mathrm{ nat (nat }\times\mathrm{ nat }\times\mathrm{ nat) list - k', pre, red
datatype 'a entry =
    Entry (item:'a item) (pointer : pointer)
type-synonym 'a bin = 'a entry list
type-synonym 'a bins = 'a bin list
definition items :: 'a bin # 'a item list where
    items b = map item b
definition pointers :: ' }a\mathrm{ bin }=>\mathrm{ pointer list where
    pointers b = map pointer b
definition bins-eq-items :: 'a bins 盾 'a bins }=>\mathrm{ bool where
    bins-eq-items bs0 bs1 \equiv map items bs0 = map items bs1
definition bins :: 'a bins => 'a item set where
    bins bs \equiv\bigcup { set (items (bs!k))| k.k< length bs }
definition bin-upto :: 'a bin }=>\mathrm{ nat }=>\mathrm{ 'a item set where
    bin-upto b i\equiv{ items b!j|j.j<i\wedgej< length (items b)}
definition bins-upto :: 'a bins }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ ' 'a item set where
    bins-upto bs ki\equiv\bigcup{ set (items (bs!l))|l.l<k}\cup bin-upto (bs!k)i
definition wf-bin-items :: 'a cfg => 'a sentence }=>\mathrm{ nat }=>\mathrm{ 'a item list }=>\mathrm{ bool where
    wf-bin-items \mathcal{G }\omegakxs\equiv\forallx\in set xs.wf-item \mathcal{G }\omegax\wedge item-end x=k
definition wf-bin :: 'a cfg => 'a sentence }=>\mathrm{ nat }=>\mp@subsup{|}{}{\prime}a\mathrm{ bin }=>\mathrm{ bool where
    wf-bin \mathcal{G \omegakb\equivdistinct (items b) ^ wf-bin-items \mathcal{G }\omegak(items b)}
definition wf-bins :: 'a cfg = 'a list }=>\mp@subsup{'}{}{\prime}a\mathrm{ bins }=>\mathrm{ bool where
    wf-bins \mathcal{G }\omegabs\equiv\forallk<length bs. wf-bin \mathcal{G }\omegak(bs!k)
definition nonempty-derives :: 'a cfg => bool where
    nonempty-derives }\mathcal{G}\equiv\forallN.N\in\operatorname{set}(\mathfrak{N}\mathcal{G})\longrightarrow\neg\mathrm{ derives }\mathcal{G}[N][
definition Init }L\mathrm{ :: 'a cfg }=>\mathrm{ ''a sentence }=>\mathrm{ ' 'a bins where
    Init}\mp@subsup{L}{L}{\mathcal{G}}\omega
        let rs = filter (\lambdar. rule-head r=\mathfrak{SG})(\Re\mathcal{G}) in
        let b0 = map (\lambdar. (Entry (init-item r 0) Null)) rs in
        let bs = replicate (length \omega+1) ([]) in
        bs[0 := b0]
```

```
definition \(\operatorname{Scan}_{L}::\) nat \(\Rightarrow{ }^{\prime} a\) sentence \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) item \(\Rightarrow\) nat \(\Rightarrow{ }^{\prime} a\) entry list
where
    \(S c a n_{L} k \omega\) a \(x\) pre \(\equiv\)
        if \(\omega!k=a\) then
            let \(x^{\prime}=\) inc-item \(x(k+1)\) in
            [Entry \(x^{\prime}\) (Pre pre)]
    else []
definition Predict \(_{L}::\) nat \(\Rightarrow{ }^{\prime} a c f g \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) entry list where
    Predict \(_{L} k \mathcal{G} X \equiv\)
        let \(r s=\) filter \((\lambda r\). rule-head \(r=X)(\Re \mathcal{G})\) in
        map ( \(\lambda\) r. (Entry (init-item r \(k\) ) Null)) rs
definition Complete \(_{L}::\) nat \(\Rightarrow{ }^{\prime} a\) item \(\Rightarrow\) 'a bins \(\Rightarrow\) nat \(\Rightarrow\) 'a entry list where
    Complete \(_{L} k\) y bs red \(\equiv\)
    let orig \(=b s!(\) item-origin \(y)\) in
    let is \(=\) filter-with-index \((\lambda x\). next-symbol \(x=\) Some \((\) item-rule-head \(y))(\) items
orig) in
    map \((\lambda(x\), pre \() .(\) Entry (inc-item \(x k)(\) PreRed (item-origin \(y\), pre, red \()[]))\) ) is
fun bin-upd :: 'a entry \(\Rightarrow{ }^{\prime} a\) bin \(\Rightarrow{ }^{\prime} a\) bin where
    bin-upd \(e^{\prime}[]=[e]\)
| bin-upd \(e^{\prime}(e \# e s)=(\)
        case ( \(e^{\prime}, e\) ) of
            (Entry x (PreRed px xs), Entry y (PreRed py ys)) \(\Rightarrow\)
                        if \(x=y\) then Entry \(x\) (PreRed \(p y(p x \# x s @ y s)) \#\) es
            else \(e \#\) bin-upd \(e^{\prime}\) es
        |- \(\Rightarrow\)
            if item \(e^{\prime}=\) item \(e\) then \(e \#\) es
            else \(e \#\) bin-upd \(e^{\prime}\) es)
fun bin-upds :: 'a entry list \(\Rightarrow{ }^{\prime} a\) bin \(\Rightarrow{ }^{\prime} a\) bin where
    bin-upds [] \(b=b\)
\(\mid\) bin-upds (e\#es) b\(=\) bin-upds es (bin-upd e b)
definition bins-upd \(::\) ' \(a\) bins \(\Rightarrow\) nat \(\Rightarrow\) 'a entry list \(\Rightarrow{ }^{\prime} a\) bins where
    bins-upd bs \(k\) es \(\equiv b s[k:=\) bin-upds es \((b s!k)]\)
partial-function (tailrec) Earley \({ }_{L}\)-bin' :: nat \(\Rightarrow\) ' \(a\) cfg \(\Rightarrow\) 'a sentence \(\Rightarrow\) 'a bins
\(\Rightarrow\) nat \(\Rightarrow\) 'a bins where
    Earley \(_{L}\)-bin' \(k \mathcal{G} \omega\) bs \(i=(\)
        if \(i \geq\) length (items (bs!k)) then bs
        else
            let \(x=\) items \((b s!k)!i\) in
        let \(b s^{\prime}=\)
            case next-symbol \(x\) of
                    Some \(a \Rightarrow\)
                    if is-terminal \(\mathcal{G}\) a then
                        if \(k<\) length \(\omega\) then bins-upd bs \((k+1)\left(S_{\text {Pan }}^{L} k \omega a x i\right)\)
```

```
        else bs
        else bins-upd bs k( (Predict 
        | None }=>\mathrm{ bins-upd bs k (Complete }\mp@subsup{L}{L}{}kxbsi
        in Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G \omega bs'(i+1))}
declare Earley }\mp@subsup{L}{L}{-bin'.simps[code]
```



```
    Earley }\mp@subsup{L}{L}{-bin k\mathcal{G}\omegabs\equiv\mp@subsup{Earley }{L}{-bin'}k\mathcal{G}\omega\mathrm{ bs 0}
fun Earley L-bins :: nat }=>\mp@subsup{}{}{\prime}\a cfg => 'a sentence => ' a bins where
```



```
| Earley L-bins (Suc n)\mathcal{G }\omega=\mp@subsup{\mathrm{ Earley }}{L}{}-bin (Suc n)\mathcal{G }\omega\mathrm{ (Earley L-bins n G }\omega\mathrm{ )}
definition Earley 
    Earley }\mp@subsup{L}{\mathcal{G}}{}\omega\equiv\mp@subsup{\mathrm{ Earley }}{L}{-bins (length \omega)\mathcal{G}\omega
```


8.3 Bin lemmas

```
lemma length-bins-upd[simp]: length (bins-upd bs \(k\) es) \(=\) length \(b s\) unfolding bins-upd-def by simp
lemma length-bin-upd:
length (bin-upd e b) \(\geq\) length \(b\)
by (induction e b rule: bin-upd.induct) (auto split: pointer.splits entry.splits)
lemma length-bin-upds:
length (bin-upds es \(b\) ) \(\geq\) length \(b\)
by (induction es arbitrary: b) (auto, meson le-trans length-bin-upd)
lemma length-nth-bin-bins-upd:
length (bins-upd bs \(k\) es ! \(n\) ) \(\geq\) length ( \(b s!n\) )
unfolding bins-upd-def using length-bin-upds
by (metis linorder-not-le list-update-beyond nth-list-update-eq nth-list-update-neq order-refl)
lemma nth-idem-bins-upd:
\(k \neq n \Longrightarrow\) bins-upd bs \(k\) es \(!n=b s!n\)
unfolding bins-upd-def by simp
lemma items-nth-idem-bin-upd:
\(n<\) length \(b \Longrightarrow\) items (bin-upd e b)! \(n=\) items \(b!n\)
by (induction b arbitrary: e n) (auto simp: items-def less-Suc-eq-0-disj split!:
entry.split pointer.split)
lemma items-nth-idem-bin-upds:
\(n<\) length \(b \Longrightarrow\) items (bin-upds es b)! \(n=\) items \(b!n\)
by (induction es arbitrary: b)
```

(auto, metis items-def items-nth-idem-bin-upd length-bin-upd nth-map order.strict-trans2)
lemma items-nth-idem-bins-upd:
$n<$ length $(b s!k) \Longrightarrow$ items (bins-upd bs k es $!k)!n=$ items $(b s!k)!n$
unfolding bins-upd-def using items-nth-idem-bin-upds
by (metis linorder-not-less list-update-beyond nth-list-update-eq)
lemma bin-upto-eq-set-items:
$i \geq$ length $b \Longrightarrow$ bin-upto $b i=$ set (items b)
by (auto simp: bin-upto-def items-def, metis in-set-conv-nth nth-map order-le-less order-less-trans)
lemma bins-upto-empty:
bins-upto bs $00=\{ \}$
unfolding bins-upto-def bin-upto-def by simp
lemma set-items-bin-upd:
set $($ items $($ bin-upd e b)) $)$ set $($ items $b) \cup\{$ item e $\}$
proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases $\exists x$ xp xs y yp ys. $e=$ Entry x (PreRed $x p x s) \wedge b=$ Entry y (PreRed yp $y s)$)
case True
then obtain x xp xs y yp ys where $e=$ Entry x (PreRed xp xs) $b=$ Entry y
(PreRed yp ys)
by blast
thus ?thesis
using Cons.IH by (auto simp: items-def)
next
case False
then show ?thesis
proof cases
assume $*$: item $e=$ item b
hence bin-upd e $(b \# b s)=b \# b s$
using False by (auto split: pointer.splits entry.splits)
thus ?thesis
using * by (auto simp: items-def)
next
assume $*$: \neg item $e=$ item b
hence bin-upd e $(b \# b s)=b \#$ bin-upd e bs
using False by (auto split: pointer.splits entry.splits)
thus ?thesis
using $*$ Cons.IH by (auto simp: items-def)
qed
qed
qed (auto simp: items-def)
lemma set-items-bin-upds:

```
    set (items (bin-upds es b)) = set (items b) \cup set (items es)
    using set-items-bin-upd by (induction es arbitrary: b) (auto simp: items-def,
blast, force+)
lemma bins-bins-upd:
    assumes k< length bs
    shows bins (bins-upd bs k es)= bins bs \cup set (items es)
proof -
    let ?bs = bins-upd bs k es
    have bins (bins-upd bs k es)}=\bigcup{\mathrm{ set (items (?bs!k)) |k.k<length ?bs}
        unfolding bins-def by blast
    also have ... = \bigcup {set (items (bs!l)) |l. l< length bs ^l\not=k}\cup set (items
(?bs!k))
    unfolding bins-upd-def using assms by (auto, metis nth-list-update)
    also have ... = \bigcup {set (items (bs!l)) |l. l < length bs ^l\not=k}\cup set (items
(bs!k))\cup set (items es)
    using set-items-bin-upds[of es bs!k] by (simp add: assms bins-upd-def sup-assoc)
    also have \ldots. = \bigcup {set (items (bs!k)) |k.k<length bs} \cup set (items es)
        using assms by blast
    also have ... = bins bs \cup set (items es)
        unfolding bins-def by blast
    finally show ?thesis.
qed
lemma kth-bin-sub-bins:
    k< length bs \Longrightarrow set (items (bs!k))\subseteq bins bs
    unfolding bins-def bins-upto-def bin-upto-def by blast+
lemma bin-upto-Cons-0:
    bin-upto (e#es) 0 = {}
    by (auto simp: bin-upto-def)
lemma bin-upto-Cons:
    assumes 0<n
    shows bin-upto (e#es) n={ item e}\cup bin-upto es (n-1)
proof -
    have bin-upto (e#es) n = { items (e#es)! j| j.j<n\wedge j< length (items
(e#es)) }
    unfolding bin-upto-def by blast
    also have ... ={ item e }\cup{ items es ! j|j.j< (n-1)^j< length (items
es) }
        using assms by (cases n) (auto simp: items-def nth-Cons', metis One-nat-def
Zero-not-Suc diff-Suc-1 not-less-eq nth-map)
    also have ... ={ item e }\cup bin-upto es ( }n-1
    unfolding bin-upto-def by blast
    finally show ?thesis.
qed
lemma bin-upto-nth-idem-bin-upd:
```

```
    n< length b\Longrightarrow bin-upto (bin-upd e b) n= bin-upto b n
proof (induction b arbitrary: e n)
    case (Cons b bs)
    show ?case
    proof (cases \existsx xp xs y yp ys. e = Entry x (PreRed xp xs) ^b=Entry y (PreRed
yp ys))
    case True
    then obtain xxp xs y yp ys where e=Entry x (PreRed xp xs) b=Entry y
(PreRed yp ys)
        by blast
    thus ?thesis
        using Cons bin-upto-Cons-0
        by (cases n) (auto simp: items-def bin-upto-Cons,blast+)
    next
        case False
        then show ?thesis
    proof cases
        assume *: item e= item b
        hence bin-upd e (b# bs)=b# bs
            using False by (auto split: pointer.splits entry.splits)
        thus ?thesis
                using * by (auto simp: items-def)
    next
        assume *: \neg item e= item b
        hence bin-upd e (b# bs) = b # bin-upd e bs
            using False by (auto split: pointer.splits entry.splits)
        thus ?thesis
                using * Cons bin-upto-Cons-0
                by (cases n) (auto simp: items-def bin-upto-Cons, blast+)
    qed
    qed
qed (auto simp: items-def)
lemma bin-upto-nth-idem-bin-upds:
    n< length b\Longrightarrow bin-upto (bin-upds es b) n= bin-upto b n
    using bin-upto-nth-idem-bin-upd length-bin-upd
    apply (induction es arbitrary: b)
    apply auto
    using order.strict-trans2 order.strict-trans1 by blast+
lemma bins-upto-kth-nth-idem:
    assumes l< length bs k\leqln<length (bs!k)
    shows bins-upto (bins-upd bs l es) k n = bins-upto bs k n
proof -
    let ?bs = bins-upd bs l es
    have bins-upto ?bs k n=\bigcup{set (items (?bs!l))|l.l<k}\cup bin-upto(?bs!k)
n
        unfolding bins-upto-def by blast
    also have ... = \bigcup{set (items (bs!l)) |l.l<k}\cup bin-upto (?bs!k)n
```

unfolding bins-upd-def using assms(1,2) by auto
also have $\ldots=\bigcup\{\operatorname{set}($ items $(b s!l)) \mid l . l<k\} \cup$ bin-upto $(b s!k) n$
unfolding bins-upd-def using assms $(1,3)$ bin-upto-nth-idem-bin-upds by (metis (no-types, lifting) nth-list-update)
also have $\ldots=$ bins-upto bs $k n$
unfolding bins-upto-def by blast
finally show ?thesis .
qed
lemma bins-upto-sub-bins:
$k<$ length bs \Longrightarrow bins-upto bs $k n \subseteq$ bins bs
unfolding bins-def bins-upto-def bin-upto-def using less-trans by (auto, blast)
lemma bins-upto-Suc-Un:
$n<$ length $(b s!k) \Longrightarrow$ bins-upto bs $k(n+1)=$ bins-upto bs $k n \cup\{$ items (bs $!$
$k)!n\}$
unfolding bins-upto-def bin-upto-def using less-Suc-eq by (auto simp: items-def, metis nth-map)
lemma bins-bin-exists:
$x \in$ bins bs $\Longrightarrow \exists k<$ length bs. $x \in$ set (items $(b s!k))$
unfolding bins-def by blast
lemma distinct-bin-upd:
distinct (items b) \Longrightarrow distinct (items (bin-upd eb))
proof (induction b arbitrary: e)
case (Cons bbs)
show ?case
proof (cases $\exists x$ xp xs y yp ys. $e=$ Entry x (PreRed $x p x s) \wedge b=$ Entry y (PreRed yp ys))
case True
then obtain x xp xs y yp ys where $e=$ Entry $x($ PreRed $x p x s) b=$ Entry y
(PreRed yp ys)
by blast
thus ?thesis
using Cons
apply (auto simp: items-def)
by (metis Un-insert-right entry.sel(1) imageI items-def list.set-map list.simps(15)
set-ConsD set-items-bin-upd sup-bot-right)
next
case False
then show?thesis
proof cases
assume $*$: item $e=$ item b
hence bin-upd e $(b \# b s)=b \# b s$
using False by (auto split: pointer.splits entry.splits)
thus ?thesis
using * Cons.prems by (auto simp: items-def)
next

```
        assume *: ᄀ item e = item b
        hence bin-upd e (b# bs)=b# bin-upd e bs
        using False by (auto split: pointer.splits entry.splits)
        moreover have distinct (items (bin-upd e bs))
        using Cons by (auto simp: items-def)
    ultimately show ?thesis
        using * Cons.prems set-items-bin-upd
        by (metis Un-insert-right distinct.simps(2) insertE items-def list.simps(9)
sup-bot-right)
    qed
    qed
qed (auto simp: items-def)
lemma wf-bins-kth-bin:
```



```
^ item-end x = k
    using wf-bin-def wf-bins-def wf-bin-items-def by blast
lemma wf-bin-bin-upd:
    assumes wf-bin \mathcal{G }\omegakbwf-item \mathcal{G}\omega(\mathrm{ item e) ^ item-end (item e) =k}\mp@code{lem}
    shows wf-bin \mathcal{G }\omegak\mathrm{ (bin-upd e b)}
    using assms
proof (induction b arbitrary: e)
    case (Cons b bs)
    show ?case
    proof (cases \existsx xp xs y yp ys. e=Entry x (PreRed xp xs) ^b=Entry y (PreRed
yp ys))
    case True
    then obtain x xp xs y yp ys where e=Entry x (PreRed xp xs) b=Entry y
(PreRed yp ys)
        by blast
    thus ?thesis
        using Cons distinct-bin-upd wf-bin-def wf-bin-items-def set-items-bin-upd
        by (smt (verit, best) Un-insert-right insertE sup-bot.right-neutral)
    next
    case False
    then show ?thesis
    proof cases
            assume *: item e= item b
            hence bin-upd e (b# bs)=b# bs
            using False by (auto split: pointer.splits entry.splits)
        thus ?thesis
            using * Cons.prems by (auto simp: items-def)
    next
            assume *: \neg item e= item b
            hence bin-upd e (b# bs)=b# bin-upd e bs
            using False by (auto split: pointer.splits entry.splits)
        thus ?thesis
        using * Cons.prems set-items-bin-upd distinct-bin-upd wf-bin-def wf-bin-items-def
```

```
        by (smt (verit, best) Un-insert-right insertE sup-bot-right)
        qed
    qed
qed (auto simp: items-def wf-bin-def wf-bin-items-def)
lemma wf-bin-bin-upds:
    assumes wf-bin \mathcal{G \omegakb distinct (items es)}
    assumes }\forallx\in\mathrm{ set (items es). wf-item G G }\omegax\wedge\mathrm{ item-end x=k
    shows wf-bin \mathcal{G}\omegak (bin-upds es b)
    using assms by (induction es arbitrary: b) (auto simp: wf-bin-bin-upd items-def)
lemma wf-bins-bins-upd:
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs distinct (items es)}
    assumes }\forallx\in\mathrm{ set (items es). wf-item GG }\omegax\wedge\mathrm{ item-end x=k
    shows wf-bins \mathcal{G}\omega\mathrm{ (bins-upd bs k es)}
    unfolding bins-upd-def using assms wf-bin-bin-upds wf-bins-def
    by (metis length-list-update nth-list-update-eq nth-list-update-neq)
lemma wf-bins-impl-wf-items:
    wf-bins \mathcal{G }\omega\mathrm{ bs ఋ }\forallx\in(bins bs). wf-item \mathcal{G }\omegax
    unfolding wf-bins-def wf-bin-def wf-bin-items-def bins-def by auto
lemma bin-upds-eq-items:
    set (items es)\subseteq set (items b)\Longrightarrow set (items (bin-upds es b))=set (items b)
    apply (induction es arbitrary:b)
    apply (auto simp: set-items-bin-upd set-items-bin-upds)
    apply (simp add: items-def)
    by (metis Un-iff Un-subset-iff items-def list.simps(9) set-subset-Cons)
lemma bin-eq-items-bin-upd:
    item e\in set (items b)\Longrightarrow \tems (bin-upd e b)= items b
proof (induction b arbitrary: e)
    case (Cons b bs)
    show ?case
    proof (cases \existsxxp xs y yp ys. e = Entry x (PreRed xp xs)^b=Entry y (PreRed
yp ys))
    case True
    then obtain x xp xs y yp ys where e= Entry x (PreRed xp xs)b = Entry y
(PreRed yp ys)
        by blast
    thus ?thesis
        using Cons by (auto simp: items-def)
    next
    case False
    then show ?thesis
    proof cases
        assume *: item e = item b
        hence bin-upd e (b # bs)=b # bs
            using False by (auto split: pointer.splits entry.splits)
```

```
            thus ?thesis
            using * Cons.prems by (auto simp: items-def)
    next
            assume *: \neg item e= item b
            hence bin-upd e (b# bs)=b# bin-upd e bs
            using False by (auto split: pointer.splits entry.splits)
            thus ?thesis
                using * Cons by (auto simp: items-def)
    qed
qed
qed (auto simp: items-def)
lemma bin-eq-items-bin-upds:
    assumes set (items es)\subseteq set (items b)
    shows items (bin-upds es b) = items b
    using assms
proof (induction es arbitrary: b)
    case (Cons e es)
    have items (bin-upds es (bin-upd e b)) = items (bin-upd e b)
        using Cons bin-upds-eq-items set-items-bin-upd set-items-bin-upds
        by (metis Un-upper2 bin-upds.simps(2) sup.coboundedI1)
    moreover have items (bin-upd e b)= items b
        using bin-eq-items-bin-upd Cons.prems by (auto simp: items-def)
    ultimately show ?case
        by simp
qed (auto simp: items-def)
lemma bins-eq-items-bins-upd:
    assumes set (items es)\subseteq set (items (bs!k))
    shows bins-eq-items (bins-upd bs k es) bs
    unfolding bins-upd-def using assms bin-eq-items-bin-upds bins-eq-items-def
    by (metis list-update-id map-update)
lemma bins-eq-items-imp-eq-bins:
    bins-eq-items bs bs'}\Longrightarrow\mathrm{ bins bs = bins bs'
    unfolding bins-eq-items-def bins-def items-def
    by (metis (no-types, lifting) length-map nth-map)
lemma bin-eq-items-dist-bin-upd-bin:
    assumes items a = items b
    shows items (bin-upd e a)= items (bin-upd e b)
    using assms
proof (induction a arbitrary: e b)
    case (Cons a as)
    obtain b' bs where bs: b= b' # bs item a = item b' items as = items bs
        using Cons.prems by (auto simp: items-def)
    show ?case
    proof (cases \existsx xp xs y yp ys. e = Entry x (PreRed xp xs)^a=Entry y (PreRed
yp ys))
```

```
    case True
    then obtain x xp xs y yp ys where #: e=Entry x (PreRed xp xs) a = Entry
y (PreRed yp ys)
    by blast
    show ?thesis
    proof cases
        assume *: x = y
        hence items (bin-upd e(a# as))=x# items as
            using # by (auto simp: items-def)
    moreover have items (bin-upd e (b' # bs)) =x # items bs
        using bs #* by (auto simp: items-def split: pointer.splits entry.splits)
    ultimately show ?thesis
        using bs by simp
    next
        assume *: }\negx=
        hence items (bin-upd e (a # as)) = y # items (bin-upd e as)
            using # by (auto simp: items-def)
    moreover have items (bin-upd e (b'# bs)) = y # items (bin-upd e bs)
                using bs #* by (auto simp: items-def split: pointer.splits entry.splits)
    ultimately show ?thesis
                using bs Cons.IH by simp
    qed
next
    case False
    then show ?thesis
    proof cases
        assume *: item e = item a
        hence items (bin-upd e (a# as)) = item a # items as
            using False by (auto simp: items-def split: pointer.splits entry.splits)
        moreover have items (bin-upd e (b' # bs)) = item b}\mp@subsup{b}{}{\prime}#\mathrm{ items bs
                using bs False * by (auto simp: items-def split: pointer.splits entry.splits)
        ultimately show ?thesis
            using bs by simp
    next
        assume *: ᄀ item e= item a
        hence items (bin-upd e (a# as)) = item a # items (bin-upd e as)
            using False by (auto simp: items-def split: pointer.splits entry.splits)
        moreover have items (bin-upd e (b'# bs)) = item b' # items (bin-upd e bs)
            using bs False * by (auto simp: items-def split: pointer.splits entry.splits)
            ultimately show ?thesis
            using bs Cons by simp
    qed
qed
qed (auto simp: items-def)
lemma bin-eq-items-dist-bin-upds-bin:
    assumes items a =items b
    shows items (bin-upds es a) = items (bin-upds es b)
    using assms
```

```
proof (induction es arbitrary: \(a b\) )
    case (Cons e es)
    hence items (bin-upds es (bin-upd e a)) = items (bin-upds es (bin-upd e b))
        using bin-eq-items-dist-bin-upd-bin by blast
    thus ?case
        by \(\operatorname{simp}\)
qed simp
lemma bin-eq-items-dist-bin-upd-entry:
    assumes item \(e=\) item \(e^{\prime}\)
    shows items (bin-upd e b) \(=\) items (bin-upd \(\left.e^{\prime} b\right)\)
    using assms
proof (induction b arbitrary: e e')
    case (Cons a as)
    show? case
    proof (cases \(\exists x\) xp xs y yp ys. \(e=\) Entry \(x(\) PreRed \(x p x s) \wedge a=\) Entry \(y\) (PreRed
yp ys))
    case True
    then obtain \(x x p x s y y p\) where \(\#: e=\) Entry \(x(\) PreRed \(x p x s) a=\) Entry
\(y\) (PreRed yp ys)
            by blast
    show ?thesis
    proof cases
        assume \(*: x=y\)
        thus ?thesis
        using \# Cons.prems by (auto simp: items-def split: pointer.splits entry.splits)
        next
        assume \(*: \neg x=y\)
        thus ?thesis
            using \# Cons.prems
                            by (auto simp: items-def split!: pointer.splits entry.splits, metis Cons.IH
Cons.prems items-def)+
        qed
    next
        case False
        then show ?thesis
        proof cases
            assume \(*\) : item \(e=\) item \(a\)
            thus ?thesis
                using Cons.prems by (auto simp: items-def split: pointer.splits entry.splits)
        next
            assume \(*: \neg\) item \(e=\) item \(a\)
            thus ?thesis
                using Cons.prems
                    by (auto simp: items-def split!: pointer.splits entry.splits, metis Cons.IH
Cons.prems items-def) +
        qed
    qed
qed (auto simp: items-def)
```

```
lemma bin-eq-items-dist-bin-upds-entries:
    assumes items es = items es'
    shows items (bin-upds es b) = items (bin-upds es' b)
    using assms
proof (induction es arbitrary: es' b)
    case (Cons e es)
    then obtain e' es'\prime}\mathrm{ where item e= item e' items es = items es'l es' = e'#
es"
        by (auto simp: items-def)
    hence items (bin-upds es (bin-upd e b)) = items (bin-upds es"'(bin-upd e' b))
        using Cons.IH
        by (metis bin-eq-items-dist-bin-upd-entry bin-eq-items-dist-bin-upds-bin)
    thus ?case
    by (simp add: <es' = e' # es'\>)
qed (auto simp: items-def)
lemma bins-eq-items-dist-bins-upd:
    assumes bins-eq-items as bs items aes = items bes k<length as
    shows bins-eq-items (bins-upd as k aes) (bins-upd bs k bes)
proof -
    have k< length bs
        using assms(1,3) bins-eq-items-def map-eq-imp-length-eq by metis
    hence items (bin-upds (as!k) aes) = items (bin-upds (bs!k) bes)
        using bin-eq-items-dist-bin-upds-entries bin-eq-items-dist-bin-upds-bin bins-eq-items-def
assms
        by (metis (no-types, lifting) nth-map)
    thus ?thesis
    using <k< length bs> assms bin-eq-items-dist-bin-upds-bin bin-eq-items-dist-bin-upds-entries
            bins-eq-items-def bins-upd-def by (smt (verit) map-update nth-map)
qed
```


8.4 Well-formed bins

lemma distinct-Scan ${ }_{L}$:
distinct (items (Scan k k ax pre))
unfolding $S_{c a n_{L}-d e f}$ by (auto simp: items-def)
lemma distinct-Predict ${ }_{L}$:
$w f-\mathcal{G} \mathcal{G} \Longrightarrow$ distinct $\left(\right.$ items $\left(\right.$ Predict $\left.\left._{L} k \mathcal{G} X\right)\right)$
unfolding Predict $_{L}$-def wf-G-defs by (auto simp: init-item-def rule-head-def dis-
tinct-map inj-on-def items-def)
lemma inj-on-inc-item:
$\forall x \in A$. item-end $x=l \Longrightarrow$ inj-on (λx. inc-item $x k$) A
unfolding inj-on-def inc-item-def by (simp add: item.expand)
lemma distinct-Complete ${ }_{L}$:
assumes $w f$-bins $\mathcal{G} \omega$ bs item-origin $y<l e n g t h ~ b s$

```
    shows distinct (items (Complete }\mp@subsup{L}{L}{}ky\mathrm{ bs red))
proof -
    let ?orig = bs !(item-origin y)
    let ?is = filter-with-index ( }\lambdax\mathrm{ . next-symbol }x=\mathrm{ Some (item-rule-head y)) (items
?orig)
    let ?is' = map ( }\lambda(x,\mathrm{ pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red)
[]))) ?is
    have wf:wf-bin \mathcal{G }}\omega\mathrm{ (item-origin y) ?orig
    using assms wf-bins-def by blast
    have 0: }\forallx\in\mathrm{ set (map fst ?is). item-end x = (item-origin y)
        using wf wf-bin-def wf-bin-items-def filter-is-subset filter-with-index-cong-filter
by (metis in-mono)
    hence distinct (items ?orig)
    using wf unfolding wf-bin-def by blast
    hence distinct (map fst ?is)
    using filter-with-index-cong-filter distinct-filter by metis
    moreover have items ? is' = map ( }\lambdax\mathrm{ . inc-item x k) (map fst ?is)
    by (induction ?is) (auto simp: items-def)
    moreover have inj-on ( }\lambdax\mathrm{ . inc-item x k) (set (map fst ?is))
    using inj-on-inc-item 0 by blast
    ultimately have distinct (items ?is')
    using distinct-map by metis
    thus ?thesis
        unfolding Complete L-def by simp
qed
lemma wf-bins-Scan_L':
```



```
    assumes }k<length \omega next-symbol x\not=None y= inc-item x (k+1
    shows wf-item \mathcal{G }\omegay^\mathrm{ item-end y=k+1}\\mp@code{lom}
    using assms wf-bins-kth-bin[OF assms(1-3)]
    unfolding wf-item-def inc-item-def next-symbol-def is-complete-def item-rule-body-def
    by (auto split: if-splits)
lemma wf-bins-Scan }\mp@subsup{L}{L}{
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs k< length bs x set (items (bs!k)) k<length }\omega=\mp@code{lol}
next-symbol }x\not=\mathrm{ None
    shows }\forally\in\operatorname{set (items (Scan L k \omega a x pre)).wf-item \mathcal{G }\omegay^ item-end y=
(k+1)
    using wf-bins-Scan }\mp@subsup{}{L}{\prime}[\mathrm{ [OF assms] by (simp add: Scan }\mp@subsup{|}{L}{}\mathrm{ -def items-def)
lemma wf-bins-Predict }\mp@subsup{L}{L}{}\mathrm{ :
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs k< length bs k}\leq\mathrm{ length }\omega\mathrm{ wf-G GG}
    shows }\forally\in\operatorname{set (items (Predict }\mp@subsup{L}{L}{}k\mathcal{G}X)).wf-item \mathcal{G}\omegay^ item-end y=
    using assms by (auto simp: Predict }\mp@subsup{L}{L}{-def wf-item-def wf-bins-def wf-bin-def init-item-def
wf-\mathcal{G}-defs items-def)
lemma wf-item-inc-item:
```



```
    using assms by (auto simp: wf-item-def inc-item-def item-rule-body-def next-symbol-def
is-complete-def split: if-splits)
lemma wf-bins-Complete }\mp@subsup{L}{L}{
```



```
    shows }\forallx\in\mathrm{ set (items (Complete L k y bs red)). wf-item G }\omegax\wedge\mathrm{ item-end x=
k
proof -
    let ?orig = bs!(item-origin y)
    let ?is = filter-with-index ( }\lambdax.n.next-symbol x = Some (item-rule-head y)) (item
?orig)
    let ?is' = map (\lambda(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red)
[]))) ?is
    {
        fix }
        assume *: x set (map fst ?is)
        have item-end x = item-origin y
            using * assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
            by (metis dual-order.strict-trans2 filter-is-subset subsetD)
    have wf-item \mathcal{G \omegax}
                using * assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
                by (metis dual-order.strict-trans2 filter-is-subset subsetD)
    moreover have next-symbol x = Some (item-rule-head y)
                using * filter-set filter-with-index-cong-filter member-filter by metis
    moreover have item-origin x \leqk
                using <item-end x = item-origin y〉<wf-item \mathcal{G }\omega\mathrm{ x〉 assms wf-bins-kth-bin}
wf-item-def
            by (metis dual-order.order-iff-strict dual-order.strict-trans1)
    moreover have k\leqlength \omega
                using assms wf-bins-kth-bin wf-item-def by blast
```



```
        by (simp-all add: wf-item-inc-item)
    }
    hence }\forallx\in\mathrm{ set (items ?is'). wf-item G }\omegax\wedge\mathrm{ item-end }x=
    by (auto simp: items-def rev-image-eqI)
    thus ?thesis
    unfolding Complete}\mp@subsup{L}{L}{-def by presburger
qed
lemma Ex-wf-bins:
    \existsn bs \omega\mathcal{G. }n\leqlength }\omega\wedge\mathrm{ length bs = Suc (length }\omega)\wedge\mathrm{ wf-G G G ^ wf-bins }\mathcal{G}
bs
    apply (rule exI[where }x=0]\mathrm{ )
    apply (rule exI[where }x=[[]]]
    apply (rule exI[where x=[]])
    apply (auto simp: wf-bins-def wf-bin-def wf-\mathcal{G-defs wf-bin-items-def items-def}
split: prod.splits)
    by (metis cfg.sel distinct.simps(1) empty-iff empty-set inf-bot-right list.set-intros(1))
```

```
definition wf-earley-input :: (nat × 'a cfg × 'a sentence }\times\mathrm{ 'a bins) set where
    wf-earley-input ={
    (k,\mathcal{G},\omega,bs)|k\mathcal{G}\omegabs.
    k\leq length \omega}
    length bs = length }\omega+1
    wf-\mathcal{G G ^}
    wf-bins \mathcal{G }\omega\mathrm{ bs}\=\mp@code{l}
    }
typedef 'a wf-bins = wf-earley-input::(nat }\times\mathrm{ 'a cfg }\times\mathrm{ 'a sentence }\times\mathrm{ 'a bins) set
    morphisms from-wf-bins to-wf-bins
    using Ex-wf-bins by (auto simp:wf-earley-input-def)
lemma wf-earley-input-elim:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    shows k}\leq\mathrm{ length }\omega\wedgek<\mathrm{ length bs ^ length bs = length }\omega+1\wedgewf-\mathcal{G}\mathcal{G}
wf-bins \mathcal{G \omega bs}
    using assms(1) from-wf-bins wf-earley-input-def by (smt (verit) Suc-eq-plus1
less-Suc-eq-le mem-Collect-eq prod.sel(1) snd-conv)
lemma wf-earley-input-intro:
    assumes }k\leq\mathrm{ length }\omega\mathrm{ length bs = length }\omega+1\mathrm{ wf-G G G wf-bins }\mathcal{G}\omega\mathrm{ bs
    shows (k,\mathcal{G},\omega,bs)\inwf-earley-input
    by (simp add: assms wf-earley-input-def)
lemma wf-earley-input-Complete }\mp@subsup{L}{L}{}\mathrm{ :
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input \neg length (items (bs !k)) \leqi
    assumes }x=items (bs!k)!i next-symbol x = None
    shows (k,\mathcal{G},\omega,\mathrm{ bins-upd bs }k\mathrm{ (Complete }\mp@subsup{L}{L}{}kx\mathrm{ bs red)) }\in\mathrm{ wf-earley-input}
proof -
    have *: k\leq length \omega length bs = length }\omega+1\mathrm{ wf-G G G wf-bins }\mathcal{G}\omega\mathrm{ bs
        using wf-earley-input-elim assms(1) by metis+
    have x:x\in set (items (bs!k))
        using assms(2,3) by simp
    have item-origin x < length bs
        using x wf-bins-kth-bin *(1,2,4) wf-item-def
        by (metis One-nat-def add.right-neutral add-Suc-right dual-order.trans le-imp-less-Suc)
    hence wf-bins \mathcal{G }\omega\mathrm{ (bins-upd bs k (Complete }\mp@subsup{L}{L}{}kx\mathrm{ bs red))}
    using *(1,2,4) Suc-eq-plus1 distinct-Complete e}\mp@subsup{L}{L}{\prime}\mathrm{ le-imp-less-Suc wf-bins-Complete }\mp@subsup{L}{L}{
wf-bins-bins-upd x by metis
    thus ?thesis
        by (simp add: *(1-3) wf-earley-input-def)
qed
lemma wf-earley-input-Scan }\mp@subsup{|}{L}{}\mathrm{ :
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input \neg length (items (bs!k))\leqi
    assumes }x=items (bs!k)!i next-symbol x = Some a
    assumes is-terminal \mathcal{G a k< length \omega}
```

```
    shows \(\left(k, \mathcal{G}, \omega\right.\), bins-upd bs \((k+1)\left(\operatorname{Scan}_{L} k \omega\right.\) a \(x\) pre \(\left.)\right) \in\) wf-earley-input
proof -
    have \(*: k \leq\) length \(\omega\) length \(b s=\) length \(\omega+1\) wf-G \(\mathcal{G}\) wf-bins \(\mathcal{G} \omega\) bs
    using wf-earley-input-elim assms(1) by metis+
    have \(x: x \in \operatorname{set}(i t e m s(b s!k))\)
    using \(\operatorname{assms}(2,3)\) by \(\operatorname{simp}\)
    have wf-bins \(\mathcal{G} \omega\) (bins-upd bs ( \(k+1\) ) (Scan \(k \omega\) ax pre))
    using \(* x \operatorname{assms}(1,4,6)\) distinct-Scan \(n_{L}\) wf-bins-Scan \(n_{L}\) wf-bins-bins-upd wf-earley-input-elim
    by (metis option.discI)
    thus ?thesis
    by \((\operatorname{simp}\) add: \(*(1-3)\) wf-earley-input-def)
qed
lemma wf-earley-input-Predict \({ }_{L}\) :
    assumes \((k, \mathcal{G}, \omega, b s) \in\) wf-earley-input \(\neg\) length \((\) items \((b s!k)) \leq i\)
    assumes \(x=\) items \((b s!k)!i\) next-symbol \(x=\) Some \(a \neg i s\)-terminal \(\mathcal{G} a\)
    shows \(\left(k, \mathcal{G}, \omega\right.\), bins-upd bs \(k\left(\right.\) Predict \(\left.\left._{L} k \mathcal{G} a\right)\right) \in\) wf-earley-input
proof -
    have \(*: k \leq\) length \(\omega\) length \(b s=\) length \(\omega+1\) wf-G \(\mathcal{G}\) wf-bins \(\mathcal{G} \omega\) bs
    using wf-earley-input-elim assms(1) by metis +
    have \(x: x \in\) set (items \((b s!k)\) )
    using \(\operatorname{assms}(2,3)\) by \(\operatorname{simp}\)
    hence wf-bins \(\mathcal{G} \omega\) (bins-upd bs \(k\left(\right.\) Predict \(\left.\left._{L} k \mathcal{G} a\right)\right)\)
    using \(* x \operatorname{assms}(1,4)\) distinct-Predict \(_{L}\) wf-bins-Predict \({ }_{L}\) wf-bins-bins-upd \(w f\)-earley-input-elim
by metis
    thus ?thesis
    by \((\operatorname{simp}\) add: \(*(1-3)\) wf-earley-input-def)
qed
fun earley-measure :: nat \(\times{ }^{\prime} a c f g \times{ }^{\prime} a\) sentence \(\times\) 'a bins \(\Rightarrow\) nat \(\Rightarrow\) nat where
    earley-measure \((k, \mathcal{G}, \omega\), bs) \(i=\) card \(\{x \mid x\).wf-item \(\mathcal{G} \omega x \wedge\) item-end \(x=k\}\)
\(-i\)
lemma Earley \({ }_{L}\)-bin'-simps \([\) simp \(]\) :
    \(i \geq\) length \((\) items \((b s!k)) \Longrightarrow\) Earley \(_{L}-\) bin \(^{\prime} k \mathcal{G} \omega\) bs \(i=b s\)
    \(\neg i \geq\) length (items \((b s!k)) \Longrightarrow x=\) items \((b s!k)!i \Longrightarrow\) next-symbol \(x=\) None
\(\Longrightarrow\)
```



```
i)) \((i+1)\)
\(\neg i \geq\) length \((\) items \((b s!k)) \Longrightarrow x=\) items \((b s!k)!i \Longrightarrow\) next-symbol \(x=\) Some \(a \Longrightarrow\)
is-terminal \(\mathcal{G} a \Longrightarrow k<\) length \(\omega \Longrightarrow\) Earley \(_{L}\)-bin' \(k \mathcal{G} \omega\) bs \(i=\) Earley \(_{L}\)-bin \({ }^{\prime}\) \(k \mathcal{G} \omega\) (bins-upd bs \((k+1)\left(\right.\) Scan \(\left.\left._{L} k \omega a x i\right)\right)(i+1)\)
\(\neg i \geq\) length \((\) items \((b s!k)) \Longrightarrow x=\) items \((b s!k)!i \Longrightarrow\) next-symbol \(x=\) Some \(a \Longrightarrow\)
is-terminal \(\mathcal{G} a \Longrightarrow \neg k<\) length \(\omega \Longrightarrow\) Earley \(_{L}\)-bin' \(k \mathcal{G} \omega\) bs \(i=\) Earley \(_{L}\)-bin' \(k \mathcal{G} \omega\) bs \((i+1)\)
\(\neg i \geq\) length \((\) items \((b s!k)) \Longrightarrow x=\) items \((b s!k)!i \Longrightarrow\) next-symbol \(x=\) Some \(a \Longrightarrow\)
```

\neg is-terminal $\mathcal{G} a \Longrightarrow$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs $i=$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ (bins-upd bs $k\left(\right.$ Predict $\left.\left._{L} k \mathcal{G} a\right)\right)(i+1)$
by (subst Earley ${ }_{L}$-bin ${ }^{\prime}$.simps, simp $)+$
lemma Earley L_{L}-bin'-induct[case-names Base Complete ${ }_{F}$ Scan $_{F}$ Pass Predict $\left.{ }_{F}\right]$:
$\operatorname{assumes}(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
assumes base: $\bigwedge k \mathcal{G} \omega$ bs i. $i \geq$ length (items $(b s!k)) \Longrightarrow P k \mathcal{G} \omega$ bs i
assumes complete: $\bigwedge k \mathcal{G} \omega$ bs $i x$. $\neg i \geq$ length (items $(b s!k)) \Longrightarrow x=$ items
$(b s!k)!i \Longrightarrow$
next-symbol $x=$ None $\Longrightarrow P k \mathcal{G} \omega\left(\right.$ bins-upd bs $k\left(\right.$ Complete $_{L} k x$ bs i) $)$
$(i+1) \Longrightarrow P k \mathcal{G} \omega b s i$
assumes scan: $\bigwedge k \mathcal{G} \omega$ bs $i x a . \neg i \geq$ length (items $(b s!k)) \Longrightarrow x=$ items (bs
$!k)!i \Longrightarrow$
next-symbol $x=$ Some $a \Longrightarrow$ is-terminal $\mathcal{G} a \Longrightarrow k<$ length $\omega \Longrightarrow$ $P k \mathcal{G} \omega$ (bins-upd bs (k+1) $\left.\left(S \operatorname{can}_{L} k \omega a x i\right)\right)(i+1) \Longrightarrow P k \mathcal{G} \omega b s i$
assumes pass: $\bigwedge k \mathcal{G} \omega$ bs ixa. $\neg i \geq$ length (items $(b s!k)) \Longrightarrow x=$ items ($b s$
$!k)!i \Longrightarrow$
next-symbol $x=$ Some $a \Longrightarrow$ is-terminal $\mathcal{G} a \Longrightarrow \neg k<$ length $\omega \Longrightarrow$ $P k \mathcal{G} \omega$ bs $(i+1) \Longrightarrow P k \mathcal{G} \omega$ bs i
assumes predict: $\bigwedge k \mathcal{G} \omega$ bs ixa. $\neg i \geq$ length (items $(b s!k)) \Longrightarrow x=$ items
$(b s!k)!i \Longrightarrow$
next-symbol $x=$ Some $a \Longrightarrow \neg$ is-terminal $\mathcal{G} a \Longrightarrow$
$P k \mathcal{G} \omega$ (bins-upd bsk(Predict $\left._{L} k \mathcal{G} a\right)(i+1) \Longrightarrow P k \mathcal{G} \omega b s i$
shows $P k \mathcal{G} \omega$ bs i
using assms(1)
proof (induction $n \equiv$ earley-measure $(k, \mathcal{G}, \omega, b s)$ i arbitrary: bs i rule: nat-less-induct)
case 1
have $w f: k \leq$ length ω length $b s=$ length $\omega+1$ wf-G \mathcal{G} wf-bins $\mathcal{G} \omega$ bs
using 1.prems wf-earley-input-elim by metis+
hence k : $k<$ length bs
by simp
have fin: finite $\{x \mid x$. wf-item $\mathcal{G} \omega x \wedge$ item-end $x=k\}$
using finiteness-UNIV-wf-item by fastforce
show ?case
proof cases
assume $i \geq$ length (items $(b s!k)$)
then show ?thesis
by (simp add: base)
next
assume $a 1: \neg i \geq$ length (items $(b s!k)$)
let $? x=$ items $(b s!k)!i$
have $x: ? x \in \operatorname{set}($ items $(b s!k))$
using a1 by fastforce
show ?thesis
proof cases
assume a2: next-symbol $? x=$ None
let ? ${ }^{\prime} s^{\prime}=$ bins-upd bs $k\left(\right.$ Complete $_{L} k ? x$ bs $\left.i\right)$
have item-origin ? $x<$ length bs
using $w f(4) k$ wf-bins-kth-bin wf-item-def x by (metis order-le-less-trans)
hence $w f$-bins': wf-bins $\mathcal{G} \omega$?bs ${ }^{\prime}$
using wf-bins-Complete ${ }_{L}$ distinct-Complete $_{L} w f(4) w f$-bins-bins-upd $k x$ by metis
hence $w f^{\prime}:\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in w f$-earley-input
using $w f(1,2,3)$ wf-earley-input-intro by fastforce
have sub: set $\left(\right.$ items $\left.\left(? b s^{\prime}!k\right)\right) \subseteq\{x \mid x$.wf-item $\mathcal{G} \omega x \wedge$ item-end $x=k\}$
using $w f(1,2) w f$-bins' unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have $i<$ length (items $\left(? b s^{\prime}!k\right)$)
using a1 by (metis dual-order.strict-trans1 items-def leI length-map length-nth-bin-bins-upd)
also have $\ldots=\operatorname{card}\left(\operatorname{set}\left(\right.\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)\right)\right)$
using $w f(1,2) w f$-bins ${ }^{\prime}$ distinct-card wf-bins-def wf-bin-def by (metis k length-bins-upd)
also have $\ldots \leq \operatorname{card}\{x \mid x$. wf-item $\mathcal{G} \omega x \wedge$ item-end $x=k\}$
using card-mono fin sub by blast
finally have card $\{x \mid x . w f$-item $\mathcal{G} \omega x \wedge$ item-end $x=k\}>i$ by blast
hence earley-measure $(k, \mathcal{G}, \omega$, ?bs $)($ Suc $i)<$ earley-measure $(k, \mathcal{G}, \omega, b s) i$ by simp
thus ?thesis
using 1 a1 a2 complete $w f^{\prime}$ by simp
next
assume a2: \neg next-symbol ? $x=$ None
then obtain a where a-def: next-symbol ? $x=$ Some a
by blast
show ?thesis
proof cases
assume a3: is-terminal \mathcal{G} a
show ?thesis
proof cases
assume $a 4$: $k<$ length ω
let ?bs' $=$ bins-upd bs $(k+1)\left(S c a n_{L} k \omega a ? x i\right)$
have wf-bins': wf-bins $\mathcal{G} \omega$?bs'
using wf-bins-Scan ${ }_{L}$ distinct-Scan $n_{L} w f(1,4)$ wf-bins-bins-upd a2 $a_{4} k x$ by metis
hence $w f^{\prime}:\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in w f$-earley-input
using $w f(1,2,3)$ wf-earley-input-intro by fastforce
have sub: set (items $\left.\left(? b s^{\prime}!k\right)\right) \subseteq\{x \mid x$. wf-item $\mathcal{G} \omega x \wedge$ item-end $x=$ k \}
using $w f(1,2) w f$-bins' unfolding $w f$-bin-def wf-bins-def wf-bin-items-def using order-le-less-trans by auto
have $i<$ length (items $\left(? b s^{\prime}!k\right)$)
using a1 by (metis dual-order.strict-trans1 items-def leI length-map
length-nth-bin-bins-upd)
also have $\ldots=\operatorname{card}\left(\operatorname{set}\left(\right.\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)\right)\right)$
using wf(1,2) wf-bins' distinct-card wf-bins-def wf-bin-def by (metis Suc-eq-plus1 le-imp-less-Suc length-bins-upd)
also have $\ldots \leq \operatorname{card}\{x \mid x$. wf-item $\mathcal{G} \omega x \wedge$ item-end $x=k\}$ using card-mono fin sub by blast

```
            finally have card {x |x.wf-item \mathcal{G}}\omegax\wedge item-end x=k}>
                by blast
            hence earley-measure (k,\mathcal{G},\omega,?bs') (Suc i)<earley-measure (k,\mathcal{G},\omega\mathrm{ ,}
bs) i
            by simp
            thus ?thesis
            using 1 a1 a-def a3 a4 scan wf' by simp
    next
            assume a4:\negk< length \omega
            have sub: set (items (bs!k))\subseteq{x| x.wf-item \mathcal{G }\omegax\wedge item-end x=k }
            using wf(1,2,4) unfolding wf-bin-def wf-bins-def wf-bin-items-def using
order-le-less-trans by auto
            have i< length (items (bs!k))
            using a1 by simp
            also have ... = card (set (items (bs!k)))
            using wf(1,2,4) distinct-card wf-bins-def wf-bin-def by (metis Suc-eq-plus1
le-imp-less-Suc)
            also have ... \leq card {x |x.wf-item \mathcal{G}\omegax\wedge item-end x=k}
                using card-mono fin sub by blast
            finally have card {x|x.wf-item \mathcal{G}\omegax\wedge item-end x=k}>i
                by blast
            hence earley-measure (k,\mathcal{G},\omega,bs) (Suc i)<earley-measure (k,\mathcal{G},\omega,bs)i
            by simp
            thus ?thesis
            using 1 a1 a3 a4 a-def pass by simp
        qed
    next
            assume a3: \neg is-terminal \mathcal{G a}
    let ?bs' = bins-upd bs k(\mp@subsup{\mathrm{ Predict }}{L}{}k\mathcal{G}a)
    have wf-bins':wf-bins \mathcal{G }\omega\mathrm{ ?bs'}
            using wf-bins-Predict }\mp@subsup{L}{L}{}\mp@subsup{\mathrm{ distinct-Predict }}{L}{}\mathrm{ wf(1,3,4) wf-bins-bins-upd k x
by metis
    hence wf
            using wf(1,2,3) wf-earley-input-intro by fastforce
    have sub: set (items (?bs'!k))\subseteq{x|x.wf-item \mathcal{G }\omegax\wedge item-end x=k}
            using wf(1,2) wf-bins' unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
    have i< length (items (?bs'!k))
            using a1 by (metis dual-order.strict-trans1 items-def leI length-map
length-nth-bin-bins-upd)
    also have ... = card (set (items (?bs'!k)))
        using wf(1,2) wf-bins' distinct-card wf-bins-def wf-bin-def
        by (metis Suc-eq-plus1 le-imp-less-Suc length-bins-upd)
    also have \ldots.\leq card {x |x.wf-item \mathcal{G}\omegax\wedge item-end x=k}
    using card-mono fin sub by blast
    finally have card {x |x.wf-item \mathcal{G}\omegax\wedge item-end x=k}>i
        by blast
    hence earley-measure ( }k,\mathcal{G},\omega,?bs')(Suc i)<earley-measure (k,\mathcal{G},\omega,bs
i
```

```
                by simp
            thus ?thesis
                using 1 a1 a-def a3 a-def predict wf' by simp
        qed
    qed
    qed
qed
lemma wf-earley-input-Earley }\mp@subsup{L}{L}{-bin':
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    shows (k,\mathcal{G},\omega,\mp@subsup{\mathrm{ Earley }}{L}{}-\mp@subsup{\mathrm{ bin' }}{}{\prime}k\mathcal{G}\omega\mathrm{ bs i) }\in\mathrm{ wf-earley-input}
    using assms
proof (induction i rule: Earley L-bin'-induct[OF assms(1), case-names Base Com-
plete F Scan F Pass Predict F
    case (Complete }\mp@subsup{F}{F}{k}\mathcal{G}\omega\mathrm{ bs i x)
    let ?bs' = bins-upd bs k (\mp@subsup{Complete }{L}{}kxbs i)
    have (k,\mathcal{G},\omega,?bs')\inwf-earley-input
        using Complete F.hyps Complete e.prems wf-earley-input-Complete }\mp@subsup{e}{L}{}\mathrm{ by blast
    thus?case
        using Complete F.IH Complete e.hyps by simp
next
```



```
    let ?bs' = bins-upd bs (k+1) (Scan L k\omega axi)
    have (k,\mathcal{G},\omega,?bs')\inwf-earley-input
    using Scan .hyps Scan F.prems wf-earley-input-Scan }\mp@subsup{L}{L}{}\mathrm{ by metis
    thus ?case
        using Scan F.IH ScanF.hyps by simp
next
    case (Predict F k \mathcal{G \omega}\mathrm{ bs i x a)}
    let ?bs'= bins-upd bs k (\mp@subsup{\mathrm{ Predict }}{L}{\prime}k\mathcal{G}a)
    have (k,\mathcal{G},\omega,?bs')\inwf-earley-input
        using Predict}\mp@subsup{F}{F}{}.hyps Predict F.prems wf-earley-input-Predict L by metis
    thus ?case
        using PredictF.IH PredictF.hyps by simp
qed simp-all
lemma wf-earley-input-Earley }\mp@subsup{L}{L}{-bin:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    shows (k,\mathcal{G},\omega,\mp@subsup{Earley}{L}{-bin k\mathcal{G}\omega}\omega\mp@code{b})\inwf-earley-input
    using assms by (simp add: Earley }\mp@subsup{L}{L}{-bin-def wf-earley-input-Earley }\mp@subsup{L}{L}{-bin')
lemma length-bins-Earley }\mp@subsup{L}{L}{-bin':
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    shows length (Earley }\mp@subsup{L}{-}{\prime-bin'}k\mathcal{G}\omegabsi)= length bs
    by (metis assms wf-earley-input-Earley }\mp@subsup{L}{L}{-bin' wf-earley-input-elim)
lemma length-nth-bin-Earley }\mp@subsup{L}{-bin':}{
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    shows length (items (Earley L-bin' k\mathcal{G}\omega bs i!l)) \geqlength (items (bs!l))
```

using length-nth-bin-bins-upd order-trans
by (induction i rule: Earley $L_{L}-$ bin' $^{\prime}$-induct [OF assms]) (auto simp: items-def, blast+)
lemma wf-bins-Earley ${ }_{L}$-bin':
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
shows wf-bins $\mathcal{G} \omega\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs $\left.i\right)$
using assms wf-earley-input-Earley L_{L}-bin' $w f$-earley-input-elim by blast
lemma wf-bins-Earley L_{L}-bin:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
shows wf-bins $\mathcal{G} \omega\left(\right.$ Earley $_{L}$-bin $k \mathcal{G} \omega$ bs)
using assms Earley L_{L}-bin-def wf-bins-Earley L_{L}-bin' by metis
lemma kth-Earley ${ }_{L}$-bin'-bins:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
assumes $j<$ length (items (bs!l))
shows items (Earley L_{L}-bin' $k \mathcal{G} \omega$ bs $\left.i!l\right)!j=$ items (bs!l)!j
using assms(2)
proof (induction i rule: Earley $L_{L}-$ bin' $^{\prime}$-induct[OF assms(1), case-names Base Complete $_{F}$ Scan $_{F}$ Pass Predict ${ }_{F}$])
case (Complete ${ }_{F} k \mathcal{G} \omega$ bs ix)
let $? b s^{\prime}=$ bins-upd bs $k\left(\right.$ Complete $\left._{L} k x b s i\right)$
have items (Earley ${ }_{L}$-bin ${ }^{\prime} k \mathcal{G} \omega ?$?bs $\left.^{\prime}(i+1)!l\right)!j=$ items $\left(? b s^{\prime}!l\right)!j$
using Complete ${ }_{F} . I H$ Complete $_{F}$.prems length-nth-bin-bins-upd items-def or-der.strict-trans2 by (metis length-map)
also have $\ldots=$ items $(b s!l)!j$
using Complete ${ }_{F}$.prems items-nth-idem-bins-upd nth-idem-bins-upd length-map items-def by metis
finally show ?case
using Complete ${ }_{F}$.hyps by simp
next
case $\left(S_{\text {San }}^{F}\right.$ k $\mathcal{G} \omega$ bs $\left.i x a\right)$
let ? $b s^{\prime}=$ bins-upd bs $(k+1)\left(S c a n_{L} k \omega a x i\right)$
have items (Earley ${ }_{L}$-bin' $k \mathcal{G} \omega$?bs $\left.{ }^{\prime}(i+1)!l\right)!j=$ items $\left(? b s^{\prime}!l\right)!j$
using Scan F IH Scan $_{F}$.prems length-nth-bin-bins-upd order.strict-trans2 items-def
by (metis length-map)
also have $\ldots=$ items $(b s!l)!j$
using Scan ${ }_{F}$.prems items-nth-idem-bins-upd nth-idem-bins-upd length-map items-def
by metis
finally show ?case
using Scan $_{F}$.hyps by simp
next
case $\left(\right.$ Predict $_{F} k \mathcal{G} \omega$ bs $\left.i x a\right)$
let $? b s^{\prime}=$ bins-upd bs $k\left(\right.$ Predict $\left._{L} k \mathcal{G} a\right)$
have items (Earley L_{L} bin $^{\prime} k \mathcal{G} \omega$?bs $\left.^{\prime}(i+1)!l\right)!j=$ items $\left(? b s^{\prime}!l\right)!j$
using Predict ${ }_{F}$.IH Predict ${ }_{F}$.prems length-nth-bin-bins-upd order.strict-trans2
items-def by (metis length-map)
also have $\ldots=$ items $(b s!l)!j$
using Predict F_{F}.prems items-nth-idem-bins-upd nth-idem-bins-upd length-map items-def by metis
finally show ?case
using Predict ${ }_{F}$.hyps by simp
qed simp-all
lemma nth-bin-sub-Earley L_{L}-bin': assumes $(k, \mathcal{G}, \omega, b s) \in$ wf-earley-input
shows set $($ items $(b s!l)) \subseteq$ set $\left(\right.$ items $\left(\right.$ Earley $_{L}-$ bin $^{\prime} k \mathcal{G} \omega$ bs $\left.\left.i!l\right)\right)$
proof standard
fix x
assume $x \in$ set (items $(b s!l))$
then obtain j where $*: j<$ length (items (bs!l)) items (bs!l)!j=x using in-set-conv-nth by metis
have $x=$ items $\left(\right.$ Earley $_{L}-$ bin' $^{\prime} k \mathcal{G} \omega$ bs $\left.i!l\right)!j$ using kth-Earley L_{L}-bin'-bins assms $*$ by metis
moreover have $j<$ length (items (Earley ${ }_{L}$-bin' $k \mathcal{G} \omega$ bs $\left.i!l\right)$)
using assms $*$ (1) length-nth-bin-Earley L_{L}-bin' less-le-trans by blast
ultimately show $x \in \operatorname{set}\left(\right.$ items $^{\left(E_{\text {Earley }}^{L} \text {-bin' }\right.} k \mathcal{G} \omega$ bs $\left.i!l\right)$)
by simp
qed
lemma nth-Earley ${ }_{L}$-bin'-eq:
assumes $(k, \mathcal{G}, \omega, b s) \in$ wf-earley-input
shows $l<k \Longrightarrow$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs $i!l=b s!l$
by (induction i rule: Earley L_{L}-bin'-induct[OF assms]) (auto simp: bins-upd-def)
lemma set-items-Earley ${ }_{L}$-bin'-eq:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
shows $l<k \Longrightarrow \operatorname{set}\left(\right.$ items $^{\left(\text {Earley }_{L}-b i n '\right.}{ }^{\prime} k \mathcal{G} \omega$ bs $\left.\left.i!l\right)\right)=\operatorname{set}($ items $(b s!l))$
by (simp add: assms nth-Earley L_{L}-bin'-eq)
lemma bins-upto-k0-Earley L_{L}-bin'-eq:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
shows bins-upto (Earley y_{L}-bin $k \mathcal{G} \omega$ bs) $k 0=$ bins-upto bs $k 0$
unfolding bins-upto-def bin-upto-def Earley ${ }_{L}$-bin-def using set-items-Earley ${ }_{L}$-bin'-eq assms nth-Earley L_{L}-bin'-eq by fastforce
lemma wf-earley-input-Init ${ }_{L}$:
assumes $k \leq$ length ω wf-G \mathcal{G}
shows $\left(k, \mathcal{G}, \omega\right.$, Init $\left._{L} \mathcal{G} \omega\right) \in w f$-earley-input
proof -
let ?rs $=$ filter $(\lambda r$. rule-head $r=\mathfrak{S} \mathcal{G})(\mathfrak{R} \mathcal{G})$
let ?b0 $=\operatorname{map}(\lambda r .($ Entry $($ init-item r 0) Null $))$?rs
let $? b s=$ replicate $($ length $\omega+1)([])$
have distinct (items ?b0)
using assms unfolding wf-bin-def wf-item-def wf-G-def distinct-rules-def items-def
by (auto simp: init-item-def distinct-map inj-on-def)
moreover have $\forall x \in$ set (items ?b0). wf-item $\mathcal{G} \omega x \wedge$ item-end $x=0$
using assms unfolding wf-bin-def wf-item-def by (auto simp: init-item-def items-def)
moreover have wf-bins $\mathcal{G} \omega$?bs
unfolding wf-bins-def wf-bin-def wf-bin-items-def items-def using less-Suc-eq-O-disj
by force
ultimately show ?thesis
using assms length-replicate wf-earley-input-intro
unfolding wf-bin-def Init $_{L}$-def wf-bin-def wf-bin-items-def wf-bins-def
by (metis (no-types, lifting) length-list-update nth-list-update-eq nth-list-update-neq)
qed
lemma length-bins-Init ${ }_{L}[$ simp $]$:
length $\left(\right.$ Init $\left._{L} \mathcal{G} \omega\right)=$ length $\omega+1$
by (simp add: Init $_{L}$-def)
lemma wf-earley-input-Earley ${ }_{L}$-bins $[$ simp $]$:
assumes $k \leq$ length $\omega w f-\mathcal{G} \mathcal{G}$
shows $\left(k, \mathcal{G}, \omega\right.$, Earley L_{L}-bins $\left.k \mathcal{G} \omega\right) \in$ wf-earley-input
using assms
proof (induction k)
case 0
have $\left(k, \mathcal{G}, \omega\right.$, Init $\left._{L} \mathcal{G} \omega\right) \in$ wf-earley-input
using assms wf-earley-input-Init L_{L} by blast
thus? ?case
by (simp add: assms(2) wf-earley-input-Init L_{L} wf-earley-input-Earley ${ }_{L}$-bin)
next
case (Suc k)
have $\left(S u c k, \mathcal{G}, \omega\right.$, Earley $_{L}$-bins $\left.k \mathcal{G} \omega\right) \in w f$-earley-input
using Suc.IH Suc.prems(1) Suc-leD assms(2) wf-earley-input-elim wf-earley-input-intro by metis
thus? case
by (simp add: wf-earley-input-Earley ${ }_{L}$-bin)
qed
lemma length-Earley L_{L}-bins $[$ simp $]$:
assumes $k \leq$ length ω wf-G \mathcal{G}
shows length $\left(\right.$ Earley $_{L}$-bins $\left.k \mathcal{G} \omega\right)=$ length $\left(\right.$ Init $\left._{L} \mathcal{G} \omega\right)$
using assms wf-earley-input-Earley L_{L}-bins wf-earley-input-elim by fastforce
lemma wf-bins-Earley ${ }_{L}$-bins[simp]:
assumes $k \leq$ length ω wf-G \mathcal{G}
shows wf-bins $\mathcal{G} \omega$ (Earley ${ }_{L}$-bins $k \mathcal{G} \omega$)
using assms wf-earley-input-Earley L_{L}-bins wf-earley-input-elim by fastforce
lemma wf-bins-Earley ${ }_{L}$:
$w f-\mathcal{G} \mathcal{G} \Longrightarrow$ wf-bins $\mathcal{G} \omega\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)$
by (simp add: Earley ${ }_{L}$-def)

8.5 Soundness

```
lemma Init }\mp@subsup{L}{-}{-eq-Init}\mp@subsup{F}{F}{
    bins}(\mp@subsup{\mathrm{ Init}}{L}{}\mathcal{G}\omega)=\mp@subsup{\operatorname{Init}}{F}{}\mathcal{G
proof -
    let ?rs = filter ( }\lambdar\mathrm{ . rule-head r= S G ) (ঞ G)
    let ?b0 = map (\lambdar.(Entry (init-item r 0) Null)) ?rs
    let ?bs = replicate (length \omega+1) ([])
    have bins (?bs[0:= ?b0]) = set (items ?b0)
    proof -
        have bins (?bs[0:=?b0]) = \bigcup { set (items ((?bs[0:=?b0])!k))|k.k<length
(?bs[0 := ?b0])}
            unfolding bins-def by blast
        also have ... = set (items ((?bs[0:=?b0])!0))\cup\bigcup {set (items ((?bs[0 :=
?b0])!k)) |k.k<length (?bs[0:=?b0]) ^k\not=0}
            by fastforce
        also have ... = set (items (?b0))
            by (auto simp: items-def)
        finally show ?thesis.
    qed
    also have ... = Init F}\mp@subsup{F}{G}{
        by (auto simp: Init F-def items-def rule-head-def)
    finally show ?thesis
        by (auto simp: Init L-def)
qed
lemma Scan L-sub-Scan}\mp@subsup{F}{F}{
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs bins bs}\subseteqIx\in set (items (bs!k)) k<length bs k<
length \omega
    assumes next-symbol x = Some a
    shows set (items (Scan L k\omega a x pre)) \subseteqScan F k \omegaI
proof standard
    fix }
    assume *: y \in set (items (Scan L k \omega a x pre))
    have }x\in\operatorname{bin}I
    using kth-bin-sub-bins assms(1-4) items-def wf-bin-def wf-bins-def wf-bin-items-def
bin-def by fastforce
    {
    assume #: k< length \omega \omega!k=a
    hence }y=\mathrm{ inc-item x (k+1)
            using * unfolding Scan L-def by (simp add: items-def)
    hence y\inScan F k\omegaI
            using <x \in bin I k> # assms(6) unfolding Scan F-def by blast
    }
    thus y \in Scan
        using * assms(5) unfolding Scan L-def by (auto simp: items-def)
qed
lemma Predict }\mp@subsup{L}{L}{}\mathrm{ -sub-Predict }\mp@subsup{F}{F}{
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs bins bs}\subseteqIx\in set (items (bs!k)) k<length bs
```

```
    assumes next-symbol x = Some X
    shows set (items (\mp@subsup{Predict }{L}{*}k\mathcal{G}X))\subseteq\mp@subsup{\mathrm{ Predict }}{F}{}k\mathcal{G}I
proof standard
    fix }
    assume *: y \in set (items (\mp@subsup{Predict }{L}{}k\mathcal{G}X))
    have x\in bin I k
        using kth-bin-sub-bins assms(1-4) items-def wf-bin-def wf-bins-def bin-def
wf-bin-items-def by fast
    let ?rs = filter (\lambdar. rule-head r=X) (\Re\mathcal{G})
    let ?xs = map ( }\lambdar\mathrm{ . init-item r k) ?rs
    have y}\in\mathrm{ set ?xs
        using * unfolding Predict 
    then obtain r where y= init-item rk rule-head r=Xr\in set (\Re\mathcal{G}) next-symbol
x=Some (rule-head r)
    using assms(5) by auto
    thus y\in\mp@subsup{\mathrm{ Predict }}{F}{}k\mathcal{G}I
    unfolding PredictF}\mp@subsup{F}{}{-}\mathrm{ def using }<x\in bin I k> by blas
qed
lemma Complete }\mp@subsup{L}{L}{}\mathrm{ -sub-Complete }\mp@subsup{F}{F}{}\mathrm{ :
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs bins bs}\subseteqIy\in set (items (bs!k)) k<length bs
    assumes next-symbol y = None
    shows set (items(\mp@subsup{Complete }{L}{}ky\mathrm{ bs red )) }\subseteq\mp@subsup{\mathrm{ Complete }}{F}{}kI
proof standard
    fix }
    assume *: x \in set (items(Complete L k y bs red))
    have }y\in\operatorname{bin}I
    using kth-bin-sub-bins assms items-def wf-bin-def wf-bins-def bin-def wf-bin-items-def
by fast
    let ?orig = bs ! item-origin y
    let ?xs = filter-with-index ( }\lambdax.n.next-symbol x = Some (item-rule-head y)) (item
?orig)
    let ?xs' = map (\lambda(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre,
red) []))) ?xs
    have 0: item-origin y< length bs
    using wf-bins-def wf-bin-def wf-item-def wf-bin-items-def assms(1,3,4)
    by (metis Orderings.preorder-class.dual-order.strict-trans1 leD not-le-imp-less)
    {
    fix z
    assume *:z set (map fst ?xs)
    have next-symbol z = Some (item-rule-head y)
                using * by (simp add: filter-with-index-cong-filter)
    moreover have z\in bin I (item-origin y)
    using 0* assms(1,2) bin-def kth-bin-sub-bins wf-bins-kth-bin filter-with-index-cong-filter
                by (metis (mono-tags, lifting) filter-is-subset in-mono mem-Collect-eq)
    ultimately have next-symbol z=Some (item-rule-head y) z\inbin I (item-origin
y)
            by simp-all
}
```

hence 1: $\forall z \in \operatorname{set}($ map fst ?xs). next-symbol $z=$ Some (item-rule-head y) $\wedge z$ $\in \operatorname{bin} I$ (item-origin y)
by blast
obtain z where $z: x=$ inc-item $z k z \in \operatorname{set}($ map fst ? xs)
using * unfolding Complete L $_{L}$ def by (auto simp: rev-image-eqI items-def)
moreover have next-symbol $z=$ Some (item-rule-head y) $z \in$ bin I (item-origin y)
using $1 z$ by blast +
ultimately show $x \in$ Complete $_{F} k I$
using $\langle y \in \operatorname{bin} I k\rangle \operatorname{assms}(5)$ unfolding Complete $_{F}$-def next-symbol-def by (auto split: if-splits)
qed
lemma sound-Scan ${ }_{L}$:
assumes wf-bins $\mathcal{G} \omega$ bs bins bs $\subseteq I x \in$ set (items (bs!k)) $k<$ length bs $k<$ length ω
assumes next-symbol $x=$ Some $a \forall x \in I$. wf-item $\mathcal{G} \omega x \forall x \in I$. sound-item \mathcal{G} ωx
shows $\forall x \in \operatorname{set}\left(\right.$ items $\left(S_{\text {San }}^{L} k \omega a x i\right)$). sound-item $\mathcal{G} \omega x$
proof standard
fix y
assume $y \in \operatorname{set}\left(\right.$ items $\left.\left(S c a n_{L} k \omega a x i\right)\right)$
hence $y \in \operatorname{Scan}_{F} k \omega I$
by (meson Scan $_{L}-s u b-S c a n_{F} \operatorname{assms}(1-6)$ in-mono)
thus sound-item $\mathcal{G} \omega y$
using sound-Scan assms $(7,8)$ unfolding Scan $_{F}$-def inc-item-def bin-def
by (smt (verit, best) item.exhaust-sel mem-Collect-eq)
qed
lemma sound-Predict ${ }_{L}$:
assumes wf-bins $\mathcal{G} \omega$ bs bins bs $\subseteq I x \in$ set (items (bs!k)) $k<$ length bs
assumes next-symbol $x=$ Some $X \forall x \in I$. wf-item $\mathcal{G} \omega x \forall x \in I$. sound-item
$\mathcal{G} \omega x$
shows $\forall x \in \operatorname{set}\left(\right.$ items $\left(\right.$ Predict $\left._{L} k \mathcal{G} X\right)$). sound-item $\mathcal{G} \omega x$
proof standard
fix y
assume $y \in \operatorname{set}\left(\right.$ items $\left(\right.$ Predict $\left.\left._{L} k \mathcal{G} X\right)\right)$
hence $y \in$ Predict $_{F} k \mathcal{G} I$
by (meson Predict $_{L}$-sub-Predict ${ }_{F}$ assms $(1-5)$ subsetD)
thus sound-item $\mathcal{G} \omega y$
using sound-Predict assms $(6,7)$ unfolding Predict $_{F}$-def init-item-def bin-def by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)
qed
lemma sound-Complete ${ }_{L}$:
assumes $w f$-bins $\mathcal{G} \omega$ bs bins bs $\subseteq I y \in \operatorname{set}($ items $(b s!k)) k<l e n g t h ~ b s$
assumes next-symbol $y=$ None $\forall x \in I$. wf-item $\mathcal{G} \omega x \forall x \in I$. sound-item $\mathcal{G} \omega$ x
shows $\forall x \in \operatorname{set}\left(\right.$ items $\left(\right.$ Complete $_{L} k y$ bs $\left.i\right)$). sound-item $\mathcal{G} \omega x$

```
proof standard
    fix }
    assume x\in set (items (Complete e}k\mp@code{l}\mathrm{ ( bs i))
    hence x\in\mp@subsup{Complete }{F}{}kI
        using Complete}\mp@subsup{L}{L}{-sub-Complete}\mp@subsup{F}{F}{}\mp@subsup{\mathrm{ assms(1-5) by blast}}{}{\prime
    thus sound-item \mathcal{G }\omegax
    using sound-Complete assms(6,7) unfolding Complete F-def inc-item-def bin-def
        by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)
qed
lemma sound-Earley 
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    assumes }\forallx\in\mathrm{ bins bs. sound-item G}\omega
    shows }\forallx\in\mathrm{ bins (Earley }\mp@subsup{L}{L}{-bin'}\mp@subsup{}{}{\prime}k\mathcal{G}\omega\mathrm{ bs i). sound-item G }\omega
    using assms
proof (induction i rule: Earley }\mp@subsup{L}{L}{-bin'-induct[OF assms(1), case-names Base Com-
plete}\mp@subsup{F}{F}{}\mp@subsup{\mathrm{ Scan_}}{F}{}\mathrm{ Pass PredictF])
    case (Complete F k \mathcal{G \omega bs i x)}
    let ?bs'= bins-upd bs k(\mp@subsup{Complete }{L}{}kxbsi)
    have }x\in\operatorname{set}(\mathrm{ items (bs!k))
        using Complete F.hyps(1,2) by force
    hence }\forallx\in\mathrm{ set (items (Complete L kx bs i)). sound-item G G }
    using sound-Complete }\mp@subsup{L}{L}{}\mp@subsup{\mathrm{ Complete }}{F}{}.hyps(3) Complete e.prems wf-earley-input-elim
wf-bins-impl-wf-items by fastforce
    moreover have (k,\mathcal{G},\omega,?bs')\in wf-earley-input
    using Complete F.hyps Complete }\mp@subsup{F}{F}{}.prems(1) wf-earley-input-Complete ( by blas
    ultimately have }\forallx\in\operatorname{bins}(\mp@subsup{E}{\mathrm{ Earley }}{L}\mathrm{ -bin' k GG }\omega\mathrm{ ?bs'(i+1)). sound-item G }
x
    using Complete F.IH Complete F.prems(2) length-bins-upd bins-bins-upd wf-earley-input-elim
        Suc-eq-plus1 Un-iff le-imp-less-Suc by metis
    thus ?case
        using Complete F.hyps by simp
next
    case (Scan F k\mathcal{G \omega}\mathrm{ bs ixa)})
    let ?bs'= bins-upd bs (k+1) (Scan
    have }x\in\mathrm{ set (items (bs!k))
        using Scan}\mp@subsup{\operatorname{Sa}}{F}{}\cdothyps(1,2) by force
    hence }\forallx\in\mathrm{ set (items (Scan L k waxi)). sound-item G }\omega
        using sound-Scan L Scan F.hyps(3,5) Scan F.prems(1,2) wf-earley-input-elim
wf-bins-impl-wf-items by fast
    moreover have (k,\mathcal{G},\omega,?bs')\in wf-earley-input
    using Scan F.hyps Scan F.prems(1) wf-earley-input-Scan}\mp@subsup{L}{L}{}\mathrm{ by metis
    ultimately have }\forallx\in\mp@subsup{b}{\mathrm{ ins (Earley }}{L}\mathrm{ -bin' k G }\omega\mathrm{ ?bs'(i+1)). sound-item G}
x
    using Scan F.IH Scan F.hyps(5) Scan F.prems(2) length-bins-upd bins-bins-upd
wf-earley-input-elim
    by (metis UnE add-less-cancel-right)
    thus ?case
    using Scan}\mp@subsup{\mp@code{F}}{F}{}.hyps by sim
```

```
next
    case (\mp@subsup{Predict F}{F}{k}\mathcal{G}\omega\mathrm{ bs i x a)}
    let ?bs'= bins-upd bs k (\mp@subsup{Predict }{L}{\prime}k\mathcal{G}
    have }x\in\mathrm{ set (items (bs!k))
        using Predict F.hyps(1,2) by force
    hence }\forallx\in\operatorname{set}(\mathrm{ items(Predict }k\mp@code{GG}a)). sound-item \mathcal{G }\omega
            using sound-Predict }\mp@subsup{L}{L}{\prime}\mp@subsup{\mathrm{ Predict }}{F}{}.hyps(3) Predict F.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
    moreover have (k,\mathcal{G},\omega,?bs')\inwf-earley-input
        using Predict }\mp@subsup{F}{F}{}.hyps Predict F.prems(1) wf-earley-input-Predict (L by metis
```



```
x
    using Predict F.IH Predict F.prems(2) length-bins-upd bins-bins-upd wf-earley-input-elim
    by (metis Suc-eq-plus1 UnE)
    thus ?case
        using Predict}\mp@subsup{\mp@code{F}}{}{\mathrm{ .hyps by simp}
qed simp-all
lemma sound-Earley }\mp@subsup{L}{L}{-bin:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    assumes }\forallx\in\mathrm{ bins bs. sound-item GG }\omega
    shows }\forallx\in\mathrm{ bins (Earley _-bin k G }\omega\mathrm{ bs). sound-item G G }
    using sound-Earley L-bin' assms Earley L-bin-def by metis
lemma Earley }\mp@subsup{L}{L}{-bin'-sub-EarleyF-bin:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    assumes bins bs\subseteqI
    shows bins (Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omega\mathrm{ bs i)}\subseteq\mp@subsup{E}{\mathrm{ Earley F-bin k G G }\omegaI}{
    using assms
proof (induction i arbitrary: I rule: Earley L-bin'-induct[OF assms(1), case-names
Base Complete F Scan F Pass Predict F])
    case (Base k \mathcal{G \omega bs i)}
    thus ?case
        using EarleyF-bin-mono by fastforce
next
    case (Complete }\mp@subsup{F}{F}{k\mathcal{G}\omega\mathrm{ bs i x)}
    let ?bs' = bins-upd bs k (Complete }\mp@subsup{L}{L}{}kxbs i
    have }x\in\mathrm{ set (items (bs!k))
        using Complete F}.hyps(1,2) by forc
    hence bins ?bs'\subseteqI\cup\mp@subsup{Complete }{F}{}kI
        using Complete L-sub-Complete F Complete }\mp@subsup{F}{F}{}.hyps(3) Complete F.prems(1,2
bins-bins-upd wf-earley-input-elim by blast
    moreover have (k,\mathcal{G},\omega,?bs')\in wf-earley-input
        using Complete F.hyps Complete F.prems(1) wf-earley-input-Complete }\mp@subsup{L}{L}{}\mathrm{ by blast
    ultimately have bins (Earley L-bin'}k\mathcal{G}\omega\mathrm{ bs i) }\subseteq\mp@subsup{\mathrm{ EarleyF-bin k GG }\omega(I\cup}{L}{\prime
Complete F k I)
    using Complete }\mp@subsup{\mp@code{F}}{F}{\mathrm{ IH Complete }}\mathrm{ F.hyps by simp
    also have .. \subseteq EarleyF-bin k\mathcal{G}\omega(\mp@subsup{\mathrm{ Earley }}{F}{}-bin k\mathcal{G}\omegaI)
    using Complete }\mp@subsup{F}{F}{}\mathrm{ -Earley (-bin-mono Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-mono Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-sub-mono
```

```
by (metis Un-subset-iff)
    finally show ?case
        using EarleyF-bin-idem by blast
next
    case (Scan F k\mathcal{G}\omega\mathrm{ bs i x a)}
    let ?bs' = bins-upd bs (k+1) (Scan L k\omega a x i)
    have }x\in\operatorname{set (items (bs!k))
        using Scan F.hyps(1,2) by force
    hence bins ?bs'\subseteqI\cupScan F}k\omega
        using Scan _-sub-Scan F Scan F.hyps(3,5) Scan F.prems bins-bins-upd wf-earley-input-elim
        by (metis add-mono1 sup-mono)
    moreover have (k,\mathcal{G},\omega,?bs')\in wf-earley-input
        using Scan F.hyps Scan F.prems(1) wf-earley-input-Scan L by metis
    ultimately have bins (Earley L-bin'}k\mathcal{G}\omega\mathrm{ bs i) }\subseteq\mp@subsup{\mathrm{ Earley }}{F}{}-\mathrm{ -bin k G }\omega(I\cup\mp@subsup{S}{Can}{F
k\omegaI)
        using Scan F.IH Scan F.hyps by simp
    thus ?case
        using Scan}\mp@subsup{F}{}{-}\mp@subsup{\mathrm{ Earley }}{F}{}\mathrm{ -bin-mono EarleyF-bin-mono Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-sub-mono Ear-
leyF-bin-idem by (metis le-supI order-trans)
next
    case (Pass k \mathcal{G \omega}\mathrm{ bs i x a)}
    thus ?case
        by simp
next
    case (Predict F k\mathcal{G \omega}\mathrm{ bs i x a)}
    let ?bs' = bins-upd bs k (\mp@subsup{Predict }{L}{\prime}k\mathcal{G}a)
    have }x\in\mathrm{ set (items (bs!k))
        using Predict}\mp@subsup{F}{F}{}.hyps(1,2) by force
    hence bins ?bs'}\subseteqI\cup\mp@subsup{\mathrm{ Predict }}{F}{}k\mathcal{G}
        using Predict}\mp@subsup{L}{L}{}\mathrm{ -sub-Predict F Predict F.hyps(3) PredictF.prems bins-bins-upd
wf-earley-input-elim
        by (metis sup-mono)
    moreover have ( }k,\mathcal{G},\omega,?bs')\in\mathrm{ wf-earley-input
        using Predict F.hyps Predict F.prems(1) wf-earley-input-Predict }\mp@subsup{L}{L}{}\mathrm{ by metis
```



```
Predict}\mp@subsup{F}{F}{k}\mathcal{G}I
        using Predict F.IH Predict F.hyps by simp
    thus ?case
        using Predict}\mp@subsup{F}{F}{}-\mp@subsup{E}{0}{
EarleyF-bin-idem by (metis le-supI order-trans)
qed
lemma Earley }\mp@subsup{L}{L}{-bin-sub-Earley }\mp@subsup{F}{F}{}\mathrm{ -bin:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    assumes bins bs\subseteqI
```



```
    using assms Earley }\mp@subsup{L}{L}{-bin'-sub-Earley }\mp@subsup{F}{F}{}\mathrm{ -bin Earley (-bin-def by metis
lemma Earley }\mp@subsup{L}{L}{-bins-sub-EarleyF-bins:
```

```
    assumes k\leq length \omega wf-\mathcal{G G}
    shows bins (Earley }\mp@subsup{L}{L}{-bins k\mathcal{G}\omega)\subseteq\mp@subsup{E}{\mathrm{ Earley }}{F}\mathrm{ -bins k G }\omega
    using assms
proof (induction k)
    case 0
    have (k,\mathcal{G},\omega,\mp@subsup{Init}{L}{LG}}\omega)\inwf-earley-input
    using assms(1) assms(2) wf-earley-input-Init L by blast
    thus ?case
    by (simp add: Init }\mp@subsup{L}{L}{-eq-Init F Earley L-bin-sub-Earley }\mp@subsup{F}{F}{}\mathrm{ -bin assms(2) wf-earley-input-Init }\mp@subsup{L}{L}{}
next
    case (Suc k)
    have (Suc k,\mathcal{G},\omega,\mp@subsup{\mathrm{ Earley }}{L}{}\mathrm{ -bins k G }\omega)\inwf-earley-input
    by (simp add:Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
    thus ?case
    by (simp add: Suc.IH Suc.prems(1) Suc-leD Earley L-bin-sub-Earley F-bin assms(2))
qed
lemma Earley }\mp@subsup{L}{L}{-sub-EarleyF:
    wf-\mathcal{G G}\Longrightarrow bins (Earley L\mathcal{G }\omega)\subseteq\mp@subsup{\mathrm{ Earley }}{F}{}\mathcal{G}\omega
    using Earley }\mp@subsup{L}{L}{-bins-sub-Earley F-bins Earley F-def Earley }\mp@subsup{L}{L}{-def by (metis dual-order.refl)
theorem soundness-Earley }\mp@subsup{L}{L}{
    assumes wf-\mathcal{G G recognizing (bins (Earley }
    shows derives }\mathcal{G}[\mathfrak{S G}]
    using assms Earley L-sub-Earley F recognizing-def soundness-Earley }\mp@subsup{F}{F}{}\mathrm{ by (meson
subsetD)
```


8.6 Completeness

lemma bin-bins-upto-bins-eq:
assumes wf-bins $\mathcal{G} \omega$ bs $k<$ length bs $i \geq$ length (items $(b s!k)) l \leq k$
shows bin (bins-upto bs $k i$) $l=$ bin (bins bs) l
unfolding bins-upto-def bins-def bin-def using assms nat-less-le
apply (auto simp: nth-list-update bin-upto-eq-set-items wf-bins-kth-bin items-def)
apply (metis imageI nle-le order-trans, fast)
done
lemma impossible-complete-item:
assumes wf-G \mathcal{G} wf-item $\mathcal{G} \omega x$ sound-item $\mathcal{G} \omega x$
assumes is-complete x item-origin $x=k$ item-end $x=k$ nonempty-derives \mathcal{G}
shows False
proof -
have derives \mathcal{G} [item-rule-head x] []
using assms (3-6) by (simp add: slice-empty is-complete-def sound-item-def
item- β-def)
moreover have is-nonterminal \mathcal{G} (item-rule-head x)
using $\operatorname{assms}(1,2)$ unfolding wf-item-def item-rule-head-def rule-head-def
by (metis prod.collapse rule-nonterminal-type)
ultimately show ?thesis
using assms(7) nonempty-derives-def is-nonterminal-def by metis qed
lemma Complete ${ }_{F}$-Un-eq-terminal:
assumes next-symbol $z=$ Some a is-terminal \mathcal{G} a $\forall x \in I$. wf-item $\mathcal{G} \omega x$ wf-item
$\mathcal{G} \omega z w f-\mathcal{G} \mathcal{G}$
shows Complete ${ }_{F} k(I \cup\{z\})=$ Complete $_{F} k I$
proof (rule ccontr)
assume Complete ${ }_{F} k(I \cup\{z\}) \neq$ Complete $_{F} k I$
hence Complete ${ }_{F} k I \subset$ Complete $_{F} k(I \cup\{z\})$
using Complete F $_{F}$-sub-mono by blast
then obtain $w x y$ where $*$:
$w \in$ Complete $_{F} k(I \cup\{z\}) w \notin$ Complete $_{F} k I w=$ inc-item $x k$
$x \in \operatorname{bin}(I \cup\{z\})($ item-origin $y) y \in \operatorname{bin}(I \cup\{z\}) k$
is-complete y next-symbol $x=$ Some (item-rule-head y)
unfolding Complete ${ }_{F}$-def by fast
show False
proof (cases $x=z$)
case True
have is-nonterminal \mathcal{G} (item-rule-head y)
using $*(5,6) \operatorname{assms}(1,3-5)$
apply (clarsimp simp: wf-item-def bin-def item-rule-head-def rule-head-def
next-symbol-def)
by (metis prod.exhaust-sel rule-nonterminal-type)
thus ?thesis
using True *(7) assms(1,2,5) is-terminal-nonterminal by fastforce
next
case False
thus ?thesis
using $* \operatorname{assms}(1)$ by (auto simp: next-symbol-def Complete $_{F}$-def bin-def)
qed
qed
lemma Complete ${ }_{F}$-Un-eq-nonterminal:
assumes wf-G $\mathcal{G} \forall x \in I$. wf-item $\mathcal{G} \omega x \forall x \in I$. sound-item $\mathcal{G} \omega x$
assumes nonempty-derives \mathcal{G} wf-item $\mathcal{G} \omega z$
assumes item-end $z=k$ next-symbol $z \neq$ None
shows Complete ${ }_{F} k(I \cup\{z\})=$ Complete $_{F} k I$
proof (rule ccontr)
assume Complete ${ }_{F} k(I \cup\{z\}) \neq$ Complete $_{F} k I$
hence Complete ${ }_{F} k I \subset$ Complete $_{F} k(I \cup\{z\})$
using Complete ${ }_{F}$-sub-mono by blast
then obtain $x x^{\prime} y$ where $*$:
$x \in$ Complete $_{F} k(I \cup\{z\}) x \notin$ Complete $_{F} k I x=$ inc-item $x^{\prime} k$
$x^{\prime} \in \operatorname{bin}(I \cup\{z\})($ item-origin $y) y \in \operatorname{bin}(I \cup\{z\}) k$
is-complete y next-symbol $x^{\prime}=$ Some (item-rule-head y)
unfolding Complete $_{F}$-def by fast
consider $(A) x^{\prime}=z \mid(B) y=z$
using $*(2-7)$ Complete $_{F}$-def by (auto simp: bin-def; blast)

```
    thus False
    proof cases
    case }
    have item-origin }y=
        using *(4) A bin-def assms(6) by (metis (mono-tags, lifting) mem-Collect-eq)
    moreover have item-end y=k
        using *(5) bin-def by blast
    moreover have sound-item G }\omega
    using *(5,6) assms(3,7) by (auto simp: bin-def next-symbol-def sound-item-def)
    moreover have wf-item \mathcal{G }\omegay
        using *(5) assms(2,5) wf-item-def by (auto simp: bin-def)
    ultimately show ?thesis
        using impossible-complete-item *(6) assms (1,4) by blast
    next
    case B
    thus ?thesis
        using *(6) assms(7) by (auto simp: next-symbol-def)
    qed
qed
lemma wf-item-in-kth-bin:
    wf-bins \mathcal{G }\omega\mathrm{ bs Cx bins bs C item-end }x=k\Longrightarrowx\in set (items (bs!k))
    using bins-bin-exists wf-bins-kth-bin wf-bins-def by blast
lemma Complete }\mp@subsup{F}{F}{}\mathrm{ -bins-upto-eq-bins:
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs k<length bs i \length (items (bs!k))}\\mp@code{lol}
    shows Complete F k (bins-upto bs ki)=\mp@subsup{Complete F}{F}{}k\mathrm{ (bins bs)}
proof -
    have }\l.l\leqk\Longrightarrowbin(bins-upto bs ki)l=bin(bins bs)
        using bin-bins-upto-bins-eq[OF assms] by blast
    moreover have }\forallx\in\mathrm{ bins bs. wf-item }\mathcal{G}\omega
        using assms(1) wf-bins-impl-wf-items by metis
    ultimately show ?thesis
        unfolding Complete}\mp@subsup{F}{F}{-def bin-def wf-item-def wf-item-def by auto
qed
lemma Complete }\mp@subsup{F}{F}{}\mathrm{ -sub-bins-Un-Complete }\mp@subsup{L}{L}{}\mathrm{ :
```



```
wfitem \mathcal{G }\omegaz
    shows Complete }\mp@subsup{F}{}{\prime}k(I\cup{z})\subseteq\mathrm{ bins bs }\cup\mathrm{ set (items (Complete }\mp@subsup{L}{L}{}kz\mathrm{ bs red))
proof standard
    fix w
    assume w\in\mp@subsup{Complete }{F}{}k(I\cup{z})
    then obtain x y where *:
        w=inc-item xkx\inbin (I\cup{z})(item-origin y) y f bin (I\cup{z})k
        is-complete y next-symbol }x=\mathrm{ Some (item-rule-head y)
        unfolding Complete}\mp@subsup{F}{F}{}-\mathrm{ def by blast
    consider (A) x=z|(B) y=z|\neg(x=z\vee y=z)
    by blast
```

```
    thus w\in bins bs \cup set (items(Complete }\mp@subsup{L}{L}{}kz\mathrm{ bs red))
    proof cases
    case A
    thus ?thesis
        using *(5) assms(3) by (auto simp: next-symbol-def)
    next
        case B
    let ?orig = bs ! item-origin z
    let ?is = filter-with-index ( }\lambdax.n.next-symbol x = Some (item-rule-head z)) (items
?orig)
    have }x\in\mathrm{ bin I (item-origin y)
        using B*(2) *(5) assms(3) by (auto simp: next-symbol-def bin-def)
    moreover have bin I (item-origin z)\subseteq set (items (bs ! item-origin z))
            using wf-item-in-kth-bin assms(2,4) bin-def by blast
    ultimately have }x\in\operatorname{set}\mathrm{ (map fst ?is)
        using *(5) B by (simp add: filter-with-index-cong-filter in-mono)
    thus ?thesis
        unfolding Complete }\mp@subsup{L}{L}{-def *(1) by (auto simp: rev-image-eqI items-def)
    next
    case 3
    thus ?thesis
        using * assms(1) Complete F-def by (auto simp: bin-def; blast)
    qed
qed
lemma Complete }\mp@subsup{L}{L}{}\mathrm{ -eq-item-origin:
    bs!item-origin y =bs'!item-origin y Complete }\mp@subsup{L}{L}{}k\mathrm{ y bs red }=\mp@subsup{\mathrm{ Complete }}{L}{
k y bs'red
    by (auto simp: Complete }\mp@subsup{L}{L}{}\mathrm{ -def)
lemma kth-bin-bins-upto-empty:
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs k< length bs}\\mp@code{l}
    shows bin (bins-upto bs k 0) k={}
proof -
    {
        fix }
        assume x f bins-upto bs k 0
        then obtain l where x\in set (items (bs!l)) l<k
            unfolding bins-upto-def bin-upto-def by blast
        hence item-end }x=
            using wf-bins-kth-bin assms by fastforce
    hence item-end x<k
        using <l<k> by blast
    }
    thus ?thesis
        by (auto simp: bin-def)
qed
lemma Earley L-bin'-mono:
```

```
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    shows bins bs \subseteqbins (Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G}\omega
    using assms
proof (induction i rule: Earley L-bin'-induct[OF assms(1), case-names Base Com-
plete}\mp@subsup{F}{F}{}\mp@subsup{\mathrm{ Scan_}}{F}{}\mathrm{ Pass PredictF])
    case(\mp@subsup{Complete F}{F}{k}\mathcal{G}\omega\mathrm{ bs i x)}
    let ?bs'= bins-upd bs k(\mp@subsup{Complete }{L}{}kxbsi)
    have wf: (k,\mathcal{G},\omega,?bs')\inwf-earley-input
    using Complete F.hyps Complete }\mp@subsup{F}{F}{}\cdotprems(1) wf-earley-input-Complete e by blas
    hence bins bs \subseteqbins ?bs'
        using length-bins-upd bins-bins-upd wf-earley-input-elim by (metis Un-upper1)
    also have ... \subseteqbins (Earley }\mp@subsup{L}{\mathrm{ -bin' }k\mathcal{G}\omega ?bs''(i+1))}{
    using wf Complete F.IH by blast
    finally show ?case
    using Complete F.hyps by simp
next
    case (Scan F k\mathcal{G}\omegabs ixa)
    let ?bs' = bins-upd bs (k+1) (Scan L k \omegaaxi)
    have wf: (k,\mathcal{G},\omega,?bs')\inwf-earley-input
    using Scan F.hyps Scan F.prems(1) wf-earley-input-Scan}\mp@subsup{L}{L}{}\mathrm{ by metis
    hence bins bs \subseteqbins ?bs'
    using Scan F.hyps(5) length-bins-upd bins-bins-upd wf-earley-input-elim
    by (metis add-mono1 sup-ge1)
    also have ...\subseteqbins (Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omega\mathrm{ ?bs'}(i+1)
    using wf Scan F.IH by blast
    finally show ?case
    using Scan F.hyps by simp
next
    case (\mp@subsup{Predict F}{F}{k}\mathcal{G}\omega\mathrm{ bs i x a)}
    let ?bs'= bins-upd bs k (\mp@subsup{\mathrm{ Predict }}{L}{}k\mathcal{G}a)
    have wf: (k,\mathcal{G},\omega,?bs')\inwf-earley-input
        using Predict F.hyps Predict F.prems(1) wf-earley-input-Predict }\mp@subsup{L}{L}{}\mathrm{ by metis
    hence bins bs \subseteqbins ?bs'
        using length-bins-upd bins-bins-upd wf-earley-input-elim by (metis sup-ge1)
    also have \ldots. \subseteqbins (Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omega\mathrm{ ?bs'(i+1))
        using wf Predict}\mp@subsup{F}{F}{\prime}IH\mathrm{ by blast
    finally show ?case
        using PredictF.hyps by simp
qed simp-all
lemma Earley }\mp@subsup{F}{F}{-bin-step-sub-Earley }\mp@subsup{L}{L}{-bin':
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
```



```
    assumes }\forallx\in\mathrm{ bins bs. sound-item }\mathcal{G}\omegax\mathrm{ is-word }\mathcal{G}\omega\mathrm{ nonempty-derives }\mathcal{G
    shows Earley }\mp@subsup{F}{F}{-bin-step k\mathcal{G}\omega(\mathrm{ bins bs)}\subseteq\mathrm{ bins (Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G}\omega bs i)}
    using assms
proof (induction i rule: Earley L-bin'-induct[OF assms(1), case-names Base Com-
plete}\mp@subsup{F}{F}{}\mp@subsup{\mathrm{ Scan }}{F}{}\mathrm{ Pass Predict F])
    case (Base k \mathcal{G \omegabs i)}
```

have bin (bins bs) $k=\operatorname{bin}$ (bins-upto bs $k i) k$
using Base.hyps Base.prems(1) bin-bins-upto-bins-eq wf-earley-input-elim by blast
thus ?case
using Scan $_{F}$-bin-absorb Predict F_{F}-bin-absorb Complete ${ }_{F}$-bins-upto-eq-bins wf-earley-input-elim
Base.hyps Base.prems $(1,2,3,5)$ Earley F_{F}-bin-step-def Complete ${ }_{F}$-Earley Cobin-step-mono $^{\text {- }}$ Predict $_{F}$-Earley ${ }_{F}$-bin-step-mono Scan F_{F}-Earley ${ }_{F}$-bin-step-mono Earley L_{L}-bin'-mono by (metis (no-types, lifting) Un-assoc sup.orderE)
next
case $\left(\right.$ Complete $_{F} k \mathcal{G} \omega$ bs ix)
let $? b s^{\prime}=$ bins-upd bs $k\left(\right.$ Complete $\left._{L} k x b s i\right)$
have $x: x \in$ set (items $(b s!k)$)
using Complete ${ }_{F}$.hyps $(1,2)$ by auto
have $w f:\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in$ wf-earley-input
using Complete ${ }_{F}$.hyps Complete ${ }_{F}$.prems(1) wf-earley-input-Complete ${ }_{L}$ by blast
hence sound: $\forall x \in$ set (items (Complete ${ }_{L} k x$ bs i)). sound-item $\mathcal{G} \omega x$
using sound-Complete ${ }_{L}$ Complete $_{F}$.hyps(3) Complete e_{F}.prems wf-earley-input-elim wf-bins-impl-wf-items x
by (metis dual-order.refl)
have $S c a n_{F} k \omega($ bins-upto ?bs' $k(i+1)) \subseteq$ bins ?bs ${ }^{\prime}$
proof -
have $S_{c a n_{F}} k \omega$ (bins-upto ?bs' $\left.k(i+1)\right)=$ Scan $_{F} k \omega$ (bins-upto ?bs ${ }^{\prime} k i \cup$ $\left\{\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using Complete F.hyps(1) bins-upto-Suc-Un length-nth-bin-bins-upd items-def
by (metis length-map linorder-not-less sup.boundedE sup.order-iff)
also have $\ldots=S c a n_{F} k \omega$ (bins-upto bs $\left.k i \cup\{x\}\right)$
using Complete $e_{F} \cdot \operatorname{hyps}(1,2)$ Complete $_{F} \cdot p r e m s(1)$ items-nth-idem-bins-upd bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have $\ldots \subseteq$ bins bs $\cup \operatorname{Scan}_{F} k \omega\{x\}$
using Complete ${ }_{F}$.prems $(2,3)$ Scan $_{F}-U n$ Scan $_{F}$-Earley ${ }_{F}$-bin-step-mono by fastforce
also have $\ldots=$ bins $b s$
using Complete ${ }_{F}$.hyps(3) by (auto simp: Scan F $^{-d e f}$ bin-def)
finally show ?thesis
using Complete ${ }_{F}$.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Predict $_{F} k \mathcal{G}$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins ? ${ }^{\prime} b^{\prime}$
proof -
have Predict $_{F} k \mathcal{G}$ (bins-upto ? $\left.{ }^{\prime} s^{\prime} k(i+1)\right)=$ Predict $_{F} k \mathcal{G}$ (bins-upto ? ${ }^{\prime}{ }^{\prime}{ }^{\prime} k$ $i \cup\left\{\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using Complete ${ }_{F}$.hyps(1) bins-upto-Suc-Un length-nth-bin-bins-upd by (metis dual-order.strict-trans1 items-def length-map not-le-imp-less)
also have $\ldots=$ Predict $_{F} k \mathcal{G}$ (bins-upto bs $k i \cup\{x\}$)
using Complete F $_{\text {.hyps }}(1,2)$ Complete $_{F} \cdot p r e m s(1)$ items-nth-idem-bins-upd
bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have $\ldots \subseteq$ bins bs \cup Predict $_{F} k \mathcal{G}\{x\}$
using Complete ${ }_{F} \cdot$ prems(2,3) Predict $_{F}$-Un Predict $_{F}$-Earley ${ }_{F}$-bin-step-mono
by blast
also have $\ldots=$ bins $b s$ using Complete C $_{F} \cdot \operatorname{hyps}(3)$ by (auto simp: Predict $_{F}$-def bin-def)
finally show ?thesis using Complete ${ }_{F}$.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Complete ${ }_{F} k$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins $^{\prime}$?bs'
proof -
have Complete ${ }_{F} k$ (bins-upto ? $\left.{ }^{\text {bs }}{ }^{\prime} k(i+1)\right)=$ Complete $_{F} k$ (bins-upto ? ${ }^{\prime}$ s $^{\prime} k$
$i \cup\left\{i\right.$ iems $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using bins-upto-Suc-Un length-nth-bin-bins-upd Complete ${ }_{F}$.hyps(1)
by (metis (no-types, opaque-lifting) dual-order.trans items-def length-map not-le-imp-less)
also have $\ldots=$ Complete $_{F} k$ (bins-upto bs $k i \cup\{x\}$)
using items-nth-idem-bins-upd Complete ${ }_{F} \cdot \operatorname{hyps}(1,2)$ bins-upto-kth-nth-idem
Complete ${ }_{F}$. prems(1) wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have $\ldots \subseteq$ bins bs \cup set (items (Complete ${ }_{L} k x$ bs i))
using Complete ${ }_{F}$-sub-bins-Un-Complete L_{L} Complete $_{F} \cdot \operatorname{hyps}(3)$ Complete $_{F} \cdot$ prems (1,2,3) next-symbol-def
bins-upto-sub-bins wf-bins-kth-bin x Complete $_{F}$-Earley ${ }_{F}$-bin-step-mono wf-earley-input-elim by (smt (verit, best) option.distinct(1) subset-trans)
finally show?thesis using Complete ${ }_{F}$.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
ultimately have Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega$ (bins ?bs') \subseteq bins $\left(\right.$ Earley $_{L}-$-bin' $^{\prime} k \mathcal{G} \omega$?bs ${ }^{\prime}(i+1)$)
using Complete ${ }_{F}$.IH Complete Corems sound wf Earley $_{F}$-bin-step-def bins-upto-sub-bins wf-earley-input-elim bins-bins-upd
by (metis UnE sup.boundedI)
thus ?case
using Complete ${ }_{F}$.hyps Complete ${ }_{F} \cdot$.prems(1) Earley Lbin'-simps(2) Earley $_{F}$-bin-step-sub-mono bins-bins-upd wf-earley-input-elim
by (smt (verit, best) sup.coboundedI2 sup.orderE sup-ge1)
next
case $\left(S_{c a n}^{F}\right.$ k $\mathcal{G} \omega$ bs ixa)
let ?bs' $=$ bins-upd bs $(k+1)\left(S c a n_{L} k \omega a x i\right)$
have $x: x \in$ set (items $(b s!k)$)
using $\operatorname{Scan}_{F} \cdot \operatorname{hyps}(1,2)$ by auto
hence sound: $\forall x \in \operatorname{set}\left(\right.$ items $\left.\left(S_{\text {San }}^{L} k \omega a x i\right)\right)$. sound-item $\mathcal{G} \omega x$
using sound-Scan Scan_{F}.hyps $(3,5) \operatorname{Scan}_{F}$.prems $(1,2,3)$ wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
have $w f:\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in w f$-earley-input
using $S_{\text {San }}^{F}$.hyps $S_{\text {San }}^{F}$.prems(1) wf-earley-input-Scan ${ }_{L}$ by metis
have $S_{c a n_{F}} k \omega$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins ?bs'
proof -
have $S_{c a n_{F}} k \omega$ (bins-upto ?bs' $\left.k(i+1)\right)=$ Scan $_{F} k \omega$ (bins-upto ?bs ${ }^{\prime} k i \cup$ $\left\{\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using bins-upto-Suc-Un Scan Sthyps(1) nth-idem-bins-upd $^{\text {(1) }}$
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)
also have $\ldots=\operatorname{Scan}_{F} k \omega$ (bins-upto bs $k i \cup\{x\}$)
using $S_{\text {Can }}^{F}$.hyps $(1,2,5)$ Scan $_{F} \cdot \operatorname{prems}(1,2)$ nth-idem-bins-upd bins-upto-kth-nth-idem wf-earley-input-elim
by (metis add-mono-thms-linordered-field(1) items-def length-map less-add-one linorder-le-less-linear not-add-less1)
also have $\ldots \subseteq$ bins bs $\cup \operatorname{Scan}_{F} k \omega\{x\}$
using Scan $_{F} \cdot \operatorname{prems}(2,3)$ Scan $_{F}$-Un Scan ${ }_{F}$-Earley ${ }_{F}$-bin-step-mono by fastforce
finally have $*: S_{\text {San }}^{F}$ $k \omega$ (bins-upto ?bs $\left.{ }^{\prime} k(i+1)\right) \subseteq$ bins bs $\cup \operatorname{Scan}_{F} k \omega$ $\{x\}$.
show ?thesis
proof cases
assume $a 1: \omega!k=a$
hence $\operatorname{Scan}_{F} k \omega\{x\}=\{$ inc-item $x(k+1)\}$
using $\operatorname{Scan}_{F} \cdot h y p s(1-3,5)$ Scan $_{F} \cdot p r e m s(1,2)$ wf-earley-input-elim apply (auto simp: Scan $_{F}$-def bin-def)
using wf-bins-kth-bin x by blast
hence $S_{\text {San }}^{F} k \omega$ (bins-upto ?bs $\left.{ }^{\prime} k(i+1)\right) \subseteq$ bins bs $\cup\{$ inc-item $x(k+1)\}$
using * by blast
also have $\ldots=$ bins bs \cup set (items $\left(S_{\text {San }}^{L} k \omega a x i\right)$)
using a1 Scan $\operatorname{S} \cdot \operatorname{hyps(5)}$ by (auto simp: Scan L_{L}-def items-def)
also have $\ldots=$ bins ? $b s^{\prime}$
using Scan F $^{\text {.hyps(5) }}$ Scan $_{F}$.prems(1) wf-earley-input-elim bins-bins-upd by (metis add-mono1)
finally show ?thesis .
next
assume $a 1: \neg \omega!k=a$
hence $\operatorname{Scan}_{F} k \omega\{x\}=\{ \}$
using $S_{\text {San }}^{F}$.hyps(3) by (auto simp: Scan ${ }_{F}$-def bin-def)
hence $S_{\text {San }}^{F} k \omega$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins bs using $*$ by blast
also have $\ldots \subseteq$ bins ? $b s^{\prime}$
using $S_{\text {San }}^{F}$.hyps(5) Scan ${ }_{F}$.prems(1) wf-earley-input-elim bins-bins-upd
by (metis Un-left-absorb add-strict-right-mono subset-Un-eq)
finally show ?thesis .
qed
qed
moreover have Predict $_{F} k \mathcal{G}$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins ?bs'
proof -
have Predict $_{F} k \mathcal{G}$ (bins-upto ? $\left.{ }^{\prime} s^{\prime} k(i+1)\right)=$ Predict $_{F} k \mathcal{G}$ (bins-upto ? ${ }^{\prime}$ s $^{\prime} k$ $\left.i \cup\left\{i t e m s\left(? b s^{\prime}!k\right)!i\right\}\right)$
using bins-upto-Suc-Un Scan Sthyps(1) nth-idem-bins-upd $^{\text {(1) }}$
by (metis Suc-eq-plus1 dual-order.refl items-def length-map lessI linorder-not-less)
also have $\ldots=$ Predict $_{F} k \mathcal{G}$ (bins-upto bs $k i \cup\{x\}$)
using $S_{c a n_{F} . h y p s(1,2,5) ~ S c a n}^{F} \cdot \operatorname{prems}(1,2)$ nth-idem-bins-upd bins-upto-kth-nth-idem wf-earley-input-elim
by (metis add-strict-right-mono items-def le-add1 length-map less-add-one linorder-not-le)
also have $\ldots \subseteq$ bins bs \cup Predict $_{F} k \mathcal{G}\{x\}$
using Scan $_{F} \cdot \operatorname{prems}(2,3)$ Predict $_{F}-$ Un Predict $_{F}$-Earley F_{F}-bin-step-mono by fastforce
also have $\ldots=$ bins $b s$
using $\operatorname{Scan}_{F} \cdot \operatorname{hyps}(3,4)$ Scan $_{F} \cdot p r e m s(1)$ is-terminal-nonterminal wf-earley-input-elim
by (auto simp: Predict ${ }_{F}$-def bin-def rule-head-def, fastforce)
finally show ?thesis
using $S_{\text {San }}^{F}$.hyps(5) Scan $_{F} \cdot$ prems(1) by (simp add: bins-bins-upd sup.coboundedI1 wf-earley-input-elim)
qed
moreover have Complete $_{F} k$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins $^{\prime} ? b s^{\prime}$
proof -
have Complete ${ }_{F} k$ (bins-upto ? bs $\left.^{\prime} k(i+1)\right)=$ Complete $_{F} k$ (bins-upto ? ${ }^{\prime}$ bs $^{\prime} k$ $i \cup\left\{i\right.$ iems $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using bins-upto-Suc-Un Scan Saps $^{\text {.hyps (1) nth-idem-bins-upd }}$
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)
also have $\ldots=$ Complete $_{F} k$ (bins-upto bs $k i \cup\{x\}$)
using $S c a n_{F} \cdot \operatorname{hyps}(1,2,5) S_{\text {can }}^{F}$.prems (1,2) nth-idem-bins-upd bins-upto-kth-nth-idem wf-earley-input-elim
by (metis add-mono1 items-def length-map less-add-one linorder-not-le not-add-less1)
also have $\ldots=$ Complete $_{F} k$ (bins-upto bs $k i$)
using Complete ${ }_{F}$-Un-eq-terminal Scan ${ }_{F} \cdot h y p s(3,4)$ Scan $_{F}$.prems bins-upto-sub-bins subset-iff
wf-bins-impl-wf-items wf-bins-kth-bin wf-item-def x wf-earley-input-elim
by (smt (verit, ccfv-threshold))
finally show ?thesis
using $\operatorname{Scan}_{F} \cdot \operatorname{hyps}(5)$ Scan $_{F} \cdot \operatorname{prems}(1,2,3)$ Complete $_{F}$-Earley ${ }_{F}$-bin-step-mono
by (auto simp: bins-bins-upd wf-earley-input-elim, blast)
qed
ultimately have Earley F $_{F}$-bin-step $k \mathcal{G} \omega$ (bins ? $\left.{ }^{\prime}{ }^{\prime}\right) \subseteq$ bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$? $b s^{\prime}(i+1)$)

bins-upto-sub-bins wf-earley-input-elim
bins-bins-upd by (metis UnE add-mono1 le-supI)
thus? case
using Earley y_{F}-bin-step-sub-mono Earley L-bin'-simps(3) Scan $_{F}$.hyps Scan $_{F} \cdot p r e m s(1)$
wf-earley-input-elim bins-bins-upd
by (smt (verit, ccfv-SIG) add-mono1 sup.cobounded1 sup.coboundedII sup.orderE)
next
case (Pass $k \mathcal{G} \omega$ bs ixa)
have $x: x \in$ set (items $(b s!k)$)
using Pass.hyps(1,2) by auto
have $S_{\text {can }}^{F} k \omega$ (bins-upto bs $\left.k(i+1)\right) \subseteq$ bins bs
using $S_{\text {Can }}^{F}$-def Pass.hyps(5) by auto
moreover have Predict ${ }_{F} k \mathcal{G}$ (bins-upto bs $\left.k(i+1)\right) \subseteq$ bins bs
proof -
have Predict $_{F} k \mathcal{G}$ (bins-upto bs $\left.k(i+1)\right)=$ Predict $_{F} k \mathcal{G}$ (bins-upto bs $k i \cup$ $\{i t e m s(b s!k)!i\})$
using bins-upto-Suc-Un Pass.hyps(1) by (metis items-def length-map not-le-imp-less)

```
    also have ... = Predict F}k\mathcal{G}\mathrm{ (bins-upto bs ki}\cup{x}
        using Pass.hyps(1,2,5) nth-idem-bins-upd bins-upto-kth-nth-idem by simp
    also have ...\subseteq bins bs \cup \mp@subsup{\mathrm{ Predict }}{F}{}k\mathcal{G}{x}
        using Pass.prems(2) Predict}\mp@subsup{F}{F}{}-\mp@subsup{U}{n}{\prime}\mp@subsup{\mathrm{ Predict }}{F}{}-\mp@subsup{\mathrm{ Earley }}{F}{}\mathrm{ -bin-step-mono by blast
    also have ... = bins bs
    using Pass.hyps(3,4) Pass.prems(1) is-terminal-nonterminal wf-earley-input-elim
    by (auto simp: Predict}\mp@subsup{F}{F}{-def bin-def rule-head-def, fastforce)
    finally show ?thesis
    using bins-bins-upd Pass.hyps(5) Pass.prems(3) by auto
qed
moreover have Complete }\mp@subsup{F}{F}{}k\mathrm{ (bins-upto bs k(i+1))}\subseteq\mathrm{ bins bs
proof -
    have Complete F k (bins-upto bs k (i+1)) = Complete F k (bins-upto bs k i }
{x})
    using bins-upto-Suc-Un Pass.hyps(1,2)
    by (metis items-def length-map not-le-imp-less)
    also have ... = Complete }\mp@subsup{F}{F}{}k\mathrm{ (bins-upto bs k i)
            using Complete (-Un-eq-terminal Pass.hyps Pass.prems bins-upto-sub-bins
subset-iff
            wf-bins-impl-wf-items wf-item-def wf-bins-kth-bin x wf-earley-input-elim by
(smt (verit, best))
    finally show ?thesis
    using Pass.prems(1,2) Complete }\mp@subsup{F}{F}{}\mathrm{ -Earley }\mp@subsup{F}{F}{-bin-step-mono wf-earley-input-elim
by blast
    qed
    ultimately have Earley F
bs (i+1))
    using Pass.IH Pass.prems EarleyF-bin-step-def bins-upto-sub-bins wf-earley-input-elim
    by (metis le-sup-iff)
    thus ?case
    using bins-bins-upd Pass.hyps Pass.prems by simp
next
    case (\mp@subsup{Predict F}{F}{k\mathcal{G}\omega}\mathrm{ bs i x a)}
    let ?bs' = bins-upd bs k (\mp@subsup{\mathrm{ Predict }}{L}{}k\mathcal{G}a)
    have }k\geq\mathrm{ length }\omega\vee\neg\omega!k=
    using Predict F.hyps(4) Predict}\mp@subsup{\mp@code{F}}{\mathrm{ .prems(4) is-word-is-terminal leI by blast}}{
    have x:x\in set (items (bs!k))
    using Predict F.hyps(1,2) by auto
    hence sound: }\forallx\in\operatorname{set}(\mp@subsup{\mathrm{ items(Predict }}{L}{}k\mathcal{G}a)). sound-item \mathcal{G }\omega
        using sound-Predict }\mp@subsup{L}{L}{}\mp@subsup{\mathrm{ Predict }}{F}{}.hyps(3) Predict F.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
    have wf: (k,\mathcal{G},\omega,?bs')\inwf-earley-input
    using Predict F.hyps Predict F.prems(1) wf-earley-input-Predict }\mp@subsup{L}{L}{}\mathrm{ by metis
    have len: i< length (items (?bs'!k))
        using length-nth-bin-bins-upd Predict F.hyps(1)
    by (metis dual-order.strict-trans1 items-def length-map linorder-not-less)
    have Scan F k\omega (bins-upto ?bs'}k(i+1))\subseteqbins ?bs
    proof -
    have Scan}\mp@subsup{F}{F}{k\omega
```

$\left\{\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using Predict ${ }_{F}$.hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)
also have $\ldots=\operatorname{Scan}_{F} k \omega$ (bins-upto bs $k i \cup\{x\}$)
using Predict ${ }_{F}$.hyps (1,2) Predict F $_{F}$.prems(1) items-nth-idem-bins-upd bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have $\ldots \subseteq$ bins bs $\cup S_{S a n_{F}} k \omega\{x\}$
using Predict $_{F}$.prems(2,3) $S_{\text {San }}^{F}$-Un Scan F-Earley $_{F}$-bin-step-mono by fast-
force
also have ... $=$ bins $b s$
using Predict ${ }_{F}$.hyps(3) <length $\omega \leq k \vee \omega!k \neq a$ by (auto simp: Scan ${ }_{F}$-def
bin-def)
finally show?thesis
using Predict ${ }_{F}$.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Predict $_{F} k \mathcal{G}$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins ? ${ }^{\prime}$ bs $^{\prime}$
proof -
have Predict $_{F} k \mathcal{G}$ (bins-upto ? $\left.{ }^{\prime} s^{\prime} k(i+1)\right)=$ Predict $_{F} k \mathcal{G}$ (bins-upto ? ${ }^{\prime} s^{\prime} k$ $i \cup\left\{\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using Predict F_{F}.hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)
also have $\ldots=$ Predict $_{F} k \mathcal{G}$ (bins-upto bs $k i \cup\{x\}$)
using Predict. .hyps(1,2) Predict. \cdot.prems(1) items-nth-idem-bins-upd bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have $\ldots \subseteq$ bins bs \cup Predict $_{F} k \mathcal{G}\{x\}$
using Predict $_{F}$.prems(2,3) Predict $_{F}$-Un Predict ${ }_{F}$-Earley ${ }_{F}$-bin-step-mono by fastforce
also have $\ldots=$ bins bs \cup set $\left(\right.$ items $\left(\right.$ Predict $\left.\left._{L} k \mathcal{G} a\right)\right)$
using Predict ${ }_{F}$.hyps Predict t_{F}.prems $(1-3)$ wf-earley-input-elim
apply (auto simp: Predict F_{F}-def Predict $_{L}$-def bin-def items-def)
using wf-bins-kth-bin x by blast
finally show?thesis
using Predict ${ }_{F}$.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Complete ${ }_{F} k$ (bins-upto ?bs' $\left.k(i+1)\right) \subseteq$ bins ? bs ${ }^{\prime}$
proof -
have Complete $_{F} k$ (bins-upto ? $\left.{ }^{\prime} s^{\prime} k(i+1)\right)=$ Complete $_{F} k$ (bins-upto ? ${ }^{\prime}{ }^{\prime}{ }^{\prime} k$
$i \cup\left\{\right.$ items $\left.\left.\left(? b s^{\prime}!k\right)!i\right\}\right)$
using bins-upto-Suc-Un len by (metis items-def length-map)
also have $\ldots=$ Complete $_{F} k$ (bins-upto bs $k i \cup\{x\}$)
using items-nth-idem-bins-upd Predict ${ }_{F}$.hyps (1,2) Predict ${ }_{F}$.prems (1) bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have $\ldots=$ Complete $_{F} k$ (bins-upto bs $k i$)
using Complete ${ }_{F}$-Un-eq-nonterminal Predict Crprems bins-upto-sub-bins Pre- $^{\text {Pren }}$ $\operatorname{dict}_{F} . \operatorname{hyps}(3)$
subset-eq wf-bins-kth-bin x wf-bins-impl-wf-items wf-item-def wf-earley-input-elim by (smt (verit, ccfv-SIG) option.simps(3))
also have...\subseteq bins bs
using Complete C-Earley $_{F}$-bin-step-mono Predict F_{F}.prems(2) by blast
finally show ?thesis
using bins-bins-upd Predict F $^{\text {prems }}(1,2,3)$ wf-earley-input-elim by (metis Un-upper1 dual-order.trans) qed
ultimately have Earley F $^{-b i n-s t e p ~} k \mathcal{G} \omega\left(\right.$ bins $\left.^{\text {? }}{ }^{\prime} s^{\prime}\right) \subseteq$ bins $\left(\right.$ Earley $_{L}-$ bin' $^{\prime} k \mathcal{G} \omega$?bs ${ }^{\prime}(i+1)$)
using Predict ${ }_{F}$.IH Predict ${ }_{F}$.prems sound wf Earley F_{F}-bin-step-def bins-upto-sub-bins bins-bins-upd wf-earley-input-elim by (metis UnE le-supI)
hence Earley F_{F}-bin-step $k \mathcal{G} \omega$ (bins ? $\left.{ }^{\prime} s^{\prime}\right) \subseteq$ bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs i)
using Predict ${ }_{F}$.hyps Earley L_{L}-bin'-simps(5) by simp
 ?bs')
using Earley ${ }_{F}$-bin-step-sub-mono Predict F_{F}.prems(1) wf-earley-input-elim bins-bins-upd by (metis Un-upper1)
ultimately show ?case
by blast
qed
lemma Earley ${ }_{F}$-bin-step-sub-Earley ${ }_{L}$-bin:
$\operatorname{assumes}(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
assumes Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega$ (bins-upto bs $\left.k 0\right) \subseteq$ bins bs
assumes $\forall x \in$ bins bs. sound-item $\mathcal{G} \omega x$ is-word $\mathcal{G} \omega$ nonempty-derives \mathcal{G}
shows Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega$ (bins bs) \subseteq bins $\left(\right.$ Earley $_{L}$-bin $k \mathcal{G} \omega$ bs)
using assms Earley F_{F}-bin-step-sub-Earley L_{L}-bin' Earley L_{L}-bin-def by metis
lemma bins-eq-items-Complete ${ }_{L}$:
assumes bins-eq-items as bs item-origin $x<$ length as
shows items $\left(\right.$ Complete $_{L} k x$ as $\left.i\right)=$ items $^{\left(\text {Complete }_{L} k x b s i\right)}$
proof -
let ?orig- $a=$ as! item-origin x
let ?orig- $b=b s$! item-origin x
have items ? orig- $a=$ items ? orig- b
using assms by (metis (no-types, opaque-lifting) bins-eq-items-def length-map $n t h-m a p)$
thus ?thesis
unfolding Complete $_{L}$-def by simp
qed
lemma Earley ${ }_{L}$-bin'-bins-eq:
assumes $(k, \mathcal{G}, \omega$, as $) \in$ wf-earley-input
assumes bins-eq-items as bs wf-bins $\mathcal{G} \omega$ as
shows bins-eq-items (Earley L_{L}-bin' $k \mathcal{G} \omega$ as i) (Earley L_{L}-bin' $k \mathcal{G} \omega$ bs)
using assms
proof (induction i arbitrary: bs rule: Earley L_{L}-bin'-induct[OF assms(1), case-names
Base Complete $_{F}$ Scan $_{F}$ Pass Predict ${ }_{F}$])
case (Base k $\mathcal{G} \omega$ as i)
have Earley L_{L}-bin' $k \mathcal{G} \omega$ as $i=$ as
by (simp add: Base.hyps)
moreover have Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs $i=b s$
using Base.hyps Base.prems (1,2) unfolding bins-eq-items-def
by (metis Earley $\mathcal{L}^{-b i n}$ '-simps(1) length-map nth-map wf-earley-input-elim)
ultimately show ?case
using Base.prems(2) by presburger
next
case $\left(\right.$ Complete $_{F} k \mathcal{G} \omega$ as i x)
let ?as' $=$ bins-upd as $k\left(\right.$ Complete $_{L} k x$ as $\left.i\right)$
let ?bs $^{\prime}=$ bins-upd bs $k\left(\right.$ Complete $\left._{L} k x b s i\right)$
have $k: k<$ length as
using Complete ${ }_{F} \cdot p r e m s(1)$ wf-earley-input-elim by blast
hence $w f$ - x : wf-item $\mathcal{G} \omega x$

have $(k, \mathcal{G}, \omega$, ?as') \in wf-earley-input
using Complete ${ }_{F}$.hyps Complete ${ }_{F}$.prems(1) wf-earley-input-Complete ${ }_{L}$ by blast
moreover have bins-eq-items ? as ' ?bs'
using Complete ${ }_{F} \cdot \operatorname{hyps}(1,2)$ Complete $_{F} \cdot p r e m s(2,3)$ bins-eq-items-dist-bins-upd bins-eq-items-Complete L_{L}
k wf-x wf-bins-kth-bin wf-item-def by (metis dual-order.strict-trans2 leI nth-mem)
ultimately have bins-eq-items (Earley L_{L}-bin' $k \mathcal{G} \omega$?as $^{\prime}(i+1)$) (Earley ${ }_{L}$-bin'
$\left.k \mathcal{G} \omega ? b s^{\prime}(i+1)\right)$
using Complete ${ }_{F}$.IH wf-earley-input-elim by blast
moreover have Earley \mathcal{L}_{L}-bin' $k \mathcal{G} \omega$ as $i=$ Earley $_{L}$-bin' $k \mathcal{G} \omega$?as' $(i+1)$
using Complete ${ }_{F}$.hyps by simp
moreover have Earley ${ }_{L}$-bin' $k \mathcal{G} \omega$ bs $i=$ Earley $_{L}$-bin' $k \mathcal{G} \omega$? bs $^{\prime}(i+1)$
using Complete e_{F}.hyps Complete ${ }_{F}$.prems unfolding bins-eq-items-def
by (metis Earley L_{L}-bin'-simps(2) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case
by argo
next
case $\left(S c a n_{F} k \mathcal{G} \omega\right.$ as $\left.i x a\right)$
let ?as' $=$ bins-upd as $(k+1)\left(S c a n_{L} k \omega a x i\right)$
let $? b s^{\prime}=$ bins-upd bs $(k+1)\left(\operatorname{Scan}_{L} k \omega a x i\right)$
have $(k, \mathcal{G}, \omega$, ?as') \in wf-earley-input
using Scan $_{F}$.hyps $S_{\text {Scan }}^{F}$.prems(1) wf-earley-input-Scan ${ }_{L}$ by fast
moreover have bins-eq-items ? as ${ }^{\prime}$?bs ${ }^{\prime}$
using $S_{\text {can }}^{F}$.hyps(5) Scan .prems $(1,2)$ bins-eq-items-dist-bins-upd add-mono1
wf-earley-input-elim by metis
ultimately have bins-eq-items (Earley L_{L}-bin' $k \mathcal{G} \omega$?as $\left.^{\prime}(i+1)\right)\left(\right.$ Earley $_{L}$-bin'
$\left.k \mathcal{G} \omega ? b s^{\prime}(i+1)\right)$
using Scan $_{F} . I H$ wf-earley-input-elim by blast
moreover have Earley ${ }_{L}$-bin' $k \mathcal{G} \omega$ as $i=$ Earley $_{L}-$ bin' $^{\prime} k \mathcal{G} \omega$? as $^{\prime}(i+1)$
using $S_{\text {San }}^{F}$.hyps by simp
moreover have Earley ${ }_{L}$-bin' $k \mathcal{G} \omega$ bs $i=$ Earley $_{L}$-bin' $k \mathcal{G} \omega$? ${ }^{\prime} s^{\prime}(i+1)$
using Scan $_{F}$.hyps Scan $_{F}$.prems unfolding bins-eq-items-def
by (smt (verit, ccfv-threshold) Earley L_{L}-bin'-simps(3) length-map nth-map wf-earley-input-elim)
ultimately show ?case
by argo

```
next
    case (Pass k \mathcal{G \omega as i x a)}
    have bins-eq-items (Earley L-bin'}k\mathcal{G}\omega\mathrm{ as (i+1)) (Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omegabs(i
1))
    using Pass.prems Pass.IH by blast
```



```
        using Pass.hyps by simp
    moreover have Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G}\omega}\mathrm{ bs i= Earley }\mp@subsup{\mp@code{L}}{L}{-bin' k\mathcal{G}\omega
        using Pass.hyps Pass.prems unfolding bins-eq-items-def
    by (metis Earley L-bin'-simps(4) map-eq-imp-length-eq nth-map wf-earley-input-elim)
    ultimately show ?case
    by argo
next
    case (\mp@subsup{Predict F}{F}{k\mathcal{G}\omega}\mp@code{los}ixa)
    let ?as' = bins-upd as k (\mp@subsup{\mathrm{ Predict }}{L}{}k\mathcal{G}a)
    let ?bs' = bins-upd bs k (\mp@subsup{\mathrm{ Predict }}{L}{}k\mathcal{G}a)
    have (k,\mathcal{G},\omega,?as') \inwf-earley-input
    using Predict F.hyps Predict F.prems(1) wf-earley-input-Predict }\mp@subsup{L}{L}{}\mathrm{ by fast
    moreover have bins-eq-items ?as' ?bs'
    using Predict F.prems(1,2) bins-eq-items-dist-bins-upd wf-earley-input-elim by
blast
    ultimately have bins-eq-items (Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G }\omega\mathrm{ ?as' (i+1)) (Earley L-bin'}
k\mathcal{G}\omega?bs'(i+1))
    using Predict F.IH wf-earley-input-elim by blast
    moreover have Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omega\mathrm{ as i= Earley }\mp@subsup{L}{L}{-bin' k G G w ?as'}(i+1
    using Predict F.hyps by simp
```



```
    using Predict F.hyps Predict F.prems unfolding bins-eq-items-def
    by (metis Earley L-bin'-simps(5) length-map nth-map wf-earley-input-elim)
    ultimately show ?case
    by argo
qed
lemma Earley \({ }_{L}\)-bin'-idem:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    assumes }i\leqj\forallx\in\mathrm{ bins bs. sound-item G }\omega\mathrm{ x nonempty-derives }\mathcal{G
    shows bins (Earley L-bin' k\mathcal{G }\omega(\mp@subsup{E}{Earley }{L}\mp@subsup{L}{-bin'}{\prime}k\mathcal{G}\omega\mathrm{ bs i) j) = bins (Earley }\mp@subsup{L}{L}{}\mathrm{ -bin'}
k\mathcal{G}\omegabs i)
    using assms
proof (induction i arbitrary: j rule: Earley L-bin'-induct[OF assms(1), case-names
Base Complete}\mp@subsup{F}{F}{}\mp@subsup{\mathrm{ ScanF Pass Predict}}{F}{}]
    case (Complete }\mp@subsup{F}{F}{k\mathcal{G}\omega\mathrm{ bs i x)}
    let ?bs' = bins-upd bs k (Complete }\mp@subsup{L}{L}{}kxbsi
    have x:x\in set (items (bs!k))
    using Complete }\mp@subsup{F}{F}{}\cdot\operatorname{hyps(1,2) by auto
    have wf: (k,\mathcal{G},\omega,?bs')\in wf-earley-input
    using Complete F.hyps Complete }\mp@subsup{F}{F}{}.prems(1) wf-earley-input-Complete e by blas
    hence }\forallx\in\mathrm{ set (items (Complete }\mp@subsup{L}{L}{}kx\mathrm{ bs i)). sound-item G | |
    using sound-Complete }\mp@subsup{L}{L}{}\mp@subsup{\mathrm{ Complete }}{F}{}.hyps(3) Complete e.prems wf-earley-input-elim
```

wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: $\forall x \in$ bins ? $b s^{\prime}$. sound-item $\mathcal{G} \omega x$
by (metis Complete ${ }_{F}$.prems $(1,3)$ UnE bins-bins-upd wf-earley-input-elim)
show ? case
proof cases
assume $i+1 \leq j$
thus ?thesis
using wf sound Complete Carley $_{L}$-bin'-simps(2) by metis
next
assume $\neg i+1 \leq j$
hence $i=j$
using Complete Corems (2) by simp $^{\text {(2) }}$
have bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs $\left.\left.i\right) j\right)=$ bins $\left(\right.$ Earley $_{L}-$-bin $^{\prime}$ $k \mathcal{G} \omega\left(\right.$ Earley $_{L}-$ bin $^{\prime} k \mathcal{G} \omega$? $\left.\left.^{\prime} s^{\prime}(i+1)\right) j\right)$ using Earley L_{L}-bin'-simps(2) Complete ${ }_{F} \cdot$ hyps (1-3) by simp
also have $\ldots=$ bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$?bs $\left.^{\prime}(i+1)\right)$
$(j+1))$
proof -
let ?bs $^{\prime \prime}=$ Earley $_{L}-$ bin $^{\prime} k \mathcal{G} \omega$? $b s^{\prime}(i+1)$
have length (items (?bs" $!k)$) \geq length (items ($b s!k)$)
using length-nth-bin-Earley L_{L}-bin' length-nth-bin-bins-upd order-trans wf
Complete $_{F}$. hyps Complete ${ }_{F}$.prems(1)
by (smt (verit, ccfv-threshold) Earley L_{L}-bin'-simps(2))
hence $0: \neg$ length $\left(\right.$ items $\left.\left(? b s^{\prime \prime}!k\right)\right) \leq j$
using $\langle i=j\rangle$ Complete $_{F}$.hyps(1) by linarith
have $x=$ items $\left(? b s^{\prime}!k\right)!j$
using $\langle i=j\rangle$ items-nth-idem-bins-upd Complete ${ }_{F}$.hyps(1,2)
by (metis items-def length-map not-le-imp-less)
hence $1: x=$ items $\left(? b s^{\prime \prime}!k\right)!j$
using $\langle i=j\rangle k t h-$ Earley $_{L}$-bin'-bins Complete ${ }_{F}$.hyps Complete Corprems $^{\prime}$ (1)
Earley $L_{L}-b i n '-\operatorname{simps}(2)$ leI by metis
have bins (Earley L^{-}bin' $^{\prime} k \mathcal{G} \omega$?bs"' j) bins (Earley L_{L}-bin' $k \mathcal{G} \omega$ (bins-upd
?bs" $k\left(\right.$ Complete $\left.\left.\left._{L} k x ?^{\prime} b s^{\prime \prime} i\right)\right)(j+1)\right)$
using Earley $L_{L}-$ bin' $^{\prime}-\operatorname{simps}(2) 01$ Complete $_{F} \cdot$ hyps (1,3) Complete ${ }_{F} \cdot$ prems(2)
$\langle i=j\rangle$ by auto
moreover have bins-eq-items (bins-upd ?bs" k (Complete $\left.{ }_{L} k x ? b s^{\prime \prime} i\right)$) ?bs ${ }^{\prime \prime}$
proof -
have $k<$ length $b s$
using Complete ${ }_{F} \cdot$.prems(1) wf-earley-input-elim by blast
have 0: set $\left(\right.$ Complete $\left._{L} k x b s i\right)=\operatorname{set}\left(\right.$ Complete $\left._{L} k x ? b s^{\prime \prime} i\right)$
proof (cases item-origin $x=k$)
case True
thus ?thesis
using impossible-complete-item kth-bin-sub-bins Complete ${ }_{F}$.hyps(3)
Complete $_{F}$.prems wf-earley-input-elim wf-bins-kth-bin x next-symbol-def by (metis option.distinct(1) subsetD)
next
case False
hence item-origin $x<k$
using x Complete $_{F}$.prems(1) wf-bins-kth-bin wf-item-def nat-less-le by (metis wf-earley-input-elim)
hence bs! item-origin $x=? b s^{\prime \prime}$! item-origin x using False nth-idem-bins-upd nth-Earley L_{L}-bin'-eq wf by metis
thus ?thesis using Complete $_{L}$-eq-item-origin by metis
qed
have set $\left(\right.$ items $\left(\right.$ Complete $\left.\left._{L} k x b s i\right)\right) \subseteq$ set (items $\left.\left(? b s^{\prime}!k\right)\right)$
by (simp add: $\langle k<$ length bs bins-upd-def set-items-bin-upds)
hence set $\left(\right.$ items $\left(\right.$ Complete $\left.\left._{L} k x ? b s^{\prime \prime} i\right)\right) \subseteq \operatorname{set}\left(\right.$ items $\left.\left(? b s^{\prime}!k\right)\right)$
using 0 by (simp add: items-def)
also have $\ldots \subseteq$ set (items $\left.\left(? b s^{\prime \prime}!k\right)\right)$
by (simp add: wf nth-bin-sub-Earley L_{L}-bin')
finally show ?thesis
using bins-eq-items-bins-upd by blast
qed
moreover have $\left(k, \mathcal{G}, \omega\right.$, bins-upd ? ${ }^{\prime \prime} s^{\prime \prime} k\left(\right.$ Complete $_{L} k x$? $\left.\left.^{\prime} s^{\prime \prime} i\right)\right) \in$ wf-earley-input
using wf-earley-input-Earley L_{L}-bin' wf-earley-input-Complete ${ }_{L}$ Complete $_{F}$.hyps Complete $_{F} \cdot$ prems (1)
$\left\langle l e n g t h(\right.$ items $(b s!k)) \leq$ length $\left(\right.$ items $\left.\left.\left(? b s^{\prime \prime}!k\right)\right)\right\rangle k t h-$ Earley $_{L}-b i n^{\prime}$-bins
01 by blast
ultimately show ?thesis
using Earley L_{L}-bin'-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by blast
qed
also have $\ldots=\operatorname{bins}\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$? bs $\left.^{\prime}(i+1)\right)$
using Complete ${ }_{F} . I H\left[O F w f-\right.$ sound Complete $\left.{ }_{F} \cdot \operatorname{prems}(4)\right]\langle i=j\rangle$ by blast
finally show?thesis
using Complete ${ }_{F}$.hyps by simp
qed
next
case $\left(S_{c a n}^{F}\right.$ k $\mathcal{G} \omega$ bs $\left.i x a\right)$
let $? b s^{\prime}=$ bins-upd bs $(k+1)\left(S c a n_{L} k \omega a x i\right)$
have $x: x \in \operatorname{set}($ items $(b s!k))$
using $\operatorname{Scan}_{F} \cdot \operatorname{hyps}(1,2)$ by auto
hence $\forall x \in$ set (items $\left(S_{c a n_{L}} k \omega\right.$ axi)). sound-item $\mathcal{G} \omega x$
using sound-Scan ${ }_{L} S_{\text {San }}^{F}$.hyps $(3,5)$ Scan $_{F} . \operatorname{prems}(1,2,3)$ wf-earley-input-elim wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: $\forall x \in$ bins ? ${ }^{\prime} s^{\prime}$. sound-item $\mathcal{G} \omega x$
using $S_{\text {San }}^{F}$.hyps (5) Scan $_{F}$.prems $(1,3)$ bins-bins-upd wf-earley-input-elim
by (metis UnE add-less-cancel-right)
have $w f:\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in$ wf-earley-input
using Scan $_{F}$.hyps Scan $_{F}$.prems(1) wf-earley-input-Scan n_{L} by metis
show ? case
proof cases
assume $i+1 \leq j$

thus ?thesis

using sound Scan $_{F}$ by (metis Earley L_{L}-bin'-simps(3) wf-earley-input-Scan ${ }_{L}$) next
assume $\neg i+1 \leq j$
hence $i=j$
using $\operatorname{Scan}_{F} \cdot p r e m s(2)$ by auto
have bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ bs $\left.\left.i\right) j\right)=$ bins $\left(\right.$ Earley $_{L}-b i n^{\prime}$
$k \mathcal{G} \omega\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$? bs $\left.\left.^{\prime}(i+1)\right) j\right)$
using Scan $_{F}$.hyps by simp
also have $\ldots=\operatorname{bins}\left(\right.$ Earley $_{L}-$ bin' $^{\prime} k \mathcal{G} \omega\left(\right.$ Earley $_{L}-b i n^{\prime} k \mathcal{G} \omega$?bs' $\left.(i+1)\right)$
$(j+1))$
proof -
let ?bs ${ }^{\prime \prime}=$ Earley $_{L}-$ bin $^{\prime} k \mathcal{G} \omega$?bs' $(i+1)$
have length (items $\left.\left(? b s^{\prime \prime}!k\right)\right) \geq$ length (items $(b s!k)$)
using length-nth-bin-Earley L_{L}-bin' length-nth-bin-bins-upd order-trans Scan ${ }_{F}$.hyps
Scan $_{F} \cdot \operatorname{prems}(1)$ Earley $_{L}-$ bin'$^{\prime}-\operatorname{simps}(3)$
by (smt (verit, ccfv-SIG))
hence bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$?bs $\left.^{\prime \prime} j\right)=$ bins $\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$ (bins-upd
? $\left.\left.b s^{\prime \prime}(k+1)\left(\operatorname{Scan}_{L} k \omega a x i\right)\right)(j+1)\right)$
using $\langle i=j\rangle k t h-E a r l e y_{L}$-bin'-bins nth-idem-bins-upd Earley ${ }_{L}$-bin'-simps(3)
$S_{c a n_{F}} . h y p s S_{\text {San }} . \operatorname{prems}(1)$ by (smt (verit, best) leI le-trans)
moreover have bins-eq-items (bins-upd ?bs " $(k+1)\left(\operatorname{Scan}_{L} k \omega a x i\right)$) ?bs"
proof -
have $k+1<$ length bs
using Scan $_{F}$.hyps(5) Scan ${ }_{F}$.prems wf-earley-input-elim by fastforce+
hence set (items $\left(S_{\text {Can }}^{L}\right.$ k ω axi) $) \subseteq$ set (items $\left.\left(? b s^{\prime}!(k+1)\right)\right)$
by (simp add: bins-upd-def set-items-bin-upds)
also have $\ldots \subseteq$ set (items (?bs"! $\left.{ }^{\prime \prime}(k+1)\right)$)
using wf nth-bin-sub-Earley ${ }_{L}$-bin' by blast
finally show ?thesis
using bins-eq-items-bins-upd by blast
qed
moreover have $\left(k, \mathcal{G}, \omega\right.$, bins-upd ?bs" $(k+1)\left(\operatorname{Scan}_{L} k \omega\right.$ a \quad a $\left.\left.i\right)\right) \in$
wf-earley-input
using wf-earley-input-Earley ${ }_{L}$-bin' wf-earley-input-Scan ${ }_{L}$ Scan $_{F}$.hyps Scan $_{F}$.prems (1)
〈length (items $(b s!k)) \leq$ length (items $\left.\left.\left(? b s^{\prime \prime}!k\right)\right)\right\rangle k t h$-Earley L_{L}-bin ${ }^{\prime}$-bins
by (smt (verit, ccfv-SIG) Earley L_{L}-bin'-simps(3) linorder-not-le order.trans)
ultimately show ?thesis
using Earley L_{L}-bin'-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have $\ldots=$ bins $^{\left(\text {Earley }_{L}-\text {-in' }^{\prime} k \mathcal{G} \omega \text { ? }{ }^{\prime} s^{\prime}(i+1)\right) ~}$
using 〈 $i=j\rangle$ Scan $_{F}$. IH Scan ${ }_{F}$.prems Scan .hyps sound wf-earley-input-Scan ${ }_{L}$
by fast
finally show ?thesis
using Scan $_{F}$.hyps by simp
qed
next
case $($ Pass $k \mathcal{G} \omega$ bs $i x a)$

```
    show ?case
    proof cases
    assume i+1 \leqj
    thus ?thesis
        using Pass by (metis Earley L-bin'-simps(4))
    next
    assume }\negi+1\leq
    show ?thesis
    using Pass Earley }\mp@subsup{L}{L}{-bin'-simps(1,4) kth-Earley L-bin'-bins by (metis Suc-eq-plus1
Suc-leI antisym-conv2 not-le-imp-less)
    qed
next
    case (PredictF k \mathcal{G \omega bs i x a)}
    let ?bs'= bins-upd bs k (\mp@subsup{\mathrm{ Predict }}{L}{}k\mathcal{G}a)
    have x:x\in set (items (bs!k))
        using Predict}\mp@subsup{F}{F}{}.hyps(1,2) by aut
    hence }\forallx\in\operatorname{set}(\mathrm{ items(Predict }\mp@subsup{L}{L}{}k\mathcal{G}a)). sound-item \mathcal{G }\omega
        using sound-Predict }\mp@subsup{L}{L}{\prime}\mp@subsup{\mathrm{ Predict }}{F}{}.hyps(3) Predict F.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
    hence sound: }\forallx\in\mathrm{ bins ?bs'. sound-item G }\omega
        using Predict F.prems(1,3) UnE bins-bins-upd wf-earley-input-elim by metis
    have wf: (k,\mathcal{G},\omega,?bs')\in wf-earley-input
        using Predict F.hyps Predict F.prems(1) wf-earley-input-Predict}\mp@subsup{L}{L}{}\mathrm{ by metis
    have len: i< length (items (?bs'!k))
    using length-nth-bin-bins-upd Predict F.hyps(1) Orderings.preorder-class.dual-order.strict-trans1
linorder-not-less
    by (metis items-def length-map)
    show ?case
    proof cases
        assume i+1\leqj
        thus ?thesis
            using sound wf Predict}\mp@subsup{F}{F}{}\mathrm{ by (metis Earley }\mp@subsup{L}{L}{-bin'-simps(5))
    next
    assume }\negi+1\leq
    hence i=j
            using Predict F.prems(2) by auto
    have bins (Earley L-bin' k\mathcal{G}\omega(\mp@subsup{Earley }{L}{L}-\mp@subsup{\mathrm{ bin' }}{}{\prime}k\mathcal{G}\omega\mathrm{ bs i) j) = bins (Earley }
k\mathcal{G}\omega(\mp@subsup{\mathrm{ Earley }}{L}{-bin'}}
            using Predict}\mp@subsup{F}{F}{}.hyps by sim
            also have ... = bins (Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omega(\mp@subsup{\mathrm{ Earley }}{L}{}-bin' k\mathcal{G}\omega ?bs'(i+1)
(j+1))
    proof -
            let ?bs'\prime = Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G }\omega\mathrm{ ? ?bs' (i+1)}
            have length (items (?bs'"!k)) \geq length (items (bs!k))
                using length-nth-bin-Earley L-bin' length-nth-bin-bins-upd order-trans wf
                by (metis (no-types, lifting) items-def length-map)
            hence bins (Earley }\mp@subsup{L}{L}{-bin'}k\mathcal{G}\omega\mp@subsup{\mathrm{ ?bs'' }}{}{\prime})=\mathrm{ bins (Earley }\mp@subsup{L}{L}{-bin' k\mathcal{G }}\mathrm{ (bins-upd
?bs"\prime k (Predict 
        using <i=j`kth-Earley (-bin'-bins nth-idem-bins-upd Earley }\mp@subsup{L}{L}{-bin'-simps(5)
```

 proof -
 have \(k<\) length \(b s\)
 using wf-earley-input-elim[OF Predict \({ }_{F}\).prems(1)] by blast
 hence set \(\left(\right.\) items \(\left(\right.\) Predict \(\left.\left._{L} k \mathcal{G} a\right)\right) \subseteq\) set \(\left(\right.\) items \(\left.\left(? b s^{\prime}!k\right)\right)\)
 by (simp add: bins-upd-def set-items-bin-upds)
 also have \(\ldots \subseteq\) set (items (?bs \(\left.{ }^{\prime \prime}!k\right)\))
 using wf nth-bin-sub-Earley \(L_{L}\)-bin' by blast
 finally show ?thesis
 using bins-eq-items-bins-upd by blast
 qed
 moreover have \(\left(k, \mathcal{G}, \omega\right.\), bins-upd ?bs \({ }^{\prime \prime} k\left(\right.\) Predict \(\left.\left._{L} k \mathcal{G} a\right)\right) \in\) wf-earley-input
 using wf-earley-input-Earley \({ }_{L}\)-bin' wf-earley-input-Predict \({ }_{L}\) Predict \(_{F}\).hyps
 Predict $_{F}$. prems(1)
〈length $($ items $(b s!k)) \leq$ length $\left(\right.$ items $\left.\left.\left(? b s^{\prime \prime}!k\right)\right)\right\rangle k t h-E a r l e y_{L}$-bin'-bins
by (smt (verit, best) Earley L_{L}-bin'-simps(5) dual-order.trans not-le-imp-less)
ultimately show ?thesis
using Earley $L_{\text {-bin'-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by }}$
blast
qed
also have $\ldots=\operatorname{bins}\left(\right.$ Earley $_{L}-$-bin' $^{\prime} k \mathcal{G} \omega$?bs $\left.{ }^{\prime}(i+1)\right)$
using $\langle i=j\rangle$ Predict $_{F}$.IH Predict ${ }_{F}$.prems sound wf by (metis order-refl)
finally show ?thesis
using Predict ${ }_{F}$.hyps by simp
qed
qed simp
lemma Earley ${ }_{L}$-bin-idem:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
assumes $\forall x \in$ bins bs. sound-item $\mathcal{G} \omega x$ nonempty-derives \mathcal{G}
shows bins $\left(\right.$ Earley $_{L}-b i n k \mathcal{G} \omega\left(\right.$ Earley $_{L}-b i n k \mathcal{G} \omega$ bs) $)=$ bins $\left(\right.$ Earley $_{L}$-bin k
$\mathcal{G} \omega b s)$
using assms Earley L_{L}-bin'-idem Earley L_{L}-bin-def le0 by metis
lemma funpower-Earley F_{F}-bin-step-sub-Earley L_{L}-bin:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
assumes Earley ${ }_{F}$-bin-step $k \mathcal{G} \omega$ (bins-upto bs $\left.k 0\right) \subseteq$ bins bs $\forall x \in$ bins bs.
sound-item $\mathcal{G} \omega x$
assumes is-word $\mathcal{G} \omega$ nonempty-derives \mathcal{G}
shows funpower $\left(\right.$ Earley $_{F}$-bin-step $k \mathcal{G} \omega$) n (bins bs) \subseteq bins (Earley ${ }_{L}$-bin $k \mathcal{G}$
$\omega b s$)
using assms
proof (induction n)
case 0
thus ?case
using Earley L $^{-b i n}$ '-mono Earley L_{L}-bin-def by (simp add: Earley ${ }_{L}$-bin'-mono

```
Earley 
next
    case (Suc n)
    have 0: Earley }\mp@subsup{F}{F}{-bin-step k\mathcal{G}\omega
(Earley L-bin k \mathcal{G \omegabs)}
    using Earley }\mp@subsup{L}{L}{-bin'-mono bins-upto-k0-Earley }\mp@subsup{L}{L}{-bin'-eq assms(1,2) Earley }\mp@subsup{L}{L}{}\mathrm{ -bin-def
order-trans
    by (metis (no-types, lifting))
    have funpower (Earley F-bin-step k \mathcal{G }\omega)(Suc n) (bins bs)\subseteq Earley F
\mathcal{G}}\omega\mathrm{ (bins (Earley }\mp@subsup{L}{L}{-bin k\mathcal{G \omegabs))}
    using Earley F-bin-step-sub-mono Suc by (metis funpower.simps(2))
```



```
    using Earley }\mp@subsup{F}{F}{}\mathrm{ -bin-step-sub-Earley }\mp@subsup{L}{L}{-bin Suc.prems wf-bins-Earley (
0 wf-earley-input-Earley }\mp@subsup{L}{\mathrm{ -bin by blast}}{
    also have ... \subseteqbins (Earley }\mp@subsup{L}{L}{-bin k\mathcal{G}\omegabs)
        using Earley L-bin-idem Suc.prems by blast
    finally show ?case .
qed
lemma Earley }\mp@subsup{F}{F}{-bin-sub-Earley }\mp@subsup{L}{L}{-bin:
    assumes (k,\mathcal{G},\omega,bs)\inwf-earley-input
    assumes EarleyF-bin-step k \mathcal{G }\omega\mathrm{ (bins-upto bs k 0) }\subseteq\mathrm{ bins bs }\forallx\in\mathrm{ bins bs.}
sound-item \mathcal{G }\omegax
    assumes is-word \mathcal{G }\omega\mathrm{ nonempty-derives }\mathcal{G}
    shows Earley }\mp@subsup{F}{F}{-bin k\mathcal{G}\omega(\mathrm{ bins bs)}\subseteq\mathrm{ bins (Earley }\mp@subsup{L}{L}{-bin k\mathcal{G}\omega}\mathrm{ bs)})
    using assms funpower-Earley F-bin-step-sub-Earley }\mp@subsup{L}{L}{-bin Earley F-bin-def elem-limit-simp
by fastforce
lemma Earley 
    assumes k\leq length \omega wf-\mathcal{GG}
    assumes is-word \mathcal{G }\omega\mathrm{ nonempty-derives }\mathcal{G}
    shows Earley F-bins k \mathcal{G }\omega\subseteq\mathrm{ bins (Earley L-bins k GG }\omega\mathrm{ )}\mathrm{ )}\mathrm{ (E)}
    using assms
proof (induction k)
    case 0
    hence Earley }\mp@subsup{F}{-}{-bin 0\mathcal{G }\omega(\mp@subsup{\mathrm{ Init }}{F}{}\mathcal{G})\subseteqbins}(\mp@subsup{\mathrm{ Earley }}{L}{}-bin 0\mathcal{G}\omega(\mp@subsup{\mathrm{ Init }}{L}{}\mathcal{G}\omega)
        using Earley }\mp@subsup{F}{F}{-bin-sub-Earley }\mp@subsup{L}{L}{-bin Init}\mp@subsup{L}{L}{-eq-Init}\mp@subsup{F}{F}{}\mp@subsup{\mathrm{ length-bins-Init}}{L}{}\mp@subsup{\mathrm{ Init }}{L}{}-eq-Init F F
sound-Init bins-upto-empty
            Earley }\mp@subsup{F}{F}{-bin-step-empty bins-upto-sub-bins wf-earley-input-Init }\mp@subsup{L}{L}{}\mathrm{ wf-earley-input-elim
    by (smt (verit, ccfv-threshold) Init F-sub-Earley basic-trans-rules(31) sound-Earley
wf-bins-impl-wf-items)
    thus ?case
        by simp
next
    case (Suc k)
    have wf:(Suc k,\mathcal{G},\omega,\mp@subsup{E}{\mathrm{ Earley L-bins k G }}{~}|)\in\mathrm{ wf-earley-input}
    by (simp add:Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
```



```
0) \subseteqbins (Earley L-bins k\mathcal{G}\omega)
```

```
    proof -
    have bin (bins-upto (Earley L-bins k \mathcal{G }\omega)(Suck) 0) (Suc k)={}
        using kth-bin-bins-upto-empty wf Suc.prems wf-earley-input-elim by blast
```



```
0) = bins-upto (Earley L-bins k\mathcal{G \omega) (Suc k) 0}
    unfolding EarleyF-bin-step-def ScanF-def Complete}\mp@subsup{F}{F}{}\mathrm{ -def PredictF}\mp@subsup{F}{F}{}\mathrm{ -def bin-def
by blast
    also have ...\subseteq bins (Earley }\mp@subsup{L}{L}{-bins k\mathcal{G}\omega)
        using wf Suc.prems bins-upto-sub-bins wf-earley-input-elim by blast
    finally show ?thesis .
    qed
    have sound: }\forallx\in\mathrm{ bins (Earley }\mp@subsup{L}{L}{-bins k\mathcal{G}}\omega\mathrm{ ). sound-item G }\omega
    using Suc Earley L-bins-sub-Earley F-bins by (metis Suc-leD Earley }\mp@subsup{F}{F}{}\mathrm{ -bins-sub-Earley
in-mono sound-Earley wf-Earley)
    have Earley F-bins (Suc k)\mathcal{G}\omega\subseteq\mp@subsup{E}{\mathrm{ Earley }}{F}\mathrm{ -bin (Suc k) G }\omega\mathrm{ (bins (Earley }\mp@subsup{L}{L}{}\mathrm{ -bins}
k\mathcal{G}\omega))
    using Suc EarleyF-bin-sub-mono by simp
    also have \ldots\subseteqbins (Earley L-bin (Suc k)\mathcal{G \omega}
        using Earley }\mp@subsup{F}{F}{-bin-sub-Earley }\mp@subsup{L}{-}{-bin wf sub sound Suc.prems by fastforce
    finally show ?case
        by simp
qed
lemma Earley }\mp@subsup{F}{F}{-sub-Earley L
    assumes wf-\mathcal{G G}}\mathfrak{G}\mathrm{ is-word }\mathcal{G}\omega\mathrm{ nonempty-derives }\mathcal{G
    shows Earley }\mp@subsup{F}{\mathcal{G}}{\mathcal{G}}\omega\subseteq\mathrm{ bins (Earley }\mp@subsup{L}{L}{}\mathcal{G}\omega
    using assms EarleyF-bins-sub-Earley }\mp@subsup{L}{L}{-bins EarleyF-def Earley }\mp@subsup{\mp@code{L}}{L}{-def by (metis
le-refl)
theorem completeness-Earley \({ }_{L}\) :
assumes derives \(\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega\) is-word \(\mathcal{G} \omega\) wf-G \(\mathcal{G}\) nonempty-derives \(\mathcal{G}\)
shows recognizing (bins \(\left(\right.\) Earley \(\left.\left._{L} \mathcal{G} \omega\right)\right) \mathcal{G} \omega\)
using assms Earley \(F_{F}\)-sub-Earley Earley \(_{L}\)-sub-Earley \({ }_{F}\) completeness-Earley \({ }_{F}\) by (metis subset-antisym)
```


8.7 Correctness

```
theorem Earley-eq-Earley \({ }_{L}\) :
assumes wf- \(\mathcal{G} \mathcal{G}\) is-word \(\mathcal{G} \omega\) nonempty-derives \(\mathcal{G}\)
shows Earley \(\mathcal{G} \omega=\operatorname{bins}\left(\right.\) Earley \(\left._{L} \mathcal{G} \omega\right)\)
using assms Earley \({ }_{F}\)-sub-Earley \(L_{L}\) Earley \(L_{L}\) sub-Earley \({ }_{F}\) Earley-eq-Earley \({ }_{F}\) by blast
theorem correctness-Earley \({ }_{L}\) :
assumes wf-G \(\mathcal{G}\) is-word \(\mathcal{G} \omega\) nonempty-derives \(\mathcal{G}\)
shows recognizing (bins \(\left(\right.\) Earley \(\left.\left._{L} \mathcal{G} \omega\right)\right) \mathcal{G} \omega \longleftrightarrow\) derives \(\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega\)
using assms Earley-eq-Earley \(L_{L}\) correctness-Earley by fastforce
end
```

```
theory Earley-Parser
    imports
    Earley-Recognizer
    HOL-Library.Monad-Syntax
begin
```


9 Earley parser

9.1 Pointer lemmas

definition predicts :: ' a item \Rightarrow bool where
predicts $x \equiv$ item-origin $x=$ item-end $x \wedge$ item- $\operatorname{dot} x=0$
definition scans :: 'a sentence \Rightarrow nat \Rightarrow ' a item \Rightarrow 'a item \Rightarrow bool where
scans $\omega k x y \equiv y=$ inc-item $x k \wedge(\exists$ a. next-symbol $x=$ Some $a \wedge \omega!(k-1)=$ a)
definition completes $::$ nat $\Rightarrow{ }^{\prime} a$ item $\Rightarrow{ }^{\prime} a$ item $\Rightarrow{ }^{\prime} a$ item \Rightarrow bool where completes $k x y z \equiv y=$ inc-item $x k \wedge$ is-complete $z \wedge$ item-origin $z=$ item-end $x \wedge$
$(\exists N$. next-symbol $x=$ Some $N \wedge N=$ item-rule-head $z)$
definition sound-null-ptr :: 'a entry \Rightarrow bool where

$$
\text { sound-null-ptr } e \equiv(\text { pointer } e=\text { Null } \longrightarrow \text { predicts }(\text { item e }))
$$

definition sound-pre-ptr :: 'a sentence \Rightarrow 'a bins \Rightarrow nat \Rightarrow 'a entry \Rightarrow bool where sound-pre-ptr ω bs $k e \equiv \forall$ pre. pointer $e=$ Pre pre \longrightarrow $k>0 \wedge$ pre $<$ length $(b s!(k-1)) \wedge$ scans $\omega k($ item $(b s!(k-1)!$ pre $))($ item e)
definition sound-prered-ptr :: 'a bins \Rightarrow nat \Rightarrow 'a entry \Rightarrow bool where
sound-prered-ptr bs $k e \equiv \forall p$ ps k^{\prime} pre red. pointer $e=$ PreRed p ps $\wedge\left(k^{\prime}\right.$, pre, $r e d) \in \operatorname{set}(p \# p s) \longrightarrow$
$k^{\prime}<k \wedge$ pre $<$ length $\left(b s!k^{\prime}\right) \wedge$ red $<$ length $(b s!k) \wedge$ completes k (item (bs! $k!$ pre) $)($ item e) $($ item $(b s!k!r e d))$
definition sound-ptrs $::$ 'a sentence \Rightarrow 'a bins \Rightarrow bool where
sound-ptrs $\omega b s \equiv \forall k<$ length $b s . \forall e \in \operatorname{set}(b s!k)$.
sound-null-ptr $e \wedge$ sound-pre-ptr ω bs $k e \wedge$ sound-prered-ptr bs $k e$
definition mono-red-ptr :: 'a bins \Rightarrow bool where
mono-red-ptr $b s \equiv \forall k<$ length $b s . \forall i<l e n g t h ~(b s!k)$.
$\forall k^{\prime}$ pre red ps. pointer $(b s!k!i)=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red $) p s \longrightarrow$ red $<i$
lemma nth-item-bin-upd:
$n<$ length es \Longrightarrow item (bin-upd e es $!n)=$ item (es! n)
by (induction es arbitrary: e n) (auto simp: less-Suc-eq-O-disj split: entry.splits pointer.splits)
lemma bin-upd-append:

```
    item e & set (items es)\Longrightarrow bin-upd e es = es @ [e]
    by (induction es arbitrary: e) (auto simp: items-def split: entry.splits pointer.splits)
    lemma bin-upd-null-pre:
    item e set (items es) \Longrightarrow pointer e = Null \vee pointer e = Pre pre \Longrightarrowbin-upd
e es=es
    by (induction es arbitrary: e) (auto simp: items-def split: entry.splits)
lemma bin-upd-prered-nop:
    assumes distinct (items es) i< length es
    assumes item e= item (es!i) pointer e = PreRed p ps #p ps. pointer (es!i)=
PreRed p ps
    shows bin-upd e es = es
    using assms
    by (induction es arbitrary: e i) (auto simp: less-Suc-eq-0-disj items-def split:
entry.splits pointer.splits)
lemma bin-upd-prered-upd:
    assumes distinct (items es) i< length es
    assumes item e=item (es!i) pointer e = PreRed p rs pointer (es!i)=PreRed
p
    shows pointer (es'!i) = PreRed p' (p#rs@rs') ^(\forallj<length es'. i\not=j \longrightarrow es'!j
= es!j)^ length (bin-upd e es) = length es
    using assms
proof (induction es arbitrary: e i es')
    case (Cons e' es)
    show ?case
    proof cases
            assume *: item e= item e'
            show ?thesis
            proof (cases \existsx xp xs y yp ys. e = Entry x (PreRed xp xs) ^ e' = Entry y
(PreRed yp ys))
            case True
            then obtain x xp xs y yp ys where ee':e=Entry x (PreRed xp xs) e' =
Entry y (PreRed yp ys) }x=
            using * by auto
        have simp:bin-upd e (e'# es') = Entry x (PreRed yp (xp # xs @ ys)) #es'
                using True ee' by simp
            show ?thesis
                using Cons simp ee' apply (auto simp: items-def)
                using less-Suc-eq-0-disj by fastforce+
    next
        case False
        hence bin-upd e (e' #es') = e' # es'
            using * by (auto split: pointer.splits entry.splits)
            thus ?thesis
                    using False * Cons.prems(1,2,3,4,5) by (auto simp: less-Suc-eq-0-disj
items-def split: entry.splits)
    qed
```

```
    next
    assume \(*\) : item \(e \neq\) item \(e^{\prime}\)
    have simp: bin-upd \(e\left(e^{\prime} \#\right.\) es \()=e^{\prime} \#\) bin-upd e es
        using * by (auto split: pointer.splits entry.splits)
    have 0: distinct (items es)
        using Cons.prems(1) unfolding items-def by simp
    have 1: \(i-1<\) length es
        using Cons.prems \((2,3) *\) by (metis One-nat-def leI less-diff-conv2 less-one
list.size(4) nth-Cons-0)
    have 2: item \(e=\) item \((e s!(i-1))\)
        using Cons.prems(3) * by (metis nth-Cons')
    have 3: pointer \(e=\) PreRed \(p\) rs
        using Cons.prems(4) by simp
    have 4 : pointer \((e s!(i-1))=\) PreRed \(p^{\prime} r s^{\prime}\)
        using Cons.prems \((3,5) *\) by (metis nth-Cons')
    have pointer \((\) bin-upd e es! \((i-1))=\operatorname{PreRed} p^{\prime}\left(p \# r s @ r s^{\prime}\right) \wedge\)
        ( \(\forall j<\) length \((\) bin-upd e es). \(i-1 \neq j \longrightarrow(\) bin-upd e es) ! \(j=e s!j)\)
        using Cons.IH[OF \(\left.\begin{array}{lllll}1 & 1 & 3 & 3\end{array}\right]\) by blast
    hence pointer \(\left(\left(e^{\prime} \#\right.\right.\) bin-upd e es \(\left.)!i\right)=\operatorname{PreRed} p^{\prime}\left(p \# r s @ r s^{\prime}\right) \wedge\)
        \(\left(\forall j<\right.\) length \(\left(e^{\prime} \#\right.\) bin-upd e es \() . i \neq j \longrightarrow\left(e^{\prime} \#\right.\) bin-upd e es \()!j=\left(e^{\prime} \#\right.\)
    es)! j)
        using * Cons.prems \((2,3)\) less-Suc-eq-0-disj by auto
    moreover have \(e^{\prime} \#\) bin-upd e es \(=e s^{\prime}\)
        using Cons.prems (6) simp by auto
    ultimately show ?thesis
        by (metis 01234 Cons.IH Cons.prems(6) length-Cons)
    qed
qed \(\operatorname{simp}\)
lemma sound-ptrs-bin-upd:
    assumes sound-ptrs \(\omega\) bs \(k<\) length bs es \(=b s!k\) distinct (items es)
    assumes sound-null-ptr e sound-pre-ptr \(\omega\) bs \(k\) e sound-prered-ptr bs \(k e\)
    shows sound-ptrs \(\omega\) (bs[k:= bin-upd e es])
    unfolding sound-ptrs-def
proof (standard, standard, standard)
    fix \(i d x\) elem
    let \(? b s=b s[k:=b i n-u p d\) e es \(]\)
    assume a0: idx < length ?bs
    assume a1: elem \(\in\) set (?bs!idx)
    show sound-null-ptr elem \(\wedge\) sound-pre-ptr \(\omega\) ?bs idx elem \(\wedge\) sound-prered-ptr ?bs
idx elem
    proof cases
    assume \(a\) 2: \(i d x=k\)
    have elem \(\in\) set es \(\Longrightarrow\) sound-pre-ptr \(\omega\) bs idx elem
        using a0 a2 assms (1-3) sound-ptrs-def by blast
    hence pre-es: elem \(\in\) set es \(\Longrightarrow\) sound-pre-ptr \(\omega\) ?bs idx elem
        using a2 unfolding sound-pre-ptr-def by force
    have elem \(=e \Longrightarrow\) sound-pre-ptr \(\omega\) bs idx elem
        using a2 assms(6) by auto
```

```
    hence pre-e: elem =e\Longrightarrow sound-pre-ptr \omega ?bs idx elem
    using a2 unfolding sound-pre-ptr-def by force
    have elem }\in\mathrm{ set es }\Longrightarrow\mathrm{ sound-prered-ptr bs idx elem
        using a0 a2 assms(1-3) sound-ptrs-def by blast
    hence prered-es: elem }\in\mathrm{ set es }\Longrightarrow\mathrm{ sound-prered-ptr (bs[k:= bin-upd e es]) idx
elem
    using a2 assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
        by (smt (verit, ccfv-SIG) dual-order.strict-trans1 nth-list-update)
    have elem =e\Longrightarrow sound-prered-ptr bs idx elem
        using a2 assms(7) by auto
    hence prered-e: elem =e\Longrightarrow sound-prered-ptr ?bs idx elem
    using a2 assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
        by (smt (verit, best) dual-order.strict-trans1 nth-list-update)
    consider (A) item e & set (items es)|
        (B) item e f set (items es) \( }\exists\mathrm{ pre. pointer e = Null v pointer e = Pre pre)
|
        (C) item e set (items es)}\wedge\neg(\exists\mathrm{ pre. pointer e = Null }\vee\mathrm{ pointer e = Pre
pre)
    by blast
    thus ?thesis
    proof cases
    case }
    hence elem \inset (es @ [e])
            using a1 a2 bin-upd-append assms(2) by force
    thus ?thesis
            using assms(1-3,5) pre-e pre-es prered-e prered-es sound-ptrs-def by auto
    next
        case }
        hence elem }\in\mathrm{ set es
            using a1 a2 bin-upd-null-pre assms(2) by force
            thus ?thesis
                using assms(1-3) pre-es prered-es sound-ptrs-def by blast
    next
        case C
    then obtain ipps where C:i< length es ^ item e= item(es!i)^ pointer
e= PreRed p ps
    by (metis assms(4) distinct-Ex1 items-def length-map nth-map pointer.exhaust)
    show ?thesis
    proof cases
        assume # |p'ps'. pointer (es!i)= PreRed p' ps'
        hence C: elem }\in\mathrm{ set es
            using a1 a2 C bin-upd-prered-nop assms(2,4) by (metis nth-list-update-eq)
            thus?thesis
            using assms(1-3) sound-ptrs-def pre-es prered-es by blast
    next
        assume }\neg(\not\exists\mp@subsup{p}{}{\prime}p\mp@subsup{s}{}{\prime}.\mathrm{ pointer (es! i) = PreRed p}\mp@subsup{p}{}{\prime}p\mp@subsup{s}{}{\prime}
        then obtain p}\mp@subsup{p}{}{\prime}p\mp@subsup{s}{}{\prime}\mathrm{ where D: pointer (es!i) = PreRed p' ps'
                by blast
            hence 0: pointer (bin-upd e es!i)= PreRed p' (p#ps@ps')^(\forallj<length
```

```
(bin-upd e es). i\not=j\longrightarrow bin-upd e es!j = es!j)
    using Cassms(4) bin-upd-prered-upd by blast
    obtain j where 1:j < length es }\wedge\mathrm{ elem = bin-upd e es!j
        using a1 a2 assms(2) C items-def bin-eq-items-bin-upd by (metis
in-set-conv-nth length-map nth-list-update-eq nth-map)
    show ?thesis
    proof cases
        assume a3: i=j
        hence a3: pointer elem = PreRed p' }(p#ps@ps'
        using 0 1 by blast
    have sound-null-ptr elem
        using a3 unfolding sound-null-ptr-def by simp
    moreover have sound-pre-ptr \omega ?bs idx elem
        using a3 unfolding sound-pre-ptr-def by simp
    moreover have sound-prered-ptr ?bs idx elem
        unfolding sound-prered-ptr-def
    proof (standard, standard, standard, standard, standard, standard)
        fix PPS k' pre red
        assume a4: pointer elem = PreRed P PS ^ (k', pre, red ) \in set (P#PS)
        show }\mp@subsup{k}{}{\prime}<idx \wedge pre < length (bs[k:= bin-upd e es]!k') ^ red < length
(bs[k := bin-upd e es]!idx) ^
            completes idx (item (bs[k := bin-upd e es]! k'!pre)) (item elem) (item
(bs[k := bin-upd e es]!idx!red))
        proof cases
            assume a5: ( }\mp@subsup{k}{}{\prime},\mathrm{ pre, red ) & set (p#ps)
            show ?thesis
                        using 0 1 C a2 a4 a5 prered-es assms(2,3,7) sound-prered-ptr-def
length-bin-upd nth-item-bin-upd
            by (smt (verit) dual-order.strict-trans1 nth-list-update-eq nth-list-update-neq
nth-mem)
            next
            assume a5: ( }\mp@subsup{k}{}{\prime},\mathrm{ pre, red) & set (p#ps)
            hence a5: ( }\mp@subsup{k}{}{\prime},\mathrm{ pre, red) }\in\mathrm{ set ( }\mp@subsup{p}{}{\prime}#p\mp@subsup{s}{}{\prime}
                using a3 a4 by auto
            have }\mp@subsup{k}{}{\prime}<idx\wedge pre < length (bs!k') ^ red < length (bs!idx) ^
                completes idx (item (bs!k'!pre)) (item e) (item (bs!idx!red))
                            using assms(1-3)CD a2 a5 unfolding sound-ptrs-def sound-prered-ptr-def
by (metis nth-mem)
            thus ?thesis
                using 0 1 C a4 assms(2,3) length-bin-upd nth-item-bin-upd prered-es
sound-prered-ptr-def
                                    by (smt (verit, best) dual-order.strict-trans1 nth-list-update-eq
nth-list-update-neq nth-mem)
            qed
    qed
    ultimately show ?thesis
        by blast
    next
    assume a3: i\not=j
```

```
                hence elem }\in\mathrm{ set es
                using 0 1 by (metis length-bin-upd nth-mem order-less-le-trans)
            thus ?thesis
                using assms(1-3) pre-es prered-es sound-ptrs-def by blast
            qed
        qed
    qed
    next
    assume a2: idx \not=k
    have null: sound-null-ptr elem
        using a0 a1 a2 assms(1) sound-ptrs-def by auto
    have sound-pre-ptr \omega bs idx elem
        using a0 a1 a2 assms(1,2) unfolding sound-ptrs-def by simp
    hence pre: sound-pre-ptr \omega ?bs idx elem
    using assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-pre-ptr-def
        using dual-order.strict-trans1 nth-list-update by fastforce
    have sound-prered-ptr bs idx elem
        using a0 a1 a2 assms(1,2) unfolding sound-ptrs-def by simp
    hence prered: sound-prered-ptr ?bs idx elem
    using assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
        by (smt (verit, best) dual-order.strict-trans1 nth-list-update)
    show ?thesis
        using null pre prered by blast
    qed
qed
lemma mono-red-ptr-bin-upd:
    assumes mono-red-ptr bs k < length bs es = bs!k distinct (items es)
    assumes \forallk' pre red ps. pointer e=PreRed ( }\mp@subsup{k}{}{\prime}\mathrm{ , pre, red) ps }\longrightarrow\mathrm{ red <length
es
    shows mono-red-ptr (bs[k:= bin-upd e es])
    unfolding mono-red-ptr-def
proof (standard, standard)
    fix idx
    let ?bs = bs[k:= bin-upd e es]
    assume a0: idx < length ?bs
    show }\foralli<length (?bs!idx). \forall\mp@subsup{k}{}{\prime}\mathrm{ pre red ps. pointer (?bs!idx!i) = PreRed ( }\mp@subsup{k}{}{\prime}\mathrm{ ,
pre, red) ps \longrightarrow red <i
    proof cases
    assume a1: idx=k
    consider (A) item e & set (items es) |
        (B) item e f set (items es)}\wedge(\exists\mathrm{ pre. pointer e = Null V pointer e = Pre pre)
|
            (C) item e set (items es) \wedge\neg(\exists pre. pointer e=Null \vee pointer e = Pre
pre)
            by blast
            thus?thesis
            proof cases
            case }
```

hence bin-upd e es $=e s$ @ [e]
using bin-upd-append by blast
thus ?thesis
using a1 assms $(1-3,5)$ mono-red-ptr-def
by (metis length-append-singleton less-antisym nth-append nth-append-length nth-list-update-eq)
next
case B
hence bin-upd e es $=$ es
using bin-upd-null-pre by blast
thus ?thesis
using a1 assms(1-3) mono-red-ptr-def by force
next
case C
then obtain ipps where $C: i<$ length es item $e=$ item (es! $i)$ pointer $e=$ PreRed p ps
by (metis in-set-conv-nth items-def length-map nth-map pointer.exhaust)
show ?thesis
proof cases
assume $\nexists p^{\prime} p s^{\prime}$. pointer $(e s!i)=$ PreRed $p^{\prime} p s^{\prime}$
hence bin-upd e es $=$ es
using bin-upd-prered-nop C assms(4) by blast
thus ?thesis
using a1 assms(1-3) mono-red-ptr-def by (metis nth-list-update-eq)
next
assume $\neg\left(\nexists p^{\prime} p s^{\prime}\right.$. pointer $(e s!i)=$ PreRed $\left.p^{\prime} p s^{\prime}\right)$
then obtain $p^{\prime} p s^{\prime}$ where D : pointer $(e s!i)=$ PreRed $p^{\prime} p s^{\prime}$ by blast
have 0: pointer (bin-upd e es! $i)=\operatorname{PreRed} p^{\prime}\left(p \# p s @ p s^{\prime}\right) \wedge$
$(\forall j<$ length (bin-upd e es). $i \neq j \longrightarrow$ bin-upd e es $!j=e s!j) \wedge$ length (bin-upd e es) $=$ length es using C D assms(4) bin-upd-prered-upd by blast show ?thesis
proof (standard, standard, standard, standard, standard, standard, standard) fix $j k^{\prime}$ pre red $P S$
assume a2: $j<$ length (?bs!idx)
assume a3: pointer (?bs!idx!j) $=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red $) P S$
have 1: ?bs!idx = bin-upd e es
by (simp add: a1 assms(2))
show red $<j$
proof cases
assume $a 4: i=j$
show ?thesis
using $01 C(1) D$ a3 a4 assms(1-3) unfolding mono-red-ptr-def by
(metis pointer.inject(2))
next
assume $a 4: i \neq j$
thus ?thesis
using 01 a2 a3 assms(1) assms(2) assms(3) mono-red-ptr-def by
force
qed
qed
qed
qed
next
assume $a 1: i d x \neq k$
show ?thesis
using a0 a1 assms(1) mono-red-ptr-def by fastforce
qed
qed
lemma sound-mono-ptrs-bin-upds:
assumes sound-ptrs ω bs mono-red-ptr bs $k<$ length bs $b=b s!k$ distinct (items
b) distinct (items es)
assumes $\forall e \in$ set es. sound-null-ptr $e \wedge$ sound-pre-ptr ω bs $k e \wedge$ sound-prered-ptr bs $k e$
assumes $\forall e \in$ set es. $\forall k^{\prime}$ pre red ps. pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red $) p s \longrightarrow$ red $<$ length b
shows sound-ptrs $\omega(b s[k:=$ bin-upds es $b]) \wedge$ mono-red-ptr $(b s[k:=$ bin-upds es b])
using assms
proof (induction es arbitrary: b bs)
case (Cons e es)
let $? b s=b s[k:=$ bin-upd eb]
have 0 : sound-ptrs ω ?bs
using sound-ptrs-bin-upd Cons.prems(1,3-5,7) by (metis list.set-intros(1))
have 1: mono-red-ptr ?bs
using mono-red-ptr-bin-upd Cons.prems (2-5,8) by auto
have 2: $k<$ length ?bs
using Cons.prems(3) by simp
have 3: bin-upd e $b=$? $b s!k$
using Cons.prems(3) by simp
have 4: $\forall e^{\prime} \in$ set es. sound-null-ptr $e^{\prime} \wedge$ sound-pre-ptr ω ? bs $k e^{\prime} \wedge$ sound-prered-ptr ?bs $k e^{\prime}$
using Cons.prems $(3,4,7)$ length-bin-upd nth-item-bin-upd sound-pre-ptr-def sound-prered-ptr-def
by (smt (verit, ccfv-threshold) list.set-intros(2) nth-list-update order-less-le-trans)
have 5: $\forall e^{\prime} \in$ set es. $\forall k^{\prime}$ pre red ps. pointer $e^{\prime}=$ PreRed $\left(k^{\prime}\right.$, pre, red) ps \longrightarrow red $<$ length (bin-upd e b)
by (meson Cons.prems(8) length-bin-upd order-less-le-trans set-subset-Cons subsetD)
have sound-ptrs $\omega((b s[k:=$ bin-upd e $b])[k:=$ bin-upds es $($ bin-upd e $b)]) \wedge$
mono-red-ptr (bs[k:= bin-upd e b,k:= bin-upds es (bin-upd e b)])
using Cons.IH[OF 012 3-4 5] distinct-bin-upd Cons.prems (4,5,6) items-def
by (metis distinct.simps(2) list.simps(9))
thus?case
by simp
qed simp

```
lemma sound-mono-ptrs-Earley \(L_{L}\)-bin':
    assumes \((k, \mathcal{G}, \omega, b s) \in w f\)-earley-input
    assumes sound-ptrs \(\omega\) bs \(\forall x \in\) bins bs. sound-item \(\mathcal{G} \omega x\)
    assumes mono-red-ptr bs
    assumes nonempty-derives \(\mathcal{G}\) wf- \(\mathcal{G} \mathcal{G}\)
    shows sound-ptrs \(\omega\left(\right.\) Earley \(_{L}\)-bin' \(k \mathcal{G} \omega\) bs \(\left.i\right) \wedge\) mono-red-ptr (Earley \(L_{L}\)-bin \({ }^{\prime} k \mathcal{G}\)
\(\omega\) bs \(i)\)
    using assms
proof (induction i rule: Earley \({ }_{L}\)-bin'-induct[OF assms(1), case-names Base Com-
plete \(_{F}\) Scan \(_{F}\) Pass Predict \({ }_{F}\) ])
    case \(\left(\right.\) Complete \(_{F} k \mathcal{G} \omega\) bs ix)
    let ? \(b s^{\prime}=\) bins-upd bs \(k\left(\right.\) Complete \(\left._{L} k x b s i\right)\)
    have \(x: x \in\) set (items \((b s!k)\) )
    using Complete \({ }_{F} \cdot \operatorname{hyps}(1,2)\) by force
    hence \(\forall x \in\) set (items (Complete \(L_{L} k\) bs \(i\) )). sound-item \(\mathcal{G} \omega x\)
    using sound-Complete \({ }_{L}\) Complete \(_{F}\).hyps(3) Complete \({ }_{F}\).prems wf-earley-input-elim
wf-bins-impl-wf-items \(x\)
    by (metis dual-order.refl)
    hence sound: \(\forall x \in\) bins ? bs \({ }^{\prime}\). sound-item \(\mathcal{G} \omega x\)
    by (metis Complete \({ }_{F}\).prems \((1,3)\) UnE bins-bins-upd wf-earley-input-elim)
    have \(0: k<\) length \(b s\)
    using Complete \({ }_{F}\).prems(1) wf-earley-input-elim by auto
    have 1: \(\forall e \in \operatorname{set}\left(\right.\) Complete \(_{L} k x\) bs \(i\) ). sound-null-ptr \(e\)
    unfolding Complete \({ }_{L}\)-def sound-null-ptr-def by auto
    have 2: \(\forall e \in \operatorname{set}\left(\right.\) Complete \(_{L} k x b s i\) ). sound-pre-ptr \(\omega\) bs \(k e\)
    unfolding Complete \(_{L}\)-def sound-pre-ptr-def by auto
    \{
    fix \(e\)
    assume a0: \(e \in \operatorname{set}\left(\right.\) Complete \(\left._{L} k x b s i\right)\)
    fix \(p\) ps \(k^{\prime}\) pre red
    assume a1: pointer \(e=\) PreRed p ps \(\left(k^{\prime}\right.\), pre, red \() \in \operatorname{set}(p \# p s)\)
    have \(k^{\prime}=\) item-origin \(x\)
            using a0 a1 unfolding Complete \({ }_{L}\)-def by auto
    moreover have wf-item \(\mathcal{G} \omega\) x item-end \(x=k\)
            using Complete \({ }_{F} \cdot \operatorname{prems}(1) x\) wf-earley-input-elim wf-bins-kth-bin by blast+
    ultimately have \(0: k^{\prime} \leq k\)
            using wf-item-def by blast
    have \(1: k^{\prime} \neq k\)
    proof (rule ccontr)
            assume \(\neg k^{\prime} \neq k\)
            have sound-item \(\mathcal{G} \omega x\)
                using Complete \(e_{F}\) prems \((1,3) x\) kth-bin-sub-bins wf-earley-input-elim by
(metis subset-eq)
            moreover have is-complete \(x\)
            using Complete \({ }_{F}\).hyps(3) by (auto simp: next-symbol-def split: if-splits)
            moreover have item-origin \(x=k\)
                using \(\left\langle\neg k^{\prime} \neq k\right\rangle\left\langle k^{\prime}=\right.\) item-origin \(\left.x\right\rangle\) by auto
            ultimately show False
```

using impossible-complete-item Complete ${ }_{F} \cdot \operatorname{prems}(1,5)$ wf-earley-input-elim \langle item-end $x=k\rangle\langle w f$-item $\mathcal{G} \omega x\rangle$ by blast
qed
have 2: pre < length ($b s!k^{\prime}$)
using a0 a1 index-filter-with-index-lt-length unfolding Complete $_{L}$-def by (auto simp: items-def; fastforce)
have 3: red $<i+1$
using a0 a1 unfolding Complete $_{L}$-def by auto
have item $e=$ inc-item (item (bs! k ! pre)) k
using a0 a1 02 Complete $_{F}$.hyps (1,2,3) Complete ${ }_{F} \cdot \operatorname{prems}(1)\left\langle k^{\prime}=\right.$ item-origin $^{\prime}$ $x\rangle$ unfolding Complete $_{L}$-def
by (auto simp: items-def, metis filter-with-index-nth nth-map)
moreover have is-complete (item (bs!k!red))
using a0 a1 02 Complete $_{F} \cdot$.hyps (1,2,3) Complete ${ }_{F} \cdot \operatorname{prems}(1)\left\langle k^{\prime}=\right.$ item-origin $x\rangle$ unfolding Complete L $^{-d e f}$
by (auto simp: next-symbol-def items-def split: if-splits)
moreover have item-origin (item (bs!k!red)) = item-end (item (bs! k ! pre))
using a0 a1 02 Complete $_{F} \cdot$ hyps (1,2,3) Complete ${ }_{F} \cdot \operatorname{prems}(1)\left\langle k^{\prime}=\right.$ item-origin $^{\prime}$ $x\rangle$ unfolding Complete L_{L}-def
apply (clarsimp simp: items-def)
by (metis dual-order.strict-trans index-filter-with-index-lt-length items-def le-neq-implies-less nth-map nth-mem wf-bins-kth-bin wf-earley-input-elim)
moreover have $\left(\exists N\right.$. next-symbol $\left(\right.$ item $\left(b s!k^{\prime}!\right.$ pre $\left.)\right)=$ Some $N \wedge N=$ item-rule-head (item (bs!k!red)))
using a0 a1 02 Complete $_{F} \cdot$.hyps $(1,2,3)$ Complete $_{F} \cdot \operatorname{prems}(1)\left\langle k^{\prime}=\right.$ item-origin $x\rangle$ unfolding Complete L $_{L}$-def
by (auto simp: items-def, metis (mono-tags, lifting) filter-with-index-P fil-ter-with-index-nth nth-map)
ultimately have 4 : completes k (item (bs! $k^{\prime}!$ pre)) (item e) (item (bs!k!red))
unfolding completes-def by blast
have $k^{\prime}<k$ pre $<$ length $\left(b s!k^{\prime}\right)$ red $<i+1$ completes k (item (bs! $k^{\prime}!$ pre)) (item e) $($ item $(b s!k!r e d))$
using 01234 by simp-all
\}
hence $\forall e \in \operatorname{set}\left(\right.$ Complete $\left._{L} k x b s i\right) . \forall p$ ps k^{\prime} pre red. pointer $e=\operatorname{PreRed} p$ ps $\wedge\left(k^{\prime}\right.$, pre, red $) \in \operatorname{set}(p \# p s) \longrightarrow$
$k^{\prime}<k \wedge$ pre $<$ length $\left(b s!k^{\prime}\right) \wedge$ red $<i+1 \wedge$ completes $k\left(\right.$ item $\left(b s!k^{\prime}!\right.$ pre $\left.)\right)$ (item e) (item (bs!k!red))
by force
hence 3: $\forall e \in$ set (Complete $L_{L} k x$ bs i). sound-prered-ptr bs $k e$
unfolding sound-prered-ptr-def using Complete ${ }_{F}$.hyps(1) items-def by (smt (verit) discrete dual-order.strict-trans 1 leI length-map)
have 4: distinct (items (Complete ${ }_{L} k x$ bs i))
using distinct-Complete ${ }_{L} x$ Complete $_{F} \cdot p r e m s(1)$ wf-earley-input-elim wf-bin-def wf-bin-items-def wf-bins-def wf-item-def
by (metis order-le-less-trans)
have sound-ptrs ω ?bs ${ }^{\prime} \wedge$ mono-red-ptr ?bs ${ }^{\prime}$
using sound-mono-ptrs-bin-upds[OF Complete ${ }_{F} \cdot \operatorname{prems(2)}$ Complete $_{F} \cdot p r e m s(4)$

0] 1234 sound-prered-ptr-def
Complete ${ }_{F}$.prems(1) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def by (smt (verit, ccfv-SIG) list.set-intros(1))
moreover have $(k, \mathcal{G}, \omega$,?bs $) \in$ wf-earley-input using Complete ${ }_{F}$.hyps Complete ${ }_{F}$.prems(1) wf-earley-input-Complete ${ }_{L}$ by blast
ultimately have sound-ptrs $\omega\left(\right.$ Earley $_{L}$-bin' $k \mathcal{G} \omega$?bs' $\left.(i+1)\right) \wedge$ mono-red-ptr
(Earley L_{L}-bin' $k \mathcal{G} \omega$? $b s^{\prime}(i+1)$)
using Complete Col $_{\text {.IH Complete }}^{F}$.prems $(4-6)$ sound by blast
thus ?case
using Complete e_{F}.hyps by simp
next
case $\left(S_{\text {can }}^{F}\right.$ k $\mathcal{G} \omega$ bs $\left.i x a\right)$
let $? b s^{\prime}=$ bins-upd bs $(k+1)\left(S c a n_{L} k \omega a x i\right)$
have $x \in \operatorname{set}$ (items $(b s!k)$)
using $\operatorname{Scan}_{F} \cdot \operatorname{hyps}(1,2)$ by force
hence $\forall x \in$ set (items $\left(S_{\text {San }}^{L} k \omega a x i\right)$). sound-item $\mathcal{G} \omega x$
using sound-Scan $L_{L} \operatorname{Scan}_{F}$.hyps $(3,5) \operatorname{Scan}_{F} \cdot p r e m s(1,2,3)$ wf-earley-input-elim
wf-bins-impl-wf-items wf-bins-impl-wf-items by fast
hence sound: $\forall x \in$ bins ? bs'. sound-item $\mathcal{G} \omega x$
using Scan $_{F}$.hyps(5) Scan ${ }_{F}$.prems (1,3) bins-bins-upd wf-earley-input-elim
by (metis UnE add-less-cancel-right)
have $0: k+1<$ length bs
using $S_{\text {San }}^{F}$.hyps(5) Scan ${ }_{F}$.prems(1) wf-earley-input-elim by force
have 1: $\forall e \in \operatorname{set}\left(S c a n_{L} k \omega a x i\right)$. sound-null-ptr e
unfolding $S_{c a n}^{L}$-def sound-null-ptr-def by auto
have 2: $\forall e \in \operatorname{set}\left(S c a n_{L} k \omega a x i\right)$. sound-pre-ptr ω bs $(k+1) e$ using Scan $_{F}$.hyps $(1,2,3)$ unfolding sound-pre-ptr-def Scan ${ }_{L}$-def scans-def
items-def by auto
have 3: $\forall e \in \operatorname{set}\left(S c a n_{L} k \omega a x i\right)$. sound-prered-ptr bs $(k+1) e$ unfolding $S c a n_{L}$-def sound-prered-ptr-def by simp
have 4: distinct (items $\left(S_{\text {San }}^{L}\right.$ k ω a $\left.x i\right)$) using distinct-Scan L_{L} by fast
have sound-ptrs ω ?bs ${ }^{\prime} \wedge$ mono-red-ptr ? $b s^{\prime}$
using sound-mono-ptrs-bin-upds[OF Scan $\left.\operatorname{Som}^{2} \cdot \operatorname{prems(2)} \operatorname{Scan}_{F} \cdot \operatorname{prems}(4) 0\right] 012$
34 sound-prered-ptr-def
$S_{\text {San }}^{F}$.prems(1) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-threshold) list.set-intros(1))
moreover have $\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in$ wf-earley-input
using Scan $_{F}$.hyps $S_{\text {San }}^{F}$.prems(1) wf-earley-input-Scan ${ }_{L}$ by metis
ultimately have sound-ptrs $\omega\left(\right.$ Earley $_{L}-$ bin $^{\prime} k \mathcal{G} \omega$?bs' $\left.(i+1)\right) \wedge$ mono-red-ptr (Earley L_{L}-bin' $k \mathcal{G} \omega$? $b s^{\prime}(i+1)$)
using Scan $_{F} . I H S_{\text {San }}^{F} \cdot \operatorname{prems}(4-6)$ sound by blast
thus ?case
using $S^{\text {San }}{ }_{F}$.hyps by simp
next
case $\left(\right.$ Predict $_{F} k \mathcal{G} \omega$ bs $\left.i x a\right)$
let ?bs ${ }^{\prime}=$ bins-upd bs $k\left(\right.$ Predict $\left._{L} k \mathcal{G} a\right)$
have $x \in$ set (items $(b s!k)$) using Predict $_{F} . \operatorname{hyps}(1,2)$ by force
hence $\forall x \in \operatorname{set}\left(\right.$ items $^{\left(\text {Predict }_{L} k \mathcal{G}\right.}$ a)). sound-item $\mathcal{G} \omega x$
using sound-Predict L_{L} Predict $_{F}$.hyps(3) Predict ${ }_{F}$.prems wf-earley-input-elim wf-bins-impl-wf-items by fast
hence sound: $\forall x \in$ bins ?bs'. sound-item $\mathcal{G} \omega x$
using Predict Prems $^{(1,3) \text { UnE bins-bins-upd wf-earley-input-elim by metis }}$
have $0: k<$ length $b s$
using Predict ${ }_{F}$.prems(1) wf-earley-input-elim by force
have 1: $\forall e \in \operatorname{set}\left(\right.$ Predict $_{L} k \mathcal{G}$ a). sound-null-ptr e
unfolding sound-null-ptr-def Predict ${ }_{L}$-def predicts-def by (auto simp: init-item-def)
have 2: $\forall e \in \operatorname{set}\left(\right.$ Predict $_{L} k \mathcal{G}$ a). sound-pre-ptr ω bs $k e$
unfolding sound-pre-ptr-def Predict $_{L}-$ def by simp
have 3: $\forall e \in \operatorname{set}\left(\right.$ Predict $\left._{L} k \mathcal{G} a\right)$. sound-prered-ptr bs $k e$
unfolding sound-prered-ptr-def Predict ${ }_{L}$-def by simp
have 4 : distinct (items $\left(\right.$ Predict $\left._{L} k \mathcal{G} a\right)$)
using Predict $_{F}$. prems(6) distinct-Predict ${ }_{L}$ by fast
have sound-ptrs ω ?bs ${ }^{\prime} \wedge$ mono-red-ptr ? bs s^{\prime} using sound-mono-ptrs-bin-upds[OF Predict ${ }_{F}$. prems(2) Predict $\left.{ }_{F} . p r e m s(4) 0\right]$
01234 sound-prered-ptr-def
Predict ${ }_{F} \cdot p r e m s(1)$ bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def by (smt (verit, ccfv-threshold) list.set-intros(1))
moreover have $\left(k, \mathcal{G}, \omega, ? b s^{\prime}\right) \in$ wf-earley-input
using Predict $_{F}$. hyps Predict $_{F}$. prems(1) wf-earley-input-Predict ${ }_{L}$ by metis
ultimately have sound-ptrs $\omega\left(\right.$ Earley $_{L}-b i n^{\prime} k \mathcal{G} \omega$?bs $\left.{ }^{\prime}(i+1)\right) \wedge$ mono-red-ptr (Earley L_{L}-bin' $k \mathcal{G} \omega$?bs ${ }^{\prime}(i+1)$)
using Predict ${ }_{F}$.IH Predict F $_{\text {.prems }}(4-6)$ sound by blast
thus ?case
using Predict ${ }_{F}$.hyps by simp
qed simp-all
lemma sound-mono-ptrs-Earley ${ }_{L}$-bin:
assumes $(k, \mathcal{G}, \omega, b s) \in w f$-earley-input
assumes sound-ptrs ω bs $\forall x \in$ bins bs. sound-item $\mathcal{G} \omega x$
assumes mono-red-ptr bs
assumes nonempty-derives \mathcal{G} wf-G \mathcal{G}
shows sound-ptrs $\omega\left(\right.$ Earley $_{L}$-bin $k \mathcal{G} \omega$ bs $) \wedge$ mono-red-ptr $\left(\right.$ Earley $_{L}$-bin $k \mathcal{G} \omega$ bs)
using assms sound-mono-ptrs-Earley L_{L}-bin' Earley L_{L}-bin-def by metis
lemma sound-ptrs-Init ${ }_{L}$:
sound-ptrs $\omega\left(\right.$ Init $\left._{L} \mathcal{G} \omega\right)$
unfolding sound-ptrs-def sound-null-ptr-def sound-pre-ptr-def sound-prered-ptr-def predicts-def scans-def completes-def Init $_{L}$-def
by (auto simp: init-item-def less-Suc-eq-0-disj)
lemma mono-red-ptr-Init ${ }_{L}$:
mono-red-ptr $\left(\operatorname{Init}_{L} \mathcal{G} \omega\right)$
unfolding mono-red-ptr-def Init $_{L}$-def
by (auto simp: init-item-def less-Suc-eq-0-disj)

```
lemma sound-mono-ptrs-Earley L-bins:
    assumes }k\leq\mathrm{ length }\omega\mathrm{ wf-G G G nonempty-derives }\mathcal{G}\mathrm{ wf-G G
    shows sound-ptrs \omega(Earley }\mp@subsup{L}{L}{-bins k\mathcal{G}}\omega)\wedge\mathrm{ mono-red-ptr (Earley }\mp@subsup{L}{L}{}\mathrm{ -bins k G }\omega\mathrm{ )
    using assms
proof (induction k)
    case 0
    have}(0,\mathcal{G},\omega,(\mp@subsup{\mathrm{ Init }}{L}{}\mathcal{G}\omega))\inwf-earley-input
        using assms(2) wf-earley-input-Init }\mp@subsup{L}{L}{}\mathrm{ by blast
    moreover have }\forallx\in\operatorname{bins}(\mp@subsup{\mathrm{ Init }}{L}{}\mathcal{G}\omega)\mathrm{ . sound-item GG }\omega
        by (metis Init }\mp@subsup{L}{-}{-eq-Init F Init F-sub-Earley sound-Earley subsetD wf-Earley)
    ultimately show ?case
    using sound-mono-ptrs-Earley }\mp@subsup{L}{L}{}\mathrm{ -bin sound-ptrs-Init }\mp@subsup{L}{L}{}\mathrm{ mono-red-ptr-Init }\mp@subsup{L}{L}{}\mathrm{ 0.prems(2,3)
by fastforce
next
    case (Suc k)
    have (Suc k,\mathcal{G},\omega,\mp@subsup{Earley }{L}{-bins k \mathcal{G }\omega)\in wf-earley-input}
        by (simp add:Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
    moreover have sound-ptrs \omega(Earley L-bins k\mathcal{G}\omega)
        using Suc by simp
    moreover have }\forallx\in\mathrm{ bins (Earley }\mp@subsup{L}{L}{}\mathrm{ -bins k G W). sound-item G }\omega
    by (meson Suc.prems(1) Suc-leD Earley L-bins-sub-Earley F-bins Earley F-bins-sub-Earley
assms(2)
            sound-Earley subsetD wf-bins-Earley L-bins wf-bins-impl-wf-items)
    ultimately show ?case
        using Suc.prems(1,3,4) sound-mono-ptrs-EarleyL-bin Suc.IH by fastforce
qed
lemma sound-mono-ptrs-Earley L:
    assumes wf-\mathcal{G G nonempty-derives }\mathcal{G}
    shows sound-ptrs }\omega(\mp@subsup{\mathrm{ Earley }}{L}{}\mathcal{G}\omega)\wedge\mathrm{ mono-red-ptr (Earley }\mp@subsup{L}{L}{}\mathcal{G}\omega
    using assms sound-mono-ptrs-Earley }\mp@subsup{L}{L}{-bins Earley }\mp@subsup{L}{L}{-def by (metis dual-order.refl)
```


9.2 Common Definitions

```
datatype 'a tree =
    Leaf 'a
    | Branch 'a 'a tree list
fun yield-tree :: 'a tree }=>\mp@subsup{|}{}{\prime}a\mathrm{ a sentence where
    yield-tree (Leaf a) = [a]
| yield-tree (Branch - ts) = concat (map yield-tree ts)
fun root-tree :: 'a tree }=>\mp@subsup{}{}{\prime}a\mathrm{ where
    root-tree (Leaf a) = a
| root-tree (Branch N-) = N
fun wf-rule-tree :: 'a cfg => 'a tree => bool where
    wf-rule-tree - (Leaf a) \longleftrightarrow True
|f-rule-tree \mathcal{G (Branch Nts)}\longleftrightarrow(
```

```
    (\existsr\in\operatorname{set}(\Re\mathcal{G}).N= rule-head r ^ map root-tree ts=rule-body r)^
    (\forallt\in set ts.wf-rule-tree \mathcal{G }}\mathrm{ )}
fun wf-item-tree :: 'a cfg = 'a item }=>\mathrm{ 'a tree }=>\mathrm{ bool where
    wf-item-tree \mathcal{G - (Leaf a) \longleftrightarrow True}
|f-item-tree \mathcal{G x (Branch Nts)}\longleftrightarrow(
    N= item-rule-head x ^ map root-tree ts=take(item-dot x)(item-rule-body x)
^
    (\forallt\in set ts.wf-rule-tree \mathcal{G }}\mathrm{ t))
definition wf-yield-tree :: 'a sentence }=>\mathrm{ 'a item }=>\mathrm{ 'a tree }=>\mathrm{ bool where
    wf-yield-tree \omegaxt\longleftrightarrow yield-tree t= slice (item-origin x) (item-end x) \omega
datatype 'a forest =
    FLeaf 'a
    | FBranch 'a 'a forest list list
```

fun combinations :: 'a list list \Rightarrow 'a list list where
combinations []$=[[]]$
\mid combinations $(x s \# x s s)=[x \# c s . x<-x s, c s<-$ combinations xss $]$
fun trees :: ' a forest \Rightarrow ' a tree list where
trees (FLeaf a) = [Leaf a]
\mid trees $($ FBranch N fss $)=($
let tss $=(\operatorname{map}(\lambda f s$. concat $(\operatorname{map}(\lambda f$. trees $f) f s)) f s s)$ in
map $(\lambda t s$. Branch $N t s)$ (combinations tss)
)
lemma list-comp-flatten:
$[f x s . x s<-[g x s y s . x s<-a s, y s<-b s]]=[f(g x s y s) . x s<-a s, y s$ $<-b s]$
by (induction as) auto
lemma list-comp-flatten-Cons:
$[x \# x s . x<-a s, x s<-[x s @ y s . x s<-b s, y s<-c s]]=[x \# x s @ y s . x<-$ $a s, x s<-b s, y s<-c s]$
by (induction as) (auto simp: list-comp-flatten)
lemma list-comp-flatten-append:
$[x s @ y s . x s<-[x \# x s . x<-a s, x s<-b s], y s<-c s]=[x \# x s @ y s . x<-$ $a s, x s<-b s, y s<-c s]$
by (induction as) (auto simp: o-def, meson append-Cons map-eq-conv)
lemma combinations-append:
combinations (xss @ yss) $=[x s @ y s . x s<-$ combinations xss, ys $<-$ combinations yss]
by (induction xss) (auto simp: list-comp-flatten-Cons list-comp-flatten-append map-idI)
lemma trees-append:
trees $($ FBranch $N(x s s$ @ yss $))=($
let xtss $=(\operatorname{map}(\lambda x s$. concat $(\operatorname{map}(\lambda f$. trees $f) x s))$ xss $)$ in
let ytss $=(\operatorname{map}(\lambda y s$. concat $(\operatorname{map}(\lambda f$. trees $f) y s))$ yss $)$ in
map $(\lambda t s$. Branch $N t s)[x s @ y s . x s<-$ combinations xtss, ys $<-$ combinations ytss])
using combinations-append by (metis map-append trees.simps(2))
lemma trees-append-singleton:
trees $($ FBranch $N(x s s @[y s]))=($
let xtss $=(\operatorname{map}(\lambda x s$. concat $(\operatorname{map}(\lambda f$. trees $f) x s))$ xss $)$ in
let ytss $=[$ concat (map trees ys)] in
map $(\lambda t s . B r a n c h ~ N t s)[x s @ y s . x s<-$ combinations xtss, ys $<-$ combinations ytss])
by (subst trees-append, simp)
lemma trees-append-single-singleton:
trees $($ FBranch $N($ xss @ $[[y]]))=($
let xtss $=(\operatorname{map}(\lambda x s . \operatorname{concat}(\operatorname{map}(\lambda f$. trees $f) x s))$ xss $)$ in
map $(\lambda t s$. Branch $N t s)[x s @ y s . x s<-$ combinations xtss, $y s<-[[t] . t$
$<-$ trees y]])
by (subst trees-append-singleton, auto)

9.3 foldl lemmas

lemma foldl-add-nth:
$k<$ length $x s \Longrightarrow$ foldl $(+) z$ (map length (take $k x s))+$ length $(x s!k)=$ foldl
$(+) z($ map length $($ take $(k+1) x s))$
proof (induction xs arbitrary: $k z$)
case (Cons x xs)
then show ?case
proof (cases $k=0$)
case False
thus ?thesis
using Cons by (auto simp add: take-Cons')
qed simp
qed simp
lemma foldl-acc-mono:
$a \leq b \Longrightarrow$ foldl $(+) a x s \leq$ foldl $(+) b x s$ for $a::$ nat
by (induction xs arbitrary: a b) auto
lemma foldl-ge-z-nth:
$j<$ length $x s \Longrightarrow z+$ length $(x s!j) \leq$ foldl $(+) z($ map length $($ take $(j+1) x s))$
proof (induction xs arbitrary: $j z$)
case (Cons x xs)
show ?case
proof (cases $j=0$)
case False

```
    have \(z+\) length \(((x \# x s)!j)=z+\) length \((x s!(j-1))\)
        using False by simp
    also have \(\ldots \leq\) foldl \((+) z\) (map length \((\) take \((j-1+1) x s))\)
    using Cons False by (metis add-diff-inverse-nat length-Cons less-one nat-add-left-cancel-less
plus-1-eq-Suc)
    also have \(\ldots=\) foldl \((+) z(\) map length \((\) take \(j x s))\)
        using False by simp
    also have \(\ldots \leq\) foldl \((+)(z+\) length \(x)\) (map length (take \(j x s)\) )
        using foldl-acc-mono by force
    also have \(\ldots=\) foldl \((+) z(\) map length \((\) take \((j+1)(x \# x s)))\)
        by \(\operatorname{simp}\)
    finally show ?thesis
        by blast
    qed \(\operatorname{simp}\)
qed \(\operatorname{simp}\)
lemma foldl-add-nth-ge:
    \(i \leq j \Longrightarrow j<\) length \(x s \Longrightarrow\) foldl \((+) z\) (map length (take \(i x s))+\) length \((x s!j)\)
\(\leq\) foldl \((+) z\) (map length (take \((j+1) x s)\) )
proof (induction xs arbitrary: \(i j z\) )
    case (Cons \(x\) xs)
    show ?case
    proof (cases \(i=0\) )
    case True
    have foldl \((+) z(\) map length \((\) take \(i(x \# x s)))+\) length \(((x \# x s)!j)=z+\)
length \(((x \# x s)!j)\)
        using True by simp
    also have \(\ldots \leq\) foldl \((+) z(\) map length \((\) take \((j+1)(x \# x s)))\)
        using foldl-ge-z-nth Cons.prems(2) by blast
    finally show?thesis
        by blast
    next
    case False
    have \(i-1 \leq j-1\)
        by (simp add: Cons.prems(1) diff-le-mono)
    have \(j-1<\) length xs
        using Cons.prems(1,2) False by fastforce
    have foldl \((+) z(\) map length \((\) take \(i(x \# x s)))+\) length \(((x \# x s)!j)=\)
        foldl \((+)(z+\) length \(x)(\) map length \((\) take \((i-1) x s))+\) length \(((x \# x s)!j)\)
        using False by (simp add: take-Cons')
    also have \(\ldots=\) foldl \((+)(z+\) length \(x)(\) map length \((\) take \((i-1) x s))+\) length
( \(x s!(j-1)\) )
        using Cons.prems(1) False by auto
    also have \(\ldots \leq\) foldl \((+)(z+\) length \(x)(\) map length \((\) take \((j-1+1) x s))\)
        using Cons.IH \(\langle i-1 \leq j-1\rangle\langle j-1<\) length \(x s\rangle\) by blast
    also have \(\ldots=\) foldl \((+)(z+\) length \(x)(\) map length \((\) take \(j x s))\)
        using Cons.prems(1) False by fastforce
    also have \(\ldots=\) foldl \((+) z(\) map length \((\) take \((j+1)(x \# x s)))\)
        by fastforce
```

```
    finally show ?thesis
        by blast
    qed
qed \(\operatorname{simp}\)
lemma foldl-ge-acc:
    foldl \((+) z(\) map length \(x s) \geq z\)
    by (induction xs arbitrary: z) (auto elim: add-leE)
lemma foldl-take-mono:
    \(i \leq j \Longrightarrow\) foldl \((+) z\) (map length (take \(i x s)) \leq\) foldl \((+) z\) (map length (take \(j\)
xs))
proof (induction xs arbitrary: zij)
    case (Cons \(x\) xs)
    show ?case
    proof (cases \(i=0\) )
        case True
        have foldl \((+) z(\) map length \((\) take \(i(x \# x s)))=z\)
        using True by simp
    also have \(\ldots \leq\) foldl \((+) z(\) map length \((\) take \(j(x \# x s)))\)
        by (simp add: foldl-ge-acc)
    ultimately show ?thesis
        by \(\operatorname{simp}\)
    next
    case False
    then show?thesis
        using Cons by (simp add: take-Cons')
    qed
qed \(\operatorname{simp}\)
```


9.4 Parse tree

```
partial-function (option) build-tree \({ }^{\prime}:: ~ ' a\) bins \(\Rightarrow\) 'a sentence \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow{ }^{\prime} a\)
```

partial-function (option) build-tree ${ }^{\prime}:: ~ ' a$ bins \Rightarrow 'a sentence \Rightarrow nat \Rightarrow nat $\Rightarrow{ }^{\prime} a$
tree option where
tree option where
build-tree' bs $\omega k i=($
build-tree' bs $\omega k i=($
let $e=b s!k!i$ in (
let $e=b s!k!i$ in (
case pointer e of
case pointer e of
Null \Rightarrow Some (Branch (item-rule-head (item e)) []) - start building sub-tree
Null \Rightarrow Some (Branch (item-rule-head (item e)) []) - start building sub-tree
| Pre pre \Rightarrow (— add sub-tree starting from terminal
| Pre pre \Rightarrow (— add sub-tree starting from terminal
do \{
do \{
$t \leftarrow$ build-tree ${ }^{\prime}$ bs $\omega(k-1)$ pre;
$t \leftarrow$ build-tree ${ }^{\prime}$ bs $\omega(k-1)$ pre;
case t of
case t of
Branch N ts \Rightarrow Some (Branch $N(t s$ @ $[$ Leaf $(\omega!(k-1))]))$
Branch N ts \Rightarrow Some (Branch $N(t s$ @ $[$ Leaf $(\omega!(k-1))]))$
| - \Rightarrow undefined - impossible case
| - \Rightarrow undefined - impossible case
\})
\})
| PreRed (k^{\prime}, pre, red) - \Rightarrow (- add sub-tree starting from non-terminal
| PreRed (k^{\prime}, pre, red) - \Rightarrow (- add sub-tree starting from non-terminal
do \{
do \{
$t \leftarrow$ build-tree' bs ωk^{\prime} pre;
$t \leftarrow$ build-tree' bs ωk^{\prime} pre;
case t of

```
                    case \(t\) of
```

```
            Branch N ts }
                do {
                    t\leftarrow build-tree' bs \omega k red;
                Some (Branch N (ts @ [t]))
            }
        | - = undefined - impossible case
    })
))
declare build-tree'.simps [code]
definition build-tree :: 'a cfg = 'a sentence = ' 'a bins => 'a tree option where
    build-tree \mathcal{G }\omega\mathrm{ bs=}=(
    let k= length bs - 1 in (
    case filter-with-index ( }\lambdax\mathrm{ . is-finished G }\omegax)\mathrm{ (items (bs!k)) of
        [] }=>\mathrm{ None
    | (-, i)#- = build-tree' bs \omega ki
    ))
lemma build-tree'-simps[simp]:
    e=bs!k!i\Longrightarrow pointer e = Null \Longrightarrow build-tree' bs \omega k i = Some (Branch
(item-rule-head (item e)) [])
    e=bs!k!i\Longrightarrow pointer e = Pre pre \Longrightarrow build-tree' bs \omega (k-1) pre = None \Longrightarrow
    build-tree' bs \omega ki=None
    e=bs!k!i\Longrightarrow pointer e=Pre pre \Longrightarrow build-tree' bs \omega (k-1) pre = Some (Branch
Nts)\Longrightarrow
    build-tree' bs \omega k i = Some (Branch N (ts @ [Leaf (\omega!(k-1))]))
    e=bs!k!i\Longrightarrow pointer e = Pre pre \Longrightarrow build-tree' bs \omega(k-1) pre = Some (Leaf
a)\Longrightarrow
    build-tree' bs \omega k i= undefined
    e=bs!k!i\Longrightarrow pointer e = PreRed (k', pre, red) reds \Longrightarrow build-tree' bs \omega k' pre
    =None \Longrightarrow
    build-tree' bs \omega k i= None
    e=bs!k!i\Longrightarrow pointer e = PreRed (k', pre, red) reds \Longrightarrow build-tree' bs \omega k' pre
    = Some (Branch Nts)\Longrightarrow
    build-tree' bs \omega k red = None \Longrightarrow build-tree' bs \omega ki=None
    e=bs!k!i\Longrightarrow pointer e = PreRed ( }\mp@subsup{k}{}{\prime}\mathrm{ , pre, red) reds # build-tree' bs }\omega\mp@subsup{k}{}{\prime}\mathrm{ pre
    = Some (Leaf a) \Longrightarrow
    build-tree' bs \omega ki= undefined
    e=bs!k!i\Longrightarrow pointer e= PreRed (k', pre, red) reds \Longrightarrow build-tree' bs \omega k' pre
    = Some (Branch Nts)\Longrightarrow
    build-tree' bs \omega k red = Some t \Longrightarrow
    build-tree' bs \omega k i=Some (Branch N (ts @ [t]))
    by (subst build-tree'.simps, simp)+
    definition wf-tree-input :: ('a bins }\times\mathrm{ 'a sentence }\times\mathrm{ nat }\times\mathrm{ nat) set where
    wf-tree-input ={
        (bs,\omega,k,i)| bs \omega ki.
            sound-ptrs \omega bs ^
```

```
    mono-red-ptr bs ^
    k<length bs }
    i<length (bs!k)
}
```

fun build-tree'-measure : : ('a bins \times 'a sentence \times nat \times nat $) \Rightarrow$ nat where build-tree'-measure $(b s, \omega, k, i)=$ foldl $(+) 0($ map length $($ take $k b s))+i$
lemma wf-tree-input-pre:
assumes $(b s, \omega, k, i) \in w f$-tree-input
assumes $e=b s!k!i$ pointer $e=$ Pre pre
shows (bs, $\omega,(k-1)$, pre) $\in w f$-tree-input
using assms unfolding wf-tree-input-def
using less-imp-diff-less nth-mem by (fastforce simp: sound-ptrs-def sound-pre-ptr-def)
lemma wf-tree-input-prered-pre:
assumes $(b s, \omega, k, i) \in w f$-tree-input
assumes $e=b s!k!i$ pointer $e=$ PreRed (k^{\prime}, pre, red) ps
shows $\left(b s, \omega, k^{\prime}\right.$, pre $) \in w f$-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-prered-ptr-def)
apply metis+
apply (metis dual-order.strict-trans nth-mem)
by (metis nth-mem)
lemma wf-tree-input-prered-red:
assumes $(b s, \omega, k, i) \in w f$-tree-input
assumes $e=b s!k!i$ pointer $e=$ PreRed (k^{\prime}, pre, red) ps
shows $(b s, \omega, k$, red $) \in w f$-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp add: sound-ptrs-def sound-prered-ptr-def)
apply (metis nth-mem)+
done
lemma build-tree'-induct:
assumes $(b s, \omega, k, i) \in w f$-tree-input
assumes $\bigwedge b s \omega k i$.
((e pre. $e=b s!k!i \Longrightarrow$ pointer $e=$ Pre pre $\Longrightarrow P$ bs $\omega(k-1)$ pre $) \Longrightarrow$
($\bigwedge e k^{\prime}$ pre red ps. $e=b s!k!i \Longrightarrow$ pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red) $p s \Longrightarrow P b s$
ωk^{\prime} pre $) \Longrightarrow$
$\left(\bigwedge e k^{\prime}\right.$ pre red ps. $e=b s!k!i \Longrightarrow$ pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red $) p s \Longrightarrow P b s$
ωk red $) \Longrightarrow$
Pbs ω ki
shows P bs $\omega k i$
using assms(1)
proof (induction $n \equiv$ build-tree'-measure ($b s, \omega, k, i$) arbitrary: k i rule: nat-less-induct) case 1
obtain e where entry: $e=b s!k!i$
by simp

```
consider (Null) pointer \(e=\) Null
    । (Pre) \(\exists\) pre. pointer \(e=\) Pre pre
    | (PreRed) \(\exists k^{\prime}\) pre red reds. pointer \(e=\operatorname{PreRed}\left(k^{\prime}\right.\), pre, red) reds
    by (metis pointer.exhaust surj-pair)
    thus ?case
    proof cases
    case Null
    thus ?thesis
        using assms(2) entry by fastforce
    next
    case Pre
    then obtain pre where pre: pointer \(e=\) Pre pre
        by blast
    define \(n\) where \(n\) : \(n=\) build-tree'-measure ( \(b s, \omega,(k-1)\), pre)
    have \(0<k\) pre \(<\) length \((b s!(k-1))\)
    using 1 (2) entry pre unfolding wf-tree-input-def sound-ptrs-def sound-pre-ptr-def
        by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
    have \(k<\) length \(b s\)
        using 1 (2) unfolding wf-tree-input-def by blast+
    have foldl \((+) 0\) (map length \((\) take \(k\) bs)) \(+i-(\) foldl \((+) 0\) (map length (take
\((k-1) b s))+p r e)=\)
        foldl \((+) 0(\) map length \((\) take \((k-1) b s))+\) length \((b s!(k-1))+i-(f o l d l\)
\((+) 0\) (map length (take \((k-1) b s))+\) pre \()\)
        using foldl-add-nth[of \(\langle k-1\rangle\) bs 0 ] by (simp add: \(\langle 0<k\rangle\langle k<\) length bs〉
less-imp-diff-less)
    also have \(\ldots=\) length \((b s!(k-1))+i-p r e\)
        by \(\operatorname{simp}\)
    also have ... \(>0\)
        using <pre < length \((b s!(k-1))\) 〉 by auto
        finally have build-tree'-measure (bs, \(\omega, k, i\) ) - build-tree'-measure (bs, \(\omega\),
(k-1), pre) \(>0\)
        by \(\operatorname{simp}\)
    hence \(P\) bs \(\omega(k-1)\) pre
        using \(1 n\) wf-tree-input-pre entry pre zero-less-diff by blast
    thus ?thesis
        using assms(2) entry pre pointer.distinct(5) pointer.inject(1) by presburger
    next
    case PreRed
    then obtain \(k^{\prime}\) pre red \(p s\) where prered: pointer \(e=\operatorname{PreRed}\left(k^{\prime}\right.\), pre, red) ps
        by blast
    have \(k^{\prime}<k\) pre \(<\) length ( \(b s!k^{\prime}\) )
    using 1 (2) entry prered unfolding wf-tree-input-def sound-ptrs-def sound-prered-ptr-def
        apply simp-all
        apply (metis nth-mem) +
        done
    have red \(<i\)
        using 1 (2) entry prered unfolding wf-tree-input-def mono-red-ptr-def by
blast
    have \(k<\) length bs \(i<\) length (bs!k)
```

using 1 (2) unfolding wf-tree-input-def by blast+
define n-pre where n-pre: n-pre $=$ build-tree'-measure $\left(b s, \omega, k^{\prime}\right.$, pre)
have $0<$ length $\left(b s!k^{\prime}\right)+i-p r e$
by (simp add: <pre < length (bs! k^{\prime}) > add.commute trans-less-add2)
also have $\ldots=$ foldl $(+) 0\left(\right.$ map length $\left(\right.$ take $\left.\left.k^{\prime} b s\right)\right)+$ length $\left(b s!k^{\prime}\right)+i-$ $\left(\right.$ foldl $(+) 0\left(\right.$ map length $\left(\right.$ take $\left.\left.\left.k^{\prime} b s\right)\right)+p r e\right)$
by simp
also have $\ldots \leq$ foldl $(+) 0\left(\right.$ map length $\left(\right.$ take $\left.\left.\left(k^{\prime}+1\right) b s\right)\right)+i-($ foldl $(+) 0$ (map length (take $\left.\left.k^{\prime} b s\right)\right)+$ pre)
using foldl-add-nth-ge[of $k^{\prime} k^{\prime}$ bs 0$]\langle k<$ length $b s\rangle\left\langle k^{\prime}<k\right\rangle$ by simp
also have $\ldots \leq$ foldl $(+) 0($ map length $($ take k bs $))+i-($ foldl $(+) 0($ map length (take $\left.\left.k^{\prime} b s\right)\right)+$ pre)
using foldl-take-mono by (metis Suc-eq-plus1 Suc-leI 〈 $\left.k^{\prime}<k\right\rangle$ add.commute add-le-cancel-left diff-le-mono)
finally have build-tree'-measure ($b s, \omega, k, i$) - build-tree'-measure ($b s, \omega, k^{\prime}$, pre) >0
by simp
hence x : P bs ωk^{\prime} pre

define n-red where n-red: n-red $=$ build-tree'-measure (bs, ω, k, red)
have build-tree'-measure $(b s, \omega, k, i)-$ build-tree'-measure $(b s, \omega, k, r e d)>0$ using $\langle r e d<i\rangle$ by simp
hence $y: P$ bs ωk red
using 1.hyps 1.prems entry prered wf-tree-input-prered-red zero-less-diff by blast
show ?thesis
using assms(2) x y entry prered
by (smt (verit, best) Pair-inject filter-cong pointer.distinct(5) pointer.inject(2)) qed
qed
lemma build-tree'-termination:
assumes $(b s, \omega, k, i) \in w f$-tree-input
shows $\exists N$ ts. build-tree' bs $\omega k i=$ Some (Branch N ts)
proof -
have $\exists N$ ts. build-tree ${ }^{\prime}$ bs $\omega k i=$ Some (Branch N ts)
apply (induction rule: build-tree'-induct[OF assms(1)])
subgoal premises $I H$ for $b s \omega k i$
proof -
define e where entry: $e=b s!k!i$
consider (Null) pointer $e=$ Null
\| (Pre) \exists pre. pointer $e=$ Pre pre
\mid (PreRed) $\exists k^{\prime}$ pre red ps. pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red $) p s$
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
thus ?thesis
using build-tree'-simps(1) entry by simp

```
        next
            case Pre
            then obtain pre where pre: pointer e=Pre pre
                by blast
            obtain N ts where Nts: build-tree' bs \omega (k-1) pre = Some (Branch N ts)
                using IH(1) entry pre by blast
            have build-tree' bs \omegaki=Some (Branch N (ts @ [Leaf (\omega!(k-1))]))
            using build-tree'-simps(3) entry pre Nts by simp
            thus ?thesis
                by simp
            next
            case PreRed
            then obtain k' pre red ps where prered: pointer e = PreRed ( }\mp@subsup{k}{}{\prime}\mathrm{ , pre, red)
            by blast
            then obtain Nts where Nts: build-tree' bs \omega k' pre = Some (Branch N ts)
                using IH(2) entry prered by blast
                    obtain t-red where t-red: build-tree' bs \omega k red = Some t-red
                    using IH(3) entry prered Nts by (metis option.exhaust)
            have build-tree' bs \omegak i=Some (Branch N (ts @ [t-red]))
                using build-tree'-simps(8) entry prered Nts t-red by auto
            thus ?thesis
                by blast
            qed
        qed
        done
    thus ?thesis
        by blast
qed
lemma wf-item-tree-build-tree':
    assumes (bs,\omega,k,i)\inwf-tree-input
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs}
    assumes k< length bs i< length (bs!k)
    assumes build-tree' bs \omegaki=Some t
    shows wf-item-tree \mathcal{G (item (bs!k!i)) t}
proof -
    have wf-item-tree \mathcal{G (item (bs!k!i))t}
        using assms
        apply (induction arbitrary: t rule: build-tree'-induct[OF assms(1)])
        subgoal premises prems for bs \omegakit
        proof -
            define e where entry: e=bs!k!i
            consider (Null) pointer e=Null
                            | (Pre) \existspre. pointer e= Pre pre
            | (PreRed) \existsk' pre red ps. pointer e = PreRed ( }\mp@subsup{k}{}{\prime}\mathrm{ , pre, red) ps
            by (metis pointer.exhaust surj-pair)
        thus ?thesis
        proof cases
```

case Null
hence build-tree' bs $\omega k i=$ Some (Branch (item-rule-head (item e)) [])
using entry by simp
have simp: $t=$ Branch (item-rule-head (item e)) []
using build-tree'-simps(1) Null prems(8) entry by simp
have sound-ptrs ω bs
using prems(4) unfolding wf-tree-input-def by blast
hence predicts (item e)
using Null prems $(6,7)$ nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
hence item-dot $($ item e) $=0$
unfolding predicts-def by blast
thus ?thesis
using simp entry by simp
next
case Pre
then obtain pre where pre: pointer $e=$ Pre pre
by blast
obtain N ts where Nts: build-tree' bs $\omega(k-1)$ pre $=$ Some $($ Branch N ts)
using build-tree'-termination entry pre prems(4) wf-tree-input-pre by blast
have simp: build-tree' bs $\omega k i=$ Some (Branch $N($ ts @ [Leaf $(\omega!(k-1))]))$ using build-tree'-simps(3) entry pre Nts by simp
have sound-ptrs ω bs using prems(4) unfolding wf-tree-input-def by blast
hence pre < length $(b s!(k-1))$
using entry pre prems $(6,7)$ unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)
moreover have $k-1<$ length bs
by (simp add: prems(6) less-imp-diff-less)
ultimately have $I H$: wf-item-tree \mathcal{G} (item (bs! $(k-1)$!pre)) (Branch N ts)
using $\operatorname{prems}(1,2,4,5)$ entry pre Nts by (meson wf-tree-input-pre)
have scans: scans ωk (item (bs! $(k-1)$!pre)) (item e)
using entry pre prems $(6-7)$ 〈sound-ptrs ω bs〉 unfolding sound-ptrs-def
sound-pre-ptr-def by simp
hence $*$:
item-rule-head (item $(b s!(k-1)!p r e))=$ item-rule-head (item e)
item-rule-body (item (bs! (k-1)!pre)) $=$ item-rule-body (item e)
item-dot $($ item $(b s!(k-1)!p r e))+1=$ item-dot (item e)
next-symbol $($ item $(b s!(k-1)!p r e))=$ Some $(\omega!(k-1))$
unfolding scans-def inc-item-def by (simp-all add: item-rule-head-def item-rule-body-def)
have map root-tree $(t s$ @ $[$ Leaf $(\omega!(k-1))])=$ map root-tree ts @ $[\omega!(k-1)]$ by simp
also have $\ldots=$ take (item-dot (item (bs! (k-1)!pre)) (item-rule-body (item $(b s!(k-1)!p r e)))$ @ $[\omega!(k-1)]$
using $I H$ by simp
also have $\ldots=$ take (item-dot (item (bs!(k-1)!pre))) (item-rule-body (item
e)) @ $[\omega!(k-1)]$
using $*(2)$ by simp
also have $\ldots=$ take (item-dot (item e)) (item-rule-body (item e))
using *(2-4) by (auto simp: next-symbol-def is-complete-def split: if-splits; metis leI take-Suc-conv-app-nth)
finally have map root-tree (ts @ [Leaf $(\omega!(k-1))])=$ take (item-dot (item e)) (item-rule-body (item e)).
hence wfitem-tree \mathcal{G} (item e) (Branch $N($ ts @ $[$ Leaf $(\omega!(k-1))]))$
using $I H *(1)$ by simp
thus ?thesis
using entry prems (8) simp by auto
next
case PreRed
then obtain k^{\prime} pre red $p s$ where prered: pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red $)$
by blast
obtain N ts where Nts: build-tree' bs ωk^{\prime} pre $=$ Some (Branch N ts)
using build-tree'-termination entry prems(4) prered wf-tree-input-prered-pre by blast
obtain N-red ts-red where Nts-red: build-tree' bs ωk red $=$ Some (Branch N-red ts-red)
using build-tree'-termination entry prems(4) prered wf-tree-input-prered-red by blast
have simp: build-tree' bs $\omega k i=$ Some (Branch N (ts @ [Branch N-red $t s$-red]))
using build-tree'-simps(8) entry prered Nts Nts-red by auto
have sound-ptrs ω bs
using prems(4) wf-tree-input-def by fastforce
have bounds: $k^{\prime}<k$ pre $<$ length (bs! k^{\prime}) red $<$ length (bs!k)
using prered entry prems $(6,7)$ (sound-ptrs ω bs〉
unfolding sound-prered-ptr-def sound-ptrs-def by fastforce +
have completes: completes k (item (bs! k ! ${ }^{\prime}$ pre)) (item e) (item (bs!k!red))
using prered entry prems $(6,7)$ ssound-ptrs ω bs \rangle
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce
have $*$:
item-rule-head $($ item $(b s!k!p r e))=$ item-rule-head $($ item e)
item-rule-body $($ item $(b s!k!p r e))=$ item-rule-body $($ item e)
item-dot (item (bs! k ! pre) $)+1=$ item-dot (item e)
next-symbol $($ item $(b s!k!p r e))=$ Some $($ item-rule-head $($ item $(b s!k!r e d)))$
is-complete (item (bs!k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def)
have ($b s, \omega, k^{\prime}$, pre $) \in w f$-tree-input
using wf-tree-input-prered-pre[OF prems(4) entry prered] by blast
hence $I H$-pre: wf-item-tree \mathcal{G} (item (bs!k!pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)] Nts bounds(1,2) order-less-trans prems(6) by blast
have $(b s, \omega, k$, red $) \in w f$-tree-input
using wf-tree-input-prered-red[OF prems(4) entry prered] by blast
hence $I H$-r: wf-item-tree \mathcal{G} (item (bs!k!red)) (Branch N-red ts-red) using bounds(3) entry prems $(3,5,6)$ prered Nts-red by blast
have map root-tree (ts @ [Branch N-red ts-red]) = map root-tree ts @ [root-tree (Branch N-red ts)]
by simp
also have...$=$ take (item-dot (item (bs! k ! $!$ pre))) (item-rule-body (item (bs! $\left.\left.k^{\prime}!p r e\right)\right)$) @ [root-tree (Branch N-red ts)]
using $I H$-pre by simp
also have $\ldots=$ take $($ item-dot (item $(b s!k!$ pre) $)$) (item-rule-body (item $(b s!k!p r e)))$ @ item-rule-head (item (bs!k!red))]
using $I H-r$ by simp
also have...$=$ take (item-dot (item e)) (item-rule-body (item e))
using * by (auto simp: next-symbol-def is-complete-def split: if-splits; metis leI take-Suc-conv-app-nth)
finally have roots: map root-tree (ts @ [Branch N-red ts]) = take (item-dot (item e)) (item-rule-body (item e)) by simp
have wf-item $\mathcal{G} \omega$ (item (bs!k!red))
using prems $(5,6)$ bounds (3) unfolding wf-bins-def wf-bin-def wf-bin-items-def by (auto simp: items-def)
moreover have N-red $=$ item-rule-head $($ item $(b s!k!r e d))$
using $I H-r$ by fastforce
moreover have map root-tree ts-red $=$ item-rule-body (item (bs!k!red))
using $I H-r *(5)$ by (auto simp: is-complete-def)
ultimately have $\exists r \in \operatorname{set}(\mathfrak{R} \mathcal{G}) . N$-red $=$ rule-head $r \wedge$ map root-tree
$t s$-red $=$ rule-body r
unfolding wf-item-def item-rule-body-def item-rule-head-def by blast
hence wf-rule-tree \mathcal{G} (Branch N-red ts-red)
using $I H-r$ by simp
hence wf-item-tree $\mathcal{G}($ item $(b s!k!i))(B r a n c h ~ N(t s @[B r a n c h ~ N-r e d ~ t s-r e d]))$
using *(1) roots IH-pre entry by simp
thus ?thesis
using Nts-red prems(8) simp by auto
qed
qed
done
thus ?thesis
using assms(2) by blast
qed
lemma wf-yield-tree-build-tree':
assumes $(b s, \omega, k, i) \in w f$-tree-input
assumes wf-bins $\mathcal{G} \omega$ bs
assumes $k<$ length bs $i<$ length ($b s!k$) $k \leq$ length ω
assumes build-tree' bs $\omega k i=$ Some t
shows wf-yield-tree ω (item (bs!k!i)) t
proof -
have wf-yield-tree ω (item (bs!k!i))t
using assms
apply (induction arbitrary: t rule: build-tree'-induct $[$ OF $\operatorname{assms}(1)])$
subgoal premises prems for bs $\omega k i t$
proof -
define e where entry: $e=b s!k!i$
consider (Null) pointer $e=$ Null
| (Pre) \exists pre. pointer $e=$ Pre pre
\mid (PreRed) $\exists k^{\prime}$ pre red reds. pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red) reds
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
hence build-tree' bs $\omega k i=$ Some (Branch (item-rule-head (item e)) [])
using entry by simp
have simp: $t=$ Branch (item-rule-head (item e)) []
using build-tree'-simps(1) Null prems(9) entry by simp
have sound-ptrs ω bs
using prems(4) unfolding wf-tree-input-def by blast
hence predicts (item e)
using Null prems $(6,7)$ nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
thus ?thesis
unfolding wf-yield-tree-def predicts-def using simp entry by (auto simp:
slice-empty)
next
case Pre
then obtain pre where pre: pointer $e=$ Pre pre
by blast
obtain N ts where Nts: build-tree' bs $\omega(k-1)$ pre $=$ Some $($ Branch $N t s)$
using build-tree'-termination entry pre prems(4) wf-tree-input-pre by blast
have simp: build-tree' bs $\omega k i=$ Some (Branch $N(t s$ @ $[\operatorname{Leaf}(\omega!(k-1))]))$
using build-tree'-simps(3) entry pre Nts by simp
have sound-ptrs ω bs
using prems(4) unfolding wf-tree-input-def by blast
hence bounds: $k>0$ pre <length (bs! $(k-1)$)
using entry pre prems $(6,7)$ unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem) +
moreover have $k-1<$ length $b s$
by (simp add: prems(6) less-imp-diff-less)
ultimately have $I H$: wf-yield-tree ω (item (bs! (k-1)!pre)) (Branch $N t s)$
using prems(1) entry pre Nts wf-tree-input-pre prems $(4,5,8)$ by fastforce
have scans: scans ωk (item (bs! $(k-1)$!pre)) (item e)
using entry pre prems $(6-7)$ 〈sound-ptrs ω bs〉 unfolding sound-ptrs-def sound-pre-ptr-def by simp
have $w f$:
item-origin $($ item $(b s!(k-1)!p r e)) \leq$ item-end $($ item $(b s!(k-1)!p r e))$
item-end $($ item $(b s!(k-1)!p r e))=k-1$
item-end $($ item $e)=k$
using entry prems $(5,6,7)$ bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def
by (auto, meson less-imp-diff-less nth-mem)
have yield-tree (Branch $N($ ts @ $[$ Leaf $(\omega!(k-1))]))=$ concat (map yield-tree (ts @ $\operatorname{Leaf}(\omega!(k-1))]))$

```
        by simp
    also have ... = concat (map yield-tree ts)@ [\omega!(k-1)]
        by simp
    also have ... = slice (item-origin (item (bs!(k-1)!pre))) (item-end (item
(bs!(k-1)!pre))) \omega @ [\omega!(k-1)]
    using IH by (simp add: wf-yield-tree-def)
    also have ... = slice (item-origin (item (bs!(k-1)!pre))) (item-end (item
(bs!(k-1)!pre)) + 1) \omega
    using slice-append-nth wf <k> 0〉 prems(8)
    by (metis diff-less le-eq-less-or-eq less-imp-diff-less less-numeral-extra(1))
    also have ... = slice (item-origin (item e)) (item-end (item (bs!(k-1)!pre))
+1) \omega
    using scans unfolding scans-def inc-item-def by simp
    also have ... = slice (item-origin (item e)) k\omega
        using scans wf unfolding scans-def by (metis Suc-diff-1 Suc-eq-plus1
bounds(1))
    also have ... = slice (item-origin (item e)) (item-end (item e)) \omega
        using wf by auto
    finally show ?thesis
        using wf-yield-tree-def entry prems(9) simp by force
    next
    case PreRed
    then obtain k' pre red ps where prered: pointer e = PreRed ( }\mp@subsup{k}{}{\prime}\mathrm{ , pre, red)
ps
            by blast
    obtain Nts where Nts:build-tree' bs \omega k' pre = Some (Branch N ts)
    using build-tree'-termination entry prems(4) prered wf-tree-input-prered-pre
by blast
    obtain N-red ts-red where Nts-red: build-tree' bs \omega k red = Some (Branch
N-red ts-red)
    using build-tree'-termination entry prems(4) prered wf-tree-input-prered-red
by blast
    have simp: build-tree' bs \omega k i = Some (Branch N (ts @ [Branch N-red
ts-red]))
    using build-tree'-simps(8) entry prered Nts Nts-red by auto
    have sound-ptrs \omega bs
        using prems(4)wf-tree-input-def by fastforce
    have bounds: k'<k pre < length (bs!k') red < length (bs!k)
    using prered entry prems(6,7)〈sound-ptrs \omega bs`
    unfolding sound-ptrs-def sound-prered-ptr-def by fastforce+
    have completes: completes k (item (bs!k!pre)) (item e) (item (bs!k!red))
    using prered entry prems(6,7) <sound-ptrs \omega bs`
    unfolding sound-ptrs-def sound-prered-ptr-def by fastforce
    have (bs,\omega, k', pre) \inwf-tree-input
    using wf-tree-input-prered-pre[OF prems(4) entry prered] by blast
    hence IH-pre:wf-yield-tree \omega (item (bs!k'pre)) (Branch N ts)
    using prems(2)[OF entry prered - prems(5)] Nts bounds(1,2) prems(6-8)
    by (meson dual-order.strict-trans1 nat-less-le)
    have (bs, \omega,k,red)\inwf-tree-input
```

```
    using wf-tree-input-prered-red[OF prems(4) entry prered] by blast
    hence IH-r:wf-yield-tree \omega (item (bs!k!red)) (Branch N-red ts-red)
        using bounds(3) entry prems(3,5,6,8) prered Nts-red by blast
    have wf1:
    item-origin (item (bs!k!pre)) \leq item-end (item (bs!k'pre))
    item-origin (item (bs!k!red)) \leq item-end (item (bs!k!red))
    using prems(5-7) bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def wf-item-def
            by (metis length-map nth-map nth-mem order-less-trans)+
            have wf2:
            item-end (item (bs!k!red)) =k
            item-end (item (bs!k!i)) =k
            using prems(5-7) bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def by simp-all
            have yield-tree (Branch N (ts @ [Branch N-red ts-red])) = concat (map
yield-tree (ts @ [Branch N-red ts-red]))
            by (simp add: Nts-red)
            also have ... = concat (map yield-tree ts)@ yield-tree (Branch N-red ts-red)
            by simp
            also have ... = slice (item-origin (item (bs!k'!pre))) (item-end (item
(bs!k!pre))) \omega @
            slice (item-origin (item (bs!k!red))) (item-end (item (bs!k!red))) \omega
            using IH-pre IH-r by (simp add: wf-yield-tree-def)
                    also have ... = slice (item-origin (item (bs!k!pre))) (item-end (item
(bs!k!red))) \omega
            using slice-concat wf1 completes-def completes by (metis (no-types, lifting))
            also have ... = slice (item-origin (item e)) (item-end (item (bs!k!red))) \omega
                    using completes unfolding completes-def inc-item-def by simp
            also have ... = slice (item-origin (item e)) (item-end (item e)) \omega
                    using wf2 entry by presburger
            finally show ?thesis
                using wf-yield-tree-def entry prems(9) simp by force
            qed
    qed
    done
    thus ?thesis
        using assms(2) by blast
qed
theorem wf-rule-root-yield-tree-build-forest:
    assumes wf-bins \mathcal{G }\omega\mathrm{ bs sound-ptrs }\omega\mathrm{ bs mono-red-ptr bs length bs = length }\omega+
1
    assumes build-tree \mathcal{G }\omega\mathrm{ bs=Some t}
    shows wf-rule-tree \mathcal{G}t\wedge root-tree t= S\mathcal{G}\wedge yield-tree t=\omega
proof -
    let ? }k=\mathrm{ length bs - 1
    define finished where finished-def: finished = filter-with-index (is-finished \mathcal{G }\omega)
(items (bs!?k))
    then obtain x i where *: (x,i) \in set finished Some t=build-tree' bs \omega ?k i
```

using assms(5) unfolding finished-def build-tree-def by (auto simp: Let-def split: list.splits, presburger)
have $k: ? k<$ length $b s ? k \leq$ length ω
using assms(4) by simp-all
have $i: i<$ length ($b s!? k$)
using index-filter-with-index-lt-length $*$ items-def finished-def by (metis length-map)
have $x: x=$ item $(b s!? k!i)$
using $* i$ filter-with-index-nth items-def nth-map finished-def by metis
have finished: is-finished $\mathcal{G} \omega x$
using * filter-with-index-P finished-def by metis
have wf-trees-input: $(b s, \omega, ? k, i) \in w f$-tree-input
unfolding wf-tree-input-def using assms (2,3) $i k(1)$ by blast
hence wf-item-tree: wf-item-tree \mathcal{G} xt
using wf-item-tree-build-tree' assms (1,2) ik(1) $x *(2)$ by metis
have wf-item: wf-item $\mathcal{G} \omega$ (item (bs!?k!i))
using $k(1) i \operatorname{assms}(1)$ unfolding wf-bins-def wf-bin-def wf-bin-items-def by
(simp add: items-def)
obtain N ts where $t: t=$ Branch N ts
by (metis $*$ (2) build-tree'-termination option.inject wf-trees-input)
hence $N=$ item-rule-head x
map root-tree ts $=$ item-rule-body x
using finished wf-item-tree by (auto simp: is-finished-def is-complete-def)
hence $\exists r \in \operatorname{set}(\mathfrak{\mathcal { G }})$. $N=$ rule-head $r \wedge$ map root-tree ts $=$ rule-body r
using wf-item x unfolding wf-item-def item-rule-body-def item-rule-head-def
by blast
hence $w f$-rule: wf-rule-tree $\mathcal{G} t$
using wf-item-tree t by simp
have root: root-tree $t=\mathfrak{S} \mathcal{G}$
using finished $t\langle N=$ item-rule-head $x\rangle$ by (auto simp: is-finished-def)
have yield-tree $t=$ slice $($ item-origin $($ item $(b s!? k!i)))($ item-end $($ item $(b s!? k!i)))$
ω
using k i assms(1) wf-trees-input wf-yield-tree-build-tree' wf-yield-tree-def $*(2)$
by (metis (no-types, lifting))
hence yield: yield-tree $t=\omega$
using finished x unfolding is-finished-def by simp
show ?thesis
using * wf-rule root yield assms(4) unfolding build-tree-def by simp
qed
corollary wf-rule-root-yield-tree-build-tree-Earley ${ }_{L}$:
assumes wf-G \mathcal{G} nonempty-derives \mathcal{G}
assumes build-tree $\mathcal{G} \omega\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)=$ Some t
shows wf-rule-tree $\mathcal{G} t \wedge$ root-tree $t=\mathfrak{S} \mathcal{G} \wedge$ yield-tree $t=\omega$
using assms wf-rule-root-yield-tree-build-forest wf-bins-Earley L_{L} sound-mono-ptrs-Earley ${ }_{L}$
Earley ${ }_{L}$-def
length-Earley L_{L}-bins length-bins-Init ${ }_{L}$ by (metis nle-le)
theorem correctness-build-tree-Earley ${ }_{L}$:
assumes wf- $\mathcal{G} \mathcal{G}$ is-word $\mathcal{G} \omega$ nonempty-derives \mathcal{G}
shows $\left(\exists\right.$ t. build-tree $\mathcal{G} \omega\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)=$ Some $\left.t\right) \longleftrightarrow$ derives $\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega($ is ? $L \longleftrightarrow$? R)
proof standard
assume $*$: ? L
let $? k=$ length $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)-1$
define finished where finished-def: finished $=$ filter-with-index (is-finished $\mathcal{G} \omega$)
(items $\left(\left(\right.\right.$ Earley $\left.\left.\left._{L} \mathcal{G} \omega\right)!? k\right)\right)$
then obtain $t x i$ where $*:(x, i) \in$ set finished Some $t=$ build-tree $^{\prime}\left(\right.$ Earley $_{L} \mathcal{G}$ w) ω ? $k i$
using * unfolding finished-def build-tree-def by (auto simp: Let-def split:
list.splits, presburger)
have $k: ? k<$ length $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right) ? k \leq$ length ω
by (simp-all add: Earley L_{L}-def assms(1))
have $i: i<$ length $\left(\left(\right.\right.$ Earley $\left.\left._{L} \mathcal{G} \omega\right)!? k\right)$
using index-filter-with-index-lt-length $*$ items-def finished-def by (metis length-map)
have $x: x=$ item $\left(\left(\right.\right.$ Earley $\left.\left._{L} \mathcal{G} \omega\right)!? k!i\right)$
using * i filter-with-index-nth items-def nth-map finished-def by metis
have finished: is-finished $\mathcal{G} \omega x$
using $*$ filter-with-index- P finished-def by metis
moreover have $x \in \operatorname{set}\left(\right.$ items $\left(\left(\right.\right.$ Earley $\left.\left.\left._{L} \mathcal{G} \omega\right)!? k\right)\right)$
using x by (auto simp: items-def; metis One-nat-def i imageI nth-mem)
ultimately have recognizing (bins $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)$) $\mathcal{G} \omega$
by (meson k (1) kth-bin-sub-bins recognizing-def subsetD)
thus? R
using correctness-Earley L_{L} assms by blast
next
assume *: ? R
let $? k=$ length $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)-1$
define finished where finished-def: finished $=$ filter-with-index $($ is-finished $\mathcal{G} \omega)$
(items $\left(\left(\right.\right.$ Earley $\left.\left.\left._{L} \mathcal{G} \omega\right)!? k\right)\right)$
have recognizing (bins $\left(\right.$ Earley $\left.\left._{L} \mathcal{G} \omega\right)\right) \mathcal{G} \omega$
using assms $*$ correctness-Earley L_{L} by blast
moreover have ? $k=$ length ω
by (simp add: Earley ${ }_{L}$-def assms(1))
ultimately have $\exists x \in \operatorname{set}\left(\right.$ items $\left(\left(\right.\right.$ Earley $\left._{L} \mathcal{G} \omega\right)$!?k)). is-finished $\mathcal{G} \omega x$
unfolding recognizing-def using assms(1) is-finished-def wf-bins-Earley ${ }_{L}$ wf-item-in-kth-bin
by metis
then obtain $x i x s$ where $x i s$: finished $=(x, i) \# x s$
using filter-with-index-Ex-first by (metis finished-def)
hence simp: build-tree $\mathcal{G} \omega\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)=$ build-tree $^{\prime}\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right) \omega$?k i
unfolding build-tree-def finished-def by auto
have $(x, i) \in$ set finished using xis by simp
hence $i<$ length $^{(}\left(\right.$Earley $\left._{L} \mathcal{G} \omega\right)$!?k)
using index-filter-with-index-lt-length by (metis finished-def items-def length-map)
moreover have ? $k<$ length $_{\left(\text {Earley }_{L} \mathcal{G} \omega\right)}$
by (simp add: Earley L_{L}-def $\left.\operatorname{assms}(1)\right)$
ultimately have $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega, \omega, ? k, i\right) \in$ wf-tree-input unfolding wf-tree-input-def using sound-mono-ptrs-Earley $L_{L} \operatorname{assms}(1,3)$ by
blast
then obtain N ts where build-tree' $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right) \omega$? $k i=$ Some (Branch N ts)
using build-tree'-termination by blast
thus? L
using simp by simp
qed

9.5 those, map, map option lemmas

```
lemma those-map-exists:
    Some ys = those (map fxs)\Longrightarrowy\in set ys \Longrightarrow\existsx. x\in set xs ^Some y f set
(map f xs)
proof (induction xs arbitrary: ys)
    case (Cons a xs)
    then show ?case
    apply (clarsimp split: option.splits)
    by (smt (verit, best) map-option-eq-Some set-ConsD)
qed auto
lemma those-Some:
    (}\forallx\in\mathrm{ set xs. }\existsa.x=\mathrm{ Some a) }\longleftrightarrow(\existsys. those xs = Some ys)
    by (induction xs) (auto split: option.splits)
lemma those-Some-P:
    assumes }\forallx\in\mathrm{ set xs. }\exists\mathrm{ ys. }x=\mathrm{ Some ys }\wedge(\forally\in\mathrm{ set ys. P y)
    shows \existsyss. those xs = Some yss }\wedge(\forallys\in\mathrm{ set yss. }\forally\in\mathrm{ set ys. P y)
    using assms by (induction xs) auto
lemma map-Some-P:
    assumes z f set (map fxs)
    assumes }\forallx\in\mathrm{ set xs. }\existsys.fx=\mathrm{ Some ys }\wedge(\forally\in\mathrm{ set ys. P y)
    shows }\existsys.z=Some ys \wedge(\forally\in set ys. P y
    using assms by (induction xs) auto
lemma those-map-FBranch-only:
    assumes g=(\lambdaf.case f of FBranch N fss => Some (FBranch N (fss @ [[FLeaf
(\omega!(k-1))]]))| - = None)
    assumes Some fs = those (map g pres) f\in set fs
    assumes }\forallf\in\mathrm{ set pres. }\existsN\mathrm{ fss. f}=F\mathrm{ Franch N fss
    shows \existsf-pre N fss. f = FBranch N (fss @ [[FLeaf (\omega!(k-1))]]) ^ f-pre =
FBranch N fss }\wedgef\mathrm{ -pre }\in\mathrm{ set pres
    using assms
    apply (induction pres arbitrary: fs f)
    apply (auto)
    by (smt (verit, best) list.inject list.set-cases map-option-eq-Some)
lemma those-map-Some-concat-exists:
    assumes y fet (concat ys)
```

```
assumes Some ys = those (map fxs)
shows \existsys x. Some ys =fx\wedge y\in set ys }\wedgex\in\mathrm{ set xs
using assms
apply (induction xs arbitrary: ys y)
apply (auto split: option.splits)
by (smt (verit, ccfv-threshold) list.inject list.set-cases map-option-eq-Some)
```

lemma map-option-concat-those-map-exists:
assumes Some fs = map-option concat (those (map Fxs))
assumes $f \in$ set $f s$
shows $\exists f s s f_{s}{ }^{\prime}$. Some fss $=$ those $(\operatorname{map} F x s) \wedge f_{s}{ }^{\prime} \in$ set $f s s \wedge f \in$ set fs ${ }^{\prime}$
using assms
apply (induction xs arbitrary: $f s f$)
apply (auto split: option.splits)
by (smt (verit, best) UN-E map-option-eq-Some set-concat)
lemma [partial-function-mono]:
monotone option.le-fun option-ord
(λ f. map-option concat (those ($\operatorname{map}\left(\lambda\left(\left(k^{\prime}\right.\right.\right.$, pre $)$, reds).
$f\left(\left((r, s), k^{\prime}\right)\right.$, pre $\left.),\{p r e\}\right) \gg=$
(λ pres. those (map (λ red. $f((((r, s), t)$, red $), b \cup\{r e d\}))$ reds $) \gg=$
(λ rss. those (map (λf. case f of FBranch $N f s s \Rightarrow$ Some (FBranch N (fss
@ [concat rss])) | $-\Rightarrow$ None) pres) $)$))
$x s)$))
proof -
let ? $f=$
(λ f. map-option concat (those (map $\left(\lambda\left(\left(k^{\prime}\right.\right.\right.$, pre $)$, reds $)$.
$f\left(\left(\left((r, s), k^{\prime}\right), p r e\right),\{p r e\}\right) \gg$
(λ pres. those (map (λ red. $f((((r, s), t)$, red $), b \cup\{r e d\}))$ reds $) \gg$
(λ rss. those (map $\left(\lambda f\right.$. case f of FBranch $N f_{s s} \Rightarrow$ Some (FBranch $N\left(f_{s s}\right.$
@ [concat rss])) $\mid-\Rightarrow$ None) pres $)$)))
xs)))
have 0: $\wedge x y$. option.le-fun $x y \Longrightarrow$ option-ord (?f x) (?f y)
apply (auto simp: flat-ord-def fun-ord-def option.leq-refl split: option.splits
forest.splits)
subgoal premises prems for $x y$
proof -
let ? $t=$ those $\left(\operatorname{map}\left(\lambda\left(\left(k^{\prime}\right.\right.\right.\right.$, pre $)$, reds $)$.
$x\left(\left(\left((r, s), k^{\prime}\right), p r e\right),\{p r e\}\right) \gg$
(λ pres. those (map ((red. $x((((r, s), t)$, red $)$, insert red $b))$ reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss
@ [concat rss])))) prest)))
$x s)=$ None
show ?t
proof (rule ccontr)
assume $a: \neg$? t
obtain fss where fss: those (map $\left(\lambda\left(\left(k^{\prime}\right.\right.\right.$, pre $)$, reds $)$.
$x\left(\left(\left((r, s), k^{\prime}\right), p r e\right),\{p r e\}\right) \gg$
(λ pres. those (map (λ red. $x((((r, s), t)$, red $)$, insert red $b))$ reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ $[$ concat rss $])))$) pres $)$)))
$x s)=$ Some $f s s$
using a by blast \{
fix k^{\prime} pre reds
assume $*:\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $) \in$ set xs
obtain pres where pres: $x\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right)=$ Some pres using fss * those-Some by force
have $\exists f$ s. Some fs $=$ those $($ map $(\lambda$ red. $x((((r, s), t)$, red $)$, insert red $b))$ reds) \gg
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres $)$)
proof (rule ccontr)
assume $\nexists f s$. Some $f s=$
those (map (λ red. $x((((r, s), t)$, red $)$, insert red $b))$ reds $) \gg=$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N $($ fss @ [concat rss])))) pres))
hence None $=$
those (map (λ red. $x((((r, s), t)$, red), insert red b)) reds) \gg
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N
(fss @ [concat rss])))) pres))
by (smt (verit) not-None-eq)
hence None $=x\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right) \gg$
(λ pres. those (map (λ red. $x((((r, s), t)$, red $)$, insert red $b))$ reds) > $>$
(λ rss. those (map (case-forest Map.empty $(\lambda N$ fss. Some (FBranch N
(fss @ [concat rss])))) pres)))
by (simp add: pres)
hence $\exists\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $) \in$ set xs. None $=x\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right)$
\geqslant
(λ pres. those (map (λ red. $x((((r, s), t)$, red $)$, insert red $b))$ reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N
(fss @ [concat rss])))) pres)))
using * by blast
thus False
using fss those-Some by force
qed
then obtain $f s$ where $f s$: Some $f s=$ those (map ((red. $x((((r, s), t)$, red), insert red b)) reds) >>
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres))
by blast
obtain rss where rss: those (map (red. $x((((r, s), t)$, red), insert red b)) reds) $=$ Some rss
using $f s$ by force
have $x\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right)=y\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right)$
using pres prems(1) by (metis option.distinct(1))
moreover have those (map (λ red. $x((((r, s), t)$, red), insert red b)) reds)
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres))
$=$ those (map (λ red. $y((((r, s), t)$, red $)$, insert red b)) reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) press))
proof -
have \forall red \in set reds. $x((((r, s), t)$, red $)$, insert red $b)=y((((r, s), t)$, red), insert red b)
proof standard
fix red
assume red \in set reds
have $\forall x \in \operatorname{set}(\operatorname{map}$ (λ red. $x((((r, s), t)$, red), insert red b)) reds). $\exists a$. $x=$ Some a
using rss those-Some by blast
then obtain f where $x((((r, s), t)$, red $)$, insert red $b)=$ Some f using \langle red \in set reds by auto
thus $x((((r, s), t)$, red $)$, insert red $b)=y((((r, s), t)$, red $)$, insert red
b) using $\operatorname{prems(1)}$ by (metis option.distinct(1))

qed

thus ?thesis by (smt (verit, best) map-eq-conv)
qed
ultimately have $x\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $\left.),\{p r e\}\right) \gg$
(λ pres. those (map (λ red. $x((((r, s), t)$, red), insert red $b))$ reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) prest))
$=y\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right) \gg=$
(λ pres. those (map (λ red. $y((((r, s), t)$, red), insert red b)) reds) $\gg=$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres $)$))
by (metis bind.bind-lunit pres)
\}
hence $\forall\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $) \in$ set xs. $x\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $\left.),\{p r e\}\right) \gg$
(λ pres. those (map (λ red. $x((((r, s), t)$, red), insert red $b))$ reds $) \gg=$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres)))
$=y\left(\left(\left((r, s), k^{\prime}\right)\right.\right.$, pre $),\{$ pre $\left.\}\right) \gg=$
(λ pres. those (map (λ red. $y((((r, s), t)$, red), insert red $b))$ reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres $)$))
by blast
hence those (map $\left(\lambda\left(\left(k^{\prime}\right.\right.\right.$, pre $)$, reds).
$x\left(\left(\left((r, s), k^{\prime}\right), p r e\right),\{p r e\}\right) \gg$
(λ pres. those (map (λ red. $x((((r, s), t)$, red $)$, insert red $b))$ reds $) \gg$
(λ rss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss @ [concat rss])))) pres $)$)))
$x s)=$ those $\left(\operatorname{map}\left(\lambda\left(\left(k^{\prime}\right.\right.\right.\right.$, pre $)$, reds $)$.
$y\left(\left(\left((r, s), k^{\prime}\right), p r e\right),\{p r e\}\right) \gg$

```
( \(\lambda\) pres. those (map ( \(\lambda\) red. \(y((((r, s), t)\), red), insert red \(b))\) reds \() \gg\)
( \(\lambda\) rss. those (map (case-forest Map.empty ( \(\lambda N\) fss. Some (FBranch \(N\) (fss @ \([\) concat rss \(]))\) )) pres \()\) )))
xs)
using prems(1) by (smt (verit, best) case-prod-conv map-eq-conv split-cong) thus False
using \(\operatorname{prems}(2)\) by simp
        qed
    qed
    done
show ?thesis
using monotoneI[of option.le-fun option-ord ?f, OF 0] by blast qed
```


9.6 Parse trees

fun insert-group :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} k\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} v\right) \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} k \times{ }^{\prime} v\right.$ list $)$ list $\Rightarrow\left({ }^{\prime} k \times{ }^{\prime} v\right.$ list) list where
insert-group K V $a[]=\left[\left(\begin{array}{ll}K & \left.a,\left[\begin{array}{ll}V & a\end{array}\right)\right]\end{array}\right.\right.$
| insert-group $K V a((k, v s) \# x s)=($

$$
\text { if } K a=k \text { then }(k, V a \# v s) \# x s
$$

else ($k, v s$) \# insert-group K Vaxs)
fun group-by :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} k\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} v\right) \Rightarrow{ }^{\prime} a$ list $\Rightarrow\left({ }^{\prime} k \times{ }^{\prime} v\right.$ list $)$ list where group-by K V [] = []
| group-by $K V(x \# x s)=$ insert-group $K V x($ group-by $K V x s)$
lemma insert-group-cases:
assumes $(k, v s) \in \operatorname{set}$ (insert-group $K V a x s)$
shows $(k=K a \wedge v s=[V a]) \vee(k, v s) \in$ set $x s \vee\left(\exists\left(k^{\prime}, v s^{\prime}\right) \in\right.$ set $x s . k^{\prime}=k$
$\left.\wedge k=K a \wedge v s=V a \# v s^{\prime}\right)$
using assms by (induction xs) (auto split: if-splits)
lemma group-by-exists-kv:
$(k, v s) \in \operatorname{set}($ group-by $K V x s) \Longrightarrow \exists x \in$ set $x s . k=K x \wedge(\exists v \in$ set vs. $v=$ $V x)$
using insert-group-cases by (induction xs) (simp, force)
lemma group-by-forall-v-exists-k:
$(k, v s) \in \operatorname{set}($ group-by $K V x s) \Longrightarrow v \in$ set $v s \Longrightarrow \exists x \in$ set $x s . k=K x \wedge v=$
V x
proof (induction xs arbitrary: vs)
case (Cons x xs)
show ? case
proof (cases $(k, v s) \in \operatorname{set}($ group-by $K V x s))$
case True
thus ?thesis
using Cons by simp

```
    next
    case False
    hence (k,vs)\inset (insert-group K V x (group-by K V xs))
        using Cons.prems(1) by force
    then consider (A) (k=Kx\wedgevs=[Vx])
        | (B) (k,vs) \in set (group-by K V xs)
        | (C) (\exists(k',vs') \in set (group-by K V xs). k' = k^k=K x^vs=V x #
vs')
            using insert-group-cases by fastforce
    thus ?thesis
    proof cases
        case A
        thus ?thesis
        using Cons.prems(2) by auto
    next
        case B
        then show ?thesis
        using False by linarith
    next
        case C
        then show ?thesis
                using Cons.IH Cons.prems(2) by fastforce
    qed
qed
qed simp
partial-function (option) build-trees' :: 'a bins = 'a sentence }=>\mathrm{ nat }=>\mathrm{ nat n
nat set = 'a forest list option where
    build-trees' bs \omega ki I = (
        let e =bs!k!i in (
    case pointer e of
        Null => Some ([FBranch (item-rule-head (item e)) []]) - start building sub-
trees
    | Pre pre }=>\mathrm{ ( - add sub-trees starting from terminal
        do {
            pres }\leftarrow\mathrm{ build-trees' bs }\omega(k-1)\mathrm{ pre {pre};
            those (map ( }\lambdaf\mathrm{ .
                case f of
                    FBranch N fss = Some (FBranch N (fss @ [[FLeaf (\omega!(k-1))]]))
                    |-=> None - impossible case
                ) pres)
                })
    | PreRed p ps => ( - add sub-trees starting from non-terminal
                let ps' = filter ( }\lambda(\mp@subsup{k}{}{\prime},\mathrm{ pre, red ). red }\not\inI)(p#ps) in
                let gs = group-by (\lambda(k', pre, red ). (k', pre)) (\lambda(k', pre, red ). red) ps' in
                map-option concat (those (map ( }\lambda((\mp@subsup{k}{}{\prime}, pre), reds)
                    do {
                    pres \leftarrow build-trees' bs \omega k' pre {pre};
                    rss}\leftarrow\mathrm{ those (map (\red. build-trees' bs }\omegak\mathrm{ red (I { {red})) reds);
```

```
                those (map ( }\lambdaf\mathrm{ .
                    case f of
                        FBranch N fss =>Some (FBranch N(fss @ [concat rss]))
                | - = None - impossible case
            ) pres)
        }
        ) gs))
    )
))
```

declare build-trees'.simps [code]
definition build-trees :: 'a cfg \Rightarrow 'a sentence $\Rightarrow{ }^{\prime} a$ bins \Rightarrow 'a forest list option where
build-trees $\mathcal{G} \omega$ bs $=($
let $k=$ length $b s-1$ in
let finished $=$ filter-with-index $(\lambda x$. is-finished $\mathcal{G} \omega x)($ items $(b s!k))$ in
map-option concat (those (map $(\lambda(-, i)$. build-trees' bs $\omega k i\{i\})$ finished))
)
lemma build-forest'-simps[simp]:
$e=b s!k!i \Longrightarrow$ pointer $e=$ Null \Longrightarrow build-trees $^{\prime}$ bs ω kiI $=$ Some ([FBranch (item-rule-head (item e)) []])
$e=b s!k!i \Longrightarrow$ pointer $e=$ Pre pre \Longrightarrow build-trees $^{\prime}$ bs $\omega(k-1)$ pre $\{$ pre $\}=$ None
\Longrightarrow build-trees ${ }^{\prime}$ bs ω ki $I=$ None
$e=b s!k!i \Longrightarrow$ pointer $e=$ Pre pre \Longrightarrow build-trees $^{\prime}$ bs $\omega(k-1)$ pre $\{$ pre $\}=$ Some
pres \Longrightarrow
build-trees $^{\prime}$ bs ω ki $I=$ those (map (λf. case f of FBranch N fss \Rightarrow Some (FBranch $N($ fss @ $[[F L e a f(\omega!(k-1))]])) \mid-\Rightarrow$ None $)$ pres $)$
by (subst build-trees'.simps, simp)+
definition wf-trees-input :: ('a bins \times 'a sentence \times nat \times nat \times nat set) set where

```
wf-trees-input ={
    (bs,\omega,k,i,I)|bs \omega kiI.
        sound-ptrs \omega bs ^
        k< length bs }
        i< length (bs!k) ^
        I\subseteq{0..<length (bs!k)}^
        i\inI
}
```

fun build-forest'-measure $::$ ('a bins \times 'a sentence \times nat \times nat \times nat set) \Rightarrow nat where
build-forest'-measure $(b s, \omega, k, i, I)=$ foldl $(+) 0($ map length $($ take $(k+1) b s))$

- card I
lemma wf-trees-input-pre:
assumes $(b s, \omega, k, i, I) \in w f$-trees-input

```
    assumes e=bs!k!i pointer e= Pre pre
    shows (bs, \omega, (k-1), pre, {pre}) \inwf-trees-input
    using assms unfolding wf-trees-input-def
    apply (auto simp: sound-ptrs-def sound-pre-ptr-def)
    apply (metis nth-mem)
    done
lemma wf-trees-input-prered-pre:
    assumes (bs,\omega,k,i,I)\inwf-trees-input
    assumes e=bs!k!i pointer e = PreRed p ps
    assumes ps' = filter ( }\lambda(\mp@subsup{k}{}{\prime},\mathrm{ pre, red). red &I) (p#ps)
    assumes gs = group-by (\lambda(k', pre, red). (k', pre)) ( }\lambda(\mp@subsup{k}{}{\prime},\mathrm{ pre, red ). red) ps'
    assumes (( }\mp@subsup{k}{}{\prime},\mathrm{ pre), reds) }\in\mathrm{ set gs
    shows (bs, \omega, k', pre, {pre}) \inwf-trees-input
proof -
    obtain red where ( }\mp@subsup{k}{}{\prime}\mathrm{ , pre, red ) & set ps'
        using assms(5,6) group-by-exists-kv by fast
    hence *: (k', pre, red) \in set (p#ps)
        using assms(4) by (meson filter-is-subset in-mono)
    have }k<length bs e set (bs!k
        using assms(1,2) unfolding wf-trees-input-def by auto
    hence }\mp@subsup{k}{}{\prime}<k\mathrm{ pre < length (bs!k')
    using assms(1,3)* unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
by blast+
    thus ?thesis
        using assms by (simp add:wf-trees-input-def)
qed
lemma wf-trees-input-prered-red:
    assumes (bs,\omega,k,i,I)\inwf-trees-input
    assumes e=bs!k!i pointer e= PreRed p ps
    assumes ps' = filter ( }\lambda(\mp@subsup{k}{}{\prime},\mathrm{ pre, red). red }\not\inI)(p#ps
    assumes gs = group-by (\lambda(k', pre, red). (k', pre)) (\lambda(k', pre, red). red) ps'
    assumes (( }\mp@subsup{k}{}{\prime},\mathrm{ pre), reds) & set gs red }\in\mathrm{ set reds
    shows (bs, \omega, k, red, I\cup{red})\inwf-trees-input
proof -
    have ( }\mp@subsup{k}{}{\prime},\mathrm{ pre, red ) & set ps'
        using assms(5,6,7) group-by-forall-v-exists-k by fastforce
    hence *: (k', pre, red) \in set (p#ps)
        using assms(4) by (meson filter-is-subset in-mono)
    have k< length bs e set (bs!k)
        using assms(1,2) unfolding wf-trees-input-def by auto
    hence 0: red < length (bs!k)
    using assms(1,3)* unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
by blast
    moreover have I\subseteq{0..<length (bs!k)}
    using assms(1) unfolding wf-trees-input-def by blast
    ultimately have 1:I\cup{red }\subseteq{0..<length (bs!k)}
    by simp
```

```
    show ?thesis
    using 0 1 assms(1) unfolding wf-trees-input-def by blast
qed
lemma build-trees'-induct:
    assumes (bs, \omega, k,i,I)\inwf-trees-input
    assumes \bs \omegakiI.
    (\bigwedgee pre.e = bs!k!i\Longrightarrow pointer e=Pre pre \LongrightarrowPbs \omega (k-1) pre {pre}) \Longrightarrow
    (\bigwedgee p ps ps''gs k' pre reds. e=bs!k!i \Longrightarrow pointer e = PreRed p ps \Longrightarrow
        ps' = filter }(\lambda(\mp@subsup{k}{}{\prime},\mathrm{ pre, red ). red }\not\inI)(p#ps)
        gs = group-by (\lambda(k', pre, red ). (k', pre)) (\lambda(k', pre, red ). red) ps' \Longrightarrow
        ((k', pre), reds ) < set gs \LongrightarrowP bs \omega k}\mp@subsup{k}{}{\prime}\mathrm{ pre {pre}) }
    (\bigwedgee p ps ps'gs k' pre red reds reds'. e = bs!k!i\Longrightarrow pointer e= PreRed p ps
\Longrightarrow
    ps'}=\mathrm{ filter }(\lambda(\mp@subsup{k}{}{\prime},\mathrm{ pre, red ). red }\not\inI)(p#ps)
    gs = group-by (\lambda(k', pre, red ). (k', pre)) (\lambda(k', pre, red ). red) ps' \Longrightarrow
    ((k', pre), reds ) \in set gs \Longrightarrow red \in set reds \LongrightarrowPbs \omega k red (I\cup{red})) \Longrightarrow
    Pbs\omegakiI
    shows P bs \omega ki I
    using assms(1)
proof (induction n\equivbuild-forest'-measure (bs, \omega, k, i, I) arbitrary: k i I rule:
nat-less-induct)
    case 1
obtain e where entry: e=bs!k!i
    by simp
consider (Null) pointer e = Null
    | (Pre) \exists pre. pointer e = Pre pre
    | (PreRed) \existsp ps. pointer e= PreRed p ps
    by (metis pointer.exhaust)
thus?case
proof cases
    case Null
    thus ?thesis
        using assms(2) entry by fastforce
next
    case Pre
    then obtain pre where pre: pointer e=Pre pre
        by blast
    define n where n: n= build-forest'-measure (bs, \omega, (k-1), pre, {pre})
    have 0<k pre < length (bs!(k-1))
    using 1(2) entry pre unfolding wf-trees-input-def sound-ptrs-def sound-pre-ptr-def
    by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
    have k< length bs i<length (bs!k)I\subseteq{0..<length (bs!k)} i\inI
        using 1(2) unfolding wf-trees-input-def by blast+
    have length (bs!(k-1)) >0
        using <pre < length (bs!(k-1))> by force
    hence foldl (+) 0 (map length (take k bs)) >0
        by (smt (verit, del-insts) foldl-add-nth <0<k\rangle\langlek<length bs>
            add.commute add-diff-inverse-nat less-imp-diff-less less-one zero-eq-add-iff-both-eq-0 )
```

```
    have card \(I \leq\) length ( \(b s!k\) )
        by (simp add: \(\langle I \subseteq\{0 . .<\) length \((b s!k)\}>\) subset-eq-atLeastO-lessThan-card)
    have card \(I+(\) foldl \((+) 0(\) map length \((\) take \((\) Suc \((k-S u c 0)) b s))-\) Suc 0\()\)
=
        card \(I+(\) foldl \((+) 0(\) map length \((\) take \(k b s))-1)\)
        using \(\langle 0<k\rangle\) by simp
    also have \(\ldots=\) card \(I+\) foldl \((+) 0(\) map length \((\) take \(k b s))-1\)
        using \(\langle 0<\) foldl \((+) 0\) (map length (take \(k\) bs)) > by auto
    also have \(\ldots<\operatorname{card} I+\) foldl \((+) 0\) (map length (take \(k\) bs))
        by (simp add: \(\langle 0<\) foldl \((+) 0\) (map length (take \(k b s)\) ) )
    also have \(\ldots \leq\) foldl \((+) 0(\) map length \((\) take \(k\) bs \())+\) length \((b s!k)\)
        by ( simp add: 〈card \(I \leq\) length \((b s!k) 〉)\)
    also have \(\ldots=\) foldl \((+) 0(\) map length \((\) take \((k+1) b s))\)
        using foldl-add-nth \(\langle k<\) length bs by blast
    finally have build-forest'-measure ( \(b s, \omega, k, i, I\) ) - build-forest'-measure (bs,
\(\omega,(k-1)\), pre, \(\{\) pre \(\})>0\)
            by simp
    hence \(P\) bs \(\omega(k-1)\) pre \(\{p r e\}\)
        using \(1 n\) wf-trees-input-pre entry pre zero-less-diff by blast
    thus ?thesis
        using assms(2) entry pre pointer.distinct(5) pointer.inject(1) by presburger
    next
    case PreRed
    then obtain \(p\) ps where pps: pointer \(e=\) PreRed \(p\) ps
        by blast
    define \(p s^{\prime}\) where \(p s^{\prime}: p s^{\prime}=\) filter \(\left(\lambda\left(k^{\prime}, p r e\right.\right.\), red \()\). red \(\left.\notin I\right)(p \# p s)\)
    define gs where gs: gs = group-by \(\left(\lambda\left(k^{\prime}\right.\right.\), pre, red \() .\left(k^{\prime}\right.\), pre \(\left.)\right)\left(\lambda\left(k^{\prime}\right.\right.\), pre, red \()\).
red) \(p s^{\prime}\)
    have \(0: \forall\left(k^{\prime}\right.\), pre, red \() \in\) set ps \({ }^{\prime} . k^{\prime}<k \wedge\) pre \(<\) length \(\left(b s!k^{\prime}\right) \wedge\) red \(<\) length
( \(b s!k\) )
    using entry pps ps' 1 (2) unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
        apply (auto simp del: filter.simps)
        apply (metis nth-mem prod-cases3)+
        done
    hence sound-gs: \(\forall\left(\left(k^{\prime}\right.\right.\), pre \()\), reds \() \in\) set gs. \(k^{\prime}<k \wedge\) pre \(<\) length \(\left(b s!k^{\prime}\right)\)
        using gs group-by-exists-kv by fast
    have sound-gs2: \(\forall\left(\left(k^{\prime}\right.\right.\), pre \()\), reds \() \in\) set gs. \(\forall\) red \(\in\) set reds. red \(<\) length \((b s!k)\)
    proof (standard, standard, standard, standard)
        fix \(x\) a \(b k^{\prime}\) pre red
        assume \(x \in\) set gs \(x=(a, b)\left(k^{\prime}\right.\), pre \()=a\) red \(\in\) set \(b\)
        hence \(\exists x \in\) set \(p s^{\prime}\). red \(=\left(\lambda\left(k^{\prime}\right.\right.\), pre, red \()\). red \() x\)
            using group-by-forall-v-exists-k gs ps' by meson
        thus red < length ( \(b s!k\) )
        using 0 by fast
    qed
    \{
        fix \(k^{\prime}\) pre reds red
        assume \(a 0:\left(\left(k^{\prime}\right.\right.\), pre \()\), reds \() \in\) set gs
    define \(n\)-pre where \(n\)-pre: \(n\)-pre \(=\) build-forest'-measure \(\left(b s, \omega, k^{\prime}\right.\), pre, \(\{\) pre \(\left.\}\right)\)
```

```
    have k< length bs i< length (bs!k) I\subseteq{0..<length (bs!k)} i\inI
        using 1(2) unfolding wf-trees-input-def by blast+
    have }\mp@subsup{k}{}{\prime}<k\mathrm{ pre < length (bs!k')
        using sound-gs a0 by fastforce+
    have length (bs!k')>0
        using <pre < length (bs!k')> by force
    hence gt0: foldl (+) 0 (map length (take (k'+1) bs)) >0
        by (smt (verit, del-insts) foldl-add-nth <k < length bs\rangle\langlek'< k> add-gr-0
order.strict-trans)
    have card-bound: card I \leq length (bs!k)
    by (simp add: <I\subseteq{0..<length (bs!k)}> subset-eq-atLeast0-lessThan-card)
    have card I + (foldl (+) 0 (map length (take (Suc k')bs)) - Suc 0) =
    card I + foldl (+) 0 (map length (take (Suc k') bs)) - 1
        by (metis Nat.add-diff-assoc One-nat-def Suc-eq-plus1 Suc-leI<0< foldl
(+) 0 (map length (take ( k' + 1) bs))>)
    also have ... < card I + foldl (+) 0 (map length (take (Suc k')bs))
        using gt0 by auto
    also have ... \leq foldl (+) 0 (map length (take (Suc k') bs)) + length (bs!k)
        using card-bound by simp
    also have ... \leq foldl (+) 0 (map length (take (k+1) bs))
        using foldl-add-nth-ge Suc-leI <k<length bs\rangle\langlek'<k\rangle by blast
    finally have build-forest'-measure (bs, \omega, k,i,I) - build-forest'-measure (bs,
\omega, k}\mp@subsup{k}{}{\prime},pre,{pre})>
            by simp
    hence P bs \omega k' pre {pre}
        using 1(1) wf-trees-input-prered-pre[OF 1.prems(1) entry pps ps' gs a0]
zero-less-diff by blast
    }
    moreover {
        fix }\mp@subsup{k}{}{\prime}\mathrm{ pre reds red
        assume a0: ((k', pre), reds) \in set gs
        assume a1: red \in set reds
        define n-red where n-red: n-red = build-forest'-measure (bs, \omega, k,red, I U
{red})
    have k<length bs i< length (bs!k)I\subseteq{0..<length (bs!k)} i\inI
        using 1(2) unfolding wf-trees-input-def by blast+
    have }\mp@subsup{k}{}{\prime}<k\mathrm{ pre < length (bs!k') red < length (bs!k)
        using a0 a1 sound-gs sound-gs2 by fastforce+
    have red & I
        using a0 a1 unfolding gs ps'
            by (smt (verit, best) group-by-forall-v-exists-k case-prodE case-prod-conv
mem-Collect-eq set-filter)
    have card-bound: card I \leq length (bs!k)
        by (simp add: <I\subseteq{0..<length (bs!k)}> subset-eq-atLeast0-lessThan-card)
    have length (bs!k')>0
        using <pre < length (bs! k')> by force
    hence gt0: foldl (+) 0 (map length (take (k'+1) bs)) > 0
        by (smt (verit, del-insts) foldl-add-nth <k < length bs\rangle\langlek'< k> add-gr-0
order.strict-trans)
```

have $l t$: foldl $(+) 0$ (map length $\left(\right.$ take $\left(\right.$ Suc $\left.\left.\left.k^{\prime}\right) b s\right)\right)+$ length $(b s!k) \leq$ foldl $(+) 0($ map length $($ take $(k+1) b s))$
using foldl-add-nth-ge Suc-leI $\langle k<$ length $b s\rangle\left\langle k^{\prime}<k\right\rangle$ by blast
have card $I+($ foldl $(+) 0$ (map length (take (Suc k) bs)) - card (insert red $I)$) $=$
card $I+($ foldl $(+) 0($ map length $($ take $($ Suc $k) b s))-$ card $I-1)$
using $\langle I \subseteq\{0 . .<$ length $(b s!k)\}\rangle\langle r e d \notin I\rangle$ finite-subset by fastforce
also have $\ldots=$ foldl $(+) 0($ map length $($ take $($ Suc $k) b s))-1$
using gt0 card-bound lt by force
also have ... < foldl (+) 0 (map length (take (Suc k) bs))
using gt0 lt by auto
finally have build-forest'-measure ($b s, \omega, k, i, I$) - build-forest'-measure ($b s$, ω, k, red,$I \cup\{\operatorname{red}\})>0$ by simp
moreover have $(b s, \omega, k$, red, $I \cup\{$ red $\}) \in$ wf-trees-input using wf-trees-input-prered-red[OF 1(2) entry pps ps' gs] a0 a1 by blast
ultimately have P bs ωk red $(I \cup\{r e d\})$
using 1 (1) zero-less-diff by blast
\}
moreover have ($\bigwedge e$ pre. $e=b s!k!i \Longrightarrow$ pointer $e=$ Pre pre $\Longrightarrow P b s \omega(k-1)$ pre $\{p r e\}$)
using entry pps by fastforce
ultimately show ?thesis
using assms(2) entry gs pointer.inject(2) pps ps' by presburger
qed
qed
lemma build-trees'-termination:
assumes $(b s, \omega, k, i, I) \in w f$-trees-input
shows $\exists f$ s. build-trees ${ }^{\prime}$ bs $\omega k i I=$ Some $f s \wedge(\forall f \in$ set fs. $\exists N f s s . f=$ FBranch $N f s s)$
proof -
have $\exists f$ s. build-trees' bs ω kiI $=$ Some fs $\wedge(\forall f \in$ set fs. $\exists N$ fss. $f=$ FBranch $N f s s)$
apply (induction rule: build-trees'-induct $[$ OF assms(1)])
subgoal premises $I H$ for $b s \omega k i$
proof -
define e where entry: $e=b s!k!i$
consider (Null) pointer $e=$ Null
\mid (Pre) \exists pre. pointer $e=$ Pre pre
\mid (PreRed) $\exists k^{\prime}$ pre red reds. pointer $e=\operatorname{PreRed}\left(k^{\prime}\right.$, pre, red) reds
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
have build-trees' bs ω ki $I=$ Some ([FBranch (item-rule-head (item e)) []]) using build-forest'-simps(1) Null entry by simp
thus ?thesis
by simp

next

case Pre
then obtain pre where pre: pointer $e=$ Pre pre
by blast
obtain $f s$ where $f s$: build-trees' bs $\omega(k-1)$ pre $\{$ pre $\}=$ Some fs $\forall f \in$ set $f s . \exists N$ fss. $f=$ FBranch N fss using $I H(1)$ entry pre by blast
let $? g=\lambda f$. case f of FLeaf $a \Rightarrow$ None \mid FBranch $N f s s \Rightarrow$ Some (FBranch $N(f s s$ @ [[FLeaf $(\omega!(k-1))]]))$
have simp: build-trees' bs ω ki $I=$ those (map ?g fs) using build-forest'-simps(3) entry pre fs by blast
moreover have $\forall f \in \operatorname{set}(m a p$? $g f s) . \exists a . f=$ Some a using $f s($ 2) by auto
ultimately obtain $f s^{\prime}$ where $f s^{\prime}$: build-trees' bs ω ki $I=$ Some $f s^{\prime}$ using those-Some by (smt (verit, best))
moreover have $\forall f \in \operatorname{set} f s^{\prime} . \exists N$ fss. $f=$ FBranch N fss
proof standard
fix f
assume $f \in$ set $f s^{\prime}$
then obtain x where $x \in$ set fs Some $f \in \operatorname{set}$ (map ?g fs)
using those-map-exists by (metis (no-types, lifting) fs' simp)
thus $\exists N$ fss. $f=$ FBranch $N f s s$
using $f s(2)$ by auto
qed
ultimately show ?thesis
by blast
next
case PreRed
then obtain p ps where pps: pointer $e=\operatorname{PreRed} p$ ps
by blast
define $p s^{\prime}$ where $p s^{\prime}: p s^{\prime}=\operatorname{filter}\left(\lambda\left(k^{\prime}\right.\right.$, pre, red $)$. red $\left.\notin I\right)(p \# p s)$
define $g s$ where $g s: g s=$ group-by $\left(\lambda\left(k^{\prime}\right.\right.$, pre, red $) .\left(k^{\prime}\right.$, pre $\left.)\right)\left(\lambda\left(k^{\prime}\right.\right.$, pre, red). red) $p s^{\prime}$
let $? g=\lambda\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $)$.
do \{
pres \leftarrow build-trees' bs ωk^{\prime} pre $\{$ pre $\}$;
$r s s \leftarrow$ those (map (λ red. build-trees' bs ωk red $(I \cup\{$ red $\})$) reds); those (map (λf.
case f of
FBranch $N f s s \Rightarrow$ Some $($ FBranch $N(f s s @[$ concat rss] $])$
| - \Rightarrow None - impossible case) pres) \}
have simp: build-trees' bs ω kiI = map-option concat (those (map ?g gs)) using entry pps ps'gs by (subst build-trees'.simps) (auto simp del: filter.simps)
have $\forall f s o \in \operatorname{set}(m a p$?g gs). $\exists f$ s. fso $=$ Some fs $\wedge(\forall f \in$ set fs. $\exists N$ fss. f $=F B r a n c h ~ N f s s)$
proof standard
fix $f_{s o}$
assume fso $\in \operatorname{set}(m a p ? g$ gs)
moreover have $\forall p s \in$ set gs. $\exists f$ s. ?g ps $=$ Some fs $\wedge(\forall f \in$ set fs. $\exists N$ fss. $f=$ FBranch N fss)
proof standard
fix $p s$
assume $p s \in$ set gs
then obtain k^{\prime} pre reds where $*:\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $) \in$ set gs $\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $)=p s$
by (metis surj-pair)
then obtain pres where pres: build-trees' bs ωk^{\prime} pre $\{$ pre $\}=$ Some pres $\forall f \in$ set pres. $\exists N$ fss. $f=$ FBranch N fss using $I H$ (2) entry pps ps' gs by blast
have $\forall f \in \operatorname{set}($ map (λ red. build-trees' bs ωk red $(I \cup\{$ red $\}))$ reds). $\exists a$. $f=$ Some a
using $I H(3)[O F$ entry pps ps' $g s *(1)]$ by auto
then obtain rss where rss: Some rss = those (map (λ red. build-trees' bs ωk red $(I \cup\{r e d\})) r e d s)$
using those-Some by (metis (full-types))
let $? h=\lambda f$. case f of FBranch N fss \Rightarrow Some (FBranch N (fss @ [concat rss])) | $-\Rightarrow$ None
have $\forall x \in$ set (map ?h pres). \exists a. $x=$ Some a
using pres(2) by auto
then obtain $f s$ where $f s$: Some $f s=$ those (map ?h pres)
using those-Some by (smt (verit, best))
have $\forall f \in$ set fs. $\exists N$ fss. $f=$ FBranch N fss
proof standard
fix f
assume $*: f \in$ set $f s$
hence $\exists x . x \in$ set pres \wedge Some $f \in$ set (map ?h pres)
using those-map-exists[OF fs *] by blast
then obtain x where $x: x \in$ set pres \wedge Some $f \in$ set (map ?h pres)
by blast
thus $\exists N f_{s s} . f=F B r a n c h ~ N f_{s s}$
using $\operatorname{pres}(2)$ by auto
qed
moreover have ? g ps = Some fs
using fs pres rss * by (auto, metis bind.bind-lunit)
ultimately show $\exists f$ s. ?g ps Some fs $\wedge(\forall f \in$ set fs. $\exists N$ fss. $f=$ FBranch N fss)
by blast
qed
ultimately show $\exists f s . f s o=S o m e f s \wedge(\forall f \in$ set $f s . \exists N f s s . f=$ FBranch $N f s s)$
using map-Some-P by auto
qed
then obtain fss where those (map ? g gs) =Some fss $\forall f s \in$ set fss. $\forall f \in$ set fs. $\exists N$ fss. $f=$ FBranch N fss
using those-Some-P by blast
hence build-trees' bs $\omega k i I=$ Some (concat fss) $\forall f \in \operatorname{set}($ concat fss). $\exists N$ $f_{s s} . f=$ FBranch $N f_{s s}$
using simp by auto
thus ?thesis
by blast
qed
qed
done
thus ?thesis
by blast
qed
lemma wf-item-tree-build-trees':
assumes $(b s, \omega, k, i, I) \in w f$-trees-input
assumes wf-bins $\mathcal{G} \omega$ bs
assumes $k<$ length bs $i<$ length ($b s!k$)
assumes build-trees' bs $\omega k i I=$ Some $f s$
assumes $f \in$ set $f s$
assumes $t \in \operatorname{set}($ trees $f)$
shows wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t$
proof -
have wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t$
using assms
apply (induction arbitrary: $f s f t$ rule: build-trees'-induct $[$ OF assms(1)])
subgoal premises prems for $b s \omega k i f s f t$
proof -
define e where entry: $e=b s!k!i$
consider (Null) pointer $e=$ Null
\mid (Pre) \exists pre. pointer $e=$ Pre pre
\| (PreRed) $\exists p$ ps. pointer $e=$ PreRed p ps
by (metis pointer.exhaust)
thus ?thesis
proof cases
case Null
hence simp: build-trees' bs ω ki $I=$ Some ([FBranch (item-rule-head (item
e)) []])
using entry by simp
moreover have $f=$ FBranch (item-rule-head (item e)) []
using build-forest' $-\operatorname{simps}(1)$ Null prems $(8,9)$ entry by auto
ultimately have simp: $t=$ Branch (item-rule-head (item e)) []
using $\operatorname{prems(10)}$ by simp
have sound-ptrs ω bs
using prems(4) unfolding wf-trees-input-def by blast
hence predicts (item e)
using Null prems $(6,7)$ nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def by blast
hence item-dot (item e)=0
unfolding predicts-def by blast
thus ?thesis
using simp entry by simp
next
case Pre
then obtain pre where pre: pointer $e=$ Pre pre
by blast
have sound: sound-ptrs ω bs
using prems(4) unfolding wf-trees-input-def by blast
have scans: scans ωk (item (bs! $(k-1)$!pre)) (item e)
using entry pre prems $(6-7)$ 〈sound-ptrs ω bs〉 unfolding sound-ptrs-def sound-pre-ptr-def by simp
hence $*$:
item-rule-head $($ item $(b s!(k-1)!p r e))=$ item-rule-head $($ item e)
item-rule-body $($ item $(b s!(k-1)!p r e))=$ item-rule-body $($ item e)
item-dot (item $(b s!(k-1)!$ pre $))+1=$ item-dot (item e)
next-symbol (item (bs! (k-1)!pre)) $=$ Some ($\omega!(k-1)$)
unfolding scans-def inc-item-def by (simp-all add: item-rule-head-def item-rule-body-def)
have $w f:(b s, \omega, k-1$, pre, $\{$ pre $\}) \in$ wf-trees-input
using entry pre prems(4) wf-trees-input-pre by blast
then obtain pres where pres: build-trees' bs $\omega(k-1)$ pre $\{$ pre $\}=$ Some
$\forall f \in$ set pres. $\exists N$ fss. $f=$ FBranch N fss
using build-trees'-termination wf by blast
let ? $g=\lambda f$. case f of FBranch N fss \Rightarrow Some (FBranch N (fss @ [[FLeaf $(\omega!(k-1))]])) \mid-\Rightarrow$ None
have build-trees' bs ω kiI=those (map?g pres)
using entry pre pres by simp
hence $f s$: Some fs = those (map ?g pres)
using prems (8) by simp
then obtain f-pre $N f_{s s}$ where $N f s s: f=$ FBranch $N\left(f_{s s} @[[F L e a f\right.$ $(\omega!(k-1))]])$
f-pre $=$ FBranch N fss f-pre \in set pres
using those-map-FBranch-only fs pres(2) prems(9) by blast
define tss where tss: tss $=\operatorname{map}(\lambda f s$. concat $(\operatorname{map}(\lambda f$. trees f) fs)) fss
have trees (FBranch $N($ fss @ [[FLeaf $(\omega!(k-1))]]))=$
map $(\lambda t s$. Branch $N t s)[t s @[L e a f(\omega!(k-1))] . t s<-$ combinations tss $]$ by (subst tss, subst trees-append-single-singleton, simp)
moreover have $t \in \operatorname{set}($ trees (FBranch $N(f s s$ @ [[FLeaf $(\omega!(k-1))]])))$
using $N f s s(1)$ prems(10) by blast
ultimately obtain $t s$ where $t s: t=$ Branch $N(t s$ @ $[$ Leaf $(\omega!(k-1))]) \wedge$
$t s \in$ set (combinations tss)
by auto
have sound-ptrs ω bs
using prems(4) unfolding wf-trees-input-def by blast
hence pre < length $(b s!(k-1))$
using entry pre prems $(6,7)$ unfolding sound-ptrs-def sound-pre-ptr-def by (metis nth-mem)
moreover have $k-1<$ length bs
by (simp add: prems(6) less-imp-diff-less)
moreover have Branch N ts $\in \operatorname{set}$ (trees (FBranch $N f s s)$)
using ts tss by simp
ultimately have $I H:$ wfitem-tree \mathcal{G} (item (bs! $(k-1)$!pre)) (Branch N ts)
using $\operatorname{prems}(1,2,4,5)$ entry pre $\operatorname{Nfss}(2,3)$ wf pres(1) by blast
have map root-tree (ts @ [Leaf $(\omega!(k-1))])=$ map root-tree ts @ $[\omega!(k-1)]$ by simp
also have $\ldots=$ take (item-dot (item (bs!(k-1)!pre))) (item-rule-body (item $(b s!(k-1)!p r e)))$ @ $[\omega!(k-1)]$
using $I H$ by simp
also have $\ldots=$ take (item-dot (item (bs! $(k-1)!$ pre))) (item-rule-body (item e)) @ $[\omega!(k-1)]$
using $*$ (2) by simp
also have $\ldots=$ take $($ item-dot $($ item e)) (item-rule-body (item e))
using $*(2-4)$ by (auto simp: next-symbol-def is-complete-def split: if-splits; metis leI take-Suc-conv-app-nth)
finally have map root-tree (ts @ $[$ Leaf $(\omega!(k-1))])=$ take (item-dot (item e)) (item-rule-body (item e)).
hence wf-item-tree \mathcal{G} (item e) (Branch $N($ ts @ $[$ Leaf $(\omega!(k-1))]))$
using $I H *(1)$ by simp
thus ?thesis
using ts entry by fastforce
next
case PreRed
then obtain p where prered: pointer $e=\operatorname{PreRed} p$ ps
by blast
define $p s^{\prime}$ where $p s^{\prime}: p s^{\prime}=$ filter $\left(\lambda\left(k^{\prime}\right.\right.$, pre, red $)$. red $\left.\notin I\right)(p \# p s)$
define $g s$ where $g s: g s=$ group-by $\left(\lambda\left(k^{\prime}\right.\right.$, pre, red $) .\left(k^{\prime}\right.$, pre $\left.)\right)\left(\lambda\left(k^{\prime}\right.\right.$, pre, red). red) $p s^{\prime}$
let $? g=\lambda\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $)$.
do \{
pres \leftarrow build-trees' bs ωk^{\prime} pre $\{$ pre $\}$;
$r s s \leftarrow$ those (map (λ red. build-trees ${ }^{\prime}$ bs ωk red $(I \cup\{$ red $\left.\})\right)$ reds); those (map (λf.
case f of
FBranch $N f_{s s} \Rightarrow$ Some (FBranch $N\left(f_{s s} @[\right.$ concat rss]))
| - \Rightarrow None - impossible case
) pres
\}
have simp: build-trees' bs $\omega k i I=$ map-option concat (those (map ?g gs)) using entry prered ps^{\prime} gs by (subst build-trees'.simps) (auto simp del: filter.simps)
have $\forall f s o \in \operatorname{set}(m a p ? g$ gs $) . \exists f s . f s o=S o m e ~ f s \wedge(\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t)$
proof standard
fix $f s o$
assume fso \in set (map ? g gs)
moreover have $\forall p s \in$ set gs. $\exists f$ s. ? g ps $=$ Some fs $\wedge(\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t)$
proof standard
fix g
assume $g \in$ set $g s$
then obtain k^{\prime} pre reds where $g:\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $) \in$ set $g s\left(\left(k^{\prime}\right.\right.$, pre $)$, $r e d s)=g$
by (metis surj-pair)
moreover have wf-pre: $\left(b s, \omega, k^{\prime}\right.$, pre, $\{$ pre $\left.\}\right) \in$ wf-trees-input using wf-trees-input-prered-pre[OF prems(4) entry prered ps' gs g(1)] by blast
ultimately obtain pres where pres: build-trees' bs ωk^{\prime} pre $\{$ pre $\}=$ Some pres
$\forall f$-pre \in set pres. $\exists N$ fss. f-pre $=$ FBranch N fss
using build-trees'-termination by blast
have wf-reds: \forall red \in set reds. $(b s, \omega, k$, red, $I \cup\{r e d\}) \in w f$-trees-input
using wf-trees-input-prered-red $[$ OF prems(4) entry prered ps' gs $g(1)]$ by blast
hence $\forall f \in \operatorname{set}($ map (λ red. build-trees' bs ωk red $(I \cup\{$ red $\})$) reds). \exists a. $f=$ Some a
using build-trees'-termination by fastforce
then obtain rss where rss: Some rss $=$ those (map (λ red. build-trees ${ }^{\prime}$ bs ωk red $(I \cup\{r e d\}))$ reds $)$
using those-Some by (metis (full-types))
let $? h=\lambda f$. case f of FBranch $N f s s \Rightarrow$ Some (FBranch N (fss @ [concat rss])) | $-\Rightarrow$ None
have $\forall x \in \operatorname{set}$ (map ?h pres). $\exists a . x=$ Some a
using pres(2) by auto
then obtain $f s$ where $f s$: Some $f s=$ those (map ?h pres)
using those-Some by (smt (verit, best))
have $\forall f \in$ set fs. $\forall t \in$ set (trees $f)$. wf-item-tree \mathcal{G} (item (bs! $k!i)) t$
proof (standard, standard)
fix $f t$
assume ft: $f \in$ set fs $t \in$ set (trees f)
hence $\exists x . x \in$ set pres \wedge Some $f \in$ set (map ?h pres) using those-map-exists[OF fs ft(1)] by blast
then obtain f-pre $N f_{s s}$ where f-pre: f-pre \in set pres f-pre $=$ FBranch
N fss
$f=$ FBranch $N\left(f_{s s} @[\right.$ concat rss] $)$
using pres(2) by force
define tss where tss: tss $=\operatorname{map}(\lambda f s$. concat $(\operatorname{map}(\lambda f$. trees $f) f s)) f s s$
have trees $($ FBranch $N($ fss @ [concat rss] $))=$
map (λ ts. Branch N ts) [ts0 @ ts1.ts0 $<-$ combinations tss,
ts1 $<-$ combinations $[$ concat (map (λ f. trees f) (concat rss))]]
by (subst tss, subst trees-append-singleton, simp)
moreover have $t \in \operatorname{set}($ trees (FBranch $N($ fss @ [concat rss]))) using ft(2) f-pre(3) by blast
ultimately obtain ts0 ts1 where tsx: $t=$ Branch $N(t s 0 @[t s 1]) t s 0$ \in set (combinations tss)
ts $1 \in \operatorname{set}($ concat $(\operatorname{map}(\lambda f$.trees $f)($ concat rss $)))$ by fastforce
then obtain f-red where f-red: f-red \in set (concat rss) ts1 \in set (trees

```
f-red)
            by auto
                            obtain fs-red red where red: Some fs-red = build-trees' bs \omega k red (I
\cup red})
            f-red \in set fs-red red }\in\mathrm{ set reds
            using f-red(1) rss those-map-Some-concat-exists by fast
            then obtain N-red fss-red where f-red = FBranch N-red fss-red
            using build-trees'-termination wf-reds by (metis option.inject)
            then obtain ts where ts: Branch N-red ts =ts1
            using tsx(3) f-red by auto
            have (k', pre, red) \in set ps'
                            using group-by-forall-v-exists-k <((k', pre), reds) \in set gs` gs <red \in
set reds> by fast
                            hence mem: ( }\mp@subsup{k}{}{\prime},\mathrm{ pre, red ) & set ( }p#ps
            using ps' by (metis filter-set member-filter)
            have sound-ptrs \omegabs
                            using prems(4) wf-trees-input-def by fastforce
                            have bounds: k'<k pre < length (bs!k') red < length (bs!k)
            using prered entry prems(6,7) <sound-ptrs \omega bs`
                unfolding sound-ptrs-def sound-prered-ptr-def by (meson mem
nth-mem)+
    have completes: completes k (item (bs!k'pre)) (item e) (item (bs!k!red))
            using prered entry prems(6,7)〈sound-ptrs \omega bs〉
                unfolding sound-ptrs-def sound-prered-ptr-def by (metis mem
nth-mem)
            have transform:
            item-rule-head (item (bs!k'pre)) = item-rule-head (item e)
            item-rule-body (item (bs!k'!pre)) = item-rule-body (item e)
            item-dot (item (bs!k'pre)) + = = item-dot (item e)
            next-symbol (item (bs!k!pre)) = Some (item-rule-head (item (bs!k!red)))
            is-complete (item (bs!k!red))
            using completes unfolding completes-def inc-item-def
            by (auto simp: item-rule-head-def item-rule-body-def is-complete-def)
            have Branch N ts0 \in set (trees (FBranch N fss))
            using tss tsx(2) by simp
```



```
                using prems(2)[OF entry prered ps' gs <((k', pre), reds) \in set gs>
wf-pre prems(5)]
                pres(1) f-pre f-pre(3) bounds(1,2) prems(6) by fastforce
    have IH-r:wf-item-tree \mathcal{G (item (bs!k!red)) (Branch N-red ts)}
    using prems(3)[OF entry prered ps' gs <(( }\mp@subsup{k}{}{\prime},\mathrm{ pre ), reds) }\in\mathrm{ set gs〉<red
\epsilon set reds> - prems(5)]
                bounds(3) f-red(2) red ts wf-reds prems(6) by metis
                            have map root-tree (ts0 @ [Branch N-red ts]) = map root-tree ts0 @
[root-tree (Branch N-red ts)]
            by simp
            also have ... = take (item-dot (item (bs!k'pre))) (item-rule-body (item
(bs!k'!pre))) @ [root-tree (Branch N-red ts)]
            using IH-pre by simp
```

also have $\ldots=$ take $\left(\right.$ item-dot $\left(\right.$ item $\left(\right.$ bs! k^{\prime} !pre $\left.)\right)$) (item-rule-body (item (bs! k '!pre))) @ [item-rule-head (item (bs! $k!r e d)$)]
using $I H-r$ by simp
also have $\ldots=$ take (item-dot (item e)) (item-rule-body (item e))
using transform by (auto simp: next-symbol-def is-complete-def split: if-splits; metis leI take-Suc-conv-app-nth)
finally have roots: map root-tree (ts0 @ [Branch N-red ts]) = take (item-dot $($ item $e))($ item-rule-body $($ item $e))$.
have wf-item $\mathcal{G} \omega$ (item (bs! $k!$ red $)$) using prems $(5,6)$ bounds(3) unfolding wf-bins-def wf-bin-def wf-bin-items-def by (auto simp: items-def)
moreover have N-red $=$ item-rule-head (item (bs! $k!r e d)$)
using $I H-r$ by fastforce
moreover have map root-tree ts $=$ item-rule-body (item (bs!k!red))
using IH-r transform(5) by (auto simp: is-complete-def)
ultimately have $\exists r \in \operatorname{set}(\mathfrak{R} \mathcal{G})$. N-red $=$ rule-head $r \wedge$ map root-tree $t s=$ rule-body r
unfolding wf-item-def item-rule-body-def item-rule-head-def by blast
hence wf-rule-tree \mathcal{G} (Branch N-red ts)
using $I H-r$ by simp
hence wf-item-tree $\mathcal{G}($ item $(b s!k!i))($ Branch $N(t s 0 @[B r a n c h ~ N-r e d ~$ $t s])$)
using transform(1) roots IH-pre entry by simp
thus wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t$
using tsx (1) red ts by blast
qed
moreover have ? $g g=$ Some $f s$
using fs pres rss g by (auto, metis bind.bind-lunit)
ultimately show $\exists f s$. ? $g g=$ Some $f s \wedge(\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t)$
by blast
qed
ultimately show $\exists f$ s. fso $=$ Some $f s \wedge(\forall f \in$ set $f s . \forall t \in$ set $($ trees $f)$. wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t)$
using map-Some-P by auto
qed
then obtain fss where those (map ?g gs) =Some fss $\forall f s \in$ set fss. $\forall f \in$ set $f s . \forall t \in$ set (trees $f)$. wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t$
using those-Some-P by blast
hence build-trees' bs $\omega k i I=$ Some (concat fss) $\forall f \in \operatorname{set}($ concat fss). $\forall t$ \in set $($ trees $f)$. wf-item-tree $\mathcal{G}($ item $(b s!k!i)) t$
using simp by auto
thus ?thesis
using $\operatorname{prems}(8-10)$ by auto
qed
qed
done
thus ?thesis
by blast

qed

lemma wf-yield-tree-build-trees':
assumes $(b s, \omega, k, i, I) \in w f$-trees-input
assumes wf-bins $\mathcal{G} \omega$ bs
assumes $k<$ length bs $i<$ length ($b s!k$) $k \leq$ length ω
assumes build-trees' bs $\omega k i I=$ Some fs
assumes $f \in$ set $f s$
assumes $t \in$ set (trees f)
shows wf-yield-tree ω (item (bs! $k!i)) t$
proof -
have wf-yield-tree ω (item $(b s!k!i)) t$
using assms
apply (induction arbitrary: $f s f t$ rule: build-trees'-induct[OF $\operatorname{assms}(1)])$
subgoal premises prems for $b s \omega k i f s f t$
proof -
define e where entry: $e=b s!k!i$
consider (Null) pointer $e=$ Null
| (Pre) \exists pre. pointer $e=$ Pre pre
\mid (PreRed) $\exists p$ ps. pointer $e=$ PreRed p ps
by (metis pointer.exhaust)
thus ?thesis
proof cases
case Null
hence simp: build-trees' bs ω ki $I=$ Some ([FBranch (item-rule-head (item
e)) []])
using entry by simp
moreover have $f=$ FBranch (item-rule-head (item e)) []
using build-forest'-simps(1) Null prems $(9,10)$ entry by auto
ultimately have simp: $t=$ Branch (item-rule-head (item e)) []
using prems(11) by simp
have sound-ptrs ω bs
using prems(4) unfolding wf-trees-input-def by blast
hence predicts (item e)
using Null prems $(6,7)$ nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
thus ?thesis
unfolding wf-yield-tree-def predicts-def using simp entry by (auto simp:
slice-empty)
next
case Pre
then obtain pre where pre: pointer $e=$ Pre pre
by blast
have sound: sound-ptrs ω bs
using prems(4) unfolding wf-trees-input-def by blast
hence bounds: $k>0$ pre < length (bs! $(k-1))$
using entry pre prems $(6,7)$ unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)+
have scans: scans ωk (item $(b s!(k-1)!p r e))($ item e)
using entry pre prems $(6-7)$ 〈sound-ptrs ω bs〉 unfolding sound-ptrs-def sound-pre-ptr-def by simp
have $w f:(b s, \omega, k-1$, pre, $\{$ pre $\}) \in w f$-trees-input
using entry pre prems(4) wf-trees-input-pre by blast
then obtain pres where pres: build-trees' bs $\omega(k-1)$ pre $\{$ pre $\}=$ Some pres
$\forall f \in$ set pres. $\exists N$ fss. $f=$ FBranch N fss
using build-trees'-termination wf by blast
let ? $g=\lambda$. case f of FBranch $N f_{s s} \Rightarrow$ Some (FBranch $N(f s s$ @ [[FLeaf $(\omega!(k-1))]])) \mid-\Rightarrow$ None
have build-trees' bs ω ki $I=$ those (map ?g pres)
using entry pre pres by simp
hence $f s$: Some fs = those (map ?g pres)
using $\operatorname{prems}(9)$ by simp
then obtain f-pre $N f_{s s}$ where $N f s s: f=$ FBranch $N\left(f_{s s} @[[F L e a f\right.$ $(\omega!(k-1))]])$
f-pre $=$ FBranch N fss f-pre \in set pres
using those-map-FBranch-only fs pres(2) prems(10) by blast
define tss where tss: tss $=\operatorname{map}\left(\lambda f s\right.$. concat $(\operatorname{map}(\lambda f$. trees f) $f s)) f_{s s}$
have trees $($ FBranch $N(f s s$ @ $[[$ FLeaf $(\omega!(k-1))]]))=$
map (λ ts. Branch $N t s$) [$t s$ @ [Leaf $(\omega!(k-1))] . t s<-$ combinations tss $]$ by (subst tss, subst trees-append-single-singleton, simp)
moreover have $t \in \operatorname{set}($ trees (FBranch $N(f s s$ @ [[FLeaf $(\omega!(k-1))]])))$ using $N f s s(1)$ prems(11) by blast
ultimately obtain $t s$ where $t s: t=$ Branch $N(t s @[\operatorname{Leaf}(\omega!(k-1))]) \wedge$ ts \in set (combinations tss)
by auto
have sound-ptrs ω bs
using prems(4) unfolding wf-trees-input-def by blast
hence pre < length $(b s!(k-1))$
using entry pre prems $(6,7)$ unfolding sound-ptrs-def sound-pre-ptr-def by (metis nth-mem)
moreover have $k-1<$ length $b s$
by (simp add: prems(6) less-imp-diff-less)
moreover have Branch N ts $\in \operatorname{set}$ (trees (FBranch $N f_{s s}$))
using ts tss by simp
ultimately have $I H:$ wf-yield-tree ω (item (bs! $(k-1)!$ pre)) (Branch $N t s)$
using $\operatorname{prems}(1,2,4,5,8)$ entry pre $\operatorname{Nfss(2,3)}$ wf pres(1) by simp
have transform:
item-origin $($ item $(b s!(k-1)$!pre $)) \leq$ item-end $($ item $(b s!(k-1)!$ pre $))$
item-end (item (bs! $(k-1)$!pre $))=k-1$
item-end $($ item $e)=k$
using entry prems $(5,6,7)$ bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def items-def wf-item-def
by (auto, meson less-imp-diff-less nth-mem)
have yield-tree $t=$ concat (map yield-tree (ts @ [Leaf $(\omega!(k-1))])$)
by (simp add: ts)
also have $\ldots=$ concat (map yield-tree ts) @ $[\omega!(k-1)]$
by simp
also have $\ldots=$ slice (item-origin (item $(b s!(k-1)!p r e))$) (item-end (item $(b s!(k-1)!p r e))) \omega$ @ $[\omega!(k-1)]$
using $I H$ by (simp add: wf-yield-tree-def)
also have $\ldots=$ slice (item-origin (item (bs! $(k-1)$!pre))) (item-end (item $(b s!(k-1)!p r e))+1) \omega$
using slice-append-nth transform $\langle k>0\rangle \operatorname{prems}(8)$
by (metis diff-less le-eq-less-or-eq less-imp-diff-less less-numeral-extra(1))
also have $\ldots=$ slice (item-origin (item e)) (item-end (item (bs! (k-1)!pre)) +1) ω
using scans unfolding scans-def inc-item-def by simp
also have $\ldots=$ slice (item-origin (item e)) $k \omega$
using scans transform unfolding scans-def by (metis Suc-diff-1 Suc-eq-plus1 bounds(1))
also have $\ldots=\operatorname{slice}($ item-origin (item e)) (item-end (item e)) ω
using transform by auto
finally show ?thesis
using wf-yield-tree-def entry by blast
next
case PreRed
then obtain p ps where prered: pointer $e=\operatorname{PreRed} p$ ps
by blast
define $p s^{\prime}$ where $p s^{\prime}: p s^{\prime}=$ filter $\left(\lambda\left(k^{\prime}, p r e, r e d\right)\right.$. red $\left.\notin I\right)(p \# p s)$
define $g s$ where $g s: g s=$ group-by $\left(\lambda\left(k^{\prime}\right.\right.$, pre, red $) .\left(k^{\prime}\right.$, pre $\left.)\right)\left(\lambda\left(k^{\prime}\right.\right.$, pre, red). red) $p s^{\prime}$
let $? g=\lambda\left(\left(k^{\prime}, p r e\right)\right.$, reds $)$.
do \{
pres \leftarrow build-trees' bs ωk^{\prime} pre $\{$ pre $\}$;
$r s s \leftarrow$ those (map (λ red. build-trees ${ }^{\prime}$ bs ωk red $(I \cup\{$ red $\})$) reds);
those (map (λf.
case f of
FBranch N fss \Rightarrow Some (FBranch $N($ fss @ [concat rss]))
|- \Rightarrow None - impossible case
) pres)
\}
have simp: build-trees' bs $\omega k i I=$ map-option concat $($ those $($ map ? g gs) $)$ using entry prered $p s^{\prime}$ gs by (subst build-trees'. simps) (auto simp del: filter.simps)
have $\forall f s o \in \operatorname{set}(m a p$? g gs $) . \exists f$ s. fso $=$ Some fs $\wedge(\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-yield-tree $\omega($ item $(b s!k!i)) t$)
proof standard
fix $f s o$
assume fso $\in \operatorname{set}$ (map ?g gs)
moreover have $\forall p s \in$ set gs. $\exists f$ s. ? g ps $=$ Some fs $\wedge(\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-yield-tree $\omega($ item $(b s!k!i)) t)$
proof standard
fix g
assume $g \in$ set gs
then obtain k^{\prime} pre reds where $g:\left(\left(k^{\prime}\right.\right.$, pre $)$, reds $) \in$ set gs $\left(\left(k^{\prime}\right.\right.$, pre $)$,
$r e d s)=g$
by (metis surj-pair)
moreover have wf-pre: $\left(b s, \omega, k^{\prime}\right.$, pre, $\{$ pre $\left.\}\right) \in$ wf-trees-input
using wf-trees-input-prered-pre[OF prems(4) entry prered ps' gs $g(1)]$
by blast
ultimately obtain pres where pres: build-trees' bs ωk^{\prime} pre $\{$ pre $\}=$ Some pres
$\forall f$-pre \in set pres. $\exists N f_{s s} . f$-pre $=F B r a n c h ~ N f s s$
using build-trees'-termination by blast
have $w f$-reds: \forall red \in set reds. $(b s, \omega, k$, red, $I \cup\{r e d\}) \in w f$-trees-input using wf-trees-input-prered-red[OF prems(4) entry prered ps' gs $g(1)]$
by blast
hence $\forall f \in \operatorname{set}(\operatorname{map}(\lambda$ red. build-trees' bs ωk red $(I \cup\{r e d\}))$ reds).
$\exists a . f=$ Some a
using build-trees'-termination by fastforce
then obtain rss where rss: Some rss $=$ those (map (λ red. build-trees ${ }^{\prime}$ bs ωk red $(I \cup\{$ red $\}))$ reds $)$
using those-Some by (metis (full-types))
let $? h=\lambda f$. case f of FBranch $N f s s \Rightarrow$ Some (FBranch N (fss @ [concat rss])) | - \Rightarrow None
have $\forall x \in \operatorname{set}$ (map ? h pres). $\exists a . x=$ Some a
using pres(2) by auto
then obtain $f s$ where $f s$: Some $f s=$ those (map ?h pres)
using those-Some by (smt (verit, best))
have $\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-yield-tree ω (item (bs!k!i)) t
proof (standard, standard)
fix $f t$
assume ft: $f \in$ set fs $t \in$ set (trees f)
hence $\exists x . x \in$ set pres \wedge Some $f \in$ set (map ?h pres) using those-map-exists[OF fs ft(1)] by blast
then obtain f-pre $N f_{s s}$ where f-pre: f-pre \in set pres f-pre $=F B r a n c h$
N fss
$f=$ FBranch $N\left(f_{s s} @[\right.$ concat rss] $)$
using pres(2) by force
define tss where tss: tss $=\operatorname{map}(\lambda f s$. concat $(\operatorname{map}(\lambda f$. trees f) fs $)) f s s$
have trees $\left(\right.$ FBranch $N\left(f_{s s} @[\right.$ concat rss]) $)=$
map $(\lambda t s . B r a n c h ~ N t s)[t s 0 @ t s 1 . t s 0<-$ combinations tss,
ts1 $<-$ combinations $[$ concat (map $(\lambda f$. trees $f)($ concat rss) $)]]$
by (subst tss, subst trees-append-singleton, simp)
moreover have $t \in \operatorname{set}($ trees (FBranch $N($ fss @ [concat rss])))
using ft(2) f-pre(3) by blast
ultimately obtain ts0 ts1 where tsx: $t=$ Branch $N(t s 0 @[t s 1]) t s 0$ \in set (combinations tss)
$t s 1 \in \operatorname{set}($ concat $(\operatorname{map}(\lambda f$. trees $f)($ concat rss $)))$
by fastforce
then obtain f-red where f-red: f-red \in set (concat rss) ts1 \in set (trees f-red) by auto
obtain $f s$-red red where red: Some $f s$-red $=$ build-trees' $b s \omega k$ red (I $\cup\{r e d\})$

```
\(f\)－red \(\in\) set \(f s\)－red red \(\in\) set reds using \(f\)－red（1）rss those－map－Some－concat－exists by fast
then obtain \(N\)－red fss－red where \(f\)－red \(=F B r a n c h ~ N\)－red \(f_{s s}\)－red using build－trees＇－termination wf－reds by（metis option．inject）
then obtain \(t s\) where \(t s\) ：Branch \(N\)－red \(t s=t s 1\)
using tsx（3）\(f\)－red by auto
have \(\left(k^{\prime}\right.\) ，pre，red \() \in\) set \(p s^{\prime}\)
using group－by－forall－v－exists－k \(\left\langle\left(\left(k^{\prime}\right.\right.\right.\), pre \()\) ，reds \() \in\) set gs〉 gs \(\langle r e d \in\) set reds＞by fast
hence mem：\(\left(k^{\prime}\right.\), pre，red \() \in \operatorname{set}(p \# p s)\)
using \(p s^{\prime}\) by（metis filter－set member－filter）
have sound－ptrs \(\omega\) bs using prems（4）wf－trees－input－def by fastforce
have bounds：\(k^{\prime}<k\) pre \(<\) length（bs！\(k^{\prime}\) ）red \(<\) length（bs！k）
using prered entry prems \((6,7)\) 〈sound－ptrs \(\omega\) bs〉
unfolding sound－ptrs－def sound－prered－ptr－def by（meson mem
nth－mem）＋
have completes：completes \(k\)（item（bs！\(k^{\prime}\) ！pre））（item e）（item（bs！k！red））
using prered entry prems \((6,7)\)＜sound－ptrs \(\omega\) bs〉
unfolding sound－ptrs－def sound－prered－ptr－def by（metis mem nth－mem）
have transform：
item－rule－head \((\) item \((b s!k!\) pre \())=\) item－rule－head \((\) item e）
item－rule－body \(\left(\right.\) item \(\left(b s!k^{\prime}!\right.\) pre \(\left.)\right)=\) item－rule－body （item e）
item－dot \(\left(\right.\) item \(\left(b s!k^{\prime}!\right.\) pre \(\left.)\right)+1=\) item－dot（item e）
next－symbol \((\) item \((b s!k!p r e))=\) Some \((\) item－rule－head \((\) item \((b s!k!r e d)))\)
is－complete（item（bs！\(k!\) red））
using completes unfolding completes－def inc－item－def
by（auto simp：item－rule－head－def item－rule－body－def is－complete－def）
have Branch \(N\) ts \(0 \in \operatorname{set}(\) trees \((F B r a n c h ~ N f s s))\)
using tss tsx（2）by simp
hence \(I H\)－pre：wf－yield－tree \(\omega\)（item（bs！\(k\) ！pre））（Branch \(N\) ts0）
using prems（2）［OF entry prered ps＇gs \(\left\langle\left(\left(k^{\prime}\right.\right.\right.\), pre \()\) ，reds \() \in\) set gs \(\rangle\)
wf－pre prems（5）］
\(\operatorname{pres}(1) f\)－pre \(f\)－pre（3）bounds \((1,2) \operatorname{prems}(6,8)\) by simp
have \(I H\)－r：wf－yield－tree \(\omega\)（item（bs！\(k!\) red））（Branch \(N\)－red ts）
using prems（3）［OF entry prered ps \({ }^{\prime}\) gs \(\left\langle\left(\left(k^{\prime}\right.\right.\right.\), pre \()\) ，reds \() \in\) set gs〉〈red \(\in\) set reds＞－ \(\operatorname{prems(5)]}\)
bounds（3）f－red（2）red ts wf－reds prems \((6,8)\) by metis
have wf1：
item－origin \((\) item \((b s!k!p r e)) \leq\) item－end \((\) item \((b s!k!p r e))\) item－origin \((\) item \((b s!k!r e d)) \leq i t e m-e n d(i t e m ~(b s!k!r e d))\)
using prems（5－7）bounds unfolding wf－bins－def wf－bin－def
wf－bin－items－def items－def wf－item－def
by（metis length－map nth－map nth－mem order－less－trans）＋
have \(w f 2\) ：
item－end \((\) item \((b s!k!r e d))=k\)
item－end \((\) item \((b s!k!i))=k\)
using prems（5－7）bounds unfolding wf－bins－def wf－bin－def
```

wf-bin-items-def items-def by simp-all
have yield-tree $t=$ concat $($ map yield-tree $(t s 0 @[$ Branch N-red ts])) by (simp add: ts tsx(1))
also have $\ldots=$ concat (map yield-tree ts0) @ yield-tree (Branch N-red ts)
by simp
also have $\ldots=\operatorname{slice}($ item-origin $($ item $(b s!k!$ pre $))$ (item-end (item $\left.\left.\left(b s!k^{\prime}!p r e\right)\right)\right) \omega$ @
slice (item-origin (item (bs!k!red))) (item-end (item (bs!k!red))) ω using IH-pre IH-r by (simp add: wf-yield-tree-def)
also have...$=$ slice (item-origin (item (bs! k ! pre))) (item-end (item (bs!k!red))) ω using slice-concat wf1 completes-def completes by (metis (no-types, lifting))
also have $\ldots=$ slice $($ item-origin $($ item $e))($ item-end $($ item $(b s!k!r e d)))$ ω
using completes unfolding completes-def inc-item-def by simp also have $\ldots=$ slice (item-origin (item e)) (item-end (item e)) ω using wfo entry by presburger
finally show wf-yield-tree ω (item (bs!k!i))t using wf-yield-tree-def entry by blast
qed
moreover have ? $g g=$ Some $f s$
using fs pres rss g by (auto, metis bind.bind-lunit)
ultimately show $\exists f s$. ? $g g=$ Some $f s \wedge(\forall f \in$ set fs. $\forall t \in$ set (trees $f)$. wf-yield-tree ω (item (bs!k!i))t) by blast
qed
ultimately show $\exists f$ s. fso $=$ Some $f s \wedge(\forall f \in$ set $f s . \forall t \in$ set (trees $f)$. wf-yield-tree ω (item $(b s!k!i)) t)$
using map-Some-P by auto
qed
then obtain fss where those (map ?g gs) = Some fss $\forall f s \in$ set fss. $\forall f \in$ set fs. $\forall t \in$ set (trees f). wf-yield-tree ω (item (bs!k!i))t
using those-Some-P by blast
hence build-trees' bs ω kiI $=$ Some (concat fss) $\forall f \in$ set (concat fss). $\forall t$ \in set (trees f). wf-yield-tree ω (item $(b s!k!i)) t$
using simp by auto
thus ?thesis
using $\operatorname{prems}(9-11)$ by auto
qed
qed
done
thus ?thesis
using assms(2) by blast
qed
theorem wf-rule-root-yield-tree-build-trees:
assumes wf-bins $\mathcal{G} \omega$ bs sound-ptrs ω bs length bs length $\omega+1$

```
    assumes build-trees \mathcal{G }\omega\mathrm{ bs=Some fs f fet fst fet (trees f)})
    shows wf-rule-tree \mathcal{G}t\wedge root-tree t= S\mathcal{G}\wedge yield-tree t=\omega
proof -
    let ?k = length bs - 1
```



```
(items (bs!?k))
    have #: Some fs = map-option concat (those (map (\lambda(-, i). build-trees' bs \omega ?k
i {i}) finished))
    using assms(4) build-trees-def finished-def by (metis (full-types))
    then obtain fss fs'' where fss:Some fss = those (map ( }\lambda(-,i).\mathrm{ . build-trees' bs }
?k i {i}) finished)
    fs'
    using map-option-concat-those-map-exists assms(5) by fastforce
    then obtain xi where *:(x,i) \in set finished Some fs' = build-trees' bs \omega
(length bs - 1) i{i}
    using those-map-exists[OF fss(1,2)] by auto
    have k: ?k < length bs ? k\leq length }
    using assms(3) by simp-all
    have i:i< length (bs!?k)
    using index-filter-with-index-lt-length * items-def finished-def by (metis (no-types,
opaque-lifting) length-map)
    have x: x = item (bs!?k!i)
        using * i filter-with-index-nth items-def nth-map finished-def assms(3) by metis
    have finished: is-finished \mathcal{G }\omegax
        using * filter-with-index-P finished-def by metis
    have {i}\subseteq{0..<length (bs!?k)}
        using atLeastLessThan-iff i by blast
    hence wf:(bs,\omega,?k, i,{i})\in wf-trees-input
        unfolding wf-trees-input-def using assms(2) ik(1) by simp
    hence wf-item-tree: wf-item-tree \mathcal{G (item (bs!?k!i)) t}\t)
        using wf-item-tree-build-trees' assms(1,2,5,6) ik(1) x*(2) fss(3) by metis
    have wf-item:wf-item \mathcal{G }\omega\mathrm{ (item (bs!?k!i))}\mathrm{ )}\mathrm{ (in})
        using k(1) i assms(1) unfolding wf-bins-def wf-bin-def wf-bin-items-def by
(simp add: items-def)
    obtain Nfss where Nfss: f=FBranch N fss
    using build-trees'-termination[OF wf] by (metis *(2) fss(3) option.inject)
    then obtain ts where ts: t= Branch N ts
        using assms(6) by auto
    hence N}=\mathrm{ item-rule-head x
        map root-tree ts = item-rule-body x
        using finished wf-item-tree x by (auto simp: is-finished-def is-complete-def)
    hence \existsr\in set (\Re\mathcal{G). N = rule-head r ^ map root-tree ts = rule-body r}
        using wf-item x unfolding wf-item-def item-rule-body-def item-rule-head-def
by blast
    hence wf-rule: wf-rule-tree \mathcal{G t}
    using wf-item-tree ts by simp
    have root: root-tree t=\subseteq SG
    using finished ts }\langleN=\mathrm{ item-rule-head x> by (auto simp: is-finished-def)
    have yield-tree t=slice (item-origin (item (bs!?k!i))) (item-end (item (bs!?k!i)))
```


ω

using $k i \operatorname{assms}(1,6)$ wf wf-yield-tree-build-trees' wf-yield-tree-def *(2) fss(3) by (smt (verit, best))
hence yield: yield-tree $t=\omega$
using finished x unfolding is-finished-def by simp
show ?thesis
using * wf-rule root yield assms(4) unfolding build-trees-def by simp qed
corollary wf-rule-root-yield-tree-build-trees-Earley ${ }_{L}$:
assumes wf-G \mathcal{G} nonempty-derives \mathcal{G}
assumes build-trees $\mathcal{G} \omega\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)=$ Some fs $f \in$ set fs $t \in$ set (trees f)
shows wf-rule-tree $\mathcal{G} t \wedge$ root-tree $t=\mathfrak{S} \mathcal{G} \wedge$ yield-tree $t=\omega$
using assms wf-rule-root-yield-tree-build-trees wf-bins-Earley ${ }_{L}$ Earley $_{L}$-def length-Earley L_{L}-bins length-bins-Init L_{L} sound-mono-ptrs-Earley ${ }_{L}$
by (metis dual-order.eq-iff)
theorem soundness-build-trees-Earley ${ }_{L}$:
assumes wf-G \mathcal{G} is-word $\mathcal{G} \omega$ nonempty-derives \mathcal{G}
assumes build-trees $\mathcal{G} \omega\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)=$ Some fs $f \in$ set fs $t \in \operatorname{set}$ (trees f)
shows derives $\mathcal{G}[\mathfrak{S} \mathcal{G}] \omega$
proof -
let $? k=$ length $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)-1$
define finished where finished-def: finished $=$ filter-with-index (is-finished $\mathcal{G} \omega$)
(items $\left(\left(\right.\right.$ Earley $\left.\left.\left._{L} \mathcal{G} \omega\right)!? k\right)\right)$
have \#: Some fs = map-option concat (those (map ($\lambda(-, i)$. build-trees ${ }^{\prime}$ Earley $_{L}$ $\mathcal{G} \omega) \omega$? $k i\{i\})$ finished))
using assms(4) build-trees-def finished-def by (metis (full-types))
then obtain $f_{s s} f_{s}{ }^{\prime}$ where $f_{s s}$: Some $f_{s s}=$ those $\left(\operatorname{map}\left(\lambda(-, i)\right.\right.$. build-trees ${ }^{\prime}$ $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right) \omega$?k $\left.i\{i\}\right)$ finished)
$f s^{\prime} \in$ set fss $f \in$ set fs ${ }^{\prime}$
using map-option-concat-those-map-exists assms(5) by fastforce
then obtain $x i$ where $*:(x, i) \in$ set finished Some $f_{s}{ }^{\prime}=$ build-trees $^{\prime}\left(\right.$ Earley $_{L}$
$\mathcal{G} \omega) \omega$? $k i\{i\}$
using those-map-exists $\left[\operatorname{OF} f_{s s}(1,2)\right]$ by auto
have k : ? $k<$ length $\left(\right.$ Earley $\left._{L} \mathcal{G} \omega\right)$? $k \leq$ length ω by (simp-all add: Earley L_{L}-def assms(1))
have $i: i<$ length $\left(\left(\right.\right.$ Earley $\left.\left._{L} \mathcal{G} \omega\right)!? k\right)$
using index-filter-with-index-lt-length $*$ items-def finished-def by (metis length-map)
have $x: x=$ item $\left(\left(\right.\right.$ Earley $\left.\left._{L} \mathcal{G} \omega\right)!? k!i\right)$
using $* i$ filter-with-index-nth items-def nth-map finished-def by metis
have finished: is-finished $\mathcal{G} \omega x$
using $*$ filter-with-index- P finished-def by metis
moreover have $x \in \operatorname{set}\left(\right.$ items $^{\left.\left(\left(\text {Earley }_{L} \mathcal{G} \omega\right)!? k\right)\right) ~}$
using x by (auto simp: items-def; metis One-nat-def i imageI nth-mem)
ultimately have recognizing (bins $\left(\right.$ Earley $\left.\left._{L} \mathcal{G} \omega\right)\right) \mathcal{G} \omega$
by (meson k (1) kth-bin-sub-bins recognizing-def subsetD)
thus ?thesis
using correctness-Earley ${ }_{L}$ assms by blast

qed

```
theorem termination-build-tree-Earley }\mp@subsup{L}{L}{
    assumes wf-\mathcal{G G}}\mathrm{ nonempty-derives }\mathcal{G}\mathrm{ derives }\mathcal{G}[\mathfrak{S G}]
    shows \existsfs. build-trees }\mathcal{G}\omega(\mp@subsup{\mathrm{ Earley }}{L}{}\mathcal{G}\omega)=\mathrm{ Some fs
proof -
    let ?k = length (Earley }\mp@subsup{L}{L}{}\mathcal{G}\omega)-
    define finished where finished-def: finished = filter-with-index (is-finished \mathcal{G }\omega)
(items ((Earley L \mathcal{G \omega)!?k))}
    have }\forallf\in\mathrm{ set finished. (Earley }\mp@subsup{L}{\mathcal{G}}{\mathcal{G}}\omega,\omega,?k,\mathrm{ snd f, {snd f}) }\in\mathrm{ wf-trees-input
    proof standard
        fix }
    assume a:f\in set finished
    then obtain xi where *: (x,i)=f
            by (metis surj-pair)
    have sound-ptrs \omega (Earley }\mp@subsup{\mathcal{L}}{\mathcal{G}}{\omega}\omega
            using sound-mono-ptrs-Earley }\mp@subsup{L}{L}{}\mathrm{ assms by blast
    moreover have ?k< length (Earley L G \omega)
            by (simp add: Earley }\mp@subsup{L}{L}{-def assms(1))
    moreover have i< length ((Earley L\mathcal{G }\omega)!?\mp@code{)}
            using index-filter-with-index-lt-length a * items-def finished-def by (metis
length-map)
    ultimately show (Earley }\mp@subsup{L}{L}{}\mathcal{G}\omega,\omega,?k,\mathrm{ snd f},{\mathrm{ snd f}) }\in\mathrm{ wf-trees-input
            using * unfolding wf-trees-input-def by auto
    qed
    hence }\forallfso \in set (map (\lambda(-, i). build-trees' (Earley L\mathcal{G \omega) \omega ?k i {i}) finished).
\existsf. fso = Some fs
    using build-trees'-termination by fastforce
    then obtain fss where fss:Some fss = those (map ( }\lambda(-,i).\mp@subsup{\mathrm{ build-trees' }}{}{\prime}(\mp@subsup{\mathrm{ Earley }}{L}{
G \omega) \omega?k i {i}) finished)
    by (smt (verit, best) those-Some)
    then obtain fs where fs: Some fs = map-option concat (those (map ( }\lambda(-,i)
build-trees'(Earley }\mp@subsup{\mp@code{G}}{\mathcal{G}}{\omega})\omega\mathrm{ ? ?k i {i}) finished))
    by (metis map-option-eq-Some)
    show ?thesis
    using finished-def fss fs build-trees-def by (metis (full-types))
qed
end
theory Examples
    imports Earley-Parser
begin
```


10 Epsilon productions

definition ε-free :: 'a cfg \Rightarrow bool where
ε-free $\mathcal{G} \longleftrightarrow(\forall r \in \operatorname{set}(\mathfrak{R} \mathcal{G})$. rule-body $r \neq[])$
lemma ε-free-impl-non-empty-sentence-deriv:

```
    \(\varepsilon\)-free \(\mathcal{G} \Longrightarrow a \neq[] \Longrightarrow \neg\) Derivation \(\mathcal{G}\) a \(D[]\)
```

proof (induction length D arbitrary: a D rule: nat-less-induct)
case 1
show? case
proof (rule ccontr)
assume assm: $\neg \neg$ Derivation \mathcal{G} a $D[]$
show False
proof (cases $D=[])$
case True
then show ?thesis
using 1.prems(2) assm by auto
next
case False
then obtain $d D^{\prime} \alpha$ where *:
$D=d \# D^{\prime}$ Derives1 $\mathcal{G} a($ fst $d)($ snd $d) \alpha$ Derivation $\mathcal{G} \alpha D^{\prime}[]$ snd $d \in$
set $(\mathfrak{R} \mathcal{G})$
using list.exhaust assm Derives1-def by (metis Derivation.simps(2))
show ?thesis
proof cases
assume $\alpha=[]$
thus ?thesis
using $*(2,4)$ Derives1-split ε-free-def rule-body-def 1.prems(1) by (metis
append-is-Nil-conv)
next
assume $\neg \alpha=[]$
thus ?thesis
using $*(1,3)$ 1.hyps 1.prems(1) by auto
qed
qed
qed
qed
lemma ε-free-impl-non-empty-deriv:
ε-free $\mathcal{G} \Longrightarrow \forall N \in \operatorname{set}(\mathfrak{N} \mathcal{G}) . \neg$ derives $\mathcal{G}[N][]$
using ε-free-impl-non-empty-sentence-deriv derives-implies-Derivation by (metis
not-Cons-self2)
lemma nonempty-deriv-impl-\&-free:
assumes $\forall N \in \operatorname{set}(\mathfrak{N} \mathcal{G}) . \neg \operatorname{derives} \mathcal{G}[N][] \forall(N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G}) . N \in \operatorname{set}(\mathfrak{N}$
G)
shows ε-free \mathcal{G}
proof (rule ccontr)
assume $\neg \varepsilon$-free \mathcal{G}
then obtain $N \alpha$ where $*:(N, \alpha) \in \operatorname{set}(\mathfrak{R} \mathcal{G})$ rule-body $(N, \alpha)=[]$
unfolding ε-free-def by auto
hence derives1 $\mathcal{G}[N][]$
unfolding derives1-def rule-body-def by auto
hence derives $\mathcal{G}[N][]$
by auto


```
        using *(1) assms(2) by blast
    ultimately show False
    using assms(1) by blast
qed
lemma nonempty-deriv-iff-\varepsilon-free:
    assumes }\forall(N,\alpha)\in\operatorname{set}(\mathfrak{R}\mathcal{G}).N\in\operatorname{set}(\mathfrak{N G}
    shows }(\forallN\in\operatorname{set}(\mathfrak{N G}).\neg\mathrm{ derives }\mathcal{G}[N][])\longleftrightarrow\varepsilon\mathrm{ -free }\mathcal{G
    using \varepsilon-free-impl-non-empty-deriv nonempty-deriv-impl-\varepsilon-free[OF - assms] by
blast
```


11 Example 1: Addition

```
datatype t1 =x | plus
datatype n1 =S
datatype s1 = Terminal t1 | Nonterminal n1
definition nonterminals1 :: s1 list where
    nonterminals1 = [Nonterminal S]
definition terminals1 :: s1 list where
    terminals1 = [Terminal x, Terminal plus]
definition rules1 :: s1 rule list where
    rules1 = [
        (Nonterminal S, [Terminal x]),
        (Nonterminal S, [Nonterminal S, Terminal plus, Nonterminal S])
    ]
definition start-symbol1 :: s1 where
    start-symbol1 = Nonterminal S
definition cfg1 :: s1 cfg where
    cfg1 = CFG nonterminals1 terminals1 rules1 start-symbol1
definition inp1 :: s1 list where
    inp1 = [Terminal x, Terminal plus,Terminal x,Terminal plus,Terminal x]
lemmas cfg1-defs = cfg1-def nonterminals1-def terminals1-def rules1-def start-symbol1-def
lemma wf-\mathcal{G 1:}
    wf-G cfg1
    by (auto simp:wf-\mathcal{G-defs cfg1-defs)}
lemma is-word-inp1:
    is-word cfg1 inp1
    by (auto simp: is-word-def is-terminal-def cfg1-defs inp1-def)
```

lemma nonempty-derives1:
nonempty-derives cfg1
by (auto simp: ε-free-def cfg1-defs rule-body-def nonempty-derives-def ε-free-impl-non-empty-deriv)
lemma correctness1:
recognizing (bins (Earley ${ }_{L}$ cfg1 inp1)) cfg1 inp1 \longleftrightarrow derives cfg1 [\mathfrak{S} cfg1] inp1 using correctness-Earley L_{L} wf-G1 is-word-inp1 nonempty-derives1 by blast
lemma wf-tree1:
assumes build-tree cfg1 inp1 $\left(\right.$ Earley $_{L}$ cfg1 inp1) $=$ Some t
shows wf-rule-tree cfg1 $t \wedge$ root-tree $t=\mathfrak{S}$ cfg1 \wedge yield-tree $t=$ inp1
using assms nonempty-derives1 wf-G 1 wf-rule-root-yield-tree-build-tree-Earley ${ }_{L}$ by blast

lemma correctness-tree1:

$\left(\exists\right.$ t. build-tree cfg1 inp1 $\left(\right.$ Earley $_{L}$ cfg1 inp1) $=$ Some $\left.t\right) \longleftrightarrow$ derives cfg1 [\mathfrak{S} cfg1] inp1
using correctness-build-tree-Earley L_{L} is-word-inp1 nonempty-derives1 wf-G1 by blast
lemma wf-trees1:
assumes build-trees cfg1 inp1 $\left(\right.$ Earley $_{L}$ cfg1 inp1) $=$ Some fs $f \in$ set fs $t \in$ set (trees f)
shows wf-rule-tree cfg1 $t \wedge$ root-tree $t=\mathfrak{S}$ cfg1 \wedge yield-tree $t=$ inp1
using assms nonempty-derives1 wf-G 1 wf-rule-root-yield-tree-build-trees-Earley ${ }_{L}$ by blast
lemma soundness-trees1:
assumes build-trees cfg1 inp1 (Earley ${ }_{L}$ cfg1 inp1) $=$ Some fs $f \in$ set fs $t \in$ set (trees f)
shows derives cfg1 [\mathfrak{S} cfg1] inp1
using assms is-word-inp1 nonempty-derives1 soundness-build-trees-Earley ${ }_{L}$ wf-G1
by blast

12 Example 2: Cyclic reduction pointers

datatype $t 2=x$
datatype $n 2=A \mid B$
datatype $s 2=$ Terminal t2 \mid Nonterminal n2
definition nonterminals2 :: s2 list where
nonterminals2 $=[$ Nonterminal A, Nonterminal B]
definition terminals2 :: s2 list where
terminals2 $=[$ Terminal $x]$
definition rules2 :: s2 rule list where
rules2 $=$ [
(Nonterminal B, [Nonterminal A]),

```
    (Nonterminal A, [Nonterminal B]),
    (Nonterminal A, [Terminal x])
    ]
definition start-symbol2 :: s2 where
    start-symbol2 = Nonterminal A
definition cfg2 :: s2 cfg where
    cfg2 = CFG nonterminals2 terminals2 rules2 start-symbol2
definition inp2 :: s2 list where
    inp2 = [Terminal x]
lemmas cfg2-defs = cfg2-def nonterminals2-def terminals2-def rules2-def start-symbol2-def
lemma wf-\mathcal{G}2:
    wf-G cfg2
    by (auto simp:wf-\mathcal{G-defs cfg2-defs)}
lemma is-word-inp2:
    is-word cfg2 inp2
    by (auto simp: is-word-def is-terminal-def cfg2-defs inp2-def)
lemma nonempty-derives2:
    nonempty-derives cfg2
    by (auto simp: \varepsilon-free-def cfg2-defs rule-body-def nonempty-derives-def \varepsilon-free-impl-non-empty-deriv)
lemma correctness2:
    recognizing (bins (Earley y cfg2 inp2)) cfg2 inp2 \longleftrightarrow < derives cfg2 [S cfg2] inp2
    using correctness-Earley L wf-\mathcal{G2 is-word-inp2 nonempty-derives2 by blast}
lemma wf-tree2:
    assumes build-tree cfg2 inp2 (Earley L cfg2 inp2) = Some t
    shows wf-rule-tree cfg2 t ^ root-tree t=\mathfrak{S cfg2 ^ yield-tree t = inp2}
    using assms nonempty-derives2 wf-\mathcal{G2 wf-rule-root-yield-tree-build-tree-Earley }
by blast
lemma correctness-tree2:
    (\exists t. build-tree cfg2 inp2 (Earley L cfg2 inp2) = Some t) \longleftrightarrow derives cfg2 [S 
cfg2] inp2
    using correctness-build-tree-Earley }\mp@subsup{L}{L}{}\mathrm{ is-word-inp2 nonempty-derives2 wf-G2 by
blast
lemma wf-trees2:
    assumes build-trees cfg2 inp2 (Earley L cfg2 inp2) = Some fs f f set fs t\in set
(trees f)
    shows wf-rule-tree cfg2 t ^ root-tree t=S cfg2 ^ yield-tree t=inp2
    using assms nonempty-derives2 wf-G 2 wf-rule-root-yield-tree-build-trees-Earley }\mp@subsup{L}{}{\prime
by blast
```

lemma soundness-trees2:
assumes build-trees cfg2 inp2 $\left(\right.$ Earley $_{L}$ cfg2 inp2) $=$ Some fs $f \in$ set fs $t \in$ set (trees f)
shows derives cfg2 [ऽ cfg2] inp2
using assms is-word-inp2 nonempty-derives2 soundness-build-trees-Earley ${ }_{L}$ wf-G. 2 by blast
end

References

[1] J. Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94102, 1970.
[2] C. B. Jones. Formal development of correct algorithms: An example based on earley's recogniser. In Proceedings of ACM Conference on Proving Assertions about Programs, page 150169, New York, NY, USA, 1972. Association for Computing Machinery.
[3] S. Obua. Local lexing. Archive of Formal Proofs, 2017. https://isa-afp. org/entries/LocalLexing.html, Formal proof development.
[4] S. Obua, P. Scott, and J. Fleuriot. Local lexing, 2017.
[5] E. Scott. Sppf-style parsing from earley recognisers. Electronic Notes in Theoretical Computer Science, 203(2):53-67, 2008. Proceedings of the Seventh Workshop on Language Descriptions, Tools, and Applications (LDTA 2007).

