Earley

Martin Rau

September 13, 2023

Abstract

In 1968 Earley [1] introduced his parsing algorithm capable of pars-
ing all context-free grammars in cubic space and time. This entry con-
tains a formalization of an executable Earley parser. We base our devel-
opment on Jones’ [2] extensive paper proof of Earley’s recognizer and
the formalization of context-free grammars and derivations of Obua
[4] [3]. We implement and prove correct a functional recognizer mod-
eling Earley’s original imperative implementation and extend it with
the necessary data structures to enable the construction of parse trees
following the work of Scott [5]. We then develop a functional algorithm
that builds a single parse tree and prove its correctness. Finally, we
generalize this approach to an algorithm for a complete parse forest
and prove soundness.

Contents

1 Slightly adjusted content from AFP /LocalLexing
2 Adjusted content from AFP /LocalLexing

3 Adjusted content from AFP /LocalLexing

4 Additional derivation lemmas

5 Slices

6 Earley recognizer

6.1 Earleyitems.
6.2 Well-formedness
6.3 Soundness
6.4 Completeness
6.5 Correctness e
6.6 Finiteness

7 Earley recognizer 23

7.1 FEarley fixpoint 23
7.2 Monotonicity and Absorption 24
7.3 Soundness 28
7.4 Completeness L 29
7.5 Correctness e 34
8 Earley recognizer 34
8.1 Listauxilaries 34
8.2 Definitions. 36
83 Binlemmas 38
8.4 Well-formed bins 48
85 Soundmness 60
8.6 Completenesso 66
8.7 Correctness e 86
9 Earley parser 87
9.1 Pointer lemmas o 87
9.2 Common Definitions 99
9.3 foldllemmas 101
9.4 Parsetree 103
9.5 those, map, map option lemmas 117
9.6 Parsetrees 121
10 Epsilon productions 145
11 Example 1: Addition 147
12 Example 2: Cyclic reduction pointers 148

theory Limit
imports Main
begin

1 Slightly adjusted content from AFP /LocalLex-

ing

fun funpower ::
funpower f 0 x
| funpower f (Su

('a = 'a) = nat = (‘a = 'a) where
=z
cn) z=f (funpower f n x)

definition natUnion :: (nat = ‘a set) = 'a set where
natUnion f = { fn|n. True}

definition limit
limit f ¢ = nat

i ('a set = 'a set) = 'a set = 'a set where
Union (A n. funpower fn x)

definition setmonotone :: (a set = 'a set) = bool where
setmonotone f = (V X. X C f X)

lemma subset-setmonotone: setmonotone f = X C f X
by (simp add: setmonotone-def)

lemma funpower-id [simp]: funpower id n = id
by (rule ext, induct n, simp-all)

lemma limit-id [simp]: limit id = id
by (rule ext, auto simp add: limit-def natUnion-def)

definition chain :: (nat = ‘a set) = bool
where

chain C = (V i. Ci C C (i + 1))

definition continuous :: (a set = 'b set) = bool
where
continuous f = (V C. chain C — (chain (f o C) A f (natUnion C) = natUnion

(fo ©))

lemma natUnion-upperbound:
(A n. fnC G) = (natUnion f) C G
by (auto simp add: natUnion-def)

lemma funpower-upperbound:
N[.LICG= fICG)=ICG= funpower fnl C G
proof (induct n)
case 0 thus ?case by simp
next
case (Suc n) thus ?case by simp
qed

lemma limit-upperbound:
ANILICG=fICG =ICG=IlmitfICG
by (simp add: funpower-upperbound limit-def natUnion-upperbound)

lemma elem-limit-simp: x € limit f X = (3 n. x € funpower f n X)
by (auto simp add: limit-def natUnion-def)

definition pointwise :: ('a set = 'b set) = bool where
pointwise f = (VY X. fX = { f{z} | z. z € X})

lemma natUnion-elem: v € f n = = € natUnion f
using natUnion-def by fastforce

lemma limit-elem: x € funpower fn X = x € limit f X
by (simp add: limit-def natUnion-elem)

definition pointbase :: ('a set = 'b set) = 'a set = 'b set where
pointbase FI =) { FX | X. finite X N X C I}

definition pointbased :: ('a set = 'b set) = bool where
pointbased f = (3 F. f = pointbase F)

lemma chain-implies-mono: chain C = mono C
by (simp add: chain-def mono-iff-le-Suc)

lemma setmonotone-implies-chain-funpower:
assumes setmonotone: setmonotone f
shows chain (A n. funpower fn I)
by (simp add: chain-def setmonotone subset-setmonotone)

lemma natUnion-subset: (A\ n. 3 m. fn C g m) = natUnion f C natUnion g
by (meson natUnion-elem natUnion-upperbound subset-iff)

lemma natUnion-eq[case-names Subset Superset]:
(An.3m. fnCgm)= (A n 3 m. gnCfm)= natUnion f = natUnion

g
by (simp add: natUnion-subset subset-antisym)

lemma natUnion-shift[symmetric|:
assumes chain: chain C
shows natUnion C = natUnion (A n. C (n + m))
proof (induct rule: natUnion-eq)
case (Subset n)
show ?case using chain chain-implies-mono le-addl mono-def by blast
next
case (Superset n)
show ?case by blast
qed

definition regular :: (‘a set = 'a set) = bool
where
reqular f = (setmonotone f A continuous f)

lemma regular-fixpoint:
assumes reqular: regular f
shows f (limit f I) = limit f I
proof —
have setmonotone: setmonotone f using reqular reqular-def by blast
have continuous: continuous f using regular reqular-def by blast

let 2C = X\ n. funpower fn I
have chain: chain ?C

by (simp add: setmonotone setmonotone-implies-chain-funpower)
have f (limit f I) = f (natUnion ?2C)

using limit-def by metis

also have f (natUnion ?C) = natUnion (f o ?C)
by (metis continuous continuous-def chain)

also have natUnion (f o YC) = natUnion (A n. f(funpower fn I))
by (meson comp-apply)

also have natUnion (A n. f(funpower fn I)) = natUnion (A n. 2C (n + 1))
by simp

also have natUnion (A n. ?C(n + 1)) = natUnion ?C
by (metis (no-types, lifting) Limit.chain-def chain natUnion-eq)

finally show ?thesis by (simp add: limit-def)

qed

lemma fiz-is-fiz-of-limit:
assumes fixpoint: fI =1
shows limit fI =1
proof —
have funpower: A\ n. funpower fn I =1
proof —
fix n :: nat
from fizpoint show funpower fn I = 1
by (induct n, auto)
qged
show ?thesis by (simp add: limit-def funpower natUnion-def)
qed

lemma limit-is-idempotent: reqular f = limit f (limit f I) = limdt f I
by (simp add: fiz-is-fix-of-limit reqular-fixpoint)

definition mk-regular! :: ('b = 'a = bool) = ('b = 'a = 'a) = 'a set = 'a set
where

mk-reqgularl PFI=1U{ Fqz|qe.z €I ANPqz}
definition mk-regular? :: ('b = 'a = 'a = bool) = ('b = 'a = 'a = 'a) = ’a set
= 'a set where

mk-reqular2 PF I =1U{ Fqzy|qzy.z€INyelIANPqgzy}
end
theory CFG

imports Main
begin

2 Adjusted content from AFP /LocalLexing
type-synonym ’a rule = 'a x 'a list
type-synonym ’a rules = 'a rule list
type-synonym ’a sentence = 'a list

datatype 'a cfg =

CFG (M : 'a list) (T : 'a list) (R : 'a rules) (& : 'a)

definition disjunct-symbols :: 'a c¢fg = bool where
disjunct-symbols G = set (N G) N set (T G) = {}

definition valid-startsymbol :: 'a c¢fg = bool where
valid-startsymbol G = & G € set (N G)

definition valid-rules :: 'a cfg = bool where
valid-rules G =V (N, a) € set (R G). N € set (DM G) A (Vs € set a. s € set (N
G) U set (T G))

definition distinct-rules :: 'a c¢fg = bool where
distinct-rules G = distinct (R G)

definition wf-G :: ‘a ¢fg = bool where
wf-G G = disjunct-symbols G A valid-startsymbol G A valid-rules G A distinct-rules
g

lemmas wf-G-defs = wf-G-def valid-rules-def valid-startsymbol-def disjunct-symbols-def
distinct-rules-def

definition is-terminal :: 'a ¢fg = 'a = bool where
is-terminal G © = z € set (T G)

definition is-nonterminal :: 'a cfg = 'a = bool where
is-nonterminal G x = x € set (N G)

definition is-symbol :: 'a ¢fg = 'a = bool where
is-symbol G © = is-terminal G © V is-nonterminal G x

definition wf-sentence :: 'a cfg = 'a sentence = bool where
wf-sentence G w =V € set w. is-symbol G x

lemma is-nonterminal-startsymbol:
wf-G G = is-nonterminal G (& G)
by (simp add: is-nonterminal-def wf-G-defs)

definition is-word :: 'a ¢fg = 'a sentence = bool where
is-word G w = V1 € set w. is-terminal G x

definition derives! :: 'a c¢fg = 'a sentence = 'a sentence = bool where
derives] Guv=3 zy N a.
u=z@[N]QgyA
v=2xQa@gyA
(N, a) € set (RG)

definition derivations! :: 'a ¢fg = ('a sentence x 'a sentence) set where
derivations! G = { (u,v) | v v. derives] G u v }

definition derivations :: ‘a ¢fg = (‘a sentence X 'a sentence) set where
derivations G = (derivationsl G) *

definition derives :: 'a c¢fg = 'a sentence = 'a sentence = bool where
derives G u v = ((u, v) € derivations G)

end
theory Derivations
imports
CFG
begin

3 Adjusted content from AFP /LocalLexing
type-synonym ’a derivation = (nat x ‘a rule) list
lemma is-word-empty: is-word G [] by (auto simp add: is-word-def)

lemma derives1-implies-derives|simp]:
derives] G a b = derives G a b
by (auto simp add: derives-def derivations-def derivationsI-def)

lemma derives-trans:
derives G a b = derives G b ¢ = derives G a ¢
by (auto simp add: derives-def derivations-def)

lemma derivesi-eq-derivationsl:
derives] G zy = ((z, y) € derivations! G)
by (simp add: derivations1-def)

lemma derives-induct[consumes 1, case-names Base Step]:
assumes derives: derives G a b
assumes Pa: P a
assumes induct: \y z. derives G a y = derives] G yz=— Py=— Pz
shows P b
proof —
note rtrancl-lemma = rtrancl-induct{where a = a and b = b and r = deriva-
tions!1 G and P=P)]
from derives Pa induct rtrancl-lemma show P b
by (metis derives-def derivations-def derivesI-eq-derivationsl)
qed

definition Derives! :: 'a ¢fg = 'a sentence = nat = 'a rule = 'a sentence =
bool where
Derives1 Guirv=31 zy N a.
u=2z@[N]QyA
v=zrQa@yA
(N, a)eset MRG)Ar=(N,a)ANi=lengthz

lemma Derives1-split:

Derives1 Guirv=J zy. u=zQfstr] QyAv=2Q (sndr) @y A
length x = 1

by (metis DerivesI-def fst-conv snd-conv)

lemma Derivesl-implies-derivesl: Derivesl G u i r v => derives] G u v
by (auto simp add: Derivesi-def derivesI-def)

lemma derivesi-implies-Derivesl: derives] G uw v —> 3 i r. Derives] G u i r v
by (auto simp add: Derives1-def derivesi-def)

fun Derivation :: 'a cfg = 'a sentence = 'a derivation = 'a sentence = bool
where

Derivation - a [] b = (a = b)
| Derivation G a (d#D) b = (3 z. Derives! G a (fst d) (snd d) x A Derivation G
x D b)

lemma Derivation-implies-derives: Derivation G a D b = derives G a b
proof (induct D arbitrary: a b)

case Nil thus ?case

by (simp add: derives-def derivations-def)

next

case (Cons d D)

note thyps = this

from dhyps have 3 z. Derives! G a (fst d) (snd d) z A Derivation G © D b by
auto

then obtain z where Derives! G a (fst d) (snd d) x and zb: Derivation G z D
b by blast

with DerivesI-implies-derives] have d1: derives G a z by fastforce

from thyps zb have d2:derives G x b by simp

show derives G a b by (rule derives-trans[OF d1 d2])
qed

lemma Derivation-Derivesl: Derivation G a S y = Derives] G y i r z =
Derivation G a (SQ[(i,r)]) z
proof (induct S arbitrary: a y z i)

case Nil thus ?case by simp
next

case (Cons s S) thus ?case

by (metis Derivation.simps(2) append-Cons)

qged

lemma derives-implies-Derivation: derives G a b => 3 D. Derivation G a D b
proof (induct rule: derives-induct)

case DBase
show ?Zcase by (rule exl[where z=[]], simp)
next

case (Step y z)

note ihyps = this

from ihyps obtain D where ay: Derivation G a D y by blast

from ihyps derivesi-implies-Derives] obtain ¢ r where yz: Derives] G y i r z
by blast

from Derivation-Derives! [OF ay yz] show ?case by auto
qed

lemma rule-nonterminal-type[simp|: wf-G G = (N, a) € set (R G) = is-nonterminal
G N
by (auto simp add: is-nonterminal-def wf-G-defs)

lemma DerivesI-rule [elim]: Derivesl G air b= r € set (R G)
using Derivesl-def by metis

lemma is-terminal-nonterminal: wf-G G = is-terminal G © = is-nonterminal
G © = False
by (auto simp: wf-G-defs disjoint-iff is-nonterminal-def is-terminal-def)

lemma is-word-is-terminal: { < length v = is-word G uw = is-terminal G (u !
i)

using is-word-def by force

lemma Derivation-append: Derivation G a (DQE) ¢ = (3 b. Derivation G a D b
A Derivation G b E c)
by (induct D arbitrary: a ¢ E) auto

lemma Derivation-implies-append:
Derivation G a D b => Derivation G b E ¢ => Derivation G a (DQE) ¢
using Derivation-append by blast

4 Additional derivation lemmas

lemma Derives-prepend:
assumes Derives] G uirwv
shows Derives! G (wQu) (i + length w) r (wQu)
proof —
obtain z y N a where x:
u=zQ[N|Qyov=2zQa@Qy
(N, a) € set (MRG)r=(N,a)i=lengthz
using assms Derives-def by (smt (verit))
hence wQu =w Qz Q [N|QyuwQv=wQ@zQa @y
by auto
thus ?thesis
unfolding Derivesi-def using x
apply (rule-tac exI[where z=wQz))
apply (rule-tac exl[where z=y))
by simp
qed

lemma Derivation-prepend:

Derivation G b D b’ = Derivation G (aQb) (map (A(i, 7). (i + length a, 7)) D)
(a@b)

using Derivesi-prepend by (induction D arbitrary: b b’) (auto, fast)

lemma Derives-append:
assumes Derives] G uirov
shows Derives! G (uQuw) i r (vQuw)
proof —
obtain z y N o where *:
u=zQ[N|Qyuv=2zQa@Qy
(N, a) € set (MRG)r=(N,a)i=lengthz
using assms Derivesl-def by (smt (verit))
hence tQuw =z Q@ [N]Q y QuwvQuw=2Qa @y Q w
by auto
thus ?thesis
unfolding Derivesi-def using x
apply (rule-tac exl[where z=z])
apply (rule-tac ezl[where z=yQu))
by blast
qed

lemma Derivation-append’:
Derivation G a D o' = Derivation G (aQb) D (a'Qb)
using Derivesi-append by (induction D arbitrary: a a’) (auto, fast)

lemma Derivation-append-rewrite:

assumes Derivation G a D (b @ ¢ @ d) Derivation G ¢ E ¢’

shows 3 F. Deriwation G a F (b @ ¢’ Q d)

using assms Derivation-append’ Derivation-prepend Derivation-implies-append
by fast

lemma derivesI-if-valid-rule:
(N, a) € set (R G) = derives] G [N] «
unfolding derivesI-def
apply (rule-tac exl[where z=[]])
apply (rule-tac exl[where z=[]])
by simp

lemma derives-if-valid-rule:
(N,) € set (R G) = derives G [N] «
using derivesi-if-valid-rule by fastforce

lemma Derivation-from-empty:
Derivation G [| D a = a =[]
by (cases D) (auto simp: Derives-def)

lemma Derivation-concat-split:
Derivation G (a@Qb) D ¢ = IFE F a’ b'. Derivation G a E o’ A Derivation G b

10

Fb A
c=a"Qb' A length E < length D A length F < length D
proof (induction D arbitrary: a b)
case Nil
thus Zcase
by (metis Derivation.simps(1) order-refl)
next
case (Cons d D)
then obtain ab where *: Derives! G (a@Qb) (fst d) (snd d) ab Derivation G ab
Dc
by auto
then obtain z y N o where #:
@b =z Q[N|Qyab=2QaQy (N,a) € set (RG) sndd=(N,a) fstd
= length x
using * unfolding Derivesi-def by blast
show ?Zcase
proof (cases length a < length x)
case True
hence ab-def:
a = take (length a) x
b = drop (length a) z @ [N] Q y
ab = take (length a) @ drop (length a) © @ o @Q y
using #(1,2) True by (metis append-eq-append-conv-if)+
then obtain F F o’ b’ where IH:
Derivation G (take (length a) z) E a’
Derivation G (drop (length a) * Q@ o @Q y) F b’
c=a" Qb
length E < length D
length F < length D
using Cons *(2) by blast
have Derives! G b (fst d — length a) (snd d) (drop (length a) z @ o Q)
unfolding Derivesl-def using *(1) #(3—5) ab-def(2) by (metis length-drop)
hence Derivation G b ((fst d — length a, snd d) # F) b’
using [H(2) by force
moreover have Derivation G a F o’
using TH(1) ab-def(1) by fastforce
ultimately show Zthesis
using IH(3—5) by fastforce
next
case Fulse
hence a-def: a = £ Q [N] Q take (length a — lengthz — 1) y
using #(1) append-eg-conv-conjlof a b x Q [N] Q y] take-all-iff take-append
by (metis append-Cons append-Nil diff-is-0-eq le-cases take-Cons’)
hence b-def: b = drop (length a — length x — 1) y
using #(1) by (metis List.append.assoc append-take-drop-id same-append-eq)
have ab = 2 @ o @ take (length a — length x — 1) y @ drop (length a — length
z—1)y
using #(2) by force
then obtain F F o’ b’ where [H:

11

Derivation G (x Q@ o @ take (length a — length x — 1) y) E a’
Derivation G (drop (length a — length x — 1) y) F' b’
c=a"Qb'
length E < length D
length F < length D
using Cons.IH[of x @ « Q@ take (length a — length x — 1) y drop (length a
— length x — 1) y] *(2) by auto
have Derives! G a (fst d) (snd d) (z @ o @ take (length a — length x — 1) y)
unfolding DerivesI-def using #(3—5) a-def by blast
hence Derivation G a ((fst d, snd d) # FE) a’
using [H(1) by fastforce
moreover have Derivation G b F b’
using b-def IH(2) by blast
ultimately show #thesis
using IH(8—5) by fastforce
qged
qed

lemma Derivation-&1:
assumes Derivation G [6 G] D w is-word G w wf-G G
shows Ja E. Derivation G o E w A (6 G,a) € set (R G)
proof (cases D)
case Nil
thus ?thesis
using assms is-nonterminal-startsymbol is-terminal-nonterminal by (metis
Derivation.simps(1) is-word-def list.set-intros(1))
next
case (Cons d D)
then obtain a where Derives! G [S G] (fst d) (snd d) a Deriwvation G o« D w
using assms by auto
hence (6 G,) € set (R G)
unfolding Derives1-def
by (metis List.append.right-neutral List.list.discI append-eq-Cons-conv append-is-Nil-conv
nth-Cons-0 self-append-conv?)
thus ?thesis
using <Derivation G a D w) by auto
qed

end
theory Farley
imports
Derivations
begin

5 Slices

fun slice :: nat = nat = 'a list = 'a list where
slice - - [] =[]
| slice - 0 (z#xs) = |]

12

| slice 0 (Suc b) (z#xs) = x # slice 0b xs
| slice (Suc a) (Suc b) (z#zs) = slice a b xs

lemma slice-drop-take:
slice a b xs = drop a (take b xs)
by (induction a b xs rule: slice.induct) auto

lemma slice-append-aux:
Suc b < ¢ = slice (Suc b) ¢ (z # xs) = slice b (c—1) xs
using Suc-le-D by fastforce

lemma slice-concat:
a<b=b< c¢c= sliceabxs Q slice b cxzs= slice a czxs
proof (induction a b xs arbitrary: ¢ rule: slice.induct)
case (3 b z zs)
then show ?case
using Suc-le-D by (fastforce simp: slice-append-aux)
qed (auto simp: slice-append-auz)

lemma slice-concat-Fx:
a < c¢c= sliceaczs=1ysQ zs = 3b. ys = slice a b xs N\ zs = slice b ¢ zs N
a<bAb<ec
proof (induction a ¢ xzs arbitrary: ys zs rule: slice.induct)
case (3 bz s)
show ?Zcase
proof (cases ys)
case Nil
then obtain zs’ where z # slice 0 b xs = © # 28’ © # 2zs' = zs
using 3.prems(2) by auto
thus ?thesis
using Nil by force
next
case (Cons y ys')
then obtain ys’ where x # slice 0 b xs = z # ys' Q 2s x # ys’' = ys
using 3.prems(2) by auto
thus ?thesis
using 3.IH|[of ys' zs] by force
qed
next
case (4 a b z xs)
thus ?Zcase
by (auto, metis slice.simps(4) Suc-le-mono)
qed auto

lemma slice-nth:

a < length s = slice a (a+1) zs = [zsla]

unfolding slice-drop-take

by (metis Cons-nth-drop-Suc One-nat-def diff-add-inverse drop-take take-Suc-Cons
take-eq-Nil)

13

lemma slice-append-nth:
a < b= b < length xs = slice a b xs Q [zs!b] = slice a (b+1) zs
by (metis le-addl slice-concat slice-nth)

lemma slice-empty:
b < a= sliceabuzs=]
by (simp add: slice-drop-take)

lemma slice-id[simp]:
slice 0 (length xs) xs = xs
by (simp add: slice-drop-take)

lemma slice-singleton:
b < length ©s = [z] = slice a b xs = b= a + 1
by (induction a b zs rule: slice.induct) (auto simp: slice-drop-take)

6 Earley recognizer

6.1 Earley items

definition rule-head :: 'a rule = 'a where
rule-head = fst

definition rule-body :: 'a rule = 'a list where
rule-body = snd

datatype ‘a item =
Item (item-rule: 'a rule) (item-dot : nat) (item-origin : nat) (item-end : nat)

definition item-rule-head :: 'a item = 'a where
item-rule-head © = rule-head (item-rule z)

definition item-rule-body :: 'a item = 'a sentence where
item-rule-body x = rule-body (item-rule x)

definition item-o :: ‘a item = ’'a sentence where
item-a x = take (item-dot) (item-rule-body x)

definition item-§ :: 'a item = 'a sentence where
item-f x = drop (item-dot z) (item-rule-body x)

definition is-complete :: 'a item = bool where
is-complete © = item-dot © > length (item-rule-body x)

definition next-symbol :: 'a item = 'a option where
next-symbol x = if is-complete © then None else Some (item-rule-body x ! item-dot

z)

14

lemmas item-defs = item-rule-head-def item-rule-body-def item-a-def item-3-def
rule-head-def rule-body-def

definition is-finished :: 'a cfg = 'a sentence = 'a item = bool where
is-finished G w © =
item-rule-head . = & G A
item-origin ¢ = 0 A
item-end © = length w A
is-complete x

definition recognizing :: 'a item set = 'a cfg = 'a sentence = bool where
recognizing I G w = dz € I. is-finished G w «

inductive-set Earley :: ‘a c¢fg = 'a sentence = 'a item set
for G :: 'a ¢fg and w :: 'a sentence where
Init: r € set R G) = fstr=6 0 =
Item r 000 € Earley G w
| Scan: ¢ = Item r b ij — z € Earley G w =
wlj = a = j < length w = neat-symbol z = Some o =
Itemr (b+ 1)i(j+ 1) € Earley G w
| Predict: x = Item r b { j = © € Earley G w =
r’ € set (R G) = neat-symbol x = Some (rule-head ') =
Item v’ 07 j € Earley G w
| Complete: © = Item ry by 1 j = 2 € Earley G w = y = Item ry by j k =
y € Farley G w =
is-complete y = next-symbol x = Some (item-rule-head y) =
Item ry (by + 1) ik € Earley G w

6.2 Well-formedness

definition wf-item :: 'a ¢fg = 'a sentence => 'a item = bool where
wf-item G w ¢ =
item-rule © € set (R G) A
item-dot x < length (item-rule-body x) A
item-origin x < item-end T A
item-end x < length w

lemma wf-Init:
assumes r € set (R G) fstr=6 G
shows wf-item G w (Item r 0 0 0)
using assms unfolding wf-item-def by simp

lemma wf-Scan:

assumes z = Item r b i j wf-item G w z w!j = a j < length w next-symbol x =
Some a

shows wf-item G w (Item v (b + 1) i (j+1))

using assms unfolding wf-item-def by (auto simp: item-defs is-complete-def
next-symbol-def split: if-splits)

15

lemma wf-Predict:

assumes z = Item r b i j wf-item G w z 1’ € set (R G) next-symbol x = Some
(rule-head 1)

shows wf-item G w (Item r' 0 j j)

using assms unfolding wf-item-def by simp

lemma wf-Complete:
assumes z = ltem v, by 1 j wf-item G w xy = Item ry by j k wf-item G w y
assumes is-complete y next-symbol x = Some (item-rule-head y)
shows wf-item G w (Item 7, (by + 1) i k)
using assms unfolding wf-item-def is-complete-def next-symbol-def item-rule-body-def
by (auto split: if-splits)

lemma wf-Farley:
assumes z € Farley G w
shows wf-item G w x
using assms wf-Init wf-Scan wf-Predict wf-Complete
by (induction rule: Earley.induct) fast+

6.3 Soundness

definition sound-item :: 'a c¢fg = 'a sentence = 'a item = bool where
sound-item G w © = derives G [item-rule-head x| (slice (item-origin x) (item-end
z) w @ item-0 x)

lemma sound-Init:
assumes r € set (R G) fstr=6¢G
shows sound-item G w (Item r 0 0 0)
proof —
let 2z = Itemr 000
have (item-rule-head ?z, item- ?z) € set (R G)
using assms(1) by (simp add: item-defs)
hence derives G [item-rule-head ?x] (item-0 ?x)
using derives-if-valid-rule by metis
thus sound-item G w %z
unfolding sound-item-def by (simp add: slice-empty)
qed

lemma sound-Scan:
assumes x = Item 7 b i j wf-item G w x sound-item G w x
assumes w!j = a j < length w next-symbol x = Some a
shows sound-item G w (Item r (b+1) ¢ (j+1))
proof —
define z’ where [simp]: ' = Item r (b+1) ¢ (j+1)
obtain item-3’ where *: item-8 v = a # item-8' item-3 z' = item-3’
using assms(1,6) apply (auto simp: item-defs next-symbol-def is-complete-def
split: if-splits)
by (metis Cons-nth-drop-Suc lel)
have slice i j w Q item-8 x = slice i (j+1) w Q item-3’

16

using * assms(1,2,4,5) by (auto simp: slice-append-nth wf-item-def)
moreover have derives G [item-rule-head x| (slice © j w @ item-f x)
using assms(1,8) sound-item-def by force
ultimately show “thesis
using assms(1) x by (auto simp: item-defs sound-item-def)
qed

lemma sound-Predict:
assumes x = Item r b i j wf-item G w x sound-item G w x
assumes 1’ € set (R G) next-symbol x = Some (rule-head ")
shows sound-item G w (Item r' 0 j §)
using assms by (auto simp: sound-item-def derives-if-valid-rule slice-empty item-defs)

lemma sound-Complete:
assumes x = Item r, b, 1 j wf-item G w x sound-item G w x
assumes y = Item 1y, b, j k wf-item G w y sound-item G w y
assumes is-complete y next-symbol = Some (item-rule-head y)
shows sound-item G w (Item r, (b, + 1) i k)
proof —
have derives G [item-rule-head y| (slice j k w)
using assms(4,6,7) by (auto simp: sound-item-def is-complete-def item-defs)
then obtain E where E: Derivation G [item-rule-head y] E (slice j k w)
using derives-implies-Derivation by blast
have derives G [item-rule-head x| (slice i j w @ item-f3 z)
using assms(1,3,4) by (auto simp: sound-item-def)
moreover have 0: item-8 © = (item-rule-head y) # tl (item-5 x)
using assms(8) apply (auto simp: next-symbol-def is-complete-def item-defs
split: if-splits)
by (metis drop-eq-Nil hd-drop-conv-nth lel list.collapse)
ultimately obtain D where D:
Derivation G [item-rule-head] D (slice i j w @ [item-rule-head y] @ (¢ (item-f
z)))
using derives-implies-Derivation by (metis append-Cons append-Nil)
obtain F' where F:
Derivation G [item-rule-head x| F (slice i j w Q slice j k w @ tl (item-3 x))
using Derivation-append-rewrite D FE by blast
moreover have ¢ < j
using assms(1,2) wf-item-def by force
moreover have j < k
using assms(4,5) wf-item-def by force
ultimately have derives G [item-rule-head x| (slice i k w @ ¢l (item-0 x))
by (metis Derivation-implies-derives append.assoc slice-concat)
thus sound-item G w (Item v, (by + 1) 1 k)
using assms(1,4) by (auto simp: sound-item-def item-defs drop-Suc tl-drop)
qed

lemma sound-FEarley:

assumes z € Farley G w wf-item G w z
shows sound-item G w z

17

using assms
proof (induction rule: Earley.induct)
case (Init r)

thus ?case
using sound-Init by blast
next
case (Scanzr b ija)
thus ?case
using wf-Earley sound-Scan by fast
next
case (Predict xrbijr’)
thus ?case
using wf-Earley sound-Predict by blast
next
case (Complete x 14 by 1§y ry by k)
thus ?case
using wf-FEarley sound-Complete by metis
qed

theorem soundness-FEarley:
assumes recognizing (Earley G w) G w
shows derives G [6 G w
proof —
obtain z where z: © € Farley G w is-finished G w z
using assms recognizing-def by blast
hence sound-item G w x
using wf-Earley sound-Earley by blast
thus ?thesis
unfolding sound-item-def using x by (auto simp: is-finished-def is-complete-def
item-defs)
qed

6.4 Completeness

definition partially-completed :: nat = 'a cfg = 'a sentence = 'a item set = ('a
derivation = bool) = bool where
partially-completed k G w EP =VYrbi'ijzaD.
1< JiNF<EkANEKk<Zlengthw A
z=TItemrbi'i Nz € E A next-symbol x = Some a A
Derivation G [a] D (slice i j w) N P D —
Itemr (b+1)i'j € E

lemma partially-completed-upto:
assumes j < k k < length w
assumes z = [tem (N,a) dijz € IVz € I. wf-item G w x
assumes Derivation G (item-8) D (slice j k w)
assumes partially-completed k G w I (AD'. length D’ < length D)
shows Item (N,o) (length o) i k € 1
using assms

18

proof (induction item-8 x arbitrary: d i j k N « z D)
case Nil
have item-a z = «
using Nil(1,4) unfolding item-a-def item-3-def item-rule-body-def rule-body-def
by simp
hence = = Item (N,«) (length «) i j
using Nil.hyps Nil.prems(3—5) unfolding wf-item-def item-defs by auto
have Derivation G [| D (slice j k w)
using Nil.hyps Nil.prems(6) by auto
hence slice j k w = ||
using Derivation-from-empty by blast
hence j = k
unfolding slice-drop-take using Nil.prems(1,2) by simp
thus ?Zcase
using «x = Item (N, «) (length «) i j» Nil.prems(4) by blast
next
case (Cons b bs)
obtain j' F F where x:
Derivation G [b] E (slice j j' w)
Derivation G bs F (slice j' k w)
j<j'j' < klength E < length D length F < length D
using Derivation-concat-splitfof G [b] bs D slice j k w] slice-concat-Ex
using Cons.hyps(2) Cons.prems(1,6)
by (smt (verit, ccfo-threshold) Cons-eq-appendl append-self-conv2)
have next-symbol © = Some b
using Cons.hyps(2) unfolding item-defs(4) next-symbol-def is-complete-def
by (auto, metis nth-via-drop)
hence Item (N, o) (d+1) ij €1
using Cons.prems(7) unfolding partially-completed-def
using Cons.prems(2,3,4) x(1,5—5) by blast
moreover have partially-completed k G w I (AD'. length D’ < length F')
using Cons.prems(7) *(6) unfolding partially-completed-def by fastforce
moreover have bs = item-3 (Item (N,«) (d+1) i j')
using Cons.hyps(2) Cons.prems(3) unfolding item-defs(4) item-rule-body-def

by (auto, metis List.list.sel(8) drop-Suc drop-tl)
ultimately show Zcase
using Cons.hyps(1) x(2,4) Cons.prems(2,3,5) wf-item-def by blast
qed

lemma partially-completed-Farley-k:

assumes wf-G G

shows partially-completed k G w (Earley G w) (A-. True)

unfolding partially-completed-def
proof (standard, standard, standard, standard, standard, standard, standard, stan-
dard, standard)

fixrbi'ijzaD

assume

T <jiNGF<EkNEkLZlengthw A

19

z=1TItemrbi i Nz € Earley G w A
nezt-symbol x = Some a A
Derivation G [a] D (slice i j w) A True
thus Item r (b + 1) i’ j € Earley G w
proof (induction length D arbitrary: v b i’ i j x a D rule: nat-less-induct)
case I
show ?case
proof cases
assume D = [|
hence [a] = slice i j w
using 1.prems by force
moreover have j < length w
using le-trans 1.prems by blast
ultimately have j = i+1
using slice-singleton by metis
hence 7 < length w
using <j < length w> discrete by blast
hence w!i = a
using slice-nth <[a] = slice i j w> <j = i + 1) by fastforce
hence Item r (b+ 1) i’ j € Earley G w
using Farley.Scan 1.prems <i < length wy <j = i + 1> by metis
thus ?thesis
by (simp add: <j =i + 1»)
next
assume - D = ||
then obtain d D' where D = d # D’
by (meson List.list.exhaust)
then obtain a where *: Derives! G [a] (fst d) (snd d) o Derivation G o D’
(slice i j w)
using I.prems by auto
hence rule: (a, a) € set (R G) fst d = 0 snd d = (a ,a)
using *(1) unfolding Derives-def by (simp add: Cons-eq-append-conv)+
show ?thesis
proof cases
assume is-terminal G a
have is-nonterminal G a
using rule by (simp add: assms)
thus ?thesis
using <is-terminal G a> is-terminal-nonterminal by (metis assms)
next
assume - is-terminal G a
define y where y-def: y = Item (a ,) 074 i
have length D' < length D
using (D = d # D’> by fastforce
hence partially-completed k G w (Earley G w) (AE. length E < length D’)
unfolding partially-completed-def using 1.hyps order-le-less-trans by (smt
(verit, best))
hence partially-completed j G w (Earley G w) (AE. length E < length D’)
unfolding partially-completed-def using 1.prems by force

20

moreover have Derivation G (item-0 y) D' (slice i j w)
using *(2) by (auto simp: item-defs y-def)
moreover have y € Farley G w
using y-def 1.prems rule by (auto simp: item-defs Earley.Predict)
moreover have j < length w
using 1.prems by simp
ultimately have Item (a,a) (length «) i j € Farley G w
using partially-completed-upto 1.prems wf-Farley y-def by metis
moreover have z: z = Item r b i’ iz € Earley G w
using 1.prems by blast+
moreover have next-symbol © = Some a
using 1.prems by linarith
ultimately show ?thesis
using Farley. Complete|OF z] by (auto simp: is-complete-def item-defs)
qed
qed
qed
qed

lemma partially-completed-Farley:
wf-G G = partially-completed (length w) G w (Earley G w) (A-. True)
by (simp add: partially-completed-Earley-k)

theorem completeness-Earley:
assumes derives G [6 G| w is-word G w wf-G G
shows recognizing (Earley G w) G w
proof —
obtain o D where *: (6 G ,a) € set (R G) Derivation G o D w
using Derivation-S1 assms derives-implies-Derivation by metis
define z where z-def: © = Item (6 G, o) 000
have partially-completed (length w) G w (Earley G w) (A-. True)
using assms(3) partially-completed-Earley by blast
hence 0: partially-completed (length w) G w (Earley G w) (AD'. length D' <
length D)
unfolding partially-completed-def by blast
have 1: z € Farley G w
using z-def Earley.Init (1) by fastforce
have 2: Derivation G (item-8 z) D (slice 0 (length w) w)
using *(2) z-def by (simp add: item-defs)
have Item (& G,a) (length o) 0 (length w) € Earley G w
using partially-completed-upto[OF - - - - - 2 0] wf-Earley 1 z-def by auto
then show ?thesis
unfolding recognizing-def is-finished-def by (auto simp: is-complete-def item-defs,
force)
qed

6.5 Correctness

theorem correctness-FEarley:

21

assumes wf-G G is-word G w
shows recognizing (Farley G w) G w +— derives G |6 G| w
using assms soundness-Earley completeness-Earley by blast

6.6 Finiteness

lemma finiteness-empty:
set (R G) = {} = finite { z | z. wf-item G w z }
unfolding wf-item-def by simp

fun item-intro :: 'a rule X nat X nat X nat = ’a item where
item-intro (rule, dot, origin, ends) = Item rule dot origin ends

lemma finiteness-nonempty:
assumes set (R G) # {}
shows finite { z | z. wf-item G w z }
proof —
define M where M = Maz { length (rule-body r) | r. r € set (R G) }
define Top where Top = (set (R G) x {0.M} x {0..length w} x {0..length
w})
hence finite Top
using finite-cartesian-product finite by blast
have inj-on item-intro Top
unfolding Top-def inj-on-def by simp
hence finite (item-intro < Top)
using finite-image-iff <finite Top> by auto
have { z | z. wf-item G w x } C item-intro ‘ Top
proof standard
fix z
assume z € { z | z. wf-item G w z }
then obtain rule dot origin endp where x: x = Item rule dot origin endp
rule € set (R G) dot < length (item-rule-body z) origin < length w endp <
length w
unfolding wf-item-def using item.exhaust-sel le-trans by blast
hence length (rule-body rule) € { length (rule-body r) | r. r € set (R G) }
using *(1,2) item-rule-body-def by blast
moreover have finite { length (rule-body r) | r. v € set (R G) }
using finite finite-image-set[of Az. z € set (R G)| by fastforce
ultimately have M > length (rule-body rule)
unfolding M-def by simp
hence dot < M
using *(1,3) item-rule-body-def by (metis item.sel(1) le-trans)
hence (rule, dot, origin, endp) € Top
using *(2,4,5) unfolding Top-def by simp
thus z € item-intro ¢ Top
using *(1) by force
qed
thus ?thesis
using «finite (item-intro * Top)) rev-finite-subset by auto

22

qed

lemma finiteness- UNIV-wf-item:
finite { x| z. wf-item G w z }
using finiteness-empty finiteness-nonempty by fastforce

theorem finiteness-Farley:

finite (Earley G w)

using finiteness- UNIV-wf-item wf-Earley rev-finite-subset by (metis mem-Collect-eq
subsetl)

end
theory Farley-Fizpoint
imports
FEarley
Limit
begin

7 Earley recognizer

7.1 Earley fixpoint

definition init-item :: 'a rule = nat = 'a item where
nit-itemr k = Itemr 0k k

definition inc-item :: ‘a item = nat = ’a item where
inc-item x k = Item (item-rule x) (item-dot x + 1) (item-origin z) k

definition bin :: 'a item set = nat = ’'a item set where
binlk={z.ze€lNitemendz =%}

definition Initr :: ‘a cfg = 'a item set where
Initp G = { init-itemr 0 | r. v € set (RG) A fstr = (6 G) }

definition Scang :: nat = 'a sentence = 'a item set = 'a item set where
Scanp k w I = { inc-item z (k+1) | z a.
x € binlkAN
wk=aA
k < length w A
next-symbol © = Some a }

definition Predictp :: nat = ‘a c¢fg = 'a item set = 'a item set where
Predictp k G I = { init-item r k| r z.
r € set (R G)A
xebinlkA
next-symbol © = Some (rule-head 1) }

definition Completer :: nat = 'a item set = 'a item set where
Completer k I = { inc-item z k | z y.

23

z € bin I (item-origin y) A

yebinlkA

is-complete y N

next-symbol & = Some (item-rule-head y) }

definition Earleyp-bin-step :: nat = ’a cfg = 'a sentence = 'a item set = 'a
item set where
Earleyp-bin-step k G w I = I U Scang k w I U Completer kI U Predicty k G 1

definition Earleyp-bin :: nat = 'a cfg = 'a sentence = 'a item set = 'a item set
where
Earleyp-bin k G w I = limit (FEarleyp-bin-step k G w) I

fun Earleyp-bins :: nat = 'a c¢fg = 'a sentence = 'a item set where
Earleyp-bins 0 G w = Earleyp-bin 0 G w (Initp G)
| Earleyp-bins (Suc n) G w = Earleyp-bin (Suc n) G w (Earleyp-bins n G w)

definition Earleyr :: 'a ¢fg = 'a sentence = 'a item set where
Earleyr G w = Earleyp-bins (length w) G w

7.2 Monotonicity and Absorption

lemma FEarleyp-bin-step-empty:

Earleyp-bin-step k G w {} = {}

unfolding Farleyp-bin-step-def Scanp-def Completer-def Predictp-def bin-def
by blast

lemma FEarleyr-bin-step-setmonotone:
setmonotone (Earleyp-bin-step k G w)
by (simp add: Un-assoc Earleyp-bin-step-def setmonotone-def)

lemma FEarleyp-bin-step-continuous:
continuous (Earleyp-bin-step k G w)
unfolding continuous-def
proof (standard, standard, standard)
fix C :: nat = 'a item set
assume chain C
thus chain (Earleyp-bin-step k G w o C)
unfolding chain-def Earleyp-bin-step-def by (auto simp: Scanp-def Predictp-def
Completep-def bin-def subset-eq)
next
fix C :: nat = 'a item set
assume *: chain C
show FEarleyp-bin-step k G w (natUnion C) = natUnion (Earleyp-bin-step k G
wo C)
unfolding natUnion-def
proof standard
show FEarleyp-bin-step k G w (IJ {C n |n. True}) C U {(Earleyp-bin-step k
G wo C)n|n. True}

24

proof standard
fix z
assume #: ¢ € Earleyp-bin-step k G w (J {C n |n. True})
show z € |J {(Farleyp-bin-step k G w o C) n |n. True}
proof (cases x € Completer k (U {C n |n. True}))
case True
then show ?thesis
using * unfolding chain-def Farleyp-bin-step-def Completep-def bin-def
proof clarsimp
fix y :: ‘a item and z :: 'a item and n :: nat and m :: nat
assume al: is-complete z
assume a2: item-end y = item-origin z
assume a3: y € Cn
assume aj: z € C'm
assume ad: next-symbol y = Some (item-rule-head z)
assume Vi. Ci C C (Suc i)
hence f6: Anm. = n<mvVv CnC Cm
by (meson lift-Suc-mono-le)
hence f7: An.—-m <nVvzeCn
using a4 by blast
have dn > m.y€ Cn
using f6 a3 by (meson le-sup-iff subset-eq sup-gel)
thus 371.
(3n.I=CnuU
Scang (item-end z) w (C'n) U
{inc-item i (item-end 2) |i.
i€ CnA
(3j.
item-end © = item-origin j N
jeCnA
item-end j = item-end z A
is-complete j N
next-symbol i = Some (item-rule-head 7))} U
Predictp (item-end z) G (C n))
A inc-item y (item-end z) € 1
using f7 a5 a2 al by blast
qged
next
case Fulse
thus ?thesis
using # Un-iff by (auto simp: Earleyp-bin-step-def Scanp-def Predictp-def
bin-def; blast)
qed
qed
next
show |J {(Earleyp-bin-step k G w o C) n |n. True} C Earleyp-bin-step k G w
(U {C n |n. True})
unfolding FEarleyp-bin-step-def
using * by (auto simp: Scang-def Predictp-def Completep-def chain-def

25

bin-def, metis+)
qed
qed

lemma FEarleyp-bin-step-reqular:

reqular (Earleyp-bin-step k G w)

by (simp add: Earleyp-bin-step-continuous Earleyp-bin-step-setmonotone regu-
lar-def)

lemma FEarleyp-bin-idem:
Earleyp-bin k G w (Earleyp-bin k G w I) = Earleyp-bin k G w I
by (simp add: Earleyp-bin-def Earleyp-bin-step-reqular limit-is-idempotent)

lemma Scanp-bin-absorb:
Scanp k w (bin I k) = Scanp k w I
unfolding Scanp-def bin-def by simp

lemma Predictp-bin-absorb:
Predictp k G (bin I k) = Predictp k G I
unfolding Predictp-def bin-def by simp

lemma Scang-Un:
Scanp kw (I U J) = Scanp k w I U Scanp k w J
unfolding Scang-def bin-def by blast

lemma Predictp-Un:
Predictp k G (I U J) = Predictp k G I U Predictp k G J
unfolding Predictp-def bin-def by blast

lemma Scanpg-sub-mono:
I CJ = Scanp kw I C Scang k w J
unfolding Scanp-def bin-def by blast

lemma Predict p-sub-mono:
I C J = Predictr kG I C Predictpr kG J
unfolding Predictp-def bin-def by blast

lemma Completer-sub-mono:
I C J = Completer kI C Completer k J
unfolding Completep-def bin-def by blast

lemma FEarley g-bin-step-sub-mono:

I C J = FEarleyp-bin-step k G w I C FEarleyp-bin-step k G w J

unfolding Farleyp-bin-step-def using Scang-sub-mono Predict p-sub-mono Com-
pletep-sub-mono by (metis sup.mono)

lemma funpower-sub-mono:

I C J = funpower (Farleyp-bin-step k G w) n I C funpower (Earleyp-bin-step
kGw)nJ

26

by (induction n) (auto simp: Earleyp-bin-step-sub-mono)

lemma FEarleyp-bin-sub-mono:
I C J = Earleyp-bin k G w I C Earleyp-bin k G w J
proof standard
fix z
assume [C Jz € Farleyp-bin k G w I
then obtain n where z € funpower (Earleyp-bin-step k G w) n I
unfolding Earleyg-bin-def limit-def natUnion-def by blast
hence z € funpower (Earleyp-bin-step k G w) n J
using <I C J» funpower-sub-mono by blast
thus z € Farleyp-bin k G w J
unfolding Farleyp-bin-def limit-def natUnion-def by blast
qed

lemma Scanp-FEarleyp-bin-step-mono:
Scanp k w I C FEarleyp-bin-step k G w I
using Farleyp-bin-step-def by blast

lemma Predictp-FEarleyp-bin-step-mono:
Predictp k G I C FEarleyp-bin-step k G w 1
using Farleyp-bin-step-def by blast

lemma Completer-FEarleyp-bin-step-mono:
Completer k I C FEarleyp-bin-step k G w I
using Farleyp-bin-step-def by blast

lemma FEarleyp-bin-step-Earleyr-bin-mono:
Earleyp-bin-step k G w I C Farleyp-bin k G w I
proof —
have Earleyp-bin-step k G w I C funpower (Earleyp-bin-step k G w) 1 1T
by simp
thus ?thesis
by (metis Earleyp-bin-def limit-elem subset-eq)
qed

lemma Scanp-FEarleyp-bin-mono:
Scang kw I C Earleyp-bink G w I
using Scanp-FEarleyp-bin-step-mono Earleyp-bin-step-Farleyp-bin-mono by force

lemma Predictp-FEarleyr-bin-mono:

Predictp k G I C Earleyp-bin k G w I

using Predictp-Farleyp-bin-step-mono FEarleyp-bin-step-FEarleyg-bin-mono by
force

lemma Completer-Farleyr-bin-mono:

Completer k I C Farleyp-bink G w I

using Completep-FEarleyp-bin-step-mono Earleyp-bin-step-FEarleyp-bin-mono by
force

27

lemma FEarleyp-bin-mono:
I C Earleyp-bink G w I
using Farleyp-bin-step-Farleyp-bin-mono Earleyp-bin-step-def by blast

lemma Initp-sub-Earleyp-bins:
Initp G C Farleyp-bins n G w
by (induction n) (use Earleyp-bin-mono in fastforce)+

7.3 Soundness

lemma Initg-sub-Earley:
Initp G C Farley G w
unfolding Initp-def init-item-def using Init by blast

lemma Scanp-sub-Earley:
assumes [C FEarley G w
shows Scanp k w I C FEarley G w
unfolding Scanpg-def inc-item-def bin-def using assms Scan
by (smt (verit, ccfv-SIG) item.exhaust-sel mem-Collect-eq subsetD subsetl)

lemma Predictp-sub-Farley:
assumes [C FEarley G w
shows Predictyp k G I C FEarley G w
unfolding Predictp-def init-item-def bin-def using assms Predict
using item.exhaust-sel by blast

lemma Completer-sub-Farley:
assumes | C Farley G w
shows Completer kI C Earley G w
unfolding Completer-def inc-item-def bin-def using assms Complete
by (smt (verit, del-insts) item.ezhaust-sel mem-Collect-eq subset-eq)

lemma Farleyp-bin-step-sub-Farley:

assumes [C Farley G w

shows FEarleyp-bin-step k G w I C FEarley G w

unfolding Farleyp-bin-step-def using assms Completep-sub-FEarley Predictp-sub-Farley
Scanp-sub-Earley by (metis le-supl)

lemma Farleyg-bin-sub-Farley:
assumes I C Farley G w
shows Farleyp-bin k G w I C Farley G w
using assms Farleyp-bin-step-sub-Farley by (metis Farley g -bin-def limit-upperbound)

lemma FEarleyp-bins-sub-FEarley:
shows FEarleyp-bins n G w C Farley G w
by (induction n) (auto simp: Earleyp-bin-sub-Earley Initp-sub-Earley)

lemma FEarleyp-sub-Farley:

28

shows Farleyr G w C Farley G w
by (simp add: Earleyp-bins-sub-Earley Earleyp-def)

theorem soundness-Farleyp:

assumes recognizing (Farleyr G w) G w

shows derives G [6 G w

using soundness-FEarley Earleyp-sub-Farley assms recognizing-def by (metis sub-
setD)

7.4 Completeness

definition prev-symbol :: 'a item = 'a option where
prev-symbol x = if item-dot x = 0 then None else Some (item-rule-body z !
(item-dot x — 1))

definition base :: ‘a sentence = 'a item set = nat = 'a item set where
base w Ik ={z.x €1 A item-end x =k N k> 0 N prev-symbol © = Some

(Wi(k=1)) }

lemma Farleyp-bin-sub-Farleyp-bin:
assumes Initp G C I
assumes V&' < k. bin (Earley G w) k' C T
assumes base w (Earley G w) k C T
shows bin (Earley G w) k C bin (Earleyp-bin k G w I) k
proof standard
fix z
assume *: ¢ € bin (Earley G w) k
hence z € Farley G w
using bin-def by blast
thus z € bin (Earleyp-bin k G w I) k
using assms *
proof (induction rule: Earley.induct)
case (Init r)
thus ?case
unfolding Initp-def init-item-def bin-def using Farleyp-bin-mono by fast
next
case (Scanz r b ija)
have j+1 =k
using Scan.prems(4) bin-def by (metis (mono-tags, lifting) CollectD item.sel(4))
have prev-symbol (Item r (b+1) i (j+1)) = Some (w!(k—1))
using Scan.hyps(1,3,5) <j+1 = k> by (auto simp: next-symbol-def prev-symbol-def
item-rule-body-def split: if-splits)
hence Item r (b+1) i (j+1) € base w (Earley G w) k
unfolding base-def using Scan.prems(4) bin-def by fastforce
hence Item r (b+1) i (j+1) € I
using Scan.prems(3) by blast
hence Item r (b+1) i (j+1) € Earleyp-bin k G w I
using Farleyg-bin-mono by blast
thus ?case

29

using <j+1 = k> bin-def by fastforce

next
case (Predict x v b ijr’)
have j =k

using Predict.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
hence z € bin (Earley G w) k
using Predict.hyps(1,2) bin-def by fastforce
hence z € bin (Earleyp-bin k G w I) k
using Predict.IH Predict.prems(1—3) by blast
hence Item v’ 0 j j € Predicty k G (Farleyp-bin k G w I)
unfolding Predictp-def init-item-def using Predict.hyps(1,3,4) <j = k> by
blast
hence Item r’ 0 j j € Earleyp-bin-step k G w (Earleyp-bin k G w I)
using Predictp-Farleyg-bin-step-mono by blast
hence Item v’ 0 j j € Earleyp-bin k G w I
using Farleyp-bin-idem Farleyp-bin-step-FEarleyp-bin-mono by blast
thus ?case
by (simp add: <j = k> bin-def)

next
case (Complete £ 75 by 1§y 1y by 1)
have | = £

using Complete.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
hence y € bin (Earley G w) |
using Complete.hyps(3,4) bin-def by fastforce
hence 0: y € bin (Earleyp-bink G w I) k
using Complete.IH(2) Complete.prems(1—3) <l = k» by blast
have 1: z € bin (Earleyp-bin k G w I) (item-origin y)
proof (cases j = k)
case True
hence z € bin (Farley G w) k
using Complete.hyps(1,2) bin-def by fastforce
hence = € bin (Earleyp-bin k G w I) k
using Complete.IH(1) Complete.prems(1—23) by blast
thus ?thesis
using Complete.hyps(3) True by simp
next
case Fulse
hence j < k
using <l = k» wf-Farley wf-item-def Complete.hyps(3,4) by force
moreover have z € bin (Earley G w) j
using Complete.hyps(1,2) bin-def by force
ultimately have z € [
using Complete.prems(2) by blast
hence z € bin (Earleyp-bin k G w I) j
using Complete.hyps(1) Earleyp-bin-mono bin-def by fastforce
thus ?thesis
using Complete.hyps(3) by simp

30

qed
have Item ry (by + 1) i k € Completer k (Earleyp-bin k G w I)
unfolding Completep-def inc-item-def using 0 1 Complete.hyps(1,5,6) by
force
hence Item r, (by + 1) i k € Earleyp-bin-step k G w (Earleyp-bin k G w I)
unfolding Farleyp-bin-step-def by blast
hence Item r,, (b, + 1) i k € Earleyp-bin k G w I
using Farleyp-bin-idem Farleyp-bin-step-Earleyr-bin-mono by blast
thus ?case
using bin-def <l = k> by fastforce
qed
qed

lemma FEarley-base-sub-Farleyp-bin:
assumes Initp G C [
assumes Yk’ < k. bin (Earley G w) k' C I
assumes base w (Earley G w) k C I
assumes wf-G G is-word G w
shows base w (Earley G w) (k+1) C bin (Earleyp-bin k G w I) (k+1)
proof standard
fix z
assume *: z € base w (Farley G w) (k+1)
hence =z € Farley G w
using base-def by blast
thus = € bin (Earleyp-bin k G w I) (k+1)
using assms *
proof (induction rule: Earley.induct)
case (Init r)
have k = 0
using Init.prems(6) unfolding base-def by simp
hence Fulse
using Init.prems(6) unfolding base-def by simp
thus ?case
by blast
next
case (Scanzrbija)
have j = k
using Scan.prems(6) base-def by (metis (mono-tags, lifting) CollectD add-right-cancel
item.sel(4))
hence z € bin (Earleyp-bin k G w I) k
using FEarleyp-bin-sub-Earleyp-bin Scan.prems Scan.hyps(1,2) bin-def
by (metis (mono-tags, lifting) Collect] item.sel(4) subsetD)
hence Item r (b+1) i (j+1) € Scang k w (Earleyp-bin k G w I)
unfolding Scanp-def inc-item-def using Scan.hyps <j = k> by force
hence Item r (b+1) i (j+1) € Earleyp-bin-step k G w (Earleyp-bin k G w I)
using Scanp-Farleyp-bin-step-mono by blast
hence Item r (b+1) i (j+1) € Earleyp-bin k G w I
using Farleyp-bin-idem Farleyp-bin-step-FEarleyr-bin-mono by blast
thus Zcase

31

using <j = k> bin-def by fastforce
next
case (Predict x v b ijr’)
have Fulse
using Predict.prems(6) unfolding base-def by (auto simp: prev-symbol-def)
thus ?case
by blast
next
case (Complete x ry by i 5y ry by 1)
have [—1 < length w
using Complete.prems(6) base-def wf-Earley wf-item-def
by (metis (mono-tags, lifting) CollectD add.right-neutral add-Suc-right add-diff-cancel-right’
item.sel(4) less-eq-Suc-le plus-1-eq-Suc)
hence is-terminal G (w!(I—1))
using Complete.prems(5) is-word-is-terminal by blast
moreover have is-nonterminal G (item-rule-head y)
using Complete.hyps(3,4) Complete.prems(4) wf-Earley wf-item-def
by (metis item-rule-head-def prod.collapse rule-head-def rule-nonterminal-type)
moreover have prev-symbol (Item r, (by+1) i l) = next-symbol x
using Complete.hyps(1,6)
by (auto simp: next-symbol-def prev-symbol-def is-complete-def item-rule-body-def
split: if-splits)
moreover have prev-symbol (Item 1, (by+1) i 1) = Some (W!(I—1))
using Complete.prems(6) base-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
ultimately have Fulse
using Complete.hyps(6) Complete.prems(4) is-terminal-nonterminal by fast-
force
thus ?case
by blast
qed
qed

lemma FEarleyp-bin-k-sub-Farleyg-bins:
assumes wf-G G is-word G w k < n
shows bin (Earley G w) k C Earleyp-bins n G w
using assms
proof (induction n arbitrary: k)
case ()
have bin (Earley G w) 0 C bin (Earleyp-bin 0 G w (Initp G)) 0
using Farleyp-bin-sub-Earleyg-bin base-def by fastforce
thus ?case
unfolding bin-def using 0.prems(3) by auto
next
case (Suc n)
show ?Zcase
proof (cases k < n)
case True
thus ?thesis

32

using Suc Farleyp-bin-mono by force
next
case Fulse
hence k = n+1
using Suc.prems(3) by force
have 0: Vk' < k. bin (Earley G w) k' C Earleyp-bins n G w
using Suc by simp
moreover have base w (Earley G w) k C Earleyp-bins n G w
proof —
have Vk' < k—1. bin (Earley G w) k' C Farleyp-bins n G w
using Suc <k = n + 1> by auto
moreover have base w (Earley G w) (k—1) C Farleyp-bins n G w
using 0 bin-def base-def False <k = n+1>
by (smt (verit) Suc-eg-plusl diff-Suc-1 linorder-not-less mem-Collect-eq
subsetD subsetl)
ultimately have base w (Earley G w) k C bin (Earleyp-binn G w (Earleyp-bins
ngw))k
using Suc.prems(1,2) Earley-base-sub-Earleyp-bin <k = n + 1) Initp-sub-Earleyp-bins
by (metis add-diff-cancel-right’)
hence base w (Farley G w) k C bin (Earleyp-bins n G w) k
by (metis Earleyp-bins.elims Earleyp-bin-idem)
thus ?thesis
using bin-def by blast
qed
ultimately have bin (Earley G w) k C bin (Earleyp-bin k G w (Earleyp-bins
nGw)k
using Farleyp-bin-sub-Earleyp-bin Initp-sub-Farleyp-bins by metis
thus ?thesis
using FEarleyp-bins.simps(2) <k = n + 1> bin-def by auto
qed
qed

lemma Farley-sub-Earleyp:
assumes wf-G G is-word G w
shows Earley G w C Earleyr G w
proof —
have V& < length w. bin (Earley G w) k C Earleyr G w
by (simp add: Earleyp-bin-k-sub-Earleyp-bins Earleyp-def assms)
thus ?thesis
using wf-Earley wf-item-def bin-def by blast
qed

theorem completeness-Farleyp:

assumes derives G [6 G| w is-word G w wf-G G

shows recognizing (Farleyr G w) G w

using assms FEarley-sub-Farleyr Farleyp-sub-FEarley completeness-Farley by
(metis subset-antisym)

33

7.5 Correctness

theorem Farley-eq-Earleyr:
assumes wf-G G is-word G w
shows FEarley G w = FEarleyr G w
using Farley-sub-Earleyr FEarleyp-sub-FEarley assms by blast

theorem correctness-Earleyp:
assumes wf-G G is-word G w
shows recognizing (Farleyr G w) G w +— derives G [6 G] w
using assms Farley-eq-FEarleypr correctness-FEarley by fastforce

end
theory Farley-Recognizer
imports
Earley-Fizpoint
begin

8 Earley recognizer

8.1 List auxilaries

fun filter-with-indez’ :: nat = ('a = bool) = 'a list = (‘a X nat) list where
filter-with-index’ - - [| =[]
| filter-with-index’ i P (z#txzs) = (
if Pz then (z,i) # filter-with-index’ (i+1) P xs
else filter-with-index’ (i+1) P xs)

definition filter-with-index :: (‘a = bool) = 'a list = ('a x nat) list where
filter-with-index P zs = filter-with-index’ 0 P zs

lemma filter-with-index’-P:
(z, n) € set (filter-with-index’ i P 2s) = P«
by (induction xzs arbitrary: i) (auto split: if-splits)

lemma filter-with-indez-P:
(z, n) € set (filter-with-index P xs) = P x
by (metis filter-with-index’-P filter-with-index-def)

lemma filter-with-index’-cong-filter:
map fst (filter-with-indez’ i P zs) = filter P xs
by (induction zs arbitrary: i) auto

lemma filter-with-indez-cong-filter:
map fst (filter-with-index P xs) = filter P xs
by (simp add: filter-with-index’-cong-filter filter-with-index-def)

lemma size-index-filter-with-index:
(z, n) € set (filter-with-index’ i P xs) = n > i

34

by (induction zs arbitrary: i) (auto simp: Suc-leD split: if-splits)

lemma indez-filter-with-index’-lt-length:

(z, n) € set (filter-with-index’ i P xs) = n—i < length xs

by (induction xs arbitrary: i)(auto simp: less-Suc-eq-0-disj split: if-splits; metis
Suc-diff-Suc lel)+

lemma index-filter-with-index-lt-length:
(z, n) € set (filter-with-index P xs) => n < length xs
by (metis filter-with-index-def index-filter-with-index'-lt-length minus-nat.diff-0)

lemma filter-with-index’-nth:
(z, n) € set (filter-with-index’ i P xs) = zs ! (n—i) = z
proof (induction zs arbitrary: i)
case (Cons y s)
show ?Zcase
proof (cases z = y)
case True
thus ?thesis
using Cons by (auto simp: nth-Cons’ split: if-splits)
next
case Fulse
hence (z, n) € set (filter-with-index’ (i+1) P xs)
using Cons.prems by (cases xs) (auto split: if-splits)
hencen>i+ las!l(n—i—1)=z
by (auto simp: size-index-filter-with-index’ Cons.IH)
thus ?thesis
by simp
qed
qed simp

lemma filter-with-index-nth:
(z, n) € set (filter-with-index P xs) = zs ! n =z
by (metis diff-zero filter-with-index’-nth filter-with-index-def)

lemma filter-with-indez-nonempty:
z € set 1s = P x = filter-with-index P xs # []
by (metis filter-empty-conv filter-with-index-cong-filter list.map(1))

lemma filter-with-index’- Ex-first:
(3z i xs’. filter-with-index’ n P xs = (x, i)#xs") «— (32 € set zs. P 1)
by (induction xs arbitrary: n) auto

lemma filter-with-index-Ex-first:

(Fz i xs’. filler-with-index P zs = (z, |)#xs’) +— (3z € set xs. P 1)
using filter-with-index'-Ex-first filter-with-index-def by metis

35

8.2 Definitions

datatype pointer =
Null
| Pre nat — pre
| PreRed nat X nat X nat (nat X nat X nat) list — k’, pre, red

datatype ‘a entry =
Entry (item : 'a item) (pointer : pointer)

type-synonym ’a bin = ’a entry list
type-synonym ‘a bins = ’a bin list

definition items :: ‘a bin = 'a item list where
items b = map item b

definition pointers :: 'a bin = pointer list where
pointers b = map pointer b

definition bins-eq-items :: 'a bins = 'a bins = bool where
bins-eq-items bs0 bsl = map items bsO0 = map items bsl

definition bins :: ‘a bins = ’a item set where
bins bs = |J { set (items (bs'k)) | k. k < length bs }

definition bin-upto :: ‘a bin = nat = ’a item set where
bin-upto b i = { items b ! j | j. j < i A j < length (items b) }

definition bins-upto :: ‘a bins = nat = nat = 'a item set where
bins-upto bs ki = |J { set (items (bs ! 1)) | I. Il < k } U bin-upto (bs ! k) i

definition wf-bin-items :: 'a c¢fg = 'a sentence = nat = 'a item list = bool where
wf-bin-items G w k xs =V € set zs. wf-item G w x A item-end x = k

definition wf-bin :: ‘a cfg = ’a sentence = nat = ’a bin = bool where
wf-bin G w k b = distinct (items b) A wf-bin-items G w k (items b)

definition wf-bins :: ‘a ¢fg = 'a list = 'a bins = bool where
wf-bins G w bs = Vk < length bs. wf-bin G w k (bslk)

definition nonempty-derives :: 'a cfg = bool where
nonempty-derives G =V N. N € set (N G) — — derives G [N] |]

definition Inity, :: 'a ¢fg = ’a sentence = ’a bins where
Init;, G w =
let rs = filter (Ar. rule-head 1 = & G) (R G) in
let b0 = map (Ar. (Entry (init-item r 0) Null)) rs in
let bs = replicate (length w + 1) ([]) in
bs[0 = b0]

36

definition Scany, :: nat = 'a sentence = 'a = 'a item = nat = 'a entry list
where
Scany, k w a x pre =
if wk = a then
let ' = inc-item z (k+1) in
[Entry «’ (Pre pre)]
else ||

definition Predicty :: nat = 'a c¢fg = 'a = 'a entry list where
Predict;, kG X =
let rs = filter (Ar. rule-head r = X) (R G) in
map (Ar. (Entry (init-item r k) Null)) s

definition Completer :: nat = 'a item = 'a bins = nat = 'a entry list where
Completer, k y bs red =
let orig = bs ! (item-origin y) in
let is = filter-with-index (Az. next-symbol x = Some (item-rule-head y)) (items
orig) in
map (A(z, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red) []))) is

fun bin-upd :: 'a entry = ‘a bin = 'a bin where
bin-upd e’ [] = [e’]
| bin-upd e’ (eftes) = (
case (e, e) of
(Entry x (PreRed px xs), Entry y (PreRed py ys)) =
if © = y then Entry « (PreRed py (px#xsQys)) # es
else e # bin-upd e’ es
| - =
if item e’ = item e then e # es
else e # bin-upd e’ es)

fun bin-upds :: 'a entry list = ’a bin = ’a bin where
bin-upds [] b= b
| bin-upds (eftes) b = bin-upds es (bin-upd e b)

definition bins-upd :: 'a bins = nat = ’a entry list = ’a bins where
bins-upd bs k es = bs[k := bin-upds es (bs!k)]

partial-function (tailrec) Earleyr-bin' :: nat = 'a c¢fg = 'a sentence = 'a bins
= nat = 'a bins where
Earleyr-bin’ k G w bs i = (
if © > length (items (bs ! k)) then bs

else
let x = items (bslk) ! i in
let bs' =
case next-symbol x of
Some a =

if is-terminal G a then
if k < length w then bins-upd bs (k+1) (Scany k w a x 7)

37

else bs
else bins-upd bs k (Predicty, k G a)
| None = bins-upd bs k (Completer, k x bs 7)
in FEarleyr,-bin’ k G w bs’ (i+1))

declare Earleyy,-bin'.simps|code]

definition Farleyp-bin :: nat = 'a c¢fg = 'a sentence = 'a bins = 'a bins where
Earleyy,-bin k G w bs = Earleyr-bin’ k G w bs 0

fun Farleyy-bins :: nat = 'a cfg = 'a sentence = 'a bins where
Earleyr,-bins 0 G w = Farley-bin 0 G w (Init, G w)
| Earleyr-bins (Suc n) G w = Earleyr-bin (Suc n) G w (Earleyr-bins n G w)

definition Earley; :: 'a cfg = 'a sentence = 'a bins where
Earleyr, G w = Earleyr-bins (length w) G w

8.3 Bin lemmas

lemma length-bins-upd[simp:
length (bins-upd bs k es) = length bs
unfolding bins-upd-def by simp

lemma length-bin-upd:
length (bin-upd e b) > length b
by (induction e b rule: bin-upd.induct) (auto split: pointer.splits entry.splits)

lemma length-bin-upds:
length (bin-upds es b) > length b
by (induction es arbitrary: b) (auto, meson le-trans length-bin-upd)

lemma length-nth-bin-bins-upd:

length (bins-upd bs k es ! n) > length (bs ! n)

unfolding bins-upd-def using length-bin-upds

by (metis linorder-not-le list-update-beyond nth-list-update-eq nth-list-update-neq
order-refl)

lemma nth-idem-bins-upd:
k # n = bins-upd bs kes! n=">bs!n
unfolding bins-upd-def by simp

lemma items-nth-idem-bin-upd:

n < length b = items (bin-upd e b) ! n = items b ! n

by (induction b arbitrary: e n) (auto simp: items-def less-Suc-eq-0-disj split!:
entry.split pointer.split)

lemma items-nth-idem-bin-upds:

n < length b = items (bin-upds es b) | n = items b ! n
by (induction es arbitrary: b)

38

(auto, metis items-def items-nth-idem-bin-upd length-bin-upd nth-map order.strict-trans2)

lemma items-nth-idem-bins-upd:
n < length (bs | k) = items (bins-upd bs k es | k) ! n = items (bs ! k) ! n
unfolding bins-upd-def using items-nth-idem-bin-upds
by (metis linorder-not-less list-update-beyond nth-list-update-eq)

lemma bin-upto-eq-set-items:

i > length b = bin-upto b i = set (items b)

by (auto simp: bin-upto-def items-def, metis in-set-conv-nth nth-map order-le-less
order-less-trans)

lemma bins-upto-empty:
bins-upto bs 0 0 = {}
unfolding bins-upto-def bin-upto-def by simp

lemma set-items-bin-upd:
set (items (bin-upd e b)) = set (items b) U {item e}
proof (induction b arbitrary: e)
case (Cons b bs)
show ?Zcase
proof (cases 3z xp xs y yp ys. e = Entry x (PreRed xp xs) A b = Entry y (PreRed
yp ys))
case True
then obtain z zp zs y yp ys where e = Entry ¢ (PreRed zp xs) b = Entry y
(PreRed yp ys)
by blast
thus ?thesis
using Cons.IH by (auto simp: items-def)
next
case False
then show ?thesis
proof cases
assume x: item e = item b
hence bin-upd e (b # bs) = b # bs
using Fualse by (auto split: pointer.splits entry.splits)
thus “thesis
using * by (auto simp: items-def)
next
assume x: — item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs
using Fulse by (auto split: pointer.splits entry.splits)
thus ?thesis
using * Cons.IH by (auto simp: items-def)
qed
qed
qed (auto simp: items-def)

lemma set-items-bin-upds:

39

set (items (bin-upds es b)) = set (items b) U set (items es)
using set-items-bin-upd by (induction es arbitrary: b) (auto simp: items-def,
blast, force+)

lemma bins-bins-upd:
assumes k < length bs
shows bins (bins-upd bs k es) = bins bs U set (items es)
proof —
let ?bs = bins-upd bs k es
have bins (bins-upd bs k es) = |J {set (items (?bs | k)) |k. k < length ?bs}
unfolding bins-def by blast

also have ... = |J {set (items (bs ! 1)) |I. I < length bs A 1| # k} U set (items
(%bs ! k))
unfolding bins-upd-def using assms by (auto, metis nth-list-update)
also have ... = |J {set (items (bs ! 1)) |I. I < length bs A 1l # k} U set (items

(bs 1 k)) U set (items es)
using set-items-bin-upds|of es bs'k] by (simp add: assms bins-upd-def sup-assoc)

also have ... = |J {set (items (bs ! k)) |k. k < length bs} U set (items es)
using assms by blast
also have ... = bins bs U set (items es)

unfolding bins-def by blast
finally show ?thesis .
qed

lemma kth-bin-sub-bins:
k < length bs = set (items (bs ! k)) C bins bs
unfolding bins-def bins-upto-def bin-upto-def by blast+

lemma bin-upto-Cons-0:

bin-upto (e#es) 0 = {}
by (auto simp: bin-upto-def)

lemma bin-upto-Cons:
assumes (< n
shows bin-upto (e#tes) n = { item e } U bin-upto es (n—1)

proof —
have bin-upto (e#tes) n = { items (e#es) ! j | j. j < n A j < length (items
(eftes)) }
unfolding bin-upto-def by blast
also have ... = { item e } U { dtems es! j|j. j < (n—1) A j < length (items

es) }

using assms by (cases n) (auto simp: items-def nth-Cons’, metis One-nat-def
Zero-not-Suc diff-Suc-1 not-less-eq nth-map)
also have ... = { item e } U bin-upto es (n—1)
unfolding bin-upto-def by blast
finally show ?thesis .
qed

lemma bin-upto-nth-idem-bin-upd:

40

n < length b = bin-upto (bin-upd e b) n = bin-upto b n
proof (induction b arbitrary: e n)
case (Cons b bs)
show ?case
proof (cases Iz xp xs y yp ys. e = Entry x (PreRed xp xs) A b = Entry y (PreRed
yp ys))
case True
then obtain z zp zs y yp ys where e = Entry « (PreRed zp zs) b = Entry y
(PreRed yp ys)
by blast
thus ?thesis
using Cons bin-upto-Cons-0
by (cases n) (auto simp: items-def bin-upto-Cons, blast+)
next
case False
then show ?thesis
proof cases
assume x: item e = item b
hence bin-upd e (b # bs) = b # bs
using Fualse by (auto split: pointer.splits entry.splits)
thus ?thesis
using * by (auto simp: items-def)
next
assume x: — item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs
using Fulse by (auto split: pointer.splits entry.splits)
thus ?thesis
using * Cons bin-upto-Cons-0
by (cases n) (auto simp: items-def bin-upto-Cons, blast+)
qed
qed
qed (auto simp: items-def)

lemma bin-upto-nth-idem-bin-upds:
n < length b = bin-upto (bin-upds es b) n = bin-upto b n
using bin-upto-nth-idem-bin-upd length-bin-upd
apply (induction es arbitrary: b)
apply auto
using order.strict-trans2 order.strict-trans1 by blast+

lemma bins-upto-kth-nth-idem:

assumes | < length bs k < I n < length (bs ! k)

shows bins-upto (bins-upd bs 1 es) k n = bins-upto bs k n
proof —

let ?bs = bins-upd bs [es

have bins-upto ?bs kn = J {set (items (2bs ! 1)) |I. I < k} U bin-upto (?bs ! k)
n

unfolding bins-upto-def by blast
also have ... = |J {set (items (bs ! 1)) |I. I < k} U bin-upto (?bs ! k) n

41

unfolding bins-upd-def using assms(1,2) by auto

also have ... = |J {set (items (bs ! 1)) |I. | < k} U bin-upto (bs! k) n
unfolding bins-upd-def using assms(1,3) bin-upto-nth-idem-bin-upds
by (metis (no-types, lifting) nth-list-update)

also have ... = bins-upto bs k n
unfolding bins-upto-def by blast

finally show ?thesis .

qed

lemma bins-upto-sub-bins:
k < length bs = bins-upto bs k n C bins bs
unfolding bins-def bins-upto-def bin-upto-def using less-trans by (auto, blast)

lemma bins-upto-Suc-Un:

n < length (bs | k) = bins-upto bs k (n+1) = bins-upto bs k n U { items (bs !
k)!'n}

unfolding bins-upto-def bin-upto-def using less-Suc-eq by (auto simp: items-def,
metis nth-map)

lemma bins-bin-exists:
z € bins bs = Ik < length bs. x € set (items (bs ! k))
unfolding bins-def by blast

lemma distinct-bin-upd:
distinct (items b) = distinct (items (bin-upd e b))
proof (induction b arbitrary: e)
case (Cons b bs)
show ?Zcase
proof (cases 3z xp xs y yp ys. e = Entry x (PreRed zp xs) A b = Entry y (PreRed
yp ys))
case True
then obtain x zp zs y yp ys where e = Entry x (PreRed xp xs) b = Entry y
(PreRed yp ys)
by blast
thus ?Zthesis
using Cons
apply (auto simp: items-def)
by (metis Un-insert-right entry.sel(1) imagel items-def list.set-map list.simps(15)
set-ConsD set-items-bin-upd sup-bot-right)
next
case Fulse
then show ?thesis
proof cases
assume x: item e = item b
hence bin-upd e (b # bs) = b # bs
using False by (auto split: pointer.splits entry.splits)
thus ?thesis
using * Cons.prems by (auto simp: items-def)
next

42

assume x: - item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs
using False by (auto split: pointer.splits entry.splits)
moreover have distinct (items (bin-upd e bs))
using Cons by (auto simp: items-def)
ultimately show ?Zthesis
using x Cons.prems set-items-bin-upd
by (metis Un-insert-right distinct.simps(2) insertE items-def list.simps(9)
sup-bot-right)
qed
qed
qed (auto simp: items-def)

lemma wf-bins-kth-bin:

wf-bins G w bs = k < length bs = x € set (items (bs | k)) = wf-item G w =
A item-end © = k

using wf-bin-def wf-bins-def wf-bin-items-def by blast

lemma wf-bin-bin-upd:
assumes wf-bin G w k b wf-item G w (item e) A item-end (item e) = k
shows wf-bin G w k (bin-upd e b)
using assms
proof (induction b arbitrary: e)
case (Cons b bs)
show ?Zcase
proof (cases Iz xp xs y yp ys. e = Entry x (PreRed xp xs) A b = Entry y (PreRed
yp ys))
case True
then obtain z zp zs y yp ys where e = Entry « (PreRed zp xs) b = Entry y
(PreRed yp ys)
by blast
thus ?thesis
using Cons distinct-bin-upd wf-bin-def wf-bin-items-def set-items-bin-upd
by (smt (verit, best) Un-insert-right insertE sup-bot.right-neutral)
next
case False
then show ?thesis
proof cases
assume x: item e = item b
hence bin-upd e (b # bs) = b # bs
using False by (auto split: pointer.splits entry.splits)
thus ?thesis
using * Cons.prems by (auto simp: items-def)
next
assume x: - item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs
using Fualse by (auto split: pointer.splits entry.splits)
thus ?thesis
using x Cons.prems set-items-bin-upd distinct-bin-upd wf-bin-def wf-bin-items-def

43

by (smt (verit, best) Un-insert-right insertE sup-bot-right)
qed
qed
qed (auto simp: items-def wf-bin-def wf-bin-items-def)

lemma wf-bin-bin-upds:
assumes wf-bin G w k b distinct (items es)
assumes Yz € set (items es). wf-item G w x A item-end x = k
shows wf-bin G w k (bin-upds es b)
using assms by (induction es arbitrary: b) (auto simp: wf-bin-bin-upd items-def)

lemma wf-bins-bins-upd:
assumes wf-bins G w bs distinct (items es)
assumes Yz € set (items es). wf-item G w x A item-end x = k
shows wf-bins G w (bins-upd bs k es)
unfolding bins-upd-def using assms wf-bin-bin-upds wf-bins-def
by (metis length-list-update nth-list-update-eq nth-list-update-neq)

lemma wf-bins-impl-wf-items:
wf-bins G w bs = VYV € (bins bs). wf-item G w x
unfolding wf-bins-def wf-bin-def wf-bin-items-def bins-def by auto

lemma bin-upds-eq-items:
set (items es) C set (items b) = set (items (bin-upds es b)) = set (items b)
apply (induction es arbitrary: b)
apply (auto simp: set-items-bin-upd set-items-bin-upds)
apply (simp add: items-def)
by (metis Un-iff Un-subset-iff items-def list.simps(9) set-subset-Cons)

lemma bin-eq-items-bin-upd:
item e € set (items b) = items (bin-upd e b) = items b
proof (induction b arbitrary: e)
case (Cons b bs)
show ?Zcase
proof (cases 3z xzp xs y yp ys. e = Entry x (PreRed zp xs) A b = Entry y (PreRed
yp ys))
case True
then obtain z zp zs y yp ys where e = Entry x (PreRed zp xs) b = Entry y
(PreRed yp ys)
by blast
thus ?thesis
using Cons by (auto simp: items-def)
next
case Fulse
then show ?thesis
proof cases
assume x: item e = item b
hence bin-upd e (b # bs) = b # bs
using False by (auto split: pointer.splits entry.splits)

44

thus ?thesis
using * Cons.prems by (auto simp: items-def)
next
assume *: - item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs
using False by (auto split: pointer.splits entry.splits)
thus ?thesis
using * Cons by (auto simp: items-def)
qed
qged
qed (auto simp: items-def)

lemma bin-eq-items-bin-upds:
assumes set (items es) C set (items b)
shows items (bin-upds es b) = items b
using assms
proof (induction es arbitrary: b)
case (Cons e es)
have items (bin-upds es (bin-upd e b)) = items (bin-upd e b)
using Cons bin-upds-eq-items set-items-bin-upd set-items-bin-upds
by (metis Un-upper2 bin-upds.simps(2) sup.coboundedIl)
moreover have items (bin-upd e b) = items b
using bin-eg-items-bin-upd Cons.prems by (auto simp: items-def)
ultimately show ?case
by simp
qed (auto simp: items-def)

lemma bins-eq-items-bins-upd:
assumes set (items es) C set (items (bslk))
shows bins-eg-items (bins-upd bs k es) bs
unfolding bins-upd-def using assms bin-eq-items-bin-upds bins-eq-items-def
by (metis list-update-id map-update)

lemma bins-eq-items-imp-eq-bins:
bins-eq-items bs bs' = bins bs = bins bs’
unfolding bins-eq-items-def bins-def items-def
by (metis (no-types, lifting) length-map nth-map)

lemma bin-eq-items-dist-bin-upd-bin:
assumes items a = items b
shows items (bin-upd e a) = items (bin-upd e b)
using assms
proof (induction a arbitrary: e b)
case (Cons a as)
obtain b’ bs where bs: b = b’ # bs item a = item b’ items as = items bs
using Cons.prems by (auto simp: items-def)
show ?Zcase
proof (cases 3z xp zs y yp ys. e = Entry x (PreRed zp xs) A a = Entry y (PreRed

yp ys))

45

case True
then obtain z zp zs y yp ys where #: ¢ = Entry © (PreRed zp xs) a = Entry
y (PreRed yp ys)
by blast
show ?thesis
proof cases
assume *: = y
hence items (bin-upd e (a # as)) = z # items as
using # by (auto simp: items-def)
moreover have items (bin-upd e (b’ # bs)) = x # items bs
using bs # * by (auto simp: items-def split: pointer.splits entry.splits)
ultimately show ?thesis
using bs by simp
next
assume *: = 1 = y
hence items (bin-upd e (a # as)) = y # items (bin-upd e as)
using # by (auto simp: items-def)
moreover have items (bin-upd e (b’ # bs)) = y # items (bin-upd e bs)
using bs # * by (auto simp: items-def split: pointer.splits entry.splits)
ultimately show Zthesis
using bs Cons.IH by simp
qed
next
case Fulse
then show ?thesis
proof cases
assume *: item e = item a
hence items (bin-upd e (a # as)) = item a # items as
using Fualse by (auto simp: items-def split: pointer.splits entry.splits)
moreover have items (bin-upd e (b’ # bs)) = item b’ # items bs
using bs Fulse x by (auto simp: items-def split: pointer.splits entry.splits)
ultimately show ?thesis
using bs by simp
next
assume *: — item e = item a
hence items (bin-upd e (a # as)) = item a # items (bin-upd e as)
using Fualse by (auto simp: items-def split: pointer.splits entry.splits)
moreover have items (bin-upd e (b’ # bs)) = item b’ # items (bin-upd e bs)
using bs False * by (auto simp: items-def split: pointer.splits entry.splits)
ultimately show ?thesis
using bs Cons by simp
qed
qed
qed (auto simp: items-def)

lemma bin-eq-items-dist-bin-upds-bin:
assumes items a = items b
shows items (bin-upds es a) = items (bin-upds es b)
using assms

46

proof (induction es arbitrary: a b)
case (Cons e es)
hence items (bin-upds es (bin-upd e a)) = items (bin-upds es (bin-upd e b))
using bin-eg-items-dist-bin-upd-bin by blast
thus “case
by simp
qed simp

lemma bin-eq-items-dist-bin-upd-entry:
assumes item e = item e’
shows items (bin-upd e b) = items (bin-upd e’ b)
using assms
proof (induction b arbitrary: e e’)
case (Cons a as)
show ?case
proof (cases 3z xp zs y yp ys. e = Entry x (PreRed zp xs) A a = Entry y (PreRed
yp ys))
case True
then obtain z zp zs y yp ys where #: e = Entry x (PreRed zp xs) a = Entry
y (PreRed yp ys)
by blast
show ?thesis
proof cases
assume *: £ = y
thus ?thesis
using # Cons.prems by (auto simp: items-def split: pointer.splits entry.splits)
next
assume *: = T = ¥
thus ?thesis
using # Cons.prems
by (auto simp: items-def split!: pointer.splits entry.splits, metis Cons.IH
Cons.prems items-def)+
qed
next
case Fulse
then show ?thesis
proof cases
assume *: item e = item a
thus ?thesis
using Cons.prems by (auto simp: items-def split: pointer.splits entry.splits)
next
assume *: — item e = item a
thus ?thesis
using Cons.prems
by (auto simp: items-def split!: pointer.splits entry.splits, metis Cons.IH
Cons.prems items-def)+
qed
qged
qed (auto simp: items-def)

47

lemma bin-eq-items-dist-bin-upds-entries:
assumes items es = items es’
shows items (bin-upds es b) = items (bin-upds es’ b)
using assms
proof (induction es arbitrary: es’ b)
case (Cons e es)
then obtain ¢’ es’”’ where item ¢ = item e’ items es = items es'' es’ = e’ #
es 12
by (auto simp: items-def)
hence items (bin-upds es (bin-upd e b)) = items (bin-upds es’ (bin-upd e’ b))
using Cons.IH
by (metis bin-eq-items-dist-bin-upd-entry bin-eg-items-dist-bin-upds-bin)
thus ?Zcase
by (simp add: <es’ = e’ # es’)
qed (auto simp: items-def)

lemma bins-eq-items-dist-bins-upd:
assumes bins-eq-items as bs items aes = items bes k < length as
shows bins-eg-items (bins-upd as k aes) (bins-upd bs k bes)
proof —
have k < length bs
using assms(1,3) bins-eg-items-def map-eq-imp-length-eq by metis
hence items (bin-upds (aslk) aes) = items (bin-upds (bslk) bes)
using bin-eq-items-dist-bin-upds-entries bin-eq-items-dist-bin-upds-bin bins-eq-items-def
assms
by (metis (no-types, lifting) nth-map)
thus ?thesis
using <k < length bs» assms bin-eq-items-dist-bin-upds-bin bin-eq-items-dist-bin-upds-entries
bins-eq-items-def bins-upd-def by (smt (verit) map-update nth-map)
qed

8.4 Well-formed bins

lemma distinct-Scany,:
distinct (items (Scang k w a x pre))
unfolding Scany -def by (auto simp: items-def)

lemma distinct-Predicty,:

wf-G G = distinct (items (Predicty k G X))

unfolding Predicty,-def wf-G-defs by (auto simp: init-item-def rule-head-def dis-
tinct-map inj-on-def items-def)

lemma inj-on-inc-item:
Va € A item-end x = | = inj-on (Az. inc-item z k) A

unfolding inj-on-def inc-item-def by (simp add: item.expand)

lemma distinct-Completey,:
assumes wf-bins G w bs item-origin y < length bs

48

shows distinct (items (Completer, k y bs red))
proof —
let Yorig = bs ! (item-origin y)
let %is = filter-with-index (Ax. next-symbol x = Some (item-rule-head y)) (items
2orig)
let 2is’ = map (A(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red)
D) s
have wf: wf-bin G w (item-origin y) ?orig
using assms wf-bins-def by blast
have 0: Vz € set (map fst 2is). item-end xz = (item-origin y)
using wf wf-bin-def wf-bin-items-def filter-is-subset filter-with-indez-cong-filter
by (metis in-mono)
hence distinct (items Zorig)
using wf unfolding wf-bin-def by blast
hence distinct (map fst ?7is)
using filter-with-index-cong-filter distinct-filter by metis
moreover have items ?is’ = map (Az. inc-item z k) (map fst ?is)
by (induction ?%is) (auto simp: items-def)
moreover have inj-on (\z. inc-item z k) (set (map fst ?is))
using inj-on-inc-item 0 by blast
ultimately have distinct (items ?is’)
using distinct-map by metis
thus ?thesis
unfolding Completer-def by simp
qed

lemma wf-bins-Scany”:
assumes wf-bins G w bs k < length bs © € set (items (bs ! k))
assumes k < length w next-symbol x # None y = inc-item z (k+1)
shows wf-item G w y A item-end y = k+1
using assms wf-bins-kth-bin[OF assms(1—3)]
unfolding wf-item-def inc-item-def next-symbol-def is-complete-def item-rule-body-def
by (auto split: if-splits)

lemma wf-bins-Scany,:

assumes wf-bins G w bs k < length bs © € set (items (bs | k)) k < length w
next-symbol © # None

shows Vy € set (items (Scany, k w a x pre)). wf~item G w y A item-end y =
(k+1)

using wf-bins-Scany,'[OF assms] by (simp add: Scany,-def items-def)

lemma wf-bins-Predicty,:

assumes wf-bins G w bs k < length bs k < length w wf-G G

shows Vy € set (items (Predicty, k G X)). wf-item G w y A item-end y = k

using assms by (auto simp: Predicty,-def wf-item-def wf-bins-def wf-bin-def init-item-def
wf-G-defs items-def)

lemma wf-item-inc-item:
assumes wf-item G w = next-symbol x = Some a item-origin x < k k < length w

49

shows wf-item G w (inc-item x k) A item-end (inc-item z k) = k
using assms by (auto simp: wf-item-def inc-item-def item-rule-body-def next-symbol-def
is-complete-def split: if-splits)

lemma wf-bins-Completer,:

assumes wf-bins G w bs k < length bs y € set (items (bs ! k))

shows YV € set (items (Completer, k y bs red)). wf-item G w x A item-end x =
k
proof —

let Zorig = bs ! (item-origin y)

let %is = filter-with-index (Az. next-symbol x = Some (item-rule-head y)) (items
Zorig)

let %is’ = map (A(z, pre). (Entry (inc-item z k) (PreRed (item-origin y, pre, red)
D)) #is

{

fix z

assume *: z € set (map fst 7is)

have item-end © = item-origin y
using * assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order.strict-trans2 filter-is-subset subsetD)

have wf-item G w =
using *x assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order.strict-trans2 filter-is-subset subsetD)

moreover have next-symbol x = Some (item-rule-head y)
using * filter-set filter-with-index-cong-filter member-filter by metis

moreover have item-origin v < k
using <item-end © = item-origin y> <wf-item G w Ty assms wf-bins-kth-bin

wf-item-def

by (metis dual-order.order-iff-strict dual-order.strict-trans1)

moreover have k < length w
using assms wf-bins-kth-bin wf-item-def by blast

ultimately have wf-item G w (inc-item z k) item-end (inc-item z k) = k
by (simp-all add: wf-item-inc-itemn)

}

hence Vi € set (items ?is’). wf-item G w x A item-end z = k
by (auto simp: items-def rev-image-eql)
thus ?thesis
unfolding Completer,-def by presburger
qed

lemma Ez-wf-bins:

dnbsw G. n < length w A length bs = Suc (length w) A wf-G G A wf-bins G w
bs

apply (rule exI[where z=0])

apply (rule exI[where z=[[]]])

apply (rule exI[where z=[]])

apply (auto simp: wf-bins-def wf-bin-def wf-G-defs wf-bin-items-def items-def
split: prod.splits)

by (metis cfg.sel distinct.simps(1) empty-iff empty-set inf-bot-right list.set-intros(1))

50

definition wf-earley-input :: (nat x 'a c¢fg x 'a sentence x 'a bins) set where
wf-earley-input = {
(k, G, w, bs) | k G w bs.
k < length w A
length bs = length w + 1 A
wf-G G A
wf-bins G w bs
}

typedef ‘a wf-bins = wf-earley-input::(nat X 'a cfg x 'a sentence X 'a bins) set
morphisms from-wf-bins to-wf-bins
using Ez-wf-bins by (auto simp: wf-earley-input-def)

lemma wf-earley-input-elim:

assumes (k, G, w, bs) € wf-earley-input

shows k < length w A k < length bs A length bs = length w + I A wf-G G A
wf-bins G w bs

using assms(1) from-wf-bins wf-earley-input-def by (smt (verit) Suc-eq-plus!
less-Suc-eq-le mem-Collect-eq prod.sel(1) snd-conv)

lemma wf-earley-input-intro:
assumes k < length w length bs = length w + 1 wf-G G wf-bins G w bs
shows (k, G, w, bs) € wf-earley-input
by (simp add: assms wf-earley-input-def)

lemma wf-earley-input-Completey,:
assumes (k, G, w, bs) € wf-earley-input — length (items (bs ! k)) < i
assumes z = items (bs ! k) ! i next-symbol x = None
shows (k, G, w, bins-upd bs k (Completer, k x bs red)) € wf-earley-input
proof —
have x: k < length w length bs = length w + 1 wf-G G wf-bins G w bs
using wf-earley-input-elim assms(1) by metis+
have z: z € set (items (bs ! k))
using assms(2,3) by simp
have item-origin x < length bs
using = wf-bins-kth-bin x(1,2,4) wf-item-def
by (metis One-nat-def add.right-neutral add-Suc-right dual-order.trans le-imp-less-Suc)
hence wf-bins G w (bins-upd bs k (Completey, k = bs red))
using *(1,2,4) Suc-eq-plusi distinct-Completey, le-imp-less-Suc wf-bins-Completey,
wf-bins-bins-upd x by metis
thus ?thesis
by (simp add: *(1—38) wf-earley-input-def)
qed

lemma wf-earley-input-Scany:
assumes (k, G, w, bs) € wf-earley-input — length (items (bs ! k)) < ¢
assumes z = items (bs ! k) ! i next-symbol x = Some a
assumes is-terminal G a k < length w

o1

shows (k, G, w, bins-upd bs (k+1) (Scany k w a x pre)) € wf-earley-input
proof —
have x: k < length w length bs = length w + 1 wf-G G wf-bins G w bs
using wf-earley-input-elim assms(1) by metis+
have z: z € set (items(bs ! k))
using assms(2,3) by simp
have wf-bins G w (bins-upd bs (k+1) (Scang k w a z pre))
using * z assms(1,4,6) distinct-Scany, wf-bins-Scany, wf-bins-bins-upd wf-earley-input-elim
by (metis option.discl)
thus ?thesis
by (simp add: *(1—3) wf-earley-input-def)
qed

lemma wf-earley-input-Predicty:
assumes (k, G, w, bs) € wf-earley-input — length (items (bs ! k)) < ¢
assumes z = items (bs | k) ! i next-symbol x = Some a — is-terminal G a
shows (k, G, w, bins-upd bs k (Predicty, k G a)) € wf-earley-input
proof —
have x: k < length w length bs = length w + 1 wf-G G wf-bins G w bs
using wf-earley-input-elim assms(1) by metis+
have z: z € set (items (bs ! k))
using assms(2,3) by simp
hence wf-bins G w (bins-upd bs k (Predicty, k G a))
using * z assms(1,4) distinct-Predicty, wf-bins-Predicty, wf-bins-bins-upd wf-earley-input-elim
by metis
thus ?thesis
by (simp add: *(1—38) wf-earley-input-def)
qed

fun earley-measure :: nat x 'a cfg X 'a sentence x 'a bins = nat = nat where
earley-measure (k, G, w, bs) i = card { z | z. wf-item G w z A item-end x = k }
— 1

lemma Farleyy,-bin'-simps[simp):
i > length (items (bs ! k)) = Earleyr-bin" k G w bs i = bs
- > length (items (bs | k)) = x = items (bs'k) | i = neat-symbol x = None
_—
Earleyr-bin' k G w bs i = Earleyr,-bin' k G w (bins-upd bs k (Completer, k x bs
) (i+1)
— 1 > length (items (bs | k)) = x = items (bs'k) | i = neat-symbol z = Some
a4 —>
is-terminal G a« = k < length w = Farleyr-bin’ k G w bs i = Earleyr-bin’
k G w (bins-upd bs (k+1) (Scany, k w a z i) (i+1)
- i > length (items (bs ! k)) = x = items (bslk) | { = next-symbol x = Some
o =
is-terminal G a = — k < length w = Earleyr-bin' k G w bs i = Earleyr-bin’
kG wbs (i+1)
= ¢ > length (items (bs ! k)) = x = items (bs'k) ! i => next-symbol x = Some
o =

52

- is-terminal G a« = Earleyr-bin' k G w bs i = Earleyr,-bin' k G w (bins-upd
bs k (Predicty, k G a)) (i+1)
by (subst Earleyr,-bin’.simps, simp)+

lemma Farleyy,-bin’-induct]|case-names Base Completer Scanp Pass Predictp):
assumes (k, G, w, bs) € wf-earley-input
assumes base: Ak G w bs i. © > length (items (bs ! k)) = Pk G w bs i
assumes complete: Nk G w bs i . = ¢ > length (items (bs ! k)) = = = items
(bslk)!i=
next-symbol z = None => P k G w (bins-upd bs k (Completer, k x bs 7))
(i+1) = Pk Gw bsi
assumes scan: Nk G w bs i x a. = i > length (items (bs ! k)) = = = items (bs
k)i =
next-symbol x = Some a = is-terminal G a = k < length w =
Pk G w (bins-upd bs (k+1) (Scany, kw ax 1)) (i+1) = Pk G w bs i
assumes pass: Nk G w bs i x a. = i > length (items (bs ! k)) = z = items (bs
k)i =
nezt-symbol x = Some a = is-terminal G a = — k < length w =
PkGwbs(i+1) = PkGuwbsi
assumes predict: Nk G w bs i x a. = { > length (items (bs ! k)) = = = items
(bs k) i=
next-symbol © = Some a = — is-terminal G « =
Pk G w (bins-upd bs k (Predicty, k G a)) (i+1) = Pk Gw bsi
shows Pk G w bs i
using assms(1)
proof (induction n=earley-measure (k, G, w, bs) i arbitrary: bs i rule: nat-less-induct)
case I
have wf: k < length w length bs = length w + 1 wf-G G wf-bins G w bs
using 1.prems wf-earley-input-elim by metis+
hence k: k < length bs
by simp
have fin: finite { = | z. wf-item G w x A item-end z = k }
using finiteness-UNIV-wf-item by fastforce
show ?Zcase
proof cases
assume i > length (items (bs ! k))
then show ?thesis
by (simp add: base)
next
assume al: - 7 > length (items (bs ! k))
let %z = items (bs! k) ! i
have z: ?x € set (items (bs ! k))
using al by fastforce
show ?thesis
proof cases
assume a2: next-symbol ?x = None
let ?bs’ = bins-upd bs k (Completer, k ?x bs i)
have item-origin 2z < length bs
using wf(4) k wf-bins-kth-bin wf-item-def = by (metis order-le-less-trans)

93

hence wf-bins’: wf-bins G w ?bs’
using wf-bins-Complete;, distinct-Completer, wf(4) wf-bins-bins-upd k x by
metis
hence wf’: (k, G, w, ?bs’) € wf-earley-input
using wf(1,2,3) wf-earley-input-intro by fastforce
have sub: set (items (2bs’ 1 k)) C { z | . wf~item G w = A item-end x = k }
using wf(1,2) wf-bins’ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have i < length (items (2bs’ | k))
using al by (metis dual-order.strict-trans1 items-def lel length-map length-nth-bin-bins-upd)
also have ... = card (set (items (%bs’ ! k)))
using wf(1,2) wf-bins’ distinct-card wf-bins-def wf-bin-def by (metis k
length-bins-upd)
also have ... < card {z |z. wf-item G w z A item-end x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w x A item-end = k} > @
by blast
hence carley-measure (k, G, w, ?bs’) (Suc i) < earley-measure (k, G, w, bs) i
by simp
thus ?thesis
using 1 al a2 complete wf' by simp
next
assume a2: - next-symbol ?x = None
then obtain a where a-def: next-symbol ?x = Some a
by blast
show ?thesis
proof cases
assume a3: is-terminal G a
show ?thesis
proof cases
assume a4: k < length w
let 2bs’ = bins-upd bs (k+1) (Scany, k w a %z)
have wf-bins”: wf-bins G w ?bs’
using wf-bins-Scany, distinct-Scany, wf(1,4) wf-bins-bins-upd a2 af k =
by metis
hence wf’: (k, G, w, ?bs’) € wf-earley-input
using wf(1,2,3) wf-earley-input-intro by fastforce
have sub: set (items (2bs’ 1 k)) C { = | z. wf-item G w = A item-end © =
k)
using wf(1,2) wf-bins’ unfolding wyf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have i < length (items (?bs’ ! k))
using al by (metis dual-order.strict-trans! items-def lel length-map
length-nth-bin-bins-upd)
also have ... = card (set (items (?bs’! k)))
using wf(1,2) wf-bins’ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plusi le-imp-less-Suc length-bins-upd)
also have ... < card {z |z. wf-item G w z A item-end x = k}
using card-mono fin sub by blast

54

finally have card {z |z. wf-item G w z A item-end z = k} > i
by blast
hence earley-measure (k, G, w, ?bs’) (Suc i) < earley-measure (k, G, w,
bs) i
by simp
thus ?thesis
using 1 al a-def a3 a4 scan wf' by simp
next
assume a4: = k < length w
have sub: set (items (bs ! k)) C { = | z. wf-item G w x A item-end z = k }
using wf(1,2,4) unfolding wf-bin-def wf-bins-def wf-bin-items-def using
order-le-less-trans by auto
have i < length (items (bs ! k))
using al by simp
also have ... = card (set (items (bs ! k)))
using wf(1,2,4) distinct-card wf-bins-def wf-bin-def by (metis Suc-eq-plusl
le-imp-less-Suc)
also have ... < card {z |z. wf-item G w x A item-end x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w z A item-end z = k} > i
by blast
hence earley-measure (k, G, w, bs) (Suc i) < earley-measure (k, G, w, bs) i
by simp
thus ?thesis
using 1 al a8 a4 a-def pass by simp
qged
next
assume a3: — is-terminal G a
let ?bs’ = bins-upd bs k (Predicty k G a)
have wf-bins": wf-bins G w ?bs’
using wf-bins-Predicty, distinct-Predicty, wf(1,58,4) wf-bins-bins-upd k x
by metis
hence wf”: (k, G, w, ?bs’) € wf-earley-input
using wf(1,2,3) wf-earley-input-intro by fastforce
have sub: set (items (2bs’ ! k)) C { z | z. wf-item G w x A item-end © = k }
using wf(1,2) wf-bins’ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have i < length (items (2bs’ ! k))
using al by (metis dual-order.strict-transl items-def lel length-map
length-nth-bin-bins-upd)
also have ... = card (set (items (?bs’! k)))
using wf(1,2) wf-bins’ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plusi le-imp-less-Suc length-bins-upd)
also have ... < card {z |z. wf-item G w z A item-end x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w © A item-end x = k} > i
by blast
hence earley-measure (k, G, w, ?bs’) (Suc i) < earley-measure (k, G, w, bs)

95

by simp
thus ?thesis
using 1 al a-def a3 a-def predict wf’ by simp
qed
qed
qed
qed

lemma wf-earley-input-Earleyy-bin':
assumes (k, G, w, bs) € wf-earley-input
shows (k, G, w, Farleyp-bin’ k G w bs i) € wf-earley-input
using assms
proof (induction i rule: Earleyr-bin'-induct] OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Completer k G w bs i x)
let 2bs’ = bins-upd bs k (Completer, k z bs 1)
have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completep.prems wf-earley-input-Completer, by blast
thus ?Zcase
using Completer.IH Completer.hyps by simp
next
case (Scanp k G w bs iz a)
let ?bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have (k, G, w, ?bs’) € wf-earley-input
using Scang.hyps Scanp.prems wf-earley-input-Scany, by metis
thus ?case
using Scanp.IH Scang.hyps by simp
next
case (Predicty k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty, k G a)
have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems wf-earley-input-Predict;, by metis
thus ?case
using Predictp.IH Predictp.hyps by simp
qed simp-all

lemma wf-earley-input-Earleyy, -bin:
assumes (k, G, w, bs) € wf-earley-input
shows (k, G, w, Farleyr-bin k G w bs) € wf-earley-input
using assms by (simp add: Earleyr-bin-def wf-earley-input-Earleyr,-bin’)

lemma length-bins-FEarleyy,-bin':
assumes (k, G, w, bs) € wf-earley-input
shows length (Earleyr-bin’ k G w bs i) = length bs
by (metis assms wf-earley-input-Earleyr,-bin’ wf-earley-input-elim)

lemma length-nth-bin-Earley -bin’:

assumes (k, G, w, bs) € wf-earley-input
shows length (items (Earleyy-bin’ k G w bs i 1 1)) > length (items (bs ! 1))

o6

using length-nth-bin-bins-upd order-trans
by (induction i rule: Earleyp-bin’-induct|OF assms]) (auto simp: items-def,
blast+)

lemma wf-bins-Earleyy -bin':
assumes (k, G, w, bs) € wf-earley-input
shows wf-bins G w (Earleyr-bin" k G w bs 1)
using assms wf-earley-input-Earley-bin' wf-earley-input-elim by blast

lemma wf-bins-FEarleyy-bin:
assumes (k, G, w, bs) € wf-earley-input
shows wf-bins G w (Earleyr-bin k G w bs)
using assms FEarleyy-bin-def wf-bins-Earleyy-bin’ by metis

lemma kth-FEarleyy-bin'-bins:
assumes (k, G, w, bs) € wf-earley-input
assumes j < length (items (bs ! 1))
shows items (Farleyr-bin’ k G w bsi! 1) ! j= items (bs!1)!j
using assms(2)
proof (induction i rule: Earleyy-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Completer k G w bs i x)
let ?bs’ = bins-upd bs k (Completer, k x bs 1)
have items (Earleyr-bin' k G w 2bs’ (i + 1) !1) ! j = items (2bs’ 1 1) ! j
using Completer.IH Completer.prems length-nth-bin-bins-upd items-def or-
der.strict-trans2 by (metis length-map)
also have ... = items (bs ! 1) ! j
using Completep.prems items-nth-idem-bins-upd nth-idem-bins-upd length-map
items-def by metis
finally show ?case
using Completer.hyps by simp
next
case (Scanp k G w bsix a)
let ?bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have items (Earleyy-bin' k G w 2bs’ (i + 1) 11) ! j = items (2bs’ 1 1) ! j
using Scang.IH Scanp.prems length-nth-bin-bins-upd order.strict-trans2 items-def
by (metis length-map)

also have ... = items (bs! 1) ! j
using Scanp.prems items-nth-idem-bins-upd nth-idem-bins-upd length-map items-def
by metis

finally show ?case
using Scang.hyps by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty, k G a)
have items (Earleyr-bin' k G w 2bs’ (i + 1) 11) ! j = items (2bs’ 1 1) ! j
using Predicty.IH Predictp.prems length-nth-bin-bins-upd order.strict-trans2
items-def by (metis length-map)
also have ... = items (bs! 1) ! j

o7

using Predictp.prems items-nth-idem-bins-upd nth-idem-bins-upd length-map
items-def by metis
finally show ?case
using Predictr.hyps by simp
qed simp-all

lemma nth-bin-sub-FEarley,-bin’:
assumes (k, G, w, bs) € wf-earley-input
shows set (items (bs ! 1)) C set (items (Earleyr-bin’ k G w bs i ! 1))
proof standard
fix z
assume z € set (items (bs ! 1))
then obtain j where *: j < length (items (bs ! 1)) items (bs!) j ==z
using in-set-conv-nth by metis
have z = items (Farleyr-bin’ k G w bsi!1l)!j
using kth-Earleyr,-bin'-bins assms x by metis
moreover have j < length (items (Earleyp-bin' kG w bs i ! 1))
using assms x(1) length-nth-bin-Earleyr-bin’ less-le-trans by blast
ultimately show z € set (items (Earleyr-bin' k G w bs i ! 1))
by simp
qed

lemma nth-Earleyr,-bin'-eq:
assumes (k, G, w, bs) € wf-earley-input
shows | < k = Earleyr-bin’" k Gw bsi!l=bs!l
by (induction i rule: Earleyr-bin’-induct[OF assms]) (auto simp: bins-upd-def)

lemma set-items-Earleyr,-bin’-eq:
assumes (k, G, w, bs) € wf-earley-input
shows | < k = set (items (Earleyp-bin’ k G w bs i ! 1)) = set (items (bs ! 1))
by (simp add: assms nth-Earleyr,-bin’-eq)

lemma bins-upto-k0-Earley-bin'-eq:

assumes (k, G, w, bs) € wf-earley-input

shows bins-upto (Earleyr-bin k G w bs) k 0 = bins-upto bs k 0

unfolding bins-upto-def bin-upto-def Earleyy -bin-def using set-items-Earleyy,-bin’-eq
assms nth-Earley-bin’-eq by fastforce

lemma wf-earley-input-Inity:
assumes k < length w wf-G G
shows (k, G, w, Init;, G w) € wf-earley-input
proof —
let ?rs = filter (Ar. rule-head r = & G) (R G)
let 260 = map (Ar. (Entry (init-item r 0) Null)) ?rs
let %bs = replicate (length w + 1) ([])
have distinct (items 2b0)
using assms unfolding wf-bin-def wf-item-def wf-G-def distinct-rules-def items-def
by (auto simp: init-item-def distinct-map inj-on-def)
moreover have Vz € set (items 2b0). wf-item G w = A item-end x = 0

o8

using assms unfolding wf-bin-def wf-item-def by (auto simp: init-item-def
items-def)
moreover have wf-bins G w ?bs
unfolding wf-bins-def wf-bin-def wf-bin-items-def items-def using less-Suc-eq-0-disj
by force
ultimately show %thesis
using assms length-replicate wf-earley-input-intro
unfolding wf-bin-def Inity,-def wf-bin-def wf-bin-items-def wf-bins-def
by (metis (no-types, lifting) length-list-update nth-list-update-eq nth-list-update-neq)
qed

lemma length-bins-Inity,[simp]:
length (Init;, G w) = length w + 1
by (simp add: Inity,-def)

lemma wf-earley-input-Earleyr,-bins[simp]:
assumes k < length w wf-G G
shows (k, G, w, Farleyy,-bins k G w) € wf-earley-input
using assms
proof (induction k)
case (
have (k, G, w, Init;, G w) € wf-earley-input
using assms wf-earley-input-Init;, by blast
thus ?case
by (simp add: assms(2) wf-earley-input-Inity, wf-earley-input-Earleyr-bin)
next
case (Suc k)
have (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
using Suc.IH Suc.prems(1) Suc-leD assms(2) wf-earley-input-elim wf-earley-input-intro
by metis
thus ?case
by (simp add: wf-earley-input-Earleyr,-bin)
qed

lemma length-Earleyr,-bins[simp):
assumes k < length w wf-G G
shows length (Earleyy-bins k G w) = length (Init;, G w)
using assms wf-earley-input-FEarleyr -bins wf-earley-input-elim by fastforce

lemma wf-bins-Farleyr,-bins[simp):
assumes k < length w wf-G G
shows wf-bins G w (Earleyy-bins k G w)
using assms wf-earley-input-Farleyy -bins wf-earley-input-elim by fastforce

lemma wf-bins-FEarleyy,:

wf-G G = wf-bins G w (Farley;, G w)
by (simp add: Earleyr-def)

99

8.5 Soundness

lemma Inity -eq-Initp:
bins (Inity, G w) = Initp G
proof —
let ?rs = filter (Ar. rule-head r = & G) (R G)
let 260 = map (Ar. (Entry (init-item r 0) Null)) ?rs
let ?bs = replicate (length w + 1) ([])
have bins (2bs[0 := 2b0]) = set (items ?b0)
proof —
have bins (2bs[0 := 2b0]) = |J {set (items ((?bs[0 := 2b0]) | k)) |k. k < length
(2bs[0 = 2b0])}
unfolding bins-def by blast
also have ... = set (items ((?bs[0 := 2b0]) ! 0)) U |J {set (items ((?bs[0 :=
?00]) ! k)) |k. k < length (2bs[0 := ?b0]) A k # 0}
by fastforce
also have ... = set (items (2b0))
by (auto simp: items-def)
finally show ?thesis .
qed
also have ... = Initg G
by (auto simp: Initp-def items-def rule-head-def)
finally show ?thesis
by (auto simp: Inity,-def)
qed

lemma Scany,-sub-Scang:

assumes wf-bins G w bs bins bs C I © € set (items (bs ! k)) k < length bs k <
length w

assumes next-symbol z = Some a

shows set (items (Scany, k w a x pre)) C Scanp k w I
proof standard

fix y

assume *: y € set (items (Scany k w a x pre))

have z € bin I k

using kth-bin-sub-bins assms(1—4) items-def wf-bin-def wf-bins-def wf-bin-items-def
bin-def by fastforce

assume #: k < length w w'k = a
hence y = inc-item = (k+1)
using * unfolding Scany,-def by (simp add: items-def)
hence y € Scanp kw I
using <z € bin I k» # assms(6) unfolding Scanp-def by blast
}

thus y € Scanp k w I
using * assms(5) unfolding Scany,-def by (auto simp: items-def)

qed

lemma Predicty,-sub-Predict p:
assumes wf-bins G w bs bins bs C I x € set (items (bs | k)) k < length bs

60

assumes next-symbol © = Some X
shows set (items (Predict;, k G X)) C Predictp k G I
proof standard
fix y
assume *: y € set (items (Predict, k G X))
have z € bin I k
using kth-bin-sub-bins assms(1—4) items-def wf-bin-def wf-bins-def bin-def
wf-bin-items-def by fast
let ?rs = filter (Ar. rule-head r = X) (R G)
let 2zs = map (Ar. init-item r k) 2rs
have y € set xs
using *x unfolding Predicty-def items-def by simp
then obtain r where y = init-item r k rule-head r = X r € set (R G) next-symbol
z = Some (rule-head 1)
using assms(5) by auto
thus y € Predictyp kG I
unfolding Predictp-def using «x € bin I k» by blast
qed

lemma Completer,-sub-Completep:
assumes wf-bins G w bs bins bs C Iy € set (items (bs | k)) k < length bs
assumes next-symbol y = None
shows set (items (Completer, k y bs red)) C Completer k I
proof standard
fix z
assume *: ¢ € set (items (Completer, k y bs red))
have y € bin I k
using kth-bin-sub-bins assms items-def wf-bin-def wf-bins-def bin-def wf-bin-items-def
by fast
let Zorig = bs ! item-origin y
let ?zs = filter-with-index (Ax. next-symbol x = Some (item-rule-head y)) (items
2orig)
let ?zs’ = map (N(z, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre,
red) [1))) 7as
have 0: item-origin y < length bs
using wf-bins-def wf-bin-def wf-item-def wf-bin-items-def assms(1,3,4)
by (metis Orderings.preorder-class.dual-order.strict-trans! leD not-le-imp-less)

{

fix z

assume *: z € set (map fst ?zs)

have next-symbol z = Some (item-rule-head y)
using * by (simp add: filter-with-index-cong-filter)

moreover have z € bin I (item-origin y)

using 0 * assms(1,2) bin-def kth-bin-sub-bins wf-bins-kth-bin filter-with-index-cong-filter

by (metis (mono-tags, lifting) filter-is-subset in-mono mem-Collect-eq)

ultimately have next-symbol z = Some (item-rule-head y) z € bin I (item-origin

y)

}

by simp-all

61

hence 1: Vz € set (map fst ?zs). next-symbol z = Some (item-rule-head y) A z
€ bin I (item-origin y)
by blast
obtain z where z: © = inc-item z k z € set (map fst ?xs)
using * unfolding Completer,-def by (auto simp: rev-image-eql items-def)
moreover have next-symbol z = Some (item-rule-head y) z € bin I (item-origin
y)
using 1 z by blast+
ultimately show z € Completer k I
using <y € bin I k> assms(5) unfolding Completer-def next-symbol-def by
(auto split: if-splits)
qed

lemma sound-Scany,:
assumes wf-bins G w bs bins bs C [x € set (items (bslk)) k < length bs k <
length w
assumes next-symbol t = Some a Yz € I. wf-item G w x Vz € I. sound-item G
w
shows Vz € set (items (Scang k w a x 7). sound-item G w x
proof standard
fix y
assume y € set (items (Scany, k w a x 7))
hence y € Scanp kw I
by (meson Scang-sub-Scanp assms(1—6) in-mono)
thus sound-item G w y
using sound-Scan assms(7,8) unfolding Scanp-def inc-item-def bin-def
by (smt (verit, best) item.exhaust-sel mem-Collect-eq)
qed

lemma sound-Predicty,:
assumes wf-bins G w bs bins bs C I x € set (items (bslk)) k < length bs
assumes next-symbol x = Some X Vz € I. wf-item G w x Vo € I. sound-item
Gwz
shows YV € set (items (Predicty, k G X)). sound-item G w
proof standard
fix y
assume y € set (items (Predict, k G X))
hence y € Predictp kG I
by (meson Predicty,-sub-Predictp assms(1—5) subsetD)
thus sound-item G w y
using sound-Predict assms(6,7) unfolding Predictp-def init-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)
qed

lemma sound-Completer,:
assumes wf-bins G w bs bins bs C Iy € set (items (bslk)) k < length bs
assumes next-symbol y = None Vzx € I. wf-item G w z Vx € I. sound-item G w
x
shows Vz € set (items (Completer, k y bs 7)). sound-item G w «

62

proof standard
fix z
assume z € set (items (Completer, k y bs 7))
hence z € Completer k I
using Completer,-sub-Completer assms(1—5) by blast
thus sound-item G w z
using sound-Complete assms(6,7) unfolding Completer -def inc-item-def bin-def
by (smt (verit, del-insts) item.ezhaust-sel mem-Collect-eq)
qed

lemma sound-FEarleyy-bin':
assumes (k, G, w, bs) € wf-earley-input
assumes Vz € bins bs. sound-item G w z
shows Vx € bins (Earleyr-bin' k G w bs i). sound-item G w x
using assms
proof (induction i rule: Earleyy-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Completer k G w bs i x)
let ?bs’ = bins-upd bs k (Completer, k x bs 1)
have 1 € set (items (bs | k))
using Completer.hyps(1,2) by force
hence Vz € set (items (Completer, k x bs 7)). sound-item G w «
using sound-Complete;, Completer.hyps(3) Completep.prems wf-earley-input-elim
wf-bins-impl-wf-items by fastforce
moreover have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
ultimately have Vx € bins (Earleyr-bin’ k G w 2bs’ (i + 1)). sound-item G w
x
using Completer.IH Completer.prems(2) length-bins-upd bins-bins-upd wf-earley-input-elim
Suc-eq-plus1 Un-iff le-imp-less-Suc by metis
thus ?case
using Completer.hyps by simp
next
case (Scanp k G w bsix a)
let 2bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have 1 € set (items (bs ! k))
using Scanp.hyps(1,2) by force
hence Vz € set (items (Scang, k w a z i)). sound-item G w «
using sound-Scany, Scang.hyps(3,5) Scanp.prems(1,2) wf-earley-input-elim
wf-bins-impl-wf-items by fast
moreover have (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
ultimately have Vx € bins (Earleyr-bin’ k G w 2bs’ (i + 1)). sound-item G w
x
using Scanp.IH Scanp.hyps(5) Scang.prems(2) length-bins-upd bins-bins-upd
wf-earley-input-elim
by (metis UnE add-less-cancel-right)
thus ?case
using Scang.hyps by simp

63

next
case (Predictp k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty k G a)
have 1 € set (items (bs ! k))
using Predictp.hyps(1,2) by force
hence Vz € set (items(Predicty k G a)). sound-item G w z
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
moreover have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predicty, by metis
ultimately have Vx € bins (Earleyr-bin’ k G w 2bs’ (i + 1)). sound-item G w
x
using Predictp.IH Predictp.prems(2) length-bins-upd bins-bins-upd wf-earley-input-elim
by (metis Suc-eq-plusl UnE)
thus ?case
using Predictp.hyps by simp
qed simp-all

lemma sound-FEarleyr,-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes Yz € bins bs. sound-item G w x
shows Vz € bins (Earleyr-bin k G w bs). sound-item G w x
using sound-Farleyr,-bin’ assms Earleyr-bin-def by metis

lemma FEarleyy -bin'-sub-Earleyp-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes bins bs C [
shows bins (Earleyr-bin’ k G w bs i) C Farleyp-bin k G w I
using assms
proof (induction i arbitrary: I rule: Earleyy-bin'-induct|OF assms(1), case-names
Base Completer Scang Pass Predictr))
case (Base k G w bs 1)
thus ?case
using Farleyg-bin-mono by fastforce
next
case (Completer k G w bs i x)
let 2bs’ = bins-upd bs k (Completer, k z bs 1)
have z € set (items (bs ! k))
using Completer.hyps(1,2) by force
hence bins ?bs’ C I U Completer k I
using Completer, -sub-Completer Completer.hyps(3) Completer.prems(1,2)
bins-bins-upd wf-earley-input-elim by blast
moreover have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
ultimately have bins (Earleyr-bin’ k G w bs i) C FEarleyp-bin k G w (I U
Completep k I)
using Completer.IH Completer.hyps by simp
also have ... C Earleyp-bin k G w (Earleyp-bin k G w I)
using Completep-FEarleyp-bin-mono Farleyr-bin-mono Earleyp-bin-sub-mono

64

by (metis Un-subset-iff)
finally show ?case
using Farleyg-bin-idem by blast
next
case (Scanp k G w bs iz a)
let ?bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have z € set (items (bs ! k))
using Scanp.hyps(1,2) by force
hence bins ?bs’ C I U Scanp k w I
using Scany,-sub-Scanp Scanp.hyps(3,5) Scanp.prems bins-bins-upd wf-earley-input-elim
by (metis add-monol sup-mono)
moreover have (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
ultimately have bins (Earleyr,-bin' k G w bs i) C Farleyp-bink G w (I U Scanp
kwl)
using Scanpg.IH Scang.hyps by simp
thus ?case
using Scanp-Farleyp-bin-mono Earleyp-bin-mono Farleyp-bin-sub-mono Ear-
leyp-bin-idem by (metis le-supl order-trans)
next
case (Pass k G w bs i z a)
thus ?case
by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty, k G a)
have z € set (items (bs ! k))
using Predictp.hyps(1,2) by force
hence bins ?bs’ C I U Predictyp k G I
using Predicty,-sub-Predictp Predictp.hyps(83) Predictp.prems bins-bins-upd
wf-earley-input-elim
by (metis sup-mono)
moreover have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict;, by metis
ultimately have bins (Farleyr-bin’ k G w bs i) C FEarleyp-bin k G w (I U
Predictr k G 1)
using Predictp.IH Predictr.hyps by simp
thus ?Zcase
using Predictp-FEarleypr-bin-mono Earleyp-bin-mono Earleyp-bin-sub-mono
Earleyp-bin-idem by (metis le-supl order-trans)
qed

lemma Farleyy -bin-sub-FEarleyp-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes bins bs C [
shows bins (FEarleyr-bin k G w bs) C Farleyp-bin k G w I
using assms FEarleyy-bin'-sub-Earleyr-bin Earleyy-bin-def by metis

lemma FEarleyy,-bins-sub-Earleyp-bins:

65

assumes k < length w wf-G G
shows bins (Earleyr-bins k G w) C Farleyp-bins k G w
using assms
proof (induction k)
case (
have (k, G, w, Init;, G w) € wf-earley-input
using assms(1) assms(2) wf-earley-input-Init;, by blast
thus ?case
by (simp add: Inity-eq-Initp Farleyr-bin-sub-Earleyr-bin assms(2) wf-earley-input-Initr,)
next
case (Suc k)
have (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
thus ?Zcase
by (simp add: Suc.IH Suc.prems(1) Suc-leD Earleyr,-bin-sub-Earleyp-bin assms(2))
qed

lemma FEarleyy -sub-Earleyp:
wf-G G = bins (Earley;, G w) C Farleyr G w
using Farleyy,-bins-sub-Earleyp-bins Earleyp-def Earleyr,-def by (metis dual-order.refl)

theorem soundness-Farleyy,:

assumes wf-G G recognizing (bins (Farley;, G w)) G w

shows derives G [6 G| w

using assms Farleyy,-sub-Earleyr recognizing-def soundness-Earleyr by (meson
subsetD)

8.6 Completeness

lemma bin-bins-upto-bins-eq:
assumes wf-bins G w bs k < length bs i > length (items (bs ! k)) I < k
shows bin (bins-upto bs k ©) I = bin (bins bs) |
unfolding bins-upto-def bins-def bin-def using assms nat-less-le
apply (auto simp: nth-list-update bin-upto-eq-set-items wf-bins-kth-bin items-def)
apply (metis imagel nle-le order-trans, fast)
done

lemma impossible-complete-item:
assumes wf-G G wf-item G w x sound-item G w z
assumes is-complete x item-origin x = k item-end x = k nonempty-derives G
shows Fulse
proof —
have derives G [item-rule-head] []
using assms(3—6) by (simp add: slice-empty is-complete-def sound-item-def
item-B-def)
moreover have is-nonterminal G (item-rule-head x)
using assms(1,2) unfolding wf-item-def item-rule-head-def rule-head-def
by (metis prod.collapse rule-nonterminal-type)
ultimately show ?thesis

66

using assms(7) nonempty-derives-def is-nonterminal-def by metis
qed

lemma Completer-Un-eq-terminal:
assumes nezt-symbol z = Some a is-terminal G a Vz € I. wf-item G w x wf-item
Guwzuwf-G§g
shows Completer k (I U {z}) = Completep kI
proof (rule ccontr)
assume Completer k (I U {z}) # Completer k I
hence Completer k I C Completer k (I U {z})
using Completep-sub-mono by blast
then obtain w z y where x:
w € Completep k (I U {z}) w ¢ Completer k I w = inc-item z k
z € bin (I U {z}) (item-origin y) y € bin (I U {z}) k
is-complete y next-symbol x = Some (item-rule-head y)
unfolding Completer-def by fast
show Fulse
proof (cases z = z)
case True
have is-nonterminal G (item-rule-head y)
using *(5,6) assms(1,3—95)
apply (clarsimp simp: wf-item-def bin-def item-rule-head-def rule-head-def
next-symbol-def)
by (metis prod.ezhaust-sel rule-nonterminal-type)
thus ?thesis
using True x(7) assms(1,2,5) is-terminal-nonterminal by fastforce
next
case Fulse
thus ?thesis
using * assms(1) by (auto simp: next-symbol-def Completer-def bin-def)
qed
qed

lemma Completer-Un-eq-nonterminal:
assumes wf-G G Vz € I. wf-item G w x Vz € I. sound-item G w x
assumes nonempty-derives G wf-item G w z
assumes item-end z = k next-symbol z # None
shows Completer k (I U {z}) = Completer k I
proof (rule ccontr)
assume Completer k (I U {z}) # Completer k I
hence Completer kI C Completer k (I U {z})
using Completep-sub-mono by blast
then obtain = z’ y where x:
z € Completep k (I U {z}) x ¢ Completer k I x = inc-item z' k
z' € bin (I U {z}) (item-origin y) y € bin (I U {z}) k
is-complete y next-symbol ' = Some (item-rule-head y)
unfolding Completer-def by fast
consider (A) z' =z | (B) y =z
using *(2—7) Completer-def by (auto simp: bin-def; blast)

67

thus Fulse
proof cases
case A
have item-origin y = k
using *(4) A bin-def assms(6) by (metis (mono-tags, lifting) mem-Collect-eq)
moreover have item-end y = k
using *(5) bin-def by blast
moreover have sound-item G w y
using x(5,6) assms(3,7) by (auto simp: bin-def next-symbol-def sound-item-def)
moreover have wf-item G w y
using *(5) assms(2,5) wf-item-def by (auto simp: bin-def)
ultimately show ¢thesis
using impossible-complete-item *(6) assms(1,4) by blast
next
case B
thus ?thesis
using *(6) assms(7) by (auto simp: next-symbol-def)
qed
qed

lemma wf-item-in-kth-bin:
wf-bins G w bs = z € bins bs = item-end v = k = x € set (items (bs ! k))
using bins-bin-exists wf-bins-kth-bin wf-bins-def by blast

lemma Completer -bins-upto-eq-bins:
assumes wf-bins G w bs k < length bs i > length (items (bs ! k))
shows Completer k (bins-upto bs k i) = Completer k (bins bs)
proof —
have Al. | < k = bin (bins-upto bs k i) | = bin (bins bs) |
using bin-bins-upto-bins-eq|OF assms| by blast
moreover have Vz € bins bs. wf-item G w x
using assms(1) wf-bins-impl-wf-items by metis
ultimately show ?thesis
unfolding Completer-def bin-def wf-item-def wf-item-def by auto
qed

lemma Completer-sub-bins-Un-Completer,:
assumes Completep k I C bins bs I C bins bs is-complete z wf-bins G w bs
wf-item G w z
shows Completer k (I U {z}) C bins bs U set (items (Completer, k z bs red))
proof standard
fix w
assume w € Completer k (I U {z})
then obtain z y where x:
w = inc-item x k x € bin (I U {z}) (item-origin y) y € bin (I U {z}) k
is-complete y next-symbol x = Some (item-rule-head y)
unfolding Completer-def by blast
consider (A)z =z | (B)y=z|-(z=2Vy=2)
by blast

68

thus w € bins bs U set (items (Completey, k z bs red))
proof cases
case A
thus ?thesis
using *(5) assms(3) by (auto simp: next-symbol-def)
next
case B
let ?orig = bs ! item-origin z
let ?is = filter-with-index (Ax. next-symbol x = Some (item-rule-head z2)) (items
?orig)
have z € bin I (item-origin y)
using B %(2) *(5) assms(3) by (auto simp: next-symbol-def bin-def)
moreover have bin I (item-origin z) C set (items (bs ! item-origin z))
using wf-item-in-kth-bin assms(2,4) bin-def by blast
ultimately have z € set (map fst ?is)
using *(5) B by (simp add: filter-with-index-cong-filter in-mono)
thus ?thesis
unfolding Completer,-def (1) by (auto simp: rev-image-eql items-def)
next
case 3
thus ?thesis
using * assms(1) Completep-def by (auto simp: bin-def; blast)
qed
qed

lemma Completey, -eq-item-origin:

bs | item-origin y = bs’ ! item-origin y = Completer k y bs red = Completey,
ky bs' red

by (auto simp: Completer,-def)

lemma kth-bin-bins-upto-empty:
assumes wf-bins G w bs k < length bs
shows bin (bins-upto bs k 0) k = {}
proof —
{
fix z
assume z € bins-upto bs k 0
then obtain [where x € set (items (bs ! 1)) | < k
unfolding bins-upto-def bin-upto-def by blast
hence item-end x =1
using wf-bins-kth-bin assms by fastforce
hence item-end z < k
using </ < k» by blast
}

thus ?thesis
by (auto simp: bin-def)
qed

lemma Farleyy,-bin’-mono:

69

assumes (k, G, w, bs) € wf-earley-input
shows bins bs C bins (Farleyr,-bin’ k G w bs 1)
using assms
proof (induction i rule: Earleyy,-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictp))
case (Completer k G w bs i x)
let ?bs’ = bins-upd bs k (Completer, k x bs 1)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completes, by blast
hence bins bs C bins ?bs’
using length-bins-upd bins-bins-upd wf-earley-input-elim by (metis Un-upperl)
also have ... C bins (Earleyr-bin’ k G w 2bs’ (i + 1))
using wf Completer.IH by blast
finally show ?case
using Completer.hyps by simp
next
case (Scanp k G w bsix a)
let ?bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Scang.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
hence bins bs C bins ?bs’
using Scanp.hyps(5) length-bins-upd bins-bins-upd wf-earley-input-elim
by (metis add-monol sup-gel)
also have ... C bins (Earley-bin' k G w 2bs’ (i + 1))
using wf Scanp.IH by blast
finally show ?case
using Scang.hyps by simp
next
case (Predicty k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty, k G a)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictg.prems(1) wf-earley-input-Predicty, by metis
hence bins bs C bins ?bs’
using length-bins-upd bins-bins-upd wf-earley-input-elim by (metis sup-gel)
also have ... C bins (Earley-bin' k G w 2bs’ (i + 1))
using wf Predicty.IH by blast
finally show ?Zcase
using Predictp.hyps by simp
qed simp-all

lemma FEarleyp-bin-step-sub-Earley -bin”:
assumes (k, G, w, bs) € wf-earley-input
assumes Farleyp-bin-step k G w (bins-upto bs k i) C bins bs
assumes Vz € bins bs. sound-item G w x is-word G w nonempty-derives G
shows Farleyp-bin-step k G w (bins bs) C bins (Farleyr-bin’ k G w bs 1)
using assms
proof (induction i rule: Earleyy-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictp))
case (Base k G w bs 1)

70

have bin (bins bs) k = bin (bins-upto bs k i) k
using Base.hyps Base.prems(1) bin-bins-upto-bins-eq wf-earley-input-elim by
blast
thus ?case
using Scang-bin-absorb Predictp-bin-absorb Complete g -bins-upto-eq-bins wf-earley-input-elim
Base.hyps Base.prems(1,2,3,5) Earleyp-bin-step-def Completer-Earley p-bin-step-mono
Predictp-Earley p-bin-step-mono Scang-Farleyg-bin-step-mono Farleyr -bin’-mono
by (metis (no-types, lifting) Un-assoc sup.orderE)
next
case (Completer k G w bs i x)
let 2bs’ = bins-upd bs k (Completer, k xz bs 1)
have z: z € set (items (bs ! k))
using Completer.hyps(1,2) by auto
have wf: (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
hence sound: Vz € set (items (Completer, k x bs ©)). sound-item G w x
using sound-Complete;, Completer.hyps(3) Completep.prems wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
have Scanp k w (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Scanp k w (bins-upto ?bs’ k (i + 1)) = Scanp k w (bins-upto ?bs’ ki U
{items (2bs’ 1 k) ! i})
using Completer.hyps(1) bins-upto-Suc-Un length-nth-bin-bins-upd items-def
by (metis length-map linorder-not-less sup.boundedE sup.order-iff)
also have ... = Scanp k w (bins-upto bs k i U {z})
using Completer.hyps(1,2) Completer.prems(1) items-nth-idem-bins-upd
bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Scanp k w {z}
using Completer.prems(2,8) Scanp-Un Scang-Earleyp-bin-step-mono by
fastforce
also have ... = bins bs
using Completer.hyps(3) by (auto simp: Scang-def bin-def)
finally show ?thesis
using Completer.prems(1) wf-earley-input-elim bins-bins-upd by blast
qged
moreover have Predicty k G (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Predicty k G (bins-upto ?bs’ k (i + 1)) = Predictr k G (bins-upto ?bs’ k
i U {items (2bs’ ! k) ! i})
using Completer.hyps(1) bins-upto-Suc-Un length-nth-bin-bins-upd
by (metis dual-order.strict-trans1 items-def length-map not-le-imp-less)
also have ... = Predictp k G (bins-upto bs ki U {z})
using Completer.hyps(1,2) Completer.prems(1) items-nth-idem-bins-upd
bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Predictp k G {z}
using Completer.prems(2,8) Predictp-Un Predictp-FEarley g-bin-step-mono

71

by blast
also have ... = bins bs
using Completer.hyps(3) by (auto simp: Predictp-def bin-def)
finally show ?thesis
using Completer.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Completer k (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Completer k (bins-upto ?bs’ k (i + 1)) = Completer k (bins-upto ?bs’ k
i U {items (2bs" ! k) ! i})
using bins-upto-Suc-Un length-nth-bin-bins-upd Completer.hyps(1)
by (metis (no-types, opaque-lifting) dual-order.trans items-def length-map
not-le-imp-less)
also have ... = Completep k (bins-upto bs ki U {z})
using items-nth-idem-bins-upd Completer.hyps(1,2) bins-upto-kth-nth-idem
Completer.prems(1) wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U set (items (Completer, k x bs 7))
using Completep-sub-bins-Un-Complete;, Completer.hyps(8) Completer.prems(1,2,3)
next-symbol-def
bins-upto-sub-bins wf-bins-kth-bin x Completer - Farley g -bin-step-mono wf-earley-input-elim
by (smt (verit, best) option.distinct(1) subset-trans)
finally show ?thesis
using Completer.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
ultimately have Earleyp-bin-step k G w (bins ?bs’) C bins (Earleyr-bin' k G w
?bs’ (i+1))
using Completer.IH Completer.prems sound wf Earley p-bin-step-def bins-upto-sub-bins
wf-earley-input-elim bins-bins-upd
by (metis UnE sup.boundedl)
thus ?case
using Completep.hyps Completer.prems(1) Farleyr -bin’-simps(2) Earleyp-bin-step-sub-mono
bins-bins-upd wf-earley-input-elim
by (smt (verit, best) sup.coboundedI?2 sup.orderE sup-gel)
next
case (Scanp k G w bsix a)
let 2bs’ = bins-upd bs (k+1) (Scany k w a x 1)
have z: x € set (items (bs ! k))
using Scanp.hyps(1,2) by auto
hence sound: Vz € set (items (Scang k w a z 7). sound-item G w
using sound-Scany, Scanp.hyps(3,5) Scang.prems(1,2,8) wf-earley-input-elim
wf-bins-impl-wf-items
by (metis dual-order.refl)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
have Scanp k w (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Scanp k w (bins-upto ?bs’ k (i + 1)) = Scanpg k w (bins-upto ?bs’ ki U
{items (?bs’ 1 k) ! i})

72

using bins-upto-Suc-Un Scang.hyps(1) nth-idem-bins-upd
by (metis Suc-eq-plusl items-def length-map lessI less-not-refl not-le-imp-less)
also have ... = Scanp k w (bins-upto bs ki U {z})
using Scanp.hyps(1,2,5) Scanp.prems(1,2) nth-idem-bins-upd bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis add-mono-thms-linordered-field(1) items-def length-map less-add-one
linorder-le-less-linear not-add-less1)
also have ... C bins bs U Scanp k w {z}
using Scanp.prems(2,3) Scanp-Un Scang-Earley p-bin-step-mono by fastforce
finally have x: Scanp k w (bins-upto ?bs’ k (i + 1)) C bins bs U Scanp k w
show ?thesis
proof cases
assume al: wlk = a
hence Scanp k w {z} = {inc-item z (k+1)}
using Scang.hyps(1—3,5) Scanp.prems(1,2) wf-earley-input-elim apply
(auto simp: Scanp-def bin-def)
using wf-bins-kth-bin x by blast
hence Scanp k w (bins-upto 2bs" k (i + 1)) C bins bs U {inc-item z (k+1)}
using * by blast

also have ... = bins bs U set (items (Scany k w a x 7))
using al Scanp.hyps(5) by (auto simp: Scany -def items-def)
also have ... = bins ?bs’

using Scang.hyps(5) Scanp.prems(1) wf-earley-input-elim bins-bins-upd by
(metis add-monol)
finally show ?thesis .
next
assume al: “wlk = a
hence Scanp k w {z} = {}
using Scanp.hyps(3) by (auto simp: Scanp-def bin-def)
hence Scanp k w (bins-upto ?bs’ k (i + 1)) C bins bs
using x by blast
also have ... C bins ?bs’
using Scanp.hyps(5) Scang.prems(1) wf-earley-input-elim bins-bins-upd
by (metis Un-left-absorb add-strict-right-mono subset-Un-eq)
finally show ?thesis .
qged
qed
moreover have Predicty k G (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Predictp k G (bins-upto ?bs’ k (i + 1)) = Predicty k G (bins-upto ?bs’ k
i U {items (2bs’ ! k) ! i})
using bins-upto-Suc-Un Scang.hyps(1) nth-idem-bins-upd
by (metis Suc-eq-plusl dual-order.refl items-def length-map lessI linorder-not-less)
also have ... = Predictp k G (bins-upto bs ki U {z})
using Scanp.hyps(1,2,5) Scang.prems(1,2) nth-idem-bins-upd bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis add-strict-right-mono items-def le-add1 length-map less-add-one
linorder-not-le)

73

also have ... C bins bs U Predicty k G {x}
using Scanp.prems(2,8) Predictp-Un Predictp-Earleyp-bin-step-mono by
fastforce
also have ... = bins bs
using Scanp.hyps(3,4) Scanp.prems(1) is-terminal-nonterminal wf-earley-input-elim
by (auto simp: Predictp-def bin-def rule-head-def, fastforce)
finally show ?thesis
using Scanp.hyps(5) Scang.prems(1) by (simp add: bins-bins-upd sup.coboundedl1
wf-earley-input-elim)
qged
moreover have Completer k (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Completer k (bins-upto 2bs’ k (i + 1)) = Completer k (bins-upto ?bs’ k
i U {items (2bs" 1 k) ! i})
using bins-upto-Suc-Un Scang.hyps(1) nth-idem-bins-upd
by (metis Suc-eq-plusl items-def length-map lessI less-not-refl not-le-imp-less)
also have ... = Completer k (bins-upto bs ki U {z})
using Scanp.hyps(1,2,5) Scang.prems(1,2) nth-idem-bins-upd bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis add-monol items-def length-map less-add-one linorder-not-le not-add-less1)
also have ... = Completer k (bins-upto bs k i)
using Completer-Un-eq-terminal Scanp.hyps(3,4) Scang.prems bins-upto-sub-bins
subset-iff
wf-bins-impl-wf-items wf-bins-kth-bin wf-item-def = wf-earley-input-elim
by (smt (verit, ccfv-threshold))
finally show ?thesis
using Scang.hyps(5) Scanp.prems(1,2,3) Completer-FEarleyrg-bin-step-mono
by (auto simp: bins-bins-upd wf-earley-input-elim, blast)
qed
ultimately have FEarleyp-bin-step k G w (bins ?bs’) C bins (Earleyr-bin' k G w
?bs’ (i+1))
using Scanp.IH Scanp.prems Scanp.hyps(5) sound wf Earleyp-bin-step-def
bins-upto-sub-bins wf-earley-input-elim
bins-bins-upd by (metis UnE add-monol le-supl)
thus ?case
using Farleyp-bin-step-sub-mono Earleyr,-bin'-simps(8) Scanp.hyps Scang.prems(1)
wf-earley-input-elim bins-bins-upd
by (smt (verit, ccfo-SIG) add-monol sup.cobounded! sup.coboundedI2 sup.orderE)
next
case (Pass k G w bs iz a)
have z: © € set (items (bs ! k))
using Pass.hyps(1,2) by auto
have Scang k w (bins-upto bs k (i + 1)) C bins bs
using Scanp-def Pass.hyps(5) by auto
moreover have Predicty k G (bins-upto bs k (i + 1)) C bins bs
proof —
have Predicty k G (bins-upto bs k (i + 1)) = Predictr k G (bins-upto bs k i U
{items (bs ! k) ! i})
using bins-upto-Suc-Un Pass.hyps(1) by (metis items-def length-map not-le-imp-less)

74

also have ... = Predicty k G (bins-upto bs ki U {z})
using Pass.hyps(1,2,5) nth-idem-bins-upd bins-upto-kth-nth-idem by simp
also have ... C bins bs U Predicty k G {z}
using Pass.prems(2) Predictp-Un Predictp-Earleyp-bin-step-mono by blast
also have ... = bins bs
using Pass.hyps(3,4) Pass.prems(1) is-terminal-nonterminal wf-earley-input-elim
by (auto simp: Predictp-def bin-def rule-head-def, fastforce)
finally show ?thesis
using bins-bins-upd Pass.hyps(5) Pass.prems(3) by auto
qged
moreover have Completer k (bins-upto bs k (i + 1)) C bins bs
proof —
have Completep k (bins-upto bs k (i + 1)) = Completer k (bins-upto bs k i U
{z})
using bins-upto-Suc-Un Pass.hyps(1,2)
by (metis items-def length-map not-le-imp-less)
also have ... = Completer k (bins-upto bs k i)
using Completer-Un-eq-terminal Pass.hyps Pass.prems bins-upto-sub-bins
subset-iff
wf-bins-impl-wf-items wf-item-def wf-bins-kth-bin x wf-earley-input-elim by
(smt (verit, best))
finally show ?%thesis
using Pass.prems(1,2) Completep-Earley g-bin-step-mono wf-earley-input-elim
by blast
qed
ultimately have FEarleyp-bin-step k G w (bins bs) C bins (Farleyr-bin’ k G w
bs (i+1))
using Pass.IH Pass.prems Farley g-bin-step-def bins-upto-sub-bins wf-earley-input-elim
by (metis le-sup-iff)
thus ?case
using bins-bins-upd Pass.hyps Pass.prems by simp
next
case (Predicty k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty k G a)
have k > length w V = wlk = a
using Predictp.hyps(4) Predictp.prems(4) is-word-is-terminal lel by blast
have z: z € set (items (bs ! k))
using Predictp.hyps(1,2) by auto
hence sound: Vz € set (items(Predicty, k G a)). sound-item G w «
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
have wf: (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictg.prems(1) wf-earley-input-Predicty, by metis
have len: { < length (items (2bs’ ! k))
using length-nth-bin-bins-upd Predictp.hyps(1)
by (metis dual-order.strict-trans! items-def length-map linorder-not-less)
have Scanp k w (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Scanp k w (bins-upto ?bs’ k (i + 1)) = Scanp k w (bins-upto ?bs’ ki U

75

{items (2bs’ 1 k) ! i})
using Predictp.hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)
also have ... = Scanp k w (bins-upto bs ki U {z})
using Predictp.hyps(1,2) Predictp.prems(1) items-nth-idem-bins-upd bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Scanp k w {z}
using Predictp.prems(2,3) Scanp-Un Scanp-Earleyp-bin-step-mono by fast-

force
also have ... = bins bs
using Predictp.hyps(3) <dength w < kV w ! k # a) by (auto simp: Scanp-def
bin-def)

finally show ?thesis
using Predictp.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Predicty k G (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Predicty k G (bins-upto ?bs’ k (i + 1)) = Predictr k G (bins-upto ?bs’ k
i U {items (2bs" 1 k) ! i})
using Predictp.hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)
also have ... = Predicty k G (bins-upto bs ki U {z})
using Predictp.hyps(1,2) Predictp.prems(1) items-nth-idem-bins-upd bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Predictr k G {z}
using Predictp.prems(2,3) Predictp-Un Predictp-Earleyp-bin-step-mono by
fastforce
also have ... = bins bs U set (items (Predicty k G a))
using Predictp.hyps Predictp.prems(1—3) wf-earley-input-elim
apply (auto simp: Predictp-def Predicty,-def bin-def items-def)
using wf-bins-kth-bin x by blast
finally show ?thesis
using Predictp.prems(1) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have Completer k (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Completer k (bins-upto ?bs’ k (i + 1)) = Completer k (bins-upto ?bs’ k
i U {items (2bs’ | k) ! i})
using bins-upto-Suc-Un len by (metis items-def length-map)
also have ... = Completer k (bins-upto bs k¢ U {z})
using items-nth-idem-bins-upd Predicty.hyps(1,2) Predictg.prems(1) bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... = Completer k (bins-upto bs k i)
using Completer-Un-eq-nonterminal Predictp.prems bins-upto-sub-bins Pre-
dictp.hyps(3)
subset-eq wf-bins-kth-bin x wf-bins-impl-wf-items wf-item-def wf-earley-input-elim
by (smt (verit, ccfv-SIG) option.simps(3))
also have ... C bins bs

76

using Completep-FEarleyp-bin-step-mono Predicty.prems(2) by blast
finally show ?thesis
using bins-bins-upd Predictp.prems(1,2,8) wf-earley-input-elim by (metis
Un-upperl dual-order.trans)
qged
ultimately have Earleyp-bin-step k G w (bins ?bs’) C bins (Earleyr-bin’ k G w
2bs’ (i+1))
using Predictp.IH Predictp.prems sound wf Earley g-bin-step-def bins-upto-sub-bins
bins-bins-upd wf-earley-input-elim by (metis UnE le-supl)
hence Farleyp-bin-step k G w (bins ?bs’) C bins (FEarleyr-bin’ k G w bs 7)
using Predictp.hyps Earleyr-bin’-simps(5) by simp
moreover have Farleyp-bin-step k G w (bins bs) C Earleyp-bin-step k G w (bins
2bs’)
using Farleyp-bin-step-sub-mono Predicty.prems(1) wf-earley-input-elim bins-bins-upd
by (metis Un-upperl)
ultimately show ?case
by blast
qed

lemma FEarleyr-bin-step-sub-Earleyr,-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes Farleyp-bin-step k G w (bins-upto bs k 0) C bins bs
assumes Vz € bins bs. sound-item G w x is~-word G w nonempty-derives G
shows Farleyp-bin-step k G w (bins bs) C bins (Earleyr-bin k G w bs)
using assms FEarleyp-bin-step-sub-Earleyy -bin’ Earleyy -bin-def by metis

lemma bins-eq-items-Completey,:
assumes bins-eq-items as bs item-origin ¢ < length as
shows items (Completer, k x as i) = items (Completer, k x bs i)
proof —
let Zorig-a = as ! item-origin x
let Zorig-b = bs | item-origin x
have items %orig-a = items ?orig-b
using assms by (metis (no-types, opaque-lifting) bins-eq-items-def length-map
nth-map)
thus ?thesis
unfolding Completer-def by simp
qged

lemma FEarleyy -bin’-bins-eq:

assumes (k, G, w, as) € wf-earley-input

assumes bins-eq-items as bs wf-bins G w as

shows bins-eg-items (Earleyr-bin' k G w as i) (Farleyp-bin’ k G w bs 1)

using assms
proof (induction i arbitrary: bs rule: Earleyy,-bin'-induct]| OF assms(1), case-names
Base Completer Scang Pass Predictr))

case (Base k G w as 17)

have Farleyr-bin' k G w as i = as

by (simp add: Base.hyps)

77

moreover have Farleyr-bin’' k G w bs i = bs
using Base.hyps Base.prems(1,2) unfolding bins-eg-items-def
by (metis Earleyy-bin'-simps(1) length-map nth-map wf-earley-input-elim)
ultimately show ?case
using Base.prems(2) by presburger
next
case (Completer k G w as i x)
let ?as’ = bins-upd as k (Completer, k = as 7)
let ?bs’ = bins-upd bs k (Completer, k x bs 1)
have k: k < length as
using Completer.prems(1) wf-earley-input-elim by blast
hence wf-z: wf-item G w x
using Completer.hyps(1,2) Completer.prems(3) wf-bins-kth-bin by fastforce
have (k, G, w, ?as’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
moreover have bins-eg-items ?as’ ?bs’
using Completep.hyps(1,2) Completer.prems(2,3) bins-eg-items-dist-bins-upd
bins-eq-items-Completer,
k wf-z wf-bins-kth-bin wf-item-def by (metis dual-order.strict-trans2 lel
nth-mem)
ultimately have bins-eg-items (Earleyr-bin’ k G w ?as’ (i + 1)) (Earleyy-bin’
kGuw 2bs’ (i + 1))
using Completer.IH wf-earley-input-elim by blast
moreover have Earleyy-bin' k G w as i = Earleyr-bin' k G w 2as’ (i+1)
using Completer.hyps by simp
moreover have Earleyr-bin’ k G w bs i = Earleyr-bin’ k G w 2bs’ (i+1)
using Completer.hyps Completer.prems unfolding bins-eqg-items-def
by (metis Earleyy,-bin'-simps(2) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case
by argo
next
case (Scanp k G w as i z a)
let %as’ = bins-upd as (k+1) (Scany k w a z 7)
let ?bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have (k, G, w, ?as’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by fast
moreover have bins-eg-items ?as’ ?bs’
using Scanp.hyps(5) Scanp.prems(1,2) bins-eg-items-dist-bins-upd add-monol
wf-earley-input-elim by metis
ultimately have bins-eg-items (Earleyr,-bin’ k G w ?as’ (i + 1)) (Earleyr-bin’
kGw %bs' (i + 1))
using Scanp.IH wf-earley-input-elim by blast
moreover have Farleyp-bin’ k G w as i = Earleyr-bin’ k G w 2as’ (i+1)
using Scang.hyps by simp
moreover have Earley-bin’ k G w bs i = Earleyr-bin’ k G w 2bs’ (i+1)
using Scanp.hyps Scanp.prems unfolding bins-eq-items-def
by (smt (verit, ccfv-threshold) Earleyr,-bin’-simps(3) length-map nth-map wf-earley-input-elim)
ultimately show ?case
by argo

78

next
case (Pass k G w as iz a)
have bins-eq-items (Earleyr-bin' k G w as (i + 1)) (Farleyr-bin’ k G w bs (i +
1)
using Pass.prems Pass.IH by blast
moreover have FEarley-bin’ k G w as i = Earleyr-bin’ k G w as (i+1)
using Pass.hyps by simp
moreover have Earleyr-bin’ k G w bs i = Earleyr-bin’ k G w bs (i+1)
using Pass.hyps Pass.prems unfolding bins-eg-items-def
by (metis Earleyr,-bin'-simps(4) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show Zcase
by argo
next
case (Predictp k G w as i z a)
let %as’ = bins-upd as k (Predicty k G a)
let 2bs’ = bins-upd bs k (Predicty k G a)
have (k, G, w, ?as’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predicty, by fast
moreover have bins-eq-items ?as’ ?bs’
using Predictp.prems(1,2) bins-eq-items-dist-bins-upd wf-earley-input-elim by
blast
ultimately have bins-eg-items (Earleyr-bin’ k G w ?as’ (i + 1)) (Earleyr-bin’
kGw 2bs' (i + 1))
using Predictp.IH wf-earley-input-elim by blast
moreover have Earley-bin’ k G w as i = Earleyr-bin' k G w %as’ (i+1)
using Predictp.hyps by simp
moreover have Farleyp-bin’ k G w bs i = Farleyp-bin’ k G w 2bs’ (i+1)
using Predictg.hyps Predictr.prems unfolding bins-eq-items-def
by (metis Earleyy-bin'-simps(5) length-map nth-map wf-earley-input-elim)
ultimately show ?case
by argo
qed

lemma FEarleyy,-bin'-idem:
assumes (k, G, w, bs) € wf-earley-input
assumes i < j Vz € bins bs. sound-item G w x nonempty-derives G
shows bins (Earleyr-bin’ k G w (Earley-bin' k G w bs i) j) = bins (Earleyr-bin’
kG w bsi)
using assms
proof (induction i arbitrary: j rule: Earleyy-bin'-induct|OF assms(1), case-names
Base Completer Scang Pass Predictr))
case (Completer k G w bs i x)
let 2bs’ = bins-upd bs k (Completer, k z bs 1)
have z: z € set (items (bs ! k))
using Completer.hyps(1,2) by auto
have wf: (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
hence Vz € set (items (Completer, k x bs 7)). sound-item G w «
using sound-Complete;, Completer.hyps(3) Completep.prems wf-earley-input-elim

79

wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: Vx € bins ?bs’. sound-item G w z
by (metis Completer.prems(1,3) UnE bins-bins-upd wf-earley-input-elim)
show Zcase
proof cases
assume i+1 < j
thus ?thesis
using wf sound Completer Earleyr-bin’-simps(2) by metis
next
assume - i+1 < j
hence i = j
using Completer.prems(2) by simp
have bins (Earleyr-bin' k G w (Earleyr-bin’ k G w bs i) j) = bins (Earleyr-bin’
k G w (Earleyr-bin’ k G w ?bs’ (i+1)) j)
using Farleyy,-bin'-simps(2) Completer.hyps(1—3) by simp
also have ... = bins (Earleyr-bin’ k G w (FEarleyy-bin' k G w 2bs’ (i+1))
(+1))
proof —
let ?bs” = Earleyr-bin' k G w 2bs’ (i+1)
have length (items (?bs” | k)) > length (items (bs ! k))
using length-nth-bin-FEarleyr-bin’ length-nth-bin-bins-upd order-trans wf
Completer.hyps Completer.prems(1)
by (smt (verit, ccfo-threshold) Earleyy-bin'-simps(2))
hence 0: — length (items (2bs”’ ! k)) < j
using <i = j» Completer.hyps(1) by linarith
have = = items (2bs’ ' k) ! j
using «i = j» items-nth-idem-bins-upd Completer.hyps(1,2)
by (metis items-def length-map not-le-imp-less)
hence 1: z = items (?bs”' 1 k) ! j
using i = j» kth-Earleyr-bin’-bins Completer.hyps Completer.prems(1)
Earleyy-bin'-simps(2) lel by metis
have bins (Earleyr,-bin" k G w ?bs" j) = bins (Earleyr-bin’ k G w (bins-upd
2bs"" k (Completer, k x 2bs" 7)) (j+1))
using Farleyr-bin'-simps(2) 0 1 Completer.hyps(1,3) Completer.prems(2)
<t = j» by auto
moreover have bins-eg-items (bins-upd ?bs’’ k (Completer, k x ?bs’ 7)) 2bs’’
proof —
have k < length bs
using Completep.prems(1) wf-earley-input-elim by blast
have 0: set (Completer, k bs i) = set (Completer, k x ?bs’ i)
proof (cases item-origin © = k)
case True
thus ?thesis
using impossible-complete-item kth-bin-sub-bins Completer.hyps(8)
Completep.prems wf-earley-input-elim
wf-bins-kth-bin x next-symbol-def by (metis option.distinct(1) subsetD)
next
case Fulse

80

hence item-origin v < k
using z Completer.prems(1) wf-bins-kth-bin wf-item-def nat-less-le by
(metis wf-earley-input-elim)
hence bs ! item-origin x = ?bs'’ ! item-origin x
using False nth-idem-bins-upd nth-Earleyy -bin'-eq wf by metis
thus ?thesis
using Completey -eq-item-origin by metis
qed
have set (items (Completer, k x bs 7)) C set (items (7bs’ ! k))
by (simp add: <k < length bs) bins-upd-def set-items-bin-upds)
hence set (items (Completer, k x ?bs" i) C set (items (2bs’! k))
using 0 by (simp add: items-def)
also have ... C set (items (?bs"' | k))
by (simp add: wf nth-bin-sub-Earleyr,-bin’)
finally show ?thesis
using bins-eg-items-bins-upd by blast
qed
moreover have (k, G, w, bins-upd ?bs” k (Completer, k xz ?bs" i)) €
wf-earley-input
using wf-earley-input-Earleyy -bin’ wf-earley-input-Complete;, Completer.hyps
Completer.prems(1)
length (items (bs ! k)) < length (items (2bs” ! k))» kth-Earleyy,-bin'-bins
0 1 by blast
ultimately show ?thesis
using Farleyy -bin’-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have ... = bins (Earleyy-bin' k G w 2bs’ (i + 1))
using Completer. IH|OF wf - sound Completer.prems(4)] «<i = 7> by blast
finally show ?thesis
using Completer.hyps by simp
qed
next
case (Scanp k G w bsix a)
let 2bs’ = bins-upd bs (k+1) (Scany k w a x 7)
have z: z € set (items (bs ! k))
using Scanp.hyps(1,2) by auto
hence Vz € set (items (Scang, k w a z i)). sound-item G w «
using sound-Scany, Scanp.hyps(3,5) Scang.prems(1,2,8) wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: Vx € bins ?bs’. sound-item G w x
using Scanp.hyps(5) Scang.prems(1,8) bins-bins-upd wf-earley-input-elim
by (metis UnE add-less-cancel-right)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Scanpg.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
show ?Zcase
proof cases
assume i+1 < j

81

thus ?thesis
using sound Scang by (metis Earleyr-bin’-simps(3) wf-earley-input-Scany,)
next
assume - i+1 < j
hence i = j
using Scang.prems(2) by auto
have bins (Earleyr-bin" k G w (Earleyr,-bin' k G w bs i) j) = bins (Earleyy,-bin’
k G w (Earleyr-bin’ k G w ?bs’ (i+1)) j)
using Scang.hyps by simp
also have ... = bins (Farleyp-bin’ k G w (Earleyp-bin’ k G w 2bs’ (i+1))
(+1))
proof —
let ?bs” = Earleyr-bin' k G w 2bs’ (i+1)
have length (items (?bs” | k)) > length (items (bs ! k))
using length-nth-bin-Earley -bin' length-nth-bin-bins-upd order-trans Scang.hyps
Scanp.prems(1) Earleyr-bin'-simps(8)
by (smt (verit, ccfv-SIG))
hence bins (Farleyr,-bin’ k G w ?bs” j) = bins (Farleyr-bin’ k G w (bins-upd
2bs" (k+1) (Scang k w a x 7)) (j+1))
using «i = j» kth-Earleyr,-bin’-bins nth-idem-bins-upd Earleyy,-bin'-simps(3)
Scanp.hyps Scang.prems(1) by (smt (verit, best) lel le-trans)
moreover have bins-eg-items (bins-upd ?bs”’ (k+1) (Scany k w a x 7)) 2bs"
proof —
have k+1 < length bs
using Scanp.hyps(5) Scanp.prems wf-earley-input-elim by fastforce+
hence set (items (Scany, k w a x 7)) C set (items (?bs’ ! (k+1)))
by (simp add: bins-upd-def set-items-bin-upds)
also have ... C set (items (?bs"' ! (k+1)))
using wf nth-bin-sub-Earley; -bin’ by blast
finally show ?thesis
using bins-eq-items-bins-upd by blast
qed
moreover have (k, G, w, bins-upd ?bs"" (k+1) (Scany k w a z 7)) €
wf-earley-input
using wf-earley-input-FEarleyr,-bin’ wf-earley-input-Scany, Scang.hyps Scanp.prems(1)
length (items (bs ! k)) < length (items (2bs’’ ! k))» kth-Earleyr,-bin’-bins
by (smt (verit, ccfv-SIG) Earleyr-bin'-simps(8) linorder-not-le order.trans)
ultimately show ?Zthesis
using Farleyr -bin’-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have ... = bins (Earleyr-bin' k G w ?bs’ (i + 1))
using «i = j» Scanp.IH Scang.prems Scang.hyps sound wf-earley-input-Scany,
by fast
finally show ?thesis
using Scanp.hyps by simp
qed
next
case (Pass k G w bs i z a)

82

show ?Zcase
proof cases
assume i+1 < j
thus ?thesis
using Pass by (metis Earleyr,-bin'-simps(4))
next
assume - i+1 < j
show ?thesis
using Pass Earleyy,-bin'-simps(1,4) kth-Earleyr,-bin’-bins by (metis Suc-eg-plusl
Suc-lel antisym-conv2 not-le-imp-less)
qed
next
case (Predicty k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty, k G a)
have z: z € set (items (bs ! k))
using Predictp.hyps(1,2) by auto
hence Vz € set (items(Predict, k G a)). sound-item G w «
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
hence sound: Vx € bins ?bs’. sound-item G w x
using Predictp.prems(1,3) UnE bins-bins-upd wf-earley-input-elim by metis
have wf: (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict;, by metis
have len: i < length (items (?bs’ ! k))
using length-nth-bin-bins-upd Predicty.hyps(1) Orderings.preorder-class.dual-order.strict-transl
linorder-not-less
by (metis items-def length-map)
show ?Zcase
proof cases
assume i+1 < j
thus ?thesis
using sound wf Predictp by (metis Earleyy-bin’-simps(5))
next
assume - i+1 < j
hence i = j
using Predictr.prems(2) by auto
have bins (Earley-bin' k G w (Earleyr-bin’ k G w bs i) j) = bins (Earleyr-bin’
k G w (Earleyr-bin" k G w 2bs’ (i+1)) 5)
using Predictp.hyps by simp
also have ... = bins (Earleyy-bin' k G w (Farleyr-bin’ k G w ?bs’ (i+1))
(+1))
proof —
let ?bs” = Earleyr-bin' k G w 2bs’ (i+1)
have length (items (?bs"' ! k)) > length (items (bs ! k))
using length-nth-bin-Earleyy-bin' length-nth-bin-bins-upd order-trans wf
by (metis (no-types, lifting) items-def length-map)
hence bins (Earleyr-bin’ k G w ?bs” j) = bins (Farleyr-bin’ k G w (bins-upd
?bs" k (Predicty, k G a)) (j+1))
using i = j» kth-Farleyy -bin’-bins nth-idem-bins-upd Earleyr,-bin’-simps(5)

83

Predictp.hyps Predictp.prems(1) length-bins-FEarley -bin’
wf-bins-Earleyr,-bin’ wf-bins-kth-bin wf-item-def x by (smt (verit, ccfv-SIG)
linorder-not-le order.trans)
moreover have bins-eq-items (bins-upd ?bs’”’ k (Predicty, k G a)) ?bs"
proof —
have k < length bs
using wf-earley-input-elim[OF Predictp.prems(1)] by blast
hence set (items (Predicty, k G a)) C set (items (7bs’ ! k))
by (simp add: bins-upd-def set-items-bin-upds)
also have ... C set (items (?bs"" | k))
using wf nth-bin-sub-Earley-bin’ by blast
finally show ?thesis
using bins-eq-items-bins-upd by blast
qed
moreover have (k, G, w, bins-upd ?bs’" k (Predicty, k G a)) € wf-earley-input
using wf-earley-input-Farleyr -bin’ wf-earley-input-Predict;, Predicty.hyps
Predictp.prems(1)
length (items (bs ! k)) < length (items (2bs’’ ! k))» kth-Earleyr,-bin’-bins
by (smt (verit, best) Earleyy,-bin'-simps(5) dual-order.trans not-le-imp-less)
ultimately show Zthesis
using Farleyy -bin’-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have ... = bins (Earleyy-bin' k G w ?bs’ (i + 1))
using <i = j» Predictp.IH Predictp.prems sound wf by (metis order-refl)
finally show ?thesis
using Predictp.hyps by simp
qed
qed simp

lemma Farleyy -bin-idem:

assumes (k, G, w, bs) € wf-earley-input

assumes YV € bins bs. sound-item G w = nonempty-derives G

shows bins (Earleyr-bin k G w (Earleyr,-bin k G w bs)) = bins (Earleyr,-bin k
G w bs)

using assms Farleyr-bin'-idem Earleyy-bin-def le0 by metis

lemma funpower-FEarleyp-bin-step-sub-Earleyr,-bin:

assumes (k, G, w, bs) € wf-earley-input

assumes FEarleyp-bin-step k G w (bins-upto bs k 0) C bins bs Vx € bins bs.
sound-item G w z

assumes is-word G w nonempty-derives G

shows funpower (Earleyp-bin-step k G w) n (bins bs) C bins (Earleyy-bin k G
w bs)

using assms
proof (induction n)

case ()

thus ?Zcase

using FEarleyy,-bin’-mono Farleyr -bin-def by (simp add: FEarleyr-bin'-mono

84

Earleyy -bin-def)
next
case (Suc n)
have 0: Earleyp-bin-step k G w (bins-upto (Earleyr-bin k G w bs) k 0) C bins
(Earleyy,-bin k G w bs)
using Farleyy,-bin'-mono bins-upto-k0-Farleyr -bin’-eq assms(1,2) Earleyr-bin-def
order-trans
by (metis (no-types, lifting))
have funpower (Earleyp-bin-step k G w) (Suc n) (bins bs) C Earleyp-bin-step k
G w (bins (Earleyr-bin k G w bs))
using Farleyp-bin-step-sub-mono Suc by (metis funpower.simps(2))
also have ... C bins (Earleyr-bin k G w (Farleyy-bin k G w bs))
using Farleyp-bin-step-sub-Farleyy-bin Suc.prems wf-bins-Earleyr,-bin sound-Earleyy,-bin
0 wf-earley-input-Earleyr-bin by blast
also have ... C bins (Earleyr-bin k G w bs)
using Farleyy -bin-idem Suc.prems by blast
finally show ?Zcase .
qed

lemma Farleyr-bin-sub-FEarleyr,-bin:

assumes (k, G, w, bs) € wf-earley-input

assumes FEarleyp-bin-step k G w (bins-upto bs k 0) C bins bs V& € bins bs.
sound-item G w x

assumes is-word G w nonempty-derives G

shows FEarleyp-bin k G w (bins bs) C bins (Earleyr-bin k G w bs)

using assms funpower-FEarley p-bin-step-sub-Earley,-bin Earleyp-bin-def elem-limit-simp
by fastforce

lemma FEarleyp-bins-sub-FEarleyr -bins:
assumes k < length w wf-G G
assumes is-word G w nonempty-derives G
shows Farleyp-bins k G w C bins (Earleyr-bins k G w)
using assms
proof (induction k)
case ()
hence Farleyp-bin 0 G w (Initp G) C bins (FEarleyr-bin 0 G w (Init, G w))
using Farleyp-bin-sub-Earleyy, -bin Inity -eq-Init p length-bins-Inity, Inity -eq-Initp
sound-Init bins-upto-empty
FEarleyp-bin-step-empty bins-upto-sub-bins wf-earley-input-Inity, wf-earley-input-elim
by (smt (verit, ccfv-threshold) Init p-sub-Earley basic-trans-rules(31) sound-Earley
wf-bins-impl-wf-items)
thus ?case
by simp
next
case (Suc k)
have wf: (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
have sub: Earleyp-bin-step (Suc k) G w (bins-upto (Earleyr-bins k G w) (Suc k)
0) C bins (Earleyy-bins k G w)

85

proof —
have bin (bins-upto (Earleyr-bins k G w) (Suc k) 0) (Suc k) = {}
using kth-bin-bins-upto-empty wf Suc.prems wf-earley-input-elim by blast
hence Earleyp-bin-step (Suc k) G w (bins-upto (Farleyr-bins k G w) (Suc k)
0) = bins-upto (Earleyr-bins k G w) (Suc k) 0
unfolding Farleyp-bin-step-def Scanp-def Completep-def Predict p-def bin-def
by blast
also have ... C bins (Earleyy,-bins k G w)
using wf Suc.prems bins-upto-sub-bins wf-earley-input-elim by blast
finally show ?thesis .
qed
have sound: Vx € bins (Earleyy,-bins k G w). sound-item G w z
using Suc Earleyy -bins-sub-Earleyp-bins by (metis Suc-leD Earleyp-bins-sub-Earley
in-mono sound-Farley wf-Earley)
have Earleyr-bins (Suc k) G w C Earleyp-bin (Suc k) G w (bins (Earleyr,-bins
kG w))
using Suc Farleyp-bin-sub-mono by simp
also have ... C bins (Earleyr-bin (Suc k) G w (Earleyy-bins k G w))
using Farleyp-bin-sub-FEarleyy-bin wf sub sound Suc.prems by fastforce
finally show ?case
by simp
qged

lemma FEarleyp-sub-Farleyr,:
assumes wf-G G is-word G w nonempty-derives G
shows Farleyr G w C bins (Earleyr, G w)
using assms Farleyp-bins-sub-Earleyr -bins Earleyp-def Farleyr-def by (metis

le-refl)

theorem completeness-FEarleyy,:

assumes derives G [6 G| w is-word G w wf-G G nonempty-derives G

shows recognizing (bins (Earleyr, G w)) G w

using assms Farleyp-sub-Farleyy, Farleyy-sub-Earleyr completeness-Earleyr by
(metis subset-antisym)

8.7 Correctness

theorem Farley-eq-Earleyy:

assumes wf-G G is-word G w nonempty-derives G

shows Farley G w = bins (Earleyr, G w)

using assms FEarleyp-sub-Earleyr, Farleyr-sub-Farleyr FEarley-eq-Earleyr by
blast

theorem correctness-Earleyy:
assumes wf-G G is-word G w nonempty-derives G
shows recognizing (bins (Earleyr, G w)) G w «— derives G [S G| w

using assms Farley-eq-Farleyy, correctness-Farley by fastforce

end

86

theory Farley-Parser
imports
Earley-Recognizer
HOL- Library. Monad-Syntax
begin

9 Earley parser

9.1 Pointer lemmas

definition predicts :: 'a item = bool where
predicts © = item-origin x = item-end x N item-dot x = 0

definition scans :: ‘a sentence = nat = 'a item = 'a item = bool where
scans w k zy = y = inc-item x k A (3 a. next-symbol x = Some a N wl(k—1) =

a)

definition completes :: nat = 'a item = 'a item = ’a item = bool where
completes k x y z = y = inc-item z k N\ is-complete z A\ item-origin z = item-end
z A
(3 N. next-symbol x = Some N AN N = item-rule-head z)

definition sound-null-ptr :: 'a entry = bool where
sound-null-ptr e = (pointer e = Null — predicts (item e))

definition sound-pre-ptr :: 'a sentence = 'a bins = nat = 'a entry = bool where
sound-pre-ptr w bs k e = V pre. pointer e = Pre pre —
k> 0 N pre < length (bs!(k—1)) A scans w k (item (bs!(k—1)!pre)) (item e)

definition sound-prered-ptr :: 'a bins = nat = 'a entry = bool where
sound-prered-ptr bs k e =V p ps k' pre red. pointer e = PreRed p ps A (k', pre,
red) € set (p#ps) —
k" < k N pre < length (bs'k’) A red < length (bslk) A completes k (item
(bs!k"pre)) (item e) (item (bslk!red))

definition sound-ptrs :: 'a sentence = 'a bins = bool where
sound-ptrs w bs = Vk < length bs. Ve € set (bs'k).
sound-null-ptr e A sound-pre-ptr w bs k e A\ sound-prered-ptr bs k e

definition mono-red-ptr :: 'a bins = bool where
mono-red-ptr bs = V' k < length bs. Vi < length (bslk).
V' k' pre red ps. pointer (bslk!i) = PreRed (k', pre, red) ps — red < i

lemma nth-item-bin-upd:
n < length es = item (bin-upd e es | n) = item (esln)
by (induction es arbitrary: e n) (auto simp: less-Suc-eq-0-disj split: entry.splits

pointer.splits)

lemma bin-upd-append:

87

item e ¢ set (items es) = bin-upd e es = es Q [¢]
by (induction es arbitrary: e) (auto simp: items-def split: entry.splits pointer.splits)

lemma bin-upd-null-pre:

item e € set (items es) = pointer e = Null V pointer e = Pre pre = bin-upd
ees=es

by (induction es arbitrary: e) (auto simp: items-def split: entry.splits)

lemma bin-upd-prered-nop:

assumes distinct (items es) i < length es

assumes item ¢ = item (es!i) pointer e = PreRed p ps Bp ps. pointer (esli) =
PreRed p ps

shows bin-upd e es = es

using assms

by (induction es arbitrary: e i) (auto simp: less-Suc-eq-0-disj items-def split:
entry.splits pointer.splits)

lemma bin-upd-prered-upd:
assumes distinct (items es) ¢ < length es
assumes item e = item (esli) pointer e = PreRed p rs pointer (esli) = PreRed
p’ rs’ bin-upd e es = es’
shows pointer (es'Vi) = PreRed p’ (p#rsQrs’) A (Vj < length es’. i£j — es’lj
= eslj) A length (bin-upd e es) = length es
using assms
proof (induction es arbitrary: e i es’)
case (Cons e’ es)
show ?Zcase
proof cases
assume *: item ¢ = item e’
show ?thesis
proof (cases 3z ap xs y yp ys. e = Entry x (PreRed xp zs) N e
(PreRed yp ys))
case True
then obtain z zp xs y yp ys where ee”: e = Entry x (PreRed zp zs) e’ =
Entry y (PreRed yp ys) z =y
using * by auto
have simp: bin-upd e (e’ # es”) = Entry « (PreRed yp (zp # xs Q ys)) # es’
using True ee’ by simp
show ?thesis
using Cons simp ee’ apply (auto simp: items-def)
using less-Suc-eq-0-disj by fastforce+
next
case Fulse
hence bin-upd e (e’ # es’) = ¢’ # es’
using * by (auto split: pointer.splits entry.splits)
thus ?thesis
using False x Cons.prems(1,2,3,4,5) by (auto simp: less-Suc-eq-0-disj
items-def split: entry.splits)
qed

!

= Entry y

88

next
assume x: item e # item e’
have simp: bin-upd e (e’ # es) = e’ # bin-upd e es
using * by (auto split: pointer.splits entry.splits)
have 0: distinct (items es)
using Cons.prems(1) unfolding items-def by simp
have 1: i—1 < length es
using Cons.prems(2,3) * by (metis One-nat-def lel less-diff-conv2 less-one
list.size(4) nth-Cons-0)
have 2: item e = item (esl(i—1))
using Cons.prems(3) * by (metis nth-Cons’)
have 3: pointer e = PreRed p rs
using Cons.prems(4) by simp
have /: pointer (es!(i—1)) = PreRed p’ rs’
using Cons.prems(3,5) * by (metis nth-Cons’)
have pointer (bin-upd e es!(i—1)) = PreRed p’ (p # rs Q rs’) A
(Vj < length (bin-upd e es). i—1 # j — (bin-upd e es) ! j = es ! j)
using Cons. IH[OF 0 1 2 3 /] by blast
hence pointer ((¢/ # bin-upd e es) ! i) = PreRed p' (p # rs Q rs’) A
(Vj < length (e’ # bin-upd e es). i # j — (e’ # bin-upd e es) | j = (e’ #
es) ! j)
using * Cons.prems(2,3) less-Suc-eq-0-disj by auto
moreover have ¢’ # bin-upd e es = es’
using Cons.prems(6) simp by auto
ultimately show #thesis
by (metis 0 1 2 38 4 Cons.IH Cons.prems(6) length-Cons)
qed
qed simp

lemma sound-ptrs-bin-upd:
assumes sound-ptrs w bs k < length bs es = bs'k distinct (items es)
assumes sound-null-ptr e sound-pre-ptr w bs k e sound-prered-ptr bs k e
shows sound-ptrs w (bs[k := bin-upd e es])
unfolding sound-ptrs-def
proof (standard, standard, standard)
fix idx elem
let ?bs = bs[k := bin-upd e es]
assume a0: idx < length ?bs
assume al: elem € set (?bs | idr)
show sound-null-ptr elem N sound-pre-ptr w ?bs idx elem A sound-prered-ptr ?bs
idz elem
proof cases
assume a2: idr = k
have elem € set es = sound-pre-ptr w bs idzx elem
using a0 a2 assms(1—3) sound-ptrs-def by blast
hence pre-es: elem € set es = sound-pre-ptr w ?bs idx elem
using a2 unfolding sound-pre-ptr-def by force
have elem = e = sound-pre-ptr w bs idr elem
using a2 assms(6) by auto

89

hence pre-e: elem = e = sound-pre-ptr w ?bs idx elem
using a2 unfolding sound-pre-ptr-def by force
have elem € set es => sound-prered-ptr bs idx elem
using a0 a2 assms(1—38) sound-ptrs-def by blast
hence prered-es: elem € set es = sound-prered-ptr (bs[k := bin-upd e es]) idzx
elem
using a2 assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
by (smt (verit, ccfv-SIG) dual-order.strict-transl nth-list-update)
have elem = e = sound-prered-ptr bs idzx elem
using a2 assms(7) by auto
hence prered-e: elem = e = sound-prered-ptr ?bs idx elem
using a2 assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
by (smt (verit, best) dual-order.strict-transl nth-list-update)
consider (A) item e ¢ set (items es) |
(B) item e € set (items es) A (3 pre. pointer e = Null V pointer e = Pre pre)
|

pre)

(C) item e € set (items es) A = (I pre. pointer e = Null V pointer e = Pre

by blast
thus ?thesis
proof cases
case A
hence elem € set (es @ [e])
using al a2 bin-upd-append assms(2) by force
thus “thesis
using assms(1—3,5) pre-e pre-es prered-e prered-es sound-ptrs-def by auto
next
case B
hence elem € set es
using al a2 bin-upd-null-pre assms(2) by force
thus “thesis
using assms(1—38) pre-es prered-es sound-ptrs-def by blast
next
case C
then obtain i p ps where C: i < length es N\ item e = item (es!i) A pointer
e = PreRed p ps
by (metis assms(4) distinct-Ex1 items-def length-map nth-map pointer.exhaust)
show ?thesis
proof cases
assume fp’ ps’. pointer (esli) = PreRed p’ ps’
hence C: elem € set es
using al a2 C bin-upd-prered-nop assms(2,4) by (metis nth-list-update-eq)
thus ?thesis
using assms(1—3) sound-ptrs-def pre-es prered-es by blast
next
assume — (A p’ ps’. pointer (esli) = PreRed p’ ps’)
then obtain p’ ps’ where D: pointer (esli) = PreRed p’ ps’
by blast
hence 0: pointer (bin-upd e esli) = PreRed p’ (p#psQps’) A (Vj < length

90

(bin-upd e es). i£] — bin-upd e eslj = eslj)
using C assms(4) bin-upd-prered-upd by blast
obtain j where 1: j < length es A elem = bin-upd e eslj
using al a2 assms(2) C items-def bin-eq-items-bin-upd by (metis
in-set-conv-nth length-map nth-list-update-eq nth-map)
show ?thesis
proof cases
assume a3: i=j
hence a3: pointer elem = PreRed p’ (p#psQps’)
using 0 1 by blast
have sound-null-ptr elem
using a3 unfolding sound-null-ptr-def by simp
moreover have sound-pre-ptr w ?bs idx elem
using a3 unfolding sound-pre-ptr-def by simp
moreover have sound-prered-ptr ?bs idx elem
unfolding sound-prered-ptr-def
proof (standard, standard, standard, standard, standard, standard)
fix P PS k' pre red
assume a/j: pointer elem = PreRed P PS A (k', pre, red) € set (P#PS)
show k' < idz N pre < length (bslk := bin-upd e es|'k’) A red < length
(bs[k := bin-upd e es]lidx) A
completes idx (item (bs[k := bin-upd e es]'k'\pre)) (item elem) (item
(bslk := bin-upd e es|lidz!red))
proof cases
assume ad: (k', pre, red) € set (p#ps)
show ?thesis
using 0 1 C a2 a4 a5 prered-es assms(2,3,7) sound-prered-ptr-def
length-bin-upd nth-item-bin-upd
by (smt (verit) dual-order.strict-trans1 nth-list-update-eq nth-list-update-neq
nth-mem)
next
assume ad: (k', pre, red) ¢ set (p#ps)
hence a5: (k', pre, red) € set (p'#ps’)
using a3 a4 by auto
have &’ < idz A pre < length (bs'k’) A red < length (bslidz) A
completes idz (item (bslk'lpre)) (item e) (item (bslidz!red))
using assms(1—3) C D a2 a5 unfolding sound-ptrs-def sound-prered-ptr-def
by (metis nth-mem)
thus ?thesis
using 0 1 C a4 assms(2,3) length-bin-upd nth-item-bin-upd prered-es
sound-prered-ptr-def
by (smt (verit, best) dual-order.strict-transl nth-list-update-eq
nth-list-update-neq nth-mem,)
qed
qed
ultimately show #thesis
by blast
next
assume a3: i#j

91

hence elem € set es
using 0 1 by (metis length-bin-upd nth-mem order-less-le-trans)
thus ?thesis
using assms(1—3) pre-es prered-es sound-ptrs-def by blast
qged
qed
qed
next
assume a2: idr # k
have null: sound-null-ptr elem
using a0 al a2 assms(1) sound-ptrs-def by auto
have sound-pre-ptr w bs idx elem
using a0 al a2 assms(1,2) unfolding sound-ptrs-def by simp
hence pre: sound-pre-ptr w ?bs idx elem
using assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-pre-ptr-def
using dual-order.strict-trans1 nth-list-update by fastforce
have sound-prered-ptr bs idx elem
using a0 al a2 assms(1,2) unfolding sound-ptrs-def by simp
hence prered: sound-prered-ptr ?bs idx elem
using assms(2,3) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
by (smt (verit, best) dual-order.strict-transl nth-list-update)
show ?thesis
using null pre prered by blast
qed
qed

lemma mono-red-ptr-bin-upd:
assumes mono-red-ptr bs k < length bs es = bslk distinct (items es)
assumes Yk’ pre red ps. pointer e = PreRed (k', pre, red) ps — red < length
es
shows mono-red-ptr (bs[k := bin-upd e es])
unfolding mono-red-ptr-def
proof (standard, standard)
fix idz
let ?bs = bs[k := bin-upd e es]
assume a0: idx < length ?bs
show Vi < length (?bslidz). Vk' pre red ps. pointer (?bslidz!i) = PreRed (k’,
pre, red) ps — red < i
proof cases
assume al: idz=k
consider (A) item e ¢ set (items es) |
(B) item e € set (items es) A (3 pre. pointer e = Null V pointer e = Pre pre)
|
(C) item e € set (items es) A — (I pre. pointer e = Null V pointer e = Pre
pre)
by blast
thus ?thesis
proof cases
case A

92

hence bin-upd e es = es @ [¢]
using bin-upd-append by blast
thus ?thesis
using al assms(1—3,5) mono-red-ptr-def
by (metis length-append-singleton less-antisym nth-append nth-append-length
nth-list-update-eq)
next
case B
hence bin-upd e es = es
using bin-upd-null-pre by blast
thus ?thesis
using al assms(1—38) mono-red-ptr-def by force
next
case C
then obtain ¢ p ps where C: i < length es item e = item (esli) pointer e =
PreRed p ps
by (metis in-set-conv-nth items-def length-map nth-map pointer.exhaust)
show ?thesis
proof cases
assume f p’ ps’. pointer (esli) = PreRed p’ ps’
hence bin-upd e es = es
using bin-upd-prered-nop C assms(4) by blast
thus ?thesis
using al assms(1—3) mono-red-ptr-def by (metis nth-list-update-eq)
next
assume — (#p’ ps’. pointer (esli) = PreRed p’ ps’)
then obtain p’ ps’ where D: pointer (es!li) = PreRed p’ ps’
by blast
have 0: pointer (bin-upd e esli) = PreRed p’ (p#psQps’) A
(Vj < length (bin-upd e es). i # j — bin-upd e eslj = eslj) A
length (bin-upd e es) = length es
using C' D assms(4) bin-upd-prered-upd by blast
show ?thesis
proof (standard, standard, standard, standard, standard, standard, standard)
fix j k' pre red PS
assume a2: j < length (?bslidz)
assume a3: pointer (?bslidx!j) = PreRed (k', pre, red) PS
have 1: ?bslide = bin-upd e es
by (simp add: al assms(2))
show red < j
proof cases
assume a4: i=j
show ?thesis
using 0 1 C(1) D a8 a4 assms(1—3) unfolding mono-red-ptr-def by
(metis pointer.inject(2))
next
assume a4: i#j
thus ?thesis
using 0 1 a2 a3 assms(1) assms(2) assms(3) mono-red-ptr-def by

93

force
qed
qed
qed
qed
next
assume al: idx#k
show ?thesis
using a0 al assms(1) mono-red-ptr-def by fastforce
qged
qged

lemma sound-mono-ptrs-bin-upds:
assumes sound-ptrs w bs mono-red-ptr bs k < length bs b = bslk distinct (items
b) distinct (items es)
assumes V e € set es. sound-null-ptr e A sound-pre-ptr w bs k e A sound-prered-ptr
bs k e
assumes Ve € set es. VE' pre red ps. pointer e = PreRed (k', pre, red) ps —
red < length b
shows sound-ptrs w (bs[k := bin-upds es b)) A mono-red-ptr (bs[k := bin-upds es
b))
using assms
proof (induction es arbitrary: b bs)
case (Cons e es)
let ?bs = bs[k := bin-upd e b]
have 0: sound-ptrs w ?bs
using sound-ptrs-bin-upd Cons.prems(1,3—5,7) by (metis list.set-intros(1))
have 1: mono-red-ptr ?bs
using mono-red-ptr-bin-upd Cons.prems(2—5,8) by auto
have 2: k < length ?bs
using Cons.prems(3) by simp
have 3: bin-upd e b = ?bslk
using Cons.prems(3) by simp
have 4: Ve’ € set es. sound-null-ptr e’ A sound-pre-ptr w ?bs k e’ A sound-prered-ptr
2bs ke’
using Cons.prems(3,4,7) length-bin-upd nth-item-bin-upd sound-pre-ptr-def
sound-prered-ptr-def
by (smt (verit, ccfo-threshold) list.set-intros(2) nth-list-update order-less-le-trans)
have 5: Ve’ € set es. VE' pre red ps. pointer ¢/ = PreRed (k', pre, red) ps —
red < length (bin-upd e b)
by (meson Cons.prems(8) length-bin-upd order-less-le-trans set-subset-Cons
subsetD)
have sound-ptrs w ((bs[k := bin-upd e b])[k := bin-upds es (bin-upd e b)]) A
mono-red-ptr (bs[k := bin-upd e b, k := bin-upds es (bin-upd e b)])
using Cons.JH[OF 01 2 3 - - 4 5] distinct-bin-upd Cons.prems(4,5,6) items-def
by (metis distinct.simps(2) list.simps(9))
thus ?case
by simp
qed simp

94

lemma sound-mono-ptrs-Earley -bin”:
assumes (k, G, w, bs) € wf-earley-input
assumes sound-ptrs w bs Yz € bins bs. sound-item G w x
assumes mono-red-ptr bs
assumes nonempty-derives G wf-G G
shows sound-ptrs w (Earleyr-bin" k G w bs i) A mono-red-ptr (Earleyy-bin’ k G
w bs 1)
using assms
proof (induction i rule: Earleyy,-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictp))
case (Completer k G w bs i x)
let ?bs’ = bins-upd bs k (Completer, k x bs 1)
have z: z € set (items (bs ! k))
using Completer.hyps(1,2) by force
hence Vz € set (items (Completer, k x bs 7)). sound-item G w «
using sound-Complete;, Completer.hyps(3) Completep.prems wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: Vx € bins ?bs’. sound-item G w x
by (metis Completer.prems(1,3) UnE bins-bins-upd wf-earley-input-elim)
have 0: k < length bs
using Completer.prems(1) wf-earley-input-elim by auto
have 1: Ve € set (Completer, k bs i). sound-null-ptr e
unfolding Completer,-def sound-null-ptr-def by auto
have 2: Ve € set (Completer, k x bs i). sound-pre-ptr w bs k e
unfolding Completer -def sound-pre-ptr-def by auto
{
fix e
assume a0: e € set (Completer, k x bs 7)
fix p ps k' pre red
assume al: pointer e = PreRed p ps (k', pre, red) € set (p#ps)
have k' = item-origin z
using a0 al unfolding Completer-def by auto
moreover have wf-item G w z item-end © = k
using Completer.prems(1) x wf-earley-input-elim wf-bins-kth-bin by blast+
ultimately have 0: k' < k
using wf-item-def by blast
have 1: k' # k
proof (rule ccontr)
assume — k' # k
have sound-item G w x
using Completep.prems(1,3) x kth-bin-sub-bins wf-earley-input-elim by
(metis subset-eq)
moreover have is-complete x
using Completer.hyps(3) by (auto simp: next-symbol-def split: if-splits)
moreover have item-origin t = k
using «— k' # ky k' = item-origin x> by auto
ultimately show Fulse

95

using impossible-complete-item Completep.prems(1,5) wf-earley-input-elim
<item-end © = ky <wf-item G w z» by blast
qed
have 2: pre < length (bs!k’)
using a0 al indez-filter-with-index-lt-length unfolding Completer -def by
(auto simp: items-def; fastforce)
have 3: red < i+1
using a0 al unfolding Completer-def by auto

have item e = inc-item (item (bslk'lpre)) k
using a0 al 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = item-origin
x> unfolding Completer, -def
by (auto simp: items-def, metis filter-with-index-nth nth-map)
moreover have is-complete (item (bs!k!red))
using a0 al 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = item-origin
x> unfolding Completer, -def
by (auto simp: next-symbol-def items-def split: if-splits)
moreover have item-origin (item (bslklred)) = item-end (item (bs!k’\pre))
using a0 al 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = item-origin
x> unfolding Completer, -def
apply (clarsimp simp: items-def)
by (metis dual-order.strict-trans index-filter-with-indez-lt-length items-def
le-negq-implies-less nth-map nth-mem wf-bins-kth-bin wf-earley-input-elim)
moreover have (I N. next-symbol (item (bs ! k' pre)) = Some N AN N =
item-rule-head (item (bs ! k! red)))
using a0 al 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = item-origin
x> unfolding Completer, -def
by (auto simp: items-def, metis (mono-tags, lifting) filter-with-indez-P fil-
ter-with-index-nth nth-map)
ultimately have /: completes k (item (bs'k’\pre)) (item e) (item (bslk!red))
unfolding completes-def by blast
have k' < k pre < length (bslk') red < i+1 completes k (item (bs'k’lpre)) (item
e) (item (bs'klred))
using 0 1 2 8 4 by simp-all
}

hence Ve € set (Completer, k x bs). Vp ps k' pre red. pointer e = PreRed p ps
A (k', pre, red) € set (p#ps) —
k" < k A pre < length (bslk’) A red < i+1 A completes k (item (bs!k'lpre))
(item e) (item (bs'k!red))
by force
hence 3: Ve € set (Completer, k x bs i). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def using Completer.hyps(1) items-def by (smt
(verit) discrete dual-order.strict-trans1 lel length-map)
have 4: distinct (items (Completer, k x bs 7))
using distinct-Completey, © Completer.prems(1) wf-earley-input-elim wf-bin-def
wf-bin-items-def wf-bins-def wf-item-def
by (metis order-le-less-trans)
have sound-ptrs w ?bs’ A mono-red-ptr ?bs’
using sound-mono-ptrs-bin-upds[OF Completer.prems(2) Completer.prems(4)

96

0] 1 2 8 4 sound-prered-ptr-def
Completer.prems(1) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-SIG) list.set-intros(1))
moreover have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
ultimately have sound-ptrs w (Earleyr-bin’ k G w 2bs’ (i+1)) A mono-red-ptr
(Earleyp-bin' k G w %bs’ (i+1))
using Completer.IH Completer.prems(4—6) sound by blast
thus ?Zcase
using Completer.hyps by simp
next
case (Scanp k G w bsix a)
let ?bs’ = bins-upd bs (k+1) (Scany k w a z 7)
have 1 € set (items (bs ! k))
using Scang.hyps(1,2) by force
hence Vz € set (items (Scang, k w a z ©)). sound-item G w «
using sound-Scany, Scanp.hyps(3,5) Scang.prems(1,2,8) wf-earley-input-elim
wf-bins-impl-wf-items wf-bins-impl-wf-items by fast
hence sound: Vx € bins ?bs’. sound-item G w z
using Scanp.hyps(5) Scanp.prems(1,3) bins-bins-upd wf-earley-input-elim
by (metis UnE add-less-cancel-right)
have 0: k+1 < length bs
using Scanp.hyps(5) Scang.prems(1) wf-earley-input-elim by force
have 1: Ve € set (Scany k w a x 7). sound-null-ptr e
unfolding Scany -def sound-null-ptr-def by auto
have 2: Ve € set (Scany, k w a z 7). sound-pre-ptr w bs (k+1) e
using Scanpg.hyps(1,2,3) unfolding sound-pre-ptr-def Scany-def scans-def
items-def by auto
have 3: Ve € set (Scany k w a x 7). sound-prered-ptr bs (k+1) e
unfolding Scany-def sound-prered-ptr-def by simp
have /: distinct (items (Scang, k w a z 1))
using distinct-Scany, by fast
have sound-ptrs w ?bs’ A mono-red-ptr ?bs’
using sound-mono-ptrs-bin-upds|OF Scanp.prems(2) Scanp.prems(4) 0] 0 1 2
3 4 sound-prered-ptr-def
Scang.prems(1) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-threshold) list.set-intros(1))
moreover have (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
ultimately have sound-ptrs w (Earleyr-bin' k G w ?bs’ (i+1)) A mono-red-ptr
(Earleyr-bin" k G w ?bs’ (i+1))
using Scanp.IH Scanp.prems(4—6) sound by blast
thus ?case
using Scang.hyps by simp
next
case (Predicty k G w bs iz a)
let ?bs’ = bins-upd bs k (Predicty, k G a)
have 1 € set (items (bs ! k))
using Predictp.hyps(1,2) by force

97

hence Vz € set (items(Predict, k G a)). sound-item G w x
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
hence sound: Vx € bins ?bs’. sound-item G w x
using Predictp.prems(1,3) UnE bins-bins-upd wf-earley-input-elim by metis
have 0: k < length bs
using Predictp.prems(1) wf-earley-input-elim by force
have 1: Ve € set (Predicty, k G a). sound-null-ptr e
unfolding sound-null-ptr-def Predicty,-def predicts-def by (auto simp: init-item-def)
have 2: Ve € set (Predict, k G a). sound-pre-ptr w bs k e
unfolding sound-pre-ptr-def Predicty-def by simp
have 3: Ve € set (Predict, k G a). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def Predicty-def by simp
have /: distinct (items (Predicty, k G a))
using Predictp.prems(6) distinct-Predicty, by fast
have sound-ptrs w ?bs’ A mono-red-ptr ?bs’
using sound-mono-ptrs-bin-upds|OF Predictp.prems(2) Predicty.prems(4) 0]
01238 4 sound-prered-ptr-def
Predictp.prems(1) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-threshold) list.set-intros(1))
moreover have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict;, by metis
ultimately have sound-ptrs w (Earleyr-bin' k G w 2bs’ (i+1)) A mono-red-ptr
(Earleyr,-bin" k G w ?bs’ (i+1))
using Predictp.IH Predictp.prems(4—6) sound by blast
thus ?case
using Predictp.hyps by simp
qed simp-all

lemma sound-mono-ptrs-Earleyr,-bin:

assumes (k, G, w, bs) € wf-earley-input

assumes sound-ptrs w bs Yz € bins bs. sound-item G w x

assumes mono-red-ptr bs

assumes nonempty-derives G wf-G G

shows sound-ptrs w (Earleyr,-bin k G w bs) A mono-red-ptr (Earleyy-bin k G w
bs)

using assms sound-mono-ptrs-Earley-bin’ Earleyr -bin-def by metis

lemma sound-ptrs-Inity,:
sound-ptrs w (Init, G w)
unfolding sound-ptrs-def sound-null-ptr-def sound-pre-ptr-def sound-prered-ptr-def
predicts-def scans-def completes-def Inity -def
by (auto simp: init-item-def less-Suc-eq-0-disj)

lemma mono-red-ptr-Inity:
mono-red-ptr (Init;, G w)
unfolding mono-red-ptr-def Inity -def
by (auto simp: init-item-def less-Suc-eq-0-disj)

98

lemma sound-mono-ptrs-Earleyr -bins:
assumes k < length w wf-G G nonempty-derives G wf-G G
shows sound-ptrs w (Earleyr-bins k G w) A mono-red-ptr (Farleyy,-bins k G w)
using assms
proof (induction k)
case (
have (0, G, w, (Init;, G w)) € wf-earley-input
using assms(2) wf-earley-input-Init;, by blast
moreover have Vz € bins (Init, G w). sound-item G w x
by (metis Inity-eq-Initp Initp-sub-Earley sound-FEarley subsetD wf-Farley)
ultimately show Zcase
using sound-mono-ptrs-Earley,-bin sound-ptrs-Init;, mono-red-ptr-Inity, 0.prems(2,3)
by fastforce
next
case (Suc k)
have (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
moreover have sound-ptrs w (Earleyy,-bins k G w)
using Suc by simp
moreover have Vi € bins (Farleyr-bins k G w). sound-item G w x
by (meson Suc.prems(1) Suc-leD Earleyy,-bins-sub-Earleyr-bins Earleyp-bins-sub-Earley
assms(2)
sound-Earley subsetD wf-bins-Earleyy,-bins wf-bins-impl-wf-items)
ultimately show ?case
using Suc.prems(1,3,4) sound-mono-ptrs-Earleyr,-bin Suc.IH by fastforce
qged

lemma sound-mono-ptrs-Earleyy,:
assumes wf-G G nonempty-derives G
shows sound-ptrs w (Earleyr, G w) A mono-red-ptr (Earley;, G w)
using assms sound-mono-ptrs-Earleyy -bins Earleyy -def by (metis dual-order.refl)

9.2 Common Definitions

datatype ‘a tree =
Leaf 'a
| Branch 'a 'a tree list

fun yield-tree :: 'a tree = 'a sentence where
yield-tree (Leaf a) = [a]
| yield-tree (Branch - ts) = concat (map yield-tree ts)

fun root-tree :: 'a tree = 'a where
root-tree (Leaf a) = a
| root-tree (Branch N -) = N

fun wf-rule-tree :: 'a c¢fg = 'a tree = bool where

wf-rule-tree - (Leaf a) +— True
| wf-rule-tree G (Branch N ts) «— (

99

(Ir € set (R G). N = rule-head r A map root-tree ts = rule-body r) A
(Vi € set ts. wf-rule-tree G t))

fun wf-item-tree :: 'a cfg = 'a item = 'a tree = bool where
wf-item-tree G - (Leaf a) +— True
| wf-item-tree G x (Branch N ts) +— (
N = item-rule-head © N map root-tree ts = take (item-dot) (item-rule-body x)
N
(Vt € set ts. wf-rule-tree G t))

definition wf-yield-tree :: 'a sentence = 'a item = ’a tree = bool where
wf-yield-tree w x t +— yield-tree t = slice (item-origin z) (item-end x) w

datatype ‘a forest =
FLeaf 'a
| FBranch 'a 'a forest list list

fun combinations :: 'a list list = 'a list list where
combinations [| = [[]]
| combinations (zs#xss) = [x#cs . © <— 8, cs <— combinations xss |

fun trees :: 'a forest = ’a tree list where
trees (FLeaf a) = [Leaf al
| trees (FBranch N fss) = (
let tss = (map (Afs. concat (map (Nf. trees f) fs)) fss) in
map (Ats. Branch N ts) (combinations tss)

)

lemma list-comp-flatten:

[fas.as<—[gasys.azs <— as, ys <— bs |] =[f (g xs ys) . xs <— as, ys
<— bs]

by (induction as) auto

lemma list-comp-flatten-Cons:

[s#zs . © <— as, xs <— [2s Q ys. zs <— bs, ys <— ¢s || = [s#xsQys. x <—
as, s <— bs, ys <— cs]

by (induction as) (auto simp: list-comp-flatten)

lemma list-comp-flatten-append:

[2sQys . 25 <— [z#xs . T <— as, 1s <— bs |, ys <— cs | = [afzsQys . z <—
as, s <— bs, ys <— cs]

by (induction as) (auto simp: o-def, meson append-Cons map-eg-conv)

lemma combinations-append:

combinations (zss Q yss) = [zs Q ys . xs <— combinations xss, ys <— combi-
nations yss |

by (induction zss) (auto simp: list-comp-flatten-Cons list-comp-flatten-append
map-idl)

100

lemma trees-append:
trees (FBranch N (zss @ yss)) = (
let xtss = (map (Azs. concat (map (Af. trees f) xs)) xss) in
let ytss = (map (Ays. concat (map (Af. trees f) ys)) yss) in
map (Ats. Branch N ts) [xs Q ys . s <— combinations ztss, ys <— combinations

ytss |)
using combinations-append by (metis map-append trees.simps(2))

lemma trees-append-singleton:
trees (FBranch N (zss @ [ys])) = (
let xtss = (map (Azs. concat (map (Af. trees f) xs)) xss) in

let ytss = [concat (map trees ys)] in
map (Ats. Branch N ts) [zs Q ys . zs <— combinations xtss, ys <— combinations
ytss |)

by (subst trees-append, simp)

lemma trees-append-single-singleton:
trees (FBranch N (zss @ [[y]])) = (
let xtss = (map (Azs. concat (map (Af. trees f) xs)) xss) in
map (Ats. Branch N ts) [zs Q ys . s <— combinations xztss, ys <— [[t] . ¢
<— trees y]])
by (subst trees-append-singleton, auto)

9.3 foldl lemmas

lemma foldl-add-nth:
k < length s = foldl (+) z (map length (take k zs)) + length (xs'k) = foldl
(4+) z (map length (take (k+1) xs))
proof (induction zs arbitrary: k z)
case (Cons z zs)
then show ?case
proof (cases k = 0)
case Fulse
thus %thesis
using Cons by (auto simp add: take-Cons’)
qed simp
qed simp

lemma foldl-acc-mono:
a < b= foldl (+) a zs < foldl (+) b xs for a :: nat
by (induction zs arbitrary: a b) auto

lemma foldl-ge-z-nth:
j < length s = z + length (zs!j) < foldl (+) z (map length (take (j+1) xs))
proof (induction s arbitrary: j z)
case (Cons z zs)
show ?case
proof (cases j = 0)
case Fulse

101

have z + length ((z # zs) ! j) = z + length (zs!(j—1))
using Fualse by simp
also have ... < foldl (4) z (map length (take (j—141) zs))
using Cons False by (metis add-diff-inverse-nat length-Cons less-one nat-add-left-cancel-less
plus-1-eq-Suc)
also have ... = foldl () z (map length (take j xs))
using Fualse by simp
also have ... < foldl () (z + length ©) (map length (take j xs))
using foldl-acc-mono by force
also have ... = foldl () z (map length (take (j+1) (x#xs)))
by simp
finally show ?thesis
by blast
qed simp
qed simp

lemma foldl-add-nth-ge:
i < j = j < length xs = foldl (+) z (map length (take i zs)) + length (zs!j)
< foldl (+) z (map length (take (j+1) zs))
proof (induction xs arbitrary: i j z)
case (Cons z xs)
show Zcase
proof (cases i = 0)
case True
have foldl (+) z (map length (take i (z # xs))) + length ((x # xs) ! j) = 2z +
length ((z # zs) ! j)
using True by simp
also have ... < foldl (4) z (map length (take (j+1) (z#xs)))
using foldl-ge-z-nth Cons.prems(2) by blast
finally show ?thesis
by blast
next
case Fulse
have i—1 < j—1
by (simp add: Cons.prems(1) diff-le-mono)
have j—1 < length s
using Cons.prems(1,2) Fualse by fastforce
have foldl (+) z (map length (take i (z # xs))) + length ((z # zs) ! j) =
foldl (+) (z + length x) (map length (take (i—1) zs)) + length ((z#xs)!j)
using Fualse by (simp add: take-Cons’)
also have ... = foldl (+) (z + length z) (map length (take (i—1) xs)) + length
(as1(j— 1))
using Cons.prems(1) False by auto
also have ... < foldl (+) (z + length x) (map length (take (j—1+1) xs))
using Cons.IH <i — 1 < j — 1> ¢j — 1 < length xs» by blast
also have ... = foldl (+) (z + length x) (map length (take j xs))
using Cons.prems(1) False by fastforce
also have ... = foldl () z (map length (take (j+1) (x#xs)))
by fastforce

102

finally show ?thesis
by blast
qed
qed simp

lemma foldl-ge-acc:
foldl (+) z (map length zs) >

z
by (induction zs arbitrary: z) (auto elim: add-leF)

lemma foldl-take-mono:

i < j = foldl (+) z (map length (take i xs)) < foldl (4+) z (map length (take j

xs))
proof (induction xs arbitrary: z i j)
case (Cons z xs)
show ?Zcase
proof (cases i = 0)
case True
have foldl (+) z (map length (take i (x # zs))) = z
using True by simp
also have ... < foldl (4) z (map length (take j (z # xs)))
by (simp add: foldl-ge-acc)
ultimately show Zthesis
by simp
next
case Fulse
then show ?thesis
using Cons by (simp add: take-Cons’)
qed
qed simp

9.4 Parse tree

partial-function (option) build-tree’ :: 'a bins = 'a sentence = nat = nat = 'a

tree option where
build-tree’ bs w ki = (
let e = bslkli in (
case pointer e of

Null = Some (Branch (item-rule-head (item e)) [|) — start building sub-tree

| Pre pre = (— add sub-tree starting from terminal
do {
t < build-tree’ bs w (k—1) pre;
case t of

Branch N ts = Some (Branch N (ts Q [Leaf (w!(k—1))]))

| - = undefined — impossible case

D

| PreRed (k', pre, red) - = (— add sub-tree starting from non-terminal

do {
t < build-tree’ bs w k' pre;
case t of

103

Branch N ts =
do {
t < build-tree’ bs w k red;
Some (Branch N (ts Q [t]))

| - = undefined — impossible case

)
)

declare build-tree’.simps [code]

definition build-tree :: 'a cfg = 'a sentence = 'a bins = 'a tree option where
build-tree G w bs = (
let k = length bs — 1 in (
case filter-with-index (A\x. is-finished G w) (items (bslk)) of
[| = None
| (-, 9)#- = build-tree’ bs w ki

)

lemma build-tree’-simps[simp]:
e = bslkli = pointer ¢ = Null = build-tree’ bs w k i = Some (Branch
(item-rule-head (item e)) [])
e = bslkli = pointer e = Pre pre = build-tree’ bs w (k—1) pre = None —>
build-tree’ bs w k i = None
e = bslkli = pointer e = Pre pre = build-tree’ bs w (k—1) pre = Some (Branch
N ts) =
build-tree’ bs w k ¢ = Some (Branch N (ts Q [Leaf (w!(k—1))]))
e = bslkli = pointer e = Pre pre => build-tree’ bs w (k—1) pre = Some (Leaf
a) =
build-tree’ bs w k i = undefined
e = bslkli = pointer e = PreRed (k', pre, red) reds = build-tree’ bs w k' pre
= None =
build-tree’ bs w k i = None
e = bslkli = pointer e = PreRed (k', pre, red) reds => build-tree’ bs w k' pre
= Some (Branch N ts) =
build-tree’ bs w k red = None = build-tree’ bs w k i = None
e = bslkli = pointer e = PreRed (k', pre, red) reds = build-tree’ bs w k' pre
= Some (Leaf a) =
build-tree’ bs w k i = undefined
e = bslkli = pointer e = PreRed (k', pre, red) reds => build-tree’ bs w k' pre
= Some (Branch N ts) =
build-tree’ bs w k red = Some t =
build-tree’ bs w k i = Some (Branch N (ts @ [t]))
by (subst build-tree’.simps, simp)+

definition wf-tree-input :: (‘a bins X 'a sentence x nat X nat) set where
wf-tree-input = {
(bs, w, k, ©) | bs w k1.
sound-ptrs w bs A

104

mono-red-ptr bs N
k < length bs A
i < length (bs'k)

}

fun build-tree’-measure :: (‘a bins x 'a sentence X nat X nat) = nat where
build-tree’-measure (bs, w, k, i) = foldl (+) 0 (map length (take k bs)) + i

lemma wf-tree-input-pre:
assumes (bs, w, k, i) € wf-tree-input
assumes e = bslk!i pointer e = Pre pre
shows (bs, w, (k—1), pre) € wf-tree-input
using assms unfolding wf-tree-input-def
using less-imp-diff-less nth-mem by (fastforce simp: sound-ptrs-def sound-pre-ptr-def)

lemma wf-tree-input-prered-pre:
assumes (bs, w, k, i) € wf-tree-input
assumes e = bslk!i pointer e = PreRed (k', pre, red) ps
shows (bs, w, k', pre) € wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-prered-ptr-def)
apply metis+
apply (metis dual-order.strict-trans nth-mem)
by (metis nth-mem)

lemma wf-tree-input-prered-red:
assumes (bs, w, k, i) € wf-tree-input
assumes e = bslkli pointer e = PreRed (k', pre, red) ps
shows (bs, w, k, red) € wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp add: sound-ptrs-def sound-prered-ptr-def)
apply (metis nth-mem)-+
done

lemma build-tree’-induct:
assumes (bs, w, k, i) € wf-tree-input
assumes A\bs w k i.
(Ae pre. e = bslkli = pointer e = Pre pre = P bs w (k—1) pre) =
(Ae k' pre red ps. e = bslkli = pointer e = PreRed (k', pre, red) ps = P bs
w k' pre) =
(A\e k' pre red ps. e = bslkli => pointer e = PreRed (k', pre, red) ps => P bs
w k red) =
Pbswki
shows P bs w ki
using assms(1)
proof (induction n=>build-tree’-measure (bs, w, k, ©) arbitrary: k i rule: nat-less-induct)
case I
obtain e where entry: e = bslkli
by simp

105

consider (Null) pointer e = Null
| (Pre) 3pre. pointer e = Pre pre
| (PreRed) 3k’ pre red reds. pointer e = PreRed (k', pre, red) reds
by (metis pointer.exhaust surj-pair)
thus Zcase
proof cases
case Null
thus ?thesis
using assms(2) entry by fastforce
next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
define n where n: n = build-tree’-measure (bs, w, (k—1), pre)
have 0 < k pre < length (bs!(k—1))
using 1(2) entry pre unfolding wf-tree-input-def sound-ptrs-def sound-pre-ptr-def
by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
have k < length bs
using 1(2) unfolding wf-tree-input-def by blast+
have foldl (+) 0 (map length (take k bs)) + i — (foldl (+) 0 (map length (take
(k—1) bs)) + pre) =
foldl (+) 0 (map length (take (k—1) bs)) + length (bsl(k—1)) + i — (foldl
(4+) 0 (map length (take (k—1) bs)) + pre)
using foldl-add-nth[of <k—1> bs 0] by (simp add: <0 < k> <k < length bs»
less-imp-diff-less)
also have ... = length (bsl(k—1)) + i — pre
by simp
also have ... > 0
using «pre < length (bs!(k—1))> by auto
finally have build-tree’-measure (bs, w, k, i) — build-tree’-measure (bs, w,
(k—1), pre) > 0
by simp
hence P bs w (k—1) pre
using 1 n wf-tree-input-pre entry pre zero-less-diff by blast
thus ?Zthesis
using assms(2) entry pre pointer.distinct(5) pointer.inject(1) by presburger
next
case PreRed
then obtain k' pre red ps where prered: pointer e = PreRed (k', pre, red) ps
by blast
have k' < k pre < length (bs'k’)
using 1(2) entry prered unfolding wf-tree-input-def sound-ptrs-def sound-prered-ptr-def
apply simp-all
apply (metis nth-mem)+
done
have red < ¢
using 1(2) entry prered unfolding wf-tree-input-def mono-red-ptr-def by
blast
have k < length bs i < length (bslk)

106

using 1(2) unfolding wf-tree-input-def by blast+
define n-pre where n-pre: n-pre = build-tree’-measure (bs, w, k', pre)
have 0 < length (bslk’) + i — pre

by (simp add: <pre < length (bs'k’)y add.commute trans-less-add2)

also have ... = foldl (+) 0 (map length (take k' bs)) + length (bslk’) + i —
(foldl (+) 0 (map length (take k' bs)) + pre)
by simp

also have ... < foldl (+) 0 (map length (take (k'+1) bs)) + ¢ — (foldl (+) 0
(map length (take k' bs)) + pre)
using foldl-add-nth-ge[of k' k' bs 0] <k < length bs» <k’ < k> by simp
also have ... < foldl (+) 0 (map length (take k bs)) + i — (foldl (+) 0 (map
length (take k' bs)) + pre)
using foldl-take-mono by (metis Suc-eg-plusl Suc-lel <k’ < k> add.commute
add-le-cancel-left diff-le-mono)
finally have build-tree’-measure (bs, w, k, ©) — build-tree’-measure (bs, w, k',
pre) > 0
by simp
hence z: P bs w k' pre
using 1(1) zero-less-diff by (metis 1.prems entry prered wf-tree-input-prered-pre)
define n-red where n-red: n-red = build-tree’-measure (bs, w, k, red)
have build-tree’-measure (bs, w, k, i) — build-tree’-measure (bs, w, k, red) > 0
using <red < 0> by simp
hence y: P bs w k red
using 1.hyps 1.prems entry prered wf-tree-input-prered-red zero-less-diff by
blast
show ?thesis
using assms(2) x y entry prered
by (smt (verit, best) Pair-inject filter-cong pointer.distinct(5) pointer.inject(2))
qed
qed

lemma build-tree’-termination:
assumes (bs, w, k, i) € wf-tree-input
shows 3 N ts. build-tree’ bs w k i = Some (Branch N ts)
proof —
have 3 N ts. build-tree’ bs w k i = Some (Branch N ts)
apply (induction rule: build-tree’-induct[OF assms(1)])
subgoal premises IH for bs w ki
proof —
define e where entry: e = bs'k!i
consider (Null) pointer e = Null
| (Pre) 3pre. pointer e = Pre pre
| (PreRed) 3k’ pre red ps. pointer e = PreRed (k', pre, red) ps
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
thus ?thesis
using build-tree’-simps(1) entry by simp

107

next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
obtain N ts where Nts: build-tree’ bs w (k—1) pre = Some (Branch N ts)
using [H (1) entry pre by blast
have build-tree’ bs w ki = Some (Branch N (ts Q [Leaf (w!(k—1))]))
using build-tree’-simps(8) entry pre Nis by simp
thus ?thesis
by simp
next
case PreRed
then obtain k' pre red ps where prered: pointer e = PreRed (k', pre, red)

ps
by blast
then obtain N ¢s where Nts: build-tree’ bs w k' pre = Some (Branch N ts)
using IH(2) entry prered by blast
obtain t-red where t-red: build-tree’ bs w k red = Some t-red
using [H(3) entry prered Nts by (metis option.ezhaust)
have build-tree’ bs w k i = Some (Branch N (ts Q [t-red]))
using build-tree’-simps(8) entry prered Nts t-red by auto
thus ?thesis
by blast
qed
qed
done
thus ?thesis
by blast
qed

lemma wf-item-tree-build-tree’:
assumes (bs, w, k, i) € wf-tree-input
assumes wf-bins G w bs
assumes k < length bs i < length (bs!k)
assumes build-tree’ bs w ki = Some t
shows wf-item-tree G (item (bs!kli)) ¢
proof —
have wf-item-tree G (item (bs!kli)) t
using assms
apply (induction arbitrary: t rule: build-tree’-induct| OF assms(1)])
subgoal premises prems for bs w k i t
proof —
define e where entry: e = bs!kli
consider (Null) pointer e = Null
| (Pre) 3 pre. pointer e = Pre pre
| (PreRed) 3k’ pre red ps. pointer e = PreRed (k', pre, red) ps
by (metis pointer.exhaust surj-pair)
thus “thesis
proof cases

108

case Null
hence build-tree’ bs w k i = Some (Branch (item-rule-head (item ¢€)) [])
using entry by simp
have simp: t = Branch (item-rule-head (item e)) []
using build-tree’-simps(1) Null prems(8) entry by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence predicts (item e)
using Null prems(6,7) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
hence item-dot (item e) = 0
unfolding predicts-def by blast
thus ?thesis
using simp entry by simp
next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
obtain N ¢s where Nts: build-tree’ bs w (k—1) pre = Some (Branch N ts)
using build-tree’-termination entry pre prems(4) wf-tree-input-pre by blast
have simp: build-tree’ bs w ki = Some (Branch N (ts Q [Leaf (w!(k—1))]))
using build-tree’-simps(3) entry pre Nts by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence pre < length (bs!(k—1))
using entry pre prems(6,7) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)
moreover have k—1 < length bs
by (simp add: prems(6) less-imp-diff-less)
ultimately have IH: wf-item-tree G (item (bs!(k—1)!pre)) (Branch N ts)
using prems(1,2,4,5) entry pre Nts by (meson wf-tree-input-pre)
have scans: scans w k (item (bs!(k—1)!pre)) (item e)
using entry pre prems(6—7) <sound-ptrs w bsy unfolding sound-ptrs-def
sound-pre-ptr-def by simp
hence x*:
item-rule-head (item (bs!(k—1)!pre)) = item-rule-head (item e)
item-rule-body (item (bsl(k—1)!pre)) = item-rule-body (item e)
item-dot (item (bs!(k—1)!pre)) + 1 = item-dot (item e)
next-symbol (item (bsl(k—1)!pre)) = Some (w!(k—1))
unfolding scans-def inc-item-def by (simp-all add: item-rule-head-def
item-rule-body-def)
have map root-tree (ts Q [Leaf (w!(k—1))]) = map root-tree ts Q [w!(k—1)]
by simp
also have ... = take (item-dot (item (bs!(k—1)!pre))) (item-rule-body (item
(bs!(k—1)Ipre))) @ [w!(k—1)]
using /H by simp
also have ... = take (item-dot (item (bs!(k—1)!pre))) (item-rule-body (item
e)) Q [w!(k—1)]
using *(2) by simp

109

also have ... = take (item-dot (item e)) (item-rule-body (item e))
using *(2—4) by (auto simp: next-symbol-def is-complete-def split: if-splits;
metis lel take-Suc-conv-app-nith)
finally have map root-tree (ts Q [Leaf (w!(k—1))]) = take (item-dot (item
e)) (item-rule-body (item e)) .
hence wf-item-tree G (item e) (Branch N (ts Q [Leaf (w!(k—1))]))
using IH (1) by simp
thus ?thesis
using entry prems(8) simp by auto
next
case PreRed
then obtain k' pre red ps where prered: pointer e = PreRed (k', pre, red)
ps
by blast
obtain N t¢s where Nts: build-tree’ bs w k' pre = Some (Branch N ts)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-pre
by blast
obtain N-red ts-red where Nts-red: build-tree’ bs w k red = Some (Branch
N-red ts-red)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-red
by blast
have simp: build-tree’ bs w k i = Some (Branch N (ts @Q [Branch N-red
ts-red)))
using build-tree’-simps(8) entry prered Nts Nits-red by auto
have sound-ptrs w bs
using prems(4) wf-tree-input-def by fastforce
have bounds: k' < k pre < length (bs'k’) red < length (bs'k)
using prered entry prems(6,7) <sound-ptrs w bs»
unfolding sound-prered-ptr-def sound-ptrs-def by fastforce+
have completes: completes k (item (bs!k'lpre)) (item e) (item (bs'klred))
using prered entry prems(6,7) <sound-ptrs w bs
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce
have x:
item-rule-head (item (bs'k\pre)) = item-rule-head (item e)
item-rule-body (item (bslk'\pre)) = item-rule-body (item e)
item-dot (item (bs'k’lpre)) + 1 = item-dot (item e)
next-symbol (item (bslk'lpre)) = Some (item-rule-head (item (bs'k!red)))
is-complete (item (bs!klred))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def)
have (bs, w, k', pre) € wf-tree-input
using wf-tree-input-prered-pre[OF prems(4) entry prered] by blast
hence IH-pre: wf-item-tree G (item (bs'k'\pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)| Nts bounds(1,2) order-less-trans
prems(6) by blast
have (bs, w, k, red) € wf-tree-input
using wf-tree-input-prered-red| OF prems(4) entry prered] by blast
hence IH-r: wf-item-tree G (item (bs'klred)) (Branch N-red ts-red)
using bounds(3) entry prems(8,5,6) prered Nts-red by blast

110

have map root-tree (ts @ [Branch N-red ts-red]) = map root-tree ts @
[root-tree (Branch N-red ts)]
by simp
also have ... = take (item-dot (item (bs'klpre))) (item-rule-body (item
(bslklpre))) Q [root-tree (Branch N-red ts)]
using IH-pre by simp
also have ... = take (item-dot (item (bs'k'lpre))) (item-rule-body (item
(bslk\pre))) Q [item-rule-head (item (bs!k!red))]
using [H-r by simp
also have ... = take (item-dot (item e)) (item-rule-body (item e))
using x by (auto simp: next-symbol-def is-complete-def split: if-splits; metis
lel take-Suc-conv-app-nth)
finally have roots: map root-tree (ts @ [Branch N-red ts]) = take (item-dot
(item e)) (item-rule-body (item e)) by simp
have wf-item G w (item (bs!klred))
using prems(5,6) bounds(3) unfolding wf-bins-def wf-bin-def wf-bin-items-def
by (auto simp: items-def)
moreover have N-red = item-rule-head (item (bs'k!red))
using IH-r by fastforce
moreover have map root-tree ts-red = item-rule-body (item (bslklred))
using [H-r %(5) by (auto simp: is-complete-def)
ultimately have 37 € set (R G). N-red = rule-head v A map root-tree
ts-red = rule-body r
unfolding wf-item-def item-rule-body-def item-rule-head-def by blast
hence wf-rule-tree G (Branch N-red ts-red)
using IH-r by simp
hence wf-item-tree G (item (bs!kli)) (Branch N (ts @ [Branch N-red ts-red)))
using *(1) roots IH-pre entry by simp
thus ?thesis
using Nts-red prems(8) simp by auto
qed
qed
done
thus ?thesis
using assms(2) by blast
qed

lemma wf-yield-tree-build-tree’:
assumes (bs, w, k, i) € wf-tree-input
assumes wf-bins G w bs
assumes k < length bs i < length (bs'k) k < length w
assumes build-tree’ bs w ki = Some t
shows wf-yield-tree w (item (bslkli)) t
proof —
have wf-yield-tree w (item (bslk!i)) ¢
using assms
apply (induction arbitrary: t rule: build-tree’-induct|OF assms(1)])
subgoal premises prems for bs w ki t
proof —

111

define e where entry: e = bskli
consider (Null) pointer e = Null
| (Pre) 3pre. pointer e = Pre pre
| (PreRed) 3k’ pre red reds. pointer e = PreRed (k', pre, red) reds
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
hence build-tree’ bs w k i = Some (Branch (item-rule-head (item e)) [])
using entry by simp
have simp: t = Branch (item-rule-head (item e)) ||
using build-tree’-simps(1) Null prems(9) entry by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence predicts (item e)
using Null prems(6,7) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
thus ?thesis
unfolding wf-yield-tree-def predicts-def using simp entry by (auto simp:
slice-empty)
next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
obtain N ¢s where Nts: build-tree’ bs w (k—1) pre = Some (Branch N ts)
using build-tree’-termination entry pre prems(4) wf-tree-input-pre by blast
have simp: build-tree’ bs w ki = Some (Branch N (ts @ [Leaf (w!(k—1))]))
using build-tree’-simps(3) entry pre Nts by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence bounds: k > 0 pre < length (bs!(k—1))
using entry pre prems(6,7) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)+
moreover have k—1 < length bs
by (simp add: prems(6) less-imp-diff-less)
ultimately have IH: wf-yield-tree w (item (bs!(k—1)!pre)) (Branch N ts)
using prems(1) entry pre Nts wf-tree-input-pre prems(4,5,8) by fastforce
have scans: scans w k (item (bs!(k—1)!pre)) (item e)
using entry pre prems(6—7) <sound-ptrs w bs> unfolding sound-ptrs-def
sound-pre-ptr-def by simp
have wf:
item-origin (item (bs!(k—1)!pre)) < item-end (item (bsl(k—1)!pre))
item-end (item (bs!(k—1)'pre)) = k—1
item-end (item e) = k
using entry prems(5,6,7) bounds unfolding wjf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def
by (auto, meson less-imp-diff-less nth-mem)
have yield-tree (Branch N (ts Q [Leaf (w!(k—1))])) = concat (map yield-tree
(ts @ [Leaf (w!(b—1))]))

112

by simp

also have ... = concat (map yield-tree ts) Q [w!(k—1)]
by simp
also have ... = slice (item-origin (item (bs!(k—1)!pre))) (item-end (item

(bsl(k—1)Ipre))) w @ [w!(k—1)]

using IH by (simp add: wf-yield-tree-def)

also have ... = slice (item-origin (item (bs!(k—1)!pre))) (item-end (item
(bsl(k—1)!pre)) + 1) w

using slice-append-nth wf <k > 0» prems(8)

by (metis diff-less le-eg-less-or-eq less-imp-diff-less less-numeral-extra(1))

also have ... = slice (item-origin (item e)) (item-end (item (bs!(k—1)!pre))
+ 1w
using scans unfolding scans-def inc-item-def by simp
also have ... = slice (item-origin (item e)) k w
using scans wf unfolding scans-def by (metis Suc-diff-1 Suc-eq-plusl
bounds(1))
also have ... = slice (item-origin (item e)) (item-end (item e)) w

using wf by auto
finally show ?thesis
using wf-yield-tree-def entry prems(9) simp by force
next
case PreRed
then obtain k' pre red ps where prered: pointer e = PreRed (k', pre, red)
ps
by blast
obtain N ts where Nts: build-tree’ bs w k' pre = Some (Branch N ts)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-pre
by blast
obtain N-red ts-red where Nts-red: build-tree’ bs w k red = Some (Branch
N-red ts-red)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-red
by blast
have simp: build-tree’ bs w k i = Some (Branch N (ts @ [Branch N-red
ts-red)))
using build-tree’-simps(8) entry prered Nts Nits-red by auto
have sound-ptrs w bs
using prems(4) wf-tree-input-def by fastforce
have bounds: k' < k pre < length (bs'k’) red < length (bs'k)
using prered entry prems(6,7) <sound-ptrs w bs»
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce+
have completes: completes k (item (bs!k'lpre)) (item e) (item (bs'klred))
using prered entry prems(6,7) <sound-ptrs w bs
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce
have (bs, w, k', pre) € wf-tree-input
using wf-tree-input-prered-pre| OF prems(4) entry prered] by blast
hence IH-pre: wf-yield-tree w (item (bslk'\pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)] Nts bounds(1,2) prems(6—38)
by (meson dual-order.strict-trans1 nat-less-le)
have (bs, w, k, red) € wf-tree-input

113

using wf-tree-input-prered-red| OF prems(4) entry prered] by blast
hence IH-r: wf-yield-tree w (item (bs'klred)) (Branch N-red ts-red)
using bounds(3) entry prems(3,5,6,8) prered Nts-red by blast
have wf!:
item-origin (item (bs'k"\pre)) < item-end (item (bs'k’lpre))
item-origin (item (bs'klred)) < item-end (item (bs!k!red))
using prems(5—7) bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def wf-item-def
by (metis length-map nth-map nth-mem order-less-trans)+
have wf2:
item-end (item (bslklred)) = k
item-end (item (bslkli)) = k
using prems(5—7) bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def by simp-all
have yield-tree (Branch N (ts @Q [Branch N-red ts-red])) = concat (map
yield-tree (ts @ [Branch N-red ts-red]))
by (simp add: Nts-red)

also have ... = concat (map yield-tree ts) Q yield-tree (Branch N-red ts-red)
by simp
also have ... = slice (item-origin (item (bs'k'lpre))) (item-end (item

(bslklpre))) w @
slice (item-origin (item (bslklred))) (item-end (item (bslklred))) w
using [H-pre IH-r by (simp add: wf-yield-tree-def)
also have ... = slice (item-origin (item (bs'k'lpre))) (item-end (item
(bslklred))) w
using slice-concat wfl completes-def completes by (metis (no-types, lifting))

also have ... = slice (item-origin (item e)) (item-end (item (bs'klred))) w
using completes unfolding completes-def inc-item-def by simp
also have ... = slice (item-origin (item e)) (item-end (item e)) w

using wf2 entry by presburger
finally show ?thesis
using wf-yield-tree-def entry prems(9) simp by force
qed
qed
done
thus ?thesis
using assms(2) by blast
qged

theorem wf-rule-root-yield-tree-build-forest:

assumes wf-bins G w bs sound-ptrs w bs mono-red-ptr bs length bs = length w +
1

assumes build-tree G w bs = Some t

shows wf-rule-tree G t A root-tree t = & G A yield-tree t = w
proof —

let 2k = length bs — 1

define finished where finished-def: finished = filter-with-index (is-finished G w)
(items (bs!?k))

then obtain z { where x: (z,i) € set finished Some t = build-tree’ bs w %k i

114

using assms(5) unfolding finished-def build-tree-def by (auto simp: Let-def
split: list.splits, presburger)
have k: %k < length bs %k < length w
using assms(4) by simp-all
have i: i < length (bs!%k)
using index-filter-with-indez-lt-length x items-def finished-def by (metis length-map)
have z: z = item (bs! 2k!)
using * 1 filter-with-indez-nth items-def nth-map finished-def by metis
have finished: is-finished G w x
using * filter-with-indez-P finished-def by metis
have wf-trees-input: (bs, w, 2k, ©) € wf-tree-input
unfolding wf-tree-input-def using assms(2,3) i k(1) by blast
hence wf-item-tree: wf-item-tree G x t
using wf-item-tree-build-tree’ assms(1,2) i k(1) z %(2) by metis
have wf-item: wf-item G w (item (bs! 7k!7))
using k(1) i assms(1) unfolding wf-bins-def wf-bin-def wf-bin-items-def by
(simp add: items-def)
obtain N ts where t: t = Branch N ts
by (metis *(2) build-tree’-termination option.inject wf-trees-input)
hence N = item-rule-head z
map root-tree ts = item-rule-body x
using finished wf-item-tree by (auto simp: is-finished-def is-complete-def)
hence 3r € set (R G). N = rule-head r A map root-tree ts = rule-body r
using wf-item z unfolding wf-item-def item-rule-body-def item-rule-head-def
by blast
hence wf-rule: wf-rule-tree G t
using wf-item-tree t by simp
have root: root-tree t = & G
using finished t <N = item-rule-head) by (auto simp: is-finished-def)
have yield-tree t = slice (item-origin (item (bs!2kli))) (item-end (item (bs! 2k!7)))
w
using k i assms(1) wf-trees-input wf-yield-tree-build-tree’ wf-yield-tree-def *(2)
by (metis (no-types, lifting))
hence yield: yield-tree t = w
using finished x unfolding is-finished-def by simp
show ?thesis
using * wf-rule root yield assms(4) unfolding build-tree-def by simp
qged

corollary wf-rule-root-yield-tree-build-tree- Earleyy,:
assumes wf-G G nonempty-derives G
assumes build-tree G w (Earleyr, G w) = Some t
shows wf-rule-tree G t N root-tree t = & G A yield-tree t = w
using assms wf-rule-root-yield-tree-build-forest wf-bins-Earley;, sound-mono-ptrs-Earleyy,
Earleyy -def
length-Earleyy,-bins length-bins-Init;, by (metis nle-le)

theorem correctness-build-tree-Earleyy,:
assumes wf-G G is-word G w nonempty-derives G

115

shows (3t. build-tree G w (Earleyr, G w) = Some t) <— derives G [6 G| w (is
L +— ?R)
proof standard
assume x: 7L
let %k = length (Earleyy G w) — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items ((Earleyr, G w)!%k))
then obtain ¢ z ¢ where x: (z,i) € set finished Some t = build-tree’ (Earleyr, G
w) w %k
using * unfolding finished-def build-tree-def by (auto simp: Let-def split:
list.splits, presburger)
have k: %k < length (Earley;, G w) %k < length w
by (simp-all add: Earleyy,-def assms(1))
have i: i < length ((Earleyr, G w) ! %k)
using index-filter-with-index-lt-length * items-def finished-def by (metis length-map)
have z: x = item ((Earleyr, G w)!2k!7)
using * i filter-with-indez-nth items-def nth-map finished-def by metis
have finished: is-finished G w x
using * filter-with-index-P finished-def by metis
moreover have z € set (items ((Earleyr, G w) ! %k))
using z by (auto simp: items-def; metis One-nat-def i imagel nth-mem)
ultimately have recognizing (bins (Farley;, G w)) G w
by (meson k(1) kth-bin-sub-bins recognizing-def subsetD)
thus ?R
using correctness-Earleyr, assms by blast
next
assume *: ?R
let %k = length (Earleyr, G w) — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items ((Earleyr, G w)!%k))
have recognizing (bins (Earleyr, G w)) G w
using assms * correctness-Earleyy, by blast
moreover have ?k = length w
by (simp add: Earleyy,-def assms(1))
ultimately have 3z € set (items ((Earleyr, G w)!%k)). is-finished G w
unfolding recognizing-def using assms(1) is-finished-def wf-bins-Earleyy, wf-item-in-kth-bin
by metis
then obtain z ¢ xs where wis: finished = (x,7)# s
using filter-with-index-Ez-first by (metis finished-def)
hence simp: build-tree G w (Earleyr, G w) = build-tree’ (Farleyr, G w) w %k i
unfolding build-tree-def finished-def by auto
have (z,i) € set finished
using zis by simp
hence i < length ((Earleyr, G w)!%k)
using index-filter-with-indez-lt-length by (metis finished-def items-def length-map)
moreover have %k < length (Earleyr, G w)
by (simp add: Earleyr-def assms(1))
ultimately have (Farley;, G w, w, %k, i) € wf-tree-input
unfolding wf-tree-input-def using sound-mono-ptrs-Farley;, assms(1,3) by

116

blast
then obtain N ts where build-tree’ (Farleyr, G w) w 2k i = Some (Branch N
ts)
using build-tree’-termination by blast
thus 7L
using simp by simp
qed

9.5 those, map, map option lemmas

lemma those-map-exists:
Some ys = those (map f xs) = y € set ys = Jz. = € set xs A Some y € set
(map f xs)
proof (induction xs arbitrary: ys)
case (Cons a xs)
then show ?case
apply (clarsimp split: option.splits)
by (smt (verit, best) map-option-eq-Some set-ConsD)
qed auto

lemma those-Some:
(Vz € set xs. Ja. © = Some a) «— (Fys. those xs = Some ys)
by (induction xs) (auto split: option.splits)

lemma those-Some-P:
assumes Vz € set zs. Jys. © = Some ys A (Vy € set ys. P y)
shows Jyss. those xs = Some yss A (Vys € set yss. Vy € set ys. P y)
using assms by (induction xs) auto

lemma map-Some-P:
assumes z € set (map f xs)
assumes Vz € set zs. Jys. fz = Some ys A (Vy € set ys. P y)
shows Jys. z = Some ys A (Vy € set ys. P y)
using assms by (induction xs) auto

lemma those-map-FBranch-only:

assumes g = (Af. case f of FBranch N fss = Some (FBranch N (fss @Q [[FLeaf
(@!(k—1)])) | - = None)

assumes Some fs = those (map g pres) f € set fs

assumes Vf € set pres. AN fss. f = FBranch N fss

shows 3 f-pre N fss. f = FBranch N (fss Q [[FLeaf (w!(k—1))]]) A f-pre =
FBranch N fss A\ f-pre € set pres

using assms

apply (induction pres arbitrary: fs f)

apply (auto)

by (smt (verit, best) list.inject list.set-cases map-option-eq-Some)

lemma those-map-Some-concat-exists:
assumes y € set (concat ys)

117

assumes Some ys = those (map f zs)

shows Jys x. Some ys = fx Ny € set ys N\ © € set xs

using assms

apply (induction s arbitrary: ys y)

apply (auto split: option.splits)

by (smt (verit, ccfo-threshold) list.inject list.set-cases map-option-eq-Some)

lemma map-option-concat-those-map-exists:
assumes Some fs = map-option concat (those (map F xs))
assumes f € set fs
shows Jfss fs'. Some fss = those (map F zs) A fs' € set fss \ [€ set fs’
using assms
apply (induction xs arbitrary: fs f)
apply (auto split: option.splits)
by (smt (verit, best) UN-E map-option-eg-Some set-concat)

lemma [partial-function-mono):
monotone option.le-fun option-ord
(Af. map-option concat (those (map (M((k', pre), reds).
F((((ry 5), k'), pre), {pre}) >=
(Apres. those (map (Ared. f ((((r, s), t), red), b U {red})) reds) >=
(Arss. those (map (Af. case f of FBranch N fss = Some (FBranch N (fss
@ [concat rss])) | - = None) pres))))

zs)))

proof —
let ?f =
(M. map-option concat (those (map (A((k', pre), reds).
7 (((r, 9), B, pre), {pre}) >=
(Apres. those (map (Ared. f ((((r, s), t), red), b U {red})) reds) >=
(Arss. those (map (Af. case f of FBranch N fss = Some (FBranch N (fss
@ [concat rss])) | - = None) pres))))
zs)))
have 0: Az y. option.le-fun x y = option-ord (?f) (?f y)
apply (auto simp: flat-ord-def fun-ord-def option.leg-refl split: option.splits
forest.splits)
subgoal premises prems for z y
proof —
let %t = those (map (M((k’, pre), reds).
7 ((((r, 5), k), pre), {pre}) >=
(Apres. those (map (Ared. z ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))))
xs) = None
show 2t
proof (rule ccontr)
assume a: %
obtain fss where fss: those (map (A((k’, pre), reds).
v ((((r, 8), k), pre), {pre}) >=
(Apres. those (map (Ared. z ((((r, s), t), red), insert red b)) reds) >=

118

(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))))
xs) = Some fss
using a by blast
{
fix k' pre reds
assume x: ((k', pre), reds) € set zs
obtain pres where pres: z ((((r, s), k'), pre), {pre}) = Some pres
using fss x those-Some by force
have 3 fs. Some fs = those (map (Ared. z ((((r, s), t), red), insert red b))
reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))
proof (rule ccontr)
assume 7 fs. Some fs =
those (map (Ared. = ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N
(fss @ [concat rss])))) pres))
hence None =
those (map (Ared. x ((((r, 8), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N
(fss @ [concat rss])))) pres))
by (smt (verit) not-None-eq)
hence None = z ((((r, s), k'), pre), {pre}) >=
(Apres. those (map (Ared. = ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N
(fss @ [concat 135])))) pres)))
by (simp add: pres)
hence 3 ((k', pre), reds) € set xs. None = z ((((r, s), k'), pre), {pre})
>=
(Apres. those (map (Ared. z ((((r,), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N
(fss @ [concat 135])))) pres)))
using * by blast
thus Fulse
using fss those-Some by force
qged
then obtain fs where fs: Some fs = those (map (Ared. z ((((r, s), t),
red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))
by blast
obtain rss where rss: those (map (Ared. x ((((r, s), t), red), insert red
b)) reds) = Some rss
using fs by force
have z ((((r, 3), k), pre), {pre}) = y ((((r, 5), &), pre), {pre})
using pres prems(1) by (metis option.distinct(1))
moreover have those (map (Ared. z ((((r, s), t), red), insert red b)) reds)
>

119

(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))
= those (map (Ared. y ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))
proof —
have Vred € set reds. z ((((r, s), t), red), insert red b) =y ((((r, s), 1),
red), insert red b)
proof standard
fix red
assume red € set reds
have Vzeset (map (Ared. = ((((r, s), t), red), insert red b)) reds) . 3 a.
z = Some a
using rss those-Some by blast
then obtain f where z ((((r, s), t), red), insert red b) = Some f
using <red € set reds> by auto
thus z ((((r,), t), red), insert red b) = y ((((r,), t), red), insert red

using prems(1) by (metis option.distinct(1))
qed
thus ?thesis
by (smt (verit, best) map-eq-conv)
qed
ultimately have z ((((r, s), k'), pre), {pre}) >=
(Apres. those (map (Ared. z ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
Q@ [concat rss])))) pres)))
—y (1, 9), ¥, pre), {pre}) =
(Apres. those (map (Ared. y ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres)))
by (metis bind.bind-lunit pres)
}

hence V ((k', pre), reds) € set zs. z ((((r, s), k'), pre), {pre}) >=
(Apres. those (map (Ared. z ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
Q@ [concat rss])))) pres)))
=y ((((r, 5), k'), pre), {pre}) >=
(Apres. those (map (Ared. y ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres)))
by blast
hence those (map (A((k', pre), reds).
v ((((r,), B, pre), {pre}) >=
(Apres. those (map (Ared. z ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))))
zs) = those (map (A((k', pre), reds).
y ((((r,), B, pre), {pre}) =

120

(Apres. those (map (Ared. y ((((r, s), t), red), insert red b)) reds) >=
(Arss. those (map (case-forest Map.empty (AN fss. Some (FBranch N (fss
@ [concat rss])))) pres))))
zs)
using prems(1) by (smt (verit, best) case-prod-conv map-eg-conv split-cong)
thus Fulse
using prems(2) by simp
qed
qed
done
show ?thesis
using monotonel [of option.le-fun option-ord ?f, OF 0] by blast
qed

9.6 Parse trees

fun insert-group = (‘a = k) = (‘la = v) = ‘a = ('k x 'vlist) list = ('k x v
list) list where
insert-group K Va [| = [(K a, [V a])]
| insert-group K V a ((k, vs)#xs) = (
if Ka=kthen (k, Va # vs) # zs
else (k, vs) # insert-group K V a zs

)

fun group-by :: ('a = k) = (‘a = "v) = 'a list = ('k x 'v list) list where
group-by K V [| =]
| group-by K 'V (x#xs) = insert-group K V x (group-by K V xs)

lemma insert-group-cases:

assumes (k, vs) € set (insert-group K V a xs)

shows (k= K a A vs=[Va])V (k, vs) € set zs V (3 (k' vs’) € set xs. k' =k
ANk=KaANvs=Vad# vs')

using assms by (induction xs) (auto split: if-splits)

lemma group-by-exists-kv:
(k, vs) € set (group-by K V xs) = Jz € setws. k = Kz A (v € set vs. v =
V)

using insert-group-cases by (induction xs) (simp, force)

lemma group-by-forall-v-exists-k:
(k, vs) € set (group-by K Vas) = v € setvs = Iz € setas. k=Kz A v =
Va
proof (induction xs arbitrary: vs)
case (Cons z zs)
show Zcase
proof (cases (k, vs) € set (group-by K V zs))
case True
thus ?thesis
using Cons by simp

121

next
case Fulse
hence (k, vs) € set (insert-group K V x (group-by K V zs))
using Cons.prems(1) by force
then consider (A) (k= Kx A vs = [V z])
| (B) (k, vs) € set (group-by K V xs)
| (C) (3 (K, vs) € set (group-by K Vas). k' =kANk=KzANvs=Va#
vs”)
using insert-group-cases by fastforce
thus ?thesis
proof cases
case A
thus ?thesis
using Cons.prems(2) by auto
next
case B
then show ?thesis
using Fualse by linarith
next
case C
then show ?thesis
using Cons.IH Cons.prems(2) by fastforce
qed
qed
qed simp

partial-function (option) build-trees’ :: 'a bins = 'a sentence = nat = nat =
nat set = 'a forest list option where
build-trees’ bs w ki I = (
let e = bslkliin (
case pointer e of
Null = Some ([FBranch (item-rule-head (item €)) []]) — start building sub-
trees
| Pre pre = (— add sub-trees starting from terminal
do {
pres < build-trees’ bs w (k—1) pre {pre};
those (map (\f.

case f of
FBranch N fss = Some (FBranch N (fss @Q [[FLeaf (w!(k—1))]]))
| - = None — impossible case
) pres)

H

| PreRed p ps = (— add sub-trees starting from non-terminal
let ps’ = filter (A(k', pre, red). red ¢ I) (p#ps) in
let gs = group-by (A(k', pre, red). (k', pre)) (A\(k', pre, red). red) ps’ in
map-option concat (those (map (A((k’, pre), reds).
do {
pres < build-trees’ bs w k' pre {pre};
rss < those (map (Ared. build-trees’ bs w k red (I U {red})) reds);

122

those (map (Af.
case f of
FBranch N fss = Some (FBranch N (fss @ [concat rss]))
| - = None — impossible case

) pres)

) 99))
)
)

declare build-trees’.simps [code]

definition build-trees :: 'a cfg = ’a sentence = 'a bins = 'a forest list option
where
build-trees G w bs = (
let k = length bs — 1 in
let finished = filter-with-index (A\z. is-finished G w) (items (bslk)) in
map-option concat (those (map (A(-, 7). build-trees’ bs w k i {i}) finished))

)

lemma build-forest’-simps[simp):

e = bs'kli = pointer e = Null = build-trees’ bs w k i I = Some ([FBranch
(item-rule-head (item e€)) []])

e = bslkli = pointer e = Pre pre = build-trees’ bs w (k—1) pre {pre} = None
= build-trees’ bs w k i I = None

e = bslkli = pointer e = Pre pre = build-trees’ bs w (k—1) pre {pre} = Some
pres =

build-trees’ bs w k i I = those (map (M\f. case f of FBranch N fss = Some

(FBranch N (fss Q [[FLeaf (w!(k—1))]])) | - = None) pres)

by (subst build-trees’.simps, simp)+

definition wf-trees-input :: (‘a bins X 'a sentence X nat X nat X nat set) set
where
wf-trees-input = {
(bs, w, k, @, I) | bsw k1.
sound-ptrs w bs A
k < length bs N
i < length (bs'k) A
I C {0..<length (bslk)} A
iel

}

fun build-forest’-measure :: ('a bins x 'a sentence X nat X nat x nat set) = nat
where

build-forest’-measure (bs, w, k, i, I\ = foldl (+) 0 (map length (take (k+1) bs))
— card I

lemma wf-trees-input-pre:
assumes (bs, w, k, i, I) € wf-trees-input

123

assumes e = bslk!i pointer e = Pre pre

shows (bs, w, (k—1), pre, {pre}) € wf-trees-input
using assms unfolding wf-trees-input-def

apply (auto simp: sound-ptrs-def sound-pre-ptr-def)
apply (metis nth-mem)

done

lemma wf-trees-input-prered-pre:
assumes (bs, w, k, i, I) € wf-trees-input
assumes ¢ = bs'k!i pointer e = PreRed p ps
assumes ps’ = filter (A(k', pre, red). red ¢ I) (p#ps)
assumes gs = group-by (A(k', pre, red). (k’, pre)) (A(k’, pre, red). red) ps’
assumes ((k’, pre), reds) € set gs
shows (bs, w, k', pre, {pre}) € wf-trees-input
proof —
obtain red where (&', pre, red) € set ps’
using assms(5,6) group-by-exists-kv by fast
hence x: (k', pre, red) € set (p#ps)
using assms(4) by (meson filter-is-subset in-mono)
have k < length bs e € set (bslk)
using assms(1,2) unfolding wf-trees-input-def by auto
hence k£’ < k pre < length (bs!k’)
using assms(1,3) * unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
by blast+
thus ?thesis
using assms by (simp add: wf-trees-input-def)
qged

lemma wf-trees-input-prered-red:
assumes (bs, w, k, i, I) € wf-trees-input
assumes ¢ = bs'k!i pointer e = PreRed p ps
assumes ps’ = filter (A(k', pre, red). red ¢ I) (p#ps)
assumes gs = group-by (A(k’, pre, red). (k', pre)) (A(k', pre, red). red) ps’
assumes ((k', pre), reds) € set gs red € set reds
shows (bs, w, k, red, I U {red}) € wf-trees-input
proof —
have (k') pre, red) € set ps’
using assms(5,6,7) group-by-forall-v-exists-k by fastforce
hence *: (k', pre, red) € set (p#ps)
using assms(4) by (meson filter-is-subset in-mono)
have k < length bs e € set (bslk)
using assms(1,2) unfolding wf-trees-input-def by auto
hence 0: red < length (bslk)
using assms(1,3) * unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
by blast
moreover have I C {0..<length (bslk)}
using assms(1) unfolding wf-trees-input-def by blast
ultimately have 1: I U {red} C {0..<length (bslk)}
by simp

124

show ?thesis
using 0 I assms(1) unfolding wf-trees-input-def by blast
qed

lemma build-trees’-induct:
assumes (bs, w, k, i, I) € wf-trees-input
assumes Absw ki I.
(Ae pre. e = bslkli = pointer e = Pre pre => P bs w (k—1) pre {pre}) =
(Ae p ps ps’ gs k' pre reds. e = bslkli = pointer e = PreRed p ps =
ps’ = filter (\(k', pre, red). red ¢ I) (p#ps) =
gs = group-by (A(k', pre, red). (k', pre)) (A(k', pre, red). red) ps' =
((k', pre), reds) € set gs = P bs w k' pre {pre}) =
(ANe p ps ps’ gs k' pre red reds reds’. e = bs'k!i = pointer e = PreRed p ps
_—
ps’ = filter (\(k', pre, red). red ¢ I) (p#ps) =
gs = group-by (A(k', pre, red). (k', pre)) (A(k', pre, red). red) ps' =
((k', pre), reds) € set gs = red € set reds => P bs w k red (I U {red})) =
Pbswkil
shows Pbsw ki1
using assms(1)
proof (induction n=build-forest’-measure (bs, w, k, i, I) arbitrary: k i I rule:
nat-less-induct)
case 1
obtain e where entry: e = bslkli
by simp
consider (Null) pointer e = Null
| (Pre) 3pre. pointer e = Pre pre
| (PreRed) 3p ps. pointer e = PreRed p ps
by (metis pointer.exhaust)
thus ?case
proof cases
case Null
thus ?thesis
using assms(2) entry by fastforce
next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
define n where n: n = build-forest’-measure (bs, w, (k—1), pre, {pre})
have 0 < k pre < length (bs!(k—1))
using 1(2) entry pre unfolding wf-trees-input-def sound-ptrs-def sound-pre-ptr-def
by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
have k < length bs i < length (bslk) I C {0..<length (bslk)} i € I
using 1(2) unfolding wf-trees-input-def by blast+
have length (bs!(k—1)) > 0
using «pre < length (bsl(k—1))> by force
hence foldl (+) 0 (map length (take k bs)) > 0
by (smt (verit, del-insts) foldl-add-nth <0 < k» <k < length bs)
add.commute add-diff-inverse-nat less-imp-diff-less less-one zero-eg-add-iff-both-eq-0)

125

have card I < length (bs'k)
by (simp add: <I C {0..<length (bs ! k)}» subset-eq-atLeastO-lessThan-card)
have card I + (foldl (+) 0 (map length (take (Suc (k — Suc 0)) bs)) — Suc 0)

card I + (foldl (+) 0 (map length (take k bs)) — 1)
using 0 < k> by simp
also have ... = card I + foldl (+) 0 (map length (take k bs)) — 1
using <0 < foldl (+) 0 (map length (take k bs))> by auto
also have ... < card I + foldl (+) 0 (map length (take k bs))
by (simp add: <0 < foldl (+) 0 (map length (take k bs))»)
also have ... < foldl () 0 (map length (take k bs)) + length (bs!k)
by (simp add: <card I < length (bs! k)»)
also have ... = foldl () 0 (map length (take (k+1) bs))
using foldl-add-nth <k < length bs» by blast
finally have build-forest’-measure (bs, w, k, i, I) — build-forest’-measure (bs,
(k—1), pre, {pre}) > 0
by simp
hence P bs w (k—1) pre {pre}
using 1 n wf-trees-input-pre entry pre zero-less-diff by blast
thus ?thesis
using assms(2) entry pre pointer.distinct(5) pointer.inject(1) by presburger
next
case PreRed
then obtain p ps where pps: pointer e = PreRed p ps
by blast
define ps’ where ps”: ps’ = filter (A(k', pre, red). red ¢ I) (p#ps)
define gs where gs: gs = group-by (A(k’, pre, red). (k', pre)) (A(k’, pre, red).
red) ps’
have 0: V (k', pre, red) € set ps’. k' < k A pre < length (bslk’) A red < length
(bslk)
using entry pps ps’ 1(2) unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
apply (auto simp del: filter.simps)
apply (metis nth-mem prod-cases8)+
done
hence sound-gs: ¥V ((k', pre), reds) € set gs. k' < k A pre < length (bslk”)
using gs group-by-exists-kv by fast
have sound-gs2: V ((k’, pre), reds) € set gs. Vred € set reds. red < length (bs!k)
proof (standard, standard, standard, standard)
fix z a bk’ pre red
assume z € set gs ¢ = (a, b) (k', pre) = a red € set b
hence 3z € set ps’. red = (A(k', pre, red). red) =
using group-by-forall-v-exists-k gs ps’ by meson
thus red < length (bslk)
using 0 by fast
qed
{
fix k' pre reds red
assume a0: ((k', pre), reds) € set gs
define n-pre where n-pre: n-pre = build-forest’-measure (bs, w, k', pre, {pre})

&

126

have k < length bs i < length (bslk) I C {0..<length (bslk)} i € I
using 1(2) unfolding wf-trees-input-def by blast+
have k/ < k pre < length (bs'k’)
using sound-gs a0 by fastforce+
have length (bslk’) > 0
using <pre < length (bs'k’)y by force
hence ¢t0: foldl (+) 0 (map length (take (k'+1) bs)) > 0
by (smt (verit, del-insts) foldl-add-nth <k < length bs» <k’ < k» add-gr-0
order.strict-trans)
have card-bound: card I < length (bslk)
by (simp add: <I C {0..<length (bs ! k)}» subset-eq-atLeast0-less Than-card)
have card I + (foldl (+) 0 (map length (take (Suc k') bs)) — Suc 0) =
card I + foldl (+) 0 (map length (take (Suc k') bs)) — 1
by (metis Nat.add-diff-assoc One-nat-def Suc-eg-plusi Suc-lel <0 < foldl
(4+) 0 (map length (take (k' + 1) bs))»)
also have ... < card I + foldl (+) 0 (map length (take (Suc k') bs))
using ¢t0 by auto
also have ... < foldl (+) 0 (map length (take (Suc k') bs)) + length (bslk)
using card-bound by simp
also have ... < foldl (+) 0 (map length (take (k+1) bs))
using foldl-add-nth-ge Suc-lel <k < length bs» <k’ < k> by blast
finally have build-forest’-measure (bs, w, k, i, I\ — build-forest’-measure (bs,
w, k', pre, {pre}) > 0
by simp
hence P bs w k' pre {pre}
using 1(1) wf-trees-input-prered-pre[OF 1.prems(1) entry pps ps’ gs a0]
zero-less-diff by blast
}
moreover {
fix k' pre reds red
assume a0: ((k', pre), reds) € set gs
assume al: red € set reds
define n-red where n-red: n-red = build-forest’-measure (bs, w, k, red, I U
{red})
have k < length bs i < length (bs'k) I C {0..<length (bslk)} i € I
using 1(2) unfolding wf-trees-input-def by blast+
have k' < k pre < length (bs'k’) red < length (bs'k)
using a0 al sound-gs sound-gs2 by fastforce+
have red ¢ I
using a0 al unfolding gs ps’
by (smt (verit, best) group-by-forall-v-exists-k case-prodE case-prod-conv
mem-Collect-eq set-filter)
have card-bound: card I < length (bs'k)
by (simp add: <I C {0..<length (bs ! k)}» subset-eq-atLeastO-less Than-card)
have length (bslk’) > 0
using <pre < length (bs'k’)> by force
hence gt0: foldl (+) 0 (map length (take (k'+1) bs)) > 0
by (smt (verit, del-insts) foldl-add-nth <k < length bs» <k’ < k» add-gr-0
order.strict-trans)

127

have It: foldl (+) 0 (map length (take (Suc k') bs)) + length (bs'k) < foldl
(+) 0 (map length (take (k+1) bs))
using foldl-add-nth-ge Suc-lel <k < length bs» <k’ < k» by blast
have card I + (foldl (+) 0 (map length (take (Suc k) bs)) — card (insert red
1) =
card I + (foldl (+) 0 (map length (take (Suc k) bs)) — card I — 1)
using <[C {0..<length (bs ! k)}» <red ¢ I finite-subset by fastforce
also have ... = foldl (+) 0 (map length (take (Suc k) bs)) — 1
using ¢t0 card-bound It by force
also have ... < foldl (+) 0 (map length (take (Suc k) bs))
using ¢t0 It by auto
finally have build-forest’-measure (bs, w, k, i, I\ — build-forest’-measure (bs,
w, k, red, I U {red}) > 0
by simp
moreover have (bs, w, k, red, I U {red}) € wf-trees-input
using wf-trees-input-prered-red|OF 1(2) entry pps ps’ gs] a0 al by blast
ultimately have P bs w k red (I U {red})
using (1) zero-less-diff by blast

moreover have (/e pre. e = bslkli = pointer e = Pre pre = P bs w (k—1)
pre {pre})
using entry pps by fastforce
ultimately show #thesis
using assms(2) entry gs pointer.inject(2) pps ps’ by presburger
qed
qged

lemma build-trees’-termination:
assumes (bs, w, k, i, I) € wf-trees-input
shows 3 fs. build-trees’ bs w ki I = Some fs N (Vf € set fs. AN fss. f = FBranch
N fss)
proof —
have 3 fs. build-trees’ bs w ki I = Some fs N (Vf € set fs. AN fss. f = FBranch
N fss)
apply (induction rule: build-trees’-induct|OF assms(1)])
subgoal premises IH for bs w kil
proof —
define e where entry: e = bskli
consider (Null) pointer e = Null
| (Pre) 3 pre. pointer e = Pre pre
| (PreRed) 3k’ pre red reds. pointer e = PreRed (k', pre, red) reds
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
have build-trees’ bs w k i I = Some ([FBranch (item-rule-head (item e)) []])
using build-forest’-simps(1) Null entry by simp
thus ?thesis
by simp

128

next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
obtain fs where fs: build-trees’ bs w (k—1) pre {pre} = Some fs
Vf € set fs. AN fss. f = FBranch N fss
using IH (1) entry pre by blast
let 29 = Af. case f of FLeaf a = None
| FBranch N fss = Some (FBranch N (fss @Q [[FLeaf (w!(k—1))]]))
have simp: build-trees’ bs w k i I = those (map ?g fs)
using build-forest’-simps(3) entry pre fs by blast
moreover have Vf € set (map ?g fs). Ja. f = Some a
using fs(2) by auto
ultimately obtain fs’ where fs”: build-trees’ bs w ki I = Some fs'
using those-Some by (smt (verit, best))
moreover have Vf € set fs'. AN fss. f = FBranch N fss
proof standard
fix f
assume [€ set fs’
then obtain z where x € set fs Some f € set (map ?g fs)
using those-map-exists by (metis (no-types, lifting) fs’ simp)
thus 3N fss. f = FBranch N fss
using fs(2) by auto
qed
ultimately show ?thesis
by blast
next
case PreRed
then obtain p ps where pps: pointer e = PreRed p ps
by blast
define ps’ where ps”: ps’ = filter (A(k', pre, red). red ¢ I) (p#ps)
define gs where gs: gs = group-by (\(k’, pre, red). (k’, pre)) (A(k', pre,
red). red) ps’
let 29 = \((k’, pre), reds).
do {
pres < build-trees’ bs w k' pre {pre};
rss + those (map (Ared. build-trees’ bs w k red (I U {red})) reds);
those (map (\f.
case f of
FBranch N fss = Some (FBranch N (fss @ [concat rss]))
| - = None — impossible case

) pres)

have simp: build-trees’ bs w k i I = map-option concat (those (map ?g gs))
using entry pps ps’ gs by (subst build-trees’.simps) (auto simp del:
filter.simps)
have V fso € set (map ?g gs). I fs. fso = Some fs A (Vf € set fs. AN fss. f
= FBranch N fss)
proof standard

129

fix fso
assume fso € set (map ?g gs)

moreover have Vps € set gs. Ifs. 2g ps = Some fs A (Vf € set fs. AN
fss. f = FBranch N fss)

proof standard
fix ps
assume ps € set gs

then obtain &’ pre reds where *: ((k/, pre), reds) € set gs ((k', pre),
reds) = ps

by (metis surj-pair)

then obtain pres where pres: build-trees’ bs w k' pre {pre} = Some pres
Vf € set pres. AN fss. f = FBranch N fss
using ITH(2) entry pps ps’ gs by blast

have Vf € set (map (Ared. build-trees’ bs w k red (I U {red})) reds). 3 a.
f = Some a

using TH(3)[OF entry pps ps’ gs #(1)] by auto
then obtain rss where rss: Some rss = those (map (Ared. build-trees’

bs w k red (I U {red})) reds)
using those-Some by (metis (full-types))

let ?h = Af. case f of FBranch N fss = Some (FBranch N (fss Q [concat
rss])) | - = None

have Vx € set (map ?h pres). Ja. z = Some a
using pres(2) by auto

then obtain fs where fs: Some fs = those (map ?h pres)
using those-Some by (smt (verit, best))

have Vf € set fs. AN fss. f = FBranch N fss
proof standard

fix f

assume x: [€ set fs

hence Jz. z € set pres A Some f € set (map ?h pres)
using those-map-exists|OF fs x| by blast

then obtain z where x: x € set pres A Some [€ set (map ?h pres)
by blast

thus AN fss. f = FBranch N fss
using pres(2) by auto
qed

moreover have ?g ps = Some fs
using fs pres rss * by (auto, metis bind.bind-lunit)

ultimately show 3 fs. ?g ps = Some fs A (Vf€set fs. AN fss. f =
FBranch N fss)

by blast
ged

ultimately show 3 fs. fso = Some fs A (Vf € set fs. AN fss. f = FBranch
N fss)

using map-Some-P by auto
qed

then obtain fss where those (map ?g gs) = Some fss ¥V fs € set fss. Vf €
set fs. AN fss. f = FBranch N fss

using those-Some-P by blast

130

hence build-trees’ bs w k i I = Some (concat fss) V f € set (concat fss). AN
fss. f = FBranch N fss
using simp by auto
thus ?thesis
by blast
qed
qed
done
thus ?thesis
by blast
qged

lemma wf-item-tree-build-trees”:
assumes (bs, w, k, i, I) € wf-trees-input
assumes wf-bins G w bs
assumes k < length bs i < length (bslk)
assumes build-trees’ bs w ki I = Some fs
assumes f € set fs
assumes t € set (trees f)
shows wf-item-tree G (item (bs!kli)) ¢
proof —
have wf-item-tree G (item (bslkli)) t
using assms
apply (induction arbitrary: fs f t rule: build-trees’-induct| OF assms(1)])
subgoal premises prems for bs w k¢ I fs ft
proof —
define e where entry: e = bskli
consider (Null) pointer e = Null
| (Pre) 3 pre. pointer e = Pre pre
| (PreRed) 3 p ps. pointer e = PreRed p ps
by (metis pointer.exhaust)
thus ?thesis
proof cases
case Null
hence simp: build-trees’ bs w k i I = Some ([FBranch (item-rule-head (item
e)) [I})
using entry by simp
moreover have f = FBranch (item-rule-head (item e)) ||
using build-forest’-simps(1) Null prems(8,9) entry by auto
ultimately have simp: t = Branch (item-rule-head (item e)) []
using prems(10) by simp
have sound-ptrs w bs
using prems(4) unfolding wf-trees-input-def by blast
hence predicts (item e)
using Null prems(6,7) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
hence item-dot (item e) = 0
unfolding predicts-def by blast
thus ?thesis

131

using simp entry by simp
next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
have sound: sound-ptrs w bs
using prems(4) unfolding wf-trees-input-def by blast
have scans: scans w k (item (bs!(k—1)!pre)) (item e)
using entry pre prems(6—7) <sound-ptrs w bs> unfolding sound-ptrs-def
sound-pre-ptr-def by simp
hence x*:
item-rule-head (item (bs!(k—1)!pre)) = item-rule-head (item e)
item-rule-body (item (bsl(k—1)!pre)) = item-rule-body (item e)
item-dot (item (bs!(k—1)!pre)) + 1 = item-dot (item e)
next-symbol (item (bsl(k—1)!pre)) = Some (w!(k—1))
unfolding scans-def inc-item-def by (simp-all add: item-rule-head-def
item-rule-body-def)
have wf: (bs, w, k—1, pre, {pre}) € wf-trees-input
using entry pre prems(4) wf-trees-input-pre by blast
then obtain pres where pres: build-trees’ bs w (k—1) pre {pre} = Some
pres
Vf € set pres. AN fss. f = FBranch N fss
using build-trees’-termination wf by blast
let ?g = \f. case f of FBranch N fss = Some (FBranch N (fss Q [[FLeaf
(W!(k=1))I)) | - = None
have build-trees’ bs w k i I = those (map ?g pres)
using entry pre pres by simp
hence fs: Some fs = those (map ?g pres)
using prems(8) by simp
then obtain f-pre N fss where Nfss: f = FBranch N (fss @Q [[FLeaf
(k= 1))
f-pre = FBranch N fss f-pre € set pres
using those-map-FBranch-only fs pres(2) prems(9) by blast
define tss where tss: tss = map (Afs. concat (map (Af. trees f) fs)) fss
have trees (FBranch N (fss @ [[FLeaf (w!(k—1))]])) =
map (Ats. Branch N ts) [ts Q [Leaf (w!(k—1))] . ts <— combinations tss]
by (subst tss, subst trees-append-single-singleton, simp)
moreover have t € set (trees (FBranch N (fss @ [[FLeaf (w!(k—1))]])))
using Nfss(1) prems(10) by blast
ultimately obtain ts where ts: ¢ = Branch N (ts @ [Leaf (w!(k—1))]) A
ts € set (combinations tss)
by auto
have sound-ptrs w bs
using prems(4) unfolding wf-trees-input-def by blast
hence pre < length (bs!(k—1))
using entry pre prems(6,7) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)
moreover have k — 1 < length bs
by (simp add: prems(6) less-imp-diff-less)

132

moreover have Branch N ts € set (trees (FBranch N fss))
using ts tss by simp

ultimately have IH: wf-item-tree G (item (bs!(k—1)!pre)) (Branch N ts)
using prems(1,2,4,5) entry pre Nfss(2,3) wf pres(1) by blast

have map root-tree (ts Q [Leaf (w!(k—1))]) = map root-tree ts Q [w!(k—1)]
by simp

also have ... = take (item-dot (item (bs!(k—1)!pre))) (item-rule-body (item

(bsl(k—1)!pre))) @ [w!(k—1)]

using /H by simp

also have ... = take (item-dot (item (bs!(k—1)!pre))) (item-rule-body (item
e)) Q [w!(k—1)]
using *(2) by simp
also have ... = take (item-dot (item e)) (item-rule-body (item e))

using *(2—/) by (auto simp: next-symbol-def is-complete-def split: if-splits;
metis lel take-Suc-conv-app-nth)
finally have map root-tree (ts @Q [Leaf (w!(k—1))]) = take (item-dot (item
e)) (item-rule-body (item e)) .
hence wf-item-tree G (item e) (Branch N (ts Q [Leaf (w!(k—1))]))
using IH (1) by simp
thus ?thesis
using ts entry by fastforce
next
case PreRed
then obtain p ps where prered: pointer e = PreRed p ps
by blast
define ps’ where ps”: ps’ = filter (A(k', pre, red). red ¢ I) (p#ps)
define gs where gs: gs = group-by (A(k’, pre, red). (k', pre)) (A(k', pre,
red). red) ps’
let 29 = \((k’, pre), reds).
do {
pres < build-trees’ bs w k' pre {pre};
rss +— those (map (Ared. build-trees’ bs w k red (I U {red})) reds);
those (map (\f.
case f of
FBranch N fss = Some (FBranch N (fss @ [concat rss]))
| - = None — impossible case

) pres)

have simp: build-trees’ bs w k i I = map-option concat (those (map ?g gs))
using entry prered ps’ gs by (subst build-trees’.simps) (auto simp del:
filter.simps)
have V fso € set (map ?g gs). 3 fs. fso = Some fs N (Vf € set fs. Vit € set
(trees f). wf-item-tree G (item (bs'k!7)) t)
proof standard
fix fso
assume fso € set (map ?g gs)
moreover have V ps € set gs. fs. g ps = Some fs N (Vf € set fs. Vi €
set (trees f). wf-item-tree G (item (bs!kli)) t)
proof standard

133

fix ¢
assume g € set gs
then obtain k' pre reds where g: ((k', pre), reds) € set gs ((k', pre),
reds) = g
by (metis surj-pair)
moreover have wf-pre: (bs, w, k', pre, {pre}) € wf-trees-input
using wjf-trees-input-prered-pre[OF prems(4) entry prered ps’ gs g(1)]
by blast
ultimately obtain pres where pres: build-trees’ bs w k' pre {pre} =
Some pres
Y f-pre € set pres. AN fss. f-pre = FBranch N fss
using build-trees’-termination by blast
have wf-reds: ¥V red € set reds. (bs, w, k, red, I U {red}) € wf-trees-input
using wf-trees-input-prered-red|OF prems(4) entry prered ps’ gs g(1)]
by blast
hence V[€ set (map (Ared. build-trees’ bs w k red (I U {red})) reds).
Ja. f = Some a
using build-trees’-termination by fastforce
then obtain rss where rss: Some rss = those (map (Ared. build-trees’
bs w k red (I U {red})) reds)
using those-Some by (metis (full-types))
let ?h = Af. case f of FBranch N fss = Some (FBranch N (fss @ [concat
rss])) | - = None
have Vz € set (map ?h pres). a. v = Some a
using pres(2) by auto
then obtain fs where fs: Some fs = those (map ?h pres)
using those-Some by (smt (verit, best))
have V[€ set fs. Vt € set (trees f). wf-item-tree G (item (bslkli)) ¢
proof (standard, standard)
fix ft
assume ft: f € set fs t € set (trees f)
hence Jz. z € set pres A Some f € set (map ?h pres)
using those-map-exists|OF fs ft(1)] by blast
then obtain f-pre N fss where f-pre: f-pre € set pres f-pre = FBranch
N fss
f = FBranch N (fss @Q [concat rss])
using pres(2) by force
define tss where tss: tss = map (\fs. concat (map (Af. trees f) fs)) fss
have trees (FBranch N (fss @ [concat rss])) =
map (Ats. Branch N ts) [ts0 Q ts1 . tsO0 <— combinations tss,
ts1 <— combinations [concat (map (Af. trees f) (concat rss))]]
by (subst tss, subst trees-append-singleton, simp)
moreover have t € set (trees (FBranch N (fss @ [concat rss])))
using ft(2) f-pre(3) by blast
ultimately obtain ¢s0 ts1 where tsz: t = Branch N (ts0 Q [ts1]) tsO
€ set (combinations tss)
ts1 € set (concat (map (Af. trees f) (concat rss)))
by fastforce
then obtain f-red where f-red: f-red € set (concat rss) ts1 € set (trees

134

f-red)
by auto
obtain fs-red red where red: Some fs-red = build-trees’ bs w k red (I
U {red})
f-red € set fs-red red € set reds
using f-red(1) rss those-map-Some-concat-exists by fast
then obtain N-red fss-red where f-red = FBranch N-red fss-red
using build-trees’-termination wf-reds by (metis option.inject)
then obtain ts where ts: Branch N-red ts = tsl
using tsz(3) f-red by auto
have (', pre, red) € set ps’
using group-by-forall-v-exists-k <((k', pre), reds) € set gs» gs <red €
set redsy by fast
hence mem: (k/, pre, red) € set (p#ps)
using ps’ by (metis filter-set member-filter)
have sound-ptrs w bs
using prems(4) wf-trees-input-def by fastforce
have bounds: k' < k pre < length (bslk") red < length (bs'k)
using prered entry prems(6,7) <sound-ptrs w bs»
unfolding sound-ptrs-def sound-prered-ptr-def by (meson mem
nth-mem)+
have completes: completes k (item (bs'k'lpre)) (item e) (item (bs'klred))
using prered entry prems(6,7) <sound-ptrs w bs»
unfolding sound-ptrs-def sound-prered-ptr-def by (metis mem
nth-mem)
have transform:
item-rule-head (item (bslk’lpre)) = item-rule-head (item e)
item-rule-body (item (bslk’lpre)) = item-rule-body (item e)
item-dot (item (bs'klpre)) + 1 = item-dot (item e)
next-symbol (item (bs'k'Ipre)) = Some (item-rule-head (item (bs!klred)))
is-complete (item (bs!klred))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def)
have Branch N ts0 € set (trees (FBranch N fss))
using tss tsz(2) by simp
hence IH-pre: wf-item-tree G (item (bs!k'lpre)) (Branch N ts0)
using prems(2)[OF entry prered ps’ gs <((k', pre), reds) € set gs»
wf-pre prems(5)]
pres(1) f-pre f-pre(3) bounds(1,2) prems(6) by fastforce
have IH-r: wf-item-tree G (item (bs!klred)) (Branch N-red ts)
using prems(3)[OF entry prered ps’ gs «((k', pre), reds) € set gs» <red
€ set reds) - prems(5)]
bounds(3) f-red(2) red ts wf-reds prems(6) by metis
have map root-tree (ts0 @ [Branch N-red ts]) = map root-tree ts0 Q
[root-tree (Branch N-red ts)]
by simp
also have ... = take (item-dot (item (bs'k’\pre))) (item-rule-body (item
(bslklpre))) Q [root-tree (Branch N-red ts)]
using IH-pre by simp

135

also have ... = take (item-dot (item (bs'k'lpre))) (item-rule-body (item
(bslk"pre))) Q@ [item-rule-head (item (bs'klred))]
using [H-r by simp
also have ... = take (item-dot (item e)) (item-rule-body (item e))
using transform by (auto simp: next-symbol-def is-complete-def split:
if-splits; metis lel take-Suc-conv-app-nth)
finally have roots: map root-tree (ts0 @Q [Branch N-red ts]) = take
(item-dot (item e)) (item-rule-body (item e)) .
have wf-item G w (item (bs!'klred))
using prems(5,6) bounds(3) unfolding wf-bins-def wf-bin-def
wf-bin-items-def by (auto simp: items-def)
moreover have N-red = item-rule-head (item (bs'klred))
using IH-r by fastforce
moreover have map root-tree ts = item-rule-body (item (bs!k!red))
using IH-r transform(5) by (auto simp: is-complete-def)
ultimately have 31 € set (R G). N-red = rule-head r N\ map root-tree
ts = rule-body r
unfolding wf-item-def item-rule-body-def item-rule-head-def by blast
hence wf-rule-tree G (Branch N-red ts)
using [H-r by simp
hence wf-item-tree G (item (bs!k!i)) (Branch N (tsO0 @Q [Branch N-red
ts]))
using transform(1) roots IH-pre entry by simp
thus wf-item-tree G (item (bslkli)) t
using tsz(1) red ts by blast
qed
moreover have ?g g = Some fs
using fs pres rss g by (auto, metis bind.bind-lunit)
ultimately show 3 fs. 29 g = Some fs A (Vf € set fs. Vt € set (trees
f). wf-item-tree G (item (bs!k!7)) ¢)
by blast
qed
ultimately show 3 fs. fso = Some fs A (V[€ set fs. Vt € set (trees f).
wf-item-tree G (item (bslk!i)) t)
using map-Some-P by auto
qed
then obtain fss where those (map ?g gs) = Some fss ¥V fs € set fss. Vf €
set fs. Vt € set (trees f). wf-item-tree G (item (bslkli)) t
using those-Some-P by blast
hence build-trees’ bs w ki I = Some (concat fss) ¥V f € set (concat fss). Vit
€ set (trees f). wf-item-tree G (item (bs'k!i)) t
using simp by auto
thus ?thesis
using prems(8—10) by auto
qed
qed
done
thus ?thesis
by blast

136

qed

lemma wf-yield-tree-build-trees”:
assumes (bs, w, k, i, I) € wf-trees-input
assumes wf-bins G w bs
assumes k < length bs i < length (bs'k) k < length w
assumes build-trees’ bs w k i I = Some fs
assumes f € set fs
assumes t € set (trees f)
shows wf-yield-tree w (item (bslkl7)) ¢
proof —
have wf-yield-tree w (item (bs!k!i)) ¢
using assms
apply (induction arbitrary: fs f t rule: build-trees’-induct|OF assms(1)])
subgoal premises prems for bs w ki I fs ft
proof —
define e where entry: e = bskli
consider (Null) pointer e = Null
| (Pre) 3pre. pointer e = Pre pre
| (PreRed) 3p ps. pointer e = PreRed p ps
by (metis pointer.exhaust)
thus ?thesis
proof cases
case Null
hence simp: build-trees’ bs w k i I = Some ([FBranch (item-rule-head (item
e)) [I})
using entry by simp
moreover have f = FBranch (item-rule-head (item e)) ||
using build-forest’-simps(1) Null prems(9,10) entry by auto
ultimately have simp: t = Branch (item-rule-head (item e)) []
using prems(11) by simp
have sound-ptrs w bs
using prems(4) unfolding wf-trees-input-def by blast
hence predicts (item e)
using Null prems(6,7) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
thus ?thesis
unfolding wf-yield-tree-def predicts-def using simp entry by (auto simp:
slice-empty)
next
case Pre
then obtain pre where pre: pointer e = Pre pre
by blast
have sound: sound-ptrs w bs
using prems(4) unfolding wf-trees-input-def by blast
hence bounds: k > 0 pre < length (bs!(k—1))
using entry pre prems(6,7) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)+
have scans: scans w k (item (bs!(k—1)!pre)) (item e)

137

using entry pre prems(6—7) <sound-ptrs w bs> unfolding sound-ptrs-def

sound-pre-ptr-def by simp
have wf: (bs, w, k—1, pre, {pre}) € wf-trees-input
using entry pre prems(4) wf-trees-input-pre by blast
then obtain pres where pres: build-trees’ bs w (k—1) pre {pre} = Some

pres
Vf € set pres. AN fss. f = FBranch N fss

using build-trees’-termination wf by blast
let 29 = \f. case f of FBranch N fss = Some (FBranch N (fss @Q [[FLeaf

(W!(k=1))I)) | - = None
have build-trees’ bs w k i I = those (map ?g pres)
using entry pre pres by simp
hence fs: Some fs = those (map ?g pres)
using prems(9) by simp
then obtain f-pre N fss where Nfss: f = FBranch N (fss @Q [[FLeaf

(W (b—1)])
f-pre = FBranch N fss f-pre € set pres
using those-map-FBranch-only fs pres(2) prems(10) by blast
define tss where tss: tss = map (Afs. concat (map (Af. trees f) fs)) fss
have trees (FBranch N (fss @ [[FLeaf (w!(k—1))]])) =
map (Ats. Branch N ts) [ts Q [Leaf (w!(k—1))] . ts <— combinations tss |
by (subst tss, subst trees-append-single-singleton, simp)
moreover have t € set (trees (FBranch N (fss Q [[FLeaf (w!(k—1))]])))
using Nfss(1) prems(11) by blast
ultimately obtain ¢s where ts: ¢ = Branch N (ts Q [Leaf (w!(k—1))]) A
ts € set (combinations tss)
by auto
have sound-ptrs w bs
using prems(4) unfolding wf-trees-input-def by blast
hence pre < length (bs!(k—1))
using entry pre prems(6,7) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)
moreover have k—1 < length bs
by (simp add: prems(6) less-imp-diff-less)
moreover have Branch N ts € set (trees (FBranch N fss))
using ts tss by simp
ultimately have IH: wf-yield-tree w (item (bs!(k—1)!pre)) (Branch N ts)
using prems(1,2,4,5,8) entry pre Nfss(2,3) wf pres(1) by simp
have transform:
item-origin (item (bs!(k—1)!pre)
item-end (item (bs!(k—1)lpre)) =
item-end (item e) = k
using entry prems(5,6,7) bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def
by (auto, meson less-imp-diff-less nth-mem)
have yield-tree t = concat (map yield-tree (ts Q [Leaf (w!(k—1))]))
by (simp add: ts)
also have ... = concat (map yield-tree ts) Q [w!(k—1)]

< item-end (item (bs!(k—1)!pre))
k—1

by simp

138

also have ... = slice (item-origin (item (bs!(k—1)!pre))) (item-end (item
(bs!(k—1)Ipre))) w @ [w!(k—1)]
using IH by (simp add: wf-yield-tree-def)
also have ... = slice (item-origin (item (bs!(k—1)!pre))) (item-end (item
(bs!(k—1)!pre)) + 1) w
using slice-append-nth transform <k > 0> prems(8)
by (metis diff-less le-eg-less-or-eq less-imp-diff-less less-numeral-extra(1))
also have ... = slice (item-origin (item e)) (item-end (item (bs!(k—1)!pre))
+ 1w
using scans unfolding scans-def inc-item-def by simp
also have ... = slice (item-origin (item €)) k w
using scans transform unfolding scans-def by (metis Suc-diff-1 Suc-eq-plus1
bounds(1))
also have ... = slice (item-origin (item e)) (item-end (item e)) w
using transform by auto
finally show ?thesis
using wf-yield-tree-def entry by blast
next
case PreRed
then obtain p ps where prered: pointer e = PreRed p ps
by blast
define ps’ where ps”: ps’ = filter (\(k’, pre, red). red ¢ I) (p#ps)
define gs where gs: gs = group-by (A(k’, pre, red). (k’, pre)) (A(k', pre,
red). red) ps’
let 2g = M((k', pre), reds).
do {
pres < build-trees’ bs w k' pre {pre};
rss < those (map (Ared. build-trees’ bs w k red (I U {red})) reds);
those (map (\f.
case f of
FBranch N fss = Some (FBranch N (fss @ [concat ss]))
| - = None — impossible case
) pres)
}
have simp: build-trees’ bs w k i I = map-option concat (those (map ?g gs))
using entry prered ps’ gs by (subst build-trees’.simps) (auto simp del:
filter.simps)
have V fso € set (map 29 gs). Afs. fso = Some fs N (Vf € set fs. Vi € set
(trees f). wf-yield-tree w (item (bslkl)) t)
proof standard
fix fso
assume fso € set (map ?g gs)
moreover have V ps € set gs. fs. %9 ps = Some fs AN (Vf € set fs. Vt €
set (trees f). wf-yield-tree w (item (bs'k!7)) t)
proof standard
fix g
assume g € set gs
then obtain £’ pre reds where g: ((k', pre), reds) € set gs ((k', pre),
reds) = g

139

by (metis surj-pair)
moreover have wf-pre: (bs, w, k', pre, {pre}) € wf-trees-input
using wf-trees-input-prered-pre| OF prems(4) entry prered ps' gs g(1)]
by blast
ultimately obtain pres where pres: build-trees’ bs w k' pre {pre} =
Some pres
Y f-pre € set pres. AN fss. f-pre = FBranch N fss
using build-trees’-termination by blast
have wf-reds: V red € set reds. (bs, w, k, red, I U {red}) € wf-trees-input
using wf-trees-input-prered-red|OF prems(4) entry prered ps’ gs g(1)]
by blast
hence V[€ set (map (Ared. build-trees’ bs w k red (I U {red})) reds).
Ja. f = Some a
using build-trees’-termination by fastforce
then obtain rss where rss: Some rss = those (map (Ared. build-trees’
bs w k red (I U {red})) reds)
using those-Some by (metis (full-types))
let ?h = Af. case f of FBranch N fss = Some (FBranch N (fss @ [concat
rss])) | - = None
have Vz € set (map ?h pres). Ja. © = Some a
using pres(2) by auto
then obtain fs where fs: Some fs = those (map ?h pres)
using those-Some by (smt (verit, best))
have Vf € set fs. Vt € set (trees f). wf-yield-tree w (item (bs'kli)) t
proof (standard, standard)
fix ft
assume ft: f € set fs t € set (trees f)
hence Jz. z € set pres A Some f € set (map ?h pres)
using those-map-exists|OF fs ft(1)] by blast
then obtain f-pre N fss where f-pre: f-pre € set pres f-pre = FBranch
N fss
f = FBranch N (fss Q [concat rss])
using pres(2) by force
define tss where tss: tss = map (Afs. concat (map (Af. trees f) fs)) fss
have trees (FBranch N (fss @ [concat rss])) =
map (Ats. Branch N ts) [tsO0 @ tsI . ts0 <— combinations tss,
tsl <— combinations [concat (map (Af. trees f) (concat rss)) |]
by (subst tss, subst trees-append-singleton, simp)
moreover have t € set (trees (FBranch N (fss @ [concat rss])))
using ft(2) f-pre(3) by blast
ultimately obtain ts0 ts! where tsz: t = Branch N (ts0 Q [ts1]) ts0
€ set (combinations tss)
ts1 € set (concat (map (Af. trees f) (concat rss)))
by fastforce
then obtain f-red where f-red: f-red € set (concat rss) ts1 € set (trees
f-red)
by auto

obtain fs-red red where red: Some fs-red = build-trees’ bs w k red (I
U {red})

140

f-red € set fs-red red € set reds
using f-red(1) rss those-map-Some-concat-exists by fast
then obtain N-red fss-red where f-red = FBranch N-red fss-red
using build-trees’-termination wf-reds by (metis option.inject)
then obtain ts where ts: Branch N-red ts = tsl
using tsz(3) f-red by auto
have (k', pre, red) € set ps’
using group-by-forall-v-exists-k «((k’, pre), reds) € set gs» gs <red €
set reds» by fast
hence mem: (k’, pre, red) € set (p#ps)
using ps’ by (metis filter-set member-filter)
have sound-ptrs w bs
using prems(4) wf-trees-input-def by fastforce
have bounds: k' < k pre < length (bslk”) red < length (bs'k)
using prered entry prems(6,7) <sound-ptrs w bs
unfolding sound-ptrs-def sound-prered-ptr-def by (meson mem
nth-mem)+
have completes: completes k (item (bs!k'lpre)) (item e) (item (bs!klred))
using prered entry prems(6,7) <sound-ptrs w bs»
unfolding sound-ptrs-def sound-prered-ptr-def by (metis mem
nth-mem)
have transform:
item-rule-head (item (bslk’lpre)) = item-rule-head (item e)
item-rule-body (item (bslk'\pre)) = item-rule-body (item e)
item-dot (item (bs'klpre)) + 1 = item-dot (item e)
next-symbol (item (bs'k'lpre)) = Some (item-rule-head (item (bs!k!red)))
is-complete (item (bs!k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def)
have Branch N tsO € set (trees (FBranch N fss))
using tss tsz(2) by simp
hence IH-pre: wf-yield-tree w (item (bs'k’\pre)) (Branch N ts0)
using prems(2)[OF entry prered ps’ gs <((k', pre), reds) € set gs»
wf-pre prems(5)]
pres(1) f-pre f-pre(3) bounds(1,2) prems(6,8) by simp
have TH-r: wf-yield-tree w (item (bs'k!red)) (Branch N-red ts)
using prems(3)[OF entry prered ps’ gs «((k', pre), reds) € set gs» ¢<red
€ set reds) - prems(5)]
bounds(3) f-red(2) red ts wf-reds prems(6,8) by metis
have wfl:
item-origin (item (bs'k\pre)) < item-end (item (bs'kpre))
item-origin (item (bs'klred)) < item-end (item (bslklred))
using prems(5—7) bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def
by (metis length-map nth-map nth-mem order-less-trans)+
have wf2:
item-end (item (bslklred)) = k
item-end (item (bslkli)) = k
using prems(5—7) bounds unfolding wf-bins-def wf-bin-def

141

wf-bin-items-def items-def by simp-all
have yield-tree t = concat (map yield-tree (ts0 Q [Branch N-red ts]))
by (simp add: ts tsz(1))

also have ... = concat (map yield-tree ts0) Q yield-tree (Branch N-red
ts)
by simp
also have ... = slice (item-origin (item (bs!k’\pre))) (item-end (item

(bslklpre))) w @
slice (item-origin (item (bs'k!red))) (item-end (item (bs'klred))) w
using [H-pre IH-r by (simp add: wf-yield-tree-def)
also have ... = slice (item-origin (item (bs'k\pre))) (item-end (item
(bslklred))) w
using slice-concat wfl completes-def completes by (metis (no-types,
lifting))
also have ... = slice (item-origin (item e)) (item-end (item (bs!k!red)))
w
using completes unfolding completes-def inc-item-def by simp
also have ... = slice (item-origin (item e)) (item-end (item e)) w
using wf2 entry by presburger
finally show wf-yield-tree w (item (bs'k!i)) t
using wf-yield-tree-def entry by blast
qed
moreover have ?g g = Some fs
using fs pres rss g by (auto, metis bind.bind-lunit)
ultimately show 3fs. 2g g = Some fs A (Vf € set fs. YVt € set (trees
f). wf-yield-tree w (item (bs'kli)) t)
by blast
qed
ultimately show 3 fs. fso = Some fs A (V[€ set fs. YVt € set (trees f).
wf-yield-tree w (item (bslkl7)) t)
using map-Some-P by auto
ged
then obtain fss where those (map ?g gs) = Some fss ¥V fs € set fss. Vf €
set fs. V't € set (trees f). wf-yield-tree w (item (bslkli)) t
using those-Some-P by blast
hence build-trees’ bs w ki I = Some (concat fss) ¥V f € set (concat fss). Vit
€ set (trees f). wf-yield-tree w (item (bs'k!i)) t
using simp by auto
thus ?thesis
using prems(9—11) by auto
qed
qed
done
thus ?thesis
using assms(2) by blast
qed

theorem wf-rule-root-yield-tree-build-trees:
assumes wf-bins G w bs sound-ptrs w bs length bs = length w + 1

142

assumes build-trees G w bs = Some fs f € set fs t € set (trees f)
shows wf-rule-tree G t A root-tree t = & G A yield-tree t = w
proof —
let 2k = length bs — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items (bs!?k))
have #: Some fs = map-option concat (those (map (A(-,). build-trees’ bs w %k
i {i}) finished))
using assms(4) build-trees-def finished-def by (metis (full-types))
then obtain fss fs’ where fss: Some fss = those (map (A(-, ©). build-trees’ bs w
%k i {i}) finished)
fs' € set fss f € set fs’
using map-option-concal-those-map-exists assms(5) by fastforce
then obtain z ¢ where *: (z,i) € set finished Some fs' = build-trees’ bs w
(length bs — 1) 4 {i}
using those-map-exists|OF fss(1,2)] by auto
have k: %k < length bs ?k < length w
using assms(3) by simp-all
have i: i < length (bs! %k)
using index-filter-with-index-lt-length * items-def finished-def by (metis (no-types,
opaque-lifting) length-map)
have z: z = item (bs! 2k!%)
using * i filter-with-index-nth items-def nth-map finished-def assms(8) by metis
have finished: is-finished G w x
using * filter-with-index-P finished-def by metis
have {i} C {0..<length (bs!?k)}
using atLeastLessThan-iff i by blast
hence wf: (bs, w, %, i, {i}) € wf-trees-input
unfolding wf-trees-input-def using assms(2) i k(1) by simp
hence wf-item-tree: wf-item-tree G (item (bs! 7k7)) ¢
using wf-item-tree-build-trees’ assms(1,2,5,6) i k(1) z *(2) fss(3) by metis
have wf-item: wf-item G w (item (bs! 2k!7))
using k(1) @ assms(1) unfolding wf-bins-def wf-bin-def wf-bin-items-def by
(simp add: items-def)
obtain N fss where Nfss: f = FBranch N fss
using build-trees’-termination| OF wf] by (metis *(2) fss(8) option.inject)
then obtain ts where ts: t = Branch N ts
using assms(6) by auto
hence N = item-rule-head z
map root-tree ts = item-rule-body x
using finished wf-item-tree x by (auto simp: is-finished-def is-complete-def)
hence 3r € set (R G). N = rule-head r A map root-tree ts = rule-body r
using wf-item z unfolding wf-item-def item-rule-body-def item-rule-head-def
by blast
hence wf-rule: wf-rule-tree G t
using wf-item-tree ts by simp
have root: root-tree t = 6 G
using finished ts <N = item-rule-head x> by (auto simp: is-finished-def)
have yield-tree t = slice (item-origin (item (bs!2k!%))) (item-end (item (bs!2kl7)))

143

w
using k i assms(1,6) wf wf-yield-tree-build-trees’ wf-yield-tree-def x(2) fss(3)
by (smt (verit, best))
hence yield: yield-tree t = w
using finished x unfolding is-finished-def by simp
show ?thesis
using * wf-rule root yield assms(4) unfolding build-trees-def by simp
qed

corollary wf-rule-root-yield-tree-build-trees- Earley,:
assumes wf-G G nonempty-derives G
assumes build-trees G w (Earley;, G w) = Some fs f € set fs t € set (trees f)
shows wf-rule-tree G t N root-tree t = & G A yield-tree t = w
using assms wf-rule-root-yield-tree-build-trees wf-bins-Earley;, Farleyy -def
length-FEarleyr -bins length-bins-Init;, sound-mono-ptrs-FEarleyr,
by (metis dual-order.eq-iff)

theorem soundness-build-trees-Farleyy,:
assumes wf-G G is-word G w nonempty-derives G
assumes build-trees G w (Earleyr, G w) = Some fs f € set fs t € set (trees f)
shows derives G [6 G| w
proof —
let %k = length (Earleyy, G w) — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items ((Earleyr, G w)!%k))
have #: Some fs = map-option concat (those (map (A(-, ©). build-trees’ (Earleyy,
Gw)w ?ki{i}) finished))
using assms(4) build-trees-def finished-def by (metis (full-types))
then obtain fss fs’ where fss: Some fss = those (map (A(-, ©). build-trees’
(Earleyr, G w) w %k i {i}) finished)
fs' € set fss [€ set fs’
using map-option-concat-those-map-exists assms(5) by fastforce
then obtain z i where *: (z,i) € set finished Some fs' = build-trees’ (Earleyy,
Gw)w % {i}
using those-map-exists|OF fss(1,2)] by auto
have k: 2k < length (Earleyr, G w) 2k < length w
by (simp-all add: Earleyy-def assms(1))
have i: i < length ((Earleyr, G w) ! %k)
using index-filter-with-indez-lt-length x items-def finished-def by (metis length-map)
have z: z = item ((Earleyr, G w)!2kl7)
using * 1 filter-with-indez-nth items-def nth-map finished-def by metis
have finished: is-finished G w x
using x filter-with-indez-P finished-def by metis
moreover have z € set (items ((Earleyy G w) ! 2k))
using z by (auto simp: items-def; metis One-nat-def i imagel nth-mem)
ultimately have recognizing (bins (Earley;, G w)) G w
by (meson k(1) kth-bin-sub-bins recognizing-def subsetD)
thus ?thesis
using correctness-Earley;, assms by blast

144

qed

theorem termination-build-tree-FEarleyy:
assumes wf-G G nonempty-derives G derives G [& G| w
shows 3 fs. build-trees G w (Earleyr, G w) = Some fs
proof —
let %k = length (Earleyr, G w) — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items ((Earleyr, G w)!%k))
have Vf € set finished. (Earleyr, G w, w, %k, snd f, {snd f}) € wf-trees-input
proof standard
fix f
assume a: f € set finished
then obtain z ¢ where *: (z,i) = f
by (metis surj-pair)
have sound-ptrs w (Farley;, G w)
using sound-mono-ptrs-Farley;, assms by blast
moreover have 7k < length (Earleyr G w)
by (simp add: Earleyy-def assms(1))
moreover have i < length ((Earleyr, G w)!?k)
using index-filter-with-indez-lt-length a * items-def finished-def by (metis
length-map)
ultimately show (Farleyr G w, w, %, snd f, {snd f}) € wf-trees-input
using * unfolding wf-trees-input-def by auto
qed
hence V fso € set (map (A(-, 7). build-trees’ (Farleyr, G w) w %k i {i}) finished).
dfs. fso = Some fs
using build-trees’-termination by fastforce
then obtain fss where fss: Some fss = those (map (A(-, ©). build-trees’ (Earleyy,
Gw)w ?ki{i}) finished)
by (smt (verit, best) those-Some)
then obtain fs where fs: Some fs = map-option concat (those (map (A(-, 7).
build-trees’ (Earleyr, G w) w %k i {i}) finished))
by (metis map-option-eq-Some)
show ?thesis
using finished-def fss fs build-trees-def by (metis (full-types))
qed

end
theory Fxamples

imports Farley-Parser
begin

10 Epsilon productions

definition e-free :: 'a cfg = bool where
e-free G «— (Vr € set (R G). rule-body r # [])

lemma e-free-impl-non-empty-sentence-deriv:

145

e-free G = a # [| = — Derivation G a D |]
proof (induction length D arbitrary: a D rule: nat-less-induct)
case I
show ?Zcase
proof (rule ccontr)
assume assm: = — Derivation G a D []
show Fulse
proof (cases D = [])
case True
then show ?thesis
using 1.prems(2) assm by auto
next
case Fulse
then obtain d D’ o where x:
D = d # D’ Derivesl G a (fst d) (snd d) a Derivation G a D' [| snd d €
set (R G)
using list.exhaust assm Derivesl-def by (metis Derivation.simps(2))
show ?thesis
proof cases
assume o = ||
thus ?thesis
using *(2,4) Derives1-split e-free-def rule-body-def 1.prems(1) by (metis
append-is-Nil-conv)
next
assume - « = ||
thus ?thesis
using *(1,8) 1.hyps 1.prems(1) by auto
qed
qed
qed
qed

lemma e-free-impl-non-empty-deriv:

e-free G = VN € set (M G). = derives G [N] []

using e-free-impl-non-empty-sentence-deriv derives-implies-Derivation by (metis
not-Cons-self2)

lemma nonempty-deriv-impl-c-free:
assumes VN € set (M G). = derives G [N] [V(N, «) € set (R G). N € set (N
g)
shows e-free G
proof (rule ccontr)
assume - e-free G
then obtain N a where *: (N, a) € set (R G) rule-body (N, a) = |]
unfolding e-free-def by auto
hence derives! G [N] []
unfolding derivesI-def rule-body-def by auto
hence derives G [N] []
by auto

146

moreover have N € set (N G)
using *(1) assms(2) by blast
ultimately show Fulse
using assms(1) by blast
qed

lemma nonempty-deriv-iff-e-free:

assumes V (N, o) € set (R G). N € set (N G)

shows (VN € set (M G). — derives G [N] []) «— e-free G

using e-free-impl-non-empty-deriv nonempty-deriv-impl-c-free[OF - assms| by
blast

11 Example 1: Addition

datatype t1 = z | plus
datatype nl = §
datatype s! = Terminal t1 | Nonterminal nl

definition nonterminalsl :: sl list where
nonterminals] = [Nonterminal S

definition terminals! :: s1 list where
terminals! = [Terminal x, Terminal plus]

definition rules! :: s rule list where
rules] = |
(Nonterminal S, [Terminal x]),
(Nonterminal S, [Nonterminal S, Terminal plus, Nonterminal S])

}

definition start-symboll :: s1 where
start-symboll = Nonterminal S

definition cfg! :: sI cfg where
c¢fgl = CFG nonterminalsl terminalsl rulesl start-symboll

definition inp1 :: s1 list where
inpl = [Terminal z, Terminal plus, Terminal x, Terminal plus, Terminal x|

lemmas cfgl-defs = cfg1-def nonterminals1-def terminals1-def rulesi-def start-symboll-def
lemma wf-G1:

wf-G cfgl

by (auto simp: wf-G-defs cfg1-defs)
lemma is-word-inp1:

is-word cfgl inpl
by (auto simp: is-word-def is-terminal-def cfg1-defs inp1-def)

147

lemma nonempty-derives1:
nonempty-derives cfgl
by (auto simp: e-free-def cfg1-defs rule-body-def nonempty-derives-def e-free-impl-non-empty-deriv)

lemma correctnessi:
recognizing (bins (Earleyr, cfgl inpl)) cfgl inpl <— derives cfgl [S cfgl] inpl
using correctness-Earley;, wf-G1 is-word-inpl nonempty-derivesl by blast

lemma wf-treel:

assumes build-tree cfgl inpl (Earleyr cfgl inpl) = Some t

shows wf-rule-tree cfg1 t A root-tree t = S cfgl N yield-tree t = inpl

using assms nonempty-derivesl wf-G1 wf-rule-root-yield-tree-build-tree-Earleyy,
by blast

lemma correctness-treel:

(3t. build-tree cfgl inpl (Earleyy, cfgl inpl) = Some t) «— derives cfgl [&
cfgl] inpl

using correctness-build-tree-Earleyy, is-word-inpl nonempty-derives! wf-G1 by
blast

lemma wf-trees!:

assumes build-trees cfgl inpl (Earleyr cfgl inpl) = Some fs f € set fs t € set
(trees f)

shows wf-rule-tree cfgl t A root-tree t = & cfgl A yield-tree t = inpl

using assms nonempty-derives! wf-G1 wf-rule-root-yield-tree-build-trees-Farleyy,
by blast

lemma soundness-treesli:

assumes build-trees cfgl inpl (Earleyy, cfgl inpl) = Some fs f € set fs t € set
(trees f)

shows derives cfgl [& cfgl] inpl

using assms is-word-inp1 nonempty-derives1 soundness-build-trees-Earleyy, wf-G 1
by blast

12 Example 2: Cyclic reduction pointers

datatype t2 =
datatype n2 = A | B
datatype s2 = Terminal t2 | Nonterminal n2

definition nonterminals?2 :: s2 list where
nonterminals2 = [Nonterminal A, Nonterminal B)

definition terminals2 :: s2 list where
terminals2 = [Terminal z]

definition rules2 :: s2 rule list where

rules?2 = |
(Nonterminal B, [Nonterminal A)),

148

(Nonterminal A, [Nonterminal B)),
(Nonterminal A, [Terminal x|)

]

definition start-symbol2 :: s2 where
start-symbol2 = Nonterminal A

definition cfg2 :: s2 cfg where
cfg2 = CFG nonterminals?2 terminals2 rules2 start-symbol2

definition inp2 :: s2 list where
inp2 = [Terminal z]

lemmas cfg2-defs = cfg2-def nonterminals2-def terminals2-def rules2-def start-symbol2-def

lemma wf-G2:
wf-G cfg2
by (auto simp: wf-G-defs cfg2-defs)

lemma is-word-inp2:
is-word cfg2 inp2
by (auto simp: is-word-def is-terminal-def cfg2-defs inp2-def)

lemma nonempty-derives2:
nonempty-derives cfg2
by (auto simp: e-free-def cfg2-defs rule-body-def nonempty-derives-def e-free-impl-non-empty-deriv)

lemma correctness2:
recognizing (bins (Earleyr, cfg2 inp2)) cfg2 inp2 <— derives cfg2 [S cfg2] inp2
using correctness-Earley;, wf-G2 is-word-inp2 nonempty-derives2 by blast

lemma wf-tree2:

assumes build-tree cfg2 inp2 (Farleyy, cfg2 inp2) = Some t

shows wf-rule-tree cfg2 t A root-tree t = S cfg2 N yield-tree t = inp2

using assms nonempty-derives2 wf-G2 wf-rule-root-yield-tree-build-tree- Farley,
by blast

lemma correctness-tree2:

(3t. build-tree cfg2 inp2 (FEarleyr, cfg2 inp2) = Some t) «— derives cfg2 [&
cfg2] inp2

using correctness-build-tree-Earleyy, is-word-inp2 nonempty-derives2 wf-G2 by
blast

lemma wf-trees2:

assumes build-trees cfg2 inp2 (Earleyr, cfg2 inp2) = Some fs f € set fs t € set
(trees f)

shows wf-rule-tree cfg2 t N\ root-tree t = & cfg2 N yield-tree t = inp2

using assms nonempty-derives2 wf-G2 wf-rule-root-yield-tree-build-trees-Farleyy,
by blast

149

lemma soundness-trees2:

assumes build-trees cfg2 inp2 (Earleyy, cfg2 inp2) = Some fs f € set fs t € set
(trees f)

shows derives cfg2 [S cfg2] inp2

using assms is-word-inp2 nonempty-derives2 soundness-build-trees-Earleyy, wf-G2
by blast

end

References

1]

2]

J. Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94102, 1970.

C. B. Jones. Formal development of correct algorithms: An example
based on earley’s recogniser. In Proceedings of ACM Conference on Prov-
ing Assertions about Programs, page 150169, New York, NY, USA, 1972.
Association for Computing Machinery.

S. Obua. Local lexing. Archive of Formal Proofs, 2017. https://isa-afp.
org/entries/LocalLexing.html, Formal proof development.

S. Obua, P. Scott, and J. Fleuriot. Local lexing, 2017.

E. Scott. Sppf-style parsing from earley recognisers. Electronic Notes in
Theoretical Computer Science, 203(2):53-67, 2008. Proceedings of the
Seventh Workshop on Language Descriptions, Tools, and Applications
(LDTA 2007).

150

https://isa-afp.org/entries/LocalLexing.html
https://isa-afp.org/entries/LocalLexing.html

	Slightly adjusted content from AFP/LocalLexing
	Adjusted content from AFP/LocalLexing
	Adjusted content from AFP/LocalLexing
	Additional derivation lemmas
	Slices
	Earley recognizer
	Earley items
	Well-formedness
	Soundness
	Completeness
	Correctness
	Finiteness

	Earley recognizer
	Earley fixpoint
	Monotonicity and Absorption
	Soundness
	Completeness
	Correctness

	Earley recognizer
	List auxilaries
	Definitions
	Bin lemmas
	Well-formed bins
	Soundness
	Completeness
	Correctness

	Earley parser
	Pointer lemmas
	Common Definitions
	foldl lemmas
	Parse tree
	those, map, map option lemmas
	Parse trees

	Epsilon productions
	Example 1: Addition
	Example 2: Cyclic reduction pointers

