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Abstract

In 1968 Earley [1] introduced his parsing algorithm capable of pars-
ing all context-free grammars in cubic space and time. This entry con-
tains a formalization of an executable Earley parser. We base our devel-
opment on Jones’ [2] extensive paper proof of Earley’s recognizer and
the formalization of context-free grammars and derivations of Obua
[4] [3]. We implement and prove correct a functional recognizer mod-
eling Earley’s original imperative implementation and extend it with
the necessary data structures to enable the construction of parse trees
following the work of Scott [5]. We then develop a functional algorithm
that builds a single parse tree and prove its correctness. Finally, we
generalize this approach to an algorithm for a complete parse forest
and prove soundness.
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theory Limit

imports Main
begin

1 Slightly adjusted content from AFP/LocalLex-
ing

fun funpower :: ( ′a ⇒ ′a) ⇒ nat ⇒ ( ′a ⇒ ′a) where
funpower f 0 x = x
| funpower f (Suc n) x = f (funpower f n x)

definition natUnion :: (nat ⇒ ′a set) ⇒ ′a set where
natUnion f =

⋃
{ f n | n. True }

definition limit :: ( ′a set ⇒ ′a set) ⇒ ′a set ⇒ ′a set where
limit f x = natUnion (λ n. funpower f n x)
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definition setmonotone :: ( ′a set ⇒ ′a set) ⇒ bool where
setmonotone f = (∀ X . X ⊆ f X)

lemma subset-setmonotone: setmonotone f =⇒ X ⊆ f X
by (simp add: setmonotone-def )

lemma funpower-id [simp]: funpower id n = id
by (rule ext, induct n, simp-all)

lemma limit-id [simp]: limit id = id
by (rule ext, auto simp add: limit-def natUnion-def )

definition chain :: (nat ⇒ ′a set) ⇒ bool
where

chain C = (∀ i. C i ⊆ C (i + 1 ))

definition continuous :: ( ′a set ⇒ ′b set) ⇒ bool
where

continuous f = (∀ C . chain C −→ (chain (f o C ) ∧ f (natUnion C ) = natUnion
(f o C )))

lemma natUnion-upperbound:
(
∧

n. f n ⊆ G) =⇒ (natUnion f ) ⊆ G
by (auto simp add: natUnion-def )

lemma funpower-upperbound:
(
∧

I . I ⊆ G =⇒ f I ⊆ G) =⇒ I ⊆ G =⇒ funpower f n I ⊆ G
proof (induct n)

case 0 thus ?case by simp
next

case (Suc n) thus ?case by simp
qed

lemma limit-upperbound:
(
∧

I . I ⊆ G =⇒ f I ⊆ G) =⇒ I ⊆ G =⇒ limit f I ⊆ G
by (simp add: funpower-upperbound limit-def natUnion-upperbound)

lemma elem-limit-simp: x ∈ limit f X = (∃ n. x ∈ funpower f n X)
by (auto simp add: limit-def natUnion-def )

definition pointwise :: ( ′a set ⇒ ′b set) ⇒ bool where
pointwise f = (∀ X . f X =

⋃
{ f {x} | x. x ∈ X})

lemma natUnion-elem: x ∈ f n =⇒ x ∈ natUnion f
using natUnion-def by fastforce

lemma limit-elem: x ∈ funpower f n X =⇒ x ∈ limit f X
by (simp add: limit-def natUnion-elem)
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definition pointbase :: ( ′a set ⇒ ′b set) ⇒ ′a set ⇒ ′b set where
pointbase F I =

⋃
{ F X | X . finite X ∧ X ⊆ I }

definition pointbased :: ( ′a set ⇒ ′b set) ⇒ bool where
pointbased f = (∃ F . f = pointbase F)

lemma chain-implies-mono: chain C =⇒ mono C
by (simp add: chain-def mono-iff-le-Suc)

lemma setmonotone-implies-chain-funpower :
assumes setmonotone: setmonotone f
shows chain (λ n. funpower f n I )

by (simp add: chain-def setmonotone subset-setmonotone)

lemma natUnion-subset: (
∧

n. ∃ m. f n ⊆ g m) =⇒ natUnion f ⊆ natUnion g
by (meson natUnion-elem natUnion-upperbound subset-iff )

lemma natUnion-eq[case-names Subset Superset]:
(
∧

n. ∃ m. f n ⊆ g m) =⇒ (
∧

n. ∃ m. g n ⊆ f m) =⇒ natUnion f = natUnion
g
by (simp add: natUnion-subset subset-antisym)

lemma natUnion-shift[symmetric]:
assumes chain: chain C
shows natUnion C = natUnion (λ n. C (n + m))

proof (induct rule: natUnion-eq)
case (Subset n)

show ?case using chain chain-implies-mono le-add1 mono-def by blast
next

case (Superset n)
show ?case by blast

qed

definition regular :: ( ′a set ⇒ ′a set) ⇒ bool
where

regular f = (setmonotone f ∧ continuous f )

lemma regular-fixpoint:
assumes regular : regular f
shows f (limit f I ) = limit f I

proof −
have setmonotone: setmonotone f using regular regular-def by blast
have continuous: continuous f using regular regular-def by blast

let ?C = λ n. funpower f n I
have chain: chain ?C

by (simp add: setmonotone setmonotone-implies-chain-funpower)
have f (limit f I ) = f (natUnion ?C )

using limit-def by metis
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also have f (natUnion ?C ) = natUnion (f o ?C )
by (metis continuous continuous-def chain)

also have natUnion (f o ?C ) = natUnion (λ n. f (funpower f n I ))
by (meson comp-apply)

also have natUnion (λ n. f (funpower f n I )) = natUnion (λ n. ?C (n + 1 ))
by simp

also have natUnion (λ n. ?C (n + 1 )) = natUnion ?C
by (metis (no-types, lifting) Limit.chain-def chain natUnion-eq)

finally show ?thesis by (simp add: limit-def )
qed

lemma fix-is-fix-of-limit:
assumes fixpoint: f I = I
shows limit f I = I

proof −
have funpower :

∧
n. funpower f n I = I

proof −
fix n :: nat
from fixpoint show funpower f n I = I

by (induct n, auto)
qed
show ?thesis by (simp add: limit-def funpower natUnion-def )

qed

lemma limit-is-idempotent: regular f =⇒ limit f (limit f I ) = limit f I
by (simp add: fix-is-fix-of-limit regular-fixpoint)

definition mk-regular1 :: ( ′b ⇒ ′a ⇒ bool) ⇒ ( ′b ⇒ ′a ⇒ ′a) ⇒ ′a set ⇒ ′a set
where

mk-regular1 P F I = I ∪ { F q x | q x. x ∈ I ∧ P q x }

definition mk-regular2 :: ( ′b ⇒ ′a ⇒ ′a ⇒ bool) ⇒ ( ′b ⇒ ′a ⇒ ′a ⇒ ′a) ⇒ ′a set
⇒ ′a set where

mk-regular2 P F I = I ∪ { F q x y | q x y. x ∈ I ∧ y ∈ I ∧ P q x y }

end
theory CFG

imports Main
begin

2 Adjusted content from AFP/LocalLexing
type-synonym ′a rule = ′a × ′a list

type-synonym ′a rules = ′a rule list

type-synonym ′a sentence = ′a list

datatype ′a cfg =
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CFG (N : ′a list) (T : ′a list) (R : ′a rules) (S : ′a)

definition disjunct-symbols :: ′a cfg ⇒ bool where
disjunct-symbols G ≡ set (N G) ∩ set (T G) = {}

definition valid-startsymbol :: ′a cfg ⇒ bool where
valid-startsymbol G ≡ S G ∈ set (N G)

definition valid-rules :: ′a cfg ⇒ bool where
valid-rules G ≡ ∀ (N , α) ∈ set (R G). N ∈ set (N G) ∧ (∀ s ∈ set α. s ∈ set (N
G) ∪ set (T G))

definition distinct-rules :: ′a cfg ⇒ bool where
distinct-rules G ≡ distinct (R G)

definition wf-G :: ′a cfg ⇒ bool where
wf-G G ≡ disjunct-symbols G ∧ valid-startsymbol G ∧ valid-rules G ∧ distinct-rules
G

lemmas wf-G-defs = wf-G-def valid-rules-def valid-startsymbol-def disjunct-symbols-def
distinct-rules-def

definition is-terminal :: ′a cfg ⇒ ′a ⇒ bool where
is-terminal G x ≡ x ∈ set (T G)

definition is-nonterminal :: ′a cfg ⇒ ′a ⇒ bool where
is-nonterminal G x ≡ x ∈ set (N G)

definition is-symbol :: ′a cfg ⇒ ′a ⇒ bool where
is-symbol G x ≡ is-terminal G x ∨ is-nonterminal G x

definition wf-sentence :: ′a cfg ⇒ ′a sentence ⇒ bool where
wf-sentence G ω ≡ ∀ x ∈ set ω. is-symbol G x

lemma is-nonterminal-startsymbol:
wf-G G =⇒ is-nonterminal G (S G)
by (simp add: is-nonterminal-def wf-G-defs)

definition is-word :: ′a cfg ⇒ ′a sentence ⇒ bool where
is-word G ω ≡ ∀ x ∈ set ω. is-terminal G x

definition derives1 :: ′a cfg ⇒ ′a sentence ⇒ ′a sentence ⇒ bool where
derives1 G u v ≡ ∃ x y N α.

u = x @ [N ] @ y ∧
v = x @ α @ y ∧
(N , α) ∈ set (R G)

definition derivations1 :: ′a cfg ⇒ ( ′a sentence × ′a sentence) set where
derivations1 G ≡ { (u,v) | u v. derives1 G u v }
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definition derivations :: ′a cfg ⇒ ( ′a sentence × ′a sentence) set where
derivations G ≡ (derivations1 G)^∗

definition derives :: ′a cfg ⇒ ′a sentence ⇒ ′a sentence ⇒ bool where
derives G u v ≡ ((u, v) ∈ derivations G)

end
theory Derivations

imports
CFG

begin

3 Adjusted content from AFP/LocalLexing
type-synonym ′a derivation = (nat × ′a rule) list

lemma is-word-empty: is-word G [] by (auto simp add: is-word-def )

lemma derives1-implies-derives[simp]:
derives1 G a b =⇒ derives G a b
by (auto simp add: derives-def derivations-def derivations1-def )

lemma derives-trans:
derives G a b =⇒ derives G b c =⇒ derives G a c
by (auto simp add: derives-def derivations-def )

lemma derives1-eq-derivations1 :
derives1 G x y = ((x, y) ∈ derivations1 G)
by (simp add: derivations1-def )

lemma derives-induct[consumes 1 , case-names Base Step]:
assumes derives: derives G a b
assumes Pa: P a
assumes induct:

∧
y z. derives G a y =⇒ derives1 G y z =⇒ P y =⇒ P z

shows P b
proof −

note rtrancl-lemma = rtrancl-induct[where a = a and b = b and r = deriva-
tions1 G and P=P]

from derives Pa induct rtrancl-lemma show P b
by (metis derives-def derivations-def derives1-eq-derivations1 )

qed

definition Derives1 :: ′a cfg ⇒ ′a sentence ⇒ nat ⇒ ′a rule ⇒ ′a sentence ⇒
bool where

Derives1 G u i r v ≡ ∃ x y N α.
u = x @ [N ] @ y ∧
v = x @ α @ y ∧
(N , α) ∈ set (R G) ∧ r = (N , α) ∧ i = length x
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lemma Derives1-split:
Derives1 G u i r v =⇒ ∃ x y. u = x @ [fst r ] @ y ∧ v = x @ (snd r) @ y ∧

length x = i
by (metis Derives1-def fst-conv snd-conv)

lemma Derives1-implies-derives1 : Derives1 G u i r v =⇒ derives1 G u v
by (auto simp add: Derives1-def derives1-def )

lemma derives1-implies-Derives1 : derives1 G u v =⇒ ∃ i r . Derives1 G u i r v
by (auto simp add: Derives1-def derives1-def )

fun Derivation :: ′a cfg ⇒ ′a sentence ⇒ ′a derivation ⇒ ′a sentence ⇒ bool
where

Derivation - a [] b = (a = b)
| Derivation G a (d#D) b = (∃ x. Derives1 G a (fst d) (snd d) x ∧ Derivation G
x D b)

lemma Derivation-implies-derives: Derivation G a D b =⇒ derives G a b
proof (induct D arbitrary: a b)

case Nil thus ?case
by (simp add: derives-def derivations-def )

next
case (Cons d D)
note ihyps = this
from ihyps have ∃ x. Derives1 G a (fst d) (snd d) x ∧ Derivation G x D b by

auto
then obtain x where Derives1 G a (fst d) (snd d) x and xb: Derivation G x D

b by blast
with Derives1-implies-derives1 have d1 : derives G a x by fastforce
from ihyps xb have d2 :derives G x b by simp
show derives G a b by (rule derives-trans[OF d1 d2 ])

qed

lemma Derivation-Derives1 : Derivation G a S y =⇒ Derives1 G y i r z =⇒
Derivation G a (S@[(i,r)]) z
proof (induct S arbitrary: a y z i r)

case Nil thus ?case by simp
next

case (Cons s S) thus ?case
by (metis Derivation.simps(2 ) append-Cons)

qed

lemma derives-implies-Derivation: derives G a b =⇒ ∃ D. Derivation G a D b
proof (induct rule: derives-induct)

case Base
show ?case by (rule exI [where x=[]], simp)

next
case (Step y z)

8



note ihyps = this
from ihyps obtain D where ay: Derivation G a D y by blast
from ihyps derives1-implies-Derives1 obtain i r where yz: Derives1 G y i r z

by blast
from Derivation-Derives1 [OF ay yz] show ?case by auto

qed

lemma rule-nonterminal-type[simp]: wf-G G =⇒ (N , α) ∈ set (R G) =⇒ is-nonterminal
G N

by (auto simp add: is-nonterminal-def wf-G-defs)

lemma Derives1-rule [elim]: Derives1 G a i r b =⇒ r ∈ set (R G)
using Derives1-def by metis

lemma is-terminal-nonterminal: wf-G G =⇒ is-terminal G x =⇒ is-nonterminal
G x =⇒ False

by (auto simp: wf-G-defs disjoint-iff is-nonterminal-def is-terminal-def )

lemma is-word-is-terminal: i < length u =⇒ is-word G u =⇒ is-terminal G (u !
i)

using is-word-def by force

lemma Derivation-append: Derivation G a (D@E) c = (∃ b. Derivation G a D b
∧ Derivation G b E c)

by (induct D arbitrary: a c E) auto

lemma Derivation-implies-append:
Derivation G a D b =⇒ Derivation G b E c =⇒ Derivation G a (D@E) c
using Derivation-append by blast

4 Additional derivation lemmas
lemma Derives1-prepend:

assumes Derives1 G u i r v
shows Derives1 G (w@u) (i + length w) r (w@v)

proof −
obtain x y N α where ∗:

u = x @ [N ] @ y v = x @ α @ y
(N , α) ∈ set (R G) r = (N , α) i = length x
using assms Derives1-def by (smt (verit))

hence w@u = w @ x @ [N ] @ y w@v = w @ x @ α @ y
by auto

thus ?thesis
unfolding Derives1-def using ∗
apply (rule-tac exI [where x=w@x])
apply (rule-tac exI [where x=y])
by simp

qed
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lemma Derivation-prepend:
Derivation G b D b ′ =⇒ Derivation G (a@b) (map (λ(i, r). (i + length a, r)) D)

(a@b ′)
using Derives1-prepend by (induction D arbitrary: b b ′) (auto, fast)

lemma Derives1-append:
assumes Derives1 G u i r v
shows Derives1 G (u@w) i r (v@w)

proof −
obtain x y N α where ∗:

u = x @ [N ] @ y v = x @ α @ y
(N , α) ∈ set (R G) r = (N , α) i = length x
using assms Derives1-def by (smt (verit))

hence u@w = x @ [N ] @ y @ w v@w = x @ α @ y @ w
by auto

thus ?thesis
unfolding Derives1-def using ∗
apply (rule-tac exI [where x=x])
apply (rule-tac exI [where x=y@w])
by blast

qed

lemma Derivation-append ′:
Derivation G a D a ′ =⇒ Derivation G (a@b) D (a ′@b)
using Derives1-append by (induction D arbitrary: a a ′) (auto, fast)

lemma Derivation-append-rewrite:
assumes Derivation G a D (b @ c @ d) Derivation G c E c ′

shows ∃F . Derivation G a F (b @ c ′ @ d)
using assms Derivation-append ′ Derivation-prepend Derivation-implies-append

by fast

lemma derives1-if-valid-rule:
(N , α) ∈ set (R G) =⇒ derives1 G [N ] α
unfolding derives1-def
apply (rule-tac exI [where x=[]])
apply (rule-tac exI [where x=[]])
by simp

lemma derives-if-valid-rule:
(N , α) ∈ set (R G) =⇒ derives G [N ] α
using derives1-if-valid-rule by fastforce

lemma Derivation-from-empty:
Derivation G [] D a =⇒ a = []
by (cases D) (auto simp: Derives1-def )

lemma Derivation-concat-split:
Derivation G (a@b) D c =⇒ ∃E F a ′ b ′. Derivation G a E a ′ ∧ Derivation G b
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F b ′ ∧
c = a ′ @ b ′ ∧ length E ≤ length D ∧ length F ≤ length D

proof (induction D arbitrary: a b)
case Nil
thus ?case

by (metis Derivation.simps(1 ) order-refl)
next

case (Cons d D)
then obtain ab where ∗: Derives1 G (a@b) (fst d) (snd d) ab Derivation G ab

D c
by auto

then obtain x y N α where #:
a@b = x @ [N ] @ y ab = x @ α @ y (N ,α) ∈ set (R G) snd d = (N ,α) fst d

= length x
using ∗ unfolding Derives1-def by blast

show ?case
proof (cases length a ≤ length x)

case True
hence ab-def :

a = take (length a) x
b = drop (length a) x @ [N ] @ y
ab = take (length a) x @ drop (length a) x @ α @ y
using #(1 ,2 ) True by (metis append-eq-append-conv-if )+

then obtain E F a ′ b ′ where IH :
Derivation G (take (length a) x) E a ′

Derivation G (drop (length a) x @ α @ y) F b ′

c = a ′ @ b ′

length E ≤ length D
length F ≤ length D
using Cons ∗(2 ) by blast

have Derives1 G b (fst d − length a) (snd d) (drop (length a) x @ α @ y)
unfolding Derives1-def using ∗(1 ) #(3−5 ) ab-def (2 ) by (metis length-drop)

hence Derivation G b ((fst d − length a, snd d) # F) b ′

using IH (2 ) by force
moreover have Derivation G a E a ′

using IH (1 ) ab-def (1 ) by fastforce
ultimately show ?thesis

using IH (3−5 ) by fastforce
next

case False
hence a-def : a = x @ [N ] @ take (length a − length x − 1 ) y

using #(1 ) append-eq-conv-conj[of a b x @ [N ] @ y] take-all-iff take-append
by (metis append-Cons append-Nil diff-is-0-eq le-cases take-Cons ′)

hence b-def : b = drop (length a − length x − 1 ) y
using #(1 ) by (metis List.append.assoc append-take-drop-id same-append-eq)

have ab = x @ α @ take (length a − length x − 1 ) y @ drop (length a − length
x − 1 ) y

using #(2 ) by force
then obtain E F a ′ b ′ where IH :
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Derivation G (x @ α @ take (length a − length x − 1 ) y) E a ′

Derivation G (drop (length a − length x − 1 ) y) F b ′

c = a ′ @ b ′

length E ≤ length D
length F ≤ length D
using Cons.IH [of x @ α @ take (length a − length x − 1 ) y drop (length a

− length x − 1 ) y] ∗(2 ) by auto
have Derives1 G a (fst d) (snd d) (x @ α @ take (length a − length x − 1 ) y)

unfolding Derives1-def using #(3−5 ) a-def by blast
hence Derivation G a ((fst d, snd d) # E) a ′

using IH (1 ) by fastforce
moreover have Derivation G b F b ′

using b-def IH (2 ) by blast
ultimately show ?thesis

using IH (3−5 ) by fastforce
qed

qed

lemma Derivation-S1 :
assumes Derivation G [S G] D ω is-word G ω wf-G G
shows ∃α E . Derivation G α E ω ∧ (S G,α) ∈ set (R G)

proof (cases D)
case Nil
thus ?thesis

using assms is-nonterminal-startsymbol is-terminal-nonterminal by (metis
Derivation.simps(1 ) is-word-def list.set-intros(1 ))
next

case (Cons d D)
then obtain α where Derives1 G [S G] (fst d) (snd d) α Derivation G α D ω

using assms by auto
hence (S G, α) ∈ set (R G)

unfolding Derives1-def
by (metis List.append.right-neutral List.list.discI append-eq-Cons-conv append-is-Nil-conv

nth-Cons-0 self-append-conv2 )
thus ?thesis

using ‹Derivation G α D ω› by auto
qed

end
theory Earley

imports
Derivations

begin

5 Slices
fun slice :: nat ⇒ nat ⇒ ′a list ⇒ ′a list where

slice - - [] = []
| slice - 0 (x#xs) = []
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| slice 0 (Suc b) (x#xs) = x # slice 0 b xs
| slice (Suc a) (Suc b) (x#xs) = slice a b xs

lemma slice-drop-take:
slice a b xs = drop a (take b xs)
by (induction a b xs rule: slice.induct) auto

lemma slice-append-aux:
Suc b ≤ c =⇒ slice (Suc b) c (x # xs) = slice b (c−1 ) xs
using Suc-le-D by fastforce

lemma slice-concat:
a ≤ b =⇒ b ≤ c =⇒ slice a b xs @ slice b c xs = slice a c xs

proof (induction a b xs arbitrary: c rule: slice.induct)
case (3 b x xs)
then show ?case

using Suc-le-D by(fastforce simp: slice-append-aux)
qed (auto simp: slice-append-aux)

lemma slice-concat-Ex:
a ≤ c =⇒ slice a c xs = ys @ zs =⇒ ∃ b. ys = slice a b xs ∧ zs = slice b c xs ∧

a ≤ b ∧ b ≤ c
proof (induction a c xs arbitrary: ys zs rule: slice.induct)

case (3 b x xs)
show ?case
proof (cases ys)

case Nil
then obtain zs ′ where x # slice 0 b xs = x # zs ′ x # zs ′ = zs

using 3 .prems(2 ) by auto
thus ?thesis

using Nil by force
next

case (Cons y ys ′)
then obtain ys ′ where x # slice 0 b xs = x # ys ′ @ zs x # ys ′ = ys

using 3 .prems(2 ) by auto
thus ?thesis

using 3 .IH [of ys ′ zs] by force
qed

next
case (4 a b x xs)
thus ?case

by (auto, metis slice.simps(4 ) Suc-le-mono)
qed auto

lemma slice-nth:
a < length xs =⇒ slice a (a+1 ) xs = [xs!a]
unfolding slice-drop-take
by (metis Cons-nth-drop-Suc One-nat-def diff-add-inverse drop-take take-Suc-Cons

take-eq-Nil)

13



lemma slice-append-nth:
a ≤ b =⇒ b < length xs =⇒ slice a b xs @ [xs!b] = slice a (b+1 ) xs
by (metis le-add1 slice-concat slice-nth)

lemma slice-empty:
b ≤ a =⇒ slice a b xs = []
by (simp add: slice-drop-take)

lemma slice-id[simp]:
slice 0 (length xs) xs = xs
by (simp add: slice-drop-take)

lemma slice-singleton:
b ≤ length xs =⇒ [x] = slice a b xs =⇒ b = a + 1
by (induction a b xs rule: slice.induct) (auto simp: slice-drop-take)

6 Earley recognizer
6.1 Earley items
definition rule-head :: ′a rule ⇒ ′a where

rule-head ≡ fst

definition rule-body :: ′a rule ⇒ ′a list where
rule-body ≡ snd

datatype ′a item =
Item (item-rule: ′a rule) (item-dot : nat) (item-origin : nat) (item-end : nat)

definition item-rule-head :: ′a item ⇒ ′a where
item-rule-head x ≡ rule-head (item-rule x)

definition item-rule-body :: ′a item ⇒ ′a sentence where
item-rule-body x ≡ rule-body (item-rule x)

definition item-α :: ′a item ⇒ ′a sentence where
item-α x ≡ take (item-dot x) (item-rule-body x)

definition item-β :: ′a item ⇒ ′a sentence where
item-β x ≡ drop (item-dot x) (item-rule-body x)

definition is-complete :: ′a item ⇒ bool where
is-complete x ≡ item-dot x ≥ length (item-rule-body x)

definition next-symbol :: ′a item ⇒ ′a option where
next-symbol x ≡ if is-complete x then None else Some (item-rule-body x ! item-dot

x)

14



lemmas item-defs = item-rule-head-def item-rule-body-def item-α-def item-β-def
rule-head-def rule-body-def

definition is-finished :: ′a cfg ⇒ ′a sentence ⇒ ′a item ⇒ bool where
is-finished G ω x ≡

item-rule-head x = S G ∧
item-origin x = 0 ∧
item-end x = length ω ∧
is-complete x

definition recognizing :: ′a item set ⇒ ′a cfg ⇒ ′a sentence ⇒ bool where
recognizing I G ω ≡ ∃ x ∈ I . is-finished G ω x

inductive-set Earley :: ′a cfg ⇒ ′a sentence ⇒ ′a item set
for G :: ′a cfg and ω :: ′a sentence where

Init: r ∈ set (R G) =⇒ fst r = S G =⇒
Item r 0 0 0 ∈ Earley G ω

| Scan: x = Item r b i j =⇒ x ∈ Earley G ω =⇒
ω!j = a =⇒ j < length ω =⇒ next-symbol x = Some a =⇒

Item r (b + 1 ) i (j + 1 ) ∈ Earley G ω
| Predict: x = Item r b i j =⇒ x ∈ Earley G ω =⇒

r ′ ∈ set (R G) =⇒ next-symbol x = Some (rule-head r ′) =⇒
Item r ′ 0 j j ∈ Earley G ω

| Complete: x = Item rx bx i j =⇒ x ∈ Earley G ω =⇒ y = Item ry by j k =⇒
y ∈ Earley G ω =⇒

is-complete y =⇒ next-symbol x = Some (item-rule-head y) =⇒
Item rx (bx + 1 ) i k ∈ Earley G ω

6.2 Well-formedness
definition wf-item :: ′a cfg ⇒ ′a sentence => ′a item ⇒ bool where

wf-item G ω x ≡
item-rule x ∈ set (R G) ∧
item-dot x ≤ length (item-rule-body x) ∧
item-origin x ≤ item-end x ∧
item-end x ≤ length ω

lemma wf-Init:
assumes r ∈ set (R G) fst r = S G
shows wf-item G ω (Item r 0 0 0 )
using assms unfolding wf-item-def by simp

lemma wf-Scan:
assumes x = Item r b i j wf-item G ω x ω!j = a j < length ω next-symbol x =

Some a
shows wf-item G ω (Item r (b + 1 ) i (j+1 ))
using assms unfolding wf-item-def by (auto simp: item-defs is-complete-def

next-symbol-def split: if-splits)
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lemma wf-Predict:
assumes x = Item r b i j wf-item G ω x r ′ ∈ set (R G) next-symbol x = Some

(rule-head r ′)
shows wf-item G ω (Item r ′ 0 j j)
using assms unfolding wf-item-def by simp

lemma wf-Complete:
assumes x = Item rx bx i j wf-item G ω x y = Item ry by j k wf-item G ω y
assumes is-complete y next-symbol x = Some (item-rule-head y)
shows wf-item G ω (Item rx (bx + 1 ) i k)
using assms unfolding wf-item-def is-complete-def next-symbol-def item-rule-body-def
by (auto split: if-splits)

lemma wf-Earley:
assumes x ∈ Earley G ω
shows wf-item G ω x
using assms wf-Init wf-Scan wf-Predict wf-Complete
by (induction rule: Earley.induct) fast+

6.3 Soundness
definition sound-item :: ′a cfg ⇒ ′a sentence ⇒ ′a item ⇒ bool where

sound-item G ω x ≡ derives G [item-rule-head x] (slice (item-origin x) (item-end
x) ω @ item-β x)

lemma sound-Init:
assumes r ∈ set (R G) fst r = S G
shows sound-item G ω (Item r 0 0 0 )

proof −
let ?x = Item r 0 0 0
have (item-rule-head ?x, item-β ?x) ∈ set (R G)

using assms(1 ) by (simp add: item-defs)
hence derives G [item-rule-head ?x] (item-β ?x)

using derives-if-valid-rule by metis
thus sound-item G ω ?x

unfolding sound-item-def by (simp add: slice-empty)
qed

lemma sound-Scan:
assumes x = Item r b i j wf-item G ω x sound-item G ω x
assumes ω!j = a j < length ω next-symbol x = Some a
shows sound-item G ω (Item r (b+1 ) i (j+1 ))

proof −
define x ′ where [simp]: x ′ = Item r (b+1 ) i (j+1 )
obtain item-β ′ where ∗: item-β x = a # item-β ′ item-β x ′ = item-β ′

using assms(1 ,6 ) apply (auto simp: item-defs next-symbol-def is-complete-def
split: if-splits)

by (metis Cons-nth-drop-Suc leI )
have slice i j ω @ item-β x = slice i (j+1 ) ω @ item-β ′
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using ∗ assms(1 ,2 ,4 ,5 ) by (auto simp: slice-append-nth wf-item-def )
moreover have derives G [item-rule-head x] (slice i j ω @ item-β x)

using assms(1 ,3 ) sound-item-def by force
ultimately show ?thesis

using assms(1 ) ∗ by (auto simp: item-defs sound-item-def )
qed

lemma sound-Predict:
assumes x = Item r b i j wf-item G ω x sound-item G ω x
assumes r ′ ∈ set (R G) next-symbol x = Some (rule-head r ′)
shows sound-item G ω (Item r ′ 0 j j)
using assms by (auto simp: sound-item-def derives-if-valid-rule slice-empty item-defs)

lemma sound-Complete:
assumes x = Item rx bx i j wf-item G ω x sound-item G ω x
assumes y = Item ry by j k wf-item G ω y sound-item G ω y
assumes is-complete y next-symbol x = Some (item-rule-head y)
shows sound-item G ω (Item rx (bx + 1 ) i k)

proof −
have derives G [item-rule-head y] (slice j k ω)

using assms(4 ,6 ,7 ) by (auto simp: sound-item-def is-complete-def item-defs)
then obtain E where E : Derivation G [item-rule-head y] E (slice j k ω)

using derives-implies-Derivation by blast
have derives G [item-rule-head x] (slice i j ω @ item-β x)

using assms(1 ,3 ,4 ) by (auto simp: sound-item-def )
moreover have 0 : item-β x = (item-rule-head y) # tl (item-β x)

using assms(8 ) apply (auto simp: next-symbol-def is-complete-def item-defs
split: if-splits)

by (metis drop-eq-Nil hd-drop-conv-nth leI list.collapse)
ultimately obtain D where D:
Derivation G [item-rule-head x] D (slice i j ω @ [item-rule-head y] @ (tl (item-β

x)))
using derives-implies-Derivation by (metis append-Cons append-Nil)

obtain F where F :
Derivation G [item-rule-head x] F (slice i j ω @ slice j k ω @ tl (item-β x))
using Derivation-append-rewrite D E by blast

moreover have i ≤ j
using assms(1 ,2 ) wf-item-def by force

moreover have j ≤ k
using assms(4 ,5 ) wf-item-def by force

ultimately have derives G [item-rule-head x] (slice i k ω @ tl (item-β x))
by (metis Derivation-implies-derives append.assoc slice-concat)

thus sound-item G ω (Item rx (bx + 1 ) i k)
using assms(1 ,4 ) by (auto simp: sound-item-def item-defs drop-Suc tl-drop)

qed

lemma sound-Earley:
assumes x ∈ Earley G ω wf-item G ω x
shows sound-item G ω x
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using assms
proof (induction rule: Earley.induct)

case (Init r)
thus ?case

using sound-Init by blast
next

case (Scan x r b i j a)
thus ?case

using wf-Earley sound-Scan by fast
next

case (Predict x r b i j r ′)
thus ?case

using wf-Earley sound-Predict by blast
next

case (Complete x rx bx i j y ry by k)
thus ?case

using wf-Earley sound-Complete by metis
qed

theorem soundness-Earley:
assumes recognizing (Earley G ω) G ω
shows derives G [S G] ω

proof −
obtain x where x: x ∈ Earley G ω is-finished G ω x

using assms recognizing-def by blast
hence sound-item G ω x

using wf-Earley sound-Earley by blast
thus ?thesis
unfolding sound-item-def using x by (auto simp: is-finished-def is-complete-def

item-defs)
qed

6.4 Completeness
definition partially-completed :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a item set ⇒ ( ′a
derivation ⇒ bool) ⇒ bool where

partially-completed k G ω E P ≡ ∀ r b i ′ i j x a D.
i ≤ j ∧ j ≤ k ∧ k ≤ length ω ∧
x = Item r b i ′ i ∧ x ∈ E ∧ next-symbol x = Some a ∧
Derivation G [a] D (slice i j ω) ∧ P D −→
Item r (b+1 ) i ′ j ∈ E

lemma partially-completed-upto:
assumes j ≤ k k ≤ length ω
assumes x = Item (N ,α) d i j x ∈ I ∀ x ∈ I . wf-item G ω x
assumes Derivation G (item-β x) D (slice j k ω)
assumes partially-completed k G ω I (λD ′. length D ′ ≤ length D)
shows Item (N ,α) (length α) i k ∈ I
using assms
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proof (induction item-β x arbitrary: d i j k N α x D)
case Nil
have item-α x = α
using Nil(1 ,4 ) unfolding item-α-def item-β-def item-rule-body-def rule-body-def

by simp
hence x = Item (N ,α) (length α) i j

using Nil.hyps Nil.prems(3−5 ) unfolding wf-item-def item-defs by auto
have Derivation G [] D (slice j k ω)

using Nil.hyps Nil.prems(6 ) by auto
hence slice j k ω = []

using Derivation-from-empty by blast
hence j = k

unfolding slice-drop-take using Nil.prems(1 ,2 ) by simp
thus ?case

using ‹x = Item (N , α) (length α) i j› Nil.prems(4 ) by blast
next

case (Cons b bs)
obtain j ′ E F where ∗:

Derivation G [b] E (slice j j ′ ω)
Derivation G bs F (slice j ′ k ω)
j ≤ j ′ j ′ ≤ k length E ≤ length D length F ≤ length D
using Derivation-concat-split[of G [b] bs D slice j k ω] slice-concat-Ex
using Cons.hyps(2 ) Cons.prems(1 ,6 )
by (smt (verit, ccfv-threshold) Cons-eq-appendI append-self-conv2 )

have next-symbol x = Some b
using Cons.hyps(2 ) unfolding item-defs(4 ) next-symbol-def is-complete-def

by (auto, metis nth-via-drop)
hence Item (N , α) (d+1 ) i j ′ ∈ I

using Cons.prems(7 ) unfolding partially-completed-def
using Cons.prems(2 ,3 ,4 ) ∗(1 ,3−5 ) by blast

moreover have partially-completed k G ω I (λD ′. length D ′ ≤ length F)
using Cons.prems(7 ) ∗(6 ) unfolding partially-completed-def by fastforce

moreover have bs = item-β (Item (N ,α) (d+1 ) i j ′)
using Cons.hyps(2 ) Cons.prems(3 ) unfolding item-defs(4 ) item-rule-body-def

by (auto, metis List.list.sel(3 ) drop-Suc drop-tl)
ultimately show ?case

using Cons.hyps(1 ) ∗(2 ,4 ) Cons.prems(2 ,3 ,5 ) wf-item-def by blast
qed

lemma partially-completed-Earley-k:
assumes wf-G G
shows partially-completed k G ω (Earley G ω) (λ-. True)
unfolding partially-completed-def

proof (standard, standard, standard, standard, standard, standard, standard, stan-
dard, standard)

fix r b i ′ i j x a D
assume

i ≤ j ∧ j ≤ k ∧ k ≤ length ω ∧
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x = Item r b i ′ i ∧ x ∈ Earley G ω ∧
next-symbol x = Some a ∧
Derivation G [a] D (slice i j ω) ∧ True

thus Item r (b + 1 ) i ′ j ∈ Earley G ω
proof (induction length D arbitrary: r b i ′ i j x a D rule: nat-less-induct)

case 1
show ?case
proof cases

assume D = []
hence [a] = slice i j ω

using 1 .prems by force
moreover have j ≤ length ω

using le-trans 1 .prems by blast
ultimately have j = i+1

using slice-singleton by metis
hence i < length ω

using ‹j ≤ length ω› discrete by blast
hence ω!i = a

using slice-nth ‹[a] = slice i j ω› ‹j = i + 1 › by fastforce
hence Item r (b + 1 ) i ′ j ∈ Earley G ω

using Earley.Scan 1 .prems ‹i < length ω› ‹j = i + 1 › by metis
thus ?thesis

by (simp add: ‹j = i + 1 ›)
next

assume ¬ D = []
then obtain d D ′ where D = d # D ′

by (meson List.list.exhaust)
then obtain α where ∗: Derives1 G [a] (fst d) (snd d) α Derivation G α D ′

(slice i j ω)
using 1 .prems by auto

hence rule: (a, α) ∈ set (R G) fst d = 0 snd d = (a ,α)
using ∗(1 ) unfolding Derives1-def by (simp add: Cons-eq-append-conv)+

show ?thesis
proof cases

assume is-terminal G a
have is-nonterminal G a

using rule by (simp add: assms)
thus ?thesis

using ‹is-terminal G a› is-terminal-nonterminal by (metis assms)
next

assume ¬ is-terminal G a
define y where y-def : y = Item (a ,α) 0 i i
have length D ′ < length D

using ‹D = d # D ′› by fastforce
hence partially-completed k G ω (Earley G ω) (λE . length E ≤ length D ′)
unfolding partially-completed-def using 1 .hyps order-le-less-trans by (smt

(verit, best))
hence partially-completed j G ω (Earley G ω) (λE . length E ≤ length D ′)

unfolding partially-completed-def using 1 .prems by force
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moreover have Derivation G (item-β y) D ′ (slice i j ω)
using ∗(2 ) by (auto simp: item-defs y-def )

moreover have y ∈ Earley G ω
using y-def 1 .prems rule by (auto simp: item-defs Earley.Predict)

moreover have j ≤ length ω
using 1 .prems by simp

ultimately have Item (a,α) (length α) i j ∈ Earley G ω
using partially-completed-upto 1 .prems wf-Earley y-def by metis

moreover have x: x = Item r b i ′ i x ∈ Earley G ω
using 1 .prems by blast+

moreover have next-symbol x = Some a
using 1 .prems by linarith

ultimately show ?thesis
using Earley.Complete[OF x] by (auto simp: is-complete-def item-defs)

qed
qed

qed
qed

lemma partially-completed-Earley:
wf-G G =⇒ partially-completed (length ω) G ω (Earley G ω) (λ-. True)
by (simp add: partially-completed-Earley-k)

theorem completeness-Earley:
assumes derives G [S G] ω is-word G ω wf-G G
shows recognizing (Earley G ω) G ω

proof −
obtain α D where ∗: (S G ,α) ∈ set (R G) Derivation G α D ω

using Derivation-S1 assms derives-implies-Derivation by metis
define x where x-def : x = Item (S G, α) 0 0 0
have partially-completed (length ω) G ω (Earley G ω) (λ-. True)

using assms(3 ) partially-completed-Earley by blast
hence 0 : partially-completed (length ω) G ω (Earley G ω) (λD ′. length D ′ ≤

length D)
unfolding partially-completed-def by blast

have 1 : x ∈ Earley G ω
using x-def Earley.Init ∗(1 ) by fastforce

have 2 : Derivation G (item-β x) D (slice 0 (length ω) ω)
using ∗(2 ) x-def by (simp add: item-defs)

have Item (S G,α) (length α) 0 (length ω) ∈ Earley G ω
using partially-completed-upto[OF - - - - - 2 0 ] wf-Earley 1 x-def by auto

then show ?thesis
unfolding recognizing-def is-finished-def by (auto simp: is-complete-def item-defs,

force)
qed

6.5 Correctness
theorem correctness-Earley:
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assumes wf-G G is-word G ω
shows recognizing (Earley G ω) G ω ←→ derives G [S G] ω
using assms soundness-Earley completeness-Earley by blast

6.6 Finiteness
lemma finiteness-empty:

set (R G) = {} =⇒ finite { x | x. wf-item G ω x }
unfolding wf-item-def by simp

fun item-intro :: ′a rule × nat × nat × nat ⇒ ′a item where
item-intro (rule, dot, origin, ends) = Item rule dot origin ends

lemma finiteness-nonempty:
assumes set (R G) 6= {}
shows finite { x | x. wf-item G ω x }

proof −
define M where M = Max { length (rule-body r) | r . r ∈ set (R G) }
define Top where Top = (set (R G) × {0 ..M} × {0 ..length ω} × {0 ..length

ω})
hence finite Top

using finite-cartesian-product finite by blast
have inj-on item-intro Top

unfolding Top-def inj-on-def by simp
hence finite (item-intro ‘ Top)

using finite-image-iff ‹finite Top› by auto
have { x | x. wf-item G ω x } ⊆ item-intro ‘ Top
proof standard

fix x
assume x ∈ { x | x. wf-item G ω x }
then obtain rule dot origin endp where ∗: x = Item rule dot origin endp

rule ∈ set (R G) dot ≤ length (item-rule-body x) origin ≤ length ω endp ≤
length ω

unfolding wf-item-def using item.exhaust-sel le-trans by blast
hence length (rule-body rule) ∈ { length (rule-body r) | r . r ∈ set (R G) }

using ∗(1 ,2 ) item-rule-body-def by blast
moreover have finite { length (rule-body r) | r . r ∈ set (R G) }

using finite finite-image-set[of λx. x ∈ set (R G)] by fastforce
ultimately have M ≥ length (rule-body rule)

unfolding M-def by simp
hence dot ≤ M

using ∗(1 ,3 ) item-rule-body-def by (metis item.sel(1 ) le-trans)
hence (rule, dot, origin, endp) ∈ Top

using ∗(2 ,4 ,5 ) unfolding Top-def by simp
thus x ∈ item-intro ‘ Top

using ∗(1 ) by force
qed
thus ?thesis

using ‹finite (item-intro ‘ Top)› rev-finite-subset by auto
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qed

lemma finiteness-UNIV-wf-item:
finite { x | x. wf-item G ω x }
using finiteness-empty finiteness-nonempty by fastforce

theorem finiteness-Earley:
finite (Earley G ω)
using finiteness-UNIV-wf-item wf-Earley rev-finite-subset by (metis mem-Collect-eq

subsetI )

end
theory Earley-Fixpoint

imports
Earley
Limit

begin

7 Earley recognizer
7.1 Earley fixpoint
definition init-item :: ′a rule ⇒ nat ⇒ ′a item where

init-item r k ≡ Item r 0 k k

definition inc-item :: ′a item ⇒ nat ⇒ ′a item where
inc-item x k ≡ Item (item-rule x) (item-dot x + 1 ) (item-origin x) k

definition bin :: ′a item set ⇒ nat ⇒ ′a item set where
bin I k ≡ { x . x ∈ I ∧ item-end x = k }

definition InitF :: ′a cfg ⇒ ′a item set where
InitF G ≡ { init-item r 0 | r . r ∈ set (R G) ∧ fst r = (S G) }

definition ScanF :: nat ⇒ ′a sentence ⇒ ′a item set ⇒ ′a item set where
ScanF k ω I ≡ { inc-item x (k+1 ) | x a.

x ∈ bin I k ∧
ω!k = a ∧
k < length ω ∧
next-symbol x = Some a }

definition PredictF :: nat ⇒ ′a cfg ⇒ ′a item set ⇒ ′a item set where
PredictF k G I ≡ { init-item r k | r x.

r ∈ set (R G) ∧
x ∈ bin I k ∧
next-symbol x = Some (rule-head r) }

definition CompleteF :: nat ⇒ ′a item set ⇒ ′a item set where
CompleteF k I ≡ { inc-item x k | x y.
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x ∈ bin I (item-origin y) ∧
y ∈ bin I k ∧
is-complete y ∧
next-symbol x = Some (item-rule-head y) }

definition EarleyF -bin-step :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a item set ⇒ ′a
item set where

EarleyF -bin-step k G ω I ≡ I ∪ ScanF k ω I ∪ CompleteF k I ∪ PredictF k G I

definition EarleyF -bin :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a item set ⇒ ′a item set
where

EarleyF -bin k G ω I ≡ limit (EarleyF -bin-step k G ω) I

fun EarleyF -bins :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a item set where
EarleyF -bins 0 G ω = EarleyF -bin 0 G ω (InitF G)
| EarleyF -bins (Suc n) G ω = EarleyF -bin (Suc n) G ω (EarleyF -bins n G ω)

definition EarleyF :: ′a cfg ⇒ ′a sentence ⇒ ′a item set where
EarleyF G ω ≡ EarleyF -bins (length ω) G ω

7.2 Monotonicity and Absorption
lemma EarleyF -bin-step-empty:

EarleyF -bin-step k G ω {} = {}
unfolding EarleyF -bin-step-def ScanF -def CompleteF -def PredictF -def bin-def

by blast

lemma EarleyF -bin-step-setmonotone:
setmonotone (EarleyF -bin-step k G ω)
by (simp add: Un-assoc EarleyF -bin-step-def setmonotone-def )

lemma EarleyF -bin-step-continuous:
continuous (EarleyF -bin-step k G ω)
unfolding continuous-def

proof (standard, standard, standard)
fix C :: nat ⇒ ′a item set
assume chain C
thus chain (EarleyF -bin-step k G ω ◦ C )
unfolding chain-def EarleyF -bin-step-def by (auto simp: ScanF -def PredictF -def

CompleteF -def bin-def subset-eq)
next

fix C :: nat ⇒ ′a item set
assume ∗: chain C
show EarleyF -bin-step k G ω (natUnion C ) = natUnion (EarleyF -bin-step k G

ω ◦ C )
unfolding natUnion-def

proof standard
show EarleyF -bin-step k G ω (

⋃
{C n |n. True}) ⊆

⋃
{(EarleyF -bin-step k

G ω ◦ C ) n |n. True}
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proof standard
fix x
assume #: x ∈ EarleyF -bin-step k G ω (

⋃
{C n |n. True})

show x ∈
⋃
{(EarleyF -bin-step k G ω ◦ C ) n |n. True}

proof (cases x ∈ CompleteF k (
⋃
{C n |n. True}))

case True
then show ?thesis

using ∗ unfolding chain-def EarleyF -bin-step-def CompleteF -def bin-def
proof clarsimp

fix y :: ′a item and z :: ′a item and n :: nat and m :: nat
assume a1 : is-complete z
assume a2 : item-end y = item-origin z
assume a3 : y ∈ C n
assume a4 : z ∈ C m
assume a5 : next-symbol y = Some (item-rule-head z)
assume ∀ i. C i ⊆ C (Suc i)
hence f6 :

∧
n m. ¬ n ≤ m ∨ C n ⊆ C m

by (meson lift-Suc-mono-le)
hence f7 :

∧
n. ¬ m ≤ n ∨ z ∈ C n

using a4 by blast
have ∃n ≥ m. y ∈ C n

using f6 a3 by (meson le-sup-iff subset-eq sup-ge1 )
thus ∃ I .

(∃n. I = C n ∪
ScanF (item-end z) ω (C n) ∪
{inc-item i (item-end z) |i.

i ∈ C n ∧
(∃ j.

item-end i = item-origin j ∧
j ∈ C n ∧
item-end j = item-end z ∧
is-complete j ∧
next-symbol i = Some (item-rule-head j))} ∪

PredictF (item-end z) G (C n))
∧ inc-item y (item-end z) ∈ I

using f7 a5 a2 a1 by blast
qed

next
case False
thus ?thesis
using # Un-iff by (auto simp: EarleyF -bin-step-def ScanF -def PredictF -def

bin-def ; blast)
qed

qed
next

show
⋃
{(EarleyF -bin-step k G ω ◦ C ) n |n. True} ⊆ EarleyF -bin-step k G ω

(
⋃
{C n |n. True})
unfolding EarleyF -bin-step-def

using ∗ by (auto simp: ScanF -def PredictF -def CompleteF -def chain-def
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bin-def , metis+)
qed

qed

lemma EarleyF -bin-step-regular :
regular (EarleyF -bin-step k G ω)
by (simp add: EarleyF -bin-step-continuous EarleyF -bin-step-setmonotone regu-

lar-def )

lemma EarleyF -bin-idem:
EarleyF -bin k G ω (EarleyF -bin k G ω I ) = EarleyF -bin k G ω I
by (simp add: EarleyF -bin-def EarleyF -bin-step-regular limit-is-idempotent)

lemma ScanF -bin-absorb:
ScanF k ω (bin I k) = ScanF k ω I
unfolding ScanF -def bin-def by simp

lemma PredictF -bin-absorb:
PredictF k G (bin I k) = PredictF k G I
unfolding PredictF -def bin-def by simp

lemma ScanF -Un:
ScanF k ω (I ∪ J ) = ScanF k ω I ∪ ScanF k ω J
unfolding ScanF -def bin-def by blast

lemma PredictF -Un:
PredictF k G (I ∪ J ) = PredictF k G I ∪ PredictF k G J
unfolding PredictF -def bin-def by blast

lemma ScanF -sub-mono:
I ⊆ J =⇒ ScanF k ω I ⊆ ScanF k ω J
unfolding ScanF -def bin-def by blast

lemma PredictF -sub-mono:
I ⊆ J =⇒ PredictF k G I ⊆ PredictF k G J
unfolding PredictF -def bin-def by blast

lemma CompleteF -sub-mono:
I ⊆ J =⇒ CompleteF k I ⊆ CompleteF k J
unfolding CompleteF -def bin-def by blast

lemma EarleyF -bin-step-sub-mono:
I ⊆ J =⇒ EarleyF -bin-step k G ω I ⊆ EarleyF -bin-step k G ω J
unfolding EarleyF -bin-step-def using ScanF -sub-mono PredictF -sub-mono Com-

pleteF -sub-mono by (metis sup.mono)

lemma funpower-sub-mono:
I ⊆ J =⇒ funpower (EarleyF -bin-step k G ω) n I ⊆ funpower (EarleyF -bin-step

k G ω) n J
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by (induction n) (auto simp: EarleyF -bin-step-sub-mono)

lemma EarleyF -bin-sub-mono:
I ⊆ J =⇒ EarleyF -bin k G ω I ⊆ EarleyF -bin k G ω J

proof standard
fix x
assume I ⊆ J x ∈ EarleyF -bin k G ω I
then obtain n where x ∈ funpower (EarleyF -bin-step k G ω) n I

unfolding EarleyF -bin-def limit-def natUnion-def by blast
hence x ∈ funpower (EarleyF -bin-step k G ω) n J

using ‹I ⊆ J › funpower-sub-mono by blast
thus x ∈ EarleyF -bin k G ω J

unfolding EarleyF -bin-def limit-def natUnion-def by blast
qed

lemma ScanF -EarleyF -bin-step-mono:
ScanF k ω I ⊆ EarleyF -bin-step k G ω I
using EarleyF -bin-step-def by blast

lemma PredictF -EarleyF -bin-step-mono:
PredictF k G I ⊆ EarleyF -bin-step k G ω I
using EarleyF -bin-step-def by blast

lemma CompleteF -EarleyF -bin-step-mono:
CompleteF k I ⊆ EarleyF -bin-step k G ω I
using EarleyF -bin-step-def by blast

lemma EarleyF -bin-step-EarleyF -bin-mono:
EarleyF -bin-step k G ω I ⊆ EarleyF -bin k G ω I

proof −
have EarleyF -bin-step k G ω I ⊆ funpower (EarleyF -bin-step k G ω) 1 I

by simp
thus ?thesis

by (metis EarleyF -bin-def limit-elem subset-eq)
qed

lemma ScanF -EarleyF -bin-mono:
ScanF k ω I ⊆ EarleyF -bin k G ω I
using ScanF -EarleyF -bin-step-mono EarleyF -bin-step-EarleyF -bin-mono by force

lemma PredictF -EarleyF -bin-mono:
PredictF k G I ⊆ EarleyF -bin k G ω I
using PredictF -EarleyF -bin-step-mono EarleyF -bin-step-EarleyF -bin-mono by

force

lemma CompleteF -EarleyF -bin-mono:
CompleteF k I ⊆ EarleyF -bin k G ω I
using CompleteF -EarleyF -bin-step-mono EarleyF -bin-step-EarleyF -bin-mono by

force
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lemma EarleyF -bin-mono:
I ⊆ EarleyF -bin k G ω I
using EarleyF -bin-step-EarleyF -bin-mono EarleyF -bin-step-def by blast

lemma InitF -sub-EarleyF -bins:
InitF G ⊆ EarleyF -bins n G ω
by (induction n) (use EarleyF -bin-mono in fastforce)+

7.3 Soundness
lemma InitF -sub-Earley:

InitF G ⊆ Earley G ω
unfolding InitF -def init-item-def using Init by blast

lemma ScanF -sub-Earley:
assumes I ⊆ Earley G ω
shows ScanF k ω I ⊆ Earley G ω
unfolding ScanF -def inc-item-def bin-def using assms Scan
by (smt (verit, ccfv-SIG) item.exhaust-sel mem-Collect-eq subsetD subsetI )

lemma PredictF -sub-Earley:
assumes I ⊆ Earley G ω
shows PredictF k G I ⊆ Earley G ω
unfolding PredictF -def init-item-def bin-def using assms Predict
using item.exhaust-sel by blast

lemma CompleteF -sub-Earley:
assumes I ⊆ Earley G ω
shows CompleteF k I ⊆ Earley G ω
unfolding CompleteF -def inc-item-def bin-def using assms Complete
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq subset-eq)

lemma EarleyF -bin-step-sub-Earley:
assumes I ⊆ Earley G ω
shows EarleyF -bin-step k G ω I ⊆ Earley G ω
unfolding EarleyF -bin-step-def using assms CompleteF -sub-Earley PredictF -sub-Earley

ScanF -sub-Earley by (metis le-supI )

lemma EarleyF -bin-sub-Earley:
assumes I ⊆ Earley G ω
shows EarleyF -bin k G ω I ⊆ Earley G ω
using assms EarleyF -bin-step-sub-Earley by (metis EarleyF -bin-def limit-upperbound)

lemma EarleyF -bins-sub-Earley:
shows EarleyF -bins n G ω ⊆ Earley G ω
by (induction n) (auto simp: EarleyF -bin-sub-Earley InitF -sub-Earley)

lemma EarleyF -sub-Earley:
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shows EarleyF G ω ⊆ Earley G ω
by (simp add: EarleyF -bins-sub-Earley EarleyF -def )

theorem soundness-EarleyF :
assumes recognizing (EarleyF G ω) G ω
shows derives G [S G] ω
using soundness-Earley EarleyF -sub-Earley assms recognizing-def by (metis sub-

setD)

7.4 Completeness
definition prev-symbol :: ′a item ⇒ ′a option where

prev-symbol x ≡ if item-dot x = 0 then None else Some (item-rule-body x !
(item-dot x − 1 ))

definition base :: ′a sentence ⇒ ′a item set ⇒ nat ⇒ ′a item set where
base ω I k ≡ { x . x ∈ I ∧ item-end x = k ∧ k > 0 ∧ prev-symbol x = Some

(ω!(k−1 )) }

lemma EarleyF -bin-sub-EarleyF -bin:
assumes InitF G ⊆ I
assumes ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ I
assumes base ω (Earley G ω) k ⊆ I
shows bin (Earley G ω) k ⊆ bin (EarleyF -bin k G ω I ) k

proof standard
fix x
assume ∗: x ∈ bin (Earley G ω) k
hence x ∈ Earley G ω

using bin-def by blast
thus x ∈ bin (EarleyF -bin k G ω I ) k

using assms ∗
proof (induction rule: Earley.induct)

case (Init r)
thus ?case

unfolding InitF -def init-item-def bin-def using EarleyF -bin-mono by fast
next

case (Scan x r b i j a)
have j+1 = k
using Scan.prems(4 ) bin-def by (metis (mono-tags, lifting) CollectD item.sel(4 ))
have prev-symbol (Item r (b+1 ) i (j+1 )) = Some (ω!(k−1 ))
using Scan.hyps(1 ,3 ,5 ) ‹j+1 = k› by (auto simp: next-symbol-def prev-symbol-def

item-rule-body-def split: if-splits)
hence Item r (b+1 ) i (j+1 ) ∈ base ω (Earley G ω) k

unfolding base-def using Scan.prems(4 ) bin-def by fastforce
hence Item r (b+1 ) i (j+1 ) ∈ I

using Scan.prems(3 ) by blast
hence Item r (b+1 ) i (j+1 ) ∈ EarleyF -bin k G ω I

using EarleyF -bin-mono by blast
thus ?case

29



using ‹j+1 = k› bin-def by fastforce
next

case (Predict x r b i j r ′)
have j = k

using Predict.prems(4 ) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4 ))

hence x ∈ bin (Earley G ω) k
using Predict.hyps(1 ,2 ) bin-def by fastforce

hence x ∈ bin (EarleyF -bin k G ω I ) k
using Predict.IH Predict.prems(1−3 ) by blast

hence Item r ′ 0 j j ∈ PredictF k G (EarleyF -bin k G ω I )
unfolding PredictF -def init-item-def using Predict.hyps(1 ,3 ,4 ) ‹j = k› by

blast
hence Item r ′ 0 j j ∈ EarleyF -bin-step k G ω (EarleyF -bin k G ω I )

using PredictF -EarleyF -bin-step-mono by blast
hence Item r ′ 0 j j ∈ EarleyF -bin k G ω I

using EarleyF -bin-idem EarleyF -bin-step-EarleyF -bin-mono by blast
thus ?case

by (simp add: ‹j = k› bin-def )
next

case (Complete x rx bx i j y ry by l)
have l = k

using Complete.prems(4 ) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4 ))

hence y ∈ bin (Earley G ω) l
using Complete.hyps(3 ,4 ) bin-def by fastforce

hence 0 : y ∈ bin (EarleyF -bin k G ω I ) k
using Complete.IH (2 ) Complete.prems(1−3 ) ‹l = k› by blast

have 1 : x ∈ bin (EarleyF -bin k G ω I ) (item-origin y)
proof (cases j = k)

case True
hence x ∈ bin (Earley G ω) k

using Complete.hyps(1 ,2 ) bin-def by fastforce
hence x ∈ bin (EarleyF -bin k G ω I ) k

using Complete.IH (1 ) Complete.prems(1−3 ) by blast
thus ?thesis

using Complete.hyps(3 ) True by simp
next

case False
hence j < k

using ‹l = k› wf-Earley wf-item-def Complete.hyps(3 ,4 ) by force
moreover have x ∈ bin (Earley G ω) j

using Complete.hyps(1 ,2 ) bin-def by force
ultimately have x ∈ I

using Complete.prems(2 ) by blast
hence x ∈ bin (EarleyF -bin k G ω I ) j

using Complete.hyps(1 ) EarleyF -bin-mono bin-def by fastforce
thus ?thesis

using Complete.hyps(3 ) by simp
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qed
have Item rx (bx + 1 ) i k ∈ CompleteF k (EarleyF -bin k G ω I )

unfolding CompleteF -def inc-item-def using 0 1 Complete.hyps(1 ,5 ,6 ) by
force

hence Item rx (bx + 1 ) i k ∈ EarleyF -bin-step k G ω (EarleyF -bin k G ω I )
unfolding EarleyF -bin-step-def by blast

hence Item rx (bx + 1 ) i k ∈ EarleyF -bin k G ω I
using EarleyF -bin-idem EarleyF -bin-step-EarleyF -bin-mono by blast

thus ?case
using bin-def ‹l = k› by fastforce

qed
qed

lemma Earley-base-sub-EarleyF -bin:
assumes InitF G ⊆ I
assumes ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ I
assumes base ω (Earley G ω) k ⊆ I
assumes wf-G G is-word G ω
shows base ω (Earley G ω) (k+1 ) ⊆ bin (EarleyF -bin k G ω I ) (k+1 )

proof standard
fix x
assume ∗: x ∈ base ω (Earley G ω) (k+1 )
hence x ∈ Earley G ω

using base-def by blast
thus x ∈ bin (EarleyF -bin k G ω I ) (k+1 )

using assms ∗
proof (induction rule: Earley.induct)

case (Init r)
have k = 0

using Init.prems(6 ) unfolding base-def by simp
hence False

using Init.prems(6 ) unfolding base-def by simp
thus ?case

by blast
next

case (Scan x r b i j a)
have j = k
using Scan.prems(6 ) base-def by (metis (mono-tags, lifting) CollectD add-right-cancel

item.sel(4 ))
hence x ∈ bin (EarleyF -bin k G ω I ) k

using EarleyF -bin-sub-EarleyF -bin Scan.prems Scan.hyps(1 ,2 ) bin-def
by (metis (mono-tags, lifting) CollectI item.sel(4 ) subsetD)

hence Item r (b+1 ) i (j+1 ) ∈ ScanF k ω (EarleyF -bin k G ω I )
unfolding ScanF -def inc-item-def using Scan.hyps ‹j = k› by force

hence Item r (b+1 ) i (j+1 ) ∈ EarleyF -bin-step k G ω (EarleyF -bin k G ω I )
using ScanF -EarleyF -bin-step-mono by blast

hence Item r (b+1 ) i (j+1 ) ∈ EarleyF -bin k G ω I
using EarleyF -bin-idem EarleyF -bin-step-EarleyF -bin-mono by blast

thus ?case
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using ‹j = k› bin-def by fastforce
next

case (Predict x r b i j r ′)
have False

using Predict.prems(6 ) unfolding base-def by (auto simp: prev-symbol-def )
thus ?case

by blast
next

case (Complete x rx bx i j y ry by l)
have l−1 < length ω

using Complete.prems(6 ) base-def wf-Earley wf-item-def
by (metis (mono-tags, lifting) CollectD add.right-neutral add-Suc-right add-diff-cancel-right ′

item.sel(4 ) less-eq-Suc-le plus-1-eq-Suc)
hence is-terminal G (ω!(l−1 ))

using Complete.prems(5 ) is-word-is-terminal by blast
moreover have is-nonterminal G (item-rule-head y)

using Complete.hyps(3 ,4 ) Complete.prems(4 ) wf-Earley wf-item-def
by (metis item-rule-head-def prod.collapse rule-head-def rule-nonterminal-type)
moreover have prev-symbol (Item rx (bx+1 ) i l) = next-symbol x

using Complete.hyps(1 ,6 )
by (auto simp: next-symbol-def prev-symbol-def is-complete-def item-rule-body-def

split: if-splits)
moreover have prev-symbol (Item rx (bx+1 ) i l) = Some (ω!(l−1 ))

using Complete.prems(6 ) base-def by (metis (mono-tags, lifting) CollectD
item.sel(4 ))

ultimately have False
using Complete.hyps(6 ) Complete.prems(4 ) is-terminal-nonterminal by fast-

force
thus ?case

by blast
qed

qed

lemma EarleyF -bin-k-sub-EarleyF -bins:
assumes wf-G G is-word G ω k ≤ n
shows bin (Earley G ω) k ⊆ EarleyF -bins n G ω
using assms

proof (induction n arbitrary: k)
case 0
have bin (Earley G ω) 0 ⊆ bin (EarleyF -bin 0 G ω (InitF G)) 0

using EarleyF -bin-sub-EarleyF -bin base-def by fastforce
thus ?case

unfolding bin-def using 0 .prems(3 ) by auto
next

case (Suc n)
show ?case
proof (cases k ≤ n)

case True
thus ?thesis
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using Suc EarleyF -bin-mono by force
next

case False
hence k = n+1

using Suc.prems(3 ) by force
have 0 : ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ EarleyF -bins n G ω

using Suc by simp
moreover have base ω (Earley G ω) k ⊆ EarleyF -bins n G ω
proof −

have ∀ k ′ < k−1 . bin (Earley G ω) k ′ ⊆ EarleyF -bins n G ω
using Suc ‹k = n + 1 › by auto

moreover have base ω (Earley G ω) (k−1 ) ⊆ EarleyF -bins n G ω
using 0 bin-def base-def False ‹k = n+1 ›

by (smt (verit) Suc-eq-plus1 diff-Suc-1 linorder-not-less mem-Collect-eq
subsetD subsetI )

ultimately have base ω (Earley G ω) k ⊆ bin (EarleyF -bin n G ω (EarleyF -bins
n G ω)) k

using Suc.prems(1 ,2 ) Earley-base-sub-EarleyF -bin ‹k = n + 1 › InitF -sub-EarleyF -bins
by (metis add-diff-cancel-right ′)

hence base ω (Earley G ω) k ⊆ bin (EarleyF -bins n G ω) k
by (metis EarleyF -bins.elims EarleyF -bin-idem)

thus ?thesis
using bin-def by blast

qed
ultimately have bin (Earley G ω) k ⊆ bin (EarleyF -bin k G ω (EarleyF -bins

n G ω)) k
using EarleyF -bin-sub-EarleyF -bin InitF -sub-EarleyF -bins by metis

thus ?thesis
using EarleyF -bins.simps(2 ) ‹k = n + 1 › bin-def by auto

qed
qed

lemma Earley-sub-EarleyF :
assumes wf-G G is-word G ω
shows Earley G ω ⊆ EarleyF G ω

proof −
have ∀ k ≤ length ω. bin (Earley G ω) k ⊆ EarleyF G ω

by (simp add: EarleyF -bin-k-sub-EarleyF -bins EarleyF -def assms)
thus ?thesis

using wf-Earley wf-item-def bin-def by blast
qed

theorem completeness-EarleyF :
assumes derives G [S G] ω is-word G ω wf-G G
shows recognizing (EarleyF G ω) G ω
using assms Earley-sub-EarleyF EarleyF -sub-Earley completeness-Earley by

(metis subset-antisym)
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7.5 Correctness
theorem Earley-eq-EarleyF :

assumes wf-G G is-word G ω
shows Earley G ω = EarleyF G ω
using Earley-sub-EarleyF EarleyF -sub-Earley assms by blast

theorem correctness-EarleyF :
assumes wf-G G is-word G ω
shows recognizing (EarleyF G ω) G ω ←→ derives G [S G] ω
using assms Earley-eq-EarleyF correctness-Earley by fastforce

end
theory Earley-Recognizer

imports
Earley-Fixpoint

begin

8 Earley recognizer
8.1 List auxilaries
fun filter-with-index ′ :: nat ⇒ ( ′a ⇒ bool) ⇒ ′a list ⇒ ( ′a × nat) list where

filter-with-index ′ - - [] = []
| filter-with-index ′ i P (x#xs) = (

if P x then (x,i) # filter-with-index ′ (i+1 ) P xs
else filter-with-index ′ (i+1 ) P xs)

definition filter-with-index :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ( ′a × nat) list where
filter-with-index P xs = filter-with-index ′ 0 P xs

lemma filter-with-index ′-P:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ P x
by (induction xs arbitrary: i) (auto split: if-splits)

lemma filter-with-index-P:
(x, n) ∈ set (filter-with-index P xs) =⇒ P x
by (metis filter-with-index ′-P filter-with-index-def )

lemma filter-with-index ′-cong-filter :
map fst (filter-with-index ′ i P xs) = filter P xs
by (induction xs arbitrary: i) auto

lemma filter-with-index-cong-filter :
map fst (filter-with-index P xs) = filter P xs
by (simp add: filter-with-index ′-cong-filter filter-with-index-def )

lemma size-index-filter-with-index ′:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ n ≥ i
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by (induction xs arbitrary: i) (auto simp: Suc-leD split: if-splits)

lemma index-filter-with-index ′-lt-length:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ n−i < length xs
by (induction xs arbitrary: i)(auto simp: less-Suc-eq-0-disj split: if-splits; metis

Suc-diff-Suc leI )+

lemma index-filter-with-index-lt-length:
(x, n) ∈ set (filter-with-index P xs) =⇒ n < length xs
by (metis filter-with-index-def index-filter-with-index ′-lt-length minus-nat.diff-0 )

lemma filter-with-index ′-nth:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ xs ! (n−i) = x

proof (induction xs arbitrary: i)
case (Cons y xs)
show ?case
proof (cases x = y)

case True
thus ?thesis

using Cons by (auto simp: nth-Cons ′ split: if-splits)
next

case False
hence (x, n) ∈ set (filter-with-index ′ (i+1 ) P xs)

using Cons.prems by (cases xs) (auto split: if-splits)
hence n ≥ i + 1 xs ! (n − i − 1 ) = x

by (auto simp: size-index-filter-with-index ′ Cons.IH )
thus ?thesis

by simp
qed

qed simp

lemma filter-with-index-nth:
(x, n) ∈ set (filter-with-index P xs) =⇒ xs ! n = x
by (metis diff-zero filter-with-index ′-nth filter-with-index-def )

lemma filter-with-index-nonempty:
x ∈ set xs =⇒ P x =⇒ filter-with-index P xs 6= []
by (metis filter-empty-conv filter-with-index-cong-filter list.map(1 ))

lemma filter-with-index ′-Ex-first:
(∃ x i xs ′. filter-with-index ′ n P xs = (x, i)#xs ′) ←→ (∃ x ∈ set xs. P x)
by (induction xs arbitrary: n) auto

lemma filter-with-index-Ex-first:
(∃ x i xs ′. filter-with-index P xs = (x, i)#xs ′) ←→ (∃ x ∈ set xs. P x)
using filter-with-index ′-Ex-first filter-with-index-def by metis
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8.2 Definitions
datatype pointer =

Null
| Pre nat — pre
| PreRed nat × nat × nat (nat × nat × nat) list — k’, pre, red

datatype ′a entry =
Entry (item : ′a item) (pointer : pointer)

type-synonym ′a bin = ′a entry list
type-synonym ′a bins = ′a bin list

definition items :: ′a bin ⇒ ′a item list where
items b ≡ map item b

definition pointers :: ′a bin ⇒ pointer list where
pointers b ≡ map pointer b

definition bins-eq-items :: ′a bins ⇒ ′a bins ⇒ bool where
bins-eq-items bs0 bs1 ≡ map items bs0 = map items bs1

definition bins :: ′a bins ⇒ ′a item set where
bins bs ≡

⋃
{ set (items (bs!k)) | k. k < length bs }

definition bin-upto :: ′a bin ⇒ nat ⇒ ′a item set where
bin-upto b i ≡ { items b ! j | j. j < i ∧ j < length (items b) }

definition bins-upto :: ′a bins ⇒ nat ⇒ nat ⇒ ′a item set where
bins-upto bs k i ≡

⋃
{ set (items (bs ! l)) | l. l < k } ∪ bin-upto (bs ! k) i

definition wf-bin-items :: ′a cfg ⇒ ′a sentence ⇒ nat ⇒ ′a item list ⇒ bool where
wf-bin-items G ω k xs ≡ ∀ x ∈ set xs. wf-item G ω x ∧ item-end x = k

definition wf-bin :: ′a cfg ⇒ ′a sentence ⇒ nat ⇒ ′a bin ⇒ bool where
wf-bin G ω k b ≡ distinct (items b) ∧ wf-bin-items G ω k (items b)

definition wf-bins :: ′a cfg ⇒ ′a list ⇒ ′a bins ⇒ bool where
wf-bins G ω bs ≡ ∀ k < length bs. wf-bin G ω k (bs!k)

definition nonempty-derives :: ′a cfg ⇒ bool where
nonempty-derives G ≡ ∀N . N ∈ set (N G) −→ ¬ derives G [N ] []

definition InitL :: ′a cfg ⇒ ′a sentence ⇒ ′a bins where
InitL G ω ≡

let rs = filter (λr . rule-head r = S G) (R G) in
let b0 = map (λr . (Entry (init-item r 0 ) Null)) rs in
let bs = replicate (length ω + 1 ) ([]) in
bs[0 := b0 ]
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definition ScanL :: nat ⇒ ′a sentence ⇒ ′a ⇒ ′a item ⇒ nat ⇒ ′a entry list
where

ScanL k ω a x pre ≡
if ω!k = a then

let x ′ = inc-item x (k+1 ) in
[Entry x ′ (Pre pre)]

else []

definition PredictL :: nat ⇒ ′a cfg ⇒ ′a ⇒ ′a entry list where
PredictL k G X ≡

let rs = filter (λr . rule-head r = X) (R G) in
map (λr . (Entry (init-item r k) Null)) rs

definition CompleteL :: nat ⇒ ′a item ⇒ ′a bins ⇒ nat ⇒ ′a entry list where
CompleteL k y bs red ≡

let orig = bs ! (item-origin y) in
let is = filter-with-index (λx. next-symbol x = Some (item-rule-head y)) (items

orig) in
map (λ(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red) []))) is

fun bin-upd :: ′a entry ⇒ ′a bin ⇒ ′a bin where
bin-upd e ′ [] = [e ′]
| bin-upd e ′ (e#es) = (

case (e ′, e) of
(Entry x (PreRed px xs), Entry y (PreRed py ys)) ⇒

if x = y then Entry x (PreRed py (px#xs@ys)) # es
else e # bin-upd e ′ es
| - ⇒

if item e ′ = item e then e # es
else e # bin-upd e ′ es)

fun bin-upds :: ′a entry list ⇒ ′a bin ⇒ ′a bin where
bin-upds [] b = b
| bin-upds (e#es) b = bin-upds es (bin-upd e b)

definition bins-upd :: ′a bins ⇒ nat ⇒ ′a entry list ⇒ ′a bins where
bins-upd bs k es ≡ bs[k := bin-upds es (bs!k)]

partial-function (tailrec) EarleyL-bin ′ :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a bins
⇒ nat ⇒ ′a bins where

EarleyL-bin ′ k G ω bs i = (
if i ≥ length (items (bs ! k)) then bs
else

let x = items (bs!k) ! i in
let bs ′ =

case next-symbol x of
Some a ⇒

if is-terminal G a then
if k < length ω then bins-upd bs (k+1 ) (ScanL k ω a x i)
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else bs
else bins-upd bs k (PredictL k G a)

| None ⇒ bins-upd bs k (CompleteL k x bs i)
in EarleyL-bin ′ k G ω bs ′ (i+1 ))

declare EarleyL-bin ′.simps[code]

definition EarleyL-bin :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a bins ⇒ ′a bins where
EarleyL-bin k G ω bs ≡ EarleyL-bin ′ k G ω bs 0

fun EarleyL-bins :: nat ⇒ ′a cfg ⇒ ′a sentence ⇒ ′a bins where
EarleyL-bins 0 G ω = EarleyL-bin 0 G ω (InitL G ω)
| EarleyL-bins (Suc n) G ω = EarleyL-bin (Suc n) G ω (EarleyL-bins n G ω)

definition EarleyL :: ′a cfg ⇒ ′a sentence ⇒ ′a bins where
EarleyL G ω ≡ EarleyL-bins (length ω) G ω

8.3 Bin lemmas
lemma length-bins-upd[simp]:

length (bins-upd bs k es) = length bs
unfolding bins-upd-def by simp

lemma length-bin-upd:
length (bin-upd e b) ≥ length b
by (induction e b rule: bin-upd.induct) (auto split: pointer .splits entry.splits)

lemma length-bin-upds:
length (bin-upds es b) ≥ length b
by (induction es arbitrary: b) (auto, meson le-trans length-bin-upd)

lemma length-nth-bin-bins-upd:
length (bins-upd bs k es ! n) ≥ length (bs ! n)
unfolding bins-upd-def using length-bin-upds
by (metis linorder-not-le list-update-beyond nth-list-update-eq nth-list-update-neq

order-refl)

lemma nth-idem-bins-upd:
k 6= n =⇒ bins-upd bs k es ! n = bs ! n
unfolding bins-upd-def by simp

lemma items-nth-idem-bin-upd:
n < length b =⇒ items (bin-upd e b) ! n = items b ! n
by (induction b arbitrary: e n) (auto simp: items-def less-Suc-eq-0-disj split!:

entry.split pointer .split)

lemma items-nth-idem-bin-upds:
n < length b =⇒ items (bin-upds es b) ! n = items b ! n
by (induction es arbitrary: b)
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(auto, metis items-def items-nth-idem-bin-upd length-bin-upd nth-map order .strict-trans2 )

lemma items-nth-idem-bins-upd:
n < length (bs ! k) =⇒ items (bins-upd bs k es ! k) ! n = items (bs ! k) ! n
unfolding bins-upd-def using items-nth-idem-bin-upds
by (metis linorder-not-less list-update-beyond nth-list-update-eq)

lemma bin-upto-eq-set-items:
i ≥ length b =⇒ bin-upto b i = set (items b)
by (auto simp: bin-upto-def items-def , metis in-set-conv-nth nth-map order-le-less

order-less-trans)

lemma bins-upto-empty:
bins-upto bs 0 0 = {}
unfolding bins-upto-def bin-upto-def by simp

lemma set-items-bin-upd:
set (items (bin-upd e b)) = set (items b) ∪ {item e}

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ b = Entry y (PreRed

yp ys))
case True
then obtain x xp xs y yp ys where e = Entry x (PreRed xp xs) b = Entry y

(PreRed yp ys)
by blast

thus ?thesis
using Cons.IH by (auto simp: items-def )

next
case False
then show ?thesis
proof cases

assume ∗: item e = item b
hence bin-upd e (b # bs) = b # bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ by (auto simp: items-def )
next

assume ∗: ¬ item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ Cons.IH by (auto simp: items-def )
qed

qed
qed (auto simp: items-def )

lemma set-items-bin-upds:
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set (items (bin-upds es b)) = set (items b) ∪ set (items es)
using set-items-bin-upd by (induction es arbitrary: b) (auto simp: items-def ,

blast, force+)

lemma bins-bins-upd:
assumes k < length bs
shows bins (bins-upd bs k es) = bins bs ∪ set (items es)

proof −
let ?bs = bins-upd bs k es
have bins (bins-upd bs k es) =

⋃
{set (items (?bs ! k)) |k. k < length ?bs}

unfolding bins-def by blast
also have ... =

⋃
{set (items (bs ! l)) |l. l < length bs ∧ l 6= k} ∪ set (items

(?bs ! k))
unfolding bins-upd-def using assms by (auto, metis nth-list-update)

also have ... =
⋃
{set (items (bs ! l)) |l. l < length bs ∧ l 6= k} ∪ set (items

(bs ! k)) ∪ set (items es)
using set-items-bin-upds[of es bs!k] by (simp add: assms bins-upd-def sup-assoc)

also have ... =
⋃
{set (items (bs ! k)) |k. k < length bs} ∪ set (items es)

using assms by blast
also have ... = bins bs ∪ set (items es)

unfolding bins-def by blast
finally show ?thesis .

qed

lemma kth-bin-sub-bins:
k < length bs =⇒ set (items (bs ! k)) ⊆ bins bs
unfolding bins-def bins-upto-def bin-upto-def by blast+

lemma bin-upto-Cons-0 :
bin-upto (e#es) 0 = {}
by (auto simp: bin-upto-def )

lemma bin-upto-Cons:
assumes 0 < n
shows bin-upto (e#es) n = { item e } ∪ bin-upto es (n−1 )

proof −
have bin-upto (e#es) n = { items (e#es) ! j | j. j < n ∧ j < length (items

(e#es)) }
unfolding bin-upto-def by blast

also have ... = { item e } ∪ { items es ! j | j. j < (n−1 ) ∧ j < length (items
es) }

using assms by (cases n) (auto simp: items-def nth-Cons ′, metis One-nat-def
Zero-not-Suc diff-Suc-1 not-less-eq nth-map)

also have ... = { item e } ∪ bin-upto es (n−1 )
unfolding bin-upto-def by blast

finally show ?thesis .
qed

lemma bin-upto-nth-idem-bin-upd:
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n < length b =⇒ bin-upto (bin-upd e b) n = bin-upto b n
proof (induction b arbitrary: e n)

case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ b = Entry y (PreRed

yp ys))
case True
then obtain x xp xs y yp ys where e = Entry x (PreRed xp xs) b = Entry y

(PreRed yp ys)
by blast

thus ?thesis
using Cons bin-upto-Cons-0
by (cases n) (auto simp: items-def bin-upto-Cons, blast+)

next
case False
then show ?thesis
proof cases

assume ∗: item e = item b
hence bin-upd e (b # bs) = b # bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ by (auto simp: items-def )
next

assume ∗: ¬ item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ Cons bin-upto-Cons-0
by (cases n) (auto simp: items-def bin-upto-Cons, blast+)

qed
qed

qed (auto simp: items-def )

lemma bin-upto-nth-idem-bin-upds:
n < length b =⇒ bin-upto (bin-upds es b) n = bin-upto b n
using bin-upto-nth-idem-bin-upd length-bin-upd
apply (induction es arbitrary: b)
apply auto

using order .strict-trans2 order .strict-trans1 by blast+

lemma bins-upto-kth-nth-idem:
assumes l < length bs k ≤ l n < length (bs ! k)
shows bins-upto (bins-upd bs l es) k n = bins-upto bs k n

proof −
let ?bs = bins-upd bs l es
have bins-upto ?bs k n =

⋃
{set (items (?bs ! l)) |l. l < k} ∪ bin-upto (?bs ! k)

n
unfolding bins-upto-def by blast

also have ... =
⋃
{set (items (bs ! l)) |l. l < k} ∪ bin-upto (?bs ! k) n
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unfolding bins-upd-def using assms(1 ,2 ) by auto
also have ... =

⋃
{set (items (bs ! l)) |l. l < k} ∪ bin-upto (bs ! k) n

unfolding bins-upd-def using assms(1 ,3 ) bin-upto-nth-idem-bin-upds
by (metis (no-types, lifting) nth-list-update)

also have ... = bins-upto bs k n
unfolding bins-upto-def by blast

finally show ?thesis .
qed

lemma bins-upto-sub-bins:
k < length bs =⇒ bins-upto bs k n ⊆ bins bs
unfolding bins-def bins-upto-def bin-upto-def using less-trans by (auto, blast)

lemma bins-upto-Suc-Un:
n < length (bs ! k) =⇒ bins-upto bs k (n+1 ) = bins-upto bs k n ∪ { items (bs !

k) ! n }
unfolding bins-upto-def bin-upto-def using less-Suc-eq by (auto simp: items-def ,

metis nth-map)

lemma bins-bin-exists:
x ∈ bins bs =⇒ ∃ k < length bs. x ∈ set (items (bs ! k))
unfolding bins-def by blast

lemma distinct-bin-upd:
distinct (items b) =⇒ distinct (items (bin-upd e b))

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ b = Entry y (PreRed

yp ys))
case True
then obtain x xp xs y yp ys where e = Entry x (PreRed xp xs) b = Entry y

(PreRed yp ys)
by blast

thus ?thesis
using Cons
apply (auto simp: items-def )

by (metis Un-insert-right entry.sel(1 ) imageI items-def list.set-map list.simps(15 )
set-ConsD set-items-bin-upd sup-bot-right)

next
case False
then show ?thesis
proof cases

assume ∗: item e = item b
hence bin-upd e (b # bs) = b # bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ Cons.prems by (auto simp: items-def )
next
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assume ∗: ¬ item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs

using False by (auto split: pointer .splits entry.splits)
moreover have distinct (items (bin-upd e bs))

using Cons by (auto simp: items-def )
ultimately show ?thesis

using ∗ Cons.prems set-items-bin-upd
by (metis Un-insert-right distinct.simps(2 ) insertE items-def list.simps(9 )

sup-bot-right)
qed

qed
qed (auto simp: items-def )

lemma wf-bins-kth-bin:
wf-bins G ω bs =⇒ k < length bs =⇒ x ∈ set (items (bs ! k)) =⇒ wf-item G ω x
∧ item-end x = k

using wf-bin-def wf-bins-def wf-bin-items-def by blast

lemma wf-bin-bin-upd:
assumes wf-bin G ω k b wf-item G ω (item e) ∧ item-end (item e) = k
shows wf-bin G ω k (bin-upd e b)
using assms

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ b = Entry y (PreRed

yp ys))
case True
then obtain x xp xs y yp ys where e = Entry x (PreRed xp xs) b = Entry y

(PreRed yp ys)
by blast

thus ?thesis
using Cons distinct-bin-upd wf-bin-def wf-bin-items-def set-items-bin-upd
by (smt (verit, best) Un-insert-right insertE sup-bot.right-neutral)

next
case False
then show ?thesis
proof cases

assume ∗: item e = item b
hence bin-upd e (b # bs) = b # bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ Cons.prems by (auto simp: items-def )
next

assume ∗: ¬ item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis
using ∗ Cons.prems set-items-bin-upd distinct-bin-upd wf-bin-def wf-bin-items-def
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by (smt (verit, best) Un-insert-right insertE sup-bot-right)
qed

qed
qed (auto simp: items-def wf-bin-def wf-bin-items-def )

lemma wf-bin-bin-upds:
assumes wf-bin G ω k b distinct (items es)
assumes ∀ x ∈ set (items es). wf-item G ω x ∧ item-end x = k
shows wf-bin G ω k (bin-upds es b)
using assms by (induction es arbitrary: b) (auto simp: wf-bin-bin-upd items-def )

lemma wf-bins-bins-upd:
assumes wf-bins G ω bs distinct (items es)
assumes ∀ x ∈ set (items es). wf-item G ω x ∧ item-end x = k
shows wf-bins G ω (bins-upd bs k es)
unfolding bins-upd-def using assms wf-bin-bin-upds wf-bins-def
by (metis length-list-update nth-list-update-eq nth-list-update-neq)

lemma wf-bins-impl-wf-items:
wf-bins G ω bs =⇒ ∀ x ∈ (bins bs). wf-item G ω x
unfolding wf-bins-def wf-bin-def wf-bin-items-def bins-def by auto

lemma bin-upds-eq-items:
set (items es) ⊆ set (items b) =⇒ set (items (bin-upds es b)) = set (items b)
apply (induction es arbitrary: b)
apply (auto simp: set-items-bin-upd set-items-bin-upds)
apply (simp add: items-def )

by (metis Un-iff Un-subset-iff items-def list.simps(9 ) set-subset-Cons)

lemma bin-eq-items-bin-upd:
item e ∈ set (items b) =⇒ items (bin-upd e b) = items b

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ b = Entry y (PreRed

yp ys))
case True
then obtain x xp xs y yp ys where e = Entry x (PreRed xp xs) b = Entry y

(PreRed yp ys)
by blast

thus ?thesis
using Cons by (auto simp: items-def )

next
case False
then show ?thesis
proof cases

assume ∗: item e = item b
hence bin-upd e (b # bs) = b # bs

using False by (auto split: pointer .splits entry.splits)
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thus ?thesis
using ∗ Cons.prems by (auto simp: items-def )

next
assume ∗: ¬ item e = item b
hence bin-upd e (b # bs) = b # bin-upd e bs

using False by (auto split: pointer .splits entry.splits)
thus ?thesis

using ∗ Cons by (auto simp: items-def )
qed

qed
qed (auto simp: items-def )

lemma bin-eq-items-bin-upds:
assumes set (items es) ⊆ set (items b)
shows items (bin-upds es b) = items b
using assms

proof (induction es arbitrary: b)
case (Cons e es)
have items (bin-upds es (bin-upd e b)) = items (bin-upd e b)

using Cons bin-upds-eq-items set-items-bin-upd set-items-bin-upds
by (metis Un-upper2 bin-upds.simps(2 ) sup.coboundedI1 )

moreover have items (bin-upd e b) = items b
using bin-eq-items-bin-upd Cons.prems by (auto simp: items-def )

ultimately show ?case
by simp

qed (auto simp: items-def )

lemma bins-eq-items-bins-upd:
assumes set (items es) ⊆ set (items (bs!k))
shows bins-eq-items (bins-upd bs k es) bs
unfolding bins-upd-def using assms bin-eq-items-bin-upds bins-eq-items-def
by (metis list-update-id map-update)

lemma bins-eq-items-imp-eq-bins:
bins-eq-items bs bs ′ =⇒ bins bs = bins bs ′

unfolding bins-eq-items-def bins-def items-def
by (metis (no-types, lifting) length-map nth-map)

lemma bin-eq-items-dist-bin-upd-bin:
assumes items a = items b
shows items (bin-upd e a) = items (bin-upd e b)
using assms

proof (induction a arbitrary: e b)
case (Cons a as)
obtain b ′ bs where bs: b = b ′ # bs item a = item b ′ items as = items bs

using Cons.prems by (auto simp: items-def )
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ a = Entry y (PreRed

yp ys))
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case True
then obtain x xp xs y yp ys where #: e = Entry x (PreRed xp xs) a = Entry

y (PreRed yp ys)
by blast

show ?thesis
proof cases

assume ∗: x = y
hence items (bin-upd e (a # as)) = x # items as

using # by (auto simp: items-def )
moreover have items (bin-upd e (b ′ # bs)) = x # items bs

using bs # ∗ by (auto simp: items-def split: pointer .splits entry.splits)
ultimately show ?thesis

using bs by simp
next

assume ∗: ¬ x = y
hence items (bin-upd e (a # as)) = y # items (bin-upd e as)

using # by (auto simp: items-def )
moreover have items (bin-upd e (b ′ # bs)) = y # items (bin-upd e bs)

using bs # ∗ by (auto simp: items-def split: pointer .splits entry.splits)
ultimately show ?thesis

using bs Cons.IH by simp
qed

next
case False
then show ?thesis
proof cases

assume ∗: item e = item a
hence items (bin-upd e (a # as)) = item a # items as

using False by (auto simp: items-def split: pointer .splits entry.splits)
moreover have items (bin-upd e (b ′ # bs)) = item b ′ # items bs

using bs False ∗ by (auto simp: items-def split: pointer .splits entry.splits)
ultimately show ?thesis

using bs by simp
next

assume ∗: ¬ item e = item a
hence items (bin-upd e (a # as)) = item a # items (bin-upd e as)

using False by (auto simp: items-def split: pointer .splits entry.splits)
moreover have items (bin-upd e (b ′ # bs)) = item b ′ # items (bin-upd e bs)

using bs False ∗ by (auto simp: items-def split: pointer .splits entry.splits)
ultimately show ?thesis

using bs Cons by simp
qed

qed
qed (auto simp: items-def )

lemma bin-eq-items-dist-bin-upds-bin:
assumes items a = items b
shows items (bin-upds es a) = items (bin-upds es b)
using assms
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proof (induction es arbitrary: a b)
case (Cons e es)
hence items (bin-upds es (bin-upd e a)) = items (bin-upds es (bin-upd e b))

using bin-eq-items-dist-bin-upd-bin by blast
thus ?case

by simp
qed simp

lemma bin-eq-items-dist-bin-upd-entry:
assumes item e = item e ′

shows items (bin-upd e b) = items (bin-upd e ′ b)
using assms

proof (induction b arbitrary: e e ′)
case (Cons a as)
show ?case
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ a = Entry y (PreRed

yp ys))
case True
then obtain x xp xs y yp ys where #: e = Entry x (PreRed xp xs) a = Entry

y (PreRed yp ys)
by blast

show ?thesis
proof cases

assume ∗: x = y
thus ?thesis
using # Cons.prems by (auto simp: items-def split: pointer .splits entry.splits)

next
assume ∗: ¬ x = y
thus ?thesis

using # Cons.prems
by (auto simp: items-def split!: pointer .splits entry.splits, metis Cons.IH

Cons.prems items-def )+
qed

next
case False
then show ?thesis
proof cases

assume ∗: item e = item a
thus ?thesis
using Cons.prems by (auto simp: items-def split: pointer .splits entry.splits)

next
assume ∗: ¬ item e = item a
thus ?thesis

using Cons.prems
by (auto simp: items-def split!: pointer .splits entry.splits, metis Cons.IH

Cons.prems items-def )+
qed

qed
qed (auto simp: items-def )
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lemma bin-eq-items-dist-bin-upds-entries:
assumes items es = items es ′

shows items (bin-upds es b) = items (bin-upds es ′ b)
using assms

proof (induction es arbitrary: es ′ b)
case (Cons e es)
then obtain e ′ es ′′ where item e = item e ′ items es = items es ′′ es ′ = e ′ #

es ′′

by (auto simp: items-def )
hence items (bin-upds es (bin-upd e b)) = items (bin-upds es ′′ (bin-upd e ′ b))

using Cons.IH
by (metis bin-eq-items-dist-bin-upd-entry bin-eq-items-dist-bin-upds-bin)

thus ?case
by (simp add: ‹es ′ = e ′ # es ′′›)

qed (auto simp: items-def )

lemma bins-eq-items-dist-bins-upd:
assumes bins-eq-items as bs items aes = items bes k < length as
shows bins-eq-items (bins-upd as k aes) (bins-upd bs k bes)

proof −
have k < length bs

using assms(1 ,3 ) bins-eq-items-def map-eq-imp-length-eq by metis
hence items (bin-upds (as!k) aes) = items (bin-upds (bs!k) bes)
using bin-eq-items-dist-bin-upds-entries bin-eq-items-dist-bin-upds-bin bins-eq-items-def

assms
by (metis (no-types, lifting) nth-map)

thus ?thesis
using ‹k < length bs› assms bin-eq-items-dist-bin-upds-bin bin-eq-items-dist-bin-upds-entries

bins-eq-items-def bins-upd-def by (smt (verit) map-update nth-map)
qed

8.4 Well-formed bins
lemma distinct-ScanL:

distinct (items (ScanL k ω a x pre))
unfolding ScanL-def by (auto simp: items-def )

lemma distinct-PredictL:
wf-G G =⇒ distinct (items (PredictL k G X))
unfolding PredictL-def wf-G-defs by (auto simp: init-item-def rule-head-def dis-

tinct-map inj-on-def items-def )

lemma inj-on-inc-item:
∀ x ∈ A. item-end x = l =⇒ inj-on (λx. inc-item x k) A
unfolding inj-on-def inc-item-def by (simp add: item.expand)

lemma distinct-CompleteL:
assumes wf-bins G ω bs item-origin y < length bs
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shows distinct (items (CompleteL k y bs red))
proof −

let ?orig = bs ! (item-origin y)
let ?is = filter-with-index (λx. next-symbol x = Some (item-rule-head y)) (items

?orig)
let ?is ′ = map (λ(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red)

[]))) ?is
have wf : wf-bin G ω (item-origin y) ?orig

using assms wf-bins-def by blast
have 0 : ∀ x ∈ set (map fst ?is). item-end x = (item-origin y)

using wf wf-bin-def wf-bin-items-def filter-is-subset filter-with-index-cong-filter
by (metis in-mono)

hence distinct (items ?orig)
using wf unfolding wf-bin-def by blast

hence distinct (map fst ?is)
using filter-with-index-cong-filter distinct-filter by metis

moreover have items ?is ′ = map (λx. inc-item x k) (map fst ?is)
by (induction ?is) (auto simp: items-def )

moreover have inj-on (λx. inc-item x k) (set (map fst ?is))
using inj-on-inc-item 0 by blast

ultimately have distinct (items ?is ′)
using distinct-map by metis

thus ?thesis
unfolding CompleteL-def by simp

qed

lemma wf-bins-ScanL
′:

assumes wf-bins G ω bs k < length bs x ∈ set (items (bs ! k))
assumes k < length ω next-symbol x 6= None y = inc-item x (k+1 )
shows wf-item G ω y ∧ item-end y = k+1
using assms wf-bins-kth-bin[OF assms(1−3 )]
unfolding wf-item-def inc-item-def next-symbol-def is-complete-def item-rule-body-def
by (auto split: if-splits)

lemma wf-bins-ScanL:
assumes wf-bins G ω bs k < length bs x ∈ set (items (bs ! k)) k < length ω

next-symbol x 6= None
shows ∀ y ∈ set (items (ScanL k ω a x pre)). wf-item G ω y ∧ item-end y =

(k+1 )
using wf-bins-ScanL

′[OF assms] by (simp add: ScanL-def items-def )

lemma wf-bins-PredictL:
assumes wf-bins G ω bs k < length bs k ≤ length ω wf-G G
shows ∀ y ∈ set (items (PredictL k G X)). wf-item G ω y ∧ item-end y = k
using assms by (auto simp: PredictL-def wf-item-def wf-bins-def wf-bin-def init-item-def

wf-G-defs items-def )

lemma wf-item-inc-item:
assumes wf-item G ω x next-symbol x = Some a item-origin x ≤ k k ≤ length ω
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shows wf-item G ω (inc-item x k) ∧ item-end (inc-item x k) = k
using assms by (auto simp: wf-item-def inc-item-def item-rule-body-def next-symbol-def

is-complete-def split: if-splits)

lemma wf-bins-CompleteL:
assumes wf-bins G ω bs k < length bs y ∈ set (items (bs ! k))
shows ∀ x ∈ set (items (CompleteL k y bs red)). wf-item G ω x ∧ item-end x =

k
proof −

let ?orig = bs ! (item-origin y)
let ?is = filter-with-index (λx. next-symbol x = Some (item-rule-head y)) (items

?orig)
let ?is ′ = map (λ(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre, red)

[]))) ?is
{

fix x
assume ∗: x ∈ set (map fst ?is)
have item-end x = item-origin y

using ∗ assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order .strict-trans2 filter-is-subset subsetD)

have wf-item G ω x
using ∗ assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order .strict-trans2 filter-is-subset subsetD)

moreover have next-symbol x = Some (item-rule-head y)
using ∗ filter-set filter-with-index-cong-filter member-filter by metis

moreover have item-origin x ≤ k
using ‹item-end x = item-origin y› ‹wf-item G ω x› assms wf-bins-kth-bin

wf-item-def
by (metis dual-order .order-iff-strict dual-order .strict-trans1 )

moreover have k ≤ length ω
using assms wf-bins-kth-bin wf-item-def by blast

ultimately have wf-item G ω (inc-item x k) item-end (inc-item x k) = k
by (simp-all add: wf-item-inc-item)

}
hence ∀ x ∈ set (items ?is ′). wf-item G ω x ∧ item-end x = k

by (auto simp: items-def rev-image-eqI )
thus ?thesis

unfolding CompleteL-def by presburger
qed

lemma Ex-wf-bins:
∃n bs ω G. n ≤ length ω ∧ length bs = Suc (length ω) ∧ wf-G G ∧ wf-bins G ω

bs
apply (rule exI [where x=0 ])
apply (rule exI [where x=[[]]])
apply (rule exI [where x=[]])
apply (auto simp: wf-bins-def wf-bin-def wf-G-defs wf-bin-items-def items-def

split: prod.splits)
by (metis cfg.sel distinct.simps(1 ) empty-iff empty-set inf-bot-right list.set-intros(1 ))
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definition wf-earley-input :: (nat × ′a cfg × ′a sentence × ′a bins) set where
wf-earley-input = {
(k, G, ω, bs) | k G ω bs.

k ≤ length ω ∧
length bs = length ω + 1 ∧
wf-G G ∧
wf-bins G ω bs

}

typedef ′a wf-bins = wf-earley-input::(nat × ′a cfg × ′a sentence × ′a bins) set
morphisms from-wf-bins to-wf-bins
using Ex-wf-bins by (auto simp: wf-earley-input-def )

lemma wf-earley-input-elim:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows k ≤ length ω ∧ k < length bs ∧ length bs = length ω + 1 ∧ wf-G G ∧

wf-bins G ω bs
using assms(1 ) from-wf-bins wf-earley-input-def by (smt (verit) Suc-eq-plus1

less-Suc-eq-le mem-Collect-eq prod.sel(1 ) snd-conv)

lemma wf-earley-input-intro:
assumes k ≤ length ω length bs = length ω + 1 wf-G G wf-bins G ω bs
shows (k, G, ω, bs) ∈ wf-earley-input
by (simp add: assms wf-earley-input-def )

lemma wf-earley-input-CompleteL:
assumes (k, G, ω, bs) ∈ wf-earley-input ¬ length (items (bs ! k)) ≤ i
assumes x = items (bs ! k) ! i next-symbol x = None
shows (k, G, ω, bins-upd bs k (CompleteL k x bs red)) ∈ wf-earley-input

proof −
have ∗: k ≤ length ω length bs = length ω + 1 wf-G G wf-bins G ω bs

using wf-earley-input-elim assms(1 ) by metis+
have x: x ∈ set (items (bs ! k))

using assms(2 ,3 ) by simp
have item-origin x < length bs

using x wf-bins-kth-bin ∗(1 ,2 ,4 ) wf-item-def
by (metis One-nat-def add.right-neutral add-Suc-right dual-order .trans le-imp-less-Suc)

hence wf-bins G ω (bins-upd bs k (CompleteL k x bs red))
using ∗(1 ,2 ,4 ) Suc-eq-plus1 distinct-CompleteL le-imp-less-Suc wf-bins-CompleteL

wf-bins-bins-upd x by metis
thus ?thesis

by (simp add: ∗(1−3 ) wf-earley-input-def )
qed

lemma wf-earley-input-ScanL:
assumes (k, G, ω, bs) ∈ wf-earley-input ¬ length (items (bs ! k)) ≤ i
assumes x = items (bs ! k) ! i next-symbol x = Some a
assumes is-terminal G a k < length ω
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shows (k, G, ω, bins-upd bs (k+1 ) (ScanL k ω a x pre)) ∈ wf-earley-input
proof −

have ∗: k ≤ length ω length bs = length ω + 1 wf-G G wf-bins G ω bs
using wf-earley-input-elim assms(1 ) by metis+

have x: x ∈ set (items(bs ! k))
using assms(2 ,3 ) by simp

have wf-bins G ω (bins-upd bs (k+1 ) (ScanL k ω a x pre))
using ∗ x assms(1 ,4 ,6 ) distinct-ScanL wf-bins-ScanL wf-bins-bins-upd wf-earley-input-elim
by (metis option.discI )

thus ?thesis
by (simp add: ∗(1−3 ) wf-earley-input-def )

qed

lemma wf-earley-input-PredictL:
assumes (k, G, ω, bs) ∈ wf-earley-input ¬ length (items (bs ! k)) ≤ i
assumes x = items (bs ! k) ! i next-symbol x = Some a ¬ is-terminal G a
shows (k, G, ω, bins-upd bs k (PredictL k G a)) ∈ wf-earley-input

proof −
have ∗: k ≤ length ω length bs = length ω + 1 wf-G G wf-bins G ω bs

using wf-earley-input-elim assms(1 ) by metis+
have x: x ∈ set (items (bs ! k))

using assms(2 ,3 ) by simp
hence wf-bins G ω (bins-upd bs k (PredictL k G a))
using ∗ x assms(1 ,4 ) distinct-PredictL wf-bins-PredictL wf-bins-bins-upd wf-earley-input-elim

by metis
thus ?thesis

by (simp add: ∗(1−3 ) wf-earley-input-def )
qed

fun earley-measure :: nat × ′a cfg × ′a sentence × ′a bins ⇒ nat ⇒ nat where
earley-measure (k, G, ω, bs) i = card { x | x. wf-item G ω x ∧ item-end x = k }
− i

lemma EarleyL-bin ′-simps[simp]:
i ≥ length (items (bs ! k)) =⇒ EarleyL-bin ′ k G ω bs i = bs
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = None

=⇒
EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω (bins-upd bs k (CompleteL k x bs

i)) (i+1 )
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = Some

a =⇒
is-terminal G a =⇒ k < length ω =⇒ EarleyL-bin ′ k G ω bs i = EarleyL-bin ′

k G ω (bins-upd bs (k+1 ) (ScanL k ω a x i)) (i+1 )
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = Some

a =⇒
is-terminal G a =⇒ ¬ k < length ω =⇒ EarleyL-bin ′ k G ω bs i = EarleyL-bin ′

k G ω bs (i+1 )
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = Some

a =⇒
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¬ is-terminal G a =⇒ EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω (bins-upd
bs k (PredictL k G a)) (i+1 )

by (subst EarleyL-bin ′.simps, simp)+

lemma EarleyL-bin ′-induct[case-names Base CompleteF ScanF Pass PredictF ]:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes base:

∧
k G ω bs i. i ≥ length (items (bs ! k)) =⇒ P k G ω bs i

assumes complete:
∧

k G ω bs i x. ¬ i ≥ length (items (bs ! k)) =⇒ x = items
(bs ! k) ! i =⇒

next-symbol x = None =⇒ P k G ω (bins-upd bs k (CompleteL k x bs i))
(i+1 ) =⇒ P k G ω bs i

assumes scan:
∧

k G ω bs i x a. ¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs
! k) ! i =⇒

next-symbol x = Some a =⇒ is-terminal G a =⇒ k < length ω =⇒
P k G ω (bins-upd bs (k+1 ) (ScanL k ω a x i)) (i+1 ) =⇒ P k G ω bs i

assumes pass:
∧

k G ω bs i x a. ¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs
! k) ! i =⇒

next-symbol x = Some a =⇒ is-terminal G a =⇒ ¬ k < length ω =⇒
P k G ω bs (i+1 ) =⇒ P k G ω bs i

assumes predict:
∧

k G ω bs i x a. ¬ i ≥ length (items (bs ! k)) =⇒ x = items
(bs ! k) ! i =⇒

next-symbol x = Some a =⇒ ¬ is-terminal G a =⇒
P k G ω (bins-upd bs k (PredictL k G a)) (i+1 ) =⇒ P k G ω bs i

shows P k G ω bs i
using assms(1 )

proof (induction n≡earley-measure (k, G, ω, bs) i arbitrary: bs i rule: nat-less-induct)
case 1
have wf : k ≤ length ω length bs = length ω + 1 wf-G G wf-bins G ω bs

using 1 .prems wf-earley-input-elim by metis+
hence k: k < length bs

by simp
have fin: finite { x | x. wf-item G ω x ∧ item-end x = k }

using finiteness-UNIV-wf-item by fastforce
show ?case
proof cases

assume i ≥ length (items (bs ! k))
then show ?thesis

by (simp add: base)
next

assume a1 : ¬ i ≥ length (items (bs ! k))
let ?x = items (bs ! k) ! i
have x: ?x ∈ set (items (bs ! k))

using a1 by fastforce
show ?thesis
proof cases

assume a2 : next-symbol ?x = None
let ?bs ′ = bins-upd bs k (CompleteL k ?x bs i)
have item-origin ?x < length bs

using wf (4 ) k wf-bins-kth-bin wf-item-def x by (metis order-le-less-trans)
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hence wf-bins ′: wf-bins G ω ?bs ′

using wf-bins-CompleteL distinct-CompleteL wf (4 ) wf-bins-bins-upd k x by
metis

hence wf ′: (k, G, ω, ?bs ′) ∈ wf-earley-input
using wf (1 ,2 ,3 ) wf-earley-input-intro by fastforce

have sub: set (items (?bs ′ ! k)) ⊆ { x | x. wf-item G ω x ∧ item-end x = k }
using wf (1 ,2 ) wf-bins ′ unfolding wf-bin-def wf-bins-def wf-bin-items-def

using order-le-less-trans by auto
have i < length (items (?bs ′ ! k))
using a1 by (metis dual-order .strict-trans1 items-def leI length-map length-nth-bin-bins-upd)
also have ... = card (set (items (?bs ′ ! k)))

using wf (1 ,2 ) wf-bins ′ distinct-card wf-bins-def wf-bin-def by (metis k
length-bins-upd)

also have ... ≤ card {x |x. wf-item G ω x ∧ item-end x = k}
using card-mono fin sub by blast

finally have card {x |x. wf-item G ω x ∧ item-end x = k} > i
by blast

hence earley-measure (k, G, ω, ?bs ′) (Suc i) < earley-measure (k, G, ω, bs) i
by simp

thus ?thesis
using 1 a1 a2 complete wf ′ by simp

next
assume a2 : ¬ next-symbol ?x = None
then obtain a where a-def : next-symbol ?x = Some a

by blast
show ?thesis
proof cases

assume a3 : is-terminal G a
show ?thesis
proof cases

assume a4 : k < length ω
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a ?x i)
have wf-bins ′: wf-bins G ω ?bs ′

using wf-bins-ScanL distinct-ScanL wf (1 ,4 ) wf-bins-bins-upd a2 a4 k x
by metis

hence wf ′: (k, G, ω, ?bs ′) ∈ wf-earley-input
using wf (1 ,2 ,3 ) wf-earley-input-intro by fastforce

have sub: set (items (?bs ′ ! k)) ⊆ { x | x. wf-item G ω x ∧ item-end x =
k }

using wf (1 ,2 ) wf-bins ′ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto

have i < length (items (?bs ′ ! k))
using a1 by (metis dual-order .strict-trans1 items-def leI length-map

length-nth-bin-bins-upd)
also have ... = card (set (items (?bs ′ ! k)))

using wf (1 ,2 ) wf-bins ′ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plus1 le-imp-less-Suc length-bins-upd)

also have ... ≤ card {x |x. wf-item G ω x ∧ item-end x = k}
using card-mono fin sub by blast
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finally have card {x |x. wf-item G ω x ∧ item-end x = k} > i
by blast

hence earley-measure (k, G, ω, ?bs ′) (Suc i) < earley-measure (k, G, ω,
bs) i

by simp
thus ?thesis

using 1 a1 a-def a3 a4 scan wf ′ by simp
next

assume a4 : ¬ k < length ω
have sub: set (items (bs ! k)) ⊆ { x | x. wf-item G ω x ∧ item-end x = k }
using wf (1 ,2 ,4 ) unfolding wf-bin-def wf-bins-def wf-bin-items-def using

order-le-less-trans by auto
have i < length (items (bs ! k))

using a1 by simp
also have ... = card (set (items (bs ! k)))

using wf (1 ,2 ,4 ) distinct-card wf-bins-def wf-bin-def by (metis Suc-eq-plus1
le-imp-less-Suc)

also have ... ≤ card {x |x. wf-item G ω x ∧ item-end x = k}
using card-mono fin sub by blast

finally have card {x |x. wf-item G ω x ∧ item-end x = k} > i
by blast

hence earley-measure (k, G, ω, bs) (Suc i) < earley-measure (k, G, ω, bs) i
by simp

thus ?thesis
using 1 a1 a3 a4 a-def pass by simp

qed
next

assume a3 : ¬ is-terminal G a
let ?bs ′ = bins-upd bs k (PredictL k G a)
have wf-bins ′: wf-bins G ω ?bs ′

using wf-bins-PredictL distinct-PredictL wf (1 ,3 ,4 ) wf-bins-bins-upd k x
by metis

hence wf ′: (k, G, ω, ?bs ′) ∈ wf-earley-input
using wf (1 ,2 ,3 ) wf-earley-input-intro by fastforce

have sub: set (items (?bs ′ ! k)) ⊆ { x | x. wf-item G ω x ∧ item-end x = k }
using wf (1 ,2 ) wf-bins ′ unfolding wf-bin-def wf-bins-def wf-bin-items-def

using order-le-less-trans by auto
have i < length (items (?bs ′ ! k))

using a1 by (metis dual-order .strict-trans1 items-def leI length-map
length-nth-bin-bins-upd)

also have ... = card (set (items (?bs ′ ! k)))
using wf (1 ,2 ) wf-bins ′ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plus1 le-imp-less-Suc length-bins-upd)

also have ... ≤ card {x |x. wf-item G ω x ∧ item-end x = k}
using card-mono fin sub by blast

finally have card {x |x. wf-item G ω x ∧ item-end x = k} > i
by blast

hence earley-measure (k, G, ω, ?bs ′) (Suc i) < earley-measure (k, G, ω, bs)
i
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by simp
thus ?thesis

using 1 a1 a-def a3 a-def predict wf ′ by simp
qed

qed
qed

qed

lemma wf-earley-input-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows (k, G, ω, EarleyL-bin ′ k G ω bs i) ∈ wf-earley-input
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1 ), case-names Base Com-
pleteF ScanF Pass PredictF ])

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have (k, G, ω, ?bs ′) ∈ wf-earley-input

using CompleteF .hyps CompleteF .prems wf-earley-input-CompleteL by blast
thus ?case

using CompleteF .IH CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems wf-earley-input-ScanL by metis
thus ?case

using ScanF .IH ScanF .hyps by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have (k, G, ω, ?bs ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems wf-earley-input-PredictL by metis
thus ?case

using PredictF .IH PredictF .hyps by simp
qed simp-all

lemma wf-earley-input-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows (k, G, ω, EarleyL-bin k G ω bs) ∈ wf-earley-input
using assms by (simp add: EarleyL-bin-def wf-earley-input-EarleyL-bin ′)

lemma length-bins-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows length (EarleyL-bin ′ k G ω bs i) = length bs
by (metis assms wf-earley-input-EarleyL-bin ′ wf-earley-input-elim)

lemma length-nth-bin-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows length (items (EarleyL-bin ′ k G ω bs i ! l)) ≥ length (items (bs ! l))
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using length-nth-bin-bins-upd order-trans
by (induction i rule: EarleyL-bin ′-induct[OF assms]) (auto simp: items-def ,

blast+)

lemma wf-bins-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows wf-bins G ω (EarleyL-bin ′ k G ω bs i)
using assms wf-earley-input-EarleyL-bin ′ wf-earley-input-elim by blast

lemma wf-bins-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows wf-bins G ω (EarleyL-bin k G ω bs)
using assms EarleyL-bin-def wf-bins-EarleyL-bin ′ by metis

lemma kth-EarleyL-bin ′-bins:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes j < length (items (bs ! l))
shows items (EarleyL-bin ′ k G ω bs i ! l) ! j = items (bs ! l) ! j
using assms(2 )

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1 ), case-names Base Com-
pleteF ScanF Pass PredictF ])

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have items (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ) ! l) ! j = items (?bs ′ ! l) ! j

using CompleteF .IH CompleteF .prems length-nth-bin-bins-upd items-def or-
der .strict-trans2 by (metis length-map)

also have ... = items (bs ! l) ! j
using CompleteF .prems items-nth-idem-bins-upd nth-idem-bins-upd length-map

items-def by metis
finally show ?case

using CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have items (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ) ! l) ! j = items (?bs ′ ! l) ! j
using ScanF .IH ScanF .prems length-nth-bin-bins-upd order .strict-trans2 items-def

by (metis length-map)
also have ... = items (bs ! l) ! j
using ScanF .prems items-nth-idem-bins-upd nth-idem-bins-upd length-map items-def

by metis
finally show ?case

using ScanF .hyps by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have items (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ) ! l) ! j = items (?bs ′ ! l) ! j

using PredictF .IH PredictF .prems length-nth-bin-bins-upd order .strict-trans2
items-def by (metis length-map)

also have ... = items (bs ! l) ! j

57



using PredictF .prems items-nth-idem-bins-upd nth-idem-bins-upd length-map
items-def by metis

finally show ?case
using PredictF .hyps by simp

qed simp-all

lemma nth-bin-sub-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows set (items (bs ! l)) ⊆ set (items (EarleyL-bin ′ k G ω bs i ! l))

proof standard
fix x
assume x ∈ set (items (bs ! l))
then obtain j where ∗: j < length (items (bs ! l)) items (bs ! l) ! j = x

using in-set-conv-nth by metis
have x = items (EarleyL-bin ′ k G ω bs i ! l) ! j

using kth-EarleyL-bin ′-bins assms ∗ by metis
moreover have j < length (items (EarleyL-bin ′ k G ω bs i ! l))

using assms ∗(1 ) length-nth-bin-EarleyL-bin ′ less-le-trans by blast
ultimately show x ∈ set (items (EarleyL-bin ′ k G ω bs i ! l))

by simp
qed

lemma nth-EarleyL-bin ′-eq:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows l < k =⇒ EarleyL-bin ′ k G ω bs i ! l = bs ! l
by (induction i rule: EarleyL-bin ′-induct[OF assms]) (auto simp: bins-upd-def )

lemma set-items-EarleyL-bin ′-eq:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows l < k =⇒ set (items (EarleyL-bin ′ k G ω bs i ! l)) = set (items (bs ! l))
by (simp add: assms nth-EarleyL-bin ′-eq)

lemma bins-upto-k0-EarleyL-bin ′-eq:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows bins-upto (EarleyL-bin k G ω bs) k 0 = bins-upto bs k 0
unfolding bins-upto-def bin-upto-def EarleyL-bin-def using set-items-EarleyL-bin ′-eq

assms nth-EarleyL-bin ′-eq by fastforce

lemma wf-earley-input-InitL:
assumes k ≤ length ω wf-G G
shows (k, G, ω, InitL G ω) ∈ wf-earley-input

proof −
let ?rs = filter (λr . rule-head r = S G) (R G)
let ?b0 = map (λr . (Entry (init-item r 0 ) Null)) ?rs
let ?bs = replicate (length ω + 1 ) ([])
have distinct (items ?b0 )
using assms unfolding wf-bin-def wf-item-def wf-G-def distinct-rules-def items-def
by (auto simp: init-item-def distinct-map inj-on-def )

moreover have ∀ x ∈ set (items ?b0 ). wf-item G ω x ∧ item-end x = 0
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using assms unfolding wf-bin-def wf-item-def by (auto simp: init-item-def
items-def )

moreover have wf-bins G ω ?bs
unfolding wf-bins-def wf-bin-def wf-bin-items-def items-def using less-Suc-eq-0-disj

by force
ultimately show ?thesis

using assms length-replicate wf-earley-input-intro
unfolding wf-bin-def InitL-def wf-bin-def wf-bin-items-def wf-bins-def

by (metis (no-types, lifting) length-list-update nth-list-update-eq nth-list-update-neq)
qed

lemma length-bins-InitL[simp]:
length (InitL G ω) = length ω + 1
by (simp add: InitL-def )

lemma wf-earley-input-EarleyL-bins[simp]:
assumes k ≤ length ω wf-G G
shows (k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input
using assms

proof (induction k)
case 0
have (k, G, ω, InitL G ω) ∈ wf-earley-input

using assms wf-earley-input-InitL by blast
thus ?case

by (simp add: assms(2 ) wf-earley-input-InitL wf-earley-input-EarleyL-bin)
next

case (Suc k)
have (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input
using Suc.IH Suc.prems(1 ) Suc-leD assms(2 ) wf-earley-input-elim wf-earley-input-intro

by metis
thus ?case

by (simp add: wf-earley-input-EarleyL-bin)
qed

lemma length-EarleyL-bins[simp]:
assumes k ≤ length ω wf-G G
shows length (EarleyL-bins k G ω) = length (InitL G ω)
using assms wf-earley-input-EarleyL-bins wf-earley-input-elim by fastforce

lemma wf-bins-EarleyL-bins[simp]:
assumes k ≤ length ω wf-G G
shows wf-bins G ω (EarleyL-bins k G ω)
using assms wf-earley-input-EarleyL-bins wf-earley-input-elim by fastforce

lemma wf-bins-EarleyL:
wf-G G =⇒ wf-bins G ω (EarleyL G ω)
by (simp add: EarleyL-def )
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8.5 Soundness
lemma InitL-eq-InitF :

bins (InitL G ω) = InitF G
proof −

let ?rs = filter (λr . rule-head r = S G) (R G)
let ?b0 = map (λr . (Entry (init-item r 0 ) Null)) ?rs
let ?bs = replicate (length ω + 1 ) ([])
have bins (?bs[0 := ?b0 ]) = set (items ?b0 )
proof −
have bins (?bs[0 := ?b0 ]) =

⋃
{set (items ((?bs[0 := ?b0 ]) ! k)) |k. k < length

(?bs[0 := ?b0 ])}
unfolding bins-def by blast

also have ... = set (items ((?bs[0 := ?b0 ]) ! 0 )) ∪
⋃
{set (items ((?bs[0 :=

?b0 ]) ! k)) |k. k < length (?bs[0 := ?b0 ]) ∧ k 6= 0}
by fastforce

also have ... = set (items (?b0 ))
by (auto simp: items-def )

finally show ?thesis .
qed
also have ... = InitF G

by (auto simp: InitF -def items-def rule-head-def )
finally show ?thesis

by (auto simp: InitL-def )
qed

lemma ScanL-sub-ScanF :
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs ! k)) k < length bs k <

length ω
assumes next-symbol x = Some a
shows set (items (ScanL k ω a x pre)) ⊆ ScanF k ω I

proof standard
fix y
assume ∗: y ∈ set (items (ScanL k ω a x pre))
have x ∈ bin I k
using kth-bin-sub-bins assms(1−4 ) items-def wf-bin-def wf-bins-def wf-bin-items-def

bin-def by fastforce
{

assume #: k < length ω ω!k = a
hence y = inc-item x (k+1 )

using ∗ unfolding ScanL-def by (simp add: items-def )
hence y ∈ ScanF k ω I

using ‹x ∈ bin I k› # assms(6 ) unfolding ScanF -def by blast
}
thus y ∈ ScanF k ω I

using ∗ assms(5 ) unfolding ScanL-def by (auto simp: items-def )
qed

lemma PredictL-sub-PredictF :
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs ! k)) k < length bs
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assumes next-symbol x = Some X
shows set (items (PredictL k G X)) ⊆ PredictF k G I

proof standard
fix y
assume ∗: y ∈ set (items (PredictL k G X))
have x ∈ bin I k

using kth-bin-sub-bins assms(1−4 ) items-def wf-bin-def wf-bins-def bin-def
wf-bin-items-def by fast

let ?rs = filter (λr . rule-head r = X) (R G)
let ?xs = map (λr . init-item r k) ?rs
have y ∈ set ?xs

using ∗ unfolding PredictL-def items-def by simp
then obtain r where y = init-item r k rule-head r = X r ∈ set (R G) next-symbol

x = Some (rule-head r)
using assms(5 ) by auto

thus y ∈ PredictF k G I
unfolding PredictF -def using ‹x ∈ bin I k› by blast

qed

lemma CompleteL-sub-CompleteF :
assumes wf-bins G ω bs bins bs ⊆ I y ∈ set (items (bs ! k)) k < length bs
assumes next-symbol y = None
shows set (items (CompleteL k y bs red)) ⊆ CompleteF k I

proof standard
fix x
assume ∗: x ∈ set (items (CompleteL k y bs red))
have y ∈ bin I k
using kth-bin-sub-bins assms items-def wf-bin-def wf-bins-def bin-def wf-bin-items-def

by fast
let ?orig = bs ! item-origin y
let ?xs = filter-with-index (λx. next-symbol x = Some (item-rule-head y)) (items

?orig)
let ?xs ′ = map (λ(x, pre). (Entry (inc-item x k) (PreRed (item-origin y, pre,

red) []))) ?xs
have 0 : item-origin y < length bs

using wf-bins-def wf-bin-def wf-item-def wf-bin-items-def assms(1 ,3 ,4 )
by (metis Orderings.preorder-class.dual-order .strict-trans1 leD not-le-imp-less)

{
fix z
assume ∗: z ∈ set (map fst ?xs)
have next-symbol z = Some (item-rule-head y)

using ∗ by (simp add: filter-with-index-cong-filter)
moreover have z ∈ bin I (item-origin y)
using 0 ∗ assms(1 ,2 ) bin-def kth-bin-sub-bins wf-bins-kth-bin filter-with-index-cong-filter

by (metis (mono-tags, lifting) filter-is-subset in-mono mem-Collect-eq)
ultimately have next-symbol z = Some (item-rule-head y) z ∈ bin I (item-origin

y)
by simp-all

}
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hence 1 : ∀ z ∈ set (map fst ?xs). next-symbol z = Some (item-rule-head y) ∧ z
∈ bin I (item-origin y)

by blast
obtain z where z: x = inc-item z k z ∈ set (map fst ?xs)

using ∗ unfolding CompleteL-def by (auto simp: rev-image-eqI items-def )
moreover have next-symbol z = Some (item-rule-head y) z ∈ bin I (item-origin

y)
using 1 z by blast+

ultimately show x ∈ CompleteF k I
using ‹y ∈ bin I k› assms(5 ) unfolding CompleteF -def next-symbol-def by

(auto split: if-splits)
qed

lemma sound-ScanL:
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs!k)) k < length bs k <

length ω
assumes next-symbol x = Some a ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item G

ω x
shows ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

proof standard
fix y
assume y ∈ set (items (ScanL k ω a x i))
hence y ∈ ScanF k ω I

by (meson ScanL-sub-ScanF assms(1−6 ) in-mono)
thus sound-item G ω y

using sound-Scan assms(7 ,8 ) unfolding ScanF -def inc-item-def bin-def
by (smt (verit, best) item.exhaust-sel mem-Collect-eq)

qed

lemma sound-PredictL:
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs!k)) k < length bs
assumes next-symbol x = Some X ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item
G ω x

shows ∀ x ∈ set (items (PredictL k G X)). sound-item G ω x
proof standard

fix y
assume y ∈ set (items (PredictL k G X))
hence y ∈ PredictF k G I

by (meson PredictL-sub-PredictF assms(1−5 ) subsetD)
thus sound-item G ω y

using sound-Predict assms(6 ,7 ) unfolding PredictF -def init-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)

qed

lemma sound-CompleteL:
assumes wf-bins G ω bs bins bs ⊆ I y ∈ set (items (bs!k)) k < length bs
assumes next-symbol y = None ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item G ω

x
shows ∀ x ∈ set (items (CompleteL k y bs i)). sound-item G ω x
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proof standard
fix x
assume x ∈ set (items (CompleteL k y bs i))
hence x ∈ CompleteF k I

using CompleteL-sub-CompleteF assms(1−5 ) by blast
thus sound-item G ω x
using sound-Complete assms(6 ,7 ) unfolding CompleteF -def inc-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)

qed

lemma sound-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes ∀ x ∈ bins bs. sound-item G ω x
shows ∀ x ∈ bins (EarleyL-bin ′ k G ω bs i). sound-item G ω x
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1 ), case-names Base Com-
pleteF ScanF Pass PredictF ])

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2 ) by force
hence ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3 ) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items by fastforce
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast

ultimately have ∀ x ∈ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 )). sound-item G ω
x

using CompleteF .IH CompleteF .prems(2 ) length-bins-upd bins-bins-upd wf-earley-input-elim
Suc-eq-plus1 Un-iff le-imp-less-Suc by metis

thus ?case
using CompleteF .hyps by simp

next
case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2 ) by force
hence ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

using sound-ScanL ScanF .hyps(3 ,5 ) ScanF .prems(1 ,2 ) wf-earley-input-elim
wf-bins-impl-wf-items by fast

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by metis

ultimately have ∀ x ∈ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 )). sound-item G ω
x

using ScanF .IH ScanF .hyps(5 ) ScanF .prems(2 ) length-bins-upd bins-bins-upd
wf-earley-input-elim

by (metis UnE add-less-cancel-right)
thus ?case

using ScanF .hyps by simp
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next
case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2 ) by force
hence ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3 ) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by metis

ultimately have ∀ x ∈ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 )). sound-item G ω
x

using PredictF .IH PredictF .prems(2 ) length-bins-upd bins-bins-upd wf-earley-input-elim
by (metis Suc-eq-plus1 UnE)

thus ?case
using PredictF .hyps by simp

qed simp-all

lemma sound-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes ∀ x ∈ bins bs. sound-item G ω x
shows ∀ x ∈ bins (EarleyL-bin k G ω bs). sound-item G ω x
using sound-EarleyL-bin ′ assms EarleyL-bin-def by metis

lemma EarleyL-bin ′-sub-EarleyF -bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes bins bs ⊆ I
shows bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω I
using assms

proof (induction i arbitrary: I rule: EarleyL-bin ′-induct[OF assms(1 ), case-names
Base CompleteF ScanF Pass PredictF ])

case (Base k G ω bs i)
thus ?case

using EarleyF -bin-mono by fastforce
next

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2 ) by force
hence bins ?bs ′ ⊆ I ∪ CompleteF k I

using CompleteL-sub-CompleteF CompleteF .hyps(3 ) CompleteF .prems(1 ,2 )
bins-bins-upd wf-earley-input-elim by blast

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast
ultimately have bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω (I ∪

CompleteF k I )
using CompleteF .IH CompleteF .hyps by simp

also have ... ⊆ EarleyF -bin k G ω (EarleyF -bin k G ω I )
using CompleteF -EarleyF -bin-mono EarleyF -bin-mono EarleyF -bin-sub-mono
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by (metis Un-subset-iff )
finally show ?case

using EarleyF -bin-idem by blast
next

case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2 ) by force
hence bins ?bs ′ ⊆ I ∪ ScanF k ω I
using ScanL-sub-ScanF ScanF .hyps(3 ,5 ) ScanF .prems bins-bins-upd wf-earley-input-elim
by (metis add-mono1 sup-mono)

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by metis

ultimately have bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω (I ∪ ScanF

k ω I )
using ScanF .IH ScanF .hyps by simp

thus ?case
using ScanF -EarleyF -bin-mono EarleyF -bin-mono EarleyF -bin-sub-mono Ear-

leyF -bin-idem by (metis le-supI order-trans)
next

case (Pass k G ω bs i x a)
thus ?case

by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2 ) by force
hence bins ?bs ′ ⊆ I ∪ PredictF k G I

using PredictL-sub-PredictF PredictF .hyps(3 ) PredictF .prems bins-bins-upd
wf-earley-input-elim

by (metis sup-mono)
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by metis
ultimately have bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω (I ∪

PredictF k G I )
using PredictF .IH PredictF .hyps by simp

thus ?case
using PredictF -EarleyF -bin-mono EarleyF -bin-mono EarleyF -bin-sub-mono

EarleyF -bin-idem by (metis le-supI order-trans)
qed

lemma EarleyL-bin-sub-EarleyF -bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes bins bs ⊆ I
shows bins (EarleyL-bin k G ω bs) ⊆ EarleyF -bin k G ω I
using assms EarleyL-bin ′-sub-EarleyF -bin EarleyL-bin-def by metis

lemma EarleyL-bins-sub-EarleyF -bins:
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assumes k ≤ length ω wf-G G
shows bins (EarleyL-bins k G ω) ⊆ EarleyF -bins k G ω
using assms

proof (induction k)
case 0
have (k, G, ω, InitL G ω) ∈ wf-earley-input

using assms(1 ) assms(2 ) wf-earley-input-InitL by blast
thus ?case
by (simp add: InitL-eq-InitF EarleyL-bin-sub-EarleyF -bin assms(2 ) wf-earley-input-InitL)

next
case (Suc k)
have (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input

by (simp add: Suc.prems(1 ) Suc-leD assms(2 ) wf-earley-input-intro)
thus ?case
by (simp add: Suc.IH Suc.prems(1 ) Suc-leD EarleyL-bin-sub-EarleyF -bin assms(2 ))

qed

lemma EarleyL-sub-EarleyF :
wf-G G =⇒ bins (EarleyL G ω) ⊆ EarleyF G ω
using EarleyL-bins-sub-EarleyF -bins EarleyF -def EarleyL-def by (metis dual-order .refl)

theorem soundness-EarleyL:
assumes wf-G G recognizing (bins (EarleyL G ω)) G ω
shows derives G [S G] ω
using assms EarleyL-sub-EarleyF recognizing-def soundness-EarleyF by (meson

subsetD)

8.6 Completeness
lemma bin-bins-upto-bins-eq:

assumes wf-bins G ω bs k < length bs i ≥ length (items (bs ! k)) l ≤ k
shows bin (bins-upto bs k i) l = bin (bins bs) l
unfolding bins-upto-def bins-def bin-def using assms nat-less-le
apply (auto simp: nth-list-update bin-upto-eq-set-items wf-bins-kth-bin items-def )
apply (metis imageI nle-le order-trans, fast)

done

lemma impossible-complete-item:
assumes wf-G G wf-item G ω x sound-item G ω x
assumes is-complete x item-origin x = k item-end x = k nonempty-derives G
shows False

proof −
have derives G [item-rule-head x] []

using assms(3−6 ) by (simp add: slice-empty is-complete-def sound-item-def
item-β-def )

moreover have is-nonterminal G (item-rule-head x)
using assms(1 ,2 ) unfolding wf-item-def item-rule-head-def rule-head-def
by (metis prod.collapse rule-nonterminal-type)

ultimately show ?thesis
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using assms(7 ) nonempty-derives-def is-nonterminal-def by metis
qed

lemma CompleteF -Un-eq-terminal:
assumes next-symbol z = Some a is-terminal G a ∀ x ∈ I . wf-item G ω x wf-item
G ω z wf-G G

shows CompleteF k (I ∪ {z}) = CompleteF k I
proof (rule ccontr)

assume CompleteF k (I ∪ {z}) 6= CompleteF k I
hence CompleteF k I ⊂ CompleteF k (I ∪ {z})

using CompleteF -sub-mono by blast
then obtain w x y where ∗:

w ∈ CompleteF k (I ∪ {z}) w /∈ CompleteF k I w = inc-item x k
x ∈ bin (I ∪ {z}) (item-origin y) y ∈ bin (I ∪ {z}) k
is-complete y next-symbol x = Some (item-rule-head y)
unfolding CompleteF -def by fast

show False
proof (cases x = z)

case True
have is-nonterminal G (item-rule-head y)

using ∗(5 ,6 ) assms(1 ,3−5 )
apply (clarsimp simp: wf-item-def bin-def item-rule-head-def rule-head-def

next-symbol-def )
by (metis prod.exhaust-sel rule-nonterminal-type)

thus ?thesis
using True ∗(7 ) assms(1 ,2 ,5 ) is-terminal-nonterminal by fastforce

next
case False
thus ?thesis

using ∗ assms(1 ) by (auto simp: next-symbol-def CompleteF -def bin-def )
qed

qed

lemma CompleteF -Un-eq-nonterminal:
assumes wf-G G ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item G ω x
assumes nonempty-derives G wf-item G ω z
assumes item-end z = k next-symbol z 6= None
shows CompleteF k (I ∪ {z}) = CompleteF k I

proof (rule ccontr)
assume CompleteF k (I ∪ {z}) 6= CompleteF k I
hence CompleteF k I ⊂ CompleteF k (I ∪ {z})

using CompleteF -sub-mono by blast
then obtain x x ′ y where ∗:

x ∈ CompleteF k (I ∪ {z}) x /∈ CompleteF k I x = inc-item x ′ k
x ′ ∈ bin (I ∪ {z}) (item-origin y) y ∈ bin (I ∪ {z}) k
is-complete y next-symbol x ′ = Some (item-rule-head y)
unfolding CompleteF -def by fast

consider (A) x ′ = z | (B) y = z
using ∗(2−7 ) CompleteF -def by (auto simp: bin-def ; blast)
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thus False
proof cases

case A
have item-origin y = k
using ∗(4 ) A bin-def assms(6 ) by (metis (mono-tags, lifting) mem-Collect-eq)

moreover have item-end y = k
using ∗(5 ) bin-def by blast

moreover have sound-item G ω y
using ∗(5 ,6 ) assms(3 ,7 ) by (auto simp: bin-def next-symbol-def sound-item-def )
moreover have wf-item G ω y

using ∗(5 ) assms(2 ,5 ) wf-item-def by (auto simp: bin-def )
ultimately show ?thesis

using impossible-complete-item ∗(6 ) assms(1 ,4 ) by blast
next

case B
thus ?thesis

using ∗(6 ) assms(7 ) by (auto simp: next-symbol-def )
qed

qed

lemma wf-item-in-kth-bin:
wf-bins G ω bs =⇒ x ∈ bins bs =⇒ item-end x = k =⇒ x ∈ set (items (bs ! k))
using bins-bin-exists wf-bins-kth-bin wf-bins-def by blast

lemma CompleteF -bins-upto-eq-bins:
assumes wf-bins G ω bs k < length bs i ≥ length (items (bs ! k))
shows CompleteF k (bins-upto bs k i) = CompleteF k (bins bs)

proof −
have

∧
l. l ≤ k =⇒ bin (bins-upto bs k i) l = bin (bins bs) l

using bin-bins-upto-bins-eq[OF assms] by blast
moreover have ∀ x ∈ bins bs. wf-item G ω x

using assms(1 ) wf-bins-impl-wf-items by metis
ultimately show ?thesis

unfolding CompleteF -def bin-def wf-item-def wf-item-def by auto
qed

lemma CompleteF -sub-bins-Un-CompleteL:
assumes CompleteF k I ⊆ bins bs I ⊆ bins bs is-complete z wf-bins G ω bs

wf-item G ω z
shows CompleteF k (I ∪ {z}) ⊆ bins bs ∪ set (items (CompleteL k z bs red))

proof standard
fix w
assume w ∈ CompleteF k (I ∪ {z})
then obtain x y where ∗:

w = inc-item x k x ∈ bin (I ∪ {z}) (item-origin y) y ∈ bin (I ∪ {z}) k
is-complete y next-symbol x = Some (item-rule-head y)
unfolding CompleteF -def by blast

consider (A) x = z | (B) y = z | ¬ (x = z ∨ y = z)
by blast
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thus w ∈ bins bs ∪ set (items (CompleteL k z bs red))
proof cases

case A
thus ?thesis

using ∗(5 ) assms(3 ) by (auto simp: next-symbol-def )
next

case B
let ?orig = bs ! item-origin z
let ?is = filter-with-index (λx. next-symbol x = Some (item-rule-head z)) (items

?orig)
have x ∈ bin I (item-origin y)

using B ∗(2 ) ∗(5 ) assms(3 ) by (auto simp: next-symbol-def bin-def )
moreover have bin I (item-origin z) ⊆ set (items (bs ! item-origin z))

using wf-item-in-kth-bin assms(2 ,4 ) bin-def by blast
ultimately have x ∈ set (map fst ?is)

using ∗(5 ) B by (simp add: filter-with-index-cong-filter in-mono)
thus ?thesis

unfolding CompleteL-def ∗(1 ) by (auto simp: rev-image-eqI items-def )
next

case 3
thus ?thesis

using ∗ assms(1 ) CompleteF -def by (auto simp: bin-def ; blast)
qed

qed

lemma CompleteL-eq-item-origin:
bs ! item-origin y = bs ′ ! item-origin y =⇒ CompleteL k y bs red = CompleteL

k y bs ′ red
by (auto simp: CompleteL-def )

lemma kth-bin-bins-upto-empty:
assumes wf-bins G ω bs k < length bs
shows bin (bins-upto bs k 0 ) k = {}

proof −
{

fix x
assume x ∈ bins-upto bs k 0
then obtain l where x ∈ set (items (bs ! l)) l < k

unfolding bins-upto-def bin-upto-def by blast
hence item-end x = l

using wf-bins-kth-bin assms by fastforce
hence item-end x < k

using ‹l < k› by blast
}
thus ?thesis

by (auto simp: bin-def )
qed

lemma EarleyL-bin ′-mono:
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assumes (k, G, ω, bs) ∈ wf-earley-input
shows bins bs ⊆ bins (EarleyL-bin ′ k G ω bs i)
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1 ), case-names Base Com-
pleteF ScanF Pass PredictF ])

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast

hence bins bs ⊆ bins ?bs ′

using length-bins-upd bins-bins-upd wf-earley-input-elim by (metis Un-upper1 )
also have ... ⊆ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ))

using wf CompleteF .IH by blast
finally show ?case

using CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by metis
hence bins bs ⊆ bins ?bs ′

using ScanF .hyps(5 ) length-bins-upd bins-bins-upd wf-earley-input-elim
by (metis add-mono1 sup-ge1 )

also have ... ⊆ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ))
using wf ScanF .IH by blast

finally show ?case
using ScanF .hyps by simp

next
case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by metis
hence bins bs ⊆ bins ?bs ′

using length-bins-upd bins-bins-upd wf-earley-input-elim by (metis sup-ge1 )
also have ... ⊆ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ))

using wf PredictF .IH by blast
finally show ?case

using PredictF .hyps by simp
qed simp-all

lemma EarleyF -bin-step-sub-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k i) ⊆ bins bs
assumes ∀ x ∈ bins bs. sound-item G ω x is-word G ω nonempty-derives G
shows EarleyF -bin-step k G ω (bins bs) ⊆ bins (EarleyL-bin ′ k G ω bs i)
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1 ), case-names Base Com-
pleteF ScanF Pass PredictF ])

case (Base k G ω bs i)
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have bin (bins bs) k = bin (bins-upto bs k i) k
using Base.hyps Base.prems(1 ) bin-bins-upto-bins-eq wf-earley-input-elim by

blast
thus ?case
using ScanF -bin-absorb PredictF -bin-absorb CompleteF -bins-upto-eq-bins wf-earley-input-elim
Base.hyps Base.prems(1 ,2 ,3 ,5 ) EarleyF -bin-step-def CompleteF -EarleyF -bin-step-mono
PredictF -EarleyF -bin-step-mono ScanF -EarleyF -bin-step-mono EarleyL-bin ′-mono
by (metis (no-types, lifting) Un-assoc sup.orderE)

next
case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have x: x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2 ) by auto
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast

hence sound: ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3 ) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items x
by (metis dual-order .refl)

have ScanF k ω (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have ScanF k ω (bins-upto ?bs ′ k (i + 1 )) = ScanF k ω (bins-upto ?bs ′ k i ∪

{items (?bs ′ ! k) ! i})
using CompleteF .hyps(1 ) bins-upto-Suc-Un length-nth-bin-bins-upd items-def
by (metis length-map linorder-not-less sup.boundedE sup.order-iff )

also have ... = ScanF k ω (bins-upto bs k i ∪ {x})
using CompleteF .hyps(1 ,2 ) CompleteF .prems(1 ) items-nth-idem-bins-upd

bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ ScanF k ω {x}
using CompleteF .prems(2 ,3 ) ScanF -Un ScanF -EarleyF -bin-step-mono by

fastforce
also have ... = bins bs

using CompleteF .hyps(3 ) by (auto simp: ScanF -def bin-def )
finally show ?thesis

using CompleteF .prems(1 ) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have PredictF k G (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have PredictF k G (bins-upto ?bs ′ k (i + 1 )) = PredictF k G (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using CompleteF .hyps(1 ) bins-upto-Suc-Un length-nth-bin-bins-upd
by (metis dual-order .strict-trans1 items-def length-map not-le-imp-less)

also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using CompleteF .hyps(1 ,2 ) CompleteF .prems(1 ) items-nth-idem-bins-upd

bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ PredictF k G {x}
using CompleteF .prems(2 ,3 ) PredictF -Un PredictF -EarleyF -bin-step-mono
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by blast
also have ... = bins bs

using CompleteF .hyps(3 ) by (auto simp: PredictF -def bin-def )
finally show ?thesis

using CompleteF .prems(1 ) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have CompleteF k (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have CompleteF k (bins-upto ?bs ′ k (i + 1 )) = CompleteF k (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un length-nth-bin-bins-upd CompleteF .hyps(1 )

by (metis (no-types, opaque-lifting) dual-order .trans items-def length-map
not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i ∪ {x})
using items-nth-idem-bins-upd CompleteF .hyps(1 ,2 ) bins-upto-kth-nth-idem

CompleteF .prems(1 ) wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ set (items (CompleteL k x bs i))
using CompleteF -sub-bins-Un-CompleteL CompleteF .hyps(3 ) CompleteF .prems(1 ,2 ,3 )

next-symbol-def
bins-upto-sub-bins wf-bins-kth-bin x CompleteF -EarleyF -bin-step-mono wf-earley-input-elim
by (smt (verit, best) option.distinct(1 ) subset-trans)

finally show ?thesis
using CompleteF .prems(1 ) wf-earley-input-elim bins-bins-upd by blast

qed
ultimately have EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω

?bs ′ (i+1 ))
using CompleteF .IH CompleteF .prems sound wf EarleyF -bin-step-def bins-upto-sub-bins

wf-earley-input-elim bins-bins-upd
by (metis UnE sup.boundedI )

thus ?case
using CompleteF .hyps CompleteF .prems(1 ) EarleyL-bin ′-simps(2 ) EarleyF -bin-step-sub-mono

bins-bins-upd wf-earley-input-elim
by (smt (verit, best) sup.coboundedI2 sup.orderE sup-ge1 )

next
case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have x: x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2 ) by auto
hence sound: ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

using sound-ScanL ScanF .hyps(3 ,5 ) ScanF .prems(1 ,2 ,3 ) wf-earley-input-elim
wf-bins-impl-wf-items x

by (metis dual-order .refl)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by metis
have ScanF k ω (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have ScanF k ω (bins-upto ?bs ′ k (i + 1 )) = ScanF k ω (bins-upto ?bs ′ k i ∪

{items (?bs ′ ! k) ! i})
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using bins-upto-Suc-Un ScanF .hyps(1 ) nth-idem-bins-upd
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)

also have ... = ScanF k ω (bins-upto bs k i ∪ {x})
using ScanF .hyps(1 ,2 ,5 ) ScanF .prems(1 ,2 ) nth-idem-bins-upd bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis add-mono-thms-linordered-field(1 ) items-def length-map less-add-one

linorder-le-less-linear not-add-less1 )
also have ... ⊆ bins bs ∪ ScanF k ω {x}
using ScanF .prems(2 ,3 ) ScanF -Un ScanF -EarleyF -bin-step-mono by fastforce
finally have ∗: ScanF k ω (bins-upto ?bs ′ k (i + 1 )) ⊆ bins bs ∪ ScanF k ω

{x} .
show ?thesis
proof cases

assume a1 : ω!k = a
hence ScanF k ω {x} = {inc-item x (k+1 )}

using ScanF .hyps(1−3 ,5 ) ScanF .prems(1 ,2 ) wf-earley-input-elim apply
(auto simp: ScanF -def bin-def )

using wf-bins-kth-bin x by blast
hence ScanF k ω (bins-upto ?bs ′ k (i + 1 )) ⊆ bins bs ∪ {inc-item x (k+1 )}

using ∗ by blast
also have ... = bins bs ∪ set (items (ScanL k ω a x i))

using a1 ScanF .hyps(5 ) by (auto simp: ScanL-def items-def )
also have ... = bins ?bs ′

using ScanF .hyps(5 ) ScanF .prems(1 ) wf-earley-input-elim bins-bins-upd by
(metis add-mono1 )

finally show ?thesis .
next

assume a1 : ¬ ω!k = a
hence ScanF k ω {x} = {}

using ScanF .hyps(3 ) by (auto simp: ScanF -def bin-def )
hence ScanF k ω (bins-upto ?bs ′ k (i + 1 )) ⊆ bins bs

using ∗ by blast
also have ... ⊆ bins ?bs ′

using ScanF .hyps(5 ) ScanF .prems(1 ) wf-earley-input-elim bins-bins-upd
by (metis Un-left-absorb add-strict-right-mono subset-Un-eq)

finally show ?thesis .
qed

qed
moreover have PredictF k G (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have PredictF k G (bins-upto ?bs ′ k (i + 1 )) = PredictF k G (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un ScanF .hyps(1 ) nth-idem-bins-upd

by (metis Suc-eq-plus1 dual-order .refl items-def length-map lessI linorder-not-less)
also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using ScanF .hyps(1 ,2 ,5 ) ScanF .prems(1 ,2 ) nth-idem-bins-upd bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis add-strict-right-mono items-def le-add1 length-map less-add-one

linorder-not-le)
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also have ... ⊆ bins bs ∪ PredictF k G {x}
using ScanF .prems(2 ,3 ) PredictF -Un PredictF -EarleyF -bin-step-mono by

fastforce
also have ... = bins bs
using ScanF .hyps(3 ,4 ) ScanF .prems(1 ) is-terminal-nonterminal wf-earley-input-elim

by (auto simp: PredictF -def bin-def rule-head-def , fastforce)
finally show ?thesis
using ScanF .hyps(5 ) ScanF .prems(1 ) by (simp add: bins-bins-upd sup.coboundedI1

wf-earley-input-elim)
qed
moreover have CompleteF k (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have CompleteF k (bins-upto ?bs ′ k (i + 1 )) = CompleteF k (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un ScanF .hyps(1 ) nth-idem-bins-upd
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i ∪ {x})
using ScanF .hyps(1 ,2 ,5 ) ScanF .prems(1 ,2 ) nth-idem-bins-upd bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis add-mono1 items-def length-map less-add-one linorder-not-le not-add-less1 )
also have ... = CompleteF k (bins-upto bs k i)
using CompleteF -Un-eq-terminal ScanF .hyps(3 ,4 ) ScanF .prems bins-upto-sub-bins

subset-iff
wf-bins-impl-wf-items wf-bins-kth-bin wf-item-def x wf-earley-input-elim

by (smt (verit, ccfv-threshold))
finally show ?thesis
using ScanF .hyps(5 ) ScanF .prems(1 ,2 ,3 ) CompleteF -EarleyF -bin-step-mono

by (auto simp: bins-bins-upd wf-earley-input-elim, blast)
qed
ultimately have EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω

?bs ′ (i+1 ))
using ScanF .IH ScanF .prems ScanF .hyps(5 ) sound wf EarleyF -bin-step-def

bins-upto-sub-bins wf-earley-input-elim
bins-bins-upd by (metis UnE add-mono1 le-supI )

thus ?case
using EarleyF -bin-step-sub-mono EarleyL-bin ′-simps(3 ) ScanF .hyps ScanF .prems(1 )

wf-earley-input-elim bins-bins-upd
by (smt (verit, ccfv-SIG) add-mono1 sup.cobounded1 sup.coboundedI2 sup.orderE)

next
case (Pass k G ω bs i x a)
have x: x ∈ set (items (bs ! k))

using Pass.hyps(1 ,2 ) by auto
have ScanF k ω (bins-upto bs k (i + 1 )) ⊆ bins bs

using ScanF -def Pass.hyps(5 ) by auto
moreover have PredictF k G (bins-upto bs k (i + 1 )) ⊆ bins bs
proof −

have PredictF k G (bins-upto bs k (i + 1 )) = PredictF k G (bins-upto bs k i ∪
{items (bs ! k) ! i})

using bins-upto-Suc-Un Pass.hyps(1 ) by (metis items-def length-map not-le-imp-less)
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also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using Pass.hyps(1 ,2 ,5 ) nth-idem-bins-upd bins-upto-kth-nth-idem by simp

also have ... ⊆ bins bs ∪ PredictF k G {x}
using Pass.prems(2 ) PredictF -Un PredictF -EarleyF -bin-step-mono by blast

also have ... = bins bs
using Pass.hyps(3 ,4 ) Pass.prems(1 ) is-terminal-nonterminal wf-earley-input-elim

by (auto simp: PredictF -def bin-def rule-head-def , fastforce)
finally show ?thesis

using bins-bins-upd Pass.hyps(5 ) Pass.prems(3 ) by auto
qed
moreover have CompleteF k (bins-upto bs k (i + 1 )) ⊆ bins bs
proof −

have CompleteF k (bins-upto bs k (i + 1 )) = CompleteF k (bins-upto bs k i ∪
{x})

using bins-upto-Suc-Un Pass.hyps(1 ,2 )
by (metis items-def length-map not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i)
using CompleteF -Un-eq-terminal Pass.hyps Pass.prems bins-upto-sub-bins

subset-iff
wf-bins-impl-wf-items wf-item-def wf-bins-kth-bin x wf-earley-input-elim by

(smt (verit, best))
finally show ?thesis
using Pass.prems(1 ,2 ) CompleteF -EarleyF -bin-step-mono wf-earley-input-elim

by blast
qed
ultimately have EarleyF -bin-step k G ω (bins bs) ⊆ bins (EarleyL-bin ′ k G ω

bs (i+1 ))
using Pass.IH Pass.prems EarleyF -bin-step-def bins-upto-sub-bins wf-earley-input-elim
by (metis le-sup-iff )

thus ?case
using bins-bins-upd Pass.hyps Pass.prems by simp

next
case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have k ≥ length ω ∨ ¬ ω!k = a

using PredictF .hyps(4 ) PredictF .prems(4 ) is-word-is-terminal leI by blast
have x: x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2 ) by auto
hence sound: ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3 ) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by metis

have len: i < length (items (?bs ′ ! k))
using length-nth-bin-bins-upd PredictF .hyps(1 )
by (metis dual-order .strict-trans1 items-def length-map linorder-not-less)

have ScanF k ω (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have ScanF k ω (bins-upto ?bs ′ k (i + 1 )) = ScanF k ω (bins-upto ?bs ′ k i ∪
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{items (?bs ′ ! k) ! i})
using PredictF .hyps(1 ) bins-upto-Suc-Un by (metis items-def len length-map)

also have ... = ScanF k ω (bins-upto bs k i ∪ {x})
using PredictF .hyps(1 ,2 ) PredictF .prems(1 ) items-nth-idem-bins-upd bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ ScanF k ω {x}
using PredictF .prems(2 ,3 ) ScanF -Un ScanF -EarleyF -bin-step-mono by fast-

force
also have ... = bins bs
using PredictF .hyps(3 ) ‹length ω ≤ k ∨ ω ! k 6= a› by (auto simp: ScanF -def

bin-def )
finally show ?thesis

using PredictF .prems(1 ) wf-earley-input-elim bins-bins-upd by blast
qed
moreover have PredictF k G (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have PredictF k G (bins-upto ?bs ′ k (i + 1 )) = PredictF k G (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using PredictF .hyps(1 ) bins-upto-Suc-Un by (metis items-def len length-map)

also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using PredictF .hyps(1 ,2 ) PredictF .prems(1 ) items-nth-idem-bins-upd bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ PredictF k G {x}
using PredictF .prems(2 ,3 ) PredictF -Un PredictF -EarleyF -bin-step-mono by

fastforce
also have ... = bins bs ∪ set (items (PredictL k G a))

using PredictF .hyps PredictF .prems(1−3 ) wf-earley-input-elim
apply (auto simp: PredictF -def PredictL-def bin-def items-def )
using wf-bins-kth-bin x by blast

finally show ?thesis
using PredictF .prems(1 ) wf-earley-input-elim bins-bins-upd by blast

qed
moreover have CompleteF k (bins-upto ?bs ′ k (i + 1 )) ⊆ bins ?bs ′

proof −
have CompleteF k (bins-upto ?bs ′ k (i + 1 )) = CompleteF k (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un len by (metis items-def length-map)

also have ... = CompleteF k (bins-upto bs k i ∪ {x})
using items-nth-idem-bins-upd PredictF .hyps(1 ,2 ) PredictF .prems(1 ) bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i)
using CompleteF -Un-eq-nonterminal PredictF .prems bins-upto-sub-bins Pre-

dictF .hyps(3 )
subset-eq wf-bins-kth-bin x wf-bins-impl-wf-items wf-item-def wf-earley-input-elim
by (smt (verit, ccfv-SIG) option.simps(3 ))

also have ... ⊆ bins bs
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using CompleteF -EarleyF -bin-step-mono PredictF .prems(2 ) by blast
finally show ?thesis

using bins-bins-upd PredictF .prems(1 ,2 ,3 ) wf-earley-input-elim by (metis
Un-upper1 dual-order .trans)

qed
ultimately have EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω

?bs ′ (i+1 ))
using PredictF .IH PredictF .prems sound wf EarleyF -bin-step-def bins-upto-sub-bins

bins-bins-upd wf-earley-input-elim by (metis UnE le-supI )
hence EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω bs i)

using PredictF .hyps EarleyL-bin ′-simps(5 ) by simp
moreover have EarleyF -bin-step k G ω (bins bs) ⊆ EarleyF -bin-step k G ω (bins

?bs ′)
using EarleyF -bin-step-sub-mono PredictF .prems(1 ) wf-earley-input-elim bins-bins-upd

by (metis Un-upper1 )
ultimately show ?case

by blast
qed

lemma EarleyF -bin-step-sub-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k 0 ) ⊆ bins bs
assumes ∀ x ∈ bins bs. sound-item G ω x is-word G ω nonempty-derives G
shows EarleyF -bin-step k G ω (bins bs) ⊆ bins (EarleyL-bin k G ω bs)
using assms EarleyF -bin-step-sub-EarleyL-bin ′ EarleyL-bin-def by metis

lemma bins-eq-items-CompleteL:
assumes bins-eq-items as bs item-origin x < length as
shows items (CompleteL k x as i) = items (CompleteL k x bs i)

proof −
let ?orig-a = as ! item-origin x
let ?orig-b = bs ! item-origin x
have items ?orig-a = items ?orig-b

using assms by (metis (no-types, opaque-lifting) bins-eq-items-def length-map
nth-map)

thus ?thesis
unfolding CompleteL-def by simp

qed

lemma EarleyL-bin ′-bins-eq:
assumes (k, G, ω, as) ∈ wf-earley-input
assumes bins-eq-items as bs wf-bins G ω as
shows bins-eq-items (EarleyL-bin ′ k G ω as i) (EarleyL-bin ′ k G ω bs i)
using assms

proof (induction i arbitrary: bs rule: EarleyL-bin ′-induct[OF assms(1 ), case-names
Base CompleteF ScanF Pass PredictF ])

case (Base k G ω as i)
have EarleyL-bin ′ k G ω as i = as

by (simp add: Base.hyps)
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moreover have EarleyL-bin ′ k G ω bs i = bs
using Base.hyps Base.prems(1 ,2 ) unfolding bins-eq-items-def
by (metis EarleyL-bin ′-simps(1 ) length-map nth-map wf-earley-input-elim)

ultimately show ?case
using Base.prems(2 ) by presburger

next
case (CompleteF k G ω as i x)
let ?as ′ = bins-upd as k (CompleteL k x as i)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have k: k < length as

using CompleteF .prems(1 ) wf-earley-input-elim by blast
hence wf-x: wf-item G ω x

using CompleteF .hyps(1 ,2 ) CompleteF .prems(3 ) wf-bins-kth-bin by fastforce
have (k, G, ω, ?as ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast

moreover have bins-eq-items ?as ′ ?bs ′

using CompleteF .hyps(1 ,2 ) CompleteF .prems(2 ,3 ) bins-eq-items-dist-bins-upd
bins-eq-items-CompleteL

k wf-x wf-bins-kth-bin wf-item-def by (metis dual-order .strict-trans2 leI
nth-mem)

ultimately have bins-eq-items (EarleyL-bin ′ k G ω ?as ′ (i + 1 )) (EarleyL-bin ′

k G ω ?bs ′ (i + 1 ))
using CompleteF .IH wf-earley-input-elim by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω ?as ′ (i+1 )
using CompleteF .hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω ?bs ′ (i+1 )
using CompleteF .hyps CompleteF .prems unfolding bins-eq-items-def

by (metis EarleyL-bin ′-simps(2 ) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case

by argo
next

case (ScanF k G ω as i x a)
let ?as ′ = bins-upd as (k+1 ) (ScanL k ω a x i)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have (k, G, ω, ?as ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by fast
moreover have bins-eq-items ?as ′ ?bs ′

using ScanF .hyps(5 ) ScanF .prems(1 ,2 ) bins-eq-items-dist-bins-upd add-mono1
wf-earley-input-elim by metis

ultimately have bins-eq-items (EarleyL-bin ′ k G ω ?as ′ (i + 1 )) (EarleyL-bin ′

k G ω ?bs ′ (i + 1 ))
using ScanF .IH wf-earley-input-elim by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω ?as ′ (i+1 )
using ScanF .hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω ?bs ′ (i+1 )
using ScanF .hyps ScanF .prems unfolding bins-eq-items-def

by (smt (verit, ccfv-threshold) EarleyL-bin ′-simps(3 ) length-map nth-map wf-earley-input-elim)
ultimately show ?case

by argo
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next
case (Pass k G ω as i x a)
have bins-eq-items (EarleyL-bin ′ k G ω as (i + 1 )) (EarleyL-bin ′ k G ω bs (i +

1 ))
using Pass.prems Pass.IH by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω as (i+1 )
using Pass.hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω bs (i+1 )
using Pass.hyps Pass.prems unfolding bins-eq-items-def

by (metis EarleyL-bin ′-simps(4 ) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case

by argo
next

case (PredictF k G ω as i x a)
let ?as ′ = bins-upd as k (PredictL k G a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have (k, G, ω, ?as ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by fast
moreover have bins-eq-items ?as ′ ?bs ′

using PredictF .prems(1 ,2 ) bins-eq-items-dist-bins-upd wf-earley-input-elim by
blast

ultimately have bins-eq-items (EarleyL-bin ′ k G ω ?as ′ (i + 1 )) (EarleyL-bin ′

k G ω ?bs ′ (i + 1 ))
using PredictF .IH wf-earley-input-elim by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω ?as ′ (i+1 )
using PredictF .hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω ?bs ′ (i+1 )
using PredictF .hyps PredictF .prems unfolding bins-eq-items-def
by (metis EarleyL-bin ′-simps(5 ) length-map nth-map wf-earley-input-elim)

ultimately show ?case
by argo

qed

lemma EarleyL-bin ′-idem:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes i ≤ j ∀ x ∈ bins bs. sound-item G ω x nonempty-derives G
shows bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω bs i)
using assms

proof (induction i arbitrary: j rule: EarleyL-bin ′-induct[OF assms(1 ), case-names
Base CompleteF ScanF Pass PredictF ])

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have x: x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2 ) by auto
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast

hence ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3 ) CompleteF .prems wf-earley-input-elim
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wf-bins-impl-wf-items x
by (metis dual-order .refl)

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
by (metis CompleteF .prems(1 ,3 ) UnE bins-bins-upd wf-earley-input-elim)

show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using wf sound CompleteF EarleyL-bin ′-simps(2 ) by metis
next

assume ¬ i+1 ≤ j
hence i = j

using CompleteF .prems(2 ) by simp
have bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 )) j)
using EarleyL-bin ′-simps(2 ) CompleteF .hyps(1−3 ) by simp

also have ... = bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 ))
(j+1 ))

proof −
let ?bs ′′ = EarleyL-bin ′ k G ω ?bs ′ (i+1 )
have length (items (?bs ′′ ! k)) ≥ length (items (bs ! k))

using length-nth-bin-EarleyL-bin ′ length-nth-bin-bins-upd order-trans wf
CompleteF .hyps CompleteF .prems(1 )

by (smt (verit, ccfv-threshold) EarleyL-bin ′-simps(2 ))
hence 0 : ¬ length (items (?bs ′′ ! k)) ≤ j

using ‹i = j› CompleteF .hyps(1 ) by linarith
have x = items (?bs ′ ! k) ! j

using ‹i = j› items-nth-idem-bins-upd CompleteF .hyps(1 ,2 )
by (metis items-def length-map not-le-imp-less)

hence 1 : x = items (?bs ′′ ! k) ! j
using ‹i = j› kth-EarleyL-bin ′-bins CompleteF .hyps CompleteF .prems(1 )

EarleyL-bin ′-simps(2 ) leI by metis
have bins (EarleyL-bin ′ k G ω ?bs ′′ j) = bins (EarleyL-bin ′ k G ω (bins-upd

?bs ′′ k (CompleteL k x ?bs ′′ i)) (j+1 ))
using EarleyL-bin ′-simps(2 ) 0 1 CompleteF .hyps(1 ,3 ) CompleteF .prems(2 )

‹i = j› by auto
moreover have bins-eq-items (bins-upd ?bs ′′ k (CompleteL k x ?bs ′′ i)) ?bs ′′

proof −
have k < length bs

using CompleteF .prems(1 ) wf-earley-input-elim by blast
have 0 : set (CompleteL k x bs i) = set (CompleteL k x ?bs ′′ i)
proof (cases item-origin x = k)

case True
thus ?thesis

using impossible-complete-item kth-bin-sub-bins CompleteF .hyps(3 )
CompleteF .prems wf-earley-input-elim

wf-bins-kth-bin x next-symbol-def by (metis option.distinct(1 ) subsetD)
next

case False
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hence item-origin x < k
using x CompleteF .prems(1 ) wf-bins-kth-bin wf-item-def nat-less-le by

(metis wf-earley-input-elim)
hence bs ! item-origin x = ?bs ′′ ! item-origin x

using False nth-idem-bins-upd nth-EarleyL-bin ′-eq wf by metis
thus ?thesis

using CompleteL-eq-item-origin by metis
qed
have set (items (CompleteL k x bs i)) ⊆ set (items (?bs ′ ! k))

by (simp add: ‹k < length bs› bins-upd-def set-items-bin-upds)
hence set (items (CompleteL k x ?bs ′′ i)) ⊆ set (items (?bs ′ ! k))

using 0 by (simp add: items-def )
also have ... ⊆ set (items (?bs ′′ ! k))

by (simp add: wf nth-bin-sub-EarleyL-bin ′)
finally show ?thesis

using bins-eq-items-bins-upd by blast
qed

moreover have (k, G, ω, bins-upd ?bs ′′ k (CompleteL k x ?bs ′′ i)) ∈
wf-earley-input

using wf-earley-input-EarleyL-bin ′ wf-earley-input-CompleteL CompleteF .hyps
CompleteF .prems(1 )

‹length (items (bs ! k)) ≤ length (items (?bs ′′ ! k))› kth-EarleyL-bin ′-bins
0 1 by blast

ultimately show ?thesis
using EarleyL-bin ′-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by

blast
qed
also have ... = bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ))

using CompleteF .IH [OF wf - sound CompleteF .prems(4 )] ‹i = j› by blast
finally show ?thesis

using CompleteF .hyps by simp
qed

next
case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have x: x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2 ) by auto
hence ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

using sound-ScanL ScanF .hyps(3 ,5 ) ScanF .prems(1 ,2 ,3 ) wf-earley-input-elim
wf-bins-impl-wf-items x

by (metis dual-order .refl)
hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x

using ScanF .hyps(5 ) ScanF .prems(1 ,3 ) bins-bins-upd wf-earley-input-elim
by (metis UnE add-less-cancel-right)

have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by metis

show ?case
proof cases

assume i+1 ≤ j
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thus ?thesis
using sound ScanF by (metis EarleyL-bin ′-simps(3 ) wf-earley-input-ScanL)

next
assume ¬ i+1 ≤ j
hence i = j

using ScanF .prems(2 ) by auto
have bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 )) j)
using ScanF .hyps by simp

also have ... = bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 ))
(j+1 ))

proof −
let ?bs ′′ = EarleyL-bin ′ k G ω ?bs ′ (i+1 )
have length (items (?bs ′′ ! k)) ≥ length (items (bs ! k))
using length-nth-bin-EarleyL-bin ′ length-nth-bin-bins-upd order-trans ScanF .hyps

ScanF .prems(1 ) EarleyL-bin ′-simps(3 )
by (smt (verit, ccfv-SIG))

hence bins (EarleyL-bin ′ k G ω ?bs ′′ j) = bins (EarleyL-bin ′ k G ω (bins-upd
?bs ′′ (k+1 ) (ScanL k ω a x i)) (j+1 ))

using ‹i = j› kth-EarleyL-bin ′-bins nth-idem-bins-upd EarleyL-bin ′-simps(3 )
ScanF .hyps ScanF .prems(1 ) by (smt (verit, best) leI le-trans)

moreover have bins-eq-items (bins-upd ?bs ′′ (k+1 ) (ScanL k ω a x i)) ?bs ′′

proof −
have k+1 < length bs

using ScanF .hyps(5 ) ScanF .prems wf-earley-input-elim by fastforce+
hence set (items (ScanL k ω a x i)) ⊆ set (items (?bs ′ ! (k+1 )))

by (simp add: bins-upd-def set-items-bin-upds)
also have ... ⊆ set (items (?bs ′′ ! (k+1 )))

using wf nth-bin-sub-EarleyL-bin ′ by blast
finally show ?thesis

using bins-eq-items-bins-upd by blast
qed

moreover have (k, G, ω, bins-upd ?bs ′′ (k+1 ) (ScanL k ω a x i)) ∈
wf-earley-input

using wf-earley-input-EarleyL-bin ′ wf-earley-input-ScanL ScanF .hyps ScanF .prems(1 )
‹length (items (bs ! k)) ≤ length (items (?bs ′′ ! k))› kth-EarleyL-bin ′-bins

by (smt (verit, ccfv-SIG) EarleyL-bin ′-simps(3 ) linorder-not-le order .trans)
ultimately show ?thesis
using EarleyL-bin ′-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by

blast
qed
also have ... = bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ))
using ‹i = j› ScanF .IH ScanF .prems ScanF .hyps sound wf-earley-input-ScanL

by fast
finally show ?thesis

using ScanF .hyps by simp
qed

next
case (Pass k G ω bs i x a)
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show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using Pass by (metis EarleyL-bin ′-simps(4 ))
next

assume ¬ i+1 ≤ j
show ?thesis
using Pass EarleyL-bin ′-simps(1 ,4 ) kth-EarleyL-bin ′-bins by (metis Suc-eq-plus1

Suc-leI antisym-conv2 not-le-imp-less)
qed

next
case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have x: x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2 ) by auto
hence ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3 ) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
using PredictF .prems(1 ,3 ) UnE bins-bins-upd wf-earley-input-elim by metis

have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by metis

have len: i < length (items (?bs ′ ! k))
using length-nth-bin-bins-upd PredictF .hyps(1 ) Orderings.preorder-class.dual-order .strict-trans1

linorder-not-less
by (metis items-def length-map)

show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using sound wf PredictF by (metis EarleyL-bin ′-simps(5 ))
next

assume ¬ i+1 ≤ j
hence i = j

using PredictF .prems(2 ) by auto
have bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 )) j)
using PredictF .hyps by simp

also have ... = bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 ))
(j+1 ))

proof −
let ?bs ′′ = EarleyL-bin ′ k G ω ?bs ′ (i+1 )
have length (items (?bs ′′ ! k)) ≥ length (items (bs ! k))

using length-nth-bin-EarleyL-bin ′ length-nth-bin-bins-upd order-trans wf
by (metis (no-types, lifting) items-def length-map)

hence bins (EarleyL-bin ′ k G ω ?bs ′′ j) = bins (EarleyL-bin ′ k G ω (bins-upd
?bs ′′ k (PredictL k G a)) (j+1 ))

using ‹i = j› kth-EarleyL-bin ′-bins nth-idem-bins-upd EarleyL-bin ′-simps(5 )
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PredictF .hyps PredictF .prems(1 ) length-bins-EarleyL-bin ′

wf-bins-EarleyL-bin ′ wf-bins-kth-bin wf-item-def x by (smt (verit, ccfv-SIG)
linorder-not-le order .trans)

moreover have bins-eq-items (bins-upd ?bs ′′ k (PredictL k G a)) ?bs ′′

proof −
have k < length bs

using wf-earley-input-elim[OF PredictF .prems(1 )] by blast
hence set (items (PredictL k G a)) ⊆ set (items (?bs ′ ! k))

by (simp add: bins-upd-def set-items-bin-upds)
also have ... ⊆ set (items (?bs ′′ ! k))

using wf nth-bin-sub-EarleyL-bin ′ by blast
finally show ?thesis

using bins-eq-items-bins-upd by blast
qed
moreover have (k, G, ω, bins-upd ?bs ′′ k (PredictL k G a)) ∈ wf-earley-input

using wf-earley-input-EarleyL-bin ′ wf-earley-input-PredictL PredictF .hyps
PredictF .prems(1 )

‹length (items (bs ! k)) ≤ length (items (?bs ′′ ! k))› kth-EarleyL-bin ′-bins
by (smt (verit, best) EarleyL-bin ′-simps(5 ) dual-order .trans not-le-imp-less)

ultimately show ?thesis
using EarleyL-bin ′-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by

blast
qed
also have ... = bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1 ))

using ‹i = j› PredictF .IH PredictF .prems sound wf by (metis order-refl)
finally show ?thesis

using PredictF .hyps by simp
qed

qed simp

lemma EarleyL-bin-idem:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes ∀ x ∈ bins bs. sound-item G ω x nonempty-derives G
shows bins (EarleyL-bin k G ω (EarleyL-bin k G ω bs)) = bins (EarleyL-bin k
G ω bs)

using assms EarleyL-bin ′-idem EarleyL-bin-def le0 by metis

lemma funpower-EarleyF -bin-step-sub-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k 0 ) ⊆ bins bs ∀ x ∈ bins bs.

sound-item G ω x
assumes is-word G ω nonempty-derives G
shows funpower (EarleyF -bin-step k G ω) n (bins bs) ⊆ bins (EarleyL-bin k G

ω bs)
using assms

proof (induction n)
case 0
thus ?case

using EarleyL-bin ′-mono EarleyL-bin-def by (simp add: EarleyL-bin ′-mono
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EarleyL-bin-def )
next

case (Suc n)
have 0 : EarleyF -bin-step k G ω (bins-upto (EarleyL-bin k G ω bs) k 0 ) ⊆ bins

(EarleyL-bin k G ω bs)
using EarleyL-bin ′-mono bins-upto-k0-EarleyL-bin ′-eq assms(1 ,2 ) EarleyL-bin-def

order-trans
by (metis (no-types, lifting))

have funpower (EarleyF -bin-step k G ω) (Suc n) (bins bs) ⊆ EarleyF -bin-step k
G ω (bins (EarleyL-bin k G ω bs))

using EarleyF -bin-step-sub-mono Suc by (metis funpower .simps(2 ))
also have ... ⊆ bins (EarleyL-bin k G ω (EarleyL-bin k G ω bs))
using EarleyF -bin-step-sub-EarleyL-bin Suc.prems wf-bins-EarleyL-bin sound-EarleyL-bin

0 wf-earley-input-EarleyL-bin by blast
also have ... ⊆ bins (EarleyL-bin k G ω bs)

using EarleyL-bin-idem Suc.prems by blast
finally show ?case .

qed

lemma EarleyF -bin-sub-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k 0 ) ⊆ bins bs ∀ x ∈ bins bs.

sound-item G ω x
assumes is-word G ω nonempty-derives G
shows EarleyF -bin k G ω (bins bs) ⊆ bins (EarleyL-bin k G ω bs)
using assms funpower-EarleyF -bin-step-sub-EarleyL-bin EarleyF -bin-def elem-limit-simp

by fastforce

lemma EarleyF -bins-sub-EarleyL-bins:
assumes k ≤ length ω wf-G G
assumes is-word G ω nonempty-derives G
shows EarleyF -bins k G ω ⊆ bins (EarleyL-bins k G ω)
using assms

proof (induction k)
case 0
hence EarleyF -bin 0 G ω (InitF G) ⊆ bins (EarleyL-bin 0 G ω (InitL G ω))
using EarleyF -bin-sub-EarleyL-bin InitL-eq-InitF length-bins-InitL InitL-eq-InitF

sound-Init bins-upto-empty
EarleyF -bin-step-empty bins-upto-sub-bins wf-earley-input-InitL wf-earley-input-elim

by (smt (verit, ccfv-threshold) InitF -sub-Earley basic-trans-rules(31 ) sound-Earley
wf-bins-impl-wf-items)

thus ?case
by simp

next
case (Suc k)
have wf : (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input

by (simp add: Suc.prems(1 ) Suc-leD assms(2 ) wf-earley-input-intro)
have sub: EarleyF -bin-step (Suc k) G ω (bins-upto (EarleyL-bins k G ω) (Suc k)

0 ) ⊆ bins (EarleyL-bins k G ω)

85



proof −
have bin (bins-upto (EarleyL-bins k G ω) (Suc k) 0 ) (Suc k) = {}

using kth-bin-bins-upto-empty wf Suc.prems wf-earley-input-elim by blast
hence EarleyF -bin-step (Suc k) G ω (bins-upto (EarleyL-bins k G ω) (Suc k)

0 ) = bins-upto (EarleyL-bins k G ω) (Suc k) 0
unfolding EarleyF -bin-step-def ScanF -def CompleteF -def PredictF -def bin-def

by blast
also have ... ⊆ bins (EarleyL-bins k G ω)

using wf Suc.prems bins-upto-sub-bins wf-earley-input-elim by blast
finally show ?thesis .

qed
have sound: ∀ x ∈ bins (EarleyL-bins k G ω). sound-item G ω x
using Suc EarleyL-bins-sub-EarleyF -bins by (metis Suc-leD EarleyF -bins-sub-Earley

in-mono sound-Earley wf-Earley)
have EarleyF -bins (Suc k) G ω ⊆ EarleyF -bin (Suc k) G ω (bins (EarleyL-bins

k G ω))
using Suc EarleyF -bin-sub-mono by simp

also have ... ⊆ bins (EarleyL-bin (Suc k) G ω (EarleyL-bins k G ω))
using EarleyF -bin-sub-EarleyL-bin wf sub sound Suc.prems by fastforce

finally show ?case
by simp

qed

lemma EarleyF -sub-EarleyL:
assumes wf-G G is-word G ω nonempty-derives G
shows EarleyF G ω ⊆ bins (EarleyL G ω)
using assms EarleyF -bins-sub-EarleyL-bins EarleyF -def EarleyL-def by (metis

le-refl)

theorem completeness-EarleyL:
assumes derives G [S G] ω is-word G ω wf-G G nonempty-derives G
shows recognizing (bins (EarleyL G ω)) G ω
using assms EarleyF -sub-EarleyL EarleyL-sub-EarleyF completeness-EarleyF by

(metis subset-antisym)

8.7 Correctness
theorem Earley-eq-EarleyL:

assumes wf-G G is-word G ω nonempty-derives G
shows Earley G ω = bins (EarleyL G ω)
using assms EarleyF -sub-EarleyL EarleyL-sub-EarleyF Earley-eq-EarleyF by

blast

theorem correctness-EarleyL:
assumes wf-G G is-word G ω nonempty-derives G
shows recognizing (bins (EarleyL G ω)) G ω ←→ derives G [S G] ω
using assms Earley-eq-EarleyL correctness-Earley by fastforce

end
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theory Earley-Parser
imports

Earley-Recognizer
HOL−Library.Monad-Syntax

begin

9 Earley parser
9.1 Pointer lemmas
definition predicts :: ′a item ⇒ bool where

predicts x ≡ item-origin x = item-end x ∧ item-dot x = 0

definition scans :: ′a sentence ⇒ nat ⇒ ′a item ⇒ ′a item ⇒ bool where
scans ω k x y ≡ y = inc-item x k ∧ (∃ a. next-symbol x = Some a ∧ ω!(k−1 ) =

a)

definition completes :: nat ⇒ ′a item ⇒ ′a item ⇒ ′a item ⇒ bool where
completes k x y z ≡ y = inc-item x k ∧ is-complete z ∧ item-origin z = item-end

x ∧
(∃N . next-symbol x = Some N ∧ N = item-rule-head z)

definition sound-null-ptr :: ′a entry ⇒ bool where
sound-null-ptr e ≡ (pointer e = Null −→ predicts (item e))

definition sound-pre-ptr :: ′a sentence ⇒ ′a bins ⇒ nat ⇒ ′a entry ⇒ bool where
sound-pre-ptr ω bs k e ≡ ∀ pre. pointer e = Pre pre −→

k > 0 ∧ pre < length (bs!(k−1 )) ∧ scans ω k (item (bs!(k−1 )!pre)) (item e)

definition sound-prered-ptr :: ′a bins ⇒ nat ⇒ ′a entry ⇒ bool where
sound-prered-ptr bs k e ≡ ∀ p ps k ′ pre red. pointer e = PreRed p ps ∧ (k ′, pre,

red) ∈ set (p#ps) −→
k ′ < k ∧ pre < length (bs!k ′) ∧ red < length (bs!k) ∧ completes k (item

(bs!k ′!pre)) (item e) (item (bs!k!red))

definition sound-ptrs :: ′a sentence ⇒ ′a bins ⇒ bool where
sound-ptrs ω bs ≡ ∀ k < length bs. ∀ e ∈ set (bs!k).

sound-null-ptr e ∧ sound-pre-ptr ω bs k e ∧ sound-prered-ptr bs k e

definition mono-red-ptr :: ′a bins ⇒ bool where
mono-red-ptr bs ≡ ∀ k < length bs. ∀ i < length (bs!k).
∀ k ′ pre red ps. pointer (bs!k!i) = PreRed (k ′, pre, red) ps −→ red < i

lemma nth-item-bin-upd:
n < length es =⇒ item (bin-upd e es ! n) = item (es!n)
by (induction es arbitrary: e n) (auto simp: less-Suc-eq-0-disj split: entry.splits

pointer .splits)

lemma bin-upd-append:
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item e /∈ set (items es) =⇒ bin-upd e es = es @ [e]
by (induction es arbitrary: e) (auto simp: items-def split: entry.splits pointer .splits)

lemma bin-upd-null-pre:
item e ∈ set (items es) =⇒ pointer e = Null ∨ pointer e = Pre pre =⇒ bin-upd

e es = es
by (induction es arbitrary: e) (auto simp: items-def split: entry.splits)

lemma bin-upd-prered-nop:
assumes distinct (items es) i < length es
assumes item e = item (es!i) pointer e = PreRed p ps @ p ps. pointer (es!i) =

PreRed p ps
shows bin-upd e es = es
using assms
by (induction es arbitrary: e i) (auto simp: less-Suc-eq-0-disj items-def split:

entry.splits pointer .splits)

lemma bin-upd-prered-upd:
assumes distinct (items es) i < length es
assumes item e = item (es!i) pointer e = PreRed p rs pointer (es!i) = PreRed

p ′ rs ′ bin-upd e es = es ′

shows pointer (es ′!i) = PreRed p ′ (p#rs@rs ′) ∧ (∀ j < length es ′. i 6=j −→ es ′!j
= es!j) ∧ length (bin-upd e es) = length es

using assms
proof (induction es arbitrary: e i es ′)

case (Cons e ′ es)
show ?case
proof cases

assume ∗: item e = item e ′

show ?thesis
proof (cases ∃ x xp xs y yp ys. e = Entry x (PreRed xp xs) ∧ e ′ = Entry y

(PreRed yp ys))
case True
then obtain x xp xs y yp ys where ee ′: e = Entry x (PreRed xp xs) e ′ =

Entry y (PreRed yp ys) x = y
using ∗ by auto

have simp: bin-upd e (e ′ # es ′) = Entry x (PreRed yp (xp # xs @ ys)) # es ′

using True ee ′ by simp
show ?thesis

using Cons simp ee ′ apply (auto simp: items-def )
using less-Suc-eq-0-disj by fastforce+

next
case False
hence bin-upd e (e ′ # es ′) = e ′ # es ′

using ∗ by (auto split: pointer .splits entry.splits)
thus ?thesis

using False ∗ Cons.prems(1 ,2 ,3 ,4 ,5 ) by (auto simp: less-Suc-eq-0-disj
items-def split: entry.splits)

qed
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next
assume ∗: item e 6= item e ′

have simp: bin-upd e (e ′ # es) = e ′ # bin-upd e es
using ∗ by (auto split: pointer .splits entry.splits)

have 0 : distinct (items es)
using Cons.prems(1 ) unfolding items-def by simp

have 1 : i−1 < length es
using Cons.prems(2 ,3 ) ∗ by (metis One-nat-def leI less-diff-conv2 less-one

list.size(4 ) nth-Cons-0 )
have 2 : item e = item (es!(i−1 ))

using Cons.prems(3 ) ∗ by (metis nth-Cons ′)
have 3 : pointer e = PreRed p rs

using Cons.prems(4 ) by simp
have 4 : pointer (es!(i−1 )) = PreRed p ′ rs ′

using Cons.prems(3 ,5 ) ∗ by (metis nth-Cons ′)
have pointer (bin-upd e es!(i−1 )) = PreRed p ′ (p # rs @ rs ′) ∧
(∀ j < length (bin-upd e es). i−1 6= j −→ (bin-upd e es) ! j = es ! j)
using Cons.IH [OF 0 1 2 3 4 ] by blast

hence pointer ((e ′ # bin-upd e es) ! i) = PreRed p ′ (p # rs @ rs ′) ∧
(∀ j < length (e ′ # bin-upd e es). i 6= j −→ (e ′ # bin-upd e es) ! j = (e ′ #

es) ! j)
using ∗ Cons.prems(2 ,3 ) less-Suc-eq-0-disj by auto

moreover have e ′ # bin-upd e es = es ′

using Cons.prems(6 ) simp by auto
ultimately show ?thesis

by (metis 0 1 2 3 4 Cons.IH Cons.prems(6 ) length-Cons)
qed

qed simp

lemma sound-ptrs-bin-upd:
assumes sound-ptrs ω bs k < length bs es = bs!k distinct (items es)
assumes sound-null-ptr e sound-pre-ptr ω bs k e sound-prered-ptr bs k e
shows sound-ptrs ω (bs[k := bin-upd e es])
unfolding sound-ptrs-def

proof (standard, standard, standard)
fix idx elem
let ?bs = bs[k := bin-upd e es]
assume a0 : idx < length ?bs
assume a1 : elem ∈ set (?bs ! idx)
show sound-null-ptr elem ∧ sound-pre-ptr ω ?bs idx elem ∧ sound-prered-ptr ?bs

idx elem
proof cases

assume a2 : idx = k
have elem ∈ set es =⇒ sound-pre-ptr ω bs idx elem

using a0 a2 assms(1−3 ) sound-ptrs-def by blast
hence pre-es: elem ∈ set es =⇒ sound-pre-ptr ω ?bs idx elem

using a2 unfolding sound-pre-ptr-def by force
have elem = e =⇒ sound-pre-ptr ω bs idx elem

using a2 assms(6 ) by auto
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hence pre-e: elem = e =⇒ sound-pre-ptr ω ?bs idx elem
using a2 unfolding sound-pre-ptr-def by force

have elem ∈ set es =⇒ sound-prered-ptr bs idx elem
using a0 a2 assms(1−3 ) sound-ptrs-def by blast

hence prered-es: elem ∈ set es =⇒ sound-prered-ptr (bs[k := bin-upd e es]) idx
elem

using a2 assms(2 ,3 ) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def
by (smt (verit, ccfv-SIG) dual-order .strict-trans1 nth-list-update)

have elem = e =⇒ sound-prered-ptr bs idx elem
using a2 assms(7 ) by auto

hence prered-e: elem = e =⇒ sound-prered-ptr ?bs idx elem
using a2 assms(2 ,3 ) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def

by (smt (verit, best) dual-order .strict-trans1 nth-list-update)
consider (A) item e /∈ set (items es) |
(B) item e ∈ set (items es) ∧ (∃ pre. pointer e = Null ∨ pointer e = Pre pre)

|
(C ) item e ∈ set (items es) ∧ ¬ (∃ pre. pointer e = Null ∨ pointer e = Pre

pre)
by blast

thus ?thesis
proof cases

case A
hence elem ∈ set (es @ [e])

using a1 a2 bin-upd-append assms(2 ) by force
thus ?thesis

using assms(1−3 ,5 ) pre-e pre-es prered-e prered-es sound-ptrs-def by auto
next

case B
hence elem ∈ set es

using a1 a2 bin-upd-null-pre assms(2 ) by force
thus ?thesis

using assms(1−3 ) pre-es prered-es sound-ptrs-def by blast
next

case C
then obtain i p ps where C : i < length es ∧ item e = item (es!i) ∧ pointer

e = PreRed p ps
by (metis assms(4 ) distinct-Ex1 items-def length-map nth-map pointer .exhaust)
show ?thesis
proof cases

assume @ p ′ ps ′. pointer (es!i) = PreRed p ′ ps ′

hence C : elem ∈ set es
using a1 a2 C bin-upd-prered-nop assms(2 ,4 ) by (metis nth-list-update-eq)

thus ?thesis
using assms(1−3 ) sound-ptrs-def pre-es prered-es by blast

next
assume ¬ (@ p ′ ps ′. pointer (es!i) = PreRed p ′ ps ′)
then obtain p ′ ps ′ where D: pointer (es!i) = PreRed p ′ ps ′

by blast
hence 0 : pointer (bin-upd e es!i) = PreRed p ′ (p#ps@ps ′) ∧ (∀ j < length
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(bin-upd e es). i 6=j −→ bin-upd e es!j = es!j)
using C assms(4 ) bin-upd-prered-upd by blast

obtain j where 1 : j < length es ∧ elem = bin-upd e es!j
using a1 a2 assms(2 ) C items-def bin-eq-items-bin-upd by (metis

in-set-conv-nth length-map nth-list-update-eq nth-map)
show ?thesis
proof cases

assume a3 : i=j
hence a3 : pointer elem = PreRed p ′ (p#ps@ps ′)

using 0 1 by blast
have sound-null-ptr elem

using a3 unfolding sound-null-ptr-def by simp
moreover have sound-pre-ptr ω ?bs idx elem

using a3 unfolding sound-pre-ptr-def by simp
moreover have sound-prered-ptr ?bs idx elem

unfolding sound-prered-ptr-def
proof (standard, standard, standard, standard, standard, standard)

fix P PS k ′ pre red
assume a4 : pointer elem = PreRed P PS ∧ (k ′, pre, red) ∈ set (P#PS)
show k ′ < idx ∧ pre < length (bs[k := bin-upd e es]!k ′) ∧ red < length

(bs[k := bin-upd e es]!idx) ∧
completes idx (item (bs[k := bin-upd e es]!k ′!pre)) (item elem) (item

(bs[k := bin-upd e es]!idx!red))
proof cases

assume a5 : (k ′, pre, red) ∈ set (p#ps)
show ?thesis

using 0 1 C a2 a4 a5 prered-es assms(2 ,3 ,7 ) sound-prered-ptr-def
length-bin-upd nth-item-bin-upd

by (smt (verit) dual-order .strict-trans1 nth-list-update-eq nth-list-update-neq
nth-mem)

next
assume a5 : (k ′, pre, red) /∈ set (p#ps)
hence a5 : (k ′, pre, red) ∈ set (p ′#ps ′)

using a3 a4 by auto
have k ′ < idx ∧ pre < length (bs!k ′) ∧ red < length (bs!idx) ∧

completes idx (item (bs!k ′!pre)) (item e) (item (bs!idx!red))
using assms(1−3 ) C D a2 a5 unfolding sound-ptrs-def sound-prered-ptr-def

by (metis nth-mem)
thus ?thesis

using 0 1 C a4 assms(2 ,3 ) length-bin-upd nth-item-bin-upd prered-es
sound-prered-ptr-def

by (smt (verit, best) dual-order .strict-trans1 nth-list-update-eq
nth-list-update-neq nth-mem)

qed
qed
ultimately show ?thesis

by blast
next

assume a3 : i 6=j
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hence elem ∈ set es
using 0 1 by (metis length-bin-upd nth-mem order-less-le-trans)

thus ?thesis
using assms(1−3 ) pre-es prered-es sound-ptrs-def by blast

qed
qed

qed
next

assume a2 : idx 6= k
have null: sound-null-ptr elem

using a0 a1 a2 assms(1 ) sound-ptrs-def by auto
have sound-pre-ptr ω bs idx elem

using a0 a1 a2 assms(1 ,2 ) unfolding sound-ptrs-def by simp
hence pre: sound-pre-ptr ω ?bs idx elem
using assms(2 ,3 ) length-bin-upd nth-item-bin-upd unfolding sound-pre-ptr-def

using dual-order .strict-trans1 nth-list-update by fastforce
have sound-prered-ptr bs idx elem

using a0 a1 a2 assms(1 ,2 ) unfolding sound-ptrs-def by simp
hence prered: sound-prered-ptr ?bs idx elem
using assms(2 ,3 ) length-bin-upd nth-item-bin-upd unfolding sound-prered-ptr-def

by (smt (verit, best) dual-order .strict-trans1 nth-list-update)
show ?thesis

using null pre prered by blast
qed

qed

lemma mono-red-ptr-bin-upd:
assumes mono-red-ptr bs k < length bs es = bs!k distinct (items es)
assumes ∀ k ′ pre red ps. pointer e = PreRed (k ′, pre, red) ps −→ red < length

es
shows mono-red-ptr (bs[k := bin-upd e es])
unfolding mono-red-ptr-def

proof (standard, standard)
fix idx
let ?bs = bs[k := bin-upd e es]
assume a0 : idx < length ?bs
show ∀ i < length (?bs!idx). ∀ k ′ pre red ps. pointer (?bs!idx!i) = PreRed (k ′,

pre, red) ps −→ red < i
proof cases

assume a1 : idx=k
consider (A) item e /∈ set (items es) |
(B) item e ∈ set (items es) ∧ (∃ pre. pointer e = Null ∨ pointer e = Pre pre)

|
(C ) item e ∈ set (items es) ∧ ¬ (∃ pre. pointer e = Null ∨ pointer e = Pre

pre)
by blast

thus ?thesis
proof cases

case A
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hence bin-upd e es = es @ [e]
using bin-upd-append by blast

thus ?thesis
using a1 assms(1−3 ,5 ) mono-red-ptr-def

by (metis length-append-singleton less-antisym nth-append nth-append-length
nth-list-update-eq)

next
case B
hence bin-upd e es = es

using bin-upd-null-pre by blast
thus ?thesis

using a1 assms(1−3 ) mono-red-ptr-def by force
next

case C
then obtain i p ps where C : i < length es item e = item (es!i) pointer e =

PreRed p ps
by (metis in-set-conv-nth items-def length-map nth-map pointer .exhaust)

show ?thesis
proof cases

assume @ p ′ ps ′. pointer (es!i) = PreRed p ′ ps ′

hence bin-upd e es = es
using bin-upd-prered-nop C assms(4 ) by blast

thus ?thesis
using a1 assms(1−3 ) mono-red-ptr-def by (metis nth-list-update-eq)

next
assume ¬ (@ p ′ ps ′. pointer (es!i) = PreRed p ′ ps ′)
then obtain p ′ ps ′ where D: pointer (es!i) = PreRed p ′ ps ′

by blast
have 0 : pointer (bin-upd e es!i) = PreRed p ′ (p#ps@ps ′) ∧
(∀ j < length (bin-upd e es). i 6= j −→ bin-upd e es!j = es!j) ∧
length (bin-upd e es) = length es
using C D assms(4 ) bin-upd-prered-upd by blast

show ?thesis
proof (standard, standard, standard, standard, standard, standard, standard)

fix j k ′ pre red PS
assume a2 : j < length (?bs!idx)
assume a3 : pointer (?bs!idx!j) = PreRed (k ′, pre, red) PS
have 1 : ?bs!idx = bin-upd e es

by (simp add: a1 assms(2 ))
show red < j
proof cases

assume a4 : i=j
show ?thesis

using 0 1 C (1 ) D a3 a4 assms(1−3 ) unfolding mono-red-ptr-def by
(metis pointer .inject(2 ))

next
assume a4 : i 6=j
thus ?thesis

using 0 1 a2 a3 assms(1 ) assms(2 ) assms(3 ) mono-red-ptr-def by
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force
qed

qed
qed

qed
next

assume a1 : idx 6=k
show ?thesis

using a0 a1 assms(1 ) mono-red-ptr-def by fastforce
qed

qed

lemma sound-mono-ptrs-bin-upds:
assumes sound-ptrs ω bs mono-red-ptr bs k < length bs b = bs!k distinct (items

b) distinct (items es)
assumes ∀ e ∈ set es. sound-null-ptr e ∧ sound-pre-ptr ω bs k e ∧ sound-prered-ptr

bs k e
assumes ∀ e ∈ set es. ∀ k ′ pre red ps. pointer e = PreRed (k ′, pre, red) ps −→

red < length b
shows sound-ptrs ω (bs[k := bin-upds es b]) ∧ mono-red-ptr (bs[k := bin-upds es

b])
using assms

proof (induction es arbitrary: b bs)
case (Cons e es)
let ?bs = bs[k := bin-upd e b]
have 0 : sound-ptrs ω ?bs

using sound-ptrs-bin-upd Cons.prems(1 ,3−5 ,7 ) by (metis list.set-intros(1 ))
have 1 : mono-red-ptr ?bs

using mono-red-ptr-bin-upd Cons.prems(2−5 ,8 ) by auto
have 2 : k < length ?bs

using Cons.prems(3 ) by simp
have 3 : bin-upd e b = ?bs!k

using Cons.prems(3 ) by simp
have 4 : ∀ e ′∈ set es. sound-null-ptr e ′∧ sound-pre-ptr ω ?bs k e ′∧ sound-prered-ptr

?bs k e ′

using Cons.prems(3 ,4 ,7 ) length-bin-upd nth-item-bin-upd sound-pre-ptr-def
sound-prered-ptr-def

by (smt (verit, ccfv-threshold) list.set-intros(2 ) nth-list-update order-less-le-trans)
have 5 : ∀ e ′ ∈ set es. ∀ k ′ pre red ps. pointer e ′ = PreRed (k ′, pre, red) ps −→

red < length (bin-upd e b)
by (meson Cons.prems(8 ) length-bin-upd order-less-le-trans set-subset-Cons

subsetD)
have sound-ptrs ω ((bs[k := bin-upd e b])[k := bin-upds es (bin-upd e b)]) ∧

mono-red-ptr (bs[k := bin-upd e b, k := bin-upds es (bin-upd e b)])
using Cons.IH [OF 0 1 2 3 - - 4 5 ] distinct-bin-upd Cons.prems(4 ,5 ,6 ) items-def

by (metis distinct.simps(2 ) list.simps(9 ))
thus ?case

by simp
qed simp
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lemma sound-mono-ptrs-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes sound-ptrs ω bs ∀ x ∈ bins bs. sound-item G ω x
assumes mono-red-ptr bs
assumes nonempty-derives G wf-G G
shows sound-ptrs ω (EarleyL-bin ′ k G ω bs i) ∧ mono-red-ptr (EarleyL-bin ′ k G

ω bs i)
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1 ), case-names Base Com-
pleteF ScanF Pass PredictF ])

case (CompleteF k G ω bs i x)
let ?bs ′ = bins-upd bs k (CompleteL k x bs i)
have x: x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2 ) by force
hence ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3 ) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items x
by (metis dual-order .refl)

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
by (metis CompleteF .prems(1 ,3 ) UnE bins-bins-upd wf-earley-input-elim)

have 0 : k < length bs
using CompleteF .prems(1 ) wf-earley-input-elim by auto

have 1 : ∀ e ∈ set (CompleteL k x bs i). sound-null-ptr e
unfolding CompleteL-def sound-null-ptr-def by auto

have 2 : ∀ e ∈ set (CompleteL k x bs i). sound-pre-ptr ω bs k e
unfolding CompleteL-def sound-pre-ptr-def by auto

{
fix e
assume a0 : e ∈ set (CompleteL k x bs i)
fix p ps k ′ pre red
assume a1 : pointer e = PreRed p ps (k ′, pre, red) ∈ set (p#ps)
have k ′ = item-origin x

using a0 a1 unfolding CompleteL-def by auto
moreover have wf-item G ω x item-end x = k

using CompleteF .prems(1 ) x wf-earley-input-elim wf-bins-kth-bin by blast+
ultimately have 0 : k ′ ≤ k

using wf-item-def by blast
have 1 : k ′ 6= k
proof (rule ccontr)

assume ¬ k ′ 6= k
have sound-item G ω x

using CompleteF .prems(1 ,3 ) x kth-bin-sub-bins wf-earley-input-elim by
(metis subset-eq)

moreover have is-complete x
using CompleteF .hyps(3 ) by (auto simp: next-symbol-def split: if-splits)

moreover have item-origin x = k
using ‹¬ k ′ 6= k› ‹k ′ = item-origin x› by auto

ultimately show False
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using impossible-complete-item CompleteF .prems(1 ,5 ) wf-earley-input-elim
‹item-end x = k› ‹wf-item G ω x› by blast

qed
have 2 : pre < length (bs!k ′)

using a0 a1 index-filter-with-index-lt-length unfolding CompleteL-def by
(auto simp: items-def ; fastforce)

have 3 : red < i+1
using a0 a1 unfolding CompleteL-def by auto

have item e = inc-item (item (bs!k ′!pre)) k
using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3 ) CompleteF .prems(1 ) ‹k ′ = item-origin

x› unfolding CompleteL-def
by (auto simp: items-def , metis filter-with-index-nth nth-map)

moreover have is-complete (item (bs!k!red))
using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3 ) CompleteF .prems(1 ) ‹k ′ = item-origin

x› unfolding CompleteL-def
by (auto simp: next-symbol-def items-def split: if-splits)

moreover have item-origin (item (bs!k!red)) = item-end (item (bs!k ′!pre))
using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3 ) CompleteF .prems(1 ) ‹k ′ = item-origin

x› unfolding CompleteL-def
apply (clarsimp simp: items-def )

by (metis dual-order .strict-trans index-filter-with-index-lt-length items-def
le-neq-implies-less nth-map nth-mem wf-bins-kth-bin wf-earley-input-elim)

moreover have (∃N . next-symbol (item (bs ! k ′ ! pre)) = Some N ∧ N =
item-rule-head (item (bs ! k ! red)))

using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3 ) CompleteF .prems(1 ) ‹k ′ = item-origin
x› unfolding CompleteL-def

by (auto simp: items-def , metis (mono-tags, lifting) filter-with-index-P fil-
ter-with-index-nth nth-map)

ultimately have 4 : completes k (item (bs!k ′!pre)) (item e) (item (bs!k!red))
unfolding completes-def by blast

have k ′ < k pre < length (bs!k ′) red < i+1 completes k (item (bs!k ′!pre)) (item
e) (item (bs!k!red))

using 0 1 2 3 4 by simp-all
}
hence ∀ e ∈ set (CompleteL k x bs i). ∀ p ps k ′ pre red. pointer e = PreRed p ps
∧ (k ′, pre, red) ∈ set (p#ps) −→

k ′ < k ∧ pre < length (bs!k ′) ∧ red < i+1 ∧ completes k (item (bs!k ′!pre))
(item e) (item (bs!k!red))

by force
hence 3 : ∀ e ∈ set (CompleteL k x bs i). sound-prered-ptr bs k e

unfolding sound-prered-ptr-def using CompleteF .hyps(1 ) items-def by (smt
(verit) discrete dual-order .strict-trans1 leI length-map)

have 4 : distinct (items (CompleteL k x bs i))
using distinct-CompleteL x CompleteF .prems(1 ) wf-earley-input-elim wf-bin-def

wf-bin-items-def wf-bins-def wf-item-def
by (metis order-le-less-trans)

have sound-ptrs ω ?bs ′ ∧ mono-red-ptr ?bs ′

using sound-mono-ptrs-bin-upds[OF CompleteF .prems(2 ) CompleteF .prems(4 )
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0 ] 1 2 3 4 sound-prered-ptr-def
CompleteF .prems(1 ) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def

by (smt (verit, ccfv-SIG) list.set-intros(1 ))
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1 ) wf-earley-input-CompleteL by blast

ultimately have sound-ptrs ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 )) ∧ mono-red-ptr
(EarleyL-bin ′ k G ω ?bs ′ (i+1 ))

using CompleteF .IH CompleteF .prems(4−6 ) sound by blast
thus ?case

using CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = bins-upd bs (k+1 ) (ScanL k ω a x i)
have x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2 ) by force
hence ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

using sound-ScanL ScanF .hyps(3 ,5 ) ScanF .prems(1 ,2 ,3 ) wf-earley-input-elim
wf-bins-impl-wf-items wf-bins-impl-wf-items by fast

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
using ScanF .hyps(5 ) ScanF .prems(1 ,3 ) bins-bins-upd wf-earley-input-elim
by (metis UnE add-less-cancel-right)

have 0 : k+1 < length bs
using ScanF .hyps(5 ) ScanF .prems(1 ) wf-earley-input-elim by force

have 1 : ∀ e ∈ set (ScanL k ω a x i). sound-null-ptr e
unfolding ScanL-def sound-null-ptr-def by auto

have 2 : ∀ e ∈ set (ScanL k ω a x i). sound-pre-ptr ω bs (k+1 ) e
using ScanF .hyps(1 ,2 ,3 ) unfolding sound-pre-ptr-def ScanL-def scans-def

items-def by auto
have 3 : ∀ e ∈ set (ScanL k ω a x i). sound-prered-ptr bs (k+1 ) e

unfolding ScanL-def sound-prered-ptr-def by simp
have 4 : distinct (items (ScanL k ω a x i))

using distinct-ScanL by fast
have sound-ptrs ω ?bs ′ ∧ mono-red-ptr ?bs ′

using sound-mono-ptrs-bin-upds[OF ScanF .prems(2 ) ScanF .prems(4 ) 0 ] 0 1 2
3 4 sound-prered-ptr-def

ScanF .prems(1 ) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-threshold) list.set-intros(1 ))

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using ScanF .hyps ScanF .prems(1 ) wf-earley-input-ScanL by metis

ultimately have sound-ptrs ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 )) ∧ mono-red-ptr
(EarleyL-bin ′ k G ω ?bs ′ (i+1 ))

using ScanF .IH ScanF .prems(4−6 ) sound by blast
thus ?case

using ScanF .hyps by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = bins-upd bs k (PredictL k G a)
have x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2 ) by force

97



hence ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x
using sound-PredictL PredictF .hyps(3 ) PredictF .prems wf-earley-input-elim

wf-bins-impl-wf-items by fast
hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x

using PredictF .prems(1 ,3 ) UnE bins-bins-upd wf-earley-input-elim by metis
have 0 : k < length bs

using PredictF .prems(1 ) wf-earley-input-elim by force
have 1 : ∀ e ∈ set (PredictL k G a). sound-null-ptr e
unfolding sound-null-ptr-def PredictL-def predicts-def by (auto simp: init-item-def )

have 2 : ∀ e ∈ set (PredictL k G a). sound-pre-ptr ω bs k e
unfolding sound-pre-ptr-def PredictL-def by simp

have 3 : ∀ e ∈ set (PredictL k G a). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def PredictL-def by simp

have 4 : distinct (items (PredictL k G a))
using PredictF .prems(6 ) distinct-PredictL by fast

have sound-ptrs ω ?bs ′ ∧ mono-red-ptr ?bs ′

using sound-mono-ptrs-bin-upds[OF PredictF .prems(2 ) PredictF .prems(4 ) 0 ]
0 1 2 3 4 sound-prered-ptr-def

PredictF .prems(1 ) bins-upd-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-threshold) list.set-intros(1 ))

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1 ) wf-earley-input-PredictL by metis

ultimately have sound-ptrs ω (EarleyL-bin ′ k G ω ?bs ′ (i+1 )) ∧ mono-red-ptr
(EarleyL-bin ′ k G ω ?bs ′ (i+1 ))

using PredictF .IH PredictF .prems(4−6 ) sound by blast
thus ?case

using PredictF .hyps by simp
qed simp-all

lemma sound-mono-ptrs-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes sound-ptrs ω bs ∀ x ∈ bins bs. sound-item G ω x
assumes mono-red-ptr bs
assumes nonempty-derives G wf-G G
shows sound-ptrs ω (EarleyL-bin k G ω bs) ∧ mono-red-ptr (EarleyL-bin k G ω

bs)
using assms sound-mono-ptrs-EarleyL-bin ′ EarleyL-bin-def by metis

lemma sound-ptrs-InitL:
sound-ptrs ω (InitL G ω)
unfolding sound-ptrs-def sound-null-ptr-def sound-pre-ptr-def sound-prered-ptr-def

predicts-def scans-def completes-def InitL-def
by (auto simp: init-item-def less-Suc-eq-0-disj)

lemma mono-red-ptr-InitL:
mono-red-ptr (InitL G ω)
unfolding mono-red-ptr-def InitL-def
by (auto simp: init-item-def less-Suc-eq-0-disj)
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lemma sound-mono-ptrs-EarleyL-bins:
assumes k ≤ length ω wf-G G nonempty-derives G wf-G G
shows sound-ptrs ω (EarleyL-bins k G ω) ∧ mono-red-ptr (EarleyL-bins k G ω)
using assms

proof (induction k)
case 0
have (0 , G, ω, (InitL G ω)) ∈ wf-earley-input

using assms(2 ) wf-earley-input-InitL by blast
moreover have ∀ x ∈ bins (InitL G ω). sound-item G ω x

by (metis InitL-eq-InitF InitF -sub-Earley sound-Earley subsetD wf-Earley)
ultimately show ?case
using sound-mono-ptrs-EarleyL-bin sound-ptrs-InitL mono-red-ptr-InitL 0 .prems(2 ,3 )

by fastforce
next

case (Suc k)
have (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input

by (simp add: Suc.prems(1 ) Suc-leD assms(2 ) wf-earley-input-intro)
moreover have sound-ptrs ω (EarleyL-bins k G ω)

using Suc by simp
moreover have ∀ x ∈ bins (EarleyL-bins k G ω). sound-item G ω x
by (meson Suc.prems(1 ) Suc-leD EarleyL-bins-sub-EarleyF -bins EarleyF -bins-sub-Earley

assms(2 )
sound-Earley subsetD wf-bins-EarleyL-bins wf-bins-impl-wf-items)

ultimately show ?case
using Suc.prems(1 ,3 ,4 ) sound-mono-ptrs-EarleyL-bin Suc.IH by fastforce

qed

lemma sound-mono-ptrs-EarleyL:
assumes wf-G G nonempty-derives G
shows sound-ptrs ω (EarleyL G ω) ∧ mono-red-ptr (EarleyL G ω)
using assms sound-mono-ptrs-EarleyL-bins EarleyL-def by (metis dual-order .refl)

9.2 Common Definitions
datatype ′a tree =

Leaf ′a
| Branch ′a ′a tree list

fun yield-tree :: ′a tree ⇒ ′a sentence where
yield-tree (Leaf a) = [a]
| yield-tree (Branch - ts) = concat (map yield-tree ts)

fun root-tree :: ′a tree ⇒ ′a where
root-tree (Leaf a) = a
| root-tree (Branch N -) = N

fun wf-rule-tree :: ′a cfg ⇒ ′a tree ⇒ bool where
wf-rule-tree - (Leaf a) ←→ True
| wf-rule-tree G (Branch N ts) ←→ (
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(∃ r ∈ set (R G). N = rule-head r ∧ map root-tree ts = rule-body r) ∧
(∀ t ∈ set ts. wf-rule-tree G t))

fun wf-item-tree :: ′a cfg ⇒ ′a item ⇒ ′a tree ⇒ bool where
wf-item-tree G - (Leaf a) ←→ True
| wf-item-tree G x (Branch N ts) ←→ (

N = item-rule-head x ∧ map root-tree ts = take (item-dot x) (item-rule-body x)
∧

(∀ t ∈ set ts. wf-rule-tree G t))

definition wf-yield-tree :: ′a sentence ⇒ ′a item ⇒ ′a tree ⇒ bool where
wf-yield-tree ω x t ←→ yield-tree t = slice (item-origin x) (item-end x) ω

datatype ′a forest =
FLeaf ′a
| FBranch ′a ′a forest list list

fun combinations :: ′a list list ⇒ ′a list list where
combinations [] = [[]]
| combinations (xs#xss) = [ x#cs . x <− xs, cs <− combinations xss ]

fun trees :: ′a forest ⇒ ′a tree list where
trees (FLeaf a) = [Leaf a]
| trees (FBranch N fss) = (

let tss = (map (λfs. concat (map (λf . trees f ) fs)) fss) in
map (λts. Branch N ts) (combinations tss)

)

lemma list-comp-flatten:
[ f xs . xs <− [ g xs ys . xs <− as, ys <− bs ] ] = [ f (g xs ys) . xs <− as, ys

<− bs ]
by (induction as) auto

lemma list-comp-flatten-Cons:
[ x#xs . x <− as, xs <− [ xs @ ys. xs <− bs, ys <− cs ] ] = [ x#xs@ys. x <−

as, xs <− bs, ys <− cs ]
by (induction as) (auto simp: list-comp-flatten)

lemma list-comp-flatten-append:
[ xs@ys . xs <− [ x#xs . x <− as, xs <− bs ], ys <− cs ] = [ x#xs@ys . x <−

as, xs <− bs, ys <− cs ]
by (induction as) (auto simp: o-def , meson append-Cons map-eq-conv)

lemma combinations-append:
combinations (xss @ yss) = [ xs @ ys . xs <− combinations xss, ys <− combi-

nations yss ]
by (induction xss) (auto simp: list-comp-flatten-Cons list-comp-flatten-append

map-idI )
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lemma trees-append:
trees (FBranch N (xss @ yss)) = (

let xtss = (map (λxs. concat (map (λf . trees f ) xs)) xss) in
let ytss = (map (λys. concat (map (λf . trees f ) ys)) yss) in

map (λts. Branch N ts) [ xs @ ys . xs <− combinations xtss, ys <− combinations
ytss ])

using combinations-append by (metis map-append trees.simps(2 ))

lemma trees-append-singleton:
trees (FBranch N (xss @ [ys])) = (

let xtss = (map (λxs. concat (map (λf . trees f ) xs)) xss) in
let ytss = [concat (map trees ys)] in

map (λts. Branch N ts) [ xs @ ys . xs <− combinations xtss, ys <− combinations
ytss ])

by (subst trees-append, simp)

lemma trees-append-single-singleton:
trees (FBranch N (xss @ [[y]])) = (

let xtss = (map (λxs. concat (map (λf . trees f ) xs)) xss) in
map (λts. Branch N ts) [ xs @ ys . xs <− combinations xtss, ys <− [ [t] . t

<− trees y ] ])
by (subst trees-append-singleton, auto)

9.3 foldl lemmas
lemma foldl-add-nth:

k < length xs =⇒ foldl (+) z (map length (take k xs)) + length (xs!k) = foldl
(+) z (map length (take (k+1 ) xs))
proof (induction xs arbitrary: k z)

case (Cons x xs)
then show ?case
proof (cases k = 0 )

case False
thus ?thesis

using Cons by (auto simp add: take-Cons ′)
qed simp

qed simp

lemma foldl-acc-mono:
a ≤ b =⇒ foldl (+) a xs ≤ foldl (+) b xs for a :: nat
by (induction xs arbitrary: a b) auto

lemma foldl-ge-z-nth:
j < length xs =⇒ z + length (xs!j) ≤ foldl (+) z (map length (take (j+1 ) xs))

proof (induction xs arbitrary: j z)
case (Cons x xs)
show ?case
proof (cases j = 0 )

case False
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have z + length ((x # xs) ! j) = z + length (xs!(j−1 ))
using False by simp

also have ... ≤ foldl (+) z (map length (take (j−1+1 ) xs))
using Cons False by (metis add-diff-inverse-nat length-Cons less-one nat-add-left-cancel-less

plus-1-eq-Suc)
also have ... = foldl (+) z (map length (take j xs))

using False by simp
also have ... ≤ foldl (+) (z + length x) (map length (take j xs))

using foldl-acc-mono by force
also have ... = foldl (+) z (map length (take (j+1 ) (x#xs)))

by simp
finally show ?thesis

by blast
qed simp

qed simp

lemma foldl-add-nth-ge:
i ≤ j =⇒ j < length xs =⇒ foldl (+) z (map length (take i xs)) + length (xs!j)
≤ foldl (+) z (map length (take (j+1 ) xs))
proof (induction xs arbitrary: i j z)

case (Cons x xs)
show ?case
proof (cases i = 0 )

case True
have foldl (+) z (map length (take i (x # xs))) + length ((x # xs) ! j) = z +

length ((x # xs) ! j)
using True by simp

also have ... ≤ foldl (+) z (map length (take (j+1 ) (x#xs)))
using foldl-ge-z-nth Cons.prems(2 ) by blast

finally show ?thesis
by blast

next
case False
have i−1 ≤ j−1

by (simp add: Cons.prems(1 ) diff-le-mono)
have j−1 < length xs

using Cons.prems(1 ,2 ) False by fastforce
have foldl (+) z (map length (take i (x # xs))) + length ((x # xs) ! j) =

foldl (+) (z + length x) (map length (take (i−1 ) xs)) + length ((x#xs)!j)
using False by (simp add: take-Cons ′)

also have ... = foldl (+) (z + length x) (map length (take (i−1 ) xs)) + length
(xs!(j−1 ))

using Cons.prems(1 ) False by auto
also have ... ≤ foldl (+) (z + length x) (map length (take (j−1+1 ) xs))

using Cons.IH ‹i − 1 ≤ j − 1 › ‹j − 1 < length xs› by blast
also have ... = foldl (+) (z + length x) (map length (take j xs))

using Cons.prems(1 ) False by fastforce
also have ... = foldl (+) z (map length (take (j+1 ) (x#xs)))

by fastforce
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finally show ?thesis
by blast

qed
qed simp

lemma foldl-ge-acc:
foldl (+) z (map length xs) ≥ z
by (induction xs arbitrary: z) (auto elim: add-leE)

lemma foldl-take-mono:
i ≤ j =⇒ foldl (+) z (map length (take i xs)) ≤ foldl (+) z (map length (take j

xs))
proof (induction xs arbitrary: z i j)

case (Cons x xs)
show ?case
proof (cases i = 0 )

case True
have foldl (+) z (map length (take i (x # xs))) = z

using True by simp
also have ... ≤ foldl (+) z (map length (take j (x # xs)))

by (simp add: foldl-ge-acc)
ultimately show ?thesis

by simp
next

case False
then show ?thesis

using Cons by (simp add: take-Cons ′)
qed

qed simp

9.4 Parse tree
partial-function (option) build-tree ′ :: ′a bins ⇒ ′a sentence ⇒ nat ⇒ nat ⇒ ′a
tree option where

build-tree ′ bs ω k i = (
let e = bs!k!i in (
case pointer e of

Null ⇒ Some (Branch (item-rule-head (item e)) []) — start building sub-tree
| Pre pre ⇒ ( — add sub-tree starting from terminal

do {
t ← build-tree ′ bs ω (k−1 ) pre;
case t of

Branch N ts ⇒ Some (Branch N (ts @ [Leaf (ω!(k−1 ))]))
| - ⇒ undefined — impossible case
})

| PreRed (k ′, pre, red) - ⇒ ( — add sub-tree starting from non-terminal
do {

t ← build-tree ′ bs ω k ′ pre;
case t of
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Branch N ts ⇒
do {

t ← build-tree ′ bs ω k red;
Some (Branch N (ts @ [t]))
}

| - ⇒ undefined — impossible case
})

))

declare build-tree ′.simps [code]

definition build-tree :: ′a cfg ⇒ ′a sentence ⇒ ′a bins ⇒ ′a tree option where
build-tree G ω bs = (

let k = length bs − 1 in (
case filter-with-index (λx. is-finished G ω x) (items (bs!k)) of
[] ⇒ None
| (-, i)#- ⇒ build-tree ′ bs ω k i

))

lemma build-tree ′-simps[simp]:
e = bs!k!i =⇒ pointer e = Null =⇒ build-tree ′ bs ω k i = Some (Branch

(item-rule-head (item e)) [])
e = bs!k!i =⇒ pointer e = Pre pre =⇒ build-tree ′ bs ω (k−1 ) pre = None =⇒
build-tree ′ bs ω k i = None

e = bs!k!i =⇒ pointer e = Pre pre =⇒ build-tree ′ bs ω (k−1 ) pre = Some (Branch
N ts) =⇒

build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1 ))]))
e = bs!k!i =⇒ pointer e = Pre pre =⇒ build-tree ′ bs ω (k−1 ) pre = Some (Leaf

a) =⇒
build-tree ′ bs ω k i = undefined

e = bs!k!i =⇒ pointer e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre
= None =⇒

build-tree ′ bs ω k i = None
e = bs!k!i =⇒ pointer e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre

= Some (Branch N ts) =⇒
build-tree ′ bs ω k red = None =⇒ build-tree ′ bs ω k i = None

e = bs!k!i =⇒ pointer e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre
= Some (Leaf a) =⇒

build-tree ′ bs ω k i = undefined
e = bs!k!i =⇒ pointer e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre

= Some (Branch N ts) =⇒
build-tree ′ bs ω k red = Some t =⇒
build-tree ′ bs ω k i = Some (Branch N (ts @ [t]))

by (subst build-tree ′.simps, simp)+

definition wf-tree-input :: ( ′a bins × ′a sentence × nat × nat) set where
wf-tree-input = {
(bs, ω, k, i) | bs ω k i.

sound-ptrs ω bs ∧
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mono-red-ptr bs ∧
k < length bs ∧
i < length (bs!k)

}

fun build-tree ′-measure :: ( ′a bins × ′a sentence × nat × nat) ⇒ nat where
build-tree ′-measure (bs, ω, k, i) = foldl (+) 0 (map length (take k bs)) + i

lemma wf-tree-input-pre:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes e = bs!k!i pointer e = Pre pre
shows (bs, ω, (k−1 ), pre) ∈ wf-tree-input
using assms unfolding wf-tree-input-def
using less-imp-diff-less nth-mem by (fastforce simp: sound-ptrs-def sound-pre-ptr-def )

lemma wf-tree-input-prered-pre:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes e = bs!k!i pointer e = PreRed (k ′, pre, red) ps
shows (bs, ω, k ′, pre) ∈ wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-prered-ptr-def )
apply metis+
apply (metis dual-order .strict-trans nth-mem)
by (metis nth-mem)

lemma wf-tree-input-prered-red:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes e = bs!k!i pointer e = PreRed (k ′, pre, red) ps
shows (bs, ω, k, red) ∈ wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp add: sound-ptrs-def sound-prered-ptr-def )
apply (metis nth-mem)+
done

lemma build-tree ′-induct:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes

∧
bs ω k i.

(
∧

e pre. e = bs!k!i =⇒ pointer e = Pre pre =⇒ P bs ω (k−1 ) pre) =⇒
(
∧

e k ′ pre red ps. e = bs!k!i =⇒ pointer e = PreRed (k ′, pre, red) ps =⇒ P bs
ω k ′ pre) =⇒

(
∧

e k ′ pre red ps. e = bs!k!i =⇒ pointer e = PreRed (k ′, pre, red) ps =⇒ P bs
ω k red) =⇒

P bs ω k i
shows P bs ω k i
using assms(1 )

proof (induction n≡build-tree ′-measure (bs, ω, k, i) arbitrary: k i rule: nat-less-induct)
case 1
obtain e where entry: e = bs!k!i

by simp
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consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ k ′ pre red reds. pointer e = PreRed (k ′, pre, red) reds
by (metis pointer .exhaust surj-pair)

thus ?case
proof cases

case Null
thus ?thesis

using assms(2 ) entry by fastforce
next

case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
define n where n: n = build-tree ′-measure (bs, ω, (k−1 ), pre)
have 0 < k pre < length (bs!(k−1 ))
using 1 (2 ) entry pre unfolding wf-tree-input-def sound-ptrs-def sound-pre-ptr-def

by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
have k < length bs

using 1 (2 ) unfolding wf-tree-input-def by blast+
have foldl (+) 0 (map length (take k bs)) + i − (foldl (+) 0 (map length (take

(k−1 ) bs)) + pre) =
foldl (+) 0 (map length (take (k−1 ) bs)) + length (bs!(k−1 )) + i − (foldl

(+) 0 (map length (take (k−1 ) bs)) + pre)
using foldl-add-nth[of ‹k−1 › bs 0 ] by (simp add: ‹0 < k› ‹k < length bs›

less-imp-diff-less)
also have ... = length (bs!(k−1 )) + i − pre

by simp
also have ... > 0

using ‹pre < length (bs!(k−1 ))› by auto
finally have build-tree ′-measure (bs, ω, k, i) − build-tree ′-measure (bs, ω,

(k−1 ), pre) > 0
by simp

hence P bs ω (k−1 ) pre
using 1 n wf-tree-input-pre entry pre zero-less-diff by blast

thus ?thesis
using assms(2 ) entry pre pointer .distinct(5 ) pointer .inject(1 ) by presburger

next
case PreRed
then obtain k ′ pre red ps where prered: pointer e = PreRed (k ′, pre, red) ps

by blast
have k ′ < k pre < length (bs!k ′)
using 1 (2 ) entry prered unfolding wf-tree-input-def sound-ptrs-def sound-prered-ptr-def

apply simp-all
apply (metis nth-mem)+
done

have red < i
using 1 (2 ) entry prered unfolding wf-tree-input-def mono-red-ptr-def by

blast
have k < length bs i < length (bs!k)
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using 1 (2 ) unfolding wf-tree-input-def by blast+
define n-pre where n-pre: n-pre = build-tree ′-measure (bs, ω, k ′, pre)
have 0 < length (bs!k ′) + i − pre

by (simp add: ‹pre < length (bs!k ′)› add.commute trans-less-add2 )
also have ... = foldl (+) 0 (map length (take k ′ bs)) + length (bs!k ′) + i −

(foldl (+) 0 (map length (take k ′ bs)) + pre)
by simp

also have ... ≤ foldl (+) 0 (map length (take (k ′+1 ) bs)) + i − (foldl (+) 0
(map length (take k ′ bs)) + pre)

using foldl-add-nth-ge[of k ′ k ′ bs 0 ] ‹k < length bs› ‹k ′ < k› by simp
also have ... ≤ foldl (+) 0 (map length (take k bs)) + i − (foldl (+) 0 (map

length (take k ′ bs)) + pre)
using foldl-take-mono by (metis Suc-eq-plus1 Suc-leI ‹k ′ < k› add.commute

add-le-cancel-left diff-le-mono)
finally have build-tree ′-measure (bs, ω, k, i) − build-tree ′-measure (bs, ω, k ′,

pre) > 0
by simp

hence x: P bs ω k ′ pre
using 1 (1 ) zero-less-diff by (metis 1 .prems entry prered wf-tree-input-prered-pre)
define n-red where n-red: n-red = build-tree ′-measure (bs, ω, k, red)
have build-tree ′-measure (bs, ω, k, i) − build-tree ′-measure (bs, ω, k, red) > 0

using ‹red < i› by simp
hence y: P bs ω k red

using 1 .hyps 1 .prems entry prered wf-tree-input-prered-red zero-less-diff by
blast

show ?thesis
using assms(2 ) x y entry prered

by (smt (verit, best) Pair-inject filter-cong pointer .distinct(5 ) pointer .inject(2 ))
qed

qed

lemma build-tree ′-termination:
assumes (bs, ω, k, i) ∈ wf-tree-input
shows ∃N ts. build-tree ′ bs ω k i = Some (Branch N ts)

proof −
have ∃N ts. build-tree ′ bs ω k i = Some (Branch N ts)

apply (induction rule: build-tree ′-induct[OF assms(1 )])
subgoal premises IH for bs ω k i
proof −

define e where entry: e = bs!k!i
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ k ′ pre red ps. pointer e = PreRed (k ′, pre, red) ps
by (metis pointer .exhaust surj-pair)

thus ?thesis
proof cases

case Null
thus ?thesis

using build-tree ′-simps(1 ) entry by simp
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next
case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
obtain N ts where Nts: build-tree ′ bs ω (k−1 ) pre = Some (Branch N ts)

using IH (1 ) entry pre by blast
have build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1 ))]))

using build-tree ′-simps(3 ) entry pre Nts by simp
thus ?thesis

by simp
next

case PreRed
then obtain k ′ pre red ps where prered: pointer e = PreRed (k ′, pre, red)

ps
by blast

then obtain N ts where Nts: build-tree ′ bs ω k ′ pre = Some (Branch N ts)
using IH (2 ) entry prered by blast

obtain t-red where t-red: build-tree ′ bs ω k red = Some t-red
using IH (3 ) entry prered Nts by (metis option.exhaust)

have build-tree ′ bs ω k i = Some (Branch N (ts @ [t-red]))
using build-tree ′-simps(8 ) entry prered Nts t-red by auto

thus ?thesis
by blast

qed
qed
done

thus ?thesis
by blast

qed

lemma wf-item-tree-build-tree ′:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes wf-bins G ω bs
assumes k < length bs i < length (bs!k)
assumes build-tree ′ bs ω k i = Some t
shows wf-item-tree G (item (bs!k!i)) t

proof −
have wf-item-tree G (item (bs!k!i)) t

using assms
apply (induction arbitrary: t rule: build-tree ′-induct[OF assms(1 )])
subgoal premises prems for bs ω k i t
proof −

define e where entry: e = bs!k!i
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ k ′ pre red ps. pointer e = PreRed (k ′, pre, red) ps
by (metis pointer .exhaust surj-pair)

thus ?thesis
proof cases
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case Null
hence build-tree ′ bs ω k i = Some (Branch (item-rule-head (item e)) [])

using entry by simp
have simp: t = Branch (item-rule-head (item e)) []

using build-tree ′-simps(1 ) Null prems(8 ) entry by simp
have sound-ptrs ω bs

using prems(4 ) unfolding wf-tree-input-def by blast
hence predicts (item e)

using Null prems(6 ,7 ) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast

hence item-dot (item e) = 0
unfolding predicts-def by blast

thus ?thesis
using simp entry by simp

next
case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
obtain N ts where Nts: build-tree ′ bs ω (k−1 ) pre = Some (Branch N ts)
using build-tree ′-termination entry pre prems(4 ) wf-tree-input-pre by blast

have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1 ))]))
using build-tree ′-simps(3 ) entry pre Nts by simp

have sound-ptrs ω bs
using prems(4 ) unfolding wf-tree-input-def by blast

hence pre < length (bs!(k−1 ))
using entry pre prems(6 ,7 ) unfolding sound-ptrs-def sound-pre-ptr-def

by (metis nth-mem)
moreover have k−1 < length bs

by (simp add: prems(6 ) less-imp-diff-less)
ultimately have IH : wf-item-tree G (item (bs!(k−1 )!pre)) (Branch N ts)

using prems(1 ,2 ,4 ,5 ) entry pre Nts by (meson wf-tree-input-pre)
have scans: scans ω k (item (bs!(k−1 )!pre)) (item e)

using entry pre prems(6−7 ) ‹sound-ptrs ω bs› unfolding sound-ptrs-def
sound-pre-ptr-def by simp

hence ∗:
item-rule-head (item (bs!(k−1 )!pre)) = item-rule-head (item e)
item-rule-body (item (bs!(k−1 )!pre)) = item-rule-body (item e)
item-dot (item (bs!(k−1 )!pre)) + 1 = item-dot (item e)
next-symbol (item (bs!(k−1 )!pre)) = Some (ω!(k−1 ))

unfolding scans-def inc-item-def by (simp-all add: item-rule-head-def
item-rule-body-def )

have map root-tree (ts @ [Leaf (ω!(k−1 ))]) = map root-tree ts @ [ω!(k−1 )]
by simp

also have ... = take (item-dot (item (bs!(k−1 )!pre))) (item-rule-body (item
(bs!(k−1 )!pre))) @ [ω!(k−1 )]

using IH by simp
also have ... = take (item-dot (item (bs!(k−1 )!pre))) (item-rule-body (item

e)) @ [ω!(k−1 )]
using ∗(2 ) by simp
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also have ... = take (item-dot (item e)) (item-rule-body (item e))
using ∗(2−4 ) by (auto simp: next-symbol-def is-complete-def split: if-splits;

metis leI take-Suc-conv-app-nth)
finally have map root-tree (ts @ [Leaf (ω!(k−1 ))]) = take (item-dot (item

e)) (item-rule-body (item e)) .
hence wf-item-tree G (item e) (Branch N (ts @ [Leaf (ω!(k−1 ))]))

using IH ∗(1 ) by simp
thus ?thesis

using entry prems(8 ) simp by auto
next

case PreRed
then obtain k ′ pre red ps where prered: pointer e = PreRed (k ′, pre, red)

ps
by blast

obtain N ts where Nts: build-tree ′ bs ω k ′ pre = Some (Branch N ts)
using build-tree ′-termination entry prems(4 ) prered wf-tree-input-prered-pre

by blast
obtain N-red ts-red where Nts-red: build-tree ′ bs ω k red = Some (Branch

N-red ts-red)
using build-tree ′-termination entry prems(4 ) prered wf-tree-input-prered-red

by blast
have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Branch N-red

ts-red]))
using build-tree ′-simps(8 ) entry prered Nts Nts-red by auto

have sound-ptrs ω bs
using prems(4 ) wf-tree-input-def by fastforce

have bounds: k ′ < k pre < length (bs!k ′) red < length (bs!k)
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›
unfolding sound-prered-ptr-def sound-ptrs-def by fastforce+

have completes: completes k (item (bs!k ′!pre)) (item e) (item (bs!k!red))
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce

have ∗:
item-rule-head (item (bs!k ′!pre)) = item-rule-head (item e)
item-rule-body (item (bs!k ′!pre)) = item-rule-body (item e)
item-dot (item (bs!k ′!pre)) + 1 = item-dot (item e)
next-symbol (item (bs!k ′!pre)) = Some (item-rule-head (item (bs!k!red)))
is-complete (item (bs!k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def )

have (bs, ω, k ′, pre) ∈ wf-tree-input
using wf-tree-input-prered-pre[OF prems(4 ) entry prered] by blast

hence IH-pre: wf-item-tree G (item (bs!k ′!pre)) (Branch N ts)
using prems(2 )[OF entry prered - prems(5 )] Nts bounds(1 ,2 ) order-less-trans

prems(6 ) by blast
have (bs, ω, k, red) ∈ wf-tree-input

using wf-tree-input-prered-red[OF prems(4 ) entry prered] by blast
hence IH-r : wf-item-tree G (item (bs!k!red)) (Branch N-red ts-red)

using bounds(3 ) entry prems(3 ,5 ,6 ) prered Nts-red by blast
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have map root-tree (ts @ [Branch N-red ts-red]) = map root-tree ts @
[root-tree (Branch N-red ts)]

by simp
also have ... = take (item-dot (item (bs!k ′!pre))) (item-rule-body (item

(bs!k ′!pre))) @ [root-tree (Branch N-red ts)]
using IH-pre by simp
also have ... = take (item-dot (item (bs!k ′!pre))) (item-rule-body (item

(bs!k ′!pre))) @ [item-rule-head (item (bs!k!red))]
using IH-r by simp

also have ... = take (item-dot (item e)) (item-rule-body (item e))
using ∗ by (auto simp: next-symbol-def is-complete-def split: if-splits; metis

leI take-Suc-conv-app-nth)
finally have roots: map root-tree (ts @ [Branch N-red ts]) = take (item-dot

(item e)) (item-rule-body (item e)) by simp
have wf-item G ω (item (bs!k!red))

using prems(5 ,6 ) bounds(3 ) unfolding wf-bins-def wf-bin-def wf-bin-items-def
by (auto simp: items-def )

moreover have N-red = item-rule-head (item (bs!k!red))
using IH-r by fastforce

moreover have map root-tree ts-red = item-rule-body (item (bs!k!red))
using IH-r ∗(5 ) by (auto simp: is-complete-def )
ultimately have ∃ r ∈ set (R G). N-red = rule-head r ∧ map root-tree

ts-red = rule-body r
unfolding wf-item-def item-rule-body-def item-rule-head-def by blast

hence wf-rule-tree G (Branch N-red ts-red)
using IH-r by simp

hence wf-item-tree G (item (bs!k!i)) (Branch N (ts @ [Branch N-red ts-red]))
using ∗(1 ) roots IH-pre entry by simp

thus ?thesis
using Nts-red prems(8 ) simp by auto

qed
qed
done

thus ?thesis
using assms(2 ) by blast

qed

lemma wf-yield-tree-build-tree ′:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes wf-bins G ω bs
assumes k < length bs i < length (bs!k) k ≤ length ω
assumes build-tree ′ bs ω k i = Some t
shows wf-yield-tree ω (item (bs!k!i)) t

proof −
have wf-yield-tree ω (item (bs!k!i)) t

using assms
apply (induction arbitrary: t rule: build-tree ′-induct[OF assms(1 )])
subgoal premises prems for bs ω k i t
proof −
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define e where entry: e = bs!k!i
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ k ′ pre red reds. pointer e = PreRed (k ′, pre, red) reds
by (metis pointer .exhaust surj-pair)

thus ?thesis
proof cases

case Null
hence build-tree ′ bs ω k i = Some (Branch (item-rule-head (item e)) [])

using entry by simp
have simp: t = Branch (item-rule-head (item e)) []

using build-tree ′-simps(1 ) Null prems(9 ) entry by simp
have sound-ptrs ω bs

using prems(4 ) unfolding wf-tree-input-def by blast
hence predicts (item e)

using Null prems(6 ,7 ) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast

thus ?thesis
unfolding wf-yield-tree-def predicts-def using simp entry by (auto simp:

slice-empty)
next

case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
obtain N ts where Nts: build-tree ′ bs ω (k−1 ) pre = Some (Branch N ts)
using build-tree ′-termination entry pre prems(4 ) wf-tree-input-pre by blast

have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1 ))]))
using build-tree ′-simps(3 ) entry pre Nts by simp

have sound-ptrs ω bs
using prems(4 ) unfolding wf-tree-input-def by blast

hence bounds: k > 0 pre < length (bs!(k−1 ))
using entry pre prems(6 ,7 ) unfolding sound-ptrs-def sound-pre-ptr-def

by (metis nth-mem)+
moreover have k−1 < length bs

by (simp add: prems(6 ) less-imp-diff-less)
ultimately have IH : wf-yield-tree ω (item (bs!(k−1 )!pre)) (Branch N ts)

using prems(1 ) entry pre Nts wf-tree-input-pre prems(4 ,5 ,8 ) by fastforce
have scans: scans ω k (item (bs!(k−1 )!pre)) (item e)

using entry pre prems(6−7 ) ‹sound-ptrs ω bs› unfolding sound-ptrs-def
sound-pre-ptr-def by simp

have wf :
item-origin (item (bs!(k−1 )!pre)) ≤ item-end (item (bs!(k−1 )!pre))
item-end (item (bs!(k−1 )!pre)) = k−1
item-end (item e) = k

using entry prems(5 ,6 ,7 ) bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def

by (auto, meson less-imp-diff-less nth-mem)
have yield-tree (Branch N (ts @ [Leaf (ω!(k−1 ))])) = concat (map yield-tree

(ts @ [Leaf (ω!(k−1 ))]))
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by simp
also have ... = concat (map yield-tree ts) @ [ω!(k−1 )]

by simp
also have ... = slice (item-origin (item (bs!(k−1 )!pre))) (item-end (item

(bs!(k−1 )!pre))) ω @ [ω!(k−1 )]
using IH by (simp add: wf-yield-tree-def )

also have ... = slice (item-origin (item (bs!(k−1 )!pre))) (item-end (item
(bs!(k−1 )!pre)) + 1 ) ω

using slice-append-nth wf ‹k > 0 › prems(8 )
by (metis diff-less le-eq-less-or-eq less-imp-diff-less less-numeral-extra(1 ))

also have ... = slice (item-origin (item e)) (item-end (item (bs!(k−1 )!pre))
+ 1 ) ω

using scans unfolding scans-def inc-item-def by simp
also have ... = slice (item-origin (item e)) k ω

using scans wf unfolding scans-def by (metis Suc-diff-1 Suc-eq-plus1
bounds(1 ))

also have ... = slice (item-origin (item e)) (item-end (item e)) ω
using wf by auto

finally show ?thesis
using wf-yield-tree-def entry prems(9 ) simp by force

next
case PreRed
then obtain k ′ pre red ps where prered: pointer e = PreRed (k ′, pre, red)

ps
by blast

obtain N ts where Nts: build-tree ′ bs ω k ′ pre = Some (Branch N ts)
using build-tree ′-termination entry prems(4 ) prered wf-tree-input-prered-pre

by blast
obtain N-red ts-red where Nts-red: build-tree ′ bs ω k red = Some (Branch

N-red ts-red)
using build-tree ′-termination entry prems(4 ) prered wf-tree-input-prered-red

by blast
have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Branch N-red

ts-red]))
using build-tree ′-simps(8 ) entry prered Nts Nts-red by auto

have sound-ptrs ω bs
using prems(4 ) wf-tree-input-def by fastforce

have bounds: k ′ < k pre < length (bs!k ′) red < length (bs!k)
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce+

have completes: completes k (item (bs!k ′!pre)) (item e) (item (bs!k!red))
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce

have (bs, ω, k ′, pre) ∈ wf-tree-input
using wf-tree-input-prered-pre[OF prems(4 ) entry prered] by blast

hence IH-pre: wf-yield-tree ω (item (bs!k ′!pre)) (Branch N ts)
using prems(2 )[OF entry prered - prems(5 )] Nts bounds(1 ,2 ) prems(6−8 )
by (meson dual-order .strict-trans1 nat-less-le)

have (bs, ω, k, red) ∈ wf-tree-input
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using wf-tree-input-prered-red[OF prems(4 ) entry prered] by blast
hence IH-r : wf-yield-tree ω (item (bs!k!red)) (Branch N-red ts-red)

using bounds(3 ) entry prems(3 ,5 ,6 ,8 ) prered Nts-red by blast
have wf1 :

item-origin (item (bs!k ′!pre)) ≤ item-end (item (bs!k ′!pre))
item-origin (item (bs!k!red)) ≤ item-end (item (bs!k!red))

using prems(5−7 ) bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def wf-item-def

by (metis length-map nth-map nth-mem order-less-trans)+
have wf2 :

item-end (item (bs!k!red)) = k
item-end (item (bs!k!i)) = k

using prems(5−7 ) bounds unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def by simp-all

have yield-tree (Branch N (ts @ [Branch N-red ts-red])) = concat (map
yield-tree (ts @ [Branch N-red ts-red]))

by (simp add: Nts-red)
also have ... = concat (map yield-tree ts) @ yield-tree (Branch N-red ts-red)

by simp
also have ... = slice (item-origin (item (bs!k ′!pre))) (item-end (item

(bs!k ′!pre))) ω @
slice (item-origin (item (bs!k!red))) (item-end (item (bs!k!red))) ω
using IH-pre IH-r by (simp add: wf-yield-tree-def )

also have ... = slice (item-origin (item (bs!k ′!pre))) (item-end (item
(bs!k!red))) ω

using slice-concat wf1 completes-def completes by (metis (no-types, lifting))
also have ... = slice (item-origin (item e)) (item-end (item (bs!k!red))) ω

using completes unfolding completes-def inc-item-def by simp
also have ... = slice (item-origin (item e)) (item-end (item e)) ω

using wf2 entry by presburger
finally show ?thesis

using wf-yield-tree-def entry prems(9 ) simp by force
qed

qed
done

thus ?thesis
using assms(2 ) by blast

qed

theorem wf-rule-root-yield-tree-build-forest:
assumes wf-bins G ω bs sound-ptrs ω bs mono-red-ptr bs length bs = length ω +

1
assumes build-tree G ω bs = Some t
shows wf-rule-tree G t ∧ root-tree t = S G ∧ yield-tree t = ω

proof −
let ?k = length bs − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items (bs!?k))
then obtain x i where ∗: (x,i) ∈ set finished Some t = build-tree ′ bs ω ?k i
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using assms(5 ) unfolding finished-def build-tree-def by (auto simp: Let-def
split: list.splits, presburger)

have k: ?k < length bs ?k ≤ length ω
using assms(4 ) by simp-all

have i: i < length (bs!?k)
using index-filter-with-index-lt-length ∗ items-def finished-def by (metis length-map)

have x: x = item (bs!?k!i)
using ∗ i filter-with-index-nth items-def nth-map finished-def by metis

have finished: is-finished G ω x
using ∗ filter-with-index-P finished-def by metis

have wf-trees-input: (bs, ω, ?k, i) ∈ wf-tree-input
unfolding wf-tree-input-def using assms(2 ,3 ) i k(1 ) by blast

hence wf-item-tree: wf-item-tree G x t
using wf-item-tree-build-tree ′ assms(1 ,2 ) i k(1 ) x ∗(2 ) by metis

have wf-item: wf-item G ω (item (bs!?k!i))
using k(1 ) i assms(1 ) unfolding wf-bins-def wf-bin-def wf-bin-items-def by

(simp add: items-def )
obtain N ts where t: t = Branch N ts

by (metis ∗(2 ) build-tree ′-termination option.inject wf-trees-input)
hence N = item-rule-head x

map root-tree ts = item-rule-body x
using finished wf-item-tree by (auto simp: is-finished-def is-complete-def )

hence ∃ r ∈ set (R G). N = rule-head r ∧ map root-tree ts = rule-body r
using wf-item x unfolding wf-item-def item-rule-body-def item-rule-head-def

by blast
hence wf-rule: wf-rule-tree G t

using wf-item-tree t by simp
have root: root-tree t = S G

using finished t ‹N = item-rule-head x› by (auto simp: is-finished-def )
have yield-tree t = slice (item-origin (item (bs!?k!i))) (item-end (item (bs!?k!i)))

ω
using k i assms(1 ) wf-trees-input wf-yield-tree-build-tree ′ wf-yield-tree-def ∗(2 )

by (metis (no-types, lifting))
hence yield: yield-tree t = ω

using finished x unfolding is-finished-def by simp
show ?thesis

using ∗ wf-rule root yield assms(4 ) unfolding build-tree-def by simp
qed

corollary wf-rule-root-yield-tree-build-tree-EarleyL:
assumes wf-G G nonempty-derives G
assumes build-tree G ω (EarleyL G ω) = Some t
shows wf-rule-tree G t ∧ root-tree t = S G ∧ yield-tree t = ω
using assms wf-rule-root-yield-tree-build-forest wf-bins-EarleyL sound-mono-ptrs-EarleyL

EarleyL-def
length-EarleyL-bins length-bins-InitL by (metis nle-le)

theorem correctness-build-tree-EarleyL:
assumes wf-G G is-word G ω nonempty-derives G
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shows (∃ t. build-tree G ω (EarleyL G ω) = Some t) ←→ derives G [S G] ω (is
?L ←→ ?R)
proof standard

assume ∗: ?L
let ?k = length (EarleyL G ω) − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items ((EarleyL G ω)!?k))
then obtain t x i where ∗: (x,i) ∈ set finished Some t = build-tree ′ (EarleyL G

ω) ω ?k i
using ∗ unfolding finished-def build-tree-def by (auto simp: Let-def split:

list.splits, presburger)
have k: ?k < length (EarleyL G ω) ?k ≤ length ω

by (simp-all add: EarleyL-def assms(1 ))
have i: i < length ((EarleyL G ω) ! ?k)
using index-filter-with-index-lt-length ∗ items-def finished-def by (metis length-map)

have x: x = item ((EarleyL G ω)!?k!i)
using ∗ i filter-with-index-nth items-def nth-map finished-def by metis

have finished: is-finished G ω x
using ∗ filter-with-index-P finished-def by metis

moreover have x ∈ set (items ((EarleyL G ω) ! ?k))
using x by (auto simp: items-def ; metis One-nat-def i imageI nth-mem)

ultimately have recognizing (bins (EarleyL G ω)) G ω
by (meson k(1 ) kth-bin-sub-bins recognizing-def subsetD)

thus ?R
using correctness-EarleyL assms by blast

next
assume ∗: ?R
let ?k = length (EarleyL G ω) − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items ((EarleyL G ω)!?k))
have recognizing (bins (EarleyL G ω)) G ω

using assms ∗ correctness-EarleyL by blast
moreover have ?k = length ω

by (simp add: EarleyL-def assms(1 ))
ultimately have ∃ x ∈ set (items ((EarleyL G ω)!?k)). is-finished G ω x
unfolding recognizing-def using assms(1 ) is-finished-def wf-bins-EarleyL wf-item-in-kth-bin

by metis
then obtain x i xs where xis: finished = (x,i)#xs

using filter-with-index-Ex-first by (metis finished-def )
hence simp: build-tree G ω (EarleyL G ω) = build-tree ′ (EarleyL G ω) ω ?k i

unfolding build-tree-def finished-def by auto
have (x,i) ∈ set finished

using xis by simp
hence i < length ((EarleyL G ω)!?k)
using index-filter-with-index-lt-length by (metis finished-def items-def length-map)

moreover have ?k < length (EarleyL G ω)
by (simp add: EarleyL-def assms(1 ))

ultimately have (EarleyL G ω, ω, ?k, i) ∈ wf-tree-input
unfolding wf-tree-input-def using sound-mono-ptrs-EarleyL assms(1 ,3 ) by
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blast
then obtain N ts where build-tree ′ (EarleyL G ω) ω ?k i = Some (Branch N

ts)
using build-tree ′-termination by blast

thus ?L
using simp by simp

qed

9.5 those, map, map option lemmas
lemma those-map-exists:

Some ys = those (map f xs) =⇒ y ∈ set ys =⇒ ∃ x. x ∈ set xs ∧ Some y ∈ set
(map f xs)
proof (induction xs arbitrary: ys)

case (Cons a xs)
then show ?case

apply (clarsimp split: option.splits)
by (smt (verit, best) map-option-eq-Some set-ConsD)

qed auto

lemma those-Some:
(∀ x ∈ set xs. ∃ a. x = Some a) ←→ (∃ ys. those xs = Some ys)
by (induction xs) (auto split: option.splits)

lemma those-Some-P:
assumes ∀ x ∈ set xs. ∃ ys. x = Some ys ∧ (∀ y ∈ set ys. P y)
shows ∃ yss. those xs = Some yss ∧ (∀ ys ∈ set yss. ∀ y ∈ set ys. P y)
using assms by (induction xs) auto

lemma map-Some-P:
assumes z ∈ set (map f xs)
assumes ∀ x ∈ set xs. ∃ ys. f x = Some ys ∧ (∀ y ∈ set ys. P y)
shows ∃ ys. z = Some ys ∧ (∀ y ∈ set ys. P y)
using assms by (induction xs) auto

lemma those-map-FBranch-only:
assumes g = (λf . case f of FBranch N fss ⇒ Some (FBranch N (fss @ [[FLeaf

(ω!(k−1 ))]])) | - ⇒ None)
assumes Some fs = those (map g pres) f ∈ set fs
assumes ∀ f ∈ set pres. ∃N fss. f = FBranch N fss
shows ∃ f-pre N fss. f = FBranch N (fss @ [[FLeaf (ω!(k−1 ))]]) ∧ f-pre =

FBranch N fss ∧ f-pre ∈ set pres
using assms
apply (induction pres arbitrary: fs f )
apply (auto)
by (smt (verit, best) list.inject list.set-cases map-option-eq-Some)

lemma those-map-Some-concat-exists:
assumes y ∈ set (concat ys)
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assumes Some ys = those (map f xs)
shows ∃ ys x. Some ys = f x ∧ y ∈ set ys ∧ x ∈ set xs
using assms
apply (induction xs arbitrary: ys y)
apply (auto split: option.splits)
by (smt (verit, ccfv-threshold) list.inject list.set-cases map-option-eq-Some)

lemma map-option-concat-those-map-exists:
assumes Some fs = map-option concat (those (map F xs))
assumes f ∈ set fs
shows ∃ fss fs ′. Some fss = those (map F xs) ∧ fs ′ ∈ set fss ∧ f ∈ set fs ′

using assms
apply (induction xs arbitrary: fs f )
apply (auto split: option.splits)
by (smt (verit, best) UN-E map-option-eq-Some set-concat)

lemma [partial-function-mono]:
monotone option.le-fun option-ord
(λf . map-option concat (those (map (λ((k ′, pre), reds).

f ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. f ((((r , s), t), red), b ∪ {red})) reds) >>=
(λrss. those (map (λf . case f of FBranch N fss ⇒ Some (FBranch N (fss

@ [concat rss])) | - ⇒ None) pres))))
xs)))

proof −
let ?f =
(λf . map-option concat (those (map (λ((k ′, pre), reds).

f ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. f ((((r , s), t), red), b ∪ {red})) reds) >>=
(λrss. those (map (λf . case f of FBranch N fss ⇒ Some (FBranch N (fss

@ [concat rss])) | - ⇒ None) pres))))
xs)))

have 0 :
∧

x y. option.le-fun x y =⇒ option-ord (?f x) (?f y)
apply (auto simp: flat-ord-def fun-ord-def option.leq-refl split: option.splits

forest.splits)
subgoal premises prems for x y
proof −

let ?t = those (map (λ((k ′, pre), reds).
x ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres))))
xs) = None

show ?t
proof (rule ccontr)

assume a: ¬?t
obtain fss where fss: those (map (λ((k ′, pre), reds).
x ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
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(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss
@ [concat rss])))) pres))))

xs) = Some fss
using a by blast

{
fix k ′ pre reds
assume ∗: ((k ′, pre), reds) ∈ set xs
obtain pres where pres: x ((((r , s), k ′), pre), {pre}) = Some pres

using fss ∗ those-Some by force
have ∃ fs. Some fs = those (map (λred. x ((((r , s), t), red), insert red b))

reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres))
proof (rule ccontr)

assume @ fs. Some fs =
those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N

(fss @ [concat rss])))) pres))
hence None =

those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N

(fss @ [concat rss])))) pres))
by (smt (verit) not-None-eq)

hence None = x ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N

(fss @ [concat rss])))) pres)))
by (simp add: pres)

hence ∃ ((k ′, pre), reds) ∈ set xs. None = x ((((r , s), k ′), pre), {pre})
>>=

(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N

(fss @ [concat rss])))) pres)))
using ∗ by blast

thus False
using fss those-Some by force

qed
then obtain fs where fs: Some fs = those (map (λred. x ((((r , s), t),

red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres))
by blast

obtain rss where rss: those (map (λred. x ((((r , s), t), red), insert red
b)) reds) = Some rss

using fs by force
have x ((((r , s), k ′), pre), {pre}) = y ((((r , s), k ′), pre), {pre})

using pres prems(1 ) by (metis option.distinct(1 ))
moreover have those (map (λred. x ((((r , s), t), red), insert red b)) reds)

>>=
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(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss
@ [concat rss])))) pres))

= those (map (λred. y ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres))
proof −

have ∀ red ∈ set reds. x ((((r , s), t), red), insert red b) = y ((((r , s), t),
red), insert red b)

proof standard
fix red
assume red ∈ set reds
have ∀ x∈set (map (λred. x ((((r , s), t), red), insert red b)) reds) . ∃ a.

x = Some a
using rss those-Some by blast

then obtain f where x ((((r , s), t), red), insert red b) = Some f
using ‹red ∈ set reds› by auto

thus x ((((r , s), t), red), insert red b) = y ((((r , s), t), red), insert red
b)

using prems(1 ) by (metis option.distinct(1 ))
qed
thus ?thesis

by (smt (verit, best) map-eq-conv)
qed
ultimately have x ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres)))
= y ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. y ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres)))
by (metis bind.bind-lunit pres)

}
hence ∀ ((k ′, pre), reds) ∈ set xs. x ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres)))
= y ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. y ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres)))
by blast

hence those (map (λ((k ′, pre), reds).
x ((((r , s), k ′), pre), {pre}) >>=
(λpres. those (map (λred. x ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres))))
xs) = those (map (λ((k ′, pre), reds).
y ((((r , s), k ′), pre), {pre}) >>=
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(λpres. those (map (λred. y ((((r , s), t), red), insert red b)) reds) >>=
(λrss. those (map (case-forest Map.empty (λN fss. Some (FBranch N (fss

@ [concat rss])))) pres))))
xs)
using prems(1 ) by (smt (verit, best) case-prod-conv map-eq-conv split-cong)
thus False

using prems(2 ) by simp
qed

qed
done

show ?thesis
using monotoneI [of option.le-fun option-ord ?f , OF 0 ] by blast

qed

9.6 Parse trees
fun insert-group :: ( ′a ⇒ ′k) ⇒ ( ′a ⇒ ′v) ⇒ ′a ⇒ ( ′k × ′v list) list ⇒ ( ′k × ′v
list) list where

insert-group K V a [] = [(K a, [V a])]
| insert-group K V a ((k, vs)#xs) = (

if K a = k then (k, V a # vs) # xs
else (k, vs) # insert-group K V a xs

)

fun group-by :: ( ′a ⇒ ′k) ⇒ ( ′a ⇒ ′v) ⇒ ′a list ⇒ ( ′k × ′v list) list where
group-by K V [] = []
| group-by K V (x#xs) = insert-group K V x (group-by K V xs)

lemma insert-group-cases:
assumes (k, vs) ∈ set (insert-group K V a xs)
shows (k = K a ∧ vs = [V a]) ∨ (k, vs) ∈ set xs ∨ (∃ (k ′, vs ′) ∈ set xs. k ′ = k
∧ k = K a ∧ vs = V a # vs ′)

using assms by (induction xs) (auto split: if-splits)

lemma group-by-exists-kv:
(k, vs) ∈ set (group-by K V xs) =⇒ ∃ x ∈ set xs. k = K x ∧ (∃ v ∈ set vs. v =

V x)
using insert-group-cases by (induction xs) (simp, force)

lemma group-by-forall-v-exists-k:
(k, vs) ∈ set (group-by K V xs) =⇒ v ∈ set vs =⇒ ∃ x ∈ set xs. k = K x ∧ v =

V x
proof (induction xs arbitrary: vs)

case (Cons x xs)
show ?case
proof (cases (k, vs) ∈ set (group-by K V xs))

case True
thus ?thesis

using Cons by simp
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next
case False
hence (k, vs) ∈ set (insert-group K V x (group-by K V xs))

using Cons.prems(1 ) by force
then consider (A) (k = K x ∧ vs = [V x ])
| (B) (k, vs) ∈ set (group-by K V xs)
| (C ) (∃ (k ′, vs ′) ∈ set (group-by K V xs). k ′ = k ∧ k = K x ∧ vs = V x #

vs ′)
using insert-group-cases by fastforce

thus ?thesis
proof cases

case A
thus ?thesis

using Cons.prems(2 ) by auto
next

case B
then show ?thesis

using False by linarith
next

case C
then show ?thesis

using Cons.IH Cons.prems(2 ) by fastforce
qed

qed
qed simp

partial-function (option) build-trees ′ :: ′a bins ⇒ ′a sentence ⇒ nat ⇒ nat ⇒
nat set ⇒ ′a forest list option where

build-trees ′ bs ω k i I = (
let e = bs!k!i in (
case pointer e of

Null ⇒ Some ([FBranch (item-rule-head (item e)) []]) — start building sub-
trees
| Pre pre ⇒ ( — add sub-trees starting from terminal

do {
pres ← build-trees ′ bs ω (k−1 ) pre {pre};
those (map (λf .

case f of
FBranch N fss ⇒ Some (FBranch N (fss @ [[FLeaf (ω!(k−1 ))]]))
| - ⇒ None — impossible case

) pres)
})

| PreRed p ps ⇒ ( — add sub-trees starting from non-terminal
let ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps) in
let gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre, red). red) ps ′ in
map-option concat (those (map (λ((k ′, pre), reds).

do {
pres ← build-trees ′ bs ω k ′ pre {pre};
rss ← those (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds);
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those (map (λf .
case f of

FBranch N fss ⇒ Some (FBranch N (fss @ [concat rss]))
| - ⇒ None — impossible case

) pres)
}

) gs))
)

))

declare build-trees ′.simps [code]

definition build-trees :: ′a cfg ⇒ ′a sentence ⇒ ′a bins ⇒ ′a forest list option
where

build-trees G ω bs = (
let k = length bs − 1 in
let finished = filter-with-index (λx. is-finished G ω x) (items (bs!k)) in
map-option concat (those (map (λ(-, i). build-trees ′ bs ω k i {i}) finished))

)

lemma build-forest ′-simps[simp]:
e = bs!k!i =⇒ pointer e = Null =⇒ build-trees ′ bs ω k i I = Some ([FBranch

(item-rule-head (item e)) []])
e = bs!k!i =⇒ pointer e = Pre pre =⇒ build-trees ′ bs ω (k−1 ) pre {pre} = None

=⇒ build-trees ′ bs ω k i I = None
e = bs!k!i =⇒ pointer e = Pre pre =⇒ build-trees ′ bs ω (k−1 ) pre {pre} = Some

pres =⇒
build-trees ′ bs ω k i I = those (map (λf . case f of FBranch N fss ⇒ Some

(FBranch N (fss @ [[FLeaf (ω!(k−1 ))]])) | - ⇒ None) pres)
by (subst build-trees ′.simps, simp)+

definition wf-trees-input :: ( ′a bins × ′a sentence × nat × nat × nat set) set
where

wf-trees-input = {
(bs, ω, k, i, I ) | bs ω k i I .

sound-ptrs ω bs ∧
k < length bs ∧
i < length (bs!k) ∧
I ⊆ {0 ..<length (bs!k)} ∧
i ∈ I

}

fun build-forest ′-measure :: ( ′a bins × ′a sentence × nat × nat × nat set) ⇒ nat
where

build-forest ′-measure (bs, ω, k, i, I ) = foldl (+) 0 (map length (take (k+1 ) bs))
− card I

lemma wf-trees-input-pre:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
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assumes e = bs!k!i pointer e = Pre pre
shows (bs, ω, (k−1 ), pre, {pre}) ∈ wf-trees-input
using assms unfolding wf-trees-input-def
apply (auto simp: sound-ptrs-def sound-pre-ptr-def )
apply (metis nth-mem)
done

lemma wf-trees-input-prered-pre:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
assumes e = bs!k!i pointer e = PreRed p ps
assumes ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps)
assumes gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre, red). red) ps ′

assumes ((k ′, pre), reds) ∈ set gs
shows (bs, ω, k ′, pre, {pre}) ∈ wf-trees-input

proof −
obtain red where (k ′, pre, red) ∈ set ps ′

using assms(5 ,6 ) group-by-exists-kv by fast
hence ∗: (k ′, pre, red) ∈ set (p#ps)

using assms(4 ) by (meson filter-is-subset in-mono)
have k < length bs e ∈ set (bs!k)

using assms(1 ,2 ) unfolding wf-trees-input-def by auto
hence k ′ < k pre < length (bs!k ′)
using assms(1 ,3 ) ∗ unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def

by blast+
thus ?thesis

using assms by (simp add: wf-trees-input-def )
qed

lemma wf-trees-input-prered-red:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
assumes e = bs!k!i pointer e = PreRed p ps
assumes ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps)
assumes gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre, red). red) ps ′

assumes ((k ′, pre), reds) ∈ set gs red ∈ set reds
shows (bs, ω, k, red, I ∪ {red}) ∈ wf-trees-input

proof −
have (k ′, pre, red) ∈ set ps ′

using assms(5 ,6 ,7 ) group-by-forall-v-exists-k by fastforce
hence ∗: (k ′, pre, red) ∈ set (p#ps)

using assms(4 ) by (meson filter-is-subset in-mono)
have k < length bs e ∈ set (bs!k)

using assms(1 ,2 ) unfolding wf-trees-input-def by auto
hence 0 : red < length (bs!k)
using assms(1 ,3 ) ∗ unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def

by blast
moreover have I ⊆ {0 ..<length (bs!k)}

using assms(1 ) unfolding wf-trees-input-def by blast
ultimately have 1 : I ∪ {red} ⊆ {0 ..<length (bs!k)}

by simp
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show ?thesis
using 0 1 assms(1 ) unfolding wf-trees-input-def by blast

qed

lemma build-trees ′-induct:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
assumes

∧
bs ω k i I .

(
∧

e pre. e = bs!k!i =⇒ pointer e = Pre pre =⇒ P bs ω (k−1 ) pre {pre}) =⇒
(
∧

e p ps ps ′ gs k ′ pre reds. e = bs!k!i =⇒ pointer e = PreRed p ps =⇒
ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps) =⇒
gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre, red). red) ps ′ =⇒
((k ′, pre), reds) ∈ set gs =⇒ P bs ω k ′ pre {pre}) =⇒

(
∧

e p ps ps ′ gs k ′ pre red reds reds ′. e = bs!k!i =⇒ pointer e = PreRed p ps
=⇒

ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps) =⇒
gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre, red). red) ps ′ =⇒
((k ′, pre), reds) ∈ set gs =⇒ red ∈ set reds =⇒ P bs ω k red (I ∪ {red})) =⇒

P bs ω k i I
shows P bs ω k i I
using assms(1 )

proof (induction n≡build-forest ′-measure (bs, ω, k, i, I ) arbitrary: k i I rule:
nat-less-induct)

case 1
obtain e where entry: e = bs!k!i

by simp
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ p ps. pointer e = PreRed p ps
by (metis pointer .exhaust)

thus ?case
proof cases

case Null
thus ?thesis

using assms(2 ) entry by fastforce
next

case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
define n where n: n = build-forest ′-measure (bs, ω, (k−1 ), pre, {pre})
have 0 < k pre < length (bs!(k−1 ))
using 1 (2 ) entry pre unfolding wf-trees-input-def sound-ptrs-def sound-pre-ptr-def

by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
have k < length bs i < length (bs!k) I ⊆ {0 ..<length (bs!k)} i ∈ I

using 1 (2 ) unfolding wf-trees-input-def by blast+
have length (bs!(k−1 )) > 0

using ‹pre < length (bs!(k−1 ))› by force
hence foldl (+) 0 (map length (take k bs)) > 0

by (smt (verit, del-insts) foldl-add-nth ‹0 < k› ‹k < length bs›
add.commute add-diff-inverse-nat less-imp-diff-less less-one zero-eq-add-iff-both-eq-0 )
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have card I ≤ length (bs!k)
by (simp add: ‹I ⊆ {0 ..<length (bs ! k)}› subset-eq-atLeast0-lessThan-card)

have card I + (foldl (+) 0 (map length (take (Suc (k − Suc 0 )) bs)) − Suc 0 )
=

card I + (foldl (+) 0 (map length (take k bs)) − 1 )
using ‹0 < k› by simp

also have ... = card I + foldl (+) 0 (map length (take k bs)) − 1
using ‹0 < foldl (+) 0 (map length (take k bs))› by auto

also have ... < card I + foldl (+) 0 (map length (take k bs))
by (simp add: ‹0 < foldl (+) 0 (map length (take k bs))›)

also have ... ≤ foldl (+) 0 (map length (take k bs)) + length (bs!k)
by (simp add: ‹card I ≤ length (bs ! k)›)

also have ... = foldl (+) 0 (map length (take (k+1 ) bs))
using foldl-add-nth ‹k < length bs› by blast

finally have build-forest ′-measure (bs, ω, k, i, I ) − build-forest ′-measure (bs,
ω, (k−1 ), pre, {pre}) > 0

by simp
hence P bs ω (k−1 ) pre {pre}

using 1 n wf-trees-input-pre entry pre zero-less-diff by blast
thus ?thesis

using assms(2 ) entry pre pointer .distinct(5 ) pointer .inject(1 ) by presburger
next

case PreRed
then obtain p ps where pps: pointer e = PreRed p ps

by blast
define ps ′ where ps ′: ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps)
define gs where gs: gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre, red).

red) ps ′

have 0 : ∀ (k ′, pre, red) ∈ set ps ′. k ′ < k ∧ pre < length (bs!k ′) ∧ red < length
(bs!k)

using entry pps ps ′ 1 (2 ) unfolding wf-trees-input-def sound-ptrs-def sound-prered-ptr-def
apply (auto simp del: filter .simps)
apply (metis nth-mem prod-cases3 )+
done

hence sound-gs: ∀ ((k ′, pre), reds) ∈ set gs. k ′ < k ∧ pre < length (bs!k ′)
using gs group-by-exists-kv by fast

have sound-gs2 : ∀ ((k ′, pre), reds) ∈ set gs. ∀ red ∈ set reds. red < length (bs!k)
proof (standard, standard, standard, standard)

fix x a b k ′ pre red
assume x ∈ set gs x = (a, b) (k ′, pre) = a red ∈ set b
hence ∃ x ∈ set ps ′. red = (λ(k ′, pre, red). red) x

using group-by-forall-v-exists-k gs ps ′ by meson
thus red < length (bs!k)

using 0 by fast
qed
{

fix k ′ pre reds red
assume a0 : ((k ′, pre), reds) ∈ set gs

define n-pre where n-pre: n-pre = build-forest ′-measure (bs, ω, k ′, pre, {pre})
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have k < length bs i < length (bs!k) I ⊆ {0 ..<length (bs!k)} i ∈ I
using 1 (2 ) unfolding wf-trees-input-def by blast+

have k ′ < k pre < length (bs!k ′)
using sound-gs a0 by fastforce+

have length (bs!k ′) > 0
using ‹pre < length (bs!k ′)› by force

hence gt0 : foldl (+) 0 (map length (take (k ′+1 ) bs)) > 0
by (smt (verit, del-insts) foldl-add-nth ‹k < length bs› ‹k ′ < k› add-gr-0

order .strict-trans)
have card-bound: card I ≤ length (bs!k)
by (simp add: ‹I ⊆ {0 ..<length (bs ! k)}› subset-eq-atLeast0-lessThan-card)

have card I + (foldl (+) 0 (map length (take (Suc k ′) bs)) − Suc 0 ) =
card I + foldl (+) 0 (map length (take (Suc k ′) bs)) − 1

by (metis Nat.add-diff-assoc One-nat-def Suc-eq-plus1 Suc-leI ‹0 < foldl
(+) 0 (map length (take (k ′ + 1 ) bs))›)

also have ... < card I + foldl (+) 0 (map length (take (Suc k ′) bs))
using gt0 by auto

also have ... ≤ foldl (+) 0 (map length (take (Suc k ′) bs)) + length (bs!k)
using card-bound by simp

also have ... ≤ foldl (+) 0 (map length (take (k+1 ) bs))
using foldl-add-nth-ge Suc-leI ‹k < length bs› ‹k ′ < k› by blast

finally have build-forest ′-measure (bs, ω, k, i, I ) − build-forest ′-measure (bs,
ω, k ′, pre, {pre}) > 0

by simp
hence P bs ω k ′ pre {pre}

using 1 (1 ) wf-trees-input-prered-pre[OF 1 .prems(1 ) entry pps ps ′ gs a0 ]
zero-less-diff by blast

}
moreover {

fix k ′ pre reds red
assume a0 : ((k ′, pre), reds) ∈ set gs
assume a1 : red ∈ set reds
define n-red where n-red: n-red = build-forest ′-measure (bs, ω, k, red, I ∪

{red})
have k < length bs i < length (bs!k) I ⊆ {0 ..<length (bs!k)} i ∈ I

using 1 (2 ) unfolding wf-trees-input-def by blast+
have k ′ < k pre < length (bs!k ′) red < length (bs!k)

using a0 a1 sound-gs sound-gs2 by fastforce+
have red /∈ I

using a0 a1 unfolding gs ps ′

by (smt (verit, best) group-by-forall-v-exists-k case-prodE case-prod-conv
mem-Collect-eq set-filter)

have card-bound: card I ≤ length (bs!k)
by (simp add: ‹I ⊆ {0 ..<length (bs ! k)}› subset-eq-atLeast0-lessThan-card)

have length (bs!k ′) > 0
using ‹pre < length (bs!k ′)› by force

hence gt0 : foldl (+) 0 (map length (take (k ′+1 ) bs)) > 0
by (smt (verit, del-insts) foldl-add-nth ‹k < length bs› ‹k ′ < k› add-gr-0

order .strict-trans)
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have lt: foldl (+) 0 (map length (take (Suc k ′) bs)) + length (bs!k) ≤ foldl
(+) 0 (map length (take (k+1 ) bs))

using foldl-add-nth-ge Suc-leI ‹k < length bs› ‹k ′ < k› by blast
have card I + (foldl (+) 0 (map length (take (Suc k) bs)) − card (insert red

I )) =
card I + (foldl (+) 0 (map length (take (Suc k) bs)) − card I − 1 )
using ‹I ⊆ {0 ..<length (bs ! k)}› ‹red /∈ I › finite-subset by fastforce

also have ... = foldl (+) 0 (map length (take (Suc k) bs)) − 1
using gt0 card-bound lt by force

also have ... < foldl (+) 0 (map length (take (Suc k) bs))
using gt0 lt by auto

finally have build-forest ′-measure (bs, ω, k, i, I ) − build-forest ′-measure (bs,
ω, k, red, I ∪ {red}) > 0

by simp
moreover have (bs, ω, k, red, I ∪ {red}) ∈ wf-trees-input

using wf-trees-input-prered-red[OF 1 (2 ) entry pps ps ′ gs] a0 a1 by blast
ultimately have P bs ω k red (I ∪ {red})

using 1 (1 ) zero-less-diff by blast
}
moreover have (

∧
e pre. e = bs!k!i =⇒ pointer e = Pre pre =⇒ P bs ω (k−1 )

pre {pre})
using entry pps by fastforce

ultimately show ?thesis
using assms(2 ) entry gs pointer .inject(2 ) pps ps ′ by presburger

qed
qed

lemma build-trees ′-termination:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
shows ∃ fs. build-trees ′ bs ω k i I = Some fs ∧ (∀ f ∈ set fs. ∃N fss. f = FBranch

N fss)
proof −

have ∃ fs. build-trees ′ bs ω k i I = Some fs ∧ (∀ f ∈ set fs. ∃N fss. f = FBranch
N fss)

apply (induction rule: build-trees ′-induct[OF assms(1 )])
subgoal premises IH for bs ω k i I
proof −

define e where entry: e = bs!k!i
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ k ′ pre red reds. pointer e = PreRed (k ′, pre, red) reds
by (metis pointer .exhaust surj-pair)

thus ?thesis
proof cases

case Null
have build-trees ′ bs ω k i I = Some ([FBranch (item-rule-head (item e)) []])

using build-forest ′-simps(1 ) Null entry by simp
thus ?thesis

by simp
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next
case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
obtain fs where fs: build-trees ′ bs ω (k−1 ) pre {pre} = Some fs
∀ f ∈ set fs. ∃N fss. f = FBranch N fss
using IH (1 ) entry pre by blast

let ?g = λf . case f of FLeaf a ⇒ None
| FBranch N fss ⇒ Some (FBranch N (fss @ [[FLeaf (ω!(k−1 ))]]))

have simp: build-trees ′ bs ω k i I = those (map ?g fs)
using build-forest ′-simps(3 ) entry pre fs by blast

moreover have ∀ f ∈ set (map ?g fs). ∃ a. f = Some a
using fs(2 ) by auto

ultimately obtain fs ′ where fs ′: build-trees ′ bs ω k i I = Some fs ′

using those-Some by (smt (verit, best))
moreover have ∀ f ∈ set fs ′. ∃N fss. f = FBranch N fss
proof standard

fix f
assume f ∈ set fs ′

then obtain x where x ∈ set fs Some f ∈ set (map ?g fs)
using those-map-exists by (metis (no-types, lifting) fs ′ simp)

thus ∃N fss. f = FBranch N fss
using fs(2 ) by auto

qed
ultimately show ?thesis

by blast
next

case PreRed
then obtain p ps where pps: pointer e = PreRed p ps

by blast
define ps ′ where ps ′: ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps)
define gs where gs: gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre,

red). red) ps ′

let ?g = λ((k ′, pre), reds).
do {

pres ← build-trees ′ bs ω k ′ pre {pre};
rss ← those (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds);
those (map (λf .

case f of
FBranch N fss ⇒ Some (FBranch N (fss @ [concat rss]))
| - ⇒ None — impossible case

) pres)
}

have simp: build-trees ′ bs ω k i I = map-option concat (those (map ?g gs))
using entry pps ps ′ gs by (subst build-trees ′.simps) (auto simp del:

filter .simps)
have ∀ fso ∈ set (map ?g gs). ∃ fs. fso = Some fs ∧ (∀ f ∈ set fs. ∃N fss. f

= FBranch N fss)
proof standard
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fix fso
assume fso ∈ set (map ?g gs)
moreover have ∀ ps ∈ set gs. ∃ fs. ?g ps = Some fs ∧ (∀ f ∈ set fs. ∃N

fss. f = FBranch N fss)
proof standard

fix ps
assume ps ∈ set gs
then obtain k ′ pre reds where ∗: ((k ′, pre), reds) ∈ set gs ((k ′, pre),

reds) = ps
by (metis surj-pair)

then obtain pres where pres: build-trees ′ bs ω k ′ pre {pre} = Some pres
∀ f ∈ set pres. ∃N fss. f = FBranch N fss
using IH (2 ) entry pps ps ′ gs by blast

have ∀ f ∈ set (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds). ∃ a.
f = Some a

using IH (3 )[OF entry pps ps ′ gs ∗(1 )] by auto
then obtain rss where rss: Some rss = those (map (λred. build-trees ′

bs ω k red (I ∪ {red})) reds)
using those-Some by (metis (full-types))

let ?h = λf . case f of FBranch N fss ⇒ Some (FBranch N (fss @ [concat
rss])) | - ⇒ None

have ∀ x ∈ set (map ?h pres). ∃ a. x = Some a
using pres(2 ) by auto

then obtain fs where fs: Some fs = those (map ?h pres)
using those-Some by (smt (verit, best))

have ∀ f ∈ set fs. ∃N fss. f = FBranch N fss
proof standard

fix f
assume ∗: f ∈ set fs
hence ∃ x. x ∈ set pres ∧ Some f ∈ set (map ?h pres)

using those-map-exists[OF fs ∗] by blast
then obtain x where x: x ∈ set pres ∧ Some f ∈ set (map ?h pres)

by blast
thus ∃N fss. f = FBranch N fss

using pres(2 ) by auto
qed
moreover have ?g ps = Some fs

using fs pres rss ∗ by (auto, metis bind.bind-lunit)
ultimately show ∃ fs. ?g ps = Some fs ∧ (∀ f∈set fs. ∃N fss. f =

FBranch N fss)
by blast

qed
ultimately show ∃ fs. fso = Some fs ∧ (∀ f ∈ set fs. ∃N fss. f = FBranch

N fss)
using map-Some-P by auto

qed
then obtain fss where those (map ?g gs) = Some fss ∀ fs ∈ set fss. ∀ f ∈

set fs. ∃N fss. f = FBranch N fss
using those-Some-P by blast
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hence build-trees ′ bs ω k i I = Some (concat fss) ∀ f ∈ set (concat fss). ∃N
fss. f = FBranch N fss

using simp by auto
thus ?thesis

by blast
qed

qed
done

thus ?thesis
by blast

qed

lemma wf-item-tree-build-trees ′:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
assumes wf-bins G ω bs
assumes k < length bs i < length (bs!k)
assumes build-trees ′ bs ω k i I = Some fs
assumes f ∈ set fs
assumes t ∈ set (trees f )
shows wf-item-tree G (item (bs!k!i)) t

proof −
have wf-item-tree G (item (bs!k!i)) t

using assms
apply (induction arbitrary: fs f t rule: build-trees ′-induct[OF assms(1 )])
subgoal premises prems for bs ω k i I fs f t
proof −

define e where entry: e = bs!k!i
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ p ps. pointer e = PreRed p ps
by (metis pointer .exhaust)

thus ?thesis
proof cases

case Null
hence simp: build-trees ′ bs ω k i I = Some ([FBranch (item-rule-head (item

e)) []])
using entry by simp

moreover have f = FBranch (item-rule-head (item e)) []
using build-forest ′-simps(1 ) Null prems(8 ,9 ) entry by auto

ultimately have simp: t = Branch (item-rule-head (item e)) []
using prems(10 ) by simp

have sound-ptrs ω bs
using prems(4 ) unfolding wf-trees-input-def by blast

hence predicts (item e)
using Null prems(6 ,7 ) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def

by blast
hence item-dot (item e) = 0

unfolding predicts-def by blast
thus ?thesis
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using simp entry by simp
next

case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
have sound: sound-ptrs ω bs

using prems(4 ) unfolding wf-trees-input-def by blast
have scans: scans ω k (item (bs!(k−1 )!pre)) (item e)

using entry pre prems(6−7 ) ‹sound-ptrs ω bs› unfolding sound-ptrs-def
sound-pre-ptr-def by simp

hence ∗:
item-rule-head (item (bs!(k−1 )!pre)) = item-rule-head (item e)
item-rule-body (item (bs!(k−1 )!pre)) = item-rule-body (item e)
item-dot (item (bs!(k−1 )!pre)) + 1 = item-dot (item e)
next-symbol (item (bs!(k−1 )!pre)) = Some (ω!(k−1 ))

unfolding scans-def inc-item-def by (simp-all add: item-rule-head-def
item-rule-body-def )

have wf : (bs, ω, k−1 , pre, {pre}) ∈ wf-trees-input
using entry pre prems(4 ) wf-trees-input-pre by blast

then obtain pres where pres: build-trees ′ bs ω (k−1 ) pre {pre} = Some
pres

∀ f ∈ set pres. ∃N fss. f = FBranch N fss
using build-trees ′-termination wf by blast

let ?g = λf . case f of FBranch N fss ⇒ Some (FBranch N (fss @ [[FLeaf
(ω!(k−1 ))]])) | - ⇒ None

have build-trees ′ bs ω k i I = those (map ?g pres)
using entry pre pres by simp

hence fs: Some fs = those (map ?g pres)
using prems(8 ) by simp
then obtain f-pre N fss where Nfss: f = FBranch N (fss @ [[FLeaf

(ω!(k−1 ))]])
f-pre = FBranch N fss f-pre ∈ set pres
using those-map-FBranch-only fs pres(2 ) prems(9 ) by blast

define tss where tss: tss = map (λfs. concat (map (λf . trees f ) fs)) fss
have trees (FBranch N (fss @ [[FLeaf (ω!(k−1 ))]])) =
map (λts. Branch N ts) [ ts @ [Leaf (ω!(k−1 ))] . ts <− combinations tss ]
by (subst tss, subst trees-append-single-singleton, simp)

moreover have t ∈ set (trees (FBranch N (fss @ [[FLeaf (ω!(k−1 ))]])))
using Nfss(1 ) prems(10 ) by blast

ultimately obtain ts where ts: t = Branch N (ts @ [Leaf (ω!(k−1 ))]) ∧
ts ∈ set (combinations tss)

by auto
have sound-ptrs ω bs

using prems(4 ) unfolding wf-trees-input-def by blast
hence pre < length (bs!(k−1 ))

using entry pre prems(6 ,7 ) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)

moreover have k − 1 < length bs
by (simp add: prems(6 ) less-imp-diff-less)
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moreover have Branch N ts ∈ set (trees (FBranch N fss))
using ts tss by simp

ultimately have IH : wf-item-tree G (item (bs!(k−1 )!pre)) (Branch N ts)
using prems(1 ,2 ,4 ,5 ) entry pre Nfss(2 ,3 ) wf pres(1 ) by blast

have map root-tree (ts @ [Leaf (ω!(k−1 ))]) = map root-tree ts @ [ω!(k−1 )]
by simp

also have ... = take (item-dot (item (bs!(k−1 )!pre))) (item-rule-body (item
(bs!(k−1 )!pre))) @ [ω!(k−1 )]

using IH by simp
also have ... = take (item-dot (item (bs!(k−1 )!pre))) (item-rule-body (item

e)) @ [ω!(k−1 )]
using ∗(2 ) by simp

also have ... = take (item-dot (item e)) (item-rule-body (item e))
using ∗(2−4 ) by (auto simp: next-symbol-def is-complete-def split: if-splits;

metis leI take-Suc-conv-app-nth)
finally have map root-tree (ts @ [Leaf (ω!(k−1 ))]) = take (item-dot (item

e)) (item-rule-body (item e)) .
hence wf-item-tree G (item e) (Branch N (ts @ [Leaf (ω!(k−1 ))]))

using IH ∗(1 ) by simp
thus ?thesis

using ts entry by fastforce
next

case PreRed
then obtain p ps where prered: pointer e = PreRed p ps

by blast
define ps ′ where ps ′: ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps)
define gs where gs: gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre,

red). red) ps ′

let ?g = λ((k ′, pre), reds).
do {

pres ← build-trees ′ bs ω k ′ pre {pre};
rss ← those (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds);
those (map (λf .

case f of
FBranch N fss ⇒ Some (FBranch N (fss @ [concat rss]))
| - ⇒ None — impossible case

) pres)
}

have simp: build-trees ′ bs ω k i I = map-option concat (those (map ?g gs))
using entry prered ps ′ gs by (subst build-trees ′.simps) (auto simp del:

filter .simps)
have ∀ fso ∈ set (map ?g gs). ∃ fs. fso = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈ set

(trees f ). wf-item-tree G (item (bs!k!i)) t)
proof standard

fix fso
assume fso ∈ set (map ?g gs)
moreover have ∀ ps ∈ set gs. ∃ fs. ?g ps = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈

set (trees f ). wf-item-tree G (item (bs!k!i)) t)
proof standard
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fix g
assume g ∈ set gs
then obtain k ′ pre reds where g: ((k ′, pre), reds) ∈ set gs ((k ′, pre),

reds) = g
by (metis surj-pair)

moreover have wf-pre: (bs, ω, k ′, pre, {pre}) ∈ wf-trees-input
using wf-trees-input-prered-pre[OF prems(4 ) entry prered ps ′ gs g(1 )]

by blast
ultimately obtain pres where pres: build-trees ′ bs ω k ′ pre {pre} =

Some pres
∀ f-pre ∈ set pres. ∃N fss. f-pre = FBranch N fss
using build-trees ′-termination by blast

have wf-reds: ∀ red ∈ set reds. (bs, ω, k, red, I ∪ {red}) ∈ wf-trees-input
using wf-trees-input-prered-red[OF prems(4 ) entry prered ps ′ gs g(1 )]

by blast
hence ∀ f ∈ set (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds).

∃ a. f = Some a
using build-trees ′-termination by fastforce

then obtain rss where rss: Some rss = those (map (λred. build-trees ′

bs ω k red (I ∪ {red})) reds)
using those-Some by (metis (full-types))

let ?h = λf . case f of FBranch N fss ⇒ Some (FBranch N (fss @ [concat
rss])) | - ⇒ None

have ∀ x ∈ set (map ?h pres). ∃ a. x = Some a
using pres(2 ) by auto

then obtain fs where fs: Some fs = those (map ?h pres)
using those-Some by (smt (verit, best))

have ∀ f ∈ set fs. ∀ t ∈ set (trees f ). wf-item-tree G (item (bs!k!i)) t
proof (standard, standard)

fix f t
assume ft: f ∈ set fs t ∈ set (trees f )
hence ∃ x. x ∈ set pres ∧ Some f ∈ set (map ?h pres)

using those-map-exists[OF fs ft(1 )] by blast
then obtain f-pre N fss where f-pre: f-pre ∈ set pres f-pre = FBranch

N fss
f = FBranch N (fss @ [concat rss])
using pres(2 ) by force

define tss where tss: tss = map (λfs. concat (map (λf . trees f ) fs)) fss
have trees (FBranch N (fss @ [concat rss])) =

map (λts. Branch N ts) [ ts0 @ ts1 . ts0 <− combinations tss,
ts1 <− combinations [concat (map (λf . trees f ) (concat rss)) ] ]

by (subst tss, subst trees-append-singleton, simp)
moreover have t ∈ set (trees (FBranch N (fss @ [concat rss])))

using ft(2 ) f-pre(3 ) by blast
ultimately obtain ts0 ts1 where tsx: t = Branch N (ts0 @ [ts1 ]) ts0

∈ set (combinations tss)
ts1 ∈ set (concat (map (λf . trees f ) (concat rss)))
by fastforce

then obtain f-red where f-red: f-red ∈ set (concat rss) ts1 ∈ set (trees

134



f-red)
by auto

obtain fs-red red where red: Some fs-red = build-trees ′ bs ω k red (I
∪ {red})

f-red ∈ set fs-red red ∈ set reds
using f-red(1 ) rss those-map-Some-concat-exists by fast

then obtain N-red fss-red where f-red = FBranch N-red fss-red
using build-trees ′-termination wf-reds by (metis option.inject)

then obtain ts where ts: Branch N-red ts = ts1
using tsx(3 ) f-red by auto

have (k ′, pre, red) ∈ set ps ′

using group-by-forall-v-exists-k ‹((k ′, pre), reds) ∈ set gs› gs ‹red ∈
set reds› by fast

hence mem: (k ′, pre, red) ∈ set (p#ps)
using ps ′ by (metis filter-set member-filter)

have sound-ptrs ω bs
using prems(4 ) wf-trees-input-def by fastforce

have bounds: k ′ < k pre < length (bs!k ′) red < length (bs!k)
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›

unfolding sound-ptrs-def sound-prered-ptr-def by (meson mem
nth-mem)+

have completes: completes k (item (bs!k ′!pre)) (item e) (item (bs!k!red))
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›

unfolding sound-ptrs-def sound-prered-ptr-def by (metis mem
nth-mem)

have transform:
item-rule-head (item (bs!k ′!pre)) = item-rule-head (item e)
item-rule-body (item (bs!k ′!pre)) = item-rule-body (item e)
item-dot (item (bs!k ′!pre)) + 1 = item-dot (item e)

next-symbol (item (bs!k ′!pre)) = Some (item-rule-head (item (bs!k!red)))
is-complete (item (bs!k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def )

have Branch N ts0 ∈ set (trees (FBranch N fss))
using tss tsx(2 ) by simp

hence IH-pre: wf-item-tree G (item (bs!k ′!pre)) (Branch N ts0 )
using prems(2 )[OF entry prered ps ′ gs ‹((k ′, pre), reds) ∈ set gs›

wf-pre prems(5 )]
pres(1 ) f-pre f-pre(3 ) bounds(1 ,2 ) prems(6 ) by fastforce

have IH-r : wf-item-tree G (item (bs!k!red)) (Branch N-red ts)
using prems(3 )[OF entry prered ps ′ gs ‹((k ′, pre), reds) ∈ set gs› ‹red

∈ set reds› - prems(5 )]
bounds(3 ) f-red(2 ) red ts wf-reds prems(6 ) by metis

have map root-tree (ts0 @ [Branch N-red ts]) = map root-tree ts0 @
[root-tree (Branch N-red ts)]

by simp
also have ... = take (item-dot (item (bs!k ′!pre))) (item-rule-body (item

(bs!k ′!pre))) @ [root-tree (Branch N-red ts)]
using IH-pre by simp
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also have ... = take (item-dot (item (bs!k ′!pre))) (item-rule-body (item
(bs!k ′!pre))) @ [item-rule-head (item (bs!k!red))]

using IH-r by simp
also have ... = take (item-dot (item e)) (item-rule-body (item e))
using transform by (auto simp: next-symbol-def is-complete-def split:

if-splits; metis leI take-Suc-conv-app-nth)
finally have roots: map root-tree (ts0 @ [Branch N-red ts]) = take

(item-dot (item e)) (item-rule-body (item e)) .
have wf-item G ω (item (bs!k!red))

using prems(5 ,6 ) bounds(3 ) unfolding wf-bins-def wf-bin-def
wf-bin-items-def by (auto simp: items-def )

moreover have N-red = item-rule-head (item (bs!k!red))
using IH-r by fastforce

moreover have map root-tree ts = item-rule-body (item (bs!k!red))
using IH-r transform(5 ) by (auto simp: is-complete-def )

ultimately have ∃ r ∈ set (R G). N-red = rule-head r ∧ map root-tree
ts = rule-body r

unfolding wf-item-def item-rule-body-def item-rule-head-def by blast
hence wf-rule-tree G (Branch N-red ts)

using IH-r by simp
hence wf-item-tree G (item (bs!k!i)) (Branch N (ts0 @ [Branch N-red

ts]))
using transform(1 ) roots IH-pre entry by simp

thus wf-item-tree G (item (bs!k!i)) t
using tsx(1 ) red ts by blast

qed
moreover have ?g g = Some fs

using fs pres rss g by (auto, metis bind.bind-lunit)
ultimately show ∃ fs. ?g g = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈ set (trees

f ). wf-item-tree G (item (bs!k!i)) t)
by blast

qed
ultimately show ∃ fs. fso = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈ set (trees f ).

wf-item-tree G (item (bs!k!i)) t)
using map-Some-P by auto

qed
then obtain fss where those (map ?g gs) = Some fss ∀ fs ∈ set fss. ∀ f ∈

set fs. ∀ t ∈ set (trees f ). wf-item-tree G (item (bs!k!i)) t
using those-Some-P by blast

hence build-trees ′ bs ω k i I = Some (concat fss) ∀ f ∈ set (concat fss). ∀ t
∈ set (trees f ). wf-item-tree G (item (bs!k!i)) t

using simp by auto
thus ?thesis

using prems(8−10 ) by auto
qed

qed
done

thus ?thesis
by blast
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qed

lemma wf-yield-tree-build-trees ′:
assumes (bs, ω, k, i, I ) ∈ wf-trees-input
assumes wf-bins G ω bs
assumes k < length bs i < length (bs!k) k ≤ length ω
assumes build-trees ′ bs ω k i I = Some fs
assumes f ∈ set fs
assumes t ∈ set (trees f )
shows wf-yield-tree ω (item (bs!k!i)) t

proof −
have wf-yield-tree ω (item (bs!k!i)) t

using assms
apply (induction arbitrary: fs f t rule: build-trees ′-induct[OF assms(1 )])
subgoal premises prems for bs ω k i I fs f t
proof −

define e where entry: e = bs!k!i
consider (Null) pointer e = Null
| (Pre) ∃ pre. pointer e = Pre pre
| (PreRed) ∃ p ps. pointer e = PreRed p ps
by (metis pointer .exhaust)

thus ?thesis
proof cases

case Null
hence simp: build-trees ′ bs ω k i I = Some ([FBranch (item-rule-head (item

e)) []])
using entry by simp

moreover have f = FBranch (item-rule-head (item e)) []
using build-forest ′-simps(1 ) Null prems(9 ,10 ) entry by auto

ultimately have simp: t = Branch (item-rule-head (item e)) []
using prems(11 ) by simp

have sound-ptrs ω bs
using prems(4 ) unfolding wf-trees-input-def by blast

hence predicts (item e)
using Null prems(6 ,7 ) nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def

by blast
thus ?thesis

unfolding wf-yield-tree-def predicts-def using simp entry by (auto simp:
slice-empty)

next
case Pre
then obtain pre where pre: pointer e = Pre pre

by blast
have sound: sound-ptrs ω bs

using prems(4 ) unfolding wf-trees-input-def by blast
hence bounds: k > 0 pre < length (bs!(k−1 ))

using entry pre prems(6 ,7 ) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)+

have scans: scans ω k (item (bs!(k−1 )!pre)) (item e)
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using entry pre prems(6−7 ) ‹sound-ptrs ω bs› unfolding sound-ptrs-def
sound-pre-ptr-def by simp

have wf : (bs, ω, k−1 , pre, {pre}) ∈ wf-trees-input
using entry pre prems(4 ) wf-trees-input-pre by blast

then obtain pres where pres: build-trees ′ bs ω (k−1 ) pre {pre} = Some
pres

∀ f ∈ set pres. ∃N fss. f = FBranch N fss
using build-trees ′-termination wf by blast

let ?g = λf . case f of FBranch N fss ⇒ Some (FBranch N (fss @ [[FLeaf
(ω!(k−1 ))]])) | - ⇒ None

have build-trees ′ bs ω k i I = those (map ?g pres)
using entry pre pres by simp

hence fs: Some fs = those (map ?g pres)
using prems(9 ) by simp
then obtain f-pre N fss where Nfss: f = FBranch N (fss @ [[FLeaf

(ω!(k−1 ))]])
f-pre = FBranch N fss f-pre ∈ set pres
using those-map-FBranch-only fs pres(2 ) prems(10 ) by blast

define tss where tss: tss = map (λfs. concat (map (λf . trees f ) fs)) fss
have trees (FBranch N (fss @ [[FLeaf (ω!(k−1 ))]])) =
map (λts. Branch N ts) [ ts @ [Leaf (ω!(k−1 ))] . ts <− combinations tss ]
by (subst tss, subst trees-append-single-singleton, simp)

moreover have t ∈ set (trees (FBranch N (fss @ [[FLeaf (ω!(k−1 ))]])))
using Nfss(1 ) prems(11 ) by blast

ultimately obtain ts where ts: t = Branch N (ts @ [Leaf (ω!(k−1 ))]) ∧
ts ∈ set (combinations tss)

by auto
have sound-ptrs ω bs

using prems(4 ) unfolding wf-trees-input-def by blast
hence pre < length (bs!(k−1 ))

using entry pre prems(6 ,7 ) unfolding sound-ptrs-def sound-pre-ptr-def
by (metis nth-mem)

moreover have k−1 < length bs
by (simp add: prems(6 ) less-imp-diff-less)

moreover have Branch N ts ∈ set (trees (FBranch N fss))
using ts tss by simp

ultimately have IH : wf-yield-tree ω (item (bs!(k−1 )!pre)) (Branch N ts)
using prems(1 ,2 ,4 ,5 ,8 ) entry pre Nfss(2 ,3 ) wf pres(1 ) by simp

have transform:
item-origin (item (bs!(k−1 )!pre)) ≤ item-end (item (bs!(k−1 )!pre))
item-end (item (bs!(k−1 )!pre)) = k−1
item-end (item e) = k

using entry prems(5 ,6 ,7 ) bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def

by (auto, meson less-imp-diff-less nth-mem)
have yield-tree t = concat (map yield-tree (ts @ [Leaf (ω!(k−1 ))]))

by (simp add: ts)
also have ... = concat (map yield-tree ts) @ [ω!(k−1 )]

by simp
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also have ... = slice (item-origin (item (bs!(k−1 )!pre))) (item-end (item
(bs!(k−1 )!pre))) ω @ [ω!(k−1 )]

using IH by (simp add: wf-yield-tree-def )
also have ... = slice (item-origin (item (bs!(k−1 )!pre))) (item-end (item

(bs!(k−1 )!pre)) + 1 ) ω
using slice-append-nth transform ‹k > 0 › prems(8 )
by (metis diff-less le-eq-less-or-eq less-imp-diff-less less-numeral-extra(1 ))

also have ... = slice (item-origin (item e)) (item-end (item (bs!(k−1 )!pre))
+ 1 ) ω

using scans unfolding scans-def inc-item-def by simp
also have ... = slice (item-origin (item e)) k ω

using scans transform unfolding scans-def by (metis Suc-diff-1 Suc-eq-plus1
bounds(1 ))

also have ... = slice (item-origin (item e)) (item-end (item e)) ω
using transform by auto

finally show ?thesis
using wf-yield-tree-def entry by blast

next
case PreRed
then obtain p ps where prered: pointer e = PreRed p ps

by blast
define ps ′ where ps ′: ps ′ = filter (λ(k ′, pre, red). red /∈ I ) (p#ps)
define gs where gs: gs = group-by (λ(k ′, pre, red). (k ′, pre)) (λ(k ′, pre,

red). red) ps ′

let ?g = λ((k ′, pre), reds).
do {

pres ← build-trees ′ bs ω k ′ pre {pre};
rss ← those (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds);
those (map (λf .

case f of
FBranch N fss ⇒ Some (FBranch N (fss @ [concat rss]))
| - ⇒ None — impossible case

) pres)
}

have simp: build-trees ′ bs ω k i I = map-option concat (those (map ?g gs))
using entry prered ps ′ gs by (subst build-trees ′.simps) (auto simp del:

filter .simps)
have ∀ fso ∈ set (map ?g gs). ∃ fs. fso = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈ set

(trees f ). wf-yield-tree ω (item (bs!k!i)) t)
proof standard

fix fso
assume fso ∈ set (map ?g gs)
moreover have ∀ ps ∈ set gs. ∃ fs. ?g ps = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈

set (trees f ). wf-yield-tree ω (item (bs!k!i)) t)
proof standard

fix g
assume g ∈ set gs
then obtain k ′ pre reds where g: ((k ′, pre), reds) ∈ set gs ((k ′, pre),

reds) = g
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by (metis surj-pair)
moreover have wf-pre: (bs, ω, k ′, pre, {pre}) ∈ wf-trees-input

using wf-trees-input-prered-pre[OF prems(4 ) entry prered ps ′ gs g(1 )]
by blast

ultimately obtain pres where pres: build-trees ′ bs ω k ′ pre {pre} =
Some pres

∀ f-pre ∈ set pres. ∃N fss. f-pre = FBranch N fss
using build-trees ′-termination by blast

have wf-reds: ∀ red ∈ set reds. (bs, ω, k, red, I ∪ {red}) ∈ wf-trees-input
using wf-trees-input-prered-red[OF prems(4 ) entry prered ps ′ gs g(1 )]

by blast
hence ∀ f ∈ set (map (λred. build-trees ′ bs ω k red (I ∪ {red})) reds).

∃ a. f = Some a
using build-trees ′-termination by fastforce

then obtain rss where rss: Some rss = those (map (λred. build-trees ′

bs ω k red (I ∪ {red})) reds)
using those-Some by (metis (full-types))

let ?h = λf . case f of FBranch N fss ⇒ Some (FBranch N (fss @ [concat
rss])) | - ⇒ None

have ∀ x ∈ set (map ?h pres). ∃ a. x = Some a
using pres(2 ) by auto

then obtain fs where fs: Some fs = those (map ?h pres)
using those-Some by (smt (verit, best))

have ∀ f ∈ set fs. ∀ t ∈ set (trees f ). wf-yield-tree ω (item (bs!k!i)) t
proof (standard, standard)

fix f t
assume ft: f ∈ set fs t ∈ set (trees f )
hence ∃ x. x ∈ set pres ∧ Some f ∈ set (map ?h pres)

using those-map-exists[OF fs ft(1 )] by blast
then obtain f-pre N fss where f-pre: f-pre ∈ set pres f-pre = FBranch

N fss
f = FBranch N (fss @ [concat rss])
using pres(2 ) by force

define tss where tss: tss = map (λfs. concat (map (λf . trees f ) fs)) fss
have trees (FBranch N (fss @ [concat rss])) =

map (λts. Branch N ts) [ ts0 @ ts1 . ts0 <− combinations tss,
ts1 <− combinations [concat (map (λf . trees f ) (concat rss)) ] ]

by (subst tss, subst trees-append-singleton, simp)
moreover have t ∈ set (trees (FBranch N (fss @ [concat rss])))

using ft(2 ) f-pre(3 ) by blast
ultimately obtain ts0 ts1 where tsx: t = Branch N (ts0 @ [ts1 ]) ts0

∈ set (combinations tss)
ts1 ∈ set (concat (map (λf . trees f ) (concat rss)))
by fastforce

then obtain f-red where f-red: f-red ∈ set (concat rss) ts1 ∈ set (trees
f-red)

by auto
obtain fs-red red where red: Some fs-red = build-trees ′ bs ω k red (I

∪ {red})
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f-red ∈ set fs-red red ∈ set reds
using f-red(1 ) rss those-map-Some-concat-exists by fast

then obtain N-red fss-red where f-red = FBranch N-red fss-red
using build-trees ′-termination wf-reds by (metis option.inject)

then obtain ts where ts: Branch N-red ts = ts1
using tsx(3 ) f-red by auto

have (k ′, pre, red) ∈ set ps ′

using group-by-forall-v-exists-k ‹((k ′, pre), reds) ∈ set gs› gs ‹red ∈
set reds› by fast

hence mem: (k ′, pre, red) ∈ set (p#ps)
using ps ′ by (metis filter-set member-filter)

have sound-ptrs ω bs
using prems(4 ) wf-trees-input-def by fastforce

have bounds: k ′ < k pre < length (bs!k ′) red < length (bs!k)
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›

unfolding sound-ptrs-def sound-prered-ptr-def by (meson mem
nth-mem)+

have completes: completes k (item (bs!k ′!pre)) (item e) (item (bs!k!red))
using prered entry prems(6 ,7 ) ‹sound-ptrs ω bs›

unfolding sound-ptrs-def sound-prered-ptr-def by (metis mem
nth-mem)

have transform:
item-rule-head (item (bs!k ′!pre)) = item-rule-head (item e)
item-rule-body (item (bs!k ′!pre)) = item-rule-body (item e)
item-dot (item (bs!k ′!pre)) + 1 = item-dot (item e)

next-symbol (item (bs!k ′!pre)) = Some (item-rule-head (item (bs!k!red)))
is-complete (item (bs!k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: item-rule-head-def item-rule-body-def is-complete-def )

have Branch N ts0 ∈ set (trees (FBranch N fss))
using tss tsx(2 ) by simp

hence IH-pre: wf-yield-tree ω (item (bs!k ′!pre)) (Branch N ts0 )
using prems(2 )[OF entry prered ps ′ gs ‹((k ′, pre), reds) ∈ set gs›

wf-pre prems(5 )]
pres(1 ) f-pre f-pre(3 ) bounds(1 ,2 ) prems(6 ,8 ) by simp

have IH-r : wf-yield-tree ω (item (bs!k!red)) (Branch N-red ts)
using prems(3 )[OF entry prered ps ′ gs ‹((k ′, pre), reds) ∈ set gs› ‹red

∈ set reds› - prems(5 )]
bounds(3 ) f-red(2 ) red ts wf-reds prems(6 ,8 ) by metis

have wf1 :
item-origin (item (bs!k ′!pre)) ≤ item-end (item (bs!k ′!pre))
item-origin (item (bs!k!red)) ≤ item-end (item (bs!k!red))

using prems(5−7 ) bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def

by (metis length-map nth-map nth-mem order-less-trans)+
have wf2 :

item-end (item (bs!k!red)) = k
item-end (item (bs!k!i)) = k

using prems(5−7 ) bounds unfolding wf-bins-def wf-bin-def
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wf-bin-items-def items-def by simp-all
have yield-tree t = concat (map yield-tree (ts0 @ [Branch N-red ts]))

by (simp add: ts tsx(1 ))
also have ... = concat (map yield-tree ts0 ) @ yield-tree (Branch N-red

ts)
by simp

also have ... = slice (item-origin (item (bs!k ′!pre))) (item-end (item
(bs!k ′!pre))) ω @

slice (item-origin (item (bs!k!red))) (item-end (item (bs!k!red))) ω
using IH-pre IH-r by (simp add: wf-yield-tree-def )

also have ... = slice (item-origin (item (bs!k ′!pre))) (item-end (item
(bs!k!red))) ω

using slice-concat wf1 completes-def completes by (metis (no-types,
lifting))

also have ... = slice (item-origin (item e)) (item-end (item (bs!k!red)))
ω

using completes unfolding completes-def inc-item-def by simp
also have ... = slice (item-origin (item e)) (item-end (item e)) ω

using wf2 entry by presburger
finally show wf-yield-tree ω (item (bs!k!i)) t

using wf-yield-tree-def entry by blast
qed
moreover have ?g g = Some fs

using fs pres rss g by (auto, metis bind.bind-lunit)
ultimately show ∃ fs. ?g g = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈ set (trees

f ). wf-yield-tree ω (item (bs!k!i)) t)
by blast

qed
ultimately show ∃ fs. fso = Some fs ∧ (∀ f ∈ set fs. ∀ t ∈ set (trees f ).

wf-yield-tree ω (item (bs!k!i)) t)
using map-Some-P by auto

qed
then obtain fss where those (map ?g gs) = Some fss ∀ fs ∈ set fss. ∀ f ∈

set fs. ∀ t ∈ set (trees f ). wf-yield-tree ω (item (bs!k!i)) t
using those-Some-P by blast

hence build-trees ′ bs ω k i I = Some (concat fss) ∀ f ∈ set (concat fss). ∀ t
∈ set (trees f ). wf-yield-tree ω (item (bs!k!i)) t

using simp by auto
thus ?thesis

using prems(9−11 ) by auto
qed

qed
done

thus ?thesis
using assms(2 ) by blast

qed

theorem wf-rule-root-yield-tree-build-trees:
assumes wf-bins G ω bs sound-ptrs ω bs length bs = length ω + 1
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assumes build-trees G ω bs = Some fs f ∈ set fs t ∈ set (trees f )
shows wf-rule-tree G t ∧ root-tree t = S G ∧ yield-tree t = ω

proof −
let ?k = length bs − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items (bs!?k))
have #: Some fs = map-option concat (those (map (λ(-, i). build-trees ′ bs ω ?k

i {i}) finished))
using assms(4 ) build-trees-def finished-def by (metis (full-types))

then obtain fss fs ′ where fss: Some fss = those (map (λ(-, i). build-trees ′ bs ω
?k i {i}) finished)

fs ′ ∈ set fss f ∈ set fs ′

using map-option-concat-those-map-exists assms(5 ) by fastforce
then obtain x i where ∗: (x,i) ∈ set finished Some fs ′ = build-trees ′ bs ω

(length bs − 1 ) i {i}
using those-map-exists[OF fss(1 ,2 )] by auto

have k: ?k < length bs ?k ≤ length ω
using assms(3 ) by simp-all

have i: i < length (bs!?k)
using index-filter-with-index-lt-length ∗ items-def finished-def by (metis (no-types,

opaque-lifting) length-map)
have x: x = item (bs!?k!i)
using ∗ i filter-with-index-nth items-def nth-map finished-def assms(3 ) by metis

have finished: is-finished G ω x
using ∗ filter-with-index-P finished-def by metis

have {i} ⊆ {0 ..<length (bs!?k)}
using atLeastLessThan-iff i by blast

hence wf : (bs, ω, ?k, i, {i}) ∈ wf-trees-input
unfolding wf-trees-input-def using assms(2 ) i k(1 ) by simp

hence wf-item-tree: wf-item-tree G (item (bs!?k!i)) t
using wf-item-tree-build-trees ′ assms(1 ,2 ,5 ,6 ) i k(1 ) x ∗(2 ) fss(3 ) by metis

have wf-item: wf-item G ω (item (bs!?k!i))
using k(1 ) i assms(1 ) unfolding wf-bins-def wf-bin-def wf-bin-items-def by

(simp add: items-def )
obtain N fss where Nfss: f = FBranch N fss

using build-trees ′-termination[OF wf ] by (metis ∗(2 ) fss(3 ) option.inject)
then obtain ts where ts: t = Branch N ts

using assms(6 ) by auto
hence N = item-rule-head x

map root-tree ts = item-rule-body x
using finished wf-item-tree x by (auto simp: is-finished-def is-complete-def )

hence ∃ r ∈ set (R G). N = rule-head r ∧ map root-tree ts = rule-body r
using wf-item x unfolding wf-item-def item-rule-body-def item-rule-head-def

by blast
hence wf-rule: wf-rule-tree G t

using wf-item-tree ts by simp
have root: root-tree t = S G

using finished ts ‹N = item-rule-head x› by (auto simp: is-finished-def )
have yield-tree t = slice (item-origin (item (bs!?k!i))) (item-end (item (bs!?k!i)))
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ω
using k i assms(1 ,6 ) wf wf-yield-tree-build-trees ′ wf-yield-tree-def ∗(2 ) fss(3 )

by (smt (verit, best))
hence yield: yield-tree t = ω

using finished x unfolding is-finished-def by simp
show ?thesis

using ∗ wf-rule root yield assms(4 ) unfolding build-trees-def by simp
qed

corollary wf-rule-root-yield-tree-build-trees-EarleyL:
assumes wf-G G nonempty-derives G
assumes build-trees G ω (EarleyL G ω) = Some fs f ∈ set fs t ∈ set (trees f )
shows wf-rule-tree G t ∧ root-tree t = S G ∧ yield-tree t = ω
using assms wf-rule-root-yield-tree-build-trees wf-bins-EarleyL EarleyL-def

length-EarleyL-bins length-bins-InitL sound-mono-ptrs-EarleyL

by (metis dual-order .eq-iff )

theorem soundness-build-trees-EarleyL:
assumes wf-G G is-word G ω nonempty-derives G
assumes build-trees G ω (EarleyL G ω) = Some fs f ∈ set fs t ∈ set (trees f )
shows derives G [S G] ω

proof −
let ?k = length (EarleyL G ω) − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items ((EarleyL G ω)!?k))
have #: Some fs = map-option concat (those (map (λ(-, i). build-trees ′ (EarleyL

G ω) ω ?k i {i}) finished))
using assms(4 ) build-trees-def finished-def by (metis (full-types))

then obtain fss fs ′ where fss: Some fss = those (map (λ(-, i). build-trees ′

(EarleyL G ω) ω ?k i {i}) finished)
fs ′ ∈ set fss f ∈ set fs ′

using map-option-concat-those-map-exists assms(5 ) by fastforce
then obtain x i where ∗: (x,i) ∈ set finished Some fs ′ = build-trees ′ (EarleyL

G ω) ω ?k i {i}
using those-map-exists[OF fss(1 ,2 )] by auto

have k: ?k < length (EarleyL G ω) ?k ≤ length ω
by (simp-all add: EarleyL-def assms(1 ))

have i: i < length ((EarleyL G ω) ! ?k)
using index-filter-with-index-lt-length ∗ items-def finished-def by (metis length-map)

have x: x = item ((EarleyL G ω)!?k!i)
using ∗ i filter-with-index-nth items-def nth-map finished-def by metis

have finished: is-finished G ω x
using ∗ filter-with-index-P finished-def by metis

moreover have x ∈ set (items ((EarleyL G ω) ! ?k))
using x by (auto simp: items-def ; metis One-nat-def i imageI nth-mem)

ultimately have recognizing (bins (EarleyL G ω)) G ω
by (meson k(1 ) kth-bin-sub-bins recognizing-def subsetD)

thus ?thesis
using correctness-EarleyL assms by blast
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qed

theorem termination-build-tree-EarleyL:
assumes wf-G G nonempty-derives G derives G [S G] ω
shows ∃ fs. build-trees G ω (EarleyL G ω) = Some fs

proof −
let ?k = length (EarleyL G ω) − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items ((EarleyL G ω)!?k))
have ∀ f ∈ set finished. (EarleyL G ω, ω, ?k, snd f , {snd f }) ∈ wf-trees-input
proof standard

fix f
assume a: f ∈ set finished
then obtain x i where ∗: (x,i) = f

by (metis surj-pair)
have sound-ptrs ω (EarleyL G ω)

using sound-mono-ptrs-EarleyL assms by blast
moreover have ?k < length (EarleyL G ω)

by (simp add: EarleyL-def assms(1 ))
moreover have i < length ((EarleyL G ω)!?k)

using index-filter-with-index-lt-length a ∗ items-def finished-def by (metis
length-map)

ultimately show (EarleyL G ω, ω, ?k, snd f , {snd f }) ∈ wf-trees-input
using ∗ unfolding wf-trees-input-def by auto

qed
hence ∀ fso ∈ set (map (λ(-, i). build-trees ′ (EarleyL G ω) ω ?k i {i}) finished).
∃ fs. fso = Some fs

using build-trees ′-termination by fastforce
then obtain fss where fss: Some fss = those (map (λ(-, i). build-trees ′ (EarleyL

G ω) ω ?k i {i}) finished)
by (smt (verit, best) those-Some)

then obtain fs where fs: Some fs = map-option concat (those (map (λ(-, i).
build-trees ′ (EarleyL G ω) ω ?k i {i}) finished))

by (metis map-option-eq-Some)
show ?thesis

using finished-def fss fs build-trees-def by (metis (full-types))
qed

end
theory Examples

imports Earley-Parser
begin

10 Epsilon productions
definition ε-free :: ′a cfg ⇒ bool where
ε-free G ←→ (∀ r ∈ set (R G). rule-body r 6= [])

lemma ε-free-impl-non-empty-sentence-deriv:
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ε-free G =⇒ a 6= [] =⇒ ¬ Derivation G a D []
proof (induction length D arbitrary: a D rule: nat-less-induct)

case 1
show ?case
proof (rule ccontr)

assume assm: ¬ ¬ Derivation G a D []
show False
proof (cases D = [])

case True
then show ?thesis

using 1 .prems(2 ) assm by auto
next

case False
then obtain d D ′ α where ∗:

D = d # D ′ Derives1 G a (fst d) (snd d) α Derivation G α D ′ [] snd d ∈
set (R G)

using list.exhaust assm Derives1-def by (metis Derivation.simps(2 ))
show ?thesis
proof cases

assume α = []
thus ?thesis

using ∗(2 ,4 ) Derives1-split ε-free-def rule-body-def 1 .prems(1 ) by (metis
append-is-Nil-conv)

next
assume ¬ α = []
thus ?thesis

using ∗(1 ,3 ) 1 .hyps 1 .prems(1 ) by auto
qed

qed
qed

qed

lemma ε-free-impl-non-empty-deriv:
ε-free G =⇒ ∀N ∈ set (N G). ¬ derives G [N ] []
using ε-free-impl-non-empty-sentence-deriv derives-implies-Derivation by (metis

not-Cons-self2 )

lemma nonempty-deriv-impl-ε-free:
assumes ∀N ∈ set (N G). ¬ derives G [N ] [] ∀ (N , α) ∈ set (R G). N ∈ set (N
G)

shows ε-free G
proof (rule ccontr)

assume ¬ ε-free G
then obtain N α where ∗: (N , α) ∈ set (R G) rule-body (N , α) = []

unfolding ε-free-def by auto
hence derives1 G [N ] []

unfolding derives1-def rule-body-def by auto
hence derives G [N ] []

by auto

146



moreover have N ∈ set (N G)
using ∗(1 ) assms(2 ) by blast

ultimately show False
using assms(1 ) by blast

qed

lemma nonempty-deriv-iff-ε-free:
assumes ∀ (N , α) ∈ set (R G). N ∈ set (N G)
shows (∀N ∈ set (N G). ¬ derives G [N ] []) ←→ ε-free G
using ε-free-impl-non-empty-deriv nonempty-deriv-impl-ε-free[OF - assms] by

blast

11 Example 1: Addition
datatype t1 = x | plus
datatype n1 = S
datatype s1 = Terminal t1 | Nonterminal n1

definition nonterminals1 :: s1 list where
nonterminals1 = [Nonterminal S ]

definition terminals1 :: s1 list where
terminals1 = [Terminal x, Terminal plus]

definition rules1 :: s1 rule list where
rules1 = [
(Nonterminal S , [Terminal x]),
(Nonterminal S , [Nonterminal S , Terminal plus, Nonterminal S ])

]

definition start-symbol1 :: s1 where
start-symbol1 = Nonterminal S

definition cfg1 :: s1 cfg where
cfg1 = CFG nonterminals1 terminals1 rules1 start-symbol1

definition inp1 :: s1 list where
inp1 = [Terminal x, Terminal plus, Terminal x, Terminal plus, Terminal x]

lemmas cfg1-defs = cfg1-def nonterminals1-def terminals1-def rules1-def start-symbol1-def

lemma wf-G1 :
wf-G cfg1
by (auto simp: wf-G-defs cfg1-defs)

lemma is-word-inp1 :
is-word cfg1 inp1
by (auto simp: is-word-def is-terminal-def cfg1-defs inp1-def )
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lemma nonempty-derives1 :
nonempty-derives cfg1
by (auto simp: ε-free-def cfg1-defs rule-body-def nonempty-derives-def ε-free-impl-non-empty-deriv)

lemma correctness1 :
recognizing (bins (EarleyL cfg1 inp1 )) cfg1 inp1 ←→ derives cfg1 [S cfg1 ] inp1
using correctness-EarleyL wf-G1 is-word-inp1 nonempty-derives1 by blast

lemma wf-tree1 :
assumes build-tree cfg1 inp1 (EarleyL cfg1 inp1 ) = Some t
shows wf-rule-tree cfg1 t ∧ root-tree t = S cfg1 ∧ yield-tree t = inp1
using assms nonempty-derives1 wf-G1 wf-rule-root-yield-tree-build-tree-EarleyL

by blast

lemma correctness-tree1 :
(∃ t. build-tree cfg1 inp1 (EarleyL cfg1 inp1 ) = Some t) ←→ derives cfg1 [S

cfg1 ] inp1
using correctness-build-tree-EarleyL is-word-inp1 nonempty-derives1 wf-G1 by

blast

lemma wf-trees1 :
assumes build-trees cfg1 inp1 (EarleyL cfg1 inp1 ) = Some fs f ∈ set fs t ∈ set

(trees f )
shows wf-rule-tree cfg1 t ∧ root-tree t = S cfg1 ∧ yield-tree t = inp1
using assms nonempty-derives1 wf-G1 wf-rule-root-yield-tree-build-trees-EarleyL

by blast

lemma soundness-trees1 :
assumes build-trees cfg1 inp1 (EarleyL cfg1 inp1 ) = Some fs f ∈ set fs t ∈ set

(trees f )
shows derives cfg1 [S cfg1 ] inp1
using assms is-word-inp1 nonempty-derives1 soundness-build-trees-EarleyL wf-G1

by blast

12 Example 2: Cyclic reduction pointers
datatype t2 = x
datatype n2 = A | B
datatype s2 = Terminal t2 | Nonterminal n2

definition nonterminals2 :: s2 list where
nonterminals2 = [Nonterminal A, Nonterminal B]

definition terminals2 :: s2 list where
terminals2 = [Terminal x]

definition rules2 :: s2 rule list where
rules2 = [
(Nonterminal B, [Nonterminal A]),
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(Nonterminal A, [Nonterminal B]),
(Nonterminal A, [Terminal x])

]

definition start-symbol2 :: s2 where
start-symbol2 = Nonterminal A

definition cfg2 :: s2 cfg where
cfg2 = CFG nonterminals2 terminals2 rules2 start-symbol2

definition inp2 :: s2 list where
inp2 = [Terminal x]

lemmas cfg2-defs = cfg2-def nonterminals2-def terminals2-def rules2-def start-symbol2-def

lemma wf-G2 :
wf-G cfg2
by (auto simp: wf-G-defs cfg2-defs)

lemma is-word-inp2 :
is-word cfg2 inp2
by (auto simp: is-word-def is-terminal-def cfg2-defs inp2-def )

lemma nonempty-derives2 :
nonempty-derives cfg2
by (auto simp: ε-free-def cfg2-defs rule-body-def nonempty-derives-def ε-free-impl-non-empty-deriv)

lemma correctness2 :
recognizing (bins (EarleyL cfg2 inp2 )) cfg2 inp2 ←→ derives cfg2 [S cfg2 ] inp2
using correctness-EarleyL wf-G2 is-word-inp2 nonempty-derives2 by blast

lemma wf-tree2 :
assumes build-tree cfg2 inp2 (EarleyL cfg2 inp2 ) = Some t
shows wf-rule-tree cfg2 t ∧ root-tree t = S cfg2 ∧ yield-tree t = inp2
using assms nonempty-derives2 wf-G2 wf-rule-root-yield-tree-build-tree-EarleyL

by blast

lemma correctness-tree2 :
(∃ t. build-tree cfg2 inp2 (EarleyL cfg2 inp2 ) = Some t) ←→ derives cfg2 [S

cfg2 ] inp2
using correctness-build-tree-EarleyL is-word-inp2 nonempty-derives2 wf-G2 by

blast

lemma wf-trees2 :
assumes build-trees cfg2 inp2 (EarleyL cfg2 inp2 ) = Some fs f ∈ set fs t ∈ set

(trees f )
shows wf-rule-tree cfg2 t ∧ root-tree t = S cfg2 ∧ yield-tree t = inp2
using assms nonempty-derives2 wf-G2 wf-rule-root-yield-tree-build-trees-EarleyL

by blast
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lemma soundness-trees2 :
assumes build-trees cfg2 inp2 (EarleyL cfg2 inp2 ) = Some fs f ∈ set fs t ∈ set

(trees f )
shows derives cfg2 [S cfg2 ] inp2
using assms is-word-inp2 nonempty-derives2 soundness-build-trees-EarleyL wf-G2

by blast

end
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