Earley

Martin Rau

March 17, 2025

Abstract

In 1968 Earley [1] introduced his parsing algorithm capable of pars-
ing all context-free grammars in cubic space and time. This entry con-
tains a formalization of an executable Earley parser. We base our devel-
opment on Jones’ [2] extensive paper proof of Earley’s recognizer and
the formalization of context-free grammars and derivations of Obua
[4] [3]. We implement and prove correct a functional recognizer mod-
eling Earley’s original imperative implementation and extend it with
the necessary data structures to enable the construction of parse trees
following the work of Scott [5]. We then develop a functional algorithm
that builds a single parse tree and prove its correctness. Finally, we
generalize this approach to an algorithm for a complete parse forest
and prove soundness.

Contents

1 Slightly adjusted content from AFP /LocalLexing
2 Adjusted content from AFP /LocalLexing

3 Adjusted content from AFP /LocalLexing

4 Additional derivation lemmas

5 Slices

6 Earley recognizer

6.1 Earleyitems.
6.2 Well-formedness
6.3 Soundness
6.4 Completeness
6.5 Correctness e
6.6 Finiteness

7 Earley fixpoint 22

7.1 Definitions. 22
7.2 Monotonicity and Absorption 23
7.3 Soundness 27
7.4 Completeness L 28
7.5 Correctness L 33
8 Earley recognizer 33
8.1 Listauxilaries 33
8.2 Definitions 35
8.3 Epsilon productions 0L, 37
84 Binlemmas 38
8.5 Well-formed bins 49
8.6 Soundness 59
8.7 Completeness 65
8.8 Correctness e e 85
9 Earley parser 86
9.1 Pointer lemmas e 86
9.2 Common Definitions, 98
9.3 foldllemmas 99
9.4 Parsetree 101
10 Examples 115
10.1 Common symbols 115
10.2 O(n?®) ambiguous grammars 115
10.2.1 S->SS|a 115
10.3 O(n?) unambiguous or bounded ambiguity 115
1031 S->aS|a 115
1032 S->aSa|a. 116
10.4 O(n) bounded state, non-right recursive LR(k) grammars . . 116
10.4.1 S->Sala 116
105 S->SX, X->Y |Z, Y->a, Z->a.............. 116
11 Input and Evaluation 117
theory Limit
imports
Main
begin

1 Slightly adjusted content from AFP/LocalLex-
ing

fun funpower :: (Ya = 'a) = nat = ('a = 'a) where
funpower f 0 x = x

| funpower f (Suc n) x = f (funpower f n x)

definition natUnion :: (nat = 'a set) = 'a set where
natUnion f = J { fn| n. True}

definition limit :: ('a set = 'a set) = 'a set = 'a set where
limit f © = natUnion (A n. funpower f n x)

definition setmonotone :: ('a set = ‘a set) = bool where
setmonotone f = (V X. X C f X)

lemma subset-setmonotone: setmonotone f =— X C f X
by (simp add: setmonotone-def)

lemmal[simpl: funpower id n = id
by (rule ext, induct n, simp-all)

lemmalsimp]: limit id = id
by (rule ext, auto simp add: limit-def natUnion-def)

definition chain :: (nat = 'a set) = bool
where
chain C = (¥ i. Ci C C (i + 1))

definition continuous :: (‘a set = 'b set) = bool
where
continuous f = (¥ C. chain C — (chain (f o C) A f (natUnion C) = natUnion

(fo)

lemma natUnion-upperbound:
(A n. fnC G) = (natUnion f) C G
by (auto simp add: natUnion-def)

lemma funpower-upperbound:
ANI[.ICG= fICG) = IC(G= funpower fnl C G
proof (induct n)
case 0 thus ?case by simp
next
case (Suc n) thus ?case by simp
qed

lemma limit-upperbound:
NILICG=fICG =ICG=IlmitfICG
by (simp add: funpower-upperbound limit-def natUnion-upperbound)

lemma elem-limit-simp: x € limit f X = (3 n. x € funpower f n X)
by (auto simp add: limit-def natUnion-def)

definition pointwise :: ('a set = b set) = bool where

pointwise f = (VY X. fX = { f{z} | z. z € X})

lemma natUnion-elem: © € fn = = € natUnion f
using natUnion-def by fastforce

lemma limit-elem: z € funpower fn X = x € limit f X
by (simp add: limit-def natUnion-elem)

definition pointbase :: ('a set = 'b set) = 'a set = 'b set where
pointbase FI = { FX | X. finite X N X C I}

definition pointbased :: ('a set = 'b set) = bool where
pointbased f = (3 F. f = pointbase F')

lemma chain-implies-mono: chain C — mono C
by (simp add: chain-def mono-iff-le-Suc)

lemma setmonotone-implies-chain-funpower:
assumes setmonotone: setmonotone f
shows chain (A n. funpower fn I)
by (simp add: chain-def setmonotone subset-setmonotone)

lemma natUnion-subset: (A n. 3 m. fn C g m) = natUnion f C natUnion g
by (meson natUnion-elem natUnion-upperbound subset-iff)

lemma natUnion-eq[case-names Subset Superset]:
(An.3m.fnCgm)= (A n 3 m. gnCfm) = natUnion f = natUnion

g
by (simp add: natUnion-subset subset-antisym)

lemma natUnion-shift[symmetric|:
assumes chain: chain C
shows natUnion C = natUnion (A n. C (n + m))
proof (induct rule: natUnion-eq)
case (Subset n)
show ?case using chain chain-implies-mono le-addl mono-def by blast
next
case (Superset n)
show ?case by blast
qed

definition regular :: (‘a set = 'a set) = bool
where
reqular f = (setmonotone f A continuous f)

lemma regular-fixpoint:
assumes regular: regular f
shows f (limit f I) = limit f I
proof —

have setmonotone: setmonotone f using reqular reqular-def by blast
have continuous: continuous f using regular reqular-def by blast

let 2C = X\ n. funpower fn I
have chain: chain ?C
by (simp add: setmonotone setmonotone-implies-chain-funpower)
have f (limit fI) = f (natUnion ?2C)
using limit-def by metis
also have f (natUnion ?C) = natUnion (f o ?C)
by (metis continuous continuous-def chain)
also have natUnion (f o ?C) = natUnion (A n. f(funpower fn I))
by (meson comp-apply)
also have natUnion (A n. f(funpower fn I)) = natUnion (A n. 2C (n + 1))
by simp
also have natUnion (A n. ?C(n 4+ 1)) = natUnion ?C
apply (subst natUnion-shift)
using chain by (blast+)
finally show ?thesis by (simp add: limit-def)
qed

lemma fiz-is-fiz-of-limit:
assumes fizpoint: fI =1
shows limit f I =1
proof —
have funpower: A\ n. funpower fn I =1
proof —
fix n :: nat
from fizpoint show funpower fn I =1
by (induct n, auto)
qed
show ?thesis by (simp add: limit-def funpower natUnion-def)
qed

lemma limit-is-idempotent: reqular f = limit f (limit f I) = limit f I
by (simp add: fix-is-fix-of-limit reqular-fixpoint)

definition mk-regular! :: ('b = 'a = bool) = ('b = 'a = 'a) = 'a set = 'a set
where
mk-reqularl PFI =1TU{ Fqz|qe. 2 € INPgquz}

definition mk-regular? :: ('b = ‘a = 'a = bool) = (b = 'a = 'a = 'a) = 'a set
= 'a set where
mk-reqular2 PFI =1TU{ Fqzy|qrey. 2 €I ANyeIANPqxy}

end

theory CFG
imports Main

begin

2 Adjusted content from AFP /LocalLexing
type-synonym ’a rule = 'a x 'a list

type-synonym ’a rules = 'a rule list

datatype ‘a cfg = CFG (R : 'a rules) (& : 'a)

definition nonterminals :: 'a cfg = 'a set where
nonterminals G = set (map fst (R G)) U {& G}

definition is-word :: 'a cfg = 'a list = bool where
is-word G w = (nonterminals G N set w = {})

definition derives! :: 'a c¢fg = 'a list = 'a list = bool where
derivesl1 Guv=3 zy A a.
u=12Q[A4] @y A
v=zQa@yA
(A, o) € set (R G)

definition derivations! :: 'a cfg = (‘a list X 'a list) set where
derivationsl G = { (u,v) | v v. derives] G u v }

definition derivations :: 'a cfg = ('a list x 'a list) set where
derivations G = (derivationsl G) *

definition derives :: 'a cfg = 'a list = 'a list = bool where
derives G u v = ((u, v) € derivations G)

syntax
derivesl :: 'a c¢fg = 'a list = 'a list = bool («- F - = - [1000,0,0] 1000)

syntax
derives :: 'a cfg = 'a list = 'a list = bool («- F - =* -» [1000,0,0] 1000)

notation (latex output)
derivesl («-+ - = -» [1000,0,0] 1000)

notation (latez output)
derives («- - - =* - [1000,0,0] 1000)

end
theory Derivations
imports
CFG
begin

3 Adjusted content from AFP /LocalLexing
type-synonym ’a derivation = (nat x ‘a rule) list
lemma is-word-empty: is-word G [| by (auto simp add: is-word-def)

lemma derivesi-implies-derives[simp]:
derivesl] G a b = derives G a b
by (auto simp add: derives-def derivations-def derivationsI-def)

lemma derives-trans:
derives G a b = derives G b ¢ = derives G a ¢
by (auto simp add: derives-def derivations-def)

lemma derives1-eq-derivationsl:
derives] G zy = ((z, y) € derivationsl G)
by (simp add: derivationsi-def)

lemma derives-induct[consumes 1, case-names Base Step|:
assumes derives: derives G a b
assumes Pa: P a
assumes induct: \y z. derives G a y = derives] G yz— Py —=— Pz
shows P b
proof —
note rtrancl-lemma = rtrancl-induct[where ¢ = a and b = b and r = deriva-
tions! G and P=P]
from derives Pa induct rtrancl-lemma show P b
by (metis derives-def derivations-def derivesI-eq-derivationsl)
qed

definition Derives! :: 'a c¢fg = 'a list = nat = 'a rule = 'a list = bool where
Derives] Guirv=3zy A a.
u=12Q[A4] @y A
v=zQa@yA
(A, o) € set (RG) A1 = (A, a)Ai=lengthx

lemma Derives1-split:

Derives] Guirv=— J zy u=zQ[fstr] QyAv=2Q(sndr) Q@yA
length © = 4

by (metis Derives1-def fst-conv snd-conv)

lemma Derives1-implies-derivesl: Derives] G u i r v = derives] G u v
by (auto simp add: Derivesi-def derives1-def)

lemma derivesi-implies-Derivesl: derives] G w v = 3 i r. Derives] G u i1 v
by (auto simp add: Derivesi-def derives1-def)

fun Derivation :: 'a cfg = 'a list = 'a derivation = 'a list = bool where
Derivation - a [b = (a = b)

| Derivation G a (d#D) b = (3 z. Derives! G a (fst d) (snd d) x A Derivation G
x D b)

lemma Derivation-implies-derives: Derivation G a D b = derives G a b
proof (induct D arbitrary: a b)

case Nil thus ?case

by (simp add: derives-def derivations-def)

next

case (Cons d D)

note ihyps = this

from ihyps have 3 z. Derivesl G a (fst d) (snd d) x A Derivation G = D b by
auto

then obtain z where Derives! G a (fst d) (snd d) z and zb: Derivation G D
b by blast

with DerivesI-implies-derives! have d1: derives G a = by fastforce

from thyps zb have d2:derives G x b by simp

show derives G a b by (rule derives-trans|OF d1 d2])
qed

lemma Derivation-Derivesl: Derivation G a S y = Derives] G y i r z =
Derivation G a (SQ[(i,r)]) 2
proof (induct S arbitrary: a y z i)

case Nil thus ?case by simp
next

case (Cons s S) thus ?case

by (metis Derivation.simps(2) append-Cons)

qged

lemma derives-implies-Derivation: derives G a b = 3 D. Derivation G a D b
proof (induct rule: derives-induct)

case Base
show ?case by (rule exl[where z=[]], simp)
next

case (Step y z)

note ihyps = this

from thyps obtain D where ay: Derivation G a D y by blast

from ihyps derivesi-implies-Derives] obtain ¢ r where yz: Derives] G yir z
by blast

from Derivation-Derives1 [OF ay yz] show ?case by auto
qed

lemma DerivesI-rule [elim]: Derivesl G airb = r € set (R G)
using Derives1-def by metis

lemma Derivation-append: Derivation G a (DQE) ¢ = (3 b. Derivation G a D b
A Derivation G b E c)
by (induct D arbitrary: a ¢ E) auto

lemma Derivation-implies-append:

Derivation G a D b = Derivation G b E ¢ = Derivation G a (DQE) ¢
using Derivation-append by blast

4 Additional derivation lemmas

lemma Derives-prepend:
assumes Derives] G uirwv
shows Derives! G (wQu) (i + length w) r (wQu)
proof —
obtain z y A o where x:
u=rQ[A]Qyuv=zQa@Q@y
(A, o) € set (RG) r= (A, a)i=lengthz
using assms Derives-def by (smt (verit))
hence wQu =w QrQ[A| QywQv=wQ@zQa Qy
by auto
thus ?thesis
unfolding Derivesi-def using x
apply (rule-tac exI[where z=wQz))
apply (rule-tac exI[where z=y))
by simp
qed

lemma Derivation-prepend:

Derivation G b D b’ = Derivation G (aQb) (map (A(i, 7). (i + length a, 7)) D)
(a@b)

using Derivesi-prepend by (induction D arbitrary: b b’) (auto, fast)

lemma Derives1-append:
assumes Derives] G uirwv
shows Derives! G (uQuw) i r (vQuw)
proof —
obtain z y A o where x:
u=rQ[A]Qyuv=2zQa@Q@y
(A, o) € set (RG) r= (A, a)i=lengthz
using assms Derives-def by (smt (verit))
hence tQuw =z Q [A]Qy QuwovQw =2 Qa Q@ y Q w
by auto
thus ?thesis
unfolding Derivesi-def using x
apply (rule-tac exl[where z=x))
apply (rule-tac exzl[where z=yQu))
by blast
qged

lemma Derivation-append’:
Derivation G a D o' = Derivation G (a@b) D (a'Qb)
using Derivesi-append by (induction D arbitrary: a a') (auto, fast)

lemma Derivation-append-rewrite:

assumes Derivation G a D (b @ ¢ @ d) Derivation G ¢ E ¢’

shows 3 F. Derivation G a F (b @Q ¢’ Q d)

using assms Derivation-append’ Derivation-prepend Derivation-implies-append
by fast

lemma derivesI-if-valid-rule:
(A, a) € set (R G) = derives] G [4]
unfolding derivesI-def
apply (rule-tac exl[where z=[]])
apply (rule-tac exl[where z=[]])
by simp

lemma derives-if-valid-rule:
(A, a) € set (R G) = derives G [A] «
using derivesi-if-valid-rule by fastforce

lemma Derivation-from-empty:
Derivation G [| D a = a =[]
by (cases D) (auto simp: Derives-def)

lemma Derivation-concat-split:
Derivation G (a@b) D ¢ = 3FE F a’ b'. Derivation G a E a’ A Derivation G b
Fb A
c=a"Qb' A length E < length D N length F < length D
proof (induction D arbitrary: a b)
case Nil
thus ?Zcase
by (metis Derivation.simps(1) order-refl)
next
case (Cons d D)
then obtain ab where *: Derives! G (a@Qb) (fst d) (snd d) ab Derivation G ab
Dc
by auto
then obtain z y A o where #:
6@b=2Q[A]Qyab=2Qa @y (4a) € set (RG)sndd=(4d,a) fstd =
length x
using * unfolding Derivesi-def by blast
show Zcase
proof (cases length a < length x)
case True
hence ab-def:
a = take (length a) x
b = drop (length o) z @ [A] Q y
ab = take (length a) @ drop (length a) © @ o @ y
using #(1,2) True by (metis append-eq-append-conv-if)+
then obtain F F o’ b’ where IH:
Derivation G (take (length a) z) E a’
Derivation G (drop (length o) * @ a Q y) F b’
c=a" Qb

10

length E < length D
length F < length D
using Cons *(2) by blast
have Derives! G b (fst d — length a) (snd d) (drop (length a) z @ o Q)
unfolding Derives-def using (1) #(3—5) ab-def(2) by (metis length-drop)
hence Derivation G b ((fst d — length a, snd d) # F) b’
using IH(2) by force
moreover have Derivation G a F o’
using TH (1) ab-def(1) by fastforce
ultimately show ?Zthesis
using IH(3—5) by fastforce
next
case Fulse
hence a-def: a = = Q [A] Q take (length a — length x — 1) y
using #(1) append-eq-conv-conjlof a b x Q [A] Q y] take-all-iff take-append
by (metis append-Cons append-Nil diff-is-0-eq le-cases take-Cons’)
hence b-def: b = drop (length a — length x — 1) y
using #(1) by (metis List.append.assoc append-take-drop-id same-append-eq)
have ab = 2 @ o @ take (length a — length x — 1) y @ drop (length a — length
z—1)y
using #(2) by force
then obtain F F o’ b’ where [H:
Derivation G (x Q@ o @ take (length a — length x — 1) y) E o’
Derivation G (drop (length a — length z — 1) y) F b’
c=a" Qb'
length E < length D
length F < length D
using Cons.IH[of x @ o @ take (length a — length x — 1) y drop (length a
— length x — 1) y] %(2) by auto
have Derives! G a (fst d) (snd d) (z @ o @ take (length a — length x — 1) y)
unfolding DerivesI-def using #(3—5) a-def by blast
hence Derivation G a ((fst d, snd d) # E) a’
using [H (1) by fastforce
moreover have Derivation G b F b’
using b-def IH(2) by blast
ultimately show ?thesis
using IH(8—5) by fastforce
qed
qed

lemma Derivation-&1:

assumes Deriation G [& G] D w is-word G w

shows Ja E. Derivation G « E w A (6 G,a) € set (R G)
proof (cases D)

case Nil

thus ?thesis

using assms by (auto simp: is-word-def nonterminals-def)

next

case (Cons d D)

11

then obtain a where Derives! G [& G] (fst d) (snd d) a Derivation G o« D w
using assms by auto

hence (6 G, o) € set (R G)
unfolding Derives1-def
by (simp add: Cons-eq-append-conv)

thus ?thesis
using <Derivation G o D w» by auto

qed

end
theory Farley
imports
Derivations
begin

5 Slices

fun slice :: ‘a list = nat = nat = ’a list where
slice [| - - =]

| slice (z#xs) - 0 = |

| slice (z#xs) 0 (Suc b) = x # slicexs 0'b

| slice (z#xs) (Suc a) (Suc b) = slice zs a b

syntax
slice :: 'a list = nat = nat = 'a list (<-_//_> [1000,0,0] 1000)

notation (latez output)
slice (<—_//_> [1000,0,0] 1000)

lemma slice-drop-take:
slice s a b = drop a (take b xs)
by (induction zs a b rule: slice.induct) auto

lemma slice-append-aux:
Suc b < ¢ = slice (z#xs) (Suc b) ¢ = slice xs b (¢—1)
using Suc-le-D by fastforce

lemma slice-concat:
a<b=—=b<c= slicexs abQ slicexs b ¢ = slice s a ¢
proof (induction xs a b arbitrary: c¢ rule: slice.induct)
case (3 b z zs)
then show ?case
using Suc-le-D by (fastforce simp: slice-append-aux)
qed (auto simp: slice-append-auz)

lemma slice-concat-FEx:

a < c= slicexsac=1ysQ zs = 3b. ys = slice xs a b N\ zs = slice xs b ¢ A
a<bANb<Zc
proof (induction xs a ¢ arbitrary: ys zs rule: slice.induct)

12

case (3 z zs b)
show ?Zcase
proof (cases ys)
case Nil
then obtain zs’ where z # slice s 0 b = x # 28’ © # 28’ = zs
using 3.prems(2) by auto
thus ?thesis
using Nil by force
next
case (Cons y ys')
then obtain ys’ where © # slice xs 0 b = z # ys' Q zs z # ys' = ys
using 3.prems(2) by auto
thus ?thesis
using 3.IH|[of ys' zs] by force
qed
next
case (4 a b z xs)
thus ?case
by (auto, metis slice.simps(4) Suc-le-mono)
qed auto

lemma slice-nth:

a < length xs = slice xs a (a+1) = [zsla]

unfolding slice-drop-take

by (metis Cons-nth-drop-Suc One-nat-def diff-add-inverse drop-take take-Suc-Cons
take-eq-Nil)

lemma slice-append-nth:
a < b= b < length s => slice xs a b Q [zs!b] = slice s a (b+1)
by (metis le-add1 slice-concat slice-nth)

lemma slice-empty:
b<a= slicezs ab=]
by (simp add: slice-drop-take)

lemma slice-id[simp]:
slice zs 0 (length xs) = xs

by (simp add: slice-drop-take)

lemma slice-singleton:
b < length zs = [z] = slicexs a b= b= a + 1
by (induction xs a b rule: slice.induct) (auto simp: slice-drop-take)

6 Earley recognizer

6.1 Earley items

definition [hs-rule :: ‘a rule = 'a where
lhs-rule = fst

13

definition rhs-rule :: 'a rule = 'a list where
rhs-rule = snd

datatype ‘a item =
Item (rule-item: 'a rule) (dot-item : nat) (start-item : nat) (end-item : nat)

definition [lhs-item :: 'a item = ’a where
lhs-item © = lhs-rule (rule-item x)

definition rhs-item :: 'a item = 'a list where
rhs-item x = rhs-rule (rule-item x)

definition a-item :: 'a item = ’a list where
a-item x = take (dot-item x) (rhs-item x)

definition SB-item :: ‘a item = 'a list where
B-item x = drop (dot-item z) (rhs-item x)

definition is-complete :: 'a item = bool where
is-complete x = dot-item x > length (rhs-item x)

definition next-symbol :: 'a item = 'a option where
next-symbol x = if is-complete x then None else Some (rhs-item x| dot-item x)

lemmas item-defs = lhs-item-def rhs-item-def «-item-def B-item-def lhs-rule-def
rhs-rule-def

definition is-finished :: 'a c¢fg = 'a list = 'a item = bool where
is-finished G w = =
lhs-item x = & G A
start-item ¢ = 0 A
end-item © = length w A
is-complete x

definition recognizing :: 'a item set = 'a ¢fg = 'a list = bool where
recognizing I G w = Az € I. is-finished G w «

inductive-set Farley :: 'a c¢fg = 'a list = 'a item set
for G :: 'a c¢fg and w :: 'a list where
Init: r € set (RG) = fstr =60 =
Item r 00 0 € Earley G w
| Scan: © = Item rbij = x € Earley G w =
wlj = a = j < length w = neat-symbol z = Some o =
Itemr (b+ 1) (j + 1) € Earley G w
| Predict: x = Item r b i j = = € Farley G w =
r’ € set (R G) = next-symbol x = Some (lhs-rule r') =
Item r' 0jj € Earley G w
| Complete: © = Item vy by 1 j = z € Earley G w = y = Item 1,y b, j k =

14

y € Farley G w —
is-complete y = next-symbol x = Some (lhs-item y) =
Item ry (by + 1) i k € Earley G w

6.2 Well-formedness

definition wf-item :: 'a ¢fg = 'a list => 'a item = bool where
wf-item G w T =
rule-item © € set (R G) A
dot-item x < length (rhs-item) A
start-item x < end-item x N
end-item ¢ < length w

lemma wf-Init:
assumes r € set (R G) fstr=6¢G
shows wf-item G w (Item r 0 0 0)
using assms unfolding wf-item-def by simp

lemma wf-Scan:

assumes x = Item r b i j wf-item G w z w!j = a j < length w next-symbol x =
Some a

shows wf-item G w (Item r (b + 1) i (j+1))

using assms unfolding wf-item-def by (auto simp: item-defs is-complete-def
next-symbol-def split: if-splits)

lemma wf-Predict:

assumes z = Item r b i j wf-item G w z 1’ € set (R G) next-symbol x = Some
(Ihs-rule)

shows wf-item G w (Item 1’ 0 j j)

using assms unfolding wf-item-def by simp

lemma wf-Complete:
assumes z = ltem v, b, 1 j wf-item G w xy = Item ry by j k wf-item G w y
assumes is-complete y next-symbol x = Some (lhs-item y)
shows wf-item G w (Item 1, (by + 1) i k)
using assms unfolding wf-item-def is-complete-def next-symbol-def rhs-item-def
by (auto split: if-splits)

lemma wf-Farley:
assumes z € Farley G w
shows wf-item G w «
using assms wf-Init wf-Scan wf-Predict wf-Complete
by (induction rule: Earley.induct) fast+

6.3 Soundness

definition sound-item :: 'a c¢fg = 'a list = 'a item = bool where
sound-item G w ¢ = G k= [lhs-item z] =* (slice w (start-item) (end-item z) Q
B-item x)

15

lemma sound-Init:
assumes r € set (R G) fstr=6G
shows sound-item G w (Item 7 0 0 0)
proof —
let 2z = Itemr 000
have (lhs-item ?x, B-item ?z) € set (R G)
using assms(1) by (simp add: item-defs)
hence derives G [lhs-item ?x] (3-item ?x)
using derives-if-valid-rule by metis
thus sound-item G w %x
unfolding sound-item-def by (simp add: slice-empty)
qed

lemma sound-Scan:
assumes x = Item 7 b i j wf-item G w x sound-item G w x
assumes w!j = a j < length w next-symbol x = Some a
shows sound-item G w (Item r (b+1) ¢ (j+1))
proof —
define z’ where [simp]: ' = Item r (b+1) i (j+1)
obtain -item’ where *: B-item x = a # [-item’ S-item z’' = [-item’
using assms(1,6) apply (auto simp: item-defs next-symbol-def is-complete-def
split: if-splits)
by (metis Cons-nth-drop-Suc lel)
have slice w i j @ S-item z = slice w i (j+1) Q B-item’
using * assms(1,2,4,5) by (auto simp: slice-append-nth wf-item-def)
moreover have derives G [lhs-item x] (slice w i j @ B-item x)
using assms(1,3) sound-item-def by force
ultimately show ?thesis
using assms(1) x by (auto simp: item-defs sound-item-def)
qed

lemma sound-Predict:
assumes z = Item r b i j wf-item G w x sound-item G w x
assumes 1’ € set (R G) next-symbol x = Some (lhs-rule r’)
shows sound-item G w (Item v’ 0 j j)
using assms by (auto simp: sound-item-def derives-if-valid-rule slice-empty item-defs)

lemma sound-Complete:
assumes r = Item r; b, i j wf-item G w x sound-item G w x
assumes y = ltem ry by j k wf-item G w y sound-item G w y
assumes is-complete y next-symbol x = Some (lhs-item y)
shows sound-item G w (Item r, (b, + 1) i k)
proof —
have derives G [lhs-item y] (slice w j k)
using assms(4,6,7) by (auto simp: sound-item-def is-complete-def item-defs)
then obtain F where E: Derivation G [lhs-item y| E (slice w j k)
using derives-implies-Derivation by blast
have derives G [lhs-item x] (slice w i j @ B-item x)
using assms(1,3,4) by (auto simp: sound-item-def)

16

moreover have 0: -item x = (lhs-item y) # tl (B-item z)
using assms(8) apply (auto simp: next-symbol-def is-complete-def item-defs
split: if-splits)
by (metis drop-eq-Nil hd-drop-conv-nth lel list.collapse)
ultimately obtain D where D:
Derivation G [lhs-item x| D (slice w i j @ [lhs-item y] @Q (¢ (B-item x)))
using derives-implies-Derivation by (metis append-Cons append-Nil)
obtain F' where F:
Derivation G [lhs-item x| F (slice w i j @Q slice w j k @ ¢l (S-item x))
using Derivation-append-rewrite D FE
by metis
moreover have i < j
using assms(1,2) wf-item-def by force
moreover have j < k
using assms(4,5) wf-item-def by force
ultimately have derives G [lhs-item x] (slice w i k Q tl (S-item z))
by (metis Derivation-implies-derives append.assoc slice-concat)
thus sound-item G w (Item 1, (b, + 1) i k)
using assms(1,4) by (auto simp: sound-item-def item-defs drop-Suc tl-drop)
qed

lemma sound-FEarley:
assumes z € Farley G w wf-item G w «
shows sound-item G w z
using assms

proof (induction rule: Earley.induct)
case (Init r)

thus ?case
using sound-Init by blast
next
case (Scanzrbija)
thus ?case
using wf-FEarley sound-Scan by fast
next
case (Predict x v bijr’)
thus ?Zcase
using wf-Earley sound-Predict by blast
next
case (Complete x vy by 1§y ry by k)
thus ?case
using wf-Earley sound-Complete by metis
qged

theorem soundness-FEarley:
assumes recognizing (Earley G w) G w
shows G F [6 G] =* w
proof —
obtain z where z: z € Farley G w is-finished G w z
using assms recognizing-def by blast

17

hence sound-item G w z
using wf-Farley sound-FEarley by blast
thus ?thesis
unfolding sound-item-def using x by (auto simp: is-finished-def is-complete-def
item-defs)
qed

6.4 Completeness

definition partially-completed :: nat = 'a cfg = ‘a list = 'a item set = ('a
derivation = bool) = bool where
partially-completed k G w IP=VYrbi' ijza D.
1<jiNjF<kANEk<lengthw A
x=1TItemrbi" i ANxe€lA nert-symbol x = Some a A
Derivation G [a] D (slice w ij) NP D —
Item r (b+1)i'jel

lemma partially-completed-upto:
assumes j < k k < length w
assumes z = [ltem (N,a) dijz € IVz € I. wf-item G w x
assumes Derivation G (B-item z) D (slice w j k)
assumes partially-completed k G w I (AD'. length D' < length D)
shows Item (N,a) (length «) i k € I
using assms
proof (induction B-item x arbitrary: d i j k N o z D)
case Nil
have a-item z = «
using Nil(1,4) unfolding a-item-def S-item-def rhs-item-def rhs-rule-def by
stmp
hence = = Item (N,«) (length «) i j
using Nil.hyps Nil.prems(3—5) unfolding wf-item-def item-defs by auto
have Derivation G || D (slice w j k)
using Nil.hyps Nil.prems(6) by auto
hence slice w j k =[]
using Derivation-from-empty by blast
hence j = k
unfolding slice-drop-take using Nil.prems(1,2) by simp
thus ?Zcase
using «x = Item (N, a) (length «) i j» Nil.prems(4) by blast
next
case (Cons b bs)
obtain j' F F where x:
Derivation G [b] E (slice w j ")
Derivation G bs F (slice w j' k)
j<j'j' < klength E < length D length F < length D
using Derivation-concat-split[of G [b] bs D slice w j k] slice-concat-Ex
using Cons.hyps(2) Cons.prems(1,6)
by (smt (verit, ccfo-threshold) Cons-eq-appendl append-self-conv2)
have next-symbol © = Some b

18

using Cons.hyps(2) unfolding item-defs(4) next-symbol-def is-complete-def
by (auto, metis nth-via-drop)
hence Item (N, «) (d+1) ij' €I
using Cons.prems(7) unfolding partially-completed-def
using Cons.prems(2,3,4) x(1,5—5) by blast
moreover have partially-completed k G w I (AD’. length D' < length F)
using Cons.prems(7) *(6) unfolding partially-completed-def by fastforce
moreover have bs = S-item (Item (N,a) (d+1) ij’)
using Cons.hyps(2) Cons.prems(3) unfolding item-defs(4) rhs-item-def
by (auto, metis List.list.sel(8) drop-Suc drop-tl)
ultimately show Zcase
using Cons.hyps(1) x(2,4) Cons.prems(2,3,5) wf-item-def by blast
qed

lemma partially-completed-Farley:
partially-completed k G w (Earley G w) (A-. True)
unfolding partially-completed-def
proof (intro alll impl)
fixrbi'ijzalD
assume
1<jiNjF<kANEk<lengthw A
x=Ttemrbi"i Nz € Earley G w A
next-symbol © = Some a N
Derivation G [a] D (slice w i j) N True
thus Item r (b+ 1) i'j € Earley G w
proof (induction length D arbitrary: v b i’ i j x a D rule: nat-less-induct)
case I
show ?case
proof cases
assume D = [|
hence [a] = slice w i j
using 1.prems by force
moreover have j < length w
using le-trans 1.prems by blast
ultimately have j = i+1
using slice-singleton by metis
hence i < length w
using «j < length w> by simp
hence w!i = a
using slice-nth <[a] = slice w i j» <j = i + 1> by fastforce
hence Item r (b + 1) i’ j € Earley G w
using Farley.Scan 1.prems <i < length wy <j = 7 + 1> by metis
thus ?thesis
by (simp add: <j =i + 1»)
next
assume - D = ||
then obtain d D' where D = d # D’
by (meson List.list.exhaust)
then obtain o where *: Derives! G [a] (fst d) (snd d) o Derivation G o D’

19

(slice w i)
using I.prems by auto
hence rule: (a, o) € set (R G) fst d = 0 snd d = (a ,a)
using (1) unfolding Derives!-def by (simp add: Cons-eq-append-conv)+
define y where y-def: y = Item (a ,a) 04 i
have length D' < length D
using <D = d # D’> by fastforce
hence partially-completed k G w (Earley G w) (AE. length E < length D’)
unfolding partially-completed-def using 1.hyps order-le-less-trans by (smt
(verit, best))
hence partially-completed j G w (Earley G w) (AE. length E < length D’)
unfolding partially-completed-def using 1.prems by force
moreover have Derivation G (8-item y) D' (slice w i j)
using *(2) by (auto simp: item-defs y-def)
moreover have y € Farley G w
using y-def 1.prems rule by (auto simp: item-defs Earley. Predict)
moreover have j < length w
using 1.prems by simp
ultimately have Item (a,a) (length o) i j € Earley G w
using partially-completed-upto 1.prems wf-Farley y-def by metis
moreover have z: z = Item r b i’ iz € Earley G w
using 1.prems by blast+
moreover have next-symbol © = Some a
using 1.prems by linarith
ultimately show ?thesis
using Farley. Complete[OF z] by (auto simp: is-complete-def item-defs)
qed
qed
qed

theorem completeness-FEarley:
assumes G F [6 G| =* w is-word G w
shows recognizing (Earley G w) G w
proof —
obtain o D where *: (& G ,a) € set (R G) Derivation G o D w
using Derivation-&1 assms derives-implies-Derivation by metis
define z where z-def: © = Item (6 G, @) 00 0
have partially-completed (length w) G w (Earley G w) (A-. True)
using assms(2) partially-completed-Earley by blast
hence 0: partially-completed (length w) G w (Earley G w) (AD'. length D' <
length D)
unfolding partially-completed-def by blast
have 1: z € FEarley G w
using z-def Earley.Init x(1) by fastforce
have 2: Derivation G (B-item z) D (slice w 0 (length w))
using *(2) z-def by (simp add: item-defs)
have Item (6 G,a) (length o) 0 (length w) € Earley G w
using partially-completed-upto[OF - - - - - 2 0] wf-Earley 1 z-def by auto
then show ?thesis

20

unfolding recognizing-def is-finished-def by (auto simp: is-complete-def item-defs,
force)
qed

6.5 Correctness

theorem correctness-Earley:
assumes is-word G w
shows recognizing (FEarley G w) G w +— G F [6 G] =* w
using assms soundness-Earley completeness-Earley by blast

6.6 Finiteness

lemma finiteness-empty:
set (R G) = {} = finite { z | z. wf-item G w z }
unfolding wf-item-def by simp

fun item-intro :: 'a rule x nat X nat X nat = ’a item where
item-intro (rule, dot, origin, ends) = Item rule dot origin ends

lemma finiteness-nonempty:
assumes set (R G) # {}
shows finite { z. wf-item G w = }
proof —
define M where M = Max { length (rhs-rule r) | r. r € set (R G) }
define Top where Top = (set (R G) x {0.M} x {0..length w} x {0..length
w})
hence finite Top
using finite-cartesian-product finite by blast
have inj-on item-intro Top
unfolding Top-def inj-on-def by simp
hence finite (item-intro © Top)
using finite-image-iff <finite Top> by auto
have { z | z. wf-item G w z } C item-intro * Top
proof standard
fix z
assume z € { = | z. wf-item G w z }
then obtain rule dot origin endp where x: x = Item rule dot origin endp
rule € set (R G) dot < length (rhs-item z) origin < length w endp < length w
unfolding wf-item-def using item.exhaust-sel le-trans by blast
hence length (rhs-rule rule) € { length (rhs-rule r) | r. r € set (R G) }
using *(1,2) rhs-item-def by blast
moreover have finite { length (rhs-rule v) | r. r € set (R G) }
using finite finite-image-set[of Az. z € set (R G)| by fastforce
ultimately have M > length (rhs-rule rule)
unfolding M-def by simp
hence dot < M
using *(1,3) rhs-item-def by (metis item.sel(1) le-trans)
hence (rule, dot, origin, endp) € Top
using *(2,4,5) unfolding Top-def by simp

21

thus z € item-intro ‘ Top
using *(1) by force
qed
thus ?thesis
using «finite (item-intro ¢ Top)» rev-finite-subset by auto
qed

lemma finiteness- UNIV-wf-item:
finite { z. wf-item G w z }
using finiteness-empty finiteness-nonempty by fastforce

theorem finiteness-Farley:

finite (Earley G w)

using finiteness- UNIV-wf-item wf-Earley rev-finite-subset by (metis mem-Collect-eq
subsetl)

end
theory Farley-Fizpoint
imports
FEarley
Limit
begin

7 Earley fixpoint

7.1 Definitions

definition init-item :: ‘a rule = nat = 'a item where
nit-item r k = Item r 0k k

definition inc-item :: ‘a item = nat = ’a item where
inc-item x k = Item (rule-item x) (dot-item x + 1) (start-item z) k

definition bin :: ‘a item set = nat = 'a item set where
binlk={z.z€lANenditemz==%}

definition prev-symbol :: 'a item = 'a option where
prev-symbol x = if dot-item x = 0 then None else Some (rhs-item x| (dot-item z

- 1))

definition base :: ‘a list = 'a item set = nat = 'a item set where
base w Ik ={z.x €1 A end-itemx =k N k> 0 N prev-symbol z = Some

(Wi(k=1)) }

definition Initr :: 'a cfg = 'a item set where
Initp G = { init-itemr 0 | r. 7 € set (RG) A fstr=(6G) }

definition Scanp :: nat = 'a list = 'a item set = 'a item set where
Scanp k w I = { inc-item z (k+1) | = a.

22

x € binlkA

wlk=aA

k < length w A
next-symbol z = Some a }

definition Predictp :: nat = 'a c¢fg = ’a item set = 'a item set where
Predicty k G I = { init-item r k| r x.
r € set (RG) A
z e binlkAN
next-symbol & = Some (lhs-rule r) }

definition Completer :: nat = 'a item set = 'a item set where
Completep kI = { inc-item z k | z y.
z € bin I (start-item y) A
yebinlkA
is-complete y N
next-symbol © = Some (lhs-item y) }

definition Earleyp-bin-step :: nat = 'a cfg = 'a list = 'a item set = 'a item set
where
Earleyp-bin-step k G w [= 1 U Scanpg k w I U Completer k I U Predicty k G 1

definition Farleyp-bin :: nat = ‘a c¢fg = 'a list = 'a item set = ’'a item set
where
Earleyp-bin k G w I = limit (Earleyp-bin-step k G w) T

fun Farleyp-bins :: nat = 'a c¢fg = 'a list = 'a item set where
Earleyp-bins 0 G w = Earleyp-bin 0 G w (Initp G)
| Earleyp-bins (Suc n) G w = Earleyp-bin (Suc n) G w (Earleyp-bins n G w)

definition Earleyr :: 'a cfg = 'a list = 'a item set where
Earleyr G w = FEarleyp-bins (length w) G w

7.2 Monotonicity and Absorption

lemma FEarleyr-bin-step-empty:

Earleyp-bin-step k G w {} = {}

unfolding Farleyp-bin-step-def Scanp-def Completer-def Predictp-def bin-def
by blast

lemma Farleyp-bin-step-setmonotone:
setmonotone (Earleyp-bin-step k G w)
by (simp add: Un-assoc Earleyp-bin-step-def setmonotone-def)

lemma FEarley g -bin-step-continuous:
continuous (Earleyp-bin-step k G w)
unfolding continuous-def

proof (standard, standard, standard)
fix C :: nat = 'a item set

23

assume chain C
thus chain (Earleyp-bin-step k G w o C)
unfolding chain-def Earleyp-bin-step-def by (auto simp: Scanp-def Predict p-def
Completep-def bin-def subset-eq)
next
fix C :: nat = 'a item set
assume *: chain C
show Earleyp-bin-step k G w (natUnion C) = natUnion (Earleyp-bin-step k G
wo C)
unfolding natUnion-def
proof standard
show FEarleyp-bin-step k G w (IJ {C n |n. True}) C U {(Farleyp-bin-step k
Gwo C)n|n. True}
proof standard
fix z
assume #: z € Earleyp-bin-step k G w (U {C n |n. True})
show = € |J {(Earleyp-bin-step k G w o C) n |n. True}
proof (cases x € Completer k (| {C n |n. True}))
case True
then show ?thesis
using * unfolding chain-def Earleyp-bin-step-def Completep-def bin-def
apply auto
proof —
fix y :: ‘a item and z :: 'a item and n :: nat and m :: nat
assume al: is-complete z
assume a2: end-item y = start-item z
assume a3: y € Cn
assume a4: z € Cm
assume ad: next-symbol y = Some (lhs-item z)
assume Vi. C i C C (Suc i)
hence f6: Anm. - n<mv CnC Cm
by (meson lift-Suc-mono-le)
hence f7: An. - m <nvVvze Cn
using a4 by blast
have dn > m.y € Cn
using f6 a3 by (meson le-sup-iff subset-eq sup-gel)
thus 3 1.
(3n.I=CnuU
Scang (end-item z) w (C'n) U
{inc-item i (end-item z) |i.
1€ CnA
(35.
end-item i = start-item j A
je CnA
end-item j = end-item z A
is-complete j N
next-symbol i = Some (lhs-item j))} U
Predictp (end-item z) G (C n))
A inc-item y (end-item z) € I

24

using f7 a5 a2 al by blast
qged
next
case Fulse
thus ?thesis
using # Un-iff by (auto simp: Earleyp-bin-step-def Scang-def Predictp-def
bin-def; blast)
qed
qed
next
show | {(Earleyp-bin-step k G w o C) n |n. True} C Earleyp-bin-step k G w
(U {C n |n. True})
unfolding Earley g-bin-step-def
using * by (auto simp: Scang-def Predictp-def Completep-def chain-def
bin-def, metis+)
qged
qed

lemma FEarleyp-bin-step-regular:
reqular (Farleyp-bin-step k G w)
by (simp add: Earleyp-bin-step-continuous Earleyr-bin-step-setmonotone regu-

lar-def)

lemma FEarleyp-bin-idem:
Earleyp-bin k G w (Earleyp-bin k G w I) = Earleyp-bin k G w I
by (simp add: Earleyp-bin-def Earleyp-bin-step-regular limit-is-idempotent)

lemma Scanp-bin-absorb:
Scanp k w (bin I k) = Scanp k w I
unfolding Scanp-def bin-def by simp

lemma Predictp-bin-absorb:
Predictp k G (bin I k) = Predictp k G I
unfolding Predictp-def bin-def by simp

lemma Scanp-Un:
Scanp kw (I U J) = Scanp kw I U Scanp k w J
unfolding Scanp-def bin-def by blast

lemma Predictp-Un:
Predictp k G (I U J) = Predictp k G I U Predictp k G J
unfolding Predictp-def bin-def by blast

lemma Scanpg-sub-mono:
I CJ—=— Scanp kw I C Scanp k w J
unfolding Scang-def bin-def by blast
lemma Predict g-sub-mono:

1 C J = Predictr kG I C Predictpr kG J

25

unfolding Predictp-def bin-def by blast

lemma Completep-sub-mono:
I C J = Completer kI C Completer k J
unfolding Completer-def bin-def by blast

lemma FEarleyp-bin-step-sub-mono:

I C J = Earleyp-bin-step k G w I C Farleyp-bin-step k G w J

unfolding Earley g-bin-step-def using Scan g-sub-mono Predict g-sub-mono Com-
pletep-sub-mono by (metis sup.mono)

lemma funpower-sub-mono:

I C J = funpower (Earleyp-bin-step k G w) n I C funpower (Earleyp-bin-step
kEGuw)ndJ

by (induction n) (auto simp: Earleyp-bin-step-sub-mono)

lemma Farleypg-bin-sub-mono:
I C J = Earleyp-bin k G w I C Earleyp-bin k G w J
proof standard
fix z
assume [C Jz € Farleyp-bink G w I
then obtain n where = € funpower (Earleyp-bin-step k G w) n I
unfolding Farleyp-bin-def limit-def natUnion-def by blast
hence = € funpower (Earleyp-bin-step k G w) n J
using <I C J» funpower-sub-mono by blast
thus z € Farleyp-bin k G w J
unfolding FEarleyp-bin-def limit-def natUnion-def by blast
qed

lemma Scanp-Earleyg-bin-step-mono:
Scang k w I C Earleyp-bin-step k G w I
using Farleyp-bin-step-def by blast

lemma Predictp-FEarleyp-bin-step-mono:
Predictr k G I C FEarleyp-bin-step k G w I
using Farleyp-bin-step-def by blast

lemma Completer-Farleyp-bin-step-mono:
Completer k I C FEarleyp-bin-step k G w I
using Farleyp-bin-step-def by blast

lemma FEarleyp-bin-step-Earley g -bin-mono:
FEarleyp-bin-step k G w I C Farleyp-bin k G w I
proof —
have Earleyp-bin-step k G w I C funpower (Earleyp-bin-step k G w) 11
by simp
thus %thesis
by (metis Earleyp-bin-def limit-elem subset-eq)
qed

26

lemma Scanp-Earleyg-bin-mono:
Scang kw I C Earleyp-bink G w I
using Scanpg-FEarleyp-bin-step-mono Earleyg-bin-step-FEarleyp-bin-mono by force

lemma Predictp-FEarleyg-bin-mono:

Predictp k G I C Farleyp-bin k G w I

using Predictp-Farleyp-bin-step-mono Earleyp-bin-step-Farleyr-bin-mono by
force

lemma Completer-Farleyr-bin-mono:
Completer kI C Farleyp-bin k G w 1
using Completep-FEarleyp-bin-step-mono Earleyp-bin-step-Earley g -bin-mono by
force

lemma Farleyg-bin-mono:
I C Earleyp-bink G w I
using Farleyg-bin-step-Earleyp-bin-mono Farleyr-bin-step-def by blast

lemma Initp-sub-Earleyp-bins:
Initp G C Farleyp-bins n G w
apply (induction n)
apply auto
using Farleyp-bin-mono by blast+

7.3 Soundness

lemma Initg-sub-Earley:
Initp G C Farley G w
unfolding Initp-def init-item-def using Init by blast

lemma Scanp-sub-Earley:
assumes [C FEarley G w
shows Scanp k w I C FEarley G w
unfolding Scanpg-def inc-item-def bin-def using assms Scan
by (smt (verit, ccfv-SIG) item.exhaust-sel mem-Collect-eq subsetD subsetl)

lemma Predictp-sub-Farley:
assumes [C Earley G w
shows Predictyp k G I C FEarley G w
unfolding Predictp-def init-item-def bin-def using assms Predict
using item.exhaust-sel by blast

lemma Completer-sub-Farley:
assumes [C Farley G w
shows Completer kI C Earley G w
unfolding Completer-def inc-item-def bin-def using assms Complete
by (smt (verit, del-insts) item.ezhaust-sel mem-Collect-eq subset-eq)

27

lemma Farleyp-bin-step-sub-FEarley:

assumes [C FEarley G w

shows Earleyp-bin-step k G w I C FEarley G w

unfolding FEarleyp-bin-step-def using assms Complete p-sub-Earley Predictp-sub-Farley
Scanp-sub-Earley by (metis le-supl)

lemma FEarleyp-bin-sub-Farley:
assumes [C FEarley G w
shows Earleyp-bin k G w I C Farley G w
using assms Earleyp-bin-step-sub-Earley by (metis Earleyp-bin-def limit-upperbound)

lemma FEarleyp-bins-sub-Farley:
shows Earleyp-bins n G w C Farley G w
by (induction n) (auto simp: Earleyp-bin-sub-Earley Initp-sub-Earley)

lemma Farleyp-sub-FEarley:
shows Farleyr G w C Farley G w
by (simp add: Earleyp-bins-sub-Earley Earleyp-def)

theorem soundness-Farleyp:

assumes recognizing (Farleyr G w) G w

shows G I [6 §] =* w

using soundness-FEarley Earleyp-sub-Farley assms recognizing-def by (metis sub-
setD)

7.4 Completeness

lemma FEarleyp-bin-sub-Farleyp-bin:
assumes Initp G C [
assumes Yk’ < k. bin (Earley G w) k' C I
assumes base w (Earley G w) k C I
shows bin (Earley G w) k C bin (Earleyp-bink G w I) k
proof standard
fix z
assume *: ¢ € bin (Earley G w) k
hence z € Farley G w
using bin-def by blast
thus z € bin (Farleyp-bink Gw I) k
using assms *
proof (induction rule: Earley.induct)
case (Init r)
thus ?case
unfolding Initg-def init-item-def bin-def using Farleyr-bin-mono by fast
next
case (Scanzrbija)
have j+1 =k
using Scan.prems(4) bin-def by (metis (mono-tags, lifting) CollectD item.sel(4))
have prev-symbol (Item r (b+1) i (j+1)) = Some (w!(k—1))
using Scan.hyps(1,3,5) <j+1 = k> by (auto simp: next-symbol-def prev-symbol-def

28

rhs-item-def split: if-splits)
hence Item r (b+1) i (j+1) € base w (Earley G w) k
unfolding base-def using Scan.prems(4) bin-def by fastforce
hence Item r (b+1) i (j+1) e I
using Scan.prems(3) by blast
hence Item r (b+1) i (j+1) € Earleyp-bin k G w I
using Farleyg-bin-mono by blast

thus ?case
using <j+1 = k> bin-def by fastforce
next
case (Predict x v b i jr’)
have j = k&

using Predict.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
hence z € bin (Earley G w) k
using Predict.hyps(1,2) bin-def by fastforce
hence z € bin (Earleyp-bin k G w I) k
using Predict.IH Predict.prems(1—38) by blast
hence Item v’ 0 j j € Predictr k G (Earleyp-bin k G w I)
unfolding Predictp-def init-item-def using Predict.hyps(1,3,4) <j = k» by
blast
hence Item r' 0 j j € Earleyp-bin-step k G w (Earleyp-bin k G w I)
using Predict p-Farleyg-bin-step-mono by blast
hence Item r’' 0 j j € Earleyp-bin k G w I
using Farleyp-bin-idem Farleyp-bin-step-Earleyr-bin-mono by blast
thus ?case
by (simp add: <j = k> bin-def)

next
case (Complete £ 75 by 1§y ry by 1)
have [= k

using Complete.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
hence y € bin (Earley G w) 1
using Complete.hyps(3,4) bin-def by fastforce
hence 0: y € bin (Earleyp-bin k G w I) k
using Complete.IH(2) Complete.prems(1—3) <l = k» by blast
have 1: x € bin (Earleyp-bin k G w I) (start-item y)
proof (cases j = k)
case True
hence z € bin (Earley G w) k
using Complete.hyps(1,2) bin-def by fastforce
hence z € bin (Earleyp-bin k G w I) k
using Complete.IH(1) Complete.prems(1—3) by blast
thus ?thesis
using Complete.hyps(3) True by simp
next
case Fulse
hence j < k
using <l = ky wf-Earley wf-item-def Complete.hyps(3,4) by force

29

moreover have z € bin (Earley G w) j
using Complete.hyps(1,2) bin-def by force
ultimately have z € I
using Complete.prems(2) by blast
hence z € bin (Earleyp-bin k G w I) j
using Complete.hyps(1) Earleyp-bin-mono bin-def by fastforce
thus ?thesis
using Complete.hyps(3) by simp
qed
have Item r, (b, + 1) i k € Completer k (Earleyp-bin k G w I)
unfolding Completer-def inc-item-def using 0 1 Complete.hyps(1,5,6) by
force
hence Item 5 (by + 1) i k € Earleyp-bin-step k G w (Earleyp-bin k G w I)
unfolding FEarleyp-bin-step-def by blast
hence Item r, (by + 1) i k € Earleyp-bink G w I
using Farleyp-bin-idem Farleyr-bin-step-FEarleyp-bin-mono by blast
thus ?case
using bin-def <l = k» by fastforce
qed
qed

lemma Farley-base-sub-Farleyp-bin:
assumes Initp G C [
assumes V&' < k. bin (Earley G w) k' C T
assumes base w (Farley G w) k C T
assumes is-word G w
shows base w (Farley G w) (k+1) C bin (Earleyp-bin k G w I) (k+1)
proof standard
fix z
assume *: ¢ € base w (Farley G w) (k+1)
hence z € Earley G w
using base-def by blast
thus z € bin (Earleyp-bin k G w I) (k+1)
using assms *
proof (induction rule: Farley.induct)
case (Init r)
have k = 0
using Init.prems(5) unfolding base-def by simp
hence Fulse
using Init.prems(5) unfolding base-def by simp
thus ?case
by blast
next
case (Scan zrb ija)
have j = k&
using Scan.prems(5) base-def by (metis (mono-tags, lifting) CollectD add-right-cancel
item.sel(4))
hence z € bin (Earleyp-bink G w I) k
using Farleyp-bin-sub-Earleyp-bin Scan.prems Scan.hyps(1,2) bin-def

30

by (metis (mono-tags, lifting) Collect] item.sel(4) subsetD)
hence Item r (b+1) i (j+1) € Scanp k w (Earleyp-bin k G w I)
unfolding Scanp-def inc-item-def using Scan.hyps <j = k> by force
hence Item r (b+1) i (j+1) € Earleyp-bin-step k G w (Earleyp-bin k G w I)
using Scang-Farleyp-bin-step-mono by blast
hence Item r (b+1) i (j+1) € Earleyp-bin k G w I
using Farleyp-bin-idem Farleyp-bin-step-Earleypr-bin-mono by blast
thus ?case
using <j = k> bin-def by fastforce
next
case (Predict x v b i jr’)
have Fulse
using Predict.prems(5) unfolding base-def by (auto simp: prev-symbol-def)
thus ?case
by blast
next
case (Complete x5 by 1§y ry by 1)
have [—1 < length w
using Complete.prems(5) base-def wf-Earley wf-item-def
by (metis (mono-tags, lifting) CollectD add.right-neutral add-Suc-right add-diff-cancel-right’
item.sel(4) less-eq-Suc-le plus-1-eq-Suc)
hence w!(I—1) ¢ nonterminals G
using Complete.prems(4) is-word-def by force
moreover have [hs-item y € nonterminals G
using Complete.hyps(3,4) wf-FEarley wf-item-def lhs-item-def lhs-rule-def non-
terminals-def
by (metis UnCI image-eql list.set-map)
moreover have prev-symbol (Item r, (by+1) i l) = next-symbol x
using Complete.hyps(1,6)
by (auto simp: next-symbol-def prev-symbol-def is-complete-def rhs-item-def
split: if-splits)
moreover have prev-symbol (Item 1, (by+1) i 1) = Some (w!(l1—1))
using Complete.prems(5) base-def by (metis (mono-tags, lifting) CollectD
item.sel(4))
ultimately have Fulse
using Complete.hyps(6) Complete.prems(4) by simp
thus Zcase
by blast
qed
qed

lemma FEarleyg-bin-k-sub-FEarleyp-bins:
assumes is-word G w k < n
shows bin (Earley G w) k C Earleyp-bins n G w
using assms
proof (induction n arbitrary: k)
case ()
have bin (Earley G w) 0 C bin (Earleyp-bin 0 G w (Inity G)) 0
using Farleyp-bin-sub-Earleyp-bin base-def by fastforce

31

thus ?case
unfolding bin-def using 0.prems(2) by auto
next
case (Suc n)
show ?Zcase
proof (cases k < n)
case True
thus ?thesis
using Suc Farleyp-bin-mono by force
next
case Fulse
hence k = n+1
using Suc.prems(2) by force
have 0: Vk' < k. bin (Earley G w) k' C Earleyp-bins n G w
using Suc by simp
moreover have base w (Earley G w) k C Earleyp-bins n G w
proof —
have VEk' < k—1. bin (Earley G w) k' C Farleyp-bins n G w
using Suc <k = n + 1> by auto
moreover have base w (Farley G w) (k—1) C Earleyp-bins n G w
using 0 bin-def base-def Fulse <k = n+1>»
by (smt (verit) Suc-eg-plusl diff-Suc-1 linorder-not-less mem-Collect-eq
subsetD subsetl)
ultimately have base w (Earley G w) k C bin (Earleyp-bin n G w (Earleyp-bins
nGw))k
using Suc.prems(1,2) Earley-base-sub-Earleyp-bin <k = n + 1> Initp-sub-Earleyp-bins
by (metis add-diff-cancel-right”)
hence base w (Earley G w) k C bin (Farleyp-bins n G w) k
by (metis Earleyp-bins.elims Earleyp-bin-idem)
thus ?thesis
using bin-def by blast
qed
ultimately have bin (Earley G w) k C bin (Earleyp-bin k G w (Earleyp-bins
nGw))k
using Farleyp-bin-sub-Farleyp-bin Initp-sub-Farleyg-bins by metis
thus ?thesis
using Farleyp-bins.simps(2) <k = n + 1) bin-def by auto
qed
qed

lemma FEarley-sub-Farleyp:
assumes is-word G w
shows FEarley G w C FEarleyr G w
proof —
have V& < length w. bin (Earley G w) k C Earleyr G w
by (simp add: Earleyp-bin-k-sub-Earleyp-bins Earleyp-def assms)
thus %thesis
using wf-FEarley wf-item-def bin-def by blast
qed

32

theorem completeness-Farleyp:

assumes G F [6] =* w is-word G w

shows recognizing (Earleyr G w) G w

using assms Farley-sub-Earleyr FEarleyp-sub-Earley completeness-Earley by
(metis subset-antisym)

7.5 Correctness

theorem Farley-eq-Earleyp:
assumes is-word G w
shows Earley G w = Earleyr G w
using Farley-sub-Earleyr FEarleyp-sub-Farley assms by blast

theorem correctness-Earleyp:
assumes is-word G w
shows recognizing (Farleyr G w) G w +— G+ [6 G] =* w
using assms FEarley-eq-Earleyr correctness-Earley by fastforce

end
theory Farley-Recognizer
imports
FEarley-Fizpoint
begin

8 Earley recognizer

8.1 List auxilaries

fun filter-with-indez’ :: nat = (‘a = bool) = 'a list = (‘a X nat) list where
filter-with-index’ - - || = |]
| filter-with-index’ i P (z#txs) = (
if P x then (z,i) # filter-with-index’ (i+1) P xs
else filter-with-index’ (i+1) P xs)

definition filter-with-indez :: (‘a = bool) = 'a list = ('a x nat) list where
filter-with-index P zs = filter-with-index’ 0 P xs

lemma filter-with-index’-P:
(z, n) € set (filter-with-index’ i P xs) = P x
by (induction xs arbitrary: ©) (auto split: if-splits)

lemma filter-with-index-P:
(z, n) € set (filter-with-index P xs) = Pz
by (metis filter-with-index’-P filter-with-index-def)

lemma filter-with-index’-cong-filter:

map fst (filter-with-indexz’ i P xs) = filter P xs
by (induction zs arbitrary: i) auto

33

lemma filter-with-index-cong-filter:
map fst (filter-with-index P xs) = filter P xs
by (simp add: filter-with-index'-cong-filter filter-with-index-def)

lemma size-indez-filter-with-index:
(z, n) € set (filter-with-index’ i P xs) = n > i
by (induction zs arbitrary: i) (auto simp: Suc-leD split: if-splits)

lemma indez-filter-with-index’-lt-length:

(z, n) € set (filter-with-index’ i P xs) = n—i < length s

by (induction zs arbitrary: i)(auto simp: less-Suc-eq-0-disj split: if-splits; metis
Suc-diff-Suc lel)+

lemma index-filter-with-index-lt-length:
(z, n) € set (filter-with-index P xs) => n < length xs
by (metis filter-with-indez-def index-filter-with-index'-lt-length minus-nat.diff-0)

lemma filter-with-index’-nth:
(z, n) € set (filter-with-index’ i P 2s) = xzs ! (n—i) =«
proof (induction zs arbitrary: i)
case (Cons y xs)
show Zcase
proof (cases z = y)
case True
thus %thesis
using Cons by (auto simp: nth-Cons’ split: if-splits)
next
case Fulse
hence (z, n) € set (filter-with-index’ (i+1) P xs)
using Cons.prems by (cases xs) (auto split: if-splits)
hence n > i+ 1zs!(n—i—1)==x
by (auto simp: size-indez-filter-with-indez’ Cons.IH)
thus ?thesis
by simp
qed
qed simp

lemma filter-with-index-nth:
(z, n) € set (filter-with-index P xs) = zs ! n =z
by (metis diff-zero filter-with-index’-nth filter-with-index-def)

lemma filter-with-indez-nonempty:
z € set s => P x = filter-with-index P xs # [|
by (metis filter-empty-conv filter-with-index-cong-filter list.map(1))

lemma filter-with-index’- Exz-first:

(Fz i xs'. filter-with-index’ n P xs = (z, ©)#xs’) +— (3z € set zs. P x)
by (induction xs arbitrary: n) auto

34

lemma filter-with-index- Ez-first:
(3z i xs’. filter-with-index P zs = (z,)#xs’) «— (3z € set xs. P x)
using filter-with-index'-Ex-first filter-with-index-def by metis

8.2 Definitions

datatype pointer =
Null
| Pre nat — pre
| PreRed nat x nat x nat (nat X nat x nat) list — k’, pre, red

type-synonym ’‘a bin = ('a item X pointer) list
type-synonym ’a bins = ’a bin list

definition items :: ‘a bin = 'a item list where
items b = map fst b

definition pointers :: 'a bin = pointer list where
pointers b = map snd b

definition bins-eq-items :: 'a bins = 'a bins = bool where
bins-eq-items bs0 bsl = map items bsO = map items bsl

definition bins :: ‘a bins = 'a item set where
bins bs = |J { set (items (bslk)) | k. k < length bs }

definition bin-upto :: 'a bin = nat = 'a item set where
bin-upto b i = { items b ! j | j. j < i A j < length (items b) }

definition bins-upto :: ‘a bins = nat = nat = ’'a item set where
bins-upto bs ki =J { set (items (bs! 1)) | I. I <k } U bin-upto (bs ! k) 4

definition wf-bin-items :: 'a cfg = 'a list = nat = 'a item list = bool where
wf-bin-items G w k xs =V € set zs. wf-item G w x A end-item x = k

definition wf-bin :: ‘a cfg = 'a list = nat = 'a bin = bool where
wf-bin G w k b = distinct (items b) A wf-bin-items G w k (items b)

definition wf-bins :: ‘a c¢fg = 'a list = 'a bins = bool where
wf-bins G w bs = Vk < length bs. wf-bin G w k (bslk)

definition e-free :: ‘a c¢fg = bool where
e-free G = (Vr € set (R G). rhs-rule r # [])

definition nonempty-derives :: 'a c¢fg = bool where
nonempty-derives G =Vs. = G F [s] =* ||

definition Inity :: ‘a c¢fg = 'a list = 'a bins where

35

Init;, G w =
let rs = filter (Ar. lhs-rule r = & G) (remdups (R G)) in
let b0 = map (Ar. (init-item r 0, Null)) rs in
let bs = replicate (length w + 1) ([]) in
bs[0 = b0)]

definition Scany, :: nat = 'a list = 'a = 'a item = nat = ('a item x pointer)
list where
Scany, k w a x pre =
if wlk = a then
let ' = inc-item z (k+1) in
[(x’, Pre pre)]
else ||

definition Predicty, :: nat = 'a ¢fg = 'a = ('a item x pointer) list where
Predict;, kG X =
let rs = filter (Ar. lhs-rule r = X) (R G) in
map (Ar. (init-item r k, Null)) rs

definition Completer, :: nat = 'a item = 'a bins = nat = ('a item X pointer)
list where
Completer, k y bs red =
let orig = bs ! (start-item y) in
let is = filter-with-index (Az. next-symbol x = Some (lhs-item y)) (items orig)
in
map (A(z, pre). (inc-item z k, PreRed (start-item y, pre, red) [])) is

fun upd-bin :: 'a item X pointer = ’a bin = ’a bin where
upd-bin e’ [| = [€]
| upd-bin e’ (e#tes) = (
case (e, e) of
((z, PreRed px xs), (y, PreRed py ys)) =
if © = y then (x, PreRed py (pr#xsQys)) # es
else e # upd-bin e’ es
| - =
if fst e/ = fst e then e # es
else e # upd-bin e’ es)

fun upds-bin :: ('a item X pointer) list = 'a bin = 'a bin where
upds-bin [| b =5
| upds-bin (eftes) b = upds-bin es (upd-bin e b)

definition upd-bins :: 'a bins = nat = ('a item x pointer) list = 'a bins where
upd-bins bs k es = bs[k := upds-bin es (bs!k)]

partial-function (tailrec) Earleyr-bin':: nat = 'a cfg = 'a list = 'a bins = nat
= 'a bins where
Earleyr-bin’ k G w bs i = (
if © > length (items (bs | k)) then bs

36

else
let x = items (bslk) ! i in
let bs' =
case next-symbol x of
Some a = (
if a ¢ nonterminals G then
if k < length w then upd-bins bs (k+1) (Scany k w a x 7)
else bs
else upd-bins bs k (Predicty, k G a))
| None = upd-bins bs k (Completey, k x bs i)
in Earleyr-bin’ k G w bs’ (i+1))

declare Earley -bin'.simps|code]

definition Earley-bin :: nat = 'a c¢fg = ’'a list = 'a bins = ’a bins where
Earleyy-bin k G w bs = FEarleyr-bin’ k G w bs 0

fun Earleyr-bins :: nat = 'a c¢fg = 'a list = 'a bins where
Earleyy,-bins 0 G w = Earleyr,-bin 0 G w (Init;, G w)
| Earleyr,-bins (Suc n) G w = Earleyr,-bin (Suc n) G w (Earleyr,-bins n G w)

definition Earleyy, :: 'a ¢fg = 'a list = 'a bins where
Earleyr, G w = Earleyy,-bins (length w) G w

definition recognizer :: 'a cfg = 'a list = bool where
recognizer G w = (Jx € set (items (Earleyr, G w ! length w)). is-finished G w x)

8.3 Epsilon productions

lemma e-free-impl-non-empty-word-deriv:
e-free G = a # [| = — Derivation G a D |]
proof (induction length D arbitrary: a D rule: nat-less-induct)
case I
show ?Zcase
proof (rule ccontr)
assume assm: = — Derivation G a D []
show Fulse
proof (cases D = [])
case True
then show ?thesis
using 1.prems(2) assm by auto
next
case Fulse
then obtain d D’ o where x:
D = d # D’ Derivesl G a (fst d) (snd d) a Derivation G a D' [| snd d €
set (R G)
using list.exhaust assm Derives-def by (metis Derivation.simps(2))
show ?thesis
proof cases

37

assume o = [|
thus ?thesis
using (2,4) DerivesI-split e-free-def rhs-rule-def 1.prems(1) by (metis
append-is-Nil-conv)
next
assume - a = ||
thus ?thesis
using *(1,8) 1.hyps 1.prems(1) by auto
qed
qed
qed
qed

lemma e-free-impl-nonempty-derives:

e-free G = nonempty-derives G

using e-free-impl-non-empty-word-deriv derives-implies- Derivation nonempty-derives-def
by (metis not-Cons-self2)

lemma nonempty-derives-impl-c-free:
assumes nonempty-derives G
shows e-free G
proof (rule ccontr)
assume - e-free G
then obtain N « where x: (N, a) € set (R G) rhs-rule (N, a) =[]
unfolding e-free-def by auto
hence G F [N] =[]
unfolding derivesI-def rhs-rule-def by auto
hence G - [N] =*]
by auto
thus Fulse
using assms(1) nonempty-derives-def by fast
qed

lemma nonempty-derives-iff-c-free:
shows nonempty-derives G «— e-free G
using e-free-impl-nonempty-derives nonempty-derives-impl-e-free by blast

8.4 Bin lemmas

lemma length-upd-bins[simp]:
length (upd-bins bs k es) = length bs
unfolding upd-bins-def by simp

lemma length-upd-bin:
length (upd-bin e b) > length b
by (induction e b rule: upd-bin.induct) (auto split: pointer.splits)

lemma length-upds-bin:
length (upds-bin es b) > length b

38

by (induction es arbitrary: b) (auto, meson le-trans length-upd-bin)

lemma length-nth-upd-bin-bins:

length (upd-bins bs k es ! n) > length (bs ! n)

unfolding upd-bins-def using length-upds-bin

by (metis linorder-not-le list-update-beyond nth-list-update-eq nth-list-update-neq
order-refl)

lemma nth-idem-upd-bins:
k# n = upd-bins bskes!n="bs!n
unfolding upd-bins-def by simp

lemma items-nth-idem-upd-bin:

n < length b = items (upd-bin e b) | n = items b! n

by (induction b arbitrary: e n) (auto simp: items-def less-Suc-eq-0-disj split!:
pointer.split)

lemma items-nth-idem-upds-bin:
n < length b = items (upds-bin es b) | n = items b ! n
by (induction es arbitrary: b)
(auto, metis items-nth-idem-upd-bin length-upd-bin order.strict-trans2)

lemma items-nth-idem-upd-bins:
n < length (bs | k) = items (upd-bins bs k es ! k) ! n = items (bs ! k) ! n
unfolding upd-bins-def using items-nth-idem-upds-bin
by (metis linorder-not-less list-update-beyond nth-list-update-eq)

lemma bin-upto-eq-set-items:

i > length b = bin-upto b i = set (items b)

by (auto simp: bin-upto-def items-def, metis fst-conv in-set-conv-nth nth-map
order.strict-trans2)

lemma bins-upto-empty:
bins-upto bs 0 0 = {}
unfolding bins-upto-def bin-upto-def by simp

lemma set-items-upd-bin:
set (items (upd-bin e b)) = set (items b) U {fst e}
proof (induction b arbitrary: e)
case (Cons b bs)
show ?Zcase
proof (cases Iz xp zs y yp ys. e = (x, PreRed xp xs) A b = (y, PreRed yp ys))
case True
then obtain z zp xs y yp ys where e = (x, PreRed zp xs) b = (y, PreRed yp
ys)
by blast
thus ?thesis
using Cons.IH by (auto simp: items-def)
next

39

case Fulse
then show %thesis
proof cases
assume x: fst e = fst b
hence upd-bin e (b # bs) = b # bs
using False by (auto split: pointer.splits prod.split)
thus ?thesis
using * by (auto simp: items-def)
next
assume *: — fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs
using False by (auto split: pointer.splits prod.split)
thus “thesis
using * Cons.IH by (auto simp: items-def)
qed
qged
qed (auto simp: items-def)

lemma set-items-upds-bin:
set (items (upds-bin es b)) = set (items b) U set (items es)
apply (induction es arbitrary: b)
apply (auto simp: items-def)
by (metis Domain. DomainI Domain-fst Un-insert-right fst-conv insert-iff items-def
list.set-map set-items-upd-bin sup-bot.right-neutral)+

lemma bins-upd-bins:
assumes k < length bs
shows bins (upd-bins bs k es) = bins bs U set (items es)
proof —
let ?bs = upd-bins bs k es
have bins (upd-bins bs k es) = |J {set (items (?bs | k)) |k. k < length ?bs}
unfolding bins-def by blast

also have ... = |J {set (items (bs ! 1)) |I. I < length bs A | # k} U set (items
(2bs | k)
unfolding upd-bins-def using assms by (auto, metis nth-list-update)
also have ... = |J {set (items (bs ! 1)) |I. I < length bs A 1 # k} U set (items

(bs 1 k)) U set (items es)
using set-items-upds-bin[of es bslk] by (simp add: assms upd-bins-def sup-assoc)
!

also have ... = |J {set (items (bs ! k)) |k. k < length bs} U set (items es)
using assms by blast
also have ... = bins bs U set (items es)

unfolding bins-def by blast
finally show ?thesis .
qed

lemma kth-bin-sub-bins:

k < length bs = set (items (bs ! k)) C bins bs
unfolding bins-def bins-upto-def bin-upto-def by blast+

40

lemma bin-upto-Cons-0:

bin-upto (e#es) 0 = {}
by (auto simp: bin-upto-def)

lemma bin-upto-Cons:
assumes 0 < n
shows bin-upto (e#es) n = { fst e } U bin-upto es (n—1)

proof —
have bin-upto (eftes) n = { items (e#es) ! j | j. j < n A j < length (items
(ctes)) }
unfolding bin-upto-def by blast
also have ... = { fste } U { items es!j|j. j < (n—1) A j < length (items es) }

using assms by (cases n) (auto simp: items-def nth-Cons’, metis One-nat-def
Zero-not-Suc diff-Suc-1 not-less-eq nth-map)
also have ... = { fst e } U bin-upto es (n—1)
unfolding bin-upto-def by blast
finally show ?thesis .
qed

lemma bin-upto-nth-idem-upd-bin:
n < length b = bin-upto (upd-bin e b) n = bin-upto b n
proof (induction b arbitrary: e n)
case (Cons b bs)
show ?Zcase
proof (cases Iz xp zs y yp ys. e = (x, PreRed xp zs) A b = (y, PreRed yp ys))
case True
then obtain z zp zs y yp ys where e¢ = (x, PreRed zp xs) b = (y, PreRed yp
ys)
by blast
thus ?thesis
using Cons bin-upto-Cons-0
by (cases n) (auto simp: items-def bin-upto-Cons, blast+)
next
case Fulse
then show ?thesis
proof cases
assume x: fst e = fst b
hence upd-bin e (b # bs) = b # bs
using False by (auto split: pointer.splits prod.split)
thus ?thesis
using * by (auto simp: items-def)
next
assume *: - fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs
using False by (auto split: pointer.splits prod.split)
thus ?thesis
using * Cons
by (cases n) (auto simp: items-def bin-upto-Cons-0 bin-upto-Cons)
qed

41

qed
qed (auto simp: items-def)

lemma bin-upto-nth-idem-upds-bin:
n < length b = bin-upto (upds-bin es b) n = bin-upto b n
using bin-upto-nth-idem-upd-bin length-upd-bin
apply (induction es arbitrary: b)
apply auto
using order.strict-trans2 order.strict-transl by blast+

lemma bins-upto-kth-nth-idem:

assumes | < length bs k < I n < length (bs ! k)

shows bins-upto (upd-bins bs [es) k n = bins-upto bs k n
proof —

let ?bs = upd-bins bs [es

have bins-upto ?bs kn = J {set (items (?bs ! 1)) |I. | < k} U bin-upto (?bs ! k)
n

unfolding bins-upto-def by blast

also have ... = |J {set (items (bs ! 1)) |I. I < k} U bin-upto (%bs ! k) n
unfolding upd-bins-def using assms(1,2) by auto
also have ... = |J {set (items (bs ! 1)) |I. I < k} U bin-upto (bs! k) n

unfolding upd-bins-def using assms(1,3) bin-upto-nth-idem-upds-bin
by (metis (no-types, lifting) nth-list-update)
also have ... = bins-upto bs k n
unfolding bins-upto-def by blast
finally show ?thesis .
qged

lemma bins-upto-sub-bins:
k < length bs = bins-upto bs k n C bins bs
unfolding bins-def bins-upto-def bin-upto-def using less-trans by (auto, blast)

lemma bins-upto-Suc-Un:

n < length (bs | k) = bins-upto bs k (n+1) = bins-upto bs k n U { items (bs !
Ey!'n}

unfolding bins-upto-def bin-upto-def using less-Suc-eq by (auto simp: items-def,
metis nth-map)

lemma bins-bin-exists:
z € bins bs = Ik < length bs. x € set (items (bs ! k))
unfolding bins-def by blast

lemma distinct-upd-bin:
distinct (items b) = distinct (items (upd-bin e b))
proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases 3z xp xs y yp ys. e = (x, PreRed zp zs) N b = (y, PreRed yp ys))
case True

42

then obtain z zp zs y yp ys where e¢ = (x, PreRed zp xs) b = (y, PreRed yp
ys)
by blast
thus ?thesis
using Cons
apply (auto simp: items-def split: prod.split)
by (metis Domain.Domainl Domain-fst UnE empty-iff fst-conv insert-iff
items-def list.set-map set-items-upd-bin)
next
case Fulse
then show ?thesis
proof cases
assume *: fst e = fst b
hence upd-bin e (b # bs) = b # bs
using Fualse by (auto split: pointer.splits prod.split)
thus ?thesis
using * Cons.prems by (auto simp: items-def)
next
assume *: — fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs
using False by (auto split: pointer.splits prod.split)
moreover have distinct (items (upd-bin e bs))
using Cons by (auto simp: items-def)
ultimately show ?thesis
using x Cons.prems set-items-upd-bin
by (metis Un-insert-right distinct.simps(2) insertE items-def list.simps(9)
sup-bot-right)
qed
qed
qed (auto simp: items-def)

lemma distinct-upds-bin:
distinct (items b) = distinct (items (upds-bin es b))
by (induction es arbitrary: b) (auto simp add: distinct-upd-bin)

lemma wf-bins-kth-bin:

wf-bins G w bs = k < length bs = z € set (items (bs | k)) = wf-item G w x
A end-item x = k

using wf-bin-def wf-bins-def wf-bin-items-def by blast

lemma wf-bin-upd-bin:
assumes wf-bin G w k b wf-item G w (fst €) A end-item (fst e) = k
shows wf-bin G w k (upd-bin e b)
using assms
proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases 3z xp xs y yp ys. e = (x, PreRed zp zs) N b = (y, PreRed yp ys))
case True

43

then obtain z zp zs y yp ys where e¢ = (x, PreRed zp xs) b = (y, PreRed yp
ys)
by blast
thus ?thesis
using Cons distinct-upd-bin wf-bin-def wf-bin-items-def set-items-upd-bin
by (smt (verit, best) Un-insert-right insertE sup-bot.right-neutral)
next
case Fulse
then show ?thesis
proof cases
assume *: fst e = fst b
hence upd-bin e (b # bs) = b # bs
using False by (auto split: pointer.splits prod.split)
thus ?thesis
using * Cons.prems by (auto simp: items-def)
next
assume *: - fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs
using False by (auto split: pointer.splits prod.split)
thus ?thesis
using x Cons.prems set-items-upd-bin distinct-upd-bin wf-bin-def wf-bin-items-def
by (smt (verit, best) Un-insert-right insertE sup-bot-right)
qed
qed
qed (auto simp: items-def wf-bin-def wf-bin-items-def)

lemma wf-upd-bins-bin:
assumes wf-bin G w k b
assumes Yz € set (items es). wf-item G w x A end-item z = k
shows wf-bin G w k (upds-bin es b)
using assms by (induction es arbitrary: b) (auto simp: wf-bin-upd-bin items-def)

lemma wf-bins-upd-bins:
assumes wf-bins G w bs
assumes Yz € set (items es). wf-item G w x A end-item © = k
shows wf-bins G w (upd-bins bs k es)
unfolding upd-bins-def using assms wf-upd-bins-bin wf-bins-def
by (metis length-list-update nth-list-update-eq nth-list-update-neq)

lemma wf-bins-impl-wf-items:
wf-bins G w bs => Yz € (bins bs). wf-item G w x
unfolding wf-bins-def wf-bin-def wf-bin-items-def bins-def by auto

lemma upds-bin-eq-items:
set (items es) C set (items b) = set (items (upds-bin es b)) = set (items b)
apply (induction es arbitrary: b)
apply (auto simp: set-items-upd-bin set-items-upds-bin)
apply (simp add: items-def)
by (metis Un-upper2 upds-bin.simps(2) in-mono set-items-upds-bin sup.orderE)

44

lemma bin-eq-items-upd-bin:
fst e € set (items b) = items (upd-bin e b) = items b
proof (induction b arbitrary: e)
case (Cons b bs)
show ?Zcase
proof (cases 3z zp zs y yp ys. e = (z, PreRed zp xs) N b = (y, PreRed yp ys))
case True
then obtain = ap zs y yp ys where e = (x, PreRed zp xs) b = (y, PreRed yp
ys)
by blast
thus ?thesis
using Cons by (auto simp: items-def, metis fst-conv image-eql)
next
case False
then show ?thesis
proof cases
assume x: fst e = fst b
hence upd-bin e (b # bs) = b # bs
using Fualse by (auto split: pointer.splits prod.split)
thus ?thesis
using * Cons.prems by (auto simp: items-def)
next
assume *: — fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs
using Fulse by (auto split: pointer.splits prod.split)
thus ?thesis
using * Cons by (auto simp: items-def)
qed
qed
qed (auto simp: items-def)

lemma bin-eq-items-upds-bin:
assumes set (items es) C set (items b)
shows items (upds-bin es b) = items b
using assms
proof (induction es arbitrary: b)
case (Cons e es)
have items (upds-bin es (upd-bin e b)) = items (upd-bin e b)
using Cons upds-bin-eq-items set-items-upd-bin set-items-upds-bin
by (metis Un-upper2 upds-bin.simps(2) sup.coboundedll)
moreover have items (upd-bin e b) = items b
by (metis Cons.prems bin-eg-items-upd-bin items-def list.set-intros(1) list.simps(9)
subset-code(1))
ultimately show ?case
by simp
qed (auto simp: items-def)

lemma bins-eq-items-upd-bins:

45

assumes set (items es) C set (items (bslk))

shows bins-eg-items (upd-bins bs k es) bs

unfolding upd-bins-def using assms bin-eq-items-upds-bin bins-eq-items-def
by (metis list-update-id map-update)

lemma bins-eq-items-imp-eq-bins:
bins-eq-items bs bs’ = bins bs = bins bs’
unfolding bins-eq-items-def bins-def items-def
by (metis (no-types, lifting) length-map nth-map)

lemma bin-eq-items-dist-upd-bin-bin:
assumes items a = items b
shows items (upd-bin e a) = items (upd-bin e b)
using assms
proof (induction a arbitrary: e b)
case (Cons a as)
obtain b’ bs where bs: b = b’ # bs fst a = fst b’ items as = items bs
using Cons.prems by (auto simp: items-def)
show ?Zcase
proof (cases Iz xp zs y yp ys. e = (x, PreRed zp xs) N a = (y, PreRed yp ys))
case True
then obtain z zp zs y yp ys where #: e = (z, PreRed xp zs) a = (y, PreRed
yp ys)
by blast
show ?thesis
proof cases
assume *: T = y
hence items (upd-bin e (a # as)) = z # items as
using # by (auto simp: items-def)
moreover have items (upd-bin e (b’ # bs)) = = # items bs
using bs # * by (auto simp: items-def split: pointer.splits prod.splits)
ultimately show ?thesis
using bs by simp
next
assume *: ° T = ¥
hence items (upd-bin e (a # as)) = y # items (upd-bin e as)
using # by (auto simp: items-def)
moreover have items (upd-bin e (b’ # bs)) = y # items (upd-bin e bs)
using bs # * by (auto simp: items-def split: pointer.splits prod.splits)
ultimately show ?thesis
using bs Cons.IH by simp
qed
next
case Fulse
then show ?thesis
proof cases
assume *: fst e = fst a
hence items (upd-bin e (a # as)) = fst a # items as
using False by (auto simp: items-def split: pointer.splits prod.splits)

46

moreover have items (upd-bin e (b’ # bs)) = fst b’ # items bs
using bs Fualse * by (auto simp: items-def split: pointer.splits prod.splits)
ultimately show ?thesis
using bs by simp
next
assume x: — fst e = fst a
hence items (upd-bin e (a # as)) = fst a # items (upd-bin e as)
using False by (auto simp: items-def split: pointer.splits prod.splits)
moreover have items (upd-bin e (b’ # bs)) = fst b’ # items (upd-bin e bs)
using bs False x by (auto simp: items-def split: pointer.splits prod.splits)
ultimately show ?Zthesis
using bs Cons by simp
qed
qed
qed (auto simp: items-def)

lemma bin-eq-items-dist-upds-bin-bin:
assumes items a = items b
shows items (upds-bin es a) = items (upds-bin es b)
using assms
proof (induction es arbitrary: a b)
case (Cons e es)
hence items (upds-bin es (upd-bin e a)) = items (upds-bin es (upd-bin e b))
using bin-eg-items-dist-upd-bin-bin by blast
thus Zcase
by simp
qed simp

lemma bin-eq-items-dist-upd-bin-entry:
assumes fst e = fst e’
shows items (upd-bin e b) = items (upd-bin e’ b)
using assms
proof (induction b arbitrary: e e’)
case (Cons a as)
show ?Zcase
proof (cases Iz xp zs y yp ys. e = (x, PreRed zp xs) N a = (y, PreRed yp ys))
case True
then obtain z zp zs y yp ys where #: e = (z, PreRed xp zs) a = (y, PreRed
yp ys)
by blast
show ?thesis
proof cases
assume *: T = y
thus ?thesis
using # Cons.prems by (auto simp: items-def split: pointer.splits prod.splits)
next
assume *: ° T = ¥
thus ?thesis
using # Cons.prems

47

by (auto simp: items-def split!: pointer.splits prod.splits, metis Cons.IH
Cons.prems items-def)+
qed
next
case Fulse
then show ?thesis
proof cases
assume *: fst e = fst a
thus “thesis
using Cons.prems by (auto simp: items-def split: pointer.splits prod.splits)
next
assume *: - fst e = fst a
thus “thesis
using Cons.prems
by (auto simp: items-def split!: pointer.splits prod.splits, metis Cons.IH
Cons.prems items-def)+
qed
qed
qed (auto simp: items-def)

lemma bin-eq-items-dist-upds-bin-entries:
assumes items es = items es’
shows items (upds-bin es b) = items (upds-bin es’ b)
using assms
proof (induction es arbitrary: es’ b)
case (Cons e es)
then obtain e’ es”’ where fst ¢ = fst e’ items es = items es'' es’ = e’ # es'’
by (auto simp: items-def)
hence items (upds-bin es (upd-bin e b)) = items (upds-bin es’’ (upd-bin e’ b))
using Cons.IH
by (metis bin-eq-items-dist-upd-bin-entry bin-eq-items-dist-upds-bin-bin)
thus ?case
by (simp add: <es’ = e’ # es')
qed (auto simp: items-def)

lemma bins-eq-items-dist-upd-bins:
assumes bins-eq-items as bs items aes = items bes k < length as
shows bins-eg-items (upd-bins as k aes) (upd-bins bs k bes)
proof —
have k < length bs
using assms(1,3) bins-eg-items-def map-eq-imp-length-eq by metis
hence items (upds-bin (aslk) aes) = items (upds-bin (bs'k) bes)
using bin-eq-items-dist-upds-bin-entries bin-eq-items-dist-upds-bin-bin bins-eq-items-def
assms
by (metis (no-types, lifting) nth-map)
thus ?thesis
using <k < length bs» assms bin-eq-items-dist-upds-bin-bin bin-eq-items-dist-upds-bin-entries
bins-eq-items-def upd-bins-def by (smt (verit) map-update nth-map)
qed

48

8.5 Well-formed bins

lemma wf-bins-Scany”:
assumes wf-bins G w bs k < length bs x € set (items (bs ! k))
assumes k < length w next-symbol x # None y = inc-item z (k+1)
shows wf-item G w y A end-item y = k+1
using assms wf-bins-kth-bin[OF assms(1—3)]
unfolding wf-item-def inc-item-def next-symbol-def is-complete-def rhs-item-def
by (auto split: if-splits)

lemma wf-bins-Scany,:

assumes wf-bins G w bs k < length bs © € set (items (bs ! k)) k < length w
next-symbol x # None

shows Vy € set (items (Scany, k w a x pre)). wf-item G w y A end-item y =
(k+1)

using wf-bins-Scany,'[OF assms] by (simp add: Scany,-def items-def)

lemma wf-bins-Predicty,:

assumes wf-bins G w bs k < length bs k < length w

shows Vy € set (items (Predicty, k G X)). wf-item G w y A end-item y = k

using assms by (auto simp: Predicty,-def wf-item-def wf-bins-def wf-bin-def init-item-def
items-def)

lemma wf-item-inc-item:
assumes wf-item G w = next-symbol x = Some a start-item x < k k < length w
shows wf-item G w (inc-item x k) A end-item (inc-item x k) = k
using assms by (auto simp: wf-item-def inc-item-def rhs-item-def next-symbol-def
is-complete-def split: if-splits)

lemma wf-bins-Completey,:
assumes wf-bins G w bs k < length bs y € set (items (bs ! k))
shows Vz € set (items (Completer, k y bs red)). wf-item G w x A end-item © =
k
proof —
let Yorig = bs! (start-item y)
let %is = filter-with-index (\z. next-symbol z = Some (lhs-item y)) (items ?orig)
let %is’ = map (A(z, pre). (inc-item z k, PreRed (start-item y, pre, red) [])) ?is
{
fix z
assume *: ¢ € set (map fst ?is)
have end-item © = start-item y
using * assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order.strict-trans2 filter-is-subset subsetD)
have wf-item G w z
using * assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order.strict-trans2 filter-is-subset subsetD)
moreover have next-symbol x = Some (lhs-item y)
using x filter-set filter-with-index-cong-filter member-filter by metis
moreover have start-item ¢ < k
using <end-item x = start-item y» <wf-item G w xy assms wf-bins-kth-bin

49

wf-item-def
by (metis dual-order.order-iff-strict dual-order.strict-trans1)
moreover have k < length w
using assms wf-bins-kth-bin wf-item-def by blast
ultimately have wf-item G w (inc-item x k) end-item (inc-item z k) = k
by (simp-all add: wf-item-inc-item)
}

hence Vz € set (items ?is’). wf-item G w x A end-item z = k
by (auto simp: items-def rev-image-eql)
thus ?thesis
unfolding Completer-def by presburger
qed

lemma Ez-wf-bins:
In bsw G. n < length w A length bs = Suc (length w) A wf-bins G w bs
apply (rule exI[where z=0])
apply (rule exI[where z=[[]]])
apply (rule exI[where z=]]])
by (auto simp: wf-bins-def wf-bin-def wf-bin-items-def items-def split: prod.splits)

definition wf-earley-input :: (nat x 'a c¢fg x 'a list x 'a bins) set where
wf-earley-input = {
(k, G, w, bs) | k G w bs.
k < length w N
length bs = length w + 1 A
wf-bins G w bs

}

typedef ‘a wf-bins = wf-earley-input::(nat x 'a cfg x 'a list x 'a bins) set
morphisms from-wf-bins to-wf-bins
using Ez-wf-bins by (auto simp: wf-earley-input-def)

lemma wf-earley-input-elim:

assumes (k, G, w, bs) € wf-earley-input

shows k < length w A k < length bs A length bs = length w + 1 N wf-bins G w
bs

using assms(1) from-wf-bins wf-earley-input-def by (smt (verit) Suc-eq-plusl
less-Suc-eq-le mem-Collect-eq prod.sel(1) snd-conv)

lemma wf-earley-input-intro:
assumes k < length w length bs = length w + 1 wf-bins G w bs
shows (k, G, w, bs) € wf-earley-input
by (simp add: assms wf-earley-input-def)

lemma wf-earley-input-Completey:
assumes (k, G, w, bs) € wf-earley-input — length (items (bs ! k)) < ¢
assumes z = items (bs | k) ! i next-symbol x = None
shows (k, G, w, upd-bins bs k (Completer, k x bs red)) € wf-earley-input
proof —

50

have x: k < length w length bs = length w + 1 wf-bins G w bs
using wf-earley-input-elim assms(1) by metis+
have z: z € set (items (bs ! k))
using assms(2,3) by simp
have start-item x < length bs
using = wf-bins-kth-bin * wf-item-def
by (metis One-nat-def add.right-neutral add-Suc-right dual-order.trans le-imp-less-Suc)
hence wf-bins G w (upd-bins bs k (Completer, k = bs red))
using * Suc-eg-plusl le-imp-less-Suc wf-bins-Completer, wf-bins-upd-bins x by
metis
thus ?thesis
by (simp add: *(1—38) wf-earley-input-def)
qed

lemma wf-earley-input-Scany,:
assumes (k, G, w, bs) € wf-earley-input — length (items (bs ! k)) < ¢
assumes z = items (bs | k) | i next-symbol x = Some a
assumes k < length w
shows (k, G, w, upd-bins bs (k+1) (Scanr k w a x pre)) € wf-earley-input
proof —
have x: k < length w length bs = length w + 1 wf-bins G w bs
using wf-earley-input-elim assms(1) by metis+
have z: z € set (items(bs ! k))
using assms(2,8) by simp
have wf-bins G w (upd-bins bs (k+1) (Scany, k w a z pre))
using * z assms(1,4,5) wf-bins-Scany, wf-bins-upd-bins wf-earley-input-elim
by (metis option.discl)
thus ?thesis
by (simp add: *(1—38) wf-earley-input-def)
qed

lemma wf-earley-input-Predicty:
assumes (k, G, w, bs) € wf-earley-input — length (items (bs ! k)) < ¢
assumes z = items (bs | k) | i next-symbol x = Some a
shows (k, G, w, upd-bins bs k (Predicty, k G a)) € wf-earley-input
proof —
have x: k < length w length bs = length w + 1 wf-bins G w bs
using wf-earley-input-elim assms(1) by metis+
have z: z € set (items (bs ! k))
using assms(2,8) by simp
hence wf-bins G w (upd-bins bs k (Predicty, k G a))
using * z assms(1,4) wf-bins-Predicty, wf-bins-upd-bins wf-earley-input-elim by
metis
thus ?thesis
by (simp add: *(1—38) wf-earley-input-def)
qed

fun earley-measure :: nat x 'a c¢fg x 'a list X 'a bins = nat = nat where
earley-measure (k, G, w, bs) i = card { z | z. wf-item G w = A end-item x = k }

o1

— 1

lemma FEarleyy,-bin’-simps[simp):
i > length (items (bs ! k)) = Earleyr-bin' k G w bs i = bs
- ¢ > length (items (bs | k)) = x = items (bs'k) | i = next-symbol x = None
—
Earleyr-bin' k G w bs i = Earleyr,-bin' k G w (upd-bins bs k (Completey, k = bs
i) (i+1)
- i > length (items (bs ! k)) = x = items (bslk) | i = next-symbol © = Some
a —>
a ¢ nonterminals G = k < length w => Earleyr-bin' k G w bs i = Farleyy -bin’
k G w (upd-bins bs (k+1) (Scang, k w a z i) (i+1)
— 1 > length (items (bs | k)) = x = items (bs'k) | i = next-symbol z = Some
o —
a ¢ nonterminals G = - k < length w = Earleyp-bin’ k G w bs i =
Earleyp-bin’ k G w bs (i+1)
= i > length (items (bs ! k)) = x = items (bs'k) | i = next-symbol z = Some
o —
a € nonterminals G = Farleyr-bin' k G w bs i = Earleyr-bin' k G w (upd-bins
bs k (Predicty, k G a)) (i+1)
by (subst Earleyr,-bin’.simps, auto)+

lemma Farleyy,-bin'-induct[case-names Base Completer Scanp Pass Predictp|:
assumes (k, G, w, bs) € wf-earley-input
assumes base: Nk G w bs i. © > length (items (bs ! k)) = Pk G w bs i
assumes complete: Nk G w bs i x. = i > length (items (bs ! k)) = = = items
(bs k)i =
next-symbol © = None => P k G w (upd-bins bs k (Completer, k x bs 7))
(i+1) = Pk Gwbsi
assumes scan: Ak G w bs iz a. - i > length (items (bs | k)) = = = items (bs
k)i =
next-symbol z = Some a => a ¢ nonterminals G = k < length w =
Pk G w (upd-bins bs (k+1) (Scang kw a x 1)) (i+1) = Pk G w bsi
assumes pass: Nk G w bs i x a. = 7 > length (items (bs | k)) = z = items (bs
k)i =
next-symbol x = Some a = a ¢ nonterminals G = - k < length w
_
PkGuwbs(i+1) = PkGuwbsi
assumes predict: Nk G w bs i x a. = { > length (items (bs ! k)) = = = items
(bs!k)!i=
nezt-symbol x = Some a = a € nonterminals G =
Pk G w (upd-bins bs k (Predicty, k G a)) (i+1) = Pk Gw bsi
shows Pk G w bs i
using assms(1)
proof (induction n=earley-measure (k, G, w, bs) i arbitrary: bs i rule: nat-less-induct)
case I
have wf: k < length w length bs = length w + 1 wf-bins G w bs
using 1.prems wf-earley-input-elim by metis+
hence k: k < length bs

52

by simp
have fin: finite { z | z. wf-item G w z A end-item v =k }
using finiteness-UNIV-wf-item by fastforce
show ?Zcase
proof cases
assume ¢ > length (items (bs ! k))
then show ?thesis
by (simp add: base)
next
assume al: = i > length (items (bs ! k))
let %2 = items (bs ! k) ! 4
have z: %z € set (items (bs ! k))
using al by fastforce
show ?thesis
proof cases
assume a2: next-symbol ?x = None
let ?bs’ = upd-bins bs k (Completer, k ?x bs i)
have start-item ?z < length bs
using wf(38) k wf-bins-kth-bin wf-item-def x by (metis order-le-less-trans)
hence wf-bins’: wf-bins G w ?bs’
using wf-bins-Completer, wf(8) wf-bins-upd-bins k x by metis
hence wf”: (k, G, w, %bs’) € wf-earley-input
using wf(1,2,3) wf-earley-input-intro by fastforce
have sub: set (items (?bs' ! k)) C { z | z. wf-item G w z A end-item z = k }
using wf(1,2) wf-bins’ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have i < length (items (?bs’ ! k))
using al by (metis dual-order.strict-trans1 items-def lel length-map length-nth-upd-bin-bins)
also have ... = card (set (items (2bs’ ! k)))
using wf(1,2) wf-bins’ distinct-card wf-bins-def wf-bin-def by (metis k
length-upd-bins)
also have ... < card {z |z. wf-item G w © A end-item x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w x A end-item © = k} > @
by blast
hence earley-measure (k, G, w, ?bs’) (Suc i) < earley-measure (k, G, w, bs) i
by simp
thus ?thesis
using 1 al a2 complete wf' by simp
next
assume a2: — next-symbol ?x = None
then obtain a where a-def: next-symbol ?c = Some a
by blast
show ?thesis
proof cases
assume a3: a ¢ nonterminals G
show ?thesis
proof cases
assume a4: k < length w

93

let ?bs’ = upd-bins bs (k+1) (Scany k w a %z 7)
have wf-bins’: wf-bins G w ?bs’
using wf-bins-Scany, wf(1,3) wf-bins-upd-bins a2 a4 k x by metis
hence wf’: (k, G, w, ?bs’) € wf-earley-input
using wf(1,2,3) wf-earley-input-intro by fastforce
have sub: set (items (2bs’ ' k)) C { = | z. wf-item G w = A end-item © =
!
using wf(1,2) wf-bins’ unfolding wyf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have i < length (items (?bs’ ! k))
using al by (metis dual-order.strict-trans! items-def lel length-map
length-nth-upd-bin-bins)
also have ... = card (set (items (?bs’! k)))
using wf(1,2) wf-bins’ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plusl le-imp-less-Suc length-upd-bins)
also have ... < card {z |z. wf-item G w x A end-item x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w = A end-item © = k} > i
by blast
hence earley-measure (k, G, w, ?bs’) (Suc i) < earley-measure (k, G, w,
bs) i
by simp
thus ?thesis
using 1 al a-def a3 a4 scan wf’' by simp
next
assume a4: — k < length w
have sub: set (items (bs ! k)) C { z | z. wf-item G w x A end-item © = k }
using wf unfolding wf-bin-def wf-bins-def wf-bin-items-def using
order-le-less-trans by auto
have i < length (items (bs ! k))
using al by simp
also have ... = card (set (items (bs ! k)))
using wf distinct-card wf-bins-def wf-bin-def by (metis Suc-eq-plusl
le-imp-less-Suc)
also have ... < card {z |z. wf-item G w = A end-item x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w = A end-item z = k} > i
by blast
hence earley-measure (k, G, w, bs) (Suc i) < earley-measure (k, G, w, bs) i
by simp
thus ?thesis
using 1 al a8 a4 a-def pass by simp
qged
next
assume a3: - a ¢ nonterminals G
let ?bs’ = upd-bins bs k (Predicty, k G a)
have wf-bins": wf-bins G w ?bs’
using wf-bins-Predict;, wf wf-bins-upd-bins k x by metis
hence wf”: (k, G, w, ?bs’) € wf-earley-input

54

using wf(1,2,3) wf-earley-input-intro by fastforce
have sub: set (items (2bs’ ! k)) C { z | z. wf~item G w z A end-item © = k }
using wf(1,2) wf-bins’ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto
have i < length (items (2bs’ ! k))
using al by (metis dual-order.strict-transl items-def lel length-map
length-nth-upd-bin-bins)
also have ... = card (set (items (?bs’! k)))
using wf(1,2) wf-bins’ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plusi le-imp-less-Suc length-upd-bins)
also have ... < card {z |z. wf-item G w © A end-item x = k}
using card-mono fin sub by blast
finally have card {z |z. wf-item G w x A end-item © = k} > @
by blast
hence earley-measure (k, G, w, ?bs’) (Suc i) < earley-measure (k, G, w, bs)

by simp
thus ?thesis
using 1 al a-def a3 a-def predict wf’ by simp
qed
qed
qed
qed

lemma wf-earley-input-Earleyy-bin':
assumes (k, G, w, bs) € wf-earley-input
shows (k, G, w, Farleyp-bin’ k G w bs i) € wf-earley-input
using assms
proof (induction i rule: Earleyr-bin'-induct] OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Completer k G w bs i x)
let 2bs’ = upd-bins bs k (Completer, k z bs 1)
have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems wf-earley-input-Completer, by blast
thus ?case
using Completer.IH Completer.hyps by simp
next
case (Scanp k G w bs iz a)
let ?bs’ = upd-bins bs (k+1) (Scany k w a x 7)
have (k, G, w, ?bs’) € wf-earley-input
using Scang.hyps Scanp.prems wf-earley-input-Scany, by metis
thus ?case
using Scanpg.IH Scang.hyps by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty, k G a)
have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems wf-earley-input-Predict;, by metis
thus ?case

95

using Predictg.IH Predictp.hyps by simp
qed simp-all

lemma wf-earley-input-Earleyy, -bin:
assumes (k, G, w, bs) € wf-earley-input
shows (k, G, w, Farleyr-bin k G w bs) € wf-earley-input
using assms by (simp add: Farley -bin-def wf-earley-input-Earley,-bin’)

lemma length-bins-Earleyy-bin':
assumes (k, G, w, bs) € wf-earley-input
shows length (Earleyr-bin’ k G w bs i) = length bs
by (metis assms wf-earley-input-Earleyr,-bin’ wf-earley-input-elim)

lemma length-nth-bin-Earleyy-bin’:
assumes (k, G, w, bs) € wf-earley-input
shows length (items (Earleyr-bin' k G w bs i ! 1)) > length (items (bs ! 1))
using length-nth-upd-bin-bins order-trans
by (induction i rule: Earleyr-bin’-induct|OF assms]) (auto simp: items-def,
blast+)

lemma wf-bins-Earleyy -bin':
assumes (k, G, w, bs) € wf-earley-input
shows wf-bins G w (Earleyr-bin" k G w bs 1)
using assms wf-earley-input-Earleyy-bin' wf-earley-input-elim by blast

lemma wf-bins-Earleyy, -bin:
assumes (k, G, w, bs) € wf-earley-input
shows wf-bins G w (Earleyr-bin k G w bs)
using assms Earleyy-bin-def wf-bins-Earley-bin’ by metis

lemma kth-FEarleyy-bin'-bins:
assumes (k, G, w, bs) € wf-earley-input
assumes j < length (items (bs ! 1))
shows items (FEarleyr-bin’ k G w bsi! 1) ! j= items (bs!1)!j
using assms(2)
proof (induction i rule: Earleyy-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictp))
case (Completer k G w bs i x)
let ?bs’ = upd-bins bs k (Completer, k x bs 1)
have items (Earleyy-bin' k G w 2bs’ (i + 1) !1) ! j = items (2bs' 1 1) ! j
using Completer.IH Completer.prems length-nth-upd-bin-bins items-def or-
der.strict-trans2 by (metis length-map)
also have ... = items (bs ! 1) ! j
using Completep.prems items-nth-idem-upd-bins nth-idem-upd-bins length-map
items-def by metis
finally show ?case
using Completer.hyps by simp
next
case (Scanp k G w bsix a)

o6

let ?bs’ = upd-bins bs (k+1) (Scany k w a x 7)

have items (Earleyy-bin' k G w 2bs’ (i + 1) !1) ! j = items (2bs' 1 1) ! j

using Scanp.IH Scanp.prems length-nth-upd-bin-bins order.strict-trans2 items-def
by (metis length-map)

also have ... = items (bs !) ! j
using Scang.prems items-nth-idem-upd-bins nth-idem-upd-bins length-map items-def
by metis

finally show ?case
using Scang.hyps by simp
next
case (Predicty k G w bs iz a)
let ?bs’ = upd-bins bs k (Predict;, k G a)
have items (Earleyy-bin' k G w 2bs’ (i + 1) 11) ! j = items (2bs’ 1 1) ! j
using Predictp.IH Predictp.prems length-nth-upd-bin-bins order.strict-trans2
items-def by (metis length-map)
also have ... = items (bs ! 1) ! j
using Predictp.prems items-nth-idem-upd-bins nth-idem-upd-bins length-map
items-def by metis
finally show ?case
using Predictr.hyps by simp
qed simp-all

lemma nth-bin-sub-FEarleyy,-bin’:
assumes (k, G, w, bs) € wf-earley-input
shows set (items (bs ! 1)) C set (items (Earleyr-bin’ k G w bs i ! 1))
proof standard
fix z
assume z € set (items (bs ! 1))
then obtain j where *: j < length (items (bs ! 1)) items (bs!) j ==z
using in-set-conv-nth by metis
have z = items (Farleyr-bin’ k G w bsi!1l)!j
using kth-Earleyr,-bin’-bins assms x by metis
moreover have j < length (items (Earleyr-bin' kG w bs i ! 1))
using assms x(1) length-nth-bin-Earleyr-bin’ less-le-trans by blast
ultimately show z € set (items (Earleyr-bin' k G w bs i ! 1))
by simp
qed

lemma nth-Earleyr-bin'-eq:
assumes (k, G, w, bs) € wf-earley-input
shows | < k = Earleyr-bin’ k Gw bsi!l=bs!l
by (induction i rule: Earleyr-bin’-induct[OF assms]) (auto simp: upd-bins-def)

lemma set-items-Earleyr,-bin’-eq:
assumes (k, G, w, bs) € wf-earley-input
shows | < k = set (items (Earleyp-bin’ k G w bs i1 1)) = set (items (bs ! 1))
by (simp add: assms nth-Earleyr,-bin’-eq)

lemma bins-upto-k0-Earley-bin'-eq:

o7

assumes (k, G, w, bs) € wf-earley-input

shows bins-upto (Earleyr-bin k G w bs) k 0 = bins-upto bs k 0

unfolding bins-upto-def bin-upto-def Earleyy -bin-def using set-items-Earleyy,-bin’-eq
assms nth-Earley; -bin’-eq by fastforce

lemma wf-earley-input-Inity,:
assumes k < length w
shows (k, G, w, Init;, G w) € wf-earley-input
proof —
let ?rs = filter (Ar. lhs-rule r = & G) (remdups (R G))
let 260 = map (Ar. (init-item r 0, Null)) ?rs
let 2bs = replicate (length w + 1) ([])
have distinct (items 2b0)
using assms unfolding wf-bin-def wf-item-def items-def
by (auto simp: init-item-def distinct-map inj-on-def)
moreover have Vz € set (items 7b0). wf-item G w z A end-item x = 0
using assms unfolding wf-bin-def wf-item-def by (auto simp: init-item-def
items-def)
moreover have wf-bins G w ?bs
unfolding wf-bins-def wf-bin-def wf-bin-items-def items-def using less-Suc-eq-0-disj
by force
ultimately show %thesis
using assms length-replicate wf-earley-input-intro
unfolding wf-bin-def Inity,-def wf-bin-def wf-bin-items-def wf-bins-def
by (metis (no-types, lifting) length-list-update nth-list-update-eq nth-list-update-neq)
qged

lemma length-bins-Inity,[simp]:
length (Init;, G w) = length w + 1
by (simp add: Inity,-def)

lemma wf-earley-input-Earleyr,-bins[simp]:
assumes k < length w
shows (k, G, w, Farleyy-bins k G w) € wf-earley-input
using assms
proof (induction k)
case (
have (k, G, w, Init;, G w) € wf-earley-input
using assms wf-earley-input-Init;, by blast
thus ?case
by (simp add: assms wf-earley-input-Inity, wf-earley-input-Earleyr,-bin)
next
case (Suc k)
have (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
using Suc.IH Suc.prems(1) Suc-leD assms wf-earley-input-elim wf-earley-input-intro
by metis
thus ?case
by (simp add: wf-earley-input-Earleyr,-bin)
qed

o8

lemma length-Earleyy,-bins[simp):
assumes k < length w
shows length (Earleyr-bins k G w) = length (Init;, G w)
using assms wf-earley-input-FEarleyr -bins wf-earley-input-elim by fastforce

lemma wf-bins-Earleyy,-bins[simp):
assumes k < length w
shows wf-bins G w (Earleyy-bins k G w)
using assms wf-earley-input-FEarleyr -bins wf-earley-input-elim by fastforce

lemma wf-bins-FEarleyy,:
wf-bins G w (Earleyy, G w)
by (simp add: Earleyy,-def)

8.6 Soundness

lemma Inity -eq-Initp:
bins (Inity, G w) = Initp G
proof —
let ?rs = filter (Ar. lhs-rule r = & G) (remdups (R G))
let 260 = map (Ar. (init-item r 0, Null)) ?rs
let ?bs = replicate (length w + 1) ([])
have bins (2bs[0 := 2b0]) = set (items ?b0)
proof —
have bins (2bs[0 := ?2b0]) = |J {set (items ((?bs[0 := 2b0]) | k)) |k. k < length
(2bs[0 = 2b0])}
unfolding bins-def by blast
also have ... = set (items ((?bs[0 := ?b0]) ! 0)) U U {set (items ((?bs[0 :=
700]) 1 k)) |k. k < length (2bs[0 := 2b0]) Nk # 0}
by fastforce
also have ... = set (items (2b0))
by (auto simp: items-def)
finally show ?thesis .
qged
also have ... = Initr G
by (auto simp: Initp-def items-def lhs-rule-def)
finally show ?thesis
by (auto simp: Inity,-def)
qed

lemma Scany -sub-Scanp:

assumes wf-bins G w bs bins bs C I x € set (items (bs ! k)) k < length bs k <
length w

assumes next-symbol r = Some a

shows set (items (Scany k w a x pre)) C Scanp k w I
proof standard

fix y

assume *: y € set (items (Scany k w a x pre))

99

have z € bin I k
using kth-bin-sub-bins assms(1—4) items-def wf-bin-def wf-bins-def wf-bin-items-def
bin-def by fastforce

assume #: k < length w w'k = a
hence y = inc-item = (k+1)
using * unfolding Scan -def by (simp add: items-def)
hence y € Scanp k w I
using <z € bin I ky # assms(6) unfolding Scanp-def by blast
}

thus y € Scanp kw I
using * assms(5) unfolding Scany,-def by (auto simp: items-def)
qed

lemma Predicty -sub-Predictp:
assumes wf-bins G w bs bins bs C Iz € set (items (bs | k)) k < length bs
assumes next-symbol r = Some X
shows set (items (Predict;, k G X)) C Predictp k G I
proof standard
fix y
assume *: y € set (items (Predict, k G X))
have z € bin I k
using kth-bin-sub-bins assms(1—4) items-def wf-bin-def wf-bins-def bin-def
wf-bin-items-def by fast
let ?rs = filter (Ar. lhs-rule r = X) (R G)
let ?zs = map (Ar. init-item r k) 2rs
have y € set xs
using *x unfolding Predicty-def items-def by simp
then obtain r where y = init-item r k lhs-rule r = X r € set (R G) next-symbol
xz = Some (lhs-rule r)
using assms(5) by auto
thus y € Predictp kG I
unfolding Predictp-def using «x € bin I k» by blast
qed

lemma Completer,-sub-Completep:
assumes wf-bins G w bs bins bs C Iy € set (items (bs | k)) k < length bs
assumes next-symbol y = None
shows set (items (Completer, k y bs red)) C Completer k I
proof standard
fix z
assume x: ¢ € set (items (Completer, k y bs red))
have y € bin I k
using kth-bin-sub-bins assms items-def wf-bin-def wf-bins-def bin-def wf-bin-items-def
by fast
let Zorig = bs ! start-item y
let ?xs = filter-with-index (Az. next-symbol x = Some (lhs-item y)) (items orig)
let ?zs’ = map (M=, pre). (inc-item x k, PreRed (start-item y, pre, red) [])) %xs
have 0: start-item y < length bs

60

using wf-bins-def wf-bin-def wf-item-def wf-bin-items-def assms(1,3,4)
by (metis Orderings.preorder-class.dual-order.strict-transl leD not-le-imp-less)
{
fix z
assume *: z € set (map fst ?xs)
have next-symbol z = Some (lhs-item y)
using * by (simp add: filter-with-indez-cong-filter)
moreover have z € bin I (start-item y)
using 0 * assms(1,2) bin-def kth-bin-sub-bins wf-bins-kth-bin filter-with-index-cong-filter
by (metis (mono-tags, lifting) filter-is-subset in-mono mem-Collect-eq)
ultimately have next-symbol z = Some (lhs-item y) z € bin I (start-item y)
by simp-all
}
hence 1: Vz € set (map fst ?xs). next-symbol z = Some (lhs-item y) N z € bin
I (start-item y)
by blast
obtain z where 2: © = inc-item z k z € set (map fst ?xs)
using * unfolding Completer,-def by (auto simp: rev-image-eql items-def)
moreover have next-symbol z = Some (lhs-item y) z € bin I (start-item y)
using 1 z by blast+
ultimately show = € Completer k I
using «y € bin I k> assms(5) unfolding Completer-def next-symbol-def by
(auto split: if-splits)
qed

lemma sound-Scany,:
assumes wf-bins G w bs bins bs C I = € set (items (bs'k)) k < length bs k <
length w
assumes next-symbol x = Some a Vz € I. wf-item G w z Vz € I. sound-item G
w
shows Vz € set (items (Scany k w a x 7). sound-item G w «
proof standard
fix y
assume y € set (items (Scang k w a 7))
hence y € Scanp k w I
by (meson Scany,-sub-Scang assms(1—06) in-mono)
thus sound-item G w y
using sound-Scan assms(7,8) unfolding Scanp-def inc-item-def bin-def
by (smt (verit, best) item.exhaust-sel mem-Collect-eq)
qed

lemma sound-Predicty,:
assumes wf-bins G w bs bins bs C Iz € set (items (bslk)) k < length bs
assumes next-symbol © = Some X Vz € I. wf-item G w z Vz € I. sound-item
Guwzx
shows Vz € set (items (Predicty, k G X)). sound-item G w x
proof standard
fix y
assume y € set (items (Predicty k G X))

61

hence y € Predictp k£ G I
by (meson Predicty,-sub-Predictp assms(1—5) subsetD)
thus sound-item G w y
using sound-Predict assms(6,7) unfolding Predict p-def init-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)
qed

lemma sound-Completer,:
assumes wf-bins G w bs bins bs C I y € set (items (bslk)) k < length bs
assumes next-symbol y = None Vzx € I. wf-item G w z Vx € I. sound-item G w
x
shows Vz € set (items (Completer, k y bs 7)). sound-item G w x
proof standard
fix z
assume z € set (items (Completer, k y bs 7))
hence z € Completer k I
using Completey,-sub-Completer assms(1—5) by blast
thus sound-item G w =
using sound-Complete assms(6,7) unfolding Completep -def inc-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)
qed

lemma sound-Earleyr-bin”:
assumes (k, G, w, bs) € wf-earley-input
assumes Yz € bins bs. sound-item G w x
shows V& € bins (Earleyr-bin' k G w bs i). sound-item G w x
using assms
proof (induction i rule: Earleyy-bin'-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Completer k G w bs i x)
let ?bs’ = upd-bins bs k (Completer, k x bs 1)
have z € set (items (bs ! k))
using Completer.hyps(1,2) by force
hence Vz € set (items (Completer, k x bs 7)). sound-item G w x
using sound-Complete, Completer.hyps(3) Completer.prems wf-earley-input-elim
wf-bins-impl-wf-items by fastforce
moreover have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
ultimately have Vz € bins (Earleyr-bin’ k G w ?bs’ (i + 1)). sound-item G w
x
using Completer.ITH Completer.prems(2) length-upd-bins bins-upd-bins wf-earley-input-elim
Suc-eq-plus1 Un-iff le-imp-less-Suc by metis
thus ?case
using Completer.hyps by simp
next
case (Scanp kG w bsix a)
let ?bs’ = upd-bins bs (k+1) (Scany k w a z 7)
have 1 € set (items (bs ! k))
using Scanp.hyps(1,2) by force

62

hence Vz € set (items (Scang, k w a z i)). sound-item G w x
using sound-Scany, Scang.hyps(3,5) Scanp.prems(1,2) wf-earley-input-elim
wf-bins-impl-wf-items by fast
moreover have (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scang.prems(1) wf-earley-input-Scany, by metis
ultimately have Vx € bins (Earleyr-bin’ k G w 2bs’ (i + 1)). sound-item G w
x
using Scanp.IH Scang.hyps(5) Scanp.prems(2) length-upd-bins bins-upd-bins
wf-earley-input-elim
by (metis UnE add-less-cancel-right)
thus ?case
using Scanp.hyps by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty, k G a)
have z € set (items (bs ! k))
using Predictp.hyps(1,2) by force
hence Vz € set (items(Predicty, k G a)). sound-item G w x
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
moreover have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict;, by metis
ultimately have Vz € bins (Earleyr-bin' k G w ?bs’ (i + 1)). sound-item G w
x
using Predictp.IH Predictp.prems(2) length-upd-bins bins-upd-bins wf-earley-input-elim
by (metis Suc-eq-plusl UnE)
thus ?case
using Predictg.hyps by simp
qed simp-all

lemma sound-FEarleyr,-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes Vz € bins bs. sound-item G w x
shows Vz € bins (Earleyr-bin k G w bs). sound-item G w x
using sound-Earleyy-bin’ assms Earley -bin-def by metis

lemma FEarleyy-bin'-sub-Earleyp-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes bins bs C [
shows bins (Farleyr-bin’ k G w bs i) C Earleyp-bin k G w I
using assms
proof (induction i arbitrary: I rule: Earleyr,-bin'-induct|OF assms(1), case-names
Base Completer Scanp Pass Predictp))
case (Base k G w bs i)
thus ?case
using Farleyp-bin-mono by fastforce
next
case (Completer k G w bs i x)
let ?bs’ = upd-bins bs k (Completer, k x bs 1)

63

have z € set (items (bs ! k))
using Completer.hyps(1,2) by force
hence bins ?bs’ C I U Completer k I
using Completer, -sub-Completer Completer.hyps(3) Completer.prems(1,2)
bins-upd-bins wf-earley-input-elim by blast
moreover have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
ultimately have bins (Farleyr-bin’ k G w bs i) C FEarleyp-bin k G w (I U
Completer k I)
using Completer.IH Completer.hyps by simp
also have ... C Farleyp-bin k G w (Earleyp-bin k G w I)
using Completep-FEarleyp-bin-mono Farleyp-bin-mono Earleyp-bin-sub-mono
by (metis Un-subset-iff)
finally show ?case
using Farleyg-bin-idem by blast
next
case (Scanp k G w bsix a)
let ?bs’ = upd-bins bs (k+1) (Scany k w a x 7)
have z € set (items (bs ! k))
using Scanp.hyps(1,2) by force
hence bins ?bs’ C I U Scanp k w I
using Scany -sub-Scanp Scang.hyps(3,5) Scanp.prems bins-upd-bins wf-earley-input-elim
by (metis add-monol sup-mono)
moreover have (k, G, w, ?bs’) € wf-earley-input
using Scang.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
ultimately have bins (Earleyr-bin' k G w bs i) C Earleyp-bin k G w (I U Scang
kwl)
using Scanp.IH Scanp.hyps by simp
thus ?case
using Scanp-Farleyp-bin-mono Farleyp-bin-mono Farleyp-bin-sub-mono Ear-
leyp-bin-idem
by (metis Un-subset-iff subset-trans)
next
case (Pass k G w bs iz a)
thus ?case
by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty, k G a)
have z € set (items (bs ! k))
using Predictp.hyps(1,2) by force
hence bins ?bs’ C I U Predictyr k G I
using Predicty,-sub-Predictyp Predictp.hyps(8) Predictp.prems bins-upd-bins
wf-earley-input-elim
by (metis sup-mono)
moreover have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predicty, by metis
ultimately have bins (Earleyr-bin’ k G w bs i) C Earleyp-bin k G w (I U
Predictp k G I)

64

using Predictg.IH Predictp.hyps by simp
thus ?case
using Predictp-FEarleyp-bin-mono Earleyp-bin-mono Earleyp-bin-sub-mono
Earleyr-bin-idem
by (metis Un-subset-iff subset-trans)
qed

lemma FEarleyy -bin-sub-Farleyg-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes bins bs C [
shows bins (Earleyr-bin k G w bs) C Earleyp-bin k G w I
using assms Earleyr,-bin’-sub-Farley p-bin Earleyr,-bin-def by metis

lemma Farleyy -bins-sub-Earleyp-bins:
assumes k < length w
shows bins (Earleyr-bins k G w) C Farleyp-bins k G w
using assms
proof (induction k)
case ()
have (k, G, w, Init;, G w) € wf-earley-input
using assms(1) assms wf-earley-input-Inity, by blast
thus ?case
by (simp add: Inity-eq-Initp Earleyy,-bin-sub-Earleyp-bin assms wf-earley-input-Inity,)
next
case (Suc k)
have (Suc k, G, w, Earleyr-bins k G w) € wf-earley-input
by (simp add: Suc.prems(1) Suc-leD assms wf-earley-input-intro)
thus ?case
by (simp add: Suc.IH Suc.prems(1) Suc-leD Earleyy,-bin-sub-Earleyp-bin assms)
qed

lemma Farleyy,-sub-Farleyp:
bins (Earleyr, G w) C Earleyr G w
using FEarleyy,-bins-sub-Earleyp-bins Earleyp-def Earley,-def by (metis dual-order.refl)

theorem soundness-FEarleyr:

assumes recognizing (bins (Earleyr, G w)) G w

shows G F [6 G] =* w

using assms Farley -sub-Earleyr recognizing-def soundness-Earleyr by (meson
subsetD)

8.7 Completeness

lemma bin-bins-upto-bins-eq:
assumes wf-bins G w bs k < length bs i > length (items (bs 1 k)) | < k
shows bin (bins-upto bs k ©) I = bin (bins bs) 1
unfolding bins-upto-def bins-def bin-def using assms nat-less-le
apply (auto simp: nth-list-update bin-upto-eg-set-items wf-bins-kth-bin items-def)
apply (metis fst-conv image-eql order.strict-trans2)

65

by (metis fst-conv image-eql items-def list.set-map wf-bins-kth-bin)

lemma impossible-complete-item:
assumes sound-item G w z is-complete x start-item r = k end-item © = k
nonempty-derives G
shows Fulse
proof —
have G I [lhs-item z] =* ||
using assms(1—4) by (simp add: slice-empty is-complete-def sound-item-def
B-item-def)
thus ?thesis
by (meson assms(5) nonempty-derives-def)
qed

lemma Completer-Un-eg-terminal:
assumes next-symbol z = Some a a ¢ nonterminals G Vx € I. wf-item G w x
wf-item G w z
shows Completer k (I U {z}) = Completep kI
proof (rule ccontr)
assume Completer k (I U {z}) # Completer k I
hence Completer k I C Completer k (I U {z2})
using Completer-sub-mono by blast
then obtain w x y where x:
w € Completep k (I U {z}) w ¢ Completer k I w = inc-item z k
z € bin (I U {z}) (start-item y) y € bin (I U {z}) k
is-complete y next-symbol x = Some (lhs-item y)
unfolding Completer-def by fast
show Fulse
proof (cases z = z)
case True
have lhs-item y € nonterminals G
using *(5,6) assms
by (auto simp: wf-item-def bin-def lhs-item-def lhs-rule-def next-symbol-def
nonterminals-def)
thus ?Zthesis
using True x(7) assms by simp
next
case Fulse
thus ?thesis
using * assms(1) by (auto simp: next-symbol-def Completer-def bin-def)
qed
qged

lemma Completer-Un-eq-nonterminal:
assumes Vz € I. wf-item G w z Vz € I. sound-item G w z
assumes nonempty-derives G wf-item G w z
assumes end-item z = k next-symbol z # None
shows Completer k (I U {z}) = Completer kI
proof (rule ccontr)

66

assume Completer k (I U {z}) # Completer k I
hence Completer kI C Completer k (I U {z})
using Completep-sub-mono by blast
then obtain = z’ y where x*:
z € Completer k (I U {z}) x ¢ Completer k I x = inc-item z' k
z' € bin (I U {z}) (start-item y) y € bin (I U {z}) k
is-complete y next-symbol ' = Some (lhs-item y)
unfolding Completer-def by fast
consider (A) z' =z | (B) y =z
using *(2—7) Completep-def by (auto simp: bin-def; blast)
thus False
proof cases
case A
have start-item y = k
using *(4) A bin-def assms(5) by (metis (mono-tags, lifting) mem-Collect-eq)
moreover have end-item y = k
using *(5) bin-def by blast
moreover have sound-item G w y
using *(5,6) assms(2,6) by (auto simp: bin-def next-symbol-def sound-item-def)
moreover have wf-item G w y
using *(5) assms(1,4) wf-item-def by (auto simp: bin-def)
ultimately show Zthesis
using impossible-complete-item x(6) assms(3) by blast
next
case B
thus ?thesis
using *(6) assms(6) by (auto simp: next-symbol-def)
qed
qed

lemma wf-item-in-kth-bin:
wf-bins G w bs = z € bins bs = end-item © = k = x € set (items (bs ! k))
using bins-bin-exists wf-bins-kth-bin wf-bins-def by blast

lemma Completep-bins-upto-eq-bins:
assumes wf-bins G w bs k < length bs i > length (items (bs ! k))
shows Completer k (bins-upto bs k i) = Completer k (bins bs)
proof —
have Al. | < k = bin (bins-upto bs k i) | = bin (bins bs) |
using bin-bins-upto-bins-eq|OF assms| by blast
moreover have Vz € bins bs. wf-item G w x
using assms(1) wf-bins-impl-wf-items by metis
ultimately show %thesis
unfolding Completer-def bin-def wf-item-def wf-item-def by auto
qed

lemma Completer-sub-bins-Un-Completer,:

assumes Completep k I C bins bs I C bins bs is-complete z wf-bins G w bs
wf-item G w z

67

shows Completer k (I U {z}) C bins bs U set (items (Completer, k z bs red))
proof standard
fix w
assume w € Completer k (I U {z})
then obtain z y where *:
w = inc-item x k x € bin (I U {2}) (start-item y) y € bin (I U {z}) k
is-complete y next-symbol x = Some (lhs-item y)
unfolding Completer-def by blast
consider (A)z =z | (B)y=z|-(z=2Vy=2)
by blast
thus w € bins bs U set (items (Completer, k z bs red))
proof cases
case A
thus ?thesis
using *(5) assms(3) by (auto simp: next-symbol-def)
next
case B
let ?orig = bs ! start-item z
let ?is = filter-with-index (Az. next-symbol x = Some (lhs-item z)) (items ?orig)
have z € bin I (start-item y)
using B %(2) %(5) assms(3) by (auto simp: next-symbol-def bin-def)
moreover have bin I (start-item z) C set (items (bs ! start-item z))
using wf-item-in-kth-bin assms(2,4) bin-def by blast
ultimately have = € set (map fst %is)
using *(5) B by (simp add: filter-with-index-cong-filter in-mono)
thus ?thesis
unfolding Completer-def (1) by (auto simp: rev-image-eql items-def)
next
case 3
thus ?thesis
using * assms(1) Completer-def by (auto simp: bin-def; blast)
qed
qed

lemma Completey -eq-start-item:

bs | start-item y = bs' ! start-item y = Completey, k y bs red = Completer, k y
bs’ red

by (auto simp: Completer,-def)

lemma kth-bin-bins-upto-empty:
assumes wf-bins G w bs k < length bs
shows bin (bins-upto bs k 0) k = {}
proof —
{
fix z
assume z € bins-upto bs k 0
then obtain [where z € set (items (bs! 1)) Il < k
unfolding bins-upto-def bin-upto-def by blast
hence end-item x = 1

68

using wf-bins-kth-bin assms by fastforce
hence end-item x < k
using </ < k» by blast
}

thus ?thesis
by (auto simp: bin-def)
qed

lemma FEarleyy-bin’-mono:
assumes (k, G, w, bs) € wf-earley-input
shows bins bs C bins (Earleyp-bin’ k G w bs 7)
using assms
proof (induction i rule: Earleyr-bin'-induct] OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Completer k G w bs i x)
let 2bs’ = upd-bins bs k (Completer, k z bs 1)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
hence bins bs C bins ?bs’
using length-upd-bins bins-upd-bins wf-earley-input-elim by (metis Un-upperl)
also have ... C bins (Earleyr-bin’ k G w 2bs’ (i + 1))
using wf Completer.IH by blast
finally show ?case
using Completer.hyps by simp
next
case (Scanp k G w bsix a)
let ?bs’ = upd-bins bs (k+1) (Scany k w a x 7)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
hence bins bs C bins ?bs’
using Scanp.hyps(5) length-upd-bins bins-upd-bins wf-earley-input-elim
by (metis add-monol sup-gel)
also have ... C bins (Earleyr-bin’ k G w 2bs’ (i + 1))
using wf Scanp.IH by blast
finally show ?case
using Scang.hyps by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty, k G a)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict, by metis
hence bins bs C bins ?bs’
using length-upd-bins bins-upd-bins wf-earley-input-elim by (metis sup-gel)
also have ... C bins (Earleyr-bin" k G w 2bs’ (i + 1))
using wf Predicty.IH by blast
finally show ?case
using Predictg.hyps by simp
qed simp-all

69

lemma FEarleyp-bin-step-sub-Earleyy -bin”:
assumes (k, G, w, bs) € wf-earley-input
assumes Farleyp-bin-step k G w (bins-upto bs k i) C bins bs
assumes YV € bins bs. sound-item G w z is-word G w nonempty-derives G
shows FEarleyp-bin-step k G w (bins bs) C bins (FEarleyr-bin’ k G w bs 1)
using assms
proof (induction i rule: Earleyy-bin’-induct|OF assms(1), case-names Base Com-
pletep Scanp Pass Predictr))
case (Base k G w bs 1)
have bin (bins bs) k = bin (bins-upto bs k i) k
using Base.hyps Base.prems(1) bin-bins-upto-bins-eq wf-earley-input-elim by
blast
thus ?case
using Scang-bin-absorb Predictp-bin-absorb Complete g -bins-upto-eq-bins wf-earley-input-elim
Base.hyps Base.prems(1,2,3,5) Earleyp-bin-step-def Completer-Earley g -bin-step-mono
Predictp-Earley p-bin-step-mono Scang-FEarleyr-bin-step-mono Farleyr,-bin’-mono
by (metis (no-types, lifting) Un-assoc sup.orderE)
next
case (Completep k G w bs i)
let ?bs’ = upd-bins bs k (Completer, k x bs 1)
have z: z € set (items (bs ! k))
using Completer.hyps(1,2) by auto
have wf: (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completes, by blast
hence sound: Vx € set (items (Completey, k x bs 7)). sound-item G w x
using sound-Complete, Completer.hyps(3) Completer.prems wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
have Scanp k w (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Scanp k w (bins-upto ?bs’ k (i + 1)) = Scanp k w (bins-upto ?bs’ ki U
{items (?bs’ 1 k) ! i})
using Completer.hyps(1) bins-upto-Suc-Un length-nth-upd-bin-bins items-def
by (metis length-map linorder-not-less sup.boundedE sup.order-iff)
also have ... = Scanp k w (bins-upto bs ki U {z})
using Completer.hyps(1,2) Completer.prems(1) items-nth-idem-upd-bins
bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Scanp k w {z}
using Completer.prems(2,3) Scanp-Un Scanp-Earleyp-bin-step-mono by
fastforce
also have ... = bins bs
using Completep.hyps(3) by (auto simp: Scang-def bin-def)
finally show ?thesis
using Completep.prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have Predicty k G (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Predictp k G (bins-upto ?bs’ k (i + 1)) = Predictp k G (bins-upto ?bs’ k

70

i U {items (2bs’ 1 k) ! i})
using Completer.hyps(1) bins-upto-Suc-Un length-nth-upd-bin-bins
by (metis dual-order.strict-trans1 items-def length-map not-le-imp-less)
also have ... = Predictp k G (bins-upto bs ki U {z})
using Completer.hyps(1,2) Completer.prems(1) items-nth-idem-upd-bins
bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Predictr k G {z}
using Completep.prems(2,8) Predictp-Un Predictp-FEarleyg-bin-step-mono
by blast
also have ... = bins bs
using Completer.hyps(3) by (auto simp: Predictp-def bin-def)
finally show ?thesis
using Completer.prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have Completer k (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Completer k (bins-upto 2bs’ k (i + 1)) = Completer k (bins-upto ?bs’ k
i U {items (2bs" 1 k) ! i})
using bins-upto-Suc-Un length-nth-upd-bin-bins Completer.hyps(1)
by (metis (no-types, opaque-lifting) dual-order.trans items-def length-map
not-le-imp-less)
also have ... = Completer k (bins-upto bs ki U {z})
using items-nth-idem-upd-bins Completer.hyps(1,2) bins-upto-kth-nth-idem
Completer.prems(1) wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U set (items (Completer, k x bs 7))
using Completep-sub-bins-Un-Complete;, Completer.hyps(8) Completer.prems(1,2,3)
next-symbol-def
bins-upto-sub-bins wf-bins-kth-bin x Complete p-Earley g -bin-step-mono wf-earley-input-elim
by (smt (verit, best) option.distinct(1) subset-trans)
finally show ?thesis
using Completer.prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
ultimately have FEarleyp-bin-step k G w (bins ?bs’) C bins (Earleyr-bin' k G w
?bs’ (i+1))
using Completer.IH Completer.prems sound wf Earley g-bin-step-def bins-upto-sub-bins
wf-earley-input-elim bins-upd-bins
by (metis UnE sup.boundedl)
thus ?case
using Completer.hyps Completer.prems(1) Farleyr,-bin’-simps(2) Earley p-bin-step-sub-mono
bins-upd-bins wf-earley-input-elim
by (smt (verit, best) sup.coboundedI2 sup.orderE sup-gel)
next
case (Scanp k G w bs iz a)
let 2bs’ = upd-bins bs (k+1) (Scany k w a z 7)
have z: z € set (items (bs ! k))
using Scang.hyps(1,2) by auto
hence sound: Vz € set (items (Scany, k w a x ©)). sound-item G w =

71

using sound-Scany, Scanp.hyps(3,5) Scang.prems(1,2,8) wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scang.prems(1) wf-earley-input-Scany, by metis
have Scanp k w (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Scanp k w (bins-upto ?bs’ k (i + 1)) = Scanp k w (bins-upto 2bs’ ki U
{items (?bs’ 1 k) ! i})
using bins-upto-Suc-Un Scanp.hyps(1) nth-idem-upd-bins
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)
also have ... = Scanp k w (bins-upto bs k i U {z})
using Scanp.hyps(1,2,5) Scang.prems(1,2) nth-idem-upd-bins bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis add-mono-thms-linordered-field(1) items-def length-map less-add-one
linorder-le-less-linear not-add-less1)
also have ... C bins bs U Scanp k w {z}
using Scanp.prems(2,3) Scanp-Un Scanp-Earley p-bin-step-mono by fastforce
finally have x: Scanp k w (bins-upto 2bs’ k (i + 1)) C bins bs U Scanp k w
show ?thesis
proof cases
assume al: wlk = a
hence Scanp k w {z} = {inc-item z (k+1)}
using Scanp.hyps(1—3,5) Scanp.prems(1,2) wf-earley-input-elim apply
(auto simp: Scanp-def bin-def)
using wf-bins-kth-bin x by blast
hence Scanp k w (bins-upto ?bs’ k (i + 1)) C bins bs U {inc-item z (k+1)}
using * by blast

also have ... = bins bs U set (items (Scany k w a z 7))
using al Scang.hyps(5) by (auto simp: Scany,-def items-def)
also have ... = bins ?bs’

using Scanpg.hyps(5) Scanp.prems(1) wf-earley-input-elim bins-upd-bins by
(metis add-monol)
finally show ?thesis .
next
assume al: ~wlk = a
hence Scanp k w {z} = {}
using Scanp.hyps(8) by (auto simp: Scanp-def bin-def)
hence Scanp k w (bins-upto 2bs’ k (i + 1)) C bins bs
using * by blast
also have ... C bins ?bs’
using Scang.hyps(5) Scang.prems(1) wf-earley-input-elim bins-upd-bins
by (metis Un-left-absorb add-strict-right-mono subset-Un-eq)
finally show ?thesis .
qed
qed
moreover have Predicty k G (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —

72

have Predicty k G (bins-upto ?bs’ k (i + 1)) = Predicty k G (bins-upto ?bs’ k
i U {items (2bs’ 1 k) ! i})
using bins-upto-Suc-Un Scanp.hyps(1) nth-idem-upd-bins
by (metis Suc-eq-plusl dual-order.refl items-def length-map lessI linorder-not-less)
also have ... = Predictp k G (bins-upto bs ki U {z})
using Scanp.hyps(1,2,5) Scang.prems(1,2) nth-idem-upd-bins bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis add-strict-right-mono items-def le-add1 length-map less-add-one
linorder-not-le)
also have ... C bins bs U Predictr k G {z}
using Scang.prems(2,8) Predictp-Un Predictp-Earleyp-bin-step-mono by
fastforce
also have ... = bins bs
using Scanp.hyps(3,4) Scang.prems(1) wf-earley-input-elim
apply (auto simp: Predictp-def bin-def lhs-rule-def)
by (smt (verit) UnCI in-set-zipE nonterminals-def zip-map-fst-snd)
finally show ?thesis
using Scanp.hyps(5) Scang.prems(1) by (simp add: bins-upd-bins sup.coboundedl1
wf-earley-input-elim)
qed
moreover have Completer k (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Completer k (bins-upto ?bs’ k (i + 1)) = Completer k (bins-upto ?bs’ k
i U {items (2bs" 1 k) ! i})
using bins-upto-Suc-Un Scang.hyps(1) nth-idem-upd-bins
by (metis Suc-eq-plusl items-def length-map lessI less-not-refl not-le-imp-less)
also have ... = Completer k (bins-upto bs k i U {z})
using Scanp.hyps(1,2,5) Scang.prems(1,2) nth-idem-upd-bins bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis add-monol items-def length-map less-add-one linorder-not-le not-add-less1)

also have ... = Completer k (bins-upto bs k i)
using Completer-Un-eq-terminal Scanp.hyps(3,4) Scang.prems bins-upto-sub-bins
subset-iff

wf-bins-impl-wf-items wf-bins-kth-bin wf-item-def x wf-earley-input-elim
by (smt (verit, ccfo-threshold))
finally show ?thesis
using Scanp.hyps(5) Scanp.prems(1,2,3) Completer-Earleyp-bin-step-mono
by (auto simp: bins-upd-bins wf-earley-input-elim, blast)
qed
ultimately have FEarleyp-bin-step k G w (bins ?bs’) C bins (Earleyr-bin' k G w
?bs’ (i+1))
using Scanp.IH Scang.prems Scanp.hyps(5) sound wf Earleyp-bin-step-def
bins-upto-sub-bins wf-earley-input-elim
bins-upd-bins by (metis UnE add-monol le-supl)
thus ?case
using Farleyp-bin-step-sub-mono Earleyr,-bin’-simps(3) Scang.hyps Scang.prems(1)
wf-earley-input-elim bins-upd-bins
by (smt (verit, ccfv-SIG) add-monol sup.cobounded! sup.coboundedI2 sup.orderE)
next

73

case (Pass k G w bs iz a)
have z: z € set (items (bs ! k))
using Pass.hyps(1,2) by auto
have Scanp k w (bins-upto bs k (i + 1)) C bins bs
using Scanpg-def Pass.hyps(5) by auto
moreover have Predicty k G (bins-upto bs k (i + 1)) C bins bs
proof —
have Predictp k G (bins-upto bs k (i + 1)) = Predictp k G (bins-upto bs k i U
{items (bs ! k) ! i})

using bins-upto-Suc-Un Pass.hyps(1) by (metis items-def length-map not-le-imp-less)

also have ... = Predicty k G (bins-upto bs ki U {z})
using Pass.hyps(1,2,5) nth-idem-upd-bins bins-upto-kth-nth-idem by simp
also have ... C bins bs U Predictp k G {z}
using Pass.prems(2) Predictp-Un Predictp-Earleyp-bin-step-mono by blast
also have ... = bins bs
using Pass.hyps(3,4) Pass.prems(1) wf-earley-input-elim
apply (auto simp: Predictp-def bin-def lhs-rule-def)
by (smt (verit, ccfo-SIG) UnCI fst-conv imagel list.set-map nonterminals-def)
finally show ?thesis
using bins-upd-bins Pass.hyps(5) Pass.prems(3) by auto
qged
moreover have Completer k (bins-upto bs k (i + 1)) C bins bs
proof —
have Completep k (bins-upto bs k (i + 1)) = Completer k (bins-upto bs k i U
{z})
using bins-upto-Suc-Un Pass.hyps(1,2)
by (metis items-def length-map not-le-imp-less)
also have ... = Completer k (bins-upto bs k)
using Completep-Un-eq-terminal Pass.hyps Pass.prems bins-upto-sub-bins
subset-iff
wf-bins-impl-wf-items wf-item-def wf-bins-kth-bin x wf-earley-input-elim by
(smt (verit, best))
finally show ?thesis
using Pass.prems(1,2) Completep-Earleyg-bin-step-mono wf-earley-input-elim
by blast
qed
ultimately have FEarleyp-bin-step k G w (bins bs) C bins (Farleyr-bin’ k G w
bs (i+1))

using Pass.IH Pass.prems Farleyg-bin-step-def bins-upto-sub-bins wf-earley-input-elim

by (metis le-sup-iff)
thus ?case
using bins-upd-bins Pass.hyps Pass.prems by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty k G a)
have k > length w V mwlk = a
using Predictp.hyps(4) Predictp.prems(4) is-word-def
by (metis Set.set-insert insert-disjoint(1) not-le-imp-less nth-mem)
have z: z € set (items (bs ! k))

74

using Predictp.hyps(1,2) by auto
hence sound: Vz € set (items(Predicty, k G a)). sound-item G w «
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
have wf: (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict;, by metis
have len: i < length (items (?bs’ ! k))
using length-nth-upd-bin-bins Predictp.hyps(1)
by (metis dual-order.strict-transl items-def length-map linorder-not-less)
have Scanp k w (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Scanp k w (bins-upto ?bs’ k (i + 1)) = Scanp k w (bins-upto ?bs’ ki U
{items (?bs’ | k) ! i})
using Predictp.hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)
also have ... = Scanp k w (bins-upto bs k i U {z})
using Predictp.hyps(1,2) Predictp.prems(1) items-nth-idem-upd-bins bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Scanp k w {z}
using Predictp.prems(2,3) Scanp-Un Scanp-Earleyp-bin-step-mono by fast-

force
also have ... = bins bs
using Predictp.hyps(3) «dength w < kV w ! k # a) by (auto simp: Scanp-def
bin-def)

finally show ?thesis
using Predictp.prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have Predicty k G (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Predictp k G (bins-upto ?bs’ k (i + 1)) = Predicty k G (bins-upto ?bs’ k
i U {items (2bs’ 1 k) ! i})
using Predictp.hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)
also have ... = Predicty k G (bins-upto bs ki U {z})
using Predictp.hyps(1,2) Predictp.prems(1) items-nth-idem-upd-bins bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... C bins bs U Predictp k G {z}
using Predictp.prems(2,3) Predictp-Un Predictp-FEarleyp-bin-step-mono by
fastforce
also have ... = bins bs U set (items (Predicty, k G a))
using Predictp.hyps Predictp.prems(1—3) wf-earley-input-elim
apply (auto simp: Predictp-def Predicty,-def bin-def items-def)
using wf-bins-kth-bin x by blast
finally show ?thesis
using Predictp.prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have Completer k (bins-upto ?bs’ k (i + 1)) C bins ?bs’
proof —
have Completer k (bins-upto ?bs’ k (i + 1)) = Completer k (bins-upto ?bs’ k

75

i U {items (2bs’ 1 k) ! i})
using bins-upto-Suc-Un len by (metis items-def length-map)
also have ... = Completep k (bins-upto bs ki U {z})
using items-nth-idem-upd-bins Predicty.hyps(1,2) Predictg.prems(1) bins-upto-kth-nth-idem
wf-earley-input-elim
by (metis dual-order.refl items-def length-map not-le-imp-less)
also have ... = Completer k (bins-upto bs k)
using Completer-Un-eq-nonterminal Predictp.prems bins-upto-sub-bins Pre-
dictp.hyps(3)
subset-eq wf-bins-kth-bin x wf-bins-impl-wf-items wf-item-def wf-earley-input-elim
by (smt (verit, ccfu-SIG) option.simps(3))
also have ... C bins bs
using Completep-FEarleyp-bin-step-mono Predicty.prems(2) by blast
finally show ?thesis
using bins-upd-bins Predicty.prems(1,2,3) wf-earley-input-elim by blast
qged
ultimately have Earleyp-bin-step k G w (bins ?bs’) C bins (Earleyy-bin’ k G w
?bs’ (i+1))
using Predictp.IH Predictp.prems sound wf Earley g-bin-step-def bins-upto-sub-bins
bins-upd-bins wf-earley-input-elim by (metis UnE le-supl)
hence Farleyp-bin-step k G w (bins ?bs’) C bins (Earleyr-bin’ k G w bs 7)
using Predictp.hyps Earleyr-bin'-simps(5) by simp
moreover have Farleyp-bin-step k G w (bins bs) C Earleyp-bin-step k G w (bins
2bs’)
using Farleyp-bin-step-sub-mono Predicty.prems(1) wf-earley-input-elim bins-upd-bins
by (metis Un-upperl)
ultimately show Zcase
by blast
qed

lemma FEarleyr-bin-step-sub-Earleyr,-bin:
assumes (k, G, w, bs) € wf-earley-input
assumes Farleyp-bin-step k G w (bins-upto bs k 0) C bins bs
assumes Vz € bins bs. sound-item G w z is-word G w nonempty-derives G
shows FEarleyp-bin-step k G w (bins bs) C bins (Earleyr-bin k G w bs)
using assms FEarleyp-bin-step-sub-Earleyy -bin’ Earleyy, -bin-def by metis

lemma bins-eq-items-Completey,:
assumes bins-eq-items as bs start-item x < length as
shows items (Completer, k x as i) = items (Completer, k x bs)
proof —
let Zorig-a = as ! start-item z
let Zorig-b = bs ! start-item x
have items %orig-a = items ?orig-b
using assms by (metis (no-types, opaque-lifting) bins-eq-items-def length-map
nth-map)
thus ?thesis
unfolding Completer,-def by simp
qed

76

lemma FEarleyy-bin'-bins-eq:
assumes (k, G, w, as) € wf-earley-input
assumes bins-eq-items as bs wf-bins G w as
shows bins-eg-items (Earleyr-bin’ k G w as i) (Earleyr-bin' k G w bs 1)
using assms
proof (induction i arbitrary: bs rule: Earleyy-bin'-induct| OF assms(1), case-names
Base Completer Scanp Pass Predictr))
case (Base k G w as 1)
have Farleyr-bin' k G w as i = as
by (simp add: Base.hyps)
moreover have FEarleyr-bin’' k G w bs 1 = bs
using Base.hyps Base.prems(1,2) unfolding bins-eg-items-def
by (metis Earleyy-bin'-simps(1) length-map nth-map wf-earley-input-elim)
ultimately show ?case
using Base.prems(2) by presburger
next
case (Completep k G w as i x)
let ?as’ = upd-bins as k (Completer, k = as 7)
let ?bs’ = upd-bins bs k (Completer, k x bs 1)
have k: k < length as
using Completer.prems(1) wf-earley-input-elim by blast
hence wf-z: wf-item G w x
using Completer.hyps(1,2) Completer.prems(3) wf-bins-kth-bin by fastforce
have (k, G, w, %as) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
moreover have bins-eg-items ?as’ ?bs’
using Completer.hyps(1,2) Completer.prems(2,3) bins-eq-items-dist-upd-bins
bins-eq-items-Completer,
k wf-z wf-bins-kth-bin wf-item-def by (metis dual-order.strict-trans2 lel
nth-mem)
ultimately have bins-eg-items (Earleyr-bin’ k G w ?as’ (i + 1)) (Earleyr-bin’
kEGw 2bs' (i + 1))
using Completer.IH wf-earley-input-elim by blast
moreover have Earleyr-bin' k G w as i = Farleyr-bin' k G w %as’ (i+1)
using Completer.hyps by simp
moreover have Earleyr-bin’ k G w bs i = Earleyp-bin’ k G w 2bs’ (i+1)
using Completer.hyps Completer.prems unfolding bins-eqg-items-def
by (metis Earleyy,-bin'-simps(2) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case
by argo
next
case (Scanp k G w as iz a)
let %as’ = upd-bins as (k+1) (Scany k w a x 7)
let ?bs’ = upd-bins bs (k+1) (Scany k w a z 7)
have (k, G, w, %as’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by fast
moreover have bins-eg-items ?as’ ?bs’
using Scang.hyps(5) Scanp.prems(1,2) bins-eg-items-dist-upd-bins add-monol

77

wf-earley-input-elim by metis
ultimately have bins-eg-items (Earleyr,-bin’ k G w ?as’ (i + 1)) (Earleyr-bin’
kGw %bs' (i + 1))
using Scanp.IH wf-earley-input-elim by blast
moreover have Farleyp-bin’ k G w as i = Earleyr-bin’ k G w 2as’ (i+1)
using Scang.hyps by simp
moreover have FEarleyy-bin’ k G w bs i = Farleyy-bin’ k G w 9bs’ (i+1)
using Scanp.hyps Scanp.prems unfolding bins-eg-items-def
by (smt (verit, ccfv-threshold) Farleyr,-bin’-simps(3) length-map nth-map wf-earley-input-elim)
ultimately show Zcase
by argo
next
case (Pass k G w as iz a)
have bins-eq-items (Earleyr-bin' k G w as (i + 1)) (Farleyr-bin’ k G w bs (i +
1)
using Pass.prems Pass.IH by blast
moreover have FEarleyy-bin’ k G w as i = Earleyp-bin’ k G w as (i+1)
using Pass.hyps by simp
moreover have Earleyr-bin’ k G w bs i = Earleyp-bin’ k G w bs (i+1)
using Pass.hyps Pass.prems unfolding bins-eg-items-def
by (metis Earleyy,-bin'-simps(4) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show Zcase
by argo
next
case (Predicty k G w as i z a)
let %as’ = upd-bins as k (Predicty, k G a)
let ?bs’ = upd-bins bs k (Predicty k G a)
have (k, G, w, ?as’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predicty, by fast
moreover have bins-eq-items ?as’ ?bs’
using Predictp.prems(1,2) bins-eq-items-dist-upd-bins wf-earley-input-elim by
blast
ultimately have bins-eg-items (Earleyy-bin’ k G w %as’ (i + 1)) (Earleyr-bin’
kGw %bs' (i + 1))
using Predictp.IH wf-earley-input-elim by blast
moreover have Earley-bin’ k G w as i = FEarley-bin' k G w %as’ (i+1)
using Predictp.hyps by simp
moreover have FEarleyr-bin’ k G w bs i = Farleyr-bin’ k G w ?bs’ (i+1)
using Predictg.hyps Predictr.prems unfolding bins-eq-items-def
by (metis Earleyy-bin'-simps(5) length-map nth-map wf-earley-input-elim)
ultimately show ?case
by argo
qed

lemma FEarleyy -bin'-idem:

assumes (k, G, w, bs) € wf-earley-input

assumes i < j Vz € bins bs. sound-item G w x nonempty-derives G

shows bins (Earleyr-bin’ k G w (Earleyr-bin' k G w bs i) j) = bins (Earleyr-bin
kG w bsi)

/

78

using assms
proof (induction i arbitrary: j rule: Earleyr,-bin’-induct|OF assms(1), case-names
Base Completer Scang Pass Predictr))
case (Completer k G w bs i x)
let 2bs’ = upd-bins bs k (Completer, k z bs 1)
have z: x € set (items (bs ! k))
using Completer.hyps(1,2) by auto
have wf: (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completes, by blast
hence Vz € set (items (Completer, k x bs i)). sound-item G w «
using sound-Complete;, Completer.hyps(3) Completep.prems wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: Vx € bins ?bs’. sound-item G w z
by (metis Completer.prems(1,3) UnE bins-upd-bins wf-earley-input-elim)
show Zcase
proof cases
assume i+1 < j
thus ?thesis
using wf sound Completer Earleyr-bin’-simps(2) by metis
next
assume - i+1 < j
hence i = j
using Completer.prems(2) by simp
have bins (Earleyr-bin' k G w (Earleyr-bin’ k G w bs i) j) = bins (Earleyr-bin’
k G w (Earleyr-bin’ k G w ?bs’ (i+1)) j)
using Farley,-bin'-simps(2) Completer.hyps(1—3) by simp
also have ... = bins (Earley-bin’ k G w (Earleyy-bin' k G w 2bs’ (i+1))
(+1))
proof —
let ?bs"’ = Earleyr-bin' k G w 2bs’ (i+1)
have length (items (?bs"' ! k)) > length (items (bs ! k))
using length-nth-bin-FEarleyr-bin’ length-nth-upd-bin-bins order-trans wf
Completer.hyps Completer.prems(1)
by (smt (verit, ccfu-threshold) Earleyy-bin'-simps(2))
hence 0: — length (items (bs”’ ! k)) < j
using <i = j» Completer.hyps(1) by linarith
have = = items (?bs’ 1 k) ! j
using «i = j» items-nth-idem-upd-bins Completer.hyps(1,2)
by (metis items-def length-map not-le-imp-less)
hence 1: z = items (?bs”' 1 k) ! j
using i = j» kth-Earleyr-bin’-bins Completer.hyps Completer.prems(1)
Earleyy -bin'-simps(2) lel by metis
have bins (Earleyy,-bin' k G w ?2bs'' j) = bins (Earleyr,-bin' k G w (upd-bins
2bs"" k (Completer, k x 2bs" 7)) (j+1))
using Farleyr-bin’-simps(2) 0 1 Completer.hyps(1,3) Completer.prems(2)
<t = j» by auto
moreover have bins-eg-items (upd-bins ?bs’’ k (Completer, k x ?bs’ 7)) 2bs’’
proof —

79

have k < length bs
using Completer.prems(1) wf-earley-input-elim by blast
have 0: set (Completey, k x bs i) = set (Completer, k x 2bs" 1)
proof (cases start-item z = k)
case True
thus ?thesis
using impossible-complete-item kth-bin-sub-bins Completer.hyps(8)
Completep.prems wf-earley-input-elim
wf-bins-kth-bin x next-symbol-def by (metis option.distinct(1) subsetD)
next
case Fulse
hence start-item x < k
using z Completer.prems(1) wf-bins-kth-bin wf-item-def nat-less-le by
(metis wf-earley-input-elim)
hence bs ! start-item x = ?bs’" | start-item x
using False nth-idem-upd-bins nth-Earleyy -bin'-eq wf by metis
thus ?thesis
using Completer -eq-start-item by metis
qed
have set (items (Completer, k x bs 7)) C set (items (?bs’ ! k))
by (simp add: <k < length bsy upd-bins-def set-items-upds-bin)
hence set (items (Completer, k x ?bs" i) C set (items (?bs’! k))
using 0 by (simp add: items-def)
also have ... C set (items (?bs"' | k))
by (simp add: wf nth-bin-sub-Earleyr,-bin’)
finally show ?thesis
using bins-eg-items-upd-bins by blast
qed
moreover have (k, G, w, upd-bins ?bs” k (Completer, k z ?bs" i)) €
wf-earley-input
using wf-earley-input-Earleyy -bin’ wf-earley-input-Complete;, Completer.hyps
Completep.prems(1)
length (items (bs ! k)) < length (items (2bs” ! k))» kth-Earleyy,-bin'-bins
0 1 by blast
ultimately show ?Zthesis
using Farleyy -bin’-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have ... = bins (Earleyy-bin' k G w 2bs’ (i + 1))
using Completer . IH|[OF wf - sound Completer.prems(4)] <i = j» by blast
finally show ?thesis
using Completer.hyps by simp
qed
next
case (Scanp k G w bs iz a)
let 2bs’ = upd-bins bs (k+1) (Scany k w a z 7)
have z: z € set (items (bs ! k))
using Scang.hyps(1,2) by auto
hence Vz € set (items (Scang, k w a z ©)). sound-item G w «

80

using sound-Scany, Scanp.hyps(3,5) Scang.prems(1,2,8) wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: Vx € bins ?bs’. sound-item G w x
using Scanp.hyps(5) Scanp.prems(1,3) bins-upd-bins wf-earley-input-elim
by (metis UnE add-less-cancel-right)
have wf: (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scanp.prems(1) wf-earley-input-Scany, by metis
show ?Zcase
proof cases
assume i+1 < j
thus ?thesis
using sound Scang by (metis Earleyr-bin’-simps(3) wf-earley-input-Scany,)
next
assume - i+1 < j
hence i = j
using Scanp.prems(2) by auto
have bins (Earleyr,-bin’ k G w (Farleyr,-bin’ k G w bs i) j) = bins (Earleyr-bin’
k G w (Earleyr-bin’ k G w ?bs’ (i+1)) j)
using Scang.hyps by simp
also have ... = bins (Earleyp-bin’ k G w (Earleyp-bin’ k G w 2bs’ (i+1))
(+1))
proof —
let ?bs’” = Earleyr-bin' k G w 2bs’ (i+1)
have length (items (?bs” | k)) > length (items (bs ! k))
using length-nth-bin-Earley -bin' length-nth-upd-bin-bins order-trans Scang.hyps
Scanp.prems(1) Earleyr-bin'-simps(3)
by (smt (verit, ccfv-SIG))
hence bins (FEarleyr-bin’ k G w ?bs" j) = bins (Earleyr-bin’ k G w (upd-bins
2bs" (k+1) (Scang, k w a z 7)) (j+1))
using «i = j» kth-Earleyr-bin’-bins nth-idem-upd-bins Earleyy,-bin'-simps(3)
Scanp.hyps Scanpg.prems(1) by (smt (verit, best) lel le-trans)
moreover have bins-eg-items (upd-bins ?bs’’ (k+1) (Scany k w a x 7)) ?bs"
proof —
have k+1 < length bs
using Scanp.hyps(5) Scanp.prems wf-earley-input-elim by fastforce+
hence set (items (Scany, k w a x 7)) C set (items (?bs’ ! (k+1)))
by (simp add: upd-bins-def set-items-upds-bin)
also have ... C set (items (?bs"' ! (k+1)))
using wf nth-bin-sub-Earley;-bin’ by blast
finally show ?thesis
using bins-eg-items-upd-bins by blast
qed
moreover have (k, G, w, upd-bins ?bs"" (k+1) (Scany k w a z 7)) €
wf-earley-input
using wf-earley-input-FEarleyr,-bin’ wf-earley-input-Scany, Scang.hyps Scanp.prems(1)
length (items (bs ! k)) < length (items (2bs’’ ! k))» kth-Earleyr,-bin’-bins
by (smt (verit, ccfv-SIG) Earleyr-bin'-simps(8) linorder-not-le order.trans)
ultimately show ?Zthesis

81

using Farleyr -bin'-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have ... = bins (Earleyp-bin' k G w ?bs’ (i + 1))
using «i = j» Scanp.IH Scang.prems Scang.hyps sound wf-earley-input-Scany,
by fast
finally show ?thesis
using Scanp.hyps by simp
qed
next
case (Pass k G w bs i z a)
show ?Zcase
proof cases
assume i+1 < j
thus ?thesis
using Pass by (metis Earleyr-bin'-simps(4))
next
assume — i+1 < j
show ?thesis
using Pass Earleyy,-bin'-simps(1,4) kth-Earleyr,-bin’-bins by (metis Suc-eg-plusl
Suc-lel antisym-conv2 not-le-imp-less)
qed
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty, k G a)
have z: z € set (items (bs ! k))
using Predictp.hyps(1,2) by auto
hence Vz € set (items(Predict, k G a)). sound-item G w x
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
hence sound: Vx € bins ?bs’. sound-item G w x
using Predictp.prems(1,3) UnE bins-upd-bins wf-earley-input-elim by metis
have wf: (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predict;, by metis
have len: i < length (items (?bs’! k))
using length-nth-upd-bin-bins Predictp.hyps(1) Orderings.preorder-class.dual-order.strict-transl
linorder-not-less
by (metis items-def length-map)
show ?Zcase
proof cases
assume i+1 < j
thus ?thesis
using sound wf Predictp by (metis Earleyy-bin’-simps(5))
next
assume — i+1 < j
hence i = j
using Predictr.prems(2) by auto
have bins (Earleyr-bin' k G w (Earleyr-bin’ k G w bs i) j) = bins (Earleyr-bin’
k G w (Earleyr-bin’ k G w ?bs’ (i+1)) j)

82

using Predictp.hyps by simp
also have ... = bins (Earleyy-bin' k G w (Farleyr-bin’ k G w ?bs’ (i+1))
(+1))
proof —
let ?bs"’ = Earleyr-bin' k G w 2bs’ (i+1)
have length (items (?bs"' ! k)) > length (items (bs ! k))
using length-nth-bin-FEarleyy,-bin’ length-nth-upd-bin-bins order-trans wf
by (metis (no-types, lifting) items-def length-map)
hence bins (Earleyr-bin’ k G w ?bs” j) = bins (Earleyr-bin’ k G w (upd-bins
?bs" k (Predicty, k G a)) (j+1))
using i = j» kth-Farleyr-bin’-bins nth-idem-upd-bins Earleyr,-bin’-simps(5)
Predictp.hyps Predictp.prems(1) length-bins-Farleyy, -bin’
wf-bins-Farleyr,-bin’ wf-bins-kth-bin wf-item-def x by (smt (verit, ccfv-SIG)
linorder-not-le order.trans)
moreover have bins-eq-items (upd-bins ?bs’’ k (Predicty, k G a)) ?bs"
proof —
have k < length bs
using wf-earley-input-elim[OF Predictp.prems(1)] by blast
hence set (items (Predicty, k G a)) C set (items (7bs’ ! k))
by (simp add: upd-bins-def set-items-upds-bin)
also have ... C set (items (?bs"" | k))
using wf nth-bin-sub-Earley-bin’ by blast
finally show ?thesis
using bins-eq-items-upd-bins by blast
qed
moreover have (k, G, w, upd-bins ?bs’" k (Predicty, k G a)) € wf-earley-input
using wf-earley-input-Farleyr -bin’ wf-earley-input-Predict;, Predicty.hyps
Predictp.prems(1)
length (items (bs ! k)) < length (items (2bs’’ ! k))» kth-Earleyr,-bin’-bins
by (smt (verit, best) Earleyy,-bin'-simps(5) dual-order.trans not-le-imp-less)
ultimately show ?Zthesis
using Farleyy -bin’'-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast
qed
also have ... = bins (Earleyy-bin' k G w ?bs’ (i + 1))
using <i = j» Predictp.IH Predictp.prems sound wf by (metis order-refl)
finally show ?thesis
using Predictp.hyps by simp
qed
qed simp

lemma FEarleyy -bin-idem:

assumes (k, G, w, bs) € wf-earley-input

assumes Vz € bins bs. sound-item G w x nonempty-derives G

shows bins (Earleyy-bin k G w (Earleyr,-bin k G w bs)) = bins (Earleyy,-bin k
G w bs)

using assms Farleyr-bin'-idem Earleyy-bin-def le0 by metis

lemma funpower-FEarley g -bin-step-sub-Earleyr, -bin:

83

assumes (k, G, w, bs) € wf-earley-input
assumes FEarleyp-bin-step k G w (bins-upto bs k 0) C bins bs Vx € bins bs.
sound-item G w x
assumes is-word G w nonempty-derives G
shows funpower (Earleyp-bin-step k G w) n (bins bs) C bins (Earleyr-bin k G
w bs)
using assms
proof (induction n)
case ()
thus ?case
using FEarleyr-bin’-mono FEarleyr -bin-def by (simp add: FEarleyr-bin’-mono
Earleyy,-bin-def)
next
case (Suc n)
have 0: Earleyp-bin-step k G w (bins-upto (Earleyr-bin k G w bs) k 0) C bins
(Earleyr-bin k G w bs)
using Farleyy,-bin'-mono bins-upto-k0-Farleyr -bin’-eq assms(1,2) Earleyy-bin-def
order-trans
by (metis (no-types, lifting))
have funpower (Earleyp-bin-step k G w) (Suc n) (bins bs) C Earleyp-bin-step k
G w (bins (Earleyr-bin k G w bs))
using Farleyp-bin-step-sub-mono Suc by (metis funpower.simps(2))
also have ... C bins (Earleyr-bin k G w (Farleyy-bin k G w bs))
using Farleyp-bin-step-sub-Farley-bin Suc.prems wf-bins-Earleyr,-bin sound-Earleyr,-bin
0 wf-earley-input-Earleyy -bin by blast
also have ... C bins (Earleyr-bin k G w bs)
using Farleyy -bin-idem Suc.prems by blast
finally show ?Zcase .
qed

lemma Farleyr-bin-sub-FEarleyr,-bin:

assumes (k, G, w, bs) € wf-earley-input

assumes FEarleyp-bin-step k G w (bins-upto bs k 0) C bins bs Yz € bins bs.
sound-item G w x

assumes is-word G w nonempty-derives G

shows FEarleyp-bin k G w (bins bs) C bins (Earleyr-bin k G w bs)

using assms funpower-FEarley g -bin-step-sub-Earleyr,-bin Earleyp-bin-def elem-limit-simp
by fastforce

lemma FEarleyp-bins-sub-FEarleyr -bins:
assumes k < length w
assumes is-word G w nonempty-derives G
shows Farleyp-bins k G w C bins (Earleyr-bins k G w)
using assms
proof (induction k)
case ()
hence Farleyp-bin 0 G w (Initp G) C bins (Farleyr-bin 0 G w (Inity, G w))
using Farleyp-bin-sub-Earleyy,-bin Inity -eq-Init g length-bins-Inity, Inity-eq-Initp
sound-Init bins-upto-empty

84

Earleyg-bin-step-empty bins-upto-sub-bins wf-earley-input-Inity, wf-earley-input-elim
by (smt (verit, ccfv-threshold) Init p-sub-Earley basic-trans-rules(31) sound-Earley
wf-bins-impl-wf-items)
thus ?case
by simp
next
case (Suc k)
have wf: (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
have sub: Earleyp-bin-step (Suc k) G w (bins-upto (Earleyr-bins k G w) (Suc k)
0) C bins (Farleyy-bins k G w)
proof —
have bin (bins-upto (Earleyr-bins k G w) (Suc k) 0) (Suc k) = {}
using kth-bin-bins-upto-empty wf Suc.prems wf-earley-input-elim by blast
hence Earleyp-bin-step (Suc k) G w (bins-upto (Earleyr-bins k G w) (Suc k)
0) = bins-upto (Earleyr-bins k G w) (Suc k) 0
unfolding Farleyp-bin-step-def Scanp-def Completep-def Predict p-def bin-def
by blast
also have ... C bins (Earleyy,-bins k G w)
using wf Suc.prems bins-upto-sub-bins wf-earley-input-elim by blast
finally show ?thesis .
qed
have sound: Vx € bins (Earleyy,-bins k G w). sound-item G w z
using Suc Earleyy -bins-sub-Earleyp-bins by (metis Suc-leD Earleyp-bins-sub-Earley
in-mono sound-Farley wf-Earley)
have Earleyr-bins (Suc k) G w C Earleyp-bin (Suc k) G w (bins (Earleyr,-bins
kG w))
using Suc Farleyp-bin-sub-mono by simp
also have ... C bins (Earleyr-bin (Suc k) G w (Earleyy-bins k G w))
using Farleyp-bin-sub-Farleyr-bin wf sub sound Suc.prems by fastforce
finally show ?case
by simp
qed

lemma FEarleyp-sub-Farleyr:
assumes is-word G w e-free G
shows Farleyr G w C bins (Earleyr, G w)
using assms Farleyp-bins-sub-FEarleyr-bins Farleyp-def Farleyr,-def
by (metis e-free-impl-nonempty-derives dual-order.refl)

theorem completeness-Earleyy,:

assumes G F [6 G] =* w is-word G w e-free G

shows recognizing (bins (Earleyr, G w)) G w

using assms Farleyp-sub-Farley; Farleyr-sub-Farleyr completeness-Farleyr by
(metis subset-antisym)

8.8 Correctness

theorem Farley-eq-Earleyy,:

85

assumes is-word G w e-free G

shows Farley G w = bins (Earleyy, G w)

using assms Farleyp-sub-FEarleyr, FEarleyr-sub-Earleyr Farley-eq-Earleyr by
blast

lemma correctness-recognizer:
assumes is-word G w e-free G
shows recognizer G w +— G F [6 G] =* w (is ?L +— ?R)
proof standard
assume ?L
then obtain z where z € set (items (Earleyr, G w ! length w)) is-finished G w
x
using assms(1) unfolding recognizer-def by blast
moreover have z € bins (Earley, G w)
using assms(2) kth-bin-sub-bins <z € set (items (Earleyr, G w ! length w))»
by (metis (no-types, lifting) Earleyr-def dual-order.refl length-Farleyr -bins
length-bins-Inity, less-add-one subsetD)
ultimately show 7R
using recognizing-def soundness-Farleyr, by blast
next
assume ?R
thus 2L
using assms wf-item-in-kth-bin recognizing-def is-finished-def
by (metis completeness-Earleyy, recognizer-def wf-bins-Earleyy,)
qed

end
theory FEarley-Parser
imports
FEarley-Recognizer
HOL- Library. Monad-Syntaz
begin

9 Earley parser

9.1 Pointer lemmas

definition predicts :: 'a item = bool where
predicts x = start-item x = end-item x A dot-item z = 0

definition scans :: ‘a list = nat = 'a item = 'a item = bool where
scans w k ¢y = y = inc-item x k A (3 a. next-symbol x = Some a N wl(k—1) =

a)

definition completes :: nat = 'a item = 'a item = 'a item = bool where
completes k ¢y z = y = inc-item z k A is-complete z N start-item z = end-item
HAWAN
(3 N. next-symbol x = Some N N N = lhs-item z)

86

definition sound-null-ptr :: 'a item X pointer = bool where
sound-null-ptr e = (snd e = Null — predicts (fst e))

definition sound-pre-ptr :: 'a list = 'a bins = nat = 'a item X pointer = bool
where
sound-pre-ptr w bs k e = V pre. snd e = Pre pre —>
k> 0 N pre < length (bs!(k—1)) A scans w k (fst (bs!(k—1)!pre)) (fst e)

definition sound-prered-ptr :: 'a bins = nat = 'a item X pointer = bool where
sound-prered-ptr bs k e = Y p ps k' pre red. snd e = PreRed p ps N\ (k', pre, red)
€ set (p#ps) —
k' < k A pre < length (bs'k") A red < length (bslk) A completes k (fst (bs!k'Ipre))
(fst e) (fst (bslklred))

definition sound-ptrs :: ‘a list = 'a bins = bool where
sound-ptrs w bs = Vk < length bs. Ve € set (bs'k).
sound-null-ptr e A sound-pre-ptr w bs k e A sound-prered-ptr bs k e

definition mono-red-ptr :: ‘a bins = bool where
mono-red-ptr bs =V k < length bs. Vi < length (bs!k).
YV k' pre red ps. snd (bs'k!i) = PreRed (k', pre, red) ps — red < i

lemma nth-item-upd-bin:

n < length es = fst (upd-bin e es | n) = fst (esln)

by (induction es arbitrary: e n) (auto simp: less-Suc-eq-0-disj split: prod.splits
pointer.splits)

lemma upd-bin-append:
fst e ¢ set (items es) = upd-bin e es = es Q [¢]
by (induction es arbitrary: e) (auto simp: items-def split: prod.splits pointer.splits)

lemma upd-bin-null-pre:
fst e € set (items es) => snd e = Null V snd e = Pre pre => upd-bin e es = es
by (induction es arbitrary: e) (auto simp: items-def split: prod.splits, fastforce+)

lemma upd-bin-prered-nop:
assumes distinct (items es) i < length es
assumes fst ¢ = fst (es!i) snd e = PreRed p ps #p ps. snd (es!i) = PreRed p ps
shows upd-bin e es = es
using assms
by (induction es arbitrary: e i) (auto simp: less-Suc-eq-0-disj items-def split:
prod.splits pointer.splits)

lemma upd-bin-prered-upd:

assumes distinct (items es) i < length es

assumes fst e = fst (esli) snd e = PreRed p rs snd (es!i) = PreRed p’ rs’ upd-bin
e es = es’

shows snd (es'li) = PreRed p’ (p#rsQrs’) A (Vj < length es’. i#j — es'lj =
esli) A length (upd-bin e es) = length es

87

using assms
proof (induction es arbitrary: e i es’)
case (Cons e’ es)
show ?Zcase
proof cases
assume *: fst e = fst e’
show ?thesis
proof (cases 3z zp zs y yp ys. e = (x, PreRed zp zs) N e’ = (y, PreRed yp ys))
case True
then obtain z ap zs y yp ys where ee”: e = (z, PreRed xp zs) e’ = (y, PreRed
ypys) T =1y
using * by auto
have simp: upd-bin e (e’ # es’) = (z, PreRed yp (zp # zs Q ys)) # es’
using True ee’ by simp
show ?thesis
using Cons simp ee’ apply (auto simp: items-def)
using less-Suc-eq-0-disj by fastforce+
next
case Fulse
hence upd-bin e (e' # es’) = e’ # es’
using * by (auto split: pointer.splits prod.splits)
thus ?thesis
using Fulse * Cons.prems(1,2,3,4,5) by (auto simp: less-Suc-eg-0-disj
items-def split: prod.splits)
qed
next
assume x*: fst e # fst e’
have simp: upd-bin e (e’ # es) = e’ # upd-bin e es
using * by (auto split: pointer.splits prod.splits)
have 0: distinct (items es)
using Cons.prems(1) unfolding items-def by simp
have 1: i—1 < length es
using Cons.prems(2,3) * by (metis One-nat-def lel less-diff-conv2 less-one
list.size(4) nth-Cons-0)
have 2: fst e = fst (esl(i—1))
using Cons.prems(3) * by (metis nth-Cons’)
have 3: snd e = PreRed p rs
using Cons.prems(4) by simp
have 4: snd (es!(i—1)) = PreRed p’ rs’
using Cons.prems(3,5) * by (metis nth-Cons’)
have snd (upd-bin e es!(i—1)) = PreRed p’ (p # rs @Q rs’) A
(Vj < length (upd-bin e es). i—1 # j — (upd-bin e es) | j = es ! j)
using Cons.IH[OF 0 1 2 3 4] by blast
hence snd ((e’ # upd-bin e es) | i) = PreRed p’ (p # rs Q rs’) A
(Vj < length (e’ # upd-bin e es). i # j — (e’ # upd-bin e es) | j = (e' #
s) 1))
using x Cons.prems(2,3) less-Suc-eq-0-disj by auto
moreover have ¢’ # upd-bin e es = es’
using Cons.prems(6) simp by auto

88

ultimately show ¢thesis
by (metis 0 1 2 3 4 Cons.IH Cons.prems(6) length-Cons)
qed
qed simp

lemma sound-ptrs-upd-bin:
assumes sound-ptrs w bs k < length bs es = bslk distinct (items es)
assumes sound-null-ptr e sound-pre-ptr w bs k e sound-prered-ptr bs k e
shows sound-ptrs w (bs[k := upd-bin e es))
unfolding sound-ptrs-def
proof (standard, standard, standard)
fix idx elem
let %bs = bslk := upd-bin e es]
assume a0: idz < length ?bs
assume al: elem € set (%bs ! idz)
show sound-null-ptr elem N sound-pre-ptr w ?bs idx elem A sound-prered-ptr ?bs
idx elem
proof cases
assume a2: idr = k
have elem € set es = sound-pre-ptr w bs idzx elem
using a0 a2 assms(1—238) sound-ptrs-def by blast
hence pre-es: elem € set es = sound-pre-ptr w ?bs idx elem
using a2 unfolding sound-pre-ptr-def by force
have elem = e = sound-pre-ptr w bs idx elem
using a2 assms(6) by auto
hence pre-e: elem = ¢ = sound-pre-ptr w ?bs idx elem
using a2 unfolding sound-pre-ptr-def by force
have elem € set es = sound-prered-ptr bs idx elem
using a0 a2 assms(1—23) sound-ptrs-def by blast
hence prered-es: elem € set es = sound-prered-ptr (bs[k := upd-bin e es]) idx
elem
using a2 assms(2,3) length-upd-bin nth-item-upd-bin unfolding sound-prered-ptr-def
by (smt (verit, ccfv-SIG) dual-order.strict-transl nth-list-update)
have elem = e = sound-prered-ptr bs idx elem
using a2 assms(7) by auto
hence prered-e: elem = e = sound-prered-ptr ?bs idz elem
using a2 assms(2,3) length-upd-bin nth-item-upd-bin unfolding sound-prered-ptr-def
by (smt (verit, best) dual-order.strict-trans1 nth-list-update)
consider (A) fst e ¢ set (items es) |
(B) fst e € set (items es) A (Ipre. snd e = Null V snd e = Pre pre) |
(C) fst e € set (items es) A = (Ipre. snd e = Null V snd e = Pre pre)
by blast
thus ?thesis
proof cases
case A
hence clem € set (es @ [¢])
using al a2 upd-bin-append assms(2) by fastforce
thus ?thesis
using assms(1—38,5) pre-e pre-es prered-e prered-es sound-ptrs-def by auto

89

next
case B
hence elem € set es
using al a2 upd-bin-null-pre assms(2) by fastforce
thus ?thesis
using assms(1—38) pre-es prered-es sound-ptrs-def by blast
next
case C
then obtain ¢ p ps where C: i < length es A fst e = fst (esli) A snd e =
PreRed p ps
by (metis assms(4) distinct-Exl items-def length-map nth-map pointer.exhaust)
show ?thesis
proof cases
assume fp’ ps’. snd (es!i) = PreRed p' ps’
hence C': elem € set es
using al a2 C upd-bin-prered-nop assms(2,4) by (metis nth-list-update-eq)
thus ?thesis
using assms(1—3) sound-ptrs-def pre-es prered-es by blast
next
assume — (A p’ ps’. snd (es!i) = PreRed p’ ps’)
then obtain p’ ps’ where D: snd (esli) = PreRed p’ ps’
by blast
hence 0: snd (upd-bin e esli) = PreRed p’ (p#psQps’) A (Vj < length
(upd-bin e es). i#j — upd-bin e eslj = eslj)
using C assms(4) upd-bin-prered-upd by blast
obtain j where 1: j < length es A elem = upd-bin e eslj
using al a2 assms(2) C items-def bin-eg-items-upd-bin by (metis
in-set-conv-nth length-map nth-list-update-eq nth-map)
show ?thesis
proof cases
assume a3: i=j
hence a3: snd elem = PreRed p’ (p#psQps’)
using 0 1 by blast
have sound-null-ptr elem
using a3 unfolding sound-null-ptr-def by simp
moreover have sound-pre-ptr w ?bs idx elem
using a8 unfolding sound-pre-ptr-def by simp
moreover have sound-prered-ptr ?bs idx elem
unfolding sound-prered-ptr-def
proof (standard, standard, standard, standard, standard, standard)
fix P PS k' pre red
assume a4: snd elem = PreRed P PS A (k', pre, red) € set (P#PS)
show k' < idz A pre < length (bslk := upd-bin e es|'k’) A red < length
(bs[k := upd-bin e es|lidzx) A
completes idz (fst (bs[k := upd-bin e es|'k'\pre)) (fst elem) (fst (bs[k :=
upd-bin e es|lidz!red))
proof cases
assume ad: (k', pre, red) € set (p#ps)
show ?thesis

90

using 0 1 C a2 a4 a5 prered-es assms(2,3,7) sound-prered-ptr-def
length-upd-bin nth-item-upd-bin
by (smt (verit) dual-order.strict-trans1 nth-list-update-eq nth-list-update-neq
nth-mem)
next
assume ad: (k') pre, red) ¢ set (p#ps)
hence a5: (k', pre, red) € set (p'#ps’)
using a3 a4 by auto
have k' < idx A pre < length (bs'k’) A red < length (bslidz) A
completes idz (fst (bs!k'\pre)) (fst €) (fst (bslidx!red))
using assms(1—3) C' D a2 a5 unfolding sound-ptrs-def sound-prered-ptr-def
by (metis nth-mem)
thus ?thesis
using 0 1 C a4 assms(2,3) length-upd-bin nth-item-upd-bin prered-es
sound-prered-ptr-def
by (smt (verit, best) dual-order.strict-transl nth-list-update-eq
nth-list-update-neq nth-mem)
qed
qed
ultimately show #thesis
by blast
next
assume a3: i#j
hence elem € set es
using 0 1 by (metis length-upd-bin nth-mem order-less-le-trans)
thus ?thesis
using assms(1—3) pre-es prered-es sound-ptrs-def by blast
qed
qed
qed
next
assume a2: idr # k
have null: sound-null-ptr elem
using a0 al a2 assms(1) sound-ptrs-def by auto
have sound-pre-ptr w bs idx elem
using a0 al a2 assms(1,2) unfolding sound-ptrs-def by simp
hence pre: sound-pre-ptr w ?bs idx elem
using assms(2,3) length-upd-bin nth-item-upd-bin unfolding sound-pre-ptr-def
using dual-order.strict-trans1 nth-list-update by (metis (no-types, lifting))
have sound-prered-ptr bs idx elem
using a0 al a2 assms(1,2) unfolding sound-ptrs-def by simp
hence prered: sound-prered-ptr ?bs idx elem
using assms(2,3) length-upd-bin nth-item-upd-bin unfolding sound-prered-ptr-def
by (smt (verit, best) dual-order.strict-trans1 nth-list-update)
show ?thesis
using null pre prered by blast
qed
qed

91

lemma mono-red-ptr-upd-bin:
assumes mono-red-ptr bs k < length bs es = bslk distinct (items es)
assumes V&’ pre red ps. snd e = PreRed (k', pre, red) ps — red < length es
shows mono-red-ptr (bs[k := upd-bin e es])
unfolding mono-red-ptr-def
proof (standard, standard)
fix idz
let ?bs = bs[k := upd-bin e es]
assume a0: idx < length ?bs
show Vi < length (?bslidz). V&' pre red ps. snd (?bslidz!i) = PreRed (k', pre,
red) ps — red < {
proof cases
assume al: idr=k
consider (A) fst e ¢ set (items es) |
(B) fst e € set (items es) A (Ipre. snd e = Null V snd e = Pre pre) |
(C) fst e € set (items es) A — (Ipre. snd e = Null V snd e = Pre pre)
by blast
thus ?thesis
proof cases
case A
hence upd-bin e es = es @Q [¢]
using upd-bin-append by blast
thus ?thesis
using al assms(1—3,5) mono-red-ptr-def
by (metis length-append-singleton less-antisym nth-append nth-append-length
nth-list-update-eq)
next
case B
hence upd-bin e es = es
using upd-bin-null-pre by blast
thus ?thesis
using al assms(1—3) mono-red-ptr-def by force
next
case C
then obtain i p ps where C: i < length es fst e = fst (esli) snd e = PreRed
p ps
by (metis in-set-conv-nth items-def length-map nth-map pointer.exhaust)
show ?thesis
proof cases
assume fp’ ps’. snd (es!i) = PreRed p’ ps’
hence upd-bin e es = es
using upd-bin-prered-nop C assms(4) by blast
thus ?thesis
using al assms(1—3) mono-red-ptr-def by (metis nth-list-update-eq)
next
assume — (A p’ ps’. snd (es!i) = PreRed p’ ps’)
then obtain p’ ps’ where D: snd (esli) = PreRed p’ ps’
by blast
have 0: snd (upd-bin e esli) = PreRed p’ (p#psQps’) A

92

(Vj < length (upd-bin e es). i # j —> upd-bin e eslj = eslj) A
length (upd-bin e es) = length es
using C' D assms(4) upd-bin-prered-upd by blast
show ?thesis
proof (standard, standard, standard, standard, standard, standard, standard)
fix j k' pre red PS
assume a2: j < length (?bslidz)
assume a3: snd (?bslidz!j) = PreRed (k', pre, red) PS
have 1: ?bslide = upd-bin e es
by (simp add: al assms(2))
show red < j
proof cases
assume a4: i=j
show ?thesis
using 0 1 C(1) D a8 a4 assms(1—3) unfolding mono-red-ptr-def by
(metis pointer.inject(2))
next
assume a4: i#£j
thus ?thesis
using 0 1 a2 a3 assms(1) assms(2) assms(3) mono-red-ptr-def by
force
qed
qged
qed
qed
next
assume al: idr#k
show ?thesis
using a0 al assms(1) mono-red-ptr-def by fastforce
qed
qed

lemma sound-mono-ptrs-upds-bin:
assumes sound-ptrs w bs mono-red-ptr bs k < length bs b = bslk distinct (items
b)
assumes V e € set es. sound-null-ptr e A sound-pre-ptr w bs k e A sound-prered-ptr
bs k e
assumes Ve € set es. VE' pre red ps. snd e = PreRed (k', pre, red) ps — red
< length b
shows sound-ptrs w (bs[k := upds-bin es b]) A mono-red-ptr (bs[k := upds-bin es
o)
using assms
proof (induction es arbitrary: b bs)
case (Cons e es)
let %bs = bslk := upd-bin e b
have 0: sound-ptrs w ?bs
using sound-ptrs-upd-bin Cons.prems(1,3—5,6) by (metis list.set-intros(1))
have 1: mono-red-ptr ?bs
using mono-red-ptr-upd-bin Cons.prems(2—5,7) by (metis list.set-intros(1))

93

have 2: k < length ?bs
using Cons.prems(3) by simp
have 3: upd-bin e b = ?bslk
using Cons.prems(3) by simp
have /:V e’ € set es. sound-null-ptr e’ A sound-pre-ptr w 2bs k e’ A\ sound-prered-ptr
%bs k e’
using Cons.prems(3,4,6) length-upd-bin nth-item-upd-bin sound-pre-ptr-def
sound-prered-ptr-def
by (smt (verit, ccfv-threshold) list.set-intros(2) nth-list-update order-less-le-trans)
have 5: Ve’ € set es. V' pre red ps. snd e’ = PreRed (k', pre, red) ps — red
< length (upd-bin e b)
by (meson Cons.prems(7) length-upd-bin order-less-le-trans set-subset-Cons
subsetD)
have sound-ptrs w ((bs[k := upd-bin e b])[k := upds-bin es (upd-bin e b)]) A
mono-red-ptr (bs[k := upd-bin e b, k := upds-bin es (upd-bin e b)])
using Cons.IH[OF 0 1 2 3 - -] distinct-upd-bin Cons.prems(4,5,6) items-def 4
5 by blast
thus ?case
by simp
qed simp

lemma sound-mono-ptrs-Earleyy-bin”:
assumes (k, G, w, bs) € wf-earley-input
assumes sound-ptrs w bs Vx € bins bs. sound-item G w x
assumes mono-red-ptr bs
assumes nonempty-derives G
shows sound-ptrs w (Earleyr-bin" k G w bs i) A mono-red-ptr (Earleyr-bin’ k G
w bs 1)
using assms
proof (induction i rule: Earleyr-bin'-induct] OF assms(1), case-names Base Com-
pleter Scanp Pass Predictr))
case (Completer k G w bs i x)
let ?bs’ = upd-bins bs k (Completer, k x bs 1)
have z: z € set (items (bs ! k))
using Completer.hyps(1,2) by force
hence Vz € set (items (Completer, k x bs 1)). sound-item G w «
using sound-Completer, Completer.hyps(3) Completer.prems wf-earley-input-elim
wf-bins-impl-wf-items x
by (metis dual-order.refl)
hence sound: Vx € bins ?bs’. sound-item G w z
by (metis Completer.prems(1,3) UnE bins-upd-bins wf-earley-input-elim)
have 0: k < length bs
using Completer.prems(1) wf-earley-input-elim by auto
have 1: Ve € set (Completer, k x bs i). sound-null-ptr e
unfolding Completer,-def sound-null-ptr-def by auto
have 2: Ve € set (Completer, k © bs 7). sound-pre-ptr w bs k e
unfolding Completer,-def sound-pre-ptr-def by auto
{

fix e

94

assume a0: e € set (Completer, k x bs 7)
fix p ps k' pre red
assume al: snd e = PreRed p ps (k', pre, red) € set (p#ps)
have k' = start-item x
using a0 al unfolding Completey, -def by auto
moreover have wf-item G w z end-item © = k
using Completer.prems(1) z wf-earley-input-elim wf-bins-kth-bin by blast+
ultimately have 0: k' < k
using wf-item-def by blast
have 1: k' # k
proof (rule ccontr)
assume - k' # k
have sound-item G w x
using Completep.prems(1,3) x kth-bin-sub-bins wf-earley-input-elim by
(metis subset-eq)
moreover have is-complete x
using Completer.hyps(3) by (auto simp: next-symbol-def split: if-splits)
moreover have start-item x = k
using (= k' # ky <k’ = start-item x> by auto
ultimately show Fualse
using impossible-complete-item Completer.prems(1,5) wf-earley-input-elim
<end-item © = ky <wf-item G w z» by blast
qed
have 2: pre < length (bs'k’)
using a0 al indez-filter-with-index-lt-length unfolding Completer -def by
(auto simp: items-def; fastforce)
have 3: red < i+1
using a0 al unfolding Completer,-def by auto

have fst e = inc-item (fst (bs!k'lpre)) k
using a0 a1 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = start-item
unfolding Completer, -def
by (auto simp: items-def, metis filter-with-index-nth nth-map)
moreover have is-complete (fst (bs!k!red))
using a0 al 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = start-item
unfolding Completer, -def
by (auto simp: next-symbol-def items-def split: if-splits)
moreover have start-item (fst (bslklred)) = end-item (fst (bs!k’lpre))
using a0 al 0 2 Completer.hyps(1,2,3) Completer.prems(1) <k’ = start-item
unfolding Completer,-def
apply (auto simp: items-def)
by (metis dual-order.strict-trans index-filter-with-indez-lt-length items-def
le-neq-implies-less nth-map nth-mem wf-bins-kth-bin wf-earley-input-elim)
moreover have (I N. next-symbol (fst (bs ! k' | pre)) = Some N A N =
lhs-item (fst (bs ! k! red)))
using a0 al 0 2 Completer.hyps(1,2,3) Completep.prems(1) <k’ = start-item
x> unfolding Completer, -def
by (auto simp: items-def, metis (mono-tags, lifting) filter-with-index-P fil-
ter-with-index-nth nth-map)

~

X

X

~

x

~

95

ultimately have 4: completes k (fst (bs'k'lpre)) (fst e) (fst (bslk!red))
unfolding completes-def by blast
have k' < k pre < length (bs'k’) red < i+1 completes k (fst (bs'k"\pre)) (fst e)
(fst (bs'klred))
using 0 1 2 8 4 by simp-all
}

hence Ve € set (Completer, k x bs 7). ¥V p ps k' pre red. snd e = PreRed p ps A
(k') pre, red) € set (p#ps) —
k' < k A pre < length (bs'k’) A red < i+1 N completes k (fst (bslk'lpre)) (fst
e) (fst (bs'klred))
by force
hence 3: Ve € set (Completer, k x bs). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def using Completer.hyps(1) items-def
by (smt (verit, del-insts) le-antisym le-eq-less-or-eq le-trans length-map length-pos-if-in-set
less-imp-add-positive less-one nat-add-left-cancel-le nat-neg-iff plus-nat.add-0)
have sound-ptrs w ?bs’ A mono-red-ptr ?bs’
using sound-mono-ptrs-upds-bin[OF Completer.prems(2) Completer.prems(4)
0] 1 2 8 sound-prered-ptr-def
Completep.prems(1) upd-bins-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-SIG) list.set-intros(1))
moreover have (k, G, w, ?bs’) € wf-earley-input
using Completer.hyps Completer.prems(1) wf-earley-input-Completer, by blast
ultimately have sound-ptrs w (Earleyr-bin' k G w 2bs’ (i+1)) A mono-red-ptr
(Earleyr,-bin" k G w ?bs’ (i+1))
using Completer.TH Completer.prems(4—5) sound by blast
thus ?case
using Completer.hyps by simp
next
case (Scanp k G w bsix a)
let ?bs’ = upd-bins bs (k+1) (Scany k w a x 7)
have 1 € set (items (bs ! k))
using Scanp.hyps(1,2) by force
hence Vz € set (items (Scang, k w a z i)). sound-item G w x
using sound-Scany, Scanp.hyps(3,5) Scang.prems(1,2,8) wf-earley-input-elim
wf-bins-impl-wf-items wf-bins-impl-wf-items by fast
hence sound: Vx € bins ?bs’. sound-item G w x
using Scanp.hyps(5) Scanp.prems(1,3) bins-upd-bins wf-earley-input-elim
by (metis UnE add-less-cancel-right)
have 0: k+1 < length bs
using Scanp.hyps(5) Scang.prems(1) wf-earley-input-elim by force
have 1: Ve € set (Scany, k w a z 7). sound-null-ptr e
unfolding Scany -def sound-null-ptr-def by auto
have 2: Ve € set (Scany, k w a x 7). sound-pre-ptr w bs (k+1) e
using Scanp.hyps(1,2,3) unfolding sound-pre-ptr-def Scany-def scans-def
items-def by auto
have 3: Ve € set (Scany, k w a x 7). sound-prered-ptr bs (k+1) e
unfolding Scany -def sound-prered-ptr-def by simp
have sound-ptrs w ?bs’ A mono-red-ptr ?bs’
using sound-mono-ptrs-upds-bin| OF Scang.prems(2) Scanp.prems(4) 0] 0 1 2

96

8 sound-prered-ptr-def
Scanp.prems(1) upd-bins-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfo-threshold) list.set-intros(1))
moreover have (k, G, w, ?bs’) € wf-earley-input
using Scanp.hyps Scang.prems(1) wf-earley-input-Scany, by metis
ultimately have sound-ptrs w (Earleyr-bin’ k G w 2bs’ (i+1)) A mono-red-ptr
(Earleyp-bin' k G w %bs’ (i+1))
using Scanp.IH Scanp.prems(4—5) sound by blast
thus ?Zcase
using Scang.hyps by simp
next
case (Predictp k G w bs iz a)
let ?bs’ = upd-bins bs k (Predicty k G a)
have 1 € set (items (bs ! k))
using Predictp.hyps(1,2) by force
hence Vz € set (items(Predicty k G a)). sound-item G w x
using sound-Predict;, Predictp.hyps(3) Predictp.prems wf-earley-input-elim
wf-bins-impl-wf-items by fast
hence sound: Vx € bins ?bs’. sound-item G w z
using Predictp.prems(1,3) UnE bins-upd-bins wf-earley-input-elim by metis
have 0: k < length bs
using Predictp.prems(1) wf-earley-input-elim by force
have 1: Ve € set (Predicty, k G a). sound-null-ptr e
unfolding sound-null-ptr-def Predicty,-def predicts-def by (auto simp: init-item-def)
have 2: Ve € set (Predicty, k G a). sound-pre-ptr w bs k e
unfolding sound-pre-ptr-def Predicty-def by simp
have 3: Ve € set (Predicty, k G a). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def Predicty-def by simp
have sound-ptrs w ?bs’ A mono-red-ptr ?bs’
using sound-mono-ptrs-upds-bin|OF Predictp.prems(2) Predictp.prems(4) 0]
0 1 2 8 sound-prered-ptr-def
Predictp.prems(1) upd-bins-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfo-threshold) list.set-intros(1))
moreover have (k, G, w, ?bs’) € wf-earley-input
using Predictp.hyps Predictp.prems(1) wf-earley-input-Predicty, by metis
ultimately have sound-ptrs w (Earleyr-bin' k G w 2bs’ (i+1)) A mono-red-ptr
(Earleyr-bin" k G w ?bs’ (i+1))
using Predictp. IH Predictp.prems(4—5) sound by blast
thus ?case
using Predictg.hyps by simp
qed simp-all

lemma sound-mono-ptrs-FEarleyy,-bin:

assumes (k, G, w, bs) € wf-earley-input

assumes sound-ptrs w bs Vx € bins bs. sound-item G w x

assumes mono-red-ptr bs

assumes nonempty-derives G

shows sound-ptrs w (Earleyr-bin k G w bs) A mono-red-ptr (Earleyr-bin k G w
bs)

97

using assms sound-mono-ptrs-Earleyp-bin’ Earleyr -bin-def by metis

lemma sound-ptrs-Inity:
sound-ptrs w (Inity, G w)
unfolding sound-ptrs-def sound-null-ptr-def sound-pre-ptr-def sound-prered-ptr-def
predicts-def scans-def completes-def Inity,-def
by (auto simp: init-item-def less-Suc-eq-0-disj)

lemma mono-red-ptr-Inity:
mono-red-ptr (Inity, G w)
unfolding mono-red-ptr-def Inity-def
by (auto simp: init-item-def less-Suc-eq-0-disj)

lemma sound-mono-ptrs-Earleyr -bins:
assumes k < length w nonempty-derives G
shows sound-ptrs w (Earleyr-bins k G w) A mono-red-ptr (Farleyy-bins k G w)
using assms
proof (induction k)
case ()
have (0, G, w, (Init;, G w)) € wf-earley-input
using assms(2) wf-earley-input-Inity, by blast
moreover have Vx € bins (Init;, G w). sound-item G w
by (metis Inity-eq-Initp Initp-sub-Farley sound-Earley subsetD wf-FEarley)
ultimately show ?case
using sound-mono-ptrs-FEarleyr,-bin sound-ptrs-Init;, mono-red-ptr-Inity, 0.prems
by fastforce
next
case (Suc k)
have (Suc k, G, w, Earleyy,-bins k G w) € wf-earley-input
by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
moreover have sound-ptrs w (Earleyp-bins k G w)
using Suc by simp
moreover have Vz € bins (Earleyy-bins k G w). sound-item G w z
by (meson Suc.prems(1) Suc-leD Earleyy,-bins-sub-Earleyp-bins Earleyp-bins-sub-Earley
assms(2)
sound-FEarley subsetD wf-bins-Earleyr,-bins wf-bins-impl-wf-items)
ultimately show ?case
using Suc.prems sound-mono-ptrs-Earleyr-bin Suc.IH by fastforce
qed

lemma sound-mono-ptrs-Earleyy:
assumes nonempty-derives G
shows sound-ptrs w (Earleyr, G w) A mono-red-ptr (Earleyr, G w)
using assms sound-mono-ptrs-Earleyy,-bins Earleyy,-def by (metis dual-order.refl)

9.2 Common Definitions

datatype ‘a tree =
Leaf 'a

98

| Branch 'a 'a tree list

fun yield :: 'a tree = 'a list where
yield (Leaf a) = [a]
| yield (Branch - ts) = concat (map yield ts)

fun root :: 'a tree = 'a where
root (Leaf a) = a
| root (Branch N -) = N

fun wf-rule-tree :: 'a c¢fg = 'a tree = bool where
wf-rule-tree - (Leaf a) +— True
| wf-rule-tree G (Branch N ts) «— (
(3r € set (R G). N = lhs-rule r A map root ts = rhs-rule r) A
(Vt € set ts. wf-rule-tree G t))

fun wf-item-tree :: 'a c¢fg = 'a item = 'a tree = bool where
wf-item-tree G - (Leaf a) «— True
| wf-item-tree G x (Branch N ts) «— (
N = lhs-item © A map root ts = take (dot-item z) (rhs-item x) A
(Vt € set ts. wf-rule-tree G t))

definition wf-yield :: ‘a list = 'a item = 'a tree = bool where
wf-yield w z t <+— yield t = slice w (start-item z) (end-item x)

9.3 foldl lemmas

lemma foldl-add-nth:
k < length s = foldl (+) z (map length (take k xzs)) + length (xzs'k) = foldl
(+) z (map length (take (k+1) xs))
proof (induction xs arbitrary: k z)
case (Cons z zs)
then show ?case
proof (cases k = 0)
case Fulse
thus ?thesis
using Cons by (auto simp add: take-Cons’)
qed simp
qed simp

lemma foldl-acc-mono:
a < b= foldl (+) a zs < foldl (+) b xs for a :: nat
by (induction zs arbitrary: a b) auto

lemma foldl-ge-z-nth:

j < length xs = z + length (zs!j) < foldl (+) z (map length (take (j+1) xs))
proof (induction xs arbitrary: j z)

case (Cons z zs)

show ?Zcase

99

proof (cases j = 0)
case Fulse
have z + length ((z # zs) ! j) = z + length (zs!(j—1))
using Fualse by simp
also have ... < foldl (4+) z (map length (take (j—1+1) xs))
using Cons False by (metis add-diff-inverse-nat length-Cons less-one nat-add-left-cancel-less
plus-1-eq-Suc)
also have ... = foldl (4) z (map length (take j xs))
using Fualse by simp
also have ... < foldl () (z + length) (map length (take j xs))
using foldl-acc-mono by force
also have ... = foldl (4) z (map length (take (j+1) (z#xs)))
by simp
finally show ?thesis
by blast
qed simp
qed simp

lemma foldl-add-nth-ge:
i < j=>j < length xs = foldl (+) z (map length (take i zs)) + length (zs!j)
< foldl (+) z (map length (take (j+1) zs))
proof (induction xs arbitrary: i j z)
case (Cons z zs)
show Zcase
proof (cases i = 0)
case True
have foldl (+) z (map length (take i (z # xs))) + length ((z # zs) ! j) = z +
length ((z # xs) ! j)
using True by simp
also have ... < foldl () z (map length (take (j+1) (x#xs)))
using foldl-ge-z-nth Cons.prems(2) by blast
finally show ?thesis
by blast
next
case Fulse
have i—1 < j—1
by (simp add: Cons.prems(1) diff-le-mono)
have j—1 < length zs
using Cons.prems(1,2) False by fastforce
have foldl (4+) z (map length (take i (x # xs))) + length ((x # zs) ! j) =
foldl (+) (z + length x) (map length (take (i—1) xs)) + length ((z#xs)!j)
using Fulse by (simp add: take-Cons’)
also have ... = foldl (+) (z + length z) (map length (take (i—1) xs)) + length
(asl(G—1))
using Cons.prems(1) False by auto
also have ... < foldl (+) (z + length x) (map length (take (j—1+41) zs))
using Cons.IH <t — 1 < j — 1y <j — 1 < length zs» by blast
also have ... = foldl (+) (z + length x) (map length (take j xs))
using Cons.prems(1) False by fastforce

100

also have ... = foldl (4) z (map length (take (j+1) (z#xs)))
by fastforce
finally show ?thesis
by blast
qged
qed simp

lemma foldl-ge-acc:
foldl (+) z (map length xs) > z
by (induction xs arbitrary: z) (auto elim: add-leF)

lemma foldl-take-mono:
i < j = foldl (+) z (map length (take i xs)) < foldl (+) z (map length (take j
5))
proof (induction zs arbitrary: z i j)
case (Cons z zs)
show ?Zcase
proof (cases i = 0)
case True
have foldl (4+) z (map length (take i (z # xs))) = z
using True by simp
also have ... < foldl (4+) z (map length (take j (x # xs)))
by (simp add: foldl-ge-acc)
ultimately show ¢thesis
by simp
next
case Fulse
then show ?thesis
using Cons by (simp add: take-Cons’)
qed
qed simp

9.4 Parse tree

partial-function (option) build-tree’ :: 'a bins = 'a list = nat = nat = 'a tree
option where

build-tree’ bs w ki = (
let e = bslkliin (
case snd e of
Null = Some (Branch (lhs-item (fst e)) []) — start building sub-tree
| Pre pre = (— add sub-tree starting from terminal
do {
t < build-tree’ bs w (k—1) pre;
case t of
Branch N ts = Some (Branch N (ts Q [Leaf (w!(k—1))]))
| - = undefined — impossible case
)

| PreRed (k', pre, red) - = (— add sub-tree starting from non-terminal
do {

101

t < build-tree’ bs w k' pre;
case t of
Branch N ts =
do {
t < build-tree’ bs w k red;
Some (Branch N (ts @ [t]))
}
| - = undefined — impossible case
)
)

declare build-tree’.simps [code]

definition build-tree :: ‘a ¢fg = 'a list = 'a bins = 'a tree option where

build-tree G w bs = (
let k = length bs — 1 in (
case filter-with-index (Ax. is-finished G w) (items (bslk)) of
[| = None
| (-, ©)#- = build-tree’ bs w k i

lemma build-tree’-simps[simp):

e = bslkli = snd e = Null = build-tree’ bs w k i = Some (Branch (lhs-item

(fst e)) 1)

e = bslkli = snd e = Pre pre = build-tree’ bs w (k—1) pre = None =

build-tree’ bs w k i = None

e = bs'kli = snd e = Pre pre => build-tree’ bs w (k—1) pre = Some (Branch

N ts) =
build-tree’ bs w k i = Some (Branch N (ts @ [Leaf (w!(k—1))]))

e = bslkli = snd e = Pre pre = build-tree’ bs w (k—1) pre = Some (Leaf a)

=
build-tree’ bs w k i = undefined

e = bslkli = snd e = PreRed (k’, pre, red) reds = build-tree’ bs w k' pre =

None —
build-tree’ bs w k i = None

e = bslkli = snd e = PreRed (k', pre, red) reds = build-tree’ bs w k' pre =

Some (Branch N ts) =
build-tree’ bs w k red = None = build-tree’ bs w k i = None

e = bslkli = snd e = PreRed (k', pre, red) reds = build-tree’ bs w k' pre =

Some (Leaf a) =
build-tree’ bs w k i = undefined

e = bslkli = snd e = PreRed (k', pre, red) reds = build-tree’ bs w k' pre =

Some (Branch N ts) =
build-tree’ bs w k red = Some t —>
build-tree’ bs w k i = Some (Branch N (ts @ [t]))
by (subst build-tree’.simps, simp)+

definition wf-tree-input :: (‘a bins x 'a list x nat x nat) set where

wf-tree-input = {

102

(bs, w, k, ©) | bs w k .
sound-ptrs w bs A
mono-red-ptr bs N
k < length bs A
k < length w A
i < length (bsk)

}

fun build-tree’-measure :: ('a bins x 'a list X nat X nat) = nat where
build-tree’-measure (bs, w, k, i) = foldl (+) 0 (map length (take k bs)) + i

lemma wf-tree-input-pre:
assumes (bs, w, k, i) € wf-tree-input
assumes e = bslk!i snd e = Pre pre
shows (bs, w, (k—1), pre) € wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-pre-ptr-def)
apply (metis nth-mem)
done

lemma wf-tree-input-prered-pre:
assumes (bs, w, k, i) € wf-tree-input
assumes ¢ = bslkli snd e = PreRed (k', pre, red) ps
shows (bs, w, k', pre) € wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-prered-ptr-def)
apply (metis fst-conv snd-conv)+
apply (metis dual-order.strict-trans nth-mem)

apply fastforce
by (metis nth-mem)

lemma wf-tree-input-prered-red:
assumes (bs, w, k, i) € wf-tree-input
assumes e = bslkli snd e = PreRed (k', pre, red) ps
shows (bs, w, k, red) € wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp add: sound-ptrs-def sound-prered-ptr-def)
apply (metis fst-conv snd-conv nth-mem)+
done

lemma build-tree’-induct:
assumes (bs, w, k, i) € wf-tree-input
assumes Abs w k i.
(Ne pre. e = bslkli = snd e = Pre pre = P bs w (k—1) pre) =
(Ne k' pre red ps. e = bs'k!i => snd e = PreRed (k’, pre, red) ps = P bs w
k' pre) =
(Ne k' pre red ps. e = bs'k!i = snd e = PreRed (k’, pre, red) ps = P bs w
k red) =
Pbswki

103

shows P bs w ki
using assms(1)
proof (induction n=build-tree’-measure (bs, w, k, ©) arbitrary: k i rule: nat-less-induct)
case I
obtain e where entry: e = bslkli
by simp
consider (Null) snd e = Null
| (Pre) 3pre. snd e = Pre pre
| (PreRed) 3k’ pre red reds. snd e = PreRed (k', pre, red) reds
by (metis pointer.exhaust surj-pair)
thus ?Zcase
proof cases
case Null
thus ?thesis
using assms(2) entry by fastforce
next
case Pre
then obtain pre where pre: snd e = Pre pre
by blast
define n where n: n = build-tree’-measure (bs, w, (k—1), pre)
have 0 < k pre < length (bs!(k—1))
using 1(2) entry pre unfolding wf-tree-input-def sound-ptrs-def sound-pre-ptr-def
by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
have k < length bs
using 1(2) unfolding wf-tree-input-def by blast+
have foldl (+) 0 (map length (take k bs)) + i — (foldl (+) 0 (map length (take
(k—1) bs)) + pre) =
foldl (+) 0 (map length (take (k—1) bs)) + length (bsl(k—1)) + i — (foldl
(4+) 0 (map length (take (k—1) bs)) + pre)
using foldl-add-nth[of <k—1> bs 0] by (simp add: <0 < k> <k < length bs»
less-imp-diff-less)
also have ... = length (bs!(k—1)) + i — pre
by simp
also have ... > 0
using «pre < length (bs!(k—1))> by auto
finally have build-tree’-measure (bs, w, k, i) — build-tree’-measure (bs, w,
(k—1), pre) > 0
by simp
hence P bs w (k—1) pre
using 1 n wf-tree-input-pre entry pre zero-less-diff by blast
thus ?thesis
using assms(2) entry pre pointer.distinct(5) pointer.inject(1) by presburger
next
case PreRed
then obtain k' pre red ps where prered: snd e = PreRed (k', pre, red) ps
by blast
have k' < k pre < length (bs'k’)
using 1(2) entry prered unfolding wf-tree-input-def sound-ptrs-def sound-prered-ptr-def
apply simp-all

104

apply (metis nth-mem)+
done
have red < i
using 1(2) entry prered unfolding wf-tree-input-def mono-red-ptr-def by
blast
have k < length bs i < length (bs!k)
using 1(2) unfolding wf-tree-input-def by blast+
define n-pre where n-pre: n-pre = build-tree’-measure (bs, w, k', pre)
have 0 < length (bslk') + i — pre
by (simp add: <pre < length (bs'k’)» add.commute trans-less-add2)

also have ... = foldl (+) 0 (map length (take k' bs)) + length (bslk’) + i —
(foldl () 0 (map length (take k' bs)) + pre)
by simp

also have ... < foldl (+) 0 (map length (take (k'+1) bs)) + ¢ — (foldl (+) 0
(map length (take k' bs)) + pre)
using foldl-add-nth-ge[of k' k' bs 0] <k < length bs» <k’ < k> by simp
also have ... < foldl (+) 0 (map length (take k bs)) + i — (foldl (+) 0 (map
length (take k' bs)) + pre)
using foldl-take-mono by (metis Suc-eg-plusl Suc-lel <k’ < k> add.commute
add-le-cancel-left diff-le-mono)
finally have build-tree’-measure (bs, w, k, ©) — build-tree’-measure (bs, w, k',
pre) > 0
by simp
hence z: P bs w k' pre
using 1(1) zero-less-diff by (metis 1.prems entry prered wf-tree-input-prered-pre)
define n-red where n-red: n-red = build-tree’-measure (bs, w, k, red)
have build-tree’-measure (bs, w, k, i) — build-tree’-measure (bs, w, k, red) > 0
using <red < i» by simp
hence y: P bs w k red
using 1.hyps 1.prems entry prered wf-tree-input-prered-red zero-less-diff by
blast
show ?thesis
using assms(2) z y entry prered
by (smt (verit, best) Pair-inject filter-cong pointer.distinct(5) pointer.inject(2))
qed
qed

lemma build-tree’-termination:
assumes (bs, w, k, i) € wf-tree-input
shows 3 N ts. build-tree’ bs w k i = Some (Branch N ts)
proof —
have 3 N ts. build-tree’ bs w k i = Some (Branch N ts)
apply (induction rule: build-tree’-induct[OF assms(1)])
subgoal premises IH for bs w k i
proof —
define e where entry: e = bs'k!i
consider (Null) snd e = Null
| (Pre) Ipre. snd e = Pre pre
| (PreRed) 3k’ pre red ps. snd e = PreRed (k', pre, red) ps

105

by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
thus ?thesis
using build-tree’-simps(1) entry by simp
next
case Pre
then obtain pre where pre: snd e = Pre pre
by blast
obtain N t¢s where Nis: build-tree’ bs w (k—1) pre = Some (Branch N ts)
using IH (1) entry pre by blast
have build-tree’ bs w k i = Some (Branch N (ts @ [Leaf (w!(k—1))]))
using build-tree’-simps(8) entry pre Nis by simp
thus ?thesis
by simp
next
case PreRed
then obtain k' pre red ps where prered: snd e = PreRed (k’, pre, red) ps
by blast
then obtain N ts where Nts: build-tree’ bs w k' pre = Some (Branch N ts)
using [H(2) entry prered by blast
obtain t-red where t-red: build-tree’ bs w k red = Some t-red
using [H(3) entry prered Nts by (metis option.ezhaust)
have build-tree’ bs w k i = Some (Branch N (ts Q [t-red]))
using build-tree’-simps(8) entry prered Nts t-red by auto
thus ?thesis
by blast
qed
qed
done
thus ?thesis
by blast
qed

lemma wf-item-tree-build-tree’:
assumes (bs, w, k, i) € wf-tree-input
assumes wf-bins G w bs
assumes build-tree’ bs w k i = Some t
shows wf-item-tree G (fst (bslkli)) t
proof —
have wf-item-tree G (fst (bslkl7)) ¢
using assms
apply (induction arbitrary: t rule: build-tree’-induct[OF assms(1)])
subgoal premises prems for bs w ki t
proof —
define e where entry: e = bs'k!i
have bounds: k < length bs k < length w i < length (bs'k)
using prems(4) wf-tree-input-def by force+

106

consider (Null) snd e = Null
| (Pre) 3pre. snd e = Pre pre
| (PreRed) 3k’ pre red ps. snd e = PreRed (k', pre, red) ps
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
hence build-tree’ bs w k i = Some (Branch (lhs-item (fst e)) [])
using entry by simp
have simp: t = Branch (lhs-item (fst e)) |]
using build-tree’-simps(1) Null prems(6) entry by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence predicts (fst €)
using Null nth-mem entry bounds unfolding sound-ptrs-def sound-null-ptr-def
by blast
hence dot-item (fst e) = 0
unfolding predicts-def by blast
thus ?thesis
using simp entry by simp
next
case Pre
then obtain pre where pre: snd e = Pre pre
by blast
obtain N ¢s where Nts: build-tree’ bs w (k—1) pre = Some (Branch N ts)
using build-tree’-termination entry pre prems(4) wf-tree-input-pre by blast
have simp: build-tree’ bs w ki = Some (Branch N (ts @ [Leaf (w!(k—1))]))
using build-tree’-simps(3) entry pre Nts by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence pre < length (bs!(k—1))
using entry pre bounds unfolding sound-ptrs-def sound-pre-ptr-def by
(metis nth-mem)
moreover have k—1 < length bs
by (simp add: bounds less-imp-diff-less)
ultimately have IH: wf-item-tree G (fst (bs!(k—1)!pre)) (Branch N ts)
using prems(1,2,4,5) entry pre Nts by (meson wf-tree-input-pre)
have scans: scans w k (fst (bs!(k—1)!pre)) (fst e)
using entry pre bounds <sound-ptrs w bs) unfolding sound-ptrs-def
sound-pre-ptr-def by simp
hence x*:
Ihs-item (fst (bs!(k—1)!pre)) = lhs-item (fst e)
rhs-item (fst (bs!(k—1)!pre)) = rhs-item (fst €)
dot-item (fst (bs!(k—1)'pre)) + 1 = dot-item (fst e)
next-symbol (fst (bs!(k—1)lpre)) = Some (w!(k—1))
unfolding scans-def inc-item-def by (simp-all add: lhs-item-def rhs-item-def)
have map root (ts @ [Leaf (w!(k—1))]) = map root ts Q [w!(k—1)]
by simp
also have ... = take (dot-item (fst (bs!(k—1)'pre))) (rhs-item (fst (bs!(k—1)!pre)))

107

Q@ [w!(k—1)]
using IH by simp

also have ... = take (dot-item (fst (bs!(k—1)!pre))) (rhs-item (fst e)) Q
[W!(k—1)]
using *(2) by simp
also have ... = take (dot-item (fst e€)) (rhs-item (fst €))

using *(2—4) by (auto simp: next-symbol-def is-complete-def split: if-splits;
metis lel take-Suc-conv-app-nith)
finally have map root (ts @Q [Leaf (w!(k—1))]) = take (dot-item (fst ¢€))
(rhs-item (fst e)) .
hence wf-item-tree G (fst e) (Branch N (ts Q [Leaf (w!(k—1))]))
using IH (1) by simp
thus ?thesis
using entry prems(6) simp by auto
next
case PreRed
then obtain k' pre red ps where prered: snd e = PreRed (k', pre, red) ps
by blast
obtain N ¢s where Nts: build-tree’ bs w k' pre = Some (Branch N ts)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-pre
by blast
obtain N-red ts-red where Nis-red: build-tree’ bs w k red = Some (Branch
N-red ts-red)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-red
by blast
have simp: build-tree’ bs w k i = Some (Branch N (ts @ [Branch N-red
ts-red)))
using build-tree’-simps(8) entry prered Nts Nts-red by auto
have sound-ptrs w bs
using prems(4) wf-tree-input-def by fastforce
have bounds” k' < k pre < length (bs'k’) red < length (bs!k)
using prered entry bounds <sound-ptrs w bs»
unfolding sound-prered-ptr-def sound-ptrs-def by fastforce+
have completes: completes k (fst (bs!k'lpre)) (fst e) (fst (bs'k!red))
using prered entry bounds <sound-ptrs w bs)
unfolding sound-ptrs-def sound-prered-ptr-def by force
have x*:
lhs-item (fst (bs'k'\pre)) = lhs-item (fst e)
rhs-item (fst (bs!k'\pre)) = rhs-item (fst e)
dot-item (fst (bs'k'lpre)) + 1 = dot-item (fst e)
next-symbol (fst (bs'k'\pre)) = Some (lhs-item (fst (bs'k!red)))
is-complete (fst (bs'k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: lhs-item-def rhs-item-def is-complete-def)
have (bs, w, k', pre) € wf-tree-input
using wf-tree-input-prered-pre[OF prems(4) entry prered] by blast
hence IH-pre: wf-item-tree G (fst (bs'k’\pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)] Nts bounds(1,2) order-less-trans
prems(6) by blast

108

have (bs, w, k, red) € wf-tree-input
using wf-tree-input-prered-red| OF prems(4) entry prered] by blast
hence IH-r: wf-item-tree G (fst (bslklred)) (Branch N-red ts-red)
using bounds’(8) entry prems(3,5,6) prered Nts-red by blast
have map root (ts @ [Branch N-red ts-red]) = map root ts @ [root (Branch
N-red ts)]
by simp
also have ... = take (dot-item (fst (bs!k’\pre))) (rhs-item (fst (bslk'\pre)))
@ [root (Branch N-red ts)]
using IH-pre by simp
also have ... = take (dot-item (fst (bslk’lpre))) (rhs-item (fst (bs!k’\pre)))
@ [lhs-item (fst (bs'k!red))]
using [H-r by simp
also have ... = take (dot-item (fst e)) (rhs-item (fst e))
using * by (auto simp: next-symbol-def is-complete-def split: if-splits; metis
lel take-Suc-conv-app-nth)
finally have roots: map root (ts @ [Branch N-red ts|) = take (dot-item (fst
e)) (rhs-item (fst e)) by simp
have wf-item G w (fst (bslklred))
using bounds bounds'(8) prems(5) wf-bins-def wf-bin-def wf-bin-items-def
by (metis items-def length-map nth-map nth-mem)
moreover have N-red = lhs-item (fst (bslk!red))
using IH-r by fastforce
moreover have map root ts-red = rhs-item (fst (bslk!red))
using IH-r %(5) by (auto simp: is-complete-def)
ultimately have 37 € set (R G). N-red = lhs-rule r A map root ts-red =
rhs-rule v
unfolding wf-item-def rhs-item-def lhs-item-def by blast
hence wf-rule-tree G (Branch N-red ts-red)
using [H-r by simp
hence wf-item-tree G (fst (bs!klé)) (Branch N (ts @ [Branch N-red ts-red)))
using (1) roots IH-pre entry by simp
thus ?thesis
using Nts-red prems(6) simp by auto
qed
qed
done
thus ?thesis
using assms(2) by blast
qed

lemma wf-yield-build-tree’:
assumes (bs, w, k, i) € wf-tree-input
assumes wf-bins G w bs
assumes build-tree’ bs w ki = Some t
shows wf-yield w (fst (bslkli)) t
proof —
have wf-yield w (fst (bs'k!i)) ¢

using assms

109

apply (induction arbitrary: t rule: build-tree’-induct[OF assms(1)])
subgoal premises prems for bs w k i t
proof —
define e where entry: e = bs'k!i
have bounds: k < length bs k < length w i < length (bs!k)
using prems(4) wf-tree-input-def by force+
consider (Null) snd e = Null
| (Pre) 3pre. snd e = Pre pre
| (PreRed) 3k’ pre red reds. snd e = PreRed (k', pre, red) reds
by (metis pointer.exhaust surj-pair)
thus ?thesis
proof cases
case Null
hence build-tree’ bs w k i = Some (Branch (lhs-item (fst €)) [])
using entry by simp
have simp: t = Branch (Ihs-item (fst e)) ||
using build-tree’-simps(1) Null prems(6) entry by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence predicts (fst €)
using Null bounds nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast
thus ?thesis
unfolding wf-yield-def predicts-def using simp entry by (auto simp:
slice-empty)
next
case Pre
then obtain pre where pre: snd e = Pre pre
by blast
obtain N ¢s where Nts: build-tree’ bs w (k—1) pre = Some (Branch N ts)
using build-tree’-termination entry pre prems(4) wf-tree-input-pre by blast
have simp: build-tree’ bs w ki = Some (Branch N (ts Q [Leaf (w!(k—1))]))
using build-tree’-simps(3) entry pre Nts by simp
have sound-ptrs w bs
using prems(4) unfolding wf-tree-input-def by blast
hence bounds” k > 0 pre < length (bs!(k—1))
using entry pre bounds unfolding sound-ptrs-def sound-pre-ptr-def by
(metis nth-mem)+
moreover have k—1 < length bs
by (simp add: bounds less-imp-diff-less)
ultimately have IH: wf-yield w (fst (bs!(k—1)!pre)) (Branch N ts)
using prems(1) entry pre Nts wf-tree-input-pre prems(4,5,6) by fastforce
have scans: scans w k (fst (bs!(k—1)!pre)) (fst e)
using entry pre bounds <sound-ptrs w bs) unfolding sound-ptrs-def
sound-pre-ptr-def by simp
have wf:
start-item (fst (bs!(k—1)lpre)) < end-item (fst (bsl(k—1)!pre))
end-item (fst (bs!(k—1)!pre)) = k—1
end-item (fst e) = k

110

using entry prems(5) bounds’ bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def
by (auto, meson less-imp-diff-less nth-mem)
have yield (Branch N (ts @ [Leaf (w!(k—1))])) = concat (map yield (ts Q
[Leaf (w!(k—1))]))

by simp
also have ... = concat (map yield ts) Q [w!(k—1)]
by simp
also have ... = slice w (start-item (fst (bsl(k—1)!pre))) (end-item (fst

(bsl(k—1)Ipre))) @ [w!(k—1)]
using IH by (simp add: wf-yield-def)
also have ... = slice w (start-item (fst (bsl(k—1)!pre))) (end-item (fst
(bsl(k—1)!pre)) + 1)
using slice-append-nth wf <k > 0>
by (metis One-nat-def Suc-pred bounds(2) le-neg-implies-less lessI less-imp-diff-less)
also have ... = slice w (start-item (fst e)) (end-item (fst (bs!(k—1)!pre)) +
1)
using scans unfolding scans-def inc-item-def by simp
also have ... = slice w (start-item (fst e)) k
using scans wf unfolding scans-def by (metis Suc-diff-1 Suc-eq-plusl
bounds’(1))
also have ... = slice w (start-item (fst €)) (end-item (fst ¢e))
using wf by auto
finally show ?thesis
using wf-yield-def entry prems(6) simp by force
next
case PreRed
then obtain k' pre red ps where prered: snd e = PreRed (k', pre, red) ps
by blast
obtain N ¢s where Nts: build-tree’ bs w k' pre = Some (Branch N ts)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-pre
by blast
obtain N-red ts-red where Nts-red: build-tree’ bs w k red = Some (Branch
N-red ts-red)
using build-tree’-termination entry prems(4) prered wf-tree-input-prered-red
by blast
have simp: build-tree’ bs w k i = Some (Branch N (ts @ [Branch N-red
ts-red)))
using build-tree’-simps(8) entry prered Nts Nts-red by auto
have sound-ptrs w bs
using prems(4) wf-tree-input-def by fastforce
have bounds” k' < k pre < length (bs'k’) red < length (bslk)
using prered entry bounds <sound-ptrs w bs»
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce+
have completes: completes k (fst (bs!k'lpre)) (fst e) (fst (bs'k!red))
using prered entry bounds <sound-ptrs w bs)
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce
have (bs, w, k', pre) € wf-tree-input
using wf-tree-input-prered-pre| OF prems(4) entry prered] by blast

111

hence IH-pre: wf-yield w (fst (bs'k"\pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)] Nts bounds’(1,2) prems(6)
by (meson dual-order.strict-trans1 nat-less-le)
have (bs, w, k, red) € wf-tree-input
using wf-tree-input-prered-red| OF prems(4) entry prered] by blast
hence IH-r: wf-yield w (fst (bs!klred)) (Branch N-red ts-red)
using bounds(3) entry prems(8,5,6) prered Nts-red by blast
have wfl:
start-item (fst (bs!klpre)) < end-item (fst (bslk'\pre))
start-item (fst (bs'klred)) < end-item (fst (bslklred))
using prems(5) bounds bounds’ unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def wf-item-def
by (metis length-map nth-map nth-mem order.strict-trans)+
have wf2:
end-item (fst (bs'klred)) = k
end-item (fst (bslkli)) = k
using prems(5) bounds bounds’ unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def by simp-all
have yield (Branch N (ts @Q [Branch N-red ts-red])) = concat (map yield (ts
@ [Branch N-red ts-red]))
by (simp add: Nts-red)
also have ... = concat (map yield ts) Q yield (Branch N-red ts-red)
by simp
also have ... = slice w (start-item (fst (bs'k'lpre))) (end-item (fst (bs'k’Ipre)))

slice w (start-item (fst (bs'k!red))) (end-item (fst (bs'k!red)))
using [H-pre IH-r by (simp add: wf-yield-def)
also have ... = slice w (start-item (fst (bs'k"\pre))) (end-item (fst (bslklred)))
using slice-concat wfl completes-def completes by (metis (no-types, lifting))

also have ... = slice w (start-item (fst e)) (end-item (fst (bslklred)))
using completes unfolding completes-def inc-item-def by simp
also have ... = slice w (start-item (fst €)) (end-item (fst ¢e))

using wf2 entry by presburger
finally show ?thesis
using wf-yield-def entry prems(6) simp by force
qed
qged
done
thus ?thesis
using assms(2) by blast
qed

theorem wf-rule-root-yield-build-tree:
assumes wf-bins G w bs sound-ptrs w bs mono-red-ptr bs length bs = length w +

1
assumes build-tree G w bs = Some t
shows wf-rule-tree G t A root t = & G A yieldt = w

proof —
let ?k = length bs — 1

112

define finished where finished-def: finished = filter-with-index (is-finished G w)
(items (bs!?k))
then obtain z ¢ where *: (z,i) € set finished Some t = build-tree’ bs w 2k i
using assms(5) unfolding finished-def build-tree-def by (auto simp: Let-def
split: list.splits, presburger)
have k: %k < length bs %k < length w
using assms(4) by simp-all
have i: i < length (bs! %k)
using index-filter-with-index-lt-length * items-def finished-def by (metis length-map)
have z: z = fst (bs!?k!i)
using * i filter-with-indez-nth items-def nth-map finished-def by metis
have finished: is-finished G w x
using * filter-with-index-P finished-def by metis
have wf-trees-input: (bs, w, %k, i) € wf-tree-input
unfolding wf-tree-input-def using assms(2,3) i k by blast
hence wf-item-tree: wf-item-tree G = t
using wf-item-tree-build-tree’ assms(1,2) i k(1) x %(2) by metis
have wf-item: wf-item G w (fst (bs! 2k!1))
using k(1) ¢ assms(1) unfolding wf-bins-def wf-bin-def wf-bin-items-def by
(simp add: items-def)
obtain N ts where t: t = Branch N ts
by (metis x(2) build-tree’-termination option.inject wf-trees-input)
hence N = lhs-item x
map root ts = rhs-item x
using finished wf-item-tree by (auto simp: is-finished-def is-complete-def)
hence 3r € set (R G). N = lhs-rule r A map root ts = rhs-rule r
using wf-item = unfolding wf-item-def rhs-item-def lhs-item-def by blast
hence wf-rule: wf-rule-tree G t
using wf-item-tree t by simp
have root: root t = & G
using finished t <N = lhs-item x> by (auto simp: is-finished-def)
have yield t = slice w (start-item (fst (bs!2k!4))) (end-item (fst (bs! 2k'i)))
using k ¢ assms(1) wf-trees-input wf-yield-build-tree’ wf-yield-def *(2) by (metis
(no-types, lifting))
hence yield: yield t = w
using finished x unfolding is-finished-def by simp
show ?thesis
using * wf-rule root yield assms(4) unfolding build-tree-def by simp
qed

corollary wf-rule-root-yield-build-tree- Farleyy,:
assumes e-free G
assumes build-tree G w (Earleyr, G w) = Some t
shows wf-rule-tree G t A root t = & G A yield t = w
using assms wf-rule-root-yield-build-tree wf-bins- Earleyy, sound-mono-ptrs-Earleyy,
Earleyy, -def
length-Earleyr-bins length-bins-Inity, by (metis e-free-impl-nonempty-derives

le-refl)

113

theorem correctness-build-tree-FEarleyy:
assumes is-word G w e-free G
shows (3 ¢. build-tree G w (Earleyr, G w) = Some t) «— G F [6 G] =* w (is 7L
+—— ?R)
proof standard
assume *: ?L
let %k = length (Earleyr, G w) — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items ((Earleyr, G w)!%k))
then obtain ¢ z ¢ where *: (z,i) € set finished Some t = build-tree’ (Earleyr, G
w) w %k
using * unfolding finished-def build-tree-def by (auto simp: Let-def split:
list.splits, presburger)
have k: 2k < length (FEarleyr, G w) 2k < length w
by (simp-all add: Earleyy-def assms(1))
have i: i < length ((Earleyr, G w) ! %k)
using index-filter-with-indez-lt-length x items-def finished-def by (metis length-map)
have z: z = fst ((Earleyr, G w)!?%k!)
using * 1 filter-with-indez-nth items-def nth-map finished-def by metis
have finished: is-finished G w x
using * filter-with-indez-P finished-def by metis
moreover have z € set (items ((Earleyr, G w) ! %k))
using z by (auto simp: items-def; metis One-nat-def i imagel nth-mem)
ultimately have recognizing (bins (Earley;, G w)) G w
by (meson k(1) kth-bin-sub-bins recognizing-def subsetD)
thus 7R
using soundness-Earleyr, by blast
next
assume *: ?R
let %k = length (Earleyy, G w) — 1
define finished where finished-def: finished = filter-with-index (is-finished G w)
(items ((Earleyr, G w)!%k))
have recognizing (bins (Farley;, G w)) G w
using assms x completeness-Farley;, by blast
moreover have %k = length w
by (simp add: Earleyr-def assms(1))
ultimately have 3z € set (items ((Earleyy G w)!%k)). is-finished G w z
unfolding recognizing-def using assms(1) is-finished-def wf-bins-Earleyy, wf-item-in-kth-bin
by metis
then obtain z ¢ xs where wis: finished = (z,7)#xs
using filter-with-indez-Ez-first by (metis finished-def)
hence simp: build-tree G w (Earleyr, G w) = build-tree’ (Earleyr, G w) w %k i
unfolding build-tree-def finished-def by auto
have (z,i) € set finished
using zis by simp
hence i < length ((Earleyr, G w)!%k)
using index-filter-with-index-lt-length by (metis finished-def items-def length-map)
moreover have %k < length (Earleyy G w)
by (simp add: Earleyr-def assms(1))

114

ultimately have (Farley; G w, w, %k, i) € wf-tree-input
unfolding wf-tree-input-def using sound-mono-ptrs-Earleyr assms e-free-impl-nonempty-derives
using <length (Earleyy, G w) — 1 = length w) by auto
then obtain N ts where build-tree’ (Earleyr, G w) w 2k i = Some (Branch N
ts)
using build-tree’-termination by blast
thus 2L
using simp by simp
qed

end
theory Fxamples
imports
FEarley-Parser
HOL- Library.Code-Target-Nat
begin

10 Examples

10.1 Common symbols

datatype symbol = a | S| X | Y | Z

10.2 O(n®) ambiguous grammars

10.2.1 S->SS|a

definition rules! :: symbol rule list where
rules] = |
(S, [S, 5D,
| (S, [a])

definition cfg! :: symbol cfg where
cfgl = CFG rulest S

lemma e-freel:

e-free cfgl
by (auto simp: e-free-def cfg1-def rulesi-def rhs-rule-def)

10.3 O(n?) unambiguous or bounded ambiguity

10.3.1 S->aS|a

definition rules2 :: symbol rule list where
rules2 = |
(S, [a, S1),
| (S, [a])

115

definition cfg2 :: symbol cfg where
cfg2 = CFG rules2 S

lemma e-free2:
e-free cfg2
by (auto simp: e-free-def cfg2-def rules2-def rhs-rule-def)

10.3.2 S->aSa|a

definition rules3 :: symbol rule list where
rules8 = |
(S, [a, S, a]),
| (S, [a])

definition cfg3 :: symbol cfg where
cfg3 = CFG rules3 S

lemma e-free3:

e-free cfg3
by (auto simp: e-free-def cfg3-def rules3-def rhs-rule-def)

10.4 O(n) bounded state, non-right recursive LR (k) gram-
mars

104.1 S->Sa|a

definition rules/ :: symbol rule list where
rules4 = |
(S, 5, al),
| (S, [a])

definition cfg4 :: symbol cfg where
cfg4 = CFG rules4 S

lemma e-free/:

e-free cfg4
by (auto simp: e-free-def cfg4-def rules4-def rhs-rule-def)

105 S->SX,X->Y|Z Y->a, Z->a

definition ruless :: symbol rule list where

ruless = |
(5[5, X]),
(5. [a]),
(X, [Y]),
(X, [2]).
(Y, [a]),
(2, la])

116

}

definition cfg5 :: symbol cfg where
cfgb = CFG rules5 S

lemma e-frees:

e-free cfgd
by (auto simp: e-free-def cfg5-def ruless-def rhs-rule-def)

11 Input and Evaluation

definition inp :: symbol list where

inp = la,

a, a,a, a,a,a a,a,a a a, a a, G, Q, Q,
a, a,a, a,a, a a, a, a, a, a, a, G, G, Q, a,
a, a, a, a, a, a, a, a, a, a, @, a, G, G, 4, 4,
a, a, a a,a a a,a, a G, G, Q G, G, G G

)

}

lemma is-word-inpl:
is-word cfgl inp
by (auto simp: is-word-def cfgl-def rules1-def nonterminals-def inp-def)

lemma is-word-inp2:
is-word cfg2 inp
by (auto simp: is-word-def cfg2-def rules2-def nonterminals-def inp-def)

lemma is-word-inp3:
is-word cfg3 inp
by (auto simp: is-word-def cfg3-def rules3-def nonterminals-def inp-def)

lemma is-word-inp4:
is-word cfg4 inp
by (auto simp: is-word-def cfg4-def rules4-def nonterminals-def inp-def)

lemma is-word-inp5:
is-word cfgh inp
by (auto simp: is-word-def cfg5-def rules5-def nonterminals-def inp-def)

definition size-bins :: ‘a bins = nat where
size-bins bs = fold (+) (map length bs) 0

fun size-pointer :: ‘a item X pointer = nat where
size-pointer (-, (PreRed - ps)) = 1 + length ps
| size-pointer - = 1

definition size-pointers :: ‘a bins = nat where

size-pointers bs = fold (+) (map (Ab. fold (+) (map (Ae. size-pointer e) b) 0) bs)
0

117

export-code FEarleyy build-tree rulesl cfgl rules2 cfg2 rules3 cfg3 rules4 cfgs
ruless cfgd inp size-bins size-pointers in Scala

value size-bins (FEarleyr, cfgl inp)
value size-pointers (Earleyr, cfgl inp)

value size-bins (Farleyy, cfg2 inp)
value size-pointers (Earleyr cfg2 inp)

value size-bins (Farleyy, cfg3 inp)
value size-pointers (Earleyyr, cfg3 inp)

value size-bins (Farleyr, cfg) inp)
value size-pointers (Earleyr, cfg) inp)

value size-bins (Farleyy, cfg5 inp)
value size-pointers (Earleyr, cfgd inp)

end

References

[1] J. Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94102, 1970.

[2] C. B. Jones. Formal development of correct algorithms: An example
based on earley’s recogniser. In Proceedings of ACM Conference on Prov-
ing Assertions about Programs, page 150169, New York, NY, USA, 1972.
Association for Computing Machinery.

[3] S. Obua. Local lexing. Archive of Formal Proofs, 2017. https://isa-afp.
org/entries/LocalLexing.html, Formal proof development.

[4] S. Obua, P. Scott, and J. Fleuriot. Local lexing, 2017.

[5] E. Scott. Sppf-style parsing from earley recognisers. Electronic Notes in
Theoretical Computer Science, 203(2):53-67, 2008. Proceedings of the
Seventh Workshop on Language Descriptions, Tools, and Applications
(LDTA 2007).

118

https://isa-afp.org/entries/LocalLexing.html
https://isa-afp.org/entries/LocalLexing.html

	Slightly adjusted content from AFP/LocalLexing
	Adjusted content from AFP/LocalLexing
	Adjusted content from AFP/LocalLexing
	Additional derivation lemmas
	Slices
	Earley recognizer
	Earley items
	Well-formedness
	Soundness
	Completeness
	Correctness
	Finiteness

	Earley fixpoint
	Definitions
	Monotonicity and Absorption
	Soundness
	Completeness
	Correctness

	Earley recognizer
	List auxilaries
	Definitions
	Epsilon productions
	Bin lemmas
	Well-formed bins
	Soundness
	Completeness
	Correctness

	Earley parser
	Pointer lemmas
	Common Definitions
	foldl lemmas
	Parse tree

	Examples
	Common symbols
	O(n3) ambiguous grammars
	S -> SS | a

	O(n2) unambiguous or bounded ambiguity
	S -> aS | a
	S -> aSa | a

	O(n) bounded state, non-right recursive LR(k) grammars
	S -> Sa | a

	S -> SX, X -> Y | Z, Y -> a, Z -> a

	Input and Evaluation

