
Earley

Martin Rau

March 17, 2025

Abstract

In 1968 Earley [1] introduced his parsing algorithm capable of pars-
ing all context-free grammars in cubic space and time. This entry con-
tains a formalization of an executable Earley parser. We base our devel-
opment on Jones’ [2] extensive paper proof of Earley’s recognizer and
the formalization of context-free grammars and derivations of Obua
[4] [3]. We implement and prove correct a functional recognizer mod-
eling Earley’s original imperative implementation and extend it with
the necessary data structures to enable the construction of parse trees
following the work of Scott [5]. We then develop a functional algorithm
that builds a single parse tree and prove its correctness. Finally, we
generalize this approach to an algorithm for a complete parse forest
and prove soundness.

Contents
1 Slightly adjusted content from AFP/LocalLexing 2

2 Adjusted content from AFP/LocalLexing 6

3 Adjusted content from AFP/LocalLexing 7

4 Additional derivation lemmas 9

5 Slices 12

6 Earley recognizer 13
6.1 Earley items . 13
6.2 Well-formedness . 15
6.3 Soundness . 15
6.4 Completeness . 18
6.5 Correctness . 21
6.6 Finiteness . 21

1

7 Earley fixpoint 22
7.1 Definitions . 22
7.2 Monotonicity and Absorption 23
7.3 Soundness . 27
7.4 Completeness . 28
7.5 Correctness . 33

8 Earley recognizer 33
8.1 List auxilaries . 33
8.2 Definitions . 35
8.3 Epsilon productions . 37
8.4 Bin lemmas . 38
8.5 Well-formed bins . 49
8.6 Soundness . 59
8.7 Completeness . 65
8.8 Correctness . 85

9 Earley parser 86
9.1 Pointer lemmas . 86
9.2 Common Definitions . 98
9.3 foldl lemmas . 99
9.4 Parse tree . 101

10 Examples 115
10.1 Common symbols . 115
10.2 O(n3) ambiguous grammars 115

10.2.1 S -> SS | a . 115
10.3 O(n2) unambiguous or bounded ambiguity 115

10.3.1 S -> aS | a . 115
10.3.2 S -> aSa | a . 116

10.4 O(n) bounded state, non-right recursive LR(k) grammars . . 116
10.4.1 S -> Sa | a . 116

10.5 S -> SX, X -> Y | Z, Y -> a, Z -> a 116

11 Input and Evaluation 117
theory Limit

imports
Main

begin

1 Slightly adjusted content from AFP/LocalLex-
ing

fun funpower :: (′a ⇒ ′a) ⇒ nat ⇒ (′a ⇒ ′a) where
funpower f 0 x = x

2

| funpower f (Suc n) x = f (funpower f n x)

definition natUnion :: (nat ⇒ ′a set) ⇒ ′a set where
natUnion f =

⋃
{ f n | n. True }

definition limit :: (′a set ⇒ ′a set) ⇒ ′a set ⇒ ′a set where
limit f x = natUnion (λ n. funpower f n x)

definition setmonotone :: (′a set ⇒ ′a set) ⇒ bool where
setmonotone f = (∀ X . X ⊆ f X)

lemma subset-setmonotone: setmonotone f =⇒ X ⊆ f X
by (simp add: setmonotone-def)

lemma[simp]: funpower id n = id
by (rule ext, induct n, simp-all)

lemma[simp]: limit id = id
by (rule ext, auto simp add: limit-def natUnion-def)

definition chain :: (nat ⇒ ′a set) ⇒ bool
where

chain C = (∀ i. C i ⊆ C (i + 1))

definition continuous :: (′a set ⇒ ′b set) ⇒ bool
where

continuous f = (∀ C . chain C −→ (chain (f o C) ∧ f (natUnion C) = natUnion
(f o C)))

lemma natUnion-upperbound:
(
∧

n. f n ⊆ G) =⇒ (natUnion f) ⊆ G
by (auto simp add: natUnion-def)

lemma funpower-upperbound:
(
∧

I . I ⊆ G =⇒ f I ⊆ G) =⇒ I ⊆ G =⇒ funpower f n I ⊆ G
proof (induct n)

case 0 thus ?case by simp
next

case (Suc n) thus ?case by simp
qed

lemma limit-upperbound:
(
∧

I . I ⊆ G =⇒ f I ⊆ G) =⇒ I ⊆ G =⇒ limit f I ⊆ G
by (simp add: funpower-upperbound limit-def natUnion-upperbound)

lemma elem-limit-simp: x ∈ limit f X = (∃ n. x ∈ funpower f n X)
by (auto simp add: limit-def natUnion-def)

definition pointwise :: (′a set ⇒ ′b set) ⇒ bool where

3

pointwise f = (∀ X . f X =
⋃
{ f {x} | x. x ∈ X})

lemma natUnion-elem: x ∈ f n =⇒ x ∈ natUnion f
using natUnion-def by fastforce

lemma limit-elem: x ∈ funpower f n X =⇒ x ∈ limit f X
by (simp add: limit-def natUnion-elem)

definition pointbase :: (′a set ⇒ ′b set) ⇒ ′a set ⇒ ′b set where
pointbase F I =

⋃
{ F X | X . finite X ∧ X ⊆ I }

definition pointbased :: (′a set ⇒ ′b set) ⇒ bool where
pointbased f = (∃ F . f = pointbase F)

lemma chain-implies-mono: chain C =⇒ mono C
by (simp add: chain-def mono-iff-le-Suc)

lemma setmonotone-implies-chain-funpower :
assumes setmonotone: setmonotone f
shows chain (λ n. funpower f n I)

by (simp add: chain-def setmonotone subset-setmonotone)

lemma natUnion-subset: (
∧

n. ∃ m. f n ⊆ g m) =⇒ natUnion f ⊆ natUnion g
by (meson natUnion-elem natUnion-upperbound subset-iff)

lemma natUnion-eq[case-names Subset Superset]:
(
∧

n. ∃ m. f n ⊆ g m) =⇒ (
∧

n. ∃ m. g n ⊆ f m) =⇒ natUnion f = natUnion
g
by (simp add: natUnion-subset subset-antisym)

lemma natUnion-shift[symmetric]:
assumes chain: chain C
shows natUnion C = natUnion (λ n. C (n + m))

proof (induct rule: natUnion-eq)
case (Subset n)

show ?case using chain chain-implies-mono le-add1 mono-def by blast
next

case (Superset n)
show ?case by blast

qed

definition regular :: (′a set ⇒ ′a set) ⇒ bool
where

regular f = (setmonotone f ∧ continuous f)

lemma regular-fixpoint:
assumes regular : regular f
shows f (limit f I) = limit f I

proof −

4

have setmonotone: setmonotone f using regular regular-def by blast
have continuous: continuous f using regular regular-def by blast

let ?C = λ n. funpower f n I
have chain: chain ?C

by (simp add: setmonotone setmonotone-implies-chain-funpower)
have f (limit f I) = f (natUnion ?C)

using limit-def by metis
also have f (natUnion ?C) = natUnion (f o ?C)

by (metis continuous continuous-def chain)
also have natUnion (f o ?C) = natUnion (λ n. f (funpower f n I))

by (meson comp-apply)
also have natUnion (λ n. f (funpower f n I)) = natUnion (λ n. ?C (n + 1))

by simp
also have natUnion (λ n. ?C (n + 1)) = natUnion ?C

apply (subst natUnion-shift)
using chain by (blast+)

finally show ?thesis by (simp add: limit-def)
qed

lemma fix-is-fix-of-limit:
assumes fixpoint: f I = I
shows limit f I = I

proof −
have funpower :

∧
n. funpower f n I = I

proof −
fix n :: nat
from fixpoint show funpower f n I = I

by (induct n, auto)
qed
show ?thesis by (simp add: limit-def funpower natUnion-def)

qed

lemma limit-is-idempotent: regular f =⇒ limit f (limit f I) = limit f I
by (simp add: fix-is-fix-of-limit regular-fixpoint)

definition mk-regular1 :: (′b ⇒ ′a ⇒ bool) ⇒ (′b ⇒ ′a ⇒ ′a) ⇒ ′a set ⇒ ′a set
where

mk-regular1 P F I = I ∪ { F q x | q x. x ∈ I ∧ P q x }

definition mk-regular2 :: (′b ⇒ ′a ⇒ ′a ⇒ bool) ⇒ (′b ⇒ ′a ⇒ ′a ⇒ ′a) ⇒ ′a set
⇒ ′a set where

mk-regular2 P F I = I ∪ { F q x y | q x y. x ∈ I ∧ y ∈ I ∧ P q x y }

end
theory CFG

imports Main
begin

5

2 Adjusted content from AFP/LocalLexing
type-synonym ′a rule = ′a × ′a list

type-synonym ′a rules = ′a rule list

datatype ′a cfg = CFG (R : ′a rules) (S : ′a)

definition nonterminals :: ′a cfg ⇒ ′a set where
nonterminals G = set (map fst (R G)) ∪ {S G}

definition is-word :: ′a cfg ⇒ ′a list ⇒ bool where
is-word G ω = (nonterminals G ∩ set ω = {})

definition derives1 :: ′a cfg ⇒ ′a list ⇒ ′a list ⇒ bool where
derives1 G u v ≡ ∃ x y A α.

u = x @ [A] @ y ∧
v = x @ α @ y ∧
(A, α) ∈ set (R G)

definition derivations1 :: ′a cfg ⇒ (′a list × ′a list) set where
derivations1 G ≡ { (u,v) | u v. derives1 G u v }

definition derivations :: ′a cfg ⇒ (′a list × ′a list) set where
derivations G ≡ (derivations1 G)^∗

definition derives :: ′a cfg ⇒ ′a list ⇒ ′a list ⇒ bool where
derives G u v ≡ ((u, v) ∈ derivations G)

syntax
derives1 :: ′a cfg ⇒ ′a list ⇒ ′a list ⇒ bool (‹- ` - ⇒ -› [1000 ,0 ,0] 1000)

syntax
derives :: ′a cfg ⇒ ′a list ⇒ ′a list ⇒ bool (‹- ` - ⇒∗ -› [1000 ,0 ,0] 1000)

notation (latex output)
derives1 (‹- ` - ⇒ -› [1000 ,0 ,0] 1000)

notation (latex output)
derives (‹- ` - ⇒∗ -› [1000 ,0 ,0] 1000)

end
theory Derivations

imports
CFG

begin

6

3 Adjusted content from AFP/LocalLexing
type-synonym ′a derivation = (nat × ′a rule) list

lemma is-word-empty: is-word G [] by (auto simp add: is-word-def)

lemma derives1-implies-derives[simp]:
derives1 G a b =⇒ derives G a b
by (auto simp add: derives-def derivations-def derivations1-def)

lemma derives-trans:
derives G a b =⇒ derives G b c =⇒ derives G a c
by (auto simp add: derives-def derivations-def)

lemma derives1-eq-derivations1 :
derives1 G x y = ((x, y) ∈ derivations1 G)
by (simp add: derivations1-def)

lemma derives-induct[consumes 1 , case-names Base Step]:
assumes derives: derives G a b
assumes Pa: P a
assumes induct:

∧
y z. derives G a y =⇒ derives1 G y z =⇒ P y =⇒ P z

shows P b
proof −

note rtrancl-lemma = rtrancl-induct[where a = a and b = b and r = deriva-
tions1 G and P=P]

from derives Pa induct rtrancl-lemma show P b
by (metis derives-def derivations-def derives1-eq-derivations1)

qed

definition Derives1 :: ′a cfg ⇒ ′a list ⇒ nat ⇒ ′a rule ⇒ ′a list ⇒ bool where
Derives1 G u i r v ≡ ∃ x y A α.

u = x @ [A] @ y ∧
v = x @ α @ y ∧
(A, α) ∈ set (R G) ∧ r = (A, α) ∧ i = length x

lemma Derives1-split:
Derives1 G u i r v =⇒ ∃ x y. u = x @ [fst r] @ y ∧ v = x @ (snd r) @ y ∧

length x = i
by (metis Derives1-def fst-conv snd-conv)

lemma Derives1-implies-derives1 : Derives1 G u i r v =⇒ derives1 G u v
by (auto simp add: Derives1-def derives1-def)

lemma derives1-implies-Derives1 : derives1 G u v =⇒ ∃ i r . Derives1 G u i r v
by (auto simp add: Derives1-def derives1-def)

fun Derivation :: ′a cfg ⇒ ′a list ⇒ ′a derivation ⇒ ′a list ⇒ bool where
Derivation - a [] b = (a = b)

7

| Derivation G a (d#D) b = (∃ x. Derives1 G a (fst d) (snd d) x ∧ Derivation G
x D b)

lemma Derivation-implies-derives: Derivation G a D b =⇒ derives G a b
proof (induct D arbitrary: a b)

case Nil thus ?case
by (simp add: derives-def derivations-def)

next
case (Cons d D)
note ihyps = this
from ihyps have ∃ x. Derives1 G a (fst d) (snd d) x ∧ Derivation G x D b by

auto
then obtain x where Derives1 G a (fst d) (snd d) x and xb: Derivation G x D

b by blast
with Derives1-implies-derives1 have d1 : derives G a x by fastforce
from ihyps xb have d2 :derives G x b by simp
show derives G a b by (rule derives-trans[OF d1 d2])

qed

lemma Derivation-Derives1 : Derivation G a S y =⇒ Derives1 G y i r z =⇒
Derivation G a (S@[(i,r)]) z
proof (induct S arbitrary: a y z i r)

case Nil thus ?case by simp
next

case (Cons s S) thus ?case
by (metis Derivation.simps(2) append-Cons)

qed

lemma derives-implies-Derivation: derives G a b =⇒ ∃ D. Derivation G a D b
proof (induct rule: derives-induct)

case Base
show ?case by (rule exI [where x=[]], simp)

next
case (Step y z)
note ihyps = this
from ihyps obtain D where ay: Derivation G a D y by blast
from ihyps derives1-implies-Derives1 obtain i r where yz: Derives1 G y i r z

by blast
from Derivation-Derives1 [OF ay yz] show ?case by auto

qed

lemma Derives1-rule [elim]: Derives1 G a i r b =⇒ r ∈ set (R G)
using Derives1-def by metis

lemma Derivation-append: Derivation G a (D@E) c = (∃ b. Derivation G a D b
∧ Derivation G b E c)

by (induct D arbitrary: a c E) auto

lemma Derivation-implies-append:

8

Derivation G a D b =⇒ Derivation G b E c =⇒ Derivation G a (D@E) c
using Derivation-append by blast

4 Additional derivation lemmas
lemma Derives1-prepend:

assumes Derives1 G u i r v
shows Derives1 G (w@u) (i + length w) r (w@v)

proof −
obtain x y A α where ∗:

u = x @ [A] @ y v = x @ α @ y
(A, α) ∈ set (R G) r = (A, α) i = length x
using assms Derives1-def by (smt (verit))

hence w@u = w @ x @ [A] @ y w@v = w @ x @ α @ y
by auto

thus ?thesis
unfolding Derives1-def using ∗
apply (rule-tac exI [where x=w@x])
apply (rule-tac exI [where x=y])
by simp

qed

lemma Derivation-prepend:
Derivation G b D b ′ =⇒ Derivation G (a@b) (map (λ(i, r). (i + length a, r)) D)

(a@b ′)
using Derives1-prepend by (induction D arbitrary: b b ′) (auto, fast)

lemma Derives1-append:
assumes Derives1 G u i r v
shows Derives1 G (u@w) i r (v@w)

proof −
obtain x y A α where ∗:

u = x @ [A] @ y v = x @ α @ y
(A, α) ∈ set (R G) r = (A, α) i = length x
using assms Derives1-def by (smt (verit))

hence u@w = x @ [A] @ y @ w v@w = x @ α @ y @ w
by auto

thus ?thesis
unfolding Derives1-def using ∗
apply (rule-tac exI [where x=x])
apply (rule-tac exI [where x=y@w])
by blast

qed

lemma Derivation-append ′:
Derivation G a D a ′ =⇒ Derivation G (a@b) D (a ′@b)
using Derives1-append by (induction D arbitrary: a a ′) (auto, fast)

lemma Derivation-append-rewrite:

9

assumes Derivation G a D (b @ c @ d) Derivation G c E c ′

shows ∃F . Derivation G a F (b @ c ′ @ d)
using assms Derivation-append ′ Derivation-prepend Derivation-implies-append

by fast

lemma derives1-if-valid-rule:
(A, α) ∈ set (R G) =⇒ derives1 G [A] α
unfolding derives1-def
apply (rule-tac exI [where x=[]])
apply (rule-tac exI [where x=[]])
by simp

lemma derives-if-valid-rule:
(A, α) ∈ set (R G) =⇒ derives G [A] α
using derives1-if-valid-rule by fastforce

lemma Derivation-from-empty:
Derivation G [] D a =⇒ a = []
by (cases D) (auto simp: Derives1-def)

lemma Derivation-concat-split:
Derivation G (a@b) D c =⇒ ∃E F a ′ b ′. Derivation G a E a ′ ∧ Derivation G b

F b ′ ∧
c = a ′ @ b ′ ∧ length E ≤ length D ∧ length F ≤ length D

proof (induction D arbitrary: a b)
case Nil
thus ?case

by (metis Derivation.simps(1) order-refl)
next

case (Cons d D)
then obtain ab where ∗: Derives1 G (a@b) (fst d) (snd d) ab Derivation G ab

D c
by auto

then obtain x y A α where #:
a@b = x @ [A] @ y ab = x @ α @ y (A,α) ∈ set (R G) snd d = (A,α) fst d =

length x
using ∗ unfolding Derives1-def by blast

show ?case
proof (cases length a ≤ length x)

case True
hence ab-def :

a = take (length a) x
b = drop (length a) x @ [A] @ y
ab = take (length a) x @ drop (length a) x @ α @ y
using #(1 ,2) True by (metis append-eq-append-conv-if)+

then obtain E F a ′ b ′ where IH :
Derivation G (take (length a) x) E a ′

Derivation G (drop (length a) x @ α @ y) F b ′

c = a ′ @ b ′

10

length E ≤ length D
length F ≤ length D
using Cons ∗(2) by blast

have Derives1 G b (fst d − length a) (snd d) (drop (length a) x @ α @ y)
unfolding Derives1-def using ∗(1) #(3−5) ab-def (2) by (metis length-drop)

hence Derivation G b ((fst d − length a, snd d) # F) b ′

using IH (2) by force
moreover have Derivation G a E a ′

using IH (1) ab-def (1) by fastforce
ultimately show ?thesis

using IH (3−5) by fastforce
next

case False
hence a-def : a = x @ [A] @ take (length a − length x − 1) y

using #(1) append-eq-conv-conj[of a b x @ [A] @ y] take-all-iff take-append
by (metis append-Cons append-Nil diff-is-0-eq le-cases take-Cons ′)

hence b-def : b = drop (length a − length x − 1) y
using #(1) by (metis List.append.assoc append-take-drop-id same-append-eq)

have ab = x @ α @ take (length a − length x − 1) y @ drop (length a − length
x − 1) y

using #(2) by force
then obtain E F a ′ b ′ where IH :

Derivation G (x @ α @ take (length a − length x − 1) y) E a ′

Derivation G (drop (length a − length x − 1) y) F b ′

c = a ′ @ b ′

length E ≤ length D
length F ≤ length D
using Cons.IH [of x @ α @ take (length a − length x − 1) y drop (length a

− length x − 1) y] ∗(2) by auto
have Derives1 G a (fst d) (snd d) (x @ α @ take (length a − length x − 1) y)

unfolding Derives1-def using #(3−5) a-def by blast
hence Derivation G a ((fst d, snd d) # E) a ′

using IH (1) by fastforce
moreover have Derivation G b F b ′

using b-def IH (2) by blast
ultimately show ?thesis

using IH (3−5) by fastforce
qed

qed

lemma Derivation-S1 :
assumes Derivation G [S G] D ω is-word G ω
shows ∃α E . Derivation G α E ω ∧ (S G,α) ∈ set (R G)

proof (cases D)
case Nil
thus ?thesis

using assms by (auto simp: is-word-def nonterminals-def)
next

case (Cons d D)

11

then obtain α where Derives1 G [S G] (fst d) (snd d) α Derivation G α D ω
using assms by auto

hence (S G, α) ∈ set (R G)
unfolding Derives1-def
by (simp add: Cons-eq-append-conv)

thus ?thesis
using ‹Derivation G α D ω› by auto

qed

end
theory Earley

imports
Derivations

begin

5 Slices
fun slice :: ′a list ⇒ nat ⇒ nat ⇒ ′a list where

slice [] - - = []
| slice (x#xs) - 0 = []
| slice (x#xs) 0 (Suc b) = x # slice xs 0 b
| slice (x#xs) (Suc a) (Suc b) = slice xs a b

syntax
slice :: ′a list ⇒ nat ⇒ nat ⇒ ′a list (‹-- ′/-› [1000 ,0 ,0] 1000)

notation (latex output)
slice (‹-- ′/-› [1000 ,0 ,0] 1000)

lemma slice-drop-take:
slice xs a b = drop a (take b xs)
by (induction xs a b rule: slice.induct) auto

lemma slice-append-aux:
Suc b ≤ c =⇒ slice (x#xs) (Suc b) c = slice xs b (c−1)
using Suc-le-D by fastforce

lemma slice-concat:
a ≤ b =⇒ b ≤ c =⇒ slice xs a b @ slice xs b c = slice xs a c

proof (induction xs a b arbitrary: c rule: slice.induct)
case (3 b x xs)
then show ?case

using Suc-le-D by(fastforce simp: slice-append-aux)
qed (auto simp: slice-append-aux)

lemma slice-concat-Ex:
a ≤ c =⇒ slice xs a c = ys @ zs =⇒ ∃ b. ys = slice xs a b ∧ zs = slice xs b c ∧

a ≤ b ∧ b ≤ c
proof (induction xs a c arbitrary: ys zs rule: slice.induct)

12

case (3 x xs b)
show ?case
proof (cases ys)

case Nil
then obtain zs ′ where x # slice xs 0 b = x # zs ′ x # zs ′ = zs

using 3 .prems(2) by auto
thus ?thesis

using Nil by force
next

case (Cons y ys ′)
then obtain ys ′ where x # slice xs 0 b = x # ys ′ @ zs x # ys ′ = ys

using 3 .prems(2) by auto
thus ?thesis

using 3 .IH [of ys ′ zs] by force
qed

next
case (4 a b x xs)
thus ?case

by (auto, metis slice.simps(4) Suc-le-mono)
qed auto

lemma slice-nth:
a < length xs =⇒ slice xs a (a+1) = [xs!a]
unfolding slice-drop-take
by (metis Cons-nth-drop-Suc One-nat-def diff-add-inverse drop-take take-Suc-Cons

take-eq-Nil)

lemma slice-append-nth:
a ≤ b =⇒ b < length xs =⇒ slice xs a b @ [xs!b] = slice xs a (b+1)
by (metis le-add1 slice-concat slice-nth)

lemma slice-empty:
b ≤ a =⇒ slice xs a b = []
by (simp add: slice-drop-take)

lemma slice-id[simp]:
slice xs 0 (length xs) = xs
by (simp add: slice-drop-take)

lemma slice-singleton:
b ≤ length xs =⇒ [x] = slice xs a b =⇒ b = a + 1
by (induction xs a b rule: slice.induct) (auto simp: slice-drop-take)

6 Earley recognizer
6.1 Earley items
definition lhs-rule :: ′a rule ⇒ ′a where

lhs-rule ≡ fst

13

definition rhs-rule :: ′a rule ⇒ ′a list where
rhs-rule ≡ snd

datatype ′a item =
Item (rule-item: ′a rule) (dot-item : nat) (start-item : nat) (end-item : nat)

definition lhs-item :: ′a item ⇒ ′a where
lhs-item x ≡ lhs-rule (rule-item x)

definition rhs-item :: ′a item ⇒ ′a list where
rhs-item x ≡ rhs-rule (rule-item x)

definition α-item :: ′a item ⇒ ′a list where
α-item x ≡ take (dot-item x) (rhs-item x)

definition β-item :: ′a item ⇒ ′a list where
β-item x ≡ drop (dot-item x) (rhs-item x)

definition is-complete :: ′a item ⇒ bool where
is-complete x ≡ dot-item x ≥ length (rhs-item x)

definition next-symbol :: ′a item ⇒ ′a option where
next-symbol x ≡ if is-complete x then None else Some (rhs-item x ! dot-item x)

lemmas item-defs = lhs-item-def rhs-item-def α-item-def β-item-def lhs-rule-def
rhs-rule-def

definition is-finished :: ′a cfg ⇒ ′a list ⇒ ′a item ⇒ bool where
is-finished G ω x ≡

lhs-item x = S G ∧
start-item x = 0 ∧
end-item x = length ω ∧
is-complete x

definition recognizing :: ′a item set ⇒ ′a cfg ⇒ ′a list ⇒ bool where
recognizing I G ω ≡ ∃ x ∈ I . is-finished G ω x

inductive-set Earley :: ′a cfg ⇒ ′a list ⇒ ′a item set
for G :: ′a cfg and ω :: ′a list where

Init: r ∈ set (R G) =⇒ fst r = S G =⇒
Item r 0 0 0 ∈ Earley G ω

| Scan: x = Item r b i j =⇒ x ∈ Earley G ω =⇒
ω!j = a =⇒ j < length ω =⇒ next-symbol x = Some a =⇒

Item r (b + 1) i (j + 1) ∈ Earley G ω
| Predict: x = Item r b i j =⇒ x ∈ Earley G ω =⇒

r ′ ∈ set (R G) =⇒ next-symbol x = Some (lhs-rule r ′) =⇒
Item r ′ 0 j j ∈ Earley G ω

| Complete: x = Item rx bx i j =⇒ x ∈ Earley G ω =⇒ y = Item ry by j k =⇒

14

y ∈ Earley G ω =⇒
is-complete y =⇒ next-symbol x = Some (lhs-item y) =⇒

Item rx (bx + 1) i k ∈ Earley G ω

6.2 Well-formedness
definition wf-item :: ′a cfg ⇒ ′a list => ′a item ⇒ bool where

wf-item G ω x ≡
rule-item x ∈ set (R G) ∧
dot-item x ≤ length (rhs-item x) ∧
start-item x ≤ end-item x ∧
end-item x ≤ length ω

lemma wf-Init:
assumes r ∈ set (R G) fst r = S G
shows wf-item G ω (Item r 0 0 0)
using assms unfolding wf-item-def by simp

lemma wf-Scan:
assumes x = Item r b i j wf-item G ω x ω!j = a j < length ω next-symbol x =

Some a
shows wf-item G ω (Item r (b + 1) i (j+1))
using assms unfolding wf-item-def by (auto simp: item-defs is-complete-def

next-symbol-def split: if-splits)

lemma wf-Predict:
assumes x = Item r b i j wf-item G ω x r ′ ∈ set (R G) next-symbol x = Some

(lhs-rule r ′)
shows wf-item G ω (Item r ′ 0 j j)
using assms unfolding wf-item-def by simp

lemma wf-Complete:
assumes x = Item rx bx i j wf-item G ω x y = Item ry by j k wf-item G ω y
assumes is-complete y next-symbol x = Some (lhs-item y)
shows wf-item G ω (Item rx (bx + 1) i k)
using assms unfolding wf-item-def is-complete-def next-symbol-def rhs-item-def
by (auto split: if-splits)

lemma wf-Earley:
assumes x ∈ Earley G ω
shows wf-item G ω x
using assms wf-Init wf-Scan wf-Predict wf-Complete
by (induction rule: Earley.induct) fast+

6.3 Soundness
definition sound-item :: ′a cfg ⇒ ′a list ⇒ ′a item ⇒ bool where

sound-item G ω x ≡ G ` [lhs-item x] ⇒∗ (slice ω (start-item x) (end-item x) @
β-item x)

15

lemma sound-Init:
assumes r ∈ set (R G) fst r = S G
shows sound-item G ω (Item r 0 0 0)

proof −
let ?x = Item r 0 0 0
have (lhs-item ?x, β-item ?x) ∈ set (R G)

using assms(1) by (simp add: item-defs)
hence derives G [lhs-item ?x] (β-item ?x)

using derives-if-valid-rule by metis
thus sound-item G ω ?x

unfolding sound-item-def by (simp add: slice-empty)
qed

lemma sound-Scan:
assumes x = Item r b i j wf-item G ω x sound-item G ω x
assumes ω!j = a j < length ω next-symbol x = Some a
shows sound-item G ω (Item r (b+1) i (j+1))

proof −
define x ′ where [simp]: x ′ = Item r (b+1) i (j+1)
obtain β-item ′ where ∗: β-item x = a # β-item ′ β-item x ′ = β-item ′

using assms(1 ,6) apply (auto simp: item-defs next-symbol-def is-complete-def
split: if-splits)

by (metis Cons-nth-drop-Suc leI)
have slice ω i j @ β-item x = slice ω i (j+1) @ β-item ′

using ∗ assms(1 ,2 ,4 ,5) by (auto simp: slice-append-nth wf-item-def)
moreover have derives G [lhs-item x] (slice ω i j @ β-item x)

using assms(1 ,3) sound-item-def by force
ultimately show ?thesis

using assms(1) ∗ by (auto simp: item-defs sound-item-def)
qed

lemma sound-Predict:
assumes x = Item r b i j wf-item G ω x sound-item G ω x
assumes r ′ ∈ set (R G) next-symbol x = Some (lhs-rule r ′)
shows sound-item G ω (Item r ′ 0 j j)
using assms by (auto simp: sound-item-def derives-if-valid-rule slice-empty item-defs)

lemma sound-Complete:
assumes x = Item rx bx i j wf-item G ω x sound-item G ω x
assumes y = Item ry by j k wf-item G ω y sound-item G ω y
assumes is-complete y next-symbol x = Some (lhs-item y)
shows sound-item G ω (Item rx (bx + 1) i k)

proof −
have derives G [lhs-item y] (slice ω j k)

using assms(4 ,6 ,7) by (auto simp: sound-item-def is-complete-def item-defs)
then obtain E where E : Derivation G [lhs-item y] E (slice ω j k)

using derives-implies-Derivation by blast
have derives G [lhs-item x] (slice ω i j @ β-item x)

using assms(1 ,3 ,4) by (auto simp: sound-item-def)

16

moreover have 0 : β-item x = (lhs-item y) # tl (β-item x)
using assms(8) apply (auto simp: next-symbol-def is-complete-def item-defs

split: if-splits)
by (metis drop-eq-Nil hd-drop-conv-nth leI list.collapse)

ultimately obtain D where D:
Derivation G [lhs-item x] D (slice ω i j @ [lhs-item y] @ (tl (β-item x)))
using derives-implies-Derivation by (metis append-Cons append-Nil)

obtain F where F :
Derivation G [lhs-item x] F (slice ω i j @ slice ω j k @ tl (β-item x))
using Derivation-append-rewrite D E
by metis

moreover have i ≤ j
using assms(1 ,2) wf-item-def by force

moreover have j ≤ k
using assms(4 ,5) wf-item-def by force

ultimately have derives G [lhs-item x] (slice ω i k @ tl (β-item x))
by (metis Derivation-implies-derives append.assoc slice-concat)

thus sound-item G ω (Item rx (bx + 1) i k)
using assms(1 ,4) by (auto simp: sound-item-def item-defs drop-Suc tl-drop)

qed

lemma sound-Earley:
assumes x ∈ Earley G ω wf-item G ω x
shows sound-item G ω x
using assms

proof (induction rule: Earley.induct)
case (Init r)
thus ?case

using sound-Init by blast
next

case (Scan x r b i j a)
thus ?case

using wf-Earley sound-Scan by fast
next

case (Predict x r b i j r ′)
thus ?case

using wf-Earley sound-Predict by blast
next

case (Complete x rx bx i j y ry by k)
thus ?case

using wf-Earley sound-Complete by metis
qed

theorem soundness-Earley:
assumes recognizing (Earley G ω) G ω
shows G ` [S G] ⇒∗ ω

proof −
obtain x where x: x ∈ Earley G ω is-finished G ω x

using assms recognizing-def by blast

17

hence sound-item G ω x
using wf-Earley sound-Earley by blast

thus ?thesis
unfolding sound-item-def using x by (auto simp: is-finished-def is-complete-def

item-defs)
qed

6.4 Completeness
definition partially-completed :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a item set ⇒ (′a
derivation ⇒ bool) ⇒ bool where

partially-completed k G ω I P ≡ ∀ r b i ′ i j x a D.
i ≤ j ∧ j ≤ k ∧ k ≤ length ω ∧
x = Item r b i ′ i ∧ x ∈ I ∧ next-symbol x = Some a ∧
Derivation G [a] D (slice ω i j) ∧ P D −→
Item r (b+1) i ′ j ∈ I

lemma partially-completed-upto:
assumes j ≤ k k ≤ length ω
assumes x = Item (N ,α) d i j x ∈ I ∀ x ∈ I . wf-item G ω x
assumes Derivation G (β-item x) D (slice ω j k)
assumes partially-completed k G ω I (λD ′. length D ′ ≤ length D)
shows Item (N ,α) (length α) i k ∈ I
using assms

proof (induction β-item x arbitrary: d i j k N α x D)
case Nil
have α-item x = α

using Nil(1 ,4) unfolding α-item-def β-item-def rhs-item-def rhs-rule-def by
simp

hence x = Item (N ,α) (length α) i j
using Nil.hyps Nil.prems(3−5) unfolding wf-item-def item-defs by auto

have Derivation G [] D (slice ω j k)
using Nil.hyps Nil.prems(6) by auto

hence slice ω j k = []
using Derivation-from-empty by blast

hence j = k
unfolding slice-drop-take using Nil.prems(1 ,2) by simp

thus ?case
using ‹x = Item (N , α) (length α) i j› Nil.prems(4) by blast

next
case (Cons b bs)
obtain j ′ E F where ∗:

Derivation G [b] E (slice ω j j ′)
Derivation G bs F (slice ω j ′ k)
j ≤ j ′ j ′ ≤ k length E ≤ length D length F ≤ length D
using Derivation-concat-split[of G [b] bs D slice ω j k] slice-concat-Ex
using Cons.hyps(2) Cons.prems(1 ,6)
by (smt (verit, ccfv-threshold) Cons-eq-appendI append-self-conv2)

have next-symbol x = Some b

18

using Cons.hyps(2) unfolding item-defs(4) next-symbol-def is-complete-def
by (auto, metis nth-via-drop)

hence Item (N , α) (d+1) i j ′ ∈ I
using Cons.prems(7) unfolding partially-completed-def
using Cons.prems(2 ,3 ,4) ∗(1 ,3−5) by blast

moreover have partially-completed k G ω I (λD ′. length D ′ ≤ length F)
using Cons.prems(7) ∗(6) unfolding partially-completed-def by fastforce

moreover have bs = β-item (Item (N ,α) (d+1) i j ′)
using Cons.hyps(2) Cons.prems(3) unfolding item-defs(4) rhs-item-def
by (auto, metis List.list.sel(3) drop-Suc drop-tl)

ultimately show ?case
using Cons.hyps(1) ∗(2 ,4) Cons.prems(2 ,3 ,5) wf-item-def by blast

qed

lemma partially-completed-Earley:
partially-completed k G ω (Earley G ω) (λ-. True)

unfolding partially-completed-def
proof (intro allI impI)

fix r b i ′ i j x a D
assume

i ≤ j ∧ j ≤ k ∧ k ≤ length ω ∧
x = Item r b i ′ i ∧ x ∈ Earley G ω ∧
next-symbol x = Some a ∧
Derivation G [a] D (slice ω i j) ∧ True

thus Item r (b + 1) i ′ j ∈ Earley G ω
proof (induction length D arbitrary: r b i ′ i j x a D rule: nat-less-induct)

case 1
show ?case
proof cases

assume D = []
hence [a] = slice ω i j

using 1 .prems by force
moreover have j ≤ length ω

using le-trans 1 .prems by blast
ultimately have j = i+1

using slice-singleton by metis
hence i < length ω

using ‹j ≤ length ω› by simp
hence ω!i = a

using slice-nth ‹[a] = slice ω i j› ‹j = i + 1 › by fastforce
hence Item r (b + 1) i ′ j ∈ Earley G ω

using Earley.Scan 1 .prems ‹i < length ω› ‹j = i + 1 › by metis
thus ?thesis

by (simp add: ‹j = i + 1 ›)
next

assume ¬ D = []
then obtain d D ′ where D = d # D ′

by (meson List.list.exhaust)
then obtain α where ∗: Derives1 G [a] (fst d) (snd d) α Derivation G α D ′

19

(slice ω i j)
using 1 .prems by auto

hence rule: (a, α) ∈ set (R G) fst d = 0 snd d = (a ,α)
using ∗(1) unfolding Derives1-def by (simp add: Cons-eq-append-conv)+
define y where y-def : y = Item (a ,α) 0 i i
have length D ′ < length D

using ‹D = d # D ′› by fastforce
hence partially-completed k G ω (Earley G ω) (λE . length E ≤ length D ′)
unfolding partially-completed-def using 1 .hyps order-le-less-trans by (smt

(verit, best))
hence partially-completed j G ω (Earley G ω) (λE . length E ≤ length D ′)

unfolding partially-completed-def using 1 .prems by force
moreover have Derivation G (β-item y) D ′ (slice ω i j)

using ∗(2) by (auto simp: item-defs y-def)
moreover have y ∈ Earley G ω

using y-def 1 .prems rule by (auto simp: item-defs Earley.Predict)
moreover have j ≤ length ω

using 1 .prems by simp
ultimately have Item (a,α) (length α) i j ∈ Earley G ω

using partially-completed-upto 1 .prems wf-Earley y-def by metis
moreover have x: x = Item r b i ′ i x ∈ Earley G ω

using 1 .prems by blast+
moreover have next-symbol x = Some a

using 1 .prems by linarith
ultimately show ?thesis

using Earley.Complete[OF x] by (auto simp: is-complete-def item-defs)
qed

qed
qed

theorem completeness-Earley:
assumes G ` [S G] ⇒∗ ω is-word G ω
shows recognizing (Earley G ω) G ω

proof −
obtain α D where ∗: (S G ,α) ∈ set (R G) Derivation G α D ω

using Derivation-S1 assms derives-implies-Derivation by metis
define x where x-def : x = Item (S G, α) 0 0 0
have partially-completed (length ω) G ω (Earley G ω) (λ-. True)

using assms(2) partially-completed-Earley by blast
hence 0 : partially-completed (length ω) G ω (Earley G ω) (λD ′. length D ′ ≤

length D)
unfolding partially-completed-def by blast

have 1 : x ∈ Earley G ω
using x-def Earley.Init ∗(1) by fastforce

have 2 : Derivation G (β-item x) D (slice ω 0 (length ω))
using ∗(2) x-def by (simp add: item-defs)

have Item (S G,α) (length α) 0 (length ω) ∈ Earley G ω
using partially-completed-upto[OF - - - - - 2 0] wf-Earley 1 x-def by auto

then show ?thesis

20

unfolding recognizing-def is-finished-def by (auto simp: is-complete-def item-defs,
force)
qed

6.5 Correctness
theorem correctness-Earley:

assumes is-word G ω
shows recognizing (Earley G ω) G ω ←→ G ` [S G] ⇒∗ ω
using assms soundness-Earley completeness-Earley by blast

6.6 Finiteness
lemma finiteness-empty:

set (R G) = {} =⇒ finite { x | x. wf-item G ω x }
unfolding wf-item-def by simp

fun item-intro :: ′a rule × nat × nat × nat ⇒ ′a item where
item-intro (rule, dot, origin, ends) = Item rule dot origin ends

lemma finiteness-nonempty:
assumes set (R G) 6= {}
shows finite { x. wf-item G ω x }

proof −
define M where M = Max { length (rhs-rule r) | r . r ∈ set (R G) }
define Top where Top = (set (R G) × {0 ..M} × {0 ..length ω} × {0 ..length

ω})
hence finite Top

using finite-cartesian-product finite by blast
have inj-on item-intro Top

unfolding Top-def inj-on-def by simp
hence finite (item-intro ‘ Top)

using finite-image-iff ‹finite Top› by auto
have { x | x. wf-item G ω x } ⊆ item-intro ‘ Top
proof standard

fix x
assume x ∈ { x | x. wf-item G ω x }
then obtain rule dot origin endp where ∗: x = Item rule dot origin endp
rule ∈ set (R G) dot ≤ length (rhs-item x) origin ≤ length ω endp ≤ length ω
unfolding wf-item-def using item.exhaust-sel le-trans by blast

hence length (rhs-rule rule) ∈ { length (rhs-rule r) | r . r ∈ set (R G) }
using ∗(1 ,2) rhs-item-def by blast

moreover have finite { length (rhs-rule r) | r . r ∈ set (R G) }
using finite finite-image-set[of λx. x ∈ set (R G)] by fastforce

ultimately have M ≥ length (rhs-rule rule)
unfolding M-def by simp

hence dot ≤ M
using ∗(1 ,3) rhs-item-def by (metis item.sel(1) le-trans)

hence (rule, dot, origin, endp) ∈ Top
using ∗(2 ,4 ,5) unfolding Top-def by simp

21

thus x ∈ item-intro ‘ Top
using ∗(1) by force

qed
thus ?thesis

using ‹finite (item-intro ‘ Top)› rev-finite-subset by auto
qed

lemma finiteness-UNIV-wf-item:
finite { x. wf-item G ω x }
using finiteness-empty finiteness-nonempty by fastforce

theorem finiteness-Earley:
finite (Earley G ω)
using finiteness-UNIV-wf-item wf-Earley rev-finite-subset by (metis mem-Collect-eq

subsetI)

end
theory Earley-Fixpoint

imports
Earley
Limit

begin

7 Earley fixpoint
7.1 Definitions
definition init-item :: ′a rule ⇒ nat ⇒ ′a item where

init-item r k ≡ Item r 0 k k

definition inc-item :: ′a item ⇒ nat ⇒ ′a item where
inc-item x k ≡ Item (rule-item x) (dot-item x + 1) (start-item x) k

definition bin :: ′a item set ⇒ nat ⇒ ′a item set where
bin I k ≡ { x . x ∈ I ∧ end-item x = k }

definition prev-symbol :: ′a item ⇒ ′a option where
prev-symbol x ≡ if dot-item x = 0 then None else Some (rhs-item x ! (dot-item x
− 1))

definition base :: ′a list ⇒ ′a item set ⇒ nat ⇒ ′a item set where
base ω I k ≡ { x . x ∈ I ∧ end-item x = k ∧ k > 0 ∧ prev-symbol x = Some

(ω!(k−1)) }

definition InitF :: ′a cfg ⇒ ′a item set where
InitF G ≡ { init-item r 0 | r . r ∈ set (R G) ∧ fst r = (S G) }

definition ScanF :: nat ⇒ ′a list ⇒ ′a item set ⇒ ′a item set where
ScanF k ω I ≡ { inc-item x (k+1) | x a.

22

x ∈ bin I k ∧
ω!k = a ∧
k < length ω ∧
next-symbol x = Some a }

definition PredictF :: nat ⇒ ′a cfg ⇒ ′a item set ⇒ ′a item set where
PredictF k G I ≡ { init-item r k | r x.

r ∈ set (R G) ∧
x ∈ bin I k ∧
next-symbol x = Some (lhs-rule r) }

definition CompleteF :: nat ⇒ ′a item set ⇒ ′a item set where
CompleteF k I ≡ { inc-item x k | x y.

x ∈ bin I (start-item y) ∧
y ∈ bin I k ∧
is-complete y ∧
next-symbol x = Some (lhs-item y) }

definition EarleyF -bin-step :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a item set ⇒ ′a item set
where

EarleyF -bin-step k G ω I = I ∪ ScanF k ω I ∪ CompleteF k I ∪ PredictF k G I

definition EarleyF -bin :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a item set ⇒ ′a item set
where

EarleyF -bin k G ω I ≡ limit (EarleyF -bin-step k G ω) I

fun EarleyF -bins :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a item set where
EarleyF -bins 0 G ω = EarleyF -bin 0 G ω (InitF G)
| EarleyF -bins (Suc n) G ω = EarleyF -bin (Suc n) G ω (EarleyF -bins n G ω)

definition EarleyF :: ′a cfg ⇒ ′a list ⇒ ′a item set where
EarleyF G ω ≡ EarleyF -bins (length ω) G ω

7.2 Monotonicity and Absorption
lemma EarleyF -bin-step-empty:

EarleyF -bin-step k G ω {} = {}
unfolding EarleyF -bin-step-def ScanF -def CompleteF -def PredictF -def bin-def

by blast

lemma EarleyF -bin-step-setmonotone:
setmonotone (EarleyF -bin-step k G ω)
by (simp add: Un-assoc EarleyF -bin-step-def setmonotone-def)

lemma EarleyF -bin-step-continuous:
continuous (EarleyF -bin-step k G ω)
unfolding continuous-def

proof (standard, standard, standard)
fix C :: nat ⇒ ′a item set

23

assume chain C
thus chain (EarleyF -bin-step k G ω ◦ C)
unfolding chain-def EarleyF -bin-step-def by (auto simp: ScanF -def PredictF -def

CompleteF -def bin-def subset-eq)
next

fix C :: nat ⇒ ′a item set
assume ∗: chain C
show EarleyF -bin-step k G ω (natUnion C) = natUnion (EarleyF -bin-step k G

ω ◦ C)
unfolding natUnion-def

proof standard
show EarleyF -bin-step k G ω (

⋃
{C n |n. True}) ⊆

⋃
{(EarleyF -bin-step k

G ω ◦ C) n |n. True}
proof standard

fix x
assume #: x ∈ EarleyF -bin-step k G ω (

⋃
{C n |n. True})

show x ∈
⋃
{(EarleyF -bin-step k G ω ◦ C) n |n. True}

proof (cases x ∈ CompleteF k (
⋃
{C n |n. True}))

case True
then show ?thesis

using ∗ unfolding chain-def EarleyF -bin-step-def CompleteF -def bin-def
apply auto

proof −
fix y :: ′a item and z :: ′a item and n :: nat and m :: nat
assume a1 : is-complete z
assume a2 : end-item y = start-item z
assume a3 : y ∈ C n
assume a4 : z ∈ C m
assume a5 : next-symbol y = Some (lhs-item z)
assume ∀ i. C i ⊆ C (Suc i)
hence f6 :

∧
n m. ¬ n ≤ m ∨ C n ⊆ C m

by (meson lift-Suc-mono-le)
hence f7 :

∧
n. ¬ m ≤ n ∨ z ∈ C n

using a4 by blast
have ∃n ≥ m. y ∈ C n

using f6 a3 by (meson le-sup-iff subset-eq sup-ge1)
thus ∃ I .

(∃n. I = C n ∪
ScanF (end-item z) ω (C n) ∪
{inc-item i (end-item z) |i.

i ∈ C n ∧
(∃ j.

end-item i = start-item j ∧
j ∈ C n ∧
end-item j = end-item z ∧
is-complete j ∧
next-symbol i = Some (lhs-item j))} ∪

PredictF (end-item z) G (C n))
∧ inc-item y (end-item z) ∈ I

24

using f7 a5 a2 a1 by blast
qed

next
case False
thus ?thesis
using # Un-iff by (auto simp: EarleyF -bin-step-def ScanF -def PredictF -def

bin-def ; blast)
qed

qed
next

show
⋃
{(EarleyF -bin-step k G ω ◦ C) n |n. True} ⊆ EarleyF -bin-step k G ω

(
⋃
{C n |n. True})
unfolding EarleyF -bin-step-def

using ∗ by (auto simp: ScanF -def PredictF -def CompleteF -def chain-def
bin-def , metis+)

qed
qed

lemma EarleyF -bin-step-regular :
regular (EarleyF -bin-step k G ω)
by (simp add: EarleyF -bin-step-continuous EarleyF -bin-step-setmonotone regu-

lar-def)

lemma EarleyF -bin-idem:
EarleyF -bin k G ω (EarleyF -bin k G ω I) = EarleyF -bin k G ω I
by (simp add: EarleyF -bin-def EarleyF -bin-step-regular limit-is-idempotent)

lemma ScanF -bin-absorb:
ScanF k ω (bin I k) = ScanF k ω I
unfolding ScanF -def bin-def by simp

lemma PredictF -bin-absorb:
PredictF k G (bin I k) = PredictF k G I
unfolding PredictF -def bin-def by simp

lemma ScanF -Un:
ScanF k ω (I ∪ J) = ScanF k ω I ∪ ScanF k ω J
unfolding ScanF -def bin-def by blast

lemma PredictF -Un:
PredictF k G (I ∪ J) = PredictF k G I ∪ PredictF k G J
unfolding PredictF -def bin-def by blast

lemma ScanF -sub-mono:
I ⊆ J =⇒ ScanF k ω I ⊆ ScanF k ω J
unfolding ScanF -def bin-def by blast

lemma PredictF -sub-mono:
I ⊆ J =⇒ PredictF k G I ⊆ PredictF k G J

25

unfolding PredictF -def bin-def by blast

lemma CompleteF -sub-mono:
I ⊆ J =⇒ CompleteF k I ⊆ CompleteF k J
unfolding CompleteF -def bin-def by blast

lemma EarleyF -bin-step-sub-mono:
I ⊆ J =⇒ EarleyF -bin-step k G ω I ⊆ EarleyF -bin-step k G ω J
unfolding EarleyF -bin-step-def using ScanF -sub-mono PredictF -sub-mono Com-

pleteF -sub-mono by (metis sup.mono)

lemma funpower-sub-mono:
I ⊆ J =⇒ funpower (EarleyF -bin-step k G ω) n I ⊆ funpower (EarleyF -bin-step

k G ω) n J
by (induction n) (auto simp: EarleyF -bin-step-sub-mono)

lemma EarleyF -bin-sub-mono:
I ⊆ J =⇒ EarleyF -bin k G ω I ⊆ EarleyF -bin k G ω J

proof standard
fix x
assume I ⊆ J x ∈ EarleyF -bin k G ω I
then obtain n where x ∈ funpower (EarleyF -bin-step k G ω) n I

unfolding EarleyF -bin-def limit-def natUnion-def by blast
hence x ∈ funpower (EarleyF -bin-step k G ω) n J

using ‹I ⊆ J › funpower-sub-mono by blast
thus x ∈ EarleyF -bin k G ω J

unfolding EarleyF -bin-def limit-def natUnion-def by blast
qed

lemma ScanF -EarleyF -bin-step-mono:
ScanF k ω I ⊆ EarleyF -bin-step k G ω I
using EarleyF -bin-step-def by blast

lemma PredictF -EarleyF -bin-step-mono:
PredictF k G I ⊆ EarleyF -bin-step k G ω I
using EarleyF -bin-step-def by blast

lemma CompleteF -EarleyF -bin-step-mono:
CompleteF k I ⊆ EarleyF -bin-step k G ω I
using EarleyF -bin-step-def by blast

lemma EarleyF -bin-step-EarleyF -bin-mono:
EarleyF -bin-step k G ω I ⊆ EarleyF -bin k G ω I

proof −
have EarleyF -bin-step k G ω I ⊆ funpower (EarleyF -bin-step k G ω) 1 I

by simp
thus ?thesis

by (metis EarleyF -bin-def limit-elem subset-eq)
qed

26

lemma ScanF -EarleyF -bin-mono:
ScanF k ω I ⊆ EarleyF -bin k G ω I
using ScanF -EarleyF -bin-step-mono EarleyF -bin-step-EarleyF -bin-mono by force

lemma PredictF -EarleyF -bin-mono:
PredictF k G I ⊆ EarleyF -bin k G ω I
using PredictF -EarleyF -bin-step-mono EarleyF -bin-step-EarleyF -bin-mono by

force

lemma CompleteF -EarleyF -bin-mono:
CompleteF k I ⊆ EarleyF -bin k G ω I
using CompleteF -EarleyF -bin-step-mono EarleyF -bin-step-EarleyF -bin-mono by

force

lemma EarleyF -bin-mono:
I ⊆ EarleyF -bin k G ω I
using EarleyF -bin-step-EarleyF -bin-mono EarleyF -bin-step-def by blast

lemma InitF -sub-EarleyF -bins:
InitF G ⊆ EarleyF -bins n G ω
apply (induction n)
apply auto

using EarleyF -bin-mono by blast+

7.3 Soundness
lemma InitF -sub-Earley:

InitF G ⊆ Earley G ω
unfolding InitF -def init-item-def using Init by blast

lemma ScanF -sub-Earley:
assumes I ⊆ Earley G ω
shows ScanF k ω I ⊆ Earley G ω
unfolding ScanF -def inc-item-def bin-def using assms Scan
by (smt (verit, ccfv-SIG) item.exhaust-sel mem-Collect-eq subsetD subsetI)

lemma PredictF -sub-Earley:
assumes I ⊆ Earley G ω
shows PredictF k G I ⊆ Earley G ω
unfolding PredictF -def init-item-def bin-def using assms Predict
using item.exhaust-sel by blast

lemma CompleteF -sub-Earley:
assumes I ⊆ Earley G ω
shows CompleteF k I ⊆ Earley G ω
unfolding CompleteF -def inc-item-def bin-def using assms Complete
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq subset-eq)

27

lemma EarleyF -bin-step-sub-Earley:
assumes I ⊆ Earley G ω
shows EarleyF -bin-step k G ω I ⊆ Earley G ω
unfolding EarleyF -bin-step-def using assms CompleteF -sub-Earley PredictF -sub-Earley

ScanF -sub-Earley by (metis le-supI)

lemma EarleyF -bin-sub-Earley:
assumes I ⊆ Earley G ω
shows EarleyF -bin k G ω I ⊆ Earley G ω
using assms EarleyF -bin-step-sub-Earley by (metis EarleyF -bin-def limit-upperbound)

lemma EarleyF -bins-sub-Earley:
shows EarleyF -bins n G ω ⊆ Earley G ω
by (induction n) (auto simp: EarleyF -bin-sub-Earley InitF -sub-Earley)

lemma EarleyF -sub-Earley:
shows EarleyF G ω ⊆ Earley G ω
by (simp add: EarleyF -bins-sub-Earley EarleyF -def)

theorem soundness-EarleyF :
assumes recognizing (EarleyF G ω) G ω
shows G ` [S G] ⇒∗ ω
using soundness-Earley EarleyF -sub-Earley assms recognizing-def by (metis sub-

setD)

7.4 Completeness
lemma EarleyF -bin-sub-EarleyF -bin:

assumes InitF G ⊆ I
assumes ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ I
assumes base ω (Earley G ω) k ⊆ I
shows bin (Earley G ω) k ⊆ bin (EarleyF -bin k G ω I) k

proof standard
fix x
assume ∗: x ∈ bin (Earley G ω) k
hence x ∈ Earley G ω

using bin-def by blast
thus x ∈ bin (EarleyF -bin k G ω I) k

using assms ∗
proof (induction rule: Earley.induct)

case (Init r)
thus ?case

unfolding InitF -def init-item-def bin-def using EarleyF -bin-mono by fast
next

case (Scan x r b i j a)
have j+1 = k
using Scan.prems(4) bin-def by (metis (mono-tags, lifting) CollectD item.sel(4))
have prev-symbol (Item r (b+1) i (j+1)) = Some (ω!(k−1))
using Scan.hyps(1 ,3 ,5) ‹j+1 = k› by (auto simp: next-symbol-def prev-symbol-def

28

rhs-item-def split: if-splits)
hence Item r (b+1) i (j+1) ∈ base ω (Earley G ω) k

unfolding base-def using Scan.prems(4) bin-def by fastforce
hence Item r (b+1) i (j+1) ∈ I

using Scan.prems(3) by blast
hence Item r (b+1) i (j+1) ∈ EarleyF -bin k G ω I

using EarleyF -bin-mono by blast
thus ?case

using ‹j+1 = k› bin-def by fastforce
next

case (Predict x r b i j r ′)
have j = k

using Predict.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))

hence x ∈ bin (Earley G ω) k
using Predict.hyps(1 ,2) bin-def by fastforce

hence x ∈ bin (EarleyF -bin k G ω I) k
using Predict.IH Predict.prems(1−3) by blast

hence Item r ′ 0 j j ∈ PredictF k G (EarleyF -bin k G ω I)
unfolding PredictF -def init-item-def using Predict.hyps(1 ,3 ,4) ‹j = k› by

blast
hence Item r ′ 0 j j ∈ EarleyF -bin-step k G ω (EarleyF -bin k G ω I)

using PredictF -EarleyF -bin-step-mono by blast
hence Item r ′ 0 j j ∈ EarleyF -bin k G ω I

using EarleyF -bin-idem EarleyF -bin-step-EarleyF -bin-mono by blast
thus ?case

by (simp add: ‹j = k› bin-def)
next

case (Complete x rx bx i j y ry by l)
have l = k

using Complete.prems(4) bin-def by (metis (mono-tags, lifting) CollectD
item.sel(4))

hence y ∈ bin (Earley G ω) l
using Complete.hyps(3 ,4) bin-def by fastforce

hence 0 : y ∈ bin (EarleyF -bin k G ω I) k
using Complete.IH (2) Complete.prems(1−3) ‹l = k› by blast

have 1 : x ∈ bin (EarleyF -bin k G ω I) (start-item y)
proof (cases j = k)

case True
hence x ∈ bin (Earley G ω) k

using Complete.hyps(1 ,2) bin-def by fastforce
hence x ∈ bin (EarleyF -bin k G ω I) k

using Complete.IH (1) Complete.prems(1−3) by blast
thus ?thesis

using Complete.hyps(3) True by simp
next

case False
hence j < k

using ‹l = k› wf-Earley wf-item-def Complete.hyps(3 ,4) by force

29

moreover have x ∈ bin (Earley G ω) j
using Complete.hyps(1 ,2) bin-def by force

ultimately have x ∈ I
using Complete.prems(2) by blast

hence x ∈ bin (EarleyF -bin k G ω I) j
using Complete.hyps(1) EarleyF -bin-mono bin-def by fastforce

thus ?thesis
using Complete.hyps(3) by simp

qed
have Item rx (bx + 1) i k ∈ CompleteF k (EarleyF -bin k G ω I)

unfolding CompleteF -def inc-item-def using 0 1 Complete.hyps(1 ,5 ,6) by
force

hence Item rx (bx + 1) i k ∈ EarleyF -bin-step k G ω (EarleyF -bin k G ω I)
unfolding EarleyF -bin-step-def by blast

hence Item rx (bx + 1) i k ∈ EarleyF -bin k G ω I
using EarleyF -bin-idem EarleyF -bin-step-EarleyF -bin-mono by blast

thus ?case
using bin-def ‹l = k› by fastforce

qed
qed

lemma Earley-base-sub-EarleyF -bin:
assumes InitF G ⊆ I
assumes ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ I
assumes base ω (Earley G ω) k ⊆ I
assumes is-word G ω
shows base ω (Earley G ω) (k+1) ⊆ bin (EarleyF -bin k G ω I) (k+1)

proof standard
fix x
assume ∗: x ∈ base ω (Earley G ω) (k+1)
hence x ∈ Earley G ω

using base-def by blast
thus x ∈ bin (EarleyF -bin k G ω I) (k+1)

using assms ∗
proof (induction rule: Earley.induct)

case (Init r)
have k = 0

using Init.prems(5) unfolding base-def by simp
hence False

using Init.prems(5) unfolding base-def by simp
thus ?case

by blast
next

case (Scan x r b i j a)
have j = k
using Scan.prems(5) base-def by (metis (mono-tags, lifting) CollectD add-right-cancel

item.sel(4))
hence x ∈ bin (EarleyF -bin k G ω I) k

using EarleyF -bin-sub-EarleyF -bin Scan.prems Scan.hyps(1 ,2) bin-def

30

by (metis (mono-tags, lifting) CollectI item.sel(4) subsetD)
hence Item r (b+1) i (j+1) ∈ ScanF k ω (EarleyF -bin k G ω I)

unfolding ScanF -def inc-item-def using Scan.hyps ‹j = k› by force
hence Item r (b+1) i (j+1) ∈ EarleyF -bin-step k G ω (EarleyF -bin k G ω I)

using ScanF -EarleyF -bin-step-mono by blast
hence Item r (b+1) i (j+1) ∈ EarleyF -bin k G ω I

using EarleyF -bin-idem EarleyF -bin-step-EarleyF -bin-mono by blast
thus ?case

using ‹j = k› bin-def by fastforce
next

case (Predict x r b i j r ′)
have False

using Predict.prems(5) unfolding base-def by (auto simp: prev-symbol-def)
thus ?case

by blast
next

case (Complete x rx bx i j y ry by l)
have l−1 < length ω

using Complete.prems(5) base-def wf-Earley wf-item-def
by (metis (mono-tags, lifting) CollectD add.right-neutral add-Suc-right add-diff-cancel-right ′

item.sel(4) less-eq-Suc-le plus-1-eq-Suc)
hence ω!(l−1) /∈ nonterminals G

using Complete.prems(4) is-word-def by force
moreover have lhs-item y ∈ nonterminals G
using Complete.hyps(3 ,4) wf-Earley wf-item-def lhs-item-def lhs-rule-def non-

terminals-def
by (metis UnCI image-eqI list.set-map)

moreover have prev-symbol (Item rx (bx+1) i l) = next-symbol x
using Complete.hyps(1 ,6)
by (auto simp: next-symbol-def prev-symbol-def is-complete-def rhs-item-def

split: if-splits)
moreover have prev-symbol (Item rx (bx+1) i l) = Some (ω!(l−1))

using Complete.prems(5) base-def by (metis (mono-tags, lifting) CollectD
item.sel(4))

ultimately have False
using Complete.hyps(6) Complete.prems(4) by simp

thus ?case
by blast

qed
qed

lemma EarleyF -bin-k-sub-EarleyF -bins:
assumes is-word G ω k ≤ n
shows bin (Earley G ω) k ⊆ EarleyF -bins n G ω
using assms

proof (induction n arbitrary: k)
case 0
have bin (Earley G ω) 0 ⊆ bin (EarleyF -bin 0 G ω (InitF G)) 0

using EarleyF -bin-sub-EarleyF -bin base-def by fastforce

31

thus ?case
unfolding bin-def using 0 .prems(2) by auto

next
case (Suc n)
show ?case
proof (cases k ≤ n)

case True
thus ?thesis

using Suc EarleyF -bin-mono by force
next

case False
hence k = n+1

using Suc.prems(2) by force
have 0 : ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ EarleyF -bins n G ω

using Suc by simp
moreover have base ω (Earley G ω) k ⊆ EarleyF -bins n G ω
proof −

have ∀ k ′ < k−1 . bin (Earley G ω) k ′ ⊆ EarleyF -bins n G ω
using Suc ‹k = n + 1 › by auto

moreover have base ω (Earley G ω) (k−1) ⊆ EarleyF -bins n G ω
using 0 bin-def base-def False ‹k = n+1 ›

by (smt (verit) Suc-eq-plus1 diff-Suc-1 linorder-not-less mem-Collect-eq
subsetD subsetI)

ultimately have base ω (Earley G ω) k ⊆ bin (EarleyF -bin n G ω (EarleyF -bins
n G ω)) k

using Suc.prems(1 ,2) Earley-base-sub-EarleyF -bin ‹k = n + 1 › InitF -sub-EarleyF -bins
by (metis add-diff-cancel-right ′)

hence base ω (Earley G ω) k ⊆ bin (EarleyF -bins n G ω) k
by (metis EarleyF -bins.elims EarleyF -bin-idem)

thus ?thesis
using bin-def by blast

qed
ultimately have bin (Earley G ω) k ⊆ bin (EarleyF -bin k G ω (EarleyF -bins

n G ω)) k
using EarleyF -bin-sub-EarleyF -bin InitF -sub-EarleyF -bins by metis

thus ?thesis
using EarleyF -bins.simps(2) ‹k = n + 1 › bin-def by auto

qed
qed

lemma Earley-sub-EarleyF :
assumes is-word G ω
shows Earley G ω ⊆ EarleyF G ω

proof −
have ∀ k ≤ length ω. bin (Earley G ω) k ⊆ EarleyF G ω

by (simp add: EarleyF -bin-k-sub-EarleyF -bins EarleyF -def assms)
thus ?thesis

using wf-Earley wf-item-def bin-def by blast
qed

32

theorem completeness-EarleyF :
assumes G ` [S G] ⇒∗ ω is-word G ω
shows recognizing (EarleyF G ω) G ω
using assms Earley-sub-EarleyF EarleyF -sub-Earley completeness-Earley by

(metis subset-antisym)

7.5 Correctness
theorem Earley-eq-EarleyF :

assumes is-word G ω
shows Earley G ω = EarleyF G ω
using Earley-sub-EarleyF EarleyF -sub-Earley assms by blast

theorem correctness-EarleyF :
assumes is-word G ω
shows recognizing (EarleyF G ω) G ω ←→ G ` [S G] ⇒∗ ω
using assms Earley-eq-EarleyF correctness-Earley by fastforce

end
theory Earley-Recognizer

imports
Earley-Fixpoint

begin

8 Earley recognizer
8.1 List auxilaries
fun filter-with-index ′ :: nat ⇒ (′a ⇒ bool) ⇒ ′a list ⇒ (′a × nat) list where

filter-with-index ′ - - [] = []
| filter-with-index ′ i P (x#xs) = (

if P x then (x,i) # filter-with-index ′ (i+1) P xs
else filter-with-index ′ (i+1) P xs)

definition filter-with-index :: (′a ⇒ bool) ⇒ ′a list ⇒ (′a × nat) list where
filter-with-index P xs = filter-with-index ′ 0 P xs

lemma filter-with-index ′-P:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ P x
by (induction xs arbitrary: i) (auto split: if-splits)

lemma filter-with-index-P:
(x, n) ∈ set (filter-with-index P xs) =⇒ P x
by (metis filter-with-index ′-P filter-with-index-def)

lemma filter-with-index ′-cong-filter :
map fst (filter-with-index ′ i P xs) = filter P xs
by (induction xs arbitrary: i) auto

33

lemma filter-with-index-cong-filter :
map fst (filter-with-index P xs) = filter P xs
by (simp add: filter-with-index ′-cong-filter filter-with-index-def)

lemma size-index-filter-with-index ′:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ n ≥ i
by (induction xs arbitrary: i) (auto simp: Suc-leD split: if-splits)

lemma index-filter-with-index ′-lt-length:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ n−i < length xs
by (induction xs arbitrary: i)(auto simp: less-Suc-eq-0-disj split: if-splits; metis

Suc-diff-Suc leI)+

lemma index-filter-with-index-lt-length:
(x, n) ∈ set (filter-with-index P xs) =⇒ n < length xs
by (metis filter-with-index-def index-filter-with-index ′-lt-length minus-nat.diff-0)

lemma filter-with-index ′-nth:
(x, n) ∈ set (filter-with-index ′ i P xs) =⇒ xs ! (n−i) = x

proof (induction xs arbitrary: i)
case (Cons y xs)
show ?case
proof (cases x = y)

case True
thus ?thesis

using Cons by (auto simp: nth-Cons ′ split: if-splits)
next

case False
hence (x, n) ∈ set (filter-with-index ′ (i+1) P xs)

using Cons.prems by (cases xs) (auto split: if-splits)
hence n ≥ i + 1 xs ! (n − i − 1) = x

by (auto simp: size-index-filter-with-index ′ Cons.IH)
thus ?thesis

by simp
qed

qed simp

lemma filter-with-index-nth:
(x, n) ∈ set (filter-with-index P xs) =⇒ xs ! n = x
by (metis diff-zero filter-with-index ′-nth filter-with-index-def)

lemma filter-with-index-nonempty:
x ∈ set xs =⇒ P x =⇒ filter-with-index P xs 6= []
by (metis filter-empty-conv filter-with-index-cong-filter list.map(1))

lemma filter-with-index ′-Ex-first:
(∃ x i xs ′. filter-with-index ′ n P xs = (x, i)#xs ′) ←→ (∃ x ∈ set xs. P x)
by (induction xs arbitrary: n) auto

34

lemma filter-with-index-Ex-first:
(∃ x i xs ′. filter-with-index P xs = (x, i)#xs ′) ←→ (∃ x ∈ set xs. P x)
using filter-with-index ′-Ex-first filter-with-index-def by metis

8.2 Definitions
datatype pointer =

Null
| Pre nat — pre
| PreRed nat × nat × nat (nat × nat × nat) list — k’, pre, red

type-synonym ′a bin = (′a item × pointer) list
type-synonym ′a bins = ′a bin list

definition items :: ′a bin ⇒ ′a item list where
items b ≡ map fst b

definition pointers :: ′a bin ⇒ pointer list where
pointers b ≡ map snd b

definition bins-eq-items :: ′a bins ⇒ ′a bins ⇒ bool where
bins-eq-items bs0 bs1 ≡ map items bs0 = map items bs1

definition bins :: ′a bins ⇒ ′a item set where
bins bs ≡

⋃
{ set (items (bs!k)) | k. k < length bs }

definition bin-upto :: ′a bin ⇒ nat ⇒ ′a item set where
bin-upto b i ≡ { items b ! j | j. j < i ∧ j < length (items b) }

definition bins-upto :: ′a bins ⇒ nat ⇒ nat ⇒ ′a item set where
bins-upto bs k i ≡

⋃
{ set (items (bs ! l)) | l. l < k } ∪ bin-upto (bs ! k) i

definition wf-bin-items :: ′a cfg ⇒ ′a list ⇒ nat ⇒ ′a item list ⇒ bool where
wf-bin-items G ω k xs ≡ ∀ x ∈ set xs. wf-item G ω x ∧ end-item x = k

definition wf-bin :: ′a cfg ⇒ ′a list ⇒ nat ⇒ ′a bin ⇒ bool where
wf-bin G ω k b ≡ distinct (items b) ∧ wf-bin-items G ω k (items b)

definition wf-bins :: ′a cfg ⇒ ′a list ⇒ ′a bins ⇒ bool where
wf-bins G ω bs ≡ ∀ k < length bs. wf-bin G ω k (bs!k)

definition ε-free :: ′a cfg ⇒ bool where
ε-free G = (∀ r ∈ set (R G). rhs-rule r 6= [])

definition nonempty-derives :: ′a cfg ⇒ bool where
nonempty-derives G ≡ ∀ s. ¬ G ` [s] ⇒∗ []

definition InitL :: ′a cfg ⇒ ′a list ⇒ ′a bins where

35

InitL G ω ≡
let rs = filter (λr . lhs-rule r = S G) (remdups (R G)) in
let b0 = map (λr . (init-item r 0 , Null)) rs in
let bs = replicate (length ω + 1) ([]) in
bs[0 := b0]

definition ScanL :: nat ⇒ ′a list ⇒ ′a ⇒ ′a item ⇒ nat ⇒ (′a item × pointer)
list where

ScanL k ω a x pre ≡
if ω!k = a then

let x ′ = inc-item x (k+1) in
[(x ′, Pre pre)]

else []

definition PredictL :: nat ⇒ ′a cfg ⇒ ′a ⇒ (′a item × pointer) list where
PredictL k G X ≡

let rs = filter (λr . lhs-rule r = X) (R G) in
map (λr . (init-item r k, Null)) rs

definition CompleteL :: nat ⇒ ′a item ⇒ ′a bins ⇒ nat ⇒ (′a item × pointer)
list where

CompleteL k y bs red ≡
let orig = bs ! (start-item y) in
let is = filter-with-index (λx. next-symbol x = Some (lhs-item y)) (items orig)

in
map (λ(x, pre). (inc-item x k, PreRed (start-item y, pre, red) [])) is

fun upd-bin :: ′a item × pointer ⇒ ′a bin ⇒ ′a bin where
upd-bin e ′ [] = [e ′]
| upd-bin e ′ (e#es) = (

case (e ′, e) of
((x, PreRed px xs), (y, PreRed py ys)) ⇒

if x = y then (x, PreRed py (px#xs@ys)) # es
else e # upd-bin e ′ es
| - ⇒

if fst e ′ = fst e then e # es
else e # upd-bin e ′ es)

fun upds-bin :: (′a item × pointer) list ⇒ ′a bin ⇒ ′a bin where
upds-bin [] b = b
| upds-bin (e#es) b = upds-bin es (upd-bin e b)

definition upd-bins :: ′a bins ⇒ nat ⇒ (′a item × pointer) list ⇒ ′a bins where
upd-bins bs k es ≡ bs[k := upds-bin es (bs!k)]

partial-function (tailrec) EarleyL-bin ′ :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a bins ⇒ nat
⇒ ′a bins where

EarleyL-bin ′ k G ω bs i = (
if i ≥ length (items (bs ! k)) then bs

36

else
let x = items (bs!k) ! i in
let bs ′ =

case next-symbol x of
Some a ⇒ (

if a /∈ nonterminals G then
if k < length ω then upd-bins bs (k+1) (ScanL k ω a x i)
else bs

else upd-bins bs k (PredictL k G a))
| None ⇒ upd-bins bs k (CompleteL k x bs i)

in EarleyL-bin ′ k G ω bs ′ (i+1))

declare EarleyL-bin ′.simps[code]

definition EarleyL-bin :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a bins ⇒ ′a bins where
EarleyL-bin k G ω bs = EarleyL-bin ′ k G ω bs 0

fun EarleyL-bins :: nat ⇒ ′a cfg ⇒ ′a list ⇒ ′a bins where
EarleyL-bins 0 G ω = EarleyL-bin 0 G ω (InitL G ω)
| EarleyL-bins (Suc n) G ω = EarleyL-bin (Suc n) G ω (EarleyL-bins n G ω)

definition EarleyL :: ′a cfg ⇒ ′a list ⇒ ′a bins where
EarleyL G ω ≡ EarleyL-bins (length ω) G ω

definition recognizer :: ′a cfg ⇒ ′a list ⇒ bool where
recognizer G ω = (∃ x ∈ set (items (EarleyL G ω ! length ω)). is-finished G ω x)

8.3 Epsilon productions
lemma ε-free-impl-non-empty-word-deriv:
ε-free G =⇒ a 6= [] =⇒ ¬ Derivation G a D []

proof (induction length D arbitrary: a D rule: nat-less-induct)
case 1
show ?case
proof (rule ccontr)

assume assm: ¬ ¬ Derivation G a D []
show False
proof (cases D = [])

case True
then show ?thesis

using 1 .prems(2) assm by auto
next

case False
then obtain d D ′ α where ∗:

D = d # D ′ Derives1 G a (fst d) (snd d) α Derivation G α D ′ [] snd d ∈
set (R G)

using list.exhaust assm Derives1-def by (metis Derivation.simps(2))
show ?thesis
proof cases

37

assume α = []
thus ?thesis

using ∗(2 ,4) Derives1-split ε-free-def rhs-rule-def 1 .prems(1) by (metis
append-is-Nil-conv)

next
assume ¬ α = []
thus ?thesis

using ∗(1 ,3) 1 .hyps 1 .prems(1) by auto
qed

qed
qed

qed

lemma ε-free-impl-nonempty-derives:
ε-free G =⇒ nonempty-derives G
using ε-free-impl-non-empty-word-deriv derives-implies-Derivation nonempty-derives-def

by (metis not-Cons-self2)

lemma nonempty-derives-impl-ε-free:
assumes nonempty-derives G
shows ε-free G

proof (rule ccontr)
assume ¬ ε-free G
then obtain N α where ∗: (N , α) ∈ set (R G) rhs-rule (N , α) = []

unfolding ε-free-def by auto
hence G ` [N] ⇒ []

unfolding derives1-def rhs-rule-def by auto
hence G ` [N] ⇒∗ []

by auto
thus False

using assms(1) nonempty-derives-def by fast
qed

lemma nonempty-derives-iff-ε-free:
shows nonempty-derives G ←→ ε-free G
using ε-free-impl-nonempty-derives nonempty-derives-impl-ε-free by blast

8.4 Bin lemmas
lemma length-upd-bins[simp]:

length (upd-bins bs k es) = length bs
unfolding upd-bins-def by simp

lemma length-upd-bin:
length (upd-bin e b) ≥ length b
by (induction e b rule: upd-bin.induct) (auto split: pointer .splits)

lemma length-upds-bin:
length (upds-bin es b) ≥ length b

38

by (induction es arbitrary: b) (auto, meson le-trans length-upd-bin)

lemma length-nth-upd-bin-bins:
length (upd-bins bs k es ! n) ≥ length (bs ! n)
unfolding upd-bins-def using length-upds-bin
by (metis linorder-not-le list-update-beyond nth-list-update-eq nth-list-update-neq

order-refl)

lemma nth-idem-upd-bins:
k 6= n =⇒ upd-bins bs k es ! n = bs ! n
unfolding upd-bins-def by simp

lemma items-nth-idem-upd-bin:
n < length b =⇒ items (upd-bin e b) ! n = items b ! n
by (induction b arbitrary: e n) (auto simp: items-def less-Suc-eq-0-disj split!:

pointer .split)

lemma items-nth-idem-upds-bin:
n < length b =⇒ items (upds-bin es b) ! n = items b ! n
by (induction es arbitrary: b)
(auto, metis items-nth-idem-upd-bin length-upd-bin order .strict-trans2)

lemma items-nth-idem-upd-bins:
n < length (bs ! k) =⇒ items (upd-bins bs k es ! k) ! n = items (bs ! k) ! n
unfolding upd-bins-def using items-nth-idem-upds-bin
by (metis linorder-not-less list-update-beyond nth-list-update-eq)

lemma bin-upto-eq-set-items:
i ≥ length b =⇒ bin-upto b i = set (items b)
by (auto simp: bin-upto-def items-def , metis fst-conv in-set-conv-nth nth-map

order .strict-trans2)

lemma bins-upto-empty:
bins-upto bs 0 0 = {}
unfolding bins-upto-def bin-upto-def by simp

lemma set-items-upd-bin:
set (items (upd-bin e b)) = set (items b) ∪ {fst e}

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ b = (y, PreRed yp ys))

case True
then obtain x xp xs y yp ys where e = (x, PreRed xp xs) b = (y, PreRed yp

ys)
by blast

thus ?thesis
using Cons.IH by (auto simp: items-def)

next

39

case False
then show ?thesis
proof cases

assume ∗: fst e = fst b
hence upd-bin e (b # bs) = b # bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ by (auto simp: items-def)
next

assume ∗: ¬ fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ Cons.IH by (auto simp: items-def)
qed

qed
qed (auto simp: items-def)

lemma set-items-upds-bin:
set (items (upds-bin es b)) = set (items b) ∪ set (items es)
apply (induction es arbitrary: b)

apply (auto simp: items-def)
by (metis Domain.DomainI Domain-fst Un-insert-right fst-conv insert-iff items-def

list.set-map set-items-upd-bin sup-bot.right-neutral)+

lemma bins-upd-bins:
assumes k < length bs
shows bins (upd-bins bs k es) = bins bs ∪ set (items es)

proof −
let ?bs = upd-bins bs k es
have bins (upd-bins bs k es) =

⋃
{set (items (?bs ! k)) |k. k < length ?bs}

unfolding bins-def by blast
also have ... =

⋃
{set (items (bs ! l)) |l. l < length bs ∧ l 6= k} ∪ set (items

(?bs ! k))
unfolding upd-bins-def using assms by (auto, metis nth-list-update)

also have ... =
⋃
{set (items (bs ! l)) |l. l < length bs ∧ l 6= k} ∪ set (items

(bs ! k)) ∪ set (items es)
using set-items-upds-bin[of es bs!k] by (simp add: assms upd-bins-def sup-assoc)

also have ... =
⋃
{set (items (bs ! k)) |k. k < length bs} ∪ set (items es)

using assms by blast
also have ... = bins bs ∪ set (items es)

unfolding bins-def by blast
finally show ?thesis .

qed

lemma kth-bin-sub-bins:
k < length bs =⇒ set (items (bs ! k)) ⊆ bins bs
unfolding bins-def bins-upto-def bin-upto-def by blast+

40

lemma bin-upto-Cons-0 :
bin-upto (e#es) 0 = {}
by (auto simp: bin-upto-def)

lemma bin-upto-Cons:
assumes 0 < n
shows bin-upto (e#es) n = { fst e } ∪ bin-upto es (n−1)

proof −
have bin-upto (e#es) n = { items (e#es) ! j | j. j < n ∧ j < length (items

(e#es)) }
unfolding bin-upto-def by blast

also have ... = { fst e } ∪ { items es ! j | j. j < (n−1) ∧ j < length (items es) }
using assms by (cases n) (auto simp: items-def nth-Cons ′, metis One-nat-def

Zero-not-Suc diff-Suc-1 not-less-eq nth-map)
also have ... = { fst e } ∪ bin-upto es (n−1)

unfolding bin-upto-def by blast
finally show ?thesis .

qed

lemma bin-upto-nth-idem-upd-bin:
n < length b =⇒ bin-upto (upd-bin e b) n = bin-upto b n

proof (induction b arbitrary: e n)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ b = (y, PreRed yp ys))

case True
then obtain x xp xs y yp ys where e = (x, PreRed xp xs) b = (y, PreRed yp

ys)
by blast

thus ?thesis
using Cons bin-upto-Cons-0
by (cases n) (auto simp: items-def bin-upto-Cons, blast+)

next
case False
then show ?thesis
proof cases

assume ∗: fst e = fst b
hence upd-bin e (b # bs) = b # bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ by (auto simp: items-def)
next

assume ∗: ¬ fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ Cons
by (cases n) (auto simp: items-def bin-upto-Cons-0 bin-upto-Cons)

qed

41

qed
qed (auto simp: items-def)

lemma bin-upto-nth-idem-upds-bin:
n < length b =⇒ bin-upto (upds-bin es b) n = bin-upto b n
using bin-upto-nth-idem-upd-bin length-upd-bin
apply (induction es arbitrary: b)
apply auto

using order .strict-trans2 order .strict-trans1 by blast+

lemma bins-upto-kth-nth-idem:
assumes l < length bs k ≤ l n < length (bs ! k)
shows bins-upto (upd-bins bs l es) k n = bins-upto bs k n

proof −
let ?bs = upd-bins bs l es
have bins-upto ?bs k n =

⋃
{set (items (?bs ! l)) |l. l < k} ∪ bin-upto (?bs ! k)

n
unfolding bins-upto-def by blast

also have ... =
⋃
{set (items (bs ! l)) |l. l < k} ∪ bin-upto (?bs ! k) n

unfolding upd-bins-def using assms(1 ,2) by auto
also have ... =

⋃
{set (items (bs ! l)) |l. l < k} ∪ bin-upto (bs ! k) n

unfolding upd-bins-def using assms(1 ,3) bin-upto-nth-idem-upds-bin
by (metis (no-types, lifting) nth-list-update)

also have ... = bins-upto bs k n
unfolding bins-upto-def by blast

finally show ?thesis .
qed

lemma bins-upto-sub-bins:
k < length bs =⇒ bins-upto bs k n ⊆ bins bs
unfolding bins-def bins-upto-def bin-upto-def using less-trans by (auto, blast)

lemma bins-upto-Suc-Un:
n < length (bs ! k) =⇒ bins-upto bs k (n+1) = bins-upto bs k n ∪ { items (bs !

k) ! n }
unfolding bins-upto-def bin-upto-def using less-Suc-eq by (auto simp: items-def ,

metis nth-map)

lemma bins-bin-exists:
x ∈ bins bs =⇒ ∃ k < length bs. x ∈ set (items (bs ! k))
unfolding bins-def by blast

lemma distinct-upd-bin:
distinct (items b) =⇒ distinct (items (upd-bin e b))

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ b = (y, PreRed yp ys))

case True

42

then obtain x xp xs y yp ys where e = (x, PreRed xp xs) b = (y, PreRed yp
ys)

by blast
thus ?thesis

using Cons
apply (auto simp: items-def split: prod.split)

by (metis Domain.DomainI Domain-fst UnE empty-iff fst-conv insert-iff
items-def list.set-map set-items-upd-bin)

next
case False
then show ?thesis
proof cases

assume ∗: fst e = fst b
hence upd-bin e (b # bs) = b # bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ Cons.prems by (auto simp: items-def)
next

assume ∗: ¬ fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs

using False by (auto split: pointer .splits prod.split)
moreover have distinct (items (upd-bin e bs))

using Cons by (auto simp: items-def)
ultimately show ?thesis

using ∗ Cons.prems set-items-upd-bin
by (metis Un-insert-right distinct.simps(2) insertE items-def list.simps(9)

sup-bot-right)
qed

qed
qed (auto simp: items-def)

lemma distinct-upds-bin:
distinct (items b) =⇒ distinct (items (upds-bin es b))
by (induction es arbitrary: b) (auto simp add: distinct-upd-bin)

lemma wf-bins-kth-bin:
wf-bins G ω bs =⇒ k < length bs =⇒ x ∈ set (items (bs ! k)) =⇒ wf-item G ω x
∧ end-item x = k

using wf-bin-def wf-bins-def wf-bin-items-def by blast

lemma wf-bin-upd-bin:
assumes wf-bin G ω k b wf-item G ω (fst e) ∧ end-item (fst e) = k
shows wf-bin G ω k (upd-bin e b)
using assms

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ b = (y, PreRed yp ys))

case True

43

then obtain x xp xs y yp ys where e = (x, PreRed xp xs) b = (y, PreRed yp
ys)

by blast
thus ?thesis

using Cons distinct-upd-bin wf-bin-def wf-bin-items-def set-items-upd-bin
by (smt (verit, best) Un-insert-right insertE sup-bot.right-neutral)

next
case False
then show ?thesis
proof cases

assume ∗: fst e = fst b
hence upd-bin e (b # bs) = b # bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ Cons.prems by (auto simp: items-def)
next

assume ∗: ¬ fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis
using ∗ Cons.prems set-items-upd-bin distinct-upd-bin wf-bin-def wf-bin-items-def

by (smt (verit, best) Un-insert-right insertE sup-bot-right)
qed

qed
qed (auto simp: items-def wf-bin-def wf-bin-items-def)

lemma wf-upd-bins-bin:
assumes wf-bin G ω k b
assumes ∀ x ∈ set (items es). wf-item G ω x ∧ end-item x = k
shows wf-bin G ω k (upds-bin es b)
using assms by (induction es arbitrary: b) (auto simp: wf-bin-upd-bin items-def)

lemma wf-bins-upd-bins:
assumes wf-bins G ω bs
assumes ∀ x ∈ set (items es). wf-item G ω x ∧ end-item x = k
shows wf-bins G ω (upd-bins bs k es)
unfolding upd-bins-def using assms wf-upd-bins-bin wf-bins-def
by (metis length-list-update nth-list-update-eq nth-list-update-neq)

lemma wf-bins-impl-wf-items:
wf-bins G ω bs =⇒ ∀ x ∈ (bins bs). wf-item G ω x
unfolding wf-bins-def wf-bin-def wf-bin-items-def bins-def by auto

lemma upds-bin-eq-items:
set (items es) ⊆ set (items b) =⇒ set (items (upds-bin es b)) = set (items b)
apply (induction es arbitrary: b)
apply (auto simp: set-items-upd-bin set-items-upds-bin)
apply (simp add: items-def)

by (metis Un-upper2 upds-bin.simps(2) in-mono set-items-upds-bin sup.orderE)

44

lemma bin-eq-items-upd-bin:
fst e ∈ set (items b) =⇒ items (upd-bin e b) = items b

proof (induction b arbitrary: e)
case (Cons b bs)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ b = (y, PreRed yp ys))

case True
then obtain x xp xs y yp ys where e = (x, PreRed xp xs) b = (y, PreRed yp

ys)
by blast

thus ?thesis
using Cons by (auto simp: items-def , metis fst-conv image-eqI)

next
case False
then show ?thesis
proof cases

assume ∗: fst e = fst b
hence upd-bin e (b # bs) = b # bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ Cons.prems by (auto simp: items-def)
next

assume ∗: ¬ fst e = fst b
hence upd-bin e (b # bs) = b # upd-bin e bs

using False by (auto split: pointer .splits prod.split)
thus ?thesis

using ∗ Cons by (auto simp: items-def)
qed

qed
qed (auto simp: items-def)

lemma bin-eq-items-upds-bin:
assumes set (items es) ⊆ set (items b)
shows items (upds-bin es b) = items b
using assms

proof (induction es arbitrary: b)
case (Cons e es)
have items (upds-bin es (upd-bin e b)) = items (upd-bin e b)

using Cons upds-bin-eq-items set-items-upd-bin set-items-upds-bin
by (metis Un-upper2 upds-bin.simps(2) sup.coboundedI1)

moreover have items (upd-bin e b) = items b
by (metis Cons.prems bin-eq-items-upd-bin items-def list.set-intros(1) list.simps(9)

subset-code(1))
ultimately show ?case

by simp
qed (auto simp: items-def)

lemma bins-eq-items-upd-bins:

45

assumes set (items es) ⊆ set (items (bs!k))
shows bins-eq-items (upd-bins bs k es) bs
unfolding upd-bins-def using assms bin-eq-items-upds-bin bins-eq-items-def
by (metis list-update-id map-update)

lemma bins-eq-items-imp-eq-bins:
bins-eq-items bs bs ′ =⇒ bins bs = bins bs ′

unfolding bins-eq-items-def bins-def items-def
by (metis (no-types, lifting) length-map nth-map)

lemma bin-eq-items-dist-upd-bin-bin:
assumes items a = items b
shows items (upd-bin e a) = items (upd-bin e b)
using assms

proof (induction a arbitrary: e b)
case (Cons a as)
obtain b ′ bs where bs: b = b ′ # bs fst a = fst b ′ items as = items bs

using Cons.prems by (auto simp: items-def)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ a = (y, PreRed yp ys))

case True
then obtain x xp xs y yp ys where #: e = (x, PreRed xp xs) a = (y, PreRed

yp ys)
by blast

show ?thesis
proof cases

assume ∗: x = y
hence items (upd-bin e (a # as)) = x # items as

using # by (auto simp: items-def)
moreover have items (upd-bin e (b ′ # bs)) = x # items bs

using bs # ∗ by (auto simp: items-def split: pointer .splits prod.splits)
ultimately show ?thesis

using bs by simp
next

assume ∗: ¬ x = y
hence items (upd-bin e (a # as)) = y # items (upd-bin e as)

using # by (auto simp: items-def)
moreover have items (upd-bin e (b ′ # bs)) = y # items (upd-bin e bs)

using bs # ∗ by (auto simp: items-def split: pointer .splits prod.splits)
ultimately show ?thesis

using bs Cons.IH by simp
qed

next
case False
then show ?thesis
proof cases

assume ∗: fst e = fst a
hence items (upd-bin e (a # as)) = fst a # items as

using False by (auto simp: items-def split: pointer .splits prod.splits)

46

moreover have items (upd-bin e (b ′ # bs)) = fst b ′ # items bs
using bs False ∗ by (auto simp: items-def split: pointer .splits prod.splits)

ultimately show ?thesis
using bs by simp

next
assume ∗: ¬ fst e = fst a
hence items (upd-bin e (a # as)) = fst a # items (upd-bin e as)

using False by (auto simp: items-def split: pointer .splits prod.splits)
moreover have items (upd-bin e (b ′ # bs)) = fst b ′ # items (upd-bin e bs)

using bs False ∗ by (auto simp: items-def split: pointer .splits prod.splits)
ultimately show ?thesis

using bs Cons by simp
qed

qed
qed (auto simp: items-def)

lemma bin-eq-items-dist-upds-bin-bin:
assumes items a = items b
shows items (upds-bin es a) = items (upds-bin es b)
using assms

proof (induction es arbitrary: a b)
case (Cons e es)
hence items (upds-bin es (upd-bin e a)) = items (upds-bin es (upd-bin e b))

using bin-eq-items-dist-upd-bin-bin by blast
thus ?case

by simp
qed simp

lemma bin-eq-items-dist-upd-bin-entry:
assumes fst e = fst e ′

shows items (upd-bin e b) = items (upd-bin e ′ b)
using assms

proof (induction b arbitrary: e e ′)
case (Cons a as)
show ?case
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ a = (y, PreRed yp ys))

case True
then obtain x xp xs y yp ys where #: e = (x, PreRed xp xs) a = (y, PreRed

yp ys)
by blast

show ?thesis
proof cases

assume ∗: x = y
thus ?thesis
using # Cons.prems by (auto simp: items-def split: pointer .splits prod.splits)

next
assume ∗: ¬ x = y
thus ?thesis

using # Cons.prems

47

by (auto simp: items-def split!: pointer .splits prod.splits, metis Cons.IH
Cons.prems items-def)+

qed
next

case False
then show ?thesis
proof cases

assume ∗: fst e = fst a
thus ?thesis

using Cons.prems by (auto simp: items-def split: pointer .splits prod.splits)
next

assume ∗: ¬ fst e = fst a
thus ?thesis

using Cons.prems
by (auto simp: items-def split!: pointer .splits prod.splits, metis Cons.IH

Cons.prems items-def)+
qed

qed
qed (auto simp: items-def)

lemma bin-eq-items-dist-upds-bin-entries:
assumes items es = items es ′

shows items (upds-bin es b) = items (upds-bin es ′ b)
using assms

proof (induction es arbitrary: es ′ b)
case (Cons e es)
then obtain e ′ es ′′ where fst e = fst e ′ items es = items es ′′ es ′ = e ′ # es ′′

by (auto simp: items-def)
hence items (upds-bin es (upd-bin e b)) = items (upds-bin es ′′ (upd-bin e ′ b))

using Cons.IH
by (metis bin-eq-items-dist-upd-bin-entry bin-eq-items-dist-upds-bin-bin)

thus ?case
by (simp add: ‹es ′ = e ′ # es ′′›)

qed (auto simp: items-def)

lemma bins-eq-items-dist-upd-bins:
assumes bins-eq-items as bs items aes = items bes k < length as
shows bins-eq-items (upd-bins as k aes) (upd-bins bs k bes)

proof −
have k < length bs

using assms(1 ,3) bins-eq-items-def map-eq-imp-length-eq by metis
hence items (upds-bin (as!k) aes) = items (upds-bin (bs!k) bes)
using bin-eq-items-dist-upds-bin-entries bin-eq-items-dist-upds-bin-bin bins-eq-items-def

assms
by (metis (no-types, lifting) nth-map)

thus ?thesis
using ‹k < length bs› assms bin-eq-items-dist-upds-bin-bin bin-eq-items-dist-upds-bin-entries

bins-eq-items-def upd-bins-def by (smt (verit) map-update nth-map)
qed

48

8.5 Well-formed bins
lemma wf-bins-ScanL

′:
assumes wf-bins G ω bs k < length bs x ∈ set (items (bs ! k))
assumes k < length ω next-symbol x 6= None y = inc-item x (k+1)
shows wf-item G ω y ∧ end-item y = k+1
using assms wf-bins-kth-bin[OF assms(1−3)]
unfolding wf-item-def inc-item-def next-symbol-def is-complete-def rhs-item-def
by (auto split: if-splits)

lemma wf-bins-ScanL:
assumes wf-bins G ω bs k < length bs x ∈ set (items (bs ! k)) k < length ω

next-symbol x 6= None
shows ∀ y ∈ set (items (ScanL k ω a x pre)). wf-item G ω y ∧ end-item y =

(k+1)
using wf-bins-ScanL

′[OF assms] by (simp add: ScanL-def items-def)

lemma wf-bins-PredictL:
assumes wf-bins G ω bs k < length bs k ≤ length ω
shows ∀ y ∈ set (items (PredictL k G X)). wf-item G ω y ∧ end-item y = k
using assms by (auto simp: PredictL-def wf-item-def wf-bins-def wf-bin-def init-item-def

items-def)

lemma wf-item-inc-item:
assumes wf-item G ω x next-symbol x = Some a start-item x ≤ k k ≤ length ω
shows wf-item G ω (inc-item x k) ∧ end-item (inc-item x k) = k
using assms by (auto simp: wf-item-def inc-item-def rhs-item-def next-symbol-def

is-complete-def split: if-splits)

lemma wf-bins-CompleteL:
assumes wf-bins G ω bs k < length bs y ∈ set (items (bs ! k))
shows ∀ x ∈ set (items (CompleteL k y bs red)). wf-item G ω x ∧ end-item x =

k
proof −

let ?orig = bs ! (start-item y)
let ?is = filter-with-index (λx. next-symbol x = Some (lhs-item y)) (items ?orig)
let ?is ′ = map (λ(x, pre). (inc-item x k, PreRed (start-item y, pre, red) [])) ?is
{

fix x
assume ∗: x ∈ set (map fst ?is)
have end-item x = start-item y

using ∗ assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order .strict-trans2 filter-is-subset subsetD)

have wf-item G ω x
using ∗ assms wf-bins-kth-bin wf-item-def filter-with-index-cong-filter
by (metis dual-order .strict-trans2 filter-is-subset subsetD)

moreover have next-symbol x = Some (lhs-item y)
using ∗ filter-set filter-with-index-cong-filter member-filter by metis

moreover have start-item x ≤ k
using ‹end-item x = start-item y› ‹wf-item G ω x› assms wf-bins-kth-bin

49

wf-item-def
by (metis dual-order .order-iff-strict dual-order .strict-trans1)

moreover have k ≤ length ω
using assms wf-bins-kth-bin wf-item-def by blast

ultimately have wf-item G ω (inc-item x k) end-item (inc-item x k) = k
by (simp-all add: wf-item-inc-item)

}
hence ∀ x ∈ set (items ?is ′). wf-item G ω x ∧ end-item x = k

by (auto simp: items-def rev-image-eqI)
thus ?thesis

unfolding CompleteL-def by presburger
qed

lemma Ex-wf-bins:
∃n bs ω G. n ≤ length ω ∧ length bs = Suc (length ω) ∧ wf-bins G ω bs
apply (rule exI [where x=0])
apply (rule exI [where x=[[]]])
apply (rule exI [where x=[]])
by (auto simp: wf-bins-def wf-bin-def wf-bin-items-def items-def split: prod.splits)

definition wf-earley-input :: (nat × ′a cfg × ′a list × ′a bins) set where
wf-earley-input = {
(k, G, ω, bs) | k G ω bs.

k ≤ length ω ∧
length bs = length ω + 1 ∧
wf-bins G ω bs

}

typedef ′a wf-bins = wf-earley-input::(nat × ′a cfg × ′a list × ′a bins) set
morphisms from-wf-bins to-wf-bins
using Ex-wf-bins by (auto simp: wf-earley-input-def)

lemma wf-earley-input-elim:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows k ≤ length ω ∧ k < length bs ∧ length bs = length ω + 1 ∧ wf-bins G ω

bs
using assms(1) from-wf-bins wf-earley-input-def by (smt (verit) Suc-eq-plus1

less-Suc-eq-le mem-Collect-eq prod.sel(1) snd-conv)

lemma wf-earley-input-intro:
assumes k ≤ length ω length bs = length ω + 1 wf-bins G ω bs
shows (k, G, ω, bs) ∈ wf-earley-input
by (simp add: assms wf-earley-input-def)

lemma wf-earley-input-CompleteL:
assumes (k, G, ω, bs) ∈ wf-earley-input ¬ length (items (bs ! k)) ≤ i
assumes x = items (bs ! k) ! i next-symbol x = None
shows (k, G, ω, upd-bins bs k (CompleteL k x bs red)) ∈ wf-earley-input

proof −

50

have ∗: k ≤ length ω length bs = length ω + 1 wf-bins G ω bs
using wf-earley-input-elim assms(1) by metis+

have x: x ∈ set (items (bs ! k))
using assms(2 ,3) by simp

have start-item x < length bs
using x wf-bins-kth-bin ∗ wf-item-def

by (metis One-nat-def add.right-neutral add-Suc-right dual-order .trans le-imp-less-Suc)
hence wf-bins G ω (upd-bins bs k (CompleteL k x bs red))

using ∗ Suc-eq-plus1 le-imp-less-Suc wf-bins-CompleteL wf-bins-upd-bins x by
metis

thus ?thesis
by (simp add: ∗(1−3) wf-earley-input-def)

qed

lemma wf-earley-input-ScanL:
assumes (k, G, ω, bs) ∈ wf-earley-input ¬ length (items (bs ! k)) ≤ i
assumes x = items (bs ! k) ! i next-symbol x = Some a
assumes k < length ω
shows (k, G, ω, upd-bins bs (k+1) (ScanL k ω a x pre)) ∈ wf-earley-input

proof −
have ∗: k ≤ length ω length bs = length ω + 1 wf-bins G ω bs

using wf-earley-input-elim assms(1) by metis+
have x: x ∈ set (items(bs ! k))

using assms(2 ,3) by simp
have wf-bins G ω (upd-bins bs (k+1) (ScanL k ω a x pre))

using ∗ x assms(1 ,4 ,5) wf-bins-ScanL wf-bins-upd-bins wf-earley-input-elim
by (metis option.discI)

thus ?thesis
by (simp add: ∗(1−3) wf-earley-input-def)

qed

lemma wf-earley-input-PredictL:
assumes (k, G, ω, bs) ∈ wf-earley-input ¬ length (items (bs ! k)) ≤ i
assumes x = items (bs ! k) ! i next-symbol x = Some a
shows (k, G, ω, upd-bins bs k (PredictL k G a)) ∈ wf-earley-input

proof −
have ∗: k ≤ length ω length bs = length ω + 1 wf-bins G ω bs

using wf-earley-input-elim assms(1) by metis+
have x: x ∈ set (items (bs ! k))

using assms(2 ,3) by simp
hence wf-bins G ω (upd-bins bs k (PredictL k G a))
using ∗ x assms(1 ,4) wf-bins-PredictL wf-bins-upd-bins wf-earley-input-elim by

metis
thus ?thesis

by (simp add: ∗(1−3) wf-earley-input-def)
qed

fun earley-measure :: nat × ′a cfg × ′a list × ′a bins ⇒ nat ⇒ nat where
earley-measure (k, G, ω, bs) i = card { x | x. wf-item G ω x ∧ end-item x = k }

51

− i

lemma EarleyL-bin ′-simps[simp]:
i ≥ length (items (bs ! k)) =⇒ EarleyL-bin ′ k G ω bs i = bs
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = None

=⇒
EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω (upd-bins bs k (CompleteL k x bs

i)) (i+1)
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = Some

a =⇒
a /∈ nonterminals G =⇒ k < length ω =⇒ EarleyL-bin ′ k G ω bs i = EarleyL-bin ′

k G ω (upd-bins bs (k+1) (ScanL k ω a x i)) (i+1)
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = Some

a =⇒
a /∈ nonterminals G =⇒ ¬ k < length ω =⇒ EarleyL-bin ′ k G ω bs i =

EarleyL-bin ′ k G ω bs (i+1)
¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs!k) ! i =⇒ next-symbol x = Some

a =⇒
a ∈ nonterminals G =⇒ EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω (upd-bins

bs k (PredictL k G a)) (i+1)
by (subst EarleyL-bin ′.simps, auto)+

lemma EarleyL-bin ′-induct[case-names Base CompleteF ScanF Pass PredictF]:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes base:

∧
k G ω bs i. i ≥ length (items (bs ! k)) =⇒ P k G ω bs i

assumes complete:
∧

k G ω bs i x. ¬ i ≥ length (items (bs ! k)) =⇒ x = items
(bs ! k) ! i =⇒

next-symbol x = None =⇒ P k G ω (upd-bins bs k (CompleteL k x bs i))
(i+1) =⇒ P k G ω bs i

assumes scan:
∧

k G ω bs i x a. ¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs
! k) ! i =⇒

next-symbol x = Some a =⇒ a /∈ nonterminals G =⇒ k < length ω =⇒
P k G ω (upd-bins bs (k+1) (ScanL k ω a x i)) (i+1) =⇒ P k G ω bs i

assumes pass:
∧

k G ω bs i x a. ¬ i ≥ length (items (bs ! k)) =⇒ x = items (bs
! k) ! i =⇒

next-symbol x = Some a =⇒ a /∈ nonterminals G =⇒ ¬ k < length ω
=⇒

P k G ω bs (i+1) =⇒ P k G ω bs i
assumes predict:

∧
k G ω bs i x a. ¬ i ≥ length (items (bs ! k)) =⇒ x = items

(bs ! k) ! i =⇒
next-symbol x = Some a =⇒ a ∈ nonterminals G =⇒
P k G ω (upd-bins bs k (PredictL k G a)) (i+1) =⇒ P k G ω bs i

shows P k G ω bs i
using assms(1)

proof (induction n≡earley-measure (k, G, ω, bs) i arbitrary: bs i rule: nat-less-induct)
case 1
have wf : k ≤ length ω length bs = length ω + 1 wf-bins G ω bs

using 1 .prems wf-earley-input-elim by metis+
hence k: k < length bs

52

by simp
have fin: finite { x | x. wf-item G ω x ∧ end-item x = k }

using finiteness-UNIV-wf-item by fastforce
show ?case
proof cases

assume i ≥ length (items (bs ! k))
then show ?thesis

by (simp add: base)
next

assume a1 : ¬ i ≥ length (items (bs ! k))
let ?x = items (bs ! k) ! i
have x: ?x ∈ set (items (bs ! k))

using a1 by fastforce
show ?thesis
proof cases

assume a2 : next-symbol ?x = None
let ?bs ′ = upd-bins bs k (CompleteL k ?x bs i)
have start-item ?x < length bs

using wf (3) k wf-bins-kth-bin wf-item-def x by (metis order-le-less-trans)
hence wf-bins ′: wf-bins G ω ?bs ′

using wf-bins-CompleteL wf (3) wf-bins-upd-bins k x by metis
hence wf ′: (k, G, ω, ?bs ′) ∈ wf-earley-input

using wf (1 ,2 ,3) wf-earley-input-intro by fastforce
have sub: set (items (?bs ′ ! k)) ⊆ { x | x. wf-item G ω x ∧ end-item x = k }

using wf (1 ,2) wf-bins ′ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto

have i < length (items (?bs ′ ! k))
using a1 by (metis dual-order .strict-trans1 items-def leI length-map length-nth-upd-bin-bins)
also have ... = card (set (items (?bs ′ ! k)))

using wf (1 ,2) wf-bins ′ distinct-card wf-bins-def wf-bin-def by (metis k
length-upd-bins)

also have ... ≤ card {x |x. wf-item G ω x ∧ end-item x = k}
using card-mono fin sub by blast

finally have card {x |x. wf-item G ω x ∧ end-item x = k} > i
by blast

hence earley-measure (k, G, ω, ?bs ′) (Suc i) < earley-measure (k, G, ω, bs) i
by simp

thus ?thesis
using 1 a1 a2 complete wf ′ by simp

next
assume a2 : ¬ next-symbol ?x = None
then obtain a where a-def : next-symbol ?x = Some a

by blast
show ?thesis
proof cases

assume a3 : a /∈ nonterminals G
show ?thesis
proof cases

assume a4 : k < length ω

53

let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a ?x i)
have wf-bins ′: wf-bins G ω ?bs ′

using wf-bins-ScanL wf (1 ,3) wf-bins-upd-bins a2 a4 k x by metis
hence wf ′: (k, G, ω, ?bs ′) ∈ wf-earley-input

using wf (1 ,2 ,3) wf-earley-input-intro by fastforce
have sub: set (items (?bs ′ ! k)) ⊆ { x | x. wf-item G ω x ∧ end-item x =

k }
using wf (1 ,2) wf-bins ′ unfolding wf-bin-def wf-bins-def wf-bin-items-def

using order-le-less-trans by auto
have i < length (items (?bs ′ ! k))

using a1 by (metis dual-order .strict-trans1 items-def leI length-map
length-nth-upd-bin-bins)

also have ... = card (set (items (?bs ′ ! k)))
using wf (1 ,2) wf-bins ′ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plus1 le-imp-less-Suc length-upd-bins)

also have ... ≤ card {x |x. wf-item G ω x ∧ end-item x = k}
using card-mono fin sub by blast

finally have card {x |x. wf-item G ω x ∧ end-item x = k} > i
by blast

hence earley-measure (k, G, ω, ?bs ′) (Suc i) < earley-measure (k, G, ω,
bs) i

by simp
thus ?thesis

using 1 a1 a-def a3 a4 scan wf ′ by simp
next

assume a4 : ¬ k < length ω
have sub: set (items (bs ! k)) ⊆ { x | x. wf-item G ω x ∧ end-item x = k }

using wf unfolding wf-bin-def wf-bins-def wf-bin-items-def using
order-le-less-trans by auto

have i < length (items (bs ! k))
using a1 by simp

also have ... = card (set (items (bs ! k)))
using wf distinct-card wf-bins-def wf-bin-def by (metis Suc-eq-plus1

le-imp-less-Suc)
also have ... ≤ card {x |x. wf-item G ω x ∧ end-item x = k}

using card-mono fin sub by blast
finally have card {x |x. wf-item G ω x ∧ end-item x = k} > i

by blast
hence earley-measure (k, G, ω, bs) (Suc i) < earley-measure (k, G, ω, bs) i

by simp
thus ?thesis

using 1 a1 a3 a4 a-def pass by simp
qed

next
assume a3 : ¬ a /∈ nonterminals G
let ?bs ′ = upd-bins bs k (PredictL k G a)
have wf-bins ′: wf-bins G ω ?bs ′

using wf-bins-PredictL wf wf-bins-upd-bins k x by metis
hence wf ′: (k, G, ω, ?bs ′) ∈ wf-earley-input

54

using wf (1 ,2 ,3) wf-earley-input-intro by fastforce
have sub: set (items (?bs ′ ! k)) ⊆ { x | x. wf-item G ω x ∧ end-item x = k }

using wf (1 ,2) wf-bins ′ unfolding wf-bin-def wf-bins-def wf-bin-items-def
using order-le-less-trans by auto

have i < length (items (?bs ′ ! k))
using a1 by (metis dual-order .strict-trans1 items-def leI length-map

length-nth-upd-bin-bins)
also have ... = card (set (items (?bs ′ ! k)))

using wf (1 ,2) wf-bins ′ distinct-card wf-bins-def wf-bin-def
by (metis Suc-eq-plus1 le-imp-less-Suc length-upd-bins)

also have ... ≤ card {x |x. wf-item G ω x ∧ end-item x = k}
using card-mono fin sub by blast

finally have card {x |x. wf-item G ω x ∧ end-item x = k} > i
by blast

hence earley-measure (k, G, ω, ?bs ′) (Suc i) < earley-measure (k, G, ω, bs)
i

by simp
thus ?thesis

using 1 a1 a-def a3 a-def predict wf ′ by simp
qed

qed
qed

qed

lemma wf-earley-input-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows (k, G, ω, EarleyL-bin ′ k G ω bs i) ∈ wf-earley-input
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1), case-names Base Com-
pleteF ScanF Pass PredictF])

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have (k, G, ω, ?bs ′) ∈ wf-earley-input

using CompleteF .hyps CompleteF .prems wf-earley-input-CompleteL by blast
thus ?case

using CompleteF .IH CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems wf-earley-input-ScanL by metis
thus ?case

using ScanF .IH ScanF .hyps by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have (k, G, ω, ?bs ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems wf-earley-input-PredictL by metis
thus ?case

55

using PredictF .IH PredictF .hyps by simp
qed simp-all

lemma wf-earley-input-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows (k, G, ω, EarleyL-bin k G ω bs) ∈ wf-earley-input
using assms by (simp add: EarleyL-bin-def wf-earley-input-EarleyL-bin ′)

lemma length-bins-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows length (EarleyL-bin ′ k G ω bs i) = length bs
by (metis assms wf-earley-input-EarleyL-bin ′ wf-earley-input-elim)

lemma length-nth-bin-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows length (items (EarleyL-bin ′ k G ω bs i ! l)) ≥ length (items (bs ! l))
using length-nth-upd-bin-bins order-trans
by (induction i rule: EarleyL-bin ′-induct[OF assms]) (auto simp: items-def ,

blast+)

lemma wf-bins-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows wf-bins G ω (EarleyL-bin ′ k G ω bs i)
using assms wf-earley-input-EarleyL-bin ′ wf-earley-input-elim by blast

lemma wf-bins-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows wf-bins G ω (EarleyL-bin k G ω bs)
using assms EarleyL-bin-def wf-bins-EarleyL-bin ′ by metis

lemma kth-EarleyL-bin ′-bins:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes j < length (items (bs ! l))
shows items (EarleyL-bin ′ k G ω bs i ! l) ! j = items (bs ! l) ! j
using assms(2)

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1), case-names Base Com-
pleteF ScanF Pass PredictF])

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have items (EarleyL-bin ′ k G ω ?bs ′ (i + 1) ! l) ! j = items (?bs ′ ! l) ! j

using CompleteF .IH CompleteF .prems length-nth-upd-bin-bins items-def or-
der .strict-trans2 by (metis length-map)

also have ... = items (bs ! l) ! j
using CompleteF .prems items-nth-idem-upd-bins nth-idem-upd-bins length-map

items-def by metis
finally show ?case

using CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)

56

let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have items (EarleyL-bin ′ k G ω ?bs ′ (i + 1) ! l) ! j = items (?bs ′ ! l) ! j
using ScanF .IH ScanF .prems length-nth-upd-bin-bins order .strict-trans2 items-def

by (metis length-map)
also have ... = items (bs ! l) ! j
using ScanF .prems items-nth-idem-upd-bins nth-idem-upd-bins length-map items-def

by metis
finally show ?case

using ScanF .hyps by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have items (EarleyL-bin ′ k G ω ?bs ′ (i + 1) ! l) ! j = items (?bs ′ ! l) ! j

using PredictF .IH PredictF .prems length-nth-upd-bin-bins order .strict-trans2
items-def by (metis length-map)

also have ... = items (bs ! l) ! j
using PredictF .prems items-nth-idem-upd-bins nth-idem-upd-bins length-map

items-def by metis
finally show ?case

using PredictF .hyps by simp
qed simp-all

lemma nth-bin-sub-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows set (items (bs ! l)) ⊆ set (items (EarleyL-bin ′ k G ω bs i ! l))

proof standard
fix x
assume x ∈ set (items (bs ! l))
then obtain j where ∗: j < length (items (bs ! l)) items (bs ! l) ! j = x

using in-set-conv-nth by metis
have x = items (EarleyL-bin ′ k G ω bs i ! l) ! j

using kth-EarleyL-bin ′-bins assms ∗ by metis
moreover have j < length (items (EarleyL-bin ′ k G ω bs i ! l))

using assms ∗(1) length-nth-bin-EarleyL-bin ′ less-le-trans by blast
ultimately show x ∈ set (items (EarleyL-bin ′ k G ω bs i ! l))

by simp
qed

lemma nth-EarleyL-bin ′-eq:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows l < k =⇒ EarleyL-bin ′ k G ω bs i ! l = bs ! l
by (induction i rule: EarleyL-bin ′-induct[OF assms]) (auto simp: upd-bins-def)

lemma set-items-EarleyL-bin ′-eq:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows l < k =⇒ set (items (EarleyL-bin ′ k G ω bs i ! l)) = set (items (bs ! l))
by (simp add: assms nth-EarleyL-bin ′-eq)

lemma bins-upto-k0-EarleyL-bin ′-eq:

57

assumes (k, G, ω, bs) ∈ wf-earley-input
shows bins-upto (EarleyL-bin k G ω bs) k 0 = bins-upto bs k 0
unfolding bins-upto-def bin-upto-def EarleyL-bin-def using set-items-EarleyL-bin ′-eq

assms nth-EarleyL-bin ′-eq by fastforce

lemma wf-earley-input-InitL:
assumes k ≤ length ω
shows (k, G, ω, InitL G ω) ∈ wf-earley-input

proof −
let ?rs = filter (λr . lhs-rule r = S G) (remdups (R G))
let ?b0 = map (λr . (init-item r 0 , Null)) ?rs
let ?bs = replicate (length ω + 1) ([])
have distinct (items ?b0)

using assms unfolding wf-bin-def wf-item-def items-def
by (auto simp: init-item-def distinct-map inj-on-def)

moreover have ∀ x ∈ set (items ?b0). wf-item G ω x ∧ end-item x = 0
using assms unfolding wf-bin-def wf-item-def by (auto simp: init-item-def

items-def)
moreover have wf-bins G ω ?bs
unfolding wf-bins-def wf-bin-def wf-bin-items-def items-def using less-Suc-eq-0-disj

by force
ultimately show ?thesis

using assms length-replicate wf-earley-input-intro
unfolding wf-bin-def InitL-def wf-bin-def wf-bin-items-def wf-bins-def

by (metis (no-types, lifting) length-list-update nth-list-update-eq nth-list-update-neq)
qed

lemma length-bins-InitL[simp]:
length (InitL G ω) = length ω + 1
by (simp add: InitL-def)

lemma wf-earley-input-EarleyL-bins[simp]:
assumes k ≤ length ω
shows (k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input
using assms

proof (induction k)
case 0
have (k, G, ω, InitL G ω) ∈ wf-earley-input

using assms wf-earley-input-InitL by blast
thus ?case

by (simp add: assms wf-earley-input-InitL wf-earley-input-EarleyL-bin)
next

case (Suc k)
have (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input
using Suc.IH Suc.prems(1) Suc-leD assms wf-earley-input-elim wf-earley-input-intro

by metis
thus ?case

by (simp add: wf-earley-input-EarleyL-bin)
qed

58

lemma length-EarleyL-bins[simp]:
assumes k ≤ length ω
shows length (EarleyL-bins k G ω) = length (InitL G ω)
using assms wf-earley-input-EarleyL-bins wf-earley-input-elim by fastforce

lemma wf-bins-EarleyL-bins[simp]:
assumes k ≤ length ω
shows wf-bins G ω (EarleyL-bins k G ω)
using assms wf-earley-input-EarleyL-bins wf-earley-input-elim by fastforce

lemma wf-bins-EarleyL:
wf-bins G ω (EarleyL G ω)
by (simp add: EarleyL-def)

8.6 Soundness
lemma InitL-eq-InitF :

bins (InitL G ω) = InitF G
proof −

let ?rs = filter (λr . lhs-rule r = S G) (remdups (R G))
let ?b0 = map (λr . (init-item r 0 , Null)) ?rs
let ?bs = replicate (length ω + 1) ([])
have bins (?bs[0 := ?b0]) = set (items ?b0)
proof −
have bins (?bs[0 := ?b0]) =

⋃
{set (items ((?bs[0 := ?b0]) ! k)) |k. k < length

(?bs[0 := ?b0])}
unfolding bins-def by blast

also have ... = set (items ((?bs[0 := ?b0]) ! 0)) ∪
⋃
{set (items ((?bs[0 :=

?b0]) ! k)) |k. k < length (?bs[0 := ?b0]) ∧ k 6= 0}
by fastforce

also have ... = set (items (?b0))
by (auto simp: items-def)

finally show ?thesis .
qed
also have ... = InitF G

by (auto simp: InitF -def items-def lhs-rule-def)
finally show ?thesis

by (auto simp: InitL-def)
qed

lemma ScanL-sub-ScanF :
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs ! k)) k < length bs k <

length ω
assumes next-symbol x = Some a
shows set (items (ScanL k ω a x pre)) ⊆ ScanF k ω I

proof standard
fix y
assume ∗: y ∈ set (items (ScanL k ω a x pre))

59

have x ∈ bin I k
using kth-bin-sub-bins assms(1−4) items-def wf-bin-def wf-bins-def wf-bin-items-def

bin-def by fastforce
{

assume #: k < length ω ω!k = a
hence y = inc-item x (k+1)

using ∗ unfolding ScanL-def by (simp add: items-def)
hence y ∈ ScanF k ω I

using ‹x ∈ bin I k› # assms(6) unfolding ScanF -def by blast
}
thus y ∈ ScanF k ω I

using ∗ assms(5) unfolding ScanL-def by (auto simp: items-def)
qed

lemma PredictL-sub-PredictF :
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs ! k)) k < length bs
assumes next-symbol x = Some X
shows set (items (PredictL k G X)) ⊆ PredictF k G I

proof standard
fix y
assume ∗: y ∈ set (items (PredictL k G X))
have x ∈ bin I k

using kth-bin-sub-bins assms(1−4) items-def wf-bin-def wf-bins-def bin-def
wf-bin-items-def by fast

let ?rs = filter (λr . lhs-rule r = X) (R G)
let ?xs = map (λr . init-item r k) ?rs
have y ∈ set ?xs

using ∗ unfolding PredictL-def items-def by simp
then obtain r where y = init-item r k lhs-rule r = X r ∈ set (R G) next-symbol

x = Some (lhs-rule r)
using assms(5) by auto

thus y ∈ PredictF k G I
unfolding PredictF -def using ‹x ∈ bin I k› by blast

qed

lemma CompleteL-sub-CompleteF :
assumes wf-bins G ω bs bins bs ⊆ I y ∈ set (items (bs ! k)) k < length bs
assumes next-symbol y = None
shows set (items (CompleteL k y bs red)) ⊆ CompleteF k I

proof standard
fix x
assume ∗: x ∈ set (items (CompleteL k y bs red))
have y ∈ bin I k
using kth-bin-sub-bins assms items-def wf-bin-def wf-bins-def bin-def wf-bin-items-def

by fast
let ?orig = bs ! start-item y
let ?xs = filter-with-index (λx. next-symbol x = Some (lhs-item y)) (items ?orig)
let ?xs ′ = map (λ(x, pre). (inc-item x k, PreRed (start-item y, pre, red) [])) ?xs
have 0 : start-item y < length bs

60

using wf-bins-def wf-bin-def wf-item-def wf-bin-items-def assms(1 ,3 ,4)
by (metis Orderings.preorder-class.dual-order .strict-trans1 leD not-le-imp-less)

{
fix z
assume ∗: z ∈ set (map fst ?xs)
have next-symbol z = Some (lhs-item y)

using ∗ by (simp add: filter-with-index-cong-filter)
moreover have z ∈ bin I (start-item y)
using 0 ∗ assms(1 ,2) bin-def kth-bin-sub-bins wf-bins-kth-bin filter-with-index-cong-filter

by (metis (mono-tags, lifting) filter-is-subset in-mono mem-Collect-eq)
ultimately have next-symbol z = Some (lhs-item y) z ∈ bin I (start-item y)

by simp-all
}
hence 1 : ∀ z ∈ set (map fst ?xs). next-symbol z = Some (lhs-item y) ∧ z ∈ bin

I (start-item y)
by blast

obtain z where z: x = inc-item z k z ∈ set (map fst ?xs)
using ∗ unfolding CompleteL-def by (auto simp: rev-image-eqI items-def)

moreover have next-symbol z = Some (lhs-item y) z ∈ bin I (start-item y)
using 1 z by blast+

ultimately show x ∈ CompleteF k I
using ‹y ∈ bin I k› assms(5) unfolding CompleteF -def next-symbol-def by

(auto split: if-splits)
qed

lemma sound-ScanL:
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs!k)) k < length bs k <

length ω
assumes next-symbol x = Some a ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item G

ω x
shows ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

proof standard
fix y
assume y ∈ set (items (ScanL k ω a x i))
hence y ∈ ScanF k ω I

by (meson ScanL-sub-ScanF assms(1−6) in-mono)
thus sound-item G ω y

using sound-Scan assms(7 ,8) unfolding ScanF -def inc-item-def bin-def
by (smt (verit, best) item.exhaust-sel mem-Collect-eq)

qed

lemma sound-PredictL:
assumes wf-bins G ω bs bins bs ⊆ I x ∈ set (items (bs!k)) k < length bs
assumes next-symbol x = Some X ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item
G ω x

shows ∀ x ∈ set (items (PredictL k G X)). sound-item G ω x
proof standard

fix y
assume y ∈ set (items (PredictL k G X))

61

hence y ∈ PredictF k G I
by (meson PredictL-sub-PredictF assms(1−5) subsetD)

thus sound-item G ω y
using sound-Predict assms(6 ,7) unfolding PredictF -def init-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)

qed

lemma sound-CompleteL:
assumes wf-bins G ω bs bins bs ⊆ I y ∈ set (items (bs!k)) k < length bs
assumes next-symbol y = None ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item G ω

x
shows ∀ x ∈ set (items (CompleteL k y bs i)). sound-item G ω x

proof standard
fix x
assume x ∈ set (items (CompleteL k y bs i))
hence x ∈ CompleteF k I

using CompleteL-sub-CompleteF assms(1−5) by blast
thus sound-item G ω x
using sound-Complete assms(6 ,7) unfolding CompleteF -def inc-item-def bin-def
by (smt (verit, del-insts) item.exhaust-sel mem-Collect-eq)

qed

lemma sound-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes ∀ x ∈ bins bs. sound-item G ω x
shows ∀ x ∈ bins (EarleyL-bin ′ k G ω bs i). sound-item G ω x
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1), case-names Base Com-
pleteF ScanF Pass PredictF])

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2) by force
hence ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items by fastforce
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast

ultimately have ∀ x ∈ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1)). sound-item G ω
x

using CompleteF .IH CompleteF .prems(2) length-upd-bins bins-upd-bins wf-earley-input-elim
Suc-eq-plus1 Un-iff le-imp-less-Suc by metis

thus ?case
using CompleteF .hyps by simp

next
case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2) by force

62

hence ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x
using sound-ScanL ScanF .hyps(3 ,5) ScanF .prems(1 ,2) wf-earley-input-elim

wf-bins-impl-wf-items by fast
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by metis
ultimately have ∀ x ∈ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1)). sound-item G ω

x
using ScanF .IH ScanF .hyps(5) ScanF .prems(2) length-upd-bins bins-upd-bins

wf-earley-input-elim
by (metis UnE add-less-cancel-right)

thus ?case
using ScanF .hyps by simp

next
case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2) by force
hence ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by metis

ultimately have ∀ x ∈ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1)). sound-item G ω
x

using PredictF .IH PredictF .prems(2) length-upd-bins bins-upd-bins wf-earley-input-elim
by (metis Suc-eq-plus1 UnE)

thus ?case
using PredictF .hyps by simp

qed simp-all

lemma sound-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes ∀ x ∈ bins bs. sound-item G ω x
shows ∀ x ∈ bins (EarleyL-bin k G ω bs). sound-item G ω x
using sound-EarleyL-bin ′ assms EarleyL-bin-def by metis

lemma EarleyL-bin ′-sub-EarleyF -bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes bins bs ⊆ I
shows bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω I
using assms

proof (induction i arbitrary: I rule: EarleyL-bin ′-induct[OF assms(1), case-names
Base CompleteF ScanF Pass PredictF])

case (Base k G ω bs i)
thus ?case

using EarleyF -bin-mono by fastforce
next

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)

63

have x ∈ set (items (bs ! k))
using CompleteF .hyps(1 ,2) by force

hence bins ?bs ′ ⊆ I ∪ CompleteF k I
using CompleteL-sub-CompleteF CompleteF .hyps(3) CompleteF .prems(1 ,2)

bins-upd-bins wf-earley-input-elim by blast
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast
ultimately have bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω (I ∪

CompleteF k I)
using CompleteF .IH CompleteF .hyps by simp

also have ... ⊆ EarleyF -bin k G ω (EarleyF -bin k G ω I)
using CompleteF -EarleyF -bin-mono EarleyF -bin-mono EarleyF -bin-sub-mono

by (metis Un-subset-iff)
finally show ?case

using EarleyF -bin-idem by blast
next

case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2) by force
hence bins ?bs ′ ⊆ I ∪ ScanF k ω I
using ScanL-sub-ScanF ScanF .hyps(3 ,5) ScanF .prems bins-upd-bins wf-earley-input-elim
by (metis add-mono1 sup-mono)

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by metis

ultimately have bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω (I ∪ ScanF

k ω I)
using ScanF .IH ScanF .hyps by simp

thus ?case
using ScanF -EarleyF -bin-mono EarleyF -bin-mono EarleyF -bin-sub-mono Ear-

leyF -bin-idem
by (metis Un-subset-iff subset-trans)

next
case (Pass k G ω bs i x a)
thus ?case

by simp
next

case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2) by force
hence bins ?bs ′ ⊆ I ∪ PredictF k G I

using PredictL-sub-PredictF PredictF .hyps(3) PredictF .prems bins-upd-bins
wf-earley-input-elim

by (metis sup-mono)
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by metis
ultimately have bins (EarleyL-bin ′ k G ω bs i) ⊆ EarleyF -bin k G ω (I ∪

PredictF k G I)

64

using PredictF .IH PredictF .hyps by simp
thus ?case

using PredictF -EarleyF -bin-mono EarleyF -bin-mono EarleyF -bin-sub-mono
EarleyF -bin-idem

by (metis Un-subset-iff subset-trans)
qed

lemma EarleyL-bin-sub-EarleyF -bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes bins bs ⊆ I
shows bins (EarleyL-bin k G ω bs) ⊆ EarleyF -bin k G ω I
using assms EarleyL-bin ′-sub-EarleyF -bin EarleyL-bin-def by metis

lemma EarleyL-bins-sub-EarleyF -bins:
assumes k ≤ length ω
shows bins (EarleyL-bins k G ω) ⊆ EarleyF -bins k G ω
using assms

proof (induction k)
case 0
have (k, G, ω, InitL G ω) ∈ wf-earley-input

using assms(1) assms wf-earley-input-InitL by blast
thus ?case
by (simp add: InitL-eq-InitF EarleyL-bin-sub-EarleyF -bin assms wf-earley-input-InitL)

next
case (Suc k)
have (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input

by (simp add: Suc.prems(1) Suc-leD assms wf-earley-input-intro)
thus ?case
by (simp add: Suc.IH Suc.prems(1) Suc-leD EarleyL-bin-sub-EarleyF -bin assms)

qed

lemma EarleyL-sub-EarleyF :
bins (EarleyL G ω) ⊆ EarleyF G ω
using EarleyL-bins-sub-EarleyF -bins EarleyF -def EarleyL-def by (metis dual-order .refl)

theorem soundness-EarleyL:
assumes recognizing (bins (EarleyL G ω)) G ω
shows G ` [S G] ⇒∗ ω
using assms EarleyL-sub-EarleyF recognizing-def soundness-EarleyF by (meson

subsetD)

8.7 Completeness
lemma bin-bins-upto-bins-eq:

assumes wf-bins G ω bs k < length bs i ≥ length (items (bs ! k)) l ≤ k
shows bin (bins-upto bs k i) l = bin (bins bs) l
unfolding bins-upto-def bins-def bin-def using assms nat-less-le
apply (auto simp: nth-list-update bin-upto-eq-set-items wf-bins-kth-bin items-def)

apply (metis fst-conv image-eqI order .strict-trans2)

65

by (metis fst-conv image-eqI items-def list.set-map wf-bins-kth-bin)

lemma impossible-complete-item:
assumes sound-item G ω x is-complete x start-item x = k end-item x = k

nonempty-derives G
shows False

proof −
have G ` [lhs-item x] ⇒∗ []

using assms(1−4) by (simp add: slice-empty is-complete-def sound-item-def
β-item-def)

thus ?thesis
by (meson assms(5) nonempty-derives-def)

qed

lemma CompleteF -Un-eq-terminal:
assumes next-symbol z = Some a a /∈ nonterminals G ∀ x ∈ I . wf-item G ω x

wf-item G ω z
shows CompleteF k (I ∪ {z}) = CompleteF k I

proof (rule ccontr)
assume CompleteF k (I ∪ {z}) 6= CompleteF k I
hence CompleteF k I ⊂ CompleteF k (I ∪ {z})

using CompleteF -sub-mono by blast
then obtain w x y where ∗:

w ∈ CompleteF k (I ∪ {z}) w /∈ CompleteF k I w = inc-item x k
x ∈ bin (I ∪ {z}) (start-item y) y ∈ bin (I ∪ {z}) k
is-complete y next-symbol x = Some (lhs-item y)
unfolding CompleteF -def by fast

show False
proof (cases x = z)

case True
have lhs-item y ∈ nonterminals G

using ∗(5 ,6) assms
by (auto simp: wf-item-def bin-def lhs-item-def lhs-rule-def next-symbol-def

nonterminals-def)
thus ?thesis

using True ∗(7) assms by simp
next

case False
thus ?thesis

using ∗ assms(1) by (auto simp: next-symbol-def CompleteF -def bin-def)
qed

qed

lemma CompleteF -Un-eq-nonterminal:
assumes ∀ x ∈ I . wf-item G ω x ∀ x ∈ I . sound-item G ω x
assumes nonempty-derives G wf-item G ω z
assumes end-item z = k next-symbol z 6= None
shows CompleteF k (I ∪ {z}) = CompleteF k I

proof (rule ccontr)

66

assume CompleteF k (I ∪ {z}) 6= CompleteF k I
hence CompleteF k I ⊂ CompleteF k (I ∪ {z})

using CompleteF -sub-mono by blast
then obtain x x ′ y where ∗:

x ∈ CompleteF k (I ∪ {z}) x /∈ CompleteF k I x = inc-item x ′ k
x ′ ∈ bin (I ∪ {z}) (start-item y) y ∈ bin (I ∪ {z}) k
is-complete y next-symbol x ′ = Some (lhs-item y)
unfolding CompleteF -def by fast

consider (A) x ′ = z | (B) y = z
using ∗(2−7) CompleteF -def by (auto simp: bin-def ; blast)

thus False
proof cases

case A
have start-item y = k
using ∗(4) A bin-def assms(5) by (metis (mono-tags, lifting) mem-Collect-eq)

moreover have end-item y = k
using ∗(5) bin-def by blast

moreover have sound-item G ω y
using ∗(5 ,6) assms(2 ,6) by (auto simp: bin-def next-symbol-def sound-item-def)
moreover have wf-item G ω y

using ∗(5) assms(1 ,4) wf-item-def by (auto simp: bin-def)
ultimately show ?thesis

using impossible-complete-item ∗(6) assms(3) by blast
next

case B
thus ?thesis

using ∗(6) assms(6) by (auto simp: next-symbol-def)
qed

qed

lemma wf-item-in-kth-bin:
wf-bins G ω bs =⇒ x ∈ bins bs =⇒ end-item x = k =⇒ x ∈ set (items (bs ! k))
using bins-bin-exists wf-bins-kth-bin wf-bins-def by blast

lemma CompleteF -bins-upto-eq-bins:
assumes wf-bins G ω bs k < length bs i ≥ length (items (bs ! k))
shows CompleteF k (bins-upto bs k i) = CompleteF k (bins bs)

proof −
have

∧
l. l ≤ k =⇒ bin (bins-upto bs k i) l = bin (bins bs) l

using bin-bins-upto-bins-eq[OF assms] by blast
moreover have ∀ x ∈ bins bs. wf-item G ω x

using assms(1) wf-bins-impl-wf-items by metis
ultimately show ?thesis

unfolding CompleteF -def bin-def wf-item-def wf-item-def by auto
qed

lemma CompleteF -sub-bins-Un-CompleteL:
assumes CompleteF k I ⊆ bins bs I ⊆ bins bs is-complete z wf-bins G ω bs

wf-item G ω z

67

shows CompleteF k (I ∪ {z}) ⊆ bins bs ∪ set (items (CompleteL k z bs red))
proof standard

fix w
assume w ∈ CompleteF k (I ∪ {z})
then obtain x y where ∗:

w = inc-item x k x ∈ bin (I ∪ {z}) (start-item y) y ∈ bin (I ∪ {z}) k
is-complete y next-symbol x = Some (lhs-item y)
unfolding CompleteF -def by blast

consider (A) x = z | (B) y = z | ¬ (x = z ∨ y = z)
by blast

thus w ∈ bins bs ∪ set (items (CompleteL k z bs red))
proof cases

case A
thus ?thesis

using ∗(5) assms(3) by (auto simp: next-symbol-def)
next

case B
let ?orig = bs ! start-item z
let ?is = filter-with-index (λx. next-symbol x = Some (lhs-item z)) (items ?orig)
have x ∈ bin I (start-item y)

using B ∗(2) ∗(5) assms(3) by (auto simp: next-symbol-def bin-def)
moreover have bin I (start-item z) ⊆ set (items (bs ! start-item z))

using wf-item-in-kth-bin assms(2 ,4) bin-def by blast
ultimately have x ∈ set (map fst ?is)

using ∗(5) B by (simp add: filter-with-index-cong-filter in-mono)
thus ?thesis

unfolding CompleteL-def ∗(1) by (auto simp: rev-image-eqI items-def)
next

case 3
thus ?thesis

using ∗ assms(1) CompleteF -def by (auto simp: bin-def ; blast)
qed

qed

lemma CompleteL-eq-start-item:
bs ! start-item y = bs ′ ! start-item y =⇒ CompleteL k y bs red = CompleteL k y

bs ′ red
by (auto simp: CompleteL-def)

lemma kth-bin-bins-upto-empty:
assumes wf-bins G ω bs k < length bs
shows bin (bins-upto bs k 0) k = {}

proof −
{

fix x
assume x ∈ bins-upto bs k 0
then obtain l where x ∈ set (items (bs ! l)) l < k

unfolding bins-upto-def bin-upto-def by blast
hence end-item x = l

68

using wf-bins-kth-bin assms by fastforce
hence end-item x < k

using ‹l < k› by blast
}
thus ?thesis

by (auto simp: bin-def)
qed

lemma EarleyL-bin ′-mono:
assumes (k, G, ω, bs) ∈ wf-earley-input
shows bins bs ⊆ bins (EarleyL-bin ′ k G ω bs i)
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1), case-names Base Com-
pleteF ScanF Pass PredictF])

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast

hence bins bs ⊆ bins ?bs ′

using length-upd-bins bins-upd-bins wf-earley-input-elim by (metis Un-upper1)
also have ... ⊆ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1))

using wf CompleteF .IH by blast
finally show ?case

using CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by metis
hence bins bs ⊆ bins ?bs ′

using ScanF .hyps(5) length-upd-bins bins-upd-bins wf-earley-input-elim
by (metis add-mono1 sup-ge1)

also have ... ⊆ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1))
using wf ScanF .IH by blast

finally show ?case
using ScanF .hyps by simp

next
case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by metis
hence bins bs ⊆ bins ?bs ′

using length-upd-bins bins-upd-bins wf-earley-input-elim by (metis sup-ge1)
also have ... ⊆ bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1))

using wf PredictF .IH by blast
finally show ?case

using PredictF .hyps by simp
qed simp-all

69

lemma EarleyF -bin-step-sub-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k i) ⊆ bins bs
assumes ∀ x ∈ bins bs. sound-item G ω x is-word G ω nonempty-derives G
shows EarleyF -bin-step k G ω (bins bs) ⊆ bins (EarleyL-bin ′ k G ω bs i)
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1), case-names Base Com-
pleteF ScanF Pass PredictF])

case (Base k G ω bs i)
have bin (bins bs) k = bin (bins-upto bs k i) k

using Base.hyps Base.prems(1) bin-bins-upto-bins-eq wf-earley-input-elim by
blast

thus ?case
using ScanF -bin-absorb PredictF -bin-absorb CompleteF -bins-upto-eq-bins wf-earley-input-elim
Base.hyps Base.prems(1 ,2 ,3 ,5) EarleyF -bin-step-def CompleteF -EarleyF -bin-step-mono
PredictF -EarleyF -bin-step-mono ScanF -EarleyF -bin-step-mono EarleyL-bin ′-mono
by (metis (no-types, lifting) Un-assoc sup.orderE)

next
case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have x: x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2) by auto
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast

hence sound: ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items x
by (metis dual-order .refl)

have ScanF k ω (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have ScanF k ω (bins-upto ?bs ′ k (i + 1)) = ScanF k ω (bins-upto ?bs ′ k i ∪

{items (?bs ′ ! k) ! i})
using CompleteF .hyps(1) bins-upto-Suc-Un length-nth-upd-bin-bins items-def
by (metis length-map linorder-not-less sup.boundedE sup.order-iff)

also have ... = ScanF k ω (bins-upto bs k i ∪ {x})
using CompleteF .hyps(1 ,2) CompleteF .prems(1) items-nth-idem-upd-bins

bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ ScanF k ω {x}
using CompleteF .prems(2 ,3) ScanF -Un ScanF -EarleyF -bin-step-mono by

fastforce
also have ... = bins bs

using CompleteF .hyps(3) by (auto simp: ScanF -def bin-def)
finally show ?thesis

using CompleteF .prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have PredictF k G (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have PredictF k G (bins-upto ?bs ′ k (i + 1)) = PredictF k G (bins-upto ?bs ′ k

70

i ∪ {items (?bs ′ ! k) ! i})
using CompleteF .hyps(1) bins-upto-Suc-Un length-nth-upd-bin-bins
by (metis dual-order .strict-trans1 items-def length-map not-le-imp-less)

also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using CompleteF .hyps(1 ,2) CompleteF .prems(1) items-nth-idem-upd-bins

bins-upto-kth-nth-idem wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ PredictF k G {x}
using CompleteF .prems(2 ,3) PredictF -Un PredictF -EarleyF -bin-step-mono

by blast
also have ... = bins bs

using CompleteF .hyps(3) by (auto simp: PredictF -def bin-def)
finally show ?thesis

using CompleteF .prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have CompleteF k (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have CompleteF k (bins-upto ?bs ′ k (i + 1)) = CompleteF k (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un length-nth-upd-bin-bins CompleteF .hyps(1)

by (metis (no-types, opaque-lifting) dual-order .trans items-def length-map
not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i ∪ {x})
using items-nth-idem-upd-bins CompleteF .hyps(1 ,2) bins-upto-kth-nth-idem

CompleteF .prems(1) wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ set (items (CompleteL k x bs i))
using CompleteF -sub-bins-Un-CompleteL CompleteF .hyps(3) CompleteF .prems(1 ,2 ,3)

next-symbol-def
bins-upto-sub-bins wf-bins-kth-bin x CompleteF -EarleyF -bin-step-mono wf-earley-input-elim
by (smt (verit, best) option.distinct(1) subset-trans)

finally show ?thesis
using CompleteF .prems(1) wf-earley-input-elim bins-upd-bins by blast

qed
ultimately have EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω

?bs ′ (i+1))
using CompleteF .IH CompleteF .prems sound wf EarleyF -bin-step-def bins-upto-sub-bins

wf-earley-input-elim bins-upd-bins
by (metis UnE sup.boundedI)

thus ?case
using CompleteF .hyps CompleteF .prems(1) EarleyL-bin ′-simps(2) EarleyF -bin-step-sub-mono

bins-upd-bins wf-earley-input-elim
by (smt (verit, best) sup.coboundedI2 sup.orderE sup-ge1)

next
case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have x: x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2) by auto
hence sound: ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

71

using sound-ScanL ScanF .hyps(3 ,5) ScanF .prems(1 ,2 ,3) wf-earley-input-elim
wf-bins-impl-wf-items x

by (metis dual-order .refl)
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by metis
have ScanF k ω (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have ScanF k ω (bins-upto ?bs ′ k (i + 1)) = ScanF k ω (bins-upto ?bs ′ k i ∪

{items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un ScanF .hyps(1) nth-idem-upd-bins
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)

also have ... = ScanF k ω (bins-upto bs k i ∪ {x})
using ScanF .hyps(1 ,2 ,5) ScanF .prems(1 ,2) nth-idem-upd-bins bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis add-mono-thms-linordered-field(1) items-def length-map less-add-one

linorder-le-less-linear not-add-less1)
also have ... ⊆ bins bs ∪ ScanF k ω {x}
using ScanF .prems(2 ,3) ScanF -Un ScanF -EarleyF -bin-step-mono by fastforce
finally have ∗: ScanF k ω (bins-upto ?bs ′ k (i + 1)) ⊆ bins bs ∪ ScanF k ω

{x} .
show ?thesis
proof cases

assume a1 : ω!k = a
hence ScanF k ω {x} = {inc-item x (k+1)}

using ScanF .hyps(1−3 ,5) ScanF .prems(1 ,2) wf-earley-input-elim apply
(auto simp: ScanF -def bin-def)

using wf-bins-kth-bin x by blast
hence ScanF k ω (bins-upto ?bs ′ k (i + 1)) ⊆ bins bs ∪ {inc-item x (k+1)}

using ∗ by blast
also have ... = bins bs ∪ set (items (ScanL k ω a x i))

using a1 ScanF .hyps(5) by (auto simp: ScanL-def items-def)
also have ... = bins ?bs ′

using ScanF .hyps(5) ScanF .prems(1) wf-earley-input-elim bins-upd-bins by
(metis add-mono1)

finally show ?thesis .
next

assume a1 : ¬ ω!k = a
hence ScanF k ω {x} = {}

using ScanF .hyps(3) by (auto simp: ScanF -def bin-def)
hence ScanF k ω (bins-upto ?bs ′ k (i + 1)) ⊆ bins bs

using ∗ by blast
also have ... ⊆ bins ?bs ′

using ScanF .hyps(5) ScanF .prems(1) wf-earley-input-elim bins-upd-bins
by (metis Un-left-absorb add-strict-right-mono subset-Un-eq)

finally show ?thesis .
qed

qed
moreover have PredictF k G (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −

72

have PredictF k G (bins-upto ?bs ′ k (i + 1)) = PredictF k G (bins-upto ?bs ′ k
i ∪ {items (?bs ′ ! k) ! i})

using bins-upto-Suc-Un ScanF .hyps(1) nth-idem-upd-bins
by (metis Suc-eq-plus1 dual-order .refl items-def length-map lessI linorder-not-less)
also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using ScanF .hyps(1 ,2 ,5) ScanF .prems(1 ,2) nth-idem-upd-bins bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis add-strict-right-mono items-def le-add1 length-map less-add-one

linorder-not-le)
also have ... ⊆ bins bs ∪ PredictF k G {x}

using ScanF .prems(2 ,3) PredictF -Un PredictF -EarleyF -bin-step-mono by
fastforce

also have ... = bins bs
using ScanF .hyps(3 ,4) ScanF .prems(1) wf-earley-input-elim
apply (auto simp: PredictF -def bin-def lhs-rule-def)
by (smt (verit) UnCI in-set-zipE nonterminals-def zip-map-fst-snd)

finally show ?thesis
using ScanF .hyps(5) ScanF .prems(1) by (simp add: bins-upd-bins sup.coboundedI1

wf-earley-input-elim)
qed
moreover have CompleteF k (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have CompleteF k (bins-upto ?bs ′ k (i + 1)) = CompleteF k (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un ScanF .hyps(1) nth-idem-upd-bins
by (metis Suc-eq-plus1 items-def length-map lessI less-not-refl not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i ∪ {x})
using ScanF .hyps(1 ,2 ,5) ScanF .prems(1 ,2) nth-idem-upd-bins bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis add-mono1 items-def length-map less-add-one linorder-not-le not-add-less1)
also have ... = CompleteF k (bins-upto bs k i)
using CompleteF -Un-eq-terminal ScanF .hyps(3 ,4) ScanF .prems bins-upto-sub-bins

subset-iff
wf-bins-impl-wf-items wf-bins-kth-bin wf-item-def x wf-earley-input-elim

by (smt (verit, ccfv-threshold))
finally show ?thesis
using ScanF .hyps(5) ScanF .prems(1 ,2 ,3) CompleteF -EarleyF -bin-step-mono

by (auto simp: bins-upd-bins wf-earley-input-elim, blast)
qed
ultimately have EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω

?bs ′ (i+1))
using ScanF .IH ScanF .prems ScanF .hyps(5) sound wf EarleyF -bin-step-def

bins-upto-sub-bins wf-earley-input-elim
bins-upd-bins by (metis UnE add-mono1 le-supI)

thus ?case
using EarleyF -bin-step-sub-mono EarleyL-bin ′-simps(3) ScanF .hyps ScanF .prems(1)

wf-earley-input-elim bins-upd-bins
by (smt (verit, ccfv-SIG) add-mono1 sup.cobounded1 sup.coboundedI2 sup.orderE)

next

73

case (Pass k G ω bs i x a)
have x: x ∈ set (items (bs ! k))

using Pass.hyps(1 ,2) by auto
have ScanF k ω (bins-upto bs k (i + 1)) ⊆ bins bs

using ScanF -def Pass.hyps(5) by auto
moreover have PredictF k G (bins-upto bs k (i + 1)) ⊆ bins bs
proof −

have PredictF k G (bins-upto bs k (i + 1)) = PredictF k G (bins-upto bs k i ∪
{items (bs ! k) ! i})

using bins-upto-Suc-Un Pass.hyps(1) by (metis items-def length-map not-le-imp-less)
also have ... = PredictF k G (bins-upto bs k i ∪ {x})

using Pass.hyps(1 ,2 ,5) nth-idem-upd-bins bins-upto-kth-nth-idem by simp
also have ... ⊆ bins bs ∪ PredictF k G {x}

using Pass.prems(2) PredictF -Un PredictF -EarleyF -bin-step-mono by blast
also have ... = bins bs

using Pass.hyps(3 ,4) Pass.prems(1) wf-earley-input-elim
apply (auto simp: PredictF -def bin-def lhs-rule-def)

by (smt (verit, ccfv-SIG) UnCI fst-conv imageI list.set-map nonterminals-def)
finally show ?thesis

using bins-upd-bins Pass.hyps(5) Pass.prems(3) by auto
qed
moreover have CompleteF k (bins-upto bs k (i + 1)) ⊆ bins bs
proof −

have CompleteF k (bins-upto bs k (i + 1)) = CompleteF k (bins-upto bs k i ∪
{x})

using bins-upto-Suc-Un Pass.hyps(1 ,2)
by (metis items-def length-map not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i)
using CompleteF -Un-eq-terminal Pass.hyps Pass.prems bins-upto-sub-bins

subset-iff
wf-bins-impl-wf-items wf-item-def wf-bins-kth-bin x wf-earley-input-elim by

(smt (verit, best))
finally show ?thesis
using Pass.prems(1 ,2) CompleteF -EarleyF -bin-step-mono wf-earley-input-elim

by blast
qed
ultimately have EarleyF -bin-step k G ω (bins bs) ⊆ bins (EarleyL-bin ′ k G ω

bs (i+1))
using Pass.IH Pass.prems EarleyF -bin-step-def bins-upto-sub-bins wf-earley-input-elim
by (metis le-sup-iff)

thus ?case
using bins-upd-bins Pass.hyps Pass.prems by simp

next
case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have k ≥ length ω ∨ ¬ ω!k = a

using PredictF .hyps(4) PredictF .prems(4) is-word-def
by (metis Set.set-insert insert-disjoint(1) not-le-imp-less nth-mem)

have x: x ∈ set (items (bs ! k))

74

using PredictF .hyps(1 ,2) by auto
hence sound: ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by metis

have len: i < length (items (?bs ′ ! k))
using length-nth-upd-bin-bins PredictF .hyps(1)
by (metis dual-order .strict-trans1 items-def length-map linorder-not-less)

have ScanF k ω (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have ScanF k ω (bins-upto ?bs ′ k (i + 1)) = ScanF k ω (bins-upto ?bs ′ k i ∪

{items (?bs ′ ! k) ! i})
using PredictF .hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)

also have ... = ScanF k ω (bins-upto bs k i ∪ {x})
using PredictF .hyps(1 ,2) PredictF .prems(1) items-nth-idem-upd-bins bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ ScanF k ω {x}
using PredictF .prems(2 ,3) ScanF -Un ScanF -EarleyF -bin-step-mono by fast-

force
also have ... = bins bs
using PredictF .hyps(3) ‹length ω ≤ k ∨ ω ! k 6= a› by (auto simp: ScanF -def

bin-def)
finally show ?thesis

using PredictF .prems(1) wf-earley-input-elim bins-upd-bins by blast
qed
moreover have PredictF k G (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have PredictF k G (bins-upto ?bs ′ k (i + 1)) = PredictF k G (bins-upto ?bs ′ k

i ∪ {items (?bs ′ ! k) ! i})
using PredictF .hyps(1) bins-upto-Suc-Un by (metis items-def len length-map)

also have ... = PredictF k G (bins-upto bs k i ∪ {x})
using PredictF .hyps(1 ,2) PredictF .prems(1) items-nth-idem-upd-bins bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... ⊆ bins bs ∪ PredictF k G {x}
using PredictF .prems(2 ,3) PredictF -Un PredictF -EarleyF -bin-step-mono by

fastforce
also have ... = bins bs ∪ set (items (PredictL k G a))

using PredictF .hyps PredictF .prems(1−3) wf-earley-input-elim
apply (auto simp: PredictF -def PredictL-def bin-def items-def)
using wf-bins-kth-bin x by blast

finally show ?thesis
using PredictF .prems(1) wf-earley-input-elim bins-upd-bins by blast

qed
moreover have CompleteF k (bins-upto ?bs ′ k (i + 1)) ⊆ bins ?bs ′

proof −
have CompleteF k (bins-upto ?bs ′ k (i + 1)) = CompleteF k (bins-upto ?bs ′ k

75

i ∪ {items (?bs ′ ! k) ! i})
using bins-upto-Suc-Un len by (metis items-def length-map)

also have ... = CompleteF k (bins-upto bs k i ∪ {x})
using items-nth-idem-upd-bins PredictF .hyps(1 ,2) PredictF .prems(1) bins-upto-kth-nth-idem

wf-earley-input-elim
by (metis dual-order .refl items-def length-map not-le-imp-less)

also have ... = CompleteF k (bins-upto bs k i)
using CompleteF -Un-eq-nonterminal PredictF .prems bins-upto-sub-bins Pre-

dictF .hyps(3)
subset-eq wf-bins-kth-bin x wf-bins-impl-wf-items wf-item-def wf-earley-input-elim
by (smt (verit, ccfv-SIG) option.simps(3))

also have ... ⊆ bins bs
using CompleteF -EarleyF -bin-step-mono PredictF .prems(2) by blast

finally show ?thesis
using bins-upd-bins PredictF .prems(1 ,2 ,3) wf-earley-input-elim by blast

qed
ultimately have EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω

?bs ′ (i+1))
using PredictF .IH PredictF .prems sound wf EarleyF -bin-step-def bins-upto-sub-bins

bins-upd-bins wf-earley-input-elim by (metis UnE le-supI)
hence EarleyF -bin-step k G ω (bins ?bs ′) ⊆ bins (EarleyL-bin ′ k G ω bs i)

using PredictF .hyps EarleyL-bin ′-simps(5) by simp
moreover have EarleyF -bin-step k G ω (bins bs) ⊆ EarleyF -bin-step k G ω (bins

?bs ′)
using EarleyF -bin-step-sub-mono PredictF .prems(1) wf-earley-input-elim bins-upd-bins

by (metis Un-upper1)
ultimately show ?case

by blast
qed

lemma EarleyF -bin-step-sub-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k 0) ⊆ bins bs
assumes ∀ x ∈ bins bs. sound-item G ω x is-word G ω nonempty-derives G
shows EarleyF -bin-step k G ω (bins bs) ⊆ bins (EarleyL-bin k G ω bs)
using assms EarleyF -bin-step-sub-EarleyL-bin ′ EarleyL-bin-def by metis

lemma bins-eq-items-CompleteL:
assumes bins-eq-items as bs start-item x < length as
shows items (CompleteL k x as i) = items (CompleteL k x bs i)

proof −
let ?orig-a = as ! start-item x
let ?orig-b = bs ! start-item x
have items ?orig-a = items ?orig-b

using assms by (metis (no-types, opaque-lifting) bins-eq-items-def length-map
nth-map)

thus ?thesis
unfolding CompleteL-def by simp

qed

76

lemma EarleyL-bin ′-bins-eq:
assumes (k, G, ω, as) ∈ wf-earley-input
assumes bins-eq-items as bs wf-bins G ω as
shows bins-eq-items (EarleyL-bin ′ k G ω as i) (EarleyL-bin ′ k G ω bs i)
using assms

proof (induction i arbitrary: bs rule: EarleyL-bin ′-induct[OF assms(1), case-names
Base CompleteF ScanF Pass PredictF])

case (Base k G ω as i)
have EarleyL-bin ′ k G ω as i = as

by (simp add: Base.hyps)
moreover have EarleyL-bin ′ k G ω bs i = bs

using Base.hyps Base.prems(1 ,2) unfolding bins-eq-items-def
by (metis EarleyL-bin ′-simps(1) length-map nth-map wf-earley-input-elim)

ultimately show ?case
using Base.prems(2) by presburger

next
case (CompleteF k G ω as i x)
let ?as ′ = upd-bins as k (CompleteL k x as i)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have k: k < length as

using CompleteF .prems(1) wf-earley-input-elim by blast
hence wf-x: wf-item G ω x

using CompleteF .hyps(1 ,2) CompleteF .prems(3) wf-bins-kth-bin by fastforce
have (k, G, ω, ?as ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast

moreover have bins-eq-items ?as ′ ?bs ′

using CompleteF .hyps(1 ,2) CompleteF .prems(2 ,3) bins-eq-items-dist-upd-bins
bins-eq-items-CompleteL

k wf-x wf-bins-kth-bin wf-item-def by (metis dual-order .strict-trans2 leI
nth-mem)

ultimately have bins-eq-items (EarleyL-bin ′ k G ω ?as ′ (i + 1)) (EarleyL-bin ′

k G ω ?bs ′ (i + 1))
using CompleteF .IH wf-earley-input-elim by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω ?as ′ (i+1)
using CompleteF .hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω ?bs ′ (i+1)
using CompleteF .hyps CompleteF .prems unfolding bins-eq-items-def

by (metis EarleyL-bin ′-simps(2) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case

by argo
next

case (ScanF k G ω as i x a)
let ?as ′ = upd-bins as (k+1) (ScanL k ω a x i)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have (k, G, ω, ?as ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by fast
moreover have bins-eq-items ?as ′ ?bs ′

using ScanF .hyps(5) ScanF .prems(1 ,2) bins-eq-items-dist-upd-bins add-mono1

77

wf-earley-input-elim by metis
ultimately have bins-eq-items (EarleyL-bin ′ k G ω ?as ′ (i + 1)) (EarleyL-bin ′

k G ω ?bs ′ (i + 1))
using ScanF .IH wf-earley-input-elim by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω ?as ′ (i+1)
using ScanF .hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω ?bs ′ (i+1)
using ScanF .hyps ScanF .prems unfolding bins-eq-items-def

by (smt (verit, ccfv-threshold) EarleyL-bin ′-simps(3) length-map nth-map wf-earley-input-elim)
ultimately show ?case

by argo
next

case (Pass k G ω as i x a)
have bins-eq-items (EarleyL-bin ′ k G ω as (i + 1)) (EarleyL-bin ′ k G ω bs (i +

1))
using Pass.prems Pass.IH by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω as (i+1)
using Pass.hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω bs (i+1)
using Pass.hyps Pass.prems unfolding bins-eq-items-def

by (metis EarleyL-bin ′-simps(4) map-eq-imp-length-eq nth-map wf-earley-input-elim)
ultimately show ?case

by argo
next

case (PredictF k G ω as i x a)
let ?as ′ = upd-bins as k (PredictL k G a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have (k, G, ω, ?as ′) ∈ wf-earley-input

using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by fast
moreover have bins-eq-items ?as ′ ?bs ′

using PredictF .prems(1 ,2) bins-eq-items-dist-upd-bins wf-earley-input-elim by
blast

ultimately have bins-eq-items (EarleyL-bin ′ k G ω ?as ′ (i + 1)) (EarleyL-bin ′

k G ω ?bs ′ (i + 1))
using PredictF .IH wf-earley-input-elim by blast

moreover have EarleyL-bin ′ k G ω as i = EarleyL-bin ′ k G ω ?as ′ (i+1)
using PredictF .hyps by simp

moreover have EarleyL-bin ′ k G ω bs i = EarleyL-bin ′ k G ω ?bs ′ (i+1)
using PredictF .hyps PredictF .prems unfolding bins-eq-items-def
by (metis EarleyL-bin ′-simps(5) length-map nth-map wf-earley-input-elim)

ultimately show ?case
by argo

qed

lemma EarleyL-bin ′-idem:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes i ≤ j ∀ x ∈ bins bs. sound-item G ω x nonempty-derives G
shows bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω bs i)

78

using assms
proof (induction i arbitrary: j rule: EarleyL-bin ′-induct[OF assms(1), case-names
Base CompleteF ScanF Pass PredictF])

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have x: x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2) by auto
have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast

hence ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items x
by (metis dual-order .refl)

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
by (metis CompleteF .prems(1 ,3) UnE bins-upd-bins wf-earley-input-elim)

show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using wf sound CompleteF EarleyL-bin ′-simps(2) by metis
next

assume ¬ i+1 ≤ j
hence i = j

using CompleteF .prems(2) by simp
have bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1)) j)
using EarleyL-bin ′-simps(2) CompleteF .hyps(1−3) by simp

also have ... = bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1))
(j+1))

proof −
let ?bs ′′ = EarleyL-bin ′ k G ω ?bs ′ (i+1)
have length (items (?bs ′′ ! k)) ≥ length (items (bs ! k))

using length-nth-bin-EarleyL-bin ′ length-nth-upd-bin-bins order-trans wf
CompleteF .hyps CompleteF .prems(1)

by (smt (verit, ccfv-threshold) EarleyL-bin ′-simps(2))
hence 0 : ¬ length (items (?bs ′′ ! k)) ≤ j

using ‹i = j› CompleteF .hyps(1) by linarith
have x = items (?bs ′ ! k) ! j

using ‹i = j› items-nth-idem-upd-bins CompleteF .hyps(1 ,2)
by (metis items-def length-map not-le-imp-less)

hence 1 : x = items (?bs ′′ ! k) ! j
using ‹i = j› kth-EarleyL-bin ′-bins CompleteF .hyps CompleteF .prems(1)

EarleyL-bin ′-simps(2) leI by metis
have bins (EarleyL-bin ′ k G ω ?bs ′′ j) = bins (EarleyL-bin ′ k G ω (upd-bins

?bs ′′ k (CompleteL k x ?bs ′′ i)) (j+1))
using EarleyL-bin ′-simps(2) 0 1 CompleteF .hyps(1 ,3) CompleteF .prems(2)

‹i = j› by auto
moreover have bins-eq-items (upd-bins ?bs ′′ k (CompleteL k x ?bs ′′ i)) ?bs ′′

proof −

79

have k < length bs
using CompleteF .prems(1) wf-earley-input-elim by blast

have 0 : set (CompleteL k x bs i) = set (CompleteL k x ?bs ′′ i)
proof (cases start-item x = k)

case True
thus ?thesis

using impossible-complete-item kth-bin-sub-bins CompleteF .hyps(3)
CompleteF .prems wf-earley-input-elim

wf-bins-kth-bin x next-symbol-def by (metis option.distinct(1) subsetD)
next

case False
hence start-item x < k

using x CompleteF .prems(1) wf-bins-kth-bin wf-item-def nat-less-le by
(metis wf-earley-input-elim)

hence bs ! start-item x = ?bs ′′ ! start-item x
using False nth-idem-upd-bins nth-EarleyL-bin ′-eq wf by metis

thus ?thesis
using CompleteL-eq-start-item by metis

qed
have set (items (CompleteL k x bs i)) ⊆ set (items (?bs ′ ! k))

by (simp add: ‹k < length bs› upd-bins-def set-items-upds-bin)
hence set (items (CompleteL k x ?bs ′′ i)) ⊆ set (items (?bs ′ ! k))

using 0 by (simp add: items-def)
also have ... ⊆ set (items (?bs ′′ ! k))

by (simp add: wf nth-bin-sub-EarleyL-bin ′)
finally show ?thesis

using bins-eq-items-upd-bins by blast
qed

moreover have (k, G, ω, upd-bins ?bs ′′ k (CompleteL k x ?bs ′′ i)) ∈
wf-earley-input

using wf-earley-input-EarleyL-bin ′ wf-earley-input-CompleteL CompleteF .hyps
CompleteF .prems(1)

‹length (items (bs ! k)) ≤ length (items (?bs ′′ ! k))› kth-EarleyL-bin ′-bins
0 1 by blast

ultimately show ?thesis
using EarleyL-bin ′-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by

blast
qed
also have ... = bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1))

using CompleteF .IH [OF wf - sound CompleteF .prems(4)] ‹i = j› by blast
finally show ?thesis

using CompleteF .hyps by simp
qed

next
case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have x: x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2) by auto
hence ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

80

using sound-ScanL ScanF .hyps(3 ,5) ScanF .prems(1 ,2 ,3) wf-earley-input-elim
wf-bins-impl-wf-items x

by (metis dual-order .refl)
hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x

using ScanF .hyps(5) ScanF .prems(1 ,3) bins-upd-bins wf-earley-input-elim
by (metis UnE add-less-cancel-right)

have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by metis

show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using sound ScanF by (metis EarleyL-bin ′-simps(3) wf-earley-input-ScanL)
next

assume ¬ i+1 ≤ j
hence i = j

using ScanF .prems(2) by auto
have bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1)) j)
using ScanF .hyps by simp

also have ... = bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1))
(j+1))

proof −
let ?bs ′′ = EarleyL-bin ′ k G ω ?bs ′ (i+1)
have length (items (?bs ′′ ! k)) ≥ length (items (bs ! k))
using length-nth-bin-EarleyL-bin ′ length-nth-upd-bin-bins order-trans ScanF .hyps

ScanF .prems(1) EarleyL-bin ′-simps(3)
by (smt (verit, ccfv-SIG))

hence bins (EarleyL-bin ′ k G ω ?bs ′′ j) = bins (EarleyL-bin ′ k G ω (upd-bins
?bs ′′ (k+1) (ScanL k ω a x i)) (j+1))

using ‹i = j› kth-EarleyL-bin ′-bins nth-idem-upd-bins EarleyL-bin ′-simps(3)
ScanF .hyps ScanF .prems(1) by (smt (verit, best) leI le-trans)

moreover have bins-eq-items (upd-bins ?bs ′′ (k+1) (ScanL k ω a x i)) ?bs ′′

proof −
have k+1 < length bs

using ScanF .hyps(5) ScanF .prems wf-earley-input-elim by fastforce+
hence set (items (ScanL k ω a x i)) ⊆ set (items (?bs ′ ! (k+1)))

by (simp add: upd-bins-def set-items-upds-bin)
also have ... ⊆ set (items (?bs ′′ ! (k+1)))

using wf nth-bin-sub-EarleyL-bin ′ by blast
finally show ?thesis

using bins-eq-items-upd-bins by blast
qed

moreover have (k, G, ω, upd-bins ?bs ′′ (k+1) (ScanL k ω a x i)) ∈
wf-earley-input

using wf-earley-input-EarleyL-bin ′ wf-earley-input-ScanL ScanF .hyps ScanF .prems(1)
‹length (items (bs ! k)) ≤ length (items (?bs ′′ ! k))› kth-EarleyL-bin ′-bins

by (smt (verit, ccfv-SIG) EarleyL-bin ′-simps(3) linorder-not-le order .trans)
ultimately show ?thesis

81

using EarleyL-bin ′-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by
blast

qed
also have ... = bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1))
using ‹i = j› ScanF .IH ScanF .prems ScanF .hyps sound wf-earley-input-ScanL

by fast
finally show ?thesis

using ScanF .hyps by simp
qed

next
case (Pass k G ω bs i x a)
show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using Pass by (metis EarleyL-bin ′-simps(4))
next

assume ¬ i+1 ≤ j
show ?thesis
using Pass EarleyL-bin ′-simps(1 ,4) kth-EarleyL-bin ′-bins by (metis Suc-eq-plus1

Suc-leI antisym-conv2 not-le-imp-less)
qed

next
case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have x: x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2) by auto
hence ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
using PredictF .prems(1 ,3) UnE bins-upd-bins wf-earley-input-elim by metis

have wf : (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by metis

have len: i < length (items (?bs ′ ! k))
using length-nth-upd-bin-bins PredictF .hyps(1) Orderings.preorder-class.dual-order .strict-trans1

linorder-not-less
by (metis items-def length-map)

show ?case
proof cases

assume i+1 ≤ j
thus ?thesis

using sound wf PredictF by (metis EarleyL-bin ′-simps(5))
next

assume ¬ i+1 ≤ j
hence i = j

using PredictF .prems(2) by auto
have bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω bs i) j) = bins (EarleyL-bin ′

k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1)) j)

82

using PredictF .hyps by simp
also have ... = bins (EarleyL-bin ′ k G ω (EarleyL-bin ′ k G ω ?bs ′ (i+1))

(j+1))
proof −

let ?bs ′′ = EarleyL-bin ′ k G ω ?bs ′ (i+1)
have length (items (?bs ′′ ! k)) ≥ length (items (bs ! k))

using length-nth-bin-EarleyL-bin ′ length-nth-upd-bin-bins order-trans wf
by (metis (no-types, lifting) items-def length-map)

hence bins (EarleyL-bin ′ k G ω ?bs ′′ j) = bins (EarleyL-bin ′ k G ω (upd-bins
?bs ′′ k (PredictL k G a)) (j+1))

using ‹i = j› kth-EarleyL-bin ′-bins nth-idem-upd-bins EarleyL-bin ′-simps(5)
PredictF .hyps PredictF .prems(1) length-bins-EarleyL-bin ′

wf-bins-EarleyL-bin ′ wf-bins-kth-bin wf-item-def x by (smt (verit, ccfv-SIG)
linorder-not-le order .trans)

moreover have bins-eq-items (upd-bins ?bs ′′ k (PredictL k G a)) ?bs ′′

proof −
have k < length bs

using wf-earley-input-elim[OF PredictF .prems(1)] by blast
hence set (items (PredictL k G a)) ⊆ set (items (?bs ′ ! k))

by (simp add: upd-bins-def set-items-upds-bin)
also have ... ⊆ set (items (?bs ′′ ! k))

using wf nth-bin-sub-EarleyL-bin ′ by blast
finally show ?thesis

using bins-eq-items-upd-bins by blast
qed
moreover have (k, G, ω, upd-bins ?bs ′′ k (PredictL k G a)) ∈ wf-earley-input

using wf-earley-input-EarleyL-bin ′ wf-earley-input-PredictL PredictF .hyps
PredictF .prems(1)

‹length (items (bs ! k)) ≤ length (items (?bs ′′ ! k))› kth-EarleyL-bin ′-bins
by (smt (verit, best) EarleyL-bin ′-simps(5) dual-order .trans not-le-imp-less)

ultimately show ?thesis
using EarleyL-bin ′-bins-eq bins-eq-items-imp-eq-bins wf-earley-input-elim by

blast
qed
also have ... = bins (EarleyL-bin ′ k G ω ?bs ′ (i + 1))

using ‹i = j› PredictF .IH PredictF .prems sound wf by (metis order-refl)
finally show ?thesis

using PredictF .hyps by simp
qed

qed simp

lemma EarleyL-bin-idem:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes ∀ x ∈ bins bs. sound-item G ω x nonempty-derives G
shows bins (EarleyL-bin k G ω (EarleyL-bin k G ω bs)) = bins (EarleyL-bin k
G ω bs)

using assms EarleyL-bin ′-idem EarleyL-bin-def le0 by metis

lemma funpower-EarleyF -bin-step-sub-EarleyL-bin:

83

assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k 0) ⊆ bins bs ∀ x ∈ bins bs.

sound-item G ω x
assumes is-word G ω nonempty-derives G
shows funpower (EarleyF -bin-step k G ω) n (bins bs) ⊆ bins (EarleyL-bin k G

ω bs)
using assms

proof (induction n)
case 0
thus ?case

using EarleyL-bin ′-mono EarleyL-bin-def by (simp add: EarleyL-bin ′-mono
EarleyL-bin-def)
next

case (Suc n)
have 0 : EarleyF -bin-step k G ω (bins-upto (EarleyL-bin k G ω bs) k 0) ⊆ bins

(EarleyL-bin k G ω bs)
using EarleyL-bin ′-mono bins-upto-k0-EarleyL-bin ′-eq assms(1 ,2) EarleyL-bin-def

order-trans
by (metis (no-types, lifting))

have funpower (EarleyF -bin-step k G ω) (Suc n) (bins bs) ⊆ EarleyF -bin-step k
G ω (bins (EarleyL-bin k G ω bs))

using EarleyF -bin-step-sub-mono Suc by (metis funpower .simps(2))
also have ... ⊆ bins (EarleyL-bin k G ω (EarleyL-bin k G ω bs))
using EarleyF -bin-step-sub-EarleyL-bin Suc.prems wf-bins-EarleyL-bin sound-EarleyL-bin

0 wf-earley-input-EarleyL-bin by blast
also have ... ⊆ bins (EarleyL-bin k G ω bs)

using EarleyL-bin-idem Suc.prems by blast
finally show ?case .

qed

lemma EarleyF -bin-sub-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes EarleyF -bin-step k G ω (bins-upto bs k 0) ⊆ bins bs ∀ x ∈ bins bs.

sound-item G ω x
assumes is-word G ω nonempty-derives G
shows EarleyF -bin k G ω (bins bs) ⊆ bins (EarleyL-bin k G ω bs)
using assms funpower-EarleyF -bin-step-sub-EarleyL-bin EarleyF -bin-def elem-limit-simp

by fastforce

lemma EarleyF -bins-sub-EarleyL-bins:
assumes k ≤ length ω
assumes is-word G ω nonempty-derives G
shows EarleyF -bins k G ω ⊆ bins (EarleyL-bins k G ω)
using assms

proof (induction k)
case 0
hence EarleyF -bin 0 G ω (InitF G) ⊆ bins (EarleyL-bin 0 G ω (InitL G ω))
using EarleyF -bin-sub-EarleyL-bin InitL-eq-InitF length-bins-InitL InitL-eq-InitF

sound-Init bins-upto-empty

84

EarleyF -bin-step-empty bins-upto-sub-bins wf-earley-input-InitL wf-earley-input-elim
by (smt (verit, ccfv-threshold) InitF -sub-Earley basic-trans-rules(31) sound-Earley

wf-bins-impl-wf-items)
thus ?case

by simp
next

case (Suc k)
have wf : (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input

by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
have sub: EarleyF -bin-step (Suc k) G ω (bins-upto (EarleyL-bins k G ω) (Suc k)

0) ⊆ bins (EarleyL-bins k G ω)
proof −

have bin (bins-upto (EarleyL-bins k G ω) (Suc k) 0) (Suc k) = {}
using kth-bin-bins-upto-empty wf Suc.prems wf-earley-input-elim by blast

hence EarleyF -bin-step (Suc k) G ω (bins-upto (EarleyL-bins k G ω) (Suc k)
0) = bins-upto (EarleyL-bins k G ω) (Suc k) 0

unfolding EarleyF -bin-step-def ScanF -def CompleteF -def PredictF -def bin-def
by blast

also have ... ⊆ bins (EarleyL-bins k G ω)
using wf Suc.prems bins-upto-sub-bins wf-earley-input-elim by blast

finally show ?thesis .
qed
have sound: ∀ x ∈ bins (EarleyL-bins k G ω). sound-item G ω x
using Suc EarleyL-bins-sub-EarleyF -bins by (metis Suc-leD EarleyF -bins-sub-Earley

in-mono sound-Earley wf-Earley)
have EarleyF -bins (Suc k) G ω ⊆ EarleyF -bin (Suc k) G ω (bins (EarleyL-bins

k G ω))
using Suc EarleyF -bin-sub-mono by simp

also have ... ⊆ bins (EarleyL-bin (Suc k) G ω (EarleyL-bins k G ω))
using EarleyF -bin-sub-EarleyL-bin wf sub sound Suc.prems by fastforce

finally show ?case
by simp

qed

lemma EarleyF -sub-EarleyL:
assumes is-word G ω ε-free G
shows EarleyF G ω ⊆ bins (EarleyL G ω)
using assms EarleyF -bins-sub-EarleyL-bins EarleyF -def EarleyL-def
by (metis ε-free-impl-nonempty-derives dual-order .refl)

theorem completeness-EarleyL:
assumes G ` [S G] ⇒∗ ω is-word G ω ε-free G
shows recognizing (bins (EarleyL G ω)) G ω
using assms EarleyF -sub-EarleyL EarleyL-sub-EarleyF completeness-EarleyF by

(metis subset-antisym)

8.8 Correctness
theorem Earley-eq-EarleyL:

85

assumes is-word G ω ε-free G
shows Earley G ω = bins (EarleyL G ω)
using assms EarleyF -sub-EarleyL EarleyL-sub-EarleyF Earley-eq-EarleyF by

blast

lemma correctness-recognizer :
assumes is-word G ω ε-free G
shows recognizer G ω ←→ G ` [S G] ⇒∗ ω (is ?L ←→ ?R)

proof standard
assume ?L
then obtain x where x ∈ set (items (EarleyL G ω ! length ω)) is-finished G ω

x
using assms(1) unfolding recognizer-def by blast

moreover have x ∈ bins (EarleyL G ω)
using assms(2) kth-bin-sub-bins ‹x ∈ set (items (EarleyL G ω ! length ω))›
by (metis (no-types, lifting) EarleyL-def dual-order .refl length-EarleyL-bins

length-bins-InitL less-add-one subsetD)
ultimately show ?R

using recognizing-def soundness-EarleyL by blast
next

assume ?R
thus ?L

using assms wf-item-in-kth-bin recognizing-def is-finished-def
by (metis completeness-EarleyL recognizer-def wf-bins-EarleyL)

qed

end
theory Earley-Parser

imports
Earley-Recognizer
HOL−Library.Monad-Syntax

begin

9 Earley parser
9.1 Pointer lemmas
definition predicts :: ′a item ⇒ bool where

predicts x ≡ start-item x = end-item x ∧ dot-item x = 0

definition scans :: ′a list ⇒ nat ⇒ ′a item ⇒ ′a item ⇒ bool where
scans ω k x y ≡ y = inc-item x k ∧ (∃ a. next-symbol x = Some a ∧ ω!(k−1) =

a)

definition completes :: nat ⇒ ′a item ⇒ ′a item ⇒ ′a item ⇒ bool where
completes k x y z ≡ y = inc-item x k ∧ is-complete z ∧ start-item z = end-item

x ∧
(∃N . next-symbol x = Some N ∧ N = lhs-item z)

86

definition sound-null-ptr :: ′a item × pointer ⇒ bool where
sound-null-ptr e ≡ (snd e = Null −→ predicts (fst e))

definition sound-pre-ptr :: ′a list ⇒ ′a bins ⇒ nat ⇒ ′a item × pointer ⇒ bool
where

sound-pre-ptr ω bs k e ≡ ∀ pre. snd e = Pre pre −→
k > 0 ∧ pre < length (bs!(k−1)) ∧ scans ω k (fst (bs!(k−1)!pre)) (fst e)

definition sound-prered-ptr :: ′a bins ⇒ nat ⇒ ′a item × pointer ⇒ bool where
sound-prered-ptr bs k e ≡ ∀ p ps k ′ pre red. snd e = PreRed p ps ∧ (k ′, pre, red)
∈ set (p#ps) −→

k ′ < k ∧ pre < length (bs!k ′) ∧ red < length (bs!k) ∧ completes k (fst (bs!k ′!pre))
(fst e) (fst (bs!k!red))

definition sound-ptrs :: ′a list ⇒ ′a bins ⇒ bool where
sound-ptrs ω bs ≡ ∀ k < length bs. ∀ e ∈ set (bs!k).

sound-null-ptr e ∧ sound-pre-ptr ω bs k e ∧ sound-prered-ptr bs k e

definition mono-red-ptr :: ′a bins ⇒ bool where
mono-red-ptr bs ≡ ∀ k < length bs. ∀ i < length (bs!k).
∀ k ′ pre red ps. snd (bs!k!i) = PreRed (k ′, pre, red) ps −→ red < i

lemma nth-item-upd-bin:
n < length es =⇒ fst (upd-bin e es ! n) = fst (es!n)
by (induction es arbitrary: e n) (auto simp: less-Suc-eq-0-disj split: prod.splits

pointer .splits)

lemma upd-bin-append:
fst e /∈ set (items es) =⇒ upd-bin e es = es @ [e]
by (induction es arbitrary: e) (auto simp: items-def split: prod.splits pointer .splits)

lemma upd-bin-null-pre:
fst e ∈ set (items es) =⇒ snd e = Null ∨ snd e = Pre pre =⇒ upd-bin e es = es
by (induction es arbitrary: e) (auto simp: items-def split: prod.splits, fastforce+)

lemma upd-bin-prered-nop:
assumes distinct (items es) i < length es
assumes fst e = fst (es!i) snd e = PreRed p ps @ p ps. snd (es!i) = PreRed p ps
shows upd-bin e es = es
using assms
by (induction es arbitrary: e i) (auto simp: less-Suc-eq-0-disj items-def split:

prod.splits pointer .splits)

lemma upd-bin-prered-upd:
assumes distinct (items es) i < length es
assumes fst e = fst (es!i) snd e = PreRed p rs snd (es!i) = PreRed p ′ rs ′ upd-bin

e es = es ′

shows snd (es ′!i) = PreRed p ′ (p#rs@rs ′) ∧ (∀ j < length es ′. i 6=j −→ es ′!j =
es!j) ∧ length (upd-bin e es) = length es

87

using assms
proof (induction es arbitrary: e i es ′)

case (Cons e ′ es)
show ?case
proof cases

assume ∗: fst e = fst e ′

show ?thesis
proof (cases ∃ x xp xs y yp ys. e = (x, PreRed xp xs) ∧ e ′ = (y, PreRed yp ys))

case True
then obtain x xp xs y yp ys where ee ′: e = (x, PreRed xp xs) e ′ = (y, PreRed

yp ys) x = y
using ∗ by auto

have simp: upd-bin e (e ′ # es ′) = (x, PreRed yp (xp # xs @ ys)) # es ′

using True ee ′ by simp
show ?thesis

using Cons simp ee ′ apply (auto simp: items-def)
using less-Suc-eq-0-disj by fastforce+

next
case False
hence upd-bin e (e ′ # es ′) = e ′ # es ′

using ∗ by (auto split: pointer .splits prod.splits)
thus ?thesis

using False ∗ Cons.prems(1 ,2 ,3 ,4 ,5) by (auto simp: less-Suc-eq-0-disj
items-def split: prod.splits)

qed
next

assume ∗: fst e 6= fst e ′

have simp: upd-bin e (e ′ # es) = e ′ # upd-bin e es
using ∗ by (auto split: pointer .splits prod.splits)

have 0 : distinct (items es)
using Cons.prems(1) unfolding items-def by simp

have 1 : i−1 < length es
using Cons.prems(2 ,3) ∗ by (metis One-nat-def leI less-diff-conv2 less-one

list.size(4) nth-Cons-0)
have 2 : fst e = fst (es!(i−1))

using Cons.prems(3) ∗ by (metis nth-Cons ′)
have 3 : snd e = PreRed p rs

using Cons.prems(4) by simp
have 4 : snd (es!(i−1)) = PreRed p ′ rs ′

using Cons.prems(3 ,5) ∗ by (metis nth-Cons ′)
have snd (upd-bin e es!(i−1)) = PreRed p ′ (p # rs @ rs ′) ∧
(∀ j < length (upd-bin e es). i−1 6= j −→ (upd-bin e es) ! j = es ! j)
using Cons.IH [OF 0 1 2 3 4] by blast

hence snd ((e ′ # upd-bin e es) ! i) = PreRed p ′ (p # rs @ rs ′) ∧
(∀ j < length (e ′ # upd-bin e es). i 6= j −→ (e ′ # upd-bin e es) ! j = (e ′ #

es) ! j)
using ∗ Cons.prems(2 ,3) less-Suc-eq-0-disj by auto

moreover have e ′ # upd-bin e es = es ′

using Cons.prems(6) simp by auto

88

ultimately show ?thesis
by (metis 0 1 2 3 4 Cons.IH Cons.prems(6) length-Cons)

qed
qed simp

lemma sound-ptrs-upd-bin:
assumes sound-ptrs ω bs k < length bs es = bs!k distinct (items es)
assumes sound-null-ptr e sound-pre-ptr ω bs k e sound-prered-ptr bs k e
shows sound-ptrs ω (bs[k := upd-bin e es])
unfolding sound-ptrs-def

proof (standard, standard, standard)
fix idx elem
let ?bs = bs[k := upd-bin e es]
assume a0 : idx < length ?bs
assume a1 : elem ∈ set (?bs ! idx)
show sound-null-ptr elem ∧ sound-pre-ptr ω ?bs idx elem ∧ sound-prered-ptr ?bs

idx elem
proof cases

assume a2 : idx = k
have elem ∈ set es =⇒ sound-pre-ptr ω bs idx elem

using a0 a2 assms(1−3) sound-ptrs-def by blast
hence pre-es: elem ∈ set es =⇒ sound-pre-ptr ω ?bs idx elem

using a2 unfolding sound-pre-ptr-def by force
have elem = e =⇒ sound-pre-ptr ω bs idx elem

using a2 assms(6) by auto
hence pre-e: elem = e =⇒ sound-pre-ptr ω ?bs idx elem

using a2 unfolding sound-pre-ptr-def by force
have elem ∈ set es =⇒ sound-prered-ptr bs idx elem

using a0 a2 assms(1−3) sound-ptrs-def by blast
hence prered-es: elem ∈ set es =⇒ sound-prered-ptr (bs[k := upd-bin e es]) idx

elem
using a2 assms(2 ,3) length-upd-bin nth-item-upd-bin unfolding sound-prered-ptr-def

by (smt (verit, ccfv-SIG) dual-order .strict-trans1 nth-list-update)
have elem = e =⇒ sound-prered-ptr bs idx elem

using a2 assms(7) by auto
hence prered-e: elem = e =⇒ sound-prered-ptr ?bs idx elem
using a2 assms(2 ,3) length-upd-bin nth-item-upd-bin unfolding sound-prered-ptr-def

by (smt (verit, best) dual-order .strict-trans1 nth-list-update)
consider (A) fst e /∈ set (items es) |
(B) fst e ∈ set (items es) ∧ (∃ pre. snd e = Null ∨ snd e = Pre pre) |
(C) fst e ∈ set (items es) ∧ ¬ (∃ pre. snd e = Null ∨ snd e = Pre pre)
by blast

thus ?thesis
proof cases

case A
hence elem ∈ set (es @ [e])

using a1 a2 upd-bin-append assms(2) by fastforce
thus ?thesis

using assms(1−3 ,5) pre-e pre-es prered-e prered-es sound-ptrs-def by auto

89

next
case B
hence elem ∈ set es

using a1 a2 upd-bin-null-pre assms(2) by fastforce
thus ?thesis

using assms(1−3) pre-es prered-es sound-ptrs-def by blast
next

case C
then obtain i p ps where C : i < length es ∧ fst e = fst (es!i) ∧ snd e =

PreRed p ps
by (metis assms(4) distinct-Ex1 items-def length-map nth-map pointer .exhaust)
show ?thesis
proof cases

assume @ p ′ ps ′. snd (es!i) = PreRed p ′ ps ′

hence C : elem ∈ set es
using a1 a2 C upd-bin-prered-nop assms(2 ,4) by (metis nth-list-update-eq)

thus ?thesis
using assms(1−3) sound-ptrs-def pre-es prered-es by blast

next
assume ¬ (@ p ′ ps ′. snd (es!i) = PreRed p ′ ps ′)
then obtain p ′ ps ′ where D: snd (es!i) = PreRed p ′ ps ′

by blast
hence 0 : snd (upd-bin e es!i) = PreRed p ′ (p#ps@ps ′) ∧ (∀ j < length

(upd-bin e es). i 6=j −→ upd-bin e es!j = es!j)
using C assms(4) upd-bin-prered-upd by blast

obtain j where 1 : j < length es ∧ elem = upd-bin e es!j
using a1 a2 assms(2) C items-def bin-eq-items-upd-bin by (metis

in-set-conv-nth length-map nth-list-update-eq nth-map)
show ?thesis
proof cases

assume a3 : i=j
hence a3 : snd elem = PreRed p ′ (p#ps@ps ′)

using 0 1 by blast
have sound-null-ptr elem

using a3 unfolding sound-null-ptr-def by simp
moreover have sound-pre-ptr ω ?bs idx elem

using a3 unfolding sound-pre-ptr-def by simp
moreover have sound-prered-ptr ?bs idx elem

unfolding sound-prered-ptr-def
proof (standard, standard, standard, standard, standard, standard)

fix P PS k ′ pre red
assume a4 : snd elem = PreRed P PS ∧ (k ′, pre, red) ∈ set (P#PS)
show k ′ < idx ∧ pre < length (bs[k := upd-bin e es]!k ′) ∧ red < length

(bs[k := upd-bin e es]!idx) ∧
completes idx (fst (bs[k := upd-bin e es]!k ′!pre)) (fst elem) (fst (bs[k :=

upd-bin e es]!idx!red))
proof cases

assume a5 : (k ′, pre, red) ∈ set (p#ps)
show ?thesis

90

using 0 1 C a2 a4 a5 prered-es assms(2 ,3 ,7) sound-prered-ptr-def
length-upd-bin nth-item-upd-bin

by (smt (verit) dual-order .strict-trans1 nth-list-update-eq nth-list-update-neq
nth-mem)

next
assume a5 : (k ′, pre, red) /∈ set (p#ps)
hence a5 : (k ′, pre, red) ∈ set (p ′#ps ′)

using a3 a4 by auto
have k ′ < idx ∧ pre < length (bs!k ′) ∧ red < length (bs!idx) ∧

completes idx (fst (bs!k ′!pre)) (fst e) (fst (bs!idx!red))
using assms(1−3) C D a2 a5 unfolding sound-ptrs-def sound-prered-ptr-def

by (metis nth-mem)
thus ?thesis

using 0 1 C a4 assms(2 ,3) length-upd-bin nth-item-upd-bin prered-es
sound-prered-ptr-def

by (smt (verit, best) dual-order .strict-trans1 nth-list-update-eq
nth-list-update-neq nth-mem)

qed
qed
ultimately show ?thesis

by blast
next

assume a3 : i 6=j
hence elem ∈ set es

using 0 1 by (metis length-upd-bin nth-mem order-less-le-trans)
thus ?thesis

using assms(1−3) pre-es prered-es sound-ptrs-def by blast
qed

qed
qed

next
assume a2 : idx 6= k
have null: sound-null-ptr elem

using a0 a1 a2 assms(1) sound-ptrs-def by auto
have sound-pre-ptr ω bs idx elem

using a0 a1 a2 assms(1 ,2) unfolding sound-ptrs-def by simp
hence pre: sound-pre-ptr ω ?bs idx elem
using assms(2 ,3) length-upd-bin nth-item-upd-bin unfolding sound-pre-ptr-def

using dual-order .strict-trans1 nth-list-update by (metis (no-types, lifting))
have sound-prered-ptr bs idx elem

using a0 a1 a2 assms(1 ,2) unfolding sound-ptrs-def by simp
hence prered: sound-prered-ptr ?bs idx elem
using assms(2 ,3) length-upd-bin nth-item-upd-bin unfolding sound-prered-ptr-def

by (smt (verit, best) dual-order .strict-trans1 nth-list-update)
show ?thesis

using null pre prered by blast
qed

qed

91

lemma mono-red-ptr-upd-bin:
assumes mono-red-ptr bs k < length bs es = bs!k distinct (items es)
assumes ∀ k ′ pre red ps. snd e = PreRed (k ′, pre, red) ps −→ red < length es
shows mono-red-ptr (bs[k := upd-bin e es])
unfolding mono-red-ptr-def

proof (standard, standard)
fix idx
let ?bs = bs[k := upd-bin e es]
assume a0 : idx < length ?bs
show ∀ i < length (?bs!idx). ∀ k ′ pre red ps. snd (?bs!idx!i) = PreRed (k ′, pre,

red) ps −→ red < i
proof cases

assume a1 : idx=k
consider (A) fst e /∈ set (items es) |
(B) fst e ∈ set (items es) ∧ (∃ pre. snd e = Null ∨ snd e = Pre pre) |
(C) fst e ∈ set (items es) ∧ ¬ (∃ pre. snd e = Null ∨ snd e = Pre pre)
by blast

thus ?thesis
proof cases

case A
hence upd-bin e es = es @ [e]

using upd-bin-append by blast
thus ?thesis

using a1 assms(1−3 ,5) mono-red-ptr-def
by (metis length-append-singleton less-antisym nth-append nth-append-length

nth-list-update-eq)
next

case B
hence upd-bin e es = es

using upd-bin-null-pre by blast
thus ?thesis

using a1 assms(1−3) mono-red-ptr-def by force
next

case C
then obtain i p ps where C : i < length es fst e = fst (es!i) snd e = PreRed

p ps
by (metis in-set-conv-nth items-def length-map nth-map pointer .exhaust)

show ?thesis
proof cases

assume @ p ′ ps ′. snd (es!i) = PreRed p ′ ps ′

hence upd-bin e es = es
using upd-bin-prered-nop C assms(4) by blast

thus ?thesis
using a1 assms(1−3) mono-red-ptr-def by (metis nth-list-update-eq)

next
assume ¬ (@ p ′ ps ′. snd (es!i) = PreRed p ′ ps ′)
then obtain p ′ ps ′ where D: snd (es!i) = PreRed p ′ ps ′

by blast
have 0 : snd (upd-bin e es!i) = PreRed p ′ (p#ps@ps ′) ∧

92

(∀ j < length (upd-bin e es). i 6= j −→ upd-bin e es!j = es!j) ∧
length (upd-bin e es) = length es
using C D assms(4) upd-bin-prered-upd by blast

show ?thesis
proof (standard, standard, standard, standard, standard, standard, standard)

fix j k ′ pre red PS
assume a2 : j < length (?bs!idx)
assume a3 : snd (?bs!idx!j) = PreRed (k ′, pre, red) PS
have 1 : ?bs!idx = upd-bin e es

by (simp add: a1 assms(2))
show red < j
proof cases

assume a4 : i=j
show ?thesis

using 0 1 C (1) D a3 a4 assms(1−3) unfolding mono-red-ptr-def by
(metis pointer .inject(2))

next
assume a4 : i 6=j
thus ?thesis

using 0 1 a2 a3 assms(1) assms(2) assms(3) mono-red-ptr-def by
force

qed
qed

qed
qed

next
assume a1 : idx 6=k
show ?thesis

using a0 a1 assms(1) mono-red-ptr-def by fastforce
qed

qed

lemma sound-mono-ptrs-upds-bin:
assumes sound-ptrs ω bs mono-red-ptr bs k < length bs b = bs!k distinct (items

b)
assumes ∀ e ∈ set es. sound-null-ptr e ∧ sound-pre-ptr ω bs k e ∧ sound-prered-ptr

bs k e
assumes ∀ e ∈ set es. ∀ k ′ pre red ps. snd e = PreRed (k ′, pre, red) ps −→ red

< length b
shows sound-ptrs ω (bs[k := upds-bin es b]) ∧ mono-red-ptr (bs[k := upds-bin es

b])
using assms

proof (induction es arbitrary: b bs)
case (Cons e es)
let ?bs = bs[k := upd-bin e b]
have 0 : sound-ptrs ω ?bs

using sound-ptrs-upd-bin Cons.prems(1 ,3−5 ,6) by (metis list.set-intros(1))
have 1 : mono-red-ptr ?bs

using mono-red-ptr-upd-bin Cons.prems(2−5 ,7) by (metis list.set-intros(1))

93

have 2 : k < length ?bs
using Cons.prems(3) by simp

have 3 : upd-bin e b = ?bs!k
using Cons.prems(3) by simp

have 4 : ∀ e ′∈ set es. sound-null-ptr e ′∧ sound-pre-ptr ω ?bs k e ′∧ sound-prered-ptr
?bs k e ′

using Cons.prems(3 ,4 ,6) length-upd-bin nth-item-upd-bin sound-pre-ptr-def
sound-prered-ptr-def

by (smt (verit, ccfv-threshold) list.set-intros(2) nth-list-update order-less-le-trans)
have 5 : ∀ e ′ ∈ set es. ∀ k ′ pre red ps. snd e ′ = PreRed (k ′, pre, red) ps −→ red

< length (upd-bin e b)
by (meson Cons.prems(7) length-upd-bin order-less-le-trans set-subset-Cons

subsetD)
have sound-ptrs ω ((bs[k := upd-bin e b])[k := upds-bin es (upd-bin e b)]) ∧

mono-red-ptr (bs[k := upd-bin e b, k := upds-bin es (upd-bin e b)])
using Cons.IH [OF 0 1 2 3 - -] distinct-upd-bin Cons.prems(4 ,5 ,6) items-def 4

5 by blast
thus ?case

by simp
qed simp

lemma sound-mono-ptrs-EarleyL-bin ′:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes sound-ptrs ω bs ∀ x ∈ bins bs. sound-item G ω x
assumes mono-red-ptr bs
assumes nonempty-derives G
shows sound-ptrs ω (EarleyL-bin ′ k G ω bs i) ∧ mono-red-ptr (EarleyL-bin ′ k G

ω bs i)
using assms

proof (induction i rule: EarleyL-bin ′-induct[OF assms(1), case-names Base Com-
pleteF ScanF Pass PredictF])

case (CompleteF k G ω bs i x)
let ?bs ′ = upd-bins bs k (CompleteL k x bs i)
have x: x ∈ set (items (bs ! k))

using CompleteF .hyps(1 ,2) by force
hence ∀ x ∈ set (items (CompleteL k x bs i)). sound-item G ω x
using sound-CompleteL CompleteF .hyps(3) CompleteF .prems wf-earley-input-elim

wf-bins-impl-wf-items x
by (metis dual-order .refl)

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
by (metis CompleteF .prems(1 ,3) UnE bins-upd-bins wf-earley-input-elim)

have 0 : k < length bs
using CompleteF .prems(1) wf-earley-input-elim by auto

have 1 : ∀ e ∈ set (CompleteL k x bs i). sound-null-ptr e
unfolding CompleteL-def sound-null-ptr-def by auto

have 2 : ∀ e ∈ set (CompleteL k x bs i). sound-pre-ptr ω bs k e
unfolding CompleteL-def sound-pre-ptr-def by auto

{
fix e

94

assume a0 : e ∈ set (CompleteL k x bs i)
fix p ps k ′ pre red
assume a1 : snd e = PreRed p ps (k ′, pre, red) ∈ set (p#ps)
have k ′ = start-item x

using a0 a1 unfolding CompleteL-def by auto
moreover have wf-item G ω x end-item x = k

using CompleteF .prems(1) x wf-earley-input-elim wf-bins-kth-bin by blast+
ultimately have 0 : k ′ ≤ k

using wf-item-def by blast
have 1 : k ′ 6= k
proof (rule ccontr)

assume ¬ k ′ 6= k
have sound-item G ω x

using CompleteF .prems(1 ,3) x kth-bin-sub-bins wf-earley-input-elim by
(metis subset-eq)

moreover have is-complete x
using CompleteF .hyps(3) by (auto simp: next-symbol-def split: if-splits)

moreover have start-item x = k
using ‹¬ k ′ 6= k› ‹k ′ = start-item x› by auto

ultimately show False
using impossible-complete-item CompleteF .prems(1 ,5) wf-earley-input-elim

‹end-item x = k› ‹wf-item G ω x› by blast
qed
have 2 : pre < length (bs!k ′)

using a0 a1 index-filter-with-index-lt-length unfolding CompleteL-def by
(auto simp: items-def ; fastforce)

have 3 : red < i+1
using a0 a1 unfolding CompleteL-def by auto

have fst e = inc-item (fst (bs!k ′!pre)) k
using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3) CompleteF .prems(1) ‹k ′ = start-item

x› unfolding CompleteL-def
by (auto simp: items-def , metis filter-with-index-nth nth-map)

moreover have is-complete (fst (bs!k!red))
using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3) CompleteF .prems(1) ‹k ′ = start-item

x› unfolding CompleteL-def
by (auto simp: next-symbol-def items-def split: if-splits)

moreover have start-item (fst (bs!k!red)) = end-item (fst (bs!k ′!pre))
using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3) CompleteF .prems(1) ‹k ′ = start-item

x› unfolding CompleteL-def
apply (auto simp: items-def)

by (metis dual-order .strict-trans index-filter-with-index-lt-length items-def
le-neq-implies-less nth-map nth-mem wf-bins-kth-bin wf-earley-input-elim)

moreover have (∃N . next-symbol (fst (bs ! k ′ ! pre)) = Some N ∧ N =
lhs-item (fst (bs ! k ! red)))

using a0 a1 0 2 CompleteF .hyps(1 ,2 ,3) CompleteF .prems(1) ‹k ′ = start-item
x› unfolding CompleteL-def

by (auto simp: items-def , metis (mono-tags, lifting) filter-with-index-P fil-
ter-with-index-nth nth-map)

95

ultimately have 4 : completes k (fst (bs!k ′!pre)) (fst e) (fst (bs!k!red))
unfolding completes-def by blast

have k ′ < k pre < length (bs!k ′) red < i+1 completes k (fst (bs!k ′!pre)) (fst e)
(fst (bs!k!red))

using 0 1 2 3 4 by simp-all
}
hence ∀ e ∈ set (CompleteL k x bs i). ∀ p ps k ′ pre red. snd e = PreRed p ps ∧

(k ′, pre, red) ∈ set (p#ps) −→
k ′ < k ∧ pre < length (bs!k ′) ∧ red < i+1 ∧ completes k (fst (bs!k ′!pre)) (fst

e) (fst (bs!k!red))
by force

hence 3 : ∀ e ∈ set (CompleteL k x bs i). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def using CompleteF .hyps(1) items-def

by (smt (verit, del-insts) le-antisym le-eq-less-or-eq le-trans length-map length-pos-if-in-set
less-imp-add-positive less-one nat-add-left-cancel-le nat-neq-iff plus-nat.add-0)

have sound-ptrs ω ?bs ′ ∧ mono-red-ptr ?bs ′

using sound-mono-ptrs-upds-bin[OF CompleteF .prems(2) CompleteF .prems(4)
0] 1 2 3 sound-prered-ptr-def

CompleteF .prems(1) upd-bins-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-SIG) list.set-intros(1))

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using CompleteF .hyps CompleteF .prems(1) wf-earley-input-CompleteL by blast

ultimately have sound-ptrs ω (EarleyL-bin ′ k G ω ?bs ′ (i+1)) ∧ mono-red-ptr
(EarleyL-bin ′ k G ω ?bs ′ (i+1))

using CompleteF .IH CompleteF .prems(4−5) sound by blast
thus ?case

using CompleteF .hyps by simp
next

case (ScanF k G ω bs i x a)
let ?bs ′ = upd-bins bs (k+1) (ScanL k ω a x i)
have x ∈ set (items (bs ! k))

using ScanF .hyps(1 ,2) by force
hence ∀ x ∈ set (items (ScanL k ω a x i)). sound-item G ω x

using sound-ScanL ScanF .hyps(3 ,5) ScanF .prems(1 ,2 ,3) wf-earley-input-elim
wf-bins-impl-wf-items wf-bins-impl-wf-items by fast

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
using ScanF .hyps(5) ScanF .prems(1 ,3) bins-upd-bins wf-earley-input-elim
by (metis UnE add-less-cancel-right)

have 0 : k+1 < length bs
using ScanF .hyps(5) ScanF .prems(1) wf-earley-input-elim by force

have 1 : ∀ e ∈ set (ScanL k ω a x i). sound-null-ptr e
unfolding ScanL-def sound-null-ptr-def by auto

have 2 : ∀ e ∈ set (ScanL k ω a x i). sound-pre-ptr ω bs (k+1) e
using ScanF .hyps(1 ,2 ,3) unfolding sound-pre-ptr-def ScanL-def scans-def

items-def by auto
have 3 : ∀ e ∈ set (ScanL k ω a x i). sound-prered-ptr bs (k+1) e

unfolding ScanL-def sound-prered-ptr-def by simp
have sound-ptrs ω ?bs ′ ∧ mono-red-ptr ?bs ′

using sound-mono-ptrs-upds-bin[OF ScanF .prems(2) ScanF .prems(4) 0] 0 1 2

96

3 sound-prered-ptr-def
ScanF .prems(1) upd-bins-def wf-earley-input-elim wf-bin-def wf-bins-def

by (smt (verit, ccfv-threshold) list.set-intros(1))
moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input

using ScanF .hyps ScanF .prems(1) wf-earley-input-ScanL by metis
ultimately have sound-ptrs ω (EarleyL-bin ′ k G ω ?bs ′ (i+1)) ∧ mono-red-ptr

(EarleyL-bin ′ k G ω ?bs ′ (i+1))
using ScanF .IH ScanF .prems(4−5) sound by blast

thus ?case
using ScanF .hyps by simp

next
case (PredictF k G ω bs i x a)
let ?bs ′ = upd-bins bs k (PredictL k G a)
have x ∈ set (items (bs ! k))

using PredictF .hyps(1 ,2) by force
hence ∀ x ∈ set (items(PredictL k G a)). sound-item G ω x

using sound-PredictL PredictF .hyps(3) PredictF .prems wf-earley-input-elim
wf-bins-impl-wf-items by fast

hence sound: ∀ x ∈ bins ?bs ′. sound-item G ω x
using PredictF .prems(1 ,3) UnE bins-upd-bins wf-earley-input-elim by metis

have 0 : k < length bs
using PredictF .prems(1) wf-earley-input-elim by force

have 1 : ∀ e ∈ set (PredictL k G a). sound-null-ptr e
unfolding sound-null-ptr-def PredictL-def predicts-def by (auto simp: init-item-def)

have 2 : ∀ e ∈ set (PredictL k G a). sound-pre-ptr ω bs k e
unfolding sound-pre-ptr-def PredictL-def by simp

have 3 : ∀ e ∈ set (PredictL k G a). sound-prered-ptr bs k e
unfolding sound-prered-ptr-def PredictL-def by simp

have sound-ptrs ω ?bs ′ ∧ mono-red-ptr ?bs ′

using sound-mono-ptrs-upds-bin[OF PredictF .prems(2) PredictF .prems(4) 0]
0 1 2 3 sound-prered-ptr-def

PredictF .prems(1) upd-bins-def wf-earley-input-elim wf-bin-def wf-bins-def
by (smt (verit, ccfv-threshold) list.set-intros(1))

moreover have (k, G, ω, ?bs ′) ∈ wf-earley-input
using PredictF .hyps PredictF .prems(1) wf-earley-input-PredictL by metis

ultimately have sound-ptrs ω (EarleyL-bin ′ k G ω ?bs ′ (i+1)) ∧ mono-red-ptr
(EarleyL-bin ′ k G ω ?bs ′ (i+1))

using PredictF .IH PredictF .prems(4−5) sound by blast
thus ?case

using PredictF .hyps by simp
qed simp-all

lemma sound-mono-ptrs-EarleyL-bin:
assumes (k, G, ω, bs) ∈ wf-earley-input
assumes sound-ptrs ω bs ∀ x ∈ bins bs. sound-item G ω x
assumes mono-red-ptr bs
assumes nonempty-derives G
shows sound-ptrs ω (EarleyL-bin k G ω bs) ∧ mono-red-ptr (EarleyL-bin k G ω

bs)

97

using assms sound-mono-ptrs-EarleyL-bin ′ EarleyL-bin-def by metis

lemma sound-ptrs-InitL:
sound-ptrs ω (InitL G ω)
unfolding sound-ptrs-def sound-null-ptr-def sound-pre-ptr-def sound-prered-ptr-def

predicts-def scans-def completes-def InitL-def
by (auto simp: init-item-def less-Suc-eq-0-disj)

lemma mono-red-ptr-InitL:
mono-red-ptr (InitL G ω)
unfolding mono-red-ptr-def InitL-def
by (auto simp: init-item-def less-Suc-eq-0-disj)

lemma sound-mono-ptrs-EarleyL-bins:
assumes k ≤ length ω nonempty-derives G
shows sound-ptrs ω (EarleyL-bins k G ω) ∧ mono-red-ptr (EarleyL-bins k G ω)
using assms

proof (induction k)
case 0
have (0 , G, ω, (InitL G ω)) ∈ wf-earley-input

using assms(2) wf-earley-input-InitL by blast
moreover have ∀ x ∈ bins (InitL G ω). sound-item G ω x

by (metis InitL-eq-InitF InitF -sub-Earley sound-Earley subsetD wf-Earley)
ultimately show ?case
using sound-mono-ptrs-EarleyL-bin sound-ptrs-InitL mono-red-ptr-InitL 0 .prems

by fastforce
next

case (Suc k)
have (Suc k, G, ω, EarleyL-bins k G ω) ∈ wf-earley-input

by (simp add: Suc.prems(1) Suc-leD assms(2) wf-earley-input-intro)
moreover have sound-ptrs ω (EarleyL-bins k G ω)

using Suc by simp
moreover have ∀ x ∈ bins (EarleyL-bins k G ω). sound-item G ω x
by (meson Suc.prems(1) Suc-leD EarleyL-bins-sub-EarleyF -bins EarleyF -bins-sub-Earley

assms(2)
sound-Earley subsetD wf-bins-EarleyL-bins wf-bins-impl-wf-items)

ultimately show ?case
using Suc.prems sound-mono-ptrs-EarleyL-bin Suc.IH by fastforce

qed

lemma sound-mono-ptrs-EarleyL:
assumes nonempty-derives G
shows sound-ptrs ω (EarleyL G ω) ∧ mono-red-ptr (EarleyL G ω)
using assms sound-mono-ptrs-EarleyL-bins EarleyL-def by (metis dual-order .refl)

9.2 Common Definitions
datatype ′a tree =

Leaf ′a

98

| Branch ′a ′a tree list

fun yield :: ′a tree ⇒ ′a list where
yield (Leaf a) = [a]
| yield (Branch - ts) = concat (map yield ts)

fun root :: ′a tree ⇒ ′a where
root (Leaf a) = a
| root (Branch N -) = N

fun wf-rule-tree :: ′a cfg ⇒ ′a tree ⇒ bool where
wf-rule-tree - (Leaf a) ←→ True
| wf-rule-tree G (Branch N ts) ←→ (

(∃ r ∈ set (R G). N = lhs-rule r ∧ map root ts = rhs-rule r) ∧
(∀ t ∈ set ts. wf-rule-tree G t))

fun wf-item-tree :: ′a cfg ⇒ ′a item ⇒ ′a tree ⇒ bool where
wf-item-tree G - (Leaf a) ←→ True
| wf-item-tree G x (Branch N ts) ←→ (

N = lhs-item x ∧ map root ts = take (dot-item x) (rhs-item x) ∧
(∀ t ∈ set ts. wf-rule-tree G t))

definition wf-yield :: ′a list ⇒ ′a item ⇒ ′a tree ⇒ bool where
wf-yield ω x t ←→ yield t = slice ω (start-item x) (end-item x)

9.3 foldl lemmas
lemma foldl-add-nth:

k < length xs =⇒ foldl (+) z (map length (take k xs)) + length (xs!k) = foldl
(+) z (map length (take (k+1) xs))
proof (induction xs arbitrary: k z)

case (Cons x xs)
then show ?case
proof (cases k = 0)

case False
thus ?thesis

using Cons by (auto simp add: take-Cons ′)
qed simp

qed simp

lemma foldl-acc-mono:
a ≤ b =⇒ foldl (+) a xs ≤ foldl (+) b xs for a :: nat
by (induction xs arbitrary: a b) auto

lemma foldl-ge-z-nth:
j < length xs =⇒ z + length (xs!j) ≤ foldl (+) z (map length (take (j+1) xs))

proof (induction xs arbitrary: j z)
case (Cons x xs)
show ?case

99

proof (cases j = 0)
case False
have z + length ((x # xs) ! j) = z + length (xs!(j−1))

using False by simp
also have ... ≤ foldl (+) z (map length (take (j−1+1) xs))
using Cons False by (metis add-diff-inverse-nat length-Cons less-one nat-add-left-cancel-less

plus-1-eq-Suc)
also have ... = foldl (+) z (map length (take j xs))

using False by simp
also have ... ≤ foldl (+) (z + length x) (map length (take j xs))

using foldl-acc-mono by force
also have ... = foldl (+) z (map length (take (j+1) (x#xs)))

by simp
finally show ?thesis

by blast
qed simp

qed simp

lemma foldl-add-nth-ge:
i ≤ j =⇒ j < length xs =⇒ foldl (+) z (map length (take i xs)) + length (xs!j)
≤ foldl (+) z (map length (take (j+1) xs))
proof (induction xs arbitrary: i j z)

case (Cons x xs)
show ?case
proof (cases i = 0)

case True
have foldl (+) z (map length (take i (x # xs))) + length ((x # xs) ! j) = z +

length ((x # xs) ! j)
using True by simp

also have ... ≤ foldl (+) z (map length (take (j+1) (x#xs)))
using foldl-ge-z-nth Cons.prems(2) by blast

finally show ?thesis
by blast

next
case False
have i−1 ≤ j−1

by (simp add: Cons.prems(1) diff-le-mono)
have j−1 < length xs

using Cons.prems(1 ,2) False by fastforce
have foldl (+) z (map length (take i (x # xs))) + length ((x # xs) ! j) =

foldl (+) (z + length x) (map length (take (i−1) xs)) + length ((x#xs)!j)
using False by (simp add: take-Cons ′)

also have ... = foldl (+) (z + length x) (map length (take (i−1) xs)) + length
(xs!(j−1))

using Cons.prems(1) False by auto
also have ... ≤ foldl (+) (z + length x) (map length (take (j−1+1) xs))

using Cons.IH ‹i − 1 ≤ j − 1 › ‹j − 1 < length xs› by blast
also have ... = foldl (+) (z + length x) (map length (take j xs))

using Cons.prems(1) False by fastforce

100

also have ... = foldl (+) z (map length (take (j+1) (x#xs)))
by fastforce

finally show ?thesis
by blast

qed
qed simp

lemma foldl-ge-acc:
foldl (+) z (map length xs) ≥ z
by (induction xs arbitrary: z) (auto elim: add-leE)

lemma foldl-take-mono:
i ≤ j =⇒ foldl (+) z (map length (take i xs)) ≤ foldl (+) z (map length (take j

xs))
proof (induction xs arbitrary: z i j)

case (Cons x xs)
show ?case
proof (cases i = 0)

case True
have foldl (+) z (map length (take i (x # xs))) = z

using True by simp
also have ... ≤ foldl (+) z (map length (take j (x # xs)))

by (simp add: foldl-ge-acc)
ultimately show ?thesis

by simp
next

case False
then show ?thesis

using Cons by (simp add: take-Cons ′)
qed

qed simp

9.4 Parse tree
partial-function (option) build-tree ′ :: ′a bins ⇒ ′a list ⇒ nat ⇒ nat ⇒ ′a tree
option where

build-tree ′ bs ω k i = (
let e = bs!k!i in (
case snd e of

Null ⇒ Some (Branch (lhs-item (fst e)) []) — start building sub-tree
| Pre pre ⇒ (— add sub-tree starting from terminal

do {
t ← build-tree ′ bs ω (k−1) pre;
case t of

Branch N ts ⇒ Some (Branch N (ts @ [Leaf (ω!(k−1))]))
| - ⇒ undefined — impossible case
})

| PreRed (k ′, pre, red) - ⇒ (— add sub-tree starting from non-terminal
do {

101

t ← build-tree ′ bs ω k ′ pre;
case t of

Branch N ts ⇒
do {

t ← build-tree ′ bs ω k red;
Some (Branch N (ts @ [t]))
}

| - ⇒ undefined — impossible case
})

))

declare build-tree ′.simps [code]

definition build-tree :: ′a cfg ⇒ ′a list ⇒ ′a bins ⇒ ′a tree option where
build-tree G ω bs = (

let k = length bs − 1 in (
case filter-with-index (λx. is-finished G ω x) (items (bs!k)) of
[] ⇒ None
| (-, i)#- ⇒ build-tree ′ bs ω k i

))

lemma build-tree ′-simps[simp]:
e = bs!k!i =⇒ snd e = Null =⇒ build-tree ′ bs ω k i = Some (Branch (lhs-item

(fst e)) [])
e = bs!k!i =⇒ snd e = Pre pre =⇒ build-tree ′ bs ω (k−1) pre = None =⇒
build-tree ′ bs ω k i = None

e = bs!k!i =⇒ snd e = Pre pre =⇒ build-tree ′ bs ω (k−1) pre = Some (Branch
N ts) =⇒

build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1))]))
e = bs!k!i =⇒ snd e = Pre pre =⇒ build-tree ′ bs ω (k−1) pre = Some (Leaf a)

=⇒
build-tree ′ bs ω k i = undefined

e = bs!k!i =⇒ snd e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre =
None =⇒

build-tree ′ bs ω k i = None
e = bs!k!i =⇒ snd e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre =

Some (Branch N ts) =⇒
build-tree ′ bs ω k red = None =⇒ build-tree ′ bs ω k i = None

e = bs!k!i =⇒ snd e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre =
Some (Leaf a) =⇒

build-tree ′ bs ω k i = undefined
e = bs!k!i =⇒ snd e = PreRed (k ′, pre, red) reds =⇒ build-tree ′ bs ω k ′ pre =

Some (Branch N ts) =⇒
build-tree ′ bs ω k red = Some t =⇒
build-tree ′ bs ω k i = Some (Branch N (ts @ [t]))

by (subst build-tree ′.simps, simp)+

definition wf-tree-input :: (′a bins × ′a list × nat × nat) set where
wf-tree-input = {

102

(bs, ω, k, i) | bs ω k i.
sound-ptrs ω bs ∧
mono-red-ptr bs ∧
k < length bs ∧
k ≤ length ω ∧
i < length (bs!k)

}

fun build-tree ′-measure :: (′a bins × ′a list × nat × nat) ⇒ nat where
build-tree ′-measure (bs, ω, k, i) = foldl (+) 0 (map length (take k bs)) + i

lemma wf-tree-input-pre:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes e = bs!k!i snd e = Pre pre
shows (bs, ω, (k−1), pre) ∈ wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-pre-ptr-def)
apply (metis nth-mem)
done

lemma wf-tree-input-prered-pre:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes e = bs!k!i snd e = PreRed (k ′, pre, red) ps
shows (bs, ω, k ′, pre) ∈ wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp: sound-ptrs-def sound-prered-ptr-def)
apply (metis fst-conv snd-conv)+
apply (metis dual-order .strict-trans nth-mem)
apply fastforce
by (metis nth-mem)

lemma wf-tree-input-prered-red:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes e = bs!k!i snd e = PreRed (k ′, pre, red) ps
shows (bs, ω, k, red) ∈ wf-tree-input
using assms unfolding wf-tree-input-def
apply (auto simp add: sound-ptrs-def sound-prered-ptr-def)
apply (metis fst-conv snd-conv nth-mem)+
done

lemma build-tree ′-induct:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes

∧
bs ω k i.

(
∧

e pre. e = bs!k!i =⇒ snd e = Pre pre =⇒ P bs ω (k−1) pre) =⇒
(
∧

e k ′ pre red ps. e = bs!k!i =⇒ snd e = PreRed (k ′, pre, red) ps =⇒ P bs ω
k ′ pre) =⇒

(
∧

e k ′ pre red ps. e = bs!k!i =⇒ snd e = PreRed (k ′, pre, red) ps =⇒ P bs ω
k red) =⇒

P bs ω k i

103

shows P bs ω k i
using assms(1)

proof (induction n≡build-tree ′-measure (bs, ω, k, i) arbitrary: k i rule: nat-less-induct)
case 1
obtain e where entry: e = bs!k!i

by simp
consider (Null) snd e = Null
| (Pre) ∃ pre. snd e = Pre pre
| (PreRed) ∃ k ′ pre red reds. snd e = PreRed (k ′, pre, red) reds
by (metis pointer .exhaust surj-pair)

thus ?case
proof cases

case Null
thus ?thesis

using assms(2) entry by fastforce
next

case Pre
then obtain pre where pre: snd e = Pre pre

by blast
define n where n: n = build-tree ′-measure (bs, ω, (k−1), pre)
have 0 < k pre < length (bs!(k−1))
using 1 (2) entry pre unfolding wf-tree-input-def sound-ptrs-def sound-pre-ptr-def

by (smt (verit) mem-Collect-eq nth-mem prod.inject)+
have k < length bs

using 1 (2) unfolding wf-tree-input-def by blast+
have foldl (+) 0 (map length (take k bs)) + i − (foldl (+) 0 (map length (take

(k−1) bs)) + pre) =
foldl (+) 0 (map length (take (k−1) bs)) + length (bs!(k−1)) + i − (foldl

(+) 0 (map length (take (k−1) bs)) + pre)
using foldl-add-nth[of ‹k−1 › bs 0] by (simp add: ‹0 < k› ‹k < length bs›

less-imp-diff-less)
also have ... = length (bs!(k−1)) + i − pre

by simp
also have ... > 0

using ‹pre < length (bs!(k−1))› by auto
finally have build-tree ′-measure (bs, ω, k, i) − build-tree ′-measure (bs, ω,

(k−1), pre) > 0
by simp

hence P bs ω (k−1) pre
using 1 n wf-tree-input-pre entry pre zero-less-diff by blast

thus ?thesis
using assms(2) entry pre pointer .distinct(5) pointer .inject(1) by presburger

next
case PreRed
then obtain k ′ pre red ps where prered: snd e = PreRed (k ′, pre, red) ps

by blast
have k ′ < k pre < length (bs!k ′)
using 1 (2) entry prered unfolding wf-tree-input-def sound-ptrs-def sound-prered-ptr-def

apply simp-all

104

apply (metis nth-mem)+
done

have red < i
using 1 (2) entry prered unfolding wf-tree-input-def mono-red-ptr-def by

blast
have k < length bs i < length (bs!k)

using 1 (2) unfolding wf-tree-input-def by blast+
define n-pre where n-pre: n-pre = build-tree ′-measure (bs, ω, k ′, pre)
have 0 < length (bs!k ′) + i − pre

by (simp add: ‹pre < length (bs!k ′)› add.commute trans-less-add2)
also have ... = foldl (+) 0 (map length (take k ′ bs)) + length (bs!k ′) + i −

(foldl (+) 0 (map length (take k ′ bs)) + pre)
by simp

also have ... ≤ foldl (+) 0 (map length (take (k ′+1) bs)) + i − (foldl (+) 0
(map length (take k ′ bs)) + pre)

using foldl-add-nth-ge[of k ′ k ′ bs 0] ‹k < length bs› ‹k ′ < k› by simp
also have ... ≤ foldl (+) 0 (map length (take k bs)) + i − (foldl (+) 0 (map

length (take k ′ bs)) + pre)
using foldl-take-mono by (metis Suc-eq-plus1 Suc-leI ‹k ′ < k› add.commute

add-le-cancel-left diff-le-mono)
finally have build-tree ′-measure (bs, ω, k, i) − build-tree ′-measure (bs, ω, k ′,

pre) > 0
by simp

hence x: P bs ω k ′ pre
using 1 (1) zero-less-diff by (metis 1 .prems entry prered wf-tree-input-prered-pre)
define n-red where n-red: n-red = build-tree ′-measure (bs, ω, k, red)
have build-tree ′-measure (bs, ω, k, i) − build-tree ′-measure (bs, ω, k, red) > 0

using ‹red < i› by simp
hence y: P bs ω k red

using 1 .hyps 1 .prems entry prered wf-tree-input-prered-red zero-less-diff by
blast

show ?thesis
using assms(2) x y entry prered

by (smt (verit, best) Pair-inject filter-cong pointer .distinct(5) pointer .inject(2))
qed

qed

lemma build-tree ′-termination:
assumes (bs, ω, k, i) ∈ wf-tree-input
shows ∃N ts. build-tree ′ bs ω k i = Some (Branch N ts)

proof −
have ∃N ts. build-tree ′ bs ω k i = Some (Branch N ts)

apply (induction rule: build-tree ′-induct[OF assms(1)])
subgoal premises IH for bs ω k i
proof −

define e where entry: e = bs!k!i
consider (Null) snd e = Null
| (Pre) ∃ pre. snd e = Pre pre
| (PreRed) ∃ k ′ pre red ps. snd e = PreRed (k ′, pre, red) ps

105

by (metis pointer .exhaust surj-pair)
thus ?thesis
proof cases

case Null
thus ?thesis

using build-tree ′-simps(1) entry by simp
next

case Pre
then obtain pre where pre: snd e = Pre pre

by blast
obtain N ts where Nts: build-tree ′ bs ω (k−1) pre = Some (Branch N ts)

using IH (1) entry pre by blast
have build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1))]))

using build-tree ′-simps(3) entry pre Nts by simp
thus ?thesis

by simp
next

case PreRed
then obtain k ′ pre red ps where prered: snd e = PreRed (k ′, pre, red) ps

by blast
then obtain N ts where Nts: build-tree ′ bs ω k ′ pre = Some (Branch N ts)

using IH (2) entry prered by blast
obtain t-red where t-red: build-tree ′ bs ω k red = Some t-red

using IH (3) entry prered Nts by (metis option.exhaust)
have build-tree ′ bs ω k i = Some (Branch N (ts @ [t-red]))

using build-tree ′-simps(8) entry prered Nts t-red by auto
thus ?thesis

by blast
qed

qed
done

thus ?thesis
by blast

qed

lemma wf-item-tree-build-tree ′:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes wf-bins G ω bs
assumes build-tree ′ bs ω k i = Some t
shows wf-item-tree G (fst (bs!k!i)) t

proof −
have wf-item-tree G (fst (bs!k!i)) t

using assms
apply (induction arbitrary: t rule: build-tree ′-induct[OF assms(1)])
subgoal premises prems for bs ω k i t
proof −

define e where entry: e = bs!k!i
have bounds: k < length bs k ≤ length ω i < length (bs!k)

using prems(4) wf-tree-input-def by force+

106

consider (Null) snd e = Null
| (Pre) ∃ pre. snd e = Pre pre
| (PreRed) ∃ k ′ pre red ps. snd e = PreRed (k ′, pre, red) ps
by (metis pointer .exhaust surj-pair)

thus ?thesis
proof cases

case Null
hence build-tree ′ bs ω k i = Some (Branch (lhs-item (fst e)) [])

using entry by simp
have simp: t = Branch (lhs-item (fst e)) []

using build-tree ′-simps(1) Null prems(6) entry by simp
have sound-ptrs ω bs

using prems(4) unfolding wf-tree-input-def by blast
hence predicts (fst e)

using Null nth-mem entry bounds unfolding sound-ptrs-def sound-null-ptr-def
by blast

hence dot-item (fst e) = 0
unfolding predicts-def by blast

thus ?thesis
using simp entry by simp

next
case Pre
then obtain pre where pre: snd e = Pre pre

by blast
obtain N ts where Nts: build-tree ′ bs ω (k−1) pre = Some (Branch N ts)
using build-tree ′-termination entry pre prems(4) wf-tree-input-pre by blast

have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1))]))
using build-tree ′-simps(3) entry pre Nts by simp

have sound-ptrs ω bs
using prems(4) unfolding wf-tree-input-def by blast

hence pre < length (bs!(k−1))
using entry pre bounds unfolding sound-ptrs-def sound-pre-ptr-def by

(metis nth-mem)
moreover have k−1 < length bs

by (simp add: bounds less-imp-diff-less)
ultimately have IH : wf-item-tree G (fst (bs!(k−1)!pre)) (Branch N ts)

using prems(1 ,2 ,4 ,5) entry pre Nts by (meson wf-tree-input-pre)
have scans: scans ω k (fst (bs!(k−1)!pre)) (fst e)

using entry pre bounds ‹sound-ptrs ω bs› unfolding sound-ptrs-def
sound-pre-ptr-def by simp

hence ∗:
lhs-item (fst (bs!(k−1)!pre)) = lhs-item (fst e)
rhs-item (fst (bs!(k−1)!pre)) = rhs-item (fst e)
dot-item (fst (bs!(k−1)!pre)) + 1 = dot-item (fst e)
next-symbol (fst (bs!(k−1)!pre)) = Some (ω!(k−1))

unfolding scans-def inc-item-def by (simp-all add: lhs-item-def rhs-item-def)
have map root (ts @ [Leaf (ω!(k−1))]) = map root ts @ [ω!(k−1)]

by simp
also have ... = take (dot-item (fst (bs!(k−1)!pre))) (rhs-item (fst (bs!(k−1)!pre)))

107

@ [ω!(k−1)]
using IH by simp
also have ... = take (dot-item (fst (bs!(k−1)!pre))) (rhs-item (fst e)) @

[ω!(k−1)]
using ∗(2) by simp

also have ... = take (dot-item (fst e)) (rhs-item (fst e))
using ∗(2−4) by (auto simp: next-symbol-def is-complete-def split: if-splits;

metis leI take-Suc-conv-app-nth)
finally have map root (ts @ [Leaf (ω!(k−1))]) = take (dot-item (fst e))

(rhs-item (fst e)) .
hence wf-item-tree G (fst e) (Branch N (ts @ [Leaf (ω!(k−1))]))

using IH ∗(1) by simp
thus ?thesis

using entry prems(6) simp by auto
next

case PreRed
then obtain k ′ pre red ps where prered: snd e = PreRed (k ′, pre, red) ps

by blast
obtain N ts where Nts: build-tree ′ bs ω k ′ pre = Some (Branch N ts)
using build-tree ′-termination entry prems(4) prered wf-tree-input-prered-pre

by blast
obtain N-red ts-red where Nts-red: build-tree ′ bs ω k red = Some (Branch

N-red ts-red)
using build-tree ′-termination entry prems(4) prered wf-tree-input-prered-red

by blast
have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Branch N-red

ts-red]))
using build-tree ′-simps(8) entry prered Nts Nts-red by auto

have sound-ptrs ω bs
using prems(4) wf-tree-input-def by fastforce

have bounds ′: k ′ < k pre < length (bs!k ′) red < length (bs!k)
using prered entry bounds ‹sound-ptrs ω bs›
unfolding sound-prered-ptr-def sound-ptrs-def by fastforce+

have completes: completes k (fst (bs!k ′!pre)) (fst e) (fst (bs!k!red))
using prered entry bounds ‹sound-ptrs ω bs›
unfolding sound-ptrs-def sound-prered-ptr-def by force

have ∗:
lhs-item (fst (bs!k ′!pre)) = lhs-item (fst e)
rhs-item (fst (bs!k ′!pre)) = rhs-item (fst e)
dot-item (fst (bs!k ′!pre)) + 1 = dot-item (fst e)
next-symbol (fst (bs!k ′!pre)) = Some (lhs-item (fst (bs!k!red)))
is-complete (fst (bs!k!red))
using completes unfolding completes-def inc-item-def
by (auto simp: lhs-item-def rhs-item-def is-complete-def)

have (bs, ω, k ′, pre) ∈ wf-tree-input
using wf-tree-input-prered-pre[OF prems(4) entry prered] by blast

hence IH-pre: wf-item-tree G (fst (bs!k ′!pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)] Nts bounds(1 ,2) order-less-trans

prems(6) by blast

108

have (bs, ω, k, red) ∈ wf-tree-input
using wf-tree-input-prered-red[OF prems(4) entry prered] by blast

hence IH-r : wf-item-tree G (fst (bs!k!red)) (Branch N-red ts-red)
using bounds ′(3) entry prems(3 ,5 ,6) prered Nts-red by blast

have map root (ts @ [Branch N-red ts-red]) = map root ts @ [root (Branch
N-red ts)]

by simp
also have ... = take (dot-item (fst (bs!k ′!pre))) (rhs-item (fst (bs!k ′!pre)))

@ [root (Branch N-red ts)]
using IH-pre by simp

also have ... = take (dot-item (fst (bs!k ′!pre))) (rhs-item (fst (bs!k ′!pre)))
@ [lhs-item (fst (bs!k!red))]

using IH-r by simp
also have ... = take (dot-item (fst e)) (rhs-item (fst e))
using ∗ by (auto simp: next-symbol-def is-complete-def split: if-splits; metis

leI take-Suc-conv-app-nth)
finally have roots: map root (ts @ [Branch N-red ts]) = take (dot-item (fst

e)) (rhs-item (fst e)) by simp
have wf-item G ω (fst (bs!k!red))

using bounds bounds ′(3) prems(5) wf-bins-def wf-bin-def wf-bin-items-def
by (metis items-def length-map nth-map nth-mem)

moreover have N-red = lhs-item (fst (bs!k!red))
using IH-r by fastforce

moreover have map root ts-red = rhs-item (fst (bs!k!red))
using IH-r ∗(5) by (auto simp: is-complete-def)

ultimately have ∃ r ∈ set (R G). N-red = lhs-rule r ∧ map root ts-red =
rhs-rule r

unfolding wf-item-def rhs-item-def lhs-item-def by blast
hence wf-rule-tree G (Branch N-red ts-red)

using IH-r by simp
hence wf-item-tree G (fst (bs!k!i)) (Branch N (ts @ [Branch N-red ts-red]))

using ∗(1) roots IH-pre entry by simp
thus ?thesis

using Nts-red prems(6) simp by auto
qed

qed
done

thus ?thesis
using assms(2) by blast

qed

lemma wf-yield-build-tree ′:
assumes (bs, ω, k, i) ∈ wf-tree-input
assumes wf-bins G ω bs
assumes build-tree ′ bs ω k i = Some t
shows wf-yield ω (fst (bs!k!i)) t

proof −
have wf-yield ω (fst (bs!k!i)) t

using assms

109

apply (induction arbitrary: t rule: build-tree ′-induct[OF assms(1)])
subgoal premises prems for bs ω k i t
proof −

define e where entry: e = bs!k!i
have bounds: k < length bs k ≤ length ω i < length (bs!k)

using prems(4) wf-tree-input-def by force+
consider (Null) snd e = Null
| (Pre) ∃ pre. snd e = Pre pre
| (PreRed) ∃ k ′ pre red reds. snd e = PreRed (k ′, pre, red) reds
by (metis pointer .exhaust surj-pair)

thus ?thesis
proof cases

case Null
hence build-tree ′ bs ω k i = Some (Branch (lhs-item (fst e)) [])

using entry by simp
have simp: t = Branch (lhs-item (fst e)) []

using build-tree ′-simps(1) Null prems(6) entry by simp
have sound-ptrs ω bs

using prems(4) unfolding wf-tree-input-def by blast
hence predicts (fst e)

using Null bounds nth-mem entry unfolding sound-ptrs-def sound-null-ptr-def
by blast

thus ?thesis
unfolding wf-yield-def predicts-def using simp entry by (auto simp:

slice-empty)
next

case Pre
then obtain pre where pre: snd e = Pre pre

by blast
obtain N ts where Nts: build-tree ′ bs ω (k−1) pre = Some (Branch N ts)
using build-tree ′-termination entry pre prems(4) wf-tree-input-pre by blast

have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Leaf (ω!(k−1))]))
using build-tree ′-simps(3) entry pre Nts by simp

have sound-ptrs ω bs
using prems(4) unfolding wf-tree-input-def by blast

hence bounds ′: k > 0 pre < length (bs!(k−1))
using entry pre bounds unfolding sound-ptrs-def sound-pre-ptr-def by

(metis nth-mem)+
moreover have k−1 < length bs

by (simp add: bounds less-imp-diff-less)
ultimately have IH : wf-yield ω (fst (bs!(k−1)!pre)) (Branch N ts)

using prems(1) entry pre Nts wf-tree-input-pre prems(4 ,5 ,6) by fastforce
have scans: scans ω k (fst (bs!(k−1)!pre)) (fst e)

using entry pre bounds ‹sound-ptrs ω bs› unfolding sound-ptrs-def
sound-pre-ptr-def by simp

have wf :
start-item (fst (bs!(k−1)!pre)) ≤ end-item (fst (bs!(k−1)!pre))
end-item (fst (bs!(k−1)!pre)) = k−1
end-item (fst e) = k

110

using entry prems(5) bounds ′ bounds unfolding wf-bins-def wf-bin-def
wf-bin-items-def items-def wf-item-def

by (auto, meson less-imp-diff-less nth-mem)
have yield (Branch N (ts @ [Leaf (ω!(k−1))])) = concat (map yield (ts @

[Leaf (ω!(k−1))]))
by simp

also have ... = concat (map yield ts) @ [ω!(k−1)]
by simp
also have ... = slice ω (start-item (fst (bs!(k−1)!pre))) (end-item (fst

(bs!(k−1)!pre))) @ [ω!(k−1)]
using IH by (simp add: wf-yield-def)
also have ... = slice ω (start-item (fst (bs!(k−1)!pre))) (end-item (fst

(bs!(k−1)!pre)) + 1)
using slice-append-nth wf ‹k > 0 ›

by (metis One-nat-def Suc-pred bounds(2) le-neq-implies-less lessI less-imp-diff-less)
also have ... = slice ω (start-item (fst e)) (end-item (fst (bs!(k−1)!pre)) +

1)
using scans unfolding scans-def inc-item-def by simp

also have ... = slice ω (start-item (fst e)) k
using scans wf unfolding scans-def by (metis Suc-diff-1 Suc-eq-plus1

bounds ′(1))
also have ... = slice ω (start-item (fst e)) (end-item (fst e))

using wf by auto
finally show ?thesis

using wf-yield-def entry prems(6) simp by force
next

case PreRed
then obtain k ′ pre red ps where prered: snd e = PreRed (k ′, pre, red) ps

by blast
obtain N ts where Nts: build-tree ′ bs ω k ′ pre = Some (Branch N ts)
using build-tree ′-termination entry prems(4) prered wf-tree-input-prered-pre

by blast
obtain N-red ts-red where Nts-red: build-tree ′ bs ω k red = Some (Branch

N-red ts-red)
using build-tree ′-termination entry prems(4) prered wf-tree-input-prered-red

by blast
have simp: build-tree ′ bs ω k i = Some (Branch N (ts @ [Branch N-red

ts-red]))
using build-tree ′-simps(8) entry prered Nts Nts-red by auto

have sound-ptrs ω bs
using prems(4) wf-tree-input-def by fastforce

have bounds ′: k ′ < k pre < length (bs!k ′) red < length (bs!k)
using prered entry bounds ‹sound-ptrs ω bs›
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce+

have completes: completes k (fst (bs!k ′!pre)) (fst e) (fst (bs!k!red))
using prered entry bounds ‹sound-ptrs ω bs›
unfolding sound-ptrs-def sound-prered-ptr-def by fastforce

have (bs, ω, k ′, pre) ∈ wf-tree-input
using wf-tree-input-prered-pre[OF prems(4) entry prered] by blast

111

hence IH-pre: wf-yield ω (fst (bs!k ′!pre)) (Branch N ts)
using prems(2)[OF entry prered - prems(5)] Nts bounds ′(1 ,2) prems(6)
by (meson dual-order .strict-trans1 nat-less-le)

have (bs, ω, k, red) ∈ wf-tree-input
using wf-tree-input-prered-red[OF prems(4) entry prered] by blast

hence IH-r : wf-yield ω (fst (bs!k!red)) (Branch N-red ts-red)
using bounds(3) entry prems(3 ,5 ,6) prered Nts-red by blast

have wf1 :
start-item (fst (bs!k ′!pre)) ≤ end-item (fst (bs!k ′!pre))
start-item (fst (bs!k!red)) ≤ end-item (fst (bs!k!red))

using prems(5) bounds bounds ′ unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def wf-item-def

by (metis length-map nth-map nth-mem order .strict-trans)+
have wf2 :

end-item (fst (bs!k!red)) = k
end-item (fst (bs!k!i)) = k

using prems(5) bounds bounds ′ unfolding wf-bins-def wf-bin-def wf-bin-items-def
items-def by simp-all

have yield (Branch N (ts @ [Branch N-red ts-red])) = concat (map yield (ts
@ [Branch N-red ts-red]))

by (simp add: Nts-red)
also have ... = concat (map yield ts) @ yield (Branch N-red ts-red)

by simp
also have ... = slice ω (start-item (fst (bs!k ′!pre))) (end-item (fst (bs!k ′!pre)))

@
slice ω (start-item (fst (bs!k!red))) (end-item (fst (bs!k!red)))
using IH-pre IH-r by (simp add: wf-yield-def)

also have ... = slice ω (start-item (fst (bs!k ′!pre))) (end-item (fst (bs!k!red)))
using slice-concat wf1 completes-def completes by (metis (no-types, lifting))
also have ... = slice ω (start-item (fst e)) (end-item (fst (bs!k!red)))

using completes unfolding completes-def inc-item-def by simp
also have ... = slice ω (start-item (fst e)) (end-item (fst e))

using wf2 entry by presburger
finally show ?thesis

using wf-yield-def entry prems(6) simp by force
qed

qed
done

thus ?thesis
using assms(2) by blast

qed

theorem wf-rule-root-yield-build-tree:
assumes wf-bins G ω bs sound-ptrs ω bs mono-red-ptr bs length bs = length ω +

1
assumes build-tree G ω bs = Some t
shows wf-rule-tree G t ∧ root t = S G ∧ yield t = ω

proof −
let ?k = length bs − 1

112

define finished where finished-def : finished = filter-with-index (is-finished G ω)
(items (bs!?k))

then obtain x i where ∗: (x,i) ∈ set finished Some t = build-tree ′ bs ω ?k i
using assms(5) unfolding finished-def build-tree-def by (auto simp: Let-def

split: list.splits, presburger)
have k: ?k < length bs ?k ≤ length ω

using assms(4) by simp-all
have i: i < length (bs!?k)
using index-filter-with-index-lt-length ∗ items-def finished-def by (metis length-map)

have x: x = fst (bs!?k!i)
using ∗ i filter-with-index-nth items-def nth-map finished-def by metis

have finished: is-finished G ω x
using ∗ filter-with-index-P finished-def by metis

have wf-trees-input: (bs, ω, ?k, i) ∈ wf-tree-input
unfolding wf-tree-input-def using assms(2 ,3) i k by blast

hence wf-item-tree: wf-item-tree G x t
using wf-item-tree-build-tree ′ assms(1 ,2) i k(1) x ∗(2) by metis

have wf-item: wf-item G ω (fst (bs!?k!i))
using k(1) i assms(1) unfolding wf-bins-def wf-bin-def wf-bin-items-def by

(simp add: items-def)
obtain N ts where t: t = Branch N ts

by (metis ∗(2) build-tree ′-termination option.inject wf-trees-input)
hence N = lhs-item x

map root ts = rhs-item x
using finished wf-item-tree by (auto simp: is-finished-def is-complete-def)

hence ∃ r ∈ set (R G). N = lhs-rule r ∧ map root ts = rhs-rule r
using wf-item x unfolding wf-item-def rhs-item-def lhs-item-def by blast

hence wf-rule: wf-rule-tree G t
using wf-item-tree t by simp

have root: root t = S G
using finished t ‹N = lhs-item x› by (auto simp: is-finished-def)

have yield t = slice ω (start-item (fst (bs!?k!i))) (end-item (fst (bs!?k!i)))
using k i assms(1) wf-trees-input wf-yield-build-tree ′ wf-yield-def ∗(2) by (metis

(no-types, lifting))
hence yield: yield t = ω

using finished x unfolding is-finished-def by simp
show ?thesis

using ∗ wf-rule root yield assms(4) unfolding build-tree-def by simp
qed

corollary wf-rule-root-yield-build-tree-EarleyL:
assumes ε-free G
assumes build-tree G ω (EarleyL G ω) = Some t
shows wf-rule-tree G t ∧ root t = S G ∧ yield t = ω
using assms wf-rule-root-yield-build-tree wf-bins-EarleyL sound-mono-ptrs-EarleyL

EarleyL-def
length-EarleyL-bins length-bins-InitL by (metis ε-free-impl-nonempty-derives

le-refl)

113

theorem correctness-build-tree-EarleyL:
assumes is-word G ω ε-free G
shows (∃ t. build-tree G ω (EarleyL G ω) = Some t) ←→ G ` [S G] ⇒∗ ω (is ?L
←→ ?R)
proof standard

assume ∗: ?L
let ?k = length (EarleyL G ω) − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items ((EarleyL G ω)!?k))
then obtain t x i where ∗: (x,i) ∈ set finished Some t = build-tree ′ (EarleyL G

ω) ω ?k i
using ∗ unfolding finished-def build-tree-def by (auto simp: Let-def split:

list.splits, presburger)
have k: ?k < length (EarleyL G ω) ?k ≤ length ω

by (simp-all add: EarleyL-def assms(1))
have i: i < length ((EarleyL G ω) ! ?k)
using index-filter-with-index-lt-length ∗ items-def finished-def by (metis length-map)

have x: x = fst ((EarleyL G ω)!?k!i)
using ∗ i filter-with-index-nth items-def nth-map finished-def by metis

have finished: is-finished G ω x
using ∗ filter-with-index-P finished-def by metis

moreover have x ∈ set (items ((EarleyL G ω) ! ?k))
using x by (auto simp: items-def ; metis One-nat-def i imageI nth-mem)

ultimately have recognizing (bins (EarleyL G ω)) G ω
by (meson k(1) kth-bin-sub-bins recognizing-def subsetD)

thus ?R
using soundness-EarleyL by blast

next
assume ∗: ?R
let ?k = length (EarleyL G ω) − 1
define finished where finished-def : finished = filter-with-index (is-finished G ω)

(items ((EarleyL G ω)!?k))
have recognizing (bins (EarleyL G ω)) G ω

using assms ∗ completeness-EarleyL by blast
moreover have ?k = length ω

by (simp add: EarleyL-def assms(1))
ultimately have ∃ x ∈ set (items ((EarleyL G ω)!?k)). is-finished G ω x
unfolding recognizing-def using assms(1) is-finished-def wf-bins-EarleyL wf-item-in-kth-bin

by metis
then obtain x i xs where xis: finished = (x,i)#xs

using filter-with-index-Ex-first by (metis finished-def)
hence simp: build-tree G ω (EarleyL G ω) = build-tree ′ (EarleyL G ω) ω ?k i

unfolding build-tree-def finished-def by auto
have (x,i) ∈ set finished

using xis by simp
hence i < length ((EarleyL G ω)!?k)
using index-filter-with-index-lt-length by (metis finished-def items-def length-map)

moreover have ?k < length (EarleyL G ω)
by (simp add: EarleyL-def assms(1))

114

ultimately have (EarleyL G ω, ω, ?k, i) ∈ wf-tree-input
unfolding wf-tree-input-def using sound-mono-ptrs-EarleyL assms ε-free-impl-nonempty-derives
using ‹length (EarleyL G ω) − 1 = length ω› by auto

then obtain N ts where build-tree ′ (EarleyL G ω) ω ?k i = Some (Branch N
ts)

using build-tree ′-termination by blast
thus ?L

using simp by simp
qed

end
theory Examples

imports
Earley-Parser
HOL−Library.Code-Target-Nat

begin

10 Examples
10.1 Common symbols
datatype symbol = a | S | X | Y | Z

10.2 O(n3) ambiguous grammars
10.2.1 S -> SS | a
definition rules1 :: symbol rule list where

rules1 = [
(S , [S , S]),
(S , [a])

]

definition cfg1 :: symbol cfg where
cfg1 = CFG rules1 S

lemma ε-free1 :
ε-free cfg1
by (auto simp: ε-free-def cfg1-def rules1-def rhs-rule-def)

10.3 O(n2) unambiguous or bounded ambiguity
10.3.1 S -> aS | a
definition rules2 :: symbol rule list where

rules2 = [
(S , [a, S]),
(S , [a])

]

115

definition cfg2 :: symbol cfg where
cfg2 = CFG rules2 S

lemma ε-free2 :
ε-free cfg2
by (auto simp: ε-free-def cfg2-def rules2-def rhs-rule-def)

10.3.2 S -> aSa | a
definition rules3 :: symbol rule list where

rules3 = [
(S , [a, S , a]),
(S , [a])

]

definition cfg3 :: symbol cfg where
cfg3 = CFG rules3 S

lemma ε-free3 :
ε-free cfg3
by (auto simp: ε-free-def cfg3-def rules3-def rhs-rule-def)

10.4 O(n) bounded state, non-right recursive LR(k) gram-
mars

10.4.1 S -> Sa | a
definition rules4 :: symbol rule list where

rules4 = [
(S , [S , a]),
(S , [a])

]

definition cfg4 :: symbol cfg where
cfg4 = CFG rules4 S

lemma ε-free4 :
ε-free cfg4
by (auto simp: ε-free-def cfg4-def rules4-def rhs-rule-def)

10.5 S -> SX, X -> Y | Z, Y -> a, Z -> a
definition rules5 :: symbol rule list where

rules5 = [
(S , [S , X]),
(S , [a]),
(X , [Y]),
(X , [Z]),
(Y , [a]),
(Z , [a])

116

]

definition cfg5 :: symbol cfg where
cfg5 = CFG rules5 S

lemma ε-free5 :
ε-free cfg5
by (auto simp: ε-free-def cfg5-def rules5-def rhs-rule-def)

11 Input and Evaluation
definition inp :: symbol list where

inp = [a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a

]

lemma is-word-inp1 :
is-word cfg1 inp
by (auto simp: is-word-def cfg1-def rules1-def nonterminals-def inp-def)

lemma is-word-inp2 :
is-word cfg2 inp
by (auto simp: is-word-def cfg2-def rules2-def nonterminals-def inp-def)

lemma is-word-inp3 :
is-word cfg3 inp
by (auto simp: is-word-def cfg3-def rules3-def nonterminals-def inp-def)

lemma is-word-inp4 :
is-word cfg4 inp
by (auto simp: is-word-def cfg4-def rules4-def nonterminals-def inp-def)

lemma is-word-inp5 :
is-word cfg5 inp
by (auto simp: is-word-def cfg5-def rules5-def nonterminals-def inp-def)

definition size-bins :: ′a bins ⇒ nat where
size-bins bs = fold (+) (map length bs) 0

fun size-pointer :: ′a item × pointer ⇒ nat where
size-pointer (-, (PreRed - ps)) = 1 + length ps
| size-pointer - = 1

definition size-pointers :: ′a bins ⇒ nat where
size-pointers bs = fold (+) (map (λb. fold (+) (map (λe. size-pointer e) b) 0) bs)

0

117

export-code EarleyL build-tree rules1 cfg1 rules2 cfg2 rules3 cfg3 rules4 cfg4
rules5 cfg5 inp size-bins size-pointers in Scala

value size-bins (EarleyL cfg1 inp)
value size-pointers (EarleyL cfg1 inp)

value size-bins (EarleyL cfg2 inp)
value size-pointers (EarleyL cfg2 inp)

value size-bins (EarleyL cfg3 inp)
value size-pointers (EarleyL cfg3 inp)

value size-bins (EarleyL cfg4 inp)
value size-pointers (EarleyL cfg4 inp)

value size-bins (EarleyL cfg5 inp)
value size-pointers (EarleyL cfg5 inp)

end

References
[1] J. Earley. An efficient context-free parsing algorithm. Commun. ACM,

13(2):94102, 1970.

[2] C. B. Jones. Formal development of correct algorithms: An example
based on earley’s recogniser. In Proceedings of ACM Conference on Prov-
ing Assertions about Programs, page 150169, New York, NY, USA, 1972.
Association for Computing Machinery.

[3] S. Obua. Local lexing. Archive of Formal Proofs, 2017. https://isa-afp.
org/entries/LocalLexing.html, Formal proof development.

[4] S. Obua, P. Scott, and J. Fleuriot. Local lexing, 2017.

[5] E. Scott. Sppf-style parsing from earley recognisers. Electronic Notes in
Theoretical Computer Science, 203(2):53–67, 2008. Proceedings of the
Seventh Workshop on Language Descriptions, Tools, and Applications
(LDTA 2007).

118

https://isa-afp.org/entries/LocalLexing.html
https://isa-afp.org/entries/LocalLexing.html

	Slightly adjusted content from AFP/LocalLexing
	Adjusted content from AFP/LocalLexing
	Adjusted content from AFP/LocalLexing
	Additional derivation lemmas
	Slices
	Earley recognizer
	Earley items
	Well-formedness
	Soundness
	Completeness
	Correctness
	Finiteness

	Earley fixpoint
	Definitions
	Monotonicity and Absorption
	Soundness
	Completeness
	Correctness

	Earley recognizer
	List auxilaries
	Definitions
	Epsilon productions
	Bin lemmas
	Well-formed bins
	Soundness
	Completeness
	Correctness

	Earley parser
	Pointer lemmas
	Common Definitions
	foldl lemmas
	Parse tree

	Examples
	Common symbols
	O(n3) ambiguous grammars
	S -> SS | a

	O(n2) unambiguous or bounded ambiguity
	S -> aS | a
	S -> aSa | a

	O(n) bounded state, non-right recursive LR(k) grammars
	S -> Sa | a

	S -> SX, X -> Y | Z, Y -> a, Z -> a

	Input and Evaluation

