Dyck Language

Tobias Nipkow and Moritz Roos

June 19, 2025

Abstract

The Dyck language over a pair of brackets, e.g. (and), is the set of balanced strings/words/lists of brackets. That is, the set of words with the same number of (and), where every prefix of the word contains no more) than (. In general, a Dyck language is defined over a whole set of matching pairs of brackets.

Contents

L	Dyc	k Languages	1
	1.1	Balanced, Inductive and Recursive	1
	1.2	Equivalence of bal and bal_stk	2
	1.3	More properties of <i>bal</i> , using <i>bal_stk</i>	3
	1.4	Dyck Language over an Alphabet	5

1 Dyck Languages

theory Dyck_Language imports Main begin

Dyck languages are sets of words/lists of balanced brackets. A bracket is a pair of type $bool \times 'a$ where *True* is an opening and *False* a closing bracket. That is, brackets are tagged with elements of type 'a.

```
type_synonym 'a bracket = bool \times 'a
```

abbreviation Open $a \equiv (True, a)$ **abbreviation** Close $a \equiv (False, a)$

1.1 Balanced, Inductive and Recursive

Definition of what it means to be a *balanced* list of brackets:

inductive *bal* :: 'a bracket list \Rightarrow bool where *bal* [] | *bal* $xs \Longrightarrow$ *bal* $ys \Longrightarrow$ *bal* (xs @ ys) | $bal xs \Longrightarrow bal (Open \ a \ \# \ xs @ [Close \ a])$

declare bal.intros(1)[iff] bal.intros(2)[intro,simp] bal.intros(3)[intro,simp]

lemma bal2[iff]: bal [Open a, Close a]
using bal.intros(3)[of []] by simp

The inductive definition of balanced is complemented with a functional version that uses a stack to remember which opening brackets need to be closed:

fun $bal_stk :: 'a \ list \Rightarrow 'a \ bracket \ list \Rightarrow 'a \ list * 'a \ bracket \ list where$ $<math>bal_stk \ s \ [] = (s, []) \ |$ $bal_stk \ s \ (Open \ a \ \# \ bs) = \ bal_stk \ (a \ \# \ s) \ bs \ |$ $bal_stk \ (a' \ \# \ s) \ (Close \ a \ \# \ bs) =$ $(if \ a = \ a' \ then \ bal_stk \ s \ bs \ else \ (a' \ \# \ s, \ Close \ a \ \# \ bs)) \ |$ $bal_stk \ bs \ stk = (bs, stk)$

lemma $bal_stk_more_stk$: bal_stk s1 $xs = (s1',[]) \implies bal_stk$ (s1@s2) xs = (s1'@s2,[])

by(*induction s1 xs arbitrary: s2 rule: bal_stk.induct*) (*auto split: if_splits*)

lemma $bal_stk_if_Nils[simp]$: $ASSUMPTION(bal_stk [] bs = ([], [])) \Longrightarrow bal_stk$ s bs = (s, [])

unfolding ASSUMPTION_def using bal_stk_more_stk[of [] _ []] by simp

lemma *bal_stk_append*:

 $bal_stk \ s \ (xs \ @ \ ys)$

= $(let (s', xs') = bal_stk \ s \ xs \ in \ if \ xs' = [] \ then \ bal_stk \ s' \ ys \ else \ (s', \ xs' \ @ \ ys))$ by $(induction \ s \ xs \ rule: bal_stk.induct) \ (auto \ split: \ if_splits)$

lemma bal_stk_append_if:

 $bal_stk \ s1 \ xs = (s2, []) \Longrightarrow bal_stk \ s1 \ (xs @ ys) = bal_stk \ s2 \ ys$ $by(simp \ add: \ bal_stk_append[of_xs])$

lemma *bal_stk_split*:

 $bal_stk \ s \ xs = (s',xs') \Longrightarrow \exists us. \ xs = us@xs' \land bal_stk \ s \ us = (s',[])$ by(induction s xs rule:bal_stk.induct) (auto split: if_splits)

1.2 Equivalence of *bal* and *bal_stk*

lemma $bal_stk_if_bal$: $bal xs \implies bal_stk \ s \ xs = (s, [])$ **by** $(induction \ arbitrary: \ s \ rule: \ bal.induct)(auto \ simp: \ bal_stk_append_if \ split: \ if_splits)$

lemma bal_insert_AB: bal $(v @ w) \Longrightarrow$ bal (v @ (Open a # Close a # w)) **proof**(induction v @ w arbitrary: v w rule: bal.induct) **case** 1 **thus** ?case by blast **next case** $(3 \ u \ b)$

```
then show ?case
 proof (cases v)
   \mathbf{case}~\mathit{Nil}
   hence w = Open \ b \ \# \ u \ @ \ [Close \ b]
     using 3.hyps(3) by fastforce
   hence bal w using 3.hyps
     by blast
   hence bal ([Open a, Close a] @ w)
     by blast
   thus ?thesis using Nil by simp
 \mathbf{next}
   case [simp]: (Cons x v')
   show ?thesis
   proof (cases w rule:rev_cases)
     case Nil
     from 3.hyps have bal ((Open a \# u @ [Close a]) @ [Open a, Close a])
      using bal.intros(2) by blast
     thus ?thesis using Nil Cons 3
      by (metis append_Nil append_Nil2 bal.simps)
   \mathbf{next}
     case (snoc w' y)
     thus ?thesis
      using 3.hyps(2,3) bal.intros(3) by force
   qed
 qed
\mathbf{next}
 case (2 v' w')
 then obtain r where v'=v@r \wedge r@w'=w \vee v'@r=v \wedge w'=r@w
   by (meson append_eq_append_conv2)
 thus ?case
   using 2.hyps \ bal.intros(2) by force
qed
lemma bal_if_bal_stk: bal_stk s w = ([], []) \Longrightarrow bal (rev(map (\lambda x. Open x) s) @
w)
proof(induction s w rule: bal stk.induct)
 case 2
 then show ?case by simp
\mathbf{next}
 case 3
 then show ?case by (auto simp add: bal_insert_AB split: if_splits)
```

corollary $bal_iff_bal_stk$: $bal w \leftrightarrow bal_stk$ [] w = ([],[])using $bal_if_bal_stk[of []] bal_stk_if_bal by auto$

1.3 More properties of *bal*, using *bal_stk*

qed (auto)

theorem $bal_append_inv: bal (u @ v) \Longrightarrow bal u \Longrightarrow bal v$

using bal_stk_append_if bal_iff_bal_stk by metis **lemma** *bal_insert_bal_iff*[*simp*]: $bal \ b \Longrightarrow bal \ (v @ b @ w) = bal \ (v @ w)$ unfolding bal iff bal stk by(auto simp add: bal stk append split: prod.splits *if_splits*) **lemma** bal_start_Open: $\langle bal(x \# xs) \Longrightarrow \exists a. x = Open a \rangle$ using bal_stk.elims bal_iff_bal_stk by blast **lemma** *bal_Open_split*: **assumes** $\langle bal (x \# xs) \rangle$ **shows** $\langle \exists y \ r \ a. \ bal \ y \land bal \ r \land x = Open \ a \land xs = y @ Close \ a \ \# \ r \rangle$ prooffrom assms obtain a where $\langle x = Open a \rangle$ using bal_start_Open by blast have $(bal \ (Open \ a \ \# \ xs) \Longrightarrow \exists \ y \ r. \ bal \ y \land \ bal \ r \land \ xs = y @ Close \ a \ \# \ r)$ **proof**(*induction* (*length* xs) *arbitrary*: xs rule: *less induct*) case less have IH: $\langle Aw. [[length w < length xs; bal (Open a # w)]] \implies \exists y r. bal y \land bal$ $r \wedge w = y @ Close \ a \ \# \ r \rangle$ using less by blast **have** $\langle bal (Open \ a \ \# \ xs) \rangle$ using less by blast from less(2) show ?case **proof**(*induction* $\langle Open \ a \ \# \ xs \rangle$ *rule*: *bal.induct*) case (2 as bs)**consider** (as empty) $\langle as = [] \rangle | (bs empty) \langle bs = [] \rangle | (both not empty)$ $\langle as \neq [] \land bs \neq [] \rangle$ by blast then show ?case **proof**(*cases*) case as empty then show ?thesis using 2 by (metis append_Nil) \mathbf{next} **case** bs_empty then show ?thesis using 2 by (metis append_self_conv) \mathbf{next} **case** *both_not_empty* then obtain as' where $as'_def: \langle Open \ a \ \# \ as' = as \rangle$ using 2 by (metis append_eq_Cons_conv) then have $\langle length \ as' \langle length \ xs \rangle$ using 2.hyps(5) both_not_empty by fastforce with IH (bal as) obtain y r where yr: (bal $y \wedge bal r \wedge as' = y @ Close a$ # rusing as'_def by meson then have $\langle xs = y @ Close \ a \ \# \ r @ bs \rangle$ using 2.hyps(5) as'_def by fastforce moreover have $\langle bal y \rangle$ using yr by blast moreover have $\langle bal (r@bs) \rangle$

```
using yr by (simp add: 2.hyps(3))

ultimately show ?thesis by blast

qed

next

case (3 xs)

then show ?case by blast

qed

qed

then show ?thesis using assms \langle x = \_ \rangle by blast

qed
```

1.4 Dyck Language over an Alphabet

The Dyck/bracket language over a set Γ is the set of balanced words over Γ :

definition $Dyck_lang :: 'a \ set \Rightarrow 'a \ bracket \ list \ set \ where$ $Dyck_lang \ \Gamma = \{w. \ bal \ w \land snd \ (set \ w) \subseteq \Gamma\}$

lemma $Dyck_langD[dest]$: **assumes** $\langle w \in Dyck_lang \Gamma \rangle$ **shows** $\langle bal w \rangle$ **and** $\langle snd \ (set w) \subseteq \Gamma \rangle$ **using** assms **unfolding** $Dyck_lang_def$ by auto

Balanced subwords are again in the Dyck Language.

 \mathbf{end}