
Dyck Language

Tobias Nipkow and Moritz Roos

June 19, 2025

Abstract
The Dyck language over a pair of brackets, e.g. (and), is the set of

balanced strings/words/lists of brackets. That is, the set of words with
the same number of (and), where every prefix of the word contains
no more) than (. In general, a Dyck language is defined over a whole
set of matching pairs of brackets.

Contents
1 Dyck Languages 1

1.1 Balanced, Inductive and Recursive 1
1.2 Equivalence of bal and bal_stk 2
1.3 More properties of bal, using bal_stk 3
1.4 Dyck Language over an Alphabet 5

1 Dyck Languages
theory Dyck_Language
imports Main
begin

Dyck languages are sets of words/lists of balanced brackets. A bracket
is a pair of type bool × ′a where True is an opening and False a closing
bracket. That is, brackets are tagged with elements of type ′a.
type_synonym ′a bracket = bool × ′a

abbreviation Open a ≡ (True,a)
abbreviation Close a ≡ (False,a)

1.1 Balanced, Inductive and Recursive
Definition of what it means to be a balanced list of brackets:
inductive bal :: ′a bracket list ⇒ bool where

bal [] |
bal xs =⇒ bal ys =⇒ bal (xs @ ys) |

1

bal xs =⇒ bal (Open a # xs @ [Close a])

declare bal.intros(1)[iff] bal.intros(2)[intro,simp] bal.intros(3)[intro,simp]

lemma bal2 [iff]: bal [Open a, Close a]
using bal.intros(3)[of []] by simp

The inductive definition of balanced is complemented with a functional
version that uses a stack to remember which opening brackets need to be
closed:
fun bal_stk :: ′a list ⇒ ′a bracket list ⇒ ′a list ∗ ′a bracket list where

bal_stk s [] = (s,[]) |
bal_stk s (Open a # bs) = bal_stk (a # s) bs |
bal_stk (a ′ # s) (Close a # bs) =
(if a = a ′ then bal_stk s bs else (a ′ # s, Close a # bs)) |

bal_stk bs stk = (bs,stk)

lemma bal_stk_more_stk: bal_stk s1 xs = (s1 ′,[]) =⇒ bal_stk (s1@s2) xs =
(s1 ′@s2 ,[])
by(induction s1 xs arbitrary: s2 rule: bal_stk.induct) (auto split: if_splits)

lemma bal_stk_if_Nils[simp]: ASSUMPTION (bal_stk [] bs = ([], [])) =⇒ bal_stk
s bs = (s, [])
unfolding ASSUMPTION_def using bal_stk_more_stk[of [] _ []] by simp

lemma bal_stk_append:
bal_stk s (xs @ ys)
= (let (s ′,xs ′) = bal_stk s xs in if xs ′ = [] then bal_stk s ′ ys else (s ′, xs ′ @ ys))

by(induction s xs rule:bal_stk.induct) (auto split: if_splits)

lemma bal_stk_append_if :
bal_stk s1 xs = (s2 ,[]) =⇒ bal_stk s1 (xs @ ys) = bal_stk s2 ys

by(simp add: bal_stk_append[of _ xs])

lemma bal_stk_split:
bal_stk s xs = (s ′,xs ′) =⇒ ∃ us. xs = us@xs ′ ∧ bal_stk s us = (s ′,[])

by(induction s xs rule:bal_stk.induct) (auto split: if_splits)

1.2 Equivalence of bal and bal_stk
lemma bal_stk_if_bal: bal xs =⇒ bal_stk s xs = (s,[])
by(induction arbitrary: s rule: bal.induct)(auto simp: bal_stk_append_if split: if_splits)

lemma bal_insert_AB:
bal (v @ w) =⇒ bal (v @ (Open a # Close a # w))

proof(induction v @ w arbitrary: v w rule: bal.induct)
case 1 thus ?case by blast

next
case (3 u b)

2

then show ?case
proof (cases v)

case Nil
hence w = Open b # u @ [Close b]

using 3 .hyps(3) by fastforce
hence bal w using 3 .hyps

by blast
hence bal ([Open a, Close a] @ w)

by blast
thus ?thesis using Nil by simp

next
case [simp]: (Cons x v ′)
show ?thesis
proof (cases w rule:rev_cases)

case Nil
from 3 .hyps have bal ((Open a # u @ [Close a]) @ [Open a, Close a])

using bal.intros(2) by blast
thus ?thesis using Nil Cons 3

by (metis append_Nil append_Nil2 bal.simps)
next

case (snoc w ′ y)
thus ?thesis

using 3 .hyps(2 ,3) bal.intros(3) by force
qed

qed
next

case (2 v ′ w ′)
then obtain r where v ′=v@r ∧ r@w ′=w ∨ v ′@r=v ∧ w ′=r@w

by (meson append_eq_append_conv2)
thus ?case

using 2 .hyps bal.intros(2) by force
qed

lemma bal_if_bal_stk: bal_stk s w = ([],[]) =⇒ bal (rev(map (λx. Open x) s) @
w)
proof(induction s w rule: bal_stk.induct)

case 2
then show ?case by simp

next
case 3
then show ?case by (auto simp add: bal_insert_AB split: if_splits)

qed (auto)

corollary bal_iff_bal_stk: bal w ←→ bal_stk [] w = ([],[])
using bal_if_bal_stk[of []] bal_stk_if_bal by auto

1.3 More properties of bal, using bal_stk
theorem bal_append_inv: bal (u @ v) =⇒ bal u =⇒ bal v

3

using bal_stk_append_if bal_iff_bal_stk by metis

lemma bal_insert_bal_iff [simp]:
bal b =⇒ bal (v @ b @ w) = bal (v@w)

unfolding bal_iff_bal_stk by(auto simp add: bal_stk_append split: prod.splits
if_splits)

lemma bal_start_Open: ‹bal (x#xs) =⇒∃ a. x = Open a›
using bal_stk.elims bal_iff_bal_stk by blast

lemma bal_Open_split: assumes ‹bal (x # xs)›
shows ‹∃ y r a. bal y ∧ bal r ∧ x = Open a ∧ xs = y @ Close a # r›

proof−
from assms obtain a where ‹x = Open a›

using bal_start_Open by blast
have ‹bal (Open a # xs) =⇒ ∃ y r . bal y ∧ bal r ∧ xs = y @ Close a # r›
proof(induction ‹length xs› arbitrary: xs rule: less_induct)

case less
have IH : ‹

∧
w. [[length w < length xs; bal (Open a # w)]] =⇒ ∃ y r . bal y ∧ bal

r ∧ w = y @ Close a # r›
using less by blast

have ‹bal (Open a # xs)›
using less by blast

from less(2) show ?case
proof(induction ‹Open a # xs› rule: bal.induct)

case (2 as bs)
consider (as_empty) ‹as = []› | (bs_empty) ‹bs = []› | (both_not_empty)

‹as 6= [] ∧ bs 6= []› by blast
then show ?case
proof(cases)

case as_empty
then show ?thesis using 2 by (metis append_Nil)

next
case bs_empty
then show ?thesis using 2 by (metis append_self_conv)

next
case both_not_empty
then obtain as ′ where as ′_def : ‹Open a # as ′ = as›

using 2 by (metis append_eq_Cons_conv)
then have ‹length as ′ < length xs›

using 2 .hyps(5) both_not_empty by fastforce
with IH ‹bal as› obtain y r where yr : ‹bal y ∧ bal r ∧ as ′ = y @ Close a

r›
using as ′_def by meson

then have ‹xs = y @ Close a # r @ bs›
using 2 .hyps(5) as ′_def by fastforce

moreover have ‹bal y›
using yr by blast

moreover have ‹bal (r@bs)›

4

using yr by (simp add: 2 .hyps(3))
ultimately show ?thesis by blast

qed
next

case (3 xs)
then show ?case by blast

qed
qed
then show ?thesis using assms ‹x = _› by blast

qed

1.4 Dyck Language over an Alphabet
The Dyck/bracket language over a set Γ is the set of balanced words over
Γ:
definition Dyck_lang :: ′a set ⇒ ′a bracket list set where
Dyck_lang Γ = {w. bal w ∧ snd ‘ (set w) ⊆ Γ}

lemma Dyck_langI [intro]:
assumes ‹bal w›

and ‹snd ‘ (set w) ⊆ Γ›
shows ‹w ∈ Dyck_lang Γ›
using assms unfolding Dyck_lang_def by blast

lemma Dyck_langD[dest]:
assumes ‹w ∈ Dyck_lang Γ›
shows ‹bal w›

and ‹snd ‘ (set w) ⊆ Γ›
using assms unfolding Dyck_lang_def by auto

Balanced subwords are again in the Dyck Language.
lemma Dyck_lang_substring:

‹bal w =⇒ u @ w @ v ∈ Dyck_lang Γ =⇒ w ∈ Dyck_lang Γ›
unfolding Dyck_lang_def by auto

end

5

	Dyck Languages
	Balanced, Inductive and Recursive
	Equivalence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bal and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bal_stk
	More properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bal, using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bal_stk
	Dyck Language over an Alphabet

