Distributed Distinct Elements

Emin Karayel

September 13, 2023

Abstract

This entry formalizes a randomized cardinality estimation data structure with asymptotically
optimal space usage. It is inspired by the streaming algorithm presented by Blasiok [3] in 2018.
His work closed the gap between the best-known lower bound and upper bound after a long line
of research started by Flajolet and Martin [4] in 1984 and was to first to apply expander graphs
(in addition to hash families) to the problem. The formalized algorithm has two improvements
compared to the algorithm by Blasiok. It supports operation in parallel mode, and it relies on a
simpler pseudo-random construction avoiding the use of code based extractors.

Contents

1 Introduction 2
2 Preliminary Results 2
3 Combinators for Pseudo-random Objects 5
4 Balls and Bins 11
5 Tail Bounds for Expander Walks 17
6 Inner Algorithm 19
7 Accuracy without cutoff 25
8 Cutoff Level 27
9 Accuracy with cutoff 29
10 Outer Algorithm 30

1 Introduction

The algorithm is described as functional data strucutures, given a seed which needs to be choosen
uniformly from a initial segment of the natural numbers and globally, there are three functions:

 single - given the seed and an element from the universe computes a sketch for that singleton
set

e merge - computes a sketch based on two input sketches and returns a sketch representing the
union set

e estimate - computes an estimate for the cardinality of the set represented by a sketch

The main point is that a sketch requires O(6~2In(e~!) +Inn) space where n is the universe size, &
is the desired relative accuracy and ¢ is the desired failure probability. Note that it is easy to see
that an exact solution would necessarily require O(n) bits.

The algorithm is split into two parts an inner algorithm, described in Section 6, which itself is
already a full cardinality estimation algorithm, however its space usage is below optimal. The
outer algorithm is introduced in Section 10, which runs mutiple copies of the inner algorithm with
carefully chosen inner parameters.

As mentioned in the abstract the algorithm is inspired by the solution to the streaming version
of the problem by Blasiok [3] in 2020. His work builds on a long line of reasarch starting in
1985 [4, 1, 2, 8, 12, 5].

In an earlier AFP entry [10] I have formalized an earlier cardinality estimation algorithm based on
the work by Bar-Yossef et al. [2] in 2002. Since then I have addressed the existence of finite fields
for higher prime powers and expander graphs [9, 11]. Building on these results, the formalization
of this more advanced solution presented here became possible.

The solution described here improves on the algorithms described by Blasiok in two ways (without
comprising its optimal space usage). It can be used in a parallel mode of operation. Moreover the
pseudo-random construction used is simpler than the solution described by Btasiok — who uses
an extractor based on Parvaresh-Vardy codes [7] to sample random walks in an expander graph,
which are then sub-sampled and then the walks are used to sample seeds for hash functions. In
the solution presented here neither the sub-sampling step nor the extractor is needed, instead a
two-stage expander construction is used, this means that the nodes of the first expander correspond
to the walks in a second expander graph. The latters nodes correspond to seeds of hash functions
(as in Blasiok’s solution).

The modification needed to support a parallel mode of operation is a change in the failure strategy
of the solution presented in Kane et al., which is the event when the data in the sketch reequires
too much space. The main issue is that in the parallel case the number of states the algorithm
might reach is not bounded by the universe size and thus an estimate they make for the probability
of the failure event does not transfer to the parallel case. To solve that the algorithm in this work
is more conservative. Instead of failing out-right it instead increases a cutoff threshold. For which
it is then possible to show an upper estimate independent of the number of reached states.

2 Preliminary Results

This section contains various short preliminary results used in the sections below.

theory Distributed-Distinct-Elements-Preliminary
imports

Frequency-Moments. Frequency-Moments- Preliminary-Results
Frequency-Moments. Product-PMF-FEuxt
Median-Method. Median
Ezxpander-Graphs. Extra-Congruence-Method
Ezpander-Graphs. Constructive- Chernoff- Bound
Frequency-Moments. Landau-Ext
Stirling- Formula.Stirling- Formula

begin

unbundle intro-cong-syntax

Simplified versions of measure theoretic results for pmfs:

lemma measure-pmf-cong:
assumes A\z. z € set-pmfp =z € P +— z € Q
shows measure (measure-pmf p) P = measure (measure-pmf p) @

(proof)

lemma pmf-mono:
assumes A\z. z € set-pmfp = 2 € P = z € Q
shows measure (measure-pmf p) P < measure (measure-pmf p) Q

{proof)

lemma pmf-rev-mono:
assumes A\z. z € set-pmfp —= ¢ Q = x ¢ P
shows measure p P < measure p @

(proof)

lemma pmf-exp-mono:
fixes f ¢ :: 'a = real
assumes integrable (measure-pmf p) f integrable (measure-pmf p) g
assumes A\z. z € set-pmfp — fz < gz
shows integral® (measure-pmf p) f < integral® (measure-pmf p) g

(proof)

lemma pmf-markov:

assumes integrable (measure-pmf p) fc > 0

assumes A\z. z € set-pmfp = fz > 0

shows measure p {w. f w > ¢} < (fw. fw dp)/ ¢ (is ?L < ?R)
(proof)

lemma pmf-add:
assumes Az.z € P =z € set-pmfp—2€ QVzx €R
shows measure p P < measure p () + measure p R

{proof)

lemma pair-pmf-prob-left:
measure-pmf.prob (pair-pmf A B) {w. P (fst w)} = measure-pmf.prob A {w. P w} (is L = ?R)
{proof)

lemma pmf-exp-of-fin-function:
assumes finite A g ‘ set-pmfp C A

shows ([w. f (gw) dp) = (3 y € A. fy = measure p {w. g w = y})
(is 2L = ?R)

{proof)

Cardinality rules for distinct/ordered pairs of a set without the finiteness constraint - to
use in simplification:

lemma card-distinct-pairs:
card {x € B x B. fst x # snd x} = card B"2 — card B (is card ?L = ?R)

{proof)
include intro-cong-syntax

(proof)

lemma card-ordered-pairs’:

fixes M :: (‘a ::linorder) set

shows card {(z,y) € M x M.z < y} = card M % (card M — 1) / 2
{proof)

The following are versions of the mean value theorem, where the interval endpoints may
be reversed.

lemma MVT-symmetric:

assumes Az. [min a b < z; 2 < maz a b] = DERIV fz :> f'x

shows Jzureal. minab< zAz<mazabA (fo—fa=(b—a)x*f2)
{proof)

lemma MV T-interval:
fixes I :: real set
assumes interval Ta € I b e I
assumes \z. 2 € | = DERIV fz :> f'z
shows dz. z€ I A (fb—fa=(b—a)x*f2)
(proof)

Ln is monotone on the positive numbers and thus commutes with min and max:

lemma In-min-swap:
z > (0ureal) = (y > 0) = In (min z y) = min (In z) (In y)

(proof)

lemma [n-maz-swap:
z > (0:real) = (y > 0) = In (maz z y) = maz (In z) (In y)
(proof)

Loose lower bounds for the factorial fuction:.

lemma fact-lower-bound:
sqrt(2xpixn)x(n/exp(1)) n < fact n (is ?L < ?R)
{proof)

lemma fact-lower-bound-1:

assumes n > 0

shows (n/exp 1) ™n < fact n (is ?L < ?R)
(proof)

Rules to handle O-notation with multiple variables, where some filters may be towards
ZEro:

lemma real-inv-at-right-0-inf:
YV xin at-right (0::real). ¢ < 1 [/ x
(proof)

lemma bigo-prod-1:
assumes (Az. fz) € O[F|(A\z. g) G # bot
shows (Az. f (fst z)) € O[F xp G](Az. g (fst z))
{proof)

lemma bigo-prod-2:
assumes (Az. fz) € O[G](Az. g z) F # bot
shows (Az. f (snd z)) € O[F xp G](Az. g (snd x))
{proof)

lemma eventually-inv:
fixes P :: real = bool
assumes eventually (Az. P (1/z)) at-top
shows eventually (A\z. P z) (at-right 0)

{proof)

lemma bigo-inv:
fixes f g :: real = real

assumes (Az. f (1/z)) € O(Az. g (1/1))
shows f € Olat-right 0](g)
(proof)

unbundle no-intro-cong-syntaz

end

3 Combinators for Pseudo-random Objects

This section introduces a combinator library for pseudo-random objects. Each object
can be described as a sample space, a function from an initial segment of the natural
numbers that selects a value (or data structure.) Semantically they are multisets with the
natural interpretation as a probability space (each element is selected with a probability
proportional to its occurence count in the multiset). Operationally the selection procedure
describes an algorithm to sample from the space.

After general definitions and lemmas basic sample spaces, such as chosing a natural uni-
formly in an initial segment, a product construction the main pseudo-random objects: hash
families and expander graphs are introduced. In both cases the range is itself an arbitrary
sample space, such that it is for example possible to construct a pseudo-random object
that samples seeds for hash families using an expander walk.

The definitions ¥ in Section 6 and © in Section 10 are good examples.
A nice introduction into such constructions has been published by Goldreich [6].

3.1 Definitions and General Lemmas

theory Pseudorandom-Combinators
imports
Finite-Fields. Card-Irreducible- Polynomials
Universal-Hash-Families. Carter- Wegman-Hash-Family
Frequency-Moments. Product-PMF-FEaxt
Distributed-Distinct- Elements- Preliminary
Ezxpander-Graphs. Expander-Graphs-Strongly- Explicit
begin
unbundle intro-cong-syntax
hide-const Quantum.T
hide-const Discrete-Topology.discrete
hide-const Polynomial.order
no-notation Digraph.dominates (- —1 - [100,100] 40)
record ’a sample-space =
size 1t nat

sample-space-select :: nat = 'a

definition sample-pmf
where sample-pmf S = map-pmf (sample-space-select S) (pmf-of-set {..<size S})

definition sample-space S = size S > 0
definition select S k = (sample-space-select S (if k < size S then k else 0))
definition sample-set S = select S ‘{..<size S}

lemma sample-space-imp-ne:

assumes sample-space S
shows {..<size S} # {}

(proof)

lemma sample-pmf-alt:
assumes sample-space S
shows sample-pmf S = map-pmf (select S) (pmf-of-set {..<size S})
(proof)

lemma sample-space-alt:
assumes sample-space S
shows sample-set S = set-pmf (sample-pmf S)
(proof)

lemma sample-set-alt:
assumes sample-space S
shows sample-set S = sample-space-select S ‘ {..<size S}

(proof)

lemma select-range:
assumes sample-space S
shows select S i € sample-set S

(proof)

declare [[coercion sample-pmf]]

lemma integrable-sample-pmf[simp]:
fixes f :: 'a = ‘c::{banach, second-countable-topology}
assumes sample-space S
shows integrable (measure-pmf (sample-pmf S)) f

{proof)

3.2 Basic sample spaces

Sample space for uniformly selecting a natural number less than a given bound:

definition nat-sample-space :: nat = nat sample-space ([-]s)
where nat-sample-space n = (| size = n, select = id |

lemma nat-sample-pmf:
sample-pmf ([x]s) = pmf-of-set {..<x}
(proof)

lemma nat-sample-space[simp):
assumes n > 0
shows sample-space [n]s

(proof)

Sample space for the product of two sample spaces:

definition prod-sample-space ::
'a sample-space = 'b sample-space = (‘a x 'b) sample-space (infixr xg 65)
where
prod-sample-space s t =
(size = size s * size t,
select = (Ai. (select s (i mod (size s)), select t (i div (size s)))) |

lemma split-pmf-mod-div’:
assumes a > (0:nat)

assumes b > 0
shows map-pmf (Az. (x mod a, x div a)) (pmf-of-set {..<a x b}) = pmf-of-set ({..<a} x {..<b})
(proof)

lemma pmf-of-set-prod-eq:

assumes A # {} finite A

assumes B # {} finite B

shows pmf-of-set (A x B) = pair-pmf (pmf-of-set A) (pmf-of-set B)
(proof)

lemma split-pmf-mod-div:
assumes g > (0:nat)
assumes b > 0
shows map-pmf (Az. (z mod a, div a)) (pmf-of-set {..<a * b}) =
pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b})
(proof)

lemma split-pmf-mod:

assumes a > (0:nat)

assumes b > 0

shows map-pmf (Az. z mod a) (pmf-of-set {..<a * b}) = pmf-of-set {..<a}
(proof)

lemma prod-sample-pmf:

assumes sample-space S

assumes sample-space T

shows sample-pmf (S xg T) = pair-pmf (sample-pmf S) (sample-pmf T) (is ?L = ?R)
(proof)

lemma prod-sample-space[simp]:
assumes sample-space S sample-space T
shows sample-space (S xg T)

(proof)

lemma prod-sample-set:
assumes sample-space S
assumes sample-space T
shows sample-set (S xg T) = sample-set S x sample-set T (is 7L = ?R)

(proof)

3.3 Hash Families

lemma indep-vars-map-pmf:
assumes prob-space.indep-vars (measure-pmf p) (A-. discrete) (A w. X' i (f w)) I
shows prob-space.indep-vars (measure-pmf (map-pmf f p)) (A-. discrete) X' I

{proof)

lemma k-wise-indep-vars-map-pmf:
assumes prob-space.k-wise-indep-vars (measure-pmf p) k (A-. discrete) (Ai w. X' i (f w)) I
shows prob-space.k-wise-indep-vars (measure-pmf (map-pmf f p)) k (A-. discrete) X' I
(proof)

lemma (in prob-space) k-wise-indep-subset:
assumes J C [
assumes k-wise-indep-vars k M’ X' I
shows k-wise-indep-vars k M' X' J
(proof)

lemma (in prob-space) k-wise-indep-vars-reinde:
assumes inj-on f I
assumes k-wise-indep-vars k M' X' (f < I)
shows k-wise-indep-vars k (M’ o f) (M\k w. X' (f k) w) I
(proof)

definition GF :: nat = int set list set ring
where GF n = (SOME F. finite-field F A order F = n)

definition is-prime-power :: nat = bool
where is-prime-power n <— (I p k. Factorial-Ring.prime p Ak > 0 AN n = p’k)

lemma
assumes iS-prime-power n
shows GF': finite-field (GF n) order (GF n) = n

{proof)

lemma is-prime-power: Factorial-Ring.prime p = k > 0 = is-prime-power (p_k)

(proof)

definition split-prime-power :: nat = (nat X nat)
where split-prime-power n = (THE (p, k). p"k = n A Factorial-Ring.prime p A k > 0)

lemma split-prime-power:
assumes Factorial-Ring.prime p
assumes k > 0
shows split-prime-power (p~k) = (p,k)
(proof)

definition H :: nat = nat = ’a sample-space = (nat = ’a) sample-space
where H k d R = (

let (p,n) = split-prime-power (size R);
m = (LEAST j. d < p7j A j > n);
f = from-nat-into (carrier (GF (p~m)));
f’ = to-nat-on (carrier (GF (p~m)));
g = from-nat-into (bounded-degree-polynomials (GF (p~m)) k) in

(size = p(mxk), select = (Ai x. select R ((f' (ring.hash (GF (p”m)) (fz) (g ©))) mod p™n))])

locale hash-sample-space =
fixes kK d p n :: nat
fixes R :: 'a sample-space
assumes p-prime: Factorial-Ring.prime p
assumes size-R: size R=p " n
assumes k-gt-0: k > 0
assumes n-gt-0: n > 0

begin

abbreviation S where S = H kd R

lemma p-n-def: (p,n) = split-prime-power (size R)

(proof)

definition m where m = (LEAST j. d < pj AN j>n)
definition f where f = from-nat-into (carrier (GF (p~m)))
definition f’ where ' = to-nat-on (carrier (GF (p~m)))

lemma n-lt-m: n < m and d-lt-p-m: d < p"m

{proof)

lemma
is-field: finite-field (GF (p~™m)) (is ?A) and
field-order: order (GF(p~™m)) = p " m (is ?B)
{proof)

interpretation cw: carter-wegman-hash-family GF (p~m) k

(proof)

lemma field-size: cw.field-size = p~m
(proof)

lemma f-bij: bij-betw f {..<p"m} (carrier (GF (p~"m)))
(proof)

definition ¢ where g = from-nat-into cw.space

lemma p-n-gt-0: p™n > 0

(proof)

lemma p-m-gt-0: p"m > 0
(proof)

lemma S-eq: S = (| size = p"(mxk), sample-space-select = (X i z. select R (f' (cw.hash (f z) (g
i)) mod p~n)))
(proof)

lemma H-size: size S > 0

(proof)

lemma sample-space: sample-space S
(proof)

lemma sample-space-R: sample-space R

(proof)

lemma range: range (select S i) C sample-set R
{proof)

lemma cw-space: map-pmf g (pmf-of-set {..<p (mxk)}) = pmf-of-set cw.space
(proof)

lemma single:

assumes z < d

shows map-pmf (Aw. w z) (sample-pmf S) = sample-pmf R (is ?L = ?R)
(proof)

lemma indep:
prob-space.k-wise-indep-vars (sample-pmf S) k (A-. discrete) (Ai w. w ©) {..<d}
{proof)

lemma size:
fixes m :: nat
assumes d > 0
defines m-altdef: m = maz n (nat [log p d])
shows size S = p (mx«k)
(proof)

end

Sample space with a geometric distribution

fun count-zeros :: nat = nat = nat where
count-zeros 0 k = 0 |
count-zeros (Suc n) k = (if odd k then 0 else 1 + count-zeros n (k div 2))

lemma count-zeros-iff: j < n = count-zeros n k > j +— 27j dvd k
(proof)

lemma count-zeros-max:
count-zeros n k < n

(proof)

definition G :: nat = nat sample-space where
G n = (| size = 27n, sample-space-select = count-zeros n |)

lemma G-sample-space[simp]: sample-space (G n)
(proof)

lemma G-range: sample-set (G n) C {..n}

(proof)

lemma G-prob:
measure (sample-pmf (G n)) {w. w > j} = of-bool (j < n) / 275 (is ?L = ?R)
(proof)

lemma G-prob-single:
measure (sample-pmf (G n)) {j} < 1/ 275 (is ?L < ?R)
(proof)

3.4 Expander Walks

definition & :: nat = real = 'a sample-space = (nat = 'a) sample-space
where £ [A S = (let e = see-standard (size S) A in
(size = see-size e * see-degree e (I—1),
sample-space-select = (\i j. select S (see-sample-walk e (I—1) i ! 7))])

locale expander-sample-space =

fixes [:: nat

fixes A :: real

fixes S :: 'a sample-space

assumes [-gt-0: | > 0

assumes A-gt-0: A > 0

assumes sample-space-S: sample-space S
begin

definition ¢ where e = see-standard (size S) A

lemma size-S-gt-0: size S > 0
(proof)
lemma E-alt: (E 1A S) =
(size = see-size e x see-degree e (I—1),

sample-space-select = (Ai j. select S (see-sample-walk e (I—1) i ! 4)))
(proof)

lemmas see-standard = see-standard[OF size-S-gt-0 A-gt-0]

10

sublocale E: regular-graph graph-of e
(proof)

lemma e-deg-gt-0: see-degree e > 0

(proof)

lemma e-size-gt-0: see-size e > 0

(proof)

lemma sample-space: sample-space (£ 1 A S)

(proof)

lemma range: select (€ 1 A S) ij € sample-set S

{proof)

lemma sample-set: sample-set (€ | A S) C (UNIV — sample-set S)
{proof)

lemma walks:
defines R = map-pmf (Axs i. select S (zs ! 7)) (pmf-of-multiset (walks (graph-of) 1))
shows sample-pmf (£ 1A S) =R

{proof)

lemma uniform-property:

assumes 7 < [

shows map-pmf (Aw. wi) (£ 1A S) = sample-pmf S (is 7L = ?R)
(proof)

lemma size:
esz'ze ?E IAS)= size S % (16 " ((I—1) * nat [In A/ In (19 / 20)])) (is ?L = ?R)
(proof)

end

end

4 Balls and Bins

The balls and bins model describes the probability space of throwing r balls into b bins.
This section derives the expected number of bins hit by at least one ball, as well as the
variance in the case that each ball is thrown independently. Further, using an approxima-
tion argument it is then possible to derive bounds for the same measures in the case when
the balls are being thrown only k-wise independently. The proofs follow the reasoning

described in [8, §A.1] but improve on the constants, as well as constraints.

theory Distributed-Distinct-Elements-Balls-and-Bins
imports
Distributed-Distinct- Elements- Preliminary
Discrete-Summation. Factorials
HOL— Combinatorics.Stirling
HOL— Computational-Algebra. Polynomial
HOL— Decision-Procs. Approzimation
begin

hide-fact Henstock- Kurzweil-Integration.integral-sum
hide-fact Henstock-Kurzweil-Integration.integral-mult-right

11

hide-fact Henstock-Kurzweil-Integration.integral-nonneg
hide-fact Henstock-Kurzweil-Integration.integral-cong
unbundle intro-cong-syntax

lemma sum-power-distrib:

fixes [:: 'a = real

assumes finite R

shows (3" i€R. fi) Ts= (D us| set zs C R A length zs = s. ([[x « zs. f x))
(proof)

lemma sum-telescope-eq:
fixes f :: nat = 'a :: {comm-ring-1}
shows (3" ke{Suc m..n}. fk — f (k— 1)) = of-bool(m < n) *(fn — fm)
(proof)

An improved version of diff-power-eq-sum.

lemma power-diff-sum:

fixes a b :: ‘a :: {comm-ring-1,power}

shows a k — bk = (a=b) x (D i=0.<k.a " ixb " (k—1—1))
(proof)

lemma power-diff-est:

assumes (a :: real) > b

assumes b > 0

shows a k — b7k < (a—b) x k * a”(k—1)
(proof)

lemma power-diff-est-2:

assumes (a :: real) > b

assumes b > 0

shows a &k — b7k > (a—b) x k x b (k—1)
(proof)

lemma of-bool-prod:
assumes finite R
shows ([7 € R. of-bool(f j)) = (of-bool(Vj € R. fj) :: real)
(proof)

Additional results about falling factorials:

lemma ffact-nonneg:
fixes z :: real
assumes k — 1 < z
shows ffact kx> 0

(proof)

lemma ffact-pos:
fixes z :: real
assumes k — 1 <z
shows ffact kz > 0

(proof)

lemma ffact-mono:
fixes x y :: real
assumes k—1 < zz <y
shows ffact k z < ffact k y

(proof)

lemma ffact-of-nat-nonneg:

12

fixes = :: ‘a :: {comm-ring-1, linordered-nonzero-semiring}
assumes z € N
shows ffact kx> 0

{proof)

lemma [fact-suc-diff:

fixes z :: (a :: comm-ring-1)

shows ffact k © — ffact k (x—1) = of-nat k * ffact (k—1) (xz—1) (is ?L = ?R)
(proof)

lemma [fact-bound:
ffact k (ninat) < n’k
(proof)

lemma fact-moment-binomial:

fixes n :: nat and « :: real

assumes o € {0..1}

defines p = binomial-pmf n «

shows ([w. ffact s (real w) dp) = ffact s (real n) * a”s (is ?L = ?R)
(proof)

The following describes polynomials of a given maximal degree as a subset of the functions,
similar to the subsets Z or Q as subsets of larger number classes.

definition Polynomials (IP)
where Polynomials k = {f. 3p. f = poly p A degree p < k}

lemma Polynomials-mono:
assumes s < ¢
shows P s CP ¢

(proof)

lemma Polynomials-addl:
assumes f e Pkge Pk
shows (M. fw + gw) € Pk
(proof)

lemma Polynomials-diffI:
fixes f ¢ :: 'a :: comm-ring = 'a
assumes f e Pkge Pk
shows (A\z. fz —gz) e Pk
(proof)

lemma Polynomials-idl:
(Az. z) € (P 1 =2 (Ya::comm-ring-1 = 'a) set)
{proof)

lemma Polynomials-constl:
(Az.¢c) ePk
(proof)

lemma Polynomials-multl:
fixes f g :: 'a :: {comm-ring} = 'a
assumes f c Psge Pt
shows (\z. fz * g z) € P (s+t1)
(proof)

lemma Polynomials-composel:
fixes f g :: 'a :: {comm-semiring-0, semiring-no-zero-divisors} = 'a

13

assumes f e Psge Pt
shows (Az. f (g z)) € P (sxt)
(proof)

lemma Polynomials-const-left-multl:
fixes ¢ :: 'a :: {comm-ring}
assumes f € P k
shows (A\z. ¢ x fz) € Pk

(proof)

lemma Polynomials-const-right-multl:
fixes ¢ :: 'a :: {comm-ring}
assumes f € P k
shows (A\z. fz x¢c) € Pk

{proof)

lemma Polynomials-const-divl:
fixes ¢ :: 'a i {field}
assumes f € P k
shows (\z. fz /¢) e Pk
(proof)

lemma Polynomials-ffact: (\z. ffact s (z — y)) € (P s (‘a =

(proof)

lemmas Polynomials-intros =
Polynomials-const-divl
Polynomials-composel
Polynomials-const-left-mult]
Polynomials-const-right-mult]
Polynomials-multl
Polynomials-addl
Polynomials-diffT
Polynomials-idl
Polynomials-constl
Polynomials-ffact

definition C5 :: real where Cy = 7.5
definition Cj :: real where C5 = 16
A locale fixing the sets of balls and bins

locale balls-and-bins-abs =
fixes R :: 'a set and B :: 'b set
assumes fin-B: finite B and B-ne: B # {}
assumes fin-R: finite R

begin

Independent balls and bins space:

definition Q)
where Q = prod-pmf R (\-. pmf-of-set B)

lemma set-pmf-Q: set-pmf Q@ = R —g B
(proof)

lemma card-B-gt-0: card B > 0

(proof)

lemma card-B-ge-1: card B > 1

14

comm-ring-1 = 'a) set)

(proof)

definition Z j w = real (card {i. i € R A w i = (j::'b)})
definition Y w = real (card (w ‘ R))
definition p = real (card B) x (1 — (1—1/real (card B)) card R)

Factorial moments for the random variable describing the number of times a bin will be
hit:

lemma fact-moment-balls-and-bins:
assumes J C B J # {}
shows ([w. ffacts (3°je J. Zjw) Q) =
ffact s (real (card R)) * (real (card J) / real (card B)) s
(is 7L = ?R)
{proof)

Expectation and variance for the number of distinct bins that are hit by at least one ball
in the fully independent model. The result for the variance is improved by a factor of 4
w.r.t. the paper.

lemma
shows exp-balls-and-bins: measure-pmf.expectation Q Y = p (is AL = ?AR)
and var-balls-and-bins: measure-pmf.variance Q Y < card R % (real (card R) — 1) / card B
(is ?BL < ?BR)
(proof)

definition lim-balls-and-bins k p = (
prob-space.k-wise-indep-vars (measure-pmf p) k (A-. discrete) (Az w. w z) R A
(Vz. z € R — map-pmf (Aw. w z) p = pmf-of-set B))

lemma indep:
assumes lim-balls-and-bins k p
shows prob-space.k-wise-indep-vars (measure-pmf p) k (A-. discrete) (Ar w. w z) R

(proof)

lemma ran:
assumes lim-balls-and-bins k p x € R
shows map-pmf (A\w. w x) p = pmf-of-set B
(proof)

lemma Z-integrable:
fixes f :: real = real
assumes lim-balls-and-bins k p
shows integrable p (Mw. f (Z i w))
(proof)

lemma Z-any-integrable-2:

fixes f :: real = real

assumes lim-balls-and-bins k p

shows integrable p (M\w. f (Z i w + Z j w))
(proof)

lemma hit-count-prod-exp:
assumes jl € Bj2 € Bs+t <k
assumes lim-balls-and-bins k p
defines L = {(zs,ys). set xs C R A set ys C R A
(set zs N set ys = {} V jI = j2) A length xs = s A length ys = t}
shows ([w. Zjl w™s x Z j2 w™t Op) =
(3" (zs,ys) € L. (1/real (card B)) (card (set zs U set ys)))

15

(is ?L = ?R)
(proof)

lemma hit-count-prod-pow-eq:
assumes ¢ € Bj € B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes s+t < k
shows (f[w. (Ziw) s (Zjw)tdp) = ([w. (Ziw) s*(Zjw)tdq)
(proof)

lemma hit-count-sum-pow-eq:
assumes ¢ € Bj€ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k ¢
assumes s < k
shows ([w. (Ziw+ Zjw)s0p)=(Jw. (Ziw+ Zjw) sdq)
(is ?L = ?R)
(proof)

lemma hit-count-sum-poly-eq:
assumes 1 € Bj€ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k ¢
assumes f € P k
shows ([w. f(Ziw+ Zjw)dp) = ([w. f(Ziw+ Zjw) dq)
(is 2L = ?R)
(proof)

lemma hit-count-poly-eq:

assumes b € B

assumes lim-balls-and-bins k p

assumes lim-balls-and-bins k q

assumes f € P k

shows ([w. f (Zbw) dp) = (fw. f (Zbw) dq) (is ?L = ?R)
(proof)

lemma [im-balls-and-bins-from-ind-balls-and-bins:
lim-balls-and-bins k)
(proof)

lemma hit-count-factorial-moments:
assumes a:j € B
assumes s < k
assumes lim-balls-and-bins k p
shows ([w. ffact s (Z j w) dp) = ffact s (real (card R)) = (1 / real (card B)) s
(is ?L = ?R)
(proof)

lemma hit-count-factorial-moments-2:
assumes a1 € Bje€ B
assumes 7 # j s < k card R < card B
assumes lim-balls-and-bins k p
shows ([w. ffact s (Ziw + Zjw) dp) < 27s
(is 7L < ?R)
(proof)

lemma balls-and-bins-approz-helper:

16

fixes z :: real
assumes z > 2
assumes real k > 5xx [In x
shows k£ > 2
and 27(k+3) / fact k < (1/exp x) 2
and 2 / fact k < 1/ (exp 1 * exp x)
(proof)

Bounds on the expectation and variance in the k-wise independent case. Here the indepe-
dence assumption is improved by a factor of two compared to the result in the paper.

lemma
assumes card R < card B
assumes A c. lim-balls-and-bins (k+1) (p c)
assumes ¢ € {0<..1/exp(2)}
assumes k > 5 * In (card B /) / In (In (card B / €))
shows
exp-approx: |measure-pmf.expectation (p True) Y — measure-pmf.expectation (p False) Y| <
€ * real (card R) (is ?A) and
var-approz: |measure-pmf.variance (p True) Y — measure-pmf.variance (p False) Y| < &2
(is ?B)
(proof)

lemma
assumes card R < card B
assumes lim-balls-and-bins (k+1) p
assumes k > 7.5 * (In (card B) + 2)
shows exp-approz-2: |measure-pmf.expectation p Y — p| < card R / sqrt (card B)
(is PAL < ?AR)
and var-approz-2: measure-pmf.variance p Y < real (card R)™2 / card B
(is ?BL < ?BR)
(proof)

lemma devitation-bound:
assumes card R < card B
assumes lim-balls-and-bins k p
assumes real k > Cq * In (real (card B)) + C3
shows measure p {w. |Y w — p| > 9 * real (card R) / sqrt (real (card B))} < 1/ 276
(is 7L < ?R)
(proof)

end
unbundle no-intro-cong-syntax

end

5 Tail Bounds for Expander Walks

theory Distributed-Distinct- Elements- Tail- Bounds
imports

Distributed-Distinct- Elements- Preliminary
Ezxpander-Graphs. Expander-Graphs-Definition
Expander-Graphs. Expander-Graphs- Walks
HOL— Decision-Procs. Approximation
Pseudorandom-Combinators

begin

This section introduces tail estimates for random walks in expander graphs, specific to

17

the verification of this algorithm (in particular to two-stage expander graph sampling
and obtained tail bounds for subgaussian random variables). They follow from the more
fundamental results reqular-graph.kl-chernoff-property and regular-graph.uniform-property
which are verified in the AFP entry for expander graphs [11].

hide-fact Henstock-Kurzweil-Integration.integral-sum
unbundle intro-cong-syntaz

lemma z-In-z-min:

assumes z > (0::real)

shows z * lnx > —exp (—1)
{proof)

theorem (in regular-graph) walk-tail-bound:
assumes [> 0
assumes S C verts G
defines p = real (card S) / card (verts G)
assumes v < 1 pu+ A, <7
shows measure (pmf-of-multiset (walks G 1)) {w. real (card {i € {.<I}. w! i€ S}) > yxi}
<exp (—real I x (v x In (1/(p+Ay)) — 2 % exp(—1))) (is ?L < ?R)
(proof)

theorem (in regular-graph) walk-tail-bound-2:
assumes [> 0 A, < AA>0
assumes S C verts G
defines y = real (card S) / card (verts G)
assumes v < I pu+ A <~
shows measure (pmf-of-multiset (walks G 1)) {w. real (card {i € {.<I}. w!i € S}) > yxi}
< exp (— real l x (v x In (1/(u+A)) — 2 x exp(—1))) (is L < ?R)
(proof)

lemma (in ezpander-sample-space) tail-bound:

fixes T

assumes | > 0 A > 0

defines p = measure (sample-pmf S) {w. T w}

assumes 7 < I p+ A <~

shows measure (£ 1 A S) {w. real (card {i € {.<I}. T (wi)}) > i}

< exp (—real I % (v xIn (1/(u+A)) — 2 x exp(—1))) (is 7L < ?R)

(proof)

definition C; :: real where C; = exp 2 + exp 3 + (exp 1 — 1)

lemma (in regular-graph) deviation-bound:
fixes f :: 'a = real
assumes | > 0
assumes A, < exp (—real | x In (real 1)73)
assumes A\z. z > 20 = measure (pmf-of-set (verts G)) {v. fv >z} < exp (—z * In 273)
shows measure (pmf-of-multiset (walks G 1)) {w. (O i<—w. fi) > C1 x I} < exp (— real)
(is 2L < ?R)
(proof)

lemma (in ezpander-sample-space) deviation-bound:
fixes [:: 'a = real
assumes | > 0
assumes A < exp (—real | % In (real 1)73)
assumes A\z. z > 20 = measure (sample-pmf S) {v. fv > z} < exp (—z * In 273)
shows measure (E 1A S) {w. O i<l f (wi)) > C1 x 1} < exp (— reall) (is ?L < ?R)

18

(proof)
unbundle no-intro-cong-syntax

end

6 Inner Algorithm

This section introduces the inner algorithm (as mentioned it is already a solution to the
cardinality estimation with the caveat that, if ¢ is too small it requires to much space.
The outer algorithm in Section 10 resolved this problem.

The algorithm makes use of the balls and bins model, more precisely, the fact that the
number of hit bins can be used to estimate the number of balls thrown (even if there are
collusions). I.e. it assigns each universe element to a bin using a k-wise independent hash
function. Then it counts the number of bins hit.

This strategy however would only work if the number of balls is roughly equal to the
number of bins, to remedy that the algorithm performs an adaptive sub-sampling strategy.
This works by assigning each universe element a level (using a second hash function) with
a geometric distribution. The algorithm then selects a level that is appropriate based on
a rough estimate obtained using the maximum level in the bins.

To save space the algorithm drops information about small levels, whenever the space
usage would be too high otherwise. This level will be called the cutoff-level. This is okey
as long as the cutoff level is not larger than the sub-sampling threshold. A lot of the
complexity in the proof is devoted to verifying that the cutoff-level will not cross it, it
works by defining a third value sj; that is both an upper bound for the cutoff level and a
lower bound for the subsampling threshold simultaneously with high probability.

theory Distributed-Distinct-Elements-Inner-Algorithm
imports
Pseudorandom-Combinators
Distributed-Distinct- Elements- Preliminary
Distributed-Distinct- Elements-Balls-and-Bins
Distributed-Distinct- Elements- Tail- Bounds
Prefiz-Free-Code-Combinators. Prefix-Free- Code- Combinators
begin

unbundle intro-cong-syntax
hide-const Abstract-Rewriting.restrict

definition C, :: real where Cy = 372%2723
definition Cj :: int where Cy = 33
definition Cg :: real where Cg = /
definition C7 :: nat where C7; = 275

locale inner-algorithm =

fixes n :: nat

fixes ¢ :: real

fixes ¢ :: real

assumes n-gt-0: n > 0

assumes 0-gt-0: § > 0 and §-lt-1: § < 1

assumes ¢-gt-0: € > 0 and e-lt-1: ¢ < 1
begin

definition b-exp where b-exp = nat [log 2 (Cy / €72)]
definition b :: nat where b = 2 b-exp

19

definition | where [= nat [Cg * In (2/)]

definition k& where k = nat [Cayxin b + C3]

definition A :: real where A = min (1/16) (exp (=1 x In [73))
definition g :: real = real where oz = b x (1 — (1—1/b) powr z)
definition g-inv :: real = real where g-inv x = In (1—xz/b) / In (1—1/b)

lemma [-lbound: Cg * In (2 /) <1
(proof)

lemma k-min: Cy * In (real b) + C3 < real k

(proof)

lemma A-gt-0: A > 0
(proof)

lemma A-le-1: A < 1
(proof)

lemma [-gt-0: | > 0
(proof)

lemma l-ubound: | < Cg * In(1 / §)+Cexln 2 + 1
{proof)

lemma b-exp-ge-26: b-exp > 26
(proof)

lemma b-min: b > 2726

(proof)

lemma k-gt-0: k > 0
(proof)

lemma b-ne: {..<b} # {}
(proof)

lemma b-lower-bound: Cy [/ €72 < real b
(proof)

definition n-exp where n-exp = max (nat [log 2 n]) 1

lemma n-exp-gt-0: n-exp > 0
(proof)

abbreviation ¥; where ¥; = H 2 n (G n-exp)
abbreviation ¥y where Uy = H 2 n [C7xb?]s
abbreviation V3 where U3 = H k (C7xb?) [b]s
definition ¥ where ¥ = ¥, xg Uy xg U3
abbreviation () where Q =& [A U

type-synonym state = (nat = nat = int) x (nat)

fun is-too-large :: (nat = nat = int) = bool where
is-too-large B = (> (i,4) € {..<l} x {..<b}. |log 2 (mazx (B ij) (=1)+ 2)]) > Cs5 * b * 1)

fun compress-step :: state = state where

20

compress-step (B,q) = (A ij. max (Bij— 1) (—1), ¢+1)

function compress :: state = state where
compress (B,q) = (
if is-too-large B
then (compress (compress-step (B,q)))
else (B,q))

(proof)

fun compress-termination :: state = nat where
compress-termination (B,q) = (> (4,7) € {..<I} x {.<b}. nat (Bij+ 1))

lemma compress-termination:

assumes is-too-large B

shows compress-termination (compress-step (B,q)) < compress-termination (B,q)
(proof)

termination compress

(proof)

fun mergel :: state = state = state where
mergel (B1,q1) (B2, q2) = (
let ¢ = maz q1 g2 in (A i7j. max (B1ij+ g —q) (B2ij+ q2 — q), q))

fun merge :: state = state = state where
merge © y = compress (mergel x y)

type-synonym seed = nat = (nat = nat) X (nat = nat) x (nat = nat)

fun singlel :: seed = nat = state where
singlel w z = (X i j.
let (f,g,h) = w iin (
ifh (gz) =34 ANi<lthenint (fz) else (—1)), 0)

fun single :: seed = nat = state where
single w x = compress (singlel w x)

fun estimatel :: state = nal = real where
estimatel (B,q) i = (
let s = maz 0 (Maz ((Bi) “{..<b}) + q — |log 2 b] + 9);
p=card {jje{.<b} ABij+qg>s}in
2 powr s * In (1—p/b) / In(1—1/D))

fun estimate :: state = real where
estimate x = median | (estimatel x)

6.1 History Independence

fun 7¢ :: ((nat = nat) x (nat = nat) x (nat = nat)) = nat set = nat = int
where 7o (f,g,h) A j = Mazx ({ int (fa)|a.a€ AANh(ga)=j}U{-1})

definition 71 :: ((nat = nat) x (nat = nat) x (nat = nat)) = nat set = nat = nat = int
where 71 Y A qj=maz (o v Aj— q) (—1)

definition 75 :: seed = nat set = nat = nat = nat = int
where 7o w A qij= (if i < lthen 71 (wi) A qjelse (—1))

definition 73 :: seed = nat set = nat = state

21

where T3 w A ¢ = (T2 w A q, q)

definition ¢ :: seed = nat set = nat
where ¢ w A = (LEAST q . —(is-too-large (T2 w A q)))

definition 7 :: seed = nat set = state
where T w A =73 w A (quw A)

lemma 7o-step: 7o w A (z4y) = (MNij. max (o w Azij—y) (— 1))
(proof)

lemma 73-step: compress-step (73 w A z) =73 w A (z+1)

(proof)

sublocale Vi: hash-sample-space 2 n 2 n-exp G n-exp
(proof)

sublocale Wy: hash-sample-space 2 n 2 5 + b-expx2 [(C7xb?)]s
(proof)

sublocale V3: hash-sample-space k C7xb* 2 b-exp [b]s
(proof)

lemma sample-pmf-U: sample-pmf ¥ = pair-pmf ¥y (pair-pmf Vo U3)
(proof)

lemma sample-set-W:
sample-set ¥ = sample-set W1 X sample-set Wo X sample-set Vg

(proof)

lemma sample-space-V: sample-space W
(proof)

lemma f-range:
assumes (f,g,h) € sample-set ¥
shows fz < n-exp

{proof)

lemma g-range-1:
assumes g € sample-set Uy
shows gz < C7xb™2

(proof)

lemma h-range-1:
assumes h € sample-set U3
shows hz < b

(proof)

lemma g-range:
assumes (f,g,h) € sample-set ¥
shows gz < Crxb™2

(proof)

lemma h-range:
assumes (f,g,h) € sample-set ¥
shows h z < b

(proof)

22

lemma fin-f:

assumes (f,g,h) € sample-set ¥

shows finite { int (fa) | a. P a } (is finite ?M)
(proof)

lemma Maz-int-range: ¢ < (y::int) = Maz {z..y} =y

(proof)

sublocale Q: expander-sample-space | A ¥

(proof)

lemma maz-q-1:

assumes w € sample-set 2

shows 75 w A (nat [log 2 n]+2) ij=(—1)
(proof)

lemma maz-q-2:
assumes w € sample-set
shows — (is-too-large (T2 w A (nat [log 2 n]+2)))
(proof)

lemma maz-s-3:
assumes w € sample-set €
shows ¢ w A < (nat [log 2 n]+2)
(proof)

lemma maz-mono: ¢ < (y::’a:linorder) = maz r z < maz y z

(proof)

lemma maz-mono-2: y < (z::'a::linorder) = maz ry < maz t 2

(proof)

lemma 7¢-mono:
assumes 1 € sample-set ¥
assumes A C B
shows 7q ¥ Aj <719 Bj
(proof)

lemma 75-mono:
assumes w € sample-set)
assumes A C B
shows 7o w Azij<towBzxij
(proof)

lemma is-too-large-antimono:
assumes w € sample-set ()
assumes A C B
assumes is-too-large (7o w A x)
shows is-too-large (T2 w B x)
(proof)

lemma ¢-compact:
assumes w € sample-set 2
shows — (is-too-large (7o w A (q w A)))
(proof)

lemma ¢-mono:
assumes w € sample-set)

23

assumes A C B
shows qw A< qw B
(proof)

lemma lt-s-too-large: © < q w A = is-too-large (179 w A x)

(proof)

lemma compress-result-1:

assumes w € sample-set ()

shows compress (T3 w A (qw A —4)=7w A
(proof)

lemma compress-result:
assumes w € sample-set)
assumes z < qw A
shows compress (T3 w A z) =T w A

{proof)

lemma 7¢-merge:

assumes (f,g,h) € sample-set U

shows To (fag’h) (A U B)] = maxr (TO (fagah) A]) (TO (fagah) B]) (iS 7L = ?R)
(proof)

lemma 74-merge:

assumes w € sample-set)

shows 7o w (AU B) zij=maz (To w Az ij) (T2 w Bzij)
{proof)

lemma mergel-result:

assumes w € sample-set ()

shows mergel (1w A) (tw B) =13 w (AU B) (maz (qw A) (¢ w B))
(proof)

lemma merge-result:

assumes w € sample-set)

shows merge (T w A) (T w B) =7 w (AU B) (is 2L = ?R)
(proof)

lemma singlel-result: singlel w © = 73 w {z} 0

(proof)

lemma single-result:

assumes w € sample-set 2

shows single w z = 7 w {z} (is L = ?R)
{proof)

6.2 Encoding states of the inner algorithm

definition is-state-table :: (nat x nat = int) = bool where
is-state-table g = (range ¢ C {—1..} A g ‘ (—({..<I} x {..<b})) C {-1})

Encoding for state table values:

definition V. :: int encoding
where V., z = (ifz > —1 then N, (nat (z+1)) else None)

Encoding for state table:

definition T.’:: (nat x nat = int) encoding where
T.' g = (

24

if is-state-table g
then (List.product [0..<I] [0..<b] —. V) (restrict g ({..<I}x{..<b}))
else None)

definition T, :: (nat = nat = int) encoding
where T. f = T.' (case-prod f)

definition encode-state :: state encoding
where encode-state = T, X, Nb, (nat [log 2 n]+3)

lemma inj-on-restrict:
assumes B C {f. f ‘(= A) C {c}}
shows inj-on (Az. restrict ¢ A) B
(proof)

lemma encode-state: is-encoding encode-state
(proof)

lemma state-bit-count:
assumes w € sample-set
shows bit-count (encode-state (1w A)) < 2736 * (In(1/5)+1)/ €72 + log 2 (log 2 n + 3)
(is 2L < ?R)
(proof)

lemma random-bit-count:
size Q < 2 powr (4 xlog 2n+ 48 x (log2 (1 /&) + 16)72 + (65 + 60 x In (1 / 5))73)
(is 2L < ?R)

(proof)

end
unbundle no-intro-cong-syntaz

end

7 Accuracy without cutoff

This section verifies that each of the [estimate have the required accuracy with high
probability assuming that there was no cut-off, i.e., that s = 0. Section 9 will then show
that this remains true as long as the cut-off is below ¢ f the subsampling threshold.
theory Distributed-Distinct- Elements-Accuracy- Without- Cutoff
imports

Distributed-Distinct- Elements-Inner-Algorithm

Distributed- Distinct- Elements-Balls-and-Bins
begin

no-notation Polynomials.var (X1)

locale inner-algorithm-fiz-A = inner-algorithm +
fixes A
assumes A-range: A C {..<n}
assumes A-nonempty: {} # A

begin

definition X :: nat where X = card A

definition ¢-maz where ¢-mazx = nat ([log 2 X| — b-exp)

25

definition t :: (nat = nat) = int
where ¢ f = int (Maz (f * A)) — b-exzp + 9

definition s :: (nat = nat) = nat
where s f = nat (t f)

definition R :: (nat = nat) = nat set
where R f ={a.a € AN fa>sf}

definition r :: nat = (nat = nat) = nat
where r z f = card {a. a € AN fa > 2}

definition p where p = (\(f,g,h). card {je {..<b}. 71 (f,9,h) A 05 > s f})
definition Y where Y = (A(f,9,h). 2 "~ s f * o-inv (p (f,9,h)))

lemma fin-A: finite A
(proof)

lemma X-le-n: X < n
(proof)

lemma X-ge-1: X > 1
(proof)

lemma of-bool-square: (of-bool z)?> = ((of-bool 1)::real)

(proof)

lemma r-eq: rzf = (3. a€ A.(of-bool(z < fa) :: real))
(proof)

lemma
shows
r-exp: ([w. real (r z w) @ ¥1) = real X * (of-bool (z < maz (nat [log 2 n]) 1) / 27z) and
r-var: measure-pmf.variance W1 (Aw. real (r z w)) < ([w. real (r z w) 0 ¥y)
{proof)

definition E; where E1 = (A(f,9,h). 2 powr (=t f) * X € {b/2716..0/2})

lemma t-low:
measure Wy {f. of-int (¢t f) < log 2 (real X) + 1 — b-exp} < 1/277 (is L < ?R)
{proof)

lemma t-high:
measure Uy {f. of-int (¢t f) > log 2 (real X) + 16 — b-exp} < 1/277 (is ?L < ?R)
(proof)

lemma e-1: measure ¥ {¢p. ~E; ¢} < 1/276
{proof)

definition Fy where Es = (A(f,9,h). |card (Rf) — X / 2 (s f)| <e/3x X | 27(sf))

lemma e-2: measure W {¢. E1 » A ~Ey ¥} < 1/276 (is 7L < %R)
(proof)

definition E3 where E3 = (A(f,g,h). inj-on g (R f))

26

lemma R-bound:
fixes fg h

assumes E; (f,g,h)
assumes Es (f,g,h)
shows card (R f) < 2/3 x b

{proof)

lemma e-3: measure ¥ {tp. E1 » A Eo b A =E3 ¢} < 1/276 (is ?L < ?R)
(proof)

definition E4 where Ey = (A(f,9,h). |p (f,9,h) — 0 (card (R f))| < €/12 * card (R f))

lemma e-4-h: 9 / sqrt b < e/ 12
(proof)

lemma e-4: measure W {¢). E1 ¢» AN Ex 0 AN Es v AN —~Eq 9} < 1/276 (is 7L < ?R)
(proof)

lemma g-inverse: g-inv (0) = x
(proof)

lemma rho-mono:
assumes z < y
shows oz < p y
(proof)

lemma rho-two-thirds: ¢ (2/3 = b) < 8/5 *b
{proof)

definition p-inv’ :: real = real
where g-inv’ z = —1 / (real b * (1—x / real b) * In (1 — 1 / real b))

lemma g-inv’-bound:
assumes z > ()
assumes ¢ < 59/90xb
shows |p-inv’ | < 4
(proof)

lemma p-inv”:

fixes z :: real

assumes z < b

shows DERIV g-inv z :> p-inv’ z
(proof)

lemma accuracy-without-cutoff:
measure U {(f,g,h). |Y (f,g,h) — real X| > e« X V s f < g¢-mazx} < 1/27
(is 7L < ?R)

(proof)

end

end

8 Cutoff Level

This section verifies that the cutoff will be below ¢-max with high probability. The result
will be needed in Section 9, where it is shown that the estimates will be accurate for any

27

cutoff below g-maz.

theory Distributed-Distinct- Elements- Cutoff-Level
imports
Distributed- Distinct- Elements- Accuracy- Without- Cutoff
Distributed-Distinct- Elements- Tail- Bounds
begin

hide-const Quantum.Z
unbundle intro-cong-syntax

lemma mono-real-of-int: mono real-of-int

(proof)

lemma Mazx-le-Sum:

fixes [:: 'a = int

assumes finite A

assumes \a. a € A = fa > 0

shows Maz (insert 0 (f “A)) < (O_a €A .fa) (is 2L < ?R)
(proof)

context inner-algorithm-fix-A
begin

The following inequality is true for base e on the entire domain (z > 0). It is shown in
In-add-one-self-le-self. In the following it is established for base 2, where it holds for x > 1.

lemma log-2-estimate:
assumes z > (1::real)
shows log 2 (1+z) <z
(proof)

lemma cutoff-eq-7:
real X * 2 powr (—real g-maz) / b < 1
{proof)

lemma cutoff-eq-6:

fixes k

assumes a € A

shows ([f. real-of-int (max 0 (int (f a) — int k)) V1) < 2 powr (—real k) (is ?L < ?R)
{proof)

lemma cutoff-eq-5:

assumes z > (—1 :: real)

shows real-of-int |log 2 (x+2)] < (real ¢+2) + maz (z — 27¢) 0 (is ?L < ?R)
{proof)

lemma cutoff-level:
measure 2 {w. qw A > g-maz} < 5/2 (is ?L < ?R)
{proof)

end
unbundle no-intro-cong-syntax

end

28

9 Accuracy with cutoff

This section verifies that each of the [estimate have the required accuracy with high
probability assuming as long as the cutoff is below ¢-mazx, generalizing the result from
Section 7.

theory Distributed-Distinct-Elements-Accuracy
imports
Distributed-Distinct- Elements- Accuracy- Without- Cutoff
Distributed-Distinct- Elements- Cutoff- Level
begin

unbundle intro-cong-syntax

lemma (in semilattice-set) Union:
assumes finite I I # {}
assumes \i. i € I = finite (Z 1)
assumes \i. i € | = Z1i # {}
shows F (I (Z“‘1I))=F ((\i. (F (Z9))) ‘1)
(proof)

This is similar to the existing hom-Maz-commute with the crucial difference that it works
even if the function is a homomorphism between distinct lattices. An example application
is Max (int * A) = int (Maz A).
lemma hom-Maz-commute’:

assumes finite A A # {}

assumes N\zy. 1 € A=y € A= maz (fz) (fy) =f (maz z y)
shows Maz (f “ A) = f (Maz A)

(proof)

context inner-algorithm-fix-A
begin

definition ¢,
where t.) 0 = (Maz (M. 1 ¢ Ao j+ o) ‘{.<b})) — b-exp + 9

definition s.
where s. ¥ 0 = nat (t. ¥ o)

definition p,
where p. ¢ 0 = card {je {.<b}. 11 Y Ao j+ 0> s. ¢ o}

definition Y.
where Y. o =2 "s. v o * p-inv (p. ¥ o)

lemma s.-eg-s:
assumes (f,g,h) € sample-set U
assumes 0 < s f
shows s. (f,9,h) o = s f
(proof)

lemma p.-eq-p:
assumes (f,g,h) € sample-set U
assumes 0 < s f

shows p. (f,g,h) o = p (f,9,h)
(proof)

lemma Y .-eq-Y:

29

assumes (f,g,h) € sample-set U
assumes 0 < s f
shows Y. (f,g,h) 0 = Y (f,9,h)

(proof)

lemma accuracy-single: measure U {¢. 3o < g-maz. |Y. v o — real X| > e« X} < 1/27
(is 7L < ?R)
(proof)

lemma estimatel-eq:

assumes j < [

shows estimatel (Tow Ao,0)j= Y. (wj) o (is 2L = ?R)
(proof)

lemma estimate-result-1:
measure Q) {w. (Jo<g-maz. exX < |estimate (T2 w A 0,0)—X]|) } < d/2 (is ?L < ?R)
{proof)

theorem estimate-result:
measure Q@ {w. |estimate (T w A)— X| > e*x X} < §
(is 7L < ?R)

(proof)

end

lemma (in inner-algorithm) estimate-result:
assumes A C {.<n} A # {}
shows measure Q {w. |estimate (T w A)— real (card A)| > € * real (card A)} < § (is ?L < ?R)

(proof)
unbundle no-intro-cong-syntax

end

10 Outer Algorithm

This section introduces the final solution with optimal size space usage. Internally it relies
on the inner algorithm described in Section 6, dependending on the paramaters n, € and ¢
it either uses the inner algorithm directly or if ! is larger than Inn it runs % copies
of the inner algorithm (with the modified failure probability ﬁ) using an expander to
select its seeds. The theorems below verify that the probability that the relative accuracy
of the median of the copies is too large is below ¢.

theory Distributed-Distinct- Elements-OQuter-Algorithm
imports
Distributed-Distinct- Elements- Accuracy
Prefiz- Free-Code-Combinators. Prefix-Free- Code- Combinators
Frequency-Moments. Landau-Ext
Landau-Symbols. Landau-More
begin

unbundle intro-cong-syntax

The following are non-asymptotic hard bounds on the space usage for the sketches and
seeds repsectively. The end of this section contains a proof that the sum is asymptotically
in O(In(e™1)6~! + Inn).

definition state-space-usage = (A(n,e,0). 2740 * (In(1/8)+1)/ €72 + log 2 (log 2 n + 3))

30

definition seed-space-usage = (A(n,e,8). 2730+2723xIn n+48x(log 2(1/e)+16)*+336xIn (1/5))

locale outer-algorithm =

fixes n :: nat

fixes § :: real

fixes ¢ :: real

assumes n-gt-0: n > 0

assumes 0-gt-0: § > 0 and §-lt-1: 6 < 1

assumes ¢-gt-0: ¢ > 0 and e-lt-1: ¢ < 1
begin

definition ng where ny = maz (real n) (exp (exp 5))

definition stage-two where stage-two = (§ < (1/In ng))

definition §; :: real where §; = (if stage-two then (1/In ng) else §)

definition m :: nat where m = (if stage-two then nat [4 * In (1/ 6)/In (In no)] else 1)
definition o where o = (if stage-two then (1/Iln ng) else 1)

lemma m-Ilbound:

assumes stage-two

shows m > 4 * In (1/ 0)/In(In ng)
(proof)

lemma n-lbound:
nog > exp (exp 5) Inng > exp 55 < lIn (Inng) Inng > 1ng > 1
(proof)

lemma 61-gt-0: 0 < §;
(proof)

lemma 61-lt-1: §; < 1
(proof)

lemma m-gt-0-aux:

assumes stage-two

shows 1 <n (1 /6) / In (In ng)
(proof)

lemma m-gt-0: m > 0
(proof)

lemma a-gt-0: a > 0

(proof)

lemma a-le-1: o < 1

(proof)

sublocale I: inner-algorithm n §;

(proof)

abbreviation © where © = & m o 1.2

sublocale O: expander-sample-space m o 1.9}

(proof)

type-synonym state = inner-algorithm.state list

fun single :: nat = nat = state where
single 9 © = map (Aj. I.single (select © ¥ j) z) [0..<m]

31

fun merge :: state = state = state where
merge x y = map (A(z,y). I.merge z y) (zip = y)

fun estimate :: state = real where
estimate x = median m (\i. I.estimate (z ! 7))

definition v :: nat = nat set = state
where v 9 A = map (Ni. I.7 (select © 9 i) A) [0..<m]

The following three theorems verify the correctness of the algorithm. The term 7 is a
mathematical description of the sketch for a given subset, while local.single, local.merge
are the actual functions that compute the sketches.

theorem merge-result: merge (v w A) (v w B) = v w (AU B) (is ?L = ?R)
{proof)

theorem single-result: single w x = v w {z} (is YL = ?R)

{proof)

theorem estimate-result:
assumes A C {.<n} 4 # {}
defines p = (pmf-of-set {..<size ©})
shows measure p {w. |estimate (v w A)— real (card A)| > € x real (card A)} < 6 (is ?L < ?R)

{proof)

The function encode-state can represent states as bit strings. This enables verification of
the space usage.

definition encode-state
where encode-state = Lf. I.encode-state m

lemma encode-state: is-encoding encode-state

(proof)

lemma state-bit-count:
bit-count (encode-state (v w A)) < state-space-usage (real n, €, 9)
(is 7L < ?R)
(proof)

Encoding function for the seeds which are just natural numbers smaller than sample-space.size

O.

definition encode-seed
where encode-seed = Nb, (size O)

lemma encode-seed:
is-encoding encode-seed

(proof)

lemma random-bit-count:
assumes w < size ©
shows bit-count (encode-seed w) < seed-space-usage (real n, €, 0)
(is ?L < ?R)
(proof)
The following is an alternative form expressing the correctness and space usage theorems.
If x is expression formed by local.single and local.merge operations. Then z requires

state-space-usage (real n, €, §) bits to encode and estimate x approximates the count of
the distinct universe elements in the expression.

32

For example:

estimate (local.merge (local.single w 1) (local.merge (local.single w 5) (local.single w 1)))
approximates the cardinality of {1, 5, 1} i.e. 2.

datatype sketch-tree = Single nat | Merge sketch-tree sketch-tree

fun eval :: nat = sketch-tree = state
where
eval w (Single x) = single w z |
eval w (Merge z y) = merge (eval w z) (eval w y)

fun sketch-tree-set :: sketch-tree = nat set
where
sketch-tree-set (Single x) = {z} |
sketch-tree-set (Merge x y) = sketch-tree-set x U sketch-tree-set y

theorem correctness:
fixes X
assumes sketch-tree-set t C {..<n}
defines p = pmf-of-set {..<size O}
defines X = real (card (sketch-tree-set t))
shows measure p {w. |estimate (eval w t) — X| > e * X} < (is ?L < ?R)

{proof)

theorem space-usage:
assumes w < size O
shows
bit-count (encode-state (eval w t)) < state-space-usage (real n, e, §) (is ?4)
bit-count (encode-seed w) < seed-space-usage (real n, €, §) (is ¢B)
(proof)

end

The functions state-space-usage and seed-space-usage are exact bounds on the space usage
for the state and the seed. The following establishes asymptotic bounds with respect to
the limit n,0~ %, e~ — oo.

context
begin

Some local notation to ease proofs about the asymptotic space usage of the algorithm:

private definition n-of :: real x real X real = real where n-of = (A(n, €, §). n)
private definition d-of :: real x real x real = real where d-of = (A(n, €, §). 0)
private definition e-of :: real x real X real = real where e-of = (A(n, €, 9). €)

private abbreviation F :: (real x real x real) filter
where F = (at-top xXp at-right 0 X g at-right 0)

private lemma var-simps:

n-of = fst

e-of = (Az. fst (snd z))

0-of = (Az. snd (snd x))

(proof) lemma evt-n: eventually (Az. n-of © > n) F

(proof) lemma evt-n-1: Vp zin F. 0 < In (n-of)

(proof) lemma evt-n-2: Vp zin F. 0 < In (In (n-of z))
(proof) lemma evt-e: eventually (Az. 1/e-of x > e A e-of 2 > 0) F
(proof) lemma evt-0: eventually (Az. 1/d-of x > 6 A d-of x > 0) F
(Y lemma evt-6-1: Ve zin F. 0 < In (1 / §-of x)
{proof)

33

theorem asymptotic-state-space-complexity:
state-space-usage € O[F](A(n, €, §). In (1/8)/e72 + In (In n))
(is - € O[?F](%rhs))

(proof)

theorem asymptotic-seed-space-complexity:
seed-space-usage € O[F](A(n, €, §). In (1/0)+In (1/e)72 + In n)
(is - € O[?F](?rhs))

(proof)

definition space-usage © = state-space-usage x + seed-space-usage x

theorem asymptotic-space-complexity:
space-usage € Olat-top X g at-right 0 x g at-right 0](A(n, €,). In (1/6)/e72 + In n)
(proof)

end

unbundle no-intro-cong-syntax

end

References

1]
2]

N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences, 58(1):137—-147, 1999.

7. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Randomization and Approximation Techniques in Computer
Science, pages 1-10. Springer Berlin Heidelberg, 2002.

J. Blasiok. Optimal streaming and tracking distinct elements with high probability. ACM
Trans. Algorithms, 16(1):3:1-3:28, 2020.

P. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications.
Journal of Computer and System Sciences, 31(2):182-209, 1985.

P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams.
In Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, SPAA ’01, pages 281-291, 2001.

O. Goldreich. A sample of samplers: A computational perspective on sampling. In O. Gol-
dreich, editor, Studies in Complezity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika
Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana
Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume
6650 of Lecture Notes in Computer Science, pages 302—-332. Springer, 2011.

V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors
from parvaresh—vardy codes. J. ACM, 56(4), jul 2009.

D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct elements
problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 10, pages 41-52, New York, 2010.

E. Karayel. Finite fields. Archive of Formal Proofs, June 2022. https://isa-afp.org/entries/
Finite_ Fields.html, Formal proof development.

E. Karayel. Formalization of randomized approximation algorithms for frequency moments.
Archive of Formal Proofs, April 2022. https://isa-afp.org/entries/Frequency_ Moments.html,
Formal proof development.

E. Karayel. Expander graphs. Archive of Formal Proofs, March 2023. https://isa-afp.org/
entries/Expander_ Graphs.html, Formal proof development.

34

https://isa-afp.org/entries/Finite_Fields.html
https://isa-afp.org/entries/Finite_Fields.html
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Expander_Graphs.html
https://isa-afp.org/entries/Expander_Graphs.html

[12] D. Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 04, pages 167175,
USA, 2004. Society for Industrial and Applied Mathematics.

35

	Introduction
	Preliminary Results
	Combinators for Pseudo-random Objects
	Balls and Bins
	Tail Bounds for Expander Walks
	Inner Algorithm
	Accuracy without cutoff
	Cutoff Level
	Accuracy with cutoff
	Outer Algorithm

