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Abstract

This entry formalizes a randomized cardinality estimation data structure with asymptotically
optimal space usage. It is inspired by the streaming algorithm presented by Błasiok [3] in 2018.
His work closed the gap between the best-known lower bound and upper bound after a long line
of research started by Flajolet and Martin [4] in 1984 and was to first to apply expander graphs
(in addition to hash families) to the problem. The formalized algorithm has two improvements
compared to the algorithm by Błasiok. It supports operation in parallel mode, and it relies on a
simpler pseudo-random construction avoiding the use of code based extractors.
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1 Introduction
The algorithm is described as functional data strucutures, given a seed which needs to be choosen
uniformly from a initial segment of the natural numbers and globally, there are three functions:

• single - given the seed and an element from the universe computes a sketch for that singleton
set

• merge - computes a sketch based on two input sketches and returns a sketch representing the
union set

• estimate - computes an estimate for the cardinality of the set represented by a sketch

The main point is that a sketch requires O(δ−2 ln(ε−1)+ lnn) space where n is the universe size, δ
is the desired relative accuracy and ε is the desired failure probability. Note that it is easy to see
that an exact solution would necessarily require O(n) bits.
The algorithm is split into two parts an inner algorithm, described in Section 6, which itself is
already a full cardinality estimation algorithm, however its space usage is below optimal. The
outer algorithm is introduced in Section 10, which runs mutiple copies of the inner algorithm with
carefully chosen inner parameters.
As mentioned in the abstract the algorithm is inspired by the solution to the streaming version
of the problem by Błasiok [3] in 2020. His work builds on a long line of reasarch starting in
1985 [4, 1, 2, 8, 12, 5].
In an earlier AFP entry [10] I have formalized an earlier cardinality estimation algorithm based on
the work by Bar-Yossef et al. [2] in 2002. Since then I have addressed the existence of finite fields
for higher prime powers and expander graphs [9, 11]. Building on these results, the formalization
of this more advanced solution presented here became possible.
The solution described here improves on the algorithms described by Błasiok in two ways (without
comprising its optimal space usage). It can be used in a parallel mode of operation. Moreover the
pseudo-random construction used is simpler than the solution described by Błasiok — who uses
an extractor based on Parvaresh-Vardy codes [7] to sample random walks in an expander graph,
which are then sub-sampled and then the walks are used to sample seeds for hash functions. In
the solution presented here neither the sub-sampling step nor the extractor is needed, instead a
two-stage expander construction is used, this means that the nodes of the first expander correspond
to the walks in a second expander graph. The latters nodes correspond to seeds of hash functions
(as in Błasiok’s solution).
The modification needed to support a parallel mode of operation is a change in the failure strategy
of the solution presented in Kane et al., which is the event when the data in the sketch reequires
too much space. The main issue is that in the parallel case the number of states the algorithm
might reach is not bounded by the universe size and thus an estimate they make for the probability
of the failure event does not transfer to the parallel case. To solve that the algorithm in this work
is more conservative. Instead of failing out-right it instead increases a cutoff threshold. For which
it is then possible to show an upper estimate independent of the number of reached states.

2 Preliminary Results

This section contains various short preliminary results used in the sections below.
theory Distributed-Distinct-Elements-Preliminary

imports
Frequency-Moments.Frequency-Moments-Preliminary-Results
Frequency-Moments.Product-PMF-Ext
Median-Method.Median
Expander-Graphs.Extra-Congruence-Method
Expander-Graphs.Constructive-Chernoff-Bound
Frequency-Moments.Landau-Ext
Stirling-Formula.Stirling-Formula

begin
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unbundle intro-cong-syntax

Simplified versions of measure theoretic results for pmfs:
lemma measure-pmf-cong:

assumes
∧

x. x ∈ set-pmf p =⇒ x ∈ P ←→ x ∈ Q
shows measure (measure-pmf p) P = measure (measure-pmf p) Q
using assms
by (intro finite-measure.finite-measure-eq-AE AE-pmfI ) auto

lemma pmf-mono:
assumes

∧
x. x ∈ set-pmf p =⇒ x ∈ P =⇒ x ∈ Q

shows measure (measure-pmf p) P ≤ measure (measure-pmf p) Q
proof −

have measure (measure-pmf p) P = measure (measure-pmf p) (P ∩ (set-pmf p))
by (intro measure-pmf-cong) auto

also have ... ≤ measure (measure-pmf p) Q
using assms by (intro finite-measure.finite-measure-mono) auto

finally show ?thesis by simp
qed

lemma pmf-rev-mono:
assumes

∧
x. x ∈ set-pmf p =⇒ x /∈ Q =⇒ x /∈ P

shows measure p P ≤ measure p Q
using assms by (intro pmf-mono) blast

lemma pmf-exp-mono:
fixes f g :: ′a ⇒ real
assumes integrable (measure-pmf p) f integrable (measure-pmf p) g
assumes

∧
x. x ∈ set-pmf p =⇒ f x ≤ g x

shows integralL (measure-pmf p) f ≤ integralL (measure-pmf p) g
using assms by (intro integral-mono-AE AE-pmfI ) auto

lemma pmf-markov:
assumes integrable (measure-pmf p) f c > 0
assumes

∧
x. x ∈ set-pmf p =⇒ f x ≥ 0

shows measure p {ω. f ω ≥ c} ≤ (
∫
ω. f ω ∂p)/ c (is ?L ≤ ?R)

proof −
have a:AE ω in (measure-pmf p). 0 ≤ f ω

by (intro AE-pmfI assms(3 ))
have b:{} ∈ measure-pmf .events p

unfolding assms(1 ) by simp

have ?L = P(ω in (measure-pmf p). f ω ≥ c)
using assms(1 ) by simp

also have ... ≤ ?R
by (intro integral-Markov-inequality-measure[OF - b] assms a)

finally show ?thesis by simp
qed

lemma pmf-add:
assumes

∧
x. x ∈ P =⇒ x ∈ set-pmf p =⇒ x ∈ Q ∨ x ∈ R

shows measure p P ≤ measure p Q + measure p R
proof −

have measure p P ≤ measure p (Q ∪ R)
using assms by (intro pmf-mono) blast

also have ... ≤ measure p Q + measure p R
by (rule measure-subadditive, auto)

finally show ?thesis by simp
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qed

lemma pair-pmf-prob-left:
measure-pmf .prob (pair-pmf A B) {ω. P (fst ω)} = measure-pmf .prob A {ω. P ω} (is ?L = ?R)

proof −
have ?L = measure-pmf .prob (map-pmf fst (pair-pmf A B)) {ω. P ω}

by (subst measure-map-pmf ) simp
also have ... = ?R

by (subst map-fst-pair-pmf ) simp
finally show ?thesis by simp

qed

lemma pmf-exp-of-fin-function:
assumes finite A g ‘ set-pmf p ⊆ A
shows (

∫
ω. f (g ω) ∂p) = (

∑
y ∈ A. f y ∗ measure p {ω. g ω = y})

(is ?L = ?R)
proof −

have ?L = integralL (map-pmf g p) f
using integral-map-pmf assms by simp

also have ... = (
∑

a∈A. f a ∗ pmf (map-pmf g p) a)
using assms
by (intro integral-measure-pmf-real) auto

also have ... = (
∑

y ∈ A. f y ∗ measure p (g −‘ {y}))
unfolding assms(1 ) by (intro-cong [σ2 (∗)] more:sum.cong pmf-map)

also have ... = ?R
by (intro sum.cong) (auto simp add: vimage-def )

finally show ?thesis by simp
qed

Cardinality rules for distinct/ordered pairs of a set without the finiteness constraint - to
use in simplification:
lemma card-distinct-pairs:

card {x ∈ B × B. fst x 6= snd x} = card B^2 − card B (is card ?L = ?R)
proof (cases finite B)

case True
include intro-cong-syntax
have card ?L = card (B × B − (λx. (x,x)) ‘ B)

by (intro arg-cong[where f=card]) auto
also have ... = card (B × B) − card ((λx. (x,x)) ‘ B)

by (intro card-Diff-subset finite-imageI True image-subsetI ) auto
also have ... = ?R

using True by (intro-cong [σ2 (−)] more: card-image)
(auto simp add:power2-eq-square inj-on-def )

finally show ?thesis by simp
next

case False
then obtain p where p-in: p ∈ B by fastforce
have False if finite ?L
proof −

have (λx. (p,x)) ‘ (B − {p}) ⊆ ?L
using p-in by (intro image-subsetI ) auto

hence finite ((λx. (p,x)) ‘ (B − {p}))
using finite-subset that by auto

hence finite (B − {p})
by (rule finite-imageD) (simp add:inj-on-def )

hence finite B
by simp

thus False using False by simp
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qed
hence infinite ?L by auto
hence card ?L = 0 by simp
also have ... = ?R

using False by simp
finally show ?thesis by simp

qed

lemma card-ordered-pairs ′:
fixes M :: ( ′a ::linorder) set
shows card {(x,y) ∈ M × M . x < y} = card M ∗ (card M − 1 ) / 2

proof (cases finite M )
case True
show ?thesis using card-ordered-pairs[OF True] by linarith

next
case False
then obtain p where p-in: p ∈ M by fastforce
let ?f= (λx. if x < p then (x,p) else (p,x))
have False if finite {(x,y) ∈ M × M . x < y} (is finite ?X)
proof −

have ?f ‘ (M−{p}) ⊆ ?X
using p-in by (intro image-subsetI ) auto

hence finite (?f ‘ (M−{p})) using that finite-subset by auto
moreover have inj-on ?f (M−{p})

by (intro inj-onI ) (metis Pair-inject)
ultimately have finite (M − {p})

using finite-imageD by blast
hence finite M

using finite-insert[where a=p and A=M−{p}] by simp
thus False using False by simp

qed
hence infinite ?X by auto
then show ?thesis using False by simp

qed

The following are versions of the mean value theorem, where the interval endpoints may
be reversed.
lemma MVT-symmetric:

assumes
∧

x. [[min a b ≤ x; x ≤ max a b]] =⇒ DERIV f x :> f ′ x
shows ∃ z::real. min a b ≤ z ∧ z ≤ max a b ∧ (f b − f a = (b − a) ∗ f ′ z)

proof −
consider (a) a < b | (b) a = b | (c) a > b

by argo
then show ?thesis
proof (cases)

case a
then obtain z :: real where r : a < z z < b f b − f a = (b − a) ∗ f ′ z

using assms MVT2 [where a=a and b=b and f=f and f ′=f ′] by auto
have a ≤ z z ≤ b using r(1 ,2 ) by auto
thus ?thesis using a r(3 ) by auto

next
case b
then show ?thesis by auto

next
case c
then obtain z :: real where r : b < z z < a f a − f b = (a − b) ∗ f ′ z

using assms MVT2 [where a=b and b=a and f=f and f ′=f ′] by auto
have f b − f a = (b−a) ∗ f ′ z using r by argo
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moreover have b ≤ z z ≤ a using r(1 ,2 ) by auto
ultimately show ?thesis using c by auto

qed
qed

lemma MVT-interval:
fixes I :: real set
assumes interval I a ∈ I b ∈ I
assumes

∧
x. x ∈ I =⇒ DERIV f x :> f ′ x

shows ∃ z. z ∈ I ∧ (f b − f a = (b − a) ∗ f ′ z)
proof −

have a:min a b ∈ I
using assms(2 ,3 ) by (cases a < b) auto

have b:max a b ∈ I
using assms(2 ,3 ) by (cases a < b) auto

have c:x ∈ {min a b..max a b} =⇒ x ∈ I for x
using interval-def assms(1 ) a b by auto

have [[min a b ≤ x; x ≤ max a b]] =⇒ DERIV f x :> f ′ x for x
using c assms(4 ) by auto

then obtain z where z:z ≥ min a b z ≤ max a b f b − f a = (b−a) ∗ f ′ z
using MVT-symmetric by blast

have z ∈ I
using c z(1 ,2 ) by auto

thus ?thesis using z(3 ) by auto
qed

Ln is monotone on the positive numbers and thus commutes with min and max:
lemma ln-min-swap:

x > (0 ::real) =⇒ (y > 0 ) =⇒ ln (min x y) = min (ln x) (ln y)
using ln-less-cancel-iff by fastforce

lemma ln-max-swap:
x > (0 ::real) =⇒ (y > 0 ) =⇒ ln (max x y) = max (ln x) (ln y)
using ln-le-cancel-iff by fastforce

Loose lower bounds for the factorial fuction:.
lemma fact-lower-bound:

sqrt(2∗pi∗n)∗(n/exp(1 ))^n ≤ fact n (is ?L ≤ ?R)
proof (cases n > 0 )

case True
have ln ?L = ln (2∗pi∗n)/2 + n ∗ ln n − n

using True by (simp add: ln-mult ln-sqrt ln-realpow ln-div algebra-simps)
also have ... ≤ ln ?R

by (intro Stirling-Formula.ln-fact-bounds True)
finally show ?thesis

using iffD1 [OF ln-le-cancel-iff ] True by simp
next

case False
then show ?thesis by simp

qed

lemma fact-lower-bound-1 :
assumes n > 0
shows (n/exp 1 )^n ≤ fact n (is ?L ≤ ?R)

proof −
have 2 ∗ pi ≥ 1 using pi-ge-two by auto
moreover have n ≥ 1 using assms by simp
ultimately have 2 ∗ pi ∗ n ≥ 1∗1
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by (intro mult-mono) auto
hence a:2 ∗ pi ∗ n ≥ 1 by simp

have ?L = 1 ∗ ?L by simp
also have ... ≤ sqrt(2 ∗ pi ∗ n) ∗ ?L

using a by (intro mult-right-mono) auto
also have ... ≤ ?R

using fact-lower-bound by simp
finally show ?thesis by simp

qed

Rules to handle O-notation with multiple variables, where some filters may be towards
zero:
lemma real-inv-at-right-0-inf :
∀ F x in at-right (0 ::real). c ≤ 1 / x

proof −
have c ≤ 1 / x if b: x ∈ {0<..<1 / (max c 1 )} for x
proof −

have c ∗ x ≤ (max c 1 ) ∗ x
using b by (intro mult-right-mono, linarith, auto)

also have ... ≤ (max c 1 ) ∗ (1 / (max c 1 ))
using b by (intro mult-left-mono) auto

also have ... ≤ 1
by (simp add:of-rat-divide)

finally have c ∗ x ≤ 1 by simp
moreover have 0 < x

using b by simp
ultimately show ?thesis by (subst pos-le-divide-eq, auto)

qed
thus ?thesis

by (intro eventually-at-rightI [where b=1/(max c 1 )], simp-all)
qed

lemma bigo-prod-1 :
assumes (λx. f x) ∈ O[F ](λx. g x) G 6= bot
shows (λx. f (fst x)) ∈ O[F ×F G](λx. g (fst x))

proof −
obtain c where a: ∀ F x in F . norm (f x) ≤ c ∗ norm (g x) and c-gt-0 : c > 0

using assms unfolding bigo-def by auto

have ∃ c>0 . ∀ F x in F ×F G. norm (f (fst x)) ≤ c ∗ norm (g (fst x))
by (intro exI [where x=c] conjI c-gt-0 eventually-prod1 ′ a assms(2 ))

thus ?thesis
unfolding bigo-def by simp

qed

lemma bigo-prod-2 :
assumes (λx. f x) ∈ O[G](λx. g x) F 6= bot
shows (λx. f (snd x)) ∈ O[F ×F G](λx. g (snd x))

proof −
obtain c where a: ∀ F x in G. norm (f x) ≤ c ∗ norm (g x) and c-gt-0 : c > 0

using assms unfolding bigo-def by auto

have ∃ c>0 . ∀ F x in F ×F G. norm (f (snd x)) ≤ c ∗ norm (g (snd x))
by (intro exI [where x=c] conjI c-gt-0 eventually-prod2 ′ a assms(2 ))

thus ?thesis
unfolding bigo-def by simp

qed
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lemma eventually-inv:
fixes P :: real ⇒ bool
assumes eventually (λx. P (1/x)) at-top
shows eventually (λx. P x) (at-right 0 )

proof −
obtain N where c:n ≥ N =⇒ P (1/n) for n

using assms unfolding eventually-at-top-linorder by auto

define q where q = max 1 N
have d: 0 < 1 / q q > 0

unfolding q-def by auto

have P x if x ∈ {0<..<1 / q} for x
proof −

define n where n = 1/x
have x-eq: x = 1 / n

unfolding n-def using that by simp

have N ≤ q unfolding q-def by simp
also have ... ≤ n

unfolding n-def using that d by (simp add:divide-simps ac-simps)
finally have N ≤ n by simp
thus ?thesis

unfolding x-eq by (intro c)
qed

thus ?thesis
by (intro eventually-at-rightI [where b=1/q] d)

qed

lemma bigo-inv:
fixes f g :: real ⇒ real
assumes (λx. f (1/x)) ∈ O(λx. g (1/x))
shows f ∈ O[at-right 0 ](g)
using assms eventually-inv unfolding bigo-def by auto

unbundle no-intro-cong-syntax

end

3 Combinators for Pseudo-random Objects

This section introduces a combinator library for pseudo-random objects. Each object
can be described as a sample space, a function from an initial segment of the natural
numbers that selects a value (or data structure.) Semantically they are multisets with the
natural interpretation as a probability space (each element is selected with a probability
proportional to its occurence count in the multiset). Operationally the selection procedure
describes an algorithm to sample from the space.
After general definitions and lemmas basic sample spaces, such as chosing a natural uni-
formly in an initial segment, a product construction the main pseudo-random objects: hash
families and expander graphs are introduced. In both cases the range is itself an arbitrary
sample space, such that it is for example possible to construct a pseudo-random object
that samples seeds for hash families using an expander walk.
The definitions Ψ in Section 6 and Θ in Section 10 are good examples.
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A nice introduction into such constructions has been published by Goldreich [6].

3.1 Definitions and General Lemmas
theory Pseudorandom-Combinators

imports
Finite-Fields.Card-Irreducible-Polynomials
Universal-Hash-Families.Carter-Wegman-Hash-Family
Frequency-Moments.Product-PMF-Ext
Distributed-Distinct-Elements-Preliminary
Expander-Graphs.Expander-Graphs-Strongly-Explicit

begin

unbundle intro-cong-syntax
hide-const Quantum.T
hide-const Discrete-Topology.discrete
hide-const Polynomial.order
no-notation Digraph.dominates (- →ı - [100 ,100 ] 40 )

record ′a sample-space =
size :: nat
sample-space-select :: nat ⇒ ′a

definition sample-pmf
where sample-pmf S = map-pmf (sample-space-select S) (pmf-of-set {..<size S})

definition sample-space S ≡ size S > 0

definition select S k = (sample-space-select S (if k < size S then k else 0 ))

definition sample-set S = select S ‘ {..<size S}

lemma sample-space-imp-ne:
assumes sample-space S
shows {..<size S} 6= {}
using assms unfolding sample-space-def by auto

lemma sample-pmf-alt:
assumes sample-space S
shows sample-pmf S = map-pmf (select S) (pmf-of-set {..<size S})
using sample-space-imp-ne[OF assms] unfolding sample-pmf-def select-def
by (intro map-pmf-cong refl) simp

lemma sample-space-alt:
assumes sample-space S
shows sample-set S = set-pmf (sample-pmf S)
using sample-space-imp-ne[OF assms]
unfolding sample-set-def sample-pmf-alt[OF assms]
by simp

lemma sample-set-alt:
assumes sample-space S
shows sample-set S = sample-space-select S ‘ {..<size S}
unfolding sample-set-def select-def
by (intro image-cong) auto

lemma select-range:
assumes sample-space S
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shows select S i ∈ sample-set S
using assms unfolding sample-space-def select-def sample-set-def by auto

declare [[coercion sample-pmf ]]

lemma integrable-sample-pmf [simp]:
fixes f :: ′a ⇒ ′c::{banach, second-countable-topology}
assumes sample-space S
shows integrable (measure-pmf (sample-pmf S)) f

proof −
have finite (set-pmf (pmf-of-set {..<size S}))

using assms sample-space-def
by (subst set-pmf-of-set) auto

hence finite (set-pmf (sample-pmf S))
unfolding sample-pmf-def by simp

thus ?thesis
by (intro integrable-measure-pmf-finite)

qed

3.2 Basic sample spaces

Sample space for uniformly selecting a natural number less than a given bound:
definition nat-sample-space :: nat ⇒ nat sample-space ([-]S)

where nat-sample-space n = (| size = n, select = id |)

lemma nat-sample-pmf :
sample-pmf ([x]S) = pmf-of-set {..<x}
unfolding nat-sample-space-def sample-pmf-def by simp

lemma nat-sample-space[simp]:
assumes n > 0
shows sample-space [n]S
using assms
unfolding sample-space-def nat-sample-space-def by simp

Sample space for the product of two sample spaces:
definition prod-sample-space ::

′a sample-space ⇒ ′b sample-space ⇒ ( ′a × ′b) sample-space (infixr ×S 65 )
where

prod-sample-space s t =
(| size = size s ∗ size t,

select = (λi. (select s (i mod (size s)), select t (i div (size s)))) |)

lemma split-pmf-mod-div ′:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. (x mod a, x div a)) (pmf-of-set {..<a ∗ b}) = pmf-of-set ({..<a} × {..<b})

proof −
have x + a ∗ y < a ∗ b if x < a y < b for x y
proof −

have a:y+1 ≤ b using that by simp
have x + a ∗ y < a + a ∗ y

using that by simp
also have ... = a ∗ (y+1 )

by simp
also have ... ≤ a ∗ b

by (intro mult-left-mono a) auto
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finally show ?thesis by simp
qed

hence bij-betw (λx. (x mod a, x div a)) {..<a ∗ b} ({..<a} × {..<b})
using assms less-mult-imp-div-less
by (intro bij-betwI [where g=(λx. fst x + a ∗ snd x)])
(auto simp add:mult.commute)

moreover have a ∗ b > 0 using assms by simp
hence {..<a ∗ b} 6= {} by blast
ultimately show ?thesis

by (intro map-pmf-of-set-bij-betw) auto
qed

lemma pmf-of-set-prod-eq:
assumes A 6= {} finite A
assumes B 6= {} finite B
shows pmf-of-set (A × B) = pair-pmf (pmf-of-set A) (pmf-of-set B)

proof −
have indicat-real (A × B) (i, j) = indicat-real A i ∗ indicat-real B j for i j

by (cases i ∈ A; cases j ∈ B) auto
hence pmf (pmf-of-set (A × B)) (i,j) = pmf (pair-pmf (pmf-of-set A) (pmf-of-set B)) (i,j)

for i j using assms by (simp add:pmf-pair)
thus ?thesis

by (intro pmf-eqI ) auto
qed

lemma split-pmf-mod-div:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. (x mod a, x div a)) (pmf-of-set {..<a ∗ b}) =

pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b})
using assms by (auto intro!: pmf-of-set-prod-eq simp add:split-pmf-mod-div ′)

lemma split-pmf-mod:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. x mod a) (pmf-of-set {..<a ∗ b}) = pmf-of-set {..<a}

proof −
have map-pmf (λx. x mod a) (pmf-of-set {..<a ∗ b}) =
map-pmf (fst ◦ (λx. (x mod a, x div a))) (pmf-of-set {..<a ∗ b})
by (simp add:comp-def )

also have ... = map-pmf fst (pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b}))
by (simp add:map-pmf-compose split-pmf-mod-div[OF assms])

also have ... = pmf-of-set {..<a}
by (simp add:map-fst-pair-pmf )

finally show ?thesis by simp
qed

lemma prod-sample-pmf :
assumes sample-space S
assumes sample-space T
shows sample-pmf (S ×S T ) = pair-pmf (sample-pmf S) (sample-pmf T ) (is ?L = ?R)

proof −
have size: size S ∗ size T > 0

using assms sample-space-def by (metis nat-0-less-mult-iff )
hence a:{..<size S ∗ size T} 6= {} finite {..<size S ∗ size T}

using lessThan-empty-iff by auto
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have b:x div size S mod size T = x div size S if x < size S ∗ size T for x
by (simp add: algebra-simps less-mult-imp-div-less that)

have ?L = map-pmf (λi. (select S (i mod size S), select T (i div size S)))
(pmf-of-set {..<size S ∗ size T})
unfolding sample-pmf-def prod-sample-space-def by simp

also have ... = map-pmf ((λ(x,y). (select S x, select T y)) ◦ (λi. (i mod size S , i div size S)))
(pmf-of-set {..<size S ∗ size T})
by (simp add:comp-def )

also have ... = map-pmf (λ(x,y). (select S x, select T y))
(map-pmf (λi. (i mod size S , i div size S)) (pmf-of-set {..<size S ∗ size T}))
by (subst map-pmf-compose) simp

also have ... = map-pmf (λ(x,y). (select S x, select T y))
(pair-pmf (pmf-of-set {..<size S}) (pmf-of-set {..<size T}))
using size by (subst split-pmf-mod-div) auto

also have ... = ?R
unfolding sample-pmf-alt[OF assms(1 )] sample-pmf-alt[OF assms(2 )] map-pair by simp

finally show ?thesis
by simp

qed

lemma prod-sample-space[simp]:
assumes sample-space S sample-space T
shows sample-space (S ×S T )
using assms
unfolding sample-space-def prod-sample-space-def by simp

lemma prod-sample-set:
assumes sample-space S
assumes sample-space T
shows sample-set (S ×S T ) = sample-set S × sample-set T (is ?L = ?R)
using assms by (simp add:sample-space-alt prod-sample-pmf )

3.3 Hash Families
lemma indep-vars-map-pmf :

assumes prob-space.indep-vars (measure-pmf p) (λ-. discrete) (λi ω. X ′ i (f ω)) I
shows prob-space.indep-vars (measure-pmf (map-pmf f p)) (λ-. discrete) X ′ I

proof −
have prob-space.indep-vars (measure-pmf p) (λ-. discrete) (λi. X ′ i ◦ f ) I

using assms by (simp add:comp-def )
hence prob-space.indep-vars (distr (measure-pmf p) discrete f ) (λ-. discrete) X ′ I

by (intro prob-space.indep-vars-distr prob-space-measure-pmf ) auto
thus ?thesis

using map-pmf-rep-eq by metis
qed

lemma k-wise-indep-vars-map-pmf :
assumes prob-space.k-wise-indep-vars (measure-pmf p) k (λ-. discrete) (λi ω. X ′ i (f ω)) I
shows prob-space.k-wise-indep-vars (measure-pmf (map-pmf f p)) k (λ-. discrete) X ′ I
using assms indep-vars-map-pmf
unfolding prob-space.k-wise-indep-vars-def [OF prob-space-measure-pmf ]
by blast

lemma (in prob-space) k-wise-indep-subset:
assumes J ⊆ I
assumes k-wise-indep-vars k M ′ X ′ I
shows k-wise-indep-vars k M ′ X ′ J
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using assms unfolding k-wise-indep-vars-def by simp

lemma (in prob-space) k-wise-indep-vars-reindex:
assumes inj-on f I
assumes k-wise-indep-vars k M ′ X ′ (f ‘ I )
shows k-wise-indep-vars k (M ′ ◦ f ) (λk ω. X ′ (f k) ω) I

proof −
have indep-vars (M ′ ◦ f ) (λk. X ′ (f k)) J if finite J card J ≤ k J ⊆ I for J
proof −

have f ‘ J ⊆ f ‘ I using that by auto
moreover have card (f ‘ J ) ≤ k

using card-image-le[OF that(1 )] that(2 ) order .trans by auto
moreover have finite (f ‘ J ) using that by auto
ultimately have indep-vars M ′ X ′ (f ‘ J )

using assms(2 ) unfolding k-wise-indep-vars-def by simp
thus ?thesis

using that assms(1 ) inj-on-subset
by (intro indep-vars-reindex)

qed
thus ?thesis

unfolding k-wise-indep-vars-def by simp
qed

definition GF :: nat ⇒ int set list set ring
where GF n = (SOME F . finite-field F ∧ order F = n)

definition is-prime-power :: nat ⇒ bool
where is-prime-power n ←→ (∃ p k. Factorial-Ring.prime p ∧ k > 0 ∧ n = p^k)

lemma
assumes is-prime-power n
shows GF : finite-field (GF n) order (GF n) = n

proof −
obtain p k where p-k: Factorial-Ring.prime p k > 0 n = p^k

using assms unfolding is-prime-power-def by blast
have a:∃ (F :: int set list set ring). finite-field F ∧ order F = n

using existence[OF p-k(2 ,1 )] p-k(3 ) by simp
show finite-field (GF n) order (GF n) = n

unfolding GF-def
using someI-ex[OF a]
by auto

qed

lemma is-prime-power : Factorial-Ring.prime p =⇒ k > 0 =⇒ is-prime-power (p^k)
unfolding is-prime-power-def by auto

definition split-prime-power :: nat ⇒ (nat × nat)
where split-prime-power n = (THE (p, k). p^k = n ∧ Factorial-Ring.prime p ∧ k > 0 )

lemma split-prime-power :
assumes Factorial-Ring.prime p
assumes k > 0
shows split-prime-power (p^k) = (p,k)

proof −
have q = p ∧ l = k if q^l = p^k Factorial-Ring.prime q l > 0 for q l
proof −

have q dvd p^k using that by (metis dvd-power)
hence q dvd p using prime-dvd-power that by auto
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moreover have p dvd q^l using that assms(2 ) by (metis dvd-power)
hence p dvd q using prime-dvd-power that assms by blast
ultimately have a:p = q by auto
hence l = k using that prime-power-inj by auto
thus ?thesis using a by simp

qed
thus ?thesis

unfolding split-prime-power-def using assms
by (intro the-equality) auto

qed

definition H :: nat ⇒ nat ⇒ ′a sample-space ⇒ (nat ⇒ ′a) sample-space
where H k d R = (

let (p,n) = split-prime-power (size R);
m = (LEAST j. d ≤ p^j ∧ j ≥ n);
f = from-nat-into (carrier (GF (p^m)));
f ′ = to-nat-on (carrier (GF (p^m)));
g = from-nat-into (bounded-degree-polynomials (GF (p^m)) k) in

(| size = p^(m∗k), select = (λi x. select R ((f ′ (ring.hash (GF (p^m)) (f x) (g i))) mod p^n))|))

locale hash-sample-space =
fixes k d p n :: nat
fixes R :: ′a sample-space
assumes p-prime: Factorial-Ring.prime p
assumes size-R: size R = p ^ n
assumes k-gt-0 : k > 0
assumes n-gt-0 : n > 0

begin

abbreviation S where S ≡ H k d R

lemma p-n-def : (p,n) = split-prime-power (size R)
unfolding size-R
by (intro split-prime-power [symmetric] n-gt-0 p-prime)

definition m where m = (LEAST j. d ≤ p^j ∧ j ≥ n)
definition f where f = from-nat-into (carrier (GF (p^m)))
definition f ′ where f ′ = to-nat-on (carrier (GF (p^m)))

lemma n-lt-m: n ≤ m and d-lt-p-m: d ≤ p^m
proof −

define j :: nat where j = max n d
have d ≤ 2^d by simp
also have ... ≤ 2^j

unfolding j-def
by (intro iffD2 [OF power-increasing-iff ]) auto

also have ... ≤ p^j
using p-prime prime-ge-2-nat
by (intro power-mono) auto

finally have d ≤ p^j by simp
moreover have n ≤ j unfolding j-def by simp
ultimately have d ≤ p^m ∧ m ≥ n

unfolding m-def
by (intro LeastI [where P=λx. d ≤ p^ x ∧ x ≥ n and k=j]) auto

thus n ≤ m d ≤ p^m
by auto

qed
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lemma
is-field: finite-field (GF (p^m)) (is ?A) and
field-order : order (GF(p^m)) = p^m (is ?B)

proof −
have is-prime-power (p^m)

using n-gt-0 n-lt-m
by (intro is-prime-power p-prime) auto

thus ?A ?B
using GF by auto

qed

interpretation cw: carter-wegman-hash-family GF (p^m) k
using finite-field-def is-field finite-field-axioms-def
by (intro carter-wegman-hash-familyI k-gt-0 ) auto

lemma field-size: cw.field-size = p^m
using field-order unfolding Coset.order-def by simp

lemma f-bij: bij-betw f {..<p^m} (carrier (GF (p^m)))
unfolding f-def using field-size bij-betw-from-nat-into-finite[where S=carrier (GF (p^m))]
by simp

definition g where g = from-nat-into cw.space

lemma p-n-gt-0 : p^n > 0
by (metis p-prime gr0I not-prime-0 power-not-zero)

lemma p-m-gt-0 : p^m > 0
by (metis p-prime gr0I not-prime-0 power-not-zero)

lemma S-eq: S = (| size = p^(m∗k), sample-space-select = (λ i x. select R (f ′ (cw.hash (f x) (g
i)) mod p^n )) |)

unfolding H-def
by (simp add:p-n-def [symmetric] m-def [symmetric] f-def [symmetric] g-def f ′-def Let-def cw.space-def )

lemma H-size: size S > 0
unfolding S-eq using p-m-gt-0 k-gt-0 by simp

lemma sample-space: sample-space S
using H-size unfolding sample-space-def by simp

lemma sample-space-R: sample-space R
using size-R p-n-gt-0 unfolding sample-space-def by auto

lemma range: range (select S i) ⊆ sample-set R
proof −

define α where α = select S i
have α x ∈ sample-set R for x
proof −

have α ∈ sample-set S
unfolding α-def by (intro select-range sample-space)

then obtain j where α-alt: α = (λx. select R (f ′ (cw.hash (f x) (g j)) mod p^n)) j < p^(m∗k)
unfolding sample-set-alt[OF sample-space] unfolding S-eq by auto

thus α x ∈ sample-set R
unfolding α-alt
by (intro select-range sample-space-R)

qed
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thus ?thesis
unfolding α-def by auto

qed

lemma cw-space: map-pmf g (pmf-of-set {..<p^(m∗k)}) = pmf-of-set cw.space
proof−

have card-cw-space: p ^ (m ∗ k) = card (cw.space)
unfolding cw.space-def cw.bounded-degree-polynomials-card field-size
by (simp add:power-mult)

have card-cw-space-gt-0 : card (cw.space) > 0
using card-gt-0-iff cw.finite-space cw.non-empty-bounded-degree-polynomials by blast

show ?thesis
unfolding g-def using card-cw-space card-cw-space-gt-0

bij-betw-from-nat-into-finite[where S=cw.space]
by (intro map-pmf-of-set-bij-betw) auto

qed

lemma single:
assumes x < d
shows map-pmf (λω. ω x) (sample-pmf S) = sample-pmf R (is ?L = ?R)

proof −
have f-x-carr : f x ∈ carrier (GF (p^m))

using assms d-lt-p-m
by (intro bij-betw-apply[OF f-bij]) auto

have pmf (map-pmf (cw.hash (f x)) (pmf-of-set cw.space)) i =
pmf (pmf-of-set (carrier (GF (p ^ m)))) i (is ?L1 = ?R1 ) for i

proof −
have ?L1 = cw.prob (cw.hash (f x) −‘ {i})

unfolding cw.M-def by (simp add:pmf-map)
also have ... = real (card ({i} ∩ carrier (GF (p ^ m)))) / real cw.field-size

using cw.prob-range[OF f-x-carr , where A={i} ] by (simp add:vimage-def )
also have ... = ?R1

by (cases i ∈ carrier (GF (p^m)), auto)
finally show ?thesis by simp

qed

hence b: map-pmf (cw.hash (f x)) (pmf-of-set cw.space) = pmf-of-set (carrier (GF (p^m)))
by (intro pmf-eqI ) simp

have c: map-pmf f ′ (pmf-of-set (carrier (GF (p^m)))) = pmf-of-set {..<p^m}
unfolding f ′-def using to-nat-on-finite[where S=carrier (GF (p^m))] field-size
by (intro map-pmf-of-set-bij-betw) auto

have n ≤ m p > 0
using n-lt-m p-prime prime-gt-0-nat by auto

hence d: map-pmf (λx. x mod p^n) (pmf-of-set {..<p^m}) = pmf-of-set {..<p^n}
using split-pmf-mod[where a = p^n and b=p^(m−n)]
by (simp add:power-add[symmetric])

have ?L = map-pmf ((λω. ω x) ◦ (sample-space-select S)) (pmf-of-set {..<size S})
unfolding sample-pmf-def by (simp add:map-pmf-compose)

also have ... = map-pmf (λω. sample-space-select S ω x) (pmf-of-set {..<size S})
by (simp add:comp-def )

also have ... = map-pmf (select R ◦ (λx. x mod p^n) ◦ f ′ ◦ (cw.hash (f x)) ◦ g) (pmf-of-set
{..<p^(m∗k)})

unfolding S-eq by (simp add:comp-def )
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also have ... = map-pmf (select R) (pmf-of-set {..<p^n})
by (simp add:map-pmf-compose cw-space b c d)

also have ... = ?R
unfolding sample-pmf-alt[OF sample-space-R] size-R by simp

finally show ?thesis by simp
qed

lemma indep:
prob-space.k-wise-indep-vars (sample-pmf S) k (λ-. discrete) (λi ω. ω i) {..<d}

proof −
let ?p = map-pmf g (pmf-of-set {..<p ^ (m ∗ k)})
let ?h = (λi x. select R (f ′ (cw.hash (f x) i) mod p ^ n))

have a:cw.k-wise-indep-vars k (λ-. discrete) cw.hash (f ‘ {..<d})
using d-lt-p-m
by (intro cw.k-wise-indep-subset[OF - cw.k-wise-indep] image-subsetI bij-betw-apply[OF f-bij])
auto

have cw.k-wise-indep-vars k (λ-. discrete) (λi ω. select R (f ′ (cw.hash i ω) mod p^n)) (f ‘
{..<d})

by (intro cw.k-wise-indep-vars-compose[OF a]) auto
moreover
have inj-on f {..<p^m}

using f-bij bij-betw-def by auto
hence inj-on f {..<d}

using inj-on-subset d-lt-p-m by blast
ultimately have cw.k-wise-indep-vars k (λ-. discrete) (λi ω. select R (f ′ (cw.hash (f i) ω) mod

p ^ n)) {..<d}
using cw.k-wise-indep-vars-reindex[where f=f ] unfolding comp-def by auto

hence prob-space.k-wise-indep-vars (measure-pmf ((map-pmf ?h ◦ map-pmf g) (pmf-of-set {..<p^(m∗k)})))
k

(λ-. discrete) (λi ω. ω i) {..<d}
unfolding cw.M-def cw-space[symmetric] comp-def by (intro k-wise-indep-vars-map-pmf [where

p=?p]) auto

hence prob-space.k-wise-indep-vars (measure-pmf (map-pmf (λi x. ?h (g i) x) (pmf-of-set
{..<p^(m∗k)}))) k

(λ-. discrete) (λi ω. ω i) {..<d}
unfolding map-pmf-compose[symmetric] by (simp add:comp-def )

thus ?thesis
unfolding sample-pmf-def S-eq by simp

qed

lemma size:
fixes m :: nat
assumes d > 0
defines m-altdef : m ≡ max n (nat dlog p de)
shows size S = p^(m∗k)

proof −
have real d = p powr (log p d)

using assms prime-gt-1-nat[OF p-prime]
by (intro powr-log-cancel[symmetric]) auto

also have ... ≤ p powr (nat dlog p de)
using prime-gt-1-nat[OF p-prime] by (intro powr-mono) linarith+

also have ... = p^ (nat dlog p de)
using prime-gt-1-nat[OF p-prime] by (subst powr-realpow) auto
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also have ... ≤ p^m
using prime-gt-1-nat[OF p-prime] unfolding m-altdef
by (intro power-increasing Nat.of-nat-mono) auto

finally have d ≤ p ^ m
by simp

moreover have n ≤ m
unfolding m-altdef by simp

moreover have m ≤ y if d ≤ p ^ y n ≤ y for y
proof −

have log p d ≤ log p (p ^ y)
using assms prime-gt-1-nat[OF p-prime]
by (intro iffD2 [OF log-le-cancel-iff ] that(1 ) Nat.of-nat-mono) auto

also have ... = log p (p powr (real y))
using prime-gt-1-nat[OF p-prime] by (subst powr-realpow) auto

also have ... = y
using prime-gt-1-nat[OF p-prime] by (intro log-powr-cancel) auto

finally have log p d ≤ y by simp
hence nat dlog p de ≤ y

by simp
thus m ≤ y

using that(2 ) unfolding m-altdef by simp
qed
ultimately have m-eq: m = (LEAST j. d ≤ p ^ j ∧ n ≤ j)

by (intro Least-equality[symmetric]) auto

show ?thesis
unfolding S-eq m-def m-eq by simp

qed

end

Sample space with a geometric distribution
fun count-zeros :: nat ⇒ nat ⇒ nat where

count-zeros 0 k = 0 |
count-zeros (Suc n) k = (if odd k then 0 else 1 + count-zeros n (k div 2 ))

lemma count-zeros-iff : j ≤ n =⇒ count-zeros n k ≥ j ←→ 2^j dvd k
proof (induction j arbitrary: n k)

case 0
then show ?case by simp

next
case (Suc j)
then obtain n ′ where n-def : n = Suc n ′ using Suc-le-D by presburger
show ?case using Suc unfolding n-def by auto

qed

lemma count-zeros-max:
count-zeros n k ≤ n
by (induction n arbitrary: k) auto

definition G :: nat ⇒ nat sample-space where
G n = (| size = 2^n, sample-space-select = count-zeros n |)

lemma G-sample-space[simp]: sample-space (G n)
unfolding sample-space-def G-def by simp

lemma G-range: sample-set (G n) ⊆ {..n}
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using count-zeros-max
unfolding sample-set-alt[OF G-sample-space] unfolding G-def by auto

lemma G-prob:
measure (sample-pmf (G n)) {ω. ω ≥ j} = of-bool (j ≤ n) / 2^j (is ?L = ?R)

proof (cases j ≤ n)
case True
have a:{..<(2^n)::nat} 6= {}

by (simp add: lessThan-empty-iff )
have b:finite {..<(2^n)::nat} by simp

define f :: nat ⇒ nat where f = (λx. x ∗ 2^j)
have d:inj-on f {..<2^(n−j)} unfolding f-def by (intro inj-onI ) simp

have e:2^j > (0 ::nat) by simp

have y ∈ f ‘ {..< 2^(n−j)} ←→ y ∈ {x. x < 2^n ∧ 2^j dvd x} for y :: nat
proof −

have y ∈ f ‘ {..< 2^(n−j)} ←→ (∃ x. x < 2 ^ (n − j) ∧ y = 2 ^ j ∗ x)
unfolding f-def by auto

also have ... ←→ (∃ x. 2^j ∗ x < 2^j ∗ 2 ^ (n−j) ∧ y = 2 ^ j ∗ x)
using e by simp

also have ... ←→ (∃ x. 2^j ∗ x < 2^n ∧ y = 2 ^ j ∗ x)
using True by (subst power-add[symmetric]) simp

also have ... ←→ (∃ x. y < 2^n ∧ y = x ∗ 2 ^ j)
by (metis Groups.mult-ac(2 ))

also have ... ←→ y ∈ {x. x < 2^n ∧ 2^j dvd x} by auto
finally show ?thesis by simp

qed

hence c:f ‘ {..< 2^(n−j)} = {x. x < 2^n ∧ 2^j dvd x} by auto

have ?L = measure (pmf-of-set {..<2^n}) {ω. count-zeros n ω ≥ j}
unfolding sample-pmf-def G-def by simp

also have ... = real (card {x::nat. x < 2^n ∧ 2^j dvd x}) / 2^n
by (simp add: measure-pmf-of-set[OF a b] count-zeros-iff [OF True])
(simp add:lessThan-def Collect-conj-eq)

also have ... = real (card (f ‘ {..<2^(n−j)})) / 2^n
by (simp add:c)

also have ... = real (card ({..<(2^(n−j)::nat)})) / 2^n
by (simp add: card-image[OF d])

also have ... = ?R
using True by (simp add:frac-eq-eq power-add[symmetric])

finally show ?thesis by simp
next

case False
have set-pmf (sample-pmf (G n)) ⊆ {..n}

unfolding sample-space-alt[OF G-sample-space, symmetric]
using G-range by simp

hence ?L = measure (sample-pmf (G n)) {}
using False by (intro measure-pmf-cong) auto

also have ... = ?R
using False by simp

finally show ?thesis
by simp

qed

lemma G-prob-single:
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measure (sample-pmf (G n)) {j} ≤ 1 / 2^j (is ?L ≤ ?R)
proof −

have ?L = measure (sample-pmf (G n)) ({j..}−{j+1 ..})
by (intro measure-pmf-cong) auto

also have ... = measure (sample-pmf (G n)) {j..} − measure (sample-pmf (G n)) {j+1 ..}
by (intro measure-Diff ) auto

also have ... = measure (sample-pmf (G n)) {ω. ω ≥ j}−measure (sample-pmf (G n)) {ω. ω ≥
(j+1 )}

by (intro arg-cong2 [where f=(−)] measure-pmf-cong) auto
also have ... = of-bool (j ≤ n) ∗ 1 / 2 ^ j − of-bool (j + 1 ≤ n) / 2 ^ (j + 1 )

unfolding G-prob by simp
also have ... ≤ 1/2^j − 0

by (intro diff-mono) auto
also have ... = ?R by simp
finally show ?thesis by simp

qed

3.4 Expander Walks
definition E :: nat ⇒ real ⇒ ′a sample-space ⇒ (nat ⇒ ′a) sample-space

where E l Λ S = (let e = see-standard (size S) Λ in
(| size = see-size e ∗ see-degree e^(l−1 ),

sample-space-select = (λi j. select S (see-sample-walk e (l−1 ) i ! j)) |))

locale expander-sample-space =
fixes l :: nat
fixes Λ :: real
fixes S :: ′a sample-space
assumes l-gt-0 : l > 0
assumes Λ-gt-0 : Λ > 0
assumes sample-space-S : sample-space S

begin

definition e where e = see-standard (size S) Λ

lemma size-S-gt-0 : size S > 0
using sample-space-S unfolding sample-space-def by simp

lemma E-alt: (E l Λ S) =
(| size = see-size e ∗ see-degree e^(l−1 ),

sample-space-select = (λi j. select S (see-sample-walk e (l−1 ) i ! j)) |)
unfolding E-def e-def [symmetric] by (simp add:Let-def )

lemmas see-standard = see-standard[OF size-S-gt-0 Λ-gt-0 ]

sublocale E : regular-graph graph-of e
using see-standard(1 ) unfolding is-expander-def e-def by auto

lemma e-deg-gt-0 : see-degree e > 0
unfolding e-def see-standard by simp

lemma e-size-gt-0 : see-size e > 0
unfolding e-def see-standard using size-S-gt-0 by simp

lemma sample-space: sample-space (E l Λ S)
unfolding sample-space-def E-alt using e-size-gt-0 e-deg-gt-0 by simp

lemma range: select (E l Λ S) i j ∈ sample-set S
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proof −
define α where α = select (E l Λ S) i
have α ∈ sample-set (E l Λ S)

unfolding α-def by (intro select-range sample-space)
then obtain k where α = sample-space-select (E l Λ S) k

using sample-set-alt[OF sample-space] by auto
hence α j ∈ sample-set S

unfolding E-alt using select-range[OF sample-space-S ] by simp
thus ?thesis

unfolding α-def by simp
qed

lemma sample-set: sample-set (E l Λ S) ⊆ (UNIV → sample-set S)
proof (rule subsetI )

fix x assume x ∈ sample-set (E l Λ S)

then obtain i where x = select (E l Λ S) i
unfolding sample-set-def by auto

thus x ∈ UNIV → sample-set S
using range by auto

qed

lemma walks:
defines R ≡ map-pmf (λxs i. select S (xs ! i)) (pmf-of-multiset (walks (graph-of e) l))
shows sample-pmf (E l Λ S) = R

proof −
let ?S = {..<see-size e ∗ see-degree e ^ (l−1 )}
let ?T = (map-pmf (see-sample-walk e (l−1 )) (pmf-of-set ?S))

have 0 ∈ ?S
using e-size-gt-0 e-deg-gt-0 l-gt-0 by auto

hence ?S 6= {}
by blast

hence ?T = pmf-of-multiset {#see-sample-walk e (l−1 ) i. i ∈# mset-set ?S#}
by (subst map-pmf-of-set) simp-all

also have ... = pmf-of-multiset (walks ′ (graph-of e) (l−1 ))
by (subst see-sample-walk) auto

also have ... = pmf-of-multiset (walks (graph-of e) l)
unfolding walks-def using l-gt-0 by (cases l, simp-all)

finally have 0 :?T = pmf-of-multiset (walks (graph-of e) l)
by simp

have sample-pmf (E l Λ S) = map-pmf (λxs j. select S (xs ! j)) ?T
unfolding map-pmf-comp sample-pmf-def E-alt by simp

also have ... = R
unfolding 0 R-def by simp

finally show ?thesis by simp
qed

lemma uniform-property:
assumes i < l
shows map-pmf (λw. w i) (E l Λ S) = sample-pmf S (is ?L = ?R)

proof −
have ?L = map-pmf (select S) (map-pmf (λxs. (xs ! i)) (pmf-of-multiset (walks (graph-of e) l)))

unfolding walks by (simp add: map-pmf-comp)
also have ... = map-pmf (select S) (pmf-of-set (verts (graph-of e)))

unfolding E .uniform-property[OF assms] by simp
also have ... = ?R
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unfolding sample-pmf-alt[OF sample-space-S ] e-def graph-of-def using see-standard by simp
finally show ?thesis

by simp
qed

lemma size:
size (E l Λ S) = size S ∗ (16 ^ ((l−1 ) ∗ nat dln Λ / ln (19 / 20 )e)) (is ?L = ?R)

proof −
have ?L = see-size e ∗ see-degree e ^ (l − 1 )

unfolding E-alt by simp
also have ... = size S ∗ (16 ^ nat dln Λ / ln (19 / 20 )e) ^ (l − 1 )

using see-standard unfolding e-def by simp
also have ... = size S ∗ (16 ^ ((l−1 ) ∗ nat dln Λ / ln (19 / 20 )e))

unfolding power-mult[symmetric] by (simp add:ac-simps)
finally show ?thesis

by simp
qed

end

end

4 Balls and Bins

The balls and bins model describes the probability space of throwing r balls into b bins.
This section derives the expected number of bins hit by at least one ball, as well as the
variance in the case that each ball is thrown independently. Further, using an approxima-
tion argument it is then possible to derive bounds for the same measures in the case when
the balls are being thrown only k-wise independently. The proofs follow the reasoning
described in [8, §A.1] but improve on the constants, as well as constraints.
theory Distributed-Distinct-Elements-Balls-and-Bins

imports
Distributed-Distinct-Elements-Preliminary
Discrete-Summation.Factorials
HOL−Combinatorics.Stirling
HOL−Computational-Algebra.Polynomial
HOL−Decision-Procs.Approximation

begin

hide-fact Henstock-Kurzweil-Integration.integral-sum
hide-fact Henstock-Kurzweil-Integration.integral-mult-right
hide-fact Henstock-Kurzweil-Integration.integral-nonneg
hide-fact Henstock-Kurzweil-Integration.integral-cong
unbundle intro-cong-syntax

lemma sum-power-distrib:
fixes f :: ′a ⇒ real
assumes finite R
shows (

∑
i∈R. f i) ^ s = (

∑
xs | set xs ⊆ R ∧ length xs = s. (

∏
x ← xs. f x))

proof (induction s)
case 0
have {xs. xs = [] ∧ set xs ⊆ R} = {[]}

by (auto simp add:set-eq-iff )
then show ?case by simp

next
case (Suc s)
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have a:
(
⋃

i∈R. (#) i ‘ {xs. set xs ⊆ R ∧ length xs = s}) = {xs. set xs ⊆ R ∧ length xs = Suc s}
by (subst lists-length-Suc-eq) auto

have sum f R ^ Suc s = (sum f R) ∗ (sum f R)^s
by simp

also have ... = (sum f R) ∗ (
∑

xs | set xs ⊆ R ∧ length xs = s. (
∏

x ← xs. f x))
using Suc by simp

also have ... = (
∑

i ∈ R. (
∑

xs | set xs ⊆ R ∧ length xs = s. (
∏

x ← i#xs. f x)))
by (subst sum-product) simp

also have ... =
(
∑

i ∈ R. (
∑

xs ∈ (λxs. i#xs) ‘ {xs. set xs ⊆ R ∧ length xs = s}. (
∏

x ← xs. f x)))
by (subst sum.reindex) (auto)

also have ... = (
∑

xs∈(
⋃

i∈R. (#) i ‘ {xs. set xs ⊆ R ∧ length xs = s}). (
∏

x ← xs. f x))
by (intro sum.UNION-disjoint[symmetric] assms ballI finite-imageI finite-lists-length-eq)
auto

also have ... = (
∑

xs| set xs ⊆ R ∧ length xs = Suc s. (
∏

x ← xs. f x))
by (intro sum.cong a) auto

finally show ?case by simp
qed

lemma sum-telescope-eq:
fixes f :: nat ⇒ ′a :: {comm-ring-1}
shows (

∑
k∈{Suc m..n}. f k − f (k − 1 )) = of-bool(m ≤ n) ∗(f n − f m)

by (cases m ≤ n, subst sum-telescope ′′, auto)

An improved version of diff-power-eq-sum.
lemma power-diff-sum:

fixes a b :: ′a :: {comm-ring-1 ,power}
shows a^k − b^k = (a−b) ∗ (

∑
i = 0 ..<k. a ^ i ∗ b ^ (k − 1 − i))

proof (cases k)
case 0
then show ?thesis by simp

next
case (Suc nat)
then show ?thesis

unfolding Suc diff-power-eq-sum
using atLeast0LessThan diff-Suc-1 by presburger

qed

lemma power-diff-est:
assumes (a :: real) ≥ b
assumes b ≥ 0
shows a^k − b^k ≤ (a−b) ∗ k ∗ a^(k−1 )

proof −
have a^k − b^k = (a−b) ∗ (

∑
i = 0 ..<k. a ^ i ∗ b ^ (k − 1 − i))

by (rule power-diff-sum)
also have ... ≤ (a−b) ∗ (

∑
i = 0 ..<k. a^i ∗ a^(k−1−i))

using assms by (intro mult-left-mono sum-mono mult-right-mono power-mono, auto)
also have ... = (a−b) ∗ (k ∗ a^(k−1 ))

by (simp add:power-add[symmetric])
finally show ?thesis by simp

qed

lemma power-diff-est-2 :
assumes (a :: real) ≥ b
assumes b ≥ 0
shows a^k − b^k ≥ (a−b) ∗ k ∗ b^(k−1 )

proof −
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have (a−b) ∗ k ∗ b^(k−1 ) = (a−b) ∗ (
∑

i=0 ..<k. b^i ∗ b^(k−1−i))
by (simp add:power-add[symmetric])

also have ... ≤ (a−b)∗ (
∑

i=0 ..<k. a^i ∗ b^(k−1−i))
using assms
by (intro mult-left-mono sum-mono mult-right-mono power-mono) auto

also have ... = a^k − b^k
by (rule power-diff-sum[symmetric])

finally show ?thesis by simp
qed

lemma of-bool-prod:
assumes finite R
shows (

∏
j ∈ R. of-bool(f j)) = (of-bool(∀ j ∈ R. f j) :: real)

using assms by (induction R rule:finite-induct) auto

Additional results about falling factorials:
lemma ffact-nonneg:

fixes x :: real
assumes k − 1 ≤ x
shows ffact k x ≥ 0
using assms unfolding prod-ffact[symmetric]
by (intro prod-nonneg ballI ) simp

lemma ffact-pos:
fixes x :: real
assumes k − 1 < x
shows ffact k x > 0
using assms unfolding prod-ffact[symmetric]
by (intro prod-pos ballI ) simp

lemma ffact-mono:
fixes x y :: real
assumes k−1 ≤ x x ≤ y
shows ffact k x ≤ ffact k y
using assms
unfolding prod-ffact[symmetric]
by (intro prod-mono) auto

lemma ffact-of-nat-nonneg:
fixes x :: ′a :: {comm-ring-1 , linordered-nonzero-semiring}
assumes x ∈ �
shows ffact k x ≥ 0

proof −
obtain y where y-def : x = of-nat y

using assms(1 ) Nats-cases by auto
have (0 :: ′a) ≤ of-nat (ffact k y)

by simp
also have ... = ffact k x

by (simp add:of-nat-ffact y-def )
finally show ?thesis by simp

qed

lemma ffact-suc-diff :
fixes x :: ( ′a :: comm-ring-1 )
shows ffact k x − ffact k (x−1 ) = of-nat k ∗ ffact (k−1 ) (x−1 ) (is ?L = ?R)

proof (cases k)
case 0
then show ?thesis by simp
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next
case (Suc n)
hence ?L = ffact (Suc n) x − ffact (Suc n) (x−1 ) by simp
also have ... = x ∗ ffact n (x−1 ) − ((x−1 )−of-nat n) ∗ ffact n (x−1 )

by (subst (1 ) ffact-Suc, simp add: ffact-Suc-rev)
also have ... = of-nat (Suc n) ∗ ffact n (x−1 )

by (simp add:algebra-simps)
also have ... = of-nat k ∗ ffact (k−1 ) (x−1 ) using Suc by simp
finally show ?thesis by simp

qed

lemma ffact-bound:
ffact k (n::nat) ≤ n^k

proof −
have ffact k n = (

∏
i=0 ..<k. (n−i))

unfolding prod-ffact-nat[symmetric]
by simp

also have ... ≤ (
∏

i=0 ..<k. n)
by (intro prod-mono) auto

also have ... = n^k
by simp

finally show ?thesis by simp
qed

lemma fact-moment-binomial:
fixes n :: nat and α :: real
assumes α ∈ {0 ..1}
defines p ≡ binomial-pmf n α
shows (

∫
ω. ffact s (real ω) ∂p) = ffact s (real n) ∗ α^s (is ?L = ?R)

proof (cases s ≤ n)
case True
have ?L = (

∑
k≤n. (real (n choose k) ∗ α ^ k ∗ (1 − α) ^ (n − k)) ∗ real (ffact s k))

unfolding p-def using assms by (subst expectation-binomial-pmf ′) (auto simp add:of-nat-ffact)
also have ... = (

∑
k ∈ {0+s..(n−s)+s}. (real (n choose k) ∗ α ^ k ∗ (1 − α) ^ (n − k)) ∗

ffact s k)
using True ffact-nat-triv by (intro sum.mono-neutral-cong-right) auto

also have ... = (
∑

k=0 ..n−s. α^s ∗ real (n choose (k+s)) ∗ α^k ∗ (1−α)^(n−(k+s)) ∗ffact s
(k+s))

by (subst sum.atLeastAtMost-shift-bounds, simp add:algebra-simps power-add)
also have ... = α^s ∗ (

∑
k≤n−s. real (n choose (k+s))∗ffact s (k+s)∗α^k∗(1−α)^((n−s)−k))

using atMost-atLeast0 by (simp add: sum-distrib-left algebra-simps cong:sum.cong)
also have ... = α^s ∗ (

∑
k≤n−s. real (n choose (k+s))∗fact (k+s) / fact k ∗ α^k∗(1−α)^((n−s)−k))

using real-of-nat-div[OF fact-dvd[OF le-add1 ]]
by (subst fact-div-fact-ffact-nat[symmetric], auto)

also have ... = α^s ∗ (
∑

k≤n−s.
(fact n / fact (n−s)) ∗ fact (n−s) / (fact ((n−s)−k) ∗ fact k) ∗ α^k∗(1−α)^((n−s)−k))
using True by (intro arg-cong2 [where f=(∗)] sum.cong)
(auto simp add: binomial-fact algebra-simps)

also have ... = α^s ∗ (fact n / fact (n − s)) ∗
(
∑

k≤n−s. fact (n−s) / (fact ((n−s)−k) ∗ fact k) ∗ α^k∗(1−α)^((n−s)−k))
by (simp add:sum-distrib-left algebra-simps)

also have ... = α^s ∗ (fact n / fact (n − s)) ∗ (
∑

k≤n−s. ((n−s) choose k) ∗ α^k∗(1−α)^((n−s)−k))
using True by (intro-cong [σ2(∗)] more: sum.cong) (auto simp add: binomial-fact)

also have ... = α^s ∗ real (fact n div fact (n − s)) ∗ (α+(1−α))^(n−s)
using True real-of-nat-div[OF fact-dvd] by (subst binomial-ring, simp)

also have ... = α^s ∗ real (ffact s n)
by (subst fact-div-fact-ffact-nat[OF True], simp)

also have ... = ?R
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by (subst of-nat-ffact, simp)
finally show ?thesis by simp

next
case False
have ?L = (

∑
k≤n. (real (n choose k) ∗ α ^ k ∗ (1 − α) ^ (n − k)) ∗ real (ffact s k))

unfolding p-def using assms by (subst expectation-binomial-pmf ′) (auto simp add:of-nat-ffact)
also have ... = (

∑
k≤n. (real (n choose k) ∗ α ^ k ∗ (1 − α) ^ (n − k)) ∗ real 0 )

using False
by (intro-cong [σ2(∗),σ1 of-nat] more: sum.cong ffact-nat-triv) auto

also have ... = 0 by simp
also have ... = real (ffact s n) ∗ α^s

using False by (subst ffact-nat-triv, auto)
also have ... = ?R

by (subst of-nat-ffact, simp)
finally show ?thesis by simp

qed

The following describes polynomials of a given maximal degree as a subset of the functions,
similar to the subsets � or � as subsets of larger number classes.
definition Polynomials (�)

where Polynomials k = {f . ∃ p. f = poly p ∧ degree p ≤ k}

lemma Polynomials-mono:
assumes s ≤ t
shows � s ⊆ � t
using assms unfolding Polynomials-def by auto

lemma Polynomials-addI :
assumes f ∈ � k g ∈ � k
shows (λω. f ω + g ω) ∈ � k

proof −
obtain pf pg where fg-def : f = poly pf degree pf ≤ k g = poly pg degree pg ≤ k

using assms unfolding Polynomials-def by blast
hence degree (pf + pg) ≤ k (λx. f x + g x) = poly (pf + pg)

using degree-add-le by auto
thus ?thesis unfolding Polynomials-def by auto

qed

lemma Polynomials-diffI :
fixes f g :: ′a :: comm-ring ⇒ ′a
assumes f ∈ � k g ∈ � k
shows (λx. f x − g x) ∈ � k

proof −
obtain pf pg where fg-def : f = poly pf degree pf ≤ k g = poly pg degree pg ≤ k

using assms unfolding Polynomials-def by blast
hence degree (pf − pg) ≤ k (λx. f x − g x) = poly (pf − pg)

using degree-diff-le by auto
thus ?thesis unfolding Polynomials-def by auto

qed

lemma Polynomials-idI :
(λx. x) ∈ (� 1 :: ( ′a::comm-ring-1 ⇒ ′a) set)

proof −
have (λx. x) = poly [: 0 ,(1 :: ′a) :]

by (intro ext, auto)
also have ... ∈ � 1

unfolding Polynomials-def by auto
finally show ?thesis by simp
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qed

lemma Polynomials-constI :
(λx. c) ∈ � k

proof −
have (λx. c) = poly [: c :]

by (intro ext, simp)
also have ... ∈ � k

unfolding Polynomials-def by auto
finally show ?thesis by simp

qed

lemma Polynomials-multI :
fixes f g :: ′a :: {comm-ring} ⇒ ′a
assumes f ∈ � s g ∈ � t
shows (λx. f x ∗ g x) ∈ � (s+t)

proof −
obtain pf pg where xy-def : f = poly pf degree pf ≤ s g = poly pg degree pg ≤ t

using assms unfolding Polynomials-def by blast

have degree (pf ∗ pg) ≤ degree pf + degree pg
by (intro degree-mult-le)

also have ... ≤ s + t
using xy-def by (intro add-mono) auto

finally have degree (pf ∗ pg) ≤ s+t by simp
moreover have (λx. f x ∗ g x) = poly (pf ∗ pg)

using xy-def by auto
ultimately show ?thesis unfolding Polynomials-def by auto

qed

lemma Polynomials-composeI :
fixes f g :: ′a :: {comm-semiring-0 , semiring-no-zero-divisors} ⇒ ′a
assumes f ∈ � s g ∈ � t
shows (λx. f (g x)) ∈ � (s∗t)

proof −
obtain pf pg where xy-def : f = poly pf degree pf ≤ s g = poly pg degree pg ≤ t

using assms unfolding Polynomials-def by blast
have degree (pf ◦p pg) = degree pf ∗ degree pg

by (intro degree-pcompose)
also have ... ≤ s ∗ t

using xy-def by (intro mult-mono) auto
finally have degree (pf ◦p pg) ≤ s ∗ t

by simp
moreover have (λx. f (g x)) = poly (pf ◦p pg)

unfolding xy-def
by (intro ext poly-pcompose[symmetric])

ultimately show ?thesis unfolding Polynomials-def by auto
qed

lemma Polynomials-const-left-multI :
fixes c :: ′a :: {comm-ring}
assumes f ∈ � k
shows (λx. c ∗ f x) ∈ � k

proof −
have (λx. c ∗ f x) ∈ � (0+k)

by (intro Polynomials-multI Polynomials-constI assms)
thus ?thesis by simp

qed
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lemma Polynomials-const-right-multI :
fixes c :: ′a :: {comm-ring}
assumes f ∈ � k
shows (λx. f x ∗ c) ∈ � k

proof −
have (λx. f x ∗ c) ∈ � (k+0 )

by (intro Polynomials-multI Polynomials-constI assms)
thus ?thesis by simp

qed

lemma Polynomials-const-divI :
fixes c :: ′a :: {field}
assumes f ∈ � k
shows (λx. f x / c) ∈ � k

proof −
have (λx. f x ∗ (1/c)) ∈ � (k+0 )

by (intro Polynomials-multI Polynomials-constI assms)
thus ?thesis by simp

qed

lemma Polynomials-ffact: (λx. ffact s (x − y)) ∈ (� s :: ( ′a :: comm-ring-1 ⇒ ′a) set)
proof (induction s arbitrary: y)

case 0
then show ?case

using Polynomials-constI [where c=1 ] by simp
next

case (Suc s)
have (λ(x :: ′a). ffact (Suc s) (x−y)) = (λx. (x−y) ∗ ffact s (x − (y+1 )))

by (simp add: ffact-Suc algebra-simps)
also have ... ∈ � (1+s)

by (intro Polynomials-multI Suc Polynomials-diffI Polynomials-idI Polynomials-constI )
finally show ?case by simp

qed

lemmas Polynomials-intros =
Polynomials-const-divI
Polynomials-composeI
Polynomials-const-left-multI
Polynomials-const-right-multI
Polynomials-multI
Polynomials-addI
Polynomials-diffI
Polynomials-idI
Polynomials-constI
Polynomials-ffact

definition C 2 :: real where C 2 = 7 .5
definition C 3 :: real where C 3 = 16

A locale fixing the sets of balls and bins
locale balls-and-bins-abs =

fixes R :: ′a set and B :: ′b set
assumes fin-B: finite B and B-ne: B 6= {}
assumes fin-R: finite R

begin

Independent balls and bins space:
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definition Ω
where Ω = prod-pmf R (λ-. pmf-of-set B)

lemma set-pmf-Ω: set-pmf Ω = R →E B
unfolding Ω-def set-prod-pmf [OF fin-R]
by (simp add:comp-def set-pmf-of-set[OF B-ne fin-B])

lemma card-B-gt-0 : card B > 0
using B-ne fin-B by auto

lemma card-B-ge-1 : card B ≥ 1
using card-B-gt-0 by simp

definition Z j ω = real (card {i. i ∈ R ∧ ω i = (j:: ′b)})
definition Y ω = real (card (ω ‘ R))
definition µ = real (card B) ∗ (1 − (1−1/real (card B))^card R)

Factorial moments for the random variable describing the number of times a bin will be
hit:
lemma fact-moment-balls-and-bins:

assumes J ⊆ B J 6= {}
shows (

∫
ω. ffact s (

∑
j ∈ J . Z j ω) ∂Ω) =

ffact s (real (card R)) ∗ (real (card J ) / real (card B))^s
(is ?L = ?R)

proof −
let ?α = real (card J ) / real (card B)
let ?q = binomial-pmf (card R) ?α
let ?Y = (λω. card {r ∈ R. ω r ∈ J})

have fin-J : finite J
using finite-subset assms(1 ) fin-B by auto

have Z-sum-eq: (
∑

j ∈ J . Z j ω) = real (?Y ω) for ω
proof −

have ?Y ω = card (
⋃

j ∈ J . {r ∈ R. ω r= j})
by (intro arg-cong[where f=card]) auto

also have ... = (
∑

i∈J . card {r ∈ R. ω r = i})
using fin-R fin-J by (intro card-UN-disjoint) auto

finally have ?Y ω = (
∑

j ∈ J . card {r ∈ R. ω r = j}) by simp
thus ?thesis
unfolding Z-def of-nat-sum[symmetric] by simp

qed

have card-J : card J ≤ card B
using assms(1 ) fin-B card-mono by auto

have α-range: ?α ≥ 0 ?α ≤ 1
using card-J card-B-gt-0 by auto

have pmf (map-pmf (λω. ω ∈ J ) (pmf-of-set B)) x = pmf (bernoulli-pmf ?α) x
(is ?L1=?R1 ) for x

proof −
have ?L1 = real (card (B ∩ {ω. (ω ∈ J ) = x})) / real (card B)

using B-ne fin-B
by (simp add:pmf-map measure-pmf-of-set vimage-def )

also have ... = (if x then (card J ) else (card (B − J ))) / real (card B)
using Int-absorb1 [OF assms(1 )] by (auto simp add:Diff-eq Int-def )

also have ... = (if x then (card J ) / card B else (real (card B) − card J ) / real (card B))
using card-J fin-J assms(1 ) by (simp add: of-nat-diff card-Diff-subset)
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also have ... = (if x then ?α else (1 − ?α))
using card-B-gt-0 by (simp add:divide-simps)

also have ... = ?R1
using α-range by auto

finally show ?thesis by simp
qed
hence c:map-pmf (λω. ω ∈ J ) (pmf-of-set B) = bernoulli-pmf ?α

by (intro pmf-eqI ) simp

have map-pmf (λω. λr ∈ R. ω r ∈ J ) Ω = prod-pmf R (λ-. (map-pmf (λω. ω ∈ J ) (pmf-of-set
B)))

unfolding map-pmf-def Ω-def restrict-def using fin-R
by (subst Pi-pmf-bind[where d ′=undefined]) auto

also have ... = prod-pmf R (λ-. bernoulli-pmf ?α)
unfolding c by simp

finally have b:map-pmf (λω. λr ∈ R. ω r ∈ J ) Ω = prod-pmf R (λ-. bernoulli-pmf ?α)
by simp

have map-pmf ?Y Ω = map-pmf ((λω. card {r ∈ R. ω r}) ◦ (λω. λr∈R. ω r ∈ J )) Ω
unfolding comp-def
by (intro map-pmf-cong arg-cong[where f=card]) (auto simp add:comp-def )

also have ... = (map-pmf (λω. card {r ∈ R. ω r}) ◦ map-pmf (λω. λr ∈ R. ω r ∈ J )) Ω
by (subst map-pmf-compose[symmetric]) auto

also have ... = map-pmf (λω. card {r ∈ R. ω r}) (prod-pmf R (λ-. (bernoulli-pmf ?α)))
unfolding comp-def b by simp

also have ... = ?q
using α-range by (intro binomial-pmf-altdef ′[symmetric] fin-R) auto

finally have a:map-pmf ?Y Ω =?q
by simp

have ?L = (
∫
ω. ffact s (real (?Y ω)) ∂Ω)

unfolding Z-sum-eq by simp
also have ... = (

∫
ω. ffact s (real ω) ∂(map-pmf ?Y Ω))

by simp
also have ... = (

∫
ω. ffact s (real ω) ∂?q)

unfolding a by simp
also have ... = ?R

using α-range by (subst fact-moment-binomial, auto)
finally show ?thesis by simp

qed

Expectation and variance for the number of distinct bins that are hit by at least one ball
in the fully independent model. The result for the variance is improved by a factor of 4
w.r.t. the paper.
lemma

shows exp-balls-and-bins: measure-pmf .expectation Ω Y = µ (is ?AL = ?AR)
and var-balls-and-bins: measure-pmf .variance Ω Y ≤ card R ∗ (real (card R) − 1 ) / card B
(is ?BL ≤ ?BR)

proof −
let ?b = real (card B)
let ?r = card R
define Z :: ′b ⇒ ( ′a ⇒ ′b) ⇒ real

where Z = (λi ω. of-bool(i /∈ ω ‘ R))
define α where α = (1 − 1 / ?b)^?r
define β where β = (1 − 2 / ?b)^?r

have card (B × B ∩ {x. fst x = snd x}) = card ((λx. (x,x)) ‘ B)
by (intro arg-cong[where f=card]) auto
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also have ... = card B
by (intro card-image, simp add:inj-on-def )

finally have d: card (B × B ∩ {x. fst x = snd x}) = card B
by simp

hence count-1 : real (card (B × B ∩ {x. fst x = snd x})) = card B
by simp

have card B + card (B × B ∩ −{x. fst x = snd x}) =
card (B × B ∩ {x. fst x = snd x}) + card (B × B ∩ −{x. fst x = snd x})
by (subst d) simp

also have ... = card ((B × B ∩ {x. fst x = snd x}) ∪ (B × B ∩ −{x. fst x = snd x}))
using finite-subset[OF - finite-cartesian-product[OF fin-B fin-B]]
by (intro card-Un-disjoint[symmetric]) auto

also have ... = card (B × B)
by (intro arg-cong[where f=card]) auto

also have ... = card B^2
unfolding card-cartesian-product by (simp add:power2-eq-square)

finally have card B + card (B × B ∩ −{x. fst x = snd x}) = card B^2 by simp

hence count-2 : real (card (B × B ∩ −{x. fst x = snd x})) = real (card B)^2 − card B
by (simp add:algebra-simps flip: of-nat-add of-nat-power)

hence finite (set-pmf Ω)
unfolding set-pmf-Ω
using fin-R fin-B by (auto intro!:finite-PiE)

hence int: integrable (measure-pmf Ω) f
for f :: ( ′a ⇒ ′b) ⇒ real
by (intro integrable-measure-pmf-finite) simp

have a:prob-space.indep-vars (measure-pmf Ω) (λi. discrete) (λx ω. ω x) R
unfolding Ω-def using indep-vars-Pi-pmf [OF fin-R] by metis

have b: (
∫
ω. of-bool (ω ‘ R ⊆ A) ∂Ω) = (real (card (B ∩ A)) / real (card B))^card R

(is ?L = ?R) for A
proof −

have ?L = (
∫
ω. (

∏
j ∈ R. of-bool(ω j ∈ A)) ∂Ω)

by (intro Bochner-Integration.integral-cong ext)
(auto simp add: of-bool-prod[OF fin-R])

also have ... = (
∏

j ∈ R. (
∫
ω. of-bool(ω j ∈ A) ∂Ω))

using fin-R
by (intro prob-space.indep-vars-lebesgue-integral[OF prob-space-measure-pmf ] int

prob-space.indep-vars-compose2 [OF prob-space-measure-pmf a]) auto
also have ... = (

∏
j ∈ R. (

∫
ω. of-bool(ω ∈ A) ∂(map-pmf (λω. ω j) Ω)))

by simp
also have ... = (

∏
j ∈ R. (

∫
ω. of-bool(ω ∈ A) ∂(pmf-of-set B)))

unfolding Ω-def by (subst Pi-pmf-component[OF fin-R]) simp
also have ... = ((

∑
ω∈B. of-bool (ω ∈ A)) / real (card B)) ^ card R

by (simp add: integral-pmf-of-set[OF B-ne fin-B])
also have ... = ?R

unfolding of-bool-def sum.If-cases[OF fin-B] by simp
finally show ?thesis by simp

qed

have Z-exp: (
∫
ω. Z i ω ∂Ω) = α if i ∈ B for i

proof −
have real (card (B ∩ −{i})) = real (card (B − {i}))

by (intro-cong [σ1 card,σ1 of-nat]) auto
also have ... = real (card B − card {i})

using that by (subst card-Diff-subset) auto
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also have ... = real (card B) − real (card {i})
using fin-B that by (intro of-nat-diff card-mono) auto

finally have c: real (card (B ∩ −{i})) = real (card B) − 1
by simp

have (
∫
ω. Z i ω ∂Ω) = (

∫
ω. of-bool(ω ‘ R ⊆ − {i}) ∂Ω)

unfolding Z-def by simp
also have ... = (real (card (B ∩ −{i})) / real (card B))^card R

by (intro b)
also have ... = ((real (card B) −1 ) / real (card B))^card R

by (subst c) simp
also have ... = α

unfolding α-def using card-B-gt-0
by (simp add:divide-eq-eq diff-divide-distrib)

finally show ?thesis
by simp

qed

have Z-prod-exp: (
∫
ω. Z i ω ∗ Z j ω ∂Ω) = (if i = j then α else β)

if i ∈ B j ∈ B for i j
proof −

have real (card (B ∩ −{i,j})) = real (card (B − {i,j}))
by (intro-cong [σ1 card,σ1 of-nat]) auto

also have ... = real (card B − card {i,j})
using that by (subst card-Diff-subset) auto

also have ... = real (card B) − real (card {i,j})
using fin-B that by (intro of-nat-diff card-mono) auto

finally have c: real (card (B ∩ −{i,j})) = real (card B) − card {i,j}
by simp

have (
∫
ω. Z i ω ∗ Z j ω ∂Ω) = (

∫
ω. of-bool(ω ‘ R ⊆ − {i,j}) ∂Ω)

unfolding Z-def of-bool-conj[symmetric]
by (intro integral-cong ext) auto

also have ... = (real (card (B ∩ −{i,j})) / real (card B))^card R
by (intro b)

also have ... = ((real (card B) − card {i,j}) / real (card B))^card R
by (subst c) simp

also have ... = (if i = j then α else β)
unfolding α-def β-def using card-B-gt-0
by (simp add:divide-eq-eq diff-divide-distrib)

finally show ?thesis by simp
qed

have Y-eq: Y ω = (
∑

i ∈ B. 1 − Z i ω) if ω ∈ set-pmf Ω for ω
proof −

have set-pmf Ω ⊆ Pi R (λ-. B)
using set-pmf-Ω by (simp add:PiE-def )

hence ω ‘ R ⊆ B
using that by auto

hence Y ω = card (B ∩ ω ‘ R)
unfolding Y-def using Int-absorb1 by metis

also have ... = (
∑

i ∈ B. of-bool(i ∈ ω ‘ R))
unfolding of-bool-def sum.If-cases[OF fin-B] by(simp)

also have ... = (
∑

i ∈ B. 1 − Z i ω)
unfolding Z-def by (intro sum.cong) (auto simp add:of-bool-def )

finally show Y ω = (
∑

i ∈ B. 1 − Z i ω) by simp
qed
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have Y-sq-eq: (Y ω)2 = (
∑

(i,j) ∈ B × B. 1 − Z i ω − Z j ω + Z i ω ∗ Z j ω)
if ω ∈ set-pmf Ω for ω
unfolding Y-eq[OF that] power2-eq-square sum-product sum.cartesian-product
by (intro sum.cong) (auto simp add:algebra-simps)

have measure-pmf .expectation Ω Y = (
∫
ω. (

∑
i ∈ B. 1 − Z i ω) ∂Ω)

using Y-eq by (intro integral-cong-AE AE-pmfI ) auto
also have ... = (

∑
i ∈ B. 1 − (

∫
ω. Z i ω ∂Ω))

using int by simp
also have ... = ?b ∗ (1 − α)

using Z-exp by simp
also have ... = ?AR

unfolding α-def µ-def by simp
finally show ?AL = ?AR by simp

have measure-pmf .variance Ω Y = (
∫
ω. Y ω^2 ∂Ω) − (

∫
ω. Y ω ∂Ω)^2

using int by (subst measure-pmf .variance-eq) auto
also have ... =
(
∫
ω. (

∑
i ∈ B × B. 1 − Z (fst i) ω − Z (snd i) ω + Z (fst i) ω ∗ Z (snd i) ω) ∂Ω) −

(
∫
ω. (

∑
i ∈ B. 1 − Z i ω) ∂Ω)^2

using Y-eq Y-sq-eq
by (intro-cong [σ2(−),σ2 power ] more: integral-cong-AE AE-pmfI ) (auto simp add:case-prod-beta)

also have ... =
(
∑

i ∈ B × B. (
∫
ω. (1 − Z (fst i) ω − Z (snd i) ω + Z (fst i) ω ∗ Z (snd i) ω) ∂Ω)) −

(
∑

i ∈ B. (
∫
ω. (1 − Z i ω) ∂Ω))^2

by (intro-cong [σ2 (−), σ2 power ] more: integral-sum int)
also have ... =
(
∑

i ∈ B × B. (
∫
ω. (1 − Z (fst i) ω − Z (snd i) ω + Z (fst i) ω ∗ Z (snd i) ω) ∂Ω)) −

(
∑

i ∈ B × B. (
∫
ω. (1 − Z (fst i) ω) ∂Ω) ∗ (

∫
ω. (1 − Z (snd i) ω) ∂Ω))

unfolding power2-eq-square sum-product sum.cartesian-product
by (simp add:case-prod-beta)

also have ... = (
∑

(i,j) ∈ B × B. (
∫
ω. (1 − Z i ω − Z j ω + Z i ω ∗ Z j ω) ∂Ω) −

(
∫
ω. (1 − Z i ω) ∂Ω) ∗ (

∫
ω. (1 − Z j ω) ∂Ω))

by (subst sum-subtractf [symmetric], simp add:case-prod-beta)
also have ... = (

∑
(i,j) ∈ B × B. (

∫
ω. Z i ω ∗ Z j ω ∂Ω) −(

∫
ω. Z i ω ∂Ω) ∗ (

∫
ω. Z j ω

∂Ω))
using int by (intro sum.cong refl) (simp add:algebra-simps case-prod-beta)

also have ... = (
∑

i ∈ B × B. (if fst i = snd i then α − α^2 else β − α^2 ))
by (intro sum.cong refl)
(simp add:Z-exp Z-prod-exp mem-Times-iff case-prod-beta power2-eq-square)

also have ... = ?b ∗ (α − α2) + (?b^2 − card B) ∗ (β − α2)
using count-1 count-2 finite-cartesian-product fin-B by (subst sum.If-cases) auto

also have ... = ?b^2 ∗ (β − α2) + ?b ∗ (α − β)
by (simp add:algebra-simps)

also have ... = ?b ∗ ((1−1/?b)^?r − (1−2/?b)^?r) − ?b^2 ∗ (((1−1/?b)^2 )^?r − (1−2/?b)^?r)
unfolding β-def α-def
by (simp add: power-mult[symmetric] algebra-simps)

also have ... ≤ card R ∗ (real (card R) − 1 )/ card B (is ?L ≤ ?R)
proof (cases ?b ≥ 2 )

case True
have ?L ≤
?b ∗ (((1 − 1 /?b) − (1−2 /?b)) ∗ ?r ∗ (1−1/?b)^(?r − 1 )) −
?b^2 ∗ ((((1−1 /?b)^2 ) − ((1 − 2 /?b))) ∗ ?r ∗ ((1−2/?b))^(?r − 1 ))
using True
by (intro diff-mono mult-left-mono power-diff-est-2 power-diff-est divide-right-mono)
(auto simp add:power2-eq-square algebra-simps)

also have ... = ?b ∗ ((1/?b) ∗ ?r ∗ (1−1/?b)^(?r−1 )) − ?b^2∗((1/?b^2 )∗?r∗((1−2/?b))^(?r−1 ))
by (intro arg-cong2 [where f=(−)] arg-cong2 [where f=(∗)] refl)
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(auto simp add:algebra-simps power2-eq-square)
also have ... = ?r ∗ ((1−1/?b)^(?r − 1 ) − ((1−2/?b))^(?r − 1 ))

by (simp add:algebra-simps)
also have ... ≤ ?r ∗ (((1−1/?b) − (1−2/?b)) ∗ (?r − 1 ) ∗ (1−1/?b)^(?r −1 −1 ))

using True by (intro mult-left-mono power-diff-est) (auto simp add:algebra-simps)
also have ... ≤ ?r ∗ ((1/?b) ∗ (?r − 1 ) ∗ 1^(?r − 1−1 ))

using True by (intro mult-left-mono mult-mono power-mono) auto
also have ... = ?R

using card-B-gt-0 by auto
finally show ?L ≤ ?R by simp

next
case False
hence ?b = 1 using card-B-ge-1 by simp
thus ?L ≤ ?R

by (cases card R =0 ) auto
qed
finally show measure-pmf .variance Ω Y ≤ card R ∗ (real (card R) − 1 )/ card B

by simp
qed

definition lim-balls-and-bins k p = (
prob-space.k-wise-indep-vars (measure-pmf p) k (λ-. discrete) (λx ω. ω x) R ∧
(∀ x. x ∈ R −→ map-pmf (λω. ω x) p = pmf-of-set B))

lemma indep:
assumes lim-balls-and-bins k p
shows prob-space.k-wise-indep-vars (measure-pmf p) k (λ-. discrete) (λx ω. ω x) R
using assms lim-balls-and-bins-def by simp

lemma ran:
assumes lim-balls-and-bins k p x ∈ R
shows map-pmf (λω. ω x) p = pmf-of-set B
using assms lim-balls-and-bins-def by simp

lemma Z-integrable:
fixes f :: real ⇒ real
assumes lim-balls-and-bins k p
shows integrable p (λω. f (Z i ω) )
unfolding Z-def using fin-R card-mono
by (intro integrable-pmf-iff-bounded[where C=Max (abs ‘ f ‘ real ‘ {..card R})])
fastforce+

lemma Z-any-integrable-2 :
fixes f :: real ⇒ real
assumes lim-balls-and-bins k p
shows integrable p (λω. f (Z i ω + Z j ω))

proof −
have q:real (card A) + real (card B) ∈ real ‘ {..2 ∗ card R} if A ⊆ R B ⊆ R for A B
proof −

have card A + card B ≤ card R + card R
by (intro add-mono card-mono fin-R that)

also have ... = 2 ∗ card R by simp
finally show ?thesis by force

qed

thus ?thesis
unfolding Z-def using fin-R card-mono abs-triangle-ineq
by (intro integrable-pmf-iff-bounded[where C=Max (abs ‘ f ‘ real ‘ {..2∗card R})] Max-ge
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finite-imageI imageI ) auto
qed

lemma hit-count-prod-exp:
assumes j1 ∈ B j2 ∈ B s+t ≤ k
assumes lim-balls-and-bins k p
defines L ≡ {(xs,ys). set xs ⊆ R ∧ set ys ⊆ R ∧
(set xs ∩ set ys = {} ∨ j1 = j2 ) ∧ length xs = s ∧ length ys = t}

shows (
∫
ω. Z j1 ω^s ∗ Z j2 ω^t ∂p) =

(
∑

(xs,ys) ∈ L. (1/real (card B))^(card (set xs ∪ set ys)))
(is ?L = ?R)

proof −
define W1 :: ′a ⇒ ( ′a ⇒ ′b) ⇒ real

where W1 = (λi ω. of-bool (ω i = j1 ) :: real)
define W2 :: ′a ⇒ ( ′a ⇒ ′b) ⇒ real

where W2 = (λi ω. of-bool (ω i = j2 ) :: real)
define τ :: ′a list × ′a list ⇒ ′a ⇒ ′b

where τ = (λl x. if x ∈ set (fst l) then j1 else j2 )

have τ -check-1 : τ l x = j1 if x ∈ set (fst l) and l ∈ L for x l
using that unfolding τ -def L-def by auto

have τ -check-2 : τ l x = j2 if x ∈ set (snd l) and l ∈ L for x l
using that unfolding τ -def L-def by auto

have τ -check-3 : τ l x ∈ B for x l
using assms(1 ,2 ) unfolding τ -def by simp

have Z1-eq: Z j1 ω = (
∑

i ∈ R. W1 i ω) for ω
using fin-R unfolding Z-def W1-def
by (simp add:of-bool-def sum.If-cases Int-def )

have Z2-eq: Z j2 ω = (
∑

i ∈ R. W2 i ω) for ω
using fin-R unfolding Z-def W2-def
by (simp add:of-bool-def sum.If-cases Int-def )

define α where α = 1 / real (card B)

have a: (
∫
ω. (

∏
x←a. W1 x ω) ∗ (

∏
y←b. W2 y ω) ∂p) = 0 (is ?L1 = 0 )

if x ∈ set a ∩ set b j1 6= j2 length a = s length b = t for x a b
proof −

have (
∏

x←a. W1 x ω) ∗ (
∏

y←b. W2 y ω) = 0 for ω
proof −

have W1 x ω = 0 ∨ W2 x ω = 0
unfolding W1-def W2-def using that by simp

hence (
∏

x←a. W1 x ω) = 0 ∨ (
∏

y←b. W2 y ω) = 0
unfolding prod-list-zero-iff using that(1 ) by auto

thus ?thesis by simp
qed
hence ?L1 = (

∫
ω. 0 ∂p)

by (intro arg-cong2 [where f=measure-pmf .expectation]) auto
also have ... = 0

by simp
finally show ?thesis by simp

qed

have b: prob-space.indep-vars p (λ-. discrete) (λi ω. ω i) (set (fst x) ∪ set (snd x))
if x ∈ L for x

proof −
have card (set (fst x) ∪ set (snd x)) ≤ card (set (fst x)) + card (set (snd x))
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by (intro card-Un-le)
also have ... ≤ length (fst x) + length (snd x)

by (intro add-mono card-length)
also have ... = s + t

using that L-def by auto
also have ... ≤ k using assms(3 ) by simp
finally have card (set (fst x) ∪ set (snd x)) ≤ k by simp
moreover have set (fst x) ∪ set (snd x) ⊆ R

using that L-def by auto
ultimately show ?thesis
by (intro prob-space.k-wise-indep-vars-subset[OF prob-space-measure-pmf indep[OF assms(4 )]])

auto
qed

have c: (
∫
ω. of-bool (ω x = z) ∂p) = α (is ?L1 = -)

if z ∈ B x ∈ R for x z
proof −

have ?L1 = (
∫
ω. indicator {ω. ω x = z} ω ∂p)

unfolding indicator-def by simp
also have ... = measure p {ω. ω x = z}

by simp
also have ... = measure (map-pmf (λω. ω x) p) {z}

by (subst measure-map-pmf ) (simp add:vimage-def )
also have ... = measure (pmf-of-set B) {z}

using that by (subst ran[OF assms(4 )]) auto
also have ... = 1/card B

using fin-B that by (subst measure-pmf-of-set) auto
also have ... = α

unfolding α-def by simp
finally show ?thesis by simp

qed

have d: abs x ≤ 1 =⇒ abs y ≤ 1 =⇒ abs (x∗y) ≤ 1 for x y :: real
by (simp add:abs-mult mult-le-one)

have e:(
∧

x. x ∈ set xs =⇒ abs x ≤1 ) =⇒ abs(prod-list xs) ≤ 1 for xs :: real list
using d by (induction xs, simp, simp)

have ?L = (
∫
ω. (

∑
j ∈ R. W1 j ω)^s ∗ (

∑
j ∈ R. W2 j ω)^t ∂p)

unfolding Z1-eq Z2-eq by simp
also have ... = (

∫
ω. (

∑
xs | set xs ⊆ R ∧ length xs = s. (

∏
x ← xs. W1 x ω)) ∗

(
∑

ys | set ys ⊆ R ∧ length ys = t. (
∏

y ← ys. W2 y ω)) ∂p)
unfolding sum-power-distrib[OF fin-R] by simp

also have ... = (
∫
ω.

(
∑

l∈{xs. set xs ⊆ R ∧ length xs = s} × {ys. set ys ⊆ R ∧ length ys = t}.
(
∏

x←fst l. W1 x ω) ∗ (
∏

y←snd l. W2 y ω)) ∂p)
by (intro arg-cong[where f=integralL p])
(simp add: sum-product sum.cartesian-product case-prod-beta)

also have ... = (
∑

l∈{xs. set xs ⊆ R ∧ length xs = s} × {ys. set ys ⊆ R ∧ length ys = t}.
(
∫
ω. (

∏
x←fst l. W1 x ω) ∗ (

∏
y←snd l. W2 y ω) ∂p))

unfolding W1-def W2-def
by (intro integral-sum integrable-pmf-iff-bounded[where C=1 ] d e) auto

also have ... = (
∑

l∈ L. (
∫
ω. (

∏
x←fst l. W1 x ω) ∗ (

∏
y←snd l. W2 y ω) ∂p))

unfolding L-def using a by (intro sum.mono-neutral-right finite-cartesian-product
finite-lists-length-eq fin-R) auto

also have ... = (
∑

l∈ L. (
∫
ω. (

∏
x←fst l.

of-bool(ω x = τ l x)) ∗ (
∏

y←snd l. of-bool(ω y = τ l y)) ∂p))
unfolding W1-def W2-def using τ -check-1 τ -check-2
by (intro sum.cong arg-cong[where f=integralL p] ext arg-cong2 [where f=(∗)]
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arg-cong[where f=prod-list]) auto
also have ... = (

∑
l∈ L. (

∫
ω. (

∏
x←(fst l@snd l). of-bool(ω x = τ l x))∂ p))

by simp
also have ... = (

∑
l∈ L. (

∫
ω. (

∏
x ∈ set (fst l@snd l).

of-bool(ω x = τ l x)^count-list (fst l@snd l) x) ∂ p))
unfolding prod-list-eval by simp

also have ... = (
∑

l∈ L. (
∫
ω. (

∏
x ∈ set (fst l) ∪ set (snd l).

of-bool(ω x = τ l x)^count-list (fst l@snd l) x) ∂ p))
by simp

also have ... = (
∑

l∈ L. (
∫
ω. (

∏
x ∈ set (fst l) ∪ set (snd l). of-bool(ω x = τ l x)) ∂ p))

using count-list-gr-1
by (intro sum.cong arg-cong[where f=integralL p] ext prod.cong) force+

also have ... = (
∑

l∈ L. (
∏

x ∈ set (fst l) ∪ set (snd l). (
∫
ω. of-bool(ω x = τ l x) ∂ p)))

by (intro sum.cong prob-space.indep-vars-lebesgue-integral[OF prob-space-measure-pmf ]
integrable-pmf-iff-bounded[where C=1 ]
prob-space.indep-vars-compose2 [OF prob-space-measure-pmf b]) auto

also have ... = (
∑

l∈ L. (
∏

x ∈ set (fst l) ∪ set (snd l). α))
using τ -check-3 unfolding L-def by (intro sum.cong prod.cong c) auto

also have ... = (
∑

l ∈ L. α^(card (set (fst l) ∪ set (snd l))))
by simp

also have ... = ?R
unfolding L-def α-def by (simp add:case-prod-beta)

finally show ?thesis by simp
qed

lemma hit-count-prod-pow-eq:
assumes i ∈ B j ∈ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes s+t ≤ k
shows (

∫
ω. (Z i ω)^s ∗ (Z j ω)^t ∂p) = (

∫
ω. (Z i ω)^s ∗ (Z j ω)^t ∂q)

unfolding hit-count-prod-exp[OF assms(1 ,2 ,5 ,3 )]
unfolding hit-count-prod-exp[OF assms(1 ,2 ,5 ,4 )]
by simp

lemma hit-count-sum-pow-eq:
assumes i ∈ B j ∈ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes s ≤ k
shows (

∫
ω. (Z i ω + Z j ω)^s ∂p) = (

∫
ω. (Z i ω + Z j ω)^s ∂q)

(is ?L = ?R)
proof −

have q2 : |Z i x ^ l ∗ Z j x ^ (s − l)| ≤ real (card R ^ s)
if l ∈ {..s} for s i j l x

proof −
have |Z i x ^ l ∗ Z j x ^ (s − l)| ≤ Z i x ^ l ∗ Z j x ^ (s − l)

unfolding Z-def by auto
also have ... ≤ real (card R) ^ l ∗ real (card R) ^ (s−l)

unfolding Z-def
by (intro mult-mono power-mono of-nat-mono card-mono fin-R) auto

also have ... = real (card R)^s using that
by (subst power-add[symmetric]) simp

also have ... = real (card R^s)
by simp

finally show ?thesis by simp
qed
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have ?L = (
∫
ω. (

∑
l≤s. real (s choose l) ∗ (Z i ω^l ∗ Z j ω^(s−l))) ∂p)

by (subst binomial-ring) (simp add:algebra-simps)
also have ... = (

∑
l≤s. (

∫
ω. real (s choose l) ∗ (Z i ω^l ∗ Z j ω^(s−l)) ∂p))

by (intro integral-sum integrable-mult-right
integrable-pmf-iff-bounded[where C=card R^s] q2 ) auto

also have ... = (
∑

l≤s. real (s choose l) ∗ (
∫
ω. (Z i ω^l ∗ Z j ω^(s−l)) ∂p))

by (intro sum.cong integral-mult-right
integrable-pmf-iff-bounded[where C=card R^s] q2 ) auto

also have ... = (
∑

l≤s. real (s choose l) ∗ (
∫
ω. (Z i ω^l ∗ Z j ω^(s−l)) ∂q))

using assms(5 )
by (intro-cong [σ2 (∗)] more: sum.cong hit-count-prod-pow-eq[OF assms(1−4 )])

auto
also have ... = (

∑
l≤s. (

∫
ω. real (s choose l) ∗ (Z i ω^l ∗ Z j ω^(s−l)) ∂q))

by (intro sum.cong integral-mult-right[symmetric]
integrable-pmf-iff-bounded[where C=card R^s] q2 ) auto

also have ... = (
∫
ω. (

∑
l≤s. real (s choose l) ∗ (Z i ω^l ∗ Z j ω^(s−l))) ∂q)

by (intro integral-sum[symmetric] integrable-mult-right
integrable-pmf-iff-bounded[where C=card R^s] q2 ) auto

also have ... = ?R
by (subst binomial-ring) (simp add:algebra-simps)

finally show ?thesis by simp
qed

lemma hit-count-sum-poly-eq:
assumes i ∈ B j ∈ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes f ∈ � k
shows (

∫
ω. f (Z i ω + Z j ω) ∂p) = (

∫
ω. f (Z i ω + Z j ω) ∂q)

(is ?L = ?R)
proof −

obtain fp where f-def : f = poly fp degree fp ≤ k
using assms(5 ) unfolding Polynomials-def by auto

have ?L = (
∑

d≤degree fp. (
∫
ω. poly.coeff fp d ∗ (Z i ω + Z j ω) ^ d ∂p))

unfolding f-def poly-altdef
by (intro integral-sum integrable-mult-right Z-any-integrable-2 [OF assms(3 )])

also have ... = (
∑

d≤degree fp. poly.coeff fp d ∗ (
∫
ω. (Z i ω + Z j ω) ^ d ∂p))

by (intro sum.cong integral-mult-right Z-any-integrable-2 [OF assms(3 )])
simp

also have ... = (
∑

d≤degree fp. poly.coeff fp d ∗(
∫
ω. (Z i ω + Z j ω) ^ d ∂q))

using f-def
by (intro sum.cong arg-cong2 [where f=(∗)] hit-count-sum-pow-eq[OF assms(1−4 )]) auto

also have ... = (
∑

d≤degree fp. (
∫
ω. poly.coeff fp d ∗ (Z i ω + Z j ω) ^ d ∂q))

by (intro sum.cong) auto
also have ... = ?R

unfolding f-def poly-altdef by (intro integral-sum[symmetric]
integrable-mult-right Z-any-integrable-2 [OF assms(4 )])

finally show ?thesis by simp
qed

lemma hit-count-poly-eq:
assumes b ∈ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes f ∈ � k
shows (

∫
ω. f (Z b ω) ∂p) = (

∫
ω. f (Z b ω) ∂q) (is ?L = ?R)

proof −
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have a:(λa. f (a / 2 )) ∈ � (k∗1 )
by (intro Polynomials-composeI [OF assms(4 )] Polynomials-intros)

have ?L =
∫
ω. f ((Z b ω + Z b ω)/2 ) ∂p

by simp
also have ... =

∫
ω. f ((Z b ω + Z b ω)/2 ) ∂q

using a by (intro hit-count-sum-poly-eq[OF assms(1 ,1 ,2 ,3 )]) simp
also have ... = ?R by simp
finally show ?thesis by simp

qed

lemma lim-balls-and-bins-from-ind-balls-and-bins:
lim-balls-and-bins k Ω

proof −
have prob-space.indep-vars (measure-pmf Ω) (λ-. discrete) (λx ω. ω x) R

unfolding Ω-def using indep-vars-Pi-pmf [OF fin-R] by metis
hence prob-space.indep-vars (measure-pmf Ω) (λ-. discrete) (λx ω. ω x) J if J ⊆ R for J

using prob-space.indep-vars-subset[OF prob-space-measure-pmf - that] by auto
hence a:prob-space.k-wise-indep-vars (measure-pmf Ω) k (λ-. discrete) (λx ω. ω x) R

by (simp add:prob-space.k-wise-indep-vars-def [OF prob-space-measure-pmf ])

have b: map-pmf (λω. ω x) Ω = pmf-of-set B if x ∈ R for x
using that unfolding Ω-def Pi-pmf-component[OF fin-R] by simp

show ?thesis
using a b fin-R fin-B unfolding lim-balls-and-bins-def by auto

qed

lemma hit-count-factorial-moments:
assumes a:j ∈ B
assumes s ≤ k
assumes lim-balls-and-bins k p
shows (

∫
ω. ffact s (Z j ω) ∂p) = ffact s (real (card R)) ∗ (1 / real (card B))^s

(is ?L = ?R)
proof −

have (λx. ffact s (x−0 ::real)) ∈ � s
by (intro Polynomials-intros)

hence b: ffact s ∈ (� k :: (real ⇒ real) set)
using Polynomials-mono[OF assms(2 )] by auto

have ?L = (
∫
ω. ffact s (Z j ω) ∂Ω)

by (intro hit-count-poly-eq[OF a assms(3 ) lim-balls-and-bins-from-ind-balls-and-bins] b)
also have ... = (

∫
ω. ffact s (

∑
i ∈ {j}. Z i ω) ∂Ω)

by simp
also have ... = ffact s (real (card R)) ∗ (real (card {j}) / real (card B)) ^ s

using assms(1 )
by (intro fact-moment-balls-and-bins fin-R fin-B) auto

also have ... = ?R
by simp

finally show ?thesis by simp
qed

lemma hit-count-factorial-moments-2 :
assumes a:i ∈ B j ∈ B
assumes i 6= j s ≤ k card R ≤ card B
assumes lim-balls-and-bins k p
shows (

∫
ω. ffact s (Z i ω + Z j ω) ∂p) ≤ 2^s

(is ?L ≤ ?R)
proof −
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have (λx. ffact s (x−0 ::real)) ∈ � s
by (intro Polynomials-intros)

hence b: ffact s ∈ (� k :: (real ⇒ real) set)
using Polynomials-mono[OF assms(4 )] by auto

have or-distrib: (a ∧ b) ∨ (a ∧ c) ←→ a ∧ (b ∨ c) for a b c
by auto

have ?L = (
∫
ω. ffact s (Z i ω + Z j ω) ∂Ω)

by (intro hit-count-sum-poly-eq[OF a assms(6 ) lim-balls-and-bins-from-ind-balls-and-bins] b)
also have ... = (

∫
ω. ffact s ((

∑
t ∈ {i,j}. Z t ω)) ∂Ω)

using assms(3 ) by simp
also have ... = ffact s (real (card R)) ∗ (real (card {i,j}) / real (card B)) ^ s

using assms(1 ,2 )
by (intro fact-moment-balls-and-bins fin-R fin-B) auto

also have ... = real (ffact s (card R)) ∗ (real (card {i,j}) / real (card B)) ^ s
by (simp add:of-nat-ffact)

also have ... ≤ (card R)^s ∗ (real (card {i,j}) / real (card B)) ^ s
by (intro mult-mono of-nat-mono ffact-bound, simp-all)

also have ... ≤ (card B)^s ∗ (real (2 ) / real (card B)) ^ s
using assms(3 )
by (intro mult-mono of-nat-mono power-mono assms(5 ), simp-all)

also have ... = ?R
using card-B-gt-0 by (simp add:divide-simps)

finally show ?thesis by simp
qed

lemma balls-and-bins-approx-helper :
fixes x :: real
assumes x ≥ 2
assumes real k ≥ 5∗x / ln x
shows k ≥ 2

and 2^(k+3 ) / fact k ≤ (1/exp x)^2
and 2 / fact k ≤ 1 / (exp 1 ∗ exp x)

proof −
have ln-inv: ln x = − ln (1/ x) if x > 0 for x :: real

using that by (subst ln-div, auto)

have apx:
exp 1 ≤ (5 ::real)
4 ∗ ln 4 ≤ (2 − 2∗exp 1/5 )∗ln (450 ::real)
ln 8 ∗ 2 ≤ (450 ::real)
4 / 5 ∗ 2 ∗ exp 1 + ln (5 / 4 ) ∗ exp 1 ≤ (5 ::real)
exp 1 ≤ (2 ::real)^4
by (approximation 10 )+

have 2 ≤ 5 ∗ (x / (x−1 ))
using assms(1 ) by (simp add:divide-simps)

also have ... ≤ 5 ∗ (x / ln x)
using assms(1 )
by (intro mult-left-mono divide-left-mono ln-le-minus-one mult-pos-pos) auto

also have ... ≤ k using assms(2 ) by simp
finally show k-ge-2 : k ≥ 2 by simp

have ln x ∗ (2 ∗ exp 1 ) = ln (((4/5 ) ∗ x)∗(5/4 )) ∗ (2 ∗ exp 1 )
by simp

also have ... = ln ((4/5 ) ∗ x) ∗ (2 ∗ exp 1 ) + ln((5/4 ))∗(2 ∗ exp 1 )
using assms(1 ) by (subst ln-mult, simp-all add:algebra-simps)

also have ... < (4/5 )∗ x ∗ (2 ∗ exp 1 ) + ln (5/4 ) ∗ (x ∗ exp 1 )
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using assms(1 ) by (intro add-less-le-mono mult-strict-right-mono ln-less-self
mult-left-mono mult-right-mono) (auto simp add:algebra-simps)

also have ... = ((4/5 ) ∗ 2 ∗ exp 1 + ln(5/4 ) ∗ exp 1 ) ∗ x
by (simp add:algebra-simps)

also have ... ≤ 5 ∗ x
using assms(1 ) apx(4 ) by (intro mult-right-mono, simp-all)

finally have 1 : ln x ∗ (2 ∗ exp 1 ) ≤ 5 ∗ x by simp

have ln 8 ≤ 3 ∗ x − 5 ∗ x ∗ ln(2∗exp 1 /5 ∗ ln x) / ln x
proof (cases x ∈ {2 ..450})

case True
then show ?thesis by (approximation 10 splitting: x=10 )

next
case False
hence x-ge-450 : x ≥ 450 using assms(1 ) by simp

have 4 ∗ ln 4 ≤ (2 − 2∗exp 1/5 )∗ln (450 ::real)
using apx(2 ) by (simp)

also have ... ≤ (2 − 2∗exp 1/5 )∗ ln x
using x-ge-450 apx(1 )
by (intro mult-left-mono iffD2 [OF ln-le-cancel-iff ], simp-all)

finally have (2 − 2∗exp 1/5 ) ∗ ln x ≥ 4 ∗ ln 4 by simp
hence 2∗exp 1/5 ∗ ln x + 0 ≤ 2 ∗ exp 1 / 5 ∗ ln x + ((2 − 2∗exp 1/5 ) ∗ ln x − 4 ∗ ln 4 )

by (intro add-mono) auto
also have ... = 4 ∗ (1/2 ) ∗ ln x − 4 ∗ ln 4

by (simp add:algebra-simps)
also have ... = 4 ∗ (ln (x powr (1/2 )) − ln 4 )

using x-ge-450 by (subst ln-powr , auto)
also have ... = 4 ∗ (ln (x powr (1/2 )/4 ))

using x-ge-450 by (subst ln-div) auto
also have ... < 4 ∗ (x powr (1/2 )/4 )

using x-ge-450 by (intro mult-strict-left-mono ln-less-self ) auto
also have ... = x powr (1/2 ) by simp
finally have 2∗ exp 1/ 5 ∗ ln x ≤ x powr (1/2 ) by simp
hence ln(2∗ exp 1/ 5 ∗ ln x) ≤ ln (x powr (1/2 ))

using x-ge-450 ln-le-cancel-iff by simp
hence 0 :ln(2∗ exp 1/ 5 ∗ ln x) / ln x ≤ 1/2

using x-ge-450 by (subst (asm) ln-powr , auto)
have ln 8 ≤ 3 ∗ x − 5 ∗ x ∗ (1/2 )

using x-ge-450 apx(3 ) by simp
also have ... ≤ 3 ∗ x − 5 ∗ x ∗ (ln(2∗ exp 1/ 5 ∗ ln x) / ln x)

using x-ge-450 by (intro diff-left-mono mult-left-mono 0 ) auto
finally show ?thesis by simp

qed

hence 2 ∗ x + ln 8 ≤ 2 ∗ x + (3 ∗ x − 5 ∗ x ∗ ln(2∗exp 1 /5 ∗ ln x) / ln x)
by (intro add-mono, auto)

also have ... = 5 ∗ x + 5 ∗ x ∗ ln(5 / (2∗exp 1∗ln x)) / ln x
using assms(1 ) by (subst ln-inv) (auto simp add:algebra-simps)

also have ... = 5 ∗ x ∗ (ln x + ln(5 / (2∗exp 1∗ln x))) / ln x
using assms(1 ) by (simp add:algebra-simps add-divide-distrib)

also have ... = 5 ∗ x ∗ (ln (5 ∗ x / (2 ∗ exp 1 ∗ ln x))) / ln x
using assms(1 ) by (subst ln-mult[symmetric], auto)

also have ... = (5 ∗ x / ln x) ∗ ln ((5 ∗ x / ln x) / (2 ∗ exp 1 ))
by (simp add:algebra-simps)

also have ... ≤ k ∗ ln (k / (2∗exp 1 ))
using assms(1 ,2 ) 1 k-ge-2
by (intro mult-mono iffD2 [OF ln-le-cancel-iff ] divide-right-mono)
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auto
finally have k ∗ ln (k/(2∗exp 1 )) ≥ 2∗x + ln 8 by simp
hence k ∗ ln(2∗exp 1/k) ≤ −2∗x − ln 8

using k-ge-2 by (subst ln-inv, auto)
hence ln ((2∗exp 1/k) powr k) ≤ ln(exp(−2∗x)) − ln 8

using k-ge-2 by (subst ln-powr , auto)
also have ... = ln(exp(−2∗x)/8 )

by (simp add:ln-div)
finally have ln ((2∗exp 1/k) powr k) ≤ ln (exp(−2∗x)/8 ) by simp
hence 1 : (2∗exp 1/k) powr k ≤ exp(−2∗x)/8

using k-ge-2 assms(1 ) by (subst (asm) ln-le-cancel-iff ) auto
have 2^(k+3 )/fact k ≤ 2^(k+3 )/(k / exp 1 )^k

using k-ge-2 by (intro divide-left-mono fact-lower-bound-1 ) auto
also have ... = 8 ∗ 2^k ∗ (exp 1 / k)^k

by (simp add:power-add algebra-simps power-divide)
also have ... = 8 ∗ (2∗exp 1/k) powr k

using k-ge-2 powr-realpow
by (simp add:power-mult-distrib[symmetric])

also have ... ≤ 8 ∗ (exp(−2∗x)/8 )
by (intro mult-left-mono 1 ) auto

also have ... = exp((−x)∗2 )
by simp

also have ... = exp(−x)^2
by (subst exp-powr [symmetric], simp)

also have ... = (1/exp x)^2
by (simp add: exp-minus inverse-eq-divide)

finally show 2 :2^(k+3 )/fact k ≤ (1/exp x)^2 by simp

have (2 ::real)/fact k = (2^(k+3 )/fact k)/(2^(k+2 ))
by (simp add:divide-simps power-add)

also have ... ≤ (1/exp x)^2/(2^(k+2 ))
by (intro divide-right-mono 2 , simp)

also have ... ≤ (1/exp x)^1/(2^(k+2 ))
using assms(1 ) by (intro divide-right-mono power-decreasing) auto

also have ... ≤ (1/exp x)^1/(2^4 )
using k-ge-2 by (intro divide-left-mono power-increasing) auto

also have ... ≤ (1/exp x)^1/exp(1 )
using k-ge-2 apx(5 ) by (intro divide-left-mono) auto

also have ... = 1/(exp 1 ∗ exp x) by simp
finally show (2 ::real)/fact k ≤ 1/(exp 1 ∗ exp x) by simp

qed

Bounds on the expectation and variance in the k-wise independent case. Here the indepe-
dence assumption is improved by a factor of two compared to the result in the paper.
lemma

assumes card R ≤ card B
assumes

∧
c. lim-balls-and-bins (k+1 ) (p c)

assumes ε ∈ {0<..1/exp(2 )}
assumes k ≥ 5 ∗ ln (card B / ε) / ln (ln (card B / ε))
shows

exp-approx: |measure-pmf .expectation (p True) Y − measure-pmf .expectation (p False) Y | ≤
ε ∗ real (card R) (is ?A) and

var-approx: |measure-pmf .variance (p True) Y − measure-pmf .variance (p False) Y | ≤ ε2

(is ?B)
proof −

let ?p1 = p False
let ?p2 = p True
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have exp (2 ::real) = 1/ (1/exp 2 ) by simp
also have ... ≤ 1/ ε

using assms(3 ) by (intro divide-left-mono) auto
also have ... ≤ real (card B)/ ε

using assms(3 ) card-B-gt-0 by (intro divide-right-mono) auto
finally have exp 2 ≤ real (card B) / ε by simp
hence k-condition-h: 2 ≤ ln (card B / ε)

using assms(3 ) card-B-gt-0 by (subst ln-ge-iff ) auto
have k-condition-h-2 : 0 < real (card B) / ε

using assms(3 ) card-B-gt-0 by (intro divide-pos-pos) auto

note k-condition = balls-and-bins-approx-helper [OF k-condition-h assms(4 )]

define ϕ :: real ⇒ real where ϕ = (λx. min x 1 )

define f where f = (λx. 1 − (−1 )^k / real (fact k) ∗ ffact k (x−1 ))
define g where g = (λx. ϕ x − f x)
have ϕ-exp: ϕ x = f x + g x for x

unfolding g-def by simp

have k-ge-2 : k ≥ 2
using k-condition(1 ) by simp

define γ where γ = 1 / real (fact k)
have γ-nonneg: γ ≥ 0

unfolding γ-def by simp

have k-le-k-plus-1 : k ≤ k+1
by simp

have f ∈ � k
unfolding f-def by (intro Polynomials-intros)

hence f-poly: f ∈ � (k+1 )
using Polynomials-mono[OF k-le-k-plus-1 ] by auto

have g-diff : |g x − g (x−1 )| = ffact (k−1 ) (x−2 ) / fact (k−1 )
if x ≥ k for x :: real

proof −
have x ≥ 2 using k-ge-2 that by simp
hence ϕ x = ϕ (x− 1 )

unfolding ϕ-def by simp
hence |g x − g (x−1 )| = |f (x−1 ) − f x|

unfolding g-def by (simp add:algebra-simps)
also have ... = |(−1 )^k / real (fact k) ∗ (ffact k (x−2 ) − ffact k (x−1 ))|

unfolding f-def by (simp add:algebra-simps)
also have ... = 1 / real (fact k) ∗ |ffact k (x−1 ) − ffact k ((x−1 )−1 )|

by (simp add:abs-mult)
also have ... = 1 / real (fact k) ∗ real k ∗ |ffact (k−1 ) (x−2 )|

by (subst ffact-suc-diff , simp add:abs-mult)
also have ... = |ffact (k−1 ) (x−2 )| / fact (k−1 )

using k-ge-2 by (subst fact-reduce) auto
also have ... = ffact (k−1 ) (x−2 ) / fact (k−1 )

unfolding ffact-eq-fact-mult-binomial using that k-ge-2
by (intro arg-cong2 [where f=(/)] abs-of-nonneg ffact-nonneg) auto

finally show ?thesis by simp
qed

43



have f-approx-ϕ: f x = ϕ x if f-approx-ϕ-1 : x ∈ real ‘ {0 ..k} for x
proof (cases x = 0 )

case True
hence f x = 1 − (−1 )^k / real (fact k) ∗ (

∏
i = 0 ..<k. − (real i+1 ))

unfolding f-def prod-ffact[symmetric] by (simp add:algebra-simps)
also have ... = 1 − (−1 )^k / real (fact k) ∗ ((

∏
i = 0 ..<k. (− 1 )::real) ∗ (

∏
i = 0 ..<k. real

i+1 ))
by (subst prod.distrib[symmetric]) simp

also have ... = 1 − (−1 )^k / real (fact k) ∗ ((−1 )^k ∗ (
∏

i ∈ (λx. x + 1 ) ‘ {0 ..<k}. real i))
by (subst prod.reindex, auto simp add:inj-on-def comp-def algebra-simps)

also have ... = 1 − (−1 )^k / real (fact k) ∗ ((−1 )^k ∗ (
∏

i ∈ {1 ..k}. real i))
by (intro arg-cong2 [where f=(−)] arg-cong2 [where f=(∗)] prod.cong refl) auto

also have ... = 0
unfolding fact-prod by simp

also have ... = ϕ x
using True ϕ-def by simp

finally show ?thesis by simp
next

case False
hence a: x ≥ 1 using that by auto
obtain x ′ where x ′-def : x ′ ∈ {0 ..k} x = real x ′

using f-approx-ϕ-1 by auto
hence x ′ − 1 ∈ {0 ..<k} using k-ge-2 by simp
moreover have x− real 1 = real (x ′−1 )

using False x ′-def (2 ) by simp
ultimately have b: x − 1 = real (x ′ − 1 ) x ′ − 1 < k

by auto

have f x = 1 − (− 1 ) ^ k / real (fact k) ∗ real (ffact k (x ′ − 1 ))
unfolding f-def b of-nat-ffact by simp

also have ... = 1
using b by (subst ffact-nat-triv, auto)

also have ... = ϕ x
unfolding ϕ-def using a by auto

finally show ?thesis by simp
qed

have q2 : |Z i x ^ l ∗ Z j x ^ (s − l)| ≤ real (card R ^ s)
if l ∈ {..s} for s i j l x

proof −
have |Z i x ^ l ∗ Z j x ^ (s − l)| ≤ Z i x ^ l ∗ Z j x ^ (s − l)

unfolding Z-def by auto
also have ... ≤ real (card R) ^ l ∗ real (card R) ^ (s−l)

unfolding Z-def
by (intro mult-mono power-mono of-nat-mono card-mono fin-R) auto

also have ... = real (card R)^s using that
by (subst power-add[symmetric]) simp

also have ... = real (card R^s)
by simp

finally show ?thesis by simp
qed

have q:real (card A) + real (card B) ∈ real ‘ {..2 ∗ card R} if A ⊆ R B ⊆ R for A B
proof −

have card A + card B ≤ card R + card R
by (intro add-mono card-mono fin-R that)

also have ... = 2 ∗ card R by simp
finally show ?thesis by force
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qed

have g-eq-0-iff-2 : abs (g x) ∗ y = 0 if x ∈ � x ≥ 0 x ≤ k for x y :: real
proof −

have ∃ x ′. x = real-of-int x ′ ∧ x ′ ≤ k ∧ x ′ ≥ 0
using that Ints-def by fastforce

hence ∃ x ′. x = real x ′ ∧ x ′ ≤ k
by (metis nat-le-iff of-nat-nat)

hence x ∈ real ‘ {0 ..k}
by auto

hence g x = 0
unfolding g-def using f-approx-ϕ by simp

thus ?thesis by simp
qed

have g-bound-abs: |
∫
ω. g (f ω) ∂p| ≤ (

∫
ω. ffact (k+1 ) (f ω) ∂p) ∗ γ

(is ?L ≤ ?R)
if range f ⊆ real ‘ {..m} for m and p :: ( ′a ⇒ ′b) pmf and f :: ( ′a ⇒ ′b) ⇒ real

proof −
have f-any-integrable:

integrable p (λω. h (f ω)) for h :: real ⇒ real
using that
by (intro integrable-pmf-iff-bounded[where C=Max (abs ‘ h‘ real ‘ {..m})]

Max-ge finite-imageI imageI ) auto

have f-val: f ω ∈ real ‘ {..m} for ω using that by auto
hence f-nat: f ω ∈ � for ω

unfolding Nats-def by auto

have f-int: f ω ≥ real y + 1 if f ω > real y for y ω
proof −

obtain x where x-def : f ω = real x x ≤ m using f-val by auto
hence y < x using that by simp
hence y + 1 ≤ x by simp
then show ?thesis using x-def by simp

qed

have f-nonneg: f ω ≥ 0 for ω
proof −

obtain x where x-def : f ω = real x x ≤ m using f-val by auto
hence x ≥ 0 by simp
then show ?thesis using x-def by simp

qed

have ¬(real x ≤ f ω) if x > m for x ω
proof −

obtain x where x-def : f ω = real x x ≤ m using f-val by auto
then show ?thesis using x-def that by simp

qed

hence max-Z1 : measure p {ω. real x ≤ f ω} = 0 if x > m for x
using that by auto

have ?L ≤ (
∫
ω. |g (f ω)| ∂p)

by (intro integral-abs-bound)
also have ... = (

∑
y∈real ‘ {..m}. |g y| ∗ measure p {ω. f ω = y})

using that by (intro pmf-exp-of-fin-function) auto
also have ... = (

∑
y∈{..m}. |g (real y)| ∗ measure p {ω. f ω = real y})
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by (subst sum.reindex) (auto simp add:comp-def )
also have ... = (

∑
y∈{..m}. |g (real y)| ∗

(measure p ({ω. f ω = real y} ∪ {ω. f ω > y}) − measure p {ω. f ω > y}))
by (subst measure-Union) auto

also have ... = (
∑

y∈{..m}. |g (real y)| ∗ (measure p {ω. f ω ≥ y} − measure p {ω. f ω >
y}))

by (intro sum.cong arg-cong2 [where f=(∗)] arg-cong2 [where f=(−)]
arg-cong[where f=measure p]) auto

also have ... = (
∑

y∈{..m}. |g (real y)| ∗ measure p {ω. f ω ≥ y}) −
(
∑

y∈{..m}. |g (real y)| ∗ measure p {ω. f ω > y})
by (simp add:algebra-simps sum-subtractf )

also have ... = (
∑

y∈{..m}. |g (real y)| ∗ measure p {ω. f ω ≥ y}) −
(
∑

y∈{..m}. |g (real y)| ∗ measure p {ω. f ω ≥ real (y+1 )})
using f-int
by (intro sum.cong arg-cong2 [where f=(−)] arg-cong2 [where f=(∗)]

arg-cong[where f=measure p]) fastforce+
also have ... = (

∑
y∈{..m}. |g (real y) | ∗ measure p {ω. f ω ≥ real y}) −

(
∑

y∈Suc ‘ {..m}. |g (real y − 1 )| ∗ measure p {ω. f ω ≥ real y})
by (subst sum.reindex) (auto simp add:comp-def )

also have ... = (
∑

y∈{..m}. |g (real y) | ∗ measure p {ω. f ω ≥ real y}) −
(
∑

y∈{1 ..m}. |g (real y − 1 )| ∗ measure p {ω. f ω ≥ real y})
using max-Z1 image-Suc-atMost
by (intro arg-cong2 [where f=(−)] sum.mono-neutral-cong) auto

also have ... = (
∑

y∈{k+1 ..m}. |g (real y) | ∗ measure p {ω. f ω ≥ y}) −
(
∑

y∈{k+1 ..m}. |g (real y − 1 )| ∗ measure p {ω. f ω ≥ y})
using k-ge-2
by (intro arg-cong2 [where f=(−)] sum.mono-neutral-cong-right ballI g-eq-0-iff-2 )

auto
also have ... = (

∑
y∈{k+1 ..m}. (|g (real y)| − |g (real y−1 )|) ∗ measure p {ω. f ω ≥ y})

by (simp add:algebra-simps sum-subtractf )
also have ... ≤ (

∑
y∈{k+1 ..m}. |g (real y)− g (real y−1 )| ∗

measure p {ω. ffact (k+1 ) (f ω) ≥ ffact (k+1 ) (real y)})
using ffact-mono by (intro sum-mono mult-mono measure-pmf .pmf-mono[OF refl]) auto

also have ... = (
∑

y∈{k+1 ..m}. (ffact (k−1 ) (real y−2 ) / fact (k−1 )) ∗
measure p {ω. ffact (k+1 ) (f ω) ≥ ffact (k+1 ) (real y)})
by (intro sum.cong, simp-all add: g-diff )

also have ... ≤ (
∑

y∈{k+1 ..m}. (ffact (k−1 ) (real y−2 ) / fact (k−1 )) ∗
((
∫
ω. ffact (k+1 ) (f ω)∂p) / ffact (k+1 ) (real y)))

using k-ge-2 f-nat
by (intro sum-mono mult-left-mono pmf-markov f-any-integrable

divide-nonneg-pos ffact-of-nat-nonneg ffact-pos) auto
also have ... = (

∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗ (

∑
y∈{k+1 ..m}.

ffact (k−1 ) (real y − 2 ) / ffact (Suc (Suc (k−1 ))) (real y))
using k-ge-2 by (simp add:algebra-simps sum-distrib-left)

also have ... = (
∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗ (

∑
y∈{k+1 ..m}.

ffact (k−1 ) (real y − 2 ) / (real y ∗ (real y − 1 ) ∗ ffact (k−1 ) (real y − 2 )))
by (subst ffact-Suc, subst ffact-Suc, simp)

also have ... = (
∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗

(
∑

y∈{k+1 ..m}. 1 / (real y ∗ (real y − 1 )))
using order .strict-implies-not-eq[OF ffact-pos] k-ge-2
by (intro arg-cong2 [where f=(∗)] sum.cong) auto

also have ... = (
∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗

(
∑

y∈{Suc k..m}. 1 / (real y − 1 ) − 1/(real y))
using k-ge-2 by (intro arg-cong2 [where f=(∗)] sum.cong) (auto simp add: divide-simps)

also have ... = (
∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗

(
∑

y∈{Suc k..m}. (−1/(real y)) − (−1 / (real (y − 1 ))))
using k-ge-2 by (intro arg-cong2 [where f=(∗)] sum.cong) (auto)

also have ... = (
∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗
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(of-bool (k ≤ m) ∗ (1/real k−1/real m))
by (subst sum-telescope-eq, auto)

also have ... ≤ (
∫
ω. ffact (k+1 ) (f ω) ∂p) / fact (k−1 ) ∗ (1 / real k)

using k-ge-2 f-nat
by (intro mult-left-mono divide-nonneg-nonneg integral-nonneg

ffact-of-nat-nonneg) auto
also have ... = ?R

using k-ge-2 unfolding γ-def by (cases k) (auto simp add:algebra-simps)
finally show ?thesis by simp

qed

have z1-g-bound: |
∫
ω. g (Z i ω) ∂p c| ≤ (real (card R) / real (card B)) ∗ γ

(is ?L1 ≤ ?R1 ) if i ∈ B for i c
proof −

have ?L1 ≤ (
∫
ω. ffact (k+1 ) (Z i ω) ∂p c) ∗ γ

unfolding Z-def using fin-R
by (intro g-bound-abs[where m1=card R]) (auto intro!:imageI card-mono)

also have ... = ffact (k+1 ) (real (card R)) ∗ (1 / real (card B))^(k+1 ) ∗ γ
using that by (subst hit-count-factorial-moments[OF - - assms(2 )], simp-all)

also have ... = real (ffact (k+1 ) (card R)) ∗ (1 / real (card B))^(k+1 ) ∗ γ
by (simp add:of-nat-ffact)

also have ... ≤ real (card R^(k+1 )) ∗ (1 / real (card B))^(k+1 ) ∗ γ
using γ-nonneg
by (intro mult-right-mono of-nat-mono ffact-bound, simp-all)

also have ... ≤ (real (card R) / real (card B))^(k+1 ) ∗ γ
by (simp add:divide-simps)

also have ... ≤ (real (card R) / real (card B))^1 ∗ γ
using assms(1 ) card-B-gt-0 γ-nonneg by (intro mult-right-mono power-decreasing) auto

also have ... = ?R1 by simp
finally show ?thesis by simp

qed

have g-add-bound: |
∫
ω. g (Z i ω + Z j ω) ∂p c| ≤ 2^(k+1 ) ∗ γ

(is ?L1 ≤ ?R1 ) if ij-in-B: i ∈ B j ∈ B i 6= j for i j c
proof −

have ?L1 ≤ (
∫
ω. ffact (k+1 ) (Z i ω + Z j ω) ∂p c) ∗ γ

unfolding Z-def using assms(1 )
by (intro g-bound-abs[where m1=2∗card R]) (auto intro!:imageI q)

also have ... ≤ 2^(k+1 ) ∗ γ
by (intro γ-nonneg mult-right-mono hit-count-factorial-moments-2 [OF that(1 ,2 ,3 ) - assms(1 ,2 )])

auto
finally show ?thesis by simp

qed

have Z-poly-diff :
|(
∫
ω. ϕ (Z i ω) ∂?p1 ) − (

∫
ω. ϕ (Z i ω) ∂?p2 )| ≤ 2 ∗ ((real (card R) / card B) ∗ γ)

(is ?L ≤ 2 ∗ ?R) if i ∈ B for i
proof −

note Z-poly-eq =
hit-count-poly-eq[OF that assms(2 )[of True] assms(2 )[of False] f-poly]

have ?L = |(
∫
ω. f (Z i ω) ∂?p1 ) + (

∫
ω. g (Z i ω) ∂?p1 ) −

(
∫
ω. f (Z i ω) ∂?p2 ) − (

∫
ω. g (Z i ω) ∂?p2 )|

using Z-integrable[OF assms(2 )] unfolding ϕ-exp by simp
also have ... = |(

∫
ω. g (Z i ω) ∂?p1 ) + (− (

∫
ω. g (Z i ω) ∂?p2 ))|

by (subst Z-poly-eq) auto
also have ... ≤ |(

∫
ω. g (Z i ω) ∂?p1 )| + |(

∫
ω. g (Z i ω) ∂?p2 )|
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by simp
also have ... ≤ ?R + ?R

by (intro add-mono z1-g-bound that)
also have ... = 2 ∗ ?R

by (simp add:algebra-simps)
finally show ?thesis by simp

qed

have Z-poly-diff-2 : |(
∫
ω. ϕ (Z i ω) ∂?p1 ) − (

∫
ω. ϕ (Z i ω) ∂?p2 )| ≤ 2 ∗ γ

(is ?L ≤ ?R) if i ∈ B for i
proof −

have ?L ≤ 2 ∗ ((real (card R) / real (card B)) ∗ γ)
by (intro Z-poly-diff that)

also have ... ≤ 2 ∗ (1 ∗ γ)
using assms fin-B that γ-nonneg card-gt-0-iff
by (intro mult-mono that iffD2 [OF pos-divide-le-eq]) auto

also have ... = ?R by simp
finally show ?thesis by simp

qed

have Z-poly-diff-3 : |(
∫
ω. ϕ (Z i ω + Z j ω) ∂?p2 ) − (

∫
ω. ϕ (Z i ω + Z j ω) ∂?p1 )| ≤

2^(k+2 )∗γ
(is ?L ≤ ?R) if i ∈ B j ∈ B i 6= j for i j

proof −
note Z-poly-eq-2 =

hit-count-sum-poly-eq[OF that(1 ,2 ) assms(2 )[of True] assms(2 )[of False] f-poly]

have ?L = |(
∫
ω. f (Z i ω + Z j ω) ∂?p2 ) + (

∫
ω. g (Z i ω + Z j ω) ∂?p2 ) −

(
∫
ω. f (Z i ω + Z j ω) ∂?p1 ) − (

∫
ω. g (Z i ω + Z j ω) ∂?p1 )|

using Z-any-integrable-2 [OF assms(2 )] unfolding ϕ-exp by simp
also have ... = |(

∫
ω. g (Z i ω + Z j ω) ∂?p2 ) + (− (

∫
ω. g (Z i ω + Z j ω) ∂?p1 ))|

by (subst Z-poly-eq-2 ) auto
also have ... ≤ |(

∫
ω. g (Z i ω + Z j ω) ∂?p1 )| + |(

∫
ω. g (Z i ω + Z j ω) ∂?p2 )|

by simp
also have ... ≤ 2^(k+1 )∗γ + 2^(k+1 )∗γ

by (intro add-mono g-add-bound that)
also have ... = ?R

by (simp add:algebra-simps)
finally show ?thesis by simp

qed

have Y-eq: Y ω = (
∑

i ∈ B. ϕ (Z i ω)) if ω ∈ set-pmf (p c) for c ω
proof −

have ω ‘ R ⊆ B
proof (rule image-subsetI )

fix x assume a:x ∈ R
have ω x ∈ set-pmf (map-pmf (λω. ω x) (p c))

using that by (subst set-map-pmf ) simp
also have ... = set-pmf (pmf-of-set B)

by (intro arg-cong[where f=set-pmf ] assms ran[OF assms(2 )] a)
also have ... = B

by (intro set-pmf-of-set fin-B B-ne)
finally show ω x ∈ B by simp

qed
hence (ω ‘ R) = B ∩ ω ‘ R

by auto
hence Y ω = card (B ∩ ω ‘ R)
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unfolding Y-def by auto
also have ... = (

∑
i ∈ B. of-bool (i ∈ ω ‘ R))

unfolding of-bool-def using fin-B by (subst sum.If-cases) auto
also have ... = (

∑
i ∈ B. of-bool (card {r ∈ R. ω r = i} > 0 ))

using fin-R by (intro sum.cong arg-cong[where f=of-bool])
(auto simp add:card-gt-0-iff )

also have ... = (
∑

i ∈ B. ϕ(Z i ω))
unfolding ϕ-def Z-def by (intro sum.cong) (auto simp add:of-bool-def )

finally show ?thesis by simp
qed

let ?ϕ2 = (λx y. ϕ x + ϕ y − ϕ (x+y))
let ?Bd = {x ∈ B × B. fst x 6= snd x}

have Y-sq-eq ′: Y ω^ 2 = (
∑

i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) + Y ω
(is ?L = ?R) if ω ∈ set-pmf (p c) for c ω

proof −
have a: ϕ (Z x ω) = of-bool(card {r ∈ R. ω r = x} > 0 ) for x

unfolding ϕ-def Z-def by auto
have b: ϕ (Z x ω + Z y ω) =

of-bool( card {r ∈ R. ω r = x} > 0 ∨ card {r ∈ R. ω r = y} > 0 ) for x y
unfolding ϕ-def Z-def by auto

have c: ϕ (Z x ω) ∗ ϕ(Z y ω) = ?ϕ2 (Z x ω) (Z y ω) for x y
unfolding a b of-bool-def by auto

have d: ϕ (Z x ω) ∗ ϕ(Z x ω) = ϕ (Z x ω) for x
unfolding a of-bool-def by auto

have ?L = (
∑

i∈B × B. ϕ (Z (fst i) ω) ∗ ϕ (Z (snd i) ω))
unfolding Y-eq[OF that] power2-eq-square sum-product sum.cartesian-product
by (simp add:case-prod-beta)

also have ... = (
∑

i∈?Bd ∪ {x ∈ B × B. fst x = snd x}. ϕ (Z (fst i) ω) ∗ ϕ (Z (snd i) ω))
by (intro sum.cong refl) auto

also have ... = (
∑

i∈?Bd. ϕ (Z (fst i) ω) ∗ ϕ (Z (snd i) ω)) +
(
∑

i∈{x ∈ B × B. fst x = snd x}. ϕ (Z (fst i) ω) ∗ ϕ (Z (snd i) ω))
using assms fin-B by (intro sum.union-disjoint, auto)

also have ... = (
∑

i∈?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) +
(
∑

i∈{x ∈ B × B. fst x = snd x}. ϕ (Z (fst i) ω) ∗ ϕ (Z (fst i) ω))
unfolding c by (intro arg-cong2 [where f=(+)] sum.cong) auto

also have ... = (
∑

i∈?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) +
(
∑

i∈fst ‘ {x ∈ B × B. fst x = snd x}. ϕ (Z i ω) ∗ ϕ (Z i ω))
by (subst sum.reindex, auto simp add:inj-on-def )

also have ... = (
∑

i∈?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) + (
∑

i ∈ B. ϕ (Z i ω))
using d by (intro arg-cong2 [where f=(+)] sum.cong refl d) (auto simp add:image-iff )

also have ... = ?R
unfolding Y-eq[OF that] by simp

finally show ?thesis by simp
qed

have |integralL ?p1 Y − integralL ?p2 Y | =
|(
∫
ω. (

∑
i ∈ B. ϕ(Z i ω)) ∂?p1 ) − (

∫
ω. (

∑
i ∈ B. ϕ(Z i ω)) ∂?p2 )|

by (intro arg-cong[where f=abs] arg-cong2 [where f=(−)]
integral-cong-AE AE-pmfI Y-eq) auto

also have ... =
|(
∑

i ∈ B. (
∫
ω. ϕ(Z i ω) ∂?p1 )) − (

∑
i ∈ B. (

∫
ω. ϕ(Z i ω) ∂?p2 ))|

by (intro arg-cong[where f=abs] arg-cong2 [where f=(−)]
integral-sum Z-integrable[OF assms(2 )])

also have ... = |(
∑

i ∈ B. (
∫
ω. ϕ(Z i ω) ∂?p1 ) − (

∫
ω. ϕ(Z i ω) ∂?p2 ))|

by (subst sum-subtractf ) simp
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also have ... ≤ (
∑

i ∈ B. |(
∫
ω. ϕ(Z i ω) ∂?p1 ) − (

∫
ω. ϕ(Z i ω) ∂?p2 )|)

by simp
also have ... ≤ (

∑
i ∈ B. 2 ∗ ((real (card R) / real (card B)) ∗γ))

by (intro sum-mono Z-poly-diff )
also have ... ≤ 2 ∗ real (card R) ∗γ

using γ-nonneg by (simp)
finally have Y-exp-diff-1 : |integralL ?p1 Y − integralL ?p2 Y | ≤ 2 ∗ real (card R) ∗γ

by simp

have |integralL ?p1 Y − integralL ?p2 Y | ≤ (2 / fact k) ∗ real (card R)
using Y-exp-diff-1 by (simp add:algebra-simps γ-def )

also have ... ≤ 1 / (exp 1 ∗ (real (card B) / ε)) ∗ card R
using k-condition(3 ) k-condition-h-2 by (intro mult-right-mono) auto

also have ... = ε / (exp 1 ∗ real (card B)) ∗ card R
by simp

also have ... ≤ ε / (1 ∗ 1 ) ∗ card R
using assms(3 ) card-B-gt-0
by (intro mult-right-mono divide-left-mono mult-mono) auto

also have ... = ε ∗ card R
by simp

finally show ?A
by simp

have |integralL ?p1 Y − integralL ?p2 Y | ≤ 2 ∗ real (card R) ∗γ
using Y-exp-diff-1 by simp

also have ... ≤ 2 ∗ real (card B) ∗γ
by (intro mult-mono of-nat-mono assms γ-nonneg) auto

finally have Y-exp-diff-2 :
|integralL ?p1 Y − integralL ?p2 Y | ≤ 2 ∗γ ∗ real (card B)
by (simp add:algebra-simps)

have int-Y : integrable (measure-pmf (p c)) Y for c
using fin-R card-image-le unfolding Y-def
by (intro integrable-pmf-iff-bounded[where C=card R]) auto

have int-Y-sq: integrable (measure-pmf (p c)) (λω. Y ω^2 ) for c
using fin-R card-image-le unfolding Y-def
by (intro integrable-pmf-iff-bounded[where C=real (card R)^2 ]) auto

have |(
∫
ω. (

∑
i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) ∂?p1 ) −

(
∫
ω. (

∑
i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) ∂?p2 )|

≤ |(
∑

i ∈ ?Bd.
(
∫
ω. ϕ (Z (fst i) ω) ∂?p1 ) + (

∫
ω. ϕ(Z (snd i) ω) ∂?p1 ) −

(
∫
ω. ϕ (Z (fst i) ω + Z (snd i) ω) ∂?p1 ) − ( (

∫
ω. ϕ(Z (fst i) ω) ∂?p2 ) +

(
∫
ω. ϕ (Z (snd i) ω) ∂?p2 ) − (

∫
ω. ϕ(Z (fst i) ω + Z (snd i) ω) ∂?p2 )))| (is ?R3 ≤ - )

using Z-integrable[OF assms(2 )] Z-any-integrable-2 [OF assms(2 )]
by (simp add:integral-sum sum-subtractf )

also have ... = |(
∑

i ∈ ?Bd.
((
∫
ω. ϕ (Z (fst i) ω) ∂?p1 ) − (

∫
ω. ϕ(Z (fst i) ω) ∂?p2 )) +

((
∫
ω. ϕ (Z (snd i) ω) ∂?p1 ) − (

∫
ω. ϕ(Z (snd i) ω) ∂?p2 )) +

((
∫
ω. ϕ (Z (fst i) ω + Z (snd i) ω) ∂?p2 ) − (

∫
ω. ϕ(Z (fst i) ω + Z (snd i) ω) ∂?p1 )))|

by (intro arg-cong[where f=abs] sum.cong) auto
also have ... ≤ (

∑
i ∈ ?Bd. |

((
∫
ω. ϕ (Z (fst i) ω) ∂?p1 ) − (

∫
ω. ϕ(Z (fst i) ω) ∂?p2 )) +

((
∫
ω. ϕ (Z (snd i) ω) ∂?p1 ) − (

∫
ω. ϕ(Z (snd i) ω) ∂?p2 )) +

((
∫
ω. ϕ (Z (fst i) ω + Z (snd i) ω) ∂?p2 ) − (

∫
ω. ϕ(Z (fst i) ω + Z (snd i) ω) ∂?p1 ))|)

by (intro sum-abs)
also have ... ≤ (

∑
i ∈ ?Bd.
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|(
∫
ω. ϕ (Z (fst i) ω) ∂?p1 ) − (

∫
ω. ϕ(Z (fst i) ω) ∂?p2 )| +

|(
∫
ω. ϕ (Z (snd i) ω) ∂?p1 ) − (

∫
ω. ϕ(Z (snd i) ω) ∂?p2 )| +

|(
∫
ω. ϕ (Z (fst i) ω + Z (snd i) ω) ∂?p2 ) − (

∫
ω. ϕ(Z (fst i) ω + Z (snd i) ω) ∂?p1 )|)

by (intro sum-mono) auto
also have ... ≤ (

∑
i ∈ ?Bd. 2∗γ + 2 ∗γ + 2^(k+2 )∗γ)

by (intro sum-mono add-mono Z-poly-diff-2 Z-poly-diff-3 ) auto
also have ... = (2^(k+2 )+4 ) ∗γ ∗ real (card ?Bd)

by (simp add:algebra-simps)
finally have Y-sq-exp-diff-1 :?R3 ≤ (2^(k+2 )+4 ) ∗γ ∗ real (card ?Bd)

by simp

have |(
∫
ω. Y ω ^2 ∂?p1 ) − (

∫
ω. Y ω^2 ∂?p2 )| =

|(
∫
ω. (

∑
i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) + Y ω ∂?p1 ) −

(
∫
ω. (

∑
i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) + Y ω ∂?p2 )|

by (intro-cong [σ2 (−), σ1 abs] more: integral-cong-AE AE-pmfI Y-sq-eq ′) auto
also have ... ≤ |(

∫
ω. Y ω ∂?p1 ) − (

∫
ω. Y ω ∂?p2 )| +

|(
∫
ω. (

∑
i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) ∂?p1 ) −

(
∫
ω. (

∑
i ∈ ?Bd. ?ϕ2 (Z (fst i) ω) (Z (snd i) ω)) ∂?p2 )|

using Z-integrable[OF assms(2 )] Z-any-integrable-2 [OF assms(2 )] int-Y by simp
also have ... ≤ 2 ∗γ ∗ real (card B) + ?R3

by (intro add-mono Y-exp-diff-2 , simp)
also have ... ≤ (2^(k+2 )+4 ) ∗γ ∗ real (card B) + (2^(k+2 )+4 ) ∗γ ∗ real (card ?Bd)

using γ-nonneg by (intro add-mono Y-sq-exp-diff-1 mult-right-mono) auto
also have ... = (2^(k+2 )+4 ) ∗γ ∗ (real (card B) + real (card ?Bd))

by (simp add:algebra-simps)
also have ... = (2^(k+2 )+4 ) ∗ γ ∗ real (card B)^2

using power2-nat-le-imp-le
by (simp add:card-distinct-pairs of-nat-diff )

finally have Y-sq-exp-diff :
|(
∫
ω. Y ω ^2 ∂?p1 ) − (

∫
ω. Y ω^2 ∂?p2 )| ≤ (2^(k+2 )+4 ) ∗γ ∗ real (card B)^2 by simp

have Y-exp-rough-bound: |integralL (p c) Y | ≤ card B (is ?L ≤ ?R) for c
proof −

have ?L ≤ (
∫
ω. |Y ω| ∂(p c))

by (intro integral-abs-bound)
also have ... ≤ (

∫
ω. real (card R) ∂(p c))

unfolding Y-def using card-image-le[OF fin-R]
by (intro integral-mono integrable-pmf-iff-bounded[where C=card R])
auto

also have ... = card R by simp
also have ... ≤ card B using assms by simp
finally show ?thesis by simp

qed

have |measure-pmf .variance ?p1 Y − measure-pmf .variance ?p2 Y | =
|(
∫
ω. Y ω ^2 ∂?p1 ) − (

∫
ω. Y ω ∂ ?p1 )^2 − ((

∫
ω. Y ω ^2 ∂?p2 ) − (

∫
ω. Y ω ∂ ?p2 )^2 )|

by (intro-cong [σ2 (−), σ1 abs] more: measure-pmf .variance-eq int-Y int-Y-sq)
also have ... ≤ |(

∫
ω. Y ω^2 ∂?p1 ) − (

∫
ω. Y ω^2 ∂?p2 )| + |(

∫
ω. Y ω ∂ ?p1 )2 − (

∫
ω. Y ω

∂ ?p2 )2|
by simp

also have ... = |(
∫
ω. Y ω^2 ∂?p1 ) − (

∫
ω. Y ω^2 ∂?p2 )| +

|(
∫
ω. Y ω ∂ ?p1 ) − (

∫
ω. Y ω ∂ ?p2 )|∗|(

∫
ω. Y ω ∂ ?p1 ) + (

∫
ω. Y ω ∂ ?p2 )|

by (simp add:power2-eq-square algebra-simps abs-mult[symmetric])
also have ... ≤ (2^(k+2 )+4 ) ∗γ ∗ real (card B)^2 + (2∗γ ∗real (card B)) ∗
(|
∫
ω. Y ω ∂?p1 | + |

∫
ω. Y ω ∂ ?p2 |)

using γ-nonneg
by (intro add-mono mult-mono divide-left-mono Y-sq-exp-diff Y-exp-diff-2 ) auto

also have ... ≤ (2^(k+2 )+4 )∗γ ∗ real (card B)^2 + (2∗γ ∗ real (card B)) ∗
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(real (card B) + real (card B))
using γ-nonneg by (intro add-mono mult-left-mono Y-exp-rough-bound) auto

also have ... = (2^(k+2 )+2^3 ) ∗ γ ∗ real (card B)^2
by (simp add:algebra-simps power2-eq-square)

also have ... ≤ (2^(k+2 )+2^(k+2 )) ∗ γ ∗ real (card B)^2
using k-ge-2 γ-nonneg
by (intro mult-right-mono add-mono power-increasing, simp-all)

also have ... = (2^(k+3 ) / fact k) ∗ card B^2
by (simp add:power-add γ-def )

also have ... ≤ (1 / (real (card B) / ε))^2 ∗ card B^2
using k-condition(2 ) k-condition-h-2
by (intro mult-right-mono) auto

also have ... = ε^2
using card-B-gt-0 by (simp add:divide-simps)

finally show ?B
by simp

qed

lemma
assumes card R ≤ card B
assumes lim-balls-and-bins (k+1 ) p
assumes k ≥ 7 .5 ∗ (ln (card B) + 2 )
shows exp-approx-2 : |measure-pmf .expectation p Y − µ| ≤ card R / sqrt (card B)

(is ?AL ≤ ?AR)
and var-approx-2 : measure-pmf .variance p Y ≤ real (card R)^2 / card B
(is ?BL ≤ ?BR)

proof −
define q where q = (λc. if c then Ω else p)

have q-altdef : q True = Ω q False = p
unfolding q-def by auto

have a:lim-balls-and-bins (k+1 ) (q c) for c
unfolding q-def using assms lim-balls-and-bins-from-ind-balls-and-bins by auto

define ε :: real where ε = min (sqrt (1/card B)) (1 / exp 2 )

have c: ε ∈ {0<..1 / exp 2}
using card-B-gt-0 unfolding ε-def by auto

have b: 5 ∗ ln (card B / ε) / ln (ln (card B / ε)) ≤ real k
proof (cases card B ≥ exp 4 )

case True
hence sqrt(1/card B) ≤ sqrt(1/exp 4 )

using card-B-gt-0 by (intro real-sqrt-le-mono divide-left-mono) auto
also have ... = (1/exp 2 )

by (subst powr-half-sqrt[symmetric]) (auto simp add:powr-divide exp-powr)
finally have sqrt(1/card B) ≤ (1 / exp 2 ) by simp
hence ε-eq: ε = sqrt(1 /card B)

unfolding ε-def by simp

have exp (6 ::real) = (exp 4 ) powr (3/2 )
by (simp add:exp-powr)

also have ...≤ card B powr (3/2 )
by (intro powr-mono2 True) auto

finally have q4 :exp 6 ≤ card B powr (3/2 ) by simp

have (2 ::real) ≤ exp 6

52



by (approximation 5 )
hence q1 : 2 ≤ real (card B) powr (3 / 2 )

using q4 by argo
have (1 ::real) < ln(exp 6 )

by (approximation 5 )
also have ... ≤ ln (card B powr (3 / 2 ))

using card-B-gt-0 by (intro iffD2 [OF ln-le-cancel-iff ] q4 ) auto
finally have q2 : 1 < ln (card B powr (3 / 2 )) by simp
have exp (exp (1 ::real)) ≤ exp 6

by (approximation 5 )
also have ... ≤ card B powr (3/2 ) using q4 by simp
finally have exp (exp 1 ) ≤ card B powr (3/2 )

by simp
hence q3 : 1≤ln(ln (card B powr (3/2 )))

using card-B-gt-0 q1 by (intro iffD2 [OF ln-ge-iff ] ln-gt-zero, auto)

have 5 ∗ ln (card B / ε) / ln (ln (card B / ε)) =
5 ∗ ln (card B powr (1+1/2 )) / ln(ln (card B powr (1+1/2 )))
unfolding powr-add by (simp add:real-sqrt-divide powr-half-sqrt[symmetric] ε-eq)

also have ... ≤ 5 ∗ ln (card B powr (1+1/2 )) / 1
using True q1 q2 q3 by (intro divide-left-mono mult-nonneg-nonneg mult-pos-pos

ln-ge-zero ln-gt-zero) auto
also have ... = 5 ∗ (1+1/2 ) ∗ ln(card B)

using card-B-gt-0 by (subst ln-powr) auto
also have ... = 7 .5 ∗ ln(card B) by simp
also have ... ≤ k using assms(3 ) by simp
finally show ?thesis by simp

next
case False
have (1 ::real) / exp 2 ≤ sqrt(1 / exp 4 )

by (simp add:real-sqrt-divide powr-half-sqrt[symmetric] exp-powr)
also have ...≤ sqrt(1 /card B)

using False card-B-gt-0
by (intro real-sqrt-le-mono divide-left-mono mult-pos-pos) auto

finally have 1 / exp 2 ≤ sqrt(1/card B)
by simp

hence ε-eq: ε = 1/ exp 2
unfolding ε-def by simp

have q2 :5 ∗ (ln x + 2 ) / ln (ln x + 2 ) ≤ 7 .5 ∗ (ln x + 2 )
if x ∈ {1 ..exp 4} for x:: real
using that by (approximation 10 splitting: x=10 )

have 5 ∗ ln (card B / ε) / ln (ln (card B / ε)) =
5 ∗ (ln (card B) +2 ) / ln (ln (card B) + 2 )

using card-B-gt-0 unfolding ε-eq by (simp add:ln-mult)
also have ... ≤ 7 .5 ∗ (ln (card B) + 2 )

using False card-B-gt-0 by (intro q2 ) auto
also have ... ≤ k using assms(3 ) by simp
finally show ?thesis by simp

qed

have ?AL = |(
∫
ω. Y ω ∂(q True)) − (

∫
ω. Y ω ∂(q False))|

using exp-balls-and-bins unfolding q-def by simp
also have ... ≤ ε ∗ card R

by (intro exp-approx[OF assms(1 ) a c b])
also have ... ≤ sqrt (1 / card B) ∗ card R

unfolding ε-def by (intro mult-right-mono) auto
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also have ... = ?AR using real-sqrt-divide by simp
finally show ?AL ≤ ?AR by simp

show ?BL ≤ ?BR
proof (cases R= {})

case True
then show ?thesis unfolding Y-def by simp

next
case False
hence card R > 0 using fin-R by auto
hence card-R-ge-1 : real (card R) ≥ 1 by simp

have ?BL ≤ measure-pmf .variance (q True) Y +
|measure-pmf .variance (q True) Y − measure-pmf .variance (q False) Y |
unfolding q-def by auto

also have ... ≤ measure-pmf .variance (q True) Y + ε^2
by (intro add-mono var-approx[OF assms(1 ) a c b]) auto

also have ... ≤ measure-pmf .variance (q True) Y + sqrt(1 / card B)^2
unfolding ε-def by (intro add-mono power-mono) auto

also have ... ≤ card R ∗ (real (card R) − 1 ) / card B + sqrt(1 / card B)^2
unfolding q-altdef by (intro add-mono var-balls-and-bins) auto

also have ... = card R ∗ (real (card R) − 1 ) / card B + 1 / card B
by (auto simp add:power-divide real-sqrt-divide)

also have ... ≤ card R ∗ (real (card R) − 1 ) / card B + card R / card B
by (intro add-mono divide-right-mono card-R-ge-1 ) auto

also have ... = (card R ∗ (real (card R) − 1 ) + card R) / card B
by argo

also have ... = ?BR
by (simp add:algebra-simps power2-eq-square)

finally show ?BL ≤ ?BR by simp
qed

qed

lemma devitation-bound:
assumes card R ≤ card B
assumes lim-balls-and-bins k p
assumes real k ≥ C 2 ∗ ln (real (card B)) + C 3

shows measure p {ω. |Y ω − µ| > 9 ∗ real (card R) / sqrt (real (card B))} ≤ 1 / 2^6
(is ?L ≤ ?R)

proof (cases card R > 0 )
case True

define k ′ :: nat where k ′ = k − 1
have (1 ::real) ≤ 7 .5 ∗ 0 + 16 by simp
also have ... ≤ 7 .5 ∗ ln (real (card B)) + 16

using card-B-ge-1 by (intro add-mono mult-left-mono ln-ge-zero) auto
also have ... ≤ k using assms(3 ) unfolding C 2-def C 3-def by simp
finally have k-ge-1 : k ≥ 1 by simp
have lim: lim-balls-and-bins (k ′+1 ) p

using k-ge-1 assms(2 ) unfolding k ′-def by simp

have k ′-min: real k ′ ≥ 7 .5 ∗ (ln (real (card B)) + 2 )
using k-ge-1 assms(3 ) unfolding C 2-def C 3-def k ′-def by simp

let ?r = real (card R)
let ?b = real (card B)
have a: integrable p (λω. (Y ω)2)

unfolding Y-def
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by (intro integrable-pmf-iff-bounded[where C=real (card R)^2 ])
(auto intro!: card-image-le[OF fin-R])

have ?L ≤ P(ω in measure-pmf p. |Y ω− (
∫
ω. Y ω ∂p)| ≥ 8∗?r / sqrt ?b)

proof (rule measure-pmf .pmf-mono[OF refl])
fix ω assume ω ∈ set-pmf p
assume a:ω ∈ {ω. 9 ∗ real (card R) / sqrt (real (card B)) < |Y ω − µ|}
have 8 ∗ ?r / sqrt ?b = 9 ∗ ?r / sqrt ?b − ?r / sqrt ?b

by simp
also have ... ≤ |Y ω − µ| − | (

∫
ω. Y ω ∂p) − µ|

using a by (intro diff-mono exp-approx-2 [OF assms(1 ) lim k ′-min]) simp
also have ... ≤ |Y ω − (

∫
ω. Y ω ∂p)|

by simp
finally have 8 ∗ ?r / sqrt ?b ≤ |Y ω − (

∫
ω. Y ω ∂p)| by simp

thus ω ∈ {ω ∈ space (measure-pmf p). 8 ∗ ?r / sqrt ?b ≤ |Y ω − (
∫
ω. Y ω ∂p)|}

by simp
qed
also have ... ≤ measure-pmf .variance p Y / (8∗?r / sqrt ?b)^2

using True card-B-gt-0 a
by (intro measure-pmf .Chebyshev-inequality) auto

also have ... ≤ (?r^2 / ?b) / (8∗?r / sqrt ?b)^2
by (intro divide-right-mono var-approx-2 [OF assms(1 ) lim k ′-min]) simp

also have ... = 1/2^6
using card-B-gt-0 True
by (simp add:power2-eq-square)

finally show ?thesis by simp
next

case False
hence R = {} card R = 0 using fin-R by auto
thus ?thesis

unfolding Y-def µ-def by simp
qed

end

unbundle no-intro-cong-syntax

end

5 Tail Bounds for Expander Walks
theory Distributed-Distinct-Elements-Tail-Bounds

imports
Distributed-Distinct-Elements-Preliminary
Expander-Graphs.Expander-Graphs-Definition
Expander-Graphs.Expander-Graphs-Walks
HOL−Decision-Procs.Approximation
Pseudorandom-Combinators

begin

This section introduces tail estimates for random walks in expander graphs, specific to
the verification of this algorithm (in particular to two-stage expander graph sampling
and obtained tail bounds for subgaussian random variables). They follow from the more
fundamental results regular-graph.kl-chernoff-property and regular-graph.uniform-property
which are verified in the AFP entry for expander graphs [11].
hide-fact Henstock-Kurzweil-Integration.integral-sum
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unbundle intro-cong-syntax

lemma x-ln-x-min:
assumes x ≥ (0 ::real)
shows x ∗ ln x ≥ −exp (−1 )

proof −
define f where f x = x ∗ ln x for x :: real
define f ′ where f ′ x = ln x + 1 for x :: real

have 0 :(f has-real-derivative (f ′ x)) (at x) if x > 0 for x
unfolding f-def f ′-def using that
by (auto intro!: derivative-eq-intros)

have f ′ x ≥ 0 if exp (−1 ) ≤ x for x :: real
proof −

have ln x ≥ −1
using that order-less-le-trans[OF exp-gt-zero]
by (intro iffD2 [OF ln-ge-iff ]) auto

thus ?thesis
unfolding f ′-def by (simp)

qed

hence ∃ y. (f has-real-derivative y) (at x) ∧ 0 ≤ y if x ≥ exp (−1 ) for x :: real
using that order-less-le-trans[OF exp-gt-zero]
by (intro exI [where x=f ′ x] conjI 0 ) auto

hence f (exp (−1 )) ≤ f x if exp(−1 ) ≤ x
by (intro DERIV-nonneg-imp-nondecreasing[OF that]) auto

hence 2 :?thesis if exp(−1 ) ≤ x
unfolding f-def using that by simp

have f ′ x ≤ 0 if x > 0 x ≤ exp (−1 ) for x :: real
proof −

have ln x ≤ ln (exp (−1 ))
by (intro iffD2 [OF ln-le-cancel-iff ] that exp-gt-zero)

also have ... = −1
by simp

finally have ln x ≤ −1 by simp
thus ?thesis unfolding f ′-def by simp

qed

hence ∃ y. (f has-real-derivative y) (at x) ∧ y ≤ 0 if x > 0 x ≤ exp (−1 ) for x :: real
using that by (intro exI [where x=f ′ x] conjI 0 ) auto

hence f (exp (−1 )) ≤ f x if x > 0 x ≤ exp(−1 )
using that(1 ) by (intro DERIV-nonpos-imp-nonincreasing[OF that(2 )]) auto

hence 3 :?thesis if x > 0 x ≤ exp(−1 )
unfolding f-def using that by simp

have ?thesis if x = 0
using that by simp

thus ?thesis
using 2 3 assms by fastforce

qed

theorem (in regular-graph) walk-tail-bound:
assumes l > 0
assumes S ⊆ verts G
defines µ ≡ real (card S) / card (verts G)
assumes γ < 1 µ + Λa ≤ γ
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shows measure (pmf-of-multiset (walks G l)) {w. real (card {i ∈ {..<l}. w ! i ∈ S}) ≥ γ∗l}
≤ exp (− real l ∗ (γ ∗ ln (1/(µ+Λa)) − 2 ∗ exp(−1 ))) (is ?L ≤ ?R)

proof (cases µ > 0 )
case True

have 0 < µ + Λa

by (intro add-pos-nonneg Λ-ge-0 True)
also have ... ≤ γ

using assms(5 ) by simp
finally have γ-gt-0 : 0 < γ by simp

hence γ-ge-0 : 0 ≤ γ
by simp

have card S ≤ card (verts G)
by (intro card-mono assms(2 )) auto

hence µ-le-1 : µ ≤ 1
unfolding µ-def by (simp add:divide-simps)

have 2 : 0 < µ + Λa ∗ (1 − µ)
using µ-le-1 by (intro add-pos-nonneg True mult-nonneg-nonneg Λ-ge-0 ) auto

have µ + Λa ∗ (1 − µ) ≤ µ + Λa ∗ 1
using Λ-ge-0 True by (intro add-mono mult-left-mono) auto

also have ... ≤ γ
using assms(5 ) by simp

also have ... < 1
using assms(4 ) by simp

finally have 4 :µ + Λa ∗ (1 − µ) < 1 by simp
hence 3 : 1 ≤ 1 / (1 − (µ + Λa ∗ (1 − µ)))

using 2 by (subst pos-le-divide-eq) simp-all

have card S ≤ n
unfolding n-def by (intro card-mono assms(2 )) auto

hence 0 :µ ≤ 1
unfolding µ-def n-def [symmetric] using n-gt-0 by simp

have γ ∗ ln (1 / (µ + Λa)) − 2∗exp (− 1 ) = γ ∗ ln (1 / (µ + Λa∗1 ))+0 −2∗exp (− 1 )
by simp

also have ... ≤ γ ∗ ln (1 / (µ + Λa∗(1−µ)))+0−2∗exp(−1 )
using True γ-ge-0 Λ-ge-0 0 2
by (intro diff-right-mono mult-left-mono iffD2 [OF ln-le-cancel-iff ] divide-pos-pos

divide-left-mono add-mono) auto
also have ... ≤ γ ∗ ln (1 / (µ + Λa∗(1−µ)))+(1−γ)∗ln(1/(1−(µ+Λa∗(1−µ))))−2∗ exp(−1 )

using assms(4 ) 3 by (intro add-mono diff-mono mult-nonneg-nonneg ln-ge-zero) auto
also have ... = (−exp(−1 ))+γ∗ln(1/(µ+Λa∗(1−µ)))+(−exp(−1 ))+(1−γ)∗ln(1/(1−(µ+Λa∗(1−µ))))

by simp
also have ... ≤ γ∗ln γ+γ∗ln(1/(µ+Λa∗(1−µ)))+(1−γ)∗ln(1−γ)+(1−γ)∗ln(1/(1−(µ+Λa∗(1−µ))))

using assms(4 ) γ-ge-0 by (intro add-mono x-ln-x-min) auto
also have ... = γ∗(ln γ+ln(1/(µ+Λa∗(1−µ))))+(1−γ)∗(ln(1−γ)+ln(1/(1−(µ+Λa∗(1−µ)))))

by (simp add:algebra-simps)
also have ... = γ ∗ ln (γ∗(1/(µ+Λa∗(1−µ))))+(1−γ)∗ln((1−γ)∗(1/(1−(µ+Λa∗(1−µ)))))

using 2 4 assms(4 ) γ-gt-0
by (intro-cong [σ2(+), σ2(∗)] more:ln-mult[symmetric] divide-pos-pos) auto

also have ... = KL-div γ (µ+Λa∗(1−µ))
unfolding KL-div-def by simp

finally have 1 : γ ∗ ln (1 / (µ + Λa)) − 2 ∗ exp (− 1 ) ≤ KL-div γ (µ + Λa ∗ (1 − µ))
by simp
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have µ+Λa∗(1−µ) ≤ µ+Λa∗1
using True
by (intro add-mono mult-left-mono Λ-ge-0 ) auto

also have ... ≤ γ
using assms(5 ) by simp

finally have µ+Λa∗(1−µ) ≤ γ by simp
moreover have µ+Λa∗(1−µ) > 0

using 0 by (intro add-pos-nonneg True mult-nonneg-nonneg Λ-ge-0 ) auto
ultimately have µ+Λa∗(1−µ) ∈ {0<..γ} by simp
hence ?L ≤ exp (− real l ∗ KL-div γ (µ+Λa∗(1−µ)))

using assms(4 ) unfolding µ-def by (intro kl-chernoff-property assms(1 ,2 )) auto
also have ... ≤ ?R

using assms(1 ) 1 by simp
finally show ?thesis by simp

next
case False
hence µ ≤ 0 by simp
hence card S = 0

unfolding µ-def n-def [symmetric] using n-gt-0 by (simp add:divide-simps)
moreover have finite S

using finite-subset[OF assms(2 ) finite-verts] by auto
ultimately have 0 :S = {} by auto
have µ = 0

unfolding µ-def 0 by simp
hence µ + Λa ≥0

using Λ-ge-0 by simp
hence γ ≥ 0

using assms(5 ) by simp
hence γ ∗ real l ≥ 0

by (intro mult-nonneg-nonneg) auto
thus ?thesis using 0 by simp

qed

theorem (in regular-graph) walk-tail-bound-2 :
assumes l > 0 Λa ≤ Λ Λ > 0
assumes S ⊆ verts G
defines µ ≡ real (card S) / card (verts G)
assumes γ < 1 µ + Λ ≤ γ
shows measure (pmf-of-multiset (walks G l)) {w. real (card {i ∈ {..<l}. w ! i ∈ S}) ≥ γ∗l}
≤ exp (− real l ∗ (γ ∗ ln (1/(µ+Λ)) − 2 ∗ exp(−1 ))) (is ?L ≤ ?R)

proof (cases µ > 0 )
case True

have 0 : 0 < µ + Λa

by (intro add-pos-nonneg Λ-ge-0 True)
hence 0 < µ + Λ

using assms(2 ) by simp
hence 1 : 0 < (µ + Λ) ∗ (µ + Λa)

using 0 by simp

have 3 :µ + Λa ≤ γ
using assms(2 ,7 ) by simp

have 2 : 0 ≤ γ
using 3 True Λ-ge-0 by simp

have ?L ≤ exp (− real l ∗ (γ ∗ ln (1/(µ+Λa)) − 2 ∗ exp(−1 )))
using 3 unfolding µ-def by (intro walk-tail-bound assms(1 ,4 ,6 ))
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also have ... = exp (− (real l ∗ (γ ∗ ln (1/(µ+Λa)) − 2 ∗ exp(−1 ))))
by simp

also have ... ≤ exp (− (real l ∗ (γ ∗ ln (1/(µ+Λ)) − 2 ∗ exp(−1 ))))
using True assms(2 ,3 ) using 0 1 2
by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono diff-mono iffD2 [OF ln-le-cancel-iff ]

divide-left-mono le-imp-neg-le) simp-all
also have ... = ?R

by simp
finally show ?thesis by simp

next
case False
hence µ ≤ 0 by simp
hence card S = 0

unfolding µ-def n-def [symmetric] using n-gt-0 by (simp add:divide-simps)
moreover have finite S

using finite-subset[OF assms(4 ) finite-verts] by auto
ultimately have 0 :S = {} by auto
have µ = 0

unfolding µ-def 0 by simp
hence µ + Λa ≥0

using Λ-ge-0 by simp
hence γ ≥ 0

using assms by simp
hence γ ∗ real l ≥ 0

by (intro mult-nonneg-nonneg) auto
thus ?thesis using 0 by simp

qed

lemma (in expander-sample-space) tail-bound:
fixes T
assumes l > 0 Λ > 0
defines µ ≡ measure (sample-pmf S) {w. T w}
assumes γ < 1 µ + Λ ≤ γ
shows measure (E l Λ S) {w. real (card {i ∈ {..<l}. T (w i)}) ≥ γ∗l}
≤ exp (− real l ∗ (γ ∗ ln (1/(µ+Λ)) − 2 ∗ exp(−1 ))) (is ?L ≤ ?R)

proof −
let ?w = pmf-of-multiset (walks (graph-of e) l)
define V where V = {v∈ verts (graph-of e). T (select S v)}

have 0 : card {i ∈ {..<l}. T (select S (w ! i))} = card {i ∈ {..<l}. w ! i ∈ V }
if w ∈ set-pmf (pmf-of-multiset (walks (graph-of e) l)) for w

proof −
have a0 : w ∈# walks (graph-of e) l using that E .walks-nonempty by simp
have w ! i ∈ verts (graph-of e) if i < l for i

using that E .set-walks-3 [OF a0 ] by auto
thus ?thesis

unfolding V-def
by (intro arg-cong[where f=card] restr-Collect-cong) auto

qed

have 1 :E .Λa ≤ Λ
using see-standard(1 ) unfolding is-expander-def e-def by simp

have 2 : V ⊆ verts (graph-of e)
unfolding V-def by simp

have µ = measure (pmf-of-set {..<size S}) ({v. T (select S v)})
unfolding µ-def sample-pmf-alt[OF sample-space-S ]
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by simp
also have ... = real (card ({v∈{..<size S}. T (select S v)})) / real (size S)

using size-S-gt-0 by (subst measure-pmf-of-set) (auto simp add:Int-def )
also have ... = real (card V ) / card (verts (graph-of e))

unfolding V-def graph-of-def e-def using see-standard by (simp add:Int-commute)
finally have µ-eq: µ = real (card V ) / card (verts (graph-of e))

by simp

have ?L = measure ?w {y. γ ∗ real l ≤ real (card {i ∈ {..<l}. T (select S (y ! i))})}
unfolding walks by simp

also have ... = measure ?w {y. γ ∗ real l ≤ real (card {i ∈ {..<l}. y ! i ∈ V })}
using 0 by (intro measure-pmf-cong) (simp)

also have ... ≤ ?R
using assms(5 ) unfolding µ-eq
by (intro E .walk-tail-bound-2 assms(1 ,2 ,4 ) 1 2 ) auto

finally show ?thesis
by simp

qed

definition C 1 :: real where C 1 = exp 2 + exp 3 + (exp 1 − 1 )

lemma (in regular-graph) deviation-bound:
fixes f :: ′a ⇒ real
assumes l > 0
assumes Λa ≤ exp (−real l ∗ ln (real l)^3 )
assumes

∧
x. x ≥ 20 =⇒ measure (pmf-of-set (verts G)) {v. f v ≥ x} ≤ exp (−x ∗ ln x^3 )

shows measure (pmf-of-multiset (walks G l)) {w. (
∑

i←w. f i) ≥ C 1 ∗ l} ≤ exp (− real l)
(is ?L ≤ ?R)

proof −
let ?w = pmf-of-multiset (walks G l)
let ?p = pmf-of-set (verts G)
let ?a = real l∗(exp 2 + exp 3 )

define b :: real where b = exp 1 − 1
have b-gt-0 : b > 0

unfolding b-def by (approximation 5 )

define L where
L k = measure ?w {w. exp (real k)∗card{i∈{..<l}.f (w!i)≥exp(real k)} ≥ real l/real k^2} for k

define k-max where k-max = max 4 (MAX v ∈ verts G. nat bln (f v)c+1 )

define Λ where Λ = exp (−real l ∗ ln (real l)^3 )

have Λa-le-Λ: Λa ≤ Λ
unfolding Λ-def using assms(2 ) by simp

have Λ-gt-0 : Λ > 0
unfolding Λ-def by simp

have k-max-ge-4 : k-max ≥ 4
unfolding k-max-def by simp

have k-max-ge-3 : k-max ≥ 3
unfolding k-max-def by simp

have 1 :of-bool(bln(max x (exp 1 ))c+1=int k) =
(of-bool(x ≥ exp (real k−1 )) − of-bool(x ≥ exp k)::real)
(is ?L1 = ?R1 ) if k ≥ 3 for k x
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proof −
have a1 : real k − 1 ≤ k by simp
have ?L1 = of-bool(bln(max x (exp 1 ))c=int k−1 )

by simp
also have ... = of-bool(ln(max x (exp 1 ))∈{real k−1 ..<real k})

unfolding floor-eq-iff by simp
also have ... = of-bool(exp(ln(max x (exp 1 )))∈{exp (real k−1 )..<exp (real k)})

by simp
also have ... = of-bool(max x (exp 1 ) ∈{exp (real k−1 )..<exp (real k)})

by (subst exp-ln) (auto intro!:max.strict-coboundedI2 )
also have ... = of-bool(x ∈{exp (real k−1 )..<exp (real k)})
proof (cases x ≥ exp 1 )

case True
then show ?thesis by simp

next
case False
have {exp (real k − 1 )..<exp (real k)} ⊆ {exp (real k − 1 )..}

by auto
also have ... ⊆ {exp 1 ..}

using that by simp
finally have {exp (real k − 1 )..<exp (real k)} ⊆ {exp 1 ..} by simp
moreover have x /∈ {exp 1 ..}

using False by simp
ultimately have x /∈ {exp (real k − 1 )..<exp (real k)} by blast
hence of-bool(x ∈{exp (real k−1 )..<exp (real k)}) = 0 by simp
also have ... = of-bool(max x (exp 1 ) ∈{exp (real k−1 )..<exp (real k)})

using False that by simp
finally show ?thesis by metis

qed
also have ... = ?R1

using order-trans[OF iffD2 [OF exp-le-cancel-iff a1 ]] by auto
finally show ?thesis by simp

qed

have 0 : {nat bln (max (f x) (exp 1 ))c+1} ⊆ {2 ..k-max} (is {?L1} ⊆ ?R2 )
if x ∈ verts G for x

proof (cases f x ≥ exp 1 )
case True
hence ?L1 = nat bln (f x)c+1

by simp
also have ... ≤ (MAX v ∈ verts G. nat bln (f v)c+1 )

by (intro Max-ge finite-imageI imageI that) auto
also have ... ≤ k-max

unfolding k-max-def by simp
finally have le-0 : ?L1 ≤ k-max

by simp
have (1 ::nat) ≤ nat bln (exp (1 ::real))c

by simp
also have ... ≤ nat bln (f x)c

using True order-less-le-trans[OF exp-gt-zero]
by (intro nat-mono floor-mono iffD2 [OF ln-le-cancel-iff ]) auto

finally have 1 ≤ nat bln (f x)c by simp
hence ?L1 ≥ 2

using True by simp
hence ?L1 ∈ ?R2

using le-0 by simp
then show ?thesis by simp

next
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case False
hence {?L1} = {2}

by simp
also have ... ⊆ ?R2

using k-max-ge-3 by simp
finally show ?thesis by simp

qed

have 2 :(
∑

i←w. f i) ≤ ?a+b∗(
∑

k=3 ..<k-max. exp k ∗ card {i∈{..<l}. f (w!i)≥exp k})
(is ?L1 ≤ ?R1 ) if w ∈# walks G l for w

proof −
have l-w: length w = l

using set-walks that by auto
have s-w: set w ⊆ verts G

using set-walks that by auto

have ?L1 ≤ (
∑

i←w. exp( ln (max (f i) (exp 1 ))))
by (intro sum-list-mono) (simp add:less-max-iff-disj)

also have ... ≤ (
∑

i←w. exp (of-nat (nat bln (max (f i) (exp 1 ))c+1 )))
by (intro sum-list-mono iffD2 [OF exp-le-cancel-iff ]) linarith

also have ... = (
∑

i←w. (
∑

k=2 ..k-max. exp k ∗ of-bool (k=nat bln (max (f i)(exp 1 ))c+1 )))
using Int-absorb1 [OF 0 ] subsetD[OF s-w] by (intro-cong [σ1 sum-list] more:map-cong)
(simp add:of-bool-def if-distrib if-distribR sum.If-cases)

also have ...=
(
∑

i←w.(
∑

k∈(insert 2{3 ..k-max}). exp k∗ of-bool(k=natbln(max(f i)(exp 1 ))c+1 )))
using k-max-ge-3 by (intro-cong [σ1 sum-list] more:map-cong sum.cong) auto

also have ... = (
∑

i←w. exp 2∗ of-bool (2=nat bln (max (f i)(exp 1 ))c+1 ) +
(
∑

k=3 ..k-max. exp k ∗ of-bool (k=nat bln (max (f i)(exp 1 ))c+1 )))
by (subst sum.insert) auto

also have ... ≤ (
∑

i←w. exp 2∗1+(
∑

k=3 ..k-max. exp k∗ of-bool(k=natbln(max(f i)(exp
1 ))c+1 )))

by (intro sum-list-mono add-mono mult-left-mono) auto
also have ... = (

∑
i←w. exp 2+(

∑
k=3 ..k-max. exp k∗ of-bool(bln(max(f i)(exp 1 ))c+1=int

k)))
by (intro-cong [σ1 sum-list,σ1 of-bool, σ2(+),σ2(∗)] more:map-cong sum.cong) auto

also have ... =
(
∑

i←w. exp 2+(
∑

k=3 ..k-max. exp k∗(of-bool(f i≥exp (real k−1 ))−of-bool(f i≥exp k))))
by (intro-cong [σ1 sum-list,σ1 of-bool, σ2(+),σ2(∗)] more:map-cong sum.cong 1 ) auto

also have ... =
(
∑

i←w. exp 2+(
∑

k=2+1 ..<k-max+1 . exp k∗(of-bool(f i≥exp(real k−1 ))−of-bool(f i≥exp
k))))

by (intro-cong [σ1 sum-list,σ2(+)] more:map-cong sum.cong) auto
also have ... =
(
∑

i←w. exp 2+(
∑

k=2 ..<k-max. exp (k+1 )∗(of-bool(f i≥exp k)−of-bool(f i≥exp (Suc k)))))
by (subst sum.shift-bounds-nat-ivl) simp

also have ... = (
∑

i←w. exp 2+ (
∑

k=2 ..<k-max. exp (k+1 )∗ of-bool(f i≥exp k))−
(
∑

k=2 ..<k-max. exp (k+1 )∗ of-bool(f i≥exp (k+1 ))))
by (simp add:sum-subtractf algebra-simps)

also have ... = (
∑

i←w. exp 2+ (
∑

k=2 ..<k-max. exp (k+1 )∗ of-bool(f i≥exp k))−
(
∑

k=3 ..<k-max+1 . exp k∗ of-bool(f i≥exp k)))
by (subst sum.shift-bounds-nat-ivl[symmetric]) (simp cong:sum.cong)

also have ... = (
∑

i←w. exp 2+ (
∑

k∈ insert 2 {3 ..<k-max}. exp (k+1 )∗ of-bool(f i≥exp
k))−

(
∑

k=3 ..<k-max+1 . exp k∗ of-bool(f i≥exp k)))
using k-max-ge-3
by (intro-cong [σ1 sum-list, σ2 (+), σ2 (−)] more: map-cong sum.cong) auto

also have ... = (
∑

i←w. exp 2+ exp 3 ∗ of-bool (f i ≥ exp 2 ) +
(
∑

k=3 ..<k-max. exp (k+1 )∗ of-bool(f i≥exp k))−(
∑

k=3 ..<k-max+1 . exp k∗ of-bool(f
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i≥exp k)))
by (subst sum.insert) (simp-all add:algebra-simps)

also have ... ≤ (
∑

i←w. exp 2+exp 3+(
∑

k=3 ..<k-max. exp (k+1 )∗ of-bool(f i≥exp k))−
(
∑

k=3 ..<k-max+1 . exp k∗ of-bool(f i≥exp k)))
by (intro sum-list-mono add-mono diff-mono) auto

also have ... = (
∑

i←w. exp 2+exp 3+(
∑

k=3 ..<k-max. exp (k+1 )∗ of-bool(f i≥exp k))−
(
∑

k∈ insert k-max {3 ..<k-max}. exp k∗ of-bool(f i≥exp k)))
using k-max-ge-3 by (intro-cong [σ1 sum-list, σ2 (+), σ2 (−)] more: map-cong sum.cong)

auto
also have ... = (

∑
i←w. exp 2+exp 3+(

∑
k=3 ..<k-max. (exp (k+1 )−exp k)∗ of-bool(f i≥exp

k))−
(exp k-max ∗ of-bool (f i≥ exp k-max)))
by (subst sum.insert) (auto simp add:sum-subtractf algebra-simps)

also have ...≤(
∑

i←w. exp 2+exp 3+(
∑

k=3 ..<k-max. (exp (k+1 )−exp k)∗ of-bool(f i≥exp
k))−0 )

by (intro sum-list-mono add-mono diff-mono) auto
also have ... ≤(

∑
i←w. exp 2+exp 3+ (

∑
k=3 ..<k-max. (exp (k+1 )−exp k)∗ of-bool(f i≥exp

k)))
by auto

also have ... = (
∑

i←w. exp 2+exp 3+ (
∑

k=3 ..<k-max. (exp 1−1 )∗(exp k∗ of-bool(f i≥exp
k))))

by (simp add:exp-add algebra-simps)
also have ... = (

∑
i←w. exp 2+exp 3+b∗(

∑
k=3 ..<k-max. exp k∗ of-bool(f i≥exp k)))

unfolding b-def
by (subst sum-distrib-left) simp

also have ... = ?a+b∗(
∑

i=0 ..<l. (
∑

k=3 ..<k-max. exp k∗ of-bool(f (w ! i)≥exp k)))
unfolding sum-list-sum-nth by (simp add:l-w sum-distrib-left[symmetric])

also have ... = ?R1
by (subst sum.swap) (simp add:ac-simps Int-def )

finally show ?thesis by simp
qed

have 3 : ∃ k∈{3 ..<k-max}. g k ≥ l/real k^2 if (
∑

k=3 ..<k-max. g k) ≥ real l for g
proof (rule ccontr)

assume a3 : ¬(∃ k∈{3 ..<k-max}. g k ≥ l/real k^2 )
hence g k < l/real k^2 if k ∈{3 ..<k-max} for k

using that by force
hence (

∑
k=3 ..<k-max. g k) < (

∑
k=3 ..<k-max. l/real k^2 )

using k-max-ge-4 by (intro sum-strict-mono) auto
also have ... ≤ (

∑
k=3 ..<k-max. l/ (real k∗(real k−1 )))

by (intro sum-mono divide-left-mono) (auto simp:power2-eq-square)
also have ... = l ∗ (

∑
k=3 ..<k-max. 1 / (real k−1 ) − 1/k)

by (simp add:sum-distrib-left field-simps)
also have ... = l ∗ (

∑
k=2+1 ..<(k-max−1 )+1 . (−1 )/k − (−1 ) / (real k−1 ))

by (intro sum.cong arg-cong2 [where f=(∗)]) auto
also have ... = l ∗ (

∑
k=2 ..<(k-max−1 ). (−1 )/(Suc k) − (−1 ) / k)

by (subst sum.shift-bounds-nat-ivl) auto
also have ... = l ∗ (1/2 − 1 / real (k-max − 1 ))

using k-max-ge-3 by (subst sum-Suc-diff ′) auto
also have ... ≤ real l ∗ (1 − 0 )

by (intro mult-left-mono diff-mono) auto
also have ... = l

by simp
finally have (

∑
k=3 ..<k-max. g k) < l by simp

thus False
using that by simp

qed
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have 4 : L k ≤ exp(−real l−k+2 ) if k ≥ 3 for k
proof (cases k ≤ ln l)

case True
define γ where γ = 1 / (real k)2 / exp (real k)
define S where S = {v ∈ verts G. f v ≥ exp (real k)}
define µ where µ = card S / card (verts G)

have exp-k-ubound: exp (real k) ≤ real l
using True assms(1 )
by (simp add: ln-ge-iff )

have 20 ≤ exp (3 ::real)
by (approximation 10 )

also have ... ≤ exp (real k)
using that by simp

finally have exp-k-lbound: 20 ≤ exp (real k)
by simp

have S-range: S ⊆ verts G
unfolding S-def by simp

have µ = measure (pmf-of-set (verts G)) S
unfolding µ-def using verts-non-empty Int-absorb1 [OF S-range]
by (simp add:measure-pmf-of-set)

also have ... = measure (pmf-of-set (verts G)) {v. f v ≥ exp (real k)}
unfolding S-def using verts-non-empty by (intro measure-pmf-cong) auto

also have ... ≤ exp (− exp (real k) ∗ ln (exp (real k)) ^ 3 )
by (intro assms(3 ) exp-k-lbound)

also have ... = exp (−(exp(real k) ∗ real k^3 ))
by simp

finally have µ-bound: µ ≤ exp (−exp(real k) ∗ real k^3 ) by simp

have µ+Λ ≤ exp (−exp(real k) ∗ real k^3 ) + exp (− real l ∗ ln (real l) ^ 3 )
unfolding Λ-def by (intro add-mono µ-bound) auto

also have ... = exp (−(exp(real k) ∗ real k^3 )) + exp (− (real l ∗ ln (real l) ^ 3 ))
by simp

also have ... ≤ exp (−(exp(real k) ∗ real k^3 )) + exp (−(exp(real k) ∗ ln(exp (real k))^3 ))
using assms(1 ) exp-k-ubound by (intro add-mono iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le

mult-mono power-mono iffD2 [OF ln-le-cancel-iff ]) simp-all
also have ... = 2 ∗ exp (−exp(real k) ∗ real k^3 )

by simp
finally have µ-Λ-bound: µ+Λ ≤ 2 ∗ exp (−exp(real k) ∗ real k^3 )

by simp

have µ+Λ ≤ 2 ∗ exp (−exp(real k) ∗ real k^3 )
by (intro µ-Λ-bound)

also have ... = exp (−exp(real k) ∗ real k^3 + ln 2 )
unfolding exp-add by simp

also have ... = exp (−(exp(real k) ∗ real k^3 − ln 2 ))
by simp

also have ... ≤ exp (−((1+ real k) ∗ real k^3 − ln 2 ))
using that by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le diff-mono mult-right-mono

exp-ge-add-one-self-aux) auto
also have ... = exp (−(real k^4 + (real k^3− ln 2 )))

by (simp add:power4-eq-xxxx power3-eq-cube algebra-simps)
also have ... ≤ exp (−(real k^4 + (2^3− ln 2 ))) using that

by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le add-mono diff-mono power-mono) auto
also have ... ≤ exp (−(real k^4 + 0 ))
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by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le add-mono order .refl) (approximation 5 )
also have ... ≤ exp (−(real k^3 ∗ real k))

by (simp add:power4-eq-xxxx power3-eq-cube algebra-simps)
also have ... ≤ exp (−(2^3 ∗ real k)) using that

by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le mult-right-mono power-mono) auto
also have ... ≤ exp (−3∗ real k )

by (intro iffD2 [OF exp-le-cancel-iff ]) auto
also have ... = exp (−(real k + 2 ∗ real k) )

by simp
also have ... ≤ exp (−(real k + 2 ∗ ln k) )

using that
by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le add-mono mult-left-mono ln-bound) auto

also have ... = exp (−(real k + ln(k^2 )) )
using that by (subst ln-powr [symmetric]) auto

also have ... = γ
using that unfolding γ-def exp-minus exp-add inverse-eq-divide
by (simp add:algebra-simps)

finally have µ-Λ-le-γ: µ+Λ≤γ
by simp

have µ ≥ 0
unfolding µ-def n-def [symmetric] using n-gt-0
by (intro divide-nonneg-pos) auto

hence µ-Λ-gt-0 : µ+Λ>0
using Λ-gt-0 by simp

have γ = 1 / ((real k)2 ∗ exp (real k))
unfolding γ-def by simp

also have ... ≤ 1 / (2^2 ∗ exp 2 )
using that by (intro divide-left-mono mult-mono power-mono) (auto)

finally have γ-ubound: γ ≤ 1 / (4 ∗ exp 2 )
by simp

have γ ≤ 1 / (4 ∗ exp 2 )
by (intro γ-ubound)

also have ... < 1
by (approximation 5 )

finally have γ-lt-1 : γ < 1
by simp

have γ-ge-0 : γ ≥ 0
using that unfolding γ-def by (intro divide-nonneg-pos) auto

have L k = measure ?w {w. γ∗l ≤ real (card {i ∈ {..<l}. exp (real k) ≤ f (w ! i)})}
unfolding L-def γ-def using that
by (intro-cong [σ2 measure] more:Collect-cong) (simp add:field-simps)

also have ... = measure ?w {w. γ∗l ≤ real (card {i ∈ {..<l}. w ! i ∈ S})}
proof (rule measure-pmf-cong)

fix x assume x ∈ set-pmf ?w
hence card {i ∈ {..<l}. exp (real k) ≤ f (x ! i)}=card {i ∈ {..<l}. x ! i ∈ S}

using walks-nonempty set-walks-3 [of x] nth-mem unfolding S-def
by (intro restr-Collect-cong arg-cong[where f=card]) force

thus x∈{w. γ∗l≤card{i∈{..<l}. exp k≤f (w ! i)}}←→x∈{w. γ∗l≤card {i ∈ {..<l}. w ! i ∈
S}}

by simp
qed
also have ... ≤ exp (− real l ∗ (γ ∗ ln (1/(µ+Λ)) − 2 ∗ exp(−1 )))

using µ-Λ-le-γ γ-lt-1 S-range Λa-le-Λ Λ-gt-0 unfolding µ-def
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by (intro walk-tail-bound-2 assms(1 )) auto
also have ... = exp ( real l ∗ (γ ∗ ln (µ+Λ) + 2 ∗ exp (−1 )))

using µ-Λ-gt-0 by (simp-all add:ln-div algebra-simps)
also have ... ≤ exp ( real l ∗ (γ ∗ ln (2 ∗ exp (−exp(real k) ∗ real k^3 )) + 2 ∗ exp(−1 )))

using µ-Λ-gt-0 µ-Λ-bound γ-ge-0
by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono add-mono iffD2 [OF ln-le-cancel-iff ])
simp-all

also have ... = exp (real l ∗ (γ ∗ (ln 2 − exp (real k) ∗ real k ^ 3 ) + 2 ∗ exp (− 1 )))
by (simp add:ln-mult)

also have ... = exp (real l ∗ (γ ∗ ln 2 − real k + 2 ∗ exp (− 1 )))
using that unfolding γ-def by (simp add:field-simps power2-eq-square power3-eq-cube)

also have ... ≤ exp (real l ∗ (ln 2 / (4 ∗ exp 2 ) − real k + 2 ∗ exp (−1 )))
using γ-ubound by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono add-mono diff-mono)
(auto simp:divide-simps)

also have ... = exp (real l ∗ (ln 2 / (4 ∗ exp 2 ) + 2 ∗exp(−1 ) − real k))
by simp

also have ... ≤ exp (real l ∗ (1 − real k))
by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono diff-mono order .refl of-nat-0-le-iff )
(approximation 12 )

also have ... ≤ exp (−real l − real k + 2 )
proof (intro iffD2 [OF exp-le-cancel-iff ])

have 1 ∗ (real k−2 ) ≤ real l ∗ (real k−2 )
using assms(1 ) that by (intro mult-right-mono) auto

thus real l ∗ (1 − real k) ≤ − real l − real k + 2
by argo

qed
finally show ?thesis by simp

next
case False
hence k-gt-l: k ≥ ln l by simp
define γ where γ = 1 / (real k)2 / exp (real k)

have 20 ≤ exp (3 ::real)
by (approximation 10 )

also have ... ≤ exp (real k)
using that by simp

finally have exp-k-lbound: 20 ≤ exp (real k)
by simp

have γ-gt-0 : 0 < γ
using that unfolding γ-def by (intro divide-pos-pos) auto

hence γ-l-gt-0 : 0 < γ ∗ real l
using assms(1 ) by auto

have L k = measure ?w {w. γ∗l ≤ real (card {i ∈ {..<l}. exp (real k) ≤ f (w ! i)})}
unfolding L-def γ-def using that
by (intro-cong [σ2 measure] more:Collect-cong) (simp add:field-simps)

also have ... ≤ (
∫

w. real (card {i ∈ {..<l}. exp (real k) ≤ f (w ! i)}) ∂?w) / (γ∗l)
using walks-nonempty γ-l-gt-0
by (intro pmf-markov integrable-measure-pmf-finite) simp-all

also have ... = (
∫

w. (
∑

i<l. of-bool (exp(real k) ≤ f (w ! i)))∂?w) / (γ∗l)
by (intro-cong [σ2 (/)] more:integral-cong-AE AE-pmfI ) (auto simp add:Int-def )

also have ... = (
∑

i<l. (
∫

w. of-bool (exp(real k) ≤ f (w ! i))∂?w)) / (γ∗l)
using walks-nonempty
by (intro-cong [σ2 (/)] more:integral-sum integrable-measure-pmf-finite) auto

also have ... = (
∑

i<l. (
∫

v. of-bool (exp(real k) ≤ f v)∂(map-pmf (λw. w!i) ?w))) / (γ∗l)
by simp
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also have ... = (
∑

i<l. (
∫

v. of-bool (exp(real k) ≤ f v)∂?p)) / (γ∗l)
by (intro-cong [σ2(/),σ2(integralL),σ1 measure-pmf ] more:sum.cong uniform-property) auto

also have ... = (
∑

i<l. (
∫

v. indicat-real {v. (exp(real k) ≤ f v)} v∂?p)) / (γ∗l)
by (intro-cong [σ2(/),σ2(integralL)] more:sum.cong) auto

also have ... = (
∑

i<l. (measure ?p {v. f v ≥ exp (real k)})) / (γ∗l)
by simp

also have ... ≤ (
∑

i<l. exp (− exp (real k) ∗ ln (exp (real k)) ^ 3 )) / (γ∗l)
using γ-l-gt-0 by (intro divide-right-mono sum-mono assms(3 ) exp-k-lbound) auto

also have ... = exp (− exp (real k) ∗ real k ^ 3 ) / γ
using assms(1 ) by simp

also have ... = exp (real k + ln (k^2 ) − exp (real k) ∗ real k ^ 3 )
using that unfolding γ-def
by (simp add:exp-add exp-diff exp-minus algebra-simps inverse-eq-divide)

also have ... = exp (real k + 2 ∗ ln k − exp (real k) ∗ real k ^ 3 )
using that by (subst ln-powr [symmetric]) auto

also have ... ≤ exp (real k + 2 ∗ real k − exp (ln l) ∗ real k^3 )
using that k-gt-l ln-bound
by (intro iffD2 [OF exp-le-cancel-iff ] add-mono diff-mono mult-left-mono mult-right-mono)

auto
also have ... = exp (3∗ real k − l ∗ (real k^3−1 ) −l)

using assms(1 ) by (subst exp-ln) (auto simp add:algebra-simps)
also have ... ≤ exp (3∗ real k − 1 ∗ (real k^3−1 ) −l)

using assms(1 ) that by (intro iffD2 [OF exp-le-cancel-iff ] diff-mono mult-right-mono) auto
also have ... = exp (3∗ real k − real k ∗ real k^2−1 −l+2 )

by (simp add:power2-eq-square power3-eq-cube)
also have ... ≤ exp (3∗ real k − real k ∗ 2^2−0 −l+2 )

using assms(1 ) that
by (intro iffD2 [OF exp-le-cancel-iff ] add-mono diff-mono mult-left-mono power-mono) auto

also have ... = exp (− real l − real k + 2 )
by simp

finally show ?thesis by simp
qed

have ?L ≤ measure ?w
{w. ?a+b∗(

∑
k=3 ..<k-max. exp (real k) ∗ card {i∈{..<l}. f (w!i)≥exp (real k)}) ≥ C 1∗l}

using order-trans[OF - 2 ] walks-nonempty by (intro pmf-mono) simp
also have ... = measure ?w
{w. (

∑
k=3 ..<k-max. exp(real k)∗card{i∈{..<l}.f (w!i)≥exp(real k)})≥l}

unfolding C 1-def b-def [symmetric] using b-gt-0
by (intro-cong [σ2 measure] more:Collect-cong) (simp add:algebra-simps)

also have ... ≤ measure ?w
{w. (∃ k∈{3 ..<k-max}. exp (real k)∗card{i∈{..<l}.f (w!i)≥exp(real k)} ≥ real l/real k^2 )}
using 3 by (intro pmf-mono) simp

also have ... = measure ?w
(
⋃

k∈{3 ..<k-max}. {w. exp (real k)∗card{i∈{..<l}.f (w!i)≥exp(real k)} ≥ real l/real k^2})
by (intro-cong [σ2 measure]) auto

also have ... ≤ (
∑

k=3 ..<k-max. L k)
unfolding L-def
by (intro finite-measure.finite-measure-subadditive-finite) auto

also have ... ≤ (
∑

k=3 ..<k-max. exp (− real l − real k + 2 ))
by (intro sum-mono 4 ) auto

also have ... = (
∑

k=0+3 ..<(k-max−3 )+3 . exp (− real l − real k + 2 ))
using k-max-ge-3 by (intro sum.cong) auto

also have ... = (
∑

k=0 ..<k-max−3 . exp (−1 − real l − real k))
by (subst sum.shift-bounds-nat-ivl) ( simp add:algebra-simps)

also have ... = exp(−1−real l) ∗ (
∑

k<k-max−3 . exp (real k∗(−1 )))
using atLeast0LessThan
by (simp add:exp-diff exp-add sum-distrib-left exp-minus inverse-eq-divide)
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also have ... = exp (−1−real l) ∗ ((exp (− 1 ) ^ (k-max − 3 ) − 1 ) / (exp (− 1 ) − 1 ))
unfolding exp-of-nat-mult by (subst geometric-sum) auto

also have ... = exp(−1−real l) ∗ (1−exp (− 1 ) ^ (k-max − 3 )) / (1−exp (− 1 ))
by (simp add:field-simps)

also have ... ≤ exp(−1−real l) ∗ (1−0 ) / (1−exp (− 1 ))
using k-max-ge-3
by (intro mult-left-mono divide-right-mono diff-mono) auto

also have ... = exp (−real l) ∗ (exp (−1 ) / (1−exp(−1 )))
by (simp add:exp-diff exp-minus inverse-eq-divide)

also have ... ≤ exp (−real l) ∗ 1
by (intro mult-left-mono exp-ge-zero) (approximation 10 )

finally show ?thesis
by simp

qed

lemma (in expander-sample-space) deviation-bound:
fixes f :: ′a ⇒ real
assumes l > 0
assumes Λ ≤ exp (−real l ∗ ln (real l)^3 )
assumes

∧
x. x ≥ 20 =⇒ measure (sample-pmf S) {v. f v ≥ x} ≤ exp (−x ∗ ln x^3 )

shows measure (E l Λ S) {ω. (
∑

i<l. f (ω i)) ≥ C 1 ∗ l} ≤ exp (− real l) (is ?L ≤ ?R)
proof −

let ?w = pmf-of-multiset (walks (graph-of e) l)

have E .Λa ≤ Λ
using see-standard(1 ) unfolding is-expander-def e-def by simp

also have ... ≤ exp (− real l ∗ ln (real l) ^ 3 )
using assms(2 ) by simp

finally have 0 : E .Λa ≤ exp (− real l ∗ ln (real l) ^ 3 )
by simp

have 1 : measure (pmf-of-set (verts (graph-of e))) {v. x ≤ f (select S v)} ≤ exp (− x∗ln x^3 )
(is ?L1 ≤ ?R1 ) if x ≥ 20 for x

proof −
have ?L1 = measure (map-pmf (select S) (pmf-of-set {..<size S})) {v. x ≤ f v}

using see-standard(2 ) unfolding e-def graph-of-def by simp
also have ... = measure (sample-pmf S) {v. x ≤ f v}

unfolding sample-pmf-alt[OF sample-space-S ] by simp
also have ... ≤ ?R1

by (intro assms(3 ) that)
finally show ?thesis

by simp
qed

have ?L = measure ?w {w. C 1 ∗ real l ≤ (
∑

i<l. f (select S (w ! i)))}
unfolding walks by simp

also have ... = measure ?w {ws. C 1 ∗ real l ≤ (
∑

w←ws. f (select S w))}
using E .walks-nonempty E .set-walks-3 atLeast0LessThan
unfolding sum-list-sum-nth by (intro measure-pmf-cong) simp

also have ... ≤ ?R
by (intro E .deviation-bound assms(1 ) 0 1 )

finally show ?thesis by simp
qed

unbundle no-intro-cong-syntax

end
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6 Inner Algorithm

This section introduces the inner algorithm (as mentioned it is already a solution to the
cardinality estimation with the caveat that, if ε is too small it requires to much space.
The outer algorithm in Section 10 resolved this problem.
The algorithm makes use of the balls and bins model, more precisely, the fact that the
number of hit bins can be used to estimate the number of balls thrown (even if there are
collusions). I.e. it assigns each universe element to a bin using a k-wise independent hash
function. Then it counts the number of bins hit.
This strategy however would only work if the number of balls is roughly equal to the
number of bins, to remedy that the algorithm performs an adaptive sub-sampling strategy.
This works by assigning each universe element a level (using a second hash function) with
a geometric distribution. The algorithm then selects a level that is appropriate based on
a rough estimate obtained using the maximum level in the bins.
To save space the algorithm drops information about small levels, whenever the space
usage would be too high otherwise. This level will be called the cutoff-level. This is okey
as long as the cutoff level is not larger than the sub-sampling threshold. A lot of the
complexity in the proof is devoted to verifying that the cutoff-level will not cross it, it
works by defining a third value sM that is both an upper bound for the cutoff level and a
lower bound for the subsampling threshold simultaneously with high probability.
theory Distributed-Distinct-Elements-Inner-Algorithm

imports
Pseudorandom-Combinators
Distributed-Distinct-Elements-Preliminary
Distributed-Distinct-Elements-Balls-and-Bins
Distributed-Distinct-Elements-Tail-Bounds
Prefix-Free-Code-Combinators.Prefix-Free-Code-Combinators

begin

unbundle intro-cong-syntax
hide-const Abstract-Rewriting.restrict

definition C 4 :: real where C 4 = 3^2∗2^23
definition C 5 :: int where C 5 = 33
definition C 6 :: real where C 6 = 4
definition C 7 :: nat where C 7 = 2^5

locale inner-algorithm =
fixes n :: nat
fixes δ :: real
fixes ε :: real
assumes n-gt-0 : n > 0
assumes δ-gt-0 : δ > 0 and δ-lt-1 : δ < 1
assumes ε-gt-0 : ε > 0 and ε-lt-1 : ε < 1

begin

definition b-exp where b-exp = nat dlog 2 (C 4 / ε^2 )e
definition b :: nat where b = 2^b-exp
definition l where l = nat dC 6 ∗ ln (2/ δ)e
definition k where k = nat dC 2∗ln b + C 3e
definition Λ :: real where Λ = min (1/16 ) (exp (−l ∗ ln l^3 ))
definition % :: real ⇒ real where % x = b ∗ (1 − (1−1/b) powr x)
definition %-inv :: real ⇒ real where %-inv x = ln (1−x/b) / ln (1−1/b)

lemma l-lbound: C 6 ∗ ln (2 / δ) ≤ l
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unfolding l-def by linarith

lemma k-min: C 2 ∗ ln (real b) + C 3 ≤ real k
unfolding k-def by linarith

lemma Λ-gt-0 : Λ > 0
unfolding Λ-def min-less-iff-conj by auto

lemma Λ-le-1 : Λ ≤ 1
unfolding Λ-def by auto

lemma l-gt-0 : l > 0
proof −

have 0 < C 6 ∗ ln (2 / δ)
unfolding C 6-def using δ-gt-0 δ-lt-1
by (intro Rings.mult-pos-pos ln-gt-zero) auto

also have ... ≤ l
by (intro l-lbound)

finally show ?thesis
by simp

qed

lemma l-ubound: l ≤ C 6 ∗ ln(1 / δ)+C 6∗ln 2 + 1
proof −

have l = of-int dC 6 ∗ ln (2/ δ)e
using l-gt-0 unfolding l-def
by (intro of-nat-nat) simp

also have ... ≤ C 6 ∗ ln (1/ δ∗2 )+1
by simp

also have ... = C 6 ∗ ln (1/ δ)+C 6 ∗ ln 2+1
using δ-gt-0 δ-lt-1
by (subst ln-mult) (auto simp add:algebra-simps)

finally show ?thesis by simp
qed

lemma b-exp-ge-26 : b-exp ≥ 26
proof −

have 2 powr 25 < C 4 / 1 unfolding C 4-def by simp
also have ... ≤ C 4 / ε^2

using ε-gt-0 ε-lt-1 unfolding C 4-def
by (intro divide-left-mono power-le-one) auto

finally have 2 powr 25 < C 4 / ε^2 by simp
hence log 2 (C 4 / ε^2 ) > 25

using ε-gt-0 unfolding C 4-def
by (intro iffD2 [OF less-log-iff ] divide-pos-pos zero-less-power) auto

hence dlog 2 (C 4 / ε^2 )e ≥ 26 by simp
thus ?thesis

unfolding b-exp-def by linarith
qed

lemma b-min: b ≥ 2^26
unfolding b-def
by (meson b-exp-ge-26 nat-power-less-imp-less not-less power-eq-0-iff power-zero-numeral)

lemma k-gt-0 : k > 0
proof −

have (0 ::real) < 7 .5 ∗ 0 + 16 by simp
also have ... ≤ 7 .5 ∗ ln(real b) + 16
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using b-min
by (intro add-mono mult-left-mono ln-ge-zero) auto

finally have 0 < real k
using k-min unfolding C 2-def C 3-def by simp

thus ?thesis by simp
qed

lemma b-ne: {..<b} 6= {}
proof −

have 0 ∈ {0 ..<b}
using b-min by simp

thus ?thesis
by auto

qed

lemma b-lower-bound: C 4 / ε^2 ≤ real b
proof −

have C 4 / ε^2 = 2 powr (log 2 (C 4 / ε^2 ))
using ε-gt-0 unfolding C 4-def by (intro powr-log-cancel[symmetric] divide-pos-pos) auto

also have ... ≤ 2 powr (nat dlog 2 (C 4 / ε^2 )e)
by (intro powr-mono of-nat-ceiling) simp

also have ... = real b
unfolding b-def b-exp-def by (simp add:powr-realpow)

finally show ?thesis by simp
qed

definition n-exp where n-exp = max (nat dlog 2 ne) 1

lemma n-exp-gt-0 : n-exp > 0
unfolding n-exp-def by simp

abbreviation Ψ1 where Ψ1 ≡ H 2 n (G n-exp)
abbreviation Ψ2 where Ψ2 ≡ H 2 n [C 7∗b2]S
abbreviation Ψ3 where Ψ3 ≡ H k (C 7∗b2) [b]S

definition Ψ where Ψ = Ψ1 ×S Ψ2 ×S Ψ3

abbreviation Ω where Ω ≡ E l Λ Ψ

type-synonym state = (nat ⇒ nat ⇒ int) × (nat)

fun is-too-large :: (nat ⇒ nat ⇒ int) ⇒ bool where
is-too-large B = ((

∑
(i,j) ∈ {..<l} × {..<b}. blog 2 (max (B i j) (−1 ) + 2 )c) > C 5 ∗ b ∗ l)

fun compress-step :: state ⇒ state where
compress-step (B,q) = (λ i j. max (B i j − 1 ) (−1 ), q+1 )

function compress :: state ⇒ state where
compress (B,q) = (

if is-too-large B
then (compress (compress-step (B,q)))
else (B,q))

by auto

fun compress-termination :: state ⇒ nat where
compress-termination (B,q) = (

∑
(i,j) ∈ {..<l} × {..<b}. nat (B i j + 1 ))

lemma compress-termination:
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assumes is-too-large B
shows compress-termination (compress-step (B,q)) < compress-termination (B,q)

proof (rule ccontr)
let ?I = {..<l} × {..<b}
have a: nat (max (B i j − 1 ) (− 1 ) + 1 ) ≤ nat (B i j + 1 ) for i j

by simp
assume ¬ compress-termination (compress-step (B, q)) < compress-termination (B, q)
hence (

∑
(i,j) ∈ ?I . nat (B i j + 1 )) ≤ (

∑
(i,j) ∈ ?I . nat (max (B i j − 1 ) (−1 ) + 1 ))

by simp
moreover have (

∑
(i,j) ∈ ?I . nat (B i j + 1 )) ≥ (

∑
(i,j) ∈ ?I . nat (max (B i j − 1 ) (−1 )

+ 1 ))
by (intro sum-mono) auto

ultimately have b:
(
∑

(i,j) ∈ ?I . nat (max (B i j − 1 ) (−1 ) + 1 )) = (
∑

(i,j) ∈ ?I . nat (B i j + 1 ))
using order-antisym by simp

have nat (B i j + 1 ) = nat (max (B i j − 1 ) (−1 ) + 1 ) if (i,j) ∈ ?I for i j
using sum-mono-inv[OF b] that a by auto

hence max (B i j) (−1 ) = −1 if (i,j) ∈ ?I for i j
using that by fastforce

hence (
∑

(i,j) ∈ ?I . blog 2 (max (B i j) (−1 ) + 2 )c) = (
∑

(i,j) ∈ ?I . 0 )
by (intro sum.cong, auto)

also have ... = 0 by simp
also have ... ≤ C 5 ∗ b ∗ l unfolding C 5-def by simp
finally have ¬ is-too-large B by simp
thus False using assms by simp

qed

termination compress
using measure-def compress-termination
by (relation Wellfounded.measure (compress-termination), auto)

fun merge1 :: state ⇒ state ⇒ state where
merge1 (B1 ,q1) (B2 , q2) = (

let q = max q1 q2 in (λ i j. max (B1 i j + q1 − q) (B2 i j + q2 − q), q))

fun merge :: state ⇒ state ⇒ state where
merge x y = compress (merge1 x y)

type-synonym seed = nat ⇒ (nat ⇒ nat) × (nat ⇒ nat) × (nat ⇒ nat)

fun single1 :: seed ⇒ nat ⇒ state where
single1 ω x = (λ i j.

let (f ,g,h) = ω i in (
if h (g x) = j ∧ i < l then int (f x) else (−1 )), 0 )

fun single :: seed ⇒ nat ⇒ state where
single ω x = compress (single1 ω x)

fun estimate1 :: state ⇒ nat ⇒ real where
estimate1 (B,q) i = (

let s = max 0 (Max ((B i) ‘ {..<b}) + q − blog 2 bc + 9 );
p = card { j. j ∈ {..<b} ∧ B i j + q ≥ s } in
2 powr s ∗ ln (1−p/b) / ln(1−1/b))

fun estimate :: state ⇒ real where
estimate x = median l (estimate1 x)
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6.1 History Independence
fun τ0 :: ((nat ⇒ nat) × (nat ⇒ nat) × (nat ⇒ nat)) ⇒ nat set ⇒ nat ⇒ int

where τ0 (f ,g,h) A j = Max ({ int (f a) | a . a ∈ A ∧ h (g a) = j } ∪ {−1})

definition τ1 :: ((nat ⇒ nat) × (nat ⇒ nat) × (nat ⇒ nat)) ⇒ nat set ⇒ nat ⇒ nat ⇒ int
where τ1 ψ A q j = max (τ0 ψ A j − q) (−1 )

definition τ2 :: seed ⇒ nat set ⇒ nat ⇒ nat ⇒ nat ⇒ int
where τ2 ω A q i j = (if i < l then τ1 (ω i) A q j else (−1 ))

definition τ3 :: seed ⇒ nat set ⇒ nat ⇒ state
where τ3 ω A q = (τ2 ω A q, q)

definition q :: seed ⇒ nat set ⇒ nat
where q ω A = (LEAST q . ¬(is-too-large (τ2 ω A q)))

definition τ :: seed ⇒ nat set ⇒ state
where τ ω A = τ3 ω A (q ω A)

lemma τ2-step: τ2 ω A (x+y) = (λi j. max (τ2 ω A x i j − y) (− 1 ))
by (intro ext) (auto simp add:τ2-def τ1-def )

lemma τ3-step: compress-step (τ3 ω A x) = τ3 ω A (x+1 )
unfolding τ3-def using τ2-step[where y=1 ] by simp

sublocale Ψ1: hash-sample-space 2 n 2 n-exp G n-exp
using n-exp-gt-0 unfolding hash-sample-space-def G-def by auto

sublocale Ψ2: hash-sample-space 2 n 2 5 + b-exp∗2 [(C 7∗b2)]S
unfolding hash-sample-space-def nat-sample-space-def b-def C 7-def
by (auto simp add:power-mult power-add)

sublocale Ψ3: hash-sample-space k C 7∗b2 2 b-exp [b]S
unfolding hash-sample-space-def b-def nat-sample-space-def using k-gt-0 b-exp-ge-26
by auto

lemma sample-pmf-Ψ: sample-pmf Ψ = pair-pmf Ψ1 (pair-pmf Ψ2 Ψ3)
unfolding Ψ-def
using Ψ1.sample-space Ψ2.sample-space Ψ3.sample-space
by (simp add:prod-sample-pmf )

lemma sample-set-Ψ:
sample-set Ψ = sample-set Ψ1 × sample-set Ψ2 × sample-set Ψ3

using Ψ1.sample-space Ψ2.sample-space Ψ3.sample-space unfolding Ψ-def
by (simp add: prod-sample-set)

lemma sample-space-Ψ: sample-space Ψ
unfolding Ψ-def
using Ψ1.sample-space Ψ2.sample-space Ψ3.sample-space
by simp

lemma f-range:
assumes (f ,g,h) ∈ sample-set Ψ
shows f x ≤ n-exp

proof −
have f ∈ sample-set Ψ1

using sample-set-Ψ assms by auto
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then obtain i where f-def :f = select Ψ1 i unfolding sample-set-def by auto
hence f x ∈ sample-set (G n-exp)

using Ψ1.range by auto
also have ... ⊆ {..n-exp}

by (intro G-range)
finally have f x ∈ {..n-exp}

by simp
thus ?thesis by simp

qed

lemma g-range-1 :
assumes g ∈ sample-set Ψ2

shows g x < C 7∗b^2
proof −

obtain i where f-def :g = select (H 2 n [(C 7∗b2)]S) i
using assms unfolding sample-set-def by auto

hence range g ⊆ sample-set ([(C 7∗b2)]S)
unfolding f-def by (intro Ψ2.range)

thus ?thesis
unfolding sample-set-alt[OF Ψ2.sample-space-R]
unfolding nat-sample-space-def by auto

qed

lemma h-range-1 :
assumes h ∈ sample-set Ψ3

shows h x < b
proof −

obtain i where f-def :h = select Ψ3 i
using assms unfolding sample-set-def by auto

hence range h ⊆ sample-set ([b]S)
unfolding f-def by (intro Ψ3.range)

thus ?thesis
unfolding sample-set-alt[OF Ψ3.sample-space-R]
unfolding nat-sample-space-def by auto

qed

lemma g-range:
assumes (f ,g,h) ∈ sample-set Ψ
shows g x < C 7∗b^2

proof −
have g ∈ sample-set Ψ2

using sample-set-Ψ assms by auto
thus ?thesis

using g-range-1 by simp
qed

lemma h-range:
assumes (f ,g,h) ∈ sample-set Ψ
shows h x < b

proof −
have h ∈ sample-set Ψ3

using sample-set-Ψ assms by auto
thus ?thesis

using h-range-1 by simp
qed

lemma fin-f :
assumes (f ,g,h) ∈ sample-set Ψ
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shows finite { int (f a) | a. P a } (is finite ?M )
proof −

have finite (range f )
using f-range[OF assms] finite-nat-set-iff-bounded-le by auto

hence finite (range (int ◦ f ))
by (simp add:image-image[symmetric])

moreover have ?M ⊆ (range (int ◦ f ))
using image-mono by (auto simp add: setcompr-eq-image)

ultimately show ?thesis
using finite-subset by auto

qed

lemma Max-int-range: x ≤ (y::int) =⇒ Max {x..y} = y
by auto

sublocale Ω: expander-sample-space l Λ Ψ
unfolding expander-sample-space-def using sample-space-Ψ l-gt-0 Λ-gt-0 by auto

lemma max-q-1 :
assumes ω ∈ sample-set Ω
shows τ2 ω A (nat dlog 2 ne+2 ) i j = (−1 )

proof (cases i < l)
case True
obtain f g h where w-i: ω i = (f ,g,h)

by (metis prod-cases3 )

let ?max-q = max dlog 2 (real n)e 1

have ω i ∈ sample-set Ψ
using Ω.sample-set assms unfolding Pi-def by auto

hence c: (f ,g,h) ∈ sample-set Ψ
using w-i by auto

have a:int (f x) ≤ ?max-q for x
proof −

have int (f x) ≤ int n-exp
using f-range[OF c] by auto

also have ... = ?max-q unfolding n-exp-def by simp
finally show ?thesis by simp

qed
have τ0 (ω i) A j ≤ Max {(−1 )..?max-q}

unfolding w-i τ0.simps using a by (intro Max-mono) auto
also have ... = ?max-q

by (intro Max-int-range) auto
finally have τ0 (ω i) A j ≤ ?max-q by simp
hence max (τ0 (ω i) A j − int (nat dlog 2 (real n)e + 2 )) (− 1 ) = (−1 )

by (intro max-absorb2 ) linarith
thus ?thesis

unfolding τ2-def τ1-def using True by auto
next

case False
thus ?thesis

unfolding τ2-def τ1-def by simp
qed

lemma max-q-2 :
assumes ω ∈ sample-set Ω
shows ¬ (is-too-large (τ2 ω A (nat dlog 2 ne+2 )))
using max-q-1 [OF assms] by (simp add:C 5-def case-prod-beta mult-less-0-iff )
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lemma max-s-3 :
assumes ω ∈ sample-set Ω
shows q ω A ≤ (nat dlog 2 ne+2 )
unfolding q-def by (intro wellorder-Least-lemma(2 ) max-q-2 assms)

lemma max-mono: x ≤ (y:: ′a::linorder) =⇒ max x z ≤ max y z
using max.coboundedI1 by auto

lemma max-mono-2 : y ≤ (z:: ′a::linorder) =⇒ max x y ≤ max x z
using max.coboundedI2 by auto

lemma τ0-mono:
assumes ψ ∈ sample-set Ψ
assumes A ⊆ B
shows τ0 ψ A j ≤ τ0 ψ B j

proof −
obtain f g h where w-i: ψ = (f ,g,h)

by (metis prod-cases3 )
show ?thesis

using assms fin-f unfolding τ0.simps w-i
by (intro Max-mono) auto

qed

lemma τ2-mono:
assumes ω ∈ sample-set Ω
assumes A ⊆ B
shows τ2 ω A x i j ≤ τ2 ω B x i j

proof −
have max (τ0 (ω i) A j − int x) (− 1 ) ≤ max (τ0 (ω i) B j − int x) (− 1 ) if i < l

using assms(1 ) Ω.sample-set that
by (intro max-mono diff-mono τ0-mono assms(2 ) order .refl) auto

thus ?thesis
by (cases i < l) (auto simp add:τ2-def τ1-def )

qed

lemma is-too-large-antimono:
assumes ω ∈ sample-set Ω
assumes A ⊆ B
assumes is-too-large (τ2 ω A x)
shows is-too-large (τ2 ω B x)

proof −
have C 5 ∗ b ∗ l < (

∑
(i,j) ∈ {..<l} × {..<b}. blog 2 (max (τ2 ω A x i j) (−1 ) + 2 )c)

using assms(3 ) by simp
also have ... = (

∑
y ∈ {..<l} × {..<b}. blog 2 (max (τ2 ω A x (fst y) (snd y)) (−1 ) + 2 )c)

by (simp add:case-prod-beta)
also have ... ≤ (

∑
y ∈ {..<l} × {..<b}. blog 2 (max (τ2 ω B x (fst y) (snd y)) (−1 ) + 2 )c)

by (intro sum-mono floor-mono iffD2 [OF log-le-cancel-iff ] iffD2 [OF of-int-le-iff ]
add-mono max-mono τ2-mono[OF assms(1 ,2 )]) auto

also have ... = (
∑

(i,j) ∈ {..<l} × {..<b}. blog 2 (max (τ2 ω B x i j) (−1 ) + 2 )c)
by (simp add:case-prod-beta)

finally have (
∑

(i,j) ∈ {..<l} × {..<b}. blog 2 (max (τ2 ω B x i j) (−1 ) + 2 )c) > C 5 ∗ b ∗ l
by simp

thus ?thesis by simp
qed

lemma q-compact:
assumes ω ∈ sample-set Ω
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shows ¬ (is-too-large (τ2 ω A (q ω A)))
unfolding q-def using max-q-2 [OF assms]
by (intro wellorder-Least-lemma(1 )) blast

lemma q-mono:
assumes ω ∈ sample-set Ω
assumes A ⊆ B
shows q ω A ≤ q ω B

proof −
have ¬ (is-too-large (τ2 ω A (q ω B)))

using is-too-large-antimono[OF assms] q-compact[OF assms(1 )] by blast
hence (LEAST q . ¬(is-too-large (τ2 ω A q))) ≤ q ω B

by (intro Least-le) blast
thus ?thesis

by (simp add:q-def )
qed

lemma lt-s-too-large: x < q ω A =⇒ is-too-large (τ2 ω A x)
using not-less-Least unfolding q-def by auto

lemma compress-result-1 :
assumes ω ∈ sample-set Ω
shows compress (τ3 ω A (q ω A − i)) = τ ω A

proof (induction i)
case 0
then show ?case

using q-compact[OF assms] by (simp add:τ3-def τ -def )
next

case (Suc i)
show ?case
proof (cases i < q ω A)

case True
have is-too-large (τ2 ω A (q ω A − Suc i))

using True by (intro lt-s-too-large) simp
hence compress (τ3 ω A (q ω A − Suc i)) = compress (compress-step (τ3 ω A (q ω A − Suc

i)))
unfolding τ3-def compress.simps
by (simp del: compress.simps compress-step.simps)

also have ... = compress (τ3 ω A ((q ω A − Suc i)+1 ))
by (subst τ3-step) blast

also have ... = compress (τ3 ω A (q ω A − i))
using True by (metis Suc-diff-Suc Suc-eq-plus1 )

also have ... = τ ω A using Suc by auto
finally show ?thesis by simp

next
case False
then show ?thesis using Suc by simp

qed
qed

lemma compress-result:
assumes ω ∈ sample-set Ω
assumes x ≤ q ω A
shows compress (τ3 ω A x) = τ ω A

proof −
obtain i where i-def : x = q ω A − i using assms by (metis diff-diff-cancel)
have compress (τ3 ω A x) = compress (τ3 ω A (q ω A − i))

by (subst i-def ) blast
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also have ... = τ ω A
using compress-result-1 [OF assms(1 )] by blast

finally show ?thesis by simp
qed

lemma τ0-merge:
assumes (f ,g,h) ∈ sample-set Ψ
shows τ0 (f ,g,h) (A ∪ B) j = max (τ0 (f ,g,h) A j) (τ0 (f ,g,h) B j) (is ?L = ?R)

proof−
let ?f = λa. int (f a)
have ?L = Max (({ int (f a) | a . a ∈ A ∧ h (g a) = j } ∪ {−1}) ∪

({ int (f a) | a . a ∈ B ∧ h (g a) = j } ∪ {−1}))
unfolding τ0.simps
by (intro arg-cong[where f=Max]) auto

also have ... = max (Max ({ int (f a) | a . a ∈ A ∧ h (g a) = j } ∪ {−1}))
(Max ({ int (f a) | a . a ∈ B ∧ h (g a) = j } ∪ {−1}))

by (intro Max-Un finite-UnI fin-f [OF assms]) auto
also have ... = ?R

by (simp)
finally show ?thesis by simp

qed

lemma τ2-merge:
assumes ω ∈ sample-set Ω
shows τ2 ω (A ∪ B) x i j = max (τ2 ω A x i j) (τ2 ω B x i j)

proof (cases i < l)
case True

obtain f g h where w-i: ω i = (f ,g,h)
by (metis prod-cases3 )

have ω i ∈ sample-set Ψ
using Ω.sample-set assms unfolding Pi-def by auto

hence a: (f ,g,h) ∈ sample-set Ψ
using w-i by auto

show ?thesis
unfolding τ2-def τ1-def
using True by (simp add:w-i τ0-merge[OF a] del:τ0.simps)

next
case False
thus ?thesis by (simp add:τ2-def )

qed

lemma merge1-result:
assumes ω ∈ sample-set Ω
shows merge1 (τ ω A) (τ ω B) = τ3 ω (A ∪ B) (max (q ω A) (q ω B))

proof −
let ?qmax = max (q ω A) (q ω B)
obtain u where u-def : q ω A + u = ?qmax

by (metis add.commute max.commute nat-minus-add-max)
obtain v where v-def : q ω B + v = ?qmax

by (metis add.commute nat-minus-add-max)

have u = 0 ∨ v = 0 using u-def v-def by linarith
moreover have τ2 ω A (q ω A) i j − u ≥ (−1 ) if u = 0 for i j

using that by (simp add:τ2-def τ1-def )
moreover have τ2 ω B (q ω B) i j − v ≥ (−1 ) if v = 0 for i j

using that by (simp add:τ2-def τ1-def )
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ultimately have a:max (τ2 ω A (q ω A) i j − u) (τ2 ω B (q ω B) i j − v) ≥ (−1 ) for i j
unfolding le-max-iff-disj by blast

have τ2 ω (A ∪ B) ?qmax = (λ i j. max (τ2 ω A ?qmax i j) (τ2 ω B ?qmax i j))
using τ2-merge[OF assms] by blast

also have ... = (λ i j. max (τ2 ω A (q ω A + u) i j) (τ2 ω B (q ω B + v) i j))
unfolding u-def v-def by blast

also have ... = (λ i j. max (max (τ2 ω A (q ω A) i j − u) (−1 )) (max (τ2 ω B (q ω B) i j −
v) (−1 )))

by (simp only: τ2-step)
also have ... = (λ i j. max (max (τ2 ω A (q ω A) i j − u) (τ2 ω B (q ω B) i j − v)) (−1 ))

by (metis (no-types, opaque-lifting) max.commute max.left-commute max.left-idem)
also have ... = (λ i j. max (τ2 ω A (q ω A) i j − u) (τ2 ω B (q ω B) i j − v))

using a by simp
also have ... = (λi j. max (τ2 ω A (q ω A) i j + int (q ω A) − ?qmax)
(τ2 ω B (q ω B) i j + int (q ω B) − ?qmax))
by (subst u-def [symmetric], subst v-def [symmetric]) simp

finally have τ2 ω (A ∪ B) (max (q ω A) (q ω B)) =
(λi j. max (τ2 ω A (q ω A) i j + int (q ω A) − int (?qmax))

(τ2 ω B (q ω B) i j + int (q ω B) − int (?qmax))) by simp
thus ?thesis

by (simp add:Let-def τ -def τ3-def )
qed

lemma merge-result:
assumes ω ∈ sample-set Ω
shows merge (τ ω A) (τ ω B) = τ ω (A ∪ B) (is ?L = ?R)

proof −
have a:max (q ω A) (q ω B) ≤ q ω (A ∪ B)

using q-mono[OF assms] by simp

have ?L = compress (merge1 (τ ω A) (τ ω B))
by simp

also have ... = compress ( τ3 ω (A ∪ B) (max (q ω A) (q ω B)))
by (subst merge1-result[OF assms]) blast

also have ... = ?R
by (intro compress-result[OF assms] a Un-least)

finally show ?thesis by blast
qed

lemma single1-result: single1 ω x = τ3 ω {x} 0
proof −

have (case ω i of (f , g, h) ⇒ if h (g x) = j ∧ i < l then int (f x) else − 1 ) = τ2 ω {x} 0 i j
for i j

proof −
obtain f g h where w-i:ω i = (f , g,h) by (metis prod-cases3 )
show ?thesis

by (simp add:w-i τ2-def τ1-def )
qed
thus ?thesis

unfolding τ3-def by fastforce
qed

lemma single-result:
assumes ω ∈ sample-set Ω
shows single ω x = τ ω {x} (is ?L = ?R)

proof −
have ?L = compress (single1 ω x)
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by (simp)
also have ... = compress (τ3 ω {x} 0 )

by (subst single1-result) blast
also have ... = ?R

by (intro compress-result[OF assms]) auto
finally show ?thesis by blast

qed

6.2 Encoding states of the inner algorithm
definition is-state-table :: (nat × nat ⇒ int) ⇒ bool where

is-state-table g = (range g ⊆ {−1 ..} ∧ g ‘ (−({..<l} × {..<b})) ⊆ {−1})

Encoding for state table values:
definition V e :: int encoding

where V e x = (if x ≥ −1 then N e (nat (x+1 )) else None)

Encoding for state table:
definition T e

′ :: (nat × nat ⇒ int) encoding where
T e

′ g = (
if is-state-table g

then (List.product [0 ..<l] [0 ..<b] →e V e) (restrict g ({..<l}×{..<b}))
else None)

definition T e :: (nat ⇒ nat ⇒ int) encoding
where T e f = T e

′ (case-prod f )

definition encode-state :: state encoding
where encode-state = T e ×e Nbe (nat dlog 2 ne+3 )

lemma inj-on-restrict:
assumes B ⊆ {f . f ‘ (− A) ⊆ {c}}
shows inj-on (λx. restrict x A) B

proof (rule inj-onI )
fix f g assume a:f ∈ B g ∈ B restrict f A = restrict g A

have f x = g x if x ∈ A for x
by (intro restrict-eq-imp[OF a(3 ) that])

moreover have f x = g x if x /∈ A for x
proof −

have f x = c g x = c
using that a(1 ,2 ) assms(1 ) by auto

thus ?thesis by simp
qed
ultimately show f = g

by (intro ext) auto
qed

lemma encode-state: is-encoding encode-state
proof −

have is-encoding V e

unfolding V e-def
by (intro encoding-compose[OF exp-golomb-encoding] inj-onI ) auto

hence 0 :is-encoding (List.product [0 ..<l] [0 ..<b] →e V e)
by (intro fun-encoding)

have is-encoding T e
′

unfolding T e
′-def is-state-table-def

by (intro encoding-compose[OF 0 ] inj-on-restrict[where c=−1 ]) auto
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moreover have inj case-prod
by (intro injI ) (metis curry-case-prod)

ultimately have is-encoding T e

unfolding T e-def by (rule encoding-compose-2 )

thus ?thesis
unfolding encode-state-def
by (intro dependent-encoding bounded-nat-encoding)

qed

lemma state-bit-count:
assumes ω ∈ sample-set Ω
shows bit-count (encode-state (τ ω A)) ≤ 2^36 ∗ (ln(1/δ)+1 )/ ε^2 + log 2 (log 2 n + 3 )
(is ?L ≤ ?R)

proof −
define t where t = τ2 ω A (q ω A)

have log 2 (real n) ≥ 0
using n-gt-0 by simp

hence 0 : − 1 < log 2 (real n)
by simp

have t x y = −1 if x < l y ≥ b for x y
proof −

obtain f g h where ω-def : ω x = (f ,g,h)
by (metis prod-cases3 )

have (f , g, h) ∈ sample-set Ψ
using Ω.sample-set assms unfolding Pi-def ω-def [symmetric] by auto

hence h (g a) < b for a
using h-range by auto

hence y 6= h (g a) for a
using that(2 ) not-less by blast

hence aux-4 : {int (f a) |a. a ∈ A ∧ h (g a) = y} = {}
by auto

hence max (Max (insert (− 1 ) {int (f a) |a. a ∈ A ∧ h (g a) = y}) − int (q ω A)) (− 1 ) =
− 1

unfolding aux-4 by simp
thus ?thesis

unfolding t-def τ2-def τ1-def by (simp add:ω-def )
qed
moreover have t x y = −1 if x ≥ l for x y

using that unfolding t-def τ2-def τ1-def by simp
ultimately have 1 : t x y = −1 if x ≥ l ∨ y ≥ b for x y

using that by (meson not-less)

have 2 : t x y ≥ −1 for x y
unfolding t-def τ2-def τ1-def by simp

hence 3 : t x y + 1 ≥ 0 for x y
by (metis add.commute le-add-same-cancel1 minus-add-cancel)

have 4 :is-state-table (case-prod t)
using 2 1 unfolding is-state-table-def by auto

have bit-count(T e (τ2 ω A (q ω A))) = bit-count(T e t)
unfolding t-def by simp

also have ... = bit-count ((List.product [0 ..<l] [0 ..<b] →e V e) (λ(x, y)∈{..<l}×{..<b}. t x y))
using 4 unfolding T e-def T e

′-def by simp
also have ... =
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(
∑

x←List.product [0 ..<l] [0 ..<b]. bit-count (V e ((λ(x, y)∈{..<l} × {..<b}. t x y) x)))
using restrict-extensional atLeast0LessThan by (simp add:fun-bit-count)

also have ... = (
∑

(x,y)←List.product [0 ..<l] [0 ..<b]. bit-count (V e (t x y)))
by (intro arg-cong[where f=sum-list] map-cong refl)
(simp add:atLeast0LessThan case-prod-beta)

also have ... = (
∑

x∈{0 ..<l} × {0 ..<b}. bit-count (V e (t (fst x) (snd x))))
by (subst sum-list-distinct-conv-sum-set)
(auto intro:distinct-product simp add:case-prod-beta)

also have ... = (
∑

x∈{..<l} × {..<b}. bit-count ( N e (nat (t (fst x) (snd x)+1 ))))
using 2 unfolding V e-def not-less[symmetric]
by (intro sum.cong refl arg-cong[where f=bit-count]) auto

also have ...=(
∑

x∈{..<l}×{..<b}. 1+2∗ of-intblog 2 (1+real(nat(t (fst x)(snd x)+1 )))c)
unfolding exp-golomb-bit-count-exact is-too-large.simps not-less by simp

also have ...=(
∑

x∈{..<l}×{..<b}. 1+2∗ of-intblog 2 (2+ of-int(t (fst x)(snd x)))c)
using 3 by (subst of-nat-nat) (auto simp add:ac-simps)

also have ...=b∗l + 2∗ of-int (
∑

(i,j)∈{..<l}×{..<b}. blog 2 (2+ of-int(max (t i j) (−1 )))c)
using 2 by (subst max-absorb1 ) (auto simp add:case-prod-beta sum.distrib sum-distrib-left)

also have ... ≤ b∗l + 2 ∗ of-int (C 5 ∗ int b ∗ int l)
using q-compact[OF assms, where A=A] unfolding is-too-large.simps not-less t-def [symmetric]
by (intro add-mono ereal-mono iffD2 [OF of-int-le-iff ] mult-left-mono order .refl)
(simp-all add:ac-simps)

also have ... = (2 ∗ C 5 + 1 ) ∗ b ∗ l
by (simp add:algebra-simps)

finally have 5 :bit-count (T e (τ2 ω A (q ω A))) ≤ (2 ∗ C 5 + 1 ) ∗ b ∗ l
by simp

have C 4 ≥ 1
unfolding C 4-def by simp

moreover have ε2 ≤ 1
using ε-lt-1 ε-gt-0
by (intro power-le-one) auto

ultimately have 0 ≤ log 2 (C 4 / ε
2)

using ε-gt-0 ε-lt-1
by (intro iffD2 [OF zero-le-log-cancel-iff ] divide-pos-pos)auto

hence 6 : − 1 < log 2 (C 4 / ε
2)

by simp

have b = 2 powr (real (nat dlog 2 (C 4 / ε
2)e))

unfolding b-def b-exp-def by (simp add:powr-realpow)
also have ... = 2 powr (dlog 2 (C 4 / ε^2 )e)

using 6 by (intro arg-cong2 [where f=(powr)] of-nat-nat refl) simp
also have ... ≤ 2 powr (log 2 (C 4 / ε^2 ) + 1 )

by (intro powr-mono) auto
also have ... = 2 ∗ C 4 / ε^2

using ε-gt-0 unfolding powr-add C 4-def
by (subst powr-log-cancel) (auto intro:divide-pos-pos)

finally have 7 :b ≤ 2 ∗ C 4 / ε^2 by simp

have l ≤ C 6 ∗ ln (1 / δ) + C 6 ∗ ln 2 + 1
by (intro l-ubound)

also have ... ≤ 4 ∗ ln(1/δ) + 3+1
unfolding C 6-def by (intro add-mono order .refl) (approximation 5 )

also have ... = 4 ∗ (ln(1/δ)+1 )
by simp

finally have 8 :l ≤ 4 ∗ (ln(1/δ)+1 )
by simp

have ε2 = 0 + ε2
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by simp
also have ... ≤ ln (1 / δ) + 1

using δ-gt-0 δ-lt-1 ε-gt-0 ε-lt-1
by (intro add-mono power-le-one) auto

finally have 9 : ε2 ≤ ln (1 / δ) + 1
by simp

have 10 : 0 ≤ ln (1 / δ) + 1
using δ-gt-0 δ-lt-1 by (intro add-nonneg-nonneg) auto

have ?L = bit-count (T e (τ2 ω A (q ω A))) + bit-count (Nbe (nat dlog 2 (real n)e+3 ) (q ω A))
unfolding encode-state-def τ -def τ3-def by (simp add:dependent-bit-count)

also have ...=bit-count(T e(τ2 ω A (q ω A)))+ereal (1+ of-intblog 2 (2 + real (nat dlog 2 ne))c)
using max-s-3 [OF assms] by (subst bounded-nat-bit-count-2 )
(simp-all add:numeral-eq-Suc le-imp-less-Suc floorlog-def )

also have ... = bit-count(T e(τ2 ω A (q ω A)))+ereal (1+ of-intblog 2 (2 + of-int dlog 2 ne)c)
using 0 by simp

also have ... ≤ bit-count(T e(τ2 ω A (q ω A)))+ereal (1+log 2 (2 + of-int dlog 2 ne))
by (intro add-mono ereal-mono) simp-all

also have ... ≤ bit-count(T e(τ2 ω A (q ω A)))+ereal (1+log 2 (2 + (log 2 n + 1 )))
using 0 n-gt-0 by (intro add-mono ereal-mono iffD2 [OF log-le-cancel-iff ] add-pos-nonneg) auto

also have ... = bit-count(T e(τ2 ω A (q ω A)))+ereal (1+log 2 (log 2 n + 3 ))
by (simp add:ac-simps)

also have ... ≤ ereal ((2 ∗ C 5 + 1 ) ∗ b ∗ l) + ereal (1+log 2 (log 2 n + 3 ))
by (intro add-mono 5 ) auto

also have ... = (2 ∗ C 5 + 1 ) ∗ real b ∗ real l + log 2 (log 2 n + 3 ) + 1
by simp

also have ... ≤ (2 ∗ C 5 + 1 ) ∗ (2 ∗ C 4 / ε^2 ) ∗ real l + log 2 (log 2 n + 3 ) + 1
unfolding C 5-def
by (intro ereal-mono mult-right-mono mult-left-mono add-mono 7 ) auto

also have ... = (4 ∗ of-int C 5+2 )∗C 4∗real l/ ε^2 + log 2 (log 2 n + 3 ) + 1
by simp

also have ... ≤ (4 ∗ of-int C 5+2 )∗C 4∗(4∗(ln(1/ δ)+1 ))/ ε^2 + log 2 (log 2 n + 3 ) + 1
using ε-gt-0 unfolding C 5-def C 4-def
by (intro ereal-mono add-mono order .refl divide-right-mono mult-left-mono 8 ) auto

also have ... = ((2∗33+1 )∗9∗2^26 )∗(ln(1/ δ)+1 )/ ε^2 + log 2 (log 2 n + 3 ) + 1
unfolding C 5-def C 4-def by simp

also have ... ≤ (2^36−1 ) ∗ (ln(1/δ)+1 )/ ε^2 + log 2 (log 2 n + 3 ) + (ln (1/ δ)+1 )/ ε^2
using ε-gt-0 δ-gt-0 ε-lt-1 9 10
by (intro add-mono ereal-mono divide-right-mono mult-right-mono mult-left-mono) simp-all

also have ... = 2^36∗ (ln(1/δ)+1 )/ ε^2 + log 2 (log 2 n + 3 )
by (simp add:divide-simps)

finally show ?thesis
by simp

qed

lemma random-bit-count:
size Ω ≤ 2 powr (4 ∗ log 2 n + 48 ∗ (log 2 (1 / ε) + 16 )^2 + (55 + 60 ∗ ln (1 / δ))^3 )
(is ?L ≤ ?R)

proof −
have 1 :log 2 (real n) ≥ 0

using n-gt-0 by simp
hence 0 : − 1 < log 2 (real n)

by simp

have 10 : log 2 C 4 ≤ 27
unfolding C 4-def by (approximation 10 )

have ε2 ≤ 1
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using ε-gt-0 ε-lt-1 by (intro power-le-one) auto
also have ... ≤ C 4

unfolding C 4-def by simp
finally have ε2 ≤ C 4 by simp
hence 9 : 0 ≤ log 2 (C 4 / ε

2)
using ε-gt-0 unfolding C 4-def
by (intro iffD2 [OF zero-le-log-cancel-iff ]) simp-all

hence 2 : − 1 < log 2 (C 4 / ε
2)

by simp

have 3 : 0 < C 7 ∗ b2
unfolding C 7-def using b-min
by (intro Rings.mult-pos-pos) auto

have 0 ≤ log 2 (real C 7) + real (b-exp ∗ 2 )
unfolding C 7-def
by (intro add-nonneg-nonneg) auto

hence 4 : −1 < log 2 (real C 7) + real (b-exp ∗ 2 )
by simp

have real (size Ψ1) = 2 ^ (max (nat dlog 2 (real n)e) 1 ∗ 2 )
using Ψ1.size[OF n-gt-0 ] unfolding n-exp-def by simp

also have ... ≤ 2 powr (2 ∗ max (nat dlog 2 (real n)e) 1 )
by (subst powr-realpow) auto

also have ... = 2 powr (2 ∗ max (real (nat dlog 2 (real n)e)) 1 )
using n-gt-0 unfolding of-nat-mult of-nat-max by simp

also have ... = 2 powr (2 ∗ max (of-int dlog 2 (real n)e) 1 )
using 0 by (subst of-nat-nat) simp-all

also have ... ≤ 2 powr (2 ∗ max (log 2 (real n) + 1 ) 1 )
by (intro powr-mono mult-left-mono max-mono) auto

also have ... = 2 powr (2 ∗ (log 2 (real n) + 1 ))
using 1 by (subst max-absorb1 ) auto

finally have 5 :real (size Ψ1) ≤ 2 powr (2 ∗ log 2 n + 2 )
by simp

have real (size Ψ2) = 2 ^ (max (5 + b-exp ∗ 2 ) (nat dlog 2 (real n)e) ∗ 2 )
unfolding Ψ2.size[OF n-gt-0 ] by simp

also have ... ≤ 2 ^ (((5 + b-exp ∗ 2 ) + (nat dlog 2 (real n)e)) ∗ 2 )
by (intro power-increasing mult-right-mono) auto

also have ... = 2 powr ((5 + b-exp ∗ 2 + real (nat dlog 2 (real n)e))∗2 )
by (subst powr-realpow[symmetric]) auto

also have ... = 2 powr ((5 + of-int b-exp ∗ 2 + of-int dlog 2 (real n)e)∗2 )
using 0 by (subst of-nat-nat) auto

also have ... ≤ 2 powr ((5 + of-int b-exp ∗ 2 + (log 2 (real n) + 1 ))∗2 )
by (intro powr-mono mult-right-mono add-mono) simp-all

also have ... = 2 powr (12 + 4 ∗ real( nat dlog 2 (C 4 / ε
2)e) + log 2 (real n) ∗ 2 )

unfolding b-exp-def by (simp add:ac-simps)
also have ... = 2 powr (12 + 4 ∗ real-of-int dlog 2 (C 4 / ε

2)e + log 2 (real n) ∗ 2 )
using 2 by (subst of-nat-nat) simp-all

also have ... ≤ 2 powr (12 + 4 ∗ (log 2 (C 4 / ε
2) + 1 ) + log 2 (real n) ∗ 2 )

by (intro powr-mono add-mono order .refl mult-left-mono) simp-all
also have ... = 2 powr (2 ∗ log 2 n + 4 ∗ log 2 (C 4 / ε

2) + 16 )
by (simp add:ac-simps)

finally have 6 :real (size Ψ2) ≤ 2 powr (2 ∗ log 2 n + 4 ∗ log 2 (C 4 / ε
2) + 16 )

by simp

have real (size Ψ3) = 2 ^ (max b-exp (nat dlog 2 (real C 7 ∗ (2 ^ (b-exp∗2 )))e) ∗ k)
unfolding Ψ3.size[OF 3 ] power-mult by (simp add:b-def )
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also have ... = 2 ^ (max b-exp (nat dlog 2 C 7 + log 2 (2 ^ (b-exp∗2 ))e) ∗ k)
unfolding C 7-def by (subst log-mult) simp-all

also have ... = 2 ^ (max b-exp (nat dlog 2 C 7 + (b-exp∗2 )e) ∗ k)
by (subst log-nat-power) simp-all

also have ... = 2 powr (max (real b-exp) (real (nat dlog 2 C 7 + (b-exp∗2 )e)) ∗ real k)
by (subst powr-realpow[symmetric]) simp-all

also have ... = 2 powr (max (real b-exp) (of-int dlog 2 C 7 + (b-exp∗2 )e) ∗ real k)
using 4 by (subst of-nat-nat) simp-all

also have ... ≤ 2 powr (max (real b-exp) (log 2 C 7 + real b-exp∗2 +1 ) ∗ real k)
by (intro powr-mono mult-right-mono max-mono-2 ) simp-all

also have ... = 2 powr ((log 2 (2^5 ) + real b-exp∗2 +1 ) ∗ real k)
unfolding C 7-def by (subst max-absorb2 ) simp-all

also have ... = 2 powr ((real b-exp∗2 +6 ) ∗ real k)
unfolding C 7-def by (subst log-nat-power) (simp-all add:ac-simps)

also have ... = 2 powr ((of-int dlog 2 (C 4 / ε
2)e ∗ 2 + 6 ) ∗ real k)

using 2 unfolding b-exp-def by (subst of-nat-nat) simp-all
also have ... ≤ 2 powr (((log 2 (C 4 / ε^2 )+1 ) ∗ 2 + 6 ) ∗ real k)

by (intro powr-mono mult-right-mono add-mono) simp-all
also have ... = 2 powr ((log 2 (C 4 / ε

2) ∗ 2 + 8 ) ∗ real k)
by (simp add:ac-simps)

finally have 7 :real (size Ψ3) ≤ 2 powr ((log 2 (C 4 / ε
2) ∗ 2 + 8 ) ∗ real k)

by simp

have ln (real b) ≥ 0
using b-min by simp

hence real k = of-int d7 .5 ∗ ln (real b) + 16 e
unfolding k-def C 2-def C 3-def by (subst of-nat-nat) simp-all

also have ... ≤ (7 .5 ∗ ln (real b) + 16 ) + 1
unfolding b-def by (intro of-int-ceiling-le-add-one)

also have ... = 7 .5 ∗ ln (2 powr b-exp) + 17
unfolding b-def using powr-realpow by simp

also have ... = real b-exp ∗ (7 .5 ∗ ln 2 ) + 17
unfolding powr-def by simp

also have ... ≤ real b-exp ∗ 6 + 17
by (intro add-mono mult-left-mono order .refl of-nat-0-le-iff ) (approximation 5 )

also have ... = of-int dlog 2 (C 4 / ε
2)e ∗ 6 + 17

using 2 unfolding b-exp-def by (subst of-nat-nat) simp-all
also have ... ≤ (log 2 (C 4 / ε^2 ) + 1 ) ∗ 6 + 17

by (intro add-mono mult-right-mono) simp-all
also have ... = 6 ∗ log 2 (C 4 / ε^2 ) + 23

by simp
finally have 8 :real k ≤ 6 ∗ log 2 (C 4 / ε^2 ) + 23

by simp

have real (size Ψ) = real (size Ψ1) ∗ real (size Ψ2) ∗ real (size Ψ3)
unfolding Ψ-def prod-sample-space-def by simp

also have ... ≤
2 powr(2∗log 2 n+2 )∗2 powr (2∗log 2 n+4∗log 2 (C 4/ε

2)+16 )∗2 powr((log 2 (C 4/ε
2)∗2+8 )∗real

k)
by (intro mult-mono 5 6 7 mult-nonneg-nonneg) simp-all

also have ... = 2 powr (2∗log 2 n + 2 + 2 ∗ log 2 n+4∗log 2 (C 4/ε
2)+16+(log 2 (C 4/ε

2)∗2+8 )∗real
k)

unfolding powr-add by simp
also have ... = 2 powr (4∗log 2 n + 4∗log 2 (C 4/ε

2) + 18 + (2∗log 2 (C 4/ε
2)+8 )∗real k)

by (simp add:ac-simps)
also have ... ≤

2 powr (4∗ log 2 n + 4∗ log 2 (C 4/ ε^2 ) + 18 + (2∗log 2 (C 4/ε
2)+8 )∗(6 ∗ log 2 (C 4 / ε^2 )

+ 23 ))
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using 9 by (intro powr-mono add-mono order .refl mult-left-mono 8 add-nonneg-nonneg)
simp-all

also have ... = 2 powr (4 ∗ log 2 n+12 ∗ log 2 (C 4 / ε^2 )^2 + 98 ∗ log 2 (C 4 / ε^2 )+202 )
by (simp add:algebra-simps power2-eq-square)

also have ... ≤ 2 powr (4 ∗ log 2 n+12 ∗ log 2 (C 4 / ε^2 )^2 + 120 ∗ log 2 (C 4 / ε^2 )+300 )
using 9 by (intro powr-mono add-mono order .refl mult-right-mono) simp-all

also have ... = 2 powr (4 ∗ log 2 n+12 ∗ (log 2 (C 4∗ (1/ ε)^2 ) + 5 )^2 )
by (simp add:power2-eq-square algebra-simps)

also have ... = 2 powr (4 ∗ log 2 n + 12 ∗ (log 2 C 4 + log 2 ((1 / ε)^2 ) + 5 )^2 )
unfolding C 4-def using ε-gt-0 by (subst log-mult) auto

also have ... ≤ 2 powr (4 ∗ log 2 n + 12 ∗ (27 + log 2 ((1/ ε)^2 ) + 5 )^2 )
using ε-gt-0 ε-lt-1
by (intro powr-mono add-mono order .refl mult-left-mono power-mono add-nonneg-nonneg 10 )
(simp-all add:C 4-def )

also have ... = 2 powr (4 ∗ log 2 n + 12 ∗ (2 ∗ (log 2 (1 / ε) + 16 ))^2 )
using ε-gt-0 by (subst log-nat-power) (simp-all add:ac-simps)

also have ... = 2 powr (4 ∗ log 2 n + 48 ∗ (log 2 (1 / ε) + 16 )^2 )
unfolding power-mult-distrib by simp

finally have 19 :real (size Ψ) ≤ 2 powr (4 ∗ log 2 n + 48 ∗ (log 2 (1 / ε) + 16 )^2 )
by simp

have 0 ≤ ln Λ / ln (19 / 20 )
using Λ-gt-0 Λ-le-1
by (intro divide-nonpos-neg) simp-all

hence 11 : −1 < ln Λ / ln (19 / 20 )
by simp

have 12 : ln (19 / 20 ) ≤ −(0 .05 ::real) − ln (1 / 16 ) ≤ (2 .8 ::real)
by (approximation 10 )+

have 13 : ln l ≥ 0
using l-gt-0 by auto

have ln l^3 = 27 ∗ (0 + ln l/3 )^3
by (simp add:power3-eq-cube)

also have ... ≤ 27 ∗ (1 + ln l/real 3 )^3
using l-gt-0 by (intro mult-left-mono add-mono power-mono) auto

also have ... ≤ 27 ∗ (exp (ln l))
using l-gt-0 13
by (intro mult-left-mono exp-ge-one-plus-x-over-n-power-n) linarith+

also have ... = 27 ∗ real l
using l-gt-0 by (subst exp-ln) auto

finally have 14 :ln l^3 ≤ 27 ∗ real l
by simp

have 15 :C 6 ∗ ln (2 / δ) > 0
using δ-lt-1 δ-gt-0 unfolding C 6-def
by (intro Rings.mult-pos-pos ln-gt-zero) auto

hence 1 ≤ real-of-int dC 6 ∗ ln (2 / δ)e
by simp

hence 16 : 1 ≤ 3 ∗ real-of-int dC 6 ∗ ln (2 / δ)e
by argo

have 17 : 12 ∗ ln 2 ≤ (9 ::real)
by (approximation 5 )

have 16 ^ ((l − 1 ) ∗ natdln Λ / ln 0 .95 e) = 16 powr (real (l−1 )∗real(nat dln Λ / ln (19 /
20 )e))
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by (subst powr-realpow[symmetric]) auto
also have ... = 16 powr (real (l−1 )∗ of-int dln Λ / ln (19 / 20 )e)

using 11 by (subst of-nat-nat) simp-all
also have ... ≤ 16 powr (real (l−1 )∗ (ln Λ / ln (19/20 )+1 ))

by (intro powr-mono mult-left-mono) auto
also have ... = 16 powr ((real l − 1 )∗(ln Λ / ln (19/20 )+1 ))

using l-gt-0 by (subst of-nat-diff ) auto
also have ... ≤ 16 powr ((real l − 1 )∗(ln Λ / (−0 .05 )+1 ))

using l-gt-0 Λ-gt-0 Λ-le-1
by (intro powr-mono mult-left-mono add-mono divide-left-mono-neg 12 ) auto

also have ... = 16 powr ((real l − 1 )∗(20 ∗ (−ln Λ)+1 ))
by (simp add:algebra-simps)

also have ... = 16 powr ((real l − 1 )∗(20 ∗ −(min (ln (1/16 )) (−l∗ln l^3 ))+1 ))
unfolding Λ-def by (subst ln-min-swap) auto

also have ... = 16 powr ((real l − 1 )∗(20 ∗ max (−ln (1/16 )) (l∗ln l^3 )+1 ))
by (intro-cong [σ2 (powr), σ2(+), σ2 (∗)]) simp

also have ... ≤ 16 powr ((real l − 1 )∗(20 ∗ max (2 .8 ) (l∗ln l^3 )+1 ))
using l-gt-0 by (intro powr-mono mult-left-mono add-mono max-mono 12 ) auto

also have ... ≤ 16 powr ((real l − 1 )∗(20 ∗ (2 .8+l∗ln l^3 )+1 ))
using l-gt-0 by (intro powr-mono mult-left-mono add-mono) auto

also have ... = 16 powr ((real l − 1 )∗(20 ∗ (l∗ln l^3 )+57 ))
by (simp add:algebra-simps)

also have ... ≤ 16 powr ((real l − 1 )∗(20 ∗ (real l∗(27∗real l))+57 ))
using l-gt-0 by (intro powr-mono mult-left-mono add-mono 14 ) auto

also have ... = 16 powr (540 ∗ real l^3 − 540 ∗ real l^2 + 57∗ real l − 57 )
by (simp add:algebra-simps numeral-eq-Suc)

also have ... ≤ 16 powr (540 ∗ real l^3 − 540 ∗ real l^2 + 180∗ real l − 20 )
by (intro powr-mono add-mono diff-mono order .refl mult-right-mono) auto

also have ... = 16 powr (20 ∗ (3∗real l − 1 )^3 )
by (simp add: algebra-simps power3-eq-cube power2-eq-square)

also have ... = 16 powr (20 ∗ (3 ∗ of-int dC 6 ∗ ln (2 / δ)e − 1 ) ^ 3 )
using 15 unfolding l-def by (subst of-nat-nat) auto

also have ... ≤ 16 powr (20 ∗ (3 ∗ (C 6 ∗ ln (2 / δ) + 1 ) − 1 ) ^ 3 )
using 16 by (intro powr-mono mult-left-mono power-mono diff-mono) auto

also have ... = 16 powr (20 ∗ (2 + 12 ∗ ln (2 ∗ (1 / δ))) ^ 3 )
by (simp add:algebra-simps C 6-def )

also have ... = (2 powr 4 ) powr (20 ∗ (2+ 12 ∗ (ln 2 + ln(1/ δ)))^3 )
using δ-gt-0 by (subst ln-mult) auto

also have ... = 2 powr (80 ∗ (2 + 12 ∗ ln 2 + 12 ∗ ln (1 / δ)) ^ 3 )
unfolding powr-powr by (simp add:ac-simps)

also have ... ≤ 2 powr (80 ∗ (2 + 9 + 12 ∗ ln (1 / δ)) ^ 3 )
using δ-gt-0 δ-lt-1
by (intro powr-mono mult-left-mono power-mono add-mono 17 add-nonneg-nonneg) auto

also have ... = 2 powr (80 ∗ (11 + 12 ∗ ln (1 / δ)) ^ 3 )
by simp

also have ... ≤ 2 powr (5^3 ∗ (11 + 12 ∗ ln (1 / δ)) ^ 3 )
using δ-gt-0 δ-lt-1
by (intro powr-mono mult-right-mono) (auto intro!:add-nonneg-nonneg)

also have ... = 2 powr ((55 + 60 ∗ ln (1 / δ))^3 )
unfolding power-mult-distrib[symmetric] by simp

finally have 18 :16^((l − 1 ) ∗ natdln Λ / ln (19/20 )e) ≤ 2 powr ((55 + 60 ∗ ln (1 / δ))^3 )
by simp

have ?L = real (size Ψ) ∗ 16 ^ ((l − 1 ) ∗ nat dln Λ / ln (19 / 20 )e)
unfolding Ω.size by simp

also have ... ≤ 2 powr (4∗log 2 n+48∗(log 2 (1/ε)+16 )^2 )∗2 powr ((55 + 60 ∗ ln (1 / δ))^3 )
by (intro mult-mono 18 19 ) simp-all

also have ... = 2 powr (4 ∗ log 2 n + 48 ∗ (log 2 (1 / ε) + 16 )^2 + (55 + 60 ∗ ln (1 / δ))^3 )
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unfolding powr-add[symmetric] by simp
finally show ?thesis by simp

qed

end

unbundle no-intro-cong-syntax

end

7 Accuracy without cutoff

This section verifies that each of the l estimate have the required accuracy with high
probability assuming that there was no cut-off, i.e., that s = 0. Section 9 will then show
that this remains true as long as the cut-off is below t f the subsampling threshold.
theory Distributed-Distinct-Elements-Accuracy-Without-Cutoff

imports
Distributed-Distinct-Elements-Inner-Algorithm
Distributed-Distinct-Elements-Balls-and-Bins

begin

no-notation Polynomials.var (X ı)

locale inner-algorithm-fix-A = inner-algorithm +
fixes A
assumes A-range: A ⊆ {..<n}
assumes A-nonempty: {} 6= A

begin

definition X :: nat where X = card A

definition q-max where q-max = nat (dlog 2 Xe − b-exp)

definition t :: (nat ⇒ nat) ⇒ int
where t f = int (Max (f ‘ A)) − b-exp + 9

definition s :: (nat ⇒ nat) ⇒ nat
where s f = nat (t f )

definition R :: (nat ⇒ nat) ⇒ nat set
where R f = {a. a ∈ A ∧ f a ≥ s f }

definition r :: nat ⇒ (nat ⇒ nat) ⇒ nat
where r x f = card {a. a ∈ A ∧ f a ≥ x}

definition p where p = (λ(f ,g,h). card {j∈ {..<b}. τ1 (f ,g,h) A 0 j ≥ s f })

definition Y where Y = (λ(f ,g,h). 2 ^ s f ∗ %-inv (p (f ,g,h)))

lemma fin-A: finite A
using A-range finite-nat-iff-bounded by auto

lemma X-le-n: X ≤ n
proof −

have card A ≤ card {..<n}
by (intro card-mono A-range) simp

thus ?thesis
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unfolding X-def by simp
qed

lemma X-ge-1 : X ≥ 1
unfolding X-def
using fin-A A-nonempty by (simp add: leI )

lemma of-bool-square: (of-bool x)2 = ((of-bool x)::real)
by (cases x, auto)

lemma r-eq: r x f = (
∑

a ∈ A.( of-bool( x ≤ f a) :: real))
unfolding r-def of-bool-def sum.If-cases[OF fin-A]
by (simp add: Collect-conj-eq)

lemma
shows

r-exp: (
∫
ω. real (r x ω) ∂ Ψ1) = real X ∗ (of-bool (x ≤ max (nat dlog 2 ne) 1 ) / 2^x) and

r-var : measure-pmf .variance Ψ1 (λω. real (r x ω)) ≤ (
∫
ω. real (r x ω) ∂ Ψ1)

proof −
define V :: nat ⇒ (nat ⇒ nat) ⇒ real where V = (λa f . of-bool (x ≤ f a))

have V-exp: (
∫
ω. V a ω ∂Ψ1) = of-bool (x ≤ max (nat dlog 2 ne) 1 )/2^x

(is ?L = ?R) if a ∈ A for a
proof −

have a-le-n: a < n
using that A-range by auto

have ?L = (
∫
ω. indicator {f . x ≤ f a} ω ∂ Ψ1)

unfolding V-def by (intro integral-cong-AE) auto
also have ... = measure (map-pmf (λω. ω a) (sample-pmf Ψ1)) {f . x ≤ f }

by simp
also have ... = measure (G n-exp) {f . x ≤ f }

unfolding Ψ1.single[OF a-le-n] by simp
also have ... = of-bool (x ≤ max (nat dlog 2 ne) 1 )/2^x

unfolding G-prob n-exp-def by simp
finally show ?thesis by simp

qed

have b:(
∫
ω. real (r x ω) ∂ Ψ1) = (

∑
a ∈ A. (

∫
ω. V a ω ∂Ψ1))

unfolding r-eq V-def using Ψ1.sample-space
by (intro Bochner-Integration.integral-sum) auto

also have ... = (
∑

a ∈ A. of-bool (x ≤ max (nat dlog 2 ne) 1 )/2^x)
using V-exp by (intro sum.cong) auto

also have ... = X ∗ (of-bool (x ≤ max (nat dlog 2 ne) 1 ) / 2^x)
using X-def by simp

finally show (
∫
ω. real (r x ω) ∂ Ψ1) = real X ∗ (of-bool (x ≤ max (nat dlog 2 ne) 1 )/ 2^x)

by simp

have (
∫
ω. (V a ω)^2 ∂ Ψ1) = (

∫
ω. V a ω ∂ Ψ1) for a

unfolding V-def of-bool-square by simp

hence a:measure-pmf .variance Ψ1 (V a) ≤ measure-pmf .expectation Ψ1 (V a) for a
using Ψ1.sample-space by (subst measure-pmf .variance-eq) auto

have J ⊆ A =⇒ card J = 2 =⇒ prob-space.indep-vars Ψ1 (λ-. borel) V J for J
unfolding V-def using A-range finite-subset[OF - fin-A]
by (intro prob-space.indep-vars-compose2 [where Y=λi y. of-bool(x ≤ y) and M ′=λ-. discrete]

prob-space.k-wise-indep-vars-subset[OF - Ψ1.indep]) (auto simp:prob-space-measure-pmf )
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hence measure-pmf .variance Ψ1 (λω. real (r x ω)) = (
∑

a ∈ A. measure-pmf .variance Ψ1 (V
a))

unfolding r-eq V-def using Ψ1.sample-space
by (intro measure-pmf .var-sum-pairwise-indep-2 fin-A) (simp-all)

also have ... ≤ (
∑

a ∈ A. (
∫
ω. V a ω ∂ Ψ1))

by (intro sum-mono a)
also have ... = (

∫
ω. real (r x ω) ∂ Ψ1)

unfolding b by simp
finally show measure-pmf .variance Ψ1 (λω. real (r x ω)) ≤ (

∫
ω. real (r x ω) ∂ Ψ1) by simp

qed

definition E1 where E1 = (λ(f ,g,h). 2 powr (−t f ) ∗ X ∈ {b/2^16 ..b/2})

lemma t-low:
measure Ψ1 {f . of-int (t f ) < log 2 (real X) + 1 − b-exp} ≤ 1/2^7 (is ?L ≤ ?R)

proof (cases log 2 (real X) ≥ 8 )
case True
define Z :: (nat ⇒ nat) ⇒ real where Z = r (nat dlog 2 (real X) − 8 e)

have log 2 (real X) ≤ log 2 (real n)
using X-le-n X-ge-1 by (intro log-mono) auto

hence nat dlog 2 (real X) − 8 e ≤ nat dlog 2 (real n)e
by (intro nat-mono ceiling-mono) simp

hence a:(nat dlog 2 (real X) − 8 e ≤ max (nat dlog 2 (real n)e) 1 )
by simp

have b:real (nat (dlog 2 (real X)e − 8 )) ≤ log 2 (real X) − 7
using True by linarith

have 2 ^ 7 = real X / (2 powr (log 2 X) ∗ 2 powr (−7 ))
using X-ge-1 by simp

also have ... = real X / (2 powr (log 2 X − 7 ))
by (subst powr-add[symmetric]) simp

also have ... ≤ real X / (2 powr (real (nat dlog 2 (real X) − 8 e)))
using b by (intro divide-left-mono powr-mono) auto

also have ... = real X / 2 ^ nat dlog 2 (real X) − 8 e
by (subst powr-realpow) auto

finally have 2 ^ 7 ≤ real X / 2 ^ nat dlog 2 (real X) − 8 e
by simp

hence exp-Z-gt-2-7 : (
∫
ω. Z ω ∂Ψ1) ≥ 2^7

using a unfolding Z-def r-exp by simp

have var-Z-le-exp-Z : measure-pmf .variance Ψ1 Z ≤ (
∫
ω. Z ω ∂Ψ1)

unfolding Z-def by (intro r-var)

have ?L ≤ measure Ψ1 {f . of-nat (Max (f ‘ A)) < log 2 (real X) − 8}
unfolding t-def by (intro pmf-mono) (auto simp add:int-of-nat-def )

also have ... ≤ measure Ψ1 {f ∈ space Ψ1. (
∫
ω. Z ω ∂Ψ1) ≤ |Z f − (

∫
ω. Z ω ∂Ψ1) |}

proof (rule pmf-mono)
fix f assume f ∈ set-pmf (sample-pmf Ψ1)
have fin-f-A: finite (f ‘ A) using fin-A finite-imageI by blast
assume f ∈ {f . real (Max (f ‘ A)) < log 2 (real X) − 8}
hence real (Max (f ‘ A)) < log 2 (real X) − 8 by auto
hence real (f a) < log 2 (real X) − 8 if a ∈ A for a

using Max-ge[OF fin-f-A] imageI [OF that] order-less-le-trans by fastforce
hence of-nat (f a) < dlog 2 (real X) − 8 e if a ∈ A for a

using that by (subst less-ceiling-iff ) auto
hence f a < nat dlog 2 (real X) − 8 e if a ∈ A for a
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using that True by fastforce
hence r (nat dlog 2 (real X) − 8 e) f = 0

unfolding r-def card-eq-0-iff using not-less by auto
hence Z f = 0

unfolding Z-def by simp
thus f ∈ {f ∈ space Ψ1. (

∫
ω. Z ω ∂Ψ1) ≤ |Z f − (

∫
ω. Z ω ∂Ψ1)|}

by auto
qed
also have ... ≤ measure-pmf .variance Ψ1 Z / (

∫
ω. Z ω ∂Ψ1)^2

using exp-Z-gt-2-7 Ψ1.sample-space by (intro measure-pmf .second-moment-method) simp-all
also have ... ≤ (

∫
ω. Z ω ∂Ψ1) / (

∫
ω. Z ω ∂Ψ1)^2

by (intro divide-right-mono var-Z-le-exp-Z ) simp
also have ... = 1 / (

∫
ω. Z ω ∂Ψ1)

using exp-Z-gt-2-7 by (simp add:power2-eq-square)
also have ... ≤ ?R

using exp-Z-gt-2-7 by (intro divide-left-mono) auto
finally show ?thesis by simp

next
case False
have ?L ≤ measure Ψ1 {f . of-nat (Max (f ‘ A)) < log 2 (real X) − 8}

unfolding t-def by (intro pmf-mono) (auto simp add:int-of-nat-def )
also have ... ≤ measure Ψ1 {}

using False by (intro pmf-mono) simp
also have ... = 0

by simp
also have ... ≤ ?R by simp
finally show ?thesis by simp

qed

lemma t-high:
measure Ψ1 {f . of-int (t f ) > log 2 (real X) + 16 − b-exp} ≤ 1/2^7 (is ?L ≤ ?R)

proof −
define Z :: (nat ⇒ nat) ⇒ real where Z = r (nat blog 2 (real X) + 8 c)

have Z-nonneg: Z f ≥ 0 for f
unfolding Z-def r-def by simp

have (
∫
ω. Z ω ∂Ψ1) ≤ real X / (2 ^ nat blog 2 (real X) + 8 c)

unfolding Z-def r-exp by simp
also have ... ≤ real X / (2 powr (real (nat blog 2 (real X) + 8 c)))

by (subst powr-realpow) auto
also have ... ≤ real X / (2 powr blog 2 (real X) + 8 c)

by (intro divide-left-mono powr-mono) auto
also have ... ≤ real X / (2 powr (log 2 (real X) + 7 ))

by (intro divide-left-mono powr-mono, linarith) auto
also have ... = real X / 2 powr (log 2 (real X)) / 2 powr 7

by (subst powr-add) simp
also have ... ≤ 1/2 powr 7

using X-ge-1 by (subst powr-log-cancel) auto
finally have Z-exp: (

∫
ω. Z ω ∂Ψ1) ≤ 1/2^7

by simp

have ?L ≤ measure Ψ1 {f . of-nat (Max (f ‘ A)) > log 2 (real X) + 7}
unfolding t-def by (intro pmf-mono) (auto simp add:int-of-nat-def )

also have ... ≤ measure Ψ1 {f . Z f ≥ 1}
proof (rule pmf-mono)

fix f assume f ∈ set-pmf (sample-pmf Ψ1)
assume f ∈ {f . real (Max (f ‘ A)) > log 2 (real X) + 7}
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hence real (Max (f ‘ A)) > log 2 (real X) + 7 by simp
hence int (Max (f ‘ A)) ≥ blog 2 (real X) + 8 c

by linarith
hence Max (f ‘ A) ≥ nat blog 2 (real X) + 8 c

by simp
moreover have f ‘ A 6= {} finite (f ‘ A)

using fin-A finite-imageI A-nonempty by auto
ultimately obtain fa where fa ∈ f ‘ A fa ≥ nat blog 2 (real X) + 8 c

using Max-in by auto
then obtain ae where ae-def : ae ∈ A nat blog 2 (real X) + 8 c ≤ f ae

by auto
hence r (nat blog 2 (real X) + 8 c) f > 0

unfolding r-def card-gt-0-iff using fin-A by auto
hence Z f ≥ 1

unfolding Z-def by simp
thus f ∈ {f . 1 ≤ Z f } by simp

qed
also have ... ≤ (

∫
ω. Z ω ∂Ψ1) / 1

using Z-nonneg using Ψ1.sample-space by (intro pmf-markov) auto
also have ... ≤ ?R

using Z-exp by simp
finally show ?thesis by simp

qed

lemma e-1 : measure Ψ {ψ. ¬E1 ψ} ≤ 1/2^6
proof −

have measure Ψ1 {f . 2 powr (of-int (−t f )) ∗ real X /∈ {real b/2^16 ..real b/2}} ≤
measure Ψ1 {f . 2 powr (of-int (−t f )) ∗ real X < real b/2^16} +
measure Ψ1 {f . 2 powr (of-int (−t f )) ∗ real X > real b/2}
by (intro pmf-add) auto

also have ... ≤ measure Ψ1 {f . of-int (t f ) > log 2 X + 16 − b-exp} +
measure Ψ1 {f . of-int (t f ) < log 2 X + 1 − b-exp}

proof (rule add-mono)
show measure Ψ1 {f . 2 powr (of-int (−t f )) ∗ real X < real b/2^16} ≤
measure Ψ1 {f . of-int (t f ) > log 2 X + 16 − b-exp}
proof (rule pmf-mono)

fix f assume f ∈ {f . 2 powr real-of-int (−t f ) ∗ real X < real b / 2 ^ 16}
hence 2 powr real-of-int (−t f ) ∗ real X < real b / 2 ^ 16

by simp
hence log 2 (2 powr of-int (−t f ) ∗ real X) < log 2 (real b / 2^16 )

using b-min X-ge-1 by (intro iffD2 [OF log-less-cancel-iff ]) auto
hence of-int (−t f ) + log 2 (real X) < log 2 (real b / 2^16 )

using X-ge-1 by (subst (asm) log-mult) auto
also have ... = real b-exp − log 2 (2 powr 16 )

unfolding b-def by (subst log-divide) auto
also have ... = real b-exp − 16

by (subst log-powr-cancel) auto
finally have of-int (−t f ) + log 2 (real X) < real b-exp − 16 by simp
thus f ∈ {f . of-int (t f ) > log 2 (real X) + 16 − b-exp}

by simp
qed

next
show measure Ψ1 {f . 2 powr of-int (−t f ) ∗ real X > real b/2} ≤

measure Ψ1 {f . of-int (t f ) < log 2 X + 1 − b-exp}
proof (rule pmf-mono)

fix f assume f ∈ {f . 2 powr real-of-int (−t f ) ∗ real X > real b / 2}
hence 2 powr real-of-int (−t f ) ∗ real X > real b / 2

by simp
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hence log 2 (2 powr of-int (−t f ) ∗ real X) > log 2 (real b / 2 )
using b-min X-ge-1 by (intro iffD2 [OF log-less-cancel-iff ]) auto

hence of-int (−t f ) + log 2 (real X) > log 2 (real b / 2 )
using X-ge-1 by (subst (asm) log-mult) auto

hence of-int (−t f ) + log 2 (real X) > real b-exp − 1
unfolding b-def by (subst (asm) log-divide) auto

hence of-int (t f ) < log 2 (real X) + 1 − b-exp
by simp

thus f ∈ {f . of-int (t f ) < log 2 (real X) + 1 − b-exp}
by simp

qed
qed
also have ... ≤ 1/2^7 + 1/2^7

by (intro add-mono t-low t-high)
also have ... = 1/2^6 by simp
finally have measure Ψ1 {f . 2 powr of-int (−t f ) ∗ real X /∈ {real b/2^16 ..real b/2}} ≤ 1/2^6

by simp

thus ?thesis
unfolding sample-pmf-Ψ E1-def case-prod-beta
by (subst pair-pmf-prob-left)

qed

definition E2 where E2 = (λ(f ,g,h). |card (R f ) − X / 2^(s f )| ≤ ε/3 ∗ X / 2^(s f ))

lemma e-2 : measure Ψ {ψ. E1 ψ ∧ ¬E2 ψ} ≤ 1/2^6 (is ?L ≤ ?R)
proof −

define tm :: int where tm = blog 2 (real X)c + 16 − b-exp

have t-m-bound: tm ≤ blog 2 (real X)c − 10
unfolding tm-def using b-exp-ge-26 by simp

have real b / 2^16 = (real X ∗ (1/ X)) ∗ (real b / 2^16 )
using X-ge-1 by simp

also have ... = (real X ∗ 2 powr (−log 2 X)) ∗ (real b / 2^16 )
using X-ge-1 by (subst powr-minus-divide) simp

also have ... ≤ (real X ∗ 2 powr (− blog 2 (real X)c)) ∗ (2 powr b-exp / 2^16 )
unfolding b-def using powr-realpow
by (intro mult-mono powr-mono) auto

also have ... = real X ∗ (2 powr (− blog 2 (real X)c) ∗ 2 powr(real b-exp−16 ))
by (subst powr-diff ) simp

also have ... = real X ∗ 2 powr (− blog 2 (real X)c + (int b-exp − 16 ))
by (subst powr-add[symmetric]) simp

also have ... = real X ∗ 2 powr (−tm)
unfolding tm-def by (simp add:algebra-simps)

finally have c:real b / 2^16 ≤ real X ∗ 2 powr (−tm) by simp

define T :: nat set where T = {x. (real X / 2^x ≥ real b / 2^16 )}

have x ∈ T ←→ int x ≤ tm for x
proof −

have x ∈ T ←→ 2^ x ≤ real X ∗ 2^16 / b
using b-min by (simp add: field-simps T-def )

also have ... ←→ log 2 (2^x) ≤ log 2 (real X ∗ 2^16 / b)
using X-ge-1 b-min by (intro log-le-cancel-iff [symmetric] divide-pos-pos) auto

also have ... ←→ x ≤ log 2 (real X ∗ 2^16 ) − log 2 b
using X-ge-1 b-min by (subst log-divide) auto

also have ... ←→ x ≤ log 2 (real X) + log 2 (2 powr 16 ) − b-exp
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unfolding b-def using X-ge-1 by (subst log-mult) auto
also have ... ←→ x ≤ blog 2 (real X) + log 2 (2 powr 16 ) − b-expc

by linarith
also have ... ←→ x ≤ blog 2 (real X) + 16 − real-of-int (int b-exp)c

by (subst log-powr-cancel) auto
also have ... ←→ x ≤ tm

unfolding tm-def by linarith
finally show ?thesis by simp

qed
hence T-eq: T = {x. int x ≤ tm} by auto

have T = {x. int x < tm+1}
unfolding T-eq by simp

also have ... = {x. x < nat (tm + 1 )}
unfolding zless-nat-eq-int-zless by simp

finally have T-eq-2 : T = {x. x < nat (tm + 1 )}
by simp

have inj-1 : inj-on ((−) (nat tm)) T
unfolding T-eq by (intro inj-onI ) simp

have fin-T : finite T
unfolding T-eq-2 by simp

have r-exp: (
∫
ω. real (r t ω) ∂Ψ1) = real X / 2^t if t ∈ T for t

proof −
have t ≤ tm

using that unfolding T-eq by simp
also have ... ≤ blog 2 (real X)c − 10

using t-m-bound by simp
also have ... ≤ blog 2 (real X)c

by simp
also have ... ≤ blog 2 (real n)c

using X-le-n X-ge-1 by (intro floor-mono log-mono) auto
also have ... ≤ dlog 2 (real n)e

by simp
finally have t ≤ dlog 2 (real n)e by simp
hence t ≤ max (nat dlog 2 (real n)e) 1by simp
thus ?thesis

unfolding r-exp by simp
qed

have r-var : measure-pmf .variance Ψ1 (λω. real (r t ω)) ≤ real X / 2^t if t ∈ T for t
using r-exp[OF that] r-var by metis

have 9 = C 4 / ε
2 ∗ ε^2/2^23

using ε-gt-0 by (simp add:C 4-def )
also have ... = 2 powr (log 2 (C 4 / ε2)) ∗ ε^2/2^23

using ε-gt-0 C 4-def by (subst powr-log-cancel) auto
also have ... ≤ 2 powr b-exp ∗ ε^2/2^23

unfolding b-exp-def
by (intro divide-right-mono mult-right-mono powr-mono, linarith) auto

also have ... = b ∗ ε^2/2^23
using powr-realpow unfolding b-def by simp

also have ... = (b/2^16 ) ∗ (ε^2/2^7 )
by simp

also have ... ≤ (X ∗ 2 powr (−tm)) ∗ (ε^2/2^7 )
by (intro mult-mono c) auto

also have ... = X ∗ (2 powr (−tm) ∗ 2 powr (−7 )) ∗ ε^2

94



using powr-realpow by simp
also have ... = 2 powr (−tm−7 ) ∗ (ε^2 ∗ X)

by (subst powr-add[symmetric]) (simp )
finally have 9 ≤ 2 powr (−tm−7 ) ∗ (ε^2 ∗ X) by simp
hence b: 9/ (ε^2 ∗ X) ≤ 2 powr (−tm −7 )

using ε-gt-0 X-ge-1
by (subst pos-divide-le-eq) auto

have a: measure Ψ1 {f .|real (r t f )−real X/2^t|> ε/3 ∗real X/2^t} ≤ 2 powr (real t−tm−7 )
(is?L1 ≤ ?R1 ) if t ∈ T for t

proof −
have ?L1 ≤ P(f in Ψ1. |real (r t f ) − real X / 2^t| ≥ ε/3 ∗ real X / 2^t)

by (intro pmf-mono) auto
also have ... = P(f in Ψ1. |real (r t f )−(

∫
ω. real (r t ω) ∂ Ψ1)| ≥ ε/3 ∗ real X/2^t)

by (simp add: r-exp[OF that])
also have ... ≤ measure-pmf .variance Ψ1 (λω. real (r t ω)) / (ε/3 ∗ real X / 2^t)^2

using X-ge-1 ε-gt-0 Ψ1.sample-space
by (intro measure-pmf .Chebyshev-inequality divide-pos-pos mult-pos-pos) auto

also have ... ≤ (X / 2^t) / (ε/3 ∗ X / 2^t)^2
by (intro divide-right-mono r-var [OF that]) simp

also have ... = 2^t∗(9/ ( ε^2 ∗ X))
by (simp add:power2-eq-square algebra-simps)

also have ... ≤ 2^t∗(2 powr (−tm−7 ))
by (intro mult-left-mono b) simp

also have ... = 2 powr t ∗ 2 powr (−tm−7 )
by (subst powr-realpow[symmetric]) auto

also have ... = ?R1
by (subst powr-add[symmetric]) (simp add:algebra-simps)

finally show ?L1 ≤ ?R1 by simp
qed

have ∃ y<nat (tm + 1 ). x = nat tm − y if x < nat (tm+1 ) for x
using that by (intro exI [where x=nat tm − x]) simp

hence T-reindex: (−) (nat tm) ‘ {x. x < nat (tm + 1 )} = {..<nat (tm + 1 )}
by (auto simp add: set-eq-iff image-iff )

have ?L ≤ measure Ψ {ψ. (∃ t ∈ T . |real (r t (fst ψ))−real X/2^t| > ε/3 ∗ real X / 2^t)}
proof (rule pmf-mono)

fix ψ
assume ψ ∈ set-pmf (sample-pmf Ψ)
obtain f g h where ψ-def : ψ = (f ,g,h) by (metis prod-cases3 )
assume ψ ∈ {ψ. E1 ψ ∧ ¬ E2 ψ}
hence a:2 powr ( −real-of-int (t f )) ∗ real X ∈ {real b/2^16 ..real b/2} and

b:|card (R f ) − real X / 2^(s f )| > ε/3 ∗ X / 2^(s f )
unfolding E1-def E2-def by (auto simp add:ψ-def )

have |card (R f ) − X / 2^(s f )| = 0 if s f= 0
using that by (simp add:R-def X-def )

moreover have ( ε/3 ) ∗ (X / 2^s f ) ≥ 0
using ε-gt-0 X-ge-1 by (intro mult-nonneg-nonneg) auto

ultimately have False if s f = 0
using b that by simp

hence s f > 0 by auto
hence t f = s f unfolding s-def by simp
hence 2 powr (−real (s f )) ∗ X ≥ b / 2^16

using a by simp
hence X / 2 powr (real (s f )) ≥ b / 2^16

by (simp add: divide-powr-uminus mult.commute)
hence real X / 2 ^ (s f ) ≥ b / 2^16
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by (subst (asm) powr-realpow, auto)
hence s f ∈ T unfolding T-def by simp
moreover have |r (s f ) f − X / 2^s f | > ε/3 ∗ X / 2^s f

using R-def r-def b by simp
ultimately have ∃ t ∈ T . |r t (fst ψ) − X / 2^t| > ε/3 ∗ X / 2^t

using ψ-def by (intro bexI [where x=s f ]) simp
thus ψ ∈ {ψ. (∃ t ∈ T . |r t (fst ψ) − X / 2^t| > ε/3 ∗ X / 2^t)} by simp

qed
also have ... = measure Ψ1 {f . (∃ t ∈ T . |real (r t f )−real X / 2^t| > ε/3 ∗ real X/2^t)}

unfolding sample-pmf-Ψ by (intro pair-pmf-prob-left)
also have ... = measure Ψ1 (

⋃
t ∈ T . {f . |real (r t f )−real X / 2^t| > ε/3 ∗ real X/2^t})

by (intro measure-pmf-cong) auto
also have ... ≤ (

∑
t ∈ T . measure Ψ1 {f .|real (r t f )−real X / 2^t| > ε/3 ∗ real X/2^t})

by (intro measure-UNION-le fin-T ) (simp)
also have ... ≤ (

∑
t ∈ T . 2 powr (real t − of-int tm − 7 ))

by (intro sum-mono a)
also have ... = (

∑
t ∈ T . 2 powr (−int (nat tm−t) − 7 ))

unfolding T-eq
by (intro sum.cong refl arg-cong2 [where f=(powr)]) simp

also have ... = (
∑

x ∈ (λx. nat tm − x) ‘ T . 2 powr (−real x − 7 ))
by (subst sum.reindex[OF inj-1 ]) simp

also have ... = (
∑

x ∈ (λx. nat tm − x) ‘ T . 2 powr (−7 ) ∗ 2 powr (−real x))
by (subst powr-add[symmetric]) (simp add:algebra-simps)

also have ... = 1/2^7 ∗ (
∑

x ∈ (λx. nat tm − x) ‘ T . 2 powr (−real x))
by (subst sum-distrib-left) simp

also have ... = 1/2^7 ∗ (
∑

x <nat (tm+1 ). 2 powr (−real x))
unfolding T-eq-2 T-reindex
by (intro arg-cong2 [where f=(∗)] sum.cong) auto

also have ... = 1/2^7 ∗ (
∑

x <nat (tm+1 ). (2 powr (−1 )) powr (real x))
by (subst powr-powr) simp

also have ... = 1/2^7 ∗ (
∑

x <nat (tm+1 ). (1/2 )^x)
using powr-realpow by simp

also have ... ≤ 1/2^7 ∗ 2
by(subst geometric-sum) auto

also have ... = 1/2^6 by simp
finally show ?thesis by simp

qed

definition E3 where E3 = (λ(f ,g,h). inj-on g (R f ))

lemma R-bound:
fixes f g h
assumes E1 (f ,g,h)
assumes E2 (f ,g,h)
shows card (R f ) ≤ 2/3 ∗ b

proof −
have real (card (R f )) ≤ ( ε / 3 ) ∗ (real X / 2 ^ s f ) + real X / 2 ^ s f

using assms(2 ) unfolding E2-def by simp
also have ... ≤ (1/3 ) ∗ (real X / 2 ^ s f ) + real X / 2 ^ s f

using ε-lt-1 by (intro add-mono mult-right-mono) auto
also have ... = (4/3 ) ∗ (real X / 2 powr s f )

using powr-realpow by simp
also have ... ≤ (4/3 ) ∗ (real X / 2 powr t f )

unfolding s-def
by (intro mult-left-mono divide-left-mono powr-mono) auto

also have ... = (4/3 ) ∗ (2 powr (−(of-int (t f ))) ∗ real X)
by (subst powr-minus-divide) simp

also have ... = (4/3 ) ∗ (2 powr (− t f ) ∗ real X)
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by simp
also have ... ≤ (4/3 ) ∗ (b/2 )

using assms(1 ) unfolding E1-def
by (intro mult-left-mono) auto

also have ... ≤ (2/3 ) ∗ b by simp
finally show ?thesis by simp

qed

lemma e-3 : measure Ψ {ψ. E1 ψ ∧ E2 ψ ∧ ¬E3 ψ} ≤ 1/2^6 (is ?L ≤ ?R)
proof −

let ?α = (λ(z,x,y) f . z < C 7∗b^2 ∧ x ∈ R f ∧ y ∈ R f ∧ x < y)
let ?β = (λ(z,x,y) g. g x = z ∧ g y = z)

have β-prob: measure Ψ2 {g. ?β ω g} ≤ (1/real (C 7∗b^2 )^2 )
if ?α ω f for ω f

proof −
obtain x y z where ω-def : ω = (z,x,y) by (metis prod-cases3 )
have a:prob-space.k-wise-indep-vars Ψ2 2 (λi. discrete) (λx ω. ω x = z) {..<n}

by (intro prob-space.k-wise-indep-vars-compose[OF - Ψ2.indep])
(simp-all add:prob-space-measure-pmf )

have u ∈ R f =⇒ u < n for u
unfolding R-def using A-range by auto

hence b: x < n y < n card {x, y} = 2
using that ω-def by auto

have c: z < C 7∗b2 using ω-def that by simp

have measure Ψ2 {g. ?β ω g} = measure Ψ2 {g. (∀ ξ ∈ {x,y}. g ξ = z)}
by (simp add:ω-def )

also have ... = (
∏
ξ ∈ {x,y}. measure Ψ2 {g. g ξ = z})

using b by (intro measure-pmf .split-indep-events[OF refl, where I={x,y}]
prob-space.k-wise-indep-vars-subset[OF - a]) (simp-all add:prob-space-measure-pmf )

also have ... = (
∏
ξ ∈ {x,y}. measure (map-pmf (λω. ω ξ) (sample-pmf Ψ2)) {g. g = z})

by (simp add:vimage-def )
also have ... = (

∏
ξ ∈ {x,y}. measure [C 7 ∗ b2]S {g. g=z})

using b Ψ2.single by (intro prod.cong) fastforce+
also have ... = (

∏
ξ ∈ {x,y}. measure (pmf-of-set {..<C 7 ∗ b2}) {z})

by (subst nat-sample-pmf ) simp
also have ... = (measure (pmf-of-set {..<C 7 ∗ b2}) {z})^2

using b by simp
also have ... ≤ (1 /(C 7∗b2))^2

using c by (subst measure-pmf-of-set) auto
also have ... = (1 /(C 7∗b2)^2 )

by (simp add:algebra-simps power2-eq-square)
finally show ?thesis by simp

qed

have α-card: card {ω. ?α ω f } ≤ (C 7∗b^2 ) ∗ (card (R f ) ∗ (card (R f )−1 )/2 )
(is ?TL ≤ ?TR) and fin-α: finite {ω. ?α ω f } (is ?T2 ) for f

proof −
have t1 : {ω. ?α ω f } ⊆ {..<C 7∗b^2} × {(x,y) ∈ R f × R f . x < y}

by (intro subsetI ) auto
moreover have card ({..<C 7∗b^2} × {(x,y) ∈ R f × R f . x < y}) = ?TR

using card-ordered-pairs ′[where M=R f ]
by (simp add: card-cartesian-product)

moreover have finite (R f )
unfolding R-def using fin-A finite-subset by simp

hence finite {(x, y). (x, y) ∈ R f × R f ∧ x < y}
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by (intro finite-subset[where B=R f × R f , OF - finite-cartesian-product]) auto
hence t2 : finite ({..<C 7∗b^2} × {(x,y) ∈ R f × R f . x < y})

by (intro finite-cartesian-product) auto
ultimately show ?TL ≤ ?TR

using card-mono of-nat-le-iff by (metis (no-types, lifting))
show ?T2

using finite-subset[OF t1 t2 ] by simp
qed

have ?L ≤ measure Ψ {(f ,g,h). card (R f ) ≤ b ∧ (∃ x y z. ?α (x,y,z) f ∧ ?β (x,y,z) g)}
proof (rule pmf-mono)

fix ψ assume b:ψ ∈ set-pmf (sample-pmf Ψ)
obtain f g h where ψ-def :ψ = (f ,g,h) by (metis prod-cases3 )
have (f ,g,h) ∈ sample-set Ψ

using sample-space-alt[OF sample-space-Ψ] b ψ-def by simp
hence c:g x < C 7∗b^2 for x

using g-range by simp

assume a:ψ ∈ {ψ. E1 ψ ∧ E2 ψ ∧ ¬ E3 ψ}
hence card (R f ) ≤ 2/3 ∗ b

using R-bound ψ-def by force
moreover have ∃ a b. a ∈ R f ∧ b ∈ R f ∧ a 6= b ∧ g a = g b

using a unfolding ψ-def E3-def inj-on-def by auto
hence ∃ x y. x ∈ R f ∧ y ∈ R f ∧ x < y ∧ g x = g y

by (metis not-less-iff-gr-or-eq)
hence ∃ x y z. ?α (x,y,z) f ∧ ?β (x,y,z) g

using c by blast
ultimately show ψ ∈ {(f , g, h). card (R f ) ≤ b ∧ (∃ x y z. ?α (x,y,z) f ∧ ?β (x,y,z) g)}

unfolding ψ-def by auto
qed
also have ... = (

∫
f . measure (pair-pmf Ψ2 Ψ3)

{g. card (R f ) ≤ b ∧ (∃ x y z. ?α (x,y,z) f ∧ ?β (x,y,z) (fst g))} ∂Ψ1)
unfolding sample-pmf-Ψ split-pair-pmf by (simp add: case-prod-beta)

also have
... = (

∫
f . measure Ψ2 {g. card (R f ) ≤ b ∧ (∃ x y z. ?α (x,y,z) f ∧ ?β (x,y,z) g)} ∂Ψ1)

by (subst pair-pmf-prob-left) simp
also have ... ≤ (

∫
f . 1/real (2∗C 7) ∂Ψ1)

proof (rule pmf-exp-mono[OF integrable-sample-pmf [OF Ψ1.sample-space]
integrable-sample-pmf [OF Ψ1.sample-space]])

fix f assume f ∈ set-pmf (sample-pmf Ψ1)
show measure Ψ2 {g. card (R f ) ≤ b ∧ (∃ x y z. ?α (x,y,z) f ∧ ?β (x,y,z) g)} ≤ 1 / real (2

∗ C 7)
(is ?L1 ≤ ?R1 )

proof (cases card (R f ) ≤ b)
case True
have ?L1 ≤ measure Ψ2 (

⋃
ω ∈ {ω. ?α ω f }. {g. ?β ω g})

by (intro pmf-mono) auto
also have ... ≤ (

∑
ω ∈ {ω. ?α ω f }. measure Ψ2 {g. ?β ω g})

by (intro measure-UNION-le fin-α) auto
also have ... ≤ (

∑
ω ∈ {ω. ?α ω f }. (1/real (C 7∗b^2 )^2 ))

by (intro sum-mono β-prob) auto
also have ... = card {ω. ?α ω f } /(C 7∗b^2 )^2

by simp
also have ... ≤ (C 7∗b^2 ) ∗ (card (R f ) ∗ (card (R f )−1 )/2 ) / (C 7∗b^2 )^2

by (intro α-card divide-right-mono) simp
also have ... ≤ (C 7∗b^2 ) ∗ (b ∗ b / 2 ) / (C 7∗b^2 )^2

unfolding C 7-def using True
by (intro divide-right-mono Nat.of-nat-mono mult-mono) auto
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also have ... = 1/(2∗C 7)
using b-min by (simp add:algebra-simps power2-eq-square)

finally show ?thesis by simp
next

case False
then show ?thesis by simp

qed
qed
also have ... ≤ 1/2^6

unfolding C 7-def by simp
finally show ?thesis by simp

qed

definition E4 where E4 = (λ(f ,g,h). |p (f ,g,h) − % (card (R f ))| ≤ ε/12 ∗ card (R f ))

lemma e-4-h: 9 / sqrt b ≤ ε / 12
proof −

have 108 ≤ sqrt (C 4)
unfolding C 4-def by (approximation 5 )

also have ... ≤ sqrt( ε^2 ∗ real b)
using b-lower-bound ε-gt-0
by (intro real-sqrt-le-mono) (simp add: pos-divide-le-eq algebra-simps)

also have ... = ε ∗ sqrt b
using ε-gt-0 by (simp add:real-sqrt-mult)

finally have 108 ≤ ε ∗ sqrt b by simp
thus ?thesis

using b-min by (simp add:pos-divide-le-eq)
qed

lemma e-4 : measure Ψ {ψ. E1 ψ ∧ E2 ψ ∧ E3 ψ ∧ ¬E4 ψ} ≤ 1/2^6 (is ?L ≤ ?R)
proof −

have a: measure Ψ3 {h. E1 (f ,g,h) ∧ E2 (f ,g,h) ∧ E3 (f ,g,h) ∧ ¬E4 (f ,g,h)} ≤ 1/2^6
(is ?L1 ≤ ?R1 ) if f ∈ set-pmf (sample-pmf Ψ1) g ∈ set-pmf (sample-pmf Ψ2)
for f g

proof (cases card (R f ) ≤ b ∧ inj-on g (R f ))
case True

have g-inj: inj-on g (R f )
using True by simp

have fin-R: finite (g ‘ R f )
unfolding R-def using fin-A
by (intro finite-imageI ) simp

interpret B:balls-and-bins-abs g ‘ R f {..<b}
using fin-R b-ne by unfold-locales auto

have range g ⊆ {..<C 7 ∗ b2}
using g-range-1 that(2 ) unfolding sample-space-alt[OF Ψ2.sample-space] by auto

hence g-ran: g ‘ R f ⊆ {..<C 7 ∗ b2}
by auto

have sample-pmf [b]S = pmf-of-set {..<b}
unfolding sample-pmf-def nat-sample-space-def by simp

hence map-pmf (λω. ω x) (sample-pmf (H k (C 7 ∗ b2) [b]S)) = pmf-of-set {..<b}
if x ∈ g ‘ R f for x
using g-ran Ψ3.single that by auto

moreover have prob-space.k-wise-indep-vars Ψ3 k (λ-. discrete) (λx ω. ω x) (g ‘ R f )
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by (intro prob-space.k-wise-indep-subset[OF - - Ψ3.indep] g-ran prob-space-measure-pmf )
ultimately have lim-balls-and-bins: B.lim-balls-and-bins k (sample-pmf (H k (C 7 ∗ b2) [b]S))

unfolding B.lim-balls-and-bins-def by auto

have card-g-R: card (g ‘ R f ) = card (R f )
using True card-image by auto

hence b-mu: % (card (R f )) = B.µ
unfolding B.µ-def %-def using b-min by (simp add:powr-realpow)

have card-g-le-b: card (g ‘ R f ) ≤ card {..<b}
unfolding card-g-R using True by simp

have ?L1 ≤ measure Ψ3 {h. |B.Y h − B.µ| > 9 ∗ real (card (g ‘ R f )) / sqrt (card {..<b})}
proof (rule pmf-mono)

fix h assume h ∈ {h. E1 (f ,g,h) ∧ E2 (f ,g,h) ∧ E3 (f ,g,h) ∧ ¬E4 (f ,g,h)}
hence b: |p (f ,g,h) −% (card (R f ))| > ε/12 ∗ card (R f )

unfolding E4-def by simp
assume h ∈ set-pmf (sample-pmf Ψ3)
hence h-range: h x < b for x

unfolding sample-space-alt[OF Ψ3.sample-space,symmetric] using h-range-1 by simp

have {j ∈ {..<b}. int (s f ) ≤ τ1 (f , g, h) A 0 j} =
{j ∈ {..<b}. int (s f ) ≤ max (Max ({int (f a) |a. a ∈ A ∧ h (g a) = j} ∪ {−1})) (− 1 )}
unfolding τ1-def by simp

also have ... = {j ∈ {..<b}. int (s f ) ≤ Max ({int (f a) |a. a ∈ A ∧ h (g a) = j} ∪ {−1})}
using fin-A by (subst max-absorb1 ) (auto intro: Max-ge)

also have ... = {j ∈ {..<b}. (∃ a ∈ R f . h (g a) = j)}
unfolding R-def using fin-A by (subst Max-ge-iff ) auto

also have ... = {j. ∃ a ∈ R f . h (g a) = j}
using h-range by auto

also have ... = (h ◦ g) ‘ (R f )
by (auto simp add:set-eq-iff image-iff )

also have ... = h ‘ (g ‘ (R f ))
by (simp add:image-image)

finally have c:{j ∈ {..<b}. int (s f ) ≤ τ1 (f , g, h) A 0 j} = h ‘ (g ‘ R f )
by simp

have 9 ∗ real (card (g ‘ R f )) / sqrt (card {..<b}) = 9/ sqrt b ∗ real (card (R f ))
using card-image[OF g-inj] by simp

also have ... ≤ ε/12 ∗ card (R f )
by (intro mult-right-mono e-4-h) simp

also have ... < |B.Y h − B.µ|
using b c unfolding B.Y-def p-def b-mu by simp

finally show h ∈ {h. |B.Y h − B.µ| > 9 ∗ real (card (g ‘ R f )) / sqrt (card {..<b})}
by simp

qed
also have ... ≤ 1/2^6

using k-min
by (intro B.devitation-bound[OF card-g-le-b lim-balls-and-bins]) auto

finally show ?thesis by simp
next

case False
have ?L1 ≤ measure Ψ3 {}
proof (rule pmf-mono)

fix h assume b:h ∈ {h. E1 (f , g, h) ∧ E2 (f , g, h) ∧ E3 (f , g, h) ∧ ¬ E4 (f , g, h)}
hence card (R f ) ≤ (2/3 )∗b

by (auto intro!: R-bound[simplified])
hence card (R f ) ≤ b

by simp
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moreover have inj-on g (R f )
using b by (simp add:E3-def )

ultimately have False using False by simp
thus h ∈ {} by simp

qed
also have ... = 0 by simp
finally show ?thesis by simp

qed

have ?L = (
∫

f . (
∫

g.
measure Ψ3 {h. E1 (f ,g,h) ∧ E2 (f ,g,h) ∧ E3 (f ,g,h) ∧ ¬E4 (f ,g,h)} ∂Ψ2) ∂Ψ1)
unfolding sample-pmf-Ψ split-pair-pmf by simp

also have ... ≤ (
∫

f . (
∫

g. 1/2^6 ∂Ψ2) ∂Ψ1)
using a Ψ1.sample-space Ψ2.sample-space
by (intro integral-mono-AE AE-pmfI ) simp-all

also have ... = 1/2^6
by simp

finally show ?thesis by simp
qed

lemma %-inverse: %-inv (% x) = x
proof −

have a:1−1/b 6= 0
using b-min by simp

have % x = b ∗ (1−(1−1/b) powr x)
unfolding %-def by simp

hence % x / real b = 1−(1−1/b) powr x by simp
hence ln (1 − % x / real b) = ln ((1−1/b) powr x) by simp
also have ... = x ∗ ln (1 − 1/ b)

using a by (intro ln-powr)
finally have ln (1 − % x / real b) = x ∗ ln (1− 1/ b)

by simp
moreover have ln (1−1/b) < 0

using b-min by (subst ln-less-zero-iff ) auto
ultimately show ?thesis

using %-inv-def by simp
qed

lemma rho-mono:
assumes x ≤ y
shows % x ≤ % y

proof−
have (1 − 1 / real b) powr y ≤ (1 − 1 / real b) powr x

using b-min
by (intro powr-mono-rev assms) auto

thus ?thesis
unfolding %-def by (intro mult-left-mono) auto

qed

lemma rho-two-thirds: % (2/3 ∗ b) ≤ 3/5 ∗b
proof −

have 1/3 ≤ exp ( − 13 / 12 ::real )
by (approximation 8 )

also have ... ≤ exp ( − 1 − 2 / real b )
using b-min by (intro iffD2 [OF exp-le-cancel-iff ]) (simp add:algebra-simps)

also have ... ≤ exp ( b ∗ (−(1/real b)−2∗(1/real b)^2 ))
using b-min by (simp add:algebra-simps power2-eq-square)
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also have ... ≤ exp ( b ∗ ln (1−1/real b))
using b-min
by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono ln-one-minus-pos-lower-bound) auto

also have ... = exp ( ln ( (1−1/real b) powr b))
using b-min by (subst ln-powr) auto

also have ... = (1−1/real b) powr b
using b-min by (subst exp-ln) auto

finally have a:1/3 ≤ (1−1/real b) powr b by simp

have 2/5 ≤ (1/3 ) powr (2/3 ::real)
by (approximation 5 )

also have ... ≤ ((1−1/real b) powr b) powr (2/3 )
by (intro powr-mono2 a) auto

also have ... = (1−1/real b) powr (2/3 ∗ real b)
by (subst powr-powr) (simp add:algebra-simps)

finally have 2/5 ≤ (1 − 1 / real b) powr (2 / 3 ∗ real b) by simp
hence 1 − (1 − 1 / real b) powr (2 / 3 ∗ real b) ≤ 3/5

by simp
hence % (2/3 ∗ b) ≤ b ∗ (3/5 )

unfolding %-def by (intro mult-left-mono) auto
thus ?thesis

by simp
qed

definition %-inv ′ :: real ⇒ real
where %-inv ′ x = −1 / (real b ∗ (1−x / real b) ∗ ln (1 − 1 / real b))

lemma %-inv ′-bound:
assumes x ≥ 0
assumes x ≤ 59/90∗b
shows |%-inv ′ x| ≤ 4

proof −
have c:ln (1 − 1 / real b) < 0

using b-min
by (subst ln-less-zero-iff ) auto

hence d:real b ∗ (1 − x / real b) ∗ ln (1 − 1 / real b) < 0
using b-min assms by (intro Rings.mult-pos-neg) auto

have (1 ::real) ≤ 31/30 by simp
also have ... ≤ (31/30 ) ∗ (b ∗ −(− 1 / real b))

using b-min by simp
also have ... ≤ (31/30 ) ∗ (b ∗ −ln (1 + (− 1 / real b)))

using b-min
by (intro mult-left-mono le-imp-neg-le ln-add-one-self-le-self2 ) auto

also have ... ≤ 3 ∗ (31/90 ) ∗ (− b ∗ ln (1 − 1 / real b))
by simp

also have ... ≤ 3 ∗ (1 − x / real b) ∗ (− b ∗ ln (1 − 1 / real b))
using assms b-min pos-divide-le-eq[where c=b] c
by (intro mult-right-mono mult-left-mono mult-nonpos-nonpos) auto

also have ... ≤ 3 ∗ (real b ∗ (1 − x / real b) ∗ (−ln (1 − 1 / real b)))
by (simp add:algebra-simps)

finally have 3 ∗ (real b ∗ (1 − x / real b) ∗ (−ln (1 − 1 / real b))) ≥ 1 by simp
hence 3 ∗ (real b ∗ (1 − x / real b) ∗ ln (1 − 1 / real b)) ≤ −1 by simp
hence %-inv ′ x ≤ 3

unfolding %-inv ′-def using d
by (subst neg-divide-le-eq) auto

moreover have %-inv ′ x > 0
unfolding %-inv ′-def using d by (intro divide-neg-neg) auto

102



ultimately show ?thesis by simp
qed

lemma %-inv ′:
fixes x :: real
assumes x < b
shows DERIV %-inv x :> %-inv ′ x

proof −
have DERIV (ln ◦ (λx. (1 − x / real b))) x :> 1 / (1−x / real b) ∗ (0 −1/b)

using assms b-min
by (intro DERIV-chain DERIV-ln-divide DERIV-cdivide derivative-intros) auto

hence DERIV %-inv x :> (1 / (1−x / real b) ∗ (−1/b)) / ln (1−1/real b)
unfolding comp-def %-inv-def by (intro DERIV-cdivide) auto

thus ?thesis
by (simp add:%-inv ′-def algebra-simps)

qed

lemma accuracy-without-cutoff :
measure Ψ {(f ,g,h). |Y (f ,g,h) − real X | > ε ∗ X ∨ s f < q-max} ≤ 1/2^4
(is ?L ≤ ?R)

proof −
have ?L ≤ measure Ψ {ψ. ¬E1 ψ ∨ ¬E2 ψ ∨ ¬E3 ψ ∨ ¬E4 ψ}
proof (rule pmf-rev-mono)

fix ψ assume ψ ∈ set-pmf (sample-pmf Ψ)
obtain f g h where ψ-def : ψ = (f ,g,h) by (metis prod-cases3 )

assume ψ /∈ {ψ. ¬ E1 ψ ∨ ¬ E2 ψ ∨ ¬ E3 ψ ∨ ¬ E4 ψ}
hence assms: E1 (f ,g,h) E2 (f ,g,h) E3 (f ,g,h) E4 (f ,g,h)

unfolding ψ-def by auto

define I :: real set where I = {0 ..59/90∗b}

have p (f ,g,h) ≤ % (card (R f )) + ε/12 ∗ card (R f )
using assms(4 ) E4-def unfolding abs-le-iff by simp

also have ... ≤ %(2/3∗b) + 1/12∗ (2/3∗b)
using ε-lt-1 R-bound[OF assms(1 ,2 )]
by (intro add-mono rho-mono mult-mono) auto

also have ... ≤ 3/5 ∗ b + 1/18∗b
by (intro add-mono rho-two-thirds) auto

also have ... ≤ 59/90 ∗ b
by simp

finally have p (f ,g,h) ≤ 59/90 ∗ b by simp
hence p-in-I : p (f ,g,h) ∈ I

unfolding I-def by simp

have % (card (R f )) ≤ %(2/3 ∗ b)
using R-bound[OF assms(1 ,2 )]
by (intro rho-mono) auto

also have ... ≤ 3/5 ∗ b
using rho-two-thirds by simp

also have ... ≤ b ∗ 59/90 by simp
finally have % (card (R f )) ≤ b ∗ 59/90 by simp
moreover have (1 − 1 / real b) powr (real (card (R f ))) ≤ 1 powr (real (card (R f )))

using b-min by (intro powr-mono2 ) auto
hence % (card (R f )) ≥ 0

unfolding %-def by (intro mult-nonneg-nonneg) auto
ultimately have % (card (R f )) ∈ I

unfolding I-def by simp
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moreover have interval I
unfolding I-def interval-def by simp

moreover have 59 / 90 ∗ b < b
using b-min by simp

hence DERIV %-inv x :> %-inv ′ x if x ∈ I for x
using that I-def by (intro %-inv ′) simp

ultimately obtain ξ :: real where ξ-def : ξ ∈ I
%-inv (p(f ,g,h)) − %-inv (% (card (R f ))) = (p (f ,g,h) − %(card (R f ))) ∗ %-inv ′ ξ
using p-in-I MVT-interval by blast

have |%-inv(p (f ,g,h)) − card (R f )| = |%-inv(p (f ,g,h)) − %-inv(%(card (R f )))|
by (subst %-inverse) simp

also have ... = |(p (f ,g,h) − % (card (R f )))| ∗ |%-inv ′ ξ |
using ξ-def (2 ) abs-mult by simp

also have ... ≤ |p (f ,g,h) − % (card (R f ))| ∗ 4
using ξ-def (1 ) I-def
by (intro mult-left-mono %-inv ′-bound) auto

also have ... ≤ ( ε/12 ∗ card (R f )) ∗ 4
using assms(4 ) E4-def by (intro mult-right-mono) auto

also have ... = ε/3 ∗ card (R f ) by simp
finally have b: |%-inv(p (f ,g,h)) − card (R f )| ≤ ε/3 ∗ card (R f ) by simp

have |%-inv(p (f ,g,h)) − X / 2 ^ (s f )| ≤
|%-inv(p (f ,g,h)) − card (R f )| + |card (R f ) − X / 2 ^ (s f )|
by simp

also have ... ≤ ε/3 ∗ card (R f ) + |card (R f ) − X / 2 ^ (s f )|
by (intro add-mono b) auto

also have ... = ε/3 ∗ |X / 2 ^ (s f ) + (card (R f ) − X / 2 ^ (s f ))| +
|card (R f ) − X / 2 ^ (s f )| by simp

also have ... ≤ ε/3 ∗ (|X / 2 ^ (s f )| + |card (R f ) − X / 2 ^ (s f )|) +
|card (R f ) − X / 2 ^ (s f )|
using ε-gt-0 by (intro mult-left-mono add-mono abs-triangle-ineq) auto

also have ... ≤ ε/3 ∗ |X / 2 ^ (s f )| + (1+ ε/3 ) ∗ |card (R f ) − X / 2 ^ (s f )|
using ε-gt-0 ε-lt-1 by (simp add:algebra-simps)

also have ... ≤ ε/3 ∗ |X / 2 ^ s f | + (4/3 ) ∗ ( ε / 3 ∗ real X / 2 ^ s f )
using assms(2 ) ε-gt-0 ε-lt-1
unfolding E2-def by (intro add-mono mult-mono) auto

also have ... = (7/9 ) ∗ ε ∗ real X / 2^s f
using X-ge-1 by (subst abs-of-nonneg) auto

also have ... ≤ 1 ∗ ε ∗ real X / 2^s f
using ε-gt-0 by (intro mult-mono divide-right-mono) auto

also have ... = ε ∗ real X / 2^s f by simp
finally have a:|%-inv(p (f ,g,h)) − X / 2 ^ (s f )| ≤ ε ∗ X / 2 ^ (s f )

by simp

have |Y (f , g, h) − real X | = |2 ^ (s f )| ∗ |%-inv(p (f ,g,h)) − real X / 2 ^ (s f )|
unfolding Y-def by (subst abs-mult[symmetric]) (simp add:algebra-simps powr-add[symmetric])
also have ... ≤ 2 ^ (s f ) ∗ (ε ∗ X / 2 ^ (s f ))

by (intro mult-mono a) auto
also have ... = ε ∗ X

by (simp add:algebra-simps powr-add[symmetric])
finally have |Y (f , g, h) − real X | ≤ ε ∗ X by simp
moreover have 2 powr (dlog 2 (real X)e − t f ) ≤ 2 powr b-exp (is ?L1 ≤ ?R1 )
proof −

have ?L1 ≤ 2 powr (1 + log 2 (real X)− t f )
by (intro powr-mono, linarith) auto

also have ... = 2 powr 1 ∗ 2 powr (log 2 (real X)) ∗ 2 powr (− t f )
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unfolding powr-add[symmetric] by simp
also have ... = 2 ∗ (2 powr (−t f ) ∗ X)

using X-ge-1 by simp
also have ... ≤ 2 ∗ (b/2 )

using assms(1 ) unfolding E1-def by (intro mult-left-mono) auto
also have ... = b by simp
also have ... = ?R1

unfolding b-def by (simp add: powr-realpow)
finally show ?thesis by simp

qed
hence dlog 2 (real X)e − t f ≤ real b-exp

unfolding not-less[symmetric] using powr-less-mono[where x=2 ] by simp
hence s f ≥ q-max unfolding s-def q-max-def by (intro nat-mono) auto
ultimately show ψ /∈ {(f , g, h). ε ∗ X < |Y (f , g, h) − real X | ∨ s f < q-max}

unfolding ψ-def by auto
qed
also have ... ≤

measure Ψ {ψ. ¬E1 ψ ∨ ¬E2 ψ ∨ ¬E3 ψ} + measure Ψ {ψ. E1 ψ ∧ E2 ψ ∧ E3 ψ ∧ ¬E4 ψ}
by (intro pmf-add) auto

also have ... ≤ (measure Ψ {ψ. ¬E1 ψ ∨ ¬E2 ψ} + measure Ψ {ψ. E1 ψ ∧ E2 ψ ∧ ¬E3 ψ})
+ 1/2^6

by (intro add-mono e-4 pmf-add) auto
also have ... ≤ ((measure Ψ {ψ. ¬E1 ψ} + measure Ψ {ψ. E1 ψ ∧ ¬E2 ψ}) + 1/2^6 ) + 1/2^6

by (intro add-mono e-3 pmf-add) auto
also have ... ≤ ((1/2^6 + 1/2^6 ) + 1/2^6 ) + 1/2^6

by (intro add-mono e-2 e-1 ) auto
also have ... = ?R by simp
finally show ?thesis by simp

qed

end

end

8 Cutoff Level

This section verifies that the cutoff will be below q-max with high probability. The result
will be needed in Section 9, where it is shown that the estimates will be accurate for any
cutoff below q-max.
theory Distributed-Distinct-Elements-Cutoff-Level

imports
Distributed-Distinct-Elements-Accuracy-Without-Cutoff
Distributed-Distinct-Elements-Tail-Bounds

begin

hide-const Quantum.Z

unbundle intro-cong-syntax

lemma mono-real-of-int: mono real-of-int
unfolding mono-def by auto

lemma Max-le-Sum:
fixes f :: ′a ⇒ int
assumes finite A
assumes

∧
a. a ∈ A =⇒ f a ≥ 0

shows Max (insert 0 (f ‘ A)) ≤ (
∑

a ∈A .f a) (is ?L ≤ ?R)
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proof (cases A 6={})
case True

have 0 : f a ≤ (
∑

a ∈A .f a) if a ∈ A for a
using that assms by (intro member-le-sum) auto

have ?L = max 0 (Max (f ‘ A))
using True assms(1 ) by (subst Max-insert) auto

also have ... = Max (max 0 ‘ f ‘ A)
using assms True by (intro mono-Max-commute monoI ) auto

also have ... = Max (f ‘ A)
unfolding image-image using assms
by (intro arg-cong[where f=Max] image-cong) auto

also have ... ≤ ?R
using 0 True assms(1 )
by (intro iffD2 [OF Max-le-iff ]) auto

finally show ?thesis by simp
next

case False
hence A = {} by simp
then show ?thesis by simp

qed

context inner-algorithm-fix-A
begin

The following inequality is true for base e on the entire domain (x > 0). It is shown in
ln-add-one-self-le-self. In the following it is established for base 2, where it holds for x ≥ 1.
lemma log-2-estimate:

assumes x ≥ (1 ::real)
shows log 2 (1+x) ≤ x

proof −
define f where f x = x − log 2 (1+ x) for x :: real
define f ′ where f ′ x = 1 − 1/((x+1 )∗ln 2 ) for x :: real

have 0 :(f has-real-derivative (f ′ x)) (at x) if x > 0 for x
unfolding f-def f ′-def using that
by (auto intro!: derivative-eq-intros)

have f ′ x ≥ 0 if 1 ≤ x for x :: real
proof −

have (1 ::real) ≤ 2∗ln 2
by (approximation 5 )

also have ... ≤ (x+1 )∗ln 2
using that by (intro mult-right-mono) auto

finally have 1 ≤ (x+1 )∗ln 2 by simp
hence 1/((x+1 )∗ln 2 ) ≤ 1

by simp
thus ?thesis

unfolding f ′-def by simp
qed

hence ∃ y. (f has-real-derivative y) (at x) ∧ 0 ≤ y if x ≥ 1 for x :: real
using that order-less-le-trans[OF exp-gt-zero]
by (intro exI [where x=f ′ x] conjI 0 ) auto

hence f 1 ≤ f x
by (intro DERIV-nonneg-imp-nondecreasing[OF assms]) auto

thus ?thesis
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unfolding f-def by simp
qed

lemma cutoff-eq-7 :
real X ∗ 2 powr (−real q-max) / b ≤ 1

proof −
have real X = 2 powr (log 2 X)

using X-ge-1 by (intro powr-log-cancel[symmetric]) auto
also have ... ≤ 2 powr (nat dlog 2 Xe)

by (intro powr-mono) linarith+
also have ... = 2 ^ (nat dlog 2 Xe)

by (subst powr-realpow) auto
also have ... = real (2 ^ (nat dlog 2 (real X)e))

by simp
also have ... ≤ real (2 ^ (b-exp + nat (dlog 2 (real X)e − int b-exp)))

by (intro Nat.of-nat-mono power-increasing) linarith+
also have ... = b ∗ 2^q-max

unfolding q-max-def b-def by (simp add: power-add)

finally have real X ≤ b ∗ 2 ^ q-max by simp
thus ?thesis

using b-min
unfolding powr-minus inverse-eq-divide
by (simp add:field-simps powr-realpow)

qed

lemma cutoff-eq-6 :
fixes k
assumes a ∈ A
shows (

∫
f . real-of-int (max 0 (int (f a) − int k)) ∂Ψ1) ≤ 2 powr (−real k) (is ?L ≤ ?R)

proof (cases k ≤ n-exp − 1 )
case True
have a-le-n: a < n

using assms A-range by auto

have ?L = (
∫

x. real-of-int (max 0 (int x − k)) ∂map-pmf (λx. x a) Ψ1)
by simp

also have ... = (
∫

x. real-of-int (max 0 (int x − k)) ∂(G n-exp))
unfolding Ψ1.single[OF a-le-n] by simp

also have ... = (
∫

x. max 0 (real x − real k) ∂(G n-exp))
unfolding max-of-mono[OF mono-real-of-int,symmetric] by simp

also have ... = (
∑

x≤n-exp. max 0 (real x − real k) ∗ pmf (G n-exp) x)
using G-range unfolding sample-space-alt[OF G-sample-space]
by (intro integral-measure-pmf-real) auto

also have ... = (
∑

x=k+1 ..n-exp. (real x − real k) ∗ pmf (G n-exp) x)
by (intro sum.mono-neutral-cong-right) auto

also have ... = (
∑

x=k+1 ..n-exp. (real x − real k) ∗ measure (G n-exp) {x})
unfolding measure-pmf-single by simp

also have ... = (
∑

x=k+1 ..n-exp. (real x−real k)∗(measure (G n-exp) ({ω. ω≥x}−{ω. ω≥(x+1 )})))
by (intro sum.cong arg-cong2 [where f=(∗)] measure-pmf-cong) auto

also have ... = (
∑

x=k+1 ..n-exp. (real x−real k)∗
(measure (G n-exp) {ω. ω≥x} − measure (G n-exp) {ω. ω≥(x+1 )}))
by (intro sum.cong arg-cong2 [where f=(∗)] measure-Diff ) auto

also have ... = (
∑

x=k+1 ..n-exp. (real x − real k) ∗ (1/2^x − of-bool(x+1≤n-exp)/2^(x+1 )))
unfolding G-prob by (intro-cong [σ2 (∗), σ2 (−), σ2 (/)] more:sum.cong) auto

also have ... =
(
∑

x=k+1 ..n-exp. (real x−k)/2^x) − (
∑

x=k+1 ..n-exp. (real x−k)∗ of-bool(x+1≤n-exp)/2^(x+1 ))
by (simp add:algebra-simps sum-subtractf )
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also have ...=(
∑

x=k+1 ..n-exp. (real x−k)/2^x)−(
∑

x=k+1 ..n-exp−1 . (real x−k)/2^(x+1 ))
by (intro arg-cong2 [where f=(−)] refl sum.mono-neutral-cong-right) auto

also have ...=(
∑

x=k+1 ..(n-exp−1 )+1 . (real x−k)/2^x)−(
∑

x=k+1 ..n-exp−1 . (real x−k)/2^(x+1 ))
using n-exp-gt-0 by (intro arg-cong2 [where f=(−)] refl sum.cong) auto

also have ...= (
∑

x∈insert k {k+1 ..n-exp−1}. (real (x+1 )−k)/2^(x+1 ))−
(
∑

x=k+1 ..n-exp−1 . (real x−k)/2^(x+1 ))
unfolding sum.shift-bounds-cl-nat-ivl using True
by (intro arg-cong2 [where f=(−)] sum.cong) auto

also have ... = 1/2^(k+1 )+(
∑

x=k+1 ..n-exp−1 . (real (x+1 )−k)/2^(x+1 )− (real x−k)/2^(x+1 ))
by (subst sum.insert) (auto simp add:sum-subtractf )

also have ... = 1/2^(k+1 )+(
∑

x=k+1 ..n-exp−1 . (1/2^(x+1 )))
by (intro arg-cong2 [where f=(+)] sum.cong refl) (simp add:field-simps)

also have ... = (
∑

x∈insert k {k+1 ..n-exp−1}. (1/2^(x+1 )))
by (subst sum.insert) auto

also have ... = (
∑

x=0+k..(n-exp−1−k)+k. 1/2^(x+1 ))
using True by (intro sum.cong) auto

also have ... = (
∑

x<n-exp−k. 1/2^(x+k+1 ))
unfolding sum.shift-bounds-cl-nat-ivl using True n-exp-gt-0 by (intro sum.cong) auto

also have ... = (1/2 )^(k+1 ) ∗ (
∑

x<n-exp−k. (1/2 )^x)
unfolding sum-distrib-left power-add[symmetric] by (simp add:power-divide ac-simps)

also have ... = (1/2 )^(k+1 ) ∗ 2 ∗ (1−(1 / 2 ) ^ (n-exp − k))
by (subst geometric-sum) auto

also have ... ≤ (1/2 )^(k+1 ) ∗ 2 ∗ (1−0 )
by (intro mult-left-mono diff-mono) auto

also have ... = (1/2 )^k
unfolding power-add by simp

also have ... = ?R
unfolding powr-minus by (simp add:powr-realpow inverse-eq-divide power-divide)

finally show ?thesis
by simp

next
case False
hence k-ge-n-exp: k ≥ n-exp

by simp
have a-lt-n: a < n

using assms A-range by auto

have ?L = (
∫

x. real-of-int (max 0 (int x − k)) ∂map-pmf (λx. x a) Ψ1)
by simp

also have ... = (
∫

x. real-of-int (max 0 (int x − k)) ∂(G n-exp))
unfolding Ψ1.single[OF a-lt-n] by simp

also have ... = (
∫

x. real-of-int 0 ∂(G n-exp))
using G-range k-ge-n-exp unfolding sample-space-alt[OF G-sample-space]
by (intro integral-cong-AE AE-pmfI iffD2 [OF of-int-eq-iff ] max-absorb1 ) force+

also have ... = 0 by simp
finally show ?thesis by simp

qed

lemma cutoff-eq-5 :
assumes x ≥ (−1 :: real)
shows real-of-int blog 2 (x+2 )c ≤ (real c+2 ) + max (x − 2^c) 0 (is ?L ≤ ?R)

proof −
have 0 : 1 ≤ 2 ^ 1 ∗ ln (2 ::real)

by (approximation 5 )

consider (a) c = 0 ∧ x ≥ 2^c+1 | (b) c > 0 ∧ x ≥ 2^c+1 | (c) x ≤ 2^c+1
by linarith

hence log 2 (x+2 ) ≤ ?R
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proof (cases)
case a
have log 2 (x+2 ) = log 2 (1+(x+1 ))

by (simp add:algebra-simps)
also have ... ≤ x+1

using a by (intro log-2-estimate) auto
also have ... = ?R

using a by auto
finally show ?thesis by simp

next
case b
have 0 < 0 + (1 ::real)

by simp
also have ... ≤ 2^c+(1 ::real)

by (intro add-mono) auto
also have ... ≤ x

using b by simp
finally have x-gt-0 : x > 0

by simp

have log 2 (x+2 ) = log 2 ((x+2 )/2^c) + c
using x-gt-0 by (subst log-divide) auto

also have ... = log 2 (1+(x+2−2^c)/2^c) + c
by (simp add:divide-simps)

also have ... ≤ (x+2−2^c)/2^c / ln 2 + c
using b unfolding log-def
by (intro add-mono divide-right-mono ln-add-one-self-le-self divide-nonneg-pos) auto

also have ... = (x+2−2^c)/(2^c∗ln 2 ) + c
by simp

also have ... ≤ (x+2−2^c)/(2^1∗ln 2 )+c
using b by (intro add-mono divide-left-mono mult-right-mono power-increasing) simp-all

also have ... ≤ (x+2−2^c)/1 + c
using b by (intro add-mono divide-left-mono 0 ) auto

also have ... ≤ (c+2 ) + max (x − 2^c) 0
using b by simp

finally show ?thesis by simp
next

case c
hence log 2 (x+2 ) ≤ log 2 ((2^c+1 )+2 )

using assms by (intro log-mono add-mono) auto
also have ... = log 2 (2^c∗(1+3/2^c))

by (simp add:algebra-simps)
also have ... = c + log 2 (1+3/2^c)

by (subst log-mult) (auto intro:add-pos-nonneg)
also have ... ≤ c + log 2 (1+3/2^0 )

by (intro add-mono log-mono divide-left-mono power-increasing add-pos-nonneg) auto
also have ... = c + log 2 (2∗2 )

by simp
also have ... = real c + 2

by (subst log-mult) auto
also have ... ≤ (c+2 ) + max (x − 2^c) 0

by simp
finally show ?thesis

by simp
qed
moreover have blog 2 (x+2 )c ≤ log 2 (x+2 )

by simp
ultimately show ?thesis using order-trans by blast
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qed

lemma cutoff-level:
measure Ω {ω. q ω A > q-max} ≤ δ/2 (is ?L ≤ ?R)

proof −
have C 1-est: C 1 ∗ l ≤ 30 ∗ real l

unfolding C 1-def
by (intro mult-right-mono of-nat-0-le-iff ) (approximation 10 )

define Z where Z ω = (
∑

j<b. real-of-int blog 2 (of-int (max (τ1 ω A q-max j) (−1 )) + 2 )c)
for ω

define V where V ω = Z ω / real b − 3 for ω

have 2 :Z ψ ≤ real b∗(real c+2 ) + of-int (
∑

a∈A. max 0 (int (fst ψ a) − q-max −2^c))
(is ?L1 ≤ ?R1 ) if ψ ∈ sample-set Ψ for c ψ

proof −
obtain f g h where ψ-def : ψ = (f ,g,h)

using prod-cases3 by blast

have ψ-range: (f ,g,h) ∈ sample-set Ψ
using that unfolding ψ-def by simp

have − 1 − 2^c ≤ −1−(1 ::real)
by (intro diff-mono) auto

also have ... ≤ 0 by simp
finally have − 1 − 2 ^ c ≤ (0 ::real) by simp
hence aux3 : max (−1−2^c) 0 = (0 ::real)

by (intro max-absorb2 )

have − 1 − int q-max − 2 ^ c ≤ −1 − 0 − 1
by (intro diff-mono) auto

also have ... ≤ 0 by simp
finally have − 1 − int q-max − 2 ^ c ≤ 0 by simp
hence aux3-2 : max 0 (− 1 − int q-max − 2 ^ c) = 0

by (intro max-absorb1 )

have ?L1 ≤ (
∑

j<b. (real c+2 ) + max (real-of-int (max (τ1 ψ A q-max j) (− 1 )) − 2^c) 0 )
unfolding Z-def by (intro sum-mono cutoff-eq-5 ) auto

also have ... = (
∑

j<b. (real c+2 )+max (τ0 ψ A j − q-max − 2^c) 0 )
unfolding τ1-def max-of-mono[OF mono-real-of-int,symmetric]
by (intro-cong [σ2 (+)] more:sum.cong) (simp add:max-diff-distrib-left max.assoc aux3 )

also have ... = real b ∗ (real c + 2 ) +
of-int (

∑
j<b. (max 0 (Max (insert (− 1 ) {int (f a) |a. a ∈ A ∧ h (g a) = j})−q-max −

2^c)))
unfolding ψ-def by (simp add:max.commute)

also have ... = real b ∗ (real c + 2 ) +
of-int (

∑
j<b. max 0 (Max ((λx. x−q-max−2^c)‘(insert(−1 ){int (f a) |a. a ∈ A∧h(g

a)=j}))))
using fin-A

by (intro-cong [σ2 (+), σ1 of-int, σ2 max] more:sum.cong mono-Max-commute) (auto
simp:monoI )

also have ... = real b ∗ (real c + 2 ) +
of-int(

∑
j<b. max 0 (Max(insert(−1−q-max−2^c){int (f a)−q-max−2^c |a. a ∈ A ∧ h (g

a) = j})))
by (intro-cong [σ2 (+), σ1 of-int, σ2 max, σ1 Max] more:sum.cong) auto

also have ... = real b ∗ (real c + 2 ) + of-int
(
∑

j<b. Max ((max 0 ) ‘(insert(−1−q-max−2^c){int (f a)−q-max−2^c |a. a ∈ A ∧ h (g a)
= j})))
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using fin-A by (intro-cong [σ2 (+), σ1 of-int] more:sum.cong mono-Max-commute)
(auto simp add:monoI setcompr-eq-image)

also have ... = real b ∗ (real c + 2 ) +
of-int (

∑
j<b. Max (insert 0 {max 0 (int (f a)−q-max−2^c) |a. a ∈ A ∧ h (g a) = j}))

using aux3-2 by (intro-cong [σ2 (+), σ1 of-int, σ1 Max] more:sum.cong)
(simp add:setcompr-eq-image image-image)

also have ... ≤ b∗(real c+2 )+ of-int(
∑

j<b. (
∑

a|a∈A∧h(g(a))=j. max 0 (int(f a)−q-max−2^c)))
using fin-A Max-le-Sum unfolding setcompr-eq-image
by (intro add-mono iffD2 [OF of-int-le-iff ] sum-mono Max-le-Sum) (simp-all)

also have ... = real b∗(real c+2 )+
of-int(

∑
a∈(

⋃
j∈{..<b}. {a. a∈A∧ h(g(a)) = j}). max 0 (int(f a)−q-max−2^c))

using fin-A
by (intro-cong [σ2 (+), σ1 of-int] more:sum.UNION-disjoint[symmetric]) auto

also have ... = real b∗(real c+2 ) + of-int(
∑

a∈A. max 0 (int(f a)−q-max−2^c))
using h-range[OF ψ-range] by (intro-cong [σ2 (+), σ1 of-int] more:sum.cong) auto

also have ... = ?R1
unfolding ψ-def by simp

finally show ?thesis
by simp

qed

have 1 : measure Ψ {ψ. real c ≤ V ψ} ≤ 2 powr (− (2^c)) (is ?L1 ≤ ?R1 ) for c
proof −

have ?L1 = measure Ψ {ψ. real b ∗ (real c + 3 ) ≤ Z ψ}
unfolding V-def using b-min by (intro measure-pmf-cong) (simp add:field-simps)

also have ... ≤ measure Ψ
{ψ. real b∗(real c+3 )≤ real b∗(real c+2 )+ of-int (

∑
a∈A. max 0 (int (fst ψ a)−q-max

−2^c))}
using 2 order-trans unfolding sample-space-alt[OF sample-space-Ψ]
by (intro pmf-mono) blast

also have ... = measure Ψ {ψ. real b ≤ (
∑

a∈A. of-int (max 0 (int (fst ψ a) −q-max −2^c)))}
by (intro measure-pmf-cong) (simp add:algebra-simps)

also have ... ≤ (
∫
ψ. (

∑
a∈A. of-int (max 0 (int (fst ψ a) −q-max −2^c))) ∂Ψ)/real b

using b-min sample-space-Ψ by (intro pmf-markov sum-nonneg) simp-all
also have ... = (

∑
a∈A. (

∫
ψ. of-int (max 0 (int (fst ψ a) −q-max −2^c)) ∂Ψ))/real b

using sample-space-Ψ by (intro-cong [σ2(/)] more:Bochner-Integration.integral-sum) simp
also have ... = (

∑
a∈A. (

∫
f . of-int (max 0 (int (f a)−q-max −2^c)) ∂(map-pmf fst Ψ)))/real

b
by simp

also have ... = (
∑

a∈A. (
∫

f . of-int (max 0 (int (f a) − (q-max +2^c))) ∂Ψ1))/real b
unfolding sample-pmf-Ψ map-fst-pair-pmf by (simp add:algebra-simps)

also have ... ≤ (
∑

a∈A. 2 powr −real (q-max + 2^c))/real b
using b-min by (intro sum-mono divide-right-mono cutoff-eq-6 ) auto

also have ... = real X ∗ 2 powr (− real q-max + (− (2 ^ c))) / real b
unfolding X-def by simp

also have ... = (real X ∗ 2 powr (−real q-max) / b) ∗ 2 powr (−(2^c))
unfolding powr-add by (simp add:algebra-simps)

also have ... ≤ 1 ∗ 2 powr (−(2^c))
using cutoff-eq-7 by (intro mult-right-mono) auto

finally show ?thesis
by simp

qed

have 0 : measure Ψ {ψ. x ≤ V ψ} ≤ exp (− x ∗ ln x ^ 3 ) (is ?L1 ≤ ?R1 ) if x ≥ 20 for x
proof −

define c where c = nat bxc

have x ∗ ln x^3 ≤ exp (x ∗ ln 2 ) ∗ ln 2/2 if x ≥ 150 for x::real
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proof −
have aux-aux-0 : x^4 ≥ 0

by simp

have x ∗ ln x^3 ≤ x ∗ x^3
using that by (intro mult-left-mono power-mono ln-bound) auto

also have ... = x^4 ∗ 1
by (simp add:numeral-eq-Suc)

also have ... ≤ x^4 ∗ ((ln 2 / 10 )^4 ∗ (150 ∗ (ln 2 / 10 ))^6 ∗ (ln 2/2 ))
by (intro mult-left-mono aux-aux-0 ) (approximation 8 )

also have ... = (x ∗ (ln 2 / 10 ))^4 ∗ (150 ∗ (ln 2 / 10 ))^6 ∗ (ln 2/2 )
unfolding power-mult-distrib by (simp add:algebra-simps)

also have ... ≤ (x ∗ (ln 2 / 10 ))^4 ∗ (x ∗ (ln 2 / 10 ))^6 ∗ (ln 2/2 )
by (intro mult-right-mono mult-left-mono power-mono that) auto

also have ... = (0+x ∗ (ln 2 / 10 ))^10 ∗ (ln 2/2 )
unfolding power-add[symmetric] by simp

also have ... ≤ (1+x ∗ ln 2 / 10 )^10 ∗ (ln 2/2 )
using that by (intro mult-right-mono power-mono add-mono) auto

also have ... ≤ exp (x ∗ ln 2 / 10 )^10 ∗ (ln 2/2 )
using that by (intro mult-right-mono power-mono exp-ge-add-one-self ) auto

also have ... = exp (x ∗ ln 2 ) ∗ (ln 2/2 )
unfolding exp-of-nat-mult[symmetric] by simp

finally show ?thesis by simp
qed
moreover have x ∗ ln x^3 ≤ exp (x ∗ ln 2 ) ∗ ln 2/2 if x ∈ {20 ..150}

using that by (approximation 10 splitting: x=1 )

ultimately have x ∗ ln x^3 ≤ exp (x ∗ ln 2 ) ∗ ln 2/2
using that by fastforce

also have ... = 2 powr (x−1 ) ∗ ln 2
unfolding powr-diff unfolding powr-def by simp

also have ... ≤ 2 powr c ∗ ln 2
unfolding c-def using that
by (intro mult-right-mono powr-mono) auto

also have ... = 2^c ∗ ln 2
using powr-realpow by simp

finally have aux0 : x ∗ ln x^3 ≤ 2^c ∗ ln 2
by simp

have real c ≤ x
using that unfolding c-def by linarith

hence ?L1 ≤ measure Ψ {ψ. real c ≤ V ψ}
by (intro pmf-mono) auto

also have ... ≤ 2 powr (−(2^c))
by (intro 1 )

also have ... = exp (− (2 ^ c ∗ ln 2 ))
by (simp add:powr-def )

also have ... ≤ exp (− (x ∗ln x^3 ))
using aux0 by (intro iffD2 [OF exp-le-cancel-iff ]) auto

also have ... = ?R1
by simp

finally show ?thesis
by simp

qed

have ?L ≤ measure Ω {ω. is-too-large (τ2 ω A q-max)}
using lt-s-too-large
by (intro pmf-mono) (simp del:is-too-large.simps)

also have ... = measure Ω
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{ω. (
∑

(i,j)∈{..<l}×{..<b}. blog 2 (of-int (max (τ2 ω A q-max i j) (−1 )) + 2 )c) > C 5 ∗ b
∗l}

by simp
also have ... = measure Ω {ω. real-of-int (

∑
(i,j)∈{..<l}×{..<b}.

blog 2 (of-int (max (τ2 ω A q-max i j) (−1 )) + 2 )c) > of-int (C 5 ∗ b ∗ l)}
unfolding of-int-less-iff by simp

also have ... = measure Ω {ω. real-of-int C 5 ∗ real b ∗ real l < of-int (
∑

x∈{..<l} × {..<b}.
blog 2 (real-of-int (τ1 (ω (fst x)) A q-max (snd x)) + 2 )c)}
by (intro-cong [σ2 measure, σ1 Collect, σ1 of-int, σ2 (<)] more:ext sum.cong)
(auto simp add:case-prod-beta τ2-def τ1-def )

also have ... = measure Ω {ω. (
∑

i<l. Z (ω i)) > of-int C 5 ∗ real b ∗ real l}
unfolding Z-def sum.cartesian-product τ1-def by (simp add:case-prod-beta)

also have ... = measure Ω {ω. (
∑

i<l. V (ω i) + 3 ) > of-int C 5 ∗ real l}
unfolding V-def using b-min
by (intro measure-pmf-cong) (simp add:sum-divide-distrib[symmetric] field-simps sum.distrib)

also have ... = measure Ω {ω. (
∑

i<l. V (ω i)) > of-int (C 5−3 ) ∗ real l}
by (simp add:sum.distrib algebra-simps)

also have ... ≤ measure Ω {ω. (
∑

i<l. V (ω i)) ≥ C 1 ∗ real l}
unfolding C 5-def using C 1-est by (intro pmf-mono) auto

also have ... ≤ exp (− real l)
by (intro Ω.deviation-bound l-gt-0 0 ) (simp-all add: Λ-def )

also have ... ≤ exp (− (C 6 ∗ ln (2 / δ)))
using l-lbound by (intro iffD2 [OF exp-le-cancel-iff ]) auto

also have ... ≤ exp (− (1 ∗ ln (2 / δ)))
unfolding C 6-def using δ-gt-0 δ-lt-1
by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le mult-right-mono ln-ge-zero) auto

also have ... = exp ( ln ( δ / 2 ))
using δ-gt-0 by (simp add: ln-div)

also have ... = δ/2
using δ-gt-0 by simp

finally show ?thesis
by simp

qed

end

unbundle no-intro-cong-syntax

end

9 Accuracy with cutoff

This section verifies that each of the l estimate have the required accuracy with high
probability assuming as long as the cutoff is below q-max, generalizing the result from
Section 7.
theory Distributed-Distinct-Elements-Accuracy

imports
Distributed-Distinct-Elements-Accuracy-Without-Cutoff
Distributed-Distinct-Elements-Cutoff-Level

begin

unbundle intro-cong-syntax

lemma (in semilattice-set) Union:
assumes finite I I 6= {}
assumes

∧
i. i ∈ I =⇒ finite (Z i)
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assumes
∧

i. i ∈ I =⇒ Z i 6= {}
shows F (

⋃
(Z ‘ I )) = F ((λi. (F (Z i))) ‘ I )

using assms(1 ,2 ,3 ,4 )
proof (induction I rule:finite-ne-induct)

case (singleton x)
then show ?case by simp

next
case (insert x I )
have F (

⋃
(Z ‘ insert x I )) = F ((Z x) ∪ (

⋃
(Z ‘ I )))

by simp
also have ... = f (F (Z x)) (F (

⋃
(Z ‘ I )))

using insert by (intro union finite-UN-I ) auto
also have ... = f (F {F (Z x)}) (F ((λi. F (Z i)) ‘ I ))

using insert(5 ,6 ) by (subst insert(4 )) auto
also have ... = F ({F (Z x)} ∪ (λi. F (Z i)) ‘ I )

using insert(1 ,2 ) by (intro union[symmetric] finite-imageI ) auto
also have ... = F ((λi. F (Z i)) ‘ insert x I )

by simp
finally show ?case by simp

qed

This is similar to the existing hom-Max-commute with the crucial difference that it works
even if the function is a homomorphism between distinct lattices. An example application
is Max (int ‘ A) = int (Max A).
lemma hom-Max-commute ′:

assumes finite A A 6= {}
assumes

∧
x y. x ∈ A =⇒ y ∈ A =⇒ max (f x) (f y) = f (max x y)

shows Max (f ‘ A) = f (Max A)
using assms by (induction A rule:finite-ne-induct) auto

context inner-algorithm-fix-A
begin

definition tc
where tc ψ σ = (Max ((λj. τ1 ψ A σ j + σ) ‘ {..<b})) − b-exp + 9

definition sc
where sc ψ σ = nat (tc ψ σ)

definition pc

where pc ψ σ = card {j∈ {..<b}. τ1 ψ A σ j + σ ≥ sc ψ σ}

definition Y c

where Y c ψ σ = 2 ^ sc ψ σ ∗ %-inv (pc ψ σ)

lemma sc-eq-s:
assumes (f ,g,h) ∈ sample-set Ψ
assumes σ ≤ s f
shows sc (f ,g,h) σ = s f

proof −
have int (Max (f ‘ A)) − int b-exp + 9 ≤ int (Max (f ‘ A)) − 26 + 9

using b-exp-ge-26 by (intro add-mono diff-left-mono) auto
also have ... ≤ int (Max (f ‘ A)) by simp
finally have 1 :int (Max (f ‘ A)) − int b-exp + 9 ≤ int (Max (f ‘ A))

by simp
have σ ≤ int (s f ) using assms(2 ) by simp
also have ... = max 0 (t f )

unfolding s-def by simp
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also have ... ≤ max 0 (int (Max (f ‘ A)))
unfolding t-def using 1 by simp

also have ... = int (Max (f ‘ A))
by simp

finally have σ ≤ int (Max (f ‘ A))
by simp

hence 0 : int σ − 1 ≤ int (Max (f ‘ A))
by simp

have c:h ∈ sample-set (H k (C 7 ∗ b2) [b]S)
using assms(1 ) sample-set-Ψ by auto

hence h-range: h x < b for x
using h-range-1 by simp

have (MAX j∈{..<b}. τ1 (f , g, h) A σ j + int σ) =
(MAX x∈{..<b}. Max ({int (f a) |a. a ∈ A ∧ h (g a) = x} ∪ {−1} ∪ {int σ −1}))
using fin-f [OF assms(1 )] by (simp add:max-add-distrib-left max.commute τ1-def )

also have ... = Max (
⋃

x<b. {int (f a) |a. a ∈ A ∧ h (g a) = x} ∪ {− 1} ∪ {int σ − 1})
using fin-f [OF assms(1 )] b-ne by (intro Max.Union[symmetric]) auto

also have ... = Max ({int (f a) |a. a ∈ A} ∪ {− 1 , int σ − 1})
using h-range by (intro arg-cong[where f=Max]) auto

also have ... = max (Max (int ‘ f ‘ A)) (int σ − 1 )
using A-nonempty fin-A unfolding Setcompr-eq-image image-image
by (subst Max.union) auto

also have ... = max (int (Max (f ‘ A))) (int σ − 1 )
using fin-A A-nonempty by (subst hom-Max-commute ′) auto

also have ... = int (Max (f ‘ A))
by (intro max-absorb1 0 )

finally have (MAX j∈{..<b}. τ1 (f , g, h) A σ j + int σ) = Max (f ‘ A) by simp

thus ?thesis
unfolding sc-def tc-def s-def t-def by simp

qed

lemma pc-eq-p:
assumes (f ,g,h) ∈ sample-set Ψ
assumes σ ≤ s f
shows pc (f ,g,h) σ = p (f ,g,h)

proof −
have {j ∈ {..<b}. int (s f ) ≤ max (τ0 (f , g, h) A j) (int σ − 1 )} =
{j ∈ {..<b}. int (s f ) ≤ max (τ0 (f , g, h) A j) (− 1 )}
using assms(2 ) unfolding le-max-iff-disj by simp

thus ?thesis
unfolding pc-def p-def sc-eq-s[OF assms]
by (simp add:max-add-distrib-left τ1-def del:τ0.simps)

qed

lemma Y c-eq-Y :
assumes (f ,g,h) ∈ sample-set Ψ
assumes σ ≤ s f
shows Y c (f ,g,h) σ = Y (f ,g,h)
unfolding Y c-def Y-def sc-eq-s[OF assms] pc-eq-p[OF assms] by simp

lemma accuracy-single: measure Ψ {ψ. ∃σ ≤ q-max. |Y c ψ σ − real X | > ε ∗ X} ≤ 1/2^4
(is ?L ≤ ?R)

proof −
have measure Ψ {ψ. ∃σ ≤ q-max. |Y c ψ σ − real X | > ε ∗ real X} ≤

measure Ψ {(f ,g,h). |Y (f ,g,h) − real X | > ε ∗ real X ∨ s f < q-max}
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proof (rule pmf-mono)
fix ψ
assume a:ψ ∈ {ψ. ∃σ≤q-max. ε ∗ real X < |Y c ψ σ − real X |}
assume d:ψ ∈ set-pmf (sample-pmf Ψ)
obtain σ where b:σ ≤ q-max and c: ε ∗ real X < |Y c ψ σ − real X |

using a by auto
obtain f g h where ψ-def : ψ = (f ,g,h) by (metis prod-cases3 )
hence e:(f ,g,h) ∈ sample-set Ψ

using d unfolding sample-space-alt[OF sample-space-Ψ] by simp

show ψ ∈ {(f , g, h). ε ∗ real X < |Y (f , g, h) − real X | ∨ s f < q-max}
proof (cases s f ≥ q-max)

case True
hence f :σ ≤ s f using b by simp
have ε ∗ real X < |Y ψ − real X |

using Y c-eq-Y [OF e f ] c unfolding ψ-def by simp
then show ?thesis unfolding ψ-def by simp

next
case False
then show ?thesis unfolding ψ-def by simp

qed
qed
also have ... ≤ 1/2^4

using accuracy-without-cutoff by simp
finally show ?thesis by simp

qed

lemma estimate1-eq:
assumes j < l
shows estimate1 (τ2 ω A σ, σ) j = Y c (ω j) σ (is ?L = ?R)

proof −
define t where t = max 0 (Max ((τ2 ω A σ j) ‘ {..<b}) + σ − blog 2 bc + 9 )
define p where p = card { k. k ∈ {..<b} ∧ (τ2 ω A σ j k) + σ ≥ t }

have 0 : int (nat x) = max 0 x for x
by simp

have 1 : blog 2 bc = b-exp
unfolding b-def by simp

have b > 0
using b-min by simp

hence 2 : {..<b} 6= {} by auto

have t = int (nat (Max ((τ2 ω A σ j) ‘ {..<b}) + σ − b-exp + 9 ))
unfolding t-def 0 1 by (rule refl)

also have ... = int (nat (Max ((λx. x + σ) ‘ (τ2 ω A σ j) ‘ {..<b}) − b-exp + 9 ))
by (intro-cong [σ1 int,σ1 nat,σ2(+),σ2(−)] more:hom-Max-commute) (simp-all add:2 )

also have ... = int (sc (ω j) σ)
using assms
unfolding sc-def tc-def τ2-def image-image by simp

finally have 3 :t = int (sc (ω j) σ)
by simp

have 4 : p = pc (ω j) σ
using assms unfolding p-def pc-def 3 τ2-def by simp

have ?L = 2 powr t ∗ ln (1−p/b) / ln(1−1/b)
unfolding estimate1 .simps τ -def τ3-def
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by (simp only:t-def p-def Let-def )
also have ... = 2 powr (sc (ω j) σ) ∗ %-inv p

unfolding 3 %-inv-def by (simp)
also have ... = ?R

unfolding Y c-def 3 4 by (simp add:powr-realpow)
finally show ?thesis

by blast
qed

lemma estimate-result-1 :
measure Ω {ω. (∃σ≤q-max. ε∗X < |estimate (τ2 ω A σ,σ)−X |) } ≤ δ/2 (is ?L ≤ ?R)

proof −
define I :: real set where I = {x. |x − real X | ≤ ε∗X}

define µ where µ = measure Ψ {ψ. ∃σ≤q-max. Y c ψ σ/∈I}

have int-I : interval I
unfolding interval-def I-def by auto

have µ = measure Ψ {ψ. ∃σ ≤ q-max. |Y c ψ σ − real X | > ε ∗ X}
unfolding µ-def I-def by (simp add:not-le)

also have ... ≤ 1 / 2 ^ 4
by (intro accuracy-single)

also have ... = 1/ 16
by simp

finally have 1 :µ ≤ 1 / 16 by simp

have (µ + Λ) ≤ 1/16 + 1/16
unfolding Λ-def by (intro add-mono 1 ) auto

also have ... ≤ 1/8
by simp

finally have 2 :(µ + Λ) ≤ 1/8
by simp

hence 0 : (µ + Λ) ≤ 1/2
by simp

have µ ≥ 0
unfolding µ-def by simp

hence 3 : µ + Λ > 0
by (intro add-nonneg-pos Λ-gt-0 )

have ?L = measure Ω {ω. (∃σ≤q-max. ε∗X < |median l (estimate1 (τ2 ω A σ,σ))−X |) }
by simp

also have ... = measure Ω {ω. (∃σ≤q-max. median l (estimate1 (τ2 ω A σ,σ)) /∈ I )}
unfolding I-def by (intro measure-pmf-cong) auto

also have ... ≤ measure Ω {ω. real(card{i∈{..<l}.(∃σ≤q-max. Y c (ω i) σ/∈I )})≥ real l/2}
proof (rule pmf-mono)

fix ω
assume ω ∈ set-pmf Ω ω ∈ {ω. ∃σ≤q-max. median l (estimate1 (τ2 ω A σ, σ)) /∈ I}
then obtain σ where σ-def : median l (estimate1 (τ2 ω A σ, σ)) /∈ I σ≤q-max

by auto

have real l = 2 ∗ real l − real l
by simp

also have ... ≤ 2 ∗ real l − 2 ∗ card {i. i < l ∧ estimate1 (τ2 ω A σ, σ) i ∈ I}
using σ-def median-est[OF int-I , where n=l] not-less
by (intro diff-left-mono Nat.of-nat-mono) (auto simp del:estimate1 .simps)
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also have ... = 2 ∗ (real (card {..<l}) −card {i. i < l ∧ estimate1 (τ2 ω A σ, σ) i ∈ I})
by (simp del:estimate1 .simps)

also have ... = 2 ∗ real (card {..<l} −card {i. i < l ∧ estimate1 (τ2 ω A σ, σ) i ∈ I})
by (intro-cong [σ2 (∗)] more:of-nat-diff [symmetric] card-mono)
(auto simp del:estimate1 .simps)

also have ... = 2 ∗ real (card ({..<l} − {i. i < l ∧ estimate1 (τ2 ω A σ, σ) i ∈ I}))
by (intro-cong [σ2 (∗), σ1 of-nat] more:card-Diff-subset[symmetric])
(auto simp del:estimate1 .simps)

also have ... = 2 ∗ real (card {i∈{..<l}. estimate1 (τ2 ω A σ, σ) i /∈ I})
by (intro-cong [σ2 (∗), σ1 of-nat, σ1 card]) (auto simp del:estimate1 .simps)

also have ... = 2 ∗ real (card {i ∈ {..<l}. Y c (ω i) σ /∈ I})
using estimate1-eq by (intro-cong [σ2 (∗), σ1 of-nat, σ1 card] more:restr-Collect-cong) auto

also have ... ≤ 2 ∗ real (card {i ∈ {..<l}. (∃σ≤q-max. Y c (ω i) σ /∈ I )})
using σ-def (2 ) by (intro mult-left-mono Nat.of-nat-mono card-mono) auto

finally have real l ≤ 2 ∗ real (card {i ∈ {..<l}. (∃σ≤q-max. Y c (ω i) σ /∈ I )})
by simp

thus ω ∈ {ω. real l/2 ≤ real (card {i ∈ {..<l}. ∃σ≤q-max. Y c (ω i) σ /∈ I})}
by simp

qed
also have ... = measure Ω {ω. real (card{i∈{..<l}. (∃σ≤q-max. Y c (ω i) σ/∈I )}) ≥ (1/2 )∗real

l}
unfolding sample-pmf-alt[OF Ω.sample-space] p-def by simp

also have ... ≤ exp (− real l ∗ ((1/2 ) ∗ ln (1 / (µ + Λ)) − 2 ∗ exp (− 1 )))
using 0 unfolding µ-def by (intro Ω.tail-bound l-gt-0 Λ-gt-0 ) auto

also have ... = exp (− (real l ∗ ((1/2 ) ∗ ln (1 / (µ + Λ)) − 2 ∗ exp (− 1 ))))
by simp

also have ... ≤ exp (− (real l ∗ ((1/2 ) ∗ ln 8 − 2 ∗ exp (− 1 ))))
using 2 3 l-gt-0 by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le mult-left-mono diff-mono)
(auto simp add:divide-simps)

also have ... ≤ exp (− (real l ∗ (1/4 )))
by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le mult-left-mono of-nat-0-le-iff )
(approximation 5 )

also have ... ≤ exp (− (C 6 ∗ ln (2/ δ)∗(1/4 )))
by (intro iffD2 [OF exp-le-cancel-iff ] le-imp-neg-le mult-right-mono l-lbound) auto

also have ... = exp ( − ln (2/ δ))
unfolding C 6-def by simp

also have ... = ?R
using δ-gt-0 by (subst ln-inverse[symmetric]) auto

finally show ?thesis
by simp

qed

theorem estimate-result:
measure Ω {ω. |estimate (τ ω A)− X | > ε ∗ X} ≤ δ
(is ?L ≤ ?R)

proof −
let ?P = measure Ω
have ?L ≤ ?P {ω. (∃σ≤q-max. ε∗real X<|estimate (τ2 ω A σ, σ)−real X |)∨q ω A> q-max}

unfolding τ -def τ3-def not-le[symmetric]
by (intro pmf-mono) auto

also have ...≤ ?P {ω. (∃σ≤q-max. ε∗real X<|estimate (τ2 ω A σ,σ)−X |)} + ?P {ω. q ω A>
q-max}

by (intro pmf-add) auto
also have ...≤ δ/2 + δ/2

by (intro add-mono cutoff-level estimate-result-1 )
also have ... = δ

by simp
finally show ?thesis
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by simp
qed

end

lemma (in inner-algorithm) estimate-result:
assumes A ⊆ {..<n} A 6= {}
shows measure Ω {ω. |estimate (τ ω A)− real (card A)| > ε ∗ real (card A)} ≤ δ (is ?L ≤ ?R)

proof −
interpret inner-algorithm-fix-A

using assms by unfold-locales auto
have ?L = measure Ω {ω. |estimate (τ ω A)− X | > ε ∗ X}

unfolding X-def by simp
also have ... ≤ ?R

by (intro estimate-result)
finally show ?thesis

by simp
qed

unbundle no-intro-cong-syntax

end

10 Outer Algorithm

This section introduces the final solution with optimal size space usage. Internally it relies
on the inner algorithm described in Section 6, dependending on the paramaters n, ε and δ
it either uses the inner algorithm directly or if ε−1 is larger than lnn it runs ε−1

ln lnn copies
of the inner algorithm (with the modified failure probability 1

lnn) using an expander to
select its seeds. The theorems below verify that the probability that the relative accuracy
of the median of the copies is too large is below ε.
theory Distributed-Distinct-Elements-Outer-Algorithm

imports
Distributed-Distinct-Elements-Accuracy
Prefix-Free-Code-Combinators.Prefix-Free-Code-Combinators
Frequency-Moments.Landau-Ext
Landau-Symbols.Landau-More

begin

unbundle intro-cong-syntax

The following are non-asymptotic hard bounds on the space usage for the sketches and
seeds repsectively. The end of this section contains a proof that the sum is asymptotically
in O(ln(ε−1)δ−1 + lnn).
definition state-space-usage = (λ(n,ε,δ). 2^40 ∗ (ln(1/δ)+1 )/ ε^2 + log 2 (log 2 n + 3 ))
definition seed-space-usage = (λ(n,ε,δ). 2^30+2^23∗ln n+48∗(log 2 (1/ε)+16 )2+336∗ln (1/δ))

locale outer-algorithm =
fixes n :: nat
fixes δ :: real
fixes ε :: real
assumes n-gt-0 : n > 0
assumes δ-gt-0 : δ > 0 and δ-lt-1 : δ < 1
assumes ε-gt-0 : ε > 0 and ε-lt-1 : ε < 1

begin
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definition n0 where n0 = max (real n) (exp (exp 5 ))
definition stage-two where stage-two = (δ < (1/ln n0))
definition δi :: real where δi = (if stage-two then (1/ln n0) else δ)
definition m :: nat where m = (if stage-two then nat d4 ∗ ln (1/ δ)/ln (ln n0)e else 1 )
definition α where α = (if stage-two then (1/ln n0) else 1 )

lemma m-lbound:
assumes stage-two
shows m ≥ 4 ∗ ln (1/ δ)/ln(ln n0)

proof −
have m = real (nat d4 ∗ ln (1 / δ) / ln (ln n0)e)

using assms unfolding m-def by simp
also have ... ≥ 4 ∗ ln (1 / δ) / ln (ln n0)

by linarith
finally show ?thesis by simp

qed

lemma n-lbound:
n0 ≥ exp (exp 5 ) ln n0 ≥ exp 5 5 ≤ ln (ln n0) ln n0 > 1 n0 > 1

proof −
show 0 :n0 ≥ exp (exp 5 )

unfolding n0-def by simp
have (1 ::real) ≤ exp (exp 5 )

by (approximation 5 )
hence n0 ≥ 1

using 0 by argo
thus 1 :ln n0 ≥ exp 5

using 0 by (intro iffD2 [OF ln-ge-iff ]) auto
moreover have 1 < exp (5 ::real)

by (approximation 5 )
ultimately show 2 :ln n0 > 1

by argo
show 5 ≤ ln (ln n0)

using 1 2 by (subst ln-ge-iff ) simp
have (1 ::real) < exp (exp 5 )

by (approximation 5 )
thus n0 > 1

using 0 by argo
qed

lemma δ1-gt-0 : 0 < δi
using n-lbound(4 ) δ-gt-0 unfolding δi-def
by (cases stage-two) simp-all

lemma δ1-lt-1 : δi < 1
using n-lbound(4 ) δ-lt-1 unfolding δi-def
by (cases stage-two) simp-all

lemma m-gt-0-aux:
assumes stage-two
shows 1 ≤ ln (1 / δ) / ln (ln n0)

proof −
have ln n0 ≤ 1 / δ

using n-lbound(4 )
using assms unfolding pos-le-divide-eq[OF δ-gt-0 ] stage-two-def
by (simp add:divide-simps ac-simps)

hence ln (ln n0) ≤ ln (1 / δ)
using n-lbound(4 ) δ-gt-0 by (intro iffD2 [OF ln-le-cancel-iff ] divide-pos-pos) auto
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thus 1 ≤ ln (1 / δ) / ln (ln n0)
using n-lbound(3 )
by (subst pos-le-divide-eq) auto

qed

lemma m-gt-0 : m > 0
proof (cases stage-two)

case True
have 0 < 4 ∗ ln (1/ δ)/ln(ln n0)

using m-gt-0-aux[OF True] by simp
also have ... ≤ m

using m-lbound[OF True] by simp
finally have 0 < real m

by simp
then show ?thesis by simp

next
case False
then show ?thesis unfolding m-def by simp

qed

lemma α-gt-0 : α > 0
using n-lbound(4 ) unfolding α-def
by (cases stage-two) auto

lemma α-le-1 : α ≤ 1
using n-lbound(4 ) unfolding α-def
by (cases stage-two) simp-all

sublocale I : inner-algorithm n δi ε
unfolding inner-algorithm-def using n-gt-0 ε-gt-0 ε-lt-1 δ1-gt-0 δ1-lt-1 by auto

abbreviation Θ where Θ ≡ E m α I .Ω

sublocale Θ: expander-sample-space m α I .Ω
unfolding expander-sample-space-def using I .Ω.sample-space α-gt-0 m-gt-0 by auto

type-synonym state = inner-algorithm.state list

fun single :: nat ⇒ nat ⇒ state where
single ϑ x = map (λj. I .single (select Θ ϑ j) x) [0 ..<m]

fun merge :: state ⇒ state ⇒ state where
merge x y = map (λ(x,y). I .merge x y) (zip x y)

fun estimate :: state ⇒ real where
estimate x = median m (λi. I .estimate (x ! i))

definition ν :: nat ⇒ nat set ⇒ state
where ν ϑ A = map (λi. I .τ (select Θ ϑ i) A) [0 ..<m]

The following three theorems verify the correctness of the algorithm. The term τ is a
mathematical description of the sketch for a given subset, while local.single, local.merge
are the actual functions that compute the sketches.
theorem merge-result: merge (ν ω A) (ν ω B) = ν ω (A ∪ B) (is ?L = ?R)
proof −

have 0 : zip [0 ..<m] [0 ..<m] = map (λx. (x,x)) [0 ..<m] for m
by (induction m, auto)
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have ?L = map (λx. I .merge (I .τ (select Θ ω x) A) (I .τ (select Θ ω x) B)) [0 ..<m]
unfolding ν-def
by (simp add:zip-map-map 0 comp-def case-prod-beta)

also have ... = map (λx. I .τ (select Θ ω x) (A ∪ B)) [0 ..<m]
by (intro map-cong I .merge-result Θ.range) auto

also have ... = ?R
unfolding ν-def by simp

finally show ?thesis by simp
qed

theorem single-result: single ω x = ν ω {x} (is ?L = ?R)
proof −

have ?L = map (λj. I .single (select Θ ω j) x) [0 ..<m]
by (simp del:I .single.simps)

also have ... = ?R
unfolding ν-def by (intro map-cong I .single-result Θ.range) auto

finally show ?thesis by simp
qed

theorem estimate-result:
assumes A ⊆ {..<n} A 6= {}
defines p ≡ (pmf-of-set {..<size Θ})
shows measure p {ω. |estimate (ν ω A)− real (card A)| > ε ∗ real (card A)} ≤ δ (is ?L ≤ ?R)

proof (cases stage-two)
case True
define I where I = {x. |x − real (card A)| ≤ ε ∗ real (card A)}
have int-I : interval I

unfolding interval-def I-def by auto

define µ where µ = measure I .Ω {ω. I .estimate (I .τ ω A) /∈ I}

have 0 :µ + α > 0
unfolding µ-def
by (intro add-nonneg-pos α-gt-0 ) auto

have µ ≤ δi
unfolding µ-def I-def using I .estimate-result[OF assms(1 ,2 )]
by (simp add: not-le del:I .estimate.simps)

also have ... = 1/ln n0

using True unfolding δi-def by simp
finally have µ ≤ 1/ln n0 by simp
hence µ + α ≤ 1/ln n0 + 1/ln n0

unfolding α-def using True by (intro add-mono) auto
also have ... = 2/ln n0

by simp
finally have 1 :µ + α ≤ 2 / ln n0

by simp
hence 2 :ln n0 ≤ 2 / (µ + α)

using 0 n-lbound by (simp add:field-simps)

have µ + α ≤ 2/ln n0

by (intro 1 )
also have ... ≤ 2/exp 5

using n-lbound by (intro divide-left-mono) simp-all
also have ... ≤ 1/2

by (approximation 5 )
finally have 3 :µ + α ≤ 1/2 by simp
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have 4 : 2 ∗ ln 2 + 8 ∗ exp (− 1 ) ≤ (5 ::real)
by (approximation 5 )

have ?L = measure p {ω. median m (λi. I .estimate (ν ω A ! i)) /∈ I}
unfolding I-def by (simp add:not-le)

also have ... ≤
measure p {ϑ. real (card {i ∈ {..<m}. I .estimate (I .τ (select Θ ϑ i) A) /∈ I})≥ real m/2}

proof (rule pmf-mono)
fix ϑ assume ϑ ∈ set-pmf p
assume a:ϑ ∈ {ω. median m (λi. I .estimate (ν ω A ! i)) /∈ I}
have real m = 2 ∗ real m − real m

by simp
also have ... ≤ 2 ∗ real m − 2 ∗ card {i. i < m ∧ I .estimate (ν ϑ A ! i) ∈ I}

using median-est[OF int-I , where n=m] a
by (intro diff-left-mono Nat.of-nat-mono)
(auto simp add:not-less[symmetric] simp del:I .estimate.simps)

also have ... = 2 ∗ (real (card {..<m}) − card {i. i < m ∧ I .estimate (ν ϑ A ! i) ∈ I})
by (simp del:I .estimate.simps)

also have ... = 2 ∗ real (card {..<m} − card {i. i < m ∧ I .estimate (ν ϑ A ! i) ∈ I})
by (intro-cong [σ2 (∗)] more:of-nat-diff [symmetric] card-mono)
(auto simp del:I .estimate.simps)

also have ... = 2 ∗ real (card ({..<m} − {i. i < m ∧ I .estimate (ν ϑ A ! i) ∈ I}))
by (intro-cong [σ2 (∗), σ1 of-nat] more:card-Diff-subset[symmetric])
(auto simp del:I .estimate.simps)

also have ... = 2 ∗ real (card {i∈{..<m}. I .estimate (ν ϑ A ! i) /∈ I})
by (intro-cong [σ2 (∗), σ1 of-nat, σ1 card]) (auto simp del:I .estimate.simps)

also have ... = 2 ∗ real (card {i ∈ {..<m}. I .estimate (I .τ (select Θ ϑ i) A) /∈ I})
unfolding ν-def by (intro-cong [σ2 (∗), σ1 of-nat, σ1 card] more:restr-Collect-cong)
(simp del:I .estimate.simps)

finally have real m ≤ 2 ∗ real (card {i ∈ {..<m}. I .estimate (I .τ (select Θ ϑ i) A) /∈ I})
by simp

thus ϑ ∈ {ϑ. real m / 2 ≤ real (card {i ∈ {..<m}. I .estimate (I .τ (select Θ ϑ i) A) /∈ I})}
by simp

qed
also have ...=measure Θ{ϑ. real(card {i ∈ {..<m}. I .estimate (I .τ (ϑ i) A) /∈ I})≥(1/2 )∗real

m}
unfolding sample-pmf-alt[OF Θ.sample-space] p-def by (simp del:I .estimate.simps)

also have ... ≤ exp (−real m ∗ ((1/2 ) ∗ ln (1/ (µ + α)) − 2∗exp (−1 )))
using 3 m-gt-0 α-gt-0 unfolding µ-def by (intro Θ.tail-bound) force+

also have ... ≤ exp (−real m ∗ ((1/2 ) ∗ ln (ln n0 / 2 ) − 2∗exp (−1 )))
using 0 2 3 n-lbound
by (intro iffD2 [OF exp-le-cancel-iff ] mult-right-mono mult-left-mono-neg[where c=−real m]

diff-mono mult-left-mono iffD2 [OF ln-le-cancel-iff ]) (simp-all)
also have ... = exp (−real m ∗ (ln (ln n0) / 2 − (ln 2/2 + 2∗exp (−1 ))))

using n-lbound by (subst ln-div) (simp-all add:algebra-simps)
also have ... ≤ exp (−real m ∗ (ln (ln n0) / 2 − (ln (ln (exp(exp 5 ))) / 4 )))

using 4
by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono-neg[where c=−real m] diff-mono) simp-all

also have ... ≤ exp (−real m ∗ (ln (ln n0) / 2 − (ln (ln n0) / 4 )))
using n-lbound

by (intro iffD2 [OF exp-le-cancel-iff ] mult-left-mono-neg[where c=−real m] diff-mono) simp-all
also have ... = exp (− real m ∗ (ln (ln n0)/ 4 ) )

by (simp add:algebra-simps)
also have ... ≤ exp (− (4 ∗ ln (1/ δ)/ln(ln n0)) ∗ (ln (ln n0)/4 ))

using m-lbound[OF True] n-lbound
by (intro iffD2 [OF exp-le-cancel-iff ] mult-right-mono divide-nonneg-pos) simp-all

also have ... = exp (− ln (1/ δ))
using n-lbound by simp
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also have ... = δ
using δ-gt-0 by (subst ln-inverse[symmetric]) auto

finally show ?thesis by simp
next

case False
have m-eq: m = 1

unfolding m-def using False by simp
hence ?L = measure p {ω. ε ∗ real (card A) < |I .estimate (ν ω A ! 0 ) − real (card A)|}

unfolding estimate.simps m-eq median-def by simp
also have ... = measure p {ω. ε∗real(card A)<|I .estimate (I .τ (select Θ ω 0 ) A)−real(card

A)|}
unfolding ν-def m-eq by (simp del: I .estimate.simps)

also have ... = measure Θ {ω. ε∗real(card A) < |I .estimate (I .τ (ω 0 ) A)−real(card A)|}
unfolding sample-pmf-alt[OF Θ.sample-space] p-def by (simp del:I .estimate.simps)

also have ...=
measure (map-pmf (λϑ. ϑ 0 ) Θ) {ω. ε∗real(card A) < |I .estimate (I .τ ω A)−real(card A)|}
by simp

also have ... = measure I .Ω {ω. ε∗real(card A) < |I .estimate (I .τ ω A)−real(card A)|}
using m-eq by (subst Θ.uniform-property) auto

also have ... ≤ δi
by (intro I .estimate-result[OF assms(1 ,2 )])

also have ... = ?R
unfolding δi-def using False by simp

finally show ?thesis
by simp

qed

The function encode-state can represent states as bit strings. This enables verification of
the space usage.
definition encode-state

where encode-state = Lf e I .encode-state m

lemma encode-state: is-encoding encode-state
unfolding encode-state-def
by (intro fixed-list-encoding I .encode-state)

lemma state-bit-count:
bit-count (encode-state (ν ω A)) ≤ state-space-usage (real n, ε, δ)
(is ?L ≤ ?R)

proof −
have 0 : length (ν ω A) = m

unfolding ν-def by simp
have ?L = (

∑
x←ν ω A. bit-count (I .encode-state x))

using 0 unfolding encode-state-def fixed-list-bit-count by simp
also have ... = (

∑
x←[0 ..<m]. bit-count (I .encode-state (I .τ (select Θ ω x) A)))

unfolding ν-def by (simp add:comp-def )
also have ... ≤ (

∑
x←[0 ..<m]. ereal (2^36 ∗(ln (1/δi)+ 1 )/ε2 + log 2 (log 2 (real n) + 3 )))

using I .state-bit-count by (intro sum-list-mono I .state-bit-count Θ.range)
also have ... = ereal ( real m ∗ (2^36 ∗(ln (1/δi)+ 1 )/ε2 + log 2 (log 2 (real n) + 3 )))

unfolding sum-list-triv-ereal by simp
also have ... ≤ 2^40 ∗ (ln(1/δ)+1 )/ ε^2 + log 2 (log 2 n + 3 ) (is ?L1 ≤ ?R1 )
proof (cases stage-two)

case True
have d4∗ln (1/δ)/ln(ln n0)e ≤ 4∗ln (1/δ)/ln(ln n0) + 1

by simp
also have ... ≤ 4∗ln (1/δ)/ln(ln n0) + ln (1/δ)/ln(ln n0)

using m-gt-0-aux[OF True] by (intro add-mono) auto
also have ... = 5 ∗ ln (1/δ)/ln(ln n0) by simp
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finally have 3 : d4∗ln (1/δ)/ln(ln n0)e ≤ 5 ∗ ln (1/δ)/ln(ln n0)
by simp

have 4 : 0 ≤ log 2 (log 2 (real n) + 3 )
using n-gt-0
by (intro iffD2 [OF zero-le-log-cancel-iff ] add-nonneg-pos) auto

have 5 : 1 / ln 2 + 3 / exp 5 ≤ exp (1 ::real) 1 .2 / ln 2 ≤ (2 ::real)
by (approximation 5 )+

have log 2 (log 2 (real n)+3 ) ≤ log 2 (log 2 n0 + 3 )
using n-gt-0 by (intro iffD2 [OF log-le-cancel-iff ] add-mono add-nonneg-pos

iffD2 [OF zero-le-log-cancel-iff ]) (simp-all add:n0-def )
also have ... = ln (ln n0 / ln 2 + 3 ) / ln 2

unfolding log-def by simp
also have ... ≤ ln (ln n0/ln 2 + (3 / exp 5 ) ∗ ln n0) / ln 2
using n-lbound by (intro divide-right-mono iffD2 [OF ln-le-cancel-iff ] add-mono add-nonneg-pos)
(simp-all add:divide-simps)

also have ... = ln ( ln n0 ∗ (1 /ln 2 + 3/exp 5 )) / ln 2
by (simp add:algebra-simps)

also have ... ≤ ln ( ln n0 ∗ exp 1 ) / ln 2
using n-lbound by (intro divide-right-mono iffD2 [OF ln-le-cancel-iff ] add-mono

mult-left-mono 5 Rings.mult-pos-pos add-pos-nonneg) auto
also have ... = (ln (ln n0) + 1 ) / ln 2

using n-lbound by (subst ln-mult) simp-all
also have ... ≤ (ln (ln n0) + 0 .2 ∗ ln (ln n0)) / ln 2

using n-lbound by (intro divide-right-mono add-mono) auto
also have ... = (1 .2/ ln 2 ) ∗ ln (ln n0)

by simp
also have ... ≤ 2 ∗ ln (ln n0)

using n-lbound by (intro mult-right-mono 5 ) simp
finally have log 2 (log 2 (real n)+3 ) ≤ 2 ∗ ln (ln n0)

by simp
hence 6 : log 2 (log 2 (real n)+3 )/ln(ln n0) ≤ 2

using n-lbound by (subst pos-divide-le-eq) simp-all

have ?L1 = real(nat d4∗ln (1/δ)/ln(ln n0)e)∗(2^36∗(ln (ln n0)+1 )/ε^2+log 2 (log 2 (real
n)+3 ))

using True unfolding m-def δi-def by simp
also have ... = d4∗ln (1/δ)/ln(ln n0)e∗(2^36∗(ln (ln n0)+1 )/ε^2+log 2 (log 2 (real n)+3 ))

using m-gt-0-aux[OF True] by (subst of-nat-nat) simp-all
also have ... ≤ (5∗ln (1/δ)/ln(ln n0)) ∗(2^36∗(ln (ln n0)+1 )/ε^2+log 2 (log 2 (real n)+3 ))

using n-lbound(3 ) ε-gt-0 4 by (intro ereal-mono mult-right-mono
add-nonneg-nonneg divide-nonneg-pos mult-nonneg-nonneg 3 ) simp-all

also have ... ≤ (5 ∗ ln (1/δ)/ln(ln n0))∗((2^36+2^36 )∗ln (ln n0)/ε^2+log 2 (log 2 (real
n)+3 ))

using n-lbound δ-gt-0 δ-lt-1
by (intro ereal-mono mult-left-mono add-mono divide-right-mono divide-nonneg-pos) auto

also have ... = 5∗(2^37 )∗ ln (1/δ)/ ε^2 + (5∗ln (1/δ)) ∗ (log 2 (log 2 (real n)+3 )/ln(ln n0))
using n-lbound by (simp add:algebra-simps)

also have ... ≤ 5∗(2^37 )∗ ln (1/δ)/ ε^2 + (5∗ln(1/ δ)) ∗ 2
using δ-gt-0 δ-lt-1 by (intro add-mono ereal-mono order .refl mult-left-mono 6 ) auto

also have ... = 5∗(2^37 )∗ ln (1/δ)/ ε^2 + 5∗2∗ln(1/ δ) / 1
by simp

also have ... ≤ 5∗(2^37 )∗ ln (1/δ)/ ε^2 + 5∗2∗ln(1/ δ) / ε^2
using ε-gt-0 ε-lt-1 δ-gt-0 δ-lt-1
by (intro add-mono ereal-mono divide-left-mono Rings.mult-pos-pos power-le-one) auto

also have ... = (5∗(2^37+2 ))∗ (ln (1/δ)+0 )/ ε^2 + 0
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by (simp add:algebra-simps)
also have ... ≤ 2^40 ∗ (ln (1 / δ)+1 ) / ε^2 + log 2 (log 2 (real n) + 3 )

using ε-gt-0 ε-lt-1 δ-gt-0 δ-lt-1 n-gt-0 by (intro add-mono ereal-mono divide-right-mono
mult-right-mono iffD2 [OF zero-le-log-cancel-iff ] add-nonneg-pos) auto

finally show ?thesis by simp
next

case False
have ?L1 = 2^36 ∗(ln (1/δ)+ 1 )/ε2 + log 2 (log 2 (real n) + 3 )

using False unfolding δi-def m-def by simp
also have ... ≤ ?R1

using ε-gt-0 ε-lt-1 δ-gt-0 δ-lt-1
by (intro ereal-mono add-mono divide-right-mono mult-right-mono add-nonneg-nonneg) auto

finally show ?thesis by simp
qed
finally show ?thesis

unfolding state-space-usage-def by simp
qed

Encoding function for the seeds which are just natural numbers smaller than sample-space.size
Θ.
definition encode-seed

where encode-seed = Nbe (size Θ)

lemma encode-seed:
is-encoding encode-seed
unfolding encode-seed-def by (intro bounded-nat-encoding)

lemma random-bit-count:
assumes ω < size Θ
shows bit-count (encode-seed ω) ≤ seed-space-usage (real n, ε, δ)
(is ?L ≤ ?R)

proof −
have 0 : size Θ > 0

using Θ.sample-space unfolding sample-space-def by simp
have 1 : size I .Ω > 0

using I .Ω.sample-space unfolding sample-space-def by simp

have (55+60∗ln (ln n0))^3 ≤ (180+60∗ln (ln n0))^3
using n-lbound by (intro power-mono add-mono) auto

also have ... = 180^3 ∗ (1+ln (ln n0)/real 3 )^3
unfolding power-mult-distrib[symmetric] by simp

also have ... ≤ 180^3 ∗ exp (ln (ln n0))
using n-lbound by (intro mult-left-mono exp-ge-one-plus-x-over-n-power-n) auto

also have ... = 180^3 ∗ ln n0

using n-lbound by (subst exp-ln) auto
also have ... ≤ 180^3 ∗ max (ln n) (ln (exp (exp 5 )))

using n-gt-0 unfolding n0-def by (subst ln-max-swap) auto
also have ... ≤ 180^3 ∗ (ln n + exp 5 )

using n-gt-0 unfolding ln-exp by (intro mult-left-mono) auto
finally have 2 :(55+60∗ln (ln n0))^3 ≤ 180^3 ∗ ln n + 180^3∗exp 5

by simp

have 3 :(1 ::real)+180^3∗exp 5 ≤ 2^30 (4 ::real)/ln 2 + 180^3 ≤ 2^23
by (approximation 10 )+

have ?L = ereal (real (floorlog 2 (size Θ − 1 )))
using assms unfolding encode-seed-def bounded-nat-bit-count by simp

also have ... ≤ ereal (real (floorlog 2 (size Θ)))
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by (intro ereal-mono Nat.of-nat-mono floorlog-mono) auto
also have ... = ereal (1 + of-int blog 2 (real (sample-space.size Θ))c)

using 0 unfolding floorlog-def by simp
also have ... ≤ ereal (1 + log 2 (real (size Θ)))

by (intro add-mono ereal-mono) auto
also have ... = 1 + log 2 (real (size I .Ω) ∗ (2^4 ) ^ ((m − 1 ) ∗ nat dln α / ln 0 .95 e))

unfolding Θ.size by simp
also have ... = 1 + log 2 (real (size I .Ω) ∗ 2^ (4 ∗ (m − 1 ) ∗ nat dln α / ln 0 .95 e))

unfolding power-mult by simp
also have ... = 1 + log 2 (real (size I .Ω)) + (4∗(m−1 )∗ natdln α / ln 0 .95 e)

using 1 by (subst log-mult) simp-all
also have ... ≤ 1+log 2 (2 powr (4∗log 2 n + 48 ∗ (log 2 (1/ε)+16 )2+ (55+60∗ln (1/δi))^3 ))+
(4∗(m−1 )∗ natdln α / ln 0 .95 e)
using 1 by (intro ereal-mono add-mono iffD2 [OF log-le-cancel-iff ] I .random-bit-count) auto

also have ...=1+4∗log 2 n+48∗(log 2 (1/ε)+16 )2+(55+60∗ln (1/δi))^3+(4∗(m−1 )∗natdln
α/ln 0 .95 e)

by (subst log-powr-cancel) auto
also have ... ≤ 2^30 + 2^23∗ln n+48∗(log 2 (1/ε)+16 )2 + 336∗ln (1/δ) (is ?L1 ≤ ?R1 )
proof (cases stage-two)

case True

have −1 < (0 ::real) by simp
also have ... ≤ ln α / ln 0 .95

using α-gt-0 α-le-1 by (intro divide-nonpos-neg) auto
finally have 4 : − 1 < ln α / ln 0 .95 by simp

have 5 : − 1 / ln 0 .95 ≤ (20 ::real)
by (approximation 10 )

have (4∗(m−1 )∗natdln α/ln 0 .95 e) = 4 ∗ (real m−1 ) ∗ of-int dln α/ln 0 .95 e
using 4 m-gt-0 unfolding of-nat-mult by (subst of-nat-nat) auto

also have ... ≤ 4 ∗ (real m−1 ) ∗ (ln α/ln 0 .95 + 1 )
using m-gt-0 by (intro mult-left-mono) auto

also have ... = 4 ∗ (real m−1 ) ∗ (−ln (ln n0)/ln 0 .95 + 1 )
using n-lbound True unfolding α-def
by (subst ln-inverse[symmetric]) (simp-all add:inverse-eq-divide)

also have ... = 4 ∗ (real m − 1 ) ∗ (ln (ln n0) ∗ (−1/ln 0 .95 ) + 1 )
by simp

also have ... ≤ 4 ∗ (real m − 1 ) ∗ (ln (ln n0) ∗ 20 + 1 )
using n-lbound m-gt-0 by (intro mult-left-mono add-mono 5 ) auto

also have ... = 4 ∗ (real (nat d4 ∗ ln (1 / δ) / ln (ln n0)e)−1 ) ∗ (ln (ln n0) ∗ 20 + 1 )
using True unfolding m-def by simp

also have ... = 4 ∗ (real-of-int d4 ∗ ln (1 / δ) / ln (ln n0)e−1 ) ∗ (ln (ln n0) ∗ 20 + 1 )
using m-gt-0-aux[OF True] by (subst of-nat-nat) simp-all

also have ... ≤ 4 ∗ (4 ∗ ln (1 / δ) / ln (ln n0)) ∗ (ln (ln n0) ∗ 20 + 1 )
using n-lbound by (intro mult-left-mono mult-right-mono) auto

also have ... ≤ 4 ∗ (4 ∗ ln (1 / δ) / ln (ln n0)) ∗ (ln (ln n0) ∗ 20 + ln (ln n0))
using δ-gt-0 δ-lt-1 n-lbound

by (intro mult-left-mono mult-right-mono add-mono divide-nonneg-pos Rings.mult-nonneg-nonneg)
simp-all

also have ... = 336 ∗ ln (1 / δ)
using n-lbound by simp

finally have 6 : 4 ∗ (m−1 ) ∗ nat dln α/ln 0 .95 e ≤ 336 ∗ ln (1/δ)
by simp

have ?L1 =1+4∗log 2 n+48∗(log 2 (1/ε)+16 )2+(55+60∗ln (ln n0))^3+(4∗(m−1 )∗natdln
α/ln 0 .95 e)

using True unfolding δi-def by simp
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also have ... ≤ 1+4∗log 2 n+48∗(log 2 (1/ε)+16 )2+(180^3 ∗ ln n + 180^3∗exp 5 ) + 336 ∗
ln (1/δ)

by (intro add-mono 6 2 ereal-mono order .refl)
also have ... = (1+180^3∗exp 5 )+ (4/ln 2 + 180^3 )∗ln n+48∗(log 2 (1/ε)+16 )2+ 336 ∗ ln

(1/δ)
by (simp add:log-def algebra-simps)

also have ... ≤ 2^30 + 2^23∗ln n+48∗(log 2 (1/ε)+16 )2+ 336 ∗ ln (1/δ)
using n-gt-0 by (intro add-mono ereal-mono 3 order .refl mult-right-mono) auto

finally show ?thesis by simp
next

case False
hence 1 / δ ≤ ln n0

using δ-gt-0 n-lbound
unfolding stage-two-def not-less by (simp add:divide-simps ac-simps)

hence 7 : ln (1 / δ) ≤ ln (ln n0)
using n-lbound δ-gt-0 δ-lt-1
by (intro iffD2 [OF ln-le-cancel-iff ]) auto

have 8 : 0 ≤ 336∗ln (1/δ)
using δ-gt-0 δ-lt-1 by auto

have ?L1 = 1 + 4 ∗ log 2 (real n) + 48 ∗ (log 2 (1 / ε) + 16 )2 + (55 + 60 ∗ ln (1 / δ)) ^ 3
using False unfolding δi-def m-def by simp

also have ... ≤ 1 + 4 ∗ log 2 (real n) + 48 ∗ (log 2 (1 / ε) + 16 )2 + (55 + 60 ∗ ln (ln
n0))^3

using δ-gt-0 δ-lt-1
by (intro add-mono order .refl ereal-mono power-mono mult-left-mono add-nonneg-nonneg 7 )

auto
also have ... ≤ 1+4∗log 2 (real n)+48∗(log 2 (1 / ε)+16 )2+(180^3∗ln (real n) + 180 ^ 3 ∗

exp 5 )
by (intro add-mono ereal-mono 2 order .refl)

also have ... = (1+180^3∗exp 5 )+ (4/ln 2 + 180^3 )∗ln n+48∗(log 2 (1/ε)+16 )2+ 0
by (simp add:log-def algebra-simps)

also have ... ≤ 2^30 + 2^23∗ln n+48∗(log 2 (1/ε)+16 )2 + 336∗ln (1/δ)
using n-gt-0 by (intro add-mono ereal-mono 3 order .refl mult-right-mono 8 ) auto

finally show ?thesis by simp
qed
also have ... = seed-space-usage (real n, ε, δ)

unfolding seed-space-usage-def by simp
finally show ?thesis by simp

qed

The following is an alternative form expressing the correctness and space usage theorems.
If x is expression formed by local.single and local.merge operations. Then x requires
state-space-usage (real n, ε, δ) bits to encode and estimate x approximates the count of
the distinct universe elements in the expression.
For example:
estimate (local.merge (local.single ω 1 ) (local.merge (local.single ω 5 ) (local.single ω 1 )))
approximates the cardinality of {1 , 5 , 1} i.e. 2.
datatype sketch-tree = Single nat | Merge sketch-tree sketch-tree

fun eval :: nat ⇒ sketch-tree ⇒ state
where

eval ω (Single x) = single ω x |
eval ω (Merge x y) = merge (eval ω x) (eval ω y)

fun sketch-tree-set :: sketch-tree ⇒ nat set
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where
sketch-tree-set (Single x) = {x} |
sketch-tree-set (Merge x y) = sketch-tree-set x ∪ sketch-tree-set y

theorem correctness:
fixes X
assumes sketch-tree-set t ⊆ {..<n}
defines p ≡ pmf-of-set {..<size Θ}
defines X ≡ real (card (sketch-tree-set t))
shows measure p {ω. |estimate (eval ω t) − X | > ε ∗ X} ≤ δ (is ?L ≤ ?R)

proof −
define A where A = sketch-tree-set t
have X-eq: X = real (card A)

unfolding X-def A-def by simp

have 0 :eval ω t = ν ω A for ω
unfolding A-def using single-result merge-result
by (induction t) (auto simp del:merge.simps single.simps)

have 1 : A ⊆ {..<n}
using assms(1 ) unfolding A-def by blast

have 2 : A 6= {}
unfolding A-def by (induction t) auto

show ?thesis
unfolding 0 X-eq p-def by (intro estimate-result 1 2 )

qed

theorem space-usage:
assumes ω < size Θ
shows

bit-count (encode-state (eval ω t)) ≤ state-space-usage (real n, ε, δ) (is ?A)
bit-count (encode-seed ω) ≤ seed-space-usage (real n, ε, δ) (is ?B)

proof−
define A where A = sketch-tree-set t

have 0 :eval ω t = ν ω A for ω
unfolding A-def using single-result merge-result
by (induction t) (auto simp del:merge.simps single.simps)

show ?A
unfolding 0 by (intro state-bit-count)

show ?B
using random-bit-count[OF assms] by simp

qed

end

The functions state-space-usage and seed-space-usage are exact bounds on the space usage
for the state and the seed. The following establishes asymptotic bounds with respect to
the limit n, δ−1, ε−1 →∞.
context
begin

Some local notation to ease proofs about the asymptotic space usage of the algorithm:
private definition n-of :: real × real × real ⇒ real where n-of = (λ(n, ε, δ). n)
private definition δ-of :: real × real × real ⇒ real where δ-of = (λ(n, ε, δ). δ)
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private definition ε-of :: real × real × real ⇒ real where ε-of = (λ(n, ε, δ). ε)

private abbreviation F :: (real × real × real) filter
where F ≡ (at-top ×F at-right 0 ×F at-right 0 )

private lemma var-simps:
n-of = fst
ε-of = (λx. fst (snd x))
δ-of = (λx. snd (snd x))
unfolding n-of-def ε-of-def δ-of-def by (auto simp add:case-prod-beta)

private lemma evt-n: eventually (λx. n-of x ≥ n) F
unfolding var-simps by (intro eventually-prod1 ′ eventually-prod2 ′ eventually-ge-at-top)

(simp add:prod-filter-eq-bot)

private lemma evt-n-1 : ∀ F x in F . 0 ≤ ln (n-of x)
by (intro eventually-mono[OF evt-n[of 1 ]] ln-ge-zero) simp

private lemma evt-n-2 : ∀ F x in F . 0 ≤ ln (ln (n-of x))
using order-less-le-trans[OF exp-gt-zero]
by (intro eventually-mono[OF evt-n[of exp 1 ]] ln-ge-zero iffD2 [OF ln-ge-iff ]) auto

private lemma evt-ε: eventually (λx. 1/ε-of x ≥ ε ∧ ε-of x > 0 ) F
unfolding var-simps by (intro eventually-prod1 ′ eventually-prod2 ′ eventually-conj

real-inv-at-right-0-inf eventually-at-right-less) (simp-all add:prod-filter-eq-bot)

private lemma evt-δ: eventually (λx. 1/δ-of x ≥ δ ∧ δ-of x > 0 ) F
unfolding var-simps by (intro eventually-prod1 ′ eventually-prod2 ′ eventually-conj

real-inv-at-right-0-inf eventually-at-right-less) (simp-all add:prod-filter-eq-bot)

private lemma evt-δ-1 : ∀ F x in F . 0 ≤ ln (1 / δ-of x)
by (intro eventually-mono[OF evt-δ[of 1 ]] ln-ge-zero) simp

theorem asymptotic-state-space-complexity:
state-space-usage ∈ O[F ](λ(n, ε, δ). ln (1/δ)/ε^2 + ln (ln n))
(is - ∈ O[?F ](?rhs))

proof −
have 0 :(λx. 1 ) ∈ O[?F ](λx. ln (1 / δ-of x))

using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-δ[of exp 1 ]])
(auto intro!: iffD2 [OF ln-ge-iff ] simp add:abs-ge-iff )

have 1 :(λx. 1 ) ∈ O[?F ](λx. ln (n-of x))
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-n[of exp 1 ]])
(auto intro!:iffD2 [OF ln-ge-iff ] simp add:abs-ge-iff )

have (λx. ((ln (1/δ-of x)+1 )∗ (1/ε-of x)2))∈ O[?F ](λx. ln(1/δ-of x)∗ (1/ε-of x)2)
by (intro landau-o.mult sum-in-bigo 0 ) simp-all

hence 2 : (λx. 2^40∗((ln (1/δ-of x)+1 )∗ (1/ε-of x)2))∈ O[?F ](λx. ln(1/δ-of x)∗ (1/ε-of x)2)
unfolding cmult-in-bigo-iff by simp

have 3 : (1 ::real) ≤ exp 2
by (approximation 5 )

have (λx. ln (n-of x) / ln 2 + 3 ) ∈ O[?F ](λx. ln (n-of x))
using 1 by (intro sum-in-bigo) simp-all

hence (λx. ln (ln (n-of x) / ln 2 + 3 )) ∈ O[?F ](λx. ln (ln (n-of x)))
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using order-less-le-trans[OF exp-gt-zero] order-trans[OF 3 ]
by (intro landau-ln-2 [where a=2 ] eventually-mono[OF evt-n[of exp 2 ]])
(auto intro!:iffD2 [OF ln-ge-iff ] add-nonneg-nonneg divide-nonneg-pos)

hence 4 : (λx. log 2 (log 2 (n-of x) + 3 ))∈ O[?F ](λx. ln(ln(n-of x)))
unfolding log-def by simp

have 5 : ∀ F x in ?F . 0 ≤ ln (1 / δ-of x) ∗ (1 / ε-of x)2
by (intro eventually-mono[OF eventually-conj[OF evt-δ-1 evt-ε[of 1 ]]]) auto

have state-space-usage = (λx. state-space-usage (n-of x, ε-of x, δ-of x))
by (simp add:case-prod-beta ′ n-of-def δ-of-def ε-of-def )

also have ... = (λx. 2 ^ 40 ∗ ((ln (1 / (δ-of x)) + 1 )∗ (1/ε-of x)2) + log 2 (log 2 (n-of x)+3 ))
unfolding state-space-usage-def by (simp add:divide-simps)

also have ... ∈ O[?F ](λx. ln (1/δ-of x)∗ (1/ε-of x)2 + ln (ln (n-of x)))
by (intro landau-sum 2 4 5 evt-n-2 )

also have ... = O[?F ](?rhs)
by (simp add:case-prod-beta ′ n-of-def δ-of-def ε-of-def divide-simps)

finally show ?thesis by simp
qed

theorem asymptotic-seed-space-complexity:
seed-space-usage ∈ O[F ](λ(n, ε, δ). ln (1/δ)+ln (1/ε)^2 + ln n)
(is - ∈ O[?F ](?rhs))

proof −
have 0 : ∀ F x in ?F . 0 ≤ (ln (1 / ε-of x))2

by simp

have 1 : ∀ F x in ?F . 0 ≤ ln (1 / δ-of x) + (ln (1 / ε-of x))2
by (intro eventually-mono[OF eventually-conj[OF evt-δ-1 0 ]] add-nonneg-nonneg) auto

have 2 : (λx. 1 ) ∈ O[?F ](λx. ln (1 / ε-of x))
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-ε[of exp 1 ]])
(auto intro!:iffD2 [OF ln-ge-iff ] simp add:abs-ge-iff )

have (λx. 1 ) ∈ O[at-top ×F at-right 0 ×F at-right 0 ](λx. ln (n-of x))
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-n[of exp 1 ]])
(auto intro!:iffD2 [OF ln-ge-iff ] simp add:abs-ge-iff )

hence 3 : (λx. 1 ) ∈ O[?F ](λx. ln (1 / δ-of x) + (ln (1 / ε-of x))2 + ln (n-of x))
by (intro landau-sum-2 1 evt-n-1 0 evt-δ-1 ) simp

have 4 : (λx. ln (n-of x)) ∈ O[?F ](λx. ln (1 / δ-of x) + (ln (1 / ε-of x))2 + ln (n-of x))
by (intro landau-sum-2 1 evt-n-1 ) simp

have (λx. log 2 (1 / ε-of x) + 16 ) ∈ O[?F ](λx. ln (1 / ε-of x))
using 2 unfolding log-def by (intro sum-in-bigo) simp-all

hence 5 : (λx. (log 2 (1 / ε-of x) + 16 )2) ∈ O[?F ](λx. ln (1/δ-of x)+(ln (1/ε-of x))2)
using 0 unfolding power2-eq-square by (intro landau-sum-2 landau-o.mult evt-δ-1 ) simp-all

have 6 : (λx. (log 2 (1 / ε-of x) + 16 )2) ∈ O[?F ](λx. ln (1/δ-of x)+(ln (1/ε-of x))2+ln (n-of
x))

by (intro landau-sum-1 [OF - - 5 ] 1 evt-n-1 )
have 7 : (λx. ln (1/δ-of x)) ∈ O[?F ](λx. ln (1/δ-of x)+(ln (1/ε-of x))2+ln (n-of x))

by (intro landau-sum-1 1 evt-δ-1 0 evt-n-1 ) simp

have seed-space-usage = (λx. seed-space-usage (n-of x, ε-of x, δ-of x))
by (simp add:case-prod-beta ′ n-of-def δ-of-def ε-of-def )

also have ... = (λx. 2^30+2^23∗ln (n-of x)+48∗(log 2 (1/(ε-of x))+16 )2 + 336 ∗ ln (1 / δ-of
x))

unfolding seed-space-usage-def by (simp add:divide-simps)
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also have ... ∈ O[?F ](λx. ln (1/δ-of x)+ln (1/ε-of x)^2 + ln (n-of x))
using 3 4 6 7 by (intro sum-in-bigo) simp-all

also have ... = O[?F ](?rhs)
by (simp add:case-prod-beta ′ n-of-def δ-of-def ε-of-def )

finally show ?thesis by simp
qed

definition space-usage x = state-space-usage x + seed-space-usage x

theorem asymptotic-space-complexity:
space-usage ∈ O[at-top ×F at-right 0 ×F at-right 0 ](λ(n, ε, δ). ln (1/δ)/ε^2 + ln n)

proof −
let ?f1 = (λx. ln (1/δ-of x)∗(1/ε-of x^2 )+ln (ln (n-of x)))
let ?f2 = (λx. ln(1/δ-of x)+ln(1/ε-of x)^2+ln (n-of x))

have 0 : ∀ F x in F . 0 ≤ (1 / (ε-of x)2)
unfolding var-simps by (intro eventually-prod1 ′ eventually-prod2 ′ eventually-inv)
(simp-all add:prod-filter-eq-bot eventually-nonzero-simps)

have 1 : ∀ F x in F . 0 ≤ ln (1 / δ-of x) ∗ (1 / (ε-of x)2)
by (intro eventually-mono[OF eventually-conj[OF evt-δ-1 0 ]] mult-nonneg-nonneg) auto

have 2 : ∀ F x in F . 0 ≤ ln (1 / δ-of x) ∗ (1 / (ε-of x)2) + ln (ln (n-of x))
by (intro eventually-mono[OF eventually-conj[OF 1 evt-n-2 ]] add-nonneg-nonneg) auto

have 3 : ∀ F x in F . 0 ≤ ln (1 / (ε-of x)2)
unfolding power-one-over [symmetric]
by (intro eventually-mono[OF evt-ε[of 1 ]] ln-ge-zero) simp

have 4 : ∀ F x in F . 0 ≤ ln (1 / δ-of x) + (ln (1 / ε-of x))2 + ln (n-of x)
by (intro eventually-mono[OF eventually-conj[OF evt-n-1 eventually-conj[OF evt-δ-1 3 ]]]

add-nonneg-nonneg) auto

have 5 : (λ-. 1 ) ∈ O[F ](λx. 1 / (ε-of x)2)
unfolding var-simps by (intro bigo-prod-1 bigo-prod-2 bigo-inv)
(simp-all add:power-divide prod-filter-eq-bot)

have 6 : (λ-. 1 ) ∈ O[F ](λx. ln (1 / δ-of x))
unfolding var-simps
by (intro bigo-prod-1 bigo-prod-2 bigo-inv) (simp-all add:prod-filter-eq-bot)

have 7 : state-space-usage ∈ O[F ](λx. ln (1 / δ-of x) ∗ (1 / (ε-of x)2) + ln (ln (n-of x)))
using asymptotic-state-space-complexity unfolding δ-of-def ε-of-def n-of-def
by (simp add:case-prod-beta ′)

have 8 : seed-space-usage ∈ O[F ](λx. ln (1 / δ-of x) + (ln (1 / ε-of x))2 + ln (n-of x))
using asymptotic-seed-space-complexity unfolding δ-of-def ε-of-def n-of-def
by (simp add:case-prod-beta ′)

have 9 : (λx. ln (n-of x)) ∈ O[F ](λx. ln (1 / δ-of x) ∗ (1 / (ε-of x)2) + ln (n-of x))
by (intro landau-sum-2 evt-n-1 1 ) simp

have (λx. (ln (1 / ε-of x))2) ∈ O[F ](λx. 1 / ε-of x^2 )
unfolding var-simps
by (intro bigo-prod-1 bigo-prod-2 bigo-inv) (simp-all add:power-divide prod-filter-eq-bot)

hence 10 : (λx. (ln (1 / ε-of x))2) ∈ O[F ](λx. ln (1 / δ-of x) ∗ (1 / ε-of x^2 ) + ln (n-of x))
by (intro landau-sum-1 evt-n-1 1 landau-o.big-mult-1 ′ 6 )

have 11 : (λx. ln (1 / δ-of x)) ∈ O[F ](λx. ln (1 / δ-of x) ∗ (1 / ε-of x^2 ) + ln (n-of x))
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by (intro landau-sum-1 evt-n-1 1 landau-o.big-mult-1 5 ) simp
have 12 : (λx. ln (1/δ-of x) ∗ (1/ε-of x^2 )) ∈ O[F ](λx. ln (1/δ-of x)∗(1/ε-of x^2 )+ln (n-of x))

by (intro landau-sum-1 1 evt-n-1 ) simp

have (λx. ln (ln (n-of x))) ∈ O[F ](λx. ln (n-of x))
unfolding var-simps by (intro bigo-prod-1 bigo-prod-2 ) (simp-all add:prod-filter-eq-bot)

hence 13 : (λx. ln (ln (n-of x))) ∈ O[F ](λx. ln (1 / δ-of x) ∗ (1 / ε-of x^2 ) + ln (n-of x))
by (intro landau-sum-2 evt-n-1 1 )

have space-usage = (λx. state-space-usage x + seed-space-usage x)
unfolding space-usage-def by simp

also have ... ∈ O[F ](λx. ?f1 x + ?f2 x)
by (intro landau-sum 2 4 7 8 )

also have ... ⊆ O[F ](λx. ln (1 / δ-of x) ∗ (1/ε-of x^2 ) + ln (n-of x))
by (intro landau-o.big.subsetI sum-in-bigo 9 10 11 12 13 )

also have ... = O[F ](λ(n, ε, δ). ln (1/δ)/ε^2 + ln n)
unfolding δ-of-def ε-of-def n-of-def
by (simp add:case-prod-beta ′)

finally show ?thesis by simp
qed

end

unbundle no-intro-cong-syntax

end
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