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Abstract

This entry formalizes a randomized cardinality estimation data structure with asymptotically
optimal space usage. It is inspired by the streaming algorithm presented by Blasiok [3] in 2018.
His work closed the gap between the best-known lower bound and upper bound after a long line
of research started by Flajolet and Martin [4] in 1984 and was to first to apply expander graphs
(in addition to hash families) to the problem. The formalized algorithm has two improvements
compared to the algorithm by Blasiok. It supports operation in parallel mode, and it relies on a
simpler pseudo-random construction avoiding the use of code based extractors.
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1 Introduction

The algorithm is described as functional data strucutures, given a seed which needs to be choosen
uniformly from a initial segment of the natural numbers and globally, there are three functions:

 single - given the seed and an element from the universe computes a sketch for that singleton
set

e merge - computes a sketch based on two input sketches and returns a sketch representing the
union set

e estimate - computes an estimate for the cardinality of the set represented by a sketch

The main point is that a sketch requires O(6~2In(e~!) +Inn) space where n is the universe size, &
is the desired relative accuracy and ¢ is the desired failure probability. Note that it is easy to see
that an exact solution would necessarily require O(n) bits.

The algorithm is split into two parts an inner algorithm, described in Section 6, which itself is
already a full cardinality estimation algorithm, however its space usage is below optimal. The
outer algorithm is introduced in Section 10, which runs mutiple copies of the inner algorithm with
carefully chosen inner parameters.

As mentioned in the abstract the algorithm is inspired by the solution to the streaming version
of the problem by Blasiok [3] in 2020. His work builds on a long line of reasarch starting in
1985 [4, 1, 2, 8, 12, 5].

In an earlier AFP entry [10] I have formalized an earlier cardinality estimation algorithm based on
the work by Bar-Yossef et al. [2] in 2002. Since then I have addressed the existence of finite fields
for higher prime powers and expander graphs [9, 11]. Building on these results, the formalization
of this more advanced solution presented here became possible.

The solution described here improves on the algorithms described by Blasiok in two ways (without
comprising its optimal space usage). It can be used in a parallel mode of operation. Moreover the
pseudo-random construction used is simpler than the solution described by Btasiok — who uses
an extractor based on Parvaresh-Vardy codes [7] to sample random walks in an expander graph,
which are then sub-sampled and then the walks are used to sample seeds for hash functions. In
the solution presented here neither the sub-sampling step nor the extractor is needed, instead a
two-stage expander construction is used, this means that the nodes of the first expander correspond
to the walks in a second expander graph. The latters nodes correspond to seeds of hash functions
(as in Blasiok’s solution).

The modification needed to support a parallel mode of operation is a change in the failure strategy
of the solution presented in Kane et al., which is the event when the data in the sketch reequires
too much space. The main issue is that in the parallel case the number of states the algorithm
might reach is not bounded by the universe size and thus an estimate they make for the probability
of the failure event does not transfer to the parallel case. To solve that the algorithm in this work
is more conservative. Instead of failing out-right it instead increases a cutoff threshold. For which
it is then possible to show an upper estimate independent of the number of reached states.

2 Preliminary Results

This section contains various short preliminary results used in the sections below.

theory Distributed-Distinct-Elements-Preliminary
imports

Frequency-Moments. Frequency-Moments- Preliminary-Results
Frequency-Moments. Product-PMF-FEuxt
Median-Method. Median
Ezxpander-Graphs. Extra-Congruence-Method
Ezpander-Graphs. Constructive- Chernoff- Bound
Frequency-Moments. Landau-Ext
Stirling- Formula.Stirling- Formula

begin



unbundle intro-cong-syntax

Simplified versions of measure theoretic results for pmfs:

lemma measure-pmf-cong:
assumes A\z. z € set-pmfp = 1 € P +— z € Q
shows measure (measure-pmf p) P = measure (measure-pmf p) Q
using assms
by (intro finite-measure.finite-measure-eq-AE AE-pmfI) auto

lemma pmf-mono:
assumes A\z. z € set-pmfp =z € P = z € Q
shows measure (measure-pmf p) P < measure (measure-pmf p) Q
proof —
have measure (measure-pmf p) P = measure (measure-pmf p) (P N (set-pmf p))
by (intro measure-pmf-cong) auto
also have ... < measure (measure-pmf p) Q
using assms by (intro finite-measure.finite-measure-mono) auto
finally show ?thesis by simp
qed

lemma pmf-rev-mono:
assumes A\z. z € set-pmfp = ¢ Q =z ¢ P
shows measure p P < measure p @
using assms by (intro pmf-mono) blast

lemma pmf-exp-mono:
fixes f ¢ :: 'a = real
assumes integrable (measure-pmf p) f integrable (measure-pmf p) g
assumes A\z. z € set-pmfp = fz < gz
shows integral® (measure-pmf p) f < integral® (measure-pmf p) g
using assms by (intro integral-mono-AE AE-pmfI) auto

lemma pmf-markov:
assumes integrable (measure-pmf p) fc > 0
assumes A\z. z € set-pmfp = fz > 0
shows measure p {w. f w > ¢} < (fw. fw dp)/ ¢ (is ?L < ?R)
proof —
have a:AE w in (measure-pmf p). 0 < f w
by (intro AE-pmfI assms(3))
have b:{} € measure-pmf.events p
unfolding assms(1) by simp

have ?L = P(w in (measure-pmf p). f w > ¢)
using assms(1) by simp
also have ... < ?R
by (intro integral-Markov-inequality-measure OF - b] assms a)
finally show ?thesis by simp
qed

lemma pmf-add:
assumes Az.z € P =z € set-pmfp—2€ QV 2 €R
shows measure p P < measure p () + measure p R
proof —
have measure p P < measure p (Q U R)
using assms by (intro pmf-mono) blast
also have ... < measure p @@ + measure p R
by (rule measure-subadditive, auto)
finally show ?thesis by simp



qed

lemma pair-pmf-prob-left:
measure-pmf.prob (pair-pmf A B) {w. P (fst w)} = measure-pmf.prob A {w. P w} (is L = ?R)
proof —
have 7L = measure-pmf.prob (map-pmf fst (pair-pmf A B)) {w. P w}
by (subst measure-map-pmf) simp
also have ... = 7R
by (subst map-fst-pair-pmf) simp
finally show ?thesis by simp
qed

lemma pmf-exp-of-fin-function:
assumes finite A g ‘ set-pmfp C A
shows ([w. f (gw) dp) = (>_y € A. fy x measure p {w. g w = y})
(is 2L = ?R)
proof —
have ?L = integral” (map-pmf g p) f
using integral-map-pmf assms by simp
also have ... = (D" a€A. fa x pmf (map-pmf g p) a)
using assms
by (intro integral-measure-pmf-real) auto

also have ... = (D_y € A. fy * measure p (g —* {y}))
unfolding assms(1) by (intro-cong [oa (x)] more:sum.cong pmf-map)
also have ... = 7R

by (intro sum.cong) (auto simp add: vimage-def)
finally show ?thesis by simp
qed

Cardinality rules for distinct/ordered pairs of a set without the finiteness constraint - to
use in simplification:

lemma card-distinct-pairs:
card {x € B X B. fst x # snd z} = card B"2 — card B (is card ?L = %R)
proof (cases finite B)
case True
include intro-cong-syntax
have card ?L = card (B x B — (Az. (z,2)) ‘ B)
by (intro arg-cong|where f=card]) auto

also have ... = card (B x B) — card ((A\z. (z,x)) ‘ B)
by (intro card-Diff-subset finite-imagel True image-subsetl) auto
also have ... = 7R

using True by (intro-cong [oy (—)] more: card-image)
(auto simp add:power2-eq-square inj-on-def)
finally show ?thesis by simp
next
case False
then obtain p where p-in: p € B by fastforce
have Fulse if finite 7L
proof —
have (Az. (p,z)) * (B — {p}) € 7L
using p-in by (intro image-subsetl) auto
hence finite ((Az. (p,x)) ‘(B — {p}))
using finite-subset that by auto
hence finite (B — {p})
by (rule finite-imageD) (simp add:inj-on-def)
hence finite B
by simp
thus Fulse using Fulse by simp



qed
hence infinite ?L by auto
hence card ?L = 0 by simp
also have ... = 7R
using Fualse by simp
finally show ?thesis by simp
qed

lemma card-ordered-pairs’:
fixes M :: (‘a :linorder) set
shows card {(z,y) € M x M.z < y} = card M % (card M — 1) / 2
proof (cases finite M)
case True
show ?thesis using card-ordered-pairs|OF True] by linarith
next
case Fulse
then obtain p where p-in: p € M by fastforce
let ?f= (A\z. if ¢ < p then (z,p) else (p,x))
have Fualse if finite {(z,y) € M x M. z < y} (is finite ?X)
proof —
have 9f ¢ (M—{p}) C ?X
using p-in by (intro image-subsetl) auto
hence finite (7f * (M—{p})) using that finite-subset by auto
moreover have inj-on ?f (M—{p})
by (intro inj-onl) (metis Pair-inject)
ultimately have finite (M — {p})
using finite-imageD by blast
hence finite M
using finite-insert{where a=p and A=M—{p}| by simp
thus Fulse using Fulse by simp
qed
hence infinite ?X by auto
then show f?thesis using Fulse by simp
qed

The following are versions of the mean value theorem, where the interval endpoints may
be reversed.

lemma MVT-symmetric:
assumes Az. [min a b < z; x < maz a b] = DERIV fz :> 'z
shows Jzureal. mina b < zAz<maxabA (fbo—fa=(b—a)x*f2)
proof —
consider (a) a <b| () a=10b]|(c)a>b
by argo
then show ?thesis
proof (cases)
case a
then obtain z :: real where . a < 22 < bfb—fa=(b—a)*f'z
using assms MVT2|where a=a and b=b and f=f and f'=f’] by auto
have a < z z < b using r(1,2) by auto
thus ?thesis using a r(3) by auto
next
case b
then show ?thesis by auto
next
case ¢
then obtain z :: real where r: b < zz<afa—fb=(a—b) xf' 2
using assms MVT2|where a=b and b=a and f=f and f'=f’] by auto
have fb — fa = (b—a) x f' z using r by argo



moreover have b < z z < a using r(1,2) by auto
ultimately show ?thesis using ¢ by auto
qged
qed

lemma MV T-interval:
fixes I :: real set
assumes interval I a € Ib e 1
assumes \z. z € ] = DERIV fz > f'z
shows 3z. z€ I A (fb—fa=(b—a)x*f'2)
proof —
have a:min a b e I
using assms(2,3) by (cases a < b) auto
have bmazx a b € I
using assms(2,3) by (cases a < b) auto
have c:z € {min a b..maz a b} = z € I for z
using interval-def assms(1) a b by auto
have [min a b < z; £ < maz a b] = DERIV fx :> f' z for z
using ¢ assms(4) by auto
then obtain 2 where z:z2 > mina bz < maxabdfb— fa=(b—a)xfz
using MVT-symmetric by blast
have z € I
using ¢ z2(1,2) by auto
thus ?thesis using z(8) by auto
qed

Ln is monotone on the positive numbers and thus commutes with min and max:

lemma In-min-swap:
z > (0zreal) = (y > 0) = In (min z y) = min (In z) (In y)
using In-less-cancel-iff by fastforce

lemma In-maz-swap:
z > (0ureal) = (y > 0) = In (maz z y) = maz (In z) (In y)
using In-le-cancel-iff by fastforce

Loose lower bounds for the factorial fuction:.

lemma fact-lower-bound:
sqrt(2xpixn)x(n/exp(1)) n < fact n (is 2L < ?R)
proof (cases n > 0)
case True
have In 7L = In (2xpixn)/2 + nxInn — n
using True by (simp add: In-mult In-sqrt In-realpow In-div algebra-simps)
also have ... < In ?R
by (intro Stirling-Formula.ln-fact-bounds True)
finally show ?thesis
using iffD1[OF In-le-cancel-iff] True by simp
next
case Fulse
then show #?thesis by simp
qed

lemma fact-lower-bound-1:
assumes n > 0
shows (n/exp 1)™n < fact n (is YL < ?R)
proof —
have 2 x pi > 1 using pi-ge-two by auto
moreover have n > 1 using assms by simp
ultimately have 2 x pi x n > 1x1



by (intro mult-mono) auto
hence a:2 * pi x n > 1 by simp

have ?L = 1 * ?L by simp
also have ... < sqrt(2 = pi x n) x ?L
using a by (intro mult-right-mono) auto
also have ... < ?R
using fact-lower-bound by simp
finally show ?thesis by simp
qed

Rules to handle O-notation with multiple variables, where some filters may be towards
ZErOo:

lemma real-inv-at-right-0-inf:
YV xin at-right (0:real). ¢ < 1 / x
proof —
have ¢ < 1/ zif b: z € {0<..<1 / (maz c 1)} for z
proof —
have ¢ x 2 < (maz c 1) x
using b by (intro mult-right-mono, linarith, auto)
also have ... < (mazx ¢ 1) * (1 / (mazx c 1))
using b by (intro mult-left-mono) auto
also have ... < 1
by (simp add:of-rat-divide)
finally have ¢ * z < I by simp
moreover have 0 < z
using b by simp
ultimately show ?thesis by (subst pos-le-divide-eq, auto)
qed
thus ?thesis
by (intro eventually-at-rightl [where b=1/(maz c 1)], simp-all)
qed

lemma bigo-prod-1:
assumes (A\z. fz) € O[F|(Az. g ) G # bot
shows (Az. f (fst z)) € O[F xp G](Az. g (fst z))
proof —
obtain ¢ where a: Vg zin F. norm (fz) < ¢ * norm (¢ ) and ¢-gt-0: ¢ > 0
using assms unfolding bigo-def by auto

have 3¢>0.Vr zin F xp G. norm (f (fst £)) < ¢ = norm (g (fst ))
by (intro exl[where z=c] conjl c-gt-0 eventually-prodl’ a assms(2))
thus ?thesis
unfolding bigo-def by simp
qed

lemma bigo-prod-2:
assumes (Az. fz) € O[G](A\z. g x) F # bot
shows (Az. f (snd z)) € O[F xp G](Az. g (snd z))
proof —
obtain ¢ where a: Vg zin G. norm (fz) < ¢ * norm (g z) and c-gt-0: ¢ > 0
using assms unfolding bigo-def by auto

have 3¢>0.Vp zin F xp G. norm (f (snd z)) < ¢ * norm (g (snd z))
by (intro ezl[where z=c| conjl c-gt-0 eventually-prod2’ a assms(2))
thus ?thesis
unfolding bigo-def by simp
qged



lemma eventually-inv:
fixes P :: real = bool
assumes cventually (Az. P (1/z)) at-top
shows eventually (Az. P z) (at-right 0)
proof —
obtain N where c¢:n > N = P (1/n) for n
using assms unfolding eventually-at-top-linorder by auto

define ¢ where ¢ = max 1 N
have d: 0 <1/ qq> 0
unfolding g¢-def by auto

have P z if z € {0<..<1 / ¢} for
proof —
define n where n = 1 /x
have z-eq: x =1 / n
unfolding n-def using that by simp

have N < ¢ unfolding ¢-def by simp
also have ... < n
unfolding n-def using that d by (simp add:divide-simps ac-simps)
finally have N < n by simp
thus ?thesis
unfolding z-eq by (intro c)
qed

thus ?Zthesis
by (intro eventually-at-rightl[where b=1/q| d)
qged

lemma bigo-inv:
fixes f g :: real = real
assumes (A\z. f (1/z)) € O(\z. g (1/z))
shows f € Olat-right 0](g)
using assms eventually-inv unfolding bigo-def by auto

unbundle no-intro-cong-syntaz

end

3 Combinators for Pseudo-random Objects

This section introduces a combinator library for pseudo-random objects. Each object
can be described as a sample space, a function from an initial segment of the natural
numbers that selects a value (or data structure.) Semantically they are multisets with the
natural interpretation as a probability space (each element is selected with a probability
proportional to its occurence count in the multiset). Operationally the selection procedure
describes an algorithm to sample from the space.

After general definitions and lemmas basic sample spaces, such as chosing a natural uni-
formly in an initial segment, a product construction the main pseudo-random objects: hash
families and expander graphs are introduced. In both cases the range is itself an arbitrary
sample space, such that it is for example possible to construct a pseudo-random object
that samples seeds for hash families using an expander walk.

The definitions ¥ in Section 6 and © in Section 10 are good examples.



A nice introduction into such constructions has been published by Goldreich [6].

3.1 Definitions and General Lemmas

theory Pseudorandom-Combinators
imports

Finite-Fields. Card-Irreducible- Polynomials
Universal-Hash-Families. Carter- Wegman-Hash-Family
Frequency-Moments. Product-PMF-FEaxt
Distributed-Distinct- Elements- Preliminary
Ezpander-Graphs. Expander-Graphs-Strongly- Explicit

begin

unbundle intro-cong-syntax

hide-const Quantum.T

hide-const Discrete-Topology.discrete

hide-const Polynomial.order

no-notation Digraph.dominates (- —1 - [100,100] 40)

record ’a sample-space =
size :: nat
sample-space-select :: nat = 'a

definition sample-pmf
where sample-pmf S = map-pmf (sample-space-select S) (pmf-of-set {..<size S})

definition sample-space S = size S > 0
definition select S k = (sample-space-select S (if k < size S then k else 0))
definition sample-set S = select S ‘ {..<size S}

lemma sample-space-imp-ne:
assumes sample-space S
shows {..<size S} # {}
using assms unfolding sample-space-def by auto

lemma sample-pmf-alt:
assumes sample-space S
shows sample-pmf S = map-pmf (select S) (pmf-of-set {..<size S})
using sample-space-imp-ne| OF assms] unfolding sample-pmf-def select-def
by (intro map-pmf-cong refl) simp

lemma sample-space-alt:
assumes sample-space S
shows sample-set S = set-pmf (sample-pmf S)
using sample-space-imp-ne[ OF assms)
unfolding sample-set-def sample-pmf-alt|OF assms]
by simp

lemma sample-set-alt:
assumes sample-space S
shows sample-set S = sample-space-select S ‘ {..<size S}
unfolding sample-set-def select-def
by (intro image-cong) auto

lemma select-range:
assumes sample-space S



shows select S i € sample-set S
using assms unfolding sample-space-def select-def sample-set-def by auto

declare [[coercion sample-pmf]]

lemma integrable-sample-pmf[simp]:
fixes f :: 'a = ‘c::{banach, second-countable-topology}
assumes sample-space S
shows integrable (measure-pmf (sample-pmf S)) f
proof —
have finite (set-pmf (pmf-of-set {..<size S}))
using assms sample-space-def
by (subst set-pmf-of-set) auto
hence finite (set-pmf (sample-pmf S))
unfolding sample-pmf-def by simp
thus ?thesis
by (intro integrable-measure-pmf-finite)
qed

3.2 Basic sample spaces

Sample space for uniformly selecting a natural number less than a given bound:

definition nat-sample-space :: nat = nat sample-space ([-]s)
where nat-sample-space n = (| size = n, select = id |

lemma nat-sample-pmf:

sample-pmf ([z]s) = pmf-of-set {..<z}
unfolding nat-sample-space-def sample-pmf-def by simp

lemma nat-sample-space[simp]:
assumes n > 0
shows sample-space [n]s
using assms
unfolding sample-space-def nat-sample-space-def by simp

Sample space for the product of two sample spaces:

definition prod-sample-space ::
‘a sample-space = 'b sample-space = ('a x 'b) sample-space (infixr xg 65)
where
prod-sample-space s t =
( size = size s * size t,
select = (Ai. (select s (i mod (size s)), select t (i div (size )))) )

lemma split-pmf-mod-div’:
assumes a > (0:nat)
assumes b > 0
shows map-pmf (Az. (x mod a, z div a)) (pmf-of-set {..<a x b}) = pmf-of-set ({..<a} x {..<b})
proof —
havez + axy<axbifz<ay<bforzy
proof —
have a:y+1 < b using that by simp
havez + axy<a+ axy
using that by simp
also have ... = a * (y+1)
by simp
also have ... < a * b
by (intro mult-left-mono a) auto

10



finally show ?thesis by simp
qed

hence bij-betw (Az. (z mod a, x div a)) {..<a * b} ({..<a} x {.<b})
using assms less-mult-imp-div-less
by (intro bij-betwl[where g=(Az. fst z + a * snd z)])
(auto simp add:mult.commute)

moreover have a x b > 0 using assms by simp
hence {..<a % b} # {} by blast
ultimately show #thesis
by (intro map-pmf-of-set-bij-betw) auto
qed

lemma pmf-of-set-prod-eq:
assumes A # {} finite A
assumes B # {} finite B
shows pmf-of-set (A x B) = pair-pmf (pmf-of-set A) (pmf-of-set B)
proof —
have indicat-real (A x B) (i, j) = indicat-real A i * indicat-real B j for i j
by (cases i € A; cases j € B) auto
hence pmf (pmf-of-set (A x B)) (i) = pmf (pair-pmf (pmf-of-set A) (pmf-of-set B)) (i.j)
for i j using assms by (simp add:pmjf-pair)
thus ?thesis
by (intro pmf-eql) auto
qed

lemma split-pmf-mod-div:
assumes a > (0::nat)
assumes b > 0
shows map-pmf (Az. (z mod a, z div a)) (pmf-of-set {..<a * b}) =
pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b})
using assms by (auto intro!: pmf-of-set-prod-eq simp add:split-pmf-mod-div’)

lemma split-pmf-mod:

assumes a > (0:nat)

assumes b > 0

shows map-pmf (Az. z mod a) (pmf-of-set {..<a * b}) = pmf-of-set {..<a}
proof —

have map-pmf (Az. x mod a) (pmf-of-set {..<a * b}) =

map-pmf (fst o (Az. (z mod a, x div a))) (pmf-of-set {..<a x b})

by (simp add:comp-def)

also have ... = map-pmf fst (pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b}))
by (simp add:map-pmf-compose split-pmf-mod-div|OF assms])
also have ... = pmf-of-set {..<a}

by (simp add:map-fst-pair-pmf)
finally show ?thesis by simp
qed

lemma prod-sample-pmf:
assumes sample-space S
assumes sample-space T
shows sample-pmf (S xgs T) = pair-pmf (sample-pmf S) (sample-pmf T) (is ?L = ?R)
proof —
have size: size S * size T > 0
using assms sample-space-def by (metis nat-0-less-mult-iff )
hence a:{..<size S x size T} # {} finite {..<size S * size T}
using lessThan-empty-iff by auto

11



have b:z div size S mod size T = z div size S if © < size S * size T for z
by (simp add: algebra-simps less-mult-imp-div-less that)

have 7L = map-pmf (Ai. (select S (i mod size S), select T (i div size S)))
(pmf-of-set {..<size S * size T})
unfolding sample-pmf-def prod-sample-space-def by simp
also have ... = map-pmf ((M(z,y). (select S z, select T y)) o (Ai. (i mod size S, i div size S)))
(pmf-of-set {..<size S * size T})
by (simp add:comp-def)
also have ... = map-pmf (A(z,y). (select S z, select T y))
(map-pmf (Mi. (i mod size S, i div size S)) (pmf-of-set {..<size S * size T}))
by (subst map-pmf-compose) simp
also have ... = map-pmf (A(z,y). (select S z, select T y))
(pair-pmf (pmf-of-set {..<size S}) (pmf-of-set {..<size T}))
using size by (subst split-pmf-mod-div) auto
also have ... = ?R
unfolding sample-pmf-alt[OF assms(1)] sample-pmf-alt|OF assms(2)] map-pair by simp
finally show ?thesis
by simp
qed

lemma prod-sample-space[simp|:
assumes sample-space S sample-space T
shows sample-space (S xg T)
using assms
unfolding sample-space-def prod-sample-space-def by simp

lemma prod-sample-set:
assumes sample-space S
assumes sample-space T
shows sample-set (S xg T) = sample-set S x sample-set T (is ?L = ?R)
using assms by (simp add:sample-space-alt prod-sample-pmf)

3.3 Hash Families

lemma indep-vars-map-pmf:
assumes prob-space.indep-vars (measure-pmf p) (A-. discrete) (i w. X' i (f w)) [
shows prob-space.indep-vars (measure-pmf (map-pmf f p)) (A-. discrete) X' I
proof —
have prob-space.indep-vars (measure-pmf p) (A-. discrete) (Ai. X' i o f) I
using assms by (simp add:comp-def)
hence prob-space.indep-vars (distr (measure-pmf p) discrete f) (A-. discrete) X' I
by (intro prob-space.indep-vars-distr prob-space-measure-pmf) auto
thus ?thesis
using map-pmf-rep-eq by metis
qed

lemma k-wise-indep-vars-map-pmf:
assumes prob-space.k-wise-indep-vars (measure-pmf p) k (A-. discrete) (Ai w. X' i (f w)) I
shows prob-space.k-wise-indep-vars (measure-pmf (map-pmf f p)) k (A-. discrete) X' I
using assms indep-vars-map-pmf
unfolding prob-space.k-wise-indep-vars-def[OF prob-space-measure-pmf|
by blast

lemma (in prob-space) k-wise-indep-subset:
assumes J C [
assumes k-wise-indep-vars k M' X' I
shows k-wise-indep-vars k M’ X' J
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using assms unfolding k-wise-indep-vars-def by simp

lemma (in prob-space) k-wise-indep-vars-reindex:
assumes inj-on f I
assumes k-wise-indep-vars k M' X' (f * I)
shows k-wise-indep-vars k (Mo f) Mk w. X' (fk) w) I
proof —
have indep-vars (M’ o f) (A\k. X' (f k)) J if finite J card J < k J C I for J
proof —
have f ‘' J C f ‘I using that by auto
moreover have card (f ¢ J) < k
using card-image-le[OF that(1)] that(2) order.trans by auto
moreover have finite (f ¢ J) using that by auto
ultimately have indep-vars M’ X' (f  J)
using assms(2) unfolding k-wise-indep-vars-def by simp
thus ?thesis
using that assms(1) inj-on-subset
by (intro indep-vars-reindez)
qged
thus ?thesis
unfolding k-wise-indep-vars-def by simp
qed

definition GF :: nat = int set list set ring
where GF n = (SOME F. finite-field F N order F = n)

definition is-prime-power :: nat = bool
where is-prime-power n <— (I p k. Factorial-Ring.prime p Ak > 0 AN n = p’k)

lemma
assumes is-prime-power n
shows GF': finite-field (GF n) order (GF n) = n
proof —
obtain p k where p-k: Factorial-Ring.prime p k > 0n = p k
using assms unfolding is-prime-power-def by blast
have a:3 (F :: int set list set ring). finite-field F A order F = n
using existence|OF p-k(2,1)] p-k(3) by simp
show finite-field (GF n) order (GF n) = n
unfolding GF-def
using somel-ez[OF a]
by auto
qed

lemma is-prime-power: Factorial-Ring.prime p = k > 0 = is-prime-power (p k)
unfolding is-prime-power-def by auto

definition split-prime-power :: nat = (nat X nat)
where split-prime-power n = (THE (p, k). p"k = n A Factorial-Ring.prime p A k > 0)

lemma split-prime-power:
assumes Factorial-Ring.prime p
assumes k > 0
shows split-prime-power (p~k) = (p,k)
proof —
have ¢ = p A | = k if ¢"1 = pk Factorial-Ring.prime g 1 > 0 for q 1
proof —
have ¢ dvd p”k using that by (metis dvd-power)
hence ¢ dvd p using prime-dvd-power that by auto
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moreover have p dvd ¢ | using that assms(2) by (metis dvd-power)
hence p dvd q using prime-dvd-power that assms by blast
ultimately have a:p = ¢ by auto
hence | = k using that prime-power-inj by auto
thus ?thesis using a by simp

qed

thus ?Zthesis
unfolding split-prime-power-def using assms
by (intro the-equality) auto

qed

definition H :: nat = nat = ’a sample-space = (nat = ’a) sample-space
where % kd R = (

let (p,n) = split-prime-power (size R);
m = (LEAST j. d < pj Aj>n);
f = from-nat-into (carrier (GF (p~m)));
I’ = to-nat-on (carrier (GF (p~m)));
g = from-nat-into (bounded-degree-polynomials (GF (p"m)) k) in

( size = p(mxk), select = (\i x. select R ((f' (ring.hash (GF (p”m)) (fz) (g i))) mod p™n))])

locale hash-sample-space =
fixes k dp n :: nat
fixes R :: 'a sample-space
assumes p-prime: Factorial-Ring.prime p
assumes size-R: size R=p " n
assumes k-gt-0: k > 0
assumes n-gt-0: n > 0

begin

abbreviation S where S = H kd R

lemma p-n-def: (p,n) = split-prime-power (size R)
unfolding size-R
by (intro split-prime-power|[symmetric] n-gt-0 p-prime)

definition m where m = (LEAST j. d < p j AN j>n)
definition f where f = from-nat-into (carrier (GF (p~m)))
definition f’ where ' = to-nat-on (carrier (GF (p~m)))

lemma n-lt-m: n < m and d-lt-p-m: d < p"m
proof —
define j :: nat where j = max n d
have d < 27d by simp
also have ... < 275
unfolding j-def
by (intro iffD2[OF power-increasing-iff]) auto
also have ... < p7j
using p-prime prime-ge-2-nat
by (intro power-mono) auto
finally have d < p~j by simp
moreover have n < j unfolding j-def by simp
ultimately have d < p”™m A m > n
unfolding m-def
by (intro Leastl[where P=XAz. d < p~z A z > n and k=j]) auto
thusn<md<p™m
by auto
qged
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lemma
is-field: finite-field (GF (p~m)) (is ?A4) and
field-order: order (GF(p~™m)) = p"m (is ?B)
proof —
have is-prime-power (p~m)
using n-gt-0 n-lt-m
by (intro is-prime-power p-prime) auto

thus ?4 ?B
using GF by auto
qed

interpretation cw: carter-wegman-hash-family GF (p"m) k
using finite-field-def is-field finite-field-axioms-def
by (intro carter-wegman-hash-familyl k-gt-0) auto

lemma field-size: cw.field-size = p~™m
using field-order unfolding Coset.order-def by simp

lemma f-bij: bij-betw f {..<p"m} (carrier (GF (p~m)))
unfolding f-def using field-size bij-betw-from-nat-into-finite[where S=carrier (GF (p~m))]
by simp

definition g where g = from-nat-into cw.space

lemma p-n-gt-0: p"n > 0
by (metis p-prime grOI not-prime-0 power-not-zero)

lemma p-m-gt-0: p"m > 0
by (metis p-prime grOl not-prime-0 power-not-zero)

lemma S-eq: S = (| size = p (mxk), sample-space-select = (A i x. select R (f' (cw.hash (f z) (g
i)) mod p ) )

unfolding H-def

by (simp add:p-n-def[symmetric] m-def [symmetric] f-def[symmetric] g-def f'-def Let-def cw.space-def)

lemma H-size: size S > 0
unfolding S-eq using p-m-gt-0 k-gt-0 by simp

lemma sample-space: sample-space S
using H-size unfolding sample-space-def by simp

lemma sample-space-R: sample-space R
using size-R p-n-gt-0 unfolding sample-space-def by auto

lemma range: range (select S i) C sample-set R
proof —
define o where a = select S i
have o z € sample-set R for z
proof —
have « € sample-set S
unfolding a-def by (intro select-range sample-space)
then obtain j where a-alt: o = (Az. select R (f' (cw.hash (fz) (gj)) mod p™n)) j < p"(mxk)
unfolding sample-set-alt[OF sample-space] unfolding S-eq by auto
thus o z € sample-set R
unfolding a-alt
by (intro select-range sample-space-R)
qed
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thus ?thesis
unfolding a-def by auto
qed

lemma cw-space: map-pmf g (pmf-of-set {..<p (mxk)}) = pmf-of-set cw.space
proof—
have card-cw-space: p ~ (m * k) = card (cw.space)
unfolding cw.space-def cw.bounded-degree-polynomials-card field-size
by (simp add:power-mult)
have card-cw-space-gt-0: card (cw.space) > 0
using card-gt-0-iff cw.finite-space cw.non-empty-bounded-degree-polynomials by blast

show ?thesis
unfolding g-def using card-cw-space card-cw-space-gt-0
bij-betw-from-nat-into-finite|lwhere S=cw.space]
by (intro map-pmf-of-set-bij-betw) auto
qed

lemma single:
assumes z < d
shows map-pmf (Aw. w x) (sample-pmf S) = sample-pmf R (is ?L = ?R)
proof —
have f-z-carr: fx € carrier (GF (p~m))
using assms d-lt-p-m
by (intro bij-betw-apply| OF f-bij]) auto

have pmf (map-pmf (cw.hash (f z)) (pmf-of-set cw.space)) i =
pmf (pmf-of-set (carrier (GF (p ~m)))) i (is L1 = ?R1) for ¢
proof —
have ?L1 = cw.prob (cw.hash (f z) —*{i})
unfolding cw.M-def by (simp add:pmf-map)
also have ... = real (card ({i} N carrier (GF (p ~m)))) / real cw.field-size
using cw.prob-range[OF f-z-carr, where A={i} | by (simp add:vimage-def)
also have ... = ?R1
by (cases i € carrier (GF (p”m)), auto)
finally show ?thesis by simp
qed

hence b: map-pmf (cw.hash (f )) (pmf-of-set cw.space) = pmf-of-set (carrier (GF (p~m)))
by (intro pmf-eql) simp

have c: map-pmf f' (pmf-of-set (carrier (GF (p™m)))) = pmf-of-set {..<p“m}
unfolding f’-def using to-nat-on-finitelwhere S=carrier (GF (p~m))] field-size
by (intro map-pmf-of-set-bij-betw) auto

have n < mp > 0
using n-lt-m p-prime prime-gt-0-nat by auto

hence d: map-pmf (Azx. x mod p™n) (pmf-of-set {..<p~m}) = pmf-of-set {..<p n}
using split-pmf-mod|where a = p™n and b=p (m—n)]
by (simp add:power-add|[symmetric])

have ?L = map-pmf ((Aw. w ) o (sample-space-select S)) (pmf-of-set {..<size S})
unfolding sample-pmf-def by (simp add:map-pmf-compose)

also have ... = map-pmf (Aw. sample-space-select S w z) (pmf-of-set {..<size S})
by (simp add:comp-def)
also have ... = map-pmf (select R o (Az.  mod p™n) o f' o (cw.hash (f z)) o g) (pmf-of-set

{<p(meh)})
unfolding S-eq by (simp add:comp-def)
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also have ... = map-pmf (select R) (pmjf-of-set {..<p n})
by (simp add:map-pmjf-compose cw-space b ¢ d)
also have ... = 7R
unfolding sample-pmf-alt[OF sample-space-R) size-R by simp
finally show ?thesis by simp
qed

lemma indep:

prob-space.k-wise-indep-vars (sample-pmf S) k (A-. discrete) (Ai w. w i) {..<d}
proof —

let ?p = map-pmf g (pmf-of-set {.<p ~ (m x k)})

let ?h = (\i x. select R (f' (cw.hash (f x) i) mod p ~ n))

have a:cw.k-wise-indep-vars k (\-. discrete) cw.hash (f < {..<d})
using d-lt-p-m
by (intro cw.k-wise-indep-subset[OF - cw.k-wise-indep| image-subsetl bij-betw-apply|OF f-bij])
auto

have cw.k-wise-indep-vars k (\-. discrete) (Ai w. select R (f’ (cw.hash i w) mod p™n)) (f ¢
{..<d})
by (intro cw.k-wise-indep-vars-compose[OF a]) auto
moreover
have inj-on f {.<p"m}
using f-bij bij-betw-def by auto
hence inj-on f {..<d}
using inj-on-subset d-lt-p-m by blast
ultimately have cw.k-wise-indep-vars k (A-. discrete) (Ai w. select R (f' (cw.hash (f {) w) mod
p " n)) {.<d}
using cw.k-wise-indep-vars-reindez[where f=f] unfolding comp-def by auto

hence prob-space.k-wise-indep-vars (measure-pmf ((map-pmf 2h o map-pmf g) (pmf-of-set {..<p (mxk)})))
k
(A-. discrete) (M w. w 1) {..<d}
unfolding cw. M-def cw-space[symmetric] comp-def by (intro k-wise-indep-vars-map-pmf[where
p="2p]) auto

hence prob-space.k-wise-indep-vars (measure-pmf (map-pmf (i z. ?h (g i) z) (pmf-of-set
{<p(msh)})) &
(A-. discrete) (M w. w @) {..<d}
unfolding map-pmf-compose[symmetric] by (simp add:comp-def)

thus ?thesis
unfolding sample-pmf-def S-eq by simp
qed

lemma size:
fixes m :: nat
assumes d > 0
defines m-altdef: m = max n (nat [log p d])
shows size S = p (mxk)
proof —
have real d = p powr (log p d)
using assms prime-gt-1-nat[OF p-prime]
by (intro powr-log-cancel[symmetric]) auto
also have ... < p powr (nat [log p d])
using prime-gt-1-nat[OF p-prime] by (intro powr-mono) linarith-+
also have ... = p~ (nat [log p d])
using prime-gt-1-nat[OF p-prime] by (subst powr-realpow) auto
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also have ... < p™m
using prime-gt-1-nat[OF p-prime] unfolding m-altdef
by (intro power-increasing Nat.of-nat-mono) auto
finally have d < p " m
by simp

moreover have n < m
unfolding m-altdef by simp
moreover have m < yifd <p “yn < yfory
proof —
have log p d < logp (p " y)
using assms prime-gt-1-nat[OF p-prime]
by (intro iffD2[OF log-le-cancel-iff] that(1) Nat.of-nat-mono) auto
also have ... = log p (p powr (real y))
using prime-gt-1-nat[OF p-prime] by (subst powr-realpow) auto
also have ... = y
using prime-gt-1-nat[OF p-prime] by (intro log-powr-cancel) auto
finally have log p d < y by simp
hence nat [logp d] < y
by simp
thus m <y
using that(2) unfolding m-altdef by simp
qed
ultimately have m-eq: m = (LEAST j. d < p ~j A n <j)
by (intro Least-equality[symmetric]) auto

show ?thesis
unfolding S-eq m-def m-eq by simp
qed

end

Sample space with a geometric distribution

fun count-zeros :: nat = nat = nat where
count-zeros 0k = 0 |
count-zeros (Suc n) k = (if odd k then 0 else 1 + count-zeros n (k div 2))

lemma count-zeros-iff: j < n = count-zeros n k > j <— 27j dvd k
proof (induction j arbitrary: n k)
case (
then show ?case by simp
next
case (Suc j)
then obtain n’ where n-def: n = Suc n’ using Suc-le-D by presburger
show ?case using Suc unfolding n-def by auto
qed

lemma count-zeros-max:
count-zeros n k < n

by (induction n arbitrary: k) auto

definition G :: nat = nat sample-space where
G n = (| size = 27n, sample-space-select = count-zeros n |)

lemma G-sample-space[simp]: sample-space (G n)
unfolding sample-space-def G-def by simp

lemma G-range: sample-set (G n) C {..n}
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using count-zeros-max
unfolding sample-set-alt|OF G-sample-space] unfolding G-def by auto

lemma G-prob:
measure (sample-pmf (G n)) {w. w > j} = of-bool (j < n) / 275 (is ?L = ?R)
proof (cases j < n)
case True
have a:{..<(27n):nat} # {}
by (simp add: lessThan-empty-iff)
have b:finite {..<(27n)::nat} by simp

define f :: nat = nat where f = (Az. z x 27)
have d:inj-on f {.<27(n—j)} unfolding f-def by (intro inj-onl) simp

have e:27j > (0::nat) by simp

have y € f ‘{.< 2(n—j)} +— y € {z. 2 < 2"n A 27 dvd z} for y :: nat
proof —
have ye f‘{.<2(n—j)} +— Fz.2< 2 (n—j)Ay=2"jx*xx)
unfolding f-def by auto
alsohave ... «— (z. 27«2 < 25«2 " (n—j) ANy=2"j«x)
using e by simp
also have ... +— (z. 2 x 2 < 2 nAy=2"j*x)
using True by (subst power-add[symmetric]) simp
also have ... «+— (z. y < 2 n Ay=2zx* 2 "))
by (metis Groups.mult-ac(2))
also have ... «+— y € {z. 2 < 2"n A 27 dvd z} by auto
finally show ?thesis by simp
qed

hence c¢:f ‘{..< 2 (n—§)} = {z. £ < 2"n A 27 dvd z} by auto

have ?L = measure (pmf-of-set {..<2™n}) {w. count-zeros n w > j}
unfolding sample-pmf-def G-def by simp

also have ... = real (card {z:nat. x < 2°n A 27j dvd z}) |/ 2™n
by (simp add: measure-pmf-of-set|OF a b] count-zeros-iff[OF True])
(simp add:lessThan-def Collect-conj-eq)

also have ... = real (card (f < {.<27(n—4)})) / 27n
by (simp add:c)

also have ... = real (card ({..<(27(n—j)::nat)})) / 27n
by (simp add: card-image[OF d))
also have ... = 7R

using True by (simp add:frac-eq-eq power-add[symmetric])
finally show ?thesis by simp
next
case Fulse
have set-pmf (sample-pmf (G n)) C {..n}
unfolding sample-space-alt|OF G-sample-space, symmetric]
using G-range by simp
hence ?L = measure (sample-pmf (G n)) {}
using Fulse by (intro measure-pmf-cong) auto
also have ... = 7R
using Fualse by simp
finally show ?thesis
by simp
qed

lemma G-prob-single:
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measure (sample-pmf (G n)) {j} < 1/ 27j (is ?L < ?R)
proof —
have ?L = measure (sample-pmf (G n)) ({j..}—{j+1..})
by (intro measure-pmf-cong) auto

also have ... = measure (sample-pmf (G n)) {j..} — measure (sample-pmf (G n)) {j+1..}
by (intro measure-Diff) auto
also have ... = measure (sample-pmf (G n)) {w. w > j}—measure (sample-pmf (G n)) {w. w >
(+1))
by (intro arg-cong2|where f=(—)] measure-pmf-cong) auto
also have ... = of-bool (j < n)x1 /2" j— ofbool (j+1<mn)/2 (j+ 1)

unfolding G-prob by simp
also have ... < 1/27 — 0
by (intro diff-mono) auto

also have ... = ?R by simp
finally show ?thesis by simp
qed

3.4 Expander Walks

definition & :: nat = real = 'a sample-space = (nat = 'a) sample-space
where £ [ A S = (let e = see-standard (size S) A in
( size = see-size e * see-degree e (I—1),
sample-space-select = (Ni j. select S (see-sample-walk e (I—1) i ! 7)) ])

locale expander-sample-space =

fixes [ :: nat

fixes A :: real

fixes S :: 'a sample-space

assumes [-gt-0: [ > 0

assumes A-gt-0: A > 0

assumes sample-space-S: sample-space S
begin

definition ¢ where e = see-standard (size S) A

lemma size-S-gt-0: size S > 0
using sample-space-S unfolding sample-space-def by simp

lemma E-alt: (E 1A S) =
( size = see-size e x see-degree e (I—1),
sample-space-select = (Ai j. select S (see-sample-walk e (I—1) i ! 4)) )
unfolding &-def e-def[symmetric] by (simp add:Let-def)
lemmas see-standard = see-standard[OF size-S-gt-0 A-gt-0]

sublocale E: reqular-graph graph-of e
using see-standard(1) unfolding is-ezpander-def e-def by auto

lemma e-deg-gt-0: see-degree e > 0
unfolding e-def see-standard by simp

lemma e-size-gt-0: see-size e > 0
unfolding e-def see-standard using size-S-gt-0 by simp

lemma sample-space: sample-space (£ 1 A S)
unfolding sample-space-def £-alt using e-size-gt-0 e-deg-gt-0 by simp

lemma range: select (€ 1 A S) i j € sample-set S
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proof —
define o where o = select (E 1 A S) @
have a € sample-set (£ 1 A S)
unfolding «a-def by (intro select-range sample-space)
then obtain k¥ where a = sample-space-select (£ 1 A S) k
using sample-set-alt[OF sample-space] by auto
hence a j € sample-set S
unfolding £-alt using select-range[OF sample-space-S] by simp
thus ?thesis
unfolding a-def by simp
qed

lemma sample-set: sample-set (€ 1 A S) C (UNIV — sample-set S)
proof (rule subsetl)
fix © assume = € sample-set (£ 1 A S)

then obtain ¢ where z = select (E 1A S) ¢
unfolding sample-set-def by auto
thus z € UNIV — sample-set S
using range by auto
qed

lemma walks:
defines R = map-pmf (Axs i. select S (zs ! 1)) (pmf-of-multiset (walks (graph-of ) 1))
shows sample-pmf (£ 1A S) =R

proof —
let 25 = {..<see-size e x see-degree e ~ (I—1)}
let T = (map-pmf (see-sample-walk e (I—1)) (pmf-of-set 25))

have 0 € 25
using e-size-gt-0 e-deg-gt-0 l-gt-0 by auto

hence 75 # {}
by blast

hence ?T = pmf-of-multiset {#see-sample-walk e (I—1) i. i €# mset-set 25#}
by (subst map-pmf-of-set) simp-all

also have ... = pmf-of-multiset (walks’ (graph-of ) (I—1))
by (subst see-sample-walk) auto
also have ... = pmf-of-multiset (walks (graph-of e) 1)

unfolding walks-def using l-gt-0 by (cases 1, simp-all)
finally have 0:¢T = pmf-of-multiset (walks (graph-of €) 1)
by simp

have sample-pmf (£ 1 A S) = map-pmf (Azs j. select S (zs! j)) ¢T
unfolding map-pmf-comp sample-pmf-def E-alt by simp
also have ... = R
unfolding 0 R-def by simp
finally show ?thesis by simp
qed

lemma uniform-property:
assumes 7 < [
shows map-pmf (Aw. wi) (£ 1A S) = sample-pmf S (is ?L = ?R)
proof —
have 7L = map-pmf (select S) (map-pmf (Azs. (zs ! ©)) (pmf-of-multiset (walks (graph-of €) 1)))
unfolding walks by (simp add: map-pmf-comp)

also have ... = map-pmf (select S) (pmf-of-set (verts (graph-of e)))
unfolding E.uniform-property[OF assms] by simp
also have ... = 7R

21



unfolding sample-pmf-alt[|OF sample-space-S] e-def graph-of-def using see-standard by simp
finally show ?thesis
by simp
qed

lemma size:
size (E1ANS)= size S (16 ~((I—1) *x nat [In A / In (19 / 20)])) (is ?L = ?R)
proof —
have ?L = see-size e * see-degrec e ~ (I — 1)
unfolding £-alt by simp
also have ... = size S * (16 "nat [In A / In (19 / 20)]) (I — 1)
using see-standard unfolding e-def by simp
also have ... = size S * (16 ~((I—1) * nat [In A / In (19 / 20)]))
unfolding power-mult[symmetric] by (simp add:ac-simps)
finally show ?%thesis
by simp
qed

end

end

4 Balls and Bins

The balls and bins model describes the probability space of throwing r balls into b bins.
This section derives the expected number of bins hit by at least one ball, as well as the
variance in the case that each ball is thrown independently. Further, using an approxima-
tion argument it is then possible to derive bounds for the same measures in the case when
the balls are being thrown only k-wise independently. The proofs follow the reasoning
described in [8, §A.1] but improve on the constants, as well as constraints.

theory Distributed-Distinct-Elements-Balls-and-Bins
imports
Distributed- Distinct- Elements- Preliminary
Discrete-Summation. Factorials
HOL—- Combinatorics.Stirling
HOL—- Computational-Algebra. Polynomial
HOL— Decision-Procs. Approzimation
begin

hide-fact Henstock-Kurzweil-Integration.integral-sum
hide-fact Henstock- Kurzweil-Integration.integral-mult-right
hide-fact Henstock-Kurzweil-Integration.integral-nonneg
hide-fact Henstock-Kurzweil-Integration.integral-cong
unbundle intro-cong-syntax

lemma sum-power-distrib:

fixes [ :: 'a = real

assumes finite R

shows (D" i€R. fi) “s= (D zs| set zs C R A length zs = s. ([[x « zs. f x))
proof (induction s)

case 0

have {zs. zs = [| A set zs C R} = {[|}

by (auto simp add:set-eq-iff)

then show ?case by simp
next

case (Suc s)
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have a:
(U7€R. (#) @ ‘ {xs. set zs C R A length zs = s}) = {xs. set zs C R A length xs = Suc s}
by (subst lists-length-Suc-eq) auto

have sum f R ~ Suc s = (sum f R) = (sum f R) s

by simp

also have ... = (sum f R) * (> uxs | set zs C R A length zs = s. ([[z < zs. fz))
using Suc by simp

also have ... = (3_i € R. (D s | set zs C R A length zs = s. ([[ ¢ < i#zs. fx)))
by (subst sum-product) simp

also have ... =

Ooie R (O ws € (Aws. i#as) ‘{xs. set xs C R A length zs = s}. ([[z < ws. fx)))
by (subst sum.reindezx) (auto)

also have ... = (> zse(|Ji€R. (#) @ ‘ {zs. set s C R A length xs = s}). (J[[z < xs. f x))
by (intro sum.UNION-disjoint[symmetric] assms balll finite-imagel finite-lists-length-eq)
auto

also have ... = (D] zs| set xs C R A length s = Suc s. ([[z < xs. f z))

by (intro sum.cong a) auto
finally show ?case by simp
qged

lemma sum-telescope-eq:
fixes f :: nat = 'a :: {comm-ring-1}
shows (> ke{Suc m..n}. fk — f (k — 1)) = of-bool(m < n) x(fn — fm)
by (cases m < n, subst sum-telescope’’, auto)

An improved version of diff-power-eq-sum.

lemma power-diff-sum:
fixes a b :: 'a :: {comm-ring-1,power}
shows a k — bk = (a=b) x> i=0.<k.a " ixb " (k—1—1)
proof (cases k)
case (
then show ?thesis by simp
next
case (Suc nat)
then show ?thesis
unfolding Suc diff-power-eq-sum
using atLeastOLessThan diff-Suc-1 by presburger
qed

lemma power-diff-est:
assumes (a :: real) > b
assumes b > (
shows a &k — b7k < (a—b) *x k *x a " (k—1)
proof —
have ¢k — bk = (a—b) x* O i=0..<k.a "ixb " (k—1—1))
by (rule power-diff-sum)
also have ... < (a—b) *x (>_i = 0..<k. a7 * a (k—1—1))
using assms by (intro mult-left-mono sum-mono mult-right-mono power-mono, auto)
also have ... = (a—b) * (k x a (k—1))
by (simp add:power-add[symmetric])
finally show ?thesis by simp
qed

lemma power-diff-est-2:

assumes (a :: real) > b

assumes b > 0

shows a k — b7k > (a—0b) * k x b (k—1)
proof —
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have (a—b) x k x b (k—1) = (a—0b) * > i=0..<k. b7i * b (k—1—1))
by (simp add:power-add|[symmetric])
also have ... < (a—b)x (> i=0..<k. a7 % b (k—1—1))
using assms
by (intro mult-left-mono sum-mono mult-right-mono power-mono) auto
also have ... = a "k — b7k
by (rule power-diff-sum|[symmetric])
finally show ?thesis by simp
qed

lemma of-bool-prod:
assumes finite R
shows ([] 7 € R. of-bool(f j)) = (of-bool(Vj € R. fj) :: real)
using assms by (induction R rule:finite-induct) auto

Additional results about falling factorials:

lemma ffact-nonneg:
fixes z :: real
assumes k — 1 < z
shows ffact kx> 0
using assms unfolding prod-ffact[symmetric]
by (intro prod-nonneg balll) simp

lemma ffact-pos:
fixes z :: real
assumes k — 1 <z
shows ffact kz > 0
using assms unfolding prod-ffact[symmetric]
by (intro prod-pos balll) simp

lemma ffact-mono:
fixes = y :: real
assumes k—1 < zz <y
shows ffact k x < ffact k y
using assms
unfolding prod-ffact[symmetric]
by (intro prod-mono) auto

lemma ffact-of-nat-nonneg:
fixes z :: 'a :: {comm-ring-1, linordered-nonzero-semiring}
assumes z € N
shows ffact kx> 0
proof —
obtain y where y-def: © = of-nat y
using assms(1) Nats-cases by auto
have (0::'a) < of-nat (ffact k y)
by simp
also have ... = ffact k z
by (simp add:of-nat-ffact y-def)
finally show ?thesis by simp
qed

lemma [fact-suc-diff:

fixes z :: (a :: comm-ring-1)

shows ffact k x — ffact k (z—1) = of-nat k * ffact (k—1) (z—1) (is ?L = ?R)
proof (cases k)

case (

then show #?thesis by simp
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next
case (Suc n)
hence ?L = ffact (Suc n) = — ffact (Suc n) (z—1) by simp

also have ... = z * ffact n (z—1) — ((z—1)—of-nat n) * ffact n (z—1)
by (subst (1) ffact-Suc, simp add: ffact-Suc-rev)
also have ... = of-nat (Suc n) = ffact n (z—1)
by (simp add:algebra-simps)
also have ... = of-nat k * ffact (k—1) (z—1) using Suc by simp
finally show ?thesis by simp
qed

lemma ffact-bound:
ffact k (n:nat) < n’k
proof —
have ffact k n = ([[i=0..<k. (n—1))
unfolding prod-ffact-nat[symmetric]
by simp
also have ... < (J[]i=0..<k. n)
by (intro prod-mono) auto

also have ... = nk
by simp
finally show ?thesis by simp
qed

lemma fact-moment-binomial:
fixes n :: nat and « :: real
assumes o € {0..1}
defines p = binomial-pmf n «
shows ([w. ffact s (real w) dp) = ffact s (real n) * a”s (is ?L = ?R)
proof (cases s < n)
case True
have L = (3 k<n. (real (n choose k) x o "k x (1 — ) ~(n — k)) * real (ffact s k))
unfolding p-def using assms by (subst expectation-binomial-pmf’) (auto simp add:of-nat-ffact)

also have ... = (D k € {0+s..(n—s)+s}. (real (n choose k) * a "k x (1 — a) " (n — k)) *
ffact s k)
using True ffact-nat-triv by (intro sum.mono-neutral-cong-right) auto
also have ... = (> k=0..n—s. a”s * real (n choose (k+s)) * a k x (1—a) (n—(k+s)) *ffact s
(h+s))
by (subst sum.atLeastAtMost-shift-bounds, simp add:algebra-simps power-add)
also have ... = a7s * (3 k<n—s. real (n choose (k+s))xffact s (k+s)xa kx(1—a) ((n—s)—Fk))

using atMost-atLeast0 by (simp add: sum-distrib-left algebra-simps cong:sum.cong)
also have ... = a7s * (3 k<n—s. real (n choose (k+s))xfact (k+s) / fact k * a kx(1—c) ((n—s)—k))
using real-of-nat-div|OF fact-dvd[OF le-add1])]
by (subst fact-div-fact-ffact-nat[symmetric], auto)
also have ... = a"s x (3 k<n-—s.
(fact n / fact (n—s)) = fact (n—s) / (fact ((n—s)—k) = fact k) * o k+(1—a) ((n—s)—k))
using True by (intro arg-cong2[where f=(x)| sum.cong)
(auto simp add: binomial-fact algebra-simps)
also have ... = a7s x (fact n / fact (n — s)) *
> k<n—s. fact (n—s) / (fact ((n—s)—k) * fact k) * o kx(1—a) ((n—s)—k))
by (simp add:sum-distrib-left algebra-simps)
also have ... = a s x (fact n / fact (n — s)) * (3. k<n—s. ((n—s) choose k) x a kx(1—a) ((n—s)—k))
using True by (intro-cong [o2(*)] more: sum.cong) (auto simp add: binomial-fact)

also have ... = a7s x real (fact n div fact (n — s)) * (a+(1—a)) (n—s)
using True real-of-nat-div[OF fact-dvd] by (subst binomial-ring, simp)
also have ... = a”s x real (ffact s n)
by (subst fact-div-fact-ffact-nat|OF Truel, simp)
also have ... = 7R
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by (subst of-nat-ffact, simp)
finally show ?thesis by simp
next
case Fulse
have L = (3 k<n. (real (n choose k) x o "k x (1 — ) ~(n — k)) * real (ffact s k))
unfolding p-def using assms by (subst expectation-binomial-pmf’) (auto simp add:of-nat-ffact)
also have ... = (D  k<n. (real (n choose k) x a "k x (1 — «a) ~(n — k)) * real 0)
using False
by (intro-cong [o2(*),01 of-nat] more: sum.cong ffact-nat-triv) auto

also have ... = 0 by simp

also have ... = real (ffact s n) x a”s
using False by (subst ffact-nat-triv, auto)

also have ... = 7R

by (subst of-nat-ffact, simp)
finally show ?thesis by simp
qed

The following describes polynomials of a given maximal degree as a subset of the functions,
similar to the subsets Z or Q as subsets of larger number classes.

definition Polynomials (P)
where Polynomials k = {f. Ip. f = poly p A degree p < k}

lemma Polynomials-mono:
assumes s < ¢t
shows P s C P ¢
using assms unfolding Polynomials-def by auto

lemma Polynomials-addl:
assumes f e Pkge Pk
shows (M\w. fw + gw) €Pk
proof —
obtain pf pg where fg-def: f = poly pf degree pf < k g = poly pg degree pg < k
using assms unfolding Polynomials-def by blast
hence degree (pf + pg) < k (Az. fz + g ) = poly (pf + pg)
using degree-add-le by auto
thus ?thesis unfolding Polynomials-def by auto
qed

lemma Polynomials-diffI:
fixes f ¢ :: 'a :: comm-ring = 'a
assumes f e Pkge Pk
shows (A\z. fz — gz) € Pk
proof —
obtain pf pg where fg-def: f = poly pf degree pf < k g = poly pg degree pg < k
using assms unfolding Polynomials-def by blast
hence degree (pf — pg) < k (\z. fz — g ) = poly (pf — pyg)
using degree-diff-le by auto
thus ?thesis unfolding Polynomials-def by auto
qed

lemma Polynomials-idl:
(Az. ) € (P 1 :: (Ya::comm-ring-1 = 'a) set)
proof —
have (Az. z) = poly [: 0,(1::'a) :]
by (intro ext, auto)
also have ... ¢ P 1
unfolding Polynomials-def by auto
finally show ?thesis by simp
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qed

lemma Polynomials-constl:
(Az.¢c) ePk
proof —
have (Az. ¢) = poly [: ¢ :]
by (intro ext, simp)
also have ... ¢ P k
unfolding Polynomials-def by auto
finally show ?thesis by simp
qed

lemma Polynomials-multl:
fixes f g :: 'a :: {comm-ring} = 'a
assumes f e Psgec Pt
shows (\z. fz * g z) € P (s+t1)
proof —
obtain pf pg where xy-def: f = poly pf degree pf < s g = poly pg degree pg < t
using assms unfolding Polynomials-def by blast

have degree (pf * pg) < degree pf + degree pg
by (intro degree-mult-le)
also have ... < s+ ¢
using zy-def by (intro add-mono) auto
finally have degree (pf * pg) < s+t by simp
moreover have (A\z. fz x g ) = poly (pf * pg)
using zy-def by auto
ultimately show ¢thesis unfolding Polynomials-def by auto
qed

lemma Polynomials-composel:
fixes f g :: 'a 1 {comm-semiring-0, semiring-no-zero-divisors} = 'a
assumes f e Psge Pt
shows (Az. f (g z)) € P (sxt)
proof —
obtain pf pg where xy-def: f = poly pf degree pf < s g = poly pg degree pg < t
using assms unfolding Polynomials-def by blast
have degree (pf o, pg) = degree pf * degree pg
by (intro degree-pcompose)
also have ... < s x ¢
using zy-def by (intro mult-mono) auto
finally have degree (pf o, pg) < s * ¢
by simp
moreover have (Az. f (g z)) = poly (pf op pg)
unfolding zy-def
by (intro ext poly-pcompose[symmetric])
ultimately show #thesis unfolding Polynomials-def by auto
qed

lemma Polynomials-const-left-multl:
fixes ¢ :: 'a :: {comm-ring}
assumes f € P k
shows (\z. ¢ x fz) e Pk
proof —
have (A\z. ¢ * fz) € P (0+k)
by (intro Polynomials-multl Polynomials-constl assms)
thus ?thesis by simp
qed

27



lemma Polynomials-const-right-multl:
fixes ¢ :: 'a :: {comm-ring}
assumes f € P k
shows (\z. fz x¢) e Pk
proof —
have (\z. fz x ¢) € P (k+0)
by (intro Polynomials-multl Polynomials-constl assms)
thus ?thesis by simp
qed

lemma Polynomials-const-divl:
fixes ¢ :: 'a i {field}
assumes f € P k
shows (\z. fz / ¢) e Pk
proof —
have (Az. fz % (1/c)) € P (k+0)
by (intro Polynomials-multl Polynomials-constl assms)
thus ?thesis by simp
qed

lemma Polynomials-ffact: (Az. ffact s (z — y)) € (P s = (Ya :: comm-ring-1 = 'a) set)
proof (induction s arbitrary: y)
case (
then show ?case
using Polynomials-constI[where ¢=1] by simp
next
case (Suc s)
have (\(z :: 'a). ffact (Suc s) (z—y)) = (Az. (z—y) * ffact s (z — (y+1)))
by (simp add: ffact-Suc algebra-simps)
also have ... € P (1+s)
by (intro Polynomials-multl Suc Polynomials-diffI Polynomials-idI Polynomials-constl)
finally show ?case by simp
qed

lemmas Polynomials-intros =
Polynomials-const-divl
Polynomials-composel
Polynomials-const-left-mult]
Polynomials-const-right-mult]
Polynomials-mult]
Polynomials-addl
Polynomials-diffT
Polynomials-idl
Polynomials-constl
Polynomials-ffact

definition C5 :: real where Cy = 7.5
definition Cj :: real where C3 = 16

A locale fixing the sets of balls and bins

locale balls-and-bins-abs =
fixes R :: 'a set and B :: 'b set
assumes fin-B: finite B and B-ne: B # {}
assumes fin-R: finite R

begin

Independent balls and bins space:
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definition Q
where Q = prod-pmf R (\-. pmf-of-set B)

lemma set-pmf-Q2: set-pmf Q@ = R —g B
unfolding Q-def set-prod-pmf[OF fin-R|
by (simp add:comp-def set-pmf-of-set|OF B-ne fin-B])

lemma card-B-gt-0: card B > 0
using B-ne fin-B by auto

lemma card-B-ge-1: card B > 1
using card-B-gt-0 by simp

definition Z j w = real (card {i. i € R A w i = (j::'b)})
definition Y w = real (card (w ‘ R))
definition p = real (card B) x (1 — (1—1/real (card B)) card R)

Factorial moments for the random variable describing the number of times a bin will be
hit:

lemma fact-moment-balls-and-bins:
assumes J C B J # {}
shows ([w. ffact s (Y j € J. Zjw) 0Q) =
ffact s (real (card R)) * (real (card J) / real (card B)) s
(is 2L = ?R)
proof —
let a0 = real (card J) / real (card B)
let ?q = binomial-pmf (card R) %«
let 2Y = (Qw. card {r € R.wr € J})

have fin-J: finite J
using finite-subset assms(1) fin-B by auto

have Z-sum-eq: (3> j € J. Zjw) = real (?Y w) for w
proof —
have ?Y w = card (JUj € J. {r € R. w r=j})
by (intro arg-cong[where f=card]) auto
also have ... = (>_ieJ. card {r € R. w r = i})
using fin-R fin-J by (intro card-UN-disjoint) auto
finally have ?Y w = (}_j € J. card {r € R. w r = j}) by simp
thus ?thesis
unfolding Z-def of-nat-sum[symmetric] by simp
qed

have card-J: card J < card B

using assms(1) fin-B card-mono by auto
have a-range: a0 > 0 %a < 1

using card-J card-B-gt-0 by auto

have pmf (map-pmf (Aw. w € J) (pmf-of-set B)) © = pmf (bernoulli-pmf %a)
(is ?L1=7R1) for z
proof —
have ?L1 = real (card (B N {w. (w € J) = z})) / real (card B)
using B-ne fin-B
by (simp add:pmf-map measure-pmf-of-set vimage-def)

also have ... = (if z then (card J) else (card (B — J))) / real (card B)
using Int-absorbl [OF assms(1)] by (auto simp add:Diff-eq Int-def)
also have ... = (if z then (card J) / card B else (real (card B) — card J) / real (card B))

using card-J fin-J assms(1) by (simp add: of-nat-diff card-Diff-subset)
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also have ... = (if z then %« else (1 — %))
using card-B-gt-0 by (simp add:divide-simps)
also have ... = ?R1
using «a-range by auto
finally show ?thesis by simp
qed
hence c:map-pmf (Aw. w € J) (pmf-of-set B) = bernoulli-pmf 2«
by (intro pmf-eql) simp

have map-pmf (Aw. A\r € R. w r € J) Q = prod-pmf R (A-. (map-pmf (Mw. w € J) (pmf-of-set
B))
unfolding map-pmf-def Q-def restrict-def using fin-R
by (subst Pi-pmf-bind[where d’=undefined]) auto
also have ... = prod-pmf R (A-. bernoulli-pmf %)
unfolding ¢ by simp
finally have b:map-pmf (Aw. Ar € R.w r € J) Q = prod-pmf R (A-. bernoulli-pmf %)
by simp

have map-pmf ?Y Q = map-pmf ((Aw. card {r € R. w r}) o (Aw. A\r€éR. w r € J)) Q
unfolding comp-def
by (intro map-pmf-cong arg-cong|where f=card]) (auto simp add:comp-def)

also have ... = (map-pmf (M. card {r € R. w r}) o map-pmf (Aw. Ar € R.w r € J)) Q
by (subst map-pmf-compose[symmetric]) auto

also have ... = map-pmf (A\w. card {r € R. w r}) (prod-pmf R (A-. (bernoulli-pmf ?a)))
unfolding comp-def b by simp

also have ... = ¢

using «a-range by (intro binomial-pmf-altdef'[symmetric| fin-R) auto
finally have a:map-pmf Y Q =%g
by simp

have 7L = ([w. ffact s (real (?Y w)) ON)
unfolding Z-sum-eq by simp

also have ... = ([w. ffact s (real w) (map-pmf ?Y Q))
by simp

also have ... = ([w. ffact s (real w) 8%q)
unfolding a by simp

also have ... = 7R

using a-range by (subst fact-moment-binomial, auto)
finally show ?thesis by simp
qed

Expectation and variance for the number of distinct bins that are hit by at least one ball
in the fully independent model. The result for the variance is improved by a factor of 4
w.r.t. the paper.

lemma
shows exp-balls-and-bins: measure-pmf.expectation Q Y = p (is AL = ?AR)
and var-balls-and-bins: measure-pmf.variance Q Y < card R % (real (card R) — 1) / card B
(is BL < ?BR)
proof —
let ?b = real (card B)
let r = card R
define Z :: 'b = (‘a = 'b) = real
where Z = (Ai w. of-bool(i ¢ w ‘ R))
define a where o = (1 — 1 / %b) " %r
define 8 where 58 = (1 — 2 / 2b)"%r

have card (B x BN {z. fst z = snd z}) = card (A\z. (z,z)) ‘ B)
by (intro arg-cong|where f=card]) auto
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also have ... = card B
by (intro card-image, simp add:inj-on-def)

finally have d: card (B x B N {z. fst © = snd x}) = card B
by simp

hence count-1: real (card (B x B N {z. fst x = snd z})) = card B
by simp

have card B + card (B x BN —{x. fst x = snd ©}) =
card (B x BN {z. fst x = snd z}) + card (B x BN —{z. fst x = snd z})
by (subst d) simp
also have ... = card ((B x BN {z. fst x = snd z}) U (B x BN —{z. fst z = snd z}))
using finite-subset[OF - finite-cartesian-product| OF fin-B fin-B]|
by (intro card-Un-disjoint[symmetric]) auto

also have ... = card (B x B)
by (intro arg-cong|where f=card]) auto
also have ... = card B™2

unfolding card-cartesian-product by (simp add:power2-eq-square)
finally have card B + card (B x B N —{x. fst x = snd z}) = card B2 by simp

hence count-2: real (card (B x B N —{x. fst x = snd z})) = real (card B) "2 — card B
by (simp add:algebra-simps flip: of-nat-add of-nat-power)

hence finite (set-pmf Q)
unfolding set-pmf-Q)
using fin-R fin-B by (auto intro!:finite-PiE)
hence int: integrable (measure-pmf Q) f
for f :: (a = 'b) = real
by (intro integrable-measure-pmf-finite) simp

have a:prob-space.indep-vars (measure-pmf Q) (\i. discrete) (Az w. w z) R
unfolding Q-def using indep-vars-Pi-pmf[OF fin-R] by metis
have b: ([w. of-bool (w ‘R C A) Q) = (real (card (B N A)) / real (card B)) card R
(is /L = ?R) for A
proof —
have ?L = ([w. (I] j € R. of-bool(w j € A)) 99Q)
by (intro Bochner-Integration.integral-cong ext)
(auto simp add: of-bool-prod[OF fin-R))
also have ... = (] j € R. ([w. of-bool(w j € A) O%))
using fin-R
by (intro prob-space.indep-vars-lebesgue-integral| OF prob-space-measure-pmf] int
prob-space.indep-vars-compose2 | OF prob-space-measure-pmf a]) auto
also have ... = (I] j € R. ([w. of-bool(w € A) d(map-pmf (Aw. w j) )))
by simp
also have ... = ([ j € R. ([w. of-bool(w € A) d(pmf-of-set B)))
unfolding Q-def by (subst Pi-pmf-component|OF fin-R]) simp
also have ... = ((3_weB. of-bool (w € A)) / real (card B)) ~ card R
by (simp add: integral-pmf-of-set|OF B-ne fin-B])
also have ... = 7R
unfolding of-bool-def sum.If-cases|OF fin-B] by simp
finally show ?thesis by simp
qed

have Z-exp: ([w. Ziw 0N) = a if i € B for i
proof —
have real (card (B N —{i})) = real (card (B — {i}))
by (intro-cong [o1 card,o1 of-nat]) auto
also have ... = real (card B — card {i})
using that by (subst card-Diff-subset) auto
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also have ... = real (card B) — real (card {i})
using fin-B that by (intro of-nat-diff card-mono) auto
finally have c: real (card (B N —{i})) = real (card B) — 1
by simp

have ([w. Ziw 09) = ([w. of-bool(w ‘R C — {i}) o)
unfolding Z-def by simp

also have ... = (real (card (B N —{i})) / real (card B)) card R
by (intro b)

also have ... = ((real (card B) —1) / real (card B)) card R
by (subst ¢) simp

also have ... = «

unfolding «a-def using card-B-gt-0
by (simp add:divide-eq-eq diff-divide-distrib)
finally show ?thesis
by simp
qed

have Z-prod-exp: ([w. Ziw x Z jw Q) = (if i = j then « else 3)
ifie Bje Bforij
proof —
have real (card (B N —{i,j})) = real (card (B — {i,j}))
by (intro-cong [o1 card,o1 of-nat]) auto

also have ... = real (card B — card {i,j})
using that by (subst card-Diff-subset) auto
also have ... = real (card B) — real (card {i,j})

using fin-B that by (intro of-nat-diff card-mono) auto
finally have c: real (card (B N —{i,j})) = real (card B) — card {i,j}
by simp

have (fw. Ziw* Zjw Q) = ([w. of-bool(w ‘R C — {i,j}) 0N)
unfolding Z-def of-bool-conj[symmetric]
by (intro integral-cong ext) auto

also have ... = (real (card (B N —{i,j})) / real (card B)) card R
by (intro b)

also have ... = ((real (card B) — card {i,j}) / real (card B)) card R
by (subst ¢) simp

also have ... = (if i = j then « else )

unfolding a-def 5-def using card-B-gt-0
by (simp add:divide-eq-eq diff-divide-distrib)
finally show ?thesis by simp
qed

have Y-eq: Yw= (i€ B. 1 — Ziw)if w € set-pmf Q for w
proof —
have set-pmf Q C Pi R (A-. B)
using set-pmf-Q by (simp add:PiE-def)
hencew ‘R C B
using that by auto
hence Y w = card (BNw ‘R)
unfolding Y-def using Int-absorbl by metis

also have ... = (>_ i € B. of-bool(i € w ‘ R))
unfolding of-bool-def sum.If-cases|OF fin-B] by(simp)
alsohave ... = (>, i€ B. 1 — Ziw)

unfolding Z-def by (intro sum.cong) (auto simp add:of-bool-def)
finally show Y w = (} i€ B. 1 — Ziw) by simp
qed
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have Y-sg-eq: (Y w)? = 0. (ij)) €EBx B. 1 —Ziw—Zjw+ Ziwx* Zjw)
if w € set-pmf Q for w
unfolding Y-eq[OF that] power2-eq-square sum-product sum.cartesian-product
by (intro sum.cong) (auto simp add:algebra-simps)

have measure-pmf.expectation QY = (fw. (> i € B. 1 — Ziw) 99Q)
using Y-eq by (intro integral-cong-AE AE-pmfI) auto

also have ... = (32i€ B. 1 — (Jw. Ziw 00N))
using int by simp

also have ... = %b x (1 — «)
using Z-exp by simp

also have ... = ?AR

unfolding a-def p-def by simp
finally show ?AL = ?AR by simp

have measure-pmf.variance @ Y = ([w. Y w2 0Q) — (fw. Y w 0Q)72
using int by (subst measure-pmf.variance-eq) auto
also have ... =
(Jw.>ieBxB. 1 —Z(fsti)w— Z (sndi)w+ Z (fsti)w* Z (snd i) w) OQ) —
(Jw. (>SieB. 1 —Ziw)dN)2
using Y-eq Y-sg-eq
by (intro-cong [o2(—),02 power| more: integral-cong-AE AE-pmfI) (auto simp add:case-prod-beta)
also have ... =
>Cie€eBXB (Jw. (I —Z (fsti)w—Z (sndi)w+ Z (fsti) wx Z (snd i) w) 0N)) —
>YieB (Jw (I — Ziw)oN) 2
by (intro-cong [o2 (=), o2 power] more: integral-sum int)
also have ... =
>ie€eBXB (Jw. (1 —Z (fsti)w—Z (sndi)w+ Z (fsti) wx Z (snd i) w) 00)) —
(i€ BXxB. (Jw. (1 —Z (fsti)w) ) * ([w. (I — Z (snd i) w) OQ))
unfolding power2-eq-square sum-product sum.cartesian-product
by (simp add:case-prod-beta)
alsohave ... = (3} (ij)) e Bx B. (fw. (I —Ziw—-Zjw+ Ziwx* Zjw) Q) —
(Jw. (1 = Ziw)dQ)* ([w. (I — Zjw) 0N))

by (subst sum-subtractf[symmetric], simp add:case-prod-beta)

also have ... = (}(i,j)) e BX B. (Jw. Ziwx*xZjw o) —(fw. Ziwd) * ([ w. Zjw
09))
using int by (intro sum.cong refl) (simp add:algebra-simps case-prod-beta)
also have ... = (>_i € B x B. (if fst i = snd i then o — a 2 else f — a”2))

by (intro sum.cong refl)
(simp add:Z-exp Z-prod-exp mem-Times-iff case-prod-beta power2-eq-square)

also have ... = %b x (o — o?) + (2072 — card B) = (8 — a?)
using count-1 count-2 finite-cartesian-product fin-B by (subst sum.If-cases) auto
also have ... = 2072 * (B — a?) + 2b x (a — J3)

by (simp add:algebra-simps)
alsohave ... = 2b« ((1—1/%2b) " %r — (1—=2/90)"%r) — 2072 « (((1—1/%b)"2) " 2r — (1—-2/7b) "7r)
unfolding S-def a-def
by (simp add: power-mult[symmetric] algebra-simps)
also have ... < card R * (real (card R) — 1)/ card B (is ?L < ?R)
proof (cases ?b > 2)
case True
have 7L <
2« (1 —1/2)—(1-2/2b))* 2r« (1—1/2b)(9r — 1)) —
72 x (1=1/90)72) — (1 — 2 /2b))) * 2r = ((1-2/2b)) (9r — 1))
using True
by (intro diff-mono mult-left-mono power-diff-est-2 power-diff-est divide-right-mono)
(auto simp add:power2-eq-square algebra-simps)
alsohave ... = 2bx ((1/2b) x 2r« (1 —1/2b) (2r—1)) — 2b72x((1/2b72)x ?rx((1—2/2b)) (?r—1))
by (intro arg-cong2[where f=(—)] arg-cong2|where f=(x)| refl)
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(auto simp add:algebra-simps power2-eq-square)
also have ... = 2r x ((1—-1/20)(?r — 1) — ((1=2/2b)) (?r — 1))
by (simp add:algebra-simps)
also have ... < 2r x (((1—=1/%b) — (1=2/92b)) = (9r — 1)« (1—1/%b) (%r —1 —1))
using True by (intro mult-left-mono power-diff-est) (auto simp add:algebra-simps)
also have ... < 2r x ((1/%2b) x (r — 1) % 1 (9r — 1—1))
using True by (intro mult-left-mono mult-mono power-mono) auto
also have ... = %R
using card-B-gt-0 by auto
finally show ?L < ?R by simp

next
case Fulse
hence ?b = 1 using card-B-ge-1 by simp
thus 7L < ?R
by (cases card R =0) auto
qed

finally show measure-pmf.variance Q Y < card R * (real (card R) — 1)/ card B
by simp
qged

definition lim-balls-and-bins k p = (
prob-space.k-wise-indep-vars (measure-pmf p) k (A-. discrete) (A w. w ) R A
(Vz. 2 € R — map-pmf (Aw. w z) p = pmf-of-set B))

lemma indep:
assumes lim-balls-and-bins k p
shows prob-space.k-wise-indep-vars (measure-pmf p) k (A-. discrete) (Az w. w z) R
using assms lim-balls-and-bins-def by simp

lemma ran:
assumes lim-balls-and-bins kp x € R
shows map-pmf (Aw. w x) p = pmf-of-set B
using assms lim-balls-and-bins-def by simp

lemma Z-integrable:
fixes f :: real = real
assumes lim-balls-and-bins k p
shows integrable p (A\w. f (Z i w))
unfolding Z-def using fin-R card-mono
by (intro integrable-pmf-iff-bounded[where C=Maz (abs ‘ f * real ‘ {..card R})])
fastforce+

lemma Z-any-integrable-2:
fixes f :: real = real
assumes lim-balls-and-bins k p
shows integrable p (M\w. f (Ziw + Z j w))
proof —
have ¢:real (card A) + real (card B) € real ‘{..2 x card R} if AC RBC Rfor AB
proof —
have card A + card B < card R + card R
by (intro add-mono card-mono fin-R that)

also have ... = 2 * card R by simp
finally show ?thesis by force
qed

thus ?thesis
unfolding Z-def using fin-R card-mono abs-triangle-ineq
by (intro integrable-pmf-iff-bounded|where C=Max (abs ‘ f ‘ real ‘ {..2xcard R})] Max-ge
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finite-imagel imagel) auto
qed

lemma hit-count-prod-exp:
assumes jl € Bj2 € Bs+t <k
assumes lim-balls-and-bins k p
defines L = {(zs,ys). set zs C R A set ys C R A
(set zs N set ys = {} V j1 = j2) A length xs = s A length ys = t}
shows ([w. Zjl w™s x Zj2 w™t Op) =
(5" (zs,ys) € L. (1/real (card B)) (card (set xs U set ys)))
(is 2L = ?R)
proof —
define W1 :: 'a = (‘a = 'b) = real
where W1 = (\i w. of-bool (w i = jI) :: real)
define W2 :: 'a = (‘a = 'b) = real
where W2 = (\i w. of-bool (w i = j2) :: real)
define 7 :: ‘a list x 'a list = 'a = 'b
where 7 = (M z. if © € set (fst 1) then j1 else j2)

have 7-check-1: 7 1z = j1 if x € set (fst]) and [ € L for z |
using that unfolding 7-def L-def by auto

have 7-check-2: 7 lz = j2 if v € set (sndl) and [ € L for z |
using that unfolding 7-def L-def by auto

have 7-check-3: 7 lz € B for z |
using assms(1,2) unfolding 7-def by simp

have Zl-eq: Zjl w= (i€ R. Wi i{w) for w
using fin-R unfolding Z-def W1-def
by (simp add:of-bool-def sum.If-cases Int-def)

have Z2-eq: Zj2 w= (i € R. W2 { w) for w
using fin-R unfolding Z-def W2-def
by (simp add:of-bool-def sum.If-cases Int-def)

define o where a = 1 / real (card B)

have a: ([w. ([Jz+a. Wiz w)* ([Jy<b W2y w)dp) =0 (is ?L1 = 0)
if x € set a N set b jl # j2 length a = s length b = ¢ for x a b
proof —
have ([[za. W1z w) * ([[y+bd. W2y w) = 0 for w
proof —
have Wizw=0V W2z w =10
unfolding Wi-def W2-def using that by simp
hence ([[z<a. Wl zw) =0V ([Jy<b W2yw) =20
unfolding prod-list-zero-iff using that(1) by auto
thus %thesis by simp
qed
hence ?L1 = ([w. 0 Op)
by (intro arg-cong2|where f=measure-pmf.expectation]) auto
also have ... = 0
by simp
finally show ?thesis by simp
qed

have b: prob-space.indep-vars p (A-. discrete) (Ai w. w 1) (set (fst x) U set (snd z))
ifz e L for z

proof —
have card (set (fst x) U set (snd x)) < card (set (fst x)) + card (set (snd x))
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by (intro card-Un-le)
also have ... < length (fst x) + length (snd x)
by (intro add-mono card-length)
also have ... = s+ ¢
using that L-def by auto
also have ... < k using assms(3) by simp
finally have card (set (fst ) U set (snd z)) < k by simp
moreover have set (fst x) U set (snd ) C R
using that L-def by auto
ultimately show ?thesis
by (intro prob-space.k-wise-indep-vars-subset| OF prob-space-measure-pmf indep[ OF assms(4)]])
auto
qed

have ¢: ([w. of-bool (w z = z) dp) = « (is ?L1 = -)
ifze Bz € Rfor z 2
proof —
have ?L1 = ([ w. indicator {w. w z = z} w dp)
unfolding indicator-def by simp

also have ... = measure p {w. w z = 2}
by simp
also have ... = measure (map-pmf (Mw. w z) p) {z}
by (subst measure-map-pmf) (simp add:vimage-def)
also have ... = measure (pmf-of-set B) {z}
using that by (subst ran[OF assms(4)]) auto
also have ... = 1/card B
using fin-B that by (subst measure-pmf-of-set) auto
also have ... = «

unfolding a-def by simp
finally show ?thesis by simp
qed

have d: abs z < 1 = absy < 1 = abs (zxy) < 1 for z y :: real
by (simp add:abs-mult mult-le-one)

have e:(Az. © € set s = abs v <1) = abs(prod-list xs) < 1 for zs :: real list
using d by (induction xs, simp, simp)

have ?L = ([w. (3Sj € R Wiljw) s (> j€ R W2jw)tdp)
unfolding Z1-eq Z2-eq by simp
also have ... = (fw. (X xs | set zs C R A length zs = s. ([[z + zs. W1 z w)) *
> ys | set ys € R A length ys = t. (J[[y < ys. W2y w)) Op)
unfolding sum-power-distrib| OF fin-R] by simp
also have ... = ([ w.
(- le{xs. set zs C R A length xs = s} x {ys. set ys C R A length ys = t}.
([Jxfstl. Wiz w) * (J[y+snd l. W2y w)) Op)
by (intro arg-conglwhere f=integral* p))
(simp add: sum-product sum.cartesian-product case-prod-beta)
also have ... = (D] le{xs. set xs C R A length zs = s} x {ys. set ys C R A length ys = t}.
(Jw. ([Ta<fstl. W1z w) = ([Jy+snd . W2y w) dp))
unfolding Wi-def W2-def
by (intro integral-sum integrable-pmf-iff-bounded[where C=1] d e) auto
also have ... = (3" le L. (fw. ([[a«fst l. W1z w) * ([]yssnd I. W2y w) p))
unfolding L-def using a by (intro sum.mono-neutral-right finite-cartesian-product
finite-lists-length-eq fin-R) auto
also have ... = (3" le L. (fw. ([Ta+fst L.
of-bool(w x = 7 1)) * ([[ y<snd l. of-bool(w y = 7 L y)) Op))
unfolding Wi-def W2-def using 7-check-1 T-check-2
by (intro sum.cong arg-conglwhere f=integral” p| ext arg-cong2|where f=(x)]
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arg—cong[where f=prod-list]) auto
also have ... = (3" le L. ([w. ([Tz+(fst 1Qsnd ). of-bool(w z = 7 | z))d p))
by simp
also have ... = (3" le L. (fw. ([[z € set (fst lQsnd 1).
of-bool(w x = 7 | z) “count-list (fst [Qsnd l) z) O p))
unfolding prod-list-eval by simp

also have ... = (3" le L. (fw. ([Tz € set (fst 1) U set (snd ).
of-bool(w x = 7 1 z) “count-list (fst [Qsnd l) z) O p))
by simp
also have ... = (3" le L. (fw. ([Tz € set (fst 1) U set (snd l). of-bool(w z = 7 l z)) d p))

using count-list-gr-1
by (intro sum.cong arg-cong[where f=integral® p| ext prod.cong) force+
also have ... = (3" le L. ([Tz € set (fst 1) U set (snd 1). ([ w. of-bool(w z = 7 1 z) 8 p)))
by (intro sum.cong prob-space.indep-vars-lebesgue-integral| OF prob-space-measure-pmf]
integrable-pmf-iff-bounded[where C=1]
prob-space.indep-vars-compose2| OF prob-space-measure-pmf b)) auto

also have ... = (3" le L. (J]z € set (fst 1) U set (snd 1). «))

using 7-check-3 unfolding L-def by (intro sum.cong prod.cong ¢) auto
also have ... = (D1 € L. a (card (set (fst 1) U set (snd 1))))

by simp
also have ... = 7R

unfolding L-def a-def by (simp add:case-prod-beta)
finally show ?thesis by simp
qed

lemma hit-count-prod-pow-eq:

assumes 1 € Bj€ B

assumes lim-balls-and-bins k p

assumes lim-balls-and-bins k q

assumes s+t < k

shows (f[w. (Ziw) s (Zjw)tdp) = (fw. (Ziw) s*(Zjw)tdq)
unfolding hit-count-prod-exp[OF assms(1,2,5,3)]
unfolding hit-count-prod-exp[OF assms(1,2,5,4)]
by simp

lemma hit-count-sum-pow-eq:
assumes ¢ € Bj € B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes s < k
shows ([w. (Ziw+ Zjw) s0p) =(Jw. (Ziw+ Zjw) s dq)
(is ?L = ?R)
proof —
have ¢2: |Zixz " lx Zjx " (s — )] < real (card R " s)
ifle{.s}forsijlz
proof —
have |Zix " lxZjax " (s— D < Zixz IlxZjz (s—1)
unfolding Z-def by auto
also have ... < real (card R) 1 * real (card R) ~ (s—I)
unfolding Z-def
by (intro mult-mono power-mono of-nat-mono card-mono fin-R) auto

also have ... = real (card R) s using that
by (subst power-add[symmetric]) simp
also have ... = real (card R”s)
by simp
finally show ?thesis by simp
qed
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have 7L = ([w. (3 I<s. real (s choose l) x (Ziw ™l x Z jw (s—1))) dp)
by (subst binomial-ring) (simp add:algebra-simps)
also have ... = (3 I<s. ([w. real (s choose 1) x (Z i w ™l x Zjw (s—1)) dp))
by (intro integral-sum integrable-mult-right
integrable-pmf-iff-bounded[where C=card R"s| ¢2) auto
also have ... = (3 I<s. real (s choose 1) x (fw. (Ziw ™l x Zjw (s—1)) dp))
by (intro sum.cong integral-mult-right
integrable-pmf-iff-bounded[where C=card R”s] ¢2) auto
also have ... = (3_ I<s. real (s choose ) x (fw. (Ziw ™l x Zjw (s—1)) dq))
using assms(5)
by (intro-cong [o2 (%)] more: sum.cong hit-count-prod-pow-eq[OF assms(1—4)])
auto
also have ... = (3" I<s. ([w. real (s choose 1) x (Ziw ™l x Zjw (s—1)) dq))
by (intro sum.cong integral-mult-right[symmetric]
integrable-pmf-iff-bounded[where C=card R7s| ¢2) auto
also have ... = ([w. (3 I<s. real (s choose 1) * (Z i w | * Zjw (s—1))) dq)
by (intro integral-sum[symmetric] integrable-mult-right
integrable-pmf-iff-bounded[where C=card R"s] ¢2) auto
also have ... = 7R
by (subst binomial-ring) (simp add:algebra-simps)
finally show ?thesis by simp
qed

lemma hit-count-sum-poly-eq:
assumes ¢ € Bj€ B
assumes lim-balls-and-bins k p
assumes lim-balls-and-bins k q
assumes f € P k
shows ([w. f (Ziw+ Zjw)dp) = ([w. f(Ziw+ Zjw) dq)
(is ?L = ?R)
proof —
obtain fp where f-def: f = poly fp degree fp < k
using assms(5) unfolding Polynomials-def by auto

have 7L = (3" d<degree fp. ([ w. poly.coeff fp d x (Ziw + Zjw) ~d dp))
unfolding f-def poly-altdef
by (intro integral-sum integrable-mult-right Z-any-integrable-2[OF assms(3)])

also have ... = (3" d<degree fp. poly.coeff fp d * ([w. (Ziw + Zjw) ~d dp))
by (intro sum.cong integral-mult-right Z-any-integrable-2[{OF assms(8)])
simp
also have ... = (3_ d<degree fp. poly.coeff fp d *([w. (Ziw + Zjw) ~d dq))
using f-def
by (intro sum.cong arg-cong2[where f=(x)] hit-count-sum-pow-eq|OF assms(1—4)]) auto
also have ... = (3" d<degree fp. ([ w. poly.coeff fp d x (Ziw + Zjw) ~d dq))
by (intro sum.cong) auto
also have ... = ?R

unfolding f-def poly-altdef by (intro integral-sum[symmetric]
integrable-mult-right Z-any-integrable-2[OF assms(4)])
finally show ?thesis by simp
qed

lemma hit-count-poly-eq:

assumes b € B

assumes lim-balls-and-bins k p

assumes lim-balls-and-bins k q

assumes f € P k

shows ([w. f (Zbw) dp) = (fw. f (Zbw) dq) (is ?L = ?R)
proof —

38



have a:(Aa. f (a / 2)) € P (kx1)
by (intro Polynomials-composel[OF assms(4 )] Polynomials-intros)
have 7L = [w. f (Zbw + Zbw)/2) dp
by simp
also have ... = [w. f (Zbw + Zbw)/2) q
using a by (intro hit-count-sum-poly-eq| OF assms(1,1,2,3)]) simp
also have ... = ?R by simp
finally show ?thesis by simp
qed

lemma lim-balls-and-bins-from-ind-balls-and-bins:
lim-balls-and-bins k )
proof —
have prob-space.indep-vars (measure-pmf Q) (A-. discrete) (A\z w. w ) R
unfolding Q-def using indep-vars-Pi-pmf[OF fin-R] by metis
hence prob-space.indep-vars (measure-pmf Q) (A-. discrete) (A\x w. w z) J if J C R for J
using prob-space.indep-vars-subset| OF prob-space-measure-pmf - that] by auto
hence a:prob-space.k-wise-indep-vars (measure-pmf Q) k (A-. discrete) Az w. w x) R
by (simp add:prob-space.k-wise-indep-vars-def[OF prob-space-measure-pmf])

have b: map-pmf (M\w. w z) Q = pmf-of-set B if z € R for z
using that unfolding Q-def Pi-pmf-component|OF fin-R] by simp

show ?thesis
using a b fin-R fin-B unfolding lim-balls-and-bins-def by auto
qed

lemma hit-count-factorial-moments:
assumes a:j € B
assumes s < k
assumes lim-balls-and-bins k p
shows ([ w. ffact s (Z j w) dp) = ffact s (real (card R)) * (1 / real (card B))"s
(is 7L = ?R)
proof —
have (A\z. ffact s (z—0::real)) € P s
by (intro Polynomials-intros)
hence b: ffact s € (P k :: (real = real) set)
using Polynomials-mono[OF assms(2)] by auto

have 7L = ([w. ffact s (Z j w) ON)

by (intro hit-count-poly-eq[OF a assms(3) lim-balls-and-bins-from-ind-balls-and-bins] b)
also have ... = ([w. flact s (3 i € {j}. Ziw) 0N)

by simp
also have ... = ffact s (real (card R)) * (real (card {j}) / real (card B)) s

using assms(1)

by (intro fact-moment-balls-and-bins fin-R fin-B) auto

also have ... = 7R
by simp
finally show ?thesis by simp
qed

lemma hit-count-factorial-moments-2:
assumes a:t € Bj € B
assumes 7 # j s < k card R < card B
assumes lim-balls-and-bins k p
shows ([w. ffact s (Ziw + Zjw) dp) < 27s
(is 2L < ?R)
proof —
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have (Az. ffact s (x—0::real)) € P s
by (intro Polynomials-intros)

hence b: ffact s € (P k :: (real = real) set)
using Polynomials-mono[OF assms(4)] by auto

have or-distrib: (a A b) V (a A ¢) <= a A (bV ¢)forabc
by auto
have 7L = ([w. ffact s (Ziw + Zjw) 09Q)
by (intro hit-count-sum-poly-eq|OF a assms(6) lim-balls-and-bins-from-ind-balls-and-bins] b)
also have ... = ([w. flact s (3ot € {i,j}. Ztw)) 09Q)
using assms(3) by simp
also have ... = ffact s (real (card R)) * (real (card {i,j}) / real (card B)) ~ s
using assms(1,2)
by (intro fact-moment-balls-and-bins fin-R fin-B) auto
also have ... = real (ffact s (card R)) * (real (card {i,j}) / real (card B)) " s
by (simp add:of-nat-ffact)
also have ... < (card R) s * (real (card {i,j}) / real (card B)) ~ s
by (intro mult-mono of-nat-mono ffact-bound, simp-all)
also have ... < (card B) s x (real (2) / real (card B)) " s
using assms(3)
by (intro mult-mono of-nat-mono power-mono assms(5), simp-all)
also have ... = 7R
using card-B-gt-0 by (simp add:divide-simps)
finally show ?thesis by simp
qed

lemma balls-and-bins-approz-helper:
fixes z :: real
assumes z > 2
assumes real k > 5xx [/ In x
shows k£ > 2
and 27(k+3) / fact k < (1/exp x) "2
and 2 / fact k < 1 / (exp 1 * exp x)
proof —
have In-inv: Inx = — In (1/ z) if x > 0 for x :: real
using that by (subst In-div, auto)

have apz:
exp 1 < (5::real)
4 xIn 4 < (2 — 2xexp 1/5)xIn (450::real)
In 8 x 2 < (450::real)
4/ 5%x2xexpl+in(5/4)*expl < (5:real)
exp 1 < (2::real) 4
by (approzimation 10)+

(z—1))

/
by (simp add:divide-simps)
*

(z / Inx)

have 2 < 5 x (x
using assms(1)

also have ... < §
using assms(1)
by (intro mult-left-mono divide-left-mono In-le-minus-one mult-pos-pos) auto

also have ... < k using assms(2) by simp

finally show k-ge-2: k > 2 by simp

have Inz x (2 x exp 1) = In ((4/5) * )x(5/4)) * (2 * exp 1)
by simp

also have ... = In ((4/5) * x) x (2 x exp 1) + In((5/4))*(2 * exp 1)
using assms(1) by (subst In-mult, simp-all add:algebra-simps)

also have ... < (4/8)x zx (2 xexp 1)+ In (5/4) * (x * exp 1)
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using assms(1) by (intro add-less-le-mono mult-strict-right-mono In-less-self
mult-left-mono mult-right-mono) (auto simp add:algebra-simps)
also have ... = ((4/5) * 2 xexp 1 + In(5/4) * exp 1) * x
by (simp add:algebra-simps)
also have ... < § x ¢
using assms(1) apz(4
finally have 1: In x x (

) by (intro mult-right-mono, simp-all)
2xexp 1) < &5 xzby simp

have In 8 < 8 xz — 5 xz x In(2xexzp 1 /5 xInzx) [/ Inz
proof (cases z € {2..450})

case True

then show %thesis by (approxzimation 10 splitting: z=10)
next

case Fulse

hence z-ge-450: © > 450 using assms(1) by simp

have 4 x In 4 < (2 — 2xexp 1/5)*ln (450::real)
using apz(2) by (simp)
also have ... < (2 — 2xexp 1/5)* In x
using z-ge-450 apz(1)
by (intro mult-left-mono iffD2[OF In-le-cancel-iff], simp-all)
finally have (2 — 2xexp 1/5) * Inx > 4 = In 4 by simp
hence 2xexp 1/5 xlnz 4+ 0 < 2xexpl1 /5 xlnx+ (2 — 2xexp 1/5)xlnz — 4 *inj)
by (intro add-mono) auto
also have ... = / % (1/2) x Inx — / * In 4
by (simp add:algebra-simps)
also have ... = 4 x (In (z powr (1/2)) — In 4)
using z-ge-450 by (subst In-powr, auto)
also have ... = 4 x (In (z powr (1/2)/4))
using z-ge-450 by (subst In-div) auto
also have ... < / * (z powr (1/2)/4)
using z-ge-450 by (intro mult-strict-left-mono In-less-self) auto
also have ... = z powr (1/2) by simp
finally have 2x exp 1/ 5 * In x < x powr (1/2) by simp
hence In(2x exp 1/ 5 * In z) < In (z powr (1/2))
using z-ge-450 In-le-cancel-iff by simp
hence 0:in(2x exp 1/ 5 xInzx) [ Inz < 1/2
using z-ge-450 by (subst (asm) In-powr, auto)
have In 8 < 8 xz — 5 xz % (1/2)
using z-ge-450 apz(3) by simp
alsohave ... < 3 *xxz — 5 *xxz* (In(2xexp 1/ 5 xInzx) / Inx)
using z-ge-450 by (intro diff-left-mono mult-left-mono 0) auto
finally show ?thesis by simp
qed

hence 2 xz+ I8 < 2xz+ (3xx—5*xxxIn(2xexp 1 /5*Inz)/Inx)
by (intro add-mono, auto)

also have ... = 5 x 2 + 5 x x x In(5 /| (2xexp Ixlnx)) / Inx
using assms(1) by (subst In-inv) (auto simp add:algebra-simps)

also have ... = 5 x z x (Inz + In(5 / (2xexp Ixln 1)) / Inz
using assms(1) by (simp add:algebra-simps add-divide-distrib)

alsohave ... =5 xzx(In (O *xz/ (2*xexp 1 *xinz)))/Inz
using assms(1) by (subst In-mult[symmetric], auto)

alsohave ... = (b xz /Ilnz)xIn (5 xz /Inz) /(2 *expl))

by (simp add:algebra-simps)
also have ... < k x In (k / (2xexp 1))
using assms(1,2) 1 k-ge-2
by (intro mult-mono iff D2[OF In-le-cancel-iff] divide-right-mono)
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auto
finally have k * In (k/(2xexp 1)) > 2xx + In 8 by simp
hence k  In(2xexp 1/k) < —2xz — In 8
using k-ge-2 by (subst In-inv, auto)
hence in ((2xexp 1/k) powr k) < In(exp(—2x*z)) — In 8
using k-ge-2 by (subst In-powr, auto)
also have ... = In(exp(—2xz)/8)
by (simp add:In-div)
finally have In ((2xexp 1/k) powr k) < In (exp(—2xx)/8) by simp
hence 1: (2xexp 1/k) powr k < exp(—2xz)/8
using k-ge-2 assms(1) by (subst (asm) In-le-cancel-iff) auto
have 27(k+3)/fact k < 27 (k+3)/(k / exp 1)k
using k-ge-2 by (intro divide-left-mono fact-lower-bound-1) auto

also have ... = 8 % 27k x (exp 1 / k)&
by (simp add:power-add algebra-simps power-divide)
also have ... = 8 x (2xexp 1/k) powr k

using k-ge-2 powr-realpow

by (simp add:power-mult-distrib[symmetric])
also have ... < 8 * (exp(—2x*1)/8)

by (intro mult-left-mono 1) auto

also have ... = exp((—z)*2)

by simp
also have ... = exp(—z) 2

by (subst exp-powr[symmetric], simp)
also have ... = (1/exp z) "2

by (simp add: exp-minus inverse-eq-divide)

finally show 2:27(k+3)/fact k < (1/exp z) "2 by simp

have (2::real)/fact k = (27(k+3)/fact k)/(27(k+2))

by (simp add:divide-simps power-add)
also have ... < (1 /exp z)72/(27(k+2))

by (intro divide-right-mono 2, simp)
also have ... < (1 /exp x)71/(27(k+2))

using assms(1) by (intro divide-right-mono power-decreasing) auto
also have ... < (1 /exp 2)71/(274)

using k-ge-2 by (intro divide-left-mono power-increasing) auto
also have ... < (1/exp z)"1/exp(1)

using k-ge-2 apz(5) by (intro divide-left-mono) auto

also have ... = 1 /(exp 1 * exp z) by simp
finally show (2::real)/fact k < 1/(exp 1 * exp ) by simp
qed

Bounds on the expectation and variance in the k-wise independent case. Here the indepe-
dence assumption is improved by a factor of two compared to the result in the paper.

lemma
assumes card R < card B
assumes /c. lim-balls-and-bins (k+1) (p ¢)
assumes ¢ € {0<..1/exp(2)}
assumes k > 5 * In (card B / ) / In (In (card B / €))
shows
exp-approx: |measure-pmf.expectation (p True) Y — measure-pmf.expectation (p False) Y| <
e * real (card R) (is ?A) and
var-approz: |measure-pmf.variance (p True) Y — measure-pmf.variance (p False) Y| < &2
(is ?B)
proof —
let ?p1 = p False
let ?p2 = p True
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have exp (2::real) = 1/ (1/exp 2) by simp
also have ... < [/ ¢
using assms(3) by (intro divide-left-mono) auto
also have ... < real (card B)/ ¢
using assms(3) card-B-gt-0 by (intro divide-right-mono) auto
finally have exp 2 < real (card B) / € by simp
hence k-condition-h: 2 < In (card B / ¢)
using assms(3) card-B-gt-0 by (subst In-ge-iff) auto
have k-condition-h-2: 0 < real (card B) |
using assms(3) card-B-gt-0 by (intro divide-pos-pos) auto

note k-condition = balls-and-bins-approz-helper|OF k-condition-h assms(4)]
define ¢ :: real = real where ¢ = (Az. min z 1)

define f where f = (Az. 1 — (—1)"k / real (fact k) * ffact k (z—1))
define g where g = (\z. p z — fx)
have p-exp: p z = fz + g z for z

unfolding g-def by simp

have k-ge-2: k > 2
using k-condition(1) by simp

define v where v = 1 / real (fact k)
have vy-nonneg: v > 0
unfolding ~y-def by simp

have k-le-k-plus-1: k < k+1
by simp

have f e P k

unfolding f-def by (intro Polynomials-intros)
hence f-poly: f € P (k+1)

using Polynomials-mono|OF k-le-k-plus-1] by auto

have g-diff: |gz — g (z—1)| = ffact (k—1) (z—2) / fact (k—1)
if x > k for z :: real
proof —
have z > 2 using k-ge-2 that by simp
hence ¢ z = ¢ (z— 1)
unfolding ¢-def by simp
hence |g z — g (z—1)| = |f (s-=1) — f 3l
unfolding g-def by (simp add:algebra-simps)
also have ... = |(=1)7k / real (fact k) * (ffact k (z—2) — ffact k (z—1))|
unfolding f-def by (simp add:algebra-simps)
also have ... = 1 / real (fact k) * |ffact k (z—1) — ffact k ((z—1)—1)]
by (simp add:abs-mult)

also have ... = 1 / real (fact k) * real k x |ffact (k—1) (z—2)|
by (subst ffact-suc-diff, simp add:abs-mult)
also have ... = |ffact (k—1) (z—2)| / fact (k—1)

using k-ge-2 by (subst fact-reduce) auto
also have ... = ffact (k—1) (z—2) / fact (k—1)
unfolding ffact-eq-fact-mult-binomial using that k-ge-2
by (intro arg-cong2|where f=(/)] abs-of-nonneg ffact-nonneg) auto
finally show ?thesis by simp
qed
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have f-approz-p: f z = ¢ z if f-approz-p-1: z € real * {0..k} for x
proof (cases © = 0)
case True
hence fo = 1 — (—1)7k / real (fact k) * ([ = 0..<k. — (real i+1))
unfolding f-def prod-ffact[symmetric] by (simp add:algebra-simps)
also have ... = 1 — (—=1)7k / real (fact k) = (([[7 = 0..<k. (= 1)=real) x ([[i = 0..<k. real
i+1))
by (subst prod.distrib[symmetric]) simp
also have ... = 1 — (—1)7k / real (fact k) x ((—1) "k = ([[¢ € (M\z. z + 1) “{0..<k}. real 7))
by (subst prod.reindex, auto simp add:inj-on-def comp-def algebra-simps)
also have ... = 1 — (—=1)7k / real (fact k) = (—=1) 7k = ([[7 € {1..k}. real 7))
by (intro arg-cong2[where f=(—)] arg-cong2|where f=(x)| prod.cong refl) auto
also have ... = 0
unfolding fact-prod by simp
also have ... = p z
using True p-def by simp
finally show ?thesis by simp
next
case Fulse
hence a: = > 1 using that by auto
obtain z’ where z'-def: ©’' € {0..k} © = real ©’
using f-approz-p-1 by auto
hence z’ — 1 € {0..<k} using k-ge-2 by simp
moreover have x— real 1 = real (z'—1)
using False z'-def(2) by simp
ultimately have b: x — I = real (z' — 1) 2’ — 1 <k
by auto

have fz = 1 — (— 1) "k / real (fact k) * real (ffact k (z' — 1))
unfolding f-def b of-nat-ffact by simp

also have ... = 1
using b by (subst ffact-nat-triv, auto)
also have ... = p z

unfolding ¢-def using a by auto
finally show ?thesis by simp
qed

have ¢2: |Zix " lx Zjx " (s — )] < real (card R " s)
ifle{.sjforsijlz
proof —
have |Zix " lxZjx " (s— D < Zizxz " IlxZjz (s—1)
unfolding Z-def by auto
also have ... < real (card R) 1 % real (card R) ~ (s—I)
unfolding Z-def
by (intro mult-mono power-mono of-nat-mono card-mono fin-R) auto

also have ... = real (card R) s using that
by (subst power-add[symmetric]) simp
also have ... = real (card R”s)
by simp
finally show ?thesis by simp
qed

have ¢:real (card A) + real (card B) € real ‘{..2 x card R} if AC RBC Rfor AB
proof —
have card A + card B < card R + card R
by (intro add-mono card-mono fin-R that)
also have ... = 2 x card R by simp
finally show ?thesis by force
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qed

have g-eq-0-iff-2: abs (gz) x y=0ifx € Zz > 0z < k for z y :: real
proof —
have 3z’. z = real-of-int z' N2/ <k ANz’ >0
using that Ints-def by fastforce
hence 3z’ 2 =real 2z’ N 2’ < k
by (metis nat-le-iff of-nat-nat)
hence z € real ‘ {0..k}
by auto
hence gz =0
unfolding g-def using f-approz-p by simp
thus “thesis by simp
qed

have g-bound-abs: |[w. g (f w) Op| < ([w. ffact (k+1) (f w) Op) * v
(is 2L < ?R)
if range f C real ‘{..m} for m and p :: (Yfa = 'b) pmf and f :: ('a = 'b) = real
proof —
have f-any-integrable:
integrable p (Aw. h (f w)) for h :: real = real
using that
by (intro integrable-pmf-iff-bounded[where C=Maz (abs ‘ h* real * {..m})]
Maz-ge finite-imagel imagel) auto

have f-val: f w € real ‘ {..m} for w using that by auto
hence f-nat: f w € N for w
unfolding Nats-def by auto

have f-int: f w > real y + 1 if f w > real y for y w
proof —
obtain z where z-def: f w = real x x < m using f-val by auto
hence y < z using that by simp
hence y + 1 < z by simp
then show ?thesis using z-def by simp
qed

have f-nonneg: f w > 0 for w

proof —
obtain z where z-def: f w = real r + < m using f-val by auto
hence z > 0 by simp
then show ?thesis using x-def by simp

qed

have —(real z < f w) if z > m for z w

proof —
obtain z where z-def: f w = real z + < m using f-val by auto
then show ?thesis using z-def that by simp

qed

hence max-Z1: measure p {w. real t < f w} = 0 if z > m for z
using that by auto

have ?L < ([w. |g (f w)| Op)
by (intro integral-abs-bound)

also have ... = (D" y€ereal ‘ {..m}. |g y| * measure p {w. f w = y})
using that by (intro pmf-exp-of-fin-function) auto
also have ... = (>_ ye{..m}. |g (real y)| * measure p {w. f w = real y})
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by (subst sum.reindex) (auto simp add:comp-def)
also have ... = (D" ye{..m}. |g (real y)| *
(measure p ({w. fw = real y} U {w. f w > y}) — measure p {w. f w > y}))
by (subst measure-Union) auto
also have ... = (3" ye{..m}. |g (real y)| * (measure p {w. f w > y} — measure p {w. f w >
1)
by (intro sum.cong arg-cong2[where f=(x)] arg-cong2[where f=(—)]
arg-cong|where f=measure p|) auto
also have ... = (3 ye{..m}. |g (real y)| * measure p {w. f w > y}) —
(> ye{..m}. |g (real y)| * measure p {w. f w > y})
by (simp add:algebra-simps sum-subtractf)
also have ... = (> ye{..m}. |g (real y)| * measure p {w. f w > y}) —
(>-ye{..m}. |g (real y)| * measure p {w. f w > real (y+1)})
using f-int
by (intro sum.cong arg-cong2[where f=(—)] arg-cong2|where f=(x)]
arg-cong[where f=measure pl) fastforce+
also have ... = (> ye{..m}. |g (real y) | * measure p {w. f w > real y}) —
(>-yeSuc “{..m}. |g (real y — 1)| * measure p {w. f w > real y})
by (subst sum.reindex) (auto simp add:comp-def)
also have ... = (D" ye{..m}. |g (real y) | x measure p {w. f w > real y}) —
- ye{1..m}. |g (real y — 1)| * measure p {w. f w > real y})
using maz-Z1 image-Suc-atMost
by (intro arg-cong2|where f=(—)] sum.mono-neutral-cong) auto
also have ... = (D" ye{k+1..m}. |g (real y) | * measure p {w. f w > y}) —
- yel{k+1..m}. |g (real y — 1)] * measure p {w. f w > y})
using k-ge-2
by (intro arg-cong2|where f=(—)] sum.mono-neutral-cong-right balll g-eq-0-iff-2)
auto
also have ... = (>_ye{k+1..m}. (|g (real y)| — |g (real y—1)|) * measure p {w. f w > y})
by (simp add:algebra-simps sum-subtractf)
also have ... < (>_ ye{k+1..m}. |g (real y)— g (real y—1)| *
measure p {w. ffact (k+1) (f w) > ffact (k+1) (real y)})
using ffact-mono by (intro sum-mono mult-mono measure-pmf.pmf-mono|OF refl]) auto
also have ... = (>_ ye{k+1..m}. (ffact (k—1) (real y—2) / fact (k—1)) =
measure p {w. ffact (k+1) (f w) > ffact (k+1) (real y)})
by (intro sum.cong, simp-all add: g-diff)
also have ... < (3" ye{k+1..m}. (ffact (k—1) (real y—2) / fact (k—1)) *
((J w. ffact (k+1) (f w)0p) / fact (k+1) (real )))
using k-ge-2 f-nat
by (intro sum-mono mult-left-mono pmf-markov f-any-integrable
divide-nonneg-pos ffact-of-nat-nonneg ffact-pos) auto
also have ... = ([w. ffact (k+1) (f w) Op) / fact (k—1) = (3 ye{k+1..m}.
fact (k—1) (real y — 2) / ffact (Suc (Suc (k—1))) (real y))
using k-ge-2 by (simp add:algebra-simps sum-distrib-left)
also have ... = ([w. ffact (k+1) (f w) 9p) / fact (k—1) = (3 ye{k+1..m}.
ffact (k—1) (real y — 2) / (real y x (real y — 1) * ffact (k—1) (real y — 2)))
by (subst ffact-Suc, subst ffact-Suc, simp)
also have ... = ([w. ffact (k+1) (f w) dp) / fact (k—1) x
O yel{k+1..m}. 1 / (real y % (real y — 1)))
using order.strict-implies-not-eq| OF ffact-pos] k-ge-2
by (intro arg-cong2[where f=(x)] sum.cong) auto
also have ... = ([w. ffact (k+1) (f w) dp) / fact (k—1) *
S ye{Suc k.m}. 1 [ (realy — 1) — 1/(real y))
using k-ge-2 by (intro arg-cong2[where f=(x)] sum.cong) (auto simp add: divide-simps)
also have ... = ([w. ffact (k+1) (f w) Op) / fact (k—1) *
(X ye{Suc k.m}. (=1/(real y)) = (=1 / (real (y — 1))))
using k-ge-2 by (intro arg-cong2[where f=(x)] sum.cong) (auto)
also have ... = ([w. ffact (k+1) (f w) dp) / fact (k—1) *
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(of-bool (k < m) * (1/real k—1/real m))
by (subst sum-telescope-eq, auto)
also have ... < ([w. ffact (k+1) (f w) dp) / fact (k—1) = (1 / real k)
using k-ge-2 f-nat
by (intro mult-left-mono divide-nonneg-nonneg integral-nonneg
ffact-of-nat-nonneg) auto
also have ... = 7R
using k-ge-2 unfolding ~-def by (cases k) (auto simp add:algebra-simps)
finally show ?thesis by simp
qed

have z1-g-bound: |[w. g (Z i w) dp ¢| < (real (card R) | real (card B)) * ~y
(is ?2L1 < ?R1)if i € Bforic
proof —

have ?L1 < ([w. ffact (k+1) (Ziw) dp c) * v
unfolding Z-def using fin-R
by (intro g-bound-abs[where m1=card R]) (auto intro':imagel card-mono)
also have ... = ffact (k+1) (real (card R)) x (1 / real (card B)) (k+1) = v
using that by (subst hit-count-factorial-moments|OF - - assms(2)], simp-all)
also have ... = real (ffact (k+1) (card R)) * (1 / real (card B)) (k+1) =
by (simp add:of-nat-ffact)
also have ... < real (card R™(k+1)) = (1 / real (card B)) (k+1) * 7
using y-nonneg
by (intro mult-right-mono of-nat-mono ffact-bound, simp-all)
also have ... < (real (card R) / real (card B)) (k+1) %
by (simp add:divide-simps)
also have ... < (real (card R) / real (card B)) "1 %~y
using assms(1) card-B-gt-0 vy-nonneg by (intro mult-right-mono power-decreasing) auto
also have ... = ?R1 by simp
finally show ?thesis by simp
qed

have g-add-bound: |[w. g (Ziw + Zjw) dp c| < 27(k+1) x v
(is L1 < #R1) if ij-in-B: i € Bj € Bi# jforijc
proof —
have ?L1 < ([w. ffact (k+1) (Ziw + Zjw) dp c) * v
unfolding Z-def using assms(1)
by (intro g-bound-abs[where mi1=2xcard R]) (auto introl:imagel q)
also have ... < 27(k+1) * v
by (intro v-nonneg mult-right-mono hit-count-factorial-moments-2[OF that(1,2,3) - assms(1,2)])
auto
finally show ?thesis by simp
qed

have Z-poly-diff:
(Jw. ¢ (Ziw)d?pl) — (fw. ¢ (Ziw)d?2)| < 2 % ((real (card R) | card B) x )
(is L < 2 x ?R) if { € B for i
proof —
note Z-poly-eq =
hit-count-poly-eq| OF that assms(2)[of True] assms(2)[of False] f-poly]

have ?L = |(fw. f (Ziw) 8%1) + (fw. g (Ziw) d%1) —
(Jw. f(Ziw)d?p2) — (fw. g (Ziw)0?%p2)
using Z-integrable[OF assms(2)] unfolding y-exp by simp

also have ... = |(fw. g (Ziw) 0%1) + (= (Jw. g (Ziw) d?2))|
by (subst Z-poly-eq) auto

also have ... < |(fw. g (Ziw) d%1)| + |(Jw. 9 (Ziw) 0?p2)]|
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by simp
also have ... < R + 7R
by (intro add-mono z1-g-bound that)
also have ... = 2 x 7R
by (simp add:algebra-simps)
finally show ?thesis by simp
qed

have Z-poly-diff-2: |(fw. ¢ (Ziw) 0%1) — (fw. ¢ (Ziw) d%2)| < 2 %~
(is /L < ?R) if ¢ € B for ¢
proof —
have ?L < 2 x ((real (card R) / real (card B)) * )
by (intro Z-poly-diff that)
also have ... < 2 x (1 * 7)
using assms fin-B that v-nonneg card-gt-0-iff
by (intro mult-mono that iff D2[OF pos-divide-le-eq]) auto

also have ... = ?R by simp
finally show ?thesis by simp
qged

have Z-poly-diff-3: |([w. ¢ (Ziw + Zjw) 0%2) — (Jw. ¢ (Ziw + Zjw) d%1)| <
27(k+2)xy
(is?L< ?R)ifiec Bje Bi#jforij
proof —
note Z-poly-eq-2 =
hit-count-sum-poly-eq[ OF that(1,2) assms(2)[of True] assms(2)[of False] f-poly]

have 7L = |(fw. f (Ziw+ Zjw) 0%2) + (Jw. g (Ziw+ Zjw)d?%2) —
(Jw. f(Ziw+ Zjw)dfpl) — (Jw. g(Ziw+ Zjw)d?pl)]
using Z-any-integrable-2]OF assms(2)] unfolding ¢-exp by simp

also have ... = [(fw. g (Ziw+ Zjw)0%2) + (— (Jw. g (Ziw+ Zjw) d?1))]
by (subst Z-poly-eq-2) auto

also have ... < |(fw. g (Ziw+ Zjw) 0%l)|+ |(Jw. g (Ziw+ Zjw) d?2)|
by simp

also have ... < 27(k+1)%y + 27(k+1)xy
by (intro add-mono g-add-bound that)

also have ... = 7R
by (simp add:algebra-simps)

finally show ?thesis by simp

qed

have Y-eq: Yw = (i€ B. ¢ (Ziw)) if w € set-pmf (p ¢) for c w
proof —
havew ‘R C B
proof (rule image-subsetl)
fix z assume a:z € R
have w z € set-pmf (map-pmf (Mw. w z) (p ¢))
using that by (subst set-map-pmf) simp

also have ... = set-pmf (pmf-of-set B)
by (intro arg-cong[where f=set-pmf] assms ran|OF assms(2)] a)
also have ... = B

by (intro set-pmf-of-set fin-B B-ne)
finally show w =z € B by simp
qed
hence (w ‘R) =BnNw ‘R
by auto
hence Y w = card (BN w ‘R)
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unfolding Y-def by auto

also have .. = (3.7 € B. of-bool (i € w ‘ R))
unfolding of-bool-def using fin-B by (subst sum.If-cases) auto
also have ... = (3_i € B. of-bool (card {r € R. wr =1} > 0))

using fin-R by (intro sum.cong arg-conglwhere f=of-bool])
(auto simp add:card-gt-0-iff)
also have ... = ()7 € B. p(Z i w))
unfolding -def Z-def by (intro sum.cong) (auto simp add:of-bool-def)
finally show ?thesis by simp
qed

let 202 = Mz y. oz + oy — ¢ (z+y))
let ?Bd = {z € B x B. fst x # snd z}

have Y-sq-eq: Y w™ 2 = (D i € ?Bd. 202 (Z (fsti) w) (Z (sndi) w)) + Y w
(is 7L = ?R) if w € set-pmf (p ¢) for c w
proof —
have a: ¢ (Z z w) = of-bool(card {r € R. w r = z} > 0) for z
unfolding y-def Z-def by auto
have b: p (Zzw+ Zyw) =
of-bool( card {r € R.wr =2z} >0V card {re€ R.wr =y} >0)forzy
unfolding ¢-def Z-def by auto
have ¢: p (Zzw) x p(Zyw) = %02 (Zzw) (Zyw) forzy
unfolding a b of-bool-def by auto
have d: p (Zzw) x o(Zz w) = ¢ (Zz w) forx
unfolding a of-bool-def by auto

have ?L = (3. i€B x B. ¢ (Z (fst i) w) * ¢ (Z (snd i) w))
unfolding Y-eq[OF that] power2-eq-square sum-product sum.cartesian-product
by (simp add:case-prod-beta)

also have ... = (> i€?Bd U {z € B X B. fst x = snd z}. ¢ (Z (fst i) w) * ¢ (Z (snd i) w))
by (intro sum.cong refl) auto
also have ... = (3] i€?Bd. ¢ (Z (fst i) w) * ¢ (Z (snd i) w)) +

(>oie{z € B x B. fstz = snd z}. ¢ (Z (fst i) w) x ¢ (Z (snd i) w))
using assms fin-B by (intro sum.union-disjoint, auto)
also have ... = (}_i€?Bd. %2 (Z (fst i) w) (Z (snd i) w)) +
(>Cie{z € B x B. fstz = snd z}. ¢ (Z (fst i) w) x ¢ (Z (fst i) w))
unfolding ¢ by (intro arg-cong2[where f=(+)] sum.cong) auto
also have ... = (}_i€?Bd. %2 (Z (fst i) w) (Z (snd i) w)) +
(>iefst ‘{z € Bx B. fstx=sndz}. p (Ziw)*o (Ziw))
by (subst sum.reindex, auto simp add:inj-on-def)
also have ... = (3 i€?Bd. %2 (Z (fst i) w) (Z (snd i) w)) + (O i € B. v (Ziw))
using d by (intro arg-cong2[where f=(+)] sum.cong refl d) (auto simp add:image-iff)
also have ... = 7R
unfolding Y-eq[OF that] by simp
finally show ?thesis by simp
qed

have |integral’ ?p1 Y — integral’ ?p2 Y| =
(Jw. (i€ B o(Ziw)) d?pl) — (Jw. (i€ B. p(Ziw)) d?%2)
by (intro arg-conglwhere f=abs] arg-cong2|where f=(—)]
integral-cong-AE AE-pmfI Y-eq) auto
also have ... =
(>ieB. (Jw. o(Ziw)d?pl)) — (i€ B. (Jw. p(Ziw) d?p2))|
by (intro arg-conglwhere f=abs| arg-cong2|where f=(—)]
integral-sum Z-integrable| OF assms(2)])
also have ... = [(}i € B. (Jw. (Ziw) 0%1) — (fw. p(Ziw) d?p2))]
by (subst sum-subtractf) simp
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also have ... < (3"i € B. [(Jw. p(Ziw) d%1) — (fw. p(Z i w) d?p2)]|)
by simp
also have ... < (>4 € B. 2 x ((real (card R) / real (card B)) *v))
by (intro sum-mono Z-poly-diff)
also have ... < 2 x real (card R)
using v-nonneg by (simp)
finally have Y-exp-diff-1: |integral® ?p1 Y — integral® ?p2 Y| < 2 * real (card R) *vy
by simp

have |integral’ ?p1 Y — integral® ?p2 Y| < (2 / fact k)  real (card R)
using Y-exp-diff-1 by (simp add:algebra-simps ~y-def)
also have ... < 1 / (exp 1 * (real (card B) / €)) % card R
using k-condition(3) k-condition-h-2 by (intro mult-right-mono) auto
also have ... = ¢ / (exp 1 * real (card B)) * card R
by simp
also have ... <e¢ / (1 x 1) % card R
using assms(3) card-B-gt-0
by (intro mult-right-mono divide-left-mono mult-mono) auto

also have ... = ¢ * card R
by simp

finally show 7?4
by simp

have |integral’ ?p1 Y — integral® ?p2 Y| < 2 x real (card R) *
using Y-ezxp-diff-1 by simp
also have ... < 2 x real (card B) xvy
by (intro mult-mono of-nat-mono assms y-nonneg) auto
finally have Y-exp-diff-2:
lintegral® ?p1 Y — integral® ?p2 Y| < 2 %y * real (card B)
by (simp add:algebra-simps)

have int-Y: integrable (measure-pmf (p ¢)) Y for ¢
using fin-R card-image-le unfolding Y-def
by (intro integrable-pmf-iff-bounded[where C=card R]) auto

have int-Y-sq: integrable (measure-pmf (p ¢)) (Mw. Y w™2) for ¢
using fin-R card-image-le unfolding Y-def
by (intro integrable-pmf-iff-bounded[where C=real (card R)2]) auto

have |([w. (- i € ?Bd. %p2 (Z (fst i) w) (Z (snd i) w)) d%p1) —
(Jw. (3o € ?Bd. 202 (Z (fst i) w) (Z (snd i) w)) d2p2)|
<I|(>2i € ?Bd.
(Jw. o (Z (fst i) w) 0%1) + (Jw. p(Z (snd i) w) O%pl) —
(Jw. ¢ (Z (fsti) w+ Z (snd i) w) 8?]91) (fw ( (fst i) w) 0%p2) +
(Jw. ¢ (Z (snd i) w) 0%p2) — ([w. ©(Z (fst 2) w+ Z (snd i) w) 07p2)))| (is 7R3 < -)
using Z-integrable[OF assms(2)] Z-any-integrable- 2[0F assms(2)]
by (simp add:integral-sum sum-subtractf)
also have ... = |(>_i € ?Bd.
((Jw. 9 (Z (fst §) ) 0%p1) — (Jw. 9(Z (fot i) w) D7p2)) +
(fw. ¢ (Z (snd i) w) 8%1) — (Jw. ¢(Z (snd i) w) O?p2)) +
(fw. ¢ (Z (fsti) w+ Z (snd i) w) 2p2) — (fw. p(Z (fst i) w + Z (snd i) w) d%p1)))|
by (intro arg-conglwhere f=abs] sum.cong) auto
also have ... < (> i € ?Bd. |
(- (2 U] ) 0101) = (f - o2 (5. 0) 0%92) ¢
(fw. ¢ (Z (snd i) w) 8%p1) — (Jw. p(Z (snd i) w) 3?p2)) +
(Jw. ¢ (Z (fsti) w+ Z (snd i) w) 2p2) — (fw. p(Z (fst i) w + Z (snd i) w) d%p1))]|)
by (intro sum-abs)
also have ... < (> i € ?Bd.
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([ (Z (st ) w) 0%p1) — ([ 92 (st §) w) 07p2)] +
|([w. ¢ (Z (snd i) w) 02p1) — (fw. p(Z (snd i) w) O2p2)| +
|(Jw. o (Z (fsti) w+ Z (snd i) w) %p2) — (fw. (Z (fst i) w + Z (snd i) w) d?p1)]|)
by (intro sum-mono) auto
also have ... < (i € ?Bd. 2%y + 2 xy + 27(k+2)*7)
by (intro sum-mono add-mono Z-poly-diff-2 Z-poly-diff-3) auto
also have ... = (27(k+2)+4) *y * real (card ?Bd)
by (simp add:algebra-simps)
finally have Y-sq-exp-diff-1:?R3 < (27(k+2)+4) *v * real (card ?Bd)
by simp

have |[(fw. Y w "2 0%1) — (Jw. Y w2 09p2)| =

|(fw. (i€ ?Bd. %2 (Z (fst i) w) (Z (snd i) w)) + Y w d%1) —

(Jw. (O2i € ?Bd. 202 (Z (fsti) w) (Z (snd i) w)) + YV w %2

by (intro-cong [o2 (=), o1 abs] more: integral-cong-AE AE-pmfl Y-sq-eq’) auto
also have ... < |(fw. Y w 8%1) — (fw. Y w 0%2)| +

|(fw. (i€ ?Bd. %2 (Z (fst i) w) (Z (snd i) w)) O%p1) —

(Jw. (O2i€ ?Bd. 202 (Z (fst i) w) (Z (snd i) w)) d2p2)|

using Z-integrable[OF assms(2)] Z-any-integrable-2]OF assms(2)] int-Y by simp
also have ... < 2 vy x real (card B) + 7R3

by (intro add-mono Y-exp-diff-2, simp)
also have ... < (27(k+2)+4) #v * real (card B) + (27 (k+2)+4) *v * real (card ?Bd)

using 7y-nonneg by (intro add-mono Y-sq-exp-diff-1 mult-right-mono) auto

also have ... = (27(k+2)+4) *v * (real (card B) + real (card ?Bd))
by (simp add:algebra-simps)
also have ... = (27(k+2)+4) * 7 * real (card B) 2

using power2-nat-le-imp-le
by (simp add:card-distinct-pairs of-nat-diff)
finally have Y-sq-exp-diff:
(Jw. Yw 20%1) — (Jw. Y w29%2)| < (27(k+2)+4) *y * real (card B) "2 by simp

have Y-exp-rough-bound: |integral™ (p ¢) Y| < card B (is ?L < ?R) for ¢
proof —
have 7L < ([w. |Y w| d(p ¢))
by (intro integral-abs-bound)
also have ... < ([w. real (card R) 9(p ¢))
unfolding Y-def using card-image-le]OF fin-R)
by (intro integral-mono integrable-pmf-iff-bounded[where C=card R))
auto
also have ... = card R by simp
also have ... < card B using assms by simp
finally show ?thesis by simp
qed

have |measure-pmf.variance ?pl1 Y — measure-pmf.variance ?p2 Y| =
(Jw. Yw 20%1) - (Jw. Ywd 1) 2 - ((Jw. Yw 20%2) — (fw. Y wd 22)72)]
by (intro-cong [o2 (=), o1 abs] more: measure-pmf.variance-eq int-Y int-Y-sq)
also have ... < |(fw. Yw™29%1) — (fw. Yw 20%2)| + |(fw. Ywd #p1)? — (Jw. Yw
9 7p2)?|
by simp
also have ... = [(fw. Y w2 0%1) — (fJw. Y w2 0%2)| +
(Jw. Ywd %l) — (Jw. Ywd 2p2)x|(fw. Y wd pl) + (Jw. Y wd ?p2)]
by (simp add:power2-eq-square algebra-simps abs-mult[symmetric])
also have ... < (27(k+2)+4) *v * real (card B) "2 + (2% xreal (card B)) =
(|fw. Y wdtpl] + |[w. YV wd ?p2])
using y-nonneg
by (intro add-mono mult-mono divide-left-mono Y-sq-exp-diff Y-exp-diff-2) auto
also have ... < (27(k+2)+4)*y * real (card B) "2 + (2%y * real (card B)) x*
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(real (card B) + real (card B))
using y-nonneg by (intro add-mono mult-left-mono Y-exp-rough-bound) auto
also have ... = (27(k+2)+273) % v x real (card B) 2
by (simp add:algebra-simps power2-eq-square)
also have ... < (27(k+2)+27(k+2)) * v * real (card B) "2
using k-ge-2 vy-nonneg
by (intro mult-right-mono add-mono power-increasing, simp-all)
also have ... = (27(k+3) / fact k) * card B"2
by (simp add:power-add ~y-def)
also have ... < (1 / (real (card B) / €))"2 x card B™2
using k-condition(2) k-condition-h-2
by (intro mult-right-mono) auto
also have ... = ¢72
using card-B-gt-0 by (simp add:divide-simps)
finally show ?B
by simp
qed

lemma
assumes card R < card B
assumes lim-balls-and-bins (k+1) p
assumes k > 7.5 * (In (card B) + 2)
shows exp-approz-2: |measure-pmf.expectation p Y — p| < card R / sqrt (card B)
(is 7AL < ?AR)
and var-approz-2: measure-pmf.variance p Y < real (card R)"2 / card B
(is ?BL < ?BR)
proof —
define ¢ where ¢ = (\c. if ¢ then Q else p)

have g-altdef: ¢ True = Q ¢q False = p
unfolding ¢-def by auto

have a:lim-balls-and-bins (k+1) (q c) for ¢
unfolding ¢-def using assms lim-balls-and-bins-from-ind-balls-and-bins by auto

define ¢ :: real where ¢ = min (sqrt (1/card B)) (1 / exp 2)

have ¢: ¢ € {0<..1 / exp 2}
using card-B-gt-0 unfolding e-def by auto

have b: 5 * In (card B / €) / In (In (card B / €)) < real k
proof (cases card B > exp 4)
case True
hence sqrt(1/card B) < sqrt(1/exp 4)
using card-B-gt-0 by (intro real-sqrt-le-mono divide-left-mono) auto
also have ... = (1 /exp 2)
by (subst powr-half-sqrt[symmetric]) (auto simp add:powr-divide exp-powr)
finally have sqrt(1/card B) < (1 / exp 2) by simp
hence e-eq: € = sqrt(1 /card B)
unfolding e-def by simp

have exp (6::1real) = (exp 4) powr (3/2)
by (simp add:exp-powr)
also have ...< card B powr (3/2)
by (intro powr-mono2 True) auto
finally have ¢/:exp 6 < card B powr (3/2) by simp

have (2::real) < exp 6
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by (approzimation 5)
hence q¢1: 2 < real (card B) powr (3 / 2)
using ¢4 by argo
have (1::real) < In(exp 6)
by (approzimation 5)
also have ... < In (card B powr (3 / 2))
using card-B-gt-0 by (intro iff D2[OF In-le-cancel-iff] ¢4) auto
finally have ¢2: 1 < In (card B powr (3 / 2)) by simp
have exp (exp (1::real)) < exp 6
by (approzimation 5)
also have ... < card B powr (3/2) using ¢4 by simp
finally have exp (exp 1) < card B powr (3/2)
by simp
hence ¢3: 1<In(in (card B powr (3/2)))
using card-B-gt-0 q1 by (intro iff D2[OF In-ge-iff] In-gt-zero, auto)

have 5 % In (card B / €) / In (In (card B ] €)) =
5 * In (card B powr (14+1/2)) / In(ln (card B powr (1+1/2)))
unfolding powr-add by (simp add:real-sqrt-divide powr-half-sqrt[symmetric] e-eq)
also have ... < § x In (card B powr (1+1/2)) / 1
using True g1 ¢2 ¢3 by (intro divide-left-mono mult-nonneg-nonneg mult-pos-pos
In-ge-zero In-gt-zero) auto

also have ... = 5 % (1+1/2) x In(card B)
using card-B-gt-0 by (subst In-powr) auto
also have ... = 7.5 x In(card B) by simp

also have ... < k using assms(3) by simp
finally show ?thesis by simp
next
case Fulse
have (1::real) / exp 2 < sqrt(1 / exp 4)
by (simp add:real-sqrt-divide powr-half-sqrt[symmetric] exp-powr)
also have ...< sqrt(1 /card B)
using Fualse card-B-gt-0
by (intro real-sqrt-le-mono divide-left-mono mult-pos-pos) auto
finally have 1 / exp 2 < sqrt(1/card B)
by simp
hence e-eq: ¢ = 1/ exp 2
unfolding e-def by simp

have ¢2:5 x (lnx + 2) /In (lnz + 2) < 7.5 % (Inz + 2)
if z € {1..exp 4} for z:: real
using that by (approzimation 10 splitting: x=10)

have 5 % In (card B / ) / In (In (card B ] €)) =
5 % (In (card B) +2) / In (In (card B) + 2)

using card-B-gt-0 unfolding e-eq by (simp add:in-mult)
also have ... < 7.5 * (In (card B) + 2)

using False card-B-gt-0 by (intro ¢2) auto
also have ... < k using assms(3) by simp
finally show ?thesis by simp

qed

have ?AL = |([w. Y w 8(q True)) — (fw. Y w (g False))|
using exp-balls-and-bins unfolding ¢-def by simp

also have ... < ¢ % card R
by (intro exp-approx[OF assms(1) a ¢ b])

also have ... < sqrt (1 / card B) * card R
unfolding e-def by (intro mult-right-mono) auto

93



also have ... = ?AR using real-sqrt-divide by simp
finally show ?AL < ?AR by simp

show ?BL < ?BR
proof (cases R= {})
case True
then show ?thesis unfolding Y-def by simp
next
case Fulse
hence card R > 0 using fin-R by auto
hence card-R-ge-1: real (card R) > 1 by simp

have ?BL < measure-pmf.variance (q True) Y +
|measure-pmf.variance (¢ True) Y — measure-pmf.variance (q False) Y|
unfolding ¢-def by auto

also have ... < measure-pmf.variance (¢ True) Y + €72
by (intro add-mono var-approx|OF assms(1) a ¢ b)) auto

also have ... < measure-pmf.variance (¢ True) Y + sqrt(1 / card B) "2
unfolding e-def by (intro add-mono power-mono) auto

also have ... < card R * (real (card R) — 1) / card B + sqrt(1 / card B) 2
unfolding ¢-altdef by (intro add-mono var-balls-and-bins) auto

also have ... = card R * (real (card R) — 1) / card B+ 1 / card B
by (auto simp add:power-divide real-sqrt-divide)

also have ... < card R * (real (card R) — 1) / card B + card R / card B
by (intro add-mono divide-right-mono card-R-ge-1) auto

also have ... = (card R * (real (card R) — 1) + card R) / card B
by argo
also have ... = ?BR

by (simp add:algebra-simps power2-eq-square)
finally show ?BL < ?BR by simp
qed
qed

lemma devitation-bound:
assumes card R < card B
assumes lim-balls-and-bins k p
assumes real k > Cq * In (real (card B)) + Cs3
shows measure p {w. |Y w — p| > 9 * real (card R) / sqrt (real (card B))} < 1/ 276

(is 7L < 7R)
proof (cases card R > 0)
case True

define k' :: nat where k' =k — 1
have (1::real) < 7.5 % 0 + 16 by simp
also have ... < 7.5 x In (real (card B)) + 16

using card-B-ge-1 by (intro add-mono mult-left-mono In-ge-zero) auto
also have ... < k using assms(3) unfolding Cs-def Cs-def by simp
finally have k-ge-1: k£ > 1 by simp
have lim: lim-balls-and-bins (k'+1) p

using k-ge-1 assms(2) unfolding k’-def by simp

have k’-min: real k' > 7.5 * (In (real (card B)) + 2)
using k-ge-1 assms(3) unfolding Cs-def Cs-def k'-def by simp

let ?r = real (card R)

let ?b = real (card B)

have a: integrable p (Mw. (Y w)?)
unfolding Y-def
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by (intro integrable-pmf-iff-bounded[where C=real (card R)2])
(auto introl: card-image-le[OF fin-R))

have ?L < P(w in measure-pmf p. |Y w— ([w. Y w 9p)| > 8x7r ] sqrt ?b)
proof (rule measure-pmf.pmf-mono[ OF refl])
fix w assume w € set-pmf p
assume a:w € {w. 9 x real (card R) / sqrt (real (card B)) < |Y w — pl}
have 8 x ?r [ sqrt ?b = 9 x ?r / sqrt ?b — ?r / sqrt ?b
by simp
also have ... < |Y w — pu| — | (fw. Y w dp) — pl
using a by (intro diff-mono exp-approz-2[OF assms(1) lim k'-min]) simp
also have ... < |Y w — ([w. Y w 9p)|
by simp
finally have 8 % ?r / sqrt 20 < |Y w — (fw. Y w Op)| by simp
thus w € {w € space (measure-pmf p). 8 = ?r [/ sqrt ?b < |Y w — (fw. Y w dp)|}
by simp
qed
also have ... < measure-pmf.variance p Y | (8x%r | sqrt ?b) "2
using True card-B-gt-0 a
by (intro measure-pmf.Chebyshev-inequality) auto
also have ... < (?r72 / 2b) / (8x%r [ sqrt ?b) 2
by (intro divide-right-mono var-approz-2[OF assms(1) lim k’-min]) simp
also have ... = 1/276
using card-B-gt-0 True
by (simp add:power2-eq-square)
finally show ?thesis by simp
next
case Fulse
hence R = {} card R = 0 using fin-R by auto
thus ?thesis
unfolding Y-def p-def by simp
qed

end
unbundle no-intro-cong-syntax

end

5 Tail Bounds for Expander Walks

theory Distributed-Distinct-Elements-Tail-Bounds
imports

Distributed-Distinct- Elements- Preliminary
Ezpander-Graphs. Expander-Graphs-Definition
Ezxpander-Graphs. Expander-Graphs- Walks
HOL- Decision-Procs. Approzimation
Pseudorandom-Combinators

begin

This section introduces tail estimates for random walks in expander graphs, specific to
the verification of this algorithm (in particular to two-stage expander graph sampling
and obtained tail bounds for subgaussian random variables). They follow from the more
fundamental results reqular-graph.ki-chernoff-property and regular-graph.uniform-property
which are verified in the AFP entry for expander graphs [11].

hide-fact Henstock-Kurzweil-Integration.integral-sum
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unbundle intro-cong-syntax

lemma 2-In-z-min:
assumes z > (0::real)
shows z x lnx > —exp (—1)
proof —
define f where fx = x x In z for z :: real
define f' where f'z = In x + 1 for z :: real

have 0:(f has-real-derivative (f' z)) (at z) if z > 0 for z
unfolding f-def f’-def using that
by (auto introl: derivative-eq-intros)

have f 'z > 0 if exp (—1) < z for z :: real
proof —
have lnz > —1
using that order-less-le-trans|OF exp-gt-zero)
by (intro iffD2[OF In-ge-iff]) auto
thus ?thesis
unfolding f’-def by (simp)
qed

hence 3y. (f has-real-derivative y) (at z) AN 0 < y if x > exp (—1) for z :: real
using that order-less-le-trans|OF exp-gt-zero)
by (intro exl[where z=f" x| conjl 0) auto
hence f (exp (—1)) < fzif exp(—1) < z
by (intro DERIV-nonneg-imp-nondecreasing| OF that]) auto
hence 2:%thesis if exp(—1) <z
unfolding f-def using that by simp

have f'z < 0ifz > 0z < exp (—1) for z :: real
proof —
have In z < In (exp (—1))
by (intro iffD2[OF In-le-cancel-iff] that exp-gt-zero)
also have ... = —1
by simp
finally have In x < —1 by simp
thus ?thesis unfolding f’-def by simp
qed

hence Jy. (f has-real-derivative y) (at x) ANy < 0ifx > 0 z < exp (—1) for z ::

using that by (intro exI[where z=f' z] conjl 0) auto
hence f (exp (—1)) < fzifz > 0z < exp(—1)

using that(1) by (intro DERIV-nonpos-imp-nonincreasing| OF that(2)]) auto
hence 3:%thesis if © > 0z < exp(—1)

unfolding f-def using that by simp

have ?thesis if x = 0
using that by simp
thus ?thesis
using 2 8 assms by fastforce
qed

theorem (in regular-graph) walk-tail-bound:
assumes [ > 0
assumes S C verts G
defines p = real (card S) / card (verts G)
assumes v < I u+ A, <7
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shows measure (pmf-of-multiset (walks G 1)) {w. real (card {i € {.<I}. w!i € S}) > yxi}
< exp (— real I x (v« In (1/(p+A,)) — 2 x exp(—1))) (is ?L < ?R)
proof (cases 1 > 0)
case True

have 0 < p + A,

by (intro add-pos-nonneg A-ge-0 True)
also have ... < v

using assms(5) by simp
finally have v-gt-0: 0 < v by simp

hence y-ge-0: 0 < v
by simp

have card S < card (verts G)
by (intro card-mono assms(2)) auto
hence p-le-1: p < 1
unfolding u-def by (simp add:divide-simps)

have 2: 0 < p+ Ay * (1 — p)
using p-le-1 by (intro add-pos-nonneg True mult-nonneg-nonneg A-ge-0) auto

have p + Ag *x (I — p) < pu+ Ay x 1
using A-ge-0 True by (intro add-mono mult-left-mono) auto
also have ... < v
using assms(5) by simp
also have ... < 1
using assms(4) by simp
finally have /:pu + A, x (I — p) < 1 by simp
hence 3: 1 <1 /(1 — (p+ Ao x (I — p)))
using 2 by (subst pos-le-divide-eq) simp-all

have card S < n

unfolding n-def by (intro card-mono assms(2)) auto
hence 0:p < 1

unfolding y-def n-def[symmetric] using n-gt-0 by simp

have v * In (1 / (n+ Ag)) — 2xexp (— 1) =y xIn (1 / (g + Agx1))+0 —2xexp (— 1)
by simp

also have ... <y xIn (1 / (p + Agx(1—p)))+0—2xexp(—1)
using True v-ge-0 A-ge-0 0 2
by (intro diff-right-mono mult-left-mono iff D2[OF In-le-cancel-iff] divide-pos-pos

divide-left-mono add-mono) auto

also have ... <y xIn (1 / (1 + Agx(1—p)))+(1—=)xln(1 /(1 —(p+Aa*(1—p))))—2% exp(—1)
using assms(4) 3 by (intro add-mono diff-mono mult-nonneg-nonneg In-ge-zero) auto

also have ... = (—exp(—1))+y*In(1 /(u+Aox(1—p)))+(—exp(—1))+(1—7)*xIn(1 /(1 —(ut+Aex(1—p))))
by simp

also have ... < yxln y+y*In(1/(pu+Aox(1—p)))+(L —7)*xIn(1 =)+ (1 —v)xin(1 /(1 —(p+Aax(1—p))))
using assms(4) v-ge-0 by (intro add-mono z-In-z-min) auto

also have ... = y*(In y+In(1/(p+Ag*x(1—p))))+(1 =) x(In(1—)+in(1 /(1= (p+Aex(1—p)))))
by (simp add:algebra-simps)

also have ... = x In (y(1/(pt+DAax(1—p))))+(1 =7)xn((1=7)*(1 /(1 =(ptAax(1=p)))))
using 2 / assms(4) v-gt-0
by (intro-cong [o2(+4), o2(x)] more:in-mult[symmetric] divide-pos-pos) auto

also have ... = KL-div v (u+Ay*(1—p))
unfolding KL-div-def by simp

finally have 1: v xIn (1 / (p+ Ay)) — 2 xexp (— 1) < KL-div vy (1 + Ao * (1 — p))
by simp
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have pu+A x(1—p) < pt+Agxl
using True
by (intro add-mono mult-left-mono A-ge-0) auto
also have ... < v
using assms(5) by simp
finally have p+A.x(1—p) <~ by simp
moreover have u+A x(1—p) > 0
using 0 by (intro add-pos-nonneg True mult-nonneg-nonneg A-ge-0) auto
ultimately have u+A x(1—p) € {0<..y} by simp
hence ?L < exp (— real | x KL-div v (u+Aq+x(1—p)))
using assms(4) unfolding u-def by (intro ki-chernoff-property assms(1,2)) auto
also have ... < 7R
using assms(1) 1 by simp
finally show ?thesis by simp
next
case Fulse
hence u < 0 by simp
hence card S = 0
unfolding p-def n-def[symmetric] using n-gt-0 by (simp add:divide-simps)
moreover have finite S
using finite-subset[OF assms(2) finite-verts] by auto
ultimately have 0:S = {} by auto
have y = 0
unfolding p-def 0 by simp
hence y + A, >0
using A-ge-0 by simp
hence v > 0
using assms(5) by simp
hence ~ x real | > 0
by (intro mult-nonneg-nonneg) auto
thus ?thesis using 0 by simp
qed

theorem (in regular-graph) walk-tail-bound-2:
assumes [ > 0 A, < AA>0
assumes S C verts G
defines y = real (card S) / card (verts G)
assumes v < I pu+ A <~
shows measure (pmf-of-multiset (walks G 1)) {w. real (card {i € {.<I}. w!i € S}) > y«i}
<exp (—real l x (v« In (1/(p+A)) — 2 x exp(—1))) (is ?L < ?R)
proof (cases p1 > 0)
case True

have 0: 0 < u + A,
by (intro add-pos-nonneg A-ge-0 True)
hence 0 < pp + A
using assms(2) by simp
hence 1: 0 < (p + A) * (u + Ap)
using 0 by simp

have 3:p + A, <~

using assms(2,7) by simp
have 2: 0 <~

using 3 True A-ge-0 by simp

have ?L < exp (— real I x (v x In (1/(p+As)) — 2 * exp(—1)))
using 3 unfolding u-def by (intro walk-tail-bound assms(1,4,6))
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also have ... = exp (— (real I x (v * In (1/(p+As)) — 2 * exp(—1))))
by simp
also have ... < exp (— (real I % (y = In (1/(p+A)) — 2 x exp(—1))))
using True assms(2,3) using 0 1 2
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono diff-mono iff D2[OF In-le-cancel-iff]
divide-left-mono le-imp-neg-le) simp-all

also have ... = R
by simp
finally show ?thesis by simp
next
case Fualse

hence p < 0 by simp
hence card S = 0
unfolding p-def n-def[symmetric] using n-gt-0 by (simp add:divide-simps)
moreover have finite S
using finite-subset|OF assms(4) finite-verts] by auto
ultimately have 0:5S = {} by auto
have y = 0
unfolding p-def 0 by simp
hence y + A, >0
using A-ge-0 by simp
hence v > 0
using assms by simp
hence v * real | > 0
by (intro mult-nonneg-nonneg) auto
thus ?thesis using 0 by simp
qed

lemma (in ezpander-sample-space) tail-bound:

fixes T

assumes [ > 0 A > 0

defines p = measure (sample-pmf S) {w. T w}

assumes v < I pu+ A <~

shows measure (€ 1 A S) {w. real (card {i € {.<l}. T (w1i)}) > y«l}

< exp (— real I x (v« In (1/(p+A)) — 2 % exp(—1))) (is ?L < ?R)

proof —

let 2w = pmf-of-multiset (walks (graph-of e) 1)

define V where V = {ve verts (graph-of €). T (select S v)}

have 0: card {i € {..<l}. T (select S (w!4))} = card {i € {.<I}. w!ie V}
if w € set-pmf (pmf-of-multiset (walks (graph-of e) 1)) for w
proof —
have a0: w €# walks (graph-of e) | using that E.walks-nonempty by simp
have w ! i € verts (graph-of e) if i < | for i
using that E.set-walks-3[OF a0] by auto
thus ?thesis
unfolding V-def
by (intro arg-conglwhere f=card] restr-Collect-cong) auto
qed

have 1:E.A, < A
using see-standard(1) unfolding is-expander-def e-def by simp

have 2: V C verts (graph-of e)
unfolding V-def by simp

have u = measure (pmf-of-set {..<size S}) ({v. T (select S v)})
unfolding u-def sample-pmf-alt[OF sample-space-S]
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by simp
also have ... = real (card ({ve{..<size S}. T (select S v)})) / real (size S)

using size-S-gt-0 by (subst measure-pmf-of-set) (auto simp add:Int-def)
also have ... = real (card V) / card (verts (graph-of €))

unfolding V-def graph-of-def e-def using see-standard by (simp add:Int-commute)
finally have p-eq: o = real (card V') / card (verts (graph-of e))

by simp

have ?L = measure 2w {y. v * real | < real (card {i € {.<I}. T (select S (y!19))})}
unfolding walks by simp

also have ... = measure ?w {y. v * real | < real (card {i € {.<l}. y'ie V}H)}
using 0 by (intro measure-pmf-cong) (simp)

also have ... < 7R
using assms(5) unfolding p-eq
by (intro E.walk-tail-bound-2 assms(1,2,4) 1 2) auto

finally show ?thesis
by simp

qed

definition C; :: real where C; = exp 2 + exp 3 + (exp 1 — 1)

lemma (in regular-graph) deviation-bound:
fixes [ :: 'a = real
assumes | > 0
assumes A, < exp (—real | x In (real 1)73)
assumes A\z. z > 20 = measure (pmf-of-set (verts G)) {v. fv >z} < exp (—z * In 273)
shows measure (pmf-of-multiset (walks G 1)) {w. (3 i<—w. fi) > C1 x I} < exp (— real )
(is ?L < ?R)
proof —
let 2w = pmf-of-multiset (walks G 1)
let ?p = pmf-of-set (verts G)
let %a = real lx(exp 2 + exp 3)

define b :: real where b = exp 1 — 1
have b-gt-0: b > 0
unfolding b-def by (approzimation 5)

define L where
L k= measure 2w {w. exp (real k)xcard{ic{..<l}.f(wli)>exp(real k)} > real l/real k™2} for k

define k-maz where k-mazx = maz 4 (MAX v € verts G. nat |In (fv)]+1)
define A where A = exp (—real I * In (real 1)73)

have A,-le-A: A, < A
unfolding A-def using assms(2) by simp

have A-gt-0: A > 0
unfolding A-def by simp

have k-max-ge-4: k-max > 4
unfolding k-max-def by simp

have k-maz-ge-3: k-mazx > 3
unfolding k-mazx-def by simp

have 1:of-bool(|in(maz = (exp 1))|+1=int k) =

(of-bool(xz > exp (real k—1)) — of-bool(x > exp k)::real)
(is L1 = ?R1)ifk > 3 for k z
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proof —
have al: real k — 1 < k by simp
have ?L1 = of-bool(|in(maz x (exp 1))]|=int k—1)

by simp
also have ... = of-bool(In(maz x (exp 1))€{real k—1..<real k})
unfolding floor-eq-iff by simp
also have ... = of-bool(exp(In(maz x (exp 1)))e{exp (real k—1)..<exp (real k)})
by simp
also have ... = of-bool(max x (exp 1) €{exp (real k—1)..<exp (real k)})
by (subst exp-ln) (auto introl:maz.strict-coboundedI2)
also have ... = of-bool(z €{exp (real k—1)..<exp (real k)})
proof (cases © > exp 1)
case True
then show ?thesis by simp
next
case Fulse
have {exp (real k — 1)..<exp (real k)} C {exp (real k — 1)..}
by auto

also have ... C {exp 1..}
using that by simp
finally have {exp (real k — 1)..<exp (real k)} C {exp 1..} by simp
moreover have z ¢ {exp 1..}
using False by simp
ultimately have z ¢ {exp (real k — 1)..<exp (real k)} by blast
hence of-bool(z €{exp (real k—1)..<exp (real k)}) = 0 by simp
also have ... = of-bool(maz x (exp 1) €{exp (real k—1)..<exp (real k)})
using False that by simp
finally show ?thesis by metis
qed
also have ... = ?R1
using order-trans|OF iffD2[OF exp-le-cancel-iff al1]] by auto
finally show ?thesis by simp
qed

have 0: {nat [In (maz (fz) (exp 1))|+1} C {2..k-max} (is {?L1} C 7R2)
if x € verts G for z
proof (cases fz > exp 1)
case True
hence ?L1 = nat |In (fx)|+1
by simp
also have ... < (MAX v € verts G. nat |In (fv)]+1)
by (intro Maz-ge finite-imagel imagel that) auto
also have ... < k-max
unfolding k-max-def by simp
finally have le-0: ?L1 < k-mazx
by simp
have (1::nat) < nat |In (exp (1::real))|
by simp
also have ... < nat [In (f z)]
using True order-less-le-trans|OF exp-gt-zero]
by (intro nat-mono floor-mono iffD2[|OF In-le-cancel-iff]) auto
finally have 1 < nat [In (f z)] by simp
hence ?L1 > 2
using True by simp
hence ?L1 € ?R2
using le-0 by simp
then show ?thesis by simp
next
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case Fulse
hence {?L1} = {2}
by simp
also have ... C ?R2
using k-mazx-ge-3 by simp
finally show ?thesis by simp
qed

have 2:(3 i<w. fi) < Za+bx(D>_ k=3..<k-maz. exp k * card {ie{..<l}. f (w!i)>exp k})
(is ?L1 < ?R1) if w €# walks G | for w
proof —
have l-w: length w = [
using set-walks that by auto
have s-w: set w C verts G
using set-walks that by auto

have ?L1 < (3 i+w. exp( In (maz (f i) (exp 1))))
by (intro sum-list-mono) (simp add:less-max-iff-disj)
also have ... < (> i«w. exp (of-nat (nat |In (maz (f i) (exp 1))|+1)))
by (intro sum-list-mono iffD2[OF exp-le-cancel-iff]) linarith
also have ... = > i«w. O k=2..k-maz. exp k * of-bool (k=nat |In (maz (fi)(exp 1))]+1)))
using Int-absorb1[OF 0] subsetD[OF s-w] by (intro-cong [0y sum-list] more:map-cong)
(simp add:of-bool-def if-distrib if-distribR sum.If-cases)
also have ...=
> i—w.(> ke(insert 2{3..k-max}). exp kx of-bool(k=nat|In(maz(f i)(exp 1))]+1)))
using k-maz-ge-3 by (intro-cong [o1 sum-list] more:map-cong sum.cong) auto
also have ... = (D i<—w. exp 2% of-bool (2=nat |In (mazx (f7)(exp 1))]+1) +
(3" k=3..k-maz. exp k * of-bool (k=nat |In (max (fi)(exp 1))|+1)))
by (subst sum.insert) auto
also have ... < (> i«w. exp 2x14+(>_ k=3..k-maz. exp kx of-bool(k=nat|in(maz(f ¢)(exp
10)J+1)))
by (intro sum-list-mono add-mono mult-left-mono) auto
also have ... = (3" i<—w. exp 2+ (3 k=8..k-maz. exp kx of-bool(|In(maz(f i)(exp 1))|+1=int

k)
by (intro-cong [o1 sum-list,o1 of-bool, o2(+),02(%)] more:map-cong sum.cong) auto
also have ... =
O iw. exp 24> k=38..k-max. exp kx(of-bool(f i>exp (real k—1))—of-bool(f i>exp k))))
by (intro-cong [o1 sum-list,o1 of-bool, o2(+4),02(*)] more:map-cong sum.cong 1) auto
also have ... =
> iw. exp 24> k=2+1..<k-maz+1. exp kx(of-bool(f i>exp(real k—1))—of-bool(f i>exp
k))))
by (intro-cong [o1 sum-list,c2(+)] more:map-cong sum.cong) auto
also have ... =
(> iw. exp 243 k=2..<k-maz. exp (k+1)*(of-bool(f i>exp k)—of-bool(f i>exp (Suc k)))))
by (subst sum.shift-bounds-nat-ivl) simp
also have ... = (D i+w. exp 2+ (O k=2..<k-mazx. exp (k+1)* of-bool(f i>exp k))—
> k=2..<k-maz. exp (k+1)* of-bool(f i>exp (k+1))))
by (simp add:sum-subtractf algebra-simps)
also have ... = (3 i<w. exp 2+ (O k=2..<k-maz. exp (k+1)* of-bool(f i>exp k))—
3" k=3..<k-maz+1. exp kx of-bool(f i>exp k)))
by (subst sum.shift-bounds-nat-ivl[symmetric]) (simp cong:sum.cong)
also have ... = (> i«w. exp 2+ (3 ke insert 2 {3..<k-mazx}. exp (k+1)* of-bool(f i>exp
B)-
O k=38..<k-max+1. exp kx of-bool(f i>exp k)))
using k-maz-ge-3
by (intro-cong [o1 sum-list, oo (+), o2 (=)] more: map-cong sum.cong) auto
also have ... = (D i+w. exp 2+ exp 3 x of-bool (fi > exp 2) +
S k=3..<k-maz. exp (k+1)x of-bool(f i>exp k))— (> k=3..<k-maz+1. exp kx of-bool(f
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i>exp k)))
by (subst sum.insert) (simp-all add:algebra-simps)
also have ... < (" i«w. exp 2+exp 3+(>_ k=3..<k-maz. exp (k+1)x of-bool(f i>exp k))—
> k=3..<k-maz+1. exp kx of-bool(f i>exp k)))
by (intro sum-list-mono add-mono diff-mono) auto
also have ... = (D i<w. exp 2+exp 3+(>_ k=3..<k-maz. exp (k+1)x of-bool(f i>exp k))—
(>° ke insert k-max {8..<k-mazx}. exp kx of-bool(f i>exp k)))
using k-maz-ge-3 by (intro-cong |01 sum-list, oo (+), o2 (—)] more: map-cong sum.cong)
auto
also have ... = (3] i«w. exp 2+exp 3+(>_ k=3..<k-maz. (exp (k+1)—exp k)* of-bool(f i>exp
B)-
(exp k-maz * of-bool (f i> exp k-maz)))
by (subst sum.insert) (auto simp add:sum-subtractf algebra-simps)
also have ...<(>" i«+w. exp 2+exp 3+ (> k=3..<k-maz. (exp (k+1)—exp k)* of-bool(f i>exp
£)-0)
by (intro sum-list-mono add-mono diff-mono) auto
also have ... <(3Y_ i<w. exp 2+exp 3+ (3 k=38..<k-maz. (exp (k+1)—exp k)* of-bool(f i>exp

k)

by auto
also have ... = (3" i+—w. exp 2+exp 3+ (3 k=3..<k-maz. (exp 1—1)x(exp kx of-bool(f i>exp
£))
by (simp add:exp-add algebra-simps)
also have ... = (D i+w. exp 2+exp 3+bx(> k=3..<k-maz. exp kx of-bool(f i>exp k)))

unfolding b-def
by (subst sum-distrib-left) simp

also have ... = Za+bx(>_i=0..<l. (3] k=3..<k-maz. exp k* of-bool(f (w ! {)>exp k)))
unfolding sum-list-sum-nth by (simp add:l-w sum-distrib-left|symmetric))

also have ... = ?R1
by (subst sum.swap) (simp add:ac-simps Int-def)

finally show ?thesis by simp

qed

have 3: 3ke{3..<k-max}. gk > l/real k72 if (3 k=3..<k-maz. g k) > real | for g
proof (rule ccontr)
assume a3: ~(Ike{3..<k-maz}. g k > l/real k72)
hence g k < I/real k72 if k €{3..<k-maz} for k
using that by force
hence (> k=3..<k-maz. g k) < (O] k=38..<k-max. l/real k72)
using k-max-ge-4 by (intro sum-strict-mono) auto
also have ... < (" k=38..<k-mazx. I/ (real kx(real k—1)))
by (intro sum-mono divide-left-mono) (auto simp:power2-eq-square)

also have ... = [ * (3 k=3..<k-maz. 1 / (real k—1) — 1/k)
by (simp add:sum-distrib-left field-simps)
also have ... = [« (3" k=2+1..<(k-maz—1)+1. (—1)/k — (=1) / (real k—1))

by (intro sum.cong arg-cong2[where f=(x)]) auto
also have ... = | x (3 k=2..<(k-maz—1). (=1)/(Suc k) — (=1) / k)
by (subst sum.shift-bounds-nat-ivl) auto
also have ... = [ % (1/2 — 1 / real (k-maz — 1))
using k-max-ge-8 by (subst sum-Suc-diff’) auto
also have ... < real | « (1 — 0)
by (intro mult-left-mono diff-mono) auto
also have ... = [
by simp
finally have (> k=3..<k-maz. g k) < | by simp
thus Fulse
using that by simp
qed
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have 4: L k < exp(—real [-k+2) if k > 3 for k

proof (cases k < Inl)
case True
define v where v = 1 / (real k)? / exp (real k)
define S where S = {v € verts G. fv > exp (real k)}
define i where = card S / card (verts G)

have exp-k-ubound: exp (real k) < real |
using True assms(1)
by (simp add: In-ge-iff)

have 20 < exp (3::real)
by (approzimation 10)

also have ... < exp (real k)
using that by simp

finally have exp-k-lbound: 20 < exp (real k)
by simp

have S-range: S C verts G
unfolding S-def by simp

have p = measure (pmf-of-set (verts G)) S
unfolding u-def using verts-non-empty Int-absorbl[OF S-range)
by (simp add:measure-pmf-of-set)
also have ... = measure (pmf-of-set (verts G)) {v. fv > exp (real k)}
unfolding S-def using verts-non-empty by (intro measure-pmf-cong) auto
also have ... < exp (— exp (real k) = In (exp (real k)) ~ 3)
by (intro assms(3) exp-k-lbound)
also have ... = exp (—(exp(real k) * real k73))
by simp
finally have p-bound: pn < exp (—exp(real k) * real k3) by simp

have pu+A < exp (—exp(real k) * real k73) + exp (— real | * In (real ) ~ 3)
unfolding A-def by (intro add-mono p-bound) auto
also have ... = exp (—(exp(real k) * real k73)) + exp (— (real | x In (real 1) ~ 3))
by simp
also have ... < exp (—(exp(real k) * real k73)) + exp (—(exp(real k) * In(exp (real k))73))
using assms(1) exp-k-ubound by (intro add-mono iffD2[OF exp-le-cancel-iff] le-imp-neg-le
mult-mono power-mono iffD2[OF In-le-cancel-iff]) simp-all

also have ... = 2 x exp (—exp(real k) * real k73)
by simp

finally have p-A-bound: u+A < 2 * exp (—exp(real k) * real k73)
by simp

have u+A < 2 x exp (—exp(real k) * real k73)
by (intro p-A-bound)

also have ... = exp (—exp(real k) * real k~3 + In 2)
unfolding exp-add by simp

also have ... = exp (—(ezp(real k) * real k°3 — In 2))
by simp

also have ... < exp (—((1+ real k) x real k°3 — In 2))
using that by (intro iff D2[OF exp-le-cancel-iff] le-imp-neg-le diff-mono mult-right-mono
exp-ge-add-one-self-aur) auto
also have ... = exp (—(real k™4 + (real k™3— In 2)))
by (simp add:power)-eq-zzxx power3-eq-cube algebra-simps)
also have ... < exp (—(real k™4 + (23— In 2))) using that
by (intro iff D2[OF exp-le-cancel-iff] le-imp-neg-le add-mono diff-mono power-mono) auto
also have ... < exp (—(real k74 + 0))
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by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le add-mono order.refl) (approxzimation 5)
also have ... < exp (—(real k73 * real k))

by (simp add:power}-eq-rxzx power3-eq-cube algebra-simps)
also have ... < exp (—(273 * real k)) using that

by (intro iffD2]OF exp-le-cancel-iff] le-imp-neg-le mult-right-mono power-mono) auto
also have ... < exp (—3% real k)

by (intro iffD2[OF exp-le-cancel-iff]) auto
also have ... = exp (—(real k + 2 * real k) )

by simp
also have ... < exp (—(real k + 2 x In k) )

using that

by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le add-mono mult-left-mono In-bound) auto
also have ... = exp (—(real k + In(k72)) )

using that by (subst In-powr|[symmetric]) auto
also have ... = v

using that unfolding ~-def exp-minus exp-add inverse-eq-divide

by (simp add:algebra-simps)
finally have u-A-le-y: p+A<~y

by simp

have > 0
unfolding p-def n-def[symmetric] using n-gt-0
by (intro divide-nonneg-pos) auto

hence p-A-gt-0: u+A>0
using A-gt-0 by simp

have v = 1 / ((real k) * exp (real k))

unfolding ~y-def by simp
also have ... < 1 / (272 x exp 2)

using that by (intro divide-left-mono mult-mono power-mono) (auto)
finally have y-ubound: v < 1 / (4 * exp 2)

by simp

have v < 1 / (4 * exp 2)
by (intro ~y-ubound)
also have ... < 1
by (approzimation 5)
finally have ~-lt-1: v < 1
by simp

have v-ge-0: v > 0
using that unfolding ~-def by (intro divide-nonneg-pos) auto

have L k = measure ?w {w. yxl < real (card {i € {..<l}. exp (real k) < f (w ! i)})}
unfolding L-def ~y-def using that
by (intro-cong (oo measure] more: Collect-cong) (simp add:field-simps)
also have ... = measure ?w {w. yxl < real (card {i € {.<I}. w!ie S})}
proof (rule measure-pmf-cong)
fix z assume z € set-pmf 2w
hence card {i € {..<l}. exp (real k) < f (z ! §)}=card {i € {.<l}. 2! i € S}
using walks-nonempty set-walks-3[of x| nth-mem unfolding S-def
by (intro restr-Collect-cong arg-conglwhere f=card]) force
thus ze{w. yxi<card{ie{..<l}. exp k<f (w! i)} }+—ze{w. yxi<card {i € {.<l}. w!'i €
St}
by simp
qed
also have ... < exp (— real I * (v x In (1/(u+A)) — 2 * exp(—1)))
using p-A-le-y y-lt-1 S-range Ay-le-A A-gt-0 unfolding p-def
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by (intro walk-tail-bound-2 assms(1)) auto
also have ... = exp (real I x (7 % In (u+A) + 2 * exp (—1)))
using p-A-gt-0 by (simp-all add:In-div algebra-simps)
also have ... < exp (real | x (7 * In (2 * exp (—exp(real k) x real k73)) + 2 * exp(—1)))
using u-A-gt-0 p-A-bound ~y-ge-0
by (intro iff D2[OF exp-le-cancel-iff] mult-left-mono add-mono iff D2[OF In-le-cancel-iff])

simp-all

also have ... = exp (real | = (v * (In 2 — exp (real k) * real k ~ 3) + 2 *x exp (— 1)))
by (simp add:ln-mult)

also have ... = exp (real I * (v x In 2 — real k + 2 x exp (— 1)))

using that unfolding ~y-def by (simp add:field-simps power2-eq-square power3-eq-cube)
also have ... < exp (real [ x (In 2 / (4 * exp 2) — real k + 2 x exp (—1)))
using y-ubound by (intro iff D2[OF exp-le-cancel-iff] mult-left-mono add-mono diff-mono)
(auto simp:divide-simps)
also have ... = exp (real l x (In 2 | (4 % exp 2) + 2 xexp(—1) — real k))
by simp
also have ... < exp (real | * (1 — real k))
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono diff-mono order.refl of-nat-0-le-iff)
(approxzimation 12)
also have ... < exp (—real | — real k + 2)
proof (intro iffD2[OF exp-le-cancel-iff])
have 1 x (real k—2) < real | * (real k—2)
using assms(1) that by (intro mult-right-mono) auto
thus real | x (1 — real k) < — real | — real k + 2
by argo
qed
finally show ?thesis by simp
next
case Fulse
hence k-gt-I: k > In | by simp
define v where v = 1 / (real k)? / exp (real k)

have 20 < exp (3::real)
by (approzimation 10)

also have ... < exp (real k)
using that by simp

finally have exp-k-lbound: 20 < exp (real k)
by simp

have v-gt-0: 0 < v
using that unfolding ~-def by (intro divide-pos-pos) auto

hence v-l-gt-0: 0 < v * real
using assms(1) by auto

have L k = measure ?w {w. vy« < real (card {i € {..<I}. exp (real k) < f (w ! )})}
unfolding L-def ~-def using that
by (intro-cong (o2 measure] more: Collect-cong) (simp add:field-simps)
also have ... < ([ w. real (card {i € {..<l}. exp (real k) < f (w ! i)}) O%w) / (y*)
using walks-nonempty ~v-l-gt-0
by (intro pmf-markov integrable-measure-pmf-finite) simp-all
also have ... = ([ w. (3 i<l. of-bool (exp(real k) < f (w! 0)))0%w) / (yxl)
by (intro-cong [o2 (/)] more:integral-cong-AE AE-pmfI) (auto simp add:Int-def)
also have ... = (3" i<l. ([ w. of-bool (exp(real k) < f (w! i))0?w)) / (yxl)
using walks-nonempty
by (intro-cong (oo (/)] more:integral-sum integrable-measure-pmf-finite) auto
also have ... = (3" i<l. ([ v. of-bool (exp(real k) < f v)d(map-pmf (Aw. wli) 2w))) / (y*)
by simp
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also have ... = (3" i<l. ([ v. of-bool (exp(real k) < fv)d%p)) / (y*l)
by (intro-cong [o2(/),02(integral’), o1 measure-pmf] more:sum.cong uniform-property) auto

also have ... = (3 i<l. ([ v. indicat-real {v. (exp(real k) < fv)} vd?p)) / (yxl)
by (intro-cong [o2(/),02(integral®)] more:sum.cong) auto

also have ... = (D i<l. (measure ?p {v. fv > exp (real k)})) / (y*])
by simp

also have ... < (3 i<l. exp (— exp (real k) * In (exp (real k)) ~8)) / (y*I)
using v-I-gt-0 by (intro divide-right-mono sum-mono assms(8) exp-k-lbound) auto

also have ... = exp (— exp (real k) * real k ~3) [ ~
using assms(1) by simp
also have ... = exp (real k + In (k72) — exp (real k) * real k — 3)

using that unfolding ~y-def
by (simp add:exp-add exp-diff exp-minus algebra-simps inverse-eq-divide)
also have ... = exp (real k + 2 * In k — exp (real k) * real k ~ 3)
using that by (subst In-powr[symmetric]) auto
also have ... < exp (real k + 2 * real k — exp (In 1) * real k™3)
using that k-gt-l In-bound
by (intro iffD2[OF exp-le-cancel-iff] add-mono diff-mono mult-left-mono mult-right-mono)
auto
also have ... = exp (8% real k — | x (real k°3—1) —1)
using assms(1) by (subst exp-In) (auto simp add:algebra-simps)
also have ... < exp (8% real k — 1 * (real k"3—1) —1)
using assms(1) that by (intro iff D2[OF exp-le-cancel-iff] diff-mono mult-right-mono) auto
also have ... = exp (8% real k — real k x real k™2—1 —1+2)
by (simp add:power2-eq-square power3-eq-cube)
also have ... < exp (8% real k — real k x 272—0 —1+2)
using assms(1) that
by (intro iffD2[OF exp-le-cancel-iff] add-mono diff-mono mult-left-mono power-mono) auto

also have ... = exp (— real | — real k + 2)
by simp
finally show ?thesis by simp
qed

have ?L < measure ?w
{w. 2a+bx(>_ k=3..<k-maz. exp (real k) x card {ic{..<l}. f (wli)>exp (real k)}) > C1xl}
using order-trans[OF - 2] walks-nonempty by (intro pmf-mono) simp
also have ... = measure ?w
{w. O k=3..<k-mazx. exp(real k)xcard{ic{..<l}.f(w!i)>exp(real k)})>1}
unfolding C-def b-def[symmetric] using b-gt-0
by (intro-cong [oo measure] more: Collect-cong) (simp add:algebra-simps)
also have ... < measure 2w
{w. (Fke{3..<k-maz}. exp (real k)*card{ic{..<l}.f(w!i)>exp(real k)} > real l/real k2)}
using 3 by (intro pmf-mono) simp
also have ... = measure ?w
(Uke{3..<k-maz}. {w. exp (real k)xcard{ic{..<l}.f(w!i)>exp(real k)} > real I/real k™2})
by (intro-cong [o2 measure]) auto
also have ... < (3 k=3..<k-maz. L k)
unfolding L-def
by (intro finite-measure.finite-measure-subadditive-finite) auto
also have ... < (3 k=3..<k-maz. exp (— real | — real k + 2))
by (intro sum-mono 4) auto
also have ... = (3] k=0+3..<(k-maz—3)+3. exp (— real I — real k + 2))
using k-max-ge-3 by (intro sum.cong) auto
also have ... = (> k=0..<k-maz—3. exp (—1 — real | — real k))
by (subst sum.shift-bounds-nat-ivl) ( simp add:algebra-simps)
also have ... = exp(—1—real 1) * (3 k<k-mazx—3. exp (real kx(—1)))
using atLeastOLessThan
by (simp add:exp-diff exp-add sum-distrib-left exp-minus inverse-eq-divide)
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also have ... = exp (—1—real ) x ((exp (— 1) ~ (k-maz — 3) — 1) / (exzp (— 1) — 1))
unfolding exp-of-nat-mult by (subst geometric-sum) auto

also have ... = exp(—1—real l) * (1—exp (— 1) ~ (k-maz — 3)) / (1—exp (— 1))
by (simp add:field-simps)

also have ... < exp(—1—reall) * (1-0) / (I1—exp (— 1))
using k-maz-ge-3
by (intro mult-left-mono divide-right-mono diff-mono) auto

also have ... = exp (—real ) * (exp (—1) / (1 —exp(—1)))
by (simp add:exp-diff exp-minus inverse-eq-divide)

also have ... < exp (—real ) * 1
by (intro mult-left-mono exp-ge-zero) (approximation 10)

finally show ?thesis
by simp

qed

lemma (in ezpander-sample-space) deviation-bound:

fixes [ :: 'a = real

assumes [ > 0

assumes A < exp (—real | * In (real 1)73)

assumes A\z. z > 20 = measure (sample-pmf S) {v. fv > z} < exp (—z * In 273)

shows measure (£ I A S) {w. (i<l f(wi) > Cy x1l} < exp(—reall) (is ?L < ?R)
proof —

let 2w = pmf-of-multiset (walks (graph-of e) 1)

have F.A, < A

using see-standard(1) unfolding is-expander-def e-def by simp
also have ... < exp (— real | x In (real 1) ~ 3)

using assms(2) by simp
finally have 0: E.A, < exp (— real I x In (real l) ~ 3)

by simp

have 1: measure (pmf-of-set (verts (graph-of €))) {v. © < f (select S v)} < exp (— axln 273)
(is ?L1 < ?R1) if z > 20 for z
proof —
have ?L1 = measure (map-pmf (select S) (pmf-of-set {..<size S})) {v. z < fo}
using see-standard(2) unfolding e-def graph-of-def by simp
also have ... = measure (sample-pmf S) {v. z < fov}
unfolding sample-pmf-alt[OF sample-space-S] by simp
also have ... < ?R1I
by (intro assms(3) that)
finally show ?thesis
by simp
qed

have ?L = measure 2w {w. C1 x real I < (> i<l. f (select S (w ! 7))}
unfolding walks by simp

also have ... = measure ?w {ws. Cq * real | < (3> w<ws. f (select S w))}
using F.walks-nonempty E.set-walks-3 atLeastOLessThan
unfolding sum-list-sum-nth by (intro measure-pmf-cong) simp

also have ... < ?R
by (intro E.deviation-bound assms(1) 0 1)

finally show ?thesis by simp

qed

unbundle no-intro-cong-syntaz

end
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6 Inner Algorithm

This section introduces the inner algorithm (as mentioned it is already a solution to the
cardinality estimation with the caveat that, if € is too small it requires to much space.
The outer algorithm in Section 10 resolved this problem.

The algorithm makes use of the balls and bins model, more precisely, the fact that the
number of hit bins can be used to estimate the number of balls thrown (even if there are
collusions). I.e. it assigns each universe element to a bin using a k-wise independent hash
function. Then it counts the number of bins hit.

This strategy however would only work if the number of balls is roughly equal to the
number of bins, to remedy that the algorithm performs an adaptive sub-sampling strategy.
This works by assigning each universe element a level (using a second hash function) with
a geometric distribution. The algorithm then selects a level that is appropriate based on
a rough estimate obtained using the maximum level in the bins.

To save space the algorithm drops information about small levels, whenever the space
usage would be too high otherwise. This level will be called the cutoff-level. This is okey
as long as the cutoff level is not larger than the sub-sampling threshold. A lot of the
complexity in the proof is devoted to verifying that the cutoff-level will not cross it, it
works by defining a third value sp; that is both an upper bound for the cutoff level and a
lower bound for the subsampling threshold simultaneously with high probability.

theory Distributed-Distinct- Elements-Inner-Algorithm
imports
Pseudorandom-Combinators
Distributed-Distinct- Elements- Preliminary
Distributed-Distinct- Elements- Balls-and-Bins
Distributed-Distinct- Elements-Tail- Bounds
Prefiz- Free-Code-Combinators. Prefix- Free- Code- Combinators
begin

unbundle intro-cong-syntax
hide-const Abstract-Rewriting.restrict

definition C, :: real where Cy = 372%2723
definition C5 :: int where C5 = 33
definition Cg :: real where Cg = /
definition C7; :: nat where C7 = 275

locale inner-algorithm =

fixes n :: nat

fixes ¢ :: real

fixes ¢ :: real

assumes n-gt-0: n > 0

assumes 0-¢t-0: § > 0 and §-lt-1: 6 < 1

assumes ¢-gt-0: € > 0 and e-lt-1: ¢ < 1
begin

definition b-exp where b-exp = nat [log 2 (Cy | €72)]

definition b :: nat where b = 2 b-exp

definition [ where | = nat [Cg * In (2/ 0)]

definition £ where & = nat [Caoxin b + C3)

definition A :: real where A = min (1/16) (exp (=1 * In 173))
definition g :: real = real where o x = b *x (1 — (1—1/b) powr x)
definition g-inv :: real = real where g-inv x = In (1—z/b) / In (1—1/b)

lemma I-lbound: Cg x In (2 / §) <
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unfolding [-def by linarith

lemma k-min: Cy * In (real b) + C3 < real k
unfolding k-def by linarith

lemma A-gt-0: A > 0
unfolding A-def min-less-iff-conj by auto

lemma A-le-1: A < I
unfolding A-def by auto

lemma I-gt-0: 1 > 0
proof —
have 0 < Cg x In (2 / 0)
unfolding Cs-def using §-gt-0 §-1t-1
by (intro Rings.mult-pos-pos In-gt-zero) auto
also have ... <[
by (intro l-lbound)
finally show ?thesis
by simp
qed

lemma l-ubound: | < Cg x In(1 / §)+Cexin 2 + 1
proof —
have | = of-int [Cg % In (2/ §)]
using [-¢gt-0 unfolding [-def
by (intro of-nat-nat) simp
also have ... < Cg *x In (1/ 0%2)+1
by simp
also have ... = Cg x In (1/ §)+Cg * In 2+1
using 0-gt-0 0-lt-1
by (subst In-mult) (auto simp add:algebra-simps)
finally show ?thesis by simp
qed

lemma b-exp-ge-26: b-exp > 26
proof —
have 2 powr 25 < C4 / 1 unfolding Cys-def by simp
also have ... < Cy / 72
using e-¢gt-0 e-lt-1 unfolding C4-def
by (intro divide-left-mono power-le-one) auto
finally have 2 powr 25 < C4 / €72 by simp
hence log 2 (Cy / €72) > 25
using e-¢gt-0 unfolding C4-def
by (intro iff D2|OF less-log-iff] divide-pos-pos zero-less-power) auto
hence [log 2 (Cy / €72)] > 26 by simp
thus ?thesis
unfolding b-exp-def by linarith
qed

lemma b-min: b > 2726
unfolding b-def

by (meson b-exp-ge-26 nat-power-less-imp-less not-less power-eq-0-iff power-zero-numeral)

lemma k-gt-0: k > 0

proof —

have (0::real) < 7.5 % 0 + 16 by simp
also have ... < 7.5 * In(real b) + 16
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using b-min
by (intro add-mono mult-left-mono In-ge-zero) auto
finally have 0 < real k
using k-min unfolding Cs-def Cs-def by simp
thus ?thesis by simp
qed

lemma b-ne: {.<b} # {}
proof —
have 0 € {0..<b}
using b-min by simp
thus ?thesis
by auto
qed

lemma b-lower-bound: Cy [/ €72 < real b
proof —
have Cy / €72 = 2 powr (log 2 (C4 / €72))
using e-¢t-0 unfolding Cy4-def by (intro powr-log-cancel[symmetric] divide-pos-pos) auto
also have ... < 2 powr (nat [log 2 (Cy /| £72)])
by (intro powr-mono of-nat-ceiling) simp
also have ... = real b
unfolding b-def b-exp-def by (simp add:powr-realpow)
finally show ?thesis by simp
qed

definition n-exp where n-exp = maz (nat [log 2 n)) 1

lemma n-exp-gt-0: n-exp > 0
unfolding n-exp-def by simp

abbreviation ¥; where ¥; = H 2 n (G n-exp)
abbreviation ¥y where U, = H 2 n [Crxb?]s
abbreviation V3 where VU3 = H k (C7xb?) [bls
definition ¥ where ¥ = ¥, xg Uy xg U3
abbreviation 2 where Q = £ [ A ¥

type-synonym state = (nat = nat = int) x (nat)

fun is-too-large :: (nat = nat = int) = bool where
is-too-large B = ((>_ (4,4) € {..<I} x {..<b}. |log 2 (mazx (B ij) (—1)+ 2)]) > C5 * b * )

fun compress-step :: state = state where
compress-step (B,q) = (A ij. max (Bij— 1) (—1), ¢+1)

function compress :: state = state where
compress (B,q) = (
if is-too-large B
then (compress (compress-step (B,q)))
else (B,q))
by auto

fun compress-termination :: state = nat where
compress-termination (B,q) = (> (i,j) € {..<I} x {.<b}. nat (Bij + 1))

lemma compress-termination:
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assumes is-too-large B
shows compress-termination (compress-step (B,q)) < compress-termination (B,q)
proof (rule ccontr)
let 71 = {.<l} x {..<b}
have a: nat (maz (Bij— 1) (— 1)+ 1)< nat (Bij+ 1) forij
by simp
assume — compress-termination (compress-step (B, q)) < compress-termination (B, q)
hence (> (i) € ?I.nat (Bij+ 1)) < (> (iyj) € ?I. nat (max (Bij— 1) (—=1)+ 1))
by simp
moreover have (> (i,j) € ?I. nat (Bij+ 1)) > (3. (4,j) € 2. nat (max (Bij— 1) (—1)
1))
by (intro sum-mono) auto
ultimately have b:
>° (i) € 21 nat (max (Bij—1)(=1)4+ 1) = (ij) € ?I. nat (Bij+ 1))
using order-antisym by simp
have nat (Bij+ 1) = nat (mazx (Bij— 1) (—1)+ 1)if (i,j) € ¢I for i j
using sum-mono-inv[OF b] that a by auto
hence maz (Bij) (—1) = —1 if (i,j) € ?I for i j
using that by fastforce
hence (> (i,5) € ?1. |log 2 (maz (Bij) (=1) 4+ 2)]) = O_(i,j) € ?1. 0)
by (intro sum.cong, auto)
also have ... = 0 by simp
also have ... < C5 * b x [ unfolding C5-def by simp
finally have — is-too-large B by simp
thus Fulse using assms by simp
qed

termination compress
using measure-def compress-termination
by (relation Wellfounded.measure (compress-termination), auto)

fun mergel :: state = state = state where
mergel (B1,q1) (B2, ¢2) = (
let ¢ = maz q1 q2 in (A ij. maz (B1ij+ g — q) (B2ij+ g2 — q), q))

fun merge :: state = state = state where
merge  y = compress (mergel x y)

type-synonym seed = nat = (nat = nat) x (nat = nat) X (nat = nat)

fun singlel :: seed = nat = state where
singlel wx = (A i j.
let (f,g,h) = w iin (
ifh (gz) =34 ANi<lthenint (fz) else (—1)), 0)

fun single :: seed = nat = state where
single w x = compress (singlel w x)

fun estimatel :: state = nat = real where
estimatel (B,q) i = (
let s = maz 0 (Maz ((B1i) “{..<b}) + q — |log 2 b] + 9);
p=card {jje{.<b} ABij+qg>s}in
2 powr s x In (1—p/b) / In(1—1/b))

fun estimate :: state = real where
estimate x = median | (estimatel x)
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6.1 History Independence

fun 7¢ :: ((nat = nat) x (nat = nat) x (nat = nat)) = nat set = nat = int
where g (f,g,h) A j = Max ({ int (fa)|a.a€ AANh(ga)=j}U{-1})

definition 71 :: ((nat = nat) x (nat = nat) x (nat = nat)) = nat set = nat = nat = int
where 71 ¥ A ¢j=maz (To v Aj— q) (—1)

definition 75 :: seed = nat set = nat = nat = nat = int
where 7o w A qij= (if i < lthen 71 (wi) A qjelse (—1))

definition 73 :: seed = nat set = nat = state
where T3 w A ¢ = (T2 w A ¢, q)

definition ¢ :: seed = nat set = nat
where ¢ w A = (LEAST q . —(is-too-large (T2 w A q)))

definition 7 :: seed = nat set = state
where 7w A =73 w A (qw A)

lemma 75-step: 7o w A (z4y) = (Aij. max (To w Az ij—y) (— 1))
by (intro ext) (auto simp add:To-def T1-def)

lemma 73-step: compress-step (T3 w A ) =75 w A (z+1)
unfolding 73-def using 75-step|[where y=1] by simp

sublocale VUi: hash-sample-space 2 n 2 n-exp G n-exp
using n-ezp-gt-0 unfolding hash-sample-space-def G-def by auto

sublocale Wy: hash-sample-space 2 n 2 5 + b-expx2 [(C7xb?)]s
unfolding hash-sample-space-def nat-sample-space-def b-def Cr-def
by (auto simp add:power-mult power-add)

sublocale V3: hash-sample-space k C7xb? 2 b-exp [b]s
unfolding hash-sample-space-def b-def nat-sample-space-def using k-gt-0 b-exp-ge-26
by auto

lemma sample-pmf-U: sample-pmf U = pair-pmf Uy (pair-pmf Uy Us3)
unfolding V-def
using Vq.sample-space Wo.sample-space Vs.sample-space
by (simp add:prod-sample-pmf)

lemma sample-set-V:
sample-set ¥ = sample-set W1 X sample-set Wo X sample-set Vg
using Vq.sample-space Vy.sample-space V3.sample-space unfolding V-def
by (simp add: prod-sample-set)

lemma sample-space-V: sample-space W
unfolding V-def
using Vy.sample-space Wo.sample-space VUs.sample-space
by simp

lemma f-range:
assumes (f,g,h) € sample-set U
shows fz < n-exp
proof —
have f € sample-set ¥,
using sample-set-U assms by auto
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then obtain 7 where f-def:f = select V1 ¢ unfolding sample-set-def by auto
hence f z € sample-set (G n-exp)
using V,.range by auto
also have ... C {..n-ezp}
by (intro G-range)
finally have fz € {..n-exp}
by simp
thus ?thesis by simp
qed

lemma g-range-1:
assumes g € sample-set Uqy
shows gz < C7xb™2
proof —
obtain i where f-def:g = select (H 2 n [(Crxb?)]s) i
using assms unfolding sample-set-def by auto
hence range g C sample-set ([(C7%b?)]s)
unfolding f-def by (intro Us.range)
thus ?thesis
unfolding sample-set-alt|OF Ws.sample-space-R)
unfolding nat-sample-space-def by auto
qed

lemma h-range-1:
assumes h € sample-set V3
shows hz < b
proof —
obtain ¢ where f-def:h = select U3 i
using assms unfolding sample-set-def by auto
hence range h C sample-set ([b]s)
unfolding f-def by (intro Us.range)
thus ?thesis
unfolding sample-set-alt|OF V3.sample-space-R)
unfolding nat-sample-space-def by auto
qed

lemma g-range:
assumes (f,g,h) € sample-set U
shows g z < Crxb™2
proof —
have g € sample-set Uq
using sample-set-U assms by auto
thus ?thesis
using g-range-1 by simp
qed

lemma h-range:
assumes (f,g,h) € sample-set U
shows hz < b
proof —
have h € sample-set W3
using sample-set-U assms by auto
thus ?thesis
using h-range-1 by simp
qed

lemma fin-f:
assumes (f,g,h) € sample-set U
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shows finite { int (f a) | a. P a } (is finite ?M)
proof —
have finite (range f)
using f-range[OF assms] finite-nat-set-iff-bounded-le by auto
hence finite (range (int o f))
by (simp add:image-image|[symmetric])
moreover have ?M C (range (int o f))
using image-mono by (auto simp add: setcompr-eq-image)
ultimately show #thesis
using finite-subset by auto
qed

lemma Maz-int-range: < (y::int) = Maz {z..y} =y
by auto

sublocale Q: expander-sample-space | A ¥
unfolding ezpander-sample-space-def using sample-space-¥ I-gt-0 A-gt-0 by auto

lemma maz-q-1:
assumes w € sample-set
shows 75 w A (nat [log 2 n]+2) ij = (—1)
proof (cases i < I)
case True
obtain f g h where w-i: w i = (f,9,h)
by (metis prod-cases3)

let ?mazx-q = max [log 2 (real n)] 1

have w i € sample-set ¥

using .sample-set assms unfolding Pi-def by auto
hence c: (f,g,h) € sample-set ¥

using w-i by auto
have a:int (f z) < ?maz-q for z
proof —

have int (f z) < int n-exp

using f-range[OF c] by auto

also have ... = ?maz-q unfolding n-exp-def by simp
finally show ?thesis by simp
qed

have 7¢ (w i) A j < Maz {(—1)..?maz-q}
unfolding w-i 7g.simps using a by (intro Maz-mono) auto
also have ... = ?maz-q
by (intro Max-int-range) auto
finally have 7¢ (w i) A j < ?maz-q by simp
hence maz (19 (w i) A j — int (nat [log 2 (real n)] + 2)) (— 1) = (—1)
by (intro max-absorb2) linarith
thus ?thesis
unfolding 75-def 71-def using True by auto
next
case Fulse
thus %thesis
unfolding 79-def 71-def by simp
qed

lemma maz-q-2:
assumes w € sample-set )
shows — (is-too-large (T2 w A (nat [log 2 n]+2)))
using maz-q-1[OF assms| by (simp add:Cs-def case-prod-beta mult-less-0-iff)
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lemma maz-s-3:
assumes w € sample-set ()
shows ¢ w A < (nat [log 2 n]+2)
unfolding ¢-def by (intro wellorder-Least-lemma(2) maz-g-2 assms)

lemma maz-mono: z < (y::'a:linorder) = maz z z < maz y z
using max.coboundedll by auto

lemma maz-mono-2: y < (z::'a::linorder) = maz z y < maz x z
using max.coboundedI2 by auto

lemma 7¢-mono:
assumes ¢ € sample-set U
assumes A C B
shows 70 v A j <719 Bj
proof —
obtain f g h where w-i: ¥ = (f,g,h)
by (metis prod-cases3)
show ?thesis
using assms fin-f unfolding 7¢.simps w-i
by (intro Max-mono) auto
qed

lemma 75-mono:
assumes w € sample-set (2
assumes A C B
shows 7o w Azij<71owBzxij
proof —
have maz (1o (wi) Aj—intz) (— 1) < maz (1o (wi) Bj—intz) (— 1)ifi <1
using assms(1) Q.sample-set that
by (intro maz-mono diff-mono To-mono assms(2) order.refl) auto
thus ?thesis
by (cases i < I) (auto simp add:To-def T1-def)
qged

lemma is-too-large-antimono:
assumes w € sample-set §)
assumes A C B
assumes is-too-large (7o w A )
shows is-too-large (T2 w B x)
proof —
have C5 x b x | < (3 (4,4) € {..<I} x {..<b}. |log 2 (maz (T2 w Az ij) (—1)+ 2)])
using assms(3) by simp
also have ... = (>_ y € {..<I} x {..<b}. |log 2 (max (T2 w A z (fst y) (snd y)) (—1) + 2)])
by (simp add:case-prod-beta)
also have ... < (>° y € {..<l} x {..<b}. |log 2 (max (T2 w Bz (fsty) (sndy)) (—1) + 2)])
by (intro sum-mono floor-mono iff D2[OF log-le-cancel-iff] iff D2[OF of-int-le-iff]
add-mono max-mono To-mono[OF assms(1,2)]) auto
also have ... = (> (i,j) € {.<I} x {..<b}. |log 2 (max (1o w Bz ij) (—1)+ 2)])
by (simp add:case-prod-beta)
finally have (> (4,j) € {..<1} x {..<b}. [log 2 (maz (To w Bzij) (=1)+ 2)]) > Cs x bx1
by simp
thus ?thesis by simp
qed

lemma q¢-compact:
assumes w € sample-set )
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shows — (is-too-large (7o w A (q w A)))
unfolding ¢-def using maz-g-2[OF assms]
by (intro wellorder-Least-lemma(1)) blast

lemma ¢-mono:
assumes w € sample-set )
assumes A C B
shows gw A< quw B
proof —
have — (is-too-large (19 w A (¢ w B)))
using is-too-large-antimono[OF assms| q-compact|OF assms(1)] by blast
hence (LEAST q . —(is-too-large (To w A q))) < qw B
by (intro Least-le) blast
thus ?thesis
by (simp add:q-def)
qed

lemma lt-s-too-large: © < q w A = is-too-large (T2 w A 1)
using not-less-Least unfolding ¢-def by auto

lemma compress-result-1:
assumes w € sample-set )
shows compress (Ts w A (qw A — i) =Tw A
proof (induction 7)
case (
then show ?case
using ¢-compact|OF assms| by (simp add:T3-def 7-def)
next
case (Suc 17)
show ?Zcase
proof (cases i < quw A)
case True
have is-too-large (T2 w A (q w A — Suc 7))
using True by (intro lt-s-too-large) simp
hence compress (13 w A (¢ w A — Suc i)) = compress (compress-step (13 w A (q w A — Suc
i)))
unfolding 73-def compress.simps
by (simp del: compress.simps compress-step.simps)

also have ... = compress (T3 w A ((¢q w A — Suc i)+1))
by (subst T3-step) blast
also have ... = compress (13 w A (qw A — 7))
using True by (metis Suc-diff-Suc Suc-eq-plusl)
also have ... = 7 w A using Suc by auto
finally show ?thesis by simp
next
case Fulse
then show ?thesis using Suc by simp
qed
qed

lemma compress-result:
assumes w € sample-set )
assumes z < qw A
shows compress (T3 w A z) =7Tw A
proof —
obtain ¢ where i-def: © = ¢ w A — i using assms by (metis diff-diff-cancel)
have compress (15 w A ) = compress (T3 w A (qw A — 1))
by (subst i-def) blast
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also have ... = 7w A
using compress-result-1[{OF assms(1)] by blast
finally show ?thesis by simp
qed

lemma 7¢-merge:
assumes (f,g,h) € sample-set ¥
shows 7¢ (f,g,h) (AU B) j = maz (7o (f,g,h) A j) (7o (f.g,h) Bj) (is /L = ?R)
proof—
let ?f = Aa. int (f a)
have ?L = Maz ({ int (fa) | a.a € AANh(ga)=4}U{-1})U
({ it (fa)la.aeBAh(ga)=j}U{-1}))
unfolding 7q.simps
by (intro arg-conglwhere f=Maz]) auto
also have ... = maz (Maz ({ int (fa) |a.a€ AANh(ga)=37}U{-1}))
(Maz ({ int (fa) |a.a€ BAh(ga)=37}U{-1}))
by (intro Maz-Un finite-Unl fin-f[OF assms]) auto

also have ... = 7R
by (simp)
finally show ?thesis by simp
qed

lemma 74-merge:

assumes w € sample-set )

shows 7o w (AUB)zij=maz (Tow Azij) (2w Bxij)
proof (cases i < 1)

case True

obtain f g h where w-i: w i = (f,9,h)
by (metis prod-cases3)

have w i € sample-set ¥
using €.sample-set assms unfolding Pi-def by auto
hence a: (f,g,h) € sample-set U
using w-i by auto
show ?thesis
unfolding 75-def 71-def
using True by (simp add:w-i 7o-merge[OF a] del:Ty.simps)
next
case Fulse
thus ?thesis by (simp add:To-def)
qed

lemma mergel-result:
assumes w € sample-set €1
shows mergel (T w A) (tTw B) =13 w (AU B) (maz (qw A) (¢ w B))
proof —
let ?gmaz = maz (qw A) (¢ w B)
obtain v where u-def: g w A + v = ?gmax
by (metis add.commute maz.commaute nat-minus-add-mazx)
obtain v where v-def: ¢ w B + v = ?qgmaxz
by (metis add.commute nat-minus-add-mazr)

have u = 0 V v = 0 using u-def v-def by linarith

moreover have 7o w A (qw A) ij—u>(—1)ifu=0for ij
using that by (simp add:To-def T1-def)

moreover have 7o w B (qw B) ij —v > (—1)ifv=0forij
using that by (simp add:To-def 71-def)
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ultimately have a:maz (7o w A (qw A) ij — u) (T w B(qw B) ij —v) > (—1) for ij
unfolding le-mazx-iff-disj by blast

have 75 w (A U B) ?gmaz = (A i j. mazx (12 w A ?qmaz i j) (T2 w B ?gmaz i j))
using 7o-merge[OF assms] by blast

also have ... = (A ij. maz (Tow A (qw A+ u) ij) (7o w B (qw B + v) ij))
unfolding u-def v-def by blast
also have ... = (A i j. maz (mazx (Taw A (qw A) ij— u) (—1)) (maz (o w B(qw B) ij —

v) (=1)))

by (simp only: To-step)

also have ... = (A ij. maz (maz (Tow A (qw A)ij— u) (Tow B (qw B) ij —v)) (—1))
by (metis (no-types, opaque-lifting) maz.commute maz.left-commute mazx.left-idem)

also have ... = (A ij. maz (T w A (qw A) ij— u) (T2 w B (qw B) ij — v))
using a by simp

also have ... = (Aij. maz (7o w A (qw A) ij + int (qw A) — ?gmax)

(tTow B(qw B) ij+ int (¢qw B) — ?gmax))
by (subst u-def[symmetric], subst v-def|[symmetric]) simp
finally have 79 w (A U B) (maz (qw A) (¢qw B)) =
(Aij. max (To w A (qw A) ij + int (¢ w A) — int (?gmaz))
(tow B (qw B) ij+ int (qw B) — int (¢gmaz))) by simp
thus ?thesis
by (simp add:Let-def T-def T3-def)
qed

lemma merge-result:
assumes w € sample-set (2
shows merge (Tw A) (Tw B) =7 w (AU B) (is ?L = ?R)
proof —
have a:maz (qw A) (qw B) < qw (A U B)
using ¢-mono[OF assms| by simp

have 7L = compress (mergel (1 w A) (7 w B))

by simp

also have ... = compress ( 73 w (AU B) (maz (qw A) (¢ w B)))
by (subst mergel-result|OF assms]) blast

also have ... = 7R

by (intro compress-result|OF assms] a Un-least)
finally show ?thesis by blast

qed
lemma singlel-result: singlel w ¢ = 75 w {z} 0
proof —
have (case w i of (f, g, h) = ifh (gz) =7 N i <lthenint (fz)else — 1) =1ow {2} 0]
for i j
proof —

obtain f g h where w-i:w i = (f, g,h) by (metis prod-cases3)
show ?thesis
by (simp add:w-i To-def 71-def)
qed
thus ?thesis
unfolding 73-def by fastforce
qed

lemma single-result:

assumes w € sample-set §)

shows single w x = 7 w {z} (is ?L = ?R)
proof —

have 7L = compress (singlel w x)
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by (simp)

also have ... = compress (75 w {z} 0)
by (subst singlel-result) blast
also have ... = 7R

by (intro compress-result| OF assms]) auto
finally show ?thesis by blast
qed

6.2 Encoding states of the inner algorithm

definition is-state-table :: (nat X nat = int) = bool where
is-state-table g = (range ¢ C {—1..} A g ‘ (—({..<I} x {.<b})) C {-1})

Encoding for state table values:

definition V. :: int encoding
where V. z = (if £ > —1 then N. (nat (z+1)) else None)

Encoding for state table:

definition T’ :: (nat x nat = int) encoding where
T, 9= (
if is-state-table g
then (List.product [0..<I] [0..<b] —¢ V) (restrict g ({..<I}x{..<b}))
else None)

definition T, :: (nat = nat = int) encoding
where T, f = T.' (case-prod f)

definition encode-state :: state encoding
where encode-state = T, X, Nb, (nat [log 2 n]+3)

lemma inj-on-restrict:
assumes B C {f. f ‘(= A) C {c}}
shows inj-on (Az. restrict ¢ A) B
proof (rule inj-onl)
fix f g assume a:f € B g € B restrict f A = restrict ¢ A

have fzr =gz ifz € A for z
by (intro restrict-eq-imp[OF a(8) that])
moreover have fz =gz ifz ¢ A for z
proof —
have fr=cgax = ¢
using that a(1,2) assms(1) by auto
thus ?thesis by simp
qed
ultimately show f = ¢
by (intro ext) auto
qed

lemma encode-state: is-encoding encode-state
proof —
have is-encoding V.
unfolding V.-def
by (intro encoding-compose|OF exp-golomb-encoding| inj-onl) auto
hence 0:is-encoding (List.product [0..<l] [0..<b] —¢ V)
by (intro fun-encoding)
have is-encoding T’
unfolding T.’-def is-state-table-def
by (intro encoding-compose| OF 0] inj-on-restrict{where c=—1]) auto
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moreover have inj case-prod

by (intro injI) (metis curry-case-prod)
ultimately have is-encoding T.

unfolding T'.-def by (rule encoding-compose-2)

thus ?thesis
unfolding encode-state-def
by (intro dependent-encoding bounded-nat-encoding)
qed

lemma state-bit-count:
assumes w € sample-set
shows bit-count (encode-state (1 w A)) < 2786 * (In(1/8)+1)/ €72 + log 2 (log 2 n + 3)
(is 7L < ?R)
proof —
define t where t = 79 w A (q w A)

have log 2 (real n) > 0
using n-gt-0 by simp

hence 0: — 1 < log 2 (real n)
by simp

havetzy=—-1ifz<ly>bforzy
proof —
obtain f g h where w-def: w z = (f,g,h)
by (metis prod-cases3)
have (f, g, h) € sample-set ¥
using Q.sample-set assms unfolding Pi-def w-def[symmetric] by auto
hence i (g a) < b for a
using h-range by auto
hence y # h (g a) for a
using that(2) not-less by blast
hence auz-4: {int (fa) |a. a € ANKh(ga) =y} ={}
by auto
hence maz (Maz (insert (— 1) {int (fa) [a.a € ANKh(ga)=1y}) —int (qw A)) (— 1) =
— 1
unfolding auz-4 by simp
thus ?thesis
unfolding t¢-def To-def T1-def by (simp add:w-def)
qed
moreover have t zy=—1 ifx > [ for z y
using that unfolding t-def T7o-def T1-def by simp
ultimately have 1: tzy=—-1ifz>IVy>bforzy
using that by (meson not-less)

have 2: txy> —1forz y
unfolding t-def To-def 71-def by simp
hence 3:tzy+ 1 > 0forzy
by (metis add.commute le-add-same-cancell minus-add-cancel)

have /:is-state-table (case-prod t)
using 2 I unfolding is-state-table-def by auto

have bit-count(T. (72 w A (¢ w A))) = bit-count(T t)
unfolding t-def by simp

also have ... = bit-count ((List.product [0..<l] [0..<b] —. V) (M(z, y)e{..<I}x{..<b}. t z y))
using / unfolding T.-def T.'-def by simp
also have ... =
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(> < List.product [0..<I] [0..<b]. bit-count (Ve (A(z, y)e{..<l} x {..<b}. Ltz y) x)))
using restrict-extensional atLeastOLessThan by (simp add:fun-bit-count)
also have ... = (> (x,y)+ List.product [0..<l] [0..<b]. bit-count (V. (t z y)))
by (intro arg-conglwhere f=sum-list] map-cong refl)
(simp add:atLeastOLessThan case-prod-beta)
also have ... = (> ze{0..<l} x {0..<b}. bit-count (V. (t (fst z) (snd z))))
by (subst sum-list-distinct-conv-sum-set)
(auto intro:distinct-product simp add:case-prod-beta)
also have ... = (D" ze{..<l} x {..<b}. bit-count ( N (nat (¢t (fst ) (snd z)+1))))
using 2 unfolding V.-def not-less[symmetric]
by (intro sum.cong refl arg-cong[where f=bit-count]) auto
also have .= ze{.<I}x{..<b}. 1+2x of-int|log 2(1+real(nat(t (fst z)(snd z)+1)))])
unfolding exp-golomb-bit-count-exact is-too-large.simps not-less by simp
also have ...=(>_ ze{.<l}x{..<b}. 14+2x% of-int|log 2(2+ of-int(t (fst z)(snd z)))])
using 3 by (subst of-nat-nat) (auto simp add:ac-simps)
also have ...=bxl + 2x of-int (3_ (i,j)e{..<I}x{..<b}. |log 2(2+ of-int(mazx (ti7) (—1)))])
using 2 by (subst maz-absorbl) (auto simp add:case-prod-beta sum.distrib sum-distrib-left)
also have ... < bxl + 2 x of-int (C5 * int b * int 1)
using ¢-compact| OF assms, where A=A] unfolding is-too-large.simps not-less t-def [symmetric]
by (intro add-mono ereal-mono iff D2[OF of-int-le-iff] mult-left-mono order.refl)
(simp-all add:ac-simps)
alsohave ... = (2 « C5 + 1) x b« [
by (simp add:algebra-simps)
finally have 5:bit-count (T. (o w A (qw A))) < (2% Cs5 + 1) xbx1
by simp

have Cy > 1
unfolding Cy-def by simp
moreover have 2 <
using e-lt-1 e-gt-0
by (intro power-le-one) auto
ultimately have 0 < log 2 (Cy / €?)
using e-gt-0 e-lt-1
by (intro iff D2|OF zero-le-log-cancel-iff] divide-pos-pos)auto
hence 6: — 1 < log 2 (C4 / €?)
by simp

have b = 2 powr (real (nat [log 2 (Cy / €2)]))
unfolding b-def b-exp-def by (simp add:powr-realpow)
also have ... = 2 powr ([log 2 (Cy / €72)])
using 6 by (intro arg-cong2[where f=(powr)] of-nat-nat refl) simp
also have ... < 2 powr (log 2 (Cy / €72) + 1)
by (intro powr-mono) auto
also have ... = 2 x Cy /72
using e-¢gt-0 unfolding powr-add C4-def
by (subst powr-log-cancel) (auto intro:divide-pos-pos)
finally have 7:b < 2 « Cy / €2 by simp

have | < Co xIn (1 /0)+ Co xIn 2 + 1
by (intro l-ubound)
also have ... < / % In(1/6) + 3+1
unfolding Cg-def by (intro add-mono order.refl) (approzimation 5)
also have ... = 4 x (In(1/0)+1)
by simp
finally have 8:1 < 4 x (In(1/6)+1)
by simp

have 2 = 0 + &2
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by simp
also have ... < In (1 /§) + 1

using §-gt-0 0-lt-1 e-gt-0 e-lt-1

by (intro add-mono power-le-one) auto
finally have 9: €2 < In (1 / 0) + 1

by simp

have 10: 0 <In (1 / 0) + 1
using §-gt-0 §-lt-1 by (intro add-nonneg-nonneg) auto

have ?L = bit-count (T, (T2 w A (¢ w A))) + bit-count (Nb. (nat [log 2 (real n)]+3) (q w A))
unfolding encode-state-def T-def T3-def by (simp add:dependent-bit-count)
also have ...=bit-count(T.(72 w A (qw A)))+ereal (1+ of-int|log 2 (2 + real (nat [log 2n]))])
using maz-s-3[OF assms] by (subst bounded-nat-bit-count-2)
(simp-all add:numeral-eq-Suc le-imp-less-Suc floorlog-def)
also have ... = bit-count(Te(T2 w A (q w A)))+ereal (1+ of-int|log 2 (2 + of-int [log 2 n])])
using 0 by simp
also have ... < bit-count(To(72 w A (qw A)))+ereal (1+log 2 (2 + of-int [log 2 n)))
by (intro add-mono ereal-mono) simp-all
also have ... < bit-count(Te(72 w A (qw A)))+ereal (1+log 2 (2 + (log 2 n + 1)))
using 0 n-gt-0 by (intro add-mono ereal-mono iff D2[OF log-le-cancel-iff] add-pos-nonneg) auto
also have ... = bit-count(Te(T2 w A (q w A)))+ereal (14+log 2 (log 2 n + 3))
by (simp add:ac-simps)
also have ... < ereal ((2 x C5 + 1) x b x 1) + ereal (1+log 2 (log 2n + 3))
by (intro add-mono 5) auto
also have ... = (2 x C5 + 1) x real b x real | + log 2 (log 2n + 8) + 1
by simp
alsohave ... < (2« Cs5 +1)% (2% Cy /e 2)xreall +log2 (log2n+ 3)+ 1
unfolding C's-def
by (intro ereal-mono mult-right-mono mult-left-mono add-mono 7) auto
also have ... = (/ x of-int C5+2)xCyxreal I/ €72 + log 2 (log 2n + 3) + 1
by simp
also have ... < (4 * of-int C5+2)xCyx(4x(In(1/ 0)+1))/ €72 + log 2 (log 2n + 3) + 1
using e-gt-0 unfolding Cs-def C4-def
by (intro ereal-mono add-mono order.refl divide-right-mono mult-left-mono 8) auto
also have ... = ((2x33+1)%9x2726)x(In(1/ 6)+1)/ €72 + log 2 (log 2n + 3) + 1
unfolding C5-def Cy-def by simp
also have ... < (27°36—1) = (In(1/0)+1)/ € 2 +log 2 (log2n + 8) + (In (1/ 0)+1)/ €2
using e-gt-0 6-gt-0 e-lt-1 9 10
by (intro add-mono ereal-mono divide-right-mono mult-right-mono mult-left-mono) simp-all
also have ... = 2736% (In(1/6)+1)/ €72 + log 2 (log 2 n + 3)
by (simp add:divide-simps)
finally show ?thesis
by simp
qed

lemma random-bit-count:
size Q < 2 powr (4 * log 2n + 48 x (log 2 (1 /€) + 16)72 + (55 + 60 * In (1 / §))73)
(is 2L < ?R)
proof —
have 1:log 2 (real n) > 0
using n-gt-0 by simp
hence 0: — 1 < log 2 (real n)
by simp

have 10: log 2 Cy < 27

unfolding C4-def by (approximation 10)
have 2 < 1
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using e-gt-0 e-lt-1 by (intro power-le-one) auto
also have ... < (4

unfolding C4-def by simp
finally have ¢ < C4 by simp
hence 9: 0 < log 2 (Cy / €?)

using e-¢gt-0 unfolding C4-def

by (intro iff D2|OF zero-le-log-cancel-iff]) simp-all
hence 2: — 1 < log 2 (C4 / €?)

by simp

have 3: 0 < C7 * b?
unfolding C7-def using b-min
by (intro Rings.mult-pos-pos) auto

have 0 < log 2 (real C7) + real (b-exp % 2)
unfolding C7-def
by (intro add-nonneg-nonneg) auto

hence 4{: —1 < log 2 (real C7) + real (b-exp * 2)
by simp

have real (size U1) = 2 7 (maz (nat [log 2 (real n)]) 1 * 2)
using VU;.size[OF n-gt-0] unfolding n-ezp-def by simp

also have ... < 2 powr (2 * maz (nat [log 2 (real n)]) 1)
by (subst powr-realpow) auto

also have ... = 2 powr (2 * maz (real (nat [log 2 (real n)])) 1)
using n-gt-0 unfolding of-nat-mult of-nat-maz by simp
also have ... = 2 powr (2 * maz (of-int [log 2 (real n)]) 1)

using 0 by (subst of-nat-nat) simp-all
also have ... < 2 powr (2 * maz (log 2 (real n) + 1) 1)
by (intro powr-mono mult-left-mono max-mono) auto
also have ... = 2 powr (2 x (log 2 (real n) + 1))
using I by (subst maz-absorbl) auto
finally have 5:real (size ¥1) < 2 powr (2 * log 2 n + 2)
by simp

have real (size ¥y) = 2 7~ (maz (5 + b-exp x 2) (nat [log 2 (real n)]) * 2)
unfolding Us.size[OF n-gt-0] by simp

also have ... < 2 7 (((§ + b-exp * 2) + (nat [log 2 (real n)])) * 2)
by (intro power-increasing mult-right-mono) auto

also have ... = 2 powr ((5 + b-exp x 2 + real (nat [log 2 (real n)]))*2)
by (subst powr-realpow[symmetric]) auto
also have ... = 2 powr ((5 + of-int b-exp * 2 + of-int [log 2 (real n)])*2)

using 0 by (subst of-nat-nat) auto
also have ... < 2 powr ((§ + of-int b-exp * 2 + (log 2 (real n) + 1))*2)
by (intro powr-mono mult-right-mono add-mono) simp-all

also have ... = 2 powr (12 + 4 * real( nat [log 2 (Cy / €2)]) + log 2 (real n) x 2)
unfolding b-exp-def by (simp add:ac-simps)
also have ... = 2 powr (12 + 4 x real-of-int [log 2 (Cy / €2)] + log 2 (real n) * 2)

using 2 by (subst of-nat-nat) simp-all

also have ... < 2 powr (12 + 4 * (log 2 (Cy ]/ €?) + 1) + log 2 (real n) * 2)
by (intro powr-mono add-mono order.refl mult-left-mono) simp-all

also have ... = 2 powr (2 x log 2n + 4 x log 2 (Cy4 / €%) + 16)
by (simp add:ac-simps)

finally have 6:real (size o) < 2 powr (2 * log 2n + 4 * log 2 (Cy | €%) + 16)
by simp

have real (size U3) = 2 7 (mazx b-exp (nat [log 2 (real C7 x (2 ~ (b-expx2)))]) * k)
unfolding Us5.size[OF 3] power-mult by (simp add:b-def)
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also have ... = 2 7 (maz b-exp (nat [log 2 C7 + log 2 (2 ~ (b-expx2))]) * k)
unfolding Cr-def by (subst log-mult) simp-all

also have ... = 2 7 (max b-exp (nat [log 2 C7 + (b-expx2)]) * k)
by (subst log-nat-power) simp-all

also have ... = 2 powr (maz (real b-exp) (real (nat [log 2 C7 + (b-exp*2)])) * real k)
by (subst powr-realpow[symmetric]) simp-all

also have ... = 2 powr (maxz (real b-exp) (of-int [log 2 C7 + (b-expx2)]) * real k)
using /4 by (subst of-nat-nat) simp-all

also have ... < 2 powr (maxz (real b-exp) (log 2 C7 + real b-expx2 +1) * real k)
by (intro powr-mono mult-right-mono maz-mono-2) simp-all

also have ... = 2 powr ((log 2 (275) + real b-expx2 +1) * real k)
unfolding C7-def by (subst maz-absorb2) simp-all
also have ... = 2 powr ((real b-expx2 +6) * real k)

unfolding C7-def by (subst log-nat-power) (simp-all add:ac-simps)
also have ... = 2 powr ((of-int [log 2 (Cy / €*)] * 2 + 6) * real k)
using 2 unfolding b-exp-def by (subst of-nat-nat) simp-all
also have ... < 2 powr (((log 2 (C4 [/ €72)+1) * 2 + 6) * real k)
by (intro powr-mono mult-right-mono add-mono) simp-all
also have ... = 2 powr ((log 2 (Cy / €%) * 2 + 8 ) * real k)
by (simp add:ac-simps)
finally have 7:real (size W3) < 2 powr ((log 2 (Cy [ €%) % 2 + 8 ) x real k)
by simp

have In (real b) > 0

using b-min by simp
hence real k = of-int [7.5 * In (real b) + 16]

unfolding k-def Ca-def Cs-def by (subst of-nat-nat) simp-all
also have ... < (7.5 % In (real b) + 16) + 1

unfolding b-def by (intro of-int-ceiling-le-add-one)

also have ... = 7.5 * In (2 powr b-exp) + 17
unfolding b-def using powr-realpow by simp
also have ... = real b-exp * (7.5 x In 2) + 17

unfolding powr-def by simp
also have ... < real b-exp x 6 + 17

by (intro add-mono mult-left-mono order.refl of-nat-0-le-iff ) (approzimation 5)
also have ... = of-int [log 2 (Cy / €?)] * 6 + 17

using 2 unfolding b-exp-def by (subst of-nat-nat) simp-all
also have ... < (log 2 (Cy / €72) + 1) x 6 + 17

by (intro add-mono mult-right-mono) simp-all

also have ... = 6 x log 2 (Cy4 / €72) + 23
by simp

finally have 8:real k < 6 * log 2 (Cy / €72) + 23
by simp

have real (size V) = real (size U1) x real (size Uq) * real (size U3)
unfolding V-def prod-sample-space-def by simp
also have ... <
2 powr(2xlog 2 n+2)*2 powr (2xlog 2 n+4xlog 2 (C4/e*)+16)%2 powr((log 2 (C4/e?)x2+8)*real
)
by (intro mult-mono 5 6 7 mult-nonneg-nonneg) simp-all
also have ... = 2 powr (2xlog 2n + 2 + 2 * log 2 n+4x*log 2 (C4/e?)+16+(log 2 (C4/e?)*2+8)*real
k)
unfolding powr-add by simp
also have ... = 2 powr (4*log 2 n + 4*log 2 (Cy/€?) + 18 + (2%log 2 (Cy4/e?)+8)xreal k)
by (simp add:ac-simps)
also have ... <
2 powr (4% log 2n + 4 log 2 (Cy) €72) + 18 + (2%log 2 (C4/?)+8)%(6 * log 2 (Cy | €72)
+ 23))
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using 9 by (intro powr-mono add-mono order.refl mult-left-mono 8 add-nonneg-nonneg)
simp-all

also have ... = 2 powr (4 * log 2n+12 x log 2 (Cy / €72)72 + 98 x log 2 (Cy4 /| €72)4+202)
by (simp add:algebra-simps power2-eq-square)

also have ... < 2 powr (4 * log 2n+12 % log 2 (C4 / €72)72 + 120 * log 2 (C4 / €72)+300)
using 9 by (intro powr-mono add-mono order.refl mult-right-mono) simp-all

also have ... = 2 powr (4 * log 2 n+12 * (log 2 (Cyx (1] €)72) + 5)72)
by (simp add:power2-eq-square algebra-simps)

also have ... = 2 powr (4 xlog 2n + 12 % (log 2 Cy + log 2 ((1 [/ &)72) + 5)72)
unfolding C4-def using e-gt-0 by (subst log-mult) auto

also have ... < 2 powr (4 xlog 2n + 12 % (27 + log 2 ((1/ €)72) + 5)72)
using e-gt-0 e-lt-1
by (intro powr-mono add-mono order.refl mult-left-mono power-mono add-nonneg-nonneg 10)
(simp-all add:C4-def)

also have ... = 2 powr (4 xlog2n + 12 % (2 % (log 2 (1 [/ €) + 16))72)
using e-gt-0 by (subst log-nat-power) (simp-all add:ac-simps)
also have ... = 2 powr (4 * log 2n + 48 * (log 2 (1 / €) + 16)72)

unfolding power-mult-distrib by simp
finally have 19:real (size ¥) < 2 powr (4 * log 2n + 48 * (log 2 (1 /e) + 16)72)
by simp

have 0 <In A/ In (19 / 20)
using A-gt-0 A-le-1
by (intro divide-nonpos-neg) simp-all
hence 11: —1 <in A/ In (19 / 20)
by simp

have 12:In (19 / 20) < —(0.05::real) — In (1 / 16) < (2.8::real)
by (approzimation 10)+

have 13:Inl > 0
using [l-gt-0 by auto

have In 78 = 27 % (0 + In 1/8)78

by (simp add:power3-eq-cube)
also have ... < 27 x (1 + In l/real 3)73

using l-gt-0 by (intro mult-left-mono add-mono power-mono) auto
also have ... < 27 % (exp (In 1))

using l-gt-0 13

by (intro mult-left-mono exp-ge-one-plus-z-over-n-power-n) linarith+
also have ... = 27 x real |

using [-gi-0 by (subst exp-ln) auto
finally have 1/:ln 178 < 27 * real

by simp

have 15:Cg x In (2 / 6) > 0
using §-lt-1 §-gt-0 unfolding Cg-def
by (intro Rings.mult-pos-pos In-gt-zero) auto
hence 1 < real-of-int [Ce * In (2 / 9)]
by simp
hence 16: 1 < 8 x real-of-int [Cg * In (2 / )]
by argo

have 17: 12 x In 2 < (9::real)
by (approzimation 5)

have 16 ~ ((I — 1) = nat[ln A / In 0.95]) = 16 powr (real (I—1)xreal(nat [In A / In (19 /
20)1))
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by (subst powr-realpow|[symmetric]) auto
also have ... = 16 powr (real (I—1)* of-int [In A / In (19 / 20)])
using 11 by (subst of-nat-nat) simp-all
also have ... < 16 powr (real (I—1)x (In A / In (19/20)+1))
by (intro powr-mono mult-left-mono) auto
also have ... = 16 powr ((real Il — 1)x(In A / In (19/20)+1))
using [-gt-0 by (subst of-nat-diff) auto
also have ... < 16 powr ((real 1 — 1)x(In A / (—0.05)+1))
using [-gt-0 A-gt-0 A-le-1
by (intro powr-mono mult-left-mono add-mono divide-left-mono-neg 12) auto

also have ... = 16 powr ((real | — 1)%(20 % (—In A)+1))
by (simp add:algebra-simps)

also have ... = 16 powr ((real I — 1)%(20 x —(min (In (1/16)) (—Ixln 173))+1))
unfolding A-def by (subst In-min-swap) auto

also have ... = 16 powr ((real | — 1)x(20 * max (—In (1/16)) (IxIn I73)+1))

by (intro-cong [o2 (powr), oo(+), oo (x)]) simp
also have ... < 16 powr ((real I — 1)%(20 x maz (2.8) (Ixln 173)+1))
using [-gt-0 by (intro powr-mono mult-left-mono add-mono maz-mono 12) auto
also have ... < 16 powr ((real I — 1)%(20 x (2.8+Ixin 178)+1))
using l-gt-0 by (intro powr-mono mult-left-mono add-mono) auto
also have ... = 16 powr ((real | — 1)x(20 * (Ixln 178)+57))
by (simp add:algebra-simps)
also have ... < 16 powr ((real I — 1)%(20 * (real Ix(27xreal 1))+57))
using [-gt-0 by (intro powr-mono mult-left-mono add-mono 14) auto
also have ... = 16 powr (540 * real 1”3 — 540 * real 72 + 57+ real | — 57)
by (simp add:algebra-simps numeral-eq-Suc)
also have ... < 16 powr (540 * real 1”8 — 540 * real 72 + 180* real | — 20)
by (intro powr-mono add-mono diff-mono order.refl mult-right-mono) auto

also have ... = 16 powr (20 x (3xreal | — 1)73)
by (simp add: algebra-simps power3-eq-cube power2-eq-square)
also have ... = 16 powr (20 x (3 * of-int [Ce xIn (2 / 6)] — 1) ~3)

using 15 unfolding I-def by (subst of-nat-nat) auto
also have ... < 16 powr (20 x (3 x (Ce xIn (2 /0)+ 1) — 1) ~3)
using 16 by (intro powr-mono mult-left-mono power-mono diff-mono) auto

also have ... = 16 powr (20 x (2 + 12 x In (2 % (1 / 0))) — 3)
by (simp add:algebra-simps Cg-def)
also have ... = (2 powr 4) powr (20 * (2+ 12 * (In 2 + In(1/ §)))"3)

using §-gt-0 by (subst In-mult) auto
also have ... = 2 powr (80 % (2 + 12 xIn 2 + 12 % In (1 / §)) — 3)
unfolding powr-powr by (simp add:ac-simps)
also have ... < 2 powr (80 x (2 + 9 + 12 xIn (1 / 0)) — 3)
using 0-gt-0 0-lt-1
by (intro powr-mono mult-left-mono power-mono add-mono 17 add-nonneg-nonneg) auto
also have ... = 2 powr (80 * (11 4+ 12 x In (1 / §)) —3)
by simp
also have ... < 2 powr (573 * (11 + 12 % In (1 / §)) — 3)
using §-gt-0 J-lt-1
by (intro powr-mono mult-right-mono) (auto introl:add-nonneg-nonneg)
also have ... = 2 powr ((55 + 60 x In (1 / 6))73)
unfolding power-mult-distrib[symmetric] by simp
finally have 18:167((I — 1) % nat[in A / In (19/20)]) < 2 powr ((55 + 60 = In (1 / 6))73)
by simp

have ?L = real (size W) « 16 ~ ((I — 1) * nat [In A / In (19 / 20)])
unfolding 2.size by simp

also have ... < 2 powr (4*log 2 n+48+(log 2 (1/e)+16)72)*2 powr ((55 + 60 = In (1 / 5))73)
by (intro mult-mono 18 19) simp-all

also have ... = 2 powr (f *x log 2n + 48 x (log 2 (1 /&) + 16)72 + (55 + 60 = In (1 / §))73)
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unfolding powr-add[symmetric] by simp
finally show ?thesis by simp
qed

end
unbundle no-intro-cong-syntaz

end

7 Accuracy without cutoff

This section verifies that each of the [ estimate have the required accuracy with high
probability assuming that there was no cut-off, i.e., that s = 0. Section 9 will then show
that this remains true as long as the cut-off is below ¢ f the subsampling threshold.
theory Distributed-Distinct- Elements-Accuracy- Without- Cutoff
imports

Distributed-Distinct- Elements-Inner-Algorithm

Distributed-Distinct- Elements- Balls-and-Bins
begin

no-notation Polynomials.var (X1)

locale inner-algorithm-fiz-A = inner-algorithm +
fixes A
assumes A-range: A C {..<n}
assumes A-nonempty: {} # A

begin

definition X :: nat where X = card A
definition ¢-maz where ¢-maz = nat ([log 2 X| — b-exp)

definition t :: (nat = nat) = int
where ¢ f = int (Maz (f ¢ A)) — b-exp + 9

definition s :: (nat = nat) = nat
where s f = nat (t f)

definition R :: (nat = nat) = nat set
where Rf={a.a € ANfa>sf}

definition r :: nat = (nat = nat) = nat
where rz f = card {a. a € AN fa > z}

definition p where p = (\(f,g,h). card {j€ {..<b}. 71 (f,g,h) A 0j > s f})
definition Y where Y = (A(f,g,h). 2 ~ s f * o-inv (p (f,9,h)))

lemma fin-A: finite A
using A-range finite-nat-iff-bounded by auto

lemma X-le-n: X < n
proof —
have card A < card {..<n}
by (intro card-mono A-range) simp
thus ?thesis
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unfolding X-def by simp
qed

lemma X-ge-1: X > 1
unfolding X-def
using fin-A A-nonempty by (simp add: lel)

lemma of-bool-square: (of-bool z)?> = ((of-bool x)::real)
by (cases x, auto)

lemma r-eq: rz f = (Y, a € A.( of-bool( x < f a) :: real))
unfolding r-def of-bool-def sum.If-cases|OF fin-A]
by (simp add: Collect-conj-eq)

lemma
shows
r-exp: ([w. real (rz w) @ ¥q) = real X * (of-bool (z < maz (nat [log 2 n]) 1) / 27x) and
r-var: measure-pmf.variance W1 (Aw. real (r z w)) < ([ w. real (rz w) 0 ¥y)
proof —
define V :: nat = (nat = nat) = real where V = (A\a f. of-bool (z < f a))

have V-ezp: ([w. V a w 0¥y) = of-bool (z < maz (nat [log 2 n]) 1)/2 %
(is L = ?R) if a € A for a
proof —
have a-le-n: a < n
using that A-range by auto

have 7L = ([ w. indicator {f. z < fa} w 9 ¥y)
unfolding V-def by (intro integral-cong-AE) auto

also have ... = measure (map-pmf (Aw. w a) (sample-pmf V1)) {f. z < f}
by simp

also have ... = measure (G n-exp) {f. z < f}
unfolding ¥, .single[OF a-le-n] by simp

also have ... = of-bool (z < maz (nat [log 2n]) 1)/27x

unfolding G-prob n-exp-def by simp
finally show ?thesis by simp
qed

have b:([w. real (rz w) @ ¥1) = (3 a€ A (fw. Vawd¥))
unfolding r-eq V-def using Vi.sample-space
by (intro Bochner-Integration.integral-sum) auto

also have ... = (3_ a € A. of-bool (x < maz (nat [log 2 n]) 1)/2 x)
using V-exp by (intro sum.cong) auto
also have ... = X x (of-bool (z < maz (nat [log 2 n]) 1) /] 27x)

using X-def by simp
finally show ([ w. real (r z w) 8 V1) = real X * (of-bool (z < maz (nat [log 2 n]) 1)/ 27x)
by simp

have ([w. (Vaw) 20 ¥) = (fw. Vawd ¥,) for a
unfolding V-def of-bool-square by simp

hence a:measure-pmf.variance Uy (V a) < measure-pmf.expectation ¥y (V a) for a
using U.sample-space by (subst measure-pmf.variance-eq) auto

have J C A = card J = 2 = prob-space.indep-vars V1 (A-. borel) V J for J
unfolding V-def using A-range finite-subset| OF - fin-A|
by (intro prob-space.indep-vars-compose2[where Y=\iy. of-bool(z < y) and M'=\-. discrete]
prob-space.k-wise-indep-vars-subset|OF - Wy.indep]) (auto simp:prob-space-measure-pmf)
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hence measure-pmf.variance U1 (Aw. real (r z w)) = (3. a € A. measure-pmf.variance U, (V
a))
unfolding r-eq V-def using V;.sample-space
by (intro measure-pmf.var-sum-pairwise-indep-2 fin-A) (simp-all)
also have ... < (3" a€ A. (Jw. Vaw d ¥y))
by (intro sum-mono a)
also have ... = ([w. real (r z w) 8 ¥y)
unfolding b by simp
finally show measure-pmf.variance U1 (Aw. real (r z w)) < ([w. real (r z w) & V1) by simp
qed

definition E; where E1 = (A(f,9,h). 2 powr (=t f) * X € {b/2716..0/2})

lemma t-low:

measure Wy {f. of-int (¢t f) < log 2 (real X) + 1 — b-exp} < 1/277 (is L < ?R)
proof (cases log 2 (real X) > 8)

case True

define Z :: (nat = nat) = real where Z = r (nat [log 2 (real X) — 8])

have log 2 (real X) < log 2 (real n)
using X-le-n X-ge-1 by (intro log-mono) auto

hence nat [log 2 (real X) — 8] < nat [log 2 (real n)]
by (intro nat-mono ceiling-mono) simp

hence a:(nat [log 2 (real X) — 8] < max (nat [log 2 (real n)]) 1)
by simp

have b:real (nat ([log 2 (real X)] — 8)) < log 2 (real X) — 7
using True by linarith

have 2 ~ 7 = real X / (2 powr (log 2 X) * 2 powr (—7))
using X-ge-1 by simp

also have ... = real X / (2 powr (log 2 X — 7))
by (subst powr-add][symmetric]) simp

also have ... < real X / (2 powr (real (nat [log 2 (real X) — 871)))
using b by (intro divide-left-mono powr-mono) auto

also have ... = real X / 2 " nat [log 2 (real X) — 8]
by (subst powr-realpow) auto

finally have 2 =7 < real X / 2 " nat [log 2 (real X) — 8]
by simp

hence exp-Z-gt-2-7: ([w. Z w 0Wq) > 277
using o unfolding Z-def r-exp by simp

have var-Z-le-exp-Z: measure-pmf.variance ¥, Z < (fw Z w 0%¥y)
unfolding Z-def by (intro r-var)

have ?L < measure Uy {f. of-nat (Maz (f * A)) < log 2 (real X) — 8}
unfolding ¢-def by (intro pmf-mono) (auto simp add:int-of-nat-def)
also have ... < measure Uy {f € space ¥1. (Jw. Zw 0Vy) <|Zf - (fw. Zw 0¥y) |}
proof (rule pmf-mono)
fix f assume f € set-pmf (sample-pmf ;)
have fin-f-A: finite (f ¢ A) using fin-A finite-imagel by blast
assume f € {f. real (Maz (f * A)) < log 2 (real X) — 8}
hence real (Maz (f ¢ A)) < log 2 (real X) — 8 by auto
hence real (f a) < log 2 (real X) — 8 if a € A for a
using Maz-ge|OF fin-f-A] imagel[OF that] order-less-le-trans by fastforce
hence of-nat (f a) < [log 2 (real X) — 8] if a € A for a
using that by (subst less-ceiling-iff ) auto
hence fa < nat [log 2 (real X) — 8] if a € A for a
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using that True by fastforce
hence r (nat [log 2 (real X) — 8]) f =0
unfolding r-def card-eq-0-iff using not-less by auto
hence Z f = 0
unfolding Z-def by simp
thus f € {f € space ¥1. (fw. ZwdV,) <|Zf— (Jw. Z w 0¥y}
by auto
qed
also have ... < measure-pmf.variance V1 Z | ([w. Z w 0%¥;) 2
using exp-Z-gt-2-7 U,.sample-space by (intro measure-pmf.second-moment-method) simp-all
also have ... < (Jw. Zw 0¥y) / (fw. Z w 8%y) "2
by (intro divide-right-mono var-Z-le-exp-Z) simp
also have ... = 1 / (fw. Z w 07,)
using exp-Z-gt-2-7 by (simp add:power2-eq-square)
also have ... < 7R
using exp-Z-gt-2-7 by (intro divide-left-mono) auto
finally show ?thesis by simp
next
case Fulse
have ?L < measure Uy {f. of-nat (Maz (f * A)) < log 2 (real X) — 8}
unfolding ¢-def by (intro pmf-mono) (auto simp add:int-of-nat-def)
also have ... < measure ¥; {}
using Fualse by (intro pmf-mono) simp
also have ... = 0
by simp
also have ... < ?R by simp
finally show ?thesis by simp
qed

lemma t-high:

measure Wy {f. of-int (¢t f) > log 2 (real X) + 16 — b-exp} < 1/277 (is ?L < ?R)
proof —

define Z :: (nat = nat) = real where Z = r (nat |log 2 (real X) + 8])

have Z-nonneg: Z f > 0 for f
unfolding Z-def r-def by simp

have ([w. Z w 0Wy) < real X / (2 " nat |log 2 (real X) + 8])
unfolding Z-def r-exp by simp
also have ... < real X / (2 powr (real (nat |log 2 (real X) + 8])))
by (subst powr-realpow) auto
also have ... < real X / (2 powr |log 2 (real X) + 8])
by (intro divide-left-mono powr-mono) auto
also have ... < real X / (2 powr (log 2 (real X) + 7))
by (intro divide-left-mono powr-mono, linarith) auto
also have ... = real X / 2 powr (log 2 (real X)) / 2 powr 7
by (subst powr-add) simp
also have ... < 1/2 powr 7
using X-ge-1 by (subst powr-log-cancel) auto
finally have Z-exp: ([w. Z w 0¥,) < 1/277
by simp

have 7L < measure Uy {f. of-nat (Maz (f * A)) > log 2 (real X) + 7}
unfolding ¢-def by (intro pmf-mono) (auto simp add:int-of-nat-def)
also have ... < measure U1 {f. Zf > 1}
proof (rule pmf-mono)
fix f assume [ € set-pmf (sample-pmf V1)
assume [ € {f. real (Maz (f * A)) > log 2 (real X) + 7}
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hence real (Maz (f < A)) > log 2 (real X) + 7 by simp
hence int (Maxz (f “ A)) > |log 2 (real X) + 8]
by linarith
hence Maz (f < A) > nat |log 2 (real X) + 8]
by simp
moreover have f ‘A # {} finite (f © A)
using fin-A finite-imagel A-nonempty by auto
ultimately obtain fo where foa € f A fa > nat |log 2 (real X) + 8|
using Maz-in by auto
then obtain ae where ae-def: ae € A nat |log 2 (real X) + 8] < fae
by auto
hence r (nat |log 2 (real X) + 8]) f > 0
unfolding r-def card-gt-0-iff using fin-A by auto
hence 7 f > 1
unfolding Z-def by simp
thus f € {f. 1 < Z f} by simp
qed
also have ... < ([w. Zw 0¥) / 1
using Z-nonneg using ¥y.sample-space by (intro pmf-markov) auto
also have ... < 7R
using Z-exp by simp
finally show ?thesis by simp
qed

lemma e-1: measure ¥ {¢. =Eq ¢} < 1/276
proof —
have measure Uy {f. 2 powr (of-int (—t f)) * real X ¢ {real b/2716..real b/2}} <
measure Uy {f. 2 powr (of-int (—t f)) * real X < real b/2716} +
measure U1 {f. 2 powr (of-int (—t f)) * real X > real b/2}
by (intro pmf-add) auto
also have ... < measure Uy {f. of-int (t f) > log 2 X + 16 — b-exp} +
measure Wy {f. of-int (t f) < log 2 X + 1 — b-exp}
proof (rule add-mono)
show measure Uy {f. 2 powr (of-int (—t f)) x real X < real b/2716} <
measure Uy {f. of-int (t f) > log 2 X + 16 — b-exp}
proof (rule pmf-mono)
fix f assume f € {f. 2 powr real-of-int (—t f) * real X < real b / 2 ~ 16}
hence 2 powr real-of-int (—t f) * real X < real b / 2 ~ 16
by simp
hence log 2 (2 powr of-int (—t f) * real X) < log 2 (real b | 2716)
using b-min X-ge-1 by (intro iffD2[OF log-less-cancel-iff]) auto
hence of-int (=t f) + log 2 (real X) < log 2 (real b / 2716)
using X-ge-1 by (subst (asm) log-mult) auto

also have ... = real b-exp — log 2 (2 powr 16)
unfolding b-def by (subst log-divide) auto
also have ... = real b-exp — 16

by (subst log-powr-cancel) auto
finally have of-int (—t f) + log 2 (real X) < real b-exp — 16 by simp
thus f € {f. of-int (t f) > log 2 (real X) + 16 — b-exp}
by simp
qed
next
show measure ¥y {f. 2 powr of-int (—t f) * real X > real b/2} <
measure Wy {f. of-int (t f) < log 2 X + 1 — b-exp}
proof (rule pmf-mono)
fix f assume f € {f. 2 powr real-of-int (—t f) * real X > real b / 2}
hence 2 powr real-of-int (—t f) * real X > real b | 2
by simp
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hence log 2 (2 powr of-int (—t f) * real X) > log 2 (real b / 2)
using b-min X-ge-1 by (intro iffD2[OF log-less-cancel-iff]) auto
hence of-int (=t f) + log 2 (real X) > log 2 (real b / 2)
using X-ge-1 by (subst (asm) log-mult) auto
hence of-int (—t f) + log 2 (real X) > real b-exp — 1
unfolding b-def by (subst (asm) log-divide) auto
hence of-int (¢t f) < log 2 (real X) + 1 — b-exp
by simp
thus f € {f. of-int (t f) < log 2 (real X) + 1 — b-exp}
by simp
qed
qed
also have ... < 1/277 4+ 1/277
by (intro add-mono t-low t-high)
also have ... = 1/276 by simp
finally have measure ¥y {f. 2 powr of-int (—t f) * real X ¢ {real b/2716..real b/2}} < 1/276
by simp

thus ?thesis
unfolding sample-pmf-V E;-def case-prod-beta
by (subst pair-pmf-prob-left)
qed

definition Fy where Es = (A(f,9,h). |card (Rf) — X / 27 (s f)| <e/3x X /] 27(s[))

lemma e-2: measure W {¢. E1 » A ~Ey ¢} < 1/276 (is 7L < ?R)
proof —
define ¢, :: int where t,, = |log 2 (real X)| + 16 — b-exp

have t-m-bound: t,, < |log 2 (real X)] — 10
unfolding t,,-def using b-exp-ge-26 by simp

have real b / 2716 = (real X x (1/ X)) * (real b / 2716)
using X-ge-1 by simp
also have ... = (real X * 2 powr (—log 2 X)) * (real b / 2716)
using X-ge-1 by (subst powr-minus-divide) simp
also have ... < (real X * 2 powr (— |log 2 (real X)])) * (2 powr b-exp /| 2716)
unfolding b-def using powr-realpow
by (intro mult-mono powr-mono) auto

also have ... = real X * (2 powr (— [log 2 (real X)|) * 2 powr(real b-exp—16))
by (subst powr-diff) simp

also have ... = real X % 2 powr (— |log 2 (real X)| + (int b-exp — 16))
by (subst powr-add[symmetric]) simp

also have ... = real X * 2 powr (—t,,)

unfolding t,,-def by (simp add:algebra-simps)
finally have c:real b / 2716 < real X * 2 powr (—t,,) by simp

define T :: nat set where T = {z. (real X / 27z > real b / 2716)}

have x € T +— intz < t,, for z
proof —
havex € T «— 27z < real X x 2716 / b
using b-min by (simp add: field-simps T-def)
also have ... «— log 2 (27z) < log 2 (real X % 2716 / b)
using X-ge-1 b-min by (intro log-le-cancel-iff [symmetric] divide-pos-pos) auto
also have ... +— 2 < log 2 (real X x 2716) — log 2 b
using X-ge-1 b-min by (subst log-divide) auto
also have ... «+— z < log 2 (real X) + log 2 (2 powr 16) — b-exp
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unfolding b-def using X-ge-1 by (subst log-mult) auto
also have ... +— z < |log 2 (real X) + log 2 (2 powr 16) — b-exp]
by linarith
also have ... «+— = < |log 2 (real X) + 16 — real-of-int (int b-exp)|
by (subst log-powr-cancel) auto
also have ... «+— z < ¢,
unfolding t,,-def by linarith
finally show ?thesis by simp
qed
hence T-eq: T = {z. int x < t,,} by auto

have T = {z. int z < t,,+1}
unfolding T-eq by simp

also have ... = {z. z < nat (¢, + 1)}
unfolding zless-nat-eq-int-zless by simp

finally have T-e¢-2: T = {z. x < nat (t,, + 1)}
by simp

have inj-1: inj-on ((—) (nat t,,)) T
unfolding T-eq by (intro inj-onl) simp
have fin-T: finite T
unfolding T-eq-2 by simp

have r-ezp: ([w. real (rtw) 0¥,) =real X / 27t if t € T for ¢
proof —
have t < t,,
using that unfolding T-eq by simp
also have ... < |log 2 (real X)| — 10
using t-m-bound by simp
also have ... < |log 2 (real X)]
by simp
also have ... < |log 2 (real n)]
using X-le-n X-ge-1 by (intro floor-mono log-mono) auto
also have ... < [log 2 (real n)]
by simp
finally have ¢ < [log 2 (real n)] by simp
hence t < maz (nat [log 2 (real n)]) 1by simp
thus ?thesis
unfolding r-exp by simp
qed

have r-var: measure-pmf.variance U1 (Aw. real (rt w)) < real X / 27t if t € T for ¢
using r-exp[OF that] r-var by metis

have 9 = Oy / &% x €72/2723
using e-gt-0 by (simp add:C4-def)
also have ... = 2 powr (log 2 (Cy ] €2)) * £72/2723
using e-gt-0 C4-def by (subst powr-log-cancel) auto
also have ... < 2 powr b-exp x €72/2723
unfolding b-exp-def
by (intro divide-right-mono mult-right-mono powr-mono, linarith) auto
also have ... = b x £72/2723
using powr-realpow unfolding b-def by simp
also have ... = (b/2716) % (¢72/277)
by simp
also have ... < (X x 2 powr (—t,,)) * (€72/277)
by (intro mult-mono c) auto
also have ... = X x (2 powr (—t,,) * 2 powr (=7)) * "2
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using powr-realpow by simp
also have ... = 2 powr (—t;,—7) * (€72 % X)

by (subst powr-add][symmetric]) (simp )
finally have 9 < 2 powr (—t,,—7) * (€2 x X) by simp
hence b: 9/ (¢72 x X) < 2 powr (—tm —7)

using e-gt-0 X-ge-1

by (subst pos-divide-le-eq) auto

have a: measure Wy {f.|real (r t f)—real X/27t|> €/3 *real X/27t} < 2 powr (real t—t,—7)
(is?L1 < ?R1)ift € T for ¢
proof —
have ?L1 < P(fin Uy. |real (rtf) — real X /| 27t] > €/3 * real X | 27%)
by (intro pmf-mono) auto
also have ... = P(fin ¥y. |real (rt f)—([w. real (rt w) d ¥q1)| > €/3 * real X/27¢)
by (simp add: r-exp[OF that])
also have ... < measure-pmf.variance Uy (Aw. real (rt w)) / (/8 x real X | 271) 72
using X-ge-1 e-gt-0 ¥,.sample-space
by (intro measure-pmf.Chebyshev-inequality divide-pos-pos mult-pos-pos) auto
also have ... < (X / 27%) / (¢/3x X ] 27t)"2
by (intro divide-right-mono r-var|OF that]) simp
also have ... = 27tx(9/ (€72 x X))
by (simp add:power2-eq-square algebra-simps)
also have ... < 27tx(2 powr (—t,—7))
by (intro mult-left-mono b) simp

also have ... = 2 powr t * 2 powr (—t,,—7)
by (subst powr-realpow[symmetric]) auto
also have ... = ?R1

by (subst powr-add[symmetric]) (simp add:algebra-simps)
finally show ?L1 < ?R1 by simp
qged

have Jy<nat (t,, + 1). z = nat t,, — y if z < nat (t,+1) for z
using that by (intro exl[where z=nat t,, — z]) simp

hence T-reindex: (—) (nat t,,) ‘{z. z < nat (t,m + 1)} = {..<nat (¢, + 1)}
by (auto simp add: set-eq-iff image-iff)

have 7L < measure U {¢. (3t € T. |real (rt (fst ¥))—real X/27¢t| > ¢/8 * real X | 27¢)}
proof (rule pmf-mono)
fix ¢
assume 1) € set-pmf (sample-pmf V)
obtain f g h where ¢-def: ¢ = (f,g,h) by (metis prod-cases3)
assume ) € {¢. E1 ¥ A = Ey ¢}
hence a:2 powr ( —real-of-int (t f)) * real X € {real b/2716..real b/2} and
b:lcard (R f) —real X / 27 (s f)| > ¢/3« X /] 27(s f)
unfolding E;-def Eo-def by (auto simp add:ip-def)
have |card (Rf) — X / 27(sf)|=0ifsf= 0
using that by (simp add:R-def X-def)
moreover have (¢/3) x (X / 27sf) > 0
using e-gt-0 X-ge-1 by (intro mult-nonneg-nonneg) auto
ultimately have Fualse if s f = 0
using b that by simp
hence s f > 0 by auto
hence t f = s f unfolding s-def by simp
hence 2 powr (—real (s f)) * X > b/ 2716
using a by simp
hence X / 2 powr (real (s f)) > b/ 2716
by (simp add: divide-powr-uminus mult.commute)
hence real X / 2 " (sf) > b/ 2716
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by (subst (asm) powr-realpow, auto)
hence s f € T unfolding T-def by simp
moreover have |r (s f) f— X / 27sf| > /3« X |/ 27s f
using R-def r-def b by simp
ultimately have 3t € T. |rt (fst ) — X / 27t| > /3« X [/ 27
using -def by (intro bexl[where z=s f]) simp
thus ¢ € {¢p. 3t e T.|rt(fsty) — X/ 27t > ¢/8« X/ 27t)} by simp
qed
also have ... = measure ¥1 {f. (3t € T. |real (rt f)—real X /| 27t| > €/3 * real X/27t)}
unfolding sample-pmf-¥ by (intro pair-pmf-prob-left)
also have ... = measure ¥1 (Jt € T. {f. |real (rt f)—real X /| 27t > €/3 % real X/27t})
by (intro measure-pmf-cong) auto
also have ... < (>t € T. measure Uy {f.|real (rt f)—real X | 27t| > /3 * real X/27t})
by (intro measure-UNION-le fin-T) (simp)
also have ... < >t € T. 2 powr (real t — of-int t,, — 7))
by (intro sum-mono a)
also have ... = (3_t € T. 2 powr (—int (nat t,,—t) — 7))
unfolding T-eq
by (intro sum.cong refl arg-cong2[where f=(powr)]) simp

also have ... = (> z € (\z. nat t,, — z) ‘ T. 2 powr (—real z — 7))
by (subst sum.reindex|OF inj-1]) simp

also have ... = (> z € (Az. nat t,, — z) ‘ T. 2 powr (—=7) * 2 powr (—real x))
by (subst powr-add[symmetric]) (simp add:algebra-simps)

also have ... = 1/277 « (3. z € (Az. nat t, — ) * T. 2 powr (—real x))
by (subst sum-distrib-left) simp

also have ... = 1/277 % (3" z <nat (tm+1). 2 powr (—real x))

unfolding T-eq-2 T-reindex
by (intro arg-cong2[where f=(x)] sum.cong) auto

also have ... = 1/277 % (3 z <nat (tm+1). (2 powr (—1)) powr (real x))
by (subst powr-powr) simp
also have ... = 1/277 * 3.z <nat (t,,+1). (1/2) )

using powr-realpow by simp
also have ... < 1/277 x 2
by (subst geometric-sum) auto

also have ... = 1/276 by simp
finally show ?thesis by simp
qed

definition E3 where E3 = (A(f,9,h). inj-on g (R f))

lemma R-bound:
fixes fgh
assumes E; (f,g,h)
assumes Es (f,g,h)
shows card (R f) <
proof —
have real (card (Rf)) < (e / 3)*x(real X / 2 "sf) +real X /] 2 "sf
using assms(2) unfolding Ey-def by simp
also have ... < (1/3) x (real X / 2 "sf) +real X |/ 2 " s f
b

2/8 % b

- <
using e-lt-1 by (intro add-mono mult-right-mono) auto
also have ... = (4/3) * (real X / 2 powr s f)
using powr-realpow by simp
also have ... < (4/3) * (real X / 2 powr t f)
unfolding s-def
by (intro mult-left-mono divide-left-mono powr-mono) auto

also have ... = (4/3) % (2 powr (—(of-int (t f))) * real X)
by (subst powr-minus-divide) simp
also have ... = (4/3) % (2 powr (— t f) * real X)
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by simp
also have ... < (4/3) = (b/2)
using assms(1) unfolding F;-def
by (intro mult-left-mono) auto
also have ... < (2/3) % b by simp
finally show ?thesis by simp
qed

lemma e-3: measure ¥ {tp. E1 » A Eo b A -E3 ¢} < 1/276 (is ?L < ?R)
proof —

let a0 = (M(zyz,y) f. 2 < Crxb 2 ANz € RfANyERfANz<Yy)

let 8 = (Mz,z,y) g. gz =2ANgy=2)

have S-prob: measure Uy {g. 28 w g} < (1/real (C7xb72)72)
if a0 w f for w f
proof —
obtain z y z where w-def: w = (z,2,y) by (metis prod-cases3)
have a:prob-space.k-wise-indep-vars Wo 2 (Ni. discrete) (A w. w x = z) {..<n}
by (intro prob-space.k-wise-indep-vars-compose[OF - Uy.indep))
(simp-all add:prob-space-measure-pmf)

have u € R f = u < n for u
unfolding R-def using A-range by auto
hence b: z < ny < n card {z, y} = 2
using that w-def by auto
have c: z < Cr*b? using w-def that by simp

have measure Uy {g. 28 w g} = measure Uy {g. (V€ € {z,y}. g € = 2)}
by (simp add:w-def)
also have ... = ([[€ € {z,y}. measure Uy {g. g & = 2})
using b by (intro measure-pmf.split-indep-events| OF refl, where I={z,y}]
prob-space.k-wise-indep-vars-subset[ OF - a]) (simp-all add:prob-space-measure-pmf)

also have ... = ([ € € {z,y}. measure (map-pmf (Aw. w &) (sample-pmf V3)) {g. g = z})
by (simp add:vimage-def)

also have ... = ([[¢ € {z,y}. measure [C7 x b*]s {g. g=2})
using b Us.single by (intro prod.cong) fastforce+

also have ... = ([[¢ € {z,y}. measure (pmf-of-set {..<C7 * b*}) {z2})
by (subst nat-sample-pmf) simp

also have ... = (measure (pmf-of-set {..<C7 x b*}) {2}) 72

using b by simp
also have ... < (1 /(Cr*b?))72
using ¢ by (subst measure-pmf-of-set) auto
also have ... = (1 /(C7%b?)72)
by (simp add:algebra-simps power2-eq-square)
finally show ?thesis by simp
qed

have a-card: card {w. %o w f} < (C7%b72) * (card (R f) * (card (R f)—1)/2)
(is TL < ?TR) and fin-a: finite {w. %a w f} (is ?72) for f
proof —
have t1: {w. 2a w f} C{.<Cxb"2} X {(z,y) ERf X Rf. z < y}
by (intro subsetl) auto
moreover have card ({.<C7xb"2} x {(z,y) E Rf x Rf. z < y}) = ?TR
using card-ordered-pairs’[where M=R f]
by (simp add: card-cartesian-product)
moreover have finite (R f)
unfolding R-def using fin-A finite-subset by simp
hence finite {(z, y). (z, y) E Rf X Rf ANz < y}
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by (intro finite-subsetlwhere B=R f x R f, OF - finite-cartesian-product]) auto
hence 2: finite ({.<Crxb" 2} x {(z,y) E Rf X Rf. x < y})
by (intro finite-cartesian-product) auto
ultimately show ¢TL < ?TR
using card-mono of-nat-le-iff by (metis (no-types, lifting))
show 272
using finite-subset|OF t1 t2] by simp
qed

have ?L < measure U {(f,g,h). card (R f) < b A (3 zyz %a (z,y,2) [ N 28 (z,y,2) 9)}
proof (rule pmf-mono)
fix ¢ assume b:¢) € set-pmf (sample-pmf V)
obtain f g h where -def:1) = (f,g,h) by (metis prod-cases3)
have (f,g,h) € sample-set ¥
using sample-space-alt|OF sample-space-U| b 1-def by simp
hence c:g z < C7xb™2 for x
using g-range by simp

assume a:p € {¢p. By Y A Ex ) A = E3 ¢}
hence card (R f) < 2/3 % b
using R-bound -def by force
moreover have Jab.a e RfANbERfANa#£bANga=gb
using a unfolding v-def Es-def inj-on-def by auto
hencedzy. 2 e RfANye RfANz<yNgarx=gqgy
by (metis not-less-iff-gr-or-eq)
hence dz y 2. %a (z,y,2) f N 28 (x,y,2) g
using c by blast
ultimately show ¢ € {(f, g, h). card (Rf) < b A (3 zy 2z %o (z,y,2) f N 28 (2,9,2) 9)}
unfolding v-def by auto
qged
also have ... = ([ f. measure (pair-pmf Uy ¥3)
{g. card (R) S b A Qayz o (w.2) f A 2B (.9,2) (fot g)} %)
unfolding sample-pmf-U split-pair-pmf by (simp add: case-prod-beta)
also have
. = ([ f. measure ¥y {g. card (R f) < b A Bzyz %a(zyz) fA B (zyz) 9} 0¥)
by (subst pair-pmf-prob-left) simp
also have ... < ([ f. 1/real (2xC7) 0%,)
proof (rule pmf-exp-mono|OF integrable-sample-pmf[OF W;.sample-space]
integrable-sample-pmf[OF Wy.sample-spacel])
fix f assume f € set-pmf (sample-pmf ;)
show measure Uy {g. card (R f) < b A 3z vy 2z o (z,y,2) f AN 28 (2,y,2) )} < 1/ real (2
x Cr)
(is L1 < ?R1)
proof (cases card (R f) < b)
case True
have ?L1 < measure Uy (J w € {w. 2aw f}. {g9. 98 w g})
by (intro pmf-mono) auto
also have ... < (Y w € {w. 20 w f}. measure ¥y {g. 796 w g})
by (intro measure-UNION-le fin-o) auto
also have ... < (D w € {w. 2a w f}. (1/real (C7%b72)72))
by (intro sum-mono S-prob) auto
also have ... = card {w. 2o w f} /(C7xb72) 72
by simp
also have ... < (C7xb72) * (card (R f) * (card (R f)—1)/2) / (C7xb"2) "2
by (intro a-card divide-right-mono) simp
also have ... < (C7xb72) « (bx b/ 2) / (Crxb"2)72
unfolding C7-def using True
by (intro divide-right-mono Nat.of-nat-mono mult-mono) auto

98



also have ... = 1/(2xC7)
using b-min by (simp add:algebra-simps power2-eg-square)
finally show ?thesis by simp
next
case Fulse
then show ?thesis by simp
qed
qed
also have ... < 1/276
unfolding C7-def by simp
finally show ?thesis by simp
qed

definition F4; where E4 = (A(f,9,h). |p (f,9,h) — 0 (card (R f))| < &/12 * card (R f))

lemma e-4-h: 9 / sqrt b < e/ 12
proof —
have 108 < sqrt (Cy)
unfolding Cy-def by (approximation 5)
also have ... < sgrt( €72 x real b)
using b-lower-bound e-gt-0
by (intro real-sqrt-le-mono) (simp add: pos-divide-le-eq algebra-simps)
also have ... = ¢ % sqrt b
using e-gt-0 by (simp add:real-sqrt-mult)
finally have 108 < ¢ x sqrt b by simp
thus ?thesis
using b-min by (simp add:pos-divide-le-eq)
qed

lemma e-4: measure U {tp. E1 ) A Ea ¢ A E3 ¢ N ~Eq ¢} < 1/276 (is ?L < ?R)
proof —
have a: measure U3 {h. E1 (f,9,h) N E3 (f,9,h) N Es (f,9,h) AN —=E4 (f,g,h)} < 1/276
(is ?L1 < ?R1) if f € set-pmf (sample-pmf V1) g € set-pmf(sample-pmf ¥s)
for f g
proof (cases card (R f) < b A inj-on g (R f))
case True

have g-inj: inj-on g (R f)
using True by simp

have fin-R: finite (g ‘ R f)
unfolding R-def using fin-A
by (intro finite-imagel) simp

interpret B:balls-and-bins-abs g * R f {..<b}
using fin-R b-ne by unfold-locales auto

have range g C {..<C7 * b}

using g-range-1 that(2) unfolding sample-space-alt|OF Uy.sample-space] by auto
hence g-ran: g ‘R f C {..<C7 x b*}

by auto

have sample-pmf [bls = pmf-of-set {..<b}
unfolding sample-pmf-def nat-sample-space-def by simp

hence map-pmf (M\w. w z) (sample-pmf (H k (C7 x b) [blg)) = pmf-of-set {..<b}
ifreg Rfforx
using g-ran V3.single that by auto

moreover have prob-space.k-wise-indep-vars Vs k (A-. discrete) (Az w. w z) (9 ‘R f)
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by (intro prob-space.k-wise-indep-subset|OF - - W3.indep] g-ran prob-space-measure-pmf)
ultimately have lim-balls-and-bins: B.lim-balls-and-bins k (sample-pmf (H k (C7 * b%) [b]s))
unfolding B.lim-balls-and-bins-def by auto

have card-g-R: card (g ‘R f) = card (R f)
using True card-image by auto
hence b-mu: ¢ (card (R f)) = B.u
unfolding B.u-def o-def using b-min by (simp add:powr-realpow)

have card-g-le-b: card (g ‘R f) < card {..<b}
unfolding card-g-R using True by simp

have ?L1 < measure U3 {h. |B.Y h — B.u| > 9 * real (card (g ‘R f)) / sqrt (card {..<b})}
proof (rule pmf-mono)
fix h assume h € {h. E1 (f,9,h) A E2 (f,g,h) A E3 (f,g,h) N ~E4 (f,9,h)}
hence b: |p (f,g9,h) —o (card (R f))| > €/12 * card (R f)
unfolding E,-def by simp
assume h € set-pmf (sample-pmf Vs3)
hence h-range: h © < b for z
unfolding sample-space-alt|OF Us.sample-space,symmetric] using h-range-1 by simp

have {j € {.<b}. int (s f) <71 (f, 9, h) AOj} =
{j € {..<b}. int (s f) < mazx (Maz ({int (fa) |a.a € AN (ga)=37}U{-1})) (- 1)}
unfolding 71-def by simp
also have ... = {j € {..<b}. int (s f) < Max ({int (fa) |a. a € ANK (ga) =4} U{-1})}
using fin-A by (subst maz-absorbl) (auto intro: Maz-ge)
also have ... = {j € {.<b}. (Ba € Rf. h(ga) =3}
unfolding R-def using fin-A by (subst Maz-ge-iff) auto
also have ... = {j. Ja € R f. h (g a) = j}
using h-range by auto
also have ... = (ho g) ‘(R f)
by (auto simp add:set-eq-iff image-iff)
also have ... = h ‘(g ‘(R f))
by (simp add:image-image)
finally have c:{j € {..<b}. int (sf) <71 (f,9,h) A0j}=h ‘(g ‘RYf)
by simp
have 9 x real (card (g ‘R f)) / sqrt (card {..<b}) = 9/ sqrt b * real (card (R f))
using card-image[OF g-inj] by simp
also have ... < ¢/12 % card (R f)
by (intro mult-right-mono e-4-h) simp
also have ... < |B.Y h — B.y|
using b ¢ unfolding B.Y-def p-def b-mu by simp
finally show h € {h. |B.Y h — B.u| > 9 x real (card (g ‘R f)) / sqrt (card {..<b})}
by simp
qed
also have ... < 1/276
using k-min
by (intro B.devitation-bound|OF card-g-le-b lim-balls-and-bins]) auto
finally show ?thesis by simp
next
case Fulse
have ?L1 < measure U3 {}
proof (rule pmf-mono)
fix h assume b:h € {h. E1 (f, g, h) A Es (f, g, h) AN Es (f, g, h) A = E4 (f, g, h)}
hence card (R ) < (2/3)xb
by (auto intro!: R-bound[simplified))
hence card (R f) < b
by simp
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moreover have inj-on g (R f)

using b by (simp add:E3-def)
ultimately have Fulse using Fulse by simp
thus h € {} by simp

qed

also have ... = 0 by simp

finally show ?thesis by simp
qed

have ?L = ([ f. ([ g.
measure \Ij3 {h Ey (fagah) A Es (fagah) A E3 (fagah) N By (fag’h)} 8\112) 8\111)
unfolding sample-pmf-U split-pair-pmf by simp
also have ... < ([f. ([g. 1/276 0¥,) 0¥4)
using a Uq.sample-space Wo.sample-space
by (intro integral-mono-AE AE-pmfI) simp-all

also have ... = 1/276
by simp
finally show ?thesis by simp
qged

lemma g-inverse: p-inv (o z) = x
proof —
have a:1—1/b # 0
using b-min by simp

have o z = b x (1—(1—1/b) powr z)
unfolding p-def by simp
hence g z / real b = 1—(1—1/b) powr z by simp
hence In (1 — o x / real b) = In ((1—1/b) powr x) by simp
also have ... =z * In (1 — 1/ b)
using a by (intro In-powr)
finally have In (I — oz / real b)) =z x In (1— 1/ b)
by simp
moreover have In (1—1/b) < 0
using b-min by (subst In-less-zero-iff) auto
ultimately show Zthesis
using p-inv-def by simp
qed

lemma rho-mono:
assumes z < y
shows pz < p y
proof—
have (1 — 1 / real b) powr y < (1 — 1 / real b) powr z
using b-min
by (intro powr-mono-rev assms) auto
thus ?thesis
unfolding g-def by (intro mult-left-mono) auto
qed

lemma rho-two-thirds: ¢ (2/8 x b) < 8/5 *b
proof —
have 1/3 < exp ( — 13 / 12::real )
by (approzimation 8)
also have ... < exp (— 1 — 2 [/ real b)
using b-min by (intro iff D2[OF exp-le-cancel-iff]) (simp add:algebra-simps)
also have ... < exp (b * (—(1/real b)—2x(1/real b)"2))
using b-min by (simp add:algebra-simps power2-eq-square)

101



also have ... < exp (b In (1—1/real b))
using b-min
by (intro iffD2|OF exp-le-cancel-iff] mult-left-mono In-one-minus-pos-lower-bound) auto

also have ... = exp ( In ( (1—1/real b) powr b))
using b-min by (subst In-powr) auto
also have ... = (1—1/real b) powr b

using b-min by (subst exp-In) auto
finally have a:1/3 < (1—1/real b) powr b by simp

have 2/5 < (1/3) powr (2/3::real)
by (approzimation 5)
also have ... < ((1—1/real b) powr b) powr (2/3)
by (intro powr-mono2 a) auto
also have ... = (1—1/real b) powr (2/3 * real b)
by (subst powr-powr) (simp add:algebra-simps)
finally have 2/5 < (1 — 1 / real b) powr (2 / 3 * real b) by simp
hence 1 — (1 — 1 / real b) powr (2 / 3 * real b) < 3/5
by simp
hence o (2/3 * b) < b« (3/5)
unfolding ¢-def by (intro mult-left-mono) auto
thus ?thesis
by simp
qed

definition g-inv’ :: real = real
where g-inv' x = —1 / (real b x (1—z / real b) * In (1 — 1 / real b))

lemma g-inv’-bound:
assumes z > ()
assumes z < 59/90x*b
shows |p-inv’ z| < 4
proof —
have c:iin (1 — 1 / real b) < 0
using b-min
by (subst In-less-zero-iff) auto
hence d:real b % (1 — z [/ real b) * In (1 — 1 / real b) < 0
using b-min assms by (intro Rings.mult-pos-neg) auto

have (1::real) < 31/30 by simp
also have ... < (81/30) * (b * —(— 1 / real b))
using b-min by simp
also have ... < (81/30) x (b * —In (1 + (— 1 / real b)))
using b-min
by (intro mult-left-mono le-imp-neg-le In-add-one-self-le-self2) auto
also have ... < 3 % (31/90) x (— bxIn (1 — 1 / real b))
by simp
also have ... < 8 % (I —x / real b) x (— bxIn (1 — 1 / real b))
using assms b-min pos-divide-le-eq[where c¢=b] ¢
by (intro mult-right-mono mult-left-mono mult-nonpos-nonpos) auto
also have ... < 3 x (real b x (1 — z / real b) x (—In (1 — 1 / real b)))
by (simp add:algebra-simps)
finally have 3 x (real b x (1 — x / real b) x (=In (1 — 1 / real b))) > 1 by simp
hence 3 * (real b x (1 — z / real b) * In (1 — 1 / real b)) < —1 by simp
hence g-inv’ z < 8
unfolding g-inv’-def using d
by (subst neg-divide-le-eq) auto
moreover have p-inv’ z > 0
unfolding g-inv’-def using d by (intro divide-neg-neg) auto
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ultimately show ?thesis by simp
qed

lemma g-inv":
fixes z :: real
assumes z < b
shows DERIV g-inv x :> g-inv’ z
proof —
have DERIV (lno (Az. (1 — z / real b)) z :> 1 / (1—x [ real b) * (0 —1/b)
using assms b-min
by (intro DERIV-chain DERIV-In-divide DERIV-cdivide derivative-intros) auto
hence DERIV g-inv z :> (1 / (1—x / real b) *x (—1/b)) / In (1—1/real b)
unfolding comp-def o-inv-def by (intro DERIV-cdivide) auto
thus ?thesis
by (simp add:p-inv’-def algebra-simps)
qed

lemma accuracy-without-cutoff:
measure U {(f,g,h). |Y (f,g,h) — real X| > e« X Vs f < ¢gmazx} < 1/27
(is 7L < ?R)
proof —
have 7L < measure U {¢p. =E1 ¢ V —Eqs ¢V —E3 ¢V —E4 ¢}
proof (rule pmf-rev-mono)
fix ¢ assume ¢ € set-pmf (sample-pmf )
obtain f g h where ¢-def: v = (f,g,h) by (metis prod-cases3)

assume ¢ ¢ {p. " E1 Y V- Exs ¢V - Es ¢V - By}
hence assms: E1 (f.g,h) E2 (f.g,h) E3 (f,9,h) Ea (f,9.h)
unfolding v-def by auto

define I :: real set where I = {0..59/90xb}

have p (f,g,h) < o (card (R f)) + /12 * card (R f)
using assms(4) E4-def unfolding abs-le-iff by simp
also have ... < o(2/3xb) + 1/12x (2/3xb)
using e-lt-1 R-bound[OF assms(1,2)]
by (intro add-mono rho-mono mult-mono) auto
also have ... < 8/5 % b+ 1/18%b
by (intro add-mono rho-two-thirds) auto
also have ... < 59/90 b
by simp
finally have p (f,g,h) < 59/90 x b by simp
hence p-in-I: p (f,g,h) € I
unfolding I-def by simp

have ¢ (card (R f)) < 0(2/3 * b)
using R-bound[OF assms(1,2)]
by (intro rho-mono) auto
also have ... < 3/5 x b
using rho-two-thirds by simp
also have ... < b x 59/90 by simp
finally have ¢ (card (R f)) < b * 59/90 by simp
moreover have (1 — 1 / real b) powr (real (card (R f))) < 1 powr (real (card (R f)))
using b-min by (intro powr-mono2) auto
hence ¢ (card (R f)) > 0
unfolding o-def by (intro mult-nonneg-nonneg) auto
ultimately have ¢ (card (R f)) € I
unfolding I-def by simp
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moreover have interval I
unfolding [I-def interval-def by simp
moreover have 59 / 90 x b < b
using b-min by simp
hence DERIV p-inv z :> g-inv’ z if x € I for z
using that I-def by (intro g-inv’) simp
ultimately obtain £ :: real where £-def: € €
o-inv (p(f,g9,h)) — o-inv (o (card (R [))) = (p (f,9:h) — o(card (R [f))) * o-inv’ &
using p-in-1 MV T-interval by blast

have |g-inv(p (f,9,h)) — card (R f)| = |o-inv(p (f,9,h)) — o-inv(e(card (R f)))|
by (subst o-inverse) simp
also have ... = |(p (f,9,h) — o (card (R f)))| * |o-inv’ £ |
using £-def(2) abs-mult by simp
also have ... < |p (f,9,h) — o (card (R f))| * 4
using &-def (1) I-def
by (intro mult-left-mono g-inv’-bound) auto
also have ... < (¢/12 % card (R f)) * 4
using assms(4) E4-def by (intro mult-right-mono) auto
also have ... = ¢/3 * card (R f) by simp
finally have b: |g-inv(p (f,g9,h)) — card (R f)| < €/3 * card (R f) by simp

have |o-inv(p (f.g,h)) — X / 2 " (s f)| <
jo-inv(p (f19,1)) — card (R f)| + |eard (R f) — X / 2 (s f)|
by simp
also have ... < ¢/3 % card (R f) + |card (R f) — X / 2 " (s f)]
by (intro add-mono b) auto
alsohave ... = ¢/3 % |X /2 " (sf)+ (card (Rf)— X /2 (s ) +
|card (R f) — X / 2 " (s f)| by simp
also have ... < ¢/3 % (|1 X/ 2 " (sf)| + |card (Rf) — X/ 2 " (sf)]) +
jcard (R f) = X / 27 (s f)|
using e-gt-0 by (intro mult-left-mono add-mono abs-triangle-ineq) auto
also have ... < ¢/3 % |X /2 " (sf)] + (14+ €/3) «|card (Rf) — X / 2" (s [)|
using e-gt-0 e-lt-1 by (simp add:algebra-simps)
alsohave ... < ¢/3 % |X /2 "sfl+ (4/3)*x(e/ 8 xreal X | 2 " s f)
using assms(2) e-gt-0 e-lt-1
unfolding Es3-def by (intro add-mono mult-mono) auto
also have ... = (7/9) x e xreal X |/ 27s f
using X-ge-1 by (subst abs-of-nonneg) auto
alsohave ... < I xe*xreal X | 275 f
using e-gt-0 by (intro mult-mono divide-right-mono) auto

also have ... = ¢ x real X / 275 f by simp
finally have a:|o-inv(p (f,g,h)) — X /2 " (sf)|<exX /2 " (sf)
by simp

have |Y (f, g, h) — real X| = |2 ™ (s f)| * [o-inv(p (f,9,h)) — real X / 2~ (s f)|
unfolding Y-def by (subst abs-mult[symmetric]) (simp add:algebra-simps powr-add[symmetric])
alsohave ... < 2 " (sf) x (e x X / 2 7 (sf))

by (intro mult-mono a) auto
also have ... = ¢ x X

by (simp add:algebra-simps powr-add[symmetric])
finally have |Y (f, g, h) — real X| < € x X by simp
moreover have 2 powr ([log 2 (real X)] — t f) < 2 powr b-exp (is ?L1 < ?R1)
proof —

have ?L1 < 2 powr (1 + log 2 (real X)— t f)

by (intro powr-mono, linarith) auto
also have ... = 2 powr 1 * 2 powr (log 2 (real X)) * 2 powr (— t f)
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unfolding powr-add[symmetric] by simp
also have ... = 2 x (2 powr (—t f) * X)
using X-ge-1 by simp
also have ... < 2 x (b/2)
using assms(1) unfolding E;-def by (intro mult-left-mono) auto
also have ... = b by simp
also have ... = ?R1
unfolding b-def by (simp add: powr-realpow)
finally show ?thesis by simp
qed
hence [log 2 (real X)] — t f < real b-exp
unfolding not-less[symmetric] using powr-less-mono[where z=2] by simp
hence s f > ¢-maz unfolding s-def g-max-def by (intro nat-mono) auto
ultimately show ¢ ¢ {(f, g, h). e x X <|Y (f, g, h) — real X| V s f < ¢-maz}
unfolding ¥-def by auto
qed
also have ... <
measure U {tp. ~E1 ¢ V =Eq ¢ V = E3 ¥} + measure ¥ {1p. E1 ¢ A E3 ¢ A E3 ¢ A =Ey4 ¢}
by (intro pmf-add) auto
also have ... < (measure U {¢p. =E1 ¢ V —Eq ¢} + measure ¥ {¢p. E1 ¢ A E3 p A =E3 9})
+1/276
by (intro add-mono e-4 pmf-add) auto
also have ... < ((measure ¥ {¢. =E1 ¥} + measure U {¢p. By » A =Eq ¢}) + 1/276) + 1/276
by (intro add-mono e-3 pmf-add) auto
also have ... < ((1/276 + 1/276) + 1/276) + 1/276
by (intro add-mono e-2 e-1) auto

also have ... = ?R by simp
finally show ?thesis by simp
qed
end
end

8 Cutoff Level

This section verifies that the cutoff will be below ¢-maz with high probability. The result
will be needed in Section 9, where it is shown that the estimates will be accurate for any
cutoff below ¢-maz.
theory Distributed-Distinct-Elements- Cutoff-Level
imports
Distributed-Distinct- Elements- Accuracy- Without- Cutoff
Distributed- Distinct- Elements- Tail- Bounds
begin

hide-const Quantum.Z
unbundle intro-cong-syntax

lemma mono-real-of-int: mono real-of-int
unfolding mono-def by auto

lemma Maz-le-Sum:
fixes [ :: 'a = int
assumes finite A
assumes \a. a € A = fa >0
shows Maz (insert 0 (f “A)) < (>_a €A .fa) (is ?L < ?R)
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proof (cases A#{})
case True

have 0: fa < (D a €A .fa)if a € A for a

using that assms by (intro member-le-sum) auto

have 7L = maz 0 (Maxz (f © A))
using True assms(1) by (subst Max-insert) auto
also have ... = Max (maz 0 ‘ f © A)
using assms True by (intro mono-Max-commute monol) auto
also have ... = Max (f < A)
unfolding image-image using assms
by (intro arg-conglwhere f=Maz] image-cong) auto
also have ... < ?R
using 0 True assms(1)
by (intro iffD2{OF Maz-le-iff]) auto
finally show ?thesis by simp
next
case Fulse
hence A = {} by simp
then show ?thesis by simp
qed

context inner-algorithm-fix-A
begin

The following inequality is true for base e on the entire domain (z > 0). It is shown in
In-add-one-self-le-self. In the following it is established for base 2, where it holds for x > 1.

lemma log-2-estimate:
assumes z > (I::real)
shows log 2 (1+z) < =z
proof —
define f where fz = 2 — log 2 (1+ z) for z :: real
define [’ where [’z = 1 — 1/((z+1)*In 2) for z :: real

have 0:(f has-real-derivative (f' z)) (at z) if > 0 for z
unfolding f-def f’-def using that

by (auto intro!: derivative-eq-intros)

have f'z > 0 if 1 < z for z :: real
proof —
have (1::real) < 2xIn 2
by (approzimation 5)
also have ... < (z+1)xln 2
using that by (intro mult-right-mono) auto
finally have 1 < (z+1)*ln 2 by simp
hence 1/((z+1)*ln 2) < 1
by simp
thus ?thesis
unfolding f’-def by simp
qed

hence 3y. (f has-real-derivative y) (at x) A 0 < yif x > 1 for z ::

using that order-less-le-trans|OF exp-gt-zero]

by (intro exl[where z=f" z] conjl 0) auto
hence f1 < fz

by (intro DERIV-nonneg-imp-nondecreasing|OF assms)) auto
thus ?thesis
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unfolding f-def by simp
qed

lemma cutoff-eq-7:
real X * 2 powr (—real g¢-maz) / b < 1
proof —
have real X = 2 powr (log 2 X)
using X-ge-1 by (intro powr-log-cancel[symmetric]) auto
also have ... < 2 powr (nat [log 2 X7)
by (intro powr-mono) linarith+

also have ... = 2 7 (nat [log 2 X])
by (subst powr-realpow) auto

also have ... = real (2 ~ (nat [log 2 (real X)]))
by simp

also have ... < real (2 ~ (b-exp + nat ([log 2 (real X)| — int b-ezp)))
by (intro Nat.of-nat-mono power-increasing) linarith+

also have ... = b *x 27¢-max
unfolding ¢-maz-def b-def by (simp add: power-add)

finally have real X < b * 2 ~ g-maz by simp
thus ?thesis
using b-min
unfolding powr-minus inverse-eq-divide
by (simp add:field-simps powr-realpow)
qed

lemma cutoff-eq-6:

fixes k

assumes a € A

shows ([ f. real-of-int (max 0 (int (f a) — int k)) V1) < 2 powr (—real k) (is ?L < ?R)
proof (cases k < n-exp — 1)

case True

have a-le-n: a < n

using assms A-range by auto

have ?L = ([ z. real-of-int (maz 0 (int z — k)) Omap-pmf (Az. z a) V1)

by simp

also have ... = ([ z. real-of-int (maz 0 (int z — k)) O(G n-exp))
unfolding ¥, .single[OF a-le-n| by simp

also have ... = ([ z. maz 0 (real x — real k) (G n-exp))
unfolding maz-of-mono[ OF mono-real-of-int,symmetric] by simp

also have ... = (3" z<n-exp. maz 0 (real x — real k) * pmf (G n-exp) z)

using G-range unfolding sample-space-alt|OF G-sample-space]
by (intro integral-measure-pmf-real) auto

also have ... = (> z=k+1..n-exp. (real © — real k) * pmf (G n-exp) z)
by (intro sum.mono-neutral-cong-right) auto
also have ... = (3" z=k+1..n-exp. (real x — real k) * measure (G n-exp) {z})

unfolding measure-pmf-single by simp

also have ... = (3| a=k+1..n-exp. (real x—real k)*(measure (G n-exp) ({w. w>z}—{w. w>(z+1)})))
by (intro sum.cong arg-cong2[where f=(x)] measure-pmf-cong) auto

also have ... = ()" z=k+1..n-exp. (real x—real k)x*
(measure (G n-exp) {w. w>z} — measure (G n-exp) {w. w>(z+1)}))
by (intro sum.cong arg-cong2[where f=(x)| measure-Diff) auto

also have ... = (> z=k+1..n-exp. (real  — real k) x (1/27x — of-bool(z+1<n-exp)/2(z+1)))
unfolding G-prob by (intro-cong [oa (%), o3 (=), o2 (/)] more:sum.cong) auto

also have ... =
- z=k+1..n-exp. (real z—k)/27x) — (O x=k+1..n-exp. (real z—k)* of-bool(z+1<n-exp)/2 (z+1))
by (simp add:algebra-simps sum-subtractf)
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also have .= z=k+1..n-exp. (real z—k)/272)— (> 2=k+1..n-exp—1. (real z—k)/2(z+1))
by (intro arg-cong2|where f=(—)] refl sum.mono-neutral-cong-right) auto
also have ..=(>" a=k+1..(n-exp—1)+1. (real x—k)/27x)— (> a=k+1..n-exp—1. (real —k)/ 2 (z+1))
using n-exp-gt-0 by (intro arg-cong2[where f=(—)] refl sum.cong) auto
also have ...= (>  z€insert k {k+1..n-exp—1}. (real (z+1)—k)/2 (z+1))—
O z=k+1..n-exp—1. (real z—k)/2(z+1))
unfolding sum.shift-bounds-cl-nat-ivl using True
by (intro arg-cong2|where f=(—)] sum.cong) auto
also have ... = 1/27(k+ 1)+ z=k+1..n-exp—1. (real (xz+1)—k)/2(z+1)— (real z—k)/2(z+1))
by (subst sum.insert) (auto simp add:sum-subtractf)
also have ... = 1/27(k+1)+(>_ z=k+1..n-exp—1. (1/27(z+1)))
by (intro arg-cong2|where f=(+)] sum.cong refl) (simp add:field-simps)
also have ... = () z€insert k {k+1..n-exp—1}. (1/2(z+1)))
by (subst sum.insert) auto
also have ... = > 2=0+k..(n-exp— 1 —k)+k. 1/2(z+1))
using True by (intro sum.cong) auto
also have ... = (3 z<n-ezp—k. 1/2(x+k+1))
unfolding sum.shift-bounds-cl-nat-ivl using True n-exp-gt-0 by (intro sum.cong) auto
also have ... = (1/2) (k+1) * (3 z<n-exp—k. (1/2) x)
unfolding sum-distrib-left power-add[symmetric] by (simp add:power-divide ac-simps)
also have ... = (1/2)(k+1) * 2 x (1—(1 / 2) ~ (n-exp — k))
by (subst geometric-sum) auto
also have ... < (1/2)7(k+1) * 2 x (1-0)
by (intro mult-left-mono diff-mono) auto

also have ... = (1/2)7%
unfolding power-add by simp
also have ... = 7R

unfolding powr-minus by (simp add:powr-realpow inverse-eq-divide power-divide)
finally show ?thesis
by simp
next
case Fulse
hence k-ge-n-exp: k > n-exp
by simp
have a-lt-n: a < n
using assms A-range by auto

have ?L = ([ z. real-of-int (maz 0 (int z — k)) Omap-pmf (A\z. z a) ;)

by simp

also have ... = ([ z. real-of-int (maz 0 (int z — k)) (G n-exp))
unfolding U,.single[OF a-lt-n] by simp

also have ... = ([ z. real-of-int 0 d(G n-exp))

using G-range k-ge-n-exp unfolding sample-space-alt[OF G-sample-space]
by (intro integral-cong-AE AE-pmfI iff D2[OF of-int-eq-iff] max-absorbl) force+
also have ... = 0 by simp
finally show ?thesis by simp
qed

lemma cutoff-eq-5:
assumes z > (—1 :: real)
shows real-of-int |log 2 (x+2)] < (real c+2) + maz (x — 27¢) 0 (is ?L < ?R)
proof —
have 0: 1 < 2 71 % In (2::real)
by (approzimation 5)

consider (a) c= 0Nz > 2c+1|(b)c>0ANz>2ct+l](c)z< 27c+1

by linarith
hence log 2 (z+2) < ?R

108



proof (cases)
case a
have log 2 (z+2) = log 2 (1+(z+1))
by (simp add:algebra-simps)
also have ... < z+1
using a by (intro log-2-estimate) auto
also have ... = 7R
using a by auto
finally show ?thesis by simp
next
case b
have 0 < 0 + (I::real)
by simp
also have ... < 27¢+(1::real)
by (intro add-mono) auto
also have ... < z
using b by simp
finally have z-gt-0: © > 0
by simp

have log 2 (z+2) = log 2 ((z+2)/27¢) + ¢
using z-gt-0 by (subst log-divide) auto
also have ... = log 2 (1+(z+2—27¢)/27¢) + ¢
by (simp add:divide-simps)
also have ... < (z4+2-27¢)/27¢c / In 2 + ¢
using b unfolding log-def
by (intro add-mono divide-right-mono In-add-one-self-le-self divide-nonneg-pos) auto
also have ... = (z4+2—-27¢)/(27cxln 2) + ¢
by simp
also have ... < (z+2-27¢)/(271*In 2)+c
using b by (intro add-mono divide-left-mono mult-right-mono power-increasing) simp-all
also have ... < (z+2-27¢)/1 + ¢
using b by (intro add-mono divide-left-mono 0) auto
also have ... < (¢+2) + maz (x — 27¢) 0
using b by simp
finally show ?thesis by simp
next
case ¢
hence log 2 (z+2) < log 2 ((27c+1)+2)
using assms by (intro log-mono add-mono) auto

also have ... = log 2 (27cx(1+3/27¢))
by (simp add:algebra-simps)
also have ... = ¢ + log 2 (1+3/27¢)

by (subst log-mult) (auto intro:add-pos-nonneg)
also have ... < ¢+ log 2 (1+3/270)
by (intro add-mono log-mono divide-left-mono power-increasing add-pos-nonneg) auto

also have ... = ¢ + log 2 (2x2)
by simp
also have ... = real c + 2

by (subst log-mult) auto
also have ... < (¢+2) + maz (x — 27¢) 0
by simp
finally show ?thesis
by simp
qed
moreover have [log 2 (z+2)]| < log 2 (z+2)
by simp
ultimately show ¢thesis using order-trans by blast
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qed

lemma cutoff-level:
measure Q@ {w. ¢qw A > g-maz} < §/2 (is ?L < ?R)
proof —
have Ci-est: C1 x 1 < 30 * real |
unfolding C-def
by (intro mult-right-mono of-nat-0-le-iff) (approzimation 10)

define Z where Z w = (3 j<b. real-of-int |log 2 (of-int (maz (71 w A ¢-maz j) (—1)) + 2)])
for w
define V where V w =2 w / real b — 3 for w

have 2:Z ¢ < real bx(real c+2) + of-int (3> a€A. maz 0 (int (fst ¥ a) — ¢-maz —27¢))
(is ?L1 < ?R1) if ¢ € sample-set ¥ for ¢ ¢
proof —
obtain f g h where ¥-def: ¢ = (f,g,h)
using prod-cases3 by blast

have v¢-range: (f,g,h) € sample-set U
using that unfolding y-def by simp

have — 1 — 27¢ < —1—(1::real)
by (intro diff-mono) auto
also have ... < 0 by simp
finally have — 1 — 2 "¢ < (0::real) by simp
hence auz3: maz (—1—2"¢) 0 = (0::real)
by (intro maz-absorb2)

have — I — int ¢gmazx — 2 "¢ < -1 -0 — 1
by (intro diff-mono) auto
also have ... < 0 by simp
finally have — 1 — int g-maz — 2 ~ ¢ < 0 by simp
hence auz3-2: maz 0 (— 1 — int gmaz — 2 " ¢) = 0
by (intro maz-absorbl)

have ?L1 < (3 j<b. (real ¢+2) + maz (real-of-int (maz (11 ¥ A g¢-maz j) (— 1)) — 27¢) 0)
unfolding Z-def by (intro sum-mono cutoff-eq-5) auto
also have ... = (3 j<b. (real c+2)+maz (1o ¥ A j — ¢-maz — 27¢) 0)
unfolding 7;-def maz-of-mono|OF mono-real-of-int,symmetric]
by (intro-cong [oa (+)] more:sum.cong) (simp add:maz-diff-distrib-left maz.assoc auz3)
also have ... = real b * (real ¢ + 2) +
of-int (3> j<b. (max 0 (Maz (insert (— 1) {int (fa) |a. a € A AN h (g a) = j})—g-maz —
2°¢)
unfolding ¢-def by (simp add:maz.commute)
also have ... = real b * (real ¢ + 2) +
of-int (3 j<b. max 0 (Maz ((Az. x—qg-maz—27¢) (insert(—1){int (f a) |a. a € AAR(g
)=i}))
using fin-A
by (intro-cong [o2 (4), o1 of-int, oo max] more:sum.cong mono-Max-commute) (auto
simp:monol)
also have ... = real b * (real c + 2) +
of-int(>" j<b. max 0(Maz(insert(—1—qg-maz—2 c){int (f a)—g¢g-maz—2"c |a. a € A A h (g
%) = 7})
by (intro-cong (oo (4), o1 of-int, o9 maz, o1 Max] more:sum.cong) auto
also have ... = real b * (real ¢ + 2) + of-int
(53" j<b. Maz ((maz 0) “(insert(—1—qg-maz—2 ¢c){int (f a)—g-maz—2"c |a. a € A A h (g a)

=3J1))
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using fin-A by (intro-cong [o2 (+), o1 of-int] more:sum.cong mono-Max-commute)
(auto simp add:monol setcompr-eg-image)
also have ... = real b * (real ¢ + 2) +
of-int (> j<b. Max (insert 0 {maz 0 (int (f a)—g-maz—27¢) |a. a € A A h (g a) = j}))
using auz3-2 by (intro-cong (oo (+), o1 of-int, 01 Max] more:sum.cong)
(simp add:setcompr-eg-image image-image)
also have ... < bx(real c+2)+ of-int(>_ j<b. (3 alac AAR(g(a))=j. maz 0(int(f a)—q¢-max—27¢)))
using fin-A Maax-le-Sum unfolding setcompr-eg-image
by (intro add-mono iff D2[OF of-int-le-iff] sum-mono Maz-le-Sum) (simp-all)
also have ... = real bx(real c+2)+
of-int(>" ac(Jje{..<b}. {a. ac AN h(g(a)) = j}). maz 0(int(f a)—q-maz—2"¢))

using fin-A
by (intro-cong (o2 (+), o1 of-int] more:sum.UNION-disjoint[symmetric]) auto
also have ... = real bx(real c+2) + of-int(>_ a€A. max 0(int(f a)—g¢-mar—2"¢))

using h-range[OF 1-range] by (intro-cong [o2 (4), 01 of-int] more:sum.cong) auto
also have ... = ?R1
unfolding -def by simp
finally show ?thesis
by simp
qed

have 1: measure ¥ {1. real ¢ < V o} < 2 powr (— (27¢)) (is ?2L1 < ?R1) for ¢
proof —
have ?L1 = measure U {¢. real b * (real ¢ + 3) < Z 9}
unfolding V-def using b-min by (intro measure-pmf-cong) (simp add:field-simps)
also have ... < measure ¥

{t. real bx(real c+3)< real bx(real c+2)+ of-int (D a€A. max 0 (int (fst ¢ a)—g-max
—270))}
using 2 order-trans unfolding sample-space-alt|OF sample-space-V]
by (intro pmf-mono) blast
also have ... = measure ¥ {¢. real b < (D> a€A. of-int (maz 0 (int (fst ¥ a) —g-maz —27¢)))}
by (intro measure-pmf-cong) (simp add:algebra-simps)
also have ... < ([¢. (3 a€A. of-int (maz 0 (int (fst ¢ a) —g-maz —27¢))) O¥)/real b
using b-min sample space-V by (intro pmf-markov sum-nonneg) simp-all
also have . (> acA. ([. of-int (mazx 0 (int (fst ¢ a) —g-maz —27¢)) OV))/real b
using sample space-U by (intro-cong [o2(/)] more: Bochner-Integration.integral-sum) simp
also have ... = (3" acA. ([ f. of-int (maz 0 (int (f a)—g-mazx —27¢)) d(map-pmf fst ¥)))/real

by simp

also have ... = (3" acA. ([ f. of-int (maz 0 (int (f a) — (g¢-maz +27¢))) OW1))/real b
unfolding sample-pmf-¥ map-fst-pair-pmf by (simp add:algebra-simps)

also have ... < (3" a€A. 2 powr —real (¢-mazx + 27¢))/real b
using b-min by (intro sum-mono divide-right-mono cutoff-eq-6) auto

also have ... = real X * 2 powr (— real ¢-maz + (— (2 ~¢))) / real b
unfolding X-def by simp
also have ... = (real X * 2 powr (—real ¢-mazx) / b) x 2 powr (—(27¢))

unfolding powr-add by (simp add:algebra-simps)
also have ... < 1 % 2 powr (—(27¢))
using cutoff-eq-7 by (intro mult-right-mono) auto
finally show ?thesis
by simp
qed

have 0: measure ¥ {¢p. t < V ¢} < exp (—xxInz ~3) (is 2L1 < ?R1) if z > 20 for z
proof —

define ¢ where ¢ = nat |z|

have z x In 273 < exp (z x In 2) x In 2/2 if x > 150 for xz::real
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proof —
have aux-auz-0: x4 > 0
by simp

have z s In 273 <z * 273
using that by (intro mult-left-mono power-mono In-bound) auto
also have ... = 274 x 1
by (simp add:numeral-eq-Suc)
also have ... <z * (In2 / 10)74 % (150 * (In 2 / 10))76 = (In 2/2))
by (intro mult-left-mono auz-auz-0) (approzimation 8)
also have ... = (z x (In 2 / 10)) ™4 * (150 = (In 2 / 10))76 * (In 2/2)
unfolding power-mult-distrib by (simp add:algebra-simps)
also have ... < (zx (In 2 / 10)) 4 x (zx (In 2 / 10))76 x (In 2/2)
by (intro mult-right-mono mult-left-mono power-mono that) auto
also have ... = (0+z x (In 2 / 10))710 * (In 2/2)
unfolding power-add[symmetric] by simp
also have ... < (I4z xIn 2/ 10)710 = (In 2/2)
using that by (intro mult-right-mono power-mono add-mono) auto
also have ... < exp (x xIn 2 / 10)710 * (In 2/2)
using that by (intro mult-right-mono power-mono exp-ge-add-one-self) auto
also have ... = exp (z x In 2) x (In 2/2)
unfolding exp-of-nat-mult[symmetric] by simp
finally show ?thesis by simp
qed
moreover have z x In 273 < exp (z x In 2) xIn 2/2 if x € {20..150}
using that by (approxzimation 10 splitting: x=1)

ultimately have z x In 273 < exp (z % In 2) x In 2/2
using that by fastforce
also have ... = 2 powr (z—1) * In 2
unfolding powr-diff unfolding powr-def by simp
also have ... < 2 powr ¢ * In 2
unfolding c-def using that
by (intro mult-right-mono powr-mono) auto
also have ... = 27¢c % In 2
using powr-realpow by simp
finally have auz0: z x In 73 < 27c x In 2
by simp
have real ¢ < z
using that unfolding c-def by linarith
hence ?L1 < measure ¥ {3. real ¢ < V ¢}
by (intro pmf-mono) auto
also have ... < 2 powr (—(27¢))
by (intro 1)
also have ... = exp (— (2 "¢ * In 2))
by (simp add:powr-def)
also have ... < exp (— (z *ln 273))
using auz0 by (intro iffD2[OF exp-le-cancel-iff]) auto

also have ... = ?R1
by simp

finally show ?thesis
by simp

qed

have ?L < measure Q {w. is-too-large (T w A ¢-maz)}
using [t-s-too-large

by (intro pmf-mono) (simp del:is-too-large.simps)
also have ... = measure (2
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{w. O (i,5)e{..<l}x{..<b}. |log 2 (of-int (maz (T2 w A ¢-maz ij) (—1)) + 2)]) > C5 * b
x[}
by simp
also have ... = measure Q {w. real-of-int (> (¢,7)e{..<I}x{..<b}.
Llog 2 (of-int (maz (T2 w A g-maz ij) (—1)) + 2)]) > of-int (C5 x b * 1)}
unfolding of-int-less-iff by simp
also have ... = measure Q {w. real-of-int C5 * real b * real | < of-int (> ze{..<l} x {..<b}.
[log 2 (real-of-int (11 (w (fst z)) A ¢-maz (snd z)) + 2)])}
by (intro-cong [o2 measure, o1 Collect, o1 of-int, o2 (<)] more:ext sum.cong)
(auto simp add:case-prod-beta To-def T1-def)

also have ... = measure Q {w. (> i<l. Z (w i) > of-int C5 * real b * real I}
unfolding Z-def sum.cartesian-product T1-def by (simp add:case-prod-beta)
also have ... = measure Q {w. (> i<l. V (w i) + 3) > of-int Cs * real I}

unfolding V-def using b-min
by (intro measure-pmf-cong) (simp add:sum-divide-distrib[symmetric] field-simps sum.distrib)
also have ... = measure Q {w. (i<l V (w i) > of-int (C5—3) * real I}
by (simp add:sum.distrib algebra-simps)
also have ... < measure Q {w. > i<l. V (w i) > Cq * real I}
unfolding C's-def using C-est by (intro pmf-mono) auto
also have ... < exp (— real 1)
by (intro Q.deviation-bound I-gt-0 0) (st
also have ... < exp (— (C¢ * In (2 / 9)))
using [-lbound by (intro iffD2[OF exp-le-cancel-iff]) auto
also have ... < exp (— (1 xIn (2 / 9)))
unfolding Cs-def using §-gt-0 §-1t-1
by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-right-mono In-ge-zero) auto
also have ... = exp (In (6 / 2))
using §-gt-0 by (simp add: In-div)
also have ... = §/2
using J-gt-0 by simp
finally show ?thesis
by simp
qed

mp-all add: A-def)

end
unbundle no-intro-cong-syntaz

end

9 Accuracy with cutoff

This section verifies that each of the [ estimate have the required accuracy with high
probability assuming as long as the cutoff is below ¢-maz, generalizing the result from
Section 7.

theory Distributed-Distinct- Elements-Accuracy
imports
Distributed- Distinct- Elements- Accuracy- Without- Cutoff
Distributed-Distinct- Elements- Cutoff- Level
begin

unbundle intro-cong-syntax
lemma (in semilattice-set) Union:

assumes finite I I # {}
assumes \i. i € [ = finite (Z 7)
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assumes N\i. i € | = Z i # {}
shows F ({J (Z 1)) = F (M. (F (Z4))) ‘1)
using assms(1,2,3,4)
proof (induction I rule:finite-ne-induct)
case (singleton x)
then show ?case by simp
next

case (insert x I)
have F (J (Z “insertz I)) = F (Zz) U (U (Z ‘1))

by simp

also have ... = f (F (Zz)) (F (U (Z ‘1))
using insert by (intro union finite-UN-I) auto

also have ... = f (F {F (Z z)}) (F ((\i. F (Z1)) ‘I))
using insert(5,6) by (subst msert(4)) auto

also have ... = F ({F (Zx)} U (Xi. F (Z1)) ‘1)
using insert(1,2) by (mtm umon[symmetmc} finite-imagel) auto

also have ... = F ((Ai. F (Z 1)) ‘insert z I)
by simp

finally show ?case by simp

qed

This is similar to the existing hom-Max-commute with the crucial difference that it works
even if the function is a homomorphism between distinct lattices. An example application
is Maz (int * A) = int (Maz A).

lemma hom-Max-commute':
assumes finite A A # {}
assumes N\zy. 1 € A=y € A= maz (fz) (fy) =f (maz z y)
shows Maz (f “ A) = f (Maz A)
using assms by (induction A rule:finite-ne-induct) auto

context inner-algorithm-fix-A
begin

definition ¢,
where t. ) 0 = (Maz (M. 1 ¢ Ao j+ o) ‘{.<b})) — b-exp + 9

definition s.
where s. ¥ 0 = nat (t. ¥ o)

definition p,
where p. ¢ 0 = card {je {.<b}. 11 Y Ao j+ 0> s. ¢ o}

definition Y.
where Y. o =2 "s. v o * p-inv (p. ¥ o)

lemma s.-eg-s:
assumes (f,g,h) € sample-set U
assumes 0 < s f
shows s. (f,9,h) o = s f
proof —
have int (Maz (f < A)) — int b-exp + 9 < int (Maz (f “ A)) — 26 + 9
using b-exp-ge-26 by (intro add-mono diff-left-mono) auto
also have ... < int (Maz (f * A)) by simp
finally have 1:int (Maz (f < A)) — int b-exp + 9 < int (Maz (f < A))

by simp
have o < int (s f) using assms(2) by simp
also have ... = maz 0 (¢ f)

unfolding s-def by simp
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also have ... < maz 0 (int (Maz (f © A)))
unfolding t-def using 1 by simp

also have ... = int (Maz (f < A))
by simp

finally have o < int (Maz (f * A))
by simp

hence 0: int 0 — 1 < int (Maz (f © A))
by simp

have c:h € sample-set (H k (C7 x b?) [b]s)
using assms(1) sample-set-¥ by auto
hence h-range: h z < b for z
using h-range-1 by simp

have (MAX je{.<b}. 71 (f, g, h) Ao j+ int o) =
(MAX ze{..<b}. Maz ({int (fa) |a. a € ANKh(ga) =z} U{-1} U {int o —1}))
using fin-f[OF assms(1)] by (simp add:maz-add-distrib-left maz.commute 71 -def)

also have ... = Maz ((Jz<b. {int (fa) l[a.a € ANh(ga)=2}U{=1}U{intoc — 1})
using fin-f[OF assms(1)] b-ne by (intro Max. Union[symmetric]) auto

also have ... = Maz ({int (fa) |a. a € A} U{—1,int o — 1})
using h-range by (intro arg-conglwhere f=Maz]) auto
also have ... = maz (Mazx (int ‘f “ A)) (int 0 — 1)

using A-nonempty fin-A unfolding Setcompr-eq-image image-image
by (subst Maz.union) auto
also have ... = maz (int (Max (f < A))) (int c — 1)
using fin-A A-nonempty by (subst hom-Max-commute’) auto
also have ... = int (Maz (f < A))
by (intro maz-absorbl 0)
finally have (MAX je{..<b}. 71 (f, 9, h) A o j + int o) = Maz (f * A) by simp

thus ?thesis
unfolding s.-def t.-def s-def t-def by simp
qed

lemma p.-eq-p:
assumes (f,g,h) € sample-set U
assumes 0 < s f
shows p. (f,g,h) @ = p (f.g,h)
proof —
have {j € {..<b}. int (s f) < mazx (1o (f, 9, h) A j) (int o — 1)} =
{j € {..<b). int (s f) < maz (ro (F, 9. h) A J) (1)}
using assms(2) unfolding le-maz-iff-disj by simp
thus ?thesis
unfolding p.-def p-def s.-eq-s|OF assms]
by (simp add:maz-add-distrib-left 71-def del:Tg.simps)
qged

lemma Y .-eq-Y:
assumes (f,g,h) € sample-set U
assumes 0 < s f
shows Y. (f,g,h) 0 = Y (f,9,h)
unfolding Y.-def Y-def s.-eq-s|OF assms] p.-eq-p|OF assms] by simp

lemma accuracy-single: measure U {¢. 3o < g-maz. |Y. v o — real X| > e« X} < 1/27
(is 7L < ?R)
proof —
have measure ¥ {¢. 0 < g-max. |Y. ¢ 0 — real X| > € = real X} <
measure ¥ {(f,g,h). |Y (f,g9,h) — real X| > € x real X V s f < g-maz}
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proof (rule pmf-mono)

fix ¥

assume a:p € {¢. Jo<g-maz. € x real X < |Y. ¢ 0 — real X|}

assume d:) € set-pmf (sample-pmf ¥)

obtain o where b:0c < ¢-maz and c: € x real X < |Y. ¢ 0 — real X]|
using a by auto

obtain f g h where ¥-def: ¢ = (f,g,h) by (metis prod-cases3)

hence e:(f,g,h) € sample-set ¥
using d unfolding sample-space-alt[OF sample-space-¥] by simp

show ¢ € {(f, g, h). e x real X < |Y (f, g, h) — real X| V s f < g-maz}
proof (cases s f > g-max)
case True
hence f:0 < s f using b by simp
have ¢ % real X < |Y ¢ — real X|
using Y.-eq-Y[OF e f] ¢ unfolding v¢-def by simp
then show ?thesis unfolding v -def by simp
next
case Fulse
then show ?thesis unfolding v-def by simp
qed
qed
also have ... < 1/27
using accuracy-without-cutoff by simp
finally show ?thesis by simp
qed

lemma estimatel-eq:
assumes j < [
shows estimatel (o w Ao,0)j=Y. (wj) o (is L = ?R)
proof —
define ¢t where ¢t = mazx 0 (Maz ((1o w A o j) ‘{.<b}) + o — |log 2 b] + 9)
define p where p = card { k. k € { . <b} A(Tow Ao jk)+o>1t}

have 0: int (nat ) = maz 0 z for z
by simp

have 1: |log 2 b| = b-exp
unfolding b-def by simp

have b > 0
using b-min by simp
hence 2: {..<b} # {} by auto

have ¢ = int (nat (Maz (72 w A 0 j) ‘{..<b}) + 0 — b-exp + 9))
unfolding ¢-def 0 1 by (rule refl)

also have ... = int (nat (Maz (Az. z + o) ‘(T2 w A o j) ‘{.<b}) — b-exp + 9))
by (intro-cong [o1 int,01 nat,oa(+),02(—)] more:hom-Maz-commute) (simp-all add:2)
also have ... = int (s. (w j) o)

using assms

unfolding s.-def t.-def To-def image-image by simp
finally have 3:t = int (s. (w j) o)

by simp

have {: p = p. (wj) o
using assms unfolding p-def p.-def 3 To-def by simp

have ?L = 2 powr t = In (1—p/b) / In(1—1/b)
unfolding estimatel.simps T-def T3-def
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by (simp only:t-def p-def Let-def)

also have ... = 2 powr (s, (w j) o) * g-inv p
unfolding 3 p-inv-def by (simp)
also have ... = ?R

unfolding Y .-def 8 4 by (simp add:powr-realpow)
finally show ?thesis
by blast
qed

lemma estimate-result-1:

measure Q) {w. (Jo<g-mazx. exX < |estimate (1o w A 0,0)—X|) } < /2 (is L < ?R)
proof —

define I :: real set where I = {z. |z — real X| < exX}

define y where y = measure ¥ {¢p. 3o<g-maz. Y. ¢ c¢I}

have int-I: interval 1
unfolding interval-def I-def by auto

have y = measure ¥ {¢p. 30 < g¢-maz. |Y. ¢ 0 — real X| > € x X}
unfolding p-def I-def by (simp add:not-le)

also have ... < 1 /27
by (intro accuracy-single)

also have ... = 1/ 16
by simp

finally have 1:u < 1 / 16 by simp

have (u + A) < 1/16 + 1/16

unfolding A-def by (intro add-mono 1) auto
also have ... < 1/8

by simp
finally have 2:(n + A) < 1/8

by simp

hence 0: (u+ A) < 1/2
by simp

have © > 0

unfolding p-def by simp
hence 3: u+ A > 0

by (intro add-nonneg-pos A-gt-0)

have 7L = measure Q {w. (Jo<¢g-maz. exX < |median | (estimatel (7o w A 0,0))—X]|) }
by simp
also have ... = measure Q {w. (3o<g-max. median | (estimatel (7o w A 0,0)) ¢ I)}
unfolding I-def by (intro measure-pmf-cong) auto
also have ... < measure Q {w. real(card{ie{..<l}.(3o0<g-maz. Y. (w i) o¢I)})> real 1/2}
proof (rule pmf-mono)
fix w
assume w € set-pmf Q w € {w. Jo<g-maz. median | (estimatel (7o w A 0, 0)) ¢ I}
then obtain o where o-def: median I (estimatel (72 w A 0, 0)) ¢ I o<g-max
by auto

have real | = 2 * real | — real |
by simp

also have ... < 2 x real | — 2 % card {i. i < I A\ estimatel (T w A 0, 0) i € I}
using o-def median-est|OF int-I, where n=I| not-less
by (intro diff-left-mono Nat.of-nat-mono) (auto simp del:estimatel .simps)
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also have ... = 2 * (real (card {..<l}) —card {i. i < I A estimatel (1o w A 0, 0) i € I})
by (simp del:estimatel .simps)
also have ... = 2 x real (card {..<l} —card {i. i < I A estimatel (T2 w A 0, 0) i € I})
by (intro-cong [oa (%)] more:of-nat-diff [symmetric] card-mono)
(auto simp del:estimatel .simps)
also have ... = 2 x real (card ({..<l} — {i. i <1 A estimatel (o w Ao, 0) i€ I}))
by (intro-cong (oo (%), o1 of-nat] more:card-Diff-subset[symmetric])
(auto simp del:estimatel .simps)
also have ... = 2 x real (card {i€{..<l}. estimatel (7o w A o, 0) i ¢ I})
by (intro-cong [o2 (%), o1 of-nat, o1 card]) (auto simp del:estimatel .simps)
also have ... = 2 x real (card {i € {.<l}. Y, (wi) o ¢ I})
using estimatel-eq by (intro-cong (o2 (*), o1 of-nat, o1 card] more:restr-Collect-cong) auto
also have ... < 2 x real (card {i € {.<l}. (Fo<gmaz. Y. (wi) o ¢ I)})
using o-def(2) by (intro mult-left-mono Nat.of-nat-mono card-mono) auto
finally have real I < 2 x real (card {i € {..<l}. (3o<g-maz. Y. (wi) o ¢ I)})

by simp
thus w € {w. real I/2 < real (card {i € {.<l}. Jo<g-maz. Y. (w i) o ¢ I})}
by simp
qged
also have ... = measure Q {w. real (card{ic{..<l}. (So<g-maz. Y. (w i) o¢I)}) > (1/2)*real

0

unfolding sample-pmf-alt|OF Q.sample-space] p-def by simp

also have ... < exp (— real I % ((1/2) xIn (1 / (u+ A)) — 2 * exp (— 1)))
using 0 unfolding p-def by (intro Q.tail-bound l-gt-0 A-gt-0) auto

also have ... = ezp (— (real Il % ((1/2) * In (1 / (u + A)) — 2 % exp (— 1))))
by simp

also have ... < exp (— (real I % ((1/2) * In 8 — 2 x exp (— 1))))
using 2 3 l-gt-0 by (intro iff D2[OF exp-le-cancel-iff] le-imp-neg-le mult-left-mono diff-mono)

(auto simp add:divide-simps)

also have ... < exp (— (real | % (1/4)))
by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-left--mono of-nat-0-le-iff)
(approzimation 5)

also have ... < exp (— (Cs * In (2/ 6)%(1/4)))
by (intro iffD2|OF exp-le-cancel-iff] le-imp-neg-le mult-right-mono I-lbound) auto

also have ... = exp ( — In (2/ 9))
unfolding Cg-def by simp
also have ... = 7R

using J-gt-0 by (subst In-inverse[symmetric]) auto
finally show ?thesis
by simp
qed

theorem estimate-result:
measure  {w. |estimate (T w A)— X| > ex X} < ¢
(is ?L < ?R)
proof —
let 2P = measure €2
have ?L < ?P {w. (3o<g-maz. exreal X<|estimate (T2 w A o, 0)—real X|)Vqw A> g-maz}
unfolding 7-def T3-def not-le[symmetric]
by (intro pmf-mono) auto
also have ...< ?P {w. (Jo<g-maz. exreal X<|estimate (To w A 0,0)—X|)} + ?P {w. ¢ w A>
g-mazx}
by (intro pmf-add) auto
also have ...< /2 + §/2
by (intro add-mono cutoff-level estimate-result-1)
also have ... = ¢
by simp
finally show ?%thesis
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by simp
qed

end

lemma (in inner-algorithm) estimate-result:
assumes A C {.<n} A # {}
shows measure Q {w. |estimate (1 w A)— real (card A)| > & x real (card A)} < § (is 2L < ?R)
proof —
interpret inner-algorithm-fix-A
using assms by unfold-locales auto
have ?L = measure Q {w. |estimate (T w A)— X| > ¢ x X}
unfolding X-def by simp
also have ... < ?R
by (intro estimate-result)
finally show ?thesis
by simp
qed

unbundle no-intro-cong-syntax

end

10 Outer Algorithm

This section introduces the final solution with optimal size space usage. Internally it relies
on the inner algorithm described in Section 6, dependending on the paramaters n, € and ¢
it either uses the inner algorithm directly or if ! is larger than Inn it runs o copies
of the inner algorithm (with the modified failure probability ﬁ) using an expander to
select its seeds. The theorems below verify that the probability that the relative accuracy
of the median of the copies is too large is below ¢.

theory Distributed-Distinct- Elements-Outer-Algorithm
imports
Distributed-Distinct- Elements-Accuracy
Prefiz- Free-Code-Combinators. Prefix- Free- Code- Combinators
Frequency-Moments. Landau-Ext
Landau-Symbols. Landau-More
begin

unbundle intro-cong-syntax

The following are non-asymptotic hard bounds on the space usage for the sketches and
seeds repsectively. The end of this section contains a proof that the sum is asymptotically
in O(In(e™1)6~! + Inn).

definition state-space-usage = (A(n,e,0). 2740 * (In(1/8)+1)/ €72 + log 2 (log 2 n + 3))
definition seed-space-usage = (A(n,e,8). 2730+2723xIn n+48x(log 2(1/e)+16)*+336xIn (1/5))

locale outer-algorithm =

fixes n :: nat

fixes ¢ :: real

fixes ¢ :: real

assumes n-gt-0: n > 0

assumes 0-gt-0: § > 0 and §-lt-1: 6 < 1

assumes e-gt-0: € > 0 and e-lt-1: € < 1
begin
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definition ng where ny = maz (real n) (exp (exp 5))

definition stage-two where stage-two = (§ < (1/In ng))

definition §; :: real where §; = (if stage-two then (1/In ng) else §)

definition m :: nat where m = (if stage-two then nat [4 * In (1/ 6)/In (In no)] else 1)
definition o where o = (if stage-two then (1/Iln ng) else 1)

lemma m-lbound:
assumes stage-two
shows m > 4/ = In (1/ 9)/In(In no)
proof —
have m = real (nat [4 = In (1 / 6) / In (In ng)])
using assms unfolding m-def by simp
also have ... > / xIn (1 /&) / In (In ng)
by linarith
finally show ?thesis by simp
qed

lemma n-lbound:
nog > exp (exp 5) Inng > exp 55 < lIn (Inng) Inng > 1ng > 1
proof —
show 0:ng > exp (exp 5)
unfolding ng-def by simp
have (1::real) < exp (exp 5)
by (approzimation 5)
hence ng > 1
using 0 by argo
thus 7:ln ng > exp 5
using 0 by (intro iff D2[OF In-ge-iff]) auto
moreover have 1 < exp (5::real)
by (approzimation 5)
ultimately show 2:In ng > 1
by argo
show 5 < In (In ng)
using 1 2 by (subst In-ge-iff) simp
have (1:real) < exp (exp 5)
by (approzimation 5)
thus ng > 1
using 0 by argo
qed

lemma §1-gt-0: 0 < §;
using n-lbound(4) 6-gt-0 unfolding §;-def
by (cases stage-two) simp-all

lemma 61-lt-1: 6; < 1
using n-lbound(4) 0-lt-1 unfolding ¢,-def
by (cases stage-two) simp-all

lemma m-gt-0-aux:
assumes stage-two
shows 1 <In (1 /6) / In (In ng)
proof —
have lnng <1 /96
using n-lbound(4)
using assms unfolding pos-le-divide-eq(OF 6-gt-0] stage-two-def
by (simp add:divide-simps ac-simps)
hence in (In ng) < in (1 /9)
using n-lbound(4) 0-gt-0 by (intro iffD2[OF In-le-cancel-iff| divide-pos-pos) auto
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thus 1 <lIn (1 /9) / In (In no)
using n-lbound(3)
by (subst pos-le-divide-eq) auto
qed

lemma m-gt-0: m > 0
proof (cases stage-two)
case True
have 0 < 4 *In (1/ 0)/In(In ng)
using m-gt-0-auz[OF True] by simp
also have ... < m
using m-lbound[OF True] by simp
finally have 0 < real m
by simp
then show ?thesis by simp
next
case Fulse
then show ?thesis unfolding m-def by simp
qged

lemma a-gt-0: o > 0
using n-lbound(4) unfolding «a-def
by (cases stage-two) auto

lemma a-le-1: o < 1
using n-lbound(4) unfolding «-def
by (cases stage-two) simp-all

sublocale I: inner-algorithm n §;
unfolding inner-algorithm-def using n-gt-0 e-gt-0 e-lt-1 §1-gt-0 §1-lt-1 by auto

abbreviation © where © = & m o 1.Q

sublocale O: expander-sample-space m o 1.9
unfolding expander-sample-space-def using I.C).sample-space a-gt-0 m-gt-0 by auto

type-synonym state = inner-algorithm.state list

fun single :: nat = nat = state where
single 9 & = map (Aj. I.single (select © ¥ j) z) [0..<m]

fun merge :: state = state = state where
merge x y = map (A(z,y). [.merge x y) (zip = y)

fun estimate :: state = real where
estimate x = median m (Ai. I.estimate (x| 7))

definition v :: nat = nat set = state
where v 9 A = map (Ni. I.7 (select © 9 i) A) [0..<m]

The following three theorems verify the correctness of the algorithm. The term 7 is a
mathematical description of the sketch for a given subset, while local.single, local.merge
are the actual functions that compute the sketches.

theorem merge-result: merge (v w A) (v w B) = v w (AU B) (is ?L = ?R)

proof —

have 0: zip [0..<m] [0..<m] = map (Az. (z,z)) [0..<m] for m
by (induction m, auto)
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have ?L = map (Az. I.merge (I.7 (select © w z) A) (I.7 (select © w z) B)) [0..<m]
unfolding v-def
by (simp add:zip-map-map 0 comp-def case-prod-beta)

also have ... = map (Az. I.7 (select © w z) (A U B)) [0..<m)
by (intro map-cong I.merge-result ©.range) auto
also have ... = 7R

unfolding v-def by simp
finally show ?thesis by simp
qed

theorem single-result: single w v = v w {z} (is ?L = ?R)
proof —
have ?L = map (A\j. I.single (select © w j) z) [0..<m]
by (simp del:1.single.simps)
also have ... = 7R
unfolding v-def by (intro map-cong I.single-result ©.range) auto
finally show ?thesis by simp
qed

theorem estimate-result:

assumes A C {.<n} A # {}

defines p = (pmf-of-set {..<size ©})

shows measure p {w. |estimate (v w A)— real (card A)| > € * real (card A)} < ¢ (is L < ?R)
proof (cases stage-two)

case True

define I where I = {z. |z — real (card A)| < € * real (card A)}

have int-I: interval I

unfolding interval-def I-def by auto

define i where y = measure I.Q {w. I.estimate (I.T w A) ¢ I}

have 0:p + a > 0
unfolding p-def
by (intro add-nonneg-pos a-gt-0) auto

have 1 < §;
unfolding p-def I-def using I.estimate-result[OF assms(1,2)]
by (simp add: not-le del:1.estimate.simps)
also have ... = 1 /In ng
using True unfolding §,-def by simp
finally have u < 1/In ng by simp
hence p + a < 1/lnng + 1/In ng
unfolding «a-def using True by (intro add-mono) auto

also have ... = 2/In ng
by simp

finally have 7:p + a < 2 / In ng
by simp

hence 2:lnng < 2 / (n + @)
using 0 n-lbound by (simp add:field-simps)

have u + a < 2/In ng
by (intro 1)
also have ... < 2/exp 5
using n-lbound by (intro divide-left-mono) simp-all
also have ... < 1/2
by (approzimation 5)
finally have 3:u + o < 1/2 by simp
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have {: 2 xIn 2 4+ 8 x exp (— 1) < (5:real)
by (approzimation 5)

have ?L = measure p {w. median m (\i. I.estimate (v w A 1)) & I}
unfolding I-def by (simp add:not-le)
also have ... <
measure p {9. real (card {i € {.<m}. I.estimate (I.7 (select © ¥ i) A) ¢ I})> real m/2}
proof (rule pmf-mono)
fix ¥ assume v € set-pmf p
assume a:¥ € {w. median m (Ai. I.estimate (v w Al 7)) ¢ I}
have real m = 2 x real m — real m
by simp
also have ... < 2 % real m — 2 % card {i. i < m A I.estimate (v 9 A i) € I}
using median-est[OF int-I, where n=m]| a
by (intro diff-left-mono Nat.of-nat-mono)
(auto simp add:not-less[symmetric] simp del:I.estimate.simps)

also have ... = 2 * (real (card {..<m}) — card {i. i < m A IL.estimate (v & A1) € I})
by (simp del:I.estimate.simps)
also have ... = 2 * real (card {..<m} — card {i. i < m A I.estimate (v 9 A! Q) € I})

by (intro-cong [oa (x)] more:of-nat-diff [symmetric] card-mono)
(auto simp del:1.estimate.simps)
also have ... = 2 x real (card ({..<m} — {i. i < m A L.estimate (v 9 A 1%) € I}))
by (intro-cong (oo (%), o1 of-nat] more: card-Diff-subset[symmetric])
(auto simp del:I.estimate.simps)
also have ... = 2 x real (card {i€{..<m}. I.estimate (v 9 A1 Q) ¢ I})
by (intro-cong [o2 (%), o1 of-nat, o1 card]) (auto simp del:I.estimate.simps)
also have ... = 2 x real (card {i € {.<m}. L.estimate (I.T (select © 9 i) A) ¢ I})
unfolding v-def by (intro-cong (o2 (*), o1 of-nat, o1 card] more:restr-Collect-cong)
(simp del:1.estimate.simps)
finally have real m < 2 x real (card {i € {..<m}. I.estimate (I.7 (select © ¥ i) A) ¢ I})

by simp
thus 9 € {9. real m / 2 < real (card {i € {..<m}. I.estimate (I.T (select © 9 i) A) ¢ I})}
by simp
qed
also have ...=measure ©{9. real(card {i € {..<m}. I.estimate (I.7 (¥ i) A) ¢ I})>(1/2)xreal

m}
unfolding sample-pmf-alt|OF ©.sample-space] p-def by (simp del:1.estimate.simps)
also have ... < exp (—real m % ((1/2) * In (1/ (n + ) — 2xexp (—1)))
using 3 m-gt-0 a-gt-0 unfolding p-def by (intro ©.tail-bound) force+
also have ... < exp (—real m x ((1/2) *x In (In ng / 2) — 2xexp (—1)))
using 0 2 3 n-lbound
by (intro iffD2|OF exp-le-cancel-iff] mult-right-mono mult-left-mono-neg[where c=—real m]
diff-mono mult-left-mono iffD2[OF In-le-cancel-iff]) (simp-all)
also have ... = exp (—real m * (In (In ng) / 2 — (In 2/2 + 2xexp (—1))))
using n-lbound by (subst In-div) (simp-all add:algebra-simps)
also have ... < exp (—real m x (In (In ng) / 2 — (In (In (exp(exp 5))) / 4)))
using /4
by (intro iff D2[OF exp-le-cancel-iff] mult-left--mono-neg[where c=—real m] diff-mono) simp-all
also have ... < exp (—real m x (In (In ng) / 2 — (In (In ng) / 4)))
using n-lbound
by (intro iff D2[OF exp-le-cancel-iff] mult-left-mono-neg[where c=—real m| diff-mono) simp-all
also have ... = exp (— real m * (In (In ng)/ 4) )
by (simp add:algebra-simps)
also have ... < exp (— (4 *x In (1/ 0)/In(In ng)) * (In (In no)/4))
using m-lbound[OF True] n-lbound
by (intro iffD2|OF exp-le-cancel-iff] mult-right-mono divide-nonneg-pos) simp-all
also have ... = exp (— In (1/ 9))
using n-lbound by simp
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also have ... = §
using §-gt-0 by (subst In-inverse[symmetric]) auto
finally show ?thesis by simp
next
case Fulse
have m-eq: m = 1
unfolding m-def using Fulse by simp
hence ?L = measure p {w. € x real (card A) < |I.estimate (v w A! 0) — real (card A)|}
unfolding estimate.simps m-eq median-def by simp
also have ... = measure p {w. exreal(card A)<|I.estimate (I.7 (select © w 0) A)—real(card
A}
unfolding v-def m-eq by (simp del: I.estimate.simps)
also have ... = measure © {w. exreal(card A) < |I.estimate (I.7 (w 0) A)—real(card A)|}
unfolding sample-pmf-alt|OF ©.sample-space] p-def by (simp del:I.estimate.simps)
also have ...=
measure (map-pmf (AJ. ¥ 0) ©) {w. exreal(card A) < |I.estimate (I.7 w A)—real(card A)|}
by simp
also have ... = measure I.Q) {w. exreal(card A) < |I.estimate (I.7 w A)—real(card A)|}
using m-eq by (subst ©.uniform-property) auto
also have ... < §;
by (intro I.estimate-result[OF assms(1,2)])
also have ... = 7R
unfolding 0;-def using Fulse by simp
finally show ?thesis
by simp
qed

The function encode-state can represent states as bit strings. This enables verification of
the space usage.

definition encode-state
where encode-state = Lf. I.encode-state m

lemma encode-state: is-encoding encode-state
unfolding encode-state-def
by (intro fized-list-encoding I.encode-state)

lemma state-bit-count:
bit-count (encode-state (v w A)) < state-space-usage (real n, €, 9)
(is 2L < ?R)
proof —
have 0: length (v w A) = m
unfolding v-def by simp
have 7L = (3] z+v w A. bit-count (I.encode-state x))
using 0 unfolding encode-state-def fized-list-bit-count by simp
also have ... = (3 z+[0..<m)]. bit-count (I.encode-state (I.7 (select © w z) A)))
unfolding v-def by (simp add:comp-def)
also have ... < (Y a«-[0..<m)]. ereal (2736 *(In (1/8;)+ 1)/e% + log 2 (log 2 (real n) + 3)))
using I.state-bit-count by (intro sum-list-mono I.state-bit-count ©.range)
also have ... = ereal ( real m * (2736 *(In (1/6;)+ 1)/e? + log 2 (log 2 (real n) + 3)))
unfolding sum-list-triv-ereal by simp
also have ... < 2740 = (In(1/0)+1)/ €72 + log 2 (log 2n + 3) (is ?L1 < ?R1)
proof (cases stage-two)
case True
have [/xin (1/0)/In(In ng)] < 4xin (1/9)/In(In ng) + 1
by simp
also have ... < /xIn (1/6)/In(ln ng) + In (1/8)/In(In no)
using m-gt-0-auz|OF True] by (intro add-mono) auto
also have ... = 5 x In (1/0)/In(In ng) by simp

124



finally have 3: [{xIn (1/6)/In(ln ng)] < & * In (1/0)/In(In ng)
by simp

have 4: 0 < log 2 (log 2 (real n) + 3)
using n-gt-0
by (intro iff D2]OF zero-le-log-cancel-iff] add-nonneg-pos) auto

have 5: 1 /In 2 + 3 [ exp 5 < exp (1:real) 1.2 [ In 2 < (2::real)
by (approzimation 5)+

have log 2(log 2 (real n)+3) < log 2 (log 2 no + 3)
using n-gt-0 by (intro iff D2[OF log-le-cancel-iff] add-mono add-nonneg-pos
iff D2|OF zero-le-log-cancel-iff]) (simp-all add:ng-def)
alsohave ...=In(lnng /In 2+ 3) /In 2
unfolding log-def by simp
also have ... < In (In no/ln 2 + (3 / exp 5) x Inng) / In 2
using n-lbound by (intro divide-right-mono iffD2[OF In-le-cancel-iff] add-mono add-nonneg-pos)
(simp-all add:divide-simps)
also have ... =In (Inng*x (I /ln 2+ 3/exp 5)) [/ In 2
by (simp add:algebra-simps)
also have ... < In (Ilnngxexp 1)/ In 2
using n-lbound by (intro divide-right-mono iff D2[OF In-le-cancel-iff] add-mono
mult-left-mono 5 Rings.mult-pos-pos add-pos-nonneg) auto
also have ... = (ln (lnng) + 1) / In 2
using n-lbound by (subst In-mult) simp-all
also have ... < (in (In ng) + 0.2 * In (In ng)) / In 2
using n-lbound by (intro divide-right-mono add-mono) auto
also have ... = (1.2/ In 2) x In (In no)
by simp
also have ... < 2 x In (In ng)
using n-lbound by (intro mult-right-mono 5) simp
finally have log 2(log 2 (real n)+3) < 2 % In (In no)
by simp
hence 6: log 2(log 2 (real n)+3)/In(In ng) < 2
using n-lbound by (subst pos-divide-le-eq) simp-all

have ?L1 = real(nat [4xin (1/0)/In(ln no)])*(2736*(In (In ng)+1)/e 2+log 2(log 2 (real
n)+3))
using True unfolding m-def 0;-def by simp
also have ... = [4xIn (1/6)/In(In ng)]*(2736%(In (In no)+1)/e"2+log 2(log 2 (real n)+3))
using m-gt-0-auz|OF True] by (subst of-nat-nat) simp-all
also have ... < (5xin (1/9)/In(In ng)) *(2736%(In (In ng)+1)/e " 2+log 2(log 2 (real n)+3))
using n-lbound(3) e-gt-0 4 by (intro ereal-mono mult-right-mono
add-nonneg-nonneg divide-nonneg-pos mult-nonneg-nonneg 3) simp-all
also have ... < (5 = In (1/8)/In(In ng))*((2786+2736)*In (In ng)/e 2+log 2(log 2 (real
n)+3))
using n-lbound 6-gt-0 §-lt-1
by (intro ereal-mono mult-left-mono add-mono divide-right-mono divide-nonneg-pos) auto
also have ... = 5%(2737)x In (1/6)/ €72 + (5xiIn (1/6)) * (log 2(log 2 (real n)+3)/In(In ng))
using n-lbound by (simp add:algebra-simps)
also have ... < 5x(2737)x In (1/6)/ €72 + (5%In(1/ 0)) x 2
using 0-gt-0 §-lt-1 by (intro add-mono ereal-mono order.refl mult-left-mono 6) auto
also have ... = 5x(2737)* In (1/6)/ €72 + 6x2xin(1/ §) / 1
by simp
also have ... < 5x(2787)x In (1/6)/ €72 + 5x2xIn(1/ d) [ €72
using e-gt-0 e-lt-1 §-gt-0 6-1t-1
by (intro add-mono ereal-mono divide-left-mono Rings.mult-pos-pos power-le-one) auto
also have ... = (5%(2737+2))x (In (1/6)+0)/ €2 + 0
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by (simp add:algebra-simps)
also have ... < 2740 x (In (1 / §)+1) /€72 + log 2 (log 2 (real n) + 3)
using e-gt-0 e-lt-1 §-gt-0 §-lt-1 n-gt-0 by (intro add-mono ereal-mono divide-right-mono
mult-right-mono iffD2[OF zero-le-log-cancel-iff] add-nonneg-pos) auto
finally show ?thesis by simp
next
case Fulse
have ?L1 = 2736 *(In (1/8)+ 1)/e® + log 2 (log 2 (real n) + &)
using Fulse unfolding §;-def m-def by simp
also have ... < ?R1
using e-gt-0 e-lt-1 §-gt-0 §-1t-1
by (intro ereal-mono add-mono divide-right-mono mult-right-mono add-nonneg-nonneg) auto
finally show ?thesis by simp
qed
finally show ?%thesis
unfolding state-space-usage-def by simp
qed

Encoding function for the seeds which are just natural numbers smaller than sample-space.size

O.

definition encode-seed
where encode-seed = Nb, (size ©)

lemma encode-seed:
is-encoding encode-seed
unfolding encode-seed-def by (intro bounded-nat-encoding)

lemma random-bit-count:
assumes w < size ©
shows bit-count (encode-seed w) < seed-space-usage (real n, €, 0)
(is ?L < ?R)
proof —
have 0: size © > 0
using O.sample-space unfolding sample-space-def by simp
have 1: size I.Q) > 0
using 1.Q.sample-space unfolding sample-space-def by simp

have (55+60xin (In ng)) "3 < (1804 60xIn (In ng)) "3
using n-lbound by (intro power-mono add-mono) auto
also have ... = 18073 x (1+In (In ng)/real 8)73
unfolding power-mult-distrib[symmetric] by simp
also have ... < 18073 x exp (In (In ng))
using n-lbound by (intro mult-left-mono exp-ge-one-plus-z-over-n-power-n) auto
also have ... = 18073 * In ng
using n-lbound by (subst exp-ln) auto
also have ... < 18078 x mazx (In n) (In (exp (exp 5)))
using n-gt-0 unfolding ng-def by (subst In-maz-swap) auto
also have ... < 18073 = (In n + exp 5)
using n-gt-0 unfolding In-exp by (intro mult-left-mono) auto
finally have 2:(55+60xIn (In ng)) "3 < 18073 % In n + 180 3*exp 5
by simp

have 3:(1::real)+180 8xexp 5 < 2730 (4::real)/In 2 + 18073 < 2723
by (approzimation 10)+

have ?L = ereal (real (floorlog 2 (size © — 1)))

using assms unfolding encode-seed-def bounded-nat-bit-count by simp
also have ... < ereal (real (floorlog 2 (size ©)))
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by (intro ereal-mono Nat.of-nat-mono floorlog-mono) auto

also have ... = ereal (1 4 of-int |log 2 (real (sample-space.size ©))])
using 0 unfolding floorlog-def by simp

also have ... < ereal (1 + log 2 (real (size ©)))
by (intro add-mono ereal-mono) auto

also have ... = 1 + log 2 (real (size 1.Q) * (274) ~((m — 1) x nat [In a / In 0.957))
unfolding O.size by simp

also have ... = 1 + log 2 (real (size I.Q) * 27 (4 * (m — 1) * nat [In a / In 0.95]))
unfolding power-mult by simp

also have ... = 1 + log 2 (real (size I.Q2)) + (4x(m—1)* nat[ln o / In 0.95])

using I by (subst log-mult) simp-all
also have ... < 1+log 2(2 powr (4xlog 2n + 48 * (log 2 (1/e)+16)*+ (55+60xIn (1/5;))"3))+
(4x(m—1)* nat[ln o« / In 0.957)
using 1 by (intro ereal-mono add-mono iffD2[OF log-le-cancel-iff] I.random-bit-count) auto
also have ..=1+/xlog 2 n+48*(log 2(1/e)+16)*+(55+60xIn (1/8;)) " 3+(4*(m—1)*nat[ln
afln 0.95])
by (subst log-powr-cancel) auto
also have ... < 2730 + 2723xIn n+48*(log 2(1/e)+16)* + 336*In (1/6) (is ?L1 < ?R1)
proof (cases stage-two)
case True

have —1 < (0::real) by simp
also have ... < lna / In 0.95

using a-gt-0 a-le-1 by (intro divide-nonpos-neg) auto
finally have 4: — 1 < In o« / In 0.95 by simp

have 5: — 1 / In 0.95 < (20::real)
by (approzimation 10)

have (4x(m—1)xnat[in o/ln 0.95]) = 4 * (real m—1) x of-int [In o/In 0.95]
using / m-gt-0 unfolding of-nat-mult by (subst of-nat-nat) auto
also have ... < 4 x (real m—1) % (In a/ln 0.95 + 1)
using m-gt-0 by (intro mult-left-mono) auto
also have ... = / x (real m—1) * (—In (In ng)/In 0.95 + 1)
using n-lbound True unfolding «-def
by (subst In-inverse[symmetric]) (simp-all add:inverse-eq-divide)
also have ... = / * (real m — 1) * (In (In ng) * (—1/In 0.95) + 1)
by simp
also have ... < 4 x (realm — 1 ) * (In (In ng) * 20 + 1)
using n-lbound m-gt-0 by (intro mult-left-mono add-mono 5) auto
also have ... = 4 « (real (nat [4 = In (1 /0) / In (In no)])—1) * (In (In ng) x 20 + 1)
using True unfolding m-def by simp
also have ... = 4 x (real-of-int [4 x In (1 /0) / In (In ng)|—1) * (In (In ng) * 20 + 1)
using m-gt-0-auz|OF True] by (subst of-nat-nat) simp-all
also have ... < / x (4 xIn (1 /§) / In (In ng)) * (In (In ng) * 20 + 1)
using n-lbound by (intro mult-left-mono mult-right-mono) auto
also have ... < 4 % (4 *xIn (1 /§) / In (In ng)) * (In (In ng) * 20 + In (In ng))
using 9-gt-0 §-lt-1 n-lbound

by (intro mult-left-mono mult-right-mono add-mono divide-nonneg-pos Rings.mult-nonneg-nonneg)

simp-all

also have ... = 836 « In (1 /9)
using n-lbound by simp

finally have 6: / * (m—1) x nat [In a/ln 0.95] < 336 * In (1/5)
by simp

have ?L1 =1+4xlog 2 n+48*(log 2(1/e)+16)>+(55+60%In (In ng)) "3+ (4*(m—1)xnat[in

afln 0.95])
using True unfolding ¢;-def by simp
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also have ... < 1+/xlog 2 n+48*(log 2(1/e)+16)*+(18073 * In n + 180" 3*exp 5) + 336
In (1/9)
by (intro add-mono 6 2 ereal-mono order.refl)
also have ... = (1+180 3xexp 5)+ (4/In 2 + 18073)xIn n+48*(log 2(1/e)+16)*+ 336 * In
(1/8)
by (simp add:log-def algebra-simps)
also have ... < 2730 + 2723xIn n+48*(log 2(1/e)+16)*+ 336 * In (1/6)
using n-gt-0 by (intro add-mono ereal-mono 3 order.refl mult-right-mono) auto
finally show ?thesis by simp
next
case Fulse
hence 1 / 6 < In ng
using §-gt-0 n-lbound
unfolding stage-two-def not-less by (simp add:divide-simps ac-simps)
hence 7: In (1 / §) < In (In np)
using n-lbound §-gt-0 6-It-1
by (intro iffD2[OF In-le-cancel-iff]) auto

have 8: 0 < 836xin (1/90)
using d-gt-0 §-lt-1 by auto

have ?L1 = 1 + / x log 2 (realn) + 48 * (log 2 (1 [ €) + 16)*> + (55 + 60 x In (1 / §)) ~ 8
using Fulse unfolding §;-def m-def by simp
also have ... < 1 + / * log 2 (real n) + 48 * (log 2 (1 / €) + 16)* + (55 + 60 * In (In
no)) "3
using 0-gt-0 0-lt-1
by (intro add-mono order.refl ereal-mono power-mono mult-left-mono add-nonneg-nonneg 7)
auto
also have ... < 1+/xlog 2(real n)+48*(log 2 (1 | €)+16)*+(180"3*In (real n) + 180 ~ 3 *
exp H)
by (intro add-mono ereal-mono 2 order.refl)
also have ... = (1+180"3xexp 5)+ (4/In 2 + 18073)xIn n+48x(log 2(1/e)+16)*+ 0
by (simp add:log-def algebra-simps)
also have ... < 2730 + 2723xIn n+48*(log 2(1/e)+16)% + 336*In (1/5)
using n-gt-0 by (intro add-mono ereal-mono 3 order.refl mult-right-mono 8) auto
finally show ?thesis by simp
qed
also have ... = seed-space-usage (real n, €, 9)
unfolding seed-space-usage-def by simp
finally show ?thesis by simp
qed

The following is an alternative form expressing the correctness and space usage theorems.
If = is expression formed by local.single and local.merge operations. Then z requires
state-space-usage (real n, €, 0) bits to encode and estimate x approximates the count of
the distinct universe elements in the expression.

For example:

estimate (local.merge (local.single w 1) (local.merge (local.single w 5) (local.single w 1)))
approximates the cardinality of {1, 5, 1} i.e. 2.

datatype sketch-tree = Single nat | Merge sketch-tree sketch-tree
fun eval :: nat = sketch-tree = state
where
eval w (Single x) = single w z |

eval w (Merge z y) = merge (eval w z) (eval w y)

fun sketch-tree-set :: sketch-tree = nat set
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where
sketch-tree-set (Single z) = {z} |
sketch-tree-set (Merge x y) = sketch-tree-set & U sketch-tree-set y

theorem correctness:

fixes X

assumes sketch-tree-set t C {..<n}

defines p = pmf-of-set {..<size ©}

defines X = real (card (sketch-tree-set t))

shows measure p {w. |estimate (eval w t) — X| > e % X} <6 (is ?L < ?R)
proof —

define A where A = sketch-tree-set t

have X-eq: X = real (card A)

unfolding X-def A-def by simp

have 0:eval w t = v w A for w
unfolding A-def using single-result merge-result
by (induction t) (auto simp del:merge.simps single.simps)

have 1: A C {..<n}
using assms(1) unfolding A-def by blast

have 2: A # {}
unfolding A-def by (induction t) auto

show ?thesis
unfolding 0 X-eq p-def by (intro estimate-result 1 2)
qed

theorem space-usage:
assumes w < size O
shows
bit-count (encode-state (eval w t)) < state-space-usage (real n, €, 0) (is ?4)
bit-count (encode-seed w) < seed-space-usage (real n, €, §) (is ¢B)
proof—
define A where A = sketch-tree-set t

have 0:eval w t = v w A for w
unfolding A-def using single-result merge-result
by (induction t) (auto simp del:merge.simps single.simps)

show ?4
unfolding 0 by (intro state-bit-count)
show ?B
using random-bit-count|OF assms] by simp
qged

end

The functions state-space-usage and seed-space-usage are exact bounds on the space usage
for the state and the seed. The following establishes asymptotic bounds with respect to
the limit n,0~ e~ = oo.

context
begin
Some local notation to ease proofs about the asymptotic space usage of the algorithm:

private definition n-of :: real x real X real = real where n-of = (A(n, €, §). n)
private definition d-of :: real x real x real = real where J-of = (A(n, €, §). 0)
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private definition e-of :: real x real X real = real where e-of = (A(n, €, 9). €)

private abbreviation F :: (real x real x real) filter
where F = (at-top Xp at-right 0 X at-right 0)

private lemma var-simps:
n-of = fst
e-of = (Az. fst (snd z))
0-of = (Az. snd (snd x))
unfolding n-of-def c-of-def §-of-def by (auto simp add:case-prod-beta)

private lemma evt-n: eventually (Az. n-of x > n) F
unfolding var-simps by (intro eventually-prodl’ eventually-prod2’ eventually-ge-at-top)
(simp add:prod-filter-eq-bot)

private lemma evt-n-1:Vp zin F. 0 < In (n-of x)
by (intro eventually-mono[OF evt-n[of 1]] In-ge-zero) simp

private lemma evt-n-2: Vp z in F. 0 < In (In (n-of z))
using order-less-le-trans|OF exp-gt-zero)
by (intro eventually-mono|OF evt-n[of exp 1]] In-ge-zero iff D2|OF In-ge-iff]) auto

private lemma evt-c: eventually (Az. 1/e-of x > € AN e-of x > 0) F
unfolding var-simps by (intro eventually-prodl’ eventually-prod2’ eventually-conj
real-inv-at-right-0-inf eventually-at-right-less) (simp-all add:prod-filter-eg-bot)

private lemma evt-0: eventually (Az. 1/0-of £ > 6 A é-of z > 0) F
unfolding var-simps by (intro eventually-prodl’ eventually-prod2’ eventually-conj
real-inv-at-right-0-inf eventually-at-right-less) (simp-all add:prod-filter-eq-bot)

private lemma evt-0-1: Ve zin F. 0 < In (1 / §-of z)
by (intro eventually-mono| OF evt-0[of 1]] In-ge-zero) simp

theorem asymptotic-state-space-complexity:
state-space-usage € O[F](A(n, €, §). In (1/8)/e72 + In (In n))
(is - € O[?F](?rhs))
proof —
have 0:(Az. 1) € O[?F](A\z. In (1 / d-of x))
using order-less-le-trans|OF exp-gt-zero)
by (intro landau-o.big-mono eventually-mono[OF evt-§|of exp 1]])
(auto introl: iffD2[|OF In-ge-iff] simp add:abs-ge-iff)

have 1:(A\z. 1) € O[?F](Az. In (n-of x))
using order-less-le-trans|OF exp-gt-zero)
by (intro landau-o.big-mono eventually-mono|OF evt-n[of exp 1]])
(auto introl:iff D2[OF In-ge-iff] simp add:abs-ge-iff)

have (\z. ((In (1/8-of z)+1)* (1/e-of 2)?))€ O[?F|(Az. In(1/5-of z)x (1 /e-of z)?)
by (intro landau-o.mult sum-in-bigo 0) simp-all

hence 2: (Az. 2740x((In (1/5-of x)+1)* (1 /e-of 2)?))€ O[?F](A\x. In(1/5-of x)* (1 /e-of 1)?)
unfolding cmult-in-bigo-iff by simp

have 3: (1::real) < exp 2
by (approzimation 5)

have (Az. In (n-of z) / In 2 + 3) € O[?F|(A\z. In (n-of z))

using 1 by (intro sum-in-bigo) simp-all
hence (Az. In (In (n-of ) / In 2 + 3)) € O[?F](Az. In (In (n-of x)))

130



using order-less-le-trans|OF exp-gt-zero] order-trans|OF 3]

by (intro landau-In-2[where a=2] eventually-mono|OF evt-n|of exp 2]])

(auto introl:iff D2[OF In-ge-iff] add-nonneg-nonneg divide-nonneg-pos)
hence 4: (Az. log 2 (log 2 (n-of ) + 3))€ O[?F](Az. In(In(n-of x)))

unfolding log-def by simp

have 5:Vp zin ?F. 0 < In (1 / 6-of z) * (1 / e-of z)?
by (intro eventually-mono[OF eventually-conj|OF evt-0-1 evt-[of 1]]]) auto

have state-space-usage = (A\z. state-space-usage (n-of x, e-of x, 0-of x))
by (simp add:case-prod-beta’ n-of-def 6-of-def e-of-def)

also have ... = (\z. 2 740 * ((In (1 / (6-of )) + 1)* (1/e-of 2)?) + log 2 (log 2 (n-of 1)+3))
unfolding state-space-usage-def by (simp add:divide-simps)

also have ... € O[?F|(\z. In (1/5-of x)* (1/e-of x)* + In (In (n-of x)))
by (intro landau-sum 2 4 5 evt-n-2)

also have ... = O[?F](%rhs)
by (simp add:case-prod-beta’ n-of-def d-of-def e-of-def divide-simps)

finally show ?thesis by simp

qged

theorem asymptotic-seed-space-complexity:
seed-space-usage € O[F)(A(n, €, §). In (1/0)+In (1/e)"2 + In n)
(is - € O[?F](?rhs))
proof —
have 0: Vr zin ?F. 0 < (In (1 / e-of 1))?
by simp

have 1: Vg zin ?F. 0 < In (1 / d-of z) + (In (1 / e-of 2))?
by (intro eventually-mono|OF eventually-conj|OF evt-0-1 0]] add-nonneg-nonneg) auto

have 2: (A\z. 1) € O[?F|(Az. In (1 / e-of 1))
using order-less-le-trans|OF exp-gt-zero]
by (intro landau-o0.big-mono eventually-mono[OF evt-e|of exp 1]])
(auto introl:iff D2[OF In-ge-iff] simp add:abs-ge-iff)

have (Az. 1) € Olat-top xp at-right 0 X at-right 0](Az. In (n-of x))
using order-less-le-trans|OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-n|of exp 1]])
(auto introl:iffD2[OF In-ge-iff] simp add:abs-ge-iff)
hence 3: (Az. 1) € O[?F|(\z. In (1 / §-of z) + (In (1 / e-of x))? + In (n-of 7))
by (intro landau-sum-2 1 evt-n-1 0 evt-0-1) simp
have /: (\z. In (n-of z)) € O[?F|(Ax. In (1 / §-of x) + (In (1 / e-of x))? + In (n-of 7))
by (intro landau-sum-2 1 evt-n-1) simp
have (A\z. log 2 (1 / e-of z) + 16) € O[?F|(Az. In (1 [ e-of z))
using 2 unfolding log-def by (intro sum-in-bigo) simp-all
hence 5: (Az. (log 2 (1 / e-of z) + 16)?) € O[?F|(\z. In (1/5-of z)+(In (1 /e-of z))?)
using 0 unfolding power2-eq-square by (intro landau-sum-2 landau-o.mult evt-6-1) simp-all
have 6: (A\z. (log 2 (1 / e-of ) + 16)?) € O[?F|(\z. In (1/5-of z)+(In (1 /e-of z))*+In (n-of
%)
by (intro landau-sum-1[OF - - 5] 1 evt-n-1)
have 7: (\z. In (1/5-of x)) € O[?F](Ax. In (1/5-of x)+(In (1 /e-of z))?*+In (n-of z))
by (intro landau-sum-1 1 evt-6-1 0 evt-n-1) simp

have seed-space-usage = (Ax. seed-space-usage (n-of z, e-of z, §-of x))
by (simp add:case-prod-beta’ n-of-def 6-of-def e-of-def)
also have ... = (\z. 2730+2723*In (n-of )+48*(log 2 (1/(c-of z))+16)* + 336 * In (1 / 5-of
z))

unfolding seed-space-usage-def by (simp add:divide-simps)
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also have ... € O[?F]|(A\z. In (1/6-of )+In (1/e-of )72 + In (n-of z))
using 3 / 6 7 by (intro sum-in-bigo) simp-all
also have ... = O[?F](?rhs)
by (simp add:case-prod-beta’ n-of-def §-of-def e-of-def)
finally show ?thesis by simp
qed

definition space-usage © = state-space-usage © + seed-space-usage x

theorem asymptotic-space-complexity:

space-usage € Olat-top X at-right 0 X at-right 0](A(n, €, §). In (1/5)/e72 + In n)
proof —

let 2f1 = (Az. In (1/5-of £)x(1/e-of z72)+In (In (n-of x)))

let 2f2 = (Az. In(1/6-of )+In(1/e-of ) "2+In (n-of x))

have 0:Vp zin F. 0 < (1 / (e-of 7)?)
unfolding var-simps by (intro eventually-prodl’ eventually-prod2’ eventually-inv)
(simp-all add:prod-filter-eg-bot eventually-nonzero-simps)

have 1:Vrp xin F. 0 < In (1 / §-of x) * (1 / (e-of 7)?)

by (intro eventually-mono[OF eventually-conj|OF evt-6-1 0]] mult-nonneg-nonneg) auto

have 2: Vr 2 in F. 0 < In (1 / §-of x) * (1 / (e-of ©)?) + In (In (n-of z))
by (intro eventually-mono|OF eventually-conj|OF 1 evt-n-2]] add-nonneg-nonneg) auto

have 3:Vp zin F. 0 < In (1 / (e-of z)?)
unfolding power-one-over|[symmetric|
by (intro eventually-mono[OF evt-e[of 1]] In-ge-zero) simp

have /:Vr xin F. 0 < In (1 / d-of x) + (In (1 / e-of ))? + In (n-of )
by (intro eventually-mono[OF eventually-conj|OF evt-n-1 eventually-conj|OF evt-6-1 3]]]
add-nonneg-nonneg) auto

have 5: (A-. 1) € O[F|(\z. 1 / (e-of x)?)
unfolding var-simps by (intro bigo-prod-1 bigo-prod-2 bigo-inv)
(simp-all add:power-divide prod-filter-eq-bot)

have 6: (A-. 1) € O[F|(Az. In (1 / §-of x))
unfolding var-simps
by (intro bigo-prod-1 bigo-prod-2 bigo-inv) (simp-all add:prod-filter-eq-bot)

have 7: state-space-usage € O[F](Az. In (1 / 6-of z) * (1 / (e-of x)?) + In (In (n-of 1)))
using asymptotic-state-space-complexity unfolding §-of-def e-of-def n-of-def
by (simp add:case-prod-beta’)

have 8: seed-space-usage € O[F)(Az. In (1 | 6-of ) + (In (1 / e-of 2))* + In (n-of x))
using asymptotic-seed-space-complexity unfolding §-of-def e-of-def n-of-def
by (simp add:case-prod-beta’)

have 9: (Az. In (n-of ¥)) € O[F|(A\z. In (1 / 6-of x) x (1 / (e-of z)?) + In (n-of x))
by (intro landau-sum-2 evt-n-1 1) simp

have (\z. (In (1 / e-of x))?) € O[F)(Az. 1 / e-of 272)
unfolding var-simps
by (intro bigo-prod-1 bigo-prod-2 bigo-inv) (simp-all add:power-divide prod-filter-eq-bot)
hence 10: (\z. (In (1 / e-of 2))?) € O[F)(\z. In (1 / 6-of z) * (1 / e-of z72) + In (n-of 1))
by (intro landau-sum-1 evt-n-1 1 landau-o.big-mult-1" 6)
have 11: (Az. In (1 / 6-of x)) € O[F](Ax. In (1 / §-of ) * (1 / e-of 72) + In (n-of z))
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by (intro landau-sum-1 evt-n-1 1 landau-o0.big-mult-1 5) simp
have 12: (Az. In (1/0-of ) % (1 /e-of x72)) € O[F)(Az. In (1/-of )x(1/e-of 72)+In (n-of x))
by (intro landau-sum-1 1 evt-n-1) simp

have (Az. In (In (n-of z))) € O[F](Az. In (n-of z))
unfolding var-simps by (intro bigo-prod-1 bigo-prod-2) (simp-all add:prod-filter-eq-bot)
hence 13: (Az. In (In (n-of z))) € O[F|(Az. In (1 / §-of z) * (I / e-of 272) + In (n-of x))
by (intro landau-sum-2 evt-n-1 1)

have space-usage = (\z. state-space-usage T + seed-space-usage )
unfolding space-usage-def by simp

also have ... € O[F|(A\z. 1 = + 22 z)
by (intro landau-sum 2 4 7 8)

also have ... C O[F](A\z. In (1 / 6-of z) * (1 /e-of x72) + In (n-of z))
by (intro landau-o0.big.subsetl sum-in-bigo 9 10 11 12 13)

also have ... = O[F](\(n, €, §). In (1/0)/e"2 + In n)
unfolding J-of-def e-of-def n-of-def
by (simp add:case-prod-beta’)

finally show ?thesis by simp

qed

end
unbundle no-intro-cong-syntaz

end
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