
Proving the Correctness of Disk Paxos in
Isabelle/HOL

Mauro Jaskelioff Stephan Merz

March 17, 2025

Abstract

Disk Paxos [GL00] is an algorithm for building arbitrary fault-
tolerant distributed systems. The specification of Disk Paxos has been
proved correct informally and tested using the TLC model checker,
but up to now, it has never been fully formally verified. In this work
we have formally verified its correctness using the Isabelle theorem
prover and the HOL logic system [NPW02], showing that Isabelle is a
practical tool for verifying properties of TLA+ specifications.

Contents
1 Introduction 2

2 The Disk Paxos Algorithm 3
2.1 Informal description of the algorithm. 4
2.2 Disk Paxos and its TLA+ Specification 4

3 Translating from TLA+ to Isabelle/HOL 6
3.1 Typed vs. Untyped . 6
3.2 Primed Variables . 8
3.3 Restructuring the specification 8

4 Structure of the Correctness Proof 9
4.1 Going from Informal Proofs to Formal Proofs 10

5 Conclusion 11

A TLA+ correctness specification 12

B Disk Paxos Algorithm Specification 13

1

C Proof of Disk Paxos’ Invariant 19
C.1 Invariant 1 . 19
C.2 Invariant 2 . 21

C.2.1 Proofs of Invariant 2 a 22
C.2.2 Proofs of Invariant 2 b 27
C.2.3 Proofs of Invariant 2 c 28

C.3 Invariant 3 . 30
C.3.1 Proofs of Invariant 3 30

C.4 Invariant 4 . 35
C.4.1 Proofs of Invariant 4a 36
C.4.2 Proofs of Invariant 4b 40
C.4.3 Proofs of Invariant 4c 44
C.4.4 Proofs of Invariant 4d 47

C.5 Invariant 5 . 50
C.5.1 Proof of Invariant 5 51

C.6 Lemma I2f . 59
C.7 Invariant 6 . 64
C.8 The Complete Invariant . 67
C.9 Inner Module . 68

1 Introduction
Algorithms for fault-tolerant distributed systems were first introduced to
implement critical systems. Nevertheless, what good is such an algorithm if
it has a design error? We need some kind of guarantee that the algorithm
does not have a faulty design. Formal verification of its specification is one
such guarantee.

Disk Paxos [GL00] is an algorithm for building arbitrary fault-tolerant
distributed systems, that, due to its complexity, is difficult to reason about.
It has been proved correct informally, and tested using the TLC model
checker [Lam02]. The informal proof is rigorous but, as it is always the case
with large informal proofs, it is easy to overlook details. Thus, one of the
motivations of this work is to see if such a rigorous proof can be formalized
in a contemporary theorem prover.

In [Pac01] part of the correctness proof (invariance of HInv1 and HInv3)
was verified using the theorem prover ACL2 [KMM00]. An implicit assump-
tion of this formalization is that all sets are finite, thus overlooking the fact
that there is a missing conjunct in the Disk Paxos invariant (see Section 4).

We set the goal of formally verifying Disk Paxos correctness using the
theorem prover Isabelle/HOL [NPW02]. In this way, we could gain more
confidence in the correctness of Disk Paxos design and, at the same time,
learn to what extent can Isabelle be a useful tool for proving the correctness
of distributed systems using a real world example.

2

In Section 2 we give a brief description of the algorithm and its specifica-
tion. In Section 3 we describe the translation from TLA+ to Isabelle/HOL
and the problems that this translation originated. In Section 4 we discuss
how our formal proofs relate to the informal ones in [GL00], and in Section
5 we conclude. The entire specification and all formal proofs can be found
in the Appendix.

2 The Disk Paxos Algorithm
Disk Paxos is a variant of the classic Paxos algorithm [Lam98] for the imple-
mentation of arbitrary fault-tolerant systems with a network of processors
and disks. It maintains consistency in the event of any number of non-
Byzantine failures. This means that a processor may fail completely or
pause for arbitrary long periods and then restart, remembering only that it
has failed. A disk may become inaccessible to some or all processors, but
it may not be corrupted. We say that a system is stable if all processes
are either non-faulty or have failed completely (i.e. there are no new failed
processes). Disk Paxos guarantees progress if the system is stable and there
is at least one non-faulty processor that can read and write a majority of
the disks. Consequently, the fundamental difference between Classic Paxos
and Disk Paxos is that the former achieves redundancy by replicating pro-
cesses while the latter replicates disks. Since disks are usually cheaper than
processors, it is possible to obtain more redundancy at a lower cost.

Disk Paxos uses the state machine approach to solve the problem of im-
plementing an arbitrary distributed system. The state machine approach
[Sch90] is a general method that reduces this problem to solving a consen-
sus problem. The distributed system is designed as a deterministic state
machine that executes a sequence of commands, and a consensus algorithm
ensures that, for each n, all processors agree on the nth command. Hence,
each processor p starts with an input value (a command), and it may output
a value (the command to be executed). The problem is solved if all proces-
sors eventually output the same value and this value was a value of input [p]
for some p (under certain assumptions, in our case that there exists at least
one non-faulty processor that can write and read a majority of disks).

Progress of Disk Paxos relies on progress of a leader-election algorithm.
It is easy to make a leader-election algorithm if the system stable, but very
hard to devise one that works correctly even if the system is unstable. We are
requiring stability to ensure progress, but actually only a weaker requirement
is needed: progress of the underlying leader-election algorithm. Disk Paxos
ensures that all outputs (if any) will be the same even if the leader-election
algorithm fails.

3

2.1 Informal description of the algorithm.

The consensus algorithm of Disk Paxos is called Disk Synod. In it, each
processor has an assigned block on each disk. Also it has a local memory
that contains its current block (called the dblock), and other state variables
(see figure 1). When a process p starts it contains an input value input[p]
that will not be modified, except possibly when recovering from a failure.

Disk Synod is structured in two phases, plus one more phase for recov-
ering from failures. In each phase, a processor writes its own block and
reads each other processor’s block, on a majority of the disks. The idea is
to execute ballots to determine:

Phase 1: whether a processor p can choose its own input value input[p] or
must choose some other value. When this phase finishes a value v is
chosen.

Phase 2: whether it can commit v. When this phase is complete the process
has committed value v and can output it (using variable outpt).

In either phase, a processor aborts its ballot if it learns that another proces-
sor has begun a higher-numbered ballot. The third phase (Phase 0) is for
starting the algorithm or recovering from a failure.

In each block, processors maintain three values:

mbal The current ballot number.

bal The largest ballot number for which the processor entered phase 2.

inp The value the processor tried to commit in ballot number bal.

For a complete description of the algorithm, see [GL00].

2.2 Disk Paxos and its TLA+ Specification

The specification of Disk Paxos is written in the TLA+ specification lan-
guage [Lam02]. As it is usual with TLA+, the specification is organized into
modules.

The specification of consensus is given in module Synod , which can be
found in appendix A. In it there are only two variables: input and output .
To formalize the property stating that all processors should choose the same
value and that this value should have been an input of a processor, we
need variables that represent all past inputs and the value chosen as result.
Consequently, an Inner submodule is introduced, which adds two variables:
allInput and chosen. Our Synod module will be obtained by existentially
quantifying these variables of the Inner module.

The specification of the algorithm is given in the HDiskSynod module.
Hence, what we are going to prove is that the (translation to Isabelle/HOL

4

Figure 1: A network of processors and disks.

of the) Inner module is implied by the (translation to Isabelle/HOL of the)
algorithm module HDiskSynod .

More concretely we have that the specification of the algorithm is:

HDiskSynodSpec
∆
= HInit ∧�[HNext]〈vars,chosen,allInput〉

where HInit describes the initial state of the algorithm and HNext is the
action that models all of its state transitions. The variable vars is the tuple
of all variables used in the algorithm.

Analogously, we have the specification of the Inner module:

ISpec
∆
= IInit ∧�[INext]〈input ,output ,chosen,allInput〉

We define ivars = 〈input , output , chosen, allInput〉. In order to prove
that HDiskSynodSpec implies ISpec, we follow the structure of the proof
given by Gafni and Lamport. We must prove two theorems:

theorem R1 HInit ⇒ IInit

theorem R2 HInit ∧�[HNext]〈vars,chosen,allInput〉 ⇒ �[INext]ivars

The proof of R1 is trivial. For R2, we use TLA proof rules [Lam02] that
show that to prove R2, it suffices to find a state predicate HInv for which
we can prove:

theorem R2a HInit ∧�[HNext] 〈vars,chosen,allInput〉 ⇒ �HInv
theorem R2b HInv∧HInv ′∧HNext ⇒ INext∨(unchanged ivars)

A predicate satisfying HInv is said to be an invariant of HDiskSynodSpec.
To prove R2a, we make HInv strong enough to satisfy:

5

TLA+ Isabelle/HOL
∃ d ∈ D : disk [d][q].bal = bk ∃ d ∈ D. bal(disk s d q) = bk

choose x.P x ε x. P x

phase′ = [phase except ![p] = 1] phase s′ = (phase s)(p := 1)

union {blocksOf (p) : p ∈ Proc} UN p. blocksOf s p

unchanged v v s′ = v s

Table 1: Examples of TLA+ formulas and their counterparts in Is-
abelle/HOL.

theorem I 1 HInit ⇒ HInv

theorem I 2 HInv ∧ HNext ⇒ HInv ′

Again, we have TLA proof rules that say that I 1 and I 2 imply R2a. In
summary, R2b, I 1, and I 2 together imply HDiskSynodSpec ⇒ ISpec.

Finding a predicate HInv that is strong enough can be rather diffi-
cult. Fortunately, Gafni and Lamport give this predicate. In their paper,
they present HInv as a conjunction of 6 predicates HInv1, . . . ,HInv6, where
HInv1 is a simple “type invariant” and the higher-numbered predicates add
more and more information. The proof is structured such that the preser-
vation of HInv i by the algorithm’s next-state relation relies on all HInv j
(for j ≤ i) being true in the state before the transition. In our proofs we
are going to use exactly the same tactic.

Before starting our proofs we have to translate all the specification and
theorems above into the formal language of Isabelle/HOL.

3 Translating from TLA+ to Isabelle/HOL
The translation from TLA+ to Isabelle/HOL is pretty straightforward as Is-
abelle/HOL has equivalent counterparts for most of the constructs in TLA+

(some representative examples are shown in table 1). Nevertheless, there are
some semantic discrepancies. In the following, we discuss these differences,
some of the options that one has when dealing with them, and the reasons
for our choices1.

3.1 Typed vs. Untyped

TLA+ is an untyped formalism. However, TLA+ specifications usually have
some type information, usually in the form of set membership or set in-
clusion. When translating these specifications to Isabelle/HOL, which is a
typed formalism, one has to invent types that represent these sets of values.

1There is no point in using the existing TLA encoding in Isabelle. Since the encoding
is also based on HOL and we only prove safety, we would have gained nothing.

6

TLA+:

constant Inputs

NotAnInput
∆
= choose c : c 6∈ Inputs

DiskBlock
∆
= [mbal : (union Ballot(p) : p ∈ Proc) ∪ {0},

bal : (union Ballot(p) : p ∈ Proc) ∪ {0},
inp : Inputs ∪ {NotAnInput}]

Isabelle/HOL:
typedecl InputsOrNi

consts
Inputs :: InputsOrNi set
NotAnInput :: InputsOrNi

axioms
NotAnInput: NotAnInput /∈ Inputs
InputsOrNi: (UNIV :: InputsOrNi set) = Inputs ∪ {NotAnInput}

record
DiskBlock =

mbal:: nat
bal :: nat
inp :: InputsOrNi

Figure 2: Untyped TLA+ vs. Typed Isabelle/HOL

This process is not automatic and requires some thought to find the right
abstractions. Furthermore, simple types may not be expressive enough to
represent exactly the set in the specification. In some cases, these sets could
be modelled by algebraic datatypes, but this would make the specification
more complex and less directly related to the original one. In this work, we
have chosen to stick to simple types and add additional axioms to account
for their lack of expressiveness.

For example, see figure 2. The type InputsOrNi models the members
of the set Inputs, and the element NotAnInput . We record the fact that
NotAnInput is not in Inputs, with axiom NotAnInput . Now, looking at the
type of the inp field of the DiskBlock record in the TLA+ specification,
we see that its type should be InputsOrNi . However, this is not the same
type as Inputs ∪ {NotAnInput}, as nothing prevents the InputsOrNi type
from having more values. Consequently, we add the axiom InputsOrNi

to establish that the only values of this type are the ones in Inputs and
NotAnInput .

This example shows the kind of difficulties that can arise when trans-

7

TLA+:

Phase1or2Write(p, d)
∆
=

∧ phase[p] ∈ {1, 2}
∧ disk ′ = [disk except ![d][p] = dblock [p]]
∧ disksWritten ′ = [disksWritten except ![p] = @ ∪ {d}]
∧ unchanged 〈input , output , phase, dblock , blocksRead〉

Isabelle/HOL:
Phase1or2Write :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ bool
Phase1or2Write s s ′ p d ≡

phase s p ∈ {1 , 2}
∧ disk s ′ = (disk s) (d := (disk s d) (p := dblock s p))
∧ disksWritten s ′ = (disksWritten s) (p:= (disksWritten s p) ∪ {d})
∧ inpt s ′ = inpt s ∧ outpt s ′= outpt s
∧ phase s ′ = phase s ∧ dblock s ′ = dblock s
∧ blocksRead s ′= blocksRead s

Figure 3: Translation of an action

lating from an untyped formalism to a typed one. Another solution to this
matter that is being currently investigated is the implementation of native
(untyped) support for TLA+ in Isabelle, without relying on HOL.

3.2 Primed Variables

In TLA+, to denote the value of a variable in the state resulting from an
action, there exists the concept of primed variables. In Isabelle/HOL, there
is no built-in notion of state, so we define the state as a record of the variables
involved. Instead of defining a “priming” operator, we just define actions as
predicates that take any two states, intended to be the previous state and
the next state. In this way, P s s′ will be true iff executing an action P in
the s state could result in the s′ state. In figure 3 we can see how the action
Phase1or2Write is expressed in TLA+ and in Isabelle/HOL.

3.3 Restructuring the specification

There are some minor changes that can be made to specifications to make
the proofs in Isabelle easier.

One such change is the elimination of let constructs by making them
global definitions. This has two benefits, as it makes it possible to:

• Formulate lemmas that use these definitions.

• Selectively unfold these definitions in proofs, instead of adding Let-def
to Isabelle’s simplifier, which unfolds all “let” constructs.

8

Another change that makes proofs easier is to break down actions into sim-
pler actions (e.g. giving separate definitions for subactions corresponding
to disjuncts). By making actions smaller, Isabelle has to deal with smaller
formulas when we feed the prover with such an action.

For example, Phase1or2Read is mainly a big if-then-else. We break it
down into two simpler actions:

Phase1or2Read
∆
= Phase1or2ReadThen ∨ Phase1or2ReadElse

In Phase1or2ReadThen the condition of the if-then-else is present as a state
formula (i.e. it is an enabling condition) while in Phase1or2ReadElse we
add the negation of this condition.

Another example is HInv2, which we break down into:

HInv2
∆
= Inv2a ∧ Inv2b ∧ Inv2c

Not only we break it down into three conjuncts but, since these conjuncts
are quantifications over some predicate, we give a separate definition for this
predicate. For example for Inv2a, and after translating to Isabelle/HOL,
instead of writing:
Inv2a s ≡ ∀ p. ∀ bk ∈ blocksOf s p. . . .
we write:

Inv2a-innermost :: state ⇒ Proc ⇒ DiskBlock ⇒ bool
Inv2a-innermost s p bk ≡ . . .

Inv2a-inner :: state ⇒ Proc ⇒ bool
Inv2a-inner s p ≡ ∀ bk ∈ blocksOf s p. Inv2a-innermost s p bk

Inv2a :: state ⇒ bool
Inv2a s ≡ ∀ p. Inv2a-inner s p

Now we can express that we want to obtain the fact
Inv2a-innermost s q (dblock s q)

explicitly stating that we are interested in predicate Inv2a, but only for
some process q and block (dblock s q).

4 Structure of the Correctness Proof
In [GL00], a specification of correctness and a specification of the algorithm
are given. Then, it is proved that the specification of the algorithm implies
the specification of correctness. We will do the same for the translated
specifications, maintaining the names of theorems and lemmas. It should be
noted that only safety properties are given and proved.

9

4.1 Going from Informal Proofs to Formal Proofs

There are informal proofs for invariants HInv3-HInv6 and for theorem R2b
in [GL00]. These informal proofs are written in the structured-proof style
that Lamport advocates [Lam95], and are rigorous and quite detailed. We
based our formal proofs on these informal proofs, but in many cases a higher
level of detail was needed. In some cases, the steps where too big for Isabelle
to solve them automatically, and intermediate steps had to be proved first;
in other cases, some of the facts relevant to the proofs were omitted in the
informal proofs.

As an example of these omissions, the invariant should state that the set
allRdBlks is finite. This is needed to choose a block with a maximum ballot
number in action EndPhase1. Interestingly, this omission cannot be detected
with finite-state model checking. As another example, it was omitted that
it is necessary to assume that HInv4 and HInv5 hold in the previous state
to prove lemma I 2f .

Although our proofs were based on the informal ones, the high-level
structure was often different. When proving that a predicate I was an
invariant of Next , we preferred proving the invariance of I for each action,
rather than a big theorem proving the invariance of I for the Next action.
As a consequence, a proof for some actions was often similar to the proof
of some other action. For example, the proof of the invariance of HInv3
for the EndPhase0 and Fail actions is almost the same. This means we
could have made only one proof for the two actions, shortening the length
of the complete proof. Nevertheless, proving each action separately could
be tackled more easily by Isabelle, as it had fewer facts to deal with, and
proving a new lemma was often a simple matter of copy, paste and renaming
of definitions. Once the invariance of a given predicate has been proved for
each simple action, proving it for the Next action is easy since the Next

action is a disjunction of all actions.
The informal proofs start working with Next , and then do a case split

in which each case implies some action. The structure of the formal proof
was copied from the informal one, in the parts where the latter focused
on a particular action, This structure could be easily maintained since we
used Isabelle’s Isar proof language [Wen02, Nip03], a language for writing
human-readable structured proofs.

Lamport’s use of a hierarchical scheme for naming subformulas of a for-
mula would have been very useful, as we have to repeatedly extract subfacts
from facts. These proofs were always solved automatically by the auto
Isabelle tactic, but made the proofs longer and harder to understand. Auto-
matic naming of subformulas of Isabelle definitions would be a very practical
feature.

10

5 Conclusion
We formally verified the correctness of the Disk Paxos specification in Is-
abelle/HOL. We found some omissions in the informal proofs, including one
that could not have been detected with finite-state model checking, but
no outright errors. This formal proof gives us a greater confidence in the
correctness of the algorithm.

This work was done in little more than two months, including learning
Isabelle from scratch. Consequently, this work can be taken as evidence that
formal verification of fault-tolerant distributed algorithms may be feasible
for software verification in an industrial context.

Isabelle proved to be a very helpful tool for this kind of verification,
although it would have been useful to have Lamport’s naming of subfacts
to make proofs shorter and easier to write.

References
[GL00] Eli Gafni and Leslie Lamport. Disk Paxos. In International Sym-

posium on Distributed Computing, pages 330–344, 2000.

[KMM00] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios.
Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[Lam95] Leslie Lamport. How to write a proof. American Mathematical
Monthly, 102(7):600–608, /1995.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[Nip03] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers
and F. Wiedijk, editors, Types for Proofs and Programs (TYPES
2002), volume 2646, pages 259–278, 2003.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[Pac01] Carlos Pacheco. Reasoning about TLA actions, 2001.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4):299–319, 1990.

11

[Wen02] Markus M. Wenzel. Isabelle/Isar — a versatile environment for
human-readable formal proof documents. PhD thesis, Institut fur
Informatik, TU München, 2002.

A TLA+ correctness specification
module Synod

extends Naturals
constant N, Inputs
assume (N ∈ Nat) ∧ (N > 0)

Proc
∆
= 1..N

NotAnInput
∆
= choose c : c 6∈ Inputs

variables inputs, output

module Inner
variables allInput , chosen

IInit
∆
= ∧ input ∈ [Proc → Inputs]

∧ output = [p ∈ Proc 7→ NotAnInput]
∧ chosen = NotAnInput
∧ allInput = input[p] : p ∈ Proc

IChoose(p)
∆
=

∧ output[p] = NotAnInput
∧ if chosen = NotAnInput

then ip ∈ allInput : ∧ chosen′ = ip
∧ output′ = [output except ![p] = ip]

else ∧ output′ = [output except ![p] = chosen]
∧ unchanged chosen

∧ unchanged 〈input, allInput〉

IFail(p)
∆
= ∧ output′ = [output except ![p] = NotAnInput]

∧ ∃ ip ∈ Inputs : ∧ input′ = [input except ![p] = ip]
∧ allInput′ = allInput ∪ {ip}

INext
∆
= ∃ p ∈ Proc : IChoose(p) ∨ IFail(p)

ISpec
∆
= IInit ∧�[INext]〈input ,output ,chosen,allInput〉

IS (chosen, allInput)
∆
= instance Inner

SynodSpec
∆
= ∃∃∃∃∃∃ chosen, allInput : IS (chosen, allInput)!ISpec

12

B Disk Paxos Algorithm Specification
theory DiskPaxos-Model imports Main begin

This is the specification of the Disk Synod algorithm.
typedecl InputsOrNi
typedecl Disk
typedecl Proc

axiomatization
Inputs :: InputsOrNi set and
NotAnInput :: InputsOrNi and
Ballot :: Proc ⇒ nat set and
IsMajority :: Disk set ⇒ bool

where
NotAnInput: NotAnInput /∈ Inputs and
InputsOrNi: (UNIV :: InputsOrNi set) = Inputs ∪ {NotAnInput} and
Ballot-nzero: ∀ p. 0 /∈ Ballot p and
Ballot-disj: ∀ p q. p 6= q −→ (Ballot p) ∩ (Ballot q) = {} and
Disk-isMajority: IsMajority(UNIV) and
majorities-intersect:
∀S T . IsMajority(S) ∧ IsMajority(T) −→ S ∩ T 6= {}

lemma ballots-not-zero [simp]:
b ∈ Ballot p =⇒ 0 < b

〈proof 〉

lemma majority-nonempty [simp]: IsMajority(S) =⇒ S 6= {}
〈proof 〉

definition AllBallots :: nat set
where AllBallots = (UN p. Ballot p)

record
DiskBlock =

mbal:: nat
bal :: nat
inp :: InputsOrNi

definition InitDB :: DiskBlock
where InitDB = (| mbal = 0 , bal = 0 , inp = NotAnInput |)

record
BlockProc =

block :: DiskBlock
proc :: Proc

record
state =

13

inpt :: Proc ⇒ InputsOrNi
outpt :: Proc ⇒ InputsOrNi
disk :: Disk ⇒ Proc ⇒ DiskBlock
dblock :: Proc ⇒ DiskBlock
phase :: Proc ⇒ nat
disksWritten :: Proc ⇒ Disk set
blocksRead :: Proc ⇒ Disk ⇒ BlockProc set

allInput :: InputsOrNi set
chosen :: InputsOrNi

definition hasRead :: state ⇒ Proc ⇒ Disk ⇒ Proc ⇒ bool
where hasRead s p d q = (∃ br ∈ blocksRead s p d. proc br = q)

definition allRdBlks :: state ⇒ Proc ⇒ BlockProc set
where allRdBlks s p = (UN d. blocksRead s p d)

definition allBlocksRead :: state ⇒ Proc ⇒ DiskBlock set
where allBlocksRead s p = block ‘ (allRdBlks s p)

definition Init :: state ⇒ bool
where

Init s =
(range (inpt s) ⊆ Inputs
& outpt s = (λp. NotAnInput)
& disk s = (λd p. InitDB)
& phase s = (λp. 0)
& dblock s = (λp. InitDB)
& disksWritten s = (λp. {})
& blocksRead s = (λp d. {}))

definition InitializePhase :: state ⇒ state ⇒ Proc ⇒ bool
where
InitializePhase s s ′ p =
(disksWritten s ′ = (disksWritten s)(p := {})
& blocksRead s ′ = (blocksRead s)(p := (λd. {})))

definition StartBallot :: state ⇒ state ⇒ Proc ⇒ bool
where

StartBallot s s ′ p =
(phase s p ∈ {1 ,2}
& phase s ′ = (phase s)(p := 1)
& (∃ b ∈ Ballot p.

mbal (dblock s p) < b
& dblock s ′ = (dblock s)(p := (dblock s p)(| mbal := b |)))

& InitializePhase s s ′ p
& inpt s ′ = inpt s & outpt s ′ = outpt s & disk s ′ = disk s)

14

definition Phase1or2Write :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ bool
where

Phase1or2Write s s ′ p d =
(phase s p ∈ {1 , 2}
∧ disk s ′ = (disk s) (d := (disk s d) (p := dblock s p))
∧ disksWritten s ′ = (disksWritten s) (p:= (disksWritten s p) ∪ {d})
∧ inpt s ′ = inpt s ∧ outpt s ′= outpt s
∧ phase s ′ = phase s ∧ dblock s ′ = dblock s
∧ blocksRead s ′= blocksRead s)

definition Phase1or2ReadThen :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ Proc ⇒ bool
where

Phase1or2ReadThen s s ′ p d q =
(d ∈ disksWritten s p
& mbal(disk s d q) < mbal(dblock s p)
& blocksRead s ′ = (blocksRead s)(p := (blocksRead s p)(d :=

(blocksRead s p d) ∪ {(| block = disk s d q,
proc = q |)}))

& inpt s ′ = inpt s & outpt s ′ = outpt s
& disk s ′ = disk s & phase s ′ = phase s
& dblock s ′ = dblock s & disksWritten s ′ = disksWritten s)

definition Phase1or2ReadElse :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ Proc ⇒ bool
where

Phase1or2ReadElse s s ′ p d q =
(d ∈ disksWritten s p
∧ StartBallot s s ′ p)

definition Phase1or2Read :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ Proc ⇒ bool
where

Phase1or2Read s s ′ p d q =
(Phase1or2ReadThen s s ′ p d q
∨ Phase1or2ReadElse s s ′ p d q)

definition blocksSeen :: state ⇒ Proc ⇒ DiskBlock set
where blocksSeen s p = allBlocksRead s p ∪ {dblock s p}

definition nonInitBlks :: state ⇒ Proc ⇒ DiskBlock set
wherenonInitBlks s p = {bs . bs ∈ blocksSeen s p ∧ inp bs ∈ Inputs}

definition maxBlk :: state ⇒ Proc ⇒ DiskBlock
where

maxBlk s p =
(SOME b. b ∈ nonInitBlks s p ∧ (∀ c ∈ nonInitBlks s p. bal c ≤ bal b))

definition EndPhase1 :: state ⇒ state ⇒ Proc ⇒ bool
where

EndPhase1 s s ′ p =
(IsMajority {d . d ∈ disksWritten s p

15

∧ (∀ q ∈ UNIV − {p}. hasRead s p d q)}
∧ phase s p = 1
∧ dblock s ′ = (dblock s) (p := dblock s p

(| bal := mbal(dblock s p),
inp :=
(if nonInitBlks s p = {}
then inpt s p
else inp (maxBlk s p))

|))
∧ outpt s ′ = outpt s
∧ phase s ′ = (phase s) (p := phase s p + 1)
∧ InitializePhase s s ′ p
∧ inpt s ′ = inpt s ∧ disk s ′ = disk s)

definition EndPhase2 :: state ⇒ state ⇒ Proc ⇒ bool
where

EndPhase2 s s ′ p =
(IsMajority {d . d ∈ disksWritten s p

∧ (∀ q ∈ UNIV − {p}. hasRead s p d q)}
∧ phase s p = 2
∧ outpt s ′ = (outpt s) (p:= inp (dblock s p))
∧ dblock s ′ = dblock s
∧ phase s ′ = (phase s) (p := phase s p + 1)
∧ InitializePhase s s ′ p
∧ inpt s ′ = inpt s ∧ disk s ′ = disk s)

definition EndPhase1or2 :: state ⇒ state ⇒ Proc ⇒ bool
where EndPhase1or2 s s ′ p = (EndPhase1 s s ′ p ∨ EndPhase2 s s ′ p)

definition Fail :: state ⇒ state ⇒ Proc ⇒ bool
where

Fail s s ′ p =
(∃ ip ∈ Inputs. inpt s ′ = (inpt s) (p := ip)
∧ phase s ′ = (phase s) (p := 0)
∧ dblock s ′= (dblock s) (p := InitDB)
∧ outpt s ′ = (outpt s) (p := NotAnInput)
∧ InitializePhase s s ′ p
∧ disk s ′= disk s)

definition Phase0Read :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ bool
where

Phase0Read s s ′ p d =
(phase s p = 0
∧ blocksRead s ′ = (blocksRead s) (p := (blocksRead s p) (d := blocksRead s p d

∪ {(| block = disk s d p, proc = p |)}))
∧ inpt s ′ = inpt s & outpt s ′ = outpt s
∧ disk s ′ = disk s & phase s ′ = phase s
∧ dblock s ′ = dblock s & disksWritten s ′ = disksWritten s)

16

definition EndPhase0 :: state ⇒ state ⇒ Proc ⇒ bool
where

EndPhase0 s s ′ p =
(phase s p = 0
∧ IsMajority ({d. hasRead s p d p})
∧ (∃ b ∈ Ballot p.

(∀ r ∈ allBlocksRead s p. mbal r < b)
∧ dblock s ′ = (dblock s) (p:=

(SOME r . r ∈ allBlocksRead s p
∧ (∀ s ∈ allBlocksRead s p. bal s ≤ bal r)) (| mbal := b |)))

∧ InitializePhase s s ′ p
∧ phase s ′ = (phase s) (p:= 1)
∧ inpt s ′ = inpt s ∧ outpt s ′ = outpt s ∧ disk s ′ = disk s)

definition Next :: state ⇒ state ⇒ bool
where

Next s s ′ = (∃ p.
StartBallot s s ′ p

∨ (∃ d. Phase0Read s s ′ p d
∨ Phase1or2Write s s ′ p d
∨ (∃ q. q 6= p ∧ Phase1or2Read s s ′ p d q))

∨ EndPhase1or2 s s ′ p
∨ Fail s s ′ p
∨ EndPhase0 s s ′ p)

In the following, for each action or state name we name Hname the corre-
sponding action that includes the history part of the HNext action or state
predicate that includes history variables.
definition HInit :: state ⇒ bool
where

HInit s =
(Init s
& chosen s = NotAnInput
& allInput s = range (inpt s))

HNextPart is the part of the Next action that is concerned with history
variables.
definition HNextPart :: state ⇒ state => bool
where

HNextPart s s ′ =
(chosen s ′ =

(if chosen s 6= NotAnInput ∨ (∀ p. outpt s ′ p = NotAnInput)
then chosen s
else outpt s ′ (SOME p. outpt s ′ p 6= NotAnInput))

∧ allInput s ′ = allInput s ∪ (range (inpt s ′)))

definition HNext :: state ⇒ state ⇒ bool
where

HNext s s ′ =

17

(Next s s ′

∧ HNextPart s s ′)

We add HNextPart to every action (rather than proving that Next maintains
the HInv invariant) to make proofs easier.
definition

HPhase1or2ReadThen :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ Proc ⇒ bool where
HPhase1or2ReadThen s s ′ p d q = (Phase1or2ReadThen s s ′ p d q ∧ HNextPart

s s ′)

definition
HEndPhase1 :: state ⇒ state ⇒ Proc ⇒ bool where
HEndPhase1 s s ′ p = (EndPhase1 s s ′ p ∧ HNextPart s s ′)

definition
HStartBallot :: state ⇒ state ⇒ Proc ⇒ bool where
HStartBallot s s ′ p = (StartBallot s s ′ p ∧ HNextPart s s ′)

definition
HPhase1or2Write :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ bool where
HPhase1or2Write s s ′ p d = (Phase1or2Write s s ′ p d ∧ HNextPart s s ′)

definition
HPhase1or2ReadElse :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ Proc ⇒ bool where
HPhase1or2ReadElse s s ′ p d q = (Phase1or2ReadElse s s ′ p d q ∧ HNextPart s

s ′)

definition
HEndPhase2 :: state ⇒ state ⇒ Proc ⇒ bool where
HEndPhase2 s s ′ p = (EndPhase2 s s ′ p ∧ HNextPart s s ′)

definition
HFail :: state ⇒ state ⇒ Proc ⇒ bool where
HFail s s ′ p = (Fail s s ′ p ∧ HNextPart s s ′)

definition
HPhase0Read :: state ⇒ state ⇒ Proc ⇒ Disk ⇒ bool where
HPhase0Read s s ′ p d = (Phase0Read s s ′ p d ∧ HNextPart s s ′)

definition
HEndPhase0 :: state ⇒ state ⇒ Proc ⇒ bool where
HEndPhase0 s s ′ p = (EndPhase0 s s ′ p ∧ HNextPart s s ′)

Since these definitions are the conjunction of two other definitions declaring
them as simplification rules should be harmless.
declare HPhase1or2ReadThen-def [simp]
declare HPhase1or2ReadElse-def [simp]
declare HEndPhase1-def [simp]
declare HStartBallot-def [simp]

18

declare HPhase1or2Write-def [simp]
declare HEndPhase2-def [simp]
declare HFail-def [simp]
declare HPhase0Read-def [simp]
declare HEndPhase0-def [simp]

end

C Proof of Disk Paxos’ Invariant
theory DiskPaxos-Inv1 imports DiskPaxos-Model begin

C.1 Invariant 1

This is just a type Invariant.
definition Inv1 :: state ⇒ bool
where

Inv1 s = (∀ p.
inpt s p ∈ Inputs

∧ phase s p ≤ 3
∧ finite (allRdBlks s p))

definition HInv1 :: state ⇒ bool
where

HInv1 s =
(Inv1 s
∧ allInput s ⊆ Inputs)

declare HInv1-def [simp]

We added the assertion that the set allRdBlksp is finite for every process p;
one may therefore choose a block with a maximum ballot number in action
EndPhase1.

With the following the lemma, it will be enough to prove Inv1 s’ for every
action, without taking the history variables in account.
lemma HNextPart-Inv1 : [[HInv1 s; HNextPart s s ′; Inv1 s ′]] =⇒ HInv1 s ′

〈proof 〉

theorem HInit-HInv1 : HInit s −→ HInv1 s
〈proof 〉

lemma allRdBlks-finite:
assumes inv: HInv1 s
and asm: ∀ p. allRdBlks s ′ p ⊆ insert bk (allRdBlks s p)
shows ∀ p. finite (allRdBlks s ′ p)

〈proof 〉

19

theorem HPhase1or2ReadThen-HInv1 :
assumes inv1 : HInv1 s
and act: HPhase1or2ReadThen s s ′ p d q
shows HInv1 s ′

〈proof 〉

theorem HEndPhase1-HInv1 :
assumes inv1 : HInv1 s
and act: HEndPhase1 s s ′ p
shows HInv1 s ′

〈proof 〉

theorem HStartBallot-HInv1 :
assumes inv1 : HInv1 s
and act: HStartBallot s s ′ p
shows HInv1 s ′

〈proof 〉

theorem HPhase1or2Write-HInv1 :
assumes inv1 : HInv1 s
and act: HPhase1or2Write s s ′ p d
shows HInv1 s ′

〈proof 〉

theorem HPhase1or2ReadElse-HInv1 :
assumes act: HPhase1or2ReadElse s s ′ p d q
and inv1 : HInv1 s
shows HInv1 s ′

〈proof 〉

theorem HEndPhase2-HInv1 :
assumes inv1 : HInv1 s
and act: HEndPhase2 s s ′ p
shows HInv1 s ′

〈proof 〉

theorem HFail-HInv1 :
assumes inv1 : HInv1 s
and act: HFail s s ′ p
shows HInv1 s ′

〈proof 〉

theorem HPhase0Read-HInv1 :
assumes inv1 : HInv1 s
and act: HPhase0Read s s ′ p d
shows HInv1 s ′

〈proof 〉

theorem HEndPhase0-HInv1 :

20

assumes inv1 : HInv1 s
and act: HEndPhase0 s s ′ p
shows HInv1 s ′

〈proof 〉

declare HInv1-def [simp del]

HInv1 is an invariant of HNext

lemma I2a:
assumes nxt: HNext s s ′

and inv: HInv1 s
shows HInv1 s ′

〈proof 〉

end

theory DiskPaxos-Inv2 imports DiskPaxos-Inv1 begin

C.2 Invariant 2

The second invariant is split into three main conjuncts called Inv2a, Inv2b,
and Inv2c. The main difficulty is in proving the preservation of the first
conjunct.
definition rdBy :: state ⇒ Proc ⇒ Proc ⇒ Disk ⇒ BlockProc set
where

rdBy s p q d =
{br . br ∈ blocksRead s q d ∧ proc br = p}

definition blocksOf :: state ⇒ Proc ⇒ DiskBlock set
where

blocksOf s p =
{dblock s p}

∪ {disk s d p | d . d ∈ UNIV }
∪ {block br | br . br ∈ (UN q d. rdBy s p q d) }

definition allBlocks :: state ⇒ DiskBlock set
where allBlocks s = (UN p. blocksOf s p)

definition Inv2a-innermost :: state ⇒ Proc ⇒ DiskBlock ⇒ bool
where

Inv2a-innermost s p bk =
(mbal bk ∈ (Ballot p) ∪ {0}
∧ bal bk ∈ (Ballot p) ∪ {0}
∧ (bal bk = 0) = (inp bk = NotAnInput)
∧ bal bk ≤ mbal bk
∧ inp bk ∈ (allInput s) ∪ {NotAnInput})

21

definition Inv2a-inner :: state ⇒ Proc ⇒ bool
where Inv2a-inner s p = (∀ bk ∈ blocksOf s p. Inv2a-innermost s p bk)

definition Inv2a :: state ⇒ bool
where Inv2a s = (∀ p. Inv2a-inner s p)

definition Inv2b-inner :: state ⇒ Proc ⇒ Disk ⇒ bool
where

Inv2b-inner s p d =
((d ∈ disksWritten s p −→

(phase s p ∈ {1 ,2} ∧ disk s d p = dblock s p))
∧ (phase s p ∈ {1 ,2} −→

((blocksRead s p d 6= {} −→ d ∈ disksWritten s p)
∧ ¬ hasRead s p d p)))

definition Inv2b :: state ⇒ bool
where Inv2b s = (∀ p d. Inv2b-inner s p d)

definition Inv2c-inner :: state ⇒ Proc ⇒ bool
where

Inv2c-inner s p =
((phase s p = 0 −→

(dblock s p = InitDB
∧ disksWritten s p = {}
∧ (∀ d. ∀ br ∈ blocksRead s p d.

proc br = p ∧ block br = disk s d p)))
∧ (phase s p 6= 0 −→

(mbal(dblock s p) ∈ Ballot p
∧ bal(dblock s p) ∈ Ballot p ∪ {0}
∧ (∀ d. ∀ br ∈ blocksRead s p d.

mbal(block br) < mbal(dblock s p))))
∧ (phase s p ∈ {2 ,3} −→ bal(dblock s p) = mbal(dblock s p))
∧ outpt s p = (if phase s p = 3 then inp(dblock s p) else NotAnInput)
∧ chosen s ∈ allInput s ∪ {NotAnInput}
∧ (∀ p. inpt s p ∈ allInput s

∧ (chosen s = NotAnInput −→ outpt s p = NotAnInput)))

definition Inv2c :: state ⇒ bool
where Inv2c s = (∀ p. Inv2c-inner s p)

definition HInv2 :: state ⇒ bool
where HInv2 s = (Inv2a s ∧ Inv2b s ∧ Inv2c s)

C.2.1 Proofs of Invariant 2 a
theorem HInit-Inv2a: HInit s −→ Inv2a s
〈proof 〉

For every action we define a action-blocksOf lemma. We have two cases: ei-

22

ther the new blocksOf is included in the old blocksOf , or the new blocksOf
is included in the old blocksOf union the new dblock. In the former case the
assumption inv will imply the thesis. In the latter, we just have to prove
the innermost predicate for the particular case of the new dblock. This
particular case is proved in lemma action-Inv2a-dblock.
lemma HPhase1or2ReadThen-blocksOf :
[[HPhase1or2ReadThen s s ′ p d q]] =⇒ blocksOf s ′ r ⊆ blocksOf s r
〈proof 〉

theorem HPhase1or2ReadThen-Inv2a:
assumes inv: Inv2a s
and act: HPhase1or2ReadThen s s ′ p d q
shows Inv2a s ′

〈proof 〉

lemma InitializePhase-rdBy:
InitializePhase s s ′ p =⇒ rdBy s ′ pp qq dd ⊆ rdBy s pp qq dd

〈proof 〉

lemma HStartBallot-blocksOf :
HStartBallot s s ′ p =⇒ blocksOf s ′ q ⊆ blocksOf s q ∪ {dblock s ′ q}

〈proof 〉

lemma HStartBallot-Inv2a-dblock:
assumes act: HStartBallot s s ′ p
and inv2a: Inv2a-innermost s p (dblock s p)
shows Inv2a-innermost s ′ p (dblock s ′ p)

〈proof 〉

lemma HStartBallot-Inv2a-dblock-q:
assumes act: HStartBallot s s ′ p
and inv2a: Inv2a-innermost s q (dblock s q)
shows Inv2a-innermost s ′ q (dblock s ′ q)

〈proof 〉

theorem HStartBallot-Inv2a:
assumes inv: Inv2a s
and act: HStartBallot s s ′ p
shows Inv2a s ′

〈proof 〉

lemma HPhase1or2Write-blocksOf :
[[HPhase1or2Write s s ′ p d]] =⇒ blocksOf s ′ r ⊆ blocksOf s r
〈proof 〉

theorem HPhase1or2Write-Inv2a:
assumes inv: Inv2a s
and act: HPhase1or2Write s s ′ p d

23

shows Inv2a s ′

〈proof 〉

theorem HPhase1or2ReadElse-Inv2a:
assumes inv: Inv2a s
and act: HPhase1or2ReadElse s s ′ p d q
shows Inv2a s ′

〈proof 〉

lemma HEndPhase2-blocksOf :
[[HEndPhase2 s s ′ p]] =⇒ blocksOf s ′ q ⊆ blocksOf s q
〈proof 〉

theorem HEndPhase2-Inv2a:
assumes inv: Inv2a s
and act: HEndPhase2 s s ′ p
shows Inv2a s ′

〈proof 〉

lemma HFail-blocksOf :
HFail s s ′ p =⇒ blocksOf s ′ q ⊆ blocksOf s q ∪ {dblock s ′ q}

〈proof 〉

lemma HFail-Inv2a-dblock-q:
assumes act: HFail s s ′ p
and inv: Inv2a-innermost s q (dblock s q)
shows Inv2a-innermost s ′ q (dblock s ′ q)

〈proof 〉

theorem HFail-Inv2a:
assumes inv: Inv2a s
and act: HFail s s ′ p
shows Inv2a s ′

〈proof 〉

lemma HPhase0Read-blocksOf :
HPhase0Read s s ′ p d =⇒ blocksOf s ′ q ⊆ blocksOf s q
〈proof 〉

theorem HPhase0Read-Inv2a:
assumes inv: Inv2a s
and act: HPhase0Read s s ′ p d
shows Inv2a s ′

〈proof 〉

lemma HEndPhase0-blocksOf :
HEndPhase0 s s ′ p =⇒ blocksOf s ′ q ⊆ blocksOf s q ∪ {dblock s ′ q}
〈proof 〉

24

lemma HEndPhase0-blocksRead:
assumes act: HEndPhase0 s s ′ p
shows ∃ d. blocksRead s p d 6= {}

〈proof 〉

EndPhase0 has the additional difficulty of having a choose expression. We
prove that there exists an x such that the predicate of the choose expression
holds, and then apply someI: ?P ?x =⇒ ?P (Eps ?P).
lemma HEndPhase0-some:

assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
shows (SOME b. b ∈ allBlocksRead s p

∧ (∀ t∈allBlocksRead s p. bal t ≤ bal b)
) ∈ allBlocksRead s p

∧ (∀ t∈allBlocksRead s p.
bal t ≤ bal (SOME b. b ∈ allBlocksRead s p

∧ (∀ t∈allBlocksRead s p. bal t ≤ bal b)))
〈proof 〉

lemma HEndPhase0-dblock-allBlocksRead:
assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
shows dblock s ′ p ∈ (λx. x (|mbal:= mbal(dblock s ′ p)|)) ‘ allBlocksRead s p

〈proof 〉

lemma HNextPart-allInput-or-NotAnInput:
assumes act: HNextPart s s ′

and inv2a: Inv2a-innermost s p (dblock s ′ p)
shows inp (dblock s ′ p) ∈ allInput s ′ ∪ {NotAnInput}
〈proof 〉

lemma HEndPhase0-Inv2a-allBlocksRead:
assumes act: HEndPhase0 s s ′ p
and inv2a: Inv2a-inner s p
and inv2c: Inv2c-inner s p
shows ∀ t ∈ (λx. x (|mbal:= mbal (dblock s ′ p)|)) ‘ allBlocksRead s p.

Inv2a-innermost s p t
〈proof 〉

lemma HEndPhase0-Inv2a-dblock:
assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
and inv2a: Inv2a-inner s p
and inv2c: Inv2c-inner s p
shows Inv2a-innermost s ′ p (dblock s ′ p)

〈proof 〉

lemma HEndPhase0-Inv2a-dblock-q:

25

assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
and inv2a: Inv2a-inner s q
and inv2c: Inv2c-inner s p
shows Inv2a-innermost s ′ q (dblock s ′ q)

〈proof 〉

theorem HEndPhase0-Inv2a:
assumes inv: Inv2a s
and act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
and inv2c: Inv2c-inner s p
shows Inv2a s ′

〈proof 〉

lemma HEndPhase1-blocksOf :
HEndPhase1 s s ′ p =⇒ blocksOf s ′ q ⊆ blocksOf s q ∪ {dblock s ′ q}

〈proof 〉

lemma maxBlk-in-nonInitBlks:
assumes b: b ∈ nonInitBlks s p
and inv1 : Inv1 s
shows maxBlk s p ∈ nonInitBlks s p

∧ (∀ c∈ nonInitBlks s p. bal c ≤ bal (maxBlk s p))
〈proof 〉

lemma blocksOf-nonInitBlks:
(∀ p bk. bk ∈ blocksOf s p −→ P bk)

=⇒ bk ∈ nonInitBlks s p −→ P bk
〈proof 〉

lemma maxBlk-allInput:
assumes inv: Inv2a s
and mblk: maxBlk s p ∈ nonInitBlks s p
shows inp (maxBlk s p) ∈ allInput s

〈proof 〉

lemma HEndPhase1-dblock-allInput:
assumes act: HEndPhase1 s s ′ p
and inv1 : HInv1 s
and inv2 : Inv2a s
shows inp ′: inp (dblock s ′ p) ∈ allInput s ′

〈proof 〉

lemma HEndPhase1-Inv2a-dblock:
assumes act: HEndPhase1 s s ′ p
and inv1 : HInv1 s
and inv2 : Inv2a s
and inv2c: Inv2c-inner s p

26

shows Inv2a-innermost s ′ p (dblock s ′ p)
〈proof 〉

lemma HEndPhase1-Inv2a-dblock-q:
assumes act: HEndPhase1 s s ′ p
and inv1 : HInv1 s
and inv: Inv2a s
and inv2c: Inv2c-inner s p
shows Inv2a-innermost s ′ q (dblock s ′ q)

〈proof 〉

theorem HEndPhase1-Inv2a:
assumes act: HEndPhase1 s s ′ p
and inv1 : HInv1 s
and inv: Inv2a s
and inv2c: Inv2c-inner s p
shows Inv2a s ′

〈proof 〉

C.2.2 Proofs of Invariant 2 b

Invariant 2b is proved automatically, given that we expand the definitions
involved.
theorem HInit-Inv2b: HInit s −→ Inv2b s
〈proof 〉

theorem HPhase1or2ReadThen-Inv2b:
[[Inv2b s; HPhase1or2ReadThen s s ′ p d q]]
=⇒ Inv2b s ′

〈proof 〉

theorem HStartBallot-Inv2b:
[[Inv2b s; HStartBallot s s ′ p]]
=⇒ Inv2b s ′

〈proof 〉

theorem HPhase1or2Write-Inv2b:
[[Inv2b s; HPhase1or2Write s s ′ p d]]
=⇒ Inv2b s ′

〈proof 〉

theorem HPhase1or2ReadElse-Inv2b:
[[Inv2b s; HPhase1or2ReadElse s s ′ p d q]]
=⇒ Inv2b s ′

〈proof 〉

theorem HEndPhase1-Inv2b:
[[Inv2b s; HEndPhase1 s s ′ p]] =⇒ Inv2b s ′

〈proof 〉

27

theorem HFail-Inv2b:
[[Inv2b s; HFail s s ′ p]]
=⇒ Inv2b s ′

〈proof 〉

theorem HEndPhase2-Inv2b:
[[Inv2b s; HEndPhase2 s s ′ p]] =⇒ Inv2b s ′

〈proof 〉

theorem HPhase0Read-Inv2b:
[[Inv2b s; HPhase0Read s s ′ p d]] =⇒ Inv2b s ′

〈proof 〉

theorem HEndPhase0-Inv2b:
[[Inv2b s; HEndPhase0 s s ′ p]] =⇒ Inv2b s ′

〈proof 〉

C.2.3 Proofs of Invariant 2 c
theorem HInit-Inv2c: HInit s −→ Inv2c s
〈proof 〉

lemma HNextPart-Inv2c-chosen:
assumes hnp: HNextPart s s ′

and inv2c: Inv2c s
and outpt ′: ∀ p. outpt s ′ p = (if phase s ′ p = 3

then inp(dblock s ′ p)
else NotAnInput)

and inp-dblk: ∀ p. inp (dblock s ′ p) ∈ allInput s ′ ∪ {NotAnInput}
shows chosen s ′ ∈ allInput s ′ ∪ {NotAnInput}

〈proof 〉

lemma HNextPart-chosen:
assumes hnp: HNextPart s s ′

shows chosen s ′ = NotAnInput −→ (∀ p. outpt s ′ p = NotAnInput)
〈proof 〉

lemma HNextPart-allInput:
[[HNextPart s s ′; Inv2c s]] =⇒ ∀ p. inpt s ′ p ∈ allInput s ′

〈proof 〉

theorem HPhase1or2ReadThen-Inv2c:
assumes inv: Inv2c s
and act: HPhase1or2ReadThen s s ′ p d q
and inv2a: Inv2a s
shows Inv2c s ′

〈proof 〉

28

theorem HStartBallot-Inv2c:
assumes inv: Inv2c s
and act: HStartBallot s s ′ p
and inv2a: Inv2a s
shows Inv2c s ′

〈proof 〉

theorem HPhase1or2Write-Inv2c:
assumes inv: Inv2c s
and act: HPhase1or2Write s s ′ p d
and inv2a: Inv2a s
shows Inv2c s ′

〈proof 〉

theorem HPhase1or2ReadElse-Inv2c:
[[Inv2c s; HPhase1or2ReadElse s s ′ p d q; Inv2a s]] =⇒ Inv2c s ′

〈proof 〉

theorem HEndPhase1-Inv2c:
assumes inv: Inv2c s
and act: HEndPhase1 s s ′ p
and inv2a: Inv2a s
and inv1 : HInv1 s
shows Inv2c s ′

〈proof 〉

theorem HEndPhase2-Inv2c:
assumes inv: Inv2c s
and act: HEndPhase2 s s ′ p
and inv2a: Inv2a s
shows Inv2c s ′

〈proof 〉

theorem HFail-Inv2c:
assumes inv: Inv2c s
and act: HFail s s ′ p
and inv2a: Inv2a s
shows Inv2c s ′

〈proof 〉

theorem HPhase0Read-Inv2c:
assumes inv: Inv2c s
and act: HPhase0Read s s ′ p d
and inv2a: Inv2a s
shows Inv2c s ′

〈proof 〉

theorem HEndPhase0-Inv2c:

29

assumes inv: Inv2c s
and act: HEndPhase0 s s ′ p
and inv2a: Inv2a s
and inv1 : Inv1 s
shows Inv2c s ′

〈proof 〉

theorem HInit-HInv2 :
HInit s =⇒ HInv2 s

〈proof 〉

HInv1 ∧HInv2 is an invariant of HNext.
lemma I2b:

assumes nxt: HNext s s ′

and inv: HInv1 s ∧ HInv2 s
shows HInv2 s ′

〈proof 〉

end

theory DiskPaxos-Inv3 imports DiskPaxos-Inv2 begin

C.3 Invariant 3

This invariant says that if two processes have read each other’s block from
disk d during their current phases, then at least one of them has read the
other’s current block.
definition HInv3-L :: state ⇒ Proc ⇒ Proc ⇒ Disk ⇒ bool
where

HInv3-L s p q d = (phase s p ∈ {1 ,2}
∧ phase s q ∈ {1 ,2}
∧ hasRead s p d q
∧ hasRead s q d p)

definition HInv3-R :: state ⇒ Proc ⇒ Proc ⇒ Disk ⇒ bool
where

HInv3-R s p q d = ((|block= dblock s q, proc= q|) ∈ blocksRead s p d
∨ (|block= dblock s p, proc= p|) ∈ blocksRead s q d)

definition HInv3-inner :: state ⇒ Proc ⇒ Proc ⇒ Disk ⇒ bool
where HInv3-inner s p q d = (HInv3-L s p q d −→ HInv3-R s p q d)

definition HInv3 :: state ⇒ bool
where HInv3 s = (∀ p q d. HInv3-inner s p q d)

C.3.1 Proofs of Invariant 3
theorem HInit-HInv3 : HInit s =⇒ HInv3 s

30

〈proof 〉

lemma InitPhase-HInv3-p:
[[InitializePhase s s ′ p; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d
〈proof 〉

lemma InitPhase-HInv3-q:
[[InitializePhase s s ′ q ; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d
〈proof 〉

lemma HInv3-L-sym: HInv3-L s p q d =⇒ HInv3-L s q p d
〈proof 〉

lemma HInv3-R-sym: HInv3-R s p q d =⇒ HInv3-R s q p d
〈proof 〉

lemma Phase1or2ReadThen-HInv3-pq:
assumes act: Phase1or2ReadThen s s ′ p d q
and inv-L ′: HInv3-L s ′ p q d
and pq: p 6=q
and inv2b: Inv2b s
shows HInv3-R s ′ p q d

〈proof 〉

lemma Phase1or2ReadThen-HInv3-hasRead:
[[¬hasRead s pp dd qq;

Phase1or2ReadThen s s ′ p d q;
pp 6=p ∨ qq 6=q ∨ dd 6=d]]

=⇒ ¬hasRead s ′ pp dd qq
〈proof 〉

theorem HPhase1or2ReadThen-HInv3 :
assumes act: HPhase1or2ReadThen s s ′ p d q
and inv: HInv3 s
and pq: p 6=q
and inv2b: Inv2b s
shows HInv3 s ′

〈proof 〉

lemma StartBallot-HInv3-p:
[[StartBallot s s ′ p; HInv3-L s ′ p q d]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma StartBallot-HInv3-q:
[[StartBallot s s ′ q; HInv3-L s ′ p q d]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

31

lemma StartBallot-HInv3-nL:
[[StartBallot s s ′ t; ¬HInv3-L s p q d; t 6=p; t 6= q]]

=⇒ ¬HInv3-L s ′ p q d
〈proof 〉

lemma StartBallot-HInv3-R:
[[StartBallot s s ′ t; HInv3-R s p q d; t 6=p; t 6= q]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma StartBallot-HInv3-t:
[[StartBallot s s ′ t; HInv3-inner s p q d; t 6=p; t 6= q]]

=⇒ HInv3-inner s ′ p q d
〈proof 〉

lemma StartBallot-HInv3 :
assumes act: StartBallot s s ′ t
and inv: HInv3-inner s p q d
shows HInv3-inner s ′ p q d

〈proof 〉

theorem HStartBallot-HInv3 :
[[HStartBallot s s ′ p; HInv3 s]] =⇒ HInv3 s ′

〈proof 〉

theorem HPhase1or2ReadElse-HInv3 :
[[HPhase1or2ReadElse s s ′ p d q; HInv3 s]] =⇒ HInv3 s ′

〈proof 〉

theorem HPhase1or2Write-HInv3 :
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv3 s
shows HInv3 s ′

〈proof 〉

lemma EndPhase1-HInv3-p:
[[EndPhase1 s s ′ p; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d

〈proof 〉

lemma EndPhase1-HInv3-q:
[[EndPhase1 s s ′ q; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d
〈proof 〉

lemma EndPhase1-HInv3-nL:
[[EndPhase1 s s ′ t; ¬HInv3-L s p q d; t 6=p; t 6= q]]

=⇒ ¬HInv3-L s ′ p q d
〈proof 〉

lemma EndPhase1-HInv3-R:

32

[[EndPhase1 s s ′ t; HInv3-R s p q d; t 6=p; t 6= q]]
=⇒ HInv3-R s ′ p q d

〈proof 〉

lemma EndPhase1-HInv3-t:
[[EndPhase1 s s ′ t; HInv3-inner s p q d; t 6=p; t 6= q]]

=⇒ HInv3-inner s ′ p q d
〈proof 〉

lemma EndPhase1-HInv3 :
assumes act: EndPhase1 s s ′ t
and inv: HInv3-inner s p q d
shows HInv3-inner s ′ p q d

〈proof 〉

theorem HEndPhase1-HInv3 :
[[HEndPhase1 s s ′ p; HInv3 s]] =⇒ HInv3 s ′

〈proof 〉

lemma EndPhase2-HInv3-p:
[[EndPhase2 s s ′ p; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d

〈proof 〉

lemma EndPhase2-HInv3-q:
[[EndPhase2 s s ′ q; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d
〈proof 〉

lemma EndPhase2-HInv3-nL:
[[EndPhase2 s s ′ t; ¬HInv3-L s p q d; t 6=p; t 6= q]]

=⇒ ¬HInv3-L s ′ p q d
〈proof 〉

lemma EndPhase2-HInv3-R:
[[EndPhase2 s s ′ t; HInv3-R s p q d; t 6=p; t 6= q]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma EndPhase2-HInv3-t:
[[EndPhase2 s s ′ t; HInv3-inner s p q d; t 6=p; t 6= q]]

=⇒ HInv3-inner s ′ p q d
〈proof 〉

lemma EndPhase2-HInv3 :
assumes act: EndPhase2 s s ′ t
and inv: HInv3-inner s p q d
shows HInv3-inner s ′ p q d

〈proof 〉

theorem HEndPhase2-HInv3 :

33

[[HEndPhase2 s s ′ p; HInv3 s]] =⇒ HInv3 s ′

〈proof 〉

lemma Fail-HInv3-p:
[[Fail s s ′ p; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d

〈proof 〉

lemma Fail-HInv3-q:
[[Fail s s ′ q; HInv3-L s ′ p q d]] =⇒ HInv3-R s ′ p q d
〈proof 〉

lemma Fail-HInv3-nL:
[[Fail s s ′ t; ¬HInv3-L s p q d; t 6=p; t 6= q]]

=⇒ ¬HInv3-L s ′ p q d
〈proof 〉

lemma Fail-HInv3-R:
[[Fail s s ′ t; HInv3-R s p q d; t 6=p; t 6= q]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma Fail-HInv3-t:
[[Fail s s ′ t; HInv3-inner s p q d; t 6=p; t 6= q]]

=⇒ HInv3-inner s ′ p q d
〈proof 〉

lemma Fail-HInv3 :
assumes act: Fail s s ′ t
and inv: HInv3-inner s p q d
shows HInv3-inner s ′ p q d

〈proof 〉

theorem HFail-HInv3 :
[[HFail s s ′ p; HInv3 s]] =⇒ HInv3 s ′

〈proof 〉

theorem HPhase0Read-HInv3 :
assumes act: HPhase0Read s s ′ p d
and inv: HInv3 s
shows HInv3 s ′

〈proof 〉

lemma EndPhase0-HInv3-p:
[[EndPhase0 s s ′ p; HInv3-L s ′ p q d]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma EndPhase0-HInv3-q:
[[EndPhase0 s s ′ q; HInv3-L s ′ p q d]]

34

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma EndPhase0-HInv3-nL:
[[EndPhase0 s s ′ t; ¬HInv3-L s p q d; t 6=p; t 6= q]]

=⇒ ¬HInv3-L s ′ p q d
〈proof 〉

lemma EndPhase0-HInv3-R:
[[EndPhase0 s s ′ t; HInv3-R s p q d; t 6=p; t 6= q]]

=⇒ HInv3-R s ′ p q d
〈proof 〉

lemma EndPhase0-HInv3-t:
[[EndPhase0 s s ′ t; HInv3-inner s p q d; t 6=p; t 6= q]]

=⇒ HInv3-inner s ′ p q d
〈proof 〉

lemma EndPhase0-HInv3 :
assumes act: EndPhase0 s s ′ t
and inv: HInv3-inner s p q d
shows HInv3-inner s ′ p q d

〈proof 〉

theorem HEndPhase0-HInv3 :
[[HEndPhase0 s s ′ p; HInv3 s]] =⇒ HInv3 s ′

〈proof 〉

HInv1 ∧HInv2 ∧HInv3 is an invariant of HNext.
lemma I2c:

assumes nxt: HNext s s ′

and inv: HInv1 s ∧ HInv2 s ∧ HInv3 s
shows HInv3 s ′ 〈proof 〉

end

theory DiskPaxos-Inv4 imports DiskPaxos-Inv2 begin

C.4 Invariant 4

This invariant expresses relations among mbal and bal values of a processor
and of its disk blocks. HInv4a asserts that, when p is not recovering from
a failure, its mbal value is at least as large as the bal field of any of its
blocks, and at least as large as the mbal field of its block on some disk in
any majority set. HInv4b conjunct asserts that, in phase 1, its mbal value is
actually greater than the bal field of any of its blocks. HInv4c asserts that,
in phase 2, its bal value is the mbal field of all its blocks on some majority

35

set of disks. HInv4d asserts that the bal field of any of its blocks is at most
as large as the mbal field of all its disk blocks on some majority set of disks.
definition MajoritySet :: Disk set set

where MajoritySet = {D. IsMajority(D) }

definition HInv4a1 :: state ⇒ Proc ⇒ bool
where HInv4a1 s p = (∀ bk ∈ blocksOf s p. bal bk ≤ mbal (dblock s p))

definition HInv4a2 :: state ⇒ Proc ⇒ bool
where

HInv4a2 s p = (∀D ∈ MajoritySet.(∃ d ∈ D. mbal(disk s d p) ≤ mbal(dblock s
p)

∧ bal(disk s d p) ≤ bal(dblock s p)))

definition HInv4a :: state ⇒ Proc ⇒ bool
where HInv4a s p = (phase s p 6= 0 −→ HInv4a1 s p ∧ HInv4a2 s p)

definition HInv4b :: state ⇒ Proc ⇒ bool
where HInv4b s p = (phase s p = 1 −→ (∀ bk ∈ blocksOf s p. bal bk < mbal(dblock

s p)))

definition HInv4c :: state ⇒ Proc ⇒ bool
where HInv4c s p = (phase s p ∈ {2 ,3} −→ (∃D∈MajoritySet. ∀ d∈D. mbal(disk

s d p) = bal (dblock s p)))

definition HInv4d :: state ⇒ Proc ⇒ bool
where HInv4d s p = (∀ bk ∈ blocksOf s p. ∃D∈MajoritySet. ∀ d∈D. bal bk ≤

mbal (disk s d p))

definition HInv4 :: state ⇒ bool
where HInv4 s = (∀ p. HInv4a s p ∧ HInv4b s p ∧ HInv4c s p ∧ HInv4d s p)

The initial state implies Invariant 4.
theorem HInit-HInv4 : HInit s =⇒ HInv4 s
〈proof 〉

To prove that the actions preserve HInv4, we do it for one conjunct at a
time.
For each action actionss′q and conjunct x ∈ a, b, c, d of HInv4xs′p, we prove
two lemmas. The first lemma action-HInv4x-p proves the case of p = q,
while lemma action-HInv4x-q proves the other case.

C.4.1 Proofs of Invariant 4a
lemma HStartBallot-HInv4a1 :

assumes act: HStartBallot s s ′ p
and inv: HInv4a1 s p
and inv2a: Inv2a-inner s ′ p

36

shows HInv4a1 s ′ p
〈proof 〉

lemma HStartBallot-HInv4a2 :
assumes act: HStartBallot s s ′ p
and inv: HInv4a2 s p
shows HInv4a2 s ′ p

〈proof 〉

lemma HStartBallot-HInv4a-p:
assumes act: HStartBallot s s ′ p
and inv: HInv4a s p
and inv2a: Inv2a-inner s ′ p
shows HInv4a s ′ p

〈proof 〉

lemma HStartBallot-HInv4a-q:
assumes act: HStartBallot s s ′ p
and inv: HInv4a s q
and pnq: p 6=q
shows HInv4a s ′ q

〈proof 〉

theorem HStartBallot-HInv4a:
assumes act: HStartBallot s s ′ p
and inv: HInv4a s q
and inv2a: Inv2a s ′

shows HInv4a s ′ q
〈proof 〉

lemma Phase1or2Write-HInv4a1 :
[[Phase1or2Write s s ′ p d; HInv4a1 s q]] =⇒ HInv4a1 s ′ q
〈proof 〉

lemma Phase1or2Write-HInv4a2 :
[[Phase1or2Write s s ′ p d; HInv4a2 s q]] =⇒ HInv4a2 s ′ q
〈proof 〉

theorem HPhase1or2Write-HInv4a:
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv4a s q
shows HInv4a s ′ q

〈proof 〉

lemma HPhase1or2ReadThen-HInv4a1-p:
assumes act: HPhase1or2ReadThen s s ′ p d q
and inv: HInv4a1 s p
shows HInv4a1 s ′ p

〈proof 〉

37

lemma HPhase1or2ReadThen-HInv4a2 :
[[HPhase1or2ReadThen s s ′ p d r ; HInv4a2 s q]] =⇒ HInv4a2 s ′ q
〈proof 〉

lemma HPhase1or2ReadThen-HInv4a-p:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv4a s p
and inv2b: Inv2b s
shows HInv4a s ′ p

〈proof 〉

lemma HPhase1or2ReadThen-HInv4a-q:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv4a s q
and pnq: p 6=q
shows HInv4a s ′ q

〈proof 〉

theorem HPhase1or2ReadThen-HInv4a:
[[HPhase1or2ReadThen s s ′ p d r ; HInv4a s q; Inv2b s]] =⇒ HInv4a s ′ q
〈proof 〉

theorem HPhase1or2ReadElse-HInv4a:
assumes act: HPhase1or2ReadElse s s ′ p d r
and inv: HInv4a s q and inv2a: Inv2a s ′

shows HInv4a s ′ q
〈proof 〉

lemma HEndPhase1-HInv4a1 :
assumes act: HEndPhase1 s s ′ p
and inv: HInv4a1 s p
shows HInv4a1 s ′ p

〈proof 〉

lemma HEndPhase1-HInv4a2 :
assumes act: HEndPhase1 s s ′ p
and inv: HInv4a2 s p
and inv2a: Inv2a s
shows HInv4a2 s ′ p

〈proof 〉

lemma HEndPhase1-HInv4a-p:
assumes act: HEndPhase1 s s ′ p
and inv: HInv4a s p
and inv2a: Inv2a s
shows HInv4a s ′ p

〈proof 〉

38

lemma HEndPhase1-HInv4a-q:
assumes act: HEndPhase1 s s ′ p
and inv: HInv4a s q
and pnq: p 6=q
shows HInv4a s ′ q

〈proof 〉

theorem HEndPhase1-HInv4a:
[[HEndPhase1 s s ′ p; HInv4a s q; Inv2a s]] =⇒ HInv4a s ′ q
〈proof 〉

theorem HFail-HInv4a:
[[HFail s s ′ p; HInv4a s q]] =⇒ HInv4a s ′ q
〈proof 〉

theorem HPhase0Read-HInv4a:
[[HPhase0Read s s ′ p d; HInv4a s q]] =⇒ HInv4a s ′ q
〈proof 〉

theorem HEndPhase2-HInv4a:
[[HEndPhase2 s s ′ p; HInv4a s q]] =⇒ HInv4a s ′ q
〈proof 〉

lemma allSet:
assumes aPQ: ∀ a. ∀ r ∈ P a. Q r and rb: rb ∈ P d
shows Q rb

〈proof 〉

lemma EndPhase0-44 :
assumes act: EndPhase0 s s ′ p
and bk: bk ∈ blocksOf s p
and inv4d: HInv4d s p
and inv2c: Inv2c-inner s p
shows ∃ d. ∃ rb ∈ blocksRead s p d. bal bk ≤ mbal(block rb)

〈proof 〉

lemma HEndPhase0-HInv4a1-p:
assumes act: HEndPhase0 s s ′ p
and inv2a ′: Inv2a s ′

and inv2c: Inv2c-inner s p
and inv4d: HInv4d s p
shows HInv4a1 s ′ p

〈proof 〉

lemma hasRead-allBlks:
assumes inv2c: Inv2c-inner s p
and phase: phase s p = 0
shows (∀ d∈{d. hasRead s p d p}. disk s d p ∈ allBlocksRead s p)

〈proof 〉

39

lemma HEndPhase0-41 :
assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
and inv2c: Inv2c-inner s p
shows ∃D∈MajoritySet. ∀ d∈D. mbal(disk s d p) ≤ mbal(dblock s ′ p)

∧ bal(disk s d p) ≤ bal(dblock s ′ p)
〈proof 〉

lemma Majority-exQ:
assumes asm1 : ∃D ∈ MajoritySet. ∀ d∈D. P d
shows ∀D∈MajoritySet.∃ d∈D. P d

〈proof 〉

lemma HEndPhase0-HInv4a2-p:
assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
and inv2c: Inv2c-inner s p
shows HInv4a2 s ′ p

〈proof 〉

lemma HEndPhase0-HInv4a-p:
assumes act: HEndPhase0 s s ′ p
and inv2a: Inv2a s
and inv2 : Inv2c s
and inv4d: HInv4d s p
and inv1 : Inv1 s
and inv: HInv4a s p
shows HInv4a s ′ p

〈proof 〉

lemma HEndPhase0-HInv4a-q:
assumes act: HEndPhase0 s s ′ p
and inv: HInv4a s q
and pnq: p 6=q
shows HInv4a s ′ q

〈proof 〉

theorem HEndPhase0-HInv4a:
[[HEndPhase0 s s ′ p; HInv4a s q; HInv4d s p;

Inv2a s; Inv1 s; Inv2a s; Inv2c s]]
=⇒ HInv4a s ′ q
〈proof 〉

C.4.2 Proofs of Invariant 4b
lemma blocksRead-allBlocksRead:

rb ∈ blocksRead s p d =⇒ block rb ∈ allBlocksRead s p

40

〈proof 〉

lemma HEndPhase0-dblock-mbal:
[[HEndPhase0 s s ′ p]]

=⇒ ∀ br∈allBlocksRead s p. mbal br < mbal(dblock s ′ p)
〈proof 〉

lemma HEndPhase0-HInv4b-p-dblock:
assumes act: HEndPhase0 s s ′ p
and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2c: Inv2c-inner s p
shows bal(dblock s ′ p) < mbal(dblock s ′ p)

〈proof 〉

lemma HEndPhase0-HInv4b-p-blocksOf :
assumes act: HEndPhase0 s s ′ p
and inv4d: HInv4d s p
and inv2c: Inv2c-inner s p
and bk: bk ∈ blocksOf s p
shows bal bk < mbal(dblock s ′ p)

〈proof 〉

lemma HEndPhase0-HInv4b-p:
assumes act: HEndPhase0 s s ′ p
and inv4d: HInv4d s p
and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2c: Inv2c-inner s p
shows HInv4b s ′ p

〈proof 〉

lemma HEndPhase0-HInv4b-q:
assumes act: HEndPhase0 s s ′ p
and pnq: p 6=q
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

theorem HEndPhase0-HInv4b:
assumes act: HEndPhase0 s s ′ p
and inv: HInv4b s q
and inv4d: HInv4d s p
and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2c: Inv2c-inner s p
shows HInv4b s ′ q

〈proof 〉

41

lemma HStartBallot-HInv4b-p:
assumes act: HStartBallot s s ′ p
and inv2a: Inv2a-innermost s p (dblock s p)
and inv4b: HInv4b s p
and inv4a: HInv4a s p
shows HInv4b s ′ p

〈proof 〉

lemma HStartBallot-HInv4b-q:
assumes act: HStartBallot s s ′ p
and pnq: p 6=q
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

theorem HStartBallot-HInv4b:
assumes act: HStartBallot s s ′ p
and inv2a: Inv2a s
and inv4b: HInv4b s q
and inv4a: HInv4a s p
shows HInv4b s ′ q

〈proof 〉

theorem HPhase1or2Write-HInv4b:
[[HPhase1or2Write s s ′ p d; HInv4b s q]] =⇒ HInv4b s ′ q
〈proof 〉

lemma HPhase1or2ReadThen-HInv4b-p:
assumes act: HPhase1or2ReadThen s s ′ p d q
and inv: HInv4b s p
shows HInv4b s ′ p

〈proof 〉

lemma HPhase1or2ReadThen-HInv4b-q:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv4b s q
and pnq: p 6=q
shows HInv4b s ′ q
〈proof 〉

theorem HPhase1or2ReadThen-HInv4b:
[[HPhase1or2ReadThen s s ′ p d q; HInv4b s r]] =⇒ HInv4b s ′ r
〈proof 〉

theorem HPhase1or2ReadElse-HInv4b:
[[HPhase1or2ReadElse s s ′ p d q; HInv4b s r ;

Inv2a s; HInv4a s p]]
=⇒ HInv4b s ′ r

42

〈proof 〉

lemma HEndPhase1-HInv4b-p:
HEndPhase1 s s ′ p =⇒ HInv4b s ′ p
〈proof 〉

lemma HEndPhase1-HInv4b-q:
assumes act: HEndPhase1 s s ′ p
and pnq: p 6=q
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

theorem HEndPhase1-HInv4b:
assumes act: HEndPhase1 s s ′ p
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

lemma HEndPhase2-HInv4b-p:
HEndPhase2 s s ′ p =⇒ HInv4b s ′ p
〈proof 〉

lemma HEndPhase2-HInv4b-q:
assumes act: HEndPhase2 s s ′ p
and pnq: p 6=q
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

theorem HEndPhase2-HInv4b:
assumes act: HEndPhase2 s s ′ p
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

lemma HFail-HInv4b-p:
HFail s s ′ p =⇒ HInv4b s ′ p
〈proof 〉

lemma HFail-HInv4b-q:
assumes act: HFail s s ′ p
and pnq: p 6=q
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

theorem HFail-HInv4b:
assumes act: HFail s s ′ p

43

and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

lemma HPhase0Read-HInv4b-p:
HPhase0Read s s ′ p d =⇒ HInv4b s ′ p
〈proof 〉

lemma HPhase0Read-HInv4b-q:
assumes act: HPhase0Read s s ′ p d
and pnq: p 6=q
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

theorem HPhase0Read-HInv4b:
assumes act: HPhase0Read s s ′ p d
and inv: HInv4b s q
shows HInv4b s ′ q

〈proof 〉

C.4.3 Proofs of Invariant 4c
lemma HStartBallot-HInv4c-p:
[[HStartBallot s s ′ p; HInv4c s p]] =⇒ HInv4c s ′ p
〈proof 〉

lemma HStartBallot-HInv4c-q:
assumes act: HStartBallot s s ′ p
and inv: HInv4c s q
and pnq: p 6=q
shows HInv4c s ′ q

〈proof 〉

theorem HStartBallot-HInv4c:
[[HStartBallot s s ′ p; HInv4c s q]] =⇒ HInv4c s ′ q
〈proof 〉

lemma HPhase1or2Write-HInv4c-p:
assumes act: HPhase1or2Write s s ′ p d

and inv: HInv4c s p
and inv2c: Inv2c s

shows HInv4c s ′ p
〈proof 〉

lemma HPhase1or2Write-HInv4c-q:
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv4c s q
and pnq: p 6=q

44

shows HInv4c s ′ q
〈proof 〉

theorem HPhase1or2Write-HInv4c:
[[HPhase1or2Write s s ′ p d; HInv4c s q; Inv2c s]]

=⇒ HInv4c s ′ q
〈proof 〉

lemma HPhase1or2ReadThen-HInv4c-p:
[[HPhase1or2ReadThen s s ′ p d q; HInv4c s p]] =⇒ HInv4c s ′ p
〈proof 〉

lemma HPhase1or2ReadThen-HInv4c-q:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv4c s q
and pnq: p 6=q
shows HInv4c s ′ q

〈proof 〉

theorem HPhase1or2ReadThen-HInv4c:
[[HPhase1or2ReadThen s s ′ p d r ; HInv4c s q]]

=⇒ HInv4c s ′ q
〈proof 〉

theorem HPhase1or2ReadElse-HInv4c:
[[HPhase1or2ReadElse s s ′ p d r ; HInv4c s q]] =⇒ HInv4c s ′ q

〈proof 〉

lemma HEndPhase1-HInv4c-p:
assumes act: HEndPhase1 s s ′ p
and inv2b: Inv2b s
shows HInv4c s ′ p

〈proof 〉

lemma HEndPhase1-HInv4c-q:
assumes act: HEndPhase1 s s ′ p
and inv: HInv4c s q
and pnq: p 6=q
shows HInv4c s ′ q

〈proof 〉

theorem HEndPhase1-HInv4c:
[[HEndPhase1 s s ′ p; HInv4c s q; Inv2b s]] =⇒ HInv4c s ′ q
〈proof 〉

lemma HEndPhase2-HInv4c-p:
[[HEndPhase2 s s ′ p; HInv4c s p]] =⇒ HInv4c s ′ p
〈proof 〉

45

lemma HEndPhase2-HInv4c-q:
assumes act: HEndPhase2 s s ′ p
and inv: HInv4c s q
and pnq: p 6=q
shows HInv4c s ′ q

〈proof 〉

theorem HEndPhase2-HInv4c:
[[HEndPhase2 s s ′ p; HInv4c s q]] =⇒ HInv4c s ′ q
〈proof 〉

lemma HFail-HInv4c-p:
[[HFail s s ′ p; HInv4c s p]] =⇒ HInv4c s ′ p
〈proof 〉

lemma HFail-HInv4c-q:
assumes act: HFail s s ′ p
and inv: HInv4c s q
and pnq: p 6=q
shows HInv4c s ′ q

〈proof 〉

theorem HFail-HInv4c:
[[HFail s s ′ p; HInv4c s q]] =⇒ HInv4c s ′ q
〈proof 〉

lemma HPhase0Read-HInv4c-p:
[[HPhase0Read s s ′ p d; HInv4c s p]] =⇒ HInv4c s ′ p
〈proof 〉

lemma HPhase0Read-HInv4c-q:
assumes act: HPhase0Read s s ′ p d
and inv: HInv4c s q
and pnq: p 6=q
shows HInv4c s ′ q

〈proof 〉

theorem HPhase0Read-HInv4c:
[[HPhase0Read s s ′ p d; HInv4c s q]] =⇒ HInv4c s ′ q
〈proof 〉

lemma HEndPhase0-HInv4c-p:
[[HEndPhase0 s s ′ p; HInv4c s p]] =⇒ HInv4c s ′ p
〈proof 〉

lemma HEndPhase0-HInv4c-q:
assumes act: HEndPhase0 s s ′ p
and inv: HInv4c s q
and pnq: p 6=q

46

shows HInv4c s ′ q
〈proof 〉

theorem HEndPhase0-HInv4c:
[[HEndPhase0 s s ′ p; HInv4c s q]] =⇒ HInv4c s ′ q
〈proof 〉

C.4.4 Proofs of Invariant 4d
lemma HStartBallot-HInv4d-p:

assumes act: HStartBallot s s ′ p
and inv: HInv4d s p
shows HInv4d s ′ p

〈proof 〉

lemma HStartBallot-HInv4d-q:
assumes act: HStartBallot s s ′ p
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HStartBallot-HInv4d:
[[HStartBallot s s ′ p; HInv4d s q]] =⇒ HInv4d s ′ q
〈proof 〉

lemma HPhase1or2Write-HInv4d-p:
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv4d s p
and inv4a: HInv4a s p
shows HInv4d s ′ p

〈proof 〉

lemma HPhase1or2Write-HInv4d-q:
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HPhase1or2Write-HInv4d:
[[HPhase1or2Write s s ′ p d; HInv4d s q; HInv4a s p]] =⇒ HInv4d s ′ q
〈proof 〉

lemma HPhase1or2ReadThen-HInv4d-p:
assumes act: HPhase1or2ReadThen s s ′ p d q
and inv: HInv4d s p
shows HInv4d s ′ p

〈proof 〉

47

lemma HPhase1or2ReadThen-HInv4d-q:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HPhase1or2ReadThen-HInv4d:
[[HPhase1or2ReadThen s s ′ p d r ; HInv4d s q]] =⇒ HInv4d s ′ q
〈proof 〉

theorem HPhase1or2ReadElse-HInv4d:
[[HPhase1or2ReadElse s s ′ p d r ; HInv4d s q]] =⇒ HInv4d s ′ q

〈proof 〉

lemma HEndPhase1-HInv4d-p:
assumes act: HEndPhase1 s s ′ p
and inv: HInv4d s p
and inv2b: Inv2b s
and inv4c: HInv4c s p
shows HInv4d s ′ p

〈proof 〉

lemma HEndPhase1-HInv4d-q:
assumes act: HEndPhase1 s s ′ p
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HEndPhase1-HInv4d:
[[HEndPhase1 s s ′ p; HInv4d s q; Inv2b s; HInv4c s p]]

=⇒ HInv4d s ′ q
〈proof 〉

lemma HEndPhase2-HInv4d-p:
assumes act: HEndPhase2 s s ′ p
and inv: HInv4d s p
shows HInv4d s ′ p

〈proof 〉

lemma HEndPhase2-HInv4d-q:
assumes act: HEndPhase2 s s ′ p
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

48

theorem HEndPhase2-HInv4d:
[[HEndPhase2 s s ′ p; HInv4d s q]] =⇒ HInv4d s ′ q
〈proof 〉

lemma HFail-HInv4d-p:
assumes act: HFail s s ′ p
and inv: HInv4d s p
shows HInv4d s ′ p

〈proof 〉

lemma HFail-HInv4d-q:
assumes act: HFail s s ′ p
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HFail-HInv4d:
[[HFail s s ′ p; HInv4d s q]] =⇒ HInv4d s ′ q
〈proof 〉

lemma HPhase0Read-HInv4d-p:
assumes act: HPhase0Read s s ′ p d
and inv: HInv4d s p
shows HInv4d s ′ p

〈proof 〉

lemma HPhase0Read-HInv4d-q:
assumes act: HPhase0Read s s ′ p d
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HPhase0Read-HInv4d:
[[HPhase0Read s s ′ p d; HInv4d s q]] =⇒ HInv4d s ′ q
〈proof 〉

lemma HEndPhase0-blocksOf2 :
assumes act: HEndPhase0 s s ′ p
and inv2c: Inv2c-inner s p
shows allBlocksRead s p ⊆ blocksOf s p

〈proof 〉

lemma HEndPhase0-HInv4d-p:
assumes act: HEndPhase0 s s ′ p
and inv: HInv4d s p
and inv2c: Inv2c s
and inv1 : Inv1 s

49

shows HInv4d s ′ p
〈proof 〉

lemma HEndPhase0-HInv4d-q:
assumes act: HEndPhase0 s s ′ p
and inv: HInv4d s q
and pnq: p 6=q
shows HInv4d s ′ q

〈proof 〉

theorem HEndPhase0-HInv4d:
[[HEndPhase0 s s ′ p; HInv4d s q;

Inv2c s; Inv1 s]] =⇒ HInv4d s ′ q
〈proof 〉

Since we have already proved HInv2 is an invariant of HNext, HInv1 ∧
HInv2 ∧HInv4 is also an invariant of HNext.
lemma I2d:

assumes nxt: HNext s s ′

and inv: HInv1 s ∧ HInv2 s ∧ HInv2 s ′ ∧ HInv4 s
shows HInv4 s ′

〈proof 〉

end

theory DiskPaxos-Inv5 imports DiskPaxos-Inv3 DiskPaxos-Inv4 begin

C.5 Invariant 5

This invariant asserts that, if a processor p is in phase 2, then either its
bal and inp values satisfy maxBalInp, or else p must eventually abort its
current ballot. Processor p will eventually abort its ballot if there is some
processor q and majority set D such that p has not read q’s block on any
disk D, and all of those blocks have mbal values greater than bal(dblocksp).
definition maxBalInp :: state ⇒ nat ⇒ InputsOrNi ⇒ bool

where maxBalInp s b v = (∀ bk∈allBlocks s. b ≤ bal bk −→ inp bk = v)

definition HInv5-inner-R :: state ⇒ Proc ⇒ bool
where

HInv5-inner-R s p =
(maxBalInp s (bal(dblock s p)) (inp(dblock s p))

∨ (∃D∈MajoritySet. ∃ q. (∀ d∈D. bal(dblock s p) < mbal(disk s d q)
∧ ¬hasRead s p d q)))

definition HInv5-inner :: state ⇒ Proc ⇒ bool
where HInv5-inner s p = (phase s p = 2 −→ HInv5-inner-R s p)

50

definition HInv5 :: state ⇒ bool
where HInv5 s = (∀ p. HInv5-inner s p)

C.5.1 Proof of Invariant 5

The initial state implies Invariant 5.
theorem HInit-HInv5 : HInit s =⇒ HInv5 s
〈proof 〉

We will use the notation used in the proofs of invariant 4, and prove the
lemma action-HInv5-p and action-HInv5-q for each action, for the cases
p = q and p 6= q respectively.
Also, for each action we will define an action-allBlocks lemma in the same
way that we defined -blocksOf lemmas in the proofs of HInv2. Now
we prove that for each action the new allBlocks are included in the old
allBlocks or, in some cases, included in the old allBlocks union the new
dblock.
lemma HStartBallot-HInv5-p:

assumes act: HStartBallot s s ′ p
and inv: HInv5-inner s p
shows HInv5-inner s ′ p 〈proof 〉

lemma HStartBallot-blocksOf-q:
assumes act: HStartBallot s s ′ p
and pnq: p 6=q
shows blocksOf s ′ q ⊆ blocksOf s q 〈proof 〉

lemma HStartBallot-allBlocks:
assumes act: HStartBallot s s ′ p
shows allBlocks s ′ ⊆ allBlocks s ∪ {dblock s ′ p}

〈proof 〉

lemma HStartBallot-HInv5-q1 :
assumes act: HStartBallot s s ′ p
and pnq: p 6=q
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))

〈proof 〉

lemma HStartBallot-HInv5-q2 :
assumes act: HStartBallot s s ′ p
and pnq: p 6=q
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)
∧ ¬hasRead s q d qq)

shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)
∧ ¬hasRead s ′ q d qq)

51

〈proof 〉

lemma HStartBallot-HInv5-q:
assumes act: HStartBallot s s ′ p
and inv: HInv5-inner s q
and pnq: p 6=q
shows HInv5-inner s ′ q
〈proof 〉

theorem HStartBallot-HInv5 :
[[HStartBallot s s ′ p; HInv5-inner s q]] =⇒ HInv5-inner s ′ q

〈proof 〉

lemma HPhase1or2Write-HInv5-1 :
assumes act: HPhase1or2Write s s ′ p d
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))
〈proof 〉

lemma HPhase1or2Write-HInv5-p2 :
assumes act: HPhase1or2Write s s ′ p d
and inv4c: HInv4c s p
and phase: phase s p = 2
and inv5-2 : ∃D∈MajoritySet. ∃ q. (∀ d∈D. bal(dblock s p) < mbal(disk s d q)

∧ ¬hasRead s p d q)
shows ∃D∈MajoritySet. ∃ q. (∀ d∈D. bal(dblock s ′ p) < mbal(disk s ′ d q)

∧ ¬hasRead s ′ p d q)
〈proof 〉

lemma HPhase1or2Write-HInv5-p:
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv5-inner s p
and inv4 : HInv4c s p
shows HInv5-inner s ′ p

〈proof 〉

lemma HPhase1or2Write-allBlocks:
assumes act: HPhase1or2Write s s ′ p d
shows allBlocks s ′ ⊆ allBlocks s
〈proof 〉

lemma HPhase1or2Write-HInv5-q2 :
assumes act: HPhase1or2Write s s ′ p d
and pnq: p 6=q
and inv4a: HInv4a s p
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)
∧ ¬hasRead s q d qq)

52

shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)
∧ ¬hasRead s ′ q d qq)

〈proof 〉

lemma HPhase1or2Write-HInv5-q:
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv5-inner s q
and inv4a: HInv4a s p
and pnq: p 6=q
shows HInv5-inner s ′ q

〈proof 〉

theorem HPhase1or2Write-HInv5 :
[[HPhase1or2Write s s ′ p d; HInv5-inner s q;

HInv4c s p; HInv4a s p]] =⇒ HInv5-inner s ′ q
〈proof 〉

lemma HPhase1or2ReadThen-HInv5-1 :
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))
〈proof 〉

lemma HPhase1or2ReadThen-HInv5-p2 :
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv4c: HInv4c s p
and inv2c: Inv2c-inner s p
and phase: phase s p = 2
and inv5-2 : ∃D∈MajoritySet. ∃ q. (∀ d∈D. bal(dblock s p) < mbal(disk s d q)

∧ ¬hasRead s p d q)
shows ∃D∈MajoritySet. ∃ q. (∀ d∈D. bal(dblock s ′ p) < mbal(disk s ′ d q)

∧ ¬hasRead s ′ p d q)
〈proof 〉

lemma HPhase1or2ReadThen-HInv5-p:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv5-inner s p
and inv4 : HInv4c s p
and inv2c: Inv2c s
shows HInv5-inner s ′ p

〈proof 〉

lemma HPhase1or2ReadThen-allBlocks:
assumes act: HPhase1or2ReadThen s s ′ p d r
shows allBlocks s ′ ⊆ allBlocks s
〈proof 〉

lemma HPhase1or2ReadThen-HInv5-q2 :
assumes act: HPhase1or2ReadThen s s ′ p d r

53

and pnq: p 6=q
and inv4a: HInv4a s p
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)
∧ ¬hasRead s q d qq)

shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)
∧ ¬hasRead s ′ q d qq)

〈proof 〉

lemma HPhase1or2ReadThen-HInv5-q:
assumes act: HPhase1or2ReadThen s s ′ p d r
and inv: HInv5-inner s q
and inv4a: HInv4a s p
and pnq: p 6=q
shows HInv5-inner s ′ q

〈proof 〉

theorem HPhase1or2ReadThen-HInv5 :
[[HPhase1or2ReadThen s s ′ p d r ; HInv5-inner s q;

Inv2c s; HInv4c s p; HInv4a s p]] =⇒ HInv5-inner s ′ q
〈proof 〉

theorem HPhase1or2ReadElse-HInv5 :
[[HPhase1or2ReadElse s s ′ p d r ; HInv5-inner s q]]

=⇒ HInv5-inner s ′ q
〈proof 〉

lemma HEndPhase2-HInv5-p:
HEndPhase2 s s ′ p =⇒ HInv5-inner s ′ p
〈proof 〉

lemma HEndPhase2-allBlocks:
assumes act: HEndPhase2 s s ′ p
shows allBlocks s ′ ⊆ allBlocks s
〈proof 〉

lemma HEndPhase2-HInv5-q1 :
assumes act: HEndPhase2 s s ′ p
and pnq: p 6=q
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))

〈proof 〉

lemma HEndPhase2-HInv5-q2 :
assumes act: HEndPhase2 s s ′ p
and pnq: p 6=q
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)
∧ ¬hasRead s q d qq)

54

shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)
∧ ¬hasRead s ′ q d qq)

〈proof 〉

lemma HEndPhase2-HInv5-q:
assumes act: HEndPhase2 s s ′ p
and inv: HInv5-inner s q
and pnq: p 6=q
shows HInv5-inner s ′ q
〈proof 〉

theorem HEndPhase2-HInv5 :
[[HEndPhase2 s s ′ p; HInv5-inner s q]] =⇒ HInv5-inner s ′ q
〈proof 〉

lemma HEndPhase1-HInv5-p:
assumes act: HEndPhase1 s s ′ p
and inv4 : HInv4 s
and inv2a: Inv2a s
and inv2a ′: Inv2a s ′

and inv2c: Inv2c s
and asm4 : ¬maxBalInp s ′ (bal(dblock s ′ p)) (inp(dblock s ′ p))
shows (∃D∈MajoritySet. ∃ q. (∀ d∈D. bal(dblock s ′ p) < mbal(disk s ′ d q)

∧ ¬hasRead s ′ p d q))
〈proof 〉

lemma union-inclusion:
[[A ⊆ A ′; B⊆ B ′]] =⇒ A∪B ⊆ A ′∪B ′

〈proof 〉

lemma HEndPhase1-blocksOf-q:
assumes act: HEndPhase1 s s ′ p
and pnq: p 6=q
shows blocksOf s ′ q ⊆ blocksOf s q

〈proof 〉

lemma HEndPhase1-allBlocks:
assumes act: HEndPhase1 s s ′ p
shows allBlocks s ′ ⊆ allBlocks s ∪ {dblock s ′ p}

〈proof 〉

lemma HEndPhase1-HInv5-q:
assumes act: HEndPhase1 s s ′ p
and inv: HInv5 s
and inv1 : Inv1 s
and inv2a: Inv2a s ′

and inv2a-q: Inv2a s
and inv2b: Inv2b s
and inv2c: Inv2c s

55

and inv3 : HInv3 s
and phase ′: phase s ′ q = 2
and pnq: p 6=q
and asm4 : ¬maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))
shows (∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)

∧ ¬hasRead s ′ q d qq))
〈proof 〉

theorem HEndPhase1-HInv5 :
assumes act: HEndPhase1 s s ′ p
and inv: HInv5 s
and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2a ′: Inv2a s ′

and inv2b: Inv2b s
and inv2c: Inv2c s
and inv3 : HInv3 s
and inv4 : HInv4 s

shows HInv5-inner s ′ q
〈proof 〉

lemma HFail-HInv5-p:
HFail s s ′ p =⇒ HInv5-inner s ′ p
〈proof 〉

lemma HFail-blocksOf-q:
assumes act: HFail s s ′ p
and pnq: p 6=q
shows blocksOf s ′ q ⊆ blocksOf s q
〈proof 〉

lemma HFail-allBlocks:
assumes act: HFail s s ′ p
shows allBlocks s ′ ⊆ allBlocks s ∪ {dblock s ′ p}

〈proof 〉

lemma HFail-HInv5-q1 :
assumes act: HFail s s ′ p
and pnq: p 6=q
and inv2a: Inv2a-inner s ′ q
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))

〈proof 〉

lemma HFail-HInv5-q2 :
assumes act: HFail s s ′ p
and pnq: p 6=q
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)

56

∧ ¬hasRead s q d qq)
shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)

∧ ¬hasRead s ′ q d qq)
〈proof 〉

lemma HFail-HInv5-q:
assumes act: HFail s s ′ p
and inv: HInv5-inner s q
and pnq: p 6=q
and inv2a: Inv2a s ′

shows HInv5-inner s ′ q
〈proof 〉

theorem HFail-HInv5 :
[[HFail s s ′ p; HInv5-inner s q; Inv2a s ′]] =⇒ HInv5-inner s ′ q

〈proof 〉

lemma HPhase0Read-HInv5-p:
HPhase0Read s s ′ p d =⇒ HInv5-inner s ′ p
〈proof 〉

lemma HPhase0Read-allBlocks:
assumes act: HPhase0Read s s ′ p d
shows allBlocks s ′ ⊆ allBlocks s
〈proof 〉

lemma HPhase0Read-HInv5-1 :
assumes act: HPhase0Read s s ′ p d
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))
〈proof 〉

lemma HPhase0Read-HInv5-q2 :
assumes act: HPhase0Read s s ′ p d
and pnq: p 6=q
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)
∧ ¬hasRead s q d qq)

shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)
∧ ¬hasRead s ′ q d qq)

〈proof 〉

lemma HPhase0Read-HInv5-q:
assumes act: HPhase0Read s s ′ p d
and inv: HInv5-inner s q
and pnq: p 6=q
shows HInv5-inner s ′ q

〈proof 〉

57

theorem HPhase0Read-HInv5 :
[[HPhase0Read s s ′ p d; HInv5-inner s q]] =⇒ HInv5-inner s ′ q

〈proof 〉

lemma HEndPhase0-HInv5-p:
HEndPhase0 s s ′ p =⇒ HInv5-inner s ′ p
〈proof 〉

lemma HEndPhase0-blocksOf-q:
assumes act: HEndPhase0 s s ′ p
and pnq: p 6=q
shows blocksOf s ′ q ⊆ blocksOf s q

〈proof 〉

lemma HEndPhase0-allBlocks:
assumes act: HEndPhase0 s s ′ p
shows allBlocks s ′ ⊆ allBlocks s ∪ {dblock s ′ p}

〈proof 〉

lemma HEndPhase0-HInv5-q1 :
assumes act: HEndPhase0 s s ′ p
and pnq: p 6=q
and inv1 : Inv1 s
and inv5-1 : maxBalInp s (bal(dblock s q)) (inp(dblock s q))
shows maxBalInp s ′ (bal(dblock s ′ q)) (inp(dblock s ′ q))

〈proof 〉

lemma HEndPhase0-HInv5-q2 :
assumes act: HEndPhase0 s s ′ p
and pnq: p 6=q
and inv5-2 : ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s q) < mbal(disk s d

qq)
∧ ¬hasRead s q d qq)

shows ∃D∈MajoritySet. ∃ qq. (∀ d∈D. bal(dblock s ′ q) < mbal(disk s ′ d qq)
∧ ¬hasRead s ′ q d qq)

〈proof 〉

lemma HEndPhase0-HInv5-q:
assumes act: HEndPhase0 s s ′ p
and inv: HInv5-inner s q
and inv1 : Inv1 s
and pnq: p 6=q
shows HInv5-inner s ′ q
〈proof 〉

theorem HEndPhase0-HInv5 :
[[HEndPhase0 s s ′ p; HInv5-inner s q; Inv1 s]] =⇒ HInv5-inner s ′ q
〈proof 〉

58

HInv1 ∧HInv2 ∧HInv3 ∧HInv4 ∧HInv5 is an invariant of HNext.
lemma I2e:

assumes nxt: HNext s s ′

and inv: HInv1 s ∧ HInv2 s ∧ HInv2 s ′ ∧ HInv3 s ∧ HInv4 s ∧ HInv5 s
shows HInv5 s ′

〈proof 〉

end

theory DiskPaxos-Chosen imports DiskPaxos-Inv5 begin

C.6 Lemma I2f

To prove the final conjunct we will use the predicate valueChosen(v). This
predicate is true if v is the only possible value that can be chosen as output.
It also asserts that, for every disk d in D, if q has already read disksdp, then
it has read a block with bal field at least b.
definition valueChosen :: state ⇒ InputsOrNi ⇒ bool
where

valueChosen s v =
(∃ b∈ (UN p. Ballot p).

maxBalInp s b v
∧ (∃ p. ∃D∈MajoritySet.(∀ d∈D. b ≤ bal(disk s d p)

∧(∀ q.(phase s q = 1
∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))

))))

lemma HEndPhase1-valueChosen-inp:
assumes act: HEndPhase1 s s ′ q
and inv2a: Inv2a s
and asm1 : b ∈ (UN p. Ballot p)
and bk-blocksOf : bk∈blocksOf s r
and bk: bk∈ blocksSeen s q
and b-bal: b ≤ bal bk
and asm3 : maxBalInp s b v
and inv1 : Inv1 s
shows inp(dblock s ′ q) = v

〈proof 〉

lemma HEndPhase1-maxBalInp:
assumes act: HEndPhase1 s s ′ q

and asm1 : b ∈ (UN p. Ballot p)
and asm2 : D∈MajoritySet
and asm3 : maxBalInp s b v
and asm4 : ∀ d∈D. b ≤ bal(disk s d p)

59

∧(∀ q.(phase s q = 1
∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br)))

and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2b: Inv2b s
shows maxBalInp s ′ b v

〈proof 〉

lemma HEndPhase1-valueChosen2 :
assumes act: HEndPhase1 s s ′ q

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

〈proof 〉

theorem HEndPhase1-valueChosen:
assumes act: HEndPhase1 s s ′ q
and vc: valueChosen s v
and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2b: Inv2b s
and v-input: v ∈ Inputs
shows valueChosen s ′ v

〈proof 〉

lemma HStartBallot-maxBalInp:
assumes act: HStartBallot s s ′ q

and asm3 : maxBalInp s b v
shows maxBalInp s ′ b v

〈proof 〉

lemma HStartBallot-valueChosen2 :
assumes act: HStartBallot s s ′ q

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

〈proof 〉

theorem HStartBallot-valueChosen:
assumes act: HStartBallot s s ′ q

60

and vc: valueChosen s v
and v-input: v ∈ Inputs
shows valueChosen s ′ v

〈proof 〉

lemma HPhase1or2Write-maxBalInp:
assumes act: HPhase1or2Write s s ′ q d

and asm3 : maxBalInp s b v
shows maxBalInp s ′ b v

〈proof 〉

lemma HPhase1or2Write-valueChosen2 :
assumes act: HPhase1or2Write s s ′ pp d

and asm2 : D∈MajoritySet
and asm4 : ∀ d∈D. b ≤ bal(disk s d p)

∧(∀ q.(phase s q = 1
∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

and inv4 : HInv4a s pp
shows ?P s ′

〈proof 〉

theorem HPhase1or2Write-valueChosen:
assumes act: HPhase1or2Write s s ′ q d
and vc: valueChosen s v
and v-input: v ∈ Inputs
and inv4 : HInv4a s q
shows valueChosen s ′ v

〈proof 〉

lemma HPhase1or2ReadThen-maxBalInp:
assumes act: HPhase1or2ReadThen s s ′ q d p

and asm3 : maxBalInp s b v
shows maxBalInp s ′ b v

〈proof 〉

lemma HPhase1or2ReadThen-valueChosen2 :
assumes act: HPhase1or2ReadThen s s ′ q d pp

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

〈proof 〉

theorem HPhase1or2ReadThen-valueChosen:

61

assumes act: HPhase1or2ReadThen s s ′ q d p
and vc: valueChosen s v
and v-input: v ∈ Inputs
shows valueChosen s ′ v

〈proof 〉

theorem HPhase1or2ReadElse-valueChosen:
[[HPhase1or2ReadElse s s ′ p d r ; valueChosen s v; v∈ Inputs]]

=⇒ valueChosen s ′ v
〈proof 〉

lemma HEndPhase2-maxBalInp:
assumes act: HEndPhase2 s s ′ q

and asm3 : maxBalInp s b v
shows maxBalInp s ′ b v

〈proof 〉

lemma HEndPhase2-valueChosen2 :
assumes act: HEndPhase2 s s ′ q

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

〈proof 〉

theorem HEndPhase2-valueChosen:
assumes act: HEndPhase2 s s ′ q
and vc: valueChosen s v
and v-input: v ∈ Inputs
shows valueChosen s ′ v

〈proof 〉

lemma HFail-maxBalInp:
assumes act: HFail s s ′ q

and asm1 : b ∈ (UN p. Ballot p)
and asm3 : maxBalInp s b v

shows maxBalInp s ′ b v
〈proof 〉

lemma HFail-valueChosen2 :
assumes act: HFail s s ′ q

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

62

〈proof 〉

theorem HFail-valueChosen:
assumes act: HFail s s ′ q
and vc: valueChosen s v
and v-input: v ∈ Inputs
shows valueChosen s ′ v

〈proof 〉

lemma HPhase0Read-maxBalInp:
assumes act: HPhase0Read s s ′ q d

and asm3 : maxBalInp s b v
shows maxBalInp s ′ b v

〈proof 〉

lemma HPhase0Read-valueChosen2 :
assumes act: HPhase0Read s s ′ qq dd

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

〈proof 〉

theorem HPhase0Read-valueChosen:
assumes act: HPhase0Read s s ′ q d
and vc: valueChosen s v
and v-input: v ∈ Inputs
shows valueChosen s ′ v

〈proof 〉

lemma HEndPhase0-maxBalInp:
assumes act: HEndPhase0 s s ′ q

and asm3 : maxBalInp s b v
and inv1 : Inv1 s

shows maxBalInp s ′ b v
〈proof 〉

lemma HEndPhase0-valueChosen2 :
assumes act: HEndPhase0 s s ′ q

and asm4 : ∀ d∈D. b ≤ bal(disk s d p)
∧(∀ q.(phase s q = 1

∧ b ≤mbal(dblock s q)
∧ hasRead s q d p
) −→ (∃ br∈blocksRead s q d. b ≤ bal(block br))) (is ?P s)

shows ?P s ′

〈proof 〉

63

theorem HEndPhase0-valueChosen:
assumes act: HEndPhase0 s s ′ q
and vc: valueChosen s v
and v-input: v ∈ Inputs
and inv1 : Inv1 s
shows valueChosen s ′ v

〈proof 〉

end

theory DiskPaxos-Inv6 imports DiskPaxos-Chosen begin

C.7 Invariant 6

The final conjunct of HInv asserts that, once an output has been cho-
sen, valueChosen(chosen) holds, and each processor’s output equals either
chosen or NotAnInput.
definition HInv6 :: state ⇒ bool
where

HInv6 s = ((chosen s 6= NotAnInput −→ valueChosen s (chosen s))
∧ (∀ p. outpt s p ∈ {chosen s, NotAnInput}))

theorem HInit-HInv6 : HInit s =⇒ HInv6 s
〈proof 〉

lemma HEndPhase2-Inv6-1 :
assumes act: HEndPhase2 s s ′ p
and inv: HInv6 s
and inv2b: Inv2b s
and inv2c: Inv2c s
and inv3 : HInv3 s
and inv5 : HInv5-inner s p
and chosen ′: chosen s ′ 6= NotAnInput
shows valueChosen s ′ (chosen s ′)

〈proof 〉

lemma valueChosen-equal-case:
assumes max-v: maxBalInp s b v
and Dmaj: D ∈ MajoritySet
and asm-v: ∀ d∈D. b ≤ bal (disk s d p)
and max-w: maxBalInp s ba w
and Damaj: Da ∈ MajoritySet
and asm-w: ∀ d∈Da. ba ≤ bal (disk s d pa)
and b-ba: b≤ba
shows v=w

〈proof 〉

64

lemma valueChosen-equal:
assumes v: valueChosen s v
and w: valueChosen s w
shows v=w 〈proof 〉

lemma HEndPhase2-Inv6-2 :
assumes act: HEndPhase2 s s ′ p
and inv: HInv6 s
and inv2b: Inv2b s
and inv2c: Inv2c s
and inv3 : HInv3 s
and inv5 : HInv5-inner s p
and asm: outpt s ′ r 6= NotAnInput
shows outpt s ′ r = chosen s ′

〈proof 〉

theorem HEndPhase2-Inv6 :
assumes act: HEndPhase2 s s ′ p
and inv: HInv6 s
and inv2b: Inv2b s
and inv2c: Inv2c s
and inv3 : HInv3 s
and inv5 : HInv5-inner s p
shows HInv6 s ′

〈proof 〉

lemma outpt-chosen:
assumes outpt: outpt s = outpt s ′

and inv2c: Inv2c s
and nextp: HNextPart s s ′

shows chosen s ′ = chosen s
〈proof 〉

lemma outpt-Inv6 :
[[outpt s = outpt s ′; ∀ p. outpt s p ∈ {chosen s, NotAnInput};

Inv2c s; HNextPart s s ′]] =⇒ ∀ p. outpt s ′ p ∈ {chosen s ′, NotAnInput}
〈proof 〉

theorem HStartBallot-Inv6 :
assumes act: HStartBallot s s ′ p
and inv: HInv6 s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

theorem HPhase1or2Write-Inv6 :
assumes act: HPhase1or2Write s s ′ p d
and inv: HInv6 s
and inv4 : HInv4a s p

65

and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

theorem HPhase1or2ReadThen-Inv6 :
assumes act: HPhase1or2ReadThen s s ′ p d q
and inv: HInv6 s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

theorem HPhase1or2ReadElse-Inv6 :
assumes act: HPhase1or2ReadElse s s ′ p d q
and inv: HInv6 s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

theorem HEndPhase1-Inv6 :
assumes act: HEndPhase1 s s ′ p
and inv: HInv6 s
and inv1 : Inv1 s
and inv2a: Inv2a s
and inv2b: Inv2b s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

lemma outpt-chosen-2 :
assumes outpt: outpt s ′ = (outpt s) (p:= NotAnInput)
and inv2c: Inv2c s
and nextp: HNextPart s s ′

shows chosen s = chosen s ′

〈proof 〉

lemma outpt-HInv6-2 :
assumes outpt: outpt s ′ = (outpt s) (p:= NotAnInput)
and inv: ∀ p. outpt s p ∈ {chosen s, NotAnInput}
and inv2c: Inv2c s
and nextp: HNextPart s s ′

shows ∀ p. outpt s ′ p ∈ {chosen s ′, NotAnInput}
〈proof 〉

theorem HFail-Inv6 :
assumes act: HFail s s ′ p
and inv: HInv6 s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

66

theorem HPhase0Read-Inv6 :
assumes act: HPhase0Read s s ′ p d
and inv: HInv6 s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

theorem HEndPhase0-Inv6 :
assumes act: HEndPhase0 s s ′ p
and inv: HInv6 s
and inv1 : Inv1 s
and inv2c: Inv2c s
shows HInv6 s ′

〈proof 〉

HInv1∧HInv2∧HInv2′∧HInv3∧HInv4∧HInv5∧HInv6 is an invariant
of HNext.
lemma I2f :

assumes nxt: HNext s s ′

and inv: HInv1 s ∧ HInv2 s ∧ HInv2 s ′ ∧ HInv3 s ∧ HInv4 s ∧ HInv5 s ∧ HInv6
s

shows HInv6 s ′ 〈proof 〉

end

theory DiskPaxos-Invariant imports DiskPaxos-Inv6 begin

C.8 The Complete Invariant
definition HInv :: state ⇒ bool
where

HInv s = (HInv1 s
∧ HInv2 s
∧ HInv3 s
∧ HInv4 s
∧ HInv5 s
∧ HInv6 s)

theorem I1 :
HInit s =⇒ HInv s
〈proof 〉

theorem I2 :
assumes inv: HInv s
and nxt: HNext s s ′

shows HInv s ′

〈proof 〉

67

end

theory DiskPaxos imports DiskPaxos-Invariant begin

C.9 Inner Module
record
Istate =

iinput :: Proc ⇒ InputsOrNi
ioutput :: Proc ⇒ InputsOrNi
ichosen :: InputsOrNi
iallInput :: InputsOrNi set

definition IInit :: Istate ⇒ bool
where

IInit s = (range (iinput s) ⊆ Inputs
∧ ioutput s = (λp. NotAnInput)
∧ ichosen s = NotAnInput
∧ iallInput s = range (iinput s))

definition IChoose :: Istate ⇒ Istate ⇒ Proc ⇒ bool
where

IChoose s s ′ p = (ioutput s p = NotAnInput
∧ (if (ichosen s = NotAnInput)

then (∃ ip ∈ iallInput s. ichosen s ′ = ip
∧ ioutput s ′ = (ioutput s) (p := ip))

else (ioutput s ′ = (ioutput s) (p:= ichosen s)
∧ ichosen s ′ = ichosen s))

∧ iinput s ′ = iinput s ∧ iallInput s ′= iallInput s)

definition IFail :: Istate ⇒ Istate ⇒ Proc ⇒ bool
where

IFail s s ′ p = (ioutput s ′ = (ioutput s) (p:= NotAnInput)
∧ (∃ ip ∈ Inputs. iinput s ′ = (iinput s)(p:= ip)

∧ iallInput s ′ = iallInput s ∪ {ip})
∧ ichosen s ′ = ichosen s)

definition INext :: Istate ⇒ Istate ⇒ bool
where INext s s ′ = (∃ p. IChoose s s ′ p ∨ IFail s s ′ p)

definition s2is :: state ⇒ Istate
where

s2is s = (|iinput = inpt s,
ioutput = outpt s,
ichosen=chosen s,
iallInput = allInput s|)

68

theorem R1 :
[[HInit s; is = s2is s]] =⇒ IInit is
〈proof 〉

theorem R2b:
assumes inv: HInv s
and inv ′: HInv s ′

and nxt: HNext s s ′

and srel: is=s2is s ∧ is ′=s2is s ′

shows (∃ p. IFail is is ′ p ∨ IChoose is is ′ p) ∨ is = is ′

〈proof 〉

end

69

	Introduction
	The Disk Paxos Algorithm
	Informal description of the algorithm.
	Disk Paxos and its TLA+ Specification

	Translating from TLA+ to Isabelle/HOL
	Typed vs. Untyped
	Primed Variables
	Restructuring the specification

	Structure of the Correctness Proof
	Going from Informal Proofs to Formal Proofs

	Conclusion
	TLA+ correctness specification
	Disk Paxos Algorithm Specification
	Proof of Disk Paxos' Invariant
	Invariant 1
	Invariant 2
	Proofs of Invariant 2 a
	Proofs of Invariant 2 b
	Proofs of Invariant 2 c

	Invariant 3
	Proofs of Invariant 3

	Invariant 4
	Proofs of Invariant 4a
	Proofs of Invariant 4b
	Proofs of Invariant 4c
	Proofs of Invariant 4d

	Invariant 5
	Proof of Invariant 5

	Lemma I2f
	Invariant 6
	The Complete Invariant
	Inner Module

